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Abstract
Currently, the goal of history-matching procedures is not only to provide a model matching any
observed data but also to generate multiple matched models to properly handle uncertainties.
One such approach is a probabilistic history-matching methodology based on the discrete Latin
Hypercube sampling algorithm, proposed in previous works, which was particularly efficient for
matching well data (production rates and pressure). 4D seismic (4DS) data have been
increasingly included into history-matching procedures. A key issue in seismic history matching
(SHM) is to transfer data into a common domain: impedance, amplitude or pressure, and
saturation. In any case, seismic inversions and/or modeling are required, which can be time
consuming. An alternative to avoid these procedures is using binary images in SHM as they
allow the shape, rather than the physical values, of observed anomalies to be matched. This work
presents the incorporation of binary images in SHM within the aforementioned probabilistic
history matching. The application was performed with real data from a segment of the Norne
benchmark case that presents strong 4D anomalies, including softening signals due to pressure
build up. The binary images are used to match the pressurized zones observed in time-lapse data.
Three history matchings were conducted using: only well data, well and 4DS data, and only
4DS. The methodology is very flexible and successfully utilized the addition of binary images
for seismic objective functions. Results proved the good convergence of the method in few
iterations for all three cases. The matched models of the first two cases provided the best results,
with similar well matching quality. The second case provided models presenting pore pressure
changes according to the expected dynamic behavior (pressurized zones) observed on 4DS data.
The use of binary images in SHM is relatively new with few examples in the literature. This
work enriches this discussion by presenting a new application to match pressure in a reservoir
segment with complex pressure behavior.

Keywords: 4D seismic, seismic history matching, binary images, reservoir simulation

(Some figures may appear in colour only in the online journal)

1. Introduction

4D seismic (4DS) surveys play an increasingly important role
in monitoring hydrocarbon reservoirs. The acquired data
provide spatial information about the dynamic changes that
occur due to production. This information is used to update
reservoir simulation models, increasing production forecast
reliability, therefore improving field management. Reservoir
simulation and 4DS data can be integrated in several ways,

from qualitative assessment (Osdal et al 2006, Huang
et al 2013) to quantitative use in history-matching procedures
(Landa and Kumar 2011, Emerick 2016, and Leeuwenburgh
and Arts 2014). Integration remains a challenge, especially
for the latter. To include 4DS data as part of a history-
matching procedure, it is necessary to define a common
domain so that seismic data and simulation results can be
compared. Ideally, this integration is performed in the pres-
sure and saturation domains as these are prompt results from
reservoir simulation. However estimating actual values of
pressure and saturation from seismic data is difficult although
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there are some possibilities such as Tura and Lumley (1999),
Landrø (2001) and Trani et al (2011). Therefore, the most
common domain is the elastic attributes, such as impedance,
which can be seen as a halfway point between the forward
modeling from simulation results and seismic inversion. The
computation of seismic impedances from simulation models
is very straightforward; requiring only a forward modeling,
performed through a petro-elastic model. Although this is a
relatively inexpensive procedure, petro-elastic models can be
highly uncertain and the calibration very challenging
(Amini 2014). Recent alternative approaches have been pro-
posed to incorporate 4DS data into history-matching proce-
dures, avoiding the use of petro-elastic models. One
possibility is the use of binary images to represent the
dynamic changes to be matched (Jin et al 2012, Tillier
et al 2013, and Obidegwu et al 2015). Other examples are
works that use parameterization of seismic data in terms of
front propagation (Trani et al 2012, and Leeuwenburgh and
Arts 2014).

History matching is an inverse process that can be solved
by several methods, including optimization procedures or
sampling algorithms (Maschio and Schiozer 2016). Currently,
probabilistic procedures that generate several possible model
realizations are preferred as they allow proper handling of
uncertainties. Examples of this type of approach are the
Kalman filter (Aanonsen et al 2009), the ES-MDA (Emer-
ick 2016), and the probabilistic procedures using discrete
Latin Hypercube (DLHC) sampling proposed by Maschio and
Schiozer (2016), Avansi et al (2016), and Almeida
et al (2017).

The works of Maschio and Schiozer (2016), Avansi et al
(2016), and Almeida et al (2017) present a similar general
history-matching methodology, where DLHC is used within
an iterative procedure to gradually update the probability
density function (pdf) of the attributes based on the models
that present the lowest data misfit. The differences between
these works concern the implementation of specific steps,
such as the procedure to update attributes, and how to update
petrophysical properties (geostatistical images) presented by
Avansi et al (2016) and Almeida et al (2017). The three
works demonstrated the robustness of this methodology by
applying it to different synthetic datasets. Besides being
robust, it is simple to implement. The present work applies
this history-matching methodology to a segment of a real
field, using well data. We also show the incorporation of 4DS
data, using binary images, into this history-matching process.
The application is performed with the available data from the
G-segment of the Norne benchmark case. Despite having only
two wells in the G-segment (up to 2006), this part of the field
experienced intensive production activity caused by producer
depletion and the water injector. Consequently, strong 4D
signals can be observed, resulting from fluid changes (water
flooding, gas exsolution and dissolution) and pressure chan-
ges (pressure build up). While interpreting 4D anomalies
related to fluid changes is uncertain, the softening effect
caused by pressure build up is clearer to interpret. Therefore,
this work uses binary images to match the pressurized zones.
Note that the petro-elastic modeling for this field is very

uncertain, especially the calibration of pressure sensitivity,
which motivated the use of binary images in this case. Also,
the history matching for these two wells is not simple as the
intra-segment connectivity is complex due to lithology
change and a complex fault system (Huang et al 2013).

This work presents the application of the aforementioned
probabilistic history-matching methodology (Maschio and
Schiozer 2016) with real data, incorporating a seismic
objective function (OF) using binary images to match pres-
surized zones.

2. Methodology

2.1. History-matching procedure

This work applies the history-matching methodology pre-
sented by Maschio and Schiozer (2016), a probabilistic,
iterative procedure that gradually updates the pdf for the
attributes based on models that present the lowest data misfit.
Although the applied procedure is very similar to ‘Method 3’
of the aforementioned methodology, there are some adapta-
tions, such as the addition of the seismic OF, further
explained below.

The general workflow comprises five steps. A brief
explanation of each step is given below, for detailed infor-
mation refer to Maschio and Schiozer (2016).

• Step 1: data parameterization. In this step we map the
most important uncertain attributes to be considered in the
matching procedure. All the uncertain attributes are
considered discretely, so in this step, they are discretized
on a given number of levels to be used in the
following step.

• Step 2: generation of model samples using DLHC with
geostatistical realizations (DLHG). DLHG is an extension
of the DLHC that incorporates the Geostatistical realiza-
tions in the sampling procedure. See Schiozer et al (2017)
for more details.

• Step 3: run flow simulations for the set of generated
models.

• Step 4: compute the normalized misfit of all data
considering well data, or well data and 4DS data.

• Step 5: select the best models according to the match
quality using a correlation matrix and use these models to
update the pdf for attributes.

If the stop criteria is reached the process is finished,
otherwise we go back to the second step and generate new
models using the updated pdf obtained in step 5. This process
is repeated until the stop criterion is reached.

To allow full understanding of the results, steps 4
onwards are detailed in the next section.

2.2. Compute normalize misfit

This section describes how data misfits are computed in
step 4.
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2.2.1. Well OF. Well data misfit is measured by a normalized
quadratic distance indicator defined by several authors
(Mesquita et al 2015, Avansi et al 2016, Maschio and
Schiozer 2016, Almeida et al 2017) as the equations:
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where Tol is the tolerance given by a percentage of the
observed data (Hist), Cp is the constant used to prevent
division by zero, Sim is the simulation result (such as oil rate)
and Nobs is the number of points in the data series.

To evaluate the error distribution around the history data,
we use the NQDS indicator, which includes the signal of the
deviation through the linear deviation:
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The NQDS indicator is an efficient indicator, enabling a
quantitative evaluation of the models as well as a visual
evaluation of many OFs for several models simultaneously.
The NQDS range of [−1+1] represents an excellent
matching quality, i.e., the simulated data provide values
within the user defined tolerance (tol and Cp). Previous works

(Mesquita et al 2015, Avansi et al 2016, Maschio and
Schiozer 2016, Almeida et al 2017) suggest relaxing this
range for complex cases, as having a set of models with all
OFs (fluid rates and pressure) within the [−1+1] limit is
very difficult.

2.2.2. Seismic OF. 4DS data and the corresponding
simulation results are converted to binary images, for
comparison. Thus, instead of using the usual quadratic
error, we use the methodology proposed by Tillier et al
(2013) to measure the similarity between two binary images,

Figure 1. (a) Horst structure of the Norne field and its four segments (C, D, E, and G). The G-segment (focus of this work) is highlighted in
light blue together with its two wells. (b) Cross sections showing the completions of producer E-4AH and injector F-4H. The ternary color
scale shows the saturations at the moment the injector was drilled.

Table 1. Uncertain attributes and its corresponding value for each
discrete level.

Attribute Levels

mpoA, mpoB, mpoC 1 1.1 1.2 1.3 1.4
mpeA, mpeB, mpeC 1 1.7 3 5 7.5
mAB, mBC 0 0.01 0.1 1 —

Faults transmissibility 0 0.1 1 — —

KrPc 1 2 3 4 —

Figure 2. Three regions (A)–(C) used to apply multipliers of porosity
and permeability.
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A and B, according to equation (6).
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where LDM is the local dissimilarity map defined as

= -( ) ∣ ∣ ( ( ) ( ) ) ( )A B A B A BLDM , max DT , DT , 7i i i i

where DT(A) is the value of the distance transform of the
image A at pixel i.

The seismic OF was normalized so that all misfits (well
and binary images) have the same magnitude. Through a
visual inspection of the binary images, we set a maximum
value of OFbin so that the matching quality was considered
acceptable. This maximum value (maxlim) was used to

normalize OFbin. Therefore, the seismic OF is set as:

= ( )OF OF max lim. 8map bin

Despite an exhaustive inspection to define this limit,
future works could improve the definition of this normal-
ization. Also note that, unlike NQDS, the OFmap is always
positive.

It is worth mentioning that there is no limit concerning
the number of seismic surveys to apply the seismic history
matching (SHM) here proposed. Indeed, the methodology is
very flexible to handle several surveys simultaneously.

2.3. Selection criterion and attribute updating

In step 5, we select a percentage of the best models to update
the pdf of the attributes. There are different ways to rank and

Figure 3. Well production curves for the initial set of 300 models and history data in black circles.
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select the best models. The criterion used here is adapted from
‘Method 3’ described in Maschio and Schiozer (2016) and is
summarized in the following steps.

(i) Compute the correlation matrix. This matrix is used to
capture the influence of each attribute on each
individual OF (fluid rates and pressure for each well
and 4DS data for each survey).

(ii) For each attribute:
(a) Select the OFs with the highest correlations with the

actual attribute.
(b) Find the NQDS and OFmap limits so that Nm models

present all OFs, selected in step (ii)-a, within these
limits. As proposed by Maschio and Schiozer
(2016), the number of models selected (Nm) can
vary during the process and should range from 5% to
15% of the total number of models.

(c) Build a histogram of the attribute using the Nm
selected models.

(d) Generate the new pdf of the attribute by averaging
the new histogram (step (ii)-c) with that of the
previous iteration. This avoids the premature elim-
ination of levels as proposed by Almeida
et al (2017).

(e) If there are no OFs with high correlation with the
actual attribute, then all OFs are used to update the
pdf of this attribute.

The stop criterion based on previous works (Avansi
et al 2016 and Almeida et al 2017) is to generate one hundred
models with all OFs within the defined tolerance range.

2.4. Cases performed

The history-matching procedure was performed three times:

• Case well history matching (WHM): using only well data;
• Case SHM: using both well data and 4DS data;
• Case OSM (only seismic matching): using only 4DS data.

For cases SHM and OSM, the 4DS data are incorporated
as binary images. The image generation is discussed in the
following sections.

3. Dataset description

The dataset used is from the Norne benchmark case organized
by the Center of Integrated Operations in the Petroleum
Industry (IO Center), the Norwegian University of Science

Figure 4. 4D seismic amplitude differences from surveys 2003-2001(a), 2004-2001(b) and 2006-2001(c), and respective binary images
(d)–(f).

Figure 5. Scheme comparing seismic and simulation data. The
similarity of the amplitude changes due to pressure build up (a)
while the most pressurized zones from simulation (c) are measured
by comparing the correspondent binary images (b) and (d).
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and Technology (NTNU), and Norne Field Operations (Sta-
toil, ENI and Petoro). This dataset comprises real data, such
as well logs, production history data (up to 2006), and seismic
volumes (Rwechungura et al 2010). The Norne field is a
3×9 km horst structure located in the Norwegian Sea. It
consists of two separate oil compartments (figure 1(a)), the
Norne Main Structure (C, D and E-segments), containing
97% of the oil in place, and the Northeast Segment (G-seg-
ment). The field was discovered in 1991 and production
started in 1997 (Statoil 2004). The simulation model used in
this work has a total of 44 431 active cells defined in a corner
point grid (46×112×22). It is a black oil model with 5
different equilibrium regions (each of them defined by dif-
ferent water-oil contact and gas-oil contact).

This work focuses on the G-segment (figure 1(a)). For
this segment, the producing zone is the upper-most formation
(Not formation) with an average thickness of 25–30 m, which
was initially undersaturated. Two wells were drilled in this
segment for the production period considered in this work
(from 1997 to 2006): the producer E-4AH, drilled in the upper
part; and the water injector F-4H, perforated downflank
(figure 1(b)). Well E-4AH started producing in July 2000 and
was closed in June 2001 due to lack of pressure. Well F-4H
started water injection in September 2001 to provide pressure
support to the producer that reopened in June 2002. The water
injection caused a general pressure increase in the G-segment
(Osdal et al 2006) resulting in strong 4D signals.

3.1. Initial set of models and well data

The uncertain attributes this work considers are: multipliers of
porosity and permeability, the transmissibility of all faults
inside the segment, relative permeability, and 200 sets of
petrophysical images generated by Correa and Schiozer
(2016), which included porosity, absolute permeability, and
net to gross ratio. In each iteration, a set of 300 model rea-
lizations is generated.

All the attributes were considered in a discrete form
assuming a prior uniform distribution. Table 1 shows the
values assumed for each level for all the attributes, namely:

three multipliers of porosity (mpoA, mpoB and mpoC)
defined according to the regions in figure 2, the corresponding
horizontal permeability multipliers (mpeA, mpeB and mpeC);
the transmissibility of the blocks between the regions A and B
(mAB) and B and C (mBC); the transmissibility of all internal
faults of the G-segment and four set of relative permeability
and capillary pressure (KrPc).

The well history data available are oil, gas, and water
rates for the producer E-4H and water rates for the injector
F-4H. There is no pressure measurement for the injector, and
the BHP (Bottom-hole pressure) for the producer is highly
uncertain. Figure 3 shows well curves for the initial set of 300
models as well as the history data available. Note that the
BHP of well E-4H presents several points concentrated at two
specific times. As we are not confident about the reliability of
these data, BHP was not included as an OF in the history-
matching procedures. Thus, the well OFs are reduced to oil,
gas and water production and water injection.

3.2. 4DS data

Four seismic surveys acquired in 2001, 2003, 2004, and 2006
were available. As the producing zone of the G-segment is
located in the upper layers we extracted seismic amplitude
maps along the top reservoir. Assuming the base survey as
2001, strong 4D signals are observed in the 4D differences of
the three monitors, as seen in figures 4(a)–(c), showing the
seismic amplitude differences transferred to the simulation
model scale. From here on, we use the following nomen-
clature to refer to the seismic differences: S31 (2003-2001),
S41 (2004-2001), and S61 (2006-2001). The softening
anomalies (in red) are related to pressure build up due to
water injection while blue anomalies are related to fluid
changes, which can be either gas going back to solution or
water flooding (Osdal et al 2006 and Santos 2017).

As the interpretation of the fluid anomaly is uncertain, we
use only the anomalies related to pressure build up (red
anomalies). After converting the 4DS data to the simulation

Figure 6. Examples of OFbin values for: (a) S31, (b) S41, and
(c) S61. Figure 7. Evolution of three matching procedures for the number of

selected models per iteration.
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scale (figures 4(a)–(c)), they were converted to binary images
by assigning the values of one, to the blocks with strong
softening signals, and zero to the remaining blocks, as illu-
strated in figures 4(d)–(f). A cut-off was applied to the 4DS
amplitude differences maps to define the cells strongest
softening signals.

3.3. Comparing simulation and seismic data

For cases SHM and OSM, the binary maps generated from
4DS data (figures 4(d)–(f)) are compared with the pressure
estimates from the simulation model. Figure 5 illustrates this
process; not that no petro-elastic is required in this type of
approach. The pore pressure estimates from simulation
models are converted to binary images by applying a clus-
tering technique (k-means). The pressure differences are
computed using the dates of 4DS acquisitions (2003-2001,
2004-2001, and 2006-2001), then two clusters are generated
(high and low pressurized zones). The blocks associated to
the cluster of highest pressurized values are set to one, while
the others are set to zero. It is worth mentioning that the pore
pressure for all simulation models always increases from
2001, in the G-segment. Therefore all ΔP values were posi-
tive and using a two size cluster is suitable to get the shape of
the most pressurized zone.

An average of the simulated pore pressure for the three
layers of the producing zone of the G-segment (figure 1(b)) is
considered to generate the binary maps. This choice was
made based on the seismic resolution and the thickness of the
G-segment (∼25–30 m).

3.4. Tolerances and stop criteria

The parameter Tol in equation (3) was set as 5% for oil rate
and injected water; these rates serve as boundary conditions in
the simulator, so the tolerance is lower. Following previous
works, we defined Tol=15% for the other OFs (gas and
water production).

As stated in previous works (Almeida et al 2017, Mesquita
et al 2015, Avansi et al 2016, and Maschio and Schiozer 2016),
−1<NQDS<1 represents excellent matching quality. As
generating models within this limit is difficult, we set the range
[−10+10] to define good models.

Figure 6 shows some examples of OFbin values. After a
careful evaluation, we set the acceptance limits as
OFbin<100 for S31 and S41, and OFbin<240 for S61.
Therefore, to have OFmap<10 (using the same magnitude as
for NQDS), we defined maxlim (in equation (8)) equal to 10
for S31 and S41, and equal to 24 for S61.

With limits defined, the stop criteria for the three history-
matching procedures are:

Figure 8. Results of WHM for each iteration. On the top row, well objective functions: NQDS of produced fluids (Qo, Qg, and Qw) and
injected water (Qwi). On the bottom row, seismic objective functions: binary mismatch (equation (8)) considering the difference between
surveys 2003-2001 (S31), 2004-2001 (S41), and 2006-2001 (S61). The seismic objective functions were not used in this procedure, but are
shown here for comparison purposes. For all iterations, the 300 models are in gray and the 100 best models are in blue.
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• WHM: around 100 models with |NQDS|<10 for Qo,
Qg, Qw, and Qwi;

• SHM: around 100 models with |NQDS|<10 for Qo, Qg,
Qw, and Qwi, and OFmap<10 for S31, S41, and S61.

• OSM: around 100 models with OFmap<10 for S31, S41,
and S61.

4. History-matching evolution

The three history-matching procedures WHM, SHM, and
OSM required different numbers of iterations to reach the
stop criteria. Figure 7 shows the evolution of the three pro-
cedures for the number of good models within tolerance for
each iteration. WHM required seven iterations, achieving 200
models in the last iteration. SHM achieved 99 models in ten
iterations, and OSM provided 160 models in four iterations.
Note that initially, WHM and SHM presented no models
fitting the selection criteria highlighting the challenge to
match well data even for only two wells (4 well OFs).

Figures 8–10 show the data matching quality of the
iterations for WHM, SHM, and OSM, respectively. Each
point in these plots represents one model. For each iteration,
we can see the mismatches for all 300 models in gray points.
The black horizontal lines represent the acceptance range

(defined in section 3.4). To best visualize the evolution of the
iterations, we also show the best 100 models from each
iteration in blue, red, and green for WHM, SHM, and OSM,
respectively.

Although the OFmap was not used in the WHM proce-
dure, the values are shown for comparison purposes
(figure 8); the same applies for well data displayed in
figure 10 (OSM). An interesting observation for the WHM
results is that for the two first monitors (S31 and S41), the
models of the final iteration are within the OFmap tolerance.
This indicates that adding these binary maps is unnecessary.
This is not the case for the last monitor (S61), as only some
models are within tolerance, as marked by the horizontal line.

For the SHM process, the best models improve gradually
along the iterations for all considered OFs. These results
support that the methodology satisfactorily generated models
honoring not only well data, but also the expected binary
images. Besides providing models within the acceptance
range using the binary images, these models present the same
well matching quality as those from the WHM procedure.
This is evidenced by the production curves in figures 11(a)–
(d) as well as by the histogram of the NQDS values of these
final models presented in figure 12. The distribution of the gas
rate misfits (figure 12(a)) are slightly better for the final
models of SHM, as it presents more values concentrated
closer to zero than the ones yielded from WHM. For the water

Figure 9. Results of SHM for each iteration. On the top row, well objective functions: NQDS of produced fluids (Qo, Qg, and Qw) and
injected water (Qwi). On the bottom row, seismic objective functions: binary mismatch (equation (8)) considering the difference between
surveys 2003-2001 (S31), 2004-2001 (S41), and 2006-2001 (S61). For all iterations the 300 models are in gray and the 100 best models are
in red.
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rate (figure 12(b)) the two distributions are very similar. Due
to space limitation, figures 11 and 12 show only oil and water
rates results, which are the most critical well OFs of
this work.

The results of the OSM case (figures 10, 11(e), and (f))
show that the requirement of having the pressurized zones (as
indicated in figures 4(d)–(f)) does not guarantee that these
models are consistent with well history data. Indeed, this case
provided the worst results.

Figure 13 shows the BHP curves for the three proce-
dures, these results strongly indicate that the BHP measure-
ments around 2500 days are incorrect. Also note that,
according to Osdal et al (2006), a PLT in E-4AH in 2005
reported a pore pressure of 300 bar (marked with a yellow
star) and we can see that both WHM and SHM provided BHP
values around this value. Note that there is less scattering
for SHM.

5. Image matching

As noted previously, matching the binary images for the time-
lapse difference S61 was more challenging and so are ana-
lyzed in more detail. Figures 14 and 15 show the binary
images from S61 for the best 25 models yielded from WHM
and SHM, respectively, both of which provided the most

feasible models. The models of SHM better match the
observed data, though some models from WHM also present
good binary match, in agreement with the results of figures 8
and 9.

To analyze the differences of seismic attributes for the
obtained models, we computed the impedance changes
through a forward modeling using a petro-elastic model.
Visual evaluation of the changes in acoustic impedance
computed from the initial set of models revealed a behavior
trend for these models for the three time-lapse differences,
illustrated in figure 16. Similarly, the changes in impedances
of the final models from WHM and SHM were qualitatively
evaluated (observing positive and negative changes). This
visual comparison revealed that there are two patterns fre-
quently observed from the two cases, which are shown in
figures 17 and 18. The impedance changes shown in
figures 17 and 18 agree more closely with the observed
amplitudes changes (figure 4) than the initial models
(figure 16).

As stated by Huang et al (2013), the G-segment presents
complex drainage patterns and pressure behavior, thus a
perfect matching of 4DS behavior was not expected in this
work. Despite this, we improved simulation models through
matching well data and the pressurized zones. Future works
could explore a more complete quantitative analysis of the

Figure 10. Results of OSM procedure for each iteration. On the top row well objective functions: NQDS of produced fluids (Qo, Qg, and Qw)
and injected water (Qwi). On the bottom row seismic objective functions: binary mismatch (equation EE) considering the difference between
surveys 2003-2001 (S31), 2004-2001 (S41), and 2006-2001 (S61). Well data were not used in this procedure; it is shown here for comparison
purposes. For all iterations, the 300 models are in gray and the 100 best models are in green.
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Figure 11. Left: gas rate curves for the cases WHM (a), SHM (c), and OSM (e). Right: water rate curves for the cases WHM (b), SHM (d),
and OSM (f).

Figure 12. Histogram of the NQDS values of gas (a) and produced water (b) rates and their corresponding estimated density function. Blue
and red indicated the final models yielded from WHM and SHM, respectively.
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Figure 13. BHP curves for the three procedures: (a) WHM, (b) SHM, and (c) OSM. The yellow star indicates a pressure measurement from
a PLT.

Figure 14. Binary images considering the time-lapse difference 2006-2001 for the 25 best models from WHM and the corresponding seismic
binary image (on right).
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impedance changes from the final matched models and should
include the uncertainties related to the petro-elastic modeling.

6. Discussion

The pressure dependence of the seismic velocities is not lin-
ear. Therefore, to have a strong 4D signal (in this case,
decreased impedance) as well as increased pressure, the
pressure values at the time of monitoring must be higher than
a threshold. This pressure threshold is defined through
laboratory data (core plug measurements) as well as by
matching synthetic and observed 4DS data (one of the most
important calibration steps of the petro-elastic modeling). As
we had no pressure measurements at the time of the seismic

surveys, we did not use any pressure constraints other than the
pressurized zones defined by the binary images, but if these
values are known, they can be used to constrain the cluster
definition.

Using binary images to avoid the petro-elastic modeling
might have a drawback, which is the lack of sensitivity to
coupled effects (caused by simultaneous fluid and pressure
changes) observed in 4DS signals. This is observed for S61,
when figures 17(c) and 18(c) are compared to figure 4(c).
Note that figure 4(c) presents a small blue region in the center,
which is not observed in the computed impedances because
the pressure effects override saturation effects. However, this
issue is not present for S31 or S41 and the shape of pres-
surized zone is close to the observed shape (especially for
figure 18(b)). The shape of the pressurized zones could likely

Figure 15. Binary images considering the time-lapse difference 2006-2001 for the 25 best models from SHM and the corresponding seismic
binary image (on right).

Figure 16. Example of typical behavior observed for changes in acoustic impedance computed from one of the initial simulation models
(initial set figure 3) for the three time differences. (a) 2003-2001, (b) 2004-2001, and (c) 2006-2001.
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be improved through a more geologically consistent para-
meterization (not just by controlling the transmissibility of
some model blocks), a suggestion for future studies. Another
point that could be further evaluated is the performance of
different metrics to compare images and how they impact the
history matching process.

These results show that the successful use of binary
images to avoid the petro-elastic model is case dependent.
However, even for cases where the seismic response of the
binary matched models do not correspond to the observed
data (as shown here for S61), these binary matched simulation
models can be used to improve the calibration of the petro-
elastic model. Note that using the initial models to calibrate
the petro-elastic model would be difficult as these models lack
the expected dynamic behavior observed not only in the well
history data, but also in the flow pattern suggested by 4DS
interpretation.

7. Conclusions

This work presented the results of three history-matching
procedures applied to the G-segment of the Norne benchmark
case using a probabilistic history-matching methodology. The
first procedure used only well data, the second procedure
included 4DS data through the use of binary images where
pressure estimations from simulation models are matched
with 4DS amplitudes (softening anomalies), and the third
procedure considered only binary images in the matching
procedure. We found the history-matching methodology to be
efficient using real data, and able to generate models that
honor well and binary maps in few iterations. The metho-
dology is flexible regarding the inclusion of new OFs, such as
binary images, as shown here.

Results from the third procedure (OSM) presented very
poor matches with well data. Therefore, only having a

Figure 17. Example 1 of the typical behavior observed for changes in acoustic impedance computed from one of the matched simulation
models from the WHM procedure for the three time differences. (a) 2003-2001, (b) 2004-2001, and (c) 2006-2001.

Figure 18. Example 2 of the typical behavior observed for changes in acoustic impedance computed from one of the matched simulation
models from the SHM procedure for the three time differences. (a) 2003-2001, (b) 2004-2001, and (c) 2006-2001.
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pressurized zone at the location observed from the 4DS data is
insufficient to generate feasible models (especially for this
case with complex pressure behaviors). The other two pro-
cedures (WHM and SHM) generated models with a very
similar matching quality for well data. The models from SHM
presented pressure values (BHP) more concentrated around
the expected value measured by a PLT, as well as they pre-
sented pore pressure changes according to the expected
dynamic behavior (pressurized zones) observed on 4DS data.
Evaluation of the impedances changes between the initial and
final models of WHM and SHM procedures showed
improvement with both sets of final models presenting
improved dynamic behavior.

Given the complexity of the case study, we suggest
dividing the problem into parts when using 4DS data to prop-
erly reduce uncertainties. An initial assessment can be made
through some simplifications such as that presented here, with
binary images. This first step will provide the means to improve
the seismic modeling (a key step for successful SHM). Thus, in
the second step, we would be able to run a more complete
matching by adding the seismic attributes to the process to
ensure a proper reduction of uncertainties.
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