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1. Introduction
The increase of life expectancy in recent decades has 

increased the population and, consequently, increased the 
surgeries number of partial or total replacement of some 
part of the human body1,2. Currently, additive manufacturing 
allows production of custom prosthetic implants, fitting them 
directly to patient needs. It can be used in many medical 
specialties including neurosurgery, maxillofacial surgery, 
craniofacial and plastic surgery, oncology, dentistry and 
orthopedics3-8.

The main metallic materials used in orthopedic implants 
are stainless steel alloys, cobalt-chromium alloys and 
titanium alloys1,9,10. The Ti-6Al-4V alloy is considered 
biocompatible to the human body. Biocompatibility is the 
ability of a material to fulfill its function in a patient for a 
specific application9, and biomaterials are natural or synthetic 
substances that are tolerated transiently or permanently in 
the human body11. One of the main desirable properties of 
biomaterials for orthopedic implants is the low modulus of 
elasticity due to bone reabsorption, besides biocompatibility, 
corrosion resistance (degradation), mechanical strength, 
fatigue resistance and wear resistance, which is especially 
the case of metallic materials.

The surface of an implant has a direct influence on its 
anchorage in bone9,12-14. It is responsible for direct contact 
with patient tissues and is a key factor for osseointegration, 
protein adsorption, interaction with cells, the creation of the 
interface between the implant and the body and as well as 

for the development of tissues. Topography, chemical 
characteristics, charge and wettability are the most important 
properties relating the surface with osseointegration13,15. 
Osseointegration is the anchoring of an implant to the living 
bone, obtained through contact between them, where bone 
cells migrates to the implant surface, reaching stability and a 
durable anchoring, allowing the transmission and distribution 
of loads to surrounding tissues12,13,16. Osseointegration helps 
in the healing process and in stability and durability of the 
implant13. Rough surfaces, porous coatings and surfaces 
with osteoconductivity and osteoinductivity in body fluids 
are shown to be good surfaces for osseointegration15.

Titanium rough surfaces are effective to further a 
mechanical attachment with the tissues, increasing the stress 
distribution at the interface and causing osseointegration15. 
On the other hand, surfaces with high roughness can enhance 
the development of bacteria in areas with low blood flow17. 
Furthermore, the increased roughness causes an increase in 
surface area and, consequently, an increase in the quantity 
of ions released by the implant surface18.

This study aimed to analyze the surface finishes of blasting, 
chemical etching and electropolishing in Ti-6Al-4V alloy 
produced by direct metal laser sintering (DMLS) process.

2. Experimental Procedures
Cylindrical samples with dimensions of 10 mm x 5 mm 

(diameter x height) were produced from commercial powder 
of Ti-6Al-4V (Figure 1), donated by the National Institute of 
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Biofabrication (INCT - BIOFABRIS), by direct metal laser 
sintering (DMLS) process using the additive manufacturing 
equipment EOSINT M270 from EOS GmbH Electro Optical 
Systems (Figure 2). DMLS is a layer by layer process which 
uses a laser beam that is directly exposed to the metal powder, 
fusing and consolidating thin layers. A DMLS process scheme 
is shown in Figure 319.

Processing parameters are shown on Table 1. The blasting 
was performed on the upper surface of the sample, using 
grit with an average particle size of 200 µm. The chemical 
etching step was carried out using a solution containing 2% of 
hydrofluoric acid and 20% of nitric acid. The samples were 
completely immersed in the solution at room temperature for 

25 minutes, using a rod for agitation. The electrochemical 
polishing on the samples was performed using the Struers 
LectroPol-5 equipment. A solution containing 5% of 
perchloric acid (60%) in acetic acid was used as electrode, 
and a 0.5 cm2 mask for polishing of the top surface of the 
sample was selected. The samples were then polished at 
room temperature of 25 °C for 5 minutes using a voltage 
of 55 V under a current of 0.3 A.

The surfaces of the samples were analyzed in Zeiss 
– EVOMA15 scanning electron microscope with Smart 
SEM software using the secondary electron emission. Mass 
measurements were performed using a Shimadzu – AX200 
scale at each step of surface finishing. Also, roughness 
measurements for each step of surface finishing of the 
samples were made using a Mitutoyo SJ-201 rugosimeter. 
Five measurements were made for each sample, turning 
them 30º at each measurement. The values   shown are the 
mean values and their standard deviations.

3. Results and Discussion
Figures 4a and 4b show the mean values   for surface 

roughness average (Ra) and mean roughness depth (Rz) 
of samples in conditions as-built (AB), after blasting (B), 
after chemical etching (CHE), after electropolishing (EP) 
and after different combinations of methods. The B – CHE 
combination gave the lowest surface roughness value. While 
blasting is responsible for reducing surface roughness and 
making it more uniform, chemical etching reduces even 
more the roughness. The electropolishing finish presented 
high values of roughness, even when made after B - CHE 
treatment, showing concordance with the work of Pyka et al.20.

Table 2 shows the results for mass analysis, where the 
reduction is the percentage mass reduction relative to the 
as-built condition, and the relative reduction is the percentage 
mass reduction relative to the previous step. The mass 
measurements are plotted in Figure 4c. The CHE treatment 
showed the highest mass reduction. This happened due to 
two factors: the CHE process works by removal of material 
by surface oxidation, causing ionization of atoms that come 
off the matrix; the sample was completely immersed in 
the reagent, causing all the surfaces of the sample to be 
attacked. For EP and B the mass reduction occurs on a 
smaller scale. However, it is noteworthy that only the top 

Figure 1. Ti-6Al-4V alloy commercial powder used for DMLS.

Figure 2. Additive manufacturing equipment EOSINT M270.

Table 1. Processing parameters used for building the Ti-6Al-4V 
alloy samples.

Processing parameters
Power (W) 170

Scanning speed (mm/s) 1250
Hatch spacing (mm) 0.1

Layer thickness (mm) 0.03
Strategy Zigzag - 45º between layers

Figure 3. Schematic diagram of the DMLS system.
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surface of the sample (25% in area of total surfaces) was 
treated by reducing the effective area of material removal. 
The blasting process removes material due to the shape of 
the grit, which has cutting edges that remove material on 
colliding with the surface. Electrochemical polishing also 
removes materials by ionizing surface atoms.

In Figure 5, it is possible to observe the surfaces of the 
samples in the AB condition (a), after CHE (b), after EP (c), 
after B (d), after B and CHE (e) and after combining the 
three treatments (f). In the AB condition the top surface 
lines that characterize the laser building strategy of zigzag 
and the hatch spacing of 100 µm can be seen. In the CHE 
condition, it can be seen that material has been removed and 
the grains of the microstructure were lightly revealed, due to 
the reaction of the reagent with the alloy material. However, 
the traces of the scanning lines of the laser are still visible. 
Moreover, after EP, the laser scanning lines are no longer 
visible. Furthermore, it is possible to see that, although the 
surface looks essentially flawless, there is an undulation on 
the surface, as shown by shading in some regions. After B 
finishing the laser scanning lines also disappear completely. 
The blasting process works by deforming and removing 
material from the surface, obtaining as a result a very rugged 
surface. However, some grit grains attached on the surface of 

Figure 5. Micrographs obtained by SEM for each condition. As-built (a), after chemical etching (b), after electropolishing (c), after 
blasting (d), after blasting and chemical etching (e) and after combining the three treatments (f).

Figure 4. Surface roughness average (a), mean roughness depth (b) and mass analysis (c) graphs.

Table 2. Values for mass measurements.

Condition Mass (g) Reduction
(%)

Relative 
Reduction(%)

AB 1.708 - -
EP 1.588 7.03 -

CHE 1.681 1.58 -
B 1.688 1.17 -

B – CHE 1.589 6.97 5.86
B – CHE – EP 1.555 8.96 2.14
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the sample. The B – CHE combination showed the smallest 
surface roughness value. The CHE finishing cleans the 
previous step attached grits on the sample surface. Also, there 
is no trace of scanning lines, and the microstructure grains 
were revealed. Finally, the B – CHE – EP finishing showed 
the same appearance as for the EP treatment, indicating that 
the process is independent of the two preceding treatments.

4. Conclusions
The lower surface roughness value was obtained after 

combining blasting and chemical etching. Blasting is 
responsible for leaving a surface with uniform roughness, 
while the chemical etching is responsible for cleaning the 

surface and reduce its roughness. Electropolishing showed 
a mirrored surface finish, but with a high roughness value, 
showing ineffectiveness in lowering the surface roughness 
of the material. The mass analysis showed a reduction in 
weight of the samples after all the treatments. This occurs 
because all treatments have as principle material removal.
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