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The morphology and length scale of the phases forming the microstructure of sliding bearing alloys are
known to affect wear, mechanical and corrosion resistances. Al–Sn alloys have good anti-frictional
properties due to the presence of Sn. However, with the current trends in engine design, these alloys
are not able to support the demanded heavy loads. An alternative way to reach this requirement can
be the alloying with third elements such as Si and Cu. Despite the importance of their application
properties, studies on the development of microstructures of these multicomponent alloys are rare in
the literature. In the present investigation Al–Sn-(Cu;Si) alloys were directionally solidified (DS) under
transient heat flow conditions, and a thorough characterization is performed including experimental
growth rates and cooling rates, segregation, optical and scanning electron microscopies and primary
dendrite arm spacings, k1. Experimental growth laws are proposed relating the dendritic spacing to
solidification thermal parameters. Furthermore, the scale of the dendritic morphology, the distribution
of second phases in interdendritic regions and the macrosegregation pattern are shown to affect the hard-
ness along the length of the DS castings. Hall–Petch type equations are proposed relating hardness to k1.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Al-based alloys are extensively used for bearing components, in
particular those alloyed with a soft phase such as Pb and Sn [1–13].
Lead has proved to be more effective than tin in aluminium-based
sliding bearing materials [14]. However, the increasing environ-
mental concern for Pb has renewed the interest in replacing such
element in Al-based alloys for tribological applications with
compatible soft alloying elements. Al–Sn alloys have good anti-
frictional properties due to the presence of Sn as the soft additive;
however, with the increase in engine bearing temperatures associ-
ated with recent trends in engine design, these alloys lack their
ability to support heavy loads. An alternative way to overcome this
problem can be the alloying with a third element such as Si, which
is known to increase both the fatigue resistance and the load
bearing capacity of the alloy [15–22]. Lastly, copper has also been
usually added to bearing alloys with a view to strengthening the
aluminium matrix, thus improving mechanical properties and
leading to a microstructural combination of strong matrix with
dispersed areas of soft Sn phase [23–27]. The mechanical alloying
of Mg to Al–Sn alloys was reported to increase the strength and
wear performance by improving the distribution of Sn [28].

In the selection of metallic alloys for practical tribological appli-
cations, it is important to take into account not only their chemical
composition but also the microstructural features that are affected
by thermal conditions during casting and by thermal and thermo-
mechanical treatments. The effect of the microstructure is more
relevant for intimate surface contact, i.e. for practical situations
where the use of lubricants is marginal or is not possible. In the
microstructural arrangement both the continuity, morphology
and distribution of the phases are important. Recent studies high-
lighted the role of the microstructure length scale on the wear
resistance of Al–In [29] and Al–Bi and Al–Pb [30] monotectic alloys.
The matrix was shown to provide the required strength while the
soft phase acted as a self-lubricant agent. A study by Cruz et al. [31]
reported opposite roles of the scale of the dendritic morphology of
Al–Sn and Al–Si alloys on the resulting wear resistance. In the case
of Al–Si alloys, the refinement of the dendritic array improved the
wear resistance, while for Al–Sn alloys lower wear volumes were
observed for coarser dendritic structures, which are associated
with larger Sn-rich interdendritic regions.
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Fig. 1. Schematic vertical upward directional solidification casting assembly and mould details.

Table 1
Chemical composition (wt%) of metals used to prepare the alloys.

Element Al Sn Si Cu Fe Zn Ni Pb Ca

Al Balance 0.005 0.055 0.010 0.073 0.05 0.006 0.006 –
Sn 0.005 Balance – 0.004 0.008 – 0.0001 0.047 –
Si 0.110 – Balance – 0.320 – 0.010 – –
Cu – – – Balance 0.014 – – – 0.002

Fig. 2. Sequence used to obtain the samples for microstructural characterization,
segregation analysis and hardness tests.
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The morphology and length scale of the phases forming the
microstructure of sliding bearing alloys were shown to affect also
the mechanical and corrosion resistances. For hypoeutectic Al–Sn
alloys, the ultimate and yield tensile strengths, as well as the
elongation to fracture increased with the decrease in the primary
dendrite arm spacing [31]. It was also reported that finer dendritic
structures of an Al–10 wt%Sn alloy are associated with lower
corrosion rates as compared with coarser dendritic structures
[32]. In contrast, recent studies on monotectic Al–In and Al–Bi
[33] alloys, which are characterized by microstructures formed
by droplets of the minority phase disseminated into the Al matrix,
demonstrated that their electrochemical corrosion behaviour is
related to the scale of the alloys microstructure. Smaller droplets
of the minority phase and smaller interphase spacings were report-
ed to be associated with lower corrosion resistance.

Despite the aforementioned importance of morphology,
volumetric fraction, scale, and distribution of the different phases
forming the microstructure of metallic alloys on their correspond-
ing application properties, studies on detailed characterization of
microstructural features of multicomponent alloys are scarce in
the literature due to the difficulty of the task. In addition, most
of the solidification experiments are performed under steady state
conditions in Bridgman type apparatus [34–40]. On the other hand,
directional solidification under transient heat flow conditions is
the class of heat flow encompassing the majority of industrial
solidification processes [31,32,41–43]. The aim of the present
investigation is to analyse the microstructural evolution of ternary
Al–Sn-(Si;Cu) alloys under a wide range of cooling rates, using a
water-cooled directional solidification system. The parametric
features of the microstructures are aimed to be correlated with
thermal growth variables such as the growth and the cooling rates
with a view to permitting experimental growth laws to be
established. The study is also focused on the analysis of macroseg-
regation effects and on the influence of alloying additions on the
scale of the microstructure and hardness.



Fig. 3. Pseudo-binary partial phase diagrams of: (a) Al–10 wt%Cu–Sn and (b) Al–
5 wt%Si–Sn with indications of the alloys compositions examined in the present study.

Fig. 4. (a) Macrostructure of the Al–15 wt%Sn–5 wt%Si alloy; (b) macrostructure of
the Al–20 wt%Sn–10 wt%Cu alloy.
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2. Experimental

In order to permit a range of solidification microstructures to be
obtained at different cooling rates in a single casting experiment,
solidification experiments in a water-cooled apparatus (Fig. 1),
which promotes transient directional solidification (DS), were
performed with ternary Al–Sn–Cu and Al–Sn–Si alloys having the
following nominal compositions: Al–10 wt%Sn–10 wt%Cu; Al–20
wt%Sn–10 wt%Cu; Al–15 wt%Sn–5 wt%Si; Al–25 wt%Sn–5 wt%Si.
The chemical compositions of metals that were used to prepare
these alloys are presented in Table 1.

The DS casting assembly and mould details used in the vertical
upward directional solidification experiments (shown schematically
in Fig. 1) have been detailed in previous studies [44]. The apparatus
consists of a water-cooled mould with heat being extracted only from
the bottom, promoting a vertical upward directional solidification. A
stainless steel mould was used, having an internal diameter of
50 mm, a height of 110 mm and a wall thickness of 3 mm. The inner
vertical surface was covered with a layer of insulating alumina to
minimize radial heat losses, thus permitting unidirectional heat flow
to be attained. A top cover made of an insulating material was used as
a thermal barrier to reduce heat losses at the metal/air surface. The
bottom part of the mould was closed with a 3 mm thick carbon steel
sheet. As shown in Fig. 1, a set of fine K-type thermocouples, sheathed
in 1.6 mm outside diameter (OD) stainless steel tubes, were inserted
at different positions from the heat-extracting surface at the bottom
of the casting. All the thermocouples were connected by coaxial
cables to a data logger interfaced with a computer, capable of
autonomously recording temperature data at a frequency of 10 Hz.

The microstructural characterization of the directionally solidi-
fied alloys castings was performed by extracting samples at differ-
ent sections along the castings length, as shown in Fig. 2. The
samples were polished with 100, 200, 400, 600, 800 and 1200 grit
SiC papers, and then finely polished with diamond paste (1 and
3 lm). The sample surfaces were then subjected to ultrasonic
cleaning before etching with a solution of 4% hydrofluoric acid
(HF) and 2% hydrochloric acid (HCl) in distilled water. The etching
was performed by carefully immersing the samples in the etchant
for 10 s, then cleaning the sample surface with running water and
ethanol. The optical microscopy was performed using an Olympus
Inverted Metallurgical Microscope (model 41GX). The primary
dendritic arm spacing (k1) was measured from the optical images
of the solidified samples (about 40 independent readings for each
selected position, with the average taken to be the local spacing).

Square central parts of the transversal samples shown
schematically in Fig. 2, were cut by a precision saw into pieces of
about 1.0 mm and investigated by a Rigaku Rix 3100 X-ray Fluores-
cence Spectrometer to estimate their average concentrations through
an area of 100 mm2 probe. This has permitted the occurrence of
macrosegregation along the castings length to be investigated.

Vickers hardness tests were performed on transverse sections of
the samples, with the measured hardness averaged from at least
twenty indentation tests (indentation load of 1 kg and dwell time
of 10 s).
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Fig. 5. Experimental solute distribution along the DS castings length of the Al–Sn–Cu and Al–Sn–Si alloys examined in the present study.

Fig. 6. Typical microstructure of the Al–Sn–Cu alloys examined (SEM images).
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3. Results and discussion

The comprehension of solidification paths of Al–Sn(Si;Cu) alloys
has scientific and technological interests and are quite complex.
The use of computational thermodynamics softwares for a suitable
initial characterization of these solidification paths is fundamental
[25,45]. In the present study, the solidification paths of two
representative Al–Sn–Cu alloys (Al–10 wt%Sn–10 wt%Cu;



Fig. 7. Typical microstructure of the Al–Sn–Si alloys examined (optical images).
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F. Bertelli et al. / Materials and Design 72 (2015) 31–42 35



0 10 20 30 40 50 60 70

40

80

120

160

200

240
Al-5wt%Si-15wt%Sn

Pr
im

ar
y 

de
nd

rit
ic

 a
rm

 s
pa

ci
ng

, λ
1(μ

m
)

Position from metal/mold surface (mm)

λ1=15.P0.62

0 10 20 30 40 50 60 70

40

80

120

160

200

240
Al-25wt%Sn-5wt%Si

λ1 = 17.P0.6

Pr
im

ar
y 

de
nd

rit
ic

 a
rm

 s
pa

ci
ng

, λ
1 (

μm
)

Position from metal/mould surface (mm)

Fig. 8 (continued)

36 F. Bertelli et al. / Materials and Design 72 (2015) 31–42
Al–20 wt%Sn–10 wt%Cu) have been determined by the use of the
Thermo-Calc software. Fig. 3a shows the pseudo-binary diagram
corresponding to a parameterized concentration of 10 wt%Cu.
The solidification sequences of these alloys are quite similar since
these alloys are located outside the miscibility gap, i.e. in the
region of primary a-Al solidification. It commences with formation
of the a-Al phase. The liquid phase L0 is progressively enriched with
Sn until it reaches the boundary of the region of miscibility gap.
The liquid L00 starts separation at about 542 �C. A monotectic reac-
tion occurs at 513 �C, where the remaining L0 is transformed
(L0 > a-Al + L00 + Al2Cu). The final L00 liquid is consumed through a
eutectic reaction that forms the solid Sn phase (L00 > Sn + a-Al + Al2-
Cu). Detailed analyses combining thermodynamics modelling and
experimental studies on a number of Al–Sn–Cu alloys can be found
in studies performed by Kotadia et al. [24,25] and Mirković et al.
[45].

The solidification paths of Al–Sn–Si alloys are also quite com-
plex and associated with the occurrence of invariant reactions dur-
ing solidification, but the literature is even scarcer with respect to
solidification studies on these ternary alloys. In the present study,
the solidification paths of two representative Al–Sn–Si alloys (Al–
15 wt%Sn–5 wt%Si; Al–25 wt%Sn–5 wt%Si) have been determined
and are shown in Fig. 3b (pseudo-binary diagram corresponding
to a parameterized concentration of 5 wt%Si). The phase diagram
indicates the presence of a ternary eutectic at about 228 �C. The
solidification begins with the formation of initial crystals of the
a-Al phase, followed by the binary eutectic reaction (L0 > a-Al + Si).
During cooling, a monotectic reaction occurs at 550 �C, where the
remaining L0 is transformed (L0 > a-Al + L00 + Si) and with the
increase in Sn content, finally the ternary eutectic reaction takes
place (L00 > Sn + a-Al + Si). According to a report in the literature,
evidences of presence of the ternary eutectic in the resulting
microstructure are difficult to be found [15], since it is a difficult
task to distinguish phases from binary and ternary eutectic reac-
tions. The binary Sn–Si eutectic reaction occurs at a temperature
of about 231.9 �C, which is quite similar to that of pure tin.

Typical macrostructures of Al–Sn–Si and Al–Sn–Cu alloys are
shown in Fig. 4a and b, respectively. It can be seen that a columnar
structure prevailed along the castings length. The DS castings have
been examined along the length with a view to investigating the
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Fig. 9. Temperature data collected by different thermocouples positioned along the castings length during the course of upward directional solidification.
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eventual occurrence of long-range segregation. The alloys compo-
sitions along the castings length were determined by X-ray fluores-
cence and are shown in Fig. 5. It can be seen that the Sn
distribution along the length of the Al–Sn–Cu castings is character-
ized by inverse macrosegregation profiles, while the Cu concentra-
tion is essentially constant. The literature reports the occurrence of
inverse segregation profiles of Sn and Cu in binary Al–Sn [11] and
Al–Cu [46] alloys DS castings, respectively. Inverse segregation is
commonly associated with long freezing range alloys solidified in
chill moulds, which is caused by interdendritic flow of liquid metal
induced by solidification shrinkage [47]. A previous study on
microporosity formation in an Al–6.2 wt%Cu–1 wt%Si alloy direc-
tionally solidified upwards, reported the occurrence of an inverse
Cu concentration profile whereas no macrosegregation was
observed with respect to the silicon distribution [48]. For the Al–
Sn–Si alloys examined in the present study, an inverse Sn segrega-
tion profile is only noticeable for the Al–25 wt%Sn–5 wt%Si while Si
is essentially constant along the casting length (Fig. 5c and d).
Since the DS castings were solidified vertically upwards, it seems
that, for both alloys systems, during solidification the high density
Sn-rich liquid L00 tends to flow downwards through the interden-
dritic channels (gravity-driven interdendritic flow) accumulating
at the bottom of the casting, thus causing the inverse Sn segrega-
tion profiles. It can be seen in Fig. 3a and b that L00 is present along
a wide range of temperatures until the final formation of the solid
Sn phase.

Fig. 6 shows a typical microstructure of the Al–Sn–Cu alloys,
which prevailed along the entire DS casting except for the length
scales of the phases. The dendritic morphology of the a-Al phase
can be seen with the interdendritic regions formed by segregated
Sn pockets (little pools of liquid Sn tend to be caught between den-
drite arms) and Al2Cu intermetallic particles. Fig. 7 shows the typi-
cal resulting microstructure observed along the Al–Sn–Si alloys DS
castings. It is also characterized by a a-Al phase of dendritic mor-
phology, with both Si particles and segregated Sn pockets in the
interdendritic regions.

With a view to characterizing the evolution of the scale of the
dendritic morphology along the castings length, the primary den-
dritic arm spacing (k1) was measured from bottom to top of the
castings. The resulting experimental values (mean values and error
bars representing the range of maximum and minimum
experimental measurements) and corresponding microstructures
are shown in Fig. 8 as a function of position from the cooled surface
of the casting, for any alloy experimentally examined. It is known
that the scale of k1 depends on the growth conditions, more
specifically on thermal parameters such as the local growth rate,
thermal gradients and the cooling rate. Both theoretical and
experimental [49,50] growth laws relating k1 to these parameters
can be found in the literature for binary alloys. However, for mul-
ticomponent alloys there are no theoretical models available in the
literature describing the growth of primary dendritic arms. It is
important to have experimental growth laws relating k1 to the
experimental thermal parameters along the DS of the ternary
alloys examined in the present study. This can be done from an
appropriate analysis of thermal data during solidification, as subse-
quently described.

The cooling curves at different positions along the DS castings
length are shown in Fig. 9. The thermocouples readings, collected
during solidification, were used to generate plots of position (P) from
the metal/mould interface as a function of time (t) corresponding to
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Fig. 10. (a) Primary dendritic arm spacing as a function of growth rate and cooling rate for the directionally solidified Al–Sn–Si alloys (R2 is the coefficient of determination)
and (b) experimental k1 vs. _T laws for the ternary Al–Sn–Cu alloys compared with those determined for Al–Sn [11] and Al–Cu alloys [25].
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the liquidus front of each alloy passing by each thermocouple. A
numerical technique, based on the minimum square method, was
used to fit mathematical power functions of the form P(t) = a tb (a;
b are constants) on these experimental plots. The derivative of these
functions with respect to time gave values for the growth rate (V).
Moreover, the data acquisition system employed permitted accurate
determination of the slope of the experimental cooling curves.
Hence, the cooling rate ð _TÞ was determined along the castings
lengths, by considering the thermal data recorded immediately after
the passage of the liquidus front by each thermocouple.

With a view to permitting correlations between the primary
dendritic arm spacing and the growth rate and cooling rate to be
established, their experimental values were plotted in Figs. 10a
and 11a for the Al–Sn–Cu and Al–Sn–Si alloys investigated in the
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present study, respectively. Experimental exponents of (�1.0 to
1.1) and (�0.55) for the power function equations shown in
Figs. 10a and 11a, seem to be adequate to characterize the evolu-
tion of k1 with the growth rate and the cooling rate, respectively,
for any alloy examined. These exponents have also been reported
to apply to the transient directional solidification of a number of
binary metallic alloys [50].
The experimental k1 vs. _T laws for the ternary alloys are com-
pared in Figs. 10b and 11b with those experimentally determined
for the corresponding binary alloys, i.e. Al–Sn [31] and Al–Cu
[51] and Al–Sn and Al–Si [31], respectively. For both ternary alloys
systems the higher is the Sn concentration of the Al–Sn–Cu and
Al–Sn–Si alloys, the closer is the k1 vs. _T growth law of the ternary
alloy to that of the Al–Cu and Al–Si binary alloys, respectively. The



Fig. 12. Vickers hardness (HV) as a function of k1
�1/2 for the DS castings of (a); (b) Al–Sn–Cu alloys and (c); (d) Al–Sn–Si alloys.
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primary spacing is indeed governed by the formation of the a-Al
phase and of the intermetallic Al2Cu or Si. Sn is mainly implied
in the eutectic reactions and interdendritic phases. The theoretical
growth models are generally structured to describe a tendency
preserving the rationality in the constitutive parameters affecting
the scale of the dendritic spacing. However, there are no theoreti-
cal growth models in the literature relating k1 to solidification
thermal parameters for multicomponent alloys. Assuming that,
the growth of primary dendritic arms of the ternary alloys indicat-
ed in the pseudo-binary diagrams of Fig. 3a and b, could be
assessed by an appropriate growth law applicable to the transient
solidification of a binary alloy, the Bouchard–Kirkaldy model [49]
could be used to analyse the effect of Sn alloying on k1. The afore-
mentioned model is given by:

k1 ¼ a1
16C1=2

0 G0eCD

ð1� k0ÞmL
_T

 !1=2

ð1Þ

where C0 is the alloy composition, G0e is a characteristic
parameter � 600 � 6 K cm�1, C is the Gibbs–Thomson coefficient,
D is the liquid solute diffusivity, k0 is the solute partition coefficient,
mL is the slope of the liquidus line, and a1 is the primary dendrite-
calibrating factor [49]. Assuming that the liquidus and solidus lines
are straight and k0 < 1, mL is given by:

mL ¼
DT

C0
k0
� C0

¼ DT k0

C0ð1� k0Þ
ð2Þ

where DT is the difference between the liquidus and solidus equilib-
rium temperatures. Comparing Eqs. (1) and (2) we can write:
k1 ¼ a1
16C3=2

0 G0eCD

DT k0
_T

 !1=2

ð3Þ

According to Eq. (3) k1 is inversely proportional to the alloy
solidification range and directly proportional to the alloy solute
content. That could explain, by analogy, the trend observed for
the ternary alloys examined in the present study. For both systems,
the alloys having higher Sn content (C0 in Eq. (3)) have also lower
DT, considering the range of temperatures in which the dendrites
of the a-Al phase are formed. This means that their primary arm
spacings would be higher than those of the alloys having lower
Sn content for a given cooling rate, as shown by the experimental
results in Figs. 10b and 11b for the Al–Sn–Cu and Al–Sn–Si alloys,
respectively.

It is well known that microstructural features in large measure
determine the mechanical behaviour of alloys. As shown in Figs. 10
and 11 and by the alloys microstructures shown in Figs. 6–8, the
cooling rate during directional solidification is shown to affect both
the microstructural scale (dendrite arms and particles size) and the
distribution of the interdendritic phases. Correlations between
parametric features of the as-solidified microstructure can be use-
ful to effect improvements in the associated mechanical strength.
With a view to envisaging the role of the scale of the dendritic
spacing on mechanical properties, the primary arm spacing has
been correlated with local hardness along the DS castings length
for all alloys examined in the present study. The experimental
results are shown in Fig. 12, with the Vickers hardness (HV) plotted
as a function of the square root of k1. As can be seen, generally the
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smaller the dendritic spacing, the higher HV (Fig. 12a, c and d) and
Hall–Petch type formulae are proposed to fit the experimental
results. In these cases, the deformation of the a-Al dendritic matrix
is significantly constrained (for smaller dendritic spacings) by the
more homogeneous distribution of reinforcing Si or Al2Cu particles
in the interdendritic regions, for Al–Sn–Si and Al–Sn–Cu alloys,
respectively. This is caused by dislocation pile-up and enhances
the resulting hardness, despite the simultaneous occurrence of soft
Sn pockets in the interdendritic areas. The exception is the hard-
ness evolution along the DS Al–20 wt%Sn–10 wt%Cu alloy casting,
in which hardness has a particular evolution, as shown in
Fig. 12b. The hardness is lower for smaller dendritic spacings (at
regions close to the cooled surface of the casting), increases up to
a maximum value and decreases again with the increase in k1

according to a modified Hall–Petch experimental equation, depict-
ed in Fig. 12b. This is caused by the more intense inverse Sn profile
that has been experimentally observed for such alloy casting, as
shown in Fig. 5b. Outside this region in casting, which is character-
ized by significant inverse segregation, the evolution of hardness
with k1

�1/2 has a trend that is similar to those observed for the other
alloys examined, i.e. HV decreases with the increase in k1.

4. Conclusions

The following conclusions can be drawn from the present
experimental investigation:

� The Sn distribution along the length of the Al–Sn–Cu castings is
characterized by inverse macrosegregation profiles, while the
Cu concentration is essentially constant. For the Al–Sn–Si alloys
examined, an inverse Sn segregation profile is only noticeable
for the Al–25 wt%Sn–5 wt%Si while Si is essentially constant
along the casting length
� The typical microstructure that prevailed along the entire DS

casting of the Al–Sn–Cu/Si alloys, is characterized by a dendritic
morphology of the a-Al phase, with the interdendritic regions
formed by segregated Sn pockets and Al2Cu/Si particles for the
Al–Sn–Cu and Al–Sn–Si alloys, respectively.
� Experimental power function growth laws with exponents of

(�1.0 to 1.1) and (�0.55) are proposed to describe the evolution
of k1 with the growth rate and the cooling rate, respectively, for
any alloy examined. For both ternary alloys systems the higher
is the Sn concentration of the Al–Sn–Cu and Al–Sn–Si alloys, the
closer is the k1 vs. _T growth law of the ternary alloy to that of the
corresponding Al–Cu and Al–Si binary alloys, respectively.
� Correlations between the primary dendritic arm spacing with

local hardness along the DS castings length permitted Hall–Petch
type equations to be proposed relating k1 to HV. The smaller k1,
the higher HV, except for the DS Al–20 wt%Sn–10 wt%Cu alloy
casting, in which hardness has a particular evolution caused by
a significant inverse profile of segregated Sn associated with
regions close to the cooled surface of the casting.
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