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Abstract. The study is focused on the influence of solidification thermal parameters upon the 

evolution of the microstructure (either cells or dendrites) of an Al-3wt%Mg-1wt%Si ternary 

alloy. It is well known that the application properties of metallic alloys will greatly depend on 

the final morphology of the microstructure. As a consequence, various studies have been 

carried out in order to determine the ranges of cooling rates associated with dendritic-cellular 

transitions in multicomponent alloys. In the present research work, directional solidification 

experiments were conducted using either a Bridgman (steady-state) device or another device 

that allows the solidification under transient conditions (unsteady-state). Thus, a broad range of 

cooling rates ( ̇), varying from 0.003K/s to 40K/s could be achieved. This led to the 

identification of a complete series of cellular/dendritic/cellular transitions. For low cooling rate 

experiments, low cooling rate cells to dendrites transition happens. Moreover, at a high cooling 

rate, a novel transition from dendrites to high cooling rate cells could be observed for the Al-

3wt%Mg-1wt%Si alloy. Additionally, cell spacing λC and primary dendritic spacing λ1 are 

related to the cooling rate by power function growth laws characterized by the same exponent 

(-0.55) for both steady-state and unsteady-state solidification conditions.  

1.  Introduction 

 

The microstructural morphology in metallic alloys is of prime importance. Properties such as 

mechanical strength, corrosion resistance and wear resistance were proved to be affected by the 

morphology and scale of the -Al matrix. Then, due to the direct relationship observed between the 

solidification microstructure and the final properties, several experimental studies and models were 

devoted to the conditions in which the morphology of the solid-liquid (S/L) interface changes. The 

solid-liquid interface instability depends on the growth rate, the thermal gradient and the distribution 

of solute ahead of the S/L interface leading to the constitutional undercooling [1-10]. 

The constitutional undercooling criterion is largely used to predict whether a S/L planar interface is 

stable or not, despite showing some important limitations. Firstly, the constitutional undercooling is 

based on thermodynamic equilibrium considerations, whereas the evolution of the S/L interface during 

solidification is a non-equilibrium process. Secondly, the local curvature of the interface is not taken 
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into account although it can impact the free energy of the system. Thirdly, the evolutionary trend of 

the interface morphology is not described. This criterion is not valid for rapid solidification or 

processes involving non-equilibrium solidification. 

Hunt and Lu [1] developed a numerical model for the growth of cells and dendrites that predicts the 

transition between these two types of microstructures. This transition was considered diffuse. It ends 

when the preferred direction of growth is reached and the secondary dendritic arms are already 

defined. 

Although the specialized literature shows investigations about the transitions regarding the 

sequence planar - cellular - dendritic - cellular - planar, few studies were devoted to the reverse 

dendritic to cellular microstructural transition in multicomponent metallic alloys. Most of the studies 

dealt with the cellular to dendritic transition that occurs combining dilute alloys, low growth rate and 

high temperature gradients. The cellular to dendritic transition with cells known as high-speed cells 

was only supposed to occur at very high growth rates [2]. However, no consensus on which thermal 

and compositional parameters are the determinant factors leading to this type of transition has been 

established to date.  

In the present investigation, an Al-3wt%Mg-1wt%Si alloy is directionally solidified (DS) under 

transient and stationary solidification conditions with a wide range of cooling rates. It is shown that 

the investigated alloy transitioned from fully cellular to dendritic and from dendritic to cellular for 

high cooling rates. The microstructural transitions are characterized, and the evolution laws for 

cellular and the dendritic length scales with the solidification cooling rate are also established.       

 

2.  Experimental procedure  

 

In order to obtain a broad range of cooling rates, two solidification systems were used to perform 

the experiments. A water-cooled directional solidification (DS) setup permitted unsteady-state 

conditions and high cooling rates to be achieved, whereas a Bridgman type device guaranteed 

solidification under constant temperature gradient and cooling rate. During the unsteady-state 

solidification, the alloy was melted in situ by radial electrical wiring positioned around a cylindrical 

stainless steel split mold with inner diameter of 60 mm; height of 150 mm and wall thickness of 5mm. 

More details about this system can be found elsewhere [8, 11]. The Bridgman setup is built to operate 

with a cold and a hot part separated by an adiabatic zone. The hot part is constituted by two heating 

elements wounded around a 15 mm diameter cylindrical alumina piece. In this set-up, the controlled 

displacement of the crucible inside the furnace is allowed. During the Bridgman furnace experiments, 

the temperature gradient was fixed at a value of 11K/cm while the solidification rates (v) were varied 

in the range from 0.3 µm/s to 70 µm/s [11]. 

The solidification thermal parameters, growth rate (VL) and cooling rate ( ̇), during unsteady-state 

growth were determined from seven type K thermocouples (with 0.2 mm diameter wire) positioned 

along the length of the DS casting at the positions 3, 6, 12, 20, 30, 50 and 70mm from the metal/mold 

interface. These sensors were connected by coaxial cables to a data logger interfaced with a computer, 

capable of automatically record temperature data at a frequency of 5 Hz.  

Optical microscopy analyses were performed using an Olympus inverted metallurgical microscope 

(model 41GX). The cellular (λC), primary dendritic arm (λ1) and secondary dendritic arm (λ2) spacings 

were measured from the optical images of transverse and longitudinal section metallographies. The 

triangle method [12] was used in order to determine λC and λ1 measurements. The intercept method 

was adopted for measuring λ2. At least 50 measurements were performed for each sample related to a 

single cooling rate in both steady and unsteady state regimes. 

3.  Results and discussion 

 

Figure 1 shows the variations of cellular and primary dendritic spacings with the cooling rate. The 

range of experimental cooling rates associated with the unsteady-state solidified samples was 
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0.2< ̇<45 K/s.  Cooling rates higher than 2 K/s were characterized by the growth of -Al cells and 

cooling rates lower than 0.8 K/s are related to the prevalence of -Al dendrites. The intermediate 

microstructures, constituted of both cells and dendrites, remained associated with 0.8 < ̇<2.0 K/s.  

Additionally, the experiments carried out following steady state conditions have allowed to monitor 

the influence of the solidification thermal parameters (here synthesized by the cooling rate for easier 

comparison with the unsteady state experiments) on the final microstructure. From these experiments, 

the cellular-to-dendritic transition for low cooling rates could be studied. Moreover, a complete 

description of the cellulardendriticcellular transitions for the ternary Al-3wt%Mg-1wt%Si alloy 

could be deduced. The range of experimental cooling rates during the steady state experiments was 

0.003< ̇<0.17 K/s. For cooling rates between 0.03K/s and 0.17 K/s only typical -Al dendritic 

morphologies could be observed. A gradual cellular-to-dendritic transition started to occur for cooling 

rates lower than 0.03 K/s and ended at about 0.005 K/s. For  ̇<0.005K/s, no evidence of dendrites 

could be observed. The range where the aforementioned morphologies prevailed can be seen in Figure 

1. The present experimental approach appears to be very practical with a view to determining 

microstructural morphological transitions in other Al-based multicomponent alloys of interest. 

Contrary to the expectations from the literature for metallic systems [13,14], the Al-3wt%Mg-

1wt%Si alloy shows high-velocity cells occurring even for moderate  ̇ values. The length-scale of the 

cells was observed to be relatively coarse, that is, λC varied from 10 m to 40 µm. Typical dendritic 

morphologies were observed with λ1 varying in the range 115 - 270 µm. The length scale of the 

microstructure is reduced to about 1/3 when the dendritic morphology changes into high-velocity cells.   

 

 

 
Figure 1 - Variations of cellular and primary dendrite arm spacings with cooling rate and typical 

transverse microstructures of each -Al morphological region of directionally solidified Al-3wt%Mg-

1wt%Si alloy samples. 

 

The present results allowed comparisons of the experimental scaling laws relating cellular and 

primary dendrite arm spacing to the cooling rate. The λC and λ1 were related to  ̇ by power function 

growth laws characterized by a same exponent of -0.55, that is, λ1 = 44 ̇-0.55 
and λ1 = 126 ̇-0.55 

for 

cellular and dendritic regions, respectively. Such experimental scaling laws confirm the application of 

the exponent −0.55 in order to correlate the λC and λ1 evolution with the cooling rate. This exponent 

has been largely applied for the dendritic growth of a number of binary and ternary metallic alloys [9, 

11, 14, 15, 16, 17]. 

Figure 2 shows the evolution of the secondary dendrite arm spacings against the cooling rate. The 

experimental scatter is represented by average spacing values with their standard deviations for both 

samples solidified under steady state and unsteady state regimes. λ2 decreases with the increase in 
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cooling rate according to the experimental growth law λ2 = 22 ̇-0.55
, obtained from a fit on the 

experimental scatters. In a recent study [15], the secondary dendritic growth of a binary Al-3wt.%Mg 

alloy was shown to be represented by a -1/3 exponent power function growth law. The addition of 

1wt%Si seems to change the intensity of lateral solute segregation inside the region corresponding to 

the secondary arm regions. The addition of Si appears to make 2 more sensitive to variations in the 

solidification cooling rate. Recent research works [14, 16] stated that the effects of lateral solute 

segregation on the wavelengths of instabilities along the sides of primary dendritic stems for 

multicomponent alloys are still not well understood. The same exponent, -0.55, was also used to 

correlate the experimental growth of the secondary dendrite arm spacing against the cooling rate for 

ternary Al-Cu-Ni alloys [9]. 

Figure 3 shows a schematic representation of the complete cycle of morphological transitions 

obtained in the present investigation. An unusual form of transition reported in the literature as the 

reverse dendritic to cellular shift for metallic systems was observed. For binary systems, the well-

known theories from the literature have shown that the cellular-to-dendritic transition is typical of 

dilute alloys and for lower cooling rates (4, 18). The morphology known as high-speed cells was only 

supposed to occur at very high growth rates [2, 5]. Further investigations regarding to alloy cooling 

rate and a variety of solute contents appear to be decisive for the understanding of the occurrence of 

the reverse transition in multicomponent alloys. 

 

 

 
 

 

The solid/liquid interface transition (S/L) for the growth of cells and dendrites is explained in terms 

of the constitutional undercooling criterion for the growth of binary alloys. In this criterion the 

increase in the alloy solute content (C0), increase in growth rate (v) and decrease in thermal gradient 

(G) can induce instabilities at the solid/liquid (S/L) interface [1, 4]. However, there are few available 

criteria in the literature dealing with multicomponent alloys. 

According to the constitutional undercooling criterion, increase in C0 destabilizes the S/L interface 

forming instabilities that give origin to the dendritic growth. For multicomponent alloys, the increase 

in C0 (or, ΣC0, sum of all solutes) seems to affect differently. In the case of the examined non-dilute 

alloy, the sum of the solute chemistries is equal to 4wt.%, which would lead to the growth of a totally 

dendritic morphology since it does not characterize a dilute alloy. This is not so considering the 

present experimental results. Cells grew for either  ̇<0.005 K/s or  ̇> 2.0 K/s. In contrast, another 

study showed that the ternary Al-1wt%Fe-1wt%Ni alloy solidified under transient solidification 

conditions [17], developed only cells along the entire range of examined cooling rates. In contrast, 

Figure 2 –Variations of secondary dendritic 

spacing vs. cooling rate and typical 

longitudinal microstructures of each 

morphological region of the directionally 

solidified Al-3wt%Mg-1wt%Si alloy samples. 
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dendrites prevailed for the binary Al-1.0wt%Ni alloy solidified under similar conditions [20]. This 

reinforces the need for detailed studies mapping the morphologies and the factors affecting their 

growth for multicomponent Al-based alloys. 

 

 
Figure 3 - Schematic progression of -Al morphologies as a function of cooling rate and 

representative microstructures of the directionally solidified Al-3wt%Mg-1wt%Si alloy. 

 

In order to compare the experimental growth law λ1 = 126 ̇-0.55 
proposed in the present study, 

experimental λ1 data from the literature [21] have been included as open circles in Figure 4. The 1 

scatter from the literature were related to stationary cooling rates calculated by the expression  ̇ = G x 

v, where the growth rate, v, ranged from 0.0172mm/s to 0.1 mm/s and the thermal gradient, G, ranged 

from 0.45 K/mm to 17 K/mm. These λ1 data are compared with the experimental growth law (Figure 

1) for the dendritic region derived in the present work. An excellent agreement can be observed 

between the present results and the results from the literature, despite differences in the alloys 

compositions. The good fit observed demonstrated that the -0.55 exponent can also be applied in the 

case of another Al-Mg-Si alloy composition, being valid for both steady-state and unsteady-state 

solidification conditions. This gives indications that the experimentally derived scaling laws using the 

present results could be representative of the dendritic growth for other Al-Mg-Si alloy compositions.  

 

 

Figure 4 - Comparison of experimental steady-state 

results [21] showing λ1 as a function of  ̇ in the present 

study and for another ternary Al-Mg-Si alloy. 
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4.  Conclusions 

 

The effect of the cooling rate on the morphology of the -Al matrix was examined for Al-3wt%Mg-1wt%Si 

alloy samples solidified upon a wide range of solidification conditions. For this purpose, directional 

solidification experiments were conducted using a Bridgman (steady state) device and another device that allows 

the solidification under transient conditions (unsteady state). Consequently, a broad range of solidification 

cooling rates ( ̇), varying from 0.003K/s to 45K/s could be assessed as well as the corresponding 

microstructures. This combination of techniques led to the identification of a complete cycle of -Al 

morphologies from cells to dendrites and reverting from dendrites to cells. The range of experimental cooling 

rates associated with the steady-state experiments was 0.003K/s <  ̇ <0.17K/s. For cooling rates between 

0.03K/s and 0.17K/s only dendritic morphologies prevailed. For  ̇ values lower than 0.005K/s a degenerate 

growth of α-Al cells was observed. For unsteady state conditions, the range of experimental cooling rates was 

0.2K/s <  ̇ < 45K/s. The observed growth of high cooling rate cells was related to  ̇ > 2K/s whereas the 

dendrites prevailed for  ̇ < 0.8K/s. Values in between refer to a zone in which both cells and dendrites could be 

found. Experimental scaling laws were proposed correlating both λC and λ1with ̇. It is worth noting that the 

same power function law could be found for all laws related to cell, primary and secondary dendrite spacings. 
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