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Abstract. This work describes a new methodology for integrated decision analysis in the development and
management of petroleum fields considering reservoir simulation, risk analysis, history matching, uncertainty
reduction, representative models, and production strategy selection under uncertainty. Based on the concept
of closed-loop reservoir management, we establish 12 steps to assist engineers in model updating and production
optimization under uncertainty. The methodology is applied to UNISIM-I-D, a benchmark case based on the
Namorado field in the Campos Basin, Brazil. The results show that the method is suitable for use in practical
applications of complex reservoirs in different field stages (development and management). First, uncertainty is
characterized in detail and then scenarios are generated using an efficient sampling technique, which reduces
the number of evaluations and is suitable for use with numerical reservoir simulation. We then perform
multi-objective history-matching procedures, integrating static data (geostatistical realizations generated using
reservoir information) and dynamic data (well production and pressure) to reduce uncertainty and thus provide
a set of matched models for production forecasts. We select a small set of Representative Models (RMs) for
decision risk analysis, integrating reservoir, economic and other uncertainties to base decisions on risk-return
techniques. We optimize the production strategies for (1) each individual RM to obtain different specialized
solutions for field development and (2) all RMs simultaneously in a probabilistic procedure to obtain a robust
strategy. While the second approach ensures the best performance under uncertainty, the first provides
valuable insights for the expected value of information and flexibility analyses. Finally, we integrate reservoir
and production systems to ensure realistic production forecasts. This methodology uses reservoir simulations,
not proxy models, to reliably predict field performance. The proposed methodology is efficient, easy-to-use and
compatible with real-time operations, even in complex cases where the computational time is restrictive.

Nomenclature

AC Abandonment Costs
B Benchmark return
BHP Bottom-Hole Pressure
CAPEX Investments in equipment and facilities
CLRM Closed-Loop Reservoir Management
CLFDM Closed-Loop Field Development and

Management
E Expectation operator
Ei Specialized production strategy optimized

for RMi
EMR Robust production strategy
EMV Expected Monetary Value

EVoF Expected Value of Flexibility
EVoI Expected Value of Information
Gp Cumulative gas production
NCF Net Cash Flow
Np Cumulative oil production
NPV Net Present Value
NQDS Normalized Quadratic Deviation with Signal
OPEX Operational Expenditure
ORF Oil Recovery Factor
Qg Gas rate
Qo Oil rate
Qw Water rate
Qwi Water injection rate
R Gross revenue
RM Representative Model
SB� Lower semi-deviation from B
SB+ Upper semi-deviation from B* Corresponding author: denis@unicamp.br
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S2B� Lower semi-variance from B

S2Bþ Upper semi-variance from B
Roy Amount paid in royalties
ST Amount paid in social taxes
T Corporate tax rate
Wi Cumulative water injection
Wp Cumulative water production
ɛ(NPV) Economic value of the production strategy

adjusted to the decision maker’s attitude
sdr Tolerance level to downside risk
sup Tolerance level to upside potential

Subscript

wi With information
woi Without information

1 Introduction

Field development and management decisions involve risks
due to several uncertainties, mainly (1) reservoir, associated
with recoverable reserves and flow characteristics, (2) oper-
ational, related to production system availability, and
(3) economic, such as oil price, capital expenditures, and
operational expenditures. These uncertainties typically
coexist because data is usually acquired indirectly and spar-
sely, and because developing a petroleum field is a long-
term, capital-intensive project. Their combined effects must
be assessed to estimate the risks involved in decisions.

Today, due to the challenges of new oil and gas
discoveries, decision makers recognize the shortcomings of
simplistic uncertainty assessments and the importance of
integrated model-based decision analysis. In particular,
current research focuses on improving the decision-making
process in field development and management, making
use of new information that arrives as new development
wells are drilled and production begins. In this context,
the Closed-Loop Reservoir Management (CLRM) was pro-
posed (Chen et al., 2009; Jansen et al., 2005, 2009; Nævdal
et al., 2006; Wang et al., 2009), which consists of a contin-
uous update of the geological model accompanied by a
continuous optimization of well-control for existing and
future wells. Based on this concept, the Closed-Loop Field
Development (CLFD) was generalized (Shirangi and
Durlofsky, 2015) to include the continuous optimization
of decision variables related to the production strategy
configuration (e.g., type and position of future wells). This
study is based on the CLFD concept.

However, many factors make this a complex, time-
consuming process to model, namely (1) the coexistence
of multiple endogenous and exogenous uncertainties,
(2) the large search spaces, and that (3) flow simulation is
time-consuming in itself. In addition, this is a multidisci-
plinary problem, integrating reservoir engineering, produc-
tion engineering, economic evaluation, and statistical
analyses. Thus, simplifications are often required in analy-
ses that perform a high number of evaluations, such as

uncertainty quantification, optimization procedures, and
decision risk analysis. However, these simplifications may
yield inaccurate results and so must be selected carefully.

Proxy models, which are used to bypass the flow simu-
lator, are a common simplification in uncertainty quantifi-
cation, history matching, and probabilistic forecasting
(Douarche et al., 2014; Feraille, 2013; Feraille and Marrel,
2012; Imrie and Macrae, 2016; Osterloh, 2008; Panjalizadeh
et al., 2014; Scheidt et al., 2007; Touzani and Busby, 2014).
However, multiple factors affect prediction accuracy of the
proxy, which is not physics-based: (1) the high nonlinearity
between input variables (reservoir, operational, and eco-
nomic uncertainties) and output variables (production,
injection, and economic forecasts) complicates proxy
modeling, and (2) assumptions and approximations when
modeling the proxy may introduce non-negligible errors
(Trehan et al., 2017).

Lower-fidelity models, another class of approximations,
have also been applied in history matching (Lodoen and
Omre, 2008; Subbey et al., 2004) and production strategy
optimization (Aliyev and Durlofsky, 2015; Wilson and
Durlofsky, 2013). Lower-fidelity models entail many simpli-
fications to increase computational efficiency while respect-
ing the physical processes governing the reservoir. In this
approach, high-fidelity models are upscaled through numer-
ical homogenization procedures, prior to flow simulation.
This simplification is attractive because upscaling is rela-
tively straightforward to implement (Trehan et al., 2017).
However, its use is not straightforward because upscaling
errors arise from neglecting subgrid heterogeneity effects
(Durlofsky, 1997, 1998; Preux, 2016; Zabalza-Mezghani
et al., 2004).

Computational efficiency can also be achieved through
efficient sampling. The Monte Carlo method is often used
in the petroleum industry. However, as the sampling is
purely random, a very high number of samples is necessary
to ensure reliable results (Mishra, 1998), frequently at unfea-
sible levels (Risso et al., 2011). This study uses a simplified
statistical technique developed in a related work (Schiozer
et al., 2017), the Discretized Latin Hypercube with Geosta-
tistical realizations (DLHG). By incorporating the desirable
features of random sampling and stratified sampling, the
DLHG ensures minimum computational costs without
requiring proxy models. We tested this technique in several
examples, achieving a good balance of precision and
computational time. This sampling technique was applied
to uncertainty quantification (Schiozer et al., 2017), history
matching (Maschio and Schiozer, 2016), and production
strategy optimization (von Hohendorff Filho et al., 2016).

This study also increases the computational efficiency of
the CLFD process by using representative models of the
uncertain system. Techniques to select representative
models were the focus of recent research (Jiang et al., 2016;
Meira et al., 2016, 2017; Shirangi and Durlofsky, 2016). This
work applies a method developed in related research (Meira
et al., 2016, 2017) to reduce the number of scenarios for pro-
duction strategy selection and optimization. The method
combines a mathematical function that captures the repre-
sentativeness of a set of models with a metaheuristic opti-
mization algorithm, to ensure full representation of the
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variability of system inputs (uncertain attributes) and out-
puts (production and economic forecasts). Additional
advantages include low computational cost and simplicity
for day-to-day decision making because the method is soft-
ware based. Production strategy optimization is computa-
tionally consuming because of the high number of
evaluations required. This is particularly challenging for
the Robust Optimization (van Essen et al., 2009; Yang
et al., 2011; Yasari and Pishvaie, 2015), where multiple
scenarios are evaluated simultaneously.

For the methodology to deliver reliable results, some
conditions must be guaranteed:

� The performance of a high-fidelity model must be pre-
served using an accurate simulation model because of
the complex integration between the production strat-
egy and the system performance (production, injec-
tion, and economic forecasts) (Botechia et al., 2018a).

� The reservoir simulation model must honor all
dynamic data and be fast enough to allow analyses
of multiple scenarios.

� The statistical analysis must be carefully performed to
ensure adequate uncertainty representation while
avoiding a high number of evaluations (which is very
time consuming).

� The procedure for production strategy selection must
reflect the effects of both the uncertain models and the
production strategy because both highly influence the
performance of the project and, consequently, the risk
evaluation.

� Production and economic evaluations must be inte-
grated because both of them impact decisions.

This work presents a methodology that resulted from
several case studies and was first outlined in Schiozer et al.
(2015). The method comprises the key steps of decision
analysis to ensure good decisions. We integrate key steps
of reservoir characterization, data assimilation, and produc-
tion optimization providing a core basis for specialized
methodologies, as we demonstrate in the results section.

2 Objectives

Despite the growing concern for in-depth, model-based deci-
sion making, we observed that many solutions, presented in
the literature and used in some companies, still entail many
simplifications, which can be critical in complex cases. This
is because industry professionals value fast, easy-to-apply
techniques because of limited time and highly complex
decisions.

The objective of this work is to improve the decision-
making process in petroleum field development and
management. We present a model-based methodology inte-
grating reservoir simulation, risk analysis, history matching,
uncertainty reduction, representative models, and produc-
tion strategy selection under uncertainty.

This method aims to ensure good decisions while being
practical for application in complex reservoirs and at
different stages of the field lifetime, both before and after

reservoir development. Specific objectives of this study
include: (1) practical for day-to-day decisions and based
on reliable production forecasts from numerical reservoir
simulation, (2) probabilistic-based decision-making based
on an adequate representation of uncertainty, and (3) quan-
titative and objective decision-making based on indicators
and automated procedures.

The methodology was applied to UNISIM-I-D, a bench-
mark case based on the Namorado field in the Campos
Basin, Brazil.

3 Methodology

The proposed method is based on the concept of Closed-
Loop Field Development and Management, as an extension
of the Closed-Loop Reservoir Management by Jansen et al.
(2009) (Fig. 1). The main components of the process are
divided into colors:

� Green: gathering of all data and uncertainties and
model construction; multiple simulation models are
used in the process so model fidelity (low, medium
or high) is adapted to balance quality of the results
and computational time.

� Blue: model-based, long-term decisions under uncer-
tainties; the best alternative is implemented in the
field (with operational noise due to delays, fails,
etc.) generating measured dynamic data (production,
pressure, 4D seismic, etc.).

� Red: data assimilation; all dynamic data must be
within a tolerance range to select models that will
be used in the blue part; data assimilation may
directly change the simulation models or the high
fidelity geologic models (big loop).

� Black: (1) implementation of long-term decisions
(normally model-based) and short-term decisions
(normally data-driven), (2) definition of study objec-
tive, and (3) selection of the type of study (past – data
assimilation; or future – decision analysis).

The twelve steps of the methodology are described
below:

3.1 Green steps

1. Reservoir characterization under uncertainties (to
build models, develop scenarios, and estimate proba-
bilities) (Correia et al., 2015, 2018a, 2018b; Mahjour
et al., 2019). This crucial step requires a multidisci-
plinary approach to consider all possible uncertainties:
reservoir, fluid, economic, and operational attributes.

2. Build and calibrate the simulation model: accurate
risk quantification requires reliable responses; there-
fore, the simulation model must be calibrated to have
a fast and yet robust response to avoid biased evalua-
tions (Avansi et al., 2019). Decision makers define the
degree of model precision according to the objective.
We believe that a high-fidelity model should be
preferred over low-fidelity or proxy models because
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of the high nonlinearity between the reservoir model
and the production strategy performance. The cali-
bration is normally done with a Base Case (in this
work, called Base0).

3.2 Red steps

3. Verify inconsistencies in the Base Case and dynamic
well data (fluid rates and BHP measurements) to be
used in the data assimilation procedures. This step
is often simplified or skipped but it is crucial as it
can identify inconsistencies in the simulation model
and the real data.

4. Generate scenarios considering reservoir uncertain-
ties. In this work, a scenario is a particular combina-
tion of all possible uncertainties. Several sampling
techniques are available in the literature, but we rec-
ommend the efficient DLHG (Schiozer et al., 2017).

5. Data assimilation: history match and reduce the
number of scenarios with dynamic and seismic data.
Several techniques are available (Avansi and Schiozer,
2015a; Bertolini et al., 2015; Costa et al., 2018;
Davolio and Schiozer, 2018; Maschio and Schiozer,
2008, 2015, 2016; Oliveira et al., 2018) depending on
the complexity of the case and the available data.
From the accepted models, a Base Case is selected
for the following steps (Base1). The usual recommen-
dation is to use a model close to P50 in all indicators
to optimize the initial production strategy, represent-
ing an intermediate case. A new Base Case must be
selected only when Base0 fails to honor the dynamic
data or is too optimistic or pessimistic.

3.3 Blue steps

6. Selection of a deterministic production strategy for
the Base Case. As the production strategy selection

strongly affects the risk quantification, an iterative
technique is best to select the production strategy.
The first production strategy is selected using an opti-
mization procedure (Gaspar et al., 2014, 2016a; Rav-
agnani et al., 2011; von Hohendorff Filho et al., 2016).

7. Initial risk estimate of the first production strategy
with all possible scenarios (from Step 5). This risk
curve is often used in projects. Here, we propose
additional analyses (Steps 8–12) to further improve
decisions and reduce risk, showing that the final risk
curve can be very different.

8. Selection of Representative Models (RMs) (Costa
et al., 2008; Meira et al., 2016, 2017; Schiozer et al.,
2004) based on multiple system inputs (probability
distribution and range of uncertain attributes) and
outputs (production, injection, and economic
forecasts).

9. Selection of a specialized production strategy for each
RM, as in Step 6, to provide different solutions for
field development.

10. Production strategy selection under uncertainty
including reservoir, economic, and other uncertainties.
A Robust Optimization procedure (Silva et al., 2016)
can be used, or a risk-return analysis (Santos et al.,
2017a) to select the best strategy from the candidates
obtained in Step 9. If the simulation runtime for the
number of scenarios is unfeasible, the RMs can be used
to represent them.

11. Identification of potential changes in the production
strategy (obtained in Step 10) to manage uncertainty
and improve the chance of success based on the value
of information (Botechia et al., 2018b; Santos et al.,
2017b) and value of flexibility analyses (Santos
et al., 2018a; Silva et al., 2017), and integration with
production facilities (von Hohendorff Filho and
Schiozer, 2017, 2018). If the simulation runtime for
the number of scenarios is unfeasible, the RMs can
be used to represent them.

Fig. 1. Closed-loop field development and management (modified from Jansen et al., 2009).

D.J. Schiozer et al.: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 74, 46 (2019)4



3.4 Black step

12. The black step is dedicated to the decision analysis.
Technical and economic indicators support long-term,
model-based decisions as well as short-term, data-
driven decisions. The objective guides the process:
model quality, need for further data assimilation
(history matching), objective function selection, etc.

The literature provides several methods for each specific
step of the comprehensive 12 steps of this study. We refer-
enced methods for specific steps that we have conducted in
related works. The discussion section explores the focus of
our current research to address existing challenges.

4 Application

The 12-step methodology was applied to a benchmark case
study based on the Namorado field in the Campos Basin,
Brazil. A synthetic reservoir, UNISIM-I-R (Avansi and
Schiozer, 2015b), was built to provide a reference model
that represents the true reservoir. The uncertain simulation
model UNISIM-I-D (Gaspar et al., 2015) is in the initial
stages of field development and has four years of production
data for four production wells (NA1A, NA2, NA3D,
RJS19). The reservoir model is discretized into a corner
point grid with 81 � 58 � 20 cells measuring 100 �
100 � 8 m with a total of 36 739 active cells.

We reference results from related studies in the results
section. Note that our focus is not to compare the efficacy
of each method, but to demonstrate that the 12-step
decision-structure allows the development of different
approaches.

5 Results

5.1 Step 1

The uncertainties of the model include:

� Reservoir attributes: geostatistical realizations of
facies, porosity, net-to-gross ratio, and permeability;
structural model (BL), water relative permeability
(Krw), fluid properties in the East block (PVT), depth
of Water-Oil Contact in the East block (WOC), Rock
Compressibility (CPOR), and vertical permeability
multiplier (Kz) (Tab. 1).

� Economic attributes: oil price, operational expendi-
tures, and capital expenditures (Tab. 2).

� Operational attributes: System Availability (SA) and
Well Index Multiplier (dWI) (Tab. 3).

Details of the simulation model, economic model, and
uncertainties can be found in Avansi and Schiozer
(2015b) and in Gaspar et al. (2015), while open source files
can be accessed at http://www.unisim.cepetro.unicamp.br/
unisim-i.

5.2 Steps 2 and 3

Step 2 guarantees that the simulation model adequately
represents the reservoir and is fast enough to be included
in a methodology that demands thousands of simulation
runs. In our case, the simulation runtime was around
7 min running in parallel while using four processors in a
cluster. Although our methodology is applicable to cases
with very high runtimes (hours), simplifications may be
necessary depending on the time available and scope of
the project.

Step 3 ensures compatibility of the initial response of the
Base Case (Base0) (material balance, pressure, and initial
production) with the existing data. Note that the Base0
case corresponds to the most likely value of each uncertain
attribute.

5.3 Step 4

In Step 4, scenarios were generated to start the probabilistic
process using the DLHG (Schiozer et al., 2017), which
applies the efficient Latin Hypercube Sampling (LHS) and
integrates all types of uncertainties in the sampling step,
i.e., continuous attributes are discretized, and then com-
bined with discrete attributes and geostatistical realiza-
tions. In LHS, the range of each variable (xj) is divided
into n disjoint intervals of equal probability, then one value
is selected at random from each interval. The n values
obtained for x1 are randomly paired, not replaced, with
the n values obtained for x2. This process is continued until
a set of n nX-tuples is formed (Helton and Davis, 2003).

Each attribute is treated according to (1) sampling
number, (2) number of discrete levels, and (3) probability
of each discrete level. The sampling number, which is equal
to the number of flow simulation runs, is set at the begin-
ning of the process based on (1) simulation runtime,
(2) importance of the study (i.e., the required precision),
and (3) available work time (Schiozer et al., 2017). Note
that all sampled scenarios are simulated using the flow
simulator while no proxy models are used for production
forecasts.

Santos et al. (2018b) showed that independence
between the precision of the DLHG and the number of sam-
ples is achieved with a few samples (from 50 samples for
UNISIM-I-D). Due to the short simulation runtime and
the available computational resources, we used more
samples to create smoother risk curves. Figure 2 shows risk
curves for sampling numbers 500 and 100. It is possible to
notice that the Base Case is no longer close to P50 in the
risk curve.

5.4 Step 5

In Step 5, we applied a filtering technique to select the
subset of scenarios (from the full set of sampled scenarios)
that matched the four years of production data. We used
the Normalized Quadratic Deviation with Signal (NQDS)
(Avansi and Schiozer, 2015a; Bertolini et al., 2015) as the
matching indicator, which is normalized for each well and
each objective function (Qo, Qw, Qg, and BHP). We consid-
ered NQDS values between�1 and +1 an acceptable misfit.
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Figure 3 shows the 214, out of the 500 initial scenarios,
selected (with all objective functions within the tolerance
range). Figure 4 shows water production curves for the four
wells as an example.

As the Base Case, Base0, did not match the production
data, we selected a new Base Case (Base1) as an intermedi-
ate case from the set of filtered models, using an initial
production strategy (E0) (Fig. 5). Note that this initial
strategy does not represent the final decision for field devel-
opment and it is only used to select the Base1 case.

5.5 Step 6

The first important consideration is how to integrate pro-
duction facilities with the field production forecast and
modeling. Generally, when production facilities impose
strong restrictions, integrated modeling is used in all of
the blue steps. In other cases, and in this application, inte-
grated modeling is used to establish approximate well
boundary conditions in Step 6 and to confirm these condi-
tions in Step 11.

Table 1. Reservoir uncertainties for the simulation model (Avansi and Schiozer, 2015b). Level zero of each attribute is
the base (most likely).

Attribute Uncertainty type Levels (Probability)

Image Discrete (realization) 500 geostatistical realizations of porosity, permeability,
and net-to-gross ratio (equiprobable)

BL Discrete (map) Present (0.7); absent (0.3)
Krw Discrete (curve) krw0 (0.2); krw1 (0.2); krw2 (0.2); krw3 (0.2); krw4 (0.2)
PVT Discrete (table) PVT0 (0.34); PVT1 (0.33); PVT2 (0.33)
WOC Continuous discretized (scalar) woc0 (0.111); woc1 (0.2222); woc2 (0.334); woc3 (0.222); woc4 (0.111)
CPOR Continuous discretized (scalar) cpor0 (0.2); cpor1 (0.6); cpor2 (0.2)
Kz Continuous discretized (scalar) kz0 (0.4); kz1 (0.1); kz2 (0.1); kz3 (0.2); kz4 (0.2)

Table 2. Economic parameters and uncertainties (Gaspar et al., 2015).

Description Field units SI units

Units Base Optimistic Pessimistic Units Base Optimistic Pessimistic

Oil price USD/bbl 50 70 40 USD/m3 314.5 440.3 251.6
Discount rate % 9 9 9 % 9 9 9
Royalties % 10 10 10 % 10 10 10
Special taxes on

gross revenue
% 9.25 9.25 9.25 % 9.25 9.25 9.25

Corporate taxes % 34 34 34 % 34 34 34
Cost of oil production USD/bbl 10.0 13.0 8.0 USD/m3 62.9 81.8 52.4
Cost of water production USD/bbl 1.0 1.3 0.8 USD/m3 6.3 8.2 5.3
Cost of water injection USD/bbl 1.0 1.3 0.8 USD/m3 6.3 8.2 5.3
Abandonment cost

(% well investment)
% 7.4 9.2 6.5 % 7.4 9.2 6.5

Drilling and completion
of vertical well

USD Million 61.2 76.5 54.0 USD Million 61.2 76.5 54.0

Drilling and completion
of horizontal well

USD
Thousand/m

21.7 27.3 19.0 USD
Thousand/m

27.3 19.0 21.7

Well-platform USD Million 13.3 16.7 11.7 USD Million 13.3 16.7 11.7

Probability 0.50 0.25 0.25 0.50 0.25 0.25

Table 3. Operational uncertainties (Gaspar et al., 2015).

Levels

Parameter Uncertainty type 0 (base) 1 2

SA – Platform Discrete (scalar) 0.95 1.00 0.90
SA – Group Discrete (scalar) 0.96 1.00 0.91
SA – Producer Discrete (scalar) 0.96 1.00 0.91
SA – Injector Discrete (scalar) 0.98 1.00 0.92
dWI Discrete (scalar) 1.00 1.40 0.70

Probability 0.33 0.34 0.33
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We optimized deterministically a production strategy
for Base1, considering design (G1) and operation (G2) vari-
ables. The G1 variables were: number, type (vertical or hor-
izontal), placement, and opening-schedule of wells, and
platform capacity constraints (liquid, oil and water produc-
tion, and water injection). The G2 variables were con-
straints of maximum water-cut, maximum liquid
production for producers, and water injection for injectors.

The optimization procedure was divided into phases:
(1) number and type of wells, and platform capacity,

(2) well placement and fine-tuning the platform capacity
constraints, (3) well-opening schedule, (4) well operating
and monitoring constraints, and (5) fine-tuning.

We performed phases 1, 2, and 4 on commercial soft-
ware CMOST (CMG�), which uses the optimizer method
Designed Exploration Controlled Evolution (DECE) (Yang
et al., 2007). We used the black-oil numerical reservoir sim-
ulator IMEX (CMG�).

The objective function for optimization is the Net
Present Value (NPV) (Fig. 6) and is calculated using the
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Fig. 2. a) Cumulative oil production (Np) and b) Net Present Value (NPV) risk curves for production strategy E0 for 100 and 500
sampled scenarios, highlighting Base0.
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Fig. 3. NQDS for objective functions a) oil rate (Qo), b) water rate (Qw), c) gas rate (Qg), and d) Bottom-Hole Pressure (BHP), for
the four initial wells (NA1A, NA2, NA3D, RJS19) with production data: 500 initial scenarios (gray) and 214 filtered scenarios that
match production data (red).
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most likely economic scenario (Tab. 3) and a simplified net
cash flow formula based on the Brazilian Royalty & Taxes
fiscal regime (eq. (1)).

NCF ¼ R� Roy� ST�OPEXð Þ � 1� Tð Þ½ �
� CAPEX� AC; ð1Þ

where NCF is the net cash flow, R is the gross revenue,
Roy is the amount paid in royalties, ST is the amount
paid in social taxes, OPEX is the operational expenditure,
T is the corporate tax rate, CAPEX is the investment in
equipment and facilities, and AC are the abandonment
costs.

The production strategy for Base1 is called E1 and
consists of:

� Number and type of wells: 10 horizontal producers,
two vertical producers (existing wells NA1A and
NA3D), six horizontal water injectors, in a total of
18 conventional wells.

� Platform capacity constraints: 16 275 m3/day (liquid
and oil production), 9068 m3/day (water production),
and 23 328 m3/day (water injection).

At the end of the prediction period (10 957 days),
E1 recorded: NPV of USD 2236 million,Np of 65 million m3,

Fig. 4. Water production for the four initial wells (NA1A, NA2, NA3D, RJS19) with production data: 500 initial scenarios (gray)
and 214 filtered scenarios that match production data (red).

Fig. 5. Cross-plots for cumulative water production versus cumulative oil production (Wp � Np), and net present value versus oil
recovery factor (NPV � ORF) for production strategy E0, for the 214 models (red circles), highlighting the intermediate case chosen
as Base1 (blue circle).
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Wp of 50 million m3, Gp of 6892 million m3, Wi of 138 mil-
lion m3, and Oil Recovery Factor (ORF) of 56%. Figure 7
compares the map of total oil per unit area at the beginning
and end of the prediction period, showing the well place-
ment of E1.

5.6 Step 7

We conducted a first risk estimate using production strat-
egy E1 and the 214 possible scenarios from Step 5
(Fig. 8). Risk curves are also referred to as descending or
complementary cumulative distribution functions in the
statistics literature, and we constructed them with the pro-
duction forecasts of multiple scenarios from numerical reser-
voir simulation.

One interesting point to highlight here, which is
normally neglected in many analyses, is the relationship
between the uncertainties and the production strategy.
Base1, the intermediate case for E0 (Fig. 5), became an
optimistic case for E1 (Fig. 8). We observed this behavior
in other cases. Once a strategy is optimized for a particular
model, it becomes more optimistic considering the opti-
mized output parameters (NPV for instance).

Note that these risk curves do not reflect the final risk
assessment for this project, but provide input for Step 8.

5.7 Step 8

We applied the proposal by Meira et al. (2016) to select nine
RMs from the 214 matched models using multiple risk
curves and cross-plots for four objective functions: NPV,
Np, Wp, and ORF (examples in Figs. 9 and 10). Geostatis-
tical realizations are particularly difficult to handle, and
from the set of 214, we used only nine.

The proposal by Meira et al. (2016) ensures that the set
of RMs represents both the probability distribution of the
input variables (uncertain attributes), ensuring that not
only attributes but also uncertain levels are represented,
and the variability of the main output variables (produc-
tion, injection, and economic forecasts). In addition, this
method is applied using RMFinder software, improving
ease-of-use.

As we already had production strategy E1, we took
Base1 as one of the RMs (Base1 = RM1), saving time
and computational costs.

5.8 Step 9

Because production strategy E1 was optimized specifically
for Base1, we analyzed other possibilities for field develop-
ment using the RMs obtained in Step 8. This follows the
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Fig. 6. Evolution of the NPV with the optimization procedure for a) phase 2 and b) phase 4.

Fig. 7. Map of total oil per unit area at the beginning (left) and end (right) of the prediction period, including well placement for
production strategy E1.
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rationale that, if the set of RMs represents the uncertain
system, their respective production strategies provide differ-
ent field development possibilities, including number and
placement of wells and platform processing capacities.

We repeated the optimization procedure (described
in Step 6) for each RM, obtaining a set of specialized

strategies: E2, E3, . . ., E9 (Tab. 4), where Ei is the strategy
optimized for RMi.

A key uncertainty affecting production strategy selec-
tion is the structural model (Fig. 11). The presence of
hydrocarbons in the, still undrilled, East block is uncertain
because the connectivity of the fault separating the
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Fig. 8. NPV and Np risk curves for production strategy E1, highlighting Base1 (circle).
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Fig. 9. Cross-plots for a) Wp � Np and b) NPV � ORF, for production strategy E1, for the 214 models (red circles), highlighting
Base1 (blue diamond) and nine RMs (black squares).
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Fig. 10. a) NPV and b) Np risk curves for production strategy E1, for the 214 models (red circles), highlighting Base1 (blue diamond)
and nine RMs (black squares).
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West and the East blocks is unknown. Of the set of repre-
sentative models, RM3, RM6, and RM7 do not have hydro-
carbons in the East block and their respective production
strategies (E3, E6, E7) are solutions for such scenarios.

5.9 Step 10

In Step 10, we select the production strategy that performs
best under uncertainty, before considering further actions
to manage this uncertainty (addressed in Step 11).

A production strategy is said to be robust when is insen-
sitive to uncertainty and ensures good performance across
multiple scenarios without requiring system modifications
after production has started (de Neufville, 2004). However,
note that the definition of robustness also depends on the
company and can be associated with NPV or oil produc-
tion. For a robust project related to NPV, lower invest-
ments can help avoid negative or lower NPV values for
pessimistic scenarios. For a robust project related to oil pro-
duction, higher investments can be made to increase rates
in optimistic scenarios, for instance.

In Step 9, we obtained a set of specialized production
strategies. One possible approach for Step 10 is to select
the strategy that performs best under uncertainty. The
Robust Optimization, an automated optimization prob-
lem formulated under uncertainty, is another approach
that has become increasingly preferred by practitioners.
Alternatively, a robust strategy can be obtained by manu-
ally refining the best specialized strategy, improving the
performance under uncertainty (to be addressed in
Step 11).

Following the concept of Robust Optimization, Silva
et al. (2016) obtained the robust production strategy for
UNISIM-I-D, called EMR, optimized for nine RMs and
three economic scenarios, simultaneously. Thus, the key
difference between the optimization procedure is that
Step 6 simulates each strategy configuration for one reser-
voir scenario (resulting in one NPV), while Silva et al.
(2016) simulate strategy configuration for many scenarios
(resulting in one Expected Monetary Value [EMV]).

The robust EMR consists of:

� Number and type of wells: 15 producers and nine
water injectors.

� Platform capacity constraints: 20 150 m3/day (liquid
and oil production), 13 950 m3/day (water produc-
tion), and 29 295 m3/day (water injection).

The literature provides several techniques for risk-return
analyses to select one of a set of alternatives. Santos et al.
(2017a) followed on from the classic mean-variance model
and proposed a mean-semivariance framework based on
the premise that variance reflects only the overall uncer-
tainty in returns, and not necessarily the risk of a project.
The risk (referred to here as downside risk) is the chance
of failure to achieve a targeted or benchmark return (B).
Thus, variability above this target is not perceived as risk,
but as potentially exploitable optimistic scenarios (referred
to here as upside potential) (Fig. 12).

Santos et al. (2017a) combined the expected monetary
value, downside risk, and upside potential (eq. (2)) to deter-
mine the economic value of a production strategy adjusted
to the decision maker’s attitude, ɛ(NPV), while maintain-
ing the same units and dimension as the NPV:

e NPVð Þ ¼ EMV� S2
B�
sdr

þ S2
Bþ
sup

; ð2Þ

where ɛ(NPV) is the economic value of the production
strategy adjusted to the decision maker’s attitude (in
USD); EMV is the expected monetary value, given by
the sum of the NPV of each scenario weighted by its prob-
ability (in USD); S2

B� and S2
B� are the lower and upper

semi-variance from benchmark B, respectively (in square
USD); sdr and sup are the tolerance (or indifference) levels
to downside risk and upside potential, respectively (in
USD). Note that decisions based on EMV are a particular
case of equation (2), where decision makers are neutral to
downside risk and upside potential (i.e., sdr = sup ? 1).

Table 4. Characteristics of the nine production strategies (E1–E9). Prod.: number of producing wells; Inj.: number of
water injection wells.

Production
strategy

Wells in West block Wells in East block Total
wells

Platform (1000 m3/day)

Prod Inj Total Prod Inj Total Ql Qo Qw Qwi

E1 10 5 15 2 1 3 18 16.3 16.3 9.1 23.3
E2 8 5 13 2 1 3 16 16.3 16.3 11.2 22.8
E3 9 5 14 0 0 0 14 14.0 14.0 9.8 19.5
E4 9 5 14 2 1 3 17 18.2 18.2 11.5 25.5
E5 9 5 14 4 2 6 20 17.8 17.8 10.5 23.8
E6 9 6 15 0 0 0 15 14.3 14.3 7.3 20.6
E7 9 6 15 0 0 0 15 13.2 13.2 5.2 19.5
E8 10 5 15 4 2 6 21 21.7 21.7 14.6 29.8
E9 9 5 14 4 2 6 20 20.2 20.2 9.8 28.2
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Equation (2) uses lower semi-deviation from benchmark
return B (eq. (3)) to quantify downside risk, and upper
semi-deviation from B (eq. (4)) to quantify upside potential:

SB� ¼
ffiffiffiffiffiffiffiffi

S2
B�

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E min NPV� Bð Þ; 0½ �2� �

q

; ð3Þ

SBþ ¼
ffiffiffiffiffiffiffiffi

S2
Bþ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E max NPV� Bð Þ; 0½ �2� �

q

; ð4Þ

where SB� is the lower semi-deviation from benchmark B;
S2
B� is the lower semi-variance from B; SB+ is the upper

semi-deviation from B; S2
Bþ is the upper semi-variance

from B; E is the expectation operator; and NPV is the
net present value.

The benchmark (B) is defined by the decision maker as
it depends solely on his/her definition of loss and gain.
However, note that all production strategies must use the
same benchmark for impartiality. Here, we set the bench-
mark as the EMV of production strategy E1, optimized
for the Base Case, and defined sdr and sup as a function of
this value. For this synthetic case study, we considered a
fictitious decision maker averse to downside risk and willing
to exploit the upside potential (sdr = sup = 0.4 � B �
USD 700 million).

In Table 5 and Figure 13, we evaluate and compare the
nine production strategies (E1–E9) and the robust strategy
(EMR), with and without economic uncertainty. EMR is
the best production strategy under uncertainty. From the
set of nine alone, E9 is the best. Production strategies E3,
E6, and E7, optimized for RMs without hydrocarbons in
the East block, are the least attractive alternatives consid-
ering the 214 scenarios simultaneously.

5.10 Step 11

Step 11 consists of detailed analyses of the best strategy
obtained in Step 10.

5.10.1 Managing uncertainty

The best strategy can be improved to better manage uncer-
tainty, considering the company’s risk attitude. The most

common actions are (1) acquiring information, to reduce
reservoir uncertainty, (2) adding flexibility to the system,
to allow system modifications as uncertainty unfolds over
time, and (3) increasing robustness (an automated proce-
dure was addressed in Step 10, here we discuss a manual
procedure). Despite reducing risks and increasing the
EMV, these approaches incur investment and costs and
may delay production. Therefore, before making a decision,
their benefits should be quantified using the Expected
Value of Information (EVoI) and Expected Value of
Flexibility (EVoF).

The petroleum literature provides many methods to
estimate the EVoI and the EVoF. In related works (Santos
et al., 2017b; Santos et al., 2018a), we showed how these can
become fully automated procedures when integrated into
the 12-step decision structure, as exemplified in Figure 14
for EVoI.

The automated EVoI and EVoF analyses use the
following as input: (1) the set of uncertain scenarios that
match production data (obtained in Step 5), (2) the set of

Fig. 11. Map of total oil per unit area at the beginning of the prediction period of RM7 with production strategy E7 (left) and RM9
with production strategy E9 (right).
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specialized production strategies, optimized individually for
each RM (obtained in Step 9), and (3) the robust produc-
tion strategy, optimized probabilistically for all RMs simul-
taneously (obtained in Step 10).

The use of a robust production strategy is optional for
EVoI, where we aim to learn the most-likely reservoir

scenario so that we can implement a specialized produc-
tion strategy. However, considering a robust production
strategy is important for cases with high uncertainty,
where a single source of information may be insufficient
to reduce all uncertainties. In such cases, the use of a
robust production strategy in the EVoF study is highly
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Fig. 13. NPV risk curves for the nine specialized production strategies (E1–E9) and robust strategy (EMR), considering 214
uncertain scenarios with a) deterministic economic scenario, and b) three uncertain economic scenarios. The vertical dashed line is the
benchmark (B). Cross-plots of c) Expected Monetary Value (EMV) versus downside risk, and d) EMV versus upside potential, both
under economic uncertainty.

Table 5. Evaluation of the nine specialized production strategies (E1–E9) and robust strategy (EMR). Values in USD
million.

Production
strategy

Without economic uncertainty With economic uncertainty

EMV SB� SB+ ɛ(NPV) EMV SB� SB+ ɛ(NPV)

E1 1581 329 308 1561 1720 443 552 1875
E2 1596 343 348 1601 1735 453 578 1919
E3 974 739 34 196 1075 848 178 92
E4 1556 383 361 1532 1696 492 585 1841
E5 1526 437 365 1443 1665 539 590 1747
E6 1142 582 68 665 1253 702 244 635
E7 1265 446 67 987 1382 582 276 1007
E8 1548 441 396 1494 1694 543 629 1838
E9 1675 327 439 1798 1825 435 682 2220
EMR 1739 244 408 1892 1889 379 688 2360
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recommended to define the rigid attributes of the produc-
tion strategy.

As the set of RMs represents the uncertain system, their
respective strategies quantify the possibilities to develop the
field, namely number and placement of wells, platform size,
and fluid processing capacities. Thus, these strategies are
indicators for the degree and type of flexibility required
by the system. The flexible strategy is defined in an itera-
tive procedure that combines features of the robust strategy
(e.g., well placement) and flexible features from the differ-
ences between specialized strategies (e.g., available slots
for connection of additional wells).

5.10.1.1 Determining the EVoI of an appraisal well
We considered drilling an appraisal well to gather informa-
tion on the presence or absence of hydrocarbons in the East
block (BL) and the Water-Oil Contact (WOC), simultane-
ously. We estimated EVoI for perfect information (100%
reliable when interpreting BL and WOC) and imperfect
information (95% reliable when interpreting BL, and 80%
for WOC). Without further information, EMR is chosen
(Tab. 5).

We determined the value of the project with informa-
tion using equation (2) with the EMV of E1 as the bench-
mark, the same used in the case without information.
We considered three economic scenarios.

Using equation (2) for project evaluation, EVoI is given
by equation (5), where ɛ(NPV)wi is the value of the project
with information and ɛ(NPV)woi is the value of the project
without information. Because of the non-linearity of ɛ, the
cost of information must be deduced to the NPV values
stored in the database before estimating ɛ(NPV)wi:

EVoIe ¼ eðNPVÞwi � e NPVð Þwoi: ð5Þ

We also calculate the EVoI as the expected increase in
EMV (eq. (6)), which is a particular case of equation (5),
where decision makers are neutral to downside risk and
upside potential (sdr = sup ? 1):

EVoIEMV ¼ EMVwi � EMVwoi: ð6Þ

We determined the EVoI using the pre-existing set of
214 scenarios matching production data, with updated
probabilities using Bayes Theorem. That is, the 214
equiprobable scenarios are used to estimate ɛ(NPV)woi
and the 214 scenarios with updated probabilities for BL
and WOC are used to estimate ɛ(NPV)wi.

In this application, we assumed that information could
be acquired without delaying the development plan and
that the appraisal well would be used for field development.
Thus, the cost of this well is already included in the NPV
values of most production strategies (E1, E2, E4, E5, E8,
E9, those with wells planed for the East block). Aiming
for a first assessment, we used the NPV values directly in
the automated procedure, meaning that we only update
the probability of occurrence of each scenario. This first
approximate is not the true EVoI but provides an initial
diagnosis. If it reveals that the information source has
potential, a more precise EVoI calculation should be
performed.

Table 6 shows EVoI calculated with equations (5) and
(6). Note that equation (5) improved the EVoI estimate
by accounting for all changes in the risk curve, not only
the increased EMV but also the decreased downside risk
and increased upside potential. Thus, equation (6) underes-
timated the EVoI.

Table 7 shows the best production strategy for each
information outcome. We observed that the robust strategy
EMR is the best decision for many information outcomes,
meaning that strong uncertainty remains after information
acquisition (other attributes besides BL and WOC). This
conclusion is only possible because we used the 214 scenarios
to determine the EVoI, meaning that we accounted for the
effects of all mapped uncertainties, and not only BL and
WOC.

5.10.1.2 Refining the best strategy for further improvements
For complex problems with a large search space, automatic
procedures often yield local maxima. As Step 11 is manual,
local minima can be avoided. We can check for misconcep-
tions from previous automated steps, as shown by Santos
et al. (2017c). The authors used several indicators to assess
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Fig. 14. Automated procedure for EVoI analysis integrated into the 12-step decision-structure.
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the performance of E9 over the 214 scenarios, aiming to
increase its robustness. The remaining strategies E1
through E8 served as boundaries for the different variables,
such as platform size and number of wells. Ultimately, the
authors observed that many of the horizontal producers
had been placed in a suboptimal layer of the reservoir, fur-
ther improving the automated optimization procedure (pro-
duction strategy R4) (Fig. 15).

5.10.2 Integration with production facilities

As mentioned in Step 6, the integration of reservoir and
production systems can improve production forecasts. As
the integration increases computation time, it is important
to assess the need for this integration and to use a suitable
methodology (in this application, we used approximate
boundary conditions in Step 6 and applied the integration
in Step 11 only).

von Hohendorff Filho and Schiozer (2017) analyzed the
influence of this integration, evaluating its effects on the
production strategy parameters. The integration was
applied to E9 for RM9 as an integrated production develop-
ment, resulting in a lower initial NPV.

We re-optimized E9 altering configurations related to
platform position, pipe diameters, gas lift rates, platform
capacities, and the number, schedule, placement and
shut-in times of wells. Figure 16 shows how NPV and

ORF were affected during the global optimization for the
best integrated production strategy. The optimization
shows that standalone E9 is not the optimal strategy for
integrated RM9.

Comparing standalone and integrated production
strategies, we observed important changes in number and
placement of wells that indicate the need to integrate reser-
voir and production models. Specific variables from produc-
tion systems such as pipe diameters and gas lift rates also
had a great impact, indicating the need to couple reservoir
and production system models to reach more robust results.

The optimized integrated systems resulted in signifi-
cantly increased NPVs, maintaining the same oil recovery
factor while requiring a lower initial investment. These
results demonstrate the benefits of integrating reservoir
and production systems to increase robustness for decision
making.

5.11 Step 12 and discussions

Steps 1–11 deliver a robust process to be used in the
decision analysis, yielding an appropriate strategy that hon-
ors the history data and considers all uncertainties. At the
end of the twelve steps, decision makers have technical and
economic indicators to support both long-term, model-
based decisions and short-term, data-driven decisions. This
flexible 12-step procedure is suitable for companies with
different aims as the process is guided by the objective:
model quality, the necessity for further data assimilation
(history matching), objective function selection, etc.

The 12-step procedure must be repeated whenever new
important information is obtained and, therefore, is a con-
tinuous and iterative process. The most critical time is, of
course, when the development is prepared and the produc-
tion facilities selected. The number and placement of wells
are important outputs of this analysis but the procedure
can also be useful at later stages for real-time reservoir man-
agement. Readers interested in the management phase are
referred to the case study UNISIM-I-M (Gaspar et al.,
2016b).

The Robust Optimization, the optimization problem
formulated under uncertainty to maximize a probabilistic
objective function, ensured the best performance under
uncertainty, considering the EMV, downside risk, and
upside potential. However strong in robustness, this single
production strategy gives little information on the different
possibilities of field development, such as number and
placement of wells, and platform processing capacities.

Table 6. EVoI for an appraisal well to assess the uncertainties BL and WOC. Values in USD million.

With information Without information

EMV SB� SB+ ɛ(NPV)wi EMV SB� SB+ ɛ(NPV)woi EVoIɛ EVoIEMV

Perfect information 1922
(+1.8%)

376
(�1.0%)

728
(+5.8%)

2478
(+5.0%)

1889 379 689 2360 118 34

Imperfect information
(95% bl, 80% wo)

1910
(+1.2%)

378
(�0.4%)

716
(+4.1%)

2440
(+3.4%)

1889 379 689 2360 80 22

Table 7. Best production strategy according to informa-
tion outcomes.

Appraisal well
indicates

Well logs indicate the
depth of water-oil

contact

Best
production
strategy is

Hydrocarbons
present in the East
block

3174 m (woc0) EMR
3074 m (woc1) EMR
3124 m (woc2) EMR
3224 m (woc3) E9
3274 m (woc4) E9

Hydrocarbons
absent in the East
block

3174 m (woc0) EMR
3074 m (woc1) EMR
3124 m (woc2) EMR
3224 m (woc3) EMR
3274 m (woc4) EMR
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Conversely, these data can be retrieved from the production
strategies optimized individually for each RM. This
approach gives decision makers an objective assessment of
how different (or similar) these alternatives are, which
provides valuable insights for EVoI and EVoF studies.
In addition, as extensive optimization procedures were
unnecessary in this final step, the analyses were automated.
This automation is particularly important for EVoI, as it
facilitates the assessment of the value of perfect and imper-
fect information, for varying degrees of information reliabil-
ity. Note that, although we aim to automate as many
procedures as possible, we recognize that manual refine-
ment procedures can be valuable to investigate possible
misconceptions or avoid local maxima of optimization
processes with large search spaces.

We showed that specialized (deterministic) optimiza-
tion can be advantageous in decision and risk analyses,

provided that it is part of a probabilistic process (i.e., it is
not limited to the most likely scenario). However, note that
an adequate RM selection must be guaranteed, representing
system inputs (probability distribution of uncertain attri-
butes) and outputs (variability in production, injection,
and economic forecasts). Furthermore, we showed that
robust and specialized optimizations are complementary
approaches in the decision-analysis process, and our current
recommendation is to perform both in a case study. As this
can be computationally demanding, the decision to choose
one type of optimization over the other depends on the
company’s objectives. Future research is planned on meth-
ods to make conducting both approaches computationally
feasible for day-to-day applications.

In our case study, we used the proposal by Meira et al.
(2016) to select the RMs. The attractiveness of this
proposal is that it ensures that the set of RMs represents

0.0

0.2

0.4

0.6

0.8

1.0

-1000 1000 3000

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

NPV (USD million)

B
E1
E9
R4
EMR

(a)

0.0

0.2

0.4

0.6

0.8

1.0

-1000 1000 3000 5000

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

NPV (USD million)

B
E1
E9
R4
EMR

(b)

Fig. 15. NPV risk curves for the production strategy of the base case (E1), the best specialized production strategy (E9), the robust
strategy obtained through a robust optimization procedure (EMR), and a robust strategy obtained by manually improving E9 (R4):
a) NPV without economic uncertainty; and b) NPV with economic uncertainty.

Fig. 16. NPV and oil recovery factor variations for best optimized strategy.
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uncertainty in both system inputs and outputs. Ease-of-use
is guaranteed as the method is software based, RMFinder.
At the time of this study, we applied the initial proposal
of RMFinder (Meira et al., 2016), which had some simplifi-
cations, namely the set of RMs were assumed to be
equiprobable and it only considered a maximum of four
field indicators (e.g., NPV, Np, Wp, ORF). Meira et al.
(2017) improved RMFinder by assigning probabilities to
each RM. Further improvements are still ongoing, such as
increasing the number of objective functions (up to 50),
including not only field indicators, but also well indicators
(such as fluid rates and BHP).

From previous studies for different case studies, we
observed that around nine RMs are sufficient for production
strategy selection. Future research is currently being con-
ducted on the optimal number of RMs and candidate pro-
duction strategies applied to studies of information
acquisition, robustness, and flexibility, and on the possible
loss of precision that this simplification may cause.

Some probabilistic analyses of this study used the full
set of hundreds of scenarios matching production data.
Although ensuring the most accurate predictions possible,
this approach is computationally demanding and poten-
tially unfeasible for simulation models with a very high run-
time. Thus, it is important to define an objective and the
necessary precision in Step 2. We are currently conducting
research on assessing the feasibility of performing all prob-
abilistic-based analyses on a small subset of RMs, each
characterized by a probability of occurrence.

Our case study was in an early development phase,
meaning that model updating was conducted with limited
production data (four years of production data for four pro-
duction wells). However, the 12-step method is not limited
to such cases and can be applied to fields with many years
of production data from producers and injectors, as demon-
strated by Soares et al. (2018).

Data-driven, short-term decisions were not included in
this work because they are more appropriate to a field in
the management phase.

6 Conclusion

We have presented a model-based, closed-loop methodology
based on twelve steps to be used in decision analysis for pet-
roleum reservoir development and management under
uncertainties, covering both model updating and produc-
tion optimization.

Companies often skip several steps to expedite projects
but we believe that, with the simplification presented here,
the methodology is applicable to real cases, including
complex cases with long simulation runtimes, and still
ensure reliable decisions. In such a case, it is possible to
decrease the number of simulations in Steps 6, 7 and 9 and
select a smaller number of representative models (Step 8).

Note that further simplifications can yield suboptimal
decisions. The level of detail of each step is a function of
the importance of the study, the complexity of the case,
and the available resources and time. The most time-
consuming part is the optimization of the production

strategy and the results are a function of the quality of this
process; therefore, it is important to use computationally
efficient optimization processes.

The methodology is flexible enough to be applied to
reservoirs in different stages of their lifetime. We presented
a case in the development phase but it can be used at other
stages. It is also simple enough to be used in practical appli-
cations because it does not require proxy models or complex
tools.

By providing a comprehensive decision structure that
integrates reservoir characterization, data assimilation,
and production optimization, our method works as the core
basis for specialized methodologies for each of these
domains, as our results have shown.
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