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Abstract. This paper introduces a new methodology, combining a Genetic Algorithm (GA) with multi-start
simulated annealing to integrate Geostatistical Realizations (GR) in data assimilation and uncertainty reduc-
tion process. The proposed approach, named Genetic Algorithm with Multi-Start Simulated Annealing
(GAMSSA), comprises two parts. The first part consists of running a GA several times, starting with certain
number of geostatistical realizations, and the second part consists of running the Multi-Start Simulated
Annealing with Geostatistical Realizations (MSSAGR). After each execution of GA, the best individuals of
each generation are selected and used as starting point to the MSSAGR. To preserve the diversity of the
geostatistical realizations, a rule is imposed to guarantee that a given realization is not repeated among the
selected individuals from the GA. This ensures that each Simulated Annealing (SA) process starts from a dif-
ferent GR. Each SA process is responsible for local improvement of the best individuals by performing local
perturbation in other reservoir properties such as relative permeability, water-oil contact, etc. The proposed
methodology was applied to a complex benchmark case (UNISIM-I-H) based on the Namorado Field, located
in the Campos Basin, Brazil, with 500 geostatistical realizations and other 22 attributes comprising relative
permeability, oil-water contact, and rock compressibility. Comparisons with a conventional GA algorithm
are also shown. The proposed method was able to find multiple solutions while preserving the diversity of
the geostatistical realizations and the variability of the other attributes. The matched models found by the
GAMSSA method provided more reliable forecasts when compared with the matched models found by the GA.

Nomenclature

AQD Acceptable Quadratic Distance
BHP Bottom-Hole Pressure
cf Crossover fraction
Cp Constant used to compute AQD
CPOR Rock Compressibility
G Number of initial geostatistical realizations

used in the proposed workflow
GA Genetic Algorithm
GAMSSAGenetic Algorithm with Multi-Start Simulated

Annealing
GR Geostatistical Realization
g Sub-set of geostatistical realizations selected

after the execution of each GA
Hist Observed data

krwi Maximum relative permeability for water at
residual oil saturation

krowi Maximum relative permeability for oil at con-
nate water saturation

kx,y,z Absolute permeability in x, y and z directions
LD Linear Deviation
m Maximum number of GA executions
MSSAGRMulti-Start Simulated Annealing with Geosta-

tistical Realizations
ns Number of simulated annealing instances
N obs Number of observed data for a given data series
Np Cumulative oil production
NQD Normalized Quadratic Distance
NQDS Normalized Quadratic Distance with Sign
pkrw Exponent of relative permeability for water
pkrow Exponent of relative permeability for oil
Pm Probability of mutation
Qo Oil rate
Qw Water rate* Corresponding author: celio@cepetro.unicamp.br
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R Number of reservoir output
SA Simulated Annealing
T Temperature
Tol Tolerance used to compute AQD
woc Water-Oil Contact
x A generic candidate from SA
y A n-dimensional vector composed by �1,

0 and 1

Greek letter

d Random number drawn from a uniform distri-
bution U[0,1]

1 Introduction

History Matching (HM), or data assimilation, consists of
using dynamic observed data (such as well rates and
pressure, for example) to enhance the estimation of reser-
voir properties (attributes), such as porosity and absolute
permeability, relative permeability, among others. The final
goal of the process is to improve the predictive capacity of
reservoir models reducing the uncertainty in the production
forecast. One of the challenges of the history matching pro-
cess is to match dynamic date while maintaining geological
consistency of the matched models. To do so, it is desirable
to carry out the HM process, integrated with the geostatis-
tical modeling.

1.1 Integration of geostatistical modeling
and history matching

The integration of geostatistical modeling and history
matching leads to a complex optimization problem because
the relationship between the input and output variables can
be highly nonlinear. There are two main ways of performing
such integration. The first comprises the coupling of geosta-
tistical software modeling into the HM process. The other
way consists of generating several geostatistical realizations
and integrating these realizations into the HM process.

In the first line, Maschio et al. (2015) presented a
framework for geostatistics-based history matching using
genetic algorithm with adaptive bounds. Avansi et al.
(2016) applied virtual wells based on pilot points to ensure
realistic geomodels, maintaining geological continuity while
fitting the reservoir models output to the dynamic date.
The presented methodology effectively preserves the consis-
tency of geological models during the history matching
process. Oliveira et al. (2017) proposed a methodology to
integrate regional multi-property image perturbation
methods with a multivariate sensitivity analysis. The
authors only used petrophysical properties (facies, porosity,
and absolute permeability) during the history matching.

In the second line, Bennett and Graf (2002) generated
multiple geostatistical realizations and performed history
matching of each reservoir model that resulted from these
realizations (using deterministic parameters, such as relative
permeability). For the history matching, a gradient-based

optimization method was used. Gradient-based methods
rapidly converge, but are easily trapped in local minima.
History matching is a non-linear problem characterized by
many local minima. Therefore, premature convergence of
gradient-based, or any other optimization method, is an
undesirable characteristic in the context of HM due to the
non-uniqueness nature of the problem.

Maschio et al. (2008) also used multiple geostatistical
realizations into the history matching using genetic algo-
rithm and direct search optimization methods. To apply
the direct search method, they firstly sorted the geostatisti-
cal realization according to the objective function (quality
match) values. The fundamental difference between the
present word and the work presented by Maschio et al.
(2008) is that here we propose a novel hybrid optimization
scheme combining genetic algorithm in a different way
(see details in Sect. 2) with multi-start simulated annealing.
On the other hand, Maschio et al. (2008) tested a basic
version of Genetic Algorithm (GA) and compared it with
a direct search method. It is important to highlight that
the comparisons were done separately, that is, no hybrid
scheme was proposed in Maschio et al. (2008).

Another possible way of incorporating geostatistics-
based parameterization in HM is by using the gradual
deformation approach as suggested by Hu et al. (2001).
There is a fundamental difference between gradual defor-
mation approach and the method proposed in our paper.
The basis of the Gradual Deformation Method (GDM) is
the generation of new realizations constraining the stochas-
tic model by observed data, by deforming (perturbing) an
initial realization of a stochastic model. Therefore, GDM
is focused on the parameterization part of the HM process.
In our optimization process (for history matching), we use a
fixed set of geostatistical realizations previously generated
in a geological software modeling. During the history
matching process, the geostatistical realizations are not
changed. They are properly combined with other uncertain-
ties (such as relative permeability, for example) using the
proposed hybrid optimization scheme (genetic algorithm
and simulated annealing). Therefore, our approach is
focused on the optimization part of the HM process.

Guérillot and Roggero (1995) proposed a method
named Scenarios Matching (SM) and, later on, Roggero
and Guérillot (1996) presented the Production Scenarios
Test Method (in the same line as SM) by which new geolog-
ical models are generated constrained to observe and add
data. The basic principle, according to authors, consists in
adding new data at future times corresponding to various
forecasts scenarios and matching observed and added data.
This method, also according to the authors, allows transfer-
ring the uncertainty associated to the geological model into
an uncertainty on production forecast. Using Bayesian
inversion theory, Gautier and Noetinger (2004) proposed
a method to estimate geostatistical parameters such as cor-
relation length and permeability variance from well test
data. As in GDM, these approaches generate new realiza-
tions constrained in some way to observed data, while in
our approach the set of geostatistical realization do not
change and, in this way, we ensure that the prior geological
description of the model is preserved.
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1.2 Genetic algorithm

Genetic Algorithm (GA), initially introduced by Holland
(1975), is a global optimization method based on natural
selection. GA repeatedly modifies a population of individu-
als to form the next generations. The main driving processes
(or operators) of a genetic algorithm are selection, muta-
tion, and crossover.

The selection operator is responsible for selecting the
individuals, called parents, which contribute to the popula-
tion at the next generation. Roulette wheel is a common
selection approach where an individual of the current
population has a probability of being selected which is pro-
portional to its fitness value. Mutation is the mechanism by
which a new individual is created by the introduction of a
gene structure that is different when compared to other
individuals in the population. By applying random changes
to individual parents to form children, the mutation mech-
anism creates a new offspring from one individual by chang-
ing one or more of its genes. Crossover combines two
parents to form children for the next generation. It is the
operation of redistributing genetic characteristics between
two (parents) individuals of a population. The goal of the
crossover operator is to retain good features from the previ-
ous generation. It enables the algorithm to extract the best
genes from different individuals and recombine them into
potentially superior children.

The mutation and crossover are essential to the genetic
algorithm. Proper setting of these two operators is impor-
tant to balance global and local search. Mutation is respon-
sible for introducing diversity in the generations. A higher
amount of mutation increases the population’s diversity.
On the limit, a genetic algorithm without crossover (only
mutation) is essentially a random sampling process.

Romero et al. (2000) used genetic algorithms and geo-
statistical modeling to generate multiple reservoir descrip-
tions. The authors claimed that the algorithm is relatively
easy to implement and easily parallelized. Romero and
Carter (2001) demonstrated that genetic algorithms can
be applied to realistic reservoir characterization problem,
with more than 1900 variables. The authors mentioned that
the algorithm returns a set of solution (final population)
from which a representative group can be selected and used
to assess prediction uncertainty. Floris et al. (2001) applied
genetic algorithm in a comparative study. They claimed the
ease of parallelization and the ability of coping with multi-
ple optima as positive features of the genetic algorithm.
Schulze-Riegert et al. (2002) investigated Evolutionary
Algorithms (EA) applied to the history matching of com-
plex reservoirs. Methods to improve the convergence of
EA by introducing prior information were applied.
Schulze-Riegert and Haase (2003) combined evolutionary
algorithms and local (gradient-based) optimization
methods.

Sayyafzadeh et al. (2012) compared a single objective
genetic algorithm and a multi-objective genetic algorithm.
By making use of Pareto optimization (multi-objective opti-
mization), a set of solutions named the Pareto front, which
consists of non-dominated solutions, is provided. According
to the authors, decisions can be made with more confidence
using the proposed approach.

Abdollahzadeh et al. (2012) proposed a hybrid method
combining GA with Estimation of Distribution Algorithms
(EDA). The authors also applied GA and EDA separately
for comparison. They stated that, depending on the prob-
lem type, GA, EDA, and Hybrid GA-EDA can achieve
good quality matches while performing a global search in
the parameter space.

Abdollahzadeh et al. (2013) presented an adaptive
scheme which intelligently adapts the parameters of an
evolutionary algorithm in order to balance the diversity of
the population. The control parameter adapted was the
number of selected individuals to generated solutions in
each generation (which controls the balance between explo-
ration and exploitation). To test the method, the authors
used some analytical functions with two variables and a
simple history matching synthetic problem with three
uncertain parameters. Although the work brings some
interesting ideas based on adaptation mechanism to
balance diversity and convergence throughout evolution,
the authors did not show the robustness of the method in
more challenging history matching problems.

Xavier et al. (2013) compared different combinations of
set of parameters for genetic algorithm for the automatic his-
tory matching, applied to a simple 2D reservoir model with a
five-spot scheme. The authors exploited parallelism via the
MPI library and a master-slave decomposition strategy.

More recently, Chakra and Saraf (2016) proposed an
Adaptive Genetic Algorithm (AGA), which is a relatively
new optimization technique with adaptive genetic opera-
tors. The initial population, generated from geostatistical
software, is used by the GA operators (selection, crossover,
and mutation) to generate new reservoir realizations. The
authors considered only permeability realizations in their
study, which can be a limitation in practical cases.

Sanghyun and Stephen (2018) compared GA and Parti-
cle Swarm Optimization (PSO). They observed that GA
was able to update a large quantity of control parameters.
However, GA is a costly algorithm which requires more
computing time. But, according to the authors, using the
GA as a follow-up method helped to reach better results.

1.3 Simulated annealing

Simulated Annealing (SA) is a stochastic optimization
method inspired by the process of physical annealing in
solids. The original idea of SA as an optimization method
was proposed by Kirkpatrick et al. (1983). Differently from
GA, which works based on a population of individuals, SA
(in its basic form) is a sequential optimization algorithm.
The algorithm starts from an initial guess (a point selected
from the search space) and generates perturbations
(sequentially) around the current point.

The key feature of SA is its ability to escape from local
minimum. The algorithm computes the difference (DOF)
between the OF values corresponding to the current and
the previous solutions and generates a random number
(d) from a uniform distribution between zero and one.
If equation (1) is met, the current solution is accepted.
Otherwise, the previous one is maintained as the current
solution. The process continues proposing a new candidate
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by perturbing the current solution. Note that improved
solutions are always accepted while worse solutions (uphill
moves) are accepted according to an acceptance probabil-
ity. T is a control parameter which corresponds to temper-
ature in the analogy with physical annealing. Equation (1)
shows that small increases in DOF are more likely to be
accepted than large increases and that, the higher the value
of T, the higher the acceptance probability:

d � eð��OF=TÞ: ð1Þ
The main set of control parameters of a typical simu-

lated annealing algorithm are: (1) related-temperature
parameters, which involve the definition of an initial tem-
perature and a cooling schedule, comprising a temperature
length (number of iterations at a given temperature) and a
cooling ratio (rate at which the temperature is reduced);
(2) the neighborhood characteristic; and (3) stopping crite-
rion, common in any optimization method. Conventional
SA algorithm normally starts with a relatively high value
of T, to avoid being prematurely trapped in a local opti-
mum. The main drawback of conventional SA is the high
number of iterations necessary to guide the search to good
solutions. This issue may make its application prohibitive in
problems where the evaluation of the OF requires a long
computational time, which is normally the case in history
matching applications.

Some studies from the literature have addressed the
application of SA in history matching. Using simulated
annealing as an optimization method, Sultan et al. (1994)
proposed an automatic history matching process to solve
an inverse problem. Two major advantages of SA were
highlighted by the authors: (1) it can deal with a large
number of reservoir parameters; and (2) it enables to inte-
grate different disciplines such as geology, petrophysics,
and reservoir engineering. A general overview of the appli-
cation of global optimization methods, including simulated
annealing, in the context of dynamic reservoir inverse prob-
lems and reservoir description was presented by Ouenes
et al. (1994). The authors highlighted the relevance of these
methods to overcome the uniqueness issue that arises from
the reservoir dynamic inverse problem.

Chen et al. (2012) applied a Very Fast Simulated
Annealing (VFSA) to the history matching problem.
A comprehensive comparison of several stochastic data-
integration algorithms for the joint history matching of
production and time-lapse seismic data was presented by
Long et al. (2012). The authors concluded that VFSA is
an effective single-model based search technique.

Maschio and Schiozer (2018) presented a novel hybrid
scheme combining Iterative Discrete Latin Hypercube
(IDLHC), proposed by Maschio and Schiozer (2016), with
multi-start simulated annealing, introducing the method
Iterative Discrete Latin Hypercube with Simulated Anneal-
ing (IDLHCSA). After running the IDLHC, good candidate
solutions are selected based on Euclidian distance to ensure
the variability and avoid the exploration of a specific region
(local minimum) of the search space. The selected candidate
solutions are used as initial points for multiple instances of
the simulated annealing. It is important to highlight that,
although we also use simulated annealing in the present

paper, the methodological procedure proposed here is
completely different from the methodology proposed by
Maschio and Schiozer (2018). The first fundamental differ-
ence is that here we use a set of geostatistical realizations
(previously generated in a geostatistical software modeling)
as part of the history matching parameters, that is, the
geostatistical realizations are one of the “dimensions” of
the n-dimensional search space (see details in Sect. 3). On
the other hand, in Maschio and Schiozer (2018), the
parametrization was based on zonation, i.e., the reservoir
model was divided into different regions andmultipliers were
applied for petrophysical properties in each region, using
only one geostatistical realization as basis. The second main
difference is that here we use genetic algorithm (see details in
Sect. 2) in conjunction with SA, while in Maschio and
Schiozer (2018), SA was used in conjunction with IDLHC.
Other details and particularities can be found in Maschio
and Schiozer (2018).

1.4 Integration of genetic algorithm
and simulated annealing

The integration of GA and SA to compose a hybrid opti-
mization scheme (GA–SA) is a relatively new approach in
the literature. The approach consists of nesting the SA
within GA such that SA improves individuals from GA.
Example of such approach can be found in Li and Wei
(2008), Chen and Shahandashti (2009), and Junghans
and Darde (2015). Merging SA within GA is an interesting
procedure. However, SA is essentially a serial method and
running SA many times (serially) requires a long computa-
tional time and may be prohibitive for application in history
matching. Thus, our purpose is to divide the process into
two parts, running GA and SA separately, using the best
solutions from several executions of GA (first part) as start-
ing points for multiple instances of SA (second part).

1.5 Objective and contributions

The objective of this paper is to present a robust methodol-
ogy to integrate geostatistical realizations in data assimila-
tion and reduction of uncertainty process combining
genetic algorithm with multi-start simulated annealing.
The key idea is to provide a framework for HM that pre-
serves the geological consistency, which is a challenge in
any HM process.

The main contributions and novelties of this paper are:
(1) to the best of our knowledge, this is the first study that
proposes the use of GA integrated with multi-start SA to
the HM problem; (2) it is the first application of a hybrid
GA–SA approach to integrate geostatistical realizations in
the HM process; (3) to overcome the drawback of GA–SA
proposed until now in the literature, we propose executing
the GA and SA in two parts, as explained in Section 2,
while retaining the strengths of both methods.

2 Methodology

The proposed approach combines the best feature of both
methods: the ability of the GA to introduce diversity on
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the solutions and the abilities of SA to improve local solu-
tion and, at the same time, to escape from local minima.
The workflow proposed in this work (Fig. 1) is divided into
two parts. The first part consists of running the GA algo-
rithm several times, starting with a number of geostatistical
realizations (G) in the first execution. After each GA execu-
tion, a procedure (described in Sect. 2.1) is applied to select
a quantity of individuals (g), which is a sub-set of G. The
second part consists of running the Multi-Start Simulated
Annealing with Geostatistical Realizations (MSSAGR).
Each part of the process is explained in the following
sections.

2.1 Optimization by GA and selection of the best
individuals of each generation (first part)

In this work, an individual is composed by a Geostatistical
Realization (GR), formed by spatial properties such as
porosity and permeability, and other reservoir properties
such as relative permeability, water-oil contact, etc. Each
GR is identified by an integer number (index).

The search space for the GA is formed by the sequence
of the geostatistical realizations and the other parameters.
As the GR “dimension” is represented by integer indexes
which do not represent any numeric sequence (or trend),
gradient-based methods are not suitable for this kind of
application. This is the motivation for using the GA
method, which does not depend on descent direction.

The individuals of the GA are represented in this work
by bit strings. Each attribute is represented by a number of
bits which corresponds to an integer value (Fig. 2). The
integer values corresponding to the real parameters (exp1,
exp2 and woc in the schematic example in Fig. 2) are
mapped to a vector of real values linearly distributed
according to the range of the parameters (minimum a max-
imum values) and the number of intervals used to discretize
the parameters. In each execution of GA, the number of
generations and the number of individuals per generation
are defined.

After each GA execution, the individuals of each gener-
ation are sorted according to the objective function values
(Fig. 3) and a percentage of the best individuals are
selected. From this percentage, repeated GR are filtered
out in order to select individuals with different GR. In the
schematic example of Figure 3, three individuals are
selected from the first generation of GA1, two individuals
are selected from the second generation and so on. Consider
that the initial number of GR is 50 and that 15 GR were
selected from the first execution of GA (GA1). Then, in
the next execution of GA (GA2), the remaining 35 GR will
be used in the process. This process continues until all GR
have been selected or the maximum number of GA execu-
tions (m) has been reached. The selected individuals, which
correspond to the number of SA instances (ns), and its cor-
responding GR, are set as starting points for the MSSAGR.

To summarize, the objective of the GA in the proposed
workflow is to perform a pre-optimization of each GR or, in
other words, to find a good starting point for each GR to be
used as input to the second part of the workflow
(MSSAGR). The key role of the GA is to find good initial
starting points (for each GR) for the MSSAGR.

Fig. 1. Proposed workflow combining Genetic Algorithm (GA)
with Multi-Start Simulated Annealing with Geostatistical Real-
ization (MSSAGR).

Fig. 2. Representation of individual in GA.
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2.2 Multi-start simulated annealing with geostatistical
realizations (second part)

To explain how the MSSAGR takes place, consider the
same example shown in Section 2.1. Each reservoir model
is composed of a GR and the same three other attributes
(exp1, exp2 and woc). Each SA instance is composed of a
different GR and a given starting point (x0) that comes
from the selected individuals from the GA. The GR is fixed
in each SA instance and the search space is formed by the
other attributes (Fig. 4). In the example, 50 instances of
the SA are run in parallel. For each instance, a given
number of iterations are defined.

To perform the move mechanism of each SA instance,
firstly a vector s = {0, �1, 1} is defined. Then, a vector y
of size n, where n is the number of dimensions, is sampled
uniformly at random (with replacement) from the values
in the vector s. Thus, a new candidate (xt+1) is generated
as follows:

xtþ1 ¼ xt þ y; ð2Þ
where xt is a vector that represents the current state.

The vector s determines the distance between the cur-
rent state and the new one. As in this paper we use SA

as local search, large jumps are avoided by limiting the dis-
tance of the new candidate. The maximum allowed distance
is the longest diagonal of a unit hypercube (note that the
search space is formed by nodes in n-dimensional integer
variables). As in GA (Sect. 2.1), the integer values gener-
ated by SA are mapped back into real values. Supposing
that the current state in a two-dimensional case is repre-
sented by the vector [5, 5], the possible new positions that
a candidate can occupy are {[4, 4]; [4, 5]; [4, 6]; [5, 4];
[5, 6]; [6, 4]; [6, 5]; [6, 6]}.

2.3 Objective function

In this paper, the objective function is based on a Normal-
ized Quadratic Distance (NDQ) computed according to
equation (3) and used by several authors (Avansi et al.,
2016; Davolio and Schiozer, 2018; Maschio and Schiozer,
2016):

NQD ¼ QD
AQD

; ð3Þ

where,

QD ¼
XNobs

i¼1

ðSimi � HistiÞ2; ð4Þ

and,

AQD ¼
XN obs

i¼1

ðTol� Histi þ CpÞ2; ð5Þ

where Tol is a tolerance given by a percentage of the
observed data (Hist) and Cp is a constant used to avoid
excessive weight when the observed data is close to zero
or to prevent division by zero when the observed data is
equal to zero, which can occur with produced water rate.
Sim represents the simulated results and Nobs is the

Fig. 4. Schematic representation of the Multi-Start Simulated
Annealing with Geostatistical Realizations (MSSAGR).

Fig. 3. Schematic example of a sequence of GA executions with
50 individuals per generation.
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number of observed data for a given data series (water
rate in a producer well, for example).

The global Objective Function (OF) used in the opti-
mization processes is defined according to equation (6):

OF ¼ 1
R

XR

j¼1

NQDj ; ð6Þ

where R is the number of reservoir output.
In order to check if the variability of the solutions is

biased or not, that is, if the ensemble of final solutions
encompasses or not the observed data, it is interesting to
compute the sign of the NQD, defining a Normalized Quad-
ratic Distance with Sign (NQDS) as follows (Eq. (7)):

NQDS ¼ LD
LDj jNQD; ð7Þ

where,

LD ¼
XN obs

i¼1

ðSimi � HistiÞ: ð8Þ

Therefore, NQDS plot is an additional feature to assess
the final results and to facilitate the visualization of the
results.

3 Application

3.1 Case description

The proposed workflow was applied to the UNISIM-I-H
benchmark case (UNISIM, 2015) which was built for his-
tory matching and uncertainty reduction purposes. Before
the creation of UNISIM-I-H (Fig. 5), a very fine model
(UNISIM-I-R) was created using real data from Namorado
Field (Campos Basin, Brazil). Cores and well logging data
from a total of 56 wells, 2D and 3D seismic data provided
by the Brazilian National Petroleum Agency – ANP and
also from Petrobras (released public data) were used to
build the UNISIM-I-R. This high resolution geological
model (3.5 million active cells) plays the role of our real
reservoir.

Following a workflow normally applied in a real field
development, firstly a geological model was built using the
data of only four exploratory wells. This model was upscaled
and a simulation model was created (UNISIM-I-D). This
model was used to optimize a production strategy and,
as a result, 14 producer (including the four defined for
UNISIM-I-D) and 11 water injector wells were defined.
Then, well log data from these 25 wells were extracted from
the UNISIM-I-R and used to generate another geological
model. Note that there is no relation from these 25wells with
the 56 wells used to build the UNISIM-I-R. After an upscal-
ing process of this geological model, the UNISIM-I-H was
built. More details can be found in Avansi and Schiozer
(2015) and Avansi et al. (2016)

The data set of UNISIM-I-H, which is discretized into a
corner point grid with 81 � 58 � 20 cells with a total of

36,739 active cells, is composed of 500 geostatistical realiza-
tions (e.g., Fig. 6) generated using a geostatistical modeling
software. Each realization is composed of six spatial proper-
ties: (1) porosity, (2) horizontal permeability in x direction,
(3) horizontal permeability in y direction, (4) vertical per-
meability (z direction), (5) net-to-gross ratio and (6) facies
indicator. The six spatial properties are correlated, and for
this reason, they are defined together as a single geostatis-
tical realization.

During the historical period, the 14 producer wells are
controlled by liquid rate and the 11 injector wells are con-
trolled by water rate. The objective function is composed
by a total of 78 components (R = 78 in Eq. (6)): 56 related
to bottom-hole pressure, liquid, oil and water rate for the
14 producer wells and 22 related to bottom-hole pressure
and water rate for the 11 injector wells. The tolerances
(Tol and Cp) used to compute Acceptable Quadratic
Distance (AQD, Eq. (5)) are shown in Table 1.

3.2 Pre-selection of geostatistical realizations

In this work, before the application of the proposed
workflow, a sub-set of 100 geostatistical realizations (G)
was selected. A simple way of doing this selection would
be to run 500 models, each model being composed of one
GR and the mean value of the other attributes. However,
we performed a more elaborate procedure: instead of using
just one level of the other attributes, we divided the range of
each attribute into five levels and applied a Latin
Hypercube Sampling method to combine each GR with
the five levels of each attribute, totaling 2500 models. The
motivation for this procedure is the fact that a given GR
may have different HM quality when combined with differ-
ent level of the other attributes. Thus, the proposed proce-
dure is more robust in this sense.

3.3 Uncertain attributes

The uncertain attributes defined for the UNISIM-I-H for
this study are presented in Table 2. There is a total of
23 attributes: 100 geostatistical realizations (selected

Fig. 5. UNISIM-I-H model: 3D porosity distribution and well
locations.
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according to Sect. 3.2), water-oil contact (block east), rock
compressibility and 20 parameters related to the rock-fluid
properties. For each of the four facies, we defined five
parameters: exponent of relative permeability for water
(pkrw) and oil (pkrow), maximum relative permeability for
water at residual oil saturation (krwi), maximum relative
permeability for oil at connate water saturation (krowi)
and exponent of capillary pressure (ppc). These five param-
eters follow the power low described in CMG (2012).
Except for the geostatistical realizations, all the other attri-
butes were discretized into 31 levels. Maschio and Schiozer
(2016) obtained good results for the same case using this
number of levels.

3.4 Sensitivity analysis

To show the impact of the geostatistical realizations and
the other attributes in the reservoir outputs, a sensitivity
analysis was performed. To perform this analysis, four sets
of models were generated and analyzed, as described below.
For sets 1, 3 and 4, each attribute was discretized into five
intervals.

1. In the first set (“GR_atr”), 500 simulation models
were generated combining the 100 GR with the other
22 attributes.

2. In the second (“GR”), the other attributes were fixed
in the mean value, between the minimum and maxi-
mum value, and 100 simulation models were gener-
ated, each model corresponding to a GR.

3. In the third set (“atr1”), one GR was chosen among
the one hundred, and 100 simulation models were gen-
erated, combining the 22 attributes using the DLHC
method (Maschio and Schiozer, 2016).

4. The fourth (“atr2”) is similar to set 3, but another GR
among the one hundred was chosen.

Figure 7 shows the NQDS plot for Qo, Qw and Bottom-
Hole Pressure (BHP) for the producer and injector wells for
the four sets of models. The first observation is that there is
a similarity between the variability caused by the geostatis-
tical realizations and the variability caused by the other
parameters. Note that there is a similar spread between
“GR”, “atr1” and “atr2” for most functions. This means that
the influence of the other attributes and the GR are
relatively well-balanced.

It is also possible to note that the variability caused by
the combination of the GR with other attributes (“GR atr”)
is similar to the variability caused by these attributes
separately (“GR”, “atr1” and “atr2”) for many functions.

The third observation is that, mainly for Qw and Qo, the
NQDS is relatively well-distributed, with negative and
positive values, meaning that the model’s behavior is not
biased with respect to the observed data.

3.5 Control parameter setting for GA and SA

As the main control parameters for both GA and SA are
problem-dependent, some preliminary tests are necessary

Fig. 6. Example of geostatistical realization (Layer 8) with: facies indicator, porosity, net-to-gross, horizontal permeabilities (kx and
ky) and vertical permeability (kz).

Table 1. Tolerance used to compute AQD (Eq. (5)).

Functions Tol Cp

Ql 0.05 0
Qo 0.1 0
Qw 0.1 20 m3/d
Qwi 0.05 0
BHP 0.1 0

AQD, Acceptable Quadratic Distance; BHP, Bottom-
Hole Pressure; Tol, Tolerance.
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Table 2. Uncertain attributes defined for the UNISIM-I-H for this study.

Attribute Description Minimum Maximum Number
of levels

GR Six spatial properties (porosity, permeability
in x, y and z directions, net-to-gross and
facies indicator) for each GR

* * 100

pkrw1, pkrw2, pkrw3, pkrw4 Exponent for water relative permeability
(Facies 1–4)

1 6 31

pkrow1, pkrow2, pkrow3,
pkrow4

Exponent for oil relative permeability
(Facies 1–4)

1 6 31

krwi1, krwi2, krwi3, krwi4 Maximum oil relative permeability at
residual oil saturation (Facies 1–4)

0.1 0.7 31

krowi1, krowi2. krowi3, krowi4 Maximum oil relative permeability at
connate water saturation (Facies 1–4)

0.45 0.8 31

ppc1, ppc2, ppc3, ppc4 Exponent for capillary pressure (Facies 1–4) 3 11 31
woc Water-Oil Contact (m) 3169 3179 31
CPOR Rock Compressibility (kgf/cm2)�1 10 � 10�6 96 � 10�6 31
* Each realization has a specific minimum and maximum value for each spatial property.
GR, Geostatistical Realizations.

Fig. 7. Impact of the geostatistical realizations and the other parameters in NQDS.
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for a proper choice. For the GA, three options varying the
probability of mutation (Pm) and crossover fraction (cf)
were tested. According to Chakra and Saraf (2016), the
optimal value for cf reported in the literature ranges
between 0.5 and 1.0. Usually, the Pm ranges between
0.001 and 0.05. Three executions with 20 generations and
100 individuals per generation were carried out according
to the following values: [cf, Pm]1 = [0.2, 0.10],
[cf, Pm]2 = [0.5, 0.05] and [cf, Pm]3 = [0.8, 0.01], where
the subscript number after the bracket indicates the execu-
tion. From execution 1 through 3, the amount of mutation
decreases and, consequently, the amount of crossover
increases.

The top-left plot in Figure 8 shows the average distance
between the individuals for the 20 generations correspond-
ing to the three runs. Note that the case with the largest
amount of mutation presents the highest average distance.
As the crossover fraction is too low and the probability of
mutation is too high, the diversity of the individual remains
very high along all generations. This implies in a poor con-
vergence of the algorithm as can be seen in the top-right
plot, which shows the best, worst, and mean OF values
for each generation. The average distance (diversity of the
individuals) decreases as the crossover increases and the
probability of mutation decreases. It is also possible to see
an improvement in the convergence for runs two and three.

Based on the previous analysis, we chose [cf, Pm] =
[0.5, 0.05] for the probability of mutation (Pm) and
crossover fraction (cf) for all GA runs. In the first part of
the workflow, five executions of GA were carried out.

The number of generations was set to 20 and the number
of individuals per generation was set to 100 for each
execution.

The influence of initial temperature on SA behavior for
the case studied is shown in Figure 9. The lower the
temperature, the closer the models will be. As the purpose
of this paper consists of starting each SA process from a
pre-optimized model provided by GA, we chose a moderate
small value (Ti = 1.0), allowing each SA process to explore
the regions in the vicinity of each starting point but, at the
same time, avoiding that the method moves away from
these regions quickly. In the second part of the proposed
workflow, 100 instances of the SA were launched with
500 iterations for each one.

To compare with the proposed method (Genetic Algo-
rithm with Multi-Start Simulated Annealing [GAMSSA]),
we carried out an additional run of GA (called in this paper
as conventional GA) with 300 generations and 200 individ-
uals per generation. We chose these numbers (300� 200) to
result in the same number of simulations used in the pro-
posed method. The same values of cf and Pm used in the
first part of the workflow were used in this run.

4 Results

This section is organized as follows: firstly, we analyze the
first part of the workflow which consists of running the
GA several times (Sect. 4.1). In sequence, the second part
of the methodology (MSSAGR) is analyzed (Sect. 4.2).

Fig. 8. Influence of the GA tuning parameters for the case studied.
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The final three subsections are dedicated to evaluate the
history matching quality of the selected models (Sect. 4.3),
the variability of the solutions (Sect. 4.4) and the analysis of
the production forecast (Sect. 4.5).

4.1. Genetic algorithm (first part)

Table 3 shows the number of geostatistical realizations
selected (according to the criterion described in the method-
ology) in each of the five executions of GA. Figure 10 shows
the evolution of the objective function for two executions
(GA1 and GA5). These plots show, in general, good conver-
gence and an adequate variability along the generations.

4.2 Multi-start simulated annealing (second part)

The evolution of the SA algorithm can be seen in Figure 11
for 3 out of the 100 SA processes. Note that there is good
convergence, showing significant improvement in the OF
values. Figure 12 shows initial and lowest OF for the
100 SA instances. Overall, the initial OF values decreased
roughly 50%. Considering the fact that each SA instance
starts from a pre-optimized solution, this represents a good
improvement.

4.3 Model selection and history matching quality

To select the final set of models for both methods, two steps
were carried out: 1) for the conventional GA, the 20 best

individuals (individuals with lower objective function) of
each generation (20 � 300 = 6000) were selected. For the
GAMSSA, the 60 best solutions of each SA (60 � 100 =
6000) were selected; 2) from the set of models selected in
step 1, a filter of |NQDS| = 10 (excluding three problematic
functions from the 78 defined for the case) was applied to

Fig. 9. Cross plot of a pair of attributes showing the influence of initial temperature on SA behavior for the case studied. The red
color denotes the starting point and the assessed points are in blue.

Table 3. Number of geostatistical realizations selected in
each of the five executions of GA.

GA
execution

Number of
selected GR

Number of GR used in the
GA optimization

1 21 100
2 23 79
3 25 56
4 21 31
5 10 10

GA, Genetic Algorithm; GR, Geostatistical Realizations.

Fig. 10. Evolution of the objective function for two executions
of GA (GA1 and GA5).
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select the final set of models for each method: 434 for GA
and 194 for GAMSSA. The filter applied means that for
the 434 models selected from the GA, and for the 194 mod-
els selected from the GAMSSA, at least 75 functions have,
simultaneously, |NQDS| � 10.

Figure 13 shows comparative plots of NQDS for Qo, Qw,
BHP for the producer wells and BHP for the injector wells.
The gray square markers indicate the initial variability. An
overall improvement in the quality of data match can be
noted for both methods for most functions. Figure 14 shows

Fig. 11. Evolution of the OF for three instances of the SA
algorithm.

Fig. 12. Initial and smallest OF for the 100 SA instances.

Fig. 13. Comparative plots of NQDS for the initial and the selected models from GAMSSA and GA.
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the oil rate for one of the wells (PROD008) comparing
GAMSSA and GA. Note that the selected models (green
curves) from GAMSSA more properly encompass the
observed data. It is important to analyze not only the
quantity of the models, in terms of data match, but also
the variability of the solutions, as described in Section 4.4.

4.4 Variability of the solutions

Figures 15 and 16 show cross plots for GAMSSA and GA,
respectively. The gray points indicate the models selected
according to the procedure described in Section 4.3 and
the blue (GAMSSA) and red (GA) points indicate the
selected models using the filter based on |NQDS| � 10.
The first observation is that the diversity of the solutions
selected from GAMSSA is much larger than the solutions
selected from GA. Analyzing the three plots on the top of
Figure 16, which shows the cross-plot between the GR
and the exponent of Water Relative Permeability (pkrw)
curve for the three most important facies, we can note that
GA concentrated the best solutions around just one GR
(GR 35), while the best solutions from GAMSSA contem-
plate a larger number of GR. As further discussed in
Section 4.5, this different degree of diversity has a strong
impact on the variability in the production forecast.

From the cross-plot between GR and pkrw related to
facies 2 and 3, it is possible to note that each GR, corre-
sponding to the best solution for GAMSSA, exhibit different
values of pkrw. For example, looking at the top-right plot
(facies 3), it can be noted that the best values of pkrw3 for the
GR 33 are between 1.0 and 2.2, while for the GR 2, the best

Fig. 14. Oil rate for the well PROD008 comparing GAMSSA
and GA. Gray lines indicate the initial model dispersion, green
lines are the selected matched models, red points are the
observed data and the blue lines represent the tolerance.

Fig. 15. Cross plots between GR and pkrw (GAMSSA). Blue points denote models with |NQDS| � 10 and gray points indicate the
models selected according to the procedure described in Section 4.3.
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values are between 4.3 and 5.5. This clearly shows that this
is a complex problem characterized by many local minima.

Analyzing the other three plots on the bottom of
Figures 15 and 16, we can see a remarkable degree of diver-
sity for the best solutions generated by the proposed
method. Note that for facies 1, the best solutions generated
by GA collapsed around one single value of pkrw1, while a
considerable diversity can be observed for GAMSSA.
Larger diversity for GAMSSA is even more pronounced
for facies 2 and 3.

Figure 17 shows parallel coordinate plots for the select
models from GAMSSA and GA. For visualization purposes,
the values of each attribute (represented by red markers)

Fig. 16. Cross plots between GR and pkrw (GA). Red points denote models with |NQDS| � 10 and gray points indicate the models
selected according to the procedure described in Section 4.3.

Fig. 17. Parallel coordinate plots for the selected models from
GAMSSA and GA.

Fig. 18. Variation of the number of geostatistical realization
with the NQDS filter.
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Fig. 19. Cumulative oil production for two producer wells comparing GAMSSA and GA.

Fig. 20. Distribution of Np (cumulative oil production) for 4110 days (beginning of forecast) comparing GAMSSA and GA.
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are mapped into the range between 0 (lower bound) and 1
(upper bound). These plots reveal that the best models
selected from the proposed method (GAMSSA) have
larger variability compared to the best models selected from
GA. Note that for the GA, the models are more concen-
trated on specific values of the attributes. On the other
hand, for GAMSSA the models are more scattered, which
denotes larger diversity of the solutions.

Figure 18 shows a comparison between GAMSSA and
GA, considering the number of geostatistical realizations
versus cut-off value of |NQDS|. For a cut-off value of
|NQDS| = 10, the selected models from GAMSSA contain
10 GR while the selected models from GA contain only
one GR. Note also that the number GR increases much
faster for GAMSSA than for GA. For |NQDS| = 15, for
example, there are 72 GR for GAMSSA while for GA there
are only three. This analysis reveals that the proposed
method preserves the variability of the geostatistical real-
izations in the solutions, which is very important for more
reliable forecast.

4.5 Production forecast

The final goal of the data assimilation process is to improve
the predictive capacity of the matched models, increasing
the reliability of the decisions made using these models.
In this section, we present the results of the production
forecast comparing the proposed method and the conven-
tional GA.

Figure 19 shows the cumulative oil production for two
producer wells (PROD008 and NA3D). The vertical dashed
line divides the history and forecast periods. The gray
lines represent the initial variability generated using the
2500 models generated according to the initial uncertainties
(see Sect. 3.2). The blue lines represent the selected models
and the red line represents the reference model. Clearly, it is
possible to note that the solutions provided by GAMSSA
encompass the true model, while the solutions from the

GA have lower variability and do not encompass the true
solution.

Figures 20 and 21 show, for all producer wells, the dis-
tribution of Np (cumulative oil production) for 4110 days
(beginning of forecast) and 10 957 days (end of forecast).
First, the variability of Np from GA is much lower than
GAMSSA for all wells. Second, one can observe that the
solutions from GAMSSA cover the reference case for most
wells, at the beginning and end of the forecast, while the
solutions from GA do not encompass the reference case
for most wells, especially at the end of the forecast.

5 Final remarks and conclusions

A new optimization scheme using genetic algorithm
combined with simulated annealing was developed to inte-
grate geostatistical realizations in data assimilation and
reduction of uncertainty process. One of the key advantages
of the proposed method is that the geological consistency is
maintained. In the case studied, the set of images generated
was enough for a good matching. However, if the initial set
of realizations is not enough, it is possible to generate more
realizations and continue the process.

The proposed scheme takes advantage of the benefits of
distributed computing. Genetic algorithm and multi-stat
simulated annealing are very suitable for parallel environ-
ment. Although the total number of simulations is high,
the proposed method is viable because nowadays, computer
processors have become cheaper and more widely available.
Thus, our methodology has potential for practical
applications.

The specific conclusions are:

1. The combination of genetic algorithm with simulated
annealing, as proposed in this paper, is an interesting
alternative to include geostatistical realizations into

Fig. 21. Distribution of Np (cumulative oil production) for 10 957 days (end of forecast) GAMSSA and GA.
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the history matching and reduction of uncertainty
process.

2. The variability of the best matched models found
using the proposed workflow is higher than the vari-
ability of the best models found by the conventional
genetic algorithm.

3. The proposed method preserves the variability of the
geostatistical realizations in the best solutions. The
conventional genetic algorithm tends to lose the diver-
sity of GR, as shown in Section 4.4

4. The production forecast was strongly affected by the
variability of the solutions. The matched models
found by the proposed method more properly encom-
passed the reference case in the forecast period,
compared with the matched models found by the con-
ventional genetic algorithm.
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