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Abstract
Time-lapse (4D) seismic inversion aims to predict changes in elastic rock properties, such as
acoustic impedance, frommeasured seismic amplitude variations due to hydrocarbon
production. Possible approaches for 4D seismic inversion include two classes of method:
sequential independent 3D inversions and joint inversion of 4D seismic differences. We compare
the standard deterministic methods, such as coloured and model-based inversions, and the
probabilistic inversion techniques based on a Bayesian approach. The goal is to compare the
sequential independent 3D seismic inversions and the joint 4D inversion using the same type of
algorithm (Bayesian method) and to benchmark the results to commonly applied algorithms in
time-lapse studies. The model property of interest is the ratio of the acoustic impedances,
estimated for the monitor, and base surveys at each location in the model. We apply the methods
to a synthetic dataset generated based on the Namorado field (offshore southeast Brazil). Using
this controlled dataset, we can evaluate properly the results as the true solution is known. The
results show that the Bayesian 4D joint inversion, based on the amplitude difference between
seismic surveys, provides more accurate results than sequential independent 3D inversion
approaches, and these results are consistent with deterministic methods. The Bayesian 4D joint
inversion is relatively easy to apply and provides a confidence interval of the predictions.

Keywords: 4D seismic inversion, Bayesian inversion, deterministic inversion, probabilistic
inversion, time-lapse seismic

1. Introduction

Time-lapse (4D) seismic data are a valuable source of in-
formation for monitoring and managing the production
of hydrocarbon reservoirs. The processing and interpreta-
tion of 4D data include the calculation and evaluation of
the changes in seismic attributes (e.g., seismic amplitude,

acoustic impedance, P and S-wave velocities and density) re-
sulting from changes in reservoir pressure, fluid saturation
and temperature caused by reservoir production (Johnston
2013). Thus, 4D seismic attributes provide a useful spatial
constraint to the updating of reservoir properties within sim-
ulation model grids and enable the mitigation of potential
reservoir management risks.

© The Author(s) 2020. Published by Oxford University Press on behalf of the Sinopec Geophysical Research Institute. This is an Open Access article distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.
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In the context of dynamic reservoirmodelling, 4D seismic
data are used to update the simulation model, manually or
automatically, in historymatching studies (Ullmann de Brito
et al. 2010;Oliver&Chen2010;Davolio et al. 2014). In com-
mon industry practices, once 4D seismic data are inverted to
estimate elastic properties, then the results obtained are as-
similated in the dynamic fluid flow simulation workflow.

The goal of seismic inversion is to determine a reservoir
model that minimises the errors between the predicted seis-
mic amplitudes and the observed seismic amplitudes (Wang
2003; Francis 2005). Seismic inversion methods for reser-
voir characterisation canbedivided into twomain categories:
deterministic and probabilistic approaches. Deterministic
methods generally provide a single solution, constrained
by a prior model or well data, and include, among others,
coloured and model-based inversions (Simm et al. 2014).
Maurya & Sarkar (2016) compared the results of model-
based, coloured, sparse-spike and band-limited inversions in
3D seismic data from the Blackfoot field (Alberta, Canada),
and concluded that allmethodsproduce accurate and reliable
results. Probabilisticmethods are based onmathematical for-
mulations that are generally more adequate at representing
the non-uniqueness of the solution to the inverse problem.
The solution is expressed by probability distributions or by
a set of multiple realisations that are consistent with the ob-
served seismic data (Bacon et al. 2007). The results rep-
resent not only the most likely model, but also the model
uncertainty. A commonly adopted probabilistic method in
reservoir characterisation is the Bayesian inversion, which
allows evaluating the impedance of the most likely model
and its uncertainty (Buland & Omre 2003) by combining a
priori information on model parameters with the measured
data in a probabilistic formulation. The Bayesian inversion
(Buland & Omre 2003) was then extended to time-lapse
studies (Buland & El Ouair 2006) and other geophysical ap-
plications (Grana & Mukerji 2015; Veire et al. 2006) to es-
timate reservoir rock properties. The limitations of the de-
terministic methods are highlighted in Francis (2005), in
the comparison with realisations of a probabilistic method,
showing a significant underprediction of net sands in the
deterministic inversion due to the smoother estimated
impedances,whereas the probabilistic inversionbetter repro-
duces the impedance distribution.

For 4D seismic inversion, a common practice is to in-
dependently invert the base and repeated 3D seismic sur-
veys using seismic inversion methods, and then obtain the
changes in impedances from the difference of the results. Al-
ternatively, one can compute the difference of seismic am-
plitudes between the base and repeated 3D seismic surveys
and then apply a joint seismic inversion method directly to
the difference of seismic data. There is also the simultaneous
approach, where all surveys are combined in a single objec-
tive function, with an optimised 4D solution that matches

the available data. Lafet et al. (2008) proposed a 4D inver-
sion approach where data of multiple vintages were inverted
simultaneously in the Brage Field (Norway), showing that
the impedance results weremore accurate with respect to the
expectedwater flood effects when compared to sequential in-
dependent 3D inversions of base andmonitor surveys. Sarkar
et al. (2003) showed that joint seismic inversion has a lower
computational cost compared to sequential independent 3D
inversions, and requires a single wavelet and a simpler initial
model, which represents the changes in acoustic impedances
between different surveys. Another advantage is that it al-
lows access to 4D results directly in the interactive process
of parametrisation.

The objective of this study is to compare different seis-
mic inversion techniques to predict changes in the acous-
tic impedance. The methods we used are: (i) sequential in-
dependent 3D inversions using the Bayesian method (Bu-
land & Omre 2003); (ii) joint inversion of 4D differences
using the Bayesian method (Buland & El Ouair 2006) and
(iii) sequential independent 3D inversions using determin-
istic methods. For the deterministic methods we adopted
two common approaches, namely coloured andmodel-based
inversions (Kazemi et al. 2011; Maleki et al. 2018; Najjar
et al. 2003). The proposed analysis aims to investigate the
difference between the independent and joint approaches of
the Bayesian inversion through a fair comparison with well-
known deterministic methods. The results are expressed as
a percentage of the impedance changes between base and
repeated surveys to compare the same model variable in all
the cases. The application is performed in a synthetic case,
where the true solution (acoustic impedance) is known at
all time steps, and an accurate comparison can be made be-
tween the inverted impedances and the reference values. The
dataset of UNISIM-I-D (Avansi & Schiozer 2015) is based
on real data of the Namorado field (Campos Basin, Brazil).
Two synthetic seismic surveys, baseline (pre-production)
andmonitor (after seven years of production)were generated
as described in Souza et al. (2018).

2. Basics of 4D seismic inversion

Seismic inversion aims to predict the subsurface elastic pa-
rameters m from the acquired seismic data S. If the seismic
forward model is linear, the mathematical formulation of the
forward problem (Grana &Mukerji 2015) can be written as

S = Gm + es, (1)

where S is the vector of seismic amplitudes, G is the matrix
associated to the forward linearised model, m is the vector
of elastic parameters (e.g., acoustic impedance) and es is a
random error with a normal distribution with zeromean and
known covariancematrix. In the convolutional linearised ap-
proximation, the forward linear modelG can also be written
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as G = WAM, whereW is the matrix of wavelets, A the re-
flection coefficients computedwith a linear approximation of
the Zoeppritz equations (Aki & Richards 1980;Wang 1999)
and M is a first-order differential matrix (Buland & Omre
2003). The corresponding inverse problem for the predic-
tion of m given S can be solved using different mathemati-
cal inversion and optimisationmethods (Tarantola 2005). In
our study, we only consider the acoustic case. It is important
to notice that the linearisation is obtained in terms of the log-
arithm of impedance (m = ln IP ) (Buland &Omre 2003).
This formulation can be applied any time when seismic data
are available and only requires a prior model of the acoustic
impedance and the source wavelet.

In 4D inversion studies, the goal is to predict the changes
in acoustic properties between two seismic surveys, thebased
and the repeated surveys. One can perform multiple inver-
sions (i.e. sequential independent 3D inversion method),
by independently solving the following seismic inversion
problems

Sbase = Gbase mbase + ebase, (2)

Smonitor = Gmonitor mmonitor + emonitor, (3)

where the final solution is𝚫m = mmonitor − mbase.
Alternatively, we can formulate the problem as a joint in-

version applied to the difference of seismic data (i.e. joint 4D
inversion of the difference), assuming the same modelling
operatorG:

ΔS = Smonitor − Sbase = GΔm + etl. (4)

In the case of the joint Bayesian 4D seismic inversion
(Buland & El Ouair 2006), for seismic data with incident
angle equal to 0, the vector 𝚫m of elastic parameter changes
is written as

Δm = ln
IPmonitor

IPbase
, (5)

and the acoustic impedance changes are evaluated as

exp(Δm) =
IPmonitor

IPbase
, (6)

where IP is the acoustic impedance.
In our comparison, we use the 3DBayesian inversion pro-

posed in Buland & Omre (2003) to sequentially solve the
inverse problems in equations (2) and (3) and the joint 4D
Bayesian inversion of the seismic differences in Buland & El
Ouair (2006) to solve the inverse problem in equation (4).
Both methods are probabilistic, and provide the posterior
distribution of the model parameters. In both approaches,
the forward modelling is based on the convolution of the
wavelet and a linearised weak contrast reflectivity function
defined for continuous seismic travel time. The solution is
represented by a Gaussian posterior distribution with poste-
rior mean and covariance matrix. The result of the Bayesian

4D joint inversion is the natural logarithm of the ratio be-
tween acoustic impedance from the monitor and acoustic
impedance from the base (equation (5)).

Seismic inversion requires a low-frequency model of
impedance due to the limited bandwidth of seismic data.
In Bayesian 3D inversion, the low-frequency model (in the
logarithmic domain) is the mean of the prior distribution
(Buland & Omre 2003). In Bayesian 4D joint inversion,
the prior model is instead expressed as the logarithm of the
ratio IPmonitor∕IPbase. If no information about the dynamic
changes is available, the initialmodel is set to zero everywhere
(Buland & El Ouair, 2006).

The two discussed Bayesian methods are then compared
to standard deterministic methods. The model-based inver-
sion (Russell&Hampson1991;Wang2016) consists ofmin-
imising the difference between the modelled and the ob-
served seismic traces using the least-squares optimisation
technique. Because the reflection coefficients describe the
relative contrast between the elastic properties in the lay-
ers above and below the interface, the inversion only pro-
vides information about the changes in the elastic proper-
ties, i.e. P-impedance. Therefore, a low-frequency model of
P-impedancemust be assumed. Generally, this model is con-
structed by interpolating well log data between seismic hori-
zons. The seismic wavelet is estimated from well data. The
impedance model is solved iteratively by perturbating the
initial model until the lowest misfit between observed and
predicted data is achieved.

Alternatively, coloured inversion (Lancaster &
Whitcombe 2000) is a method performed in the fre-
quency domain and designed to approximately match the
spectrum of seismic data with the spectrum of impedance.
This inversion does not require an initial low-frequency
model but it requires zero-phased seismic data (Veeken &
Da Silva 2004). An operator spectrum is calculated from the
combination of the acoustic impedance spectrum fromwells
and the seismic spectrum of traces close to the wells. After
taking the average impedance spectrum, a −90° phase shift
is applied so that the operator is created in the time domain,
and convoluted with the seismic trace to generate acoustic
impedances (Maurya & Sarkar 2016).

3. Comparison of various inversions

The goal of this work is to compare the sequential inde-
pendent 3D inversion method and the joint 4D inversion
of the difference in the Bayesian and deterministic con-
text, with deterministic seismic inversions commonly used in
4D studies.

Figure 1 illustrates the steps to compare different inver-
sion results with respect to the true solution. The orange box
highlights the steps needed to generate the synthetic seismic
data (synthetic seismic amplitudes).Theblueboxes show the
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Figure 1. Tasks performed for seismic forward modelling and for each inversion method: deterministic (model-based and coloured) and probabilistic
(Bayesian) 3D and 4D; and comparison with the true model.

sequential independent 3D inversions and the yellow boxes
show the joint 4D inversion. The procedures for model-
based and coloured inversions were performed using the
commercial Hampson-Russel software (CGG 2016). The
Bayesian inversion was implemented in a prototype MAT-
LAB code (Grana & Mukerji 2015). The absolute values of
optimised models obtained by deterministic methods and
the mean values of Bayesian 3D inversions are used to calcu-
late acoustic impedance ratios betweenbaseline and repeated
surveys for each method, and compared to the mean acous-
tic impedance ratio (IPmonitor∕IPbase) that is derived from the
probabilistic Bayesian 4D joint method.

The comparison between seismic inversions is car-
ried qualitatively by visually analysing maps and vertical
sections and quantitatively with statistical indicators that
measure the proximity of each inversion method to the true
solution.Common indicators include linear correlation, den-
sities and cumulated probability curves. An alternative sta-
tistical analysis for the quantitative interpretation is to calcu-
late the similarity betweenmaps of inversion results and true
data. Rollmann et al. (2020) proposes using the pixel-wise
metric, mean square error (MSE), for standardised maps to

properly calculate the error to the reference data. The MSE
standard property is defined as:

Z = A − 𝜇

𝜎
, (7)

where𝜇 is themean of values of the predicted propertyA and
𝜎 is the standard deviation. The traditional pixel-wise metric
MSEmeasures themisfit betweennormalisedpropertyZ and
reference property B:

MSE = 1
N

N∑

i = 0
(Zi − Bi)

2, (8)

whereN is the number of points in the data.

4. Application

The benchmark dataset UNISIM-I is based on the
Namorado field, a sandstone reservoir located in the Cam-
pos basin, Brazil (Avansi & Schiozer 2015). In this synthetic
dataset, a high-resolution numerical model represents the
true subsurface model. Water injection is the production
strategy to keep reservoir pressure above the bubble point
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Figure 2. The Ormsby wavelet used to generate synthetic seismic data and inversion results (left) and its frequency spectrum (right).

Figure 3. Data visualisation with maps and vertical sections of: (a) impedance ratio and (b) difference in seismic amplitudes. The solid black lines
indicate the top and base of the reservoir and the dashed lines indicate the window of RMS maps extraction. The red anomalies in the upper left image
represent increased acoustic impedance values caused by water injection from the wells. This increase is seeing as blue amplitude anomalies on the lower
left image.

pressure, as well as to displace the oil to producing wells due
to the pressure gradient. The increase in water saturation
caused by water replacing oil results in an increase in the
acoustic impedance, and this provides strong 4D anoma-
lies in seismic data. The high-resolution reservoir model is

defined on a grid of 25 × 25 × 1 m in size. The model
includes 25 wells.

To generate the synthetic seismic data from the high-
resolution reservoir model, the first step is to generate
elastic properties by applying a petro-elastic model to the
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Figure 4. (a) The dRMSmap of the difference in seismic amplitudes with indicated inline for vertical sections; (b) Seismic amplitude differences. The
other plots show the ratio IPmonitor∕IPbase of: (c) the true solution; (d) Bayesian 4D joint inversion (median values); (e) model-based inversion; (f)
coloured inversion and (g) Bayesian sequential independent 3D inversion (median values). The black lines indicate the top and base of the reservoir.
Inline 151. The black arrow in true data shows the anomaly that is analysed in the inversion methods, and the interval of RMSmap extraction is defined
between two horizons that pass above and below this anomaly. The Bayesian 4D joint approach shows a better lateral continuity of the red anomaly.

petrophysical anddynamic properties of the reservoirmodel,
thus obtaining the elastic attributes (VP, VS and 𝜌). The
petro-elastic relation that correlates elastic properties with
variable fluid saturation and pressure in the reservoir, can be
modelled through different methods (Mavko et al. 2009).
In this case, Gassmann’s equation (Gassmann 1951) and
Batzle & Wang (1992) are used to describe saturation
changes, whereas the Hertz–Mindlin model describes pres-
sure sensitivity (Avseth et al. 2011). The model is then con-
verted fromdepth to time and resampled from a corner point
grid into a regular seismic volume. The elastic attributes can
be used to calculate the reflection coefficients using the Aki–
Richards approximation and the seismic amplitudes used a
convolutional model (Souza et al. 2018). Gaussian noise is
added to the amplitudes assuming a signal-to-noise ratio of
three. This method was used to generate the base (before
starting production, T= 0 days) and the monitor survey (af-
ter approximately seven years of production,T= 2618 days).

The 4D seismic data difference is the result of the differ-
ence between themonitor surveyminus the base survey, after
time-shift correction.

The wavelet considered is an Ormsby wavelet, and has
a trapezoidal shape in the frequency spectrum, defined by
the following frequencies: 0, 20, 60 and 80 Hz (figure 2),
simulating a broadband seismic acquisition technology
(Souza et al. 2018). We used it in the forward modelling
to generate the synthetic data and in seismic inversion
problem.

The difference in seismic amplitudes and the impedance
ratio are shown in figure 3 in maps and vertical seismic
sections.The seismic amplitudes represent the observeddata
to be inverted and the impedance ratio is the true solution
that the inversion algorithm aims to predict. Figure 3 also
shows the spatial pattern of water diffusion. The root-mean-
square (RMS)maps are calculated separately for baseline and
repeated surveys. Then the dRMS (difference of the RMS:
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Figure 5. (a) The dRMS maps of difference in seismic amplitudes. The other plots show the RMS map of the ratio IPmonitor∕IPbase for: (b) the true
solution; (c) Bayesian 4D joint inversion (median values); (d) model-based inversion; (e) coloured inversion and (f) Bayesian sequential independent
3D inversion (median values). The segment A–A’ (vertical black line) indicates the direction of vertical seismic section displayed in Figure 6. The blue
anomalies indicate areas around injector wells where water replaced oil, and represent an increase in acoustic impedance ratios (red anomalies). The
Bayesian 4D joint approach matches the data solution better than the other methods.

dRMS = RMSmon − RMSbs) map is obtained, as recom-
mended in Stammeijer &Hatchell (2014). The dRMSmaps
are shown in figures 4 and 5. For the acoustic impedance
cubes, the RMS maps are calculated in the ratio between
values of repeated survey and baseline.

The inputs for all the inversions are 3D volumes of mon-
itor and base surveys, the wavelet and horizons of the top
and base of the reservoir. For the model-based method, we
used sonic and density logs (extracted from the reference
model), and interpolated the values across the horizons to
build the initial low-frequencymodel.We also used this prior
model for theBayesian sequential 3D independent inversion.
In both methods, the same prior model is considered to in-
vert the monitor and baseline data. Similarly, in the Bayesian
4D joint inversion, the initial model is constant and equal to
0, meaning no 4D changes are previously assumed.

The true solution is known and used for validation in a de-
sign of experiments approach. We compare the results using
2D sections, RMS and dRMS maps and crossplots of inver-
sion results against the expected solution.

5. Results and discussions

Figure 4 compares the inversion results along a vertical seis-
mic section corresponding to a seismic inline shown on the

map (black horizontal line). Due to the narrowed resolu-
tion of seismic data, the inverted results are expected to have
a lower resolution when compared to the true data. From
a qualitative point of view, the Bayesian inversion methods
(figure 4d and g) produced results that are closer to the true
data (figure 4c). The time-lapse (figure 4d) and combination
of independent 3D (figure 4g) settings of Bayesian inversion
presented similar results, but the first showed a better lateral
continuity of the highlighted anomaly (black arrow in true
data, figure 4c). In all methods, it is possible to see some re-
maining effects of the wavelet side lobes (from the amplitude
data) around the stronger (with higher values) and vertically
thicker anomalies. These effects appear above and below the
main signals, with opposite values, and their magnitudes de-
pend on the magnitude of the anomaly, i.e., the higher the
value of the anomaly, the higher the value of the opposite
signal around it.

Figure 5 compares the dRMS map, extracted from the
difference of seismic amplitudes, and RMS maps of the ra-
tio IPmonitor∕IPbase for different inversion results, computed
in a 10-ms time window. The positive anomalies (blue in
figure 5a) in the seismic difference map are correlated to the
water injection in the reservoir, whose increase causes posi-
tive changes of acoustic impedance in the true data (figure 5b
in warm colours). Figure 6 shows a seismic crossline mainly
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Figure 6. (a) Seismic amplitude differences. The other plots show the ratio IPmonitor∕IPbase of: (b) the true solution; (c) Bayesian 4D joint inversion
(median values); (d)model-based inversion; (e) coloured inversion and (f) Bayesian independent 3D inversion (median values). The black dashed lines
indicate thewindowof extraction ofRMSmaps, and the direction of thewindow is represented by theA–A’ segment.Crossline 191.The shape, value and
continuity of red anomalies are evaluated in invertedmethods, and checked against true data. The Bayesian 4D joint approach estimates anomalies more
accurately. The remaining effects of side lobes are present around the thicker anomalies in all methods, but they are stronger in the Bayesian inversions
because of the higher magnitude of their anomalies.

Table 1. L2 norm of each inversion method against the true solution.

Inversion technique L2 norm

4D Bayesian 10.49
Ind. Bayesian 10.82
Ind. coloured 20.19
Ind. model-based 27.71

through three anomalies (A–A’ segment in figure 5). Not all
anomalies observed in the true data (figure 5b) are recov-
ered by the inversion methods (figure 5c–f). The Bayesian
4D joint approach (figure 5c) retrieves most 4D signals.

The dashed lines in figure 6 represent the window in
which the signal was extracted to generate the maps of
figure 5. The convolution operation filters the reflection co-
efficients, causing a loss of resolution in data that cannot be
fully recovered by the inversionmethods (Russell 1988), and
this explains the difficulty in recovering the two anomalies
in the centre. Once again, the Bayesian 4D joint inversion
provides the best results, whereas the deterministic inversion
methods fail to estimate the main anomalies in the true data.

Toquantitatively assess the quality of the results, we cross-
plot the result of each inversion method against the true
data (figure 7), and calculate the L2 norm, whose results are
shown in Table 1. Bayesian inversions provide the best corre-
lation between predictions and true data, whereas coloured
inversionunderestimates the true changes in impedances and
model-based inversion exhibitsmanyoutliers.Theoutliers of
model-based inversion are related to vertical stripes observed

Table 2. MSE values of each inversion method against true solution.

Inversion technique MSE values

True, 4D Bayesian 0.27373
True, Ind. Bayesian 0.33524
True, Ind. coloured 0.37139
True, Ind. model-based 0.37442

in seismic vertical sections, which are artefacts caused by the
inversion.

The RMS maps used for the similarity calculation be-
tween inversions and true data are shown in figure 5
(before standardisation). Figure 8 shows the maps after
MSE normalisation (Rollmann et al. 2020), and the cor-
responding error values are found in Table 2 in ascending
order.

TheMSE indicatormeasures the similarity betweenmaps,
the lower the error, the closer the method is to the ref-
erence. In agreement with previous analyses, the Bayesian
4D joint inversion achieved the best result, but all meth-
ods were able to reproduce reliable anomalies (in terms of
shape and sign), specially the coloured inversion. We spec-
ulate that the more accurate results are due to the verti-
cal correlation model imposed in the Bayesian joint 4D in-
version that can be controlled (as an input parameter) to
enhance the vertical resolution of the data, allowing it to
be closer to the solution (the impedance ratio calculated
in the reference simulation model scale with high vertical
resolution).
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Figure 7. Crossplots between the ratio IPmonitor∕IPbase of true data versus: (a) Bayesian 4D joint inversion (median values); (b) coloured inversion; (c)
Bayesian independent 3D inversion (median values) and (d) model-based inversion. The identity line is displayed in black for each plot.

6. Conclusions

This work shows the comparison of different seismic inver-
sion methods to estimate 4D impedance changes, applied to
a benchmark dataset case mimicking waterflooding during
production. We compared four methods: Bayesian 4D joint
inversion, Bayesian sequential independent 3D inversion, de-
terministic sequential independent 3D model-based inver-
sion and deterministic sequential independent 3D coloured
inversion. All the methods under investigation produce a re-
liable estimation of the impedance changes that cause the
seismic anomalies in the repeated seismic survey. A quanti-
tative analysis shows that the Bayesian 4D joint method is
the most accurate in terms of the misfit estimators chosen
for the evaluation of algorithm performances. The higher ac-
curacy of the Bayesian 4D joint inversion is desirable, espe-
cially in reservoirs with small 4D anomalies where the pre-

cision in the prediction of impedance changes is critical for
the decision-making process associated with reservoir pro-
duction and management.
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