
UNIVERSIDADE ESTADUAL DE CAMPINAS
SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://iopscience.iop.org/article/10.1088/1742-6596/490/1/012215

DOI: 10.1088/1742-6596/490/1/012215  

Direitos autorais / Publisher's copyright statement:

©2014 by IOP Publishing. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo
CEP 13083-970 – Campinas SP

Fone: (19) 3521-6493

http://www.repositorio.unicamp.br

http://www.repositorio.unicamp.br/


 

 

 

 

 

 

 

Differential Evolution algorithm applied to FSW model 

calibration  

H S Idagawa
1
, T F A Santos

1,2,3
 and A J Ramirez

1,2,4
 

1
 Brazilian Nanotechnology Laboratory (LNNano), Campinas-SP, Brazil 

2
 School of Mechanical Engineering, University of Campinas (UNICAMP), 

Campinas-SP, Brazil 
3
 Now at: CPqD Foundation, Campinas-SP, Brazil  

 

E-mail: antonio.ramirez@lnnano.cnpem.br 

 
Abstract. Friction Stir Welding (FSW) is a solid state welding process that can be modelled 

using a Computational Fluid Dynamics (CFD) approach. These models use adjustable 

parameters to control the heat transfer and the heat input to the weld. These parameters are 

used to calibrate the model and they are generally determined using the conventional trial and 

error approach. Since this method is not very efficient, we used the Differential Evolution (DE) 

algorithm to successfully determine these parameters. In order to improve the success rate and 

to reduce the computational cost of the method, this work studied different characteristics of 

the DE algorithm, such as the evolution strategy, the objective function, the mutation scaling 

factor and the crossover rate. The DE algorithm was tested using a friction stir weld performed 

on a UNS S32205 Duplex Stainless Steel. 

1. Introduction 

Even though Friction Stir Welding (FSW) is a complex welding process to model, some numerical 

approaches were developed to provide enough process detail and accuracy while keeping the solution 

time viable. One approach, which is the one used in this work, is based on a Computational Fluid 

Dynamics (CFD) model that is useful to obtain the material and heat flow of the weld.  

 

Independent of the numerical model chosen, they all have adjustable parameters that control the heat 

transfer and the heat input of the process. These parameters are used to calibrate the model based on 

welding experiments and they are generally determined using a trial and error approach. Since this 

methodology can be very time consuming and can lead to a suboptimal calibration, an alternative 

solution is to apply an optimization algorithm to determine these parameters. In this context, this work 

proposes to apply the Differential Evolution (DE) algorithm to calibrate a FSW CFD model. 

 

DE is an evolutionary strategy algorithm that develops an initial population of solution vectors using 

operations such as mutation, crossover and selection. It is reported in the literature that the 

performance of DE is significantly affected by three characteristics: the size of the population (NP), 

the mutation scaling factor (F) and the crossover rate (CR). The values of these characteristics are also 

evaluated in this work, since they can directly affect the total time required to calibrate the model. 
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In this work, recorded thermal cycles of a friction stir weld performed on a UNS S32205 duplex 

stainless steel were used as calibration data for the CFD model implemented using the Finite Element 

(FE) software Comsol® v4.3a. 

2. Methodology 

2.1. Experimental procedures 

Plates of duplex stainless steel UNS S32205 were friction stir welded, both with dimensions of 350 

mm × 150 mm × 10.0 mm. The welding was performed using a polycrystalline cubic boron nitride in 

metallic matrix of W-Re (PCBN-40%W-Re) tool with shoulder diameter of 25.0 mm and pin length of 

6.0 mm. The welds were produced using a rotational speed and a weld speed of 200 rpm and 100 

mm.min
-1

, respectively. The axial load during weld was controlled and equal to 15 kN. 

 

Thermal cycles were recorded during the welding process using type K thermocouples located at five 

different distances from the weld centreline: -8.0 mm (T4), -4.0 mm (T5), 0 mm (T1), 4.0 mm (T3) 

and 8.0 mm (T2). Negative position values represent the retreating side (RS) of the weld, while 

positive values represent the advancing side (AS) of the weld (figure 1). All the thermocouples were 

attached 2.0 mm deep from the workpiece top.  

2.2. FSW CFD model description 

This work implemented a 3-dimensional steady-state CFD model using the Finite Element software 

Comsol® v4.3a, and it is based on the model proposed by Colegrove et al [1]. In this CFD simulation, 

the welded material is modelled as an incompressible non-Newtonian fluid with a viscoplastic 

constitutive behaviour.  

 

In FSW, the tool rotational and translational movement generates heat by friction and/or by plastic 

deformation of the material. This energy input is modelled as a surface heat flux applied at the 

tool/workpiece interface for the frictional heat generation and as a volumetric heat source for the heat 

generated by plastic deformation. The balance between these sources of heat is determined by the 

contact state variable δ, which lies in the [0, 1] range. This variable defines if the process is generating 

heat by friction (δ=1) or if it is generating heat by plastic deformation (δ=0). An intermediary 

condition is also possible (0<δ<1).  

 

During the welding process, the heat generated is distributed in the workpiece by conduction but it is 

also lost to the backing plate, to the tool and to the environment. Among these three sources of heat 

loss, the most significant to the process is the heat loss from the workpiece to the backing plate. This 

thermal boundary condition considerably affects the workpiece thermal cycles influencing not only the 

peak temperatures but also the cooling rates. For this work, this boundary condition is modelled as a 

contact gap conductance to represent the imperfect contact between the workpiece and the backing 

plate and it is represented by the equation )exp(. bTak   as proposed by Wang et al [2]. Figure 2 

shows all the boundary conditions employed in the model. In this equation, k is the gap conductance, T 

is the temperature at the interface between the workpiece and the backing plate, and a and b are 

constants that need to the calibrated. For this model, the constants a, b and δ were determined by the 

DE algorithm. 

2.3. Differential Evolution method 

DE is a stochastic parameter optimization algorithm that operates using similar steps as employed by 

traditional evolutionary algorithms such as mutation, crossover and selection. For this work, the DE 

algorithm was implemented as described in the work of Storn and Price [3] and the objective function 

used by selection algorithm is expressed by equation 1 as follows: 
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The objective function represents the calibration error from the FSW model and the experimental 

measurements. This equation uses information of the thermal cycles obtained from the model and the 

experiments to select the values of the parameters a, b and δ that best calibrates the model. This 

equation uses the peak temperature values of predicted and measured thermocouples T2 and T4, 

expressed by the terms T2mod, T2exp, T4mod and T4exp, where the subscript mod and exp represents the 

peak temperatures obtained by the model and by the experiments, respectively. The terms A2mod, A2exp, 

A4mod and A4exp in equation (1) represents the integral of temperature over time. The subscripts in these 

terms have the same meaning as the ones used for the peak temperature. 

 

Only the thermocycles recorded by thermocouples 2 and 4 are used by the DE algorithm because they 

are located far enough from the FSW tool to avoid any displacement from their original position. The 

thermocycles recorded by thermocouples 1, 3 and 5 are used to compare the model results with the 

experimental measurements after calibration. 

 

In this DE algorithm, the crossover method chosen was the binomial method, and two mutation 

schemes (DE/rand/1 and DE/best/1) were used to evaluate the efficiency and accuracy of the 

algorithm. This work also studied the effects of the DE parameters (CR, F) for the convergence speed 

of the optimization algorithm. The values analysed for CR were 0.4 and 0.8, and 0.1 and 0.9 for F. 

These values were based on the work of Das and Suganthan [4] where the authors opine about good 

first choices for them. The size of the population NP was set equal to nine for all the runs and the 

number of generations was limited to fifty generations. 

 

 

 

 

 

Figure 1. (a) Thermocouples positions 

for thermal cycle measurement; (b) 

thermocouples’ schematic positions. 

 Figure 2. Finite element model geometry and boundary 

conditions applied to the model. 
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3. Results and discussion 

Table 1 shows the results of the algorithm runs with the final values obtained for the objective 

function and the optimization parameters (a, b and δ). Runs 1-4 were tested with a randomly initialized 

population to evaluate the convergence speed for different mutation strategies and values of CR and F. 

Runs 5-7 were tested with a badly conditioned initial population. Figure 3 shows the evolution of the 

mean value for the objective function over each generation. 

 

Table 1. Final values obtained for the optimization parameters in each DE algorithm run. 

Run # Mutation CR F f(a, b, δ) [10
-2

] A b [10
-2

] δ 

1 DE/rand/1 0.1 0.4 14.50 ± 0.05 31.64 ± 17.37 0.80 ± 0.17 0.71 ± 0.03 

2 DE/rand/1 0.9 0.4 13.97 ± 0.00 26.98 ± 0.04 0.74 ± 0.00 0.71 ± 0.00 

3 DE/rand/1 0.9 0.8 14.09 ± 0.01 79.22 ± 5.15 0.50 ± 0.02 0.72 ± 0.01 

4 DE/best/1 0.9 0.4 14.00 ± 0.00 37.27 ± 0.02 0.67 ± 0.00 0.72 ± 0.00 

5 DE/best/1 0.1 0.4 33.73 ± 5.63 86.72 ± 33.85 2.25 ± 1.06 0.54 ± 0.06 

6 DE/best/1 0.9 0.4 14.11 ± 0.05 65.01 ± 15.30 0.55 ± 0.04 0.72 ± 0.01 

7 DE/best/1 0.9 0.8 34.01 ± 3.79 42.06 ± 8.54 2.42 ± 0.93 0.52 ± 0.04 

 

Runs 1-4 and run 6 reached convergence for a mean objective function equal to around 0.14, with run 

4 being the fastest to achieve convergence (15 generations to stop the algorithm) while run 1 was the 

slowest one (maximum number of generations reached). The slow convergence of run 1 can be 

attributed to the low value of CR, which is not appropriate for a FSW model where the functions 

parameters are not separable. Runs 1-4 show a tendency that a value of F equal to 0.4 performs better 

than 0.8, which can also be noted by the convergence of runs 5-7. Without further runs, no conclusion 

regarding the mutation strategy can be made, but the DE/best/1 method seems to perform a little better 

than DE/rand/1. Even though runs 5 and 7 converged with a small number of generations, their results 

cannot be used since the confidence interval for the objective function and the optimization parameters 

a and b are too large in comparison with the other runs. So, for an optimization procedure to be 

considered successful, the confidence interval must be small. 

 

For this model, the final values obtained from run 2 are the ones that better calibrate the model. So, the 

FSW model can be successfully calibrated using the DE algorithm, eliminating the need for a trial and 

error approach. 

 

 

 

Figure 3. Objective function mean value evolution: (a) runs 

1-4; (b) runs 5-7. 
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4. Conclusions 

A DE algorithm can be successfully used to calibrate a FSW model using experimental data from 

recorded thermal cycles. This study found that a value of 0.9 for CR and 0.4 for F gives a faster 

convergence for the algorithm, but no final conclusions can be made regarding the mutation strategy. 

Still, a larger number of numerical experiments need to be made to better optimize the DE algorithm 

parameters. 
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