

UNIVERSIDADE ESTADUAL DE CAMPINAS

FACULDADE DE ODONTOLOGIA DE PIRACICABA

CURSO DE GRADUAÇÃO EM ODONTOLOGIA

Monografia de Final de Curso

Aluno(a): Kelly Schunck Pimentel Orientador(a): Prof^a. Dr^a. Giselle Maria Marchi Baron

TCC 347

Ano de Conclusão do Curso: 2007

Assinatura do(a) Orientador(a)

Kelly Schunck Pimentel

EFEITO DA DEGRADAÇÃO QUÍMICA SOBRE A MICRODUREZA E RUGOSIDADE SUPERFICIAL DOS COMPÓSITOS RESTAURADORES

Monografia apresentada ao curso de Odontologia da Faculdade de Odontologia de Piracicaba – UNICAMP, para obtenção do Diploma de Cirurgião-Dentista.

Orientadora: Prof^a. Dr^a. Giselle Maria Marchi Baron

UNICAMP / FOP
BIBLIOTECA

Piracicaba

2007

lade hams	FOP/UNICAMP
	<u>\ C</u>
bo B	Ex
+ 、	904950

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA FACULDADE DE ODONTOLOGIA DE PIRACICABA Bibliotecário: Marilene Girello – CRB-8ª, / 6159

Pimentel, Kelly Schunck. Efeito da degradação química sobre a microdureza e rugosidade superficial dos compósitos restauradores. / Kelly Schunck Pimentel Piracicaba, SP : [s.n.], 2007. 62f. : il.
Orientador: Giselle Maria Marchi Baron. Monografia (Graduação) – Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba.
1. Resinas compostas. I. Baron, Giselle Maria Marchi. II. Universidade Estadual de Campinas. Faculdade de Odontologia de Piracicaba. III. Título. (mg/fop)

Dedíco este trabalho

À Deus,

Pela força e coragem. durante toda esta camínha-da.

Aos meus país, Orlando e Nílse, Pelo amor e apoio absoluto em maís esta etapa de minha vida.

À mínha írmã Joyce e sobrínho víctor, Pelo o íncentívo e pelas alegrías proporcíonadas.

Ao meu namorado Rafael, Pela paciência, compreensão e carinho.

Agradecímento Especíal

À minha orientadora Prof^a. Drª. Giselle María Marchi Baron,

Pela atenção e orientação durante a realização deste trabalho.

Agradecímentos

À Faculdade de Odontología de Píracicaba – UNICAMP, Pela oportunidade da realízação deste trabalho.

À FAPESP,

Pelo apoio financeiro concedido.

Às amigas da Dentística, Fernanda e Claúdía, Por todo aprendizado adquirído durante a minha iniciação à pesquisa científica.

Aos amígos da Faculdade, em especial Julíana, Lucíana, Maríana e Nádía.

Pela amízade e uníão em todos os momentos.

SUMÁRIO

	Pg.
Lista de ilustrações	8 -9
Resumo	10 -1 1
Introdução	12 -15
Proposição	16
Materiais e Métodos	
Delineamento experimental	17
Materiais utilizados	18 -19
Confecção dos corpos-de-prova	20 -22
Polimento dos corpos-de-prova	23
Avaliação da Rugosidade Superficial	24
Avaliação da Dureza Knoop	25 -26
Degradação Química	27
Análise estatística	28
Resultados	29 -32
Discussão	33 -37
Conclusões	

Referências	Bibliográficas		9.	41
-------------	----------------	--	----	----

Anexos	·62
--------	-----

LISTA DE ILUSTRAÇÕES:

Pg.
Quadro 1- Materiais utilizados segundo sua classificação e mar-
ca comercial18
Quadro 2- Descrição dos aparelhos fotoativadores19
Figura 1- Unidades fotoativadoras utilizadas: Aparelho fotoativa-
dor Optilux 501/Demetron (A); Aparelho fotoativador Freelight E-
lipar2 (B)19
Quadro 3- Soluções químicas utilizadas segundo sua classifica-
ção19
Figura 2- Confecção dos corpos-de-prova: inserção do incremen-
to inicial (A e B); fotopolimerização (C); inserção do incremento fi-
nal e colocação da tira de poliéster (D); colocação do peso sobre
a matriz metálica (E); corpo-de-prova finalizado (F)22
Figura 3- Procedimento de acabamento e polimento: acabamen-
to utilizando lixas de óxido de alumínio (A); Polimento final com
discos de feltro (B)23
Figura 4- Esquema ilustrativo da análise de rugosidade superfici-
al da amostra24
Figura 5- Microdurômetro utilizado (FM-Equilam Indústria e Co-
mércio Ltda)25
Figura 6- Esquema ilustrativo da divisão das amostras: realização
do teste de microdureza (A); localizações das endentações na me-
tade superior do corpo-de-prova e dos traçados da análise de rugo-
sidade na metade inferior do corpo-de-prova (B)
Figura 7- Soluções simuladoras de alimentos utilizados27
Tabela 1- Valores (desvio padrão) de microdureza knoop de acor-
do com o material após imersão nas soluções
Tabela 2- Valores (desvio padrão) de microdureza knoop de acor-
do com soluções e aparelhos após o período de imersão30
Tabela 3- Médias (desvio padrão) da rugosidade superficiail (Ra)
De acordo com o material e aparelho após imersão nas respecti-

vas soluções31
Tabela 4: Médias (desvio padrão) da rugosidade superficiail (Ra)
de acordo com soluções e aparelhos após imersão nas respectivas
soluções
Tabela 5: Valores (desvio padrão) das rugosidades superficiais (Ra) Image: Comparison of the superficial superficiency superficial superficiency superficial superficiency superficial superficiency superficial superficiency sup
de acordo com as soluções e materiais após imersão
nas respectivas soluções32

RESUMO:

Este estudo avaliou o comportamento de diferentes compósitos resinosos, fotoativados com diferentes fontes de luz (Halógena-Optilux 501/Demetron; LED Freelight Elipar 2/3M ESPE), associados à soluções simuladoras de alimentos, sobre as propriedades de rugosidade superficial (Ra) e microdureza (KNH). Para este estudo foram confeccionados 120 blocos de resina composta fotopolimerizável (Supreme/3M ESPE; Z250/3M ESPE; TPH3/Dentsply) a partir de matrizes metálicas bipartidas cilíndricas, os quais foram distribuídos, aleatoriamente, em 24 grupos (n=5), de acordo com o material restaurador e solução química utilizada (Água destilada, Heptano, Ácido cítrico, Álcool). Depois de confeccionados, os blocos foram submetidos à degradação química, ou seja, imersão durante 7 dias nas respectivas soluções, em estufa a 37°C. Os testes de microdureza Knoop (25g; 20s) e rugosidade superficial (Ra) foram realizados antes e após este período. Os dados foram submetidos à Análise de variância com co-variável e comparados pelo teste de Tukey (a=5%). A análise estatística demonstrou que Z250 apresentou valor de microdureza Knoop significantemente maior que a TPH3. Também foi observado que, para halógena, as amostras submetidas ao álcool apresentaram valores de microdureza Knoop reduzidos quando comparada à água. Para LED, o álcool também resultou na diminuição dos valores de microdureza Knoop quando comparado às demais soluções. Ainda, foi observado que, para as amostras armazenadas no álcool, o LED apresentou valor de microdureza Knoop significantemente menor quando comparado com halógena. Em relação, a rugosidade superficial, os resultados mostram que para o LED Supreme, Z250 e TPH3 não apresentaram valor de rugosidade superficial significantemente diferente, porém, para halógena, TPH3 apresentou valor de rugosidade superficial significantemente maior quando comparado com a Z250. Supreme e Z250 apresentaram diferença significante entre as fontes de luz, apresentando menores valores de rugosidade superficial para a halógena. Também foi observado que, para o LED, heptano e álcool apresentaram valores de rugosidade significantemente maiores quando comparadas à água, enquanto para halógena, nenhuma da soluções apresentou valor de rugosidade superficial significantemente diferente. Para as

amostras estocadas em água, os aparelhos não apresentaram diferença entre si. Entretanto, para as demais soluções, com lâmpada halógena resultou em valores de rugosidade significantemente menores. Ainda foi observado que, para Supreme, o armazenamento em álcool e heptano resultou em valores de rugosidade superficial significantemente maiores quando comparada à água. Já para TPH3 e Z250, nenhuma solução resultou em valores de rugosidade superficial significantemente diferente. Para todas as soluções os materiais não apresentaram valor de rugosidade superficial significantemente diferente. Assim, podemos concluir que as alterações sofridas pelos compostos devido a exposição à alimentos e bebidas são dependentes tanto da composição do material restaurador, como das características da fonte de luz.

INTRODUÇÃO:

As resinas compostas foram introduzidas no mercado nos anos 70 (Peris *et al.*, 2005) e revolucionaram a prática na clínica odontológica através do aumento da produtividade do tempo de trabalho, com redução do tempo clínico (Yap & Soh, 2005).

Nas últimas décadas, houve um aumento na demanda por restaurações estéticas o que tem elevado o número de procedimentos adesivos. Dessa forma, os materiais a base de resina composta fotopolimerizáveis passaram a ocupar uma grande parcela dos procedimentos restauradores diretos (Franco e Lopes, 2003).

As resinas compostas odontológicas podem ser definidas como uma combinação tridimensional de, ao menos, dois materiais quimicamente diferentes com interface distinta (Anusavice *et al.*, 1996). Estas são essencialmente compostas pela matriz orgânica, agente de união matriz-partícula (silano) e partículas de carga (Yap *et al.*, 2000).

As primeiras resinas compostas utilizadas na odontologia foram as quimicamente ativadas, onde a manipulação de duas pastas induzia o processo de polimerização (Franco e Lopes, 2003). Com o intuito de contornar as deficiências desse sistema, como desgaste oclusal e proximal e, a incorporação de ar na estrutura (St-Georges *et al.*, 2002), foram desenvolvidas as resinas fotoativadas, constituídas de uma única pasta com elemento fotossensível.

Os compósitos restauradores atuais apresentam formulações sofisticadas que contém uma larga gama de partículas de carga de diferentes tamanhos e composições e em diferentes quantidades (Bayne *et al.*, 1994). A quantidade e o tamanho das partículas de carga incorporadas na matriz resinosa determinam o tipo e, por último, a vantagem clínica da aplicação de cada compósito (Peris *et al.*, 2005). Um sistema de classificação muito empregado para as resinas compostas baseia-se no tamanho médio das partículas de carga (Anusavice, 2005). Atualmente as partículas de carga podem ser divididas pelo tamanho em macroparticuladas, microparticuladas, híbridas e nanoparticuladas (Bayne *et al.*, 1994).

Atualmente, existem diferentes tipos de fonte de luz disponíveis no mercado para fotopolimerização de resinas compostas. Entre elas temos a lâmpada halógena e diodos emissores de luz (LED). Essas luzes possuem diferentes características e vantagens, porém o sistema mais efetivo e o protocolo de uso de cada uma para a fotopolimerização de restaurações em resina composta ainda não foi completamente determinado (Price *et al.*, 2003).

A lâmpada halógena produz luz por incandescência quando o filamento de tungstênio é aquecido, causando excitação de átomos em uma grande faixa de níveis de energia. Filtros são necessários para restringir a luz emitida à faixa azul do espectro, responsável pela polimerização dos compósitos resinosos. Sua vantagem inclui o fato de ser tecnologia de baixo custo (Cefaly *et al.*, 2005). Entretanto, estas unidades possuem alguns problemas. Por exemplo, o bulbo, o refletor e o filtro podem degradar com o tempo pela alta temperatura operacional e a grande quantidade de calor produzido. Isso resulta numa redução da efetividade de cura, produzindo restaurações com propriedades físicas insuficientes e aumentando o risco de falha prematura das mesmas (Jandt *et al.*, 2000; Mills *et al.*, 1999; Stahl *et al.*, 2000; Yoon *et al.*, 2002; Tsai *et al.*, 2004).

Como alternativa a esse tipo de fonte de luz, foram desenvolvidos os diodos emissores de luz (LED). Esses dispositivos emitem luz em uma faixa estreita de comprimento de onda, o que os tornam altamente eficientes. Além disso, o calor gerado pelo LED é menor que os dispositivos que utilizam lâmpada halógena (Hoffmann et al., 2002). Outra vantagem do LED em relação às lâmpadas halógenas é sua longa vida útil (cerca de 10000 horas para LED e 40 a 100 horas para lâmpada halógena). Além disso, a densidade de energia não diminui, portanto os clínicos não precisam se preocupar com a perda de densidade de energia na unidade fotoativadora. Adicionalmente, os diodos emissores de luz apresentam bateria com excelente vida útil, porque (1) a energia necessária é menor, (2) produzem pouco calor durante o uso, e (3) não apresentam partes móveis. Entretanto, foi relatado que a densidade de energia da primeira geração de diodos emissores de luz era tão baixa que eles não polimerizam suficientemente as resinas compostas. Foi recentemente introduzido no mercado uma segunda geração de diodos emissores de luz, que apresentam maior densidade de energia que a primeira geração (Park et al., 2005).

A conversão total de monômeros para polímeros ao final da reação é denominada grau de conversão, sendo muito importante, pois indica muitas propriedades físicas e mecânicas da restauração com compósito (Vargas *et al.*, 1998). Pode ser avaliado indiretamente por meio da análise de microdureza (Friedman *et al.*, 1984).

A efetividade da polimerização é dependente não somente da composição química do material e concentração de iniciadores, mas também do tipo de partículas de carga, tamanho e quantidade. Assim como do tipo de resina restauradora, sua espessura e cor (Vargas *et al.*, 1998). Além disso, a polimerização é dependente da efetividade da fonte de luz, incluindo comprimento de onda, intensidade de luz, tempo de exposição e distância da fonte de luz (Yap, 2000).

A inadequada polimerização da restauração pode resultar em propriedades físicas inferiores, como baixa resistência ao desgaste, baixa estabilidade de cor, cáries secundárias, reação tecidual adversa, aumento da taxa de sorpção de água, aumento da solubilidade e falha prematura da restauração (Soh *et al.*, 2004). Além disso, componentes não reagidos podem ser liberados da restauração, causando irritação tecidual local (DeWald & Ferracane, 1987).

Apesar da evolução dos compósitos, estes não se encontram protegidos do processo de deteriorização quando em ambiente bucal. É sugerido que a degradação dos compósitos não pode ser atribuída somente a fatores mecânicos, mas também a degradação química da superfície, que, por sua vez, pode causar o amolecimento das camadas externas de compósitos resinosos, tornando-os mais susceptíveis ao ataque mecânico. Quando essas camadas amolecidas são removidas, nova superfície de material é exposta e o ataque químico pode continuar (Larsen & Munksgaard, 1999).

As restaurações podem ser expostas intermitentemente ou continuamente aos agentes químicos presentes na saliva, alimentos e bebidas. Exposição intermitente ocorre durante o período entre a ingestão de alimentos e bebidas até a realização da higiene oral dos dentes. Exposição contínua

14

ocorre quando agentes químicos são absorvidos por debris aderentes (como cálculo e partículas de comida) nas margens das restaurações, ou quando são produzidos pela decomposição bacteriana dos debris (Yap *et al.*, 2001).

De acordo com a *Food and Drug Administration* (FDA,1976), algumas substâncias químicas podem ser utilizadas como soluções simuladoras de alimentos, por exemplo: o heptano PA é capaz de simular as gorduras, alimentos gordurosos e óleos vegetais; o ácido cítrico, ácido lático e etanol, por sua vez, simulam certas bebidas, vegetais, frutas e doces.

Portanto, este trabalho foi realizado no intuito de definirmos a ação de substâncias simuladoras de alimentos sobre a propriedade de rugosidade e microdureza superficial das diferentes resinas compostas fotoativadas por diferentes fontes de luz.

PROPOSIÇÃO:

Avaliar o efeito de diferentes soluções simuladoras de alimentos sobre as propriedades de microdureza Knoop e rugosidade superficial (Ra) de compósitos restauradores fotopolimerizados com diferentes fontes de luz.

MATERIAIS E MÉTODOS:

Delineamento experimental

Unidades experimentais:

• 120 corpos-de-prova em resina composta fotopolimerizável.

Fator em estudo:

- Material restaurador em 3 níveis (Filtek Supreme, Filtek Z250, TPH3);
- Soluções químicas em 4 níveis (Água, Heptano, Ácido Citrico, Álcool);
- Aparelho Fotoativador em 2 níveis: Lâmpada halógena e LED.

Variável de resposta:

- Microdureza Knoop (KHN);
- Rugosidade superficial (Ra).

Materiais utilizados

Os materiais restauradores utilizados neste estudo, sua classificação e composição, estão descritos na tabela 1.

As fontes de luz utilizadas (Figura 1) e suas respectivas características estão apresentadas na tabela 2.

As soluções simuladoras de alimentos e suas classificações estão apresentadas na tabela 3.

Quadro 1: Materiais utilizados segundo sua marca comercial, classificação, composição e lote.

MATERIAL	CLASSIFICAÇÃO	COMPOSIÇÃO	LOTE
Supreme 3M/ESPE	Nanoparticulada	57,7% em volume de carga (zircônia/sílica), com um tamanho médio de partículas de 0,6 a 1,4 microns. Contém as resinas bis- GMA, UDMA, TEGMA e bis-EMA.	6BN
Z250 3M/ESPE	Microhíbrida	60% em volume de carga (zircônia/sílica). com um tamanho médio de partículas de 0,19 a 3,3 microns. Contém as resinas bis- GMA, UDMA e bis- EMA.	6BL
TPH3 Dentsply	Nanoparticulada	58% em volume de carga (bário alumínio boro silanizado e bário flúor alumínio boro silanizado), com um tamanho médio de 1 micron, nanopartículas de silica 0,04 microns. Contém as resinas Bis- GMA, Bis-EMA e trietilene glicol dimetacrilato.	616074

Quadro 2: Descrição dos aparelhos fotoativadores.

APARELHOS FOTOATIVADORES	FONTE DE LUZ	INTENSIDADE DE LUZ NA BANDA DE ABSORÇÃO DA CANFOROQUINONA	DENSIDADE DE ENERGIA	FABRICANTE
Optlux 501	Halógena	302 mW/cm ²	6,04 J/cm ²	Demetron
Freelight Elipar 2	LED	604 mW/cm ²	6,04 J/cm ²	3M ESPE

Figura 1 – Unidades fotoativadoras utilizadas: Aparelho fotoativador Optilux 501/Demetron (A); Aparelho fotoativador Freelight Elipar 2 (B).

Quadro 3: Soluções químicas utilizadas segundo sua classificação.

SOLUCÕES QUÍMICAS	CLASSIFICAÇÃO	
Água destilada	Simulação do ambiente úmido oral	
Heptano P.A	Simulação de Gordura, alimentos gordurosos e óleos vegetais	
Ácido Cítrico 0,02M	Simulação de bebidas, vegetais, frutas e doces	
Álcool 50%	Simulação de bebidas, vegetais, frutas e doces	

Confecção dos corpos-de-prova

2

ί

1

Para este estudo, foram confeccionados 120 corpos-de-prova em resina composta Filtek Supreme (3M/ESPE) cor A3E, Filtek Z250, (3M/ESPE) cor A3 e TPH3 (Dentsply) cor A3, a partir de matrizes bipartidas metálicas cilíndricas apresentando 4mm de altura e 5mm de diâmetro. Na superfície de base da matriz foi colocada uma tira de poliéster e os cilindros de resina composta foram confeccionados utilizando dois incrementos horizontais de aproximadamente 2 mm (Figura 2 A e B). Após a inserção do incremento final foi colocada sobre a matriz outra tira de poliéster (Figura 2D e F) e, sobre esta, um peso de 500 mg (Figura 2E) a fim de promover uma melhor acomodação da resina composta.

A fotoativação do último incremento foi feita após a remoção do peso. Cada incremento de resina composta foi fotopolimerizado com a ponta do aparelho em contato com a superfície de topo da matriz (Figura 2C) com uma das fontes de luz: Lâmpada Halógena, utilizando o aparelho OPTILUX 501 (Demetron/Kerr Corp., Orange, CA, EUA); Diodos emissores de luz, com o aparelho Freelight Elipar 2 (3M ESPE, Seefeld, Alemanha).

No que diz respeito às densidades de energia apresentada por cada fonte de luz, é sabido que as densidades influenciam na cinética da reação de polimerização do compósito resinoso. Sendo assim, foi avaliada a real densidade de energia para cada fonte, dentro da banda de absorção da canforoquinona (450-490nm – Nomoto, 1997) bem como a possibilidade de aproximá-las através do tempo de exposição.

O cálculo da intensidade de luz na banda de absorção da canforoquinona (450-490nm) para cada aparelho de fotopolimerização foi realizado no instituto de física da Universidade de São Paulo Campus São Carlos, da seguinte forma: primeiramente, analisou-se o espectro emitido por cada fonte de luz em um espectrômetro (Oceanoptics. Inc. USB 2000). A seguir, através de um potenciômetro (Power Meter Ophir, Ophir Optronics LTD made in Israel), a potência de cada fonte de luz foi aferida. Este valor foi dividido pela área da ponta do aparelho correspondente e, dessa forma, foi possível obter a intensidade de luz total emitida. Através do software Origin 6.1, a intensidade total foi correlacionada com o espectro previamente avaliado

através da construção de um gráfico onde, no eixo X, tem-se o comprimento de onda (nm) e, no eixo Y, a intensidade de luz (mw/cm²). Assim, foi possível selecionar uma banda específica e, através de cálculo integral da área, verificar a intensidade de luz emitida no comprimento de onda em estudo.

Através da aplicação da fórmula abaixo, utilizando o valor de intensidade de luz emitida por cada aparelho na banda de absorção da canforoquinona, pudemos aproximar as densidades de energia através do ajuste dos tempos de exposição.

Densidade Energia (J/cm²) = <u>mW/cm² X Tempo(seg)</u> 1000

Tendo-se como base a recomendação do fabricante da resina composta Z250 para fotoativação de incrementos de espessura 2mm utilizando aparelhos de lâmpada halógena com tempo de exposição de 20 segundos, a densidade de energia de 6,04J/cm² foi selecionada. Assim, através dos cálculos para padronização da densidade de energia, os tempos de exposição obtidos para cada fonte de luz foram:

- Halógena Optilux 501: 20 segundos
- LED Freelight Elipar 2: 10 segundos

Figura 2 – Confecção dos corpos-de-prova: inserção do incremento inicial (A e B); fotopolimerização (C); inserção do incremento final e colocação da tira de poliéster (D); colocação do peso sobre a matriz metálica (E); corpode-prova finalizado (F).

3

Polimento dos corpos de prova

Após sua confecção, os corpos-de-prova foram removidos da matriz, numerados e armazenados individualmente dentro de frascos plásticos contendo água destilada durante 24 horas em estufa (modelo 002 CB - Fanem Ltda. - Brasil) a 37ºC. Posteriormente, foi realizado o procedimento de polimento. Para tal, os corpos-de-prova foram agrupados a cada quatro, devidamente identificados. As superfícies de base foram posicionadas em uma placa de acrílico e as amostras fixadas á esta com cola-quente. O polimento foi realizado através da utilização de lixas de óxido de alumínio (Carborundum Abrasivos) com granulações de 400, 600 e 1000 µm, montadas em politriz elétrica rotativa (Maxigrind-Solotest), refrigerada com água, em baixa rotação (300 rpm) (Figura 3A). O polimento final foi realizado com discos de feltro (Imptech International) associados a pastas de diamante (Imptech International) de 3 µm e 1 µm, com refrigeração a óleo mineral (Arotec Ind. Com. Ltda.) (Figura 3B). Após a obtenção de uma superfície lisa e polida, os corpos-deprova foram limpos com solução detergente em cuba de ultra-som por 20 minutos (Odontobrás).

Figura 3 – Procedimento de acabamento e polimento: acabamento utilizando lixas de óxido de alumínio (A); Polimento final com discos de feltro (B).

Avaliação da Rugosidade Superficial

1

£ 1

0

1

0

()

01

0

Para a realização do teste de rugosidade superficial, os corpos-de-prova foram fixados com cera utilidade em uma placa de vidro e o conjunto planificado através de uma prensa manual, com a finalidade de promover o paralelismo da superfície do corpo-de-prova.

A superfície de topo de cada corpo-de-prova foi individualmente avaliado através de um rugosímetro (Mitutoyo, Surftest 211, São Paulo, Brazil).

Foram realizadas três leituras por amostra em posições diferentes, obtidas girando o corpo de prova (Figura 4). Para cada corpo-de-prova foi feita uma média das três leituras. O valor considerado de cada leitura consistiu na média aritmética entre os picos e vales do trajeto percorrido pela ponta do aparelho (Ra).

Figura 4 – Esquema ilustrativo da análise de rugosidade superficial da amostra.

Avaliação da dureza Knoop

Posteriormente à avaliação da rugosidade superficial, foi realizado o teste de microdureza Knoop. A medição foi realizada em um microdurômetro (FM-Equilam Indútria e Comércio Ltda) (Figura 5), utilizando carga de 25g durante 20 segundos.

Figura 5 – Microdurômetro utilizado (FM-Equilam Indútria e Comércio Ltda)

Os corpos-de-prova foram fixados individualmente com cera utilidade numa placa de vidro e o conjunto planificado através de uma prensa manual, com a finalidade de promover o paralelismo da superfície do corpo-de-prova.

Ambos os testes foram realizados na superfície de topo de cada corpode-prova, porém em metadas distintas (Figura 6B).

Figura 6 - Esquema ilustrativo da divisão das amostras: realização do teste de microdureza (A); localizações das endentações na metade superior do corpo-de-prova e dos traçados da análise de rugosidade na metade inferior do corpo-de-prova (B).

Para a avaliação da microdureza Knoop foram realizadas 3 endentações na superfície de cada corpo-de-prova, em três pontos equidistantes previamente estabelecidos (Figura 6A).

Para cada superfície foi feita uma média das três endentações, sendo este valor transformado em número de dureza Knoop (KHN – Knoop Hardness Number) utilizando a seguinte fórmula:

$KHN = 14230 X F / d^2$

onde F é a força em gramas (25 gramas) e d é a distância da diagonal maior em micrômetro.

Degradação Química

6

01

1

1

1

Após as avaliações iniciais de rugosidade e microdureza os corpos-deprova foram distribuídos, aleatoriamente, em 24 grupos (n=5), de acordo com a solução química empregada (Água/Controle-C, Heptano-HP, Ac. Cítrico-AC, Álcool-AL) (Figura 8).

As soluções utilizadas para o condicionamento estão entre as recomendadas pela *Food and Drug Administration* (1976) como soluções simuladoras de alimentos.

O procedimento de degradação química, consistiu no armazenamento das amostras nas respectivas soluções pelo período de 7 dias, em estufa a 37 °C. Após completado esse período, os corpos-de-prova foram rigorosamente enxagüados com água destilada para remoção de possíveis resíduos das soluções químicas e submetidos novamente aos testes de rugosidade superficial e microdureza.

Figura 7 - Soluções simuladoras de alimentos utilizados.

Análise Estatística

Os dados foram submetidos a uma análise de variância com modelo apropriado para experimentos em parcela sub-sub-dividida, tendo como covariável as medidas de rugosidade e microdureza obtidas na condição inicial.

Preliminarmente, foi executado um estudo de suposições para garantir a validade da aplicação da técnica da análise de variância.

Efeitos significativos de acordo com a análise de variância com valor p =ou < 0.05 foram comparados através do teste de Tukey, com nível de significância de 5 %.

RESULTADOS:

Microdureza

A análise de variância com co-variável / Teste de Tukey, α=5%, demonstrou que houve diferença significante entre os materiais, e entre os aparelhos e soluções.

Após imersão nas soluções, as resinas Z250 e Supreme não diferiram entre si, assim como as resinas Supreme e TPH3. Entretanto, Z250 apresentou valor de microdureza Knoop significantemente maior que a TPH3. (Tabela1).

Tabela 1: Valores (desvio padrão) de microdureza knoop de acordo com o material após imersão nas soluções.

MATERIAL			
Supreme	ТРНЗ	Z250	
4,208 AB (0,020)	4,130 B <i>(0,022)</i>	4,299 A (0,021)	

Médias seguidas de letras distintas indicam diferença estatística (Análise de variância com co-variável/Teste de Tukey, q=5%). Maiúsculas comparam materiais.

Quando se compara as soluções dentro de cada aparelho (Tabela 2), observamos que para halógena, heptano, ácido cítrico e água não apresentaram valores de microdureza Knoop significantemente diferentes, assim como heptano, ácido cítrico e álcool. Entretanto, as amostras submetidas à estocagem em álcool apresentaram valores de microdureza Knoop reduzidos quando comparadas à água.

Já para o LED, as soluções heptano, ácido cítrico e água não apresentaram valor de microdureza Knoop significantemente diferente. Porém, o álcool apresentou valor de microdureza Knoop reduzido quando comparada com as demais soluções.

Quando se compara as fontes de luz dentro de cada solução (Tabela 2), observamos que para heptano, ácido cítrico e água destilada nenhuma das

fontes de luz demonstrou valor de microdureza Knoop significantemente diferente. Porém, para o álcool o LED apresentou valor de microdureza Knoop significantemente menor quando comparado com a halógena.

Tabela 2: Valores (desvio padrão) de microdureza knoop de acordo comsoluções e aparelhos após o período de imersão.

SOLUÇÃO	APARELHO			
UULUÇAU	Halógena	LED		
Heptano	4,262 ABa (0,032)	4,264 Aa (0,032)		
Ác. Cítrico	4,246 ABa <i>(0,032)</i>	4,227 Aa <i>(0,034)</i>		
Água	4,366 Aa <i>(0,031)</i>	4, 241 Aa <i>(0,032)</i>		
Álcool	4,141 Ba <i>(0,032)</i>	3,950 Bb <i>(0,032)</i>		

Médias seguidas de letras distintas indicam diferença estatística (Análise de variância com co-variável/Teste de Tukey, a=5%). Maiúsculas comparam soluções; Minúsculas comparam aparelhos.

Rugosidade

A análise de variância com co-variável / Teste de Tukey, α=5%, demonstrou que houve diferença significante entre material e aparelho, entre aparelho e solução e, entre solução e material.

Quando se compara os materiais dentro de cada aparelho (**Tabela 3**), observamos que para o LED, Supreme, Z250 e TPH3 não apresentaram valor de rugosidade superficial significantemente diferente. Já para Halógena, TPH3 e Supreme não apresentaram valor de rugosidade superficial significantemente diferente, assim como Supreme e Z250. Entretanto, TPH3 apresentou valor de rugosidade superficial maior quando comparado com a Z250.

Quando se compara as fontes de luz dentro de cada material (Tabela 3), podemos observar que para TPH3 o valor de rugosidade superficial não apresentou-se significantemente diferente. Entretanto, para Supreme e Z250 os valores de rugosidade superficial apresentaram-se significantemente menores quando fotoativados com halógena.

MATERIAL	APARELHO			
	LED	Halógena		
Supreme	0,402 Aa <i>(0,042)</i>	0,275 ABb (0,047)		
ТРНЗ	0,377 Aa <i>(0,018)</i>	0,363 Aa <i>(0,033)</i>		
Z250	0,385 Aa (<i>0,036)</i>	0,262 Bb <i>(0,053)</i>		

 Tabela 3: Médias (desvio padrão) da rugosidade superficiail (Ra) de acordo com o material e aparelho após imersão nas respectivas soluções.

Médias seguidas de letras distintas indicam diferença estatística (Análise de variância com co-variável/Teste de Tukey, α=5%). Maiúsculas comparam materiais; Minúsculas comparam aparelhos.

Quando se compara as soluções dentro de cada aparelho (Tabela 4), observamos que para o LED, heptano e álcool não apresentaram valor de rugosidade significantemente diferente, assim como heptano e ácido cítrico e ácido cítrico e água. Entretanto, as amostras submetidas ao armazenamento em álcool apresentaram valores de rugosidade superficial significantemente maiores quando comparadas à ácido cítrico e água, da mesma forma que as amostras armazenadas em heptano quando comparadas à água. Para halógena, nenhuma das soluções apresentaram valores de rugosidade superficial significantemente diferentes.

Quando se compara os aparelhos dentro de cada solução (Tabela 4), observamos que para água, os valores de rugosidade superficial não apresentaram-se significantemente diferentes, enquanto para heptano, ácido cítrico e álcool, as amostras polimerizadas com halógena apresentaram valores de rugosidade superficial significantemente reduzidos.

31

SOLUÇÃO	APARELHO			
00209/10	LED	Halógena		
Heptano	0,399 ABa (0,030)	0,284 Ab (0,057)		
Ác. Cítrico	0,383 BCa <i>(0,030)</i>	0,305 Ab <i>(0,060)</i>		
Água	0,355 Ca <i>(0,019)</i>	0,298 Aa <i>(0,068)</i>		
Álcool	0,413 Aa <i>(0,030)</i>	0,313 Ab <i>(0,071)</i>		

 Tabela 4: Médias (desvio padrão) da rugosidade superficiail (Ra) de acordo com soluções e aparelhos após imersão nas respectivas soluções.

Médias seguidas de letras distintas indicam diferença estatística (Análise de variância com co-variável/Teste de Tukey, α=5%). Maiúsculas comparam soluções; Minúsculas comparam aparelhos.

Quando se compara as soluções dentro de cada material (**Tabela 5**), observamos que para Supreme, heptano, ácido cítrico e álcool não apresentaram valores de rugosidade superficial significantemente diferentes, assim como ácido cítrico e Água. Porém, álcool e heptano apresentaram valor de rugosidade superficial maior quando comparada à água. Já para TPH3 e Z250, nenhuma solução apresentou valor de rugosidade superficial significantemente diferente.

Quando se compara os materiais dentro de cada solução (Tabela 5), observamos que para todas as soluções os materiais não apresentaram valor de rugosidade superficial significantemente diferente.

SOLUÇÃO	MATERIAL				
0020çino	Supreme	Z250			
Heptano	0,358 Aa (0,075)	0,352 Aa <i>(0,036)</i>	0,314 Aa (0,096)		
Ác. Cítrico	0,330 ABa <i>(0,070)</i>	0,374 Aa <i>(0,021)</i>	0,328 Aa <i>(0,073)</i>		
Água	0,295 Ba <i>(0,070)</i> .	0,368 Aa <i>(0,016)</i>	0,317 Aa <i>(0,046)</i>		
Álcool	0,371 Aa <i>(0,085)</i>	0,385 Aa <i>(0,022)</i>	0,334 Aa <i>(0,091)</i>		

Tabela 5: Valores (desvio padrão) das rugosidades superficiais (Ra) de acordo com as soluções e materiais após imersão nas respectivas soluções.

Médias seguidas de letras distintas indicam diferença estatística (Análise de variância com co-variável/Teste de Tukey, a=5%). Maiúsculas comparam soluções; Minúsculas comparam materiais.

DISCUSSÃO:

Devido ao maior desenvolvimento dos compósitos restauradores, juntamente com um aumento na demanda por restaurações estéticas, os materiais resinosos são empregados para restaurar dentes anteriores e posteriores. Entretanto, muitas questões sobre a durabilidade desses materiais no ambiente bucat ainda permanecem (Knobloch *et al.*, 2004). Dessa forma, foi realizada neste estudo a simulação de procedimentos de degradação química, na tentativa de se reproduzir alguns dos desafios aos quais os materiais restauradores são frequentemente submetidos.

A análise estatística dos materiais após o procedimento de degradação química, demonstrou diferença significante entre os materiais (Tabela 1), sendo as resinas Z250 e Supreme semelhantes entre si, bem como as resinas Supreme e TPH3. Porém, Z250 apresentou valor de microdureza Knoop significantemente maior quando comparada à TPH3.

Tais resultados podem ser explicados pelas diferenças na composição entre os materiais avaliados. Sabe-se que a propriedade de dureza dos compósitos é influenciada por vários fatores como composição da matriz orgânica (Asmussen *et al.*, 1982), tipo e quantidade das partículas de carga (Chung KH & Greener EH *et al.*, 1990).

Neste estudo, a resina Z250 apresenta o maior tamanho de partículas de carga, com um tamanho médio de 0,19 a 3,3 microns, seguida pela Supreme com um tamanho médio de partículas de 0,6 a 1,4 microns e TPH3 que apresentou as menores partículas entre elas, com um tamanho médio de 1 micron e, nanopartículas de sílica 0,04 microns.

O melhor desempenho foi da Z250 que demonstrou maior valor de dureza após o processo de degradação. Este material apresentou diferença significante em relação à, TPH3. Esse resultado pode ser explicado pelo menor tamanho de partícula de carga presente na TPH3. Pois o amolecimento da matriz orgânica e/ou desintegração do agente de união causada pelas ação das substâncias químicas, propiciou, a perda de partículas de carga e, consequentemente, resultando em uma superfície menos resistente. Como as menores partículas de carga são mais facilmente removidas da matriz resinosa (Peris *et al.*, 2005), TPH3, a qual apresenta as menores partículas, foi o material mais afetado.

A diferença de composição dos materiais em relação ao tipo de monômero, também pode explicar tais resultados. Pois, características dos monômeros como, grau de conversão e parâmetro de solubilidade pode determinar o desempenho do material. As resinas Z250 e Supreme não apresentaram resultados significantemente diferentes em relação a composição monomérica. Entretanto, TPH3 apresenta em sua composição o monômero trietilene glicol dimetacrilato. Esta diferença na composição pode ser responsável pela pior performance deste material, que por sua vez, pode ser explicada pelo menor grau de conversão deste tipo de monômero.

Quando se compara as soluções dentro de cada aparelho (Tabela 2), observamos que para Halógena heptano, ácido cítrico e água não apresentaram valores de microdureza Knoop significantemente diferente, da mesma forma que heptano, ácido cítrico e álcool. Entretanto, o álcool apresentou valores de microdureza Knoop significantemente reduzidos quando comparado à água.

O maior valor de microdureza encontrado para as amostras imersas em água, pode ser explicado pelo menor efeito deletério desta sobre as propriedades físicas dos materiais utilizados, podendo, estes qrupos serem considerados grupo controle.

Segundo Asmussen em 1994 e Ferracane & Marker em 1992 um significante decréscimo nas propriedades mecânicas dos compósitos é causada pela exposição ao álcool, sendo explicado pelo fato do parâmetro de solubilidade desta solução ser próximo ao parâmetro de solubilidade da Bis-GMA, presente em todos os materiais avaliados, causando o amolecimento da matriz resinosa.

Resultados semelhantes foram encontrados para o LED, onde as soluções heptano, ácido cítrico e água não apresentaram valor de microdureza Knoop significantemente diferente. Entretanto, o álcool apresentou menor valor de microdureza Knoop quando comparado às demais soluções.

Quando se compara as fontes de luz dentro de cada solução (Tabela 2), observamos que somente para o álcool houve diferença significante entre as fontes de luz avaliadas, sendo observado maior valor de microdureza Knoop quando fotoativados com Halógena. Tal resultado, pode ser explicado pelo fato da fotoativação dos materiais com lâmpada halógena promover um maior grau de conversão dos monômeros e de ligações cruzadas, tornando estes materiais mais resistentes a degradação.

Apesar de fornecer para o material restaurador a mesma densidade de energia que o LED, halógena apresentou uma menor intensidade e um maior tempo de exposição, quando comparada com LED. Sabendo-se que ligações cruzadas significantes só ocorrem nos estágios finais da polimerização, assim, luz de alta intensidade que utiliza pequeno tempo de exposição, pode afetar severamente a extensão das ligações cruzadas e o tamanho final da cadeia polimérica, afetando a qualidade do compósito restaurador (StGeorges et al., 2002).

Quando se compara os materiais dentro de cada aparelho (Tabela 3), para o LED podemos observar que nenhum material apresentou diferença significante. Para halógena, TPH3 e Supreme não apresentaram diferença significante entre si, assim como Supreme e Z250. Entretanto, o material TPH3 apresentou maior valor de rugosidade superficial quando comparado com à Z250. Os maiores valores de rugosidade encontrados para as amostras fotoativadas com LED, pode ser explicado pela melhor conversão dos monômeros em polímeros quando fotopolimerizados com lâmpada halógena.

Segundo Soh *et al.*, em 2004, o grau de polimerização e ligações cruzadas possuem papel significante sobre as propriedades físicas do material. A inadequada polimerização faz com que essas propriedades tornem-se inferiores e o material mais susceptível ao processo de degradação química.

Ainda na composição dos materiais dentro de cada aparelho, podemos perceber que para as amostras polimerizadas com lâmpada halógena o desempenho da TPH3 foi consideravelmente inferior à Z250. Esse resultado pode ser explicado pelo amolecimento da matriz orgânica e/ou desintegração do agente de união, propiciando, desta forma, a perda de partículas de carga e, conseqüentemente, resultando em uma superfície mais rugosa. Visto que as menores partículas de carga são mais facilmente removidas da matriz resinosa, TPH3, a qual apresenta as menores partículas, foi o material mais afetado.

Quando se compara as fontes de luz dentro de cada material (**Tabela 3**), observamos que TPH3 não apresentou diferença significativa entre as fontes de luz. Entretanto, Supreme e Z250 apresentaram valores de rugosidade maiores quando fotoativados com LED.

Os materiais Supreme e Z250, são fabricados pela mesma empresa, 3M/ESPE, apresentando composição monomérica semelhantes. Supreme apresenta em sua composição os monômeros Bis-GMA, UDMA, TEGMA e Bis-EMA; e Z250 apresenta Bis-GMA, UDMA e Bis-EMA. Já a TPH3 é fabricada pela Denstply e os monômeros presentes em sua formulação são Bis-GMA, Bis-EMA e trietilene glicol dimetacrilato. A diferença de composição entre os materiais pode explicar os diferentes desempenhos. Os monômeros utilizados nos materiais fabricados pela 3M/ESPE, Bis-GMA, UDMA, TEGMA, Bis-EMA podem ser melhor convertidos quando fotoativados com lâmpada halógena.

Quando se compara as soluções dentro de cada aparelho (Tabela 4), observamos que para a Halógena nenhuma das soluções utilizadas apresentaram valores de rugosidade superficial significantemente diferentes. Para o LED, heptano e álcool não diferiram entre si, assim como ácido cítrico e heptano e, ácido cítrico e água. Porém, álcool e água apresentaram valores de rugosidade superficial significantemente diferentes, apresentando as amostras submetidas ao armazenamento em água menor valor de rugosidade. Alteração na estrutura dos compósitos pelo álcool, já foi descrita na literatura por Mc Kinney, em 1985, sendo este capaz de danificar a matriz resinosa e, conseqüentemente, resultar na deterioração da matriz resinosa através da perda das partículas de carga. Assim, o álcool resulta em uma superfície mais rugosa.

Quando se compara os aparelhos dentro de cada solução (Tabela 4), observamos que para as amostras armazenadas em água os aparelhos não diferiram entre si. Entretanto, para heptano, ácido cítrico e álcool a fotoativação pelo LED resultou em uma superfície significantemente mais rugosa quando comparada a lâmpada Halógena. Assim, percebe-se que a efetividade de polimerização da lâmpada halógena, neste estudo, mostrou-se significantemente superior. Pois, as características de fotoativação da lâmpada halógena proporcionou um maior grau de conversão e ligações cruzadas dos compósitos, quando comparada ao LED.

36

A análise estatística também demonstrou diferença significante entre solução e material. Quando se compara as soluções dentro de cada material **(Tabela 5)**, observamos que para os materiais TPH3 e Z250, nenhuma solução apresentou valor de rugosidade superficial significantemente diferente. Enquanto, para o material Supreme, as soluções heptano, ácido cítrico e álcool não apresentaram valor de rugosidade superficial significantemente diferente, assim como ácido cítrico e água. Porém, o álcool e heptano apresentaram valores de rugosidade superficial maiores guando comparada a solução água.

A Z250 não apresentou diferença significante entre as soluções devido ao seu maior tamanho e quantidade de partículas de carga que resultou em uma melhor e mais uniforme performance frente a todas as soluções. Para TPH3, as soluções também apresentaram comportamento uniforme, porém por apresentar em sua composição pequenas partículas de carga, estas foram mais facilmente removidas da matriz orgânica, apresentando, então, maior degradação por todas as soluções. Enquanto, a Supreme que apresenta partículas de carga com tamanho médio intermediário a Z250 e TPH3, mostrou um comportamento variável à solução, sendo mais afetada pelo heptano e álcool, quais resultaram em uma maior perda das partículas, devido ao seu maior efeito deletério sobre a composição do material.

Quando se compara os materiais dentro de cada solução (Tabela 5), observamos que para todas as soluções os materiais não apresentaram valor de rugosidade superficial significantemente diferente.

Apesar das resinas Z250 e TPH3, apresentarem menor alteração de rugosidade pelas soluções quando comparadas ao grupo controle (água), todos os materiais avaliados sempre apresentaram valores de rugosidade estatisticamente semelhantes.

Assim, a realização deste estudo objetivou o melhor entendimento sobre as propriedades e durabilidade dos materiais restauradores, quando submetidos a desafios químicos e a diferentes métodos de fotoativação.

37

CONCLUSÃO:

- O compósito Z250 apresentou melhor performance em relação as propriedades de microdureza e rugosidade superficial quando comparado aos demais compósitos.
- O álcool foi a solução que mais afetou as propriedades de microdureza e rugosidade dos compósitos restauradores.
- O LED afetou negativamente as propriedades de microdureza e rugosidade dos materiais, quando comparado com a lâmpada halógena.

REFERÊNCIAS BIBLIOGRÁFICAS:

- ANUSAVICE, K.J.; DEFREEST, C.E.; FERRACANE, J. et al. Resinas para restauração. IN: ______. Philips Materiais Dentários. 10 ed. Guanabara: Rio de Janeiro. Cap.12; p.161-177, 1996.
- ANUSAVICE, K.J. Phillps: *Materiais Dentários*. Rio de Janeiro: Elsevier Editora Ltda., 2005.
- ASMUSSEN, E. Restorative resins: hardness and strength vs. quantity of remaining double bonds. *Scand J Dent Res*, v.90-6, p.484-489, 1982.
- ASMUSSEN, E. Softening of BisGMA-based polymers by ethanol and by organic acids of plaque. *Scand J Dent Res*, v.92-3, p.257-261, 1994.
- BAYNE, S.C.; HEYMANN, H.O.; SWIFT, E.J. Update on dental composite restorations. *J Am Dent Assoc*, v.125, p.687-701, 1994.
- CEFALY, D.F.P.; FERRAREZI, G.A.O.; TAPETY, C.M.C.; LAURIS, J.R.P.; NAVARRO, M.F.L. Microhardness of resin-based materials polymerized with LED and halogen curing unites. *Braz Dent J*, v.16-2, p.98-102, 2005.
- CHUNG, K.H.; GREENER, E.H.; Correlation be tween degree of conversion, filler concentration and mechanical properties of posterior composite resins. *J Oral Rehabil*, v.17, p.487-494, 1990.
- DEWALD, J.P.; FERRACANE, J.L. A comparison of four modes of evaluating depth of cure of light-activated composites. *J Dent Res*, v.66-3, p.727-730, 1987.
- FERRACANE, J.L.; MARKER, V.A.; Solvent degradation and reduced fracture toughness in aged composites. *J Dent Res*, v.71, p.13-19, 1992.
- FOOD AND DRUG ADMINISTRATION, FDA Guidelines for chemistry and technology requirements of indirect additive petitions Washington DC: FDA March 1976.
- FRANCO, E.B.; LOPES, LG.; Conceitos atuais na polimerização de sistemas restauradores resinosos. *Biodonto*, v. 1-2, p. 10-61, 2003.
- FRIEDMAN, J.; HASSAN, R. Comparison study of visible curing lights and hardness of light-cured restorative materials. J Prosthet Dent, v.52, p.504-506, 1984.

- HOFMANN, N.; HUGO, B.; KLAIBER B. Effect of irradiation type (LED or QTH) on photo-activated composite shrinkage strain kinetics, temperature rise, and hardness, *European Journal of Oral Sciences*, v. 110, p. 471-479, 2002.
- KNOBLOCH, L.A.; KERBY, R.E.; CLELLAND, N.; LEE, J. Hardness and degree of conversion of posterior packable composites. *Oper Dent*, v.29-6, p.642-649, 2004.
- LARSEN, I.B.; MUNKSGAARD, E.C. Effect of human saliva on surface degradation of composite resins, *Scan J Dent Res*, v. 99, p. 254-261, 1999.
- MCKINNEY, J.E. Environmental damage and wear of dental composite restoratives, In Posterior Composite Resin Dental Restorative Materials Netherlands: Peter Szulc Publishing Co pp 331-347,1985.
- MILLS, R.W.; JANDT, K.D.; ASHWORTH, S.H. Dental composite depth of cure with halogen and blue light emitting diode technology, *British Dental Journal*, v.186, p. 338-391, 1999.
- NOMOTO, R. Effect of Wavelength on Polymerization of Light-cured Resins. Dent Mater J, v.16, p.60-73, 1997.
- PARK, S.H.; KIM, S.S.; CHO, Y.S.; LEE, S.Y.; NOH, B.D. Comparison of linear polymerization by plasma arc or conventional visible light curing. Oper Dent, v.20-4, p.461-467, 2005.
- PERIS, A.R.; MITSUI, F.H.O.; AMARAL, C.M.; AMBROSANO, G.M.B.; PIMENTA, L.A.F. The effect of composite type on microhardness when using quartz-tungsten-halogen (QTH) or LED units. *Oper Dent*, v.30-5, p.649-654, 2005.
- PRICE, R.B.T.; EHRNFORD, L.; ANDREOU, P.; FELIZ, C.A. Comparison of Quartz-Tungsten-Halogen, Light-emitting Diode, and Plasma Arc Curing Lights, J Adhes Dent, v.5, p.193-207, 2003.
- SOH, M.S.; YAP, A.U.J.; YU, T.; SHEN, Z.N. Analysis of the degree of conversion of LED and halogen lights using micro-Ramam spectroscopy. *Oper Dent*, v.29-5, p.571-577, 2004.
- STAHL, F.; ASHWORTH, S.H.; JANDT, K.D.; MILLS, R.W. Light-emitting diode (LED) polymerization of dental composites: flexural properties and polymerization potential, *Biomaterials*, v. 21, p. 1379-1385, 2000.

- ST-GEORGES, A.J.; SWIFT, E.J.; THOMPSON, J.Y.; HEYMANN, H.O. Curing light intensity effects on wear resisyence of two resin composites. *Oper Dent*, v.27, p.410-417, 2002.
- TSAI, P.C.L.; MEYERS, I.A.; WALSH, L.J. Depth of cure and surface microhardness of composite resin cured with blue LED curing lights, *Dental Materials*, v. 20, p. 364-369, 2004.
- VARGAS, M.A.; COBB, D.S.; SCHMIT J.L. Polymerization of composite resins: argon laser vs conventional light, *Operative Dentistry*, v. 23, p. 87-93, 1998.
- VOLTARELLI, F.R. Avaliação do efeito da indução de polimerização com diferentes fontes de luz e dos meios de envelhecimento sobre a microdureza de cilindros de resina composta [dissertação]. Piracicaba: UNICAMP/FOP; 2007.
- YAP, A.U.J.; LIM, L.Y.; YANG, T.Y., ALI, A.; CHUNG, S.M. Influence of dietary solvents on strength of nanofill and ormocer composites, *Oper Dent*, v. 30-1, p. 129-133, 2000.
- YAP, A.U.J.; WEE, K.E.C., TEOH, S.H.; CHEW, C.L. Influence of thermal cycling on OCA wear of composite restoratives, *Operative Dentistry*, v. 26, p.349-356, 2001.
- YAP, A.U.J.; SOH, M.S. Curring efficacy of new generation high-power LED lamp. Oper Dent, v. 30-6, p. 758-763, 2005.
- YOON, T.H.; LEE, Y.K.; LIM, B.S.; KIM, C.W. Degree of polymerization of resin composites by different light sources, *Journal of Oral Rehabilitation*, v. 29, p.1165-1173, 2002.

ANEXOS:

Anexo 1: Análise estatística para avaliação dos dados obtidos no teste

de rugosidade superficial Ra.

```
D.KELLY
OBSERVATIONS (N=120): all
ANALYSIS: Multiple regression and ANOVA
RESPONSE: ra_depois
FACTORS: ra_antes aparelho material solucao rep CLASSES: aparelho material solucao rep
         RA_ANTES, APARELHO, APARELHO*REP, MATERIAL,
Model:
   APARELHO*MATERIAL, APARELHO*MATERIAL*REP, SOLUCAO,
APARELHO*SOLUCAO,
   MATERIAL*SOLUCAO, APARELHO*MATERIAL*SOLUCAO
USER-EXCLUDED OBSERVATIONS: none
ASSUMPTIONS VIOLATED:
   Response scaling
   Outliers
   Constant variance
   Influential observations
INTERPRETATION:
   There is strong statistical evidence that the explanatory variables
in
   the model are related to the expected value of ra_depois. However,
some
   of the assumptions underlying the analysis are violated. Please
explore
   the assumptions in detail.
----
  Specify powers: [ 1 TO 3 BY 0.1
L
                                                            1
                                                      Recalculate
                                                               Power
                                                    Optimal:
                                                               2.3
1
1
                                                 To be used: [ 2.3
1
    _____
----+
Optimal Power Transformation
The optimal power transformation analysis suggests that the power 2.3
of ra_depois may be more easily modeled.
D. KELLY
OBSERVATIONS (N=120): all
ANALYSIS: Multiple regression and ANOVA
RESPONSE: ra_depois**2.3
FACTORS: ra_antes aparelho material solucao rep
CLASSES: aparelho material solucao rep
         RA_ANTES, APARELHO, APARELHO*REP, MATERIAL,
Model:
  APARELHO*MATERIAL, APARELHO*MATERIAL*REP, SOLUCAO,
APARELHO*SOLUCAO,
  MATERIAL*SOLUCAO, APARELHO*MATERIAL*SOLUCAO
```

USER-EXCLUDED OBSERVATIONS: none ASSUMPTIONS VIOLATED: Influential observations INTERPRETATION: There is strong statistical evidence that the explanatory variables in the model are related to the expected value of ra_depois**2.3. However, some of the assumptions underlying the analysis are violated.

Please

explore the assumptions in detail.

Potential influential observations: Abs(Dffits) > 2

				Standard
				influence
Observation		Rugosidade		on predicted
number	ra_depois	antes	Aparelho	value
Leverage				
17	0.10802	0.14	Halógena	2.11811
0.47740				
35	0.09539	0.36	Halógena	2.44539
0.50590				
38	0.08364	0.24	Halógena	2.68474
0.40235				
T (1)	-1			

Influential Observations

3 observations qualify as influential by exceeding a DFFITS statistic value of +/-2. The results of the analysis may depend too much upon these observations.

The GLM Procedure

	Class L	evel Information
Class	Levels	Values
aparelho	2	Halógena LED
material	3	Supreme TPH3 Z250
solucao	4	Heptano Ác.Cítrico Água

Álcool

Number of Observations Read 120 Number of Observations Used 120

Dependent Variable: tra_depois ra_depois**2.3

		Soma de	quadrados
Causa de variação	DF	quadrados	médios
Valor F Pr > F			
ra_antes	1	0.06777546	0.06777546
220.12 <.0001			
aparelho	1	0.02118536	0.02118536
28.70 0.0331			
Resíduo (A)	2	0.00147636	0.00073818
2.40 0.0968			
material	2	0.00075011	0.00037506
0.95 0.4587			
aparelho*material	2	0.01500961	0.00750481
19.07 0.0090			
Resíduo (B)	4	0.00157428	0.00039357
1.28 0.2846			
solucao	3	0.00830249	0.00276750
8.99 <.0001			
aparelho*solucao	3	0.00657612	0.00219204
7.12 0.0002			
material*soluca0	6	0.00440352	0.00073392
2.38 0.0350			
aparel*materi*soluca	6	0.00178222	0.00029704
0.96 0.4538			
Residuo (C)	89	0.02740294	0.00030790
Total corrigido	119	0.15623847	
R-Square Coeff Var	Root MSE	tra_depois M	ean
0.824608 19.36174	0.017547	0.090	627

Least Squares Means Adjustment for Multiple Comparisons: Tukey-Kramer

Standard Errors and Probabilities Calculated Using the Type I MS for rep*aparelh*material

as an Error Term

aparelho	material	tra_depois LSMEAN	LSMEAN Number
Halógena	Supreme	0.05986775	1
Halógena	трн3	0.09557238	2
Halógena	Z250	0.05499607	3
LED	Supreme	0.12038536	4
LED	TPH3	0.10130340	5
LED	z250	0.11163913	6

Dependent Variable: tra_depois

i/j	1	2	3	4
5	6			
1	0.0116	0.0557	0.9582	0.0111
2	0.0116		0.0363	0.0918
0.9276	0.9582	0.0363		0.0083
0.0303 4	0.0083 0.0111	0.0918	0.0083	
0.1887 5	0.7606 0.0443	0.9276	0.0303	0.1887
0.6536	0 0116	0 2952	0 0083	0 7606
0.6536	0.0110	0.2952	0.0000	0.,000

The GLM Procedure Least Squares Means Adjustment for Multiple Comparisons: Tukey-Kramer

		tra_depois	LSMEAN
aparelho	soluçao	LSMEAN	Number
Halógena	Heptano	0.06300533	1
Halógena	Ác.Cítrico	0.07262604	2
Halógena	Água	0.06943847	3
Halógena	Álcool	0.07551175	4
LED	Heptano	0.11725794	5
LED	Ác.Cítrico	0.10804213	6
LED	Água	0.08907053	7
LED	Álcool	0.13006657	8

Least Squares Means for effect aparelho*solucao Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: tra_depois

i/j	1	2	3	4	5	б
7	8					
			0.0704	0 5550	. 0001	. 0001
1		0.8050	0.9/34	0.5552	<.0001	<.0001
0.0159	<.0001					
2	0,8050		0.9997	0.9998	<.0001	<.0001
0.3389	<.0001					
3	0.9734	0.9997		0.9814	<.0001	<.0001
0.1233	<.0001					
4	0.5552	0.9998	0.9814		<.0001	0.0001
0.4911	<.0001					
5	<.0001	<.0001	<.0001	<.0001		0.8394
0.0008	0.5062					
6	<.0001	<.0001	<.0001	0.0001	0.8394	
0.0736	0.0200					
7	0.0159	0.3389	0.1233	0.4911	0.0008	0.0736
<.0001						
8	<.0001	<.0001	<.0001	<.0001	0.5062	0.0200
<.0001						

The GLM Procedure Least Squares Means Adjustment for Multiple Comparisons: Tukey-Kramer

material	solucao	tra_depois LS M EAN	LSMEAN Number
Supreme	Heptano	0.09834305	1
Supreme	Ác.Cítrico	0.08486570	2
Supreme	Água	0.06753334	3
Supreme	Álcool	0.10976412	4
TPH3	Heptano	0.08926804	5
трнз	Ác.Cítrico	0.10300438	6
TPH3	Água	0.09488861	7
TPH3	Álcool	0.10659053	8
Z250	Heptano	0.08278381	9
Z250	Ác.Cítrico	0.08313219	10
Z250	Água	0.07534155	11
2250	Álcool	0.09201283	12

Least Squares Means for effect material*solucao Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: tra_depois

i/j	1	2	3	4
5	6			
-		0 0 7 0 0	0 0100	0 0501
1	1 0000	0.8702	0.0122	0.9501
0.9910	1.0000		0 5400	0 0050
1 0000	0.8702		0.5488	0.0852
1.0000	0.5101	o E 100		
3	0.0122	0.5488		<.0001
0.2680	0.0017			
4	0.9501	0.0852	<.0001	
0.3097	0.9994			
5	0.9910	1.0000	0.2680	0.3097
0.8410				
6	1.0000	0.5101	0.0017	0.9994
0.8410				
7	1.0000	0.9901	0.0878	0.8181
0.9999	0.9972			
8	0.9967	0.3209	0.0010	1.0000
0.5656	1.0000			
9	0.7661	1.0000	0.7349	0.0509
0.9998	0.3915			
10	0.7434	1.0000	0.7058	0.0454
0.9998	0.3507			
11	0.1679	0.9865	0.9975	0.0019
0.8571	0.0383	-		-
12	0.9998	0.9989	0.0953	0.5390
1 0000	0.9711	0		

Least Squares Means for effect material*solucao Pr > (t) for H0: LSMean(i)=LSMean(j)

Dependent Variable: tra_depois

i/j	7	8	9	10
11 .	12			
_				40 -
1	1.0000	0.9967	0.7661	0.7434
0.1679	0.9998			
2	0.9901	0.3209	1,0000	1.0000
0.9865	0.9989			
3	0.0878	0.0010	0.7349	0.7058
0.9975	0.0953			
4	0.8181	1.0000	0.0509	0.0454
0.0019	0.5390			
5	0.9999	0.5656	0.9998	0.9998
0.8571	1.0000			
6	0.9972	1.0000	0.3915	0.3507
0.0383	0.9711			
7		0.9394	0,9718	0.9609
0.5007	1.0000			
8	0.9394		0.2638	0.1915
0.0196	0.8832			
9	0.9718	0.2638		1.0000
0.9985	0.9896			
10	0.9609	0.1915	1.0000	
0.9975	0.9931			
11	0.5007	0.0196	0.9985	0.9975
0.6134				
12	1.0000	0.8832	0,9896	0.9931
0 6134				

The GLM Procedure Least Squares Means

Pr > t	aparelho	material	tra_depois LSMEAN	Standard Error
< 0.001	Halógena	Supreme	0.05986775	0.00484006
< 0001	Halógena	TPH3	0.09557238	0.00411312
< 0001	Halógena	Z250	0.05499607	0.00484006
<.0001	LED	Supreme	0.12038536	0.00439824
<.0001	LED	трн3	0.10130340	0.00446834
<.0001	LED	Z250	0.11163913	0.00393574
<.0001				
Limits	aparelho	material	tra_depois LSMEAN	95% Confidence
0.000405	Halógena	Supreme	0.059868	0.050251
0.069485	Halógena	ТРНЗ	0.095572	0.087400
0.103745	Halógena	Z250	0.054996	0.045379
0.064613	LED	Supreme	0.120385	0.111646
0.129125	LED	трнз	0.101303	0.092425
0.110182	LED	2250	0.111639	0.103819
0.119459				
Pr > t	aparelho	solucao	tra_depois LSMEAN	Standard Error
< 0001	Halógena	Heptano	0.06300533	0.00497659
< 0001	Halógena	Ác.Cítrico	0.07262604	0.00489689
< .0001	Halógena	Água	0.06943847	0.00475897
<.0001	Halógena	Álcool	0.07551175	0.00456247
<.0001	LED	Heptano	0.11725794	0.00492456
<.0001	LED	Ác.Cítrico	0.10804213	0.00473750
<.0001	LED	Água	0.08907053	0.00484935
<.0001	LED	Álcool	0.13006657	0.00461304
<.0001				

Limits	aparelho	solucao	tra_depois LSMEAN	95% Confidence
0.070004	Halógena	Heptano	0.063005	0.053117
0.072894	Halógena	Ác.Cítrico	0.072626	0.062896
0.082356	Halógena	Água	0.069438	0.059983
0.0/8894	Halógena	Álcool	0.075512	0.066446
0.084577	LED	Heptano	0.117258	0.107473
0.127043	LED	Ác.Cítrico	0.108042	0.098629
0.11/455	LED	Água	0.089071	0.079435
0.098706	LED	Álcool	0.130067	0.120901
0.139233				

Estatísticas Básicas

The MEANS Procedure

Analysis Variable : ra_depois Rugosidade depois

		N			Upper
95% Lo	wer 95%				
Aparelho	Material	Obs	Mean	Std Dev	CL for
Mean CL	for Mean		--- -		
		20	0.0750000	0.0474064	
0.2971869	0.2528131	20	0.2750000	0.04/4064	
0 3782677	TPH3	20	0.3630000	0.0326222	
0.5702077	Z250	20	0.2620000	0.0533706	
0.2869782	0.2370218				
LED	Supreme	20	0.4020000	0.0418770	
0.4215990	0.3824010				
	TPH3	20	0.3765000	0.0181442	
0.3849917	0.3680083				
	Z250	20	0.3845000	0.0356112	
0.4011666	0.3678334		L		
	=				

Analysis Variable : ra_depois Rugosidade depois

		N			Upper
95% Lo	ower 95%				
Aparelho	Solução	Obs	Mean	Std Dev	CL for
Mean CL	for Mean				
Halógena 0.3156605	Heptano 0.2523395	15	0.2840000	0.0571714	
0.3378188	Ác.Cítrico 0.2715146	15	0.3046667	0.0598649	
0 3353956	Água 0 2606044	15	0.2980000	0.0675278	
0 3528073	Álcool	15	0.3133333	0.0712808	
0.0020070	0.2130333				
LED 0.4153940	Heptano 0.3819393	15	0.3986667	0.0302056	
0.3999028	Ác.Cítrico 0 3667639	15	0.3833333	0.0299205	
0.3650707	Água	15	0.3553333	0.0192230	
0.3033/8/	0.3446880 Álcool	15	0.4133333	0.0296808	
0.4297700	0.3968966				
		-		-	

95% Lower 95%

Ν

Upper

Material Mean CL	Solução for Mean	Obs	Mean	Std Dev	CL for
Supreme 0.4116173	Heptano 0.3043827	10	0.3580000	0.0749518	
n 37979n3	Ác.Cítrico	10	0.3300000	0.0696020	
	Água	10	0.2950000	0.0698013	
0.3449328	0.2450672 Álcool	10	0.3710000	0.0851730	
0.4319291	0.3100709				
TPH3	Heptano 0 3259224	10	0.3520000	0.0364539	
0.5/00//0	Ác.Cítrico	10	0.3740000	0.0206559	
0.3887763	0,3592237 Água	10	0.3680000	0.0161933	
0.3795840	0.3564160 Álcool	10	0.3850000	0.0222361	
0.4009068	0.3690932				
2250 0.3827967	Heptano 0.2452033	10	0.3140000	0.0961711	
0 2003203	Ác.Cítrico	10	0.3280000	0.0731513	
0.0000290	6.2750707 Água	10	0.3170000	0.0464399	
0.3502211	0.2837789 Álcool	10	0.3340000	0.0911897	
0.3992332	0.2687668	~~			~

ANEXO 2: Análise estatística para avaliação dos dados obtidos no teste

de microdureza knoop.

```
D. KELLY
OBSERVATIONS (N=120): all
ANALYSIS: Multiple regression and ANOVA
RESPONSE: khn_depois
FACTORS: aparelho material solucao rep khn_antes
CLASSES: aparelho material solucao rep khn_antes
         KHN_ANTES, APARELHO, APARELHO*REP, MATERIAL,
Model:
   APARELHO*MATERIAL, APARELHO*MATERIAL*REP, SOLUCAO,
APARELHO*SOLUCAO,
  MATERIAL*SOLUCAO, APARELHO*MATERIAL*SOLUCAO
USER-EXCLUDED OBSERVATIONS: none
ASSUMPTIONS VIOLATED:
   Response scaling
   Influential observations
   Confounded effects
INTERPRETATION:
   There is weak statistical evidence that the explanatory variables
in the
  model are related to the expected value of khn_depois. However,
some of
  the assumptions underlying the analysis are violated. Please
explore the
  assumptions in detail.
+LAB: Optimal Power Transformation-----
 Specify powers: [ -2 TO 0 BY 0.1
                                                            1
                                                      Recalculate
                                                               Power
                                                    Optimal:
                                                               -0.8
                                                 To be used: [ 0
    1
+----
                       _______
----+
```

Optimal Power Transformation

The optimal power transformation analysis suggests that the power -0.8 of khn_depois may be more easily modeled; however, this transformation is not appreciably better than its logarithm.

D.KELLY OBSERVATIONS (N=120): all ANALYSIS: Multiple regression and ANOVA RESPONSE: LOG10(khn_depois) FACTORS: aparelho material solucao rep khn_antes CLASSES: aparelho material solucao rep khn_antes Model: KHN_ANTES, APARELHO, APARELHO*REP, MATERIAL, APARELHO*MATERIAL, APARELHO*MATERIAL*REP, SOLUCAO, APARELHO*SOLUCAO, MATERIAL*SOLUCAO, APARELHO*MATERIAL*SOLUCAO USER-EXCLUDED OBSERVATIONS: none ASSUMPTIONS VIOLATED: Influential observations Confounded effects INTERPRETATION: There is weak statistical evidence that the explanatory variables in the model are related to the expected value of LOGI0(khn_depois). However, some of the assumptions underlying the analysis are violated. Please explore the assumptions in detail.

Observation number	khn_ depois	Aparelho	Material	Standard influence on predicted value
2	1.89900	Halógena	Supreme	-3.0703
0.89140 4	1.88615	Halógena	Supreme	12,2132
0.97034 11	1.87344	Halógena	Supreme	5.6050
0.94800	1.77815	Ha].ógena	Supreme	3.3639
13	1.78569	Halógena	Supreme	-3.3118
14 0 91607	1.77815	Halógena	Supreme	-4.7028
16 0 88011	1.74139	Halógena	Supreme	-2.6180
18 0 92004	1.89900	Halógena	Supreme	7.4483
21 0.91607	2.00945	Halógena	Z250	4.7028
22 0,94800	1.99003	Halógena	Z250	-5.6050
29 0.94800	1.91206	Halógena	Z250	5.6050
30 0.94800	1.84862	Halógena	Z250	-5.6050
34 0.91607	1.89900	Halógena	Z250	-4.7028
35 0.91607	1.96638	Halógena	Z250	4.7028
36 0.91607	1.81657	Halógena	2250	-4.7028
37 0.94800	1.84862	Halogena	220U	5.6050
42 0.85614	1 20020	Halógena	TPHS	-2 8844
43 0.85165 44	1.87760	Halógena	трнз	2,4562
0.92065	1.77815	Halógena	ТРНЗ	-2,0639
0.78643 46	1.74500	Halógena	TPH3	-2.3567
0.79612 47	1.81271	Halógena	TPH3	-2.8557
0.81645 48	1.87344	Halógena	трнз	2.8844
0.85165 50	1.94325	Halógena	TPH3	3.8708
0.83840 59	1.79720	Halógena	TPH3	-2.4562
0.92065 66	1.86094	LED	Supreme	5,6050
0.94800				

Potential influential observations: Abs(Dffits) > 2

67	1.94792	LED	Supreme	4.0017
70	1.75228	LED	Supreme	-2 4620
0.77731				5,1020
72	1.77444	LED	Supreme	-3.2293
0.81404				
76	1.77444	LED	Supreme	-4.0173
0.86339	1 75000		-	÷
0 89214	1.75228	TED.	Supreme	3.9185
81	1 91640	LED	2250	-3 2652
0.86291	1,91010		2200	3.2002
82	1.74500	LED	Z250	-5.4045
0.81405				
84	1.86929	LED	Z250	3.0542
0.79256				
ζζ Λ 0/021	1.92091	LED	2250	2.5822
86	1 87760	LED	2250	2 3282
0.83829	1.07700			2.5202
87	1.90331	LED	Z250	3.2291
0.89294				
88	1.87344	LED	Z250	-4.0017
0.87534				
0 00014	1.88615	LED	2250	-3.9185
0.89Z14 91	1 89900	LED	7250	5 9026
0.88645	1.00000		0230	5.5020
94	1.94792	LED	Z250	-3.1036
0.76941				
96	1.76693	LED	Z250	-3.9797
0.85892				
0 06220	1.87760	LED	2250	4.0173
104	1,78951	LED	ТРИЗ	3,4826
0.93066	1.,0001	1000		5.1020
119	1.67879	LED	TPH3	-3.4826
0.93066				

Influential Observations

45 observations qualify as influential by exceeding a DFFITS statistic value of +/-2. The results of the analysis may depend too much upon these observations.

The GLM Procedure

Class Level Information

Class	Levels	Values
aparelho	2	Halógena LED
material	3	Supreme TPH3 Z250
solucao	4	Heptano Ác.Cítrico Água

Álcool

Number	of	Observations	Read	120
Number	of	Observations	Used	120

Análise de variância com co-variável

The GLM Procedure

		soma de	quadrados	
Causa de variação	DF	quadrados	médios	
Valor F Pr > F		•		
ra antes	}	0 70509010	0.70509010	-
12_ances	1	0.10000040	0.,0305010	
	1	0 2251 2731	0 22512731	
apareino 6 20 0 1275	T	0.22012/01	0.22512751	
6.56 0.1275		0.07050110		
Residuo (A)	2	0.07059113	0.03529557	
2.37 0.0998				
material	2	0.42350760	0.21175380	
9.64 0.0295				
aparelho*material	2	0.08169054	0.04084527	
1.86 0.2686				
Residuo (B)	4	0.08790153	0.02197538	
1.47 0.2173				
solucao	3	1.18593664	0.39531221	-
26.49 <.0001				
aparelho*solucao	3	0.19761167	0.06587056	
4.41 0.0061				
material*solucao	6	0.13518558	0.02253093	
1 51 0.1841	-			
anarel*materi*soluca	6	0.13486172	0.02247695	
1 51 0 1853	ů.	0010100170		
<u> </u>	00	1 20001500	0 01402277	-
	0.9	1.32621303	0.01492577	
Total corrigido	119	4.57571892		
R-Square Coeff Var	Root MSE	tkhn_depois	Mean	
0.709725 2.900275	0.122163	4.21	2112	

Dependent Variable: tkhn_depois

The GLM Procedure Least Squares Means Adjustment for Multiple Comparisons: Tukey-Kramer

Standard Errors and Probabilities Calculated Using the Type I MS for rep*aparelh*material

as an Error Term

material	tkhn_depois LSMEAN	LSMEAN Number
Supreme	4.20755856	1
TPH3	4.12958676	2
Z250	4.29919189	3

Least Squares Means for effect material Pr > {t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: tkhn_depois

i/j	1	2	3
1		0.2190	0.1061
2	0.2190		0.0288
3	0.1061	0.0288	

The GLM Procedure Least Squares Means Adjustment for Multiple Comparisons: Tukey-Kramer

solucao	tkhn_depois LSMEAN	LSMEAN Number
Heptano	4.26151715	1
Ác.Cítrico	4.24628251	2
Água	4.36622883	3
Álcool	4.14140469	4
Heptano	4.26422432	5
Ác.Cítrico	4.22694933	6
Água	4.24098542	7
Álcool	3.94930697	8
	solucao Heptano Ác.Cítrico Água Álcool Heptano Ác.Cítrico Água Álcool	tkhn_depoissolucaoLSMEANHeptano4.26151715Ác.Cítrico4.24628251Água4.36622883Álcool4.14140469Heptano4.26422432Ác.Cítrico4.22694933Água4.24098542Álcool3.94930697

Least Squares Means for effect aparelho*solucao Pr > [t] for H0: LSMean(i)=LSMean(j)

Dependent Variable: tkhn_depois

i/j	1	2	3	4	5	6
7	8					
			0.0045		1 0000	
1	< 0001	1.0000	0.2865	0.1390	1.0000	0.9950
0.99990	<.0001		0 1540	0.0000	0 0000	0 0000
1 0000	2.0000		0.1360	0.2009	0.9999	0.3333
1.0000	0.0001	0 1569		< 0001	0 3130	0 0739
0 1075	<pre>0.2803</pre>	0.1000		1.0001	0.0100	0.0735
4	0 1390	0 2889	< 0001		0.1213	0.5884
0.3539	0.0012	0.2005			0,1210	0.000
5	1,0000	0.9999	0.3130	0.1213		0.9929
0.9995	<.0001					
6	0.9950	0.9999	0.0739	0.5884	0.9929	
1.0000	<.0001					
7	0.9998	1.0000	0.1075	0.3539	0.9995	1.0000
<.0001						
8	<.0001	<.0001	<.0001	0.0012	<.0001	<.0001
<.0001						

The GLM Procedure Least Squares Means

t	material	tkhn_depois LSMEAN	Standard Error	Pr >
. 0001	Supreme	4.20755856	0.01979431	
<.0001	TPH3	4.12958676	0.02245764	
<.0001	Z250	4.29919189	0.02058950	

	material	tkhn_depois LSMEAN	95% Confidence Limits	3
4 046000	Supreme	4.207559	4.168228	
4.240009	TPH3	4.129587	4.084964	
4.340103	Z250	4.299192	4.258281	

Pr > t	aparelho	solucao	tkhn_depois LSMEAN	Standard Error
< 0001	Halógena	Heptano	4.26151715	0.03156231
< 0001	Halógena	Ác.Cítrico	4.24628251	0.03202950
<.0001	Halógena	Água	4.36622883	0.03171975
<.0001	Halógena	Álcool	4.14140469	0.03154390
<.0001	LED	Heptano	4.26422432	0.03161800
<.0001	LED	Ác.Cítrico	4.22694933	0.03370429
<.0001	LED	Água	4.24098542	0.03213635
<.0001	LED	Álcool	3.94930697	0.03221758
<.0001				

Limits	aparelho	solucao	tkhn_depois LSMEAN	95% Confidence
4 224221	Halógena	Heptano	4.261517	4.198804
4.324231	Halógena	Ác.Cítrico	4.246283	4.182641
4.309924	Halógena	Água	4.366229	4.303202

1 20/082	Halógena	Álcool	4.141405	4.078728
4.204002	LED	Heptano	4.264224	4.201400
4.027049	LED	Ác.Cítrico	4,226949	4.159980
4.293919	LED	Água	4.240985	4.177131
4.304840	LED	Álcoo l	3.949307	3.885291
4 013323				

Estatísticas Básicas

The MEANS Procedure

Analysis Variable : khn_depois KHN depois

	N			Upper 95%
Lower 95% Material CL for Mean	Obs	Mean	Std Dev	CL for Mean
Supreme	40	68.7830000	11.0136361	72.3053317
65.2606683				
TPH3	40	61.3342500	10.3888799	64.6567750
58.0117250				
Z250	40	76.2222500	14.1905396	80.7606047
71.6838953				
~~~		<b>--</b>	<b></b>	

_____

		N			Upper
95% Lor	wer 95%				
Aparelho	Solução	Obs	Mean	Std Dev	CL for
Mean CL :	for Mean				
Halógena 75.8954061	Heptano 66.5112606	15	71.2033333	8.4727864	
77.4893689	Ác.Cítrico 62.8439644	15	70.1666667	13.2230884	
89 9845285	Água 71 6394715	15	80.8120000	16.5634422	
	Álcool	15	63.5986667	9.5018103	
68.8000938	58.336/395				
LED 76.6967311	Heptano 67.2459355	15	71.9713333	8.5329637	
76.5086298	Ác.Cítrico 59.9220368	15	68.2153333	14.9757546	
75 8520760	Água	15	71.0213333	8.7249993	
10.000109	Álcool	15	53.2500000	8.0265737	
57.6949684	48,8050316				



62