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Estat́ıstica e Computação Cient́ıfica da Univer-
sidade Estadual de Campinas como parte dos
requisitos exigidos para a obtenção do t́ıtulo de
Doutor em Matemática.
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Resumo

Nesta tese, estudamos a controlabilidade e estabilização das equações de Benjamin e

Intermediate Long Wave (ILW) num domı́nio periódico.

A primeira parte deste trabalho envolve a equação de Benjamin derivada por Benjamin em

[12] que modela a propagação unidirecional de ondas longas num sistema de dois fluidos

onde o fluido inferior com maior densidade é infinitamente profundo e a interface está

sujeita a capilaridade. Primeiramente, estudaremos a controlabilidade e estabilidade do

sistema linear não homogêneo associado à equação de Benjamin. Provamos a existência e

unicidade das soluções para este sistema via teoria de semigrupos. Depois, usamos o método

clássico do momento (veja [79]) para mostrar que o sistema linear é globalmente exatamente

controlável e consequentemente obter um resultado de estabilização exponencial com uma

taxa de decaimento arbitraria.

Em seguida, derivamos a propriedade de propagação de compacidade, propagação de

regularidade e a propriedade de continuação única para a equação de Benjamin em

espaços de Bourgain associado. Usamos essas propriedades para provar um resultado

de estabilidade global assintótica com uma taxa de decaimento arbitraria. Finalmente,

obtemos un resultado de controlabilidade global para a equação de Benjamin.

A segunda parte de este trabalho se concentra nas propriedades de controlabilidade e

estabilização da equação ILW, que modela ondas dispersivas não lineares de amplitude

moderada na interface entre dois fluidos de diferentes densidades positivas contidos em

repouso num canal longo com uma parte superior e inferior horizontal, o fluido mais leve

formando uma camada horizontal acima de uma camada da mesma profundidade do fluido

mais pesado. Nós provamos que a equação ILW com condições de fronteira periódicas é

exatamente controlável e exponencialmente estabilizável. Especificamente, incorporamos

uma lei de feedback na forma de amortecimento localizado na equação para estabelecer

um efeito regularizante. Usando este efeito regularizante e propriedades de propagação de

regularidade e continuação única, conseguimos demonstrar a estabilização semi-global no

espaço de Sobolev L2
0pTq de soluções fracas obtidas pelo método de vanishing viscocity.

Também, estabelecemos a boa colocação local e a estabilidade exponencial local em Hs
0pTq

com s ą
1
2 . Finalmente, a controlabilidade exata local em Hs

0pTq, com s ą
1
2 , é derivada

combinado a lei de feedback acima com um controle de malha aberta. Esses resultados são

semelhantes aos obtidos por Linares e Rosier [59] para a equação de BO.

Palavras-chave: Equações Dispersivas; Equação de Benjamin; Equação Intermediate

Long Wave; Espaços de Sobolev; Boa-colocação local e global; Controle; Estabilização;

Propriedade de continuação única.



Abstract

In this thesis, we study the controllability and stabilization of Benjamin and Intermediate

Long Wave (ILW) equations on a periodic domain.

In the first part of this work we consider the Benjamin equation derived by Benjamin in [12].

This model describes the unidirectional propagation of long waves in a two-fluid system

where the lower fluid with greater density is infinitely deep and the interface is subject to

capillarity. First we deal with the controllability and stabilization of the nonhomogenous

linear system associated to the Benjamin equation. We obtain the existence and uniqueness

of solutions of this system via semigroup theory. Then, we use the classical moment method

(see [79]) to show that the linear system is globally exactly controllable, and consequently

to get a global exponential stabilization result with an arbitrary decay rate.

Next, we derive propagation of compactness, the propagation of smoothness and the unique

continuation property for the nonlinear Benjamin equation in associated Bourgain’s spaces

in the periodic setting. We use these properties to obtain the global exponential stability

with a natural feedback law and an arbitrary decay rate. Finally, we also obtain the global

controllability result for the Benjamin equation.

The second part of this work we focus on the controllability and the stabilization properties

of the ILW equation which models nonlinear dispersive waves of moderate amplitude on

the interface between two fluids of different positive densities contained at rest in a long

channel with a horizontal top and bottom, the lighter fluid forming a horizontal layer above

a layer of the same depth of the heavier fluid. We prove that the ILW equation with periodic

boundary conditions is exactly controllable and exponentially stabilizable. Specifically, we

incorporate a feedback law in the form of localized damping into the equation to establish

a smoothing effect. Using this smoothing effect together with the propagation of regularity

property and the unique continuation property we show the semi-global stabilization in

L2
pTq of weak solutions obtained by the method of vanishing viscosity. The local-well

posedness and the local exponential stability in Hs
0pTq with s ą

1
2 is also established

using the contraction mapping theorem. Finally, the local exact controllability is derived

in Hs
0pTq with s ą

1
2 by combining the above feedback law with some open-loop control.

These results are similar to the ones obtained by Linares and Rosier [59] for the BO.

Keywords: Dispersive equation; Benjamin equation; Intermediate Long Wave Equa-

tion; Sobolev spaces; local and Global Well-posedness; Control; Stabilization; Unique

continuation property.
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differentiable.
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´type, 24.
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Introduction

A control system is a dynamical system on which one can act by using suitable

controls. There are a lot of problems that appear when studying controls systems. The

most common ones are the controllability problem and stabilization problem. In control

theory, some nonlinear evolution equations that arise in physics (electron-plasma, ion

field interaction, electromagnetic waves, gravitational waves, optical fibres etc.) or in fluid

dynamics and water wave theory can be formulated in the following abstract form

ut “ Aptqu` F ptqphq, (0.0.1)

where h is a so-called control function in a suitable space. Therefore, roughly speaking,

the controllability problem consists in finding an appropriate control input F ptqphq to

guide the system (0.0.1) from a given initial state u0 to a given terminal state u1. On the

other hand, assuming that we have an equilibrium which is unstable without an use of the

control, the following question arises: can one construct a feedback control law F ptqpuq

which stabilizes the equilibrium? So the problem of stabilization consists in the existence

and construction of such stabilizing feedback law for a given control system (see [23] and

the references therein). More precisely, the following control and stabilization problems

are fundamental in control theory:

• Exact control problem. Let T ą 0. Given an initial state u0 and a terminal state

u1 in a certain space, can one find an appropriate control input f “ F ptqphq so that

the equation (0.0.1) admits a solution u which satisfies up¨, 0q “ u0 and up¨, T q “ u1?

• Stabilization problem. Can one find a feedback law f “ F ptqu so that the resulting

closed-loop system

ut ` Aptqu “ F ptqu t P R, (0.0.2)

is asymptotically stable as t ÝÑ 8?

Control and stabilization of dispersive equations have been widely studied in the literature,

see [53, 55, 59, 52, 79, 80, 81, 30, 51, 74, 75] and references therein. In particular, for the
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Korteweg-de Vries (KdV) equation we refer to [52, 80, 81, 90, 72, 24, 61, 73] and for the

Benjamin-Ono (BO) equation we refer to [53, 55, 59] and the references therein.

In this thesis, we address some questions about the controllability and stabi-

lization of the Benjamin and the Intermediate Long Wave (ILW) equations posed on a

periodic domain. Both equations are of a dispersive type and appear in different physical

contexts. In what follows, we summarize some results known in the literature for these

equations.

The Benjamin equation can be written as

Btu´ αHB2
xu´ B

3
xu` Bxpu

2
q “ 0, x P R, t P R, (0.0.3)

where u “ upx, tq denotes a real-valued function, α is a positive real number, and H
denotes the Hilbert transform defined by

Hpfqpxq “ 1
π
p.v.

ż

fpx´ yq

y
dy. (0.0.4)

The Benjamin equation (0.0.3) is an integro-differential equation that serves

as a generic model for unidirectional propagation of long waves in a two-fluid system

where the lower fluid with greater density is infinitely deep and the interface is subject to

capillarity. It was derived by Benjamin in [12] to study gravity-capillarity surface waves of

solitary type on deep water. He also showed that solutions of the equation (0.0.3) satisfy

the conserved quantities,

I1puq “
1
2

ż

R
u2
px, tq dx, (0.0.5)

and

I2puq “

ż

R

„

1
2pBxuq

2
px, tq ´

α

2 upx, tqHBxupx, tq ´
1
3u

3
px, tq



dx. (0.0.6)

We refer to [12] and the references therein for more details about this physical model. Here,

we present a brief review of some results obtained for the Benjamin equation. Several works

have been devoted to study the existence, stability and asymptotic properties of solitary

waves solutions of (0.0.3), see for instance [3, 6, 12, 17]. The well-posedness of the initial

value problem (IVP) associated to the Benjamin equation on Hs
pRq has been extensively

studied for many years, see [47, 18, 85, 57, 58]. The best known global well-posedness

result in L2
pRq is due to Linares [57]. There are further improvements of this result, viz.,

local well-posedness in Hs
pRq for s ě ´

3
4 [18].

The Benjamin equation posed on a periodic spatial domain T :“ R{p2πZq is

also widely studied in the literature. Linares [57] proved the global well-posedness in L2
pTq,

and Shi and Junfeng [85] proved local well-posedness in Hs
pTq for s ě ´

1
2 .
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In this work, we are interested in considering the Benjamin equation posed on

a periodic domain,

Btu´ αHB2
xu´ B

3
xu` Bxpu

2
q “ 0, x P T, t P R, (0.0.7)

where H denotes the Hilbert transform defined by

Hpfqpxq “ 1
2πp.v.

ż 2π

0
fpx´ yq cot

´y

2

¯

dy, @x P T. (0.0.8)

Note that the conserved quantities (0.0.5)-(0.0.6) hold in the periodic case as well. Our aim

is to study the equation (0.0.7) in the context of control theory by adding a control term

f “ fpx, tq. Such control f will be allowed to act only on a small subset of the domain T.
This situation includes more cases of practical interest and is therefore more relevant in

general. The Benjamin equation (0.0.7) contains both the third order local term ´B
3
xu, as

in the KdV equation, and the second order nonlocal term ´αHB2
xu, as in the BO equation.

So, it is natural to analyze the Benjamin equation from the control and stabilization point

of view and check whether it behaves in similar way as the KdV and BO equations. In

this regard, our study is inspired by the works of Linares and Ortega [55], Russell and

Zhang [81], and Laurent, Rosier and Zhang [52].

We start studying the controllability and stabilization of the linearized Benjamin

equation. Using the classical moment method, and a generalization of the Ingham theorem,

we show that the linearized Benjamin equation with periodic boundary conditions is

exactly controllable for any time T ą 0 with some control h P L2
pr0, T s;Hs

ppTqq, s ě 0.
We also prove the global exponential stabilization of the linearized Benjamin equation in

Hs
ppTq (s ě 0) with any given decay rate.

Next, we extend the linear results to the corresponding nonlinear systems

following a similar approach as those implemented by Laurent et al. [51, 50, 52] (see

also [29, 30]). We use Bourgain’s spaces (see [14]) and some techniques motivated from

microlocal analysis to get certain propagation of compactness and regularity properties

to the solutions of the Benjamin equation posed on a periodic domain. These properties

together with the unique continuation property of the Benjamin equation will be used

to establish the global stabilization and exact controllability of the nonlinear Benjamin

equation (see the nonlinear system (2.0.1)). We also show that the same feedback control

law f “ ´GG˚u (see (2.0.9)) that stabilizes the linearized Benjamin equation, stabilizes

the nonlinear Benjamin equation as well.

The global controllability result is derived by a combination of the exponential

stabilization result and the local control result, as is usual in control theory (see for

instance [29, 30, 51, 52, 53]). Indeed, given the initial data u0 to be controlled, by means

of the damping term f “ ´GG˚u supported in ω, i.e by solving the IVP (2.0.1) (with

f “ ´GG˚u), we drive it to a state close enough to the mean value µ :“ ru0s in a
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sufficiently large time. We do the same with the final state u1 by solving the system

backwards in time, due to the time reversibility of the Benjamin equation. This produces

two states which are close enough to µ so that the local controllability result applies.

We also show that it is possible to construct a time-varying feedback law, as in [26, 52],

ensuring a global stabilization result with an arbitrary large decay rate for the Benjamin

equation.

Finally, motivated by our results obtained for the linearized Benjamin equation

in the first part of this work and the results due to Linares and Rosier [59] for the BO

equation, we study the controllability and stabilization properties for the Intermediate

Long Wave (ILW) equation,

Btu`
1
δ
Bxu` B

2
xpT uq ` Bxpu2

q “ 0, x P R, t P R, (0.0.9)

where u “ upx, tq denotes a real-valued function, δ is a positive real number, and T is

defined by the principle-value convolution

T pfq “ ´ 1
2δp.v.

ż `8

´8

cothp π2δ px´ yqqupyqdy. (0.0.10)

The equation (0.0.9) arises in internal wave theory (see [42, 48]) as a math-

ematical model of nonlinear dispersive waves of moderate amplitude on the interface

between two fluids of different positive densities contained at rest in a long channel with a

horizontal top and bottom, the lighter fluid forming a horizontal layer above a layer of the

same depth of the heavier fluid. The parameter δ ą 0 characterizes the relative depths of

two homogeneous fluid layers, the deviation of the interface between which is governed

approximately by the Intermediate Long-Wave equation.

In [1], Bona et. al proved that the ILW equation (0.0.9) possesses an infinite

sequence of conserved quantities, the first three being

Ĩ1puq “

ż

R
upx, tq dx, (0.0.11)

Ĩ2puq “
1
2

ż

R
u2
px, tq dx, (0.0.12)

and

Ĩ3puq “ ´

ż

R

ˆ

1
3u

3
px, tq ´ upx, tqT pBxupx, tqq `

1
δ
u2
px, tq

˙

dx. (0.0.13)

Some works have been devoted to study the existence, stability and asymptotic

properties of solitary waves solutions of (0.0.9), see for instance [42, 7, 2] and references

therein. The equation (0.0.9) can be solved in R via an inverse scattering transform (see

[45]). Also, the well-posedness of the IVP associated to the ILW equation (0.0.9) on Hs
pRq

has been studied (see [4], [1] and [2] ). The best known local well-posedness result in Hs
pRq
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with s ą
3
2 is due to Bona et all [1].

In this work we consider the ILW equation posed on a periodic spatial domain

T :“ R{p2πZq

Btu`
1
δ
Bxu` B

2
xpT uq ` Bxpu2

q “ 0, x P T, t P R, (0.0.14)

where the mean value of u denoted by rus is zero and T is a Fourier multiplier operator

defined by
xT upnq :“ i cothpnδq pupnq, for all n P Z˚, (0.0.15)

with pupnq the nth´ Fourier coefficient of u, (see [5, 1, 66]). The operator T defined in

(0.0.15) satisfies

T puT v ` vT uq “ T uT v ´ uv, (0.0.16)

and
ż `8

´8

puT v ` vT uq dx “ 0, (0.0.17)

where rus “ rvs “ 0. The quantities (0.0.11)-(0.0.13) are also conserved on the torus T.
The IVP in the periodic setting has been studied by Bona et. al [1]. The best result so far

is that the IVP is locally well-posed in the space

Hs
0pTq :“

 

u P Hs
ppTq : rus “ 0,

(

for s ą
3
2 . Considering initial data u0 for the IVP associated to (0.0.14), we have the

following results (see [1] and the references therein).

• If u0 P H
j
2
0 pTq for j “ 2, or 3, then there exists a weak solution u of (0.0.14) with

initial value u0 such that u P L`8pp0,`8q;H
j
2
0 pTqq.

• If u0 P Hs
0pTq where s ą

3
2 , then this solution is unique and, for each T ą 0,

u P Ck
pp0, T q;Hs´2k

0 pTqq for all k such that s ´ 2k ě ´
3
2 . Moreover, for each

T ą 0, the correspondence that associates u0 to u is continuous from Hs
0pTq to

Ck
pp0, T q;Hs´2k

0 pTqq for all k for which s ´ 2k ě ´3
2 . If s “

n

2 with n P Z, n ą 3,

then u P Ck
b pr0,`8q;Hs´2k

0 pTqq for k with s´2k ą ´3
2 . Here Ck

b pr0,`8q;Hs´2k
0 pTqq

stands for the space of functions u : r0,`8q ÝÑ Hs´2k
0 pTq whose t´derivatives up

to order k exist and are continuous and bounded with values in Hs´2k
0 pTq.

Recall that the positive parameter δ in equation (0.0.14) characterizes the

depth of the lighter fluid layer in a two-fluid system in which the light fluid rests upon a

heavier fluid (see [48]). Several works have pointed out that the equation (0.0.9) reduces to

the KdV equation as δ ÝÑ 0 and to the BO equation as δ ÝÑ `8 (see [1, 48, 83, 82, 60]).
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As announced earlier, we consider the ILW equation (0.0.14) in the periodic

setting. First, we prove the controllability and stabilization of the linearized system

associated to the ILW equation (0.0.14). Next, using an observability inequality derived

from the exact controllability result, we show that the exponential decay rate of the

resulting linearized closed-loop system is as large as one desires. Finally, we deal with the

control and stabilization problem for the full ILW equation. To stabilize the nonlinear ILW

equation, we consider the feedback law

f “ ´GpDpGuqq,

where xDupnq “ |n|pupnq, @n P Z. A scaling argument gives (at least formally)

1
2}upT q}

2
L2

0pTq
`

ż T

0
}D

1
2 pGuq}2L2

0pTq
dt “

1
2}u0}

2
L2

0pTq
. (0.0.18)

This suggests that the energy is dissipated over time. On the other hand,

(0.0.18) reveals a smoothing effect, at least in a region ω Ă T. Using a propagation of

regularity property in the same vein as in [30, 52, 51, 50, 68], we prove that the smoothing

effect holds everywhere, i.e.

}u}
L2p0,T ;H

1
2

0 pTq
ď CpT, }u0}L2

0pTqq. (0.0.19)

Using this smoothing effect and the classical compactness/uniqueness argument, we first

prove that the weak solutions in the sense of vanishing viscosity of the corresponding

closed-loop equation is semi-globally exponentially stable in L2
0pTq.

We also use the smoothing effect (0.0.19) to extend (at least locally) the

exponential stability from L2
0pTq to Hs

0pTq for s P p
1
2 , 2s. Finally, we derive an exact

controllability result in Hs
pTq, s P p

1
2 , 2s by incorporating the same feedback law f “

´GpDpGuqq in the control input to obtain a smoothing effect. Thus, one can write the

control input f “ Gh P L2
p0, T ;Hs´ 1

2 pTqq with h “ ´DGu`D
1
2 h̃ for some function h̃.

This thesis is organized as follows. Chapter 1 is dedicated to the preliminaries

for the proper development of the text.

In Chapter 2, we prove the exact controllability and stabilization of the linearized

Benjamin equation posed on a periodic domain (see Theorem 2.3.7 and Corollary 2.4.3).

In Chapter 3 we introduce the Bourgain’s spaces associated to Benjamin

equation and derive the propagation of compactness and Regularity as well as the unique

continuation property for the Benjamin equation.

In Chapter 4 we present the global exact controllability and global exponential

stabilization of the Benjamin equation on a periodic domain.

Finally, Chapter 5 contains the proofs of the results concerning the controllability

and stabilization of the ILW equation on a periodic domain.
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Chapter 1
Preliminaries

In this chapter we introduce some definitions, concepts, properties and results

that are used for the development of this work. We begin with some results related

to the Lebesgue spaces Lp, Fourier analysis on T and periodic distributions. Then, we

continue with Sobolev spaces on T, the Hilbert transform, Semigroup theory, Riesz Basis

and Ingham’s type inequalities. Finally, we recall some results related to non-linear

interpolation theory and interpolation of Lp´spaces with change of measure.

1.1 The Lebesgue spaces Lp

In this section, we present the Lebesgue spaces. We deeply encourage the reader

to revise more properties and results on these spaces in the books [15, 36].

Let pX,M, µq be a measure space with µ always being a positive measure.

Here we understand that two µ-measurable functions are considered equal if they coincide

except on a set of µ-measure zero. For a measurable function f on X, we define the space

LppXq “ LppX,M, µq “ tf : X ÝÑ C : f is measurable and }f}Lp ă 8u ,

where

}f}Lp :“

$

’

’

&

’

’

%

ˆ
ż

X

|f |p
˙

1
p

if 0 ă p ă 8,

ess sup
xPX

|fpxq| if p “ 8.

We will abbreviate LppX,M, µq by LppXq or simply by Lp. For 1 ď p ď 8,

pLppX,M, µq, } ¨ }Lpq is a normed space. It is clear that if X has finite measure and

1 ď q ă p ď 8, then L8pXq Ď LppXq Ă LqpXq Ď L1
pXq.

Important results regarding duality in Lp-spaces can be found in [36, page 190]

and [31]. In [64, page 40] the mixed spaces LppX;LqpY qq, where X and Y are assumed

Banach spaces, are introduced. Further properties on mixed Lp spaces can be found there.
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1.2 Fourier analysis on the Torus

In this section, we record some definitions and properties related with Fourier

transform and periodic distributions on T. The content of this section is based mainly on

the books [41, 37]. We also refer the references [49, 36, 37, 38] to recall the definition of

Fourier transform, the Schwartz class and the space of tempered distributions, which are

important tools to define Bourgain’s spaces.

1.2.1 Fourier transform on L1
pTq and L2

pTq

We begin this subsection defining the Fourier’s coefficients.

Definition 1.2.1. For a complex-valued function f in L1
pTq and k P Z, we define

pfpkq “
1

2π

ż 2π

0
fpxqe´ikxdx, @ k P Z.

We call pfpkq the kth´Fourier coefficient of f. The Fourier series of f at x is the series

ÿ

mPZ

pfpkqeikx.

Note that pf is well defined with sup
kPZ
| pfpkq| ď

1
2π }f}L

1 . We denote by f̄ the

complex conjugate of the function f, by f̃ the function f̃pxq “ fp´xq, by τyfpxq “ fpx´yq

the translation for any y P R, and by f ˚ g the function

pf ˚ gqpxq “
1

2π

ż

T
fpx´ yqgpyqdy, for all x P T.

Some properties of the Fourier’s transform on L1
pTq can be found in [37, Chapter 3]. We

continue with a short discussion of Fourier series of square summable coefficients. Now we

consider the Hilbert space L2
pTq (some times denoted also by L2

ppTq) with inner product

pf, gqL2pTq “

ż

T
fpxqgpxqdx.

Remark 1.2.2. It is known that tψkukPZ :“
"

eikx
?

2π

*

kPZ
forms a Fourier’s orthonormal

basis for L2
pTq.

The orthonormality of the sequence tψku is a consequence of the following

simple but powerful identity:

ż

T
ψkpxqψmpxqdx “

$

&

%

1
2π when k “ m,

0 when k ‰ m.
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Proposition 1.2.3 ([37, Prop. 3.1.16]). The following are valid for f, g P L2
pTq :

piq (Plancherel’s identity)

}f}2L2pTq “ 2π
ÿ

kPZ
| pfpkq|2,

piiq (Parseval’s relation)

pf, gqL2pTq “ 2π
ÿ

kPZ

pfpkqpgpkq,

piiiq The map f ÞÝÑ t pfpkqukPZ is an isometry from L2
pTq onto l20pZq,

pivq For all k P Z we have

xfgpkq “
ÿ

mPZ

pfpmqpgpk ´mq “
ÿ

mPZ

pfpk ´mqpgpmq.

1.2.2 Periodic Distributions

In this subsection, we introduce the space of periodic distributions and its basic

properties. We begin by recalling the C8 periodic functions.

Let C8p pTq be the collection of all functions f : R ÝÑ C which are C8 and

2π´periodic. There is no natural norm with respect to which C8p pTq is a Banach space.

Nevertheless, there exists a natural distance which turns C8p pTq into a complete metric

space. In fact, it can be shown that

d1pf, gq “
`8
ÿ

j“0
2´j }f pjq ´ gpjq}8

1` }f pjq ´ gpjq}8
, f, g P C8p pTq,

defines a metric in C8p pTq. Furthermore, if tfnu Ă C8p pTq and f P C8p pTq, then fn
d1
ÝÑ f if

and only if }f pjqn ´ f pjq}8 ÝÑ 0 as n ÝÑ 8 for all j “ 0, 1, 2, ¨ ¨ ¨ . In this case we write

fn
C8p pTq
ÝÝÝÝÑ f.

Now, we introduce the class of rapidly decreasing sequences. This space has

nice properties in relation to the Fourier transform and it is fundamental for the definition

of periodic distributions.

The space of rapidly decreasing sequences, denoted by GpZq, is the set of all

complex sequences α “ tαkukPZ such that
`8
ÿ

k“´8

|k|j|αk| ă 8, for all j P N. Note that

α “ tαkukPZ P GpZq if and only if }α}8,j :“ sup
kPZ
p|αk||k|

j
q ă 8, for all j P N.

In what follows we will regard GpZq as a complete metric space provided with

the distance d2pα, βq “
`8
ÿ

j“0
2´j }α ´ β}8,j

1` }α ´ β}8,j
, α, β P GpZq. Thus, a sequence tαnunPZ Ă

GpZq converges to α P GpZq, with respect to d2 if and only if }αn´α}8,j ÝÑ 0 as n ÝÑ 8

for all j “ 0, 1, 2, .... In this case we write αn
GpZq
ÝÝÑ α.
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The Fourier transform ^ : C8p pTq ÝÑ GpZq is an isomorphism and homeomor-

phism, that is, linear, one to one, onto GpZq, and continuous with a continuous inverse

(with respect to the metrics d1 and d2). Further properties of the Fourier’s transform in

C8p pTq can be found in [41, §3.1 ].

Here, we define the class of periodic distributions.

Definition 1.2.4 (Periodic Distribution, see [41, Theorem 3.168]). A linear functional on

C8p pTq, T : C8p pTq Ñ C, is called a periodic distribution if T is continuous.

The set of all periodic distributions will be denoted by D1
pTq. Therefore, D1

pTq
is the topological dual of C8p pTq. Before proceeding it is convenient to introduce some

definitions (see §3.2 in [41]).

Definition 1.2.5. Let f P D1
pTq.

piq (D1
pTq convergence) We say that a sequence tTnunPN Ă D1

pTq converges to T P D1
pTq,

if xTn, gy Ñ xT, gy, as nÑ 8, @ g P C8p pTq.

piiq Its jth distributional derivative f pjq is defined by the relation

xf pjq, gy :“ p´1qjxf, gpjqy, @ g P C8p pTq.

piiiq Let ψ P C8p pTq. The product ψf is the periodic distribution defined by the formula

xψf, gy :“ xf, ψgy, @ g P C8p pTq.

pivq (Fourier transform in D1
pTq) The Fourier transform of f P D1

pTq is the function

pf : ZÑ C defined by the formula pfpkq “
1

2π xf, e
´ikx

y, @ k P Z. Moreover, the nth

partial sum associated to f is

Snpfqpxq “
n
ÿ

k“´n

pfpkq eikx.

pvq Let ψ P C8p pTq. The convolution f ˚ ψ of f and ψ is the function

pf ˚ ψqpxq :“ 1
2π xf, τyψ̃y, @ ψ P C

8
p pTq.

The next theorem shows that the sequence tSnfuně0 converges to f in D1
pTq.

Theorem 1.2.6 ( [41, Theorem 3.166]). Let f P D1
pTq. Then Snpfq P C

8
p pTq, @n P N,

and Snpfq
D1pTq
ÝÝÝÑ f as nÑ 8. Therefore,

f “
`8
ÿ

k“´8

pfpkq eikx “ lim
kÑ`8

Skpfq, @ f P D1
pTq,

where the limit is taken in the distributional sense.
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Next, we give a complete characterization of D1
pTq in terms of the Fourier

transform. To achieve this, we introduce the following definition

Definition 1.2.7. (Slow Growth Sequences) The slow growth sequence space, denoted by

G 1pZq is defined as ttαmumPZ P C : DC ą 0 and n0 P N with |αm| ď C |m|n0 , @m P Z˚u.

Since G 1pZq is clearly a complex vector space, we can turn it into a topological

vector space defining the topology of pointwise convergence. It can be shown that G 1pZq is

the topological dual of GpZq.

Theorem 1.2.8 ( [41, Theorem 3.172]). The Fourier transform ^ : D1
pTq Ñ G 1pZq is a

linear bijection. Its inverse transform _ : G 1pZq Ñ D1
pTq is given by the formula

pαq “ tαmumPZ Ñ pαq_ :“
`8
ÿ

k“´8

αke
ikx,

where the series convergence is in the sense of D1
pTq. Moreover, the Fourier transform ^

and its inverse are continuous maps.

Further properties of the Fourier’s transform ^ for periodic distributions and

convolution are mentioned in the following proposition.

Proposition 1.2.9 ( [41, Prop. 3.183]). Let f, g P D1
pTq, ψ, ϕ P C8p pTq and λ P C.

piq pτyfq ˚ ϕ “ τypf ˚ ϕq “ f ˚ pτyϕq. In particular, f ˚ ϕ is 2π´periodic. Moreover,

f ˚ ϕ P C8p pTq and pf ˚ ϕqpnq “ f pnq ˚ ϕ “ f ˚ ϕpnq, @n P N.

piiq (identity for the convolution product) p2πδ ˚ ϕqpxq “ ϕpxq, @x P R.

piiiq pf ˚ ϕq^pkq “ pfpkqpϕpkq, @k P Z.

pivq yf pnqpkq “ pikqn pfpkq, @ k P Z, @ n P Z`.

pvq pτyfq
^
pkq “ e´ik¨y pfpkq, @k P Z, @y P Z.

pviq f is real valued if and only if pfpkq “ f̂p´kq, @k P Z.

To close this subsection, we introduce the convolution product of two elements

of D1
pTq. It should be noted that this is a very special property of periodic distributions.

Definition 1.2.10. Let Let f, g P D1
pTq. The convolution f ˚ g is defined by the formula

xf ˚ g, ϕy “ xf, g̃ ˚ ϕy, ϕ P C8p pTq.

It can be shown that if f, g P D1
pTq, then f ˚ g P D1

pTq. Some properties that

hold for the convolution product can be found in [41, Page 200].
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1.3 Sobolev Spaces of L2
pTq type

Here we introduce the so-called Sobolev spaces of L2
´type on the Torus. As

we will see in the subsequent chapters, they are fundamental in our work.

Definition 1.3.1 ([41, Section 3.6]). Let s ě 0, the Sobolev space of order s on torus is

defined by

Hs
ppTq :“

#

f P D1
pTq | }f}2Hs

ppTq :“ 2π
8
ÿ

k“´8

p1` |k|2qs| pfpkq|2 ă 8
+

.

For s ă 0, we define the Sobolev space Hs
ppTq as the topological dual of H´s

p pTq. The

duality is implemented by the pairing

pf , gqL2pTq “ 2π
8
ÿ

k“´8

pfpkq pgpkq, f P Hs
ppTq, g P H´s

p pTq.

Note that f P Hs
ppTq if and only if t pfpkqukPZ P l

2
spZq (see the list of symbols).

Also, for all s P R, Hs
ppTq is a Hilbert space with the inner product

pf, gqHs
ppTq “ 2π

ÿ

kPZ
p1` |k|2qs pfpkq pgpkq ă 8.

Sometimes we write pf, gqs to denote pf, gqHs
ppTq in order to summarize the notation. If

s “ 0 then H0
p pTq is isometrically isomorphic to L2

ppTq. Also, the Sobolev spaces form a

decreasing sequence of Hilbert spaces i.e. given s, r P R with s ě r then Hs
ppTq ãÑ Hr

ppTq,
that is, Hs

ppTq is continuously and densely embedded in Hr
ppTq. In particular, if s ě 0

then, Hs
ppTq ãÑ L2

ppTq.

Sometimes we will write }f}s to denote }f}Hs
ppTq in order to shorten the notation.

Now we state some results on the Sobolev spaces that provide a classification

of the elements of D1
pTq in term of their smoothness.

Proposition 1.3.2 ([41, page 203]). Let m P N. Then f P Hm
p pTq if and only if Bjf P

L2
ppTq, j P t0, 1, 2, ...,mu where the derivatives are taken in the sense of D1

pTq. Moreover,

}f}m and

|}f}|2m :“
˜

m
ÿ

j“0
}B
jf}20

¸
1
2

are equivalent, that is, there are positive constants Cm and C 1m such that

Cm }f}
2
m ď |}f}|

2
m ď C 1m }f}

2
m, for all f P Hm

p pTq.

Proposition 1.3.3 (Sobolev Lemma, see [41, page 204]). If s ą
1
2 then,

Hs
ppTq ãÑ CppTq and there exists C ą 0 such that

}f}8 ď } pf}l1 ď C}f}s.
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The Sobolev lemma implies that for s ą
1
2 , H

s
ppTq is a Banach algebra. The

Sobolev lemma for Lp´spaces can be found in [33, Lemma 1.5]. We finalize this subsection

giving a characterization for the Sobolev spaces Hs
ppTq with s P R and defining the subspace

Hs
0pTq.

Theorem 1.3.4 ([55, Page 205-206]). Let s P R. v P Hs
ppTq if and only if,

vpxq “
ÿ

kPZ
vkψkpxq, for all x P T and

ÿ

kPZ
p1` |k|q2s|vk|2 ă 8,

where the first series converges in the distributional sense.

For s P R, we define

Hs
0pTq :“

 

u P Hs
ppTq : rus “ 0

(

. (1.3.1)

If s “ 0 then, we denote H0
0 pTq by L2

0pTq. In sequel, we record some properties of these

spaces.

Proposition 1.3.5. Hs
0pTq is a closed subspace of Hs

ppTq for all s ě 0. In particular,

L2
0pTq is a closed subspace of L2

pTq.

Lemma 1.3.6 ([69, Page 211-212]). Let s ě r ě 0. Given any ε ą 0 and u P Hr
0pTq, there

exists v P Hs
0pTq such that }u´ v}Hr

0 pTq ă ε.

Remark 1.3.7. The Proposition 1.3.5 implies that pHs
0pTq, } ¨ }Hs

ppTqq is a Hilbert space

for all s ě 0. Furthermore, the lemma says that Hs
0pTq ãÑ Hr

0pTq, where the embedding is

dense, whenever s ě r ě 0.

1.4 The Hilbert transform

Here, we define the Hilbert transform and record some of its properties. The

content of this section is based mainly on the books [41, 65].

Let s P R and f P Hs
ppr´π, πsq, a 2π´periodic function. The Hilbert transform

of f is defined by (see pag. 66 in [65]).

Hpfqpxq :“ 1
2πp.v.

ż π

´π

fpx´ yq cot
´y

2

¯

dy

“
1

2π lim
εÑ0`

ż

εď|y|ďπ

fpyq cot
´x´ y

2

¯

dy, @x P T.
(1.4.1)

Theorem 1.4.1 (See [41, pag. 210]). For all s P R, H P LpHs
ppTqq, that is, H is a bounded

linear operator from Hs
ppTq into itself. Moreover, H is an isometry in Hs

ppTq.
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The Hilbert transform can also be defined through Fourier’s transform, as

follows. Given f P L2
ppTq one defines zHpfqpkq :“ ´i sgnpkq pfpkq, @k P Z. Using the

inversion formula given in Theorem 1.2.8, we have

Hpfqpxq “
`8
ÿ

k“´8

´i sngpkq pfpkqeikx, @x P T. (1.4.2)

Now, we prove important properties that hold for the Hilbert transform.

Proposition 1.4.2 (The Hilbert Transform Properties). Assume f, g P L2
ppTq. Then,

ż

T
fpxq gpxq dx “

ż

T
Hpfqpxq Hpgqpxq dx. (1.4.3)

ż

T
fpxq Hpgqpxq dx “ ´

ż

T
Hpfqpxq gpxq dx. (1.4.4)

H pf ¨Hpgq `Hpfq ¨ gq “ Hpfq ¨Hpgq ´ f ¨ g. (1.4.5)

Proof. Using Parseval’s identity we prove (1.4.3) and (1.4.4). The proof of (1.4.5) can be

found in [65, page 80].

1.5 Semigroup Theory

In this section we discuss the basic theory about semigroups, uniformly contin-

uous semigroups, C0´semigroups, and sectorial and m-dissipative operators, as well as

their application to homogeneous and nonhomogeneous Cauchy problems. The content of

this section is taken from the books [16, 28, 71].

We begin by giving the definition of a semigroup of bounded linear operators.

Definition 1.5.1. Let X be a Banach space. A one-parameter family Uptq, with 0 ď t ă 8,

in LpXq is a semigroup (of bounded linear operators on X) if

piq Up0q “ I, where I is the identity operator on X;

piiq Upt` t1q “ UptqUpt1q for every t, t1 ě 0.

A semigroup of bounded linear operators, Uptq, is uniformly continuous if

lim
tÑ0`

}Uptq ´ I} “ 0.

It is easy to show that if the family Uptq, with 0 ď t ă 8, is an uniformly

continuous semigroup then
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piq For all T ą 0, there exists M “MpT q ą 0 such that }Uptq} ďM, for all t P r0, T s;

piiq The map t P r0,`8q ÝÑ Uptq P LpXq is continuous.

Definition 1.5.2. Let Uptq, 0 ď t ă `8, be a semigroup. The linear operator A defined

by

DpAq “

"

x P X : lim
tÑ0`

Uptqx´ x

t
exists

*

and

Ax “ lim
tÑ0`

Uptqx´ x

t
for x P DpAq

is called the infinitesimal generator of the semigroup Uptq. DpAq is the domain of A.

Proposition 1.5.3. A linear operator A is the infinitesimal generator of a uniformly

continuous semigroup, if and only if A is a bounded linear operator, i.e. A P LpXq.

Some properties of uniformly continuous semigroups are summarized in Theorem

1.3 and Corollary 1.4 in [71, page 3]. Proposition 1.5.3 says that this theory does not work

for unbounded operators. Therefore, we introduce the strongly continuous semigroups or

C0´semigroups.

Definition 1.5.4. A semigroup Uptq P LpXq, 0 ď t ă 8, is called a strongly continuous

semigroup of bounded linear operators (or simply a C0´semigroup) if

lim
tÑ0`

Uptqx “ x for every x P X.

For C0´semigroups, we have an exponential type estimate and the continuity

of the map tÑ Uptqx.

Proposition 1.5.5 ( [71, page 4]). Let Uptq be a C0´semigroup. There exist constants

ω ě 0 and M ě 1 such that

}Uptq} ďMeωt for 0 ď t ă `8.

Moreover, for every x P X, the map t P r0,`8q Ñ Uptqx is a continuous function.

If ω “ 0, then Uptq is called uniformly bounded, and moreover, if M “ 1, it is

called a C0´semigroup of contractions.

Several properties of C0-semigroups are condensed in [71, page 4]. For C0´

semigroups we also have the uniqueness of semigroups of an infinitesimal generator (see

Theorem 2.6 in [71, page 6]). Note that if A is the infinitesimal generator operator of a

C0´semigroup, then DpAq is dense in X and A is a closed operator.
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Definition 1.5.6. Let X be a Banach space and A : DpAq Ă X Ñ X be a linear operator

not necessarily bounded. The resolvent set of A, denoted by ρpAq, is defined by

ρpAq :“ tλ P C : λI ´ A is invertible and pλI ´ Aq´1 is boundedu.

The family Rpλ;Aq “ pλI ´ Aq´1, λ P ρpAq, of bounded linear operators is called the

resolvent of A.

It can be showed that if the operator A is an infinitesimal generator of a

C0´semigroup of contractions Uptq, then Λ :“ tλ P C : Repλq ą 0u Ă ρpAq. Moreover, If

λ P Λ, then }Rpλ ´ Aq} ď
1

Repλq
. An important result in the semigroups theory is the

Hille-Yosida Theorem, see [71, page 8].

Next, we introduce the sectorial operators and analytic semigroups. This part

of the theory will be useful to study the well-posedness of the Linearized Intermediate

Long Wave equation in Hs
0pTq. It was taken from the book of Daniel Henry [28].

Definition 1.5.7. We call a linear operator A in a Banach space X a sectorial operator

if it is a closed densely defined operator such that for some θ0 in p0, π2 q and some M ě 1
and real a, the sector

Sa,θ0 :“ tλ P C : θ0 ď | argpλ´ aq| ď π, λ ‰ au

is in the resolvent set of A and

}pλ´ Aq´1
} ď

M

|λ´ a|
, for all λ P Sa,θ0 .

Definition 1.5.8. Let X be a Banach space and A : DpAq Ă X Ñ X be a linear operator

not necessarily bounded. The continuous spectrum of A, denoted by σpAq, is the set of all

λ P C such that the range of λI´A is dense in X and λI´A is invertible with pλI´Aq´1

not bounded.

In the following we define the fractional powers of operators.

Definition 1.5.9. Suppose A is a sectorial operator and RepσpAqq ą 0; then for any

α ą 0
A´α :“ 1

Γpαq

ż 8

0
tα´1e´Atdt.

Theorem 1.5.10 ([28, Theorem 1.4.2]). If A is a sectorial operator in X with RepσpAqq ą

0, then for any α ą 0, A´α is a bounded linear operator on X which is one-one and satisfies

A´αA´β “ A´pα`βq whenever α ą 0, β ą 0. Also, for 0 ă α ă 1,

A´α “
sinpπαq

π

ż 8

0
λ´αpλ` Aq´1dλ.



Chapter 1. Preliminaries 29

Continuing with A a sectorial operator and RepσpAqq ą 0, we define Aα as

the inverse of A´α (α ą 0), DpAαq “ RpA´αq, and A0 as the identity on X. If α ą 0,
Aα is closed and densely defined. Also, if α ě β then DpAαq Ă DpBβ

q. Furthermore,

AαAβ “ AβAα “ Aα`β on DpAγq where γ “ maxtα, β, α ` βu and Aαe´At “ e´AtAα on

DpAαq, t ą 0. Further properties of fractional power operators can be found in §1.4 in [28].

The following result is a consequence of Theorems 1.3.2 and 1.4.4 in [28].

Corollary 1.5.11 ( [28, Corollary 1.4.5]). If A is a sectorial operator with RepσpAqq ą 0
and if B is a linear operator such that BA´α is bounded on X for some α P r0, 1q, then

A`B is sectorial.

Definition 1.5.12. An analytic semigroup on a Banach space X is a family tUptqutě0,

of continuous linear operators on X, satisfying

piq Up0q “ I, Upt` sq “ UptqUpsq, for all t ě 0, s ě 0,

piiq lim
tÑ0`

Uptqx “ x, for each x P X,

piiiq The function t P p0,`8q Ñ Uptqx is real analytic for each x P X.

Theorem 1.5.13 ( [28, Theorem 1.3.4]). If A is a sectorial operator, then ´A is the

infinitesimal generator of an analytic semigroup te´Atutě0, given by

e´At “
1

2πi

ż

Γ
pλ` Aq´1eλtdλ,

where Γ is a contour in ρp´Aq with lim
|λ|Ñ`8

argpλq “ ˘θ for some θ P p
π

2 , πq.

Further, e´At can be continued analytically into a sector tt ‰ 0 : | argptq| ă εu

containing the positive real axis, and if RepσpAqq ą a, i.e. Repλq ą a whenever λ P σpAq,

then for t ą 0
}e´At} ď Ce´at, }Ae´At} ď

C

t
e´at,

for some constant C. Finally,

d

dt
e´At “ ´Ae´At, for t ą 0.

The converse is also true, if ´A generates an analytic semigroup, then A is

sectorial.

Now, we introduce the m-dissipative operators. We encourage the reader to

revise the books [16, 71] to delve into this part of the theory which will be useful to proves

the well-posedness of the Linearized Benjamin equation in Hs
0pTq. Here onward we suppose

X is a Hilbert space and A : DpAq Ď X Ñ X is a linear operator bounded or not bounded.

Definition 1.5.14. (Dissipative and m-dissipative operators).
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piq The operator A is called dissipative in X if }u´ λAu} ě }u}, @u P DpAq and λ ą 0.

piiq The operator A is called m-dissipative in X if A is dissipative and

@ λ ą 0, @ f P X, D u P DpAq such that u´ λAu “ f.

Observe that the operator A is m-dissipative in X if A is dissipative and

@λ ą 0, RangpλI ´ Aq “ X.

Proposition 1.5.15 ( [16, page 25]). Let DpAq be a dense subset in X. Then A and ´A

are m-dissipative if and only if A is skew-adjoint.

The Lumer-Phillips theorem (see Theorem 4.3 in [71, page 14]) proves that

if the linear operator A is m-dissipative with domain DpAq dense in X, then A is an

infinitesimal generator of a C0-semigroup of contractions tUptqutě0 in X. Furthermore, we

have the following result.

Theorem 1.5.16 ( [16, page 37]). If the Linear operator A is skew-adjoint, with domain

DpAq dense in X, then tUptqutě0 can be extended to a one parameter group U : RÑ LpXq
such that

piq Up0q “ I; Ups` tq “ UpsqUptq, @s, t P R;

piiq Uptqx P CpR, Xq, @x P X;

piiiq }Uptqx} “ }x}, @x P X, t P R.

In addition, for all x P DpAq, uptq “ Uptqx satisfies u P CpR, DpAqq X C1
pR, Xq and

u1ptq “ Auptq, for all t P R.

Theorem 1.5.16 says that tUptqutPR is a strongly continuous one-parameter

unitary group in X.

We finalize this section by introducing the abstract Cauchy problem. Given u0

belonging to a Banach space X, the abstract Cauchy problem for A with initial data u0

consists of finding a solution uptq to the IVP

$

&

%

du

dt
“ Au, t ą 0,

up0q “ u0,
(1.5.1)

where by a solution we mean an X valued function uptq such that uptq is continuous for

t ě 0, continuously differentiable, uptq P DpAq for t ą 0 and (1.5.1) is satisfied.

It is clear that if A is the infinitesimal generator of a C0´semigroup Uptq, the

problem (1.5.1) has a solution, namely uptq “ Uptqu0 for every u0 P DpAq. Furthermore,
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Theorem 1.5.16 say that, the IVP (1.5.1) has a solution if the linear operator A is skew-

adjoint, with domain DpAq dense in X and X is a Hilbert space.

Definition 1.5.17. Let Uptq be a C0´semigroup on a Banach space X. The semigroup

Uptq is called differentiable for t ą t0 if for every u0 P X, t ÞÑ Uptqu0 is differentiable for

t ą t0. Uptq is called differentiable if it is differentiable for t ą 0.

The existence and uniqueness of solution to (1.5.1) is guaranteed for differen-

tiable semigroups.

Proposition 1.5.18 ( [71, page 104]). If A is the infinitesimal generator of a differentiable

semigroup, then for every u0 P X (1.5.1) has a unique solution.

Now if we consider the nonhomogeneous Cauchy problem associated to (1.5.1),

that is, the following problem

$

&

%

du

dt
“ Auptq ` fptq, t ą 0

up0q “ u0,
(1.5.2)

where f : r0, T s Ñ X, with X a Banach space. Here we assume that A is an infinitesimal

generator of a C0´semigroup tUptqutě0 so that the corresponding homogeneous equation

(f ” 0) has a unique solution for every initial value u0 P DpAq. See [71] for more details.

Results related with the existence of solutions to (1.5.2), we have the following.

Definition 1.5.19 (Classical Solution). A function u : r0, T s Ñ X is a (classical) solution

of (1.5.2) on r0, T s if u is continuous in r0, T s, continuously differentiable on (0,T),

uptq P DpAq for 0 ă t ă T and (1.5.2) is satisfied on p0, T q.

Corollary 1.5.20. If f P L1
pr0, T s;Xq then for every u0 P X the initial value problem

(1.5.2) has at most one solution. If it has a solution, it is given by

uptq “ Uptqu0 `

ż t

0
Upt´ τqfpτqdτ, u0 P X, 0 ď t ď T. (1.5.3)

Definition 1.5.21 (Mild Solution). Let A the infinitesimal generator of a C0´semigroup

Uptq. Let u0 P X and f P L1
pr0, T s;Xq. The function u P Cpr0, T s;Xq given by (1.5.3) is

the mild solution of the initial valued problem (1.5.2) on r0, T s.

We remark that not every mild solution to (1.5.2) is indeed a classical solution,

even in the case f ” 0. It is clear that (1.5.2) has a unique mild solution if f P L1
p0, T ;Xq.

Thus, it is necessary to impose conditions on f so that for x P DpAq, the mild solution

becomes a classical solution to (1.5.2). Notice that the continuity of f , in general, is

not sufficient to ensure the existence of solutions of (1.5.2), for u0 P DpAq. For example,

consider A the infinitesimal generator of a C0´semigroup Uptq and let u0 P X be such
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that Uptqu0 R DpAq for any t ě 0. Suppose that the continuous function f is defined by

fpτq “ Upτqx for τ ě 0, and consider the initial value problem

du

dt
ptq “ Auptq ` Uptqu0 and up0q “ 0. (1.5.4)

Then (1.5.4) does not have solution, because the function

uptq “

ż t

0
Upt´ τqUpτqu0q dτ “ tUptqu0

is not differentiable for t ą 0. So, we must give more conditions on f to guarantee the

existence of solutions to the problem (1.5.2).

Theorem 2.4 in [71, page 107] gives a general criterion for the existence of

classical solutions of the IVP (1.5.2). This result implies the following theorem.

Theorem 1.5.22 ([71, page 108]). Let f P L1
pr0, T q;Xq. If u is the mild solution of

(1.5.2) on r0, T q then for every T 1 ď T, u is the uniform limit on r0, T 1s of (classical)

solutions of (1.5.2).

1.6 Riesz Basis and Ingham’s Type Inequalities

We dedicate this section to record some definitions and results related to Riesz

basis. Most of the results of this section can be found in [39]. Also, we will introduce

Ingham’s inequality which is the main tool to prove the controllability of the linearized

Benjamin equation.

1.6.1 Riesz Basis

Assume F denotes the scalar field associated with the vector space X. In this

subsection, F will be either the real line R or the complex plane C.

Definition 1.6.1. Let txnunPZ be a sequence in a Banach space X. The series
ÿ

nPZ
xn is

unconditionally convergent if
ÿ

nPZ
xσpnq is convergent in X, for all permutation σ of Z.

Definition 1.6.2 ([39, page 129]). A countable set txnunPZ in a Banach space X is a

basis for X if @x P X, there exist unique scalars an such that

x “
ÿ

nPZ
anpxqxn. (1.6.1)

We say that txnunPZ is an unconditional basis if the series in (1.6.1) converges

unconditionally for each x P X.
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Definition 1.6.3 ( [39, page 21]). Let txnunPJ be a sequence in a normed linear space

X. The finite linear span, or simply the span of txnunPJ is the set of all finite linear

combinations of elements of txnunPJ , it means,

span ttxnunPJu “

#

N
ÿ

n“´N

cnxn : for all N ą 0 and c1, ..., cn P F
+

,

and we say that txnunPJ is complete in X if span ttxnunPJu “ X

Definition 1.6.4. Let txnunPJ be a sequence in a Hilbert space X.

piq (Riesz Basis) txnunPJ is a Riesz basis if it is equivalent (see [39, §4.4] ) to some (and

therefore every) orthonormal basis for X.

piiq (Bessel Sequence) A sequence txnunPJ in Hilbert space X is a Bessel sequence if

@x in X,
ÿ

nPJ

|xx, xny|
2
ă 8.

Definition 1.6.5. Given a Banach space X and given sequences txnunPJ Ď X and

tanunPJ Ď X˚, we say that tanu is biorthogonal to txnu if xxm, any “ δnm for every

n,m P J. We call tanu a biorthogonal system or a dual system of txnu.

Theorem 1.6.6 ( [39, page 197]). Let txnunPJ be a sequence in a Hilbert space X. Then

the following statements are equivalent.

1. txnunPJ is a Riesz basis for X.

2. txnunPJ is a bounded unconditional basis for X.

3. txnunPJ is a basis for X, and

ÿ

nPJ

cnxn converges ô
ÿ

nPJ

|cn|
2 converges

4. txnunPJ is complete in X and there exists constants A, B ą 0 such that

for all c1, ..., cN scalars, A
N
ÿ

n“1
|cn|

2
ď }

N
ÿ

n“1
cnxn}

2
X ď B

N
ÿ

n“1
|cn|

2.

5. txnunPJ is a complete Bessel sequence and possesses a biorthogonal system tynunPJ

that is also a complete Bessel sequence.

Definition 1.6.7. We say that a sequence txnunPJ in a Banach space X is minimal if no

vector xm lies in the closed span of the other vector xn, it means,

@m P J, xm R spanttxnunPJ, n‰mu.

A sequence that is both minimal and complete is said to be exact.
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1.6.2 The Ingham’s inequality

Our main tool to get the controllability of the linearized Benjamin equation is

the so-called Ingham’s inequality, which is a generalization of Parseval’s equality due to

Ingham in [40].

In what follows, K represents a countable set of indices. It could be finite or

infinite.

Theorem 1.6.8 ([40]). Let tλku
8
k“´8 be a strictly increasing sequence of real numbers,

and I be a bounded interval. Consider the sums of the form

fptq “
ÿ

kPK

cke
iλkt, t P I,

with square-summable complex coefficients ck. Assume that there exists γ ą 0 such that

the “gap condition”

λn`1 ´ λn ě γ, @ n P Z,

holds, then there exist constants A, B ą 0, such that for every bounded interval I of length

|I| ą
2π
γ
,

A
ÿ

kPK

|ck|
2
ď

ż

I

|fptq|2dt ď B
ÿ

kPK

|ck|
2.

Remark 1.6.9. On the same hypotheses of Theorem 1.6.8. If I “ r0, T s or I “ r´T, T s

with |I| ą
2π
γ
, then A “ T ¨ rA and B “ T ¨ rB, with positive constants rA and rB independents

of T.

The following result is generalization of Theorem 1.6.8.

Theorem 1.6.10 ( Theorem 4.6 [46, page 67]). Let tλkukPK be a family of real numbers,

satisfying the uniform gap condition

γ “ inf
k‰n
|λk ´ λn| ą 0,

and set

γ1 “ sup
AĂK

inf
k,nPKzA

k‰n

|λk ´ λn| ą 0,

where A rums over the finite subsets of K.

If I is a bounded interval of length |I| ą
2π
γ1
, then there exist positive constants

A and B such that

A
ÿ

kPK

|ck|
2
ď

ż

I

|fptq|2dt ď B
ÿ

kPK

|ck|
2,

for all functions given by the sum fptq “
ÿ

kPK

cke
iλkt with square-summable complex

coefficients ck.
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In the Theorem 1.6.10 there is no problem for the interpretation of the con-

vergence: we can have only countably many non zero terms, and the convergence is

unconditional. More generalizations of the Ingham inequality can be found in [46, Chapters

4, 6, and 8] and [10, page 558].

1.7 Nonlinear interpolation theory and interpolation of Lp´spaces

with change of measure

In this section, we summarize the nonlinear interpolation theory as expounded

by Bona and Scott [13]. Also, we present a result due to Tartar [88], which is the key

to obtain the global well-posedness of a closed-loop system associated to the Benjamin

equation. More precisely, we present a real interpolation theorem for nonlinear operators

and the complex interpolation theorem of Stein-Weiss for weighted Lp spaces. For details,

we refer to the general theory on interpolation spaces in Bergh and Lofstrom [11].

Let B0 and B1 be two Banach spaces such that B1 Ă B0 with continuous

inclusion map. Let f P B0 and for ε ą 0, define Kpf, εq “ inf
gPB1

t}f ´ g}B0 ` ε}g}B1u , where

} ¨ }Bj , is the norm on Bj, j “ 0, 1. For 0 ă θ ă 1 and 1 ď p ď `8, define

pB0, B1qθ,p “ Bθ,p “

#

f P B0 : }f}θ,p “
ˆ
ż 8

0
Kpf, εqpε´

θ
p dε

˙
1
p

ă `8

+

,

with the usual modification in the case p “ `8,

Bθ,8 “

"

f P B0 : }f}θ,8 “ sup
εą0
|Kpf, εq| ă `8

*

.

Then Bθ,p is a Banach space with the norm } ¨ }θ,p. Given two pairs of indices

as above, then pθ1, p1q ă pθ2, p2q means
$

’

&

’

%

θ1 ă θ2, or

θ1 “ θ2 and p1 ą p2.

If pθ1, p1q ă pθ2, p2q, then Bθ2,p2 Ă Bθ1,p1 and the inclusion map is continuous.

Theorem 1.7.1 ( [13, Theorem 1]). Let Bj
0 and Bj

1 be Banach spaces such that Bj
1 Ă Bj

0

with continuous inclusions mappings, j “ 1, 2. Let λ and q lie in the ranges 0 ă λ ă 1 and

1 ď q ď `8. Suppose S is a mapping such that

(i) S : B1
λ,q ÝÑ B2

0 and for f, g P B1
λ,q,

}Sf ´ Sg}B2
0
ď C0p}f}B1

λ,q
` }g}B1

λ,q
q}f ´ g}B1

0
,

and
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(ii) S : B1
1 ÝÑ B2

1 and for h P B1
1 ,

}Sh}B2
1
ď C1p}h}B1

λ,q
q}h}B1

1
,

where Cj : R` ÝÑ R` are continuous non-decresing functions, j “ 0, 1.

Then if pθ, pq ě pλ, qq, S maps B1
θ,p into B2

θ,p and for f P B1
θ,p

}Sf}B2
θ,p
ď Cp}f}B1

λ,q
q}f}B1

θ,p
,

where for r ą 0, Cprq “ 4C0p4rq1´θC1p3rqθ.

Remark 1.7.2. Theorem 1.7.1 was used by Bona and Scott [13] to provide the original

proof of the global well-posedness of the IVP for the KdV equation on the whole line in

fractional order Sobolev spaces Hs
pRq.

Attention is now focused on the question of continuity of S as a mapping of

intermediate spaces, assuming S is known to be continuous as a mapping of the initial

spaces. For this, the following notion is useful.

Definition 1.7.3. Let B0 and B1 be Banach spaces with B1 continuously included in B0.

Let 0 ă θ ă 1 and 1 ď p ď `8. We say that the pair B0, B1 has a pθ, pq approximate

identity if there is a family of continuous mappings Sε : Bθ,p ÝÑ B1, for 0 ă ε ď 1, such

that

(i) for all f P Bθ,p and 0 ă ε ď 1,

}Sεf}Bθ,p ` ε
1´θ
}Sεf}B1 ď C }f}Bθ,p ,

(ii)

}Sεf ´ f}Bθ,p ` ε
´θ
}Sεf ´ f}B0 ÝÑ 0,

as ε ÝÑ 0 for f P Bθ,p and uniformly on compact subsets of Bθ,p.

Example 1.7.4. Take B0 “ L2
0pTq “ L2

0 and, for k a positive integer, B1 “ Hk
0 pTq “ Hk

0 ,

the Sobolev space of L2
0 functions whose first k derivatives lie in L2

0.

Using pL2
0, H

k
0 qθ,2 – Hs

0 with s “ θk and defining ySεfpnq “ gεpnq pfpnq, where pf

denotes the Fourier transform of f, and

gεpnq “

$

’

’

’

&

’

’

’

%

1, if |n| ď
1
ε

1
k

0 if |n| ą
1
ε

1
k

,

(1.7.1)

we can prove the properties piq and piiq of the Definition 1.7.3 by following a similar

procedure as those used by Bona and Scott in [13]. Therefore, Sε is a pθ, 2q aproximate

identity for the pair L2
0pTq, Hk

0 pTq, for any θ P p0, 1q.
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Theorem 1.7.5 ( [13, Theorem 2]). Let B1
0 , B

2
0 , B

1
1 , B

2
1 , λ, q, and S be as in Theorem

1.7.1. Assume additionally that the pair B1
0 , B

1
1 has a pθ, pq approximate identity tSεu for

some pθ, pq ě pλ, qq and that

(iii) S is a continuous map of B1
1 to B2

1 .

Then S is a continuous map of B1
θ,p to B2

θ,p.

Let B be a Banach space and T ą 0. Denote by Cpr0, T s;Bq the Banach space

of continuous functions from r0, T s to B with norm given by

}f}Cpr0,T s;Bq “ sup
0ďtďT

}fptq}B.

The following simple fact about interpolation between spaces of the form

Cpr0, T s;Bq will be used.

Proposition 1.7.6 ([13, Proposition 3]). Let B0 and B1 be Banach spaces with B1 included

continuously in B0. Let θ and p lie in the ranges 0 ă θ ă 1 and 1 ď p ă `8. Then for

any T ą 0,
pCpr0, T s;B0q, Cpr0, T s;B1qqθ,p Ă Cpr0, T s; pB0, B1qθ,pq,

with the inclusions mapping continuous.

We continue this section with a result due to Tartar [88]. Tartar makes more

restrictive assumptions to obtain an Interpolation result. Nevertheless, we will be willing

to apply this theorem.

Theorem 1.7.7 (A real interpolation theorem for nonlinear operators, see Theorem 2,

page 474 [88]). Let Bj
0 and Bj

1 be Banach spaces such that Bj
1 Ă Bj

0 with continuous

inclusion mappings, j “ 1, 2. Assume that 0 ă α ď 1 and β ą 0. Suppose S is a mapping

such that

i) S : B1
0 ÝÑ B2

0 and for f, g P B1
0 ,

}Sf ´ Sg}B2
0
ď C0p}f}B1

0
, }g}B1

0
q}f ´ g}αB1

0
,

and

ii) S : B1
1 ÝÑ B2

1 and for h P B1
1 ,

}Sh}B2
1
ď C1p}h}B1

0
q}h}B1

1
,

where C0 : R` ˆ R` ÝÑ R` and C1 : R` ÝÑ R` are continuous functions.
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Then, if 0 ă θ ă 1 and 1 ď p ď `8, there exists a positive constant c such that S maps

B1
θ,p into B2

λ,q and for f P B1
θ,p

}Sf}B2
λ,q
ď c Cp}f}B1

0
q}f}B1

θ,p
,

where λ, q are given by
1´ λ
λ

“

ˆ

1´ θ
θ

˙

α

β
,

q “ max
"

1, p

p1´ λqβ ` λα

*

“ max
"

1,
ˆ

1´ θ
β

`
θ

α

˙

p

*

,

and C is a function given by Cprq “ C0pr, 2rqλC1p2rq1´λ.

We finish this section with the complex interpolation theorem of Stein-Weiss

for weighted Lp´spaces. The proof of this result can be found in the Bergh and Lofstrom’s

book [11]. This interpolation theorem will be used to prove the multiplication property of

the Bourgain’s spaces associated to the Benjamin equation.

Let µ0 and µ1 two positive measures. We may assume that µ0 and µ1 are

absolutely continuous with respect to a third measure µ. Thus we suppose that

dµ0pxq “ w0pxq dµpxq

dµ1pxq “ w1pxq dµpxq.

Let pU,w dµq a measure space and let us write Lppwq “ LppU,w dµq

Theorem 1.7.8 (The complex interpolation theorem of Stein-Weiss, see [11, page 115]).

Assume that 0 ă p ď 8 and that 0 ă θ ă 1. Put wpxq “ w1´θ
0 pxqwθ1pxq, then

pLppw0q, L
p
pw1qqθ,p “ Lppwq,

with equivalent norms. Moreover, if the operators

T : LppU,w0 dµq ÝÑ LppV,Ăw0 dνq

T : LppU,w1 dµq ÝÑ LppV,Ăw1 dνq

with quasi-norms M0 and M1 respectively, then

T : LppU,w dµq ÝÑ LppV, rw dνq

with quasi-norm M ďM1´θ
0 M θ

1 , with rwpxq “ rw1´θ
0 pxq rwθ1pxq.
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Chapter 2
Controllability and Stabilization of the

linearized Benjamin equation on a periodic

domain

In this chapter, we analyze the controllability of the linear system associated

to Benjamin equation (0.0.7) on T. We show the local and global well-posedness of this

system via semigroup theory. Then, we use the classical moment method (see [79]) to show

that the linearized Benjamin equation is globally exactly controllable. We also study the

stabilization problem for the linear equation associated to system (0.0.7) in Hs
ppTq, with

s ě 0. First, we prove that there exists an adequate feedback law such that the trivial

solution pu “ 0q is exponentially asymptotically stable when t goes to infinity. Finally, we

show that it is possible to choose an appropriate linear feedback law such that the decay

rate of the resulting closed-loop system is as large as one desires.

This chapter is organized in five sections. In Section 2.1, we record some

properties that the operator G defined in (2.0.9) possesses. In Section 2.2 we establish

the well-possedness for the linear system associated to the Benjamin equation. In Section

2.3, we proof of an exact controllability result for this system is provided. Section 2.4 is

devoted to prove the stabilization result. Then in section 2.5 we choose an appropriate

linear feedback law such that the decay rate of the resulting closed-loop system is as large

as one desires. The main results of this chapter are given by Theorems 2.3.7 and 2.5.5.

Before beginning with Section 2.1, we specify one of our main objectives of

this work. As mentioned earlier, we are interested in the Benjamin equation (0.0.7) in the

context of control theory by adding a control term f “ fpx, tq. More precisely, we are

interested in the following two problems.

1) Exact control problem: Given an initial state u0 and a terminal state u1 in a
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certain space, with ru0s “ ru1s, can one find an appropriate control input f so that

the equation

Btu´ αHB2
xu´ B

3
xu` Bxpu

2
q “ fpx, tq, x P T, t P R, (2.0.1)

admits a solution u such that upx, 0q “ u0pxq and upx, T q “ u1pxq, for all x P T and

any final time T ą 0?

2) Stabilization Problem: Given u0 in a certain space. Can one find a feedback

control law: f “ Ku so that the resulting closed-loop system

Btu´ αHB2
xu´ B

3
xu` Bxpu

2
q “ Ku, upx, 0q “ u0, x P T, t P R`, (2.0.2)

where K is a bounded linear operator in an adequate space, is asymptotically stable

(see def. below) as tÑ 8?

Initially, we consider the linearized IVP associated to equation (0.0.7) in the

periodic setting,

$

’

&

’

%

Btu´ αHB2
xu´ B

3
xu “ 0, t P R, x P T

B
m
x up2π, tq “ Bmx up0, tq, t P R, m “ 0, 1, 2
upx, 0q “ u0pxq, x P T,

(2.0.3)

with initial data u0pxq in an adequate space. The equation (2.0.3) admits the following

conserved quantity

I0puq “

ż 2π

0
upx, tq dx “

ż 2π

0
u0pxq dx. (2.0.4)

Also, the linearized IVP associated to equation (2.0.1) in the periodic setting, can be

written as
$

’

&

’

%

Btu´ αHB2
xu´ B

3
xu “ fpx, tq, 0 ă t ă T, x P T

B
m
x up2π, tq “ Bmx up0, tq, 0 ď t ď T, m “ 0, 1, 2
upx, 0q “ u0pxq, x P T,

(2.0.5)

with the initial data u0 in an adequate space. The solution u of system (2.0.5) satisfies

d

dt

ˆ
ż 2π

0
upx, tq dx

˙

“

ż 2π

0
fpx, tq dx. (2.0.6)

So, the volume (mass) I0puq in the control system (2.0.5) is indeed conserved if we demand

the function f to satisfy
ż 2π

0
fpx, tq dx “ 0. (2.0.7)

In this work, the control f in (2.0.1) is allowed to act only on a small subset

of the domain T, i.e., f is considered to be supported in a nonempty open subinterval
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of p0, 2πq. This situation includes more cases of practical interest and is therefore more

relevant in general. For this reason, we consider gpxq as a real non-negative smooth function

defined on T, such that,

2πrgs :“
ż 2π

0
gpxq dx “ 1, (2.0.8)

where rgs denotes the mean value of g over the interval p0, 2πq. We assume supp g Ă p0, 2πq,
where ω “ tx P T : gpxq ą 0u is an open interval. We restrict our attention to controls of

the form

fpx, tq “ Gphqpx, tq :“ gpxq

ˆ

hpx, tq ´

ż 2π

0
gpyqhpy, tq dy

˙

, @x P T, t P r0, T s, (2.0.9)

where h is a function defined in Tˆ r0, T s. Thus, h ” hpx, tq can be considered as a new

control function and for each t P r0, T s, we have that (2.0.7) is satisfied. Moreover, the

control input (2.0.9) keep the mass I0puq conserved for the system (2.0.1).

2.1 Properties of the Operator G

Here, we present some properties satisfied by the operator G defined in (2.0.9).

Proposition 2.1.1. Let s ě 0. The operator G : L2 `
r0, T s;Hs

ppTq
˘

Ñ L2 `
r0, T s;Hs

ppTq
˘

is linear and bounded.

Proof. It’s easy to see that G is a linear operator. We will show that G is bounded. Suppose

that h P L2
pr0, T s;Hs

ppTqq, then

}Gh}2L2pr0,T s;Hs
ppTqq “

ż T

0
2π

ÿ

kPZ

`

1` |k|2
˘s
ˇ

ˇ

ˇ

xGhpkq
ˇ

ˇ

ˇ

2
dt

ď 4π
ÿ

kPZ

`

1` |k|2
˘s
ż T

0

ˇ

ˇ

ˇ

xghpkq
ˇ

ˇ

ˇ

2
dt

` 4π
ÿ

kPZ

`

1` |k|2
˘s
|pgpkq|2

ż T

0

ˇ

ˇ

ˇ

ˇ

ż 2π

0
gpyqhpy, tqdy

ˇ

ˇ

ˇ

ˇ

2

dt

“: I1 ` I2.

(2.1.1)

Using Cauchy-Schwartz inequality, we obtain

I2 ď 2 }g}2Hs
ppTq

ż T

0

ˆ
ż 2π

0
|gpyq|2 dy

˙ˆ
ż 2π

0
|hpy, tq|2dy

˙

dt

ď 2 }g}3Hs
ppTq

ż T

0
}h}2L2

ppTq dt.

(2.1.2)

On the other hand, using that g is a smooth function, we have

|xghpkq|2 ď

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

lPZ
pgplq phpk ´ lq

ˇ

ˇ

ˇ

ˇ

ˇ

2

(see Proposition 1.2.3).
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Therefore, using Lemma 3.197 in [41], we have

I1 :“ 4π
ÿ

kPZ

`

1` |k|2
˘s
ż T

0

ˇ

ˇ

ˇ

xghpkq
ˇ

ˇ

ˇ

2
dt ď C1

ż T

0

ÿ

kPZ

«

p1` |k|sq
ÿ

lPZ
|pgplq||phpk ´ lq|

ff2

dt, (2.1.3)

where C1 is a positive constant depending only on s. Observe that

#

p1` |k|sq
ÿ

lPZ
|pgplq| |phpk ´ lq|

+

kPZ

P l2pZq, @ t P r0, T s, (2.1.4)

and
›

›

›

›

›

p1` |k|sq
ÿ

lPZ
|pgplq| |phpk ´ lq|

›

›

›

›

›

2

l2

ď C2
`

}pg}2l1 }
ph}2l2 ` } | ¨ |

s
pgp¨q}2l1 }

ph}2l2

` }pg}2l1} | ¨ |
s
php¨q}2l2

˘

, @ t P r0, T s.

(2.1.5)

In fact, since 1` |k|s ď C2 p1` |k ´ l|s ` |l|sq , for all k, j P Z, then

p1` |k|sq
ÿ

lPZ
|pgplq| |phpk ´ lq| “

ÿ

lPZ
p1` |k|sq|pgplq| |phpk ´ lq|

ď C2
ÿ

lPZ
p1` |k ´ l|s ` |l|sq |pgplq| |phpk ´ lq|

ď C2(
ÿ

lPZ
|pgplq| |phpk ´ lq| `

ÿ

lPZ
|k ´ l|s|pgplq| |phpk ´ lq|

`
ÿ

lPZ
|l|s|pgplq| |phpk ´ lq|),

“ C2

”

p|pg| ˚ |ph|qpkq ` p|pg| ˚ | ¨ |s |ph|qpkq ` p| ¨ |s |pg| ˚ |ph|qpkq
ı

,

for all t P r0, T s, where C2 is a positive constant depending only on s. From Young’s

inequality (see [41, Page 209]), we have that (2.1.4)-(2.1.5) hold. From (2.1.3) and (2.1.5),

we infer

I1 ď C2

ż T

0

´

}pg}2l1 }
ph}2l2 ` }| ¨ |

s
pgp¨q}2l1 }

ph}2l2 ` }pgpkq}
2
l1}| ¨ |

s
php¨q}2l2

¯

dt, (2.1.6)

The smoothness of function g, Proposition 1.2.9, and (2.0.8) yield

}pg}l1 “
ÿ

kPZ
|pgpkq| “ |pgp0q| `

ÿ

kPZ´t0u

| pg2pkq|

|k|2
ď

1
2π `

}g2}L1p0,2πq

π

8
ÿ

k“1

1
k2 ă 8, (2.1.7)

and

}| ¨ |
s
pg}l1 “

ÿ

kPZ
|k|s|pgpkq| “ |pgp0q| `

ÿ

kPZ´t0u

|ygpnqpkq|

|k|n´s

ď
1

2π `
}gpnq}L1p0,2πq

π

8
ÿ

k“1

1
kn´s

ă 8, for some n ą s` 1.
(2.1.8)
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From (2.1.6)-(2.1.8), we infer that there exists C ą 0 depending only on s, and

g such that

I1 ď C

ż T

0
}h}2Hs

p
pTqdt “ C}h}2L2

ppr0,T s,Hs
ppTqq. (2.1.9)

The estimates (2.1.1)-(2.1.2), and (2.1.9) imply }Gh}L2pr0,T s;Hs
ppTqq ď C}h}L2pr0,T s;Hs

ppTqq.

Observe that the same conclusion as those in Proposition 2.1.1 can be drawn

for any finite interval r´T, T s in place of r0, T s.

Remark 2.1.2 ( [62] Lemma 2.20). Let G be given by (2.0.9). With similar arguments as

above one can prove that

}Gφ}Hs
ppTq ď C}φ}Hs

ppTq,

where C is a positive constant depending only on s and g. Furthermore, if s ă 0, then we

define Gh by

Gh :“ g h´ g xg, hy
pL2pr0,T s;Hs

ppTqqq
1
ˆL2pr0,T s;Hs

ppTqq
(2.1.10)

for any h P L2
pr0, T s;Hs

ppTqq, and the result obtained in Proposition 2.1.1 holds.

Now, we show that the operator G is self-adjoint in L2
pTq.

Proposition 2.1.3. The operator G : L2
pTq Ñ L2

pTq given in (2.0.9) is linear, bounded

and self-adjoint.

Proof. It is easy to see that G P LpL2
pTqq. Moreover, there is a positive constant Cg

depending only on g such that

}Gϕ}L2pTq ď Cg}ϕ}L2pTq.

By the density of DompGq in L2
pTq, it is enough to prove that G is symmetric.

Let h P L2
pTq, thus

pGh , fqL2pTq “

ż 2π

0
gpxqhpxqfpxq dx´

ż 2π

0
gpxqfpxq

„
ż 2π

0
gpyqhpyq dy



dx.

“

ż 2π

0
gpyqhpyqfpyq dy ´

ż 2π

0
gpyqhpyq

„
ż 2π

0
gpxqfpxq dx



dy

“

ż 2π

0
gpyqhpyq

„

fpyq ´

ż 2π

0
gpxqfpxq dx



dy

“

ż 2π

0
hpyqG

`

fpyq
˘

dy

“ ph , GfqL2pTq.

This proves the Proposition.

Remark 2.1.4. Note that for any ϕ P L2
pTq, one has Gϕ “ Gϕ.
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2.2 Existence of solutions for the associated linear system

In this section, we show that the linear IVP (2.0.3) associated to the Benjamin

equation is globally well-posed on Hs
ppTq, with s P R.

Proposition 2.2.1. Let α ą 0. The operator

A “ DpAq Ď L2
pTq Ñ L2

pTq, defined by Aϕ “ αHB2
xϕ` B

3
xϕ, (2.2.1)

generates a strongly continuous unitary group tUptqutPR on L2
pTq.

Proof. Let ϕ, ψ P DpAq “ H3
p pTq. Observe that ϕ is three times differentiable. Furthermore,

HpBxϕqpxq “ BxHpϕqpxq and HpB2
xϕqpxq “ B

2
xHpϕqpxq, @x P T.

Using property (1.4.4) of the Hilbert’s transform, we have

pAϕ , ψqL2pTq “ ´α

ż 2π

0
B

2
xϕpxqHψpxq dx`

ż 2π

0
B

3
xϕpxqψpxq dx. (2.2.2)

Integrating (2.2.2) by parts with respect to x and using the periodicity of the functions

involved, we obtain

pAϕ,ψqL2pTq “ ´

ż 2π

0
ϕpxqrαHB2

xψpxq ` B
3
xψpxqs dx “ ´pϕ , AψqL2pTq,

which implies that A is skew-adjoint. From Proposition 1.5.15 we have that A is m-

dissipative. Definition 1.5.14 implies that A is dissipative. Therefore, pAϕ,ϕqL2pTq is real

for all ϕ P DpAq (see Proposition 2.4.2 in [16]). Moreover, since

pAϕ , ϕqL2pTq “ ´pϕ , AϕqL2pTq,

we have that pAϕ , ϕqL2pTq “ 0. Therefore, Theorem 1.5.16 implies that the operator A

generates a strongly continuous unitary group of isometries (contractions) tUptqutPR (see

[16, Definition 3.4.6]).

The following result gives the existence of solutions in H3
p pTq for the linear-

homogeneous system (2.0.3) associated to the Benjamin equation.

Corollary 2.2.2. Let u0 P H
3
p pTq, then there exists a unique solution

u P CpR, H3
p pTqq X C1

pR, L2
pTqq

for the homogeneous IVP (2.0.3).

Proof. This is a consequence of Theorem 1.5.16 and Proposition 2.2.1.
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We can generalize the last Corollary to get solutions of system (2.0.3) in Hs
ppTq

for all s P R. This can be stated in a formal way as following.

The homogeneous IVP (2.0.3) is equivalent to the following Cauchy problem
$

’

&

’

%

u P CpR, Hs
ppTqq

Btu “ αHB2
xu` B

3
xu P Hs´3

p pTq, t P R
up0q “ u0,

(2.2.3)

where, the initial data u0 P H
s
ppTq. Taking Fourier’s transform in the spatial variable, the

IVP (2.2.3) is equivalent to the following ordinary differential equation (ODE)
#

Btpupkq “ ik2
rα sgnpkq ´ ks pupkq, t P R,

pupk, 0q “ pu0pkq,
(2.2.4)

for all k P Z. The unique solution of equation (2.2.4) is given by

puptqpkq “ eik
2rα sgnpkq´kst

pu0pkq, @k P Z. (2.2.5)

Note that teik
2rα sgnpkq´kst

pu0pkqukPZ P G 1pZq is a slow growth sequence. Taking inverse Fourier

transform in (2.2.5), we get the unique solution of (2.2.3)

uptq “
´

eik
2rα sgnpkq´kst

pϕpkq
¯_

, @ t P R. (2.2.6)

It means that,

upx, tq “
ÿ

kPZ
eik

2rα sgnpkq´kst
pu0pkqe

ikx, @ t P R, (2.2.7)

is the unique solution for the IVP (2.0.3), where the series convergence is in the sense of

D1
pTq.

Now, in rigorous way, define the family of operators U : RÑ LpHs
ppTqq by

t ÞÝÑ Uptqϕ :“ epαHB2
x`B

3
xqtϕ “ peik

2rα sgnpkq´kst
pϕpkqq_. (2.2.8)

Note that, with this definition the relation (2.2.6) becomes uptq “ Uptqu0, t P R, and we

obtain the following results.

Lemma 2.2.3. Let s P R. The family of operators tUptqutPR given by (2.2.8) defines a

strongly continuous one-parameter unitary group of contractions on Hs
ppTq. Furthermore,

Uptq is an isometry for all t P R (see [16, Definition 3.4.6]).

Proof. Note that tUptqutPR has the following properties:

iq Uptq P LpHs
ppTqq, @ t P R.

In fact, given f P Hs
ppTq and t P R,

}Uptqf}2Hs
ppTq “

›

›

›

›

›

ÿ

kPZ
eik

2rα sgnpkq´kst
pfpkq eikx

›

›

›

›

›

2

Hs
ppTq

“ 2π
ÿ

kPZ
p1` |k|2qs

ˇ

ˇ

ˇ
eik

2rα sgnpkq´kst
pfpkq

ˇ

ˇ

ˇ

2
“ }f}2Hs

ppTq.
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iiq Uptq is an unitary operator @t P R, it means }Uptq}LpHs
ppTqq “ 1.

iiiq Up0q “ I.

ivq Upt` sq “ UptqUpsq, @ t, s P R.

Indeed,

Upt` sqf “
´

eik
2rα sgnpkq´kspt`sq

pfpkq
¯_

“

´

eik
2rα sgnpkq´kst eik

2rα Sgnpkq´kss
pfpkq

¯_

“

´

eik
2rα sgnpkq´ksptq

pUpsqfq^pkq
¯_

“ UptqUpsqf, @ f P Hs
ppTq.

vq lim
tÑt0

}Uptqf ´ Upt0qf}Hs
ppTq

“ 0, @ t0 P R, and f P Hs
ppTq.

In fact, assume t0 P R then,

}Uptqf ´ Upt0qf}
2
HsppTq

“ 2π
ÿ

kPZ
p1` |k|2qs

ˇ

ˇ

ˇ
peik

2
rα sgnpkq´kst ´ eik

2
rα sgnpkq´kst0q pfpkq

ˇ

ˇ

ˇ

2
(2.2.9)

Note that p1 ` |k|2qs
ˇ

ˇ

ˇ
peik

2rα sgnpkq´kst
´ eik

2rα sgnpkq´kst0q pfpkq
ˇ

ˇ

ˇ

2
ď 4p1 ` |k|2qs| pfpkq|2,

and
ÿ

kPZ
4p1` |k|2qs| pfpkq|2 ď 4}f}Hs

ppTq ă 8.

A direct application of Weierstrass’s M-test implies that the series

ÿ

kPZ
p1` |k|2qs

ˇ

ˇ

ˇ

´

eik
2rα sgnpkq´kst

´ eik
2rα sgnpkq´kst0

¯

pfpkq
ˇ

ˇ

ˇ

2
,

converges absolutely and uniformly with respect to t. Taking the limit when t goes

to t0 in (2.2.9) we get the result.

Remark 2.2.4. By [16, Corollary 3.2.6, pag. 38] we have that the adjoint operator Uptq˚

of Uptq exists. It is bounded, linear, and Uptq˚ “ Up´tq for all t P R. Moreover, it is easy

to prove that Uptqϕ “ Uptqϕ for all t P R.

Next, we turn our attention to prove differentiability.

Lemma 2.2.5. Assume s P R. If uptq “ Uptqu0, then

lim
hÑ0

›

›

›

›

upt` hq ´ uptq

h
´ rαHB2

x ` B
3
xsu

›

›

›

›

Hs´3
p pTq

“ 0, (2.2.10)

uniformly with respect to t P R.
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Proof. Denote λk “ k2
pα sgnpkq ´ kq and define

Ih :“
›

›

›

›

upt` hq ´ uptq

h
´ rαHB2

x ` B
3
xsu

›

›

›

›

2

Hs´3
p pTq

.

Observe that

uptq “ Uptqu0pxq “
ÿ

kPZ
eiλkt pu0pkqe

ikx, HpB2
xUptqu0qpxq “

ÿ

kPZ
i sgnpkqk2eiλkt pu0pkqe

ikx,

and

B
3
xUptqu0pxq “

ÿ

kPZ
´eiλkt pu0pkqik

3eikx.

Consequently,

Ih “

›

›

›

›

›

ÿ

kPZ

ˆ

eiλkpt`hq ´ eiλkt

h
´ i α sgnpkq k2 eiλkt ` eiλkt ik3

˙

xu0pkq e
ikx

›

›

›

›

›

2

Hs´3
p pTq

“ 2π
ÿ

kPZ
p1` |k|2qs´3

ˇ

ˇ

ˇ

ˇ

eiλkpt`hq ´ eiλkt

h
´ i α sgnpkq k2 eiλkt ` eiλkt ik3

ˇ

ˇ

ˇ

ˇ

2

|xu0pkq|
2

“ 2π
ÿ

kPZ
p1` |k|2qs´3Jh |xu0pkq|

2,

(2.2.11)

where Jh :“
ˇ

ˇ

ˇ

ˇ

eiλkh ´ 1
h

´ i αsgnpkq k2
` ik3

ˇ

ˇ

ˇ

ˇ

2

.

Note that

Jh ď

ˆ

|eiλkh ´ 1|
|h|

` α k2 ` |k|3
˙2
ď

ˆ

|λkh|

|h|
` α k2 ` |k|3

˙2

“
`

|k2α sgnpkq ´ k3| ` α k2 ` |k|3
˘2
ď 4

`

α k2 ` |k|3
˘2
.

Therefore,

p1` |k|2qs´3Jh ď 4p1` |k|2qs pα k
2 ` |k|3 q

2

p1` |k|2q3 ď Cp1` |k|2qs. (2.2.12)

and the last term of (2.2.11) is bounded. In fact, (2.2.12) yield

2π
ÿ

kPZ
p1` |k|2qs´3Jh | pu0pkq|

2
ď C

ÿ

kPZ
p1` |k|2qs| pu0pkq|

2
ă 8.

The Weierstrass’ M-test implies that the series in (2.2.11) converges absolutely

and uniformly with respect to h and t. Finally, taking the limit when h goes to 0 in (2.2.11),

we obtain (2.2.10).

Lemmas 2.2.3 and 2.2.5 imply that the system (2.0.3) is globally well-posed.

Its unique solution, which depends continuously on the initial data, is given by (2.2.7).

This result is established in the following theorem.

Theorem 2.2.6. Let s P R and u0 P H
s
ppTq, then there exists a unique solution u P

CpR, Hs
ppTqq for the homogeneous IVP (2.0.3).
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In the following, we are going to deal with the well-posedness of the non-

homogeneous system associated to the linearized Benjamin equation with periodic boundary

conditions.
#

Btu´ αHB2
xu´ B

3
xu “ Ghpx, tq, t P p0, T q, x P T

upx, 0q “ u0pxq, x P T.
(2.2.13)

A direct application of the semigroup theory gives us the following lemma.

Lemma 2.2.7. Let 0 ď T ă 8, s ě 0, u0 P H
s
ppTq, and h P L2

pr0, T s;Hs
ppTqq then, there

exists a unique mild solution u P Cpr0, T s, Hs
ppTqq for the non-homogeneous IVP (2.2.13).

Proof. Let h P L2
pr0, T s;Hs

ppTqq. From Proposition 2.1.1 we obtain that

Gh P L2
pr0, T s;Hs

ppTqq.

Thus, Gh P L1
pr0, T s;Hs

ppTqq. We rewrite the IVP (2.2.13) in its equivalent form,

$

’

&

’

%

u P Cpr0, T s, Hs
ppTqq

Btu “ αHB2
xu` B

3
xu`Ghptq P H

s´3
p pTq, t P p0, T q

up0q “ u0,

(2.2.14)

where the initial data u0 P H
s
ppTq. From Corollary 1.5.20 and Definition 1.5.21, we have

uptq “ Uptqu0 `

ż t

0
Upt´ t1qGhpt1qdt1,

is the unique solution of (2.2.14) for s ě 0, 0 ď t ď T ă 8.

2.3 Control of the linear Benjamin equation

In this section we prove an exact controllability result for the system (2.2.13)

using the classical moment method, see [79]. Without loss of generality, one can consider

u0 “ 0. In fact, for given u0, u1 P H
s
ppTq with ru0s “ ru1s, if h is the control which leads

the solution v of system (2.2.13) from initial data v0 “ 0 to the final state u1 ´ UpT qu0,

then v satisfies
#

Btv ´ αHB2
xv ´ B

3
xv “ Ghpx, tq, t P p0, T q, x P T

vpx, 0q “ 0, x P T,

and v can be written as, vptq “

ż t

0
Upt´ sqGhpsqds.

So,

u1 ´ UpT qu0 “ vpT q “

ż T

0
UpT ´ sqGhpsqds.

Therefore,

u1 “ UpT qu0 `

ż T

0
UpT ´ sqGhpsqds “ upT q,
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where u is the solution of system (2.2.13) with initial data u0. It means that, the control h

leads the solution u of system (2.2.13) from the initial state u0 to the final state u1.

From this point onward in this section we assume u0 “ 0. Thus, ru1s “ ru0s “ 0.
We have the following lemma.

Lemma 2.3.1. Suppose s ě 0 and ψkpxq for all k P Z, x P T defined as in Remark 1.2.2.

Then for u1 P H
s
ppTq given by

u1pxq “
ÿ

mPZ
cm ψmpxq,

and ru1s “ 0, we obtain that c0 “ 0.

The next result is fundamental to get control for the linear system (2.2.13).

Lemma 2.3.2. Let s ě 0, and T ą 0 be given. Assume u1 P H
s
ppTq with ru1s “ 0. Then,

there exists h P L2
pr0, T s, Hs

ppTqq, such that the solution of the IVP (2.2.13) with initial

data u0 “ 0 satisfies upT q “ u1 if and only if

ż T

0
xGhp¨, tq, ϕp¨, tqyHs

pˆpH
s
pq
1 dt “ xu1, ϕ0yHs

pˆpH
s
pq
1 , (2.3.1)

for any ϕ0 P pH
s
ppTqq1, where pHs

ppTqq1 is the dual space of Hs
ppTq, and ϕ is the solution

of the adjoint system

#

Btϕ´ αHB2
xϕ´ B

3
xϕ “ 0, t ą 0, x P p0, 2πq

ϕpx, T q “ ϕ0pxq, x P T.
(2.3.2)

Proof. pñq Let ϕ0 and h be smooth functions and ϕ be the solution of the adjoint system

(2.3.2) with final data ϕ0. Multiplying the equation in (2.2.13) by ϕ, integrating by parts,

and using the Hilbert transform’s proprieties given in Proposition 1.4.2, we have

ż T

0

ż 2π

0
Gh ϕ dx dt “

ż T

0

ż 2π

0
Btu ϕ dx dt´ α

ż T

0

ż 2π

0
HB2

xu ϕ dx dt

´

ż T

0

ż 2π

0
B3
xu ϕ dx dt.

“

ż 2π

0
upT q ϕpT q dx´

ż T

0

ż 2π

0
u
“

Btϕ´ αB
2
xHϕ´ B3

xϕ
‰

dx dt.

“

ż 2π

0
upT q ϕpT q dx.

(2.3.3)

Therefore,

ż T

0

ż 2π

0
Gh ϕ dx dt “

ż 2π

0
u1 ϕ0 dx.
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Now, identifying L2
pTq with its dual (see Zeidler [32, page 254]) by means of the (conjugate

linear) map y ÞÝÑ p¨, yqL2pTq we have the following inclusion,

Hs
ppTq ãÑ L2

pTq ” pL2
pTqq1 ãÑ pHs

ppTqq1,

where the embedding is dense and continuous. Moreover, xφ, ϕyHs
pˆpH

s
pq
1 “ pφ, ϕqL2pTq, for

all φ, ϕ P L2
pTq. Thus,

ż T

0
xGhp¨, tq, ϕp¨, tqyHs

pˆpH
s
pq
1 dt “

ż T

0
pGhp¨, tq, ϕp¨, tqqL2pTq dt

“

ż 2π

0
u1 ϕ0 dx

“ xu1, ϕ0yHs
pˆpH

s
pq
1 .

pðq Let h be a smooth function such that (2.3.1) holds for any smooth ϕ0 P pH
s
ppTqq1,

where ϕ is the smooth solution of the adjoint system (2.3.2) with final data ϕ0. Identifying

L2
pTq with its dual and using (2.3.3) we have

ż 2π

0
u1 ϕ0 dx “ xu1, ϕ0yHs

pˆpH
s
pq
1

“

ż T

0
xGhp¨, tq, ϕp¨, tqyHs

pˆpH
s
pq
1 dt

“

ż T

0

ż 2π

0
Gh ϕ dx dt

“

ż 2π

0
upT q ϕpT q dx

“

ż 2π

0
upT q ϕ0 dx.

(2.3.4)

Identity (2.3.4) implies that

ż 2π

0
pupT q ´ u1q ϕ0 dx “ 0, for all smooth function ϕ0. In

consequence upT q “ u1. Thus, the lemma is true for all smooth data.

In general case, we use density arguments to complete the proof.

Lemma 2.3.3. Let s ě 0, T ą 0, and u1 P H
s
ppTq with ru1s “ 0. Then, there exists

h P L2
pr0, T s, Hs

ppTqq, such that the solution of the IVP (2.2.13) with initial data u0 “ 0
satisfies upT q “ u1, if and only if, there exists δ ą 0 such that

ż T

0
}G˚Upτq˚φ˚}2pHspTqq1pτq dτ ě δ2

}φ˚}2pHspTqq1 , (2.3.5)

for any φ˚ P pHs
pTqq1.

Proof. pñq Let T ą 0. Define a linear map FT : L2
pr0, T s;Hs

ppTqq Ñ Hs
ppTq by

FT phq “ up¨, T q, (2.3.6)
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where u “ upx, tq is the solution (mild solution) of
#

Btu´ αHB2
xu´ B

3
xu “ Ghpx, tq, t P p0, T q, x P T

upx, 0q “ 0, x P T.
(2.3.7)

Note that if u1 P H
s
ppTq is given, then from hypothesis there exists h such that

FT phq “ upT q “ u1. (2.3.8)

Therefore, FT is onto, i.e,

FT
`

L2
pr0, T s;Hs

ppTqq
˘

“ Hs
ppTq, (2.3.9)

trivially, RanpFT q is dense in Hs
ppTq. On the other hand, from hypothesis, for u1 P H

s
ppTq,

we have that

u1 “

ż T

0
UpT ´ sqpGhqp¨, sq ds. (2.3.10)

Therefore, from (2.3.8) and (2.3.10)

}FT phq}Hs
ppTq “

›

›

›

›

ż T

0
UpT ´ sqpGhqp¨, sq ds

›

›

›

›

Hs
ppTq

ď

ż T

0
}UpT ´ sqpGhqp¨, sq}Hs

ppTq
ds

ď cg

ż T

0
}h}Hs

ppTq ds

ď cg T
1
2 }h}Hs

ppr0,T s;L2pTqq.

(2.3.11)

So, FT is a bounded linear operator. Thus, F ˚T exists, is a bounded linear operator, and is

one-to-one (see Rudin [78, Corollary b) page 99]). Also, from Theorem 4.13 in [78, page

100] (see also Coron [23, page 35]) we have that there exists δ ą 0 such that

}F ˚T pφ
˚
q}
pL2pr0,T s;Hs

ppTqqq
1 ě δ }φ˚}

pHs
ppTqq

1 , for all φ˚ P
`

Hs
ppTq

˘1
. (2.3.12)

From Lemma 2.3.2, we have that the solution u of (2.3.7) satisfies

ż T

0
xGhp¨, tq, ϕp¨, tqyHs

pˆpH
s
pq
1 dt´ xu1, ϕ0yHs

pˆpH
s
pq
1 “ 0, (2.3.13)

for any ϕ0 P pH
s
ppTqq1, where ϕ is the solution of the adjoint system (2.3.2). Note that

ϕp¨, tq “ UpT ´ tq˚ϕ0.

Then it follows from (2.3.13) that

ż T

0
xhp¨, tq, G˚UpT ´ tq˚ϕ0yHsppTqˆpHsppTqq1

dt “ xup¨, T q, ϕ0yHsppTqˆpHsppTqq1

“ xFT phq, ϕ0yHsppTqˆpHsppTqq1

“ xh , F˚T ϕ0yL2pr0,T s;HsppTqqˆpL2pr0,T s;HsppTqqq
1 .

(2.3.14)



Chapter 2. Linearized Benjamin equation 52

Therefore, F ˚T “ G˚UpT ´ tq˚ and using (2.3.12), we have

}G˚UpT ´ tq˚pφ˚q}L2pr0,T s;pHs
ppTqq1q

ě δ }φ˚}
pHs

ppTqq
1 , for all φ˚ P

`

Hs
ppTq

˘1
.

It means

ż T

0
}G˚UpT ´ tq˚pφ˚pxqq}2pHs

ppTqq1 dt ě δ2
}φ˚}2pHs

ppTqq1 , for all φ˚ P pHs
ppTqq1.

Performing a change of the temporal variable τ “ T ´ t, we obtain (2.3.5).

pðq If (2.3.5) holds, then F ˚T “ G˚UpT ´ tq˚ is onto. It is easy to prove that F ˚T is bounded

from pHs
ppTqq1 into

`

L2
pr0, T s;Hs

ppTqq
˘1
. Therefore, FT is onto. From calculations similar

to (2.3.14), we obtain that (2.3.13) holds. Then Lemma 2.3.2 imply the result.

The following result is a characterization for the existence of control to the

system (2.2.13) with initial data u0 “ 0.

Lemma 2.3.4. Let s ě 0 and T ą 0 be given, and ψkpxq as in Remark 1.2.2. If

u1pxq “
ÿ

lPZ
cl ψlpxq P Hs

ppTq,

is a function such that ru1s “ 0, then the non-homogeneous system (2.2.13) with initial

data u0 “ 0 is exactly controllable in time T to u1, that is, upx, T q “ u1pxq, @x P T, if an

only if there exists h P L2
pr0, T s;Hs

ppTqq such that

ż T

0

ż

T
Ghpx, tq e´iλkpT´tqψkpxq dxdt “ ck, @ k P Z, (2.3.15)

where λk :“ k3
´ α sgnpkqk2

“ k3
´ αk|k|.

Proof. pñq In view of Lemma 2.3.2, let us to consider the adjoint system

#

Btϕ´ αHB2
xϕ´ B

3
xϕ “ 0, t ą 0, x P T

ϕpx, T q “ ϕ0pxq, x P T
(2.3.16)

and let k P Z be fixed. Note that ψk P pH
s
ppTqq1. In fact, for ψk P D1

pTq

}ψk}
2
pHs

ppTqq1 “ 2π
ÿ

lPZ

p1` |l|2q´s|xψkplq|2,

and

xψkplq “
1

2π

ż 2π

0
ψkpxq e

´ilx dx “
1
?

2π

ż 2π

0
ψkpxq ψ´lpxq dx “

$

&

%

1
?

2π
, ifk “ l

0, ifk ‰ l.
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Therefore, }ψk}
2
pHs

ppTqq1 “ 2πp1` |k|2q´s 1
2π “ p1` |k|

2
q
´s
ă 8. So, we suppose ϕ0 “ ψk.

Then identity (2.2.6) implies that

ϕpx, tq “ UpT ´ tq˚ϕ0pxq “
´

e´il
2rα sgnplq´lspT´tq

xϕ0plq
¯_

“
ÿ

lPZ
eiλlpT´tqxϕ0plqe

ilx, (2.3.17)

where λl “ k3
´ αk|k|. Consequently, ϕpx, tq “ eiλkpT´tqψkpxq. Now, using identity (2.3.1)

one gets

ż T

0

ż

T
Ghpx, tq ϕpxq dx dt´

ż

T

˜

ÿ

lPZ
cl ψlpxq

¸

ϕ0pxq dx “ 0.

Therefore,

ż T

0

ż

T
Ghpx, tq e´iλkpT´tqψ´kpxq dx dt “

ż

T

˜

ÿ

lPZ
cl ψlpxq

¸

ψ´kpxq dx

“
ÿ

lPZ
cl

ż

T
ψlpxq ψ´kpxq dx

“ ck @k P Z,

as required.

pðq Now, suppose that there exists h P L2
pr0, T s;Hs

ppTqq such that (2.3.15) holds. With

similar calculations as above, we obtain

ż T

0

ż

T
Ghpx, tq eiλkpT´tq ψkpxq dx dt´

ż 2π

0
u1 ψk dx “ 0, @ ϕ0 “ ψk, k P Z.

Multiplying both sides of the last equality by xϕ0pkq and summing over k P Z, we get

ÿ

kPZ

ż T

0

ż

T
Ghpx, tq eiλkpT´tq ψkpxqxϕ0pkqdx dt “

ÿ

kPZ

ż 2π

0
u1pxq ψkpxqxϕ0pkq dx.

Note that

ϕpx, tq “
ÿ

kPZ
eiλkpT´tqxϕ0plqe

ikx,

is the solution of the adjoint system (2.3.16) and ϕ0 P C
8
p pTq can be expressed as

ϕ0pxq “
ÿ

kPZ
xϕ0pkq ψkpxq,

where the series converge uniformly. Thus

ż T

0

ż

T
Ghpx, tq ϕpx, tq dx dt´

ż 2π

0
u1 ϕ0 dx “ 0, @ ϕ0 P C

8
p pTq.

The result follows by using density arguments.
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Lemma 2.3.5. Let ψkpxq be as in Remark 1.2.2, and

mj,k “
{Gpψjqpkq “

ż 2π

0
Gpψjqpxqψkpxq dx, j, k P Z, (2.3.18)

where G is as in (2.0.9). In addition, for any given finite sequence of nonzero integers kj,

j=1,2,3,....,n, let

Mn “

¨

˚

˚

˚

˚

˝

mk1,k1 ¨ ¨ ¨ mk1,kn

mk2,k1 ¨ ¨ ¨ mk2,kn
...

...
...

mkn,k1 ¨ ¨ ¨ mkn,kn

˛

‹

‹

‹

‹

‚

Then

i) there exists a constant β ą 0, depending only on g, such that

mk,k ě β, for any k P Z´ t0u.

ii) mj,0 “ 0, for any j P Z.

iii) Mn is an invertible nˆ n hermitian matrix.

iv) There exists δ ą 0, depending only on g, such that

δk “ }Gpψkq}
2
L2pTq ą δ ą 0, for all k P Z´ t0u. (2.3.19)

Proof. The proof of items iq, iiq, and iiiq can be found in [62, page 296]. Here, we prove

the item ivq only.

If there exists k P Z´ t0u such that δk “ 0, then

gpxqψkpxq ´ gpxq

ż 2π

0
gpyqψkpyq dy “ 0, @x P T.

Therefore, there exists C ą 0 such that gpxqψkpxq “ Cgpxq, @x P T. Thus, ψkpxq “ C,

@x P ω Ă T which is a contradiction. Hence, δk ą 0, for all k P Z´ t0u, and δ0 “ 0.

On the other hand, for each k P Z´ t0u we have

δk “
1

2π

ż 2π

0
|gpxq|2dx´

ż 2π

0
|gpxq|2

˜

ψkpxq

ż 2π

0
gpyqψkpyqdy ` ψkpxq

ż 2π

0
gpyqψkpyqdy

¸

dx

`

ż 2π

0
|gpxq|2

ˇ

ˇ

ˇ

ˇ

ż 2π

0
gpyqψkpyqdy

ˇ

ˇ

ˇ

ˇ

2

dx

ě
1

2π

ż 2π

0
|gpxq|2dx´

2
?

2π

ż 2π

0
|gpxq|2

ˇ

ˇ

ˇ

ˇ

ż 2π

0
gpyqψkpyqdy

ˇ

ˇ

ˇ

ˇ

dx`

ˆ
ż 2π

0
|gpxq|2dx

˙
ˇ

ˇ

ˇ

ˇ

ż 2π

0
gpyqψkpyqdy

ˇ

ˇ

ˇ

ˇ

2

“

ˆ

1
2π ´

2
?

2π
Dk `D

2
k

˙

E,
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where

Dk “

ˇ

ˇ

ˇ

ˇ

ż 2π

0
gpyqψkpyq dy

ˇ

ˇ

ˇ

ˇ

and E “

ż 2π

0
|gpxq|2dx.

Consider the function f : r0,`8q Ñ R defined by fpxq “
1

2π´
2
?

2π
x`x2. Since δk ą 0, for

all k P Z´t0u, then the value Dk “
1
?

2π
is never attained for any k P Z´t0u (see Figure 1).

Using the Riemann-Lebesgue lemma, we get

lim
|k|Ñ`8

δk ě lim
|k|Ñ`8

ˆ

1
2π ´

2
2πDk `D

2
k

˙

E “
1

2πE “
1

2π

ż 2π

0
|gpxq|2dx “: δ ą 0.

Figure 1 –

Remark 2.3.6. The sequence of eigenvalues tiλkukPZ, with λk “ k3
´ αk|k|, satisfies the

following properties:

i) iλ´k “ ´iλk, and λ´k “ ´λk, for all k P Z.

ii) lim
|k|Ñ8

|iλk| “ lim
|k|Ñ8

|λk| “ 8.

iii) lim
|k|Ñ8

|iλk`1 ´ iλk| “ lim
|k|Ñ8

|λk`1 ´ λk| “ 8 (asymptotic gap condition).

iv) Observe that not all the eigenvalues of the sequence tiλkukPZ are distinct, it depends on

the value of α. For each k1 P Z set Ipk1q “ tk P Z : λk “ λk1u and |Ipk1q| “ mpk1q,

where |Ipk1q| denotes the numbers of elements of Ipk1q. Then we have the following

properties for mpk1q :

a) mpk1q ď 3, for all k1 P Z. This is consequence of the fact that mpk1q is less or

equal to the number of integer roots of the equation fpxq :“ x3
´ αx|x| “ β,

where β is an arbitrary real number, see the format of the curve in Figure 2

below.
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Figure 2 – Eigenvalues

b) Since the sequence of eigenvalues tend to infinity, there exists k˚1 P N such that

mpk1q “ 1, for all |k1| ą k˚1 . This is a consequence of the fact that the function

x ÞÝÑ x3
´ αx|x| is strictly increasing for |x| large enough.

v) If we count only the distinct eigenvalues, we obtain a sequence tλkukPI, where I Ď Z
has the property that λk1 ‰ λk2, for any k1, k2 P I, with k1 ‰ k2.

vi) From part aq in ivq we infer that there are only finitely many integers in I, say, kj,

j “ 1, 2, 3, ..., n, such that one can find another integer k ‰ kj with λk “ λkj . Let

Ij “ tk P Z : k ‰ kj, λk “ λkju, j “ 1, 2, 3, ..., n.

Then

Z “ IY I1 Y I2 Y ¨ ¨ ¨ Y In,

where the sets in the right are pairwise disjoint.

vii) From part bq in ivq, we infer that

γ :“ inf
k,nPI
k‰n

|λk ´ λn| “ min
F
|λk ´ λn| ą 0, (2.3.20)

where F :“
"

n, k P I : k ‰ n, and ´ 1´
”3α

2

ı

ď k, n ď
”3α

2

ı

` 1
*

, because

x ÞÝÑ x3
´ αx|x| is increasing very fast for |x| ą

”3α
2

ı

` 1.
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Now we provide proof of our main theorem regarding controllability of non-

homogeneous linear system (2.2.13).

Theorem 2.3.7. Let s ě 0, α ą 0, and T ą 0 be given. Then for each u0, u1 P H
s
ppTq

with ru0s “ ru1s, there exists a function h P L2
pr0, T s;Hs

ppTqq such that the solution u P

Cpr0, T s;Hs
ppTqq of the non homogeneous system (2.2.13) satisfies upx, T q “ u1pxq, x P T.

Moreover, there exists a positive constant ν ” νps, g, T q ą 0 such that

}h}L2pr0,T s;Hs
ppTq ď νp}u0}Hs

ppTq ` }u1}Hs
ppTqq (2.3.21)

Proof. As discussed above, it is enough to consider u0 “ 0. We prove this theorem in five

steps.

Step 1. We show that the family teiλktukPI is a Riesz basis (see Definition 1.6.4) for the

closed span spanteiλkt : k P Iu “: H in L2
pr0, T sq, where the set of indices I was defined in

part vq of Remark 2.3.6.

In fact, since L2
pr0, T sq is a reflexive separable Hilbert space so is H. Observe

that the sequence teiλktukPI is complete in H (see Definition 1.6.3). On the other hand,

from item iiiq of Remark 2.3.6, the eigenvalues associated to the linearized Benjamin

equation satisfy the assymptotic gap condition which implies

γ1 :“ sup
SĂI

inf
k,nPIzS
k‰n

|λk ´ λn| “ `8,

where S runs over the finite subsets of I. Using the generalized Ingham’s Theorem 1.6.10

with γ defined by (2.3.20), we obtain that there exist positive constants A and B, such

that

A
ÿ

nPI
|bn|

2
ď

ż T

0
|fptq|2dt ď B

ÿ

nPI
|bn|

2, (2.3.22)

for all functions of the form fptq “
ÿ

nPI
bne

iλnt with square-summable complex coefficients

bn. In particular, if b1, ..., bN are N arbitrary constants, we have

A
N
ÿ

n“1
|bn|

2
ď

ż T

0

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

nPI
bne

iλnt

ˇ

ˇ

ˇ

ˇ

ˇ

2

dt ď B
N
ÿ

n“1
|bn|

2.

Thus

A
N
ÿ

n“1
|bn|

2
ď

›

›

›

›

›

ÿ

nPI
bne

iλnt

›

›

›

›

›

2

H

ď B
N
ÿ

n“1
|bn|

2 for all b1, ..., bN scalars.

Now, applying Theorem 1.6.6 we conclude that teiλktukPI is a Riesz basis for the closed

span H in L2
pr0, T sq.

Step 2. In this step we show the existence of a unique biorthogonal dual basis tqjujPI Ď H˚.
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Indeed, the Theorem 1.6.6 implies that teiλktukPI is a complete Bessel sequence and possesses

a biorthogonal system tqjujPI which is also a complete Bessel sequence. Moreover, Corollary

5.22 in [39, page 171] implies that tqjujPI is a basis for H˚ which can be identified with H.

Therefore, tqjujPI is also a Riesz basis for H.

Thus, by Lemma 5.4 in [39, page 155] part a), we get that teiλktukPI is minimal.

In consequence, we have the existence of a unique biorthogonal dual basis tqjujPI Ď H˚

due to exactness (see definition 1.6.7) of the sequence teiλktukPI and Lemma 5.4 [39, page

155] part b).

Therefore,

peiλkt , qjqH “

ż T

0
eiλktqjptq dt “ δkj, @ k, j P I. (2.3.23)

Step 3. Here we will define an adequate control function h.

In fact, in Step 2, we found a sequence of functions qj where j is running on the set of

indices I. In this step, we will need to define a sequence of functions qj with j running on

Z. Note that Z “ IY I1Y I2Y ¨ ¨ ¨ Y In, so it is enough to define this sequence for indices in

Ij, j “ 1, ¨ ¨ ¨ , n. Furthermore, recall from part viq in Remark 2.3.6 that, each Ij contains

at most 2 integers. Without loss of generality, we may assume that

Ij “ tkj,1, kj,2u, j “ 1, 2, 3, ..., n.

We denote kj by kj,0 for any j “ 1, 2, 3, .., n. Therefore, for kj,l we define

qkj,l “ qkj,0 “ qkj , for all j “ 1, 2, 3, ..., n, and l “ 0, 1, 2.

Also it is important to note that

λkj,l “ λkj , for all j “ 1, 2, 3, ..., n, and l “ 0, 1, 2.

For suitable hj’s, consider a control function h defined by

h “
ÿ

jPZ
hj qjptq ψjpxq. (2.3.24)

Note that, using the identity Gpqjptq ψjq “ qjptq Gpψjq, we obtain

ż T

0

ż 2π

0
Gphqpx, tqe´iλkpT´tqψkpxq dxdt “

ż T

0

ż 2π

0

˜

ÿ

jPZ
hjqjptqGpψjqpxq

¸

e´iλkpT´tqψkpxq dxdt

“
ÿ

jPZ
hj

ż T

0
qjptqe

´iλkpT´tq dt

ż 2π

0
Gpψjqpxqψjpxq dx

“
ÿ

jPZ
hje

´iλkTmj,k

ż T

0
qjptqe

iλkt dt.
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Therefore,

ż T

0

ż 2π

0
Gphqpx, tqe´iλkpT´tqψk dxdt “

ÿ

jPZ
hje

´iλkTmj,k

ż T

0
qjptqe

iλkt dt. (2.3.25)

Step 4. In this step we find h1js such that h defined by (2.3.24) serves as a required control

function. For this, we use the identity (2.3.25) and Lemma 2.3.4 applied to

u1pxq “
ÿ

nPZ
cnψnpxq P H

s
ppTq, with ru1s “ 0 pc0 “ 0 and u0 “ 0q,

to infer that it is enough to consider h1js satisfying

ck “
ÿ

jPZ
hje

´iλkTmj,k

ż T

0
qjptqe

iλkt dt. (2.3.26)

Note that, part iiq of Lemma 2.3.5 implies that equation (2.3.26) is satisfied

for k “ 0, independently of the values of hj. Moreover, from (2.3.23) we obtain that

ck “ hkmk,ke
´iλkT , if k ‰ kj,l, l “ 0, 1, 2, j “ 1, 2, 3, ..., n; (2.3.27)

and for k “ kj,l, l “ 0, 1, 2, j “ 1, 2, 3, ..., n.
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ck,0 “
2
ÿ

l“0
hkj,l mkj,l,kj,0 e´iλkj,0T ;

ck,1 “
2
ÿ

l“0
hkj,l mkj,l,kj,1 e´iλkj,1T ;

ck,2 “
2
ÿ

l“0
hkj,l mkj,l,kj,2 e´iλkj,2T .

(2.3.28)

Therefore, choosing h0 “ 0, and using part iiiq of Lemma 2.3.5, we obtain

hk “
ck eiλkT

mk,k

, if k ‰ 0 and k ‰ kj,l, l “ 0, 1, 2, j “ 1, 2, 3, ..., n; (2.3.29)

and
¨

˝

hkj,0
hkj,1
hkj,2

˛

‚

J

“

¨

˝

ckj,0e
iλkj,0T

ckj,1e
iλkj,1T

ckj,2e
iλkj,2T

˛

‚

J

M´1
j , for j “ 1, 2, 3, ..., n, (2.3.30)

where

Mj “

¨

˚

˝

mkj,0,kj,0 mkj,0,kj,1 mkj,0,kj,2

mkj,1,kj,0 mkj,1,kj,1 mkj,1,kj,2

mkj,2,kj,0 mkj,2,kj,1 mkj,2,kj,2

˛

‹

‚

.

In this way, we take h1js given by (2.3.29)-(2.3.30).

Step 5. In this step we prove that the unique function h defined by (2.3.24) belongs to

L2
pr0, T s;Hs

ppTqq, where h0 “ 0, and hk with k ‰ 0 is defined by (2.3.29) and (2.3.30).
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Indeed, identifying H˚ with H, and using the Theorem 1.3.4, together with the

fact that tqjujPI is a Riesz basis for H we obtain

}h}2L2pr0,T s;Hs
ppTqq “

ż T

0

›

›

›

›

›

ÿ

kPZ
hk qkptq ψkpxq

›

›

›

›

›

2

Hs
ppTq

dt

“

ż T

0

ÿ

kPZ
p1` |k|q2s|hk qkptq|2 dt

“
ÿ

kPZ
p1` |k|q2s

ż T

0
|hk qkptq|

2 dt

ď
ÿ

kPZ
p1` |k|q2sB2 |hk|

2,

(2.3.31)

where B2 is the constant given by the Bessel type inequality (similar to (2.3.22)) for the
Riesz basis tqjujPI in H. From identity (2.3.29) and lemma 2.3.5 part iq, we obtain

}h}2L2pr0,T s;HsppTqq ď CB2
ÿ

kPZ´t0u k‰kj,l
l“0,1,2 j“1,2,...,n

p1` |k|q2s
ˇ

ˇ

ˇ

ˇ

ck eiλkT

mk,k

ˇ

ˇ

ˇ

ˇ

2

` CB2

n
ÿ

j“1

2
ÿ

l“0
p1` |kj,l|q2s|hkj,l |2

ď
CB2

β2

ÿ

kPZ´t0u k‰kj,l
l“0,1,2 j“1,2,...,n

p1` |k|q2s |ck|2 ` CB2

n
ÿ

j“1

2
ÿ

l“0
p1` |kj,l|q2s|hkj,l |2.

(2.3.32)

From identity (2.3.30), we obtain that for each l “ 0, 1, 2 and j “ 1, 2, ..., n

|hj,l|
2 ď

2
ÿ

m“0
|hj,m|

2 ď

˜

2
ÿ

m“0

ˇ

ˇ

ˇ
ckj,me

iλkj,m

ˇ

ˇ

ˇ

2
¸

}M´1
j }2 ď }M´1

j }2
2
ÿ

m“0
|ckj,m |

2,

where }M´1
j } is the Euclidean norm of the Matrix M´1

j . This implies that for each l “ 0, 1, 2
and j “ 1, 2, ..., n

p1` |kj,l|q2s|hj,l|2 ď
2
ÿ

m“0
}M´1

j }
2 p1` |kj,l|q2s
p1` |kj,m|q2s

p1` |kj,m|q2s|ckj,m |2

ď Cpsq
2
ÿ

m“0
p1` |kj,m|q2s|ckj,m |2,

(2.3.33)

where Cpsq “ max
j“1,2,...,n
m,l“0,1,2

"

}M´1
j }

2 p1` |kj,l|q2s
p1` |kj,m|q2s

*

.

Therefore, using inequalities (2.3.32), and (2.3.33), we get

}h}2L2pr0,T s;HsppTqq ď
CB2

β2

ÿ

kPZ´t0u k‰kj,l
l“0,1,2 j“1,2,...,n

p1` |k|q2s |ck|2 ` 3CB2Cpsq
n
ÿ

j“1

2
ÿ

m“0
p1` |kj,m|q2s|ckj,m |2

ď ν2}u1}
2
HsppTq,

where ν2
” ν2

ps, g, T q “ max
"

CB2

β2 , 3CB2Cpsq

*

. This completes the proof of the theorem.
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Remark 2.3.8. The dependence of ν with respect to T is implicit in the constant B2 of

the Theorem 1.6.10.

Remark 2.3.9. The difficulty in the proof of Theorem 2.3.7 comes from the fact that

the sequence tλkukPZ, with λk “ k3
´ αk|k| associated to the Benjamin equation is not

increasing, contrary to the case of the KdV and the BO equations (see the Figure 3 below).

The increasing property of the eigenvalues is a necessary condition to apply the Ingham’s

Theorem 1.6.8. Due to this reason, we followed an approach implemented by Micu, Ortega,

Rosier and Zhang in [62] and used a generalized form of the Ingham’s inequality (see

Theorem 1.6.10).

Figure 3 – Eigenvalues

Remark 2.3.10. Theorem 2.3.7 is strong from the point of view that we do not make

restrictions on the time T. It is important to point out that the so-called “asymptotic

gap condition” (see condition iiiq of Remark 2.3.6 below) that holds for the eigenvalues

associated to the Benjamin equation was crucial to obtain the exact controllability for any

positive time T.

Equations (2.3.24), (2.3.29), (2.3.30) and (2.3.21) in Theorem 2.3.7 allow us to

get the following corollary, which is fundamental to prove a small data control result for

the Benjamin equation (2.0.1).

Corollary 2.3.11. For s ě 0, and T ą 0 given, there exists a bounded linear operator

Φ : Hs
ppTq ˆ Hs

ppTq Ñ L2
pr0, T s;Hs

ppTqq defined by Φpu0, u1q :“ h, for all pu0, u1q P
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Hs
ppTq ˆHs

ppTq (see (2.3.24) ) such that

u1 “ UpT qu0 `

ż T

0
UpT ´ sqpGpΦpu0, u1qqqp¨, sq ds, (2.3.34)

and

}Φpu0, u1q}L2pr0,T s;Hs
ppTqq ď ν p}u0}Hs

ppTq ` }u1}Hs
ppTqq, (2.3.35)

where ν depends only on s, T, and g (see (2.0.8)).

Also, Lemma 2.3.3 and Corollary 2.3.11 allow us to get the following observ-

ability inequality, which is fundamental to obtain a result on exponential asymptotic

stabilization with decay rate as large as one desires for the linear system associated to

(2.0.2).

Corollary 2.3.12. Let T ą 0 be given. There exists δ ą 0 such that

ż T

0
}GUp´τqφ}2L2pTqpτq dτ ě δ2

}φ}2L2pTq,

for any φ P L2
pTq.

Before ending this section, we record an observation in order to study the

control problem for the Benjamin equation

#

Btu´ αHB2
xu´ B

3
xu` 2uBxu “ Ghpx, tq, t P p0, T q, x P T,

upx, 0q “ u0pxq, x P T,
(2.3.36)

where u “ upx, tq denotes a real-valued function, α ą 0, and u0 P H
s
ppTq with s ě 0.

Remark 2.3.13. As in the non-homogeneous linear case, the “volume” rup¨, tqs for equation

(2.3.36) continues to be conserved.

To get some estimates in Bourgain’s spaces which will be defined in Chapter 3,

the assumption rup¨, tqs “ ru0s “ ru1s “ 0, where u is the solution of system (2.3.36), can

not be omitted. In general, this assumption is not valid for equation (2.3.36). To solve this

problem, let u be a solution of equation (2.3.36) with rup¨, tqs “ ru0s “ ru1s “: µ, for all

t P r0, T s and let vpx, tq “ upx, tq ´ µ. Note that v solves

#

Btv ´ αHB2
xv ´ B

3
xv ` 2µBxv ` 2vBxv “ Ghpx, tq, t P p0, T q, x P T

vpx, 0q “ v0pxq :“ u0pxq ´ µ, x P T,
(2.3.37)

where µ P R, α ą 0, and v0 P H
s
ppTq with s ě 0 are given and rvp¨, tqs “ rv0s “ 0,

@t P r0, T s,

Conversely, if v is a solution of equation (2.3.37) then, upx, tq “ vpx, tq ` µ

is a solution of system (2.3.36). In consequence, we must resolve the controllability and
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stabilization problems for the system (2.3.37).

As before, we begin by considering the linear non-homogeneous system
#

Btv ´ αHB2
xv ´ B

3
xv ` 2µBxv “ Ghpx, tq, t P p0, T q, x P T

vpx, 0q “ v0pxq, x P T
(2.3.38)

where µ P R is a given number. As the operator Aµ : DpAµq Ď L2
pTq Ñ L2

pTq, defined by

Aµϕ :“ αHB2
xϕ` B

3
xϕ´ 2µBxϕ (2.3.39)

is skew-adjoint, it generates a strongly continuous unitary group tUµptqutPR on L2
pTq.

Moreover, for s P R, the family of operators tUµptqutPR, defined by

Uµ : RÑ LpHs
ppTqq

tÑ Uµptqϕ :“ epαHB2
x`B

3
x´2µBxqtϕ “

´

eip´k
3´2µk`αk|k|qt

pϕpkq
¯_

,
(2.3.40)

defines a strongly continuous one-parameter unitary group of contractions on Hs
ppTq.

Furthermore, Uµptq is an isometry (see [16, Definition 3.4.6]) for all t P R.

Remark 2.3.14. For µ P R, s P R, and v0 P H
s
ppTq (respectively v0 P H

3
p pTq) given, there

exists a unique solution v P CpR, Hs
ppTqq (respectively, v P CpR, H3

p pTqq X C1
pR, L2

pTqq)
for the homogeneous equation associated to equation (2.3.38). Furthermore, if 0 ď T ă 8,

s ě 0, v0 P H
s
ppTq, and h P L2

pr0, T s;Hs
ppTqq then, there exists a unique mild solution

v P Cpr0, T s, Hs
ppTqq for the system (2.3.38).

Remark 2.3.15. For µ P R given, we get an analogous result of Lemma 2.3.4 for the

system (2.3.38), just modifying λk “ k3
´ αk|k| by λk “ k3

` 2µk ´ αk|k|. Also, due

to the “asymptotic gap condition” that holds for the eigenvalues of the operator Aµ we have

an analogous result of Theorem 2.3.7 for the equation (2.3.38), it means that the system

(2.3.38) is exactly controllable.

Thus, similarly to Corollary 2.3.11, for µ P R, s ě 0 and any T ą 0 given,

there exists a bounded linear operator Φµ : Hs
ppTqˆHs

ppTq Ñ L2
pr0, T s;Hs

ppTqq defined

by hµ “ Φµpv0, v1q, for all pv0, v1q P H
s
ppTq ˆHs

ppTq such that

v1 “ UµpT qv0 `

ż T

0
UµpT ´ sqpGpΦµpv0, v1qqqp¨, sq ds, (2.3.41)

and

}Φµpv0, v1q}L2pr0,T s;Hs
ppTq ď ν

´

}v0}Hs
ppTq ` }v1}Hs

ppTq

¯

, (2.3.42)

where ν depends only on s, T, and g. Therefore, for any T ą 0 the following observability

inequality holds for some δ ą 0
ż T

0
}G˚Uµpτq

˚pφpxqq}2L2
ppTq dτ ě δ2 }φ}2L2pTq, for any φ P L2pTq, (2.3.43)
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2.4 Stabilization of the Linear Benjamin Equation

Now we move to study the stabilization of the linearized Benjamin equation.

From the observation made in the final part of Section 2.3, it is enough to study the

stabilization problem for the IVP (2.3.38) in Hs
0pTq, with s ě 0 (see (1.3.1)). Thus, we

consider the system
#

Btu´ αHB2
xu´ B

3
xu` 2µBxu “ Ku, t ą 0, x P T

upx, 0q “ u0pxq, x P T,
(2.4.1)

where u “ upx, tq is a real valued function, α ą 0, and K is a bounded linear operator

on Hs
ppTq. In view of the discussion at the end of Section 2.3, we assume that µ is a real

given number and rup¨, tqs “ 0, for all t ě 0.

In this section we prove that there exists a feedback control law such that the

system (2.4.1) is exponentially asymptotically stable when t goes to infinity. First, we

prove that the system (2.4.1) is globally well-posed in Hs
0pTq, for s ě 0.

Theorem 2.4.1. Let u0 P H
3
0 pTq, then the IVP (2.4.1) has a unique solution

u P Cpr0,8q;H3
0 pTqq X C1

pr0,8q;L2
0pTqq.

Moreover, if u0 P H
s
0pTq, then we have that u P Cpr0,8q;Hs

0pTqq, for all s ě 0.

Proof. We know that the operator Aµ “ αHB2
x`B

3
x´ 2µBx, is an infinitesimal generator of

a C0-semigroup tUµptqutě0 over Hs
0pTq. Also we know that K is a bounded linear operator

on Hs
0pTq. From Theorem 1.1 in [71, page 76], we get that the operator Aµ `K, which

is a perturbation of Aµ by a bounded linear operator, is an infinitesimal generator of

a C0´semigroup tT ptqutě0 on Hs
0pTq. It is important to observe that A˚µ “ ´Aµ is the

infinitesimal generator of a C0-semigroup tUµptq
˚
utě0, with domain of A˚µ dense in L2

0pTq,
and Uµptq

˚
“ Uµp´tq.

In order to stabilize the equation (2.4.1) in Hs
0pTq, we employ a simple feedback

control law, Ku “ ´GG˚u, where G is defined as in (2.0.9). The following theorem says

that the trivial solution, u=0, of equation (2.4.1) with this feedback law is exponentially

asymptotically stable when t goes to infinity.

Theorem 2.4.2. Let α ą 0, µ P R, g as in (2.0.8), and s ě 0 be given. There exist

positive constants M “ Mpα, µ, g, sq and γ “ γpgq such that for any u0 P H
s
0pTq, the

unique solution u of (2.4.1) with K “ ´GG˚ satisfies

}up¨, tq}Hs
0pTq ďMe´γt}u0}Hs

0pTq, for all t ě 0. (2.4.2)

Proof. We prove this theorem in five steps.

Step 1. First we prove the case s “ 0. In this case we use a procedure similar to [55, 80].
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Let T ą 0 be given and assume u0 P H
3
0 pTq. Theorem 2.4.1 implies that the solution u of

the IVP
#

Btu´ αHB2
xu´ B

3
xu` 2µBxu “ ´GG˚u, t ą 0, x P T

upx, 0q “ u0pxq, x P T,
(2.4.3)

satisfies u P Cpr0,8q;H3
0 pTqq X C1

pr0,8q;L2
0pTqq. It means up¨, tq P H3

0 pTq, for all t ě 0
and in particular, for t “ T. Now we consider the IVP

$

’

&

’

%

Btw ´ αHB2
xw ´ B

3
xw ` 2µBxw “ Gh, t P p0, T q, x P T

wpx, 0q “ 0, x P T
wpx, T q “ upx, T q, x P T.

(2.4.4)

Remark 2.3.15 implies that there exists a unique h P L2
pr0, T s;H3

0 pTqq such that

the unique solution w P Cpr0,8q;H3
0 pTqq X C1

pr0,8q;L2
0pTqq of equation (2.4.4) satisfies

wpx, T q “ upx, T q for all x P T, and there exists a positive constant ν “ νpg, T q such

that

}h}L2pr0,T s;H3
0 pTqq ď ν}upx, T q}H3

0 pTq.

On the other hand, note that u0 P H
3
0 pTq Ă L2

0pTq, therefore Theorem 2.4.1

implies that u P Cpr0,8q;L2
0pTqq is a solution of equation (2.4.3). Furthermore, Remark

2.3.15 implies that h P L2
pr0, T s;L2

0pTqq and the solution w P Cpr0,8q;L2
0pTqq of equation

(2.4.4) satisfies wpx, T q “ upx, T q, for all x P T, with

}h}L2pr0,T s;L2
0pTqq ď ν }upx, T q}L2

0pTq. (2.4.5)

Now, multiplying the first equation in (2.4.3) by ū and integrating with respect

x, it follows that
ż

T
Btu ūdx´

ż

T
αHB2

xu ūdx´

ż

T
B3
xu ūdx`

ż

T
2µBxu ūdx “

ż

T
´GG˚u ūdx. (2.4.6)

Note that
1
2
d

dt
pu, uqL2

0pTq “ put, uqL2
0pTq. (2.4.7)

Therefore, using the Parseval’s identity, we get

´

ż

T
αHB2

xu ūdx “ ´2πα
8
ÿ

k“´8

i sgnpkqk2
pupkqpup´kq.

It is easy to show that the partial sums satisfy

lim
NÑ8

SN :“ lim
NÑ8

N
ÿ

k“´N

i sgnpkqk2
pupkqpup´kq “ 0.

Thus,

´

ż

T
αHB2

xu ūdx “ 0. (2.4.8)
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Now, using integration by parts, we obtain

´

ż

T
B

3
xu ū dx “

1
2

«

pBxuq
2
ˇ

ˇ

ˇ

ˇ

x“2π

x“0

ff

“ 0, (2.4.9)

and

ż

T
2µ Bxu ū dx “ µ

«

u2
ˇ

ˇ

ˇ

ˇ

x“2π

x“0

ff

“ 0. (2.4.10)

Hence, from (2.4.6)-(2.4.10) and the fact that the operator G is self-adjoint on

L2
0pTq we have

1
2
d

dt

´

}up¨, tq}2L2
0pTq

¯

“ ´}Gup¨, tq}2L2
0pTq

, for all t ą 0. (2.4.11)

Integrating (2.4.11) with respect to the variable t from 0 and T, we get

1
2}upT q}

2
L2

0pTq
´

1
2}u0}

2
L2

0pTq
“ ´}Gu}2L2pp0,T q;L2

0pTqq
. (2.4.12)

On the other hand, multiplying the first equation in (2.4.4) by ū and integrating

with respect to the x´variable, we get
ż

T
Btw ū dx´

ż

T

“

αHB2
xw ū` B3

xw ū ´ 2µBxw ū
‰

dx “

ż

T
Gh ūdx, (2.4.13)

for all 0 ă t ă T. Using integration by parts in the second term of (2.4.13) we get
ż

T
Btw ū dx´

ż

T
w r´αHB2

xu´ B
3
xu ` 2µ Bxus dx “

ż

T
Gh ūdx, (2.4.14)

for all 0 ă t ă T. Integrating (2.4.14) with respect to t from 0 and T, and using integration

by parts, we obtain

ż

T
wpT q ūpT qdx´

ż T

0

ż

T
w rBtu´ αHB2

xu´ B
3
xu` 2µBxusdxdt “

ż T

0

ż

T
Gh ūdxdt.

Observe that u is a solution of equation (2.4.3). Thus

ż

T
u2
pT qdx`

ż T

0

ż

T
w pGG˚uqdxdt “

ż T

0

ż

T
Gh ūdxdt.

Using that the solution u is real, the operator G is self-adjoint on L2
0pTq, and the Cauchy-

Schwartz inequality, we get

}up¨, T q}2L2
0pTq

ď }h´Gw}L2pp0,T q;L2
0pTqq }Gu}L2pp0,T q;L2

0pTqq. (2.4.15)

From (2.4.5), we infer

}h´Gw}L2pp0,T q;L2
0pTqq ď ν}upT q}L2

0pTq ` c

ˆ
ż T

0
}wp¨, tq}2L2

0pTq
dt

˙

1
2

. (2.4.16)
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Also, observe that

}wp¨, tq}2L2
0pTq

ď

›

›

›

›

ż t

0
Uµpt´ t

1
qGhp¨, t1q dt1

›

›

›

›

2

L2
0pTq

ď c2T

«

ˆ
ż T

0
}hp¨, t1q}

2
L2

0pTq
dt1

˙

1
2
ff2

ď c2T }h}2L2pp0,T q;L2
0pTqq

ď c2Tν2
}upT q}2L2

0pTq
.

(2.4.17)

It follows from (2.4.16)-(2.4.17) that

}h´Gw}L2pp0,T q;L2
0pTqq ď cg,T }upT q}L2

0pTq, (2.4.18)

where cg,T “ maxtν, c2Tνu.

Thus, from (2.4.15) and (2.4.18), we have

}up¨, T q}2L2
0pTq

ď cg,T }upT q}L2
0pTq ¨ }Gu}L2pp0,T q;L2

0pTqq,

which implies that

´}Gu}2L2pp0,T q;L2
0pTqq

ď ´
1
c2
g,T

}up¨, T q}2L2
0pTq

. (2.4.19)

From identity (2.4.12) and the inequality (2.4.19), we obtain

ˆ

1` 2
c2
g,T

˙

}upT q}2L2
0pTq

ď }u0}
2
L2

0pTq
.

Thus, there exists ρg,T “ ρ P p0, 1q such that }upT q}2L2
0pTq

ď ρ}u0}
2
L2

0pTq
, for any T ą 0.

Moreover, we can repeat this estimate on successive intervals rpn´ 1qT, nT s to get

}upx, nT q}2L2
0pTq

ď ρn }u0}
2
L2

0pTq
, for any T ą 0, n ě 1, (2.4.20)

where u is the solution of (2.4.3), and ρ “ ρg,T P p0, 1q.

In particular, fixing T ą 0 we obtain that for any t ě 0, there exists n P N
such that nT ď t ď pn` 1qT. From (2.4.11) we know that the function tÑ }up¨, tq}2L2

0pTq
,

with t ě 0 is decreasing. From (2.4.20) there exists ρ “ ρg P p0, 1q such that

}up¨, tq}2L2
0pTq

ď }up¨, nT q}2L2
0pTq

ď ρn }u0}
2
L2

0pTq
, for all n ě 1.

(2.4.21)

It is easy to show that if

0 ă γ ď ´
lnpρq

2T , and M ě eγ T , (2.4.22)
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one has

ρn ďM2 e´2γ t, for all n P N. (2.4.23)

In fact, inequality (2.4.23) is equivalent to 2γt ď lnpM2
q´n lnpρq, for all n P N.

As 2 γ t ď 2 γ pn` 1q T, then it is enough to prove that

2 γ pn` 1q T ď lnpM2
q ´ n lnpρq, for all n P N.

It is easy to verify that the last inequality is true if (2.4.22) holds. Therefore,

(2.4.21) and (2.4.23) yield

}up¨, tq}L2
0pTq ďM e´γ t}u0}L2

0pTq, for all t ě 0, (2.4.24)

and we get the result for smooth initial data in H3
0 pTq. We complete the proof for s=0

using density arguments.

Step 2. Here we consider s “ 3. In this case we use a similar argument as in Proposition

2.3 of [52]. Let u be the solution of equation (2.4.3) with initial data u0 P H
3
0 pTq, then

u P Cpr0,8q;H3
0 pTqq X C1

pr0,8q;L2
0pTqq. (2.4.25)

Since H3
0 pTq Ă L2

0pTq, then from the s “ 0 case we have that there exist positive

constants M1 and γ “ γpgq independent of u0, such that

}up¨, tq}L2
0pTq ďM1e

´γt
}u0}L2

0pTq, for all t ě 0. (2.4.26)

On the other hand, differenciating the equation in (2.4.3) with respect to t, we

obtain

BtpBtuq ´ αHB2
xpBtuq ´ B

3
xpBtuq ` 2µBxpBtuq “ ´GG˚pBtuq. (2.4.27)

Therefore, w :“ Btu P Cpr0,`8q;L2
0pTqq is the unique solution of

"

Btw ´ αHB2
xw ´ B

3
xw ` 2µBxw “ ´GG˚w, t ą 0, x P T,

wpx, 0q “ w0 “ Btupx, 0q “ αHB2
xu0 ` B

3
xu0 ´ 2µBxu0 ´GG

˚u0 P L
2
0pTq, x P T,

(2.4.28)

Again, from the case s “ 0 applied to equation (2.4.28), there exist positive

constants M1 “M1pgq, and γ “ γpgq, independent of w0, such that

}Btup¨, tq}L2
0pTq “ }wp¨, tq}L2

0pTq ďM1e
´γt
}w0}L2

0pTq, for all t ě 0. (2.4.29)

Note that, for each t ě 0

}up¨, tq}H3
0 pTq ď c0

´

}up¨, tq}L2
0pTq ` }B

3
xup¨, tq}L2

0pTq

¯

. (2.4.30)
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To estimate the term }B
3
xup¨, tq}L2

0pTq observe that from equation (2.4.3)

B
3
xup¨, tq “ w ´ αHB2

xu` 2µBxu`GG˚u. (2.4.31)

Thus, for each t ě 0

}B
3
xup¨, tq}L2

0pTq ď }wp¨, tq}L2
0pTq ` α}HB

2
xup¨, tq}L2

0pTq ` 2|µ|}Bxup¨, tq}L2
0pTq

` }GG˚up¨, tq}L2
0pTq.

(2.4.32)

Using Gagliardo-Niremberg inequality (see the Theorem 3.70 in [8]) and Cauchy-

Schwartz inequality with ε, we have

2|µ|}Bxup¨, tq}L2
0pTq

ď 2|µ|
?

2π}Bxup¨, tq}L8pTq

ď 2|µ|
?

2π c1}B
3
xup¨, tq}

1
2
L2

0pTq
}up¨, tq}

1
2
L2

0pTq

“ cµε}up¨, tq}L2
0pTq

`
cµ
4ε }B

3
xup¨, tq}L2

0pTq
,

(2.4.33)

where cµ “ 2|µ|
?

2π c1. Also, using that H is an isometry in L2
0pTq, integration by parts

and Cauchy-Schwartz inequality with ε we have

}HB2
xup¨, tq}

2
L2

0pTq
“

ż

T
B2
xupx, tq B

2
xupx, tq dx

ď }Bxup¨, tq}L2
0pTq
}B3
xup¨, tq}L2

0pTq

ď ε}Bxup¨, tq}
2
L2

0pTq
`

1
4ε}B

3
xup¨, tq}

2
L2

0pTq
.

Therefore,

}HB2
xup¨, tq}L2

0pTq
ď c2

ˆ

ε
1
2 }Bxup¨, tq}L2

0pTq
`

1
2ε

1
2
}B3
xup¨, tq}L2

0pTq

˙

. (2.4.34)

Using inequality (2.4.33) we obtain from (2.4.34) that

}HB2
xup¨, tq}L2

0pTq ď c3 ε
3
2 }up¨, tq}L2

0pTq `
c4

ε
1
2
}B3
xup¨, tq}L2

0pTq, (2.4.35)

where c3 “ c2
?

2π c1, and c4 “
c2c1

?
2π

4 `
c2

2 . Thus, from inequalities (2.4.29), (2.4.32),

(2.4.33) and (2.4.35) we obtain

ˆ

1´ c4α

ε
1
2
´
cµ
4ε

˙

}B3
xup¨, tq}L2

0pTq ďM1e
´γt}w0}L2

0pTq `
´

αc3ε
3
2 ` cµε` c

2
g

¯

}up¨, tq}L2
0pTq

ďM1e
´γt}w0}L2

0pTq `
´

αc3ε
3
2 ` cµε` c

2
g

¯

M1e
´γt}u0}L2

0pTq.

Therefore, taking ε ą 0 large enough such that 1´ c4 α

ε
1
2
´
cµ
4ε ą 0 we infer that there exists

a positive constant c “ cα,µ,g, independent of u0, and w0 such that

}B
3
xup¨, tq}L2

0pTq ď c M1e
´γt

´

}w0}L2
0pTq ` }u0}L2

0pTq

¯

. (2.4.36)
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Also, note that

}w0}L2
0pTq ď α }B2

xu0}L2
0pTq ` }B

3
xu0}L2

0pTq ` 2|µ| }Bxu0}L2
0pTq ` c

2
g}u0}L2

0pTq

ď c6 }u0}L2
0pTq,

(2.4.37)

where c6 “ c5pα ` 1` 2|µ| ` c2
gq. Now, from (2.4.36)-(2.4.37) we have

}B
3
xup¨, tq}L2

0pTq ďM2e
´γt
}u0}L2

0pTq, (2.4.38)

where M2 “ c M1pc6 ` 1q. From expstabilizationinL21, (2.4.30) and (2.4.38), we get

}up¨, tq}H3
0 pTq ď c0

´

M1e
´γt
}u0}L2

0pTq `M2e
´γt
}u0}L2

0pTq

¯

ď c0 pM1 `M2q e
´γt c5 }u0}H3

0 pTq

ďM e´γt}u0}H3
0 pTq, for all t ě 0,

(2.4.39)

where M “Mpα, µ, gq “ c0 pM1`M2q c5, and γ “ γpgq are positive constants independent

of u0.

Step 3. Using induction and similar arguments as above, we prove that inequality (2.4.2)

holds for s “ 3n, with n P N. In fact:

Inductive Base: for n “ 0 or n “ 1, the inequality (2.4.2) follows from steps 1, 2.

Inductive Hypothesis: Assume that inequality (2.4.2) is true for s “ 3n, where n “

0, 1, 2, ..., k ´ 1, k. Lets prove the result for n “ k ` 1.

By the inductive hypothesis (n “ k) we know that for u0 P H
3k
0 pTq, there exists

positive constants M1 “ M1pα, µ, g, kq and γ “ γpgq, such that the unique solution u of

(2.4.1) with K “ ´GG˚ and j “ k, satisfies

}up¨, tq}H3k
0 pTq ďM1e

´γt
}u0}H3k

0 pTq, for all t ě 0. (2.4.40)

On the other hand, for n “ k ` 1, we have that u0 P H
3pk`1q
0 pTq ãÑ H3k

0 pTq ãÑ

L2
0pTq, with dense embedding. Then, the solution u of (2.4.1) with K “ ´GG˚ and

j “ k ` 1, satisfies

u P Cpr0,8q;H3pk`1q
0 pTqq X C1

pr0,8q;H3k
0 pTqq,

and (2.4.40). Thus, defining w :“ Btu, we have that w P Cpp0,8q;H3k
0 pTqq is the solution

of
$

&

%

Btw ´ αHB2
xw ´ B

3
xw ` 2µBxw “ ´GG˚w, t ą 0, x P T

Bmx wp2π, tq “ Bmx wp0, tq, t ą 0, m “ 0, 1, ..., 3k ´ 1
wpx, 0q “ w0pxq “ αHB2

xu0 ` B
3
xu0 ´ 2µBxu0 ´GG

˚u0 P H
3k
0 pTq, x P T.

From inequality (2.4.40), we infer that w satisfies

}Btup¨, tq}H3k
0 pTq “ }wp¨, tq}H3k

0 pTq ďM1e
´γt
}w0}H3k

0 pTq, for all t ě 0. (2.4.41)
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It is easy to prove that

}up¨, tq}
H

3pk`1q
0 pTq ď ck`1

´

}up¨, tq}L2
0pTq ` }B

3k
x pB

3
xup¨, tqq}L2

0pTq

¯

. (2.4.42)

From step 2 there exist positive constants M2 “M2pgq, γ “ γpgq, such that u

satisfies

}up¨, tq}L2
0pTq ďM2e

´γt
}u0}L2

0pTq ďM2e
´γt
}u0}H3pk`1q

0 pTq, for all t ě 0. (2.4.43)

Equation (2.4.31) yields

B
3k
x pB

3
xuq “ B

3k
x w ´ αHB2

xpB
3k
x uq ` 2µBxpB3k

x uq `GG
˚
pB

3k
x uq.

Thus, using the estimates in (2.4.41), (2.4.33), (2.4.35) we obtain

}B3k
x pB

3
xuq}L2

0pTq
ď }B3k

x w}L2
0pTq

` α}HB2
xpB

3k
x uq}L2

0pTq
` 2|µ|}BxpB3k

x uq}L2
0pTq

` }GG˚pB3k
x uq}L2

0pTq

ď }w}H3k
0 pTq ` α c3 ε

3
2 }B3k

x u}L2
0pTq

`
c4 α

ε
1
2
}B3
xB

3k
x u}L2

0pTq

` cµε}B
3k
x u}L2

0pTq
`
cµ
4ε }B

3
xpB

3k
x uq}L2

0pTq
` c2

g}B
3k
x u}L2

0pTq

ď }w}H3k
0 pTq ` α c3 ε

3
2 }u}H3k

0 pTq `
c4 α

ε
1
2
}B3
xB

3k
x u}L2

0pTq

` cµε}u}H3k
0 pTq `

cµ
4ε }B

3
xpB

3k
x uq}L2

0pTq
` c2

g}u}H3k
0 pTq.

Therefore,
ˆ

1´ c4 α

ε
1
2
´
cµ
4ε

˙

}B3k
x pB

3
xuq}L2

0pTq ď }w}H3k
0 pTq ` pα c3 ε

3
2 ` cµ ε` c

2
gq}u}K3k

0 pTq

ďM1e
´γt}w0}H3k

0 pTq ` pα c3 ε
3
2 ` cµ ε` c

2
gqM1e

´γt}u0}H3k
0 pTq

Taking ε large enough such that 1´ c4 α

ε
1
2
´
cµ
4ε ą 0 we obtain that there exists a positive

constant cα,µ,g, independent of u0, and w0 such that

}B
3k
x pB

3
xuq}L2

0pTq ď cα,µ,g M1e
´γt

´

}w0}H3k
0 pTq ` }u0}H3k

0 pTq

¯

ď cα,µ,g M1e
´γt

´

c6}u0}H3pk`1q
0 pTq ` }u0}H3pk`1q

0 pTq

¯

ď M3e
´γt
}u0}H3pk`1q

0 pTq.

(2.4.44)

From (2.4.42), (2.4.43), and (2.4.44) we have that

}up¨, tq}
H

3pk`1q
0 pTq ďMe´γt}u0}H3pk`1q

0 pTq, for all t ě 0, (2.4.45)

where M “ Mpα, µ, g, k ` 1q and γ “ γpgq, are positive constants. This completes the

proof of step 3.

Step 4. Here we consider 0 ă s ă 3. In this case we use the Real Interpolation Method,

specifically the K-method of Interpolation, (see Definition 2.4.3, and Theorem 3.1.2 in Bergh
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and Lofstrom [11]). From Theorem 6.2.4 in [11] we know that the space of interpolation

between L2
pRq and H3

pRq is

pL2
pRq, H3

pRqqθ,2 “ H3θ
pRq,

where 0 ă θ ă 1. This property is also true for the torus T (see Corollary 1.111 in Triebel

[89]). It means,

pL2
0pTq, H3

0 pTqqθ,2 “ H3θ
0 pTq, (2.4.46)

where 0 ă θ ă 1.

Let t ě 0 fixed. From the case s “ 0, we have that the norm of the operator

T ptq : L2
0pTq Ñ L2

0pTq, satisfies

}T ptq}L2
0pTq,L

2
0pTq ďM0 e

´γ t, (2.4.47)

where M0 “ M0pgq, and γ “ γpgq are positive constants. Also, from the case s “ 3, we

know that the norm of the operator T ptq : H3
0 pTq Ñ H3

0 pTq, satisfies

}T ptq}H3
0 pTq,H

3
0 pTq ďM1 e

´γ t, (2.4.48)

where M1 “M1pα, µ, gq, and γ “ γpgq are positive constants.

Interpolating (2.4.47) and (2.4.48) (see (2.4.46)), we get that the norm of

operator T ptq : H3θ
0 pTq Ñ H3θ

0 pTq, satisfies

}T ptqu0}H3θ
0 pTq

ď
`

M0 e
´γ t

˘1´θ `
M1 e

´γ t
˘θ
}u0}H3θ

0 pTq

“M1´θ
0 M θ

1 e
´γ t
}u0}H3θ

0 pTq
,

(2.4.49)

where 0 ă θ ă 1. Thus, denoting s “ 3θ, we have that there exists M “Mpα, µ, g, sq, and

γ “ γpgq such that

}up¨, tq}Hs
0pTq ďM e´γ t}u0}Hs

0pTq, (2.4.50)

where u is the solution of (2.4.1) with K “ ´GG˚, and 0 ă s ă 3. As t was fixed but

arbitrary we get the result.

Step 5. For the others values of s, we use

pH3k
0 pTq, H

3pk`1q
0 pTqqρ,2 “ H3k`3ρ

0 pTq, (2.4.51)

where 0 ă ρ ă 1, to interpolate inequalities (2.4.40) and (2.4.45), similarly as in step 4.

Using an induction argument and computations similar to those in the previous cases, we

can prove the following claim.

Claim: For 0 ă ρ ă 1, and n P N, there exist positive constants M “ Mpα, µ, g, n, ρq

and γ “ γpgq, such that for any u0 P H
3n`3ρ
0 pTq, the unique solution u of (2.4.1) with

K “ ´GG˚ satisfies

}up¨, tq}H3n`3ρ
0 pTq ďMe´γt}u0}H3n`3ρ

0 pTq, for all t ě 0.
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Note that, for s ě 0 given, there exists n P N and 0 ď ρ ď 1, such that s “ 3n ` 3ρ.
Therefore, inequality (2.4.2) for the other values of s follows from the claim and the result

obtained in the third step. This completes the proof of Theorem 2.4.2.

The following corollary is a direct consequence of Theorem 2.4.2.

Corollary 2.4.3. Let µ P R, α ą 0, g as in (2.0.8), and s ě 0 be given. There exist

positive constants M “ Mpµ, α, g, sq and γ “ γpgq, such that for any u0 P H
s
ppTq with

µ “ ru0s, the unique solution u P Cpr0,8q;Hs
ppTqq of the closed-loop system

Btu´ αHB2
xu´ B

3
xu “ ´GG

˚u, upx, 0q “ u0, x P T, t P R`,

satisfies

}up¨, tq ´ ru0s}Hs
ppTq ďMe´γt}u0 ´ ru0s}Hs

ppTq, for all t ě 0.

2.5 Stabilization of the Linear Benjamin Equation in Hs
0pTq with

Arbitrary Decay Rate

In this section, we show that it is possible to choose an appropriate linear

feedback control law such that the decay rate of the resulting closed-loop system (2.4.1) is

as large as one desires.

For λ ą 0 and s ě 0 given, we define the operator

Lλφ “

ż 1

0
e´2λτUµp´τqGG

˚Uµp´τq
˚φ dτ, for all φ P Hs

0pTq. (2.5.1)

We begin by establishing some properties of this operator.

Proposition 2.5.1. Lλ is a self-adjoint positive bounded linear operator on L2
0pTq, and

so is its inverse L´1
λ . Lλ is therefore an isomorphism from L2

0pTq onto itself.

Proof. It is easy to show that Lλ is a linear operator. Also, for each φ P L2
0pTq we have

that

}Lλφ}L2
0pTq

ď

ż 1

0
e´2λτ

}Uµp´τqGG
˚Uµp´τq

˚φ}L2
0pTq

dτ

ď

ż 1

0
e´2λτc2

g }φ}L2
0pTq

dτ “ cg,λ }φ}L2
0pTq

,

(2.5.2)

where cg,λ “ c2
g

p1´ e´2λq

2λ . Moreover, for each φ, ψ P L2
0pTq, we have

pLλφ, ψqL2
0pTq

“

ż 1

0
e´2λτ

ˆ
ż

T
φpxqUµp´τq

˚˚G˚˚G˚Uµp´τq
˚ψpxq dx

˙

dτ

“

ż

T
φpxq

ˆ
ż 1

0
e´2λτUµp´τqGG˚Uµp´τq˚ψpxq dτ

˙

dx

“ pφ, LλψqL2
0pTq

,

(2.5.3)
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Thus, Lλ is self-adjoint and a bounded linear operator on L2
0pTq. Moreover, from Theorem

16.2, in Bachman and Narici [9] we have that Lλ is a closed operator from L2
0pTq on itself.

From the computations in (2.5.3) and the observability inequality (2.3.43) we have

pLλφ, φqL2
0pTq

“

ż 1

0
e´2λτ

}G˚Uµp1´ τq˚Uµp´1q˚φpxq}2L2
0pTq

dτ

“

ż 1

0
e´2λp1´tq

}G˚Uµptq
˚Uµp´1q˚φpxq}2L2

0pTq
dt

ě

ż 1

0
e´2λ

}G˚Uµptq
˚Uµp´1q˚φpxq}2L2

0pTq
dt

ě e´2λδ2
}φ}2L2

0pTq
ě 0,

(2.5.4)

for all φ P L2
pTq. Thus Lλ is a positive operator. Also, if Lλφ “ 0 for some φ P L2

0pTq then

from the computations in (2.5.4), we have

0 “ p0, φqL2
0pTq

“ pLλφ, φqL2
0pTq

ě e´2λδ2
}φ}2L2pTq ě 0.

Therefore }φ}2L2pTq “ 0 and φ “ 0. Consequently, KerpLλq “ t0u and Lλ is injective and

is an invertible operator. Thus, the adjoint operator L˚λ “ Lλ exists, is a bounded linear

injective operator. It follows from Corollary b), pag. 99, of Rudin [78] that Ran pLλq is

dense in L2
0pTq. Moreover, from (2.5.4), and Cauchy-Shwartz inequality, we get

e´2λδ2
}φ}2L2

0pTq
ď pLλφ, φqL2

0pTq
ď }Lλφ}L2

0pTq}φ}L2
0pTq, for all φ P L2

0pTq, (2.5.5)

Therefore e´2λδ2
}φ}L2

0pTq ď }L
˚
λφ}L2

0pTq, for all φ P L2
0pTq. From Proposition 2.16 in Coron

[23], we have that Lλ is onto. Then the inverse operator L´1
λ : L2

0pTq Ñ L2
0pTq exists, and

is a self-adjoint bounded linear operator. In fact,

rL´1
λ s

˚
“ rL˚λs

´1
“ L´1

λ .

Also, for each ψ P L2
0pTq, there exists φ P L2

0pTq, such that Lλφ “ ψ, and

L´1
λ ψ “ φ. Thus

`

L´1
λ ψ, ψ

˘

L2
0pTq

“ pφ, LλφqL2
0pTq

“ pL˚λφ, φqL2
0pTq

“ pLλφ, φqL2
0pTq

ě 0.

This completes the proof of the lemma.

In the following Corollary we show that the operator Lλ also possesses the

same properties on Hs
0pTq. Before that we record the following definition.

Definition 2.5.2. Let r P R. Denote by Dr the operator Dr : D1
pTq Ñ D1

pTq defined by

yDrvpkq “

#

|k|rpvpkq, if k ‰ 0;
pvp0q, if k “ 0.



Chapter 2. Linearized Benjamin equation 75

Corollary 2.5.3. The operator Lλ : Hs
ppTq ÝÑ Hs

ppTq is linear and bounded. Moreover,

Lλ is an isomorphism from Hs
0pTq onto Hs

0pTq, for all s ą 0.

Proof. From computations similars to those in (2.5.2), and Remark 2.1.2 we have that for

each φ P L2
0pTq

}Lλφ}Hs
0pTq

ď cg,s,λ }φ}Hs
0pTq

, (2.5.6)

where cg,s,λ “ c2
g,s

p1´ e´2λq

2λ . Thus Lλ maps Hs
0pTq into Hs

0pTq. Since the result is known

for s “ 0 and Lλ maps Hs
0pTq into itself, then any φ P Hs

0pTq with Lλpφq “ 0 satisfies

0 “ }Lλpφq}Hs
0pTq ě }Lλpφq}L2

0pTq.

Thus, Lλpφq “ 0 in L2
0pTq and consequently φ “ 0 in Hs

0pTq. Therefore, Lλ is injective

from Hs
0pTq to Hs

0pTq.

On the other hand, for any ϕ P Hs
0pTq Ă L2

0pTq, there exists φ P L2
0pTq such

that Lλφ “ ϕ P Hs
0pTq. Thus, we must prove that φ P Hs

0pTq, in order to establish that

Lλ is onto. Therefore, it is enough to prove that if φ P L2
0pTq, and Lλφ P H

s
0pTq, then

φ P Hs
0pTq. See Figure 4 below. Observe that, for any s ě 0, there exists n P N, and

Figure 4 –

0 ď s1 ď 1 such that s “ n` s1. The following claim is necessary.

Claim: Let 0 ď s1 ď 1, and n P N. For any φ P L2
0pTq such that Lλφ P H

n`s1

0 pTq, we have

that φ P Hn`s1

0 pTq, i.e. Dn`s1φ P L2
0pTq.

In fact, we use induction.

Inductive Base: Let n “ 0 and 0 ď s ď 1 be given. Assume φ P L2
0pTq with Lλφ P H

s
0pTq.

We must show that φ P Hs
0pTq. Note that

}φ}Hs
0pTq

ď c1,s

´

}φ}L2
0pTq

` }Dsφ}L2
0pTq

¯

.
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Therefore, it is enough to prove that Dsφ P L2
0pTq. In fact, since L´1

λ is a continuous

function on L2
0pTq, we have

}Dsφ}L2
0pTq

ď cλ,δ }LλD
sφ}L2

0pTq

ď cλ,δ

›

›

›

›

ż 1

0
e´2λτUµp´τqrGG

˚, DssUµp´τq
˚φ dτ

›

›

›

›

L2
0pTq

` cλ,δ

›

›

›

›

ż 1

0
e´2λτUµp´τqD

sGG˚Uµp´τq
˚φ dτ

›

›

›

›

L2
0pTq

ď cλ,δ

ż 1

0
e´2λτ }rGG˚, Dssψ}L2

0pTq
dτ ` cλ,δ cs }Lλφ}Hs0 pTq

,

(2.5.7)

where cλ,δ “
e2λ

δ2 and ψ “ Uµp´τq
˚φ. We must estimate }rGG˚, Ds

sψ}L2
0pTq

. Using that

G “ G˚ in L2
0pTq, we obtain

rGG˚, Dssψ “g2Dsψ ´Dsg2ψ ´ g

ż

T
g2pzqDsψpzq dz ´ g2

ż

T
gpyqDsψpyq dy

` g

ˆ
ż

T
g2pθq dθ

˙ˆ
ż

T
gpyqDsψpyq dy

˙

`Dsg

ż

T
g2pzqψpzq dz

`Dsg2
ż

T
gpyqψpyq dy ´Dsg

ˆ
ż

T
g2pθq dθ

˙ˆ
ż

T
gpyqψpyq dy

˙

.

(2.5.8)

From (2.5.8) and Cauchy-Schwartz inequality, we infer that

}rGG˚, Ds
sψ}L2

0pTq
ď c1,g

´

›

›rg2, Ds
sψ
›

›

L2
0pTq

` }Dsψ}L2
0pTq

` }ψ}L2
0pTq

¯

, (2.5.9)

where c1,g is the maximum of the constants involved. From Lemma A.1, (2.5.9), and

Remark 1.3.7, we obtain

}rGG˚, Ds
sψ}L2

0pTq
ď c1,g

´

c2,g }ψ}Hs´1
0 pTq ` }ψ}Hs

0pTq
` }ψ}L2

0pTq

¯

ď c3,g,s }ψ}Hs´1
0 pTq ,

(2.5.10)

where c3,g is the maximum of the constants involved. Therefore, inequalities (2.5.7) and

(2.5.10) yield

}Dsφ}L2
0pTq

ď cλ,δ

ż 1

0
e´2λτc3,g,s }ψ}Hs´1

0 pTq dτ ` cλ,δ cs }Lλφ}Hs
0pTq

“ cλ,δ

ż 1

0
e´2λτc3,g,s }Uµp´τq

˚φ}Hs´1
0 pTq dτ ` cλ,δ cs }Lλφ}Hs

0pTq

“ c3,g,s
pe2λ ´ 1q

2λ δ2 }φ}Hs´1
0 pTq ` cλ,δ cs }Lλφ}Hs

0pTq
.

Using that 0 ď s ď 1, we obtain positive constants c1,λ,δ,g, and c2,λ,δ,s such that

}Dsφ}L2
0pTq

ď c3,g,s
pe2λ ´ 1q

2λδ2 }φ}Hs´1
0 pTq ` c2,λ,δ,s }Lλφ}Hs

0pTq

ď c1,λ,δ,g,s }φ}L2
0pTq

` c2,λ,δ,s }Lλφ}Hs
0pTq

,

(2.5.11)
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Inductive Hypothesis: Assume that the result is true for n “ 1, 2, ..., k´1. In particular,

if φ P L2
0pTq, Lλφ P Hk´1`s1

0 pTq, then Dk´1`s1φ P L2
0pTq. Lets prove the result for n “ k.

Let φ P L2
0pTq, and Lλφ P H

k`s1

0 pTq Ă Hk´1`s1
0 pTq be given. From inequality

(2.5.11), we have

›

›

›
Dk`s1φ

›

›

›

L2
0pTq

“

›

›

›
Ds1Dkφ

›

›

›

L2
0pTq

ď c3,g,s
pe2λ ´ 1q

2λδ2

›

›Dkφ
›

›

Hs1´1
0 pTq ` c2,λ,δ,s

›

›LλD
kφ
›

›

Hs1
0 pTq

ď c4,g,s
pe2λ ´ 1q

2λδ2

›

›

›
Dk`s1´1φ

›

›

›

L2
0pTq

` c2,λ,δ,s }Lλφ}Hk`s1

0 pTq .

This proof the Claim.

Finally, the Corollary 2.5.3 follows from (2.5.6) and the claim.

Remark 2.5.4. Corollary 2.5.3 implies that there exists a positive constant C “ Cpδ, s, λ, gq

such that

}L´1
λ ψ}Hs

0pTq ď C }ψ}Hs
0pTq, for all ψ P Hs

0pTq. (2.5.12)

Choosing the feedback control law in system (2.4.1) as

Ku “

$

’

&

’

%

´Kλu :“ ´GG˚L´1
λ u, if λ ą 0

´K0u :“ ´GG˚u, if λ “ 0,
(2.5.13)

we can rewrite the resulting closed-loop system in the following form

#

Btu´ αHB2
xu´ B

3
xu` 2µBxu “ ´Kλu, t ą 0, x P T

upx, 0q “ u0pxq, x P T,
(2.5.14)

where λ ě 0, and Kλ is a bounded linear operator on Hs
ppTq with s ě 0. We have the

following result.

Theorem 2.5.5. Let α ą 0, µ P R, s ě 0, and λ ą 0 be given. For any u0 P H
s
0pTq, the

system (2.5.14) admits a unique solution u P Cpr0,`8q, Hs
0pTqq. Moreover, there exists

M “Mpg, λ, δ, α, µ, sq such that

}up¨, tq}Hs
0pTq ďMe´λt}u0}Hs

0pTq, for all t ě 0. (2.5.15)

Proof. As Kλ is a bounded linear operator, the same argument used in Theorem 2.4.1

shows that for u0 P H
s
0pTq the problem (2.5.14) has a unique solution u P Cpr0,8q;Hs

0pTqq,
for all s ě 0. We denote by tTλptqutě0 the C0´semigroup on Hs

0pTq, with infinitesimal

generator Aµ ´Kλ.
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Assume s “ 0 and let u be the solution of system (2.5.14). Observe that

v :“ eλ tu, satisfies

#

Btv ´ λ v ´ αHB2
xv ´ B

3
xv ` 2µBxv “ ´GG˚L´1

λ v, t ą 0, x P T
vpx, 0q “ v0pxq “ u0pxq P L

2
0pTq, x P T.

(2.5.16)

Also, as the operator λI ´GG˚L´1
λ is bounded on L2

0pTq, then the problem (2.5.16) has

a unique solution v P Cpr0,8q;L2
0pTqq. We denote by tV ptqutě0 the C0´semigroup on

L2
0pTq, with infinitesimal generator Aµ ` λI ´ GG˚L´1

λ . Observe that V ptq˚ exists, is a

bounded linear operator with }V ptq} “ }V ptq˚}, for all t ě 0, and

V ptq “ eλ tTλptq. (2.5.17)

On the other hand, for u0 P DpA
˚
µq “ H3

0 pTq, and wptq “ V ptq˚u0 (note that

wptq is the solution of the adjoint system associated to (2.5.16)) we get

d

dt
wptq “

“

Aµ ` λI ´GG
˚L´1

λ

‰˚
wptq “

`

A˚µ ` λI ´ L
´1
λ G˚˚G˚

˘

wptq, (2.5.18)

and

d

dt
Lλwptq “ Lλ

d

dt
wptq “ Lλ

`

A˚µ ` λI ´ L
´1
λ G˚˚G˚

˘

wptq. (2.5.19)

From (2.5.18) and (2.5.19), we obtain

d

dt
pwptq , LλwptqqL2

0pTq
“

``

A˚µ ` λI ´ L
´1
λ G˚˚G˚

˘

wptq , Lλwptq
˘

L2
0pTq

`
`

wptq , Lλ
`

A˚µ ` λI ´ L
´1
λ G˚˚G˚

˘

wptq
˘

L2
0pTq

“ 2
`

LλA
˚
µwptq , wptq

˘

L2
0pTq

` 2λ pwptq , LλwptqqL2
0pTq

´ 2 pG˚wptq , G˚wptqqL2
0pTq

.

(2.5.20)

Note that

2
`

LλA
˚
µwptq, wptq

˘

L2
0pTq

“ 2
ż 1

0
e´2λτ `Uµp´τqGG

˚Uµp´τq
˚A˚µwp¨, tq , wp¨, tq

˘

L2
0pTq

dτ

“ ´2
ż 1

0
e´2λτ

ˆ

G˚
ˆ

d

dτ
Uµp´τq

˚wp¨, tq

˙

, G˚Uµp´τq
˚wp¨, tq

˙

L2
0pTq

dτ

“ ´

ż 1

0
e´2λτ d

dτ

´

}G˚Uµp´τq
˚wp¨, tq}

2
L2

0pTq

¯

dτ.

Hence, integration by parts yields

2
`

LλA
˚
µwptq, wptq

˘

L2
0pTq

“ ´e´2λ }G˚Uµp´1q˚wp¨, tq}2L2
0pTq

` }G˚Uµp0q˚wp¨, tq}2L2
0pTq

´ 2λ
ż 1

0
e´2λτ pG˚Uµp´τq

˚wp¨, tq , G˚Uµp´τq
˚wp¨, tqqL2

0pTq
dτ

“ ´
›

›e´λG˚Uµp´1q˚wp¨, tq
›

›

2
L2

0pTq
` }G˚wp¨, tq}

2
L2

0pTq

´ 2λ pLλwptq , wptqqL2
0pTq

.

(2.5.21)
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From (2.5.20) and (2.5.21), we have

d

dt

`

V ptq˚u0 , LλV ptq
˚u0

˘

L2
0pTq

“
d

dt
pwptq , LλwptqqL2

0pTq

“ ´

›

›

›
e´λG˚Uµp´1q˚wp¨, tq

›

›

›

2

L2
0pTq

´
›

›G˚wp¨, tq
›

›

2
L2

0pTq

“ ´

›

›

›
e´λG˚Uµp´1q˚V ptq˚u0

›

›

›

2

L2
0pTq

´
›

›G˚V ptq˚u0
›

›

2
L2

0pTq
ď 0,

(2.5.22)

for all u0 P DpA
˚
µq, and t ě 0. From inequalities (2.5.22), and (2.5.2) we have

pV ptq˚u0 , LλV ptq
˚u0qL2

0pTq
ď pV p0q˚u0 , LλV p0q˚u0qL2

0pTq

ď }u0}L2
0pTq

}Lλu0}L2
0pTq

ď c2
g

p1´ e´2λq

2λ }u0}
2
L2

0pTq
.

(2.5.23)

Also, inequality (2.5.5) implies that

e´2λδ2
}V ptq˚u0}

2
L2

0pTq
ď pV ptq˚u0 , LλV ptq

˚u0qL2
0pTq

. (2.5.24)

From inequalities (2.5.23)-(2.5.24), we infer

}V ptq˚u0}L2
0pTq

ď cg
p1´ e´2λq

1
2

p2λq
1
2

e´λδ }u0}L2
0pTq

, for all u0 P DpA
˚
µq, and t ě 0.

Finally, using density arguments we show that there exists a positive constant

Mg,λ,δ “ cg
p1´ e´2λq

1
2

p2λq 1
2

e´λδ, such that

}V ptq˚u0}L2
0pTq

ďMg,λ,δ }u0}L2
0pTq

, for all u0 P L
2
0pTq, and t ě 0.

From identity (2.5.17) and the fact that }V ptq} “ }V ptq˚}, we infer

}eλ tTλptqu0}L2
0pTq ďMg,λ,δ }u0}L2

0pTq
, for all u0 P L

2
0pTq, and t ě 0.

This proves the Theorem in the case s “ 0. The other cases of s are proved as in Theorem

2.4.2.

Corollary 2.5.6. Let µ P R, λ ą 0, α ą 0, g as in (2.0.8), and s ě 0 be given. For any

u0 P H
s
ppTq with µ “ ru0s, there exist positive constants M “Mpg, λ, δ, µ, α, sq such that

the unique solution u P Cpr0,8q;Hs
ppTqq of the closed-loop system

Btu´ αHB2
xu´ B

3
xu “ ´Kλu, upx, 0q “ u0, x P T, t P R`,

satisfies

}up¨, tq ´ ru0s}Hs
ppTq ďMe´λt}u0 ´ ru0s}Hs

ppTq, for all t ě 0.

˛
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Chapter 3
Bourgain’s spaces associated to the Benjamin

equation

In this chapter, we introduce the Bourgain’s spaces associated to the Benjamin

equation (2.3.37) and derive its properties. As was indicated in the final part of Section 2.3,

the Strichartz estimates and multilinear estimates obtained in this chapter are fundamental

to prove the existence of solutions for the Benjamin equation (2.3.37). This preliminary

results will bring a small data control result for equation (2.3.37) which is proved in Chapter

4. Here we also are particularly interested in obtain the propagation of compactness and

regularity for the differential operator L :“ Bt ´ α HB2
x ´ B

3
x ` 2µ Bx associated to the

Benjamin equation. These propagation properties will play a key role when studying

the global stabilizability. Furthermore, in this chapter we prove the unique continuation

property for Benjamin equation (2.3.37).

This chapter is organized as follows. Section 3.1 is devoted to study the Bour-

gain’s space associated to the Benjamin equation (2.3.37) and its properties. The main

result in this section is the bilinear estimate given by Theorem 3.1.24. In section 3.2, a

multiplication property is established, viz., Theorem 3.2.3. Next, in section 3.3, we present

some properties of propagation of compactness and regularity. Finally, in section 3.4 we

prove the unique continuation property for the Benjamin equation.

3.1 Bourgain’s spaces

Here we will introduce the Bourgain’s spaces associated to Benjamin type

equation (2.3.37) and study its properties. To simplify the notation, we denote Uµptq (see

(2.3.40)) by V ptq. We start with the following definition.

Definition 3.1.1 (see Tao [87, page 99]). Let v : Tˆ RÑ R be a function. The spatially
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periodic, and temporally non-periodic Fourier transform is defined by

pvpk, τq :“ 1
2π

ż

R

ż

T

vpx, tqe´iptτ`kxq dx dt,

where k P Z and τ P R.

In this case the Fourier inversion formula is given by

vpx, tq “
ÿ

kPZ

ż

R
pvpk, τqeiptτ`kxq dτ. (3.1.1)

We use pvpk, tq (respectively pvpx, τq) to denote the Fourier transform in space variable x

(respectively in time variable t).

For given b, s P R and a function v : Tˆ RÑ R, define the quantities

}v}Xs,b :“
˜

8
ÿ

k“´8

ż

R
xky2sxτ ´ φpkqy2b|pvpk, τq|2 dτ

¸
1
2

,

and

}v}Ys,b :“
˜

8
ÿ

k“´8

ˆ
ż

R
xkysxτ ´ φpkqyb|pvpk, τq| dτ

˙2
¸

1
2

,

where φpkq “ ´k3
´2µk`αk|k| is called the phase function, x¨y :“

a

1` | ¨ |2, and pvpk, τq

denotes the space-time Fourier transform of v.

Definition 3.1.2 (Bourgain’s space, see Tao [87, page 99]). For given b, s P R we define

the Bourgain’s space Xs,b associated to Benjamin equation on T as the closure of the space

of Schwartz functions SpTˆ Rq under the norm } ¨ }Xs,b .

Note that Xs,b is a Hilbert space and for b ą
1
2

Xs,b Ă CpR;Hs
ppTq, (3.1.2)

the embedding being continuous. In particular,

}v}Xs,0 “ }v}L2pRt;Hs
ppTqq. (3.1.3)

Let f : Tˆ RÑ R be a function. We define }f}Hs
xH

b
t

as

}f}Hs
xH

b
t

:“
›

›

›
} pfpk, tqxkys}Hb

t pRq

›

›

›

l2
k

“

˜

8
ÿ

k“´8

ż

R
xky2sxτy2b| pfpk, τq|2 dτ

¸
1
2

.

Proposition 3.1.3. Let v : Tˆ RÑ R be a function. Then,

}v}Xs,b “ }V p´tqv}Hs
xH

b
t
“

›

›

›
} pV p´tqvq^ pk, tqxkys}Hb

t pRq

›

›

›

l2
k

.
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Proof. The proof follows by using pV p´tqvpx, tqq^ pk, tq “ e´iφpkqtpvpk, tq “ pvpk, τ ` φpkqq

and an appropriate change of variables. We omit the details.

As noted in [14, 44, 52, 57, 87], while dealing with the bilinear estimates in

the periodic case one needs to consider b “
1
2 for which the embedding in 3.1.2 fails. To

overcome this situation, we introduce the space Zs,b.

Definition 3.1.4. For given b, s P R we define the space Ys,b as the closure of the space

of Schwartz functions SpTˆ Rq under the norm } ¨ }Ys,b.

For any function v : T ˆ R Ñ R, we define }v}l2
k
L1
τ pRq :“

›

› }v}L1
τ pRq

›

›

l2
k

, and we

note that }v}Ys,b “ }xky
s
xτ ´ φpkqybv̂pk, τq}l2

k
L1
τ pRq.

Definition 3.1.5. For given s, b P R, we define the space

Zs,b :“ Xs,b X Ys,b´ 1
2

endowed with the norm } ¨ }Zs,b :“ } ¨ }Xs,b ` } ¨ }Ys,b´ 1
2
. For a given interval I, let Xs,bpIq

(resp. Ys,bpIq, Zs,bpIq) be the restriction space of Xs,b (resp. Ys,b, Zs,b) to the interval I

with the norm

}f}Xs,bpIq :“ inf
 

}f̃}Xs,b |f̃ “ f on Tˆ I
(

(resp. }f}Ys,bpIq :“ inf
 

}f̃}Ys,b |f̃ “ f on Tˆ I
()

(resp. }f}Zs,bpIq :“ inf
 

}f̃}Zs,b |f̃ “ f on Tˆ I
().

For simplicity, we will denote Xs,bpIq (resp. Ys,bpIq, Zs,bpIq) by XT
s,b (resp. Y T

s,b, Z
T
s,b) if

I “ r0, T s.

3.1.1 Properties of the spaces Xs,bpIq (resp. Zs,bpIq)

In this subsection we show important properties that the Bourgain’s spaces

hold. The main result of this subsection is given by Proposition 3.1.8 which establishes

the continuous embedding of space Zs,bpIq in CpI;Hs
ppTqq. We start with the following

properties whose proofs are by now classical and can be found for example in [87].

Proposition 3.1.6. The spaces Xs,b (resp. Xs,bpIq) have the following properties:

i) Xs,b and Xs,bpIq are Hilbert’s spaces.

ii) If s1 ď s2 and b1 ď b2, then Xs2,b2 (resp. Xs2,b2pIq) is continuously embedded in the

space Xs1,b1 (resp. Xs1,b1pIq).
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iii) For a given finite interval I, if s1 ă s2 and b1 ă b2, then the space Xs2,b2pIq is

compactly embedded in the space Xs1,b1pIq.

Lemma 3.1.7. Let s, r P R and Dr be the operator given by Definition 2.5.2. Then,

Drv P Xs´r,b (resp. Xs´r,bpIq) for any v P Xs,b (resp. Xs,bpIq). The same is valid for the

operator Brx. Moreover, there exists a positive constant C such that

}Drv}Xs´r,b ď C }v}Xs,b

Proof. Let v P Xs,b. Then

}Drv}2Xs´r,b “
ÿ

kPZ˚

ż

R
xky2sxτ ´ φpkqy2b xky´2r|k|2r |pvpk, τq|2 dτ `

ż

R
xτ ´ φp0qy2b|pvp0, τq|2 dτ

ď C1
ÿ

kPZ˚

ż

R
xky2sxτ ´ φpkqy2b |pvpk, τq|2 dτ `

ż

R
xτ ´ φp0qy2b|pvp0, τq|2 dτ

ď C2}v}2Xs,b .

The following proposition establishes the main result of this subsection.

Proposition 3.1.8. Let I be an interval and s P R. The space Zs, 1
2

(resp. Zs, 1
2
pIq) is

continuously embedded in the space CpR;Hs
ppTqq (resp. CpI;Hs

ppTqq).

Proof. First assume v P SpTˆ Rq. Then, for each t P R fixed, we have

}vp¨, tq}2HsppTq “ 2π
k“8
ÿ

k“´8

xky2s
ˇ

ˇ

ˇ

ˇ

1
?

2π

ż

R
eitτpvpk, τqdτ

ˇ

ˇ

ˇ

ˇ

2
ď C

k“8
ÿ

k“´8

ˆ
ż

R
xkys|pvpk, τq|dτ

˙2
ď C}v}2Z

s, 1
2
,

where the positive constant C does not depend neither on t nor v. Continuity in t follows

from the dominated convergence theorem. Therefore,

}v}CpR,Hs
ppTqq “ sup

tPR
}vp¨, tq}Hs

ppTq ď C}v}Z
s, 1

2
.

Now, if v is any function in Zs, 1
2
“ Xs, 1

2
X Ys,0, then there exists a sequence

tvnunPN in SpTˆRq such that lim
nÑ8

vn “ v in Zs, 1
2
, due to the density of SpTˆRq in Zs, 1

2
.

Hence,

}vn ´ vm}CpR,HspTqq ď C}vn ´ vm}Z
s, 1

2

ď C
´

}vn ´ v}Z
s, 1

2
` }v ´ vm}Z

s, 1
2

¯

ÝÑ 0,

as n,m tend to infinity. Thus, there exists w P CpR, Hs
ppTqq such that lim

nÑ8
vn “ w in

CpR, Hs
ppTqq. Note that if s ě 0, then lim

nÑ8
vn “ v in L2

pT ˆ Rq and we infer w “ v a.e.

px, tq P Tˆ R. Therefore, using the continuity of the norm we have

}v}CpR,HspTqq “

›

›

›
lim
nÑ8

vn

›

›

›

CpR,HspTqq
“ lim

nÑ8
}vn}CpR,HspTqq ď C lim

nÑ8
}vn}Z

s, 1
2
“ C}v}Z

s, 1
2
.

(3.1.4)
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Finally, if v is a function in Zs, 1
2
pIq, we can choose, by the definition of infimum,

an extension rv to T ˆ R of v such that }rv}Z
s, 1

2
ď 2 }v}Z

s, 1
2
pIq. From (3.1.4) we infer that

there exists a positive constant C such that

}v}CpI,HspTqq ď }rv}CpR,HspTqq ď C}rv}Z
s, 1

2
ď 2C}v}Z

s, 1
2
pIq.

Lemma 3.1.9. Let s, b P R. The dual space of Xs,b is X´s,´b. Moreover, the space Xs,b is

reflexive.

Proof. It follows from the fact that φpkq is an odd function. See page 97 in Tao [87].

The ideas to prove the majority of the results in the following two subsections

are similar to those derived in the KdV case (see [14, 44, 21, 22, 43, 33]).

3.1.2 Linear and integral estimates

To derive some estimates localized in time variable, we introduce a cut-off

function η P C8c pRq such that η ” 1, if t P r´1, 1s and η ” 0, if t R p´2, 2q. Then, for

T ą 0 given, we define

ηT P C
8
c pRq by ηT ptq “ η

ˆ

t

T

˙

.

We begin this subsection by proving some linear estimates.

Proposition 3.1.10. Let s, b P R and T ą 0 given. Then for all v0 P H
s
ppTq, we have

iq }ηptqV ptqv0}Xs,b ď Cη,b }v0}Hs
ppTq, iiq }ηT ptqV ptqv0}Xs,b ď Cη,b T

1
2 }v0}Hs

ppTq,

iiiq }ηptqV ptqv0}Ys,b ď Cη,b }v0}Hs
ppTq, ivq }ηT ptqV ptqv0}Ys,b ď Cη,b T

1
2 }v0}Hs

ppTq,

where Cη,b is a positive constant that depends only on η and b.

Proof. The estimates iq and iiiq are immediate consequence of iiq and ivq by taking T “ 1.
First, we prove the estimate in iiq.

Note that for any v0 P H
s
ppTq, we obtain

}ηT ptq V ptqv0}Xs,b “ }V p´tqV ptq ηT ptqv0}Hs
xH

b
t

“

›

›

›
|pv0pkq| xky

s
}ηT ptq}Hb

t pRq

›

›

›

l2
k

“ }ηT ptq}Hb
t pRq }v0}Hs

ppTq.

(3.1.5)

If b ď 0, then

}ηT ptq}Hb
t pRq ď cb }ηT ptq}L2pRq “ cb T

1
2 }ηptq}L2pRq. (3.1.6)
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On the other hand, if b ě 0, then

}ηT ptq}Hb
t pRq ď cb

´

}ηT ptq}L2pRq ` }
{pDbηT p¨qqpτq}L2pRq

¯

“ cb T
1
2
`

}ηptq}L2pRq ` }D
bηptq}L2pRq

˘

.
(3.1.7)

From (3.1.5)-(3.1.7), we have that there exists Cb,η ą 0 such that

}ηT ptq V ptqv0}Xs,b ď Cb,η T
1
2 }v0}Hs

ppTq. (3.1.8)

Next, we prove estimate ivq. Observe that for any v0 P H
s
ppTq

pηptq V ptq v0q
^
pk, τq “

`

ηptq eit φpkq pv0pkq
˘^
pτq “ pv0pkq pηpτ ` φpkqq. (3.1.9)

Thus,

}ηT ptq V ptqv0}Ys,b “
›

›}xkys xτ ´ φpkqyb pv0pkqxηT pτ ` φpkqq}L1
τ pRq

›

›

l2
k

“

›

›

›
}xkys xθyb pv0pkqxηT pθ ` 2φpkqq}L1

θ
pRq

›

›

›

l2
k

“

›

›

›
xkys |pv0pkq| }xθy

b e´2i θ φpkq
xηT pθq}L1

θ
pRq

›

›

›

l2
k

“ }xθyb xηT pθq}L1
θ
pRq }v0}Hs

ppTq.

(3.1.10)

Therefore, taking some N P N, with N ą b`
1
2 , we have

}xθyb xηT pθq}L1
θ
pRq ď c

ż

R
p1` |θ|qb´N p1` |θ|qN |xηT pθq| dθ

ď c }p1` |θ|qb´N}L2pRq }p1` |θ|qN xηT pθq}L2pRq

ď cb }ηT }HN
p pTq.

(3.1.11)

From (3.1.7), we infer that

}xθyb xηT pθq}L1
θ
pRq ď cb T

1
2
`

}ηptq}L2pRq ` }D
Nηptq}L2pRq

˘

. (3.1.12)

Using (3.1.10) and (3.1.12), we obtain that there exists Cb,η ą 0 such that

}ηT ptqV ptqv0}Ys,b ď Cη,b T
1
2 }v0}Hs

ppTq.

This completes the proof of proposition.

Corollary 3.1.11. Let s, b P R and T ą 0 be given. Then for all v0 P H
s
ppTq we have

i) }V ptqv0}XT
s,b
ď Cη,b }v0}Hs

ppTq, if T ď 1,

ii) }V ptqv0}Xs,bpIq ď Cη,b T
1
2 }v0}Hs

ppTq, if I “ r´T, T s,
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iii) }V ptqv0}Y T
s,b
ď Cη,b }v0}Hs

ppTq, if T ď 1,

iv) }V ptqv0}Ys,bpIq ď Cη,b T
1
2 }v0}Hs

ppTq, if I “ r´T, T s,

where Cη,b is a positive constant that depends only on η and b.

Proof. It is enough to prove iiq and ivq.

We first prove iiq. Let v0 P H
s
ppTq. Then ηT ptqV ptqv0 is a particular extension

to Xs,b of V ptqv0 in Xs,bpIq. Thus, appliying Proposition 3.1.10 part ii), we have

}V ptqv0}Xs,bpIq ď }ηT ptqV ptqv0}Xs,b ď Cb,η T
1
2 }v0}Hs

ppTq. (3.1.13)

This prove iiq. A similar argument applies to prove ivq.

The folloing Corollary is a direct consequence of Proposition 3.1.10, Corollary

3.1.11 and the definition of the norm in the space Zs,b (Zs,bpIq, and ZT
s,b respectively).

Corollary 3.1.12. Let s, b P R and T ą 0 be given. Then for all v0 P H
s
ppTq we have the

following estimates

i) }ηptqV ptqv0}Zs,b ď Cη,b }v0}Hs
ppTq, iiq }ηT ptqV ptqv0}Zs,b ď Cη,b T

1
2 }v0}Hs

ppTq,

iii) }V ptqv0}ZT
s,b
ď Cη,b }v0}Hs

ppTq, if T ď 1, ivq }V ptqv0}ZT
s,b
ď Cη,b T

1
2 }v0}Hs

ppTq,

v) }V ptqv0}Zs,bpIq ď Cη,b T
1
2 }v0}Hs

ppTq, if I “ r´T, T s,

where Cη,b is a positive constant depending only on η and b.

Now we show some integral estimates. The following lemma is necessary.

Lemma 3.1.13 (See [33, page 67-68]). We have the following integral estimates:

iq Let
1
2 ă b ď 1, and let f be a function in Hb´1

pRq. Then

›

›

›

›

ηT ptq

ż t

0
fpsq ds

›

›

›

›

Hb
t pRq

ď Cη,b,T }f}Hb´1
p pRq,

where Cη,b,T is a positive constant depending on η, b, and the final time T.

iiq Let b “
1
2 . Let f be a function in H´ 1

2 pRq, and x¨y´1f̂p¨q P L1
pRq. Then

›

›

›

›

ηT ptq

ż t

0
fpsq ds

›

›

›

›

H
1
2
t pRq

ď Cη,T

ˆ

}f}
H
´ 1

2
p pRq

` }xzy´1f̂pzq}L1
zpRq

˙

,

where Cη,T is a positive constant depending on η, and the final time T.
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If T ď 1, then the positive constant C in the estimates iq and iiq does not depend on T .

Theorem 3.1.14. Let b “
1
2 and T ą 0 be given. Then, one has

iq
›

›

›

›

ηT ptq

ż t

0
V pt´ t1qfpt1q dt1

›

›

›

›

Z
s, 1

2

ď Cη,T }f}Z
s,´ 1

2
, @f P Zs,´ 1

2
,

where Cη,T is a positive constant depending on η, and the final time T.

iiq

›

›

›

›

ż t

0
V pt´ t1qfpt1q dt1

›

›

›

›

Z
s, 1

2
pIq

ď Cη,T }f}Z
s,´ 1

2
pIq, @f P Zs,´ 1

2
pIq, with I “ r´T, T s,

where Cη,T is a positive constant depending on η, and the final time T.

iii)
›

›

›

›

ż t

0
V pt´ t1qfpt1q dt1

›

›

›

›

ZT
s, 1

2

ď Cη,T }f}ZT
s,´ 1

2

, @f P ZT
s,´ 1

2
,

where Cη,T is a positive constant depending on η, and the final time T.

If T ď 1, then the positive constant C in the estimates iq, iiq, and iiiq does not depend on

T.

Proof. First, we show the estimate in iq. Let T ą 0 and f ” fpx, t1q P Zs,´ 1
2
. From Bochner

theorem (see Theorem 8, page 734, [54]), we get

ˆ
ż t

0
V p´t1q fpt1q dt1

˙^

pk, t1q “
1

2π

B
ż t

0
V p´t1q fpt1q dt1, e´ikx

F

“

ż t

0

`

V p´t1q fpt1q
˘^
pk, t1q dt1

(3.1.14)

We begin estimating the norm in Xs, 1
2
. From Proposition 3.1.3, and identity

(3.1.14), we obtain

›

›

›

›

ηT ptq

ż t

0
V pt´ t1qfpt1q dt1

›

›

›

›

X
s, 1

2

“

›

›

›

›

›

›

›

›

›

ηT ptq

ż t

0

`

V p´t1qfpt1q
˘^
pk, t1q dt1

›

›

›

›

H
1
2
t pRq

xkys

›

›

›

›

›

l2
k

,

where pV p´t1qfpt1qq
^
pk, t1q represents the Fourier’s transform of the function V p´t1qfpt1q

only with respect to the spatial variable x. From Lemma 3.1.13 item iiq, we get

›

›

›

›

ηT ptq

ż t

0
V pt´ t1qfpt1q dt1

›

›

›

›

X
s, 1

2

ď Cη,T

›

›

›

›

›

}xkys
`

V p´t1qfpt1q
˘^
pk, t1q}

H
´ 1

2
t1
pRq

›

›

›

›

›

l2
k

` Cη,T

›

›

›
}xkysxλy´1 `V p´t1qfpt1q

˘^
pk, λq}L1

λ
pRq

›

›

›

l2
k

,



Chapter 3. Bourgain’s spaces 88

where pV p´t1qfpt1qq
^
pk, λq is the Fourier’s transform of the function V p´t1qfpt1q with

respect to the spatial variable x and the temporal variable t1. We note that

pV p´t1qfpt1qq
^
pk, λq “ pfpk, λ` φpkqq.

Therefore,

›

›

›

›

ηT ptq

ż t

0
V pt´ t1qfpt1q dt1

›

›

›

›

X
s, 1

2

ď Cη,T

ˆ

}f}X
s,´ 1

2
`

›

›

›
}xkysxλy´1

pfpk, λ` φpkqq}L1
λ
pRq

›

›

›

l2
k

˙

“ Cη,T

ˆ

}f}X
s,´ 1

2
`

›

›

›
}xkysxλ´ φpkqy´1

pfpk, λq}L1
λ
pRq

›

›

›

l2
k

˙

“ Cη,T

ˆ

}f}X
s,´ 1

2
` }f}Ys,´1

˙

“ Cη,T }f}Z
s,´ 1

2
.

(3.1.15)

Now, we will estimate the norm in Ys,0. Set

Dpx, tq :“ ηT ptq

ż t

0
V pt´ t1qfpt1q dt1.

We need to compute pDpk, λq. From the estimate (3.1.14), we obtain that

pDpk, tq “ ηT ptq

ż t

0
eipt´t

1qφpkq
pfpk, t1q dt1 “ eitφpkqηT ptq

ż t

0
e´it

1φpkq
pfpk, t1q dt1. (3.1.16)

Define

χr0,tspsq “

#

1, if s P r0, ts
0, if s R r0, ts.

Using the properties of the Fourier’s transform and the Fubini’s Theorem (see [36, page

73]]), we get

ˆ

ηT ptq

ż t

0
e´it

1φpkq
pfpk, t1q dt1

˙^

pλq “
1
?

2π

ż

R
e´iλt

ˆ

ηT ptq

ż t

0
e´it

1φpkq
pfpk, t1q dt1

˙

dt

“
1
?

2π

ż

R
e´iλt

ˆ

ηT ptq

ż

R
χr0,tspt

1
qe´it

1φpkq
pfpk, t1q dt1

˙

dt

“
1
?

2π

ż

R
e´iλt

ˆ

ηT ptq

ż

R
pχr0,tsp¨qq

_
pzq pe´ip¨qφpkq pfpk, ¨qq^pzq dz

˙

dt

“
1
?

2π

ż

R
e´iλt

ˆ

ηT ptq
?

2π

ż

R

peitz ´ 1q
iz

pfpk, z ` φpkqq dz

˙

dt

“
1
?

2π

ż

R

pfpk, z ` φpkqq

ˆ

xηT pλ´ zq ´ xηT pλq

iz

˙

dz.

(3.1.17)

From (3.1.16)-(3.1.17) and the property of tralation for the Fourier’s transform, we have

pDpk, λq “

ˆ

eitφpkq ηT ptq

ż t

0
e´it

1φpkq
pfpk, t1q dt1

˙^

pλq

“
1
?

2π

ż

R
pfpk, z ` φpkqq

ˆ

xηT pλ´ φpkq ´ zq ´xηT pλ´ φpkqq

iz

˙

dz.
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Using the L1
pRq´invariance under translations, we obtain

}Dpx, tq}Ys,0 ď C

›

›

›

›

›

xkys
›

›

›

›

ż

R
pfpk, z ` φpkqq

ˆ

xηT pλ´ φpkq ´ zq ´xηT pλ´ φpkqq

iz

˙

dz

›

›

›

›

L1
λ
pRq

›

›

›

›

›

l2
k

ď C

›

›

›

›

›

ż

|z|ď1
xkys| pfpk, z ` φpkqq|

›

›

›

›

|xηT pλ´ zq ´xηT pλq|

|z|

›

›

›

›

L1
λ
pRq

dz

›

›

›

›

›

l2
k

` C

›

›

›

›

›

ż

|z|ą1

˜

xkys| pfpk, z ` φpkqq|

|z|

¸

}xηT pλ´ zq ´xηT pλq}L1
λ
pRq dz

›

›

›

›

›

l2
k

.

(3.1.18)

If |z| ď 1, we use the Mean Value Theorem to get some t1˚ between t1´ z and t1 such that

›

›

›

›

|xηT pλ´ zq ´xηT pλq|

|z|

›

›

›

›

L1
λ
pRq
ď T 2

›

›

›

›

›

sup
|λ˚´λ|ď|z|ă1

|pη1pT λ˚q|

›

›

›

›

›

L1
λ
pRq

“: AT,η ă 8. (3.1.19)

On the other hand, if |z| ą 1, we use the L1
pRq´norm invariance under translations to

get

}xηT pλ´ zq ´xηT pλq}L1
λ
pRq ď }xηT pλ´ zq}L1

λ
pRq ` }xηT pλq}L1

λ
pRq

ď 2 }xηT pλq}L1
λ
pRq “: BT,η ă 8.

(3.1.20)

From (3.1.18)-(3.1.20), we infer

}Dpx, tq}Ys,0 ď CAT,η

›

›

›

›

›

ż

|z|ď1
xkys| pfpk, z ` φpkqq| dz

›

›

›

›

›

l2
k

` CBT,η

›

›

›

›

›

ż

|z|ą1

˜

xkys| pfpk, z ` φpkqq|

|z|

¸

dz

›

›

›

›

›

l2
k

.

(3.1.21)

Note that, if |z| ď 1, we use Lemma 3.197 in [41] to get some constant M ą 0 such that

xzy ďM p1` |z|q ď 2M. (3.1.22)

On the other hand, if |z| ą 1 we have

xzy ďM p1` |z|q ďM `M |z| ď 2M |z|. (3.1.23)

From the estimates (3.1.21)-(3.1.23), we obtain that

›

›

›

›

ηT ptq

ż t

0
V pt´ t1qfpt1q dt1

›

›

›

›

Ys,0

ď cAT,η2M

›

›

›

›

›

ż

|z|ď1

1
2M xkys| pfpk, z ` φpkqq| dz

›

›

›

›

›

l2
k

` cBT,η2M

›

›

›

›

›

ż

|z|ą1

˜

xkys| pfpk, z ` φpkqq|

2M |z|

¸

dz

›

›

›

›

›

l2
k

ď CT,η

›

›

›

›

›

ż

|z|ď1
xzy´1xkys| pfpk, z ` φpkqq| dz

›

›

›

›

›

l2
k

` CT,η

›

›

›

›

›

ż

|z|ą1
xzy´1xkys| pfpk, z ` φpkqq| dz

›

›

›

›

›

l2
k

ď 2CT,η
›

›

›

›

ż

R
xzy´1xkys| pfpk, z ` φpkqq| dz

›

›

›

›

l2
k

.
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Performing the change of variable λ “ z ` φpkq in the last integral, we get that
›

›

›

›

ηT ptq

ż t

0
V pt´ t1qfpt1q dt1

›

›

›

›

Ys,0

ď 2CT,η
›

›

›

›

ż

R
xλ´ φpkqy´1xkys| pfpk, λq| dλ

›

›

›

›

l2
k

“ 2CT,η }f}Ys,´1

(3.1.24)

Inequalities (3.1.15), and (3.1.24) prove the estimate in iq.

Finally, let f P Zs,´ 1
2
pIq, with I “ r´T, T s be given. We consider an extension

rf to Tˆ R such that } rf}Z
s,´ 1

2
ď 2}f}Z

s,´ 1
2
pIq. Therefore,

›

›

›

›

ż t

0
V pt´ t1qfpt1q dt1

›

›

›

›

Z
s, 1

2
pIq

ď

›

›

›

›

ηT ptq

ż t

0
V pt´ t1q rfpt1q dt1

›

›

›

›

Z
s, 1

2

ď Cη,T } rf}Z
s,´ 1

2

ď 2 Cη,T }f}Z
s,´ 1

2
pIq.

(3.1.25)

This proves the estimate in iiq. Similar arguments can be used to show the estimate in

iiiq.

The following result is consequence of the fractional Leibniz rule and the Sobolev

embedding theorem. Its proof is similar to the proof of Lemma 3.11 in [33, page 66] (see

also Lemma 2.11 in [87]).

Proposition 3.1.15. Let 0 ă T ă 1, ´1
2 ă b1 ă b ă

1
2 , s P R, and I “ r´T, T s be given.

Then there exists C ą 0, independent on T, such that

}v}Xs,b1 pIq ď C T b´b
1

}v}Xs,bpIq, @v P Xs,bpIq.

In particular,

}v}XT
s,b1
ď C T b´b

1

}v}XT
s,b
, @v P XT

s,b. (3.1.26)

Proposition 3.1.16 (see [87, page 105]). For all s, b P R, ε ą 0, and v P Xs,b, there exists

Cε ą 0 such that

}v}Y
s,b´ 1

2´ε
ď Cε }v}Xs,b .

Furthermore, for all T ą 0,

}v}Y
s,b´ 1

2´ε
pIq ď Cε }v}Xs,bpIq, @v P Xs,bpIq, I “ r´T, T s. (3.1.27)

Proof. Let be s, b P R, ε ą 0, and v P Xs,b. Then, applying Cauchy-Schwartz inequality

and using the invariance of the norm in L2
pRq we obtain

}v}Y
s,b´ 1

2´ε
“

›

›

›
}xkysxτ ´ φpkqyb´

1
2´ε

pvpk, τq}L1pRq

›

›

›

l2
k

ď

›

›

›
}xτ ´ φpkqy´

1
2´ε}L2

τ pRq}xky
s
xτ ´ φpkqyb pvpk, τq}L2pRq

›

›

›

l2
k

.
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Performing the change of variables θ “ τ ´ φpkq, one has

}xτ ´ φpkqy´
1
2´ε}L2

τ pRq “ }xθy
´ 1

2´ε}L2
θ
pRq ď c

ˆ
ż

R
p1` |θ|q´1´2εdθ

˙

ď 2 1
2 c

ˆ
ż 8

0
p1` |θ|q´1´2εdθ

˙
1
2

“ 2 1
2 c

1
p2εq 1

2
ă 8,

where we used that ε ą 0. Hence,

}v}Y
s,b´ 1

2´ε
ď Cε

›

›}xkysxτ ´ φpkqybpvpk, τq}L2pRq
›

›

l2
k

“ Cε }v}Xs,b .

Finally, taking v P Xs,bpIq and considering rv an extension in Xs,b such that }rv}Xs,b ď

2}v}Xs,bpIq, we obtain that

}v}Y
s,b´ 1

2´ε
pIq ď }rv}Y

s,b´ 1
2´ε
ď Cε }rv}Xs,b ď 2Cε }v}Xs,bpIq .

Remark 3.1.17. Similar arguments as those in the proof of Inequality (3.1.27) shows that

}v}Y T
s,b´ 1

2´ε
ď Cε }v}XT

s,b
,

for all T ą 0, s, b P R, ε ą 0, and v P XT
s,b.

3.1.3 Nonlinear estimates

We start with the following result, which is fundamental to estimate the

nonlinear term 2uBxu, in the Zs,´ 1
2
´norm.

Theorem 3.1.18. Let v : Tˆ RÑ R be a function in X0, 1
3
. Then, there exists Cα ą 0,

depending only on α such that

}v}L4pTˆRq ď Cα}v}X0, 1
3
.

Proof. Let v P SpTˆ Rq. Observe that

}v}2X0, 1
3
„

8
ÿ

k“´8

ż

R
p1` |τ ´ φpkq|q

2
3 |pvpk, τq|2 dτ .

Also note that, we can write vpx, tq “
8
ÿ

m“0
v2mpx, tq, where

yv2mpk, τq “ pvpk, τq ¨ χ2mď1`|τ´φpkq|ă2m`1 ,

and χ2mď1`|τ´φpkq|ă2m`1 is the characteristic function over the set 2m ď 1`|τ´φpkq| ă 2m`1.

In this way, we have

}v}2X0, 1
3
„

8
ÿ

k“´8

ż

R

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

m“0
pvpk, τq ¨ 2m

3 ¨ χ2mď1`|τ´φpkq|ă2m`1

ˇ

ˇ

ˇ

ˇ

ˇ

2

dτ . (3.1.28)
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Now, using Plancherel’s inequality in (3.1.28), we obtain

}v}2X0, 1
3
„

8
ÿ

m“0
2 2m

3 }v2m}
2
L2pTˆRq. (3.1.29)

On the other hand,

}v}2L4pTˆRq “ }v
2}L2pTˆRq ď 2

ÿ

mďm1

›

›v2mv2m1
›

›

L2pTˆRq “ 2
ÿ

m,ně0
}v2mv2m`n}L2pTˆRq. (3.1.30)

Once again, using Plancherel’s identity, we get

}v2mv2m`n}L2pTˆRq “

›

›

›

›

›

ÿ

k1PZ

ż

R
yv2mpk1, τ1q zv2m`npk ´ k1, τ ´ τ1q dτ1

›

›

›

›

›

l2
k
L2
τ

. (3.1.31)

We estimate the RHS of (3.1.31) separately in the range |k| ď 2aprαs ` 2q and

|k| ą 2aprαs ` 2q, where the natural number a will be determined later.

}v2mv2m`n}L2pTˆRq ď

¨

˝

ÿ

|k|ď2aprαs`2q

›

›

›

›

›

ÿ

k1PZ

ż

R
yv2mpk1, τ1q {v2m`npk ´ k1, τ ´ τ1q dτ1

›

›

›

›

›

2

L2
τ

˛

‚

1
2

`

¨

˝

ÿ

|k|ą2aprαs`2q

›

›

›

›

›

ÿ

k1PZ

ż

R
yv2mpk1, τ1q {v2m`npk ´ k1, τ ´ τ1q dτ1

›

›

›

›

›

2

L2
τ

˛

‚

1
2

“: I ` II.

(3.1.32)

To estimate I, we use the triangular and Young’s (see [49, Theorem 2.2]) inequalities to

obtain
›

›

›

›

›

ÿ

k1PZ

ż

R
yv2mpk1, τ1q {v2m`npk ´ k1, τ ´ τ1q dτ1

›

›

›

›

›

L2
τ

ď
ÿ

k1PZ

›

›

›

›

ż

R
yv2mpk1, τ1q {v2m`npk ´ k1, τ ´ τ1q dτ1

›

›

›

›

L2
τ

ď
ÿ

k1PZ

}yv2mpk1, ¨q}L1pRq }{v2m`npk ´ k1, ¨q}L2pRq.

(3.1.33)

Now applying Cauchy-Schwarz inequality, we get

}yv2mpk1, ¨q}L1pRq ď
`

µptτ1 : 2m ď 1` |τ1 ´ φpk1q| ă 2m`1
uq
˘

1
2

ˆ
ż

R

ˇ

ˇ

pvpk1, τ1q ¨ χ2mď1`|τ1´φpk1q|ă2m`1
ˇ

ˇ

2
dτ1

˙ 1
2

ď C2 2
m
2 }yv2mpk1, ¨q}L2pRq,

(3.1.34)

where µ is the Lebesgue measure. Therefore, applying Cauchy-Schwarz inequality, Plancherel,

and the invariance of the norm under translations, we obtain

›

›

›

›

›

ÿ

k1PZ

ż

R
yv2mpk1, τ1q {v2m`npk ´ k1, τ ´ τ1q dτ1

›

›

›

›

›

L2
τ

ď C2 2m2 }v2m}L2pTˆRq ¨ }v2m`n}L2pTˆRq. (3.1.35)

Therefore, from definition of I in (3.1.32) and inequalities (3.1.33), (3.1.34), and (3.1.35),

we get

I ď C3pαq 2
a`m

2 }v2m}L2pTˆRq ¨ }v2m`n}L2pTˆRq. (3.1.36)
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To estimate II, define

θ :“

›

›

›

›

›

ÿ

k1PZ

ż

R
yv2mpk1, τ1q zv2m`npk ´ k1, τ ´ τ1q dτ1

›

›

›

›

›

L2
τ

. (3.1.37)

First, denote χmpk, τq :“ χ2mď1`|τ´φpkq|ă2m`1pτq. Applying Cauchy-Schwartz

inequality in k1 and τ1, we get

θ ď sup
|k|ą2aprαs`2q

sup
τPR

p χm ˚ χm`npk, τq q
1
2

›

›

›

›

›

›

˜

ÿ

k1PZ

ż

R
|yv2m pk1, τ1q|

2
|{v2m`npk ´ k1, τ ´ τ1q|

2 dτ1

¸ 1
2
›

›

›

›

›

›

L2
τ

.

(3.1.38)

Therefore, using the translation invariance of the norm, and Plancherel’s in-

equality, we obtain

II ď }χm ˚ χm`npk, τq}
1
2
l8
|k|ą2aprαs`2qL

8
τ
¨ }v2m`n}L2pTˆRq ¨ }v2m}L2pTˆRq. (3.1.39)

To estimate the convolution term in inequality (3.1.39), we write for fixed k

with |k| ą 2ap2` rαsq and τ

χm ˚ χm`npk, τq “
ÿ

k1PZ

ż

R
χmpk1, τ1q ¨ χm`npk ´ k1, τ ´ τ1q dτ1. (3.1.40)

From the support condition on χm and χm`n we note that for each k1 fixed

there exist C4 ě 0 and C5 ą 0 such that

C42m ď |τ1 ´ φpk1q| ă C22m.

Thus, τ1 “ φpk1q `Op2mq. In a similar way, we have that τ ´ τ1 “ φpk ´ k1q `Op2m`nq.
In consequence,

τ “ φpk1q ` φpk ´ k1q `Op2m`nq, (3.1.41)

and
ż

R
χmpk1, τ1q ¨ χm`npk ´ k1, τ ´ τ1q dτ1 ď µptτ1 P R : 2m ď 1` |τ1 ´ φpk1q| ă 2m`1

uq.

Therefore, for each fixed k1, the τ1 integral in (3.1.40) is Op2mq. To calculate

the numbers of k11s for which the integral is non-zero, note that (3.1.41) implies

τ

k
“ ´k2

` 3kk1 ´ 3k2
1 ´ 2µ` αk1|k1|

k
`
αpk ´ k1q|k ´ k1|

k
`OpC6pαq2m`n´aq. (3.1.42)

Thus, we should study four cases:

Case 1) k ´ k1 ě 0 and k1 ě 0 : By identity (3.1.42), we have

αk2
1
k
`
αpk ´ k1q

2

k
` 3kk1 ´ 3k2

1 ´ k
2
´ 2µ “ τ

k
`OpC6pαq2m`n´aq.
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Note that 3kk1 ´ 3k2
1 `

αk2
1
k
`
αpk ´ k1q

2

k
“

ˆ

2α
k
´ 3

˙

`

k2
1 ´ kk1

˘

` αk. Therefore,

ˆ

2α
k
´ 3

˙ˆ

k1 ´
k

2

˙2

“
τ

k
`

ˆ

2α
k
´ 3

˙

k2

4 ´ αk ` k2
´ 2µ`OpC6pαq2m`n´aq.

Using that |k| ą 2aprαs ` 2q, we have

ˇ

ˇ

ˇ

ˇ

2α
k
´ 3

ˇ

ˇ

ˇ

ˇ

ą 1. This implies,

ˆ

k1 ´
k

2

˙2

“
τ

2α ´ 3k `
k2

4 ´
αk2

2α ´ 3k `
k3

2α ´ 3k ´
2µk

2α ´ 3k `OpC6pαq2m`n´aq.

Case 2) k ´ k1 ě 0 and k1 ď 0 : In this case identity (3.1.42) implies,

´
αk2

1
k
`
αpk ´ k1q

2

k
` 3kk1 ´ 3k2

1 ´ k
2
´ 2µ “ τ

k
`OpC6pαq2m`n´aq.

With the similar calculations as in Case 1, we obtain

ˆ

k1 ´

ˆ

´
2α
3k ` 1

˙

k

2

˙2

“ ´
τ

3k `
ˆ

´
2α
3k ` 1

˙2
k2

4 `
αk

3 ´
k2

3 ´
2µ
3 `OpC6pαq2m`n´aq.

Case 3) k ´ k1 ď 0 and k1 ď 0 : In this case identity (3.1.42) implies,

´
αk2

1
k
´
αpk ´ k1q

2

k
` 3kk1 ´ 3k2

1 ´ k
2
´ 2µ “ τ

k
`OpC6pαq2m`n´aq.

Thus,

ˆ

´
2α
k
´ 3

˙ˆ

k1 ´
k

2

˙2

“
τ

k
`

ˆ

´
´2α
k

´ 3
˙

k2

4 ` αk ` k2
` 2µ`OpC6pαq2m`n´aq.

Using |k| ą 2aprαs ` 2q, we observe that

ˇ

ˇ

ˇ

ˇ

´
2α
k
´ 3

ˇ

ˇ

ˇ

ˇ

ą 1. Therefore,

ˆ

k1 ´
k

2

˙2

“
τ

´2α ´ 3k `
k2

4 `
αk2

´2α ´ 3k `
k3

´2α ´ 3k `
2µk

´2α ´ 3k `OpC6pαq2m`n´aq.

Case 4) k ´ k1 ď 0 and k1 ě 0 : In this case identity (3.1.42) implies,

αk2
1
k
´
αpk ´ k1q

2

k
` 3kk1 ´ 3k2

1 ´ k
2
´ 2µ “ τ

k
`OpC6pαq2m`n´aq.

Thus,

ˆ

k1 ´

ˆ

2α
3k ` 1

˙

k

2

˙2

“ ´
τ

3k `
ˆ

2α
3k ` 1

˙2
k2

4 ´
αk

3 ´
k2

3 ´
2µ
3 `OpC6pαq2m`n´aq.

Therefore, in all cases k1 takes at most OpC6pαq2
m`n´a

2 q values. Thus,

}χm ˚ χm`npk, τq}l8
|k|ą2aprαs`2qL

8
τ
ď C7pαq2m ¨ 2

m`n´a
2 “ C7pαq2

3m`n´a
2 . (3.1.43)
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We can conclude from inequalities (3.1.39) and (3.1.43) that

II ď C7pαq2
3m`n´a

4 }v2m`n}L2pTˆRq }v2m}L2pTˆRq. (3.1.44)

Using estimates (3.1.32), (3.1.36), and (3.1.44) implies

}v2mv2m`n}L2pTˆRq ď C7pαq
´

2m`a
2 ` 2 3m`n´a

4

¯

}v2m`n}L2pTˆRq }v2m}L2pTˆRq .

Taking a “
m` n

3 , we obtain

}v2mv2m`n}L2pTˆRq ď C8pαq2
4m`n

6 }v2m`n}L2pTˆRq }v2m}L2pTˆRq . (3.1.45)

Therefore, inequalities (3.1.30) and (3.1.45) imply

}v}2L4pTˆRq ď 2C8pαq
ÿ

ně0

2´
n
6

˜

ÿ

mě0

2
2pm`nq

3 }v2m`n}
2
L2pTˆRq

¸ 1
2
˜

ÿ

mě0

2
2m

3 }v2m}
2
L2pTˆRq

¸ 1
2

. (3.1.46)

Thus from inequality (3.1.46) and identity (3.1.29), we obtain

}v}2L4pTˆRq ď C9pαq}v}
2
X0, 1

3

˜

ÿ

ně0
2´n

6

¸

ď Cpαq}v}2X0, 1
3
.

Corollary 3.1.19. Let f P L
4
3 pTˆ Rq. Then, there exists Cα ą 0, such that

}f}X0,´ 1
3
“

˜

8
ÿ

k“´8

ż

R
xτ ´ φpkqy´

2
3 | pfpk, τq|2 dτ

¸
1
2

ď Cα}f}
L

4
3 pTˆRq

.

Proof. It follows from Theorem 3.1.18 that X0, 1
3

ãÑ L4
pTˆRq, so

`

L4
pTˆ Rq

˘1
ãÑ

´

X0, 1
3

¯1

i.e., L
4
3 pTˆ Rq ãÑ X0,´ 1

3
.

Lemma 3.1.20. For all k, k1 P Z with k ‰ 0, k1 ‰ 0, and k ‰ k1, we have

iq |3kk1pk ´ k1q| ě
3
2k

2.

iiq |k1pk ´ k1q| ě
1
2 |k|.

Proof. The proof of iq follows by simple calculations considering six possible cases:

R``` :“ tk ´ k1 ą 0, k ą 0, k1 ą 0u

R``´ :“ tk ´ k1 ą 0, k ą 0, k1 ă 0u

R`´´ :“ tk ´ k1 ą 0, k ă 0, k1 ă 0u

R´´´ :“ tk ´ k1 ă 0, k ă 0, k1 ă 0u

R´´` :“ tk ´ k1 ă 0, k ă 0, k1 ą 0u

R´`` :“ tk ´ k1 ă 0, k ą 0, k1 ą 0u.
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In the first case R```, observe that

3kk1pk ´ k1q ě
3
2k

2
ô k ě

k2
1

k1 ´
1
2
.

The fact k ą k1 implies that the right side of the last expression is always true. The others

cases are similar. Finally, note that iiq is consequence of iq just dividing it by |3k|.

Lemma 3.1.21. For any k P Z, α ą 0 and µ P R, let φpkq “ ´k3
´ 2µk ` αk|k|. For all

k, k1 P Z with k ‰ 0, k1 ‰ 0, k ‰ k1, and maxt|k|, |k1|, |k ´ k1|u ě max
!

1, 4α
3

)

, there

exists a constant Cα ą 0 depending only on α such that,

|Epk, k1q| ě 3Cα|kk1pk ´ k1q|,

where Epk, k1q :“ pτ ´ φpkqq ´ pτ1 ´ φpk1qq ´ pτ ´ τ1 ´ φpk ´ k1qq, @τ, τ1 P R. Moreover,

Cα “ 1´ α

3 , if 0 ă α ă 3,

and

Cα “ min
"

´1` 2α
3r2α

3 s
, 1´ 2α

3pr2α
3 s ` 1q

*

, if α ą 3.

Proof. Observe that

Epk, k1q “ ´αk|k| ` αk1|k1| ` αpk ´ k1q|k ´ k1| ` 3kk1pk ´ k1q.

Again, the proof follows by straightforward calculations considering the same six cases of

Lemma 3.1.20. We verify three cases, others are similar.

Case 1) In the region R```, one has k ě k1 ` 1 ě 2. Thus

Epk, k1q “ ´αkk ` αk1k1 ` αpk ´ k1q
2
` 3kk1pk ´ k1q “ 3k1pk ´ k1q

ˆ

k ´
2α
3

˙

.

Also, in this case, maxt|k|, |k1|, |k ´ k1|u “ k. Therefore,

|Epk, k1q| “ 3k1pk ´ k1q

ˇ

ˇ

ˇ

ˇ

k ´
2α
3

ˇ

ˇ

ˇ

ˇ

ě 3k1pk ´ k1qCαk “ 3Cα|kk1pk ´ k1q|.

Case 2) In R``´, note that k ´ k1 P Z with k ´ k1 ě 2.

Epk, k1q “ ´αkk ` αk1p´k1q ` αpk ´ k1q
2
` 3kk1pk ´ k1q “ 3kk1

ˆ

pk ´ k1q ´
2α
3

˙

.

In this case, maxt|k|, |k1|, |k ´ k1|u “ k ´ k1. Thus

|Epk, k1q| “ 3kp´k1q

ˇ

ˇ

ˇ

ˇ

pk ´ k1q ´
2α
3

ˇ

ˇ

ˇ

ˇ

ě 3kp´k1qpk ´ k1qCα “ 3Cα|kk1pk ´ k1q|.
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Case 5) In R´´`, k ď ´1, k1 ě 1, and k ´ k1 ď ´2. Then,

Epk, k1q “ ´αkp´kq ` αk1k1 ´ αpk ´ k1q
2
` 3kk1pk ´ k1q “ 3kk1

ˆ

pk ´ k1q `
2α
3

˙

.

Note that, maxt|k|, |k1|, |k ´ k1|u “ ´pk ´ k1q. Therefore

|Epk, k1q| “ 3p´kqk1

ˇ

ˇ

ˇ

ˇ

´pk ´ k1q ´
2α
3

ˇ

ˇ

ˇ

ˇ

ě 3p´kqk1|k ´ k1|Cα “ 3Cα|kk1pk ´ k1q|.

Remark 3.1.22. Lemmas 3.1.20 and 3.1.21 imply the so-called non-resonance property

for Benjamin equation, it means, |Epk, k1q| ě
3
2Cαk

2, provided that

maxt|k|, |k1|, |k ´ k1|u ě max
!

1, 4α
3

)

.

Remark 3.1.23. It follows from Lemma 3.1.21 that if maxt|k|, |k1|, |k´k1|u ě max
!

1, 4α
3

)

,

then one of the following cases may occur

iq |τ ´ φpkq| ą
3
8Cαk

2,

iiq |τ1 ´ φpk1q| ą
3
8Cαk

2,

iiiq |τ ´ τ1 ´ φpk ´ k1q| ą
3
8Cαk

2.

In fact, if not

|Epk, k1q| ď |pτ ´ φpkqq| ` |pτ1 ´ φpk1qq| ` |pτ ´ τ1 ´ φpk ´ k1qq| ď 33Cα
8 k2

ă
3Cα

2 k2.

which is a contradiction.

Using similar arguments as in Bourgain [14] (see also [19, 86]), we obtain the

following key bilinear estimate.

Theorem 3.1.24. (Bilinear Estimate) Let s ě 0, α ą 0, and u, v : TˆRÑ R be functions

in Xs, 1
2
. Assume that the mean rup¨, tqs “ rvp¨, tqs “ 0 for each t P R. Then

}Bxpuvq}Z
s,´ 1

2
ď Cα,s

´

}u}X
s, 1

2
}v}X

s, 1
3
` }u}X

s, 1
3
}v}X

s, 1
2

¯

.
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Proof. We prove this in two steps.

Step 1. First we estimate the Xs,´ 1
2

norm. Using duality and Plancherel, we get

}Bxpuvq}X
s,´ 1

2
“ sup

wPX
´s, 1

2
}w}X

´s, 1
2
“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

T

ż

R

Bxpuvqpx, tqwpx, tqdxdt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
wPX

´s, 1
2

}w}X
´s, 1

2
“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPZ

ż

R

{Bxpuvqpk, τq pwpk, τqdτ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
wPX

´s, 1
2

}w}X
´s, 1

2
“1

¨

˚

˝

ÿ

kPZ
k‰0

ÿ

k1PZ
k1‰0

ż

R

ż

R

|k||pupk1, τ1q||pvpk ´ k1, τ ´ τ1q|| pwpk, τq|dτ1dτ

˛

‹

‚

.

(3.1.47)

Since rup¨, tqs “ rvp¨, tqs “ 0, then k “ 0, k1 “ 0 and k ´ k1 “ 0 do not contribute to the

sum. Now we move to estimate

I :“
ÿ

kPZ
k‰0

ÿ

k1PZ
k1‰0

ż

R

ż

R

|k||pupk1, τ1q||pvpk ´ k1, τ ´ τ1q|| pwpk, τq|dτ1dτ

“
ÿ

k,k1PZ
kk1pk´k1q‰0

ż

R2

|k||k1|
sxτ1 ´ φpk1qy

1
2 |pupk1, τ1q||k ´ k1|

sxτ ´ τ1 ´ φpk ´ k1qy
1
2

|k1|sxτ1 ´ φpk1qy
1
2 |k ´ k1|sxτ ´ τ1 ´ φpk ´ k1qy

1
2

ˆ
|pvpk ´ k1, τ ´ τ1q|xky

´sxτ ´ φpkqy
1
2 | pwpk, τq|

xky´sxτ ´ φpkqy
1
2

dτ1dτ.

(3.1.48)

Let u, v, w : Tˆ RÑ R with rup¨, tqs “ rvp¨, tqs “ 0, @t P R. We define

cupk1, τ1q :“ p1` |k1|q
s
xτ1 ´ φpk1qy

1
2 |pupk1, τ1q|,

cvpk ´ k1, τ ´ τ1q :“ p1` |k ´ k1|q
s
xτ ´ τ1 ´ φpk ´ k1qy

1
2 |pvpk ´ k1, τ ´ τ1q|,

cwpk, τq :“ xky´sxτ ´ φpkqy
1
2 | pwpk, τq|,

(3.1.49)

for all k, k1, k ´ k1 P Z˚ and τ, τ1 P R. Note that cup0, τ1q “ cvp0, τ ´ τ1q “ 0. From

inequality (3.1.48) and definition (3.1.49), we obtain

I ď
ÿ

k,k1PZ
kk1pk´k1q‰0

ż

R2

|k|cupk1, τ1qcvpk ´ k1, τ ´ τ1qxky
scwpk, τq

|k1|s|k ´ k1|sxτ1 ´ φpk1qy
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2 xτ ´ φpkqy

1
2
dτ1dτ. (3.1.50)

From Lemma 3.1.20 part iiq we infer
|k|

|k1||k ´ k1|
ď 2. Thus, there exists Cs ą 0

such that
xkys

|k1|s|k ´ k1|s
ď Cs (3.1.51)

Using the estimates (3.1.50)-(3.1.51) and separating the small frequencies from the large
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ones, we obtain

I Às
ÿ

k,k1PZ
kk1pk´k1q‰0

ż

R2

|k|cupk1, τ1qcvpk ´ k1, τ ´ τ1qcwpk, τq

xτ1 ´ φpk1qy
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2 xτ ´ φpkqy

1
2
dτ1dτ

Às,α

ÿ

k,k1PZ
kk1pk´k1q‰0

maxt|k|,|k1|,|k´k1|uďmax
!

1, 4α
3

)

ż

R2

cupk1, τ1qcvpk ´ k1, τ ´ τ1qcwpk, τq

xτ1 ´ φpk1qy
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2 xτ ´ φpkqy

1
2
dτ1dτ

`
ÿ

k,k1PZ
kk1pk´k1q‰0

maxt|k|,|k1|,|k´k1|uěmax
!

1, 4α
3

)

ż

R2

|k|cupk1, τ1qcvpk ´ k1, τ ´ τ1qcwpk, τq

xτ1 ´ φpk1qy
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2 xτ ´ φpkqy

1
2
dτ1dτ

(3.1.52)

In view of Remark 3.1.23 we must study three different cases.

Case 1. |τ ´ φpkq| ą
3
8Cαk

2 : In this case, from (3.1.52), we have

I Às,α
ÿ

k,k1PZ
kk1pk´k1q‰0

maxt|k|,|k1|,|k´k1|uďmax
!

1, 4α
3

)

ż

R2

cupk1, τ1qcvpk ´ k1, τ ´ τ1qcwpk, τq

xτ1 ´ φpk1qy
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2
dτ1dτ

`
ÿ

k,k1PZ
kk1pk´k1q‰0

maxt|k|,|k1|,|k´k1|uěmax
!

1, 4α
3

)

ż

R2

|k|cupk1, τ1qcvpk ´ k1, τ ´ τ1qcwpk, τq

xτ1 ´ φpk1qy
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2 p1` 3Cα

8 k2q
1
2
dτ1dτ

Às,α

ÿ

kPZ

ż

R

¨

˝

ÿ

k1PZ

ż

R

cupk1, τ1qcvpk ´ k1, τ ´ τ1q

xτ1 ´ φpk1qy
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2
dτ1

˛

‚cwpk, τqdτ.

(3.1.53)

We define functions F,G : Tˆ RÑ C by

pF pm,λq “
cupm,λq

p1` |λ´ φpmq|q 1
2
, and pGpm,λq “

cvpm,λq

p1` |λ´ φpmq|q 1
2
.

It means

F px, tq “
ÿ

mPZ

ż

R
eipmx`λtq

cupm,λq

p1` |λ´ φpmq|q 1
2
dλ,

and

Gpx, tq “
ÿ

mPZ

ż

R
eipmx`λtq

cvpm,λq

p1` |λ´ φpmq|q 1
2
dλ.

From inequalities (3.1.47), (3.1.53), Cauchy-Shwartz and Plancherel, we obtain
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}Bxpuvq}X
s,´ 1

2
Às,α sup

wPX
´s, 1

2
}w}X

´s, 1
2
“1

¨

˝

ÿ

kPZ

ż

R

p pF ˚ pGqpk, τq cwpk, τq dτ

˛

‚

Às,α sup
wPX

´s, 1
2

}w}X
´s, 1

2
“1

¨

˝

ÿ

kPZ

ż

R

ˇ

ˇ

ˇ

zF ¨Gpk, τq
ˇ

ˇ

ˇ

2
dτ

˛

‚

1
2
¨

˝

ÿ

kPZ

ż

R

|cwpk, τq|
2 dτ

˛

‚

1
2

Às,α sup
wPX

´s, 1
2

}w}X
´s, 1

2
“1

ˆ

›

›

›

yF.Gpk, τq
›

›

›

l2
k
L2
τ pRq

}w}X
´s, 1

2

˙

“ Cs,α }F ¨G}L2pTˆRq

ď Cs,α }F }L4pTˆRq }G}L4pTˆRq

ď Cs,α }F }X0, 1
3
}G}X0, 1

3
,

(3.1.54)

where we applied Cauchy-Schwartz, and Theorem 3.1.18 in the last two inequalities. Note

that

}F }X0, 1
3
“

˜

8
ÿ

k“´8

ż

R
xτ ´ φpkqy

2
3
|cupk, τq|

2

1` |τ ´ φpkq| dτ
¸

1
2

„

˜

8
ÿ

k“´8

ż

R
xky2sxτ ´ φpkqy

2
3 |pupk, τq|2 dτ

¸
1
2

“ }u}X
s, 1

3
.

(3.1.55)

In a similar way, we show that }G}X0, 1
3
“ }v}X

s, 1
3
. From the estimates (3.1.54)-(3.1.55),

and immersion Xs, 1
2

ãÑ Xs, 1
3
, we get

}Bxpu.vq}X
s,´ 1

2
ď Cs,α }u}X

s, 1
2
}v}X

s, 1
3

where Cs,α is a positive constant depending only on s and α.

Case 2. |τ1 ´ φpk1q| ą
3
8Cαk

2 : In this case, (3.1.52) and Cauchy-Schwartz imply

I Às,α
ÿ

k,k1PZ
kk1pk´k1q‰0

maxt|k|,|k1|,|k´k1|uďmax
!

1, 4α
3

)

ż

R2

cupk1, τ1qcvpk ´ k1, τ ´ τ1qcwpk, τq

xτ ´ τ1 ´ φpk ´ k1qy
1
2 xτ ´ φpkqy

1
2
dτ1dτ

`
ÿ

k,k1PZ
kk1pk´k1q‰0

maxt|k|,|k1|,|k´k1|uěmax
!

1, 4α
3

)

ż

R2

|k|cupk1, τ1qcvpk ´ k1, τ ´ τ1qcwpk, τq

p1` 3
8Cαk

2q
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2 xτ ´ φpkqy

1
2
dτ1dτ

Às,α

ÿ

kPZ

ż

R

1
p1` |τ ´ φpkq|q 1

2

¨

˝

ÿ

k1PZ

ż

R

cupk1, τ1q
cvpk ´ k1, τ ´ τ1q

xτ ´ τ1 ´ φpk ´ k1qy
1
2
dτ1

˛

‚cwpk, τqdτ

Às,α

¨

˝

ÿ

kPZ

ż

R

p1` |τ ´ φpkq|q´1|pxHu ˚ pGqpk, τq|2dτ

˛

‚

1
2
¨

˝

ÿ

kPZ

ż

R

|cwpk, τq|
2

˛

‚

1
2

,

(3.1.56)
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where Hf : Tˆ RÑ C, is a function defined by xHf pm,λq “ cf pm,λq. It means,

Hf px, tq “
ÿ

mPZ

ż

R
eipmx`λtqcf pm,λq dλ.

From relations (3.1.47)-(3.1.48), (3.1.56) and p1` |τ ´ φpkq|q´1
ă p1` |τ ´ φpkq|q´

2
3 , we

have

}Bxpuvq}X
s,´ 1

2
ď Cs,α sup

wPX
´s, 1

2
}w}X

´s, 1
2
“1

»

–

˜

8
ÿ

k“´8

ż

R
p1` |τ ´ φpkq|q´

2
3

ˇ

ˇ

ˇ

{Hu ¨Gpk, τq
ˇ

ˇ

ˇ

2
dτ

¸
1
2

}w}X
´s, 1

2

fi

fl

ď Cs,α

˜

8
ÿ

k“´8

ż

R
xτ ´ φpkqy´

2
3

ˇ

ˇ

ˇ

{Hu ¨Gpk, τq
ˇ

ˇ

ˇ

2
dτ

¸
1
2

ď Cs,α}Hu ¨G}
L

4
3 pTˆRq

ď Cs,α}Hu}L2pTˆRq}G}L4pTˆRq,

(3.1.57)

where we have applied Corollary 3.1.19, and Hölder’s inequality (see [15, page 118]) in the

two last inequalities. From Theorem 3.1.18, we have that }G}L4pTˆRq ď }G}X0, 1
3
. On the

other hand,

}Hu}L2pTˆRq “

˜

8
ÿ

k“´8

ż

R
|cupk, τq|

2 dτ

¸
1
2

„

˜

8
ÿ

k“´8

ż

R
xky2sxτ ´ φpkqy2¨

1
2 |pupk, τq|2 dτ

¸
1
2

“ }u}X
s, 1

2
.

(3.1.58)

From relations (3.1.57)-(3.1.58), we obtain

}Bxpuvq}X
s,´ 1

2
ď Cs,α}u}X

s, 1
2
}G}X0, 1

3
ď Cs,α}u}X

s, 1
2
}v}X

s, 1
3
.

Case 3. |τ ´ τ1 ´ φpk ´ k1q| ą
3
8Cαk

2 : Observe that, this case is similar to the second

one, just substituting Hv in the place of Hu and F in the place of G. Thus, we obtain

}Bxpu.vq}X
s,´ 1

2
ď Cs,α}Hv}L2pTˆRq}F }X0, 1

3
ď Cs,α}v}X

s, 1
2
}u}X

s, 1
3
.

Step 2. Now we will estimate the Ys,´1 norm. Using duality we have,

}Bxpuvq}Ys,´1 „

›

›

›
}p1` |k|qsp1` |τ ´ φpkq|q´1

{Bxpuvqpk, τq}L1
τ pRq

›

›

›

l2
k

“ sup
akPl

2
k, akě0

}ak}l2
k
“1

ÿ

kPZ
ak

¨

˝

ż

R

p1` |k|qsp1` |τ ´ φpkq|q´1|{Bxpuvqpk, τq| dτ

˛

‚.
(3.1.59)

We move to estimate

II :“ p1` |k|qsp1` |τ ´ φpkq|q´1
|{Bxpuvqpk, τq|. (3.1.60)
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Note that

II ď p1` |k|qs|k|p1` |τ ´ φpkq|q´1

¨

˚

˝

ÿ

k1PZ
k1‰0

ż

R

|pupk1, τ1q||pvpk ´ k1, τ ´ τ1q| dτ1

˛

‹

‚

ď |k|p1` |τ ´ φpkq|q´1

¨

˚

˝

ÿ

k1PZ
k1‰0

ż

R

p1` |k|qscupk1, τ1qcvpk ´ k1, τ ´ τ1q

|k1|sxτ1 ´ φpk1qy
1
2 |k ´ k1|sxτ ´ τ1 ´ φpk ´ k1qy

1
2
dτ1

˛

‹

‚

Às

¨

˚

˝

ÿ

k1PZ
k1‰0

ż

R

|k|cupk1, τ1qcvpk ´ k1, τ ´ τ1q

p1` |τ ´ φpkq|qxτ1 ´ φpk1qy
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2
dτ1

˛

‹

‚

.

(3.1.61)

It follows from (3.1.59), definition (3.1.60) and estimate (3.1.61) that

}Bxpuvq}Ys,´1 Às sup
akPl

2
k
, akě0

}ak}l2
k
“1

ÿ

k,k1PZ
kk1pk´k1q‰0

ż

R2

ak|k|cupk1, τ1qcvpk ´ k1, τ ´ τ1q

p1` |τ ´ φpkq|qxτ1 ´ φpk1qy
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2
dτ1dτ.

(3.1.62)

We define

III :“
ÿ

k,k1PZ
kk1pk´k1q‰0

ż

R2

ak|k|cupk1, τ1qcvpk ´ k1, τ ´ τ1q

p1` |τ ´ φpkq|qxτ1 ´ φpk1qy
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2
dτ1dτ. (3.1.63)

Separating the small frequencies from the large ones, we obtain

III Às
ÿ

k,k1PZ
kk1pk´k1q‰0

maxt|k|,|k1|,|k´k1|uďmax
!

1, 4α
3

)

ż

R2

ak|k|cupk1, τ1qcvpk ´ k1, τ ´ τ1q

p1` |τ ´ φpkq|qxτ1 ´ φpk1qy
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2
dτ1dτ

`
ÿ

k,k1PZ
kk1pk´k1q‰0

maxt|k|,|k1|,|k´k1|uěmax
!

1, 4α
3

)

ż

R2

ak|k|cupk1, τ1qcvpk ´ k1, τ ´ τ1q

p1` |τ ´ φpkq|qxτ1 ´ φpk1qy
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2
dτ1dτ

(3.1.64)

Again, from Remark 3.1.23, we must study three different cases.

Case 1. |τ ´ φpkq| ą
3
8Cαk

2, provided that maxt|k|, |k1|, |k ´ k1|u ě max
!

1, 4α
3

)

: Thus,

there exists rCα “ 1 ` 8
3Cα

ą 0 such that
rCα

k2 ` |τ ´ φpkq|
ą

1
1` |τ ´ φpkq| , for large

frequencies. Also,
k2

k2 ` |τ ´ φpkq|
ą

1
1` |τ ´ φpkq| , for small frequencies.
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Therefore,

III Às
ÿ

k,k1PZ
kk1pk´k1q‰0

maxt|k|,|k1|,|k´k1|uďmax
!

1, 4α
3

)

ż

R2

k2ak|k|cupk1, τ1qcvpk ´ k1, τ ´ τ1q

pk2 ` |τ ´ φpkq|qxτ1 ´ φpk1qy
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2
dτ1dτ

`
ÿ

k,k1PZ
kk1pk´k1q‰0

maxt|k|,|k1|,|k´k1|uěmax
!

1, 4α
3

)

ż

R2

rCαak|k|cupk1, τ1qcvpk ´ k1, τ ´ τ1q

pk2 ` |τ ´ φpkq|qxτ1 ´ φpk1qy
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2
dτ1dτ

Às,α

ÿ

k,k1PZ
kk1pk´k1q‰0

ż

R2

ak|k|cupk1, τ1qcvpk ´ k1, τ ´ τ1q

pk2 ` |τ ´ φpkq|qxτ1 ´ φpk1qy
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2
dτ1dτ

Às,α

ÿ

kPZ

ż

R

ak|k|

pk2 ` |τ ´ φpkq|q
ˆ

¨

˝

ÿ

k1PZ

ż

R

cupk1, τ1qcvpk ´ k1, τ ´ τ1q

xτ1 ´ φpk1qy
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2
dτ1

˛

‚dτ.

(3.1.65)

From the estimates (3.1.62), (3.1.65), and Cauchy-Schwartz inequality, we obtain

}Bxpuvq}Ys,´1 ď Cs,α sup
akPl

2
k, akě0

}ak}l2
k
“1

˜

›

›

›

›

ak|k|

pk2 ` |τ ´ φpkq|q

›

›

›

›

L2pTˆRq

›

›

›

zF ¨Gpk, τq
›

›

›

L2pTˆRq

¸

ď Cs,α

›

›

›

zF ¨Gpk, τq
›

›

›

L2pTˆRq

ď Cs,α}u}X
s, 1

2
}v}X

s, 1
3
,

(3.1.66)

where Cs,α is a positive constant depending on s and α.

Case 2. |τ1 ´ φpk1q| ą
3
8Cαk

2, provided that maxt|k|, |k1|, |k´ k1|u ě max
!

1, 4α
3

)

: This

implies that

1` |τ1 ´ φpk1q| ą 1` 3
8Cαk

2, (3.1.67)

for large frequencies. From relations (3.1.62)-(3.1.64) and (3.1.67), we obtain

III Às,α
ÿ

k,k1PZ
kk1pk´k1q‰0

maxt|k|,|k1|,|k´k1|uďmax
!

1, 4α
3

)

ż

R2

akcupk1, τ1qcvpk ´ k1, τ ´ τ1q

p1` |τ ´ φpkq|qxτ ´ τ1 ´ φpk ´ k1qy
1
2
dτ1dτ

`
ÿ

k,k1PZ
kk1pk´k1q‰0

maxt|k|,|k1|,|k´k1|uěmax
!

1, 4α
3

)

ż

R2

ak|k|cupk1, τ1qcvpk ´ k1, τ ´ τ1q

p1` |τ ´ φpkq|qp1` 3
8Cαk

2q
1
2 xτ ´ τ1 ´ φpk ´ k1qy

1
2
dτ1dτ.

(3.1.68)

Therefore, for any
1
3 ă ρ ă

1
2 we get

III Às,α
ÿ

kPZ

ż

R

ak
p1` |τ ´ φpkq|q1´ρ

1
p1` |τ ´ φpkq|qρ

¨

˝

ÿ

k1PZ

ż

R

cupk1, τ1qcvpk ´ k1, τ ´ τ1q

xτ ´ τ1 ´ φpk ´ k1qy
1
2

dτ1

˛

‚dτ. (3.1.69)
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Hence, there exists a positive constant rC depending on s and α such that

}Bxpuvq}Ys,´1 ď
rCs,α sup

akPl
2
k, akě0

}ak}l2
k
“1

ÿ

kPR

ż

R

ak
p1` |τ ´ φpkq|q1´ρ

pxHu ˚ pGqpk, τq

p1` |τ ´ φpkq|qρ dτ

ď rCs,α sup
akPl

2
k, akě0

}ak}l2
k
“1

›

›

›

›

ak
p1` |τ ´ φpkq|q1´ρ

›

›

›

›

L2pTˆRq

›

›

›

›

›

{Hu ¨Gpk, τq

p1` |τ ´ φpkq|qρ

›

›

›

›

›

L2pTˆRq

ď Cs,α

›

›

›

›

›

{Hu ¨Gpk, τq

p1` |τ ´ φpkq|qρ

›

›

›

›

›

L2pTˆRq

,

(3.1.70)

where

›

›

›

›

ak
p1` |τ ´ φpkq|q1´ρ

›

›

›

›

L2pTˆRq
ď C, because ρ ă

1
2 . Now using ρ ą

1
3 , we obtain

p1` |τ ´ φpkq|q´ 2
3 ą p1` |τ ´ φpkq|q´2ρ. (3.1.71)

The estimates (3.1.70)-(3.1.71) yield

}Bxpuvq}Ys,´1 ď Cs,α

›

›

›

›

›

{Hu ¨Gpk, τq

p1` |τ ´ φpkq|qρ

›

›

›

›

›

L2pTˆRq

“ Cs,α

˜

8
ÿ

k“´8

ż

R
p1` |τ ´ φpkq|q´2ρ

|{Hu ¨G|
2 dτ

¸
1
2

ď Cs,α

˜

8
ÿ

k“´8

ż

R
p1` |τ ´ φpkq|q´ 2

3 |{Hu ¨G|
2 dτ

¸
1
2

ď Cs,α}Hu}L2pTˆRq}G}L4pTˆRq

ď Cs,α}u}X
s, 1

2
}v}X

s, 1
3
.

Case 3. |τ´τ1´φpk´k1q| ą
3
8Cαk

2, provided that maxt|k|, |k1|, |k´k1|u ě max
!

1, 4α
3

)

:
This case is similar to the second one, just substituting Hv in the place of Hu and F in

the place of G. Therefore we obtain,

}Bxpuvq}Ys,´1
ď Cs,α}Hv}L2pTˆRq}F }L4pTˆRq ď Cs,α}v}X

s, 1
2
}u}X

s, 1
3
.

Corollary 3.1.25. Let s ě 0, α ą 0, and T ą 0 be given. Assume that u, v : Tˆ RÑ R
are functions in Xs, 1

2
pIq, where I “ r´T, T s and mean rup¨, tqs “ rvp¨, tqs “ 0 for each

t P R. Then

}Bxpuvq}Z
s,´ 1

2
pIq ď Cα,sp}u}X

s, 1
2
pIq}v}X

s, 1
3
pIq ` }u}X

s, 1
3
pIq}v}X

s, 1
2
pIqq.

Furthermore,

}Bxpuvq}ZT
s,´ 1

2

ď Cα,sp}u}XT

s, 1
2

}v}XT

s, 1
3

` }u}XT

s, 1
3

}v}XT

s, 1
2

q, @u, v P XT
s, 1

2
, (3.1.72)

and the mean rup¨, tqs “ rvp¨, tqs “ 0 for each t P R.
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Proof. Let ru, rv : T ˆ R Ñ R be functions in Xs, 1
3

and Xs, 1
2
, such that ru (resp. rv) is an

extension of u (resp. v) in Xs, 1
3

(resp. Xs, 1
2
) with

}ru}X
s, 1

3
ď 2 }u}X

s, 1
3
pIq; }ru}X

s, 1
2
ď 2 }u}X

s, 1
2
pIq,

}rv}X
s, 1

3
ď 2 }v}X

s, 1
3
pIq; }rv}X

s, 1
2
ď 2 }v}X

s, 1
2
pIq.

From Theorem 3.1.24, we have that rurv : Tˆ RÑ R is a function in Zs,´ 1
2
. Furthermore,

}Bxpuvq}Z
s,´ 1

2
pIq ď }Bxprurvq}Z

s,´ 1
2

ď Cα,s

´

}ru}X
s, 1

2
}rv}X

s, 1
3
` }ru}X

s, 1
3
}rv}X

s, 1
2

¯

ď 4Cα,s
´

}u}X
s, 1

2 pIq
}v}X

s, 1
3
pIq ` }u}X

s, 1
3
pIq}v}X

s, 1
2
pIq

¯

.

(3.1.73)

This proves the Corollary.

Corollary 3.1.26. Let s ě 0, α ą 0, and 0 ă T ă 1 be given. Assume that v : TˆRÑ R
is a function in XT

s, 1
2

with mean rvp¨, tqs “ 0 for each t P R. Then for any ε P p0, 1
6q we

have

}Bxpv
2
q}ZT

s,´ 1
2

ď Cα,sT
ε
}v}2ZT

s, 1
2

.

In particular, the last inequality holds for ε “
1
12 .

Proof. Let ε P p0, 1
6q be given. Then applying Proposition 3.1.15 with b1 “

1
3 , and b “

1
3`ε,

we obtain

}u}XT

s, 1
3

ď C T
1
3`ε´

1
3 }u}XT

s, 1
3`ε
ď C T ε}u}XT

s, 1
2

. (3.1.74)

From the estimates (3.1.72) and (3.1.74), we have

}Bxpu
2
q}ZT

s,´ 1
2

ď C}u}XT

s, 1
2

}u}XT

s, 1
3

ď C T ε}u}2XT

s, 1
2

ď C T ε}u}2ZT
s, 1

2

.

In the following sections of this chapter, we present essential results to establish

exact controllability and stabilizability of the Benjamin equation.

3.2 The multiplication property of Bourgain’s Space

In this subsection we establish the multiplication property of the Bourgain

space Xs,b. We begin with the following lemma. Its proof is classic and we leave it to the

reader.
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Lemma 3.2.1. If ψ “ ψptq P C8pRq, then ψv P XT
s,b for all v P XT

s,b. Furthermore, there

exists a positive constant C “ Cη,T,b,ψ such that

}ψv}XT
s,b
ď C}v}XT

s,b
.

If T ď 1, then the positive constant C does not depend on the time T.

As was pointed out by Laurent et. al [52] for the KdV equation, if φ “ φpxq P

C8pTq, then φv may not belong to the space XT
s,b for v P XT

s,b. For Benjamin equation too,

the same is lost in the index of regularity s due to the fact that the multiplication by a

(smooth) function of x does not keep the structure in the space of the harmonics. This lost is,

in fact, unavoidable. For instance, consider for j ě 1, the function vjpx, tq “ ψptqeijxeiφpjqt,

where ψ P C8c pRq takes the value 1 on r´1, 1s. Note that,

pvjpk, tq “ ψptqeiφpjqtyeijxpkq “ ψptqeiφpjqtδkj,

where δkj is the Kronecker delta function. Then,

pvjpk, τq “ δkj
`

ψptqeiφpjqt
˘^
pτq “ δkj pψpτ ´ φpjqq.

Therefore,

}vj}
2
X0,b

“

8
ÿ

k“´8

ż

R
xτ ´ φpkqy2b|δkj pψpτ ´ φpjqq|2 dτ

“

ż

R
xτ ´ φpjqy2b| pψpτ ´ φpjqq|2 dτ

ď cb}ψ}
2
Hb
t pRq

.

(3.2.1)

Thus, the sequence tvjujě1 is uniformly bounded in the space X0,b, for every b ě 0.
However, multiplying vj by ϕpxq “ eix, we observe that zeixvjpk, tq “ ψptqeiφpjqtδkp1`jq, and
zeixvjpk, τq “ δkp1`jq pψpτ ´ φpjqq. Thus,

}eixvj}
2
X0,b

“

ż

R
xτ ´ φp1` jqy2b| pψpτ ´ φpjqq|2 dτ .

Using that τ´φp1`jq “ τ´φpjq`P pjq with P pjq “ 3j2
`p3´2αqj`1`2µ´α,

we have

}eixvj}
2
X0,b

„

ż

R
p1` |τ ` P pjq|q2b| pψpτq|2 dτ « j4b,

for j large enough.

The next theorem shows that this is the worst case. With the purpose of prove

the theorem, we begin proving a necessary lemma and showing how the Xs,b may be viewed

as a weighted L2 space.
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Lemma 3.2.2. Let s P R. Then v P Xs,1 if an only if v P L2
pR, Hs

ppTqq, and

Btv ´ B
3
xv ´ αHB2

xv ` 2 µBxv P L2
pR, Hs

ppTqq.

In this case we have }v}2Xs,1 “ }v}
2
L2pRt,Hs

ppTqq ` }Btv ´ B
3
xv ´ αHB2

xv ` 2µBxv}2L2pRt,Hs
ppTqq.

Proof. Let s P R fixed. Then, applying Plancherel’s identity in time, we obtain

}v}2Xs,1 “
8
ÿ

k“´8

ż

R
xky2s

`

1` |τ ` k3 ´ αk|k| ` 2µk|2
˘

|pvpk, τq|2 dτ

“ }v}2L2pRt,HsppTqq `
8
ÿ

k“´8

ż

R
xky2s|xBtvpk, tq ´ pB3

xvpk, tq ´ α
{HB2

xvpk, tq ` 2 µyBxvpk, tq|2 dt.

This proves the lemma.

Observe that, the Xs,b spaces may be viewed as the weighted L2
´spaces. In fact,

denote by pR,M, λq and pZ,A, δq two measure spaces, where λ is the Lebesgue measure

over R and δ is the discrete measure on Z. Thus, pR ˆ Z,M bA, λ b δq is the product

measure space where MbA is a σ´álgebra on RˆZ, and λb δ is the product measure of

λ and δ (see [36, page 64]). Since λ and δ are σ´finite measures, then λb δ is a σ´finite

measure and

λb δpM ˆ Aq “ λpMq ¨ δpAq, for all rectangles M ˆ A,

where a (measurable) rectangle is a set of the form M ˆA, with M P M and A P A. Then,

using Fourier transform, Xs,b may be viewed as the weighted L2 space

L2
pRτ ˆ Zk, xky2sxτ ´ φpkqy2bλb δq. (3.2.2)

Theorem 3.2.3. Let ´1 ď b ď 1, s P R, and ϕ P C8pTq. Then for any v P Xs,b,

ϕv P Xs´2|b|,b. Similarly, for any T ą 0 the multiplication by ϕ maps XT
s,b, into XT

s´2|b|,b,

i.e., there exists a positive constant C “ Cs,α,ϕ,µ which does not depend on T, such that

}ϕv}XT
s´2|b|,b

ď Cs,α,ϕ,µ }v}XT
s,b
.

Proof. We proceed as in [52]. First consider the cases b “ 0 and b “ 1. The other cases of

b will be derived later by interpolation and duality.

Case 1. b “ 0 : Let v P SpTˆ Rq. From relation (3.1.3) we know that

}ϕv}2Xs,0 “
ÿ

kPZ

ż

R
2πp1` |k|2qs| pϕvq^ pk, tq|2dt.

If s ě 0, one has p1` |k|qs ď cs p1` |k ´ j|qsp1` |j|qs. Therefore, the Cauchy-

Schwarz inequality for N ą
1
2 , yields

}ϕv}2Xs,0 ď cs

8
ÿ

j“´8

p1` |j|q2s`2N
|pϕpjq|2

ÿ

kPZ

ż

R
p1` |k ´ j|q2s|{vpx, tqpk ´ j, tq|2 dt.
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Using the invariance of the L2
pRt, H

s
ppTqq norm by translations, we get

}ϕv}2Xs,0 ď cs}ϕ}
2
Hs`N
p pTq}v}

2
Xs,0 .

On the other hand, if s ă 0, we apply p1` |k|qs ď cs p1` |k ´ j|qsp1` |j|q´s,
and proceed as above to obtain

}ϕv}2Xs,0 ď cs}ϕ}
2
H´s`Np pTq}v}

2
Xs,0 .

In the general case, we use density and duality arguments to complete the proof.

Case 2. b “ 1 : From Lemma 3.2.2, we obtain

}ϕv}2Xs´2,1
“ }ϕv}2

L2pRt,Hs´2
p pTqq

` }Btpϕvq ´ B
3
xpϕvq ´ αHB2

xpϕvq ` 2µBxpϕvq ´ αϕHB2
xv ` αϕHB2

xv}
2
L2pRt,Hs´2

p pTqq

ď }ϕv}2Xs´2,0
` cα}HB2

xpϕvq ` ϕHB2
xv}

2
L2pRt,Hs´2

p pTqq

` c}Btpϕvq ´ B
3
xpϕvq ` 2µBxpϕvq ´ αϕHB2

xpvq}
2
L2pRt,Hs´2

p pTqq

“: I ` II ` III.

(3.2.3)

From case b “ 0, we obtain that there exists As,ϕ ą 0 such that

I “ }ϕv}2Xs´2,0 ď As,ϕ }v}
2
Xs´2,0 ď As,ϕ }v}

2
Xs,0 . (3.2.4)

From the properties of operator Brx on Bourgain’s spaces, and nothing that H is an isometry

in Hs´2
p pTq (see Theorem 1.4.1), we get

II ď cα
´

}B
2
xpϕvq}

2
L2pRt,Hs´2

p pTqq ` }ϕHB2
xv}

2
Xs´2,0

¯

ď cα
´

}ϕv}2Xs,0 ` cs,ϕ}HB
2
xv}

2
L2pRt,Hs´2

p pTqq

¯

“ cα
´

ds,ϕ}v}
2
Xs,0 ` cs,ϕ}B

2
xv}

2
Xs´2,0

¯

.

Hence, there exists another positive constant Bs,α,ϕ such that

II ď Bs,α,ϕ }v}
2
Xs,0 . (3.2.5)

We estimate III. From the Leibniz’s rule for derivatives (see [54, page 13]), one has

Btpϕvq ´ B
3
xpϕvq ` 2µBxpϕvq ´ αϕHB2

xv “ ϕ
`

Btv ´ B
3
xv ` 2µBxv ´ αHB2

xv
˘

´ 3BxϕB2
xv ´ 3B2

xϕBxv ´ B
3
xϕv ` 2µBxϕv.

(3.2.6)

Note that ´3BxϕB2
xv ´ 3B2

xϕBxv ´ B
3
xϕv ` 2µBxϕv is an operator of second order. From

identity (3.2.6), the case b “ 0, and the fact that ϕ P C8pTq, we get

III ď c}ϕpxq
`

Btv ´ B
3
xv ` 2µBxv ´ αHB2

xv
˘

}
2
L2pRt,Hs´2

p pTqq

` c} ´ 3BxϕB2
xv ´ 3B2

xϕBxv ´ B
3
xϕv ` 2µBxϕv}2L2pRt,Hs´2

p pTqq

ď cs,ϕ}Btv ´ B
3
xv ` 2µBxv ´ αHB2

xv}
2
Xs´2,0

` 3c}BxϕB2
xv}

2
Xs´2,0 ` 3c}B2

xϕBxv}
2
Xs´2,0 ` c}B

3
xϕv}

2
Xs´2,0 ` 2|µ|c}Bxϕv}2Xs´2,0

ď cs,ϕ}Btv ´ B
3
xv ` 2|µ|Bxv ´ αHB2

xv}
2
Xs´2,0

` 3cds,Bxϕ}v}2Xs,0 ` 3cds,B2
xϕ
}v}2Xs´1,0 ` cds,B3

xϕ
}v}2Xs´2,0 ` 2|µ|cds,Bxϕ}v}2Xs´2,0 .
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From embeddings Xs,0 ãÑ Xs´2,0, and Xs,0 ãÑ Xs´1,0, we have that there exists Ds,µ,ϕ ą 0
such that

III ď Ds,µ,ϕ

´

}Btv ´ B
3
xv ` 2µBxv ´ αHB2

xv}
2
Xs,0 ` }v}

2
Xs,0

¯

“ Ds,µ,ϕ}v}
2
Xs,1 , (3.2.7)

where in the last step Lemma 3.2.2 is used. From (3.2.3)-(3.2.5), and (3.2.7), we get that

there exists a positive constant Cs,α,µ,ϕ such that

}ϕpxqv}2Xs´2,1 ď Cs,α,µ,ϕ }v}
2
Xs,1 . (3.2.8)

This proves the case b “ 1.

Case 3. 0 ă b ă 1 : In this case we use interpolation. From identification (3.2.2) we get

Xs,0 “ L2
pRτ ˆZk, xky2sλb δq, and Xs1,1 “ L2

pRτ ˆZk, xky2s
1

xτ ´φpkqy2λb δq. Therefore,

applying the Complex Interpolation Theorem of Stein-Weiss (see Theorem 1.7.8) we obtain

pXs,0, Xs1,1qθ,2 « Xsp1´θq`s1θ,θ, with 0 ă θ ă 1. Furthermore, from the cases b “ 0 and b “ 1
we infer that the operator of multiplication by ϕ P C8pTq, defined by

T : Xs,θ « L2pRτ ˆ Zk, xky2sxτ ´ φpkqy2θλb δq ÝÑ Xs´2θ,θ « L2pRτ ˆ Zk, xky2ps´2θqxτ ´ φpkqy2θλb δq

T pvq “ ϕpxqv,

satisfies

}Tv}Xs´2θ,θ ď C1´θ
s,ϕ C

θ
α,s,ϕ,µ}v}s,θ ď Cα,s,ϕ,µ,θ }v}s,θ.

and have quasi-norm M “ Cα,s,ϕ,µ,θ, with 0 ă θ ă 1. Thus, we have a 2θ loss of regularity

in the spatial variable, as announced.

Case 4. Let ´1 ă b ă 0. In this case we use duality.

}ϕpxqv}Xs´2|b|,b “ sup
uPX´s´2b,´b
}u}X´s´2b,´bď1

ˇ

ˇ

ˇ

ˇ

ż

T

ż

R
u ¨ ϕpxqv dtdx

ˇ

ˇ

ˇ

ˇ

.

Finally, to get the same results for the restriction spaces XT
s,b we write the

estimates for an extension rv of v, such that }rv}Xs,b ď 2}v}TXs,b , which yields

}ϕpxqv}TXs´2|b|,b
ď }ϕpxqrv}Xs´2|b|,b ď Cα,s,ϕ,µ,b }rv}Xs,b ď 2Cα,s,ϕ,µ,b }v}Xs,b .

This completes the proof of the theorem.

3.3 Propagation of Compactness and Regularity

In this section we show some properties of propagation of compactness and

regularity for the linear differential operator

L :“ Bt ´ αHB2
x ´ B

3
x ` 2µBx, (3.3.1)
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associated to the Benjamin equation. These propagation properties will play a key role

when studying the global stabilizability of the Benjamin equation. We begin establishing a

necessary lemma to get the result of propagation of compactness.

Lemma 3.3.1. Let s, r P R. The Hilbert transform H commutes with the operator Dr (see

(2.5.2)) in L2
pTq. Furthermore, H “ ´D´1

Bx, in L2
pTq. Also, the operator Brx commutes

with the operators Dr and H in L2
pTq.

Proof. It can be easily shown using Fourier’s transform.

Proposition 3.3.2 (Propagation of Compactness). Let T ą 0 and 0 ď b1 ď b ď 1 be

given (with b ą 0) and assume that vn P X
T
0,b and fn P X

T
´2`2b,´b satisfy

Btvn ´ α HB2
xvn ´ B

3
xvn ` 2µ Bxvn “ fn, for n “ 1, 2, 3, ¨ ¨ ¨ . (3.3.2)

Suppouse that there exists C ą 0 such that

}vn}XT
0,b
ď C, for all n ě 1, (3.3.3)

and that

}vn}XT
´2`2b,´b

` }fn}XT
´2`2b,´b

` }vn}XT
´1`2b1,´b1

ÝÑ 0, as n ÝÑ 8. (3.3.4)

Additionally, assume that for some nonempty open set ω Ă T

vn ÝÑ 0, strongly in L2
pp0, T q;L2

pωqq. (3.3.5)

Then,

vn ÝÑ 0, strongly in L2
locpp0, T q;L2

pTqq, as n ÝÑ 8. (3.3.6)

Proof. Let K Ă p0, T q be compact and ψ P C8c pp0, T qq, such that 0 ď ψptq ď 1 and

ψptq “ 1 in K. Then,

}vn}
2
L2pK,L2pTqq ď

ż T

0
ψptq}vn}

2
L2pTq dt “

ż T

0
ψptq pvn, vnqL2pTq dt. (3.3.7)

Since T is compact there exists a finite set of points, say xi0 P T, i “ 1, 2, 3, ¨ ¨ ¨ , N, such

that we construct a partition of the unity on T involving functions of the form χipx´ x
i
0q.

with χip¨ q P C
8
c pwq. Specifically, there exists N P N such that

$

’

’

’

’

&

’

’

’

’

%

0 ď χipx´ x
i
0q ď 1, for all x P T and i “ 1, 2, .., N

χip¨ q P C
8
c pwq for i “ 1, 2, .., N

N
ÿ

i“1
χip¨ ´ x

i
0q “ 1 on T.

(3.3.8)
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Therefore,

}vn}
2
L2pK,L2pTqq “

ż T

0

˜

ψptq

˜

N
ÿ

i“1
χipx´ x

i
0q

¸

vn, vn

¸

L2pTq

dt “
N
ÿ

i“1

`

ψptqχipx´ x
i
0qvn, vn

˘

L2pTˆp0,T qq .

Thus, it is sufficient to show that for any x0 P T, and any χp¨ q P C8c pωq

pψptqχpx´ x0qvn, vnqL2pTˆp0,T qq ÝÑ 0, as n ÝÑ 8.

For this, consider φpxq “ χpxq´χpx´x0q, where χ P C8c pωq and x0 P T. From Lemma A.4

there exists ϕ P C8pTq such that Bxϕpxq “ χpxq ´ χpx´ x0q for all x P T. Consequently,

pψptqχpx´ x0qvn, vnqL2pTˆp0,T qq “ pψptqχpxqvn, vnqL2pTˆp0,T qq ´ pψptqBxϕpxqvn, vnqL2pTˆp0,T qq .

From (3.3.5) we have that

ˇ

ˇ

ˇ
pψptqχpxqvn, vnqL2pTˆp0,T qq

ˇ

ˇ

ˇ
ď

ż T

0

ż

ω

|ψptq| |χpxq| |vn| ¨ |vn| dxdt

ď }ψ}C8c pp0,T qq}χ}C8c pωq}vn}
2
L2pp0,T q;L2pωqq ÝÑ 0,

as n ÝÑ 8. So, we only need to show that
ˇ

ˇ

ˇ
pψptqBxϕpxqvn, vnqL2pTˆp0,T qq

ˇ

ˇ

ˇ
ÝÑ 0, as n ÝÑ 8, (3.3.9)

where ψ P C8c pp0, T qq and ϕ P C8pTq.

In what follows we prove (3.3.9). Taking into consideration the definition of Dr

(see Definition 2.5.2) and passing to the frequency space, it is easy to verify that

pψptqBxϕpxqvn, vnqL2pTˆp0,T qq “ 2π
ÿ

kPZ

ż T

0

`

´B2
xD

´2vn
˘^
pk, tqψptqppBxϕqvnq

^
pk, tqdt

` 2π
ż T

0
xvnp0, tqψptq

1
2π

ż 2π

0
Bxϕpxqvnpx, tqdx dt.

Note that ´B2
xD

´2 is the orthogonal projection on the subspace of functions

with pwp0q “ 0. Therefore,

pψptq Bxϕpxq vn, vnqL2pTˆp0,T qq “
`

ψptq Bxϕpxqp´B
2
xqD

´2 vn, vn
˘

L2pTˆp0,T qq

` pψptq Bxϕpxq pvnp0, tq, vnqL2pTˆp0,T qq .
(3.3.10)

First, we prove

lim
nÝÑ8

ˇ

ˇ

ˇ

`

ψptq Bxϕpxq p´B
2
xqD

´2vn, vn
˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
“ 0. (3.3.11)

From (3.3.1) and (3.3.2) we have Lvn “ fn, for n “ 1, 2, 3, ¨ ¨ ¨ . Set B :“ ϕpxqD´2,

A :“ ψptqB, and for ε ą 0, let Aε :“ ψptqBε, be a regularization of A, where

Bε :“ BeεB
2
x , with eεB

2
x defined by eεB

2
xvp¨q “

´

e´εk
2
pvpkq

¯_

p¨q. (3.3.12)
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Then A˚ε “ ψptqeεB
2
xD´2ϕpxq. Define αn,ε :“ prAε, Lsvn, vnqL2pTˆp0,T qq . Note that, taking

the formal adjoint in the distributional sense for the terms involved in (3.3.1), we obtain

αn,ε :“ pfn, A˚ε vnqL2pTˆp0,T qq ` pAεvn, fnqL2pTˆp0,T qq . (3.3.13)

We infer from Lemma 3.2.1, Theorem 3.2.3, (3.3.3), and (3.3.4) that for 0 ă
b ď 1, there exists a positive constant C (independent of T, if T ď 1), such that

ˇ

ˇ

ˇ
pfn, A

˚
ε vnqL2pTˆp0,T qq

ˇ

ˇ

ˇ
ď }fn}XT

´2`2b,´b
}A˚ε vn}XT

2´2b,b

ď C }fn}XT
´2`2b,´b

}vn}XT
0,b

ď C }fn}XT
´2`2b,´b

ÝÑ 0, as n ÝÑ 8.

Therefore,

lim
nÝÑ8

sup
0ăεď1

ˇ

ˇ

ˇ
pfn, A

˚
ε vnqL2pTˆp0,T qq

ˇ

ˇ

ˇ
“ 0. (3.3.14)

Using a similar procedure, we obtain

lim
nÝÑ8

sup
0ăεď1

ˇ

ˇ

ˇ
p Aεvn, fnqL2pTˆp0,T qq

ˇ

ˇ

ˇ
“ 0. (3.3.15)

Hence, (3.3.13), (3.3.14), and (3.3.15) imply that

lim
nÝÑ8

sup
0ăεď1

|αn,ε| “ 0. (3.3.16)

On the other hand, using that the operator Bε commutes with derivatives in time, we

obtain

rAε, Lsvn “ ´ψ
1
ptqBεvn ` rAε,´αHB2

xsvn ` rAε,´B
3
x ` 2µBxsvn.

Therefore,

αn,ε “ ´pψ
1
ptqBεvn, vnqL2pTˆp0,T qq `

`

rAε,´αHB2
xsvn, vn

˘

L2pTˆp0,T qq

`
`

rAε,´B
3
x ` 2µBxsvn, vn

˘

L2pTˆp0,T qq .
(3.3.17)

We infer from Lemma 3.2.1, Theorem 3.2.3, and (3.3.12) that for any s P R, and 0 ă b ď 1,
there exists a positive constant C (independent of T, if T ď 1) which does not depend on

ε, such that

}ψ1ptqBεv}XT
s`2´2|b|,b

ď C}v}XT
s,b
. (3.3.18)

From (3.3.18), (3.3.3), (3.3.4), and the fact that 0 ă b ď 1, we obtain

ˇ

ˇ

ˇ
pψ1ptqBεvn, vnqL2pTˆp0,T qq

ˇ

ˇ

ˇ
ď }ψ1ptqBεvn}XT

0,´b
}vn}XT

0,b

ď C}vn}XT
´2`2|´b|,´b

}vn}XT
0,b

ď C}vn}XT
´2`2b,´b

ÝÑ 0, as n ÝÑ 8.

(3.3.19)
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Therefore,

lim
nÝÑ8

sup
0ăεď1

ˇ

ˇ

ˇ
pψ1ptqBεvn, vnqL2pTˆp0,T qq

ˇ

ˇ

ˇ
“ 0. (3.3.20)

Also, observe that

rAε,´αHB2
xsvn “ ´αψptqϕD

´2eεB
2
xHB2

xvn ` αψptqHB2
x

´

ϕD´2eεB
2
xvn

¯

(3.3.21)

From the Leibniz’s rule for derivatives (see [54, page 13]), we obtain

B
2
x

´

ϕD´2eεB
2
xvn

¯

“ ϕB2
xD

´2eεB
2
xvn ` 2Bxϕ BxD´2eεB

2
xvn ` B

2
xϕ D

´2eεB
2
xvn. (3.3.22)

Substituting (3.3.22) into (3.3.21) and using that the Hilbert transform H commutes with

the operator Dr (see (2.5.2)), we obtain

rAε,´αHB2
xsvn “ αψptq

!

´ϕHD´2
B

2
xe
εB2
xvn `H

´

ϕD´2
B

2
xe
εB2
xvn

¯)

` 2αψptqH
´

BxϕBxD
´2eεB

2
xvn

¯

` αψptqH
´

B
2
xϕ D

´2eεB
2
xvn

¯

.
(3.3.23)

Also, using Lemma 3.3.1, we have

´ϕHD´2B2
xe
εB2
xvn `H

´

ϕD´2B2
xe
εB2
xvn

¯

“ ϕD´1BxD
´2B2

xe
εB2
xvn ´D

´1Bx

´

ϕD´2B2
xe
εB2
xvn

¯

“ ϕD´1BxD
´2B2

xe
εB2
xvn ´D

´1
´

ϕBxD
´2B2

xe
εB2
xvn

¯

´D´1
´

BxϕD
´2B2

xe
εB2
xvn

¯

“ ´rD´1, ϕsBxD
´2B2

xe
εB2
xvn ´D

´1
´

BxϕD
´2B2

xe
εB2
xvn

¯

.

(3.3.24)

Substituting (3.3.24) into (3.3.23), we get

rAε,´αHB2
xsvn “ αψptq

!

´rD´1, ϕsBxD
´2
B

2
xe
εB2
xvn ´D

´1
´

BxϕD
´2
B

2
xe
εB2
xvn

¯)

` 2αψptqH
´

BxϕBxD
´2eεB

2
xvn

¯

` αψptqH
´

B
2
xϕD

´2eεB
2
xvn

¯

.

Therefore,

`

rAε,´αHB2
xsvn, vn

˘

L2pTˆp0,T qq “ ´
´

αψptqrD´1, ϕsBxD
´2B2

xe
εB2
xvn, vn

¯

L2pTˆp0,T qq

´

´

αψptqD´1
´

BxϕD
´2B2

xe
εB2
xvn

¯

, vn

¯

L2pTˆp0,T qq

` 2α
´

ψptqH
´

BxϕBxD
´2eεB

2
xvn

¯

, vn

¯

L2pTˆp0,T qq

` α
´

ψptqH
´

B2
xϕD

´2eεB
2
xvn

¯

, vn

¯

L2pTˆp0,T qq

(3.3.25)

Appliying Cauchy-Schwartz, Lemma 3.2.1, (3.3.3), Lemmas 3.1.7, 3.1.7 and using that
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0 ď b1 ď b ď 1 be given (with b ą 0), we obtain

ˇ

ˇ

ˇ

ˇ

´

αψptqrD´1, ϕsBxD
´2
B

2
xe
εB2
xvn, vn

¯

L2pTˆp0,T qq

ˇ

ˇ

ˇ

ˇ

ď α}ψptqrD´1, ϕsBxD
´2
B

2
xe
εB2
xvn}L2pTˆp0,T qq}vn}L2pTˆp0,T qq

ď C}rD´1, ϕsBxD
´2
B

2
xe
εB2
xvn}L2pTˆp0,T qq}vn}XT0,b

ď C

ˆ
ż T

0
}rD´1, ϕsBxD

´2
B

2
xe
εB2
xvn}

2
H0pTqdt

˙

1
2

ď C

ˆ
ż T

0
}BxD

´2
B

2
xe
εB2
xvn}

2
H´1´1pTqdt

˙

1
2

ď

›

›

›
BxD

´2
B

2
xe
εB2
xvn

›

›

›

1
2

XT
´2,´b1

›

›

›
BxD

´2
B

2
xe
εB2
xvn

›

›

›

1
2

XT
´2,b1

ď }vn}
1
2
XT
´1,´b1

}vn}
1
2
XT
´1,b1

.

(3.3.26)

Applying (3.3.3), (3.3.4) and using the embeddings XT
0,b ãÑ XT

´1,b1 , X
T
´1`2b1,´b1 ãÑ XT

´1,´b1 ,

we obtain that there exists a positive constant C (independent of T, if T ď 1) which does

not depend on ε such that
ˇ

ˇ

ˇ

ˇ

´

αψptqrD´1, ϕsBxD
´2B2

xe
εB2
xvn, vn

¯

L2pTˆp0,T qq

ˇ

ˇ

ˇ

ˇ

ď C }vn}
1
2
XT
´1`2b1,´b1

}vn}
1
2
XT

0,b

ď C }vn}
1
2
XT
´1`2b1,´b1

ÝÑ 0 as n ÝÑ 8.

(3.3.27)

Note that the lost of regularity in (3.3.26) and (3.3.27) is too large if one uses the estimates

with the same b. Therefore, we have to use the index b1 instead. Consequently,

lim
nÝÑ8

sup
0ăεď1

ˇ

ˇ

ˇ

ˇ

´

αψptqrD´1, ϕsBxD
´2
B

2
xe
εB2
xvn, vn

¯

L2pTˆp0,T qq

ˇ

ˇ

ˇ

ˇ

“ 0. (3.3.28)

Also, note that Lemma 3.2.1, Lemma 3.1.7, Theorem (3.2.3), and (3.3.3)-(3.3.4), we have

that there exists a positive constant C (independent of T, if T ď 1), which does not depend

on ε such that
ˇ

ˇ

ˇ

ˇ

´

αψptqD´1
´

BxϕD
´2B2

xe
εB2
xvn

¯

, vn

¯

L2pTˆp0,T qq

ˇ

ˇ

ˇ

ˇ

ď C
›

›

›
D´1

´

BxϕD
´2B2

xe
εB2
xvn

¯›

›

›

XT
1´2b1,b1

}vn}XT
´1`2b1,´b1

ď C
›

›

›
BxϕD

´2B2
xe
εB2
xvn

›

›

›

XT
´2b1,b1

}vn}XT
´1`2b1,´b1

ď C
›

›

›
D´2B2

xe
εB2
xvn

›

›

›

XT
´2b1`2|b1|,b1

}vn}XT
´1`2b1,´b1

ď C }vn}XT
0,b1
}vn}XT

´1`2b1,´b1

ď C }vn}XT0,b
}vn}XT

´1`2b1,´b1

ď C }vn}XT
´1`2b1,´b1

ÝÑ 0 as n ÝÑ 8.

Hence,

lim
nÝÑ8

sup
0ăεď1

ˇ

ˇ

ˇ

ˇ

´

α ψptq D´1
´

Bxϕ D
´2
B

2
xe
εB2
xvn

¯

, vn

¯

L2pTˆp0,T qq

ˇ

ˇ

ˇ

ˇ

“ 0. (3.3.29)
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Similarly, using that the Hilbert transform H is an isometry in L2
ppTq, we have

ˇ

ˇ

ˇ

ˇ

´

2αψptqH
´

BxϕBxD
´2eεB

2
xvn

¯

, vn

¯

L2pTˆp0,T qq

ˇ

ˇ

ˇ

ˇ

ď 2α
›

›

›
ψptqH

´

BxϕBxD
´2eεB

2
xvn

¯›

›

›

XT
0,´b1

}vn}XT
0,b1

ď C
›

›

›
BxϕD

´2Bxe
εB2
xvn

›

›

›

XT
0,´b1

ď C }vn}XT
´1`2b1,´b1

ÝÑ 0 as n ÝÑ 8.

Therefore,

lim
nÝÑ8

sup
0ăεď1

ˇ

ˇ

ˇ

ˇ

´

2αψptqH
´

BxϕBxD
´2eεB

2
xvn

¯

, vn

¯

L2pTˆp0,T qq

ˇ

ˇ

ˇ

ˇ

“ 0. (3.3.30)

With similar arguments, we get

lim
nÝÑ8

sup
0ăεď1

ˇ

ˇ

ˇ

ˇ

´

αψptqH
´

B
2
xϕ D

´2eεB
2
xvn

¯

, vn

¯

L2pTˆp0,T qq

ˇ

ˇ

ˇ

ˇ

“ 0. (3.3.31)

From (3.3.25) and (3.3.28)-(3.3.31), we obtain that

lim
nÝÑ8

sup
0ăεď1

ˇ

ˇ

ˇ

`

rAε,´αHB2
xsvn, vn

˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
“ 0. (3.3.32)

Therefore, (3.3.16), (3.3.17) (3.3.20), and (3.3.32), imply that

lim
nÝÑ8

sup
0ăεď1

ˇ

ˇ

ˇ

`

rAε,´B
3
x ` 2µBxsvn, vn

˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
“ 0. (3.3.33)

In particular,

lim
nÝÑ8

`

rA, ´B3
x ` 2µBxsvn, vn

˘

L2pTˆp0,T qq “ 0. (3.3.34)

Using the Leibniz’s rule for derivatives (see page [54, page 13]), we note that

rA,´B3
x ` 2µBxsvn “ 3ψptqBxϕB2

xD
´2vn ` 3ψptqB2

xϕBxD
´2vn ´ ψptq

`

´B3
xϕ` 2µBxϕ

˘

D´2vn.

Therefore,

`

rA,´B3
x ` 2µBxsvn, vn

˘

L2pTˆp0,T qq “
`

3ψptqBxϕB2
xD

´2vn, vn
˘

L2pTˆp0,T qq

`
`

3ψptqB2
xϕBxD

´2vn, vn
˘

L2pTˆp0,T qq

´
`

ψptq
`

´B3
xϕ` 2µBxϕ

˘

D´2vn, vn
˘

L2pTˆp0,T qq .

(3.3.35)

Using Lemma 3.2.1, Lemma 3.1.7, Theorem 3.2.3, (3.3.3), and (3.3.4), we obtain that the

last term in (3.3.35) satisfies

ˇ

ˇ

ˇ

`

ψptq
`

´B3
xϕ` 2µBxϕ

˘

D´2vn, vn
˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
ď

›

›ψptq
`

´B3
xϕ` 2µBxϕ

˘

D´2vn
›

›

XT2´2b,b
}vn}XT

´2`2b,´b

ď C
›

›D´2vn
›

›

XT2,b
}vn}XT

´2`2b,´b

ď C }vn}XT0,b
}vn}XT

´2`2b,´b

ď C }vn}XT
´2`2b,´b

ÝÑ 0 as n ÝÑ 8.

(3.3.36)
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However, for the second term of (3.3.35), the loss of regularity is too large if we use the

estimates with the same b. Using the index b1 instead, we have
ˇ

ˇ

ˇ

`

3ψptqB2
xϕBxD

´2vn, vn
˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
ď

›

›ψptqB2
xϕBxD

´2vn
›

›

XT
1´2b1,b1

}vn}XT
´1`2b1,´b1

ď C
›

›BxD
´2vn

›

›

XT
1,b1
}vn}XT

´1`2b1,´b1

ď C }vn}XT
0,b1
}vn}XT

´1`2b1,´b1

ď C }vn}XT
´1`2b1,´b1

ÝÑ 0 as n ÝÑ 8.

(3.3.37)

From (3.3.34)-(3.3.37), we obtain

lim
nÝÑ8

ˇ

ˇ

ˇ

`

ψptqBxϕp´B
2
xqD

´2vn, vn
˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
“ 0,

and (3.3.11) is proved.

Second, we prove that

lim
nÝÑ8

ˇ

ˇ

ˇ
pψptq Bxϕ pvnp0, tq, vnqL2pTˆp0,T qq

ˇ

ˇ

ˇ
“ 0. (3.3.38)

Indeed, note that for 0 ă b ă 1, we have

} pvnp0, tq}Hbp0,T q “

ˆ
ż T

0
xτy2b| pvnp0, τq|2 dτ

˙

1
2

ď C}vn}XT
0,b
ď C.

Thus, the sequence pvnp0, ¨q is bounded in Hb
p0, T q, which is compactly embeded in P

L2
p0, T q, by the Rellich’s theorem (see [36, page 305]). Therefore, there exists a subsequence

that converges strongly in L2
p0, T q. Next, it can be seen that the only weak limit of a

subsequence in L2
p0, T q is zero, so that the whole sequence tends strongly to 0 in L2

p0, T q.
Thus

pvnp0, tq ÝÑ 0 (strongly) in L2
p0, T q, as n ÝÑ 8,

and hence we hold (3.3.38).

From (3.3.10)-(3.3.11), and (3.3.38), we obtain (3.3.9). This completes the proof

of the proposition.

Next, we investigate the propagation of regularity for the operator L defined in

(3.3.1).

Proposition 3.3.3 (Propagation of Regularity). Let T ą 0, 0 ď b ă 1, r ě 0 and

f P XT
r,´b be given. Let v P XT

r,b be a solution of

Lv :“ Btv ´ α HB2
xv ´ B

3
xv ` 2µ Bxv “ f. (3.3.39)

If there exists a nonempty open set ω of T such that

v P L2
locpp0, T q;Hr`ρ

pωqq, (3.3.40)
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for some ρ with

0 ă ρ ď min
"

1´ b, 1
2

*

, (3.3.41)

then v P L2
locpp0, T q;Hr`ρ

pTqq.

Proof. Let s “ r`ρ. Let Ω be a compact subset of the interval p0, T q, and ψptq P C8c p0, T q,
such that 0 ď ψptq ď 1 and ψptq “ 1 in Ω. Observe that

}v}2L2pΩ,HspTqq “

ż T

0
ψptq}v}HspTqdt

ď cs

¨

˚

˝

ż T

0
ψptq}v}2L2pTqdt`

ż T

0
ψptq

¨

˚

˝

2π
`8
ÿ

k“´8
k‰0

|k|2s|pvpk, tq|2

˛

‹

‚

dt

˛

‹

‚

ď cs

´

}v}2L2pTˆp0,T qq ´
`

ψptqD2s´2
B

2
xv, v

˘

L2pTˆp0,T qq

¯

,

where the operator D is defined in (2.5.2). Thus, we only need to show that there exists a

positive constant C such that

ˇ

ˇ

ˇ

`

ψptqD2s´2
B

2
xv, v

˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
ď C. (3.3.42)

Note that, with a similar argument as in the proof of Proposition 3.3.2, there exists a

finite set of points xi0 P T, i “ 1, 2, 3, ¨ ¨ ¨ , such that we can construct a partition of the

unity on T involving functions of the form χ2
i p¨ ´x

i
0q with χ2

i p¨ q P C
8
c pωq. Therefore,

ˇ

ˇ

ˇ

`

ψptqD2s´2
B

2
xv, v

˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˜

ψptqD2s´2

˜

N
ÿ

i“1
χ2
i px´ x

i
0q

¸

B
2
xv, v

¸

L2pTˆp0,T qq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

N
ÿ

i“1

ˇ

ˇ

ˇ

`

ψptqD2s´2χ2
i px´ x

i
0qB

2
xv, v

˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
.

Then, it is sufficient to prove that for any x0 P T, and any χ2
p¨ q P C8c pωq there

exists a positive constant C such that

ˇ

ˇ

ˇ

`

ψptqD2s´2χ2
px´ x0qB

2
xv, v

˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
ď C. (3.3.43)

In fact, from Lemma A.4 there exists ϕ P C8pTq such that Bxϕpxq “ χ2
pxq ´ χ2

px´ x0q

for all x P T. Consequently,
ˇ

ˇ

ˇ

`

ψptqD2s´2χ2px´ x0qB
2
xv, v

˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

`

ψptqD2s´2χ2pxqB2
xv, v

˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

`

ψptqD2s´2BxϕpxqB
2
xv, v

˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
.

(3.3.44)

Now, we move to bound the right hand side (RHS) of (3.3.44). Define

vn :“ e
1
n
B2
xv “ Env “

´

e´
1
n
k2
pvpk, tq

¯_

, (3.3.45)
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and fn :“ Enf “ EnLv, for n “ 1, 2, 3, ¨ ¨ ¨ . Passing to the frequency space, it is easy to

verify that En commutes with L, i.e.,

fn :“ Enf “ EnLv “ LEnv “ Lvn.

From hypothesis and the definition of En we obtain that there exists C ą 0 independent

on n such that

}vn}XT
r,b
ď C, and }fn}XT

r,´b
ď C, for all n ě 1. (3.3.46)

Set, B “ D2s´2ϕ, and A “ ψptqB. We infer from Lemma 3.2.1 and Theorem

3.2.3, that for any r P R, and 0 ď b ă 1, there exists a positive constant C (independent

of T, if T ď 1) such that

}Av}XT
r´2|b|´2s`2,b

ď C }v}XT
r,b
. (3.3.47)

With similar calculations as in the proof of the Proposition 3.3.2 (see (3.3.17)), we obtain

pfn, A
˚vnqL2pTˆp0,T qq ` pAvn, fnqL2pTˆp0,T qq “ ´

`

ψ1ptqBvn, vn
˘

L2pTˆp0,T qq

`
`

rαHB2
x, Asvn, vn

˘

L2pTˆp0,T qq

`
`

rA,´B3
x ` 2µBxsvn, vn

˘

L2pTˆp0,T qq .

(3.3.48)

Using that ρ ď 1´ b, (3.3.46) and (3.3.47) we get that there exists C ą 0 independent of

n such that
ˇ

ˇ

ˇ
pAvn, fnqL2pTˆp0,T qq

ˇ

ˇ

ˇ
ď }Avn}XT

´r,b
}fn}XT

r,´b

ď C }vn}XT
´r`2b`2s´2,b

}fn}XT
r,´b

ď C }vn}XT
r,b
ď C,

(3.3.49)

ˇ

ˇ

ˇ
pfn, A

˚vnqL2pTˆp0,T qq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
pAfn, vnqL2pTˆp0,T qq

ˇ

ˇ

ˇ

ď }Afn}XT
´r,´b

}vn}XT
r,b

ď C }fn}XT
´r`2|´b|`2s´2,´b

}vn}XT
r,b
ď C }fn}XT

r,´b
ď C,

(3.3.50)

and
ˇ

ˇ

ˇ
pψ1ptqBvn, vnqL2pTˆp0,T qq

ˇ

ˇ

ˇ
ď }ψ1ptqBvn}XT

´r,´b
}vn}XT

r,b

ď C }Bvn}XT
´r,´b

}vn}XT
r,b

ď C }vn}XT
´r`2|´b|`2s´2,´b

ď C }vn}XT
r,b
ď C.

(3.3.51)

Also, using the Leibniz’s rule for derivatives (see [54, page 13]), and Lemma (3.3.1), we

obtain

HB2
xAvn “ ´ψptqD

2s´3 `
BxϕB

2
xvn

˘

´ ψptqD2s´3 `ϕB3
xvn

˘

` 2HψptqD2s´2
pBxϕBxvnq `HψptqD2s´2 `

B
2
xϕvn

˘

.
(3.3.52)
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On the other hand,

AHB2
xvn “ ψptqD2s´2 `ϕHB2

xvn
˘

“ ´ψptqD2s´2 `ϕD´1
B

3
xvn

˘

. (3.3.53)

From (3.3.52) and (3.3.53), we have

HB2
xAvn ´ AHB2

xvn “ ´ψptq D
2s´2 `

rD´1, ϕsB3
xvn

˘

´ ψptqD2s´3 `
Bxϕ B

2
xvn

˘

` 2HψptqD2s´2
pBxϕ Bxvnq `HψptqD2s´2 `

B
2
xϕ vn

˘

.

Then,

`

rαHB2
x, Asvn, vn

˘

L2pTˆp0,T qq “ α
`

HB2
xAvn ´ AHB2

xvn, vn
˘

L2pTˆp0,T qq

“ ´α
`

ψptqD2s´2 `
rD´1, ϕsB3

xvn
˘

, vn
˘

L2pTˆp0,T qq

´ α
`

ψptqD2s´3 `
BxϕB

2
xvn

˘

, vn
˘

L2pTˆp0,T qq

` 2α
`

HψptqD2s´2
pBxϕBxvnq , vn

˘

L2pTˆp0,T qq

` α
`

HψptqD2s´2 `
B

2
xϕvn

˘

, vn
˘

L2pTˆp0,T qq .

(3.3.54)

Using ρ ď
1
2 , Lemma 3.2.1, Theorem 3.2.3, Lemma A.1, and that H is an isometry in

H´r
p pTq, we can obtain C ą 0 independent on n, such that

α
ˇ

ˇ

ˇ

`

ψptqD2s´2 `rD´1, ϕsB3
xvn

˘

, vn
˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
ď α

›

›ψptqD2s´2 `rD´1, ϕsB3
xvn

˘›

›

XT
´r,0

}vn}XTr,0

ď C
›

›rD´1, ϕsB3
xvn

›

›

XT
´r`2s´2,0

}vn}XT
r,b

ď C }vn}XT
´r`2s´1,0

ď C }vn}XT
r,b
ď C,

(3.3.55)

and

α
ˇ

ˇ

ˇ

`

ψptqD2s´3 `BxϕB
2
xvn

˘

, vn
˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
ď α

›

›ψptqD2s´3 `BxϕB
2
xvn

˘
›

›

L2pp0,T q;H´rpTqq }vn}L2pp0,T q;HrpTqq

ď C
›

›BxϕB
2
xvn

›

›

L2pp0,T q;H´r`2s´3pTqq }vn}XTr,0

ď C
›

›BxϕB
2
xvn

›

›

XT
´r`2s´3,0

}vn}XT
r,b

ď C }vn}XT
´r`2s´1,0

ď C }vn}XT
r,b
ď C.

(3.3.56)

In similar manner, one can get

2α
ˇ

ˇ

ˇ

`

HψptqD2s´2 pBxϕBxvnq , vn
˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
ď C }BxϕBxvn}XT

´r`2s´2,0
}vn}XTr,0

ď C, (3.3.57)

and

α
ˇ

ˇ

ˇ

`

HψptqD2s´2 `B2
xϕvn

˘

, vn
˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
ď C }vn}XT

´r`2s´2,0
}vn}XT

r,b
ď C }vn}XT

r,b
ď C. (3.3.58)

From (3.3.54)-(3.3.58), we infer that

ˇ

ˇ

ˇ

`

rαHB2
x, Asvn, vn

˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
ď C. (3.3.59)
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It follows from (3.3.48), (3.3.49), (3.3.50), (3.3.51), and (3.3.59), that
ˇ

ˇ

ˇ

`

rA,´B3
x ` 2µBxsvn, vn

˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
ď C, (3.3.60)

where C ą 0 does not depend on n. Using the Leibniz’s rule, we note that
`

rA,´B3
x ` 2µBxsvn, vn

˘

L2pTˆp0,T qq “
`

3ψptqD2s´2BxϕB
2
xvn, vn

˘

L2pTˆp0,T qq

`
`

3ψptqD2s´2B2
xϕBxvn, vn

˘

L2pTˆp0,T qq

´
`

ψptqD2s´2 `´B3
xϕ` 2µBxϕ

˘

vn, vn
˘

L2pTˆp0,T qq .

(3.3.61)

Using similar arguments as above, we get
ˇ

ˇ

ˇ

`

3ψptqD2s´2B2
xϕBxvn, vn

˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
ď

›

›ψptqD2s´2B2
xϕBxvn

›

›

XT
´r,0

}vn}XT
r,0

ď C }Bxvn}XT
´r`2s´2,0

ď C }vn}XT
´r`2s´1,0

ď C,

(3.3.62)

and
ˇ

ˇ

ˇ

`

ψptqD2s´2 `´B3
xϕ` 2µBxϕ

˘

vn, vn
˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
ď

›

›ψptqD2s´2 `´B3
xϕ` 2µBxϕ

˘

vn
›

›

XT
´r,0

}vn}XT
r,0

ď C
›

›

`

´B3
xϕ` 2µBxϕ

˘

vn
›

›

XT
´r`2s´2,0

}vn}XT
r,b

ď C }vn}XT
´r`2s´2,0

ď C,

(3.3.63)

From (3.3.60), (3.3.61), (3.3.62), and (3.3.63), we infer that there exists C ą 0 independent

of n such that
ˇ

ˇ

ˇ

`

ψptq D2s´2
Bxϕpxq B

2
xvn, vn

˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
ď C for any n ě 1. (3.3.64)

Therefore, letting n ÝÑ `8 we get that the second term on the right side of (3.3.44)

is bounded. Now, we estimate the term
ˇ

ˇ

ˇ

`

ψptqD2s´2χ2
pxqB2

xv, v
˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
in (3.3.44). As

the operator Ds is self-adjoint in L2
pTq, then for any χ P C8c pTq, we get

`

ψptqD2s´2χ2
B

2
xvn, D

svn
˘

L2pTˆp0,T qq “
`

ψptqrDs´2, χsχB2
xvn, D

svn
˘

L2pTˆp0,T qq

`
`

ψptqDs´2χB2
xvn, χD

svn
˘

L2pTˆp0,T qq ,
(3.3.65)

and
`

ψptqDs´2χB2
xvn, rχ,D

s
svn

˘

L2pTˆp0,T qq “
`

ψptqDs´2χB2
xvn, χD

svn
˘

L2pTˆp0,T qq

´
`

ψptqDs´2χB2
xvn, D

sχvn
˘

L2pTˆp0,T qq .
(3.3.66)

Isolating the first term of the right side of the last inequality and substituting

in (3.3.65), we obtain
`

ψptqD2s´2χ2
B

2
xvn, D

svn
˘

L2pTˆp0,T qq “
`

ψptqDs´2χB2
xvn, D

sχvn
˘

L2pTˆp0,T qq

`
`

ψptqDs´2χB2
xvn, rχ,D

s
svn

˘

L2pTˆp0,T qq

`
`

ψptqrDs´2, χsχB2
xvn, D

svn
˘

L2pTˆp0,T qq

“: I ` II ` III.

(3.3.67)
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Using (3.3.40), one have

}χv}L2
loc
pp0,T q;HspTqq “ }χv}L2

loc
pp0,T q;Hspωqq ă 8, (3.3.68)

and

›

›χB2
xv
›

›

L2
loc
pp0,T q;Hs´2pTqq “

›

›χB2
xv
›

›

L2
loc
pp0,T q;Hs´2pωqq

ă 8. (3.3.69)

Observe that χvn “ Enχv ` rχ,Ensv. Using Lemma A.2 and Lemma A.3, we obtain

}χvn}HspTq ď }Enχv}HspTq ` }rχ,Ensv}HspTq

ď C }χv}HspTq ` Cs }v}Hs´1pTq .
(3.3.70)

From (3.3.68) and (3.3.70), there exists C ą 0 independent on n such that

}χvn}L2
loc
pp0,T q;HspTqq ď C }χv}L2

loc
pp0,T q;HspTqq ` Cs }v}L2

loc
pp0,T q;Hs´1pTqq

ď C ` Cs }v}XT
s´1,0

ď C ` Cs }v}XT
r,b
ď C.

(3.3.71)

Hence, χvn is uniformly bounded in L2
locpp0, T q;Hs

pTqq. In a similar way we can estimate

χB2
xvn and get

›

›χB2
xvn

›

›

L2
loc
pp0,T q;Hs´2pTqq ď C

›

›χB2
xvn

›

›

L2
loc
pp0,T q;Hs´2pTqq ` Cs

›

›B2
xv
›

›

L2
loc
pp0,T q;Hs´3pTqq

ď C ` Cs }v}XT
s´1,0

ď C,
(3.3.72)

where the last positive constant C doesn’t depend on n. Next, we estimate I, II, and III.

Using Lemma 3.2.1, and Lemma 3.1.7, we have

|I| “
ˇ

ˇ

ˇ

`

ψptqDs´2χB2
xvn, D

sχvn
˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ

ď C
›

›ψptqDs´2χB2
xvn

›

›

L2
loc
pTˆp0,T qq }D

sχ vn}L2
loc
pTˆp0,T qq

ď C
›

›χB2
xvn

›

›

L2
loc
pp0,T q;Hs´2pTqq }χvn}L2

loc
pp0,T q;HspTqq ď C,

(3.3.73)

|II| “
ˇ

ˇ

ˇ

`

ψptqDs´2χB2
xvn, rχ,D

s
svn

˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ

ď C
›

›ψptqDr´2χB2
xvn

›

›

L2
loc
pTˆp0,T qq }D

ρ
rχ,Ds

svn}L2
loc
pTˆp0,T qq

ď C
›

›χB2
xvn

›

›

L2
loc
pp0,T q;Hr´2pTqq }rχ,D

s
svn}L2

loc
pp0,T q;HρpTqq

ď C }vn}L2
loc
pp0,T q;HrpTqq }vn}L2

loc
pp0,T q;Hs´1`ρpTqq

ď C }v}XT
r,0
}v}XT

s´1`ρ,0
ď C,

(3.3.74)
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and

|III| “
ˇ

ˇ

ˇ

`

ψptqrDs´2, χsχB2
xvn, D

svn
˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ

ď C
›

›Dρ
rDs´2, χsχB2

xvn
›

›

L2
loc
pTˆp0,T qq }D

rvn}L2
loc
pTˆp0,T qq

ď C
›

›χB2
xvn

›

›

L2
loc
pp0,T q;Hρ`s´3pTqq }vn}L2

loc
pp0,T q;HrpTqq

ď C }vn}L2
loc
pp0,T q;Hρ`s´1pTqq }vn}XT

r,0

ď C }v}XT
s`ρ´1,0

ď C.

(3.3.75)

From (3.3.67), (3.3.73), (3.3.74), and (3.3.75), we infer that there exists C ą 0 independent

of n such that

ˇ

ˇ

ˇ

`

ψptqD2s´2χ2
B

2
xvn, D

svn
˘

L2pTˆp0,T qq

ˇ

ˇ

ˇ
ď C. (3.3.76)

Letting n ÝÑ `8 we get that the first term on the right side of (3.3.44) is bounded. Thus

(3.3.44), (3.3.64), and (3.3.76), imply (3.3.43) and completes the proof.

Corollary 3.3.4. Let µ P R and α ą 0 be given. Let v P XT
0, 1

2
be a solution of

Btv ´ B
3
xv ´ α HB2

xv ` 2µ Bxv ` 2vBxv “ 0, on p0, T q, (3.3.77)

with rus “ 0. Assume that v P C8pωˆ p0, T qq, where ω is a nonempty open set in T. Then

v P C8pTˆ p0, T qq.

Proof. From Corollary 3.1.26, we have that 2vBxv P XT
0,´ 1

2
. Observe that

v P C8pω ˆ p0, T qq Ă L2
locpp0, T q;H

1
2 pωqq.

It follows from Proposition 3.3.3 (with f “ ´2vBxv) that v P L2
locpp0, T q;H

1
2 pTqq.

Choosing t0 P p0, T q such that vpt0q P H
1
2 pTq, we can solve equation (3.3.77)

in the space XT
1
2 ,

1
2

with the initial data vpt0q. By the uniqueness of the solution in XT
0, 1

2
we

conclude that u P XT
1
2 ,

1
2
.

An iterated application of Proposition 3.3.3 yields that v P L2
locpp0, T q;Hr

pTqq,
for all r P R. Thus, v P C8pT ˆ Ωq, for all compact set Ω Ă p0, T q. Therefore, v P

C8pTˆ p0, T qq.

3.4 Unique continuation property for Benjamin equation

In this section we prove the unique continuation property for the Benjamin

equation. First, we announce a necessary lemma.

Lemma 3.4.1 (See [59, Lemma 2.9]). Let s P R and let hpxq “
ÿ

kě0

phpkqeikx be such that

h P Hs
pTq and h “ 0 in pa, bq Ă T. Then h ” 0.
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The following is the main result of this section. The ideas of the proof are

similar to those leading Proposition 2.8 in [59].

Proposition 3.4.2. Let µ P R, α ą 0, and cptq P L2
p0, T q be given. Let v P L2

pp0, T q;L2
0pTqq

be a solution of

"

Btv ´ B
3
xv ´ αHB2

xv ` 2µBxv ` 2vBxv “ 0, t ą 0, on Tˆ p0, T q
vpx, tq “ cptq, for almost every px, tq P pa, bq ˆ p0, T q,

(3.4.1)

for some numbers T ą 0 and 0 ď a ă b ď 2π. Then vpx, tq “ 0 for almost every

px, tq P Tˆ p0, T q.

Proof. Since vpx, tq “ cptq, for a.e px, tq P pa, bq ˆ p0, T q, we have that

Bxvpx, tq “ B
2
xvpx, tq “ p2vBxvqpx, tq “ 0 for a.e px, tq P pa, bq ˆ p0, T q (3.4.2)

From the first relation in (3.4.1), we infer that v satisfies

Btv ´ αHB2
xv “ 0 in pa, bq ˆ p0, T q.

Thus, the second relation in (3.4.1) implies that

αHB2
xv “ Btv “ c1ptq in pa, bq ˆ p0, T q.

Therefore, for almost every t P p0, T q, it holds that

B
3
xvp¨, tq P H

´3
pTq

B
3
xvp¨, tq “ 0, in pa, bq.

HB3
xvp¨, tq “ BxHB2

xvp¨, tq “ 0, in pa, bq.

(3.4.3)

Pick a time t as above, and set hpxq “ B3
xvpx, tq, for x P T. Decompose h as

hpxq “
ÿ

kPZ

phpkqeikx,

where the convergence of the series being in H´3
pTq. Observe that

pih´Hhq pxq “
ÿ

kPZ
pih´Hhq^pkqeikx “ 2i

ÿ

ką0
ĥpkqeikx. (3.4.4)

From (3.4.3), we have

0 “ ihpxq ´Hhpxq “ 2i
ÿ

ką0

phpkqeikx, for all x P pa, bq.

Therefore,
ÿ

ką0

phpkqeikx “ 0, in pa, bq. Applying Lemma 3.4.1, we obtain that

ÿ

ką0

phpkqeikx “ 0, in T.
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Since h is real-valued, we also have that php´kq “ phpkq, for all k P Z. Thus,

ÿ

ką0

php´kqe´ikx “ 0, in T.

Consequently, for a.e. t P p0, T q, B3
xvp¨, tq “ 0 in T. Then, for a.e. t P p0, T q, B2

xvp¨, tq “

c1ptq in T, but from (3.4.2) we obtain that c1ptq “ 0, for a.e. t P p0, T q. Thus, for a.e.

t P p0, T q, B2
xvp¨, tq “ 0 in T. Arguing in a similar way we obtain that for a.e. t P p0, T q,

Bxvp¨, tq “ 0 in T. Thus, for a.e. t P p0, T q,

vpx, tq “ cptq in T. (3.4.5)

Substituting (5.2.50) in the first relation of (3.4.1), we obtain that c1ptq “ 0 for a.e.

t P p0, T q. Therefore, vpx, tq “ cptq “ cte “ β a.e. in Tˆ p0, T q.
Finally, using that v P L2

0pTq, especifically rvs “ 0, we obtain that vpx, tq “ β “ 0 a.e. in

Tˆ p0, T q.

Corollary 3.4.3. Let T ą 0, µ P R, and α ą 0 be given. Assume that ω is a nonempty

open set in T and let v P XT
0, 1

2
be a solution of

#

Btv ´ B
3
xv ´ αHB2

xv ` 2µBxv ` 2vBxv “ 0, t ą 0, on Tˆ p0, T q
vpx, tq “ c, on ω ˆ p0, T q,

(3.4.6)

where c P R, denotes some constant, and rvs “ 0. Then vpx, tq “ c “ 0 on Tˆ p0, T q.

Proof. Using Corollary 3.3.4, we infer that v P C8pTˆ p0, T qq. It follows that vpx, tq “ c

on Tˆ p0, T q by the unique continuation property of Benjamin equation (see Proposition

3.4.2). From the fact that rvs “ 0, we obtain c “ 0.
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Chapter 4
Controllability and stabilization of the

Benjamin equation on a periodic domain

In this chapter, we obtain the main results regarding global controllability and

exponential stabilization of Benjamin equation on a periodic domain in Hs
0pTq with s ě 0.

The global exponential stabilizability corresponding to a natural feedback law is first

established with the aid of certain properties of solution, viz., propagation of compactness

and propagation of regularity in Bourgain’s spaces. The global exponential stability of the

system combined with a local controllability result yields the global controllability as well,

as is usual in control theory (see for instance [29, 30, 51, 52, 53]).

This chapter is organized as follows. In Section 4.1, the local controllability

result for the Benjamin equation is obtained. The main result on local control is given

Corollary 4.1.2. Section 4.2, is devoted to study the stabilization of the Benjamin equation

by a time-invariant feedback control law. Finally, in section 4.3 we prove the global

controllability for the Benjamin equation.

4.1 Local control for the nonlinear Benjamin equation

From the observation made in the final part of Section 2.3, it is enough to study

the control problem for the IVP (2.3.37) in Hs
0pTq, with s ě 0 (see (1.3.1)). Thus, in this

section we are concerned with the local controllability of the system
#

Btu´ αHB
2
xu´ B

3
xu` 2µBxu` 2uBxu “ Ghpx, tq, t P p0, T q, x P T

upx, 0q “ u0pxq, x P T,
(4.1.1)

To get a local control result to system (4.1.1) we proceed as in [81] by rewriting

the system (4.1.1) in its equivalent integral equation form:

uptq “ Uµptqu0 `

ż t

0
Uµpt´ τqpGhqpτq dτ ´

ż t

0
Uµpt´ τqp2uBxuqpτq dτ, (4.1.2)
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where Uµptq is the semigroup generated by operator Aµ defined by (2.3.39) on the space

L2
pTq. For given u0, u1 P H

s
ppTq, let us choose h “ Φµpu0, u1 ` wpT, uqq, where Φµ is the

bounded linear operator given in Remark 2.3.15, and define

wpT, uq :“
ż T

0
UµpT ´ τqp2uBxuqpτqdτ.

According to Remark 2.3.15, the linear system (2.3.38) is exactly controllable in any

positive time T. Therefore, for given u0, u1 P H
s
ppTq, we have

uptq “ Uµptqu0 `

ż t

0
Uµpt´ τqpGpΦµpu0, u1 ` wpT, uqqqqpτq dτ´

ż t

0
Uµpt´ τqp2uBxuqpτq dτ ,

and up0q “ u0, upT q “ u1, by virtue of equality (2.3.41). This suggests that we should

consider the map

Γpuq :“ Uµptqu0 `

ż t

0
Uµpt´ τqpGpΦµpu0, u1 ` wpT, uqqqqpτqdτ´

ż t

0
Uµpt´ τqp2uBxuqpτqdτ

(4.1.3)

and show that Γ is a contraction in an appropriate space. The fixed point u of Γ is a

mild solution of IVP (4.1.1) with h “ Φpu0, u1`wpT, uqq and satisfies upx, T q “ u1pxq. To

complete this argument, we use the Bourgain’s space associated to the Benjamin equation

ans show that Γ is a contraction mapping. This is the content of the following result.

Theorem 4.1.1 (Small data control). Let T ą 0, s ě 0, α ą 0, and µ P R be given. Then

there exists a δ ą 0 such that for any u0, u1 P H
s
0pTq with ru0s “ ru1s “ 0 and

}u0}Hs
0pTq ď δ, }u1}Hs

0pTq ď δ,

one can find a control h P L2
pr0, T s;Hs

0pTqq such that the IVP (4.1.1) has a unique solution

u P Cpr0, T s;Hs
0pTq satisfying

upx, 0q “ u0pxq, u1px, T q “ u1pxq, for all x P T.

Proof. Let T ą 0 be given. For s ě 0 we will show that there exists M ą 0 such that Γ
defined by (4.1.3) is a contraction on the ball

Bp0,Mq :“
"

u P ZT
s, 1

2
: rus “ 0, }u}ZT

s, 1
2

ďM

*

,

where } ¨ }ZT
s, 1

2

is given by Definition 3.1.5.

In fact, using the Corollary 3.1.12 part ivq, the Theorem 3.1.14 part iiiq, and

the Corollary 3.1.26, we obtain

‖Γpuq‖ZT
s, 1

2

ď c1

˜

‖u0‖Hs
ppTq ` ‖pGΦµpu0, u1 ` wpT, uqqqptq‖ZT

s,´ 1
2

` ‖u‖2
ZT
s, 1

2

¸

, (4.1.4)
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were c1 is a positive constant that depends on s, T, and α. Using that G (see (2.0.9)) is a

bounded operator, the embedding XT
s,0 ãÑ Xs,´ 1

2
and Remark (2.3.15), we get

‖GpΦµpu0, u1 ` wpT, uqqq‖XT

s,´ 1
2

ď c‖GpΦµpu0, u1 ` wpT, uqqq‖XT
s,0

“ c‖Φµpu0, u1 ` ωpT, uqq‖L2pr0,T s,Hs
0pTqq

ď c2p‖u0‖Hs
0pTq`‖u1‖Hs

0pTq`‖wpT, uq‖Hs
0pTqq,

(4.1.5)

where c2 ą 0 depends on s, T, and g. Using Proposition 3.1.8, Theorem 3.1.14 and Corollary

3.1.26, we obtain

‖wpT, uqq‖Hs
ppTq ď sup

0ďtďT

∥∥∥∥∥
ż t

0
Uµpt´ τqp2uBxuqpτqdτ

∥∥∥∥∥
Hs

0pTq

ď c

∥∥∥∥∥
ż t

0
Uµpt´ τqpBxpu

2
qqpτqdτ

∥∥∥∥∥
ZT
s, 1

2

ď c3‖u‖2
ZT
s, 1

2

,

(4.1.6)

where c3 ą 0 depends on s, α and T. From (4.1.5) and (4.1.6), we have

‖GpΦµpu0, u1 ` wpT, uqqq‖XT

s,´ 1
2

ď c2p‖u0‖Hs
0pTq`‖u1‖Hs

0pTq`c3‖u‖2
ZT
s, 1

2

q (4.1.7)

On the other hand, applying Remark 3.1.17 with b “ ´1 and 0 ă ε ď
1
2 , we get

‖GpΦµpu0, u1 ` wpT, uqqq‖Y Ts,´1
ď cpεq‖GpΦµpu0, u1 ` wpT, uqqq‖XT

s,´1` 1
2`ε

ď cpεq‖GpΦµpu0, u1 ` wpT, uqqq‖XT
s,0
.

(4.1.8)

From inequality (4.1.8) and the same calculations as above, we obtain

‖GpΦµpu0, u1 ` wpT, uqqq‖Y Ts,´1
ď c4pεq

ˆ

‖u0‖Hs
0pTq`‖u1‖Hs

0pTq`c3 ‖u‖2
ZT
s, 1

2

˙

, (4.1.9)

where c4pεq ą 0 depends on s, α, T and g. From (4.1.7) and (4.1.9), we infer that

‖GpΦµpu0, u1 ` wpT, uqqq‖ZT
s,´ 1

2

ď pc2 ` c4qp‖u0‖Hs
0pTq`‖u1‖Hs

0pTqq ` pc2c3 ` c4c3q‖u‖2
ZT
s, 1

2

.

(4.1.10)

Combining (4.1.4) and (4.1.10), we obtain that there exists C “ Cs,ε,α,g,T ą 0 such that

}Γpuq}ZT
s, 1

2

ď Cp}u0}Hs
0pTq ` }u1}Hs

0pTqq ` C}u}
2
ZT
s, 1

2

. (4.1.11)

Choosing δ ą 0 and M ą 0 such that

CM ă
1
4 and 2Cδ ` CM2

ďM, (4.1.12)

we obtain from (4.1.11) that }Γpuq}ZT1
2 ,s

ď M for each u P Bp0,Mq, provided that

}u0}Hs
0pTq ď δ and }u1}Hs

ppTq ď δ.
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Furthermore, for all u, v P Bp0,Mq, we have

Γpuq ´ Γpvq “
ż t

0
Uµpt´ τqpGΦµp0, wpT, uq ´ wpT, vqqqpτqdτ

`

ż t

0
Uµpt´ τqpBxppv ´ uqpv ` uqqpτqdτ,

and

wpT, uq ´ wpT, vq “

ż T

0
UµpT ´ τq pBxppu´ vqpu` vqq pτq dτ.

Thus, with similar computations as above, we can obtain

}Γpuq ´ Γpvq}ZT
s, 1

2

ď C}u´ v}ZT
s, 1

2

}u` v}ZT
s, 1

2

ď
1
2}u´ v}ZTs, 1

2

.

Therefore, the map Γ is a contraction on Bp0,Mq provided that δ and M are chosen

according to (4.1.12) with }u0}Hs
ppTq ď δ, and }u1}Hs

ppTq ď δ.

Corollary 4.1.2 (Local control). Let T ą 0, s ě 0, α ą 0, and µ P R be given. Then

there exists δ ą 0 such that for any u0, u1 P H
s
ppTq with ru0s “ ru1s “ µ and

}u0 ´ µ}Hs
ppTq ď δ, }u1 ´ µ}Hs

ppTq ď δ,

one can find a control h P L2
pr0, T s;Hs

ppTqq such that the IVP associated to (2.0.1) with

f “ Gh has a unique solution u P Cpr0, T s;Hs
ppTqq satisfying

upx, 0q “ u0pxq, u1px, T q “ u1pxq, for all x P T.

4.2 Stabilization of the Nonlinear Benjamin equation

In this section we will study the stabilization problem for the Benjamin equation

in Hs
ppTq, with s ě 0. Consider the IVP,

#

Btu´ B
3
xu´ αHB2

xu` 2µBxu` 2uBxu “ ´Kλu, t ą 0, x P T
upx, 0q “ u0pxq, x P T,

(4.2.1)

where u “ upx, tq denotes a real valued function with rus “ 0. Assume λ ě 0, µ P R, and

α ą 0 are given. The feedback control law f ” ´Kλu is as defined in (2.5.13), with the

operator Lλ as in (2.5.1).

We first check that the system (4.2.1) is globally well-posed in the space Hs
0pTq

for any s ě 0. Let Uµptq be the group defined in (2.3.40) that describes the solution u of

the linear IVP associated to (4.2.1). The following estimate is needed.

Lemma 4.2.1. For any 0 ă ε ă 1 there exists a positive constant Cpεq such that

›

›

›

›

ż t

0
Uµpt´ τqpKλvqpτq dτ

›

›

›

›

ZT
s, 1

2

ď Cpεq T 1´ε
}v}ZT

s, 1
2

. (4.2.2)
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Proof. Let 0 ă ε ă 1. From Theorem 3.1.14, we infer that
›

›

›

›

ż t

0
Uµpt´ τqpKλvqpτqdτ

›

›

›

›

ZT
s, 1

2

ď Cη,s

ˆ

}Kλv}XT

s,´ 1
2

` }Kλv}Y Ts,´1

˙

. (4.2.3)

Using the embedding XT
s,´ 1

2`
ε
2

ãÑ XT
s,´ 1

2
, and Remark 3.1.26 with ´

1
2 `

ε

2 “ b1 ă 0 “ b,

we have

}Kλv}XT

s,´ 1
2

ď C}GG˚L´1
λ v}XT

s,´ 1
2`

ε
2

ď CT´p´
1
2`

ε
2 q}GG˚L´1

λ v}XT
s,0
ď Cs,g,λ,δ,εT

1
2´

ε
2 }v}XT

s,0
.

(4.2.4)

where we have used Remark 2.1.2, and Remark 2.5.4 in the last inequality. Applying again

the estimate (3.1.26) with 0 “ b1 ă
1
2 ´

ε

2 “ b, and using the embedding XT
s, 1

2
ãÑ XT

s, 1
2´

ε
2
,

we infer that

}Kλv}XT

s,´ 1
2

ď Cs,g,λ,δ,εT
1
2´

ε
2 T

1
2´

ε
2 }v}XT

s, 1
2´

ε
2

ď Cs,g,λ,δ,εT
1´ε
}v}XT

s, 1
2

. (4.2.5)

On the other hand, from Remark 3.1.17 and similar computations as those

made in (4.2.4) and (4.2.5), we obtain that

}Kλv}Y Ts,´1
“ }Kλv}Y T

s,´ 1
2`

ε
2´

1
2´

ε
2

ď Cε}Kλv}XT

s,´ 1
2`

ε
2

ď Cs,g,λ,δ,εT
1´ε
}v}XT

s, 1
2

. (4.2.6)

From (4.2.3), (4.2.5), and (4.2.6), we have

›

›

›

›

ż t

0
Uµpt´ τqpKλvqpτq dτ

›

›

›

›

ZT
s, 1

2

ď Cη,s,g,λ,δ,εT
1´ε
}v}XT

s, 1
2

ď CpεqT 1´ε
}v}ZT

s, 1
2

. (4.2.7)

This proof the lemma.

Next we study the global existence of the solutions to the IVP (4.2.1).

Theorem 4.2.2 (Global well-posedness). Let s ě 0, λ ě 0, α ą 0, and µ P R, be given. For

any u0 P H
s
0pTq and for any T ą 0 there exists a unique solution u P ZT

s, 1
2
XCpr0, T s;L2

0pTqq
of equation (4.2.1). Furthermore, the following estimates hold

}u}ZT
s, 1

2

ď βT,s,µp}u0}L2
0pTqq }u0}Hs

0pTq. (4.2.8)

In particular, u P Cpr0, T s;Hs
0pTqq and

}u}L8pr0,T s;Hs
0pTqq ď C4βT,s,µp}u0}L2

0pTqq }u0}Hs
0pTq, (4.2.9)

where C4 is a positive constant and βT,s,µ is a nondecresing continuous function depending

only on T, s, and µ. Moreover, denoting Sptqu0 the unique solution u of the IVP (4.2.1)

corresponding to the initial data u0, the operator Sptq : Hs
0pTq ÝÑ ZT

s, 1
2
, defined by

Sptqu0 “ u is continuous in the interval r0, T s.



Chapter 4. Control and Stabilization of the Benjamin equation 130

Proof. The proof of this theorem is similar to Theorem 4.1 in [52]. First, we will show the

local well-posedness of system (4.2.1) in Hs
0pTq for any s ě 0. We rewrite the IVP (4.2.1)

in its integral form and for given u0 P H
s
0pTq, 0 ă T ă 1, we define the map

Γpvq “ Uµptqu0 ´

ż t

0
Uµpt´ τqp2vBxvqpτq dτ ´

ż t

0
Uµpt´ τqpKλvqpτq dτ.

Observe that

Γpv1q ´ Γpv2q “

ż t

0
Uµpt´ τqrBxppv2 ` v1qpv2 ´ v1qqspτqdτ `

ż t

0
Uµpt´ τqrKλpv2 ´ v1qspτqdτ.

It follows then from Corollary 3.1.12, Theorem 3.1.14, Corollary 3.1.26, and

Lemma 4.2.1 that there exists some positive constants C1, C2, C3, 0 ă θ ă
1
6 , and 0 ă ε ă 1

such that

}Γpvq}ZT
s, 1

2

ď C1}u0}Hs
0pTq ` C2T

θ
}v}2ZT

s, 1
2

` C3T
1´ε
}v}ZT

s, 1
2

. (4.2.10)

}Γpv1q ´ Γpv2q}ZT
s, 1

2

ď C2T
θ
}v2 ´ v1}ZT

s, 1
2

}v2 ` v1}ZT
s, 1

2

` C3T
1´ε
}v2 ´ v1}ZT

s, 1
2

, (4.2.11)

for any v, v1, v2 P Z
T
s, 1

2
X L2

pr0, T s;L2
0pTqq. Pick M “ 2C1}u0}Hs

0pTq, and T ą 0 such that,

2C2MT θ ` C3T
1´ε
ď

1
2 .

(4.2.12)

Note that, if we choose 0 ă ε ă 1 such that 0 ă θ ă 1´ ε, then T 1´ε
ă T θ and the time

T ą 0 can be taken as

T “ T p}u0}Hs
0pTqq “

ˆ

1
8C1C2}u0}Hs

0pTq ` 2C3

˙
1
θ

. (4.2.13)

From (4.2.10) and (4.2.11), we infer that for any v, v1, v2 P Bp0,Mq, }Γpvq}ZT
s, 1

2

ď M,

and }Γpv1q ´ Γpv2q}ZT
s, 1

2

ď
1
2 }v2 ´ v1}ZT

s, 1
2

. Thus the map Γ is a contraction in the closed

ball Bp0,Mq of ZT
s, 1

2
X L2

pr0, T s;L2
0pTqq for the } ¨ }ZT

s, 1
2

norm. Its unique fixed point u is

the desired solution of (4.2.1) in the space ZT
s, 1

2
X L2

pr0, T s;L2
0pTqq. It follows from the

Proposition 3.1.8 that u P Cpr0, T s;Hs
0pTqq with

}u}L8pr0,T s;Hs
0pTqq ď C4}u}ZT

s, 1
2

ď 2C1C4}u0}Hs
0pTq,

for some C4 ą 0.

Next, we shall prove the global existence of the solution. First, we assume that

s “ 0. Multiplying the equation (4.2.1) by u and integrating in space we obtain

1
2
d

dt1

´

}up¨, t1q}2L2
0pTq

¯

“ ´
`

GG˚L´1
λ up¨, t1q, up¨, t1q

˘

L2
0pTq

, for all t1 ě 0. (4.2.14)
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Now integrating in the time variable in p0, tq, and using the properties of

operators G and L´1
λ , we infer that

1
2}up¨, tq}

2
L2

0pTq
´

1
2}u0}

2
L2

0pTq
“ ´

ż t

0

`

GL´1
λ up¨, t1q, Gup¨, t1q

˘

L2
0pTq

dt1

ď

ż t

0
}G}2}L´1

λ }}up¨, t
1
q}

2
L2

0pTq
dt1, for all t ě 0.

(4.2.15)

The Gronwall’s inequality in its integral form (see [87, Theorem 1.10, page 11]) implies

that

}up¨, tq}L2
0pTq ď }u0}L2

0pTqe
Ct, for all t ě 0, where C “ }G}2}L´1

λ }. (4.2.16)

From the first line of (4.2.15), we note that

}up¨, tq}L2
0pTq ď }u0}L2

0pTq, when λ “ 0 and t ě 0. (4.2.17)

An standard continuation argument shows that equation (4.2.1) is globally

well-posed in L2
0pTq and estimate (4.2.8) holds with s “ 0.

Next, we suppose that s “ 3. In fact, we will prove that for any T ą 0
and any u0 P H3

0 pTq Ă L2
0pTq the solution of the IVP (4.2.1) belongs to the space

u P ZT
3, 1

2
X Cpr0, T s;H3

0 pTqq.

For this, let T ą 0 and u0 P H
3
0 pTq Ă L2

0pTq. Then, the local solution u of

equation (4.2.1) belongs to the space u P ZT1
0, 1

2
X Cpr0, T1s;L2

0pTqq, where T1 is the time of

local existence given by relation (4.2.13) with s “ 0. Then u satisfies

}u}L8pr0,T1s;L2
0pTqq ď C4}u}ZT1

0, 1
2

ď C4M “ C42C1}u0}L2
0pTq. (4.2.18)

Define v “ Btu, so that rvs “ 0 and v satisfies
#

Btv ´ B
3
xv ´ αHB2

xv ` 2µBxv ` 2Bxpuvq “ ´Kλv, 0 ă t ď T1, x P T
vpx, 0q “ v0 “ u30 ` αHu20 ´ 2µu10 ´ 2u0u

1
0 ´Kλu0, x P T.

(4.2.19)

Note that, applying the Gagliardo-Nirenberg’s inequality (see [8, Theorem 3.70])

and the Cauchy’s inequality, we obtain that there exists c1 ą 0 such that

2}u0u
1
0}L2

0pTq
ď 2}u0}L2

0pTq
}u10}L8pTq

ď 2c1}u0}L2
0pTq
}u30 }

1
2
L2

0pTq
}u0}

1
2
L2

0pTq

“ 2c1}u0}L2
0pTq

ˆ

1
2}u0}L2

0pTq
`

1
2}u

3
0 }L2

0pTq

˙

“ 2c1}u0}L2
0pTq
}u0}H3

0 pTq
.

(4.2.20)

Therefore, v0 P L
2
0pTq, with

}v0}L2
0pTq

ď }u30 }L2
0pTq

` α}Hu20}L2
0pTq

` 2|µ|}u10}L2
0pTq

` 2}u0u
1
0}L2

0pTq
` }Kλu0}L2

0pTq

ď c2}u0}H3
0 pTq

` 2c1}u0}L2
0pTq
}u0}H3

0 pTq

ď pc2 ` 2c1}u0}L2
0pTq
q}u0}H3

0 pTq
ă `8,

. (4.2.21)
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where c2 ą 0 depends on α, µ, λ, g, and δ. On the other hand, considering the map

Γpwq “ Uµptqv0 ´ 2
ż t

0
Uµpt´ τqpBxpu.wqqpτqdτ ´

ż t

0
Uµpt´ τqpKλwqpτqdτ ,

using the bilinear estimate 3.1.72, and doing the same calculations as those leading to

(4.2.10), yield

}Γpwq}
Z
T2
0, 1

2

ď C1}v0}L2
0pTq ` 2C2T

θ
2 }u}ZT2

0, 1
2

}w}
Z
T2
0, 1

2

` C3T
1´ε
2 }w}

Z
T2
0, 1

2

ď C1}v0}L2
0pTq `

´

4C1C2T
θ
2 }u0}L2

0pTq
` C3T

1´ε
2

¯

}w}
Z
T2
0, 1

2

.

Note that

Γpw1q ´ Γpw2q “ Γpw1 ´ w2q

“ ´2
ż t

0
Uµpt´ τqrBxpu ¨ pw1 ´ w2qqspτqdτ ´

ż t

0
Uµpt´ τqrKλpw1 ´ w2qspτqdτ.

Thus

}Γpw1 ´ w2q}ZT2
0, 1

2

ď 2C2T
θ
2 }u}ZT2

0, 1
2

}w1 ´ w2}ZT2
0, 1

2

` C3T
1´ε
2 }w1 ´ w2}ZT2

0, 1
2

ď

´

4C1C2T
θ
2 }u0}L2

0pTq
` C3T

1´ε
2

¯

}w1 ´ w2}ZT2
0, 1

2

,

for any w,w1, w2 P Z
T2
0, 1

2
X L2

pr0, T2s;L2
0pTqq. Therefore, taking T2 “ T1p}u0}L2

0pTqq (note

that T2 can be taken bigger that T1, but we take T2 “ T1 in order to guarantee the

existence of solutions for systems (4.2.1) and (4.2.19) simultaneously), we obtain that the

map Γ is a contraction in a closed ball

B̃p0,Mq “
"

w P ZT1
0, 1

2
: rws “ 0, }w}

Z
T1
0, 1

2

ďM

*

,

where M “ 2C1}v0}L2
0pTq. Its unique fixed point v is the desired solution of (4.2.19) in the

space ZT1
0, 1

2
X L2

pr0, T1s;L2
0pTqq. Thus, }v}

Z
T1
0, 1

2

ď 2C1}v0}L2
0pTq. From Proposition 3.1.8 we

infer that v P Cpr0, T1s;L2
0pTqq with

}v}L8pr0,T1s;L2
0pTqq ď C4}v}ZT1

0, 1
2

ď 2C4C1}v0}L2
0pTq. (4.2.22)

From equation (4.2.1), we have B3
xu “ v ´ αHB2

xu ` 2µBxu ` 2uBxu ` Kλu.

Consequently,

}B3
xu}L2

0pTq
ď }v}L2

0pTq
` α}HB2

xu}L2
0pTq

` 2|µ|}Bxu}L2
0pTq

` 2}uBxu}L2
0pTq

` }Kλu}L2
0pTq

.

(4.2.23)

The analogous computations as those leading to (2.4.33) and (2.4.35), yield for any ε ą 0,

2|µ|}Bxup¨, tq}L2
0pTq ď cµε}up¨, tq}L2

0pTq `
cµ
4ε}B

3
xup¨, tq}L2

0pTq, (4.2.24)
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α}HB2
xup¨, tq}L2

0pTq ď cαε
3
2 }up¨, tq}L2

0pTq `
cα

ε
1
2
}B

3
xup¨, tq}L2

0pTq. (4.2.25)

The silmilar computations as those leading to (4.2.20), but using Cauchy’s inequality with

ε ą 0, yield

2}up¨, tqBxup¨, tq}L2
0pTq ď 2c1}up¨, tq}L2

0pTq}up¨, tq}
1
2
L2

0pTq
}B

3
xup¨, tq}

1
2
L2

0pTq

ď c3ε}up¨, tq}
3
L2

0pTq
`
c3

4ε}B
3
xup¨, tq}L2

0pTq.
(4.2.26)

We already know that

}Kλup¨, tq}L2
0pTq ď c4}up¨, tq}L2

0pTq. (4.2.27)

From (4.2.22), (4.2.21), and (4.2.24)-(4.2.27), we get that for 0 ă t ď T1

ˆ

1´ cα

ε
1
2
´
pcµ ` c3q

4ε

˙

}B3
xu}L2

0pTq
ď }v}L2

0pTq
`

´

cαε
3
2 ` cµε` c4

¯

}u}L2
0pTq

` c3ε}u}
3
L2

0pTq

ď 2C4C1}v0}L2
0pTq

`

´

cαε
3
2 ` cµε` c4

¯

}u}L2
0pTq

` c3ε}u}
3
L2

0pTq

ď 2C4C1pc2 ` 2c1}u0}L2
0pTq
q}u0}H3

0 pTq

`

´

cαε
3
2 ` cµε` c4

¯

2C4C1}u0}H3
0 pTq

` c3ε2C4C1}u0}
2
L2

0pTq
}u0}H3

0 pTq
.

Taking ε large enough, we can conclude that there exists C ą 0 such that

}B
3
xu}L2

0pTq ď C
´

1` }u0}L2
0pTq ` }u0}

2
L2

0pTq

¯

}u0}H3
0 pTq. (4.2.28)

Consequently,

}u}L8pr0,T1s;H3
0 pTqq ď βT1,3p}u0}L2

0pTqq}u0}H3
0 pTq, (4.2.29)

where βT1,3 is a nondecresing continuous function depending only on T1.

Consequently, we can iterate the procedure leading to (4.2.29) in order to cover

the compact interval r0, T s, thus we obtain that u P Cpr0, T s;H3
0 pTqq and satisfies (4.2.8)

with s “ 3. This completes the proof of case s “ 3.

Next, we show that equation (4.2.1) is globally well-posed in the space Hs
0pTq,

for 0 ă s ă 3. Let T ą 0 and u0 P H
s
0pTq. Denote by Sptqu0 the unique solution u of

equation (4.2.1) corresponding to the initial data u0. In order to apply the interpolation

Theorem 1.7.7 due to Tartar, we choose

B1
0 “ L2

0pTq, B2
0 “ Cpr0, T s;L2

0pTqq.
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B1
1 “ H3

0 pTq, B2
1 “ Cpr0, T s;H3

0 pTqq.

α “ β “ 1, λ “ θ “
s

3 , q “ p “ 2.

Therefore, B1
θ,p “ B1

s
3 ,2
“ Hs

0pTq. From Proposition 1.7.6, we obtain

B2
λ,q “ B2

s
3 ,2
“
`

Cpr0, T s;L2
0pTqq, Cpr0, T s;H3

0 pTqq
˘

s
3 ,2
“ C

`

r0, T s; pL2
0pTq, H3

0 pTqq s3 ,2
˘

“ Cpr0, T s;Hs
0pTqq.

Then, the operator Sptq : B1
0 “ L2

0pTq ÝÑ B2
0 “ Cpr0, T s;L2

0pTqq, defined by

Sptqu0 “ u, (4.2.30)

satisfies, for u0, ru0 P L
2
0pTq,

}Su0 ´ S ru0}L8pr0,T s;L2
0pTqq ď c }Su0 ´ S ru0}ZT

0, 1
2

ď CT,0p}u0 ´ ru0}L2
0pTqq}u0 ´ ru0}L2

0pTq

ď CT,0p}u0}L2
0pTq ` } ru0}L2

0pTqq}u0 ´ ru0}L2
0pTq,

by the continuous dependence of the initial data property in L2
0pTq.

Also, the operator Sptq : B1
1 “ H3

0 pTq ÝÑ B2
1 “ Cpr0, T s;H3

0 pTqq, defined by

(4.2.30) satisfies, for u0 P H
3
0 pTq,

}Su0}L8pr0,T s;H3
0 pTqq ď c }Su0}ZT

3, 1
2

ď CT,3p}u0}L2
0pTqq}u0}H3

0 pTq,

by the estimate (4.2.8) with s “ 3, where CT,j : R` ÝÑ R` are continuous non decreasing

functions, for j “ 0, 3.

Hence, a direct application of Theorem 1.7.7 yields that Sptq maps Hs
0pTq into

Cpr0, T s;Hs
0pTqq and for u0 P H

s
0pTq

}Sptqu0}L8pr0,T s;Hs
0pTqq ď CT,s,µp}u0}L2

0pTqq}u0}Hs
0pTq,

where for r ą 0, CT,s,µprq “ CT,3p2rq1´
s
3CT,0pr ` 2rq s3 .

Note that a similar result as in the case s “ 3 can be obtained for s P 3N˚. For

other values of s, the global well-posedness follows by nonlinear interpolation.

Finally, we will prove the continuous dependence of the initial data. Let u0 P

Hs
0pTq and consider a sequence un,0 in Hs

0pTq such that lim
nÝÑ8

un,0 “ u0, where the limit is

taken in the Hs
0pTq norm. Let u and un be the solutions of the IVP (4.2.1) in the spaces

Cpr0, T s;Hs
0pTqq and Cpr0, Tns;Hs

0pTqq with initial data u0 and un,0 respectively. For n

sufficiently large we have that }un,0}Hs
0pTq ď 2}u0}Hs

0pTq. So, by the local theory there exists

T0 with

T0 “ T0p}u0}Hs
0pTqq “

ˆ

1
2

˙
1
θ

T p}u0}Hs
0pTqq ă T p}u0}Hs

0pTqq, (4.2.31)
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fulfilling (4.2.12) such that u and un,0 are defined in r0, T0s for n ą N0. Observe that

Γpuq ´ Γpunq “ Uµpu0 ´ un,0q `

ż t

0
Uµpt´ τqrBxpu

2
n ´ u

2qspτq dτ

`

ż t

0
Uµpt´ τqrKλpun ´ uqspτq dτ.

With a similar procedure leading to (4.2.11), we get

}u´ un}ZT0
s, 1

2

ď C1 }u0 ´ un,0}Hs
0pTq

`
`

2C2 T
θ
0 M ` C3 T

1´ε
0

˘

}un ´ u}ZT0
s, 1

2

ď C1 }u0 ´ un,0}Hs
0pTq

`
1
2 }u´ un}ZT0

s, 1
2

.

Thus

}u´ un}ZT0
s, 1

2

ď 2C1 }u0 ´ un,0}Hs
0pTq

. (4.2.32)

From (4.2.32) we infer

lim
nÝÑ8

}u´ un}L8pr0,T0s,Hs
0pTqq ď C4 lim

nÝÑ8
}u´ un}ZT0

s, 1
2

ď 2C1C4 lim
nÝÑ8

}u0 ´ un,0}Hs
0pTq

“ 0.

We can Iterate this property to cover the compact set r0, T s. Also, the continuous

dependence shows that the operator Sptq is continuous. This completes the proof of the

Theorem.

Next, we prove a local exponential stability result when applying the feedback

law f “ ´Kλu. For this, we need to observe that the system (4.2.1) can be rewritten as

Btu “ Aµu´ 2uBxu´Kλu, t ą 0, x P T,

where Aµ “ αHB2
x ` B

3
x ´ 2µBx. Let Tλptq “ epαHB2

x`B
3
x´2µBx´Kλqt be the C0´semigroup on

Hs
0pTq with infinitesimal generator Aµ ´Kλ. The system (4.2.1) can be rewritten in an

equivalent integral form

uptq “ Tλptqu0 ´

ż t

0
Tλpt´ τqp2uBxuqpτq dτ . (4.2.33)

At this point we need to extend some estimates for the C0-semigroup tTλptqu .

Lemma 4.2.3. Let s ě 0, λ ě 0, and T ą 0 be given. Assume µ P R, and α ą 0. Then,

there exists a constant C ą 0 such that:

}Tλptqφ}ZT
s, 1

2

ď C}φ}Hs
0pTq, for any φ P Hs

0pTq. (4.2.34)

›

›

›

›

ż t

0
Tλpt´ τqBxpu ¨ vqpτqdτ

›

›

›

›

ZT
s, 1

2

ď C}u}ZT
s, 1

2

}v}ZT
s, 1

2

, for any u, v P ZT
s, 1

2
. (4.2.35)

where the constant C does not depend on T if T P r0, 1s.
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Proof. We begin by proving (4.2.34). From definition of Tλ,

uptq “ Tλptqφ (4.2.36)

is a solution to
#

Btu´ B
3
xu´ αHB2

xu` 2µBxu`Kλu “ 0, t ą 0, x P T
upx, 0q “ φpxq, x P T.

(4.2.37)

On the other hand, using the Duhamel’s formula, we can write (4.2.37) as

uptq “ Uµptqφ´

ż t

0
Uµpt´ τqrKλuspτq dτ . (4.2.38)

From (4.2.36) and (4.2.38), we infer that

Tλptqφ “ Uµptqφ´

ż t

0
Uµpt´ τqpKλTλpτqφq dτ . (4.2.39)

Therefore, Lemma 4.2.1 implies that

}Tλptqφ}ZT
s, 1

2

ď }Uµptqφ}ZT
s, 1

2

`

›

›

›

›

ż t

0
Uµpt´ τqpKλTλpτqφq dτ

›

›

›

›

ZT
s, 1

2

ď C1}φ}Hs
0pTq ` CpεqT

1´ε
}Tλpτqφ}ZT

s, 1
2

,

for some 0 ă ε ă 1. Thus, for T0 sufficiently small such that 1´Cpεq T 1´ε
0 ą 0 we get that

there exists a positive constant C “ CpT0q such that

}Tλptqφ}ZT0
s, 1

2

ď CpT0q}φ}Hs
0pTq.

For T ě T0, the result follows from an easy induction and the fact that

}Tλptqφ}ZT
s, 1

2

ď }Tλptqφ}Zr0,T0s
s, 1

2

` }Tλptqφ}ZrT0,2T0s
s, 1

2

` ¨ ¨ ¨ ` }Tλptqφ}Zrpk´1qT0,T s
s, 1

2

, (4.2.40)

for some k P Z. This proves (4.2.34).

Now we move to prove (4.2.35). Note that, from (4.2.39), we get

ż t

0
Tλpt´ τqfpτq dτ “

ż t

0
Uµpt´ τqfpτq dτ ´

ż t

0

ż t´τ

0
Uµpt´ τ ´ sqpKλTλpsqfpτqq ds dτ.

Performing the change of variable s “ ´τ ` θ and changing the order of integration, we

obtain
ż t

0
Tλpt´ τqfpτq dτ “

ż t

0
Uµpt´ τqfpτq dτ ´

ż t

0

ż t

τ
Uµpt´ θqpKλTλp´τ ` θqfpτqq dθ dτ

“

ż t

0
Uµpt´ τqfpτq dτ ´

ż t

0

ż θ

0
Uµpt´ θqpKλTλp´τ ` θqfpτqq dτ dθ.
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Therefore,

ż t

0
Tλpt´ τqfpτq dτ “

ż t

0
Uµpt´ τqfpτq dτ ´

ż t

0
Uµpt´ θq

ż θ

0
rKλTλpθ ´ τqfpτqs dτ dθ. (4.2.41)

From the Fubini’s theorem (see [36, page 73]) and the linearity of the integral, we infer

ż θ

0
rKλTλpθ ´ τqfpτqs dτ “ GG˚

˜

ż θ

0

ż 1

0
e´2λsUµp´sqGG

˚Uµp´sq
˚rTλpθ ´ τqfpτqsdsdτ

¸

“ GG˚

˜

ż 1

0
e´2λsUµp´sqGG

˚Uµp´sq
˚

˜

ż θ

0
rTλpθ ´ τqfpτqsdτ

¸

ds

¸

“ Kλ

˜

ż θ

0
rTλpθ ´ τqfpτqsdτ

¸

.

(4.2.42)

It follows, from (4.2.41) and (4.2.42) that

ż t

0
Tλpt´ τqfpτqdτ “

ż t

0
Uµpt´ τqfpτqdτ ´

ż t

0
Uµpt´ θqKλ

˜

ż θ

0
rTλpθ ´ τqfpτqsdτ

¸

dθ, (4.2.43)

which gives with f “ Bxpu ¨ vq

›

›

›

›

ż t

0
Tλpt´ τqBxpu ¨ vqpτqdτ

›

›

›

›

ZT
s, 1

2

ď

›

›

›

›

ż t

0
Uµpt´ τqBxpu ¨ vqpτqdτ

›

›

›

›

ZT
s, 1

2

`

›

›

›

›

›

ż t

0
Uµpt´ θqKλ

˜

ż θ

0
rTλpθ ´ τqBxpu ¨ vqpτqsdτ

¸

dθ

›

›

›

›

›

ZT
s, 1

2

ď C1 }Bxpu ¨ vq}ZT
s,´ 1

2

` CpεqT 1´ε

›

›

›

›

›

ż θ

0
rTλpθ ´ τqBxpu ¨ vqpτqsdτ

›

›

›

›

›

ZT
s, 1

2

ď C2 }u}ZT
s, 1

2

}v}ZT
s, 1

2

` CpεqT 1´ε
›

›

›

›

ż t

0
rTλpt´ τqBxpu ¨ vqpτqsdτ

›

›

›

›

ZT
s, 1

2

,

(4.2.44)

for some 0 ă ε ă 1. Thus, for T0 sufficiently small such that 1´ Cpεq T 1´ε
0 ą 0 we obtain

that there exists a positive constant C “ CpT0q such that

›

›

›

›

ż t

0
Tλpt´ τqBxpu ¨ vqpτq dτ

›

›

›

›

Z
T0
s, 1

2

ď CpT0q }u}ZT0
s, 1

2

}v}
Z
T0
s, 1

2

.

The result follows by induction and a similar property as in (4.2.40).

Theorem 4.2.4. Let µ P R, α ą 0, 0 ă λ1 ă λ and s ě 0 be given. Then there exists

δ ą 0 such that for any u0 P H
s
0pTq with }u0}Hs

0pTq ď δ, the corresponding solution u of

IVP (4.2.1) satisfies

}up¨, tq}Hs
0pTq ď Ce´λ

1t
}u0}Hs

0pTq, for all t ě 0, (4.2.45)

where Cpµq ą 0 is a constant that does not depend on u0.
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Proof. We proceed as in [52, 74, 75]. For given s ě 0, there exists by Theorem 2.5.5 some

constant C ą 0 such that

}Tλptqu0}Hs
0pTq

ď Ce´λt }u0}Hs
0pTq

, for all t ě 0.

Pick T ą 0 such that

2Ce´λT ď e´λ
1T . (4.2.46)

We seek a solution u of the integral equation (4.2.33) as a fixed point of the

map

Γpvq “ Tλptqu0 ´

ż t

0
Tλpt´ τqp2vBxvqpτq dτ , (4.2.47)

in some closed ball Bp0,Mq in the space ZT
s, 1

2
X L2

pr0, T s;L2
0pTqq for the }v}ZT

s, 1
2

norm.

This will be done provided that }v}Hs
0pTq ď δ, where δ is a small number to be determined.

Furthermore, to ensure the exponential stability with the claimed decay rate, the numbers

δ and M will be chosen in such a way that

}upT q}Hs
0pTq

ď Ce´λ
1T
}u0}Hs

0pTq
. (4.2.48)

In fact. From Lemma 4.2.3 there exist some positive constants C1, C2 (inde-

pendent of δ and M) such that

}Γpvq}ZT
s, 1

2

ď C1}u0}Hs
0pTq ` C2 }v}

2
ZT
s, 1

2

, (4.2.49)

and

}Γpv1q ´ Γpv2q}ZT
s, 1

2

ď C2 }v1 ` v2}ZT
s, 1

2

}v1 ´ v2}ZT
s, 1

2

. (4.2.50)

On the other hand, since ZT
s, 1

2
Ă Cpr0, T s;Hs

0pTqq, we have for some constant

C 1 ą 0 and all v P Bp0,Mq

}ΓpvqpT q}Hs
0pTq ď }TλpT qu0}Hs

0pTq `

›

›

›

›

ż t

0
Tλpt´ τqp2vBxvqpτq dτ

›

›

›

›

L8pr0,T s;Hs
0pTqq

ď }TλpT qu0}Hs
0pTq ` c

›

›

›

›

ż t

0
Tλpt´ τqp2vBxvqpτq dτ

›

›

›

›

ZT
s, 1

2

ď Ce´λT }u0}Hs
0pTq ` C

1
}v}2ZT

s, 1
2

ď Ce´λT δ ` C 1M2.

(4.2.51)

Pick δ “ C4M
2, where C4 and M are chosen so that

C 1

C4
ď Ce´λT , pC1C4 ` C2qM

2
ďM, and 2C2M ď

1
2 .

(4.2.52)
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From (4.2.49), (4.2.50), and (4.2.52), we get

}Γpvq}ZT
s, 1

2

ď C1δ ` C2M
2
ď C1C4M

2
` C2M

2
ďM, for all v P Bp0,Mq,

and

}Γpv1q ´ Γpv2q}ZT
s, 1

2

ď 2C2M}v1 ´ v2}ZT
s, 1

2

ď
1
2}v1 ´ v2}ZT

s, 1
2

, for all v1, v2 P BMp0q.

Therefore, Γ is a contraction in Bp0,Mq. Furthermore, by (4.2.51) and (4.2.52) its unique

fixed point u P Bp0,Mq fulfills

}upT q}Hs
0pTq “ }ΓpuqpT q}Hs

0pTq ď pCe
´λTC4 ` C

1
qM2

ď 2Ce´λTC4M
2
ď 2Ce´λT δ ď δe´λ

1T .

Assume now that 0 ă }u0}Hs
0pTq ă δ. Changing δ into δ1 :“ }u0}Hs

0pTq and M

into M 1 :“
ˆ

δ1

δ

˙
1
2

M ďM, we infer that }upT q}Hs
0pTq ď e´λ

1T
}u0}Hs

0pTq and (4.2.48) holds.

Following a similar argument as those in the demonstration of Theorem 2.4.2 ((2.4.20),

and (2.4.21)), we have that an obvious induction yields

}upnT q}Hs
0pTq ď e´λ

1nT
}u0}Hs

0pTq, (4.2.53)

for some T ą 0 fixed, and for any n P N.

As ZT
s, 1

2
X L2

pr0, T s;L2
0pTqq Ă Cpr0, T s;Hs

0pTqq, we infer by the semigroup

property that there exists some constant C ą 0 such that (4.2.45) holds provided that

}u0}Hs
0pTq ď δ.

In fact, for t ě 0, there exists n P N and s1 P R with 0 ď s1 ă T such that

t “ nT ` s1. Thus,

uptq “ upnT ` s1q

“ Tλps
1qTλpnT qu0 ´

ż nT

0
Tλps

1qTλpnT ´ τqp2uBxuqpτqdτ ´
ż nT`s1

nT

TλpnT ` s
1 ´ τqp2uBxuqpτqdτ

“ Tλps
1q

«

TλpnT qu0 ´

ż nT

0
TλpnT ´ τqp2uBxuqpτqdτ

ff

´

ż s1

0
TλpnT ` s

1 ´ θ ´ nT qp2uBxuqpθ ` nT qdθ,

(4.2.54)

where in the last line we performed the change of variables θ “ τ ´ nT. Define

I2 :“ ´TλpnT q
ż s1

0
Tλps

1
´ pθ ` nT qqp2uBxuqpθ ` nT qdθ. (4.2.55)
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From (4.2.46) and (4.2.52), we obtain

}I2}Hs
0pTq “

›

›

›

›

›

ż s1

0
Tλps

1
´ pθ ` nT qqp2uBxuqpθ ` nT qdθ

›

›

›

›

›

Hs
0pTq

“

›

›

›

›

ż t

0
Tλpt´ pθ ` nT qqp2uBxuqpθ ` nT qdθ

›

›

›

›

L8pr0,T s;Hs
0pTqq

ď c

›

›

›

›

ż t

0
Tλpt´ pθ ` nT qqp2uBxuqpθ ` nT qdθ

›

›

›

›

ZT
s, 1

2

ď C 1 }upθ ` nT q}2ZT
s, 1

2

ď C 1 }u}2
Z
rnT,pn`1qT s
s, 1

2

ď Ce´λT pn`1qC4 pM
1
q
2

ď Ce´λT pn`1qδ1

ď
e´λ

1T pn`1q

2 δ1.

(4.2.56)

Therefore, (4.2.53), (4.2.54) and (4.2.56) implies that

}up¨, tq}Hs
0pTq ď }Tλps

1
qrup¨, nT qs}Hs

0pTq ` }I2}Hs
0pTq

ď e´λ
1nT
}u0}Hs

0pTq `
e´λ

1T pn`1q

2 }u0}Hs
0pTq

“

ˆ

e´λ
1Tn
`
e´λ

1T pn`1q

2

˙

}u0}Hs
0pTq.

Finally, it is easy to prove that there exists a positive constant C such that

e´λ
1T n

`
e´λ

1T pn`1q

2 ď C e´λ
1t, for all t ě 0 and for all n P N.

This proves the theorem.

Corollary 4.2.5. Let α ą 0, 0 ă λ1 ă λ, s ě 0, and µ P R be given. Then there

exist δ “ δpµq ą 0 and a linear bounded operator Kλ : Hs
ppTq Ñ Hs

ppTq such that for

any u0 P Hs
ppTq with ru0s “ µ, and }u0 ´ ru0s}Hs

ppTq ď δ, the corresponding solution

u P Cpr0,`8q, Hs
ppTqq of the closed-loop system (2.0.2) with Ku “ Kλu, satisfies

}up¨, tq ´ ru0s}Hs
ppTq ď C e´λ

1t
}u0 ´ ru0s}Hs

ppTq, for all t ě 0,

where C “ Cpµq ą 0 is a constant independent of u0.

The stability result presented in Theorem 4.2.4 is local. We will extend it to a

global stability result. In order to do that, the following observability inequality is needed.

Proposition 4.2.6. Let s ě 0, λ “ 0, µ P R, α ą 0, T ą 0, and R0 be given. Then there

exists a constant β ą 1 such that for any u0 P L
2
pTq satisfying

}u0}L2
0pTq ď R0, (4.2.57)
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the corresponding solution u of equation (4.2.1) satisfies

}u0}
2
L2

0pTq
ď β

ż T

0
}Gu}2L2

0pTq
ptq dt. (4.2.58)

Proof. We argue by contradiction assuming that (4.2.58) is not true, then for any n ě 1,
equation (4.2.1) admits a solution un satisfying

un P Z
T
0, 1

2
X Cpr0, T s;L2

0pTqq, (4.2.59)

}unp0q}L2
0pTq ď R0, (4.2.60)

and

ż T

0
}Gun}

2
L2

0pTq
ptq dt ă

1
n
}u0,n}

2
L2

0pTq
, (4.2.61)

where u0,n “ unp0q. As αn :“ }u0,n}L2
0pTq ď R0, one can choose a subsequence of tαnu, still

denoted by tαnu such that lim
nÑ8

αn “ α. There are two possible cases, viz., α ą 0, and

α “ 0.
Case 1. α ą 0 :
From (4.2.59) and (4.2.60) we obtain that the sequence tαnu is bounded in both spaces

L8pr0, T s;L2
pTqq and XT

0, 1
2

with

}unptq}L2
0pTq

ď }un}L8pr0,T s;L2
0pTqq

ď C}un}ZT
0, 1

2

ď βT,0p}u0,n}L2
0pTq
q}u0,n}L2

0pTq
ď βT,0pR0qR0,

for all t P r0, T s. From 3.1.72, the sequence tBxpu
2
nqu is bounded in the space XT

0,´ 1
2

and

}Bxpu
2
nq}XT

0,´ 1
2

ď C}un}
2
XT

0, 1
2

.

On the other hand, from Proposition 3.1.6 we infer that the embedding XT
0, 1

2
ãÑ XT

´1,0 is

compact (see [54, pages 271 and 639]). Therefore, we can extract a subsequence of tunu,

still denoted by tunu, such that

un á u in XT
0, 1

2
, (4.2.62)

un ÝÑ u in XT
´1,0, (4.2.63)

and

´Bxpu
2
nq á f in XT

0,´ 1
2
, (4.2.64)
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where u P XT
0, 1

2
and f P XT

0,´ 1
2
. Also, from Theorem 3.1.18, XT

0, 1
2

is continuously embedded

in L4
pTˆ r0, T sq and

}u2
n}L2pTˆr0,T sq “ }un}

2
L4pTˆr0,T sq ď C}un}

2
XT

0, 1
3

ď C}un}
2
XT

0, 1
2

.

Thus, u2
n is bounded in L2

pTˆ r0, T sq and it follows that

}Bxpu
2
nq}L2pr0,T s;H´1pTqq “ }Bxpu

2
nq}XT

´1,0
ď }u2

n}L2pTˆr0,T sq.

Therefore, Bxpu
2
nq is bounded in L2

pr0, T s;H´1
pTqq “ XT

´1,0. Conducting interpolation

between XT
0,´ 1

2
, and XT

´1,0 (see proof of Theorem 3.2.3) we conclude that Bxpu
2
nq is bounded

in XT

´θ,´
p1´θq

2
“ XT

´θ,´ 1
2`

θ
2
, for 0 ă θ ă 1. As XT

´θ,´ 1
2`

θ
2

is compactly embedded in XT
´1,´ 1

2
,

for 0 ă θ ă 1, we can extract a subsequence of tunu, still denoted by tunu, such that

´Bxpu
2
nq ÝÑ f in XT

´1,´ 1
2
.

It follows from (4.2.61) that

ż T

0
}Gun}

2
L2

0pTq
ptqdt ÝÑ

ż T

0
}Gu}2L2

0pTq
ptqdt “ 0, (4.2.65)

which implies that Gupx, tq “ 0, in Tˆ r0, T s. Consequently,

upx, tq “ cptq “

ż T

0
gpyqupy, tq dy,

on supppgq ˆ p0, T q “ ω ˆ p0, T q (see (2.0.9)). Thus, passing to the limit in (4.2.1) in the

distributional sense, we obtain
#

Btu´ B
3
xu´ αHB2

xu` 2µBxu “ f, on Tˆ p0, T q
upx, tq “ cptq, on ω ˆ p0, T q.

(4.2.66)

Let

wn “ un ´ u and fn “ ´Bxpu
2
nq ´ f ´K0un. (4.2.67)

Note first that (4.2.65) implies

ż T

0
}Gwn}

2
L2

0pTq
ptqdt “

ż T

0
}Gun}

2
L2

0pTq
ptqdt`

ż T

0
}Gu}2L2

0pTq
ptqdt´ 2

ż T

0
pGun, GuqL2

0pTq
ptqdt

ÝÑ 0, as n ÝÑ 8,

(4.2.68)

Also, from (4.2.62) we obtain that

wn á 0 in XT
0, 1

2
. (4.2.69)

Furthermore, from equation (4.2.1), equation (4.2.66), and (4.2.67) we have that wn satisfies

Btwn ´ B
3
xwn ´ αHB2

xwn ` 2µBxwn “ fn, on Tˆ p0, T q. (4.2.70)
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Note that
ż T

0

ż

T
|Gwn|

2dxdt “

ż T

0

ż

T
g2pxqw2

npx, tqdxdt´ 2
ż T

0

ˆ
ż

T
gpyqwnpy, tqdy

˙ˆ
ż

T
g2pxqwnpx, tqdx

˙

dt

`

ż T

0

ˆ
ż

T
gpyqwnpy, tqdy

˙2 ˆż

T
g2pxqdx

˙

dt.

(4.2.71)

At this point we need the following lemma.

Lemma 4.2.7. Let twnuně1 be a sequence of solutions of equation (4.2.70), g defined

in (2.0.8), and cn :“
ż

T
gpyqwnpy, tqdy, t P p0, T q, n P N. If wn á 0 in XT

0, 1
2
, then the

sequence tcnuně1 satisfies cn ÝÑ 0 in L2
p0, T q as n ÝÑ 8.

Proof. From hypothesis we infer that wn á 0 in XT
0,0. So, twnuně1 is bounded in XT

0,0.

From (4.2.70), (4.2.67) and integration by parts, we have

d

dt
cnptq “

ż

T
gpyq

d

dt
rwnspy, tqdy

“

ż

T
gpyq

`

B3
ywn ` αHB2

ywn ´ 2µBywn ` fn
˘

pyqdy

“

ż

T
wnpyq

`

´B3
yg ´ αHB2

yg ` 2µByg
˘

pyq ` Bygpyq
`

u2
n ` B

´1
y f

˘

pyq ´GGgpyqunpyqdy,

Using Cauchy-Schwarz inequality on space variable, we obtain

›

›

›

›

d

dt
cnptq

›

›

›

›

L2p0,T q
ă `8. On

the other hand,

}cnptq}L2p0,T q ď

˜

ż T

0

ˇ

ˇ

ˇ

ˇ

ż

T
gpyqwnpy, tqdy

ˇ

ˇ

ˇ

ˇ

2
dt

¸
1
2

ď }g}L2pTq}wn}XT
0,0
ă `8.

Therefore, the sequence tcnptquně1 is bounded in H1
p0, T q. The Rellich’s Theorem (see

[36, page 305]), and the fact that wn á 0 in XT
0,0, imply the desired conclusion.

We infer from (4.2.68), (4.2.71), and Lemma 4.2.7 that
ż T

0

ż

T
g2
pxq w2

npx, tq dx dt ÝÑ 0. (4.2.72)

Hence, if rω :“
"

gpxq ą
}g}L8pTq

2

*

, then

}wn}L2pp0,T q;L2prωqq “

ż T

0

ż

rω

|gpxq|2

|gpxq|2
w2
npx, tqdxdt

ď
4

}g}2L8pTq

ż T

0

ż

rω

g2
pxqw2

npx, tqdxdt ÝÑ 0, as n ÝÑ `8.

Furthermore,

}fn}XT

´1,´ 1
2

ď } ´ Bxpu
2
nq ´ f}XT

´1,´ 1
2

` C}GG˚un}XT
0,0

ď } ´ Bxpu
2
nq ´ f}XT

´1,´ 1
2

` C

ˆ
ż T

0
}Gun}

2dt

˙

1
2

ÝÑ 0, as n ÝÑ `8.
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Applying the propagation of compactness property for the Benjamin equation

(see Proposition 3.3.2 with b “
1
2 , and b1 “ 0) we obtain that

}wn}L2
loc
pp0,T q;L2pTqq ÝÑ 0, as n ÝÑ `8. (4.2.73)

Therefore, for each compact set K Ă p0, T q
ż

K

ż

T
|u2
npx, tq ´ u

2
px, tq| dx dt “

ż

K

ż

T
|unpx, tq ` upx, tq| ¨ |unpx, tq ´ upx, tq| dx dt

ď }un ` u}L2pK;L2pTqq}wn}L2pK;L2pTqq ÝÑ 0, as n ÝÑ `8,

where we used the Cauchy-Schwarz inequality, first in space and then in time. Thus,

u2
n ÝÑ u2 in L1

locpp0, T q;L1
pTqq. This implies that

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

T
Bxpu

2
n ´ u

2
qpx, tq ϕpx, tq dx dt

ˇ

ˇ

ˇ

ˇ

ď

ż T

0

ż

T

ˇ

ˇu2
n ´ u

2ˇ
ˇ |Bxϕ| dx dt

ď }Bxϕ}L8pTˆp0,T qq

ż

K

ż

T

ˇ

ˇu2
n ´ u

2ˇ
ˇ dx dt

ÝÑ 0 as n ÝÑ 8,

(4.2.74)

for all ϕ P C8c pTˆ p0, T qq with K “ supppBxϕq.

Then Bxpu
2
nq ÝÑ Bxpu

2
q in the distributional sense. Therefore, f “ ´Bxpu

2
q

and u P XT
0, 1

2
satisfy

#

Btu´ B
3
xu´ αHB2

xu` 2µBxu` Bxpu2
q “ 0, on Tˆ p0, T q

upx, tq “ cptq, on ω ˆ p0, T q,
(4.2.75)

in a distributional sense. From the unique continuation property (see Proposition 3.4.2)

we get that u “ 0. Now (4.2.73) implies that un ÝÑ 0 in L2
locpp0, T q;L2

pTqq. We can pick

some time t0 P r0, T s such that unpt0q ÝÑ 0 in L2
pTq. From (4.2.14) with λ “ 0 we have

that

}unp0q}2L2
0pTq

“ }unpt0q}
2
L2

0pTq
`

ż t0

0
}Gun}L2

0pTq dt
1
ÝÑ 0 as n ÝÑ `8,

which is a contradiction with the assumption α ą 0.
Case 2. α “ 0.
From (4.2.61) we infer that αn ą 0, for all n P N˚. Set vn “

un
αn
, for all n ě 1, then

ż T

0
}Gvn}

2
L2

0pTq
dt ă

1
n
, (4.2.76)

holds by (4.2.61) and we get the identity
}Gun}

2
L2

0pTq

}u0,n}
2
L2

0pTq
“

›

›

›

›

›

Gun
}u0,n}L2

0pTq

›

›

›

›

›

2

L2
0pTq

“ }Gvn}
2
L2

0pTq
.

Therefore, vn satisfies

Btvn ´ B
3
xvn ´ αHB2

xvn ` 2µBxvn `K0vn ` αnBxpv
2
nq “ 0.
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Because of

}vnp0q}L2
0pTq “ 1, (4.2.77)

the sequence tvnu is bounded in both spaces L8pp0, T q;L2
pTqq and XT

0, 1
2
. Indeed, from

(4.2.14) with λ “ 0 we have that the map t ÞÝÑ }vnptq}L2
0pTq in a nonincreasing function.

Therefore, }vn}L8pp0,T q;L2
0pTqq ď 1. The boundedness of }vn}XT

0, 1
2

follows from an estimate

similar to (4.2.8) (since αn is bounded).

We can extract a subsequence of tvnu, still denoted by tvnu, such that

vn á v in XT
0, 1

2
,

vn ÝÑ v in XT
´1,´ 1

2
,

and

vn ÝÑ v in XT
´1,0.

Moreover, the sequence tBxpv
2
nqu is bounded in the space XT

0,´ 1
2
, and therefore αnBxpv

2
nq

tends to 0 in the space XT
0,´ 1

2
. Finally,

ż T

0
}Gv}L2

0pTq dt “ 0.

Hence, v solves,

#

Btv ´ B
3
xv ´ αHB2

xv ` 2µBxv “ 0, on Tˆ p0, T q
vpx, tq “ cptq, on ω ˆ p0, T q.

Therefore, using the unique continuation property for the linearized Benjamin

equation, which can be proved in a similar way to Proposition 3.4.2, we obtain that

vpx, tq “ cptq “ c “ 0 because rvs “ 0.

According to (4.2.76)

ż T

0
}Gvn}

2
L2

0pTq
dt ÝÑ 0 (4.2.78)

and so K0vn converges strongly to 0 in XT
´1,´ 1

2
, by the embedding of XT

0,0 into XT
´1,´ 1

2
.

Then, an application of Proposition 3.3.2 as in Case 1, shows that vn converges to 0 in

L2
locpp0, T q;L2

pTqq. Thus we can pick a time t0 P p0, T q such that vnpt0q converges to 0
strongly in L2

pTq. Since

}vnp0q}2L2
0pTq

“ }vnpt0q}
2
L2

0pTq
`

ż t0

0
}Gvn}

2
L2

0pTq
dt1,

we infer from (4.2.76) that }vnp0q}L2
0pTq ÝÑ 0 which is a contradiction with (4.2.77). The

proof is complete.
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Theorem 4.2.8. Let λ “ 0 in (4.2.1). Assume µ P R, and α ą 0 are given. Then there

exists k ą 0 such that for any R0 ą 0, there exists a constant C “ Cpµq ą 0, independent

of u0, such that for any u0 P L
2
0pTq with }u0}L2

0pTq ď R0, the corresponding solution u of

equation (4.2.1) (with λ “ 0) satisfies

}up¨, tq}L2
0pTq ď C e´kt}u0}L2

0pTq, for all t ě 0. (4.2.79)

Proof. This theorem is a direct consequence of the observability inequality (4.2.58). Indeed,

from (4.2.14), we infer the following energy estimate

}up¨, tq}2L2
0pTq

“ }u0}
2
L2

0pTq
´

ż t

0
}Gu}2L2

0pTq
pt1q dt1, for all t ě 0.

Therefore, (4.2.58) implies that

}up¨, T q}2L2
0pTq

“ p1´ β´1
q}u0}

2
L2

0pTq
.

Hence, following a procedure similar to the estimates in the proof of Theorem

2.4.2 we have

}up¨,mT q}2L2
0pTq

“ p1´ β´1
q
m
}u0}

2
L2

0pTq
, (4.2.80)

which gives (4.2.79) by the semigroup property. We obtain a constant k independent of

R0 by noticing that for t ą cp}u0}L2
0pTqq, the L2

´norm of up¨, tq is smaller than 1, so that

we can take the k corresponding to R0 “ 1.

Now, we prove that the solution u of (4.2.1) (with λ “ 0) decays exponentially

in any space Hs
0pTq. For this, we need an exponential stability result for the linearized

system
#

Btw ´ B
3
xw ´ αHB2

xw ` 2µBxw ` 2Bxpawq “ ´K0w, x P T, t ą 0,
wpx, 0q “ w0pxq, x P T,

(4.2.81)

where a P ZT
s, 1

2
XL2

pr0, T s;L2
0pTqq is a given function. It is established in the following two

Lemmas.

Lemma 4.2.9. Let s ě 0, α ą 0, and µ P R, be given. Assume a P ZT
s, 1

2
XL2

pr0, T s;L2
0pTqq

for all T ą 0, and that there exists T 1 ą 0 such that

sup
ně1

}a}
Z
rnT 1,pn`1qT 1s
s, 1

2

ď β. (4.2.82)

Then for any w0 P H
s
0pTq and for any T ą 0 there exists a unique solution

w P ZT
s, 1

2
XCpr0, T s;Hs

0pTqq of the IVP (4.2.81). Furthermore, the following estimate holds

}w}ZT
s, 1

2

ď υp}a}ZT
s, 1

2

q }w0}Hs
0pTq, (4.2.83)
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where υ : R` ÝÑ R` is a nondecreasing continuous function. Moreover, denote by Sptqu0

the unique solution u of the IVP (4.2.81) corresponding to the initial data w0. Then the

operator Sptq : Hs
0pTq ÝÑ Cpr0, T s;Hs

0pTqq, defined by Sptqw0 “ w is continuous in the

interval r0, T s.

Proof. We first establish the existence and uniqueness of a solution

w P ZT
s, 1

2
X L2

pr0, T s;L2
0pTqq

of (4.2.81) for 0 ă T ď 1 small enough and then show that T can be taken arbitrarily large.

Let us rewrite system (4.2.81) in its integral form and for given initial datas w0, w1 P H
s
0pTq

we define the map

Γpvjq “ Uµptqwj ´

ż t

0
Uµpt´ τqp2Bxpavjqqpτqdτ ´

ż t

0
Uµpt´ τqpK0vjqpτqdτ ,

where j “ 0, 1 and Uµptq “ epB
3
x`αHB2

x´µBxqt. Assume 0 ă T ď T 1. Then, calculations similar

to those of Theorem 4.2.2 yield

}Γpv1q ´ Γpv2q}ZT
s, 1

2

ď C1}w0 ´ w1}Hs
0
` 2C2T

θ }a}ZT
s, 1

2

}v1 ´ v2}ZT
s, 1

2

` C3T
1´ε }v2 ´ v1}ZT

s, 1
2

,

(4.2.84)

for any a, v1, v2 P Z
T
s, 1

2
XL2

pr0, T s;L2
0pTqq. Choosing w1 “ 0, M “ 2C1}w0}Hs

0pTq, and T ą 0
such that,

2C2T
θ
}a}ZT

s, 1
2

` C3T
1´ε
ď 2C2T

θ
}a}ZT 1

s, 1
2

` C3T
1´ε
ď 2C2T

θβ ` C3T
1´ε
ď

1
2 ,

we obtain that the map Γ is a contraction in a closed ball

Bp0,Mq “
"

v P ZT
s, 1

2
: }v}ZT

s, 1
2

ďM

*

,

with M “ 2C1}w0}Hs
0pTq of ZT

s, 1
2
. Its unique fixed point w is the desired solution of (4.2.81).

Note that, the time of existence, can be taken as

T “ min
#

1
2 , T

1,

ˆ

1
2C2 β ` C3

˙
1
θ

+

. (4.2.85)

Furthermore, (4.2.84) shows that the solution depends continuously on the

initial data and satisfies (4.2.83). Following a similar argument as in the proof of Theorem

4.2.2 we prove the global existence of the solution. This proof the Lemma.

Lemma 4.2.10. Let s ě 0, α ą 0, and µ P R, be given. Assume a P ZT
s, 1

2
XL2

pr0, T s;L2
0pTqq

for all T ą 0. Then for any k1 P p0, kq there exists T ą 0, and β ą 0 such that if

sup
ně1

}a}
Z
rnT,pn`1qT s
s, 1

2

ď β, (4.2.86)
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then the solution of the IVP (4.2.81) satisfies

}wp¨, tq}Hs
ppTq ď Ce´k

1t
}w0}Hs

ppTq, for all t ě 0, (4.2.87)

where C ą 0 is a constant independent of w0.

Proof. From Lemma 4.2.9 we have that for any T ą 0 the IVP (4.2.81) admits a unique

solution w P ZT
s, 1

2
X Cpr0, T s;Hs

0pTqq and

}w}ZT
s, 1

2

ď υp}a}ZT
s, 1

2

q }w0}Hs
0pTq, (4.2.88)

where υ : R` ÝÑ R` is a nondecreasing continuous function. Rewrite (4.2.81) in its

integral form

wptq “ T0ptqw0 ´

ż t

0
T0pt´ τqp2Bxpa ¨ wqqpτqdτ ,

where T0ptq “ epαHB2
x`B

3
x´2µBx´K0qt is the C0-semigroup on Hs

0pTq with infinitesimal genera-

tor Aµ´K0. Thus, for any T ą 0, we infer from Theorem 2.4.2, Lemma 4.2.3, and (4.2.88)

that

}wp¨, T q}Hs
0pTq ď }T0pT qw0}Hs

0pTq `

›

›

›

›

ż T

0
T0pT ´ τqp2Bxpawqqpτqdτ

›

›

›

›

Hs
0pTq

ď C1e
´kT
}w0}Hs

0pTq ` 2
›

›

›

›

ż t

0
T0pt´ τqpBxpawqqpτqdτ

›

›

›

›

Cpr0,T s;Hs
0pTqq

ď C1e
´kT
}w0}Hs

0pTq ` c

›

›

›

›

ż t

0
Tλpt´ τqp2Bxpawqqpτqdτ

›

›

›

›

ZT
s, 1

2

ď C1e
´kT
}w0}Hs

0pTq ` C2 }a}ZT
s, 1

2

υp}a}ZT
s, 1

2

q}w0}Hs
0pTq,

where C1 ą 0 is independent of T and C2 ą 0 may depend on T. Let

yn “ wp¨, nT q, for n “ 1, 2, 3, ¨ ¨ ¨

Using the semigroup property of system (4.2.81), (see (4.2.54) and (4.2.55)), we have

yn`1 “ wp¨, nT ` T q

“ T0pT q

ˆ

T0pnT qw0 ´

ż nT

0
T0pnT ´ τqp2Bxpawqqpτqdτ

˙

´ T0pnT q

ż T

0
T0pT ´ pθ ` nT qqp2Bxpawqqpθ ` nT qdθ.

(4.2.89)

Define

I2 :“ ´T0pnT q

ż T

0
T0pT ´ pθ ` nT qqp2Bxpawqqpθ ` nT qdθ. (4.2.90)
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Note that

}I2}Hs
0pTq ď c

›

›

›

›

ż t

0
T0pt´ pθ ` nT qqp2Bxpa ¨ wqqpθ ` nT qdθ

›

›

›

›

ZT
s, 1

2

ď C2 }apθ ` nT q}ZT
s, 1

2

}wpθ ` nT q}ZT
s, 1

2

ď C2 }a}ZrnT,pn`1qT s
s, 1

2

}w}
Z
rnT,pn`1qT s
s, 1

2

ď C2 }a}ZrnT,pn`1qT s
s, 1

2

υ

ˆ

}a}
Z
rnT,pn`1qT s
s, 1

2

˙

}wp¨, nT q}Hs
0pTq

ď C2βυpβq}yn}Hs
0pTq.

(4.2.91)

From (4.2.89)-(4.2.91), we get

}yn`1}Hs
0pTq ď }T0pT qyn}Hs

0pTq ` C2βυpβq}yn}Hs
0pTq

ď
`

C1e
´kT

` C2βυpβq
˘

}yn}Hs
0pTq, for n ě 1.

Since k1 P p0, kq, we note that for T ą 0 large enough C1e
´kT

ă e´k
1t if an only if

lnpC1q ă pk ´ k
1
qT. Therefore, choosing T ą 0 large enough and β small enough so that

C1e
´kT

` C2βυpβq “ e´k
1t, (4.2.92)

we get

}yn`1}Hs
0pTq ď e´k

1T
}yn}Hs

0pTq, for n ě 1,

as long as (4.2.86) holds. Thus,

}yn}Hs
0pTq ď e´nk

1T
}y0}Hs

0pTq, for any n ě 1.

This implies that (4.2.87) holds. The proof is complete.

Theorem 4.2.11. Let µ P R, s ě 0, and α ą 0 be given. Assume λ “ 0 in (4.2.1).

Let k0 ą 0 be the infimum of the numbers γ, k given respectively in Theorem 2.4.2 and

Theorem 4.2.8. Let k1 P p0, k0s be given. Then there exists a nondecreasing continuous

function αs,µ : R` ÝÑ R` such that for any u0 P H
s
0pTq, the corresponding solution u of

the IVP (4.2.1) (with λ “ 0) satisfies

}up¨, tq}Hs
0pTq ď αs,µp}u0}Hs

0pTqq e
´k1t
}u0}Hs

0pTq, for all t ě 0. (4.2.93)

Proof. The result for s “ 0 has already been established in Theorem 4.2.8 with k1 “ k.

Let us consider the case s “ 3. Pick any number R0 ą 0 and any u0 P H
3
0 pTq with

}u0}L2
0pTq ď R0. Let u denote the solution of (4.2.1) (with λ “ 0) emanating from u0 at

t “ 0, and let v “ Btu. Then v solves
#

Btv ´ B
3
xv ´ αHB2

xv ` 2µBxv ` 2Bxpuvq “ ´K0v, x P T, t ą 0,
vpx, 0q “ v0 “ u30 ` αHu20 ´ 2µu10 ´ 2u0u

1
0 ´K0u0 P L

2
0pTq, x P T.

(4.2.94)
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From Theorem 4.2.2 and Theorem 4.2.8, we infer that for any T ą 0 there exists a number

C “ CR0,T ą 0 that depends only on R0 and T such that

}u}
Z
rt,t`T s

0, 1
2

ď βT,0

´

Ce´kt}u0}L2
0pTq

¯

Ce´kt}u0}L2
0pTq

ď βT,0 pCR0qCe
´kt
}u0}L2

0pTq

ď CR0,T e
´kt
}u0}L2

0pTq, for all t ě 0.

Thus, for any ε ą 0, there exists t˚ ą 0 such that if t ě t˚, one has

}u}
Z
rt,t`T s

0, 1
2

ď ε. (4.2.95)

At this point we use the exponential stability result for the linearized system
#

Btw ´ B
3
xw ´ αHB2

xw ` 2µBxw ` 2Bxpuwq “ ´K0w, x P T, t ą t˚,

wpx, 0q “ w0pxq “ vpt˚q, x P T,
(4.2.96)

where u P ZT
s, 1

2
X L2

pr0, T s;L2
0pTqq is a given function and w “ vpt´ t˚q.

Choosing ε ă β in (4.2.95), where β is given by (4.2.92), and applying Lemma

4.2.10 to system (4.2.96), we obtain

}vp¨, t´ t˚q}L2
0pTq ď Ce´k

1pt´t˚q
}vp¨, t˚q}L2

0pTq, for all t ě t˚,

or

}vp¨, tq}L2
0pTq ď Ce´k

1t
}v0}L2

0pTq, for any t ě 0.

where C ą 0 depends only on R0. It follows from Theorem 4.2.8 and the equation

B
3
xu “ v ´ αHB2

xu` 2µBxu` 2uBxu`K0u

that

}up¨, tq}H3
0 pTq ď Ce´k

1t
}u0}H3

0 pTq, for any t ě 0.

where C ą 0 depends only on R0.

Thus the Theorem has been proved for s “ 0 and s “ 3. Using the same

argument for u1 ´ u2 and a “ u1 ` u2 for two different solutions u1 and u2, we obtain the

Lipchitz stability estimate needed for interpolation:

}pu1 ´ u2qp¨, tq}L2
0pTq ď Ce´k

1t
}pu1 ´ u2qp¨, 0q}L2

0pTq, for any t ě 0.

The case 0 ă s ă 3 follows by an interpolation argument similar to those

applied in Theorem 4.2.2. The other cases of s can be proved similarly.

Corollary 4.2.12. Let s ě 0, α ą 0, and µ P R be given. There exists a constant

γ ą 0 such that for any u0 P Hs
ppTq with ru0s “ µ, the corresponding solution u P

Cpr0,`8q, Hs
ppTqq of the closed-loop system (2.0.2) with Ku “ ´GG˚u, satisfies

}up¨, tq ´ ru0s}Hs
ppTq ď αs,µp}u0 ´ ru0s}Hs

ppTqq e
´γt
}u0 ´ ru0s}Hs

ppTq, for all t ě 0,

where αs,µ : R` ÝÑ R` is a nondecreasing continuous function depending on s and µ.
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4.3 Controllability of the Benjamin Equation

In this section we will study the controllability problem for the full Benjamin

equation for large data in Hs
ppTq, with s ě 0. This control result will be a combination of

the stabilization result presented in Corollary 4.2.12 and the local control presented in

Corollary 4.1.2, as is usual in control Theory (see for instance [29, 30, 51, 52, 53]).

Theorem 4.3.1. (Large data control) Let s ě 0, α ą 0, µ P R, and R ą 0 be given. Then

there exists a time T ą 0, such that for any u0, u1 P H
s
ppTq with ru0s “ ru1s “ µ and

}u0}Hs
ppTq ď R, }u1}Hs

ppTq ď R,

one can find a control input h P L2
pr0, T s;Hs

ppTqq such that the IVP (2.0.1) with f “ Gh

admits a unique solution u P Cpr0, T s;Hs
ppTqq satisfying

upx, 0q “ u0pxq, u1px, T q “ u1pxq, for all x P T.

Then, the system (2.0.1) is globally exactly controllable.

Proof. This result is a direct consequence of the local controllability Corollary 4.1.2 and

the stabilization Corollary 4.2.12. Indeed, given the initial data u0 to be controlled, by

means of the damping term Ku “ ´GG˚u supported in ω, i.e by solving the IVP (2.0.2),

we drive it to a state close enough to the mean value µ in a sufficiently large time. We do

the same with the final state u1 by solving the system backwards in time, due to the time

reversibility of the Benjamin equation. This produces two states which are close enough to

µ so that the local controllability result applies.

4.4 Stabilization of the Benjamin equation with an arbitrary decay

rate

In this section we construct a continuous time-varying feedback law ensuring a

semiglobal stabilization with an arbitrary large decay rate.

Let λ ą 0, µ P R, α ą 0, and s ě 0 be given. According to Theorem 4.2.11,

there exists κ ą 0 and a nondecreasing continuous function αs : R` ÝÑ R` such that for

any u0 P H
s
0pTq, the corresponding solution u of IVP

#

Btu´ B
3
xu´ αHB2

xu` 2µBxu` 2uBxu “ ´GG˚u, t ą t0, x P T
upx, t0q “ u0pxq, x P T,

(4.4.1)

satisfies

}up¨, tq}Hs
0pTq ď αs,µp}u0}L2

0pTqq e
´κpt´t0q}u0}Hs

0pTq, for all t ě t0. (4.4.2)
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On the other hand, Theorem 4.2.4 asserts that for any fixed λ1 P p0, λq and any

u0 P H
s
0pTq, the solution of IVP
#

Btu´ B
3
xu´ αHB2

xu` 2µBxu` 2uBxu “ ´Kλu, t ą t0, x P T
upx, t0q “ u0pxq, x P T,

(4.4.3)

fulfills

}up¨, tq}Hs
0pTq ď Cs,µ e

´λ1pt´t0q}u0}Hs
0pTq, for all t ě t0, (4.4.4)

for some Cs,µ ą 0, provided that }u0}s ď r0 for some number r0 P p0, 1q. Pick a function

ρ P C8pR`; r0, 1sq such that

ρprq “ 1, for r ď r0, ρprq “ 0, for r ě 1. (4.4.5)

Pick any function θ P C8pR; r0, 1sq holding the following properties:

$

’

&

’

%

θpt` 2q “ θptq for all t P R,
θptq “ 1 for δ ď 1 ď 1´ δ,
θptq “ 0 for 1 ď t ď 2,

(4.4.6)

where δ P p0, 1
10q is a number whose value will be specified later.

Let T ą 0 be given. We define the following time-varying feedback law

Kpu, tq :“ ρp}u}2Hs
0pTq

q

„

θp
t

T
qKλu` θp

t

T
´ T qGG˚u



` p1´ ρp}u}2Hs
0pTq

qqGG˚u

“ GG˚
"

ρp}u}2Hs
0pTq

q

„

θp
t

T
qL´1

λ u` θp
t

T
´ T qu



` p1´ ρp}u}2Hs
0pTq

qqu

*

.

(4.4.7)

Observe that K has the following behavior of the trajectories. In a first time,

when }u}Hs
0pTq s is large, we choose K “ GG˚ to guarantee the decay of the solution. Then,

after a transient period, we have }u}2Hs
0pTq

ď r0 and we get in an oscillatory regime. During

each period of length 2T, we have three steps:

• A period of time for which the damping Kλ is active, leading to a decay like e´λ
1pt´t0q;

• A short transition time of order δ where a deviation from the origin may occur;

• A period of time for which the damping GG˚ is active, leading to a decay like

e´κpt´t0q.

The expected decay is a “mean value” of the two decays above. We consider the system
#

Btu´ B
3
xu´ αHB2

xu` 2µBxu` 2uBxu “ ´Kpu, tq, t ą t0, x P T
upx, t0q “ u0pxq, x P T.

(4.4.8)

The following estimates are needed.
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Lemma 4.4.1. Let s ě 0, α ą 0, 0 ă T ď 1, and µ P R be given. For any 0 ă ε ă 1 there

exists a positive constant Cε such that

›

›

›

›

ż t

t0

Uµpt´ τqKpupτq, τqdτ

›

›

›

›

Z
rt0,t0`T s
s, 1

2

ď Cε}u}Zrt0,t0`T s
s, 1

2

.

Proof. This is a direct consequence of Proposition 3.1.15, Remark 2.5.4, and estimate

(3.1.27), by using similar arguments as those in the proof of Lemma 4.2.1 (see also Lemma

4.2 in [52]).

Lemma 4.4.2. Let s ě 0 and λ ą 0 be given. Then

}Kpv1, tq ´Kpv2, tq}Hs
0pTq ď C}v1 ´ v2}Hs

0pTq, for any v1, v2 P H
s
0pTq, t P R,

where C denotes a positive constant independent of v1, v2 and t.

Proof. This is consequence of the following identity

Kpv1, tq ´Kpv2, tq “ ρp}v1}
2
sq

„

θp
t

T
qKλpv1 ´ v2q ` θp

t

T
´ T qGG˚pv1 ´ v2q



`
`

ρp}v1}
2
sq ´ ρp}v2}

2
sq
˘

„

θp
t

T
qKλpv2q ` θp

t

T
´ T qGG˚pv2q ´GG

˚pv1q



`GG˚pv1 ´ v2q ` ρp}v2}
2
sqGG

˚pv2 ´ v1q.

Note that the involved constants in both Lemmas above, only depends on θ for

its L8 norm and not on δ. The global well-posedness of IVP (4.4.8) in Hs
0pTq with s ě 0

is stated in the following theorem.

Theorem 4.4.3. Let s ě 0, λ ą 0, α ą 0, and µ P R, be given. For any pair pu0, t0q P

Hs
0pTq ˆ R there exists a unique solution u : Tˆ rt0,`8q Ñ R of IVP (4.4.8) fulfilling

u P Z
rt0,t0`T s

s, 1
2

X L2
prt0, t0 ` T s;L2

0pTqq for all T ą 0.

Furthermore, u depends continuously on the initial data and if we denote Sptqu0 the

unique solution u of equation (4.4.8) corresponding to the initial data u0, then the operator

Sptq : Hs
0pTq ÝÑ Z

rt0,t0`T s

s, 1
2

defined by Sptqu0 “ u is continuous on rt0, t0 ` T s.

The following a priori estimates hold true:

If }u0}Hs
0pTq ď 1, then }up¨, tq}Hs

0pTq ď αs,µp1q for all t ě t0; (4.4.9)

If }u0}Hs
0pTq ą 1, then }up¨, tq}Hs

0pTq ď αs,µp}u0}L2
0pTqq}u0}Hs

0pTq for all t ě t0; (4.4.10)
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If }u0}Hs
0pTq ď R, then }up¨, tq}Hs

0pTq ď Kse
dspt´t0q}u0}Hs

0pTq for all t ě t0, (4.4.11)

where Ks and dsdenote some positive constants depending only on s and R.

Proof. First, we prove the local well-posedness in Hs
0pTq with s ě 0. Pick any pair

pu0, t0q P H
s
0pTq ˆ R and define the map

Γpvq “ Uµpt´ t0qu0 ´

ż t

t0

Uµpt´ τqp2vBxvqpτqdτ ´
ż t

t0

Uµpt´ τqKpvpτq, τqdτ.

Using Lemmas 4.4.1-4.4.2 and similar procedure as in the proof of Theorem 4.2.2

we infer that (4.2.10) and (4.2.11) hold for any v, v1, v2 P Z
rt0,t0`T1s

s, 1
2

XL2
prt0, t0`T1s;L2

0pTqq.
Pick M “ 2C1}u0}Hs

0pTq, and T1 ą 0 such that

2C2MT θ1 ` C3T
1´ε
1 ď

1
2 .

Then the map Γ is a contraction in the closed ball Bp0,Mq of Z
rt0,t0`T1s

s, 1
2

X L2
prt0, t0 `

T1s;L2
0pTqq for the } ¨ }ZT

s, 1
2

norm. Its unique fixed point u is the desired solution of (4.4.8).

It follows from the Proposition 3.1.8 that u P Cprt0, t0 ` T1s;Hs
0pTqq and u satisfies

}u}L8prt0,t0`T1s;Hs
0pTqq ď C4}u}Zrt0,t0`T1s

s, 1
2

ď 2C1C4}u0}Hs
0pTq. (4.4.12)

Procedding as for Theorem 4.2.2, we check that the IVP (4.4.8) is globally well-posed in

Hs
0 with s ě 0.

On the other hand, (4.4.4) yields (4.4.9) and (4.4.10). It remains to prove

(4.4.11). Assume }u0}Hs
0pTq ď R and let M 1

“ 2C1 max
!

αsp1q, αsp}u0}L2
0pTqq}u0}Hs

0pTq

)

.

Note that M 1 depends only on R and s. Replacing T1 by T 1 satisfying

2C2M
1T 1θ ` C3T

11´ε
ď

1
2 ,

in the application of the contraction mapping principle, we infer that the (unique) solution

u of (4.4.8) fulfills

}u}L8prt0`kT 1,t0`pk`1qT 1s;Hs
0pTqq ď C4}u}Zrt0`kT

1,t0`pk`1qT 1s
s, 1

2

ď 2C1C4}up¨, t0 ` kT
1
q}Hs

0pTq,

for any k P N. Therefore, }up¨, tq}Hs
0pTq ď Kse

dspt´t0q}u0}Hs
0pTq for all t ě t0, for some

constants Ks ą 0 and ds ą 0 depending only on s and R.

Finally, we prove that a semiglobal stabilization with an arbitrary decay rate

can be obtained.
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Theorem 4.4.4. Let s ě 0, λ ą 0, α ą 0 and µ P R be given. Pick any λ1 P p0, λq and

any λ2 P

ˆ

λ1

2 ,
λ1 ` κ

2

˙

where κ is given in (4.4.2). Then there exists a time T0 ą 0 such

that for T ą T0, t0 P R and u0 P H
s
0pTq, the unique solution of the closed-loop system

(4.4.8) satisfies

}up¨, tq}Hs
0pTq ď γs,µp}u0}Hs

0pTqq e
´λ2pt´t0q}u0}Hs

0pTq, for all t ě t0, (4.4.13)

where γs,µ is a nondecreasing continuous function.

Proof. For λ2 under the above assumptions, we choose some δ ą 0 small enough such that

δds ´ p1´ 2δqκ ă 0, (4.4.14)

and

λ2 ă ´2δds ` p1´ 2δqpκ` λ
1q

2 . (4.4.15)

We define 0 ă ξ :“ min
"

r0

K2
s e
dsp1`2δqTαspαsp1qq

,
r0

αspαsp1qqKsedsp1`2δqT ,
r0

K0edsp1`2δqT

*

,

and choose r1 P p0, r0q such that

r1 ă ξ. (4.4.16)

From (4.4.14) and (4.4.15) we infer that there exists T0 ą 0 large enough such that

αsp1qαspαsp1qqKse
rδds´p1´2δqκsT

ď r1, (4.4.17)

αsp1qCsK4
s e
r4δds´p1´2δqpκ`λ1qsT

ď e´2λ2T , (4.4.18)

for all T ě T0. Pick any pair pu0, t0q P H
s
0pTq ˆ R. The proof is completed by showing the

following claims.

Claim 1. There exists a time t1 P rt0, t0 ` κ
´1 lnpαsp}u0}L2

0pTqq}u0}Hs
0pTqqs such that

}upt1q}Hs
0pTq ď 1. (4.4.19)

Proof. If }upt0q}Hs
0pTq ď 1, then (4.4.19) follows immediately with t1 “ t0. On the

other hand, if }upt0q}Hs
0pTq ą 1, then the dynamics of u is governed by (4.4.1)

as long as }uptq}Hs
0pTq ě 1. From (4.4.2), we infer that (4.4.19) holds for t1 “

t0 ` κ
´1 lnpαsp}u0}L2

0pTqq}u0}Hs
0pTqq.

Claim 2. There exists a time t2 P 2ZT X rt1, t1 ` 3T s such that

}upt2q}Hs
0pTq ď r1. (4.4.20)
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Proof. From (4.4.19) and (4.4.9), we obtain that }uptq}Hs
0pTq ď αsp1q for all t ě t1.

Pick R “ αsp1q and let Ks and ds be as given in Theorem 4.4.3 for that choice of R.

Let t11 ě t1 denote the first time of the form t11 “ p2k` 1qT ` δT with k P Z, and let

t2 “ p2k ` 2qT. Using (4.4.11), (4.4.2) and (4.4.17), we obtain that

}upt2q}Hs
0pTq ď Kse

dsδT }upp2k ` 2qT ´ δT q}Hs
0pTq

ď Kse
dsδTαsp}upt

1
1q}L2

0pTqqe
´κp1´2δqT

}upt11q}Hs
0pTq

ď αsp1qαspαsp1qqKse
rδds´p1´2δqκsT

ď r1.

Claim 3. }uptq}Hs
0pTq ď r0 for all t ě t2 and }upt2 ` 2kT q}Hs

0pTq ď e´2kλ2T
}upt2q}Hs

0pTq, for all

k P N.

Proof. Note that, the dynamics of the solution u is governed by (4.4.3) (resp. (4.4.1))

when t P pt2 ` δT, t2 ` p1´ δqT q (resp. t P pt2 ` p1´ δqT, t2 ` p2´ δqT q) as long as

}uptq}Hs
0pTq ď r0.

Let t P rt2, t2 ` 2T s. We analyze three cases.

i) If t P pt2 ` 2T ´ δT, t2 ` 2T s, then (4.4.11) and (4.4.2) yield

}uptq}Hs
0pTq ď Kse

dsδT }upt2 ` 2T ´ δT q}Hs
0pTq

ď Kse
dsδTαspαsp1qq}upt2 ` T ` δT q}Hs

0pTq

ď αspαsp1qqK2
s e
dsp1`2δqT

}upt2q}Hs
0pTq

ď αspαsp1qqK2
s e
dsp1`2δqT r1

ď r0,

where we used (4.4.16) in the last inequality.

ii) If t P pt2 ` T ` δT, t2 ` 2T ´ δT s, then (4.4.11) and (4.4.2) yield

}uptq}Hs
0pTq ď αspαsp1qq}upt2 ` T ` δT q}Hs

0pTq

ď αspαsp1qqKse
dsp1`δqT }upt2q}Hs

0pTq

ď αspαsp1qqKse
dsp1`2δqT r1

ď r0,

where we used (4.4.16) in the last inequality.

iii) If t P pt2, t2 ` T ` δT s, then (4.4.11) yields

}uptq}Hs
0pTq ď Kse

dspt´t2q}upt2q}Hs
0pTq

ď Kse
dsp1`2δqT r1

ď r0,

where we used (4.4.16) in the last inequality.
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Hence, }uptq}Hs
0pTq ď r0 for all t P rt2, t2 ` 2T s. On the other hand, from (4.4.18) we

infer

}upt2 ` 2T q}Hs
0pTq ď Kse

dsδT }upt2 ` 2T ´ δT q}Hs
0pTq

ď Kse
dsδTαsp1qe´κp1´2δqT

}upt2 ` T ` δT q}Hs
0pTq

ď αsp1qK2
s e
´κp1´2δqT eds2δT }upt2 ` T q}Hs

0pTq

ď
`

αsp1qK2
s e
´κp1´2δqT eds2δT

˘

Kse
dsδT }upt2 ` T ´ δT q}Hs

0pTq

ď
`

αsp1qK2
s e
´κp1´2δqT eds2δT

˘

Kse
dsδTCse

´λ1p1´2δqT
}upt2 ` δT q}Hs

0pTq

ď
`

αsp1qK2
s e
´κp1´2δqT eds2δT

˘

´

K2
s e
ds2δTCse

´λ1p1´2δqT
¯

}upt2q}Hs
0pTq

ď e´2λ2T
}upt2q}Hs

0pTq

ď r1.

The Claim 3 follows by induction.

It follows from Claim 3 that

}uptq}Hs
0pTq ď Ce´λ

2pt´t2q}upt2q}Hs
0pTq for all t ě t2,

for some constant C ą 0 independent of t and u0. Therefore, using that

t2 ´ t0 ă 3T ` κ´1 lnpαsp}u0}L2
0pTqq}u0}Hs

0pTqq,

we have

}uptq}Hs
0pTq ď Ce´λ

2pt´t0q`λ2pt2´t0qKse
dspt2´t0q}upt0q}Hs

0pTq

ď Cepλ
2`dsqpt2´t0qKse

´λ2pt´t0q}upt0q}Hs
0pTq

ď Cepλ
2`dsq3T

“

αsp}u0}Hs
0pTqq}u0}Hs

0pTq
‰

Kse
´λ2pt´t0q}upt0q}Hs

0pTq.

This completes the proof of the theorem.

Corollary 4.4.5. Let s ě 0, α ą 0, λ ą 0, and µ P R be given. Then there exists a

continuous map Qλ : Hs
ppTq ˆ R Ñ Hs

ppTq which is periodic in the second variable, and

such that for any u0 P H
s
ppTq with ru0s “ µ, the unique solution u P Cpr0,`8q, Hs

ppTqq of

the closed-loop system (2.0.2) with Ku “ ´GQλpu, tq satisfies

}up¨, tq ´ ru0s}Hs
ppTq ď γs,λ,µp}u0 ´ ru0s}Hs

ppTqq e
´λt
}u0 ´ ru0s}Hs

ppTq, for all t ě 0,

where γs,λ,µ : R` Ñ R` is a nondecreasing continuous function depending on s, λ and µ.
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Chapter 5
Controllability and stabilization of the

Intermediate Long Wave equation on a

periodic domain

In this chapter we study the controllability and stabilization problems for

the Intermediate Long Wave (ILW) Equation in the Sobolev space Hs
0pTq with s ě 0.

Specifically, we will be mainly interested in the following two problems for equation (0.0.14).

1) Exact control problem: Given an initial state u0 and a terminal state u1 in a

certain space with ru0s “ ru1s “ 0, can one find an appropriate control input f given

by (2.0.9) so that the equation

Btu`
1
δ
Bxu` B

2
xpT uq ` Bxpu2

q “ fpx, tq, x P T, t P R, (5.0.1)

admits a solution u such that upx, 0q “ u0pxq and upx, T q “ u1pxq for all x P T and

any final time T ą 0?

2) Stabilization Problem: Given u0 in a certain space. Can one find a feedback

control law f “ Fu so that the resulting closed-loop system

Btu`
1
δ
Bxu` B

2
xpT uq ` Bxpu2

q “ Fu, upx, 0q “ u0, x P T, t P R` (5.0.2)

is asymptotically stable as tÑ 8?

Recall that the operator T is defined in (0.0.15).

In sequel, we summarize the main results obtained in this chapter. As usual,

the first main results deals with the controllability and stabilization of linearized ILW

equation.
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Theorem 5.0.1. Let s ě 0, δ ą 0, and T ą 0 be given. Then for each u0, u1 P H
s
0pTq with

ru0s “ ru1s “ 0, there exists a function h P L2
pr0, T s;Hs

0pTqq such that the unique solution

u P Cpr0, T s;Hs
0pTqq of the linearized non homogeneous system associated to (5.0.1) with

fpx, tq “ Gphqpx, tq (see (2.0.9)) satisfies upx, T q “ u1pxq, x P T. Moreover, there exists a

positive constant ν ” νps, g, T q ą 0 such that

}h}L2pr0,T s;Hs
0p0,2πqq ď ν p}u0}Hs

0p0,2πq ` }u1}Hs
0p0,2πqq.

Regarding stabilization of of linearized system, we prove the following results.

Theorem 5.0.2. Let δ ą 0, g as in (2.0.8), and s ě 0 be given. There exist positive

constants M “Mpδ, g, sq and γ “ γpgq such that for any u0 P H
s
0pTq the unique solution

u P Cpr0,8q;Hs
0pTqq of the linearized closed-loop system associated to (5.0.2) with Fu “

´GG˚u (see (2.0.9)) satisfies

}up¨, tq}Hs
0pTq ďMe´γt}u0}Hs

0pTq, for all t ě 0.

Furthermore, using an observability inequality derived from the exact control-

lability result we can prove that the exponential decay rate of the resulting linearized

closed-loop system is as large as one desires. This is stated in the following theorem.

Theorem 5.0.3. Let s ě 0, δ ą 0, λ ą 0, and u0 P Hs
0pTq be given. There exists

a bounded linear operator Fλ from Hs
0pTq to Hs

0pTq such that the unique solution u P

Cpr0,`8q, Hs
0pTqq of the linearized closed-loop system associated to (5.0.2) with Fu “ Fλu

satisfies

}up¨, tq}Hs
0pTq ďM e´λ t}u0}Hs

0pTq,

for all t ě 0, and some positive constant M “Mpg, λ, δ, sq.

This theorem implies that for any given number λ ą 0 we can design a linear

feedback control law such that the exponential decay rate of the resulting linearized

closed-loop system is λ.

Next, we deal with the control and stabilization problem for the full ILW

equation. To stabilize the ILW equation, we consider the feedback law

f “ ´GpDpGuqq,

where for given r P R, we define an operator Dr : D1
pTq Ñ D1

pTq by

yDrvpnq “ |n|rpvpnq, @n P Z. (5.0.3)

Scaling in (5.0.2) by u gives (at least formally)

1
2}upT q}

2
L2

0pTq
`

ż T

0
}D

1
2 pGuq}2L2

0pTq
dt “

1
2}u0}

2
L2

0pTq
. (5.0.4)
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This suggest that the energy is dissipated over time. On the other hand, (5.0.4) reveals a

smoothing effect, at least in the region ω Ă T. Using a propagation of regularity property

in the same vein as in [30, 52, 51, 50, 68], we shall prove that the smoothing effect holds

everywhere, i.e.

}u}
L2p0,T ;H

1
2

0 pTq
ď CpT, }u0}L2

0pTqq. (5.0.5)

Using this smoothing effect and the classical compactness/uniqueness argument, we shall

first prove that the corresponding closed-loop equation is semi-globally exponentially

stable.

Theorem 5.0.4. Let δ ą 0, and R ą 0 be given. Then there exist some constants

C “ CpRq and λ “ λpRq such that for any u0 P L
2
0pTq with }u0}L2

0pTq ď R, the weak

solutions in the sense of vanishing viscosity of system (5.0.2) with Fu “ ´GDGu (see

(2.0.9)) satisfy

}up¨, tq}L2
0pTq ď C e´λ t}u0}L2

0pTq,

for all t ě 0.

A weak solution of (5.0.2) with Fu “ ´GDGu in the sense of vanishing viscosity

is a distributional solution of (5.0.2) u P Cwpp0,`8q, L2
0pTqq X L2

locpp0,`8q, H
1
2
0 pTqq that

may be obtained as a weak limit in a certain space of solutions of the ILW equation with

viscosity

$

&

%

Btu`
1
δ
Bxu` B

2
xpT uq ´ εB2

xu` Bxpu
2
q “ ´GDGu, t ě 0, x P T

upx, 0q “ u0pxq, x P T,
(5.0.6)

as ε ÝÑ 0` (see Definition 5.2.11 below for a precise definition).

Also, we use the smoothing effect (5.0.5) to extend (at least locally) the

exponential stability from L2
0pTq to Hs

0pTq for s ą
1
2 .

Theorem 5.0.5. Let s P

ˆ

1
2 , 2



and δ ą 0 be given. Then there exists ρ ą 0 such that

for any u0 P Hs
0pTq with }u0}Hs

0pTq ă ρ, there exists for all T ą 0 a unique solution

uptq of (5.0.2) with Fu “ ´GDGu in the class u P Cpr0, T s;Hs
0pTqq XL2

p0, T ;Hs` 1
2

0 pTqq.
Furthermore, there exist some constants C ą 0 and λ ą 0 such that

}uptq}Hs
0pTq ď Ce´λt}u0}Hs

0pTq, @t ě 0.

Finally, one can derive an exact controllability result for the ILW equation by

incorporating the same feedback law f “ ´GpDpGuqq (see (2.0.9)) in the control input to

obtain a smoothing effect.
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Theorem 5.0.6. Let s P

ˆ

1
2 , 2



, δ ą 0 and T ą 0 be given. Then there exists ρ ą 0 such

that for any u0, u1 P H
s
0pTq satisfying

}u0}Hs
0pTq ă ρ, }u1}Hs

0pTq ă ρ

one can find a control input f “ Gh P L2
p0, T ;Hs´ 1

2 pTqq with h “ ´DGu`D
1
2 h̃ such that

the system (5.0.1) admits a solution u P Cpr0, T s;Hs
0pTqq X L2

p0, T ;Hs` 1
2

0 pTqq satisfying

upx, 0q “ u0pxq, upx, T q “ u1pxq.

These results will be proved throughout this chapter which is organized as

follows: In Section 5.1, the well-posedness, the exact controllability and stabilizability

results are presented for the associated linear systems of (5.0.1) and (5.0.2). Finally, the

main results regarding stabilization and controllability are respectively proved in Sections

5.2 and 5.3.

5.1 Linear Systems

Initially, we consider the IVP to the associated open-loop control system in the

periodic setting,
$

&

%

Btu`
1
δ
Bxu` B

2
xpT uq “ Gphq, t P R, x P T

upx, 0q “ u0pxq, x P T,
(5.1.1)

where the operator G is defined in (2.0.9) and h is the applied control function. Following

the same approach appearing in [1] §7, we observe that
ˆ

1
δ
Bxu` B

2
xpT uq

˙^

pnq “ ´

ˆ

|n|

n
n´ |n| ` n cothpnδq ´ 1

δ

˙

yBxupnq

“ ´ {HpB2
xuqpnq `

{KpBxuqpnq, @ n P Z˚,
(5.1.2)

where H is the Hilbert transform (see Section 1.4) and K is a Fourier multiplier operator

with symbol a given by

apnq “ |n| ´ n cothpnδq ` 1
δ
, (5.1.3)

and for all n, 0 ď apnq ď
1
δ
. Furthermore, the operator K is self-adjoint of order 0 and so

linear and bounded on all the L2
0´based Sobolev spaces Hs

0pTq (see (1.3.1)). Specifically,

}Kϕ}Hs
0pTq ď

1
δ
}ϕ}Hs

0pTq, @ϕ P H
s
0pTq. (5.1.4)

Hence, the IVP (5.1.1) can be written in the form
#

Btu´HpB2
xuq `KpBxuq “ Gphq, t P R, x P T

upx, 0q “ u0pxq, x P T.
(5.1.5)
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Let A : DpAq Ď L2
0pTq ÝÑ L2

0pTq be the operator

Aw :“ HpB2
xwq ´KpBxwq, (5.1.6)

with its domain DpAq “ H2
0 pTq. Following the line of argument appearing in Section 2.2, we

prove that A is sknew-adjoint. Therefore, A generates a strongly continuous unitary group

of isometries (contractions) tUptqutPR on L2
0pTq (see Theorem 1.5.16 and [16, Definition

3.4.6]); the eigenfucntions are the orthonormal Fourier basis functions tψnunPZ˚ in L2
0pTq,

given by Remark 1.2.2. The corresponding eigenvalue of ψn is

λn “ in

ˆ

n cothpnδq ´ 1
δ

˙

“ in

ˆ

sgnpnqn´
1
δ

˙

´ in p|n| ´ n cothpnδqq , @n P Z˚. (5.1.7)

Note that

|np|n| ´ n cothpnδqq| ď cδ|n|
2e´|n|δ, @n P Z˚, (5.1.8)

for some cδ ą 0. Furthermore, if we define the family of operators U : RÑ LpHs
0pTqq by

tÑ Uptqϕ :“ epHpB
2
xwq´KpBxwqqtϕ “ peλntpϕpnqq_, (5.1.9)

we have that tUptqutPR defines a strongly continuous one-parameter unitary group of

contractions on Hs
0pTq, for all s P R. In addition, A˚ “ ´A, U˚p´tq “ Uptq, and Uptq is

an isometry for all t P R (see [16, page 38]). From this we infer that the system (5.1.1) is

well-posed on Hs
0pTq for s ě 0. This is stated in the following lemma.

Lemma 5.1.1. Let 0 ď T ă 8, s ě 0, u0 P H
s
0pTq, and h P L2

pr0, T s;Hs
0pTqq. Then,

there exists a unique mild solution u P Cpr0, T s, Hs
0pTqq for the IVP (5.1.1) and we can

write u in the form

uptq “ Uptqu0 `

ż t

0
Upt´ t1qGhpt1qdt1,

for s ě 0, 0 ď t ď T ă 8.

Remark 5.1.2. The sequence of eigenvalues tλnunPZ˚, given by (5.1.7) satisfies the fol-

lowing properties:

iq λ´n “ ´λn, for all n P Z˚.

iiq lim
|n|Ñ8

|λn| “ 8.

iiiq lim
|n|Ñ8

|λn`1 ´ λn| “ 8 (asymptotic gap condition). This is consequence of (5.1.7),

(5.1.8), and p34q in [55].

ivq Observe that all the eigenvalues of the sequence tλnunPZ˚ are distinct, independently

on the value of δ ą 0. In fact, For each n1 P Z˚ set Ipn1q :“ tn P Z˚ : λn “
λn1u and |Ipn1q| “: mpn1q, where |Ipn1q| denotes the numbers of elements of

Ipn1q. Then we have mpn1q “ 1, for all n1 P Z˚. This is a consequence of the fact
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Figure 5 – Curve

that the function x Ñ x

ˆ

x cothpxδq ´ 1
δ

˙

is strictly increasing for x P R. see the

format of the curve in Figure 5 below.

From Remark 5.1.2 and Ingham lemma (see Theorem 1.6.10), we deduce that

the system (5.1.1) is exactly controllable in Hs
0pTq for any s ě 0 in small time (see the

proof of Theorem 2.3.7). This proves Theorem 5.0.1.

Remark 5.1.3. This result is similar with the ones obtained for the linearized KdV, BO,

and Benjamin equations. Theorem 5.0.1 is strong from the point of view that we do not

make restrictions on the time T. The so-called “asymptotic gap condition” (see condition

iiiq of Remark 5.1.2) that holds for the eigenvalues associated to ILW equation was crucial

to obtain the exact controllability for any positive time T.

Theorem 5.0.1 allows us to get the following corollary.

Corollary 5.1.4. For s ě 0, and T ą 0 given, there exists a unique bounded linear

operator Φ : Hs
0pTq ˆHs

0pTq Ñ L2
pr0, T s;Hs

0pTqq such that for any u0, u1 P H
s
0pTq,

u1 “ UpT qu0 `

ż T

0
UpT ´ sqpGpΦpu0, u1qqqp¨, sq ds, (5.1.10)

and

}Φpu0, u1q}L2pr0,T s;Hs
0pTqq ď ν p}u0}Hs

0pTq ` }u1}Hs
0pTqq, (5.1.11)
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where ν depends only on s, T, and g (see (2.0.8)).

The last Corollary 5.1.4 allows us to get the following observability inequality,

which is fundamental to obtain a result on exponential asymptotic stabilization with decay

rate as large as one desires for the linearized closed-loop system associated to (5.0.2).

Corollary 5.1.5. Let T ą 0 be given. There exists δ ą 0 such that

ż T

0
}GUp´τqφ}2L2

0pTq
pτq dτ ě δ2

}φ}2L2
0pTq

, for any φ P L2
0pTq.

Proof. Similar to the proof of Lemma 2.3.3.

On the other hand, if one chooses the simple feedback law

hpuq “ ´G˚u,

the resulting closed-loop system (5.1.1) is exponentially asymptotically stable when t goes

to infinity. First, we prove that the system (5.1.1), with hpuq “ ´G˚u is globally well-posed

in Hs
0pTq, s ě 0.

Theorem 5.1.6. Let u0 P H
2
0 pTq, then the IVP (5.1.1), with hpuq “ ´G˚u has a unique

solution

u P Cpr0,8q;H2
0 pTqq X C1

pr0,8q;L2
0pTqq.

Moreover, if u0 P H
s
0pTq, then we have that u P Cpr0,8q;Hs

0pTqq, for all s ě 0.

Proof. We know that the operator A “
1
δ
Bx ` B

2
xT “ HB2

x ´ KBx is an infinitesimal

generator of a C0-semigroup tUptqutě0 over Hs
0pTq. Also we know that ´GG˚ is a bounded

linear operator on Hs
0pTq. From the semigroup theory (see Pazy [71, Theorem 1.1, pag.

76]), we get that the operator A´GG˚, which is a perturbation of A by a bounded linear

operator, is an infinitesimal generator of a C0´semigroup tT ptqutě0 on Hs
0pTq.

The following proposition proves Theorem 5.0.2. Its proof is similar to the proof

of Theorem 2.4.2.

Proposition 5.1.7. Let δ ą 0, g as in (2.0.8), and s ě 0 be given. Then, there exist

positive constants M “Mpδ, g, sq and γ “ γpgq, such that for any u0 P H
s
0pTq the unique

solution u P Cpr0,8q;Hs
0pTqq of the closed-loop system (5.1.1) with hpuq “ ´G˚u satisfies

}up¨, tq}Hs
0pTq ďMe´γt}u0}Hs

0pTq, for all t ě 0.
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Proof. First we prove the case s “ 0. In this case we use a procedure similar to [67, 55, 80].

Let T ą 0 be given and assume u0 P H
2
0 pTq. Theorem 5.1.6 implies that the solution u of

the IVP
$

&

%

Btu`
1
δ
Bxu` B

2
xpT uq “ ´GG˚u, t ą 0, x P T

upx, 0q “ u0pxq, x P T,
(5.1.12)

satisfies u P Cpr0,8q;H2
0 pTqq X C1

pr0,8q;L2
0pTqq. It means up¨, tq P H2

0 pTq, for all t ě 0
and in particular, for t “ T. Now we consider the IVP

$

&

%

Btw `
1
δ
Bxw ` B

2
xpT wq “ Gh, t P p0, T q, x P T

wpx, 0q “ 0, x P T.
(5.1.13)

Theorem 5.0.1 implies that there exists a unique h P L2
pr0, T s;H2

0 pTqq such

that the unique solution w P Cpr0,8q;H2
0 pTqq X C1

pr0,8q;L2
0pTqq of equation (5.1.13)

satisfies wpx, T q “ upx, T q for all x P T, and there exists a positive constant ν “ νpgq such

that

}h}L2pr0,T s;H2
0 pTqq ď ν}upx, T q}H2

0 pTq.

On the other hand, note that u0 P H
2
0 pTq Ă L2

0pTq, therefore Theorem 5.1.6

implies that u P Cpr0,8q;L2
0pTqq is a solution of equation (5.1.12). Furthermore, Theorem

5.0.1 implies that h P L2
pr0, T s;L2

0pTqq and the solution w P Cpr0,8q;L2
0pTqq of equation

(5.1.13) satisfies wpx, T q “ upx, T q, for all x P T, with

}h}L2pr0,T s;L2
0pTqq ď ν}upx, T q}L2

0pTq. (5.1.14)

Now, multiplying the first equation in (5.1.12) by ū and integrating with respect to x, it

follows that
ż

T
Btuūdx`

ż

T

ˆ

1
δ
Bxu` B

2
xpT uq

˙

ūdx “

ż

T
´GG˚uūdx. (5.1.15)

Using the Parseval’s identity and the fact that the operator G is self-adjoint on L2
0pTq, it

is easy to obtain from (5.1.15) that

1
2
d

dt

´

}up¨, tq}2L2
0pTq

¯

“ ´}Gup¨, tq}2L2
0pTq

, for all t ą 0. (5.1.16)

Integrating (5.1.16) with respect to the variable t from 0 and T, we get

1
2}upT q}

2
L2

0pTq
´

1
2}u0}

2
L2

0pTq
“ ´}Gu}2L2pp0,T q;L2

0pTqq
. (5.1.17)

On the other hand, multiplying (5.1.13) by ū, integrating with respect to the

x´variable, using integration by parts, the property (1.4.4) of the Hilbert transform, and

the fact that K is self-adjoint, we get
ż

T
Btwūdx´

ż

T
wp´HpB2

xuq `KpBxuqqdx “

ż

T
Ghūdx, for all 0 ă t ă T. (5.1.18)
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Integrating (5.1.18) with respect to t from 0 and T, and using integration by parts, we

obtain

ż

T
wpx, T qūpx, T qdx´

ż T

0

ż

T
wpBtu´HpB2

xuq `KpBxuqdxdt “

ż T

0

ż

T
Ghūdxdt.

Observe that u is a solution of equation (5.1.12). Thus

ż

T
u2
pT q dx`

ż T

0

ż

T
w pGG˚uq dx dt “

ż T

0

ż

T
Gh ū dx dt.

Using that the solution u is real, the operator G is self-adjoint on L2
0pTq, and the Cauchy-

Schwarz inequality, we get

}up¨, T q}2L2
0pTq

ď }h´Gw}L2pp0,T q;L2
0pTqq }Gu}L2pp0,T q;L2

0pTqq. (5.1.19)

From (5.1.14), we have

}h´Gw}L2pp0,T q;L2
0pTqq ď ν}upT q}L2

0pTq ` c

ˆ
ż T

0
}wp¨, tq}2L2

0pTq
dt

˙

1
2

. (5.1.20)

Also, observe that

}wp¨, tq}2L2
0pTq

ď

›

›

›

›

ż t

0
Uµpt´ t

1
qGhp¨, t1qdt1

›

›

›

›

2

L2
0pTq

ď c2T }h}2L2pp0,T q;L2
0pTqq

ď c2Tν2
}upT q}2L2

0pTq
.

From this and (5.1.20), we get

}h´Gw}L2pp0,T q;L2
0pTqq ď cg,T }upT q}L2

0pTq, (5.1.21)

where cg,T “ maxtν, c2Tνu. From (5.1.19) and (5.1.21), we have

}up¨, T q}2L2
0pTq

ď cg,T }upT q}L2
0pTq}Gu}L2pp0,T q;L2

0pTqq,

which implies that

´}Gu}2L2pp0,T q;L2
0pTqq

ď ´
1
c2
g,T

}up¨, T q}2L2
0pTq

. (5.1.22)

From the relation (5.1.17) and the estimate (5.1.22), we obtain

ˆ

1` 2
c2
g,T

˙

}upT q}2L2
0pTq

ď }u0}
2
L2

0pTq
. (5.1.23)

Thus, there exists ρg,T “ ρ P p0, 1q such that }upT q}2L2
0pTq

ď ρ}u0}
2
L2

0pTq
, for any T ą 0.

Moreover, we can repeat this estimate on successive intervals rpn´ 1qT, nT s, to get

}upx, nT q}2L2
0pTq

ď ρn}u0}
2
L2

0pTq
, for any T ą 0, n ě 1, (5.1.24)
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where u is the solution of (5.1.12), and ρ “ ρg,T P p0, 1q. From (5.1.16) and (5.1.24), we

infer that there exists M ą 0 and γ ą 0 such that

}upx, tq}L2
0pTq ďMe´γt}u0}L2

0pTq, for all t ě 0,

and we get the result for smooth initial data in H2
0 pTq. We complete the proof for s “ 0

by using density arguments.

Next, we prove the case s “ 2. Let u be the solution of equation (5.1.12) with

initial data u0 P H
2
0 pTq, then u P Cpr0,8q;H2

0 pTqqXC1
pr0,8q;L2

0pTqq. As H2
0 pTq Ă L2

0pTq,
then from case s “ 0, we have that there exist positive constants M1 and γ “ γpgq

independent of u0, such that

}up¨, tq}L2
0pTq ďM1e

´γt
}u0}L2

0pTq, for all t ě 0. (5.1.25)

On the other hand, differentiating the equation (5.1.12) with respect to t, we

obtain

BtpBtuq ´HB2
xpBtuq `KBxpBtuq “ ´GG

˚
pBtuq.

Therefore, w :“ Btu P Cpr0,`8q;L2
0pTqq is the unique solution of

#

Btw ´HB2
xw `KBxw “ ´GG

˚w, t ą 0, x P T
wpx, 0q “ w0 “ Btupx, 0q “ HB2

xu0 ´KBxu0 ´GG
˚u0 P L

2
0pTq, x P T,

(5.1.26)

Again, from the case s “ 0 applied to equation (5.1.26), there exist positive

constants M1 “M1pgq and γ “ γpgq, independent of w0, such that

}Btup¨, tq}L2
0pTq “ }wp¨, tq}L2

0pTq ďM1e
´γt
}w0}L2

0pTq, @t ě 0. (5.1.27)

Note that, for each t ě 0

}up¨, tq}H2
0 pTq ď c0

´

}up¨, tq}L2
0pTq ` }B

2
xup¨, tq}L2

0pTq

¯

. (5.1.28)

To estimate the term }B
2
xup¨, tq}L2

0pTq we use that the Hilbert transform H is an isometry

in Hs
0pTq, and from equation (5.1.12)

HB2
xup¨, tq “ w `KBxu`GG

˚u.

Hence, for each t ě 0

}B2
xup¨, tq}L2

0pTq
“ }HB2

xup¨, tq}L2
0pTq

ď }wp¨, tq}L2
0pTq

` cδ}Bxup¨, tq}L2
0pTq

` }GG˚up¨, tq}L2
0pTq

.

(5.1.29)

Using Gagliardo-Nirenberg inequality (see the Theorem 3.70 in [8]) and Cauchy-Schwarz

inequality with ε, we have

cδ}Bxup¨, tq}L2
0pTq

ď Cδ}B
2
xup¨, tq}

1
2
L2

0pTq
}up¨, tq}

1
2
L2

0pTq
“ Cδε}up¨, tq}L2

0pTq
`
Cδ
4ε }B

2
xup¨, tq}L2

0pTq
,
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where Cδ is a positive constant depending on δ. Using this estimate and estimates (5.1.27),

and (5.1.29), we obtain
ˆ

1´ Cδ
4ε

˙

}B2
xup¨, tq}L2

0pTq
ďM1e

´γt}w0}L2
0pTq

` pCδ ε` cgq }up¨, tq}L2
0pTq

ďM1e
´γt}w0}L2

0pTq
` pCδ ε` cgqM1e

´γt}u0}L2
0pTq

.

Therefore, taking ε ą 0 large enough such that 1 ´ Cδ
4ε ą 0, we infer that there exists a

positive constant c “ cδ,g, independent of u0, and w0 such that

}B
2
xup¨, tq}L2

0pTq ď c M1e
´γt

´

}w0}L2
0pTq ` }u0}L2

0pTq

¯

. (5.1.30)

Also, note that

}w0}L2
0pTq ď }B

2
xu0}L2

0pTq ` cδ}Bxu0}L2
0pTq ` cg}u0}L2

0pTq ď c1}u0}L2
0pTq, (5.1.31)

for some positive constant c1. Thus from (5.1.30) and (5.1.31), we have

}B
2
xup¨, tq}L2

0pTq ďM2e
´γt
}u0}L2

0pTq, (5.1.32)

where M2 “ c M1pc1 ` 1q. From (5.1.25), (5.1.28) and (5.1.32), we get

}up¨, tq}H2
0 pTq ď c0

´

M1e
´γt
}u0}L2

0pTq `M2e
´γt
}u0}L2

0pTq

¯

ďMe´γt}u0}H2
0 pTq, @t ě 0,

where M “Mpδ, gq, and γ “ γpgq are positive constants independent of u0. This proves

the case s “ 2.

The case 0 ă s ă 2 follows by interpolation. The other cases of s can be proved

similarly. The proof is complete.

Finally, in this section, we show that it is possible to choose an appropriate

linear feedback control law such that the decay rate of the resulting closed-loop system is

as large as one desires. Choosing the feedback control law as

hpuq :“

$

’

&

’

%

´G˚L´1
λ u, if λ ą 0

´G˚u, if λ “ 0,

where Lλ is defined in (2.5.1). We can rewrite the resulting closed-loop system in the

following form
#

Btu´HpB2
xuq `KpBxuq “ ´Fλu, t ą 0, x P T

upx, 0q “ u0pxq, x P T,
(5.1.33)

where λ ě 0 and Fλ :“ GG˚L´1
λ . If λ “ 0, we define F0 “ GG˚. Thus, Fλ is a bounded

linear operator on Hs
0pTq with s ě 0. We have the following result.
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Theorem 5.1.8. Let δ ą 0, s ě 0 and λ ą 0 be given. For any u0 P Hs
0pTq, the

system (5.1.33) admits a unique solution u P Cpr0,`8q, Hs
0pTqq. Moreover, there exists

M “Mpg, λ, δ, sq ą 0 such that

}up¨, tq}Hs
0pTq ďMe´λt}u0}Hs

0pTq, for all t ě 0.

Proof. As Fλ is a bounded linear operator the same argument used in Theorem 5.1.6 shows

that for u0 P H
s
0pTq the problem (5.1.33) has a unique solution u P Cpr0,8q;Hs

0pTqq for all

s ě 0. We denote by tTλptqutě0 the C0´semigroup on Hs
0pTq with infinitesimal generator

A´ Fλ.

The case s “ 0 follows from Theorem 2.1 in [84] (the arguments are similar to

the proof of Theorem 2.5.5). The other cases of s are proved as in Proposition 5.1.7.

Observe that Theorem 5.0.3 is a direct consequence of Theorem 5.1.8.

5.2 Stabilization of ILW equation with a localized damping

In this section we are interested in the stability properties of the ILW equation

with localized damping

$

&

%

Btu`
1
δ
Bxu` B

2
xpT uq ` Bxpu2

q “ ´GDGu, t ě 0, x P T

upx, 0q “ u0pxq, x P T,
(5.2.1)

where δ ą 0, D and G are defined in (5.0.3) and (2.0.9).

5.2.1 Semi-global exponential stabilization in L2
0pTq

Assuming that u0 P L
2
0pTq, and using Parseval’s identity we note that

ż

T
B

2
xpT uq ūdx “ 0.

From this, we infer (formally) by scaling in (5.2.1) by u that

1
2
d

dt

´

}uptq}2L2
0pTq

¯

` }D
1
2Guptq}2L2

0pTq
“ 0, (5.2.2)

and (5.0.4) is satisfied. This suggests that the energy is dissipated over time. A rigorous

derivation of (5.0.4) requires enough regularity for u, e.g.

u P L2
p0, T ;H1

0 pTqq X Cpr0, T s, L2
0pTqq. (5.2.3)

Since there is a gap between (5.0.5) and (5.2.3), we put some artificial viscosity

in (5.2.1) (parabolic regularization method) in the same vein as in [59] to derive in a
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rigorous way the energy identity for the ε´ILW equation

$

&

%

Btu`
1
δ
Bxu` B

2
xpT uq ` Bxpu2

q “ εB2
xu´GDGu, t ě 0, x P T

upx, 0q “ u0pxq, x P T.
(5.2.4)

We will show the global well-posedness (GWP) of (5.2.4) in L2
0pTq, together

with the semi-global exponential stability in L2
0pTq with a decay rate uniform in ε ą 0.

Letting ε ÝÑ 0, we obtain the semi-global exponential stability in L2
0pTq of the weak

solutions u P Cwpr0,`8q, L2
0pTqq of (5.2.1) obtained as limits of the (strong) solutions of

(5.2.4). The following result provides the GWP of the system (5.2.4)

Theorem 5.2.1. Let ε ą 0, δ ą 0, and u0 P L
2
0pTqq. Then for any T ą 0 there exists a

unique solution u P Cpr0, T s, L2
0pTqq X L2

p0, T ;H1
0 pTqq of (5.2.4). Moreover,

u P Cpp0, T s, H2
0 pTqq X C1

pp0, T s, L2
0pTqq, (5.2.5)

and for any t ě 0,

1
2}uptq}

2
L2

0pTq
` ε

ż t

0
}Bxupτq}L2

0pTqdτ `

ż t

0
}D

1
2 pGuqpτq}2L2

0pTq
dτ “

1
2}u0}

2
L2

0pTq
. (5.2.6)

Proof. We prove this theorem in five steps.

Step 1. (Linear theory). We consider the linear system. Using (5.1.2) we can rewrite it

as
#

Btu´HpB2
xuq ´ εB

2
xu`KpBxuq `GpDpGuqq “ 0, t ą 0, x P T

upx, 0q “ u0pxq, x P T,
(5.2.7)

Let Au :“ p´H ´ εqB2
xu with domain DpAq “ H2

0 pTq Ă L2
0pTq, and Bu :“ GpDpGuqq `

KpBxuq. We know that G P LpHr
ppTq, Hr

0pTqq for all r P R. Using (5.1.4) we infer that

B P LpH1
0 pTq, L2

0pTqq. Let θ0 P
´

arctanpε´1
q,
π

2

¯

. Thus, for θ0 ă | argpλq| ď π, we have

}pA´ λq´1
} ď sup

n‰0
t|pε´ isgnpnqqn2

´ λ|´1
u ď

C

|λ|
.

Then A is a sectorial operator in L2
0pTq (see Definition 1.5.7). Note that σpAq “ tpε ´

i sgn(n)qn2;n P Z˚u. In consequence, RepσpAqq ě ε and A´α (see Definition 1.5.9) is

meaningful for all α ą 0. Since for all s ą 0

}A´
s
2u}2Hs

0pTq
ď C

ÿ

nPZ˚
|pε´ isgnpnqq|´s|pupnq|2 ď C}u}2L2

0pTq
.

Therefore, BA´
1
2 P LpL2

0pTqq. It follows from Corollary 1.5.11 that the operator A :“ A`B

is also sectorial, so that ´A generates an analytic semigroup (see Definition 1.5.12)

tSptqutě0 “ te´tAutě0 on L2
0pTq according to Theorem 1.5.13. Furthermore, from [28,
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Theorem 1.4.8] we have DppA ` B ` λqαq “ DpAαq “ H2α
0 pTq for all α ě 0 and λ ą 0

large enough; hence

SptqHs
0pTq Ă Hs

0pTq, @t ą 0, @s ě 0.

Now, we derive estimates for the solutions of the IVP
#

Btu`Au “ f, t ą 0, x P T
upx, 0q “ u0pxq, x P T.

(5.2.8)

For any T ą 0 and any s P N, let

Ys,T “ Cpr0, T s;Hs
0pTqq X L2

p0, T ;Hs`1
0 pTqq (5.2.9)

be endowed with the norm

}u}Ys,T “ }u}L8p0,T ;Hs
0pTqq ` }u}L2p0,T ;Hs`1

0 pTqq. (5.2.10)

Lemma 5.2.2. We have for some constant C0 “ C0pε, s, T q

}u}Ys,T ď C0p}u0}Hs
0pTq ` }f}L1p0,T ;Hs

0pTqqq,

with u denoting the mild solution of (5.2.8) associated with

pu0, fq P H
s
0pTq ˆ L1

p0, T ;Hs
0pTqq.

Proof. From classical semigroup theory we have

}u}L8p0,T ;Hs
0pTqq ď Cp}u0}Hs

0pTq ` }f}L1p0,T ;Hs
0pTqqq.

To estimate }u}L2p0,T ;Hs`1
0 pTqq we use Parseval’s identity to have that for any u P Hs

0pTq

`

´HB2
xu`KpBxuq, u

˘

Hs
0pTq

“

ˆ

1
δ
Bxu` T B2

xu, u

˙

Hs
0pTq

“ 2π
ÿ

nPZ˚
xny2s

ˆ

´n cothpnδq ` 1
δ
in pupnqpupnq

˙

“ 0.
(5.2.11)

Using a density argument we prove, taking the scalar product of each term of (5.2.8) by

u P Hs
0pTq, that

1
2}uptq}

2
Hs

0pTq
` ε

ż t

0
}Bxupτq}Hs

0pTqdτ `

ż t

0
pGpDpGuqq, uqHs

0pTq
dτ “

1
2}u0}

2
Hs

0pTq
`

ż t

0
pf, uqHs

0pTq

is true for any u0 P H
s
0pTq and any f P L1

p0, T ;Hs
0pTqq. Combining this relation with

Lemma A.5 in the appendix, we conclude the proof (see Lemma 2.2 in [59]).

Remark 5.2.3. We observe that when u0 ” 0 in (5.2.8), then
›

›

›

›

ż t

0
Spt´ τqfpτqdτ

›

›

›

›

Ys,T

ď Cpε, s, T q}f}L1p0,T ;Hs
0ppT qqq

, (5.2.12)

and when f ” 0 in (5.2.8),

}Sptqu0}Ys,T ď Cpε, s, T q}u0}Hs
0ppT qq

, (5.2.13)
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Step 2. (Local well-posedness in Hs
0pTq, s ě 0). We prove the following proposition.

Proposition 5.2.4. Let s ě 0 and δ ą 0 be given. For any u0 P H
s
0pTq, there exists some

T ą 0 such that the IVP (5.2.4) admits a unique solution u P Ys,T .

Proof. We write (5.2.4) in its integral form uptq “ Sptqu0 ´

ż t

0
Spt´ τqp2uBxuqpτqdτ. For

given u0 P H
s
0pTq, let r ą 0 and T ą 0 be constants to be determined. Define the map Γ

on the closed ball Bp0, rq “ tv P Ys,T ; }v}Ys,T ď ru of Ys,T by

Γpvqptq “ Su0 ´

ż t

0
Spt´ τqp2vBxvqpτqdτ.

Using Gagliardo-Nirenberg inequality (see [8, Theorem 3.70]) and Theorem 1.7 in [33], we

note that

ż T

0
}vpτq}2L8pTq ď C

ż T

0
}vpτq}H1

0 pTq}vpτq}L2
0pTqdτ

ď C
?
T }v}L8p0,T ;L2

0pTqq}v}L2p0,T ;H1
0 pTqq.

(5.2.14)

From Lemma 5.2.2, Remark 5.2.3, Lemma 1.10 in [33], and (5.2.14) we infer that

}Γpv1q ´ Γpv2q}Ys,T ď C}v1Bxpv
1q ´ v2Bxpv

2q}L1p0,T ;Hs0 pTqq

ď C

ż T

0

´

}v1 ´ v2}L8pTq}v
1 ` v2}Hs`1

0 pTq ` }v
1 ` v2}L8pTq}v

1 ´ v2}Hs`1
0 pTq

¯

dτ

ď CT
1
4 }v1 ´ v2}Ys,T

`

}v1}Ys,T ` }v
2}Ys,T

˘

, @ v1, v2 P B.

(5.2.15)

Therefore, Lemma 5.2.2, Remark 5.2.3, and (5.2.15) imply that

}Γpvq}Ys,T ď C0}u0}Hs
0pTq ` C1T

1
4 }v}2Ys,T , @ v P B, (5.2.16)

and

}Γpv1
q ´ Γpv2

q}Ys,T ď C1T
1
4 }v1

´ v2
}Ys,T

`

}v1
}Ys,T ` }v

2
}Ys,T

˘

, @ v1, v2
P B. (5.2.17)

Choosing r ą 0 and T ą 0 so that

$

&

%

r “ 2C0}u0}Hs
0pTq,

2rC1T
1
4 ď

1
2 ,

(5.2.18)

we obtain that }Γpv1
q}Ys,T ď r, }Γpv1

q ´ Γpv2
q}Ys,T ď

1
2}v

1
´ v2

}Ys,T , for all v1, v2
P B.

Therefore, with this choice of r and T, Γ is a contraction in Bp0, rq. Its fixed-

point is the unique solution of (5.2.4) in Bp0, rq.
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Step 3. (Global well-posedness in L2
0pTq). Assume that u0 P L

2
0pTq. We first establish

(5.2.6) for 0 ď t ď T. Since u P Y0,T , we infer by using the immersion L4
0pTq Ă L2

0pTq and

Gagliardo-Nirenberg inequality that

ż t

0
}2uBxu}2H´1

0 pTqdτ ď C

ż t

0
}u2
}

2
L2

0pTq
dτ ď C

ż t

0
}u}4L4

0pTq
dτ

ď C

ż t

0
}u}3L2

0pTq
}Bxu}L2

0pTqdτ ď C
?
t}u}4Y0,t .

Therefore, each term in (5.2.4) belongs to L2
p0, t;H´1

0 pTqq. Scaling in (5.2.4) by u, we

obtain
ż t

0

B

Btu`
1
δ
Bxu` B

2
xpT uq ` 2uBxu´ εB2

xu`GpDpGuqq, u

F

H´1
0 pTq,H1

0 pTq
dτ “ 0,

Using Parseval’s identity, we get that for a.e. τ P p0, tq
B

1
δ
Bxu` B

2
xpT uq, u

F

H´1
0 pTq,H1

0 pTq
“ ´

ˆ

1
δ
u` BxpT uq, Bxu

˙

L2
0pTq

“ ´2πi
ÿ

nPZ˚

ˆ

1
δ
´ n cothpnδq

˙

pupnq n pupnq “ 0,

Thus, we have for a.e. τ P p0, tq
B

1
δ
Bxu` B

2
xpT uq ´ εB2

xu, u

F

H´1
0 pTq,H1

0 pTq
“ ´

ˆ

1
δ
u` BxpT uq ´ εBxu, Bxu

˙

L2
0pTq

“ ε}Bxu}
2
L2

0pTq
,

x2uBxu, uyH´1
0 pTq,H1

0 pTq
“ 2 puBxu, uqL2

0pTq
“ 0,

and

xGpDpGuqq, uyH´1
0 pTq,H1

0 pTq
“ pGpDpGuqq, uqL2

0pTq
“ }D

1
2Gu}2L2

0pTq
.

Hence, (5.2.6) follows at once, and we infer that }uptq}L2
0pTq ď }u0}L2

0pTq. Using

the standard extension argument, one sees that u is defined on p0,`8q with u P Y0,T

for all T ą 0. Furthermore, with the constants C0 and C1 given in Step 2 for s “ 0 and

T “ p8C0C1}u0}L2
0pTqq

´4, we get

}upnT ` ¨q}Y0,T ď 2C0}upnT q}L2
0pTq ď 2C0}u0}L2

0pTq

Step 4. (Global well-posedness in H2
0 pTq). Pick any u0 P H

2
0 pTq. From Proposition

5.2.4 and Step 3, we have that equation (5.2.4) admits a unique solution u P Y0,T for each

T ą 0, which belongs to T2,T0 for some T0 ą 0. We will show that T0 can be taken as large

as desired. Let v “ Btu. If u P Y2,T , then v P Y0,T and it satisfies

$

&

%

Btv `
1
δ
Bxv ` B

2
xpT vq ` 2BxpuvqεB2

xv “ ´GDGv, t ě 0, x P T

vpx, 0q “ v0pxq, x P T,
(5.2.19)
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where

v0 “

ˆ

´
1
δ
Bxupx, 0q ´ B2

xpT uqpx, 0q ´ 2uBxpuqpx, 0q ` εB2
xupx, 0q ´GpDpGuqqpx, 0q

˙

P L2
0pTq.

We rewrite (5.2.19) in its integral form vptq “ Sptqv0 ´

ż t

0
Spt ´ τqp2Bxpuvqqpτqdτ, and

define the map

Γpwqptq :“ Sptqv0 ´

ż t

0
Spt´ τqp2Bxpuwqqpτqdτ, for w P Y0,T .

Similar computations as in Step 2 yields

}Γpwq}Y0,T ď C0}v0}L2
0pTq ` C1T

1
4 }u}Y0,T }w}Y0,T ,

}Γpw1
q ´ Γpw2

q}Y0,T ď C1T
1
4 }w1

´ w2
}Y0,T }u}Y0,T ,

where the positive constants C0 and C1 depend only on ε for T ă 1. Therefore, Γ contracts

in Bp0, rq “ tw P Y0,θ; }w}Y0,θ ď r :“ 2C0}v0}L2
0pTqu, as long as C1θ

1
4 }u}Y0,θ ď

1
2 . Its fixed

point gives the unique solution of the integral equation in the ball B. Pick θ fulfilling

θ ă min
!

1, p8C0C1}u0}L2
0pTqq

´4
)

.

Hence, from Step 2, we have that }upnθ ` ¨q}Y0,θ ď 2C0}u0}L2
0pTq, for all n P N and that w

can be extended to rnθ, pn` 1qθs inductively by using the contraction mapping theorem

(replacing v0 by wpθq, wp2θq, etc.). Thus, w is defined on p0,`8q and it holds that

}wpnT ` ¨q}Y0,θ ď 2C0}wpnT q}L2
0pTq ď p2C0q

n`1
}v0}L2

0pTq. (5.2.20)

By uniqueness of the solution of the integral equation, we have that vptq “ wptq

as long as 0 ă t ă T and v P Y0,T . From (5.2.20) we obtain that }vptq}L2
0pTq “ }wptq}L2

0pTq is

uniformly bounded on compacts sets of p0,`8q, namely }v}Y0,T ď CpT, }u0}L2
0pTqq}v0}L2

0pTq.

This is also true for }uptq}H2
0 pTq, by (5.2.4). In fact, using Gagliardo-Nirenberg

inequality two times an Young’s inequality with µ (see [54, Page 706]), we note that

}2uBxu}L2
0pTq ď 2}u}L8pTq}Bxu}L2

0pTq ď 2}u}
1
2
L2

0pTq
}Bxu}

3
2
L2

0pTq

ď 2}u}
5
4
L2

0pTq
}B

2
xu}

3
4
L2

0pTq
ď 2Cpµq}u}5L2

0pTq
` 2µ}B2

xu}L2
0pTq.

(5.2.21)

Also, using Cauchy-Schwarz inequality with µ, one have

}GpDpGuqq}L2
0pTq ď Cg}Bxu}L2

0pTq

ď C}u}
1
2
L2

0pTq
}B

2
xu}

1
2
L2

0pTq
ď C}u}L2

0pTq ` Cµ}B
2
xu}L2

0pTq.
(5.2.22)
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From (5.1.2) and (5.2.4), we infer that

p´H ´ εqB2
xu “ ´v ´KpBxuq ` 2uBxu´GpDpGuqq. (5.2.23)

Therefore, using (5.2.21)-(5.2.23) and (5.1.4) we obtain that

?
1` ε2}B2

xuptq}L2
0pTq “ }p´H ´ εqB2

xuptq}L2
0pTq ď CpT, }u0}L2

0pTqq}u0}H2
0 pTq ` Cδ,µ}u}L2

0pTq

` Cµ}u}
5
L2

0pTq
` p2` Cg,δqµ}B2

xu}L2
0pTq.

Taking µ small enough, we obtain

}uptq}L2
0pTq ď CpT, }u0}L2

0pTqq}u0}H2
0 pTq.

Using the standard extension argument, we show that uptq P H2
0 pTq for all t ě 0 with

u P Y2,T for all T ą 0.

Step 5. (Smoothing effect from L2
0pTq to H2

0 pTq). A similar procedure as in Step 5

of Theorem 2.1 in [59] prove that

u P Cpp0,`8q, H2
0 pTqq X C1

pp0,`8q, L2
0pTqq.

The proof of Theorem 5.2.1 is complete.

Next, we prove the propagation of regularity property. The following lemma is

needed.

Lemma 5.2.5. Let N Ă Z be a set such that for some constant C ą 0,

xny ` xky ď Cxn´ ky, @n R N , @k P N . (5.2.24)

Let P be the projector on the closure of Span
 

eikx; k P N
(

in L2
pTq, namely

P

˜

ÿ

kPZ
pupkqeikx

¸

“
ÿ

kPN
pupkqeikx.

Let ϕ P C8pTq and let p P N, q P N. Then, there exists some constant C “ Cpϕ, p, qq ą 0
such that for all v P L2

pTq,

}B
p
xrϕ, P sB

q
xv}L2

ppTq ď C}v}L2
ppTq. (5.2.25)

Proof. See Lemma 2.5 in [59].

Remark 5.2.6. Condition (5.2.24) is fulfilled for N “ N˚, and (5.2.25) is true for

P “ H “ p´iqpPN˚ ´ P´N˚q.

Using (5.1.2), we have the following result.
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Proposition 5.2.7. Let g P C8pT, p0,`8qq, ε ą 0, α P R, T ą 0, and R ą 0 be given.

Pick any v0 P L
2
0pTq with }v0}L2

0pTq ď R and let

v P Cpr0, T s;L2
0pTqq X L2

p0, T ;H1
0 pTqq X Cpp0, T s;H2

0 pTqq

be such that
#

Btv ´HpB2
xvq ´ εB

2
xv `KpBxvq ` 2αvBxv “ ´GpDpGvqq, t ą 0, x P T

vpx, 0q “ v0pxq, x P T,
(5.2.26)

then there exists some constant C “ CpT q ą 0 (independent of ε, α, and R) such that
ż T

0
}D

1
2v}2L2

0pTq
dt ď CpR2

` α4R6
q. (5.2.27)

Proof. Pick any t0 P p0, T q, and let

pf, qqL2
t,x

:“
ż T

t0

ż

T
fpx, tqqpx, tqdxdt

denotes the scalar product in L2
pt0, T ;L2

0pTqq. Let C be a constant which may vary from

line to line and may depend on δ, T, but independent of t0, ε, α and R. Note that,
ż T

t0

}D
1
2v}2L2

0pTq
dt “

ż T

t0

pDv, vqL2
0pTq

dt.

Since T is compact there exists a finite set of points, say xi0 P T, i “ 1, ¨ ¨ ¨ , N,
such that we can construct a partition of the unity on T involving functions of the form

χ2
i p¨ ´x

i
0q with χ2

i p¨ q P C
8
c pωq. Specifically, there exists N P N such that

$

’

&

’

%

0 ď χ2
i px´ x

i
0q ď 1, for all x P T and i “ 1, 2, .., N

N
ÿ

i“1
χ2
i p¨ ´ x

i
0q “ 1 on T.

Therefore,

ż T

t0

}D
1
2 v}2L2

0pTq
dt “

ż T

t0

˜˜

N
ÿ

i“1
χ2
i px´ x

i
0q

¸

Dv, v

¸

L2
0pTq

dt “
N
ÿ

i“1

ż T

t0

`

χ2
i px´ x

i
0qDv, v

˘

L2
0pTq

dt.

(5.2.28)

We shall show that for any χ2
p¨ q P C8c pωq and any x0 P T there exists a positive

constant C such that
ˇ

ˇ

ˇ

ˇ

ż T

t0

`

χ2
px´ x0qDv, v

˘

L2
0pTq

ˇ

ˇ

ˇ

ˇ

ď CpR2
` α4R6

q `
1

2N

ż T

t0

}D
1
2v}2L2

0pTq
. (5.2.29)

For this, consider φpxq “ χ2
pxq ´ χ2

px ´ x0q, where χ2
P C8c pωq and x0 P T.

From Lemma A.4 there exists ϕ P C8pTq such that Bxϕpxq “ χ2
pxq ´ χ2

px´ x0q, for all

x P T. Consequently,

`

χ2
px´ x0qDv, v

˘

L2
0pTq

“
`

χ2
pxqDv, v

˘

L2
0pTq

´ pBxϕpxqDv, vqL2
0pTq

.
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Noticing that D “ HBx and using a similar argument as in (2.39) in [59]

(Substituting χ by b and a by g) we prove that
ˇ

ˇ

ˇ

ˇ

ż T

t0

`

χ2
pxqDv, v

˘

L2
0pTq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż T

t0

`

χ2
pxqHBxv, v

˘

L2
0pTq

ˇ

ˇ

ˇ

ˇ

ď CR2. (5.2.30)

Therefore, to achieve (5.2.29) it is enough to prove that
ˇ

ˇ

ˇ

ˇ

ż T

t0

pBxϕpxqDv, vqL2
0pTq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż T

t0

pBxϕpxqHBxv, vqL2
0pTq

ˇ

ˇ

ˇ

ˇ

ď CpR2 ` α4R6q `
1

2N

ż T

t0

}D
1
2 v}2L2

0pTq
.

(5.2.31)

For this, set Lv :“ Btv ´ HB2
xv, f :“ εB2

xv ´ GpDpGvqq q :“ ´2αvBxv ´ KBxv, and

Aϕ “ ϕpxqv, we have that Lv “ f ` q. Noticing that L is formally anti-skew-adjoint, we

have that
prL,Asv, vqL2

t,x
“ pLpϕvq, vqL2

t,x
´ pϕLv, vqL2

t,x

“ pϕv, vqL2
t,x

ˇ

ˇ

ˇ

T

t0
` pϕv, L˚vqL2

t,x
´ pLv, ϕvqL2

t,x
,

Thus
ˇ

ˇ

ˇ
prL,Asv, vqL2

t,x

ˇ

ˇ

ˇ
ď 2

ˇ

ˇ

ˇ
pf ` q, ϕvqL2

t,x

ˇ

ˇ

ˇ
` 2}ϕ}L8pTqR2. (5.2.32)

Using Lemmas A.1-A.2, (5.2.6) and the fact that the L2
´norm is nonincreasing,

we infer that
ˇ

ˇ

ˇ
pf, ϕvqL2

t,x

ˇ

ˇ

ˇ
ď ε

ˇ

ˇ

ˇ
pBxv, BxpϕvqqL2

t,x

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
pDpGvq, GpϕvqqL2

t,x

ˇ

ˇ

ˇ

ď Cε

ż T

0

ż

T
p|v|2 ` |Bxv|

2qdxdt`

ż T

0

ˇ

ˇ

ˇ

ˇ

´

D
1
2 pGvq, ϕD

1
2 pGvq

¯

L2
0pTq

ˇ

ˇ

ˇ

ˇ

dt

`

ż T

0

"

ˇ

ˇ

ˇ
pDpGvq, rG,ϕsvqL2

0pTq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ˇ

´

D
1
2 pGvq, rD

1
2 , ϕsGpvq

¯

L2
0pTq

ˇ

ˇ

ˇ

ˇ

*

dt

ď Cε

ż T

0
}Bxv}

2
L2

0pTq
dt` C

ż T

0
}D

1
2 pGvq}2L2

0pTq
dt` C}ϕ}

H1
p
pTq

ż T

0
}v}2L2

0pTq
dt

ď C
´

}v0}
2
L2

0pTq
´ }vpT q}2L2

0pTq

¯

` CR2

ď CR2.

(5.2.33)

Also, note that Theorem 5.2.1 is still true when α “ 1 is replaced by any value

α P R. Using Parseval’s identity, we note that
ˇ

ˇ

ˇ
pq, ϕvqL2

t,x

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
p´2αvBxv, ϕvqL2

t,x

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
pKBxv, ϕvqL2

t,x

ˇ

ˇ

ˇ

ď
|α|

3

ˇ

ˇ

ˇ

`

v3, Bxϕ
˘

L2
t,x

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

t0

˜

2π
ÿ

nPZ˚

{KBxvpnqxϕvpnq

¸

dt

ˇ

ˇ

ˇ

ˇ

ˇ

.
(5.2.34)

From Interpolation inequality for Lp´norms (see [54, page 707]) and Sobolev

embedding theorem (see [33, Lemma 1.5]), we have

}v}L3pTq ď }v}
1
2
L2

0pTq
}v}

1
2
L6

0pTq
ď CR

1
2 }v}

1
2

H
1
2

0 pTq
.
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Hence, using Young’s inequality with ε “
1

2N (see [54, page 622])

|α|

3

ˇ

ˇ

ˇ

`

v3, Bxϕ
˘

L2
t,x

ˇ

ˇ

ˇ
ď C|α|

ż T

t0

}v}3L3pTqdt ď C|α|R
3
2T

1
4

ˆ
ż T

t0

}v}2
H

1
2

0 pTq
dt

˙

3
4

ď CN |α|
4R6T `

1
2N

ż T

t0

}D
1
2v}2L2

0pTq
dt.

(5.2.35)

On the other hand, from (5.1.3), (5.1.8), Young’s inequality (see [49, Theorem

2.2]), and Cauchy-Schwarz, we get

I :“

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

t0

˜

2π
ÿ

nPZ˚
{KBxvpnqxϕvpnq

¸

dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

t0

˜

2π
ÿ

nPZ˚
p|n| ´ n cothpnδqqpinqpvpnqpϕ ˚ pvpnq

¸

dt

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

t0

˜

2π
δ

ÿ

nPZ˚
yBxvpnqxϕvpnq

¸

dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cδ

ż T

t0

˜

ÿ

nPZ˚
|n|2e´|n|δ|pvpnq|}ϕ}L2pTq}v}L2

0pTq

¸

dt`

ˇ

ˇ

ˇ

ˇ

ż T

t0

ż

T
Bxv ϕv dt

ˇ

ˇ

ˇ

ˇ

ď CR

ż T

t0

˜

ÿ

nPZ˚
|n|4e´4|n|δ

¸
1
2

}v}L2
0pTq

dt` C

ˇ

ˇ

ˇ

ˇ

ż T

t0

ż

T
v2 Bxϕ dt

ˇ

ˇ

ˇ

ˇ

ď CR2.

(5.2.36)

Thus, (5.2.34)-(5.2.36), we have

ˇ

ˇ

ˇ
pq, ϕvqL2

t,x

ˇ

ˇ

ˇ
ď CpR2

` |α|4R6
q `

1
2N

ż T

t0

}D
1
2v}2L2

0pTq
(5.2.37)

Finally, note that

rL,Asv “ ´H
`

pB
2
xϕqv ` 2pBxϕqpBxvq ` ϕB2

xv
˘

` ϕHB2
xv

“ ´rH,ϕsB2
xv ´HppB

2
xϕqvq ´ 2rH, BxϕsBxv ´ 2BxϕHBxv.

(5.2.38)

From Lemma 5.2.5, and Remark 5.2.6 we have

ˇ

ˇ

ˇ
´
`

rH, ϕsB2
xv, v

˘

L2
t,x

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
´
`

HppB2
xϕqvq, v

˘

L2
t,x

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
´2 prH, BxϕsBxv, vqL2

t,x

ˇ

ˇ

ˇ
ď CR2. (5.2.39)

From (A.3), (A.4), and (5.2.37)-(5.2.39) we infer that (5.2.31) holds and

ˇ

ˇ

ˇ
pBxϕHBxv, vqL2

t,x

ˇ

ˇ

ˇ
ď CpR2

` |α|4R6
q `

1
2N

ż T

t0

}D
1
2v}2L2

0pTq
.

Therefore, (5.2.29) is proved. From (5.2.28) and (5.2.29) we infer that

ż T

t0

}D
1
2v}2L2

0pTq
dt ď CpR2

` α4R6
q `

1
2

ż T

t0

}D
1
2v}2L2

0pTq
,

where C “ CpT, δq. Letting t0 ÝÑ 0 we obtain (5.2.27).
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Now we turn our attention to prove the unique continuation property. The

following lemma is needed.

Lemma 5.2.8. Let fpxq “
ÿ

nPZ˚
cne

inx, x P T such that

i)
ÿ

nPZ˚
|cn|

2
ă `8,

ii) Dδ ą 0, Dk ą 0 such that |cn| ď ke´δ|n|, @n ă 0,

iii) Dx0 P R, Dε ą 0 such that fpxq “ 0 for a.e. x P px0 ´ ε, x0 ` εq.

Then cn “ 0, @n P Z˚.

Proof. Writing

fpxq “
ÿ

nPZ˚
peinx0cnqe

inpx´x0q

we may, without lost of generality, assume that x0 “ 0. Replacing f by its primitive

F pxq “

ż x

0
fpsqds “

ÿ

nPZ˚
cn
peinx ´ 1q

in
“

ÿ

nPZ
rcne

inx,

with rcn “
cn
in
, for n ‰ 0, and rc0 “ ´

ÿ

nPZ˚

cn
in
. Note that rc0 is well defined because

ÿ

nPZ˚

ˇ

ˇ

ˇ

cn
in

ˇ

ˇ

ˇ
ď

˜

ÿ

nPZ˚
|cn|

2

¸
1
2
˜

ÿ

nPZ˚

1
n2

¸
1
2

ă 8.

Also,
ÿ

nPZ˚
| rcn| ă `8, by the same estimate. Thus

ÿ

nPZ
|rcn| ă `8. (5.2.40)

Let hpzq :“
ÿ

nPZ
cne

inz, then h is well defined and continuous on the set

D :“ tz “ x` iy : x P R, 0 ď y ă δu.

Note that

| rcne
inz
| “ | rcne

inpx`iyq
| “ | rcn|e

´ny. (5.2.41)

From (5.2.41) and iiq, we have

| rcne
inz
| ď ke´δ|n|eδ

1|n|, if 0 ď y ď δ1 ă δ, and n ă 0,

and

| rcn|e
´ny

ď | rcn|, if 0 ď y ď δ1 ă δ, and n ě 0.
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Also, we have that h is holomorphic on D̊ :“ tz “ x` iy : x P R, 0 ă y ă δu. Finally, h

takes real values (since it vanishes) for z “ x` 0i, @x P p´ε, εq. From Schwarz principle

of reflection (see [27, Chapter IX ]), h can be extended as an holomorphic function in an

open neighborhood of 0. Therefore, h has to vanish on D, by the principle of isolated zeros

(see [27, Corollay 3.10]). Hence, f vanish on D and cn “ 0, @n P Z˚.

Proposition 5.2.9. Let α P R, ε ě 0, δ ą 0 c P L2
p0, T q, and u P L2

pp0, T q;L2
0pTqq be

such that
#

Btu´HpB2
xuq `KBxu` αBxpu

2q ´ εB2
xu “ 0, in Tˆ p0, T q,

upx, tq “ cptq, for a.e. px, tq P pa, bq ˆ p0, T q.
(5.2.42)

for some numbers T ą 0 and 0 ď a ă b ď 2π. Then upx, tq “ 0 for a.e. px, tq P Tˆ p0, T q.

Proof. Without loss of generality, we can assume that pa, bq “ p´µ, µq for some µ ą 0. In

fact, setting rupx, tq “ u

ˆ

x`
a` b

2 , t

˙

, @px, tq P Tˆ p0, T q, we still have that ru satisfies

#

Btru´HpB2
xruq `KBxru` αBxpru

2q ´ εB2
xru “ 0, in Tˆ p0, T q,

rupx, tq “ cptq, for a.e. px, tq P p´µ, µq ˆ p0, T q,
(5.2.43)

where µ “
b´ a

2 . Therefore, if ru “ 0 for a.e. px, tq P T ˆ p0, T q, then upx, tq “ 0 for a.e.

px, tq P Tˆ p0, T q.

With this assumption and (5.2.42), we obtain that

Bxupx, tq “ B
2
xupx, tq “ puBxuqpx, tq “ 0, for a.e. px, tq P p´µ, µq ˆ p0, T q,

and

´HpB2
xuq `KpBxuq “ ´Btu “ ´c

1
ptq, for a.e. px, tq P p´µ, µq ˆ p0, T q.

Therefore, for almost every t P p0, T q, it holds that

B
3
xup¨, tq P H

´3
pTq, (5.2.44)

B
3
xup¨, tq “ 0, in p´µ, µq, (5.2.45)

and

´HpB3
xuqp¨, tq `KpB

2
xuqp¨, tq “ 0 in p´µ, µq. (5.2.46)

Pick a time t as above, and set vpxq “ B3
xupx, tq. Decompose v as

vpxq “
ÿ

nPZ˚
pvpnqeinx,

where the convergence of the Fourier series being in H´3
0 pTq. Observe that,

B
´1
x vpxq “ B´1

x B
3
xupxq “

ż x

0
B

3
xupsqds “ 0, @x P p´µ, µq,
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We define, f :“ iv ´Hpvq `KpB´1
x vq ´

1
δ
B
´1
x v P H´3

0 pTq. From (5.2.46), we have

fpxq “

ˆ

iv ´Hpvq `KpB´1
x vq ´

1
δ
B
´1
x v

˙

pxq “ 0, in p´µ, µq Ă T.

Note that

fpxq “
ÿ

nPZ˚

pfpnqeinx, x P T. (5.2.47)

where pfpnq “ iCnpvpnq, with Cn “ 1` sgnpnq ´

ˆ

|n|

n
´ cothpnδq

˙

. Set

F pxq :“ B´3
x fpxq “

ÿ

nPZ˚

pfpnq

pinq3
einx, x P T.

Note that,

B
´1
x fpxq “

ż x

0
fpsqds “ 0, @x P p´µ, µq,

and

B
´2
x fpxq “ B´1

x pB
´1
x fpxqq “ 0, @x P p´µ, µq.

Hence, F pxq “ B´3
x fpxq “ 0, @x P p´µ, µq. Since f P H´3

0 pTq, then F P L2
0pTq.

Observe that, for all n ă 0,

| pfpnq| ď Cδe
´δ|n|

|pvpnq|, (5.2.48)

and using that B´3
x v P L2

0pTq, we have

ˇ

ˇ

ˇ

ˇ

ˇ

pfpnq

pinq3

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cδ sup
nPZ˚

!
ˇ

ˇ

ˇ

zB´3
x vpnq

ˇ

ˇ

ˇ

)

e´δ|n| ď C e´δ|n|, @ n ă 0. (5.2.49)

A direct application of Lemma 5.2.8 shows that F ” 0 in T. Therefore, pfpnq “ 0, @n P Z˚.
Thus,

ˆ

1` sgnpnq ´

ˆ

|n|

n
´ cothpnδq

˙˙

pvpnq “ 0, @ n P Z˚.

This implies that pvpnq “ 0, @n P Z˚. Hence v ” 0 in T.

Consequently, for a.e. t P p0, T q, B3
xup¨, tq “ 0 in T. Hence, for a.e. t P p0, T q,

upx, tq “ cptq in T. (5.2.50)

Finally, substituting (5.2.50) in the first relation of (5.2.42), we obtain that c1ptq “ 0 for a.e.

t P p0, T q. Therefore, upx, tq “ cptq “ cte “: β a.e. in Tˆp0, T q. Using u P L2
pp0, T q;L2

0pTqq
we have rus “ 0. Consequently, we obtain upx, tq “ β “ 0 a.e. in Tˆ p0, T q.

Here, we state a stabilization result for the ε´ILW equation with a decay rate

independent on ε.
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Theorem 5.2.10. Let R ą 0 and δ ą 0 be given. There exists some numbers λ ą 0 and

C ą 0 such that for any ε P p0, 1q and any u0 P L
2
0pTq with }u0}L2

0pTq ď R, the solution of

(5.2.4) satisfies

}uptq}L2
0pTq ď Ce´λt}u0}L2

0pTq, @ t ě 0.

Proof. From (5.2.6), }uptq}L2
0pTq is nonincresing. Thus, the exponential decay is ensured if

}uppn` 1qT q}L2
0pTq ď κ}upnT q}L2

0pTq, for some κ ă 1.

To prove the theorem, it is enough (with (5.2.6)) to establish the following

observability inequality: for any T ą 0 and any R ą 0 there exists some constant

CpT,Rq ą 1 such that for any ε P p0, 1q and any u0 P L
2
0pTq with }u0}L2

0pTq ď R, it holds

that

}u0}
2
L2

0pTq
ď C

ˆ

ε

ż T

0
}Bxuptq}

2
L2

0pTq
dt`

ż T

0
}D

1
2Gu}2L2

0pTq
dt

˙

, (5.2.51)

where u denotes the solution of (5.2.4). Fix any T ą 0 and any R ą 0, and assume that

(5.2.51) fails. Then there exists a sequence tun0uną1 in L2
0pTq and a sequence tεnuną1 in

p0, 1q such that for each n we have }un0}L2
0pTq ď R, and

}un0}
2
L2

0pTq
ą n

ˆ

εn
ż T

0
}Bxu

n
ptq}2L2

0pTq
dt`

ż T

0
}D

1
2 pGunq}2L2

0pTq
dt

˙

.

Let αn “ }un0}L2
0pTq P p0, Rs. Extracting a sequence if needed, we may assume that

αn ÝÑ α P r0, Rs and εn ÝÑ ε P r0, 1s. Let vn “
un

αn
. Using (5.1.2), vn solves

#

Btv
n ´HpB2

xv
nq `KpBxv

nq ´ εB2
xv
n ` 2αnvnBxvn “ ´GpDpGvnqq “ 0, t ą 0, x P T

vnpx, 0q “ vn0 pxq, x P T,
(5.2.52)

with vn0 P L2
0pTq and }vn0 }L2

0pTq “ 1. From Theorem (5.2.1) vn P Cpr0, T s, L2
0pTqq X

L2
p0, T ;H1

0 pTqq. Moreover, vn P Cpp0, T s, H2
0 pTqq X C1

pp0, T s, L2
0pTqq.

Thus, we have

1
2}v

n
ptq}2L2

0pTq
` εn

ż t

0
}Bxv

n
pτq}L2

0pTqdτ `

ż t

0
}D

1
2 pGvnqpτq}2L2

0pTq
dτ “

1
2}v

n
0 }

2
L2

0pTq
, @t ą 0,

(5.2.53)

and

1 “ }vn0 }2L2
0pTq

ą n

ˆ

εn
ż T

0
}Bxv

n
ptq}2L2

0pTq
dt`

ż T

0
}D

1
2 pGvnq}2L2

0pTq
dt

˙

. (5.2.54)

From Proposition 5.2.7, we have that

ż T

0
}D

1
2 pGvnq}2L2

0pTq
dt ď C. (5.2.55)
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Hence, vn0 P H
1
2 pTq
0 . This yields

}GpDpGvnqq}
L2p0,T ;H

´ 1
2

0 pTqq
` }p´H ´ εqB2

xv
n
}
L2p0,T ;H

´ 3
2

0 pTqq
ď C.

On the other hand, for any µ ą 0

}2vnBxvn}
H
´3
2 ´µ

0 pTq
“ }Bxppv

nq2q}
H
´3
2 ´µ

0 pTq
ď C}pvnq2}

H
´1
2 ´µ

0 pTq
ď C}pvnq2}L1pTq ď C}vn}2L2

0pTq
,

and from (5.1.4)

}KpBxv
n
q}
H
´3
2 ´µ

0 pTq
ď Cδ}Bxv

n
}
H
´3
2 ´µ

0 pTq
ď C}vn}

H
´1
2 ´µ

0 pTq
ď C}vn}L1pTq ď C}vn}L2

0pTq ď C;

Therefore,

}2αnvnBxvn}
L2p0,T ;H

´3
2 ´µ

0 pTqq
ď C,

and

}KpBxv
n
q}
L2p0,T ;H

´3
2 ´µ

0 pTqq
ď C.

Hence, tBtv
n
uną1 is bounded in L2

p0, T ;H
´3
2 ´µ

0 pTqq. Combined with (5.2.55) and Aubin-

Lions’ lemma (see §7.3 in [77] and the references therein) , we obtain that for a subsequence

still denoted by tvnuną1, we have

vn ÝÑ v in L2
p0, T ;Hα

0 pTqq, @α ă
1
2 ,

vn ÝÑ v in L2
p0, T ;H

1
2
0 pTqq, weak,

vn ÝÑ v in L8p0, T ;L2
0pTqq, weak˚,

for some function v P L2
p0, T ;H

1
2
0 pTqq X L8p0, T ;L2

0pTqq. In particular,

tpvnq2u ÝÑ v2 in L1
pTˆ p0, T qq.

Letting n ÝÑ `8 in (5.2.54), we obtain that
ż T

0
}D

1
2 pGvq}2L2

0pTq
dt “ 0.

Therefore, Gv “ 0 a.e. on Tˆ p0, T q. Thus,

vpx, tq “

ż

T
gpyqvpy, tqdy “: cptq for a.e. px, tq P ω ˆ p0, T q (see (2.0.8)).

Note that c P L8p0, T q. Taking the limit in (5.2.52), we get
#

Btv ´HpB2
xvq `KBxv ` αBxpv

2
q ´ εB2

xv “ 0, in Tˆ p0, T q,
vpx, tq “ cptq, for a.e. px, tq P ω ˆ p0, T q.

(5.2.56)

From Proposition 5.2.9 we infer that v ” 0. Thus, extracting a subsequence still denoted

by tvnuną1, we have that vnp¨, tq ÝÑ 0 in L2
0pTq for a.e. t P p0, T q. Finally, using (5.2.53)-

(5.2.54), we infer that vn0 ÝÑ 0 in L2
0pTq which is a contradiction with the fact that

}vn0 }L2
0pTq “ 1, for all n ą 1.
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Now we define the weak solutions of (5.2.1) obtained by the method of vanishing

viscosity.

Definition 5.2.11. For u0 P L
2
0pTq, we call a weak solution of (5.2.1) in the sense of

vanishing viscosity to any function u P Cwpp0,`8q, L2
0pTqq with u P L2

p0, T ;H
1
2
0 pTqq for

all T ą 0 which solves (5.2.1) in the distributional sense and such that for some sequence

εn Œ 0 we have for all T ą 0

un ÝÑ u in L2
p0, T ;H

1
2
0 pTqq, weak,

un ÝÑ u in L8p0, T ;L2
0pTqq, weak˚,

where un solves (5.2.4) for ε “ εn.

The following is the main result of this section.

Theorem 5.2.12. Let δ ą 0. For any u0 P L
2
0pTq there exists (at least) one weak solution

of (5.2.1) in the sense of vanishing viscosity. On the other hand, for all R ą 0 there exist

some positive constants λ “ λpRq and C “ CpRq such that for any weak solution uptq of

(5.2.1) in the sense of vanishing viscosity, it holds that

}uptq}L2
0pTq ď Ce´λt}u0}L2

0pTq, for all t ě 0, (5.2.57)

whenever }u0}L2
0pTq ď R.

Proof. This theorem is consequence of (5.2.6), (5.2.27) and Theorem 5.2.10 (see Theorem

2.12 in [59]).

Observe that Theorem 5.0.4 is consequence of Theorem 5.2.12.

5.2.2 Local stabilization in Hs
0pTq

In this subsection we are interested in studying the stability properties of the

ILW equation with localized damping (5.2.1) in the space Hs
0pTq with s ě 0. We begin by

stating the well-posedness and the smoothing effect results for the linearized ILW equation

with localized damping.
$

&

%

Btu`
1
δ
Bxu` B

2
xpT uq `GDGu “ 0, t ě 0, x P T

upx, 0q “ u0pxq, x P T,
(5.2.58)

where δ ą 0, and D and G are defined in (5.0.3) and (2.0.9) (respectively). Let s P R and

define

Au “ ´

ˆ

1
δ
Bxu` B

2
xpT uq `GDGu

˙

, (5.2.59)

with domain DpAq “ Hs`2
0 pTq Ă Hs

0pTq.
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Lemma 5.2.13. The operator A defined in (5.2.59) generates a continuous semigroup in

Hs
0pTq, denoted by tSptqutě0.

Proof. Let C “ Cpsq ą 0 be the constant in Lemma A.5. Note that A ´ C is a densely

defined closed operator in Hs
0pTq. Using Parseval’s identity and lemma A.5, we have

pAu´ Cu, uqHs
0pTq

“ ´

ˆ

1
δ
Bxu` B

2
xpT uq, u

˙

Hs
0pTq

´ pGDGu, uqHs
0pTq

´ pCu, uqHs
0pTq

“ ´}D
1
2 pGuq}2Hs

0pTq
´ C}u}2Hs

0pTq

ď ´}D
1
2 pGuq}2Hs

0pTq
, @u P Hs`2

0 pTq,

Hence A´ C is dissipative. Note that DpA˚q “ DpAq “ Hs`2
0 pTq. Thus,

pA˚u´ Cu, uqHs
0pTq

“ pu,Au´ CuqHs
0pTq

ď 0, @u P Hs`2
0 pTq.

Therefore, A˚´C is dissipative and A´C generates a semigroup of contractions in Hs
0pTq

by Corollary 4.4 [71, p. 15].

In the following result we prove the smoothing effect property. For s ě 0 and

T ą 0, let

Zs,T “ Cpr0, T s;Hs
0pTqq X L2

p0, T ;Hs` 1
2

0 pTqq (5.2.60)

be endowed with the norm

}u}Zs,T “ }u}L8p0,T ;Hs
0pTqq ` }u}L2p0,T ;H

s` 1
2

0 pTqq
.

Proposition 5.2.14. Let s ě 0, δ ą 0, v0 P H
s
0pTq and q P L2

p0, T ;Hs´ 1
2

0 pTqq. Then the

solution v of
$

&

%

Btv `
1
δ
Bxv ` B

2
xpT vq `GDGv “ q, t P p0, T q, x P T

vpx, 0q “ v0pxq, x P T,
(5.2.61)

satisfies v P Zs,T with

}v}Zs,T ď Cps, T q

ˆ

}v0}Hs
0pTq ` }q}L2p0,T ;H

s´ 1
2

0 pTqq

˙

, (5.2.62)

with Cps, T q nondecreasing in T.

Proof. First we prove the case s “ 0. Let T ą 0 and assume that v0 P H
2
0 pTq and that

q P Cpr0, T s;H2
0 pTqq. Therefore, the solution v of (5.2.61) satisfies v P Cpr0, T s;H2

0 pTqq X
C1
pr0, T s;L2

0pTqq. We use a procedure similar to the proof of Proposition 5.2.7. Using

(5.1.2) we set Lv :“ Btv ´HB2
xv, f :“ ´GpDpGvqq ´KBxv, so that Lv “ f ` q. Pick any

ϕ P C8pTq, and let Av “ ϕpxqv. Then
ˇ

ˇ

ˇ

ˇ

ż T

0
prL,Asv, vqL2

0pTq
dt

ˇ

ˇ

ˇ

ˇ

ď 2
ˇ

ˇ

ˇ

ˇ

ż T

0
pf ` q, ϕvqL2

0pTq
dt

ˇ

ˇ

ˇ

ˇ

` }ϕ}L8pTq

´

}v0}
2
L2

0pTq
` }vpT q}2L2

0pTq

¯

.
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Scaling in (5.2.61) by v yields

1
2}vptq}

2
L2

0pTq
`

ż t

0
}D

1
2 pGvqpτq}2L2

0pTq
dτ “

1
2}v0}

2
L2

0pTq
`

ż t

0
pq, vqL2

0pTq
dτ

ď
1
2}v0}

2
L2

0pTq
`

ż T

0
}q}

H
´ 1

2
0 pTq

}v}
H

1
2

0 pTq
dt.

Hence,

}vptq}2L8p0,T ;L2
0pTqq

`

ż T

0
}D

1
2 pGvq}2L2

0pTq
dt ď

3
2}v0}

2
L2

0pTq
`3

ż T

0
}q}

H
´ 1

2
0 pTq

}v}
H

1
2

0 pTq
dt. (5.2.63)

From and (5.2.63) and similar computations as those appearing in Proposition 5.2.7 (see

(A.4) and (5.2.36)), we get that

ˇ

ˇ

ˇ

ˇ

ż T

0
pf ` q, ϕvqL2

0pTq
dt

ˇ

ˇ

ˇ

ˇ

ď C}ϕ}H2
0 pTq

ż T

0

´

}D
1
2 pGvq}2L2

0pTq
` }v}2L2

0pTq

¯

dt` }ϕ}L8pTq

ż T

o

ż

T
|q||v|dt

ď CpT, }ϕ}H2
0 pTq

q

ˆ

}v0}
2
L2

0pTq
`

ż T

0
}q}

H
´ 1

2
0 pTq

}v}
H

1
2

0 pTq
dt

˙

.

Thus
ˇ

ˇ

ˇ

ˇ

ż T

0
prL,Asv, vqL2

0pTq
dt

ˇ

ˇ

ˇ

ˇ

ď CpT, }ϕ}H2
0 pTqq

ˆ

}v0}
2
L2

0pTq
`

ż T

0
}q}

H
´ 1

2
0 pTq

}v}
H

1
2

0 pTq
dt

˙

.

The last inequality combined with (5.2.38)-(5.2.39) gives

ˇ

ˇ

ˇ

ˇ

ż T

0
pBxϕDv, vqL2

0pTq
dt

ˇ

ˇ

ˇ

ˇ

ď CpT, }ϕ}H2
0 pTqq

ˆ

}v0}
2
L2

0pTq
`

ż T

0
}q}

H
´ 1

2
0 pTq

}v}
H

1
2

0 pTq
dt

˙

. (5.2.64)

On the other hand, we pick x0 P T and χ P C80 pωq, where ω is given in (2.0.8).

Writing again Bxϕpxq “ χ2
pxq ´ χ2

px´ x0q, for all x P T, and using similar computations

as those leading to (5.2.30), we obtain successively, with (5.2.63) that

ż T

0

›

›

›
D

1
2 pχvq

›

›

›

2

L2
0pTq

dt ď CpT q

ˆ

}v0}
2
L2

0pTq
`

ż T

0
}q}

H
´ 1

2
0 pTq

}v}
H

1
2

0 pTq
dt

˙

,

and
ˇ

ˇ

ˇ

ˇ

ż T

0

`

χ2Dv, v
˘

L2
0pTq

dt

ˇ

ˇ

ˇ

ˇ

ď C

ż T

0

´

}v}2L2
0pTq

` }D
1
2 pχvq}2L2

0pTq

¯

dt,

ď CpT q

ˆ

}v0}
2
L2

0pTq
`

ż T

0
}q}

H
´ 1

2
0 pTq

}v}
H

1
2

0 pTq
dt

˙

.

From this and (5.2.64) we infer that

ˇ

ˇ

ˇ

ˇ

ż T

0

`

χ2
px´ x0qDv, v

˘

L2
0pTq

dt

ˇ

ˇ

ˇ

ˇ

ď CpT q

ˆ

}v0}
2
L2

0pTq
`

ż T

0
}q}

H
´ 1

2
0 pTq

}v}
H

1
2

0 pTq
dt

˙

.

Therefore, using a partition of unity and Cauchy’s inequality we get

ż T

0
}v}2

H
1
2

0 pTq
dt ď CpT q

ˆ

}v0}
2
L2

0pTq
`

ż T

0
}q}2

H
´ 1

2
0 pTq

dt

˙

`
1
2

ż T

0
}v}2

H
1
2

0 pTq
dt.
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The last inequality combined with (5.2.63) gives (5.2.62) for s “ 0 when v0 P H
2
0 pTq

and q P Cpr0, T s;H2
0 pTqq. Using density we obtain the result for all v0 P L2

0pTq and

q P L1
p0, T ;H´ 1

2
0 pTqq.

Next we prove the case s ą 0. Pick any v0 P H
s`2
0 pTq and q P Cpr0, T s;Hs`2

0 pTqq,
and let v P Cpr0, T s;Hs`2

0 pTqq X C1
pr0, T s;Hs`2

0 pTqq denote the solution of (5.2.61). Set

w “ Dsv and h “ Dsq. Note that

Ds
pGDGvq “ GDGw ` Ew

with E “ rDs, GsDGD´s ` GDrDs, GsD´s. Note that }Ew}L2
0pTq ď C}w}L2

0pTq. Using

(5.1.2) we have that w solves
$

&

%

Btw `
1
δ
Bxw ` B

2
xpT wq `GDGw ` Ew “ h, for t P p0, T q, and x in T,

wpx, 0q “ w0pxq “ Dsv0pxq P H
2
0 pTq, for x P T.

(5.2.65)

Scaling in (5.2.65) by w, we have

1
2
d

dt

´

}wptq}2L2
0pTq

¯

` }D
1
2Gwptq}2L2

0pTq
` pEw,wqL2

0pTq
“ ph,wqL2

0pTq

Hence,

1
2
d

dt

´

}wptq}2L2
0pTq

¯

ď

ˇ

ˇ

ˇ
pEw,wqL2

0pTq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
ph,wqL2

0pTq

ˇ

ˇ

ˇ
ď C}wptq}2L2

0pTq
`

ˇ

ˇ

ˇ
ph,wqL2

0pTq

ˇ

ˇ

ˇ
.

Using the Gronwall’s lemma in its differential form (see [87, Theorem 1.12, page 12]) in

the last inequality, we have that
ż T

0
}wptq}2L2

0pTq
dt ď CpT q

ˆ

}w0}
2
L2

0pTq
`

ż T

0
}h}

H
´ 1

2
0 pTq

}w}
H

1
2

0 pTq
dt

˙

.

Form this, we infer that
ˇ

ˇ

ˇ

ˇ

ż T

0
pϕw,EwqL2

0pTq
dt

ˇ

ˇ

ˇ

ˇ

ď C}ϕ}H1
0 pTq}w}

2
L2p0,T ;L2

0pTq
q

ď CpT, }ϕ}H1
0 pTqq

ˆ

}w0}
2
L2

0pTq
`

ż T

0
}h}

H
´ 1

2
0 pTq

}w}
H

1
2

0 pTq
dt

˙

.

Therefore, using the same estimates as in the case s “ 0, we obtain

}w}2L8p0,T ;L2
0pTqq

dt`

ż T

0
}w}2

H
1
2

0 pTq
ď CpT q

ˆ

}w0}
2
L2

0pTq
`

ż T

0
}h}2

H
´ 1

2
0 pTq

dt

˙

,

or equivalently,

}v}2L8p0,T ;Hs
0pTqq

` }v}2
L2p0,T ;H

s` 1
2

0 pTqq
ď CpT q

ˆ

}v0}
2
Hs

0pTq
` }q}2

L2p0,T ;H
s´ 1

2
0 pTqq

˙

. (5.2.66)

Inequality (5.2.66) and the fact that v P Cpr0, T s;Hs
0pTqq are also true for

v0 P H
s
0pTq and q P L2

p0, T ;Hs´ 1
2

0 pTqq by density.
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Corollary 5.2.15. Let s ě 0, δ ą 0, and B P LpHs
0pTqq. Then for any v0 P H

s
0pTq, the

solution v of

$

&

%

Btv `
1
δ
Bxv ` B

2
xpT vq `GDGv “ Bv, t ě 0, x P T

vpx, 0q “ v0pxq, x P T,
(5.2.67)

satisfies v P Zs,T with

}v}Zs,T ď Cps, T q
`

}v0}Hs
0pTq

˘

.

Proof. This Corollary is consequence of Proposition 5.2.14 (see Corollary 2.17 in [59]).

Now we prove the local well-posedness of (5.2.1) in Hs
0pTq with s ě

1
2 .

Theorem 5.2.16. Let s P

ˆ

1
2 , 2



and δ ą 0 be given. Then there exists ρ ą 0 such that

for any u0 P H
s
0pTq with }u0}Hs

0pTq ă ρ, there exists some time T ą 0 such that (5.2.1)

admits a unique solution in the space Zs,T .

Proof. An application of the fixed point theorem, together with Proposition 5.2.14 and

the Sobolev embedding Hs
0pTq Ă L8pTq for s ą

1
2 imply this result (see Theorem 2.13 in

[59]).

Finally, we derive a local exponential stability result in Hs
0 for s ą

1
2 .

Theorem 5.2.17. Let s P

ˆ

1
2 , 2



and δ ą 0 be given. Then there exist some numbers

ρ ą 0, λ ą 0 and C ą 0 such that for any u0 P H
s
0pTq with }u0}Hs

0pTq ă ρ, there is a unique

solution u : p0,`8q ÝÑ Hs
0pTq of (5.2.1) with u P Zs,T for all T ą 0 and such that

}uptq}Hs
0pTq ď Ce´λt}u0}Hs

0pTq, @t ě 0.

Proof. Similar to the proof of Theorem 2.14 in [59].

Observe that Theorem 5.0.5 is consequence of theorem 5.2.17.

5.3 Control of Intermediate Long Wave equation

In this section we study the control properties of the ILW equation. Specifically,

we prove the exact controllability of the system

$

&

%

Btu`
1
δ
Bxu` B

2
xpT uq ` Bxpu2

q “ Gh, t P p0, T q, x P T

upx, 0q “ u0pxq, x P T,
(5.3.1)
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where δ ą 0, D and G are defined in (5.0.3) and (2.0.9) respectively, and h is the control

input. As the contraction mapping can not be applied directly to ILW equation, we

incorporate the feedback ´DGu into the control input h to obtain a strong enough

smoothing effect to apply the contraction principle.

Setting

hptq “ ´DGuptq `D
1
2 h̃ptq,

we are thus led to investigate the controllability of the system

$

&

%

Btu`
1
δ
Bxu` B

2
xpT uq `GDGu` Bxpu2

q “ GD
1
2 h̃, t P p0, T q, x P T

upx, 0q “ u0pxq, x P T.
(5.3.2)

Therefore, we will prove the following local exact controllability result.

Theorem 5.3.1. Let δ ą 0, s P
ˆ

1
2 , 2



, and T ą 0. Then there exists µ ą 0 such that for

any u0, u1 P H
s
0pTq with

}u0}Hs
0pTq ă µ, }u1}Hs

0pTq ă µ

one may find a control h̃ P L2
p0, T ;Hs

pTqq such that the system (5.3.2) admits a unique

solution u in the class Zs,T for which upx, T q “ u1pxq.

Proof. Following a similar procedure as in the proof of Theorem 3.1 in [59], we prove

Theorem 5.3.1 in two steps.

Step 1. First, we prove the exact controllability of the linearized system

$

&

%

Btu`
1
δ
Bxu` B

2
xpT uq `GDGu “ GD

1
2 h̃, t P p0, T q, x P T

upx, 0q “ u0pxq, x P T,
(5.3.3)

in Hs
0pTq for s ě 0. For this, we use the Hilbert Uniqueness Method (HUM) following the

same approach as in [76, 59]. Observe that this theorem is a consequence of Proposition

5.2.14, Proposition 5.2.9 and the fact that the operator p1´ B2
xq
´ s

2 commutes with T (see

steps 1 and 2 in the proof of Theorem 3.1 in [59]).

Step 2. Here we use the fixed-point argument as in [72, 76, 59] to prove the exact

controllability of (5.3.2) in Hs
0pTq. Pick any δ ą 0, s P

ˆ

1
2 , 2



, and T ą 0. We consider

tSptqutě0 the semigroup introduced in the Lemma 5.2.13 and Zs,T the space defined in

(5.2.60). For v P Zs,T , we set

wpvq “

ż T

0
SpT ´ tqp2vBxvqptq dt.

From step 1, we have that the linearized system (5.3.3), with initial data u0 P H
s
0pTq

and the control function h̃ P L2
p0, T ;Hs

0pTqq, is well-posed and exactly controllable in
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Hs
0pTq. Using classical functional analysis argument (see e.g. [25, Lemma 2.48 p. 58]),

we can construct a continuous operator Φ : Hs
0pTq ÝÑ L2

p0, T ;Hs
0pTqq such that for

any u1 P H
s
0pTq the solution u of (5.3.3) associated with u0 “ 0 and h̃ “ Φpu1q satisfies

upT q “ u1. Let us denote by u “ W ph̃q the corresponding trajectory, i.e.

W ph̃qptq “ uptq “

ż t

0
Spt´ τqGD

1
2 h̃pτqdτ.

From Proposition 5.2.14 we have that W is continuous from L2
p0, T ;Hs

0pTqq
into Zs,T . Let v P Zs,T and choose

h̃ “ Φpu1 ´ SpT qu0 ` wpvqq,

then

Sptqu0 ´

ż t

0
Spt´ τqp2vBxvqpτqdτ `W ph̃qptq “

#

u0, if t “ 0,
u1, if t “ T.

This suggests that we consider the nonlinear map v ÝÑ Γpvq, where

Γpvqptq “ Sptqu0 ´

ż t

0
Spt´ τqp2vBxvqpτqdτ `W pΦpu1 ´ SpT qu0 ` wpvqqqptq.

We will prove that Γ has a fixed point in the space Zs,T . Using similar estimates as in the

proof of Theorem 5.2.16, we obtain that

}wpvq}Hs
0pTq ď C

›

›

›

›

ż t

0
Spt´ τqp2vBxvqpτqdτ

›

›

›

›

Zs,T

ď C}v}2Zs,T

and that there are some constants C0 ą 0 and C1 ą 0 such that

}Γpvq}Zs,T ď C0
`

}u0}Hs
0pTq ` }u1}Hs

0pTq
˘

` C1}v}
2
Zs,T

, @v P Zs,T ,

}Γpv1
q ´ Γpv2

q}Zs,T ď C1
`

}v1
}Zs,T ` }v

2
}Zs,T

˘

}v1
´ v2

}Zs,T , @v
1, v2

P Zs,T .

Let B :“ tv P Zs,T ; }v}Zs,T ď Ru. We choose the radious R in such a way that the ball B

is left invariant by Γ and Γ contracts in B, i.e.

C0
`

}u0}Hs
0pTq ` }u1}Hs

0pTq
˘

` C1R
2
ď R,

and

2C1R ă 1.

It is sufficient to take R “ p4C1q
´1 and µ :“ R

4C0
. Therefore, the unique fixed-point u of Γ

satisfies upx, T q “ u1 and the proof of Theorem 5.3.1 is complete.

Finally, note that Theorem 5.0.6 follows at once from Theorem 5.3.1 by letting

h “ ´DGu`D
1
2 h̃ P L2

p0, T ;Hs´ 1
2

0 pTqq.
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Concluding Remarks

In this thesis, we considered the Benjamin and the Intermediate Long Wave

(ILW) equations posed on a periodic domain T and proved that the both are exactly

controllable and exponentially stabilizable. These results are in accordance with the

controllability and stabilization results for the KdV and BO equations obtained respectively

in [52] and [59]. From this work, three articles have emerged:

• On the controllability and stabilization of the linearized Benjamin equation on a

Periodic Domain, Nonlinear Analysis: Real World Applications, 51 (2020) 102978

(see [67]).

• On the controllability and stabilization of the Benjamin equation, submitted for

publication and is available in ArXiv:1904.03492 (see [68]).

• On the controllability and stabilization of the Intermediate Long Wave equation on a

periodic domain, in preparation.

Extending these results about the controllability and stabilization to the bidi-

mensional dispersive models is a challenging task. In this direction, consider the bidimen-

sional Benjamin equation

Btu` B
3
xu´ αHB2

xu´ B
´1
x B

2
yu`

1
2Bxpu

2
q “ 0, px, yq P T2, t ě 0, (C5.1)

posed on a periodic domain T2.

In order to prove the controllability of the linearized bidimensional Benjamin

equation associated to (C5.1), we tried to follow the approach in [20]. In this approach the

uniform gap condition for the eigenvalues associated to the linear operator B3
x´αHB2

x´λ
2
B
´1
x

for any λ P Z is required. This gap condition goes to zero when λ goes to infinity. To

overcome this situation, we tried to use another approach known in the literature involving

for instance the Theorem of Kahane (see page 153 of [46]). However, it was not possible

to prove the exact controllability of the linearized bidimensional Benjamin equation
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associated to (C5.1) using that tool. As far as we know, the controllability of the Linearized

bidimensional Benjamin equation associated to (C5.1) is still an open problem.

Another bidimensional model of interest is the Benjamin-Ono equation

Btu´Hpxq
pB

2
xyuq ` uByu “ 0, px, yq P T2, t ě 0, (C5.2)

posed on T2, where Hpxq is the Hilbert transform in the x-variable. For the details about

this model we refer to [63] and the references therein.

It is important to point out that, during the development of our doctoral

project we studied the controllability and stabilization properties for the bidimensional

Benjamin-Ono equation (C5.2). In fact, this was the first problem we dealt with. Due

to the lack of the spectral gap condition in higher dimension we could not succeed and

shifted our attention to the Benjamin equation. However, with the knowledge acquired

during the development of this thesis, we think that it might be possible to prove the

exact controllability of the (C5.2) by using the approach in [20]. This is a future work.

Recently, Flores et al. [34, 35], studied the controllability and stabilization

properties for the dispersion-generalized Benjamin-Ono equation in T. As a future work,

we believe it is possible to apply the techniques used in [34, 35] to obtain the controllability

and stabilization for a generalized Benjamin type equation on a periodic domain.

Btu´ αH2r
Bxu´ βD

2m
Bxu` u

p
Bxu “ 0, x P T, t ą 0, (C5.3)

where {D2mupkq “ |k|2mûpkq, m ě 1, zH2rupkq “ ´|k|2rûpkq, 0 ă r ă m, p ě 1 is an integer

and α, β are non negative constants (see [58] and the references therein).
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Appendix

Lemma A.1. Let s, r P R. Let f denotes the operator of multiplication by f P C8pTq.
Then, rDr, f s :“ Dr f ´ f Dr maps any Hs

pTq into Hs´r`1
pTq. That is, there exists a

constant c “ cf depending only on f such that

}rDr, f sφ}Hs´r`1pTq ď cf }φ}HspTq . (A.1)

Proof. This result is proved in [51] (see Lemma A.1 in the appendix).

Lemma A.2. Let f P C8pTq. Then, there exists some constant C such that for every

s P R, there exists Cs such that the following estimate holds

}fv}HspTq ď C }v}HspTq ` Cs }v}Hs´1pTq , (A.2)

for all v P Hs
pTq.

Proof. This result is proved in [51] (see Corollary A.2 in the appendix), which follows just

writing

Ds
pfvq “ fDsv ` rDs, f sv,

where rDs, f s :“ Ds f ´ f Ds.

Lemma A.3. Let f P C8pTq and ρε “ eε
2B2
x with 0 ď ε ď 1. Then rρε, f s is uniformly

bounded as an operator from Hs into Hs`1 and

}rρε, f sv}Hs`1pTq ď Cs}v}HspTq,

for all v P Hs
pTq.

Proof. This result is proved in [51] (see Lemma A.3 in the appendix). The proof is exactly

the same as for Lemma A.1 using

ˇ

ˇ

ˇ
e´ε

2n2
´ e´ε

2k2
ˇ

ˇ

ˇ
ď C |n´ k|

`

xny´1
` xky´1˘ , (A.3)
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because

|Bξ

´

e´ε
2ξ2

¯

| ď C xξy´1. (A.4)

Lemma A.4. A function φ P C8pTq can be written in the form Bxϕ for some function

ϕ P C8pTq, if and only if,
ż

T
φpxq dx “ 0. (A.5)

Proof. pñq Let φ P C8pTq and assume that φpxq “ Bxϕpxq, for all x P T, where ϕ P C8pTq.
Then ϕ is a 2π´periodic function. Thus,

ż

T
φpxq dx “

ż

T
Bxϕpxq dx “ ϕp2πq ´ ϕp0q “ 0. (A.6)

pðq Let φ P C8pTq, with

ż

T
φpxq dx “

ż 2π

0
φpxq dx “ 0.

Define

ϕpxq “

ż x

0
φpsq ds,

for all x P T. Note that ϕp0q “ ϕp2πq “ 0, thus ϕ is a 2π´periodic function in R. Then

by Fundamental Theorem of Calculus we obtain that Bxϕpxq “ φpxq, for all x P T, and

ϕ P C8pTq.

Lemma A.5. For any s P R, there exists a constant C “ Cpsq ą 0 such that

´pGpDpGuqq, uqHs
0pTq

ď C}u}2Hs
0pTq

´ }D
1
2 pGuq}2Hs

0pTq
, @u P Hs`1

0 pTq.

Proof. See Claim 1 of Lemma 2.2 in [59].
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