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Resumo

Nesta tese, estudamos a controlabilidade e estabilizacao das equacgoes de Benjamin e

Intermediate Long Wave (ILW) num dominio periddico.

A primeira parte deste trabalho envolve a equacao de Benjamin derivada por Benjamin em
[12] que modela a propagagao unidirecional de ondas longas num sistema de dois fluidos
onde o fluido inferior com maior densidade é infinitamente profundo e a interface esta
sujeita a capilaridade. Primeiramente, estudaremos a controlabilidade e estabilidade do
sistema linear nao homogéneo associado a equacao de Benjamin. Provamos a existéncia e
unicidade das solugoes para este sistema via teoria de semigrupos. Depois, usamos o método
classico do momento (veja [79]) para mostrar que o sistema linear é globalmente exatamente
controlavel e consequentemente obter um resultado de estabilizacao exponencial com uma

taxa de decaimento arbitraria.

Em seguida, derivamos a propriedade de propagacao de compacidade, propagacao de
regularidade e a propriedade de continuagao unica para a equagao de Benjamin em
espacos de Bourgain associado. Usamos essas propriedades para provar um resultado
de estabilidade global assintotica com uma taxa de decaimento arbitraria. Finalmente,

obtemos un resultado de controlabilidade global para a equacao de Benjamin.

A segunda parte de este trabalho se concentra nas propriedades de controlabilidade e
estabilizacao da equacao ILW, que modela ondas dispersivas nao lineares de amplitude
moderada na interface entre dois fluidos de diferentes densidades positivas contidos em
repouso num canal longo com uma parte superior e inferior horizontal, o fluido mais leve
formando uma camada horizontal acima de uma camada da mesma profundidade do fluido
mais pesado. Nés provamos que a equacao ILW com condigoes de fronteira periddicas é
exatamente controlavel e exponencialmente estabilizavel. Especificamente, incorporamos
uma lei de feedback na forma de amortecimento localizado na equagao para estabelecer
um efeito regularizante. Usando este efeito regularizante e propriedades de propagacao de
regularidade e continuagao nica, conseguimos demonstrar a estabilizagao semi-global no
espaco de Sobolev L2(T) de solugdes fracas obtidas pelo método de vanishing viscocity.
Também, estabelecemos a boa colocagao local e a estabilidade exponencial local em H(T)
com s > 1 Finalmente, a controlabilidade exata local em H{(T), com s > 37 ¢é derivada
combinado a lei de feedback acima com um controle de malha aberta. Esses resultados sao

semelhantes aos obtidos por Linares e Rosier [59] para a equacao de BO.

Palavras-chave: Equacoes Dispersivas; Equacao de Benjamin; Equacao Intermediate
Long Wave; Espacos de Sobolev; Boa-colocagao local e global; Controle; Estabilizacao;

Propriedade de continuacao tnica.



Abstract

In this thesis, we study the controllability and stabilization of Benjamin and Intermediate

Long Wave (ILW) equations on a periodic domain.

In the first part of this work we consider the Benjamin equation derived by Benjamin in [12].
This model describes the unidirectional propagation of long waves in a two-fluid system
where the lower fluid with greater density is infinitely deep and the interface is subject to
capillarity. First we deal with the controllability and stabilization of the nonhomogenous
linear system associated to the Benjamin equation. We obtain the existence and uniqueness
of solutions of this system via semigroup theory. Then, we use the classical moment method
(see [79]) to show that the linear system is globally exactly controllable, and consequently

to get a global exponential stabilization result with an arbitrary decay rate.

Next, we derive propagation of compactness, the propagation of smoothness and the unique
continuation property for the nonlinear Benjamin equation in associated Bourgain’s spaces
in the periodic setting. We use these properties to obtain the global exponential stability
with a natural feedback law and an arbitrary decay rate. Finally, we also obtain the global

controllability result for the Benjamin equation.

The second part of this work we focus on the controllability and the stabilization properties
of the ILW equation which models nonlinear dispersive waves of moderate amplitude on
the interface between two fluids of different positive densities contained at rest in a long
channel with a horizontal top and bottom, the lighter fluid forming a horizontal layer above
a layer of the same depth of the heavier fluid. We prove that the ILW equation with periodic
boundary conditions is exactly controllable and exponentially stabilizable. Specifically, we
incorporate a feedback law in the form of localized damping into the equation to establish
a smoothing effect. Using this smoothing effect together with the propagation of regularity
property and the unique continuation property we show the semi-global stabilization in
LQ(']I‘) of weak solutions obtained by the method of vanishing viscosity. The local-well
posedness and the local exponential stability in Hj(T) with s > ; is also established
using the contraction mapping theorem. Finally, the local exact controllability is derived
in Hj(T) with s > 3 by combining the above feedback law with some open-loop control.

These results are similar to the ones obtained by Linares and Rosier [59] for the BO.

Keywords: Dispersive equation; Benjamin equation; Intermediate Long Wave Equa-
tion; Sobolev spaces; local and Global Well-posedness; Control; Stabilization; Unique

continuation property.



List of symbols

Z*

N*

RTL

Ac B
Ac B
X Y

|51
ok f

J

o f

P = 1?(Z)

the set of natural numbers.

the set of integers.

the set of integers different from zero.

the set of natural numbers different from zero.
the set of real numbers.

the set of complex numbers.

the n-dimensional Euclidean space.

the torus, defined by T = R/(27Z) := {[z] : x € R}, where each equiva~
lent class [z] is defined as [z] := {y € R: x = y mod(27)}.

the euclidean norm +/22 + 2 + - - - + 22

n? 7‘TTL> e
R"™.

where z = (x1, 29, ...

A subset of B.
A proper subset of B.
continuous embedding of space X into space Y.

B1+ B2+ -+ B, for each multi-index 8 = (1, B2, ..., 3) € N*".

partial derivative of f = f(x1,...,x,) of order k € N* with respect to

J-th variable.

o0 05> - 3P f, where 8 = (81, B, - - -, Bn).

the set of all complex sequences o = {ay}neny such that ||aff, :=

2 la|P < oo, for 1 < p < 400. If p = o0, then ||af;» := sup |a,|.
Z

neZ ne



I f

the set of all complex sequences o = {ay,}neny such that Ha||l22 =
2#2(1 + [n|?)*|an|* < o0, for s = 0.

nez

the set of continuous functions in X.
the set of continuous-periodic functions defined on X.

the set of continuous-periodic functions defined on X that are infinitely
differentiable.

the set of continuous functions with compact support in X.

the set of continuous-periodic functions defined on T that are infinitely

differentiable with compact support in T.

the set of continuous functions defined on X that are infinitely differen-

tiable with compact support in X.
All functions f € C(X) such that f vanishes at infinity.

the set of functions f such that ¢°f € C'(X) for each multi-indexes
with || < n.

the set ﬂ C"(X).

neN

the set of all functions in the class C* with compact support in X.
the Fourier transform of the distribution f.

the inverse Fourier transform of the distribution f.
the Lebesgue space of p-integrable functions.

the Banach space of bounded linear operators from X into X with norm
o 1T
|7 = sup :
z#£0 T

the Sobolev space of L2—type, 24.
FHA+]- P2

the commutator operator.



1.1
1.2
1.2.1
1.2.2
1.3
1.4
1.5
1.6
1.6.1
1.6.2
1.7

2.1
2.2
2.3
2.4
2.5

3.1
3.1.1
3.1.2
3.13
3.2
3.3
3.4

Contents

INTRODUCTION . . . . .. e e e e e e e e 13
1 PRELIMINARIES . . . .. . . ... et 19
The Lebesgue spaces LV . . . . . . . . .. ... .. .. ... ... ... 19
Fourier analysis on the Torus . . . . . . . . .. ... ... ... ... .. 20
Fourier transform on L'(T) and L*(T) . .. . . ... ... ... ..... 20
Periodic Distributions . . . . . . . . .. ..o 21
Sobolev Spaces of L*(T) type . . . . . . . . ..o i i 24
The Hilbert transform . . . . . . . . . ... ... ... ... ... .. 25
Semigroup Theory . . . . . . . . . . ... 26
Riesz Basis and Ingham’s Type Inequalities . . . . . . .. .. .. .. 32
Riesz Basis . . . . . . . 32
The Ingham’'s inequality . . . . . .. .. ... . oL 34

Nonlinear interpolation theory and interpolation of L”—spaces with
change of measure . . . . . . .. ... 35

2 CONTROLLABILITY AND STABILIZATION OF THE LIN-
EARIZED BENJAMIN EQUATION ON A PERIODIC DOMAIN 39

Properties of the Operator G . . . . . . . . . ... ... ... ..... 41
Existence of solutions for the associated linear system . . . . . . .. 44
Control of the linear Benjamin equation . . . . . . .. ... .. ... 48
Stabilization of the Linear Benjamin Equation . . . . . . . . . . . .. 64

Stabilization of the Linear Benjamin Equation in H;(T) with Arbi-
trary Decay Rate . . . . . . . . .. . 73

3 BOURGAIN’S SPACES ASSOCIATED TO THE BENJAMIN

EQUATION . . . . . . . . e e e e e 80
Bourgain’s spaces . . . . . .. ... L 80
Properties of the spaces X (1) (resp. Zsp(I)) - . . o o o o o oo L 82
Linear and integral estimates . . . . . . . . .. .. ... L. 84
Nonlinear estimates . . . . . . . . . . . . . ... ... 91
The multiplication property of Bourgain’s Space . . . . . . ... .. 105
Propagation of Compactness and Regularity . . . . . . . .. ... .. 109

Unique continuation property for Benjamin equation . . . . . . . . . 122



4.1
4.2
4.3
4.4

5.1
5.2
521
522
5.3

4 CONTROLLABILITY AND STABILIZATION OF THE BEN-

JAMIN EQUATION ON A PERIODIC DOMAIN . ... .... 125
Local control for the nonlinear Benjamin equation . . . . . . . . .. 125
Stabilization of the Nonlinear Benjamin equation . . . . . . . . . .. 128
Controllability of the Benjamin Equation . . . . . . . . . .. ... .. 151

Stabilization of the Benjamin equation with an arbitrary decay rate 151

5 CONTROLLABILITY AND STABILIZATION OF THE INTER-
MEDIATE LONG WAVE EQUATION ON A PERIODIC DO-

MAIN . .. e e e e e 158
Linear Systems . . . . . . . . ... 161
Stabilization of ILW equation with a localized damping . . . . . . . 169
Semi-global exponential stabilization in L5(T) . . . . . . ... ... .. .. 169
Local stabilization in H5(T) . . . . . .. ... . ... .. ... ... 184
Control of Intermediate Long Wave equation . . . . . ... ... .. 188
CONCLUDING REMARKS . . . . . . . . o oo s e e e 191
BIBLIOGRAPHY . . . . . . e 193

APPENDIX . . . . . . 200



13

Introduction

A control system is a dynamical system on which one can act by using suitable
controls. There are a lot of problems that appear when studying controls systems. The
most common ones are the controllability problem and stabilization problem. In control
theory, some nonlinear evolution equations that arise in physics (electron-plasma, ion
field interaction, electromagnetic waves, gravitational waves, optical fibres etc.) or in fluid

dynamics and water wave theory can be formulated in the following abstract form
u = A(t)u + F(t)(h), (0.0.1)

where h is a so-called control function in a suitable space. Therefore, roughly speaking,
the controllability problem consists in finding an appropriate control input F(t)(h) to
guide the system (0.0.1) from a given initial state ug to a given terminal state u;. On the
other hand, assuming that we have an equilibrium which is unstable without an use of the
control, the following question arises: can one construct a feedback control law F'(t)(u)
which stabilizes the equilibrium? So the problem of stabilization consists in the existence
and construction of such stabilizing feedback law for a given control system (see [23] and
the references therein). More precisely, the following control and stabilization problems

are fundamental in control theory:

e Exact control problem. Let 7' > 0. Given an initial state ug and a terminal state
uy in a certain space, can one find an appropriate control input f = F(t)(h) so that

the equation (0.0.1) admits a solution u which satisfies u(-,0) = up and u(-,T) = u;?

e Stabilization problem. Can one find a feedback law f = F(f)u so that the resulting
closed-loop system
w+ At)u = F(t)u  teR, (0.0.2)

is asymptotically stable as t — o0?

Control and stabilization of dispersive equations have been widely studied in the literature,
see [53, 55, 59, 52, 79, 80, 81, 30, 51, 74, 75| and references therein. In particular, for the
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Korteweg-de Vries (KdV) equation we refer to [52, 80, 81, 90, 72, 24, 61, 73] and for the

Benjamin-Ono (BO) equation we refer to [53, 55, 59] and the references therein.

In this thesis, we address some questions about the controllability and stabi-
lization of the Benjamin and the Intermediate Long Wave (ILW) equations posed on a
periodic domain. Both equations are of a dispersive type and appear in different physical
contexts. In what follows, we summarize some results known in the literature for these

equations.

The Benjamin equation can be written as
ou — aHPPu — Bu+0,(u?) =0, zeR, teR, (0.0.3)

where u = wu(z,t) denotes a real-valued function, « is a positive real number, and H
denotes the Hilbert transform defined by

H(f)(x) = ip.v.f‘f(xyy)dy. (0.0.4)

The Benjamin equation (0.0.3) is an integro-differential equation that serves
as a generic model for unidirectional propagation of long waves in a two-fluid system
where the lower fluid with greater density is infinitely deep and the interface is subject to
capillarity. It was derived by Benjamin in [12] to study gravity-capillarity surface waves of
solitary type on deep water. He also showed that solutions of the equation (0.0.3) satisfy

the conserved quantities,
1
Ii(u) = J u?(z,t) da, (0.0.5)
2 Jr

and
I(u) = J}R B(&xu)Q(a:, t) — %u(w,t)?—[&xu(x,t) — ;u?’(x,t) dx. (0.0.6)

We refer to [12] and the references therein for more details about this physical model. Here,
we present a brief review of some results obtained for the Benjamin equation. Several works
have been devoted to study the existence, stability and asymptotic properties of solitary
waves solutions of (0.0.3), see for instance [3, 6, 12, 17]. The well-posedness of the initial
value problem (IVP) associated to the Benjamin equation on H°(R) has been extensively
studied for many years, see [47, 18, 85, 57, 58]. The best known global well-posedness

result in L*(R) is due to Linares [57]. There are further improvements of this result, viz.,

3
local well-posedness in H*(R) for s > —1 [18].

The Benjamin equation posed on a periodic spatial domain T := R/(27Z) is

also widely studied in the literature. Linares [57] proved the global well-posedness in L*(T),
1
and Shi and Junfeng [85] proved local well-posedness in H*(T) for s > —3
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In this work, we are interested in considering the Benjamin equation posed on

a periodic domain,
Ot — aHo*u — u+ 0,(u®) =0, xeT, teR, (0.0.7)

where H denotes the Hilbert transform defined by

1 27

H(f)(z) = 5 Pv. . f(z —y) cot (%) dy, VxeT. (0.0.8)

Note that the conserved quantities (0.0.5)-(0.0.6) hold in the periodic case as well. Our aim
is to study the equation (0.0.7) in the context of control theory by adding a control term
f = f(z,t). Such control f will be allowed to act only on a small subset of the domain T.
This situation includes more cases of practical interest and is therefore more relevant in
general. The Benjamin equation (0.0.7) contains both the third order local term —du, as
in the KAV equation, and the second order nonlocal term —a#d%u, as in the BO equation.
So, it is natural to analyze the Benjamin equation from the control and stabilization point
of view and check whether it behaves in similar way as the KdV and BO equations. In
this regard, our study is inspired by the works of Linares and Ortega [55], Russell and
Zhang [81], and Laurent, Rosier and Zhang [52].

We start studying the controllability and stabilization of the linearized Benjamin
equation. Using the classical moment method, and a generalization of the Ingham theorem,
we show that the linearized Benjamin equation with periodic boundary conditions is
exactly controllable for any time 7' > 0 with some control h € L*([0,T]; H3(T)), s = 0.
We also prove the global exponential stabilization of the linearized Benjamin equation in

H}(T) (s = 0) with any given decay rate.

Next, we extend the linear results to the corresponding nonlinear systems
following a similar approach as those implemented by Laurent et al. [51, 50, 52] (see
also [29, 30]). We use Bourgain’s spaces (see [14]) and some techniques motivated from
microlocal analysis to get certain propagation of compactness and regularity properties
to the solutions of the Benjamin equation posed on a periodic domain. These properties
together with the unique continuation property of the Benjamin equation will be used
to establish the global stabilization and exact controllability of the nonlinear Benjamin
equation (see the nonlinear system (2.0.1)). We also show that the same feedback control
law f = —GG*u (see (2.0.9)) that stabilizes the linearized Benjamin equation, stabilizes

the nonlinear Benjamin equation as well.

The global controllability result is derived by a combination of the exponential
stabilization result and the local control result, as is usual in control theory (see for
instance [29, 30, 51, 52, 53]). Indeed, given the initial data ug to be controlled, by means
of the damping term f = —GG*u supported in w, i.e by solving the IVP (2.0.1) (with

f = —GG*u), we drive it to a state close enough to the mean value p := [ug] in a
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sufficiently large time. We do the same with the final state u; by solving the system
backwards in time, due to the time reversibility of the Benjamin equation. This produces
two states which are close enough to p so that the local controllability result applies.
We also show that it is possible to construct a time-varying feedback law, as in [26, 52],
ensuring a global stabilization result with an arbitrary large decay rate for the Benjamin

equation.

Finally, motivated by our results obtained for the linearized Benjamin equation
in the first part of this work and the results due to Linares and Rosier [59] for the BO
equation, we study the controllability and stabilization properties for the Intermediate
Long Wave (ILW) equation,

1
Ou + gé’xu + 32(Tu) + 0,(u?) =0, xeR, teR, (0.0.9)

where u = u(z,t) denotes a real-valued function, § is a positive real number, and T is
defined by the principle-value convolution
1 o T
T(f) = —%p.v.J coth(%(:v —y))u(y)dy. (0.0.10)
-0
The equation (0.0.9) arises in internal wave theory (see [42, 48]) as a math-
ematical model of nonlinear dispersive waves of moderate amplitude on the interface
between two fluids of different positive densities contained at rest in a long channel with a
horizontal top and bottom, the lighter fluid forming a horizontal layer above a layer of the
same depth of the heavier fluid. The parameter 6 > 0 characterizes the relative depths of
two homogeneous fluid layers, the deviation of the interface between which is governed

approximately by the Intermediate Long-Wave equation.

In [1], Bona et. al proved that the ILW equation (0.0.9) possesses an infinite

sequence of conserved quantities, the first three being

I(u) = f u(z,t) de, (0.0.11)
I(u) = ;J]RuQ(x,t) dzx, (0.0.12)
and
Is(u) = —f <1u3(x t) —u(x, )T (0pu(z,t)) + 11,L2(x t)) dx (0.0.13)
3 " 3 9 9 x 9 5 9 . U

Some works have been devoted to study the existence, stability and asymptotic
properties of solitary waves solutions of (0.0.9), see for instance [42, 7, 2] and references
therein. The equation (0.0.9) can be solved in R via an inverse scattering transform (see
[45]). Also, the well-posedness of the IVP associated to the ILW equation (0.0.9) on H*(R)
has been studied (see [4], [1] and [2] ). The best known local well-posedness result in H*(R)
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3
with s > 3 is due to Bona et all [1].

In this work we consider the ILW equation posed on a periodic spatial domain
T :=R/(27Z)

1
Ouu + gazu + 2(Tu) + 0,(u*) =0, xeT, teR, (0.0.14)

where the mean value of u denoted by [u] is zero and T is a Fourier multiplier operator
defined by
Tu(n) := icoth(nd) @(n), for alln e Z*, (0.0.15)

with 7(n) the n'"— Fourier coefficient of u, (see [5, 1, 66]). The operator T defined in
(0.0.15) satisfies

T (uTv+vTu)=TuTv— uv, (0.0.16)
and o
f (uTv+vTu) de =0, (0.0.17)

where [u] = [v] = 0. The quantities (0.0.11)-(0.0.13) are also conserved on the torus T.
The IVP in the periodic setting has been studied by Bona et. al [1]. The best result so far
is that the IVP is locally well-posed in the space

H{(T) == {ue H(T) : [u] = 0,}

3
for s > 5 Considering initial data wuy for the IVP associated to (0.0.14), we have the

following results (see [1] and the references therein).

o Ifuye HO%(’IF) for j = 2, or 3, then there exists a weak solution u of (0.0.14) with
initial value ugy such that v e L¥*((0, +0); HO% (T)).

3
o If ug € Hy(T) where s > 2 then this solution is unique and, for each 7" > 0,

3
u e C*((0,T); H*(T)) for all k such that s — 2k > —3 Moreover, for each

T > 0, the correspondence that associates uy to u is continuous from H(T) to
C*((0,T); Hy2*(T)) for all k for which s — 2k > —;’. If s = g with n € Z, n > 3,

then u € CF ([0, +c0); Hy~2*(T)) for k with s —2k > —‘Z. Here CF([0, +o0); Hy2*(T))
stands for the space of functions wu : [0, +00) — H~2*(T) whose t—derivatives up

to order k exist and are continuous and bounded with values in Hi 2*(T).

Recall that the positive parameter § in equation (0.0.14) characterizes the
depth of the lighter fluid layer in a two-fluid system in which the light fluid rests upon a
heavier fluid (see [48]). Several works have pointed out that the equation (0.0.9) reduces to
the KdV equation as 6 — 0 and to the BO equation as 6 — +0 (see [1, 48, 83, 82, 60]).
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As announced earlier, we consider the ILW equation (0.0.14) in the periodic
setting. First, we prove the controllability and stabilization of the linearized system
associated to the ILW equation (0.0.14). Next, using an observability inequality derived
from the exact controllability result, we show that the exponential decay rate of the
resulting linearized closed-loop system is as large as one desires. Finally, we deal with the
control and stabilization problem for the full ILW equation. To stabilize the nonlinear ILW

equation, we consider the feedback law

[ ==G(D(Gu)),
where ﬁu(n) = |n|u(n), ¥n e Z. A scaling argument gives (at least formally)
§HU(T)HL5(T) + . | D2 (Gu) |z (rydt = iHUOHLg(T)' (0.0.18)

This suggests that the energy is dissipated over time. On the other hand,
(0.0.18) reveals a smoothing effect, at least in a region w < T. Using a propagation of
regularity property in the same vein as in [30, 52, 51, 50, 68], we prove that the smoothing

effect holds everywhere, i.e.

Using this smoothing effect and the classical compactness/uniqueness argument, we first

U OTH2 (T) <C(T HUOHL?J(T))' (0.0.19)

prove that the weak solutions in the sense of vanishing viscosity of the corresponding

closed-loop equation is semi-globally exponentially stable in L3(T).

We also use the smoothing effect (0.0.19) to extend (at least locally) the
1
exponential stability from L2(T) to HS(T) for s € (572]. Finally, we derive an exact

1
controllability result in H*(T), s € (5, 2] by incorporating the same feedback law f =
—G(D(Gu)) in the control input to obtain a smoothing effect. Thus, one can write the

control input f = Gh e L*(0,T; HS’%(T)) with h = —DGu + D2 for some function h.

This thesis is organized as follows. Chapter 1 is dedicated to the preliminaries

for the proper development of the text.

In Chapter 2, we prove the exact controllability and stabilization of the linearized

Benjamin equation posed on a periodic domain (see Theorem 2.3.7 and Corollary 2.4.3).

In Chapter 3 we introduce the Bourgain’s spaces associated to Benjamin
equation and derive the propagation of compactness and Regularity as well as the unique

continuation property for the Benjamin equation.

In Chapter 4 we present the global exact controllability and global exponential

stabilization of the Benjamin equation on a periodic domain.

Finally, Chapter 5 contains the proofs of the results concerning the controllability

and stabilization of the ILW equation on a periodic domain.
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Chapter

Preliminaries

In this chapter we introduce some definitions, concepts, properties and results
that are used for the development of this work. We begin with some results related
to the Lebesgue spaces LP, Fourier analysis on T and periodic distributions. Then, we
continue with Sobolev spaces on T, the Hilbert transform, Semigroup theory, Riesz Basis
and Ingham’s type inequalities. Finally, we recall some results related to non-linear

interpolation theory and interpolation of L”—spaces with change of measure.

1.1 The Lebesgue spaces L
In this section, we present the Lebesgue spaces. We deeply encourage the reader
to revise more properties and results on these spaces in the books [15, 36].

Let (X, M, ) be a measure space with p always being a positive measure.
Here we understand that two p-measurable functions are considered equal if they coincide

except on a set of p-measure zero. For a measurable function f on X, we define the space

IP(X) = LP(X,M,pu) ={f: X — C: f is measurable and | f|» < o0},

Il (L'f’pyif“p””
Lr 1=

esssup | f(x)] if p = o0.

zeX

where

We will abbreviate LP(X, M, u) by LP(X) or simply by LP. For 1 < p < o,
(LP(X, M, ), | - |lee) is & normed space. It is clear that if X has finite measure and
1<qg<p<o,then L?(X) C [P(X) c LYX) € L'(X).

Important results regarding duality in LP-spaces can be found in [36, page 190]
and [31]. In [64, page 40] the mixed spaces LP(X; LY(Y')), where X and Y are assumed

Banach spaces, are introduced. Further properties on mixed L” spaces can be found there.
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1.2 Fourier analysis on the Torus

In this section, we record some definitions and properties related with Fourier
transform and periodic distributions on T. The content of this section is based mainly on
the books [41, 37]. We also refer the references [49, 36, 37, 38] to recall the definition of
Fourier transform, the Schwartz class and the space of tempered distributions, which are

important tools to define Bourgain’s spaces.

1.2.1 Fourier transform on L'(T) and L*(T)

We begin this subsection defining the Fourier’s coefficients.

Definition 1.2.1. For a complex-valued function f in L*(T) and k € Z, we define

1 27

Flk) = — (z)e *dx, Vkel.

:27T0

We call _]?(k?) the k™" — Fourier coefficient of f. The Fourier series of f at x is the series

meZL
~ - 1 _
Note that f is well defined with sup |f(k)| < Q—HfHLl. We denote by f the
keZ ™

complex conjugate of the function f, by f the function f(z) = f(—z), by ,f(x) = f(x—y)
the translation for any y € R, and by f = g the function

(f*g)(x) = 217r L flz —y)g(y)dy, forallzeT.

Some properties of the Fourier’s transform on L'(T) can be found in [37, Chapter 3]. We
continue with a short discussion of Fourier series of square summable coefficients. Now we

consider the Hilbert space L*(T) (some times denoted also by L2(T)) with inner product

(f,9)r2(r) = Lf(:v)g(a:)dx.

ezkx

Remark 1.2.2. [t is known that {{y}rez := {
V2T

basis for L*(T).

} forms a Fourier’s orthonormal
keZ

The orthonormality of the sequence {t} is a consequence of the following

simple but powerful identity:

1

— when k =

f Vp(@)m(z)de = 4 27 T
T 0 when k& # m.
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Proposition 1.2.3 ([37, Prop. 3.1.16]). The following are valid for f,g e L*(T) :

(1) (Plancherel’s identity)
[F12em = 27 2 LT (R)P,

keZ

(13) (Parseval’s relation)

(fa g)LQ(T) = 27(2 f(k)W7

keZ
(¢4i) The map f —> {]?(/i‘)}kez is an isometry from L*(T) onto I5(7Z),

(iv) For all k € Z we have

Fok) =Y fm)g(k —m) = f(k —m)g(m).

me

N
3
m
N

1.2.2 Periodic Distributions

In this subsection, we introduce the space of periodic distributions and its basic

properties. We begin by recalling the C* periodic functions.

Let C,°(T) be the collection of all functions f : R — C which are C* and
2m—periodic. There is no natural norm with respect to which C’;O (T) is a Banach space.
Nevertheless, there exists a natural distance which turns C;°(T) into a complete metric
space. In fact, it can be shown that

+o0 ; ;
L Hf(]) — g(])”oo
di(f,g)= > 277 . —
19 = 2 T o

j=

fr9€ Cr(T),

defines a metric in C}°(T). Furthermore, if {f,} = C,°(T) and f € C;°(T), then f, 4, rif
and only if | f¥) — f@|, — 0 as n —> oo for all j = 0,1,2,--- . In this case we write

CP(T)
fn — f

Now, we introduce the class of rapidly decreasing sequences. This space has

nice properties in relation to the Fourier transform and it is fundamental for the definition

of periodic distributions.

The space of rapidly decreasing sequences, denoted by G(7Z), is the set of all
+00
complex sequences a = {ay}rez such that Z |k|[|as| < o0, for all j € N. Note that
k=—o0
a = {ap ez € G(Z) if and only if |al|e; 1= sup(|a||k|?) < oo, for all j € N.
keZ

In what follows we will regard G(Z) as a complete metric space provided with
+00
. —i o= Blloo,
the distance ds(a, 3) = 277 2
(0 = 22
G(Z) converges to o € G(Z), with respect to ds if and only if |a" — ], ; — 0 asn —

for all 7 = 0,1,2,.... In this case we write a" 9D, 4,

a, € G(Z). Thus, a sequence {a"},cz <
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The Fourier transform * : C°(T) — G(Z) is an isomorphism and homeomor-
phism, that is, linear, one to one, onto G(Z), and continuous with a continuous inverse
(with respect to the metrics d; and dy). Further properties of the Fourier’s transform in
C,°(T) can be found in [41, §3.1 ].

Here, we define the class of periodic distributions.
Definition 1.2.4 (Periodic Distribution, see [41, Theorem 3.168]). A linear functional on

CA(T), T: CF(T) — C, is called a periodic distribution if T is continuous.

The set of all periodic distributions will be denoted by D’'(T). Therefore, D'(T)
is the topological dual of C)°(T). Before proceeding it is convenient to introduce some
definitions (see §3.2 in [41]).

Definition 1.2.5. Let f € D'(T).

(i) (D'(T) convergence) We say that a sequence {Ty, }eny < D'(T) converges to T € D'(T),
if (Tn,g)—{T,g),as n— 0, ¥geCr(T).

(i) Its jth distributional derivative f9 is defined by the relation
9,9y = (=1){f,gV), V ge CI(T).
(74i) Let 1 € C)*(T). The product 1 f is the periodic distribution defined by the formula
Wf,g)=<{fvg), ¥geCr(T).
(iv) (Fourier transform in D'(T)) The Fourier transform of f € D'(T) is the function

~ ~ 1 .
f:Z — C defined by the formula f(k) = 2—<f7 e~ ke Z. Moreover, the n'"
T

partial sum associated to f is

Su(f)@) = D} J(k) ™.

(v) Let e C°(T). The convolution f 1 of f and ¥ is the function
(f +)(a) i= 5 (o, V€ (T,

The next theorem shows that the sequence {S,, f},=0 converges to f in D'(T).

Theorem 1.2.6 ( [41, Theorem 3.166]). Let f € D'(T). Then S,(f) € CX(T), VneN,

and S, (f) o, f as n — oo. Therefore,

+00 . ‘
=20 Fk)e* = lim Si(f), V¥ feD(T),
k=—0o0

k—+400

where the limit is taken in the distributional sense.
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Next, we give a complete characterization of D'(T) in terms of the Fourier

transform. To achieve this, we introduce the following definition

Definition 1.2.7. (Slow Growth Sequences) The slow growth sequence space, denoted by
G'(Z) is defined as {{am}tmez € C : 3C > 0 andng € N with |a,| < C |m|™, Ym € Z*}.

Since G'(Z) is clearly a complex vector space, we can turn it into a topological
vector space defining the topology of pointwise convergence. It can be shown that G'(Z) is
the topological dual of G(Z).

Theorem 1.2.8 ( [41, Theorem 3.172]). The Fourier transform "~ : D'(T) — G'(Z) is a

linear bijection. Its inverse transform  : G'(Z) — D'(T) is given by the formula
+oo 4
(@) = {ambmez = (@) = Y g™,
k=—o0
where the series convergence is in the sense of D'(T). Moreover, the Fourier transform "

and its inverse are continuous maps.

Further properties of the Fourier’s transform * for periodic distributions and

convolution are mentioned in the following proposition.
Proposition 1.2.9 ( [41, Prop. 3.183]). Let f,g € D(T), ¢, € C,°(T) and X € C.
(i) (ryf) * @ = 1y(f =) = f* (1y9). In particular, f * ¢ is 2m—periodic. Moreover,
frpeCP(T) and (f =)™ = f™ s o= frp™ VYneN.
(i7) (identity for the convolution product) (2md = ¢)(x) = ¢(x), Yz € R.

(iii) (f = )" (k) = F(k)P(k), Yk € Z.

(iv) fOI(k) = (ik)"f(k), VkeZ, VY neZ".
(v) (1, /)" (k) = e *V k), Yk € Z, Yy € Z.

(vi) f is real valued if and only if f(k) = f(—k:), Vk € Z.

To close this subsection, we introduce the convolution product of two elements

of D'(T). It should be noted that this is a very special property of periodic distributions.

Definition 1.2.10. Let Let f,g € D'(T). The convolution f = g is defined by the formula
(frg,00={f.3%¢), ¢eCF(T).

It can be shown that if f,g € D'(T), then f = g € D'(T). Some properties that
hold for the convolution product can be found in [41, Page 200].
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1.3 Sobolev Spaces of L*(T) type

Here we introduce the so-called Sobolev spaces of L?—type on the Torus. As

we will see in the subsequent chapters, they are fundamental in our work.

Definition 1.3.1 ([41, Section 3.6]). Let s = 0, the Sobolev space of order s on torus is
defined by

fpmy = 2m Y (L+ k2)*| f(k)|? < oo} .

k=—00

H(T) := {feD’(T) 111

For s < 0, we define the Sobolev space H;(T) as the topological dual of H,*(T). The
duality s implemented by the pairing

(f, wmm-—%-ijf , feHT), ge H,*(T).

k=—0o0

Note that f e H;(T) if and only if {f(k;)}kez € 12(Z) (see the list of symbols).
Also, for all s € R, H3(T) is a Hilbert space with the inner product

(fs9)mgmy = 2m 2o (1+ [K*) F () G(R) < oo

keZ

Sometimes we write (f,g)s to denote (f, g)us(r) in order to summarize the notation. If
s = 0 then H)(T) is isometrically isomorphic to L2(T). Also, the Sobolev spaces form a
decreasing sequence of Hilbert spaces i.e. given s,7 € R with s > 7 then H(T) — H(T),
that is, H,(T) is continuously and densely embedded in H(T). In particular, if s > 0
then, H3(T) — L3(T).

Sometimes we will write || f||s to denote | f||s(r) in order to shorten the notation.

Now we state some results on the Sobolev spaces that provide a classification

of the elements of D'(T) in term of their smoothness.

Proposition 1.3.2 ([41, page 203]). Let m € N. Then f € H)'(T) if and only if D fe
2 . . . . /

L;(T), j €{0,1,2,...,m} where the derivatives are taken in the sense of D'(T). Moreover,

[ fllm and

1
m 2
A1 == (2 H(W!S)
j=0
are equivalent, that is, there are positive constants Cy, and C!  such that
Con £ < WA < Cou I f 5 for all f e HY(T).

1
Proposition 1.3.3 (Sobolev Lemma, see [41, page 204]). If s> 5 then,
H)(T) = Cy(T) and there exists C'> 0 such that

[£lloe < |l < C|f]ls.
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1
The Sobolev lemma implies that for s > o1 H;(T) is a Banach algebra. The
Sobolev lemma for LP—spaces can be found in [33, Lemma 1.5]. We finalize this subsection

giving a characterization for the Sobolev spaces H, (T) with s € R and defining the subspace
Hi(T).

Theorem 1.3.4 ([55, Page 205-206]). Let s € R. v e H (T) if and only if,

v(x) = Z vpp(x), for allxeT and Z(l + k)5 |u]? < o0,

keZ keZ

where the first series converges in the distributional sense.

For s € R, we define
H{(T) := {ue H3(T) : [u] = 0}. (1.3.1)

If s = 0 then, we denote H{(T) by L§(T). In sequel, we record some properties of these

spaces.

Proposition 1.3.5. Hj(T) is a closed subspace of H,(T) for all s = 0. In particular,
L3(T) is a closed subspace of L*(T).

Lemma 1.3.6 (|69, Page 211-212]). Let s = r = 0. Given any ¢ > 0 and u € H}(T), there

exists v € Hg(T) such that ||u — v|gs ) < €.

Remark 1.3.7. The Proposition 1.5.5 implies that (Hg(T), | - | us(r)) is a Hilbert space
for all s = 0. Furthermore, the lemma says that Hy(T) — Hg(T), where the embedding is

dense, whenever s = r = 0.

1.4 The Hilbert transform

Here, we define the Hilbert transform and record some of its properties. The

content of this section is based mainly on the books [41, 65].

Let s€ R and f € H,([—m,7]), a 2r—periodic function. The Hilbert transform
of f is defined by (see pag. 66 in [65]).

(D) = gpo | fo—yyeor () dy
o - (1.4.1)
= 217r 61_1{(% f(y) cot (%) dy, YreT.

e<lyl<n

Theorem 1.4.1 (See [41, pag. 210]). For all s € R, H € L(H(T)), that is, H is a bounded

linear operator from H,(T) into itself. Moreover, H is an isometry in H,(T).
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The Hilbert transform can also be defined through Fourier’s transform, as

follows. Given f € L2(T) one defines 7‘7(\]0)(]6) .= —i sgn(k)f(k), Vk e Z. Using the
inversion formula given in Theorem 1.2.8, we have
+o0 o
H(f)(z) = Z —i sng(k)f(k)e*™, VYreT. (1.4.2)
k=—00

Now, we prove important properties that hold for the Hilbert transform.

Proposition 1.4.2 (The Hilbert Transform Properties). Assume f, g € Lz(T). Then,

Lﬂ@MﬂM=LMﬁ@H@@Mm (1.4.3)

Lﬂ@%@mmm=—ﬁwm@wmwx (1.4.4)

H(f-H(g) +H(f) g)=H(f) H(g)—fg (1.4.5)

Proof. Using Parseval’s identity we prove (1.4.3) and (1.4.4). The proof of (1.4.5) can be
found in [65, page 80]. O

1.5 Semigroup Theory

In this section we discuss the basic theory about semigroups, uniformly contin-
uous semigroups, Cy—semigroups, and sectorial and m-dissipative operators, as well as
their application to homogeneous and nonhomogeneous Cauchy problems. The content of
this section is taken from the books [16, 28, 71].

We begin by giving the definition of a semigroup of bounded linear operators.

Definition 1.5.1. Let X be a Banach space. A one-parameter family U(t), with 0 < t < o0,
in L(X) is a semigroup (of bounded linear operators on X ) if

(1) U(0) = I, where I is the identity operator on X;
(ir) Ut +t") =U@)U({') for every t,t' = 0.
A semigroup of bounded linear operators, U(t), is uniformly continuous if

Tim [U(1) — 1] = 0.

It is easy to show that if the family U(t), with 0 < ¢ < o0, is an uniformly

continuous semigroup then
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(1) For all T' > 0, there exists M = M(T') > 0 such that |U(t)|| < M, for all t € [0,T7;
(i7) The map t € [0,4+00) —> U(t) € L(X) is continuous.

Definition 1.5.2. Let U(t), 0 <t < 40, be a semigroup. The linear operator A defined

by
t —
D(A) = {x € X: lim Yle = exists }
t—0+t t
and Uit
Az = lim Ule = for x € D(A)
t—0+ t

is called the infinitesimal generator of the semigroup U(t). D(A) is the domain of A.

Proposition 1.5.3. A linear operator A is the infinitesimal generator of a uniformly

continuous semigroup, if and only if A is a bounded linear operator, i.e. A € L(X).

Some properties of uniformly continuous semigroups are summarized in Theorem
1.3 and Corollary 1.4 in [71, page 3|. Proposition 1.5.3 says that this theory does not work
for unbounded operators. Therefore, we introduce the strongly continuous semigroups or

Cp—semigroups.

Definition 1.5.4. A semigroup U(t) € L(X), 0 <t < w0, is called a strongly continuous

semigroup of bounded linear operators (or simply a Co—semigroup) if

lim U(t)x = x for every x € X.

t—0t

For Cy—semigroups, we have an exponential type estimate and the continuity
of the map t — U(t)z.

Proposition 1.5.5 ( [71, page 4]). Let U(t) be a Co—semigroup. There exist constants
w=0and M =1 such that

IU®)] < Me*t for 0 <t < +0.

Moreover, for every x € X, the map t € [0, +00) — U(t)x is a continuous function.

If w =0, then U(t) is called uniformly bounded, and moreover, if M = 1, it is

called a Cy—semigroup of contractions.

Several properties of Cy-semigroups are condensed in [71, page 4]. For Cy—
semigroups we also have the uniqueness of semigroups of an infinitesimal generator (see
Theorem 2.6 in [71, page 6]). Note that if A is the infinitesimal generator operator of a

Co—semigroup, then D(A) is dense in X and A is a closed operator.
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Definition 1.5.6. Let X be a Banach space and A : D(A) < X — X be a linear operator
not necessarily bounded. The resolvent set of A, denoted by p(A), is defined by

p(A) :={\e C: A — A is invertible and (\I — A)~ is bounded}.

The family R(A\; A) = (M — AL, X e p(A), of bounded linear operators is called the

resolvent of A.

It can be showed that if the operator A is an infinitesimal generator of a
Co—semigroup of contractions U(t), then A := {\ € C: Re(\) > 0} < p(A). Moreover, If

A€ A, then [|[R(\ — A) . An important result in the semigroups theory is the

< —
H Re(\)
Hille-Yosida Theorem, see [71, page 8].

Next, we introduce the sectorial operators and analytic semigroups. This part
of the theory will be useful to study the well-posedness of the Linearized Intermediate

Long Wave equation in Hg(T). It was taken from the book of Daniel Henry [28].

Definition 1.5.7. We call a linear operator A in a Banach space X a sectorial operator
if it is a closed densely defined operator such that for some 6y in (0, g) and some M > 1

and real a, the sector
Sap, = {NeC:ly <|arg(A—a)|<m, \+#a}

is in the resolvent set of A and

M
A —q

A —A)7 < , for all X € S, g,

Definition 1.5.8. Let X be a Banach space and A : D(A) ¢ X — X be a linear operator
not necessarily bounded. The continuous spectrum of A, denoted by o(A), is the set of all
A € C such that the range of NI — A is dense in X and N\ — A is invertible with (A — A) ™

not bounded.

In the following we define the fractional powers of operators.

Definition 1.5.9. Suppose A is a sectorial operator and Re(c(A)) > 0; then for any
a>0

1 o0
AT = J o te= At

Theorem 1.5.10 ([28, Theorem 1.4.2]). If A is a sectorial operator in X with Re(o(A)) >
0, then for any o > 0, A~ is a bounded linear operator on X which is one-one and satisfies
A7AP = A7) whenever a > 0, B > 0. Also, for 0 < a <1,

: 0
A-a — Sin(ma) J AT+ A)Ld.

™ 0
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Continuing with A a sectorial operator and Re(c(A)) > 0, we define A® as
the inverse of A~ (a > 0), D(A%) = R(A™*), and A° as the identity on X. If a > 0,
A is closed and densely defined. Also, if @ > 3 then D(A%) < D(B”). Furthermore,
A“AP = APA* = A°F on D(AY) where v = max{a, 8, + B} and A% 4" = e74 A% on
D(A%), t > 0. Further properties of fractional power operators can be found in §1.4 in [28].

The following result is a consequence of Theorems 1.3.2 and 1.4.4 in [28].

Corollary 1.5.11 ( [28, Corollary 1.4.5]). If A is a sectorial operator with Re(c(A)) > 0
and if B is a linear operator such that BA™® is bounded on X for some a € [0,1), then
A+ B is sectorial.

Definition 1.5.12. An analytic semigroup on a Banach space X is a family {U(t)}i>o,

of continuous linear operators on X, satisfying

(1) U0)=1, Ut+s)=U@)U(s), forallt =0, s >0,
(71) lilgl U(t)x = x, for each x € X,
t—0+

(¢4i) The function t € (0, +w) — U(t)x is real analytic for each x € X.
Theorem 1.5.13 ( [28, Theorem 1.3.4]). If A is a sectorial operator, then —A is the
infinitesimal generator of an analytic semigroup {e_At}t>0, given by

1
e M= — [ A+ A)TeMd),

"2 Jp
where T is a contour in p(—A) with |Allim arg(A) = 0 for some 0 € (g,w).
—+00

Further, e~ can be continued analytically into a sector {t # 0 : |arg(t)| < ¢}
containing the positive real axis, and if Re(c(A)) > a, i.e. Re(\) > a whenever \ € o(A),
then fort >0
C

He—AtH < Oe_at, HAe—At” < ?e—at7
for some constant C. Finally,

d At

—e = —Ae ™ fort>N0.

dt J

The converse is also true, if —A generates an analytic semigroup, then A is

sectorial.

Now, we introduce the m-dissipative operators. We encourage the reader to
revise the books [16, 71] to delve into this part of the theory which will be useful to proves
the well-posedness of the Linearized Benjamin equation in Hj(T). Here onward we suppose
X is a Hilbert space and A : D(A) € X — X is a linear operator bounded or not bounded.

Definition 1.5.14. (Dissipative and m-dissipative operators).
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(i) The operator A is called dissipative in X if [|[u — Nu| = |u|, Yu e D(A) and A > 0.

(1) The operator A is called m-dissipative in X if A is dissipative and

VA>0, VfeX, Jue D(A) such that u— NAu = f.

Observe that the operator A is m-dissipative in X if A is dissipative and
VA >0, Rang(Al — A) = X.

Proposition 1.5.15 ( [16, page 25]). Let D(A) be a dense subset in X. Then A and —A

are m-dissipative if and only if A is skew-adjoint.

The Lumer-Phillips theorem (see Theorem 4.3 in [71, page 14]) proves that
if the linear operator A is m-dissipative with domain D(A) dense in X, then A is an
infinitesimal generator of a Cy-semigroup of contractions {U(¢)};>0 in X. Furthermore, we

have the following result.

Theorem 1.5.16 ( [16, page 37]). If the Linear operator A is skew-adjoint, with domain
D(A) dense in X, then {U(t)}=0 can be extended to a one parameter group U : R — L(X)
such that

(i) UO)=1; U(s+t)=U(s)U(t), Vs, teR;
(i7) U(t)r e C(R,X), Ve X,
(it7) |U(t)z|| = |z||, Yz e X, teR.

In addition, for all x € D(A), u(t) = U(t)x satisfies ue C(R,D(A)) n C'(R,X) and
u'(t) = Au(t), for all t € R.

Theorem 1.5.16 says that {U(t)}«r is a strongly continuous one-parameter

unitary group in X.

We finalize this section by introducing the abstract Cauchy problem. Given wy
belonging to a Banach space X, the abstract Cauchy problem for A with initial data wug
consists of finding a solution u(t) to the IVP

du = Au, t>0,
dt (1.5.1)
u(0) = o,

where by a solution we mean an X valued function u(t) such that u(¢) is continuous for
t = 0, continuously differentiable, u(t) € D(A) for t > 0 and (1.5.1) is satisfied.

It is clear that if A is the infinitesimal generator of a Cy—semigroup U(¢), the
problem (1.5.1) has a solution, namely u(t) = U(t)ug for every ug € D(A). Furthermore,
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Theorem 1.5.16 say that, the IVP (1.5.1) has a solution if the linear operator A is skew-
adjoint, with domain D(A) dense in X and X is a Hilbert space.

Definition 1.5.17. Let U(t) be a Co—semigroup on a Banach space X. The semigroup
U(t) is called differentiable for t > to if for every ug € X, t — U(t)uqg is differentiable for
t > ty. U(t) is called differentiable if it is differentiable for t > 0.

The existence and uniqueness of solution to (1.5.1) is guaranteed for differen-

tiable semigroups.

Proposition 1.5.18 ( [71, page 104]). If A is the infinitesimal generator of a differentiable

semigroup, then for every ug € X (1.5.1) has a unique solution.

Now if we consider the nonhomogeneous Cauchy problem associated to (1.5.1),

that is, the following problem

du
= Au(t) + f(t), t>0 (1.5.2)
u(0) = uo,

where f:[0,7] — X, with X a Banach space. Here we assume that A is an infinitesimal
generator of a Cy—semigroup {U(t)}¢=o so that the corresponding homogeneous equation
(f = 0) has a unique solution for every initial value ug € D(A). See [71] for more details.

Results related with the existence of solutions to (1.5.2), we have the following.

Definition 1.5.19 (Classical Solution). A function u : [0,T] — X is a (classical) solution
of (1.5.2) on [0,T] if u is continuous in [0,T], continuously differentiable on (0,T),
u(t) € D(A) for 0 <t <T and (1.5.2) is satisfied on (0,T).

Corollary 1.5.20. If f € L*([0,T]; X) then for every ug € X the initial value problem
(1.5.2) has at most one solution. If it has a solution, it is given by

u(t) = U(t)uo + ft Ult—7)f(r)dr, weX, 0<t<T. (1.5.3)

0

Definition 1.5.21 (Mild Solution). Let A the infinitesimal generator of a Co—semigroup
Ut). Let uge X and f e L'([0,T]; X). The function u e C([0,T]; X) given by (1.5.3) is
the mild solution of the initial valued problem (1.5.2) on [0,T].

We remark that not every mild solution to (1.5.2) is indeed a classical solution,
even in the case f = 0. It is clear that (1.5.2) has a unique mild solution if f € L'(0,T; X).
Thus, it is necessary to impose conditions on f so that for 2 € D(A), the mild solution
becomes a classical solution to (1.5.2). Notice that the continuity of f, in general, is
not sufficient to ensure the existence of solutions of (1.5.2), for uy € D(A). For example,

consider A the infinitesimal generator of a Cy—semigroup U(t) and let uy € X be such



Chapter 1. Preliminaries 32

that U(t)ug ¢ D(A) for any ¢t = 0. Suppose that the continuous function f is defined by

f(r) = U(7)x for 7 = 0, and consider the initial value problem

Y1) = Au(t) + Ut)uo and u(0) = 0. (15.)

Then (1.5.4) does not have solution, because the function
t
Mﬂsz@—ﬂWﬂ%ﬁhzdwmo
0

is not differentiable for ¢ > 0. So, we must give more conditions on f to guarantee the

existence of solutions to the problem (1.5.2).

Theorem 2.4 in [71, page 107] gives a general criterion for the existence of

classical solutions of the IVP (1.5.2). This result implies the following theorem.

Theorem 1.5.22 ([71, page 108]). Let f € LY([0,T); X). If u is the mild solution of
(1.5.2) on [0,T) then for every T" < T, w is the uniform limit on [0,T'] of (classical)
solutions of (1.5.2).

1.6 Riesz Basis and Ingham’s Type Inequalities

We dedicate this section to record some definitions and results related to Riesz
basis. Most of the results of this section can be found in [39]. Also, we will introduce
Ingham’s inequality which is the main tool to prove the controllability of the linearized

Benjamin equation.

1.6.1 Riesz Basis

Assume F denotes the scalar field associated with the vector space X. In this

subsection, F will be either the real line R or the complex plane C.

Definition 1.6.1. Let {x,},cz be a sequence in a Banach space X. The series 2 T, 1S

neZ

unconditionally convergent if Z To(ny 18 convergent in X, for all permutation o of Z.
nez

Definition 1.6.2 ([39, page 129]). A countable set {x,}nez in a Banach space X is a

basis for X if Vo € X, there exist unique scalars a,, such that

T = Z an (). (1.6.1)

neZ

We say that {x,}nez is an unconditional basis if the series in (1.6.1) converges

unconditionally for each x € X.
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Definition 1.6.3 ( [39, page 21]). Let {z,}nes be a sequence in a normed linear space
X. The finite linear span, or simply the span of {x,}nes is the set of all finite linear

combinations of elements of {x,}nes, it means,

N
span{{Tn nes} = { Z Cnp : for all N >0 and cq,...,c, € F},

n=—N

and we say that {x,}nes is complete in X if span{{x,}ncs} =X
Definition 1.6.4. Let {x,}.cs be a sequence in a Hilbert space X.

(1) (Riesz Basis) {xy}nes is a Riesz basis if it is equivalent (see [39, §4.4] ) to some (and

therefore every) orthonormal basis for X.
(17) (Bessel Sequence) A sequence {x,}nes in Hilbert space X is a Bessel sequence if

Vo in X, Z [z, z,)* < 0.

neJ
Definition 1.6.5. Given a Banach space X and given sequences {x,}ne; S X and
{antnes S X*, we say that {a,} is biorthogonal to {x,} if {(Tm,an) = Opm for every

n,me J. We call {a,} a biorthogonal system or a dual system of {z,}.
Theorem 1.6.6 ( [39, page 197]). Let {x,}nes be a sequence in a Hilbert space X. Then
the following statements are equivalent.

1. {xp}nes is a Riesz basis for X.

2. {xn}nes s a bounded unconditional basis for X.

3. {Tn}tnes 18 a basis for X, and

chxn converges < Z|cn|2 converges
neJ neJ

4. {xp}tnes is complete in X and there exists constants A, B > 0 such that
N N N
for all ci,...,cn scalars, A Z lea? < | Z cnty|% < B Z lcnl?.
n=1 n=1 n=1

5. {xn}nes is a complete Bessel sequence and possesses a biorthogonal system {y,}nes

that is also a complete Bessel sequence.

Definition 1.6.7. We say that a sequence {T,}nes in a Banach space X is minimal if no

vector x,, lies in the closed span of the other vector x,, it means,

Vme J, ¢ span{{Tn}nes nem}-

A sequence that is both minimal and complete is said to be exact.
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1.6.2 The Ingham'’s inequality

Our main tool to get the controllability of the linearized Benjamin equation is
the so-called Ingham’s inequality, which is a generalization of Parseval’s equality due to
Ingham in [40].

In what follows, K represents a countable set of indices. It could be finite or

infinite.

Theorem 1.6.8 ([40]). Let {A\i}r_, be a strictly increasing sequence of real numbers,
and I be a bounded interval. Consider the sums of the form
f(t) = Z ce™t tel,
keK
with square-summable complex coefficients c. Assume that there exists v > 0 such that
the “gap condition”
Mgl — A =7, Ynez,

holds, then there exist constants A, B > 0, such that for every bounded interval I of length

2
==,
Y

AN Jaf < j FOPd < B Y el

keK keK
Remark 1.6.9. On the same hypotheses of Theorem 1.6.8. If I =[0,T] or I = [-T,T]
9 N N ~ -
with |I| > —W, then A =T-A and B =T B, with positive constants A and B independents
of T.

The following result is generalization of Theorem 1.6.8.

Theorem 1.6.10 ( Theorem 4.6 [46, page 67]). Let {\i}kex be a family of real numbers,

satisfying the uniform gap condition
v = é&ﬁw — | >0,

and set
f = inf |[A\; — \,| >0
Ll A W
k#n

where A rums over the finite subsets of K.

2
If I is a bounded interval of length |I| > —T, then there exist positive constants
fy
A and B such that
AY < [ If@Pd < B Y, lo,
I

keK ke K

for all functions given by the sum f(t) = Z cre™t with square-summable complex

) ke K
coefficients cy.
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In the Theorem 1.6.10 there is no problem for the interpretation of the con-
vergence: we can have only countably many non zero terms, and the convergence is
unconditional. More generalizations of the Ingham inequality can be found in [46, Chapters
4, 6, and 8] and [10, page 558|.

1.7 Nonlinear interpolation theory and interpolation of L”—spaces

with change of measure

In this section, we summarize the nonlinear interpolation theory as expounded
by Bona and Scott [13]. Also, we present a result due to Tartar [88], which is the key
to obtain the global well-posedness of a closed-loop system associated to the Benjamin
equation. More precisely, we present a real interpolation theorem for nonlinear operators
and the complex interpolation theorem of Stein-Weiss for weighted L” spaces. For details,

we refer to the general theory on interpolation spaces in Bergh and Lofstrom [11].

Let By and B; be two Banach spaces such that B; < By with continuous
inclusion map. Let f € By and for € > 0, define K(f,¢) = iIle {Ilf —gls, +e€llgls,}, where
geDL]

|- |5, is the norm on By, j = 0,1. For 0 <6 <1 and 1 < p < +0, define

1
Q0 9 ?
<B07Bl)97p = B97P = {f € BO : Hf”eJ) = (J K(f7 €>p€ P d€> < +OO} ’
0
with the usual modification in the case p = +o0,

By = {fe Bo: | flow = su%)\K(f,e)\ < —I—OO}.
€>

Then By, is a Banach space with the norm || - |lg,,. Given two pairs of indices

as above, then (61,p;) < (02, p2) means

91 < 92, or

‘91 = ‘92 and pP1 > Do.
If (01,p1) < (62, p2), then By, ,, < By, ,, and the inclusion map is continuous.

Theorem 1.7.1 ( [13, Theorem 1]). Let B} and B be Banach spaces such that B] c B}
with continuous inclusions mappings, 7 = 1,2. Let X\ and q lie in the ranges 0 < A < 1 and

1 < q < 400, Suppose S is a mapping such that

(i) S: By, — B} and for f,g € B, ,

IS5~ Sgllnz < CollFlmy. + gl IF — gl

and
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(ii) S : Bl1 — B% and for h € Bll,
IShls2 < Cr(lAl s )bl

where Cj : R — R™ are continuous non-decresing functions, j = 0, 1.

Then if (0,p) = (N, q), S maps B;m into B;p and for f € Bolﬁp

150152 < CUSsy )L,
where for v > 0, C(r) = 4Cy(4r)'=0C, (3r)’.

Remark 1.7.2. Theorem 1.7.1 was used by Bona and Scott [13] to provide the original
proof of the global well-posedness of the IVP for the KdV equation on the whole line in
fractional order Sobolev spaces H*(R).

Attention is now focused on the question of continuity of S as a mapping of
intermediate spaces, assuming S is known to be continuous as a mapping of the initial

spaces. For this, the following notion is useful.

Definition 1.7.3. Let By and By be Banach spaces with By continuously included in By.
Let 0 < 0 <1 and 1 < p < +00. We say that the pair By, By has a (0,p) approximate
identity if there is a family of continuous mappings Se : By, —> B, for 0 < e <1, such
that

(i) for all f € By, and 0 < e < 1,

1Sef s, + € °1Scfllm < C 1£l4,»
(ii)
”Sef - fHBe,p + E_BHSéf - fHBo - O’
as € — 0 for f € By, and uniformly on compact subsets of Byp,.

Example 1.7.4. Take By = L3(T) = L and, for k a positive integer, By = Hy(T) = HE,

the Sobolev space of L functions whose first k derivatives lie in LY.

~

Using (L3, H¥)go = HS with s = 0k and defining §:f(n) = g.(n)f(n), where F

denotes the Fourier transform of f, and

1
€k

gu(n) = (171)
€k

we can prove the properties (i) and (ii) of the Definition 1.7.3 by following a similar
procedure as those used by Bona and Scott in [153]. Therefore, S, is a (6,2) aproximate
identity for the pair L3(T), HY(T), for any 6 € (0,1).
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Theorem 1.7.5 ( [13, Theorem 2|). Let By, B2, By, B?, )\, q, and S be as in Theorem
1.7.1. Assume additionally that the pair By, By has a (0,p) approvimate identity {S.} for
some (0,p) = (A, q) and that

(iii) S is a continuous map of Bj to Bi.
Then S is a continuous map of By, to By .

Let B be a Banach space and T' > 0. Denote by C([0,T]; B) the Banach space

of continuous functions from [0, 7] to B with norm given by

| fleqorisy = sup | f(E)]s-
o<st<T
The following simple fact about interpolation between spaces of the form
C([0,T1]; B) will be used.

Proposition 1.7.6 ([13, Proposition 3|). Let By and By be Banach spaces with By included
continuously in By. Let 6 and p lie in the ranges 0 < 8 <1 and 1 < p < +o0. Then for
any T > 0,

(C([0,T]; Bo), C([0, T]; B1))g,, = C([0, TT; (Bo, Bi)op),

with the inclusions mapping continuous.

We continue this section with a result due to Tartar [88]. Tartar makes more
restrictive assumptions to obtain an Interpolation result. Nevertheless, we will be willing

to apply this theorem.

Theorem 1.7.7 (A real interpolation theorem for nonlinear operators, see Theorem 2,
page 474 [88]). Let B} and B] be Banach spaces such that B] < B} with continuous
inclusion mappings, 7 = 1,2. Assume that 0 < a < 1 and 8 > 0. Suppose S is a mapping
such that

i) S: By —> Bj and for f,g € By,

|Sf = Sglsz < Coll flg: 9l = 9llBs

and
ii) S : Bf — B? and for h e B},
|Shlgz < Ci(lh] 52) |17 5;

where Cy : RT x RT — R and C; : RT — R* are continuous functions.
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Then, if 0 <0 <1 and 1 < p < 400, there exists a positive constant ¢ such that S maps
B;,p into Biq and for f € B;yp

171z, < e Ul sy,

(0%

Ea

_ D _ 1—-6 0
q-max{l,(l_)\)ﬁ+)\a}—max{l, (B+a>p}’

and C'is a function given by C(r) = Co(r,2r)*Cy(2r) .

1—A 1-0
where \, q are given by 3 z( 7 )

We finish this section with the complex interpolation theorem of Stein-Weiss
for weighted LP—spaces. The proof of this result can be found in the Bergh and Lofstrom’s
book [11]. This interpolation theorem will be used to prove the multiplication property of

the Bourgain’s spaces associated to the Benjamin equation.

Let po and py two positive measures. We may assume that po and p, are

absolutely continuous with respect to a third measure p. Thus we suppose that
dpig () = wo(x) dp(x)

dpy(x) = wi(z) dp(x).

Let (U,w du) a measure space and let us write LP(w) = LP(U,w dp)

Theorem 1.7.8 (The complex interpolation theorem of Stein-Weiss, see [11, page 115]).

Assume that 0 < p < 0 and that 0 < 0 < 1. Put w(z) = w} ™’ (2)uwf(z), then

(L7 (wo), LP(wr)),, = LP(w),
with equivalent norms. Moreover, if the operators
T : LP(U,wo dp) —> LP(V, Wy dv)

T LP(U,wy dp) — LP(V, @y dv)

with quasi-norms My and My respectively, then
T: LP(U,w du) — LP(V,w dv)

with quasi-norm M < M} M?, with @(x) = @)~ (x) 0 (x).
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Chapter

Controllability and Stabilization of the
linearized Benjamin equation on a periodic

domain

In this chapter, we analyze the controllability of the linear system associated
to Benjamin equation (0.0.7) on T. We show the local and global well-posedness of this
system via semigroup theory. Then, we use the classical moment method (see [79]) to show
that the linearized Benjamin equation is globally exactly controllable. We also study the
stabilization problem for the linear equation associated to system (0.0.7) in H;(T), with
s = 0. First, we prove that there exists an adequate feedback law such that the trivial
solution (u = 0) is exponentially asymptotically stable when ¢ goes to infinity. Finally, we
show that it is possible to choose an appropriate linear feedback law such that the decay

rate of the resulting closed-loop system is as large as one desires.

This chapter is organized in five sections. In Section 2.1, we record some
properties that the operator G defined in (2.0.9) possesses. In Section 2.2 we establish
the well-possedness for the linear system associated to the Benjamin equation. In Section
2.3, we proof of an exact controllability result for this system is provided. Section 2.4 is
devoted to prove the stabilization result. Then in section 2.5 we choose an appropriate
linear feedback law such that the decay rate of the resulting closed-loop system is as large

as one desires. The main results of this chapter are given by Theorems 2.3.7 and 2.5.5.

Before beginning with Section 2.1, we specify one of our main objectives of
this work. As mentioned earlier, we are interested in the Benjamin equation (0.0.7) in the
context of control theory by adding a control term f = f(z,t). More precisely, we are

interested in the following two problems.

1) Ezact control problem: Given an initial state ug and a terminal state u; in a
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certain space, with [ug] = [u1], can one find an appropriate control input f so that

the equation
Ot — aHoPu — Ou + 0,(u?) = f(x,t), weT, teR, (2.0.1)

admits a solution u such that u(x,0) = ug(z) and u(x,T) = uy(x), for all x € T and

any final time 7" > 07

2) Stabilization Problem: Given vy in a certain space. Can one find a feedback

control law: f = Ku so that the resulting closed-loop system
Ot — aHiu — 0u + 0,(u?) = Ku, u(z,0)=ug, v€T, teRT, (2.0.2)

where K is a bounded linear operator in an adequate space, is asymptotically stable

(see def. below) as t — 0?

Initially, we consider the linearized IVP associated to equation (0.0.7) in the

periodic setting,

Ou— aMHPu —u=0, teR, zeT
oru(2m,t) = dru(0,t), teR, m=0,1,2 (2.0.3)
u(z,0) = ug(x), reT,

with initial data ug(z) in an adequate space. The equation (2.0.3) admits the following

conserved quantity

Io(u) = J e t) dr = J " o) d. (2.0.4)

0 0
Also, the linearized IVP associated to equation (2.0.1) in the periodic setting, can be

written as

ot — aHiu — d2u = f(x,t), 0<t<T, veT
onu(2m,t) = 07'u(0, 1), 0<t<T, m=0,1,2 (2.0.5)

u(z,0) = ug(x), x e,

with the initial data g in an adequate space. The solution u of system (2.0.5) satisfies

a
dt

So, the volume (mass) Ip(u) in the control system (2.0.5) is indeed conserved if we demand

szu(x,t) da:) = - f(x,t) de. (2.0.6)

0 0

the function f to satisfy
27

f(z,t) de = 0. (2.0.7)

In this work, the control f in (2.0.1) is allowed to act only on a small subset

of the domain T, i.e., f is considered to be supported in a nonempty open subinterval
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of (0,2m). This situation includes more cases of practical interest and is therefore more
relevant in general. For this reason, we consider g(x) as a real non-negative smooth function
defined on T, such that,

2nlg] i Joﬁg(x) do - 1, (2.0.8)

where [g] denotes the mean value of g over the interval (0, 27). We assume supp g < (0, 27),
where w = {x € T : g(z) > 0} is an open interval. We restrict our attention to controls of

the form

f(z,t) = G(h)(z,t) = g(x) <h(:c,t) - J 7Tg(y)h(y,t) dy) , YeeT, te[0,T], (2.0.9)

0

where h is a function defined in T x [0, 7]. Thus, h = h(z,t) can be considered as a new
control function and for each t € [0,7T], we have that (2.0.7) is satisfied. Moreover, the
control input (2.0.9) keep the mass I(u) conserved for the system (2.0.1).

2.1 Properties of the Operator G

Here, we present some properties satisfied by the operator G defined in (2.0.9).
Proposition 2.1.1. Let s > 0. The operator G : L? ([0,T]; H3(T)) — L* ([0, T]; H3(T))

1s linear and bounded.

Proof. 1t’s easy to see that GG is a linear operator. We will show that G is bounded. Suppose
that h e L*([0,T7]; H3(T)), then

T e~
(G oy = | 273 (14 KP)° [Gho)|
0 keZ
T __ 2
<4WZ(1+|1€|2)SJ )gh(k;)’ dt
keZ 0 (2.1.1)
. ) T | r2m 2
war 3 (1 62)° G0 ||| st tdy| at
keZ 0 0
21114‘]2.
Using Cauchy-Schwartz inequality, we obtain
T 21 21
I, <2 !g\?{;mf (J l9(y)I? dy) <f Ih(y,t)lzdy) dt
0 0 0 (2.1.2)

< 2]y

T
?J;‘(T) L HhHig(T) dt.

On the other hand, using that g is a smooth function, we have

2

gh(k)]? < [ 9(0) h(k — 1)

leZ

(see Proposition 1.2.3).




Chapter 2. Linearized Benjamin equation 42

Therefore, using Lemma 3.197 in [41], we have

Li=dr Y (1+[kP) J‘gh dt<C’1f 3

keZ keZ

2
[ + 1K) Y gk = DI | dt,  (2.1.3)

leZ

where (' is a positive constant depending only on s. Observe that

{(1+|k15)2§(1)y\ﬁ(k—1)\} el*(z), Ytel0,T], (2.1.4)

and

2

< Co(lghs 1Pl + 1 - 17 GO 12

(L + 151 D a1 Rk — 1)

leZ

(2.1.5)

12

+ gl - 1" RO)E), ¥eeloT].

In fact, since 1 + |k|° < Co (1 + |k —{|° + |I]?), forall k,j € Z, then

(14 k1) DGO Rk = D] = D20+ k)G [hk = 1)]

leZ leZ

< Co ) (L [k =1° + 119 [0 [h(k —1)|

leZ

< 02(2|a<w| [h(k = 0] + Y1k = g [A(k - D)]

leZ leZ

SO RG] ).

leZ

= Co [(1g1 = [RIE) + (g1 |- 1" R + (11 5]+ )®))|

for allt € [0,T], where Cy is a positive constant depending only on s. From Young’s
inequality (see [41, Page 209]), we have that (2.1.4)-(2.1.5) hold. From (2.1.3) and (2.1.5),

we infer

T
h< G| (Il IR+ 11 F9OIR BB + @RI FOR) & (216)

The smoothness of function g, Proposition 1.2.9, and (2.0.8) yield

~

e = S0 =0+ 3 Gl < o W g <o )

keZ kezZ—{0}

N

and

—_

(n)
I+ gl = 3 [kI°lgR)| = GO+ 3 ‘716\75’2)’

( 0
< 27 Hg HLl 0,2m) Z < o, for some n > s+ 1.
™ k=1
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From (2.1.6)-(2.1.8), we infer that there exists C' > 0 depending only on s, and
g such that

T
I < CL |AlZ; (T)dt = CRIL: o,y m5ry)- (2.1.9)

The estimates (211)—(212), and (219) 1mply HGhHLQ([O,T];Hg(T)) < CHhHLQ([O,T];HZﬁ(T))-
L]

Observe that the same conclusion as those in Proposition 2.1.1 can be drawn

for any finite interval [T, 7] in place of [0,T].

Remark 2.1.2 ( [62] Lemma 2.20). Let G be given by (2.0.9). With similar arguments as

above one can prove that
|Gl

where C' is a positive constant depending only on s and g. Furthermore, if s < 0, then we

define Gh by

Hy(T) S CH¢HH5(T)>

Gh:=gh—g g, h>(L2<[o,T];H;<T>))’xL?([o,T];H;(T)) (2.1.10)

for any h e L*([0,T; H}(T)), and the result obtained in Proposition 2.1.1 holds.

Now, we show that the operator G is self-adjoint in L*(T).

Proposition 2.1.3. The operator G : L*(T) — L*(T) given in (2.0.9) is linear, bounded
and self-adjoint.

Proof. It is easy to see that G € L(L*(T)). Moreover, there is a positive constant C,
depending only on g such that

|G ez < Coll ez

By the density of Dom(G) in L*(T), it is enough to prove that G is symmetric.
Let h e L*(T), thus

r2m

(Gt o = [ o7 o~ [ o7 [ [

0 0

r2m 21

awmwﬂwdy—j

0

This proves the Proposition. O

Remark 2.1.4. Note that for any ¢ € L*(T), one has Gp = G.
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2.2 Existence of solutions for the associated linear system

In this section, we show that the linear IVP (2.0.3) associated to the Benjamin

equation is globally well-posed on H(T), with s € R.

Proposition 2.2.1. Let a > 0. The operator

A= D(A) < L*(T) — L*(T), defined by Ap = aHd’p + 2y, (2.2.1)
generates a strongly continuous unitary group {U(t)}er on L*(T).
Proof. Let o, € D(A) = HE(T). Observe that ¢ is three times differentiable. Furthermore,

H(0op)(x) = H(p)(x) and  H(dp)(z) = GH(p)(2), Yo e T.

Using property (1.4.4) of the Hilbert’s transform, we have

2w

(Ap , &) = —a j P HE@) drt | Pl)i(e) dr. (222)

0
Integrating (2.2.2) by parts with respect to z and using the periodicity of the functions
involved, we obtain

21

(A, ) am) = — j (@) [0 HEZ0 (@) + B (@)] de = — (o, A) 2o,

0

which implies that A is skew-adjoint. From Proposition 1.5.15 we have that A is m-
dissipative. Definition 1.5.14 implies that A is dissipative. Therefore, (Ap, ¢)r2(1) is real
for all p € D(A) (see Proposition 2.4.2 in [16]). Moreover, since

(Ap, @)z = —(¢, Ap)r2(m),

we have that (A, ¢)r2(r) = 0. Therefore, Theorem 1.5.16 implies that the operator A
generates a strongly continuous unitary group of isometries (contractions) {U(¢)}wer (see
[16, Definition 3.4.6]). O

The following result gives the existence of solutions in H}(T) for the linear-

homogeneous system (2.0.3) associated to the Benjamin equation.

Corollary 2.2.2. Let ug € Hg’(T), then there exists a unique solution
ue C(R,H,(T)) n C'(R, L*(T))
for the homogeneous IVP (2.0.3).

Proof. This is a consequence of Theorem 1.5.16 and Proposition 2.2.1. O
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We can generalize the last Corollary to get solutions of system (2.0.3) in H,(T)

for all s € R. This can be stated in a formal way as following.

The homogeneous IVP (2.0.3) is equivalent to the following Cauchy problem
ue C(R, Hy(T))
O = aHu+ du € H3(T), teR (2.2.3)
u(0) = up,
where, the initial data ug € H,(T). Taking Fourier’s transform in the spatial variable, the
IVP (2.2.3) is equivalent to the following ordinary differential equation (ODE)

?t@(k) = ile [ sgn(k) — k) u(k), teR, (2.2.4)
u(k,0) = 1o(k),

for all k € Z. The unique solution of equation (2.2.4) is given by
() (k) = ¥ losen®—Rtg (kY vk e 7. (2.2.5)

Note that {e“"’2 Lo sen(k) kIt (k) rez € G'(Z) is a slow growth sequence. Taking inverse Fourier

transform in (2.2.5), we get the unique solution of (2.2.3)

u(t) = (e sgnw*klt@(k))ﬂ VteR. (2.2.6)
It means that,
u(w,t) = Y e®lesmn®Rg etk y e R, (2.2.7)
keZ

is the unique solution for the IVP (2.0.3), where the series convergence is in the sense of

D'(T).
Now, in rigorous way, define the family of operators U : R — L(H,(T)) by
t s U(t)p = e@HE+, — (R lo sgn(k)—kIE G (f)) v (2.2.8)
Note that, with this definition the relation (2.2.6) becomes u(t) = U(t)ug, t € R, and we

obtain the following results.

Lemma 2.2.3. Let s € R. The family of operators {U(t)}ier given by (2.2.8) defines a
strongly continuous one-parameter unitary group of contractions on H; (T). Furthermore,
U(t) is an isometry for all t € R (see [16, Definition 3.4.6]).

Proof. Note that {U(t)}+«r has the following properties:

i) U(t) e L(H,(T)), VteR.
In fact, given f e H (T) and ¢ € R,

2
Z 6ik2[a sgn(k)fk]t.]/c\(k> eik::p

keZ

=27 > (1 + k)

keZ

HU(t)fH?{;(’JI‘) =

H(T)

. ~ 2
ezk2[a sgn(k)—k]tf(k)‘ _ ||f|

2
H(T)
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i) U(t) is an unitary operator V¢ € R, it means ||U(t)| (s (r)) = 1.
iii) U(0) = I.
i) Ult+s)=U)U(s), Vt,seR.

Indeed,

Ut+s)f

(esz a sgn(k)— t+s)f(k,)>
<€zk2 o sgn(k)—k]t zk2[a Sgn(k f( )) v
( ik?[ Y

!l sonl ’(U(S)f)A(k)> = UMU(s)f, ¥ f e Hy(T).

v) th_{% \U@)f — Ulto) f] g =0, Vi ER, and f e Hy(T).

In fact, assume ¢, € R then,
ik> — ik?[a sgn(k)— £ 2
HU(t)f _ U@O)f‘ﬁ{;(']r) =2 Z(l + ‘]{1|2)S (ezk [a sgn(k)—kJt _ e k= [« sgn(k) k]to) (k.))

keZ

(2.2.9)

Note that (1 + |k[*)*

and

ik2la sen (k) — zQasn T 5| £
(VLo san(9) =kt _ ik?[a sgn(k)—klro ()l 401 + [kP)51F (k)7

DAL+ R (k)

keZ

A direct application of Weierstrass’s M-test implies that the series

D+ kP

‘2
keZ

<€ik2[a sgn(k)—k]t eik2[a sgn(k)—k]to> f(k»)

converges absolutely and uniformly with respect to ¢t. Taking the limit when ¢ goes
to tp in (2.2.9) we get the result.

]

Remark 2.2.4. By [16, Corollary 3.2.6, pag. 38] we have that the adjoint operator U (t)*
of U(t) exists. It is bounded, linear, and U(t)* = U(—t) for all t € R. Moreover, it is easy
to prove that U(t)p = U(t)p for allt € R.

Next, we turn our attention to prove differentiability.

Lemma 2.2.5. Assume s € R. If u(t) = U(t)ug, then

u(t + h) —u(t)

- — [aH?2 + O2u

=0, (2.2.10)
HE=3(T)

lim
h—0

uniformly with respect to t € R.
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Proof. Denote A\, = k*(asgn(k) — k) and define

2

u(t+ h) —u(t)

]h = h

— [aH% + 3u

Hy=(T)

Observe that

u(t) = U(tyuo(w) = Y e ip(k)e™,  H(OZU (tuo) () = )i sgn(k)k?e™ iy (k)e™,

keZ keZ
and
U (tyug(z) = > —e™ iy (k)ike™.
keZ
Consequently,
2
iNR(t+R) it _ _ _
I, = Z ( ¢ A € — i asgn(k) k? et 4 ARt g3 ) To(k) et
keZ Hy™3(T)
. . 2
_ 2\s—3 ein(th) — gidit . 2 At iApt ;1.3 | [~ 2
= 2%2(1—1— |&1%) - i asgn(k) k% e +e ik® | |uo(k)|
keZ
=21 ) (L+ [k[*)* 2T [ (k) P,
keZ
eiMeh 2
where J), := - —iasgn(k) k* + ik* | .
Note that
Ak S 2
Jh < ('e 0 | fak? 4 Ikl3> < ( | |Z| vaw + \kl3>
= (KPasgn(k) — K| +ak? + k) <d(ak® + k)7,

Therefore,

ak? + k)
(1 + [k[?)?
and the last term of (2.2.11) is bounded. In fact, (2.2.12) yield

(14 k22T, < 4(1 + |k|2)5( < O(1 + |K|?)s.

21 Y (L + [k 20, o (k)P < C (1 + [E*) o (k)[* < o0

keZ keZ

(2.2.11)

(2.2.12)

The Weierstrass’ M-test implies that the series in (2.2.11) converges absolutely

and uniformly with respect to h and ¢. Finally, taking the limit when h goes to 0 in (2.2.11),

we obtain (2.2.10).

]

Lemmas 2.2.3 and 2.2.5 imply that the system (2.0.3) is globally well-posed.

Its unique solution, which depends continuously on the initial data, is given by (2.2.7).

This result is established in the following theorem.

Theorem 2.2.6. Let s € R and uo € H,(T), then there exists a unique solution u €

C(R, H;(T)) for the homogeneous IVP (2.0.3).
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In the following, we are going to deal with the well-posedness of the non-
homogeneous system associated to the linearized Benjamin equation with periodic boundary

conditions.

B 20— Bu=Gh T T
{atu aHOpu — Oju = Gh(x,t), te(0,T), ze (2.2.13)

u(z,0) = ug(x), xeT.
A direct application of the semigroup theory gives us the following lemma.

Lemma 2.2.7. Let 0 < T < o0, s = 0, ug € H3(T), and h € L*([0,T); H3(T)) then, there
exists a unique mild solution w € C([0,T], Hy(T)) for the non-homogeneous IVP (2.2.13).

Proof. Let h e L*([0,T]; H}(T)). From Proposition 2.1.1 we obtain that
Gh e L*([0,T]; H3(T)).
Thus, Gh e L'([0,T]; H3(T)). We rewrite the IVP (2.2.13) in its equivalent form,
ue C([0.7), H3(T))
O = aHu + d3u+ Gh(t) € H(T), te(0,7) (2.2.14)
u(0) = uy,
where the initial data ug € H;(T). From Corollary 1.5.20 and Definition 1.5.21, we have
¢

w(t) = U(t)uo + L Ut — ¢)Gh(t)dt,

is the unique solution of (2.2.14) for s > 0, 0 <t < T < 0. O

2.3 Control of the linear Benjamin equation

In this section we prove an exact controllability result for the system (2.2.13)
using the classical moment method, see [79]. Without loss of generality, one can consider
ug = 0. In fact, for given wg, uy € Hy(T) with [uo] = [u1], if & is the control which leads
the solution v of system (2.2.13) from initial data vy = 0 to the final state u; — U(T")uy,
then v satisfies

o — aHd?v — v = Gh(x,t), te(0,T), ze€T
{ v(x,0) =0, zeT,

t
and v can be written as, v(t) = J U(t — s)Gh(s)ds.
0

So,

Therefore,
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where u is the solution of system (2.2.13) with initial data ug. It means that, the control h

leads the solution u of system (2.2.13) from the initial state ug to the final state u;.

From this point onward in this section we assume ug = 0. Thus, [u;] = [ug] = 0.

We have the following lemma.

Lemma 2.3.1. Suppose s = 0 and y(x) for allk € Z,x € T defined as in Remark 1.2.2.
Then for uy € H,(T) given by

() = Z Cm U (),

meZ

and [uy] = 0, we obtain that ¢y = 0.

The next result is fundamental to get control for the linear system (2.2.13).

Lemma 2.3.2. Let s = 0, and T > 0 be given. Assume uy € H;(T) with [u1] = 0. Then,
there exists h e L*([0,T], H3(T)), such that the solution of the IVP (2.2.13) with initial
data ug = 0 satisfies u(T) = uy if and only if

T
L <Gh('7 t)’ @('7 t)>Hg><(HI~§)/ dt = <u17 900>H;><(H;)/ > (2-3-1)

for any @y € (H(T))', where (H,(T))" is the dual space of H,(T), and ¢ is the solution
of the adjoint system

{ oo — aHZp — 020 =0, t>0, ze(0,2n) (2.3.2)

o(x,T) = po(x), zeT.

Proof. (=) Let ¢y and h be smooth functions and ¢ be the solution of the adjoint system
(2.3.2) with final data ¢o. Multiplying the equation in (2.2.13) by , integrating by parts,
and using the Hilbert transform’s proprieties given in Proposition 1.4.2, we have

2m

T r27 T r27 T
JJ thod:cdtsz &gugod:cdt—af Ho?u @ dx dt
0 JO 0 JO 0 Jo
T r2m

~ f 2u P dx dt.
o Jo (2.3.3)

2m T r2m
= J uw(T) @(T) do — j J u [0 — QO HP — 89?;@] dx dt.
0 0 JoO

2m
= L u(T) p(T) du.

Therefore,

T 27 2m
JJ thpdwdtzf uy Yo dx.

0 Jo 0
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Now, identifying L?(T) with its dual (see Zeidler [32, page 254]) by means of the (conjugate

linear) map y — (-, ¥)z2(ry we have the following inclusion,
Hy(T) — L*(T) = (L*(T)) — (H,(T))',

where the embedding is dense and continuous. Moreover, {¢, gp}HgX( Hs) = (¢, ) r2(T), for
all ¢, ¢ € L*(T). Thus,

T

j GR )00 )yt = [ (G0, )

0

27
:f uy o dx
0

= (ui, 900>H;x(H;)/ :

(<) Let h be a smooth function such that (2.3.1) holds for any smooth ¢, € (H,(T))’,
where @ is the smooth solution of the adjoint system (2.3.2) with final data ¢q. Identifying
L*(T) with its dual and using (2.3.3) we have

21
J uy Yo dr = <u1, 800>H;x(H;)’
0

rT

= | <Gh(1), () e asy dt

rT

- f Gh @ du dt (2.3.4)
0 Jo
r2T

= | ) B(1) o

= u(T) po dx.
Jo

[

27
Identity (2.3.4) implies that J (u(T) —uy) Yo dr = 0, for all smooth function ¢q. In

0
consequence u(7T') = uy. Thus, the lemma is true for all smooth data.

In general case, we use density arguments to complete the proof. O]

Lemma 2.3.3. Let s = 0, T > 0, and u; € H (T) with [u;] = 0. Then, there evists
he L*([0,T], H:(T)), such that the solution of the IVP (2.2.13) with initial data uy = 0
satisfies u(T) = uq, if and only if, there exists § > 0 such that

f G U (7)* 6" ygogoyy () 7 > 826° ooy (2.3.5)
for any ¢* € (H*(T))

Proof. (=) Let T > 0. Define a linear map Fy : L*([0, T]; H3(T)) — H:(T) by

Fr(h) = u(-,T), (2.3.6)
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where u = u(x,t) is the solution (mild solution) of

{ ot — aHo*u — 0*u = Gh(x,t), te(0,T), zeT (2.3.7)
u(z,0) =0, reT.
Note that if u; € H,(T) is given, then from hypothesis there exists h such that
Fr(h) =u(T) = uy. (2.3.8)
Therefore, Frr is onto, i.e,
Fr (L*([0,T]; H3(T))) = H(T), (2.3.9)

trivially, Ran(Fr) is dense in H;(T). On the other hand, from hypothesis, for u; € H;(T),

we have that

T
uw = | UT —s)(Gh)(-,s) ds. (2.3.10)
0
Therefore, from (2.3.8) and (2.3.10)
1Fr(R)| g3 () HJ Gh)(-,s) ds
Hy(T)
< [ 10 = @y a5 2

T
<c [ I
0

1
Sy I HhHHg([O,T];LQ(T))-

H; (']1‘) dS

So, Fr is a bounded linear operator. Thus, F7 exists, is a bounded linear operator, and is
one-to-one (see Rudin [78, Corollary b) page 99]). Also, from Theorem 4.13 in [78, page
100] (see also Coron [23, page 35]) we have that there exists § > 0 such that

IE7(") (g qornsmny = 0107 |aggeryy>  for all 6% € (H3(T))". (2.3.12)

From Lemma 2.3.2, we have that the solution u of (2.3.7) satisfies

J (Gh(., )>Hb><(Hé) — Cuy, 900>ng(}1;)/ =0, (2.3.13)
for any ¢y € (H,(T))’, where ¢ is the solution of the adjoint system (2.3.2). Note that
p(,t) = U(T = 1)%p0.

Then it follows from (2.3.13) that

T
L A5 8), GFU(T = )" 90) 1wy (1 (myy A = (s T)5 900 b 1y e (13 (m)

= <FT(h)’QOO>H;(T)><(H;(’H‘))' (2314)

= by FL90) 20,1913 (1)) x (L2 ([0.77:H (1)) -
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Therefore, F7. = G*U(T — t)* and using (2.3.12), we have

|GFU(T =) (%) L2 o rps(215myy) = 0 Hﬁf)*H(H;(T))U for all ¢* e (H;(T))".

It means

T
jo IGHU(T = (6" (2)) Prrgryy dt = 6 |6 Py for all &% € (H3(T)).

Performing a change of the temporal variable 7 = T' — ¢, we obtain (2.3.5).

(<) If (2.3.5) holds, then F} = G*U(T —t)* is onto. It is easy to prove that F7 is bounded
from (H(T))" into (L*([0, T7; H;(T)))/. Therefore, Frr is onto. From calculations similar
to (2.3.14), we obtain that (2.3.13) holds. Then Lemma 2.3.2 imply the result. O

The following result is a characterization for the existence of control to the
system (2.2.13) with initial data uo = 0.

Lemma 2.3.4. Let s = 0 and T > 0 be given, and ¥y (x) as in Remark 1.2.2. If

ur(z) = Y e hi(x) € H(T),

leZ

is a function such that [ui] = 0, then the non-homogeneous system (2.2.13) with initial
data ug = 0 is exactly controllable in time T to uy, that is, u(x,T) = ui(z), Yr €T, if an
only if there exists h € L*([0,T]; H3(T)) such that

T
J J Gh(z,t) e" Ty, (1) dedt = ¢, ¥V k € Z, (2.3.15)
o Jr
where N\, = k* — o sgn(k)k* = k* — aklk|.

Proof. (=) In view of Lemma 2.3.2, let us to consider the adjoint system

Orp —aMHPp—Pp=0, t>0, veT (2.3.16)
p(z,T) = po(), zeT h
and let & € Z be fixed. Note that ¢, € (H,(T))". In fact, for ¢, € D'(T)
[or Gy = 27 D1+ 1) e (DF,
lez
and
g | e L imk=1
wk(l) = — wk(x) 671[1 dx = f l/}k(l') w,l(.ﬂj) dr = hY 2T
2m Jo var Jo 0,  ifk+l.
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1

Therefore, HwkH%Hg(T))/ =2m(1 + ]k’|2)’s2— = (14 |k[*)™* < . So, we suppose @y = V.
7r

Then identity (2.2.6) implies that

plr,) = U(T = 1) pol) = (e lesn®-0T0Z5)) " = 3 N0 0)cile, (5 547)

leZ

where N, = k% — ak|k|. Consequently, p(z,t) = eIy, (z). Now, using identity (2.3.1)

one gets
T
Gh ) dz dt — = 0.
| [ oty v) dea j(2¢ >¢0>
Therefore,
J Jtht Ty (2) da dt:f (2@ wl(x)) Y_p(z) dz
T \lez
= Ui(x) Y_i(z) d
éqﬁr 1z k() dx
= Cp V]{'EZ,

as required.
(<) Now, suppose that there exists h € L*([0,T]; H3(T)) such that (2.3.15) holds. With

similar calculations as above, we obtain

2w

T —_— N
J J Gh(x,t) et o)y (x) dx dt — f uy Y dr =0, YV oy = Yy, k €Z.
0 Jr

0

Multiplying both sides of the last equality by po(k) and summing over k € Z, we get

S [ Ghtet) T Gle) I dt = 3 [ ) o) Bl

kez YO

Note that

Z ez)\k (T— t zkz

keZ
is the solution of the adjoint system (2.3.16) and ¢ € C;°(T) can be expressed as

) = Y\ Gak) vula)

keZ

where the series converge uniformly. Thus

2m
JJGhajt z,t) dx dt — J uy Po dx =0, V o € C°(T).
0

The result follows by using density arguments. O]
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Lemma 2.3.5. Let (z) be as in Remark 1.2.2, and

—_—

s = G(Oy)(k) = LWij)(x)w:c) dr, jkel. (2.3.18)

where G is as in (2.0.9). In addition, for any given finite sequence of nonzero integers k;,

1=1,2,3,....,n, let

Mgy o0 My ky

Migky  *° Mgk
M, = "

mknakl e mk’nvkn

Then

i) there exists a constant 5 > 0, depending only on g, such that

myx = 0, for any ke Z —{0}.

i) mjo=0, foranyjeZ.
ii1) M, 1s an invertible n x n hermitian matriz.
iv) There exists 6 > 0, depending only on g, such that

O = |G (k) |72y > 0 > 0, for allk € Z — {0}. (2.3.19)

Proof. The proof of items i), ii), and #iz) can be found in [62, page 296]. Here, we prove

the item 4v) only.
If there exists k € Z — {0} such that d; = 0, then

21

o) (x) — 9(x) f g(y)uly) dy = 0, Vo eT.

0

Therefore, there exists C' > 0 such that g(z)y¥r(x) = Cg(z), Vo e T. Thus, ¢p(z) = C,
Vz € w < T which is a contradiction. Hence, 0, > 0, for all k € Z — {0}, and §y = 0.

On the other hand, for each k € Z — {0} we have

=g [ lo@Pds - [ lg(o? (wm) | sty + i | ﬂg(ywk(y)dy) i

ol 7 lo(a)?

1 27 2 27
= — de — —
QWJ lo( \/27TJ

1 2
———D,+Dj | E,
(27‘(‘ V2T K k)

2
dx

L " gy (y)dy

2

27
L oy (y)dy

dz + <J027r |g(x)|2dx)

f " g )y
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where

De= [ st dy| ana £ = [Tlgtoar

0 0

1 2
Consider the function f : [0, +o0) — R defined by f(z) = — — ——=a+2?. Since 6;, > 0, for

2 A/27

all k € Z—{0}, then the value Dj, = is never attained for any k € Z—{0} (see Figure 1).

1
V2T

Using the Riemann-Lebesgue lemma, we get

1 2
lim J; > lim ———Dk+D,% E—E—f |dx—5>0
|k|—-+o0 |k|->+00 \ 2 27
O
y
T y = f(z)
e t— X
NoZs
Figure 1 -

Remark 2.3.6. The sequence of eigenvalues {iMg ez, with N\, = k> — akl|k|, satisfies the

following properties:

i) IA_g = —iAg, and A, = =g, for all k € Z.

i) Illlm lidg| = |hm Ak| =

ii1) |kl|1rn lidgr1 — iAg| = |kl|1rn A1 — k| = 0 (asymptotic gap condition).
—00 —00

iv) Observe that not all the eigenvalues of the sequence {i\;}rez are distinct, it depends on
the value of . For each ky € Z set [(ky) ={k € Z: Ay = Ay} and |I(ky)] = m(ky),
where |I(ky)| denotes the numbers of elements of I(ky). Then we have the following
properties for m(ky) :

a) m(ky) < 3, for all ky € Z. This is consequence of the fact that m(ky) is less or

*—azla] = B,

equal to the number of integer roots of the equation f(z) =z
where B is an arbitrary real number, see the format of the curve in Figure 2

below.
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Figure 2 — Figenvalues

b) Since the sequence of eigenvalues tend to infinity, there exists ki € N such that

m(ky) =1, for all |ky| > kY. This is a consequence of the fact that the function

x> 2° — ax|z| is strictly increasing for |x| large enough.

v) If we count only the distinct eigenvalues, we obtain a sequence {\y}ke1, where I € Z

has the property that A\, # Ai,, for any ki, ko € I, with ky # ks.

vi) From part a) in iv) we infer that there are only finitely many integers in I, say, k;,
J=1,2,3,....,n, such that one can find another integer k # k; with A\ = Ay, Let

L ={keZ:k+#kj, =N}, Jj=123,..,n

Then

Z:HU]hU]IQU"'UHn,

where the sets in the right are pairwise disjoint.

vii) From part b) in iv), we infer that

v = jnf) Ak = An| = min [A, = Au| > 0, (2.3.20)
k#n

where F := {n,ke]l:ksén, and —1—[3;]<k:,n<[3a

7] + 1}, because

. . o
r —> 2° — ax|z| is increasing very fast for |z| > [7] + 1.
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Now we provide proof of our main theorem regarding controllability of non-

homogeneous linear system (2.2.13).

Theorem 2.3.7. Let s > 0, a > 0, and T > 0 be given. Then for each ug, u; € H (T)
with [ug] = [uy], there exists a function h € L*([0,T]; H3(T)) such that the solution u €
C([0,T]; Hy(T)) of the non homogeneous system (2.2.13) satisfies u(x,T) = uy(z), v € T,

Moreover, there exists a positive constant v = v(s,g,T) > 0 such that
|l 2o, rymgery < v(luolmyery + lualmyer) (2.3.21)

Proof. As discussed above, it is enough to consider uy = 0. We prove this theorem in five
steps.

Step 1. We show that the family {e"**'}; is a Riesz basis (see Definition 1.6.4) for the
closed span span{e?t : k e I} =: H in L*([0,T]), where the set of indices I was defined in
part v) of Remark 2.3.6.

In fact, since L*([0,T]) is a reflexive separable Hilbert space so is H. Observe
that the sequence {e***'}, is complete in H (see Definition 1.6.3). On the other hand,
from item iii) of Remark 2.3.6, the eigenvalues associated to the linearized Benjamin
equation satisfy the assymptotic gap condition which implies

v i=sup inf |\ — \,| = +o0,

Scl k,nel\S
k#n

where S runs over the finite subsets of I. Using the generalized Ingham’s Theorem 1.6.10
with v defined by (2.3.20), we obtain that there exist positive constants A and B, such
that

AN ba)? < L [f(t))dt < B [ba|”, (2.3.22)

nel nel

for all functions of the form f(t) = Z b,e™ with square-summable complex coefficients

nel
b,. In particular, if by, ...,by are N arbitrary constants, we have

N T
AZ |bn|2 < J aneiknt
n=1 0

nel

2 N
dt < B |b,[”.
n=1

Thus

2 N
<B Z |b,|? for all by,...,by scalars.

H n=1

Z bnez)\nt

nel

N
AN ba)? <
n=1

Now, applying Theorem 1.6.6 we conclude that {e"*'}, is a Riesz basis for the closed
span H in L*([0,T1]).

Step 2. In this step we show the existence of a unique biorthogonal dual basis {g;};e1 = H*.
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Indeed, the Theorem 1.6.6 implies that {ei’\’“t} rer is a complete Bessel sequence and possesses
a biorthogonal system {g;} er which is also a complete Bessel sequence. Moreover, Corollary
5.22 in [39, page 171] implies that {¢;} ;e is a basis for H* which can be identified with H.

Therefore, {g;}er is also a Riesz basis for H.

Thus, by Lemma 5.4 in [39, page 155] part a), we get that {€"**'},c; is minimal.
In consequence, we have the existence of a unique biorthogonal dual basis {¢;};e = H*
due to exactness (see definition 1.6.7) of the sequence {e***'},.; and Lemma 5.4 [39, page
155] part b).
Therefore,
T
(et qj) = J MG () dt = 6y, YV k,jel (2.3.23)
0

Step 3. Here we will define an adequate control function h.

In fact, in Step 2, we found a sequence of functions g; where j is running on the set of
indices I. In this step, we will need to define a sequence of functions ¢; with j running on
Z.Note that Z =Tul; ul, U---Ul,, so it is enough to define this sequence for indices in
I;, j = 1,--- ,n. Furthermore, recall from part vi) in Remark 2.3.6 that, each I; contains

at most 2 integers. Without loss of generality, we may assume that
L = {kj1, k2, =123, ...n.
We denote k; by kj;o for any j = 1,2, 3, ..,n. Therefore, for k;; we define
Tk, = Gy = Qr;, forallj=1,2,3,...,n, and [ =0,1,2.
Also it is important to note that

Ak,

3,

= M,;, forallj=1,2,3,...n, and [ =0,1,2.

For suitable h;’s, consider a control function A defined by

h=> h; G(t) ¢5(). (2.3.24)

JEZ
Note that, using the identity G(g;(t) ¥;) = g;(t) G(¢;), we obtain
T r27 ) . T r2m ) .
| [ ctewne 05w dwa - | (2 hjqj@)G(wj)(x)) e T () dnde
= Z h; J

JEL 0

T
= Z hje_i’\’“ij,kJ T (t)e ™t dt.

JEL 0

T ) 27 e
Ti(H)e M0 gt f G () ()T () da
0
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Therefore,

T
J f (z,t)e” M TDY dadt = Zh e ZA’“Tm]kJ qi(t)e™ " dt. (2.3.25)
JEZ 0
Step 4. In this step we find h;S such that h defined by (2.3.24) serves as a required control
function. For this, we use the identity (2.3.25) and Lemma 2.3.4 applied to

uy(z) = Z cnn(z) € Hy(T), with [u;] =0 (co =0 and ug =0),

nez

to infer that it is enough to consider h;-s satisfying

T
Ck = Z hjei)"“ij,kL qj(t)e™ " dt. (2.3.26)

JEZ

Note that, part i7) of Lemma 2.3.5 implies that equation (2.3.26) is satisfied
for k = 0, independently of the values of h;. Moreover, from (2.3.23) we obtain that

cr = hpmppe ™ itk £ ki, 1=0,1,2, j=1,2,3,....,n; (2.3.27)

and for k= k;;, 1=0,1,2, j=1,2,3,...,n.

( 2
—ixe. T
Ck,() = thj,l mkj’l,kjp € 4,0 )
=0
2
B “ide, T
1 Cik1 _thj»l M ki € 7,1 ; (2328)
=0
2
—idp. T
Ch2 = th’j,l M ko €02
\ =0

Therefore, choosing hg = 0, and using part iii) of Lemma 2.3.5, we obtain

o eMT
hy=———, itk#0andk #k;;, 1=0,1,2, j=1,2,3,...,n; (2.3.29)
My ’
and
hk T c g, T T
by | o= | emae™e ) MY for j=1,2,3,.n, (2.3.30)
hi; Ck; e
where

M okio Mkjiokis  TMkjokse
M; = Mig;1kio Mhkivkia Mk e
Mo kio Mkjokin  Mkjokjo
In this way, we take hjs given by (2.3.29)-(2.3.30).
Step 5. In this step we prove that the unique function h defined by (2.3.24) belongs to
L*([0,T]; H3(T)), where hg = 0, and hy, with k # 0 is defined by (2.3.29) and (2.3.30).
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Indeed, identifying H* with H, and using the Theorem 1.3.4, together with the
fact that {¢;};er is a Riesz basis for H we obtain

2
T
12220 mysmg () = J Z i, @ (t) Vr(z) dt
keZ HS(T)
- [ S i amor a
0 kez (2.3.31)
T
~N+ |k:|)23f e e (0)]? dt
keZ 0
< DI+ [k)* By [,
keZ

where By is the constant given by the Bessel type inequality (similar to (2.3.22)) for the
Riesz basis {¢;} ;e in H. From identity (2.3.29) and lemma 2.3.5 part i), we obtain

ek eZAkT n 2 R
HhH%Z([O,T];H;(T)) < OBy > (1+[k])> + CBy Z Z (1 + [kj.01)* B, |2
keZ—{0} k#k;. iZiico
1=0,1,2 j=1,2,...n
CBQ n 2
< > (1+ [k])* |ex|* + CB, ZZ (1 + [kj.1))% B, 2.

2
B keZ—{0} k#k;,
1=0,1,2 j=1,2,....,n

(2.3.32)
From identity (2.3.30), we obtain that for each | = 0,1,2 and j = 1,2,....,n

2
bl < 3 Ihjml < (2 et e ) R < R Y e, P
m=0

m=0

where | M| is the Euclidean norm of the Matrix M *. This implies that for each I = 0, 1,2
and j =1,2,...n

: (1 + |kjal)* s
(1 + [hjal)**lhgal* < Z a1 T Tz O o) les, o
, ’ (2.3.33)
() 2 (1 Tyl e, s
m=0
- Ly (L R
where C(s) = jax {]M] [ T+ oym® |
m,l=0,1,2
Therefore, using inequalities (2.3.32), and (2.3.33), we get
2 0‘82 2s 2 S : 2
P o ey ny) < 5 > (1+ B [ex]” +3CB2C(s) D0 D7 (1 + [kjom|)**[ck, |

keZ—{0} k#kj, j=1m=0
1=0,1,2 j=1,2,....,n

< V2HU1 H%{;(T)a

CBy
where v = 1%(s, g, T) = max { 5 3CByC (s )} This completes the proof of the theorem.
[l
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Remark 2.3.8. The dependence of v with respect to T is implicit in the constant By of
the Theorem 1.6.10.

Remark 2.3.9. The difficulty in the proof of Theorem 2.3.7 comes from the fact that
the sequence {\rez, with N, = k> — ak|k| associated to the Benjamin equation is not
increasing, contrary to the case of the KdV and the BO equations (see the Figure 3 below).
The increasing property of the eigenvalues is a necessary condition to apply the Ingham’s
Theorem 1.6.8. Due to this reason, we followed an approach implemented by Micu, Ortega,
Rosier and Zhang in [62] and used a generalized form of the Ingham’s inequality (see
Theorem 1.6.10).

i Eigenvalues for the KdV equation.

A Eigenvalues for the Benjamin equation.

Ar Eigenvalues for the Benjamin-Ono equation.

Figure 3 — Eigenvalues

Remark 2.3.10. Theorem 2.3.7 is strong from the point of view that we do not make
restrictions on the time T. It is important to point out that the so-called “asymptotic
gap condition” (see condition iii) of Remark 2.5.6 below) that holds for the eigenvalues
associated to the Benjamin equation was crucial to obtain the exact controllability for any

positive time T.

Equations (2.3.24), (2.3.29), (2.3.30) and (2.3.21) in Theorem 2.3.7 allow us to
get the following corollary, which is fundamental to prove a small data control result for

the Benjamin equation (2.0.1).

Corollary 2.3.11. For s > 0, and T' > 0 given, there exists a bounded linear operator
® : H3(T) x H3(T) — L*([0,T); H}(T)) defined by ®(ug,u1) := h, for all (ug, u1) €
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Hy(T) x H(T) (see (2.3.24) ) such that

uy = U(T)up + Jo U(T — s)(G(P(ug,u1))) (-, s) ds, (2.3.34)

and

1D (o, ur) | 2o, ry s (my) < v ([wol s (ry + [ua]mscr)), (2.3.35)

where v depends only on s, T, and g (see (2.0.8)).

Also, Lemma 2.3.3 and Corollary 2.3.11 allow us to get the following observ-
ability inequality, which is fundamental to obtain a result on exponential asymptotic

stabilization with decay rate as large as one desires for the linear system associated to

(2.0.2).

Corollary 2.3.12. Let T > 0 be given. There exists 6 > 0 such that

T
J|WUGﬂ¢§mﬁﬁh>VW%ww

0

for any ¢ € L*(T).

Before ending this section, we record an observation in order to study the

control problem for the Benjamin equation

{ Ou — aHTu — 03u + 2udu = Gh(z,t), te(0,T), zeT, (2.3.36)

(i, 0) = uo(x), re,
where u = u(z,t) denotes a real-valued function, a > 0, and ug € H;(T) with s > 0.

Remark 2.3.13. As in the non-homogeneous linear case, the “volume” [u(-,t)] for equation

(2.3.36) continues to be conserved.

To get some estimates in Bourgain’s spaces which will be defined in Chapter 3,
the assumption [u(-,t)] = [up] = [u1] = 0, where u is the solution of system (2.3.36), can
not be omitted. In general, this assumption is not valid for equation (2.3.36). To solve this
problem, let u be a solution of equation (2.3.36) with [u(-,t)] = [uo] = [u1] =: p, for all
t €[0,7T] and let v(z,t) = u(x,t) — p. Note that v solves

O — aH?v — v + 2u0,v + 200,v = Gh(z,t), te (0,T), veT
U(ZE‘,O) :UO(‘I) = Uo(x)—/% IET,

where p € R, a > 0, and vy € H;(T) with s > 0 are given and [v(-,t)] = [v] = 0,
Vt e (0,71,
Conversely, if v is a solution of equation (2.3.37) then, u(x,t) = v(x,t) + p

is a solution of system (2.3.36). In consequence, we must resolve the controllability and
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stabilization problems for the system (2.3.37).

As before, we begin by considering the linear non-homogeneous system

{ 0w — aH G0 — O3 + 2ud,0 = Gh(z,t), te(0,T), zeT (2.3.38)

v(z,0) = vo(x), xeT
where € R is a given number. As the operator A, : D(A,,) € L*(T) — L*(T), defined by
A 1= aMH%p + 02 — 2udp (2.3.39)

is skew-adjoint, it generates a strongly continuous unitary group {U,(t)}.r on L*(T).

Moreover, for s € R, the family of operators {U,(t)}«r, defined by
Uy : R — L(H(T))

. v (2.3.40)
t — Uu(t)(ﬁ = e(aHa§+a§.—2uax)t(p _ (ez(—kS_Quk+ak|k|)t@(k)> ,

defines a strongly continuous one-parameter unitary group of contractions on H, (T).
Furthermore, U, () is an isometry (see [16, Definition 3.4.6]) for all ¢ € R.

Remark 2.3.14. For pe R, s e R, and vy € H;(T) (respectively vy € H;’(']I‘)) given, there
exists a unique solution v € C(R, Hy(T)) (respectively, v e C(R, HS(']I‘)) N C' (R, L*(T)))
for the homogeneous equation associated to equation (2.3.38). Furthermore, if 0 < T < oo,
s 20, v € H(T), and h € L*([0,T]; H(T)) then, there exists a unique mild solution
ve C([0,T], Hy(T)) for the system (2.3.38).

Remark 2.3.15. For p € R given, we get an analogous result of Lemma 2.3.4 for the
system (2.3.38), just modifying M\, = k* — ak|k| by A\ = k* + 2uk — akl|k|. Also, due
to the “asymptotic gap condition” that holds for the eigenvalues of the operator A, we have
an analogous result of Theorem 2.53.7 for the equation (2.3.38), it means that the system
(2.3.38) is exactly controllable.

Thus, similarly to Corollary 2.5.11, for p € R, s = 0 and any T > 0 given,
there exists a bounded linear operator @, : H3(T) x H3(T) — L*([0,T]; H3(T))  defined
by hy = ®,(vo,v1), for all (vo,v1) € Hy(T) x H)(T) such that

T

vy = Uu(T)vo + J Uu(T — s5)(G(®,(vo,v1))) (-, 8) ds, (2.3.41)

0

and

H;(T)> : (2.3.42)
where v depends only on s, T, and g. Therefore, for any T > 0 the following observability

|® . (vo, v1) | L2 (o705 (m) < v <Hvo\ ms(r) + 1]

inequality holds for some § > 0

T
| 16U @y dr 2 8 10l for any o 12(T) (2.3.43)
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2.4 Stabilization of the Linear Benjamin Equation

Now we move to study the stabilization of the linearized Benjamin equation.
From the observation made in the final part of Section 2.3, it is enough to study the
stabilization problem for the IVP (2.3.38) in H{(T), with s = 0 (see (1.3.1)). Thus, we

consider the system

(2.4.1)

ot — aHo*u — 3u + 2ud,u = Ku, t>0, veT
u(z,0) = up(x), zeT,

where u = u(x,t) is a real valued function, @ > 0, and K is a bounded linear operator
on H;(T). In view of the discussion at the end of Section 2.3, we assume that p is a real

given number and [u(-,t)] = 0, for all ¢t > 0.

In this section we prove that there exists a feedback control law such that the
system (2.4.1) is exponentially asymptotically stable when ¢ goes to infinity. First, we
prove that the system (2.4.1) is globally well-posed in Hg(T), for s > 0.

Theorem 2.4.1. Let ug € H3(T), then the IVP (2.4.1) has a unique solution
u e C([0,%0); Hy(T)) n C*([0,0); Lg(T)).

Moreover, if ug € Hj(T), then we have that u € C([0,0); Hy(T)), for all s = 0.

Proof. We know that the operator A, = aH02 + 02 — 210,, is an infinitesimal generator of
a Cy-semigroup {U,,(t)}i=0 over Hj(T). Also we know that K is a bounded linear operator
on Hi(T). From Theorem 1.1 in [71, page 76|, we get that the operator A, + K, which
is a perturbation of A, by a bounded linear operator, is an infinitesimal generator of
a Cp—semigroup {7T'(t)};=0 on Hg(T). It is important to observe that A}, = —A, is the
infinitesimal generator of a Co-semigroup {U,,(t)*};0, with domain of A* dense in Lj(T),
and U,(t)" = U,(—1). O

In order to stabilize the equation (2.4.1) in Hj(T), we employ a simple feedback
control law, Ku = —GG*u, where G is defined as in (2.0.9). The following theorem says
that the trivial solution, u=0, of equation (2.4.1) with this feedback law is exponentially
asymptotically stable when ¢ goes to infinity.

Theorem 2.4.2. Let o« > 0, p € R, g as in (2.0.8), and s = 0 be given. There exist
positive constants M = M(«, p,g,s) and v = v(g) such that for any uy € HS(T), the
unique solution u of (2.4.1) with K = —GG™ satisfies

Ju- )]

H(T) < Mei'yt”U()’ HE(T), fOT’ all t = 0. (242)

Proof. We prove this theorem in five steps.

Step 1. First we prove the case s = 0. In this case we use a procedure similar to [55, 80].
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Let T > 0 be given and assume ug € Hjj(T). Theorem 2.4.1 implies that the solution u of

the IVP
Ot — aHPu — 02u + 2ud,u = —GG*u, t>0, reT

U’(ZE7O) = UO(I')’ x € T>
satisfies u € C([0,0); HZ(T)) n C*([0,00); L3(T)). It means u(-,t) € H3(T), for all t = 0

and in particular, for ¢ = T. Now we consider the IVP

(2.4.3)

Oyw — aHO*w — S2w + 2ud,w = Gh, te (0,T), zeT
w(z,0) =0, zeT (2.4.4)
w(z, T) = u(z,T), zeT.

Remark 2.3.15 implies that there exists a unique h € L*([0, T]; H(T)) such that
the unique solution w € C([0, 00); H3(T)) n C*([0, 0); L(T)) of equation (2.4.4) satisfies
w(z,T) = u(z,T) forall z e T, and there exists a positive constant v = v(g,T) such

that

|All 2oz emy < vw(@, T) | mzer)-

On the other hand, note that ug € Hy(T) = L&(T), therefore Theorem 2.4.1
implies that u € C([0,00); L3(T)) is a solution of equation (2.4.3). Furthermore, Remark
2.3.15 implies that h e L*([0,T]; L3(T)) and the solution w € C([0, 0); L3(T)) of equation
(2.4.4) satisfies w(z,T) = u(z,T'), forall z e T, with

”hHLQ([O,T];Lg(’H‘)) SV HU(%T)HL(%(T)- (2-4-5)

Now, multiplying the first equation in (2.4.3) by u and integrating with respect

x, it follows that

f Oru udx — f aH o udx — f 3w udz + J 2u0zu udr = f —GG*u udz. (2.4.6)
T T T T T
Note that L d
5%(U,U)L3(T) = (Ut,U)Lg(T). (247)

Therefore, using the Parseval’s identity, we get
o0
—J aHo*u udr = —2ma Z i sgn(k)k*U(k)a(—k).
T k=—o0
It is easy to show that the partial sums satisfy

N
. T . 2~ ~r _
]\lfl_rgo Sy = ]\lfl_r)noo kZNz sgn(k)k“u(k)u(—k) = 0.

—f aHo%u udr = 0. (2.4.8)
T
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Now, using integration by parts, we obtain

1 =27
- f Buudr == | (Opu)? =0, (2.4.9)
T 2 =0
and
=27
f 2u puudr = [u2 ] = 0. (2.4.10)
T =0

Hence, from (2.4.6)-(2.4.10) and the fact that the operator G is self-adjoint on
L3(T) we have

th (H ¢, )H%%(T)) = —|Gu(-,)|72¢r), forallt > 0. (2.4.11)

Integrating (2.4.11) with respect to the variable ¢ from 0 and 7', we get
L 2 Lo 2
§HU(T)HL3(T) - §HUOHL§(T) = _”GUHL2((O,T);L3(’IF))‘ (24.12)

On the other hand, multiplying the first equation in (2.4.4) by u and integrating

with respect to the x—variable, we get

J ow u dr — f [aHZw u+ Bwu — 2ud,w u] do = J Gh udz, (2.4.13)
T T T
for all 0 <t < T. Using integration by parts in the second term of (2.4.13) we get
f oyw u dr — f w [—aHPZu — Bu + 2u Oyu] de = f Gh udz, (2.4.14)
T T T

for all 0 < t < T. Integrating (2.4.14) with respect to ¢ from 0 and 7', and using integration

by parts, we obtain

T T
f w(T) (T)dz — J J w [ — aHeu — du + opdyu]dudt — f J Gh adzdt.
T 0 T 0 T

Observe that u is a solution of equation (2.4.3). Thus

J T)dz + J J GG* Ydxdt = J J Gh udzdt.

Using that the solution u is real, the operator G is self-adjoint on L§(T), and the Cauchy-

Schwartz inequality, we get
[u(s D) 72my < 17— G|l 20.020my) |Gl L2(0.09:22())- (2.4.15)

From (2.4.5), we infer

=

T 2
Ih = Gwllaoryezmy < vIUT) ez +c (f Jw(, O)1Zzm) dt) : (2.4.16)
0
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Also, observe that

2

t
f Uu(t —tGh(-,t") dt’
0

||w('a7f)H%g(1r) <
L3(T)
2

T 3
<8T[(L|m«fm%@>ﬁ) ] (2.4.17)

< CZTHhH%%(o,T);L%(T))

< C2TV2HU(T)H%g(T)-
It follows from (2.4.16)-(2.4.17) that

|h = Gl r20.r):220m) < cor |[W(T) | 220y, (2.4.18)

where ¢, 7 = maz{v, ¢*Tv}.

Thus, from (2.4.15) and (2.4.18), we have

”U('»T)H%g(m S CoT HU(T)HLg(T) : ||GUHL2((0,T);L3(T)),

which implies that

1
_”GUH%Z((O,T);Lg(’H‘)) < _ﬁ HU(HT)H%g(m (2.4.19)
g,

From identity (2.4.12) and the inequality (2.4.19), we obtain
2 2 2
1+ 5 |u(D)22(m) < luollzzm)-
g,
Thus, there exists p,7 = p € (0,1) such that Hu(T)Hi%(T) < PHUOHig(T)a for any 7" > 0.
Moreover, we can repeat this estimate on successive intervals [(n — 1)T, nT'] to get

ule, nT) oy < 0" ooy, forany T>0,n> 1, (2.4.20)

where u is the solution of (2.4.3), and p = p,r € (0, 1).

In particular, fixing 7T > 0 we obtain that for any ¢ > 0, there exists n € N
such that nT <t < (n + 1)T. From (2.4.11) we know that the function ¢ — |u(-, t)H%g(T),
with ¢t > 0 is decreasing. From (2.4.20) there exists p = p, € (0,1) such that

lu( )20y < lul,nT)|72
13(T) 13(T) (2.4.21)

< " HUOH%%(T)’ for all n > 1.

It is easy to show that if

I
0<y< M0 i Ms e (2.4.22)
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one has
Pt < M? et forall neN. (2.4.23)

In fact, inequality (2.4.23) is equivalent to 2yt < In(M?) —nIn(p), for all n € N.
As 24t <2~ (n+1)T, then it is enough to prove that

29 (n+1)T < In(M?) —nln(p), forall neN.

It is easy to verify that the last inequality is true if (2.4.22) holds. Therefore,
(2.4.21) and (2.4.23) yield

||U(',t)||Lg(1r) <M 6_7t|’U0HLg(T)7 for all t > 0, (2-4'24)

and we get the result for smooth initial data in Hy(T). We complete the proof for s=0

using density arguments.

Step 2. Here we consider s = 3. In this case we use a similar argument as in Proposition
2.3 of [52]. Let u be the solution of equation (2.4.3) with initial data uo € Hg(T), then

ue C([0,0); H3(T)) n CY([0, 0); L3(T)). (2.4.25)

Since Hj(T) = L3(T), then from the s = 0 case we have that there exist positive

constants M; and v = y(g) independent of ug, such that

Ju(, ) L2ery < MleﬂtHUOHLg(T% for all ¢t > 0. (2.4.26)

On the other hand, differenciating the equation in (2.4.3) with respect to ¢, we

obtain
0y(Opu) — aH2(Opu) — 02 (0u) + 2ud,(Ou) = —GG*(0u). (2.4.27)
Therefore, w := d;u € C([0, +0); L3(T)) is the unique solution of
Oyw — aHd*w — 3w + 2ud,w = —GG*w, t>0, =xzeT, (2.4.28)
w(zx,0) = wo = dpu(x,0) = aH2ug + g — 2udug — GG¥ug € L(T), xeT, o

Again, from the case s = 0 applied to equation (2.4.28), there exist positive

constants M; = M;(g), and v = v(g), independent of wy, such that
H(}tu(7t)HL(2)(T) = Hw(7t)HL(2)(T) < Mlei’ytHwOHL(%(T)’ for all ¢ = 0. (2429)

Note that, for each t > 0

Jul Bl < 0 (JuC-Ollger) + 1850, Ol gen) ) - (2.4.30)
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To estimate the term [3ul(-, t)|L2(r) observe that from equation (2.4.3)
Bu(-,t) = w — aHu + 2udu + GG*u. (2.4.31)
Thus, for each t > 0

|62ul, O)llzery < lw(, Oz + el HEul )z + 2ulldeu(, 1)) e

) (2.4.32)
+ |GG (-, )HLg(T)

Using Gagliardo-Niremberg inequality (see the Theorem 3.70 in [8]) and Cauchy-

Schwartz inequality with €, we have

2| pl|0zul-, ) 2 (my < 2|plv27]Ozul- )| oo ()
1 1
c
= cpellu(-, )| 2y + Zi“aiu('vt)HL%(T)

where ¢, = 2|u|v2m ¢;. Also, using that H is an isometry in L§(T), integration by parts

and Cauchy-Schwartz inequality with ¢ we have

e Oy = | ute.0) Fued) do
< “5xu('>t)HLg(T)Hagu(',t)HLg(T)
1
< €H5azu('7t)H%g(qr) + @H@iu(nt)\\%gar)-

Therefore,
1
mﬁwwmﬁm<@(aawmmmm L jatu., Hmm) (2.4.34)
2€2

Using inequality (2.4.33) we obtain from (2.4.34) that

HHaiu('at)HL?)(T) < c3 63““( Ollrzer) + T||33 (5 ) Lz(rys (2.4.35)

CQCl \V 271'
where c3 = co V27 ¢, and ¢4 =

(2.4.33) and (2.4.35) we obtain

5 Thus, from inequalities (2.4.29), (2.4.32),

0404 c _ 3
(128 - S ) IetuC.Dlizen < M fuolzzen + (acact + g + &) Jule Dz

_ 3 _
< Mie VtHonLg(rﬂ-) + (a0362 + cu€e+ cZ) Mie ’YtHuOHLg(T)-

o
-2 > 0 we infer that there exists
€

€2
a positive constant ¢ = ¢, 4, independent of ug, and wy such that

Hagu(wt)HLg(T) < e Me ™ (HwOHLg(T) + ||U0HL3(T)> . (2.4.36)
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Also, note that

HWOHL(%(T) S HainHLg(’ﬂ‘) + Haiuong(nr) + 2| HaxuOHL%(T) + C?;HUOHL%(T) (2.4.37)

< Ce ”UOHLg(T);

where ¢g = ¢s(a + 1+ 2|p| + ¢7). Now, from (2.4.36)-(2.4.37) we have
||52U(‘a t)HLg(T) < M2€_7tHu0‘|L3(T)7 (2.4.38)
where My = ¢ My (c + 1). From expstabilizationinl.21, (2.4.30) and (2.4.38), we get

[l D) lg(m) < co (MleﬂtHUOHL%(T) + MzeﬂtHUo”Lg(TO
< Co (Ml + MQ) 6_7t Cs ”uOHHg(T) (2439)
< M €_WtHuOHH8(T), fOI‘ all t = 07
where M = M(a, i, g) = ¢o (M1 + M) c5, and v = y(g) are positive constants independent
of uyg.

Step 3. Using induction and similar arguments as above, we prove that inequality (2.4.2)
holds for s = 3n, with n € N. In fact:

Inductive Base: for n = 0 or n = 1, the inequality (2.4.2) follows from steps 1, 2.

Inductive Hypothesis: Assume that inequality (2.4.2) is true for s = 3n, where n =
0,1,2,....,k — 1, k. Lets prove the result for n = k£ + 1.

By the inductive hypothesis (n = k) we know that for ug € Hy*(T), there exists
positive constants M; = Mj(a, i, g, k) and v = y(g), such that the unique solution u of
(2.4.1) with K = —GG™ and j = k, satisfies

On the other hand, for n = k£ + 1, we have that u, € Hg(k+1)(’ﬂ‘) s H3*(T) —
L%(T), with dense embedding. Then, the solution u of (2.4.1) with K = —GG* and
Jj =k + 1, satisfies

we C([0,0); Hi*™(T)) A C([0, o0); H*(T)),

and (2.4.40). Thus, defining w := dyu, we have that w e C((0,0); HZ*(T)) is the solution
of

Orw — aMHd?w — 3w + 2ud,w = ~GG*w, t>0, zeT
Ow(2m,t) = 07'w(0, t), t>0, m=0,1,....,3k—1

w(z,0) = wo(z) = aHPug + 3ug — 2ud,up — GG¥ug € H3*(T), xeT.
From inequality (2.4.40), we infer that w satisfies

Hatu<,t)HH3k(T) = Hw(7t)HH3k(T) < MleifytHwOHHS’k(T)? for all ¢ = 0. (2441)
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It is easy to prove that
e, t) ey < exer (s Olzgemy + 103, )lgem) ) (24.42)

From step 2 there exist positive constants My = Ms(g), v = v(g), such that u

satisfies

HU(7 t)HL(Q)('JT) < M2ei7tHU0HL(2)(T) < M2€7'YtHuOHHg(k+l) for all ¢ = 0. (2443)

(T)’
Equation (2.4.31) yields

O3 (Pu) = 03w — aH2 (3 u) + 20, (0% u) + GG* (3 u).
Thus, using the estimates in (2.4.41), (2.4.33), (2.4.35) we obtain

163 (0%0) | 3 my < 103wl g 0my + MO W) |2y + 2l 0@ )] 3y
GG () |3y

cq

3. .
< [wll ggr(ry + a cs €2 |03%ul 2z + 10305 ull 2y

N

€
k ¢ k k
+ cuel 0} UHL%(T) + 4—’;\\62(62 U)HL%(T) + 03“52 UHLg(T)

cq

3
< Jeol gy + v € € ul gy + 10303 ul acry

1
€2

c
+ cuelu ggrery + ﬁ\\ﬁi(agk“)hg(ﬂr) + CEHUHH(?’“(T)'

Therefore,

Cq Y C 3
(1- %% = ) jt @iz < Iulgren + (@ o 46, e Dl
_ 3 _
< Mqe 'YtHonHgk(T) +(acze? +cy e+ ci)Mle “’tHuoHHgk(T)

cua c

41 — 4—“ > () we obtain that there exists a positive
€2 €
constant ¢, , 4, independent of ug, and wy such that

Taking € large enough such that 1 —

Haasck<a§u)“L§(T) < Caug Mleifyt HwOHHS”“(’]I‘) + ||UOHHgk(’]I‘)>
< Capyg Me " <06||UOHH3(’“+1>(T) + ||U0||Hg(k+1)(T)> (2.4.44)

< M36_’Y75HUOHHS(1€+1)(T)-

From (2.4.42), (2.4.43), and (2.4.44) we have that
”u(-j)”ngH)(T) < Me*'ytHu()HHg(Hl)(T), for all ¢ >0, (2.4.45)

where M = M(a, p, g,k + 1) and v = 7(g), are positive constants. This completes the
proof of step 3.

Step 4. Here we consider 0 < s < 3. In this case we use the Real Interpolation Method,

specifically the K-method of Interpolation, (see Definition 2.4.3, and Theorem 3.1.2 in Bergh
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and Lofstrom [11]). From Theorem 6.2.4 in [11] we know that the space of interpolation
between L*(R) and H*(R) is

(L*(R), H*(R))g2 = H¥(R),
where 0 < 6 < 1. This property is also true for the torus T (see Corollary 1.111 in Triebel

[89]). It means,
(L3(T), Hy(T)).2 = H*(T), (2.4.46)

where 0 < 0 < 1.
Let t > 0 fixed. From the case s = 0, we have that the norm of the operator
T(t) : L(T) — L3(T), satisfies
| T ) L2r),220m) < Mo e, (2.4.47)

where My = My(g), and v = y(g) are positive constants. Also, from the case s = 3, we
know that the norm of the operator T'(t) : H3(T) — Hg(T), satisfies

|T ()] 31y, 13 0my < M e, (2.4.48)

where M; = M;(«, i1, g), and v = ~(g) are positive constants.
Interpolating (2.4.47) and (2.4.48) (see (2.4.46)), we get that the norm of
operator T(t) : H3?(T) — H3(T), satisfies
—y g\ 1-6 o\

o o . (2.4.49)
=My M{ e ||U0”Hg‘)(1r)a

where 0 < 6 < 1. Thus, denoting s = 360, we have that there exists M = M («, u, g, s), and
v = v(g) such that

Ju(-, )] HE(T), (2.4.50)
where u is the solution of (2.4.1) with K = —GG*, and 0 < s < 3. As t was fixed but

arbitrary we get the result.

gy < M e ug|

Step 5. For the others values of s, we use
(H3H(T), Hy"(T)) 2 = HYFH(TD), (2.4.51)

where 0 < p < 1, to interpolate inequalities (2.4.40) and (2.4.45), similarly as in step 4.
Using an induction argument and computations similar to those in the previous cases, we

can prove the following claim.

Claim: For 0 < p < 1, and n € N, there exist positive constants M = M («, u, g,n, p)
and 7 = ~(g), such that for any ug € Hy""*"(T), the unique solution u of (2.4.1) with
K = —GG* satisfies

(-, t)HHgnJr?:p(T) < Me_7t||u0||Hgn+3p(T), for all t > 0.
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Note that, for s > 0 given, there exists n € N and 0 < p < 1, such that s = 3n + 3p.
Therefore, inequality (2.4.2) for the other values of s follows from the claim and the result
obtained in the third step. This completes the proof of Theorem 2.4.2. O]

The following corollary is a direct consequence of Theorem 2.4.2.

Corollary 2.4.3. Let p € R, a > 0, g as in (2.0.8), and s = 0 be given. There exist
positive constants M = M(u,«, g,s) and v = y(g), such that for any ug € H;(T) with
p = [uo], the unique solution u € C([0,00); H,(T)) of the closed-loop system

i — aHPPu — u = ~GG*u, wu(x,0)=wuy, veT, teR",

satisfies

Ju(, ) = [uol|

Hy(r) < Me™ Mo — [UO]|H5(’H‘), for all t = 0.

2.5 Stabilization of the Linear Benjamin Equation in Hj(T) with
Arbitrary Decay Rate

In this section, we show that it is possible to choose an appropriate linear
feedback control law such that the decay rate of the resulting closed-loop system (2.4.1) is
as large as one desires.

For A > 0 and s > 0 given, we define the operator

Lyg = f e U (—7)GG*U,(—T1)*¢ dr, for all ¢ € Hy(T). (2.5.1)
We begin by establishil(:lg some properties of this operator.
Proposition 2.5.1. Ly is a self-adjoint positive bounded linear operator on LZ(T), and

so is its inverse Ly'. Ly is therefore an isomorphism from L3(T) onto itself.

Proof. Tt is easy to show that L, is a linear operator. Also, for each ¢ € L2(T) we have
that

1
Ladligen < [ € I0,(-1IGG U0l
0 (2.5.2)

1
<L€%gw%mM=%wmww

(1—e )

o Moreover, for each ¢,1) € L3(T), we have

where ¢4\ = cg
(Lxd. ¥) 2 () =J o (J ¢(x ) GG UL (—7)Y(x) d )dT

J(b (f e U (—7) GG Up(=7)"(2) dT> dx (2.5.3)
= (&, Lav) 3
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Thus, L) is self-adjoint and a bounded linear operator on Lg (T). Moreover, from Theorem
16.2, in Bachman and Narici [9] we have that L, is a closed operator from L(T) on itself.

From the computations in (2.5.3) and the observability inequality (2.3.43) we have
' 2
(L6, &)gam f e [G UL = 7 Up(~1)"6(2) L, dr

1
= | e 200G U, () Up(—1)*¢(x)]?2 0 dt
| G0 (8 U (=1)*6() s -

1
> L P GHUL(0) Uy (~1)* () |2,
> e 2872 = 0,

for all ¢ € L*(T). Thus L, is a positive operator. Also, if Ly¢ = 0 for some ¢ € L3(T) then

from the computations in (2.5.4), we have

0= (0, ®)rary = (Ind, O)p2(m) = € 28%|6]72(r) = 0.

Therefore H¢H%2(T) = 0 and ¢ = 0. Consequently, Ker(Ly,) = {0} and L, is injective and
is an invertible operator. Thus, the adjoint operator L} = L, exists, is a bounded linear
injective operator. It follows from Corollary b), pag. 99, of Rudin [78] that Ran (L)) is
dense in L3(T). Moreover, from (2.5.4), and Cauchy-Shwartz inequality, we get

e 0%0| 72y < (Lad, @)1amy < |La8lizimSlnzry, for all ¢ € L(T), (2.5.5)

Therefore 6_2)‘52H¢HL3(T) < HL;¢HL3(T), for all ¢ € L3(T). From Proposition 2.16 in Coron
[23], we have that L, is onto. Then the inverse operator L' : L3(T) — L3(T) exists, and

is a self-adjoint bounded linear operator. In fact,

L3 = (L3 = 15

Also, for each ¢ € L3(T), there exists ¢ € L3(T), such that Ly¢ = 1, and
Ly%) = ¢. Thus

(L;LW w)Lg(T) = (¢, LA¢>L%(T) = (L3¢, ¢)Lg(1r) = (L9, ¢)L§(T) = 0.
This completes the proof of the lemma. O

In the following Corollary we show that the operator L, also possesses the

same properties on H;(T). Before that we record the following definition.

Definition 2.5.2. Let r € R. Denote by D" the operator D" : D'(T) — D'(T) defined by

Boghy - { IHIOM), if k0
50),  ifk=0.
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Corollary 2.5.3. The operator Ly : Hy(T) — H;(T) is linear and bounded. Moreover,
Ly is an isomorphism from H(T) onto Hy(T), for all s > 0.

Proof. From computations similars to those in (2.5.2), and Remark 2.1.2 we have that for
each ¢ € L2(T)

| Ll

HE(T) < ¢ [0 HE(T) 1 (2.5.6)

1— —2X
g}sw. Thus Ly maps H;(T) into Hj(T). Since the result is known

for s = 0 and Ly maps Hj(T) into itself, then any ¢ € Hj(T) with Ly(¢) = 0 satisfies

where ¢y = ¢

0 =[Lx(0)]

my(ry = [La(@)| Lacr)-

Thus, Ly(¢) = 0 in L(T) and consequently ¢ = 0 in HS(T). Therefore, Ly is injective
from H{(T) to Hi(T).

On the other hand, for any ¢ € H3(T) < L(T), there exists ¢ € L2(T) such
that Ly¢ = ¢ € Hj(T). Thus, we must prove that ¢ € Hj(T), in order to establish that
Ly is onto. Therefore, it is enough to prove that if ¢ € L3(T), and Ly¢ € HS(T), then
¢ € Hj(T). See Figure 4 below. Observe that, for any s > 0, there exists n € N, and

Figure 4 —

0 < s’ <1 such that s = n + s’. The following claim is necessary.
Claim: Let 0 < s’ < 1, and n € N. For any ¢ € L(T) such that Ly¢ € H2**(T), we have
that ¢ € H}"* (T), i.e. D"**'¢ e L2(T).

In fact, we use induction.
Inductive Base: Let n = 0 and 0 < s < 1 be given. Assume ¢ € L3(T) with Ly¢ € HS(T).
We must show that ¢ € Hj(T). Note that

16l5r) < ero (18z3r) + 1D°l 13 ) -
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Therefore, it is enough to prove that D*¢ e L3(T). In fact, since L)' is a continuous

function on L§(T), we have
HDS¢HL3(11‘) SO HLADSQSHL(%(T)

| e veniee D e dr

< Chs

L3(T)

1 (2.5.7)
+Cre J 672)\TUN(—7’)DSGG*UM(—T)*d) dr
(

)

L3(T)

1
< ons j e NGCH Dl gy dr + ens s [Labligs o

2)
5 and ¢ = U,(—7)*¢. We must estimate H[GG*,DS]z/JHL%(T). Using that

G = G* in L3(T), we obtain

where ¢y 5 =

[GG*, D*ly =2 D% — D*g* — g ﬁr G ()D*(2) dz — g fT 6(u)D*(y) dy
o ( [ 70 de) ( [ oo dy) +0% [ FEuea (259

+ D*g? Lg(y)w(y) dy — D% (L 9°(0) d9> (Lg(y)w(y) dy) :

From (2.5.8) and Cauchy-Schwartz inequality, we infer that

GG, Doliamy < erg (I0% DVl pagoy + 1DVl cagey + Wiz ) (25:9)

where ¢, is the maximum of the constants involved. From Lemma A.1, (2.5.9), and
Remark 1.3.7, we obtain

[l g1y + 9]

S C3,g,s ||¢||Hg—1(1r) 5

116G, Do 30e) < 1 (c2 s + Wligen)

(2.5.10)

where ¢34 is the maximum of the constants involved. Therefore, inequalities (2.5.7) and
(2.5.10) yield

1
HDsﬁbHL? S G 5L 6_2)\763,9,8 WHHg—l(T) dr + exs cs[|Lag)| HE(T)

1
= CMJ e ey ‘Uﬂ(_T)*¢HHg_1(’]I‘) dT 4 Cx 5 Cs HL/\¢HH5(T)
0

(-1
T BTNz

101 gy + exs € 1 LA0] gy

Using that 0 < s < 1, we obtain positive constants c; 54, and ¢ 555 such that

s (e*—-1)
||D ¢HL%('H‘) S C3gs 2)\52 HQSHHS 5 + C2,0,6,s HL)\¢|

Ho (T (2.5.11)

S CLAdg,s W)HLg(T) + o055 [ Lad| HE(T) >
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Inductive Hypothesis: Assume that the result is true for n = 1,2, ..., k—1. In particular,
if ¢ € L3(T), Ly¢ € HE ¥ (T), then D***%'¢ e L2(T). Lets prove the result for n = k.

Let ¢ € L3(T), and Ly¢ € H¥(T) ¢ H¥'**(T) be given. From inequality
(2.5.11), we have

HDk+s’¢

- |
(™)

2'1[*)

(62)\

<C3gs 2)\62 HDk¢|H9 1 +C2)\55
(e —
<y Y o 2000 HL@HH?S/(T) .
This proof the Claim.
Finally, the Corollary 2.5.3 follows from (2.5.6) and the claim. O

Remark 2.5.4. Corollary 2.5.3 implies that there exists a positive constant C' = C(9, s, A, g)
such that
ILy!

, forall e Hy(T). (2.5.12)

Choosing the feedback control law in system (2.4.1) as

—Kyu:=—-GG*Ly'u, if A>0
Ku = (2.5.13)
—Kyu := —GG*u, if =0,

we can rewrite the resulting closed-loop system in the following form

{ Oru— aHOGu — Ou + 2pdpu = —Kyu, t>0, z€T (2.5.14)

u(z,0) = ug(x), reT,

where A > 0, and K is a bounded linear operator on H,(T) with s > 0. We have the

following result.

Theorem 2.5.5. Let « > 0, ue R, s > 0, and A > 0 be given. For any uy € Hy(T), the
system (2.5.14) admits a unique solution u € C([0,+0), Hy(T)). Moreover, there exists
M = M(g, \,0,a, i, s) such that

Jul-2)]

ngemy < Me M ug| g (ry, for allt = 0. (2.5.15)

Proof. As K, is a bounded linear operator, the same argument used in Theorem 2.4.1
shows that for up € Hj(T) the problem (2.5.14) has a unique solution u € C([0, 0); Hj(T)),
for all s = 0. We denote by {T\(t)}:>0 the Co—semigroup on H(T), with infinitesimal
generator A, — K.
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Assume s = 0 and let u be the solution of system (2.5.14). Observe that

v = e, satisfies

{ 0w — A v —aHdv — Gv + 2udv = ~GG*Ly'v, t>0, xeT (2.5.16)

v(x,0) = vo(z) = up(w) € L(T), rzeT.

Also, as the operator A\I — GG*L;" is bounded on L(T), then the problem (2.5.16) has
a unique solution v € C([0,0); L3(T)). We denote by {V(t)};=o the Cy—semigroup on
L3(T), with infinitesimal generator A, + A\ — GG*Ly'. Observe that V (¢)* exists, is a
bounded linear operator with ||V (t)| = |V (¢)*||, for all t > 0, and

V(t) = eMTh(t). (2.5.17)

On the other hand, for ug € D(A}) = HJ(T), and w(t) = V(t)*uo (note that
w(t) is the solution of the adjoint system associated to (2.5.16)) we get

d *
aw(t) = [A + M = GG Ly w(t) = (A + M — Ly G**G*) w(t), (2.5.18)
and
d d * —1 vk vk
aLAw(t) = LAaw(t) =L, (Au + M = L'G*GF) w(t). (2.5.19)

From (2.5.18) and (2.5.19), we obtain

L wlt), Iawlt)) pygey = (A% + AT~ LG G (), Law(t))

dt L3(T)

+ (w(t) , Ly (AZ + M — L;lG**G*) w(t))Lg(T) (2 5 20)

=2 (LaA%w(t) , w(t)) +2X (w(t) LAw(t))Lg(T)

L3(T)
—2(G*w(t) , G*w(t)) 2T -

Note that

2 (LAAZw(t),w(t)) QJO e 2T (Uu(—T>GG*Uu(_7)*Azw('»t) ) w("t))Lg(T) dr

L3(T)

=2 e (@ (Lo-nreen)  GUCTGD) ar

L3(T)
1
_onr d
— _L o2\ - (|\G*U#(—7)*w(.7t)Hig(T)) dr.
Hence, integration by parts yields

2 (LaAfw(®),w(t)) oy = =€ MG U(=1)*w (- 0) 72 ) + 1G*UL(0)* W, )12,

L3(T)

1
B 2>\L e 2AT (G*U#(*T)*w('at) , G*Uu(*T)*w('at))Lg(T) dr (2521)

_ 2 2
== He )\G*UH(il)*w(vt)HLg(T) + ‘|G*w(7t)HLg(T)

— 2 (Law(t) . w(t)) -
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From (2.5.20) and (2.5.21), we have

d d
dt (V(t)*uo ) L)\V(t)*uo)l,g(']r) = dar (w(t) ) Lkw(t))Lg('Jl‘)

2
_ — A vk 1)k (.
—HeG%(DMﬂ%m

— 6w, )], (2.5.22)

2

e Vatd * *

= — G U (-1)"V (¢t
A ORI

- HG*V(t)*“OHQLgar) <0,
for all ug € D(A}), and t > 0. From inequalities (2.5.22), and (2.5.2) we have

(V(#) o , LAV (8)*u0) 2z < (V(0)*uo , LAV(0) uo) L2 ()

< fuollzzery ILauoll 2 (m) (2.5.23)
1—e 2
< 2 .
Also, inequality (2.5.5) implies that
37%52“‘/@)*“0”%3@) < (V&) uo , LaV () uo) 2 (r) - (2.5.24)

From inequalities (2.5.23)-(2.5.24), we infer

1— —2)\ 2
IV (t)* ol 2 m) < cg%e—&s Ju|l ary . for all ug € D(A), and t > 0.

(2))5

Finally, using density arguments we show that there exists a positive constant
1
(1—e®Y)z

M i
(24)2

g8 = Cg e, such that

”V(t)*UOHLg(T) < Mgas HUOHLg(T) , for all ug e L3(T), andt > 0.
From identity (2.5.17) and the fact that |V (¢)| = |V (¢)*||, we infer
||e)‘tT,\(t)U0HLg(1r) < Mgas HUOHLg(T) . for all uge L(T), and t > 0.

This proves the Theorem in the case s = 0. The other cases of s are proved as in Theorem
2.4.2. O

Corollary 2.5.6. Let pe R, A >0, a >0, g as in (2.0.8), and s = 0 be given. For any
ug € Hy(T) with = [uo], there exist positive constants M = M(g, \, 0, i, o, s) such that
the unique solution u € C([0,00); H (T)) of the closed-loop system

ou — aHPPu — 2u = —Kyu, u(z,0) =uy, veT, teR",

satisfies

Ju(-, ) = [uo]l

) < Me ™ |ug — [uo]|myry, for all t = 0.
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Chapter

Bourgain’s spaces associated to the Benjamin

equation

In this chapter, we introduce the Bourgain’s spaces associated to the Benjamin
equation (2.3.37) and derive its properties. As was indicated in the final part of Section 2.3,
the Strichartz estimates and multilinear estimates obtained in this chapter are fundamental
to prove the existence of solutions for the Benjamin equation (2.3.37). This preliminary
results will bring a small data control result for equation (2.3.37) which is proved in Chapter
4. Here we also are particularly interested in obtain the propagation of compactness and
regularity for the differential operator L := ¢, — a Hd? — 02 + 2u 0, associated to the
Benjamin equation. These propagation properties will play a key role when studying
the global stabilizability. Furthermore, in this chapter we prove the unique continuation

property for Benjamin equation (2.3.37).

This chapter is organized as follows. Section 3.1 is devoted to study the Bour-
gain’s space associated to the Benjamin equation (2.3.37) and its properties. The main
result in this section is the bilinear estimate given by Theorem 3.1.24. In section 3.2, a
multiplication property is established, viz., Theorem 3.2.3. Next, in section 3.3, we present
some properties of propagation of compactness and regularity. Finally, in section 3.4 we

prove the unique continuation property for the Benjamin equation.

3.1 Bourgain's spaces

Here we will introduce the Bourgain’s spaces associated to Benjamin type
equation (2.3.37) and study its properties. To simplify the notation, we denote U, (t) (see
(2.3.40)) by V(t). We start with the following definition.

Definition 3.1.1 (see Tao [87, page 99]). Let v : T x R — R be a function. The spatially
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periodic, and temporally non-periodic Fourier transform is defined by
~ 1 ;
0(k,7) = — fjv(x,t)e_l(t”kx) dx dt,
2T
RT
where k € Z and T € R.

In this case the Fourier inversion formula is given by
o) = Y J Bk, 7)ei0m k) g7, (3.1.1)
kez YR

We use v(k,t) (respectively v(z, 7)) to denote the Fourier transform in space variable z

(respectively in time variable t).

For given b, s € R and a function v : T x R — R, define the quantities
1
2

Xop = ( > JR<1€>23<T — (k) [0(k, 7)* dT) :

k=—o0

o]

and

[oly,, = ( i (JR</<?>S<T — o(k))"[0(k,7)] d7)2>%,

k=—o0

where ¢(k) = —k® — 2uk + ak|k| is called the phase function, {-) := 4/1 + | - |2, and 9(k, 7)

denotes the space-time Fourier transform of v.

Definition 3.1.2 (Bourgain’s space, see Tao [87, page 99]). For given b, s € R we define
the Bourgain’s space X, associated to Benjamin equation on T as the closure of the space
of Schwartz functions S(T x R) under the norm || - |

Xs,b'

1
Note that X, is a Hilbert space and for b > 3
Xy © C(R; Hy(T), (3.1.2)

the embedding being continuous. In particular,

o] Xo0 = ||U|\L2(Rt;H;(1r))- (3.1.3)

Let f: T x R — R be a function. We define | f]|

HsHP 88

=

2

ez = | 1706, 0 gy

= ( I RCRCRNET; dT)

Proposition 3.1.3. Let v : T x R — R be a function. Then,

lollx, = IV (=t)0lzp = | 1 OV(=000)" (b, )0 g

)
U
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Proof. The proof follows by using (V(—t)v(z, )" (k,t) = e 0% (K, t) = 5(k, 7 + ¢(k))

and an appropriate change of variables. We omit the details. O]

As noted in [14, 44, 52, 57, 87|, while dealing with the bilinear estimates in

the periodic case one needs to consider b = — for which the embedding in 3.1.2 fails. To

overcome this situation, we introduce the space Z.

Definition 3.1.4. For given b,s € R we define the space Ys; as the closure of the space

of Schwartz functions S(T x R) under the norm | - |y, , .

For any function v : T x R — R, we define H'U”liLl(R) = H \|UHL1(R)HZ2 , and we
T T k
Voo = <KX = ¢(k))"0(k, 7 iz w)-

Definition 3.1.5. For given s,b e R, we define the space

note that |v

ZSJ, = XSJ, M )/;,b—%

endowed with the norm |- |z, == |- |x,, + |- |v.,_,- For a given interval I, let X (1)
;b= 3
(resp. Ysp(I), Zsp(I)) be the restriction space of Xsp (resp. Ysp, Zsp) to the interval I

with the norm

| /]

(resp. I f
(resp- 11

For simplicity, we will denote X,u(I) (resp. Ysu(I), Zsp(I)) by X2, (resp. Y, ZL,) if
I=1[0,T].

Xop(I) - = inf{”f“xs,b’f =fonTx I}

vty = int (|l | F = onT x 1} )
Zsp(I) *= inf{HJ;HZs,Jf =fonT x I} )

3.1.1 Properties of the spaces X ;(I) (resp. Zs(1))

In this subsection we show important properties that the Bourgain’s spaces
hold. The main result of this subsection is given by Proposition 3.1.8 which establishes
the continuous embedding of space Z, (1) in C(I; Hy(T)). We start with the following

properties whose proofs are by now classical and can be found for example in [87].

Proposition 3.1.6. The spaces X5 (resp. Xsp(I)) have the following properties:

i) Xsp and X,(I) are Hilbert’s spaces.

i) If sy < sg and by < by, then X, 4, (Tesp. Xs,p,(1)) is continuously embedded in the
space Xs, p, (resp. X, 5, (1))
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iii) For a given finite interval I, if s1 < sy and by < by, then the space Xs,p,(I) is

compactly embedded in the space X, p,(I).

Lemma 3.1.7. Let s,r € R and D" be the operator given by Definition 2.5.2. Then,
D've Xs_pp (resp. Xs—rp(1)) for any v e X,y (resp. Xsp(1)). The same is valid for the

operator 0,.. Moreover, there exists a positive constant C' such that

|D™lx.,, < Clvlx,,

s—r,b

Proof. Let v e X,;. Then

Ik, ,, = 2, J<k>23<f o(k))* k)~ |k [0k, 7)[* dr + J (1 = 6(0),*[0(0,7)[* dr

keZ*

<a ¥ f (B2 (r — (k)Y [5(k, 7| dr + f (r = $(0)2[5(0,7)? dr

keZ*
< C?|ol%,,-

The following proposition establishes the main result of this subsection.

Proposition 3.1.8. Let I be an interval and s € R. The space Z,1 (resp. Z&%(I)) is

%
continuously embedded in the space C(R; H(T)) (resp. C(I; H,(T))).
Proof. First assume v € S(T x R). Then, for each t € R fixed, we have

k=00 2
ok, T)dr <C’ <fksﬁk,7’ d7'> <Clv|% -,
=1 3 ([ ol2,,

where the positive constant C' does not depend neither on ¢ nor v. Continuity in t follows

loC, )z () = 27 Z (ky*s

k=—0o0

from the dominated convergence theorem. Therefore,

T) SZ(j”UHZS1'

[vlo.mmy = sup vl 1)1
teR

ol

Now, if v is any function in Z_ 1= X 1N Y; 0, then there exists a sequence
{tn}new in S(T x R) such that lim v, = v in Z 1, due to the density of S(T x R) in Z, ;.
n— ) k)

Hence,

vy — UmHC(R,HS('JT)) < Cllvy, 1

|

<0 (Jloa=vlz,y + o= vnlz ;) —0.

as n,m tend to infinity. Thus, there exists w € C(R, Hp(T)) such that lim v, =w in
C(R, H,(T)). Note that if s > 0, then lim v, = v in L*(T x R) and we mfer w = a.e.

(x,t) € T x R. Therefore, using the contmulty of the norm we have

Joleery = |lim v, = lim [oaoamy < C Jim [oalz,, = Clolz, -

n—00 )C(R,HS (T))  n—o® n—>o0 51 o1
3.1.4)

ol
[V
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Finally, if v is a function in Z 1 (I), we can choose, by the definition of infimum,
(1)- From (3.1.4) we infer that

an extension ¥ to T x R of v such that |v

7, <2l
4 ,

[N/

there exists a positive constant C' such that

< 2C|v

lvlewae @) < Wleasm) < Clv]z, z,, (D)

[

]

Lemma 3.1.9. Let s,b € R. The dual space of X} is X_5 . Moreover, the space Xy is

reflezive.
Proof. 1t follows from the fact that ¢(k) is an odd function. See page 97 in Tao [87]. O

The ideas to prove the majority of the results in the following two subsections
are similar to those derived in the KdV case (see [14, 44, 21, 22, 43, 33]).

3.1.2 Linear and integral estimates

To derive some estimates localized in time variable, we introduce a cut-off
function n € C°(R) such that n = 1,if t € [-1,1] and n = 0, if ¢ ¢ (—2,2). Then, for

T > 0 given, we define

t

e C2®) by arlt) =0 (7).

We begin this subsection by proving some linear estimates.

Proposition 3.1.10. Let s,be€ R and T > 0 given. Then for all vy € H;(T), we have

. 1
i) &)V (#)vol X,y < Cyp T2 v

iti) |n(t)V (t)vo

X.p < Cyp [vollmsery, 1) [nr(H)V () H3(T)

1
Yoy < Cpp T2 Jug]

Voo < Oy [volmgemy,  iv) e @)V (#)vo H3(T);

where Cy 4 s a positive constant that depends only on n and b.

Proof. The estimates i) and ii) are immediate consequence of i7) and iv) by taking 7" = 1.
First, we prove the estimate in 7).
Note that for any vy € H,(T), we obtain

[n(8) V (E)vol

Koo = IV(=OV ) nr(t)vil sy
— 18 (R)] > ()] e

= [l ) vol

(3.1.5)

2
lk

Hy(T)-

If b <0, then

1
Inr @O lap @y < co (D) 2@ = e T2 [0()]2@)- (3.1.6)
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On the other hand, if b > 0, then

e ()l < e (Ir(®)lse) + 1 (D2 ())(7) ] 22w )
=, T2 (In(t)]r2m + |D"n(t)|r2w))-

From (3.1.5)-(3.1.7), we have that there exists (', > 0 such that
I (2) V(0o x,., < oy T Jro]sm
Next, we prove estimate iv). Observe that for any vy € H(T)

(n(t) V(t) v0)" (k,7) = (n(t) ¢ *W Gy(k))" (r) = Go(k) (T + $(k))-

Thus,

Inr(8) VE)voly.,, = 1K) (7 = 6(k))" Ga(k) 7r(7 + 6(k) | Lrw | 2

= Ik 03" (k) 70 + 2600y,

= [ 1B R)] [0 €2 X Wi (0)] 1y

= [<0)" 7z(0) | Loy [vol

;i

Hy(T)-

1
Therefore, taking some N € N, with N > b + o we have

1€6)" 77 (0) | Ly < € JR(l +10)"N (1 + 0D |70 ()] do
<@+ 10D Nz (1 + 10D 77 (0)] 22w
< & |nrlmy o)-

From (3.1.7), we infer that
—~ l
16" 77 (O)l ey < v TZ (IO 2@y + |1 DV 0(t)22))-
Using (3.1.10) and (3.1.12), we obtain that there exists Cj,,, > 0 such that

lnr(O)V ()wolly,, < Cop T [l

Hy(T)-

This completes the proof of proposition.

(3.1.7)

(3.1.8)

(3.1.9)

(3.1.10)

(3.1.11)

(3.1.12)

Corollary 3.1.11. Let s,be R and T > 0 be given. Then for all vy € H;(T) we have

i) [V(@uollxr, < Cyp [volmgery, if T <1,

i) |V (t)vol

1
Xop(n) < Cyp T2 ||vg

H(T), Zf[ = [_T7 T]7
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iii) |V (t)oolyr, < C y, ifT<1

i) [V (t)vo , if I =[-T,T],

Ys,b(I)

n,b
where Cy 4, s a positive constant that depends only on n and b.

Proof. Tt is enough to prove ii) and iv).

We first prove ii). Let vg € H(T). Then nr(t)V (t)vy is a particular extension
to Xsp of V(t)vg in X;(1). Thus, appliying Proposition 3.1.10 part ii), we have

[V (t) n < Inr®V (Hvollx,, < Con T2 ol mym)- (3.1.13)

This prove 7). A similar argument applies to prove iv). O

The folloing Corollary is a direct consequence of Proposition 3.1.10, Corollary

3.1.11 and the definition of the norm in the space Zs; (Zs5(1), and Zgb respectively).

Corollary 3.1.12. Let s,b€ R and T > 0 be given. Then for all vy € H,(T) we have the

following estimates

, < Oy T2 g

0) [n()V ()

iit) [V (t)vol zr, < C

v) [V (#)volz

o < Oy [voll s (m), i) |lnr(H)V (t)

. . 1
m, YT <1, i) [V({)ulzr, < Cpp T2 vl

H;(T%

H(T)

1
n < Cpp T7? |y

mymy i1 =[~T,T],
where C,p, is a positive constant depending only on n and b.

Now we show some integral estimates. The following lemma is necessary.

Lemma 3.1.13 (See [33, page 67-68]). We have the following integral estimates:

1
i) Let 5 < b <1, and let f be a function in H*"*(R). Then

nr(t Jf

where Cy 7 15 a positive constant depending on 1, b, and the final time T.

< Cypr HfHH,‘T%R)a

Hb(R

1
it) Let b = 3 Let f be a function in H™= 2(R), and ("' f(-) € L'(R). Then

wlt) [ 165 ®).

where Cy, 1 s a positive constant depending on 1, and the final time T

H{ (R)

< Cor (11,4 +17F)
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If T < 1, then the positive constant C' in the estimates i) and ii) does not depend on T'.

1
Theorem 3.1.14. Let b = 5 and T > 0 be given. Then, one has

i)

< CmT ||f zZ

1
s, =5

nr(t) f V(=) ft") dt’

0

s Vf € Zs,—l7
7 2

S5

[N

where C,, 1 s a positive constant depending on 1, and the final time T.
t
f V(t—1t)f(t)dt

Cor Ly Ve Z i(D), with] = [-T.T],
0

() o

Z

S5

[N

where Cy, 1 s a positive constant depending on n, and the final time T

iii)
, VfEZT 1,

1 =

2

Jt Vit —t)f(t) dt’

0

< Cyr Hf||st

lO

T
ZSl
'2

where Cy, 1 s a positive constant depending on n, and the final time T.

If T < 1, then the positive constant C' in the estimates i), it), and iii) does not depend on
T.

Proof. First, we show the estimate in 7). Let T > 0 and f = f(x,t') € Z, 1. From Bochner
theorem (see Theorem 8, page 734, [54]), we get

<JV( )f()dt) (e, t) 2W<f Nt —m>

(3.1.14)
—fo< 1) £(#))" (k. t) dt

We begin estimating the norm in X 1. From Proposition 3.1.3, and identity
(3.1.14), we obtain

o

mlo) [ (V050 et

0

nr(t) f V(t—t)f()dt

0

1
X HZ? (R
c® e

where (V(=t')f(t'))" (k,t') represents the Fourier’s transform of the function V (—#')f(t')

only with respect to the spatial variable z. From Lemma 3.1.13 item i), we get

nr(t) fo V(t— ) () d

< Cyr | IKk* (V=) F(t))" (&, t)l\ -3

2 ®,
k

+ Gy I OV (V=) FE))” (kN oy ey

X

5%

2
lk
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where (V(—t')f(#'))" (k,\) is the Fourier’s transform of the function V(—t')f(#') with
respect to the spatial variable z and the temporal variable ¢'. We note that

~

V(=) fWE)" (R A) = f(k, A + ¢(k)).

Therefore,

mlt) | V=)0 )

<G (If1x,_, + K6V kA + 00D g e

li)

s,

N

= Cyr (nfnx&l 1y x = o) Flk Nl 2y )
r (10, + 171,
T ”fHZ&J .

2

(3.1.15)

Now, we will estimate the norm in Y; (. Set

t

D(z,t) := nT(t)J V(t—t)f(t) dt’.

0

We need to compute D(k, \). From the estimate (3.1.14), we obtain that

t t

D(k,1) - w(t)f =000 Fe, ¢ dt e’w““)nT(t)f W Fk, ') di'. (3.1.16)

0 0

Define

o [ 1 el
8 =
Xlo] 0, ifs¢ 0]

Using the properties of the Fourier’s transform and the Fubini’s Theorem (see [36, page
73]]), we get

A

(nT(t) J: e_it/¢(k)f(k,t/) dt/) ()\) _ \/%J%e—ikt (nT —1t ¢(k)f k} t)dt)
1 —i)t I —it
=7 [ (0 [ a0 sty ) a

= \/%Le*“t (nT (X0.1(:) " (2) (€7 ® f(k, )" (2) d2> dt

_ L[ i 77T(t) (e -1) 2 5 .
_mL m U f. +¢(/~c))d)dt

f(k,z+¢(k))< (A= 2) = ”T(A)) dz.

12

- L
"V ke
(3.1.17)

From (3.1.16)-(3.1.17) and the property of tralation for the Fourier’s transform, we have

l/j(]{;, A) = <eit¢(k) e (t) Jot e_it’qﬁ(k)f(k’t,) dt’) A o
_ L s (A= o(k) — 2) — (A — ¢(k))
Lo y

. z.
1z



Chapter 3. Bourgain’s spaces 89

Using the L'(R)—invariance under translations, we obtain

J Flk,z + ¢(k)) (7750\ — (k) — Z_) —fr(A — ¢(k))> n
R

1z

(k)*

1D, )y, , <C

LA®)[l;2

2) —ir (V)|

dz
||

<C

(3.1.18)

~ nr(\ —
[ a1z + a0 [
jel<1 B® e

~

o] (@Yf%%+¢%»g|WﬂA—d—ﬁHthmdz
|z|>1 ’

2|

i

If |z] < 1, we use the Mean Value Theorem to get some ¢* between ¢’ — z and ¢’ such that

‘ (A = 2) = e (M)

" =T

LA(R)

sup 7' (T'A")]

IN*—A|<|2]<1

— Ap, <. (3.1.19)
LL(®)

On the other hand, if |z| > 1, we use the L'(R)—norm invariance under translations to

get
I (A = 2) =i (M) 21wy < |77TS\ = 2@y + 10 (M 21 gy (3.1.20)
<2 HnT()‘)”L}\(]R) =: By < 0.
From (3.1.18)-(3.1.20), we infer
\D@JWKO<CAW7jkﬁbsﬂh2+¢%mdz
Z|s 2
G (3.1.21)

+ CBr,,

[ (@fﬁ%&+¢%»0dz
l2|>1 2|

Note that, if |z| < 1, we use Lemma 3.197 in [41] to get some constant M > 0 such that

2
lk:

(z)y < M (1+ |2]) < 2M. (3.1.22)
On the other hand, if |z| > 1 we have
)y <M (14 |2]) S M+ M |z| <2M |z|. (3.1.23)

From the estimates (3.1.21)-(3.1.23), we obtain that

f L ko1 Pk, 2 + 6(k))] dz

t
mlt) [ Vie- )t ar v

0

< CATJ] 2M '

YS,O l2
k

J kY| fk, 2 + o(K))] I
I2|>1 2M ||

‘[Kﬁa—%@ﬂﬂ&z+¢w»wu

+ CBTJ] 2M ‘

i

< CT,n

2
lk:

+ CTJ]

£>5@1@fﬁ%w+¢%mdz

i

<2Cr,

‘&@>%@ﬂﬂhZ+¢%mdz

2
lk
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Performing the change of variable A = z + ¢(k) in the last integral, we get that

ﬁT(t)J V(t—t)f(t) at’

0

< 2CT,??
Ys,O

f O — (k)1 kY| Pk, V)] dA
R 2 (3.1.24)

=207, Hnys’_l

Inequalities (3.1.15), and (3.1.24) prove the estimate in 7).

Finally, let f e Z, _1(I), with I = [T, T] be given. We consider an extension

=

f to T x R such that Hf z . <2|flz - Therefore,
S~ 3 =3
t t .
J V(t—t)f(t) dt’ < nr(t) f V(t—t)f(t) dt
0 Zs’%(]) 0 ZS‘%
<O |} - (3.1.25)
<2Cr |flz, -

This proves the estimate in 7). Similar arguments can be used to show the estimate in
i17). O

The following result is consequence of the fractional Leibniz rule and the Sobolev
embedding theorem. Tts proof is similar to the proof of Lemma 3.11 in [33, page 66] (see
also Lemma 2.11 in [87]).

1 1
Proposition 3.1.15. Let 0 < T < 1, -5 < bV <b< 5 5 € R, and I = [-T,T] be given.
Then there exists C' > 0, independent on T, such that

X0 < CT ol

o]

X1, Vv e Xgp(I).

In particular,
[vlr, < CT" ol xr,, Vv XJ, (3.1.26)

Proposition 3.1.16 (see [87, page 105]). For all s,b e R, ¢ > 0, and v € Xy, there exists
C. > 0 such that

loll,, . < C ol

Furthermore, for all T > 0,

lvlly,, s .o < Celvlxm, Voe X)), I=[-T.T]. (3.1.27)

Proof. Let be s,be R, e > 0, and v € X;;. Then, applying Cauchy-Schwartz inequality

and using the invariance of the norm in L*(R) we obtain
Vg, = |G = 6D 0k, D) o
k

< (16 = S0+ Lraemy [ — 98 B0k, )

v

, -
U
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Performing the change of variables § = 7 — ¢(k), one has

67 — (k)2 = I6) s < c ( Jax rew”ﬁde)

. :
c (J (1+ |9|)—1—26d0) i
where we used that € > 0. Hence,

0
vy < CellKEY G = 6(k)) 0k, 7 2wy = Celvlx,, -

N =
O

1
< 22

v

Finally, taking v € X,;(/) and considering ¥ an extension in X, such that [7]|x,, <
2]

X, p(I); We obtain that

loll,, , 0 <3y, , . <Celly,, <2C:Jolx, -

O

Remark 3.1.17. Similar arguments as those in the proof of Inequality (3.1.27) shows that

lvlyr | < Cclvfxr,,
s,b € S5

for all T >0, s,beR, e >0, andveXsT,b.

3.1.3 Nonlinear estimates

We start with the following result, which is fundamental to estimate the

nonlinear term 2ud,u, in the Z, _1 —norm.

1
3
Theorem 3.1.18. Let v : T x R — R be a function in Xo,1- Then, there exists Co > 0,

depending only on o such that
[vlzsrxry < Callvlx, 4 -

Proof. Let v e S(T x R). Observe that

< [ el o) ok P ar.

k=—

2
ol

0
Also note that, we can write v(z,t) = 2 vom (z, 1), where

m=0

@(ka 7') = 17( ,7') CX2m <l r—g(k)|<2m+1,

and Xom<14|r—g(k)|<2m+1 is the characteristic function over the set 2™ < 1+|7—¢(k)| < om+l,

In this way, we have

2
oo e8]
[l , ~ > f D6k, 7) 2% Xgmcrsjrop)<zner| dT. (3.1.28)
3 k=—o0 YR |m=0
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Now, using Plancherel’s inequality in (3.1.28), we obtain

ol

S8

o0
2m
~ 25 Jvgm |2 (rmy- (3.1.29)
m=0

On the other hand,

|‘UH%4(T><R) = H’UQHLZ(TXR) < 2 Z H’U2m’l)2m/ LQ(TXR) =2 Z HUQMUQernHLQ(TXR). (3130)
m<m/ m,n=0

Once again, using Plancherel’s identity, we get

(3.1.31)

[vam vgmen ||L2(']1‘><]R) =

Z f 1}2/;(]{5177_1) %(k— ]ﬁ,T—ﬁ) dm
R

ki€Z 1212

We estimate the RHS of (3.1.31) separately in the range |k| < 2°([«] + 2) and
|k| > 2%([a] + 2), where the natural number a will be determined later.

L%)
2 ); (3.1.32)

LT

Hv2mvgm+n HLQ(TXR) < ( Z

[k|<2%([a]+2)

i,
Je|>2% ([a] +2)

=1+1I.

5 [ k) v = b = ) dn
R

k1€Z

D f o (v, 1) Ty (k — ki, 7 — 1) dmy
R

k1€Z

To estimate I, we use the triangular and Young’s (see [49, Theorem 2.2]) inequalities to

obtain

2 f 0z (k,7) Gy (k = ka7 = 71) dm
R

=)

j Ogm (k1,71) Ugmin(k — k1,7 — 11) d11
R

k1€Z L2 kez Lz (3.1.33)
< D5 o (k) pa gy Nozmen (B = ka2 -
k1€Z

Now applying Cauchy-Schwarz inequality, we get

1

— m m 1 ~ 2 2
55 (k1 Y pr gy < (a2 2™ < 1+ | — (k)] < 2 “}))2(] [50K1,71) X <4ms oy <2t dn)
R

< C 2% |[ogm (1, )| L2(gy»

(3.1.34)
where 1 is the Lebesgue measure. Therefore, applying Cauchy-Schwarz inequality, Plancherel,

and the invariance of the norm under translations, we obtain

< O3 2% |Jgm | L2 (rxr) - [02men | L2 (xm) - (3.1.35)

Z J @(kh’ﬁ)m(k}—kl,’r—’rl) d7'1
kleZ R

L2

Therefore, from definition of I in (3.1.32) and inequalities (3.1.33), (3.1.34), and (3.1.35),

we get

atm

J‘ $; (:I}((X) 2 2 HT}Qvn

L2(TxR) * |Vamsn]|L2(TxR)- (3.1.36)
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To estimate 1, define

0= (3.1.37)

D j G (ke 1) o (k — ka7 — 1) d
k1€Z R

L2

First, denote xm(k,T) 1= Xom<i4jr—g(k)|<2m+1(T). Applying Cauchy-Schwartz
inequality in k; and 7y, we get

1

2
(Z J |Gz (k1,71)]° |v2m+n(l€—l€1,7—ﬁ)2dn)
k1€Z R

1
0 < sup sup ( Xm * Xm+n(k,7) )2
|k|>2a ([a]+2) T€R

L2

=

(3.1.38)
Therefore, using the translation invariance of the norm, and Plancherel’s in-

equality, we obtain

1
II < me * Xm+n(k7 T)leﬁ‘>2a([a]+2)ll$ . H'U2m+n HLZ(TXR) . H'U2"L HLQ(TXR)‘ (3.1.39)

To estimate the convolution term in inequality (3.1.39), we write for fixed k
with |k| > 2%(2 + [«]) and 7

Xm * Xman(k,T) = Z f X (K1, 71) * Xonan(k — k1,7 —11) dmy. (3.1.40)
R

k‘1€Z

From the support condition on x,, and x,,+, we note that for each k; fixed
there exist C; = 0 and C5 > 0 such that

C42m < |Tl — ¢(k1)| < 022m

Thus, 71 = ¢(k1) + O(2™). In a similar way, we have that 7 — 71 = ¢(k — k1) + O(2™™).
In consequence,

T = ¢(k1) + QZ5(]€ — kl) + O<2m+n>7 (3141)

and

f Xm(klle) ’ Xm+n(k - klaT - 7-1) dTl < HJ({Tl eR:2™ <1+ |7_1 - ¢(k1)| < 2m+1}).
R

Therefore, for each fixed ki, the 7 integral in (3.1.40) is O(2™). To calculate

the numbers of k}s for which the integral is non-zero, note that (3.1.41) implies

%z—k2+3kk1—3kf—2u+

akilki| | a(k— klk)\k: — k| O(Co()2m+m2). (3.1.42)

k

Thus, we should study four cases:
Case 1) k — k; = 0 and ky > 0 : By identity (3.1.42), we have

ak?  a(k—kp)?
R

+3kky — 3K} — K = 20 = T + O(Cy(@)2" ™),
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2 alk—k)? (2
Note that 3k — 3k? + “k1 | @k = k1) :(O‘

; + ; - 3> (]gf — kkl) + ak. Therefore,

22 3) (k-2 2_Z+ o3 M k+k* —2p 4 O(Coa)2mt7)
2 179 Tk K 1@ a 6l :

Using that |k| > 2%([a] + 2), we have

2
?O‘ — 3’ > 1. This implies,

O(Cy(a)2m =),

M=) "o 3 T T 2a—3F 2a—3F 2a—3k

< k>2 T K2 ak? 3 21k
2

Case 2) k — k; = 0 and ky < 0: In this case identity (3.1.42) implies,

_ak? N a(k —kp)? T
k k
With the similar calculations as in Case 1, we obtain

20 k\? T 20 kK ok k2 2u
ki — | —— 1) = = —— - 1 - - _ - _ -~ 2m+n—a )
(o (5 1)8) =g (G e1) 05 -5 v

+ 3kk, — 3/{?% — k2= QU= — + O(Ce(a)2m+n_a).

|

Case 3) k — k; <0 and k; < 0: In this case identity (3.1.42) implies,

ak?  a(k—kp)?

+ 3kk; — 3/{3% — k;2 _ 2:“ _ + 0(06(a)2m+n—a).

Enl

ok k
Thus,
—2—Q—3 k:—E 2—I+ _7—204_3 k—2+ak+k2+2 + O(Cg(ar)2mtm =)
k 'T2) Tk K 1 H 6 '
. 2a
Using |k| > 2%([a] + 2), we observe that |—— — 3| > 1. Therefore,
K\’ T k2 ak? k® 2k
Mi-5) =+ O(Cy(cr)2m 1),
(1 2) 0 3k T T 20 3k T D20 3k T T2 a3k T OlGla) )

Case 4) k — k1 <0 and ky; > 0: In this case identity (3.1.42) implies,

ak? k- k1)?
k k

+ 3k — 3K — K — 20 = T + O(Cy(@)2" "),

Thus,

2« E\? T 2« k2 ak k2 21
—|=+1)= = —— — +1 - _ gm+n—ay
<’“ (Bk ! ) 2) 3k (Sk " ) +0(Co(a) )

m+n—a

Therefore, in all cases k; takes at most O(Cg(a)2™ 2 ) values. Thus,

m+n—a 3m+n—a

Ixm * Xmeen (Ko T) |10 1o < Cr(@)2™-27 2 =Cr ()2

[k|>29([a]+2) T

(3.1.43)
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We can conclude from inequalities (3.1.39) and (3.1.43) that

[ < Cy(a)2

3m+n a

HUWMHL? TxR) HU2’”HL2 (TxR)" (3.1.44)

Using estimates (3.1.32), (3.1.36), and (3.1.44) implies

m+ 3m+n a
[oamtamn | pacramy < Cr(@) (275 +2%5) fogmon | pacrcy [02m o ey

m+n
Taking a = —5 we obtain

4m+n

HU2mU2m+"HL2(TxR) < Cg(@)2 e Hv2m+"HL2 TxR) HUQ'”HLQ (TxR) * (3.1.45)

Therefore, inequalities (3.1.30) and (3.1.45) imply

1

) (2223’" v2m|22m>) : (3.1.46)

m=0

Nl=

HUHL4(TxR) < 2Cs(a Z 27% (Z

n=0 m=0

Thus from inequality (3.1.46) and identity (3.1.29), we obtain

[0 sy < Cola)lvlk, (Z 2‘) < Cla)vlk, -

n=0 '3

CA/

Corollary 3.1.19. Let f € L%(T x R). Then, there ezists C,, > 0, such that

f\\x07_§—<k2 | = oty 817w P d7> < Calfll gy
=—00

NI

/
Proof. 1t follows from Theorem 3.1.18 that Xo,% < L*(T xR), so (L4(T X R))/ — (XQ%)
ie., L3(T x R) = X, 1. 0

Lemma 3.1.20. For all k, ki € Z with k # 0, k1 # 0, and k # k1, we have
. 3.,
i) |3kki(k — k)| = Ek .
.. 1
1) [ky(k = ki)| = Skl

Proof. The proof of i) follows by simple calculations considering six possible cases:

R*™ :={k—Fk >0,k> 0,k >0}
R :={k—k >0,k >0,k <0}
R :={k—k >0,k<0,k <0}
R =1{k—k <0,k <0,k <0}
R " :={k—k <0,k <0,k >0}
Rt ={k—k <0,k>0k >0}
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In the first case RT, observe that

3.5 K
3]{?]{?1(]{? — k’l) = 5]{’ k>

= 1°
PR,

The fact k > k; implies that the right side of the last expression is always true. The others

cases are similar. Finally, note that éi) is consequence of i) just dividing it by [3k|. O

Lemma 3.1.21. For any k€ Z, a > 0 and p € R, let ¢(k) = —k* — 2uk + akl|k|. For all
4
k.ki € Z with k # 0, ky # 0, k # ki, and max{|k|, |ki|, |k — ki|} = max{l,g}, there

exists a constant Co, > 0 depending only on a such that,
|E(k, k1)| = 3C,|kk1(k — k)|,

where E(k, k1) := (1 — ¢(k)) — (11 — o(k1)) — (1 — 71 — ¢(k — k1)), V7,71 € R. Moreover,

C, = —%, if 0<a<3,
and 5 5
(6% «
Ca:mln{_1+a,1—a}, Zf O[>3
3[%] 3([%]+1)

Proof. Observe that
E(k), k?l) = —Oék?|k| + O[k’1|k31| + Oé(k? - k1)|k’ - k?1| + 31{?[6’1(]6 - l{fl)

Again, the proof follows by straightforward calculations considering the same six cases of

Lemma 3.1.20. We verify three cases, others are similar.
Case 1) In the region R™*" one has k > k; +1 > 2. Thus
2
E(kﬁ, k’l) = —akk + Ozkllﬁ + Oz(k’ — k?l)Q + 3]{5]{31(]{’ - ]{?1) = 3k1(k - k’l) (k’ - 3&) .
Also, in this case, max{|k|, |k1|, |k — k1|} = k. Therefore,

|E(k, k1)| = 3k1(k — k)

2
k— 30“ > 3k (k — k1)Cok = 3C,|kky(k — ky)).

Case 2) In R™*~ note that k — ky € Z with k — k; > 2.

2
E(k, k1) = —akk + aki(—k1) + a(k — k1) + 3kki (k — k1) = 3kk; ((k — k1) — ;) .

In this case, max{|k|, |k1]|,|k — k1|} = k — k1. Thus

(k—lfl)—Qﬁ

|E(k?>/€1>’ = 3k<—k’1) 3

> 3k(—ky)(k — k1)Co = 3Ca|kky(k — ky)].
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Case 5) In R~ ", k< —1,k; > 1, and k — k; < —2. Then,

2
E(k), k?l) = —Oék?(—k) + O./k?lk?l - Oé(k‘ - k?1>2 + 3]{3]{31(]{3 - k?l) = 3]{31{31 <(k} - k’l) + ;) .

Note that, max{|k|, |ki|, |k — k1|} = —(k — k7). Therefore

2a0

|E(k, k1) = 3(—Fk)ky |—(k — k1) — 3 = 3(—k)ki|k — k1|Co = 3C,|kky(k — ky)].

]

Remark 3.1.22. Lemmas 3.1.20 and 3.1.21 imply the so-called non-resonance property
3
for Benjamin equation, it means, |E(k, k)| = icak‘Q, provided that

4
maxc{ |k, |k, [k — ki|} = max{L ?O‘}

4
Remark 3.1.23. [t follows from Lemma 3.1.21 that if max{|k|, |k1|, |k—Fk1|} = max{l, ?a},

then one of the following cases may occur

i) Ir = 6k)| > SCak?

g 3 o

i) |m— ¢(ki)| > gCak >

3.,
i) |71 —m — ok — k)| > gCak .

In fact, if not

3C,

Bk, k) < (7= 6R)] + [(m = (k)] + (7 = 71 = b(k — 1)) < 3= X

2

k? < k2.

which is a contradiction.

Using similar arguments as in Bourgain [14] (see also [19, 86]), we obtain the

following key bilinear estimate.

Theorem 3.1.24. (Bilinear Estimate) Let s = 0, « > 0, and u,v : TxR — R be functions
in X, 1. Assume that the mean [u(-,t)] = [v(-,t)] = 0 for each t € R. Then

1.
72

0 (wo)lz,, < Cos (lullx,, lollx, , + lulx, Jollx, , ) -
2 ’3 °2

_1 1
2 3
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Proof. We prove this in two steps.
Step 1. First we estimate the X, _1 norm. Using duality and Plancherel, we get

2

[0x (uv) HX = sup Jfam(uv) (x, t)w(x, t)dzdt

= T)w(k,T)dr
X I! Yok, ) (3.1.47)

< sup Z Z JJU{HU kv, m)||o(k — k1,7 — m1)||w(k, 7)|dmdT |.

weX o3\ keZ kieZ

lwlx  or \EEO k120 R
Y

Since [u(-,t)] = [v(-,t)] =0, then k =0, k; = 0 and k — k; = 0 do not contribute to the
sum. Now we move to estimate

1= 3 5 [ [t ml06 - ka7~ )0, e

ke€Z k1€Z
k#0 k20 K R

_ f [l [k [*Cr1 — (k) [k, 1) [k — ka7 — 71— Sk — ka))?
kkleZ

|k1 <Tl ( )>%|kj — k1|S<T o ¢(l€ _ k1)>% (3148)

2
kki(k— kl)#O

00k = Erm = 1)Kk — (k)3 | (K, 7)]
(ky=s(T — ¢(k))®

Let u,v,w: T x R — R with [u(-,t)] = [v(-,t)] =0, VteR. We define

T1dT.

calkr,m) == (1+ [ka])* (r — (k)2 [A(ke, 1)),
(k‘ kl,T*Tl)‘ (1+|/{7 ]{21|) <T*7'1*gb(k*k1)>%‘1’)\(k/‘*k1,7‘*7’1)‘, (3149)
ek, 7) 1= (ky~*(7 — $(k))2|B (K, 7)],
for all k,ki,k — ky € Z* and 7,71 € R. Note that ¢,(0,7) = ¢,(0,7 — 71) = 0. From
inequality (3.1.48) and definition (3.1.49), we obtain

|k|cy (b1, m1)co(k — k1,7 — 71){k)o ey (K, T)
kklez | [kalo[k = ka[o(r1 = $(ka)) 3 (7 — 71— Gk — k1)) — (k)=

]{)kl k— ]{)1)#0

dndr. (31 50)

k
From Lemma 3.1.20 part 7i) we infer |k:||/|<:|k| < 2. Thus, there exists Cs > 0
1|k — R
such that s
(k) < O (3.1.51)

||k — Fa[®
Using the estimates (3.1.50)-(3.1.51) and separating the small frequencies from the large
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ones, we obtain

I<. Z |k|cu (b1, m1)eo(k — k1,7 — T1)cw(k, T) dridr
G

B(k1))2 (T — 11 — @k — k1)) {7 — B(k))?

k,k1€Z
kkl(kjlfl)#ORQ
<. culkr, m)co(k — k1,7 — T1)cw(k, T) _dridr

o Z J (r1 — d(k1))3 (T — 11 — Bk — k1))3 (r — (k)

2
Kk (k—k1)#0 R

3.1.52
max{|kl|,|k1|,|k—k1|}<max{ 1,42 ( )
n Z J |k|cu(k11, T1)co(k — k1,7 — Tl)lcw(kv 7) —drdr
kokreZ o (1= @(k1))2 (T = 11— @k — k1))2(T — §(k))2
Kk (k—k1)0
max{|k|,|k1|,|k—k1|}=>max 1,%
In view of Remark 3.1.23 we must study three different cases.
3
Case 1. |7 — ¢(k)| > gCakz : In this case, from (3.1.52), we have
[ <o Z f cu(ki, Tl)cv(lkz — ki, T — Tl)cw(k,r)l dridr
k,k1€7 L {m = ¢(k1))2{T — 11 — ¢(k — k1))2
kkq (k—k1)#0 R
max{|k\,\k1|,\k7k1|}$max{l,4,7‘l}
|k|cu (b1, m1)eo(k — k1,7 — T1)cw(k, T)
+ n 7 —dr1d
2, J (= ok ) —m— ol — k(L + 2%k)d T (3.1.53)

2
Kk (k—k1)#0 R

max{lkl,lklMkfku}max{l,%*}

Soa Y f (Z f culbr, ek — k1,7 — 1) 1d7'1)cw(k,7')d7"
R

) ) (= o(kn))3(r — i — ok — k)2

R

We define functions F,G : T x R — C by

ﬁ(m, A) = culm, A) -, and (A;(m, A) = co(m, A) -
(L+[A—o(m)])? (L+[A—o(m)])?
It means (m. )
Ja _ i(mx+At) Cy\TN, . d)\’
0= 3 |
and

T — ei(mer)\t) Cv(m7 /\)
Gt mzj L+ A o(m))}

From inequalities (3.1.47), (3.1.53), Cauchy-Shwartz and Plancherel, we obtain
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o)l Soa s () J(ﬁ‘*@)(k,T)cw(k,T)dT)

—s % kEZR
[wlx =1
2 2
Ssa SUp Z J‘F/\G(k/‘ﬁ)‘ dr Z J|Cw(k"7-)|2 dr
weX_, i keZ keZ
lwix =1

= Ysa ”F'G||L2(’JI‘><1R)

N

Coa | Fllarxry 1Glracrxr)

<C IGlx, ,
3 '3

where we applied Cauchy-Schwartz, and Theorem 3.1.18 in the last two inequalities. Note

that
1
s etk )
IFlly | = J<T § dr
Fley =1 & T = o(R)

(3.1.55)
~< | - ()>§|ﬂ(kﬁ)l2d7> = Jullx_,.

N

'3

In a similar way, we show that |G|y = |v[ly . From the estimates (3.1.54)-(3.1.55),
0

w
w

and immersion X, 1 — X_ 1, we get
’2 '3

[a(uo)lx , <Csalulyx , Ivlx

T2

Il
o

where Cj , is a positive constant depending only on s and o.

Case 2. |1 — ¢(k1)| > 2C’ak2 : In this case, (3.1.52) and Cauchy-Schwartz imply

1<

N6

Z cu(k1,m)e(k — k1,7 — 1) cw(k, 7)
ke == ok — ki3 — o(k))3

kki(k—Fk1)#0
maX{\kMkl|,|k*k1|}<max{1,%’}

dridr

. Z |k‘cu(k177—1)cv(k_k177—_7_1)cw(k77—) drydr
(

R2 1+ %Cak2)%<7_ — 71— ¢k — k1)) (T — p(k))*

k. kieZ
kki(k—Fk1)#0

max{|k|, k1|, | k—k1 |} >max] 1,42

~ea ZJ 1 Z JCu k177'1 k kl’ - ) T drmy CUJ(k7T)dT
iz 1+ |7' — )2 Frezy <7' -1 — ¢k — k1))

(éjuh— ) (H, * G)( k:7-|2d7-) (éﬁcwlm )

(3.1.56)
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where H; : T x R — C, is a function defined by [/{\f(m, A) = ¢f(m, A). It means,

Hy(x,t) = Z Lei(m“’\t)cf(m, A) dA.

meZ

wlr

From relations (3.1.47)-(3.1.48), (3.1.56) and (1 + |7 — ¢(k))) ™" < (1 + |7 — o(k)|)~

have

, We

-

loz(wo)ly | < Csa sup [(ZJR(1+T¢(’C))§

1
s—1
T2 weX ke —o0

— 2 2
H, -Gk, 7)| dT) wXS’%]

< Csa ( > JR@ — $(k))3

k=—00

S 2 2
H,- G(k,T)’ dT)
< CsalHu - G”L%(TxR)

< Csol Hul 2 (rxr) |Gllzacr xRy,
(3.1.57)

where we have applied Corollary 3.1.19, and Hélder’s inequality (see [15, page 118]) in the

two last inequalities. From Theorem 3.1.18, we have that |G| Ls(rxr) < |G]x, ,- On the
'3

other hand,

1
) 2
||HuHL2(T><R) = < Z L’Cu(k77)‘2 d7_>

b ) (3.1.58)
0 . 2
~ ( 2 J<k>25<7 — ¢(k))* 2 [a(k, ) dT) = Julx, ,-
k=—oo VR 2
From relations (3.1.57)-(3.1.58), we obtain
[0(uo)llx , < Csalulx ,|Glx, , < Coalulx,,lvix,,-
$,—35 i) '3 2 ’3

3
Case 3. [T — 1 — ¢k — k1)| > gCak:Q : Observe that, this case is similar to the second
one, just substituting H, in the place of H, and F in the place of G. Thus, we obtain

[0:(wv)lx, | < CsalHollzmxm [ Fllx, , < Csalvlx, , lulx,

1
S, '3

Nl

Step 2. Now we will estimate the Y; _; norm. Using duality we have,

00 (o) ly, —, ~ [ 10+ D (1 + |7 = G(R)) ™ 20 w) () s oy

2
lk

_ 3.1.59
= sup Z ak (J(l + k) (1 + |7 — ¢(k)|) "0z (uv) (K, 7)| d7)~ ( )
wellh w20k \g

We move to estimate

IT:= (1+ k) (1 + |7 — ¢(k)]) |0 (uv) (k, 7). (3.1.60)
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Note that

11 < (L KPR+ |m = o(R))H| D) | [alky, )l[0(k — by, 7 = 1)| dmy

e
+‘k| cu(klaTl)cv(k klaT_Tl)
<K +]r=9¢ f rdr | (3.1.61
i 2 ) Tl — o)k — k- — o ki (316D
kl;ﬁO
Ss Z J |k|Cu(k1,Tl)CU(k kl,'r — Tl) i dTl
ki€l 5 1+ |7 — g(k))(m1 — (k)2 (T — 11 — bk — k1))*
k17':0
It follows from (3.1.59), definition (3.1.60) and estimate (3.1.61) that
ak|k|cu(k1,m)co(k — k1,7 — 71) -
10w @0y, _, S.  sup 3 f . _ird

S(k))(1 — $(k1))F (T — 11 — bk — k1))?

aR€l?, ap=0 k,k1€Z
lagl,2=1 kki(k—k1)#0
k

(3.1.62)
We define
k|cy(kq, k—ky,m—
nr= Y f “’“' culhy, m)eu(k = k7 = 1) cdrdr. (3.1.63)
ke + |7 = o(k))(1 — ¢(k1))2(T — 11 — @k — ky))2
kk1(k—Fk1) 750
Separating the small frequencies from the large ones, we obtain
11T < Z f ak|k|cu(k1, m1)eo(k — k1,7 —71) dridr
b (1t | = ¢(k))(r1 = d(ka)) 37 =11 = Gk — k)2
kkq(k—k1)#0
max{|kl|,|k1|,|k—k1|}<max{ 1,4
e (3.1.64)

ak|k\cu(k1,ﬁ)cv(k—kl,T—n)
+ T dTldT
k,gez j (1 + |7 = (k) )(r = d(k))2(r — 71— $(k — k1))3

k1 (k—k1)#0

max{\k\,\kll,\k—kl|}>max{1,%a}

Again, from Remark 3.1.23, we must study three different cases.
Case 1. |7 — ¢(k)| > gCakQ, provided that max{|k|, |ki], |k — k1|} = max{l, 43&} : Thus,
Cy 1
3Ca Bl = o) Tl ok)]
k? 1
= o)~ 1 [ o(k)]

there exists éa =1+

for large

frequencies. Also, for small frequencies.
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Therefore,

11 <. Z J k2ak|k|cu(k1,ﬁ)cv(lf—kl,’r—ﬁ) _dridr
ke (k% + |7 — (k) )1 — d(k1))2{T — 71 — $p(k — k1))2

k1 (k—k1)#0

max{\kl,\kl\,lk—ku}smax{l,%@}

. 5 f Coarlklew (ki n)es(k = k1,7 = 1) Cdridr
L k2 | = G(R) ) — $(k1) 3T — 1 — Bk — k1))

k,k1€Z
kk1(k—Fk1)#0

max{lkl,lkl\,\kfku}max{l,%*}

- Z J aglk|cu(k1,m1)co(k — k1,7 — 71) drdr
sl R = o)) — (k)3 — 1 — ok — k1))?
kk1 (k—k1)#0
ZJ‘ a,k|k| J Cy k)1,7‘1 CU k‘ ki, T 7‘1) _dmy | dr
s keZ k2 + lT k1€Z <7'1 kl > <7 —T1— (b(k’ k’l)>2

(3.1.65)
From the estimates (3.1.62), (3.1.65), and Cauchy-Schwartz inequality, we obtain

L2(TxR)>

ar|k|
Oz (uv Vo1 S Cs’a P H
ouu)ly, akeliyak>o((kz+|r—¢(l€)!)

lak ;2 =1
k

e

L2(TxR)

(3.1.66)

< Cso|F-Glk,7)

L2(TxR)
<,

1 Hv“X 17
S5 83

where C; , is a positive constant depending on s and o.

3 4
Case 2. |1 — ¢(k1)| > gcakQ, provided that max{|k|, |ki|, |k — k1|} = max{l, ?a} : This
implies that

3
L+ |m—o(k)] > 1+ §Cak2, (3.1.67)
for large frequencies. From relations (3.1.62)-(3.1.64) and (3.1.67), we obtain
111 <. Z J akcy(k1,m1)co(k — ki, 7 —71) _drdr
’ kerez 2 (LT = ¢(R))(T =1 = d(k — k1))2

kkq(k—Fk1)#0

max{|kl|,|k1],|k—k1|}<maxq 1,42

N Z J ak\k|cu(k1737'1)cv(kl— ki, 7 —71) drdr.
kokeZ I+ =ok))(L + 5Cak?)2{T — 71 — $(k — k1))?
kkq(k—k1)#0

(3.1.68)

max{|kl|,|k1|,|k—k1|}>max] 1,42

1 1
Therefore, for any 3 <p< 3 we get

kEZ

Cy kl,Tl CU k kl, Tl)
s, T dTl dr. .
s ZJ 1+ |7'— )1 P (1 + |T— (klzejzj <7__7_1 _ k‘ k1)>§ ) T (3 1 69)
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Hence, there exists a positive constant C depending on s and « such that

~ I/{; -~
los@o)ly. ., < Coa  sup j - (Hos G)(k,7)
| o 2] T O - s
Hakl\lz 1
C il H, - G(k,7)

< Cs, sup
(Lkeli, a =0
lak],2=1
k

(3.1.70)

1+ |7 =o(k))'— (1 + |7 —o(k)])”

L2(TxR) L2(TxR)
H, - G(k,7)
1+ |7 — o(k))

< Cs,a

)

L2(TxR)

ay,
L+ (7= (B | 2oy

1+ |7 —o(k))F > (1+ |7 —o(k)])2. (3.1.71)

1 1
where < C, because p < 3 Now using p > 3’ we obtain

The estimates (3.1.70)-(3.1.71) yield

H, G(k,7)
1+ |7 —o(k)])r

|02 (uv)lly, 1 < Cia

L2(TxR)

— Cya 2 J (14 |7 — o )y)%\mmf)

k=—00

< Cia Z f (1+ |7 —o( >|>-3|1Tu-\a|2dr>

|

N

k=—00
< CyallHull L2 (oxw) |G| La(rxr)

< Cs,a‘

X 1

il

3 4
Case 3. [r—ri—¢(k—h)| > Cak?, provided that max{[k|, k], [k — k1 } > maX{l, 30‘} :
This case is similar to the second one, just substituting H, in the place of H, and F' in

the place of GG. Therefore we obtain,

Hax(uv)HY&A < Cs,aHHvHLZ(TxR)HF||L4(TxR) < sa”” EE

CA?

O

Corollary 3.1.25. Let s =0, a > 0, and T > 0 be given. Assume that u,v:T x R — R
are functions in Xs’%(f), where I = [T, T] and mean [u(-,t)] = [v(-,t)] = 0 for each
teR. Then

10:(uv)lz, )y < Cas(lulx, ymllvlx, o x, olvlx, o).
Furthermore,
[0s(wo)lzr | < Cas(lulxr [vlxr, + Julxr Jvlxr ), Yu,ve X[, (3.1.72)
s j S7§ S,§ S,g 3,5

and the mean [u(-,t)] = [v(:,t)] = 0 for each t € R.
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Proof. Let ,7 : T x R — R be functions in XS% and Xs,%? such that @ (resp. ?) is an

extension of u (resp. v) in X1 (resp. Xs,%) with

<2 [uf

<2 ul

”a”Xs 1 X, 1) W”Xs 1 X, 1)
'3 '3 2 2
0lx, , <2vlx ;i [0lx, , <2[vix o
'3 3 2 2
From Theorem 3.1.24, we have that v : T x R — R is a function in Z, _ 1. Furthermore,
o)z, o < 1)z,
< Cas (e, Ilx, , + l0lx,, I0lx, ) (3173
< 4Cas (lulx, , o 0l ) + lelx,, llolx, ) -
72( ) '3 ’3 ' 2
This proves the Corollary. O

Corollary 3.1.26. Let s > 0, a« > 0, and 0 < T < 1 be given. Assume that v : T xR — R

1
is a function in X 1 with mean [v(-,t)] = 0 for each t € R. Then for any € € (0, 6) we

have
[0:(0*)zr | < CasT 0] 5r -
55— 5 85
. _ , 1
In particular, the last inequality holds for e = T
1 : . . o, 1 1
Proof. Let e € (0, 8) be given. Then applying Proposition 3.1.15 with b’ = 3 and b = 3 +e€,
we obtain
1ic 1 .
lulxr, < CTS™Slulxr, < CTulxr, . (3.1.74)
S,g S,g € S’j

From the estimates (3.1.72) and (3.1.74), we have

[0:(u)|zr | < Clullxr ulxr < C T ul3r < C T ulr
=5 s, 83 S5 85

]

In the following sections of this chapter, we present essential results to establish

exact controllability and stabilizability of the Benjamin equation.

3.2 The multiplication property of Bourgain's Space

In this subsection we establish the multiplication property of the Bourgain
space X, ;. We begin with the following lemma. Its proof is classic and we leave it to the

reader.
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Lemma 3.2.1. If ¢ = ¢(t) € C*(R), then Yv e X p for allve X p- Furthermore, there

exists a positive constant C' = Cy 1y such that

[Yollxr, < Cloler,.

If T < 1, then the positive constant C does not depend on the time T.

As was pointed out by Laurent et. al [52] for the KAV equation, if ¢ = ¢(x) €
C*(T), then ¢v may not belong to the space X p for v e X . For Benjamin equation too,
the same is lost in the index of regularity s due to the fact that the multiplication by a
(smooth) function of x does not keep the structure in the space of the harmonics. This lost is,
in fact, unavoidable. For instance, consider for j > 1, the function v;(z,t) = ¥ (t)e“®e?W),
where 1 € C°(R) takes the value 1 on [—1,1]. Note that,

Bk, 1) = (DD el (k) = (1) sy,
where d; is the Kronecker delta function. Then,

Gi(k,7) = 65 (L))" (1) = G (1 — $(5))-

Therefore,

il = 3 [ (= otb)16 Dt ol

k=—00

- | = oMt = Sl dr .

< el

Thus, the sequence {v;};>1 is uniformly bounded in the space Xy;, for every b > 0.
However, multiplying v; by ¢(x) = €', we observe that eiv;(k,t) = @Z)(t)ei‘z)(j)t(Sk(Hj), and
e v;(k,7) = ka5 ¥ (7 — ¢(4)). Thus,

o5l = [ (= o1+ M1 = S dr

Using that 7—¢(1+3) = 7—6(j)+ P(j) with P(j) = 352+ (3—2a)j +1+2u—a,
we have

3, ~ [ (L I+ POIPIEF dr ~ 5

for 5 large enough.

The next theorem shows that this is the worst case. With the purpose of prove
the theorem, we begin proving a necessary lemma and showing how the X, ; may be viewed

as a weighted L? space.
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Lemma 3.2.2. Let s € R. Then v e X,; if an only if ve L*(R, H;(T)), and
0w — 0ov — aM v + 2 poyv € L (R, H(T)).

In this case we have HUH?XS’1 = HUH%Q(Rt7H;(T)) + 0w — 03v — aHv + 2/Laxvy‘%2(Rt7H5(T)).

Proof. Let s € R fixed. Then, applying Plancherel’s identity in time, we obtain

[oe]
ol = > JR<k>2s (1+ |7 + K — ak|k| + 2uk[?) [0(k, 7)|? dr

k=—a0

[e0]
= HU||2L2(R“H;(T)) + Z JR<k>2S|0tv(k,t) — 3u(k,t) — aH2v(k,t) + 2 pdyv(k,t)|? dt.

k=—o0

This proves the lemma. O

Observe that, the X, spaces may be viewed as the weighted L?—spaces. In fact,
denote by (R, M, \) and (Z, A, ) two measure spaces, where A is the Lebesgue measure
over R and ¢ is the discrete measure on Z. Thus, (R x Z, M ® A, A\ ® 0) is the product
measure space where M ® A is a o—algebra on R x Z, and A®J is the product measure of
A and 6 (see [36, page 64]). Since A and ¢ are o—finite measures, then A ® ¢ is a o—finite

measure and
A®O(M x A) = AN(M)-0(A), for all rectangles M x A,

where a (measurable) rectangle is a set of the form M x A, with M € M and A € A. Then,

using Fourier transform, X;; may be viewed as the weighted L? space
L*(R, x Zy, kY1 — (k)Y A® 6). (3.2.2)

Theorem 3.2.3. Let —1 < b < 1, s € R, and ¢ € C*(T). Then for any v € X,
v € Xy _opp. Stmilarly, for any T > 0 the multiplication by ¢ maps XST,b, into Xs,T—Q\b|,b7

i.e., there exists a positive constant C' = Cs o o, which does not depend on T, such that

livlxr

—2|b,b < Cszaa@Hu HUHX:SI:b

Proof. We proceed as in [52]. First consider the cases b = 0 and b = 1. The other cases of
b will be derived later by interpolation and duality.

Case 1. b =0: Let v e S(T x R). From relation (3.1.3) we know that

ool = 35 | 21+ )] 00)" (o)

keZ

If s >0, one has (1 + |k|)° <cs (1 +|k—7])°(1+ |7])°. Therefore, the Cauchy-
1
Schwarz inequality for N > 3 yields

0¢]
vl < e D) U+ D™ #NBO)E X, JR(l + [k = ) fu(z, ) (k — 5,0)]* dt.

Jj=—00 keZ
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Using the invariance of the L?(RR,, H;(T)) norm by translations, we get

levl, o < ellgen ol

On the other hand, if s < 0, we apply (1 + |k])® < s (1 + |k —j])°(1 + |5]) 7,

and proceed as above to obtain

lovlk, o < eallolvemep ol

In the general case, we use density and duality arguments to complete the proof.

Case 2. b =1: From Lemma 3.2.2, we obtain

levlk, .. = HSD’U”iz(Rt,H;‘Q(T))

+ [0 (pv) — B2 (0v) — aMZ (pv) + 2uda(pv) — apHIGv + apHE VT o2

< ”90””%<S_z,o + cal|H% (pv) + ‘pHaﬁUHQLz(Rt,H;”(T)) (3.2.3)

+ CHat(SDU) - 62(901}) + 2/1’651’(()01}) - a‘Pﬂai(”)HQLQ(R“H;%(T))

=1+ I1I+1II

From case b = 0, we obtain that there exists A, > 0 such that

I=gv ;" (3.2.4)

Koo < Asp VIR, 0 < Asg 0]

From the properties of operator ., on Bourgain’s spaces, and nothing that H is an isometry

in H;_Q(']I‘) (see Theorem 1.4.1), we get
2
X572,0>

2.2
‘%avaLQ(Rt,H;_Q(’H‘)))

(’}zv HA2X5_2’0> °

Hence, there exists another positive constant B, , such that

1T < ca ([ 2(60) 2 s, 12y, + |9H2

< ca (Hgov\ 3(0 + Csyp

= ca (gl , + s

IT < Boay V)%, (3.2.5)
We estimate I11. From the Leibniz’s rule for derivatives (see [54, page 13]), one has
04 () — 03 (pv) + 210, (pv) — apH?v = ¢ (O — 30 + 2000 — a?—l&iv) (3.2.6)
— 30,0020 — 30%00,v — O2u + 21l pu. o

Note that —30,00%v — 30%pd,v — 02pv + 2ud,v is an operator of second order. From
identity (3.2.6), the case b = 0, and the fact that ¢ € C*(T), we get
I1I < c|o(z) (G — O3v + 2u0,v — aHw) ”iQ(Rt,HZf_Z(T))
+ | — 30,0020 — 3020, v — P2pv + 2”‘336907’”22(Rt,f1;*2(1r))
< el O — v + 2u0,v — aHV|%,
+ BCH(’}:ESO(}:%/UH?XS_ZO + BCH(’}:)%SO(;)%UH?XS_Q’O + CH(}iSOU”%(S_Q’O + 2|/’L|CH(’}$S0UH,2X3_270
v — 030 + 2| p|dpv — aH@ivH?XS%O

+ 3eds 0,0V, , + Bedsz,]v]

<

Cs,p]

3(5,1’0 + CdS,(?g;soHv‘ 3(5,2’0 + 2|M|Cdsyax¥7”v‘ %(5,2’0’
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From embeddings X, g — X, 20, and X, < X _1 o, we have that there exists D, , > 0
such that

IIT < Dy, <||8tv — B+ 20,0 — aH&ivH%(Sﬁ + |v| §(0> = Dy 0| UH%Q,N (3.2.7)

where in the last step Lemma 3.2.2 is used. From (3.2.3)-(3.2.5), and (3.2.7), we get that

there exists a positive constant Cy , ., such that

3(572,1 < CS,OZ,M,QO HU‘ g(s,l' (328)

lo(z)v]
This proves the case b = 1.

Case 3. 0 < b < 1: In this case we use interpolation. From identification (3.2.2) we get
Xo0 = L*(R; X Zy, BYPA®0), and Xy 1 = L3R, x Zy, ()* (1 — ¢(k)»?A®4). Therefore,
applying the Complex Interpolation Theorem of Stein-Weiss (see Theorem 1.7.8) we obtain
(Xs.0, Xs’,l)0,2 ~ Xy(1-0)+50,0, With 0 < § < 1. Furthermore, from the cases b = 0 and b = 1

we infer that the operator of multiplication by ¢ € C*(T), defined by

T:Xep~ LRy x Zy, kY7 — p(E)PA®6) — X, 209 ~ L2(Ry X Zi, (Y7207 — p(k)HY? N ®0)
T(v) = p(z)v,

satisfies

1T x, 0 < Co0Cl ol

a, 5,0,

$—20,0 5,0 < Coz,s,go,uﬂ HU 5,0+

and have quasi-norm M = Cy s 0, With 0 < 6 < 1. Thus, we have a 20 loss of regularity

in the spatial variable, as announced.

Case 4. Let —1 < b < 0. In this case we use duality.

LJRU - o(2)v didz

Finally, to get the same results for the restriction spaces ng we write the

[ ()]

Xsoplp sup
U€X7572b’7

b
lullx g gp, <1

estimates for an extension v of v, such that |7

x., < 2|v]%,,, which yields

§S_2|b|,b < ”90(55)5“)(5_2\“,1, < Cos b 1]

[ ()] oy S 20000 [V

Xs,b'

This completes the proof of the theorem. O

3.3 Propagation of Compactness and Regularity

In this section we show some properties of propagation of compactness and

regularity for the linear differential operator

L:= 0y — aMd2 — 02 + 2ud,, (3.3.1)
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associated to the Benjamin equation. These propagation properties will play a key role
when studying the global stabilizability of the Benjamin equation. We begin establishing a

necessary lemma to get the result of propagation of compactness.

Lemma 3.3.1. Let s,r € R. The Hilbert transform H commutes with the operator D" (see
(2.5.2)) in L*(T). Furthermore, H = —D~'0,, in L*(T). Also, the operator 0", commutes
with the operators D" and H in L*(T).

Proof. 1t can be easily shown using Fourier’s transform. ]

Proposition 3.3.2 (Propagation of Compactness). Let T > 0 and 0 < b’ < b <1 be

given (with b > 0) and assume that v, € X3, and f, € XT, o, _, satisfy
OpUy, — Qv Hé‘ivn — 6§vn + 20 Opvy, = [, form=1,23 . (3.3.2)
Suppouse that there exists C' > 0 such that
an”X& < C, foralln>1, (3.3.3)

and that

+ |l

[vn| xr
nilX —242b,—b

T s + [lonl x7 — 0, asn —> 0. (3.3.4)

14267 ,—b’

Additionally, assume that for some nonempty open set w < T
v, — 0, strongly in L*((0,T); L*(w)). (3.3.5)

Then,
v, —> 0, strongly in L, .((0,T); L*(T)), asn —> 0. (3.3.6)

loc

Proof. Let K < (0,T) be compact and ¢ € CX((0,7)), such that 0 < ¢(t) < 1 and
(t) =1 in K. Then,

T T
oal2ac 2oy < f () [0a2a(ay dt = f B(t) (0 vn) oy At (33.7)
0 0

Since T is compact there exists a finite set of points, say x5 € T, i = 1,2,3,--- , N, such
that we construct a partition of the unity on T involving functions of the form y;(z — xf).
with x;(-) € CX(w). Specifically, there exists N € N such that

0<xi(z—a)) <1, forall xeTandi=1,2,..,.N
Xi(+) € CF(w) for i=1,2,..,.N

i (3.3.8)
Z xi(- —xh) = on T.
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Therefore,

T N
H’UHH%Q(K,LQ(T)) = J (d’(t) <Z xi(x — %)) Um%)
0 i=1

Thus, it is sufficient to show that for any xy € T, and any x(-) € C*(w)

N
= Z X? vﬂv IU")LQ(TX(O,T)) .
L2(T) 1=1

(1/)(t)X(ZE - :L‘O)Unvvn>L2(TX(O7T)) I 0, as n — 00.

For this, consider ¢(z) = x(x) — x(x — x), where x € C°(w) and xy € T. From Lemma A.4
there exists ¢ € C*(T) such that d,¢(z) = x(2) — x(z — xo) for all x € T. Consequently,

(L)X (x = 20)vns Va) po(rw oy = (EOX(E)0n, 00) L2 (rx 0.1 — (V) eP(T) V05 V0) L2(rw 0.7)) -

From (3.3.5) we have that

‘W(t)X(x)UmUn L2(Tx(0,T)) f J ()| |x(x)] |vn] - |Un] dxdt

< [¢lezomyIxles wlvnlFzom).2w) — 0,

as n — o0. So, we only need to show that

‘(w(t)amgo(x)vn,Un)Lg(TX(O’T))‘ —.0, asn — o0, (3.3.9)

where ¢ € C°((0,7)) and ¢ € C*(T).

In what follows we prove (3.3.9). Taking into consideration the definition of D"

(see Definition 2.5.2) and passing to the frequency space, it is easy to verify that

()2 (@)0n, V) 2 rory) 2@] (~2D"0)" (ks DO @ap)on) " (k. 1)t

keZ

T 1 27
p f 50,000~ [ dsp(@)on(a, )dz dt.
0 21 Jo

Note that —d2D? is the orthogonal projection on the subspace of functions
with @w(0) = 0. Therefore,

(1) Q2p(x) v 0n) 2o,y = (V1) Cop(@) (=0 D™ Vns0n) 12011y (3.3.10)
+ (V1) Qop(2) 02(0,8), v0) 21 (017 -

First, we prove

lim ‘(w(t) 0:p(x) (=32 D 20, ¥2) a1, (o,T))’ —0. (3.3.11)

n—--0o0

From (3.3.1) and (3.3.2) we have Lv, = f,, forn = 1,2,3,---. Set B := ¢(x)D?,
A :=1(t)B, and for € > 0, let A, := 9(t)B,, be a regularization of A, where

B := Be% | with €% defined by e“%u(.) = (e‘*%(k‘)) ’ (+). (3.3.12)



Chapter 3. Bourgain’s spaces 112

Then A} = ¢(t)e€agD_2gp(a:). Define ane 1= ([Ae, L]vn, vn) p2(px 0,1y - Note that, taking

the formal adjoint in the distributional sense for the terms involved in (3.3.1), we obtain
ne = (fr, ALUn)p2rx0.1)) T (AeVns fr)p2rx0.1)) - (3.3.13)

We infer from Lemma 3.2.1, Theorem 3.2.3, (3.3.3), and (3.3.4) that for 0 <
b < 1, there exists a positive constant C' (independent of T, if T' < 1), such that

(fos A:UH>L2(T><(O,T)) S anHXfu%ﬁb ”A:Un”Xgi%,b

< O fallxr

[vn xr
Z242b,—b n Xo,b

N

C ||anXTZ+2b,—b — 0, asn — .

Therefore,

lim sup
NP0 g<e<1

(fo, Ajvn)LQ(TX(OyT))) ~0. (3.3.14)

Using a similar procedure, we obtain

=0 g<e<1

Hence, (3.3.13), (3.3.14), and (3.3.15) imply that

lim sup |, | =0. (3.3.16)

n P g<e<1

On the other hand, using that the operator B, commutes with derivatives in time, we

obtain
[Aea L]Un = _¢/(t)BeUn + [Aea _O[Hai]vn + [Aea _ai + 2Maw]vn

Therefore,

Qne = — (¢/(t)BevnaUn)L?(qrx(o,T)) + ([Ae7 —aH vy, Un)Lz(qrx(o,T))

(3.3.17)
+ ([Ae, —02 4+ 200, vy, vn)

L2(Tx(0,T)) °
We infer from Lemma 3.2.1, Theorem 3.2.3, and (3.3.12) that for any s e R, and 0 < b < 1,
there exists a positive constant C' (independent of T, if 7' < 1) which does not depend on
€, such that

[¢'(t) Bev|| xr

s+2—2b|,b

< Cloxr,. (3.3.18)
From (3.3.18), (3.3.3), (3.3.4), and the fact that 0 < b < 1, we obtain

V(1) B, vn) amsoiry| < 19O Bevnlxy_Jonllxg,

< Clloa|xr lonlxz, (3.3.19)

—2+42|=b|,—b

< CHUHHXT2+21; ,—0, asn— .
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Therefore,
lim sup (@//(t)Bevn,vn)LQ(TX(QT))‘ =0. (3.3.20)

n P p<e<1

Also, observe that
(A, —aHH v, = —ap(t)pD 2 H?Z0, + ab(t)HE? (ng Tvn) (3.3.21)
From the Leibniz’s rule for derivatives (see [54, page 13]), we obtain
02 <@D_Qe€aivn> = 02D~ 260, + 20, 0y D ey, + 2p D™ 260, (3.3.22)

Substituting (3.3.22) into (3.3.21) and using that the Hilbert transform H commutes with
the operator D" (see (2.5.2)), we obtain

[A., —aH2 v, = a)(t) {—QOHD_Qé’ieeagvn +H <¢D_26§e€agvn>}

, , (3.3.23)
+ 2000 (t)H <8mgoaxD’2eeazvn> + ap(t)H (83(;3 D’Zeeazvn) :
Also, using Lemma 3.3.1, we have
—oHD™ 2(’7’266%%4—7—[ ((pD 2626 e ) =D 19, D~ 2626 2v, — D710, (@D_zéﬁe“}iv )

= goD_l@ID_Qaf,eanvn -D7! (goa D~ 2&26 @y )
- D! (@(pDiQ%GE&ivn)

= —[D_l,gp]axD_Zé’ieeaivn -D7! (@EwD_Q@Qe ey )
(3.3.24)
Substituting (3.3.24) into (3.3.23), we get

A, —aHP W, = a(t) ! —[D7. o, D 20%%%y, — D7t (0,0D 20%%
€) x n @Z) ) QO X x n l‘gp x n
+ 2a1)(t)H <8xg06xD_26€a”2“Un> + ap(t)H <8390D_2656923’Un> :
Therefore,
2 _ -1 —212 €2
([A67 _aHax]vnv vn)LQ(TX(O,T)) - (C“/}(t) [‘D 9 So]al‘D axe UTL) 'l)n> LZ(TX(O,T))

— (onb(t)D_1 (awa—Qaﬁefaiv,Z) ,vn)
+ 20 <w(t)7—[ (@(p&xD_zeeagvn) ,vn)

+a (@ZJ( VH (82¢D 2 65%”) vn>

PAIOTN (3 3.95)
L2(Tx(0,T))

L2(Tx(0,T))

Appliying Cauchy-Schwartz, Lemma 3.2.1, (3.3.3), Lemmas 3.1.7, 3.1.7 and using that
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0 < b <b<1begiven (with b > 0), we obtain

_ — €02
a|p(t)[D ™, ]0a D202 % un 2 (1 (0,19 [Vn | L2 (7 (0,1)

(aw(t)[Dfl, @]61D7262663T0n, Up

) <
L2(Tx(0,T))
— — 672,
< C|[D 1790]830D 2556 (1UnHL2(Tx(0,T))HUnHX[{b

2
<C (J [[D~", )0.D~ Qa%%unnm(mdt)

2 2
<C <J HaID”aiee%vnni,,l,lmdt)
0

1 1

—2 A2 a 2 2
05 vy, H .
X

_2A2 €02
0D~ 705 v,

_u —2,b/

f(Tl N \

B (3.3.26)
Applying (3.3.3), (3.3.4) and using the embeddings Xg,b — XTLb,, XT1+2b/,—b' — XTL_,,/,
we obtain that there exists a positive constant C' (independent of T, if T < 1) which does
not depend on € such that

(D™, plo. D22 vy, )

< Cllu,| 2 vn| 2
poeory| < Cloalir el oo

C’anH —> 0asn — 0.
71+2b’ —b/

Note that the lost of regularity in (3.3.26) and (3.3.27) is too large if one uses the estimates

with the same b. Therefore, we have to use the index b’ instead. Consequently,

lim sup
0 g<ex1

(av®[D™, gl D202, v,)

— 0. (3.3.28)
L2(Tx(0,T))

Also, note that Lemma 3.2.1, Lemma 3.1.7, Theorem (3.2.3), and (3.3.3)-(3.3.4), we have
that there exists a positive constant C' (independent of T', if T' < 1), which does not depend

on € such that

252 ed2 -1 —212 ed2
(w7 (0ueD e 0n) cvn) o | <D (GapD e )|, el
—272 €d?
< C|0ppD 205e =0, . v nHXTH_%, W
—2b’ b’
<C|D ZGQeeaw ‘ v, ]
= " sz/+2\b/|,b/ ‘ n‘X —14+2b/,—b'
< Clonlxr, lonllxr
< Clonlxr, lvalxr
—142b",—b
< Cop xr — 0asn — 0.
—142b/,—b’
Hence,
lim su <a ( D?0% 6511}) v) = 0. 3.3.29
”—’000<e<pl () D i ") ") LT (0,1)) ( )
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Similarly, using that the Hilbert transform # is an isometry in Li(T), we have

‘(2@1!}(25)7-[( Oppp D2 wvn> vn>

<20 (K (Gt D20 )| ol
xt ,

L2(Tx(0,T)) Ly

< C |0p0D 20,6 %, o
0,—b’
<C HU"HXTH%/ L 0 as n — 0.
Therefore,
I (2 M (ax 0, D2 n) n) —0. 3.3.30
n os<1§<)1 oy (t) 7 v ! L2(Tx(0,T)) ( )

With similar arguments, we get

I ( ¢ <a2 D2ec% n) , n) —0. 3.3.31
i sup | {ap(OH (G D¢ 0n ) vn ) (3.3.31)
From (3.3.25) and (3.3.28)-(3.3.31), we obtain that
2
lim os<1:£)1 ‘ [Ae, —aH % Un, U”)LZ(’]I‘X(O,T))’ = 0. (3.3.32)
Therefore, (3.3.16), (3.3.17) (3.3.20), and (3.3.32), imply that
3
lim Os<161£)1 ([Ae, =02 + 2,u@v]vn,vn)L2 Tx(0T) ‘ =0. (3.3.33)
In particular,
dim ([A, =03 + 2u0;]vn, un)mrx ory =0 (3.3.34)

Using the Leibniz’s rule for derivatives (see page [54, page 13]), we note that
[A, =02 + 200, ]vn = 31h(t) 002D ™20, + 310(t)02 00, D20y, — (1) (—0§¢ + 2005) D™ 2y,,.
Therefore,
([A, _ag + 20, ]vn, Un)Lz( x(0,T)) (3¢( ) z@agD_%)m vn)L2(’]T><(O,T))
( '(/)( ) Q@axD_Zvnavn)Lz(Tx(o,T)) (3335)
— (¢(t) (—03¢ + 2u0z) D 2vn’vn)L2(T><(0,T))’

Using Lemma 3.2.1, Lemma 3.1.7, Theorem 3.2.3, (3.3.3), and (3.3.4), we obtain that the
last term in (3.3.35) satisfies

‘(w(t) (—(92(,0 + 2/;6&90) D 2y,, Un)Lg(TX 0.7) ’ Hw ( 3o+ 2M5z<,0) D_QU"HXQ{% ) an”XT

< O[D%0u]xr, Ionllx

242b,—b

T
—242b,—b

< Clonly, lonlxr,

< Cop| xr —> 0asn — .
—242b,—-0b

(3.3.36)
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However, for the second term of (3.3.35), the loss of regularity is too large if we use the

estimates with the same b. Using the index b’ instead, we have

‘(3¢(t)‘9§¢axl}_2”mUH)L'A’(TX (0,7)) ‘ Je(t) ‘PaxD—%n”XT Hv | xr

< oD~ ”onT ””nHX

—1+2v/,—b/

ey (3.3.37)
< Clonllxz, lenlxr,
<C HU"HXTsz/,fb/ —> 0asn — 0.

From (3.3.34)-(3.3.37), we obtain

: 2\ -2

i, | (GO D 200, 00) a0y = O

and (3.3.11) is proved.
Second, we prove that

nh_n?oo (1(t) Cup (0, t)7vn)L2(’]I‘><(O,T))’ =0. (3.3.38)

Indeed, note that for 0 < b < 1, we have

1
T 2
1920, 8) | v0.1) = U (r)?16,(0,7)? dT) < Cllvallxr, < C.
. |

Thus, the sequence (0, -) is bounded in H®(0,T), which is compactly embeded in €
L*(0,T), by the Rellich’s theorem (see [36, page 305]). Therefore, there exists a subsequence
that converges strongly in L*(0,7). Next, it can be seen that the only weak limit of a
subsequence in L?(0,T) is zero, so that the whole sequence tends strongly to 0 in L(0, 7).
Thus

0, (0,t) —> 0 (strongly) in L*(0,T), as n —> o,

and hence we hold (3.3.38).

From (3.3.10)-(3.3.11), and (3.3.38), we obtain (3.3.9). This completes the proof
of the proposition. O

Next, we investigate the propagation of regularity for the operator L defined in
(3.3.1).

Proposition 3.3.3 (Propagation of Regularity). Let T > 0, 0 < b < 1, r > 0 and
fe X _, be given. Let v e X, - be a solution of

Lv:= 0w — a Ho*v — 0%v + 2u 0,0 = f. (3.3.39)
If there exists a nonempty open set w of T such that

2
ve L,

((0,T); H™ " (w)), (3.3.40)
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for some p with

1
O<p<min{1—b, 2}, (3.3.41)

then ve L} ((0,T); H(T)).

loc

Proof. Let s = r+p. Let 2 be a compact subset of the interval (0,7"), and ¢(t) € CF(0,T),
such that 0 < (t) < 1 and ¥(¢) = 1 in Q. Observe that

T
2
01 2s pmy = J S0 ooyt

T T 400
< j () [0]2a(m it + j ot | 20 3 k(oK. )2 |
0 0

k=—0o0
k#0

S G <““”i2mx<om> — (¥(t) D> *0, U)LQ('H‘X(O,T))> ’

where the operator D is defined in (2.5.2). Thus, we only need to show that there exists a

positive constant C' such that

( (1 (t) D*~2%, v) (3.3.42)

L2(Tx (O,T))‘ <C

Note that, with a similar argument as in the proof of Proposition 3.3.2, there exists a
finite set of points zj, € T, i = 1,2,3,--- , such that we can construct a partition of the

unity on T involving functions of the form y?(- —x) with x7(-) € C®*(w). Therefore,

N
)(w(t)D%_Qaiv’v)L%Tx(O,T))‘ - <¢<t)D28_2 (Z X?(x - IB)) 55”7“)
L2(Tx(0,T))

=1
N .
< 2 |@OD* 23— 48)020,0) 1oy |
i=1

Then, it is sufficient to prove that for any zo € T, and any x*(-) € C*(w) there

exists a positive constant C' such that
‘(¢(t)D2872X2(I — 20) 020, U)LQ(TX(O’T))‘ < C. (3.3.43)

In fact, from Lemma A.4 there exists o € C*(T) such that d,p(z) = x*(x) — x*(z — 7¢)

for all x € T. Consequently,

(PODH 2 (@ = 20)020,) oy, 0.1y | < |OD* 2 @)020,9) a0y

N 2 (3.3.44)
n ’(w(t)D 6mso(x)0xvav)L2(qrx(o,T>>"

Now, we move to bound the right hand side (RHS) of (3.3.44). Define

Uy 1= 6%830 — EnU — (6_%k22’;<kj7t)> v , (3345)
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and f, .= E,f = E,Lv, forn =1,2,3,--- . Passing to the frequency space, it is easy to

verify that E, commutes with L, i.e.,
foi=E.f = E,Lv=LE,v = Luv,.

From hypothesis and the definition of F,, we obtain that there exists C' > 0 independent

on n such that

|]vn\|X3:b < (C, and anHXTT% < C, forall n>1. (3.3.46)

Set, B = D* %p, and A = ¢(t)B. We infer from Lemma 3.2.1 and Theorem
3.2.3, that for any r € R, and 0 < b < 1, there exists a positive constant C' (independent
of T, if "< 1) such that

| A xr < C [olr,. (3.3.47)

—2[b|—2542,b

With similar calculations as in the proof of the Proposition 3.3.2 (see (3.3.17)), we obtain

(fn, A*’Un)LQ(TX(U,T)) + (A’Un, f”)LQ(TX(O,T)) = — (w’(t)BUna /UTL)L2(T><(07T))
+ ([047'[592@, Alvy, Un)L2(1rx(0,T)) (3.3.48)
+ ([A, =3 + 2002 ]vn, U”)L2(T><(O,T)) :

Using that p < 1 —b, (3.3.46) and (3.3.47) we get that there exists C' > 0 independent of
n such that

(At fo) porsioiry| < 1Avnlxr | I fulxr
(01 =re " (3.3.49)

< Conlgr [fallxr_, < Clonlxr, < C,

r+2b+2s5—2,b

‘(fny A*Un)L2(’]1‘><(0,T))‘ = ‘(Afna U”)LQ(TX(O,T))
< | Afallxr , lonlxr, (3.3.50)

< C ol o Meallyr, < Clfullyr , <€,

r+2|—b|+2s—2,—

and

(0B, 00) o] < 1O Bualr ol
<C HBUonfrﬁb anHXg:b (3.3.51)

<C anuxf <C HUnHXTb < C.

r+2|—b|+2s—2,—b
Also, using the Leibniz’s rule for derivatives (see [54, page 13]), and Lemma (3.3.1), we
obtain

HO2Av, = —p(t)D** 73 (0pp02v,) — (t) D> (pdivy)

(3.3.52)
+ 2HY (t) D> 72 (Oap0vn) + HY () D> 72 (O2pvy) -
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On the other hand,
AMOv, = () D> 72 (Hv,) = —p(t)D* 72 (pD " dlvy,) . (3.3.53)
From (3.3.52) and (3.3.53), we have
HO2Av, — AR, = —p(t) D> ([D71, p]d2v,) — ¥ (£) D72 (O 2vy)
+ 2HY(t) D> 7% (Opp Opn) + Hap(£) D**72 (20 v,) -
Then,
([aH@i, A]'Un, ’Un) =« (HaiAUn — AHaJQ;Una vn) L2(Tx(0,T))
= —a (O)D* 7 ([D7,¢100n) s 0n) Lagrs oy
— a (V) D* 72 (0ppdivy) ,vn)LQ(TX(O7T)) (3.3.54)
+ 2« (’Hw(t)D2“2 (OrpOyvp) ,vn)LQ(TX(O’T»
ta <H¢(t)D28_2 (é‘igovn) 7Un) L2(Tx(0,T))

L2(Tx(0,T))

1
Using p < 3 Lemma 3.2.1, Theorem 3.2.3, Lemma A.1, and that H is an isometry in

H,"(T), we can obtain C' > 0 independent on n, such that

« ‘("/}(t)DQS_Q ([D_1> @]agvn) ”U”)L2(’]T><(O,T))‘ S o W(t)DQS_Q ([D_17 w]aivn) Han0 “’U”“XZTO

<Ol el il

(3.3.55)

<C H'UTLHXTTHFU’

< Cloalyr, <€,

and

@ )(W@D%i?’ (OupdZon) ’v”)LQ(’JI‘x(O,T))‘ <alyt)p>? (am‘paiv”)”LQ((O,T) H=7(T)) lonll L2 0.2yt

<C Har@aﬁvn“L2((0,T);H*T+25*3(T)) HU”HX?,O
<ClowpPualyr . lonles,

< Clvn HXT7-+25*1»0

< Cllonllyr, <C.
,0

(3.3.56)
In similar manner, one can get
20| (H(6) D> 2 (290200 00) o o1y | < C10s90valxr_, onllr, <€, (3.3.57)
and
@ ‘(Hw(t)Dzsfz (02 0vn) v”n)m(TX(O,T))‘ S Cloalxr - lonlxr, < Clloallxr, < C. (3.3.58)
From (3.3.54)-(3.3.58), we infer that
([0HE2, AL, 00) 2 oy < C- (3.3.59)
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Tt follows from (3.3.48), (3.3.49), (3.3.50), (3.3.51), and (3.3.59), that
3
(14, =35 + 2101000 ooy | < C (3.3.60)

where C' > 0 does not depend on n. Using the Leibniz’s rule, we note that

3 25—2 2
([A, =0 + 2410, vn, vn)LQ(TX(QT)) = (3v(t)D Oxp0sUn, v”)Lz(Tx(o,T))

+ (30() D> 20200500, Vn) 12 1 (0.7 (3.3.61)
- (w(t)D2572 (—52(,0 + 2IL’L8‘L§0> Un; U”)LQ(TX(O,T)) °
Using similar arguments as above, we get
‘(3¢(t)D25_25§‘P5rvm”n)m(qrx(o,:r))‘ < |‘¢(t)DQS_25§¢5z”n’|xgo [onll xz,
< C | 0zvn] xr (3.3.62)

r+2s—2,0

<C HUTLHXZrJrQ\Sfl,O <G

and
‘W(UDQS_Q (—02¢ + 2u02p) vn, U”)LQ(TX(O,T))’ < [0 () D* 72 (=22p + 2u0p) U”HXT,«,O Ionllxz,
<C H (—aﬁg& + Qllax@) vn”XIH-zs—z,o HUTL”XZb

< Clunlxr , , <C,

(3.3.63)
From (3.3.60), (3.3.61), (3.3.62), and (3.3.63), we infer that there exists C' > 0 independent
of n such that

l(w(t) D*720,0(x) 02vy, vn)LQ(TX(O’T))) < C for anyn > 1. (3.3.64)

Therefore, letting n — +00 we get that the second term on the right side of (3.3.44)

is bounded. Now, we estimate the term ‘(w(t)DQS_QXZ(a:)ﬁiv, v) L2(Tx (0 T))‘ in (3.3.44). As

the operator D* is self-adjoint in L*(T), then for any y € C*(T), we get
(w(t)DQ#QXzaf:Um DSU”)LQ(TX(O,T)) - (Mt)[DSJ’X]Xa?CU"’ DSU")LQ(TX(O,T))

o 8 (3.3.65)
+ (Y (t)D° X Fvn, xDvy,)

L2(Tx(0,T))”’

and
(¥(t) D" *x0gvn, [X’DS]U”)LQ(TX(O,T)) = (¢(t)DS_2Xa§Un7XDSU”)LZ(’]I‘X(O,T))

S (3.3.66)
- (w(t)D XaxUTH D XU”)LQ(TX(O,T)) ’

Isolating the first term of the right side of the last inequality and substituting
in (3.3.65), we obtain

(¥ (1) D*~*x*gvn, DSU”)LQ(TX(O,T)) = () D" x0;0n, DSXU")N(TX(O,T))
+ (V(t) D2 xvn, [x, D*|on) L2(Tx(0,T))
+ () [D*2, X]xO3vn, D*vy) L2(Tx(0,T))
= 1+I1I+1II

(3.3.67)
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Using (3.3.40), one have
HXUHLQ ((0,T);Hs(T) HXUHL2 ((0,7);Hs (w)) < 00, (3368)
and
2 a2
HXaxvHLZQOC((O,T);HS—Q(T)) = HXaﬂCUHLZZOC((O,T);HS—Q(W)) < . (3.3.69)

Observe that xv, = E,xv + [x, En]v. Using Lemma A.2 and Lemma A.3, we obtain

[xvn] Hs(T) S ||EnXU|Hs(T) + [ [x, Enlv]

Hem (3.3.70)
< ClIxvlgsry + Cs [0l grsrmy -
From (3.3.68) and (3.3.70), there exists C' > 0 independent on n such that
HXUn||Ll2M((o,T);HS(1r)) <C HXUHLZQOC((O,T);HS(T)) +Cs HU”Ll?DC((O,T);HS—l('ﬂ'))
<C+Clvlxr (3.3.71)

<C+Cilr <C

Hence, yv, is uniformly bounded in L7 ((0,T); H*(T)). In a similar way we can estimate

2

X 03, and get

HXa%v”HLlQOC((O,T);HS*Z(’]I‘)) <C HXa?c”nHL%OC((O,T);HH(T)) +Cs Ha:%’”||Ll20C((o,T);HH(T))

(3.3.72)
<C+Cslulxr, <G,

where the last positive constant C' doesn’t depend on n. Next, we estimate I, I, and I11.

Using Lemma 3.2.1, and Lemma 3.1.7, we have

s—2 2
|]’ _ ‘ D Xa Uy, D? XUTL)LQ(’]I‘x(O,T))‘

s—2 2 s
H@/) t)D Xa:cvnHLZQOC(’]I‘X(QT)) | DX UnHLZQOC(']Ix(O,T)) (3.3.73)
2
<C HxawvnHL?OC((O,T);HS*Q(’JI)) HXUnHL?oC((O,T);HS(T)) <G,

§—2.,72
|I]‘ - ’ D Xa Un, [X?D ] )LZ(TX((),T))‘

H’g/} Dr_gxﬁivn HLQ (Tx(0,T)) ||Dp [X> DS]UNHL?OC(TX(O,T))

2
<C HX& U”HL2 L((0,7);H"=2(T)) H[X7 ]U”HLfOC((O,T);HP(T)) (3.3.74)
<C HU"HL2 ((0,T);H"(T)) an”Ll?Dc((o,T);Hs—Hp(T))
<C <c

1+0
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and

. 5s—2 2 s
1I11| = ‘(w(t)[D s XIxzvn, D Uﬂ)ﬂ(Tx(O,T))‘
s—2 2 r
< DD ,X]XaxUnHLgoc(Tx(o,T)) [D"0nll L2 w0,y
2
<C HX(’)IU”Hleoc((O,T);H”“*S(T)) HUHHLZQOC((O,T);HT'(T)) (3'3'75>

<C HUnHLIQOC((O,T);HPJrS—l(T)) ”UHHX;-’:O

<Clolyg, ,, <C.

From (3.3.67), (3.3.73), (3.3.74), and (3.3.75), we infer that there exists C' > 0 independent
of n such that

] (v(t)D** X2 03vn, Dvy) (3.3.76)

L2(’]I‘><(O,T))‘ <C

Letting n —> 400 we get that the first term on the right side of (3.3.44) is bounded. Thus
(3.3.44), (3.3.64), and (3.3.76), imply (3.3.43) and completes the proof. O

Corollary 3.3.4. Let pe R and o > 0 be given. Let v e Xér; be a solution of
12
O — 030 — a Ho%v + 2u dpv + 200, = 0, on (0,T), (3.3.77)

with [u] = 0. Assume that ve C*(w x (0,T)), where w is a nonempty open set in T. Then
ve C*(T x (0,7)).

Proof. From Corollary 3.1.26, we have that 2vd,v € XOT’ Observe that

1.
2

SIS

ve C®wx (0,T)) < L .((0,T); Hz(w)).

It follows from Proposition 3.3.3 (with f = —2vd,v) that v e L}

loc((07 T)7 HE(T))
Choosing to € (0,7") such that v(ty) € H%(T), we can solve equation (3.3.77)
in the space X7 , with the initial data v(tp). By the uniqueness of the solution in XOT 1 we
272 D)

conclude that v e X7 ;.
272

oc((0,T); H"(T)),
for all r € R. Thus, v € C*(T x ), for all compact set Q < (0,T). Therefore, v €
C*(T x (0,T)). ]

An iterated application of Proposition 3.3.3 yields that v e L?

3.4 Unique continuation property for Benjamin equation

In this section we prove the unique continuation property for the Benjamin

equation. First, we announce a necessary lemma.

Lemma 3.4.1 (See [59, Lemma 2.9]). Let s € R and let h(x) = Z ?z(k:)eikw be such that
k=0

he H*(T) and h =0 in (a,b) = T. Then h = 0.
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The following is the main result of this section. The ideas of the proof are

similar to those leading Proposition 2.8 in [59].
Proposition 3.4.2. Let p e R, o > 0, and c(t) € L*(0,T) be given. Letv € L*((0,T); L3 (T))

be a solution of

{ Orv — 030 — aHO2v + 2ud,v + 200,v =0, t>0, on'T x (0,T) (3.4.1)

v(z, t) = c(t), for almost every (z,t) € (a,b) x (0,T),

for some numbers T > 0 and 0 < a < b < 27. Then v(x,t) = 0 for almost every
(x,t) e T x (0,7T).

Proof. Since v(z,t) = ¢(t), for a.e (x,t) € (a,b) x (0,T), we have that
Opv(z,t) = O2v(w,t) = (200,v)(z,t) =0 for a.e (z,t) € (a,b) x (0,T) (3.4.2)
From the first relation in (3.4.1), we infer that v satisfies
0w — aHo*v = 0in (a,b) x (0,T).
Thus, the second relation in (3.4.1) implies that
aHd*v = o = c(t) in (a,b) x (0,T).
Therefore, for almost every ¢ € (0,7), it holds that

3v(-,t) e H3(T)
(1) =0, in (a,b). (3.4.3)
HPv(-,t) = O, Hv(-,t) =0, in (a,b).

Pick a time ¢ as above, and set h(z) = dv(x,t), for x € T. Decompose h as

Z h zka:

keZ

where the convergence of the series being in H*(T). Observe that

(ih — Hh) (x) = > (ih — Hh)" (k)™ = 20 Y h(k)e™. (3.4.4)

keZ k>0

From (3.4.3), we have

0 = ih(z) — Hh(z) = 2i Y h(k)e™, for all z & (a,b).

Therefore, 2 ?L(k)eikx =0, in (a,b). Applying Lemma 3.4.1, we obtain that
k>0

Z ?L(k:)e“m =0, in T.

k>0
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~

Since h is real-valued, we also have that ﬁ(—k) = h(k), for all k € Z. Thus,

Y h(—k)e™** =0, in T.
k>0
Consequently, for a.e. te (0,T), d>v(-,t) =0 in T. Then, for a.e. t € (0,T), 2v(-,t) =
c1(t) in T, but from (3.4.2) we obtain that ¢;(t) = 0, for a.e. t € (0,7"). Thus, for a.e.
€ (0,T), ?v(-,t) =0 in T. Arguing in a similar way we obtain that for a.e. t € (0,7,
0,v(-,t) =0 in T. Thus, for a.e. t € (0,7),

v(x,t) = c(t) in T. (3.4.5)

Substituting (5.2.50) in the first relation of (3.4.1), we obtain that ¢(t) = 0 for a.e.
t € (0,7). Therefore, v(x,t) = c(t) = cte = B a.e. in T x (0,T).

Finally, using that v € L3(T), especifically [v] = 0, we obtain that v(x,t) = 3 = 0 a.e. in
T x (0,7). O

Corollary 3.4.3. Let T > 0, p € R, and a > 0 be given. Assume that w is a nonempty

open set in T and let v e XOT; be a solution of
2

{ O — 020 — aHO2 + 2u0,v + 200,v =0, t>0, onT x (0,T) (3.4.6)

v(x,t) =c, on wx (0,7),
where ¢ € R, denotes some constant, and [v] = 0. Then v(z,t) =c=0 on T x (0,T).
Proof. Using Corollary 3.3.4, we infer that v € C*(T x (0,7)). It follows that v(z,t) = ¢

on T x (0,T) by the unique continuation property of Benjamin equation (see Proposition
3.4.2). From the fact that [v] = 0, we obtain ¢ = 0. O
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Chapter I

Controllability and stabilization of the

Benjamin equation on a periodic domain

In this chapter, we obtain the main results regarding global controllability and
exponential stabilization of Benjamin equation on a periodic domain in Hg(T) with s > 0.
The global exponential stabilizability corresponding to a natural feedback law is first
established with the aid of certain properties of solution, viz., propagation of compactness
and propagation of regularity in Bourgain’s spaces. The global exponential stability of the
system combined with a local controllability result yields the global controllability as well,

as is usual in control theory (see for instance [29, 30, 51, 52, 53]).

This chapter is organized as follows. In Section 4.1, the local controllability
result for the Benjamin equation is obtained. The main result on local control is given
Corollary 4.1.2. Section 4.2, is devoted to study the stabilization of the Benjamin equation
by a time-invariant feedback control law. Finally, in section 4.3 we prove the global

controllability for the Benjamin equation.

4.1 Local control for the nonlinear Benjamin equation

From the observation made in the final part of Section 2.3, it is enough to study
the control problem for the IVP (2.3.37) in H(T), with s > 0 (see (1.3.1)). Thus, in this

section we are concerned with the local controllability of the system

{ Owu — aHO?u — 03u + 2u0,u + 2ud,u = Gh(x,t), te (0,T), zeT

u(z,0) = ug(x), reT, (4.1.1)

To get a local control result to system (4.1.1) we proceed as in [81] by rewriting

the system (4.1.1) in its equivalent integral equation form:

ult) = U, (t)uo + f

0

t t

U,(t — 7)(Gh)(T) dT — Jo Uu(t — 7)(2ud,u)(7) dr, (4.1.2)
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where U, (t) is the semigroup generated by operator A, defined by (2.3.39) on the space
L*(T). For given ug, uy € H3(T), let us choose h = ®,(ug, uy + w(T, u)), where ®,, is the

bounded linear operator given in Remark 2.3.15, and define

w(T,u) := Jo U,(T — 7)(2udyu)(7)dr.

According to Remark 2.3.15, the linear system (2.3.38) is exactly controllable in any

positive time 7' Therefore, for given ug, u; € H,(T), we have

t t

Ut — 7)(G(P(uo, w1 + w(T,u))))(7) dT—L Uu(t — 7)(2udyu)(7) dr,

ult) = U, (t)uo + J

0

and u(0) = ug, w(7T) = uq, by virtue of equality (2.3.41). This suggests that we should

consider the map

t t

I'(u) := Up,(t)uo + J Ut — 17)(G(P,(ug, ur + w(T, u))))(T)dT—f Uu(t — 7)(2udyu)(T)dr
’ ’ (4.1.3)

and show that I' is a contraction in an appropriate space. The fixed point u of I' is a

mild solution of IVP (4.1.1) with h = ®(ug, u; + w(7T,w)) and satisfies u(z,T) = ui(x). To

complete this argument, we use the Bourgain’s space associated to the Benjamin equation

ans show that I' is a contraction mapping. This is the content of the following result.

Theorem 4.1.1 (Small data control). Let T'> 0, s = 0, « > 0, and u € R be given. Then
there exists a § > 0 such that for any ug,u; € Hi(T) with [ug] = [u1] = 0 and

o) H(T) S 9, (Y H(T) S 0,

one can find a control h € L*([0,T]; Hi(T)) such that the [VP (4.1.1) has a unique solution
we C([0,T]; H;(T) satisfying

u(z,0) = ug(x), wi(z,T)=wuy(z), forallzeT.

Proof. Let T'> 0 be given. For s > 0 we will show that there exists M > 0 such that I
defined by (4.1.3) is a contraction on the ball

BOM) = {ue 2y [u] = 0. Julr, <M},
72 S7§

where | - |z is given by Definition 3.1.5.
52

In fact, using the Corollary 3.1.12 part iv), the Theorem 3.1.14 part iii), and
the Corollary 3.1.26, we obtain

IT@)llzr < a (HUOHH;(T) + (GO (uo, ur + w(T,u)) (Bl zr | + HU\22T1>7 (4.1.4)

1 1
S, 5

_1
2 2
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were ¢ is a positive constant that depends on s, T, and «. Using that G (see (2.0.9)) is a

bounded operator, the embedding Xgo — X, 1 and Remark (2.3.15), we get

_1
)

G (®puuo, ur + w(T,u))) | xr

1
2

< d|G(@pluo, ur + w(T, w))llxr,

= || @, (uo, ur + w(T,w)l| 20,77, 123(7)) (4.1.5)

iy +w (T )]

< ca((luol

)+ ua | Hy(T))

where ¢, > 0 depends on s, T, and g. Using Proposition 3.1.8, Theorem 3.1.14 and Corollary
3.1.26, we obtain

t
(T, ) srgemy < sup J U, (t — 7)(2udsu)(r)dr
0<t<T 0 HE(T)
t
<c J U,(t —7)(0:(u?))(7)dr (4.1.6)
0 zT,
S
< aallulr .
53
where ¢3 > 0 depends on s, « and 7. From (4.1.5) and (4.1.6), we have
1G (D (w0, ur + w(T,w)l|xr | < eallluollmsem+ | mgery +esllullzr ) (4.1.7)
s—% 5,5
1
On the other hand, applying Remark 3.1.17 with b = —1 and 0 < € < o0 e get

|G(@p(uo, ur + w(T, u))llyr | < c()G(Rpluo, ur + w(T,w)))llxr
S A ' 1)
< A(O)|G(Ppu(uo, ur + w(T, u))) | x7, -

From inequality (4.1.8) and the same calculations as above, we obtain

Hﬂ@ﬂmm+wﬂhmwgl<%@(Wd%m+mﬂ%mﬂ%M@q>, (4.1.9)

8,5

where ¢4(€) > 0 depends on s, «, T and g. From (4.1.7) and (4.1.9), we infer that

G (@puuo, ur +w(T,u)))llzr | < (€2 + ca)([luol

1
2

mym+llull g ry) + (cacs + 0403)|qu2le-
(4.1.10)

Combining (4.1.4) and (4.1.10), we obtain that there exists C' = Cs. o 47 > 0 such that

IT(W)]zr, < Clluolmgery + lurllmsery) + Clulzr - (4.1.11)
’2 S5
Choosing 6 > 0 and M > 0 such that
1
CM < and 206+ CM?* < M, (4.1.12)

we obtain from (4.1.11) that [I'(u)|zz < M for each u € B(0, M), provided that

2

|luolmg(ry < 0 and [us|as(r) < 6.
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Furthermore, for all u,v € B(0, M), we have

I(u) —T(v) = Jo Ut = 7)(GP,(0,w(T,u) — w(T,v)))(r)dr

+ J Up(t = 7)(0:((v — u)(v + w))(7)dT,
0

and
T
w(T,u) —w(T,v) = L Uu(T —7) (0 ((uw — v)(u +v)) (1) dr.

Thus, with similar computations as above, we can obtain

1 1

IT(u) =T(@)]zr | < Clu—vlzr |u+ovlyr

< Lju—v
— |l — v .
o " =2 z,

|
)

Therefore, the map T' is a contraction on B(0, M) provided that § and M are chosen
according to (4.1.12) with |uo H3(T) < O. O

my(r) < 0, and [uy]|

Corollary 4.1.2 (Local control). Let T'> 0, s = 0, a > 0, and p € R be given. Then
there exists 0 > 0 such that for any ug,uy € Hy(T) with [ug] = [ui] = p and

luo — pllmgery <6, |ur — pms(r) <9,

one can find a control h e L*([0,T]; H}(T)) such that the IVP associated to (2.0.1) with
f = Gh has a unique solution u € C([0,T]; H,(T)) satisfying

u(z,0) = ug(x), wi(z,T)=wuy(z), forallzeT.

4.2 Stabilization of the Nonlinear Benjamin equation

In this section we will study the stabilization problem for the Benjamin equation
in H;(T), with s > 0. Consider the IVP,

(4.2.1)

O — O2u — aHo*u + 2ud,u + 2udyu = —Kyu, t>0, xeT
U(%,O) ZUO(x)v .I'ET;

where u = u(x,t) denotes a real valued function with [u] = 0. Assume A > 0, p € R, and
a > 0 are given. The feedback control law f = —K,u is as defined in (2.5.13), with the
operator Ly as in (2.5.1).

We first check that the system (4.2.1) is globally well-posed in the space Hg(T)
for any s > 0. Let U,(t) be the group defined in (2.3.40) that describes the solution u of
the linear IVP associated to (4.2.1). The following estimate is needed.

Lemma 4.2.1. For any 0 < € < 1 there exists a positive constant C(€) such that

L U, (t = 7)(Kv)(7) dr

<C(E T lgr, - (4.2.2)
Z7 =3
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Proof. Let 0 < € < 1. From Theorem 3.1.14, we infer that

f U,(t — 7)(Kywv)(r)dr

0

sl <1 ) g

%
s 1
’2

Using the embedding XZ_

we have

1
— XST_;, and Remark 3.1.26 with —3 + % =V <0=0,

b+
| Kol xr < ClGG*Ly o] xr
" TEtS (4.2.4)
< OT~C3D)|GG* Ly vl xr, < Cogas T3 5 vl xr, .

where we have used Remark 2.1.2, and Remark 2.5.4 in the last inequality. Applying again
1
the estimate (3.1.26) with 0 = ¥ < 5 — g = b, and using the embedding X1 — X,
]

— £y
2 2

we infer that

€

HK)‘UHXT_ < CS,Q,A,&ET%_i T%-%

| xr < Cs,g,/\,&eTl_gHUHXT .
S, S,

1

. (4.2.5)

[N
N
Nl
[N

On the other hand, from Remark 3.1.17 and similar computations as those
made in (4.2.4) and (4.2.5), we obtain that

[Kxollyr, = [Kyvlyr - < ClByvlxr | < Cogpac™ollxr, -

(4.2.6)

N

From (4.2.3), (4.2.5), and (4.2.6), we have

A

L Uu(t —1)(Kwv)(7) dr

< CpoarscT" " lollxr, < COTPolyr,. (427

T 2 2
This proof the lemma. O

Next we study the global existence of the solutions to the IVP (4.2.1).

Theorem 4.2.2 (Global well-posedness). Let s = 0, A = 0, a > 0, and p € R, be given. For
any ug € HS(T) and for any T > 0 there exists a unique solution u € Z! 1 nC([0,T]; L§(T))
of equation (4.2.1). Furthermore, the following estimates hold

IIUHZST% < Brspullluollzzery) luollagr)- (4.2.8)

In particular, uw e C([0,T]; H5(T)) and

[ullzee o)) < CaBrysullvol czery) [woll gy, (4.2.9)

where Cy is a positive constant and Br s, s a nondecresing continuous function depending

only on T, s, and p. Moreover, denoting S(t)uy the unique solution u of the IVP (4.2.1)

corresponding to the initial data uo, the operator S(t) : Hi(T) — ZI., defined by
2

S(t)ug = u is continuous in the interval [0,T1].
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Proof. The proof of this theorem is similar to Theorem 4.1 in [52]. First, we will show the
local well-posedness of system (4.2.1) in H(T) for any s > 0. We rewrite the IVP (4.2.1)

in its integral form and for given uy € Hj(T), 0 < T < 1, we define the map

I'(v) = U, (£)ug — L U, (t = 7)(200,0) (7) dr — fo U, (t = 7)(Kv)(r) dr.

Observe that

t

[(v1) —T'(ve) = Jo Uu(t — 7)[02((v2 + v1)(v2 — v1))](T)dT + L Uu(t — 7)[ K\ (v2 — v1)](7)dT.

It follows then from Corollary 3.1.12, Theorem 3.1.14, Corollary 3.1.26, and
1
Lemma 4.2.1 that there exists some positive constants C, Cy, C3, 0 < 0 < 6 and ) <e<1
such that

[L@)lzr, < Cullu|agery + CaT? Jollzr + CoT" ™ o]l -

1
2 55

(4.2.10)

Nl

IP(v1) = T(va)ll 77, < CoT” Jua = villgr vz + vl gr, + CsT' oz —wilpr o (4.2.11)

2 55 S5 5,5

for any v,v1,v € Z 1  L*([0,T]; L§(T)). Pick M = 2C || ssr), and T > 0 such that,

20, MT? + CsT' ¢ < (4.2.12)

N | —

Note that, if we choose 0 < € < 1 such that 0 < 6 < 1 — ¢, then 77 ¢ < 7% and the time

T > 0 can be taken as

1 >9
Hym +2Cs)

From (4.2.10) and (4.2.11), we infer that for any v,v;,v9 € B(0, M), |[T'(v)||,r. < M,

1

(4.2.13)

T = T(|uoll () = <SC1C2UO

N

1
and [['(v1) = [(v2)] zr | < 3 |vg — 1] zr . Thus the map I' is a contraction in the closed
b o1
ball B(0, M) of ZI'1 n L*([0,T]; L§(T)) for the | - | zr | norm. Its unique fixed point u is

the desired solution of (4.2.1) in the space Z 1 n L*([0,T7]; L§(T)). It follows from the
2
Proposition 3.1.8 that u e C([0,T]; Hj(T)) with

[ullzeo,rysmgemy) < Culluf 2z < 2C1C4uol
S

HE(T)»
for some Cy > 0.

Next, we shall prove the global existence of the solution. First, we assume that
s = 0. Multiplying the equation (4.2.1) by @ and integrating in space we obtain

S ([ By ) = = (GG L), u(, 1)) ), Torall €20, (4.2.14)
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Now integrating in the time variable in (0,t¢), and using the properties of

operators G and Ly, we infer that
¢

1 1 _
5”“('%)”%3@) - 5\\160\\%3(1@ = —J (GLxlu(vt'),GU('J’))Lg(T) dt’
0 (4.2.15)

t
< | IGIPIL ot eyt for allt > 0.
0

The Gronwall’s inequality in its integral form (see [87, Theorem 1.10, page 11]) implies
that

Ju(, )| 2emy < ol 2y, for allt =0, where C = |G|*| L. (4.2.16)
From the first line of (4.2.15), we note that

Hu(, t)HLg(’IF) < HUOHL?)(T)7 when A =0 and t > 0. (4217)

An standard continuation argument shows that equation (4.2.1) is globally
well-posed in L2(T) and estimate (4.2.8) holds with s = 0.

Next, we suppose that s = 3. In fact, we will prove that for any T" > 0
and any ug € HJ(T) < L3(T) the solution of the IVP (4.2.1) belongs to the space
ue Z3Té n C([0,T]; H3(T)).

For this, let T > 0 and uy € Hj(T) < L3(T). Then, the local solution u of
equation (4.2.1) belongs to the space u € ZOT% n C([0,T1]; L5(T)), where T} is the time of
local existence given by relation (4.2.13) with s = 0. Then u satisfies

[wllze o,z p23(my) < Callul yr < Cadl = Ca2Ch |uo|| ). (4.2.18)
0,1

2

Define v = du, so that [v] = 0 and v satisfies

{ O — 0% — aH2 + 20,0 + 20, (wv) = —Kyv,  0<t<T, veT (4.2.19)

v(z,0) = vy = uy + aHuy — 2uuy — 2uguy — Kyug, x € T.

Note that, applying the Gagliardo-Nirenberg’s inequality (see [8, Theorem 3.70])
and the Cauchy’s inequality, we obtain that there exists ¢; > 0 such that

2ot zmy < 2luollzaemy bl on

1 1
< 21 [uol a1 23 L2 (4.2.20)

14

1 1
= 201HU0||L3(T) <2|U0|Lg(1r) + 5““0 ‘L%('ﬂ‘)) = 201HU0||L3(T) ||U0\|Hg(1r)~

Therefore, vy € L3(T), with

lvoll L2 (ry < Hug/HLg('ﬂ') + O‘HHUSHLg(T) + 2|M|HU6HL3(T) + QHUOUBHLg(T) + [ Euol z2(r)

< ezlluol 37y + 2¢1llvol L2 ¢r) luoll 3 m) . (42.21)

< (2 + 2c1fuo] 2 lwol 3 () < +0,
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where ¢y > 0 depends on «, i, A, g, and . On the other hand, considering the map

t t

Uu(t — 7)(0z(uww))(T)dT — J U,(t — 7)(Kw)(7)dr,

0

D(w) = U, (t)vo — 2 J

0

using the bilinear estimate 3.1.72, and doing the same calculations as those leading to
(4.2.10), yield

IP(w)l 2 < Cillolaery +2CTE Jul o [l + C5T3 ool
0,3 0,4 0,%

T:
HZ 21
0,5

< Ciloolzgm + (4GOS ol ey + CT3) ol s
0,3

Note that

F(wl) — F(’LUQ) = F(wl — wg)

= =2 | U= )ufu- (wn = w2 = | U0 = D) (wr = )7

Thus

IT(wy — wa)| yr2 < 2CoT3 |[uf yr2 [wy — wa] yz2 + C3Ty~ wy — wa ,m
1 0,1 1 1

0,3 0,3 0,3

< <40102T29 Juol 2 m) + C3T21_6> [y = wa s
0.3
for any w,wy,wq € ZOTQl n L*([0, Ty]; L§(T)). Therefore, taking T, = Ti([uo] rzr)) (note
)
that 75 can be taken bigger that T}, but we take 75 = T} in order to guarantee the
existence of solutions for systems (4.2.1) and (4.2.19) simultaneously), we obtain that the

map I' is a contraction in a closed ball

B(0, M) = {w € Zgé : [w] =0, HU)HZTll < M} :
) 0’7
where M = 2C |[vo| z2(r) Its unique fixed point v is the desired solution of (4.2.19) in the

space Zg% n L*([0,T1]; L3(T)). Thus, |jv < 2C1[vo| L2(r)- From Proposition 3.1.8 we

H 8!
z
’2

infer that v € C([0,T1]; L3(T)) with

[Vl 220 o, m1:220m)) < C4HU||ZT11 < 2C:Chflvo] r2m)- (4.2.22)

0,3

From equation (4.2.1), we have d°u = v — aHd*u + 2ud,u + 2ud,u + Kyu.
Consequently,

Jeul ey < Iolage) + ol MEZul ) + 2ll sl ey + 2ludul page) + Kl
(4.2.23)
The analogous computations as those leading to (2.4.33) and (2.4.35), yield for any € > 0,

c
2lpl|Czu, Oz < cuelul D) zm + o 10uC, Ollzem, (4.2.24)
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3 C
alHozu(, 1) zeny < cae?ul, )|z + :gH(?f;U(-, Bz (r)- (4.2.25)

The silmilar computations as those leading to (4.2.20), but using Cauchy’s inequality with

e > 0, yield
2fu(, )2, 1) | 3cx) < 2ex )] camale, )] Eary |02, D) oy o)
< caclul 1) [ + o1 Dlzeny -
We already know that
(4.2.27)

HKAU(Ht)”Lg(’]I‘) < C4HU('775)HL3(T)-

From (4.2.22), (4.2.21), and (4.2.24)-(4.2.27), we get that for 0 <t < T}

ca  (cutcs) 3 3 3
(1 T 1T 4 HaxUHLg(T) < ||U\|Lg(1r) + (Ca€2 +cuet+ C4> ||U||Lg(1r) + C3€HUHL3(T)
3
< 2C4Chllvoll Lz (ry + <Ca€2 Teuet C4> lul zz(ry + C3€H“H%g(1r)

< 2C4C1(e2 + 2cr||uol 2 ¢m)) [wol 3 )

3
+ (Ca€2 +cue+ C4> 2C,C1 HUOHHS(’]I‘)

+ ¢362C4Ch Juo| 72 gy |10 | 112 r)-
Taking € large enough, we can conclude that there exists C' > 0 such that
HaiUHLg(T) <C (1 + ol zzcry + H%H%gm) ol z3 (- (4.2.28)

Consequently;,
(4.2.29)

[wll 2o qo.mg;m3(ry) < By s(woll 2 emy) [ wol ey

where 7, 3 is a nondecresing continuous function depending only on 7.
Consequently, we can iterate the procedure leading to (4.2.29) in order to cover
the compact interval [0, 7], thus we obtain that v e C([0,T]; H3(T)) and satisfies (4.2.8)

with s = 3. This completes the proof of case s = 3.

Next, we show that equation (4.2.1) is globally well-posed in the space Hj(T),
for 0 < s < 3. Let T > 0 and uy € Hj(T). Denote by S(t)ug the unique solution u of

equation (4.2.1) corresponding to the initial data wug. In order to apply the interpolation

Theorem 1.7.7 due to Tartar, we choose

By = Ly(T), By = C([0,T]; Ly(T)).
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By = Hy(T), B} = C([0,T]; Hy(T)).

a=p3=1, )\zﬁzg, qg=p=2.

Therefore, By, = BéQ = H{(T). From Proposition 1.7.6, we obtain

By, = Bi, = (C([0,T]; Ly(T)), C([0, T]; Hy(T))) . , = C ([0, TT; (L§(T), H5(T)) 5 2)

%
— ([0, T); H(T)).
Then, the operator S(t) : By = L3(T) — B3 = C([0,T]; L3(T)), defined by
S(t)ug = u, (4.2.30)
satisfies, for ug,dp € Lg(T),

| Suo — SQTOHLOO([O,T];L(%(T)) < ¢ |[Sug — SITO”ZOTl < Cro(fluo — %HLg(T))HUO - %HLg(’E)
2

< Cro(luolzzcry + (%ol zz¢m)) luo — ol z2(r).
by the continuous dependence of the initial data property in L3(T).

Also, the operator S(t) : B} = H3(T) — B = C([0,T]; H (T)), defined by
(4.2.30) satisfies, for ug € H3(T),

| Suol| oo o,y m30my) < € HSUOHZ::% < Crs([[uol zz(ry) | wo 3y

by the estimate (4.2.8) with s = 3, where Cr; : R" — R™ are continuous non decreasing

functions, for j = 0, 3.

Hence, a direct application of Theorem 1.7.7 yields that S(t) maps Hj(T) into
C([0,T]; Hy(T)) and for ug € Hg(T)

H§(T)»

IS ()uo] L=(o,ry;m5 (1)) < Cryse([[w0] 2m)) |0

where for 7 > 0, Crs (1) = Cr3(2r) 73Cro(r + 2r)3.

Note that a similar result as in the case s = 3 can be obtained for s € 3N*. For

other values of s, the global well-posedness follows by nonlinear interpolation.

Finally, we will prove the continuous dependence of the initial data. Let ug €
H§(T) and consider a sequence u, o in Hg(T) such that nli_r)noo Up0 = Ug, Where the limit is
taken in the H{(T) norm. Let v and w,, be the solutions of the IVP (4.2.1) in the spaces
C([0,T]; Hy(T)) and C([0,T,]; H;(T)) with initial data uy and w, o respectively. For n

sufficiently large we have that |[w, o] ms(r) < 2|uol 3 (m)- So, by the local theory there exists

1\#
7o = Tulluolgen) = (5)” Tl

my(ry) < T(|Juollmg(r)), (4.2.31)
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fulfilling (4.2.12) such that v and w, o are defined in [0, 7] for n > Ny. Observe that
¢
I'(u) = T(up) = Uy(ug — uno) + f Uu(t — 7)[0n(u2 — u)|(7) dr
0
¢
+f Uu(t — 7)[ K\ (up —w)](7) dr.
0

With a similar procedure leading to (4.2.11), we get

|u — unHZTo1 < Oy ug — tppl
53

s T (202 Tg M +Cs Ty~ ) Jun — ul

< O HUO - un’0|H5(T) + 5 Hu - un”ZTO :

5,3

Thus

u— unHZTO1 < 20 |ug — unpl
s

Hg(T)" (4.2.32)
From (4.2.32) we infer

imu = un | oo o,y (my) < Ca limlu— “"”zjol < 2C1Cy limlug — tn o]l s gy = 0-
813
We can Iterate this property to cover the compact set [0, T]. Also, the continuous
dependence shows that the operator S(t) is continuous. This completes the proof of the
Theorem. O]

Next, we prove a local exponential stability result when applying the feedback

law f = —K,u. For this, we need to observe that the system (4.2.1) can be rewritten as
o = Ayu — 2ud,u — Kyu, t>0, zeT,

where A, = aH0? + 02 — 2u0,. Let Ty\(t) = e(OMIz+ 02210 = KN e the Cy—semigroup on
H{(T) with infinitesimal generator A, — K. The system (4.2.1) can be rewritten in an

equivalent integral form

u(t) = Th(t)up — f: Ta(t — 7)(2udpu)(7) dr. (4.2.33)

At this point we need to extend some estimates for the Cy-semigroup {7\ (¢)} .

Lemma 4.2.3. Let s >0, A >0, and T > 0 be given. Assume p € R, and a > 0. Then,

there exists a constant C > 0 such that:

[T3@)0] 2| < Clol

5,3

Hg(my, for any ¢ € Hy(T). (4.2.34)

J Ty (t — 7)0u(u - v)(r)dr

< Clulgr Jolzr o for anyuve Zl, (4235
0 57 )

T
Z7y
L)

where the constant C' does not depend on T if T' € [0, 1].
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Proof. We begin by proving (4.2.34). From definition of T},
u(t) = Ta(t)o (4.2.36)
is a solution to

{ O — G3u — oMo+ 2ué,u + Kau =0, t>0, zeT (4.2.37)

u(z,0) = ¢(x), reT.
On the other hand, using the Duhamel’s formula, we can write (4.2.37) as
t
u(t) = Uu(t)p — f U,(t — 1) [ Kxul(T) dr. (4.2.38)
0
From (4.2.36) and (4.2.38), we infer that

T\(t)p = U ()¢ — L t U, (t — 1) (K T\ (7)) dr. (4.2.39)

Therefore, Lemma 4.2.1 implies that

ZT

S,

10027, < 10,0Lsr, +| [ Ut = BT () ar

[N

< C1|@llgemy + C(e)T ¢ |TA(T)o]l 57
3

for some 0 < € < 1. Thus, for Ty sufficiently small such that 1 — C(e) Ty ¢ > 0 we get that
there exists a positive constant C' = C(Tj) such that

IT3(8)9] 7m0 < C(To)l¢l g

For T' = Ty, the result follows from an easy induction and the fact that

T3¢l zr, < [TA®)S] jo100 + [TA()] jrrgomr + -+ + [TA() @] yro-vmoms  (4.2.40)
Sz 53 53 53

for some k € Z. This proves (4.2.34).

Now we move to prove (4.2.35). Note that, from (4.2.39), we get
t t—7
J Tt —71)f(7) def Uut—71)f dT—J f u(t =71 = 8)(K\T)\(s)f(7)) ds dr.
0 0

Performing the change of variable s = —7 + 6 and changing the order of integration, we

obtain

J T\(t—7)f(7) dr = f Uyt —1)f(1) dr —J J Uu(t — 0)(K\Ta(—7 + 0)f(7)) db dr

0

=LU(1€—7‘ dT—JJ OV (K\Ty(—7 + 0) (7)) dr db.
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Therefore,

t t 0

U,(t—6) f (KT (0 — 7)f(r)] dr db.  (4.2.41)

0

f:TA(t— () dr = f

0

U, (t = 7)f(7) dr — J

0

From the Fubini’s theorem (see [36, page 73]) and the linearity of the integral, we infer
0 6 1
f [K\TA(0 — 7)f(r)] dr = GG (J f MU () GG, (—5)* [Tr(0 — 7) f(T)]deT)
0 0 JO
1 6
_ GGt (J e (<) GG, (—s)* ( j [T3(0 — 1) f(T)]dT> ds>
0 0

0
= K, (J;] [T (6 — T)f(T)]dT) .

It follows, from (4.2.41) and (4.2.42) that

(4.2.42)

t t

[ Tt i = |

0

U, (t — 1) (7)dr — f

0

0
U, (t — 0) Ky ( L [T3(60— 1) f(T)]dT> o, (4.2.43)
which gives with f = 0,(u - v)

L To(t — 7)0x(u-v)(7)dT

<
zT |

ZT1

Jo U,(t —71)0z(u-v)(T)dr

s, 5 s, 5

t 0
L U, (t — 0) Ky (L [T3(0 — 7)0u(u - v)(T)]dT> a0

+

T
z7,
51

< C||0z(u-v)| e + C(e)T

0
L [T3(0 — 7)0u(u - v)(7)]dr

1
T2 ZT
s, 1
5,3

)

< Collulgr |vlze +C(e)T'C
5,1 5,3 z7

L [T\(t — 7)0x(u - v)(T)]dT

(4.2.44)
for some 0 < € < 1. Thus, for Ty sufficiently small such that 1 — C(e) Ty~ > 0 we obtain
that there exists a positive constant C' = C'(7) such that

J Ty(t — )00 (u - v)(r) dr

< O(To) ull o 0] 470 -

0 zY b 5%
53
The result follows by induction and a similar property as in (4.2.40). O

Theorem 4.2.4. Let e R, a > 0,0 < XN < X and s = 0 be given. Then there exists
d > 0 such that for any ug € Hy(T) with |uo
IVP (4.2.1) satisfies

ms (1) < 0, the corresponding solution u of

Jul- 1)l

mzmy < Ce ™ uo|y(ry, for allt >0, (4.2.45)

where C(u) > 0 is a constant that does not depend on .
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Proof. We proceed as in [52, 74, 75]. For given s > 0, there exists by Theorem 2.5.5 some
constant C' > 0 such that

[T (8)uol

-
Hg (T) < Ce ™ Hu0| HE(T) » for all ¢ > 0.

Pick T" > 0 such that

2Ce M < e T (4.2.46)

We seek a solution u of the integral equation (4.2.33) as a fixed point of the
map

I'(v) = Th(t)up — Jt Ty(t — 7)(2ud,v)(T) dT, (4.2.47)

0
in some closed ball B(0, M) in the space Z!1 n L*([0,T7]; L§(T)) for the |v]|;r norm.
) S’L

2
This will be done provided that |[v[ ) < d, where § is a small number to be determined.
Furthermore, to ensure the exponential stability with the claimed decay rate, the numbers

0 and M will be chosen in such a way that

HU(T)HH(-;(T) < CeT HUOHH(-;(T) - (4.2.48)

In fact. From Lemma 4.2.3 there exist some positive constants Cy, Cy (inde-
pendent of 0 and M) such that

[L()lzr, < Cullun|agery + Ca lolzr (4.2.49)

1
2 55

and

(4.2.50)

IT(v1) = L(v2)] 27, < Collvr + vallgr | o — w2 gr -

5%

)
N

On the other hand, since Z!; = C([0,T]; Hi(T)), we have for some constant
2
C" >0 and all ve B(0, M)

HF(U>(T)HHS(T) < HTA(T)UOHHS(T) + HJ;) T)\(t — 7') (2116931))(7) dr

L*([0,7;Hg (T))

J Ty (t — 7)(200,0)(r) dr

0

< [ TA(T)uo

HE(T) +c

Z7, (4.2.51)

< Ce |uollagmy + C' vll5r,
55
< CeMs+ O’ M?,

Pick § = C,M?, where Cy and M are chosen so that
Cf/
<

6 x C’e*’\T, (0104 + CQ)M2 < M, and 202M < (4252)
4

| —
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From (4.2.49), (4.2.50), and (4.2.52), we get
IP(0)|zr, < Cié + CoM? < CLCM? + CoM? < M, for all v e B(0, M),
%32
and

1
IT(v1) = D(va) | g7, < 2CoM o1 — vaf pr | < §HU1 — 2| g7, for all vi,vs € By(0).
$,5 s,5 $,5

Therefore, I" is a contraction in B(0, M). Furthermore, by (4.2.51) and (4.2.52) its unique
fixed point u € B(0, M) fulfills

lu(T) | zgery = [T ()T mg(ry < (Ce™Cy + CYM? < 20O M? < 2076 < 67

Assume now that 0 < [ug| sy < . Changing ¢ into ¢’ := |uo gy and M
1
8\ 2

into M’ := 5) M < M, we infer that |u(T)]

Following a similar argument as those in the demonstration of Theorem 2.4.2 ((2.4.20),

asm) < €T g gsery and (4.2.48) holds.

and (2.4.21)), we have that an obvious induction yields

Hu(nT)HHg(’]I‘) < e_XnT HU0| HS‘(’[[‘), (4253)

for some T" > 0 fixed, and for any n € N.

As ZIy ~ L*([0,T); L3(T)) = C([0,T7]; H{(T)), we infer by the semigroup
2
property that there exists some constant C' > 0 such that (4.2.45) holds provided that

HUO‘ HS(']T) < 0.

In fact, for ¢t > 0, there exists n € N and s’ € R with 0 < s’ < T such that
t =nT + 5. Thus,

u(t) = u(nT + s")
nT+s’

T\(s"T\(nT — 7)(2udzu)(7)dT — JT T\(nT + ' — 7)(2ud,u)(T)dr

nT

= T)\(S/)T)\(TLT)’U,O - L

nT
=T\(s) lT,\(nT)uo — L T\(nT — T)(Quﬁzu)(T)dT]

- J T\(nT + s — 0 — nT)(2udu)(0 + nT)d6,
0
(4.2.54)
where in the last line we performed the change of variables § = 7 — nT'. Define

S/

I := =T\(nT) f To(s"— (0 + nT))(2ud,u) (6 + nT)do. (4.2.55)

0
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From (4.2.46) and (4.2.52), we obtain

rs’

| 2] 7251y = .Jo Ty(s" — (0 + nT))(2ud,u) (0 + nT)db

Hg(T)
rt

- Jo Ta(t — (0 +nT))(2ud,u)(0 + nT)db

Lo([0,T];:Hg(T))

<c

f Ty (t — (0 + nT))(2udyu) (6 + nT)d0

zT
S,

=

< ' |u(8 + nT)|%r (42.56)

1
5,5

< HUH2Z[n1T,(n+1)T]

< Ce—AT(nil)C4 (M/)2
< C'e_)‘T("H)(S/

o~ NT(n+1)
—
Therefore, (4.2.53), (4.2.54) and (4.2.56) implies that

[u, ) asemy < [Ta(s)[u(:, nT)]|

§.

N

Hy(m) + [12]
T e—)\’T(n+1)
< e " uo| g (my + fHUOHHS(T)

—NT(n+1)
7/ €
_ (e NTn 2) Juo

Hg(T)

Hg(T)-

Finally, it is easy to prove that there exists a positive constant C' such that
T e T(n+1)

e + —5 <Ce Nt forall t>0 and for all neN.

This proves the theorem. O]

Corollary 4.2.5. Let a > 0,0 < X' < A\, s = 0, and u € R be given. Then there
exist 0 = 0(p) > 0 and a linear bounded operator Ky : H;(T) — H,(T) such that for
any ug € Hy(T) with [uo] = p, and |luo — [uo]llmsr) < 0, the corresponding solution
u e C([0, +0), Hy(T)) of the closed-loop system (2.0.2) with Ku = Kyu, satisfies

[u(, ) = [uo]l

where C'= C(u) > 0 is a constant independent of uy.

mymy < C e ug — [ug]|

my(m, Jforall t =0,

The stability result presented in Theorem 4.2.4 is local. We will extend it to a
global stability result. In order to do that, the following observability inequality is needed.

Proposition 4.2.6. Let s >0, A =0, pe R, a >0, T > 0, and Ry be given. Then there
exists a constant B > 1 such that for any uo € L*(T) satisfying

w0l L2(ry < Ro, (4.2.57)
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the corresponding solution u of equation (4.2.1) satisfies
T
2 2
fuolign < 8 | 1Gul3gm(0)dr. (4.2.58)

Proof. We argue by contradiction assuming that (4.2.58) is not true, then for any n > 1,

equation (4.2.1) admits a solution wu, satisfying

Uy, € ZOTé n C([0,T]; L3(T)), (4.2.59)
| (0)]| L2 (1) < Ro, (4.2.60)
and
’ 2 1 2
| 16l © dt < Lol (4.2.61)
where g, = 1, (0). As @y, 1= [lugn|L2(r) < Ro, one can choose a subsequence of {a,}, still

denoted by {a,} such that T}I_I)IC}O a, = «. There are two possible cases, viz., a > 0, and
a=0.

Case 1. o > 0:

From (4.2.59) and (4.2.60) we obtain that the sequence {a,} is bounded in both spaces
L*([0,T]; L*(T)) and X 1 with

lun®)zz2ery < lunlpe o,y c20my) < C’HunHZ(:Q% < Bro(luonl zzer)) [wonl L2(r) < Br.o(Ro)Ro,

for all ¢ € [0, T]. From 3.1.72, the sequence {J,(u?)} is bounded in the space Xg_; and

s (up)lxr
0,—

< Cllunr -
3 0.5

2

On the other hand, from Proposition 3.1.6 we infer that the embedding Xg L X o 18

2 )
compact (see [54, pages 271 and 639]). Therefore, we can extract a subsequence of {u,},
still denoted by {u,}, such that

U, —u in X| 1, (4.2.62)
2

U, — u in X7 (4.2.63)

and

—0,(u2) — f in X (4.2.64)

_1,
72
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where u e X1 and fe X
’2

1. Also, from Theorem 3.1.18, Xép 1 is continuously embedded
s g 2
in L*(T x [0,7]) and

lunllzzzxpoan = lnlZamxory < Clualir | < Clualkr -
0,4 0,

3 2

Thus, u? is bounded in L*(T x [0,T]) and it follows that

02 (un) | 2qorsm-1emy = 102 (un) Ixr, | < gl z2cexqo,ry-

Therefore, 0,(u2) is bounded in L*([0,T]; H*(T)) = X', ;. Conducting interpolation
between X 1, and X', , (see proof of Theorem 3.2.3) we conclude that 0, (u?) is bounded
) 2 )
in XTQ (1-0) = XTH _1,6,for 0 <6 <1. As XTH _1,¢ is compactly embedded in erl 1,
—0,—— T2 T2 T2
for 0 < 0 < 1, we can extract a subsequence of {u,}, still denoted by {u,}, such that

—0p(uh) — f in X7, 4.
It follows from (4.2.61) that
T T
| 16wl 0 — | 1Gulye 0~ o (4.2.65)
which implies that Gu(z,t) = 0, in T x [0,T]. Consequently,

u(a, 1) = et) = J o(y)uly.t) dy,

0

on supp(g) x (0,7) = w x (0,T) (see (2.0.9)). Thus, passing to the limit in (4.2.1) in the

distributional sense, we obtain

O — 02u — aHou + 2ud,u = f, on T x (0,7) (4.2.66)
u(z,t) = c(t), onw x (0,7).
Let
Wy, =u, —u and f, = —0,(u2) — f — Kou,. (4.2.67)
Note first that (4.2.65) implies
T ) T ) T ) T
NGy (0t = [ 1GualE a0+ | Gy (0t =2 | (Gt G (1 1268
— 0, asn — o,
Also, from (4.2.62) we obtain that
wy — 0 in X7 (4.2.69)

Furthermore, from equation (4.2.1), equation (4.2.66), and (4.2.67) we have that w,, satisfies

Opwy — 2wy, — aHO?w, + 2udpw, = f,, on T x (0,T). (4.2.70)

xT
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Note that

f J |Gwy,|?dadt = J J (2t dxdt_2LT (Lg(y)wn(y,t)dy> (LQQ(f)wn(m’t)dx> gt
+f0 (Lg W)waly, ¢ )@)2 (L gz(x)dx) dt.

At this point we need the following lemma.

(4.2.71)

Lemma 4.2.7. Let {w,},>1 be a sequence of solutions of equation (4.2.70), g defined

n (2.0.8), and ¢, := f g(y)w,(y,t)dy, t € (0,T), n € N. If w, — 0 in Xg;, then the
T 12

sequence {cptns1 satisfies ¢, —> 0 in L*(0,T) as n —> 0.

Proof. From hypothesis we infer that w,, — 0 in XOT70. So, {wy}n=1 is bounded in X{{O.
From (4.2.70), (4.2.67) and integration by parts, we have

o) = | a0 (v 0y
- L 9(v) (B3wn + aH S wy — 2udywn + fn) (y)dy

_ fT wn(y) (—03g — aMd2g + 2udyg) (v) + ya(y) (42 + 071 1) () — GGy(y)un(y)dy,

icn(t) < +o0. On

Using Cauchy-Schwarz inequality on space variable, we obtain 7

£2(0,T)
the other hand,

T
leal®) 20 < fo

Therefore, the sequence {c,(t)},>1 is bounded in H*(0,T). The Rellich’s Theorem (see
(36, page 305]), and the fact that w, — 0 in X({ o, imply the desired conclusion. ]

-

f 9(y)wn (v, t)dy
T

2\ 2
dt) < lglle2myllwnl xz, < +oo.

We infer from (4.2.68), (4.2.71), and Lemma 4.2.7 that

J J (x,t) de dt —> 0. (4.2.72)

Hence, if & := {g(x) > ”g%m(m } , then

T
g9(x))?
|wnl z20,r):22@)) = J |g< )‘2 w? (z, t)dwdt

‘” JJ xtdmdt—»O as n —> +0o0.
g

Furthermore,

[fallxr <= 2a(uz) = Fllxr, +CHGG*unlle

2

< |- 2ulu2)  flxr +c( G| dt) 0, asn— 1o
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Applying the propagation of compactness property for the Benjamin equation
(see Proposition 3.3.2 with b = 2’ and b = 0) we obtain that

|lwnlr2 (or)2my) — 0, as n— +o0. (4.2.73)

loc

Therefore, for each compact set K < (0,7)

f f 2z, 1) — u(a, 1)] da dt — f J (2, 8) + (1) - [ (2, 2) — (e, )| e dt
K JT K JT
< un + ull 22 0my) lwn L2 (22 — 0, as n — +o0,

where we used the Cauchy-Schwarz inequality, first in space and then in time. Thus,
ui — u? in L,((0,T); L*(T)). This implies that

(u? —u?)(x,t) p(z, ) dxdt’ J J‘u W?| |0up| d dt

4.2.74
< lowpliseiomy | [ =] doae (42T
K JT

—> 0 asn — o0,
for all p € C(T x (0,7)) with K = supp(d.¢).

Then 0,(u2) — 0,(u®) in the distributional sense. Therefore, f = —0,(u?)
and u € X& satisfy

{ O — Pu — aHPu + 2udou + 0,(u?) = 0, on'T x (0,7) (4.2.75)

u(z,t) = c(t), onw x (0,7),

in a distributional sense. From the unique continuation property (see Proposition 3.4.2)
we get that u = 0. Now (4.2.73) implies that u,, —> 0 in L;_((0,T); L*(T)). We can pick
some time t, € [0, T] such that u, () — 0 in L*(T). From (4.2.14) with A = 0 we have
that o

Hun(oﬂ‘%g(m = Hun(tO)H%g(T) +L HGunHL(Q)(T) dt' — 0 as n —> +o0,

which is a contradiction with the assumption o > 0.
Case 2. a = 0.
From (4.2.61) we infer that a,, > 0, for all n € N*. Set v,, = %, for all n > 1, then

n

T
1
f |Gy < (4.2.76)
0

2

|Gl
holds by (4.2.61) and we get the identity =
”uO "||L2(11‘

Guy,

HUO,nHLg(T)

= HGUNH%g(T)

L3(T)

Therefore, v,, satisfies

0oy — O30, — aMPv, + 20,0, + Kov, + 0,0, (v2) = 0.

x
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Because of
[va(0) | 22(my = 1, (4.2.77)

the sequence {v,} is bounded in both spaces L”((0,T); L*(T)) and X_ . Indeed, from
(4.2.14) with A = 0 we have that the map ¢ — [v,(?)[ z2(r) in a nonincreasing function.

Therefore, |[vn[ = ((0,r);c2(r)) < 1. The boundedness of v, |xr ~follows from an estimate
0,3
similar to (4.2.8) (since «,, is bounded).

We can extract a subsequence of {v,}, still denoted by {v,}, such that
v, — v in XOT 1,
2

Uy —> U inXTl_l,

T2

and

v, — v in X .

Moreover, the sequence {d,(v2)} is bounded in the space X/ 1, and therefore a,0,(v?)
T2

tends to 0 in the space XOT _1. Finally,

1.
’2

T

Hence, v solves,

O — 0% — aH2v + 2ud,w =0, on T x (0,7)
v(x,t) = c(t), onw x (0,7).

Therefore, using the unique continuation property for the linearized Benjamin
equation, which can be proved in a similar way to Proposition 3.4.2, we obtain that
v(x,t) = ¢(t) = ¢ = 0 because [v] = 0.

According to (4.2.76)

T
L HGvnHig(T) dt — 0 (4.2.78)

2
Then, an application of Proposition 3.3.2 as in Case 1, shows that v,, converges to 0 in

L} _((0,T); L*(T)). Thus we can pick a time to € (0,7) such that v,(t;) converges to 0

loc

and so Kyv, converges strongly to 0 in X:,f%v by the embedding of X0T70 into XTLJ.

strongly in L*(T). Since

t

0
[on(0)Z2(m) = lvn(to) |22 +J |GvnllZary dt’,

0

we infer from (4.2.76) that |v,(0)]|zzcry — O which is a contradiction with (4.2.77). The

proof is complete. O
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Theorem 4.2.8. Let A =0 in (4.2.1). Assume p € R, and o > 0 are given. Then there
exists k > 0 such that for any Ry > 0, there exists a constant C' = C'(u) > 0, independent
of ug, such that for any ug € L3(T) with |uol z(ry < Ro, the corresponding solution u of
equation (4.2.1) (with A = 0) satisfies

||U('>t)||Lg(1r) <C e_ktHUOHL?)(’]I‘)v Jor allt = 0. (4.2.79)

Proof. This theorem is a direct consequence of the observability inequality (4.2.58). Indeed,

from (4.2.14), we infer the following energy estimate
¢
a0 2y = Bl — [ 1l () ' forail > 0.
Therefore, (4.2.58) implies that

- T Fary = (1= 87 ol Fcr)-

Hence, following a procedure similar to the estimates in the proof of Theorem
2.4.2 we have

Ju, mT)Zamy = (1= B7H)™ luolza ), (4.2.80)

which gives (4.2.79) by the semigroup property. We obtain a constant k independent of
Ry by noticing that for ¢ > c([uol|zz(r)), the L?*—norm of u(-,t) is smaller than 1, so that
we can take the k corresponding to Ry = 1. [

Now, we prove that the solution u of (4.2.1) (with A = 0) decays exponentially
in any space H{(T). For this, we need an exponential stability result for the linearized

system

{ Oyw — 3w — aHOGw + 20w + 20, (aw) = —Kow, zeT, t >0, (4.2.81)

w(x,0) = wy(x), xeT,

where a € Zzl n L*([0,T7]; L3(T)) is a given function. It is established in the following two

Lemmas.

Lemma 4.2.9. Let s > 0, a > 0, and p € R, be given. Assume a € Z''y n L*([0,T]; L§(T))
’2
for all T > 0, and that there exists T' > 0 such that

sup al| turr snyrn < B. (4.2.82)

n=1 7%

Then for any wy € Hi(T) and for any T > 0 there ezists a unique solution
we Z nC([0,T]; Hy(T)) of the IVP (4.2.81). Furthermore, the following estimate holds

lwlzr, < v(lalzr,) [wollasm, (4.2.83)

2 2
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where v : RY — R* is a nondecreasing continuous function. Moreover, denote by S(t)ug
the unique solution u of the IVP (4.2.81) corresponding to the initial data wy. Then the
operator S(t) : Hy(T) — C([0,T]; H5(T)), defined by S(t)wy = w is continuous in the
interval [0,T7].

Proof. We first establish the existence and uniqueness of a solution

we Z, 1 0 L*([0,T]; L3(T))

2

of (4.2.81) for 0 < T < 1 small enough and then show that 7" can be taken arbitrarily large.
Let us rewrite system (4.2.81) in its integral form and for given initial datas wg, w; € Hj(T)

we define the map

t t

U,(t — 7)(20,(avy))(T)dr — L Uu(t — 1) (Kov;)(T)dT,

() = Uty — |

0

where j = 0,1 and U, (t) = elOrtaMOi=nd2)t Agsume 0 < T < T". Then, calculations similar

to those of Theorem 4.2.2 yield

IT(v1) = P(va)llzr | < Ciflwo — wi|mg + 2C,T7 |a|| yr

lv1 — val| 7
S5 s,% s,

+ CngfE va — UleTl,
(4.2.84)

HE(T)> and T > 0

Nj—=

for any a, vy, vy € Zgl mLQ([O, I Lg(T)). Choosing wy = 0, M = 2C |wy
72
such that,

1
20577 afl yr + CoT 7 < 2C5T7 [laf yr + C5T' ¢ < 20, T3 + C3TH° < 3
51 5,1

we obtain that the map I' is a contraction in a closed ball

B(0, M) = {v €Zl1 ol < M},

1
’
2 2

Note that, the time of existence, can be taken as

1 1 g
Teminl{- 7 (—— )\, 4.2.85
mm{z’ ) (2025+03) } ( )

Furthermore, (4.2.84) shows that the solution depends continuously on the

ma () of Zg% . Its unique fixed point w is the desired solution of (4.2.81).

initial data and satisfies (4.2.83). Following a similar argument as in the proof of Theorem

4.2.2 we prove the global existence of the solution. This proof the Lemma. O

Lemma 4.2.10. Lets > 0, a > 0, and p € R, be given. Assume a € Z! 1 nL*([0,T]; L§(T))
)
for all T > 0. Then for any k" € (0, k) there exists T > 0, and 3 > 0 such that if

sup |af jimr. e < B, (4.2.86)

n=1

Nj—=
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then the solution of the IVP (4.2.81) satisfies

Hy(T) S Ce™wo

Jw(-, )]

my(ry, for allt =0, (4.2.87)
where C' > 0 is a constant independent of wy.

Proof. From Lemma 4.2.9 we have that for any 7" > 0 the IVP (4.2.81) admits a unique
solution w € Z'y n C([0,T7]; Hy(T)) and

|wlzr, < wv(lalzr ) fwol
S, %5 8,5

2 2

H(T)> (4.2.88)

where v : R" — R is a nondecreasing continuous function. Rewrite (4.2.81) in its

integral form
t

w(t) = To(t)wp — J To(t — 7)(20.(a - w))(7)dr,

0
where Ty(t) = (@042 -2u0:=Ko)t s the Cy-semigroup on H{(T) with infinitesimal genera-
tor A, — K. Thus, for any 7" > 0, we infer from Theorem 2.4.2, Lemma 4.2.3, and (4.2.88)
that

Jw(, T)]

o < 1Tl + | [ U I(T — ) (20, (@) (F)dr

Hg(T)

f To(t — 7)(2y (aw))(7)dr

0

< C1e_kT||’LU0||H8(T) + 2

C([0,T];H§(T))

< Cre M |wy|

HE(T) +cC

J Ty (t — 7)(20.(aw))(r)dr

0

T
Zsl
2

< C1e_kT||wo||Hg(1r) + Oy ||6L||ZT1 U(”CLHZzl )|wol z(r),
S,j 85

where C > 0 is independent of T" and C > 0 may depend on T'. Let
Yn = w(-,nT), for n=1,2,3, -
Using the semigroup property of system (4.2.81), (see (4.2.54) and (4.2.55)), we have
Ynr1 = w(,nT +T)

— Ty(T) (TO(nT)wo -~ Ln To(nT — T)(%z(aw))(ﬂdT) (4.2.89)

—Ty(nT) JO To(T — (6 + nT))(20, (aw))(8 + nT)do.

Define

I := —Ty(nT) JT To(T — (0 + nT))(20,(aw))(0 + nT)d6. (4.2.90)
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Note that

| L2

s < f To(t — (0 + nT)) (205 (a - w))(0 + nT)do

0

zT
S

[N

< Calal0 +nT)l 7, [w(®+nT)]

CQ HaHZ % T,(n+1)T] HwHZS[% ,(n+1)T] (4.2.91)
02 HQHZ : T,(n+1)T] (||CL|Zn1T(n+1)T]) ||w(-,nT)HH3(T)
i) 2
< CoB8v(B) | ynl 3y
From (4.2.89)-(4.2.91), we get
|Yn+1llmg )y < |To(T)ynl g (r) + CoBv(B)|Yn a5 (r)
< (Cre™ + CoBv(B)) Iyl mgry, forn = 1.

Since k' € (0,k), we note that for T > 0 large enough Cie ™ < ¢ ¥ if an only if

In(Cy) < (k — K')T. Therefore, choosing T' > 0 large enough and 8 small enough so that
Cre ™ + CyBu(B) = e, (4.2.92)

we get

H(T) S e Tyl

|Yn+1] my(r), forn =1,

as long as (4.2.86) holds. Thus,
lynll sy < €™ lyolug(ry, for any n > 1.
This implies that (4.2.87) holds. The proof is complete. O

Theorem 4.2.11. Let p € R, s = 0, and o > 0 be given. Assume X = 0 in (4.2.1).
Let ky > 0 be the infimum of the numbers v, k given respectively in Theorem 2.4.2 and
Theorem 4.2.8. Let k' € (0, ko] be given. Then there exists a nondecreasing continuous
function as,, : R™ — R such that for any ug € Hg(T), the corresponding solution u of
the IVP (4.2.1) (with A = 0) satisfies

(e, ) s ry < s u(lluol myemy) e _kltHUOHHs my, for allt = 0. (4.2.93)

Proof. The result for s = 0 has already been established in Theorem 4.2.8 with &' = k.
Let us consider the case s = 3. Pick any number Ry > 0 and any uy € H(T) with
ol L2y < Ro- Let u denote the solution of (4.2.1) (with A = 0) emanating from ug at

t =0, and let v = dyu. Then v solves

— % — aH + 2 2 = -K T
{ 00 — v — aH v + 20,0 + 20, (uv) oY, zel, t>0, (4.2.94)

v(x,0) = vy = uf + aHuf — 2uuy — 2ugupy — Koug € La(T), zeT.
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From Theorem 4.2.2 and Theorem 4.2.8, we infer that for any 7' > 0 there exists a number
C = Cg,r > 0 that depends only on Ry and 7" such that

Jul egomr < Bro (Ce ™ ualzgeny ) e Jul ey
’2

< Bro (CRo) CefktHUOHLg(qr)
< CRO,TeiktHUOHL(Z)(T), for all ¢ > 0.

Thus, for any € > 0, there exists t* > 0 such that if ¢ > t*, one has

|IUHZ(Et 1) S €. (4.2.95)

ot
1
i)
At this point we use the exponential stability result for the linearized system

{ Ovw — 02w — aHO2w + 2udpw + 20, (uw) = —Kow, x€T, t > t*

(4.2.96)
'LU(LL‘,O) =w0(9c) :U(t*)a reT,
where u e ZI'y n L*([0,T]; L(T)) is a given function and w = v(t — t*).
3

Choosing € < 8 in (4.2.95), where (3 is given by (4.2.92), and applying Lemma
4.2.10 to system (4.2.96), we obtain
(-t = )2y < Ce_k/(t_t*)HU('at*)HLg(T), for all ¢ > t*,

or

Jv(-, t)HLg(’]I‘) < CeikltHUOHLg('JI‘)v for any t = 0.
where C' > 0 depends only on Ry. It follows from Theorem 4.2.8 and the equation

OPu = v — aH*u + 2u0,u + 2udu + Kou

that

[uC )z < Oe_kltHUoHHg(T)» for any ¢ > 0.
where C' > 0 depends only on Rj.

Thus the Theorem has been proved for s = 0 and s = 3. Using the same
argument for u; — ug and a = u; + uy for two different solutions u; and us, we obtain the

Lipchitz stability estimate needed for interpolation:

J(ur = w) (1) lzzey < Ce™ N — ) (,0) 3y, for amy ¢ > 0.

The case 0 < s < 3 follows by an interpolation argument similar to those
applied in Theorem 4.2.2. The other cases of s can be proved similarly. O

Corollary 4.2.12. Let s = 0, « > 0, and p € R be given. There exists a constant
v > 0 such that for any uo € H;(T) with [ug] = p, the corresponding solution u €
C([0,+c0), H (T)) of the closed-loop system (2.0.2) with Ku = —GG*u, satisfies

Ju(,t) = [uol|

where as,, : RY — R" is a nondecreasing continuous function depending on s and fu.

as(m) < s pluo — [0l mgemy) €™ uo — [wolllmg(ry, for allt =0,
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4.3 Controllability of the Benjamin Equation

In this section we will study the controllability problem for the full Benjamin
equation for large data in H;(T), with s > 0. This control result will be a combination of
the stabilization result presented in Corollary 4.2.12 and the local control presented in

Corollary 4.1.2, as is usual in control Theory (see for instance [29, 30, 51, 52, 53]).

Theorem 4.3.1. (Large data control) Let s =0, « > 0, p € R, and R > 0 be given. Then
there exists a time T' > 0, such that for any ug,uy € Hy(T) with [ug] = [ui] = p and

|uol Hy(T) S R, s | Hy(T) S R,

one can find a control input h € L*([0,T); H3(T)) such that the IVP (2.0.1) with f = Gh
admits a unique solution u € C([0,T]; H;(T)) satisfying

w(z,0) = uo(x), wi(x,T)=wui(x), forallzxeT.
Then, the system (2.0.1) is globally exactly controllable.

Proof. This result is a direct consequence of the local controllability Corollary 4.1.2 and
the stabilization Corollary 4.2.12. Indeed, given the initial data ug to be controlled, by
means of the damping term Ku = —GG*u supported in w, i.e by solving the IVP (2.0.2),
we drive it to a state close enough to the mean value p in a sufficiently large time. We do
the same with the final state u; by solving the system backwards in time, due to the time
reversibility of the Benjamin equation. This produces two states which are close enough to

1 so that the local controllability result applies. O

4.4 Stabilization of the Benjamin equation with an arbitrary decay

rate

In this section we construct a continuous time-varying feedback law ensuring a

semiglobal stabilization with an arbitrary large decay rate.

Let A >0, ue R, a >0, and s = 0 be given. According to Theorem 4.2.11,
there exists x > 0 and a nondecreasing continuous function a, : R* — R™ such that for

any ug € Hi(T), the corresponding solution u of IVP

O — O3u — aHo2u + 2ud,u + 2udyu = —GG*u, t>ty, veT (4.4.1)
u(z,ty) = up(x), zeT, o
satisfies
HU(, t)‘ HS(T) < OéSM(HUOHLg(T)) €_H(t_tO)HuO‘ HS(T)’ fOI‘ all t = tO' (442)
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On the other hand, Theorem 4.2.4 asserts that for any fixed A\ € (0, \) and any
ug € Hi(T), the solution of IVP

o — 6§u — ofH&iu + 2u0,u + 2ud,u = —Kyu, t>tg, €T (4.4.3)
u(w,ty) = up(w), reT, o
fulfills
Hu(, t)‘ Hg('ﬂ*) < CSvM G_X(t_to)H’uO‘ HS(T)’ fOI‘ allt Z t07 (444)

for some Cj,, > 0, provided that |ug|s < r¢ for some number 74 € (0,1). Pick a function
pe C*(R™;[0,1]) such that

p(r) =1, for r < rg, p(r) =0, forr = 1. (4.4.5)

Pick any function 8 € C*(R; [0, 1]) holding the following properties:

O(t+2)=0(t) forall teR,
0(t) =1 for d<1<1-9, (4.4.6)
a(t) = 0 for 1<t<2

1
where ¢ € (0, 1—0) is a number whose value will be specified later.

Let T > 0 be given. We define the following time-varying feedback law

() = ol ey | ) Ko + 00 = TIGGu] + (1 = ol GG
(4.4.7)

- G {pllullgm) | OF L3+ 05~ Ty + (1= gy}

Observe that K has the following behavior of the trajectories. In a first time,

when [u]gs(r) s is large, we choose K = GG* to guarantee the decay of the solution. Then,

after a transient period, we have |ul %’S(T) < 19 and we get in an oscillatory regime. During

each period of length 27, we have three steps:

e A period of time for which the damping K is active, leading to a decay like e~ ¢~

)
e A short transition time of order § where a deviation from the origin may occur;

e A period of time for which the damping GG* is active, leading to a decay like

6—K(t—t0) )

The expected decay is a “mean value” of the two decays above. We consider the system

{ O — Ou — aH2u + 2udu + 2ud,u = —K (u,t), t>ty, v€T (4.48)

u(z, to) = up(z), zeT.

The following estimates are needed.
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Lemma 4.4.1. Let s >0, a>0,0<T <1, and € R be given. For any 0 < e < 1 there

exists a positive constant C. such that

< C,ul e,
Zitol,tO+T] S,%
P}

to+T] -

L Ut —7)K(u(r), 7)dr

Proof. This is a direct consequence of Proposition 3.1.15, Remark 2.5.4, and estimate
(3.1.27), by using similar arguments as those in the proof of Lemma 4.2.1 (see also Lemma
4.2 in [52)). 0

Lemma 4.4.2. Let s > 0 and A > 0 be given. Then

[ K (01, 1) = K (v2,1)]

a3 < Clvr —va|ms(ry, for anyvi,ve € Hy(T), t e R,

where C' denotes a positive constant independent of vy, ve and t.

Proof. This is consequence of the following identity

t

K(01,0) = K(o2.0) = pllonl2) |00

VKA (01 — v9) + 9(% —T)GGH (o1 — vg)]

t t " "
+ (o1m) = pll) |01 R0 + 607, ~ TIOG" (12) = GG (wn)|
+ GG*(v1 — va) + p([va] H)GG* (vg — v1).
[
Note that the involved constants in both Lemmas above, only depends on 6 for

its L* norm and not on 0. The global well-posedness of IVP (4.4.8) in Hj(T) with s >0

is stated in the following theorem.

Theorem 4.4.3. Let s > 0, A > 0, @ > 0, and p € R, be given. For any pair (ug,to) €
Hi(T) x R there exists a unique solution u : T x [ty,+0) — R of IVP (4.4.8) fulfilling

ue Z[t(i,to-i-T] A L2([to, to + T1; L%(']I‘)) for allT > 0.
2

S,

Furthermore, u depends continuously on the initial data and if we denote S(t)uy the
unique solution u of equation (4.4.8) corresponding to the initial data ug, then the operator
S(t): H(T) — Zs[tol’tOJrT] defined by S(t)ug = u is continuous on [to,to + T'].

12

The following a priori estimates hold true:

If uol

mym < 1, then |u(-,t)]|

(1) < Qsu(1) for allt = to; (4.4.9)

If uol

H(T) > 1, then Hu(, t)’ HE(T) < OéSM(HU()HLg(T))”U()’ HE(T) fOT allt > to; (4410)
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If uol

) < R, then |lu(-,t)|

myr) < Koe® 07y

mg(r) Jor all © = to, (4.4.11)

where Ky and dsdenote some positive constants depending only on s and R.

Proof. First, we prove the local well-posedness in Hj(T) with s > 0. Pick any pair
(uo,to) € Hy(T) x R and define the map

t

T(v) = Uy(t — to)uo — J U, (t — 7)(200,0) (7)dr — f U (t = 7) K (0(7), 7)dr.

to to

Using Lemmas 4.4.1-4.4.2 and similar procedure as in the proof of Theorem 4.2.2
we infer that (4.2.10) and (4.2.11) hold for any v, vy, v5 € Zs[tol’tOJrTl] N L*([to, to+T1]; La(T)).
2
Pick M = 2C |uy| H3 (1), and Ty > 0 such that

_ 1
20, MTY + CsT ¢ <3

Then the map I' is a contraction in the closed ball B(0, M) of Z_ Lta.to+T1] N L*([to, to +
T1]; L3(T)) for the || - | z7, DOIM. Its unique fixed point w is the desired solution of (4.4.8).

It follows from the Proposmon 3.1.8 that u € C([to, to + T1]; Hy(T)) and u satisfies

[l oo oo o +m1smg () < Callul rg.ormy < 2C1Caug
7

Hy(T)- (4.4.12)

Procedding as for Theorem 4.2.2, we check that the IVP (4.4.8) is globally well-posed in
HE with s > 0.

On the other hand, (4.4.4) yields (4.4.9) and (4.4.10). It remains to prove
(4.4.11). Assume [ug| sy < R and let M’ = 20, maX{045(1),043(||u0||L3(T))Hu0|HS(T)}.
Note that M’ depends only on R and s. Replacing T; by 7" satisfying

1
205 M'T" + C3T" ¢ < 3
in the application of the contraction mapping principle, we infer that the (unique) solution
u of (4.4.8) fulfills

HUHLOO([t0+kT’,t0+(k+1)T’];Hg(T C’4HUHZ tq+kT/,to+(k+1)T'] < 2C,Cyfu(-,to + K1) HE(T)>

l\.’)

Hy(T) < K e 0710 g

for any k € N. Therefore, |u(-,1)| myr forall t > 1o, for some

constants K, > 0 and ds; > 0 depending only on s and R. O]

Finally, we prove that a semiglobal stabilization with an arbitrary decay rate

can be obtained.
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Theorem 4.4.4. Let s >0, A > 0, a > 0 and p € R be given. Pick any X' € (0,\) and
AN +k
27 2
that for T > Ty, to € R and ug € Hy(T), the unique solution of the closed-loop system
(4.4.8) satisfies

any \" € where K is given in (4.4.2). Then there exists a time Ty > 0 such

Jul, )]sy < V(o] mgery) € " uo| mzry, for allt = to, (4.4.13)

where s, 15 a nondecreasing continuous function.

Proof. For \" under the above assumptions, we choose some ¢ > 0 small enough such that

5y — (1—28)k <0, (4.4.14)
and N
N < —25d, + (1 — 26) (*”2 ), (4.4.15)
. 7o 7o 7o
We define 0 < ¢ := mm{Kszeds(lwa)Tas(as(l))’ (s (1) K, ed-(1+20)T Koeds(1+26)T}’

and choose r; € (0,79) such that
< g (4416)

From (4.4.14) and (4.4.15) we infer that there exists Ty > 0 large enough such that

048(1)045(as(l))Kse[‘Sds_(l_%)”]T <7, (4.4.17)

(1) O K 19— (1=20) (et AT =227 (4.4.18)

Y

for all T' = Ty. Pick any pair (ug,tg) € Hy(T) x R. The proof is completed by showing the

following claims.

Claim 1. There exists a time t; € [to, to + " In(as([uol z2¢ry) w0 rrg(m))] such that

Ju(ts)]

m(T) < L. (4.4.19)

Proof. If |[u(to)||lmz(ry < 1, then (4.4.19) follows immediately with #; = #;. On the
other hand, if |u(to)|ms(r) > 1, then the dynamics of u is governed by (4.4.1)
as long as |u(t)|gsr) = 1. From (4.4.2), we infer that (4.4.19) holds for ¢, =

to+ " n(as (o] () ol

H(T))- O
Claim 2. There exists a time ¢y € 2ZT N [t1,t1 + 3T such that

Ju(t2)]

Hy(T) S T1. (4.4.20)
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Proof. From (4.4.19) and (4.4.9), we obtain that |[u(t)|msr) < as(1) for all t >t
Pick R = a,(1) and let K and ds be as given in Theorem 4.4.3 for that choice of R.
Let ¢; > t; denote the first time of the form ¢} = (2k + 1)T + 0T with k € Z, and let
ty = (2k + 2)T. Using (4.4.11), (4.4.2) and (4.4.17), we obtain that

Ju(t2)]

mymy < Ko™ |u((2k + 2)T — 0T) | gcmy
Koo ag(Ju(t)) | gery)e ™™ > Ju(th) e

(1) arg (v (1)) K el = (120017

NN

N
<

1-

]

Claim 3. [u(t)|gz(r) < 7o for all ¢ > t5 and |lu(ty + 2kT)|
ke N.

a3 < e N u(ty)]

HE(T)5 for all

Proof. Note that, the dynamics of the solution u is governed by (4.4.3) (resp. (4.4.1))
when ¢ € (to + 0T, ty + (1 — 6)T) (resp. t € (ta + (1 —0)T,ty + (2 —6)T)) as long as
Ju®)]

Let t € [tg, t2 + 27]. We analyze three cases.

HS(T) = To-

i) If t € (to + 2T — 0T, ty + 277, then (4.4.11) and (4.4.2) yield
Ju(®)]

Hy(T) S Kb |u(ty + 2T — 6T))| H(T)
KT o (a,(1)|ulty + T + 0T)|
s (s (1)) KZe™ 20T u(ty)
(s (1)) K 2ed=(0120Ty,

N

H§(T)

N

5(T)

N

N
=

05
where we used (4.4.16) in the last inequality.
i) Ifte(to+ T +0T,ty + 2T — 0T, then (4.4.11) and (4.4.2) yield

Ju(®)]

(s (1)) K edS(”‘”T\IU(tz)HHs
(

< (g (1)) K eds (20T,

my(m) < as(as(1))|ults + T + 01|y

< Qg

where we used (4.4.16) in the last inequality.
iii) If t € (tg,to + T + 6T, then (4.4.11) yields
Ju(®)] mzry < Koe®2) |u(ts))|
< K5€d5(1+26)TT

Hi(T)

N

To,

where we used (4.4.16) in the last inequality.
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Hence, [u(t)| sy < 7o for all ¢ € [ty, ¢y + 2T]. On the other hand, from (4.4.18) we

infer

Hu(tg + QT)HHS( Ksed 6T||U(t2 + 2T (ST)HHS('[[‘

< KsedsaT (1)6 #(1-26) THU(tQ +T + (ST)‘ H(T)
< oy (D) K2 2T 2Tty + T)| s )
< (Ozs(l)ng*” (1=20)T ds%T) KT |u(ty + T — 6T H (T
< (a5<1)KS2€—H (1-26)T ds 26T) K697 (=N (1-20) T”u(tz n 5T)\HS(1I)
< (as nge—ﬁ (1-26)T ds 26T) (ngdSZ(STCSe—,\’(l—Qé)T> HU(E)HHS(T)
< e u(te) ] my(ry
< 1.
The Claim 3 follows by induction. ]

It follows from Claim 3 that
Ju() gy < Ce™" 2 Julty) | gr) for all £ > to,
for some constant C' > 0 independent of ¢ and wug. Therefore, using that
ty —to < 3T + k™" In(es(luol 2(m)) | wollz3 ()

we have

[w(t) | sy < Ce™ (to)HX"at0) j pds(t=t0) |y ()| e
< CeWHd)t2mto) j o=V (0=10) |y (t0) | s )

< Ce(/\//+ds)3T [045(||U0|H6 )”UOHHS ]K 6_)‘”t tO)HU(t0)|

H§(T)-
This completes the proof of the theorem. O]

Corollary 4.4.5. Let s = 0, « > 0, A > 0, and p € R be given. Then there exists a
continuous map Q» : Hy(T) x R — H>(T) which is periodic in the second variable, and
such that for any ug € H,(T) with [uo] = p, the unique solution u € C([0,+c0), H (T)) of
the closed-loop system (2.0.2) with Ku = —GQx(u,t) satisfies

() < Yspulfuo = [wol | mym)) e ug — [ug]| Hy(r), for all t =0,

(1) = [uo]

where ‘RY - R™ is a nondecreasing continuous function depending on s, A and ii.
ER.W )
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Controllability and stabilization of the

Intermediate Long Wave equation on a

periodic domain

In this chapter we study the controllability and stabilization problems for

the Intermediate Long Wave (ILW) Equation in the Sobolev space Hj(T) with s > 0.

Specifically, we will be mainly interested in the following two problems for equation (0.0.14).

1)

Ezxact control problem: Given an initial state ug and a terminal state u; in a
certain space with [ug] = [u1] = 0, can one find an appropriate control input f given
by (2.0.9) so that the equation

1

6§zu + 2(Tu) + 0,(u?) = f(z,t), zeT, teR, (5.0.1)

ﬁtu +

admits a solution u such that u(z,0) = ug(z) and u(z,T) = uy(z) for all z € T and

any final time 7" > 07

Stabilization Problem: Given ug in a certain space. Can one find a feedback
control law f = F'u so that the resulting closed-loop system
1

66xu + 32(Tu) + 0, (v?) = Fu, u(z,0)=u, z€T, teR" (5.0.2)

6tu +

is asymptotically stable as t — 07

Recall that the operator 7T is defined in (0.0.15).

In sequel, we summarize the main results obtained in this chapter. As usual,

the first main results deals with the controllability and stabilization of linearized ILW

equation.
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Theorem 5.0.1. Let s >0, > 0, and T > 0 be given. Then for each ug, uy € Hy(T) with
[ug] = [u1] = 0, there exists a function h € L*([0,T]); Hi(T)) such that the unique solution
ue C([0,T]; Hi(T)) of the linearized non homogeneous system associated to (5.0.1) with
f(z,t) = G(h)(z,t) (see (2.0.9)) satisfies u(z,T) = uy(x), x € T. Moreover, there exists a
positive constant v = v(s,qg,T) > 0 such that

Hs(0,27))-

HhHL2([o,T];Hg(o,27r)) < v (uol Hy(0,27) + |uil

Regarding stabilization of of linearized system, we prove the following results.

Theorem 5.0.2. Let § > 0, g as in (2.0.8), and s = 0 be given. There exist positive
constants M = M (0, g,s) and v = ~(g) such that for any uy € Hy(T) the unique solution
ue C([0,00); H3(T)) of the linearized closed-loop system associated to (5.0.2) with Fu =
—GG*u (see (2.0.9)) satisfies

Hu(.,t)HHg(T) < MC_WHUOHHS(T% forall t = 0.

Furthermore, using an observability inequality derived from the exact control-
lability result we can prove that the exponential decay rate of the resulting linearized

closed-loop system is as large as one desires. This is stated in the following theorem.

Theorem 5.0.3. Let s > 0,0 > 0, A > 0, and uy € Hy(T) be given. There exists
a bounded linear operator Fy from Hy(T) to H5(T) such that the unique solution u €
C([0, +0), Hi(T)) of the linearized closed-loop system associated to (5.0.2) with Fu = Fyu

satisfies

Ju(, )]

for allt = 0, and some positive constant M = M (g, \, 9, s).

gry < M e ugl sy,

This theorem implies that for any given number A > 0 we can design a linear
feedback control law such that the exponential decay rate of the resulting linearized

closed-loop system is .

Next, we deal with the control and stabilization problem for the full ILW

equation. To stabilize the ILW equation, we consider the feedback law
f=—-G(D(Gu)),
where for given r € R, we define an operator D" : D'(T) — D'(T) by
Drv(n) = [n|"8(n), VneZ. (5.0.3)

Scaling in (5.0.2) by u gives (at least formally)

1 r 1
S 1) e +f0 1D (Gu) 33yt = SlluolFzr)- (5.0.4)
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This suggest that the energy is dissipated over time. On the other hand, (5.0.4) reveals a
smoothing effect, at least in the region w < T. Using a propagation of regularity property
in the same vein as in [30, 52, 51, 50, 68], we shall prove that the smoothing effect holds
everywhere, i.e.

ul < O(T, Hu0||L(2](’]I‘))- (5.0.5)

L20sHE (T)
Using this smoothing effect and the classical compactness/uniqueness argument, we shall
first prove that the corresponding closed-loop equation is semi-globally exponentially
stable.

Theorem 5.0.4. Let 6 > 0, and R > 0 be given. Then there exist some constants
C = C(R) and A = MR) such that for any ug € L3(T) with luolzry < R, the weak
solutions in the sense of vanishing viscosity of system (5.0.2) with Fu = —GDGu (see
(2.0.9)) satisfy

lu(, )| L2y < C G_MHUOHL(%(T),

for allt = 0.

A weak solution of (5.0.2) with F'u = —G'DGu in the sense of vanishing viscosity

1
is a distributional solution of (5.0.2) u € Cy((0, +00), L3(T)) n L ((0, +0), Hg (T)) that
may be obtained as a weak limit in a certain space of solutions of the ILW equation with

viscosity

dpu + ;lsaxu +02(Tu) — ed2u+ 0,(v*) = —GDGu, t>0, zeT

u(z,0) = up(x), zeT,

(5.0.6)

as € —> 07 (see Definition 5.2.11 below for a precise definition).

Also, we use the smoothing effect (5.0.5) to extend (at least locally) the
1
exponential stability from LZ(T) to Hi(T) for s > 7

1
Theorem 5.0.5. Let s € (2, 2] and 0 > 0 be given. Then there exists p > 0 such that

for any uo € H{(T) with |[uo| sty < p, there exists for all T > 0 a unique solution
u(t) of (5.0.2) with Fu = —GDGu in the class u € C([0,T); Hi(T)) n L*(0, T; Hy 2 (T)).

Furthermore, there exist some constants C' > 0 and X\ > 0 such that

[u(®) s < Ce™ o] mgemy, ¥t > 0.

Finally, one can derive an exact controllability result for the ILW equation by
incorporating the same feedback law f = —G(D(Gu)) (see (2.0.9)) in the control input to

obtain a smoothing effect.
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1
Theorem 5.0.6. Let s € <2, 2] ,0>0 and T > 0 be given. Then there exists p > 0 such
that for any ug,u; € Hy(T) satisfying

luo mzry < o5 M| mz(my < p

one can find a control input f = Gh e L*(0,T; HS_%(']T)) with h = —DGu+ D2h such that
1
the system (5.0.1) admits a solution u € C([0,T]: HS(T)) n L*(0,T; Hy " 2(T)) satisfying

u(z,0) = ug(x), u(z,T) = ui(z).

These results will be proved throughout this chapter which is organized as
follows: In Section 5.1, the well-posedness, the exact controllability and stabilizability
results are presented for the associated linear systems of (5.0.1) and (5.0.2). Finally, the
main results regarding stabilization and controllability are respectively proved in Sections
5.2 and 5.3.

5.1 Linear Systems

Initially, we consider the IVP to the associated open-loop control system in the
periodic setting,

1 2
Ot 50pu+ O3(Tu) = G(h), teR, zeT (5.1.1)

u(z,0) = ug(x), xeT,
where the operator G is defined in (2.0.9) and h is the applied control function. Following
the same approach appearing in [1] §7, we observe that

1 2 i n| L\ 5~
—0,u+ 05(Tu) | (n)=—|-—n—|n|+ ncoth(nd) — 5 Orxu(n)
n

5 (5.1.2)

— —H(2u)(n) + K(0,u)(n), ¥ neZ

where H is the Hilbert transform (see Section 1.4) and K is a Fourier multiplier operator
with symbol a given by

a(n) = |n| — ncoth(nd) + (157 (5.1.3)

1
and for all n, 0 < a(n) < —. Furthermore, the operator K is self-adjoint of order 0 and so

J
linear and bounded on all the L3—based Sobolev spaces Hg(T) (see (1.3.1)). Specifically,

1 S
1Kol gy < gHSO|Hg(T)a Vo e Hy(T). (5.1.4)

Hence, the IVP (5.1.1) can be written in the form

A o ~2 —
{ ou — H(pu) + K(0pu) = G(h), teR, zeT (5.1.5)

u(z,0) = ug(x), xeT.
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Let A: D(A) € L3(T) —> L3(T) be the operator
Aw 1= H(Zw) — K (0,w), (5.1.6)

with its domain D(A) = H{(T). Following the line of argument appearing in Section 2.2, we
prove that A is sknew-adjoint. Therefore, A generates a strongly continuous unitary group
of isometries (contractions) {U(t)};er on L3(T) (see Theorem 1.5.16 and [16, Definition
3.4.6]); the eigenfucntions are the orthonormal Fourier basis functions {1, }nez+ in L3(T),
given by Remark 1.2.2. The corresponding eigenvalue of v, is

Mo = in (n coth(nd) — ;) —in (sgn(n)n _ (15) —in(jn| = ncoth(nd)), ¥ne Z*.  (5.L7)

Note that
In(|n| — ncoth(nd))| < cs|n|>e™"0) ¥n e Z*, (5.1.8)

for some ¢5 > 0. Furthermore, if we define the family of operators U : R — L(Hj(T)) by
I — U(t)(p — e(?—l(agw)fK(ﬁzw))tSO _ (eAnt@(n»v, (5.1‘9)

we have that {U(t)},r defines a strongly continuous one-parameter unitary group of
contractions on H(T), for all s € R. In addition, A* = —A, U*(—t) = U(t), and U(t) is
an isometry for all ¢t € R (see [16, page 38]). From this we infer that the system (5.1.1) is
well-posed on Hj(T) for s = 0. This is stated in the following lemma.

Lemma 5.1.1. Let 0 < T < 0, s = 0, ug € H3(T), and h € L*([0,T]; Hi(T)). Then,
there exists a unique mild solution v € C([0,T], Hy(T)) for the IVP (5.1.1) and we can

write u in the form
t
w(t) = U(t)uo + J Ut — ¢)Gh(t)dt,
0
fors =0, 0<t<T < 0.

Remark 5.1.2. The sequence of eigenvalues {\,}nezx, given by (5.1.7) satisfies the fol-

lowing properties:

i) Ay ==\, forallneZ*.

i) lim [\ = oo.
[n|]—00

i) lim A1 — A\p| = 00 (asymptotic gap condition). This is consequence of (5.1.7),

[n|—c0

(5.1.8), and (34) in [55].

iv) Observe that all the eigenvalues of the sequence {\,}nez+ are distinct, independently
on the value of 6 > 0. In fact, For each ny € Z* set I(ny) := {n € Z* : \, =
At and  |I(ng)| =: m(ny), where |I(ny)| denotes the numbers of elements of

I(ny). Then we have m(ny) = 1, for all ny € Z*. This is a consequence of the fact
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1 f(z) = a(x coth(xd) — %)

Figure 5 — Curve

1
that the function v — x <:U coth(xd) — 5) is strictly increasing for x € R. see the

format of the curve in Figure 5 below.

From Remark 5.1.2 and Ingham lemma (see Theorem 1.6.10), we deduce that
the system (5.1.1) is exactly controllable in Hj(T) for any s > 0 in small time (see the

proof of Theorem 2.3.7). This proves Theorem 5.0.1.

Remark 5.1.3. This result is similar with the ones obtained for the linearized KdV, BO,
and Benjamin equations. Theorem 5.0.1 is strong from the point of view that we do not
make restrictions on the time T. The so-called “asymptotic gap condition” (see condition
iii) of Remark 5.1.2) that holds for the eigenvalues associated to ILW equation was crucial

to obtain the exact controllability for any positive time T.

Theorem 5.0.1 allows us to get the following corollary.

Corollary 5.1.4. For s = 0, and T' > 0 given, there exists a unique bounded linear
operator ® : H3(T) x HS(T) — L*([0,T]; H3(T)) such that for any ug, u, € H3(T),

uy = U(T)ug + Jo U(T — s)(G(P(ug,u1))) (-, s) ds, (5.1.10)

and

1D (o, ur)| 2o,y (my) < v (Jwol sy + [ual s er)), (5.1.11)
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where v depends only on s, T, and g (see (2.0.8)).

The last Corollary 5.1.4 allows us to get the following observability inequality,
which is fundamental to obtain a result on exponential asymptotic stabilization with decay

rate as large as one desires for the linearized closed-loop system associated to (5.0.2).

Corollary 5.1.5. Let T' > 0 be given. There exists 6 > 0 such that

T
| 16000 (r) dr = Ploligen, for any o L3(T)

0

Proof. Similar to the proof of Lemma 2.3.3. [

On the other hand, if one chooses the simple feedback law

the resulting closed-loop system (5.1.1) is exponentially asymptotically stable when ¢ goes
to infinity. First, we prove that the system (5.1.1), with A(u) = —G*u is globally well-posed
in H3(T), s = 0.

Theorem 5.1.6. Let ug € HZ(T), then the IVP (5.1.1), with h(u) = —G*u has a unique
solution

u e C([0,%0); Hy(T)) n C*([0,90); Li(T)).
Moreover, if ug € Hj(T), then we have that u e C([0,0); H;(T)), for all s = 0.

Proof. We know that the operator A = ;&E + 02T = H0? — K0, is an infinitesimal
generator of a Cy-semigroup {U(t)};>¢ over Hi(T). Also we know that —GG™ is a bounded
linear operator on H;(T). From the semigroup theory (see Pazy [71, Theorem 1.1, pag.
76]), we get that the operator A — GG*, which is a perturbation of A by a bounded linear

operator, is an infinitesimal generator of a Cy—semigroup {T'(¢)};>o on Hy(T). O

The following proposition proves Theorem 5.0.2. Its proof is similar to the proof
of Theorem 2.4.2.

Proposition 5.1.7. Let 6 > 0, g as in (2.0.8), and s = 0 be given. Then, there exist
positive constants M = M (6, g,s) and v = ~(g), such that for any ug € H(T) the unique
solution u € C([0,00); Hj(T)) of the closed-loop system (5.1.1) with h(u) = —G*u satisfies

(-, ) sy < Me_vt”uOHHS(T), for all t = 0.
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Proof. First we prove the case s = 0. In this case we use a procedure similar to [67, 55, 80].
Let T > 0 be given and assume uo € H3(T). Theorem 5.1.6 implies that the solution u of
the IVP
Oru + ;&cu +2(Tu) = —GG*u, t>0, reT
u(z,0) = ug(x), z e,
satisfies u € C([0,0); HZ(T)) n C*([0,0); L3(T)). It means u(-,t) € H3(T), for all t = 0

and in particular, for ¢ = T. Now we consider the IVP

(5.1.12)

1
Orw + gﬁzw +32(Tw) =Gh, te(0,T), z€T

w(z,0) =0, xeT.

(5.1.13)

Theorem 5.0.1 implies that there exists a unique h € L*([0,T]; H3(T)) such
that the unique solution w € C([0,0); H3(T)) n C*([0,0); L5(T)) of equation (5.1.13)
satisfies w(z,T) = u(x,T) for all x € T, and there exists a positive constant v = v(g) such
that

Hh”L2 ([0,T];HZ(T)) < vu(z, T)HH2

On the other hand, note that ug € HZ(T)  L(T), therefore Theorem 5.1.6
implies that u € C([0, 00); L2(T)) is a solution of equation (5.1.12). Furthermore, Theorem
5.0.1 implies that h e L*([0,T]; L3(T)) and the solution w € C([0,); L3(T)) of equation
(5.1.13) satisfies w(z,T) = u(z,T), for all x € T, with

1] 20,1 LA(TM) S < vl|u(z, T)HL2 (5.1.14)

Now, multiplying the first equation in (5.1.12) by u and integrating with respect to x, it
follows that

f Opuudx + f <18xu + (35(7’71)) udr = J —GG*uudz. (5.1.15)
T T \0 T

Using the Parseval’s identity and the fact that the operator G is self-adjoint on Lj(T), it
is easy to obtain from (5.1.15) that

= L (. )3m) = —IGu( )3y for all £ > 0. (5.1.16)
Integrating (5.1.16) with respect to the variable ¢ from 0 and 7', we get
1 2 Lo 2
§HU(T)HL3(T) - §HUOHL3(T) = —|Gullz2o.y; L2 (1)) (5.1.17)

On the other hand, multiplying (5.1.13) by u, integrating with respect to the
x—variable, using integration by parts, the property (1.4.4) of the Hilbert transform, and
the fact that K is self-adjoint, we get

J dywudr — J w(=H(?u) + K(0yu))dx = J Ghudx, forall0 <t <T.  (5.1.18)
T T T
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Integrating (5.1.18) with respect to ¢ from 0 and 7', and using integration by parts, we

obtain

T T
J w(x, T)u(z, T)dx — J f w(0pu — H(%u) + K(Oyu)dxdt = J J Ghudzxdt.
T o Jr 0 Jr

Observe that u is a solution of equation (5.1.12). Thus

T T
Ju%T)dm%—J fw(GG*u)dxdtzf JGhudmdt.
T o Jr o Jr

Using that the solution u is real, the operator G is self-adjoint on L§(T), and the Cauchy-

Schwarz inequality, we get
HU(HT)H%Q(T) < |h— Gw“L%(O,T);L%(T)) HGUHL2((0,T);L3(T))~ (5.1.19)
0

From (5.1.14), we have
1

T 2
|h = Gullaomyrzey < Vi) + ¢ (f lw( )12z, dt) : (5.1.20)
0

Also, observe that

2
< C2THhH%2((O,T);L(Q)(T)) < CQTV2HU(T)Hig(T)-

Hw(wt)”%g(nr) S
L3(T)

t
f U, (t — t)Gh(-,t')dt!
0

From this and (5.1.20), we get

[h = Gwlr2(0.r)220m) < Cor|u(T)] 2(m), (5.1.21)
where ¢, 7 = maz{v,*Tv}. From (5.1.19) and (5.1.21), we have

Ju-, T)Hig(qr) < Cg,THu(T)”Lg(T)HGUHL2((0,T);L3(T))7

which implies that

1
~GullZaoryr2ery < 2. [u(-s T) 72 (r)- (5.1.22)
g7

From the relation (5.1.17) and the estimate (5.1.22), we obtain

2
(1+ 2 ) 1Dy < lanlZye (51.23)

9,

Thus, there exists p,r = p € (0,1) such that Hu(T)H%g(T) < PHUOH%g(T)a for any T > 0.

Moreover, we can repeat this estimate on successive intervals [(n — 1)T,nT], to get

||u(x,nT)||%g(T) < anuoHig(T), forany 7'>0, n > 1, (5.1.24)
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where u is the solution of (5.1.12), and p = p,7 € (0,1). From (5.1.16) and (5.1.24), we
infer that there exists M > 0 and > 0 such that

Ju(z, )| 2y < Me " |uoll z(r), for allt >0,

and we get the result for smooth initial data in Hg(T). We complete the proof for s = 0

by using density arguments.

Next, we prove the case s = 2. Let u be the solution of equation (5.1.12) with
initial data ug € Hy(T), then u e C([0,0); H3(T))nC*([0,0); L3(T)). As H3(T) < L3(T),
then from case s = 0, we have that there exist positive constants M; and 7 = v(g)

independent of ug, such that
Hu(, t)HLg(T) < Mle_,ytHuOHL(Z)(T), for all t > 0. (5125)

On the other hand, differentiating the equation (5.1.12) with respect to ¢, we

obtain

Therefore, w := d;u € C([0, +0); L3(T)) is the unique solution of

(5.1.26)

Oyw — Ho*w + Kd,w = —GG*w, t>0,zeT
w(z,0) = wy = dpu(x,0) = Ho2up — Kdyug — GG*ug € L3(T), zeT,

Again, from the case s = 0 applied to equation (5.1.26), there exist positive
constants M; = M;(g) and 7 = v(g), independent of wy, such that

[0, )|z = lw(, )Lz < Mie™ ™ |wol z(r), ¥t = 0. (5.1.27)
Note that, for each t > 0
e )y < o (e )] gy + 12, Dl ) - (5.1.29)

To estimate the term |02u(-,1)]| rz(r) We use that the Hilbert transform # is an isometry
in Hj(T), and from equation (5.1.12)

HPu(-,t) = w + Kd,u + GG*u.
Hence, for each t = 0

Haiu('at)”Lg(T) = HHagu('at)”Lg(T) < Hw(’at)“Lg('H‘) + CSHazU(‘vt)HLg(T) + ”GG*U('at)HLg(Ty
(5.1.29)
Using Gagliardo-Nirenberg inequality (see the Theorem 3.70 in [8]) and Cauchy-Schwarz

inequality with €, we have

1 1 Cs
esllGau( )| zar) < Cold2ul ) gy Il Dy = Coellule Blaery + 221030 )z,
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where Cj is a positive constant depending on §. Using this estimate and estimates (5.1.27),
and (5.1.29), we obtain

Cs _
(1= S2) 12t Oligsy < M lunlsgn + (Cs €+ ) Pt Dl

< Mie " |lwoll gz (my + (Cs € + cg) Mie™ " Juo] Lz (m)-

C
Therefore, taking ¢ > 0 large enough such that 1 — SIS 0, we infer that there exists a

€
positive constant ¢ = ¢;4, independent of ug, and wy such that

|02l )] 20y < ¢ Mye ™ (HwUHLg(T) + ||U0HL3(T)> : (5.1.30)

Also, note that

HWOHLg(T) < HainIILgm + Ca\lﬁquHLgm + Cg”UO”Lg(T) < ClHUOHLg(T)7 (5.1.31)
for some positive constant ¢;. Thus from (5.1.30) and (5.1.31), we have
”a;zu('at)HLg(T) < M2€_7tHu0‘|L3(T)7 (5.1.32)
where My = ¢ M;(¢y + 1). From (5.1.25), (5.1.28) and (5.1.32), we get
- Ollgeey < co (Mre™ ol syny + Mae™uolzery) < Me ol ey, ¥t >0,

where M = M(9, g), and v = v(g) are positive constants independent of ug. This proves

the case s = 2.

The case 0 < s < 2 follows by interpolation. The other cases of s can be proved

similarly. The proof is complete. [

Finally, in this section, we show that it is possible to choose an appropriate
linear feedback control law such that the decay rate of the resulting closed-loop system is

as large as one desires. Choosing the feedback control law as
~G*Lytu, if A >0
h(u) =
—G*u, it A=0,
where L is defined in (2.5.1). We can rewrite the resulting closed-loop system in the

following form

{ 0w —H(P2u) + K (dpu) = —Fyu, t>0, zeT (5.1.33)

u(z,0) = up(x), zeT,

where A > 0 and Fy := GG*L;'. If A\ = 0, we define Fy = GG*. Thus, F) is a bounded

linear operator on H(T) with s > 0. We have the following result.
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Theorem 5.1.8. Let 6 > 0, s = 0 and A > 0 be given. For any uy € Hj(T), the
system (5.1.33) admits a unique solution u € C([0,+0), Hy(T)). Moreover, there exists
M = M(g,\,d,s) > 0 such that

Ju(, )|y < Meuglugr), for allt = 0.

Proof. As F) is a bounded linear operator the same argument used in Theorem 5.1.6 shows
that for ug € Hj(T) the problem (5.1.33) has a unique solution u € C'([0,00); Hj(T)) for all
s = 0. We denote by {T(t)}+=0 the Cy—semigroup on Hg(T) with infinitesimal generator
A—F)\.

The case s = 0 follows from Theorem 2.1 in [84] (the arguments are similar to

the proof of Theorem 2.5.5). The other cases of s are proved as in Proposition 5.1.7. [

Observe that Theorem 5.0.3 is a direct consequence of Theorem 5.1.8.

5.2 Stabilization of ILW equation with a localized damping

In this section we are interested in the stability properties of the ILW equation

with localized damping

1
Q-+ 50+ O3(Tu) + 8,(u) = —GDGu, 120, weT

(5.2.1)
u(z,0) = ug(x), reT,
where § > 0, D and G are defined in (5.0.3) and (2.0.9).
5.2.1 Semi-global exponential stabilization in L2(T)
Assuming that ug € L3(T), and using Parseval’s identity we note that
f 2(Tu) udx = 0.
T
From this, we infer (formally) by scaling in (5.2.1) by u that
ld 2 1 2
5 (1)) + ID3Gu(®) Za(r) = 0, (5.2.2)

and (5.0.4) is satisfied. This suggests that the energy is dissipated over time. A rigorous

derivation of (5.0.4) requires enough regularity for u, e.g.

ue L*(0,T; Hy(T)) n C([0,T], L3(T)). (5.2.3)

Since there is a gap between (5.0.5) and (5.2.3), we put some artificial viscosity

in (5.2.1) (parabolic regularization method) in the same vein as in [59] to derive in a
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rigorous way the energy identity for the e—ILW equation

1
gaxu + 32(Tu) + 0,(u?) = d®*u — GDGu, t=0, ze€T

u(x,0) = ug(x), xeT.

O + (5.2.4)

We will show the global well-posedness (GWP) of (5.2.4) in Lj(T), together
with the semi-global exponential stability in Lj(T) with a decay rate uniform in e > 0.
Letting ¢ —> 0, we obtain the semi-global exponential stability in L3(T) of the weak
solutions u € C,, ([0, +0), L3(T)) of (5.2.1) obtained as limits of the (strong) solutions of
(5.2.4). The following result provides the GWP of the system (5.2.4)

Theorem 5.2.1. Let ¢ > 0, § > 0, and ug € L3(T)). Then for any T > 0 there exists a
unique solution v e C([0,T], L3(T)) n L*(0,T; Hy(T)) of (5.2.4). Moreover,

ue C((0,T], H3(T)) n C*((0,T], L3(T)), (5.2.5)

and for any t = 0,
1 2 ' inl 2 1 2
SOl + < | 1oum)lgmr + | IDHGOE Emdr = 3luliye.  (6:20)

Proof. We prove this theorem in five steps.
Step 1. (Linear theory). We consider the linear system. Using (5.1.2) we can rewrite it

as

(5.2.7)

oou — H(02u) — ed®u + K(d,u) + G(D(Gu)) =0, t>0, 2€T
U(QT,O) ZUO(x)v zeT,

Let Au := (—=H — €)02u with domain D(A) = H(T) < L(T), and Bu := G(D(Gu)) +
K(dyu). We know that G' € L(H(T), Hy(T)) for all » € R. Using (5.1.4) we infer that
Be L(Hy(T), L3(T)). Let 6, € <arctan(e’1), g) . Thus, for 0y < |arg(\)| < m, we have

C

(A= X)) < sup{|(= — dsgn(m)n® — N} <
up x

Then A is a sectorial operator in L3(T) (see Definition 1.5.7). Note that o(A) = {(¢ —
isgn(n))n*n € Z*}. In consequence, Re(c(A)) = ¢ and A~ (see Definition 1.5.9) is

meaningful for all o > 0. Since for all s > 0

| A%l

fym < C ), |(e —isgn(n)|*a(n)* < CllulZae.

nez*
Therefore, BA™% € L(L3(T)). It follows from Corollary 1.5.11 that the operator A := A+ B
is also sectorial, so that —A generates an analytic semigroup (see Definition 1.5.12)
{S(t)}i=0 = {e7™}20 on L(T) according to Theorem 1.5.13. Furthermore, from [28,
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Theorem 1.4.8] we have D((A + B + \)*) = D(A%) = HZ*(T) for all @ = 0 and A > 0
large enough; hence

S(t)HE(T) < HE(T), V>0, Vs> 0.

Now, we derive estimates for the solutions of the IVP

{ ou+Au=f, t>0, zeT (5.2.)
u(z,0) = up(x), xeT.
For any 7' > 0 and any s € N, let

Yyr = C([0,T]; Hy(T)) n L*(0, T; Hy *(T)) (5.2.9)
be endowed with the norm

[ Yor = HUHL"O(QT;HS(T)) + ”“||L2(0,T;Hg+1(1r))' (5.2.10)

Lemma 5.2.2. We have for some constant Cy = Cy(e,s,T)

lully, » < Colllwollmg(ry + [ |r0.7:m50m))),
with u denoting the mild solution of (5.2.8) associated with

(uo, f) € Hi(T) x L'(0,T; H;(T)).

Proof. From classical semigroup theory we have

HUHLOO(O,T;HS(T)) < C([|uo] H(T) t ”fHLl(o,T;Hg(T)))-

To estimate HUHLQ(O,T;HSH(’]I‘)) we use Parseval’s identity to have that for any u € Hj(T)

1
(—H2u + K(0u), U)Hg(T) = (5(3$u + T2, u>
Hg(T)

(5.2.11)
=2 Z {n)* <n coth(nd) + (15m ﬁ(n)@(n)) =0.

nez*

Using a density argument we prove, taking the scalar product of each term of (5.2.8) by
u e Hg(T), that

L2 ‘| d G dr = Lluol? t

5”“( )HHg(T) +e o I zu(T)“Hg(T) T+ o (G(D( U))aU)Hg(T) T= §HU0||H5(T) + o (fvu)Hg(T)

is true for any ug € HS(T) and any f € L'(0,T; Hi(T)). Combining this relation with

Lemma A.5 in the appendix, we conclude the proof (see Lemma 2.2 in [59]). O

Remark 5.2.3. We observe that when ug = 0 in (5.2.8), then

t
f St-n)f()dr| < Cle.s. T |y, (5.2.12)
0

YS,T

and when f =0 in (5.2.8),

|SE)uolly, » < Cle, s, T)uol

H3(T)): (5.2.13)
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Step 2. (Local well-posedness in Hj(T), s = 0). We prove the following proposition.

Proposition 5.2.4. Let s = 0 and 6 > 0 be given. For any ug € Hi(T), there exists some
T > 0 such that the IVP (5.2.4) admits a unique solution u € Ys .

t
Proof. We write (5.2.4) in its integral form u(t) = S(t)uy — f S(t — 7)(2udyu)(7)dr. For

0
given ug € Hj(T), let r > 0 and T' > 0 be constants to be determined. Define the map I'
on the closed ball B(0,7) = {ve Y, r;|v|y,, <7} of Yo7 by

['(v)(t) = Sug — J S(t —7)(2vd,v)(T)dT.

0

Using Gagliardo-Nirenberg inequality (see [8, Theorem 3.70]) and Theorem 1.7 in [33], we
note that

T T
‘f [0() Zonpry < ij‘ o) L mlo (M) |z dr
0

0 (5.2.14)

< C\/THUHLOO(O,T;Lg(T))||UHL2(0,T;H3(T))-
From Lemma 5.2.2; Remark 5.2.3, Lemma 1.10 in [33], and (5.2.14) we infer that
IT(w!) =)y, r < Clotdu(v") = 0?0 (v*)| 1 0,715 (1))

T
< cf (I0" = w2y 0 + 02 sy + [0 + 02 pommy ! = 2] gy ) 7
0

<CTH ' =y, ([ lvor + [0%]v,r), V00 € B.

(5.2.15)
Therefore, Lemma 5.2.2, Remark 5.2.3, and (5.2.15) imply that
IF@)y.r < Colluoligeny + OTH el . Yve B, (5.2.16)
and
[T =T@)ly,r < OTH 0" =0y, (0" Iy, + [0%0vr) » Vo', 07 € B (5.2.17)
Choosing » > 0 and T" > 0 so that
= 2Co|uo| a3 (r),

orCyTh < L (5.2.18)
1 X ;>
2

we obtain that |I'(v') 2

vor <7, DY) =T (@?)

1
1 1,2
Yor < 5“1} — 07|y, 5, for all v, v" € B.

Therefore, with this choice of r and T, I is a contraction in B(0,r). Its fixed-

point is the unique solution of (5.2.4) in B(0,r). ]
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Step 3. (Global well-posedness in L2(T)). Assume that ug € L3(T). We first establish
(5.2.6) for 0 < t < T Since u € Yy 7, we infer by using the immersion Lg(T) = Lj(T) and
Gagliardo-Nirenberg inequality that

t t t
[ 12ueslsyr < € [ 1l <€ | ultyaydr
t
<C | Jultyen|duligmdr < CVElulf,
0

Therefore, each term in (5.2.4) belongs to L*(0,t; Hy '(T)). Scaling in (5.2.4) by u, we

obtain

t
J <(9tu + ;&,cu + 2(Tu) + 2udu — £02u + G(D(Gu)), u> dr =0,
0

Hy ' (T),H (T)

Using Parseval’s identity, we get that for a.e. 7 € (0,¢)

<(156xu + P(Tu), u> __ (gu T 0u(Tw), 6xu>

Hg '(T),H (T) L2(T)

1
= —2mi Z (5 - ncoth(n5)> u(n) nu(n) =0,
Thus, we have for a.e. 7 € (0,¢)

<18xu + 2(Tu) — ed2u, u> =— <1u + 0z(Tu) — edgu, ﬁxu>

= el|Ozu] 32,
0 Hy L (T), H(T) 0 L2(T) Lo

Qud,u, u>H0—1(’]I‘),H(}(’JI‘) = 2 (ud,u, u)L%(T) =0,

and
(G(D(GU)), w13y grsry = (G(D(GU)), 1) () = | D3 Gul2a):

Hence, (5.2.6) follows at once, and we infer that [u(t)|r2(r) < |uo[r2(r). Using
the standard extension argument, one sees that u is defined on (0, +o0) with u € Yy ¢
for all T' > 0. Furthermore, with the constants Cy and C given in Step 2 for s = 0 and
T = (SCOC’lHuOHLg(T))"l, we get

lu(nT + ) |vp r < 2Co|[u(nT)| z2(zy < 2Couol L2(r)

Step 4. (Global well-posedness in H:(T)). Pick any uo € H3(T). From Proposition
5.2.4 and Step 3, we have that equation (5.2.4) admits a unique solution u € Yy r for each
T > 0, which belongs to T, 1, for some Tj > 0. We will show that Tj can be taken as large

as desired. Let v = dyu. If u € Y p, then v € Y; 1 and it satisfies

1 2 20— _
0p0 + 50pv + 0o (Tv) + 20, (wv)edpv = ~GDGv, 120, zeT (5.2.19)

U(:L‘,O) = UO(w)a reT,
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where
v = (—fsazu@c, 0) — &2(Tu)(,0) — 2uds(u)(z,0) + £02u(x,0) — G(D(Gu) (. 0>) e LY(T).

¢
We rewrite (5.2.19) in its integral form v(t) = S(t)vy — f S(t — 7)(20,(uv))(T)dr, and
define the map ’

C(w)(t) :== S(t)vy — L S(t —71)(20, (vw))(1)dr, for w e Yo .

Similar computations as in Step 2 yields
1
IT(w)llvo.r < Collvollrzery + CLT vy 7 |wlvo s

1
IP(w") = T(?)ly,r < CiT5|w! = w?ly; 1 Julyi s

where the positive constants Cy and C depend only on ¢ for 7" < 1. Therefore, I' contracts
1
in B(0,r) = {w € Yop; |wly,, < r:=2Co|vol 1z}, as long as C’leiHtuw < 3 Its fixed

point gives the unique solution of the integral equation in the ball B. Pick ¢ fulfilling
¢ < min {1, (8COC1HU0HL3(T))_4} -

Hence, from Step 2, we have that |u(nf + )|y, ,, < 2Co|uo] r2(r), for all n € N and that w
can be extended to [nf, (n + 1)f] inductively by using the contraction mapping theorem
(replacing vg by w(0), w(26), ete.). Thus, w is defined on (0, +00) and it holds that

[w(nT + Yo, < 2Co|w(nT) | zm) < (200" ool r. (5.2.20)

By uniqueness of the solution of the integral equation, we have that v(t) = w(t)
aslong as 0 <t < T and v € Yy . From (5.2.20) we obtain that |[v(t)|2(r) = |w(t)|2(r) is

uniformly bounded on compacts sets of (0, +o0), namely [v]y, . < C(T, |[uo| z2(r))[vo] 2(m)-

This is also true for |u(t)]gz(r), by (5.2.4). In fact, using Gagliardo-Nirenberg
inequality two times an Young’s inequality with p (see [54, Page 706]), we note that
1 3
[2udyulzr) < 2lulmo Sxtlacry < 2l sy Nortl
< 2l faory |20l fa oy < 2000l By + 201120 3.
(5.2.21)

Also, using Cauchy-Schwarz inequality with p, one have

GG 3m < Colstlszen 5.2.2)
. . 2.
< CH“HE%(T)”&:%UH%(T) < C'HUHL?)(T) + CMH@%UHL(%(T)‘
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From (5.1.2) and (5.2.4), we infer that
(—=H — €)0%u = —v — K(0u) + 2ud,u — G(D(Gu)). (5.2.23)
Therefore, using (5.2.21)-(5.2.23) and (5.1.4) we obtain that

V1+ 572”@%“(75)\&3@) = |(=H — 5)0926“(75)\&3(@) < C(T, Jluoll zz(ry) lwol gz (ry + Copullwe] L2 (r
+ CﬂHUHzg(T) +(2+ Cgﬁ)ﬂ”aiuHLg(T)-

Taking p small enough, we obtain
lw(®)| 22y < C(T, [uol p2cr)) [uol 2 er)-

Using the standard extension argument, we show that u(t) € H3(T) for all ¢t > 0 with
ue Yy foral T > 0.

Step 5. (Smoothing effect from L}(T) to HZ(T)). A similar procedure as in Step 5
of Theorem 2.1 in [59] prove that

ue C((0,+00), HY(T)) n C*((0, +0), L3(T)).
The proof of Theorem 5.2.1 is complete. O

Next, we prove the propagation of regularity property. The following lemma is

needed.

Lemma 5.2.5. Let N < Z be a set such that for some constant C' > 0,
ny +<{ky < Cln—k), Vne¢ N, Vke N. (5.2.24)

Let P be the projector on the closure of Span{e“m; ke N} in L*(T), namely

P(Zﬂ@%):ZamM%

keZ keN

Let p € C*(T) and let p e N, g € N. Then, there ezists some constant C = C(p,p,q) > 0
such that for all v e L*(T),

105, Plogvlle(ry < Cllvl Lz (r- (5.2.25)
Proof. See Lemma 2.5 in [59]. O
Remark 5.2.6. Condition (5.2.24) is fulfilled for N = N*, and (5.2.25) is true for

P=H = (—i)( Py — Pys).

Using (5.1.2), we have the following result.
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Proposition 5.2.7. Let g € C*(T,(0,+)), e >0, a € R, T'> 0, and R > 0 be given.
Pick any vy € L3(T) with lvollzg(ry < R and let

ve C([0,T]: LA(T)) A L2(0, T3 HY(T)) o C((0, T); H(T)

be such that

O — ’H((?iv) — 6(9%1) + K(0v) + 2av0,v = —=G(D(Gv)), t>0, zeT (5.2.26)
v(z,0) = vo(), reT, B

then there ezists some constant C = C(T') > 0 (independent of €, o, and R) such that
T
1
L | DZv| 7o dt < O(R? + a*R°). (5.2.27)
Proof. Pick any ty € (0,7, and let

(f, CI)@@ = L Lf(x,t)q(x,t)dxdt

denotes the scalar product in L*(ty, T; L3(T)). Let C be a constant which may vary from
line to line and may depend on ¢, T, but independent of ¢y, e, « and R. Note that,

T N ) T
L waLg(T)dt:J (D0, 0) 30y

to

Since T is compact there exists a finite set of points, say x5 € T, i =1,--- , N,
such that we can construct a partition of the unity on T involving functions of the form
i (- —xh) with x7(-) € OF(w). Specifically, there exists N € N such that

0<\i(r—ai) <1, forall zeT and i=1,2,..,N

N .
fo( —z4) =1 on T.
i—1

Therefore,
| b= | (@ -ah) ) Do) ar= 3 | () Du )y
to to i=1 L2(T) i=1"to

(5.2.28)

We shall show that for any x*(-) € C(w) and any z € T there exists a positive
constant C such that

T
J (Xz(g; — x9)Dv, U)Lg(T)

to

1 1
2 4 6 =12

For this, consider ¢(z) = x*(z) — x*(x — x¢), where x? € C*(w) and xy € T.
From Lemma A.4 there exists ¢ € C*(T) such that d,¢(z) = x*(z) — x*(z — ), for all

x € T. Consequently,

(X2(‘r - JJO)D’U7 U)Lg(’]l‘) = (X2(‘T>DU7 U) L3(T) - ((%(p(x)Dv, U)L%(T) :
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Noticing that D = Hd, and using a similar argument as in (2.39) in [59]
(Substituting x by b and a by g) we prove that

JT (X2($)D”’U)Lg(1r)

to

T
f (XQ(x)Hﬁzv,v)Lg(T) < CR%. (5.2.30)
t

0

Therefore, to achieve (5.2.29) it is enough to prove that

|
<O(R +a*R%) + o L |D¥o2 )
(5.2.31)
For this, set Lv := o — Hd%v, f = ed’v — G(D(Gv)) q := —2awdv — Kd,v, and
Ap = p(x)v, we have that Lv = f + ¢. Noticing that L is formally anti-skew-adjoint, we

have that

T
J; (ax@(x)Haxva U)Lg('ll’)

0

T
|| @ep@Dv.0)

0

(1L, Alo,v)2 = (L), )3, — (pLo,0)3.
T

+ ((,02}, L*U)Lf - (LU, (:OU)L% )
0 , T , T

= (QO’U, ’U)Liz ‘

Thus

]([L, Ao, v) Y (5.2.32)

<2 )(f +q,00)

,T

Using Lemmas A.1-A .2, (5.2.6) and the fact that the L*—norm is nonincreasing,

we infer that

(£ 0011 | < 2@, 2(00)) 2 | + [(D(G0), Glgo)) 2,
< Cafo (o] + \6mv]2)dxdt+fT (D%(Gv),¢D%(Gv))L2(T) dt
OTT 0 1 1 0
o) {lie@o 6. e | (pHen ph aow) e

T T T
2 3 2 2
< Cafo 02017 2yt + Cfo | D> (G) [z (mydt + Cgo,,;mr)fo [l zamdt
< O (Iool2yen) — 0D Eyr)) + OF

< CR?.

Also, note that Theorem 5.2.1 is still true when a = 1 is replaced by any value

a € R. Using Parseval’s identity, we note that

+ ‘(K@Iv, ©U) 12

L <27T > mm)@(n)) dt

nezZ*

< ‘(—Qavﬁxv, Pv) 2

[

<5 |2,

(g 0013
(5.2.34)
_|_

From Interpolation inequality for LP—norms (see [54, page 707]) and Sobolev

embedding theorem (see [33, Lemma 1.5]), we have

1 1 1 3
2 2 2 2
[Vl zscry < 0] Z oy 0] Zg ) < C’RszHHO%(T).
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1
Hence, using Young’s inequality with ¢ = SN (see [54, page 622])

m')v 0x0) |,

3

T 1

<clal [ Ioln 0|a|R%Tz (f ol o)
Ho () (5.2.35)

< Onlal*RST + — ||D UHLQ

2N

On the other hand, from (5.1.3), (5.1.8), Young’s inequality (see [49, Theorem
2.2]), and Cauchy-Schwarz, we get

T
I:= f 2 > Kdv(n)@o(n) | dt
to nez*
T —
< J (% > (In] —ncoth(né))(in)i?(n){é*ﬁ(n)> ( > )d,t
to neZ* nez*
T d
< C(;f ( Z ’n‘26_|n| ‘6(n)\H<p]L2(T)v\L(2)(T)> dt + Ox¥ QU dt
to nez* T
T % T
<CR f D1 Infte M) ol 2 pydt + C v? Oy dt‘
to nez* 0 T
< CR2
(5.2.36)
Thus, (5.2.34)-(5.2.36), we have
(@, 00),5 | < O+ Jo'R?) + 1 f Dol (5.2.37)
Finally, note that
[L, Alv = —=H ((3Zp)v + 2(0s0) (020) + @d3v) + H v (5.2.38)

= —[H, p]02v — H((32p)v) — 2[H, 0pp) 00 — 20,00H 0.

From Lemma 5.2.5, and Remark 5.2.6 we have

= ([, ¢l )z <CR:.  (5.2.39)

82()0)1))’ U) L%,ac

|2 (1, eplorw,v) 2

From (A.3), (A.4), and (5.2.37)-(5.2.39) we infer that (5.2.31) holds and

(@M, 0)pp | < C(RE + [al'B) + o

IN HD2UHL2

Therefore, (5.2.29) is proved. From (5.2.28) and (5.2.29) we infer that
T 2 2 46 1R . 2
| Dol < OR? + 'R + 5 | D%y,

where C' = C(T, ). Letting t) — 0 we obtain (5.2.27). O
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Now we turn our attention to prove the unique continuation property. The

following lemma is needed.

Lemma 5.2.8. Let f(z) = Z cne™ x e T such that

nez*

i) Y leal® < 4o,

neZL*

i) 36 > 0, 3k > 0 such that |c,| < ke™°I"l ¥n <0,

iii) dxg € R, e > 0 such that f(x) =0 for a.e. x € (xg — €,z + €).
Then ¢, =0, VYn e Z*.

Proof. Writing
f(l’) _ Z (einmocn)ein(mf:po)

nezL*

we may, without lost of generality, assume that zy = 0. Replacing f by its primitive

Fa) = [ s = 3 el - e,

nezZ* wmn nez

. - c ..
with ¢, = —, for n # 0, and ¢y = — Z — . Note that ¢, is well defined because
in

nez*
>
— < O0.
n2
nez*

Also, Z |én| < +00, by the same estimate. Thus

nezL*

N[
SIS

P (2 w)
nez* nez*

Cn
m

D1E] < 4. (5.2.40)

nez

Let h(z) := Z cn€™, then h is well defined and continuous on the set

nez

D:={z=x+1iy: zeR, 0 <y <d}.

Note that

|G e™| = |Ere™ @t = |6 e, (5.2.41)

From (5.2.41) and i), we have
6™ < kel i 0 <y < 0 < 6, and n < 0,

and

lenle™™ < |én], if0<y<d <4, andn = 0.
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Also, we have that h is holomorphic on D= {z=a+iy: zeR, 0<y<d}. Finally, h
takes real values (since it vanishes) for z =  + 0i, Vz € (—¢, €). From Schwarz principle
of reflection (see [27, Chapter IX ]), h can be extended as an holomorphic function in an
open neighborhood of 0. Therefore, h has to vanish on D, by the principle of isolated zeros
(see [27, Corollay 3.10]). Hence, f vanish on D and ¢, =0, VYn e Z*. O

Proposition 5.2.9. Let a € R, e > 0,6 > 0 ce L*(0,T), and u € L*((0,T); L;(T)) be
such that

{ dru — H(0%u) + Kdpu + ady(u®) —ed?u =0, inT x (0,T), (5.2.42)

u(z,t) = c(t), for a.e. (z,t) € (a,b) x (0,7T).

for some numbers T'> 0 and 0 < a < b < 2m. Then u(x,t) =0 for a.e. (z,t) € T x (0,T).

Proof. Without loss of generality, we can assume that (a,b) = (—pu, p) for some g > 0. In

b
fact, setting u(x,t) = u (m + a—2k7 t> , Y(x,t) e T x (0,T), we still have that @ satisfies

(5.2.43)

Oetl — H(O%U) + Ko U + adp(?) — 0 =0, inT x (0,7T),
u(z,t) = c(t), for a.e. (x,t) € (—p, ) x (0,7),

b
where p = Ta‘ Therefore, if & = 0 for a.e. (z,t) € T x (0,7), then u(z,t) = 0 for a.e.
(x,t) e T x (0,7T).

With this assumption and (5.2.42), we obtain that
Opu(m,t) = Zu(z,t) = (udyu)(z,t) = 0, for ae. (v,t) € (—u,u) x (0,T),

and
—H(%u) + K(0,u) = —0u = —c(t), for ae. (z,t) e (—p,pu) x (0,7T).

Therefore, for almost every ¢ € (0,7), it holds that

Du(-,t) e H3(T), (5.2.44)
u(-,t) =0, in (—u, ), (5.2.45)

and
~H(Pu) (-, 1) + K(Pu)(-,t) =0 in (—p, p). (5.2.46)

Pick a time ¢ as above, and set v(x) = d>u(x,t). Decompose v as
v(z) = > B(n)e™,
nez*

where the convergence of the Fourier series being in Hy *(T). Observe that,

o o(z) = 071 u(x) = f Fuls)ds = 0, Vi & (i, ),

T
0
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1
We define, f :=iv — H(v) + K (0, 'v) — =0, 'v e Hy*(T). From (5.2.46), we have

5"
f(z) = <iv —Hv) + K(0; ) — (155;1?)) (2) =0, in(—p,pu)cT.
Note that
f2) =Y fn)e™, zeT. (5.2.47)

where f(n) =1C,0(n), with C,, = 1 + sgn(n) — (W - coth(né)). Set

n
F(x):=0.°f(z) = Z A(n) e xeT.
nezZ* (Zn)g
Note that, N
0 1(w) = | f(s)ds =0, Yoe (-pp)
0
and

0,2 f(x) = ;1 (0; f(2)) = 0, Ve (—p,p).

Hence, F(z) = 0,°f(z) =0, Va e (—u,p). Since f € Hy*(T), then F € L3(T).
Observe that, for all n < 0,

1F(n)| < Cse 1" [5(n)], (5.2.48)

and using that 0, %v € L3(T), we have

f(n)

(in)?

< (s sup {

nezL*

a/;%(n)‘} el < 0 ety < 0. (5.2.49)

A direct application of Lemma 5.2.8 shows that F' = 0 in T. Therefore, f(n) =0, VneZ*.
Thus,

(1 +sgn(n) — <‘Z’ - coth(na))) 5(n) =0, VneZ".

This implies that v(n) =0, Vn e Z*. Hence v =0 in T.
Consequently, for a.e. t € (0,T), ¢>u(-,t) =0 in T. Hence, for a.e. t € (0,7),
u(z,t) =c(t) inT. (5.2.50)

Finally, substituting (5.2.50) in the first relation of (5.2.42), we obtain that ¢/(¢) = 0 for a.e.
t € (0,T). Therefore, u(z,t) = c(t) = cte =: B a.e.in Tx (0,7T). Usingu e L*((0,T); L3(T))
we have [u] = 0. Consequently, we obtain u(z,t) = =0 a.e. in T x (0,7). O

Here, we state a stabilization result for the e—ILW equation with a decay rate

independent on .
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Theorem 5.2.10. Let R > 0 and 6 > 0 be given. There exists some numbers X\ > 0 and
C > 0 such that for any € € (0,1) and any ug € L3(T) with luollz2(ry < R, the solution of
(5.2.4) satisfies

lu(®) ] L2y < Cei)\tHUOHLS(T)v Vi = 0.

Proof. From (5.2.6), [u(?)]L2(r) is nonincresing. Thus, the exponential decay is ensured if

lu((n + D)T)|z2ery < &[u(nT)|z(r), for some r < 1.

To prove the theorem, it is enough (with (5.2.6)) to establish the following
observability inequality: for any 7' > 0 and any R > 0 there exists some constant
C(T,R) > 1 such that for any ¢ € (0,1) and any ug € L5(T) with luollzz(ry < R, it holds
that

T T
||uO|igm<c(e j |0,u(t) 23 nydt + j \DzGuuigmdt), (5.2.51)

where u denotes the solution of (5.2.4). Fix any 7' > 0 and any R > 0, and assume that
(5.2.51) fails. Then there exists a sequence {u},~1 in L§(T) and a sequence {"},~; in

(0,1) such that for each n we have |ug]|zzr) < R, and

T T

n n n l n

|u0|%gm>n(e | 1o ®lyade + | 106w >%gmdt)-
0 0

Let o = |uglzr) € (0, R]. Extracting a sequence if needed, we may assume that

n

a" — a€[0,R] and e" — ¢ € [0, 1]. Let v" = 4 Using (5.1.2), v" solves
an

O™ — H(%0™) + K(0,0") — ed%0™ + 200" 00" = —G(D(Gv™)) =0, t>0, z€T
{ v"(x,0) = vy (z), zeT,

(5.2.52)

with o7 € L3(T) and |lvgllc2(ry = 1. From Theorem (5.2.1) v" e C([0, 7], L(T)) n

L*(0,T; Hy(T)). Moreover, v" € C((0,T], H3(T)) n C*((0,T], L3(T)).

Thus, we have
1 n 2 n ! n ! 1 n 2 1 ni2
5“"0 (t)”Lg('Jl‘) +e | Ozv (T)”Lg(?r)dT + | |Dz(Gv )(T)”Lg(T)dT = §HUO HLg('E)a vt >0,
0 0

(5.2.53)

and

T T
= 1ol > 0 (& [ 10Oyt + [ 1DHGOBgmat) . (525

From Proposition 5.2.7, we have that

T
1 n
L IDH(G™) Byt < C. (5.2.55)
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)

1
Hence, o7 € HZ". This yields

|G(D(Gv™))] +I(=H =)oz s <C.

20,738, % (1)) 20,738, # ()

On the other hand, for any p > 0

< 1" ary < Cllo" Fary:

n n . 2 n\2
20" 0y HH%L“(T) = [ 0z((v") )HH%LM( < C|(v") HH%L“ T

0 0 ) 0

and from (5.1.4)

@)z < Callont”] s < O < O sy < Ol sy <
Therefore,
[2a"v™ 0, 0™ =, <C,
L2(0,T;:H,* (1))
and

|K (00" <C.

=3 _
L2(0,T;H2 "(T))

=3
Hence, {@;v"}n>1 is bounded in L?(0,T; H,> ~"(T)). Combined with (5.2.55) and Aubin-
Lions’ lemma (see §7.3 in [77] and the references therein) , we obtain that for a subsequence

still denoted by {v"},~1, we have

. . 1
v" — v in L*(0,T; HJ(T)), Va < 3

V" — v in L*(0,T; HG (T)), weak,
v" — v in LP(0,T; L§(T)), weaks,
1
for some function v € L*(0,T; Hg (T)) n L*(0,T; L3(T)). In particular,

{(v™)?*} — v* in LY(T x (0,7)).
Letting n —> 400 in (5.2.54), we obtain that

T
1
| 1D} GOt =0

0
Therefore, Gv = 0 a.e. on T x (0,7). Thus,

vz, t) = J g(y)v(y,t)dy =: c(t) for a.e. (z,t) e w x (0,T) (see (2.0.8)).
T
Note that ¢ € L*(0,T). Taking the limit in (5.2.52), we get

T

0w — H(02) + Kopv + ad,(v?) —ed?v =0, inT x (0,7), (5.2.56)
v(x,t) = c(t), for a.e. (z,t) e w x (0, 7). o

From Proposition 5.2.9 we infer that v = 0. Thus, extracting a subsequence still denoted
by {v"}n=1, we have that v"(-,t) — 0 in L3(T) for a.e. t € (0, T). Finally, using (5.2.53)-
(5.2.54), we infer that v§ — 0 in L3(T) which is a contradiction with the fact that

|lvg [ L2(ry = 1, for all n > 1. O
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Now we define the weak solutions of (5.2.1) obtained by the method of vanishing

viscosity.

Definition 5.2.11. For ug € L3(T), we call a weak solution of (5.2.1) in the sense of
vanishing viscosity to any function u € Cy((0, +0), L3(T)) with u € L*(0,T; HO%(T)) for
all T > 0 which solves (5.2.1) in the distributional sense and such that for some sequence
" \\ 0 we have for all T >0

u" — u in L*(0,T; HE (T)), weak,

u" — u in L°(0,T; L3(T)), weaks,

where u” solves (5.2.4) for e = &".

The following is the main result of this section.

Theorem 5.2.12. Let 6 > 0. For any ug € L3(T) there exists (at least) one weak solution
of (5.2.1) in the sense of vanishing viscosity. On the other hand, for all R > 0 there ezist
some positive constants A\ = A(R) and C = C(R) such that for any weak solution u(t) of
(5.2.1) in the sense of vanishing viscosity, it holds that

lu(t)] 2y < Ce™uo| gary, for allt =0, (5.2.57)

whenever |[uo| 2y < R.

Proof. This theorem is consequence of (5.2.6), (5.2.27) and Theorem 5.2.10 (see Theorem
2.12 in [59)). O

Observe that Theorem 5.0.4 is consequence of Theorem 5.2.12.

5.2.2 Local stabilization in Hj(T)

In this subsection we are interested in studying the stability properties of the
ILW equation with localized damping (5.2.1) in the space Hj(T) with s = 0. We begin by
stating the well-posedness and the smoothing effect results for the linearized ILW equation
with localized damping.

1
G+ <0+ X(Tu) + GDGu =0, >0, zeT (5.2.58)

u(z,0) = ug(x), xeT,

where 6 > 0, and D and G are defined in (5.0.3) and (2.0.9) (respectively). Let s € R and
define

)
with domain D(A) = H™(T) < HS(T).

Au = — (16xu + 0%(Tu) + GDGu) : (5.2.59)
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Lemma 5.2.13. The operator A defined in (5.2.59) generates a continuous semigroup in
HS(T), denoted by {S(t)}i=0-

Proof. Let C' = C(s) > 0 be the constant in Lemma A.5. Note that A — C' is a densely

defined closed operator in Hj(T). Using Parseval’s identity and lemma A.5, we have

1
(Au — Cu, U>Hg(1r) =— <63xu + 2(Tu), u) - (GDGu,u)Hg(T) — (Cu, U)Hg(ﬂr)
H§(T)
= —|D2(Gw) [35¢r) — Cllulgiry
1 s
< —[D2(Gu) ?15(10, Vu e H0+2(T)7

Hence A — C is dissipative. Note that D(A*) = D(A) = H3™(T). Thus,
* _ o s+2
(A*u — C’u,u)Hg(T) = (u, Au CU)Hg(T) <0, Yue H™(T).

Therefore, A* — C' is dissipative and A — C' generates a semigroup of contractions in Hg(T)
by Corollary 4.4 [71, p. 15]. O

In the following result we prove the smoothing effect property. For s > 0 and
T >0, let
1
Zyr = C([0,T]; HY(T)) ~ L*(0,T; Hy "2 (T)) (5.2.60)

be endowed with the norm

|ul z, » = wlLeor;m501) + HUHL oz h

20,1;Hy 2(T))

1
Proposition 5.2.14. Let s > 0, 6 > 0, vy € Hy(T) and q € L*(0,T; Hy >(T)). Then the

solution v of

1 ) _
0w+ 500+ 0A(Tv) + GDGv = g, 1€ (0.T), zeT (5.2.61)

v(x,0) = wvo(), zeT,

satisfies v € Zsp with

mmjsa&ﬂow | (52,62

AL

with C(s,T) nondecreasing in T.

Proof. First we prove the case s = 0. Let T' > 0 and assume that vy € H3(T) and that
q e C([0,T); H3(T)). Therefore, the solution v of (5.2.61) satisfies v € C([0,T]; H(T)) n
C'([0,T]; LA(T)). We use a procedure similar to the proof of Proposition 5.2.7. Using
(5.1.2) we set Lv := v — Ho%v, f = —G(D(Gv)) — K0,v, so that Lv = f + q. Pick any
v € C?(T), and let Av = ¢(x)v. Then

T T
J ([LaA]U7U)Lg(']I‘) dt‘ <2 J (f +a, SDU)Lg(T) dt’ + [l zeo () (”%H%g(ﬂr) + ||U(T)H%g(1r)> :
0

0
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Scaling in (5.2.61) by v yields
1 2 . 2 1 2 '
IOl + [ IDHG Byt = Jlooltyen + [ (@013 07

L, T
< ool + [ lal, g gl 0
Hence,
T
O [ 1DHG) Gyt < Slunliyey+3 [ Tal ol 4t (5269
From and (5.2.63) and similar computations as those appearing in Proposition 5.2.7 (see
(A.4) and (5.2.36)), we get that

T

T 1 T
| <f+q,sov>L3(T)dt]<c|wHgm |, (1040 + 1ol e+ lelioge) | [ el

< O lelmgen) (Tolgen fnqu el )

Thus

T
2
O by (Il + [ 1ol 1ol )

The last inequality combined with (5.2.38)-(5.2.39) gives

T
J ([L,A]U,U)Lg(m dt| <

0

T
O bz (Il + [ 1ol o] 3 ) - (5200

0 0

T
fo (8xg0Dv,v)Lg(T) dt| <

On the other hand, we pick zg € T and x € Cj°(w), where w is given in (2.0.8).
Writing again 6,0(z) = x*(x) — x*(z — 2¢), for all z € T, and using similar computations
as those leading to (5.2.30), we obtain successively, with (5.2.63) that

T T
D2 (v dt < C(T) { |lvo?2 +J 1 vl 1 dt),
| o) @) (Il + [l 31

T T
1
f (X2DU,U)L(2)(T) dt‘ < CJO (”UH%(Q)('JT) + | D> (XU)HZL(Q)(T)) dt,

0
T
2
<o) (Inltgen + [ lal, 3010,

From this and (5.2.64) we infer that
T
< (T 2 1 1 dt .
1) (ol + [l 400,30

Therefore, using a partition of unity and Cauchy’s inequality we get

T T T
1
2 2 2 2
o1 dt < C(T ) + dt | + = v|* 1 dt.
L [ ||HO§(T) ( )(| 0||Lg(11‘) Jo HCJ”HJ%(T) ) Qfo [ HHoé(T)

LE(T)

and

T
2
L (X (x — x0) Do, U)Lg(T) dt
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The last inequality combined with (5.2.63) gives (5.2.62) for s = 0 when vy € HZ(T)

and ¢ € C([0,T]; H3(T)). Using density we obtain the result for all vy € L(T) and
_1

g L'(0,T; H, *(T)).

Next we prove the case s > 0. Pick any vy € Hi*?(T) and ¢ € C([0, T']; H3*(T)),
and let v e C([0,T]; HS**(T)) n C*([0,T]; Hi™(T)) denote the solution of (5.2.61). Set
w = D*v and h = D?q. Note that

D*(GDGv) = GDGw + Fw

with £ = [D*,G]DGD™* + GD[D*,G]D™*. Note that |Ew|zr) < Clw|pzr). Using

(5.1.2) we have that w solves

1
ow + =0, w + 0*(Tw) + GDGw + Ew = h, forte (0,T), and zin T,

5 (5.2.65)
w(x,0) = wy(z) = D%vy(z) € H(T), for z € T.
Scaling in (5.2.65) by w, we have
1d 1
5 ([0 + IDFGu®|ar) + (Buwo,w) paizy = (hyw)
Hence,
1d )
S (0O ) < [(Bro,w) sy | + [ w0) 3| < Clw®)Fgeny + |0 w) gy

Using the Gronwall’s lemma in its differential form (see [87, Theorem 1.12, page 12]) in

the last inequality, we have that
T

T
2 2
[ Tyt < ) (ool + [ 101,3 Holl 1)

Form this, we infer that

T
[ v Bu)gm ] < Clelmmloliorsgm)
T
O elmym) (Hooltgn + [ 11,3 ol g )

Therefore, using the same estimates as in the case s = 0, we obtain

T T
2 2 2 2
b+ C(T + 1 |n dt |,
Jw]? O07:13(T)) fo ”wHHO%(T) ( )(wOLg(T) fo [ HH(;%(T) >

or equivalently,

N

2
H 2(0,T;H,,

2
HUHLOO(O,T;Hg(T)) + [ s+

<o) (Il +1al2, ) (5200

(T)) L2(0,T;H,

Inequality (5.2.66) and the fact that v € C([0,T]; Hy(T)) are also true for
v € H3(T) and q € L*(0,T; Hy 2(T)) by density.

]
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Corollary 5.2.15. Let s > 0, § > 0, and B € L(H§(T)). Then for any vy € Hi(T), the

solution v of

(158361) +2(Tv) + GDGv = Bv, t=0, veT

v(z,0) = vo(z), reT,

5
W (5.2.67)

satisfies v € Zsp with

ZsT < C(S’T> (HUO‘

v Hy(T)) -

Proof. This Corollary is consequence of Proposition 5.2.14 (see Corollary 2.17 in [59]). O

DO | —

Now we prove the local well-posedness of (5.2.1) in H(T) with s >

1
Theorem 5.2.16. Let s € <2, 2] and § > 0 be given. Then there exists p > 0 such that
for any ug € Hy(T) with |uy

admits a unique solution in the space Zs .

Hy(T) < p, there exists some time T > 0 such that (5.2.1)

Proof. An application of the fixed point theorem, together with Proposition 5.2.14 and
1

the Sobolev embedding H;(T) < L*(T) for s > 5 imply this result (see Theorem 2.13 in

[59]). m

1
Finally, we derive a local exponential stability result in H for s > 3

1
Theorem 5.2.17. Let s € (2,2] and & > 0 be given. Then there exist some numbers

p>0,A>0 and C > 0 such that for any ug € Hg(T) with |[uo|msry < p, there is a unique
solution u : (0,4+00) — H(T) of (5.2.1) withwe Zsr for all T > 0 and such that

[u®)]

mzm) < Ce M |uol mzry, Vt =0,

Proof. Similar to the proof of Theorem 2.14 in [59]. O

Observe that Theorem 5.0.5 is consequence of theorem 5.2.17.

5.3 Control of Intermediate Long Wave equation

In this section we study the control properties of the ILW equation. Specifically,

we prove the exact controllability of the system

1
Oiut <0u+ 05 (Tu) + 0u(u’) = Gh, £ (0,T), zeT (5.3.1)

u(z,0) = ug(x), xeT,
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where 0 > 0, D and G are defined in (5.0.3) and (2.0.9) respectively, and h is the control
input. As the contraction mapping can not be applied directly to ILW equation, we
incorporate the feedback —DGu into the control input h to obtain a strong enough

smoothing effect to apply the contraction principle.

Setting
h(t) = —DGu(t) + D2h(t),

we are thus led to investigate the controllability of the system

atu+iaxu+a§<fru>+GDGu+ax<u2)=GD571, te(0,T), zeT (5.3.2)

u(z,0) = ug(x), xeT.

Therefore, we will prove the following local exact controllability result.

1
Theorem 5.3.1. Let § > 0, s € 3 2] ,and T > 0. Then there exists > 0 such that for
any ug, uy € Hy(T) with

luo mz(ry < py walms(ry < p

one may find a control h e L*(0,T; H*(T)) such that the system (5.3.2) admits a unique

solution w in the class Zsr for which u(x,T) = ui(x).

Proof. Following a similar procedure as in the proof of Theorem 3.1 in [59], we prove

Theorem 5.3.1 in two steps.

Step 1. First, we prove the exact controllability of the linearized system

1 5
Oy + S@Iu +03(Tu) + GDGu = GD*h, t€(0,T), zeT (5.3.3)

U(l’,O) :uO(x>7 xeT,

in Hj(T) for s = 0. For this, we use the Hilbert Uniqueness Method (HUM) following the
same approach as in [76, 59]. Observe that this theorem is a consequence of Proposition
5.2.14, Proposition 5.2.9 and the fact that the operator (1 — 02)™2 commutes with 7 (see
steps 1 and 2 in the proof of Theorem 3.1 in [59]).

Step 2. Here we use the fixed-point argument as in [72, 76, 59] to prove the exact
controllability of (5.3.2) in Hy(T). Pick any 6 > 0, s € (;, 2] , and T > 0. We consider

{S(t)}+=0 the semigroup introduced in the Lemma 5.2.13 and Z, 1 the space defined in
(5.2.60). For v € Z 7, we set

w(v) = f S(T — t)(208,0)(t) dt.

From step 1, we have that the linearized system (5.3.3), with initial data ug € Hj(T)
and the control function h € L2(0,T; H(T)), is well-posed and exactly controllable in
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H{(T). Using classical functional analysis argument (see e.g. [25, Lemma 2.48 p. 58]),
we can construct a continuous operator ® : HS(T) — L*(0,T; Hi(T)) such that for
any u; € HS(T) the solution u of (5.3.3) associated with ug = 0 and h = ®(u,) satisfies

u(T) = uy. Let us denote by u = W (h) the corresponding trajectory, i.e.

W (Rh)(t) = u(t) = L S(t — 7)GDzh(r)dr.

From Proposition 5.2.14 we have that W is continuous from L?(0,T; Hi(T))

into Zs 7. Let v e Z;  and choose

h = (I)(U1 - S<T)u0 + w<v))=
then

S(t)up — JO S(t = 7)(2v0,0)(T)dr + W (h)(t) = { Zf Zc i _ E_)r

This suggests that we consider the nonlinear map v — I'(v), where
t
L(v)(t) = S(t)ug — J S(t —71)(2v0,v)(T)dT + W(P(uy — S(T)ug + w(v)))(t).
0

We will prove that I' has a fixed point in the space Z, r. Using similar estimates as in the

proof of Theorem 5.2.16, we obtain that

[w(v)]

< Clv
Zs,T

2
Zs,T

azmy < C H L t S(t — 7)(200,0)(r)dr

and that there are some constants Cy > 0 and C; > 0 such that

IT(v)

Zor < Co (Juol gy + |wallmgmy) + Crllvl, . Yo e Zor,

2

IP(v") = T(v?)

ZS,T g Cl (”Ul

1,2
Zyrs VUL,V E Ly

ZsT + ”U2 ZS,T) Hvl -v

Let B :={ve Z,r; |v|z,, < R}. We choose the radious R in such a way that the ball B

is left invariant by I" and I" contracts in B, i.e.

Co (HU0| Hy(T) + luq | Hg(T)) +C1R* <R,
and
QClR < 1.
R
It is sufficient to take R = (4C;) " and p := o Therefore, the unique fixed-point u of "
0
satisfies u(z,T) = uy and the proof of Theorem 5.3.1 is complete. O]

Finally, note that Theorem 5.0.6 follows at once from Theorem 5.3.1 by letting

h=—DGu+ D2he L*(0,T; Hy 2(T)).
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Concluding Remarks

In this thesis, we considered the Benjamin and the Intermediate Long Wave
(ILW) equations posed on a periodic domain T and proved that the both are exactly
controllable and exponentially stabilizable. These results are in accordance with the
controllability and stabilization results for the KdV and BO equations obtained respectively

in [52] and [59]. From this work, three articles have emerged:

e On the controllability and stabilization of the linearized Benjamin equation on a
Periodic Domain, Nonlinear Analysis: Real World Applications, 51 (2020) 102978
(see [67]).

e On the controllability and stabilization of the Benjamin equation, submitted for
publication and is available in ArXiv:1904.03492 (see [68]).

e On the controllability and stabilization of the Intermediate Long Wave equation on a

periodic domain, in preparation.

Extending these results about the controllability and stabilization to the bidi-
mensional dispersive models is a challenging task. In this direction, consider the bidimen-

sional Benjamin equation
1
oo + Pu — aHoPu — @jlaiu + iﬁx(uQ) =0, (v,y)eT? t=0, (C5.1)

posed on a periodic domain T?.

In order to prove the controllability of the linearized bidimensional Benjamin
equation associated to (C5.1), we tried to follow the approach in [20]. In this approach the
uniform gap condition for the eigenvalues associated to the linear operator 02 —aH 02— \?0, !
for any A € 7Z is required. This gap condition goes to zero when A\ goes to infinity. To
overcome this situation, we tried to use another approach known in the literature involving
for instance the Theorem of Kahane (see page 153 of [46]). However, it was not possible

to prove the exact controllability of the linearized bidimensional Benjamin equation
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associated to (C5.1) using that tool. As far as we know, the controllability of the Linearized

bidimensional Benjamin equation associated to (C5.1) is still an open problem.

Another bidimensional model of interest is the Benjamin-Ono equation
oru — HW(02,u) + udyu =0, (z,y)eT? t >0, (C5.2)

posed on T?, where H® is the Hilbert transform in the z-variable. For the details about

this model we refer to [63] and the references therein.

It is important to point out that, during the development of our doctoral
project we studied the controllability and stabilization properties for the bidimensional
Benjamin-Ono equation (C5.2). In fact, this was the first problem we dealt with. Due
to the lack of the spectral gap condition in higher dimension we could not succeed and
shifted our attention to the Benjamin equation. However, with the knowledge acquired
during the development of this thesis, we think that it might be possible to prove the
exact controllability of the (C5.2) by using the approach in [20]. This is a future work.

Recently, Flores et al. [34, 35], studied the controllability and stabilization
properties for the dispersion-generalized Benjamin-Ono equation in T. As a future work,
we believe it is possible to apply the techniques used in [34, 35] to obtain the controllability

and stabilization for a generalized Benjamin type equation on a periodic domain.

ou — aH* 0pu — BD*™0pu + uPoyu =0, xeT, t>0, (C5.3)
where ﬁz(k:) = |k[*a(k), m = 1, %(k) = —|k[*0(k),0 <7 <m, p>1is an integer

and «, 5 are non negative constants (see [58] and the references therein).
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Appendix

Lemma A.1. Let s,r € R. Let f denotes the operator of multiplication by f € C(T).
Then, [D", f] := D" f — f D" maps any H*(T) into H*""*(T). That is, there exists a

constant ¢ = ¢y depending only on f such that
1D, F16] gorirery < 5 |00 s - (A.1)

Proof. This result is proved in [51] (see Lemma A.1 in the appendix). O

Lemma A.2. Let f € C*(T). Then, there exists some constant C' such that for every
s € R, there exists Cs such that the following estimate holds

[ fol

ey < C vl sy + Cs |0l groma gy (A.2)

for allve H*(T).

Proof. This result is proved in [51] (see Corollary A.2 in the appendix), which follows just
writing

D*(fv) = fD* +[D*, flv,
where [D°, f] :== D* f — f D". O

Lemma A.3. Let f € C*(T) and p. = €<% with 0 < ¢ < 1. Then [p., f] is uniformly

bounded as an operator from H® into H*™' and

H[pﬁa f]UHHS‘H(T) < CS"U’HS(’]I‘),

for all ve H*(T).

Proof. This result is proved in [51] (see Lemma A.3 in the appendix). The proof is exactly

the same as for Lemma A.1 using

2.2

e e < Cn — k| ()7 )T, (A.3)
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because

2 () < c @™ (A4)
]

Lemma A.4. A function ¢ € C*(T) can be written in the form 0,p for some function
p € C*(T), if and only if,

JTgb(I) dx = 0. (A.5)

Proof. (=) Let ¢ € C*(T) and assume that ¢(z) = d,p(x), for all x € T, where ¢ € C*(T).

Then ¢ is a 2r—periodic function. Thus,

qu(w) dx = L@xgo(:v) dr = ¢(2m) — ¢(0) = 0. (A.6)

(<) Let ¢ & C*(T), with
ch(x) d fo”qs(x) iz — 0.

Define .
o) = j 6(s) ds,

for all x € T. Note that ¢(0) = ¢(27) = 0, thus ¢ is a 2r—periodic function in R. Then
by Fundamental Theorem of Calculus we obtain that d,o(x) = ¢(z), for all z € T, and
p e C®(T). O

Lemma A.5. For any s € R, there exists a constant C' = C(s) > 0 such that

— (G(D(Gu)), u)Hg(T) < Cu

1
%{5(11‘) — | Dz (Gu)

ES(TV Yu € H8+1(T)

Proof. See Claim 1 of Lemma 2.2 in [59]. O
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