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Resumo

Nos descrevemos as métricas Riemannianas invariantes numa variedade bandeira real de
uma algebra de Lie classica que é uma forma real normal de uma &dlgebra de Lie simples com-
plexa. Isso nos permite classificar aquelas variedades com a propriedade de que toda geodésica
é a Orbita de um subgrupo a um parametro. Tal variedade é chamada de g.o. Também estuda-
mos o problema de encontrar métricas de Einstein invariantes para variedades bandeira reais
cuja representacao de isotropia se decompoe em dois ou trés sub-representagoes irredutiveis.
Em contraste ao caso complexo, a representacao de isotropia de uma variedade bandeira real
pode ter submoddulos equivalentes, consequentemente, métricas invariantes nao diagonais e uma
grande familia de variedades g.o. aparecem.

Palavras-chave: Variedades bandeira, geodésicas homogéneas, métricas de Einstein, alge-
bras de Lie.



Abstract

We describe the invariant Riemannian metrics on a real flag manifold of a classical Lie algebra
which is a split real form of a complex simple Lie algebra. This allows us to classify those
manifolds with the property that every geodesic is the orbit of a one-parameter subgroup.
Such a manifold is called g.o. We also study the problem of finding Einstein invariant metrics
for real flag manifolds whose isotropy representation decomposes into two or three irreducible
sub-representations. In contrast to the complex case, the isotropy representation of a real flag
manifold may have equivalent submodules, consequently, non-diagonal invariant metrics and a
large family of g.o. manifolds appear.

Keywords: Flag manifolds, homogeneous geodesics, Einstein metrics, Lie algebras.
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Introduction

In this work, we deal with Riemannian geometry of real flag manifolds. By a real flag man-
ifold we will refer the quotient space given by the split real form of a complex Lie group by
some parabolic subgroup. We are interested in the study of geodesics and Einstein Riemannian
metrics in these manifolds.

A real form g of a complex simple Lie algebra is called split if for every Cartan decomposition
g = t @ s, there exists a Cartan subalgebra a contained in s. In this case, we consider the
associated set of roots II and the corresponding root space decomposition

g=00D P ga-

a€cll

Fixing a set II™ of positive roots and taking X its corresponding set of simple roots, we can
parametrize parabolic subalgebras pg C g with subsets © C X (see Chapter (1| for details).
A real flag manifold of g is the homogeneous space Fg = G/Po , where G is a connected
Lie group whose Lie algebra is g and Py is the normalizer of pg in G. If K is the connected
subgroup of G generated by €, then K acts transitively on Fg with isotropy Kg = K N Pg,
so Fg = K/Kg as well. For a fixed element o € Fg, there exists a one-to-one correspondence
between K —invariant tensor fields on Fg and tensors on T,Fg that are invariant with respect
to the isotropy representation of Kg. Thus, the understanding of the isotropy representation
is fundamental in the study of invariant geometry of real flag manifolds. It is important to
highlight a fundamental difference between real and complex flag manifolds. Recall that a
complex flag manifold is the homogeneous space K/Kg, where K is a compact real form of a
simple, complex Lie group G® and Kg is the centralizer of a 1-parameter subgroup of K. In
the complex case, the isotropy representation decomposes into irreducible, pairwise inequivalent
submodules. In contrast, real flag manifolds can admit equivalent sub-representations. This
fact suggests that the invariant geometry in the real case is richer than in the complex case.
Invariant geometry of complex flag manifolds has been extensively studied (see, for instance
[, [2], 4], 5], [6], 17], [12], [15], [16], [18], [24], [26], [27]). For real flag manifolds, topological
and geometric aspects have been considered by several authors ([8], [13], [23], [25], [31]). In
particular, the isotropy representation of real flag manifolds was recently described by Patrao
and San Martin in [22]. This description was essential to get the K —invariant Riemannian
metrics on a flag Fg of a classical Lie algebra (see Chapter [2)).

In the context of Riemannian homogeneous spaces (G/H, g), an interesting class of geodesics
are homogeneous geodesics. A geodesic 7 is called homogeneous if it is the orbit of a 1-parameter
subgroup of G, that is,

Y(t) = exp(tX) - o,
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where X is in the Lie algebra of G and o is a fixed element in G/H. The vector X is called
geodesic vector. An algebraic criterion to decide when a vector X is a geodesic vector was
proved by Kowalski and Vanhecke in [19]. The homogeneous Riemannian space (G/H,g) is
called a g.0. space if every geodesic is homogeneous. Examples of such spaces are naturally
reductive spaces, symmetric and weakly symmetric spaces. The first example of a g.o. space
which is not naturally reductive was given by Kaplan in [17]. In |19], Kowalski and Vanhecke
classified the g.o. spaces in low dimensions. In [14], Gordon described all g.o. spaces which
are nilmanifolds (nilpotent Lie groups provided with left-invariant Riemannian metrics). For
complex flag manifolds, the classification was given by Alekseevsky and Arvanitoyeorgos in [2].
One of our goals is to provide necessary and sufficient conditions for a real flag manifold of a
classical Lie group to be a g.o. space. This will be done using a subtle variation of the criterion
in [19] given by Souris in [28]. In particular, we obtain a large number of examples of g.o.
spaces where the metric is not normal.

Another classical problem in differential geometry is the description of Einstein metrics on
a differentiable manifold M. A Riemannian metric g is an Finstein metric if it satisfies

Ric = ¢y, (0.0.1)

where c is a real number and Ric is the Ricci tensor associated to the metric g. The equation
(10.0.1)) is usually called Finstein equation and the number c is called Finstein constant. Those
metrics are important to study several problems of Geometry and Physics (see [9]). In particu-
lar, they appear as solutions of the Einstein field equations for the interaction between gravity
and space-time in the vacuum. From a variational point of view, we can see Einstein metrics
on a differentiable manifold as critical points of the total scalar curvature functional restricted
to the set of Riemannian metrics of volume 1 (see 9], [11]).

In general, equation becomes a system of partial differential equations. In the con-
text of a homogeneous space provided with an invariant metric, this equation is equivalent to a
system of algebraic equations. A complete classification of invariant Einstein metrics on homo-
geneous spaces is still an open problem. There are examples of homogeneous spaces admitting
infinitely many invariant Einstein metrics up to homotheties (see for instance 3], [29]), in this
case, the isotropy representation has equivalent irreducible submodules. In [11]; Bohm, Wang
and Ziller conjectured that for a compact homogeneous space whose isotropy representation
decomposes into parwise inequivalent irreducible summands, the number of invariant Einstein
metrics is finite. In this work, we study the Ricci equation for real flag manifolds of classical
Lie algebras whose isotropy representation splits into two or three irreducible submodules. The
complex case was studied in [5], [7] and [18§].

This thesis is organized as follows: in Chapter 1, we review the results about the isotropy
representation done by Patrao and San Martin in [22]. Chapter 2 is dedicated to the description
of the invariant metrics on real flag manifolds associated to classical Lie groups. In Chapter
3, we provide a complete classification of real flag manifolds of classical type which are g.o.
spaces. In Chapter 4, we study the problem of finding invariant Einstein metrics for real flag
manifolds of classical Lie groups where the isotropy representation has two or three isotropy
summands. In this situation, we only have two cases admitting equivalent submodules. We
also treat the isometry problem between Einstein metrics (Section 4.5). In Chapter 5, we give
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the main conclusions of this thesis and discuss the important directions of future work.
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Chapter 1

Preliminaries: The isotropy
representation of real flag manifolds

Let g be a non-compact, simple real Lie algebra. We consider the case where g is a split
real form of a complex Lie algebra. A generalized flag manifold of g is the homogeneous space
Fo = G/Ps where G is a connected Lie group with Lie algebra g and Pg C G is a parabolic
subgroup. The Lie algebra pg of Py is a parabolic subalgebra, which is the direct sum of the
eigenspaces associated with the non-negative eigenvalues of ad(Hg), where Hg € g is an element
chosen in an appropriate way. If K C G is a maximal compact subgroup and Kg = KN Pg then
we have and identification Fg = K/Kg. By compactness of K, all flag manifolds are reductive
homogeneous spaces and, therefore, we have a reductive decomposition of the Lie algebra of K
given by

E:E@@m@,

where mg is an Ad(Kg)—invariant complement of o. We fix an Ad(K')—invariant inner product
(+,-) on € such that the reductive decomposition £ = tg @ mg is (-, -)—orthogonal, since Kg is
compact, the adjoint representation of Kg in mg induces a (-, -)—orthogonal splitting

me = Pm; (1.0.1)
i=1

of mg into Kg—invariant, irreducible submodules m;, 2 = 1, ..., s. We say that the submodules
m; and m; are equivalent if there exists an Ad(Kg)—equivariant isomorphism 7' : m; — m;,
that is, Ad(k)]mj ol =To Ad(k)|,,, for all k € Ke. Evidently, this equivalence relation induces
a partition

{ml, ...,ms} = Cl U...u CS with S <s,

so, we have a new (-, -)—orthogonal splitting

s
me = P M; (1.0.2)
i=1
where

Mi: @ my, 221,,5

ijCZ'
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We call each m; an isotropy summand and each M, an isotypical summand of the decomposition
(11.0.1)).

For an alternative description of the parabolic subalgebra we consider a Cartan decompo-
sition g = ¥ & s and a maximal abelian subalgebra a C s. Denote by II the associated set of
roots and by

g=00% P ga

a€ll

the corresponding root space decomposition. Fixing a set IT* of positive roots let ¥ be the
corresponding set of simple roots. Any © C ¥ defines a parabolic subalgebra

Pe=000 P 9.8 P 0o

a€ellt ae(®)~

where (O)~ is the set of negative roots generated by ©. We say that He € a is characteristic
for © if a(Hg) > 0 for every a € ¥ and © = {a € ¥ : o(Hg) = 0}. The subalgebra

Ng = @ a,

acll=\(6)~

is identified with the tangent space of Fg at the origin ePg. If 30 = Centy(Hg), then the adjoint
representation of 3¢ on ng is completely reducible and we can decompose

- o
Mg = @ V@ )
g
into 3o—invariant, irreducible and non-equivalent subspaces.

With this notation we have that Kg = Centx(Hg) and tg = Centy(Hg). The tangent space
at 0 = eKg € Fg is identified with mg and there exists a one-to-one correspondence between
G —invariant tensors on Fg and tensors on T,Fg &~ mg which are invariant with respect to the
isotropy representation of Kg. If H,, a € ¥ and X, € g,, o € Il is a Weyl basis for gc, we
identify ng with mg via

Xo Xo— X_o, €117\ (O)~.

The 3o—invariant subspaces V§ are Kg—invariant but not necessarily Kg—irreducible. In the
following sections we present the description given by Patrao and San Martin in [22] of the
Keg—invariant irreducible subspaces of each V§ and their equivalences by the adjoint represen-
tation of Kg.

1.1 Flags of A

The special linear Lie algebra A; = sl(l + 1,R) is composed by the real (I + 1) x (I + 1)
matrices with trace zero. In this case, a is the subalgebra of traceless diagonal matrices. The
roots are given by a;; = A — A, 1 <i# j <[+ 1, where

Aia— R, )\i(diag(al, ...,al+1)) =a; 1=1, ,l+ 1.
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The simple roots are «; = a;;41, ¢ = 1,...,I. The Lie algebra £ is the set so(l + 1) of skew-
symmetric real matrices of order [ 4+ 1. We fix (+,-) = —(, ), where (-, -) is the Killing form of
s0(l+1). Let m;; be the subspace spanned by w;; = E;; — E};, where E;; is the real (I+1)x (I+1)
matrix with value equal to 1 in the (4, j)—entry and zero elsewhere. The set {w;; : 1 < j <i <
[+ 1} is an (-, -)—orthogonal basis for so(l + 1). For every © C ¥, there exist positive integers
li, .l such that [+ 1 =10+ ...+ 1, and if weset [y =0, l; = ;1 +1;, i = 1,...,r, then O is
written as the union of its connected components as

©=U{or 11 m0p ) (1.1.1)

I;>1

By writing © in this form, we have that K¢ = S(O(l;) x ... x O(l,)).

Proposition 1.1.1. ([22]) For any flag manifold Fg of A;, | # 3, the Ko—invariant irreducible
subspaces of mg are

Mpn = @ w4y LS<n<m<r (1.1.2)
1<i<lm
1<<n
Two such subspaces are not equivalent. [

When [ = 3, we have the following possibilities for © :
e O =10, Fy=50(4)/S(O(1) x O(1) x O(1) x O(1)).
In this case, ¢y = {0} and the tangent space my has a decomposition
my = My D Myz S Mgy S Mys S M3y B My

where all the m;;, 1 < j <@ <4 are Ky—invariant, irreducible and

M, = my @ mys,
My, = m3 @ myy,
Ms; = mg @ my

are the corresponding isotypical summands.
e O ={ai}, Foy = 50(4)/S(0(2) x O(1) x O(1)).
In this case, £{,} = my; and
Myq,} = My3 @ (M3 O Mzz) D (Myo O Myy)
where mys, m3; @ mszp and mys G my; are Ky, y—invariant, irreducible and

Ml = Mys,
M, = (mg ®mg) ® (myy © my)
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are the corresponding isotypical summands.
¢ O = {as}, Fla,) = SO(4)/S(0O(1) x O(2) x O(1)).
We have £,,; = ms3; and
Myn,} = My @ (Mg B myy) B (My3 O myy)
where my;, mg; @ my; and myy & mzy are Ky,,)—invariant, irreducible and

M, = my,
My, = (mgy ®mg) B (mys S myy)

are the corresponding isotypical summands.
e O = {as}, Fla,) = SO(4)/S(O(1) x O(1) x O(2)).
In this case, £{4,) = my3 and
Mya,} = Moy @ (M3 B myy) © (Myg G myy)
where my;, my; @ my; and my3 & myy are Ky,,)—invariant, irreducible and

M, = my,
My, = (mg ®mg) B (mys S myy)

are the corresponding isotypical summands.

0O ={aj,an} or{as, a3}, Fog = S0O(4)/S(O(3)xO(1)) or SO(4)/S(O(1) xO(3)), respectively.

For these sets, the adjoint representation of Kg on mg is irreducible.
e 0= {&1,043}, F{Oéha:s} = 50(4)/5(0(2) X 0(2))

We have E{al,aa} = Moy &) mMys, and m{al,as} = Ml &) MQ, where

Ml:{(% _OB>: BhastheformBz(Z _ba>> a,bER}

and

— T -
MQ:{<2 ég ):BhastheformB=<Z f),a,béR}

are not equivalent K4, 4,3 —invariant, irreducible subspaces.
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1.2 Flags of B

The Lie algebra B; = so(l + 1,1) is the set

0 —a —b
so(l+1,1) = ' A B |egl2l+1,R) : B+BT=C+0C"=0
a ¢ AT

We consider the abelian subalgebra
00 O
a= 0 A 0 |eso(l+1,]) : A=diag(as,...,a;)
0 0 —A

The set of roots is described as follows:
o The long ones £(\; — A;), £(Ai+ X)), 1 <i<j<land
e the short ones £);, 1 <1 <[,
where
0
0
—A

00
Ni: SH=]10 A : A =diag(ay,...,q;) p — R, N(H)=ua;, i=1,..,1.
00

The simple roots are a; = A\; — A1, 1 <@ <[ —1 and o; = A\;. The subalgebra £ is the set of
(20 + 1) x (20 + 1) skew-symmetric matrices

0 —a —a
a® A B |, A+ AT =B+ BT =0.
a© B A

It is isomorphic to so(l 4+ 1) @ so(l). The isomorphism is provided by the decomposition

0 —a —a 0 —a —a 0 0 0
ol A B _ al (A‘;'B) (A;B) + 0 (A-B) _ (AEB)
a@ B A o WUEB) (A+B) 0 _A=B) (A=B)
2 2 2 2
We fix the Ad(K)—invariant inner product (-,-) on ¢ defined by
0 —a —a 0 —c —c 1
a A B |, C D = ac’ — i(Tr(BD) + Tr(AC)). (1.2.1)
a' B A ' D C
The matrices
Uy = Bijeg — Fiier + Eipgret — Btk 1<k<I,
wij = Evying — Brgjagi + EPigiasisg — Bt (1.2.2)

wij = Fiyiringy — Fiagjavi + Briviey — Bigjavss, 1<) <@ <1,
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where E;; is the (20 4+ 1) x (21 + 1)-matrix with value equal to 1 in the (¢, j)—entry and zero
elsewhere, form a (-, -)—orthonormal basis for £.

We take r positive integers 1, ..., [, such that [ = [; + ... + [, and if Iy = 0, I, =1, 1 +1; then

0= J{a;_ i1y tor U{or 4o U{ad (1.2.3)

1;>1 1;>1

Proposition 1.2.1. (/22]) Let Fg be a flag manifold of B;, with | > 5. Then the following
subspaces are Kg—invariant and irreducible:

a)
Vi =span{v;_ ,, :1<s <1},

with 1 <1 <r if a; ¢ ©. All these subspaces are not equivalent.

b)
Win = @ spanfwy,_ i1, ;) and Unn = @ span{u;, 5,45}
1<i<ly, 1<i<lm
1<j<ln 1<j<ln

withl<n<m<rifad©andl <n<m<r—1i o €0. For each (m,n), Wy, and
Upnn are equivalent. We denote by M, = Winn @ Ui

c)
Ui =span{u; 7 1<t <s< Ui}

fori such thatl; >1 and 1 <i<r ifa; ¢ © and 1 <i<r—1if o € ©. All these subspaces
are not equivalent.

d)
(V;)1 = Span{wzrﬂ-i-syzi—l-&-t - u[T71+S7Zi—1+t -1 <8< lr’ 1 <t< ll}
(V;>2 = Span{vzi—l-i-t’ wl~r71+s,l~i_1+t + uir,l+s,l}_1+t 1 S S S lT? 1 S t S ll}
with 1 <17 <7r—1 when o € O. All these subspaces are not equivalent. [

For By, Bs, B, and some subsets © C Y, one can have different equivalences among the
Kg—invariant irreducible subspaces above. Even more, there are Kg—invariant subspaces
different from those in Proposition [1.2.1

Example 1.2.2. Consider the flag of By given by © = {ay, s, az}. Then mg decomposes into
Keg—invariant, irreducible and non-equivalent subspaces as mg = Vi & T} & Ty, where Vi is
defined as in Proposition and

Ty = span{ug + as, Uz — Ugo, a1 + Usa }, To = span{ugy — Uag, Uz1 + Uaz, Ugr — Usa }.
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1.3 Flags of

The symplectic real Lie algebra C; = sp(l,R) is the set

{(é _iT)EQI(Zl,]R) : B—BT:C—CT:()}

and the subalgebra a is given by

A O :
a:{< 0 —A ) esp(l,R) : A:dlag(al,...,al)}.
The set of roots is described as follows:

e The long ones +2);, 1 <7 <[, and
o the short ones £(\; — Aj) and £(\; + \;), 1 <i<j <l

where

i {H = ( [3 _OA ) A= diag(al,...,al)} — R, N(H)=a;, i=1,..,1
The simple roots are a; = \; — \j11, 1 <@ <[ —1 and oy = 2);. The subalgebra £ is the set of
20 x 2l matrices

A -B T _ _ RT _
(4 ) avar-po5r-g

which is isomorphic to u(l), where the isomorphism associates the above matrix to A+ +/—1B.
We fix the Ad(K)—invariant inner product (-,-) on ¢ defined by

(5 0) (5 &) -smen-nuen. sy

The 2] x 2] matrices

Uk = Eipee — B, 1<k <,
wij = Eij — Eji + By — By, (1.3.2)
wij = Fiyij+ Eryi — By — Ej, 1<7<i <

form a (-,-)—orthogonal basis for £. In what follows, we describe the Kg—invariant, irreducible
subspaces. As in the previous section, for each O, take positive integers [y, ...,[, such that
=10+ ..+ and O is written as disjoint union of its connected components as

0= U{a;_1-mai_yyor Ul g U{ad} (1.3.3)

1;>1 1;>1

where lp =0, [;_1 +1;,i=1,..,r. If y & O, then Ko w O(l1) X ... x O(l,), otherwise, we have
Ko % O()) % .. x O(l,_1) x U(l,).
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Proposition 1.3.1. ([22]) Let Fg be a flag manifold of Cy, with | # 4. The following subspaces
are Ko—1invariant irreducible:

a)
Vi= Span{ufi,1+1,l~i,1+1 +.t uiz’:[i}7

withl1 <i<rifa &0 andl <i<r—1if g € ©. All these subspaces are equivalent. Set
My=Vi®..® Vs, where 7 =71 if oy ¢ © and 7 =r —1 if oy € O.

b)
Wmn = @ Spa’n{wi7n—1+iyl~n—l+j} and Umn = @ Span{uzm—l“rl:[n—l“l’] }7
1<i<ly, 1<i<ly,
1<j<ln 1<j<ln

withl<n<m<rifa g®andl <n<m<r—1i o € 0. For each (m,n), Wp,,, and
Upnn are equivalent. We denote Mo, = W @ U
c)

Mrn = @ Span{wir71+iyl~n71+j} @ @ Span{u[r—l-‘ri,[nfl"rj}’

1<i<l, 1<i<l,
1<j<In 1<5<ly,

with 1 <n <r—1, if oy € O. All these subspaces are not equivalent.
d)
Ui = Span{uii71+s7ii71+s - uzi71+8+1yl~i71+5+1 o1 S S S ll - 1} U {uii71+5,l~i71+t o1 S t<s S ll}’

fori such thatl; > 1 and 1 <i<r ifoy € 0,1 <i<r—11if oy € O. All these subspaces are
not equivalent.

Any other pair of subspaces are not equivalent. O

When | = 4, in addition to the subspaces described in Proposition [1.3.1] we have more
equivalent subspaces for some subsets ©. The table below shows the equivalence classes for
the flags Fg of Cy where there exist equivalences and irreducible submodules different to those
presented in Proposition [I.3.1]

© Equivalence classes

0 | {Va, Vo, V5, Vi}, {Wor, Was, Ust, Uss}, { W1, Wao, Us1, Uso }, {Waa, Way, Uso, Uni }
{oq} {Vi, Vo, Va}, {War, Wiy, U1, Usi }, {Wa, Usa }, {U1 }
{ao} {Vi, Vo, Vs }, {Way, Wag, Uar, Usa }, { W1, Us1 }, {Us}
{a3} {Vl,VQ,Vg},{W31,W32,U31,U32},{W21,U21},{U3}

Table 1.
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1.4 Flags of D,

The Lie algebra D; = so(l, 1) is the set

In this case

o= {(3 o ) € so(l,1) : A:diag(al,...,al)}.

The roots are £(\; — A;), £(N; + X)), 1 <i < j <[, where

A {H = ( /3 _OA ) A= diag(al,.,..,al)} — R, N(H) =a;,1=1,..., 1

The simple roots are a; = \; — A\jy1, 2 =1,...,0 — 1 and oy = A\;_1 + ;. The subalgebra £ is the
set of skew-symmetric 2] x 2] matrices of the form

A B T _ T_
(B A),A+A =B+BT=0

which is isomorphic to so(l) @ so(l) via the decomposition

A B A+B A+B> ( A-B A—B)
— 2 2 2

= a A + A A :
(B A) ( +B +B 2B B

2 2 2

We fix the Ad(K)—invariant inner product (-,-) on € given by

<< A B ) < C D )) _ _Tr(AC)%—Tr(BD)' (1.41)

B A D C 2

The matrices
wij = Eij — Eji + Eivigyg — Eigjisi

. ) 1.4.2
iy = Fipij — Eigi + Eiyy — B, 1< <0< ( )

form a (-, -)—orthogonal basis for €. Given © C ¥, we take [y, ..., [, as in ((1.2.3)).

Proposition 1.4.1. ([22]) Let Fg be a flag manifold of Dy, | > 5. Then the following subspaces
are Kg—invariant and irreducible:

a)

Winn = spanfwy o7t 1<s <y, 1
Upn =span{u; o7 i1 <8<y, 1

ln}?
I},

IAIA

<
<t

withl<n<m<rifaq¢e¢0,1<n<m<r—1lifa,q €0 andl <n<m<r—2if
a; € © and ;1 ¢ O. For each (m,n), Wy, is equivalent to U,,,. We set My = Win @ Upn-

b)

Up=span{u; . 1<t <s<I},
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withl; >1,1<i<rifa,¢0,1<i<r—1lifa,qq1€0andl1 <i<r—2ifa, €0 and
;1 ¢ ©. All these subspaces are not equivalent.
¢)

M,, = @ span{w[r_ﬁsjn_ﬁt} a5 @ span{ul;_ﬁsjn_ﬁt},

1<s<l, 1<s<l,-
1<t<ly, 1<t<ly,

with 1 <n <r—1 when o € © and a;_1 € ©. All these subspaces are not equivalent.

d)

M, =span{w; , .7 1 <s<lq, 1<t<IlfU{y; 1<t <1},

N, = Span{ul;_ﬁsjn_ﬁt 1<s<lq, 1<t<I[,}U {wl,in_1+t 1<t <l,},

with 1 <n <r—2 when oy € © and ay_1 ¢ O. For each n € {1,....;r — 2}, M,, is equivalent to
N,,. We set S,, = M,, ® N,,.

€)
— span{ul;_ﬁsjr_ﬁt 1<t<s<l._1}U {wljr_ﬁt 1 <t<l_1},
when oy € © and ay_q ¢ O. O

The case | = 4 is different from the general case since ¢ = s0(4) @ s0(4) decomposes into
four copies of so(3) which yield new invariant subspaces.

Example 1.4.2. Consider the flag Fio, as,05) 0f Ds. The isotropy representation decomposes
into two non-equivalent Ky, o, .51 —1%nvariant irreducible subspaces given by

Ty = span{ug + Usz, Ug1 — Uaz, Us1 + Usz} and Sy = span{usz — Us1, Ug1 + Uaz, Usy — Usa }.
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Chapter 2

Invariant Riemannian metrics

It is known that there exists a one-to-one correspondence between K —invariant metrics on
Fo = K/Kg and Ad(Kg)—invariant inner products g on mg, that is,

g(Ad(k) X, Ad(k)Y) =g(X,Y) forall k € Kg, X,Y € mg. (2.0.1)

For every such g, there exists a unique (-,-)—self-adjoint, positive operator A : mg — mg
commuting with Ad(k) for all k € K¢ such that

g(X,Y) = (AX,Y) for all X,V € mo. (2.0.2)

Any Ad(Ke)—invariant inner product is determined by such an operator. We call A the metric
operator corresponding to g. We will make no distinction between ¢ and its metric operator A.
If we consider a (-, -)—orthogonal ordered basis B = B; U ... U Bg adapted to the decomposition
(1.0.2)) such that for every i, all vectors in B; have the same norm with respect to (-, ). Then,
any metric operator A can be written in the basis B as a block-diagonal matrix of the form

(Al )8, 0 . 0
(Al = ? [A‘Af"’]& . ? (2.0.3)
00 Al
If M; =m;, & ... m,,, then [A|y]5, has the form
p L, BL ... BL
[A|v; B, = B.21 M2I_mi2 ‘ B.gé (2.0.4)
e B ol

where BL represents the transpose of B, and gy, ..., i, > 0. We shall use the facts above
and the results presented in Chapter 1 to obtain the invariant metrics on classical real flag
manifolds.
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2.1 Flags of 4

Recall that, for flags of A;, we are considering (-,-) as the negative of the Killing form of
s0(l+1). Let © C ¥ written as in ((1.1.1]), by Proposition [1.1.1} we have that

me= P Mun, (2.1.1)

1<n<m<r
where the subspaces M,,, are described in (|1.1.2)).

Proposition 2.1.1. Let Fg be a flag of A;, | # 3. Then, every metric operator A is determined
by w positive numbers fy,, 1 <n <m < r such that

Al = g, 1<n<m <7 (2.1.2)

Proof. By Proposition [I.1.1] we know that the subspaces M,,, are Kg—invariant, irreducible,
(+,-)—orthogonal and pairwise non-equivalent. Let B be any (-, -)—orthogonal basis adapted to

(2.1.1]), then every isotypical summand M,,, is irreducible, by (2.0.4)) we have that Ay, is a
positive multiple of the identity map for each (m,n), so we have the result. O

Now, consider the case when [ = 3. For each © C ¥, we fix an ordered (-,-)—orthogonal
basis for meg:

By = {w21, Wy3, W31, W42, W32, w41},

B{al} = {w43, W31, W32, W42, w41},

B{az} = {w41, Wa1, W31, W43, w42},

Byasy = {wa1, w31, War, Waz, w32 }, (2.1.3)
B{al,az} = {U}41, Wy2, w43},

B{az,as} = {w217 W31, w41},

Biayasy = {wsi — Wiz, Wy + w3, ws1 + Wag, Wy — Wz}

Proposition 2.1.2. Let A be an invariant metric on a flag Fg of As. Then, A is written in

the basis ([2.1.3)) in the following form:

0 0
T ?) 0 0 0
2
As=| o o Lod o | re=0
o 0 0 0 u¥ by
0 0 0 0 by u?
0 0 0 0
o ¥ 0o b 0
[Alg, = 0 0 ,L?) 0 —=b |, ifO={a1},{aa} or{as},
o b 0 uP 0
0o 0 b 0 u?
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w0 0
Algo =1 0 p 0 |, if©={a1,a2} or {as, a3},
0 0 w
w0 0 0
0 wm 0 O e
[A]B{Délva:a} - 0 0 Lo 0 ) Zf@ - {OZl,CY?,},
0 0 0 o

@)
J

Proof. For © = 0, {a1}, {az2}, {as}, {a1, @z} and {as, a3}, it is obvious from (2.0.3)), (2.0.4)
and the description of the isotypical summands given in chapter 1. When © = {a; }, we have
that A is written with respect to By,,} in the form

where the numbers p;’, p and p; are positive.

70 0 0 0
0 uw? 0 b d
A, = 0 0w’ ¢ e
0 b c ,qu) 0
0 d e 0 ,ug)
Given k € Ko,3 = S(O(2) x O(1) x O(1)), we have that k has the form
r s 0 0
t v 00
k= 00 v 0|
00 0 =z

where its columns are orthonormal and det(k) = 1. It is easy to verify that

vz 0 0 0 O
0O vor vs 0 O
0O ot vu 0 O
0 0 0 2u =zt
0 0 0 zs zr

[Ad(k)]B{al} =

Since A commutes with Ad(k) for all k € K4y, then forr =t =u=—s = % andv=z=1
we have

[A]B{al}[Ad(k>]B{a1} - {Ad(k)]B{al}[A]B{al} =0

0 0 0 0
c—d bte
o0 o o
00 0 T —x |=0
0 <4 bte 0 0
V2 V2
0 _bte c—=d 0 0

3
S
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thus, b= —cand c=d. lf r=v=—-u=—z=1and t =s =0, then

[A]B{al}[Ad(k)]B{al} - [Ad(kj)]g{al}m]lg{al} =0

0 0 0 0 0
0 O 0 0 —-2d
— |00 0 2 0 |=o0,
0 0 —2¢ 0 0
0 2d 0 0 0
hence ¢ = d = 0, as we wanted to prove. Analogously for © = {as} and © = {as}. O

2.2 Flags of By

In this section, we consider [ > 5 and fix (-,-) as in (1.2.1)). Given © C X, we take Iy, ..., 1,
satisfying (|1.2.3)).

Proposition 2.2.1. Let © C X, and | > 5.

a) If a; ¢ O then

Be = <L:J1 Bo,l) U (KREJMT an> U (ZEJI BZ-) (2.2.1)

is a (-, -)—orthonormal basis for mg adapted to the subspaces of Proposition|1.2.1. Where
Bo,i = {U[i_lJrs 1<s< li} ;
B = {wfm71+s,l~n71+t cs=1,00ly, t=1,..,0,}U {u[m,l—&-s,fn,l—l-t cs=1,00ly, t=1,..,0},
B; = {uf¢,1+s,l~i,1+t 1<t<s< li} .

b) If oy € © then

Bo = (g (B U (BZ-)2> U <1< U _1an> ol U s (2.2.2)

1;>1

is a (-, -)—orthogonal basis for mg adapted to the subspaces of Proposition|1.2.1. Here B,,, and
B; are as before and

(B’L>1 - {wir_1+3,l~i71+t - ul}_1+s,l~¢,1+t 01 S S S l’f” 1 S 13 S lz} )
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Proposition 2.2.2. Fvery invariant metric A on a flag of By, | > 5 is written in the basis of
Proposition |2.2.1] in the following form:

a) If ay ¢ © then

=pu VL, 1<i<r,

)\&mn) IWmn bmn I
[Al M| B = , 1<n<m<r,
bl A1
Alp=791y, 1 <i<randl; > 1.
b) If oy € © then

A‘(Vi)lz p(i)[(‘/i)17 l<i<r—1,

(Vi)2= M(i)[(Vi)w 1<i<r-—1,

)\&mn) [Wmn bmn I
[A] M| B = , 1 <n<m<r—1,
bl AL

A|U— ]U,1<z<r—1andl>1

Proof. Due to (2.0.3)), (2.0.4) and Proposition [1.2.1] it is enough to prove the result for A|yy,,,.
By (2.0.4) we have
Ay, BT

Let us take

1 0 O
k= 0O PO € K¢
0 P

0
where det(P) = 1 and P is a block dlagonal matrix
Py
0 Pg e
P = , PreO(l;) fori=1,..r.
0

If Pz = (pit)lini ’ then
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Im Iln
Ad(k)wimfl"'sjnfl"l‘t = Z Z pg;pq}t w[m,1+67in71+f
e=1 f=1
and
Im In
Ad(k)ufm_1+s,fn_1+t = Z Z pzp}Lt uim_1+e,[n_1+f’
e=1 f=1

Also, we have that for every (s,t) there exist a set of real numbers {05 : 1 <e <1,,, 1 < [ <.}
(each b%% is an entry of the matrix B) such that

— \mn),
Awlm 1+s, ln 1+t - )\1 lm 1+s, ln 1+t _'_ Z Z bef ulm 1+e, ln 1+f7
e=1 f=1
SO
m lTL
Ad(k) © A wZ7n71+Syl~n—l+t = Z Z espft Im—1+te, ln 1+f
e:l =1
i 17
+ Z Z bgfpgp?f mel‘i’éjnfl‘i‘f
and
() 5 X
mn
Ao Ad(k)wy, \voi v = MDD PRPE WL, el 1y
e=1 f=1
m n f
+ ~Zl ~Z bep:prt ulm 1+€ ln 1+f
€,6= fvle
Since A commutes with Ad(k) then
lm  ln In s
t e
> bk, = Z > b, (2.2.3)
e=1 f=1 e=1 f=1

for 1 < s,é <l, and 1 <t, f <1,. Fixing s,t, &, f, we shall show that bi? =0 if (s,) # (&, f).
First, we suppose r > 2. By taking P,, = diag(1,..,1,—1,1,...,1), with —1 in the (&, &)—entry,
P, = diag(—1,1,...,1) for some i ¢ {m,n} (which exists because r > 2) and P; = I, for
j ¢ {m,i} we obtain

st __ pst
—b%F = 0Zepis-

Since pt = 1 for s # &, then bz; =0if s 7é é. By taking P, = diag(1,...,1,—1,1,...,1), with
—1 in the (f, f)—entry, P, = diag(—1,1,...,1) for some i ¢ {m,n} and P; =1for j ¢ {n,i} we
have

b = b,

Again, pj. = 1 for t # f, then b = 0 if t # f. We conclude that bSt =0if (s,t) # (¢, f). If
r=2then m =2, n=1and we ﬁave two possibilities:

e [; > 2: In this case, we take P, = diag(1,...,1,-1,1,...,1) and P, = diag(1,...,1,-1,1,...,1),
where P, has —1 in the (€, é)—entry and P; has —1 in the (j, j)—entry for some j ¢ {f,t} and
we obtain from (2.2.3]) that
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2
ss*

_ st pst.
béf béfp
Then s # ¢ = bj} = 0. For s = &, we take P, = diag(1,...,1,—1,1,....;1) with —1 in the
(é,é)—entry, P, = diag(1,...,1,—1,1,...,1) with —1 in the (f, f)—entry and therefore
bg} = _bgj?ptlta
Sot;«éf:>b§;~:0.

o [y <2:Sincel >5and l; + [, = [, we have that [, > 2 and we can proceed analogously as

before.
We conclude that bz; =0 of (s,t) # (¢, f), thus equation (2.2.3) becomes

biﬁpgp}i - bzgpgp}}t' (2.2.4)

By taking P,, € SO(l,,,) with non-zero (€, s)—entry and P, € SO(I,) with non-zero (f,t)—entry,
we have that b5t = bi; —: by for all s, ¢, ¢, f. Hence

B - _ (mn) B B B
Awp el = A WL gt T Do UG e

and B = b,,,,1. ]

2.3 Flags of (

We consider the invariant inner product (-,-) given in (1.3.1)) and I, ..., 1. as in (1.3.3).
Proposition 2.3.1. Let © C X, [ #4, oy ¢ © and 1y, ..., 1, as in (1.3.3). Then

B=B,u|l U Bm|U|lUB (2.3.1)
1<n<m<r lz:>11

is a (-,-)—orthogonal basis for mg adapted to the subspaces of Proposition where

1

By = {\/l» (ul}q-l—l,l},l—i-l + ...+ uijj) 17 =1, ...,7’} )
j
Bon ={w;, voi e 5= ilm, t=1 0 0{u; i is=1 0l t=1,..10}

S
_J1 i i o ) e — o ~ . : ,
B; = {s El Uf el it — Ui tsitlqast1 - S = Ll 1} U {uli_1+s,zi_1+t 1 <t<s< lz} )

If oy € ©, then i extends only over {1,...,r — 1}. ]

Proposition 2.3.2. FEvery invariant metric A on a flag of C;, | # 4 is written in the basis

(2.3.1)) in the following form:

a) If a; ¢ O then
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(0)
j%5) o1 Q31 ... Qp
(0)
a21 Mo ass ... QGpo
— (0)
[Almols, = | as1 ase py” ... am |,

0

Qr1 ar2 QA3 Ce ILL1(n )

/”L 1 [Wmn bmn ]

[A|an]8mn -

[Alg]s, = pD Ty, 1<i<randl; > 1.

b) If oy € © then

(0)
M1 a21 asy ... Qp_11
(0)
21 125 a32 cee Gpo12
(0)
[A|M0]Bo = asq a3 U3 cee Qp13 ,
(0)
Qr—11 Ar-12 QAr-13 ... Hpq

(mn

= , 1<n<m<r—1,

[A‘Mrn}srn = lLL(rn)IMrn7 1 S n S r— 17

[Alg]s, = pDLy, 1<i<r—1andl; > 1.
Proof. Case 1. oy ¢ ©.

By (2.0.3)), (2.0.4) and Proposition [1.3.1] we only have to prove the result for Al . In fact,
we know [A|y,, ]5,,, has the form

(mn)

i Tw,,, BT

[A] My | B =
B w1,

Given k € Ko déf' O(ly) x ... x O(l,), we have that k has the form
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where P is a block diagonal matrix

P O ... 0
o B ... 0

P = L |, PeOl;) fori=1,..,r
o o0 ... P

Writing P; = (pl;), ,,, » We can easily verify that for any pair (s,t) with 1 <5 <1,,, 1 <t <1,

lm  ln
Ad(k)w[mfl‘f'sjnfl‘i‘t = Z Z pg;p’rflt w[mfl+eyz~nfl+f (232)
e=1 f=1
and .
Ad(k)uzm—1+57in—l+t = Z Z p:;p?t uim—1+€7l~n—1+f' (233)
e=1 f=1

Because of the form of Aly,,  , we also have that for every (s, t) there exists a set of real numbers
{b?} 1<e<l,, 1< f<I,}such that

lm  ln
Aw[m,1+s,l~n,1+t = /Jl:(lmn)wlm 1+s, ln 1+ _I_ Z Z bef ulm 1+te, ln 1+f (234)
e=1 f=1
From ([2.3.2), (2.3.3) and (2.3.4)) we get
Ilm  In
Ad(k) © A wZ7n71+Syl~n71+t = Mgmn) Z Z pgp?t wim71+e,[n71+f
e=1 f=1
Im In
+ Z Z 2?pgp7flf ulm 1+é€, ln 1+f
é,e=1 f}f 1
and
Ilm  n
Ao Ad(k) Catsln 1t T Z Zpespft wi,,, 1+eln_1+f
efl f=1
+ Z Z b~fp€5pft ulm 1+e ln 1+f
é,e= 1ff 1
Since Ao Ad(k) = Ad(k) o A, then
lm  ln Im  In s
st, m,n e m
Z Z befpeepff Z Z befpespft7 (235)
e=1 f=1 e=1 f=1

for1 <s,e § lm, and 1 < ¢, f < 1,. Fixing s,t, ¢, f, we shall show that b;‘} = 0if (s,t) # (¢, f).
Equation (2 is true for every k € Kg in particular, if P,, = diag(1,..,1,—1,1,...,1), with
—1 in the (€, ) entry and P, = I, ¢ # m we have

b = b:'}pgg.
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Since p™ = 1 for s # €, then b?} =0 if s # é. By taking P, = diag(1,...,1,—1,1,...,1), with —1
in the (f, f)—entry and P, =1, i # n we have
—b?} = bz}pg.
But pj. = 1 for t # f, so bz; = 0if t # f. We conclude that bz; = 0 of (s,t) # (&, f), whereupon
equation becomes ~
biipE}, = VopE,. (2.3.6)

By taking P, € O(l,,) with non-zero (€, s)—entry and P, € O(l,) with non-zero (f,t)—entry,
we have b5 = bZ; = byn for all s,t, ¢, f. Hence, equation (2.3.4) implies

- - — lmn), - - -
wlm71+37ln71+t - Ml wlm71+syln71+t —I— bmn ulm71+5,ln71+t' (237)

as we wanted. The same argument works for the case a; € © considering that
O(ly) X ... x O(l,) CO(ly) X ... x O(l,—1) x U(l,) = Ko
O

Consider [ = 4, © and its corresponding Kg—invariant spaces in Table 1, we fix the following
orthogonal bases:

.BQ):BQU81UBQU83 where

By = {U11,U22>U33,U44},
By = {wa1,was, Uz, uas},
By = {w31, W42, U31, U42}>
By = {w32, W41, U32, U41}7

which is adapted to the isotypical summands

My = VieaVa®dVsdV,,

N, Wao1 @ Wyz @ Uay @ Uys,
N, Wi1 @ Wy @ Usy @ Uyg,
N3 = Wi @ Wy © Usy @ Uy

® Bin,y = By UB; UB, U B3 where

By = {%(U11+U22),U33,U44}7

B = {w31, W32, W41, W42, U31, U32, U41, U42}>
By = {w43, U43}>
By = {Uzh Uil — U22}7

which is adapted to the isotypical summands

My = Vi®Va® Vs,

N = Wy @ Ws @ Uy @ Us,
M = Wiy @ Us,

Uy
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L4 B{QQ} = BO U Bl U BQ U Bg where

By = {U11,%(U22+U33),U44}7

B = {w217 W31, W42, W43, U21, U31, U42, U43}7
By = {w41, U41}7
By = {U32, U22 — U33}7

which is adapted to the isotypical summands

My = Vi Vo Vs,

N = Wy @ Wi @ Uy @ Usg,
M = Ws3 @ Us,

Us,.

® B{QS} = BO U Bl U BQ U Bg where

By = {Un, U39, %(U&% + U44)} ;

B = {w317 Wy1, W32, Wy2, U3, Ugq, U32, U42},
By = {w217 U21}7
By = {U43, Uzz — U44}7

which is adapted to the isotypical summands

My = ViV Vs,

N = W3 @ Wiy ® Uz @ Usg,
M = Wy @ Uy,

Us.

Proposition 2.3.3. Let A be an invariant metric on a flag Fg of Cy where © is in the Table
1.

a) If © =, then A is written in the basis By as

(0)
251 Gz1 Q31 A4

(0)
A . G21 Mo a3z Q42
[ ’ Mo ] By — (0) )
aszr Qs2 U3 Q43
(0)
aq41 Q42 Q43 [y

Iugi) (()') bgi) ?’)
0w’ 0 by .
Ni]Bi = b(l) O (z) 0 , 1= 1, 2, 3
1 H3

0 b 0wy

A
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b) If © = {an}, {aa}, or {as}, then A is written in the basis Bg as

(0)
251 Q21 Q31
[A|M0]Bo = 21 Méo) 32 )

asy a3 M:(;O)

Moo 0 0 b 0 0 0
0O N 0 0 0 N 0 0
0 0 w 0 0 0 Y 0
Alnls, = 0 0 0 w 0o 0 0 by
: Wwoo 0o 0 w0 0 o0 |’
0 W 0 0 0 w 0 0
0 0 ¥ o0 0 0 ¥ o
0 0 0 b 0 0 0
Y
Ao, = (41 1),
Alp=p91;, i=1,2,3 (if© = {a;}).

Proof. a) For each i € {1,2,3} we write A

N, in the basis B; in the form

T
b s by b
by b5 ug bl
o b bl

[A

Ni]Bi =

Given k € Ky déf' O(1) x O(1) x O(1) x O(1), we have that k has the form

P 0
(5 h)

where P = diag(p1, p2, ps, pa), pi = £1, i = 1,2,3,4. Tt is easy to see that

DPii Piy 0 0 0
o 0 DisDiy 0 0
O R
0 0 0 pispi,

where {iy, 12,173,714} = {1,2,3,4}. Since A commutes with Ad(k) for all k € Ky, then
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0 —b) 0 by
S0 b0
0 —bly 0 —biy
() )

o0 bY 0

<:>(pi3pi4 - pi1pi2)

Taking —p;, =1 = pi, = pi; = pi,, we can conclude that b((fb) = 0if (a,b) ¢ {(3,1),(4,2)}.

Defining " := b{) and b’ := b{J, we have the result.

b) Let us consider © = {ay}. Again, it is enough to show the result for A|y. We know that

A|y is written in the basis By in the form

pmo 0 by by by by by
R O
by by om0 by bgy Doy

ISP I S T
' by bgy bsz by p 0 bz

bgr b bey b O opgt by
byy by, brg by by brg oy

b o Y Y Y o
dif.

Given k € Koy &~ O(2) x O(1) x O(1), k has the form
r s 0 0
P 0 . t uw 0 0
k:—(o P),Wlthp— 00 v 0
00 0 2

where the columns of P are orthonormal. Then

vr o vs 0 0 O 0 O
vt o vu O O O O O
0 0 zr zs 0 0 O
0 0 2zt zu 0 0 O
AdB)INE =1 0 0 0 0 wr ws 0
0O 0 0 0 vt vu O
0O 0 O 0 0 0 er
0O 0 0O O 0 0 =zt

For - r=1=u=v=zand s=t=0

[Aln]s [Ad(F)[n]s, — [Ad(K)|v]s, [Aln]s =0

0 0 208 0 200 0

0 —2vf, 0 =208, 0 —2b%
0 26}, 0 0 0 26}, 0O

=2 0 0 0 =2, 0 —2bN
0 268, 0 268, 0O 0 0

—2bN 0 =2 0 0 0 —2b
0o 208, 0 28, 0 2f 0

=200 0 =23, 0 =20} O 0

O OO OO oo

ZU

263
0
2b%%
0
2bl;
0
0
0
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therefore b, = b} = b, = bl = by = b, = b, = b0, = b, = bY) = b3 = bl = 0. By taking

r=u=z=1=—vand s =t =0, we have

[Aln]s [Ad(F)[n]s, — [Ad(K)|v]s, [AlN]s =0

0 0o 22X 0 0 0 2 0
0 0 0 2N 0 0o 0 2y
—208, 0 0 0 =28 0 0 0
0 —2% 0 0o 0 -2 0 0 |
1 o0 0 2% 0 0 o wy o |79
0 0 0 2 0 0 0 2
¥ 0 0 0 -2 0 0 0
0 -2 0 0 0 -2¥ 0 0
which implies b3 = b}, = bl = b, = b = bl = b, = b, = 0. Ifr:s:t:—u:%and
v=2z=1, then
[Aln]s, [Ad(K)|n]s, — [Ad(K)|n]5, [AlN]B, =0
0 0 0 0 0 Bt 0
N —pN v2
0 0 0 0 0 0
0 0 0 0 0 0 0 b%}”éﬁ
2
0 0 0 0 0 A i T
< bN —bN \/i — 0,
0 Bk 0 0 0 0 0
bN;;N 0 0 0 0 0 0 0
0 0 0 Mmoo 0 0 0
0 0 Edmo 0 0 0 0

thus, b = b3, =: bY¥ and b, = b2, =: bYY. The cases © = {a,} and © = {3} are analogous. [

2.4 Flags of D,

For this section we consider (-, ) as in (1.4.1) and for each © C X, take [y, ..., [, as in (1.2.3)).
Proposition 2.4.1. Let © C X and [ > 5.

a) If oy ¢ O then

Bo = ( U an) U (U Bi) (2.4.1)

1<n<m<r 1;>1

is a (-, -)—orthonormal basis for mg adapted to the subspaces of Proposition where
B ={wp, oi a1 S8 <l 1<t <L} Uy, o7 i 1SSy, 1<}

and
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Bi={uj_ o, 1<t<s<l}, 1<i<r

If we have {a;_1, 4} C © instead of oy ¢ © then i extends only over {1,...,r — 1}.

b) If y € © and a1 ¢ O then

r—2
Be = ( U an>u U B u(U B%uBﬁ)uBV, (2.4.2)
n=1

1<n<m<r-—2 1;>1
1<i<r—2

is a (-,-)—orthonormal basis for me adapted to the subspaces of Proposition where By,
and B; are as before and

BM = {wi L ysi i 1< <y, 1<t <L U{yg, 401 <t <y},

BN = {up yosi i 1<s<ly, 1<t <L }U{w; ., :1<t<Il},

n

BY ={u; i 1<t <s<bLayU{wy; ,,:1<t<1 4}
O

Proposition 2.4.2. Every invariant metric A on a flag of D;, | > 5 is written in the basis of
Proposition |1.4.1] in the following form.:

a) If oy ¢ ©
AN Ly bl
[Alpn B = 1<n<m<r,
bl A I

A|Ui: ’}/(i)]Ui, 1<i<randl; > 1.

b) If {ay—1,4} C O
Ny
[Al M| Bonn = 1<n<m<r-—1,
bl A1

A|Mm: )\(rn)]]wm7 1 S n S r — 1,

A‘Ui: ’)/(Z)[Ul, 1<i<r—1andl; > 1.

¢) Ifoy €O and ay_1 ¢ O
A e byl
[Al Mo B = ,1<n<m<r—2,
bl A,
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Alp=791y,, 1 <i<r—2andl; > 1,

)\(7‘—1,7’1) I bs‘l_)l’n[ 0
Lo 0 2.1
[Als, |syusy = l1<n<r-—2
bf“l—) I 0 r—1n
PRNC S S %
r—1,n

A‘Vr—lz fy(r_l)]-vr—l ‘

Proof. We have the result for U;, for M,,, when {a;_1,q} C © and for V,_; when o; € © and
a1 ¢ O, because these subspaces are Kg—invariant, irreducible and not equivalent to any
other. For M,,,, let us take

P - 0
k=1 : . 1 | €Ke,
0 --- P
where P; = (p',)1,x;; € O(l;) and det(P) = 1, then
b
Ad(k>wl~m,1+s,in,1+t = Z; fz:lpgp?twimﬁe,l}ﬁf

and
I In
Ad(k)u[mfl‘f'sjnfl"l‘t = Z Z pz‘;p?tuszl“rejnfl“!‘f.
e=1 f=1
There exist real numbers A" > 0 and b} such that

lTn, ln

B B __y(mn) . st B
AW it = AL Wi st T Z Z O2pUi, e it

e=1 f=1

SO

(mn) =

mn

Ad(k) e} szm71+s,[n71+t == A1 Z Z p:;p?t wim,1+e,in71+f
e=1 f=1
Im  In
¢
+ Z Z OefDeclfs Uiy s tedy 1t

é’e::l .fvle

and

lrn ln

(mn)
Ao Ad(k)wzm—1+87l~n—1+t = )\17”" Z Z pgslp?t wim—l+e7l~n—1+f
e=1f=1

b In
f .
+ Z Z bzfp?sp?t uim—l“l‘éyzn—l'i‘f'
e=l1 fvle
Since A commutes with Ad(k), we obtain

Im In Im Iln
> DUy = Y > b, forall s, t,é, f.

e=1 f=1 e=1 f=1
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We can proceed as in the proof of Proposition [2.2.2 to show that bSt = 0 if (s,t) # (&, f) and

that b5 = bef —: by for all s,¢, ¢, f. Now, we shall prove the result for S,,. When o; € © and
a1 ¢ O we have that [, = 1. Also,

lr—1 In In
— ( _17 ) . - t, ~ t ~
Awl}_2+s,l~n_1+t o )\1T ! Wi, ot 1+t + Z Z bzfulr—2+e,ln—1+f + b; Wi 1+ f
e=1 f=1 f=1
and
( 1 lr 1 ln
rT— n
Awg, e =N Wiy T D0 D VU e, yap T Z Ty
e=1 f=1 f=1
As before, since Ad(k)o Aw; _, .7 = Ao Ad(k)w; ,.,j .4 then
lp—1 In lr—1 In f
1 1
S Db = Z > bl (2.4.3)
e=1 f=1 =1 f=1
and
ln 'r 1 ln f
t e
Db = D0 > b ol o (2.4.4)
f=1 e=1 f=1

By the same arguments in the proof of Proposition m equations (2.4.3) and (2.4.4)) implies
b = 0if (s,t) # (&, f), b = bei = bV, and b = 0 for all s,t,e, f. On the other hand,

Ad(k) o Auyg, = Ao Ad(k)ul,ln,ﬁt implies
ln In ;
t . n n
S VipG = > b, (2.4.5)
=1 =
and
lr—1 In In f
Z Z befpee pff Z béqulp?t- (2.4.6)
e=1 f=1 f=1

Analogously to the proof of Proposition [2.2.2, we obtain bfgf =0, b =0ift+# f and bt =10
b, for all téef. ]

Sy

r—1,n
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Chapter 3

Geodesic orbit spaces

In this chapter, we shall find all the invariant metrics on real flag manifolds of classical type
with the property that every homogeneous geodesic is the orbit of a one-parameter subgroup.
Such manifolds are called g.o. spaces (geodesic orbit spaces). Examples of g.o. spaces are
compact Lie groups equipped with the bi-invariant metric, naturally reductive homogeneous
space, the normal metric on homogeneous spaces of compact Lie groups and so on. The
classification of complez flag manifolds which are g.0. spaces is given in [2].

Definition 3.0.1. Let G/H be a homogeneous space with a G—invariant metric g. A geodesic
v starting at eH is called homogeneous if it is the orbit of a 1—parameter subgroup of G, that
18

~(t) = exp(tX)H (3.0.1)
where X is in the Lie algebra of G. In this case, X 1is called a geodesic vector.

Definition 3.0.2. We say that a Riemannian homogeneous space (G/H,g) (g an invariant
metric) is a g.o. space if every geodesic starting at eH is homogeneous. In this case g is called
a g.o. metric.

Let us consider a homogeneous compact manifold G/H, (-,-) an Ad(G)—invariant inner
product in the Lie algebra g of G and an (-, -)—orthogonal reductive decomposition g = h @& m.
In order to determine the real flag manifolds (Fg,g) which are g.o. spaces, we shall use the
following propositions:

Proposition 3.0.3. ([28/) (G/H,g) is a g.o. space if and only if for every X € m, there exist
a vector Z = Zx € b such that
[Z + X,AX] =0 (3.0.2)

where A is the metric operator corresponding to g. [

Since every invariant metric A is a positive (-,-)—self-adjoint operator, we have that m
admits an (-, -)—orthogonal decomposition into eigenspaces of A. Given £ an eigenvalue of A,
denote by my its corresponding eigenspace.

Proposition 3.0.4. (/28/) Let (G/H, A) be a g.o. space.

a) If &1, & are eigenvalues of A such that there exist Ad(H)—invariant, pairwise (-, -)—ortho-
gonal subspaces my, my of m with
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m; Cmg,, 1= 1,2 and [m1=m2](m1@m2)l # {0}7
where the orthogonal complement is taking with respect to (-,-), then & = &.

b) If &1, &a, &3 are eigenvalues of A such that there exist Ad(H)—invariant, pairwise (-, -)—or-
thogonal subspaces mq, my mg of m with

m; C mg,, 1 =1,2,3 and [mlamQ]mg # {0}7

then & = & = &s. L

Remark 3.0.5. Every invariant metric A which is a scalar multiple of the identity endomor-
phism is a trivial solution for equation (3.0.2) (by taking Z = 0 for every X), such a metric is
called normal.

3.1 Flags of A

As in Section 2.1, we fix (-,-) = —(-,-), where (-,-) is the Killing form of so(l + 1) and the
(+,-)—orthogonal basis {w;; : 1 <j <i<I[+1}.

Proposition 3.1.1. Let Fg be a flag of A, with 1 # 3 orl =3 and © € {{a1, s}, {as, a3}}.
Then, (Fg, A) is a g.o. space if and only if A is normal, i.e., A = plng, p1 > 0.

Proof. Let A be a g.o. metric in a flag Fg of A;. If | = 3 and © € {{a1, as}, {ag, az}}, then, by
Proposition [2.1.2] A has the form A = pl,,. If | # 3, we have by Proposition that A is
r(r—1)

determined by =5 positive numbers fipy,, 1 <n <m < r, such that Ala,,,= fmnln,,,, with

M, as in (1.1.2). We shall prove that f,m = fpn for all (m,n), (m/,n’). First, we prove
tmn = M for 1T < n < m,m’ < r. In fact, without loss of generality, let us suppose m < m/,
then

w[m/71+1,[m,1+1 = |:wl~m71+1,[n71+17w[m/71+1,[n,1+1:| € [an, Mmln] .
Since I,y 4+ 1 # l,_y +t forall t € {1,...,1,}, then

(wzm/—1+1:l~m—1+1’ wl~m—1+5,l~n—l+t) = 07 1 S 8 S lm7 1 S t S ln

and

(wim/_1+1,im—1+1’wim/_1+s,[n_1+t) = 07 1<s< lm’u 1<t< lny

thus, Wi 141 € (M, ® M,,)*. Evidently, M,,,, and M,,, are contained in the eigenspa-
ces of A corresponding to the eigenvalues i, and p,,,/, respectively and, by Proposition [1.1.1],
they are Kg—invariant. Also M,,, and M,,, are (-,-)—orthogonal. By Proposition we
conclude that i, = fmm. Now, we will show that i, = fme, 1 < n,n’ < m < r. Let us
suppose n < n’, then

win/_1+17l~n_1+1 = |:wl~m_1+1,l~n_1+17w[m_1+1,l~n/_1+11| € [an7 an/] .

Since ly_1 + 1 L1+t for all ¢t € {1,...,0,n}, then
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(w[n/—1+17l~n—1+17 me—1+57[n—l+t) = 07 1 S s S lm’ 1 S t S ln
and

(Wi, 1 g1 Wi gl ge) =0, 1< s Sl 1<t < Ly,

thus, wy s AL at1 € (M ® Mo ). By Proposition [3.0.40 fiyn = - Hence, fipn = fhmm =
Mmrn - O

Proposition 3.1.2. Let Fg be a flag of As with © ¢ {{an, as},{az2, as}}. Then, (Fo,A) is a
g.o. space if and only if A is written in the basis (2.1.3) as

pb 0 0 00
b u 0 0 0 0 pp 00 0
oo u —boo _[ 0 m 00
An=to 0 < p oo | W= 0 0 oo |
00 0 0 uob 0 0 0 mw
00 0 0 b pu
H1 0 0 O ’

0 % 0 £/ pa(pg — 1) 0

[Alge = | 0 0 12 0 Ftaps — pa) |, pp >
0 £/ palpe — ) 0 Iz 0
0 0 F/ 22 — 1) 0 2

M1

if © ={aq}, {as} or{as}.

Proof. Let us analyse case by case:
e O =1(.

Since & = {0}, by Proposition [3.0.3] A is a g.o. metric if and only if [X,AX] = 0 for
every X € my. We write A as in Proposition [2.1.2] For X = ws; + w31 + w4, we have that
AX = /Lgl)wgl + b1w43 + M?)’w:ﬂ + b2w42 + bgwgz + u§3)w41 and [X, AX] =0 if and only if

(b +bg)war + (15” — 8 waz + (by — bg)wsy + (15 — i was + (52 — 8 )wss — (by + by)wsy = 0,

thus, ,ugl) = uf) = ugg) and by = —by = b3 =: b. For X = wy3 + wys + wy;, we have that

AX = bwy + ugl)w43 + +bows + u§2)w42 + bswsy + u§3)w41 and [ X, AX]| = 0 if and only if

(15 — 1§y — (b + b )waz + (") — S Ywsy + (b — by ywas + (") — 5 Ywss + (by +bo)way = 0,

concluding that ,ugl) ugl) = u(z) = ug) = uf’) = ,ugg) =: u. It is easy to verify that if

= = M1
,ugl) = ugl) = u?) = ,ug) = /L?) = u§3) =: pand by = —by = b3 =: b, then [X, AX] = 0 for all
X € my.
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[ ] @ = {041,063}

Let A be a g.o. metric. By Proposition A has the form

w0 0 0
om0 o0

I:A]B{al,ag} - 0 0 pus O
0 0 0

Given X = 1(ws1 — wa) + To(way + wsz) + w3(wsy + wys) + x4(wy — wsz) we have that

(X, AX] = xi@ofwsy — wag, war + Waz] + po1T4[ws1 — Wag, Way — W]
Fp1 w122 [War + Wap, W31 — Waa] + poTax3[War + W3z, W31 + W]
Fp1T23[ws1 + Wy, War + Waz] + poT3T4[ws1 + Waz, wa — W
Fp1 124 [War — W32, W31 — Waa] + HaT3T4[War — W3g, W31 + Wao]
= 2T 2o(wa + Wwa3) — 2p1 7102 (W1 + Wy3)
+2020374(Wa3 — Wway) — 2,u2x3x4(w43 - w21)

= 0.
Therefore [0 + X, AX] =0 for all X € my,, o) and A is g.o.

e O ={a}.

Since £o,3 = span{ws; }, then A is a g.o. metric if and only if for all X' € my,,;, there exists

A € R such that
[)\71)21 + X, AX] =0.
Assume that A is a g.o. metric, then, by Proposition we have that

0 0 00 0

o ¥ 0o b 0
Als.,=| 0 0 2 0 b

o b 0 P o0

0o 0 —b 0 uP

(1)

Set 1 = p; . For X = wsy + wsg + wye + wyy take A € R such that [Awg; + X, AX] = 0, then

0 = [)\’LU21 +X, AX]

(2) (2)

= 2(u8” — Y was — Apt? = b)wsy + Ay — b)was + Mt + b)wsy — Mps? + b)way,

(2) (2) (2)

by linear independence we have 5 — ,uf) =0, i.e, uy = p;’ =: uo. Now, let us consider the

vector X = wyz + wso + 2wy; and A € R such that [Aws; + X, AX] =0, then
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0 = [Mwy + X, AX]

= (21 — p2) +b = Mpa — 2b))wsy + (p2 — p1 — 20 + A(2p2 — b))waz,

by linear independence

and
Multiplying equation (3.1.1]) by (219 —b) and equation (3.1.2)) by (19 —2b), we obtain respectively
— 4y + Appig + 4bpg — 2bpy — b* — M2 — b) (2 — 20) = 0 (3.1.3)

and
i — 4bpig — iy pia + 2bjuy + 4b% 4+ X(2ug — b) (g — 2b) = 0. (3.1.4)

Adding equations (3.1.3)) and (3.1.4)) we have

3(0° — pa(po — 1)) = 0, (3.1.5)

therefore b% — oo — p1) = 0, ice., b= 4/ o (o — p1).

Conversely, let us suppose that ps 1= /L§2) = ug), 1 = ,ugl) and b = \/p2(pe — 1), then,
for X = T43Wy43 + T31 W31 + T4oW42 + T32W39 + T41 W41 in m{al} we have

(X, AX] = 1743\/H($32\/ﬁ72 - x41\/H)w31
- $43\/W(1741\//L_2 - 9332\/W)UJ42
- 9543\/H($31\//~72 + Ty fl2 — p1) W32
+ l‘43\/m<$42\/ﬁ72 + 31/ 1t2 — f1)wa

and for every A € R

[Awar, AX] = —)\\/E(f?a\/ﬁTz = Ta1y/ M2 — f1) w1 + )\\/,M_Q(Lu\/m — T32\/H2 — 1) Wa2
FAVH2 (31412 + Tag/fh2 — p1) W32 — Ay/Ha(Tao/Hz + U314/ 12 — f1)Wat,

thus

[Awor + X, AX] = (2432 — 1 — A\/12) (T32/Jl2 — Ta1/Ho — pi1) w31
—(Taz /2 — 1 — A/2) (Ta1/Ti2 — T32/ o — fh1)Wa2
—(Ta3v/ 2 — 1 — A/2) (T31/H2 + Tazy/p2 — fi1) w32
+(Tazv/tl2 — pi1 — A/12) (Taz/Ha + Ta14/p2 — fi1)Wai -
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By taking A = 1/%1’43, we obtain [Awe; + X, AX] = 0. If b = —/pa(pa — 1), the argument

is analogous.
e O ={ay} or {as}.

Let us consider the diffeomorphisms

(ori F{al} — F{ai}

KK (ny 1 — €lheKpay 0 20
01 00 0010
where e; = (1) 8 (1) 8 and e, = (1) 8 8 é . It is easy to verify that for every
0 001 01 00
invariant metric
me 0O 0 0
o ¥ 0o b 0
A, =] 0 0 u? 0 b
2
o b 0 2 o0
0 b 0 uf
we have
(1)
Vo0 00
o ¥ 0 —b 0
[80314]8{&2} = 0 0 u?) 0 b and
0 b 0 2 o0
o 0 b 0 uP
70 0 00 0
o ¥ 0o b o0
e3Als., = 0 0 4P 0 —b

0 0 —b 0 uP

By Proposition [2.1.2] every invariant metric in Fy,,; has the form ¢jA. Since A is g.o. if and
only if ¢ A is g.o. then we obtain the result. m

3.2 Flags of B

We consider (-,-) as in (1.2.1)) and the (-, -)—orthonormal basis in (1.2.2)).

Proposition 3.2.1. Let Fg be a flag of B;, | > 5 and A an invariant metric as in Proposition

222

a) If ay ¢ O, then (Fg, A) is a g.o. space if and only if
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Proof. a) Let us suppose

P N
(mn) _ y(mn) _.
A A5 2 A, for all (m,n),

by =: b, for all (m,n),

(3.2.1)
VD =i for alli € {1,...,r} with [; > 1,
p—A=1b
>\2—b2
= T
N’(l) = e Iu(rfl) = Iu’
p(l) f— f— p(Tﬁl) = p
Agm”) = /\gm") =: \, for all (m,n),
by, =: b, for all (m,n), (3.2.2)

f}/(z) =17 fO?” all 1 € {1, N 1} with ll > 1,
p-A=b=X—p

_ 2up _ A%2-p?
7= utp A

that (Fg, A) is a g.o. space. We have that for i < j, V; and V; are

(-, -)—orthogonal, Kg—invariant, contained in the eigenspaces corresponding to the eigenvalues
1 and pl9) respectively and

wlj,1+1,l¢,1+1

+ UL 41,041 = |:Uli—1+1’ Ulj_1+1] € (V; D VDL N [‘/’M V}]

J

then, by Proposition [3.0.4] u@ = pu) =y For X = w; .17 4 +wj, 41741, there exists
a Z € tg such that [Z + X, AX]| =0, but
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_ B B 5 5 (mn), By . N
[X, AX] = [wlm71+1,zn71+1 F W 410 AL W1y Omn g,

(m,n+1) 3 By
A T 141+l T bm,n+lulm_1+1,ln+1

+ |:wim—l+17l~n—1+1 + wim—l+17in+17

(mn41) T ) 5 N B i} By 5
= A\ Wi 1,1 Wi 1,041 + bt Wi 11+ W 4101

(mn) ~ ~ ~ ~ ~ ~ ~ ~
+)\1 wlm—1+17ln+1’ wlm—1+17ln—l+1 + bmn wlm—1+17ln+17 ulm—1+17ln—1+1

_ ()\gm,n—ﬁ—l) - )\gmn))

W1l —1+1 + (bm,n+1 - bmn)ufn+1,l~n,1+1 € Mn+1,n

and since M, & My, 41 is to—invariant, then [Z, AX| € M,,, & My, n41. By linear inde-
pendence’ [Z + X’ AX] =0= [Zv AX] =0= [X7 AX]) thus bm,n+1 = bmn and )\gm?n+1) =
)\gm")' Taking X' =z 417, o1 T, i1 ds Wi g, i1 T Wi, g1 OF UG, 1 g, a1 T
uj 417, ,+1 We obtain that

m,n+1 mn
[X» AX] = (/\g ) - )‘g ))win+1,l~n,1+1 + (bm,n—H - bmn)u[nﬂ,[n,ﬁlv

m+1,n mn
(Ag ) — Ag )>wim+1,[m_1+1 + (bmt1n — bmn)ufm+1,im_1+1

()\ngrl,n) _ )\(mn)

or 2 WL 1041 T Omitn = b))ty 7 11

m,n+1) _ )\émn) )\(m+1,n) o )\gmn) )\(erl,n) _ )\gmn) and

respectively. As before, this implies )\g i = 5
bit1n = bmn. Since this argument works for every pair (m,n), then

)\gmn) _ )\gm’n’) —. )\1’
)\émn) = )\ém,nl) =: Ay and
binn = by =10

for all m,n,m/,n’. For X = v; ,, +wy,,,,, take Z € £e such hat [Z + X, AX] = 0, then

(X, AX] = [Ul”1+1 Wy 10 BV, 1+ AWy g D Uz}+1,1}

= A {Ul]+1vwl]+1,1} +0 {vll-&-l?ul]—f—l,l} +u [wl]-',-l,lavl]-i—l}

= ()\1+b—,u)1]1€‘/1

and [Z, AX] € Vo @& Ms;. Thus, by linear independence we conclude that A\; +b — u = 0.
Using the same argument for X = vy .y + uj, 4 1, we can show that Ay +b — = 0. Therefore,

AM=X=Adandb=pu— A\
Next, we will prove that v =~ for all i, j with I;,1; > 1. In fact, if [; > 1 and i < r — 1, take

X = U141 + U, 420 1+1 + Wi 41,0141

and Z € tg such that [Z+ X, AX]| = 0. Then, AX = p Ul}fﬁl+7(i)ul}71+2,l}71+1+)‘ Wi g7 1t
b g 415,41 and
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[X’ AX] - ’y(i) |:Ul~i—1+1’ uii71+2,l~i71+1:| + A |:Ul~i—l+1’ wii+1,l~i71+1i| +0 |:vl~i71+1’ uii+17l~i71+1:|
+u |:ul~i—l+2,l~i71+1’ U[L‘71+1} + A |:ul~i—1+2,l~i—l+17 wii+1,l~/i71+1i|
+0 |:ul~i—1+27l~i—1+1’ ul~i+17l~i—1+1:| +p |:wl~i+17l~i—l+17 UZ@'—H—l]
+’Y(i) {wl}-s-l,l}_ﬁlv ul}_1+2,l}_1+1}
= (=1Nvp_ o+ (= A =00 + A=Y 407 o+ D Wi e

= (u— W(i))“l}_lw + (A = V(i))uml,l}_lw +b Wig10;_q+2-
We can write Z = Z ( Z zg)w[j_ﬁsjj_ﬁt) , zg) e R, so
1;>1 \1<t<s<l;
Z,AX] = Mzézl)vl},ﬁz + bzéll)uiﬁl,l},lﬂ + )\Zgll)wfiJrl,l}flJrQ + 7,

where Z' is linearly independent of {v;_ o, uj 17 | 1o, Wi 1,_, 12} Therefore,

[Z + X? AX] = (/“L - 7(1) + /Lzéll))vl;,1+2 + (zézl)b + A— v(i))uii+1,l~i71+2 + (b + )\Zézl))wl;+l,l~¢f1+2 + Zla

so Z' =0 and

=0 4 g =0

zéﬁ)b—i-)\ — 70 =0 .

b+ Azé? =0

This implies v = @ (and zéil) = —%) If i = r and [, > 1, we use the a similar argu-
ment with X =wv;  \y +u; o7 1 Fwp 417,41 to conclude that A = # Therefore

- . [ . 2_p2
7@ = ~U) =: ~ for all 7, j with iyl >1and v = %.

Conversely, let us suppose that A satisfies the relations (3.2.1]). We can write every X € mg
as

X=v"+3Y v+ 3 Xt Y Vi
=1 =1

1<n<m<r 1<n<m<r
1;>1

where v € V;, Y; € Ui, Xyun € Winn, and Yo, € Upnp. If

0 0 O 0 0 0 00 O
Xm=10Cp 0 |.Yo=]10 0 D, |and ;= 0 0 D,
0 0 O, 0 D,, O 0 D, 0

we denote



Chapter 3. Geodesic orbit spaces 49

. 0 O 0 3 0 O 0 . 0 0 O
Xm=10 0 Cw |.You=|0 D, 0 |and V;=|0 D, 0 |,

so we have AXmn = AX o + b X, AYrpn = Y s + AYopy, and

AX =pd> 0P 443 Vi A > X tb D> KXo +b DY Yo+ A Y Y
i=1 lz:>11 1<n<m<r 1<n<m<r 1<n<m<r 1<n<m<r

7

Then

(X, AX] =~ D09 3V + A +b
i=1 i—1

1;>1

SN X,
=1

1<n<m<r

SRS fcmn]

=1 1<n<m<r

+b Z U(i), Z Yo | + A Z U(i), Z Yo | + 1 Z Y;, Z v
=1 1<n<m<r =1 1<n<m<r =1 =1
1;>1
FADYL Y X 40| Ko | +0 >V, Yoo
li':11 1<n<m<r ll:>11 1<n<m<r ll=>11 1<n<m<r

AV Y Yl te] Y X, D0
=1

1<n<m<r | 1<n<m<r i=1

li_>1

1<n<m<r 1<n<m<r 1<n<m<r 1<n<m<r
FAL Y X D Y| +p Ymn,zv<i>]
| 1<n<m<r 1<n<m<r 1<n<m<r =1

7l D Yo D Y| 4+ A

1<n<m<r =1
1;>1

> Yo, D, an]

1<n<m<r 1<n<m<r

+b

Y

+0 Z Ymna Z an

1<n<m<r 1<n<m<r

Z Ymn ) Z ?mn

1<n<m<r 1<n<m<r

since
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> X D an]:oz{ S Yo, Y. Y

_1§n<m§r 1<n<m<r

1<n<m<r

Zv(i)7 Z an] = [Z U(i)y Z an] ’
i=1 i=1 < <

r

SN Y,
|i=1

1<n<m<r

= Z U(i)a Z Y/mn
i=1

1<n<m<r

[ S X Y T

1<n<m<r 1<n<m<r 1<n<m<r 1<n<m<r
then
[X,AX] = (y—p) |20, 2 Vil + (A +b—p) {Zv(”, > an}
i=1 i=1 i=1 1<n<m<r
1;>1
1<n<m§r = 1<n<m<r
1;>1
i=1 1<n<m<r i=1 1<n<m<r
1;>1 1;>1
+b Z Y, > Y,
1<n<m<r
l >1 -
i=1 i=1 ; 1<n<m<r
l¢>1 lq;>1
Zn, Yo Y| F0 DY Y X
1<n<m<r i=1 1<n<m<r
l >1 1;>1
DY Y Yo
= 1<n<m<r
1;>1
. : b & :
Last equality holds because A +b — p = 0. By taking Z = DY Y; € €, we obtain

=1
1;>1
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o1

bu ro ) roo roo
%
=1 =1 =1 1<n<m<r i=1 1<n<m<r
1;>1 1;>1 1;>1
b2 r _ b2 roo 5
_X 2 Z an _X }/;7 Ymn )
=1 1<n<m<r =1 1<n<m<r
1;>1 I;>1

but

r.o_r r r roo r B

7 7

DY = VoY Y K| = | Y > Kol

=1 =1 =1 =1 i=1 1<n<m<r 1= 1<n<m<r

L1i>1 I;>1 I;>1 I;>1

T r 5

ZE) Z Yo | = ZK) Z Yo ’

=1 1<n<m<r =1 1<n<m<r

li I;>1

roo. ~ r

Z s an = Z Y;, Z an s

=1 1<n<m<r =1 1<n<m<r

1li>1 1;>1

roo. ~ r

Z 2 Ymn - Z }/17 Z Ymn ;

=1 1<n<m<r =1 1<n<m<r

_lz>1 1;>1
then

r r 2 r
] s =1

1<n<m<r
1;>1 1;>1

bZ T

i=1 1<n<m<r

— 0 (by B2)).
By Proposition [3.0.3] A is a g.o. metric.

b) Let us suppose that A is a g.o. metric. Interchanging V; by (V})s, the arguments of item

a) work to show that
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/’L(l) = ... = M(T_l) = Iu’

(mn) _ y(mn) _,
A A5 . A, for all (m,n),
by = . — A =: b, for all (m,n),

@) = @ =~ forallie{l,..,r—1} with [; > 1.

For i < j, we have that (V;); and (V}); are Kg—invariant, (-,-)—orthogonal and are contained
in the A—eigenspaces corresponding to p® and p¥) respectively. Also

2(wij71+1,l~i71+1 - qu—1+17[i—1+1) [wl}—1+17l~i71+1 UL 1410 wir—l"l‘l,[j—l‘i‘l - ul;_1+1,l~j71+1}

is an non-zero element in [(V;)1, (V;)1] N ((Vi)1 @ (V;)1)*, then, by Proposition [3.0.4, p( = p0),
Therefore, pM) = ... = p"=Y) =: p. For X = Wi 11U 410 TWE_, 41, there exists a Z € o
such that [Z + X, AX]| =0, but
AX = p(wl;-71+1,1 - U’Zr71+1,1) + /\wirfz+1,1 + b“l}.72+1,1

and

[X7 AX] - (_)\ + P + b) (wir_1+l,ir_2+l - uir_1+1,l~r_2+1> S MT,T—I'
Since AX € (V1)1 & M,_1; which is tg—invariant, we have [Z, AX]| € (V1); & M,_11, so, by
linear independence —A + p+b =0, i.e., b = A — p. Thus, A satisfies ((3.2.2)).

Conversely, if A satisfies (3.2.2)) and we write

r—1 r—1 r—1 r—1
X=3v"+3 Y+ 3 Xamt D Yot D2 (Xn+ Xp) + 30 (X0, — X'i),
i=1 i=1 1<n<m<r-—1 1<n<m<r—1 n=1 n=1

1;>1
where v € Span{v;i_ﬁs 1 <s<L}YieU, Xpn € Won, Yo € U, for 1 <m <m < r—1,

Xon, Xy €spanfwy o7 0 1<t <1, 1 <s <} and X,n, X', are as in the proof of
item a), then

r—1 r—1
AX = pY o493 Vi A Y Xpu+b Y Xwtb Y Y
i=1 ll:>11 1<n<m<r—1 1<n<m<r—1 1<n<m<r-—1

r—1 r—1
+A Z Yo + 1 Z(Xrn + Xrn) +p Z(X;"n - X’m).

1<n<m<r-—1 n=1 n=1

Similar to item a), we have that

r—1 r—1 r—1
(X AX] =(v =) [0 Vi + =) [ XY Y Xom
i=1 i=1 =1 1<n<m<r—1

1;>1 1;>1
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r—1 r—1
FOY Y D> Xaw| H0 (XY Y Y
i=1 1<n<m<r—1 i=1 1<n<m<r-—1
1;>1 [li>1
r—1 r—1 r—1 B
A=) Y D Y| (=) | 2 Y Do (X + X))
i=1 1<n<m<r—1 =1 n=1
_li 1 _ 1;>1
_'r—l r—1 _
o) |V Y (X, X
s
b r=1
By taking Z = Y Z Y; € to, we have

li;

1 1<n<m<r—1

r— 2 r—1
[Z+X,AX]:<7—;L+W> SNy, +</\—7—b)\> Y. Y X

=0 (by (3.2.2)).

Thus, A is a g.0. metric.
Remark 3.2.2. The normal metric is obtained from conditions (3.2.1) and (3.2.2)) when b = 0.

]

3.3 Flags of (
We fix (-, ) as in equation (|1.3.1)) and the (-,-)—orthogonal basis (|1.3.2)).
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Proposition 3.3.1. Let Fg be a flag of C; with | # 4. Then, (Fg, A) is a g.o. space if and only
if A is written in the basis (2.3.1)) as:

(0) .
M1 21 dAdAzr ... G
as1 Mgo) asz ... Gp2
Abilso = | as a2 18 0 ams |, A= sl Alv=ply, (> 1)
arl  Qp2  Apg ... M(ZO)

where T =r ifaq, ¢ Q@ andr=r—1ifq, €O, 1<n<m<r, 1 <i<7, and
0 ) L,
ufﬂ)zﬁuﬁwﬂ(l—ﬁ)u
(3.3.1)

foralll <n' <m' <7,

Proof. Let us suppose that A is a g.o. metric. We take © as in equation (1.3.3)) and we write
A as in Proposition m First, we will show that b,,, = 0. In fact, given s € {1,...,1,,} and
t € {1,...,1,}, there exists Z € tg such that

|:Z + wim—l'i‘sjn—l"‘t’ Aw[m—1+57in—1+t = 07 (332)
but,
Wy - Awy - = |wy - (mm) 1 7 + by Ui -
lm—1+8,ln—1+t? lm—1+s,ln—1+t - Ilm—1+s,lp_1+t? My lm—1+s,ln—1+t mnl, _1+s,lp—1+t

_ bmn |:wim—l+5,l~n—1+t7 uzm—1+57in—l+ti|

= Qbmn(uim—1+57l~m—l+3 - U/Zn—l‘i’tjn—l‘i’t)

and [Z, Aw; .7 4] € My, (this is because M,,, is Ke—invariant, so it is €g—invariant).

Since My, is (v, -)—orthogonal to 20, (U, (o7 4vs = UL, 140, ,44), then equation (3.3.2)
implies [w; .7 ., Aw; .7 ] = 0, concluding that b,, = 0. Next, we prove that

MY””) = ug’”’”. Since by, = 0, we have that W,,,, and U,,, are contained in the eigenspaces of

A corresponding to the eigenvalues ;\™ and p{™"

and

respectively. Also, they are Kg—invariant

- - o - _ - - . - 1
Uf 1 Tl Uyt [wlm71+1,ln71+1a“zm71+1,zn71+1} € Wan, Unn] O (Winn @ Upin)— -

By Proposition we have p{™ = 4™ =. (™™ Analogously to the proof of Proposition
3.1.1, we can show that p(™ = p(™™) = 1 for all (m,n), (m/,n’). To show the result for A|,y,,
we consider the vector X = lej(uinfﬁl,l}fﬁl"h"+ul~n,l~n)+wl~m71+1,l~n71+1’ wherel <n <m <7,
then
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l
1 n ~ ~ _ ~ (0) 1 n _ ~
[X’ AX] - [\/ln Z; uln,1+i,ln,1+i + wlm71+17ln—l+17 Mn \/ln 7,21 uln71+i,ln71+i

I
+ Za]n\/—Zul] iy Py, e | (here ag, = ay; for j < n)
J#n _

l l
(M'ELO) H) - ~ . - - Amn ~ ~ . ~ ~
_ Vi wlm—1+17ln—1+17 2 uln—l+i7ln—1+i + Vim wlm—1+laln—1+1’ 2 ulm—1+i7lm—l+i
i=1 1=1

— (,u'n ) Ui - __ Qmn Ui ~
\/ln lm71+1,ln71+1 \/l,n lm71+1,ln71+1

(0)
_ MHn —H  am
= ( Vo ) i1 410n14+1 € Unmn-

Since My and W,,, are Kg—invariant, they are E@—lnvarlant too, so is My & W,,,.. Also, we

have AX = ) f Z Uf,y_ypifur i T Z am\/— E oatidyati TR WL g, 1 € Mo®© W,
J#n

therefore
1Z, AX] € My @ Wi

By linear independence [Z, AX|+ [X, AX] = 0 implies [X, AX] = 0, thus, “5\1}_ — & = 0. By

Im
. . 1 _ _ _ _ ~
taking X = T 'E 1 U id i T W 1D 1 where 1 < n <m <7, we have
1=

X, AX] = (“f—” + &”r) W i e € U

©)
As before, we conclude £ \/‘—m + ‘7—" = 0. Summarizing,

lm

=0

,1<n<m<rT,

BPm — [ Amn — 0

hence, ¥ = ll",ugn)—l—(l—l—"),u and amn:\/llm( 510)—,u):,/lm( O — ) foralll <n <
m < 7. Now, we take ¢ such that [, > 1. If 1 < 1 < r—1, we have that U; and Wiy, are

contained in the eigenspaces corresponding to p¥ and u, respectlvely Since
€ (Ui, Wisra] N (Us @ Wig10)*,

UL 2 T |:ul~i—l+27l~i—l+17wzi+17l~i—l+1:|
then, by Proposition we obtain u® = p. If i = r, then

. . — ~ - N - 1
U a2 a1 = {ulm+2,lm+17wlT71+1,zr72+1} € U, Wrpal 0 (Ur @ Wi 1) ™,

so u") = pu. Conversely, let us suppose A has the form of the statement. Given X € mg, we
can write
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26

I

Z[Z L_1+sl— 1+S+ZX+
.7

l>1

Z an + Z Ymna

s=1 1<n<m<r 1<n<m<r

where z; € R, X; € U;, X, € Wi, and Yy, € Uppyp. S0

t=1

J=1
t#j

7 lj
:L'A
AX = Z \/;’jM§O);uijl+5,fj1+s Z\/‘tz Li—1+s,li—1+s +MZX

o Y Xgntp Yo Yo

1<n<m<r 1<n<m<r

We have two cases:

Case 1. oy ¢ © : In this case

ln

Ty
(X AX] = p >, N [Zufn1+s,l~n1+s’Xm”

1<n<m<r s=1

ln
Tn
+M Z [Z ul'n 1+s, ln 1+s? Ymn

7”L

H
A
S
A
3
A
4

1<n<m<r

n s=1 V

ln
Ty,
+ Z (\/Z_/VLT(ZO) [anu Z uin_1+57l~n—1+5

lm
Tn
+ Z (\/E {an’ Z U1 48D 1+

s=1

T :L\ lm

ln
Ym"m Z u[n—l‘i’s’zn—l‘i’s

s=1

Tn
+ )
1<n<m<r l”

Ty
+ ] Amn,
1<n<m<r m

f

Ym”’zulm 148 lm—1+s
s=1

T

+

lm

Ymmzul _14+8lm_1+s

r 37]
+ —J
1<n<m<r j=1 \% lm

l’"L
T
+ K Z ﬁ [Z u[m—1+s,l~m—1+3’ Ymn

+ =

7\/lan'] an’ Z uin—1+5:l~n—1+5
n s=1

Vi

—l—&a
Vi "

l>1

1<n<m<r s=1

s=1

) {XmmZulm 148, — 1+s])

ln

m

/ amn [an’ Z uln 1+s, ln 1+S] )
s=1

l'll

Ymn’ Z ulm 1+s, lm 1+S:| )

s=1

ln
Ymn’ Z uin—1+57[n—1+5] )

ln
Ymn7 Z u[nfl“‘sjnfl'i's
s=1

)

) |

T | L
T Z \/Z_[Zufmﬁs,fmﬁs?an]
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In ln
Since 321 Uf s yts Q] = — LZ:I (A NG

/igz ) — K Omn o
[X7 AX] = Z xn \/_ \/_ Z ulm 1+s, l'm 1+s? an

1<n<m<r

(0) — M Qmn

-
+ x - - up i X

lm

O —p

amn
+ x — uj i Y,
1Sn;ngr n < \/E /—lm> s; Im—1+8,lm—1+s> = Mn

o

0) _
i Z o ( \% L, a V ln) L;llL['“1+s»l~ml+sa Yon

1<n<m<r

" Qnj (mj i
W R G ] o

1<n<m<r j 1 s=1

Ymn7zuln 1+szn 1+S] :

s=1

" Qi Qi
+ T n__ mJ)
lgn;ngr ]2::1 ’ <\/E \/E

(0) _ (0) _
By -, L a"” = ol — tpn — Bl — S — (), thus [X, AX] = 0.

n

Case 2. oy € O : Similarly as before we obtain

r—1 r—1 l
1 n
[X7 AX] = \/l_ xn(,u( ) — M + Z CLn].I] [XT”’ Z uzn—1+s7[n—1+3]
n=1 n 7=1 s=1
i#n
r—1 1 © r—1 In
Tn - + A T K"TL; uy sl s| -
= (k" — 1) JZI ivj ; ln—1+sln_1+
J#n
I
We consider Z = - Z itsio_i1s € to, for some x € R, then

s=1

_ Ly
Z AX Z |:Z u[r—1+57ir—1+37 Xrn
n=1 T' s=1

r—1 T Ly
+ \/l_/ll Z uir—1+syir—1+s’ Knn
T

7(6 {anyymn}, 1<n<m<r, then
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Iy In
Since 21 (AU W] = — lzl (T S W] for We{X,,,Yntand 1 <n<r-—1,
S= sS=

we have
r—1 1 ©) r—1 T In
[Z+X’AX] = xn(:un _u)—'— AnjTj | + —7= Xon, Ug, 1 +s.i, s
— \/E ; J7) \/E ;1 ln—1+s,ln—1+
j#n

s=1

—1 r—1 l
1 TH n
+ Z (\/l_ xn(MSzO) - M) + Zl Qnjj + \/l_ Y;m Z ufn1+s,l~n1+s] .
join
We observe that

1 0 r—1 o

. ( — — _

— | () — ) + D anjz; | + =0,n=1,..r— 1= [Z+ X,AX] =0,

In ) j=1 " Vi | ]
i#n

but

~

1 ! T (=1 (0)
(0) + e = Meor Bn —H
Ty’ — 1 QniT; | + 0=z = <§ lx)( )
Vi ( ) JZ:; Y Vi, K j:l\/: ! tn

j#n

. Vi =1 (0) _
Thus, it is enough to show that the number r > \/Exj (“"l “) does not depend on n. In
i=1

fact,
(0)_ lt(0,>—u I . 0
it = Pl e Vo () — ) = e () — )

ln ln, ln

which is true by (3.3.1]). O

Remark 3.3.2. Under the coditions of the proposition above, if apy, = 0 for all (m,n), then A
is the normal metric.

S

3.4 Flags of D,

We consider the invariant inner product (-,-) in (1.4.1) and the (-,-)—orthonormal basis
(1.4.2).

Proposition 3.4.1. Let Fg be a flag of Dy, I > 5 and A an invariant metric as in Proposition

4.2

a) If ay ¢ O, then (Fo, A) is a g.o.space if and only if
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AT — A — N\ for all (m,n),

b = by =1 b, for all (m,n), (m',n'),

(3.4.1)
VD =i for alli € {1,...,r} with [; > 1,
_ 22
= 22
b) If {oy_1,q} € O, then (Fo, A) is a g.o. space if and only if A is normal.
¢) If oy € © and oy_q ¢ O, then (Fo, A) is a g.o. space if and only if
A = AT = AT = AT =X for all (myn),
byn, = bfnl_)l’n = b7(~2—)1,n =:b, for all (m,n),
(3.4.2)
VD =i foralli € {1,...,r — 1} with l; > 1,
_ A2-p?
= X
Proof. a) Let us suppose that (Fg, A) is a g.o. space. We take Z € tg such that [Z + X, AX],
where X =w; 17 1+ wp 7, ,+1- Then we have
mn m+1,n
AX = )\g )w[mfl“l‘ljnfl'i'l + bmnu[m—l+1,[n—l+1 + )\g )wim“l‘ljnfl‘f'l + bm+]"nuz~m+lj’ﬂ*1+l’
and
m—+1,n
[X, AX] = Ag : [wim_ﬁl,in_ﬁlvwim+1,in_1+1] + bmt1n [wim_1+1,in_1+1’“im+1,l~n_1+1}
A [ P P +b P - 7
1 W 41,0141 Wy 410141 mn | Wi 41,0410 Y4101 +1
= A AN Dt 1m — b UG 1 7 M,
= ( 1 1 )wlm+1,lm_1+1 +( m+1,n mn)ulm+1,lm_1+1 € Mm41,m-
Since AX € My, & Myyi1,n, we have that [Z, AX]| € M,,,, & Myy41.0, thus,
[Z + X, AX] = 0 = [X, AX] = 0 = [Z, AX],
in particular, AY"“’”) = A&’”") and by, 115 = bmn. We can use the same argument for X =

Uf, 141 T U0, 41 Wi 10,1 T WE g a0d wp g T tO
conclude that

/\ém—l-l,n) _ )\gmn)7 )\gm,n—s—l) _ )\gmn)’ /\gm,n—l-l) _ )\gmn) and bm,n+1 _ bmn

Then,
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for all m,n,m’,n’. Next, we will show that %) = ,\f/\—lzﬂ = /\%_21’2 for all ¢ € {1,...,r} with

li > 1. In fact, if ¢ < r —1 we take X = wj_ 57 ) + w17 41 and Z € Lo such that
[Z + X, AX] = 0. In this case, we can write

Z = Z ( Z Zg‘g)wij1+8,Zj1+t) ) Zgi) E R?

lj>1 1§t<5§l]'

therefore

[Z’ AX] - [Z’ f)/(i)uzifl'f‘zjifl"rl + Alw[ﬁ-ljiﬂ-l-l + buzi'f‘lji—l"rl

N C) PR (3) o /
= b U1,y +2 T o1 A1w1i+1,zi_1+2 + 7',

where {u; 17 40, Wi 1], 40, Z'} is linear independent. On the other hand,

[X’ AX] = [X’ 70)ul~i—1+27l~i—1+1 + Alwii+17ii—l+1 + bul~¢+17l~i—1+1}

_ DYoo o
= (M — ’Y( ))Uzi+1,zi,1+2 +b W10, 12

Thus, [Z + X, AX] =0 = 2" =0, \y — 7@ + 206 = b+ 200\, =0, 50 /@ = 52 1fj =
8 21 21 Y N
we take X =w; o7 . +wp 47,41 and proceeding as before we obtain ") = A%/\_lbz. To
. 2_32
show that v = % we can use the same argument but taking X = w;_ o7 1 +tui 17 11

instead of u;_ o7 41 F Wi pg 4 (When @ < — 1) and X =g op 0 H U g o0
instead of u; o7 .y +wp 17 .4 (Wheni=r). Summarizing,

~O) = Ai\—lbz — ’\3/\_21’2, for all i € {1,...,7} with [; > 1.

We observe that X172 = 227 s A 050 — Ag) = —0* (A, — Ao), therefore
/\17&)\2:>0<)\1>\2:—b2§0,

which is absurd. Thus, \; = \y. We point that when © = (), the previous argument does
not work to show \; = Ay =: A (because there is not ¢ with {; > 1). In that case, we
have [ X, AX] = 0 for all X € mg (because tg = {0}), in particular, when X = woy; + ug1,
(X, AX] = (A2 — \)usa, s0 A\; = Ao. Now, we suppose A satisfies (3.4.1)). Let

i=1

= 1<n<m<r 1<n<m<r
1;>1

be a vector in mg, where Y; € U;, X,,, € W, and Y,,,, € Uy, If

Con 0 B 0 Dy, (0 D
Xm"‘( 0 Cmn>’Ym”_<Dmn 0 )andyi_<Di o)

. 0 Cuwmw) o [ Dun O - (D, 0
Xm"‘(Cmn 0 )’Ym"_< 0 Dmn>andyi—<o Di>'

With this notation we have AX,nm = AXomn + 0 Xns AXmn = bYmn + Ao,

we set
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Z D, C Z an] =0= [ Z Yon, Z Y/mn and
| 1<n<m<r 1<n<m<r 1<n<m<r 1<n<m<r
[ 1<n<m<r 1<n<m<r 1<n<m<r 1<n<m<r
Therefore
AX =Y YVi+ A Y X tb > X tb > Yot > Y
i=1 1<n<m<r 1<n<m<r 1<n<m<r 1<n<m<r
1;>1
and

(X, AX] = A Y Y, Y Xl +0 DY > X 401DV, > Y,
=1

= 1<n<m<r i=1 1<n<m<r i=1 1<n<m<r
1;i>1 1;>1 1;>1

AV DY Y| | Y. X 2 Vi | D Yo DY

i=1 1<n<m<r 1<n<m<r i=1 1<n<m<r i=1
1;>1 1;>1 1;>1

= (A=) Z:Y S X | +O= (DY, Y Y,

= 1<n<m<r i=1 1<n<m<r
l¢>1 lq;>1

+0 (Y, S X H0 DY, Y Y.
=1

1<n<m<r =1 1<n<m<r
1;>1 1;>1

b <~ ~
LetZ:—XZYQE{?@, then

=1

1;>1
roo T
i=1 1<n<m<r =1 1<n<m<r
1;>1 1;>1
b2 roo _ b2 ro 5
_X Z 3 an - X Z Y;, Ymn
=1 1<n<m<r i=1 1<n<m<r
I;>1 I;>1
Since
T r B
Z Y;7 Z Xonn | = Z Yri; Z Xonn )
i=1 1<n<m<r =1 1<n<m<r
1;>1 1;>1
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ZY/“ Z Ymn = Z}/“ Z Y/mn 3
=1 =1

1<n<m<r 1<n<m<r
L1;i>1 1;>1

i Xonn | = ZK; Z Xonn )
=1

i=1 1<n<m<r = 1<n<m<r
_li>1 1;>1
r r
Y;» Yin| = Z Y;) Z Yo ’
i=1 1<n<m<r i=1 1<n<m<r
1;>1 1;>1

then

2 r 2 r

i=1 1<n<m<r 1<n<m<r
1;>1 1;>1
= 0.

Thus, A is a g.o. metric.

b) Let A be a g.o. metric on Fg. Analogously to item a) we have that
AT = AT =
AT = A =
bmn = bm’n’ =
forl<n<m<r—landl<n <m <r—1 Given n < n’ < r — 1, the subspaces
M,,, and M,,  are Kg—invariant, (-,-)—orthogonal and are contained in the eigenspaces of A
corresponding to the eigenvalues A and A™) respectively. Also,

win/_l-l-ljn_l-‘rl = |:wl~r_1+1,l~n_1+l7wiq«_1+17in/_l+1i| S [MTTH Mrn’] N Mn’n>

and M,,, C (M,, ® M,,/)*, therefore, by Proposition 3.0.4 A = A7) = () Next, we

shall show that b =0 and A\; = Ay = A", In fact, if X = w411 T W11, then

[X, AX] = [wl}fl-&-l,l g AWy Mg b ul}72+1,1}

= (A = X)wi_ag e =0 UL a1 € Mipoa
Let Z € tg such that [Z + X, AX] = 0, since AX € M,y & M,_;, and [X,AX]| € M,,_,
then [Z,AX] = 0 = [X,AX], so A = )\, and b = 0. By taking X = Wi 0 TUL 10
instead of wy ,,;; + w;_,.;, and proceeding analogously, we obtain A=), We de-
fine A := A\ = Xy = A, The same arguments of item a) allow us to show that for each

ie{l,...,r—1} with [; > 1, 4 = g = ’\—; = \. Therefore A = Al i.e., A is normal.
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¢) Analogously to item a), we have that

Almm—
)\gm”):;)\Q , I1<n<m<r-—2
by =20
and v = )‘%bQ = /\%/\;bZ for every i € {1,...,r — 2} with [; > 1, in particular, \; = Ay =: A\. By
taking X =w; 7 1 +wp 417,41, We have
_ \(r=1n) 1 (r—Ln+1) @
AX =X Wi i1 gy a1 T 01U 1, a1 T AT Wi, oyttt T 0rliall, i1 gy

thus
X, AX] = A AT N O = B g g €M,
) 1 1 In+1,0,-1+1 r—1,n+1 r—1n) Y +1,l,_1+1 n+1,n-

There exists Z € g such that [Z 4+ X, AX]| =0, but AX € S,,®S,11 = [Z,AX] € S, ® Spi1,
then, [X, AX]=0—= /\Y_l’nﬂ) = /\Y_l’") and bfi)LnH = b,(ﬂl,)lm. By using the same argument
for X =w; 17 o1+ U 417,00 and wyp o +wg ., we obtain that )\g_l’”ﬂ) = /\g_l’”)

and b?_)m“ = bf’_)l,n, respectively. Thus

)\('rfl,l) . — )\('1"71,1”72) _. )\(_rfl)
S i=1,2
b ==, = b

_ (r—=1) _ 1) _ 2 —
For X - wzr73+171+wir72+111’ wi’r73+111+wl1 and u[r73+171+wl1’ we have )\1 - )\17 b( ) 7 b( ) o b

AT = ), N ill show that 1 = M2 = A8 4 et if X = ~
and Ay’ = A2. Now we will show that =5 T Tmomiact, X =wn+ w4,
then
AX = b upy + Mwy + V(T_l)wl,l}_z-i-l
and

(X, AX] = (7“71) - )\2)wl}_2+1,1 =b Uj,_oy1,10
Let Z € g such that [Z 4+ X, AX] = 0. In this case we write Z as
. lr71 .
Z = Z ( Z Zgi)wij1+s,Zj1+t) + Z Ztul,zr_z-i-t? Zég)7 2t € R?
j<r—1 \1<t<s<l; =1
I;>1
therefore
[Z, AX] = —Zlb wl;,Q-‘rl,l — Zl)\QUZT72+171 + Z/,
where {w; ,11,u;,_,111,2'} is linear independent. Since [Z + X, AX]| = 0, then

Ay — 7(’"_1) +26=0

b‘|’2’1)\2 = 0,

2 2 2 2
(r—1) _ A5—b o ~ (r=1) _ AT—b .
where we have v ==, When X =upy +w;; .y, we have y = ~—. Conversely, if

A satisfies (3.4.2)), every X € mg can be written as
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r—1

=1 1<n<m<r-—1 1<n<m<r-—1

1;i>1
where Y, e U;if 1 <i<r—2,Y,_,€V,_ 1,an€Wmn,Ymn€Umn1fm<r—2 Xoin € M,
and Y,_1, € N,. For i,m <r — 2 we consider an, Y,., and Y; as in item b), if

_ Ar—l,n Br—l,n _ Or—l,n Dr—l,n _ Cr—l Dr—l
XT_L” o ( Brflvn AT‘*LTL > ’ Yr—l,n o < Drfl,n CTfl,n and K_l - Drfl Crfl
we set
Y . Br—l,n Ar—l,n ¥, o Dr—l,n C(7’—1,n ¥, o Dr—l Cr—l
Xr—l,n B ( Arfl,n Brfl,n > 7 }/'r—l,n N ( Crfl,n Drfl,n and Y;_l N Crfl Drfl '

Thus,

r—1
AX =93 Yi+ A Y Xput+b D Xputb D Yot XA DY Y,
i=1 1<n<m<r—1 1<n<m<r—1 1<n<m<r—1 1<n<m<r—1
1;>1
. . pr=t
we can proceed exactly as in the proof of item a) to conclude that Z = DY Z Y; implies

=1
1;>1

[ZJrX,AX]=<A v—) ZY > X (A 7—) SV Y Y

1<n<m<r-—1 i=1 1<n<m<r-—1
l >1 [;>1

= 0.

Hence A is a g.o. metric. O

Remark 3.4.2. [fb =0, conditions (3.4.1) and (3.4.2)) give us the normal metric.
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Chapter 4

Invariant Einstein metrics on real flag
manifolds with two or three isotropy
summands

A Riemannian metric g on a differentiable manifold M is called an Einstein metric if its
associated Ricci tensor satisfies the condition Ric = cg for some constant ¢. When M is a
compact homogeneous space, the problem of finding invariant Einstein metrics reduces to solve
a system of polynomial equations. This problem has been widely studied for the case where
M is a complex generalized flag manifold (e.g. [6], [5] and [26]), in this case, the isotropy
representation is multiplicity free and M admits only invariant metrics of diagonal type. In
this chapter, we study the Einstein equation for generalized real flag manifolds associated to a
split real form g of a complex simple Lie algebra of classical type whose isotropy representation
decomposes into two or three irreducible summands. As we have seen, we have non-diagonal
invariant metrics and, moreover, we can find non-diagonal Einstein metrics (see sections
and [4.2.6). The following table contains the information obtained in this chapter about the
number of invariant Einstein metrics.

]F@ # Isotropy | Equivalent # Einstein Normal
summands | summands? metrics
SO 2 - I v
%, >3 2 — 1 —
7SO(Z)SXOSUO)”+1), 1>3, 1#4 2 — 2 —
o, =38 2 — 0 —
%, >3 2 — 1 —
750%)0*5)0(4) 2 — 1 v
SoERot=oaT 3 Y 5 -
SO xOlpxoT 22 3 litlatla=l+1 3 - =4
750@5(5)0(5) 3 — 2 v
SO(d)fgo(l()liii(grol()lfwrl)’ 123, 2<d<i-1 3 — <4
%, >3, 2<d<l—1 3 — <2
%, >4 3 v 6 (5 when [=4) | only for [=4

Remark 4.0.1. In [10], Bohm and Kerr proved that every compact simply connected homoge-
neous space up to dimension 11 admits at least one invariant Finstein metric. For |l = 3 and
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[ =4, the manifold U(1)/O(l) has dimension 6 and 10 respectively, this is not a contradiction
since these manifolds are not simply connected (see [31]).

Proposition 4.0.2. Suppose that Fg is a real flag manifold of classical type whose isotropy
representation decomposes into two or three irreducible submodules. Then Fgo is one of the
manifolds in the table above.

Proof. Assume that Fg is a flag of A;, | # 3 and let [,...,l, be positive integers such that

ll++lT:l+1and
O = U {O‘llfﬁl’ ...,oz;rl} ,

1;>1

where [y = 0, I, = 1+ 1, i = 1,...,7. By Proposition m, the isotropy representation of
Fo decomposes into the r(r — 1)/2 irreducible submodules M,,,, 1 < n < r defined in (|1.1.2)).
Therefore, it has two or three isotropy summands if and only if r(r—1)/2 =2or r(r—1)/2 =3
respectively. Evidently, there exists no positive integer r satisfying r(r —1)/2 = 2 and for r = 3
we have that r(r —1)/2 = 3(3 — 1)/2 = 3, in which case, Kg = S(O(l;) x O(l3) x O(l3)) and

Fo = K/Ko = SO(l+1)/S(O(l1) x O(ls) x O(l3)).
Now suppose that Fg is a flag of B;, [ > 5. Take [y, ..., [, such that

o= {o_ 4q,-nap_y}or U {41 -ap_ FU{a}.

li>1 li>1

wherel = [1+...+{, and l~0 =0, l~z = Zz‘—1+li, i=1,...,r. If q ¢ ©, the irreducible Kg—invariant
subspaces of mg are given by

Vioi=1,..,m, Wan, Uiy, 1 <n<m <r,U;, [;>1, 1<j5<r

where V; W, Uy, and U; are defined in Proposition m Hence, we have r +r(r — 1)+ h
isotropy summands, where h is the number of indices j such that [; > 1. If r > 3 then

r+r(r—1)+h>3+6+h>9.1fr =2 thenr+r(r—1)+h >2+24+h >4.Ifr =1, then h = 1
and r+7(r — 1)+ h = 2, in this case © = {a1, ..., ai_1} and Fg % (SO(I) x SO(I+1))/SO(0).

When o; € O, the isotropy representation splits into the irreducible submodules
(Vi)i, Vi)a, i=1,.,r =1, Wi, Upny 1 <n<m<r—10U0;, 1, >1, 1<j<r-—1,

so we have 2(r — 1) + (r — 1)(r — 2) + h = (r — 1)r + h summands. Assume that r > 3.
Then (r — 1)r+h > 6+ h > 6. When r = 1 we obtain the degenerated case © = ¥ and

when 7 = 2 we have (r — 1)r +h = 24 h. If h = 0 we have that [, = 1, © = {ag,...,}
and Fo S (SO(1) x SO + 1))/(SO(I — 1) x SO(I)). It h =1 then I, > 1,0 = £ — {ay,}
and Fo % (SO(1) x SO( + 1))/(SO(l)) x SO(ly) x SO(ly + 1)), or, equivalently, Fg &

(SO(1) x SO(I + 1)) /(SO(d) x SO(I — d) x SO(l — d + 1)), where d = 1,.

We can proceed analogously to obtain Fg < Ul)/o), UL)/(O)xU(l—-1))or U(l)/(O(d) x
U(l —d)) for a flag of C}, I > 5 and Fg < (SO(l) x SO(1))/S(O(l — 1) x O(1)) for a flag of
Dy, 1 > 5. The cases A3, By, B3, By, C4, and D, are treated case by case depending on the

new invariant subspaces they have and the equivalences between them. O
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For a G—invariant metric g on a homogeneous space GG/H with reductive decompsition g =
h @ m, define U : m x m — m by the formula

QQ(U(Xa Y)7W> :g([WX]maY)+g([M/7 Y]n‘uX) (401)

for all W € m. We may apply Corollary 7.38 of [9] and obtain an explicit formula for the Ricci
tensor:

RiC(X, Y) = —; ZQ([X, X’i]my [Y7 Xz]m) - ;<X’ Y)

1 (4.0.2)
1,
where {X;} is an g—orthonormal basis of m, (-,-) is the Killing form of g, Z = Y U(X;, X;)
and X, Y e m. Z

4.1 Flags with two isotropy summands

In this section we find all invariant Einstein metrics for real flag manifolds with two isotropy
summands. The complex case was studied by Arvanitoyeorgos and Chrysikos in [7].

4.1.1 SO(4)/S(0(2) x 0(2))

Let g = As and © = {ay, a3}, then, the associated flag manifold Fy,, 4, is diffeomorphic to
SO(4)/S(0(2) x O(2)). As before, we fix the invariant inner product (-, -) considered in Section
and the (-,-)—orthogonal basis {w;; = E;; — Ej; : 1 < j < i < 4} of ¢ = s0(4). The Lie
algebra of K{q, a3 = S(O(2)xO(1)xO(1)) is {4, a4} = span{ws, wys} and its (-, -) —orthogonal
complement My, o,} = span{ws;, wsa, Wi, wye} decomposes into the two Kyq, oy} —invariant,
irreducible and non-equivalent subspaces

M1 = span{w31 — W42, W41 —+ U}32} and Mg = span{w31 —+ Wy2, Wy1 — wgg}.

According to Proposition [2.1.2] every invariant metric on A can be written in the basis Bya, a5}

of (213) as

w0 0 0
0 0 0

Ay =| 0 "o wy o |2 mm>0 (4.1.1)
0 0 0

Proposition 4.1.1. Let A be an invariant metric on SO(4)/S(0(2) x O(2)) written as above.
Then A is an Einstein metric if and only if A is normal, i.e., uy = po.

Proof. The vectors

X1:w7 X2:77 }/1:77 }/2:7
8111 81i1 8z 8tz
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form an A—orthonormal basis of me. It is easy to verify that [X, Y]y, . =0for X and Y
in the basis (4.1.2)), in particular, Z = 0 and, therefore, by (4.0.2]) we have that

1
ri = Ric(Xy,X1) = Ric(Xp, X)) = —
21
. : 1
rg = Ric(Y1,Y1) = Ric(Yz,Ys) = —
QIUQ
So A is Einstein if and only if r; = ry, i.e., gy = po. U

412 (SO() x SO+ 1))/(SO(l — 1) x SO(I)), 1 >3
Let g = B, 1 > 3and © = {ay, ..., ;} so that Frq,  a,) w0 (SO(l)x SO(l+1))/(SO(I—1) x
SO(1)). Fix the Ad(K')—invariant inner product (-, -) in and the (-, -)—orthonormal basis
(1.2.2). By Proposition we have that mg = (V1)1 @ (V1)2, where (V1)1 = span{ws; — ug :
2 < s <l}and (V)s = spanf{vy, ws + ug : 2 < s < [}. This two subspaces are Kg—invariant,
irreducible and non-equivalent. According to Proposition , every invariant metric A (with
respect to the inner product (+,-)) is determined by two positive numbers p, p such that

A

wvin = PLany, and Alwsy, = pdoy), - (4.1.3)

Proposition 4.1.2. The invariant metric A above is an Finstein metric if and only if u =
(=) e
Proof. Consider the A—orthonomal basis
o Wsl — Usi _ Ws1 + Us _
s 7\/2_p y G 7\/% ) i
Then
Y, Filme = 1Y, Gslme = [Fs: Gtlme = [Fs) Filme = [Gs, Gtlme =0, s,t=2,...,1.

By (4.0.2) we have that

2(l —2
ry = Ric(Fy, Fy) = ( ), s=2,..1
p
2(l -1
ro = Ric(Y,Y) = Ric(Gs,Gs) = ( ), s=2,..,1,
I
so A is an Einstein metric if and only if @ = @ or, equivalently, p = (g:—;) p- O]

4.1.3  (SO(l) x SO(L+1))/SO(l), 1 >3, | +4

The flag Fo = SO(l) x SO(l + 1)/SO(l) is obtained when we consider g = B, and © =
{ai,..,a;_1}. For [ > 3 and | # 4, the isotropy representation of Fg splits into two non-
equivalent, irreducible submodules given by V; = span{vy,...,v;} and U; = span{ug : 1 <t <
s < 1}, where v;, uy are defined in . By Proposition , every invariant metric A has
the form

Al = plv, s Alvy =1y, 1,7 > 0. (4.1.4)
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Proposition 4.1.3. Let A be the invariant metric on (SO(l) x SO(l+1))/SO(l) given by the

parameters p,y > 0. Then A is an Einstein metric if and only p =3 or p = ﬁ .

Proof. An A—orthonormal basis for mg is given by
Ust

/l}.
, Zj=—2,1<
VitttV

which satisfies following relations

Yo =

@ Z Zs
[Zs,Zt]m® = _\//L_Kt’ [ZS7}/:9t]m@ = \/%7 [Zh}/;t]m@ - _ﬁu 1 S t <s S l?
[YStaYij]m@ = 0.
Using formula (4.0.2)) we obtain
. 20-1) (U=1y .
r = Ric(Z;,Z;) = . — E j=1,..1
2(l -2
ro = Ric(Yy,Ya) = ( >—|— 7,1§t<s§l.
gl 2p?
Therefore, A is an Einstein metric if and only if
2(l—1 [—1 2(l—2 2(0—1 2(l—2 l
(=1 01y _20-2) 3 201 202
Iz 21 gl 21 Iz g 20

= 4l - Dypu+4(1-2)p* +17* =0
= 12p—7)* —4u(2p—7) =0
= 2p—70Cp—7) —4p) =0

v l
<:>[L:§OI'I[L: m Y.

4.1.4 U()/O(), 1 >3

Let g=Cj, | >3 and O = {ay,...,q_1}, then Fg = U(l)/O(l). We consider the product
(+,-) defined in (|1.3.1)) and the (-, )—orthogonal basis (1.3.2]). Proposition implies that
the isotropy representation of U(l)/O(l) decomposes into the two non-equivalent, irreducible
submodules V; = span{uy; + ... + uy} and Uy = span{uiq — ugg, ..., w1 -1 — Uy} U{ug : 1 <
t < s <1}. By Proposition , every invariant metric A has the form

(0)

A i = M(O)I‘ﬁ ) A U — M(1)1U1 )y nu(l) > 0. (415)
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Proposition 4.1.4. There is no U(l)—invariant Einstein metric on U(1)/O(l).

Proof. Let A be an invariant metric as in and consider any A—orthonormal basis {X;}
of mg. Each matrix X; has the form

_ (0 =B T _
XZ_(Bl 0 ))BZ_Bi _07

therefore

me me

for every 1, 7. Take Z1 = uy; + ... +uy € Vi and Y = ug € Uy, by formula (4.0.2)) we have

1
RiC(Zl, Zl) = _§<Zla Zl> = 0
. 1
Ric(Y,Y) = —3 YY) = 2L
Since 2] # 0, then A cannot be an Einstein metric. m

415 UD/(OQ) xU(l—1)), 1 >3

Let g=Cj, [ >3 and © = {aq, ...,y } so that Fg < U(l)/(O(1) x U(l —1)). In this case,
we consider (-,-) as in ([1.3.1) and the basis (1.3.2)) of € = u(l). By Proposition [1.3.1] we have

that mg = V] @ Msy, where Vi = span{uy;} and My = span{w,i,us @ s = 2,...,1} are not
equivalent. Every invariant metric A has the form

i — M(O)Ivl ) A Mz — H(Ql)Ile 7:“(0)’“(21) > 0. (416)

Proposition 4.1.5. The metric (£.1.6) is an Einstein metric if and only if u(® = 2uV.

Proof. An A—orthonormal basis of mg is given by

Xﬂ:\/%, Y, = \/7 \/7u11, — 2, 1

and satisfy

2 2 QM(O)
[Zthl]m@ W}/sla [Zlv}/;l]m@ = WXSM [Xsb nl]m@ = - M(21) Zl; S = 27 sy l7
[Xslthl]mQ - [Xsh )/tl]m@ - [Ysl7 }/tl]m@ = 07 S 7é t.
As before, we can apply (4.0.2) to obtain
. (L= Dp
RlC(Zl, Zl) = W,
2l (0)
Ric(Xy, Xo) = Ric(Yy,Ya) B s=2 ..,

e o (Iu(21))2’
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so A is an Einstein metric if and only if

(1—1)p@ 2 o o o
(u@D)2 = LB T @) = (1 —1)pY =20 —

4.1.6  (SO(4) x SO(4))/SO(4)

The manifold Fg = (SO(4) x SO(4))/SO(4) is a flag of D, obtained when © = {ay, as, a3}
or {ag, as,au}. Let us assume that © = {a, ag, a3}, then the isotropy representation decom-
poses into two non-equivalent SO(4)—invariant irreducible subspaces given by

Ty = span{ug) + Uy3, Uz1 — Uga, Ug1 + uso} and Sy = span{ugs — gy, Uy + Ugz, Ugy — Us2 },

where the matrices u;; are defined in ((1.4.2)). By (2.0.3) and (2.0.4)) we have that every invariant
metric A on SO(4) x SO(4)/SO(4) is determined by positive real numbers p, 19 such that

Alry = mlr , Als, = pols, . (4.1.7)

Proposition 4.1.6. Let A be an invariant metric on (SO(4) x SO(4))/SO(4). Then A is an
FEinstein metric if and only if A is normal.

Proof. In this case, an A—orthonormal basis of M4, s, is given by

X1:U21+U43,X2:U31—U42,X3:U41+U32’
211 211 211
Y, = U43—U21’ Y, — U31 +U42’ Y, — Ug1 — U32
2411 2/ 210
and we have that
[Xi’Xj]m{al,ag,ag} = I:}/;’Xj]m{al,ag,ag} = [}/; }/}]m{al,ag,ag} = 07 Z’j = 1’ 2’ 3
Therefore
) 1 2
RlC(Xi, Xl> = —*<X1,Xl> = —
2 231
L i=1,2,3.
) 1 2
R1C<}/;:7 }/7,) - _7<}/”L7}/Z> -
2 K2
So A is an Einstein metric if and only if % = %, i.e., 1 = p2 (A is normal). O

For © = {a1, as, ay} we consider the automorphism 7 of so(4) & so(4) given by
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n(wij) = wi, N(ugg) =wi, 1 <57 <i<3

N(wa;) = ugj, N(ug;) = waj, j=1,2,3.

Observe that 7(Ma; a2,04}) = Mar,a0,05} a0d 7 maps isotropy summands into isotropy sum-
77|m{a1,a2,a4}) A, where A
is an invariant metric on Myq, ,.04}- Using the formula (4.0.2), it is easy to see that 7 preserves

the Ricci components, thus, an invariant metric on Fyq, ,.q,) is Einstein if and only if it is
normal.

mands, therefore, every invariant metric on my,, a,,,} has the form (

4.2 Flags with three isotropy summands

Homogeneous Einstein metrics on complex generalized flag manifolds with three isotropy
summands were completely classified in [5] and [1§]. In this section we study the Einstein
equation for real flag manifolds of classical type whose isotropy representation decomposes into
three isotropy summands.

4.2.1 SO(4)/S(0(2) x O(1) x O(1))

The flag SO(4)/S(0(2) x O(1) x O(1)) is obtained when g = A3 and © = {a;1}, {as} or
{as}. Let us normalize the Ad(K)—invariant inner product (-,-) of section [2.1| by setting

Suppose that © = {ay }, then the Lie algebra of Ky,,} is the subalgebra £(,,; = span{w,; } and
the isotropy representation of K,,; on my,,; decomposes into the irreducible sub-representations
Wy = span{wys}, Wi = span{ws, w3s} and Wy = span{wys, w4 }, where Wy and Wy are equiv-
alent. By Proposition [2.1.2] every invariant metric A with respect to go can be written in the
basis B = {wy3, w31, W32, Waa, W41 } as

w 0 0 0 0
0w 0 b 0

[A]B = 0 0 J251 0 —b , Mo, 1, o > 0. (421)
0 b 0 pp O
0 0 —b 0 p

Proposition 4.2.1. Let A be an invariant metric on the flag Fa,y of As written as in (4.2.1)).
Then A is an Einstein metric if and only if its entries satisfy one of the following conditions:

(EI) b=0, i :MQZENO

(E2) b>0,b=p =4 ==
(E3) b>0,b=pp=1 =10
(Ef) b<0, =b=py =2 =15
(E5) b<0, =b=pp =4 =5
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Proof. We separate two cases:
e A diagonal (b= 0):

The vectors w w w w
— Xi= 0, Xa= 0, Xy = —, Xy=—

v Ho vV H1 vV H1 v H2 vV H2

form an A—orthonormal basis of m,,;. The non-zero bracket relations between these vectors
are given by

XOI

[X07 Xl]m{aq} - #gil X4’ [XO’ X2]m{0¢1} - \/EXS’
[X07X3]m{al} = _\/ u/;,lll,QX2’ [X07X4:|m{”1} - _\/E)(l7
[X]_7 X4]m{a1} = u/;‘EQ X07 [X2’ Xg]m{oq} - NT[OLZ XO

Since [X;, X;] is A—orthogonal to X; and X for all 4, j € {0,1,2, 3,4}, then, equation (4.0.1)

implies

A direct application of the formula (4.0.2)) gives us the components of the Ricci tensor:

2
ro = Ric(Xe, Xp) = — o M2 M

Mo H1fb2 - Hofb N Hofb2

2
T = RiC(Xl,Xl) = RiC(XQ,XQ) = — + al - Ha - Ho
P 2pope 2fofa 2H1fo

2
ry = Ric(Xy,X3) = Ric(Xy, X)) = — 412 A K
P 2fopa 2ope  2H1ft2

Thus, Einstein condition for the diagonal metric A reduces to rqg = r; = r9, which gives us

3

H1 = M2 = Z/vb(y

e A non-diagonal (b # 0):

The eigenvalues of A are

pa + p2 — \/452 + (11 — p2)?
2 )

NG Chs \/452—1— (1 — pa2)”
B 2

&2

§o = o, &1 =
and satisfy the relations

S+ & =+ o, &&= papg — b7,
o= (& — )& — ) = (1 —&1)(& — )

= (2 = &) (1 — &) = (p2 — &)(& — p2).
Since A is positive definite then &;,& > 0. Let us set
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e =&((& — M2)2 + bz)
2 = &((§2 — p2)® + 17

Then the vectors

W43 (&1 — p2)wsy + bwgo
Xo= U8y, —
PR T NG
X, = (&a — p2)wsy + bwys

NG

=&1(& — p2)(§ — &2) and
= &2(§2 — p2)(§2 — &1)-

(& — p1)wsz + bwy

7X2:

va

(&1 — p1)wsa + bwyy

7X4:

NG

form an A—orthonormal basis for my,,;. The non-zero bracket relations are given by

2
N

b
o Xl = 6, (

b 2
o Kol = 5,7 (&T{Xl

[Xo, X3]

(”@“?XQ’
(5 %),

=5 g (@(erb\ >Xz+} X4>
)

b [ & (H1— po 2
[XO7X4]m{a1} R ( £t ( 0] )Xl + \/—Xg

2bv/&o
Mol T g (6 - &)

~ bl — ) | o
(X1, Xalwg,,, = b6 = &) §1§2X0,

~ b(pe =) | o
[X27X3]m{a1} - ’b‘(fQ _ 51) £1£2X07

VG
Meu 66 - &)

[X17X2] XU7

[X37X4] XU-

Observe that [X;, X;| is A—orthogonal to X; and X; for all 4, j € {0,

1,2,3,4}, thus, Z = 0. If

A is an Einstein metric, then Ric(Xy, X3) = 0 (because Ric = cg). By (4.0.2) we have

. 1 1
Ric(Xy, X3) = — 59 ([Xh Xolmgo,ys [X3, Xz]m{al}) 3

g ([Xla X4]m{a1}a [X37 X4]

m{al})
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1
7<X17 X3>

1
- 59 ([Xla XO]m{alp [X37 Xo]m{al}) - 9

- ;9 ([Xoa Xz}m{al}’)ﬁ) g <[X0’ XQ]‘““”}’XS)

+ ;g ([X07 X4}m{01}’X1) 9 <[X0’ X4]m{01}’X3)

(51 - ) <|l;7|,u§12 1@) (52(2/5_0 ) <|l;7| (& — \/7>
~(Vre—a) (e ties) - (vme—a) (e —hee)
(msg—sl ) (\br@ Wg) " <m<§ ) (\br G @)

_ b2 (o — 1) <_ &o n €o 2v& n 2\/5>
1b[(& —&)2 \ &v&aé

_l_

EVEE Ve &VE

_ V(2 — ) <—53(52 —&1) +266(6 — 51))
10](&2 — &1)? §061&vE1 &2

_ |b|(ﬂ2 - Ml)(2§1§2 — fg)
£o(£162)% (€2 — &1)

so, a necessary condition for A to be an Einstein metric is that p; = s or 26,6 — & = 0.

Y

Case 1. | := 11 = pa.

We can use formula (4.0.2)) to obtain

i §o(6162 + 207
ro = Ric(Xo, Xo) = 0((151252)2)7
r1 = Ric(X1, X1) = Ric(Xa, X5) = 45125—2 fo)
1
r2 = Ric(X3, X3) = Ric(Xy, Xy) = 45225_2 50'
2

If ro = 11 = 19, then & = &, which is not possible since b # 0. Therefore, we have no solutions
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in this case.
Case 2. 2&& — &2 = 0.

The components of the Ricci tensor are 1o = Ric(Xy, Xo), 1 = Ric(X3, X;) = Ric(Xs, X») and
ry = Ric(X3, X3) = Ric(Xy, X4). By (4.0.2) we have

o &i6a(p2 — )’ <1 _ 1) 4 20%& (1 _ 1) 9 (1 _ 1)
T g6 - &) g &) L-a2\g & & &

1 > §1&a(pe — p1)* (& + &) + 20°E0 (61 + &) — 2616260(62 — 51)2>
§o(§2 — &1)% (6 + &)

i ) <f1f2 &1+ 52 Mz - Ml) + 4b2) - 2515250(52 - 51)2>

(

( o e e
“(&a)

[

1 1) <§1§2(§1 +& — 250))

§16(& + &) (& — &) — 26660 (& — 51)2>
o(8a — §1)(&1 + &2)

&3 i §o(& + &)

G -8)E+s —2v 26,62)
V2(6.65)?

and

ro+Tre b’ <3fo 3& 8 ) I (2 — p11)* ( 3&o 289 26, )

> G- \a g &) s _ar\as  an a6

_<2_1_1>

o & &

10v/2b% + 3v26 & — V2(6 — &) — 2(& + &)VES
(616)* |

Since the systems of equations

ro—1r1 =20 ry—1ro=20
7”1—7’2:0 TQ—L;W =0

are equivalent, we have that A is an Einstein metric if and only if &, & satisfy the equations
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10v20? + 3v/261& — V2(& — &)? = 2(6 + &)VEE =0
§1+ & —2v2685 =0.

By solving this system for £ < &, we obtain the solutions:

& =(-2+V2)b &=02-v2)b
{érZGQ—Vab’b<Q { _ b> 0,

or, equivalently,

Mo = —b 2 =30’
p = pr = 3b
, b>0, , b>0
{ p2 = 3b { po =b
In all these cases, o = & = v/25& = V4b? = 2|b). O

When © = {ay} or {as}, consider the maps

()07; : ]F{Ai—)\i_‘_l} —> ]F{)\l—)\Q}) ()07, (kK{)\Z—Al_‘_l}) = elkez—’K{)\l—)\Q}w Z = 17 27

where
0100 0010
Joo1o} o001
A=l 1000 |*™®2T 1000
000 1 0100

These maps are diffeomorphisms. It is easy to show that every invariant metric on Fy,,, has
the form ¢}g, where g is an invariant metric on Fr,,3. By [20, Lemma 7.2] we have that the
Ricci tensor associated to ¢} g is equal to the pull-back by ¢; of the Ricci tensor associated to
g, thus, ;g is an Einstein metric if and only if is so g. Therefore, Einstein metrics on Fy,,, are
obtained by taking the pullback by ¢; of the Einstein metrics on Fy,,y.

In this section, we shall present a more general result about invariant Einstein metrics on
homogeneous spaces with three isotropy summands; it will be useful to study Einstein metrics on
our particular case. Let G be a compact connected Lie group, H a closed subgroup of G and let
g, b be the Lie algebras of G, H respectively. Assume that the isotropy representation of G/H is
decomposed into non-equivalent three irreducible components and consider an (-, -)—orthogonal
reductive decomposition g = h & m, where (-, -) is an Ad(G)—invariant inner product on g. Let
m = my; P my dmg be the irreducible decomposition of m. Each invariant metric A with respect
to (-,-) on G/H can be represented by positive numbers z, x5, x3 such that A|n,= x;ln,,
i =1,2,3. Let M be the set of all G—invariant metrics on G/H with volume 1, i.e.,

, A A 1
M = {A — (513171‘2,1'3) c (R+)3 : l,tlizm m1x§lzm mzxgzm m3 _ 172}
0
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where vg = Vol(G/H, (, ) |mxm)- Denote by S(A) the scalar curvature of (G/H, A). By Corollary
7.39 of [9] we have the following formula for the scalar curvature:

S(4) = — YUK X Jul*—3 (X, X)) — 2P (4.2

7

where |-| is the norm with respect to A, {X;} is an A—orthonormal basis of m and Z =
> U(X;, X;). The following result gives us a tool to study existence of invariant Einstein metrics.
i

Proposition 4.2.2. ([30/) A € M is an Einstein metric if and only if

0S 08
Ay =22(4) =
o (A) = 52 (4) =0,

where u = 2 and v = s
I I
For the flag Fy. {0, a4}, 1 < d1 < dy <lof Aj, 1 # 3 the isotropy representation decomposes
into the non-equivalent irreducible submodules My, = span{wy; : s = d1+1,...,da, t = 1,...,d1 },
Ms; = spanf{wg : s = do+1,...,1+1, t =1,...,d1 } and M3y = span{wg : s = da+1,...,[+1, t =
dl + ]_, ...,dg}. Let ll = d17 lg = dQ — dl and lg = + 1-— dg, then

0 =U {oi ,11-m0q 1} and Fo = SO(+1)/5(0(lh) x O(l) x O(ls)).

1;>1

Fix the Ad(K)—invariant inner product gy on ¢ = so(/ + 1) given by

Any invariant metric A (with respect to go) is defined by positive numbers fio1, 31, f32 such
that
Al M= HonnI My 1 <n<m <3, (4.2.3)

Proposition 4.2.3. The flag manifold Fg = SO(l + 1)/S(O(l1) x O(ly) x O(l3)) has at most
four SO(1+1)—invariant Einstein metrics up to homotheties. Moreover, whenly = l3 =:m > 3
we have

a) If1 <l <2¢ym—1orl > (m_2)2+m2“ mAmtS yhen Fe has ezactly two invariant Ein-
stein metrics up to homotheties.

b) If Iy =2v/m —1 orly = (m72)2+m2v m2—Am+8 ypen Fe has exactly three invariant Einstein
metrics up to homotheties.

c) If2ym—1<l < (m_2)2+m2“ m—Amt8 yhen Fe has exactly four invariant Einstein metrics
up to homotheties.
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Proof. Let A be an invariant metric on SO(I + 1)/S(O(l1) x O(ls) x O(l3)) as in (4.2.3). We

consider the A—orthonormal basis

Wet
Xst -

s S:ll+1,...,ll+l2, t= 1,...,[1

3
=

Ws
Xg=— s=lL+lL+1,.,01+1, t=1,.,4 (4.2.4)

Xst: —, 8:l1—|—l2+1,...,l+1, t:ll—i-l,ll—'—lz
Then, we have two cases:
Case 1. ly # 3.
Applying formula - to basis we have that

l1l5l i1 N Il
S(A):—123< H21 i 31 i 32 >+(l—1)<12 13+23>.

2 3132 Ha1 32 Ho1 31 Ha1 H31 H32
Now, assume that A has volume 1 and let u := @, vi= Hs2 , then
Ha21 N21

S(A) o S(u,v) _ l1l2l3 (ulll\llg _q lla_4 lll3+1 1213 1

113 lols
3 = p) = v N +u N +u N IUN+1>
N N 2
0 0

l Iol l1l3 I3 i1l Iol
+(l— 1) (lllgu 11\731) 21\73 +Z1Z3U N N U 2N +l213u 11\731) 21\73 1),

where N := lyly + l1l3 + l3l3 and vy = Vol(Fe, go). Computing the partial derivatives of S we
obtain

_ hilals (lll?’ _ 1) e

2 N

Li=1) (l 5\2713 bia_y, L2l s <llj\l[3 B 1) il _p 2l N lll]\zfl%ulll\lf:g_lvbj\?_l> |

208 151 lol 1 Ity /N ni
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B Lilyls % 1 u%*lv%
2 N
L35 u : L2 1 )
+ (l - 1) (1]\2[3ul1\1731}l21\1731 + 71]\273u%71’012l3 1 lng <j\f3 — 1) % lJ\lf32> ,
thus
2 N _ui iy 08 111515 N N N
om0 (- (31
! Yo lllgu " v ou 2 l1l3 + l1l3 + “ lllg
N
F-1) (lllguv Ll ( - 1) vt lgzgu) ,
l1l3
2 N _uis by 5,08 l1lsl5 N N N
im0 () (1))
2 Yo lglg ! v ov 2 lglg lglg ur lglg +
N
+ (l - ].) (l1l2UU + lll3U - l2l3 ( — 1) )
lal3
. . . . . oS 0S8
If A is an Einstein metric then, by Proposition 4.2.2] 0o 0,s0 dy =dy =0 and
U v

= 1

N N
( + 1) dy + (
Iyl

lil3
where

Cl — —N(ll + lg), 02 —

)dg:0<:>Clu2+02uv+Cgv+C4u+C’5:0,

(I —=1)N(ly + 1s)

(4.2.5)

(I —=1)N(l; +13)

I3

(I —=1)N(l3 —1s)

Cy = L

Now, we will show that u # — 05 . In fact if u =

Ciu? + Couv + C3v 4+ Cyu+ Cs = 0

2N = DA+ B+ ) (T — )

—

) 03 = lg )
Nyl + 1)
) 5 — l3 .
g—; then
02 40,
~ Cs =0
g o

C1C3 — C4C5Cy + C5C3

=0
C3

=0

15C3

l2:l3=O,
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which is absurd. This fact allows us to isolate v in (4.2.5)), obtaining

v — —Clu2 — C’4u — 05
N CQU + Cg ’

(4.2.6)
thus

Bl +13)
2

ZQ(N + lllg)

0= (CQ’LL + 03)2d1 = — B

(OQU + Og)Q — u2(02u + 03)2

n l%(h +13)

B (01U2 + C4’U + 05)2

— (l — 1)1112U(OQU + Cg)(Oluz + C4U + 05)
+ (l — 1)[2([1 —+ l3>(Cgu + Cg)(01U2 + C4u + 05)
+ (l — 1)[213U(C2U + 03)2

=:f(u),

where f is a fourth-degree polynomial with real coefficients. Since f has at most four positive

roots and v is determined by u (because of (4.2.6])), then we have at most four possibilities for

(u,v). i.e., we have at most four invariant Einstein metrics on SO(141)/S(O(l1) x O(l3) x O(l3))
up to homotheties.

Case 2. ly = I3 =: m.
In this case, we use the basis (4.2.4)) and formula (4.0.2)) to obtain the Ricci components

[—1
rl:m< H21 31 32 >+

2\ p31p32 a 21432 B 21431 21 7

_m ( H31 32 H21 ) -1

T = - — + ,
2 \po1p32  fo1f31  M31/432 31
b ( 132 fh21 431 ) [—1

rs = — - - + .
2 \porpizr  p3ipizz p21fi32 32

Since every invariant metric which is homothetic to an Einstein metric is also an Einstein
metric, we can assume that pzy = 1. The solutions in C x C of the system

7’1—T2:0

7“2—7’3:0
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are given by

_a1+\/A_1
M21_74(m—1)
(1)
_a1+\/A_1
M31—74(m_1)
_al_\/A_l
N21—74(m_1>
(2)
7G1—\/A_1
M31—74(m_1)
ast+my/A
Hat = 2m2(m+ ll — 1)
(3)
as—my/Ay
M= o2 (m + 1, — 1)
. G2—m\/A_2
P = o2 (m + 1, — 1)
(4),
o as + my/Ay
Pt = o2 (m + 1, — 1)

where
ai :2m+l1—2, agzm(m+l1—1)(2m+l1—2), Alzl%—él(m—l),
Ay =(m+1l —1)(=8B+1i(m—2)?+m3 —4m? + 8m — 4).

Suppose that m > 3. Since [y is a positive integer, we have that A; > 0 if and only if /; >
2y/m — 1 and Ay > 0 if and only if

—2)? VmZ —4m +8
_z%+l1(m_2)2+m3_4m2+8m_420<:>1SllS(m )+m2m s

Also, we note that a; > /A and as > m+/Ay when A, Ay > 0, in fact
a, > \/A1<:>2m+l1—2> \/l%+4(1—m)
= 2m+1 —2)? > +4(1—m)

=B H4m -1 +4m - 12> B2 +4(1 —m)
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= 4m -1 +1)+4m—-1)2>0

which holds for m > 3, and
ag > my/Ag <= \/m+1l —12m+1; —2) > \/—l%+l1(m—2)2+m3 —4m? +8m — 4

= m+h—-1D)2m+1L 22> -E+5L(m—2)2+m®—4m? +8m — 4

= B+ (5m — 42+ (Tm? = 12m + 4l + (3m® — 8m> + 4m) > 0

which is true since 5m — 4, Tm? — 12m + 4, 3m3 — 8m? 4+ 4m > 0 when m > 3. Observe that
9% 4 mv/m? — dm + 8
N (m—2)%+ m2 m m+8

o If 1 <y < 2y/m — 1, then solutions (1), (2) are complex and solutions (3), (4) are positive,
thus, only (3), (4) are invariant Einstein metrics.

, SO we have:

o If [y = 2¢/m — 1, then (1), (2), (3), (4) are all positive solutions and (1) = (2), so we have
three invariant Einstein metrics.

9 4 mym? = Im T8
e lf2ym—-1<1 < (m =2)" + mvm mT , then (1), (2), (3), (4) are positive distinct

solutions and we have four invariant Einstein metrics.

Lo A ¥
o If [} = (m =2 +mym m—|—8’ then (1), (2), (3), (4) are all positive solutions and

(3) = (4), so we have three invariant Einstein metrics.

— 2)? vVm2 —4m +8
.Ifll>(m )2+ myvm m+ 8

therefore, only (1), (2) are invariant Einstein metrics. O

, then (1), (2) are positive and (3), (4) are positive,

4.2.3 (SO(4) x SO(5))/SO(4)

Let g = B, and consider the flag given by © = {aj, as,as}, then Fg ©< (SO(4) x
S0O(5))/S0O(4). We fix the Ad(SO(4) x SO(5))—invariant inner product (-, -) defined in
and the matrices wy;, u;j,v; defined in (L.2.2). The Lie algebra of K4, asasp = SO(4) is
given by €4, as.0s) = sPanfwy : 1 <t < s < 4} and Myg a0y = Vi © 11 @ Th, where
Vi= Span{vh V2, U3, U4}7 T, = Span{u21 + Ugg, U31 — Ug2, Ug1 + U32}, 15 = Span{u21 — Uy3, U31 +
Ug2, Ug1 — Uz} are not equivalent. Every invariant metric A with respect to (-,-) has the form

Alvi= plvy, Alny=nlr, Aln,= 1l (4.2.7)
Proposition 4.2.4. Let A be an invariant metric on (SO(4) x SO(5))/SO(4) as in (4.2.7)).

Then A is an Einstein metric if and only if y1 = y2 =1y and p =3 or p = .

Proof. We consider the A—orthonormal basis

Uo1 + Ugs U1 — U4g2 Ua1 + U3z
X, =218 x, =82y, A8

V2m ’ V271 o V27
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=y, I T ey T Te g B -1,2,3,4.

272 272 Ve ?

Then

M Y2 _ /N [ V2
[Zla ZZ]m{al,ag,ag} - \/;)(1 o \/;le’ [Zl’ Zg]m{alaazvas} o 27/uL2X2 + 27/12}/27
g V2 /N Y2
[ 7y gi! 2
[227 Z4]m{a1,a2,a3} 2,U, X2 + 2 2}/2’ [Z3’ Z4 m{al ag,az} \/;Xl - \/;Yi’

[ZlaXl]m{al)a%%}_ \/ZQT [ZlyXQ]m{a1’a2,a3}_ \/ZQT [ZlaX?)]m{al,aQ,ag}:_\/%,
R fﬂ 20 Vil o) = — ¢ZzT R ¢Z27
o Xl o) = ¢227 7oy Xolg,, o = fﬂ [ZQ,Xg]m{al,a27a3}=—\/%,
[Z2: Y] apogy = — ZQ% [Z2, Yolmio ayony = — \/% (22, Yoy cp.ag) = \/ZQ?)E

3

A
[Z3, X1] = , [Zs, X5 .

Miay,ag,a3}

7 [Z37 XS]

May,ag, O¢3}

May,ag, as} m

Nﬁ
2
Nﬁ
[\»)
)

Zy
[Zg, E]m{aba%a?’} \/2—72 [Z37 }/Q]m{al,%,a?’} — \/2_’}/2 [Z37 Y:ri]m{al,ag,a;g} = — \/2—’)/27
Z3 Zo Z
[Z4’X1]m{a1,a27a3} - \/W [Z4’ XQ]m{alvazyag} - _\/2_’}/1’ [ZA" Xg]m{alywva:a} - ﬁ7
Zs Zy 7
[Z4,le]m{a17a2,a3} = ?%7 [Z47}/é]m{a1,a2,a3} - T’}/Z’ [Z4’Y:3’]m{ala%7a3} - Tw
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The Ricci components are given by

Ric(Z;, Z;) =
Ric(X;, X;)

Ric(Y}.Y))

S 3 655y
42 4p?

4 §a!

—+ a 99 = 17 27 37

7o 2p? /

4 72 .

— + o 99 = 17 27 37

V2 20 J

therefore, if A is an Einstein metric then

dom 4 e
Too2pr e 2pP
We study the two cases:
Case 1. pp = \/@,
3 3
In this case Ric(Z;, Z;) = _47; _ 433
4 4
— + — so
Y12
128 6 6 _4 4
V72 7t 2 7t 2

> 81’2 + 1172 = 811 + 117

<~ SNZ(% —71) — ey —m) =0
= (12 = )8 =) =0

Y172

S M =72 =y0r p= 3

6 12v2 6 6
_ V266 pix, X)) — Ri(Y;, 1)
B MY2 M )2

124/2 —1 —1
— Y172 O 072
Y172

=0

571 — 62772 + 572 =0

= 5(y71 — v72)* + (10 = 6v2)y/ 7172 = 0

= =7 =0,

which contradicts that 1,72 > 0. Hence, there is no Einstein metrics satisfying u = /22,

Case 2. y1 = v =: 7.
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6 3 4
In this case Ric(Z;, Z;) = — — —L and Ric(X;, X;) = Ric(Y;,Y;) = — + ——. Thus
Y

poo2p 2p

6 3 1
f—%=f+l2<:>12pw—372:8,u2+72
poo2wt o 2p

=y —3uy+2u* =0
= (y=2u)(y—p) =0

y
S p=gory=p,

as we wanted to prove. O

4.2.4  (SO() x SO(+1))/(SO(d) x SO(I — d) x SO —d+1)), 1 >3, 2 <
d<l-1
Let us consider g = B;, [ > 3. Given d € {2,...,1 — 1}, the flag manifold Fy_y,, associated
to © =3 — {ay} is diffeomorphic to the homogeneous space

(SO(1) x SO(I + 1)) /(SO(d) x SO(I — d) x SO( — d + 1))

In this case, the isotropy representation decomposes into the submodules U; = span{ug :
1 <t<s<d}, (V1)1 =span{wg—ug :d+1 < s <1, 1<t <d}and (V})y = span{vy, ..., v} U
{wg +us :d+1<s <1 1<t <d}, where the matrices w;;, u;;,v; are defined in ([1.2.2)).
These subspaces are not equivalent. According to Proposition [3.2.1] every invariant metric A

with respect to the inner product ((1.2.1)) has the form

A|U1: ’YIUU A|(V1)1: pI(V1)17 A|(V1)2: ILL‘[(VI)Q' (428)

Proposition 4.2.5. a) If d # 2, Fy_(a,) has at most four invariant Einstein metrics up to
homotheties. In this case, a necessary condition for Fx_g, 1 to have an Einstein metric is that
the positive integers I, d satisfy

(1 —2)* —2(d—1)*(d—2)(2l — d) > 0. (4.2.9)
b) If d =2, Fy_{a,) has at most three invariant Einstein metrics up to homotheties.

Proof. Let A be an invariant metric on Fy_(,,} as in (4.2.8)) and consider the A—orthonormal
basis

Ust Wst — Ust
YVy=—2 1<t<s<d Fy=-— "% 1<t<d d+1<s<lI,
Nal V2p
Wst + Ust

ZF:ZT1§j§¢c&: J1<t<d d+1<s<l.

N

The non-zero bracket relations of theses vectors are given by
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F; Fig Gi Gis
[}/;IHE ]m@ = \/%7 D/;h Et]m@ = _ﬁ7 Dfsthis]m@ = _\/,—;7 D/;tu Git]m@ = \/’_}/
Z Z
[Y;h Zs]m(_) - _7t7 D/Sty Zt]m@ - ) [Fsta FS]] - ﬂi/:&m [Gst; GS]] - ﬂYQﬁ
NG p Il
20, 2, = VT where Yy = Vi, if s < J.
° [
By (4.2.2) we have that
d(d—1)(d—2) (2(1—2) (d—m) (2(1— 1) (d— 1)7>
S(A) = +d(l—d - +d(l—d+1 — :
(4) 5 (l—d) ; 2 ( ) . 22
Suppose that A has volume 1 and let u = g, v = %, then
5(124) _ S(ul,v) —d(d—1)(d— 2)uwvw +2d(l — d)(l — 2)ud(l§d)_1vd(l7]\z}l+l)
g vg'

B d(l — d) (d — l)uda&d) -2, d(l7]5+1)

Y 2d(l —d+1)(1 — DuF oy FE

d(l—d+1)(d - 1)ud(l]\7d)vd(lfjg+1)_2
2 )
where N = d(dT_l)

+d(l—d)+d(l—d+1) and vy = Vol(Fe, (-, ) |mexme ). The partial derivatives
of S satisty

-2 _d(l—d) _d(l—d+1)
vo "Nu~—~ 3y~ ~ 1298

2, 2 N 2
f1:= 20— d) 5 =(d—1)(d —2)u*v* =2(l = d)(I — 2) (d(l—d)_1> uw
(l—d)(d—-1) 2N )
M (d(l —a) 1) v
+2(1 —d+ 1)(I — Duv — U d+21)(d — 1>u2,
U_]%Nu_ d(l[;d) +2”_d(17;+1>+3 oS
fo = 0 —dt 1) %:(d—l)(d—Q)u vE+2(l—d)(I — 2)uv

(—d)(d-1) ,
9 (Y

—2(l—d+1)(I—1) (d(l—Nd+1)_1> u?v
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l—d+1)(d=1)[ 2N ,
* 2 (d(l—d+1)_1>”'

If A is an Einstein metric, then f; = f; = 0 and, therefore,

2N
(‘l()_1> fi+ fo =0 Crv*v+ Chuv + Csv + Cyu® = 0

l—d+1

where

o _ 2N(d—1)(d—2) __2N(-2)I _ N(d—1)(2l —d) o _2N(l—-1)

YTod(l—d+1) P d(l—d+1) T dil—d+1) YT 4
If Clu2 + CQU + Cg = 0 then
Civtv+Couwv + Csv+ Cuu®> =0 = Cyu®> =0 = u = 0,
a contradiction. Thus Ciu? + Cyu + Cs # 0 and
(2
Cu (4.2.10)

v = .
Clu2 + CQU + 03

Suppose that d # 2. Since v > 0 and —Cyu? < 0, we have that Ciu? + Cyu + C5 < 0, so, the
quadratic polynomial Cy2? + Cyx + C3 must have two distinct real roots (otherwise, it would
always be non-negative since C; > 0), but this occurs when

AN?(1 =2 8N*(d—1)%(d - 2)(2l — d)

P —d 1 1) B0 —d+1) >0

C3 —4C,C3 > 0 <=

= *(1—-2)*-2(d—1)*(d—-2)(2l — d) > 0.
Now, substituting (4.2.10)) in f; = 0 and multiplying it by (Cyu? + Cyu + C3)? we obtain

0 = (Cru? + Cyu + C3)? f1 =(d — 1)(d — 2)C3u* — 2(1 — d)(I — 2) (d(lN—d) — 1) Ciu?

(l—d)(d—1) 2N 9 o
+ 5 (d(l—d)_1>c4u

(I—d+1)(d—1)

+ 2(l —d + 1)(l - 1)04%2(01U2 + CQU + Cg) — B

=: g(u),

where ¢ is a fourth-degree polynomial. Hence, the set of invariant Einstein metrics (1, u,v) of
volume 1 is contained in the set

—C4u2
2. _ _
{1} x {(u,v) € (R")*:g(u) =0and v = C’lu2+02u+03}

which has at most four elements. This concludes the proof of item a). Now, when d = 2. Then,
item b) follows from the fact that C} = 0 and, therefore, g is third-degree polynomial. O]
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4.2.5 UD)/O xU(l—d), >3, 2<d<l—1

In this section, we consider g = C}, I > 3 and © = X — {ay}, where 2 < d <1 —1. The
associated flag manifold is diffeomorphic to U(1)/(O(d) xU(l—d)). Fix the Ad(U(I))—invariant
product and the basis . The subspace mg is decomposed into the non-equivalent
submodules My, = span{wst,ust : 1 <t<d, d+1<s<I}, U =span{u;j —ujy1j41 ] =
Lnd—=1}U{ug - 1 <t < s <d}, Vi =spanf{uj; + ... + ugq}. Every invariant metric A is
given by positive numbers g, 11, fto1 such that

Alvi= polvy, Alv,= mly,, Al = po1l, (4.2.11)

Proposition 4.2.6. The flag U(1)/(O(d) x U(l —d)), 1 > 3, and 2 < d <1 — 1, has at most
two invariant Einstein metrics up to homotheties.

Proof. Let A be an invariant metric on U(l)/(O(d) x U(l — d)) as in (4.2.11). Consider the
A—orthonormal basis of mg given by

2 3 (1
Zl d 1o (u11 + ...+ udd) 7} = m (j(UIl + ...+ u]j) — Uj.._Lj_A,.l) 5

(% w (%
st 1<t<$<d,X8t: st Ygt: st

N/ o N/ o1

Then, we have the following bracket relations:

2
[Zla \/>st7 Zl7 st :\/>Xst,].§t§d<5§l,

dpo

t—l
\/75t7 [Ti1, X \/75t,1<t<j<d<8<l

]Ml

t—l )
\/7 sty Ela st \/7 5t,1§t§]§d<8§l,
]Ml

Yy = 1<t<d d+1<s<l.

[T

Y Y o
[Y;jaX]m(_):_ D/Z]aX ] _771§J<Z§d<3§l7
Vi VH1
XS' Xsi . .
[Y;J?Y]m@: J>[YszYSJ] = 1< j<isd<s<l,

X Yilno = =[S Vi 1SjAt<d<s <l (Vy=—Yyifj<1),

[Xsts Ytlme = =/ 75~ tl—Z ————T;, 1<t<d<s<l,
)M21
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d—1
where Ty = 0 and Y WT] = 0 if t = d. Computing the scalar curvature we obtain
jft 21

dd-1)(d+2) (I =dpo (I =d)(d=1)(d+2m , 4d(l—d)

S(A) = — —
H1 1151 203 H21
Assume that A has volume 1, that is,
=0 ga—a) 1
Popy % Mo =
Yo
where vy = Vol(U(1)/(O(d) x U(l = d)), (-, *)[mexme)- Let u = £, v = L2 then
vy ¥ S(A) = v ¥ S(u,v) = d(d — 1)(d + 2u TR (1 gy TR M2

(U =d)d-1)(d+ 2)u(d—12>]<vd+2>+11)2d(]zv—d>_2
2

(d=1)(d+2) 2d(—=d)

+4ld(l —d)yu 2N v N

where N = w;dw) + 2d(l — d) 4+ 1 is the dimension of the flag. Therefore,

o Ny~ B 42, - 242 o g d(d—1)(d+2) o Al
) s - S S T
) e - (d—1)(d+2)

(1= d)(d—1)(d+2) 2N )
2 ((d—l)(d+2)+l>u

+ 4ld(l — d)uv — (I — d)u,

_ (d=1)(d+2) _ 2d(l—d) -2
Nu N TlyT TN +3v0 N oS

2= 2d(1 — d) v

d(d —1)(d+2)0> + (I — d) <d(lN—d) - 1> "

(Il —d)(d—-1)(d+2) N 9
’ 2 <d<1—d> ‘1>”

N
—4ld(l —d) | == —1 .
(t=d) <2d(l —d) ) "
By Proposition [£.2.2] if A is an Einstein metric then g; = go = 0, thus

2N

gl—{—<(d_1)M—1)92:0<:>01U+CQ+C3U:07

where
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C_EC_QN(d(l—d)%—l) B 4IN
YT TP dd-1)d+2) 0 P (d=1)(d+2)

so we have that
v = Dlu + DQ, (4212)

where D = —g—; and Dy = —g—;. Substituting (4.2.12]) in g; = 0 we obtain

2N

DN 1) (Dyu+ Ds)* — (I — d)u

(I—d)(d—1)(d+2) 2N )
_ ; ((d_ CES) + 1) u? + 41d(l — d)u(Dyu + Dy)

—: h(u),

where h is a two-degree polynomial. The result follows from the fact that h has at most two
positive roots and formula (4.2.12]). O

4.2.6 (SO(l) x SO(1))/S(O(l — 1) x O(1))

Let us considerg = Dy, [ > 4,0 ={ay,...,au_2}, (+,-) asin and the (-, -)—orthonormal
basis (L.4.2). In this case, K is diffeomorphic to SO(I) x SO(Z) and Kg is diffemorphic to
S(O(l — 1) x O(1)). The isotropy representation of K¢ on mg decomposes into the irreducible
submodule Uy = span{u;; : 1 <t < s <[ — 1}, which is not equivalent to any other sub-
module, and the equivalent irreducible sumodules Wy = span{w;; : 1 < j < [ — 1} and
Uy = span{u;; : 1 < j <1 —1}. As a particular case of Propostition we have that every
invariant metric A is given by

A |U1 = ’yIUl, Awlj = Alwlj -+ bulj, Aulj = bwlj + )\Qulj, j = 1, ,l — 1. (4213)
for some p, A\, Ao > 0 and b € R.

Proposition 4.2.7. Let A be an invariant metric on the flag Fiq, . o, written as in (4.2.13)).
Then A is an Einstein metric if and only if A satisfies one of the following conditions:

(F1) b=0, /\1:< m)v and Ay = (1+ i 5”)7

20-1) s
(FQ)b:O,)q:( —l—W)’y and Xy = ( W)V
(F3) b>0,b=\ = ?2:%

(F) b>0,b=X =2 =1
(F5)b<0, ~b=X\ =2 =1

(F6) b <0, —b=Xy =2 =1
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Proof. The proof is analogous to the proof of Proposition [£.2.1] As before, we consider two
cases:

e A diagonal (b= 0):

In this case, we have the A—orthonormal basis of mg given by the vectors

Uyj . . Wi Uy .
Vii=—-2 1<j<i<l—1 X;;=—F+~, Y, =2, j=1,.,1-1, (4.2.14)
J ﬁ J J

VAL V2

which satisfy the following bracket relations

Ao A2
)\1 )\1
[Y;j’ Yli]m@ = —\/;ij, D/;ja Yzj]me = %Xlia

(X, Yislme = \/KY;U for s #£t,

where, Y, = =Y, if s < t. Observe that [X,Y] is A—orthogonal to X and Y, for all XY in
the basis (4.2.14), thus, Z = Z U(X,X) = 0, where the sum extends over the basis (4.2.14)).
By formula (4.0.2)), we obtain that

= Ric(Y};,Ys;) = - - 1< <i<l—1,
To Ric(Y};, Y;;) > + e T h j<i
. 2 )\1 /\2 Y .
= Ric(X;;, X)) = (1—2) — — — 1<i<]—-1
Tl IC( l]? l]) ( ) (}\1 + 27)\2 27)\1 2)\1)\2> ) = j = 9

2 A A
ry = Ric(Y,Y;) = (I—2) <+ 2 ! 7

- — 1<5<l—1.
)\2 2’}/)\1 2")/)\2 2)\1)\2) ’ =7 =

Therefore, A is an Einstein metric if and only if rg = r1 = o, i.e.,

VIZ—-5l+4 12—-5l+4

A1_<1_ 20—1) )7 Sl R Tr Ry
or .

12-5l+4 12-5l+4
AQ‘(” 20— 1) )” AQ‘(“ 20— 1) )”

e A non-diagonal (b # 0):

The eigenvalues of A are given by

1
§o=",& = B <)\1 + Ay — \/4172 + (A2 —/\1)2) and & =

1
. (Al + o+ A2+ (e — /\1)2>
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and satisfy
S +&=M+X, L& =M\ -0

o= (&= X)(&— )=\ —&)(&—\)
= (M—=&) (M —&) = (N2 —&)(E — A2).

Since A is a positive operator, then &;,& > 0. An A—orthonormal basis of mg is given by

Y = 1<i<i<l—1,
’ \/g
X, = (& — Xo)wy; + bulj) Y, — (& — Xo)wy; + bulj) 1<j<i-1,
Ny V2
where ¢; = &(&1 — A2) (&1 — &) and 3 = &(& — A2) (&2 — &1). These vectors satisfy the relations

2b\/_ v

2b b(A
X, Xishno = 2l Yo0, (X, Yiehwo = S220 [EY [V, Viglwo = 2y, s £ 1,

TObl(&1—€2) V &6

oy b 2 [ & [Aa—N\ A

[Y;J?Xl]}m(—) 51 52 (\/@X €0€1< |b‘ >le>7
b (2 &

Y Yo = ¢, (@ it &@( o )X“
. b (2. . [&

R (m”ﬁvgo&( b )

b (2 & i<l
[Yig: Xidlma = ¢ <%Xl]+ &)&( 5 )1@) 1<j<i<l-L.

)
o)

We may use formula (4.0.2)) to obtain

)= =20 = Xo) (6 — 2616)
(& — £)&(618)?

Thus, if A is an Einstein metric then Ric(Xj;,Y;) = cg(Xy;,Yi;) = 0 (for some ¢ € R), ie.,
AL = Mg or § = /261 6o.

Case 1. Ay = Aa.

Ric(Xy;, Y, ,forall j € {1,....,1 —1}.
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When A\; = Ay, the Ricci components are guven by

2(1—3 1 1
o = RIC(KJ,Y;J) = (50>+£20<£%+§§>,1§j<@§l—1,
_ . 2 & .
r = Rlc(leale) = (l_2) 5_2752 5 1 S] Sl_la
1
' . 2 & .
2

We shall show that the sytem of equations

To =T
T = T9

2 2
hemes? B2 &

& 2 & 28

has not positive solutions. In fact,

— 45153 - 505% = 45%52 - fof%
= 4616(& — &) — (& — &) (e + &) =0

= (L —&)4&& — &G+ &) =0

=& =§or = gil_f;-
Since b . 466
ince b # 0 then & # &. Assuming &, = we have that
&1+ &2
_ DG+ (+1)E +20=3)6& _ o A=2)66
0= 2,606 + &) AT G + &)

therefore

(+DE+ (1 +1)6 —2(1 = 1)6&
261626 + &)

ro—r1 =0+ =0

= (1+1)(& — &)+ 466 =0

= §=§=0.

Hence, system (|4.2.15)) has no solutions &, & with &1,& > 0.

(4.2.15)
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Case 2. éo = 25152.

In this case we have

. 2 — - ?
ro = Rie(Yy,Yy) = 2(lfo 2) +8b 5(5252 E ’

(X X = (o (2 2% (A2 = \1)? (5%-53-53))
r = Ric(Xy;, X)) = (—2) (51 206 — 6 + 26— )2 r ,

ry = Ric(Y,,Yy;) = (1-2) (2_ W6 o= M) (55—5%—63))

6 86-67 2A6-6)r\ Lhé
Thus
1 11y 2% (11 0‘2_)@2(51_52))
2= 2)<2<§1 4—5) 6 —&) (&% 5%)*@(@—&)2 &6
o & 262&) <€ €1> (A2 — A\1)? (5%—5%))
= (=2 <2< 5152) 22 )T G-ay oo
o €y — G-\, M=) (5%—522))
=(=2) <2< a6 ) < @@)* 6&—a)7 L aas
) e <A2_A1)2>>
=(=2) <2< a6 ) & ( fii6s
(=2 <2< a6 ) @5@)

_ (=2)(6 = &)(26 — (& + &)
S

_ (1=2)(&—&)(2v 2515 — (& + 52))
V2(616)?

Observe that & — & # 0 (since b # 0), therefore, an Einstein metric A satisfiying b # 0 and
&g = V261& also satisfies 24/261& = & + &. In this situation we have

ity 2(1—2) N 8b? — (& — &)?

To — =

2 €o ISt

[—2 11 2% (1 1) (=M &
N ( 2 ) (2 (fl * 52) (52 - 51)2 (f% " f%) (52 —51)2 (fl&))
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1 1 1) n 80 — (& — &)? n 20°(1 — 2) (5% ‘*’f%)
So 26 28 §0&1&2 (&2 —&1)? \ &o&iée

(A= M)*(1=2) [ &
- (& —&)? <2§1§2>

(I =2)(26& — &(& + &) n 8b* — (& — &1)°
§06162 06162

- < [—2 > <2b2<§% +65) 4+ (M2 — )\1)2§1§2>
(§2 —&)? 08182

(1 —2)(26& —285) n 8b* — (& — &1)°
§061&2 §06162

N ( [ -2 ) <2b2(§% + &) + (& — &)*6é - 4b2§1§2>
(§2 - 51)2 &)5152

(1 = 2)(=2&6) . 8b% — (& — &)?
§0&1&2 §0&1&2

N < [—2 ) (21)2(52 — &)+ (& - 51)2§1§2>
(§2—&1)? QISTS)

(-9(-2%&) , 88— (-&)° (-2 +66(-2)

§0182 §0&12 §o&182
_ (1 +2)+ (- D6 -G - &
V2(616)?
2 _
_ 20°(1 +\/2§>(§IZ)_§ 2)616 (since & + & = 2\/@ — 5% + 53 = 6£182).
Then
r1+ 7o 2
To — =0 <= §i& =207,

by solving & + & = 24/26,&; and £& = 2b* for & < &, we obtain

& =(-2+v2) &= (2— VI
{§2:(_2_\/§)b’b<0’ {52:(2+\/§)b’b>0’
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and & = 2|b|. Hence, an Einstein metric satisfying &, = /2§ & must satisfy one of the con-
ditions (F3), (F4), (F5) or (F6). Conversely, it is easy to verify that any invariant metric
satisfying one of the conditions (F3), (F4), (F5),(F6) is in fact an Einstein metric. O

For © = {ag,...,a;_1} or {ag, ...,a;_2, y }, the isotropy representation of Fg also decomposes
into three irreducible Kg—invariant subspaces. Consider the automorphisms p and 7 of so(l) ®
so(l) given by

p(wij) = Wi—ji1i—iv1, P(Uis) = wjrri—iy1, 1 < j<i <1,
n(wij) = wij, (i) = ugg, 1 <j<i<l—1,
n(wi;) = wy, n(ug) = wyy, 1 <j <1 —1.

We have that

p(m{ah...,al,g}) = m{ag,...,al,lh n(m{ag,...,al,l}) = m{ag,...,al,g,al}a

and p, n, take an invariant inner product to an invariant inner product. Consequently, the
components of the Ricci tensor of invariant metrics for {ag,...,aq—1} or {ao, ..., 9, oy} are
the same as in the case of {a,...,;_2}. Therefore, Einstein invariant metrics on Fa, o 1}
and Fia, . a, ,.0 have the form (p~')*g and (p~* on~1)*g, respectively, where g is an Einstein
invariant metric on Fyo, o, 5}

4.3 Equivalent metrics

In this section, we shall decide which of the Einstein metrics found in the previous sections
are equivalent in the sense of the following definition:

Definition 4.3.1. Let g1, g2 be Riemannian metrics on a manifold M. We say that g, and go
are equivalent if there exists an isometry F : (M, g1) — (M, g2).

As observed in [21], the Einstein constant corresponding to an Einstein Riemannian metric
g of volume 1 on a compact manifold M is equal to S/dim(M), where S is the scalar curvature
of g. Since any isometry preserves the scalar curvature, then two Einstein metrics of volume 1
with different Einstein constant cannot be equivalent. We denote by vy the volume of the flag
with respect to the invariant inner product fixed in each case.

Let us consider the flag (SO(l) x SO(l + 1))/SO(l), | > 3. By Propositions {4.1.3| and [4.2.4]

this manifold has two invariant Einstein metrics A; = (u3,7:), ¢ = 1,2, where p; = 34 and
2

4 4
l EDE _ D (20-4
o = (—2174) v2. When v = v, 25T and v, = v, (—l

corresponding Einstein constants are given by

)le we have volume 1 and the

4 4
D /2
(1—1)p T+ (=10l (1F T 40
g = —%>—— and ¢; = 70— é,l) .
QT+ PYES (1—2)T+1
llil_l(l+2) 1 2 1
_ : : _ . 1 . .
So, ¢y = ¢ if and only if ———=—= = 1 or, equivalently, (—l_g) = D which is not

(1—2)T+1

possible since ( <1l< é Hence, Ay, Ay are not equivalent.

!
1—2)(1+2)
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For SO(4)/S(0(2) x O(1) x O(1)), denote by A and A the the invariant metrics satisfying
(E2) and (E1) respectively (see Proposition [4.2.1)), their corresponding volumes are given by
5

and 26 When b =23 and

1 16
90

2
2v/2b% and Ez“—g, and their corresponding Einstein constants are ;

4 6
fo = (%) ® we have volume 1, but 25 # (%) ° so (E1) and (E2) cannot be equivalent. Now, if
we consider the diffeomorphisms

Vi Frayy — Fragys i (kK{al}) = siks] K{a,}, 1©=3,4,5;

where
1 0 00 0100 1000
o =100 11000 e ] 0100
BZLo o0 01" o010 "™ 000 1
00 10 000 1 0010

Then it is easy to verify that the invariant metric ¢f A satisfies (Ei). This shows that (E2),
(E3), (E4)and (E5) are equivalent. We can use a similar argument to show that metrics (F'1),
(F2) are equivalent as well as metrics (F3), (F4), (F5), (F6) and that (F1) is not equivalent
to (F3) (see Proposition [1.2.7)).
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Chapter 5

Conclusions and future work

In this thesis, we addressed the problem of studying invariant Riemannian Geometry of
real flag manifolds associated to classical Lie algebras. We can see that there exist remarkable
differences between real and complex flag manifolds. For example, the set of invariant Rieman-
nian metrics in a complex flag manifold can be identified with (RT)* for some s € N. As seen
in Chapter 2, this does not hold for the real case since the existence of equivalent irreducible
submodules of the isotropy representation leads to non-diagonal invariant metrics. Another
big difference is the fact that in real flag manifolds we can find a large family of non-trivial
examples of g.o spaces (see Chapter 3), in contrast with the complex case, where the only flag
manifolds of a simple Lie group which admit an invariant non-normal metric with homogeneous

geodesics are the manifolds SO(20 + 1)/U(l) and Sp(1)/(U(1) - Sp(l — 1)).

One of the main contributions of this work is the description of invariant Riemannian met-
rics in real flag manifolds of classical Lie algebras. This description is important to study several
geometric issues. Two of them were treated here: the classification of homogeneous spaces with
geodesic orbits and the solution of the Einstein equation.

Another interesting problem is the study of geometric flows on homogeneous spaces: given
a homogeneous manifold M = G/H with reductive decomposition g = h @ m of its Lie algebra.
We can consider a geometric flow on M of the form

£(1) = a2 (1), (5.0.)

where {7(t)} is a one-parameter family of tensor fields on M and ¢ assigns to each tensor field
another tensor field of the same type. Assuming ~(t) is G—invariant for all ¢, equation (/5.0.1))
becomes equivalent to an ODE for a one-parameter family (¢) of Ad(H)—invariant tensors on

m of the form
d

270 =a0r(1)). (5.0.2)
In the case of a real flag manifold, we can use the parametrization of the invariant Riemannian
metrics obtained in Chapter 2 to study the behavior of the solutions of equation (5.0.2) when
{7(t)} is a family of homogeneous metrics.

There is a list of specific goals that are expected to be achieved in the medium term by
using the results and ideas of this work:
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o Parametrize the set of invariant Riemannian metrics on real flag manifolds of exceptional
Lie groups (Eﬁ, E7, Eg, F4, and GQ)

o Classify the real flag manifolds of exceptional Lie groups which are g.o. spaces.
o Study the Einstein equation for real flag manifolds of exceptional Lie groups.

e Describe the invariant Riemannian metrics in other families of homogeneous spaces having
equivalent isotropy summands.

e Study the Ricci flow equation for a homogeneous spaces whose isotropy representation
splits into a low number of irreducible (possibly equivalent) submodules.
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