

JOSÉ GERALDO ROCHA JUNIOR

SÍNTESE DE BIODIESEL: ESTUDO DA INFLUÊNCIA DE CATALISADORES ALCALINOS NA REAÇÃO DE METANÓLISE POR MONITORAMENTO *ONLINE* DO ÍNDICE DE REFRAÇÃO

CAMPINAS 2013

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE QUÍMICA

JOSÉ GERALDO ROCHA JUNIOR

SÍNTESE DE BIODIESEL: ESTUDO DA INFLUÊNCIA DE CATALISADORES
ALCALINOS NA REAÇÃO DE METANÓLISE POR MONITORAMENTO *ONLINE*DO ÍNDICE DE REFRAÇÃO

ORIENTADOR: PROF. DR. MATTHIEU TUBINO CO-ORIENTADOR: PROF. DR. GLAUCO FAVILLA BAUERFELDT

TESE DE DOUTORADO APRESENTADA AO INSTITUTO DE QUÍMICA DA UNICAMP PARA OBTENÇÃO DO TÍTULO DE DOUTOR EM CIÊNCIAS.

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA POR JOSÉ GERALDO ROCHA JUNIOR, E ORIENTADA PELO PROF. DR. MATTHIEU TUBINO.

Assinatura do Orientador

CAMPINAS 2013

FICHA CATALOGRÁFICA ELABORADA POR SIMONE LUCAS - CRB8/8144 - BIBLIOTECA DO INSTITUTO DE QUÍMICA DA UNICAMP

R582s

Rocha Junior, José Geraldo (1984-).

Síntese de biodiesel: estudo da influência de catalisadores alcalinos na reação de metanólise por monitoramento online do índice de refração / José Geraldo Rocha Junior. – Campinas, SP: [s.n.], 2013.

Orientador: Matthieu Tubino. Coorientador: Glauco Favilla Bauerfeldt.

Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química.

 Biodiesel. 2. Catalisadores alcalinos.
 Monitoramento online. 4. Refratometria. 5. Cinética.
 Tubino, Matthieu. II. Bauerfeldt, Glauco Favilla.
 Universidade Estadual de Campinas. Instituto de Química. IV. Título.

Informações para Biblioteca Digital

Título em inglês: Biodiesel synthesis: a study of the influence of alkaline catalysts in methonolysis by online monitoring of refractive index

Palavras-chave em inglês: Biodiesel Alkaline catalysts Online monitoring Refractometry Kinetic

Área de concentração: Química Analítica

Titulação: Doutor em Ciências

Banca examinadora: Matthieu Tubino [Orientador] Leonardo Pezza Tereza Cristina Rodrigues Elsholz Paulo José Samenho Moran Pedro Luiz Onófrio Volpe

Data de defesa: 19/03/2013

Programa de pós-graduação: Química

••

"O mistério que esteve oculto desde todos os séculos, e em todas as gerações, e que agora foi manifesto aos seus santos, aos quais Deus quis fazer conhecer quais são as riquezas da glória deste mistério entre os gentios, que é Cristo em vós, esperança da glória."

(Paulo aos colossenses)

AGRADECIMENTOS

A Deus, por ter me sustentado e me capacitado para a realização deste curso. Pela vida da minha mãe que, no tempo em que esteve comigo, me fazia querer ir mais além por eu desejar vê-la se alegrando com minhas conquistas. Por ter colocado as pessoas certas nos momentos em que mais precisei para isto, as quais eu sinto muita alegria em prestar minha gratidão neste momento.

A minha amada esposa, Sheisi, por ter me apoiado e incentivado a dar início a esta jornada. Pelas renúncias diárias para que eu pudesse terminá-la. Pela paciência, amor e cuidado.

Ao pequeno Gabriel, cujo sorriso que me faz ansiar concluir este trabalho para aproveitar meu tempo com ele.

Ao meu orientador, Prof. Dr. Matthieu Tubino, pela oportunidade de participar de seu grupo, pela compreensão, confiança e pelo otimismo transmitido.

Ao meu co-orientador, Prof. Dr. Glauco Bauerfeldt, por ter aceitado o convite para me orientar neste doutorado, pelo auxílio prestado de forma atenciosa e pela contribuição dada neste trabalho.

Aos companheiros Rodolfo, Fabiano, Andréia, Luiz Fernando e Bruno, pela moradia e agradável convivência, especialmente ao Marcos Vinícius, meu primo, pelas longas horas de conversas e momentos de descontração.

Aos colegas do Lab-I125, especialmente ao Flávio, Sabir, Lilian, Eva e Acácia: pelo companheirismo, por se identificarem com os meus anseios, por toda ajuda e palavras de incentivo.

Aos meus familiares: Danielle, Oscar, Rodrigo, Nádia, Leilian, Alexia e à tia Mary, pela amizade, pelos momentos de alegria, pela torcida e pela força.

Aos meus amigos e colegas do setor de Química Analítica do Dequim/UFRRJ, por terem me apoiado durante este trabalho.

A UFRRJ, por ter me concedido a oportunidade de continuar o doutorado após o meu ingresso na carreira docente e pelo financiamento.

À UNICAMP, especialmente ao IQ e à CPG, por todo o suporte de infraestrutura disponibilizado, pelo apoio acadêmico e pelo apoio técnico.

CURRICULUM VITAE

1. Dados Pessoais

Nome: José Geraldo Rocha Junior Citação: ROCHA Jr., J. G

Currículo Lattes: http://lattes.cnpg.br/7721155377063365

e-mail: geraldorocha@ufrrj.br

2. Formação Acadêmica

2009: Mestrado em Química

Instituto de Ciências Exatas – UFRRJ, Seropédica, RJ.

Área de concentração: Química Orgânica

Título: Desenvolvimento de um modelo empírico de predição da atividade de inibidores da esterol 14 α -desmetilase (CYP51) utilizando o método semi-empírico PM6.

2006: Graduação

Química Industrial, UFRRJ, Seropédica, RJ.

3. Atuação Profissional

2008-2009: Professor Substituto do Magistério Superior

Local: ICE/DEQUIM/UFRRJ, Seropédica - RJ

Carga horária: 20 h/semana

Disciplinas Ministradas: Química Analítica Experimental I; Química Analítica

Experimental II.

.

2010-Atual: Professor Assistente do Magistério Superior

Local: ICE/DEQUIM/UFRRJ, Seropédica – RJ

Carga horária: 40 h/semana (Dedicação Exclusiva)

Disciplinas Ministradas: Química Analítica I; Química Analítica Experimental I;

Química Analítica Experimental II.

RESUMO

SÍNTESE DE BIODIESEL: ESTUDO DA INFLUÊNCIA DE CATALISADORES ALCALINOS NA REAÇÃO DE METANÓLISE POR MONITORAMENTO *ONLINE* DO ÍNDICE DE REFRAÇÃO

O biodiesel é comumente produzido pela transesterificação dos triglicerídeos com o metanol (metanólise) empregando catalisadores alcalinos. Neste trabalho foi investigada a atividade catalítica do NaOCH₃, KOCH₃, NaOH e do KOH na metanólise do óleo de soja nas temperaturas de 30 à 60 °C, sob agitação de 400 rpm. O progresso desta reação foi monitorado pelas medidas do índice de refração utilizando um refratômetro portátil digital, ao qual foi acoplado uma peça cônica de Teflon® para permitir o monitoramento online das amostras em fluxo contínuo. O método proposto é simples, rápido, barato, não-destrutivo e não requer pré-tratamento complexo. Foi observado que a etapa de mistura dos reagentes consome grande parte do tempo necessário para a conversão. A lei de velocidade da metanólise pôde ser bem representada por uma cinética de ordem zero, com a reação ocorrendo na interface da mistura metanol/óleo. Os catalisadores contendo o potássio promoveram reações mais rápidas do que os seus análogos de sódio, sugerindo que um mecanismo de reação envolvendo a participação de pares iônicos de metóxidos alcalinos como catalisadores seria mais adequado para representar a metanólise do que aquele catalisado pelos íons metóxidos. Em comparação aos metóxidos alcalinos, nas reações em que se empregaram os hidróxidos as suas velocidades são menos sensíveis à variação da temperatura. Neste caso, os sabões formados com os hidróxidos poderiam estar amenizando a influência da temperatura na difusão dos reagentes fazendo com que a velocidade da reação seja menos afetada. A água parece atuar como um inibidor desta reação, por inativação do catalisador, o que se reflete na menor velocidade observada nas reações com os hidróxidos frente às com os metóxidos. Entretanto isto não é percebido à baixas temperaturas, quando o efeito difusional é predominante.

ABSTRACT

BIODIESEL SYNTHESIS: A STUDY OF THE INFLUENCE OF ALKALINE CATALYSTS IN METHONOLYSIS BY ONLINE MONITORING OF REFRACTIVE INDEX

Biodiesel is commonly produced by the transesterification of triglycerides with methanol (methanolysis) using alkaline catalysts. In this work we investigated the catalytic activity of NaOCH₃, KOCH₃, NaOH and KOH in methanolysis of soybean oil at temperatures of 30 to 60 °C, under 400 rpm agitation. The progress of the reaction was monitored by measuring the refractive index using a portable digital refractometer, to which was attached a piece conical Teflon® to allow online monitoring of samples at continuous flux. The proposed method is simple, fast, inexpensive, non-destructive and not requires complex pretreatment. It was observed that the step of mixing the reactants consumes much of the time required for conversion. The rate law of methanolysis can be represented by a zero-order kinetics, with the reaction occurring at the interface of methanol / oil. The catalysts containing potassium promoted reactions faster than its analogs sodium, suggesting that a reaction mechanism involving the participation of ionic pairs of alkaline methoxides would be more suitable to represent the methanolysis than that catalyzed by ions methoxides. In reactions that utilized hydroxides their speeds are less sensitive to temperature variation than the alkaline methoxides. In this case, the soaps formed with the hydroxides could be decreasing the influence of temperature on diffusion of the reactants so that the reaction rate is less affected. The water seems to act as an inhibitor of this reaction by inactivation of the catalyst, which is reflected in the lower velocity observed in reactions with hydroxides towards methoxides. However this is not observed at lower temperatures, when the diffusion effect is predominant.

ÍNDICE

LISTA DE ABREVIATURAS	xix
LISTA DE TABELAS	ХХ
LISTA DE FIGURAS	xxiii
1. INTRODUÇÃO	1
1.1. Catalisadores utilizados na síntese do biodiesel	1
1.2. Os catalisadores alcalinos na síntese do biodiesel	7
1.2.1. Mecanismo de transesterificação e reações paralelas	7
1.2.2. Influência dos íons de metais alcalinos no tempo de	
transesterificação e no rendimento	9
1.2.3. Condições reacionais utilizadas na metanólise	14
1.3. Métodos analíticos utilizados no monitoramento transesterificação	
dos triglicerídeos	18
1.3.1. Métodos cromatográficos e espectroscópicos	18
1.3.2. Métodos baseados nas propriedades associadas à	
composição global da mistura reacional	23
1.4. Refratometria	25
1.4.1. Fundamentos	25
1.4.2. O monitoramento da transesterificação ocorrida na síntese do	
biodiesel por refratometria	30
1.5. Cinética Química	32
1.5.1. Fundamentos	32
1.5.2. Estudos cinéticos da alcoólise alcalina ocorrida na síntese do	
biodiesel	37
2. OBJETIVOS	43
3. METODOLOGIA	45
3.1. Sistema empregado para o monitoramento	45
3.2. Síntese do biodiesel e monitoramento	47
3.3. Determinação do intervalo da reação	49
3.4. Determinação do índice de refração do óleo de soja e do seu	49

respectivo biodiesel					
4. RESULTADOS E DISCUSSÃO					
4.1. Monitoramento <i>online</i> da síntese de biodiesel refratometria					
4.2. Influência dos catalisadores alcalinos no tempo de conversão do					
óleo de soja à biodiesel	65				
4.3. Estudo cinético da metanólise dos triglicerídeos com os					
catalisadores alcalinos	68				
4.4. Proposta de um mecanismo para a transesterificação metílica com					
os catalisadores alcalinos	82				
5. CONCLUSÕES	89				
6. REFERÊNCIAS BIBLIOGRÁFICAS	91				
ANEXO I: Índices de refração obtidos no monitoramento da síntese do					
biodiesel	101				
ANEXO II: Índices de refração no monitoramento da síntese do					
biodiesel com e sem catalisador	119				
ANEXO III: Dados utilizados na determinação das constantes de					
velocidade observada na metanólise do óleo de soja	121				

LISTA DE ABREVIATURAS

A fator pre-exponencial de Arrhenius

BD biodiesel

BSTFA N,O-bis-(trimetilsilil)-trifluoracetamida

CG cromatografia gasosa

CLAE cromatografia líquida de alta eficiência

DD detector de densidade

DG diglicerídeo

DIC detector de ionização de chama

DIR detector de índice de refração

E_a energia de ativação

FT fourier transform

GD glicerídeo GL glicerol

IV infravermelho

k constante de velocidade

 k_{obs} constante de velocidade observada

*k*₁ constante de velocidade da alcoólise do triglicerídeo

 k_{-1} constante de velocidade da alcoólise reversa do triglicerídeo

 k_2 constante de velocidade da alcoólise do diglicerídeo

 k_{-2} constante de velocidade da alcoólise reversa do diglicerídeo

*k*₃ constante de velocidade da alcoólise do monoglicerídeo

k₋₃ constante de velocidade da alcoólise reversa do monoglicerídeo

In logaritmo neperiano

ME metil ésteres

MG monoglicerídeo

MHz mega hertz

n índice de refração

P produtos

PLS partial least squares regression

R reagentes

R constante dos gases ideais (8,314 J K⁻¹ mol⁻¹)

r coeficiente de correlação

RMN ressonância magnética nuclear

s estimativa do desvio padrão

T temperaturaTG triglicerídeo

t tempo de conversão

t' tempo de metanólise ou de qualquer outra reação

UV ultravioleta

%m/m porcentagem massa-massa

γ_{metanol} tensão superficial do metanol

γ_{óleo} tensão superficial do óleo

 Δn variação do índice de refração de t = 0 ao instante t

 Δn_t variação do índice de refração de t' = 0 ao instante t'

 Δn_{total} variação do índice de refração do início ao final da metanólise

v velocidade da reação

LISTA DE TABELAS

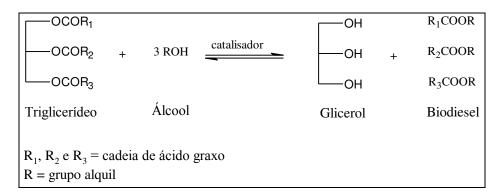
Tabela 1. Balanço de massas dos metil ésteres (em mol/100 mol) na	
produção do biodiesel a partir do óleo de girassol refinado.	10
Tabela 2. Condições empregadas na metanólise de diferentes óleos	
com NaOH e seus respectivos rendimentos e conversões.	15
Tabela 3. Leis de velocidades com a sua respectiva forma integrada.	35
Tabela 4. Comparação dos diferentes conjuntos de parâmetros	
cinéticos de segunda ordem global obtidos da literatura.	39
Tabela 5. Energias de ativação, em kJ mol ⁻¹ , encontradas na literatura	
para as três reações ocorridas na transesterificação para a síntese do	
biodiesel.	42
Tabela 6. Tempo (t) e tempo médio ± estimativa do desvio padrão	
$(\bar{t}\pm s)$, em minutos, necessário para a conversão com os catalisadores	
alcalinos.	65
Tabela 7. Tempo (t') e tempo médio ± estimativa do desvio padrão	
$(\bar{\it t'\pm s})$, em minutos, necessário para a metanólise dos triglicerídeos com	
os catalisadores alcalinos.	67
Tabela 8. Tempo mediano ($t_{mediano}$), em minutos, necessário para	
mistura dos reagentes.	68
Tabela 9. Parâmetros da curva $\Delta n_t/\Delta n_{total} = -k_{obs} t' + b$, obtida por	
regressão linear dos valores de $\Delta n_{t'}/\Delta n_{total}$ versus t'.	78
Tabela 10. Constante de velocidade média ± estimativa do desvio	
padrão $(\overline{k}_{obs} \pm s)$, em ms ⁻¹ , da metanólise dos triglicerídeos com os	
catalisadores alcalinos.	79
Tabela 11. Energia de ativação (E_a) e energia de ativação média \pm	
estimativa do desvio padrão ($\overline{E}_a \pm s$), em kJ mol $^{-1}$, necessária para a	
metanólise dos triglicerídeos.	81

LISTA DE FIGURAS

Figura 1. Equação geral de transesterificação de um triglicerídeo.	1
Figura 2. Esquema representativo da sequência das três reações de	
transesterificação de um triglicerídeo com um álcool.	2
Figura 3. Número de publicações envolvendo a utilização de	
catalisadores homogêneos e heterogêneos na produção de biodiesel.	5
Figura 4. Formação do íon metóxido na catálise alcalina.	7
Figura 5. (a) Mecanismo da metanólise de um triglicerídeo e (b)	
regeneração do íon metóxido.	8
Figura 6. (a) Hidrólise dos ésteres (b) e a neutralização do catalisador.	8
Figura 7. (a) Reação de saponificação e (b) formação de hidróxido.	9
Figura 8. Constante de equilíbrio observada, k_{obs} , em função do raio	
iônico do metal hexa-coordenado.	12
Figura 9. Ilustração da refração de um raio ao mudar o seu meio de	
propagação.	26
Figura 10. Observação do limite de luz-sombra na ocular do telescópio	
na determinação do índice de refração de uma amostra pelo método	
do ângulo crítico.	29
Figura 11. Refratômetro empregado no monitoramento da síntese do	
biodiesel.	45
Figura 12. Esquemas do: (a) suporte adaptado à cela de medição do	
refratômetro; (b) separador de fases líquidas (S1); e (c) separador de	
fases líquida e gasosa (S2).	46
Figura 13. Sistema empregado no monitoramento da reação.	46
Figura 14. Índices de refração ao longo da conversão do óleo de soja	
à biodiesel com NaOCH ₃ , sob diferentes temperaturas (em triplicata).	52
Figura 15. Índices de refração ao longo da conversão do óleo de soja	
à biodiesel com KOCH ₃ , sob diferentes temperaturas (em triplicata).	53
Figura 16. Índices de refração ao longo da conversão do óleo de soja	
à biodiesel com NaOH, sob diferentes temperaturas (em triplicata)	54

Figura 17. Índices de refração ao longo da conversão do óleo de soja	
à biodiesel com KOH, sob diferentes temperaturas (em triplicata).	55
Figura 18. Gráfico de <i>n versus t</i> da metanólise do óleo de soja com	
KOH à 60 °C, identificando os segmentos característicos da ocorrência	
de uma reação.	56
Figura 19. Monitoramento do índice de refração ao longo da	
conversão, à 50 °C, do óleo de soja com catalisador (KOCH ₃) e sem	
catalisador.	57
Figura 20. Gráficos de ⊿n versus t' utilizando o NaOCH ₃ como	
catalisador.	61
Figura 21. Gráficos de ⊿n versus t' utilizando o KOCH ₃ como	
catalisador.	62
Figura 22. Gráficos de ⊿n versus t' utilizando o NaOH como	
catalisador.	63
Figura 23. Gráficos de <i>∆n versus t'</i> utilizando o KOH como catalisador.	64
Figura 24. Gráfico do tempo de conversão (t) versus temperatura (T)	
na síntese do biodiesel, empregando o NaOCH3, KOCH3, NaOH e	
KOH como catalisadores.	66
Figura 25. Representação do processo de formação da gotícula de	
metanol em óleo e da reação interfacial.	70
Figura 26. Representação do comportamento de <i>n versus</i> [TG].	72
Figura 27 . Gráficos de $\Delta n_t/\Delta n_{total}$ versus t' empregando o NaOCH ₃	
como catalisador.	74
Figura 28 . Gráficos de $\Delta n_t / \Delta n_{total}$ versus t' empregando o KOCH ₃	
como catalisador.	75
Figura 29 . Gráficos de $\Delta n_t / \Delta n_{total}$ versus t' empregando o NaOH como	
catalisador.	76
Figura 30 . Gráficos de $\Delta n_t / \Delta n_{total}$ versus t' empregando o KOH como	
catalisador.	77
Figura 31. Variação da constante de velocidade observada com a	80

temperatura empregando o NaOCH3, KOCH3, NaOH e o KOH como	
catalisadores.	
Figura 32. Gráfico de In $k_{obs} \pm s$ versus $1/T$, referente a metanólise do	
óleo de soja com o KOCH3, NaOCH3, KOH e NaOH.	81
Figura 33. Dissociação do metóxido alcalino em metanol.	82
Figura 34. Formação de metóxido alcalino a partir da reação do	
hidróxido com o metanol.	83
Figura 35. Esquema das diferenças de energia entre os reagentes na	
transesterificação dos triglicerídeos quando no estado fundamental e	
no complexo ativado.	85



1. INTRODUÇÃO

1.1. Catalisadores utilizados na síntese do biodiesel

A instabilidade do mercado do petróleo, a disponibilidade limitada do óleo cru e, principalmente, os sérios impactos ambientais do uso dos combustíveis à base de petróleo têm estimulado a expansão do uso de combustíveis alternativos. Uma alternativa ao diesel de petróleo que têm ganhado muita atenção em diversos países é o biodiesel [MONTEIRO et al., 2008].

Quimicamente, o biodiesel é uma mistura de alquil ésteres de ácidos graxos derivados de matérias-primas renováveis, tais como óleos vegetais e gorduras animais. A transesterificação é o processo mais utilizado para obter o biodiesel e envolve a reação dos triglicerídeos com álcoois de baixa massa molecular, tais como o metanol e o etanol (Figura 1) [MEHER et al., 2006].

Figura 1. Equação geral de transesterificação de um triglicerídeo.

O processo global da transesterificação pode ser descrito por uma sequência de três reações consecutivas e reversíveis na qual o diglicerídeo e o monoglicerídeo são formados como intermediários e o glicerol é formado como subproduto da reação (Figura 2). Pelo fato destas reações serem reversíveis, o álcool é empregado em excesso em relação à quantidade de triglicerídeo para deslocar o equilíbrio destas reações no sentido de formação dos produtos (i. e. glicerol e biodiesel), possibilitando altas conversões. Além disso, apesar destas

reações já ocorrerem pela simples mistura dos reagentes, faz-se necessário a utilização de catalisadores para que o equilíbrio químico seja alcançado rapidamente.

1ª reação:TG = triglicerídeo;1ª reação:TG = diglicerídeo;DG = diglicerídeo;MG = monoglicerídeo;GL = glicerol;ROH = álcool;BD = biodiesel;
$$k_2$$
 k_3 BD = biodiesel; k_i = constante de velocidade (direta); k_i = constante de velocidade (reversa).

Figura 2. Esquema representativo da sequência das três reações de transesterificação de um triglicerídeo com um álcool.

Um catalisador é uma substância que aumenta a velocidade de uma reação química, mas não é consumida pela reação. Entende-se que o catalisador cria um caminho diferente do normal para a ocorrência de uma reação química, com uma energia de ativação mais baixa, aumentando, por isso, a velocidade da reação. De modo geral, um catalisador não aparece na estequiometria global da reação porque não é consumido no decorrer da mesma [BALL, 2005].

Os catalisadores podem ser classificados como homogêneos ou heterogêneos. Segundo Atkins e Paula [2004] um catalisador homogêneo é aquele que está na mesma fase da mistura reacional, enquanto que o heterogêneo está numa fase diferente. Entretanto, esta definição é problemática para a classificação de catalisadores que atuam em sistemas reacionais de duas fases, nos quais os catalisadores estão dissolvidos em principalmente uma das fases. Um exemplo disso seria o sistema formado na metanólise (na produção de biodiesel) catalisado pelos metóxidos ou hidróxidos alcalinos, onde estes catalisadores estão dissolvidos no metanol.

Ball [2005] classifica a catálise homogênea como aquela que se dá quando todas as substâncias, incluindo o catalisador, estão na mesma fase. Em

contrapartida, a catálise heterogênea ocorre quando os reagentes e o catalisador estão em fases diferentes, devendo a mesma ocorrer na região limítrofe entre as fases. Com base neste critério, fica evidente que quando os metóxidos e os hidróxidos alcalinos são empregados como catalisadores na metanólise, eles deveriam ser classificados como catalisadores heterogêneos. Apesar disso, há um consenso entre os autores de diversos trabalhos que exploram este sistema em classificar estes e outros catalisadores empregados na síntese do biodiesel como homogêneos, deixando o termo heterogêneo para os que não se dissolvem na mistura reacional, formando uma terceira fase. Portanto, para evitar confusão no levantamento bibliográfico deste trabalho, os catalisadores serão classificados como catalisadores homogêneos.

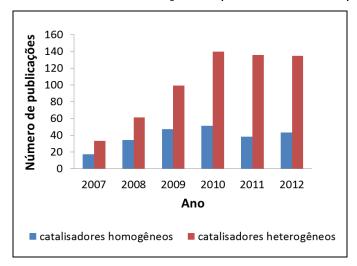
Atualmente, o biodiesel é comumente produzido pela transesterificação dos triglicerídeos com metanol, utilizando catalisadores homogêneos alcalinos (daqui em diante mencionados simplificadamente como catalisadores alcalinos) tais como o hidróxido de sódio e o metóxido de sódio. O maior problema quando estes catalisadores são empregados é a formação de sabões, que pode ser favorecida pela presença de água e ácidos graxos livres na matéria-prima.

Os sabões levam à formação de emulsões durante a separação dos produtos, causando dificuldades na separação da fase glicerinosa da fase que contém os ésteres. Consequentemente, ocorre o arraste de quantidades variáveis de biodiesel junto com a fase glicerinosa reduzindo, assim, o rendimento da reação e formando uma glicerina com mais contaminantes. Assim, maiores cuidados deverão ser tomados durante o refino do biodiesel, resultando no incremento de operações unitárias, o qual é um requisito fundamental para alcançar a competitividade do processo industrial. Igualmente, os contaminantes deverão ser separados durante o refino da glicerina, exigindo mais equipamentos, mais reagentes químicos e mais operações unitárias, aumentando o consumo energético da unidade produtiva [JEGANNATHAN et al., 2011; SAKAI et al., 2009].

Na catálise homogênea ácida, contudo, não ocorre a formação de sabões, o que minimiza os efeitos provocados quando a água e os ácidos graxos livres estão presentes. Neste caso, os ácidos graxos livres sofrerão esterificação com o

metanol formando biodiesel. A extensão com que esta esterificação ocorrerá depende da quantidade de água no meio.

A presença de água e ácidos graxos livres na catálise ácida abre perspectivas para o uso de matérias-primas de baixo custo como, por exemplo, os óleos utilizados em frituras e os óleos vegetais não refinados. Isto é algo importante a se considerar, pois a matéria-prima é responsável por 70 a 88% do preço final do biodiesel [TAMALAMPUDI *et al.*, 2007].


Entretanto, o tempo requerido com estes catalisadores é bem maior e a conversão é muito baixa quando comparados aos catalisadores alcalinos. Na tentativa de contornar estes problemas e permitir o uso de matérias-primas de menor custo, pesquisas têm apontado para a produção de biodiesel em duas etapas: uma correspondendo a esterificação dos ácidos graxos livres com os catalisadores ácidos; e a outra envolvendo transesterificação dos triglicerídeos via catálise alcalina [JAIN e SHARMA, 2010; YANG et al., 2008; SAMIOS et al., 2009]. Na maioria dos casos a catálise ácida é empregada na primeira etapa.

O inconveniente de se fazer esta combinação é a necessidade de aumentar o número de etapas no processo, o que aumenta o tempo necessário para a produção. Além disso, há a necessidade de reatores e de equipamentos fabricados com materiais especiais e de elevado custo, devido a alta corrosividade que os catalisadores ácidos apresentam (que pode ser potencializada com o aumento da temperatura, requisito necessário ao processo), sem contar a geração de grandes quantidades de efluentes que precisam ser neutralizados. Tudo isto pode minimizar ou eliminar os ganhos pretendidos com a sua aplicação [DABDOUB *et al.*, 2009]. Por isso, deve ser bem avaliado os ganhos que serão obtidos ao escolher utilizar este processo.

Por estas razões, diversas pesquisas têm sido realizadas para avaliar e melhorar a eficiência dos catalisadores homogêneos convencionais, buscando-se associar a influência das condições reacionais e a origem da matéria-prima empregada tanto no rendimento quanto na qualidade do biodiesel obtido. Ao mesmo tempo, na tentativa de reduzir o custo da produção e eliminar os

inconvenientes da catálise homogênea convencional, muitos artigos científicos apontam para o uso de catalisadores alternativos.

Dentre estes novos catalisadores, é possível notar que os catalisadores heterogêneos têm sido intensivamente pesquisados nos últimos anos, o que reflete no número crescente de publicações nesta área (Figura 3). Estes trabalhos vêm descrevendo o uso de resinas poliméricas de troca-iônica [LÓPEZ et al., 2007; SHIBASAKI-KITAKAWA et al., 2007], membranas [DUBE et al., 2007; GUERREIRO et al., 2006], complexos metálicos [FERREIRA et al., 2007; SREEPRASANTH et al., 2006], metais ativos em suportes sólidos [XIE e LI 2006a; XIE et al., 2006], óxidos e sais inorgânicos [YAN et al., 2008; LIU et al., 2007], zeólitas [RAMOS et al., 2008; XIE et al., 2007], enzimas [LU et al., 2010; LV et al., 2008; ROYON et al., 2007], líquidos iônicos [LIANG et al., 2009] entre outros. As principais justificativas apresentadas na maioria destes trabalhos ao uso da catálise heterogênea têm sido a facilidade de remoção e a possibilidade de reutilização do catalisador, com a formação de produtos mais limpos.

Figura 3. Número de publicações envolvendo a utilização de catalisadores homogêneos e heterogêneos na produção de biodiesel. [Fonte: Banco de dados do *Web of Knowledge* (acessado em 27/12/2012)¹].

5

¹ A busca foi realizada combinando-se os respectivos anos com as palavras-chave: *biodiesel* + *catalyst* + *homogeneous/heterogeneous*. Somente artigos e patentes foram contabilizados.

Entretanto, o que se tem observado nos trabalhos onde os catalisadores heterogêneos são utilizados é que, em geral, os altos rendimentos só são alcançados se o tempo de reação for mais longo e as condições reacionais forem mais drásticas quando comparados à catálise alcalina.

Alguns catalisadores heterogêneos têm apresentado grande potencial para substituir os catalisadores alcalinos devido à sua semelhança na eficiência da conversão como, por exemplo, os óxidos de metais alcalinos terrosos [KOUZU *et al.*, 2009; YAN *et al.*, 2008; KOUZU *et al.*, 2008]. Contudo, tal substituição só ocorrerá na prática se vier acompanhada por aquilo que tem sido proposto pela catálise heterogênea, pois o que tem sido observado em muitos casos são perdas de catalisador por lixiviação [KOUZU *et al.*, 2009; FARIA *et al.*, 2008; RAMOS *et al.*, 2008; YAN *et al.*, 2008; KOUZU *et al.*, 2008] o que, além de diminuir a sua recuperação, trazem consigo novamente a necessidade de purificação dos produtos para a sua aplicação industrial.

Outras pesquisas têm apontado para a utilização de catalisadores biológicos que constituem tanto preparações comerciais de lipases extracelulares (de forma livre ou imobilizada) [SIM et al., 2010; NARANJO et al., 2010; XIE e MA, 2010; HAAS et al., 2006] como células integrais [TAMALAMPUDI et al., 2008; HE et al., 2008; TAMALAMPUDI et al., 2007]. Os aspectos comuns destas pesquisas consistem em otimizar as condições reacionais (solvente, temperatura, pH, tipo de micro-organismo que gerou a enzima, etc) para estabelecer características aceitáveis para sua aplicação industrial.

Apesar de ter se conseguido algum sucesso com o uso destes catalisadores, como à implantação de linhas de produção de biodiesel em Shangai pela Lvming Co. Ltd. e em Hunan Province pela Hainabaichuan Co. Ltd. [TAN et al., 2010], muitos avanços são necessários na área de biocatálise para que a sua utilização ganhe aplicação prática ampla e competitiva. As maiores restrições da sua aplicação são o elevado custo que esses catalisadores apresentam, o baixo rendimento e tempo de reação muito prolongado [TAMALAMPUDI et al., 2008; JEGANNATHAN et al., 2011].

1.2. Os catalisadores alcalinos na síntese do biodiesel

Diante do cenário apresentado, os catalisadores alcalinos continuam sendo os mais utilizados industrialmente na síntese do biodiesel. O seu baixo custo e a capacidade de promover altas conversões em poucos minutos, sob condições consideradas moderadas (pressão atmosférica e temperatura de 60 °C) [MEHER et al., 2009; VICENTE et al., 2004], sobrepõe os inconvenientes associados a este tipo de catálise.

Os catalisadores alcalinos mais pesquisados neste grupo são o NaOH, NaOCH₃, KOH e o KOCH₃ [SHAHID E JAMAL, 2011]. Industrialmente, o NaOH e o KOH são os preferidos por causa da sua maior disponibilidade e baixo custo. Os metóxidos são mais caros, sendo disponíveis comercialmente como soluções metanólicas, as quais são preferencialmente empregadas no processo em fluxo contínuo [SIVASAMY *et al.*, 2009].

1.2.1. Mecanismo de transesterificação e reações paralelas

Segundo propostas da literatura, na metanólise dos triglicerídeos, a atividade destes catalisadores se deve aos íons metóxidos que são liberados na dissociação dos metóxidos alcalinos ou formados pela reação do hidróxido com o metanol (Figura 4).

MOCH₃
$$\longrightarrow$$
 CH₃O⁻ + M⁺
MOH + CH₃OH \longrightarrow CH₃O⁻ + M⁺ + H₂O M = metal alcalino

Figura 4. Formação do íon metóxido na catálise alcalina.

Estes íons atuam como nucleófilos ao reagir com o carbono carbonílico do triglicerídeo, levando à formação de um intermediário tetraédrico (Figura 5a) [MEHER *et al.*, 2006]. Este intermediário elimina um íon glicerato da molécula de éster original, formando um éster metílico (que é uma molécula de biodiesel). O glicerato eliminado irá reagir com o metanol que está em excesso no sistema,

regenerando o íon metóxido e formando o diglicerídeo (Figura 5b). O diglicerídeo e o monoglicerídeo são convertidos pelo mesmo mecanismo formando uma mistura de ésteres metílicos e glicerol.

Figura 5. (a) Mecanismo da metanólise de um triglicerídeo e (b) regeneração do íon metóxido.

Portanto, apesar de os metóxidos e os hidróxidos alcalinos serem referidos comumente na literatura como os catalisadores da metanólise dos triglicerídeos, quem catalisa de fato estas reações, de acordo com o mecanismo proposto, é o íon metóxido.

Os reagentes empregados com estes catalisadores devem estar isentos de água e a matéria-prima deve apresentar baixo teor de ácidos graxos livres [DIAS et al., 2008; FELIZARDO et al., 2006], pois a água promove a hidrólise dos ésteres, reduzindo o rendimento da reação, enquanto que os ácidos graxos livres consomem o catalisador formando sabões (Figura 6) [DEMIRBAS, 2008].

(a)
$$R = H_2O$$
 $R = H_2O$ $R = H$

Figura 6. (a) Hidrólise dos ésteres (b) e a neutralização do catalisador.

Se os ácidos graxos livres fossem os únicos responsáveis pela formação de sabões na mistura reacional, então este problema poderia ser contornado pelo uso de matérias-primas de maior qualidade. Contudo, sabões também são formados

pela saponificação dos ésteres quando os hidróxidos são utilizados como catalisadores (Figura 7a). Para evitar este inconveniente, os metóxidos são utilizados preferencialmente em relação aos hidróxidos, desde que os reagentes empregados estejam isentos de água, caso o contrário ocorreria a formação de hidróxidos (Figura 7b). Infelizmente, ao seguir este caminho, o custo da produção se tornaria mais elevado tanto pela qualidade da matéria-prima quanto pelo catalisador empregado.

Figura 7. (a) Reação de saponificação e (b) formação de hidróxido.

1.2.2. Influência dos íons de metais alcalinos no tempo de transesterificação e no rendimento

Dois pontos são importantes a serem considerados quando se avalia a eficiência dos catalisadores alcalinos: as suas atividades catalíticas e as perdas no rendimento² que eles podem promover como consequência da formação de sabões.

Vicente e colaboradores [2004] levaram em consideração estes dois pontos quando estudaram a influência dos catalisadores alcalinos na metanólise do óleo de girassol. Eles encontraram a seguinte ordem de atividade catalítica: NaOH > KOH = NaOCH₃ > KOCH₃, sendo que as conversões³ máximas ocorreram em

³ Termo usado para designar a eficiência do catalisador na conversão do triglicerídeo à ésteres de biodiesel. Corresponde ao teor de ésteres de biodiesel na fase menos densa (chamada "produto") formada após a

² Descreve a perda do "produto", a qual é ocasionada principalmente pela formação de sabões. Subentende-se que quanto mais próximo de 100% menos sabão foi produzido. É calculado como: $ren \dim ento(\%) = \frac{massa_{produto}}{massa_{matéria-prima}} x100$

aproximadamente 15 min com o NaOH, 60 min com KOH e NaOCH₃, e 240 min com KOCH₃. As condições reacionais empregadas foram: temperatura de 65 °C, 600 rpm de agitação, razão molar metanol:óleo 6:1 e razão mássica catalisador:óleo 1:100.

Tais autores também avaliaram o rendimento da metanólise após 4 h de reação e observaram que a conversão a metil ésteres chegou a valores próximos à 100% para os quatro catalisadores. Porém o rendimento de biodiesel só esteve próximo à 100% para os metóxidos (Tabela 1). De acordo com o balanço de massa do processo, a perda no rendimento ocorreu principalmente devido à saponificação dos triglicerídeos e à dissolução dos metil ésteres em glicerol.

Tabela 1. Balanço de massas dos metil ésteres (em mol/100 mol) na produção do biodiesel a partir do óleo de girassol refinado. [Fonte: VICENTE *et al.*, 2004].

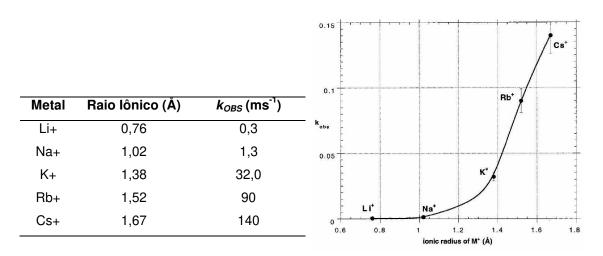
	NaOH	КОН	NaOCH ₃	KOCH₃	KOHª
Rendimento	85,2±0,1	90,1±0,4	98,6±0,4	97,5±0,3	90,6±0,3
Saponificação	5,7±0,2	3,5±0,1	0,04±0,03	0,13±0,05	5,2±0,2
Ésteres em glicerol	6,04±0,05	3,0±0,1	0,11±0,03	0,43±0,07	2,2±0,1
Perdas não contabilizadas	3,1±0,3	3,4±0,2	1,2±0,4	1,9±0,3	2,1±0,2

^aNeste caso, o KOH foi utilizado na mesma razão molar que o NaOH.

Poucos são os trabalhos que se propuseram a fazer a comparação sistemática da atividade dos catalisadores alcalinos empregando-os na mesma razão molar com a matéria-prima, o que dificulta a obtenção de informações fundamentais para investigar a influência das espécies químicas envolvidas no processo e propor um mecanismo para a reação. A maioria das publicações relatam comparações em que os catalisadores foram utilizados na mesma razão

separação do glicerol, seguida de lavagem com água. Pode ser calculado pela equação: $conversão(\%) = \frac{massa_{\acute{esteres}}}{massa_{moduto}} x 100 \, \cdot$

mássica com a matéria-prima lipídica [SHABAZI *et al.*, 2012; ALPTEKIN e CANAKCI, 2011; PREDOJEVIC e ŠKRBIĆ, 2009; DIAS *et al.*, 2008; LEUNG e GUO 2006; ENCINAR *et al.*, 2005]. Apesar destes trabalhos serem relevantes do ponto de vista econômico, por permitir estimar a relação custo/benefício que eles oferecem para a indústria, eles não permitem determinar as atividades relativas dos catalisadores e nem a sua influência na formação de sabões, pois eles são empregados em quantidades molares diferentes.


Por esta razão, a ordem decrescente de atividade dos catalisadores que pode ser observada no trabalho realizado por Vicente e colaboradores [2004] (NaOH > KOH = NaOCH₃ > KOCH₃) obedece a ordem crescente da massa molar dos catalisadores, uma vez que menos catalisador está sendo utilizado. Cabe ressaltar que, até certo ponto, estes autores levaram em consideração a influência da massa molar nos hidróxidos alcalinos: quando o KOH foi testado em quantidade molar equivalente ao NaOH o tempo necessário para a conversão foi reduzido de 60 para 5 min, doze vezes menor que o requerido com o NaOH.

O fato de o KOH ter promovido a metanólise em menos tempo que o NaOH sugere que os íons metálicos associados ao catalisador possuem um papel importante no mecanismo da reação. Nenhum estudo foi realizado até o momento com o intuito de justificar este comportamento.

Outro trabalho em que os catalisadores alcalinos foram empregados na mesma razão molar com a matéria-prima foi realizado por Arzamendi e colaboradores [2008]. Os autores investigaram o tempo necessário para a metanólise do óleo de girassol com diferentes hidróxidos alcalinos (LiOH, NaOH, KOH, RbOH e CsOH). As condições reacionais foram: temperatura de 50 °C, 370 rpm de agitação e razão molar metanol:óleo 12:1. Foi observado que, com exceção do LiOH, a performance dos hidróxidos foi praticamente a mesma. No caso do LiOH pareceu ter ocorrido um período de indução. Porém, a despeito da baixa taxa de transesterificação inicial com este catalisador, após cerca de 90 min de reação a conversão alcançada (em torno de 85%) não esteve distante das com os demais catalisadores (cerca de 90%).

O fato de o desempenho dos hidróxidos alcalinos ter sido praticamente o mesmo neste trabalho parece contradizer os resultados encontrados por Vicente e colaboradores [2004], onde o KOH foi mais ativo que o NaOH. Entretanto, cabe ressaltar, que as reações foram conduzidas sob condições distintas, as quais poderiam ter provocado esta diferença nos resultados.

Contudo, Stanton e colaboradores [1998, 1997] constataram que os metais alcalinos de alcóxidos exercem uma forte influência na cinética da interconversão de ésteres. Tal influência foi verificada, por exemplo, na reação do benzoato de metila com o acetato de terc-butila, empregando-se ter-butóxidos alcalinos como catalisadores [STANTON *et al.*,1998]. Neste caso, foi observado um aumento na constante de velocidade (k_{obs}) da reação, sendo esta quantidade relacionada ao aumento do raio iônico do metal associado ao catalisador (Figura 8). Na presença de Cs $^+$, por exemplo, a constante de velocidade da reação chegou a ser aproximadamente 450 vezes maior do que na presença do Li $^+$.

Figura 8. Constante de velocidade observada, k_{obs} , em função do raio iônico do metal hexa-coordenado. [Fonte: STANTON *et al.*, 1998].

Como as reações de interconversão de ésteres ocorrem por meio de duas transesterificações consecutivas [STANTON e GAGNÉ, 1997], surge a hipótese de que os cátions metálicos dos catalisadores alcalinos também atuariam de maneira semelhante no mecanismo da reação de transesterificação ocorrida na

produção do biodiesel. Um estudo cinético destas reações empregando estes catalisadores pode ser uma maneira útil para averiguar se esta hipótese é verdadeira. Em caso afirmativo, seria possível, talvez, melhorar a eficiência destes catalisadores por meio da adição de íons metálicos na mistura reacional.

No que diz respeito à influência do catalisador no rendimento, Singh e colaboradores [2006] estudaram a metanólise do óleo de canola empregando diferentes concentrações de catalisadores alcalinos (NaOH, KOH, NaOCH₃ e KOCH₃), temperaturas de reação e razão molar metanol:óleo. Tais autores observaram que, quando na mesma razão molar com o óleo, os catalisadores a base de potássio promovem melhores rendimentos que os de sódio, enquanto que os metóxidos fornecem rendimentos mais altos que os hidróxidos análogos (*i.e.* KOCH₃ > NaOCH₃ > KOH > NaOH).

O fato de que as reações catalisadas pelos metóxidos apresentarem maior rendimento que com os hidróxidos seria algo esperado, uma vez que os hidróxidos, por sua natureza, podem promover a saponificação dos ésteres.

A influência dos metais alcalinos no rendimento da metanólise pode ser explicada pelo trabalho realizado por Vicente e colaboradores [2004]. Estes autores observaram que as perdas por saponificação são praticamente as mesmas quando o NaOH e o KOH foram empregados na mesma razão molar com a matéria-prima (Tabela 1), o que indica que o cátion não deve afetar na formação dos sabões. Contudo, semelhantemente ao observado por Singh e colaboradores [2006], o uso KOH como catalisador demonstrou ser mais vantajoso que o NaOH devido ao maior rendimento alcançado, o que foi uma consequência da menor quantidade de ésteres arrastados para a fase glicerinosa (Tabela 1).

De fato, os efeitos negativos inerentes à presença de sabões na mistura reacional podem ser minimizados dependendo do cátion metálico que se encontra associado ao catalisador. Alguns trabalhos têm relatado que os catalisadores contendo potássio são mais convenientes que os de sódio devido ao tipo de sabão formado. Sabões de potássio não bloqueiam o bico do funil de separação por serem mais moles que os de sódio. Além disso, eles são mais facilmente removidos. [SHARMA e SINGH 2006; LEUNG e GUO, 2006].

Até o momento não há trabalhos publicados na literatura que comparam a atividade catalítica do NaOH, KOH, NaOCH₃ e do KOCH₃, na transesterificação dos triglicerídeos, empregando-os na mesma razão molar com a matéria-prima. Tal comparação, se realizada por meio do monitoramento *online* desta reação, tornaria possível definir quais destes catalisadores são mais ativos e permitir novas propostas de mecanismos de reação que incluam a participação da água e dos cátions metálicos.

1.2.3. Condições reacionais utilizadas na metanólise

Outro ponto que merece destaque são as condições reacionais empregadas na metanólise dos triglicerídeos quando os catalisadores alcalinos são utilizados. Parece haver um consenso de que a metanólise se completa após 1 h quando esta ocorre à 60 °C na razão molar metanol:óleo de 6:1. Por esta razão, talvez, estes parâmetros têm sido adotados na definição de condição padrão para a transesterificação metílica [KNOTHE *et al.*, 2006a].

Na Tabela 2, por exemplo, estão listados alguns dados referentes aos procedimentos adotados por alguns autores que utilizaram o NaOH como catalisador da metanólise de diferentes óleos vegetais, assim como os rendimentos e as conversões obtidas. Em alguns destes casos estes dados foram obtidos após otimização do procedimento de síntese. Como a maioria destas metodologias empregaram a razão molar metanol:óleo 6:1 e o NaOH na quantidade de 1 g/100 g de óleo, estes dados foram omitidos.

Tabela 2. Condições empregadas na metanólise de diferentes óleos com NaOH e seus respectivos rendimentos e conversões.

Referência	Óleo	Agitação (rpm)	Temperatura (°C)	Tempo de reação (min)	Rendimento (%)	Conversão (%)
DIAS et al., 2008	Soja	d	60	60	76	97
DIAS et al., 2008	Girassol	d	60	60	81	99
DIAS et al., 2008	Usado	d	60	60	80	97
LEUNG et al., 2006	Canola	1100/600	45	60	94	98
LEUNG et al., 2006	Usado ^{a,b}	1100/600	70	30	85	94
PREDOJEVIC, et al., 2009	Usado ^c	400	30/60	30/30	93	93
TOMASEVIC e SILER- MARINKOVIC, 2003	Girassol	d	25	30	83	d
FELIZARDO et al., 2006	Usado	d	65	60	88	99
RASHID e ANWAR, 2008	Cártamo	600	60	120	d	90
ANWAR et al., 2010	Okra ^a (semente)	600	65	120	d	80
KEERA et al., 2011	Soja	400	60	60	d	90
KEERA et al., 2011	Algodão	400	60	60	d	98

^arazão molar metanol:óleo 7:1; ^b1,1 g NaOH/100 g de óleo; ^crealizado em duas etapas; ^dnão informado.

Uma das variáveis mais importantes que afetam a metanólise dos triglicerídeos é a razão molar metanol:óleo, pois, conforme relatado anteriormente, a transesterificação é uma reação de equilíbrio no qual um grande excesso de álcool é requerido para aumentar a formação dos produtos. Contudo, esta quantidade em excesso não deve ser muito alta para não interferir no processo de separação do glicerol, uma vez que o metanol, por conter uma hidroxila (polar), poderá atuar como um agente emulsificante dificultando a separação da fase glicerinosa da do biodiesel, o que aumentaria o tempo de separação e diminuiria o

rendimento da reação [MEHER *et al.*, 2006; LEUNG *et al.*, 2006]. A razão molar metanol:óleo 6:1 geralmente é adequada para a máxima conversão e rendimento.

A quantidade de catalisador empregada pode possibilitar conversões mais rápidas à medida que ela é aumentada. Contudo, um excesso de catalisador pode induzir a um aumento excessivo da saponificação, o que diminuiria o rendimento dos ésteres produzidos [RASHID *et al.*, 2009; LEUNG *et al.*, 2006].

Como o metanol e o triglicerídeo são imiscíveis à temperatura ambiente, o nível de agitação para a mistura dos reagentes é também um fator importante, pois o mesmo irá afetar a taxa de transesterificação [RASHID e ANWAR, 2008; MEHER et al., 2006]. Ma e colaboradores [1998] observaram que a transesterificação do sebo bovino não ocorreu imediatamente após a adição da mistura catalisador/metanol sendo que, este atraso inicial, foi atribuído por estes autores como uma consequência da etapa de mistura dos reagentes, na qual o metanol estaria sendo disperso na matéria-prima lipídica. Segundo os autores, a reação deve ocorrer na interface do metanol com a matéria lipídica sendo que quanto maior a área superficial mais rápida seria a reação. Assim, a aceleração da mistura dos reagentes pelo aumento da agitação no sistema irá aumentar da taxa de transesterificação.

A temperatura claramente influencia na síntese do biodiesel. Nas conversões promovidas à temperaturas mais altas, além de as moléculas apresentarem mais energia para reação, ocorre uma diminuição da viscosidade da mistura reacional, facilitando a difusão dos reagentes. O efeito global é o aumento velocidade da reação com a consequente diminuição do tempo necessário para a conversão.

Com o intuito de otimizar a síntese do biodiesel, Leung e colaboradores [2006] estudaram a metanólise do óleo de canola na razão molar metanol:óleo 6:1, utilizando o NaOH como catalisador. O maior rendimento (94%) foi alcançado à 45 °C em 1 h. Porém, quando a reação foi realizada a 60 °C o maior rendimento (90%) foi obtido em 20 min.

Comportamento semelhante foi observado por Eevera e colaboradores [2009] ao estudarem a metanólise de óleo vegetais de diferentes fontes (coco,

palma, amendoin, farelo de arroz, semente de algodão, nim e pongamia) empregando o NaOH 1,5 g/100 g de óleo como catalisador. Neste trabalho, os autores identificaram que a temperatura ótima para os maiores rendimentos foi de 55 °C. Acima deste valor, o rendimento diminuiu em todos os casos sendo que, para os óleos de nim e pongamia esta perda correspondeu ao valor de 10%.

O argumento apresentado por estes dois grupos de pesquisadores para justificar a redução do rendimento foi a aceleração das reações de saponificação ocasionada pelo aumento da temperatura. Estes resultados sugerem que temperaturas mais baixas, apesar de prolongar o tempo de reação garantem melhores rendimentos.

Leung e colaboradores [2006] também monitoraram a metanólise à 70 °C de óleo de fritura usado, empregando o NaOH como catalisador. Foi observado que a conversão máxima (94%) se deu em 15 min e o rendimento foi de 87,5%. Quando o tempo foi prolongado não houve alteração na conversão, mas aos 30 min o rendimento caiu para 85,3%. Eevera e colaboradores [2009], no mesmo trabalho citado anteriormente, também observaram que quando o tempo da metanólise, à 55 °C, dos óleos estudados excedeu o valor ótimo (90 min) houve maiores perdas no rendimento da reação. Para os óleos de semente de algodão, nim e pongamia, por exemplo, estas perdas tiveram os valores próximos aos 10% (em 150 min).

A redução do rendimento observada por estes dois grupos de pesquisadores, ao se prolongar o tempo de reação, foi atribuída a uma consequência do aumento da saponificação dos ésteres na mistura reacional.

Desta forma, pode-se pensar que a reação de transesterificação seria cineticamente favorecida em relação à saponificação. Como a primeira reação é reversível e a segunda é irreversível (nas condições empregadas), então, aumentar o tempo empregado na conversão implicaria em maior formação de sabões.

Portanto, o tempo de reação e a temperatura empregada na transesterificação são variáveis importantes no sistema que precisam ser bem definidas. Tempos de reação prolongados e temperaturas elevadas podem ser

prejudiciais tanto pela diminuição no rendimento quanto pela formação de sabões, além de significarem maior gasto de energia e, portanto, custos maiores. O monitoramento *online* da síntese do biodiesel poderia fornecer com maior exatidão o término das conversões, possibilitando menor formação de sabões no sistema por evitar o excesso de tempo de reação, o que minimizaria os inconvenientes da catálise alcalina.

1.3. Métodos analíticos utilizados no monitoramento transesterificação dos triglicerídeos

Um método analítico ideal para o monitoramento da transesterificação na produção do biodiesel deve ser capaz de quantificar de forma confiável e barata todos os contaminantes, mesmo em níveis de traço, com facilidade experimental em uma questão de, no máximo, segundos ou mesmo mais rapidamente para o monitoramento *online* da reação. Nenhum método analítico atual atende a estas exigências extremas [KNOTHE, 2001].

O monitoramento é uma questão importante no controle da qualidade do biodiesel uma vez que alguns de seus contaminantes provêm da reação ocorrida na sua produção. Monitorar o *status* da síntese de biodiesel permite que os seus produtores sejam capazes de reconhecer e corrigir este problema o quanto antes [KNOTHE, 2006b]. Além disso, como mencionado anteriormente, o reconhecimento do término das conversões com maior exatidão poderia possibilitar uma menor formação de sabões na mistura reacional quando os catalisadores alcalinos forem empregados.

1.3.1. Métodos cromatográficos e espectroscópicos

Os métodos analíticos mais utilizados para esta finalidade são os métodos cromatográficos e espectroscópicos [KNOTHE, 2001]. Entretanto, procedimentos baseados nas propriedades físicas associadas à composição global da mistura

reacional como, por exemplo, a viscosidade, também são adotados [GHANEI *et al.*, 2011].

Dentre os métodos cromatográficos merece atenção o desenvolvido por Freedman e colaboradores [1986a]. Os autores empregaram um método que seria satisfatório para o monitoramento das reações de transesterificação utilizando CG/DIC (Cromatografia Gasosa/Detector de Ionização de Chama) para quantificar uma mistura de ésteres graxos e TG, DG e MG. Nesta metodologia, soluções padrões contendo metil linoleato, mono-, di- e trilinoleína foram analisados com uma coluna capilar de sílica fundida (1,8 m; 100% dimetilpolisiloxano) e tridecanoína foi empregada como padrão interno. Entretanto, antes de realizar a análise, os diglicerídeos e os monoglicerídeos são derivatizados com N,O-bis-(trimetilsilil)-trifluoracetamida (BSTFA).

Tal derivatização foi muito importante para melhorar as propriedades cromatográficas dos compostos hidroxilados, pois resultou na melhor separação dos sinais analíticos correspondentes e na redução das caudas [FREEDMAN *et al.*,1986a]. Além disso, nos casos em que o cromatógrafo a gás é acoplado ao espectrômetro de massas, o espectro obtido pode ser interpretado mais facilmente. Por estas razões, este tipo de derivatização tem sido utilizada em pesquisas subsequentes onde a cromatografia gasosa é empregada na análise do biodiesel [KNOTHE, 2006b].

Desde o trabalho publicado por Freedman e colaboradores [1986a], a cromatografia gasosa tem sido a técnica mais utilizada no monitoramento das transesterificações na produção de biodiesel, sendo que o detector de ionização de chama é o mais extensamente empregado. Entretanto, apesar desta técnica possibilitar uma exatidão destacável frente à outros métodos na quantificação de componentes minoritários, tal exatidão é ameaçada pelos desvios na linha de base, sobreposição de sinais e pelo envelhecimento de padrões [MONTEIRO, 2008].

O uso da CLAE (Cromatografia Líquida de Alta Eficiência) para o monitoramento da síntese do biodiesel foi publicado primeiramente por Trathnigg e Mittelbach [1990]. Neste trabalho, foi utilizado um sistema isocrático de solvente

(0,6% de etanol em clorofórmio) em uma coluna de sílica ciano-modificada acoplada à duas colunas de permeação em gel com detector de densidade (DD), o qual permitiu determinar o conteúdo global de tri-, di- e monoglicerídeos em amostras de biodiesel, bem como o teor de metil ésteres proveniente da metanólise. De acordo com estes autores este método é simples e confiável.

O uso da CLAE demonstrou certo avanço comparado à CG, pois a derivatização da amostra não é necessária, o que reduz o uso de reagentes e o tempo gasto na análise. No entanto, há menos relatos de trabalhos que empregaram a CLAE no monitoramento da transesterificação em comparação à CG.

As técnicas cromatográficas apresentam custo relativamente alto, são demoradas e empregam as amostras em batelada. Consequentemente, pode haver um atraso de tempo significativo entre os valores reais na composição dos produtos da reação e os valores medidos por estes métodos. Assim, estas técnicas cromatográficas não são adequadas para o monitoramento *online* de uma reação rápida e reversível como a transesterificação na produção de biodiesel. Por outro lado, as técnicas espectroscópicas, como a de Ressonância Magnética Nuclear (RMN), Infravermelho (IV), Ultravioleta (UV) e Raman, assim como as que utilizam de medidas de propriedades físicas globais da mistura reacional podem ser empregados para este propósito [TYAGI *et al.*, 2010].

Gelbard e colaboradores [1995] empregaram o espectrômetro de RMN de hidrogênio 1 (RMN 1 H) para determinar a quantidade de metil éster produzido após a transesterificação metílica do óleo de colza (seguida da purificação do produto), empregando o equipamento nas frequências de 80, 100, 200 e 250 MHz. Os autores utilizaram os valores dos sinais de integração (I) dos prótons metilênicos (δ = 2,3 ppm) adjacentes à porção éster dos triglicerídeos e os prótons metílicos ligados à porção éster dos metil ésteres produzidos (δ = 3,7 ppm), em uma equação

$$C = 100 \times (2I_{ME}/3I_{\alpha-CH_2})$$
 (Equação 1)

onde C é a conversão do triglicerídeo ao correspondente metil éster, I_{ME} é o valor de integração dos prótons metílicos (um singleto forte) e $I_{\alpha-CH_2}$ é o valor da integração dos prótons metilênicos. Os fatores 2 e 3 derivam do fato de que o carbono metilênico possui dois prótons e o carbono metílico apresenta três prótons. Segundo os autores deste trabalho, a transesterificação poder ser monitorada (dentro de 2% de erro) em amostras retiradas da mistura reacional, sendo a frequência de 200 MHz adequada para obter os espectros com boa resolução para a quantificação.

Para quantificar o conteúdo de etil ésteres em misturas contendo óleo de soja e seu respectivo etil éster (biodiesel), Neto e colaboradores [2004] empregaram o RMN ¹H (200 MHz) utilizando as áreas dos picos dentro da faixa de 4,05 – 4,40 ppm, correspondentes aos sinais dos prótons metilênicos do etil éster e glicerídicos. Os valores encontrados por este método apresentaram boa correlação com a viscosidade da mistura reacional e o teor de glicerol total.

Recentemente, Anderson e Franz [2012] realizaram o monitoramento em tempo real da metanólise do óleo de oliva com diferentes catalisadores (H₂SO₄, NaOH e 1,5,7-triazobiciclo-[4.4.0]-dec-5-eno) utilizando o RMN ¹H com resoluções maiores do que as publicadas anteriormente para o monitoramento da produção do biodiesel (300, 400, 600 e 800 MHz). Estes pesquisadores observaram que à 600 MHZ foi possível a aquisição de espectros para o acompanhamento com maior exatidão tanto do consumo dos triglicerídeos como da produção dos diglicerídeos e dos metil ésteres (biodiesel). Entretanto, apesar de os autores terem relatado que o monitoramento foi realizado em tempo real, isto só foi alcançado em pequena escala, com a reação se processando no tubo de RMN ¹H. Para uma reação em escala industrial, a amostra deveria, ainda assim, ser analisada em batelada.

As principais vantagens relatadas acerca dos métodos que utilizam o RMN ¹H são a relativa rapidez e simplicidade, frente aos métodos cromatográficos, além do fato de a amostra não precisar passar pelo processo de pré-purificação [ANDERSON e FRANZ, 2012; NETO et al., 2004; GELBARD et al., 1995].

Contudo, os custos com a instrumentação e a manutenção são relativamente altos e precisam ser avaliados.

A espectroscopia no IV próximo foi utilizada pela primeira vez como um método que apresenta potencial para ser empregado no monitoramento *online* da transesterificação por Knothe [1999]. A base para esta quantificação foi a diferença no espectro a 6005 e a 4425 – 4430 cm⁻¹, onde os metil ésteres produzidos apresentam picos enquanto os triglicerídeos exibem ombros. Em seu trabalho, as amostras que foram analisadas correspondem à misturas de metil ésteres com quantidades conhecidas de contaminantes (metanol, glicerol e ácidos graxos livres). Uma sonda de fibra ótica foi acoplada ao espectrômetro, o que permitiu a aquisição dos espectros de forma particularmente fácil e rápida.

Recentemente, Richard e colaboradores [2011] realizaram o monitoramento online da transesterificação etílica do óleo de girassol com etóxido de sódio utilizando espectroscopia no IV próximo. As reações foram monitoradas através escaneamentos sequenciais com uma sonda de fibra ótica no meio reacional sem a coleta e o preparo das amostras. Para a calibração deste método, o CG/DIC foi utilizado como o método de referência.

Outro método de monitoramento *online* foi desenvolvido por Trevisan e colaboradores [2008] empregando o IV médio com uma abordagem multivariada, para o acompanhamento da transesterificação do óleo de soja com etanol, utilizando o NaOH com catalisador. Para tal, foi utilizada uma célula de refletância interna cilíndrica de PbSe e a região do espectro de 3707-814 cm⁻¹. A conversão da reação foi acompanhada por meio da análise por RMN ¹H das amostras coletadas do reator. Segundo os autores, o método proposto pode ser utilizado no controle do processo de síntese do biodiesel e na otimização da reação, devido a sua rapidez e baixo custo.

Ghesti e colaboradores [2006] descreveram um método baseado na espectroscopia Raman/FT para monitorar e quantificar a etanólise do óleo de soja. As diferenças entre o espectro do óleo vegetal e o espectro dos etil ésteres foram observadas nas bandas à 2932 cm⁻¹ (νcH₂), 861 cm⁻¹ (νR-C=O e νC-C), 372 cm⁻¹ (δCO-O-C), bem como pelo deslocamento da banda de C=O de 1748 à 1739 cm⁻¹. Eles

empregaram métodos de análise uni e multivariada para a construção das curvas analíticas e checar o método. Usando um padrão de normalização interno (banda v=c-н), os melhores resultados foram alcançados pelos modelos de calibração Raman/PLS.

Reddy e colaboradores [2010] monitoraram o progresso da metanólise com o KOH do óleo de *Jatropha curcas* determinando o teor de glicerol por espectrofotometria no UV/Visível. Para tal, o glicerol foi derivatizado com 9,9-dimetóxi-fluoreno, formando um subproduto (9-fluorenona) que absorve à 380 nm. O teor de glicerol foi calculado com base na quantidade de 9-fluorenona formada. Neste trabalho, as amostras foram analisadas em batelada.

1.3.2 Métodos baseados nas propriedades associadas à composição global da mistura reacional

Apesar da sensibilidade que os métodos cromatográficos e espectroscópicos apresentam na determinação das diversas espécies químicas presentes no sistema em estudo, eles apresentam alguns inconvenientes que podem dificultar a sua aplicação na indústria tais como: necessidade do preparo das amostras, derivatizações, calibrações tediosas, tempo de análise geralmente longo, alto custo dos instrumentos (incluindo na sua manutenção) e corpo técnico qualificado para aquisição dos dados e interpretação dos resultados. Entretanto, o contrário pode ser esperado para os métodos baseados nas propriedades físicas associadas à composição global da mistura reacional durante a transesterificação.

Dois destes métodos foram investigados por Filippis e colaboradores [1995]. Tais autores verificaram uma boa correlação linear entre a densidade (r = 0,9970, à 20 °C; r = 0,9969, à 37,8 °C) e a viscosidade (r = 0,9985, à 20 °C; r = 0,9992, à 37,8 °C) com o teor de metil ésteres, determinado por CG/DIC, em diversas amostras de produtos obtidas após a metanólise do óleo de soja, seguida da separação do glicerol e destilação do metanol. O teor de metil ésteres nestas amostras variou entre valores próximos 45 e 100 g/100 g de amostra.

Ellis e colaboradores [2008] obtiveram sucesso no acompanhando do progresso e do ponto final da metanólise de diferentes óleos vegetais, tanto na escala de bancada como na escala piloto (300 L), medindo as variações na viscosidade da mistura reacional. O grande diferencial deste trabalho em relação trabalho ao realizado por Filippis e colaboradores [1995] foi que o monitoramento desta propriedade e, portanto, da transesterificação foi realizado *in situ*.

O índice de refração, a gravidade específica e o ponto de fulgor também estão entre as propriedades da mistura que apresentam potencial para serem utilizadas no monitoramento da síntese do biodiesel. Ghanei e colaboradores [2011] construíram curvas de calibração para estas propriedades empregando amostras de padrões preparadas pela mistura de diferentes proporções de óleo de girassol com o seu respectivo biodiesel. Estes autores observaram uma ótima correlação linear entre o índice de refração (r = 0.997, à 40 °C), gravidade específica (r = 0.997, à 15,5 °C) e ponto de fulgor (r = 0.992) com o teor de metil ésteres nas amostras, determinado por CG/DIC.

A viscosidade também foi investigada por estes autores, sendo que esta apresentou uma ótima correlação com o teor de metil ésteres (r = 0.998, à 40 °C). Entretanto, diferente do observado por Filippis e colaboradores [1995] esta correlação não foi linear. Esta diferença se deve, provavelmente, ao fato de a faixa de concentração de metil ésteres empregada neste trabalho para a construção da curva de calibração (0 à 95,2 g/100 g) ter sido maior que a utilizada por Filippis e colaboradores.

Neste mesmo trabalho, Ghanei e colaboradores [2011] observaram que, quando teor de metil ésteres foi determinado nas amostras dos biodieseis obtidos após diferentes tempos de transesterificação, os valores destas propriedades físicas preditas pelos modelos de calibração concordaram com os valores experimentais, sendo os erros relativos médios inferiores à 4%. Segundo estes autores, o índice de refração e a gravidade específica são recomendados como as propriedades físicas mais confiáveis (dentre as quatro propriedades estudadas) para estimar o teor de metil ésteres em amostra de biodiesel.

Estes trabalhos vêm demonstrando que, apesar de todas as espécies presentes na mistura reacional influenciarem no valor medido destas propriedades, ao invés de apenas uma das substâncias que está sendo consumida ou produzida, os métodos que se baseiam nestas medidas podem ser confiáveis para estimar não apenas o término das conversões, mas para descrever o comportamento da transesterificação ocorrida na produção do biodiesel. Isso porque as variações destas propriedades ocorrem principalmente como uma consequência da reação que está sendo monitorada, estando os reagentes e produtos envolvidos entre os componentes majoritários.

1.4. Refratometria

1.4.1. Fundamentos

A refratometria baseia-se na medida do índice de refração. Quando um feixe de radiação eletromagnética atravessa um meio transparente, ocorre a interação entre o vetor elétrico da radiação e os elétrons ligados do meio material. Daí ser a velocidade do feixe em um meio material ser sempre menor do que no vácuo [OHLWEILER, 1981]. O índice de refração n_i de uma substância será dado por

$$n_i = \frac{c}{v_i}$$
 (Equação 2)

em que v_i é a velocidade do feixe de radiação no meio material (*i.e.* na substância) e c é a velocidade no vácuo.

A velocidade com que a radiação se propaga depende da densidade dos elétrons no meio. Em um meio gasoso, onde a densidade eletrônica é baixa nas condições ordinárias, a interação da radiação com a matéria é muito fraca. Consequentemente, a velocidade de propagação da radiação neste meio tende a

ser maior (e, portanto, os índices serão menores) do que nos líquidos e sólidos [OHLWEILER, 1981].

O índice de refração é determinado medindo-se a variação da direção (refração) que uma radiação colimada sofre ao passar de um meio para o outro (Figura 9). A extensão da refração é dada por

$$\frac{n_2}{n_1} = \frac{v_1}{v_2} = \frac{sen\theta_1}{sen\theta_2}$$
 (Equação 3)

em que v_1 e v_2 são as velocidades nos meios menos denso (M_1) e mais denso (M_2) , respectivamente; n_1 e n_2 os correspondentes índices de refração; e θ_1 e θ_2 os ângulos de incidência e de refração, respectivamente.

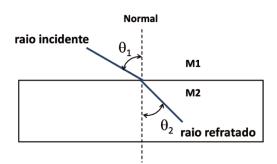


Figura 9. Ilustração da refração de um raio ao mudar o seu meio de propagação.

Quando o meio menos denso (M_1) é o vácuo, n_1 é igual a unidade; então

$$n_2 = n_{v\acute{a}cuo} = \frac{c}{v_2} = \frac{sen\theta_1}{sen\theta_2}$$
 (Equação 4)

em que $n_{v\'{a}cuo}$ é o índice de refração em relação ao vácuo, chamado de índice de refração absoluto. Assim, conforme a Equação 4, $n_{v\'{a}cuo}$ pode ser determinado pela medida dos ângulos θ_1 e θ_2 . Todavia, é mais simples medir o índice de refração em relação a outro meio. De fato, o padrão geralmente utilizado é o ar. A variação do índice de refração do ar com a temperatura e com a pressão é pequena e

somente os trabalhos mais acurados requerem uma correção à condições padrões [OHLWEILER, 1981].

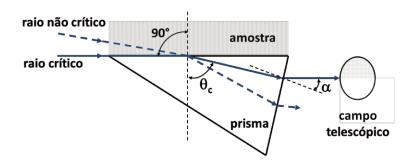
O índice de refração depende do comprimento de onda do feixe incidente. Por isso, ele é reportado a um dado comprimento de onda. Geralmente, o comprimento de onda utilizado é de 589,3 nm, que corresponde à média dos comprimentos de onda das linhas do dubleto de sódio [RIBEIRO, 2010].

Os índices de refração dos líquidos (assim como nos outros estados da matéria) diminuem com a elevação da temperatura. O coeficiente de temperatura do índice de refração (dn/dT) para a água e as soluções aquosas é cerca de -1 x 10^{-4} grau⁻¹, um valor relativamente baixo em comparação com os outros líquidos. Para a maioria dos líquidos orgânicos, estes valores se situam entre -3,5 x 10^{-4} e -5,5 x 10^{-4} grau⁻¹ [OHLWEILER, 1981].

O decréscimo do índice de refração com a elevação da temperatura resulta da expansão de volume do líquido, que faz a radiação encontrar um número menor de moléculas ao atravessar igual distância do meio. O menor coeficiente de temperatura da água, em comparação com os de líquidos orgânicos, deve-se, principalmente, ao coeficiente de expansão relativamente pequeno da água. Portanto, as medidas de índice de refração exigem o controle da temperatura. Na maioria dos líquidos, para elevar a exatidão até a quarta casa decimal, as flutuações de temperatura devem ser inferiores à ±0,2 °C e, para alcançar a quinta casa decimal, menores do que ±0,02 °C [OHLWEILER, 1981]. Dessa forma, o aparelho utilizado deverá sempre estar conectado a um banho que controle a temperatura do refratômetro, para evitar flutuações da leitura do índice de refração da amostra.

A medida do índice de refração pode ser efetuada rapidamente, empregando um equipamento relativamente simples denominado refratômetro. A amostra requerida é pequena e não sofre destruição. Esta medida pode ser facilmente automatizada para registro contínuo, no caso de amostras em movimento.

Os refratômetros determinam o índice de refração medindo o ângulo crítico ou, então, o deslocamento de uma imagem. Os refratômetros de ângulo crítico são


os mais usados nos laboratórios, sendo que as versões comercialmente disponíveis são os refratômetros de Abbé, de imersão e de Pulfrich, onde o primeiro o mais difundido no mercado.

O ângulo crítico θ_c é o ângulo de refração de um meio quando o ângulo do feixe incidente é de 90°. Em outras palavras, a incidência do feixe sobre a interface dos dois meios é rasante. Portanto, quando na Equação 3 se faz θ_1 igual à 90°, θ_2 se torna o ângulo crítico θ_c . Isto é,

$$\frac{n_2}{n_1} = \frac{sen90^{\circ}}{sen\theta_2} = \frac{1}{sen\theta_c}$$
 (Equação 5)

Desta forma, o conhecimento de um dos dois índices de refração, n_1 ou n_2 , permite determinar o segundo com base na medida do ângulo crítico. Em geral, quando se faz a determinação, um prisma refratante com índice de refração conhecido fica em contato com uma camada da amostra, conforme representado na Figura 10. Quando o feixe de radiação incide sobre a amostra todos os raios são refratados sob ângulos menores do que θ_c , exceto o de incidência rasante cujo ângulo será θ_c . Consequentemente, haverá um espaço por onde a radiação não percorrerá, formando um limite de luz-sombra no campo do telescópio do instrumento. Este limite é associado à uma escala de diferentes formas, dependendo do tipo de instrumento, permitindo a determinação dos índices de refração [OHLWEILER, 1981].

Como estes os raios rasantes podem penetrar no prisma em qualquer ponto ao longo da interface, de modo que, se forma um feixe de raios críticos paralelos, uma lente condensadora ou de foco é utilizada para produzir um único limite de luz-sombra no campo telescópico. O ângulo crítico propriamente dito não é mensurável. O que se mede, na verdade, é o ângulo α de emergência do raio crítico.

Figura 10. Observação do limite de luz-sombra na ocular do telescópio na determinação do índice de refração de uma amostra pelo método do ângulo crítico [Adaptado: OHLWEILER, 1981].

Apesar do índice de refração não ser uma propriedade específica, poucas substâncias possuem índices idênticos para uma temperatura e um comprimento de onda dados, o que torna esta medida muito útil para confirmar a identidade de um composto ou avaliar a sua pureza. Além disso, esta medida serve de base para a análise quantitativa de misturas binárias ou pseudobinárias, o que requer que os componentes em questão apresentem apreciável diferença em seus índices de refração. As diferenças mais significativas são observadas com componentes possuindo estruturas muito diferentes [OHLWEILER, 1981].

Em qualquer caso, os refratômetros devem ser periodicamente calibrados. Existe uma grande variedade de líquidos e sólidos que podem ser utilizados como referência de calibração para todos os tipos de refratômetros como, por exemplo, a água bidestilada (n = 1,3330), 1-bromo naftaleno (n = 1,6800) e fluoreto de lítio (n = 1,3921). Para estes padrões citados, os valores de n foram determinados à 20 °C empregando a radiação emitida pelo sódio (raia D).

Para quantificar um componente em uma amostra por refratometria, é necessário o preparo de amostras padrões e a construção de uma curva de calibração. As condições de preparo e leitura das amostras a serem analisadas deverão ser as mesmas usadas nos padrões.

Em um sistema binário composto pelas substâncias A e B com índices de refração n_a e n_b , respectivamente, é conveniente, embora não essencial, que

prevaleça uma relação linear entre o índice de refração medido, *n*, e um parâmetro de concentração, *y*:

$$n = n_A y + n_B (1 - y)$$
 (Equação 6)

Em sistemas com comportamento aproximado ao das soluções ideais, a melhor concordância com a lineraridade é obtida quando a concentração é expressa em termos de porcentagem em volume. Quando os componentes exercem interação um com o outro, a curva para este parâmetro de concentração pode afastar-se notavelmente da linearidade. Às vezes, a molaridade e a porcentagem em massa assegura uma melhor aproximação à linearidade [OHLWEILER, 1981].

1.4.2. O monitoramento da transesterificação ocorrida na síntese do biodiesel por refratometria

O primeiro trabalho relatado na literatura com a proposta de empregar a refratometria como um método de monitoramento da transesterificação ocorrida na síntese do biodiesel foi realizado por Xie e Lie [2006b]. Estes autores determinaram a conversão do óleo de soja em amostras obtidas após diferentes tempos de reação supondo haver uma correlação linear entre o índice de refração e o teor de metil ésteres, em %m/m. Para isto, ao índice do óleo de soja "puro" (n = 1,4704) foi atribuída a conversão de 0% e ao do biodiesel "puro" (n = 1,4515) o valor de 100%. Assim, para cada índice medido nas amostras, a conversão à metil ésteres foi determinada considerando a proporcionalidade existente nesta relação. Segundo estes pesquisadores, o método refratrométrico proposto é simples, rápido, barato e especialmente aceitável para o controle deste processo.

Apesar da linearidade proposta por Xie e Lie [2006b] não ter sido investigada pelo uso de padrões, as conversões obtidas por este método parecem ter concordado com as determinadas por RMN ¹H. Como o teor de metil ésteres

nas amostras analisadas esteve bem distribuído dentro da faixa de 0 à 100 g/100 g, poderia se supor que esta a relação do índice de refração com o teor de metil ésteres seria verdadeira. Entretanto, este trabalho apresentou ausência de dados estatísticos.

O trabalho publicado posteriormente, em que se empregou o método refratométrico, foi realizado por Ghanei e colaboradores [2011], conforme abordado no tópico 1.3.2. O diferencial deste trabalho, em relação ao anterior, foi que estes autores determinaram as conversões a partir dos dados obtidos em uma curva de calibração de índice de refração *versus* teor de metil ésteres (em %m/m), a qual foi construída utilizando padrões de misturas de óleo de girassol com o seu respectivo biodiesel. Neste trabalho, a linearidade entre estes dados pôde ser observada em toda a faixa de concentração utilizada na construção da curva (0 à 95,2 g de metil ésteres/100 g de amostra).

Até o momento, os trabalhos que se propuseram a realizar o monitoramento da transesterificação dos óleos vegetais por refratometria empregaram procedimentos de determinações sobre amostras da mistura reacional obtidas após algum tipo de pré-tratamento [SANTOS et al., 2012; GHANEI et al., 2011; XIE e LIE, 2006b], o que poderia acarretar em mudanças na composição da amostra a ser analisada. Além disso, a execução da análise irá necessitar de mais tempo.

Recentemente, a Mettler Toledo disponibilizou um refratômetro portátil modelo Refracto $^{\tiny (B)}$ 30GS, que é um equipamento digital que determina o índice de refração medindo o ângulo crítico de reflexão total de um feixe de luz ($\lambda = 589,3$ nm) que incide sobre a amostra. O prisma deste aparelho é feito de safira, material que apresenta um maior índice de refração e melhor condutividade térmica que o vidro. Consequentemente a faixa de medição neste aparelho é mais extensa (1,32 – 1,65) do que nos equipamentos com prisma de vidro (1,32 – 1,50) e a temperatura da amostra é registrada mais rapidamente.

Este aparelho mede o índice de refração com uma resolução de 0,0001 e com exatidão de ± 0,0005. Ele permite a correção automática do índice de refração para um valor referente à temperatura padrão (20 °C). Além disso, as

determinações são realizadas de forma relativamente rápida (3 à 180 segundos) e os dados obtidos podem ser transferidos para um computador por meio de um conversor de infravermelho, empregando-se o *software* PortableLab[®], desenvolvido por esta empresa.

O uso deste aparelho poderia tornar viável o monitoramento *online* das transesterificações na produção do biodiesel, o que possibilitaria a eliminação dos inconvenientes descritos anteriormente quando as análises são realizadas em batelada.

1.5. Cinética Química

1.5.1. Fundamentos

A Cinética Química tem como objetivos estudar a velocidade das reações químicas, os fatores que a influenciam e, a partir dos dados cinéticos, estabelecer o mecanismo da reação, ou seja, as etapas intermediárias entre reagentes e produtos [BASTOS *et al.*, 2011].

A velocidade de uma reação química é a taxa de variação de concentração de qualquer um dos reagentes ou produtos com o decorrer do tempo, sendo uma grandeza positiva. Portanto, para uma reação com a forma

$$aA + bB \implies cC + dD$$

a sua velocidade para o consumo de R (que é A ou B) e para a formação de P (que é C ou D) será dada, respectivamente, por:

$$v_R = -\frac{d[R]}{dt'}$$
 (Equação 7)

$$v_P = \frac{d[P]}{dt'}$$
 (Equação 8)

As velocidades de reação podem ser expressas numericamente, e geralmente se referem à velocidade em um ponto específico da extensão da reação. Portanto, à medida que a reação avança e as quantidades de reagentes ou produtos variam, ou até mesmo se a reação for realizada em condições iniciais diferentes, este valor numérico não é mais válido [BALL, 2005].

Muitas vezes verifica-se que a velocidade de uma reação é proporcional às concentrações dos reagentes elevadas a certas potências. Expressando este conceito matematicamente, para a reação representada acima, no sentido direto, tem-se:

$$v = k[A]^m[B]^n$$
 (Equação 9)

onde a constante de proporcionalidade k é a constante de velocidade da reação e, normalmente depende da temperatura. Ela deve ter unidades tais que a velocidade global seja expressa em unidades adequadas (que, geralmente, são mol s⁻¹ ou mol L⁻¹ s⁻¹). Os expoentes m e n são chamados de ordens em relação à A e B, respectivamente, que são geralmente números positivos inteiros e pequenos, mas podem ser números negativos inteiros, zero, ou mesmo frações. A expressão representada na equação 9 é chamada de lei de velocidade, e deve ser determinada experimentalmente, e a soma das ordens em relação a cada reagente é a ordem global da reação [BALL, 2005].

Como para cada variação infinitesimal de tempo de reação (dt') há uma pequena variação na concentração dos reagentes (dR) ou produtos (dP), as leis de velocidade podem ser expressas na forma de equações diferenciais. Neste caso, a equação 9, por exemplo, poderia se escrita como:

$$\frac{d[R]}{dt'} = k[A]^m [B]^n$$
 (Equação 10)

Se estas leis forem integradas para a concentração de um determinado reagente, é possível obter as concentrações dos reagentes ou produtos em função

do tempo. Na Tabela 3 estão representadas algumas leis de velocidade com a sua respectiva forma integrada para algumas reações genéricas com diferentes ordens globais.

Uma das maneiras de se determinar a lei de velocidade de uma reação seria monitorar a concentração de um dos reagentes com algum método experimental e utilizar os valores de concentração e tempo de reação obtidos para a construção de um gráfico, onde as coordenadas do eixo x corresponderiam ao tempo t' e as do eixo y ao valor calculado por uma função matemática dependente da concentração dos reagentes. Esta função matemática deverá estar associada ao termo representado no lado direito de uma das equações integradas listadas na Tabela 3 (ou de outras equações deduzidas para casos diferentes), a qual é escolhida, geralmente, de acordo com a lei de velocidade esperada. Se esta função matemática for o próprio termo à direita e a lei de velocidade considerada for, de fato, a que se aplica à reação que está sendo estudada, então, a curva representada pelo gráfico deverá apresentar boa linearidade. Caso o contrário, a lei de velocidade testada não se aplica à reação e outra lei de velocidade deve ser avaliada [BASTOS et al., 2011; BALL, 2005; ATKINS e PAULA, 2004].

O valor do coeficiente angular da curva obtida do modo descrito acima corresponde à constante de velocidade da reação, k. Este parâmetro possibilita não apenas a obtenção da lei de velocidade da reação, mas também é útil para estimar as velocidades relativas de um conjunto de reações semelhantes que seguem a mesma lei cinética ou, então, para comparar as atividades de diferentes catalisadores empregados para uma determinada reação. Neste caso, a velocidade de uma reação ou a atividade de um catalisador será maior quanto maior for o valor de k. Tal comparação pode possibilitar a proposta de modelos que permitem descrever um caminho para a reação e identificar alguma propriedade das substâncias envolvidas que exerça influência sobre a reação. Ao final, seria possível chegar à melhores condições reacionais.

Tabela 3. Leis de velocidades com a sua respectiva forma integrada [Adaptado: ATKINS e PAULA, 2004].

Ordem	Reação	Lei de velocidade
0	A → P	v = k
		$kt' = [A]_0 - [A]$
1	A → P	v = k[A]
		$kt' = \ln \frac{[A]_0}{[A]}$
2	A → P	$v = k[A]^2$
		$kt' = \frac{1}{[A]} - \frac{1}{[A]_0}$
n≥2	A → P	$v = k[A]^n$
		$kt' = \frac{1}{n-1} \left(\frac{1}{[A]^{n-1}} - \frac{1}{[A]_0^{n-1}} \right)$
2	a A + b B → P	v = k[A][B]
		$kt' = \frac{1}{a[B]_0 - b[A]_0} \ln \frac{[A]_0[B]}{[A][B]_0}$
3	A + 2 B → P	$v = k[A][B]^2$
		$kt' = \frac{[B]_0 - [B]}{(2[A]_0 - [B]_0)[B]_0[B]} + \frac{1}{(2[A]_0 - [B]_0)^2} \ln \frac{[A]_0[B]}{[A][B]_0}$

A determinação da lei de velocidade costuma ser simplificada pelo método do isolamento [ATKINS e PAULA, 2004]. Neste método, as concentrações de todos os reagentes, exceto um deles, estão em grande excesso. Isto permite considerar a concentração dos reagentes em excesso como constante durante todo o avanço da reação. Com isso, se uma reação seguir a lei cinética representada na equação 9, e a concentração de B está em grande excesso em relação à A, então a equação 9 poderá ser escrita como

$$v = k'[A]^m$$
 (Equação 11)

e a ordem global da reação, que antes era m + n, passará a ser a mesma que a do reagente A, ou seja, igual à m. Neste caso, como a verdadeira lei de velocidade assume a forma de ordem m, então esta lei passará a se chamar de pseudo-ordem m.

As velocidades das reações químicas são muito afetadas pela temperatura. Como regra geral e com poucas exceções, quando a temperatura aumenta, a velocidade de uma reação aumenta, e na realidade, quem varia com a temperatura é a constante de velocidade k. Baseado na variação da constante de velocidade com a temperatura, e em dados experimentais, Arrhenius propôs a seguinte expressão para relacionar k com a temperatura

$$k = Ae^{-E_a/RT}$$
 (Equação 12)

onde: k é a constante de velocidade; A é o fator pré-expoencial (ou fator de frequência); E_a é a energia de ativação; R, a constante dos gases ideais (8,314 J K^{-1} mol⁻¹); e T, a temperatura absoluta. A equação 12 foi deduzida considerando que Ea permanece constante com a variação da temperatura [BASTOS *et al.*, 2011].

O fator pré-expoencial A é uma medida da velocidade com que as colisões ocorrem, que é aproximadamente constante com a temperatura para uma dada reação e deve ter um valor próprio que é da reação em si, da natureza dos reagentes e de como eles interagem a nível molecular [BALL, 2005]. A energia de ativação E_a de uma reação pode ser vista como a energia cinética mínima que os reagentes devem ter para que se formem os produtos. O fator expoencial $e^{Ea/RT}$, dado pela distribuição de Boltzmann, dá a fração de colisões com energia cinética maior do que E_a , e pode ser interpretado, portanto, como o a fração de colisões que tem energia suficiente para levar à reação [ATKINS E PAULA, 2004].

Se a energia de ativação é conhecida, o seu valor pode ser usado para prever as constantes de velocidade em novas temperaturas. As estimativas de E_a podem ser feitas usando os valores experimentais das constantes de velocidade determinados em diferentes temperaturas [BASTOS *et al.*, 2011; BALL, 2005;

ATKINS e PAULA, 2004]. Para isto, basta escrever a equação 12 na forma logarítmica, ou seja,

$$\ln k = \ln A - \frac{E_a}{R} \times \frac{1}{T}$$
 (Equação 13)

Desta forma, o valor de E_a poderia ser obtido a partir do coeficiente angular de reta de $\ln k$ versus 1/T, o qual é $-E_a$ / R. Em virtude de E_a determinar este coeficiente angular, quanto mais elevada for a energia de ativação, mais forte será a dependência entre a constante de velocidade e a temperatura, e mais inclinada será a reta do gráfico.

1.5.2. Estudos cinéticos da alcoólise alcalina ocorrida na síntese do biodiesel

Conforme relatado anteriormente, para reações rápidas e reversíveis, como a metanólise de triglicerídeos com catalisadores alcalinos, os métodos de monitoramento *online* são ideias para o estudo cinético destas reações. Porém, há poucos relatos de trabalhos na literatura que empregaram estes métodos para a realização deste estudo. Dessa forma, serão também levados em consideração os trabalhos que realizaram o monitoramento em batelada .

Como a transesterificação ocorrida na síntese do biodiesel se dá por meio de três reações reversíveis e consecutivas, conforme representado na Figura 2, então, a forma geral do conjunto de equações diferenciais que caracterizam a cinética das reações envolvidas poderia ser escrita, a princípio, da seguinte maneira:

$$\frac{d[TG]}{dt'} = -k_1[TG]^j[ROH]^k + k_{-1}[DG]^l[BD]^m$$
 (Equação 14)

$$\frac{d[DG]}{dt'} = k_1 [TG]^j [ROH]^k + k_{-2} [MG]^n [BD]^o - k_{-1} [DG]^l [BD]^m
- k_2 [DG]^p [ROH]^q$$
(Equação 15)

$$\frac{d[MG]}{dt'} = k_2 [DG]^p [ROH]^q + k_{-3} [GL]^r [BD]^s - k_{-2} [MG]^n [BD]^o$$

$$- k_3 [MG]^t [ROH]^u$$
 (Equação 16)

$$\frac{d[BD]}{dt'} = k_1 [TG]^j [ROH]^k + k_2 [DG]^p [ROH]^q + k_3 [MG]^t [ROH]^u
- k_{-1} [DG]^l [BD]^m + k_{-2} [MG]^n [BD]^o - k_{-3} [GL]^r [BD]^s$$
(Equação 17)

$$\frac{d[GL]}{dt'} = k_3 [MG]^t [ROH]^u + k_{-3} [GL]^r [BD]^s$$
 (Equação 18)

onde os expoentes j, k, l, m, n, o, p, q, r e s são as ordens dos reagentes.

Alguns autores utilizam destas equações no estudo cinético da alcoólise de óleos vegetais. Neste caso, a concentração das espécies durante a reação é determinada por um método analítico e estas equações são resolvidas sob uma suposta ordem global de reação, empregando métodos matemáticos adequados cujos cálculos são realizados com o auxílio de um computador [NOUREDDINI e ZHU, 1997; WENZEL *et al.*, 2006; NARVÁEZ *et al.*, 2007; ISSARIYAKUL e DALAI, 2012; SHAHBAZI *et al.*, 2012].

Issariyakul e Dalai [2012] utilizaram esta abordagem para o estudo cinético da metanólise do óleo de palma e do óleo de mostarda com o KOH nas temperaturas de 40, 50 e 60 °C e sob agitação de 600 rpm. Para isto, eles empregaram um método cromatográfico (CG/DIC) para a determinação do conteúdeo de TG, DG, MG e BD. Neste trabalho, os autores consideraram as três reações ocorridas seguindo uma lei cinética global de segunda ordem, sendo uma ordem para cada reagente. Em todas as temperaturas avaliadas e em ambos os óleos, a primeira reação direta (TG → DG) foi identificada como a mais lenta que

as outras (DG \rightarrow MG e MG \rightarrow GL) sendo, portanto, a limitante no processo de transesterificação.

Outros autores que investigaram estas reações chegaram a mesma conclusão acerca da reação limitante do processo, fazendo considerações semelhantes no estudo cinético [NARVÁEZ *et al.*, 2007; SHAHBAZI *et al.*, 2012; ISLAM E BUNDY, 2012]. Na Tabela 4 estão listados valores das constantes de velocidade encontrados na literatura para estas reações.

Tabela 4. Comparação dos diferentes conjuntos de parâmetros cinéticos de segunda ordem global obtidos da literatura [Adaptado: RICHARD *et al.*, 2012].

Dorômetros	SHAHBAZI	NOUREDDINI	BAMBASE	ISSARIYAKUL	
Parâmetros	et al., 2012	e ZHU, 1997	et al., 2007	e DALAI, 2012	
óleo	palma	soja	girassol	Palma	
álcool	metanol	etanol	metanol	Metanol	
temperatura	60 °C	50 °C	60 °C	40 °C	
agitação	600 rpm	300 rpm	400 rpm	600 rpm	
catalisador	KOH	NaOH	NaOH	KOH	
$k_1 (\text{mol}^{-1} L^2 \text{s}^{-1})$	1,057x10 ⁻²	8,33x10 ⁻⁴	3,86x10 ⁻³	0,07 ^a	
k_{-1} (mol ⁻¹ L^2 s ⁻¹)	0,000	1,83x10 ⁻³	2,77x10 ⁻⁴	0,10 ^a	
$k_2 (\text{mol}^{-1} L^2 \text{s}^{-1})$	1,184x10 ⁻¹	3,58x10 ⁻³	7,48x10 ⁻³	0,31 ^a	
k_{-2} (mol ⁻¹ L^2 s ⁻¹)	8,187x10 ⁻²	2,05x10 ⁻²	1,78x10 ⁻³	0,64 ^a	
$k_3 \text{ (mol}^{-1} \text{ L}^2 \text{ s}^{-1})$	1,310x10 ⁻¹	4,03x10 ⁻³	1,46x10 ⁻²	1,15 ^a	
k ₋₃ (mol ⁻¹ L ² s ⁻¹)	2,011x10 ⁻³	1,17x10 ⁻⁴	1,05x10 ⁻³	0,02 ^a	

a unidade não informada.

Semelhantemente, Richard e colaboradores [2012] estudaram a velocidade da etanólise alcalina do óleo de girassol processada em fluxo contínuo, à 65 °C, empregando CG/DIC. A diferença deste trabalho, em relação aos citados anteriormente, foi que os autores consideraram as três reações ocorrendo sob uma cinética global de terceira ordem, sendo uma ordem para cada reagente (*i. e.*, glicerídeo e álcool) mais uma ordem para o catalisador. A justificativa destes

autores ao considerar o catalisador nas leis cinéticas foi a seguinte: como o sistema etanol/óleo é bifásico, com o catalisador estando dissolvido no etanol, então, a conversão ocorreria após a transferência do glicerídeo (TG, DG ou MG) para a fase do etanol; neste caso, à medida que a reação se processa, a quantidade de etanol diminuiria e, como consequencia, a concentração do catalisador sofreria um aumento.

Pelos valores das constantes de velocidade determinadas por Richard e colaboradores [2012], as reações limitantes da velocidade da transesterificação para este caso foram as conversões do TG à DG e do MG à GL ($k_1 = k_3 = 5,00 \times 10^{-2} \text{ mol}^{-2} \text{ L}^2 \text{ s}^{-1}$).

Há também relatos na literatura de pesquisas onde a cinética da transesterificação ocorrida na síntese do biodiesel foi abordada de forma mais simplificada. Nestes trabalhos, as reações ocorridas são tratadas como irreversíveis e, na maioria das vezes, é considerado apenas a reação que envolve o consumo do TG, talvez esta reação ser considerada a mais lenta que as demais.

Freedman e colaboradores [1986b] reportaram o estudo da cinética de transesterificação do óleo de soja. Eles estudaram o efeito do tipo de álcool, a razão molar álcool:óleo de soja, o tipo e a quantidade de catalisador e a temperatura da reação na constante de velocidade. Para a reação com o butanol, na razão molar butanol:óleo 30:1, empregando o butóxido de sódio como catalisador, as reações diretas e reversas seguiram uma cinética de pseudo primeira ordem e de segunda ordem, respectivamente. A cinética de pseudo ordem é justificada pelo uso do butanol em excesso em relação ao triglicerídeo. Por outro lado, a cinética da reação do butanol com o óleo de soja na razão molar 6:1 foi de segunda ordem tanto para a reação direta como para a reversa.

Darnoko e Cheryan [2000] estudaram a cinética das três reações ocorridas metanólise do óleo de palma, com o KOH, nas temperaturas de 50, 55, 60 e 65 °C, e encontraram que o melhor ajuste para os seus dados foi um modelo de pseudo segunda ordem para o estágio inicial da reação, seguido pela cinética de primeira ordem ou ordem zero. Entretanto, as reações não receberam um tratamento cinético de reações consecutivas e reversíveis. Além disso, as leis de

velocidade de pseudo segunda ordem para cada reação foram escritas somente como uma função da concentração do glicerídeo, ou seja,

$$\frac{d[GD]}{dt'} = -k_i[GD]^2$$
 (Equação 19)

Entretanto, nenhuma justificativa foi dada para este tipo de mecanismo.

Richard e colaboradores [2011] empregaram um método de monitoramento online baseado na espectroscopia no IV próximo para acompanhar a etanólise do óleo de girassol catalisada pelo etóxido de sódio nas temperaturas de 30, 40, 50 e 60 °C, sob 750 rpm de agitação. A razão molar etanol:óleo empregada foi de 6:1. Estes autores construíram dois modelos cinéticos para esta reação: um baseado na cinética de pseudo primeira ordem e o outro na de pseudo segunda ordem. Nos dois casos, foi avaliado somente a conversão do triglicerídeo, a qual foi tratada como irreversível, ou seja,

$$\frac{d[TG]}{dt'} = -k_i[TG]^m$$
 (Equação 20)

onde m é 1 ou 2. Como os valores de r^2 para o segundo modelo foram maiores que os do primeiro, nas temperaturas estudadas, exceto à 30 °C, os autores relataram que o modelo de pseudo segunda ordem seria mais adequado para o estudo desta reação, apesar de ter não sido apresentada nenhuma justificativa para um mecanismo de segunda ordem para a concentração de TG.

A energia de ativação das transesterificações ocorridas na síntese do biodiesel são calculadas, principalmente, pela equação de Arrhenius. Entretando, modificações nesta equação têm sido sugeridas [NOUREDDINI e ZHU, 1997]. Os valores de energia de ativação determinados em alguns trabalhos estão listados na Tabela 5. O que se pode notar pelos valores apresentados nesta tabela é que, para a síntese do biodiesel, a conversão do MG à GL é a que menos dependente da temperatura, em relação às outras duas (TG → DG e DG → MG).

Tabela 5. Energias de ativação, em kJ mol⁻¹, encontradas na literatura para as três reações ocorridas na transesterificação para a síntese do biodiesel.

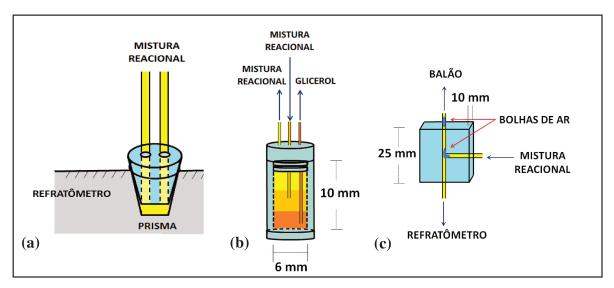
	NARVÁEZ <i>et al.</i> , 2007	BAMBASE <i>et al.</i> , 2007	NOUREDDINI e ZHU, 1997	RICHARD <i>et al.</i> , 2012	VICENTE <i>et al.</i> , 2005	DARNOKO e CHERYAN, 2000
Óleo	palma	girassol	soja	girassol	girassol	palma
Álcool	metanol	metanol	etanol	etanol	metanol	metanol
Catalisador	NaOH	NaOH	NaOH	NaOC ₂ H ₅	KOH	KOH
E_a (TG $ ightarrow$ DG)	56,5	58,7	54,8	51,0 ^a	31,7	61,5
E_a (DG $ ightarrow$ TG)	72,8	44,9	41,4		31,0	c
$E_a(DG \rightarrow MG)$	43,1	64,1	83,0		41,6	59,4
$E_a(MG \rightarrow DG)$	67,8	58,2	61,2	 !	41,1	c
$E_a(MG \rightarrow GL)$	25,9	30,0	26,9		6,0	26,8
$E_a(GL\rightarrow MG)$	49,8	40,1	40,1	 	b	c

^a apenas a reação de conversão do TG foi considerada; ^b negligenciável; ^c não se considerou a reversibilidade das reações.

2. OBJETIVOS

- Construir um sistema analítico simples e confiável para o monitoramento online das reações de transesterificação na produção de biodiesel e que seja baseado nas variações do índice de refração da mistura reacional;
- ii. Estudar a cinética da transesterificação metílica do óleo de soja na presença dos catalisadores homogêneos alcalinos NaOH, KOH, NaOCH₃ e KOCH₃ na mesma razão molar com a matéria-prima lipídica, empregando o sistema analítico construído neste trabalho;
- iii. Investigar a influência dos íons Na⁺ e K⁺ (contidos nos catalisadores) na cinética da metanólise;
- iv. Avaliar a influência da temperatura empregada na transesterificação e no tempo de conversão;
- v. Propor um mecanismo para a transesterificação dos triglicerídeos com estes catalisadores que seja coerente com os dados cinéticos obtidos neste trabalho, avaliando a possibilidade de a água e os sabões presentes no sistema exercerem alguma influência no mesmo.

3. METODOLOGIA


3.1. Sistema empregado para o monitoramento

O sistema utilizado no monitoramento da síntese do biodiesel foi constituído de um balão de 300 mL, o refratômetro modelo Refracto[®] 30GS (Figura 11), um banho termostático (± 0,2 °C), uma bomba peristáltica, um agitador mecânico com duas hélices de 10 mm e dois separadores de fases. Foi construída uma peça cônica de Teflon® contendo dois orifícios, a qual foi acoplada à cela de medição do refratômetro (Figura 12a). Esta peça serviu de suporte para os capilares que conduziram a mistura reacional para dentro e para fora da cela do refratômetro, permitindo o monitoramento da síntese do biodiesel em fluxo contínuo.

Antes de se efetuar as medidas, o aparelho é testado com água destilada, obtendo-se, assim, o desvio da leitura em relação ao valor teórico. Caso este seja maior que $\pm\,0,0005$, a cela de medição é lavada convenientemente e uma nova leitura é feita até que o desvio esteja dentro da faixa. Durante as análises o aparelho forneceu desvios de $\pm\,0,0001$.

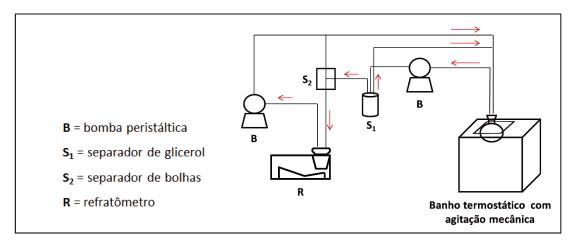


Figura 11. Refratômetro empregado no monitoramento da síntese do biodiesel.

Figura 12. Esquemas do: (a) suporte adaptado à cela de medição do refratômetro; (b) separador de fases líquidas (S1); e (c) separador de fases líquida e gasosa (S2).

O sistema de monitoramento foi montado de modo que a mistura reacional é bombeada do balão para os separadores de fases (Figura 13). No primeiro separador ocorre a separação entre a mistura reacional (ou biodiesel) formada e a glicerina; no segundo são separadas as bolhas de ar da mistura reacional. Em seguida, a mistura reacional vai para o refratômetro onde é determinado seu índice de refração, retornando, posteriormente, para o balão de reação juntamente com o glicerol e com a mistura reacional que é arrastada junto com as bolhas de ar no segundo separador.

Figura 13. Sistema empregado no monitoramento da reação.

O princípio envolvido na separação das fases da mistura nos separadores é a diferença de densidade das substâncias envolvidas. O primeiro separador, representado na Figura 12a, refere-se numa peça cilíndrica de acrílico de 6 mm de diâmetro interno e 10 mm de altura, vedado com uma tampa com três furos, por onde foram introduzidos três tubos capilares de plástico: o que leva a mistura reacional foi inserido até a meia altura do corpo cilíndrico; outro capilar foi introduzido até o fundo da peça, com a finalidade de remover o glicerol (fase mais densa); o terceiro foi fixado na parte mais alta para remover a mistura reacional (ou biodiesel) contendo menos glicerol. O segundo separador constitui-se de uma peça de acrílico quadrangular com perfurada em três faces até o centro. A mistura reacional entra por uma das faces horizontalmente e, ao chegar ao centro, as bolhas de ar (fase menos densa) sobem verticalmente e a mistura líquida é conduzida para o refratômetro (Figura 12b).

A importância de se separar o glicerol da mistura reacional se deve ao fato de que este, por ser mais denso que a mistura, pode decantar na cela do refratômetro, tornando o meio não homogêneo, o que prejudicaria a determinação do índice de refração desejado. Quanto às bolhas de ar, elas podem provocar uma redução significativa do volume da mistura na cela de modo que este seja insuficiente para a leitura do índice de refração.

3.2. Síntese do biodiesel e monitoramento

O biodiesel foi sintetizado em uma única etapa utilizando-se 150,0 g de óleo de soja comercial Lisa[®], 30,0 g de metanol (*Synth*, 99,8%) e 0,0157 mol de catalisador de forma que a razão molar óleo:metanol:catalisador empregada foi de 1,0:5,5:0,092 (considerando a massa molar média do óleo de soja igual a 874,8 g mol⁻¹ [FROEHNER *et al.*, 2007]). Os catalisadores utilizados foram: NaOCH₃ (Vetec, 30% em metanol), KOCH₃ (*Sigma-Aldrich*, 25% em metanol), NaOH (*Synth*, 99,8%) e KOH (Vetec, 85%). A metanólise foi realizada em triplicata sob as temperaturas de 60,0, 50,0, 40,0 e 30,0 °C.

Inicialmente, o óleo de soja foi pesado no balão que, posteriormente, foi mergulhado no banho termostático tendo sido submetido à agitação de 400 rpm. A bomba peristáltica foi acionada para que o óleo circulasse pelo sistema que está representado na Figura 13 de forma que o fluxo de óleo no sistema fosse aproximadamente 1 mL min⁻¹. A mistura metanol/catalisador foi preparada em um béquer pesando-se quantidades suficientes destes reagentes e, a seguir, colocada no mesmo banho termostático do balão. Quando a temperatura de ambos atingiu o equilíbrio com a temperatura da água, adicionou-se a mistura catalisador/metanol ao óleo vegetal que está sob agitação. O cronômetro foi acionado imediatamente após a adição.

A leitura do índice de refração da mistura reacional foi feita em intervalos de tempo que variaram de acordo com o andamento da reação. Quando mais lenta a reação, maior foi o intervalo adotado entre uma leitura e outra. O refratômetro possibilitou a determinação dos índices de refração em intervalos de até, no mínimo, 5 segundos.

As reações foram monitoradas até que o equilíbrio fosse alcançado, o que pôde ser identificado quando o índice de refração tornou aproximadamente constante. Em alguns casos, considerou-se o término da reação quando passou a se observar grandes variações aleatórias destes índices entre uma leitura e outra. Essas variações foram possivelmente ocasionadas porque o glicerol não foi totalmente separado no S1, provavelmente por ele estar em grande quantidade no final da reação. Neste caso, o tempo necessário para a decantação do glicerol no sistema passaria a ser maior do que o tempo de residência da mistura no circuito, em função da vazão utilizada. Esta consideração é reforçada pela observação de que essa instabilidade na leitura do índice de refração ao final da reação ocorre principalmente nos casos onde a temperatura da reação é mais baixa, quando a separação do glicerol da mistura reacional é mais lenta.

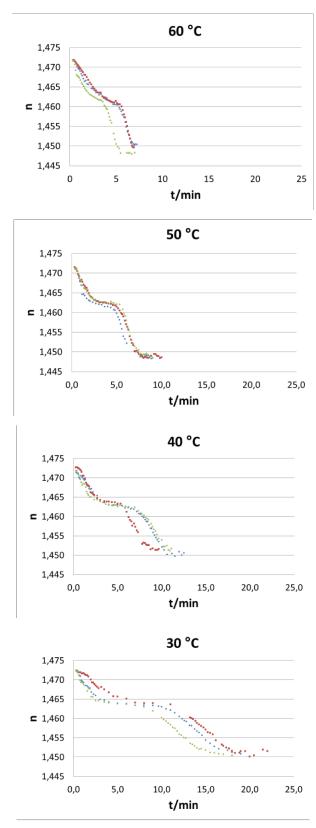
3.3. Determinação do intervalo da reação

Dois experimentos foram realizados adicionalmente, monitorando-se a metanólise do óleo de soja à 50 °C com metodologia semelhante à descrita anteriormente (Tópico 3.2). Um destes experimentos foi feito na ausência de catalisador enquanto que no outro foi empregado o KOCH₃. O objetivo deste procedimento foi o de identificar a região das curvas de índice de refração *versus* tempo que está associada à ocorrência da metanólise.

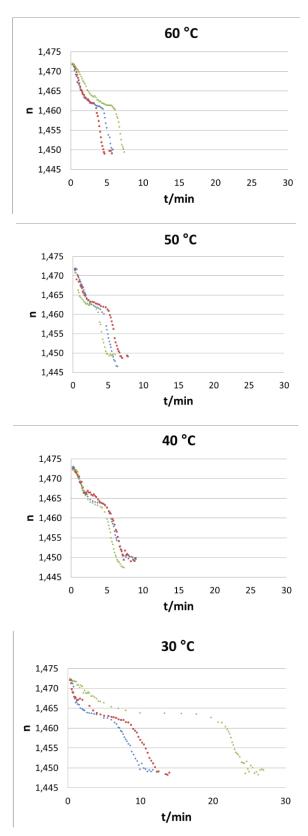
3.4. Determinação do índice de refração do óleo de soja e do seu respectivo biodiesel

Os índices de refração do óleo de soja e do seu respectivo biodiesel purificado foram determinados adicionando-se uma gota do material a ser analisado na cela de medição do refratômetro. No nosso caso, o equipamento foi colocado dentro de um recipiente de polipropileno submerso em um banho termostatizado à 25.0 ± 0.2 °C.

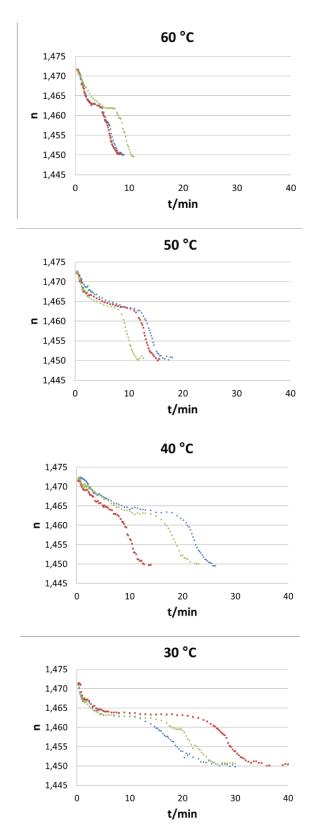
4. RESULTADOS E DISCUSSÃO

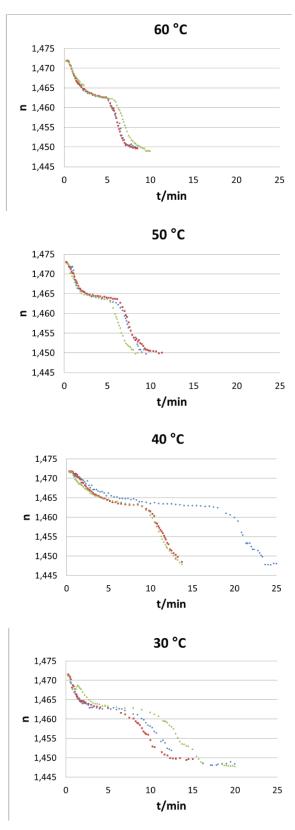

4.1. Monitoramento *online* da síntese de biodiesel por refratometria

O sistema empregado para o monitoramento da transesterificação permitiu a aquisição dos índices de refração da mistura reacional em tempo "quase real", uma vez que a amostra que saiu do balão de reação demorou cerca de 40 segundos para chegar à cela de medição do refratômetro. Entretanto, cabe ressaltar que durante o percurso da amostra até o refratômetro a reação continua progredindo. Desta forma, o índice medido apresentaria uma diferença muito pequena em relação ao da mistura reacional dentro do balão.


A quantidade de medidas que puderam ser obtidas em intervalos de tempo relativamente curtos (cerca de 10 por minuto) torna a metodologia desenvolvida neste trabalho ideal para o estudo cinético das transesterificações dos triglicerídeos promovidas pelos catalisadores homogêneos alcalinos, uma vez que se espera que cerca de 90% da conversão ocorra nos primeiros 5 minutos da reação [GHANEI *et al.*, 2011; LEUNG *et al.*, 2006], o que não poderia ter sido alcançado na CG, a técnica mais empregada no monitoramento destas reações.

Os valores de índice de refração (*n*) *versus* tempo (*t*) obtidos durante o monitoramento, em triplicata, da conversão do óleo de soja à biodiesel estão listados no Anexo I. Esses dados foram utilizados para a construção dos gráficos de n *versus* t representados nas Figuras 14 à 17.


Uma curva que representa a variação do índice de refração pelo tempo decorrido de reação deveria, a princípio, ter o seguinte aspecto: uma diminuição acentuada do índice de refração no início da reação seguida de menor decréscimo ao final tendendo a valor constante, onde não haveria mais conversão. Neste sentido, as curvas obtidas das Figuras de 14 à 17 parecem descrever a ocorrência de duas das três reações consecutivas, pois elas possuem dois segmentos com esta característica, conforme destacados na Figura 18.


Figura 14. Índices de refração ao longo da conversão do óleo de soja à biodiesel com NaOCH₃, sob diferentes temperaturas (em triplicata).

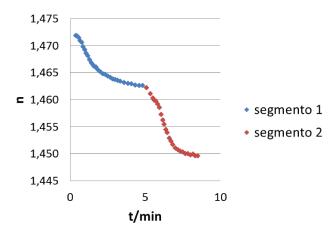

Figura 15. Índices de refração ao longo da conversão do óleo de soja à biodiesel com KOCH₃, sob diferentes temperaturas (em triplicata).

Figura 16. Índices de refração ao longo da conversão do óleo de soja à biodiesel com NaOH, sob diferentes temperaturas (em triplicata).

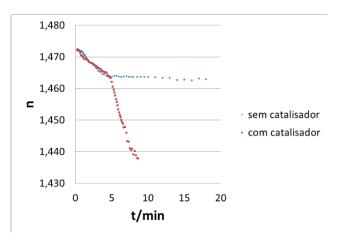

Figura 17. Índices de refração ao longo da conversão do óleo de soja à biodiesel com KOH, sob diferentes temperaturas (em triplicata).

Figura 18. Gráfico de *n versus t* da metanólise do óleo de soja com KOH à 60 °C, identificando os segmentos característicos da ocorrência de uma reação.

Entretanto, o início da alcoólise ocorrerá a uma taxa apreciável somente após haver uma difusão significativa do metanol no óleo de soja. Como o metanol apresenta baixa solubilidade no óleo e as medidas foram realizadas logo após sua adição no sistema, então, as variações no índice de refração nos primeiros instantes do monitoramento não devem ser consequência da metanólise, mas sim da gradual formação da mistura metanol/óleo pelo processo de agitação.

Para verificar tal hipótese foi feita uma simulação de reação, sem o uso de catalisador. Os dados obtidos nos monitoramentos com e sem catalisador podem ser vistos na Figura 19 e no Anexo II. Foi obtida uma curva com aspecto semelhante ao primeiro segmento destacado na Figura 18. Por não ter ocorrido reação até o final, pode-se pensar que esta curva surge como uma consequência do processo de formação da mistura metanol/óleo. Além disso, comparando-a com a curva obtida no monitoramento da metanólise utilizando o KOCH₃ como catalisador, observa-se que o primeiro segmento da curva com o KOCH₃ sobrepõe-se àquela sem catalisador. Desta forma, este segmento da curva cinética não representa o processo de metanólise. Assim, apenas os dados que deram origem ao segmento 2 das curvas são os que apresentam utilidade para a determinação dos parâmetros cinéticos referentes à metanólise do óleo de soja.

Figura 19. Monitoramento do índice de refração ao longo da conversão, à 50 °C, do óleo de soja com catalisador (KOCH₃) e sem catalisador.

No entanto, poderia ser lançada a hipótese, embora pouco provável, de que a primeira reação de metanólise possa ocorrer rapidamente mesmo sem a presença de catalisador, parando o processo na segunda etapa da reação. Em sendo tal possibilidade verdadeira, a curva obtida seria semelhante à da Figura 19 sem catalisador. De modo a testar tal idéia, após o monitoramento que resultou nesta curva, o metanol foi separado do óleo e o índice de refração deste último foi medido, mostrando-se praticamente igual ao do óleo antes da reação ($n_{inicial} = 1,4740$; $n_{final} = 1,4732$). Desta forma, sugere-se que não ocorreu metanólise, pelo menos em grau que pudesse ter sido registrada no monitoramento. Assim, as primeiras variações nos índices ocorreram como uma consequência da formação gradual da mistura metanol/óleo durante a agitação.

Este "atraso" na metanólise provocado pela dispersão do metanol pode ser um indicativo de que a metanólise ocorre na interface metanol/triglicerídeo. Neste caso, logo após a adição da mistura catalisador/metanol ao óleo vegetal a área interfacial não deve ser grande o suficiente para que ocorra a metanólise a uma taxa apreciável. Entretanto, o aumento da área interfacial ocasionado pela agitação do sistema permitiria uma aceleração desta reação permitindo que a conversão ocorra a taxas suficientes para ser monitorada pelo método empregado.

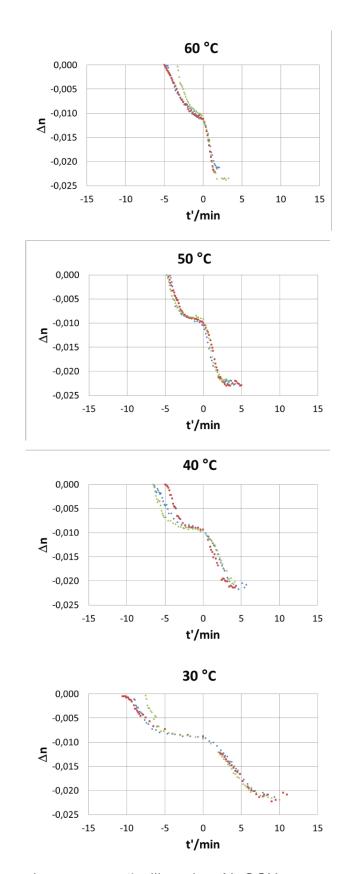
Apesar da metanólise completa de uma molécula de triglicerídeo acontecer em três reações sucessivas, ou seja, em primeiro a reação do triglicerídeo com metanol seguida da do diglicerídeo e por fim a do monoglicerídeo, o que aparentemente se observa na curva registrada de n *versus t* é o processo global. Em outras palavras, a variação do índice de refração na mistura poderia estar associada não apenas a uma das reações, mas ao efeito global produzido por todas as transformações ocorridas no sistema durante a conversão, resultando no segundo segmento de curva em vermelho na Figura 19.

Na tentativa de entender o processo reacional que ocorre na transesterificação, e que se reflete no segundo segmento vermelho da curva vista na Figura 19, pode-se construir o modelo descrito a seguir.

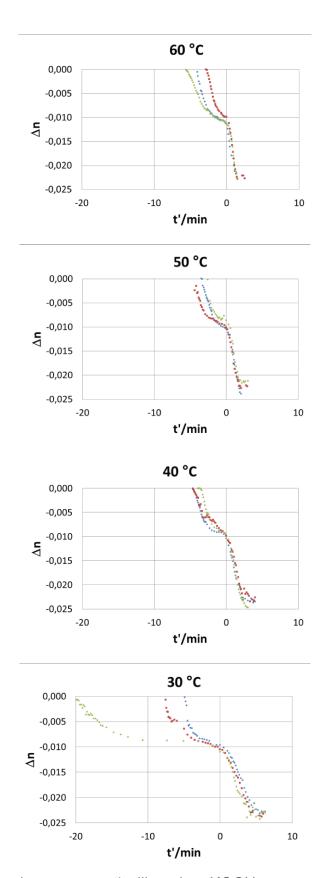
Imaginemos, como uma aproximação, que as três ligações éster possam, em princípio, reagir com metanol da mesma maneira, o que implica que as constantes de velocidade de metanólise sejam as mesmas para as três ou, pelo menos, de magnitude muito parecida. No entanto, as longas cadeias carbônicas dos triglicerídeos certamente devem formar ao redor das ligações éster como que um novelo, protegendo-as, por efeito estéreo, dos possíveis nucleófilos. Assim, a etapa mais difícil e, portanto, mais lenta da reação, seria justamente a transesterificação do triglicerídeo formando o diglicerídeo, a partir do que, pela "abertura" do novelo, as reações de metanólise das outras duas ligações éster do formado diglicerídeo ocorreriam mais rapidamente do que a primeira etapa (do triglicerídeo) e com constantes de velocidade semelhantes entre si (as duas últimas). Deste modo, a sequência dos valores das constantes de velocidade seria: $k_1 << k_2 \cong k_3$. Esta ordem de constantes resulta, justamente, em uma curva cinética semelhante à observada na figura onde k_1 é a constante determinante da velocidade da reação. Portanto o segundo segmento da curva vermelha (Figura 12) deve representar, se o modelo for correto, a constante k_1 .

Nota-se pelas Figuras de 14 à 17 que o índice de refração da mistura reacional sofre variação desde valores um pouco acima de 1,4700 até valores próximos a 1,4500. Os índices medidos no início das leituras correspondem ao do óleo de soja "puro", ou seja, sem a influência da mistura catalisador/metanol.

Estes valores se apresentaram um pouco alterados em relação ao valor de 1,4729, obtido à $25,0\,^{\circ}$ C pelo procedimento descrito no tópico 3.4. Isso pode estar ocorrendo, possivelmente, devido às mudanças na densidade do óleo por consequência da variação da temperatura do óleo a cada monitoramento. Quanto aos índices no final da reação, os valores medidos são menores que o obtido à $25,0\,^{\circ}$ C para o biodiesel "puro" (n = 1,4562) devido, provavelmente, à influência do metanol (n = 1,3286) na mistura.


Pela análise visual dos gráficos representados nas Figuras 14 à 17 pode-se observar desvios acentuados entre grande parte das réplicas das curvas. Tais desvios são perceptíveis não apenas pela sua baixa sobreposição mas também devido à variações significativas no tempo necessário para completar as conversões como, por exemplo, nas réplicas com KOCH₃ à 30 °C e KOH à 40 °C, onde as diferenças foram tais que os coeficientes de variação calculados foram de 52,2% e 33,4%, respectivamente.

Tais desvios ocorrem principalmente devido a dois fatores e serão chamados de desvio do tipo 1 e desvio do tipo 2. O desvio do tipo 1, de menor influência, deve-se a variação da densidade da amostra na cela de medição, ocasionada, principalmente, pela mudança na temperatura ambiente entre a realização de uma réplica e outra. Consequentemente, ocorrem pequenos desvios nos índices de refração num mesmo sentido, provocando um deslocamento vertical nas curvas de n *versus* t.


O desvio do tipo 2 ocorre devido às dificuldades de se controlar as variáveis que influeciam na velocidade de dispersão do metanol no óleo na etapa de formação da mistura, tais como: o tempo gasto na adição da mistura catalisador/metanol, a forma como essa mistura chega ao sistema, a inclinação do balão, a inclinação da haste da hélice, a profundidade da hélice do agitador na mistura reacional, entre outras. Neste caso, o segmento 1 das curvas sofrem alterações, já que o mesmo descreve o processo de formação da mistura, como descrito anteriormente. Tais alterações podem ser percebidas pelo aumento ou diminuição deste segmento, afetando o tempo necessário para iniciar a metanólise.

Com o objetivo de minimizar estes desvios para pemitir a comparação dos dados para o estudo da metanólise foram realizadas duas modificações na representação das curvas apresentada nas Figuras de 14 à 17: o eixo das ordenadas passou representar a variação do índice de refração (Δn), minizando o desvio do tipo 1, e; foi arbitrado como o instante t'=0, o momento em que se inicia a metanólise, ou seja, no início do segmento 2, eliminando o efeito do desvio do tipo 2 neste segmento. Esta última modificação também torna possível avaliar separadamente a influência dos catalisadores alcalinos na metanólise e na formação das misturas. Os gráficos obtidos após tais alterações estão representados nas Figuras de 20 à 23.

Pode-se observar que, nestas novas representações os segmentos das curvas referentes à formação das misturas não ficaram bem sobrepostos, principalmente nos experimentos realizados nas temperaturas mais baixas (30 e 40 °C). Isso ocorre porque à baixas temperaturas a viscosidade da mistura reacional é maior, o que dificulta a formação da mistura metanol/óleo tornando-a mais influenciável pelos fatores que provocam o desvio do tipo 2. Entretanto, entre os segmentos que descrevem a metanólise dos triglicerídeos, nota-se melhor sobreposição, o que indica que as variações dos índices de refração durante o monitoramento desta reação são reprodutíveis.

Figura 20. Gráficos de Δn versus t' utilizando o NaOCH₃ como catalisador.

Figura 21. Gráficos de Δn versus t' utilizando o KOCH₃ como catalisador.

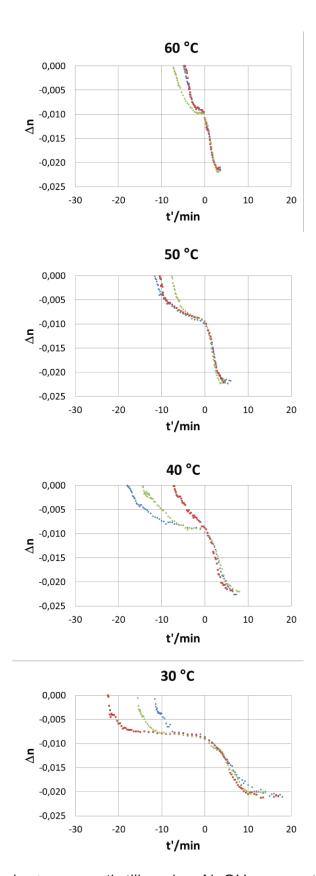
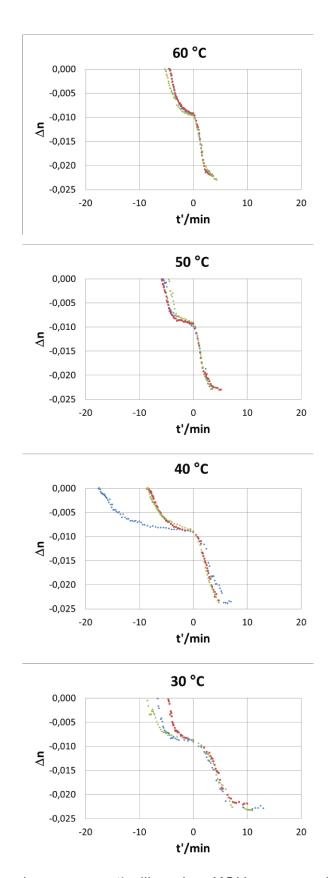



Figura 22. Gráficos de *∆n versus t'* utilizando o NaOH como catalisador.

Figura 23. Gráficos de *△n versus t'* utilizando o KOH como catalisador.

4.2. Influência dos catalisadores alcalinos no tempo de conversão do óleo de soja à biodiesel

A partir dos dados representados nas curvas de *n versus t* foi possível estimar o tempo (*t*) necessário para as conversões dos triglicerídeos com os quatro catalisadores alcalinos estudados. O tempo de conversão, neste contexto, se refere ao tempo total necessário para síntese do biodiesel, correspondendo à soma do tempo gasto na etapa de mistura dos reagentes com o tempo de metanólise. Os valores encontrados encontram-se listados na Tabela 6.

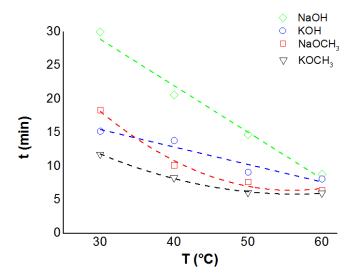

Pelos resultados apresentados nesta tabela, nota-se que o tempo médio de conversão com o potássio é menor que com o sódio nos catalisadores análogos, o que sugere que os íons alcalinos apresentam uma participação diferenciada no mecanismo.

Tabela 6. Tempo^a (t) e tempo médio \pm estimativa do desvio padrão $(\bar{t}\pm s)$, em minutos, necessário para a conversão com os catalisadores alcalinos.

Temperatura	NaOCH₃		KOCH ₃		NaOH		КОН	
(°C)	t	ī±s	t	ī±s	t	ī±s	t	ī±s
	7,1		5,8		8,2		7,2	
60	6,8	6,5±0,9	4,7	6,0±1,4	7,7	8,8±1,5	7,7	8,1±1,2
	5,5		7,4		10,5		9,5	
	7,6		6,2		17,3		9,5	
50	7,8	7,7±0,1	6,8	6,1±0,8	15,3	14,7±2,9	9,5	<i>9,1±0,7</i>
	7,8		5,2		11,5		8,3	
	10,6		8,8		25,8		23,7	
40	8,8	10,2±1,2	8,8	8,3±0,9	13,7	20,6±6,2	13,8	17,1±5,7
	11,1		7,2		22,3		13,8	
	19,0		10,0		27,0		16,3	
30	18,3	18,4±0,5	13,5	16,7±8,7	36,0	29,9±5,3	13,0	15,2±1,9
	18,0		26,5		26,7		16,3	

^a refere-se à soma do tempo de mistura + tempo de metanólise.

Os dados listados nesta tabela foram utilizados na construção do gráfico de t versus T, representado na Figura 24. Foram excluídos os dados referentes aos valores de t=26,5 min (KOCH₃) e t=23,7 min (KOH) devido aos desvios que estes apresentaram em relação às suas réplicas. Nesta figura, pode-se observar que apesar de os metóxidos, em geral, promoverem conversões mais rápidas que os hidróxidos nas temperaturas consideradas, há uma a tendência de eles tornarem o processo mais lento à temperaturas mais baixas, quando o tempo necessário para a conversão com os metóxidos parece tornar-se mais sensível à temperatura. Isto está associado ao fato de que a variação do tempo de conversão com os catalisadores alcalinos ter sido linear ($t_{NaOH}=-0,69T+49,4$, sendo r=0,999; $t_{KOH}=-0,27T+23,6$, sendo r=0,968) enquanto que para os metóxidos esta variação foi polinomial ($t_{NaOCH}=0,018T^2-2,0T+62,0$, sendo r=0,997; $t_{KOCH}=0,012T^2-1,3T+41,9$, sendo r=0,999). As razões para este comportamento serão discutidas no tópico 4.4.

Figura 24. Gráfico do tempo de conversão (*t*) *versus* temperatura (*T*) na síntese do biodiesel, empregando o NaOCH₃, KOCH₃, NaOH e KOH como catalisadores.

As perdas nos tempos de conversão ocasionadas ao se reduzir a temperatura do processo de 60°C para 50 °C não foram muito altas quando o NaOCH₃, KOCH₃ e o KOH foram empregados como catalisadores. Neste caso, poderia ser questionado se haveria algum ganho ao realizar a conversão à 60 °C

ao invés de 50 °C devido ao maior consumo de energia, além da possibilidade do aumento das reações de saponificação, conforme relatado por Leung *et al.* [2006] e Eevera *et al.* [2009].

Para avaliar a influência dos catalisadores nas duas etapas do processo de conversão foram utilizadas as informações contidas nos gráficos de Δn versus t'. Neste caso, o tempo decorrido até chegar ao instante t' = 0 min corresponderia ao tempo de mistura dos reagentes, o qual foi estimado com base no seu valor mediano devido à alta variabilidade dos valores encontrados, enquanto que o tempo de metanólise corresponde ao valor de t' necessário para completar a conversão. Tais valores estão listados nas Tabelas 7 e 8.

Tabela 7. Tempo (t') e tempo médio \pm estimativa do desvio padrão $(\bar{t}'\pm s)$, em minutos, necessário para a metanólise dos triglicerídeos com os catalisadores alcalinos.

Temperatura	NaOCH ₃		KOCH ₃		NaOH		КОН	
(°C)	t'	ī'±s	t'	ī'±s	t'	ī'±s	t'	ī'±s
	1,9		1,3		2,8		2,3	
60	1,4	1,7±0,3	1,5	1,4±0,1	2,7	2,8±0,1	2,8	3,0±0,8
	1,8		1,5		2,8		3,9	
	2,8		2,3		5,3		3,3	
50	2,8	2,7±0,2	1,8	2,1±0,3	4,5	4,4±0,9	3,5	<i>3,4±0,1</i>
	2,5		2,2		3,5		3,3	
	3,8		3,8		6,8		5,7	
40	3,4	3,8±0,4	3,8	3,5±0,6	6,0	6,7±0,7	4,8	<i>5,1±0,5</i>
	4,2		2,8		7,3		4,8	
	9,3		4,5		15,0		9,3	
30	7,3	8,9±1,4	5,5	5,3±0,7	13,0	12,9±2,2	8,0	8,2±1,0
	10,0		5,8		10,7		7,3	

Tabela 8. Tempo mediano ($t_{mediano}$), em minutos, necessário para mistura dos reagentes.

Temperatura (°C)	Catalisador						
remperatura (O)	NaOCH₃	KOCH₃	NaOH	KOH			
60	5,2	4,5	5,4	4,9			
50	5,0	3,9	10,8	6,0			
40	6,8	5,0	15,0	9,0			
30	9,7	8,0	16,0	7,0			

Comparando-se os valores listados nestas duas últimas tabelas pode-se notar que a mistura dos reagentes consome grande parte do tempo necessário para a conversão, chegando a até 80% do tempo total (para o NaOCH₃ à 60°C). Além disso, nas temperaturas de 30, 40 e 50 °C, os valores de $t_{mediano}$ seguem a mesma sequência crescente que os valores de t' para cada catalisador, indicando que os catalisadores podem influenciar na formação da mistura. Isto pode estar ocorrendo como uma consequência de suas influências sobre metanólise, pois durante a mistura dos reagentes é provável que a metanólise ocorra a uma pequena extensão, liberando os metil ésteres na mistura reacional. Tais compostos podem atuar como agentes emulsificantes estabilizando mais rapidamente a dispersão de uma das fases. Consequentemente, os catalisadores que promovem a metanólise de forma mais rápida também devem promover a mistura dos reagentes em menos tempo.

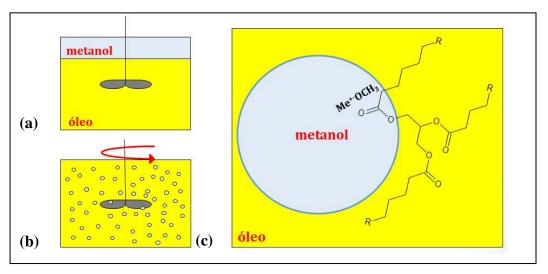
4.3. Estudo cinético da metanólise dos triglicerídeos com os catalisadores alcalinos

Para o estudo da lei de velocidade da metanólise foram utilizados os índices de refração referentes ao segmento 2 das curvas de *n versus t* e os tempos corrigidos *t'*. Estes dados estão listados no Anexo III.

Conforme relatado anteriormente, as variações dos índices de refração observadas neste segmento estão, a princípio, associadas à todas as transformações químicas ocorridas na mistura reacional e não apenas a uma reação específica. Estas transformações englobam tanto a metanólise do TG, DG e MG como também as reações paralelas, dentre as quais podemos citar a neutralização dos ácidos graxos, as saponificações e a hidrólise dos ésteres.

Como estas reações paralelas são minoritárias na mistura reacional, a sua influência sobre as variações do índice de refração pode ser negligenciada. Desse modo, as variações dos índices ocorrem principalmente devido à conversão dos triglicerídeos à metil ésteres e glicerol, o que tornaria possível o estudo cinético da reação global de conversão, representada abaixo, a partir dos índices de refração obtidos nos experimentos.

TG +
$$3 \text{ CH}_3 \text{OH} \stackrel{k}{=\!=\!=\!=} \text{ GL + } 3 \text{ ME}$$


Entretanto, de acordo com a hipótese apresentada no tópico 4.1, em que $k_1 << k_2 = k_3$ (onde k_1 , k_2 e k_3 , correspondem as constantes de velocidade da metanólise do TG, DG e MG, respectivamente), então as variações nos índices de refração poderiam ocorrer devido à primeira etapa apenas, tratada como irreversível ($k_1 >>> k_{-1}$).

TG + CH₃OH
$$\stackrel{k_1}{=}$$
 DG + ME

A hipótese para a lei de velocidade desta reação é que a mesma ocorra sob uma cinética de ordem zero, ou seja,

$$v = k_1$$
 (Equação 20)

Este comportamento pode ser justificado pelo fato de o metanol e o óleo de soja formarem uma mistura de duas fases (Figura 25a). Neste caso, o processo de agitação destes reagentes deve levar a dispersão de pequenas gotículas de uma destas fases (metanólica ou glicerídica) no seio da outra, a qual se apresentaria como uma fase contínua (Figura 25b). Para qualquer que seja o caso, a metanólise deve ocorrer na interface destes componentes (Figura 25c). Portanto, a velocidade desta reação seria tão rápida quanto maior for a área interfacial dos componentes, não dependendo, a princípio, das concentrações do metanol e do triglicerídeo.

Figura 25. Representação do processo de formação da gotícula de metanol em óleo e da reação interfacial.

Após a etapa de mistura dos reagentes (identificada pelo segmento 1 das curvas de *n versus t*) espera-se ter alcançado um máximo de gotículas formadas, sendo esta quantidade aproximadamente constante durante grande parte a reação. Dessa maneira, a velocidade da reação seria praticamente constante durante a metanólise.

Apesar de o metanol estar em excesso na mistura reacional, o seu volume corresponde a menos de 20% do volume total da mistura metanol/óleo, o que leva a supor que o mesmo fique disperso no óleo de soja durante a agitação. Além disso, como para haver a dispersão de um dos componentes é necessário que o

mesmo receba energia suficiente para romper a barreira de energia que é imposta pela tensão superficial, então, o componente que apresenta a menor tensão superficial seria o mais facilmente disperso. Como a tensão superficial do metanol é menor que a do óleo de soja ($\gamma_{metanol} = 22,6 \text{ mN m}^{-1}$; $\gamma_{oleo} = 34,4 \text{ mN m}^{-1}$) [ATKINS e PAULA, 2004; SOUZA *et al.*, 2007], então o metanol seria, possivelmente, a fase dispersa e o óleo de soja a fase contínua.

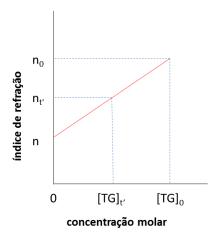
Assim, o catalisador, que se encontra dissolvido na partícula de metanol, se aproximaria da interface metanol/óleo atacando um dos carbonos carbonílicos do triglicerídeo formando um íon glicerato, o qual, após reagir com o metanol, irá regenerar o catalisador e formar o diglicerídeo. Como há um excesso estequiométrico de metanol em relação ao triglicerídeo, não haverá redução significativa do tamanho da gotícula de metanol durante a reação. Dessa forma, a área interfacial permanecerá aproximadamente constante durante a reação e a velocidade da reação não seria alterada.

Portando, como esta reação segue uma lei cinética de ordem zero, o consumo de triglicerídeo no intervalo *dt'* é

$$\frac{d[TG]_{t'}}{dt'} = -k_1, \qquad (Equação 21)$$

cuja solução é

$$[TG]_{t'} - [TG]_0 = -k_1 t'$$
. (Equação 22)


que dividindo por [TG]₀ fica:

$$\frac{[TG]_{t'}}{[TG]_0} = -k_{obs}t'+1,$$
 (Equação 23)

onde k_{obs} é a constante de velocidade observada neste estudo que, devido ao quociente utilizado para se chegar à Equação 23, k_{obs} é uma função da concentração inicial do triglicerídeo.

Como o índice de refração tem apresentado uma correlação linear com o teor de metil ésteres em misturas de óleos vegetais com o seu respectivo biodiesel [SANTOS *et al.*, 2012; GHANEI *et al.*, 2011], então, é possível que a variação dos índices de refração seja proporcional à variação da concentração do triglicerídeo.

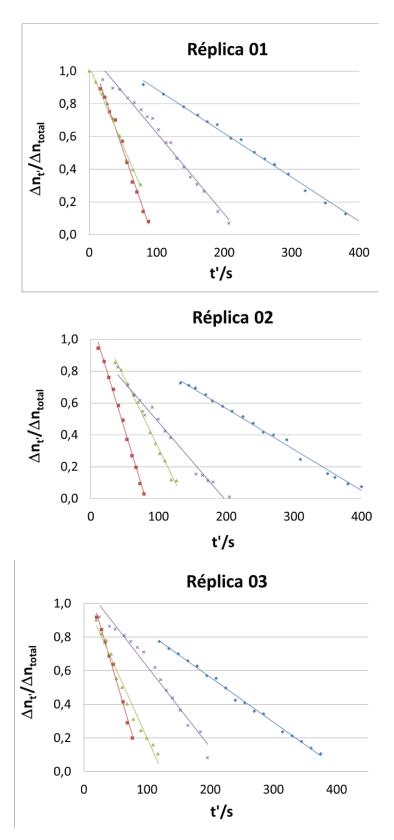
Considerando [TG]₀ e [TG]_{t'} as concentrações molares de triglicerídeos no início e no instante t' da metanólise, respectivamente, e n_0 , n e $n_{t'}$ os índices de refração no início, no término e no instante t', respectivamente, então a variação do índice de refração da mistura reacional com a concentração de triglicerídeo ocorrerá conforme representado na Figura 26.

Figura 26. Representação do comportamento de *n versus* [TG].

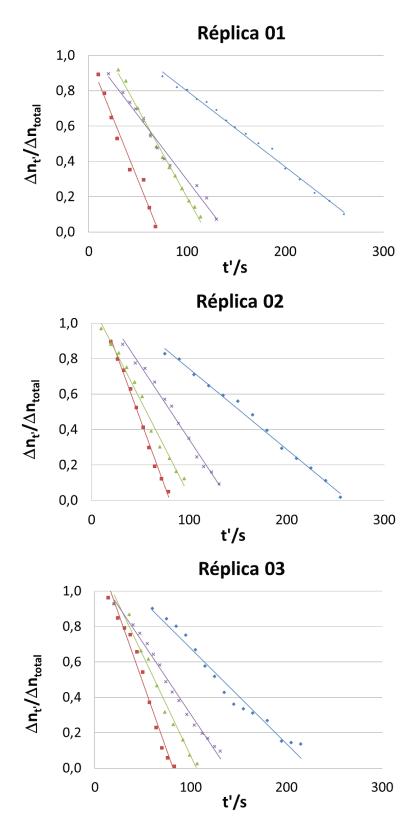
Portanto, o quociente da Equação 23 pode ser escrito em função dos índices de refração da seguinte forma:

$$\begin{split} & \frac{[TG]_{t'} - 0}{[TG]_0 - 0} = \frac{n_{t'} - n}{n_0 - n} = \frac{\Delta n_{t'}}{\Delta n_{total}} \\ & \frac{[TG]_{t'}}{[TG]_0} = \frac{\Delta n_{t'}}{\Delta n_{total}} \,, \end{split} \tag{Equação 24}$$

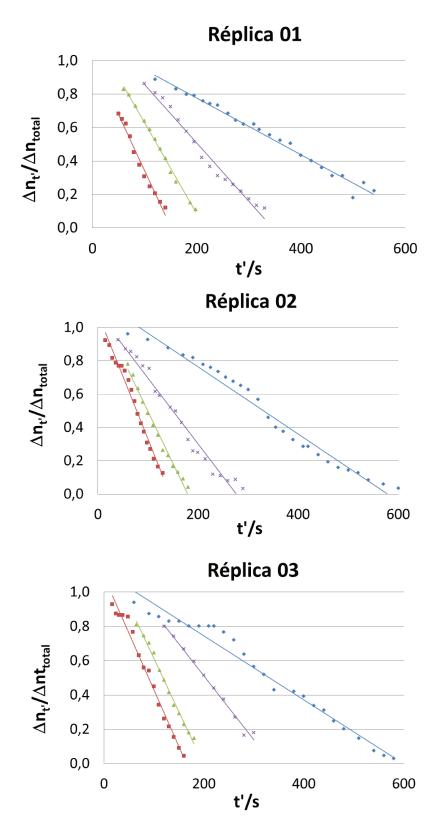
onde $\Delta n_{t'}$ é a variação do índice de refração do início da metanólise (no instante t' = 0) até o instante t' e Δn_{total} é a variação total do índice de refração na metanólise (do instante t' = 0 até o final da reação).


Logo, a lei de velocidade integrada para a cinética de ordem zero, em função dos índices de refração, fica:

$$\frac{\Delta n_{t'}}{\Delta n_{total}} = -k_{obs}t' + 1 \tag{Equação 25}$$


Equação 25 demonstra a constante de velocidade observada k_{obs} corresponde ao oposto do coeficiente angular da curva obtida pela regressão linear dos valores de $\Delta n_t/\Delta n_{total}$ versus t' (listados no Anexo III). A boa linearidade que pode ser observada entre estes valores (Figuras 27 à 30) e os coeficientes de correlação linear r calculados (Tabela 9) indicam que os dados experimentais obtidos concordam com o modelo proposto pela Equação 25, sugerindo que, nas condições reacionais empregadas, a lei de velocidade de ordem zero é adequada para descrever a cinética da metanólise. Deste modo, pode-se concluir que a concentração dos triglicerídeos não influencia na velocidade da reação.

Os valores dos parâmentros das curvas de regressão linear obtidos para as triplicadas e os valores de k_{obs} médio (\bar{k}_{obs}) nas quatro temperaturas empregadas com os quatro catalisadores, estão listados nas Tabelas 9 e 10, respectivamente.


Pelos valores listados na Tabela 10, nota-se que o k_{obs} médio para os catalisadores contendo potássio são maiores que os valores obtidos para os análogos de sódio nas quatro temperaturas utilizadas, indicando que a presença do potássio na mistura reacional torna a metanólise mais rápida do que o sódio. Isto que permite concluir que o cátion apresenta um papel importante nesta reação, devendo, portanto, ser considerada a sua participação no mecanismo da metanólise de forma efetiva.

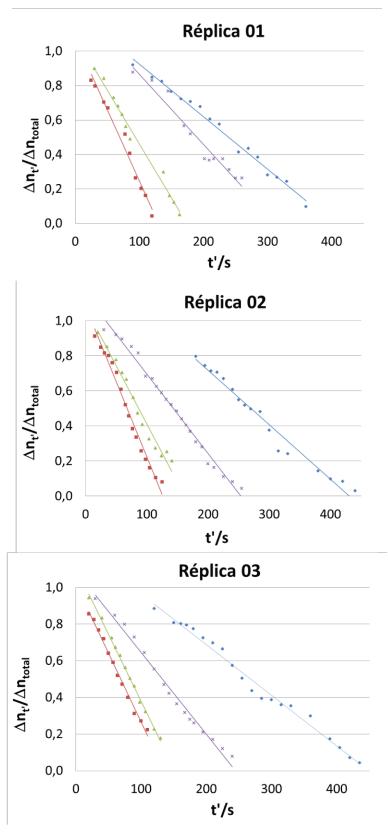

Figura 27. Gráficos de $\Delta n_t / \Delta n_{total}$ versus t' empregando o NaOCH₃ como catalisador.

Figura 28. Gráficos de $\Delta n_t/\Delta n_{total}$ *versus* t' empregando o KOCH₃ como catalisador.

Figura 29. Gráficos de $\Delta n_t/\Delta n_{total}$ *versus* t' empregando o NaOH como catalisador.

Figura 30. Gráficos de $\Delta n_{t'}/\Delta n_{total}$ versus t' empregando o KOH como catalisador.

Tabela 9. Parâmetros da curva $\Delta n_{t'}/\Delta n_{total} = -k_{obs} \times t' + b$, obtida por regressão linear dos valores de $\Delta n_{t'}/\Delta n_{total}$ versus t'.

Cotolicada	Parâmetros ^{a,b}	Temperatura (°C)						
Catalisador		60	50	50 40				
	,	11,9	9,66	4,96	2,68			
	k_{obs}	14,0	8,77	4,95	2,57			
		12,9	8,04	4,82	2,67			
		1,11	1,03	1,12	1,16			
NaOCH ₃	b	1,14	1,19	0,976	1,08			
		1,20	1,04	1,11	1,09			
		0,995	0,995	0,992	0,998			
	r	0,998	0,997	0,992	0,997			
		0,997	0,988	0,986	0,998			
		13,8	10,0	7,31	4,30			
	k_{obs}	15,1	10,8	8,32	4,54			
		15,3	11,4	8,10	5,39			
	b	0,985	1,20	1,03	1,23			
KOCH ₃		1,21	1,11	1,18	1,20			
		1,25	1,21	1,11	1,22			
	r	0,988	0,997	0,992	0,997			
		0,998	0,993	0,995	0,997			
		0,988	0,992	0,995	0,987			
		6,73	5,45	3,50	1,70			
	k_{obs}	7,52	6,23	3,95	2,01			
		6,60	6,22	3,72	1,87			
	,	1,02	1,17	1,21	1,12			
NaOH	b	1,08	1,12	1,09	1,17			
		1,09	1,23	1,26	1,12			
		0,990	0,998	0,990	0,992			
	r	0,991	0,994	0,988	0,988			
		0,992	0,996	0,995	0,967			
		8,28	6,26	4,07	3,05			
КОН	k_{obs}	8,59	6.63	4,54	3,11			
		7,56	7,30	4,45	2,76			
		1,07	1,09	1,27	1,23			
	b	1,08	1,08	1,15	1,34			
		1,02	1,11	1,09	1,24			
		0,990	0,993	0,977	0,994			
	r	0,991	0,987	0,994	0,987			
		0,996	0,998	0,994	0,993			

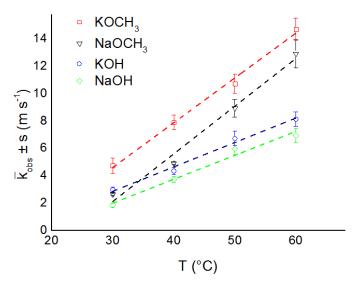

^a k_{obs} em ms⁻¹; ^b b = coeficiente linear.

Tabela 10. Constante de velocidade média \pm estimativa do desvio padrão $(\bar{k}_{obs} \pm s)$, em ms⁻¹, da metanólise dos triglicerídeos com os catalisadores alcalinos.

Temperatura	NaOCH ₃	KOCH ₃	NaOH	КОН	
(°C)	$\overline{k}_{obs} \pm s$	$\overline{k}_{obs} \pm s$	$\overline{k}_{obs} \pm s$	$\overline{k}_{obs} \pm s$	
60	12,9 ± 1,1	14,7 ± 0,8	7,0 ± 0,5	8,1 ± 0,5	
50	8,9 ± 0,6	10,7 ± 0,7	6,0 ± 0,5	6,7 ± 0,5	
40	4,9 ± 0,1	7,9 ± 0,5	3,7 ± 0,2	4,4 ± 0,2	
30	2,6 ± 0,1	4,7 ± 0,6	1,9 ± 0,2	$3,0 \pm 0,2$	

Ao se analisar a influência da temperatura na constante de velocidade observada, representada no gráfico da Figura 31, pode-se verificar que os metóxidos são mais ativos (maior k_{obs}) que os hidróxidos nas temperaturas acima de 35 °C, sendo a ordem decrescente de atividade catalítica a seguinte: KOCH₃ > NaOCH₃ > KOH > NaOH. Entretanto, nas temperaturas abaixo deste valor esta ordem de atividade é alterada, havendo uma tendência de os hidróxidos tornaremse mais ativos que os metóxidos.

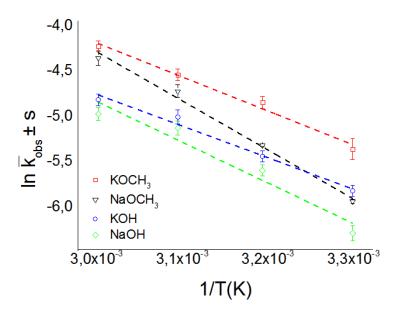

Esta alteração ocorre pelo fato de o k_{obs} da reação catalisada pelos metóxidos ser mais sensível às variações de temperatura do que com os hidróxidos, o que se reflete nas inclinações das curvas obtidas por regressão linear para estes catalisadores, onde: k_{obs} KOCH₃ (ms^{-1}) = 0,328T – 5,23, sendo r = 0,996; k_{obs} NaOCH₃ (ms^{-1}) = 0,349T – 8,35, sendo r = 0,989; k_{obs} KOH (ms^{-1}) = 0,179T – 2,50, sendo r = 0,991; k_{obs} NaOH (ms^{-1}) = 0,175T – 3,26, sendo r = 0,984. Nota-se, nestes casos, que para os metóxidos esta inclinação foi cerca de duas vezes maior do que a dos hidróxidos.

Figura 31. Variação da constante de velocidade observada com a temperatura empregando o NaOCH₃, KOCH₃, NaOH e o KOH como catalisadores.

Entretanto, é possível observar que uma mudança na temperatura da reação promove, aproximadamente, a mesma variação no valor de k_{obs} para os dois cátions em catalisadores análogos, sugerindo que o cátion presente não altera o efeito que a temperatura exerce na velocidade da metanólise. Neste caso, poderia se supor que as alterações observadas na ordem de atividade dos catalisadores nas diferentes temperaturas estão associadas a algum efeito produzido pelo ânion apenas, seja diretamente no mecanismo de reação ou, então, alterando alguma propriedade da mistura reacional. Isto será esclarecido nas discussões que seguem no tópico 4.4, quando será feito uma proposta para o mecanismo da metanólise.

As energias de ativação E_a da reação com os quatro catalisadores foram calculadas a partir da equação de Arrhenius na forma logarítmica (Equação 13), determinadas a partir do coeficiente angular das curvas obtidas por regressão linear dos valores de $ln\ k_{obs}\ versus\ 1/T$ (Figura 32), as quais foram: $lnk_{obs}\ KOCH_3 = -3763.8/T + 7.1\ (r = 0.994); lnk_{obs}\ NaOCH_3 = -5425.0/T + 12.0\ (r = 0.991); lnk_{obs}\ KOH = -3501.3/T + 5.8\ (r = 0.988); lnk_{obs}\ NaOH = -4503.7/T + 8.7\ (r = 0.957).$ Os valores de E_a calculados estão listados na Tabela 11.

Figura 32. Gráfico de *In* $k_{obs} \pm s$ *versus* 1/T, referente a metanólise do óleo de soja com o KOCH₃, NaOCH₃, KOH e NaOH.

Tabela 11. Energia de ativação (E_a) e energia de ativação média \pm estimativa do desvio padrão ($\overline{E}_a \pm s$), em kJ mol⁻¹, necessária para a metanólise dos triglicerídeos.

NaOCH ₃		KOCH ₃		١	NaOH	KOH	
E_a	$\overline{E}_a \pm s$	E_a	$\overline{E}_a \pm s$	E_a	$\overline{E}_a \pm s$	E_a	$\overline{E}_a \pm s$
43,3		32,1		38,6		28,8	
47,6	45,1±2,2	32,6	31,3±1,8	37,3	<i>37,4±1,1</i>	28,8	29,1±0,6
44,4		29,2		36,4		29,8	

Pelos valores encontrados, os catalisadores mais eficientes, em termos de energia de ativação são os que contêm potássio em sua estrutura, mantendo a seguinte ordem decrescente de atividade catalítica: E_a KOH $< E_a$ NaOH $< E_a$ NaOH $< E_a$ NaOCH $_3$. Porém, estatisticamente, a média da energia de ativação do KOH não se apresentou significativamente menor que a média do KOCH $_3$ a um nível de confiança de 95%.

A princípio, o esperado é que a ordem de eficiência dos catalisadores (em termos de E_a) concorde com a ordem prevista pelos valores de constante de

velocidade, ou seja, quanto maior a constante de velocidade da reação, então, menor deverá ser a energia de ativação associada à mesma, pois as reações que ocorrem mais rapidamente são aquelas que requerem menor energia de ativação. Entretanto, conforme relatado anteriormente, a ordem da atividade catalítica prevista pelos valores de k_{obs} não é a mesma em todas as temperaturas. Neste caso, a equação de Arrhenius poderia não se aplicar ao caso em questão. Este comportamento será melhor discutido no tópico a seguir.

4.4. Proposta de um mecanismo para a transesterificação metílica com os catalisadores alcalinos

A solubilização do NaOCH₃ e do KOCH₃ no metanol deve estar associada à interações não dissociativas destas substâncias como o solvente, as quais se apresentariam como um par iônico solúvel pouco dissociado (Figura 33).

$$M^+$$
. OCH_3 \longrightarrow CH_3O^- + M^+ $M = metal alcalino;$ $k_{pi} = constante de dissociação do par iônico.$

Figura 33. Dissociação do metóxido alcalino em metanol.

Os pares iônicos de metóxidos alcalinos em metanol são relatados em diversos trabalhos [DUSEK *et al.*, 1999; MSAYIB e WATT, 1992; LEFFEK e SUSZKA, 1975; SHEEHAN e HENERY-LOGAN 1957; REINHEIMER *et al.*, 1957]. Para o Na⁺⁻OCH₃, por exemplo, o valor da constante de dissociação (k_{pi}) a 25 °C vale 2,6.10⁻² [LEFFEK e SUSZKA, 1975]. Apesar do valor de k_{pi} para o K⁺⁻OCH₃ não ter sido encontrado na literatura, alguns autores relatam a existência desta espécie em metanol, sendo a sua dissociação um pouco maior que a do Na⁺⁻OCH₃ [SHEEHAN e HENERY-LOGAN 1957; REINHEIMER *et al.*, 1957]. Pares iônicos de etóxidos alcalinos também têm sido relatados na literatura, sendo o k_{pi}

(à 25 °C) do $K^{+-}OC_2H_5$ e do $Na^{+-}OC_2H_5$ em etanol, no valor de 1,1.10⁻² e 9,8.10⁻³, respectivamente [MSAYIB e WATT, 1992].

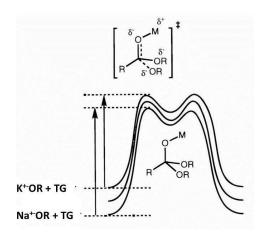
Assim, o mecanismo proposto neste trabalho sugere a participação de pares iônicos de metóxidos alcalinos como catalisadores ao invés de, simplesmente, a atuação dos íons metóxidos, como tem sido relatado. Nesta proposta, tanto os hidróxidos como os metóxidos alcalinos formariam estes pares iônicos em metanol. Neste caso, a formação do par iônico a partir dos hidróxidos alcalinos poderia ser representada pela equação química da Figura 34.

MOH +
$$CH_3OH$$
 \longrightarrow M^+OCH_3 + H_2O M = metal alcalino

Figura 34. Formação de metóxido alcalino a partir da reação do hidróxido com o metanol.

Pelos valores das constantes de velocidade (k_{obs}) apresentados na Tabela 10 e pelo gráfico da Figura 31, pode-se observar que nas temperaturas acima de 35 °C estes valores obedecem a ordem k_{obs} KOCH₃ > k_{obs} NaOCH₃ > k_{obs} NaOH, enquanto que nas temperaturas menores que 35 °C esta ordem é modificada até que, à temperaturas bem abaixo de 35 °C (por extrapolação), ela passaria a ser: k_{obs} KOH > k_{obs} NaOH > k_{obs} KOCH₃ > k_{obs} NaOCH₃.

O fato de o potássio sempre estar promovendo conversões mais rápidas do que o sódio nos catalisadores análogos pode ser compreendido pela teoria formulada por Eisenman, que também foi empregada por Stanton e colaboradores para justificar o mesmo comportamento quando t-butóxido alcalinos foram utilizados como catalisadores nas reações de interconversão de ésteres [STANTON *et al.*,1998]. Esta teoria descreve a diferença de energia livre envolvida na interação entre dois cátions diferentes com mesmo ânion em solução, a qual é descrita como uma ação combinada de efeitos eletrostáticos e de solvatação.


Assim, a diferença da energia de interação entre o sódio e o potássio com o metóxido ($\Delta G_{Na+/K+}$), bem como a diferença entre o sódio e o potássio com o ânion formado no complexo ativado ($\Delta G_{Na+/K+}^{\neq}$) seria dada, respectivamente, por:

$$\Delta G_{Na^{+}/K^{+}} = \frac{e^{2}}{(r_{CH_{2}O^{-}} + r_{K^{+}})} - \frac{e^{2}}{(r_{CH_{2}O^{-}} + r_{Na^{+}})} - (\Delta G_{K^{+}}^{S} - \Delta G_{Na^{+}}^{S})$$
 (Equação 26)

$$\Delta G_{Na^{+}/K^{+}}^{\neq} = \frac{e^{2}}{(r_{complex\bar{o}} + r_{K^{+}})} - \frac{e^{2}}{(r_{complex\bar{o}} + r_{Na^{+}})} - (\Delta G_{K^{+}}^{S} - \Delta G_{Na^{+}}^{S})$$
 (Equação 27)

onde: e corresponde à carga eletrônica, $r_{\text{CH}_3\text{O}}$ o raio aniônico do metóxido, r_{complexo} o raio aniônico do complexo ativado, r_{K_+} e r_{Na_+} são os raios do potássio e sódio, respectivamente, e $\Delta G^S_{K_+}$ e $\Delta G^S_{Na_+}$ são as energias de solvatação do potássio e do sódio.

A carga concentrada no metóxido maximiza a diferença de energia de interação entre os cátions maiores e menores com este ânion e leva a uma forte estabilização dos metóxidos metálicos contendo metais menores (Figura 35). Por outro lado, a carga negativa no estado de transição, para a adição do metóxido ao éster, será distribuída entre três átomos de oxigênio e resultará em um ânion maior quando comparado aos metóxidos no estado fundamental, resultando em uma diminuição da diferença de energia entre os cátions maiores e menores (Figura 35). Assim, o valor de $\Delta G_{Na+/K+}$ fica maior que o valor de $\Delta G_{Na+/K+}^{*}$. O resultado destes efeitos será uma menor energia de ativação para a formação do intermediário tetraédrico quando a reação for realizada na presença do potássio. Portanto, ficaria explicado o fato de a reação ocorrer mais rapidamente (maior k_{obs}) com o potássio do que com o sódio.

Figura 35. Esquema das diferenças de energia entre os reagentes na transesterificação dos triglicerídeos quando no estado fundamental e no complexo ativado. [Adaptado: STANTON *et al.*, 1998]

O fato de as reações promovidas pelos hidróxidos ocorrerem mais lentamente do que com os metóxidos análogos nas temperaturas acima de 35 °C provavelmente está associado à presença de água na mistura reacional. Esta influência pode ser explicada pelas discussões a seguir.

A água pode tanto solvatar os metais alcalinos como reagir com o íon metóxido (produzindo metanol e hidróxido) reduzindo a concentração do par iônico pelo deslocamento do equilíbrio de dissociação, representado na Figura 33, para a direita. Consequentemente, menos catalisador estará disponível para a reação. De acordo com a proposta deste trabalho, onde a transesterificação segue uma cinética global de ordem zero, o catalisador deverá reagir com o triglicerídeo na superfície da gotícula de metanol. Uma diminuição na concentração de catalisador, pelo efeito da água, poderia acarretar uma redução na velocidade da reação, uma vez que haveria uma menor quantidade de sítios de reação na superfície da gotícula. Portanto, o valor de k_{obs} será menor.

Cabe ressaltar que a presença do catalisador na superfície da gotícula de metanol deve ser favorecida pelo fato dele se apresentar como um par iônico solúvel, quando o mesmo deverá apresentar uma baixa interação com as moléculas do solvente, migrando para a superfície. O mesmo não seria esperado

caso ele se apresentasse como um íon metóxido dissociado. Neste ponto de vista, seria coerente imaginar a ocorrência da alcoólise na superfície da gotícula de metanol com o catalisador na forma de um par iônico.

Outro ponto a ser esclarecido é o fato de os hidróxidos alcalinos apresentarem a tendência de promoverem conversões mais rápidas do que os metóxidos à baixas temperaturas. Uma extrapolação das curvas de k_{obs} versus T (Figura 31) para temperaturas bem abaixo de 35 °C levaria à seguinte ordem de eficiência dos catalisadores: k_{obs} KOH > k_{obs} NaOH > k_{obs} KOCH₃ > k_{obs} NaOCH₃. Este comportamento poderia estar associado à presença dos sabões formados quando os hidróxidos são utilizados, os quais funcionariam como agentes emulsificantes, e será esclarescido nas discussões a seguir.

A velocidade da transesterificação dos triglicerídeos pode ser afetada, basicamente, de duas maneiras: pela mudança na temperatura da reação e pela presença de emulsificantes. A influência da temperatura se dá não apenas por causa da energia que é fornecida para os reagentes alcançarem a estrutura do complexo ativado, mas também por afetar a difusão destas moléculas. Na mistura reacional em estudo, a difusão constitui um fator importante pois os reagentes são imisciveis e a viscosidade do óleo é bastante influenciada pela temperatura. Portanto, um aumento na temperatura promove o aumento no valor de k_{obs} tanto por fornecer mais energia para os reagentes chegarem ao complexo ativado como pela melhoria na difusão da mistura. Quanto aos agentes emulsificantes, eles somente irão influenciar na difusão.

Assim, a menor quantidade de sabões na mistura reacional quando os metóxidos são utilizados tornaria a transesterificação dos triglicerídeos bastante sensível à temperatura. Por outro lado, quando os hidróxidos são empregados mais sabões são formados, o que permitiria uma maior difusão dos reagentes. Neste caso, a velocidade da reação seria menos sensível à temperatura. Assim, as curvas de k_{obs} versus T obtidas para os metóxidos alcalinos apresentariam maior inclinação que as dos hidróxidos análogos, o que está de acordo com o que se pode observar na Figura 31. Consequentemente, isto acabaria refletindo no tempo necessário para a conversão, ou seja, as reações promovidas pelos

metóxidos tenderiam a ser mais demoradas do que com os hidróxidos à baixas temperaturas, conforme observado na Figura 24.

Portanto, a presença dos sabões na mistura reacional amenizaria a grande perda difusional ocorrida à baixas temperaturas de tal forma que, apesar da ação da água nestas temperaturas, as conversões catalisadas pelos hidróxidos se tornariam mais rápidas do que as promovidas pelos metóxidos.

Quanto aos valores de energia de ativação listados na Tabela 11, obtidos pelo gráfico de Arrhenius (Figura 32), eles foram desconsiderados na proposta deste mecanismo. Isto porque a difusão dos reagentes pode ser bastante alterada em cada uma das temperaturas empregadas na construção do gráfico. Como as mudanças na difusão afetam a velocidade e, portanto, no valor de k_{obs} , a variação de lnk_{obs} com o 1/T não ocorre exclusivamente como uma consequência do aumento do fator expoencial da equação de Arrhenius. Dessa forma, sugere-se que, na metanólise dos triglicerídeos, não seria adequado a utilização da energia de ativação obtida pela equação de Arrhenius para a investigação do mecanismo destas reações.

5. CONCLUSÕES

O monitoramento *online* baseado nas variações dos índices de refração da mistura reacional de biodiesel se apresentou como um método satisfatório para o acompanhamento da transesterificação metílica do óleo de soja empregando catalisadores alcalinos, uma vez que ele permitiu, de forma simples, a aquisição rápida de dados que puderam ser interpretados levando ao conhecimento do mecanismo da reação.

Além disso, o volume considerável de medidas que puderam ser realizadas no curto intervalo de tempo em que ocorre a reação, o que é um requisito de grande importância para a realização do estudo cinético de qualquer reação, permitiu o monitoramento e caraterização das etapas de mistura dos reagentes e metanólise.

Destas duas etapas, a que envolve a mistura dos reagentes é a que demanda mais tempo no processo, sendo que o mesmo pode ser reduzido dependendo do catalisador empregado.

A metanólise do óleo de soja apresentou um comportamento de cinética de ordem zero nas temperaturas de 30 à 60 °C frente aos quatro catalisadores alcalinos estudados. Provavelmente, este comportamento está associado ao fato da reação ocorrer na interface metanol/óleo, cuja área seria aproximadamente constante.

O modelo cinético proposto foi construído sob a premissa de a conversão do triglicerídeo à diglicerídeo ser a reação lenta do processo de transesterificação, portanto, determinante da sua velocidade, sendo a constante de velocidade observada (k_{obs}) para esta reação dependente da concentração do catalisador, o qual deve se apresentar na forma de um par iônico solúvel do metóxido alcalino.

De acordo com os valores de k_{obs} obtidos, supõe-se que três fatores internos poderiam influenciar na velocidade da reação: o cátion metálico associado ao catalisador, a água, e os sabões.

Neste caso, os catalisadores contendo potássio promovem conversões mais rápidas do que os seus análogos de sódio. Este comportamento parece estar

associado a uma menor interação eletrostática do potássio com o metóxido em comparação a interação do sódio com metóxido. Esta diferença na interação deve possibilitar uma menor energia de ativação para a transesterificação catalisada com o par iônico de metóxido potássio.

Apesar de não ter sido realizado um estudo sistemático para se determinar de forma conclusiva qual a participação da água e dos sabões na metanólise, sugere-se que a água atuaria como um inibidor desta reação enquanto que os sabões provocariam um aumento da velocidade da mesma.

Neste caso, nas temperaturas acima de 35 °C as reações promovidas pelos hidróxidos alcalinos são mais lentas do que com os metóxidos, provavelmente porque a água formada quando os hidróxidos são empregados deve diminuir a concentração do catalisador na mistura reacional. Entretanto, abaixo dos 35 °C os hidróxidos apresentam uma tendência de promoverem reações mais rápidas do que os metóxidos, o que poderia ser devido a presença de sabões no sistema, que favorecem a difusão dos reagentes a baixas temperaturas, superando o efeito negativo da água na diminuição da velocidade.

6. REFERÊNCIAS BIBLIOGRÁFICAS

ALPTEKIN, E. e CANAKCI M.. Optimization of transesterification for methyl ester production from chicken fat. **Fuel**, v.90, p.2630–2638. 2011.

ANDERSON, L. A. e FRANZ, A. K.. Real-time monitoring of transesterification by ¹H NMR spectroscopy: catalyst comparison and improved calculation for biodiesel conversion. **Energy Fuels**, v.26, p.6404–6410. 2012.

ANWAR, F.; RASHID, U.; ASHRAF, M.; NADEEN, M.. Okra (Hibiscus esculentus) seed oil for biodiesel production. **App. Energy**, v.87, p.779–785. 2010.

ARZAMENDI G.; ARGUIÑARENA, E.; CAMPO, I.; ZABALA, S.; GANDÍA, L. M.. Alkaline and alcaline-earth metals compounds as catalysts for the methanolysis of sunflower oil. **Catal. Today**, v.133, p.305-313. 2008.

ATKINS, P e PAULA, J.. **Atkins:** físico-química. 7ª ed. Rio de Janeiro: Livros Técnicos e Científicos, 2004. 279 p. (v.3).

BALL, D. W.. **Físico-Química**. São Paulo: Pioneira Thompon Learning, 2005. 877 p. (v.2).

BAMBASE, M.; NAKAMURA, Jr. N.; TANAKA, J.; MATSUMURA, M.. Kinetics of hydroxide-catalyzed methanolysis of crude sunflower oil for the production of fuel-grade methyl esters. **J. Chem. Tech. Biotech.**, v.82, p.273-280. 2007.

BASTOS, A. C. L. M.; RODRIGUES, E. M. S.; SOUZA, J. P. I.. **Físico-Química**. Belém: UFPA, 2011. 302p.

DABDOUB, M. BRONZEL, J. L.; RAMPIN, M. A. Biodiesel: Visão crítica do status atual e perspectivas na academia e na indústria. **Quim. Nova**, v.32, n.3, p.776-792. 2009.

DARNOKO, D. e CHERYAN, M.. Kinetics of palm oil transesterification in a batch reactor. **J. Am. Oil Chem. Soc.**, v.77, p.1262-1267. 2000.

DEMIRBAS, A.. Comparison of transesterification methods for production of biodiesel form vegetable oils and fats. **Energ. Convers. Manag.**, v.49, p.125-130. 2008.

DIAS, J. M.; ALVIM-FERRAZ, M. C. M.; ALMEIDA, M. F.. Comparasion of the performace of different homogeneous alkali catalysts during transesterification of waste and virgin oil and evaluation of biodiesel quality. **Fuel**, v.87, p.3572-3578. 2008.

- DUBE M. A.; TREMBLAY, A. Y.; LIU, J. Biodiesel production using a membrane reactor. **Biores. Techn.**, v.98, n.3, p.639-647. 2007.
- DUSEK, L.; KAVÁLEK, J.; STERBA, v.. Kinetics and mechanism of the reaction of substituted O-benzoylbenzamidoximes with sodium methoxide in methanol. **J. Phys. Org. Chem.**, v.**12**, p.626–634. 1999.
- EEVERA, T.; RAJENDRAN, K.; SARADHA, S.. Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. **Ren. Energy**, v.34, p.762–765. 2009.
- ELLIS, N.; GUAN, F.; CHEN, T.; POON, C.. Monitoring biodiesel production (transesterification) using *in situ* viscometer. **Chem. Eng. J.**, v.138, p.200-2006. 2008.
- ENCINAR, J. M.; GONZÁLEZ, J. F.; REINARES, A. R.. Biodiesel from used frying oil. Variables affecting the yields and characteristics of the biodiesel. **Ind. Eng. Chem. Res.**, v.44, n.15, p.5491-5499. 2005.
- FARIA, E. A.; RAMALHO, H. F.; MARQUES, J. S.. Tetramethylguanidine covalently bonded onto silica gel surface as an efficient and reusable catalyst for transesterification of vegetable oil. **App. Catal. A: Gen.**, v.338, p.72–78. 2008.
- FELIZARDO, P. *et al.*. Production of biodiesel from waste fryung oils. **Waste Manag.**, v.26, p.478-494. 2006.
- FERREIRA, D. A.; MENEGHETTI, M. R.; MENEGHETTI, M. P. S.; WOLF, C. R.. Methanolysis of soybean oil in the presence of tin(IV) complexes. **App. Catal. A: Gen.**, v.317, n.1, p-58-61. 2007.
- FILIPPIS P. D.; GIAVARINI, C.; SCARSELLA, M; SORRENTINO, M.. Transesterification processes for vegetable oils: a simple control method of methyl ester content. **J. Am. Oil Chem. Soc.**, v.72, n.11, p.1399-1404. 1995.
- FREEDMAN, B.; KWOLEK, W. F.; PRYDE, E. H.. Quantitation in the analysis of transesterified soybean oil by capillary gas chromatography. **J. Am. Oil Chem. Soc.**, v.63, n.10, p.1370-1375. 1986a.
- FREEDMAN, B.; BUTTERFIELD, R. O.; PRYDE, E. H.. Transesterification Kinetics of soybean oil. **J. Am. Oil Chem. Soc.**, v.63, n.10, p.1370-1375. 1986b.
- FROEHNER, S.; LEITHOLD, J.; LIMA Jr, L. F.. Transesterificação de óleos vegetais: caracterização por cromatografia em camada delgada e densidade. **Quim. Nova**, v.30, p.2016-2019. 2007.
- GELBARD, G.; BRES, O. VARGAS, R. M.; VIELFAURE, F.;SCHUCHARDT, U. F.. H-1 nuclear-magnetic-resonance determination of the yield of the

- transesterification of rapeseed oil with metanol. **J. Am. Oil Chem Soc.**, v.72, p.1239. 1995.
- GHANEI, R.; MORADI, G. R.; TAHERPOURKALANTARI, R.; ARJMANDZADEH, E.. Variation of physical properties during transesterification of sunflower oil to biodiesel as an approach to predict reaction progress. **Fuel Proces. Techn.**, v.92, p.1593-1598. 2011.
- GHESTI, G. F.; DE MACEDO, J. L; BRAGA, V. S.; DE SOUZA, A. T. C. P.; PARENTE, V. C. I.; FIGUERÊDO, E. S.; RESCK, I. S.; DIAS, J. A.; DIAS, S. C. L.. Application of Raman Spectroscopy to Monitor and Quantify Ethyl Esters in Soybean Oil Transesterification. **J. Am. Oil Chem. Soc.**, v.83, p.597-601. 2006.
- GUERREIRO L.; CASTANHEIRO, J. E.; FONSECA, I. M.; MARTIN-ARANDA, R. M.; RAMOS, A. M.; VITAL, J.. Transesterification of soybean oil over sulfonic acid functionalised polymeric membranes. **Catal. Today.**, v.118, n.1-2, p. 166-171. 2006.
- HAAS, M. J.; MCALOON, A. J.; YEE, W. C.; FOGLIA, T. A.. A process model to estimate biodiesel production costs. **Biores. Techn.**, v.97, p.671-678. 2006.
- HE, K.; XU, Y.; TENG, Y.; WANG, D.. Biodiesel production catalyzed by wholw-cell lipase from *Rhizopus chinensis*. **Chin. J. Catal.**, v.29, n.1, p.41-46. 2008.
- ISLAM, M. S. e BUNDY, C.. Kinetics of rapeseed oil methanolysis in presence of KOH catalyst studied with with gas chromatography. **Int. J. Sc. Techn.**, v.2, p.762-768. 2012.
- ISSARIYAKUL, J. S. e DALAI, A. K.. Comparative kinetics of transesterification for biodiesel production from palm oil and mustard oil. **Can. J. Chem. Eng.**, v.90, p.342-350. 2012.
- JAIN, S. e SHARMA, M. P.. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil. **Biores. Techn.**, v.101, p.7701-7706. 2010.
- JANSRI, S.; RATANAWILAI, S. B.; ALLEN, M. L.; PRATEEPCHAIKUL, G.. Kinetics of methyl ester production from mixed crude palm oil by using acid-alkali catalyst. **Fuel Proces. Techn.**, v.92, p.1543-1548. 2011.
- JEGANNATHAN, K. R. *et al.*. Economic assessment of biodiesel production: comparison of alkali and biocatalyst process. **Ren. Sust. Energu Rev.**, v.15, p.745-751. 2011.
- KEERA, S. T.; EL SABAGH, S. M.; TAMAN, A. R.. Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst. **Fuel**, v.90, p.42–47. 2011.

- KNOTHE, G.; KRAHL, J.; GERPEN J. V.; RAMOS, L. P.. Manual de Biodiesel, São Paulo: Edgard Blucher, 2006a.
- KNOTHE, G.. Analyzing biodiesel: standards and other methods. **J. Am. Oil. Chem. Soc.**, v.83, n.10. 2006b.
- KNOTHE, G.. Analytical methods used in the production and fuel quality assessment of biodiesel. **Am. Soc. Agric. Eng.**, v.44, n.21, p.193-200. 2001.
- KNOTHE, G.. Rapid monitoring of transesterification and assessing biodiesel fuel quality by near-infrared spectroscopy using a fiber-optic probe. **J. Am. Oil. Chem. Soc.**, v.76, n.7, p.795. 1999.
- KOUZU, M.; YAMANAKA, S.; HIDAKA, J.; TSUNOMORI, M.. Heterogeneous catalysis of calcium oxide used for transesterification of soybean oil with refluxing methanol. **App. Catal. A: Gen.**, v.355, p.94-99. 2009.
- KOUZU, M.; KASUNO, T.; TAJIKA, M.; SUGIMOTO, Y.; YAMANAKA, S.; HIDAKA, J.. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. **Fuel**, v.87, p.2798-2806. 2008.
- LEFFEK, K e SUSZKA A.. Reaction of 4,4'- Bis(dimethy1amino)triphenylmethyl Tetrafluoroborate with Alkoxide Ions. I. Determination of Ion-pair Dissociation Constant for Sodium Alkoxides. **Can. J. Chem.**, v.53, n.11, p.1537-1541. 1975.
- LEUNG, D. Y. C. e GUO, Y.. Transesterification of neat and used frying oil: optimization for biodiesel production. **Fuel Proces. Techn.**, v.87, p.883–890. 2006.
- LIANG, X.; GONG, G.; WU, H.; YANG, J.. Highly efficient procedure for the synthesis of biodiesel from soybean oil using chloroaluminate ionic liquid as catalyst. **Fuel**. v.88, p.13–616. 2009.
- LIU, X.; HE, H.; WANG, Y.; ZHU, S.. Transesterification of soybeam oil to biodiesel using SrO as a solid base catalyst. **Catal. Comm.**, v.8, n.7, p.1107-1111. 2007.
- LÓPEZ, D. E.; GOODWIN Jr., J. G.; BRUCE, D. A.. Transesterification of triacetin with methanol on Nafion® acid resins. **J. Catal.**, v.245, p.381–391. 2007.
- LU, J.; DENG, L.; ZHAO, R.; WANG, F.; TAN, T.. Pretreatment of immobilized Candida sp. 99-125 lipase to improve its methanol tolerance for biodiesel production. **J. Mol. Catal B: Enzym.**, v.62, p.15-18. 2010.
- LV, P.; WANG, X.; YUAN, Z.; TAN, T. Conversion of soybean oil to biodiesel fuel with immobilized Candida lipase on textile cloth. **Energ. Source: Part A**, v.30, p.872-879. 2008.

- MA, F.; CLEMENTS, L. D.; HANNA, M. A.. The effects of catalyst, free fatty acids, and water on transesterification of beef tallow. **Am. Soc. Agric. Eng.**, v.41, p.1261-1264. 1998.
- MEHER, L. C.; SAGAR, D. V.; NAIK, S. N.. Technical aspects of biodiesel production by transesterification a review. **Renew. Sust. Energ. Ver.**, v.10, p.248-268. 2006.
- MIAO, X.; LI, R.; YAO, H.. Effective acid-catalyzed transesterification for biodiesel production. **Energy Conver. Manag.**, v.50, p.2680-2684. 2009.
- MONTEIRO, M. R.; AMBROZINA, A. R. P.; LIÃO, L. M.; FERREIRA, A. G.. Critical review on analytical methods for biodiesel characterization. **Talanta**, v.77, p.593-605. 2008.
- MSAYIB, K. J. e WATT, C. I. F.. Ion Pairing and Reactivity of Alkali Metal Alkoxides. **Chem. Soc. Rev.**, v.21, n.4, p.237-243. 1992.
- NARANJO, J. C.; CÓRDOBA, A.; GIRALDO, L.; GARCIA, V. S.; MORENO-PIRAJÁN, J. C. M.. Lipase supported on granular activated carbon and activated carbon cloth as a catalyst in the synthesis of biodiesel fuel. **J. Mol. Catal. B: Enzym.**, v.66, n.1-2, p.166-171. 2010.
- NARVÁEZ, P. C.; RINCÓN, S. M.; SÁNCHEZ,F. J.. Kinetics of palm oil methanolysis. **J. Am. Oil Chem. Soc.**, v.84, p.971-977. 2007.
- NETO, P.R.C.; CARO, M. S. B.; MAZZUCO, L. M.; NASCIMENTO, M. D. G. A.. Quantification of soybean oil chemists society. **J. Am. Oil Chem. Soc.**, v.81, n.12, p.1111–1114. 2004.
- NOUREDDINI, H. e ZHU, D.. Kinetics of transesterification of soybean oil. **J. Am. Oil Chem. Soc.**, v.74, p.1457-1463. 1997.
- OHLWEILER, O. A.. Fundamentos de análise instrumental. Rio de Janeiro: Livros Técnicos e Científicos, 1981. 486 p.
- PREDOJEVIC, Z. J. & ŠKRBIĆ, B. D.. Alkali-catalyzed production of biodiesel from frying oils. **J. Serb. Chem. Soc.**, v.74, n.8-9, p.993-1007. 2009.
- RAMOS, M. J.; CASAS, A.; RODRÍGUEZ, L.; ROMERO, R.; PÉREZ, A.. Transesterification of sunflower oil over zeolites using different metal loading: A case of leaching and agglomeration studies. **Appl. Catal. A Gen.**, v.346, n.1-2., p.79-85. 2008.
- RASHID, U.; ANWAR, F.; KNOTHE, G.. Evaluation of biodiesel obtained from cottonseed oil. **Fuel Proces. Techn.**, v.90, p.1157–1163. 2009.

- RASHID, U. e ANWAR, F.. Production of biodiesel through base-catalyzed transesterification of safflower oil using an optimized protocol. **Energy & Fuels**, v.22, p.1306–1312. 2008.
- REDDY S. R.; TITU, D.; CHADHA, A.. A novel method for monitoring the transesterification reaction of oil in biodiesel production by estimation of glycerol. **J. Am. Oil Chem. Soc.**, v.87, p.747–754. 2010.
- REINHEIMER, J. D.; KIEFFER, W. F.; FREY, S. W.; COCHRAN, J. C.; BARR, E. D,. The salt effect in the aromatic nucleophilic substitution reaction. **J. Am. Chem. Soc.**, v.80, n.1, p.164–168. 1958.
- RIBEIRO, R. A. S.. **Refratômetro por ondas evanescentes em guias de ondas planares**. 2010. 126 f. Dissertação (Doutorado em Física Aplicada) Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo.
- RICHARD, R.; THIEBAUD-ROUX, S.; PRAT, L. Modelling the kinetics of transesterification reaction of sunflower oil with ethanol in microreactors. **Chem. Eng. Sc.**, v.87. p.258-269, 2013.
- RICHARD, R.; LI, Y. DUBREUIL, B.; THIEBAUD-ROUX, S.; PRAT, L.. On line monitoring of the transesterification reaction between triglicerides and ethanol using near infrared spectroscopy combined with gas chromatography. **Biores. Techn.**, v.102, p.6702-6709. 2011.
- ROYON, D.; DAZ, M.; ELLENRIEDER, G.; LOCATELLI, S.. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. **Biores. Technol.**, v.98, p.648-653. 2007.
- SAMIOS, D.; PEDROTTI, F.; NICOLAU, A.; REIZNAUTT, Q. B.; MARTINI, D. D.; DALCIN, F. M.. A transesterification Double step process TDSP for biodiesel preparation from fatty acids triglycerides. **Fuel Process. Techn.**, v.90, n.4, p.599-605. 2009.
- SANTOS, R. C. R.; VIEIRA, R. B.; VALENTINI, A.. Monitoring the conversion of soybean oil to methyl or ethyl esters using the refractive index with correlation gas chromatography. **Microchem. J.**. 2012. doi:10.1016/j.microc.2012.05.001.
- SAKAI, T.; KAWASHIMA, A.; KOSHIKAWA, T.. Economic assessment of batch biodiesel production process using homogeneous and heterogeneous alkali catalysts. **Biores, Techn.**, v.100, p.3268-3276. 2009.
- SCHUCHARDT, U.; SERCHELI, R.; VARGAS, R. M.. Transesterification of vegetable oils: a review. **J. Braz. Chem. Soc.**, v.9, n.1, p.199-210. 1998.
- SHAHBAZI, M. R.; KHOSHANDAM, B.; NASIRI, M.; GHAZVINI.. Biodiesel production via alkali-catalyzed transesterification of Malaysian RBD palm oil –

- characterization, kinetics model. **J. Taiwan Inst. Chem. Eng.**, v.43, n.4, p.504–510. 2012.
- SHAHID, E. M. e JAMAL, Y.. Production of biodiesel: A technical review. **Ren. Sust. Energy Rev.**, v.15, p.4732–4745. 2011.
- SHARMA Y. C. e SINGH, B.. Development of biodiesel from karanja, a tree found in rural India. **Fuel**, v.87, p.1749-1742. 2006
- SHEEHAN, J. C. e HENERY-LOGAN, K.. The salt effect in the aromatic nucleophilic substituition reaction. Massachusett Institut of Technology. **J. Am. Chem. Soc.**, v.79, n.5, p.1262–1263. 1957.
- SHIBASAKI-KITAKAWA, N.; HONDA, H.; KURIBAYASHI, H.; TODA, T.; FUKUMURA, T.; YONEMOTO, T.. Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst. **Biores. Techn.**, v.98, n.2, p.416-421. 2007.
- SIM, J. H.; KAMARUDDIN, A. H.; BHATIA, S.. Biodiesel (FAME) productivity, catalytic efficiency and thermal stability of lipozyme TL IM for crude palm oil transesterification with methanol. **J. Am. Oil Chem. Soc.**, v.87, p.1027-1034. 2010.
- SINGH, A; HE, B.; THOMPSON, J.; VAN GERPEN J.. Process optimization of biodiesel production using alkaline catalysts. **Am. Soc. Agric. Biol. Engin.**. v.22, n.4, p.597-600. 2006.
- SIVASAMY, A.; CHEAH, K. Y.; FORNASIERO, P.; KEMAUSUOR, F.; ZINOVIEV, S.; MIERTUS, S.. Catalytic applications in the production of biodiesel from vegetable oils. **ChemSusChem**, v.2, p.278-300. 2009.
- SOUZA, L. D.; BARROS NETO, E. L.; NUNES, A. O.; SANTOS, A. G. D.. Caracterização padronizada de óleos, diesel e biodiesel produzidos ou consumidos no RN. In: I CONGRESSO NORTE-NORDESTE DE QUÍMICA, 2007, Natal-UFRN.
- SREEPRASANTH, P. S.; SRIVASTAVA, R.; SRINIVAS, D.; RATNASAMY, P., Hydrophobic, solid acid catalysts for production of biofuels and lubricants. **App. Catal. A: Gen.**, v.314, p.148-159. 2006.
- STANTON, M.G.; ALLEN, C. B.; KISSLING, R. M.; LINCOLN. A. L.; GAGNÉ, M. R.. New catalysts for the ester- interchange reaction: the role of alkali-metal alkoxide clusters in achieving unprecedented reaction rates. **J. Am. Chem. Soc.**, v.120, p.5981. 1998.

- STANTON, M.G & GAGNÉ, M. R.. The remarkable catalytic activity of alkali-metal alkoxide clusters in the ester interchange reaction. **J. Am. Chem. Soc.**, v. 119, p.5075. 1997.
- TAMALAMPUDI, S.; TALUKDER M. R.; HAMA, S.; NUMATA, T.; KONDO, A.; FUKUDA, H.. Enzymatic production of biodiesel from Jatropha oil: A comparative study of immobolized-wole cell and commercial lipases as a biocatalyst. **Biochem. Eng. J.**, v.39, n.1, p.185-189. 2008.
- TAMALAMPUDI, S.; TALUKDER, M. R.; HAMA, S.; TANINO, T.; SUZUKI, Y.; KONDO, A.; FUKUDA, H.. Development of recombinant *Aspergillus oryzae* wholle-cell biocatalyst expressing lipase-encoding gene from *Candida Antarctica*. **App. Microbiol. Biotechn.**, v.75, p.387-395. 2007.
- TAN, T.; LU, J.; NIE, K.; DENG, L.; WANG, F.. Biodiesel production with immobilized lipase: A review. **Biotechn. Adv.**, v. 28, p.628–634. 2010.
- TRATHNIGG, B. & MITTELBACH, M. Analysis of triglyceride methanolysis mixtures using isocratic HPLC with density detection. **J. Liq. Chrom.**, v.13, n.1, p.95-105. 1990.
- TREVISAN, M. G.; GARCIA, C. M.; SCHUCHARDT, U.; POPPI, R. J.. Envolving factor analysis-based method for correcting monitoring delay in different batcha runs for use with PLS: on-line monitoring of a transesterification reaction by ATR-FTIR. **Talanta**, v.74, p.971-976. 2008.
- TOMASEVIC, A. V. e SILER-MARINKOVIC, S. S.. Methanolysis of used frying oil. **Fuel Proces. Techn.**, v.81, p.1 6. 2003.
- TYAGI, O. S.; ATRAY. N.; KUMAR. B.; DATTA, A.. Production, characterization and development of standards for biodiesel a review. **J. Metrol. Soc. Ind.**, v.25, n.3, p.197-218. 2010.
- VICENTE, G.; MARTÍNEZ, M.; ARACIL, J.; ESTEBAN, A.. Kinetics of sunflower oil methanolysis. **Ind, Eng. Chem. Res.**, v.44, p.5447-5454. 2005.
- VICENTE, G.; MARTÍNEZ, M.; ARACIL, J.. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. **Biores. Techn.**, v.92, p.297-305. 2004.
- WENZEL, B.; TAIT, M.; MÓDENES, A.; KROUMOV, A.. Modelling chemical kinetics of soybean oil transesterification processefor biodiesel production: an analysis of molar ratio between alcohol and soybean oil temperature changes on the process conversion rate. **Bioautomation**, v.5, p.13-22. 2006.

- XIE, W. E MA, N.. Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. **Biomass and Bioenergy**, v.34, n.6, p.890-896. 2010.
- XIE, W.; HUANG, X.; LI, H.. Soybean oil methyl preparation using NaX loaded with KOH as a heterogeneous catalyst. **Biores. Techn.**, v. 98, p.936-939. 2007.
- XIE, W. e LI, H.. Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. **J. Mol. Catal. A: Chem.**, v.255, n.1-2, p. 1-9. 2006a.
- XIE, W. e LI, H.. Hydroxyl content and refractive index determinations n transesterified soybean oil. **J. Am. Oil Chem. Soc.**, v.83, n.10, p.869-872, 2006b.
- XIE, W.; PENG, H.; CHEN, L.. Transesterification of soybean oil catalyzed by potassium loaded on alumina as o solid-base. **App. Catal. A: Gen.**, v.300, n.1, p.67-74. 2006.
- YAN, S.; DIMAGGIO, C.; MOHAN, S.; KIM, M.; SALLEY, S. O.; K. Y.; SIMON, K. Y.. Advancements in heterogeneous catalysis for biodiesel synthesis. **Top. Catal.**, v.53, p.721-736. 2010.
- YAN, S.; LU, H.; LIANG, B.. Supported CaO catalysts used in the transesterification of rapeseed oil for the purpose of biodiesel production. **Energ. Fuel**, v.22, p.646-651. 2008.
- YANG, F. X.; QUANSU, Y.; LI, X. H.; ZHANG, Q.; SUN, R. C.. Studies on the preparation of biodiesel from *Zanthoxylum bungeanum* maxim seed oil. **Agricult. Food Chem.**, v.56, p.7891-7896. 2008.

ANEXO I

ÍNDICES DE REFRAÇÃO OBTIDOS NO MONITORAMENTO DA SÍNTESE DO BIODIESEL

ANEXO I: Índices de refração obtidos no monitoramento da síntese do biodiesel.

1. Catalisador e temperatura: NaOCH₃ à 60°C.

Répli	ica 01	Répl	ica 02	Répl	ica 03
t/min	n	t/min	n	t/min	n
0,3	1,4717	0,3	1,4718	0,3	1,4718
0,5	1,4716	0,4	1,4718	0,4	1,4715
0,6	1,4715	0,6	1,4714	0,5	1,4707
0,7	1,4711	0,7	1,4711	0,7	1,4693
0,8	1,4701	0,8	1,4707	0,8	1,4681
0,9	1,4697	0,9	1,4705	0,9	1,4678
1,0	1,4695	1,0	1,4702	1,0	1,4676
1,1	1,4690	1,1	1,4699	1,1	1,4673
1,2	1,4683	1,2	1,4696	1,2	1,4668
1,4	1,4679	1,3	1,4691	1,3	1,4661
1,5	1,4671	1,4	1,4687	1,4	1,4657
1,6	1,4664	1,6	1,4681	1,5	1,4652
1,7	1,4666	1,7	1,4680	1,6	1,4647
1,9	1,4658	1,8	1,4675	1,7	1,4643
2,0	1,4656	2,0	1,4668	1,8	1,4640
2,3	1,4646	2,2	1,4661	2,0	1,4635
2,5	1,4645	2,3	1,4656	2,2	1,4631
2,7	1,4641	2,5	1,4650	2,3	1,4629
2,8	1,4636	2,7	1,4645	2,5	1,4627
3,0	1,4636	2,8	1,4641	2,7	1,4624
3,2	1,4630	3,0	1,4636	2,8	1,4622
3,3	1,4631	3,2	1,4635	3,0	1,4619
3,5	1,4627	3,3	1,4635	3,2	1,4617
3,7	1,4624	3,5	1,4626	3,3	1,4617
3,8	1,4619	3,7	1,4622	3,4	1,4616
4,0	1,4621	3,8	1,4623	3,6	1,4613
4,2	1,4616	4,0	1,4617	3,7	1,4603
4,3	1,4613	4,2	1,4616	3,8	1,4600
4,5	1,4611	4,3	1,4614	3,9	1,4596
4,7	1,4606	4,5	1,4612	4,1	1,4593
4,8	1,4606	4,7	1,4610	4,2	1,4584
5,0	1,4605	4,8	1,4610	4,3	1,4575
5,2	1,4604	5,0	1,4614	4,4	1,4565
5,3	1,4597	5,1	1,4609	4,5	1,4559
5,4	1,4593	5,3	1,4606	4,8	1,4532
5,6	1,4588	5,4	1,4606	4,9	1,4517
5,7	1,4579	5,6	1,4600	5,0	1,4506
5,8	1,4574	5,7	1,4591	5,2	1,4499
6,0	1,4561	5,9 6.0	1,4580 1,4572	5,3 5.5	1,4494 1,4482
6,1	1,4548	6,0 6.1		5,5	1,4483
6,2	1,4536 1,4530	6,1	1,4561 1,4551	6,2	1,4482
6,4 6,5	1,4530	6,2	1,4531	6,3 6,5	1,4483
6,6	1,4516 1,4512	6,3 6,4	1,4536	6,5	1,4480
6,8	1,4512	6,4 6,5	1,4527		1,4483
6,8	1,4509	6,5 6,6	1,4519	7,0	1,4403
7,0	1,4505	6,7	1,4500		
7,0	1,4502	6,7 6,8	1,4301		
7,1	1,4504	6,9	1,4496		
1,4	1,7304	0,3	1,7430	J	

ANEXO I: Índices de refração obtidos no monitoramento da síntese do biodiesel.

2. Catalisador e temperatura: NaOCH₃ à 50°C.

Répl	ica 01	Répl	ica 02	Répl	ica 02	Répl	ica 03
t/min	n	t/min	n	t/min	n	t/min	n
0,4	1,4711	1,2	1,4678	8,8	1,4490	7,0	1,4515
0,5	1,4710	1,3	1,4671	9,2	1,4495	7,2	1,4510
0,6	1,4705	1,4	1,4667	9,3	1,4494	7,3	1,4503
0,7	1,4696	1,5	1,4663	9,5	1,4490	7,4	1,4506
0,8	1,4687	1,7	1,4662	9,7	1,4489	7,6	1,4495
0,9	1,4679	1,8	1,4656	9,8	1,4485	7,7	1,4496
1,0	1,4669	1,9	1,4649	10,0	1,4486	7,8	1,4493
1,2	1,4646	2,0	1,4643			8,0	1,4494
1,3	1,4647	2,2	1,4640	Répl	ica 03	8,2	1,4495
1,4	1,4643	2,3	1,4637	0,3	1,4712	8,3	1,4496
1,7	1,4636	2,5	1,4632	0,4	1,4714	8,5	1,4493
1,9	1,4631	2,6	1,4632	0,6	1,4712	8,7	1,4489
2,0	1,4629	2,8	1,4629	0,7	1,4705	9,0	1,4486
2,3	1,4626	2,9	1,4629	0,8	1,4698		
2,7	1,4623	3,0	1,4627	0,9	1,4691		
3,0	1,4621	3,2	1,4626	1,0	1,4683		
3,3	1,4620	3,3	1,4626	1,1	1,4679		
3,7	1,4615	3,5	1,4625	1,2	1,4669		
4,0	1,4615	3,7	1,4626	1,3	1,4662		
4,3	1,4613	3,8	1,4624	1,5	1,4661		
4,7	1,4607	4,1	1,4623	1,6	1,4659		
4,8	1,4606	4,3	1,4622	1,7	1,4654		
5,0	1,4598	4,6	1,4619	1,8	1,4648		
5,2	1,4589	4,8 5.0	1,4618	2,0	1,4644		
5,3	1,4582	5,0	1,4615	2,2	1,4638		
5,4 5,6	1,4571 1,4558	5,2	1,4610 1,4605	2,3	1,4637		
5,6	1,4556	5,3 5,5	1,4505	2,5 2,7	1,4633 1,4631		
5,8 5,9	1,4540	5,5 5,6	1,4596	3,0	1,4628		
6,1	1,4522	5,8	1,4590	3,3	1,4626		
7,6	1,4322	5,8 5,9	1,4579	3,3	1,4625		
7,7	1,4490	6,1	1,4570	4,0	1,4623		
7,9	1,4491	6,2	1,4564	4,3	1,4628		
8,0	1,4486	6,3	1,4557	4,5	1,4625		
8,2	1,4490	6,5	1,4540	4,7	1,4624		
8,3	1,4492	6,6	1,4531	5,0	1,4622		
8,5	1,4491	6,7	1,4523	5,3	1,4621		
8,7	1,4486	6,8	1,4517	5,7	1,4608		
8,8	1,4483	7,0	1,4502	5,8	1,4597		
9,0	1,4485	7,1	1,4501	5,9	1,4592		
		7,2	1,4503	6,1	1,4581		
Répl	ica 02	7,4	1,4499	6,2	1,4562		
0,3	1,4715	7,5	1,4494	5,9	1,4592		
0,4	1,4711	7,7	1,4492	6,1	1,4581		
0,6	1,4705	7,8	1,4488	6,2	1,4562		
0,7	1,4698	8,0	1,4485	6,4	1,4555		
0,8	1,4693	8,2	1,4487	6,5	1,4542		
1,0	1,4682	8,3	1,4486	6,7	1,4530		
1,1	1,4683	8,5	1,4485	6,9	1,4521		

ANEXO I: Índices de refração obtidos no monitoramento da síntese do biodiesel.

3. Catalisador e temperatura: NaOCH₃ à 40°C.

Répli	ica 01	Répl	ica 01	Répl	ica 02	Répl	ica 03
t/min	n	t/min	n	t/min	n	t/min	n
0,3	1,4714	12,0	1,4509	9,5	1,4513	10,0	1,4540
0,4	1,4712	12,3	1,4500	9,7	1,4516	10,2	1,4523
0,5	1,4709	12,5	1,4506			10,4	1,4523
0,6	1,4700			Répl	ica 03	10,6	1,4525
0,7	1,4697	Répl	ica 02	0,3	1,4719	10,8	1,4514
0,9	1,4705	0,3	1,4727	0,4	1,4719	10,9	1,4512
1,0	1,4701	0,4	1,4727	0,5	1,4713	11,1	1,4517
1,1	1,4697	0,5	1,4725	0,6	1,4705		
1,2	1,4694	0,7	1,4723	0,8	1,4696		
1,3	1,4696	0,8	1,472	0,9	1,4689		
1,5	1,4686	0,9	1,4715	1,0	1,4682		
1,6	1,4679	1,0	1,4705	1,1	1,4686		
1,8	1,4672	1,1	1,4705	1,3	1,4684		
1,9	1,4670	1,3	1,4698	1,4	1,4676		
2,0	1,4672	1,4	1,4687	1,5	1,4665		
2,2	1,4663	1,5	1,4682	1,6	1,4659		
2,3	1,4654	1,7	1,468	1,7	1,4655		
2,7	1,4654	1,8	1,4677	1,8	1,4651		
3,0	1,4643	1,9	1,4662	2,0	1,4651		
3,5	1,4636	2,1	1,4661	2,3	1,4644		
4,0	1,4630	2,2	1,4658	2,7	1,4644		
4,5	1,4630	2,3	1,4655	3,0	1,4639		
5,0	1,4630	2,7	1,4647	3,3	1,4637		
5,5	1,4628	3,0	1,4642	3,7	1,4632		
5,8 6,2	1,4622 1,4623	3,5 3,8	1,4639 1,4638	4,0 4,3	1,4631 1,4629		
6,5	1,4620	4,0	1,4638	4,4	1,4628		
6,8	1,4619	4,3	1,4637	4,7	1,4630		
7,2	1,4613	4,7	1,4637	4,8	1,4630		
7,4	1,4607	5,0	1,4633	5,0	1,4626		
7,6	1,4606	5,3	1,4633	5,3	1,4629		
7,8	1,4600	6,0	1,4612	5,6	1,4627		
8,0	1,4597	6,3	1,4598	5,9	1,4627		
8,1	1,4592	6,4	1,4591	6,3	1,4625		
8,3	1,4587	6,6	1,4587	6,6	1,4622		
8,4	1,4586	6,7	1,4576	6,9	1,4624		
8,6	1,4578	6,9	1,4582	7,3	1,4615		
8,7	1,4569	7,0	1,4573	7,6	1,4609		
8,9	1,4569	7,2	1,4564	7,8	1,4607		
9,0	1,4558	7,3	1,4559	8,0	1,4603		
9,2	1,4552	7,8	1,4529	8,2	1,4599		
9,3	1,4545	7,9	1,4532	8,3	1,4595		
9,5	1,4540	8,1	1,4531	8,5	1,4592		
9,7	1,4535	8,2	1,4527	8,8	1,4582		
10,0	1,4521	8,4	1,4526	9,0	1,4574		
10,3	1,4513	8,5	1,4526	9,1	1,4567		
10,6	1,4502	8,8	1,4515	9,3	1,4562		
11,2	1,4504	9,0	1,4517	9,5	1,4554		
11,5	1,4497	9,3	1,4513	9,7	1,4544		

ANEXO I: Índices de refração obtidos no monitoramento da síntese do biodiesel.

4. Catalisador e temperatura: NaOCH₃ à 30°C.

Répl	ica 01	Répl	ica 02	Répl	ica 02	Répl	ica 03
t/min	n	t/min	n	t/min	n	t/min	n
0,3	1,4722	0,7	1,4719	20,5	1,4504	17,0	1,4507
0,5	1,4723	0,8	1,4719	21,5	1,4519	18,0	1,4504
0,6	1,4711	1,0	1,4716	22,0	1,4515		
0,8	1,4709	1,1	1,4717				
0,9	1,4698	1,2	1,4716	Répl	ica 03		
1,0	1,4695	1,3	1,4713	0,4	1,4723		
1,2	1,4693	1,4	1,4712	0,5	1,4720		
1,3	1,4685	1,6	1,4711	0,6	1,4713		
1,5	1,4684	1,7	1,4708	0,7	1,4699		
1,7	1,4681	2,0	1,4700	0,9	1,4694		
1,9	1,4679	2,1	1,4693	1,0	1,4693		
2,0	1,4668	2,2	1,4693	1,1	1,4688		
2,3	1,4662	2,4	1,4689	1,3	1,4685		
2,5	1,4659	2,5	1,4685	1,6	1,4671		
3,0	1,4649	2,7	1,4682	1,7	1,4678		
3,5	1,4647	2,8	1,4678	1,8	1,4676		
4,0	1,4642	3,2	1,4681	2,0	1,4656		
5,0	1,4639	3,5	1,4675 1,4667	2,2	1,4656 1,4646		
6,0 7,0	1,4638 1,4634	4,0 4,5	1,4657	2,5 2,8	1,4646		
8,0	1,4634	5,0	1,4656	3,5	1,4642		
9,0	1,4633	6,0	1,4651	4,0	1,4641		
9,7	1,4631	7,0	1,4641	5,0	1,4638		
10,0	1,4630	8,0	1,4639	6,0	1,4637		
10,5	1,4624	9,0	1,4639	7,0	1,4634		
11,0	1,4621	11,0	1,4636	8,0	1,4630		
11,5	1,4614	13,2	1,4602	9,0	1,4620		
12,0	1,4605	13,4	1,4600	10,0	1,4602		
12,4	1,4599	13,6	1,4598	10,3	1,4597		
12,6	1,4594	13,8	1,4593	10,5	1,4593		
12,8	1,4592	14,0	1,4588	10,8	1,4588		
13,2	1,4582	14,3	1,4584	11,0	1,4584		
13,4	1,4581	14,5	1,4580	11,3	1,4577		
13,8	1,4572	14,8	1,4576	11,5	1,4575		
14,0	1,4567	15,0	1,4571	11,8	1,4568		
14,3	1,4563	15,3	1,4564	12,0	1,4559		
14,6	1,4556	15,5	1,4562	12,3	1,4557		
15,0	1,4544	15,8	1,4558	12,5	1,4551		
15,5	1,4535	16,2	1,4543	12,8	1,4549		
16,0	1,4527	16,8	1,4532	13,3	1,4536		
16,5	1,4521	17,0	1,4529	13,5	1,4533		
17,5 18,0	1,4517 1,4512	17,3 17,7	1,4524 1,4522	13,8 14,0	1,4529 1,4524		
19,0	1,4512	18,0	1,4522	14,0	1,4524		
13,0	1,7500	18,3	1,4510	14,5	1,4520		
Pánl	ica 02	18,8	1,4510	15,0			
					1,4518		
0,3	1,4724	19,0 19,5	1,4515	15,5 16.0	1,4512		
0,5 0,6	1,4719 1,4719	20,0	1,4515 1,4501	16,0 16,5	1,4511 1,4509		
0,0	1,4/13	۷,0	1,4001	10,5	1,4509		

ANEXO I: Índices de refração obtidos no monitoramento da síntese do biodiesel.

5. Catalisador e temperatura: KOCH₃ à 60°C.

Répl	ica 01	Répl	ica 02	Répl	ica 03
t/min	n	t/min	n	t/min	n
0,3	1,4717	1,2	1,4669	2,3	1,4653
0,4	1,4712	1,3	1,4661	2,5	1,4649
0,6	1,4703	1,4	1,4653	2,7	1,4644
0,7	1,4692	1,5	1,4651	2,8	1,4640
0,8	1,4687	1,6	1,4646	3,0	1,4638
0,9	1,4673	1,7	1,4642	3,2	1,4635
1,1	1,4671	1,8	1,4639	3,3	1,4638
1,2	1,4665	2,0	1,4634	3,5	1,4634
1,3	1,4657	2,2	1,4631	3,7	1,4628
1,5	1,4650	2,4	1,4628	3,8	1,4627
1,7	1,4643	2,5	1,4625	4,0	1,4623
1,8	1,4634	2,7	1,4622	4,2	1,4624
2,0	1,4632	2,8	1,4620	4,3	1,4620
2,2	1,4630	3,0	1,4619	4,5	1,4619
2,3	1,4627	3,2	1,4619	4,7	1,4617
2,5	1,4624	3,5	1,4606	4,8	1,4616
2,7	1,4620	3,6	1,4594	5,0	1,4614
2,8	1,4619	3,7	1,4586	5,2	1,4614
3,0	1,4618	3,8	1,4573	5,3	1,4614
3,2	1,4618	3,9	1,4560	5,5	1,4613
3,3	1,4616	4,1	1,4546	5,7	1,4613
3,5	1,4613	4,2	1,4532	5,8	1,4610
3,7	1,4612	4,3	1,4519	5,9	1,4607
3,8	1,4611	4,4	1,4510	6,1	1,4605
4,0	1,4611	4,5	1,4501	6,2	1,4603
4,2	1,4609	4,6	1,4494	6,3	1,4591
4,3	1,4606	4,7	1,4490	6,5	1,4585
4,5	1,4604	5,3	1,4497	6,6	1,4581
4,7	1,4593	5,5	1,4497	6,7	1,4571
4,8	1,4582	5,7	1,4491	6,8	1,4559
4,9	1,4568	Díd	00	6,9	1,4541
5,0	1,4556		ica 03	7,0	1,4526
5,2	1,4538	0,2	1,4720	7,1	1,4514
5,4	1,4532	0,3	1,4720	7,2	1,4508
5,5	1,4516	0,4	1,4718	7,3	1,4503
5,6	1,4505	0,6	1,4717	7,4	1,4495
5,8	1,4500	0,6	1,4715		
5,9	1,4501	0,8	1,4710		
D ()		0,9 1,0	1,4707		
	Réplica 02		1,4705		
0,2	1,4718	1,1	1,4702		
0,3	1,4718	1,2	1,4698		
0,5	1,4717	1,3	1,4693		
0,6	1,4710	1,5	1,4687		
0,7	1,4705	1,6	1,4682		
0,8	1,4698	1,7	1,4676		
0,9	1,4691	1,9	1,4672		
1,0	1,4683	2,0	1,4668		
1,1	1,4677	2,2	1,4662		

ANEXO I: Índices de refração obtidos no monitoramento da síntese do biodiesel.

6. Catalisador e temperatura: KOCH₃ à 50°C.

Répl	ica 01	Répl	ica 02	Répl	ica 03
t/min	n	t/min	n	t/min	n
0,3	1,4718	0,3	1,4714	0,3	1,4709
0,4	1,4719	0,5	1,4690	0,4	1,4707
0,5	1,4718	0,7	1,4699	0,7	1,4663
0,6	1,4717	0,9	1,4684	0,8	1,4657
0,7	1,4703	1,0	1,4686	1,0	1,4648
0,8	1,4699	1,1	1,4675	1,2	1,4644
0,9	1,4695	1,2	1,4672	1,3	1,4640
1,0	1,4690	1,3	1,4668	1,5	1,4635
1,1	1,4684	1,4	1,4659	1,7	1,4632
1,2	1,4679	1,5	1,4655	1,8	1,4629
1,3	1,4676	1,7	1,4650	1,9	1,4627
1,4	1,4673	1,8	1,4648	2,1	1,4628
1,5	1,4670	2,0	1,4640	2,2	1,4624
1,6	1,4663	2,3	1,4637	2,4	1,4625
1,7	1,4657	2,5	1,4633	2,5	1,4627
1,8	1,4653	2,8	1,4632	2,7	1,4632
1,9	1,4650	3,0	1,4631	3,0	1,4623
2,0 2,2	1,4643	3,3	1,4628 1,4627	3,3	1,4614
2,2	1,4635 1,4629	3,5 3,8	1,4627	3,6 3,8	1,4606 1,4580
2,4	1,4626	4,0	1,4621	3,8	1,4574
2,7	1,4623	4,3	1,4620	4,1	1,4555
3,2	1,4620	4,7	1,4618	4,2	1,4536
3,4	1,4618	4,9	1,4613	4,4	1,4527
3,7	1,4616	5,1	1,4609	4,5	1,4516
3,9	1,4613	5,3	1,4598	4,7	1,4505
4,2	1,4606	5,4	1,4592	4,8	1,4499
4,4	1,4601	5,5	1,4582	4,9	1,4498
4,8	1,4570	5,7	1,4572	5,2	1,4493
4,9	1,4560	5,8	1,4562	5,4	1,4496
5,0	1,4549	5,9	1,4538	5,5	1,4494
5,1	1,4539	6,1	1,4527	5,7	1,4496
5,2	1,4530	6,3	1,4519	6,0	1,4497
5,3	1,4522	6,4	1,4510		
5,4	1,4515	6,5	1,4505		
5,5	1,4505	6,6	1,4501		
5,6	1,4495	6,8	1,4492		
5,7	1,4490	6,9	1,4491		
5,8	1,4482	7,0	1,4487		
6,0	1,4479	7,7	1,4493		
6,2	1,4467	7,8	1,4491		
6,3	1,4465				

ANEXO I: Índices de refração obtidos no monitoramento da síntese do biodiesel.

7. Catalisador e temperatura: KOCH₃ à 40°C.

Répli	ica 01	Répl	ica 02	Répl	ica 02
t/min	n	t/min	n	t/min	n
0,3	1,4729	0,3	1,4725	8,3	1,449
0,4	1,4729	0,4	1,4723	8,7	1,4494
0,5	1,4727	0,5	1,472	8,8	1,4491
0,6	1,4722	0,6	1,4717	9,0	1,4499
0,7	1,4718	0,8	1,4714	-,-	,
0,8	1,4716	0,9	1,471	Répl	ica 03
0,9	1,4709	1,0	1,4706	0,3	1,4721
1,0	1,4703	1,1	1,4705	0,4	1,4721
1,1	1,4699	1,2	1,4691	0,5	1,4721
1,2	1,4693	1,4	1,4688	0,6	1,4721
1,3	1,4688	1,5	1,4692	0,7	1,4721
1,5	1,4682	1,6	1,4678	0,8	1,4719
1,6	1,4675	1,8	1,4664	0,9	1,4717
1,7	1,4670	1,9	1,4664	1,1	1,4708
1,8	1,4667	2,0	1,4664	1,2	1,4702
1,9	1,4663	2,0	1,4665	1,2	1,4694
2,0	1,4660	2,2	1,4669	1,4	1,4686
2,0	1,4659		•	1,4	1,4678
2,1	1,4659	2,5	1,4665 1,4665		1,4670
		2,7		1,6	
2,3	1,4654	2,8	1,4659	1,8	1,4669
2,7	1,4646	3,0	1,4657	1,9	1,4667
3,0	1,4642	3,2	1,466	2,0	1,4657
3,3	1,4640	3,3	1,4656	2,3	1,4647
3,7	1,4638	3,5	1,4653	2,7	1,4640
4,0	1,4638	3,8	1,4647	3,0	1,4638
4,3	1,4637	4,0	1,4642	3,3	1,4634
4,7	1,4634	4,3	1,4638	3,7	1,4632
5,0	1,4625	4,5	1,4636	4,1	1,4628
5,3	1,4611	4,8	1,4632	4,3	1,4626
5,6	1,4597	5,0	1,4627	4,7	1,4615
5,7	1,4590	5,3	1,4617	5,0	1,4597
5,8	1,4585	5,4	1,4614	5,1	1,4590
5,9	1,4578	5,5	1,4611	5,3	1,4581
6,1	1,4565	5,8	1,4597	5,4	1,4572
6,2	1,4556	5,9	1,4593	5,5	1,4563
6,3	1,4548	6,1	1,4583	5,6	1,4549
6,4	1,4543	6,3	1,457	5,7	1,4540
6,8	1,4528	6,4	1,4565	5,8	1,4533
7,0	1,4519	6,5	1,4552	5,9	1,4521
7,2	1,4503	6,7	1,4541	6,1	1,4512
7,3	1,4503	6,8	1,4527	6,2	1,4505
7,6	1,4500	6,9	1,452	6,3	1,4501
8,0	1,4496	7,1	1,4516	6,4	1,4494
8,5	1,4501	7,2	1,4507	6,5	1,4490
8,6	1,4499	7,3	1,4494	6,7	1,4488
8,8	1,4492	7,5	1,4517	6,8	1,4483
8,9	1,4497	7,7	1,4506	7,0	1,4478
9,0	1,4494	7,8	1,4509	7,2	1,4475
		8,0	1,4506	7,3	1,4474
		8,2	1,4502		

ANEXO I: Índices de refração obtidos no monitoramento da síntese do biodiesel.

8. Catalisador e temperatura: KOCH₃ à 30°C.

Répli	ica 01	Réplica 02		Répl	ica 02	Répli	ca 03
t/min	n	t/min	n	t/min	n	t/min	n
0,5	1,4722	0,6	1,4697	1,3	1,4709	26,5	1,4495
0,6	1,4720	0,7	1,4690	1,5	1,4709	26,8	1,4497
0,7	1,4712	0,8	1,4689	1,7	1,4702	27,0	1,4495
0,9	1,4704	0,9	1,4679	1,8	1,4708	,	•
1,0	1,4674	1,0	1,4678	2,0	1,4705		
1,1	1,4664	1,1	1,4676	2,2	1,4689		
1,2	1,4666	1,3	1,4670	2,3	1,4695		
1,4	1,4660	1,4	1,4671	2,5	1,4689		
1,6	1,4659	1,7	1,4674	2,7	1,4688		
1,8	1,4650	2,0	1,4671	2,8	1,4691		
2,0	1,4648	3,0	1,4656	3,0	1,4688		
2,2	1,4646	3,5	1,4644	3,3	1,4681		
2,3	1,4644	4,0	1,4638	3,5	1,4681		
2,7	1,4639	4,5	1,4634	3,8	1,4678		
3,0	1,4638	5,0	1,4631	4,0	1,4674		
3,3	1,4637	5,6	1,4630	4,3	1,4668		
3,7	1,4636	6,0	1,4628	4,5	1,4667		
4,0	1,4634	6,3	1,4627	5,0	1,4664		
5,0	1,4626	6,7	1,4626	6,0	1,4654		
5,5	1,4626	7,0	1,4622	7,0	1,465		
	1,4621	7,0	1,4620	8,0	1,4645		
6,0	1,4621		1,4620	10,0	1,4645		
6,5		7,7					
6,8	1,4610	8,0	1,4615	13,4	1,4638		
7,0	1,4602	8,3	1,4614	15,7	1,4637		
7,2	1,4600	8,7	1,4608	17,8	1,4636		
7,3	1,4593	9,0	1,4598	19,8	1,4627		
7,5	1,4591	9,3	1,4593	20,8	1,4616		
7,7	1,4585	9,5	1,4589	21,3	1,4614		
7,8	1,4577	9,8	1,4578	21,8	1,4604		
8,0	1,4572	10,0	1,4570	22,0	1,4597		
8,2	1,4567	10,3	1,4563	22,2	1,4592		
8,4	1,4560	10,5	1,4559	22,3	1,4586		
8,6	1,4556	10,8	1,4549	22,5	1,4576		
8,8	1,4541	11,0	1,4538	22,7	1,4565		
9,1	1,4533	11,3	1,4525	22,8	1,4558		
9,3	1,4523	11,5	1,4518	23,0	1,4547		
9,6	1,4517	11,8	1,4511	23,2	1,4539		
9,8	1,4507	12,0	1,4502	23,3	1,4536		
10,0	1,4496	12,3	1,4490	23,5	1,4533		
10,3	1,4511	12,5	1,4491	23,8	1,4528		
10,5	1,4499	13,5	1,4484	24,0	1,4514		
10,8	1,4497	13,8	1,4482	24,2	1,4513		
11,0	1,4491	14,0	1,4488	24,3	1,4512		
11,3	1,4495			24,5	1,4486		
11,5	1,4491	Rép	lica 03	24,7	1,4516		
11,8	1,4495	0,3	1,4725	24,8	1,4498		
	ica 02	0,8	1,4718	25,8	1,4487		
0,3	1,4720	1,0	1,4719	26,0	1,449		
0,5	1,4720	1,0	1,4717	26,3	1,4483		
0,5	1,7/10	٦,٢	1,7111	ر,ب	1,7400		

ANEXO I: Índices de refração obtidos no monitoramento da síntese do biodiesel.

9. Catalisador e temperatura: NaOH à 60°C.

Répl	ica 01	Répl	ica 02	Répl	ica 02	Répl	ica 03
t/min	n	t/min	n	t/min	n	t/min	n
0,3	1,4716	0,3	1,4716	7,2	1,4517	8,2	1,4593
0,4	1,4716	0,4	1,4716	7,3	1,4513	8,3	1,4593
0,5	1,4712	0,5	1,4715	7,5	1,4510	8,5	1,4592
0,6	1,4709	0,6	1,4709	7,7	1,4506	8,6	1,4582
0,7	1,4705	0,7	1,4709	7,8	1,4503	8,8	1,4567
0,9	1,4702	0,8	1,4706	8,0	1,4502	9,0	1,4559
1,0	1,4695	1,0	1,4701	8,2	1,4502	9,2	1,4557
1,1	1,4693	1,1	1,4691	8,3	1,4505	9,3	1,4547
1,2	1,4690	1,2	1,4679	8,5	1,4505	9,5	1,4535
1,3	1,4684	1,3	1,4679			9,7	1,4526
1,4	1,4682	1,4	1,4678	Répl	ica 03	9,8	1,4521
1,5	1,4678	1,5	1,4672	0,3	1,4716	10,0	1,4514
1,6	1,4675	1,6	1,4668	0,4	1,4713	10,2	1,4507
1,7	1,4668	1,7	1,4661	0,6	1,4710	10,3	1,4502
1,8	1,4657	1,8	1,4656	0,7	1,4706	10,5	1,4498
2,0	1,4652	1,9	1,4651	0,8	1,4704	10,7	1,4497
2,3	1,4641	2,0	1,4647	0,9	1,4701	10,8	1,4496
2,7	1,4637	2,2	1,4641	1,0	1,4698	•	
3,0	1,4631	2,3	1,4638	1,1	1,4698		
3,3	1,4628	2,5	1,4635	1,2	1,4692		
3,7	1,4629	2,7	1,4633	1,3	1,4690		
4,0	1,4625	2,8	1,4631	1,4	1,4686		
4,3	1,4625	3,2	1,4629	1,5	1,4682		
4,7	1,4620	3,4	1,4630	1,6	1,4678		
5,0	1,4618	3,7	1,4628	1,7	1,4676		
5,3	1,4608	3,0	1,4626	1,8	1,4674		
5,6	1,4595	4,3	1,4625	2,0	1,4671		
5,7	1,4588	4,4	1,4624	2,3	1,4662		
5,8	1,4584	4,6	1,4622	2,7	1,4655		
6,0	1,4583	4,8	1,4620	3,0	1,4648		
6,2	1,4581	5,0	1,4608	3,3	1,4643		
6,3	1,4577	5,1	1,4605	3,7	1,4639		
6,4	1,4574	5,3	1,4600	4,0	1,4636		
6,5	1,4565	5,4	1,4597	4,3	1,4631		
6,7	1,4554	5,5	1,4589	4,7	1,4629		
6,8	1,4545	5,6	1,4586	5,0	1,4624		
7,0	1,4537	5,7	1,4584	5,3	1,4621		
7,2	1,4530	5,8	1,4584	5,7	1,4620		
7,3	1,4525	5,9	1,4581	5,9	1,4619		
7,5	1,4519	6,0	1,4575	6,2	1,4618		
7,7	1,4515	6,1	1,4569	6,4	1,4620		
7,8	1,4510	6,2	1,4562	6,7	1,4619		
8,0	1,4506	6,3	1,4554	6,9	1,4618		
8,2	1,4504	6,4	1,4548	7,1	1,4618		
8,3	1,4502	6,5	1,4543	7,3	1,4617		
8,5	1,4501	6,6	1,4536	7,7	1,4608		
8,7	1,4502	6,8	1,4532	7,8	1,4604		
8,8	1,4499	6,9	1,4526	8,0	1,4600		
9,0	1,4501	7,0	1,4521	8,1	1,4594		

ANEXO I: Índices de refração obtidos no monitoramento da síntese do biodiesel.

10. Catalisador e temperatura: NaOH à 50°C.

Répl	ica 01	Répl	ica 01	01 Réplica 02		Répl	ica 03
t/min	n	t/min	n	t/min	n	t/min	n
0,3	1,4725	14,7	1,4538	11,0	1,4627	8,0	1,4630
0,5	1,4724	15,1	1,4523	11,3	1,4622	8,7	1,4617
0,6	1,4719	15,3	1,4518	11,8	1,4608	9,0	1,4603
0,7	1,4718	15,5	1,4516	12,1	1,4603	9,2	1,4595
0,8	1,4717	15,8	1,4511	12,3	1,4595	9,3	1,4585
0,9	1,4713	16,0	1,4512	12,5	1,4590	9,5	1,4575
1,0	1,4707	16,3	1,4506	12,7	1,4583	9,7	1,4567
1,1	1,4707	16,7	1,4503	12,9	1,4570	9,8	1,4558
1,2	1,4705	17,0	1,4510	13,0	1,4563	10,0	1,4551
1,3	1,4697	17,3	1,4501	13,2	1,4554	10,2	1,4540
1,4	1,4696	17,7	1,4508	13,3	1,4545	10,3	1,4536
1,5	1,4684	18,0	1,4507	13,5	1,4539	10,5	1,4528
1,7	1,4692	Dámi	: 00	13,7	1,4531	10,7	1,4524
1,8	1,4687		ica 02	13,8	1,4525	10,8	1,4519
2,0	1,4685	0,3	1,4722	14,0	1,4521	11,0	1,4513
2,2	1,4686	0,5	1,4726	14,3	1,4519	11,3	1,4509
2,3	1,4688	0,6	1,4721	14,5	1,4515	11,5	1,4503
2,5	1,4678	0,7	1,4717	14,8	1,4510	11,8	1,4502
2,7	1,4679	0,8	1,4714	15,0	1,4506	12,0	1,4506
2,8	1,4677	0,9	1,4701	15,3	1,4500	12,3	1,4511
3,0	1,4673	1,0	1,4700 1,4703	15,7	1,4504	12,7	1,4506
3,2	1,4674	1,1		Dánl	ina 00		
3,4	1,4671	1,2	1,4699		ica 03		
3,7	1,4667	1,3	1,4687	0,3	1,4725		
4,0	1,4667	1,4	1,4681	0,4	1,4723		
4,5	1,4661	1,5	1,4675	0,6	1,4719		
5,0 5,7	1,4658 1,4652	1,6 1,8	1,4675 1,4674	0,7 0,8	1,4710 1,4704		
6,3	1,4649	1,8	1,4675	0,8	1,4704		
7,0	1,4646	2,0	1,4670	1,0	1,4698		
7,7	1,4643	2,2	1,4671	1,1	1,4695		
8,3	1,4641	2,2	1,4664	1,2	1,4689		
9,0	1,4636	2,7	1,4666	1,3	1,4687		
9,7	1,4634	3,0	1,4666	1,4	1,4682		
10,3	1,4633	3,5	1,4662	1,6	1,4680		
11,0	1,4631	4,0	1,4658	1,7	1,4679		
11,7	1,4627	4,5	1,4655	1,8	1,4675		
12,0	1,4626	5,0	1,4651	2,0	1,4672		
12,3	1,4620	5,5	1,4648	2,2	1,4674		
12,7	1,4612	6,0	1,4646	2,3	1,4662		
13,0	1,4605	6,5	1,4643	2,7	1,4659		
13,2	1,4601	7,0	1,4642	3,0	1,4655		
13,4	1,4593	7,5	1,4640	3,5	1,4652		
13,7	1,4582	8,0	1,4638	4,0	1,4649		
13,8	1,4576	8,5	1,4636	4,7	1,4645		
14,0	1,4569	8,7	1,4636	5,3	1,4641		
14,2	1,4562	9,3	1,4635	6,0	1,4638		
14,3	1,4555	9,7	1,4634	6,7	1,4637		
14,5	1,4545	10,3	1,4631	7,3	1,4635		

ANEXO I: Índices de refração obtidos no monitoramento da síntese do biodiesel.

11. Catalisador e temperatura: NaOH à 40°C.

Répli	ica 01	Répl	ica 01	Répl	ica 02	Répl	ica 03
t/min	n	t/min	n	t/min	n	t/min	n
0,3	1,4721	20,2	1,4613	4,9	1,4651	1,9	1,4701
0,6	1,4723	20,7	1,4606	5,1	1,4647	2,0	1,4704
0,7	1,4724	21,0	1,4599	5,3	1,4651	2,2	1,4700
0,8	1,4721	21,3	1,4595	5,5	1,4648	2,3	1,4695
1,0	1,4722	21,5	1,4588	5,8	1,4647	2,5	1,4694
1,1	1,4721	21,8	1,4578	6,0	1,4643	2,6	1,4694
1,2	1,4719	22,0	1,4569	6,3	1,4640	2,8	1,4692
1,3	1,4718	22,3	1,4561	6,7	1,4638	3,0	1,4692
1,4	1,4718	22,5	1,4549	7,0	1,4629	3,3	1,4687
1,6	1,4715	22,8	1,4542	7,3	1,4629	3,5	1,4686
1,7	1,4714	23,0	1,4535	7,7	1,4626	4,0	1,4679
1,9	1,4711	23,3	1,4532	8,0	1,4623	4,4	1,4677
2,0	1,4708	23,5	1,4528	8,3	1,4616	4,7	1,4673
2,2	1,4706	23,8	1,4523	8,6	1,4609	5,2	1,4668
2,3	1,4699	24,0	1,4517	8,8	1,4607	5,5	1,4668
2,5	1,4698	24,3	1,4512	9,0	1,4603	6,0	1,4663
2,7	1,4695	24,5	1,4510	9,2	1,4596	6,5	1,4656
2,8	1,4693	24,8	1,4507	9,4	1,4594	7,0	1,4653
3,0	1,4689	25,0	1,4504	9,6	1,4576	7,5	1,4647
3,2	1,4684	25,3	1,4503	9,7	1,4573	8,0	1,4646
3,3	1,4682	25,5	1,4501	10,1	1,4564	8,5	1,4642
3,7	1,4680	25,8	1,4495	10,3	1,4561	9,0	1,4639
3,9	1,4677	26,0	1,4495	10,5	1,4552	9,5	1,4638
4,1	1,4680	26,3	1,4495	10,7	1,4539	10,0	1,4637
4,3	1,4680	_0,0	.,	10,8	1,4530	10,5	1,4632
4,7	1,4676	Rénl	ica 02	11,0	1,4529	11,0	1,4628
5,0	1,4673	0,3	1,4714	11,3	1,4524	11,5	1,4632
5,3	1,4671	0,4	1,4715	11,5	1,4512	12,0	1,4630
5,7	1,4669	0,5	1,4713	11,8	1,4511	12,5	1,4632
6,0	1,4666	0,6	1,4712	12,0	1,4507	13,0	1,4631
6,5	1,4663	0,8	1,4706	12,3	1,4508	14,0	1,4629
7,0	1,4657	0,9	1,4703	12,5	1,4501	15,0	1,4624
7,5	1,4655	1,0	1,4699	12,8	1,4499	16,0	1,4615
8,0	1,4654	1,2	1,4694	13,7	1,4496	16,7	1,4604
8,5	1,4651	1,3	1,4692	14,0	1,4497	17,0	1,4599
9,0	1,4647	1,4	1,4691	1 1,0	1,1107	17,3	1,4592
9,5	1,4646	1,6	1,4690	Ránl	ica 03	17,7	1,4583
10,0	1,4641	1,7	1,4690	0,3	1,4720	17,7	1,4503
	,				•		
10,5	1,4644	1,8	1,4691	0,5	1,4720	18,3	1,4564
11,0	1,4645	2,0	1,4691	0,6	1,4722	18,7	1,4555
11,5	1,4644	2,2	1,4686	0,7	1,4719	19,0	1,4547
12,0	1,4641	2,4	1,4682	0,8	1,4716	19,4	1,4534
12,5	1,4641	2,6	1,4678 1,4677	0,9	1,4709	19,7	1,4521
13,0	1,4639	2,8	1,4677	1,0	1,4703	20,0	1,4523
14,0	1,4638	3,0	1,4675	1,1	1,4703	20,3	1,4516
15,0	1,4633	3,2	1,4673	1,2	1,4706	20,7	1,4514
16,0	1,4632	3,5	1,4662	1,3	1,4702	21,0	1,4512
17,0	1,4634	3,8	1,4660	1,4	1,4699	21,5	1,4506
18,0	1,4632	4,0	1,4662	1,6 1.7	1,4707	22,3	1,4502
19,0	1,4624	4,3	1,4656	1,7	1,4703	22,7	1,4500
19,7	1,4617	4,5	1,4657	1,8	1,4697	23,0	1,4500

ANEXO I: Índices de refração obtidos no monitoramento da síntese do biodiesel.

12. Catalisador e temperatura: NaOH à 30°C.

Répli	ca 01	Réplica 01		Répl	ica 02	Répl	ica 02	Répl	ica 03
t/min	n	t/min	n	t/min	n	t/min	n	t/min	n
0,3	1,4709	19,3	1,4544	5,7	1,4641	34,0	1,4512	17,8	1,4602
0,4	1,4701	19,7	1,4538	6,0	1,4641	34,5	1,4508	18,2	1,4599
0,6	1,4691	20,0	1,4538	6,6	1,4638	35,0	1,4507	18,5	1,4599
0,7	1,4685	20,3	1,4522	7,0	1,4638	36,0	1,4500	18,8	1,4596
0,8	1,4679	20,7	1,4533	7,5	1,4638	36,5	1,4501	19,2	1,4596
0,9	1,4682	21,0	1,4527	8,0	1,4637	39,0	1,4502	19,5	1,4596
1,0	1,4676	21,3	1,4531	9,0	1,4638	39,5	1,4505	19,7	1,4596
1,1	1,4672	22,0	1,4523	10,0	1,4637	40,0	1,4504	20,0	1,4592
1,2	1,4674	23,0	1,4518	11,0	1,4637			20,3	1,4587
1,4	1,4673	23,5	1,4510	12,0	1,4634	Répl	ica 03	20,7	1,4578
1,5	1,4673	24,0	1,4510	13,0	1,4634	0,3	1,4709	21,0	1,4570
1,6	1,4671	24,5	1,4509	14,0	1,4633	0,5	1,4704	21,3	1,4565
1,7	1,4670	25,0	1,4513	15,0	1,4633	0,6	1,4687	21,7	1,4555
1,8	1,4672	25,5	1,4506	16,0	1,4634	0,7	1,4680	22,0	1,4546
2,0	1,4671	26,0	1,4509	17,0	1,4633	1,0	1,4679	22,3	1,4554
2,3	1,4664	27,0	1,4500	18,0	1,4634	0,9	1,4677	22,7	1,4551
2,7	1,4661	27,5	1,4504	19,0	1,4631	1,0	1,4676	23,0	1,4545
3,0	1,4651	28,0	1,4505	20,0	1,4631	1,1	1,4673	23,3	1,4542
3,3	1,4644	28,5	1,4503	21,0	1,4630	1,2	1,4669	23,7	1,4535
3,7	1,4644	29,0	1,4499	22,0	1,4627	1,3	1,4669	24,0	1,4530
4,0	1,4648	29,5	1,4503	23,0	1,4624	1,5	1,4665	24,5	1,4524
4,5	1,4634	30,0	1,4498	24,0	1,4619	1,6	1,4665	25,0	1,4516
5,0	1,4631			24,7	1,4615	1,7	1,4666	25,3	1,4513
5,0	1,4632	Répli	ca 02	25,3	1,4609	1,8	1,4666	25,7	1,4511
6,0	1,4632	0,3	1,4713	25,8	1,4604	2,0	1,4660	26,0	1,4509
7,0	1,4631	0,4	1,4714	26,2	1,4602	2,3	1,4654	26,3	1,4506
8,0	1,4628	0,5	1,4713	26,5	1,4597	2,7	1,4650	26,7	1,4505
9,0	1,4629	0,6	1,4712	26,8	1,4595	3,0	1,4646	27,5	1,4509
10,0	1,4628	0,7	1,4710	27,0	1,4592	3,3	1,4643	28,0	1,4508
11,0	1,4628	0,8	1,4691	27,3	1,4588	3,7	1,4641	28,5	1,4508
12,0	1,4623	0,9	1,4673	27,5	1,4585	4,0	1,4638	29,0	1,4508
13,0	1,4615	1,1	1,4682	27,8	1,4582	4,3	1,4635	29,5	1,4509
14,0	1,4609	1,2	1,4668	28,0	1,4579	4,7	1,4636	30,0	1,4507
14,7	1,4602	1,3	1,4673	28,3	1,4572	5,0	1,4633		
15,0	1,4598	1,4	1,4675	28,7	1,4559	5,5	1,4632		
15,3	1,4597	1,5	1,4672	28,9	1,4552	6,0	1,4632		
15,5	1,4593	1,7	1,4672	29,2	1,4549	6,5	1,4632		
15,8	1,4591	1,8	1,4672	29,5	1,4543	7,0	1,4630		
16,0	1,4590	2,0	1,4672	29,8	1,4538	8,0	1,4630		
16,3	1,4584	2,3	1,4668	30,0	1,4538	9,0	1,4629		
16,6	1,4579	2,7	1,4660	30,3	1,4532	10,0	1,4628		
16,8	1,4576	3,0	1,4654	30,7	1,4527	11,0	1,4626		
17,2	1,4576	3,3	1,4655	31,0	1,4523	12,0	1,4625		
17,3	1,4572	3,7	1,4649	31,3	1,4521	13,0	1,4624		
17,7	1,4568	4,0	1,4644	31,7	1,4519	14,0	1,4624		
18,0	1,4564	4,3	1,4646	32,0	1,4514	15,0	1,4621		
18,3	1,4562	4,7 5.0	1,4645	32,5	1,4511	16,0	1,4618		
18,7	1,4553	5,0	1,4642	33,0	1,4508	17,0	1,4611		
19,0	1,4549	5,3	1,4641	33,5	1,4512	17,5	1,4604		

ANEXO I: Índices de refração obtidos no monitoramento da síntese do biodiesel.

13. Catalisador e temperatura: KOH à 60°C.

Réplica 01		Répl	Réplica 02 Ré		ica 02	Réplica 03	
t/min	n	t/min	n	t/min	n	t/min	n
0,3	1,4719	0,5	1,4718	7,8	1,4500	7,2	1,4549
0,4	1,4719	0,6	1,4715	8,0	1,4498	7,3	1,4540
0,5	1,4718	0,7	1,4709	8,2	1,4499	7,5	1,4529
0,6	1,4715	0,8	1,4706	8,3	1,4496	7,7	1,4524
0,7	1,4709	0,9	1,4698	8,5	1,4496	7,8	1,4518
0,8	1,4704	1,0	1,4692			8,0	1,4516
0,9	1,4698	1,1	1,4686	Répl	ica 03	8,2	1,4511
1,0	1,4691	1,2	1,4681	0,3	1,4719	8,3	1,4509
1,1	1,4686	1,3	1,4674	0,4	1,4719	8,5	1,4505
1,2	1,4683	1,4	1,4668	0,5	1,4716	8,7	1,4503
1,3	1,4678	1,5	1,4664	0,6	1,4714	8,8	1,4501
1,4	1,4674	1,6	1,4661	0,7	1,4708	9,0	1,4499
1,5	1,4667	1,7	1,4660	0,8	1,4705	9,2	1,4497
1,6	1,4663	1,8	1,4656	0,9	1,4700	9,3	1,4496
1,8	1,4659	2,0	1,4652	1,0	1,4693	9,5	1,4491
1,9	1,4656	2,2	1,4648	1,1	1,4689	9,7	1,4490
2,0	1,4655	2,3	1,4647	1,2	1,4685	9,8	1,4491
2,3	1,4644	2,5	1,4644	1,3	1,4679	10,0	1,4489
2,5	1,4641	2,7	1,4641	1,4	1,4678		
2,8	1,4637	2,8	1,4638	1,5	1,4673		
3,0	1,4635	3,0	1,4637	1,6	1,4671		
3,4	1,4631	3,2	1,4636	1,8	1,4668		
3,7	1,4629	3,3	1,4634	1,9	1,4666		
4,0	1,4628	3,6	1,4632	2,0	1,4660		
4,2	1,4627	3,8	1,4630	2,2	1,4659		
4,5	1,4625	4,1	1,4629	2,3	1,4656		
4,8	1,4624	4,3	1,4627	2,6	1,4644		
5,2	1,4617	4,6	1,4626	2,8	1,4640		
5,4	1,4606	4,8	1,4626	3,1	1,4637		
5,6	1,4597	5,1	1,4622	3,3	1,4635		
5,7	1,4593	5,3	1,4611	3,6	1,4631		
5,9	1,4582	5,5	1,4603	3,9	1,4630		
6,0	1,4578	5,6	1,4599	4,1	1,4628		
6,5	1,4560	5,7	1,4597	4,3	1,4627		
6,6	1,4547	5,8	1,4592	4,6	1,4625		
6,7	1,4530	5,9	1,4585	4,8	1,4624		
6,9	1,4523	6,1	1,4573	5,1	1,4624		
7,0	1,4518	6,2	1,4562	5,3	1,4623		
7,2	1,4504	6,3	1,4554	5,6	1,4623		
7,7	1,4505	6,4	1,4545	5,8	1,4619		
7,8	1,4507	6,5	1,4539	6,0	1,4615		
8,0	1,4503	6,6	1,4529	6,2	1,4606		
8,2	1,4500	6,7	1,4523	6,3	1,4597		
8,3	1,4500	6,8	1,4517	6,5	1,4593		
8,5	1,4498	7,0	1,4510	6,6	1,4586		
		7,2 7,3	1,4507	6,7	1,4580		
Répl	Réplica 02		1,4505	6,8	1,4570		
0,3	1,4718	7,5	1,4503	7,0	1,4564		
0,4	1,4719	7,7	1,4500	7,1	1,4555		

ANEXO I: Índices de refração obtidos no monitoramento da síntese do biodiesel.

14. Catalisador e temperatura: KOH à 50°C.

Réplica 01		Réplica 02		Réplica 02		Réplica 03	
t/min	n	t/min	n	t/min	n	t/min	n
0,3	1,4726	0,7	1,4716	9,5	1,4508	8,3	1,4498
0,5	1,4725	0,8	1,4712	9,7	1,4507	8,5	1,4500
0,6	1,4722	0,9	1,4706	9,8	1,4505	9,0	1,4501
0,7	1,4717	1,0	1,4702	10,0	1,4505		-
0,8	1,4718	1,1	1,4701	10,3	1,4504		
0,9	1,4717	1,2	1,4693	10,7	1,4503		
1,0	1,4718	1,3	1,4685	11,0	1,4499		
1,1	1,4709	1,4	1,4681	11,3	1,4500		
1,2	1,4686	1,5	1,4676				
1,3	1,4678	1,6	1,4669	Répl	ica 03		
1,4	1,4671	1,8	1,4663	0,3	1,4727		
1,5	1,4663	1,9	1,4662	0,5	1,4726		
1,7	1,4663	2,0	1,4658	0,6	1,4722		
1,8	1,4661	2,2	1,4655	0,7	1,4702		
2,0	1,4657	2,3	1,4654	0,8	1,4702		
2,3	1,4655	2,5	1,4651	0,9	1,4694		
2,7	1,4650	2,7	1,4648	1,1	1,4690		
3,0	1,4648	2,9	1,4647	1,2	1,4697		
3,3	1,4648	3,2	1,4643	1,3	1,4681		
3,7	1,4641	3,4	1,4644	1,4	1,4674		
4,0	1,4639	3,7	1,4644	1,5	1,4665		
4,3	1,4637	3,9	1,4644	1,9	1,4655		
4,7	1,4636	4,2	1,4643	2,0	1,4651		
5,0	1,4636	4,4	1,4640	2,3	1,4648		
5,3	1,4632	4,7	1,4642	2,7	1,4647		
5,7	1,4629	4,9	1,4640	3,0	1,4645		
6,0	1,4627	5,2	1,4639	3,3	1,4644		
6,3	1,4622	5,4	1,4639	3,7	1,4643		
6,5	1,4614	5,7	1,4637	4,0	1,4640		
6,8	1,4607	5,9	1,4637	4,3	1,4640		
7,0	1,4593	6,2	1,4636	4,7	1,4637		
7,1	1,4587	6,5	1,4627	5,0	1,4637		
7,2	1,4581	6,8	1,4616	5,3	1,4629		
7,3	1,4572	7,0	1,4606	5,7	1,4614		
7,4	1,4563	7,2	1,4596	5,9	1,4599		
8,3	1,4539	7,3	1,4591	6,0	1,4592		
8,5	1,4522	7,5	1,4577	6,1	1,4586		
8,6	1,4517	7,6	1,4565	6,3	1,4577		
8,7	1,4508	7,7	1,4556	6,4	1,4569		
8,9	1,4508	7,9	1,4545	6,5	1,4563		
9,0	1,4502	8,1	1,4538	6,6	1,4551		
9,3	1,4508	8,2	1,4532	6,8	1,4544		
9,5	1,4497	8,4	1,4535	7,0	1,4531		
		8,5	1,4528	7,2	1,4524		
Répl	lica 02	8,7	1,4532	7,3	1,4520		
0,2	1,4730	8,8	1,4524	7,5	1,4517		
0,3	1,4729	9,0	1,4522	7,7	1,4514		
0,4	1,4726	9,2	1,4517	7,8	1,4509		
0,5	1,4719	9,4	1,4511	8,0	1,4508		

ANEXO I: Índices de refração obtidos no monitoramento da síntese do biodiesel.

15. Catalisador e temperatura: KOH à 40°C.

Réplica 01		Réplica 01		Réplica 02		Réplica 02		Réplica 03	
t/min	n	t/min	n	t/min	n	t/min	n	t/min	n
0,3	1,4716	12,0	1,4634	1,6	1,4699	12,5	1,4514	10,3	1,4598
0,4	1,4715	12,5	1,4634	1,7	1,4696	12,8	1,4507	10,5	1,4588
0,5	1,4716	13,0	1,4633	1,8	1,4689	13,0	1,4503	10,8	1,4576
0,6	1,4715	13,5	1,4632	1,9	1,4689	13,3	1,4498	11,0	1,4563
0,7	1,4713	14,0	1,4630	2,0	1,4688	13,0	1,4493	11,3	1,4551
0,8	1,4708	14,5	1,4630	2,2	1,4682	13,8	1,4485	11,4	1,4544
0,9	1,4705	15,0	1,4630	2,3	1,4679			11,6	1,4536
1,0	1,4706	15,5	1,4630	2,5	1,4674	Répl	ica 03	11,8	1,4529
1,1	1,4705	16,0	1,4629	2,7	1,4671	0,3	1,4716	11,9	1,4524
1,2	1,4703	16,5	1,4627	2,8	1,4669	0,5	1,4716	12,0	1,4521
1,4	1,4703	17,0	1,4628	3,0	1,4666	0,6	1,4716	12,3	1,4514
1,5	1,4702	17,5	1,4626	3,2	1,4662	0,7	1,4715	12,5	1,4508
1,6	1,4703	18,0	1,4624	3,3	1,4659	0,8	1,4709	12,8	1,4501
1,7	1,4700	19,0	1,4610	3,5	1,4658	0,9	1,4704	13,0	1,4495
1,8	1,4698	19,5	1,4606	3,7	1,4655	1,0	1,4697	13,3	1,4490
1,9	1,4696	20,0	1,4599	3,8	1,4654	1,1	1,4697	13,5	1,4483
2,0	1,4695	20,4	1,4590	4,0	1,4651	1,2	1,4694	13,8	1,4479
2,2	1,4691	20,8	1,4561	4,2	1,4650	1,3	1,4692		
2,3	1,4686	21,0	1,4554	4,3	1,4648	1,4	1,4689		
2,5	1,4693	21,4	1,4533	4,5	1,4648	1,5	1,4686		
2,7	1,4682	21,5	1,4532	4,8	1,4644	1,6	1,4686		
2,8	1,4676	21,6	1,4533	5,2	1,4641	1,8	1,4683		
3,0	1,4682	21,8	1,4533	5,5	1,4638	1,9	1,4682		
3,2	1,4671	22,0	1,4524	5,8	1,4638	2,0	1,4678		
3,3	1,4671	22,2	1,4517	6,2	1,4635	2,2	1,4674		
3,6	1,4671	22,3	1,4517	6,5	1,4634	2,3	1,4672		
3,8	1,4667	22,8	1,4514	7,0	1,4633	2,5	1,4670		
4,0	1,4665	23,0	1,4508	7,5	1,4631	2,7	1,4667		
4,3	1,4666	23,2	1,4502	8,0	1,4631	2,8	1,4663		
4,5	1,4662	23,3	1,4498	8,5	1,4633	3,0	1,4660		
4,8	1,4655	23,7	1,4478	9,0	1,4628	3,2	1,4659		
5,0	1,4662	24,0	1,4478	9,5	1,4621	3,3	1,4656		
5,3	1,4655	24,3	1,4477	9,8	1,4617	3,5	1,4655		
5,7	1,4652	24,7	1,4481	10,0	1,4614	3,7	1,4655		
6,0	1,4652	25,0	1,4480	10,3	1,4608	3,8	1,4652		
6,3	1,4648	Dáni	: 00	10,4	1,4603	4,0	1,4652		
6,7	1,4648		ica 02	10,6	1,4585	4,3	1,4649		
7,0	1,4647	0,3	1,4718	10,8	1,4583	4,7	1,4648		
7,3	1,4648	0,5	1,4717	10,9	1,4577	5,0	1,4646		
7,7	1,4645	0,6	1,4718	11,1	1,4572	5,5	1,4642		
8,0	1,4647	0,7	1,4717	11,2	1,4567	6,0	1,4641		
8,3	1,4644	0,8	1,4716	11,3	1,4563	6,5	1,4639		
8,7	1,4640	0,9	1,4712	11,5	1,4558	7,0	1,4636		
9,0	1,4640	1,0	1,4710	11,6	1,4552	7,5	1,4634		
9,5	1,4638	1,1	1,4712	11,7	1,4547	8,0	1,4631		
10,0	1,4635	1,2	1,4710	11,9	1,4542	8,5	1,4631		
10,5	1,4637	1,3 1 /	1,4708 1,4703	12,0 12,2	1,4534	9,0 9.5	1,4627		
11,0 11,5	1,4635 1,4634	1,4 1.5	1,4703	12,2	1,4530	9,5 10.0	1,4618 1,4605		
11,5	1,4034	1,5	1,4/02	12,3	1,4517	10,0	1,4003		

ANEXO I: Índices de refração obtidos no monitoramento da síntese do biodiesel.

16. Catalisador e temperatura: KOH à 30°C.

Réplica 01		Réplica 01		Réplica 02		Réplica 03	
t/min	n	t/min	n	t/min	n	t/min	n
0,3	1,4713	17,3	1,4481	10,3	1,4529	12,5	1,4580
0,4	1,4712	17,8	1,4481	10,5	1,4527	12,8	1,4575
0,5	1,4696	18,0	1,4483	11,3	1,4514	13,0	1,4562
0,7	1,4692	18,5	1,4485	11,7	1,4508	13,3	1,4552
1,0	1,4669	19,0	1,4485	12,0	1,4506	13,5	1,4542
1,1	1,4671	19,5	1,4489	12,3	1,4499	13,8	1,4536
1,3	1,4664	20,0	1,4484	12,7	1,4498	14,0	1,4535
1,4	1,4654			13,0	1,4497	14,3	1,4531
1,5	1,4651	Répl	ica 02	13,5	1,4499	14,5	1,4530
1,7	1,4646	0,3	1,4715	14,3	1,4494	15,0	1,4522
1,8	1,4643	0,4	1,4712	14,5	1,4496	15,5	1,4504
2,0	1,4640	0,5	1,4708	15,0	1,4496	15,8	1,4497
2,2	1,4641	0,6	1,4703	, , ,	.,	16,0	1,4489
2,3	1,4641	0,7	1,4681	Rénl	ica 03	16,3	1,4485
2,5	1,4639	0,8	1,4687	0,3	1,4711	18,5	1,4483
2,7	1,4636	0,9	1,4684	0,5	1,4706	18,8	1,4480
2,8	1,4629	1,0	1,4677	0,7	1,4695	19,0	1,4480
3,0	1,4630	1,2	1,4665	0,8	1,4677	19,3	1,4479
3,2	1,4630	1,3	1,4662	1,1	1,4677	19,5	1,4479
3,3	1,4633	1,4	1,4658	1,2	1,4678	19,8	1,4479
3,7	1,4629	1,3	1,4658	1,3	1,4684	20,0	1,4478
4,0	1,4627	1,6	1,4653	1,4	1,4687	_0,0	.,
4,3	1,4626	1,7	1,4648	1,6	1,4684		
4,7	1,4634	1,8	1,4646	1,7	1,4680		
5,3	1,4626	1,9	1,4647	1,8	1,4677		
5,7	1,4629	2,0	1,4645	2,0	1,4670		
6,0	1,4624	2,1	1,4646	2,3	1,4662		
6,3	1,4627	2,2	1,4643	2,5	1,4657		
6,7	1,4626	2,3	1,4643	2,8	1,4650		
7,0	1,4622	2,7	1,4639	3,0	1,4646		
8,0	1,4613	3,0	1,4637	3,3	1,4642		
8,5	1,4611	3,3	1,4633	3,5	1,4640		
9,0	1,4601	3,7	1,4632	3,8	1,4640		
9,3	1,4598	4,1	1,4630	4,0	1,4638		
9,5	1,4590	5,0	1,4628	4,3	1,4634		
9,8	1,4584	6,5	1,4616	4,7	1,4635		
10,0	1,4582	7,0	1,4612	5,0	1,4634		
10,3	1,4578	7,5	1,4603	6,0	1,4631		
10,5	1,4568	8,0	1,4601	7,0	1,4629		
10,8	1,4564	8,3	1,4594	8,0	1,4629		
11,3	1,4542	8,4	1,4590	9,0	1,4624		
11,5	1,4545	8,6	1,4589	10,0	1,4617		
11,8	1,4538	8,8	1,4584	10,5	1,4613		
12,0	1,4524	9,0	1,4576	11,0	1,4607		
12,3	1,4522	9,2	1,4568	11,5	1,4596		
12,5	1,4519 1,4499	9,3	1,4564	11,7	1,4595		
13,0	1,4499	9,5 9,8	1,4561 1,4559	11,8	1,4594 1,4591		
16,3 17,2		9,8	1,4559 1,4545	12,0			
1 / ,∠	1,4481	10,0	1,4545	12,3	1,4584		

ANEXO II

ÍNDICES DE REFRAÇÃO NO MONITORAMENTO DA SÍNTESE DO BIODIESEL COM E SEM CATALISADOR

1. Índices de refração obtidos no monitoramento da síntese do biodiesel à 50°C.

Com catalisador (KOCH ₃)								
t/min	n	t/min	n					
0,3	1,4720	5,6	1,4566					
0,4	1,4720	5,7	1,4557					
0,5	1,4720	5,8	1,4546					
0,6	1,4718	5,9	1,4533					
0,7	1,4712	6,0	1,4524					
0,8	1,4705	6,1	1,4515					
0,9	1,4704	6,2	1,4509					
1,0	1,4701	6,3	1,4500					
1,1	1,4700	6,4	1,4494					
1,2	1,4693	6,5	1,4488					
1,3	1,4693	6,7	1,4477					
1,4	1,4693	6,8	1,4478					
1,5	1,4693	7,0	1,4459					
1,6 1,7	1,4690 1,4689	7,2 7.3	1,4433 1,4431					
1,7	1,4685	7,3 7,5	1,4410					
2,0	1,4682	7,3 7,7	1,4405					
2,0	1,4680	7,7 7,8	1,4409					
2,3	1,4679	8,0	1,4391					
2,5	1,4676	8,2	1,4401					
2,7	1,4673	8,3	1,4389					
2,8	1,4671	8,5	1,4379					
3,0	1,4668	8,7	1,4378					
3,2	1,4664	,	,					
3,3	1,4663							
3,5	1,4660							
3,7	1,4656							
3,8	1,4653							
4,0	1,4651							
4,2	1,4651							
4,3	1,4648							
4,5	1,4641							
4,7	1,4638							
4,8	1,4633							
5,0	1,4620							
5,2	1,4605							
5,3	1,4596							
5,4	1,4587							
5,5	1,4577							

ĺ		Sem cat	alisador	
I	t/min	n	t/min	N
ĺ	0,3	1,4724	8,0	1,4636
	0,4	1,4724	8,5	1,4636
	0,5	1,4723	9,0	1,4636
	0,6	1,4720	9,5	1,4636
	0,7	1,4718	10,0	1,4636
	0,8	1,4719	11,0	1,4635
	0,9	1,4717	12,0	1,4633
	1,0	1,4715	13,0	1,4633
	1,1	1,4711	14,0	1,4627
	1,2	1,4706	15,0	1,4628
	1,3	1,4706	16,0	1,4626
	1,4	1,4701	17,0	1,4631
	1,5	1,4696	18,0	1,4629
	1,7	1,4692		
	1,8	1,4686		
	2,0	1,4683 1,4679		
	2,2 2,3	1,4678		
	2,5 2,5	1,4674		
	2,7	1,4674		
	2,8	1,4665		
	3,0	1,4662		
	3,2	1,4656		
	3,3	1,4654		
	3,5	1,4651		
	3,8	1,4645		
	4,0	1,4645		
	4,3	1,4640		
	4,5	1,4637		
	4,8	1,4633		
	5,0	1,4636		
	5,3	1,4639		
	5,7	1,4639		
	6,0	1,4637		
	6,3	1,4636		
	6,7	1,4637		
	7,0	1,4638		
	7,3	1,4636		
	7,7	1,4636		

ANEXO III

DADOS UTILIZADOS NA DETERMINAÇÃO DAS CONSTANTES DE VELOCIDADE OBSERVADA NA METANÓLISE DO ÓLEO DE SOJA

1. Catalisador e temperatura: NaOCH $_3$ à 60°C.

Réplica 01				-		Ré	olica 02	
Δn_{total}^{a}	-0,0100			•	Δn_{total}^{a}	-0,0108		
n_0	1,4604				n_0	1,4606		
n	1,4504 ^b				n	1,4498 ^b		
t//s	n _t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$	•	t//s	n _t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$
0	1,4604	-0,0100	1,0000		0	1,4606	-0,0108	1,0000
10	1,4597	-0,0093	0,9300		11	1,4600	-0,0102	0,9444
16	1,4593	-0,0089	0,8900		20	1,4591	-0,0093	0,8611
23	1,4588	-0,0084	0,8400		27	1,4580	-0,0082	0,7593
30	1,4579	-0,0075	0,7500		34	1,4572	-0,0074	0,6852
39	1,4574	-0,0070	0,7000		41	1,4561	-0,0063	0,5833
49	1,4561	-0,0057	0,5700		48	1,4551	-0,0053	0,4907
56	1,4548	-0,0044	0,4400		54	1,4538	-0,0040	0,3704
64	1,4536	-0,0032	0,3200		61	1,4527	-0,0029	0,2685
71	1,4530	-0,0026	0,2600		67	1,4519	-0,0021	0,1944
80	1,4518	-0,0014	0,1400		73	1,4508	-0,0010	0,0926
88	1,4512	-0,0008	0,0800		79	1,4501	-0,0003	0,0278
95	1,4509	-0,0005	0,0500		85	1,4497	0,0001	-0,0093
102	1,4505	-0,0001	0,0100		91	1,4496	0,0002	-0,0185
108	1,4502	0,0002	-0,0200					
115	1,4505	-0,0001	0,0100					
124	1,4504	0,0000	0,0000					

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

1. Catalisador e temperatura: NaOCH₃ à 60°C (continuação).

	Réplica 03						
Δn_{total}^{a}	-0,0121						
n_0	1,4603						
Ν	1,4482 ^b						
t'/s	n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$				
0	1,4603	-0,0121	1,0000				
7	1,4600	-0,0118	0,9752				
13	1,4596	-0,0114	0,9421				
20	1,4593	-0,0111	0,9174				
28	1,4584	-0,0102	0,8430				
34	1,4575	-0,0093	0,7686				
40	1,4565	-0,0083	0,6860				
47	1,4559	-0,0077	0,6364				
62	1,4532	-0,0050	0,4132				
69	1,4517	-0,0035	0,2893				
77	1,4506	-0,0024	0,1983				
87	1,4499	-0,0017	0,1405				
97	1,4494	-0,0012	0,0992				
107	1,4482	-0,0000	0,0000				
147	1,4483	-0,0001	0,0083				
157	1,4482	-0,0000	0,0000				
167	1,4483	-0,0001	0,0083				
177	1,4480	0,0002	-0,0165				
197	1,4483	-0,0001	0,0083				

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

2. Catalisador e temperatura: NaOCH₃ à 50°C.

	Rén	olica 01			Réi	plica 02	
Δn_{total}^{a}	-0,0121			Δn_{total}^{a}	-0,0128	51104 OZ	
n_0	1,4606			n_0	1,4615		
n	1,4485 ^b			n	1,4487 ^b		
t//s	n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$		n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$
0	1,4606	-0,0121	1,0000	0	1,4615	-0,0128	1,0000
10	1,4598	-0,0113	0,9339	10	1,4610	-0,0123	0,9609
19	1,4589	-0,0104	0,8595	20	1,4605	-0,0118	0,9219
27	1,4582	-0,0097	0,8017	29	1,4599	-0,0112	0,8750
35	1,4571	-0,0086	0,7107	36	1,4596	-0,0109	0,8516
45	1,4558	-0,0073	0,6033	45	1,4590	-0,0103	0,8047
55	1,4540	-0,0055	0,4545	55	1,4579	-0,0092	0,7187
65	1,4533	-0,0048	0,3967	63	1,4570	-0,0083	0,6484
76	1,4522	-0,0037	0,3058	70	1,4564	-0,0077	0,6016
133	1,4518	-0,0033	0,2727	77	1,4557	-0,0070	0,5469
141	1,4509	-0,0024	0,1983	88	1,4540	-0,0053	0,4141
150	1,4503	-0,0018	0,1488	96	1,4531	-0,0044	0,3437
158	1,4502	-0,0017	0,1405	102	1,4523	-0,0036	0,2812
166	1,4488	-0,0003	0,0248	110	1,4517	-0,0030	0,2344
174	1,4490	-0,0005	0,0413	119	1,4502	-0,0015	0,1172
182	1,4491	-0,0006	0,0496	127	1,4501	-0,0014	0,1094
190	1,4486	-0,0001	0,0083	134	1,4503	-0,0016	0,1250
200	1,4490	-0,0005	0,0413	142	1,4499	-0,0012	0,0937
210	1,4492	-0,0007	0,0579	149	1,4494	-0,0007	0,0547
220	1,4491	-0,0006	0,0496	160	1,4492	-0,0005	0,0391
230	1,4486	-0,0001	0,0083	170	1,4488	-0,0001	0,0078
240	1,4483	0,0002	-0,0165	180	1,4485	0,0002	-0,0156
250	1,4485	-0,0000	0,0000	190	1,4487	-0,0000	0,0000
				200	1,4486	0,0001	-0,0078
				210	1,4485	0,0002	-0,0156
				220	1,4425	-0,0062	-0,4844
				230	1,4490	-0,0003	0,0234
				240	1,4537	-0,0050	0,3906
				250	1,4495	-0,0008	0,0625
				260	1,4494	-0,0007	0,0547
				270	1,4490	-0,0003	0,0234
				280	1,4489	-0,0002	0,0156
				290	1,4485	0,0002	-0,0156
				300	1,4486	0,0001	-0,0078

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

2. Catalisador e temperatura: NaOCH₃ à 50°C (continuação).

Réplica 03							
Δn_{total}^{a}	-0,0132						
n_0	1,4621						
n	1,4489 ^b						
t'/s	n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$				
0	1,4621	-0,0132	1,0000				
20	1,4608	-0,0119	0,9015				
28	1,4597	-0,0108	0,8182				
36	1,4592	-0,0103	0,7803				
44	1,4581	-0,0092	0,6970				
52	1,4562	-0,0073	0,5530				
61	1,4555	-0,0066	0,5000				
69	1,4542	-0,0053	0,4015				
79	1,4530	-0,0041	0,3106				
91	1,4521	-0,0032	0,2424				
100	1,4515	-0,0026	0,1970				
110	1,4510	-0,0021	0,1591				
118	1,4503	-0,0014	0,1061				
126	1,4506	-0,0017	0,1288				
133	1,4495	-0,0006	0,0455				
141	1,4496	-0,0007	0,0530				
150	1,4493	-0,0004	0,0303				
160	1,4494	-0,0005	0,0379				
170	1,4495	-0,0006	0,0455				
180	1,4496	-0,0007	0,0530				
190	1,4493	-0,0004	0,0303				
200	1,4489	-0,0000	0,0000				
220	1,4486	0,0003	-0,0227				

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

3. Catalisador e temperatura: NaOCH $_3$ à 40°C.

Réplica 01			Réplica 02				
Δn_{total}^{a}	-0,0114			Δn_{total}^{a}	-0,0119		
n_0	1,4619			n_0	1,4633		
n	1,4505 ^b			n	1,4514 ^b		
t′/s	n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$	t′/s	n _t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$
0	1,4619	-0,0114	1,0000	0	1,4633	-0,0119	1,0000
20	1,4613	-0,0108	0,9474	40	1,4612	-0,0098	0,8235
35	1,4607	-0,0102	0,8947	55	1,4598	-0,0084	0,7059
45	1,4606	-0,0101	0,8860	64	1,4591	-0,0077	0,6471
57	1,4600	-0,0095	0,8333	73	1,4587	-0,0073	0,6134
67	1,4597	-0,0092	0,8070	80	1,4576	-0,0062	0,5210
77	1,4592	-0,0087	0,7632	91	1,4582	-0,0068	0,5714
86	1,4587	-0,0082	0,7193	100	1,4573	-0,0059	0,4958
94	1,4586	-0,0081	0,7105	110	1,4564	-0,0050	0,4202
103	1,4578	-0,0073	0,6404	118	1,4559	-0,0045	0,3782
114	1,4569	-0,0064	0,5614	156	1,4532	-0,0018	0,1513
121	1,4569	-0,0064	0,5614	165	1,4531	-0,0017	0,1429
130	1,4558	-0,0053	0,4649	173	1,4527	-0,0013	0,1092
140	1,4552	-0,0047	0,4123	181	1,4526	-0,0012	0,1008
150	1,4545	-0,0040	0,3509	205	1,4515	-0,0001	0,0084
160	1,4540	-0,0035	0,3070	218	1,4517	-0,0003	0,0252
170	1,4535	-0,0030	0,2632	236	1,4513	0,0001	-0,0084
191	1,4521	-0,0016	0,1404	250	1,4513	0,0001	-0,0084
207	1,4513	-0,0008	0,0702	260	1,4516	-0,0002	0,0168
227	1,4502	0,0003	-0,0263				
248	1,4360	0,0145	-1,2719				
260	1,4504	0,0001	-0,0088				
270	1,4462	0,0043	-0,3772				
280	1,4497	0,0008	-0,0702				
309	1,4509	-0,0004	0,0351				
327	1,4500	0,0005	-0,0439				
340	1,4506	-0,0001	0,0088				

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

3. Catalisador e temperatura: NaOCH₃ à 40°C (continuação).

Réplica 03							
Δn_{total}^{a}	-0,0110						
n_0	1,4624						
n	1,4514 ^b						
t'/s	n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$				
0	1,4624	-0,0110	1,0000				
25	1,4615	-0,0101	0,9182				
41	1,4609	-0,0095	0,8636				
50	1,4607	-0,0093	0,8455				
65	1,4603	-0,0089	0,8091				
75	1,4599	-0,0085	0,7727				
85	1,4595	-0,0081	0,7364				
95	1,4592	-0,0078	0,7091				
113	1,4582	-0,0068	0,6182				
122	1,4574	-0,0060	0,5455				
131	1,4567	-0,0053	0,4818				
141	1,4562	-0,0048	0,4364				
153	1,4554	-0,0040	0,3636				
165	1,4544	-0,0030	0,2727				
185	1,4540	-0,0026	0,2364				
196	1,4523	-0,0009	0,0818				
206	1,4523	-0,0009	0,0818				
220	1,4525	-0,0011	0,1000				
230	1,4514	-0,0000	0,0000				
240	1,4512	0,0002	-0,0182				
250	1,4517	-0,0003	0,0273				

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

ANEXO III: Dados utilizados na determinação das constantes de velocidade observada na metanólise do óleo de soja.

4. Catalisador e temperatura: NaOCH₃ à 30°C.

Réplica 01			Réplica 02				
Δn_{total}^{a}	-0,0119			Δn_{total}^{a}	-0,0123		
n_0	1,4631			n_0	1,4636		
n	1,4512 ^b			n	1,4513 ^b		
t″s	n_t	$\Delta n_{t'}$	$\Delta n_t / \Delta n_{total}$	t″s	n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$
0	1,4631	-0,0119	1,0000	0	1,4636	-0,0123	1,0000
20	1,4630	-0,0118	0,9916	120	1,4630	-0,0117	0,9512
50	1,4624	-0,0112	0,9412	133	1,4602	-0,0089	0,7236
80	1,4621	-0,0109	0,9160	145	1,4600	-0,0087	0,7073
110	1,4614	-0,0102	0,8571	155	1,4598	-0,0085	0,6911
140	1,4605	-0,0093	0,7815	170	1,4593	-0,0080	0,6504
161	1,4599	-0,0087	0,7311	180	1,4588	-0,0075	0,6098
175	1,4594	-0,0082	0,6891	195	1,4584	-0,0071	0,5772
190	1,4592	-0,0080	0,6723	209	1,4580	-0,0067	0,5447
210	1,4582	-0,0070	0,5882	225	1,4576	-0,0063	0,5122
225	1,4581	-0,0069	0,5798	240	1,4571	-0,0058	0,4715
245	1,4572	-0,0060	0,5042	255	1,4564	-0,0051	0,4146
260	1,4567	-0,0055	0,4622	270	1,4562	-0,0049	0,3984
275	1,4563	-0,0051	0,4286	290	1,4558	-0,0045	0,3659
295	1,4556	-0,0044	0,3697	310	1,4543	-0,0030	0,2439
320	1,4544	-0,0032	0,2689	350	1,4532	-0,0019	0,1545
350	1,4535	-0,0023	0,1933	361	1,4529	-0,0016	0,1301
380	1,4527	-0,0015	0,1261	380	1,4524	-0,0011	0,0894
410	1,4521	-0,0009	0,0756	400	1,4522	-0,0009	0,0732
440	1,4531	-0,0019	0,1597	420	1,4516	-0,0003	0,0244
470	1,4517	-0,0005	0,0420	440	1,4510	0,0003	-0,0244
500	1,4512	-0,0000	0,0000	470	1,4511	0,0002	-0,0163
560	1,4508	0,0004	-0,0336	480	1,4515	-0,0002	0,0163
				510	1,4515	-0,0002	0,0163
				540	1,4501	0,0012	-0,0976
				570	1,4504	0,0009	-0,0732
				630	1,4519	-0,0006	0,0488
				660	1,4515	-0,0002	0,0163

 $^{^{}a}\Delta n_{total} = n_{0} - n; ^{b}$ determinado pela média aritmética dos três últimos pontos da curva.

4. Catalisador e temperatura: NaOCH₃ à 30°C (continuação).

Réplica 03							
Δn_{total}^{a}	-0,0123						
n_0	1,4630						
n	1,4507 ^b						
t'/s	n_t	$\Delta n_{t'}$	$\Delta n_t / \Delta n_{total}$				
0	1,4630	-0,0123	1,0000				
60	1,4620	-0,0113	0,9187				
120	1,4602	-0,0095	0,7724				
135	1,4597	-0,0090	0,7317				
150	1,4593	-0,0086	0,6992				
165	1,4588	-0,0081	0,6585				
180	1,4584	-0,0077	0,6260				
195	1,4577	-0,0070	0,5691				
210	1,4575	-0,0068	0,5528				
225	1,4568	-0,0061	0,4959				
240	1,4559	-0,0052	0,4228				
255	1,4557	-0,0050	0,4065				
270	1,4551	-0,0044	0,3577				
285	1,4549	-0,0042	0,3415				
315	1,4536	-0,0029	0,2358				
330	1,4533	-0,0026	0,2114				
345	1,4529	-0,0022	0,1789				
360	1,4524	-0,0017	0,1382				
375	1,4520	-0,0013	0,1057				
390	1,4522	-0,0015	0,1220				
420	1,4518	-0,0011	0,0894				
450	1,4512	-0,0005	0,0407				
480	1,4511	-0,0004	0,0325				
510	1,4509	-0,0002	0,0163				
540	1,4507	-0,0000	0,0000				
600	1,4504	0,0003	-0,0244				

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

5. Catalisador e temperatura: KOCH₃ à 60°C.

Réplica 01			Réplica 02				
Δn_{total}^{a}	-0,0102			Δn_{total}^{a}	-0,0124		
n_0	1,4604			n_0	1,4619		
n	1,4502 ^b			n	1,4495 ^b		
t″s	n _t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$	t'/s	n_t	$\Delta n_{t'}$	$\Delta n_t / \Delta n_{total}$
0	1,4604	-0,0102	1,0000	0	1,4619	-0,0124	1,0000
10	1,4593	-0,0091	0,8922	20	1,4606	-0,0111	0,8952
16	1,4582	-0,0080	0,7843	27	1,4594	-0,0099	0,7984
23	1,4568	-0,0066	0,6471	33	1,4586	-0,0091	0,7339
29	1,4556	-0,0054	0,5294	40	1,4573	-0,0078	0,6290
42	1,4538	-0,0036	0,3529	46	1,4560	-0,0065	0,5242
56	1,4532	-0,0030	0,2941	53	1,4546	-0,0051	0,4113
62	1,4516	-0,0014	0,1373	59	1,4532	-0,0037	0,2984
68	1,4505	-0,0003	0,0294	65	1,4519	-0,0024	0,1935
76	1,4500	0,0002	-0,0196	72	1,4510	-0,0015	0,1210
82	1,4501	0,0001	-0,0098	79	1,4501	-0,0006	0,0484
				85	1,4494	0,0001	-0,0081
				91	1,4490	0,0005	-0,0403
				100	1,4478	0,0017	-0,1371
				110	1,4508	-0,0013	0,1048
				120	1,4468	0,0027	-0,2177
				130	1,4497	-0,0002	0,0161
				140	1,4497	-0,0002	0,0161
				150	1,4491	0,0004	-0,0323

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

5. Catalisador e temperatura: KOCH₃ à 60°C (continuação).

	Réplica 03							
Δn_{total}^{a}	-0,0105							
n_0	1,4607							
n	1,4502 ^b							
t'/s	n_t	$\Delta n_{t'}$	$\Delta n_t / \Delta n_{total}$					
0	1,4607	-0,0105	1,0000					
8	1,4605	-0,0103	0,9810					
14	1,4603	-0,0101	0,9619					
24	1,4591	-0,0089	0,8476					
31	1,4585	-0,0083	0,7905					
37	1,4581	-0,0079	0,7524					
44	1,4571	-0,0069	0,6571					
50	1,4559	-0,0057	0,5429					
57	1,4541	-0,0039	0,3714					
64	1,4526	-0,0024	0,2286					
70	1,4514	-0,0012	0,1143					
76	1,4508	-0,0006	0,0571					
83	1,4503	-0,0001	0,0095					
90	1,4495	0,0007	-0,0667					

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

6. Catalisador e temperatura: $KOCH_3$ à $50^{\circ}C$.

	Ré _l	plica 01		Réplica 02			
Δn_{total}^{a}	-0,0143			Δn_{tota}	-0,0123		
n_0	1,4613			n_0	1,4613		
n	1,4470 ^b			n	1,4490 ^b		
t'/s	n_t	$\Delta n_{t'}$	$\Delta n_t / \Delta n_{total}$	t'/s	n_t	$\Delta n_{t'}$	$\Delta n_t / \Delta n_{total}$
0	1,4613	-0,0143	1,0000	0	1,4613	-0,0123	1,0000
15	1,4606	-0,0136	0,9510	10	1,4609	-0,0119	0,9675
30	1,4601	-0,0131	0,9161	20	1,4598	-0,0108	0,8780
38	1,4592	-0,0122	0,8531	28	1,4592	-0,0102	0,8293
50	1,4570	-0,0100	0,6993	36	1,4582	-0,0092	0,7480
56	1,4560	-0,0090	0,6294	44	1,4572	-0,0082	0,6667
63	1,4549	-0,0079	0,5524	52	1,4562	-0,0072	0,5854
69	1,4539	-0,0069	0,4825	61	1,4538	-0,0048	0,3902
75	1,4530	-0,0060	0,4196	70	1,4527	-0,0037	0,3008
82	1,4522	-0,0052	0,3636	80	1,4519	-0,0029	0,2358
88	1,4515	-0,0045	0,3147	87	1,4510	-0,0020	0,1626
95	1,4505	-0,0035	0,2448	95	1,4505	-0,0015	0,1220
102	1,4495	-0,0025	0,1748	103	1,4501	-0,0011	0,0894
108	1,4490	-0,0020	0,1399	110	1,4492	-0,0002	0,0163
114	1,4482	-0,0012	0,0839	117	1,4491	-0,0001	0,0081
125	1,4479	-0,0009	0,0629	125	1,4487	0,0003	-0,0244
135	1,4467	0,0003	-0,0210	165	1,4493	-0,0003	0,0244
145	1,4465	0,0005	-0,0350	175	1,4491	-0,0001	0,0081

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

6. Catalisador e temperatura: KOCH₃ à 50°C (continuação).

	Réplica 03								
Δn_{total}^{a}	-0,0127								
n_0	1,4623								
n	1,4496 ^b								
t'/s	n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$						
0	1,4623	0,0127	1,0000						
20	1,4614	0,0118	0,9291						
36	1,4606	0,0110	0,8661						
48	1,4580	0,0084	0,6614						
56	1,4574	0,0078	0,6142						
65	1,4555	0,0059	0,4646						
73	1,4536	0,0040	0,3150						
82	1,4527	0,0031	0,2441						
92	1,4516	0,0020	0,1575						
99	1,4505	0,0009	0,0709						
107	1,4499	0,0003	0,0236						
115	1,4498	0,0002	0,0157						
130	1,4493	-0,0003	-0,0236						
141	1,4496	0,0000	0,0000						
150	1,4494	-0,0002	-0,0157						
160	1,4496	0,0000	0,0000						
180	1,4497	0,0001	0,0079						

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

7. Catalisador e temperatura: KOCH₃ à 40°C.

	Rép	olica 01		Réplica 02				
Δn_{total}^{a}	-0,0131			_	Δn_{total}^{a}	-0,0132		
n_0	1,4625				n_0	1,4627		
n	1,4494 ^b				n	1,4495 ^b		
t'/s	n _t	$\Delta n_{t'}$	$\Delta n_t / \Delta n_{total}$		t″s	n _t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$
0	1,4625	-0,0131	1,0000		0	1,4627	-0,0132	1,0000
20	1,4611	-0,0117	0,8931		15	1,4617	-0,0122	0,9242
35	1,4597	-0,0103	0,7863		23	1,4614	-0,0119	0,9015
42	1,4590	-0,0096	0,7328		32	1,4611	-0,0116	0,8788
48	1,4585	-0,0091	0,6947		45	1,4597	-0,0102	0,7727
56	1,4578	-0,0084	0,6412		55	1,4593	-0,0098	0,7424
63	1,4565	-0,0071	0,5420		65	1,4583	-0,0088	0,6667
70	1,4556	-0,0062	0,4733		75	1,4570	-0,0075	0,5682
77	1,4548	-0,0054	0,4122		82	1,4565	-0,0070	0,5303
83	1,4543	-0,0049	0,3740		89	1,4552	-0,0057	0,4318
110	1,4528	-0,0034	0,2595		100	1,4541	-0,0046	0,3485
120	1,4519	-0,0025	0,1908		108	1,4527	-0,0032	0,2424
130	1,4503	-0,0009	0,0687		115	1,4520	-0,0025	0,1894
140	1,4503	-0,0009	0,0687		123	1,4516	-0,0021	0,1591
158	1,4500	-0,0006	0,0458		131	1,4507	-0,0012	0,0909
180	1,4496	-0,0002	0,0153		140	1,4494	0,0001	-0,0076
207	1,4501	-0,0007	0,0534		150	1,4517	-0,0022	0,1667
215	1,4499	-0,0005	0,0382		160	1,4506	-0,0011	0,0833
225	1,4492	0,0002	-0,0153		170	1,4509	-0,0014	0,1061
233	1,4497	-0,0003	0,0229		180	1,4506	-0,0011	0,0833
240	1,4494	-0,0000	0,0000		190	1,4502	-0,0007	0,0530
					200	1,4490	0,0005	-0,0379
					220	1,4494	0,0001	-0,0076
					230	1,4491	0,0004	-0,0303
					240	1,4499	-0,0004	0,0303

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

7. Catalisador e temperatura: KOCH₃ à 40°C (continuação).

	Réplica 03								
Δn_{total}^{a}	-0,0150								
n_0	1,4626								
n	1,4476 ^b								
t'/s	n_t	$\Delta n_{t'}$	$\Delta n_t / \Delta n_{total}$						
0	1,4626	-0,0150	1,0000						
20	1,4615	-0,0139	0,9267						
40	1,4597	-0,0121	0,8067						
47	1,4590	-0,0114	0,7600						
55	1,4581	-0,0105	0,7000						
61	1,4572	-0,0096	0,6400						
68	1,4563	-0,0087	0,5800						
74	1,4549	-0,0073	0,4867						
81	1,4540	-0,0064	0,4267						
88	1,4533	-0,0057	0,3800						
96	1,4521	-0,0045	0,3000						
104	1,4512	-0,0036	0,2400						
112	1,4505	-0,0029	0,1933						
118	1,4501	-0,0025	0,1667						
125	1,4494	-0,0018	0,1200						
131	1,4490	-0,0014	0,0933						
140	1,4488	-0,0012	0,0800						
150	1,4483	-0,0007	0,0467						
160	1,4478	-0,0002	0,0133						
170	1,4475	0,0001	-0,0067						
180	1,4474	0,0002	-0,0133						

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

ANEXO III: Dados utilizados na determinação das constantes de velocidade observada na metanólise do óleo de soja.

8. Catalisador e temperatura: KOCH₃ à 30°C.

	Ré	plica 01		Réplica 02			
Δn_{total}^{a}	-0,0132			Δn_{tot}	a ^a -0,0127	,	
n_0	1,4626			n_0	1,4615		
n	1,4494 ^b			n	1,4488 ^t	Ò	
t″s	n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$	t'	's n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$
0	1,4626	-0,0132	1,0000	0	1,4615	-0,0127	1,0000
30	1,4621	-0,0127	0,9621	20	1,4614	-0,0126	0,9921
60	1,4614	-0,0120	0,9091	42	1,4608	-0,0120	0,9449
75	1,4610	-0,0116	0,8788	60	1,4598	-0,0110	0,8661
90	1,4602	-0,0108	0,8182	75	1,4593	-0,0105	0,8268
100	1,4600	-0,0106	0,8030	90	1,4589	-0,0101	0,7953
110	1,4593	-0,0099	0,7500	105	1,4578	-0,0090	0,7087
120	1,4591	-0,0097	0,7348	120	1,4570	-0,0082	0,6457
130	1,4585	-0,0091	0,6894	135	1,4563	-0,0075	0,5906
140	1,4577	-0,0083	0,6288	150	1,4559	-0,0071	0,5591
149	1,4572	-0,0078	0,5909	165	1,4549	-0,0061	0,4803
160	1,4567	-0,0073	0,5530	180	1,4538	-0,0050	0,3937
173	1,4560	-0,0066	0,5000	195	1,4525	-0,0037	0,2913
187	1,4556	-0,0062	0,4697	210	1,4518	-0,0030	0,2362
200	1,4541	-0,0047	0,3561	225	1,4511	-0,0023	0,1811
215	1,4533	-0,0039	0,2955	240	1,4502	-0,0014	0,1102
230	1,4523	-0,0029	0,2197	255	1,4490	-0,0002	0,0157
245	1,4517	-0,0023	0,1742	270	1,4491	-0,0003	0,0236
260	1,4507	-0,0013	0,0985	285	1,4499	-0,0011	0,0866
270	1,4496	-0,0002	0,0152	300	1,4500	-0,0012	0,0945
285	1,4511	-0,0017	0,1288	316	1,4492	-0,0004	0,0315
300	1,4499	-0,0005	0,0379	330	1,4484	0,0004	-0,0315
315	1,4497	-0,0003	0,0227	345	1,4482	0,0006	-0,0472
330	1,4491	0,0003	-0,0227	360	1,4488	-0,0000	0,0000
345	1,4495	-0,0001	0,0076				
360	1,4491	0,0003	-0,0227				
375	1,4495	-0,0001	0,0076				

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

8. Catalisador e temperatura: KOCH₃ à 30°C (continuação).

Réplica 03								
Δn_{total}^{a}	-0,0120							
n_0	1,4616							
n	1,4496 ^b							
t'/s	n _t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$					
0	1,4616	-0,0120	1,0000					
30	1,4614	-0,0118	0,9833					
60	1,4604	-0,0108	0,9000					
75	1,4597	-0,0101	0,8417					
85	1,4592	-0,0096	0,8000					
95	1,4586	-0,0090	0,7500					
105	1,4576	-0,0080	0,6667					
115	1,4565	-0,0069	0,5750					
125	1,4558	-0,0062	0,5167					
135	1,4547	-0,0051	0,4250					
145	1,4539	-0,0043	0,3583					
155	1,4536	-0,0040	0,3333					
165	1,4533	-0,0037	0,3083					
180	1,4528	-0,0032	0,2667					
195	1,4514	-0,0018	0,1500					
205	1,4513	-0,0017	0,1417					
215	1,4512	-0,0016	0,1333					
225	1,4486	0,0010	-0,0833					
235	1,4516	-0,0020	0,1667					
245	1,4498	-0,0002	0,0167					
255	1,4491	0,0005	-0,0417					
270	1,4506	-0,0010	0,0833					
285	1,4501	-0,0005	0,0417					
300	1,4487	0,0009	-0,0750					
315	1,4490	0,0006	-0,0500					
330	1,4483	0,0013	-0,1083					
345	1,4495	0,0001	-0,0083					
360	1,4497	-0,0001	0,0083					
375	1,4495	0,0001	-0,0083					

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

ANEXO III: Dados utilizados na determinação das constantes de velocidade observada na metanólise do óleo de soja.

9. Catalisador e temperatura: NaOH à 60°C.

Réplica 01				Ré	plica 02		
Δn_{total}^{a}	-0,0117			Δn_{total}^{a}	-0,0104		
n_0	1,4618			n_0	1,4608		
n	1,4501 ^b			n	1,4504 ^b		
t″s	n _t	∆n _{t′}	$\Delta n_t / \Delta n_{total}$	t'/s	n _t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$
0	1,4608	-0,0107	0,9145	0	1,4608	-0,0104	1,0000
15	1,4595	-0,0094	0,8034	7	1,4605	-0,0101	0,9712
22	1,4588	-0,0087	0,7436	15	1,4600	-0,0096	0,9231
30	1,4584	-0,0083	0,7094	23	1,4597	-0,0093	0,8942
39	1,4583	-0,0082	0,7009	29	1,4589	-0,0085	0,8173
50	1,4581	-0,0080	0,6838	36	1,4586	-0,0082	0,7885
57	1,4577	-0,0076	0,6496	42	1,4584	-0,0080	0,7692
64	1,4574	-0,0073	0,6239	48	1,4584	-0,0080	0,7692
72	1,4565	-0,0064	0,5470	54	1,4581	-0,0077	0,7404
80	1,4554	-0,0053	0,4530	61	1,4575	-0,0071	0,6827
90	1,4545	-0,0044	0,3761	67	1,4569	-0,0065	0,6250
100	1,4537	-0,0036	0,3077	73	1,4562	-0,0058	0,5577
110	1,4530	-0,0029	0,2479	79	1,4554	-0,0050	0,4808
120	1,4525	-0,0024	0,2051	86	1,4548	-0,0044	0,4231
130	1,4519	-0,0018	0,1538	92	1,4543	-0,0039	0,3750
140	1,4515	-0,0014	0,1197	98	1,4536	-0,0032	0,3077
150	1,4510	-0,0009	0,0769	105	1,4532	-0,0028	0,2692
160	1,4506	-0,0005	0,0427	112	1,4526	-0,0022	0,2115
170	1,4504	-0,0003	0,0256	120	1,4521	-0,0017	0,1635
180	1,4502	-0,0001	0,0085	130	1,4517	-0,0013	0,1250
190	1,4501	-0,0000	0,0000	140	1,4513	-0,0009	0,0865
200	1,4502	-0,0001	0,0085	150	1,4510	-0,0006	0,0577
210	1,4499	0,0002	-0,0171	160	1,4506	-0,0002	0,0192
220	1,4501	-0,0000	0,0000	170	1,4503	,0001	-0,0096
				180	1,4502	0,0002	-0,0192
				190	1,4502	0,0002	-0,0192
				200	1,4505	-0,0001	0,0096
				210	1,4505	-0,0001	0,0096

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

9. Catalisador e temperatura: NaOH à 60°C (continuação).

Réplica 03								
Δn_{total}^{a}	0,0111							
n_0	1,4608							
n	1,4497 ^b							
t'/s	n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$					
0	1,4608	0,0111	1,0000					
7	1,4604	0,0107	0,9640					
17	1,4600	0,0103	0,9279					
24	1,4594	0,0097	0,8739					
30	1,4593	0,0096	0,8649					
38	1,4593	0,0096	0,8649					
48	1,4592	0,0095	0,8559					
58	1,4582	0,0085	0,7658					
70	1,4567	0,0070	0,6306					
80	1,4559	0,0062	0,5586					
90	1,4557	0,0060	0,5405					
100	1,4547	0,0050	0,4505					
110	1,4535	0,0038	0,3423					
120	1,4526	0,0029	0,2613					
130	1,4521	0,0024	0,2162					
140	1,4514	0,0017	0,1532					
150	1,4507	0,0010	0,0901					
160	1,4502	0,0005	0,0450					
170	1,4498	0,0001	0,0090					
180	1,4497	0,0000	0,0000					
190	1,4496	-0,0001	-0,0090					

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

10. Catalisador e temperatura: NaOH à 50°C.

	Rép	olica 01		Réplica 02			
Δn_{total}^{a}	-0,0121			Δn_{total}^{a}	-0,0122		
n_0	1,4626			n_0	1,4630		
n	1,4505 ^b			n	1,4508 ^b		
t'/s	n _t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$	t//s	n _t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$
0	1,4626	-0,0121	1,0000	0	1,4630	-0,0122	1,0000
20	1,4620	-0,0115	0,9504	40	1,4617	-0,0109	0,8934
40	1,4612	-0,0107	0,8843	60	1,4603	-0,0095	0,7787
60	1,4605	-0,0100	0,8264	70	1,4595	-0,0087	0,7131
70	1,4601	-0,0096	0,7934	80	1,4585	-0,0077	0,6311
83	1,4593	-0,0088	0,7273	90	1,4575	-0,0067	0,5492
100	1,4582	-0,0077	0,6364	100	1,4567	-0,0059	0,4836
110	1,4576	-0,0071	0,5868	110	1,4558	-0,0050	0,4098
120	1,4569	-0,0064	0,5289	120	1,4551	-0,0043	0,3525
130	1,4562	-0,0057	0,4711	130	1,4540	-0,0032	0,2623
140	1,4555	-0,0050	0,4132	140	1,4536	-0,0028	0,2295
150	1,4545	-0,0040	0,3306	150	1,4528	-0,0020	0,1639
160	1,4538	-0,0033	0,2727	160	1,4524	-0,0016	0,1311
188	1,4523	-0,0018	0,1488	170	1,4519	-0,0011	0,0902
198	1,4518	-0,0013	0,1074	180	1,4513	-0,0005	0,0410
210	1,4516	-0,0011	0,0909	195	1,4509	-0,0001	0,0082
225	1,4511	-0,0006	0,0496	210	1,4503	0,0005	-0,0410
240	1,4512	-0,0007	0,0579	225	1,4502	0,0006	-0,0492
260	1,4506	-0,0001	0,0083	240	1,4506	0,0002	-0,0164
280	1,4503	0,0002	-0,0165	260	1,4511	-0,0003	0,0246
300	1,4510	-0,0005	0,0413	280	1,4506	0,0002	-0,0164
320	1,4501	0,0004	-0,0331				
340	1,4508	-0,0003	0,0248				
360	1,4507	-0,0002	0,0165				

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

10. Catalisador e temperatura: NaOH à 50°C (continuação).

	Réplica 03								
Δn_{total}^{a}	-0,0124								
n_0	1,4627								
n	1,4503 ^b								
t'/s	n_t	$\Delta n_{t'}$	$\Delta n_t / \Delta n_{total}$						
0	1,4627	-0,0124	1,0000						
20	1,4622	-0,0119	0,9597						
50	1,4608	-0,0105	0,8468						
65	1,4603	-0,0100	0,8065						
80	1,4595	-0,0092	0,7419						
90	1,4590	-0,0087	0,7016						
100	1,4583	-0,0080	0,6452						
111	1,4570	-0,0067	0,5403						
120	1,4563	-0,0060	0,4839						
130	1,4554	-0,0051	0,4113						
140	1,4545	-0,0042	0,3387						
150	1,4539	-0,0036	0,2903						
160	1,4531	-0,0028	0,2258						
170	1,4525	-0,0022	0,1774						
180	1,4521	-0,0018	0,1452						
195	1,4519	-0,0016	0,1290						
210	1,4515	-0,0012	0,0968						
225	1,4510	-0,0007	0,0565						
240	1,4506	-0,0003	0,0242						
260	1,4500	0,0003	-0,0242						
280	1,4504	-0,0001	0,0081						

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

11. Catalisador e temperatura: NaOH à 40°C.

Réplica 01			Réplica 02				
Δn_{total}^{a}	·	piica o i		Δn_{total}^{a}		piica uz	
n_0	-0,0129			n_0	-0,0129		
n	1,4624			n	1,4626		
	1,4495 ^b				1,4497 ^b		
t//s	n _t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$	t″s	n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$
0	1,4624	-0,0129	1,0000	0	1,4626	-0,0129	1,0000
40	1,4617	-0,0122	0,9457	20	1,4623	-0,0126	0,9767
70	1,4613	-0,0118	0,9147	40	1,4616	-0,0119	0,9225
100	1,4606	-0,0111	0,8605	55	1,4609	-0,0112	0,8682
120	1,4599	-0,0104	0,8062	66	1,4607	-0,0110	0,8527
135	1,4595	-0,0100	0,7752	78	1,4603	-0,0106	0,8217
150	1,4588	-0,0093	0,7209	90	1,4596	-0,0099	0,7674
165	1,4578	-0,0083	0,6434	103	1,4594	-0,0097	0,7519
180	1,4569	-0,0074	0,5736	115	1,4576	-0,0079	0,6124
195	1,4561	-0,0066	0,5116	123	1,4573	-0,0076	0,5891
210	1,4549	-0,0054	0,4186	145	1,4564	-0,0067	0,5194
225	1,4542	-0,0047	0,3643	155	1,4561	-0,0064	0,4961
240	1,4535	-0,0040	0,3101	167	1,4552	-0,0055	0,4264
255	1,4532	-0,0037	0,2868	180	1,4539	-0,0042	0,3256
270	1,4528	-0,0033	0,2558	190	1,4530	-0,0033	0,2558
285	1,4523	-0,0028	0,2171	200	1,4529	-0,0032	0,2481
300	1,4517	-0,0022	0,1705	215	1,4524	-0,0027	0,2093
315	1,4512	-0,0017	0,1318	230	1,4512	-0,0015	0,1163
330	1,4510	-0,0015	0,1163	245	1,4511	-0,0014	0,1085
345	1,4507	-0,0012	0,0930	260	1,4507	-0,0010	0,0775
360	1,4504	-0,0009	0,0698	275	1,4508	-0,0011	0,0853
375	1,4503	-0,0008	0,0620	290	1,4501	-0,0004	0,0310
390	1,4501	-0,0006	0,0465	305	1,4499	-0,0002	0,0155
405	1,4495	-0,0000	0,000	360	1,4496	0,0001	-0,0078
420	1,4495	-0,0000	0,0000	380	1,4497	-0,0000	0,0000
435	1,4495	-0,0000	0,0000		, -	,	,

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

11. Catalisador e temperatura: NaOH à 40°C (continuação).

Réplica 03								
Δn_{total}^{a}	-0,0123							
n_0	1,4624							
n	1,4501 ^b							
t'/s	n_t	$\Delta n_{t'}$	$\Delta n_t / \Delta n_{total}$					
0	1,4624	-0,0123	1,0000					
60	1,4615	-0,0114	0,9268					
100	1,4604	-0,0103	0,8374					
120	1,4599	-0,0098	0,7967					
140	1,4592	-0,0091	0,7398					
160	1,4583	-0,0082	0,6667					
180	1,4574	-0,0073	0,5935					
200	1,4564	-0,0063	0,5122					
220	1,4555	-0,0054	0,4390					
240	1,4547	-0,0046	0,3740					
262	1,4534	-0,0033	0,2683					
280	1,4521	-0,0020	0,1626					
300	1,4523	-0,0022	0,1789					
320	1,4516	-0,0015	0,1220					
340	1,4514	-0,0013	0,1057					
360	1,4512	-0,0011	0,0894					
390	1,4506	-0,0005	0,0407					
440	1,4502	-0,0001	0,0081					
460	1,4500	0,0001	-0,0081					
480	1,4500	0,0001	-0,0081					

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

12. Catalisador e temperatura: NaOH à 30°C.

	Ré	plica 01				Ré	plica 02	
Δn_{total}^{a}	-0,0123			,	Δn_{total}^{a}	-0,0120		
n_0	1,4623				n_0	1,4624		
N	1,4500 ^b				n	1,4504 ^b		
t'/s	n_t	$\Delta n_{t'}$	$\Delta n_t / \Delta n_{total}$		t′/s	n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$
0	1,4623	-0,0123	1,0000		0	1,4624	-0,0120	1,0000
60	1,4615	-0,0115	0,9350		60	1,4619	-0,0115	0,9583
120	1,4609	-0,0109	0,8862		100	1,4615	-0,0111	0,9250
160	1,4602	-0,0102	0,8293		140	1,4609	-0,0105	0,8750
180	1,4598	-0,0098	0,7967		170	1,4604	-0,0100	0,8333
195	1,4597	-0,0097	0,7886		190	1,4602	-0,0098	0,8167
212	1,4593	-0,0093	0,7561		210	1,4597	-0,0093	0,7750
225	1,4591	-0,0091	0,7398		225	1,4595	-0,0091	0,7583
240	1,4590	-0,0090	0,7317		240	1,4592	-0,0088	0,7333
260	1,4584	-0,0084	0,6829		255	1,4588	-0,0084	0,7000
275	1,4579	-0,0079	0,6423		270	1,4585	-0,0081	0,6750
290	1,4576	-0,0076	0,6179		285	1,4582	-0,0078	0,6500
310	1,4576	-0,0076	0,6179		300	1,4579	-0,0075	0,6250
320	1,4572	-0,0072	0,5854		320	1,4572	-0,0068	0,5667
340	1,4568	-0,0068	0,5528		340	1,4559	-0,0055	0,4583
360	1,4564	-0,0064	0,5203		355	1,4552	-0,0048	0,4000
380	1,4562	-0,0062	0,5041		370	1,4549	-0,0045	0,3750
400	1,4553	-0,0053	0,4309		390	1,4543	-0,0039	0,3250
420	1,4549	-0,0049	0,3984		410	1,4538	-0,0034	0,2833
440	1,4544	-0,0044	0,3577		420	1,4538	-0,0034	0,2833
460	1,4538	-0,0038	0,3089		440	1,4532	-0,0028	0,2333
480	1,4538	-0,0038	0,3089		460	1,4527	-0,0023	0,1917
500	1,4522	-0,0022	0,1789		480	1,4523	-0,0019	0,1583
520	1,4533	-0,0033	0,2683		500	1,4521	-0,0017	0,1417
540	1,4527	-0,0027	0,2195		520	1,4519	-0,0015	0,1250
560	1,4531	-0,0031	0,2520		540	1,4514	-0,0010	0,0833
600	1,4523	-0,0023	0,1870		570	1,4511	-0,0007	0,0583
660	1,4518	-0,0018	0,1463		600	1,4508	-0,0004	0,0333
690	1,4510	-0,0010	0,0813		630	1,4512	-0,0008	0,0667
720	1,4510	-0,0010	0,0813		660	1,4512	-0,0008	0,0667
750	1,4509	-0,0009	0,0732		690	1,4508	-0,0004	0,0333
780	1,4513	-0,0013	0,1057		720	1,4507	-0,0003	0,0250
810	1,4506	-0,0006	0,0488		780	1,4500	0,0004	-0,0333
840	1,4509	-0,0009	0,0732		810	1,4501	0,0003	-0,0250
870	1,4480	0,0020	-0,1626		928	1,4479	0,0025	-0,2083
900	1,4500	0,0000	0,0000		960	1,4502	0,0002	-0,0167
930	1,4504	-0,0004	0,0325		990	1,4505	-0,0001	0,0083
960	1,4505	-0,0005	0,0407	•	1020	1,4504	-0,0000	0,0000
990	1,4503	-0,0003	0,0244					
1020	1,4499	0,0001	-0,0081					
1050	1,4503	-0,0003	0,0244					
1080	1,4498	0,0002	-0,0163					

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

12. Catalisador e temperatura: NaOH à 30°C (continuação).

Réplica 03							
Δn_{total}^{a}	-0,0110						
n_0	1,4618						
n	1,4508 ^b						
t'/s	n_t	$\Delta n_{t'}$	$\Delta n_t / \Delta n_{total}$				
0	1,4618	-0,0110	1,0000				
60	1,4611	-0,0103	0,9364				
90	1,4604	-0,0096	0,8727				
110	1,4602	-0,0094	0,8545				
130	1,4599	-0,0091	0,8273				
150	1,4599	-0,0091	0,8273				
170	1,4596	-0,0088	0,8000				
190	1,4596	-0,0088	0,8000				
210	1,4596	-0,0088	0,8000				
220	1,4596	-0,0088	0,8000				
240	1,4592	-0,0084	0,7636				
260	1,4587	-0,0079	0,7182				
280	1,4578	-0,0070	0,6364				
300	1,4570	-0,0062	0,5636				
320	1,4565	-0,0057	0,5182				
340	1,4555	-0,0047	0,4273				
380	1,4554	-0,0046	0,4182				
400	1,4551	-0,0043	0,3909				
420	1,4545	-0,0037	0,3364				
440	1,4542	-0,0034	0,3091				
460	1,4535	-0,0027	0,2455				
480	1,4530	-0,0022	0,2000				
510	1,4524	-0,0016	0,1455				
540	1,4516	-0,0008	0,0727				
560	1,4513	-0,0005	0,0455				
580	1,4511	-0,0003	0,0273				
600	1,4509	-0,0001	0,0091				
620	1,4506	0,0002	-0,0182				
640	1,4505	0,0003	-0,0273				
690	1,4509	-0,0001	0,0091				
720	1,4508	-0,0000	0,0000				
750	1,4508	-0,0000	0,0000				
780	1,4508	-0,0000	0,0000				
810	1,4509	-0,0001	0,0091				
840	1,4507	0,0001	-0,0091				

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

13. Catalisador e temperatura: KOH à 60°C.

	Réplica 01				Réplica 02			
Δn_{total}^{a}	-0,0118			Δn_{total}^{a}	-0,0125			
n_0	1,4617			n_0	1,4622			
n	1,4499 ^b			n	1,4497 ^b			
t'/s	n_t	$\Delta n_{t'}$	$\Delta n_t / \Delta n_{total}$	t'/s	n_t	$\Delta n_{t'}$	$\Delta n_t / \Delta n_{total}$	
0	1,4617	-0,0118	1,0000	0	1,4622	-0,0125	1,0000	
15	1,4606	-0,0107	0,9068	15	1,4611	-0,0114	0,9120	
25	1,4597	-0,0098	0,8305	25	1,4603	-0,0106	0,8480	
31	1,4593	-0,0094	0,7966	31	1,4599	-0,0102	0,8160	
45	1,4582	-0,0083	0,7034	38	1,4597	-0,0100	0,8000	
51	1,4578	-0,0079	0,6695	44	1,4592	-0,0095	0,7600	
78	1,4560	-0,0061	0,5169	51	1,4585	-0,0088	0,7040	
85	1,4547	-0,0048	0,4068	58	1,4573	-0,0076	0,6080	
94	1,4530	-0,0031	0,2627	65	1,4562	-0,0065	0,5200	
103	1,4523	-0,0024	0,2034	71	1,4554	-0,0057	0,4560	
110	1,4518	-0,0019	0,1610	77	1,4545	-0,0048	0,3840	
120	1,4504	-0,0005	0,0424	83	1,4539	-0,0042	0,3360	
150	1,4505	-0,0006	0,0508	91	1,4529	-0,0032	0,2560	
160	1,4507	-0,0008	0,0678	98	1,4523	-0,0026	0,2080	
170	1,4503	-0,0004	0,0339	105	1,4517	-0,0020	0,1600	
180	1,4500	-0,0001	0,0085	115	1,4510	-0,0013	0,1040	
190	1,4500	0,0001	0,0085	125	1,4507	-0,0010	0,0800	
200	1,4498	0,0001	-0,0085	135	1,4505	-0,0008	0,0640	
				145	1,4503	-0,0006	0,0480	
				155	1,4500	-0,0003	0,0240	
				165	1,4500	-0,0003	0,0240	
				175	1,4498	-0,0001	0,0080	
				185	1,4499	-0,0002	0,0160	
				195	1,4496	0,0001	-0,0080	
				205	1,4496	0,0001	-0,0080	

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

13. Catalisador e temperatura: KOH à 60°C (continuação).

Réplica 03								
Δn_{total}^{a}	-0,0125							
n_0	1,4615							
n	1,4490 ^b							
t″s	n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$					
0	1,4615	-0,0125	1,0000					
10	1,4606	-0,0116	0,9280					
20	1,4597	-0,0107	0,8560					
28	1,4593	-0,0103	0,8240					
35	1,4586	-0,0096	0,7680					
43	1,4580	-0,0090	0,7200					
50	1,4570	-0,0080	0,6400					
57	1,4564	-0,0074	0,5920					
64	1,4555	-0,0065	0,5200					
71	1,4549	-0,0059	0,4720					
80	1,4540	-0,0050	0,4000					
90	1,4529	-0,0039	0,3120					
100	1,4524	-0,0034	0,2720					
110	1,4518	-0,0028	0,2240					
120	1,4516	-0,0026	0,2080					
130	1,4511	-0,0021	0,1680					
140	1,4509	-0,0019	0,1520					
150	1,4505	-0,0015	0,1200					
160	1,4503	-0,0013	0,1040					
170	1,4501	-0,0011	0,0880					
180	1,4499	-0,0009	0,0720					
190	1,4497	-0,0007	0,0560					
200	1,4496	-0,0006	0,0480					
210	1,4491	-0,0001	0,0080					
220	1,4490	-0,0000	0,0000					
230	1,4491	-0,0001	0,0080					
240	1,4489	0,0001	-0,0080					

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

14. Catalisador e temperatura: KOH à 50°C.

	Rép	olica 01		Réplica 02			
Δn_{total}^{a}	-0,0125			Δn_{total}^{a}	-0,0135		
n_0	1,4627			n_0	1,4636		
n	1,4502 ^b			n	1,4501 ^b		
t″s	n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$	t//s	n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{tot}$
0	1,4627	-0,0125	1,0000	0	1,4636	-0,0135	1,0000
15	1,4622	-0,0120	0,9600	20	1,4627	-0,0126	0,9333
30	1,4614	-0,0112	0,8960	35	1,4616	-0,0115	0,8519
45	1,4607	-0,0105	0,8400	50	1,4606	-0,0105	0,7778
60	1,4593	-0,0091	0,7280	60	1,4596	-0,0095	0,7037
67	1,4587	-0,0085	0,6800	67	1,4591	-0,0090	0,6667
73	1,4581	-0,0079	0,6320	78	1,4577	-0,0076	0,5630
79	1,4572	-0,0070	0,5600	85	1,4565	-0,0064	0,4741
86	1,4563	-0,0061	0,4880	93	1,4556	-0,0055	0,4074
138	1,4539	-0,0037	0,2960	104	1,4545	-0,0044	0,3259
147	1,4522	-0,0020	0,1600	114	1,4538	-0,0037	0,2741
154	1,4517	-0,0015	0,1200	124	1,4532	-0,0031	0,2296
163	1,4508	-0,0006	0,0480	133	1,4535	-0,0034	0,2519
171	1,4508	-0,0006	0,0480	141	1,4528	-0,0027	0,2000
180	1,4502	-0,0000	0,0000	150	1,4532	-0,0031	0,2296
195	1,4508	-0,0006	0,0480	160	1,4524	-0,0023	0,1704
210	1,4497	0,0005	-0,0400	170	1,4522	-0,0021	0,1556
				180	1,4517	-0,0016	0,1185
				191	1,4511	-0,0010	0,0741
				200	1,4508	-0,0007	0,0519
				210	1,4507	-0,0006	0,0444
				220	1,4505	-0,0004	0,0296
				230	1,4505	-0,0004	0,0296
				250	1,4504	-0,0003	0,0222
				270	1,4503	-0,0002	0,0148
				290	1,4499	0,0002	-0,0148
				310	1,4500	0,0001	-0,0074

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

14. Catalisador e temperatura: KOH à 50°C (continuação).

Réplica 03							
Δn_{total}^{a}	-0,0137						
n_0	1,4637						
n	1,4500 ^b						
t"/s	n_t	$\Delta n_{t'}$	$\Delta n_t / \Delta n_{total}$				
0	1,4637	-0,0137	1,0000				
20	1,4629	-0,0129	0,9416				
40	1,4614	-0,0114	0,8321				
55	1,4599	-0,0099	0,7226				
61	1,4592	-0,0092	0,6715				
68	1,4586	-0,0086	0,6277				
76	1,4577	-0,0077	0,5620				
83	1,4569	-0,0069	0,5036				
90	1,4563	-0,0063	0,4599				
98	1,4551	-0,0051	0,3723				
107	1,4544	-0,0044	0,3212				
120	1,4531	-0,0031	0,2263				
130	1,4524	-0,0024	0,1752				
140	1,4520	-0,0020	0,1460				
150	1,4517	-0,0017	0,1241				
160	1,4514	-0,0014	0,1022				
170	1,4509	-0,0009	0,0657				
180	1,4508	-0,0008	0,0584				
195	1,4498	0,0002	-0,0146				
210	1,4500	-0,0000	0,0000				
240	1,4501	-0,0001	0,0073				

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

15. Catalisador e temperatura: KOH à 40°C.

Réplica 01					Ré	plica 02	
Δn_{total}^{a}	-0,0145			Δn_{total}^{a}	-0,0136		
n_0	1,4624			n_0	1,4628		
n	1,4479 ^b			n	1,4492 ^b		
t'/s	n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$	t'/s	n _t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$
0	1,4624	-0,0145	1,0000	0	1,4628	-0,0136	1,0000
60	1,4610	-0,0131	0,9034	30	1,4621	-0,0129	0,9485
90	1,4606	-0,0127	0,8759	50	1,4617	-0,0125	0,9191
120	1,4599	-0,0120	0,8276	60	1,4614	-0,0122	0,8971
145	1,4590	-0,0111	0,7655	75	1,4608	-0,0116	0,8529
170	1,4561	-0,0082	0,5655	86	1,4603	-0,0111	0,8162
180	1,4554	-0,0075	0,5172	98	1,4585	-0,0093	0,6838
202	1,4533	-0,0054	0,3724	109	1,4583	-0,0091	0,6691
209	1,4532	-0,0053	0,3655	116	1,4577	-0,0085	0,6250
216	1,4533	-0,0054	0,3724	124	1,4572	-0,0080	0,5882
230	1,4533	-0,0054	0,3724	132	1,4567	-0,0075	0,5515
240	1,4524	-0,0045	0,3103	140	1,4563	-0,0071	0,5221
250	1,4517	-0,0038	0,2621	149	1,4558	-0,0066	0,4853
260	1,4517	-0,0038	0,2621	157	1,4552	-0,0060	0,4412
287	1,4514	-0,0035	0,2414	164	1,4547	-0,0055	0,4044
300	1,4508	-0,0029	0,2000	171	1,4542	-0,0050	0,3676
311	1,4502	-0,0023	0,1586	180	1,4534	-0,0042	0,3088
320	1,4498	-0,0019	0,1310	190	1,4530	-0,0038	0,2794
340	1,4478	0,0001	-0,0069	200	1,4517	-0,0025	0,1838
360	1,4478	0,0001	-0,0069	210	1,4514	-0,0022	0,1618
380	1,4477	0,0002	-0,0138	225	1,4507	-0,0015	0,1103
400	1,4481	-0,0002	0,0138	240	1,4503	-0,0011	0,0809
420	1,4480	-0,0001	0,0069	255	1,4498	-0,0006	0,0441
				240	1,4493	-0,0001	0,0074
				285	1,4485	0,0007	-0,0515

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

do óleo de soja.

15. Catalisador e temperatura: KOH à 40°C (continuação).

Réplica 03							
Δn_{total}^{a}	-0,0143						
n_0	1,4627						
n	1,4484 ^b						
t'/s	n_t	$\Delta n_{t'}$	$\Delta n_t / \Delta n_{total}$				
0	1,4627	-0,0143	1,0000				
30	1,4618	-0,0134	0,9371				
60	1,4605	-0,0121	0,8462				
75	1,4598	-0,0114	0,7972				
90	1,4588	-0,0104	0,7273				
105	1,4576	-0,0092	0,6434				
120	1,4563	-0,0079	0,5524				
135	1,4551	-0,0067	0,4685				
143	1,4544	-0,0060	0,4196				
155	1,4536	-0,0052	0,3636				
167	1,4529	-0,0045	0,3147				
175	1,4524	-0,0040	0,2797				
181	1,4521	-0,0037	0,2587				
195	1,4514	-0,0030	0,2098				
210	1,4508	-0,0024	0,1678				
225	1,4501	-0,0017	0,1189				
240	1,4495	-0,0011	0,0769				
255	1,4490	-0,0006	0,0420				
270	1,4483	0,0001	-0,0070				
285	1,4479	0,0005	-0,0350				

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

16. Catalisador e temperatura: KOH à 30°C.

	Ré	olica 01						
Δn_{total}^{a}	-0,0136							
n_0	1,4622							
n	1,4486 ^b							
t″s	n _t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$	_		Ré	plica 02	
0	1,4622	-0,0136	1,0000	_	∆n _{total}	-0,0133	-	
60	1,4613	-0,0127	0,9338		n_0	1,4628		
90	1,4611	-0,0125	0,9191		n	1,4495 ^b		
120	1,4601	-0,0115	0,8456	_	t//s	n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$
135	1,4598	-0,0112	0,8235		0	1,4628	-0,0133	1,0000
150	1,4590	-0,0104	0,7647		90	1,4616	-0,0121	0,9098
165	1,4584	-0,0098	0,7206		120	1,4612	-0,0117	0,8797
180	1,4582	-0,0096	0,7059		150	1,4603	-0,0108	0,8120
195	1,4578	-0,0092	0,6765		180	1,4601	-0,0106	0,7970
210	1,4568	-0,0082	0,6029		195	1,4594	-0,0099	0,7444
225	1,4564	-0,0078	0,5735		205	1,4590	-0,0095	0,7143
255	1,4542	-0,0056	0,4118		215	1,4589	-0,0094	0,7068
270	1,4545	-0,0059	0,4338		225	1,4584	-0,0089	0,6692
285	1,4538	-0,0052	0,3824		240	1,4576	-0,0081	0,6090
300	1,4524	-0,0038	0,2794		250	1,4568	-0,0073	0,5489
315	1,4522	-0,0036	0,2647		260	1,4564	-0,0069	0,5188
330	1,4519	-0,0033	0,2426		270	1,4561	-0,0066	0,4962
360	1,4499	-0,0013	0,0956		285	1,4559	-0,0064	0,4812
555	1,4486	-0,0000	0,0000		300	1,4545	-0,0050	0,3759
609	1,4481	0,0005	-0,0368		315	1,4529	-0,0034	0,2556
620	1,4481	0,0005	-0,0368		330	1,4527	-0,0032	0,2406
650	1,4481	0,0005	-0,0368		380	1,4514	-0,0019	0,1429
660	1,4483	0,0003	-0,0221		400	1,4508	-0,0013	0,0977
690	1,4485	0,0001	-0,0074		420	1,4506	-0,0011	0,0827
720	1,4485	0,0001	-0,0074		440	1,4499	-0,0004	0,0301
750	1,4489	-0,0003	0,0221		460	1,4498	-0,0003	0,0226
780	1,4484	0,0002	-0,0147		480	1,4497	-0,0002	0,0150
					510	1,4499	-0,0004	0,0301
					555	1,4494	0,0001	-0,0075
					570	1,4496	-0,0001	0,0075
				٠	600	1,4496	-0,0001	0,0075

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.

16. Catalisador e temperatura: KOH à 30°C (continuação).

Réplica 03							
Δn_{total}^{a}	-0,0145						
n_0	1,4624						
n	1,4479 ^b						
t'/s	n_t	$\Delta n_{t'}$	$\Delta n_{t'}/\Delta n_{total}$				
0	1,4624	-0,0145	1,0000				
60	1,4617	-0,0138	0,9517				
90	1,4613	-0,0134	0,9241				
120	1,4607	-0,0128	0,8828				
150	1,4596	-0,0117	0,8069				
161	1,4595	-0,0116	0,8000				
170	1,4594	-0,0115	0,7931				
180	1,4591	-0,0112	0,7724				
195	1,4584	-0,0105	0,7241				
210	1,4580	-0,0101	0,6966				
225	1,4575	-0,0096	0,6621				
240	1,4562	-0,0083	0,5724				
255	1,4552	-0,0073	0,5034				
270	1,4542	-0,0063	0,4345				
285	1,4536	-0,0057	0,3931				
300	1,4535	-0,0056	0,3862				
315	1,4531	-0,0052	0,3586				
330	1,4530	-0,0051	0,3517				
360	1,4522	-0,0043	0,2966				
390	1,4504	-0,0025	0,1724				
405	1,4497	-0,0018	0,1241				
420	1,4489	-0,0010	0,0690				
435	1,4485	-0,0006	0,0414				
570	1,4483	-0,0004	0,0276				
585	1,4480	-0,0001	0,0069				
600	1,4480	-0,0001	0,0069				
615	1,4479	-0,0000	0,0000				
630	1,4479	0,0000	-0,0007				
645	1,4479	-0,0000	0,0000				
660	1,4478	0,0001	-0,0069				

 $^{^{}a}\Delta n_{total} = n_{0}$ - n; b determinado pela média aritmética dos três últimos pontos da curva.