

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE QUÍMICA Departamento de Físico-Química Programa de pós-graduação em Química

TESE DE DOUTORADO

"Biocompósitos de acetato de celulose e fibras curtas de Curauá"

De: Miguel Chávez Gutiérrez Orientadora: Profa. Dra. Maria Isabel Felisberti Co-orientador: Prof. Dr. Marco-Aurelio De Paoli

Campinas, 2011

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DO INSTITUTO DE QUÍMICA DA UNICAMP

G985b	Gutiérrez, Miguel Chávez. Biocompósitos de acetato de celulose e fibras curtas de curauá / Miguel Chávez Gutiérrez Campinas, SP: [s.n], 2011.
	Orientador: Profa. Dra. Maria Isabel Felisberti. Coorientador: Prof. Dr. Marco-Aurelio De Paoli.
	Doutorado - Universidade Estadual de Campinas, Instituto de Química.
	1. Compósitos. 2. Fibras de curauá. 3. Acetato de celulose. I. Felisberti, Maria Isabel. II. De Paoli, Marco- Aurelio. III. Universidade Estadual de Campinas. Instituto de Química. IV. Título.

Título em inglês: Biocomposites of celulose acetate and short curaua fibers

Palavras-chaves em inglês: Composites, Curaua fibers, Celulose acetate

Área de concentração: Físico-Química

Titulação: Doutor em Ciências

Banca examinadora: Profa. Dra. Maria Isabel Felisberti (orientador), Profa. Dra. Elisabete Frollini (IQSC-USP), Profa. Dra. Laura Hecker de Carvalho (DEMA-UFCG), Prof. Dr. Paulo de Tarso Vieira e Rosa (IQ-UNICAMP), Profa. Dra. Ana Rita Morales (FEQ-UNICAMP)

Data de defesa: 18/07/2011

" If there is something that I might find Look around corners Try to find peace of mind I say Where would you go if you were me
Try to keep a straight course not easy Somebody special looking at me
A certain reaction we find What should it try to be I mean If there are many Meaning the same

Brian Ferry

Agradecimientos

A la profesora Maria Isabel Felisberti por el apoyo incondicional, que me permitieron realizar mis estudios de doctorado.

A Raphael y Heitor que me hicieron sentir como en casa.

A Jose y Oscar por los momentos compartidos.

A Maria por hacerme sentir como en México.

A los profesores Marco-Aurelio De Paoli y Paulo de Tarso Rosa e Vieira, por sus contribuciones a mi trabajo.

A los técnicos del Instituto de Química, Leia, Felippe, Fabiana, Diva, Daniel, Marcia, Raquel y Cintia.

A Capes por la beca de doctorado (PEC-PG), al Instituto de Química de la UNICAMP.

A los colegas del laboratorio y todos los buenos amigos que conocí durante mi estancia en Brasil, fue un placer conocerlos...

Y finalmente, a mis padres Cipriana Gutiérrez y Dionisio Chávez, mis hermanos Laura y Markx y mis sobrinas Karla y Katia. Mi familia y amigos que siempre están conmigo.

Curriculum Vitae

Miguel Chávez Gutiérrez

Data de nascimento: 01/08/1979

Nacionalidade: Mexicana

Formação acadêmica

Doutorado

Universidade Estadual de Campinas (UNICAMP) Instituo de Química

"Biocompósitos de acetato de celulose e fibras curtas de Curauá"

Orientadora: Profa. Dra. Maria Isabel Felisberti

Período 2008-2011

Bolsista CAPES (PEC-PG)

Mestrado

Universidad Nacional Autónoma de México (UNAM) Instituto de investigaciones en

Materiales

"Estudio de nanocristales en aleaciones amorfas por resonancia ferromagnetica"

Orientador: Prof. Dr. Raul Alejandro Valenzuela Monjarras

Período 2003-2006

Bolsista CONACYT (México)

Graduação

Universidad Nacional Autónoma de México (UNAM) Facultad de Química

Período 1997-2001

Iniciação cientifica

"Mapas de Riesgos por comustibles para la Ciudad de México"

Orientador: Prof. Eduardo Marambio Dennet

Bolsista Banrural (México)

Participação em disciplinas (PED)

QF-053 Laboratório de química aplicada (2009-2) Sob-supervisão: Prof. Dr. Celso Aparecido Bertran QF-732 Fisico-quimica experimental II (2011-1) Sob-supervisão: Prof. Dr. Rene Afonso Silva Nome

Congressos

M. Chávez, H. Montiel, G. Alvarez, R. Zamorano, R. Valenzuela. "Study of the devitrification process of Co-rich amorphous alloys by ferromagnetic resonance". Soft magnetics materials 17, Bratislavia Slovaquia, 7-9 setembro 2005,

M. Chávez, H. Montiel, G. Alvarez, R. Zamorano, R. Valenzuela. "Study of the devitrification process of Co-rich amorphous alloys by microwave absorption". XV International Materials Research Congress 2006, Cancun Mexico, 21 agosto 2006, M. Chávez, M-A De Paoli, M. I. Felisberti. "Compósitos de acetato de celulose com fibras curtas de Curauá." 10 Congresso Brasileiro de Polímeros, Foz de Iguaçu, 13-17 outubro 2009

M. Chávez, M-A De Paoli, M. I. Felisberti. "Composites of cellulose acetate with short Curauá Fiber" 14th European Conference on Composite Materials, Budapest, Hungary, 7-10 Junho 2010

M. Chávez, M-A De Paoli, M. I. Felisberti. "Celulose acetate composites with Curauá fibers: Effect of fiber treatment and plasticizers". 26 Polymer Processing Society, Banff, Canada, 4-8 Julho 2010

M. Chávez, M-A De Paoli, M. I. Felisberti. "Biocomposite of cellulose acetate and short Curauá fibers: Effects of the processing conditions on mechanical and thermal properties". 7th International Symposium on Natural Polymers and Composites, Gramado, Brasil, 7-10 setembro 2010

J. Araujo, M. Chávez, M-A De Paoli, "Electrical, thermal and mechanical properties of polyamide-6 and curauá fibers coated with polyaniline composites". 7th International Symposium on Natural Polymers and Composites, Gramado, Brasil, 7-10 setembro 2010

Experiência Professional

Professor de Química, 2006 – 2007, Universidad Tecnológica de México (UNITEC) Professor de Química, 2006 – 2007, Universidad Icel (UI)

Professor de Química, Biologia e Física, 1999 – 2006, Escuelas Secundarias Técnicas (18 e 114)

Engenheiro de Projetos, 2005 Rhacor S.A. de C.V.

Resumo:

Neste trabalho foram desenvolvidos biocompósitos baseados em acetato de celulose e fibras curtas de Curauá. Os compósitos foram preparados por extrusão em escala laboratorial e piloto, sendo estudada a influência do processamento, teor de fibras, teor e tipo de plastificante e tratamento das fibras, sobre as propriedades mecânicas e térmicas. As fibras foram tratadas com solução alcalina ou submetidas à extração com acetona. O tratamento das fibras com solução alcalina resultou em mudanças na rugosidade e do diâmetro das fibras, além da remoção parcial de hemicelulose e lignina. Já as fibras extraídas com acetona apresentaram principalmente uma diminuição do diâmetro. Biocompósitos reforçados com fibras tratadas apresentaram maior modulo elástico e maior condutividade térmica com relação aos compósitos reforçados com fibras não tratadas, sendo este efeito atribuído a uma melhor adesão interfacial. Dentre os plastificantes utilizados, o ftalato de dioctila (DOP) ou citrato de trietila (TEC), o DOP mostrou-se mais eficiente, causando uma diminuição mais acentuada da temperatura de transição vítrea (Tg) e do módulo elástico, resultando em materiais com maior resistência ao impacto em relação as formulações plastificadas com TEC. Os biocompósitos preparados em escala piloto apresentaram maior ganho do módulo elástico com relação à matriz plastificada e maior resistência ao impacto, que aqueles que foram preparados em escala laboratorial, associado principalmente a fibrilação e a diminuição da razão de aspecto das fibrilas. Devido a este fato, o modelo modificado da regra das misturas (ROM) mostrou-se mais adequado para prever o comportamento do módulo elástico dos biocompósitos preparados em escala piloto. A análise termogravimétrica mostrou que a presença das fibras não modifica o comportamento termo-oxidativo do acetato de celulose plastificado. Por último, biocompósitos de acetato de celulose plastificados com DOP apresentaram maior coeficiente de expansão térmica com relação às formulações com TEC, a temperaturas abaixo e acima da Tg. Acima da Tg, biocompósitos reforçados com fibras tratadas apresentaram maiores coeficientes de expansão térmica, devido a capacidade das fibras tratadas em sorver água.

BIOCOMPOSITES BASED ON CELLULOSE ACETATE AND SHORT CURAUA FIBERS.

Abstract:

In this work, biocomposites based on cellulose acetate and short Curaua fibers were prepared by extrusion in pilot and laboratory scale. The influence of processing method, content of fiber, content and type of plasticizer and treatment of the fibers were studied. The fibers were treated with alkali or extracted with acetone. Mercerization may result in partial hemicellulose and lignin extraction and decrease of the roughness and diameter of the fibers. Fiber s extracted with acetone had lower diameter. Biocomposites with treated fibers show higher Young modulus and lower thermal conductivity than composites with pristine fibers, due to better interfacial adhesion. Cellulose acetate was plasticized with dioctyl phthalate (DOP) or triethyl citrate (TEC). DOP is a better plasticizer for cellulose acetate, exhibiting lower glass transition (Tg), lower Young modulus and higher impact strength than formulations with TEC. Biocomposites prepared in pilot scale showed higher Young modulus with respect to the matrix and lower impact strength than composites prepared in laboratory scale, due to fibrilation and decrease in the aspect ratio. From this, the model of the modified rule of mixtures (ROM) was more efficient to predict the results of the Young modulus for composites prepared in pilot scale. In the thermogravimetric analysis, the Curaua fibers do not change the thermo-oxidative behavior of plasticized cellulose acetate. Cellulose acetate biocomposites with DOP showed higher thermal expansion coefficient than formulations with TEC, below and above Tg. Above Tg, biocomposites with treated fibers showed higher thermal expansion coefficients than biocomposites with pristine fibers, due to the ability of treated fibers to absorb water.

INDICE

CAPITULO 1 – Introdução	1
1 Compósitos	1
1.1 Compósitos poliméricos	2
1.2 Biocompósitos	7
1.2.1 Polímeros biodegradáveis	8
1.2.1.1 Acetato de celulose	9
1.2.2 Fibras naturais	10
1.2.2.1 Fibras lignocelulósicas	11
1.2.2.2 Fibras de Curauá	15
1.3 Plastificantes	16
1.3.1 Ftalatos como plastificantes	17
1.3.2 Plastificantes biodegradáveis	18
Capitulo 2 – Objetivos	20
Capitulo 3 – Procedimentos experimentais	21
3.1 Materiais	21
3.1.1 Tratamentos químicos das fibras de Curauá	21
3.2 Preparação de biocompósitos em escala piloto (EP)	22
3.3 Preparação de biocompósitos em escala laboratorial (EL)	26
3.4 Caracterização dos materiais	29

3.4.1 Propriedades mecânicas	29
3.4.1.1 Ensaios de resistência a tração	29
3.4.1.2 Ensaios de resistência ao impacto	30
3.4.1.3 Analise dinâmico-mecânica (DMA)	30
3.4.2 Propriedades térmicas	31
3.4.2.1 Analise termogravimétrica (TGA)	31
3.4.2.2 Calorimetria diferencial de varredura modulada (MDSC)	31
3.4.2.3 Analise termomecânica (TMA)	31
3.4.3 Caracterização morfológica	32
3.4.3.1 Microscopia óptica de luz refletida	32
3.4.3.2 Microscopia eletrônica de varredura	32
3.4.4 Espectroscopia na região de infravermelho	32
3.4.5 Difração de raios X	32
Capitulo 4 – Resultados e discussões	33
4.1 Caracterização das Fibras de Curauá: Tratadas e não tratadas	S.
	33
4.2 Biocompósitos de Acetato de Celulose e Fibras de Curaua	á preparados em
escala piloto.	41
4.2.1 Morfologia	41
4.2.2 Propriedades mecânicas	47
4.2.3 Propriedades térmicas	53
4.3 Biocompósitos de Acetato de Celulose e Fibras de Curaux escala laboratório.	á preparados em 65

4.3.1 Morfologia	66		
4.3.2 Propriedades mecânicas	74		
4.3.3 Propriedades térmicas	80		
4.4 Comparação entre as propriedades dos biocompósitos em escala piloto e			
laboratorial	92		
4.4.1 Morfologia	92		
4.4.2 Propriedades Mecânicas	93		
4.4.3 Propriedades Térmicas	94		

Capitulo 5 – Modelos para descrever as propriedades mecânicas dos
biocompósitosbiocompósitos965.1 Biocompósitos preparados em escala piloto (EP)985.2 Biocompósitos preparados em escala laboratorial (EL)104

Capitulo 6 - Conclusões	108

Anexo I Determinação da condutividade térmica por calorimetriadiferencial de varredura.110

Referências	112
nelelellulas	112

Lista de Figuras

Figura 1.1 – Classificação de compósitos. (1)

Figura 1.2 - Estrutura do acetato de celulose. (10)

Figura 1.3 - Estrutura química da celulose. (13)

Figura 1.4 - Estrutura química típica da lignina. (13)

Figura 1.5 – Planta de Curauá. (15)

Figura 1.6 – Estrutura química dos plastificantes dioctil ftalato (DOP) e citrato de trietila (TEC). (19)

Figura 3.1 – Extrusora duplas rosca Coperion ZSK-26. (23)

Figura 3.2 – Esquema de processamento na extrusura Coperion SZK-26. (24)

Figura 3.3 – Injetora Arburg all rounder M-250. (25)

Figura 3.4 – Dimensões do corpo de prova de resistência a tração tipo I (ASTM D638) em mm. (25)

Figura 3.5 – Micro extrusura DSM xplore. (27)

Figura 3.6 – Micro injetora DSM xplore. (28)

Figura 3.7 – Dimensões do corpo de prova de resistência á tração segundo a norma ASTM D 638 tipo V em mm. (29)

Figura 4.1 – Espectros infravermelho de ATR para as fibras de Curauá: (____) Fibras não tratadas; (____) extraídas com acetona; (____) mercerizadas. (35)

Figura 4.2 – Curvas termogravimétricas das fibras de Curauá: (——) Fibras não tratadas; (——) extraídas com acetona; (——) mercerizadas. (37)

Figura 4.3 – Curvas termogravimétricas diferenciais das fibras de Curauá: (-----) Fibras não tratadas; (-----) extraídas com acetona; (-----) mercerizadas. (38)

Figura 4.4 – Difratograma de raios X para as fibras de Curauá: (——) Fibras não tratadas; (——) extraídas com acetona; (——) mercerizadas. (40)

Figura 4.5 – Micrografias de microscopia eletrônica de varredura para o compósito EP-CA20D-10F. (42)

Figura 4.6 – Micrografias de microscopia eletrônica de varredura para o compósito EP-CA30D-10F. (43)

Figura 4.7 – Micrografias de microscopia eletrônica de varredura para o compósito EP-CA20D-20F. (45)

Figura 4.8 – Micrografias de microscopia eletrônica de varredura para o compósito EP-CA30D-20F. (46)

Figura 4.9 – Módulo de armazenamento em função da temperatura para as formulações: (■) EP-CA20D; (●) EP-CA20D-10F e (▲) EP-CA20D-20F. (50)

Figura 4.10 – Módulo de perda em função da temperatura para as formulações: (■) EP-CA20D; (●) EP-CA20D-10F e (▲) EP-CA20D-20F. (51)

Figura 4.11 – Módulo de armazenamento em função da temperatura para as formulações: (■) EP-CA30D; (●) EP-CA30D-10F e (▲) EP-CA30D-20F. (52)

Figura 4.12 – Módulo de perda em função da temperatura para as formulações:
(■) EP-CA30D; (●) EP-CA30D-10F e (▲) EP-CA30D-20F. (53)

Figura 4.13 – Curvas termogravimetricas para as formulações: (-----) EP-CA20D; (-----) EP-CA20D-10F e (------) EP-CA20D-20F. (55)

Figura 4.14 – Curvas termogravimétricas diferenciais para as formulações: (——) EP-CA20D; (——) EP-CA20D-10F e (——) EP-CA20D-20F. (55)

Figura 4.15 – Curvas termogravimetricas para as formulações: (-----) EP-CA30D; (-----) EP-CA30D-10F e (------) EP-CA30D-20F. (57)

Figura 4.16 – Curvas termogravimétricas diferenciais para as formulações: (——) EP-CA30D; (——) EP-CA30D-10F e (——) EP-CA30D-20F. (57)

Figura 4.17 – Capacidade calorífica em função da temperatura, a) para as formulações: (■) EP-CA20D; (●) EP-CA20D-10F e (▲) EP-CA20D-20F, b) para as formulações: (■) EP-CA30D; (●) EP-CA30D-10F e (▲) EP-CA30D-20F. (60)

Figura 4.18 – Condutividade térmica em função da temperatura , a) para as formulações: (■) EP-CA20D; (●) EP-CA20D-10F e (▲) EP-CA20D-20F, b) para as formulações: (■) EP-CA30D; (●) EP-CA30D-10F e (▲) EP-CA30D-20F. (62)

Figura 4.19 - Curvas termodilatométricas: a) formulações (——) EP-CA20D; (——) EP-CA20D-10F e (——) EP-CA20D-20F. b) (——) EP-CA30D; (——) EP-CA30D-10F e (——) EP-CA30D-20F. (64)

Figura 4.20 – Micrografias de microscopia eletrônica de varredura para o compósito plastificado com TEC e fibras não tratadas (EL-CA30T-10F). (67)

Figura 4.21 – Micrografias de microscopia eletrônica de varredura para o compósito plastificado com TEC e fibras extraídas com acetona (EL-CA30T-10FA). (68)

Figura 4.22 – Micrografias de microscopia eletrônica de varredura para o compósito plastificado com TEC e fibras mercerizadas (EL-CA30T-10FS). (69)

Figura 4.23 – Micrografias de microscopia eletrônica de varredura para o compósito plastificado com DOP e fibras não tratadas (EL-CA30D-10F). (71)

Figura 4.24 – Micrografias de microscopia eletrônica de varredura para o compósito plastificado com DOP e fibras extraídas com acetona (EL-CA30D-10FA). (72)

Figura 4.25 – Micrografias de microscopia eletrônica de varredura para o compósito plastificado com DOP fibras mercerizadas (EL-CA30D-10FS). (73)

Figura 4.26 – Módulo de armazenamento em função da temperatura para as formulações: (■) EL-CA30T; (♦) EL-CA30T-10F; (●) EL-CA30T-10FA e (▲) EL-CA30T-10FS. (77)

Figura 4.27 – Módulo de armazenamento em função da temperatura para as formulações: (■) EL-CA30D; (♦) EL-CA30D-10F; (●) EL-CA30D-10FA e (▲) EL-CA30D-10FS. (78)

Figura 4.28 – Módulo de perda em função da temperatura para as formulações:
(■) EL-CA30T; (♦) EL-CA30T-10F; (●) EL-CA30T-10FA e (▲) EL-CA30T-10FS.
(79)

Figura 4.29 – Módulo de perda em função da temperatura para as formulações:
(■) EL-CA30D; (♦) EL-CA30D-10F; (●) EL-CA30D-10FA e (▲) EL-CA30D-10FS.
(80)

Figura 4.31 – Curvas termogravimétricas diferenciais para as formulações: (-----) EL-CA30T; (-----) EL-CA30T-10F; (-----) EL-CA30T-10FA e (------) EL-CA30T-10FS. (82)

Figura 4.32 – Curvas termogravimétricas para as formulações: (-----) EL-CA30D; (-----) EL-CA30D-10F; (------) EL-CA30D-10FA e (------) EL-CA30D-10FS. (83) Figura 4.33 – Curvas termogravimétricas diferenciais para as formulações: (-----) EL-CA30D; (-----) EL-CA30D-10F; (-----) EL-CA30D-10FA e (------) EL-CA30D-10FS. (84)

Figura 4.34 – Capacidade calorífica em função da temperatura: a) para as formulações (■) EL-CA30T; (♦) EL-CA30T-10F; (●) EL-CA30T-10FA e (▲) EL-CA30T-10FS, b) para as formulações: (■) EL-CA30D; (♦) EL-CA30D-10F; (●) EL-CA30D-10F, (●) EL-CA30D-10FS. (86)

Figura 4.35 – Condutividade térmica em função da temperatura em função da temperatura: a) para as formulações plastificadas com TEC: (■) EL-CA30T; (◆) EL-CA30T-10F; (●) EL-CA30T-10FA e (▲) EL-CA30T-10FS. b) para as formulações plastificadas com DOP: (■) EL-CA30D; (♦) EL-CA30D-10F; (●) EL-CA30D-10FA e (▲) EL-CA30D-10FS. (88)

Figura 5.1 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 20% de DOP: (♦) Modelo em paralelo; (●) Modelo em série; (▼) Modelo de ROM (k = 0,2) e (■) Experimental. (99)

Figura 5.2 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 30% de DOP: (♦) Modelo em paralelo; (●) Modelo em série; (▼)
Modelo de ROM (k = 0,2) e (■) Experimental. (100)

Figura 5.3 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 20% de DOP: (\checkmark) Modelo de Hirsch x = 0,12; (•) Modelo de Voight x = 0,375 e (**a**) Experimental. (101)

Figura 5.4 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 30% de DOP: (\bigtriangledown) Modelo de Hirsch x = 0,12; (•) Modelo de Voight x=0,375 e (\blacksquare) Experimental. (102)

Figura 5.5 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 20% de DOP: (▲) Modelo de Maxwell; (●) Modelo de Russell e (■) Experimental. (103)

Figura 5.6 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 30% de DOP: (▲) Modelo de Maxwell; (●) Modelo de Russell e
(■) Experimental. (104)

Figura 5.7 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 30% de plastificante: (◆) Modelo em paralelo; (●) Modelo em série; (▼) Modelo de ROM (k = 0,2) e (■) Experimental. (105)

Figura 5.8 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 30% de plastificante: (•) Modelo de Hirsch x = 0,0005; (▲) Modelo de Voight x = 0,375 e (■) Experimental. (106)

Figura 5.9 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 30% de plastificante: (▲) Modelo de Maxwell; (●) Modelo de Russell e (■) Experimental. (106)

Lista de Tabelas

Tabela 1.1 – Composição e propriedades de algumas fibras. (12)

Tabela 3.1 – Formulações preparadas na escala piloto (EP). (23)

Tabela 3.2 – Condições de processamento em escala piloto na extrusora Coperion ZSK-26. (24)

Tabela 3.3 – Condições para obtenção de corpos de prova por termo-moldagem por injeção. (25)

Tabela 3.4 – Biocompósitos plastificados com DOP e preparados em escala laboratorial. (26)

Tabela 3.5 – Biocompósitos plastificados com TEC e preparados em escala laboratorial. (26)

Tabela 3.6 – Condições de processamento na extrusão em escala laboratorial. (28)

 Tabela 3.7 - Condições do processamento de injeção na escala laboratorial. (28)

Tabela 4.1 – Propriedades mecânicas das fibras de Curauá. (34)

Tabela 4.2 – Razões das intensidades $I_{C-O-C}/I_{C=C}$ para as fibras tratadas e não tratadas. (36)

Tabela 4.3 – Fração cristalina das fibras de Curauá antes e após tratamentos. (40)

Tabela 4.4 – Propriedades mecânicas dos compósitos de acetato de celulose e fibras de Curauá preparados na escala piloto. (48)

Tabela 4.5 – Capacidade calorífica (Cp) [J g⁻¹ K⁻¹] para diferentes temperaturas para as formulações preparadas na escala piloto. (59)

Tabela 4.6 – Condutividade térmica (λ) [W m⁻¹ K⁻¹] para diferentes temperaturas para as formulações preparadas na escala piloto. (61)

Tabela 4.7 – Coeficiente de expansão térmica linear (α) [μ m mm⁻¹ K⁻¹] de acetato de celulose plastificado com DOP e seus compósitos. (64)

Tabela 4.8 – Propriedades mecânicas do acetato de celulose plastificado e seus compósitos. (75)

Tabela 4.9 – Capacidade calorífica (Cp) [J g⁻¹ K⁻¹] para diferentes temperaturas para as formulações plastificadas com TEC. (85)

Tabela 4.10 – Capacidade calorífica (Cp) [J g⁻¹ K⁻¹] para diferentes temperaturas para as formulações plastificadas com DOP. (85)

Tabela 4.11 – Condutividade térmica (λ) [W m⁻¹ K⁻¹] para diferentes temperaturas para as formulações plastificadas com TEC. (87)

Tabela 4.12 – Condutividade térmica (λ) [W m⁻¹ K⁻¹] para diferentes temperaturas para as formulações plastificadas com DOP. (88)

Tabela 4.13 – Coeficiente de expansão térmica linear (α) [μ m mm⁻¹ K⁻¹] de compósitos de acetato de celulose plastificado com TEC e fibras curtas de Curauá. (91)

Tabela 4.14 – Coeficiente de expansão térmica linear (α) [μ m mm⁻¹ K⁻¹] de compósitos de acetato de celulose plastificado com DOP e fibras curtas de Curauá. (91)

Tabela 4.15 – Capacidade calorífica (Cp) e condutividade térmica (λ) a 40 °C para formulações preparadas em escala piloto e laboratorial. (95)

Tabela 5.1 - Frações mássica e volumétrica utilizadas para prever os módulos elásticos para os compósitos. (98)

CAPITULO 1 – Introdução

1 Compósitos

Compósitos são materiais multifásicos, cujas fases são bem definidas e, em geral, de natureza química distinta. O desenvolvimento de compósitos visa a combinação de propriedades de diferentes materiais em um único material¹.

Excetuando os compósitos laminados, a maioria dos demais materiais compósitos são constituídos por pelo menos duas fases, uma delas denominada matriz ou fase contínua, que envolve outras fases chamadas de fases dispersas. A fase dispersa pode ser classificada de acordo com a geometria em: partículas, fibras e lâminas ¹. Essa classificação também pode estar associada ao tamanho, orientação e distribuição das mesmas. A Figura 1.1 apresenta um diagrama de blocos representando os diferentes tipos de compósitos.

Figura 1.1 – Classificação de compósitos ¹.

Um grupo importante de compósitos são os chamados compósitos estruturais, os quais são amplamente utilizados na indústria da construção. Por

outro lado, compósitos reforçados com partículas e fibras apresentam uma ampla versatilidade de aplicações.

1.1 Compósitos poliméricos

Compósitos poliméricos são definidos como aqueles cujas matrizes são de natureza polimérica e são também denominados como PMC (*Polymer-Matrix Composites*)². Com freqüência a matriz polimérica determina a temperatura de trabalho devido ao fato que estas, amolecem, fundem ou degradam a temperaturas mais baixas que a fase dispersa. Tradicionalmente, os polímeros mais utilizados em compósitos são os poliésteres insaturados, assim como, as resinas epóxidas e as vinil ésteres, sendo utilizados para aplicações específicas, por apresentarem boas propriedades mecânicas e alta resistência a umidade.

A matriz polimérica tem a função de unir a fase dispersa, além de transmitir e distribuir as tensões aplicadas. Outra função importante é de proteger a fase dispersa de danos superficiais em decorrência de abrasão mecânica ou reações químicas. Por último, a fase polimérica também atua como uma barreira para a propagação de trincas.

Geralmente a fase dispersa é adicionada a um polímero para atuar como reforço mecânico e/ou carga de enchimento ³. Tecnologicamente, os compósitos poliméricos mais importantes são aqueles contendo cargas fibrosas, devido ao fato que as fibras apresentam alta resistência e/ou rigidez em comparação à matriz polimérica ⁴. As fibras contínuas conferem melhor desempenho mecânico aos compósitos do que as fibras curtas. Porém, a versatilidade na obtenção de peças por extrusão, injeção, termo–compressão e transferência é maior em compósitos com fibras curtas, garantindo custos de produção mais baixos ^{4,5}.

As fibras podem ser classificadas pelo diâmetro em *whiskers*, fibras e fios. Os *whiskers* apresentam diâmetros na ordem de nanômetros. Em geral são formados por monocristais quase livre de defeitos, o que confere elevada resistência. Entretanto, os custos de produção de whiskers são elevados e sua incorporação na matriz é restrita. Por outro lado, fibras apresentam diâmetros da ordem de micrometros e geralmente são materiais poliméricos ou cerâmicos. Já os fios apresentam diâmetros maiores que 1 mm, e normalmente são de natureza metálica ¹. A eficiência do reforço conferido pelas fibras dependerá dos seguintes fatores:

i) Comprimento da fibra. A eficiência do reforço depende do comprimento da fibra de acordo com a Equação 1.1:

$$I_c = \frac{\sigma_f a \tau_c}{2}$$

Equação 1.1

Na Equação 1.1, d é o diâmetro da fibra, σ_f é a tensão máxima suportada pela fibra e τ_c é força de cisalhamento na interface fibra - matriz, ou força necessária para arrancar uma fibra da matriz. Uma fibra curta é considerada aquela que tem comprimento abaixo da l_c. A fibra é denominada longa quando l >> l_c³. Então, comprimento crítico é o comprimento da fibra dispersa em um determinado compósito, que ao ser solicitado mecanicamente rompe-se por conseqüência da falha da fibra e não por falha da interface ^{3,6}. Para cada combinação de fibra/matriz existe um comprimento crítico (l_c).

ii) Orientação e concentração da fibra. O aumento da fração de fibras no compósito leva ao aumento da resistência mecânica e da rigidez do compósito. As propriedades de compósitos com fibras orientadas aleatoriamente são consideradas como isotrópicas, enquanto compósitos, nos quais as fibras estão orientadas, tem caráter anisotrópico ^{1,2}.

As fibras em compósitos poliméricos podem ser arranjadas de diferentes formas: distribuição aleatória ou orientada, tecido ou não tecido. No caso de fibras contínuas, o reforço pode ser arranjado numa direção (unidirecional), bidirecional (tecido) e tridimensional (*woven*). Geralmente, este último é usado na indústria têxtil. Este tipo de arranjo confere alta resistência e flexibilidade. Geralmente, o

arranjo de fibras curtas é uma distribuição aleatória. Arranjos distintos e combinações de fibras conferem aos compósitos diferentes propriedades ⁶.

As propriedades mecânicas dos compósitos não dependem unicamente das propriedades das cargas e da matriz, mas também da eficiência na transferência de energia mecânica da matriz para as fibras. Esta última, por sua vez, depende da adesão fibra – matriz ^{5,7}. Na literatura, é possível observar que o desafio no desenvolvimento de compósitos poliméricos reforçados com fibras, encontra-se justamente no estabelecimento da adesão interfacial matriz- fibra ^{1,2,3,5,7}.

Desde 1940, a fibra de vidro vem sendo utilizada em compósitos com poliésteres insaturados, sendo a fibra mais utilizada até hoje ⁷. Por outro lado, os polímeros provenientes do petróleo, como o polietileno, o polipropileno, o poliestireno, o poli(cloreto de vinila), poliésteres, poliamidas, etc., têm sido amplamente utilizados como matrizes em compósitos com fibra de vidro, devido aos baixos custos de produção ⁴⁻⁸. Compósitos preparados com fibra de carbono e polímeros de engenharia como a poliamida são utilizados em peças de maior valor agregado, devido às propriedades e custos que apresentam.

Na literatura são reportados um número considerável de trabalhos envolvendo polipropileno, como matriz, com fibras naturais, como sisal, pó de madeira e outras como reforço ^{9,10}. Nestes trabalhos são utilizados tanto tratamentos em superfícies de fibras, assim como, agentes de acoplamento para favorecer a adesão fibra - matriz. Rahman e cols. ¹¹ prepararam compósitos de polipropileno e fibras de abacá (cânhamo da Índia), tratadas inicialmente com anilina e posteriormente submersas em solução básica (mercerização). Este tratamento resulta em diminuição na hidrofilicidade das fibras, permitindo uma melhor adesão com o polipropileno (polímero apolar).

A condutividade térmica de compósitos de polipropileno e fibras curtas de bananeira foi estudada por Paul e cols. ¹². As fibras de bananeira foram submetidas a tratamentos com soda e permanganato de potássio, além de ser utilizado silano como agente de acoplamento entre a fibra e a matriz. Os compósitos apresentaram uma diminuição da condutividade térmica em

comparação com o polipropileno, pois as fibras atuam como uma barreira para a condução do calor através da matriz polimérica.

Tradicionalmente, anidrido maleico é utilizado como agente de acoplamento entre polipropileno e as fibras naturais. Normalmente, o anidrido maleico é enxertado ao polipropileno, o que permite que algumas cadeias apresentem ligações com as fibras, favorecendo as propriedades térmicas e mecânicas dos compósitos ^{13,14,15,16}. O procedimento inverso tem sido estudado, ou seja, fibras naturais são enxertadas com anidrido, porém, os resultados são menos efetivos, devido a dificuldade de dispersar as fibras na matriz polimérica ^{16,19}.

Polietileno também é amplamente utilizado como matriz em compósitos com fibras naturais. A enxertia de polietileno de alta densidade (HDPE) com anidrido maleico também favorece a adesão polímero–matriz com reflexos positivos sobres as propriedades mecânicas dos compósitos, tal como acontece com o polipropileno ^{4,17,18}.

Outro grupo importante de compósitos, o qual tem sido estudado desde 1980, é aquele formado por poliolefinas, principalmente o polipropileno, e fibras de celulose (α -celulose) ^{19,20,21}.

Os desafios deste tipo de compósitos são: a adesão entre as fibras de celulose, com caráter hidrofílico, e as poliolefinas com caráter hidrofóbico, assim como a dispersão uniforme das fibras pela matriz polimérica. Em geral, a melhoria destes fatores favorece o desempenho mecânico dos compósitos. Devido a isso, o tratamento das fibras, previamente à preparação dos compósitos, se torna um processo altamente recomendável. Extrações em (extratores) soxlhet utilizando diferentes solventes como xileno ou tolueno tiveram um impacto positivo sobre a adesão entre as fibras de celulose e a polipropileno ^{20,21}. Por outro lado, a granulação de celulose antes da incorporação na matriz, permitiu uma melhor distribuição das fibras em compósitos, que apresentaram ganho nas propriedades mecânicas dos materiais ¹⁹.

Compósitos de plásticos de engenharia e fibras naturais também têm sido amplamente estudados, apresentando interessantes propriedades térmicas, mecânicas e elétricas. Contudo, estes materiais não são biodegradáveis. Na literatura são reportados compósitos de poliamida e fibra de Curauá ²², assim como compósitos de policarbonato e fibras de abacaxi ²³. Estes trabalhos estão focados principalmente na otimização da adesão interfacial para incrementar a resposta mecânica do compósito através da modificação da superfície das fibras naturais.

As fibras de Curauá foram tratadas superficialmente com plasma, seguida de submersão em uma solução básica ²². Por outro lado, as fibras de abacaxi foram mercerizadas para melhorar a adesão interfacial com as matrizes poliméricas. Para ambos compósitos foi observada uma melhoria na resposta mecânica em comparação com os correspondentes compósitos com fibras não tratadas.

Compósitos híbridos, do ponto de vista de cargas fibrosas são aqueles formados por uma combinação de fibras naturais e sintéticas. Silva e cols. ²⁴ desenvolveram compósitos de resina de poliéster ortoftálica contendo fibras de Curauá misturadas com fibras de vidro. Os compósitos foram preparados por termo-moldagem por compressão, pois foram utilizadas fibras longas. Este tipo de compósitos apresenta como vantagem a diminuição na adsorção de umidade devido a presença das fibras sintéticas, além da estabilidade dimensional das peças obtidas, as quais apresentam baixos coeficientes de expansão térmica.

Compósitos tradicionais preparados com poliolefinas são utilizados desde em peças esportivas até em peças de aeronaves. Porém, o aumento na demanda destes materiais implica em um elevado acúmulo deles nos aterros sanitários após sua utilização, como conseqüência de sua alta estabilidade química e ambiental podendo durar mais de 200 anos ⁵⁻⁷. Em geral, reciclagem mecânica ou termomecânica não é uma solução adequada devido ao fato de que os componentes dos compósitos estão altamente coesos, dificultando a separação

das fases e, portanto, a reciclagem ¹. Assim, uma possível solução para minimizar impactos ambientais é o desenvolvimento de biocompósitos.

1.2 Biocompósitos

Biocompósitos são constituídos por polímeros biodegradáveis e cargas oriundas de recursos renováveis ⁵. Como ambos componentes são biodegradáveis, o biocompósito deve manter essa característica.

O uso das fibras naturais em biocompósitos não é recente. Já em 1950, na antiga Alemanha oriental, fibras vegetais eram utilizadas na construção do Trabant, cujo chassi era feito de um biocompósito à base de fibras de algodão dispersas em uma matriz de poliéster. Até 1960, os estofamentos dos carros eram feitos de um compósito de borracha natural e fibra de coco. Atualmente, os carros europeus têm componentes internos construídos com fibras naturais. E em algumas peças externas os compósitos com fibras vegetais tem sido testados, como no Ônibus Mercedes-Benz Travego Couch ²⁵.

Biocompósitos preparados com polihidroxibutirato (PHB) tem sido pouco estudados devido a baixa temperatura de degradação da matriz. Porém, biocompósitos de PHB com fibras de bambu foram preparados em escala laboratorial por Krishnaprasad e cols. ²⁶ visando o estudo das propriedades mecânicas. Biocompósitos de PHB com fibras de linho curtas e contínuas foram preparados por extrusão-injeção e moldagem por compressão, respectivamente, observando os efeitos do comprimento das fibras sobre as propriedades ²⁷. Como esperado os biocompósitos preparados com fibras contínuas apresentam melhor desempenho mecânico a tração. Testes de biodegradabilidade também foram realizados sem que as compósitos apresentassem diferenças significativas entre si, de acordo com os métodos de processamento.

Poli (acido láctico) (PLA) é outro polímero biodegradável, que tem sido utilizado para preparar biocompósitos. Biocompósitos de PLA com fibras de bambu tratadas com soda e fibriladas em câmara de vapor ²⁸ apresentaram uma

elevada resistência ao impacto, quando comparados com a resistência ao impacto da matriz. Okubo e cols. compararam os biocompósitos de PLA e bambu com biocompósitos com fibra de celulose, observando um melhor desempenho mecânico a tração para os primeiros, devido a desnaturação destas fibras²⁹. Biocompósitos de fibras contínuas de juta e kenaf com PLA também apresentaram ganhos nas propriedades mecânicas com respeito a PLA ^{30,31}. Por outro lado, Hu e cols. observaram que a mercerização de fibras de cânhamo conferiu a biocompósitos com PLA melhores propriedades mecânicas, devido a remoção de material não celulósico das fibras ³².

Biocompósitos de acetato de celulose e fibras de cânhamo e henequem foram preparados e caracterizados por Choi e cols. ³³. Especialmente foram observadas uma menor degradação térmica da matriz, assim como, alta fibrilação.

Ouajai e cols. estudaram biocompósitos de acetobutirato de celulose e fibras de cânhamo submetidas a extração com acetona, seguida de tratamento em solução básica ou tratadas com enzimas ⁵¹. Os autores observaram que o tratamento com enzimas melhorou a adesão fibra – matriz. Porém, as propriedades mecânicas foram otimizadas para biocompósitos com fibras tratadas com acetona e soda.

Por último, em biocompósitos de poliéster com fibras de cânhamo, estas foram tratadas com fungos para aumentar a fração de celulose cristalina, visando o aumento da resistência mecânica das fibras e dos biocompósitos ³⁴.

1.2.1 Polímeros biodegradáveis

Biodegradação de um polímero é definida como a quebra da cadeia em unidades menores, ou seja, diminuição da massa molar pela ação de microorganismos, como bactérias e fungos. Os produtos da ruptura das cadeias poliméricas podem, então ser, utilizadas como componentes das células ou como energia para o microorganismo ^{35,36}. Assim, polímeros biodegradáveis são aqueles que sofrem este processo.

Polímeros biodegradáveis podem ser classificados em 3 grandes grupos:

a) Poliésteres produzidos por microorganismos, como o polihidroxibutirato (PHB).

b) Os polissacarídeos e outros biopolímeros como a celulose.

c) Polímeros sintéticos, como os poliésteres e poliamidas alifáticos.

Polímeros biodegradáveis se apresentam como uma alternativa ao descarte de plásticos em aterros sanitário, quando é realizada uma compostagem adequada. Geralmente, polímeros naturais são biodegradáveis. Porém, muitos deles apresentam propriedades mecânicas e térmicas inferiores em comparação aos plásticos de engenharia ^{5,7}.

1.2.1.1 Acetato de celulose

O acetato de celulose com alto grau de acetilação é um polímero amorfo, não tóxico, sem sabor, sem odor, biodegradável e menos inflamável que a nitrocelulose ³⁷. O acetato de celulose também é resistente a ácidos fracos, é utilizado na fabricação de fibras têxteis e empregado em filtros, membranas, filmes para embalagens, fitas adesivas, como aditivo em tintas e na formulação de cápsulas para liberação de fármacos ^{37,38}. Devido à baixa migração de plastificantes em acetato de celulose, as formulações deste polímero são utilizadas para peças de higiene pessoal (escova de dente) ³⁷. O acetato de celulose é caracterizado por sua excelente transparência, estabilidade térmica e a luz ultravioleta (UV) e propriedades antiestáticas ³⁹. Sua aplicabilidade pode ser reduzida pela baixa estabilidade dimensional sob altas temperaturas e umidade ³⁸⁻³⁹. Por outro lado, a flexibilidade do material confere propriedades de isolamento acústico em ambientes com ruído ^{37,39}. A solubilidade do acetato de celulose de pende do balanço entre os grupos acetila e hidroxila, ou seja, depende do grau de acetilação ³⁸. A Figura 1.2 apresenta a estrutura do acetato de celulose.

Figura 1.2 - Estrutura do acetato de celulose.

O acetato de celulose é preparado pela esterificação de celulose com anidrido acético, utilizado ácido acético como solvente e acido sulfúrico como catalisador ^{40,41}. A celulose utilizada deve ser de um alto grau de pureza. Por este motivo a polpa da madeira tem sido substituída por algodão para a obtenção de acetato de celulose. Após tratamentos para remover materiais não celulósicos das fibras lignocelulosicas (Kraft – mercerização) é possível obter uma polpa com 95 a 98% de α -celulose ⁴⁰. A α -celulose é uma forma cristalina da celulose, na qual as cadeias poliméricas encontram-se ancoradas umas às outras permitindo uma maior resistência mecânica. O grau de acetilação é determinado pelas condições reacionais como tempo, temperatura e acidez ⁴¹.

Em formulações de acetato de celulose é comum o uso de plastificantes, com a finalidade de melhorar a processabilidade, aumentar a tenacidade e a flexibilidade, assim como diminuir o módulo elástico e a temperatura de transição vítrea do polímero ⁴².

1.2.2 Fibras naturais

As fibras naturais podem ter origem vegetal, animal ou mineral. Fibras vegetais são também chamadas de fibras lignocelulósicas por serem compostas

principalmente por celulose e lignina ^{5,7,43}. Por outro lado, as fibras naturais de origem animal, como a lã, a seda e penas, são compostas principalmente por proteínas.

Geralmente, as fibras usadas como reforço são: as fibras de vidro, de carbono e de aramida. Porém, nos últimos anos as fibras naturais vem sendo usadas em substituição a essas, por apresentarem melhores propriedades específicas, pois apresentam uma densidade menor que as fibras sintéticas. Além disso, fibras naturais apresentam vantagens, como o fato de serem biodegradáveis e menos agressivas ao ambiente e ao equipamento de processamento, de causarem menor irritação dérmica e respiratória aos operadores de processo, de contribuírem para a diminuição das emissões de dióxido de carbono, e de pouparem as reservas de petróleo. As principais desvantagens são a baixa temperatura de degradação, assim como a baixa compatibilidade com a matriz polimérica ^{44,45}.

1.2.2.1 Fibras lignocelulósicas

Fibras vegetais ou lignocelulósicas podem ser consideradas um compósito natural, pois as fibrilas de celulose se encontram alinhadas e imersas em lignina, que atua como matriz ^{7,43}. Fibras lignocelulósicas apresentam boas propriedades específicas quando comparadas com as fibras sintéticas, como as fibras de vidro ou de carbono, devido a baixa densidade. Estas fibras também apresentam alta resistência elétrica e a sua estrutura celular confere a propriedade de barreira acústica. Por outro lado, também apresentam desvantagens, como a temperatura de processamento abaixo de 200 °C, o que limita a escolha da matriz polimérica ^{4,7,46}. A inerente hidrofilicidade das fibras lignocelulósicas desfavorece a sua dispersão em matrizes não polares para formar compósitos ²⁵. Por outro lado, a alta adsorção de umidade confere uma baixa estabilidade dimensional. Por último, a baixa uniformidade nas dimensões e nas propriedades mecânicas das fibras, dependendo da espécie, assim como do método de cultivo, se apresentam como

uma desvantagem. Porém, estas variáveis podem ser controladas na produção em grande escala^{22,47,48,49}.

As fibras podem ser classificadas de acordo com as partes da planta de onde são retiradas: das sementes, da casca, das folhas e das frutas. Na Tabela 1.1 são apresentadas a composição e as propriedades de algumas fibras lignocelulósicas e da fibra de vidro.

Fibra	Composição		Densidade Módulo de elasticidade		Deformação (%)	
	Celulose (%)	Hemicelulose (%)	Lignina (%)	(g cm ³)	(GPa)	
Curauá	73,6	9,9	7,5	1,1	39 - 55	2 - 4
Juta	61-71,5	13,6 - 20,4	12 -13	1,3 -1,45	13 – 26,5	1,16 – 1,5
Linho	71	18,6 - 20,6	2,2	1,5	2,7 - 3,2	2,7 - 3,2
Cânhamo	70,2 - 74,4	17,9 - 22,4	3,7 – 5,7	-	-	1,6
Sisal	67 - 78	10,0 - 14,2	8 - 11	1,45	9,4 - 22	3 – 7
Algodão	82,7	-	5,7	1,5 – 1,6	5,5 – 12,6	7 – 8
Fibra de vidro	-	-	-	2,5	70	2,5

Tabela 1.1 – Composição e propriedades de algumas fibras ^{5,47}.

Os principais componentes de fibras lignocelulósicas são a celulose, a hemicelulóse e a lignina. A Celulose é o polímero natural mais abundante, tendo como unidade repetitiva a D-glicose anidra e chegando a atingir grau de polimerização da ordem de 10.000. A celulose é resistente a bases fortes, mas é hidrolisada facilmente em soluções ácidas ^{5,7}. A estrutura química da celulose é apresentada na Figura 1.3.

Figura 1.3 - Estrutura química da celulose.

Figura 1.4 - Estrutura química típica da lignina ⁵.
Por outro lado, a hemicelulose é formada por uma série de sacarídeos com anéis de 5 e 6 carbonos. A hemicelulose exibe alto grau de ramificação e grau de polimerização variando de 50 a 300. Ela é solúvel em soluções aquosas básicas e facilmente hidrolisável em meio ácido ^{5,7}. Por fim, a lignina é um polímero complexo, formado por cadeias alifáticas e aromáticas. A lignina é um polímero amorfo e hidrofóbico que confere a característica de rigidez às plantas e age como um agente de ligação entre as fibrilas, gerando uma estrutura resistente ao impacto ^{5,7}. A Figura 1.4 apresenta a estrutura química típica da lignina.

As desvantagens das fibras vegetais, como a alta capacidade de adsorção de umidade e a baixa compatibilidade com os polímeros não polares, desfavorecem as propriedades mecânicas dos compósitos reforçados com fibras vegetais ^{8,50,51}. Desta forma, as fibras devem ser submetidas a tratamentos físicos e químicos, com o objetivo de melhorar a adesão interfacial ⁵².

Panigrahi e cols. estudaram a influência de tratamentos químicos de fibras lignocelulósicas sobre as propriedades mecânicas de seus compósitos ⁵³. Dentre os tratamentos químicos utilizados para as fibras lignocelulósicas destacam-se a mercerização (solução alcalina), acetilação, tratamento com silano, com cloreto de benzoíla, com peróxido e com permanganato ⁵³. Os autores concluíram que os tratamentos químicos favorecem a adesão interfacial em diferentes níveis, de acordo com o tratamento e a fibra a ser tratada. Entretanto, estes métodos têm um impacto econômico considerável no desenvolvimento do compósito pelo uso de reagentes, além da geração de efluentes.

Fangueiro e Mukhopadhyay aplicaram diferentes tratamentos físicos em vários tipos de fibras lignocelulósicas ⁵⁴. Tratamento corona, o uso de plasma, ultrassom e radiação ultravioleta são exemplos de tratamentos físicos aplicados na superfície das fibras. Para os autores, estes tratamentos foram eficientes, resultando em separação das fibrilas, em aumento da rugosidade superficial, alteração de polaridade e diminuição da absorção de água. Além das modificações químicas e físicas na superfície das fibras, a matriz polimérica também foi modificada por enxertia com o anidrido maleico, silano e outros. Os

grupos funcionais enxertados ao polímero podem formar ligações de hidrogênio com as hidroxilas das fibras lignocelulósicas, promovendo melhor adesão fibramatriz ⁵³⁻⁵⁵.

1.2.2.2 Fibras de Curauá

As fibras utilizadas nos biocompósitos estudados neste trabalho são extraídas de uma planta originária da região amazônica, comumente chamada Curauá (*Ananas erectifolius*), da família das bromeliáceas ⁴⁷. As fibras são extraídas das folhas que medem entre 1,5 e 1,7 m de comprimento, 4 cm de largura e 5 mm de espessura ^{47,49}. Existem quatro variedades da planta de Curauá, conhecidas como: branca, roxa, vermelha e branca brilhante. A mais comum é a roxa seguida pela branca, cujas folhas são menores que as folhas do Curauá roxo ^{47,49}. Devido à sua resistência, as fibras de Curauá são utilizadas na indústria têxtil e automotiva ^{5,7,48}.

Figura 1.5 – Planta de Curauá⁴⁷.

As propriedades físicas e mecânicas das fibras naturais podem variar dependendo da idade da planta, técnicas de cultivo, área geográfica de cultivo e técnicas de separação. O controle do cultivo pode levar a homogeneização e otimização das características das fibras para serem usadas na obtenção de compósitos, como no caso da fibra de Curauá ^{56,57}. Fibras de Curauá apresentam alto módulo elástico e baixa densidade em relação a outras fibras lignocelulósicas (ver Tabela 1.1). A Figura 1.5 apresenta a fotografia de uma planta de Curauá branca.

1.3 Plastificantes

Plastificantes são substâncias adicionadas (solubilizadas) em polímeros visando o aumento da flexibilidade e favorecendo a processabilidade ⁴². O plastificante pode reduzir a temperatura de fusão (T_f) e a temperatura de transição vítrea (T_g), além de diminuir o módulo elástico do material.

Plastificantes são incorporados à fase não cristalina dos polímeros e normalmente são resinas ou líquidos de baixa massa molar ⁴²⁻⁵⁸. O seu mecanismo de atuação envolve o aumento de volume livre e a diminuição das interações entre cadeias poliméricas, resultando em maior mobilidade das cadeias, que macroscopicamente tem reflexo sobre a maleabilidade do material plastificado ⁵⁸. O plastificante ideal deve apresentar elevada solubilidade no polímero, além de ser estável a altas e baixas temperaturas, ser resistente a UV e apresentar baixa migração no polímero. Os plastificantes são menos efetivos em polímeros semicristalinos já que os domínios cristalinos segregam o plastificante e atuam como uma rede mantendo a estrutura do polímero ⁵⁹.

Os plastificantes são geralmente escolhidos pelos seguintes fatores:

- a) Solubilidade na matriz polimérica.
- b) Condições de processo
- c) Propriedades térmicas, mecânicas e elétricas do polímero.

- d) Resistência química, a umidade, a radiação solar e climática do polímero plastificado.
- e) Propriedades reológicas do polímero.
- f) Toxicidade do plastificante.
- g) Custo

1.3.1 Ftalatos como plastificantes

Nas últimas seis décadas os ftalatos tem sido os plastificantes mais usados para conferir flexibilidade ao PVC e polímeros polares, devido ao balanço positivo entre as propriedades mecânicas e os custos de produção ^{58,60}. Plastificantes ftálicos representam 70% dos plastificantes produzidos anualmente. Em 2004 a produção global de plastificante foi de $6x10^6$ toneladas equivalente a aproximadamente $7x10^9$ Euros ⁶⁰. O PVC é o principal "consumidor" de plastificantes ftálicos, consumindo um terço da produção de plastificantes ⁶¹.

A ampla faixa de propriedades conferidas pela adição de ftalatos a polímeros tem sido o fator responsável pela dominação destes no mercado. Outros fatores importantes são a solubilidade em polímeros polares, o processamento a baixas temperaturas, assim como a baixa volatilidade e a difusão controlada que apresentam. Por exemplo, o ftalato de dibutila apresenta elevada solubilidade em PVC e o ftalato de tridecila encontra-se no limiar de solubilidade com PVC e apresenta baixa volatilidade ⁴².

Outros plastificantes ftálicos, como o ftalato de dioctila (DOP), são amplamente utilizados. Porém, o DOP é considerado carcinogênico pela comissão européia (2005/84/EC), e por isto não é recomendado o seu uso em materiais destinados a fabricação de brinquedos ou produtos têxteis para uso médico ⁶²⁻⁶³. DOP é considerado também poluente ao ambiente, pois em ambiente úmido é passível de degradação por microorganismos, gerando compostos voláteis tóxicos ⁶⁴. Estudos indicam que os ftalatos têm sido encontrados em tecidos de peixes e

anfíbios⁶⁰. Ftalatos, principalmente o DOP, são eficientes plastificantes para o acetato de celulose, e por isto, as formulações comerciais de acetato de celulose da EASTMAN usam principalmente DOP e ftalato de dietila como plastificantes ^{37,39}.

1.3.2 Plastificantes biodegradáveis

Plastificantes de alta massa molar e baixa migração têm sido as opções para substituir os ftalatos como plastificantes de polímeros polares em peças de uso médico, por exemplo. Poliésteres e poliálcoois, além de citratos, benzoatos e carboxilatos, tem se tornado uma excelente opção como plastificantes de baixa toxicidade, além de poderem ser empregados em condições de processamento similares às formulações contendo ftalatos ⁶³. Outras opções são triglicerídeos provenientes de óleos vegetais, como o óleo de soja e girassol, assim como ácidos graxos (FAES). Plastificantes com maior massa molar migram mais lentamente como os ftalatos. Geralmente, estas opções de plastificantes possuem caráter biodegradável.

Para garantir compósitos totalmente biodegradáveis é necessário utilizar plastificantes que também tenham esta característica. Em especial, os citratos são biodegradáveis e provêm de recursos renováveis ⁶⁵⁻⁶⁶. A Figura 1.6 apresenta a estrutura química do Ftalato de dioctila e do citrato de trietila.

O citrato de trietila (TEC) é um plastificante comercial não tóxico, utilizado em plásticos para embalagens de alimentos, dispositivos médicos, brinquedos e roupas para crianças. É obtido a partir da esterificação de acido cítrico usando, um ácido orgânico como catalisador da reação. O uso do TEC é ainda restrito devido ao alto custo ⁶⁶⁻⁶⁷. Porém, o TEC, apresenta alta afinidade a resinas vinílicas e derivados de celulose. Por último, o citrato de trietila também é utilizado como umectante de filtros de cigarros, aromatizante em cosméticos e fragrâncias.

18

TEC

Figura 1.6 – Estrutura química dos plastificantes dioctil ftalato (DOP) e citrato de trietila (TEC).

Capitulo 2 – Objetivos

O objetivo deste trabalho foi o de desenvolver biocompósitos de acetato de celulose com fibras curtas de Curauá, avaliando-se suas propriedades em função das condições de processamento, tratamentos químicos das fibras e plastificação da matriz.

Para atingir estes objetivos as seguintes metas foram executadas:

- Preparação de biocompósitos com diferentes plastificantes como ftalato de dioctila (DOP) e citrato de trietila (TEC), comparando-se o desempenho mecânico e térmico dos materiais. O TEC foi escolhido por ser um plastificante biodegradável. Por outro lado, o DOP foi também escolhido por ser um plastificante tradicional para o acetato de celulose, apesar de ser não-biodegradável e tóxico.
- Preparação de biocompósitos com fibras de Curauá tratadas quimicamente e não tratadas, visando avaliar as influências destes tratamentos sobre as propriedades mecânicas e térmicas dos compósitos. Dois tratamentos foram adotados: extração com acetona e mercerização (tratamento com solução básica). Enquanto a acetona remove componentes apolares, como ceras, a solução aquosa básica remove a lignina das fibras de Curauá, além da hemicelulose.
- Preparação de biocompósitos utilizando diferentes condições de processamento (em escala laboratorial e em escala piloto), avaliando a influência destes sobre a dispersão das fibras e sobre as propriedades mecânicas e térmicas dos biocompósitos.

Capitulo 3 - Procedimentos experimentais

3.1 Materiais

Acetato de celulose (AC) comercial em formato de *pellets*, Tenite Acetate 105 da Eastman Chemical Company (USA), grau de acetilação de 39,8% e Mn 30.000 g mol⁻¹ foi utilizado para preparar biocompósitos plastificados com ftalato de dioctila. Dois tipos de AC com diferentes teores de plastificante (20 e 30%, denominados EP-CA20D e EP-CA30D, respectivamente) e livre de outros aditivos foram utilizados no preparo de compósitos em escala piloto. Para a escala laboratorial foi utilizado exclusivamente o AC contendo 30% de DOP.

Acetato de celulose na forma de pó, livre de plastificantes e aditivos, e com um grau de acetilação de 38,7% e Mn 50.000 g mol⁻¹, também da Eastman Chemical Company (USA), foi utilizado para preparar os biocompósitos na escala laboratorial. Previamente, o citrato de trietila, Across Organics (USA), foi adicionado como plastificante a este acetato de celulose (EL-CA30T).

3.1.1 Tratamentos químicos das fibras de Curauá

As fibras de Curauá (EMBRAPA-PA), com comprimento entre 1 e 1,5 m, foram extraídas das folhas de Curauá por decorticação e posteriormente lavadas com água e secas ao ar. Fibras curtas foram obtidas por moagem das fibras de Curauá por 3 minutos em moinho de facas (Rone, NFA1533) equipado com uma malha de orifícios de 3 mm. O comprimento das fibras varia entre 3 a 7 mm. Neste trabalho estas são denominadas "fibras não tratadas" e no código de identificação dos biocompósitos são identificadas pela letra "F" (vide Tabela 3.1).

Uma porção das fibras não tratadas foi submetida a extração com acetona (A) em um aparato soxhlet. Após 8 h, as fibras foram retiradas e posteriormente lavadas várias vezes com água destilada. Por último, foram secas a 100 ℃ por 24 h numa estufa de circulação de ar. Nos códigos de identificação dos

biocompósitos preparados com estas fibras há a identificação com a letra "A" (vide Tabelas 3.4 e 3..5)

Uma porção de 20 g de fibras de Curauá foi imersa em um litro de solução aquosa de NaOH (mercerização - S) a 8% em massa a aproximadamente 25 °C. Após 1 h sob sonificação, as fibras foram retiradas da solução para serem lavadas com água destilada que o pH da água de lavagem se equiparasse ao pH da água utilizada. Finalmente, as fibras de Curauá foram secas a 100 °C por 24 h numa estufa de circulação de ar. A letra "S" no código dos biocompósitos identifica estas fibras nos biocompósitos (vide Tabelas 3.4 e 3.5)

Os biocompósitos foram preparados em escala piloto (EP) e laboratorial (EL). A nomenclatura dos biocompósitos é constituída por três blocos:

1° Bloco – escala do processo: EP ou EL

 2° Bloco – matriz (CA) + teor de plastificante CA20D; CA30D; CA30T, (D = DOP e T = TEC)

3° Bloco – teor de fibra de Curauá (10 ou 20) + tratamento (F, FA, FS): 10F; 20F; 10FA; 10FS

Exemplo: EP-CA20D-10F = preparação em escala piloto do compósito com 10% em massa de fibra não tratada em acetato de celulose contendo 20% de ftalato de dioctila.

3.2 Preparação de biocompósitos em escala piloto (EP)

Biocompósitos com diferentes teores de fibra e plastificante (DOP) foram preparados em escala piloto. As formulações preparadas são apresentadas na Tabela 3.1.

Estudos prévios mostraram que não há necessidade de secar o acetato de celulose antes de seu processamento.

Uma extrusora Coperion ZSK-26 dupla rosca co-rotante interpenetrante, com L/D = 44 (D = 24 mm) (Figura 3.1) foi utilizada para processar os materiais.

O acetato de celulose plastificado com DOP (*pellets*) foi alimentado na primeira zona de alimentação da extrusora dupla rosca, enquanto as fibras de Curauá foram alimentadas pelo *side feeder*, tal como esquematizado na Figura 3.2. A extrusão dos materiais foi realizada nas condições apresentadas na Tabela 3.2. Durante o processamento de extrusão foi mantida a degasagem.

Formulação	Teor de plastificante DOP (%)	Teor de fibras de Curauá (%)
EP-CA20D	20	0
EP-CA20D-10F	20	10
EP-CA20D-20F	20	20
EP-CA30D	30	0
EP-CA30D-10F	30	10
EP-CA30D-20F	30	20

Tabela 3.1 – Formulações preparadas na escala piloto (EP).

Figura 3.1 – Extrusora duplas rosca Coperion ZSK-26.

Após a extrusão, os biocompósitos foram obtidos na forma de "espaguete", que foram picotados, para obter o formato de *pellet.*

Tabela 3.2 – Condições de processamento em escala piloto na extrusora Coperion ZSK-26.

Perfil de	140	150	160	160	160	165	170	170	180	180
temperaturas (°C)										
Rotação das					3	00				
roscas (RPM)										

Corpos de prova para ensaios de resistência ao impacto e tração foram obtidos para todas as formulações usando uma injetora Arburg all rounder M-250 (Figura 3.3). As dimensões dos corpos de prova para os ensaios de resistência à tração correspondem ao tipo I da norma ASTM D 638 (Figura 3.4), enquanto os corpos de prova para ensaios de resistência ao impacto apresentam dimensões de 60x12x6 mm com entalhe seguindo a norma ASTM D 256. As condições para a obtenção dos corpos de prova por injeção são apresentadas na Tabela 3.3.

Os corpos de prova para os ensaios de resistência ao impacto também foram utilizados para analise dinâmico – mecânica e microscopia eletrônica de varredura. Dos galhos de injeção foram obtidos os corpos de prova para calorimetria diferencial de varredura modulada e análise termomecânica.

Figura 3.3 – Injetora Arburg all rounder M-250.

Figura 3.4 – Dimensões do corpo de prova de resistência a tração tipo I (ASTM D638) em mm.

Perfil de temperaturas (°C)	180	190	200	205	210
Vazão (cm ³ s ⁻¹)			20		
Pressão de injeção (bar)	1200				
Pressão de recalque (bar)) 700				
Tempo de resfriamento (s)	25				
Temperatura de molde (°C)	50				

Tabela 3.3 – Condições para obtenção de corpos de prova por termo-moldagem por injeção.

3.3 Preparação de biocompósitos em escala laboratorial (EL)

Biocompósitos de acetato de celulose e fibras curtas de Curauá também foram preparados em escala laboratorial, com o objetivo de observar os efeitos do plastificante e do tratamento químico realizado nas fibras sobre as propriedades mecânicas e térmicas. Devido às restrições na quantidade de fibra tratada, assim como do plastificante TEC, estas formulações foram realizadas na escala laboratorial. Dois grupos de biocompósitos foram preparados com diferentes plastificantes: DOP e TEC.

O acetato de celulose comercial plastificado com 30% de DOP na forma de *pellets* foi utilizado para preparar um grupo de biocompósitos com fibras de Curauá tratadas e não tratadas. As formulações preparadas são apresentadas na Tabela 3.4.

Formulação	Teor de	Teor de	Tratamento das fibras
	plastificante	fibra de	
	(%)	Curauá (%)	
EL-CA30D	30	0	
EL-CA30D-10F	30	10	
EL-CA30D-10FA	30	10	Extração com acetona (A)
EL-CA30D-10FS	30	10	Mercerização (S)

Tabela 3.4 – Biocompósitos plastificados com DOP e preparados em escala laboratorial.

Tabela 3.5 – Biocompósitos plastificados com TEC e preparados em escala laboratorial.

Formulações	Teor de	Teor de fibra	Tratamento das fibras
	plastificante	de Curauá	
	(%)	(%)	
EL-CA30T	30	0	
EL-CA30T-10F	30	10	
EL-CA30T-10FA	30	10	Extração com acetona (A)
EL-CA30T-10FS	30	10	Mercerização (S)

No caso dos biocompósitos plastificados com citrato de trietila, o plastificante foi adicionado ao acetato de celulose (pó) livre de aditivos 24 h antes do preparo de biocompósitos com fibras de Curauá tratadas e não tratadas. As formulações preparadas neste grupo são apresentadas na Tabela 3.5.

Ambos grupos de biocompósitos foram preparados da mesma forma (EL) escala laboratorial ou em batelada, utilizando uma micro extrusora DSM xplore dupla rosca cônica. Uma fotografia da micro extrusora é apresentado na Figura 3.5. As condições do processamento são apresentadas na Tabela 3.6. O acetato de celulose plastificado e as fibras são alimentados na parte superior da extrusora vertical, e então os materiais são misturados durante três min. A configuração da extrusora permite a recirculação do material e o controle do tempo de residência, independentemente da velocidade de rotação das roscas.

Figura 3.5 – Micro extrusura DSM xplore.

Perfil de temperaturas (°C)	180	190	200
Tempo de procesamento (min)		3	
Velocidade das roscas na alimentação (RPM)		150	
Velocidade das roscas no processamento (RPM)		250	

Tabela 3.6 - Condições de processamento na extrusão em escala laboratorial.

Após o processamento, o biocompósito a aproximadamente 205 °C é transferido diretamente ao barril de injeção previamente aquecido a uma temperatura de 200 °C. Então, o barril de injeção é instalado na micro injetora DSM explore (Figura 3.6), e a injeção é conduzida sob as condições listadas na Tabela 3.7.

 Tabela 3.7 - Condições do processamento de injeção na escala laboratorial.

Temperatura do barril (°C)	200
Temperatura do molde (°C)	50
Tempo de injeção (s)	10
Pressão de injeção (bar)	8

Figura 3.6 – Micro injetora DSM xplore.

Os corpos de prova injetados de biocompósitos preparados em escala laboratorial são do tipo V seguindo a norma ASTM D 638 (esquema do corpo de prova é apresentado na Figura 3.7). Corpos de prova para ensaios de resistência ao impacto (ASTM D 256) também foram injetados.

Figura 3.7 – Dimensões do corpo de prova de resistência á tração segundo a norma ASTM D 638 tipo V em mm.

Os corpos de prova utilizados para a análise morfológica por microscopia eletrônica de varredura são originados da fratura dos corpos de prova usados nos ensaios de resistência ao impacto.

Corpos de prova cilindricos, com diâmetro de 5 mm e altura de 0,4 mm e 5 mm foram cortados dos corpos de prova injetados para ensaios resistência ao impacto. Estes cilindros foram utilizados em ensaios para a determinação da condutividade térmica e do coeficiente de expansão térmica linear.

3.4 Caracterização dos materiais

3.4.1 Propriedades mecânicas

3.4.1.1 Ensaios de resistência a tração

Os ensaios de resistência à tração foram realizados usando a máquina universal de ensaios EMIC DL2000 com uma célula de carga de 5000 N a

velocidade constante de 50 mm min⁻¹. Para a determinação do módulo utilizou-se um extensômetro. Os corpos de prova foram acondicionados durante 72 h a 25 °C e 50% de umidade, segundo a norma ASTM D 638. Foram realizados ensaios com, pelo menos, oito corpos de prova para cada formulação.

As fibras tratadas e não tratadas também foram submetidas a ensaios de resistência a tração, tomando-se 40 fibras de cada grupo com um comprimento de 5 cm. As fibras foram testadas na mesma máquina com uma célula de carga de 10 N a velocidade constante de estiramento de 10 mm min⁻¹. Previamente, as fibras foram acondicionadas por 72 h a 25 $^{\circ}$ C e 50% de umidade. O diâmetro das fibras foi medido após o acondicionamento com um micrômetro Mitutoyo.

3.4.1.2 Ensaios de resistência ao impacto

Ensaios de resistência ao impacto modo Izod, foram realizados em um aparelho EMIC tipo pêndulo, utilizando pêndulo de 2,7 J, de acordo com as especificações da norma ASTM D 256. Previamente os corpos de prova foram entalhados seguindo a norma. Pelo menos cinco corpos de prova de cada formulação de compósitos foram testados.

3.4.1.3 Análise dinâmico-mecânica (DMA)

As análises dinâmico-mecânicas foram conduzidas em um equipamento Rheometrics Scientific DMTA V no modo flexão, de -50 a 250 °C, freqüência de 1 Hz, amplitude de 0,01% e taxa de aquecimento de 2 °C min⁻¹. Amostras com dimensões médias de 6 x 12 x 38 mm foram cortadas da região central de corpos de prova injetados de forma que o comprimento das amostras coincide com a direção do fluxo de injeção.

3.4.2 Propriedades térmicas

3.4.2.1 Análise termogravimétrica (TGA)

O equipamento TGA 2950 foi utilizado para realizar os estudos de estabilidade termo-oxidativa dos compósitos, na faixa de temperatura de 25 °C a 700 °C, a taxa de aquecimento de 5 °C min⁻¹ e sob um fluxo de 100 mL min⁻¹ de ar sintético.

3.4.2.2 Calorimetria diferencial de varredura modulada (MDSC)

A condutividade térmica (λ) e a capacidade calorífica (Cp) do acetato de celulose plastificado e dos compósitos foram determinadas a partir de experimentos realizados no equipamento TA instruments 2910, utilizando a metodologia descrita na norma ASTM E 1952. Para tanto o equipamento foi calibrado com respeito temperatura, Cp e λ utilizando índio, safira e poliestireno sem aditivos (Aldrich), respectivamente. As amostras na forma de cilindros com alturas de 0,4 e 5 mm, e com diâmetro de 5 mm, foram mantidos em cada temperatura (20, 40, 60, 80 e 100 °C) por 20 min, sob oscilação de temperatura com amplitude de ± 0,5 °C e período de 80 s. A relação entre as capacidades caloríficas devido à diferença na espessura permite a obtenção da condutividade térmica da amostra ⁶⁸.

3.4.2.3 Análise termomecânica (TMA)

O coeficiente linear de expansão térmica foi obtido dos ensaios termomecânicos realizados no equipamento TMA2940 Thermomechanical Analyzer (TA Instruments). As análises foram realizadas no modo dilatometria segundo o programa: equilíbrio a 0 °C, rampa desde 0 °C até 120 °C a uma taxa de aquecimento de 5 °C min⁻¹. Foram utilizadas amostras na forma cilíndrica, com diâmetro de 5 mm e altura entre 5 e 7 mm cumprindo a norma ASTM E 831. Uma

calibração prévia do termoanalizador foi realizada utilizando um cilindro de alumínio.

3.4.3 Caracterização morfológica

3.4.3.1 Microscopia óptica de luz refletida

As fibras de Curauá tratadas e não tratadas foram observadas em um microscópio óptico Nikon Eclipse 80i e fotografadas com uma câmara Nikon DS-Fi1. O diâmetro das fibras antes e após os tratamentos foi determinado com o auxílio do software NIS-Elements.

3.4.3.2 Microscopia eletrônica de varredura

As superfícies resultantes das fraturas dos ensaios de resistência ao impacto foram revestidas com carbono e ouro em metalizador Bal-Tec Med 020, para posterior análise em um microscópio JEOL JSM-6390 LV, operando a 20 kV. A superfície observada foi o plano perpendicular ao fluxo de injeção.

3.4.4 Espectroscopia na região de infravermelho

Fibras de Curauá foram analisadas por espectroscopia na região de infravermelho por refletância total atenuada (ATR) antes e após o tratamento com acetona e soda em um equipamento Nicolet 380 FT-IR (Thermo scientific) na faixa de 650 a 4000 cm⁻¹, resolução de 4 cm⁻¹ e 64 acumulações.

3.4.5 Difração de raios X

Os difratogramas paras as fibras de Curauá tratadas e não tratadas foram obtidos em um difratômetro de raios X Shimadzu XRD700, operando com radiação K_{α} de Cu (λ +0,15406 nm), tensão de 40 kV e corrente de 30 mA, varredura de 5 a 50° e velocidade de varredura de 2° por min.

Capitulo 4 – Resultados e discussões

4.1 Caracterização das Fibras de Curauá: Tratadas e não tratadas.

As fibras de Curauá foram caracterizadas antes e após os tratamentos químicos.

Na Tabela 4.1 são apresentadas as propriedades mecânicas a tração e os diâmetros para as fibras de Curauá antes e após extração com acetona ou tratamento com solução alcalina (mercerização). As fibras de Curauá não tratadas apresentam módulo elástico de (53 ± 8) GPa. Para as fibras extraídas com acetona não é observada uma mudança significativa no módulo elástico (47 ± 6) GPa, devido ao fato que a extração com acetona não modifica significativamente a estrutura das fibras lignocelulósicas, mas apenas remove impurezas, como as cêras que envolvem as fibrilas de celulose. Esta remoção das cêras permite a exposição de grupos hidroxilas, favorecendo a adesão fibra / matriz hidrofílica 69,70 . Por outro lado, as fibras mercerizadas [módulo de (81 ± 7)] GPa], apresentam aumento no módulo elástico de 53%, atribuído à aumento na fração cristalina da celulose I. A celulose I encontra-se naturalmente nas fibras lignocelulósicas e é formada por regiões cristalinas e amorfas. A região cristalina é formada pelo empacotamento das cadeias poliméricas ligadas entre si por ligações de hidrogênio. A remoção de materiais amorfos como lignina e hemicelulose ^{52,53,70,71}, como conseqüência do tratamento com solução alcalina, leva ao aumento relativo da fração cristalina da fibra. O aumento da fração cristalina da celulose I resulta em aumento da resistência mecânica das fibras e diminuição da capacidade de absorção de água 72.

Por outro lado, a capacidade de elongação das fibras de Curauá não é modificada pelos tratamentos químicos, uma vez que os valores de deformação na ruptura não apresentam diferenças significativas. Estes resultados coincidem com os apresentados por Spinacé e cols ⁴⁷.

33

	Módulo elástico (GPa)	Deformação na ruptura (%)	Diâmetro (μm)
Fibra de Curauá	53 ± 8	3 ± 1	69 ± 7
Fibra de Curauá (A)	47 ± 6	2 ± 0,5	8 ± 1
Fibra de Curauá (S)	81 ± 7	3 ± 1	10 ± 2

Tabela 4.1 – Propriedades mecânicas das fibras de Curauá.

As fibras tratadas apresentam menores diâmetros que as fibras não tratadas. O diâmetro das fibras após ambos tratamentos químicos são similares, da ordem de 10 µm. As fibras extraídas com acetona podem apresentar fibrilação devido a remoção de compostos orgânicos de baixa massa molar, que permite uma melhor interação entre as fibrilas de celulose e a acetona ⁷⁰, em substituição das interações fibrilas-lignina. O resultado desta alteração de pares de interação diminui a coesão das fibrilas, com conseqüente diminuição no diâmetro das fibras submetidas a extração com acetona. Já para as fibras mercerizadas a diminuição do diâmetro está relacionada com a remoção de lignina e hemicelulose.

Na Figura 4.1 são apresentados os espectros obtidos por espectroscopia vibracional na região de infravermelho (FTIR) para as fibras de Curauá não tratadas, assim como para as fibras extraídas com acetona e mercerizadas. O espectro para as fibras de Curauá é similar ao reportado por Tomczak e cols.⁷³ apresentando um pico centrado em 3300 cm⁻¹, correspondente ao estiramento de grupos hidroxila (O-H) da celulose e água; uma absorção de menor intensidade em 2950 cm⁻¹, devido ao estiramento simétrico e assimétrico de C-H; absorções típicas da celulose na região de 1800-600 cm⁻¹ também são observadas, uma vez que aproximadamente 70% da fibra corresponde a celulose; em 1740 cm⁻¹ observa-se uma banda de estiramento dos grupos carbonilas (C=O), a qual é associada a materiais não celulósicos. Outros autores também reportaram o estiramento de C-O-C da celulose e hemicelulose a 1030 cm^{-1 70}.

34

Figura 4.1 – Espectros infravermelho de ATR para as fibras de Curauá: (——) Fibras não tratadas; (——) extraídas com acetona; (——) mercerizadas.

Phoung e cols. reportaram também para as fibras lignocelulósicas mercerizadas uma queda na intensidade nos picos centrados em 1622 cm⁻¹, associado ao anel de benzênico presente na lignina; em 1261 cm⁻¹, associado a ligações C-O-C da lignina e hemicelulose, e em 1730 cm⁻¹ atribuído a grupos C=O da lignina ⁸. As duas últimas bandas tem sua intensidade diminuída após tratamento com solução alcalina, em conseqüência da eliminação da lignina ^{8,74}. Comportamento similar foi reportado por Ouajai e Shanks para fibras de cânhamo após tratamento com solução alcalina ⁷⁰. Para as fibras de Curauá extraídas com acetona as diferenças no espectro vibracional de infravermelho em relação ao espectro das fibras não tratadas não são observáveis. Como já discutido, a

extração com acetona está associada a remoção parcial de impurezas, como as cêras ⁶⁹.

A maioria das bandas observadas nos espectros podem ser atribuídas aos grupos químicos presentes nos diferentes componentes das fibras lignocelulósicas com exceção da banda para C=C (aromático) atribuído a lignina. Assim, a razão entre a altura da banda centrada em 1622 cm⁻¹ ($I_{C=C}$) e a banda a 1030 cm⁻¹ (I_{C-O-C}), permite avaliar a composição relativa das fibras. Na Tabela 4.2 são apresentadas a razão $I_{C-O-C}/I_{C=C}$ para a fibra não tratada e para as fibras tratadas com acetona e as mercerizadas. Observa-se um aumento na razão $I_{C-O-C}/I_{C=C}$ para as fibras de Curauá mercerizadas com respeito às razões das fibras de Curauá não tratadas e fibras de Curauá extraídas com acetona devido à remoção parcial da lignina.

Tabela 4.2 – Razões das intensidades $I_{C-O-C}/I_{C=C}$ para as fibras tratadas e não tratadas

	Fibra de Curauá	Fibra de Curauá (A)	Fibra de Curauá (S)
I _{C-O-C} /I _{C=C}	8,3	8,2	10,3

Nas figuras 4.2 e 4.3 são apresentadas as curvas termogravimétricas e as suas primeiras derivadas (DTG), respectivamente, para as fibras tratadas e não tratadas. É possível observar que as fibras não tratadas apresentam três estágios de degradação termo-oxidativa. O primeiro estágio ocorre a temperaturas inferiores a 100 °C, associado à perda de compostos voláteis, como a umidade. O segundo estágio em torno de 300 °C é associado à ruptura das cadeias de celulose e hemicelulose. O terceiro estagio de perda de massa a aproximadamente 430 °C é atribuido à quebra da estrutura da lignina ^{47,75}.

36

Figura 4.2 – Curvas termogravimétricas das fibras de Curauá: (——) Fibras não tratadas; (——) extraídas com acetona; (——) mercerizadas.

As curvas termogravimétricas em atmosfera oxidante para as fibras mercerizadas e as extraídas com acetona apresentam um perfil similar ao apresentado pelas fibras sem tratamento, embora os dois últimos eventos térmicos sejam deslocados para temperaturas maiores com o tratamento, que pode estar associado à remoção parcial da lignina e hemicelulose. De acordo com Tomczak e cols. ⁷³ a degradação oxidativa de fibras lignocelulósicas é complexa envolvendo várias reações simultaneamente como: rupturas das cadeias de celulose e a degradação da lignina.

Figura 4.3 – Primeiras derivadas das curvas termogravimétricas diferenciais das fibras de Curauá: (—) Fibras não tratadas; (—) extraídas com acetona; (—) mercerizadas.

A Figura 4.4 apresenta os difratogramas de raios X para as fibras de Curauá tratadas com acetona ou com solução alcalina e não tratadas. Três picos são observados em $2\theta = 16^{\circ}$, 23° e 35° correspondendo aos planos cristalográficos (I $\overline{1}$ 0) ou (I I 0), (0 0 2) e (0 2 3) ou (0 0 4), respectivamente ^{47,72}. Estes picos são característicos da estrutura da celulose I, que se encontra normalmente nas fibras lignocelulósicas. Estes resultados mostram que não há mudança na estrutura da celulose I, após tratamentos químicos das fibras. Fibras lignocelulósicas com alto conteúdo de celulose cristalina como o linho, algodão, ramie ou bambu apresentam dois picos em $2\theta = 14^{\circ}$ e 17° para os planos cristalográficos (I $\overline{1}$ 0) e (I 1 0), respectivamente ^{76,77}. Para as fibras de Curauá, é observado um pico largo em $2\theta = 16^{\circ}$, resultante da difração de materiais amorfos como lignina, hemicelulose, celulose amorfa e cêras ^{47,78}. Devido a isto, é possível calcular a fração de celulose cristalina nas fibras antes e após tratamentos químicos, de acordo com a Equação 4.1.

Fração de cristais (%) =
$$\frac{(I_{002} - I_{amp})}{I_{002}} x 100$$
 Equação 4.1

Onde I₀₀₂ é a área do pico referente ao plano (0 0 2) característico da celulose cristalina e I_{amp} é a área do pico associado aos planos cristalinos (I Ī 0) ou (I I 0) e à fração amorfa ⁷⁸. Na tabela 4.3 são apresentados os valores da fração cristalina para as fibras de Curauá. Fibras extraídas com acetona não apresentam uma diferença significativa da fração cristalina em comparação às fibras não tratadas. Já para as fibras mercerizadas é observado um aumento, o que poderia explicar o aumento no módulo elástico a tração das fibras mercerizadas. O aumento da fração cristalina em fibras mercerizadas está associado a remoção dos materiais amorfos, principalmente lignina e hemicelulose como foi observado nos espectros na região de infravermelho. O aumento relativo da fração cristalina é de 19% para as fibras de Curauá mercerizadas com respeito as fibras sem tratamento. Outros autores reportam aumento entre 20 e 30% na fração cristalina após mercerização das fibras lignocelulósicas, tais como a fibra de Curauá e outras ^{47,78}.

Figura 4.4 – Difratograma de raios X para as fibras de Curauá: (——) Fibras não tratadas; (——) extraídas com acetona; (——) mercerizadas.

Tabela 4.3 – Fração cristalina das fibras de Curauá antes e após tratamentos.

	Fração cristalina (%)
Fibra de Curauá	59
Fibra de Curauá (A)	60
Fibra de Curauá (S)	70

4.2 Biocompósitos de Acetato de Celulose e Fibras de Curauá preparados em escala piloto.

Compósitos foram preparados em escala piloto, com o objetivo de avaliar o efeito do teor de fibra de Curauá como reforço do acetato de celulose, assim como do teor do plastificante, o ftalato de dioctila, sobre as propriedades dos compósitos. É importante esclarecer que nesta seção as fibras de Curauá não foram submetidas a tratamento químico.

4.2.1 Morfologia

Micrografias de microscopia eletrônica de varredura (SEM) para o compósito com e 10% em massa de fibras de Curauá são apresentadas na Figura 4.5 e 4.6. A micrografia apresentada na Figura 4.5a corresponde a uma visão panorâmica da fratura resultante de ensaios de resistência ao impacto do compósito EP-CA20D-10F. Portanto, a superfície observada corresponde ao plano transversal ao fluxo de injeção. O diâmetro das fibras é da ordem de 100 a 200 µm, e observa-se uma orientação preferencial das fibras na direção do fluxo de injeção. Nesta micrografia é possível observar a distribuição uniforme das fibras de Curauá pela matriz de acetato de celulose. A Figura 4.5b permite observar a presença majoritária de feixes de fibrilas, indicando uma fibrilação parcial das fibras de Curauá. É possível observar regiões em que a matriz envolve as fibras e outras em que há um espaço entre as fibras e a matriz. Esta boa adesão interfacial estaria relacionada com o caráter hidrofílico tanto das fibras de Curauá, como da matriz polimérica (acetato de celulose). A boa adesão entre acetato de celulose e fibras lignocelulósicas também foi reportada por Taha e Ziegmann ⁴⁴. Algumas poucas fibrilas com menor diâmetro (5 µm) também são observadas, assim como espaços vazios de mesmo diâmetro na matriz, que possivelmente foram ocupados por estas fibras.

41

Figura 4.5 – Micrografias de microscopia eletrônica de varredura para o compósito EP-CA20D-10F.

Figura 4.6 – Micrografias de microscopia eletrônica de varredura para o compósito EP-CA30D-10F.

A Figura 4.6 corresponde às micrografias de microscopia eletrônica de varredura (SEM) para o compósito com 30% de DOP como plastificante e 10% em massa de fibra de Curauá (EP-CA30D-10F). A micrografia mostrada na Figura 4.6a corresponde a superfície de fratura do compósito numa vista panorâmica. A morfologia observada é similar a do compósito EP-CA20D-10F, apresentando feixes de fibrilas com diâmetros de aproximadamente 100 μ m, distribuídos uniformemente na matriz e orientados na direção do fluxo de injeção. A micrografia da Figura 4.6b permite observar a interface fibra – matriz. O tamanho da fibrila observada é aproximadamente entre 5 e 7 μ m de diâmetro.

As micrografias para os compósitos contendo 20% de fibras estão mostradas na Figuras 4.7 e 4.8. As Figuras 4.7a e 4.8a correspondem a uma visão panorâmica das fraturas de corpos de prova, as quais estão em planos transversais à direção de injeção. A morfologia destas fraturas é similar a dos compósitos com 10% de fibra de Curauá, apresentando distribuição uniforme das fibras e uma fibrilação parcial, independentemente do teor de plastificante. Uma maior densidade de fibras de Curauá na matriz é observada com relação aos compósitos com 10% de fibra.

As Figuras 4.7b e 4.8b apresentam as fraturas dos compósitos EP-CA20D-20F e EP-CA30D-20F, respectivamente. A ampliação das micrografias permite observar fibrilas dispersas na matriz, assim como vazios possivelmente ocupados anteriormente por fibrilas.

44

Figura 4.7 – Micrografias de microscopia eletrônica de varredura para o compósito EP-CA20D-20F.

Figura 4.8 – Micrografias de microscopia eletrônica de varredura para o compósito EP-CA30D-20F.

4.2.2 Propriedades mecânicas

As propriedades mecânicas dos compósitos de acetato de celulose plastificado com ftalato de dioctila (DOP) e reforçados com fibras de Curauá não tratadas e preparados em escala piloto são apresentadas na Tabela 4.4.

O acetato de celulose plastificado com 30% de DOP (EP-CA30D) e preparado em escala piloto apresenta resistência ao impacto 117% maior em comparação com aquele com 20% de DOP (EP-CA20D). Em geral, os plastificantes são adicionados a matrizes poliméricas visando aumentar o volume livre do polímero e diminuir a coesão entre as cadeias poliméricas, o que resulta em aumento da flexibilidade das cadeias ¹. O aumento no teor do plastificante torna o material mais flexível e com maior resistência ao impacto, como reportado para acetato de celulose com diferentes teores de plastificante ^{37,39,67}.

Para os compósitos com 20% de DOP e fibras de Curauá, é observada uma queda no valor de resistência ao impacto de 51%, em relação ao acetato de celulose plastificado, devido à presença das fibras, que enrijecem o material ^{4,22,44}. Comportamento similar é observado para os compósitos com 30% de DOP, que apresentam uma queda da resistência ao impacto de 49%, com respeito a formulação EP-CA30D. Porém, os compósitos com 30% de DOP apresentam uma resistência ao impacto 140% maior em relação aos compósitos com 20% de plastificante. Para ambos os conjuntos de compósitos não é observada uma diferença na resistência ao impacto devido à diferença no teor de fibras adicionada ao acetato de celulose plastificado. Este comportamento também foi reportado para compósitos de acetato de celulose comercial (Bioceta ®) contendo 20% e 40% em volume de fibras de cânhamo e linho ⁴⁴.

O módulo elástico sob tração do acetato de celulose com 30% de plastificante é 100% menor do que o módulo para o acetato de celulose com 20% de DOP. Independentemente do teor de plastificante. A incorporação de fibras de Curauá acarreta em aumento do módulo. Por exemplo, para os compósitos com 20% de plastificante o ganho no módulo elástico com respeito ao acetato de celulose plastificado é de 36% e 50% para teores de fibra de 10% e 20%,

respectivamente. Para os compósitos com 30% de DOP observa-se um ganho de 57% e 100%, com a adição de 10% e 20% em massa (aproximadamente 12% e 21% em volume), respectivamente. O ganho no módulo elástico para o compósito EP-CA30D-10F é similar ao ganho da formulação EP-CA20P-20F (57% e 50%, respectivamente) em relação ao acetato de celulose contendo 30% e 20% de plastificante. Compósitos com 20% de DOP e 20% de fibras curtas de Curauá apresentam módulo elástico de 4,2 GPa. Este valor é similar ao reportado por Taha e Ziegermann para compósitos de acetato de celulose (Bioceta®) e 20% em volume de fibras de cânhamo (4.4 GPa) e linho (4.0 GPa). Estes compósitos foram preparados com fibras longas por termo-moldagem, o que pode ser uma desvantagem em relação a moldagem por injeção que permite uma maior variedade de peças em comparação à termo-moldagem, além de requerer menor quantidade de fibra.

	Resistência ao impacto (J m ⁻¹)	Módulo elástico (GPa)	Deformação na ruptura (%)
EP-CA20D	137 ± 5	$2,8 \pm 0,3$	8 ± 0,5
EP-CA20D-10F	68 ± 3	$3,8 \pm 0,5$	5 ± 0,5
EP-CA20D-20F	67 ± 3	$4,2 \pm 0,5$	5 ± 0.5
EP-CA30D	297 ± 5	$1,4 \pm 0,2$	20 ± 0.5
EP-CA30D-10F	161 ± 5	$2,2 \pm 0,2$	12 ± 1
EP-CA30D-20F	152 ± 5	$2,8 \pm 0,3$	5 ± 0,5

Tabela 4.4 – Propriedades mecânicas, impacto e tração, dos compósitos de acetato de celulose e fibras de Curauá preparados na escala piloto.

O acetato de celulose plastificado com 30% de DOP apresenta deformação na ruptura maior (150%) que o acetato de celulose plastificado com 20% de DOP. Para os compósitos com 20% de DOP, há uma diminuição na deformação na ruptura de 37% com respeito ao acetato de celulose plastificado, sem observar uma diferencia associada ao teor de fibra. Já os compósitos com 30% de DOP apresentam diferenças com respeito ao teor de fibra, apresentando uma diminuição de 40% e 75% na deformação na ruptura, para os compósitos com teores de 10% e 20% de fibras curtas de Curauá, respectivamente. A maior flexibilidade do acetato de celulose nos compósitos com 30% de DOP destaca o efeito das fibras na deformação na ruptura.

As curvas de módulo de armazenamento, obtidos dos ensaios de DMA, em função da temperatura para as formulações com 20% de DOP, são apresentados na Figura 4.9. O módulo de armazenamento do acetato de celulose plastificado com 20% de DOP e de seus compósitos apresentam uma inflexão e uma queda de 3 ordens de grandeza ⁷⁹, em torno de 120 °C, típica da transição vítrea para polímeros amorfos como o acetato de celulose. O módulo de armazenamento a temperaturas inferiores a transição vítrea é maior para os compósitos, devido ao fato que a matriz cobre totalmente as fibras garantindo a transferência do esforço mecânico da matriz para as fibras. Comportamento similar foi reportado por Wong e cols. para compósitos de poli (acido láctico) e fibras de linho ⁶⁶.

Videki e cols. ⁸⁰ relataram para o acetato de celulose três transiçãos: a transição vítrea (α) a 85 °C; a transição β a -5 °C, atribuída a relaxações dos anéis de glicose, e a transição γ a -85 °C associada aos grupos hidroxila, os quais interagem com moléculas de água absorvidas. A Figura 4.10 apresenta as curvas de módulo de perda para as formulações com 20% de DOP. As curvas apresentam picos que estão relacionados às relaxações secundárias (pico às temperaturas menores) e à transição vítrea. A temperatura correspondente ao máximo de cada pico é tomada como a temperatura de relaxação secundária (T_{β}) e transição vítrea (Tg ou T α). Para o acetato de celulose plastificado com 20% DOP, a Tg e T_{β} são 110 °C e -50 °C, respectivamente. E para os compósitos com 10% e 20% de fibras curtas de Curauá são de 119 °C e -45 °C, respectivamente. Estas diferenças poderiam ser associadas a ancoragem mecânica das cadeias poliméricas nas fibras, que causariam restrições à mobilidade das cadeias e, por tanto, ao deslocamento das relaxações para temperaturas mais elevadas.

Figura 4.9 – Módulo de armazenamento em função da temperatura para as formulações: (■) EP-CA20D; (●) EP-CA20D-10F e (▲) EP-CA20D-20F.

Figura 4.10 – Módulo de perda em função da temperatura para as formulações: (■) EP-CA20D; (●) EP-CA20D-10F e (▲) EP-CA20D-20F.

As curvas de módulo de armazenamento e de perda em função da temperatura para as formulações com 30% de DOP são apresentadas nas figuras 4.11 e 4.12 respectivamente. O módulo de armazenamento para o acetato de celulose plastificado com 30% de DOP e seus compósitos com 10% e 20% de fibras curtas de Curauá apresentam uma inflexão e uma queda de três ordens de grandeza em torno de 80°C, atribuído à transição vítrea ⁷⁹. Diferentemente das formulações com 20% de DOP, o módulo de armazenamento dos compósitos com 30% de DOP a temperaturas abaixo da Tg, varia pouco em relação ao módulo de armazenamento do acetato de celulose plastificado. Acima da Tg, observa-se uma

queda atenuada do módulo para os compósitos em relação ao acetato de celulose plastificado, indicando o efeito de reforço das fibras, tal como observado para as formulações com 20% de DOP.

Figura 4.11 – Módulo de armazenamento em função da temperatura para as formulações: (■) EP-CA30D; (●) EP-CA30D-10F e (▲) EP-CA30D-20F.

Por último, as curvas de módulo de perda para as formulações com 30% de plastificante apresentam a relaxação secundária (β) e a transição vítrea, tanto para o acetato de celulose plastificado como para os compósitos a -38 °C e 78 °C, respectivamente. Ao comparar as formulações com 20% e 30% de DOP é possível observar uma queda da temperatura de transição vítrea para aquelas formulações com maior teor de plastificante, devido ao maior volume livre gerado

entre as cadeias poliméricas de acetato de celulose pelo maior número de moléculas de DOP.

Figura 4.12 – Módulo de perda em função da temperatura para as formulações: (■) EP-CA30D; (●) EP-CA30D-10F e (▲) EP-CA30D-20F.

4.2.3 Propriedades térmicas

Chatterjee e Conrad reportaram três estágios de degradação térmica para acetato de celulose puro em atmosfera inerte (N₂): o primeiro estágio ao redor de 120 °C associado a volatilização de água adsorvida e outros voláteis; o segundo

estágio entre 220 °C e 420 °C é atribuído à volatilização de produtos referente à degradação de grupos acetila e à cisão da cadeia polimérica, e por último, a carbonização dos produtos ocorre acima de 500 °C ^{81,82}. Por outro lado, Schilling e cols. estudaram a degradação térmica de acetato de celulose plastificado com ftalato de dietila (DEP) em atmosfera oxidante, encontrando três estágios de degradação, o primeiro associado a umidade ao redor de 100 °C, o segundo atribuído à volatilização do plastificante, ocorrendo ao redor de 250 °C e por último, acima de 380 °C associado à cisão da cadeia polimérica e oxidação dos produtos ⁸³, observando, ligeiros deslocamentos para temperaturas mais baixas em comparação ao estudo em atmosfera inerte. Para as fibras de Curauá, Spinace e cols. apresentaram as curvas termogravimétricas em atmosfera inerte (Ar), encontrando uma perda de massa a 75 °C devido à presença de umidade. Outras três perdas de massa foram observadas, a 268 °C associado a decomposição da hemicelulose, a 335 °C relacionado com a celulose e a última perda de massa associada a lignina ocorre a 439 °C ⁴⁷.

As curvas termogravimétricas e as curvas referentes à primeira derivada das curvas termogravimétricas, obtidas em atmosfera oxidante, para o acetato de celulose plastificado com 20% de DOP e seus compósitos são apresentadas nas figuras 4.13 e 4.14, respectivamente. Para o acetato de celulose plastificado com 20% de DOP, não se observa uma perda de massa relacionada à umidade. A primeira etapa ocorre ao redor de 300 °C, havendo uma perda de massa de 20% associada à volatilização do plastificante. A perda de massa de 76% a 350 ℃ é atribuída a decomposição dos grupos acetilas e cisão de cadeia polimérica. Acima de 500 ℃ ocorre a oxidação dos produtos. Já para os compósitos, observa-se um comportamento similar, ocorrendo a primeira perda de massa (22%) a 280 °C associada à volatilização do plastificante e à decomposição da hemicelulose; a segunda perda de massa é atribuída à decomposição de grupos acetila; a cisão da cadeia polimérica do acetato de celulose e da celulose ocorre a 364 °C (76%). Por último, a decomposição de lignina e a oxidação dos produtos ocorre ao redor de 500 °C. A diferença nas temperatura de oxidação dos produtos finais está relacionada com a presença das fibras.

Figura 4.14 – Curvas termogravimétricas diferenciais para as formulações: (-----) EP-CA20D; (-----) EP-CA20D-10F e (------) EP-CA20D-20F.

As derivadas das curvas termogravimétricas (Figura 4.14) permitem observar que a adição das fibras desloca a primeira e a terceira etapas de degradação oxidativa para menores temperaturas. Entretanto, estas diferenças não são significativas em termos de estabilidade termo-oxidativa.

As curvas termogravimétricas e as derivadas das curvas termogravimétricas para as formulações com 30% de DOP, obtidas em atmosfera oxidante, são apresentadas nas figuras 4.15 e 4.16. Observa-se o seguinte comportamento termo-oxidativo: o acetato de celulose plastificado e seus compósitos, apresentam uma perda de massa de 2% a 110 °C atribuída à umidade adsorvida. A volatilização do plastificante para o acetato de celulose plastificado e seus compósitos ocorre ao redor 270 °C (29% e 32%, respectivamente). Para os compósitos, este estágio não é apenas relacionado ao plastificante, mas também à hemicelulose presente nas fibras. Um deslocamento na temperatura deste evento para os compósitos em relação ao acetato de celulose plastificado é atribuído aos grupos oxidantes presentes na hemicelulose. Tanto para o acetato de celulose plastificado, como para os compósitos, uma perda de 76% é observada a 355 °C e atribuída à decomposição de grupos acetila, assim como à cisão da cadeia polimérica e da celulose. Por último, a oxidação dos produtos para 0 acetato de celulose plastificado acima de ocorre 500 °C, e para os compósitos com 10% e 20% de fibra a 500 e 480 °C, respectivamente. Esta diferença na temperatura de oxidação dos produtos é atribuída à presença das fibras de Curauá que apresenta uma etapa de decomposição da lignina (439 °C) e de oxidação dos produtos finais muito próximas ⁴⁷. Assim os compósitos com maior teor de fibra apresentam a oxidação dos produtos a uma temperatura próxima da temperatura de decomposição das fibras de Curauá.

Figura 4.15 – Curvas termogravimetricas para as formulações: (——) EP-CA30D; (——) EP-CA30D-10F e (——) EP-CA30D-20F.

Figura 4.16 – Curvas termogravimétricas diferenciais para as formulações: (-----) EP-CA30D; (-----) EP-CA30D-10F e (------) EP-CA30D-20F.

A Figura 4.16 apresenta as derivadas das curvas termogravimétricas para as formulações com 30% de plastificante. Nestas curvas é observado um comportamento similar para as formulações com 20% de DOP. Pode-se observar que a degradação térmica em atmosfera oxidativa do acetato de celulose não é modificada significativamente pela presença das fibras de Curauá, independentemente do teor de fibra ou de plastificante.

As propriedades térmicas de compósitos, como a capacidade calorífica, a condutividade e a difusividade térmica são importantes tanto para o processamento quanto para as aplicações ^{68,84}. Devido a isto, a capacidade calorífica real e aparente do acetato de celulose plastificado e de seus compósitos foram determinadas por calorimetria diferencial de varredura modulada (MDSC). Estes parâmetros foram utilizados para calcular a condutividade térmica ⁶⁸. Uma breve descrição da metodologia empregada é apresentada no Anexo I. Os valores de capacidade calorífica para as diferentes formulações são apresentadas na Tabela 4.5

A capacidade calorífica em função da temperatura para o acetato de celulose plastificado com 20% e 30% de DOP e seus compósitos encontram-se na Figura 4.17. Para os compósitos com 20% de plastificante (Figura 4.17a) é observado um aumento do Cp com respeito a temperatura. Por outro lado, o compósito com menor teor de fibra (10%) apresenta valores de capacidade calorífica similares ao do acetato de celulose plastificado. Já o compósito com 20% de fibras de Curauá apresenta valores maiores de Cp. Se as fibras lignocelulósicas apresentam capacidade caloríficas ao redor de 1,7 J g⁻¹ K⁻¹, dependendo da composição, é natural um aumento na capacidade calorífica dos compósitos com respeito ao teor das fibras de Curauá ⁷.

Tabela 4.5 – Capacidade calorífica (Cp) $[J g^{-1} K^{-1}]$ para diferentes temperaturas para as formulações preparadas na escala piloto.

Formulação	20 °C	40 °C	0° 00	℃ 08	100 ℃
EP-CA20D	1,374±0,003	1,467±0,002	1,555±0,002	1,634±0,006	1,740±0,005
EP-CA20D-10F	1,367±0,001	1,461±0,004	1,548±0,003	1,627±0,008	1,727±0,004
EP-CA20D-20F	1,415±0,007	1,524±0,008	1,636±0,004	1,757±0,004	1,909±0,007
EP-CA30D	1,387±0,001	1,471±0,002	1,549±0,004	1,618±0,012	1,819±0,006
EP-CA30D-10F	1,457±0,001	1,552±0,002	1,657±0,003	1,771±0,001	1,932±0,003
EP-CA30D-20F	1,461±0,002	1,564±0,010	1,669±0,007	1,755±0,042	1,913±0,011

Para as formulações com 30% de DOP a capacidade calorífica em função da temperatura é apresentada na Figura 4.17b. O característico aumento do Cp com respeito à temperatura também é observado para este conjunto de materiais. Além disto, é possível observar a diferença no comportamento da capacidade calorífica em temperaturas próximas a transição vítrea. A capacidade calorífica é uma função dos graus de liberdade que, no caso de macromoléculas em temperaturas inferiores e próximas a transição vítrea, se restringe a graus de liberdade rotacionais e vibracionais, relacionados as relaxações secundárias de macromoléculas ⁷⁹. Acima da Tg o aumento dos graus de liberdade corresponde ao ganho de mobilidade das cadeias poliméricas como um todo, refletindo em um aumento mais acentuado da Cp, acima da Tg. Os valores de Cp para ambos compósitos são similares entre si e maiores em relação ao valor observado para o acetato de celulose plastificado.

Figura 4.17 – Capacidade calorífica em função da temperatura, a) para as formulações: (■) EP-CA20D; (●) EP-CA20D-10F e (▲) EP-CA20D-20F, b) para as formulações: (■) EP-CA30D; (●) EP-CA30D-10F e (▲) EP-CA30D-20F.

A capacidade calorífica do acetato de celulose com 20 e 30% de DOP determinados neste trabalho são maiores do que os reportados na literatura para o acetato de celulose com grau de acetilação 39,8% e plastificado com 30% de Ftalato de dietila (DEP) (1,26 J g⁻¹ K⁻¹ a 20 °C) ^{37,39}. Esta diferença pode apenas refletir as características estruturais do plastificante, O DOP apresenta cadeias alifáticas com 8 carbonos, enquanto o DEP tem cadeias alifáticas com 2 carbonos.

A condutividade térmica do acetato de celulose plastificado e seus compósitos com fibras de Curauá em função da temperatura é apresentada na Tabela 4.6 e na Figura 4.18. A condutividade térmica aumenta com o aumento da temperatura até a transição vítrea. Em temperaturas acima da Tg a condutividade térmica diminui, tanto para o acetato de celulose como para os compósitos. Em polímeros amorfos não condutores, como o acetato de celulose, em temperaturas

abaixo da Tg a transferência de calor ocorre através dos modos vibracionais da rede de fônons-fractons, admitindo-se uma certa ordem local em polímeros amorfos ⁸⁵. Já, em temperaturas acima da Tg, a elevada mobilidade das cadeias poliméricas e o espaçamento entre elas interferem na eficiência do transporte da energia térmica, diminuindo a condutividade térmica. Este comportamento é reportado por Dashora e Gupta, para polímeros amorfos não condutores como o poli(cloreto de vinila) e o poliestireno ⁸⁶.

Formulação	20 °C	40 °C	℃ 00	3° 08	100 ℃
EP-CA20D	0,140±0,004	0,143±0,005	0,146±0,011	0,147±0,008	0,127±0,002
EP-CA20D-10F	0,128±0,008	0,131±0,005	0,133±0,005	0,133±0,003	0,111±0,006
EP-CA20D-20F	0,105±0,002	0,107±0,003	0,108±0,002	0,109±0,002	0,090±0,003
EP-CA30D	0,113±0,001	0,117±0,001	0,122±0,001	0,124±0,002	0,101±0,001
EP-CA30D-10F	0,100±0,004	0,104±0,002	0,104±0,004	0,103±0,009	0,078±0,006
EP-CA30D-20F	0,089±0,002	0,092±0,004	0,094±0,004	0,098±0,002	0,083±0,006

Tabela 4.6 – Condutividade térmica (λ) [W m⁻¹ K⁻¹] para diferentes temperaturas para as formulações preparadas na escala piloto.

Figura 4.18 – Condutividade térmica em função da temperatura , a) para as formulações: (■) EP-CA20D; (●) EP-CA20D-10F e (▲) EP-CA20D-20F, b) para as formulações: (■) EP-CA30D; (●) EP-CA30D-10F e (▲) EP-CA30D-20F.

Em toda a faixa de temperatura analisada observa-se para as formulações com 20% de DOP a seguinte ordem crescente da condutividade térmica: EP-CA20D-20F < EP-CA20D-10F < EP-CA20D (vide Figura 4.18a). A presença das fibras e o aumento de quantidade das mesmas acarreta em diminuição da condutividade térmica. Em materiais multicomponentes a transferência de calor é dependente do número de fases presentes no sistema, uma vez que as interfaces modificam as taxas de transferência ⁶⁸. No caso de compósitos, a presença das fibras interfere negativamente na transferência de energia térmica do acetato de celulose, sendo observada a diminuição da condutividade térmica.

Para as formulações com 30% de plastificante (DOP) a condutividade térmica é apresentada na Figura 4.18b. A ordem crescente da condutividade térmica abaixo da Tg é a seguinte: EP-CA30D-20F < EP-CA30D-10F < EP-

CA30D. O comportamento para as formulações com 30% de DOP é fortemente dependente da Tg como para as formulações com 20% de DOP e típica de polímeros amorfos isolantes térmicos ^{86,85}. Em geral, as formulações com 30% de DOP apresentam valores de condutividade térmica inferiores às das formulações com 20% de DOP em toda a faixa de temperaturas. Este comportamento estaria associado a uma maior flexibilidade da matriz para formulações com 30% de DOP. Comportamento similar foi reportado para o poli(cloreto de vinila) com diferentes teores de plastificante ⁸⁶. Os valores encontrados para a condutividade térmica do acetato de celulose são inferiores ao valor encontrado na literatura para acetato de celulose plastificado com ftalato de dietila (DEP) tendo 38,6% de acetilação (0,17 W m⁻¹ K⁻¹) ^{37,39}. Esta diferença estária associada à eficiência do plastificante, que no caso é maior para o DOP.

As curvas termodilatométricas para o acetato de celulose e seus compósitos encontram-se na Figura 4.19. Na Tabela 4.7 são apresentados os valores do coeficiente de expansão térmica linear (α) obtidos das curvas termodilatométricas para o acetato de celulose plastificado com 20% e 30% de DOP e seus compósitos com 10% e 20% de fibras curtas de Curauá em função da temperatura. Os coeficientes foram avaliados em temperaturas abaixo e acima da transição vítrea.

Em temperaturas abaico de Tg, o acetato de celulose plastificado com DOP (20% e 30%) apresenta coeficiente de expansão térmica 33% maior do que apresentado pelos compósitos correspondentes. Este resultado deve-se à mobilidade restrita das cadeias poliméricas em temperaturas abaixo da Tg e à restrição da mobilidade dos diferentes componentes das fibras, conferindo estabilidade dimensional ao material. Em temperaturas abaixo da Tg não foram observadas diferenças significativas no coeficiente de expansão térmica linear em função do teor de fibra ou do plastificante nos compósitos.

Figura 4.19 - Curvas termodilatométricas: a) formulações (____) EP-CA20D; (____) EP-CA20D-10F e (____) EP-CA20D-20F. b) (____) EP-CA30D; (____) EP-CA30D-10F e (____) EP-CA30D-20F.

Tabela 4.7 – Coeficiente de expansão térmica linear (α) [μ m mm⁻¹ K⁻¹] de acetato de celulose plastificado com DOP e seus compósitos.

	T < Tg	T > Tg
EP-CA20D	130 ± 8	-
EP-CA20D-10F	99 ± 11	126 ± 7
EP-CA20D-20F	98± 7	270 ± 14
EP-CA30D	145 ± 8	-
EP-CA30D-10F	116 ± 8	-
EP-CA30D-20F	95 ± 11	173 ± 9

À temperaturas acima da Tg, para o acetato de celulose com 20% de DOP não foi possível determinar o coeficiente de expansão térmica, uma vez que não foram observados eventos térmicos reprodutíveis a temperaturas acima da Tg. O mesmo ocorre para a formulação EP-CA30D. Inicialmente atribui-se a este fato às tensões mecânicas impostas na termomoldagem por injeção. Assim, procedeu-se a um aquecimento inicial das amostras a 100 °C, para dissipar as tensões, e conduziu-se novamente os experimentos de dilatometria. Embora a amplitude dos eventos térmicos a T>Tg tenha sido minimizada, ainda assim não foi possível a determinação de α . Já os compósitos com 20% de DOP, apresentam um aumento do coeficiente de expansão térmica com relação ao coeficiente (α) a T > Tg, comportamento explicado pela diferença de mobilidade das cadeias abaixo e acima da Tg. Um aumento no α em relação ao aumento do teor de fibra também é observado. Este aumento no coeficiente de expansão térmica linear pode estar associado à maior quantidade de água sorvida para os compósitos com teor de 20% de fibras Curauá, tal como apontado por Fangueiro e Mukhopadhyay ⁵⁴.

Para as formulações EP-CA30D e EP-CA30D-10F, também não foi possível calcular α para temperaturas superiores a Tg. Entretanto, para a formulação EP-CA30D-20F encontra-se que o coeficiente de expansão térmica é 89% maior que o valor encontrada para temperaturas abaixo da Tg, sendo associado a maior mobilidade das cadeias poliméricas. Curiosamente α para a formulação EP-CA30D-20F é menor do que o valor calculado para a formulação EP-CA20D-20F.

4.3 Biocompósitos de Acetato de Celulose e Fibras de Curauá preparados em escala laboratório.

Compósitos de acetato de celulose e fibras curtas de Curauá foram preparados em escala laboratorial com o objetivo de se estudar os efeitos de tratamentos químicos nas fibras de Curauá, sobre as propriedades dos compósitos. As fibras de Curauá foram submetidas à extração com acetona ou submersas em solução alcalina (mercerização). Dois diferentes plastificantes foram testados: ftalato de dioctila (DOP), que é comumente utilizado para plastificar polímeros polares como acetato de celulose, e citrato de trietila (TEC), que tem a vantagem de ser biodegradável. O teor de plastificante foi mantido

constante em todas as formulações em 30%, e o teor de fibras de Curauá para todas as formulações foi de 10% em massa, uma vez que na seção anterior observou-se o melhor balanço nas propriedades mecânicas e térmicas para os compósitos com esta composição.

4.3.1 Morfologia

A Figura 4.20 apresenta as imagens obtidas por microscopia eletrônica de varredura das superfícies de fratura dos ensaios de resistência ao impacto dos compósitos de acetato de celulose plastificado com TEC e reforçados com fibras curtas de Curauá. Para estes compósitos, algumas fibras têm a aparência de terem sido arrancadas da matriz (pull out) e algumas outras apresentam indícios de terem sido rompidas. Morfologia similar tem sido relatada para diferentes compósitos de fibras naturais e matrizes poliméricas ^{31,32,87,88}. Observa-se uma alta fibrilação resultante do cisalhamento imposto pelo processo de extrusão. Em geral, as fibras estão distribuídas aleatória e uniformemente na matriz polimérica, com uma leve tendência a orientação na direção do fluxo de injeção (vide Figura 4.20a).

Também se observa nas micrografias a elevada rugosidade da superfície da matriz devido à fratura, assim como a presença de espaços vazios, possivelmente ocupados por fibras anteriormente a fratura (vide Figura 4.20b).

Figura 4.20 – Micrografias de microscopia eletrônica de varredura para o compósito plastificado com TEC e fibras não tratadas (EL-CA30T-10F).

Figura 4.21 – Micrografias de microscopia eletrônica de varredura para o compósito plastificado com TEC e fibras extraídas com acetona (EL-CA30T-10FA).

Figura 4.22 – Micrografias de microscopia eletrônica de varredura para o compósito plastificado com TEC e fibras mercerizadas (EL-CA30T-10FS).

As micrografias correspondentes ao compósito plastificado com TEC e fibras extraídas com acetona são apresentadas na Figura 4.21. A morfologia destes compósitos é caracterizada por elevada fibrilação, distribuição uniforme das fibras e "pull out" para as fibrilas (vide Figura 4.21a). Na interface não são observados espaços entre as fibras e a matriz, como na Figura 4.21b para o compósito EL-CA30T-10F.

Na Figura 4.21b também é observada a rugosidade da matriz e a presença de espaços antes ocupados por fibras. A Figura 4.22 apresenta as micrografias para os compósitos com plastificados com TEC e fibras mercerizadas. Os compósitos apresentam uma morfologia similar aos anteriores (vide Figura 4.22a). Não são observadas diferenças significativas na interface (vide Figura 4.22b). Porém, uma diminuição na rugosidade superficial das fibras mercerizadas é observada em relação com as fibras não tratadas e as extraídas com acetona.

As micrografias de microscopia eletrônica de varredura para os compósitos plastificados com DOP e fibras não tratadas, extraídas com acetona e mercerizadas são apresentadas na Figura 4.23, 4.24 e 4.25, respectivamente. Em princípio, a morfologia não difere da observada para os compósitos plastificados com TEC.

As figuras 4.23a, 4.24a e 4.25a apresentam uma visão panorâmica de fraturas dos compósitos plastificados com DOP. Para estes compósitos é possível observar uma distribuição uniforme de fibrilas na matriz de acetato de celulose plastificada e a fibrilação total. Entretanto, as fibrilas não estão orientadas.

Nas figuras 4.23b, 4.24b e 4.25b observa-se a rugosidade da matriz devido a fratura, assim como a presença de espaços que foram ocupados por fibras. Na interface não foi possível determinar diferenças associadas aos tratamentos químicos realizados nas fibras.

Figura 4.23 – Micrografias de microscopia eletrônica de varredura para o compósito plastificado com DOP e fibras não tratadas (EL-CA30D-10F).

Figura 4.24 – Micrografias de microscopia eletrônica de varredura para o compósito plastificado com DOP e fibras extraídas com acetona (EL-CA30D-10FA).

Figura 4.25 – Micrografias de microscopia eletrônica de varredura para o compósito plastificado com DOP fibras mercerizadas (EL-CA30D-10FS).

Por fim, observa-se uma diminuição na rugosidade da superfície das fibras mercerizadas (Figura 4.25b) em comparação com as fibras não tratadas e as extraídas com acetona (Figuras 4.23b 4.24b). Esta mudança na rugosidade é atribuída à remoção de compostos não celulósicos, como lignina, hemicelulose, ceras e pectina. Valadez-Gonzalez e cols. reportaram esta diferença na rugosidade das fibras de henequem após o tratamento com solução alcalina (mercerização)¹⁷. Por outro lado, Ouajai e cols. relataram esta diferença na rugosidade superficial das fibras de cânhamo após a extração com acetona seguida por mercerização⁶⁹.

De modo geral, tanto as fibras de Curauá como as correspondentes fibras tratadas com acetona ou mercerizadas encontram-se fibriladas e uniformemente distribuídos pela matriz de acetato de celulose plastificado.

4.3.2 Propriedades mecânicas

Na Tabela 4.8 são apresentadas as propriedades mecânicas referentes a ensaios de resistência a tração e ao impacto do acetato de celulose plastificado e seus compósitos com fibras de Curauá. A resistência ao impacto para o acetato de celulose plastificado com 30% de ftalato de dietila e com grau de acetilação 39,8% foi reportado na literatura como sendo de 205 J m^{-1 37,39}. Por outro lado, Park e cols. encontraram que a resistência ao impacto para acetato de celulose plastificado com 30% de TEC e grau de acetilação de 38,7 % é de 125 J m^{-1 67}. Os valores obtidos para o acetato de celulose plastificado com DOP e TEC no presente trabalho são 59% e 86% maiores, que o reportado por Park e cols. respectivamente. Esta diferença na resistência ao impacto para os materiais em estudo está associada à eficiência de cada um dos plastificantes, assim como às diferenças nas condições de processamento dos materiais.

	Resistência ao impacto (J m ⁻¹)	Módulo elástico (MPa)	Deformação na ruptura (%)	
EL-CA30T	232 ± 5	532 ± 18	23 ± 2	
EL-CA30T-10F	60 ± 4	534 ± 18	20 ± 1	
EL-CA30T-10FA	61 ± 1	589 ± 11	15 ± 2	
EL-CA30T-10FS	59 ± 2	559 ± 19	16 ± 2	
EL-CA30D	327 ± 7	494 ± 17	24 ± 1	
EL-CA30D-10F	73 ± 2	540 ± 10	17 ± 1	
EL-CA30D-10FA	59 ± 2	550 ± 13	16 ± 1	
EL-CA30D-10FS	57 ± 3	531 ± 10	18 ± 1	

Tabela 4.8 – Propriedades mecânicas do acetato de celulose plastificado e seus compósitos.

Para os compósitos com fibras curtas de Curauá tratadas ou não a resistência ao impacto apresenta uma queda em relação ao observado para os correspondentes acetatos de celulose plastificados. Aparentemente, o tratamento nas fibras não tem influência significativa na resistência ao impacto dos compósitos.

Liu e cols. estudaram compósitos de acetobutirato de celulose e grama como carga (50% em massa), produzidos por moldagem por injeção. Observaramse a queda na resistência ao impacto (45 J m⁻¹) em relação ao polímero puro devido à presença da grama ⁸⁹. Karnani e cols. prepararam compósitos de polipropileno isotático e fibras de kenaf, utilizando polipropileno enxertado com anidrido maleico (MAPP) como compatibilizante. Estes autores observaram que o aumento no teor de fibra diminui a resistência ao impacto. Por outro lado, foi observado, que o aumento no teor de MAPP minimiza a queda na resistência ao impacto, devido ao aumento na adesão interfacial. A matriz pura apresenta uma resistência ao impacto de 42 J m⁻¹ e o melhor valor de resistência ao impacto para um compósito foi de 50 J m⁻¹, para aquele com 5% de MAPP e 20% de fibra ⁴⁵. Porém, os compósitos de acetato de celulose e 10% em massa de fibras de Curauá estudados neste trabalho apresentam uma resistência de aproximadamente de 60 J m⁻¹.

A capacidade de deformação dos materiais ao serem submetidos a ensaio de resistência à tração é menos sensível a natureza dos plastificantes, pois ambos, acetato de celulose plastificados com TEC ou DOP, apresentam deformações na ruptura similares (24%). Na literatura é reportada a deformação na ruptura de 25% para acetato de celulose com grau de acetilação de 39,8% e 30% de plastificante DEP ^{37,39}. Uma queda na deformação na ruptura é verificada para os compósitos. Entretanto, não se verifica uma diferença significativa desta propriedade entre os compósitos. Ou seja, os tratamentos nas fibras, assim como os plastificantes, não influem significativamente na deformação na ruptura de biocompósitos. Em geral, os biocompósitos apresentaram uma deformação na ruptura de 18% aproximadamente.

Quanto ao módulo elástico, observou-se uma diferença de 8% entre os valores para o acetato de celulose plastificado com TEC e DOP, sendo o maior valor para o acetato de celulose plastificado com TEC (532±18 MPa). Com a introdução das fibras o módulo elástico aumenta, ao passo que a resistência ao impacto diminui. O aumento no valor do modulo é da ordem de 11% para os compósitos plastificados com TEC e DOP, em relação aos correspondentes acetatos de celulose plastificados. Não se observa uma diferença significativa entre os valores de módulo para compósitos com fibras tratadas ou não, relacionado com as morfologias dos compósitos, as quais são similares para todos os compósitos.

Brahmakumar e cols. estudaram compósitos de polietileno e fibras de coco, as quais foram submetidas a enxertia com um isocianato (Cardanol) ⁹⁰. O polietileno apresentou módulo de elástico de 140 MPa e as fibras de coco de 3000 MPa. O módulo elástico para os compósitos foi de 565 MPa. Este valor é cerca de três vezes o valor do modulo elástico da matriz, indicando o efeito de reforço das fibras.

Figura 4.26 – Módulo de armazenamento em função da temperatura para as formulações: (■) EL-CA30T; (◆) EL-CA30T-10F; (●) EL-CA30T-10FA e (▲) EL-CA30T-10FS.

A Figura 4.26 apresenta as curvas de módulo armazenamento em função da temperatura (E' vs T) para o acetato de celulose plastificado com TEC e seus biocompósitos com fibra de Curauá. Os módulos de armazenamento do acetato de celulose e dos biocompósitos plastificados com TEC apresentam uma queda de três ordens de grandeza em torno 80 °C, típica da transição vítrea para polímeros amorfos como o acetato de celulose ⁷⁹. Acima da transição vítrea a queda no módulo com o aumento da temperatura para os biocompósitos é atenuada em relação ao correspondente acetato de celulose plastificado, devido ao efeito do reforço das fibras. Comportamento similar é observado para o conjunto de materiais plastificados com DOP na Figura 4.27.

Figura 4.27 – Módulo de armazenamento em função da temperatura para as formulações: (■) EL-CA30D; (◆) EL-CA30D-10F; (●) EL-CA30D-10FA e (▲) EL-CA30D-10FS.

As curvas de módulo de perda em função da temperatura (E" vs T) para o acetato de celulose plastificado com TEC e com DOP e seus correspondentes compósitos são apresentadas nas figuras 4.28 e 4.29. As curvas apresentam picos que estão relacionados às relaxações secundárias (pico em temperaturas menores) e a transição vítrea. A temperatura correspondente ao máximo de cada pico é tomada como a temperatura de relaxação secundária (T_β) e transição vítrea (Tg ou Tα). Para o acetato de celulose plastificado com DOP, a Tg e T_β são 75 °C e -40 °C, respectivamente. Para o acetato de celulose plastificado com TEC, 80 °C e -30 °C, respectivamente. A diferença nas temperaturas das transições entre os dois materiais é atribuída aos plastificantes. Assim, o DOP apresenta-se como um plastificante mais eficiente para o acetato de celulose. O volume molar do DOP e

TEC é 396,5 e 243,5 cm³ mol⁻¹, respectivamente. O maior volume molar de DOP gera maior volume livre no acetato de celulose, permitindo maior mobilidade dos segmentos de cadeias poliméricas e a diminuição da Tg ⁹¹.

Figura 4.28 – Módulo de perda em função da temperatura para as formulações: (■) EL-CA30T; (♦) EL-CA30T-10F; (●) EL-CA30T-10FA e (▲) EL-CA30T-10FS.

As curvas (E" vs T) para os compósitos de acetato de celulose plastificado com TEC (Figura 4.28) e DOP (Figura 4.29) apresentam apenas dois picos referentes a transição vítrea e a transição β. A transição vítrea, assim como a transição β, não são afetadas pela presença da carga. Nas curvas E" vs T observa-se o alargamento do pico referente a transição vítrea, indicando o alargamento do espectro de relaxação do acetato de celulose. Este alargamento do espectro pode refletir um gradiente de composição ou de mobilidade molecular. É possível que as cadeias de acetato de celulose próximas das fibras interajam com estas, tendo sua dinâmica molecular alterada.

Figura 4.29 – Módulo de perda em função da temperatura para as formulações: (■) EL-CA30D; (♦) EL-CA30D-10F; (●) EL-CA30D-10FA e (▲) EL-CA30D-10FS.

4.3.3 Propriedades térmicas

As curvas termogravimétricas e as suas derivadas, obtidas em atmosfera oxidante, para o acetato de celulose e seus compósitos plastificados com TEC, são apresentadas nas figuras 4.30 e 4.31, respectivamente.

Para o acetato de celulose plastificado, se observa uma perda de massa de 2% a 123 °C relacionada à umidade, seguida de uma segunda etapa entre 225 e 296 °C, em que há uma perda de massa de 27% associada a volatilização do plastificante. A perda de massa de 62% a 364 °C é atribuída à decomposição dos grupos acetila e à cisão de cadeia polimérica. Acima de 469 °C ocorre à oxidação dos produtos. Já para os compósitos, observa-se um comportamento similar, ocorrendo a primeira perda de massa de 4 % abaixo de 150 °C, relacionada apenas à umidade absorvida pelo acetato de celulose e as fibras; a 282 °C ocorre a segunda perda de massa (27%) atribuída a volatilização do plastificante e à decomposição de hemicelulose. A decomposição de grupos acetila, assim como a cisão da cadeia polimérica e da celulose ocorre a 364 °C (62%).

Por último, a decomposição de lignina e oxidação de produtos acontece ao redor de 500 °C. Diferenças no segundo evento são associadas aos grupos oxidantes de hemicelulose. No último estágio de degradação o deslocamento para

temperaturas menores para os compósitos, com relação ao acetato de celulose plastificado, é atribuído aos grupos oxidantes da lignina (vide Figura 4.31).

Figura 4.31 – Curvas termogravimétricas diferenciais para as formulações: (-----) EL-CA30T; (-----) EL-CA30T-10F; (------) EL-CA30T-10FS.

Para o conjunto de materiais plastificados com DOP apresentados nas Figuras 4.32 e 4.33, observa-se o seguinte comportamento termo-oxidativo: para o acetato de celulose plastificado, uma perda de 2% a 116 °C, atribuída a umidade. Para os compósitos este estágio apresenta-se a 136 °C associado a uma perda de massa de 5%. A volatilização do plastificante para o acetato de celulose plastificado ocorre a 289 °C (27%). Para os compósitos, este estágio acontece a 265 °C (27%) e é relacionado não apenas ao plastificante, mas também a hemicelulose presente nas fibras, diferenças de temperatura para este evento entre os compósitos e a matriz plastificada estão associadas a degradação de hemicelulose (vide Figura 4.33). Tanto para o acetato de celulose plastificado, como para os compósitos uma perda de 66% é observada a 366 °C, atribuída à decomposição de grupos acetila, cisão da cadeia polimérica e da celulose. Por último, a oxidação dos produtos ocorre acima de 522 °C para o acetato de celulose plastificado e acima de 489 °C para os compósitos. Esta diferença na temperatura de decomposição dos compósitos com respeito ao acetato de celulose é atribuída à presença das fibras de Curauá que apresenta uma etapa de decomposição de lignina a 439 °C ⁴⁷. Assim os compósitos apresentam uma temperatura de decomposição intermediária entre a temperatura do acetato de celulose e das fibras de Curauá. Pode-se observar que a degradação térmica em atmosfera oxidativa do acetato de celulose não é modificada significativamente pela presença das fibras de Curauá (vide Figura 4.33).

Figura 4.32 – Curvas termogravimétricas para as formulações: (-----) EL-CA30D; (-----) EL-CA30D-10F3; (------) EL-CA30D-10FA e (------) EL-CA30D-10FS.

Figura 4.33 – Curvas termogravimétricas diferenciais para as formulações: (——) EL-CA30D; (——) EL-CA30D-10F; (——) EL-CA30D-10FA e (——) EL-CA30D-10FS.

A capacidade calorífica em função da temperatura para o acetato de celulose plastificado com TEC e DOP e seus compósitos com fibras curtas de Curauá são apresentados nas Tabelas 4.9 e 4.10 e nas Figuras 4.34a e 4.35b, respectivamente. O acetato de celulose plastificado com DOP apresenta capacidade calorífica maior que o acetato de celulose plastificado com TEC em toda a faixa de temperatura avaliada. O fato de DOP conferir maior capacidade calorífica ao acetato de celulose indica um aumento mais acentuado do número de graus de liberdade das cadeias poliméricas devido ao maior volume livre. Os valores de capacidade calorífica reportados na literatura (1,26 – 1,67 J g⁻¹ K⁻¹) para o acetato de celulose com grau de acetilação 39,8% plastificado com 30% de ftalato de dietila (DEP) são próximos aos valores determinados neste trabalho para o acetato de celulose contendo DOP 37,39 .

Tabela 4.9 – Capacidade calorífica (Cp) $[J g^{-1} K^{-1}]$ para diferentes temperaturas para as formulações plastificadas com TEC.

Formulação	20 ℃	40 ℃	60 ℃	80 ℃	100 ℃
EL-CA30T	1,070±0,004	1,151±0,003	1,230±0,003	1,325±0,008	1,476±0,002
EL-CA30T-10F	1,578±0,003	1,679±0,003	1,790±0,004	1,902±0,004	2,029±0,004
EL-CA30T-10FA	1,601±0,002	1,747±0,005	1,899±0,013	2,086±0,004	2,211±0,003
EL-CA30T-10FS	1,423±0,004	1,515±0,001	1,597±0,001	1,713±0,004	1,855±0,003

Tabela 4.10 – Capacidade calorífica (Cp) $[J g^{-1} K^{-1}]$ para diferentes temperaturas para as formulações plastificadas com DOP.

Formulação	20 °C	40 °C	60 ℃	80 ℃	100 ℃
EL-CA30D	1,199±0,005	1,290±0,003	1,384±0,002	1,472±0,010	1,628±0,001
ELCA30D-10F	1,426±0,002	1,524±0,003	1,618±0,003	1,729±0,003	1,904±0,005
EL-CA30D-10FA	1,721±0,001	1,832±0,004	1,908±0,002	1,987±0,005	2,129±0,006
EL-CA30D-10FS	1,221±0,004	1,319±0,003	1,422±0,005	1,526±0,002	1,675±0,003

A capacidade calorífica dos compósitos plastificados com TEC apresentam a seguinte ordem crescente na faixa de temperaturas avaliada: EL-CA30T < EL-CA30T-10FS < EL-CA30T-10F < EL-CA30T-10FA. A presença das fibras nos compósitos aumenta a capacidade calorífica do acetato de celulose em até 45% na faixa de temperatura avaliada. Li e cols. avaliaram a capacidade calorífica de compósitos de polietileno de alta densidade (HDPE) e fibras de linho ⁹². Os autores também observaram um aumento da capacidade calorífica dos compósitos com o aumento da temperatura, como observado para os compósitos deste trabalho. Porém, a presença das fibras diminuiu a capacidade calorífica dos compósitos em relação à matriz. Isto se explica pelo fato do HDPE apresentar
capacidade calorífica de 1,850 J g⁻¹ K⁻¹, enquanto as fibras lignocelulósicas apresentam capacidade caloríficas ao redor de 1,7 J g⁻¹ K⁻¹ ¹. Dependendo da composição, é natural uma diminuição na capacidade calorífica dos compósitos de HDPE com a adição de fibras de linho. Já o aumento de Cp para os compósitos de acetato de celulose plastificado com a introdução das fibras de Curauá, também é esperado pelo fato do Cp do acetato de celulose plastificado ser inferior ao valor médio para fibras lignocelulósicas.

Figura 4.34 – Capacidade calorífica em função da temperatura: a) para as formulações (■) EL-CA30T; (◆) EL-CA30T-10F; (●) EL-CA30T-10FA e (▲) EL-CA30T-10FS, b) para as formulações: (■) EL-CA30D; (♦) EL-CA30D-10F; (●) EL-CA30D-10FA e (▲) EL-CA30D-10FS.

Para os compósitos plastificados com DOP observa-se a seguinte ordem crescente de valores de capacidade calorífica: EL-CA30D \leq EL-CA30D-10FS < EL-CA3D-10F < EL-CA30D-10FA. Este comportamento é similar ao observado

para os compósitos plastificados com TEC, para os quais a capacidade calorífica dos compósitos é maior do que do acetato de celulose plastificado.

A condutividade térmica do acetato de celulose plastificado com TEC e DOP e seus compósitos correspondentes são apresentados nas Tabelas 4.11 e 4.12, e os comportamentos; presentados nas Figuras 4.35a e 4.35b, respectivamente. O acetato de celulose plastificado com TEC apresenta condutividade térmica menor que o plastificado com DOP em temperatura abaixo da transição vítrea. Acima da Tg a condutividade térmica para ambos os materiais sofre uma queda assumindo valores próximos para ambos materiais. Em temperaturas inferiores a Tg, para os compósitos com fibras não tratadas a condutividade térmica é menor para o compósito plastificado com TEC que para o plastificado com DOP. Acima da Tg os valores são similares para ambos conjuntos de compósitos. A condutividade térmica dos compósitos com fibras tratadas e plastificados com TEC é maior do que a dos compósitos correspondentes plastificados com DOP, em temperaturas abaixo da transição vítrea. Acima da Tg, a condutividade térmica diminui, sendo observado valores próximos de λ para ambos grupos de compósitos.

Tabela 4.11 – Condutividade térmica (λ) [W m⁻¹ K⁻¹] para diferentes temperaturas para as formulações plastificadas com TEC.

Formulação	20 °C	40 °C	℃ 00	℃ 08	100 ℃
EL-CA30T	0,142±0,004	0,146±0,005	0,158±0,007	0,159±0,002	0,119±0,009
EL-CA30T-10F	0,133±0,002	0,137±0,003	0,134±0,003	0,134±0,004	0,124±0,003
EL-CA30T-10FA	0,149±0,001	0,174±0,001	0,200±0,001	0,202±0,001	0,187±0,001
EL-CA30T-10FS	0,179±0,005	0,183±0,003	0,181±0,003	0,180±0,001	0,161±0,002

87

Tabela 4.12 – Condutividade térmica (λ) [W m⁻¹ K⁻¹] para diferentes temperaturas para as formulações plastificadas com DOP.

Formulação	20 °C	40 °C	℃ 00	℃ 08	100 ℃
EL-CA30D	0,162±0,002	0,165±0,001	0,167±0,001	0,159±0,004	0,116±0,001
ELCA30D-10F	0,142±0,003	0,145±0,003	0,147±0,003	0,145±0,005	0,122±0,007
EL-CA30D-10FA	0,151±0,006	0,154±0,006	0,155±0,004	0,159±0,004	0,139±0,003
EL-CA30D-10FS	0,155±0,004	0,158±0,002	0,163±0,002	0,166±0,003	0,143±0,007

Figura 4.35 – Condutividade térmica em função da temperatura em função da temperatura: a) para as formulações plastificadas com TEC: (■) EL-CA30T; (♦) EL-CA30T-10F; (●) EL-CA30T-10FA e (▲) EL-CA30T-10FS. b) para as formulações plastificadas com DOP: (■) EL-CA30D; (♦) EL-CA30D-10F; (●) EL-CA30D-10FA e (▲) EL-CA30D-10FS.

Kim e cols. prepararam compósitos de polipropileno contendo 50% em massa de uma mistura de fibras naturais (linho, cânhamo, sisal e kenaf),

compatibilizados ou não com polipropileno enxertado com anidrido maleico (3%) ⁹³. Para ambos compósitos foi observado um aumento na condutividade térmica com respeito à temperatura. Além disso, o uso do compatibilizante acarretou em aumento de 8% da condutividade térmica, o que foi atribuído a uma melhor adesão interfacial fibra-matriz que permite uma melhor transferência do calor na interface.

Em materiais multicomponentes a transferência de calor é dependente do número de fases presentes, uma vez que as interfaces modificam as taxas de transferência de calor. A melhoria na adesão interfacial tende a favorecer a condutividade térmica dos compósitos. Os tratamentos químicos na superfície das fibras de Curauá deste trabalho resultaram em compósitos com maiores condutividades térmica em comparação com os compósitos em comparação com aqueles preparados com fibras não tratadas. Isto indica uma maior interação fibra – matriz, para os compósitos com fibras tratadas. Embora a análise morfológica dos compósitos não revele diferenças significativas, os ensaios de resistência à tração mostraram que estes compósitos com fibras tratadas apresentam o maior valor de módulo elástico, reforçando a hipótese de melhor adesão interfacial.

Takagi e cols. estudaram a condutividade térmica de biocompósitos de poli(ácido lactico) e fibras de bambu (60%) ⁹⁴. Este trabalho é um dos poucos encontrados na literatura que avaliaram a condutividade térmica de biocompósitos. A condutividade térmica, determinada utilizando um condutivímetro térmico (técnica: *hot wire*), para este compósito foi de 0,3 W m⁻¹ K⁻¹ a 25 °C, e os autores concluíram que estes materiais poderiam ter aplicações como isolamento térmico. Por outro lado, os compósitos de acetato de celulose e fibras de Curauá deste trabalho, apresentam baixa condutividade térmica em uma ampla faixa de temperaturas (0,1 - 0,2 W m⁻¹ K⁻¹ entre 20 °C e 100 °C). Tradicionalmente, as espumas de poliuretanas (0,02 - 0,04 W m⁻¹ K⁻¹), de poliestireno (0,03 - 0,06 W m⁻¹ K⁻¹) e a fibra de vidro (0,04 W m⁻¹ K⁻¹) são materiais utilizados como isolantes térmicos ¹. Observa-se que os valores da condutividade térmica

de grandeza superior aos valores reportados para os materiais tradicionalmente usados como isolantes térmicos. Porém, é importante ressaltar que os biocompósitos são densos, enquanto estes isolantes tradicionais são porosos.

A estabilidade dimensional e a expansão térmica de compósitos são propriedades que devem ser conhecidas e que determinam as aplicações destes materiais. As curvas termodilatométricas para os biocompósitos encontram-se na Figura 4.36. O coeficiente de expansão térmica linear α foi calculado para faixas de temperatura inferiores e superiores a transição vítrea, e os dados encontram-se nas Tabelas 4.13 e 4.14 para as formulações plastificadas com TEC e DOP, respectivamente.

Figura 4.36 – Curvas termodilatométricas: a) para as formulações plastificadas com TEC: (—) EL-CA30T; (—) EL-CA30T-10F; (—) EL-CA30T-10FA e (—) EL-CA30T-10FS. b) para as formulações plastificadas com DOP: (—) EL-CA30D; (—) EL-CA30D-10F; (—) EL-CA30D-10FA e (—) EL-CA30D-10FS.

	T < Tg	T > Tg
EL-CA30T	166 ± 9	324 ± 15
EL-CA30T-10F	188 ± 11	599 ± 21
EL-CA30T-10FA	184 ± 10	623 ± 14
EL-CA30T-10FS	173 ± 10	717 ± 16

Tabela 4.13 – Coeficiente de expansão térmica linear (α) [μ m mm⁻¹ K⁻¹] de compósitos de acetato de celulose plastificado com TEC e fibras curtas de Curauá.

Tabela 4.14 – Coeficiente de expansão térmica linear (α) [μ m mm⁻¹ K⁻¹] de compósitos de acetato de celulose plastificado com DOP e fibras curtas de Curauá.

	T < Tg	T > Tg
EL-CA30D	219 ± 12	333 ± 17
EL-CA30D-10F	254 ± 14	699 ± 20
EL-CA30D-10FA	239 ± 13	870 ± 18
EL-CA30D-10FS	179 ± 10	812 ± 17

O coeficiente de expansão térmica do acetato de celulose plastificado com DOP e seus compósitos são maiores do que os materiais correspondentes plastificados com TEC, independentemente da faixa de temperatura analisada. Novamente este fato está associado ao maior volume livre da matriz plastificada com DOP. Mahonty e cols. determinaram o coeficiente de expansão térmica linear do acetato de celulose plastificado com diferentes teores de TEC ⁹⁵. Para o acetato de celulose contendo 30% de TEC o coeficiente foi de 166 µm mm⁻¹ K⁻¹, valor próximo ao obtido neste trabalho.

O tratamento das fibras praticamente não afeta o coeficiente de expansão térmica linear dos compósitos plastificados com TEC em T < Tg. Acima da temperatura de transição vítrea, observa-se um aumento drástico no coeficiente de expansão térmico linear para ambos conjuntos de compósitos. Este é

associado ao fato de que a T > Tg o material se encontra no estado líquido. Os compósitos apresentaram maior coeficiente de expansão térmica linear que as matrizes correspondentes sendo este resultado atribuído ao fato que as fibras podem absorver água ^{5,7}, diminuindo a estabilidade dimensional dos compósitos. Por outro lado, os compósitos com fibras tratadas apresentam maior α em relação aos compósitos com fibras não tratadas devido à maior capacidade de sorver água pelas fibras após tratamento químico, como foi observado no analise termogravimétrico para as fibras extraídas com acetona.

4.4 Comparação entre as propriedades dos biocompósitos em escala piloto e laboratorial

As propriedades de materiais poliméricos estão fortemente relacionadas às condições de processamento. Os biocompósitos de acetato de celulose e fibras de Curauá não tratadas foram preparados em duas condições distintas e as propriedades destes serão comparadas nesta seção.

4.4.1 Morfologia

As fibras de Curauá em compósitos preparados na escala laboratorial foram extensamente fibriladas, tal como indicado nas figuras 4.20 e 4.23. Por outro lado, os compósitos preparados na escala piloto, apresentam uma fibrilação parcial, sendo observados tanto de feixes de fibrilas como fibrilas distribuídos uniformemente na matriz de acetato de celulose plastificado (vide figuras 4.5, 4.6, 4.7 e 4.8). A fibrilação está condicionada ao cisalhamento a que são submetidas as fibras de Curauá principalmente durante o processamento de extrusão. Os compósitos processados em escala piloto também foram submetidos a cisalhamento durante a injeção dos corpos de prova, devido a presença da rosca de injeção. Porém, o processamento em escala laboratorial (extrusão) resulta mais efetivo do ponto de vista da fibrilação. Por outro lado, os feixes de fibrilas nos

compósitos preparados em escala piloto estão orientados na direção da fluxo de injeção, enquanto as fibrilas em compósitos preparados em escala laboratorial estão distribuídas aleatoriamente. Não são observadas diferenças significativas na interface fibra/matriz, assim como na distribuição uniforme das fibras/fibrilas na matriz para ambos grupos de compósitos.

4.4.2 Propriedades Mecânicas

As Tabelas 4.4 e 4.8 apresentam as propriedades mecânicas para os compósitos preparados na escala piloto e na escala laboratorial. Para o módulo elástico, observa-se um ganho de 58% para a formulação EP-CA30D-10F em relação ao acetato de celulose plastificado (EP-CA30D). Já o ganho do módulo elástico para o compósito (EL-CA30D-10F) preparado em escala laboratorial com respeito ao acetato de celulose plastificado (EL-CA30D) foi de 10%. Uma explicação para esta diferença nos ganhos do módulo elástico, estaria relacionada com a fibrilação parcial das fibras de Curauá no processamento na escala piloto (EP). Esta fibrilação parcial permite conservar as propriedades mecânicas conferidas às fibras lignocelulósicas, enquanto que a extensa fibrilação conferida pelo processamento em escala laboratorial (EL) resultam em perda da capacidade de reforço mecânico, devido a sua desestruturação.

A deformação na ruptura para o compósito EL-CA30D-10F é 29% menor em relação ao EL-CA30D. Por outro lado, o correspondente compósito preparado em escala piloto apresentou deformação na ruptura 67% menor do que a observada para a formulação EP-CA30D. Esta diferença também estaria relacionada a fibrilação total e parcial que sofrem as fibras nos processamentos na escala laboratorial e piloto, respectivamente. Aparentemente a fibrilação não contribui positivamente no sentido de aumentar o módulo elástico, mas leva a um menor prejuízo da deformação na ruptura.

Por último, o acetato de celulose plastificado com 30% de DOP preparado em escala laboratorial apresenta uma resistência ao impacto maior ($327 \pm 7 \text{ J m}^{-1}$) em relação ao acetato de celulose plastificado preparado na escala piloto (297 ± 5 J m⁻¹), que estaria associado a uma maior degradação térmica da matriz plastificada preparada na escala piloto, uma vez que na escala piloto foram utilizadas temperaturas mais altas com relação as utilizadas na escala laboratorial. Para os compósitos, aquele preparado em escala piloto (EP-CA30D-10F) apresenta uma resistência ao impacto maior (161 ± 5 J m⁻¹) com respeito a formulação EL-CA30D-10F (73 ± 2 J m⁻¹). As perdas da resistência ao impacto em relação ao acetato de celulose plastificado são de 47% e 77% para os compósitos preparados em escala piloto e laboratorial, respectivamente. Novamente a fibrilação mais intensa observada em compósitos preparados em escala laboratorial, assim como a diminuição da razão de aspecto atuam negativamente sobre a resistência ao impacto.

4.4.3 Propriedades Térmicas

A temperatura de transição vítrea para as formulações preparadas em escala piloto (EP-CA30D e EP-CA30D-10F) é de 78 °C. E para as formulações preparadas em escala laboratorial (EL-CA30D e EL-CA30D-10F) é de 75 °C, não havendo, portanto, diferenças significativas. A análise dos resultados de termogravimetria permite concluir que a estabilidade termo-oxidativo do acetato de celulose e dos compósitos não é afetada pelas condições de processamento.

Para a comparação entre a capacidade calorífica e a condutividade térmica das formulações preparadas em escala piloto e laboratorial, tomou-se os dados obtidos a 40 ℃, que encontram-se sumarizados na Tabela 4.15. A capacidade calorífica em temperaturas abaixo da Tg para as formulações preparadas em escala piloto é maior do que as das preparadas em escala laboratorial.

Comportamento inverso é observado para a condutividade térmica: Estas diferenças observadas devem-se a fibrilação e distribuição uniforme das fibrilas.

Formulação	Cp (J g ⁻¹ K ⁻¹)	λ (W m ⁻¹ K ⁻¹)
EP-CA30D	1,471 ± 0,002	0,117 ± 0,001
EP-CA30D-10F	1,552 ± 0,002	0,104 ± 0,002
EL-CA30D	1,290 ± 0,003	0,165 ± 0,001
EL-CA30D-10F	$1,524 \pm 0,003$	0,145 ± 0,003

Tabela 4.15 – Capacidade calorífica (Cp) e condutividade térmica (λ) a 40 °C para formulações preparadas em escala piloto e laboratorial.

Por último, o coeficiente de expansão térmica linear na faixa de 0 °C a 100 °C para as formulações preparadas em escala laboratorial é mais alto do que os das formulações preparadas em escala piloto. Além da fibrilação, outra explicação para estes resultados é a possibilidade da adsorção de água, que reduz a estabilidade dimensional. As formulações processadas em escala laboratorial apresentam estágio de perda água análise um de na termogravimétrica 4.32). (vide Figura Diferentemente das formulações processadas em escala piloto, para as quais não é observada a presença significativa de umidade (vide Figura 4.15). A fibrilação resulta em aumento de área superficial das fibras, o que pode contribuir para a sorção de água.

Capitulo 5 – Modelos para descrever as propriedades mecânicas dos biocompósitos

Os valores experimentais de módulo elástico para os biocompósitos de acetato de celulose e fibras curtas de Curauá foram comparados com valores previstos aplicando-se modelos teóricos e empíricos. Para os compósitos preparados em escala piloto os modelos foram aplicados para avaliar a influência do teor de fibra. Já para os biocompósitos preparados em escala laboratorial, os modelos foram aplicados com o objetivo de avaliar a influência do tratamento químico sobre o módulo elástico dos compósitos.

Os modelos selecionados foram:

- i) Série e paralelo (regra das misturas) ^{96,97}.
- ii) Regra das misturas modificado (ROM) ^{98,99}.
- iii) Modelo de Hirsch e Voight ⁹⁷.
- iv) Modelo de Maxwell e Russell 92.

Os modelos em série e em paralelo são os mais simples e seguem a regra das misturas. Teoricamente, a orientação uniforme e paralela das fibras na direção de aplicação do esforço mecânico favorece o aumento do módulo elástico. O modelo que melhor reproduz este tipo de comportamento é o modelo em paralelo (Equação 5.1). Em geral, os compósitos com fibras longas apresentam maiores módulos elásticos que aqueles com fibras curtas, que, geralmente, apresentam uma orientação aleatória. O módulo elástico para estes últimos é melhor representado pelo modelo em série (Equação 5.2)⁹⁶.

 $E_C = V_F E_F + V_M E_M$

Equação 5.1

 $E_{C} = \frac{E_{F}E_{M}}{E_{M}V_{F} + E_{F}V_{M}}$

Equação 5.2

Das equações 5.1 e 5.2, E_C , E_M e E_F se referem ao módulo elástico do compósito, da matriz e das fibras, respectivamente, e V_F e V_M são as frações volumétricas da fibra e da matriz, respectivamente ⁹⁷.

O modelo da regra das misturas modificado apresenta um fator de correção na expressão do modelo em paralelo. O fator de correção k é uma constante empírica que depende da eficiência de reforço das fibras, atribuído a orientação das fibras na matriz, assim como a capacidade de transferência do esforço mecânico entre a matriz e a fibra, relacionado com a adesão interfacial ⁹⁸. Segundo o modelo ROM o módulo elástico é descrito pela Equação 5.3.

$$E_C = k V_F E_F + V_M E_M$$
 Equação 5.3

Para compósitos com fibras curtas orientadas aleatoriamente a literatura reporta k = 0,2⁹⁹, que permite prever valores de módulo elástico mais próximos dos valores experimentais. Para compósitos com fibras longas orientadas moldados por compressão foram reportados valores de k de 0,4 e 0,3 para compósitos contendo 10% e 20% em fibra, respectivamente ⁹⁸.

O modelo de Hirsch e Voight é uma combinação do modelo em série e em paralelo, como pode ser observado na Equação 5.4 onde x corresponde ao fator de correção k.

$$E_{c} = x(V_{F}E_{F} + V_{M}E_{M}) + (1 - x)\frac{E_{F}E_{M}}{E_{M}V_{F} + E_{F}V_{M}}$$
 Equação 5.4

Por último, os modelos de Maxwell e Russell são também utilizados para prever a condutividade térmica em função da composição dos compósitos. O modelo de Maxwell aplica-se melhor para compósitos com baixos teores de carga de reforço. O modelo de Russell assume que as fibras têm a forma de cubos de mesmo tamanho e dispersos na matriz ⁹². As equações 5.5 e 5.6 representam os modelos de Maxwell e Russell, respectivamente.

 $E_{C} = E_{M} \frac{E_{F} + 2E_{M} + 2V_{F}(E_{F} - E_{M})}{E_{F} + 2E_{M} - V_{F}(E_{F} - E_{M})}$ Equação 5.5

$$E_{c} = E_{M} \frac{V_{F}^{\frac{2}{3}} + \frac{E_{M}}{E_{F}} (1 - V_{F}^{\frac{2}{3}})}{V_{F}^{\frac{2}{3}} - V_{F} + \frac{E_{M}}{E_{F}} (1 + V_{F} - V_{F}^{\frac{2}{3}})}$$

Equação 5.6

5.1 Biocompósitos preparados em escala piloto (EP)

Para aplicação dos diferentes modelos para a previsão dos valores de módulo com a composição, converteu-se a fração mássica de cada um dos componentes em fração volumétrica. Para tanto, utilizou-se a densidade do acetato de celulose e das fibras, considerou-se a mesma densidade para as fibras tratadas e não tratadas. Na Tabela 5.1 encontram-se as frações mássicas e volumétricas de cada componente.

Fração mássica	Fração volumétrica
0,10	0,12
0,15	0,16
0,20	0,21
0,25	0,26
0,30	0,32

Tabela 5.1 - Frações mássica e volumétrica utilizadas para prever os módulos elásticos para os compósitos.

Nas figuras 5.1 e 5.2 é apresentado o módulo elástico em função da temperatura previsto pelos modelos em série, em paralelo e ROM para os compósitos com 20% e 30% de plastificante, respectivamente. Para os compósitos com 20% de plastificante é possível observar que os valores de módulo elástico previstos pelo modelo em paralelo, apresentam um elevado desvio em comparação aos resultados experimentais para os compósitos com 10% e 20% em fibras. Por outro lado, o modelo em série descreve melhor os valores experimentais, devido ao fato de ser mais adequado para a descrição de propriedades de compósitos com fibras curtas e não orientadas. Para os compósitos de polipropileno e fibras curtas de bananeira orientadas aleatoriamente o modelo em série foi mais adequado para reproduzir os valores experimentais em comparação ao modelo em paralelo ⁹⁶, tal como sucedeu para os compósitos de acetato de celulose com 20% de DOP e diferentes teores de fibras curtas de Curauá preparados em escala piloto.

Figura 5.1 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 20% de DOP: (____) Modelo em paralelo; (____) Modelo em série; (____) Modelo de ROM (k = 0,2) e (∎) Experimental.

Com a modificação do modelo em paralelo (ROM) foi observada uma melhor aproximação aos dados experimentais para k = 0,2. Este valor de k foi reportado por Choudhury ⁹⁹, e foi utilizado para predizer os valores de módulo elástico para compósitos de HDPE e fibras curtas de sisal tratadas com agente de acoplamento (Ionômero Surlyn) e não orientadas na matriz.

Figura 5.2 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 30% de DOP: (____) Modelo em paralelo; (____) Modelo em série; (____) Modelo de ROM (k = 0,2) e (∎) Experimental.

Para os biocompósitos com 30% de plastificante é possível observar um comportamento similar ao anterior. Porém, observa-se um maior desvio entre o valor experimental e previsto pelos modelos em série e ROM para o compósito com maior teor de fibra, similarmente ao reportado na literatura ^{32,99}. Ru e Lim propuseram que o aumento no teor de fibra impede a molhabilidade das fibras com a matriz, o que interfere na transferência do esforço mecânico, para biocompósitos de poli(ácido láctico) e fibras de cânhamo com teores maiores a 40% ³². Para o modelo ROM, o valor k = 0,2 mostrou-se adequado para predizer os valores de módulo elástico dos biocompósitos deste trabalho, como observado nas figuras 5.1 e 5.2. Devido a que estes compósitos apresentam uma distribuição

uniforme e aleatória das fibras na matriz. Por outro lado, o módulo elástico para os biocompósitos de acetopropianato de celulose e fibras longas de cânhamo preparados por moldagem por compressão foi melhor descrito utilizando-se o modelo ROM e k = 0,35, devido principalmente ao fato de que as fibras são longas e encontram-se orientadas unidirecionalmente na matriz polimérica ⁹⁸.

O modelo de Hirsch é uma combinação dos modelos em série e em paralelo da regra das misturas 97,100 . Choudhury utilizou este modelo, assumindo x = 0,375 (modelo de Voight), para compósitos com fibras curtas orientadas aleatoriamente 99 . Entretanto, este modelo não se mostrou adequado para a descrição do módulo dos compósitos deste trabalho para teores de 20% e 30% de plastificante, Figuras 5.3 e 5.4, respectivamente. Para x = 0,12, os valores para ambos conjuntos de compósitos se ajustam aos valores experimentais.

Figura 5.3 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 20% de DOP: (—) Modelo de Hirsch x = 0,12; (—) Modelo de Voight x = 0,375 e (\blacksquare) Experimental.

Para a descrição das propriedades de compósitos de polipropileno com fibras curtas de juta e preparadas por moldagem por compressão, adotou-se x = 0,49¹⁶. Por outro lado, Sreekumar e cols. reportaram o valor de x = 0,2 para

compósitos de poliéster isoftálica e fibras de bananeira, observando que o modelo de Hirsch se aproxima aos resultados experimentais até um teor de fibra de 40%. Acima disto é observada uma diferença significativa, devido à baixa molhabilidade das fibras ¹⁰⁰. x é um parâmetro empírico que esta associado ao comprimento da fibra, ao diâmetro da fibra e a adesão interfacial entre a fibra e a matriz. Devido a isto, cada sistema apresenta valores diferentes de x. Para os biocompósitos deste trabalho, x = 0,12 resultou em valores de módulo elástico similares aos observados experimentalmente. O valor x = 0,12 está relacionado com a orientação aleatória predominante das fibras e, principalmente, com a diminuição da razão de aspecto das fibras na matriz (vide figuras 5.3 e 5.4).

Figura 5.4 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 30% de DOP: (____) Modelo de Hirsch x = 0,12; (____) Modelo de Voight x=0,375 e (∎) Experimental.

As figuras 5.5 e 5.6 apresentam os valores de módulo elástico previstos pelos modelos de Maxwell e Russell em função do teor de fibra para os compósitos com 20% e 30% de plastificante, respectivamente. Para ambos conjuntos de compósitos é possível observar que o modelo de Russell não é adequado. A aproximação de Russell, ao considerar as fibras na forma de cubos

do mesmo tamanho não é eficaz para os compósitos deste trabalho ⁹², devido a que a morfologia destes compósitos apresentou tanto feixes de fibrilas como fibrilas com diferentes tamanhos. Já o modelo de Maxwell, apresenta uma melhor aproximação para os compósitos com 20% de plastificante, do que para os compósitos com 30% de plastificante, em decorrência de uma maior molhabilidade das fibras para os compósitos com 30% de plastificante, resultando em valores maiores de módulo elástico.

O modelo modificado da regra das misturas para k = 0,2 descreve mais adequadamente o módulo elástico para os compósitos preparados em escala piloto, uma vez que se este é mais adequado para a descrição do modulo elástico de compósitos com fibras curtas não orientadas ^{32,99,100}, e não considera efeitos relacionados a razão de aspecto, como ocorre com o modelo de Hirsch.

Figura 5.5 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 20% de DOP: (____) Modelo de Maxwell; (____) Modelo de Russell e (∎) Experimental.

Figura 5.6 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 30% de DOP: (____) Modelo de Maxwell; (____) Modelo de Russell e (■) Experimental.

5.2 Biocompósitos preparados em escala laboratorial (EL)

O módulo elástico de biocompósitos preparados em escala laboratorial de acetato de celulose plastificado com 30% de TEC ou DOP e 10% de fibras de Curauá tratadas (extraidas com acetona ou mercerizadas) e não tratadas quimicamente foi analisado sob a ótica de diferentes modelos propostos.

A Figura 5.7 apresenta os resultados da aplicação dos modelos em série e em paralelo, assim como do modelo ROM, observando-se uma melhor aproximação da previsão do módulo pelo modelo em série para todos os compósitos preparados na escala laboratorial. Isto poderia estar associado à baixa qualidade de reforço mecânico conferido pelas fibras lignocelulósicas, resultante da desestruturação das fibras após o processamento, assim como a distribuição aleatória das mesmas. O modelo ROM para k = 0,2 resulta em valores de módulo mais próximos dos experimentais, quando comparados com os valores do modelo em paralelo.

Figura 5.7 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 30% de plastificante: (♦) Modelo em paralelo; (●) Modelo em série; (▼) Modelo de ROM (k = 0,2) e (■) Experimental.

A previsão dos modelo de Hirsch para x = 0,0005 e Voight, para x = 0,375, não se aproxima dos valores experimentais (Figura 5.8). O valor empírico x = 0,375 que tem sido adequado para prever valores do módulo elástico para compósitos com fibras não orientadas. Valores baixos de x, como, 0,0005, os modelos consegue-se mostrar mais adequados, indicando evidência da baixa capacidade de reforço por parte das fibras, possivelmente associada a desestruturação das fibras. Para os modelos de Hirsch e Voight os valores de x próximos a 1 indicam transferência eficiente da tensão entre a matriz e as fibras, ao contrario do que acontece para valores próximos a 0.

Figura 5.8 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 30% de plastificante: (•) Modelo de Hirsch x = 0,0005; (\blacktriangle) Modelo de Voight x = 0,375 e (**n**) Experimental.

Figura 5.9 – Módulo elástico em função do teor de fibra de Curauá, para os compósitos com 30% de plastificante: () Modelo de Maxwell; (•) Modelo de Russell e () Experimental.

Por último, na Figura 5.9 são apresentados os valores de módulo elástico previstos pelos modelos de Maxwell e Russel. Uma vez mais é possível observar

que os valores experimentais não se encontram próximos dos valores previstos por ambos modelos, devido as considerações feitas para cada modelo. Assim o modelo em série descreveu mais adequadamente os valores do módulo elástico para os compósitos preparados na escala laboratorial, devido a alta fibrilação e diminuição da razão de aspecto das fibras.

Capitulo 6 - Conclusões

Biocompósitos de acetato de celulose e fibras curtas de Curauá foram preparados com sucesso por extrusão, tanto em escala laboratorial como em piloto, apresentando propriedades dependentes não só das condições de processamento, mas também do tipo e teor de plastificante e do teor e tratamento das fibras.

O plastificante ftalato de dioctila (DOP) mostrou-se mais eficiente em comparação com o citrato de trietila (TEC), já que os biócompósitos plastificados com 30% de DOP apresentaram menor temperatura de transição vítrea e maior resistência ao impacto. Entretanto, para algumas aplicações o TEC apresenta-se como um plastificante em potencial para o acetato de celulose e seus compósitos, uma vez que seus biocompósitos apresentaram propriedades mecânicas e térmicas próximas das formulações com DOP. Além disso, estes biocompósitos tem a vantagem dos seus componentes serem biodegradáveis.

O tratamento químico das fibras resultou em maior adesão interfacial, com reflexos positivos sobre as propriedades mecânicas e térmicas dos biocompósitos em relação aqueles com fibras não tratadas. Para fibras mercerizadas a melhor adesão interfacial à matriz está associada a extração parcial de hemicelulose e lignina, enquanto para as fibras extraídas com acetona à remoção de impurezas e diminuição do diâmetro das fibras.

O processamento em escala laboratorial resultou em fibrilação intensa das fibras de Curauá tratadas ou não ao contrario do observado para biocompósitos preparados em escala piloto. O impacto desta fibrilação sobre as propriedades mecânicas foi negativo, de forma que os biocompósitos preparados na escala piloto apresentaram melhores propriedades mecânicas.

A presença das fibras de Curauá na matriz de acetato de celulose plastificado não modifica significativamente o comportamento termo-oxidativo, independentemente do teor de fibra e plastificante, assim como dos tratamentos químicos realizados na superfície das fibras.

As propriedades mecânicas e térmicas dos biocompósitos demonstraram o potencial destes em aplicações que requerem materiais isolantes térmicos e com boa estabilidade dimensional. **Anexo I** Determinação da condutividade térmica por calorimetria diferencial de varredura.

A determinação da condutividade térmica por calorimetria diferencial de varredura modulada (MDSC) baseia-se na medida da capacidade calorífica em condições de equilíbrio (capacidade calorífica real) e fora do equilíbrio térmico (capacidade calorífica aparente). A condição de equilíbrio térmico é garantida utilizando-se uma amostra tão fina quanto possível, minimizando o gradiente de temperatura através da amostra. Por outro lado, o uso de uma amostra espessa possibilita o desenvolvimento de um gradiente de temperatura, condição fora do equilíbrio térmico. A Figura AI.1 ilustra estas condições.

Figura Al.1 – Condições de equilíbrio e não equilíbrio em calorimetria diferencial de varredura modulada.

A relação entre a capacidade calorífica real e a capacidade calorífica aparente permite encontrar o valor da condutividade térmica do material, Equação AI.1.

Anexo I

$$\lambda_{0} = \frac{(8LC^{2})}{(C_{p} mD^{2}P)}$$
Equação Al.1

Onde λ_0 é a condutividade térmica observada, L é a espessura da amostra espessa, C a capacidade calorífica aparente, C_p a capacidade calorífica real, m a massa da amostra espessa, D o diâmetro da amostra espessa e P o período de oscilação. Porém, condutividade térmica calculada usando a equação AI.1 é chamada de observada, devendo ser corregida. O valor real da condutividade térmica λ é obtido corrigindo-se λ_0 por um fator de correção D (Equação AI.2 e AI.3), determinado comparando-se a condutividade térmica reportada na literatura para o poliestireno com dados experimentais.

$$D = (\lambda_{\text{DPS}} \lambda_r)^{\frac{1}{2}} - \lambda_r$$
 Equação AI.2

$$\lambda = \frac{[\lambda_0 - 2D + (\lambda_0^2 - 4D\lambda_0)^{\frac{1}{2}}]}{2}$$
 Equação A1.3

Onde λ_{0PS} é a condutividade térmica do poliestireno observada e λ_r é a condutividade térmica do poliestireno encontrada na literatura.

Referências

1 Callister, W.D. - Ciência e Engenharia de materiais: Uma Introdução – 5^ª Edição, LTC editora, Rio de Janeiro (2002)

2 Askeland, D.R. - The science and engineering of materials - 2nd Edition Chapman and Hall, New York (1980)

3 Agarwal, B.D. Broutman, L.J. - Analysis and performance of fiber composites - 2nd edition, John Wiley and Sons, New York (1990)

4 Mano, B. Araujo, J. R. Spinacé, M. A. S. De Paoli, M-A. – Biomicrofibrilar composites of high density polyethylene reinforcerd with curauá fibers: Mechanical, interfacial and morphological properties - Composites Science and Technology, 70, 29-35 (2010)

5 Mahonty, A.K. Misra, M. Hinrichsen, G. - Biofibres, biodegradable polymers and biocomposites: An overview - Macromolecular Materials and Engineering., 276/277, 1-24 (2000)

6 Levy, F. Pardini, L.C. - Compósitos Estruturais - Editora Edgard Blucher, São Paulo, (2006)

7 John, M.J. Thomas, S. – Biofibres and biocomposites - Carbohydrate Polymers, 71, 343-364 (2008)

8 Phuong, N. T. Solloguob, C. Guinault A. – Relationship between fiber chemical treatment and properties of recycled PP/bamboo fiber composites – Journal Reinforced Plastic and Composites, 29/21, 3244-3256 (2010)

9 Pimenta, M. T. B. Carvalho, A. J. F. Vilaseca, F. Girones, J. Lopez, J. P. Mutje, P. Curvelo, A. A. S. - Soda-Treated Sisal/Polypropylene - Composites, Journal of Polymers and the Environment, 16, 35-39 (2008)

10 Awal, A. Ghosh, S. B. Sain, M. - Development and morphological characterization of wood pulp reinforced biocomposite fibers – Journal of Materials Science, 44 2876-2881 (2009)

11 Rahman, R. Huque, M. Islam, N. Hasan, M. - Mechanical properties of polypropylene composites reinforced with chemically treated abaca - Composites Part A, 40, 511-517 (2009)

12 Paul, S. A. Boudenne, A. Ibos, L. Candau, Y. Joseph, K. Thomas, S. - Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials - Composites Part A, 39, 1582-1588 (2008)

13 Zhang, L. Miao, M. - Commingled natural fibre/polypropylene wrap spun yarns for structured thermoplastic composites - Composites Science and Technology, 70, 130-135 (2010)

14 Khoathane, M.C. Vorster, O.C. Sadiku, E.R. - Hemp Fiber-Reinforced 1-Pentene/Polypropylene Copolymer: The Effect of Fiber Loading on the Mechanical and Thermal Characteristics of the Composites - Journal Reinforced Plastics and Composites, 27, 1533-1544 (2008)

15 Tajvidi, M. Falk, R. H. Hermanson, J. C. - Effect of Natural Fibers on Thermal and Mechanical Properties of Natural Fiber Polypropylene Composites Studied by Dynamic Mechanical Analysis – Journal of Applied Polymers Science, 101, 4341-4349 (2006)

16 Doan, T.-T.-L. Gao, S.-L. Mader, E. - Jute/polypropylene composites I. Effect of matrix modification - Composites Science and Technology, 66, 952-963 (2006)

17 Valadez-Gonzalez, A. Cervantes-Uc, J. M. Olayo, R. Herrera-Franco, P. J. -Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites - Composites Part B, 30, 309-320 (1999)

18 Mohanty S., Verma S. K., Nayak S. K.: Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites, Composites Science and Technology, 66, 538–547 (2006)

19 Raj, R.G. Kokta, B.V. Dembele, F. Sanschagrain, B. – Compounding of cellulose fibers with polipropilene: effect of fiber treatment on dispersion in the polymer matrix – Journal of Applied Polymers Science, 38, 1987-1996 (1989)

20 Felix, J.M. Gatenholm, P. – The nature of adhesion in composites of modified cellulose fibers and polypropylene – Journal Applied Polymers Science, 42, 609-620 (1991)

21 Bengtsson, M. Le Ballief, M. Oksman, K. – Extrusion and mechanical properties of highly filled cellulose fiber-polypropylene composites – Composites: Part A, 38, 1922-1931 (2007)

22 Santos, P. A. Spinacé, M. A. S. Fermoselli, K. K. G. De Paoli, M-A. – Effect of processing method and curaua fiber treatment on the properties of polyamide-6 composites - Polímeros, Ciência e Tecnologia, 19, 31-39 (2009)

23 Threepopnatkul, P. Kaerkitcha, N. Athipongarporn, N. - Effect of surface treatment on performance of pineapple leaf fiber–polycarbonate composites - Composites: Part B, 40, 628-632 (2009)

24 Silva, R. V. Aquino, E. M. F. Rodrigues, L. P. S. Barros, A. R. F. - Curaua/Glass Hybrid Composite: The Effect of Water Aging on the Mechanical - Journal Reinforced Plastics and Composites, 28, 1857-1868 (2009)

25 Silva, R.V. & Aquino, E.M.F. – Curaua fiber: a new alternative to polymeric composites - Journal Reinforced Plastic and Composites, 27, 103-112 (2008)

26 Krishnaprasad, R. Veena, N. R. Maria, H. J. Rajan, R. Skrifvars, M. Joseph, K. -Mechanical and Thermal Properties of Bamboo Microfibril Reinforced Polyhydroxybutyrate Biocomposites – Journal of Polymers and the Environment, 17, 109-114 (2009)

27 Barkoula, N.M. Garkhail, S.K. Peijs, T. - Biodegradable composites based on flax/polyhydroxybutyrate and its copolymer with hydroxyvalerate - Industrial Crops and Products, 31, 34-42 (2010)

28 Tokoro, R. Vu, D. M. Okubo, K. Tanaka, T. Fujii, T. Fujiura, T. - How to improve mechanical properties of polylactic acid with bamboo fibers - Journal of Materials Science, 43, 775-787 (2008)

29 Okubo, K. Fujii, T. Thostenson, E. T. - Multi-scale hybrid biocomposite: Processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose - Composites Part A, 40, 469-475 (2009)

30 Nishino, T. Hirao, K. Kotera, M. Nakamae, K. Inagaki, H. - Kenaf reinforced biodegradable composite - Composites Science and Technology, 63, 1281-1286 (2003)

31 Plackett, D. Andersen, T. L. Pedersen, W. B. Nielsen, L. - Biodegradable composites based on I-polylactide and jute fibres - Composites Science and Technology, 63, 1287-1296 (2003)

32 Hu, R. Lim, J. K. - Fabrication and Mechanical Properties of Completely Biodegradable Hemp Fiber Reinforced Polylactic Acid Composites - Journal of Composite Materials, 41, 1655-1669 (2007)

33 Choi, J. S. Lim, S. T. Choi, H. J. Hong, S. M. Mahonty, A.K. Drzal, L. T. Misra, M. Wibowo, A.S. - Rheological, thermal and morphological characteristics of plasticized cellulose acetate composite with natural fiber - Macromolecular Symposia 224, 297-308 (2005)

34 Gulati, D. Sain, M. - Fungal-modification of Natural Fibers: A Novel Method of Treating Natural Fibers for Composite Reinforcement – Journal of Polymers and the Environment, 14, 347-352 (2006)

35 Chandra, R. Rustgi, R. – Biodegradable polymers – Progress in Polymer Scince, 23, 1273-1235 (1998)

36 Heyde M – Ecological considerations on the use and production of biosynthetic and syntethic biodegradable polymers - Polymer Degradation and. Stability, 59, 3-6 (1998)

37 http://www.eastman.com/Literature_Center/P/PPC100.pdf acessado em 18/01/2011

38 Romero, R.B. Leite, C.A.P. Gonçalves, M.C. – The effect of solvent on the morphology of cellulose acetate/montmorillonite nanocomposites, Polymer, 50, 161-170 (2009)

39 http://www.eastman.com/Literature_Center/P/PP121.pdf acessado em 18/01/2011

40 Stannet, V. Cellulose acetate plastics, Temple Press, London (1950)

41 Eastman, N. Encyclopedia of polymer science and techonology, vol 3, J. Wiley & Sons, New York (1965)

42 Krauskopf, L.G. - How about alternatives to phthalates plasticizers? – Journal of Vinyl and Additive Technology, 9, 159-171 (2003)

43 Dunlop, J. W. C. Fratzl, P. – Biological composites – Annual Review of Materials Research, 40, 1-24 (2010)

44 Taha, I., Ziegmann, G. - A Comparison of Mechanical Properties of Natural Fiber Filled Biodegradable and Polyolefin Polymers - Journal of Composites Materials, 40, 1933-1946 (2006)

45 Karnani, R. Krishnan, M. Narayan, R. - Biofiber-reinforced Polypropylene composites - Polymer Engineering and Science, 37, p.476 (1997)

46 Wibowo, A. Misra, M. Drzal, L.T. – Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites - Composites: Part A, 35, 363-370 (2004)

47 Spinacé, M.A.S. Lambert, C.S. Fermoselli, K.K.G. De Paoli, M-A. – Characterization of lignocellulosic curaua fibres – Carbohydrate Polymers, 77, 47-53 (2009)

48 Zah, R. Hischier, R. Leão, A.L. & Braun I. Curaua Fibers in the automobile industry – a sustainability assessment – Journal of Cleaner Production, 15, 1032-1040 (2007)

49 Tomczak, F. Satyanarayana, K.G. Sydenstricker, T.H.D. – Studies on lignocellulosics fibers of Brazil: Part III – Morphology and properties of Brazilian curauá fibers – Composites: Part A, 38, 2227-2236 (2007)

50 Ragoubi, M. Bienaimé, D. Molina, S. George, B. Merlin, A. – Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof – Industrial Crops and Products, 31, 344-349 (2010)

51 Ouajai, S. Shanks, R.A. – Biocomposites of cellulose acetate butyrate with modified hemp cellulose fibres - Macromolecular Materials and Engineering, 294, 213-221 (2009)

52 Bledzki, A.K. Reihmane, S. Gassan J. – Properties and modification methods for vegetable fibers for natural fibers composites - Journal Applied Polymers Science, 59, 1329-1336 (1996)

53 Panigrahi, S. Li, X. Tabil L.G. – Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review - Journal of Polymers and the Environment, 15, 25-33 (2007)

54 Fangueiro, R. Mukhopadhyay, S. – Physical modification of natural fibers and thermoplastic film for composites – A review – Journal of Thermoplastic Compsite Materials, 22, 135-162 (2009)

55 Araujo J.R. Dissertação de mestrado, Instituto de Química, UNICAMP, Campinas, SP, 2009

56 Satyanarayana, K. G. Guimaraes, J. L. Wypych, F. - Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and application - Composites A, 38, 1694-1709 (2007)

57 Faca, A.G. Kortschot, M.T. Yan, N. - Predicting the tnsile strength of natural fibre reinforced thermoplastics - Composites Science and Technology, 67 2454-2466 (2007)

58 Wadey, B.L. - An innovative plasticizer for sensitive applications – Journal of Vinyl and Additive Technology, 9, 172-176 (2003)

59 Koponen, H-K. Suvanto, M. Pakkanen, T-A. - Soiling of plasticized Poly(vinyl chloride) – Journal of Applied Polymers Science, 105, 3047-3053 (2007)

60 Firlotte, N. Cooper, D. G. Maric, M. Nicell, J.A. - Charecterization of 1,5-Pentanediol dibenzoato as a potential "green" Plasticizer for Poly(vinyl chloride) -Journal of Vinyl and Additive Technology, 15, 99-107 (2009)

61 Lardjane, N. Belhaneche-Bensemra, N. - Migration of Additives in simulated landfills and soil burial of degradation plasticizers PVC. – Journal of Applied Polymers Science, 111, 525-531 (2009)

62 Persico, P, Ambrogi, V, Acierno, D, Carfagna, C. - Processability and mechanical properties of commercial PVC plastisols containing low-impactenvironmental plasticizers. – Journal of Vinyl and Addition Technology, 15, 139-146 (2009)

63 Fenollar, O. Sanchez-Nacher, L. Garcia-Sanoguera, D. Lopez, J. Balart, R. -The effect of the curing time and temperature on final properties of flexible PVC with an epoxidized fatty acid ester as natural-based plasticizer. - Journal Materials Science, 44, 3702-3711 (2009)

64 Banu, D. El-Ahgoury, A. Feldman, D. - Contributions to characterization of poly(vinyl chloride) Lignin blends. – Journal of Applied Polymers Science, 101, 2732-2748 (2006)

65 Ghiya, V.P. Dave, V. Gross, R.A. Mccarthy, S.P. – Biodegradability of cellulose acetate plasticized with citrates esters – Journal of Macromolecular Science Part A, A33(5), 627-638 (1996)

Wong, S. Shanks, R. A. Hodzic A. – Poly(L-lactid acid) composites with flax fibers modified by plasticizer absortion - Polymer Engineering and Science, 43, 1566-1575 (2003)

Park, H-M. Misra, M. Drzal, L.T. Mahonty A.K. – "Green" nanocomposites from cellulose acetate bioplastic and clay: effect of eco-friendly triethyl citrate plasticizer – Biomacromolecules, 5, 2281-2288 (2004)

Lopes, C. M. A. Felisberti, M. I. – Thermal conductivity of PET/(LDPE/AI) composites determined of MDSC - Polymer Testing, 23, 637-643 (2004)

Ouajai, S. Hadozic, A. Shanks, R.A. - Morphological and grafting modification of natural cellulose fibers – Journal of Applied Polymer Science, 94, 2456

Ouajai, S. Shanks, R.A. – Preparation, structure and mechanical properties of all-hemp cellulose biocomposites - Composites Science and Technology. 69, 2119-2126 (2009)

Quin, C. Soykeabkaew, N. Xiutuan, N. Peijs, T. – The effect of fibre volume fraction and mercerization oon the properties of all-cellulose composites – Carbohydrate Polymers, 71, 458-467 (2008)

Aydin, M. Tozlu, H. Kemaloglu, S. Aytac. A. Ozkoc, G. – Effects of alkali treatment on the properties of short flax fiber-Poly(lactic acid) ecocomposites – Journal of Polymer on the Environment, 19, 11-17 (2011)

73 Tomczak, F. Satyanarayana, K.G. Sydenstricker, T.H.D. – Studies on lignocellulosics fibers of Brazil: Part III – Morphology and properties of Brazilian curauá fibers – Composites: Part A, 38, 2227-2236 (2007)

74 Rong, M.Z. Zhang M.Q. Liu, Y. Yang, G.C. & Zeng H.M. – The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites – Composites Science and Technology, 61, 1437-1447 (2001)

75 d'Almeida, J.R.M. Aquino, R.C.M.P. Monteiro, S. N. – Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers - Composites: Part A, 37, 1473-1479 (2006)

76 Isogai, A. Usuda, M. – Solid state CP/MAS ¹³C NMR study of cellulose polymorphs – Macromolecules, 22, 3168-3172 (1989)

Liu, Y. Hu, H – X-ray diffraction study of bamboo fibers treated with NaOH – Fibers and Polymers, 9, 735-739 (2008)

78 Subramanian, K. Kumar, S.P. Jeypal, P. Venkatesh, N. – Characterization of lignocellulosic seed fibre from Wrightia tinctoria plant for textile applications an exploratory investigation – European Polymer Journal, 41, 853-861 (2005)

79 Cassu, S.N. Felisberti, M.I. – Comportamento dinâmico-mecânico e relaxações em polímeros e blendas poliméricas - Química nova, 28, 255-263 (2005)

80 Videki, B. Klebert, S. Pokanzsky B. – External and internal plasticization of cellulose acetate with caprolactone: structure and properties. – Journal of Polymers Science: Part B, 45, 873-877 (2007)

81 Chatterjee, P.K. Conrad, C.M. - Thermogravimetric analysis of cellulose. – Journal of Polymers Science: Part A-1: Polymer Chemistry, 6, 3217-3233 (1968)

82 Romero R.B. Tese de Doutorado, Instituto de Química, UNICAMP, Campinas, SP, (2009)

83 Schilling, M. Bouchard, M. Khanjian, H. Learner, T. Phenix A. Rivenc R. – Aplication chemical an thermal analysis methods for studying cellulose ester plastics – Accounts of Chemical Research, 43, 888-896 (2010)

84 Lopes, C.M.A. Tese de Doutorado, Instituto de Química, UNICAMP, Campinas, SP. (2003)

85 Alexander, S. Entin-Wolhman, O. Orbach, R. – Phonon-fracton anharmonic interactions: The thermal conductivity of amorphous materials - Physical Review Part: B, 34, 2726-2734 (1986)

86 Dashora, P. & Gupta, G. – On the temperature dependence of thermal condutivity of linear amorphous polymers – Polymer, 37, 231-234 (1996)

87 Huda, M.S. Drzal, L.T. Mohanty M.K. Misra M. – Effect of fiber surfacetreatments on the properties of laminated biocomposites from poly(lactid acid)(PLA) and kenaf fibers – Composites Science and Technology, 68, 424-432 (2008)

88 Oksman, K. Skrifvars, M. Selin, J-F. – Natural fibres as reinforcement in polylactic acid (PLA) composites – Composites Science and Technology, 63, 1317-1324 (2003)

89 Liu, W. Thayer, T. Misra, M. Drzal, L.T. Mohanty, A.K. – Processing and physical properties of native grass-reinforced biocomposites – Polymers Engineering and Science, 47, 969-976 (2007)

90 Brahmakumar, M. Pavthran, C. Pillai, R.M. – Coconut fiber reinforced polyethylene composites: effect of natural waxy surface layer of the fiber on

fiber/matrix interfacial bonding and strength of composites – Composites Science and Technology, 65, 563-569 (2005)

91 Sommer, W. - Plastic additives Handbook, Cap.5 - Hanser Publishers, 2nd, Munich (1987)

Li, X. Tabil, L.G. Oguocha, N. Panagrahi S. – Thermal diffusivity, thermal conductivity and specific heat of flax fiber-HDPE biocomposites at processing temperatures – Composites Science and Technology, 68. 1753-1758 (2008)

Kim, S.W. Lee, S.H. Kang, J.S. Kang, K.H. – Thermal conductivity of thermoplastics composites reinforced with natural fibers – International Journal of thermoplastics, 27, 1873-1881 (2006)

 Takagi, H. Kako, S. Kusano, K. Ousaka, A. – Thermal conductivity of PLAbamboo fiber composites – Advanced Composites Materials, 16, 377-384 (2007)

Mahonty, A.K. Wibowo, A. Misra, M. Drzal L.T. – Development of renewable resource-based cellulose acetate bioplastic: effect of process engineering on the performance on cellulosic plastics – Polymers Science and Engineering, 43, 1151-1161 (2003)

96 Annie Paul, S. Boudenne, A. Ibos, L. Candau, Y. Joseph, K. Thomas, S. – Effect of fiber laoding and chemical treatments on thermophysical properties of bananan/polypropilene cummingled composite materials – Composites Science and Technology, 39, 1582-1588 (2008)

Li, Y. Mai, Y-W. Ye, L. – Sisal fibre and its composites: a review of recent developments – Composites Science and Techonology,60, 2037-2055 (2000)

Mahonty, A.K. Wibowo, A. Misra, M. Drzal, L.T. – Effect of process engineering on the performance of natural fibre reinforced cellulose acetate biocomposites - Composites Science and Technology, 35, 363-370 (2004)

Choudhury, A. – Isothermal crystallization and mechanical behavior of ionomer treated sisal/HDPE composites. – Materials Science and Engineering A. 491, 492-500 (2008)

Sreekumar, P.A. Albert, P. Unnikrishnan, G. Joseph, K. Thomas, S. – Mechanical and water sorption studies of ecofriendly banana fiber reinforced polyster composites fabricated by RTM. – Journal of Applied Polymer Science, 109. 1547-1555 (2008)