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MÜLLER-LIU ENTROPY PRINCIPLE

Orientador/Supervisor: Prof. Dr. Adalberto Bono Maurizio Sacchi Bassi

MODELAGEM CONSTITUTIVA DE SISTEMAS ELETROQUÍMICOS ATRAVÉS DO
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Abstract

CONSTITUTIVE MODELING OF ELECTROCHEMICAL SYSTEMS VIA THE MÜLLER-

LIU ENTROPY PRINCIPLE- This work concerns the thermodynamics of electrochemical

systems. Exploiting the principles of constitutive theory, few expedient assumptions, and,

in special, the Müller-Liu entropy principle, a thermo-electrochemical continuum model

is proposed for electrolyte solutions as well as for the bulk and double layer regions of

an electrochemical system. The influence of ion-ion and ion-solvent interactions on the

mixture dynamics is taken into account through the thermodynamics of polar materials

and balance laws for an electrochemical system are accordingly stated. In addition, phe-

nomenological equations are schemed for a dilute and isotropic electrolyte solution, and

the conditions for local thermodynamic equilibrium of bulk and double layer regions are

investigated. Comparing the residual entropy inequalities obtained for each region of an

electrochemical system, it is shown that some mechanisms develop only in the double

layer, such as the thermal diffusion, thermoelectricity and electrophoresis phenomena. As

a consequence, the local thermodynamic equilibrium state in the double layer requires

stricter conditions than in the bulk. Although the constitutive equations are the simplest

possible, the constitutive models proposed for the double layer and bulk regions are physi-

cally consistent and more comprehensive than the usual models since the emerging equa-

tions do not constrain themselves to equilibrium neither limiting conditions. Therefore, the

thermodynamic description provided in this work may stimulate chemists and chemical

engineers to take advantage of it to study the flow of ions and other chemical species

across cell membranes, ionic mobility in bio and geological media, and processes whose

heat and mass transfers are enhanced by electromagnetic fields.

KEYWORDS: Thermodynamic modeling, Electrochemistry, Müller-Liu entropy, diffusion-

mathematical models, mechanics of continuous media.
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RESUMO

MODELAGEM CONSTITUTIVA DE SISTEMAS ELETROQUÍMICOS ATRAVÉS DO

PRINCÍPIO DE ENTROPIA MÜLLER-LIU- Este trabalho descreve a termodinâmica de

sistemas eletroquı́micos. Explorando os princı́pios da teoria constitutiva, algumas hipóteses

ad hoc e, em especial, o princı́pio de entropia Müller-Liu, modelos termo-eletroquı́micos

são propostos para soluções eletrolı́ticas e para as regiões de bulk e dupla camada de

um sistema eletroquı́mico. A influência das interações ı́on-ı́on e ı́on-solvente sobre a

dinâmica da mistura é considerada através da termodinâmica de contı́nuos polares e

as equações de balanço são apropriadamente postuladas. Além disso, equações feno-

menológicas são apresentadas para uma solução eletrolı́tica diluı́da e isotrópica e as

condições para o equilı́brio termodinâmico local do bulk e da dupla camada são investi-

gadas. Comparando-se as desigualdades residuais de entropia obtidas para cada região,

foi demonstrado que alguns processos, tais como os fenômenos de difusão térmica, ter-

moeletricidade e eletroforese, desenvolvem-se somente na dupla camada. Consequen-

temente, o estado de equilı́brio termodinâmico local na dupla camada requer condições

termodinâmicas mais severas do que no bulk. Apesar das equações constitutivas serem

as mais simples possı́veis, os modelos constitutivos propostos para as regiões de du-

pla camada e bulk são fisicamente consistentes e mais abrangentes do que os modelos

eletroquı́micos usuais, visto que as equações e relações termodinâmicas obtidas não se

limitam às condições limites e nem de equilı́brio. Portanto, a descrição termodinâmica

mostrada neste trabalho pode estimular quı́micos e engenheiros quı́micos a usar a abor-

dagem contı́nua no estudo da mobilidade iônica em meios bio e geológicos, fluxos de ı́ons

e de outras espécies quı́micas através de membranas e processos cujas transferências

de calor e massa são intensificadas por campos eletromagnéticos.

PALAVRAS-CHAVE: Modelagem termodinâmica, eletroquı́mica, entropia Müller-Liu, di-

fusão- modelos matemáticos, mecânica dos meios contı́nuos.
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1 Introduction

Since the mid-19th century, when the first electrochemical experiments were done, the

study of the dynamic behavior of ions in electric-conducting solutions has been one of

the major fields of study in Physical Chemistry. In 1887, van’t Hoff [69] published a work,

reporting deviations in the values of freezing points, boiling points, osmotic pressure, and

vapor pressures for electrolyte solutions. Few months later, Arrhenius [1] suggested that

charged chemical species should be present in electric-conducting solutions, even in the

absence of external electric fields.

From van’t Hoff and Arrhenius’ works, several studies [76] showed that the interi-

onic forces should play an important role in the physico-chemical properties of electrolyte

solutions. This became more evident when the results obtained from conductometric and

amperometric experiments indicated that the nature and concentration of ions change the

conductivity, viscosity, and mass transport of solutions. Since then, many attempts [3]

have been made to derive theories of interionic interaction, being most of them based

on statistical mechanics whose focus relies on the time-averaged spatial distribution of

ions. According to these models, a volume element of the solution is completely filled

with a dielectric continuum, where discrete point charges, regarded as hard spheres, are

immersed. Evidently, these approximations are shortcomings because real ions are not

hard spheres, and the solvent is not a dielectric continuum. However, in the limit of very

dilute solutions, these approximations are acceptable, as Debye and Hückel demonstrated

in reference [18].

In the Debye-Hückel model, thermodynamic properties of the solution are calcu-

lated from the electrostatic interaction energy between an ion, chosen as a reference one,

and all other ions in solution. In order to determine this interaction energy, one consid-

ers that the averaged distribution of ions around the reference ion follows the Boltzmann

distribution law, whereas the relation between the charge density of each ion and the

electrostatic potential is given by the Poisson’s equation. The combination of these two

equations leads to the so-called Poisson-Boltzmann equation, which, in general, is solved

by numerical or series methods. To make further progress, Debye and Hückel focused on

systems where the average electrostatic potential energy is much smaller than the ther-
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mal one, allowing the Poisson-Boltzmann equation to be linearized and solved analytically.

However, despite the great contribution of the Debye-Hückel model to the development of

a coherent interionic theory, it provides theoretical results that are in good agreement with

experimental data for only very dilute solutions.

In view of the limitations of the Debye-Hückel model, other theoretical models

based on more realistic assumptions have been developed. Some of these models, for

instance, are founded on the use of the unlinearized Poisson-Boltzmann equation [25, 27,

51], the virial expansion of the excess Gibbs energy (Pitzer equation) [52, 53], and the

intermolecular potential theory (McMillan-Mayer theory) [38]. Nevertheless, despite the

impressive success reached by these models, the lack of data about ionic and molecular

radii, dielectric saturation, and electrostriction effects has hindered their application in

more complex systems. Even with the advances in computational molecular dynamics, the

determination of thermodynamic properties of simple electrolyte solutions is frequently a

long and tedious process as it requires several computer cycles per chemical species. As

a result, continuum models for mixtures have become an alternative approach, especially

with the progresses obtained in electrorheological fluids and continuum mixtures models

during the last decades. For instance, Maugin and co-authors [42, 43] developed various

continuum models to study the behavior of polyelectrolytes in non-homogeneous velocity

gradient flows, either in the presence or absence of electric fields. Moreover, several

continuum models have been developed in order to associate the material properties of

electrorheological fluids to measurable macroscopic quantities.

The literature provides numerous works about constitutive modeling of polyelec-

trolytes, ionic polymer-metal composites, and electrorheological fluids with practical ap-

plications in automotive industries, polishing solutions, biomedical devices etc. In refer-

ences [55, 77], phenomenological models of ion transport were given with basis in linear

irreversible thermodynamics. In reference [50], Placidi and co-authors provided a con-

tinuum model for polymer-metal composites, where chemically induced deformations are

described through a distortion field induced by solvated ions. However, although several

continuum models are available for electrolyte mixtures, the most fundamental aspects of

electrolyte dynamics have not been sufficiently explored. Hence, the aim of this work is

to propose a general thermo-electrochemical theory to investigate the diffusive, reactive,

and advective structures of dilute electrolyte solutions. These solutions present close con-

nection with the fields of surface chemistry (the stability of many colloids depends on the

interionic interactions in solution), biochemistry (blood is an ion carrier and changes in the

ions concentrations affect the blood flow), metallurgy (successful electroplating processes

require the control of ions transport in solutions), and geology (soils with high concen-
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tration of ions flow faster), and differ from the polyelectrolyte ones because they do not

contain ionic or polarizable macromolecules, but only monoatomic or molecular ions of

low molecular weight.

Chapter 2 is devoted to the presentation of the foundations of continuum ther-

modynamics. Particularly, attention is focused on the continuum concept, basic laws of

Physics, and principles of the constitutive theory. Here, the concept of continuum particle

is also differentiated from the classical concept of particles in Chemistry and Physics. In

Chapter 3, the dynamics of reacting ionic mixtures is outlined by emphasizing the rela-

tion between inner structure of the mixture and interionic interactions. In turn, the next

two chapters are dedicated to exploitation of the Müller-Liu entropy principle for electro-

chemical systems. In Chapter 4, thermodynamic restrictions on constitutive functions and

their consequences for dilute electrolyte solutions whose constituents present the same

temperature field are shown. In order to assess the implications of this constitutive theory

for electrolyte solutions, some results are compared with those of classical thermostatics.

Finally, in Chapter 5, some comments are addressed to the structure of electrochemi-

cal systems, and continuum models for the double layer and bulk regions are developed.

From these models, transport phenomena in the bulk and double layer are investigated

and compared, and the implications of material equations on the properties of each re-

gion are discussed.

Despite the continuum models proposed are limited to electrochemical systems,

the results presented can be extended to study the flow of ions and other chemical species

across cell membranes, ionic mobility in bio and geological media, and processes whose

heat and mass transfers are enhanced by electromagnetic fields.

3
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2 Foundations of Continuum

Thermodynamics

Continuum thermodynamics is a branch of physical science concerned with deformations

and motions of continuous material media under the influence of mechanical, electro-

magnetic, thermal, and chemical sources. Since mid-1960, the continuum approach for

material bodies has been an important theoretical tool for engineers and applied mathe-

maticians because it provides a very useful and reliable representation for macroscopic

bodies whose characteristic dimensions are much bigger than the molecular ones. On

the other hand, most of the chemists are still not aware of the methods of continuum

thermodynamics as an alternative to traditional thermodynamic theories.

The subsequent sections are destined to present the basic concepts of continuum

thermodynamics whose phenomenology is restricted to the Newtonian space-time,

∢ : W → E × R , (2.0.1)

where ∢ is a frame of reference or observer, E is the three-dimensional Euclidean space ,

and R is the one-dimensional space of real numbers. For a complete overview of the foun-

dations of continuum thermodynamics, the readers are advised to consult the references

[29, 35, 47, 68].

2.1 The continuum concept

On a small scale, an aluminum sheet is a collection of discrete aluminum atoms stacked

on one another in a repetitive lattice. On an even smaller scale, the aluminum atoms

consist of a core of protons and neutrons around which electrons move. Thus, clearly,

matter is not continuous. However, if the continuum concept of matter is accepted, one

ignores the discrete composition of material bodies and assumes that the mass of such

bodies is distributed throughout, so filling the whole space that it occupies. In keeping with

this continuum model, matter may be divided indefinitely into smaller and smaller portions,

5



each of which retains all the physical properties of the original body. Accordingly, physical

quantities, such as energy and velocity, are ascribed to every single point of the region of

space that the body occupies as continuous functions or piecewise continuous functions

of space and time.

In continuum thermodynamics, the mass of a body is a fundamental physical prop-

erty, and it is a priori assigned as a part of the specification of a continuous body. Hence,

consider a finite part P of a body. For all points inside P, the mass density ρ is defined by

the limit

ρ (·) = lim
V→0

m

V
> 0 , (2.1.1)

where m is a non-negative scalar measure, named the mass distribution of P, V is the

volume of P, and ρ is independent of the size of P, but depends on position and time.

Moreover, classical continuum thermodynamic theories, also known as local con-

tinuum theories, are based on the fundamental hypothesis that the state of a body at

any material point is influenced only by the infinitesimal neighborhood of that point. This

assumption eliminates the long-range effect of loads on the motion and on the evolution

of the state of the body, as well as ignores the effect of long-range interactions among

physical particles. In fact, this premise is valid for a class of materials where experimen-

tal probes measure the average outcome on some spatial and/or temporal domains over

which non-local variations of fields are small and external applied loads are often very

smooth. But, for another class of materials, such as blood, polymeric substances, solids

with micro-cracks, fluids in a state of turbulence, liquid crystals etc. classical continuum

theories do not give reliable predictions since the individual response of the constituents

of the body becomes important, so that the hypothesis of locality fails.

The departure from local theories begins with polar theories, initially proposed by

the Cosserat brothers in 1909 [15]. According to them, the material points are considered

geometrical points that possess properties similar to rigid particles (micropolar media) or

deformable particles (micromorphic media). These properties are then introduced through

independent degrees of freedom provided by a set of vectors or even by tensors of order

bigger than two, resulting in higher-order polar theories. Nevertheless, this process soon

ceases to be useful because the consequent field equations become increasingly compli-

cated. Conversely, polar theories of the first order (micropolar and micromorphic theories)

are simple enough and have found important applications in a variety of materials as previ-

ously mentioned, although they are not expected to bridge the gap between macroscopic

and atomic physics. For this purpose, it is necessary to construct non-local theories in

which a finite neighborhood of a material point influences the response at that point or

6



even mesoscopic theories, where macroscopic quantities are obtained from a statistical

distribution function.

2.2 Motion of a body

The starting point of continuum thermodynamics is a material body B, which consists of

infinite material points or particles X, considered primitive elements. In order to describe

the presence of a continuum body B in the space, one maps B on a region of the three-

dimensional Euclidean space E ,

κ : B → E , (2.2.1)

for some configuration κ. Usually, κ is some particular configuration of B referred to as the

reference configuration, while κt is the current configuration at time t.

Once the presence of B in the space has been defined, the motion of a material

body may be investigated. In the reference configuration, a referential or material coor-

dinate X is assigned to the particle X. Nonetheless, when a continuum body moves or

deforms with time, the body particles found at positions X in the reference configuration

κ occupy new positions x after certain time t. These new positions occupied by the body

particles in the current configuration κt are denominated spatial coordinates. Then, the

motion χ of a particle can be mathematically described as

χ : Bκ × R
+ → Bt , (2.2.2)

(X, t) 7→ x = χ (X, t) ,

such that χ is invertible,

X = χ−1 (x, t) , (2.2.3)

and Bκ and Bt represent the body B in the configuration κ and κt, respectively. In other

terms, Equation (2.2.3) implies that, if all positions x in Bt and the motion χ (X, t) are

known, the positions of the particles in the reference configuration can be determined.

Evidently, different observers may measure space-time events in different ways.

However, as this work only deals with the framework of Newtonian mechanics, the distance

and time intervals between events must have the same values in two reference frames

whose relative motion is rigid. That is, let a change of reference frame, ⋆, from a non-
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starred observer to a starred observer

⋆ : E × R
+ → E × R

+ , (2.2.4)

⋆ : (x, t) 7→ (x⋆, t⋆) ,

such that the observers follow an event in terms of position and time with proper measuring

devices. Of course, they may use different measuring instruments and obtain distinct

results for the same event. But, if one imposes that these observers must use measuring

devices with the same units of measure, they should obtain the same distance and time

lapse between two events under consideration, although the values of the parameters

measured may be different. Mathematically, this is expressed as

x⋆ = Q (t) (x− xo) + c (t) , (2.2.5)

t⋆ = t+ a ,

where a ∈ R
+, xo ∈ E , c (t) is an arbitrary time-dependent vector, and Q (t) ∈ O (V ),

such that Q (t) is a time-dependent orthogonal transformation and O (V ) is the orthogonal

group on a vector space V .

A change of reference frame defined by Equation (2.2.5) is referred to as a Eu-

clidean transformation, the most general form of a time-dependent rigid transformation

between two reference systems moving relative to each other. Then, in the Newtonian

space-time one says that a physical quantity is objective or form-invariant under a change

of observers given by Equation (2.2.5) if 1

f ⋆ (t⋆) = f (t) , (2.2.6)

f⋆ (t⋆) = Q (t) f (t) ,

F ⋆ (t⋆) = Q (t)F (t)Q (t)T ,

1 The definition of objectivity of an observable quantity is more general. An observable quantity f is said

to be form-invariant or objective with respect to some class of change of frame, if

f (·⋆) = Q†f (·) ,

where Q† is an induced linear transformation on the m-th order tensor space of f . If the class of change

of frame is given by Equation (2.2.5), then f is form-invariant or objective in relation to Euclidean trans-

formations and Q† = Q (t).
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where f (t), f (t), and F (t) are arbitrary scalar, vector, and second-order tensor physical

quantities dependent on time. In other terms, if the physical quantities noted by two differ-

ent observers for the same event are interrelated through the transformation rules (2.2.6),

then they are objective or form-invariant. 2

Besides, one may further restrict the generality of Equation (2.2.5) by imposing

that Q (t) is constant in time and c (t) is linear in time. Then, Equation (2.2.5) is rewritten

as

x⋆ = Q (x− xo) + yt+ co , (2.2.7)

t⋆ = t+ a ,

where y and co are arbitrary constant vectors in the three-dimensional Euclidean space

E . Equation (2.2.7) is called a Galilean transformation, a subclass of Euclidean transfor-

mations. Accordingly, every movement can be written in a unique way as a composition

of rotation, translation, and uniform motion.

2.3 General balance statements

As a result of the continuum hypothesis, a physical property G assigned to a finite part Pt

of a continuum body Bt, such as energy, linear momentum or entropy, is defined by some

equation analogous to Equation (2.1.1), i.e., as a density per unit mass or area at every

point inside Pt. In addition, any physical property may change with time through three

kinds of mechanisms: the first one, named supply SG, whose actions are transmitted at

a distance from outside of the body, so that the whole volume of B is directly influenced;

the second mechanism, named flux FG, whose actions are transmitted from outside into

the body through its surface; and the last one, named production PG, whose actions occur

inside the body itself. While the first and the last mechanisms are expressed by mass

densities, the second one is given by surface densities. Hence, the time rate of change for

a physical variable G of the body is written as

dG

dt
= SG + FG + PG , (2.3.1)

or, by the transport theorem [35],

2 Hereafter, the adjectives objective and form-invariant will be always used to express objective quantities

with respect to Euclidean transformations.
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∂γ

∂t
+ div (γ ⊗ v −Φγ)− σγ − πγ = 0 , (2.3.2)

where G =
´

Pt

γ (x, t) dv, SG =
´

Pt

σγ (x, t) dv, FG =
´

∂Pt

Φγ (x, t)nda, and PG =
´

Pt

πγ (x, t) dv

are equivalent to the sum of individual contributions of all particles contained in a part Pt

of Bt, dv and da are volume and area elements, respectively, v is the barycentric velocity,

and n is the outward unit normal vector to the boundary of the region Bt. Furthermore, the

quantities γ , σγ , and πγ are tensor fields of order m, while Φγ is a tensor field of order

m + 1. Of course, if γ is a tensor field of order m = 0, the tensor product γ ⊗ v should be

understood as γv.

Equation (2.3.1) is the general balance equation of a field G in its integral form,

whereas Equation (2.3.2) is the general balance equation valid at a regular point x. Both

equations can be interpreted as asserting that the variation rate of the quantity G in a part

of Bt is affected by the supply and production of G, as well as by the flux FG through the

boundary region ∂Pt. Then, if the body is isolated, SG = 0, FG = 0, and PG = 0, such that

G is constant in time and it is said to be conserved.

One can extend the observations above to a surface in a material body, where the

physical quantity experiences a discontinuity. Across this surface, called singular surface,

the general balance equation is

Jργ (v · n− un)K − JΦγK · n = 0 , (2.3.3)

where JγK = γ+ − γ− stands for the jump of γ across the discontinuity surface, un is

the normal velocity or propagation speed of the singular surface, and, for the sake of

convention, n points into the positive-side of the surface. Nonetheless, if un = v · n, then

the surface is termed material surface and Equation (2.3.3) becomes

JΦγK · n = 0 . (2.3.4)

Physically, material surfaces differ from singular ones because the former are con-

stituted by the same particles of the material body at all times, whereas singular surfaces

do not consist of the same particles of B at all instants t. Some examples of singular

surfaces are the interface between two immiscible liquids, the phase equilibrium between

two fluids, the shock front in supersonic flows, among others.
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2.4 Principles of constitutive theory

In continuum mechanics, material characterization is made by the establishment of some

functional relations, called constitutive equations, among the constitutive variables. The

selection of these variables and the restrictions on these equations are based on the prin-

ciples of constitution as well as on the basic laws of mechanics [29, 35, 37, 68]. Therewith,

one can restrict the generality of the constitutive functions and, if possible, to reduce them

to a small number of coefficients whose values can be experimentally measured.

The principles of constitutive theory are:

PRINCIPLE OF CAUSALITY

The principle of causality is intended for the selection of the independent constitutive vari-

ables of a material subjected to certain actions. In a material subjected to mechanical,

thermal, electromagnetic and chemical sources, some observable changes may occur. At

the outset, one can select a set of independent observable changes as the effects pro-

duced inside the body by such sources. Then, this is the set of independent constitutive

variables for a limited class of physical and chemical phenomena in the material. Once the

independent constitutive variables are selected, all other material properties included in

the balance equations are considered dependent constitutive variables, defined from the

set of independent ones. Note that the balance equations also include external supplies,

which are considered known actions. Usually, it is assumed that dependent constitutive

variables are not explicitly dependent on external supplies.

Of course, the decision about including a constitutive variable into the dependent

or independent set is taken in agreement with the physical effects that one intends to eval-

uate. If a given variable at (x, t) can be solved in terms of other variables of the problem,

an explicit functional mapping from the set of independent variables to the dependent one

can be settled. In general, this mapping is not one-to-one, but, for a large class of materi-

als, the relation cause-and-effect is well-established within the domain of the experiment.

Consequently, such relation can be used to distinguish the set of independent constitutive

variables from the set of dependent ones.

For instance, in a material body, thermomechanical effects are produced by mo-

tion and thermal changes. Thus, the thermomechanical independent variables are usually

the temperature, velocity and its gradient, acceleration, and mass density. If the body re-

sponds to electromagnetic stimuli, it may be polarized and/or magnetized, and it even may

conduct electricity. These effects result from redistribution and motion of bound and free

charges and, therefore, it seems reasonable to consider the electric polarization vector,
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the electric current vector, and the density of free charges as independent variables. Here,

it is worthwhile to point out that different constitutive models can arise for a given material

since the choice of independent and dependent variables is not unique.

PRINCIPLE OF DETERMINISM

The principle of determinism only considers the dependence of the material behavior at

a particle X on particles Y ∈ B, and past and current events. Accordingly, the future

phenomena concerning the behavior of the body are fully determined and observable

once all past motions of the body are known. As a direct result, quantum mechanical

phenomena are excluded. Complying with this principle, constitutive equations may be

written as

C (X, t) = R (γt (Y, t− s) , X) , (2.4.1)

where C denotes an arbitrary constitutive quantity, R is the response functional or con-

stitutive functional of C,γt is the history of γ up to time t, and s ∈ [0,∞) stands for the

time-coordinate pointed from the present time t into the past.

Equation (2.4.1) allows the description of non-local effects as well as memory

effects in B. The argument γt runs through all instants in the past, from t−∞ to the present

time t− 0, describing the memory or remembering capacity of a material in relation to γt.

In turn, the dependence of the response functional on every material point of the body

Y ∈ B corresponds to non-local effects. Finally, the explicit dependence of R on X means

the inhomogeneity of the material body, that is, the response functional depends on the

particle X. However, if a response functional of B is the same for all X to a given reference

configuration,

C (·, t) = R (γt (Y, t− s)) , (2.4.2)

and B is called a homogeneous body. In other terms, for an inhomogeneous body, the

constitutive quantity is expressed by (2.4.1), while for a homogeneous one, the constitutive

quantity is given by (2.4.2).

PRINCIPLE OF EQUIPRESENCE

This principle assigns equal rights to all response functionals to depend on all independent

constitutive variables. The principle of admissibility together with various approximations

may eliminate the dependence on some of these variables. But, until such is the case,

one should employ the same list of independent constitutive variables in all response

functionals.
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PRINCIPLE OF MATERIAL OBJECTIVITY

Just as constitutive quantities depend on the material point and time, they are also depen-

dent on the choice of the reference frame,

C (X, t, ⋆) = R (γt (Y, t− s) , X, ⋆) . (2.4.3)

Nonetheless, the principle of material objectivity imposes that the response functional of

any objective constitutive quantity C must be the same for any two observers related by

(2.2.5),

R⋆ (·) = R (·) . (2.4.4)

Clearly, for any non-objective quantity, such as total energy density, velocity, ac-

celeration, the spin tensor etc., Equation (2.4.4) does not need to hold. As a consequence,

they need to be replaced by objective quantities in the set of constitutive variables, which

can be done by adding, subtracting or associating other non-objective quantities [35].

Besides imposing that constitutive quantities are independent of the observers,

the principle of material objectivity brings other immediate consequences on the response

functionals. For the sake of simplicity, suppose that γt is a scalar function e.g. temperature

or mass density. Then, one has

R (γ⋆t (Y, t
⋆ − s) , X, t⋆) = Q (t)R (γt (Y, t− s) , X, t) , (2.4.5)

or by recalling Equation (2.2.6)1,

R (γt (Y, t− s) , X, t⋆) = Q (t)R (γt (Y, t− s) , X, t) . (2.4.6)

Choosing Q (t) = 1 and c (t) = xo, it follows from Equation (2.2.5) that

x⋆ = x , t⋆ = t+ a ,

for any a ∈ R
+. Therefore, Equation (2.4.6) takes the form

R (γt (Y, t− s) , X, t+ a) = R (γt (Y, t− s) , X, t) , (2.4.7)

whence one concludes that the response functionals cannot depend explicitly on time. For

this reason, the time dependence in (2.4.1) and (2.4.2) has been omitted since the explicit

dependence of R on t would imply the dependence on the choice of the reference frame.

Here, it is worthwhile to remark that the principle of material objectivity should not
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to be confused with the term objectivity [20]. The term objectivity denotes transformation

properties of given quantities, whereas the principle of material objectivity postulates the

complete independence of the response functional of an objective constitutive quantity on

the reference frame.

PRINCIPLE OF MATERIAL SYMMETRY

Crystallographic orientations of a body give rise to symmetries in material properties,

which must be accounted for in the constitutive functionals. In fact, one should expect

that the response functionals at two different configurations κ and κ
′

should not be identi-

cal, unless the material body presents a particular symmetry that makes it impossible to

distinguish the configurations κ and κ
′

. For example, the material properties of a body

with cubic symmetry must be invariant in relation to rotation of the reference configuration

κ by 90 degrees about one of the crystal axes. Referring to the body configuration after

this rotation to as κ
′

, the configurations κ and κ′ are said to be materially indistinguishable,

if

R (·) = R′ (·) , (2.4.8)

and

κ (B)
M
−→ κ′ (B) , (2.4.9)

where both configurations are associated through a linear material symmetry transforma-

tion M that preserves the volume of the body with respect to κ. 3 Thus, physically, the

principle of material symmetry indicates that the response functional of C in relation to a

configuration κ of a material body cannot be distinguished from that in a configuration κ′,

provided both configurations are related through a material symmetry transformation M.

Of course, there are many linear transformations for a given configuration κ that

satisfy Equation (2.4.9) and imply Equation (2.4.8). One names all of these linear trans-

formations as the material group symmetry, Mκ (V ). Hence, a material is called solid if

there exists an undistorted configuration κ̄ , such that the material group symmetry is the

orthogonal group O (V ) or is contained in it:

Mκ (V ) ⊆ O (V ) . (2.4.10)

In turn, a material is a fluid if there exists any configuration κ and κ̄, where

3 See Appendix I for more information about groups of symmetry.
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Mκ (V ) = U (V ) . (2.4.11)

Therefore, unlike solids, fluids do not present a preferred configuration.

One may indeed particularize the symmetry conditions above to describe the ma-

terial properties of isotropic, anisotropic, and hemitropic bodies. Hereby, one defines:

• An isotropic body is a body whose material group symmetry is either equal to the

unimodular group or equal to the orthogonal group,

Mκ (V ) = O (V ) , Mκ (V ) = U (V ) .

Otherwise, any other materials whose material group symmetry is not the orthogonal

group neither the unimodular group are called anisotropic.

• Generally, anisotropic bodies possess material symmetries that can be represented

by directions, lines or planes. In doing so, anisotropic bodies can be defined as

transversely isotropic and orthotropic bodies, among other classes of symmetry. For

instance, if the material symmetry group satisfies the condition

M1
κ (V ) = {Q ∈ O (V ) | Qn = n} , (2.4.12)

M1
κ (V ) presents a preferred direction characterized by n and, then, the material is

said to be a transversely isotropic material. Conversely, if the material symmetry

group follows the condition

M2
κ (V ) =

{

Q ∈ O (V ) | Q (nm ⊗ nm)Q
T = nm ⊗ nm

}

, (2.4.13)

where nm is a unit vector in the direction m, so M2
κ (V ) preserves the characteristic

space of nm ⊗nm. In other terms, M2
κ (V ) maintains three mutually orthogonal lines

in the directions n1, n2, and n3. A body with this symmetry is named an orthotropic

material.

• A hemitropic body is a body whose material group is the proper orthogonal group

O+ (V ) ,

Mκ (V ) = O+ (V ) .

A body may possess various types of material symmetries for its different properties. For

example, an isotropic material with respect to stress and strain may not be isotropic with
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respect to another property e.g. electric polarization and displacement vectors. In addi-

tion, materials may also be subject to other geometrical and internal constraints, such as

rubbery materials, which are incompressible. This is expressed in the constitutive equa-

tions by the additional condition that the local volume remains unchanged.

PRINCIPLE OF LOCALITY

According to this principle, the values of the response functional at X are not affected

appreciably by the values of the independent constitutive variables at distant points from

X. In other words, the principle of locality implies that the greatest contributions to the

constitutive response at a material point are due to its neighborhoods. Mathematically,

the principle of locality may be expressed in two different ways: the first way, named the

hypothesis of smooth neighborhood, describes the spatial dependence of values of γt

through a Taylor expansion of t about X, and the second one, named the attenuating

neighborhood hypothesis, describes the spatial dependence of γt by introducing an in-

fluence function that evaluates how much the points in a distant neighborhood influence

the values of γt at a specific material point. As the hypothesis of smooth neighborhood

is much more common in continuum thermodynamics than the attenuating neighborhood

hypothesis, it is detailed below.

Suppose that the function γt (Y, t− s) admits Taylor expansions about X = Y for

all t− s with s ∈ [0,∞),

γt (Y, t− s) =γt (X, t− s) +
3
∑

i1=1

(Yi1 −Xi1) γ
(i1)
t (X, t− s)+ (2.4.14)

1

2!

3
∑

i1=1

3
∑

i2=1

(Yi1 −Xi1) (Yi2 −Xi2) γ
(i1i2)
t (X, t− s) + . . .+

1

m!

3
∑

i1=1

. . .

3
∑

im=1

(Yi1 −Xi1) . . . (Yim −Xim) γ
(i1...im)
t (X, t− s) + . . . ,

where γ
(i1...im)
t (X, t− s) is the m-th order partial derivative of γt relative to the vector com-

ponents Yi1 , . . . , Yim evaluated on X at time t − s. If the material point Y is confined in a

small enough neighborhood of X, γt (Y, t− s) can be approximated by truncating Equation

(2.4.14) at its first-order directional derivative on X in the direction of Y , viz.

γt (Y, t− s) ≈ γt (X, t− s) +
3
∑

i1=1

(Yi1 −Xi1) γ
(i1)
t (X, t− s) . (2.4.15)
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In this case, one says that the material at X for all t− s satisfies the smooth neighborhood

hypothesis.

In general, it suffices to assume that the response functional depends only on the

history of γ and its first-order gradient. Thus, Equation (2.4.1) becomes

C (X, t) = R
(

γt (X, t− s) , γ
(i1)
t (X, t− s) , X

)

(i1 = 1, 2, 3) . (2.4.16)

Of course, for non-local materials, where the effect of long-range intermolecular forces

cannot be negligible, Equation (2.4.16) does not hold. In this case, one should introduce

higher-order gradients of γt. Theories in which the principle of locality is not obeyed are

referred to as non-local continuum theories.

PRINCIPLE OF MEMORY

This principle is considered the counterpart of the principle of locality in the time domain.

For some materials, physical processes that affected them in a distant past are mostly

erased. In other words, these materials possess weak memory, so that the constitutive

variables at a distant past do not appreciably affect the values of the response functional

at present.

In practical terms, it is extremely rare that a material can remember its whole

history whereby was affected since its memory is bounded. Then, instead of using t − s

with s ∈ [0,∞) as an argument of γt, one can proceed analogously to the principle of

locality and use a Taylor series to write γt (Y, t− s) as

γt (Y, t− s) =γt (Y, t)− sγ
(1)
t (Y, t) +

1

2!
s2γ

(2)
t (Y, t)− (2.4.17)

1

3!
s3γ

(3)
t (Y, t) + . . .+

1

m!
(−s)m γ

(m)
t (Y, t) + . . . ,

where γ
(m)
t (Y, t) denotes the m-th partial time derivative of γt evaluated at point Y and

time t. The use of a Taylor series to express the memory effect of a material body is

known as the hypothesis of smooth memory. If the constitutive functionals are sufficiently

smooth, so that the dependence on γt (Y, t− s) can be replaced by

γt (Y, t− s) ≈ γt (Y, t)− sγ
(1)
t (Y, t) +

1

2!
s2γ

(2)
t (Y, t)− . . .+

1

m!
(−s)m γ

(m)
t (Y, t) , (2.4.18)

one says that the material presents smooth memory, and Equation (2.4.1) becomes
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C (X, t) = R
(

γ (Y, t) , γ
(1)
t (Y, t) , ..., γ

(m)
t (Y, t) , X

)

. (2.4.19)

In this case, the material is called a rate dependent material of degree m with respect to

the variable γ, so that the far past histories of any physical quantity at Y do not affect the

material behavior at X for time t.

Frequently, materials may not present so a smooth memory as to admit a Taylor

expansion of the form (2.4.17). Then, analogously to the attenuating neighborhood hy-

pothesis, one needs to introduce an influence function which takes into account the time

dependence of the functionals in the far past. Such materials are said to present a fading

memory.

PRINCIPLE OF ADMISSIBILITY

This principle states that constitutive equations must be consistent with the second law of

thermodynamics. In fact, since the second law of thermodynamics must be not violated for

all realizable physical processes, one finds that the thermodynamic admissibility imposed

by the entropy inequality severely restricts the form of constitutive equations.

In practical terms, the principle of admissibility helps to eliminate the dependence

on certain constitutive variables. One can reduce the generality of the constitutive rela-

tions relying upon either different formulations of the entropy principle or even variational

methods. For example, in reference [24] the principle of virtual work is employed to deduce

the proper constitutive equations for an elastic dielectric medium under equilibrium con-

ditions. In turn, in references [61, 62] Sieniutycz proposed a variational approach based

on Onsager’s principle for an electrochemical system under a non-stationary quasi-linear

regime. Even though, despite the impressive results obtained in these works, application

of variational methods is not well-posed for non-isolated systems under the influence of

external forces and also for systems where there exists the possibility of several coupling

phenomena, such as in chemical systems [60]. As a matter of fact, it seems that reacting

chemical systems do not obey the same phenomenological formalism of non-chemical

ones. In electrochemical systems, for instance, coupling between chemical reactions and

non-chemical processes are very common, and one should certainly take them into ac-

count. This is a critical point in the development of a constitutive theory for a reacting ionic

mixture, which requires a more comprehensive approach. Under these circumstances, the

use of entropy principles, in particular the Müller-Liu entropy principle, is more convenient

to restrict the material equations of electrolyte solutions.

18



2.5 Second law of thermodynamics

The second law of thermodynamics or entropy principle has been one of the main dis-

cussion topics in Thermodynamics. Since the publication of Carnot and Clausius’ works

[8, 9, 10, 11], different enunciates for the entropy principle have been proposed, with most

of them based on the physical notion of temperature [28].

Following the thermodynamics of homogeneous processes approach [56, 57], the

second law of thermodynamics is formally expressed as:

If at a certain instant, a system absorbs heat Q in a thermically homogeneous

way, at that instant, its entropy S will increase at a rate at least equal to the ratio between

the thermal power absorbed and the empirical temperature θ ∈ R
+. Conversely, if at a

moment the entropy S of the system is decreasing in a thermally homogeneous way, at

that moment heat Q will be liberated and the ratio between the modulus of the thermal

power emitted, and the empirical temperature is at least equal to the rate of the entropy S

decrease, viz.

dQ

dt
≤ θ

dS

dt
.

The statement above is known as the Clausius-Planck inequality and it was pro-

posed by Planck [54] from his observations about Clausius’ work. Clearly, the extension

of this principle to a continuous body B is not straightforward as the temperature, heat,

and entropy depend not only on time, but also on the point x. In addition, a deeper in-

sight into the Clausius-Planck inequality indicates that this assumption has serious short-

comings since it cannot explain many phenomena occurring inside the system [67]. For

this reason, one needs a more general formulation of the entropy principle, such as the

Clausius-Duhem inequality.

The origins of the Clausius-Duhem inequality go back to the works of Eckart [21,

22] and Meixner [39] who were responsible for the development of the first consistent

non-equilibrium theory. In non-equilibrium thermodynamics, the so-called entropy balance

equation

ρπ = ρ
dη

dt
+ div (Φ)− ρσ ≥ 0 (2.5.1)

plays a central role as it relates the entropy production density, π, to various irreversible

processes that occur in a system through macroscopic balance laws. In this equation, η is

the entropy density, Φ is the entropy flux vector, and σ is the entropy supply density. More-

over, from Equation (2.3.3), one may also write the entropy jump condition at a singular

surface as
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Jρη (v · n− un)K − JΦK · n ≥ 0 . (2.5.2)

Within the theoretical framework of thermodynamics of irreversible processes [17],

the entropy production density may be calculated if one makes use of the Gibbs’ relation

that connects, for instance, the rates of change of entropy in each regular point to the rates

of change of energy and composition in an isotropic multi-component fluid. Complying

with this approach, Φ is given by the ratio between the heat flux vector h and the empirical

temperature θ, whereas σ is given by the ratio between the energy supply density r and θ,

ρπ = ρ
dη

dt
+ div

(

h

θ

)

− ρ
r

θ
≥ 0 . (2.5.3)

Inequality (2.5.3) is frequently called of Clausius-Duhem inequality because it represents

Duhem’s extrapolation for the Clausius’s formulation of the second law for non-homogeneous

temperature fields.

For a long period, the inequality (2.5.3), whose exploitation method is based on the

works of Coleman and Noll [13, 67, 68], was extensively used in the development of mod-

ern continuum thermodynamics to impose thermodynamic restrictions on the constitutive

responses of a material body. For simple materials, that is, material bodies whose values

of the constitutive quantities at x depend only on the histories of the deformation gradient,

and temperature and its gradient, linear irreversible thermodynamics and modern contin-

uum thermodynamics with the Clausius-Duhem inequality lead to the same practical re-

sults. This is the reason why linear irreversible thermodynamics and the Clausius-Duhem

inequality are still widely employed. Nevertheless, with the development of continuum the-

ories for mixtures, porous media, and other non-simple material bodies, it was realized

that the two main constitutive assumptions adopted by Coleman and Noll,

Φ =
h

θ
, σ =

r

θ
,

are not very satisfactory [73]. Moreover, large deviations from linear behavior are observed

for chemical reactions, restricting the application of linear irreversible thermodynamics

to reacting systems. Since then, other formulations to the entropy principle have been

proposed, among which the one most employed was proposed by Müller [44, 47].

According to Müller’s proposition, the behavior of a continuum body must obey

the general entropy balance stated in (2.5.1), where Φ and σ are not a priori given con-

stitutive quantities, such as in the Coleman-Noll exploitation method, but rather consti-

tutive functions on which thermodynamic restrictions must be placed. Even though this

approach of the entropy principle is less restrictive than that proposed by Coleman and
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Noll, its practical application was still very laborious, even for simple and free of external

supplies bodies. Then, Liu [33] suggested to incorporate new auxiliary quantities, termed

of Lagrange multipliers, in the entropy inequality in order to take into account all balance

equations in the exploitation of the entropy inequality. Thanks to its comprehensive scope,

nowadays the Müller-Liu approach to the entropy principle is widely employed to deduce

restrictions on constitutive equations and thermodynamically consistent constitutive laws

in many research fields. Some examples can be found in references [29, 75].

2.6 Quasistatic approximation of electromagnetism

In addition to the basic laws of motion, electrically polarizable material bodies must obey

Maxwell’s laws of electromagnetism. However, while the former are Galilean invariant, i.e.,

the dynamic laws have the same expressions in any frame related to an inertial frame by a

Galilean transformation, the latter are invariant with relation to the Lorentz transformation.

Consequently, in order to obtain a coherent theory for charged/magnetized continuum

bodies, it is necessary to propose either a relativistic formulation for the laws of dynamics

or employ an approximation in which both the basic laws of motion and Maxwell’s laws are

form-invariant in relation to the same transformation.

With a quasistatic approximation, temporal change rates of electromagnetic quan-

tities are so small that only low acoustic frequencies and non-relativistic velocities are

considered [40, 41]. In this case, Maxwell’s equations are form-invariant with respect to

Galilean transformations, and they are given by

FARADAY’S LAW

curl (E) = 0 , (2.6.1)

AMPÈRE’S LAW

curl (H) = I+
∂D

∂t
+ curl (P× v) , (2.6.2)

GAUSS’S LAW

div (D) = q , (2.6.3)
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MAGNETIC FLUX LAW

div (B) = 0 , (2.6.4)

where E is the electric field, H is the magnetic field, I is the electric current, D is the

electric displacement vector, P is the electric polarization vector, q is the charge density,

and B is the magnetic flux vector. Following Chu’s formulation [26] of electromagnetism,

the electric field and the magnetic field are regarded as fundamental quantities, whereas

D and B are auxiliary quantities. These quantities are interrelated by

D = ǫoE+P , B = µo(H+M) , (2.6.5)

where ǫo and µo are respectively the permittivity and the permeability of free space, and

M is the magnetization field.

Equations (2.6.1)–(2.6.4) are analogous to Maxwell’s laws of electrostatics, but

by no means do the above equations result in a static model. In fact, the temporal de-

pendence of quasi-electrostatic fields can be regarded as a secondary effect because

once given the sources of electromagnetic fields at a particular instant, the fields at that

same instant are determined without knowing what their sources were in earlier times.

Therefore, the mathematical problem of finding a quasistatic electric field for a charge dis-

tribution dependent on time is equivalent to the evaluation of a succession of static fields,

each one with a different charge distribution at various instants t.

Furthermore, according to the quasi-electrostatic approximation, E is an irrota-

tional field, and dynamic currents are so small that the magnetic induction is ignorable.

Thus, from Equation (2.6.3), if the charge density is given, both the curl and divergence of

the electric field are specified.

2.7 Theory of continuum mixtures

The first systematic study of non-equilibrium behavior of continuum mixtures was given

by Truesdell [66, 67] in 1957, and later was extended by Kelly [31] by incorporating elec-

tromagnetic fields. According to Truesdell’s view, a continuum mixture is formed by su-

perposing constituents, so that each spatial point is simultaneously occupied by particles

of all constituents. Incidentally, particles in continuum theories do not represent atoms,

molecules, ions or other classical particles, which can be easily labeled, but rather math-

ematical points endowed with physical properties, such as mass density, velocity, electric
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field, internal energy density etc. Then, in admitting this hypothesis, only mixtures whose

constituents are not macroscopically distinguishable can be accounted for. Examples of

such mixtures, usually termed classical continuum mixtures, are gas and aqueous solu-

tions and other monophasic systems consisting of two or more chemical species.

A further hypothesis assumed by Truesdell refers to the individual character of

each constituent. Accordingly, each constituent behaves as a single fluid and by analogy

one may assign balance laws for the constituents with single pure materials. Here, the

only difference that appears between these balance laws, and those for single fluids is

the fact that the balance laws of mass, linear and angular momenta, and energy are not

conserved, but only their sums as a whole are formally the same as for a single mate-

rial. Hence, it is taken for granted that the motion of a mixture is governed by the same

equations as for a single body. In other words, by this principle, properties of constituents

are taken as primitives and the properties and balances of the mixture are formulated with

basis in the characteristics of pure chemical substances.

There is indeed another kind of continuum mixtures, where constituent particles

are macroscopically identifiable. This kind of mixture, often referred to as multicomponent

mixtures, does not obey all the assumptions made above since constituents are intimately

intermixed only at the microscopic level. For example, soils, porous rock, suspensions of

coal particles in water, packed powders, granular propellants etc. consist of macroscopic

identifiable solid particles surrounded by one or more continuous media or an identifiable

porous matrix through the continua are dispersed. In this work, multicomponent mixtures

will not be considered.
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3 Dynamics of Electrochemical

Systems

A number of the fundamental laws of continuum mechanics are expressions of the con-

servation of some physical quantity. These balance laws are applicable to all continua and

result in equations, either in their integral or local forms, that must always be satisfied. On

the other hand, phenomenological aspects of material bodies are brought through consti-

tutive equations that, unlike balance laws, are specific for each body because they reflect

the internal constitution of a material. However, it is impossible to write down one consti-

tutive equation, which is capable of representing a given material over its entire range of

application since many materials behave quite differently under changing levels of load-

ing. Then, perhaps it is better to think of constitutive equations as being representative of

a particular behavior rather than of a particular material. In fact, the usefulness of the con-

stitutive equations is to describe the relationships among the kinematic, mechanical, and

thermal field equations and to permit the formulation of well-posed problems in continuum

thermodynamics. This will be the subject in the next two chapters.

Hereafter, the motion of the mixture and its constituents are given with relation

to an orthonormal frame of reference, and all quantities are given in terms of the current

configuration, that is, physical properties are expressed in terms of the spatial coordinates

x and time t. Moreover, 1 denotes the unit tensor, δij is the Kronecker delta, and brackets

and parentheses are used to represent the antisymmetry and the symmetry of second-

order tensors, respectively.

3.1 Kinematics of electrolyte solutions

Let B be a mixture of n constituents Ba, such that a particle of Ba is represented by Xa

with a = 1, . . . , n, being the index n reserved for solvent. In addition, let a region of

the Euclidean space E in the current configuration be simultaneously occupied by different

constituent particles. Thus, if Xa is the material coordinate in some reference configuration
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κ, the motion x = xa(Xa, t) of a constituent a is a smooth function of space and time, which

relates a particle Xa to a place Xa at the time t in the reference configuration κ.

Each constituent has its own kinematics. The velocity and acceleration of the

constituent a at time t are, respectively,

va ≡
∂xa(Xa, t)

∂t
, aa ≡

∂2xa(Xa, t)

∂t2
. (3.1.1)

Likewise, each Ba has its own mass and, consequently, its positive mass density ρa (x, t)

at each point x and time t. The mass density of the whole mixture ρ (x, t) is related to

ρa (x, t) by

ρ ≡
n
∑

a=1

ρa . (3.1.2)

At every (x, t), one also defines the mass concentration of Ba as

ξa ≡
ρa
ρ
, (3.1.3)

whence Equations (3.1.2) and (3.1.3) imply

n
∑

a=1

ξa = 1.

The mean velocity of B is defined by

ρv ≡

n
∑

a=1

ρava , (3.1.4)

and the translational diffusion velocity of Ba is

ua = va − v . (3.1.5)

Thus, it follows from Equations (3.1.2), (3.1.4), and (3.1.5) that

n
∑

a=1

ρaua = 0.

Until now, the kinematics of reacting ionic mixtures obeys the general framework

of classical mixtures set up by Truesdell [67]. However, in contrast with the classical

theories of mixtures, it has long been accepted that the dynamics of electrolyte solutions

depends on the short-range and long-range interactions among the constituent particles

[76]. Following Eringen and Toupin’s ideas [19, 23, 24, 63, 64, 65], the interactions among

the constituent particles are accounted for by considering the electrolyte solution as a

polar elastic dielectric medium. Then, under an applied electric field, which may be due to

an external source and/or generated by dissociated ions in solution, constituent particles

will interact with the electric field, producing extrinsic body couples and extrinsic surface
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couples. Consequently, to describe accurately the material behavior of such solutions,

it is necessary to use the theoretical framework of polar theories, where the action of

extrinsic body couples and surface body couples caused by electromagnetic fields on the

constituent particles is properly considered.

Thus, polar theories encompass not only the short-range interactions among the

constituent particles as do the classical local ones, but also the long-range interaction

forces. In this sense, electrolyte solutions differ from the classical mixtures because the

behavior of their material points is influenced by all points of the solution independently

of ions concentrations. Then, in order to include the microscopic structure of electrolyte

solutions into the continuum model, new kinematic variables are associated to each point

(x, t) of the mixture [58].

In constrast with the local theories, where the only kinematic vector field is the

velocity v(x, t), polar materials present two independent kinematic vector fields to describe

the translational and rotational motions of the fluid particles. If the mechanics of rigid

bodies is assumed, each constituent particle possesses a spin field sa(x, t) and a local

angular velocity ωa(x, t), which are interrelated by

sa ≡ Iaωa , (3.1.6)

where Ia is the inertia momentum tensor.

In polar media, the angular velocity of the particle does not coincide with the

angular velocity of the mixture, viz., vorticity w. The angular velocity of a particle in relation

to the fluid vorticity is given by

̟a ≡ ωa −w , (3.1.7)

where ̟a represents the angular velocity of the constituent particle relative to the angular

velocity of the region in which it is embedded. Clearly, all definitions extend to the mixture

particle, so one may equally assign to the mixture particles a spin field s, an angular

velocity ω, and an inertia tensor I, which are related to those of the constituents by

ρs ≡
n
∑

a=1

ρasa , ρω ≡
n
∑

a=1

ρaωa , ρI ≡
n
∑

a=1

ρaIa . (3.1.8)

Likewise the translational motion, one also defines a rotational diffusion velocity

of the constituent a as

νa ≡ ωa − ω , (3.1.9)
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such that

n
∑

a=1

ρaνa = 0.

3.2 Balance laws for continuum mixtures and their

constituents

It is the main purpose of Electrochemistry to investigate the properties of ionic conductors

and of electric circuits containing ionic conductors, as well as the phenomena that occur

during the passage of an electric current through such circuits. These phenomena include

chemical reactions, structural deformations, mass transport, dissipation of energy to name

only a few. Then, modeling the behavior of electrochemical systems in its simplest form

demands the coupling of balance equations of continuum mixture theory and Maxwell´s

equations. Coupling these equations, one can describe the essential phenomena which

occur in electrochemical systems. However, since interactions among the constituent

particles play an important role in the physico-chemical behavior of these systems, one

should use the conceptual basis of the thermodynamics of polar continua to represent

these interactions.

In order to derive the local balance equations, one starts from the general balance

law for the constituents of the mixture,

∂γa
∂t

+ div (γa ⊗ va −Φγ
a)− σγ

a − πγ
a = 0 , (3.2.1)

which holds at all points of the body except on the singular surfaces. Once defined Equa-

tion (3.2.1), one relates each variable in Equation (3.2.1) to the physical quantities which

must be present in the mass, linear and angular momenta, energy, and entropy balance

equations. The identifications of the variables for each balance are given in Table 2.1,

where εa is the internal energy density, ηa is the entropy density, ta is the total stress vec-

tor related to the total stress tensor Ta by ta (x,n, t) = Ta (x, t)n, Ca is the total coupling

stress tensor, ha is the heat flux, Φa is the entropy flux let as an unspecified quantity, ba is

the mechanical body force density, qa is the charge density defined by ρaza, being za the

charge per unit mass, Ea and Pa are the electric field and the electric polarization field

acting on the constituent a, respectively, la is the mechanical coupling body force density,

ra is the mechanical energy supply density, ia is the electric current density due to the

diffusive motion, σa is the entropy supply density let as an unspecified quantity, ca, ma, τa,

ǫa and πa are the mass , linear and angular momenta, energy and entropy productions,

and oo is the position vector of an arbitrary fixed point.
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3.2.1 Mass balance

Analogously to a single constituent body, flux and supply vanish in the mass balance of

Ba. Nonetheless, as constituents can take part in chemical reactions, a term of mass

production, ca, should be accounted for. For a regular point x, the mass balance for the

a-th constituent of the mixture is

∂ρa
∂t

+ div (ρava)− ca = 0 , (3.2.2)

where the mass production term is related to the velocities of mass conversion, caj and

cja, by [7]

ca =
n
∑

j=1

(cja − caj) . (3.2.3)

If the constituent a is converted into the constituent j at a spatial point x, but the species j

is not converted into the constituent a, then caj > 0 and cja = 0. Inversely, if the constituent

j is converted into the species a and the latter is not converted into the former, then cja > 0

and caj = 0. However, since in chemical systems, chemical reactions can proceed in both

directions, caj and cja can be simultaneously positive at x. Thus, while caj and cja are

non-negative quantities because they correspond to the forward and inverse chemical

reactions velocities, respectively, ca may be positive, negative or null.

The introduction of terms relative to the mass conversion rate of a constituent

a into a constituent j is fundamental to associate the nature of electrolytes to ion-ion

interactions, which determine the properties of electrolyte solutions. The degree with

which these interactions affect the properties of the solution depends on the density of the

distribution of ions in solution that, in turn, depends on the nature of the electrolyte, i.e., it

depends on the electrolyte to be a real or potential one.

Potential electrolytes are those, which through chemical reactions with the solvent

molecules, dissociate into ions. Many of the solutions of potential electrolytes contain only

a small concentration of ions and, therefore, the effects of ion-ion interactions are often

overlooked. The behavior of these solutions is predominantly governed by the equilibrium

position of the reaction between the potential electrolyte and the solvent molecules. Thus,

caj and cja are different for the same point of the mixture until the kinetic equilibrium is

reached.

In contrast, real electrolytes originate ions in solution through physical interactions

between ions in the ionic solid and solvent molecules. Usually, real electrolytes are com-

pletely dissolved in water, so that the resulting solution consists of solvent and solvated
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ions only. For these solutions, the dependence of their properties on concentration is

determined by the strength of the ionic interactions.

The classification of real and potential electrolytes is a modern one [3] that aims

to describe the behavior of electrolytes through their structures and not through their be-

haviors at some particular solvent. Historically, however, the classification was proposed

with basis in a specific solvent, generally water. Weak electrolytes were then those which

produced solutions with low electrical conductivity when dissolved in water, while strong

electrolytes were those which originated high electric-conducting aqueous solutions. The

disadvantage of the older classification consists in the fact of that as soon as a different

solvent is chosen, a strong electrolyte in water can behave as a weak electrolyte in a

non-aqueous solvent and vice-versa.

The mass balance for the mixture is obtained by considering null the sum of mass

production terms over all constituents that take part in reaction,

n
∑

j=1

n
∑

a=1

(cja − caj) = 0.

Consequently, the last equality imposes that chemical reactions do not change the mass

density of the mixture at every spatial point and time. Hence, from Equations (3.1.2) and

(3.2.2), there remains

∂ρ

∂t
+ div (ρv) = 0 , (3.2.4)

or yet

dρ

dt
+ ρdiv (v) = 0 , (3.2.5)

where the material time derivative following the motion of the mixture, d (·) /dt = ∂ (·) /∂t+

v · ∇ (·), was used.

Similarly, one may also employ the material time derivative following the motion

of the mixture to simplify Equation (3.2.2). In this case, one recalls Equation (3.1.3), and

then Equation (3.2.2) takes the form

ρ
∂ξa
∂t

+ ξa
∂ρ

∂t
+ div (ρξava)− ca = 0 . (3.2.6)

Thus, with help of the vector identity div (fu) = ∇f · (u) + fdiv (u) and Equation (3.2.5), it

follows that

ρ
dξa
dt

+ div (ja)− ca = 0 , (3.2.7)

where ja ≡ ρa (va − v) is the diffusive flux of the constituent a.
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3.2.2 Linear momentum balance

In electrochemical systems, the movement of ions is responsible for the electric-conducting

properties exhibited by the electrolyte solution. This phenomenon implies the existence

of some force whose character is not exclusively electrostatic since ions experience me-

chanical and chemical forces. If the total electric field is called the effective electric field

Eef , then Eef will not necessarily be a solenoidal vector field [59]. In fact, for an electric-

conducting medium, one has div
(

Eef
)

= f emf , where f emf is the electromotive force and

it represents the ratio between the energy applied by a power supply and the charge car-

ried by a particle in an electric circuit [30]. For electrochemical cells, the electromotive

force is the electric potential difference between the electrodes when the current through

the cell is null (zero current potential).

If all forces acting on an electric-conducting body, with exception of the Lorentz

force, FL = q (E+ v ×B), which represents the total electromagnetic force on a charged

species, are combined into a single term, FW , one has

qEef =q (E+ v ×B) + FW (3.2.8)

=qE+ I×B+ FW ,

where the definition of electric current, I =
n
∑

a=1

ρazava, was used. 1 Besides, for any system

considered under the quasi-electrostatic approximation [40], qE ≫ I × B and, therefore,

the magnetic contribution to the Lorentz force can be neglected. Thus, it follows that the

effective electric field is given only by qEef = qE+ FW .

1 The electric current density I can be written as follows,

I =

n
∑

a=1

ρazava

=

n
∑

a=1

ρazav +

n
∑

a=1

zaja ,

where the definition of diffusive flux has been used. The second term of the right-hand side of the ex-

pression above is the electric current due to the relative motion of the various components. Defining

i =

n
∑

a=1

zaja and ia = zaja, the expression for I becomes

I =

n
∑

a=1

ρazav + i .
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Evidently, the ion-ion interactions are different from ion-solvent interactions. If the

charge carrier constituents were the only ones responsible for the forces that perchance

exist in a mixture, it would not be possible to explain the real behavior of electrolyte so-

lutions. While coulombic forces are responsible for the ion-ion interactions, the Kelvin

polarization force, P · (∇E), is the result of the action of the electric field on the dipoles of

water molecules that make up the solvent. In addition, because the medium is continuous,

one can assume a continuous distribution of dipoles given by

Γ = −div (P) . (3.2.9)

Hence, on the basis of the quantities given in Table 2.1, the linear momentum

balance equations for the a-th constituent of the mixture and for the mixture as a whole

are, respectively,

∂ρava

∂t
+ div (ρava ⊗ va − Ta)− ρaba − qaEa −Pa · (∇Ea)−ma = 0 , (3.2.10)

∂ρv

∂t
+ div (ρv ⊗ v − T )− ρb− qE−P · (∇E) = 0 , (3.2.11)

or

ρ
dv

dt
− div (T )− ρb− qE−P · (∇E) = 0 , (3.2.12)

where ρb =
n
∑

a=1

ρaba, qE =
n
∑

a=1

qaEa, P =
n
∑

a=1

Pa,

n
∑

a=1

ma = 0, such that ma represents

the force per unit volume exerted by all other chemical species of the mixture on the con-

stituent a, and the total stress tensor should be interpreted as the sum of the mechanical

and electromagnetic stress tensors.

Moreover,

n
∑

a=1

(ρava ⊗ va − Ta) =
n
∑

a=1

(ρava ⊗ va) −
n
∑

a=1

Ta, which with the use of

Equation (3.1.5), becomes

n
∑

a=1

(ρava ⊗ va − Ta) =
n
∑

a=1

(ρava ⊗ v)+
n
∑

a=1

(ρava ⊗ ua)−
n
∑

a=1

Ta.

Thus, since ρv =
n
∑

a=1

ρava and T I =
n
∑

a=1

Ta, it follows that

n
∑

a=1

(ρava ⊗ va − Ta) = ρv ⊗ v −

T I +
n
∑

a=1

(ρava ⊗ ua), whence one concludes that the total stress tensor of the mixture is
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given by T = T I −

n
∑

a=1

(ρava ⊗ ua), being T I the constitutive part of the stress tensor of

the mixture.

Equation (3.2.12) also offers the opportunity of introducing an important tensor

of electrodynamics theory. For this purpose, all mechanical contributions of Equation

(3.2.12) are neglected. In addition, the velocity is supposed to be constant, so that its time

derivative is zero. Thus, from Equation (3.2.12), there remains

−div (T ) = qE+P · (∇E) . (3.2.13)

Besides, writing down the coulombic force as qE = Ediv (D), Equation (3.2.13) becomes

−div (T ) = Ediv (D) +P · (∇E) . (3.2.14)

This expression may be further simplified by making use of the vector identities div (u⊗ y) =

∇u (y) + udiv (y), 1/2∇ (u · y) = y × rot (u) +∇u (y), ∇ (u · y) = div [(u · y) 1 ], Equation

(2.6.5)1, and recalling that, according to the quasi-electrostatic approximation, the electric

field is irrotational. Hence,

div (T ) = div

(

1

2
ǫoE

2
1 −P⊗ E− E⊗ E

)

, (3.2.15)

whence one obtains that the electromagnetic contribution for the total stress tensor is

given by P⊗E+E⊗E− 1/2ǫoE
2
1 , being the non-symmetric part given by Tij = PiEj, and

the symmetric part, also known as Maxwell stress tensor, given by T(ij) = EiEj−1/2ǫoE
2δij.

3.2.3 Angular momentum balance

Since the electrolyte is composed of continuous polar bodies in each point of the mixture,

the angular momentum of each constituent is given by the sum of two parts: the angular

momentum at the center of mass with respect to an arbitrary fixed point, oo×ρava, and the

angular momentum of the constituent relative to its center of mass (spin), ρasa. Similarly,

the supply of angular momentum is the sum of the electromagnetic coupling, Pa ×Ea, the

coupling of mechanical forces, ρala, and the angular momentum with respect to an arbi-

trary fixed point of the forces acting on the center of mass, oo× [ρaba + qaEa +Pa · (∇Ea)].

In turn, the flux of angular momentum is given by the coupling stress tensor, Ca, and the

cross product between the position vector and the total stress tensor, oo × Ta.
2 Finally,

2 See Appendix II for more information about properties of skew-symmetric tensors.
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the production of angular momentum, τa, is given by the spin production and the angular

momentum production at the mass center.

Then, having defined these quantities, the angular momentum balance equations

for the a-th constituent and for the whole mixture are, respectively,

∂ (oo × ρava + ρasa)

∂t
+ div [(oo × ρava + ρasa)⊗ va −Ca − oo × Ta]− (3.2.16)

oo × [ρaba + qaEa +Pa · (∇Ea)]−Pa × Ea − ρala − τa = 0 ,

∂ (oo × ρv + ρs)

∂t
+ div [(oo × ρv + ρs)⊗ v −C − oo × T ]− (3.2.17)

oo × [ρb+ qE+P · (∇E)]−P× E− ρl = 0 ,

where C =
n
∑

a=1

Ca −
n
∑

a=1

(ρasa ⊗ ua), such that the first term of the right-hand side corre-

sponds to the constitutive part of the coupling stress tensor and

n
∑

a=1

τa = 0.

Equation (3.2.17) may be further simplified to give the balance of spin. Then,

with the definition of the material time derivative following the motion of the mixture, and

div (oo × T ) = oo × div (T ) + 2t̂, one obtains

ρ
ds

dt
− div (C) + 2t̂−P× E− ρl = 0 , (3.2.18)

where t̂ is the dual vector associated to the skew-symmetric part of the stress tensor.

Hence, from Equation (3.2.18), the total stress tensor T will be symmetric only

if simultaneously, the time derivative of spin is zero, C is a solenoidal field, the electric

field is strong enough to keep aligned P and E, and mechanical coupling stresses are

absent. Consequently, as usual for polar material bodies, the conservation law of angular

momentum cannot be mutually obtained from the conservation law of linear momentum

since not all torques and forces arise from macroscopic body forces.

The antisymmetry of the stress tensor has been closely related to the microscopic

structure of the mixture, in particular, to the torques that act on the electric dipoles of ions.

When an electric field is imposed on an electrolyte solution, either by an external source

or due to the presence of dissociated ions in solution, the polarization equilibrium of the

electric dipoles of the water molecules is affected. Then, the solvent dipoles are rotated

by a torque given by P × E in order to align them to the electric field. The release of this
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process to a new position of equilibrium dissipates energy, causing a greater friction on

the ion than that expected if the solvent was an unpolarizable viscous fluid. Therefore,

the ionic mobility and conductivity of the solution are changed as a result of the effects

of electrophoresis and relaxation caused, respectively, by the ion-ion interactions and the

viscous drag force on the ion due to the solvent.

3.2.4 Energy balance

For polar continua subject to the influence of mechanical and electromagnetic fields, the

total energy density is composed of the kinetic energy of rotation, 1/2ρasa·ωa, kinetic energy

of translation, 1/2ρav
2
a, as well the density of internal energy, ρaεa. Likewise, the heat flux

vector encompasses contributions from mechanical and electromagnetic sources, with the

latter being given by the Poyinting vector, Ea ×Ha, that represents the directional energy

flux density of an electromagnetic field. Accordingly, the energy supply and the energy

production are also given by both mechanical and electromagnetic contributions, namely:

• The rate of electrical work per unit volume, ia · Ea;

• The rate of energy supplied per unit volume due to the polarization process of the

medium, Ṗa · Ea;

• The mechanical power due to the translational motion, va·[ρaba + qaEa +Pa · (∇Ea)],

and the rotational motion, ωa · (Pa × Ea + ρala);

• The energy supply, ρara, due to external sources, such as radiation;

• The energy production, ǫa, which accounts for the production of energy due to chem-

ical reactions, and translational and rotational motions.

Thus, the local forms of the energy balances for each constituent of the mixture and for

the mixture as a whole are, respectively,

∂

[

ρaεa +
1

2
(ρav

2
a + ρasa · ωa)

]

∂t
+ div

{[

ρaεa +
1

2

(

ρav
2
a + ρasa · ωa

)

]

va

}

+ (3.2.19)

div (ha − Tava −Caωa)− va · [ρaba + qaEa +Pa · (∇Ea)]−

ωa · (Pa × Ea + ρala)− ρara − ia · Ea − Ṗa · Ea − ǫa = 0 ,
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∂

[

ρε+
1

2
(ρv2 + ρs · ω)

]

∂t
+ div

{[

ρε+
1

2

(

ρv2 + ρs · ω
)

]

v

}

+ (3.2.20)

div (h− Tv −Cω)− v · [ρb+ qE+P · (∇E)]−

ω · (P× E+ ρl)− ρr − i · E− Ṗ · E = 0 ,

where the quantities of the mixture are related to those of the constituents by

i =
n
∑

a=1

ia ,
n
∑

a=1

ǫa = 0 ,

ρε =
n
∑

a=1

(

ρaεa +
1

2
ρau

2
a +

1

2
ρaν

2
a

)

,

ρr =
n
∑

a=1

{

ρara +
1

2
[ρaba + qaEa +Pa · (∇Ea)] · ua +

1

2
(Pa × Ea + ρala) · νa

}

,

h =
n
∑

a=1

[

ha − Taua −Caνa +

(

ρaεa +
1

2
ρau

2
a +

1

2
ρasa · ωa

)

ua

]

.

Here, note that the heat flux vector and the internal energy density of the mixture contain

terms due to the translational and rotational motions that cannot be mutually eliminated,

indicating that the translational and rotational motions contribute differently to h and ε.

Similarly, the energy supply density presents contributions from mechanical and elec-

tromagnetic sources as well as from the macroscopic and microscopic structures of the

solution that cannot be canceled too. Thus, mechanical and electromagnetic sources and

macroscopic and microscopic structures of the mixture have different effects on r.

Equation (3.2.20) may be written in an alternative form, if the material time deriva-

tive following the motion of the mixture, and Equations (3.2.5), (3.2.12) and (3.2.18) are

used. Then, Equation (3.2.20) takes the form

ρ
dε

dt
+ div (h)− T · ∇v −C · ∇ω − 2ω · t̂− ρr − i · E− Ṗ · E = 0 , (3.2.21)

which is known as the balance of internal energy of the mixture.

36



3.2.5 Entropy balance

The entropy balance reflects the fact that observable thermodynamic processes are irre-

versible. With this in mind, it is postulated that [49] (i) there exists an additive objective

scalar quantity, named entropy density, for each constituent and the mixture as one, (ii)

the entropy density and the entropy flux are constitutive quantities, and (iii) the entropy

production of the whole mixture is a non-negative quantity for all realizable physical pro-

cesses. With these assumptions, the entropy balance for each constituent of the mixture

is given by

∂ρaηa
∂t

+ div (ρaηava +Φa)− ρaσa − ρaπa = 0 , (3.2.22)

whereas the entropy balance for the mixture is

ρπ =
∂ρη

∂t
+ div (ρηv +Φ)− ρσ ≥ 0 , (3.2.23)

or yet by Equation (2.5.1),

ρπ = ρ
dη

dt
+ div (Φ)− ρσ ≥ 0 ,

where ρη =
n
∑

a=1

ρaηa, Φ =
n
∑

a=1

(Φa − ρaηaua), ρσ =
n
∑

a=1

ρaσa, and ρπ =
n
∑

a=1

ρaπa ≥ 0.

Observe that the entropy production for each constituent, πa, may take any value, provided

the entropy production of the whole mixture, π, is a non-negative quantity. This assumption

results in a weak limitation of the entropy principle that is termed Truesdell’s axiom of

dissipation [67].
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Table 2.1. Physical quantities of a constituent of the mixture.

Quantity Mass Linear Momentum Angular Momentum Energy Entropy

γa ρa ρava oo × ρava + ρasa ρaεa + 1/2
(

ρav
2
a + ρasa · ωa

)

ρaηa

Φ
γ
a 0 Ta oo × Ta +Ca −ha + Tava +Caωa −Φa

σγ
a 0 ρaba + qaEa +Pa · (∇Ea) oo × [ρaba + qaEa +Pa · (∇Ea)] + ρara + ia ·Ea + Ṗa ·Ea+ ρaσa

Pa ×Ea + ρala va · [ρaba + qaEa +Pa · (∇Ea)] +

ωa · (Pa ×Ea + ρala)

πγ
a ca ma τa ǫa πa

3
8



4 Electrochemical Systems: Interionic

Interactions

The balance equations previously shown are fundamental physical laws that are valid for

all bodies irrespective of their constitution and unalterable within the domain of classical

mechanics. On the other hand, the responses of different material bodies of same geom-

etry subject to identical loads are, in general, different. To take into account the nature

of different materials, a set of constitutive equations must be constructed. These equa-

tions depend on the nature and the range of physical effects desired, and they are based

on certain basic principles and thermodynamic restrictions deduced from the entropy in-

equality. Together with the balance field equations, constitutive equations form a system of

differential equations whose every solution is a thermodynamic process. These solutions,

in turn, are particularized through initial and boundary conditions for certain experimental

conditions. Once this is done, the constitutive theory proposed is ready to be exploited in

several practical applications.

4.1 Interactions among the constituent particles in

electrolyte solutions

The dependence of many properties of electrolyte solutions on concentration is deter-

mined by interionic interactions and ultimately by the mean distance among the ions in

solution. A requirement for studying in detail ion-ion and ion-solvent interactions is to

compute the chemical potential change due to the interactions of the ionic species a with

other ions in solution and the solvent. The latter can be determined by considering the

transfer of an ion from medium 1 of relative permittivity ǫ1 to medium 2 of relative per-

mittivity ǫ2. If medium 1 is set up as vacuum, the energy required in this process is the

energy of solvation and it provides a notion about whether ionic species in solution inter-

act with the solvent molecules (Born solvation model). Conversely, analysis of interaction

forces among the ions in solution comes from the calculation of the electrostatic potential
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produced at a reference ion by the rest of ions in solution (Debye-Hückel model). If one

knows the time-averaged spatial distribution of the ions, one can determine how the other

charges are distributed as a function of distance from the reference ion. Hereby, one of

the fundamental laws of electrostatics, namely, the law of the superposition of potentials,

may be used to set the potential at a point as being the sum of the potentials due to each

of the charges in the assembly [3, 51].

Of course, as any theoretical model, the ideas above present shortcomings, but

both models represented a great advance in the understanding of the behavior of ionic

mixtures. Particularly, the study of interionic interactions allows to understand the de-

parture from ideality in electrolyte solutions, which was shown to be mainly due to the

changes in the nature of interactions among the particles. As the solution becomes more

concentrated, chemical species are closer and long-range as well as short-range interac-

tions become important. In short, coulombic interactions among ions are not sufficient to

describe the dynamics of concentrated solutions, and other types of interactions must be

included e.g. repulsion among the chemical species, ion-dipole interactions, and dipole-

dipole interactions.

As a matter of fact, when the Debye-Hückel model is tested against experimental

results, it is very successful in accounting for the behavior at low concentrations. How-

ever, at moderate and higher concentrations deviations from ideal behavior become more

apparent because other assumptions made by Debye and Hückel also fail, viz. [25]:

• Because interionic forces are treated only in terms of short-range coulombic forces,

the random motion of ions is neglected;

• All electrolytes behave as real electrolytes;

• Ions are considered spherically symmetrical and unpolarisable. This hypothesis is

not valid even for simple ions, such as NO−
3 (aq) and SO2−

4 (aq), which are not spher-

ically symmetrical. Other large ions, such as ethylenediaminetetraacetate and many

of those encountered in bio and geological media, certainly are non-spherically sym-

metrical. Likewise, many ions are not unpolarisable and simple ions such as I−(aq)

are indeed highly polarisable;

• The solvent is a structureless dielectric, so that its molecular structure is assumed

not to interfere in the way ions interact with the solvent;

• Electrostriction of ions is ignored. But, because of the intense electric fields near the

ions, they may be deformed;
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• Ions are spherically distributed around the central ion. This is a crucial part of the

Debye-Hückel model, and even though it has been dealt with by statistical mechan-

ical averaging procedures [27], only spherical symmetry has been assumed. Any

distribution of ions around a spherically symmetrical central ion does not necessar-

ily need to be spherically symmetrical, but on average, all possible arrangements

will correspond to spherical symmetry. Because a charge density corresponds to

an average distribution of ions, so conversion of the Poisson-Boltzmann equation to

spherical symmetry is purely formal. However, as was stated above, there is one

important limitation to this when considering large ions. Here, the central ion is non-

spherical and, therefore, a spherically symmetrical distribution of charge around it

may not be possible. Briefly, the Debye-Hückel model is applicable only for a spher-

ical central ion.

An interionic theory under these conditions is obviously limited and other attempts to over-

come these constraints are desirable. One way of coping with these limitations is to em-

ploy the continuum thermodynamics approach by coupling elements of polar theory with

classical continuum mixture theory. With this approach, one shows that it is possible to

account for microscopic interactions with the fluid flow through a skew-symmetric stress

tensor and body couplings.

4.2 Proposed continuum model

It is the purpose of this chapter to discuss the dynamics of aqueous electrolyte solutions.

Such solutions are assumed to be diluted, so the main fluid (water) is much more dom-

inant than all other constituents. As a result, the thermodynamics of the mixture can be

described as that of the main fluid. Under these conditions, one temperature field is re-

quired and the linear and angular momenta of the mixture coincide with those of solvent.

Consequently, only the balances of energy and linear and angular momenta for the whole

mixture are employed.

Moreover, in determining the behavior of electrochemical systems by evaluating

the fields ρ (x, t), ξa (x, t), v (x, t), ̟ (x, t), θ (x, t), and E (x, t), one presumes that most of

the effects revealed by electrochemical systems are accounted for by the dependence on

the mass density and its gradient, concentration and its gradient, velocity and its gradient,

relative local angular velocity, gradient of local angular velocity, temperature and its gradi-

ent, and electric field. In other words, the set of the independent constitutive variables y

is
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y ∈ {ρ,∇ρ, ξa,∇ξb,v,∇v,̟,∇ω, θ,∇θ,E} (∀a, b = 1, .., n− 1) . (4.2.1)

Nonetheless, as the principle of material objectivity requires that constitutive functions

must be independent of the observers, constitutive functions do not depend on the ve-

locity, and they depend on the velocity gradient only through its symmetric part, called

the stretching tensor, D. Furthermore, ̟ is also a non-objective quantity, but by using

a linear map (duality map) one can establish a one-to-one correspondence between a

skew-symmetric objective tensor and a non-objective vector. That is, the dependence of

the constitutive functions on ̟ occurs by a skew-symmetric tensor of type Wij = eijk̟k.

One may also exploit the irrotational nature of the quasistatic electric field and

define it in terms of a scalar function. Recalling the Helmholtz theorem, one writes

E ≡ −∇ϕ , (4.2.2)

where ϕ is the electric potential. In other words, the electric field in quasi-electrostatic

approximation is completely specified only by its scalar source (Gauss law).

With these assumptions, (4.2.1) becomes

y ∈ {ρ,∇ρ, ξa,∇ξb, θ,∇θ,E,D,W ,∇ω} (∀a, b = 1, .., n− 1) , (4.2.3)

where E transforms as an objective quantity in the quasi-electrostatic approximation. In-

cidentally, constitutive relations must be formulated for

C ∈ {ja, ca,T ,C,P, ε,h, i, η,Φ} (∀a = 1, .., n− 1) , (4.2.4)

which are dependent on the variables (4.2.3). Through the dependence of (4.2.4) on

(4.2.3), one proposes a constitutive class capable of describing the chemical changes

caused by the passage of electric current, and the transport phenomena caused by elec-

trochemical reactions in a viscous fluid. This constitutive class will characterize the ma-

terial response of a mixture of viscous polar fluids with diffusion, chemical reactions, and

conduction of heat and electric current.

Once all relevant constitutive assumptions and balance equations have been es-

tablished, the entropy principle can be exploited. For a physically realizable process of

the mixture investigated, the entropy inequality (2.5.1) must be satisfied subject to the

simultaneous satisfaction of the balance laws (2.6.3), (3.2.5), (3.2.7), (3.2.12), (3.2.18),

42



and (3.2.21). Instead of fulfilling the entropy inequality for independent fields that are con-

strained by the balance laws, one employs the method of Lagrange multipliers proposed

by Liu [33]. According to this approach, the entropy inequality is subtracted from the prod-

ucts of each balance equation with its corresponding Lagrange multiplier, so that it can

be satisfied for unrestricted independent fields. For the mixture investigated, the extended

entropy inequality

Π = ρ
dη

dt
+ div (Φ)− ρσ − Λρ

(

dρ

dt
+ ρdiv (v)

)

− (4.2.5)

Λv ·

(

ρ
dv

dt
− div (T )− qE− ρb−P · ∇E

)

−

n−1
∑

a=1

Λξa

(

ρ
dξa
dt

+ div (ja)− ca

)

−Λω ·

(

ρI
dω

dt
− div (C) + 2t̂− ρl−P× E

)

−

Λε

(

ρ
dε

dt
+ div (h)− T · ∇v −C · ∇ω − 2ω · t̂− ρr − Ṗ · E− i · E

)

−

ΛG (div (P)− ǫodiv (E)− q) ≥ 0

holds for any solution {ρ (x, t) , ξa (x, t) ,v (x, t) ,ω (x, t) , θ (x, t) ,E (x, t)} of the field equa-

tions, where ǫo is homogeneous. Here, the quantities Λρ, Λv, Λξa , Λω, Λε, and ΛG rep-

resent the Lagrange multipliers associated with the constraints placed on the entropy in-

equality by the balance equations. These Lagrange multipliers may be given by constitu-

tive relations too.

In addition to previous constitutive assumptions, some further premises must be

taken into account, most of which are plausible. They are:

• Even though the solvent mass is much bigger than the masses of the other con-

stituents of the mixture (this hypothesis is feasible up to 1.0 × 10−1 mol L−1), the

electrolyte solution may not behave as an ideal dilute solution. If so, interactions

among the constituent particles of the mixture have a great influence on the ther-

modynamic behavior of the solution and, thus, they must be accounted for. In this

chapter, such interactions are considered by assembling concepts of polar and con-

tinuum mixture theories. Consequently, new phenomenological coefficients should

appear in the constitutive model proposed;

• For many materials whose constitutive class does not encompass the time derivative

of temperature, dθ/dt, in the set of independent constitutive variables, and the heat

flux is collinear to the entropy flux, then the Lagrange multiplier of energy is the
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reciprocal of the empirical temperature, Λε = 1/θ, also referred to as coldness [73].

This definition was obtained by Müller [45, 46, 47, 48] by assuming the existence of

a special kind of material singular surface, the so-called ideal surface, across which

the entropy jump condition is

JΦK · n = JΛεhK · n = 0 ⇔ JθK = 0 . (4.2.6)

Whenever an ideal wall separates two bodies, the jump condition above is the re-

quirement that the normal component of the entropy flux is continuous. In practical

terms, Müller took for granted that Equation (4.2.6) is necessary to make the tem-

perature measurable through a thermometer. Moreover, as a direct consequence of

the existence of such ideal surfaces between any material body brought into con-

tact with a single body, Equation (4.2.6) always will imply that Λε = 1/θ. However,

for many material classes e.g. granular and porous media and multiphase mixtures

exhibiting a single temperature, ideal material surfaces do not exist. In reference

[74], Wilmanski found conditions for which the temperature is continuous across a

material singular surface in a fluid-solid mixture. The first of these conditions allows

no entropy production on the singular surface, and the second one requires either

impermeability of the surface or continuity of the Gibbs energy across the surface.

Indeed, for theories with multiple temperatures, this situation is even worse since the

problem does not have a solution yet. Hence, in view of these considerations, in this

work it is assumed that under sufficiently general conditions, there exists an ideal

surface across which the temperature, and the tangential velocity are continuous,

such that the behavior of the electrochemical system is not affected;

• The definition of Λξa can be obtained by taking into account a semipermeable mem-

brane, which separates the reacting ionic mixture and one of its constituents a [36].

Excluding the possibility of tangential velocities at the wall and by assuming that the

temperature is continuous at the membrane, one obtains the following jump expres-

sion,

J−
Λξa

Λε
+

1

2
(va − unn)

2K = 0 .

The first term on the left-hand side of the expression is named chemical potential,

µ̄a , whereas the second one is the kinetic energy of the motion of the constituent a

in relation to the semipermeable wall. Clearly, only the chemical potential is a con-

stitutive quantity, and it is easily related to the Lagrange multiplier of concentration

by µ̄a = −Λξa/Λε;
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• The definition of Λρ comes from the evaluation of equilibrium conditions for a viscous

heat-conducting fluid, i.e., p = −ρΛρ/Λε [29, 74]. Then, because of the great excess

of solvent mass in relation to the masses of other constituents, the dynamics of

a reacting ionic mixture is nearly the same as for a viscous heat-conducting fluid.

Consequently, one may use the previous definition without loss of generality;

• Since the constitutive properties of a reacting ionic mixture should not depend on

external supplies, it suffices to consider supply-free mixtures. In other terms, the

entropy supply vanishes as long as the linear momentum, spin, and energy sources

are null,

ρb = 0 , ρl = 0 , ρr = 0 ⇒ ρσ = 0 .

• The mixture is an isotropic medium. However, exceptionally, the degree of polar-

ization of the electrolyte solution and its constituents is completely determined by

a non-linear anisotropic function of type Pi = γ1ijEj + γ2ijkEjEk + . . ., where γm is

the m-th order electric susceptibility. In general, for weak electric fields, γm is a

constant characteristic of the dielectric medium, and it depends on the temperature

since thermal agitation tends to oppose the order of electric dipoles induced by E

[59]. Thus, owing to the great excess of solvent mass in relation to the masses of

the other constituents, the dielectric properties of the whole solution are due almost

exclusively to the electric dipoles of water molecules.

Substituting the constitutive relations (4.2.3) and (4.2.4) into inequality (4.2.5) and by per-

forming all required differentiations according to the chain-rule, one obtains

Π =
dρ

dt

(

ρ
∂η

∂ρ
− Λρ − ρΛε ∂ε

∂ρ
+ ΛεE ·

∂P

∂ρ

)

+ (4.2.7)

d∇ρ

dt
·

(

ρ
∂η

∂∇ρ
− ρΛε ∂ε

∂∇ρ
+ ΛεE

∂P

∂∇ρ

)

+

n−1
∑

a=1

dξa
dt

(

ρ
∂η

∂ξa
− ρΛξa − ρΛε ∂ε

∂ξa
+ ΛεE ·

∂P

∂ξa

)

+

n−1
∑

b=1

d∇ξb
dt

·

(

ρ
∂η

∂∇ξb
− ρΛε ∂ε

∂∇ξb
+ ΛεE

∂P

∂∇ξb

)

+

dW

dt
·

(

ρ
∂η

∂W
− ρΛε ∂ε

∂W
+ ΛεE

∂P

∂W

)

+
dω

dt
· (−ρIΛω)+

d∇ω

dt
·

(

ρ
∂η

∂∇ω
− ρΛε ∂ε

∂∇ω
+ ΛεE

∂P

∂∇ω

)

+
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dθ

dt

(

ρ
∂η

∂θ
− ρΛε∂ε

∂θ
+ ΛεE ·

∂P

∂θ

)

+

d∇θ

dt
·

(

ρ
∂η

∂∇θ
− ρΛε ∂ε

∂∇θ
+ ΛεE

∂P

∂∇θ

)

+

dE

dt
·

(

ρ
∂η

∂E
− ρΛε ∂ε

∂E
+ ΛεE

∂P

∂E

)

+

dD

dt
·

(

ρ
∂η

∂D
− ρΛε ∂ε

∂D
+ ΛεE

∂P

∂D

)

+
dv

dt
· (−ρΛv)+

∇ρ ·

(

∂Φ

∂ρ
−

n−1
∑

a=1

Λξa
∂ja
∂ρ

+Λv
∂T

∂ρ
+Λω

∂C

∂ρ
− ΛG∂P

∂ρ
− Λε∂h

∂ρ

)

+

∇ (∇ρ) ·

(

∂Φ

∂∇ρ
−

n−1
∑

a=1

Λξa
∂ja
∂∇ρ

+Λv
∂T

∂∇ρ
+Λω

∂C

∂∇ρ
− ΛG ∂P

∂∇ρ
− Λε ∂h

∂∇ρ

)

+

n−1
∑

b=1

∇ξb ·

(

∂Φ

∂ξb
−

n−1
∑

a=1

Λξa
∂ja
∂ξb

∣

∣

∣

∣

a 6=b

+Λv
∂T

∂ξb
+Λω

∂C

∂ξb
− ΛG∂P

∂ξb
− Λε ∂h

∂ξb

)

+

n−1
∑

b=1

∇ (∇ξb) ·

(

∂Φ

∂∇ξb
−

n−1
∑

a=1

Λξa
∂ja
∂∇ξb

∣

∣

∣

∣

a 6=b

+Λv
∂T

∂∇ξb
+Λω

∂C

∂∇ξb
− ΛG ∂P

∂∇ξb
− Λε ∂h

∂∇ξb

)

+

∇W ·

(

∂Φ

∂W
−

n−1
∑

a=1

Λξa
∂ja
∂W

+Λv
∂T

∂W
+Λω

∂C

∂W
− ΛG ∂P

∂W
− Λε ∂h

∂W

)

+

∇ (∇ω) ·

(

∂Φ

∂∇ω
−

n−1
∑

a=1

Λξa
∂ja
∂∇ω

+Λv
∂T

∂∇ω
+Λω

∂C

∂∇ω
− ΛG ∂P

∂∇ω
− Λε ∂h

∂∇ω

)

+

∇θ ·

(

∂Φ

∂θ
−

n−1
∑

a=1

Λξa
∂ja
∂θ

+Λv
∂T

∂θ
+Λω

∂C

∂θ
− ΛG∂P

∂θ
− Λε∂h

∂θ

)

+

∇ (∇θ) ·

(

∂Φ

∂∇θ
−

n−1
∑

a=1

Λξa
∂ja
∂∇θ

+Λv
∂T

∂∇θ
+Λω

∂C

∂∇θ
− ΛG ∂P

∂∇θ
− Λε ∂h

∂∇θ

)

+

∇E ·

(

∂Φ

∂E
−

n−1
∑

a=1

Λξa
∂ja
∂E

+Λv ·P+Λv
∂T

∂E
+Λω

∂C

∂E
− ΛG∂P

∂E
− Λε ∂h

∂E

)

+

∇D ·

(

∂Φ

∂D
−

n−1
∑

a=1

Λξa
∂ja
∂D

+Λv
∂T

∂D
+Λω

∂C

∂D
− ΛG ∂P

∂D
− Λε ∂h

∂D

)

−

2Λω · t̂+Λω · (P× E) + ΛεT ·D + 2Λεt̂ · ω − ρΛρ
1 ·D+

ΛGǫodiv (E) + ΛGq + ΛεC · ∇ω +
n−1
∑

a=1

Λξaca + Λεi · E ≥ 0 .

Alternatively, inequality (4.2.7) can be expressed as
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Π = A (y) · Z+B (y) ≥ 0 , (4.2.8)

where A (y) and B (y) are respectively vector and scalar functions of the variables y listed

in (4.2.3), but not of Z,

Z ∈

{

dρ

dt
,
d∇ρ

dt
,
dξb
dt
,
d∇ξb
dt

,
dθ

dt
,
d∇θ

dt
,
dW

dt
,
dω

dt
,
d∇ω

dt
,
dE

dt
,
dD

dt
,
dv

dt
, (4.2.9)

∇ (∇ρ) ,∇ (∇ξb) ,∇ (∇θ) ,∇E,∇D,∇W ,∇ (∇ω) , div (E)} .

Hence, by the principle of local solvability [33, 35] Liu demonstrated that the inequality

(4.2.8) must hold for arbitrary values of y and Z. The necessary and sufficient condition

for this is

A (y) = 0 , B (y) ≥ 0 . (4.2.10)

In other words, (4.2.10) indicates that the coefficients of Z must vanish, otherwise expres-

sion (4.2.8) could be violated. These arguments lead to the following Liu identities

ρ
∂η

∂ρ
− Λρ − ρΛε ∂ε

∂ρ
+ ΛεE ·

∂P

∂ρ
= 0 , (4.2.11)

ρ
∂η

∂∇ρ
− ρΛε ∂ε

∂∇ρ
+ ΛεE

∂P

∂∇ρ
= 0 ,

ρ
∂η

∂ξa
− ρΛξa − ρΛε ∂ε

∂ξa
+ ΛεE ·

∂P

∂ξa
= 0 (∀a = 1, .., n− 1) ,

ρ
∂η

∂∇ξb
− ρΛε ∂ε

∂∇ξb
+ ΛεE

∂P

∂∇ξb
= 0 (∀b = 1, .., n− 1) ,

ρ
∂η

∂W
− ρΛε ∂ε

∂W
+ ΛεE

∂P

∂W
= 0 ,

ρ
∂η

∂∇ω
− ρΛε ∂ε

∂∇ω
+ ΛεE

∂P

∂∇ω
= 0 ,

ρ
∂η

∂θ
− ρΛε∂ε

∂θ
+ ΛεE ·

∂P

∂θ
= 0 ,

ρ
∂η

∂∇θ
− ρΛε ∂ε

∂∇θ
+ ΛεE

∂P

∂∇θ
= 0 ,

ρ
∂η

∂E
− ρΛε ∂ε

∂E
+ ΛεE

∂P

∂E
= 0 ,

ρ
∂η

∂D
− ρΛε ∂ε

∂D
+ ΛεE

∂P

∂D
= 0 ,

− ρIΛω = 0 , −ρΛv = 0 , ΛG = 0 ,
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sym

(

∂Φ

∂∇ρ
−

n−1
∑

a=1

Λξa
∂ja
∂∇ρ

+Λv
∂T

∂∇ρ
+Λω

∂C

∂∇ρ
− ΛG ∂P

∂∇ρ
− Λε ∂h

∂∇ρ

)

= 0 , (4.2.12)

sym

(

∂Φ

∂∇ξb
−

n−1
∑

a=1

Λξa
∂ja
∂∇ξb

+Λv
∂T

∂∇ξb
+Λω

∂C

∂∇ξb
− ΛG ∂P

∂∇ξb
− Λε ∂h

∂∇ξb

)

= 0 (∀b = 1, .., n− 1) ,

∂Φ

∂W
−

n−1
∑

a=1

Λξa
∂ja
∂W

+Λv
∂T

∂W
+Λω

∂C

∂W
− ΛG ∂P

∂W
− Λε ∂h

∂W
= 0 ,

∂Φ

∂∇ω
−

n−1
∑

a=1

Λξa
∂ja
∂∇ω

+Λv
∂T

∂∇ω
+Λω

∂C

∂∇ω
− ΛG ∂P

∂∇ω
− Λε ∂h

∂∇ω
= 0 ,

sym

(

∂Φ

∂∇θ
−

n−1
∑

a=1

Λξa
∂ja
∂∇θ

+Λv
∂T

∂∇θ
+Λω

∂C

∂∇θ
− ΛG ∂P

∂∇θ
− Λε ∂h

∂∇θ

)

= 0 ,

∂Φ

∂E
−

n−1
∑

a=1

Λξa
∂ja
∂E

+Λv ·P+Λv
∂T

∂E
+Λω

∂C

∂E
− ΛG∂P

∂E
− Λε ∂h

∂E
= 0 ,

∂Φ

∂D
−

n−1
∑

a=1

Λξa
∂ja
∂D

+Λv
∂T

∂D
+Λω

∂C

∂D
− ΛG ∂P

∂D
− Λε ∂h

∂D
= 0 ,

whence certain thermodynamic relations are expected to be maintained, namely:

1. The thermodynamic potential, ψ = ε− θη − 1/ρP · E, is function of ρ, ξa, θ, and E;

2. The Lagrange multipliers of the balance equations of linear momentum, spin, and

Gauss law are zero:

Λω = 0 , Λv = 0 , ΛG = 0 ;

3. The extra entropy flux vector, φ = Φ −

n−1
∑

a=1

Λξaja − Λεh, which takes into account all

deviations of the entropy flux vector in relation to the heat and diffusive flux vectors,

does not amount to a restriction.

The first statement follows from identities (4.2.11)2,4,5,6,8,10 which demonstrate a

reduced independence on the list (4.2.3) for the thermodynamic potential ψ. Then, with

the aid of the thermodynamic potential ψ and the definitions of hydrostatic pressure,

p = −ρΛρ/Λε, chemical potential, µ̄a = −Λξa/Λε, and coldness, Λε = 1/θ, the identities

(4.2.11)1,3,7,9 produce
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dψ =
p

ρ2
dρ+

n−1
∑

a=1

µ̄adξa − ηdθ −P · d

(

E

ρ

)

, (4.2.13)

whence ∂ψ/∂ρ = p/ρ2 + P · E/ρ2, ∂ψ/∂ξa = µ̄a, ∂ψ/∂θ = −η, and ∂ψ/∂E = −P/ρ. If

electromagnetic fields are absent, relation (4.2.13) coincides with the Helmholtz relation

of the classical thermostatics. However, the former is more comprehensive than that of

classical thermostatics because it holds for any point of the material body and it is valid

under equilibrium and non-equilibrium conditions.

Moreover, in view of previous constitutive assumptions presented, one demon-

strates by cross differentiation of the Liu identities (4.2.11)1,3,7,9 that η = η̂ (ρ, θ, ξa), ε =

ε̂ (ρ, θ, ξa), Λ
ρ = Λ̂ρ (ρ, θ, ξa), and Λξa = Λ̂ξa (ρ, θ, ξa). One also shows from relation (4.2.13)

and the reduced dependencies above that the integrability conditions for dψ are

∂µ̄a

∂ρ
=
∂ (p/ρ2)

∂ξa
,

∂ (p/ρ2)

∂θ
= −

∂η

∂ρ
,

∂µ̄a

∂θ
= −

∂η

∂ξa
, (4.2.14)

where P is function only of E, as previously stated.

The second statement is a direct result of identity (4.2.11)11 and it does not de-

serve additional comments. On the other hand, the third statement results from iden-

tity (4.2.12), which suggests the introduction of an extra entropy flux defined by φ =

Φ −
n−1
∑

a=1

Λξaja − Λεh. Here, it is worthwhile remembering that in obtaining the identities

(4.2.12)1,2,5, the theorem of Cartesian decomposition of tensors was used in order to im-

pose that only the symmetric parts of ∇ (∇ρ), ∇ (∇ξb), and ∇ (∇θ) need to vanish. The

proof of this statement can be easily found in reference [35].

Substituting the definition of extra entropy flux into identity (4.2.12), results in

sym

(

∂φ

∂∇ρ

)

= sym

(

Λε

n−1
∑

a=1

∂µ̄a

∂∇ρ
ja

)

, sym

(

∂φ

∂∇ξb

)

= sym

(

Λε

n−1
∑

a=1

∂µ̄a

∂∇ξb
ja

∣

∣

∣

∣

a 6=b

)

(∀b = 1, .., n− 1) ,

∂φ

∂W
= Λε

n−1
∑

a=1

∂µ̄a

∂W
ja ,

∂φ

∂∇ω
= Λε

n−1
∑

a=1

∂µ̄a

∂∇ω
ja , (4.2.15)

sym

(

∂φ

∂∇θ

)

= sym

(

Λε

n−1
∑

a=1

∂µ̄a

∂∇θ
ja

)

,
∂φ

∂E
= Λε

n−1
∑

a=1

∂µ̄a

∂E
ja ,

∂φ

∂D
= Λε

n−1
∑

a=1

∂µ̄a

∂D
ja .
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With the definition µ̄a = −Λξa/Λε, the reduced dependence of Λξa should be reflected in

µ̄a and, then, µ̄a = ˆ̄µa (ρ, θ, ξa). Consequently, since the derivatives above must vanish,

sym (∂φ/∂∇ρ) = 0, sym (∂φ/∂∇ξb) = 0, ∂φ/∂W = 0, ∂φ/∂∇ω = 0, sym (∂φ/∂∇θ) = 0,

∂φ/∂E = 0, and ∂φ/∂D = 0, the extra entropy flux vector is zero, and Φ can be rewritten

as Φ = Λεh− Λε

n−1
∑

a=1

µaja.

After elimination of the linear terms, one uses ∇µ̄a = (∂µ̄a/∂ρ)∇ρ+
n−1
∑

b=1

(∂µ̄a/∂ξb)∇ξb|a 6=b+

(∂µ̄a/∂θ)∇θ and Φ = Λεh− Λε

n−1
∑

a=1

µ̄aja to rewrite inequality (4.2.7) as

Π =−

n−1
∑

a=1

ja · ∇µ̄a +

(

n−1
∑

a=1

µ̄aja − h

)

·
∇θ

θ
+C · ∇ω+ (4.2.16)

T ·D + p1 ·D −

n−1
∑

a=1

µ̄aca + i · E ≥ 0 ,

whence one may obtain other important thermodynamic restrictions on the constitutive

relations.

Nevertheless, before discussing the consequences of inequality (4.2.16) on the

constitutive quantities listed in (4.2.4), an important concept of chemical thermodynamics

deserves to be presented. The symmetrical of the chemical affinity of a reaction r is

℧r =
n−1
∑

a=1

νarµ̄a , (4.2.17)

where νar divided by the molecular mass of constituent a is proportional to the corre-

sponding stoichiometric coefficient in the chemical reaction r, and the solvent is regarded

as inert because of its great excess in the mixture. For the sake of convention, νar is taken

as positive for the products of a reaction, and negative for the reagents. In addition, in

agreement with Bedford and Bowen’s ideas [2, 5, 7], the mass production of a is the net

rate of mass supply to constituent a resulting from chemical reactions. Mathematically, the

mass production of constituent a is expressed by

ca =
R
∑

r=1

νarΥr , (4.2.18)

where Υr is the rate of conversion of r, supposing R independent chemical reactions.
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Combining Equations (4.2.17) and (4.2.18), one writes

n−1
∑

a=1

caµ̄a =
R
∑

r=1

℧rΥr, and inequality

(4.2.16) reduces to

Π =−

n−1
∑

a=1

ja · ∇µ̄a +

(

n−1
∑

a=1

µ̄aja − h

)

·
∇θ

θ
+C · ∇ω + T ·D+ (4.2.19)

p1 ·D −

R
∑

r=1

℧rΥr + i · E ≥ 0 .

Inequality (4.2.19) is the residual entropy production and comprises a necessary

condition to inequality (4.2.5) to be maintained for any solution

{ρ (x, t) , ξa (x, t) ,v (x, t) ,ω (x, t) , θ (x, t) ,E (x, t)} of the field equations.

4.2.1 Thermodynamic restrictions

The thermodynamic equilibrium state at (x, t) of a reacting ionic mixture is defined as that

thermodynamic state in which the residual entropy production attains the minimum value,

expressly zero. This definition of local thermodynamic equilibrium state does not require

that the quantities ζ ∈ {Υr,∇θ,∇µ̄a,E,∇ω,D} are time independent neither spatially

homogeneous nor null. In other words, this condition asserts that, at a material point, any

local thermo-electromechanical state can be an equilibrium state provided the ζ quantities

have appropriate values. As a consequence, Π must satisfy

Π : ζ → Y | ζ ∈ {Υr,∇θ,∇µ̄a,E,∇ω,D} (4.2.20)
(

∂Π

∂ζ

)∣

∣

∣

∣

E

= 0 ,

(

∂2Π

∂ζ∂ζ

)∣

∣

∣

∣

E

≥ 0 ,

where the index E stands for local equilibrium state.

From inequality (4.2.19) and relation (4.2.20), the first-order derivatives of the

residual entropy production in relation to ∇µ̄a, ∇θ, and ∇ω result in

(

∂Π

∂∇µ̄a

)∣

∣

∣

∣

E

= −ja = 0 (∀a = 1, . . . , n− 1) , (4.2.21)

(

∂Π

∂∇θ

)∣

∣

∣

∣

E

=
1

θ

(

n−1
∑

a=1

µ̄aja − h

)

= 0 , (4.2.22)

51



or yet

(

∂Π

∂∇θ

)∣

∣

∣

∣

E

= −
1

θ
h = 0 ,

and

(

∂Π

∂∇ω

)∣

∣

∣

∣

E

= C = 0 . (4.2.23)

Hence, at local equilibrium, there are no diffusive fluxes of species neither flux of heat, nor

coupling stresses. Moreover, for Υr, inequality (4.2.19) and relation (4.2.20) lead to

(

∂Π

∂Υr

)∣

∣

∣

∣

E

= −℧r = 0 (∀r = 1, . . . , R) , (4.2.24)

where the result above is the known local chemical equilibrium condition. Note that the

local chemical equilibrium does not require local kinetic equilibrium, that is, the mass

concentrations time derivative of the constituents of the mixture may not be null. In fact,

since for non-homogeneous electrochemical systems Equation (2.2.7) holds, one easily

obtains from relations (4.2.17) and (4.2.18),

−
n−1
∑

a=1

ρµ̄a

dξa
dt

−

n−1
∑

a=1

µ̄adiv (ja) = −

R
∑

r=1

℧rΥr , (4.2.25)

whence one concludes that if and only if −℧r = 0 for all r and div (ja) = 0 for all a, dξa/dt

is zero.

Other conditions to ensure Π = 0 at (x, t) are

(

∂Π

∂D

)∣

∣

∣

∣

E

= T + p1 = 0 (4.2.26)

that produces

T = −p1 ,

and

(

∂Π

∂E

)∣

∣

∣

∣

E

= i = 0 . (4.2.27)

In addition, observe that the necessary conditions to obtain local thermodynamic

equilibrium are different that characterize macroscopic thermodynamic equilibrium, viz. a

state in which all constituents are at rest in relation to one frame of reference and thermo-
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dynamic quantities, such as temperature gradient, velocity gradient, rate of conversion of

a reaction etc. are time-independent and uniform [47]. On the other hand, one can ob-

tain these conditions from the local thermodynamic equilibrium conditions by constructing

appropriate Lyapunov functions through the definition of the entropy flux vector and the

balance equations, as shown in [12].

The constitutive modeling of reacting ionic mixtures proceeds by analyzing the

second restriction invoked by the entropy principle on (4.2.4) to find restrictions on phe-

nomenological parameters. For the sake of simplicity, it is imposed that the microscopic

structure of the system does not influence diffusive fluxes as well as the current flow.

Thus, the influence of local angular motion was considered only on the total stress tensor,

coupling stress tensor, and the heat flux, such as in references [14, 16, 32].

Furthermore, unlike common electrolyte models, the fluxes of heat, mass and

electric current are not given exclusively by their usual sources, but also by the cross

phenomena of thermo-electricity, thermal diffusion, and electrophoresis. Therefore, con-

sidering the representation of isotropic constitutive functions [70, 71, 72], it follows that

Tij = −pδij +

(

α +
2

3
β

)

Dmmδij + 2βD̄ij + 2ϑeijk̟k +O (2) , (4.2.28)

Cij =

(

λ+
2

3
τ

)

ωk,kδij + 2τ ω̄i,j + δωj,i + ςeijkθ,k +O (2) ,

hi = k1θ,i + k2Ei + k3µ̄
a
,i + k4eijkωk,j +O (2) ,

ii = ι1θ,i + ι2Ei + ι3µ̄
a
,i ,

jai = Ca
1θ,i + Ca

2Ei + Ca
3 µ̄

a
,i ,

where D̄ij and ω̄i,j are respectively the traceless part of D and ∇ω, O (2) denotes the

terms whose order is bigger than one in each constitutive function, and all phenomeno-

logical coefficients are functions of ρ, θ, ξa, ∇ξa · ∇ξa, ∇θ · ∇θ, E · E, ∇ξa · ∇θ, ∇ξa · E,

∇θ · E, and trD. Note that if the microscopic structure of the mixture had been included

in the conduction current and the diffusive flux, new phenomenological coefficients should

appear in Equations (4.2.28)4,5 whose physical meaning has not been clarified yet.

Despite its inherent simplicity, Equation (4.2.28) is suitable to describe the diffu-

sive and advective structures of electrolyte solutions far from the equilibrium. Nonetheless,

as de Groot and Mazur [17] pointed out, the linear approximation for chemical reactions is

not justifiable, except near an equilibrium state when the chemical affinity holds a recipro-

cal relation with the rate of conversion. Indeed, far from the equilibrium, chemical affinity

is essentially a non-linear function of Υr, and its form varies according to the complexity of
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the reaction. Actually, the task of determining a phenomenological equation for ℧r is quite

complicated and unusual in Chemistry. Then, on account of these arguments, chemical

affinity is treated only in general terms without specifying its constitutive nature.

Inserting Equation (4.2.28) into inequality (4.2.19), the residual entropy inequality

becomes

Π = −

n−1
∑

a=1

(

Ca
1θ,i + Ca

2Ei + Ca
3 µ̄

a
,i

)

µa
,i +

n−1
∑

a=1

(

Ca
1θ,i + Ca

2Ei + Ca
3 µ̄

a
,i

)

µa θ,i
θ
− (4.2.29)

(

k1θ,i + k2Ei + k3µ̄
a
,i + k4eijkωk,j

) θ,i
θ

+

(

α +
2

3
β

)

D2
mm + 2βD̄ikD̄ik + 2ϑeijkωkDij+

(

λ+
2

3
τ

)

ω2
k,k + 2τ ω̄i,jω̄i,j + δωj,iωj,i + ςeijkθ,kωi,j −

R
∑

r=1

℧rΥr −
(

ι1θ,i − ι2Ei + ι3µ̄
a
,i

)

Ei ≥ 0 ,

and by performing the second-order derivatives of Π with respect to the variables listed in

the set ζ, results in

n−1
∑

a=1

Ca
3 ≤ 0 ,

n−1
∑

a=1

Ca
1 µ̄

a

θ
+
k1
θ

≤ 0 , ι2 ≤ 0 , (4.2.30)

−
n−1
∑

a=1

Ca
1 +

n−1
∑

a=1

Ca
3 µ̄

a

θ
−
k3
θ

≥ 0 ,
n−1
∑

a=1

Ca
2 µ̄

a

θ
−
k2
θ

− ι1 ≥ 0 ,

n−1
∑

a=1

Ca
2 + ι3 ≤ 0 , −k4 + ς ≥ 0 , ϑ ≥ 0 ,

λ+
2

3
τ ≥ 0 , τ ≥ 0 , α +

2

3
β ≥ 0 ,

β ≥ 0 , δ ≥ 0 , ς ≥ 0 .

Ca
3 , k1, and ι2 stand for diffusion, thermal conductivity, and resistivity coefficients,

respectively. In turn, phenomenological coefficients Ca
1 and k3 are characteristic for the

phenomenon of thermal diffusion, k2 and ι1 for the thermoelectric phenomenon, and Ca
2

and ι3 for the electrophoretic phenomenon. All these effects mentioned are known as

cross phenomena and they present reciprocal nature in contrast to Fick’s law, Fourier’s

law, and Ohm’s law. Viscous properties of the electrolyte solution are accounted for by

α+ 2/3β, β, ϑ, λ+ 2/3τ , τ , δ, and ς, where α+ 2/3β and β denote respectively the bulk and

shear viscosities of Newtonian fluids, while λ+2/3τ , τ , δ, and ς are the rotational viscosities

that arise due to the inner structure of the mixture. An electrolyte solution which presents
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rotational viscosities constrained by (4.2.30)9,10,13,14 exhibits a resistance to motion bigger

than or equal to that of the viscous fluids under usual flow conditions.

Moreover, if one neglects all phenomena with exception of the chemical reactions

in inequality (4.2.29), one writes

Π = −
R
∑

r=1

℧rΥr ≥ 0 , (4.2.31)

which is the criterion for spontaneity of chemical reactions.
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5 Electrochemical Systems: Transport

Phenomena

The study of ion-ion and ion-solvent interactions aims to know whether ions interact dy-

namically with the solvent molecules and other ions in solution. In turn, the study of mass

transport in electrolyte mixtures covers diffusion and conductance of ions, where much of

the basis is phenomenological. As a matter of fact, one may study the mass transport in

electrolyte solutions by focusing on the individual motion of ions, that is, by following ions

trajectories in the electrolyte and the speeds with which they stream around. Nonetheless,

because these ionic movements are of random nature with relation to direction and speed,

it is quite hard to trace individual ions trajectories in the mixture, unless some radioactive

tracer is used.

Conversely, one may investigate the mass transport in electrochemical systems

by tracking the movement of a group of ions in a certain direction, producing a drift or flux.

This point of view is much more interesting than the first one since ionic drift results in

matter transport and flow of charge. Moreover, there is another aspect that justifies the

analysis of ionic drift, instead of the individual motion of ions: if a directional ionic flow

did not occur, the interfaces between the electrodes and electrolyte of an electrochemical

system would be out of ions to maintain the charge-transfer reactions that happen at these

interfaces. Therefore, the drift of ions is of fundamental significance to the dynamics of an

electrochemical system.

Electrochemistry literature [3, 4] supposes that a flux of ions can arise from three

mechanisms. If there is a difference in the concentration of ions in different regions of

the electrolyte, the resulting concentration gradient produces a flow of ions, and the phe-

nomenon is termed diffusion. If there is a difference in electric potential at various points

in the electrolyte, then the resulting electric field produces a flow of charge in its direction,

and the phenomenon is termed migration or conduction. Finally, if a difference in pressure,

density or even temperature exists in various parts of the electrolyte, then there exists a

fluid flow caused by natural or forced convection whose flow regime may be characterized

by stagnant regions, laminar flow, turbulent flow, among others.
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Obviously, the relative contributions of diffusion and migration to the flux of a

species differ at a certain instant for different locations in the electrochemical system.

Near the electrode, an electroactive substance is, in general, transported by both pro-

cesses. Differently, far from the electrodic surface, an electroactive substance is carried

by the migrational mechanism, and the diffusion plays a secondary role because the con-

centration gradient is generally small in the bulk phase.

For many electrochemical systems, the mathematical treatments are simplified if

the migrational and convective components to the flux of the electroactive substance are

made negligible. This may be reached if an excess of supporting electrolyte– an electrolyte

solution whose constituents are not electroactive in the range of applied potentials and

whose ionic strength is usually much larger than that of the electroactive substance under

consideration– is added into the solution, and the electrochemical system is kept at rest.

Even so, one needs more physical restrictions on the electrochemical system in order to

obtain a simplified mathematical treatment.

In a more realistic description of electrochemical systems, where the temperature

is not spatially uniform, it seems that the definitions above are not very convenient. In this

case, the theoretical framework provided by the classical electrochemistry literature may

not be comprehensive enough, and a new approach should be used. Such an approach

is provided next.

5.1 Proposed continuum model

The electrochemical system is regarded as an apolar material body formed by two regions:

a region of ionic conduction (bulk) and another that corresponds to an electrically charged

interface (double layer). The former is an isotropic medium whose concentration and

electric potential gradients of species are not significant. Consequently, the concentration

of any species is virtually constant and the basic phenomena involve ion-solvent and ion-

ion interactions. On the other hand, the double layer is an inhomogeneous and anisotropic

medium in relation to the mass, heat and current fluxes, and it comprises the region where

the transfer of electrons between the electrode and the ionic solution takes place. For

the sake of simplicity, the anisotropy of the double layer is treated as a special case of

transverse isotropy, i.e., there is an isotropic plane such that all directions in this plane are

equivalent and all constitutive relations remain unchanged under arbitrary rotations of a

coordinate system in relation to a major axis. Under these conditions, the fluxes of mass,

heat and electric current present a preferred direction that is orthogonal to the isotropic

plane.
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Furthermore, the separation between the double layer and the bulk is marked by

abrupt changes of the electric potential and species concentrations. Mathematically, these

changes are accounted for through a singular surface that separates the bulk and double

layer. At the singular surface, corresponding jump conditions for balance equations must

be formulated. Nevertheless, the properties of the singular surface are not examined in

this work.

5.1.1 Bulk region

In order to investigate the occurring physical phenomena in the bulk region, the basic

fields– mass density of the mixture, ρ (x, t), mass concentration, ξa (x, t), empirical temper-

ature, θ (x, t), electric potential, ϕ (x, t), and velocity of the mixture, v (x, t)– are evaluated

by regarding the bulk as a heat and electric conducting viscous mixture. Thus, most of its

properties are taken into account through the set of independent constitutive variables

y ∈ {ρ,∇ρ, ξa, θ,∇θ, ϕ,v,∇v} (a = 1, . . . , n− 1) . (5.1.1)

However, as the principle of material objectivity requires that constitutive quantities must

not depend on the observer, constitutive functions are independent of velocity, and they

only depend on the gradient of velocity through its symmetric part, represented by the

stretching tensor D. Thus,

C = Ĉ (ρ,∇ρ, ξa, θ,∇θ, ϕ,D) , (5.1.2)

where C ∈ {η,Φ,T ,P, ε,h, i}.

The determination of the basic fields proceeds by evaluating the inequality,

Π =ρ
dη

dt
+ div (Φ)− ρσ − Λρ

(

dρ

dt
+ ρdiv (v)

)

−

n−1
∑

a=1

Λξa

(

ρ
dξa
dt

+ div (ja)

)

− (5.1.3)

Λv ·

(

ρ
dv

dt
− div (T ) + q∇ϕ− ρb+P · ∇ (∇ϕ)

)

−

Λε

(

ρ
dε

dt
+ div (h)− T · ∇v − ρr + Ṗ · ∇ϕ+ i · ∇ϕ

)

−

ΛG
(

div (P) + ǫo∇
2ϕ− q

)

≥ 0

which does not need to hold for arbitrary fields ρ (x, t), ξa (x, t), θ (x, t), ϕ (x, t), and v (x, t),

but rather for those that are solutions of the balance equations considered. Thus, one
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may take the balance equations as representing constraints on the fields that satisfy the

entropy inequality [33].

In addition to the constitutive assumptions presented in the previous section,

further hypotheses are necessary to guarantee the adequacy of the constitutive model.

These auxiliary hypotheses are valid for both bulk and double layer regions. They are:

• The influence of interactions among the constituent particles on the system dynam-

ics is neglected. In fact, there are many reasons to consider the bulk and double layer

as apolar media and, consequently, overlook these interactions. The first motive is

associated with the experimental difficulties in dealing with some phenomenological

coefficients that appear in the diffusive and electric current fluxes, which have not

been experimentally well-established yet. The second reason concerns the experi-

mental limitations of electrochemical devices in operating with concentrated or mod-

erately concentrated mixtures. In this case, the approximation of ideal dilute solution

is not valid, resulting in the lack of reliable data in the electrochemical literature for

these solutions. Finally, even if the influence of interactions among the constituents

particles on concentrations was taken into account through the activity of ions, the

Debye-Hückel model can no longer be used to relate the activity to the concentration

of ions in non-dilute electrolyte solutions. Hence, if one desires to test the continuum

model here proposed and compare the theoretical values obtained with the experi-

mental ones, one should start with dilute solutions of 1.0 × 10−5 mol L−1–1.0 × 10−3

mol L−1, where the contribution of interactions among species particles on mixture

dynamics can be neglected;

• The Lagrange multiplier for the energy equation is inversely proportional to the tem-

perature,

Λε =
1

θ
.

This assumption is valid, provided one assumes the existence of an impermeable

ideal wall in electrochemical systems, where the entropy production vanishes, and

the entropy flux and the temperature are continuous;

• Extending the definition of Λξa provided in the last chapter to a medium under influ-

ence of quasi-electrostatic fields, Λξa may be decomposed into an intrinsic constitu-

tive part, a kinetic part, and an electric potential contribution, viz.

J−
Λξa

Λε
+

1

2
(va − unn)

2 − zaϕK = 0 .

The intrinsic part of Λξa is the chemical potential of a, µ̄a = −Λξa/Λε. On the other
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hand, µa = µ̄a − zaϕ is the electrodynamic potential since the energy state of a con-

stituent carrier of charge in any location of the electrolyte solution clearly depends

on the chemical environment and its own electric nature. Of course, if the chemical

species is not a charge carrier, µa = µ̄a;

• The term ca only deals with mass production due to electrodic reactions, i.e., reac-

tions that take place at the electrode surface. Thus, ca = 0 for the bulk, and ca 6= 0

for the double layer;

• As the medium is apolar, angular momentum balance indicates that the stress tensor

is symmetric,

T = T T ,

and P× E and all coupling terms in the balance equations may be neglected. Con-

sequently, the degree of polarization of each region of an electrochemical system is

completely determined by an isotropic function of type P = −ǫoγ
1∇ϕ. Thus, thanks

to the great excess of solvent mass in relation to the masses of other constituents,

the dielectric properties of each region of an electrochemical system are almost ex-

clusively due to the solvent (water).

If the constitutive functions considered in (5.1.2) are introduced into inequality (5.1.3), and

all differentiations are carried out according to the chain rule, the inequality (5.1.3) can be

rewritten as

Π =
dρ

dt

(

ρ
∂η

∂ρ
− Λρ − ρΛε ∂ε

∂ρ
− Λε∇ϕ ·

∂P

∂ρ

)

+ (5.1.4)

d∇ρ

dt
·

(

ρ
∂η

∂∇ρ
− ρΛε ∂ε

∂∇ρ
− Λε∇ϕ

∂P

∂∇ρ

)

+

n−1
∑

a=1

dξa
dt

(

ρ
∂η

∂ξa
− ρΛξa − ρΛε ∂ε

∂ξa
− Λε∇ϕ ·

∂P

∂ξa

)

+

dθ

dt

(

ρ
∂η

∂θ
− ρΛε∂ε

∂θ
− Λε∇ϕ ·

∂P

∂θ

)

+

d∇θ

dt
·

(

ρ
∂η

∂∇θ
− ρΛε ∂ε

∂∇θ
− Λε∇ϕ

∂P

∂∇θ

)

+

dϕ

dt

(

ρ
∂η

∂ϕ
− ρΛε ∂ε

∂ϕ
− Λε∇ϕ ·

∂P

∂ϕ

)

+

dD

dt
·

(

ρ
∂η

∂D
− ρΛε ∂ε

∂D
− Λε∇ϕ

∂P

∂D

)

+
dv

dt
· (−ρΛv)+
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∇ρ ·

(

∂Φ

∂ρ
−

n−1
∑

a=1

Λξa
∂ja
∂ρ

+Λv
∂T

∂ρ
− ΛG∂P

∂ρ
− Λε∂h

∂ρ

)

+

∇ (∇ρ) ·

(

∂Φ

∂∇ρ
−

n−1
∑

a=1

Λξa
∂ja
∂∇ρ

+Λv
∂T

∂∇ρ
− ΛG ∂P

∂∇ρ
− Λε ∂h

∂∇ρ

)

+

n−1
∑

b=1

∇ξb ·

(

∂Φ

∂ξb
−

n−1
∑

a=1

Λξa
∂ja
∂ξb

∣

∣

∣

∣

a 6=b

+Λv
∂T

∂ξb
− ΛG∂P

∂ξb
− Λε ∂h

∂ξb

)

+

∇θ ·

(

∂Φ

∂θ
−

n−1
∑

a=1

Λξa
∂ja
∂θ

+Λv
∂T

∂θ
− ΛG∂P

∂θ
− Λε∂h

∂θ

)

+

∇ (∇θ) ·

(

∂Φ

∂∇θ
−

n−1
∑

a=1

Λξa
∂ja
∂∇θ

+Λv
∂T

∂∇θ
− ΛG ∂P

∂∇θ
− Λε ∂h

∂∇θ

)

+

∇ϕ ·

(

∂Φ

∂ϕ
−

n−1
∑

a=1

Λξa
∂ja
∂ϕ

+Λv
∂T

∂ϕ
− ΛG∂P

∂ϕ
− Λε∂h

∂ϕ
− Λεi

)

+

∇D ·

(

∂Φ

∂D
−

n−1
∑

a=1

Λξa
∂ja
∂D

+Λv
∂T

∂D
− ΛG ∂P

∂D
− Λε ∂h

∂D

)

−

Λv · [P · ∇ (∇ϕ)] + ΛεT ·D − ρΛρ
1 ·D − ΛGǫo∇

2ϕ+ ΛGq ≥ 0 ,

where ǫo is homogeneous. Inequality (5.1.4) is alternatively expressed as

Π = A (y) · Z+B (y) ≥ 0 , (5.1.5)

where A (y) and B (y) respectively are vector and scalar functions of y, and Z is a consti-

tutive variable not listed in (5.1.1). Since the inequality above is linear in

Z ∈

{

dρ

dt
,
d∇ρ

dt
,
dξa
dt
,
dθ

dt
,
d∇θ

dt
,
dϕ

dt
,
dD

dt
,
dv

dt
,∇ (∇ρ) , (5.1.6)

∇ξb,∇ (∇θ) ,∇ϕ,∇ (∇ϕ) ,∇D,∇2ϕ
}

,

it must hold for arbitrary values of y and Z. The necessary and sufficient condition for this

is

A (y) = 0 , B (y) ≥ 0 . (5.1.7)

In other terms, (5.1.7) indicates that the coefficients of Z must vanish, otherwise inequality

(5.1.5) could be violated. These arguments lead to the following Liu identities
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ρ
∂η

∂ρ
− Λρ − ρΛε ∂ε

∂ρ
− Λε∇ϕ ·

∂P

∂ρ
= 0 , (5.1.8)

ρ
∂η

∂∇ρ
− ρΛε ∂ε

∂∇ρ
− Λε∇ϕ

∂P

∂∇ρ
= 0 ,

ρ
∂η

∂ξa
− ρΛξa − ρΛε ∂ε

∂ξa
− Λε∇ϕ ·

∂P

∂ξa
= 0 (a = 1, .., n− 1) ,

ρ
∂η

∂θ
− ρΛε∂ε

∂θ
− Λε∇ϕ ·

∂P

∂θ
= 0 ,

ρ
∂η

∂∇θ
− ρΛε ∂ε

∂∇θ
− Λε∇ϕ

∂P

∂∇θ
= 0 ,

ρ
∂η

∂ϕ
− ρΛε ∂ε

∂ϕ
− Λε∇ϕ ·

∂P

∂ϕ
= 0 ,

ρ
∂η

∂D
− ρΛε ∂ε

∂D
− Λε∇ϕ

∂P

∂D
= 0 ,

− ρΛv = 0 , ΛG = 0 ,

sym

(

∂Φ

∂∇ρ
−

n−1
∑

a=1

Λξa
∂ja
∂∇ρ

+Λv
∂T

∂∇ρ
− ΛG ∂P

∂∇ρ
− Λε ∂h

∂∇ρ

)

= 0 , (5.1.9)

∂Φ

∂ξb
−

n−1
∑

a=1

Λξa
∂ja
∂ξb

∣

∣

∣

∣

a 6=b

+Λv
∂T

∂ξb
− ΛG∂P

∂ξb
− Λε ∂h

∂ξb
= 0 (b = 1, .., n− 1) ,

sym

(

∂Φ

∂∇θ
−

n−1
∑

a=1

Λξa
∂ja
∂∇θ

+Λv
∂T

∂∇θ
− ΛG ∂P

∂∇θ
− Λε ∂h

∂∇θ

)

= 0 ,

∂Φ

∂ϕ
−

n−1
∑

a=1

Λξa
∂ja
∂ϕ

+Λv
∂T

∂ϕ
− ΛG∂P

∂ϕ
− Λε∂h

∂ϕ
− Λεi = 0 ,

∂Φ

∂D
−

n−1
∑

a=1

Λξa
∂ja
∂D

+Λv
∂T

∂D
− ΛG ∂P

∂D
− Λε ∂h

∂D
= 0 ,

as well as the residual inequality
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Π =∇ρ ·

(

∂Φ

∂ρ
−

n−1
∑

a=1

Λξa
∂ja
∂ρ

+Λv
∂T

∂ρ
− ΛG∂P

∂ρ
− Λε∂h

∂ρ

)

+ (5.1.10)

∇θ ·

(

∂Φ

∂θ
−

n−1
∑

a=1

Λξa
∂ja
∂θ

+Λv
∂T

∂θ
− ΛG∂P

∂θ
− Λε∂h

∂θ

)

+

ΛεT ·D − ρΛρ
1 ·D ≥ 0 .

In obtaining the Equations (5.1.9)1,3, the theorem of Cartesian decomposition of

tensors was employed to impose that only the symmetric parts of ∇ (∇ρ) and ∇ (∇θ) need

to vanish. Furthermore, in view of the constitutive assumptions previously established, one

shows by cross differentiation of identity (5.1.8) that η = η̂ (ρ, ξa, θ), ε = ε̂ (ρ, ξa, θ), Λ
ρ =

Λ̂ρ (ρ, ξa, θ), and Λξa = Λ̂ξa (ρ, ξa, θ, ϕ). From Liu identity (5.1.8) and ψ = ε− θη +∇ϕ ·P/ρ,

one also demonstrates that the thermodynamic relation

dψ =
p

ρ2
dρ+

n−1
∑

a=1

µadξa − ηdθ +P · d

(

∇ϕ

ρ

)

(5.1.11)

holds at every point of the bulk, whether at equilibrium or not. Moreover, from identity

(5.1.8) and relation (5.1.11), one obtains the integrability conditions,

∂ (p/ρ2)

∂θ
= −

∂η

∂ρ
,

∂ (p/ρ2)

∂ξa
=
∂µa

∂ρ
,

∂µa

∂θ
= −

∂η

∂ξa
, (5.1.12)

as well as the reduced dependence ψ = ψ̂ (ρ, ξa, θ,∇ϕ), where P is a function of ∇ϕ only.

Using the definitions of Lagrange multipliers Λv and ΛG, the extra entropy flux

φ = Φ−

n−1
∑

a=1

Λξaja − Λεh is introduced. Then, the Liu identity (5.1.9) become

sym

(

∂φ

∂∇ρ

)

= sym

(

Λε

n−1
∑

a=1

∂µa

∂∇ρ
ja

)

,
∂φ

∂ξb
= Λε

n−1
∑

a=1

∂µa

∂ξb
ja

∣

∣

∣

∣

a 6=b

(∀b = 1, .., n− 1) ,

(5.1.13)

sym

(

∂φ

∂∇θ

)

= sym

(

Λε

n−1
∑

a=1

∂µa

∂∇θ
ja

)

,
∂φ

∂ϕ
= Λε

n−1
∑

a=1

∂µa

∂ϕ
ja + Λεi ,

∂φ

∂D
= Λε

n−1
∑

a=1

∂µa

∂D
ja ,

where the definition of Λξa was employed. However, as the reduced dependence of Λξa
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reflects on µa, one has µa = µ̂a (ρ, ξa, θ, ϕ), and from Equation (5.1.13), it follows that

sym (∂φ/∂∇ρ) = 0, ∂φ/∂ξb = 0, sym (∂φ/∂∇θ) = 0, and ∂φ/∂D = 0, though ∂φ/∂ϕ is

not a null vector. Then, if one imposes that the extra entropy flux is an isotropic vector, φ

is null because there are no scalar generators for an isotropic vector function [70, 71, 72].

Consequently, Equation (5.1.13)4 becomes i = −
n−1
∑

a=1

(∂µa/∂ϕ) ja. Applying the electrody-

namic potential definition, the latter can be simplified to the following expression i =
n−1
∑

a=1

ia,

which implies that the total current in the bulk is given by the algebraic sum of all flows of

charge carrier constituents, also known as faradaic currents.

Recalling φ = 0, the definition of the mass Lagrange multiplier, and ∇µa =

(∂µa/∂ρ)∇ρ + (∂µa/∂θ)∇θ, the entropy flux takes the form Φ = Λεh +
n−1
∑

a=1

Λξaja, and

inequality (5.1.10) is rewritten as

Π = −
∇θ

θ
· h−

n−1
∑

a=1

ja · ∇µa + T ·D + p1 ·D ≥ 0 . (5.1.14)

The left-hand side of expression (5.1.14) is the residual entropy production, a non-negative

quantity for arbitrary values of {ρ, ξa,∇µa, θ,∇θ, ϕ,D} . Whenever Π takes the zero value,

there is no entropy production, and one says that the point (x, t) is at a thermodynamic

equilibrium state. Necessary conditions for Π = 0 at (x, t) are

(

∂Π

∂yB

)∣

∣

∣

∣

E

= 0 ,

(

∂2Π

∂yB∂yB

)∣

∣

∣

∣

E

≥ 0 , (5.1.15)

where yB ∈ {∇θ,∇µa,D}, and the index E stands for the equilibrium state. Expressly, the

heat conduction, the mass transport, and the deformations that occur in the electrolyte

bulk are mechanisms that contribute to the production of residual entropy density.

In exploiting the first-order derivatives of Π with relation to yB, constraints are

imposed on the constitutive quantities. Thus, immediate consequences of (5.1.15)1 are

(

∂Π

∂∇θ

)∣

∣

∣

∣

E

= −
1

θ
h = 0 , (5.1.16)

(

∂Π

∂∇µa

)∣

∣

∣

∣

E

= −ja = 0 (∀a = 1, . . . , n− 1) , (5.1.17)

and
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(

∂Π

∂D

)∣

∣

∣

∣

E

= T + p1 = 0 , (5.1.18)

T = −p1 .

Restrictions on constitutive functions also come from the second-order derivatives

of Π with relation to yB. Supposing an isotropic Newtonian fluid and following the theorem

of representation of isotropic functions [70, 71, 72], one writes in component form

Tij = −pδij +

(

α +
2

3
β

)

Dnnδij + 2βD̄ij +O (2) , (5.1.19)

hi = k1θ,i + k2µ
a
,i +O (2) ,

jai = Ca
1µ

a
,i + Ca

2θ,i +O (2) ,

where all phenomenological coefficients are material functions PB of type

PB = P̂B (ρ, ξa, θ, ϕ,∇θ · ∇θ, trD) . (5.1.20)

Here, one points out that the definition of diffusive flux employed in continuum thermody-

namics does not correspond to that of the classical electrochemistry literature [3, 4, 25]

presented in the beginnings of this chapter. In continuum thermodynamics, the diffusive

motion is the relative motion of the particles of constituents in relation to the barycentric

motion and it is not exclusively due to the concentration gradient, unlike that found by the

classical electrochemistry approach. In fact, only if ∇µa = (∂µa/∂ξa)∇ξa and jai = Ca
1µ

a
,i,

the physical meanings of the diffusive flux in the classical electrochemistry and continuum

thermodynamics approaches would be the same.

Then, considering (5.1.19), the residual entropy inequality becomes

Π = −k1
θ,i
θ
θ,i −

n−1
∑

a=1

Ca
1µ

a
,iµ

a
,i −

(

k2
θ

+
n−1
∑

a=1

Ca
2

)

θ,iµ
a
,i+ (5.1.21)

(

α +
2

3
β

)

D2
nn + 2βD̄ijD̄ij ≥ 0 ,

which implies the following restrictions on the phenomenological parameters

66



k1
θ

≤ 0 ,
n−1
∑

a=1

Ca
2 −

k2
θ

≤ 0 ,
n−1
∑

a=1

Ca
1 ≤ 0 , (5.1.22)

α +
2

3
β ≥ 0 , β ≤ 0 ,

where k1 is the thermal conductivity coefficient, Ca
1 is the mass transport coefficient, Ca

2

and k2 are phenomenological coefficients related to thermophoresis, and β and α + 2/3β

are the shear and bulk viscosities, respectively. Physically, the inequalities above evidence

that the heat flux vector opposes the temperature gradient (Fourier’s law) as well as the

diffusive flux vector being opposed to the gradient of electrodynamic potential. Moreover,

the transport of matter through bulk is also caused by the coupling of heat and mass flows,

and the particles of the electrolyte bulk flow in the direction of the shearing forces.

5.1.2 Double-layer region

It has been long recognized that the introduction of an electrode under potential control

into an electrolyte solution disrupts the bulk solution structure, modifying the interactions

that occur between the ions/molecules in solution and the electrode surface. As a result,

different physical and chemical phenomena arise in the electrochemical system, and a

new constitutive class should be formulated.

In the double layer, one is interested in determining the same basic fields ac-

counted for in the bulk region, but, unlike there, one assumes that the double layer is a

viscous heat and electric conducting mixture with chemical reactions and mass transport

caused by sources different than those in the bulk. Thus, the constitutive response of

double layer depends on

w ∈ {ρ,∇ρ, θ,∇θ, ξa,∇ξb, ϕ,∇ϕ,v,∇v} (∀a, b = 1, ..., n− 1) . (5.1.23)

where C ∈ {ja, ca,T , ε,h,P, i, η,Φ}.

Principles of constitutive theory require that all variables listed in (5.1.23) are ob-

jective scalars, vectors, and tensors. In addition, all constitutive equations must obey the

principle of material objectivity. Then, C does not depend explicitly on v, and it depends

on ∇v only through its symmetric part D, that is,
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w ∈ {ρ,∇ρ, θ,∇θ, ξa,∇ξb, ϕ,∇ϕ,D} (∀a, b = 1, ..., n− 1) . (5.1.24)

According to the method of Lagrange multipliers for exploitation of entropy inequal-

ity [33], there exist Lagrange multipliers Λρ, Λξa , Λv, Λε, and ΛG that, whenever multiplied

by their corresponding balance laws, they produce an inequality

Π =ρ
dη

dt
+ div (Φ)− ρσ − Λρ

(

dρ

dt
+ ρdiv (v)

)

− (5.1.25)

n−1
∑

a=1

Λξa

(

ρ
dξa
dt

+ div (ja)− ca

)

−

Λv ·

(

ρ
dv

dt
− div (T ) + q∇ϕ− ρb+P · ∇ (∇ϕ)

)

−

Λε

(

ρ
dε

dt
+ div (h)− T · ∇v − ρr + Ṗ · ∇ϕ+ i · ∇ϕ

)

−

ΛG
(

div (P) + ǫo∇
2ϕ− q

)

≥ 0 ,

which is valid for any solution {ρ (x, t) , ξa (x, t) , θ (x, t) , ϕ (x, t) ,v (x, t)} of field equations.

After introducing constitutive equations into inequality (5.1.25) and all differentiations are

performed according to the chain rule, the entropy inequality becomes

Π =
dρ

dt

(

ρ
∂η

∂ρ
− Λρ − ρΛε ∂ε

∂ρ
− Λε∇ϕ ·

∂P

∂ρ

)

+ (5.1.26)

d∇ρ

dt
·

(

ρ
∂η

∂∇ρ
− ρΛε ∂ε

∂∇ρ
− Λε∇ϕ

∂P

∂∇ρ

)

+

n−1
∑

a=1

dξa
dt

(

ρ
∂η

∂ξa
− ρΛξa − ρΛε ∂ε

∂ξa
− Λε∇ϕ ·

∂P

∂ξa

)

+

n−1
∑

b=1

d∇ξb
dt

·

(

ρ
∂η

∂∇ξb
− ρΛε ∂ε

∂∇ξb
− Λε∇ϕ

∂P

∂∇ξb

)

+

dθ

dt

(

ρ
∂η

∂θ
− ρΛε∂ε

∂θ
− Λε∇ϕ ·

∂P

∂θ

)

+

d∇θ

dt
·

(

ρ
∂η

∂∇θ
− ρΛε ∂ε

∂∇θ
− Λε∇ϕ

∂P

∂∇θ

)

+
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dϕ

dt

(

ρ
∂η

∂ϕ
− ρΛε ∂ε

∂ϕ
− Λε∇ϕ ·

∂P

∂ϕ

)

+

d∇ϕ

dt
·

(

ρ
∂η

∂∇ϕ
− ρΛε ∂ε

∂∇ϕ
− Λε∇ϕ ·

∂P

∂∇ϕ

)

+

dD

dt
·

(

ρ
∂η

∂D
− ρΛε ∂ε

∂D
− Λε∇ϕ

∂P

∂D

)

+
dv

dt
· (−ρΛv)+

∇ρ ·

(

∂Φ

∂ρ
−

n−1
∑

a=1

Λξa
∂ja
∂ρ

+Λv
∂T

∂ρ
− ΛG∂P

∂ρ
− Λε∂h

∂ρ

)

+

∇ (∇ρ) ·

(

∂Φ

∂∇ρ
−

n−1
∑

a=1

Λξa
∂ja
∂∇ρ

+Λv
∂T

∂∇ρ
− ΛG ∂P

∂∇ρ
− Λε ∂h

∂∇ρ

)

+

n−1
∑

b=1

∇ξb ·

(

∂Φ

∂ξb
−

n−1
∑

a=1

Λξa
∂ja
∂ξb

∣

∣

∣

∣

a 6=b

+Λv
∂T

∂ξb
− ΛG∂P

∂ξb
− Λε ∂h

∂ξb

)

+

n−1
∑

b=1

∇ (∇ξb) ·

(

∂Φ

∂∇ξb
−

n−1
∑

a=1

Λξa
∂ja
∂∇ξb

∣

∣

∣

∣

a 6=b

+Λv
∂T

∂∇ξb
− ΛG ∂P

∂∇ξb
− Λε ∂h

∂∇ξb

)

+

∇θ ·

(

∂Φ

∂θ
−

n−1
∑

a=1

Λξa
∂ja
∂θ

+Λv
∂T

∂θ
− ΛG∂P

∂θ
− Λε∂h

∂θ

)

+

∇ (∇θ) ·

(

∂Φ

∂∇θ
−

n−1
∑

a=1

Λξa
∂ja
∂∇θ

+Λv
∂T

∂∇θ
− ΛG ∂P

∂∇θ
− Λε ∂h

∂∇θ

)

+

∇ϕ ·

(

∂Φ

∂ϕ
−

n−1
∑

a=1

Λξa
∂ja
∂ϕ

+Λv
∂T

∂ϕ
− ΛG∂P

∂ϕ
− Λε∂h

∂ϕ
− Λεi

)

+

∇ (∇ϕ) ·

(

∂Φ

∂∇ϕ
−

n−1
∑

a=1

Λξa
∂ja
∂∇ϕ

+Λv
∂T

∂∇ϕ
−Λv ·P− ΛG ∂P

∂∇ϕ
− Λε ∂h

∂∇ϕ

)

+

∇D ·

(

∂Φ

∂D
−

n−1
∑

a=1

Λξa
∂ja
∂D

+Λv
∂T

∂D
− ΛG ∂P

∂D
− Λε ∂h

∂D

)

+

ΛεT ·D − ρΛρ
1 ·D − ΛGǫo∇

2ϕ+ ΛGq +
n−1
∑

a=1

Λξaca ≥ 0 ,

where ǫo is homogeneous.

Analogously to inequality (5.1.5), inequality (5.1.26) can be expressed as

Π = A (w) · Z+B (w) ≥ 0 ,

which is linear in
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Z ∈

{

dρ

dt
,
d∇ρ

dt
,
dξa
dt
,
d∇ξb
dt

,
dθ

dt
,
d∇θ

dt
,
dϕ

dt
,
d∇ϕ

dt
,
dD

dt
,
dv

dt
, (5.1.27)

∇ (∇ρ) ,∇ (∇ξb) ,∇ (∇θ) ,∇ (∇ϕ) ,∇D,∇2ϕ
}

.

Hence, the coefficients of Z must vanish, otherwise the entropy inequality could be vio-

lated. These arguments lead to the Liu identities

ρ
∂η

∂ρ
− Λρ − ρΛε ∂ε

∂ρ
− Λε∇ϕ ·

∂P

∂ρ
= 0 , (5.1.28)

ρ
∂η

∂∇ρ
− ρΛε ∂ε

∂∇ρ
− Λε∇ϕ

∂P

∂∇ρ
= 0 ,

ρ
∂η

∂ξa
− ρΛξa − ρΛε ∂ε

∂ξa
− Λε∇ϕ ·

∂P

∂ξa
= 0 (a = 1, .., n− 1) ,

ρ
∂η

∂∇ξb
− ρΛε ∂ε

∂∇ξb
− Λε∇ϕ

∂P

∂∇ξb
= 0 (b = 1, .., n− 1) ,

ρ
∂η

∂θ
− ρΛε∂ε

∂θ
− Λε∇ϕ ·

∂P

∂θ
= 0 ,

ρ
∂η

∂∇θ
− ρΛε ∂ε

∂∇θ
− Λε∇ϕ

∂P

∂∇θ
= 0 ,

ρ
∂η

∂ϕ
− ρΛε ∂ε

∂ϕ
− Λε∇ϕ ·

∂P

∂ϕ
= 0 ,

ρ
∂η

∂∇ϕ
− ρΛε ∂ε

∂∇ϕ
− Λε∇ϕ ·

∂P

∂∇ϕ
= 0 ,

ρ
∂η

∂D
− ρΛε ∂ε

∂D
− Λε∇ϕ

∂P

∂D
= 0 ,

− ρΛv = 0 , ΛG = 0 ,

sym

(

∂Φ

∂∇ρ
−

n−1
∑

a=1

Λξa
∂ja
∂∇ρ

+Λv
∂T

∂∇ρ
− ΛG ∂P

∂∇ρ
− Λε ∂h

∂∇ρ

)

= 0 , (5.1.29)

sym

(

∂Φ

∂∇ξb
−

n−1
∑

a=1

Λξa
∂ja
∂∇ξb

∣

∣

∣

∣

a 6=b

+Λv
∂T

∂∇ξb
− ΛG∂P

∂ξb
− Λε ∂h

∂∇ξb

)

= 0 (b = 1, .., n− 1) ,

sym

(

∂Φ

∂∇θ
−

n−1
∑

a=1

Λξa
∂ja
∂∇θ

+Λv
∂T

∂∇θ
− ΛG ∂P

∂∇θ
− Λε ∂h

∂∇θ

)

= 0 ,
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sym

(

∂Φ

∂∇ϕ
−

n−1
∑

a=1

Λξa
∂ja
∂∇ϕ

+Λv
∂T

∂∇ϕ
−Λv ·P− ΛG ∂P

∂∇ϕ
− Λε ∂h

∂∇ϕ

)

= 0 ,

∂Φ

∂D
−

n−1
∑

a=1

Λξa
∂ja
∂D

+Λv
∂T

∂D
− ΛG ∂P

∂D
− Λε ∂h

∂D
= 0 ,

as well as the residual entropy inequality

Π =∇ρ ·

(

∂Φ

∂ρ
−

n−1
∑

a=1

Λξa
∂ja
∂ρ

+Λv
∂T

∂ρ
− ΛG∂P

∂ρ
− Λε∂h

∂ρ

)

+ (5.1.30)

∇ξb ·

(

∂Φ

∂ξb
−

n−1
∑

a=1

Λξa
∂ja
∂ξb

∣

∣

∣

∣

a 6=b

+Λv
∂T

∂ξb
− ΛG∂P

∂ξb
− Λε ∂h

∂ξb

)

+

∇θ ·

(

∂Φ

∂θ
−

n−1
∑

a=1

Λξa
∂ja
∂θ

+Λv
∂T

∂θ
− ΛG∂P

∂θ
− Λε∂h

∂θ

)

+

∇ϕ ·

(

∂Φ

∂ϕ
−

n−1
∑

a=1

Λξa
∂ja
∂ϕ

+Λv
∂T

∂ϕ
− ΛG∂P

∂ϕ
− Λε∂h

∂ϕ
− Λεi

)

−

Λεi · ∇ϕ+ ΛεT ·D − ρΛρ
1 ·D +

n−1
∑

a=1

Λξaca ≥ 0 .

Further conclusions can be drawn from the Liu identities above. Since P is a func-

tion of ∇ϕ and Λε depends exclusively on θ, by the cross differentiation of identity (5.1.28),

one proves that η = η̂ (ρ, θ, ξa), ε = ε̂ (ρ, θ, ξa), Λ
ρ = Λ̂ρ (ρ, θ, ξa), Λ

ξa = Λ̂ξa (ρ, θ, ξa, ϕ), and

∂ (p/ρ2)

∂θ
= −

∂η

∂ρ
,

∂ (p/ρ2)

∂ξa
=
∂µa

∂ρ
,

∂µa

∂θ
= −

∂η

∂ξa
, (5.1.31)

where (5.1.31) is the integrability condition for the thermodynamic potential ψ = ε − θη +

P/ρ · ∇ϕ. Thus, one has the thermodynamic relation

dψ =
p

ρ2
dρ+

n−1
∑

a=1

µadξa − ηdθ +P · d

(

∇ϕ

ρ

)

, (5.1.32)

whence ψ = ψ̂ (ρ, θ, ξa,∇ϕ).

In turn, from Liu identity (5.1.29), one introduces the extra entropy flux φ = Φ −
n−1
∑

a=1

Λξaja − Λεh, where Λv = 0 and ΛG = 0 were used. Substituting the expression for the

extra entropy flux into identity (5.1.29) and making use of definition of Λξa , it follows that
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sym

(

∂φ

∂∇ρ

)

= sym

(

Λε

n−1
∑

a=1

∂µa

∂∇ρ
ja

)

, sym

(

∂φ

∂∇ξb

)

= sym



Λε

n−1
∑

a=1

∂µa

∂∇ξb
ja

∣

∣

∣

∣

∣

a 6=b



 (∀b = 1, .., n− 1) ,

sym

(

∂φ

∂∇θ

)

= sym

(

Λε

n−1
∑

a=1

∂µa

∂∇θ
ja

)

,
∂φ

∂∇ϕ
= Λε

n−1
∑

a=1

∂µa

∂∇ϕ
ja , (5.1.33)

∂φ

∂D
= Λε

n−1
∑

a=1

∂µa

∂D
ja .

Moreover, as µa should present the same reduced dependence of Λξa , one has from iden-

tity (5.1.33) that sym (∂φ/∂∇ρ) = 0, sym (∂φ/∂∇ξb) = 0, sym (∂φ/∂∇θ) = 0, ∂φ/∂∇ϕ =

0, and ∂φ/∂D = 0. Consequently, φ = 0, and then the entropy flux can be rewritten as

Φ = Λεh +
n−1
∑

a=1

Λξaja or Φ = Λεh − Λε

n−1
∑

a=1

µaja. Here, it is worth remembering that, unlike

the total current in the bulk region, i is not exclusively given by partial faradaic currents.

In fact, the total current in the double layer is due to the non-faradaic currents associated

with the charging of the electrical double layer at the electrode-solution interface, and the

faradaic currents corresponding to the reduction or oxidation of some chemical substance.

In view of the above restrictions, one uses ∇µa = (∂µa/∂ρ)∇ρ+
n−1
∑

b=1

(∂µa/∂ξb)

∣

∣

∣

∣

∣

a 6=b

∇ξb+

(∂µa/∂θ)∇θ + (∂µa/∂ϕ)∇ϕ and

n−1
∑

a=1

caµa =
R
∑

r=1

℧rΥr to write inequality (5.1.30) as

Π = −
n−1
∑

a=1

ja · ∇µa +

(

n−1
∑

a=1

µaja − h

)

·
∇θ

θ
+ T ·D + p1 ·D −

R
∑

r=1

℧rΥr − i · ∇ϕ ≥ 0 .

(5.1.34)

Inequality (5.1.34) evidences that some phenomena in an electrochemical system, e.g.

electrophoresis, electrodic reactions and Joule’s effect, take place only in the double layer.

Moreover, observe that the gradient of electrodynamic potential is given in terms of ∇ρ,

∇ξa, ∇ϕ, and ∇θ, unlike the bulk. As a consequence, the thermodynamic equilibrium

state at the point (x, t) in the double layer requires a more complex set of conditions than

in the bulk.

In fact, one has the same necessary conditions to ensure Π = 0 at any (x, t) in

the double layer,
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(

∂Π

∂wDB

)∣

∣

∣

∣

E

= 0 ,

(

∂2Π

∂wDB∂wDB

)∣

∣

∣

∣

E

≥ 0 ,

but wDB is given by wDB ∈ {∇µa,∇θ,∇ϕ,Υr,D}. Performing the first-order derivatives of

Π in relation to wDB, one obtains

(

∂Π

∂∇µa

)∣

∣

∣

∣

E

= −ja = 0 (∀a = 1, . . . , n− 1) , (5.1.35)

(

∂Π

∂∇θ

)∣

∣

∣

∣

E

=
1

θ

(

n−1
∑

a=1

µaja − h

)

= 0 (5.1.36)

−
1

θ
h = 0 ,

(

∂Π

∂∇ϕ

)∣

∣

∣

∣

E

= −i = 0 , (5.1.37)

(

∂Π

∂Υr

)∣

∣

∣

∣

E

= −℧r = 0 , (5.1.38)

(

∂Π

∂D

)∣

∣

∣

∣

E

= T + p1 = 0 (5.1.39)

T = −p1 ,

whence one concludes that, at the local thermodynamic equilibrium state, the mass flux,

the heat flux and the electric current flux vanish, the reactions are at chemical equilibrium,

and the stress tensor is given by the hydrostatic pressure.

In order to evaluate further constraints on the constitutive quantities listed in (5.1.24),

some restrictions are imposed on the forms of the constitutive relations. If the gradients of

temperature, electrodynamic potential and electric potential and the strains are not very

large, constitutive equations with only first-order terms are suitable for treatment of con-

stitutive responses of the double layer. However, once more, linear constitutive functions

for chemical affinity are only suitable close to chemical equilibrium, otherwise ℧r presents

a highly non-linear relation to the rate of conversion Υr. In view of these arguments, the

constitutive relation for the chemical affinity of a reaction r is not discussed again.

Under these conditions, one considers the symmetry group M1
κ (V ), which char-

acterizes transversely isotropic material bodies and next uses the theorem of representa-
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tion of constitutive functions [34] to set

Tij = −pδij +

(

α +
2

3
β

)

Dmmδij + 2βD̄ij +O(2) , (5.1.40)

hi = k1θ,i + k2ϕ,i +k3µ
a
,i + k4ni +O(2) ,

ii = ι1θ,i + ι2ϕ,i +ι3µ
a
,i + ι4ni +O(2),

jai = Ca
1θ,i + Ca

2ϕ,i −C
a
3µ

a
,i + Ca

4ni +O(2) ,

where all phenomenological coefficients are material functions PDB of the type

PDB = P̂DB (ρ, θ, ϕ, ξa,∇θ · ∇θ,∇ξa · ∇ξa,∇ϕ · ∇ϕ, trD) , (5.1.41)

and the scalar product n · n has been eliminated because it is equal to a unity. More-

over, observe that the same phenomenological coefficients may be numerically different

in the bulk and double layer (compare Equations (5.1.20) and (5.1.41)) since they are

not constants that depend only on the chemical species or medium under question, but

constitutive functions that suffer the influence of temperature, electric potential, viscosity

among others. Finally, note that the current in the double layer region cannot be split up

into the migrational and diffusive components as usual because the physical meaning of

diffusive and migrational fluxes given in the electrochemistry literature does not coincide

with those of continuum thermodynamics.

Inserting Equation (5.1.40) into inequality (5.1.34), one obtains

Π =−

n−1
∑

a=1

(

Ca
1θ,i + Ca

2ϕ,i +C
a
3µ

a
,i + Ca

4ni

)

µa
,i +

n−1
∑

a=1

(

Ca
1θ,i + Ca

2ϕ,i +C
a
3µ

a
,i + Ca

4ni

)

µa θ,i
θ
−

(5.1.42)

(

k1θ,i + k2ϕ,i +k3µ
a
,i + k4ni

) θ,i
θ

+

(

α +
2

3
β

)

D2
mm + 2βD̄ikD̄ik −

R
∑

r=1

℧rΥr−

(

ι1θ,i + ι2ϕ,i +ι3µ
a
,i + ι4ni

)

ϕ,i ≥ 0 ,

and by carrying out the second-order derivatives of Π with relation to wDB, it results in
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n−1
∑

a=1

Ca
3 ≤ 0 ,

n−1
∑

a=1

Ca
1µ

a

θ
−
k1
θ

≥ 0 , ι2 ≤ 0 , (5.1.43)

α +
2

3
β ≥ 0 , β ≥ 0 ,

n−1
∑

a=1

Ca
4 ≤ 0 ,

n−1
∑

a=1

Ca
4µ

a

θ
−
k4
θ

≥ 0 , ι4 ≤ 0 ,
n−1
∑

a=1

Ca
2 + ι3 ≤ 0 ,

n−1
∑

a=1

Ca
2µ

a

θ
−
k2
θ

− ι1 ≥ 0 ,
n−1
∑

a=1

Ca
1 +

n−1
∑

a=1

µaCa
3

θ
+
k3
θ

≤ 0 .

The phenomenological equations proposed in (5.1.40) incorporate many cross

phenomena that are impossible to occur in the bulk region, such as thermoelectric and

electrophoretic effects, and thermal diffusion. These effects are due to the coupling of

fields, which interfere in a reciprocal way in the heat, mass and electric current flows.

For example, Ca
2 6= 0 and ι3 6= 0, both constrained by the condition (5.1.43)9, evidence

that the gradient of electric potential opposes the electrodynamic potential gradients of

all ions. This thermodynamic condition recalls an important non-equilibrium phenomenon

observed in electrolyte solutions: the development of a diffusion potential. Whenever an

electrolyte is brought into contact with water, a gradient of electrodynamic potential arises

for both the positive and negative ions and, therefore, they start flowing away. Then, be-

cause of the difference of ionic mobilities, there appears to be a tendency for segregation

of cations and anions, so that a gradient of electric potential develops across the interface

that marks the local separation of ions. It is precisely this gradient of electric potential that

inhibits the charge segregation as the accelerated cations face resistance to their motion,

whereas the slower anions are pushed up by the gradient of electric potential. Similar con-

clusions can be obtained for the remaining phenomenological coefficients, where Ca
1 6= 0

and k1 6= 0 are related to the thermal diffusion, Ca
2 6= 0 and k2 6= 0 to the thermoelectric

phenomenon, and Ca
3 6= 0 and k3 6= 0 to the electrophoretic effects.

Although the constitutive nature of the chemical affinity will not be discussed be-

cause of the reasons already presented, one can obtain the spontaneity criterion for elec-

trodic reactions from inequality (5.1.34), as in the expression (4.2.31).
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6 Final remarks

A continuum model for electrochemical systems was developed with basis in the principles

of constitutive theory and the Müller-Liu entropy principle. The mathematical formulation of

the thermodynamics of electrochemical systems was based on the balance laws of polar

continuum mixtures and the Maxwell’s laws under the quasi-electrostatic approximation.

Some phenomena, such as diffusion, conduction of heat and electricity, deformation, po-

larization, and chemical reactions, including their coupling effects, were emphasized dur-

ing the constitutive modeling. In particular, a thermodynamic model for a dilute electrolyte

solution was introduced. It was shown that contrary to the Debye-Hückel model, where

ions are regarded as non-polarizable hard spheres and deviations from ideality are exclu-

sively due to the ion-ion interactions, the constitutive model here formulated can properly

take into account the effect of electrostriction, the coupling effect in the electrodiffusion

processes, and the ion-solvent interactions.

Constitutive models were also proposed for the bulk and double layer regions of

an electrochemical system. While the material response of both regions was considered

in the simplest way because the intensities of thermo-electromechanical fields are not so

strong, the bulk and double layer were modeled as isotropic and anisotropic media, re-

spectively. In considering the transport phenomena in each region, it was demonstrated

that the concepts of diffusion and conduction flows in the classical electrochemistry litera-

ture do not coincide with those of modern continuum thermodynamics. In fact, according

to continuum thermodynamics approach, one finds that diffusive fluxes are not directly

related to the concentration gradients, but rather they are associated to the motion of a

constituent a relative to the barycentric motion. Moreover, comparison of residual entropy

productions of the bulk and double layer regions showed that some processes occur only

in the double layer, thus resulting in stricter conditions for the local thermodynamic equi-

librium.

In addition, the results presented in this work offered the possibility of discussing

certain fundamental concepts of modern continuum thermodynamics, in special, contin-

uum mixtures theories. The concept of a continuum particle was clearly differentiated

from the classical particles, such as ions, atoms, molecules etc. Basic equations were
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still modified in order to account properly for interactions among constituents particles,

and physical quantities were analyzed in view of the characteristics of electrochemical

systems. Then, the Kelvin polarization force was assumed to represent ion-solvent inter-

actions, ion-ion interactions were given by coulombic forces, and P×E was related to the

torques that electric dipoles of water molecules suffer due to the action of the electric field.

As a consequence of these intermolecular phenomena, the stress tensor is not symmetric,

affecting linear and angular momenta conservation.

A few comments were indeed addressed to the physical meaning of the Lagrange

multipliers, especially to the energy Lagrange multiplier. Even though, many thermody-

namicists claim that in a good application of the Müller-Liu entropy principle, the consti-

tutive dependence of any Lagrange multiplier must be reached as a final result of the

entropy inequality, in this work coldness was assumed to be a universal function. While

this hypothesis is subject to criticism, by now, it seems quite hard to provide a constitutive

model for continuum mixtures without accepting that Λε = 1/θ as the problem of non-ideal

material surfaces in continuum mixtures does not have a solution yet. Thus, the reliability

of the constitutive model provided here deserves to be investigated as well as whether the

definition Λε = 1/θ is appropriate for non-equilibrium systems.

Therefore, with the results obtained in this work, one intends that the Müller-Liu

entropy principle is not viewed as a mathematical method whence one obtains thermody-

namic relations without inquiring whether the results make physical sense or not. On the

condition that concepts of modern continuum thermodynamics are correctly applied, and a

proper formulation for the second law is employed, one can obtain a more comprehensive

thermodynamic theory for non-equilibrium systems without using the Onsager reciprocal

relations.
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7 Appendix I

Let U and V be two vector spaces with inner product. A mapping

L (U, V ) = {T : U → V }

is called a linear transformation T , if for any u,y ∈ U , and a ∈ R,

T (u+ ay) = T (u) + aT (y) .

If the mapping L (U, V ) is specified by

L (V, V ) = {T : V → V } ,

where L (V, V ) = L (V ) = V ⊗ V , then the linear transformations T in L (V ) are second-

order tensors.

Hence, Q ∈ L (V ) is an orthogonal transformation, if the inner product of V for all

vectors u,y ∈ V is preserved:

Qu · Qy = u · y .

If Q is an orthogonal transformation, thus

1. QT = Q−1,

2. detQ = ±1,

3. |Qv| = |v|,

4. ℓ (Qv,Qu) = ℓ (v,u) ∈ [0, 90o],

and it forms an orthogonal group O (V ). Furthermore, if detQ = 1, so the orthogonal group

is a proper orthogonal group or a rotation group O+ (V ) because its elements represent

rotations.

Now, let a linear transformation T ∈ L (V ) be, such that

1. |det T | = 1,
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2. det T = 1.

The set of linear transformations T , which satisfies the first condition above, forms the

unimodular group U (V ) of the vector space, whereas the set of linear transformations T ,

which satisfies the second condition, constitutes the special linear group SL (V ) . Evi-

dently, O (V ) ⊂ U (V ) and O+ (V ) ⊂ SL (V ).

80



8 Appendix II

Let an arbitrary tensor O = A + B, such that A ∈ SYM (V ) and B ∈ SKW (V ). The

cross product of a vector y ∈ V with A [6, 29] is defined as

y ×A = eijkyiA(jl)ck ⊗ cl ,

whereas y ×B is given by

y ×B = eijkyiB[jl]ck ⊗ cl ,

where ǫijk = eijk is the permutation symbol when the basis ci is orthonormal.

Now, let the divergent of y ×A, which is defined in component form as

div (y ×A) =
(

eijkyiA(jl)

)

,l

=eijkyiA(jl),l + eijkyi,lA(jl) .

Since one has yi,l = δil, it follows that

div (y ×A) =eijkAji + eijkyiA(jl),l ,

which is reduced to

div (y ×A) =y × div (A)

=eijkyiA(jl),l ,

because eijkAji = 0.

In addition, the divergent of y ×B is also defined in component form as
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div (y ×B) =
(

eijkyiB[jl]

)

,l

=eijkyiB[jl],l + eijkyi,lB[jl] .

But, if the identity yi,l = δil is used, the vector identity above reduces to

div (y ×B) =y × div (B) + 2b̂

=eijkyiB[jl],l + eijkB[ji] ,

where b̂k = 1/2eijkB[ji] is the dual or axial vector associated with the skew-symmetric tensor

B.
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[45] MÜLLER, I. The coldness, a universal function in thermoelastic bodies. Archive for

Rational Mechanics and Analysis 41 (1971), 319–332.
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