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Resumo

Nesta tese apresentamos métodos numéricos para problemas de minimizacdo
com restrigdes. O Capitulo 1 estd baseado no artigo “Validation of an Augmented
Lagrangian algorithm with a Gauss-Newton Hessian approximation using a set of
Hard-Spheres Problems”, de Krejié, Martinez, Mello e Pilotta. O Capitulo 2 estd
baseado no artigo “Inexact—Restoration algorithm for constrained optimization”, de
Martinez e Pilotta, onde é considerado um novo método de tipo restauragio ine-
xata para um problema de minimizagdo com restrigbes gerais. O Capitulo 3 estd
baseado no artigo “Spectral Gradient method for linearly constrained optimiza-
tion”, de Martinez, Pilotta e Raydan, onde é considerado um novo método para um
problema de minimizagdo com restricoes lineares e canalizactes usando gradiente
espectral precondicionado e penalizacdo exponencial. O Capitulo 4 estd baseado
no artigo “A limited-memory multipoint secant method for bound constrained op-
timization”, de Burdakov, Martinez e Pilotta, onde é considerado um nove método
para um problema de minimizagio com canalizagbes usando uma estratégia de res-
trighes ativas e um método secante simétrico multipoint com memoéria limitada para
resolver um subproblema quadrético em cada face.

Abstract

We present numerical methods for constrained minimization problems. Chap-
ter 1 is based on the paper “Validation of an Augmented Lagrangian algorithm with
a Gauss-Newton Hessian approximation using a set of Hard-Spheres Problems”,
by Kreji¢, Martinez, Mello and Pilotta. Chapter 2 is based on the paper “Inexact-
Restoration algorithm for constrained optimization”, by Martinez and Pilotta, where
we introduce an inexact-restoration method for solving a general constrained min-
imization problem. Chapter 3 is based on the paper “Spectral Gradient method
for linearly constrained optimization”, by Martinez, Pilotta, and Raydan, where
we introduce a new method for this problem which uses exponential penalization.
Chapter 4 is based on the paper “ A limited-memory multipoint secant method
for bound constrained optimization”, by Burdakov, Martinez and Pilotta, where we
introduce a new method for bound constrained optimization that uses active set
methods for solving a quadratic subproblem in each face.
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Introducao Geral

O problema de minimizar uma funcao sujeita a restrigoes é um problema que
aparece em diferentes dreas das ciéncias e tecnologia e que tém muitas aplicagdes.
Embora, muitas vezes tais problemas podem ser formulados com grande simplici-
dade a resolucdo numérica deles pode ser um problema dificil. Portanto, é preciso
dispor de métodos competitivos e algoritmos eficientes destinados a resolver estes
problemas, e particularmente, quando esses problemas sfio de grande porte. Uma
vez proposto um novo método, e além de provar os resultados tedricos tais como con-
vergéncia, é de fundamental importancia fazer numerosos experimentos numéricos
para a validacéo do algoritmo. A validagdo de novos algoritmos requer a comparacao
deles com outros métodos computacionais j& bem estabelecidos (e ndo necessaria-
mente do mesmo tipo) para um mesmo conjunto de problemas.

O mais consolidado método do tipo Lagrangeano Aumentado atualmente dispo-
nivel é o implementado no pacote LANCELOT [24]. Apresentamos um novo algo-
ritmo, chamado ALBOX, baseado na idéia do Lagrangeano Aumentado. Ambos o0s
cédigos minimizam a funcio Lagrangeano Aumentado com canalizages nas varidveis
resolvendo um suproblema quadrdtico. A principal diferenca entre os cédigos é
que enquanto LANCELOT minimiza a quadrdtica na face determinada por uma
aproximacao do ponto de Cauchy generalizado, ALBOX procura o minimizador da
quadratica em toda a caixa da regidao de confianca do subproblema. Uma outra ca-
racteristica de ALBOX é que usamos uma surpreendentemente efetiva simplificacao
da Hessiana verdadeira do Lagrangeano.

Para fazer os experimentos numeéricos e comparacoes dos codigos usamos uma
familia paramétrica de problemas conhecida como Hard-Spheres Problem (HSP).
Estes problemas pertencem & familia de problemas de empacotamento, datam do
século dezessete e véarios deles continuam abertos. Além disso, estes problemas
estdo relacionados a problemas praticos em quimica, biologia e fisica. Para utilizar
LANCELOT com este problema foi necessério formular o HSP no formato SIF (Stan-



dard Input Format}, o formato utilizado no CUTE (Constrained and Unconstrained
Testing Environment) [10]. '

Ao formular um novo método de minimizagdo é conveniente explorar a estrutura
do problema, e particularmente, das restri¢des. Assim, e dependendo das restri¢des
propomos outros trés novos métodos para resolver o problema de minimizacéo de
uma funcgdo geral e continuamente diferencidvel, sujeita a trés classes de restricoes:
gerals, lineares e canalizagdes.

Para o primeiro método de minimizagio proposto consideramos um problema
com restrigdes nao lineares e varidveis em Q, um conjunto fechado e convexo do
espaco n-dimensional. Embora, na pritica estamos interessados no caso que €
seja um politopo. Muitos algoritmos para resolver este problema estiio baseados em
métodos factiveis, os quais tem a vantagem que, as vezes, solucdes factives ndo 6timas
s&o uteis nas aplicagdes, o que ndo acontece com as aproximacses ndo factiveis. A
dificuldade desta estratégia é que as vezes pode ser muito dificil obter essas aproxi-
magdes factiveis. Por outro lado, existem outros métodos opostos a esta idéia basea-
dos em Programacdo (Quadritica Seqiiéncial (SQP). Portanto, é interessante consi-
derar métodos do tipo restauracdo inexata onde a factibilidade é controiada em cada
iteragao com um mecanismo interno que determina o grau de precisdo requerida nas
restri¢coes. O novo algoritmo modelo gera aproximagctes factiveis com relacdo a 0.
Cada iteracao do algoritmo tem duas fases: Restauracdo e Minimizacdo. Dado um
ponto =¥, na fase de Restauragdo é achado um ponto intermedidrio y* em  tal
que a infactibilidade seja menor que a infactibilidade em z¥, e usando esse ponto
intermedidrio é construida uma regiao factivel aproximada. Na fase de Minimizagéo
é encontrada uma nova aproximacao na regido factivel aproximada usando uma es-
tratégia de regido de confianga. O novo ponto é aceito se o valor da funcio de
mérito nesse ponto ¢ menor que em z*. Se Q é um politopo as duas fases podem
ser formuladas como um problema de minimizacio com restri¢des lineares e algorit-
mos disponiveis para estes problemas podem ser usados. Para testar o novo método
fizemos uma implementacao que comparamos com LANCELOT usando o problema
HSP, obtendo 6timos resultados.

Para o segundo método proposto consideramos um problema de minimizacdo com
restricoes lineares de igualdade. Apresentamos um método Quase-Newton onde a
aproximacao secante satisfaz uma equagio secante fraca. O método pode ser visto
como um método gradiente espectral precondicionado, onde a atualizagio secante
¢ a matriz do precondicionamento e que pode ser reiniciada se algum indicador
da performance indique que seja conveniente. A escolha espectral do passo é um
quociente de Rayleigh que usamos, como fator na atualizacio secante, combinada
com uma busca linear nao mondtona. O préximo passo fol acrescentar canalizagtes
nas varidveis no problema inicial. Estas canalizagbes sdo incluidas na fun¢do ob-
jetivo com uma estratégia de penalizaciio exponencial. Para obter a dire¢go de
descida temos que resolver um problema de programacdo quadratica convexa em



cada iteracao. Uma conseqiiéncia da escolha espectral do passo é que a matriz KKT
associada € mantida constante a menos que o processo seja reiniciado e somente o
lado direito do sistema KKT muda nas iteragGes internas, portanto foi possivel ex-
plorar técnicas de fatoragdes esparsas. Fizemos uma implementacgao e apresentamos
alguns resultados computacionais.

Finalmente, no terceiro método consideramos um problema de minimizacdo su-
jeito a restri¢Oes de canalizagoOes, o qual é um problema muito importante em algo-
ritmos de otimizacdo pratica. Por um lado muitos problemas da fisica, engenharia
e problemas industriais tém esta formulagdo. Por outro lado, muitos algoritmos
de otimizaco, baseados em Lagrangeano Aumentado (LANCELOT, ALBOX), re-
solvern iterativamente subproblemas de minimizacdo com canalizacdes. Do mesmo
modo que esses algoritmos, no novo método é necessario resolver um subproblema
quadratico em cada iteragio mas as restricOes sao tratadas de um modo diferente. A
regido factivel é subdividida em faces e um algoritmo para minimizagao irrestrita é
aplicado em cada face até que algum pardmetro indique que néo seja conveniente con-
tinuar explorando essa face. Nesse caso a face é abandonada na direcao do gradiente
chopado [42]. Existem diferentes formas de calcular a matriz Hessiana do modelo
quadratico. A melhor alternativa é usar a Hessiana verdadeira embora, as vezes, é
muito caro computacionalmente de se calcular. Qutras alternativas possiveis, e que
mostraram ser eficientes, s80 as aproximagdes Quase-Newton BFGS ou SR1 com
memoria limitada. No nosso algoritmo calculamos aproximagdes da matriz Hes-
siana usando um método multipoint secante simétrico [11]. Esta estratégia é uma
extensao do classico esquema secante multipoint que explora a simetria da matriz
Hessiana. A idéia é que a aproximacao Hessiana deveria a ser tal que o gradiente do
modelo quadréatico coincida como o gradiente da funcdo objetivo em alguns pontos
anteriores. Como esta estratégia entra em conflito com a simetria, a informacéo das
iltimas iteragbes é privilegiada. Para testar a performance do novo algoritmo fize-
mos uma implementacao e mostramos alguns resultados numéricos com comparagoes
com LANCELOT.

Este trabalho estd organizado da seguinte forma: cada um dos quatro capitulos
seguintes contém um artigo em inglés de co-autoria do dissertante, o qual j4 foi aceito
para publicacao ou estd sendo submetido em alguma revista internacional, precedido
pelo correspondente resumo em lingua portuguesa. O Capitulo 1 estd baseado no
artigo “Validation of an Augmented Lagrangian Algorithm with a Gauss-Newton
Hessian Approximation Using a Set of Hard-Spheres Problems”, escrito em cola-
boracdo com Natasa Kreji¢ (Institute of Mathematics, University of Novi Sad, Yu-
goslavia), José Mario Martinez e Margarida Mello (IMECC~ Universidad Estadual
de Campinas), e que ja foi aceito e serd publicado em Computational Optimiza-
tion and Applications neste ano. O Capitulo 2 estd baseado no artigo “Inexact—
Restoration Algorithm for Constrained Optimization”, escrito em colaboragao com
José Mario Martinez e que j4 fol aceito e serd publicado em Journal of Optimization



and Applications (JOTA) no Vol. 104 Nro. 2 deste ano. O Capitulo 3 estd baseado
no artigo “Spectral Gradient Method for Linearly Constrained Optimization”, es-
crito em colaboragio com José Mario Martinez e Marcos Raydan (Departamento de
Computacién, Facultad de Ciencias, Universidad Central de Venezuela), e que foi
submetido para publicagdo em Journal of Optimization and Applications em 1999. O
Capitulo 4 estd baseado no trabalho “A limited-memory multipoint secant method
for bound constrained optimization”, escrito em colaboracao com Oleg Burdakov
(Computing Center, Russian Academy of Sciences, Moscow, Russia) e José Mario
Martinez, e que serd submetido para publicagdo proximamente. Por dltimo, apre-
sentamos algumas Conclusdes gerais deste trabalho, as Referéncias Bibliograficas e o
Apéndice, onde foi incluida a formulacio do Hard-Sphere Problems em formato SIF
(Standard Input Format), escrita em colabora¢io com José Mario Martinez, e que
foi aceita em Outubro de 1998 no conjunto de problemas testes CUTE (Constrained
and Unconstrained Testing Environment) [10].



Capitulo 1

Validacao de um algoritmo
Lagrangeano Aumentado com uma
aproximacao Gauss—Newton da

Hessiana usando o Hard—Spheres
Problem (HSP)

Resumo

E apresentado um algoritmo Lagrangeano Aumentado que usa aproximacdes
(Gauss-Newton da Hessiana em cada iteracio interna e € testado usando uma familia
de Hard-Spheres Problems (HSP). O modelo Gauss—Newton convezifica a aproxi-
macio quadratica da funcao Lagrangeano Aumentado aumentando a eficiéncia do
solver quadratico iterativo. O método resultante é consideravelmente mais eficiente
que o correspondente algoritmo que usa Hessianas verdadeiras. E apresentado um
estudo comparativo com o bem conhecido pacote LANCELOT.

ot



Validation of an Augmented Lagrangian Algorithm
with a Gauss-Newton Hessian Approximation
Using a Set of Hard-Spheres Problems

Natasa Kreji¢ *  José Mario Martinez f Margarida Mello f
Elvio A. Pilotta T

May 7, 1998

Abstract

An Augmented Lagrangian algorithm that uses Gauss-Newton approxi-
mations of the Hessian at each inner iteration is introduced and tested using
a family of Hard-Spheres problems. The Gauss-Newton model convexifies
the quadratic approximations of the Augmented Lagrangian function thus in-
creasing the efficiency of the iterative quadratic solver. The resulting method
is considerably more efficient that the corresponding algorithm that uses true

Hessians. A comparative study using the well-known package LANCELOT is
presented.
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1 Introduction

In recent years we have been involved with the development of algorithms based
on sequential quadratic programming [11] and inexact restoration [17, 16] for mini-
mization problems with nonlinear equality constraints and bounded variables.

The validation of these algorithms require their comparison with well established
computer methods for the same type of problems, which include methods of the same
family (as other SQP methods in the first case and GRG like methods in the second)
as well as methods that adopt a completely different point of view, as is the case
of Penalty and Augmented Lagrangian algorithms. The most consolidated practical
Augmented Lagrangian method currently available is the one implemented in the
package LANCELOT, described in [4]. This was the method used, for example, in
f11], to test the reliability of a new large-scale sequential quadratic programming
algorithm.

In the course of the above mentioned experimental studies we felt the necessity
of intervening in the Augmented Lagrangian code in a more active way than the
one permitted to users of LANCELOT. As a result of this practical necessity, we
became involved with the development of a different Augmented Lagrangian code,
which preserves most of the principles of the LANCELOT philosophy, but also has
some important differences.

Following the lines of [4], a modern Augmented Lagrangian method is essentially
composed by three nested algorithms:

¢ The external algorithm updates the Lagrange multipliers and the penalty pa-
rameters, decides stopping criteria for the internal algorithm and the rules for
declaring convergence or failure of the overall procedure.

e An internal algorithm minimizes the augmented Lagrangian function with
bounds on the variables. Trust region methods, where the subproblem consists
on the minimization of a quadratic model on the intersection of two boxes, the
one that defines the problem and the trust-region box, are used both in [4]
and in our implementation.

¢ A third algorithm deals with the resolution of the quadratic subproblem. While
LANCELQT restricts its search to the face determined by an approximate

generalized Cauchy point, our code explores the domain of the subproblem as
a whole.



The second item, specifically where it deals with the formulation of the quadratic
subproblem, is the one in which we felt more strongly the desire to intervene. On
one hand, we tried many alternative sparse quasi-Newton schemes (without success,
up to now). On the other hand, we used a surprisingly effective simplification
of the true Hessian of the Lagrangian, called, in this paper, “the Gauss-Newton
Hessian approximation” by analogy with the Gauss-Newton method for nonlinear
least-squares, which can be interpreted as the result of excluding from the Hessian
of a sum of squares those terms involving Hessian of individual components.

In order to validate our augmented Lagrangian implementation we selected a
family of problems in which we have particular interest, known as the family of
Hard-Spheres problems.

The Hard-Spheres Problem belongs to a family of sphere packing problems, a
class of challenging problems dating from the beginning of the seventeenth century.
In the tradition of famous problems in mathematics, the statements of these prob-
lems are elusively simple, and have withstood the attacks of many worthy math-
ematicians (e.g. Newton, Hilbert, Gregory), while most of its instances remain
open problems. Furthermore, it is related to practical problems in chemistry, biol-
ogy aund physics, see, for instance, the list of examples in [19], concerning mainly
three-dimensional problems, or peruse the 1550-item-long bibliography in [5]. The
Hard-Spheres Problem i1s to maximize the minimum pairwise distance between p
points on a sphere in R"®. This problem may be reduced to a nonlinear optimization
problem that turns out, as might be expected from the mentioned history, to be a
particularly hard, nonconvex problem, with a potentially large number of (nonopti-
mal) points satisfying KKT conditions. We have thus a class of problems indexed by
the parameters n and p, that provides a suitable set of test problems for evaluating
Nonlinear Programming codes.

Very convenient is the fact that the Hard-Spheres Problem may be regarded
as the feasibility problem associated with another famous problem in the area, the
Kissing Number Problem, which seeks to determine the maximum number X, of
nonoverlapping spheres of given radius in R” that can simultaneously touch (kiss)
a central sphere of same radius. Thus, if the distance obtained in the solution of
the Hard-Spheres Problem, for given n and p, is greater than or equal to the radius
of the sphere on which the points lie, one may conclude that K, > p. We use the
known solution of the three-dimensional Kissing Number Problem to calibrate our
code, described below, and choose for testing the code values of n, p that might
bring forth new knowledge about the problem, or strengthen existing conjectures
about the true (but, alas, not rigorously established) value of K,,, from the following
table of known values/bounds of X,, given in [5:



n Kon
1 2
2 6
3 12
41 24-25
5| 40-46
6| 72-82
71 126-140
8 240
9! 306-380
10 | 500-595
11| 582-915
12 | 840-1416

Table 1: Known values/bounds of ,,.

This paper is organized as follows. In Section 2 we formulate the Hard-Spheres
Problem as a nonlinear programming problem and we relate the main characteristics
of ALBOX, our Augmented Lagrangian Algorithm. In Section 3 we explain how the
main algorithmic parameters of ALBOX were chosen. (Here we follow a previous
study in [13].) In Section 4 we introduce the Gauss-Newton Hessian approximation
and discuss the effect of its use in comparison with the use of true Hessians of
the Lagrangians. In Section 5 we describe the parameters used with LANCELOT.
The numerical experiments, obtained by running ALBOX and LANCELOT for a
large number of Hard-Spheres problems, are presented in Section 6. Finally, some
conclusions are drawn in Section 7.

2 ALBOX

The straightforward formulation of the Hard-Spheres Problem leads to the following
maxmin problem, where r is the radius of the sphere, centered on the origin, on which
the points lie: ‘ '
max mingz; ||y =yl (1)
st. lyfli=2r, k=1,...,p
The vectors ¥* belong to R" and || - || is the Euclidean norm. Since the answer to

the problem is invariant under the choice of positive r, we let v = 1/2. Furthermore,
using the definition of {-,-), the standard inner product in R", and the constraints,



it is easy to see that (1) is equivalent to

min  mMax;z; (yiyj} (2)
st. |yfll=2r, k=1,...,p.

Applying the classical trick for transforming minimax problems into constrained
minimization problems, we reduce (2) to the nonlinear program

(3)
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Adding slack variables to the first set of constraints and squaring the second set
of equations in order to avoid nonsmoothness in the first derivatives, we obtain

min z
st. oz — (YY) — wy 0, Vi # (4)
™)1 =1, k=1,...,p,
w =2 (.
which is of the general form
min f{z)
st. h(z) = 0 (5)
f<z<u.
ALBOX, the augmented Lagrangian code developed, approximately solves
min  L{z, A, p)
st <z <u, (6)
at each Outer Iteration, where
L{z, A p) )+ Z Aihi(z) + Y pihi(z) (7)

is the augmented Lagrangian function associated with {5), A is the current approx-
imation to the Lagrange multipliers and p (> 0) is the current vector of penalty
parameters. These are updated at the end of the Outer Iteration.

Subproblem (6) is solved using BOX, the box-constrained solver described in [10].
This iterative method minimizes a quadratic approximation to the objective function
on the intersection of the original feasible set, the box ¢ < z < u, and the trust
region (also a box), at each iteration. If the original objective function is sufficiently
reduced at the approximate minimizer of the quadratic, the corresponding trial point
is accepted as the new iterate. Otherwise, the trust region is reduced. The main

10



algorithmic difference between BOX and the method used in [2] is that in BOX the
quadratic is explored on the whole intersection of the original box and the trust
region whereas in [2] only the face determined by an “approximate Cauchy point”
is examined.

ALBOX is a double precision FORTRAN 77 code that aims to cope with large-
scale problems. For this reason, factorization of matrices is not used at all. The
quadratic solver used to solve the subproblems of the box-constraint algorithm,
QUACAN, visits the different faces of its domain using conjugate gradients on the
interior of each face and “chopped gradients” as search directions to leave the faces.
We refer the reader to [1], [9] and [10], for details on the actual implementation of
QUACAN. In most iterations of this quadratic solver, a matrix-vector product of
the Hessian approximation and a vector is computed. Occasionally, an additional
matrix-vector product may be neccessary.

The performance of ALBOX, and, in fact, of most sophisticated algorithms,
depends on the choice of many parameters. The most sensitive parameters were
adjusted using the Kissing Problem with n = 3 and p = 12 (Icosahedron Problem).

We discuss these choices in the next section. A similar analysis was carried out for
LANCELOT, and is described in section 5.

3 Choice of parameters for ALBOX

3.1 Penalty parameters and Lagrange multipliers

The vector p of penalty parameters associated with the equality constraints A{z) = 0
are updated after each Outer Iteration. We considered two possibilities: to update
each component according to the decrease of the corresponding component of i(z)
or using a global criterion based on h{z). The specific alternatives contemplated
were, assuming z to be the initial point at some outer iteration and T the final one:

1. increase g; only if |h(Z);| is not sufficiently smaller than |h{z),|;
2. increase p; only if [|A(Z)]|« is not sufficiently smaller than |[A(2)]|e.

Preliminary experiments revealed, perhaps surprisingly, that the “global strat-
egy” 2 is better than the first. In fact, when p; is not updated, but the other
components of p are, the feasibility level [h{Z};| tends to deteriorate at the next
iteration and, consequentely, a large number of Outer Iterations becomes necessary.
In other words, it seems that a strategy based on 1 encourages a zigzagging be-
havior, with successive iterates alternatingly satisfying one constraint or another.
Thus, although the original formulation allows for one penalty parameter for each



equality constraint, in practice it is as if we worked with one parameter for all of
them, since they are all initialized at the same value (tests indicate that 10 is an
adequate initial value) and are all updated according to the same rule (once again
based on tests, they are increased by a factor of 10 when sufficient improvement of
feasibility is not detected). Here we considered that “o sufficiently smaller than ”
means that a < 0.015.

It must be pointed out that the behavior of penalty parameters is not inde-
pendent of the strategy for updating the Lagrange multipliers. With algorithmic
simplicity in mind, we adopted a “first order formula”. Letting A be the Lagrange
multiplier at the start of a new QOuter Iteration and A, p be the Lagrange multipliers
and penalty parameters at the previous iteration, we set

i = A+ ph{(E);

forall ¢ =1,..., m. Initially, A = 0.

3.2 Stopping criteria for box-constraint solver

Each outer iteration ends when one of the several stopping criteria for the algorithm
that solves the augmented Lagrangian box-constrained minimization problem {6) is
reached. There is the usual maximum number of iterations safeguard, which is set
at 100 for QUACAN calls.
Other than that, we consider that the box-constraint algorithm BOX converges
when
lgr(T)2 < &,

where gp(z) is the “continuous projected gradient” of the objective function of (6)
at the point z. This vector is defined as the difference between the projection of
z - VL(x, A p) on the box and the point . The tolerance ¢ may change at each
Quter Iteration. We tested two strategies for z: one that defines # dynamically
depending on the degree of feasibility of the current iterate and another that fixes
at 107%. Althought not conclusive, results for the Icosahedron Problem were better
when the constant ¢ strategy was used. This was, therefore, the strategy adopted
for further tests. Incidentally, the opposite was adopted in [8], where a similar
Augmented Lagrangian Algorithm was used to solve linearly constrained problems
derived from physical applications. Theoretical justifications for the inexact mini-
mization of subproblems in the augmented Lagrangian context can also be found in
[12, 13].

The box-constraint code admits other stopping criteria. For instance, execution
may stop if the progress during some number of consecutive iterations is not good
enough or if the the radius of the trust region becomes too small. Nevertheless, best
results were obtained inhibiting these alternative stopping criteria.
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3.3 Parameters for the quadratic solver

QUACAN is the code called to minimize quadratic functions (augmented Lagrangians
in this case) subject to box constraints. Its efficiency, or lack thereof, plays a crucial
role in the overall behavior of the Augmented Lagrangian Algorithm. Its parameters
must therefore be carefully chosen.

Firstly we examine the convergence criterion. If the projected gradient of the
quadratic is null, the corresponding point is stationary. Accordingly, convergence is
considered achieved when the norm of this projected gradient is less than a fraction
of the corresponding norm at the initial point. In this case, we use “non-continnous
projected gradients,” in which the projections are not computed on the feasible box
but on the active constraints. Fractions 1/10, 1/100 and 1/100000 were tested on
the Icosahedron Problem, and the first choice provided the best behavior, being the
one employed subsequently.

The maximum number of iterations allowed is also an important parameter, since
otherwise we may invest too much effort solving problems only distantly related to
the original one. We found that the number of variables of the problem, np+ (’5) +1,
is a suitable delimiter in this case. Other non-convergence stopping criteria were
inhibited.

The radius of the trust region determines the size of the auxiliary box used in
QUACAN. The nonlinear programming algorithm is sensitive to the choice of 4, the
first trust region radius. After testing different values, we selected § = 10 as an
appropriate choice.

Another important parameter is n € (0,1}, the parameter that determines
whether the next iterate must belong to the same face as the curreat one, or not.
Roughly speaking, if r is small, the algorithm tends to leave the current face as
soon as a mild decrease of the quadratic is detected. On the other hand, if n = 1,
the algorithm only abandons the current face when the current point is close to a
stationary point of the quadratic on that face. A rather surprising result was that,
for the Icosahedron Problem, the conservative value n = .95 was better than smaller
values.

Finally, when the quadratic solver hits the boundary of its feasible region, an
extrapolation step may be tried, depending on the value of the extrapolation pa-
rameter v > 1. If  is large, new points will be tried at which the number of active
bounds may be considerably increased. No extrapolation is tried when v = 1. Tests
indicated that v = 10 is a convenient choice for the Hard-Spheres Problem.
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4 Approximate Hessian

The nonlinear optimization problem (4) obtained in section 2 is the version of the
Hard-Spheres Problem that was chosen for our tests. It was pointed out that (4) is
of the general form

min f(z)
st. h{z) = 0
(< z<u.

whose associated augmented Lagrangian is

Liz. A p) = f(@) + (A h2)) + E[IA@) 3
Thus m
VL(z, A p) = Viz)+ 2 NV Ri(z) + ph' (2)T h(z)

and
m
VEL(z, X, p) = V2f(x) + +ph (@) h' () + D _[As + pha(2)] VP he(2).
i=1
Although V2L(z, A, p) tends to be positive definite when p is large, A is close to
the correct Lagrange multipliers and z is close to a solution, this is not the case
at the early stages of augmented Lagrangian calculations. On the other hand, the

simplified matrix obtained by neglecting the term involving second order derivatives
of the constraint functions

Bz, p) = V*{(z) + +ph'(z)" ' (z)

is always positive semidefinite in our case, independently of p and z. Of course, this
is always the case when f is a convex function.
Another insight into B(z, p) is provided by examining the problem

min f(z}
s.t. W{zjz—z)+h(z)=0 (8}
<z <u,

where z is the current point being used in a BOX iteration. Problem (8) is obtained
by replacing the original A(x) = 0 constraints with its first order (linear) approx-
imation. But B(z,p) happens to be the Hessian of the augmented Lagrangian
associated with (8) at z! Furthermore, both the augmented Lagrangian associated
with (8) and its gradient evaluated at z coincide with their counterparts associated
with the original probiem (4), evaluated at z.

The matrix vector products V2L(z, A, p)v and B(z, p)v seem cumbersome to
compute at a first glance. But taking advantadge of their structure enables the
computation to be done in O(np) time.

14



In principle, using the true Hessian of the Lagrangian should the best possi-
ble choice, since it represents better the structure of the true problem. However,
available algorithms for minimizing quadratics in convex sets are much more effi-
cient when the quadratic is convex than otherwise. QUACAN is not an exception
to this rule. Therefore, in the interest of improving the overall performance of the
augmented Lagrangian algorithm, we decided to use B(z, p) as Hessian Lagrangian
approximation.

The results were indeed impressive. Table 2 lists the average statistics obtained
for four of the eighteen test sets, where each (n,p) pair was run for fifty random
starting points. The average number of Outer iterations, BOX iterations, Function
evaluations, Matrix Vector Products, CPU time in seconds and minimum distance
are given for the runs using the exact Hessian (first row of each set) and the ones
using the approximate Hessian (second row). The minimum distances obtained
were very close and on some instances the minimum distance obtained using the
approximate Hessian was smaller than the one obtained using the exact Hessian.
While the number of Outer iterations does not differ very much from one choice to
the other, the number of BOX iterations and, consequently, the number of Matrix
Vector Products sensibly decreases. The overall result is 2 marked decrease in CPU
time. In Figure 1 we plot the average CPU times, for all eighteen tests, using the
exact Hessian versus the CPU times using the approximate Hessian. Also shown is
the line that gives the best fit of the data by a linear (not affine) function, namely
y = 0.374138 z, that is, the approximate Hessian option implies in a decrease of
almost two thirds in CPU times.

Problem size Quter | Box | Funct. CcrPU Min

- . . MVP , .

[p } var. jconstr.l it it. eval. time dist.

£ - Z.86] 37.00] B52.14] 1564.36] 0.765|L.086487225417
1011 T6] 59 .64 3474 4550 110470 0.476]1.083236334520
1] n IR0 OT. 10 T23.90] T6079.36 33.440[0.997314349536
o9 || 320 253 ISR O AN T2 T4 I0 03210.9978095 83365
N 500 974710 358 54 14268334196 3.53710.0086376 81285
371 852} 703 256 160.02 193.14 67020.221373. 141 U-00R6 75343042

Table 2: Running ALBOX with exact (first row) and approximate Hessian {second

TOw).
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Figure 1: CPU times using exact Hessian (z-axis) versus using approximate Hessian

(y-axis).

5 Choice of parameters for LANCELOT

LANCELOT allows for the choice of exact or approximate first and second order
derivatives. However, LANCELOT s manual [3] (p.111) “strongly recommends the
use of exact second derivatives whenever they are available”, and, on the other hand,
there is no provision for an user supplied Hessian approximation. In fact we ran a
few tests with the default approximation (SR1)} but the results were worse than
those obtained using exact second derivatives, and thus this was the option adopted
for all further tests. In the light of the experiments described in the previous section,
this provides corroborating evidence to the effect that general purpose, consolidated
packages, designed to provide a good performance with little interference from the
user, may be more convenient to use than open ended, low-level interface codes,
such as ALBOX; but, for the user willing to “get his hands dirty” the latter rawer
code might not only prove competitive, it may actually outperform the former code,
with its more polished though restrictive finish.

We also experimented with several different options for solving the linear equa-
tion solver, namely, without preconditioner, with diagonal preconditioner and with
a band matrix preconditioner. The best results were obtained with the first option
(no preconditioner}. Another choice that slowed the algorithm, without noticeable
improve the quality of solution, was requiring that the exact Cauchy point be com-
puted. We settled to use the inexact Cauchy point option. The maximum number of
iterations allowed is 1000. Finally, the gradient and constraints tolerances were the
same chosen for ALBOX, namely 1078 The FORTRAN compiler option adopted
for LANCELOT and ALBOX was “Q7".
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6 Numerical experiments

Tests were run on a Sun SparcStation 20, with the following main characteristics:
128Mbytes of RAM, 7T0MHz, 204.7 mips, 44.4 Mflops. Results for the fifty runs for
each (n, p) pair are summarized in the following tables. Table 3 summarizes the
statistics that are “machine independent,” typically involving number of iterations,
number of function evaluations, with the exception of the optimal distances found.
Quotes are needed because this is not completely accurate, since these numbers will
in fact depend on machine precision, compiler manufacturer, and the like. Never-
theless, they certainly provide more independent grounds for comparison than CPU
times, presented in Table 4, along with optimal distances.

Table 3 presents the mininum, maximum and average amounts of outer and BOX
iterations, function evaluations, Quacan iterations and matrix-vector-products/con-
jugate-gradient iterations (for Box and LANCELOT, respectively). First row of
each set corresponds to ALBOX and second to LANCELOT. Unfortunately the
only statistics available for both is the number of function evaluations. We paired
the number of matrix-vector-products (MVP) ocutput by ALBOX with the number of
conjugate-gradient iterations (CGI) produced by LANCELOT, since each conjugate-
gradient iteration involves a matrix-vector-product.

Although the algorithms behave very differently timewise, as we will shortly see,
this is not a direct consequence of the number of function evaluations each performs.
The best least-squares fit by a first degree polynomial gives y = 5.74631+0.855356 z,
where y is the number of function evaluations of ALBOX and z is the corresponding
amount for LANCELOT, whereas a similar fit involving CPU times will give a
coefficient of less than a third. On Figure 2 we plot the function evaluation pairs
for all eighteen instances along with the best fit obtained.



Problem size u Outer iter. BOX iter. Function eval. Quacan iter. MVP/CGI
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3] 103 79 2 Bl 3.7 18] 63| 35.7| 231 89] 48.06| 432 3302] 1547.86{ 497} 3677 1741.58
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Table 3: ALBOX x LANCELOT test results
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g var. | constrlmin.|max.{aver.|min.|max.| aver. {min.{max.|average| min. | max. | average | min. | max. | average
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Table 3: ALBOX x LANCELOT test resulis, cont.
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Figure 2: Number of function evaluations of LANCELOT versus ALBOX.

Further still from providing an explanation for the higher efficiency of AL-
BOX is the comparison of MVP versus CGL. In this case the best fit gives y =
—1320.36 -+ 1.10655z, where y is the number of MVP and z is the number of CGL
This suggests that, although both iterations involve a matrix-vector-product, a CGI
is substantially costlier, timewise, than the MVP performed in ALBOX. A main
factor for this is that the matrix-vector-product in LANCELOT’s conjugate gradi-
ent iteration deals with the true Hessian, whereas the one in ALBOX involves the
approximate (and simpler) Hessian. Figure 3 contains the line corresponding to the
best linear fit and the position of the (CGI, MVP) pairs.
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Figure 3: Number of CGIs of LANCELOT versus number of MVPs of ALBOX.
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Next we have Table 4, that presents similar statistics involving the optimal dis-
tances encountered and the CPU times, in seconds. The first (resp., second} row for
each (n,p) pair gives the numbers obtained by ALBOX (resp., LANCELOT).

The information contained in Table 4 is depicted graphically below. The in-
tervals (min., max) of distances/CPU times are represented by vertical segments,
the averages are indicated with a diamond symbol for ALBOX and a bullet for

LANCELOQOT. Graphs on the left refer to distances whereas graphs on the right refer
to CPU times.

min. CPU,
dist. time
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Figure 4: ALBOX {¢) and LANCELOT (e} results for n = 3.

The graphs in Figures 4-6 evidence the qualitative relative behavior of both
codes. Notice that the diamonds and bullets are always close together in the graphs
on the left, indicating that the quality of the optimal solutions obtained by both
codes is similar. On the other hand, the bullets rise faster than the diamonds on
the graphs on the right, which means that the CPU times for LANCELOT tend
to be higher than those for ALBOX. The linear fit of ALBOX CPU times versus
LANCELOT CPU times, y = 0.31054 z—the coefficient is less than one third—,
ploted in Figure 7 confirms this.

Finally, it should be noted that CPU times increase sharply as a function of
problem size (represented, for instance, by the number of constraints). We tried
several fits (linear, quadratic, exponential) and, though none seemed to provide a
very good model for the data, the quadratic fit was the best one.
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Problem size

mininum distance between 2 points

CPU time (seconds)

[ g } var. | constr. min. max. average min. max. |average
P 1.0514622 1.0914262[1.08323633] 0.170] 1.010] 0.476
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.22] 320) 253 0.9840223 1.0019880[0.99676146] 30.490] 209.270, 69.851
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[47 5731 300 |0-9630174 0.9999999/0.97698487] 14.830] 61.260/ 30.918
24 ] 0.9580083] 0.9828733[0.97519850] 43.160' 239.770! 112.781
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37 0.9911508| 1.0025367]0.99791248] 444.810/2501.760]/1154.082
(5710 go4l 7ap | 0:9864097) 0.9977500/0.99318755 186.1411988.719) 409.580
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. 39 | 0.9808159! 0.9920786/0.98811785! 502.380/3161.88011782.302
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Table 4: Minimum distances and CPU times
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Figure 5: ALBOX (¢) and LANCELOT (e) results for n = 4.
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Figure 7: CPU times of LANCELOT versus those of ALBOX.

7 Conclusions

The main aspects of the Augmented Lagrangian methodology for solving large-scale
nonlinear programming problems have been consolidated after the works of Conn,
Gould and Toint which gave origin to the LANCELOT package. This algorithmic
framework has been very useful in the last ten years for solving practical problems
and for comparison purposes with innovative nonlinear programming methods. Very
likely, this tendency will be maintained in the near future.

The present research was born as a result of our need to have more freedom
in the formulation and resolution of the quadratic subproblems that arise in the
LANCELOT-like approach to the Augmented Lagrangian philosophy. On one hand,
we decided to exploit more deeply the whole trust region by means of the use of a
box-constraint quadratic solver. On the other hand, perhaps more importantly, we
tested a Gauss-Newton convex simplification of the quadratic model which turned
out to be much more efficient than the straight Newton-like version of this model.
Behind this gain of efficiency is the fact that the quadratic solver, though able to
deal with nonconvex models, is far more efficient when the underlying quadratic has
a positive semidefinite Hesslan. It is usual, in Numerical Analysis, that a decision on
the implementation of a high level algorithm depends on the current technology for
solving low-level subproblems. It must only be warned that such a decision could
change if new more efficient algorithms for solving the subproblems (nonconvex
quadratic programming in our case} are found.

Our main objective is to use ALBOX, not only for solving real-life problems,
but also for testing alternative nonlinear programming methods against it. We feel
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that having a deep knowledge of the implementation details of the code will enable
us to be much more exacting when testing new codes, since it will be possible to
fine tune the standard against which the new code is tested. The present study,
apart from calling the reader’s attention to convex simplified Gauss-Newton like
subproblems, had the objective of validating our code, by means of its comparison
with LANCELOT, using a set of problems that have an independent interest. The
result of this comparison seems to indicate that ALBOX can be used as a competitive
tool for nonlinear programming calculations.

References

i

[2]

3]

4]

R.H. Bielschowsky, A. Friedlander, F.M. Gomes, J.M. Martinez and M. Ray-
dan. An adaptative algorithm for bound constrained quadratic minimization.
Technical report, Institute of Mathematics, State University of Campinas, 1995.

AR. Conn, N.ILM. Gould and Ph.L. Toint. A globally convergent augmented
Lagrangian algorithm for optimization with general constraints and simple
bounds. SIAM Journal on Numerical Analysis, 28:545-572, 1991.

AR. Conn, N.ILM. Gould and Ph.L. Toint. LANCELOT, a Fortran Package
for Large-Scale Nonlinear Optimization (Release A). Springer-Verlag, Berlin,
1992.

A. R. Conn, N. I. M. Gould and Ph. L. Toint. Global convergence of a class
of trust region algorithms for optimization with simple bounds. STAM Journal
on Numerical Analysis 25:433-460, 1988. See also SIAM Journal on Numerical
Analysis 26:764-767, 1989.

JH. Conway and N.J.C. Sloane. Sphere Packings, Lattices and Groups.
Springer-Verlag, New York, 1988.

K. Devlin. Mathematics: The Scicnce of Patterns. Scientific American Library,
New York, 1994,

M.A. Diniz-Ehrhardt, M.A. Gomes-Ruggiero and S.A. Santos. Comparing the
numerical performance of two trust-region algorithms for large-scale bound-

constrained minimization. In Revista Latinoamericana de Investigacion Opera-
tiva, Vol. 7, N. 1-2, pp. 23-54.

Z. Dostal, A. Friedlander and S.A. Santos. Augmented Lagrangians with adap-
tative precision control for quadratic programming with equality constraints.
To appear in Computational Optimization and Applications.

26



9]

[10]

[11]

A, Friedlander and J.M. Martinez. On the maximization of a concave quadratic
function with box constraints. SIAM Journal on Optimization, 4:177-192, 1994.

A. Friedlander, J.M. Martinez and S.A. Santos. A new trust-region algorithm

for bound constrained minimization. Applied Mathematics and Optimization,
30:235-266, 1994.

F. M. Gomes, M. C. Maciel and J.M. Martinez. Nonlinear programming al-
gorithms using trust regions and augmented Lagrangians with nonmonotone
penalty parameters. To appear in Mathematical Programming.

W. W. Hager. Analysis and implementation of a dual algorithm for constraint

optimization. Journal of Optimization Theory and Applications 79:427-462,
1993.

W. W. Hager. Dual techniques for constraint optimization. Journal of Opti-
mization Theory and Applications 55:37-71, 1987.

N. Maculan, P. Michelon and J. MacGregor Smith. Bounds on the kissing
numbers in R™: mathematical programming formulations. Technical report,
COPPE, University of Rio de Janeiro, Brazil, 1996.

J.M. Martinez. Augmented Lagrangians and the resolution of packing problems.

Technical Report 08/97, Institute of Mathematics, University of Campinas,
Brazil.

J.M. Martinez and E. A. Pilotta. Inexact-Restoration algorithm for constrained
optimization. To appear in Journal of Optimization Theory and Applications.

J M. Martinez. A Two-Phase Model Algorithm with global convergence for

Nonlinear Programming. to appear in Journal of Optimization Theory and
Applications, Vol. 96, Feb. 1998.

S.G. Nash. Preconditioning of truncated-newton methods. SIAM Journal on
Scientific and Statistical Computing, 6:599-616, 1985.

E.B. Saff and A.B.J. Kuijlaars. Distributing many points on a sphere. Mathe-
matical Intelligencer, 19:5-11, 1997,



Capitulo 2

Um algoritmo de Restauracao—

Inexata para minimizacao com
restricoes

Resumo

E apresentado um novo algoritmo modelo para resolver problemas de programacio
nio linear. Nao sdo acrescentadas varidveis de folga para tratar as restricbes de de-
sigualdade. Cada iteracdo do método procede em duas fases. Na primeira fase, é
melhorada a factibilidade da aproximacao atual e na segunda fase o valor da funcao
objetivo é reduzido num conjunto factivel aproximado. O ponto que resulta da
segunda fase é comparado com o ponto atual usando uma funcio de mérito que
combina factibilidade e otimalidade. Esta funcio de mérito inclui um parametro
de penalizagdo que muda em cada iteracio. Além disso, para este pardmetro de
penalizacao é implementado um adequado procedimento pelo qual esse parametro
pode crescer ou decrescer ao longo das iteragtes. As condigdes para a factibilidade
na primeira fase e para a otimalidade na segunda sio simples e o método resultante
admite implementagdes para problemas de grande porte. Provamos com adequadas
hipdteses, e sem usar regularidade ou existéncia de derivadas segundas, que todos
os pontos limites de uma seqiiéncia gerada pelo algoritmo sdo factiveis, e que uma
adequada medida da otimalidade pode ser feita tdo pequena quando se desejar. O

algoritmo é implementado e comparado com LANCELOT usando um conjunto de
Hard-Spheres problems.

29



Inexact—Restoration Algorithm for Constrained
Optimization

José Mario Martinez * Elvio A. Pilotta
September 29, 1998

Abstract

We introduce a new model algorithm for solving nonlinear programming
problems. No slack variables are introduced for dealing with inequality con-
straints. Each iteration of the method proceeds in two phases. In the first
phase, feasibility of the current iterate is improved and in second phase the
objective function value is reduced in an approximate feasible set. The point
that results from the second phase is compared with the current point using a
nonsmooth merit function that combines feasibility and optimality. This merit
function includes a penalty parameter that changes between different itera-
tions. A suitable updating procedure for this penalty parameter is included
by means of which it can be increased or decreased along different iterations.
The conditions for feasibility improvement at the first phase and for optimality
improvement at the second phase are mild, and large-scale implementations
of the resulting method are possible. We prove that under suitable conditions,
that do not include regularity or existence of second derivatives, all the limit
points of an infinite sequence generated by the algorithm are feasible, and that
a suitable optimality measure can be made as small as desired. The algorithm
is implemented and tested against LANCELOT using a set of hard-spheres
problems.

Key words: Nonlinear programming, trust regions, feasible methods, global
convergence, numerical experiments.
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1 Introduction

Feasible methods for solving minimization problems with inequality and equality
comstraints [1, 2, 17, 18, 20, 21, 22, 27, 28, 29, 30, 31} have a strong reputation
among practitioners of nonlinear programming and, for this reason, are incorpo-
rated to well known user-oriented libraries. The reason is that, very frequently,
feasible nonoptimal solutions are useful in engineering applications, whereas non-
feasible approximations are not, even when they are “quasi-optimal”. In the 80’s
very few papers in the mainstream of the optimization literature were dedicated to
feasible methods. That decade was dominated by SQP ({sequential quadratic pro-
gramming} models and the usual criticism against feasible methods was that it is
very difficult and, frequently, not worthwhile, to follow very curved feasible regions,
especially when the current approximation is far from the solution. In the last few
years (we write in 1998) many researchers realized that at least a subfamily of fea-
sible methods (those based on the barrier approach) was perhaps unfairly despised.
See [33]. Obviously, the barrier approach is not applicable to equality constraints
and must be combined with SQP-like schemes in order to deal with equalities.

The preference for feasibility cannot be ignored in practical applications but, on
the other hand, the SQP criticism based on high-curvature domains must also be
taken into account. These two facts motivated us to develop (see [18]) theoreti-
cally justified algorithms for constraints of the form h{z) = 0, £ < x < u where
feasibility is controlled at every iteration, with an internal mechanism that automat-
ically determines the degree of precision required in the constraints. An interesting
related method that does not use merit functions was introduced in [2]. We no-
tice that some practical SGRA algorithms [20, 21, 22} successfully used “Inexact-
Restoration” procedures in applications.

In (18] we need to introduce slack variables for dealing with ineguality constraints,
so that the feasible region takes the the canonical form above. This transformation
can increase the number of variables in an undesirable way, leading to expensive sub-
problems. Therefore, it is interesting to introduce Inexact-Restoration algorithms
that deal with inequality constraints without the slack—variable transformation.

Let us state the nonlinear programming problem in the form

Minimize f{z}
subject to Cz} <0, z€Q, (1}

where f : R" -+ IR and C : R® — IR™ are continuously differentiable and Q) C IR"
is closed and convex. In practice, we are mostly interested in the case in which @
is a polytope. Each equality constraint appearing in the original formulation of the
nonlinear programming problem can be transformed into two inequality constraints.

It will be seen that this does not increase the complexity of the method introduced
here.
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The new model algorithm generates feasible iterates with respect to Q {zF € Q
for all k = 0,1,2,...) Each iteration includes two different procedures: Restoration
and Minimization. In the Restoration Step (which is executed once per iteration) an
intermediate point ¥* €  is found such that the infeasibility at 4* is a fraction of the
infeasibility at z*. Immediately after Restoration we construct an approximation
7 of the feasible region using available information at *. In the Minimization
Step we compute a trial point ¢ € m; such that f(z%') << f(¥*) {<< means
“sufficiently smaller than” here) and ||z%% — y¥|| < &, where d; is a trust-region
radius. The trial point z*° is accepted as new iterate if the value of a nonsmooth
(exact penalty) merit function at z%° is sufficiently smaller than its value at z*. If
z%* is not acceptable, the trust-region radius is reduced.

When €2 is a polytope, the approximate feasible region = is a polytope too. So,
if || - ]| is the sup-norm, the Minimization Step consists of an inexact (approximate)
minimization of f with linear constraints. In that case, the Restoration Step also
represents an inexact minimization of infeasibility with linear constraints. Therefore,
available algorithms for (large-scale) linearly constrained minimization (see [13, 14,
23]) can be fully exploited.

As mentioned above, the new algorithm is related to classical feasible meth-
ods for nonlinear programming, such as the Generalized Reduced Gradient (GRG)
method and the family of Sequential Gradient Restoration algorithms (SGRA}. See
11, 2, 17, 20, 21, 22, 27, 28, 29, 30, 31]. However, in our approach the successive
approximations to the solution of (1} are not necessarily feasible (or nearly feasible)
with respect to C{z} < 0. In spite of that, the necessity of considering and probably
improving feasibility is taken actively into account at all the iterations. This strategy
is quite different than the one adopted in Sequential Quadratic Programming (SQP}
algorithms, where the trial point at each iteration is obtained after considering only
a linear model of the constraints.

The convergence theory developed in this paper has several points in common
with global convergence theories for different SQP-like algorithms with trust-regions
(see [5, 10, 12, 25, 26]), in particular the one developed in [15]. The new model
algorithm is also related to the method introduced in [18] for problems where the
constraints are given in the form C{z) = 0, =z € 2. In [18] the merit function
is an augmented Lagrangian, while here we consider the exact penalty-like merit
function used, for example, in [3, 4, 16, 23] for forcing convergence of SQP and
other nonlinear programming algorithms. Another remarkable difference is that the
algorithm introduced in this paper use trust-regions centered on the intermediate
point y* instead of the more usual trust-regions centered on the current point z*.
Consequently, only the Minimization Step is repeated after a reduction of the trust-
region radius.

A rigorous description of the new model algorithm is given in Section 2, together
with further motivation. In Section 3 we prove that the algorithm is well defined,
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that is, given a current point ¥ € Q that does not satisfy the stopping criteria,
a new iterate r*! is found after a finite number of reductions of the trust-region
radius. In the same section we prove that, when an infinite sequence is generated,
we obtain points arbitrarily close to feasibility. In Section 4 we prove that a quantity
that measures first-order optimality can be made as small as desired. In Section 5
we give an application and we describe the practical implementation oriented to
it. In Section 6 we compare our implementation against the well-known augmented
Lagrangian code LANCELOT. Conclusions are given in Section 7.

Notation.
In this work we use two (perhaps different) norms. We denote | - | a monotone
norm on JR™ (|v| < Jw| whenever 0 < v < w) and || - || an arbitrary norm on IR".

We denote C'(x) € IR™™ the Jacobian matrix of C(z) and Cj(z) = VCy{z)T
forall j=1,....m.
We also denote C; (z) = max{C;(z),0} and C*(z) = (C{ (z),...,C(z))T.

2 Description of the Model Algorithm

Before giving a rigorous description of the algorithm, we will comment some of its
main features.

2.1 Restoration Step

As we mentioned in the Introduction, given the current iterate z* € Q, the model
algorithm computes an intermediate “more feasible” point y* € 2. The conditions
that must be satisfied by 3* are

ICT (")) < rlCT ()] (2)

" — 2"} < BICH(2¥)]. (3)

where r € [0,1) and 8 > 0 are parameters given independently of k. Condition
(2) states the necessity of having an intermediate point at least as feasible as z*.
Condition (3) imposes that y* must be equal to 2% if the current point is feasible.

2.2 Approximate Linearized Feasible Region

After the computation of y* with the conditions (2) and (3) we define a linear
approximation of the feasible region of (1), containing the intermediate point y*.
This auxiliary region is given by

me={z € Q | C;(¢*) + Ci(¥")(z — v*) < CF (") whenever C;(v*) = —p}, (4)




where p > 0 is a parameter given independently of the iteration index k. So, 7
i the intersection of Q with the linear approximations of the sets C;(z) < Cj (¥*),
excluding the indices j that correspond to constraints that, according to the tol-
erance p, are strongly satisfied at ¢*. If p is large the approximate feasible region
takes into account all the constraints C;(z) < 0, independently of C;(y*). On the
other hand, if p is small, only the constraints violated at y* tend to be considered
in the definition of 7. In other words, if C;(y*) < —p, it is considered that the
approximation of the set C;(z) < 0 that uses information at y* is the whole space
IR". In principle, it should be better to use a large p, for this gives a more faithful
representation of the true feasible region. However, the subproblem involved in the
Minimization Step is simpler when p is small.

2.3 Minimization Step

The objective of the Minimization Step is to obtain zF € m N By, such that
{254 << f(y*), where

Bi,={zeR" | |lz~y*|| <} (5)

and dg; > 0 is a trust-region radius. The first trial point at each iteration is obtained
using a trust-region radius d . Successive trust-region radius are tried until a point
2% is found such that the merit function at this point is sufficiently smaller than
the merit function at x*.

The minimization step is preceded by the computation of the Cauchy-like direc-
tion (independent of 7}

dM = Po(y* — nV f(5F) - o, (6)

where P.(z) denotes the orthogonal projection of z on 7 and 1 > 0 is an arbitrary
scaling parameter independent of k. It turns out that d®*" is a feasible descent
direction for f on 7. Its norm will be used to define a convergence criterion for
the algorithm. The trial point y* + g% belongs to 7 but it does not necessarily
belong to By ;. So, we define the breakpoint y* + #(x i prear " by

tkipreak) = SUP {t € [0,1] | [¢F,¢F + td™""] C By} (7)

Moreover, the value of the objective function f at ¥ + i preak)d™™" is nOt neC-
essarily smaller than f(y*), therefore a sufficiently smaller functional value f(y* +
t(kﬁ-,de@dk’m”) must be obtained using a classical backtracking procedure. Finally,
¥ € mp M By, will be any point such that f(2%) < f(y* + tgideeyd™"). Al
ternatively, 2 can be any point of 7, N By; such that f(z5%) < f(y*) — 6y, or
f(25*) < f(y*) — 72, where 71 and 7, are nonnegative parameters of the algorithm.
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This means that, for computing the trial point z** in an efficient way, we can apply
any reasonable algorithm (with a mild convergence criterion) to the resolution of
the minimization problem

Minimize f(z) subject to z € mp N By, (8)

Clearly, (8) is a linearly constrained optimization problem if {| - || is the sup-norm.

2.4 Merit Function and Penalty Parameter

The comparison of z5% and z* involves the evaluation of a merit function at both
points. We decided to use the exact penalty-like nonsmooth merit function, given
by

Uz, 8) = 0f(z) + (1~ 6)|C7 (z}] (9)

where 8 € (0, 1] is a penalty parameter used to give different weights to the objective
function and to the feasibility objective. The choice of the parameter 8 at each iter-
ation depends of practical and theoretical considerations. For example, if |C7(z*)]
is large, the weight assigned to f(z) must be small, for it does not make sense to
worry about the functional values if the current point is far from the feasible region.
Qur choice of the penalty parameter automatically takes into account this practical
necessity.

Roughly speaking, we wish that the merit function at the new point should be
less than the merit function at the current point z*. That is, we want Ared;; > 0,
where Ared;;, the “actual reduction of the merit function”, is defined by

Aredk,i = ’(;ff(.??k, 91{,12) - gf)(zk’i, Hfm) (10)

So,
Ared; = O, (") = FM)) + (1= 8e)[|C7 (7)) - [CF (2]

However, as in unconstrained optimization, merely a reduction of the merit function
is not sufficient to guarantee convergence. In fact, we need a “sufficient reduction”
of the merit function, that will be defined by the satisfaction of the following test:

Aredk,i Z G.lPred;c,?;, (11)

where Pred;; is a positive “predicted reduction” of the merit function between e
and zF. In our case, we define

Predy,; = 0l f(2°) — f(2")] + (1 = ) [IC*(25)] - ICT ()] (12)

The quantity Pred,; defined above can be nonpositive depending on the value of the
penalty parameter. Fortunately, if 8¢, is small enough, Pred,; is arbitrarily close
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to |C(z¥}| = [C{y*)| which is necessarily nonnegative. Therefore, we will always be
able to choose §;; € (0,1] such that

Predy; > 5[1C*(z¥)] - [0 (")) (13)

When the criterion (11) is satisfied, we accept 7! = z5%. Otherwise, we reduce
the trust-region radius.

2.5 Description of the Model Algorithm

Assume that p > 0, 7> 0, 8> 0, 7 € [0,1), dmin > 0, 73 > 0,73 > 0 are algo-
rithmic parameters given independently of £ and Y 72, wy is a convergent series of
nonnegative terms. Suppose that z° € Q is an initial approximation to the solution
and that 6.1 € (0,1) is an initialization of the penalty parameter. Given z* € Q,
Or-1 € (0,1], Gk o > Omin, the steps for computing z°' or for stopping the process
are given by the following algorithm.

Algorithm 2.1
Step 1. Compute y*, d*"" and decide termination

Compute y* €  such that {2) and (3) hold. If this is not possible, stop the
execution of the algorithm declaring “failure in improving feasibility”. Otherwise,
set 7 - (), define

Bp—1 = min {1, min {6_y,..., 0,1} +wi}

and compute d**" using (6). If C*(z*) = 0 and d**" = () terminate the execution
of the algorithm declaring “finite convergence”.
Step 2. Minimization Step

Compute £ i preak) using (7). Define t(x; ey as the first term ¢ of the sequence
{tk,lv Te2s - } such that

FF +td™om) < Fy*) + 0.1V (), d5Fm), (14)
where {ty;} is defined by tx1 = tisprear) a0d tejp1 € [0.18x,, 0.9t ;] for all j =
1,2,...

Compute %% € 7, N BBy ; such that

FE*) < max {F8F + trsaead™), F8F) = Tides FOF) -7} (15)

Step 3. Choice of the penalty parameter
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Define, for all 8 € {0,1],
Predyi(6) = 6[(z) — F(2)] + (1= O)[1C*(H)] - [C* (]l

Choose 0, ; the supremum of the values of # in the interval [0, 6 ;_] such that

Prediy(6) > 5[1C7(#)] - 10* (")) (16)

Step 4. Acceptance or rejection of the trial point

Define Ared;; and Pred;; as in (10) and (12) respectively. If the test (11)
is satisfied, define z5** = 254 6, = O, ;, dacc(k) = i (“lacc” means “accepted ¢”)
and finish the iteration. If (11) does not hold, choose 8 ;.1 € [0.18k,;, 0.96,], set
i+ 1+ 1 and go to Step 2.

2.6 Some Remarks and Elementary Properties

By means of the introduction of the nonnegative parameters wy a “moderate” in-
crease of the penalty parameter between different iterations is permitted. This
prevents the possibility of inheriting artificially small penalty parameters from the
very beginning of the iterative process. It is easy to see that the sequence of
penalty parameters finally used at each iteration {6} is convergent. In fact, defining
gk,smaﬂ = min {9__1, sy gk} and ek,lm—ge = 8k,smal£ + Wi, WE see that 9k+1 < gk,Ir:Lrge
and O, > Ok smau for all k. Clearly, {6y jarge} and {8y smen} are convergent to the
same limit, so {6} is also convergent. We can also prove, by induction, that ;,; > 0
for all k1.

It is easy to verify that d®%" is a descent direction. In fact, since y* € m;, we
have that

1(* = 7V ™) = Py = oV F Nl S I16* = 0V F®) = v¥lla
Therefore,
ly* = Pt = oV F@NIE + 1nVFWOIE + 29(Pey® — aV F ) = oF V)
< Inv ),

80,
1 c
dk,tan’ v ky « dk,tcm 2 < kigan |12 17
(@ 1) €~ <~ a7)

where ¢ > 0 is a norm-dependent constant. We can use classical arguments for
justifying backtracking with Armijo-like conditions (see {11}, Chapter 6), to show
that t(;de) Is well defined at Step 2 of Algorithm 2.1. In other words, given the
current point z* and the trust-region radius dy; it is possible to compute, in finite
time, the trial point 2%%.
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3 General Assumptions and Consequences

From now on, we will suppose that the nonlinear programming problem (1) satisfies
the assumptions Al, A2 and A3 stated below. These will be the only assumptions
on the problem that are needed for proving convergence. In particular, no regular-
ity assumptions are used in the proofs and second derivatives of f and C are not
assumed to exist.

Al. Q is convex and compact.
A2. The Jacobian matrix of C'(x) exists and satisfies the Lipschitz condition

1C'(y) ~ C(@)ll < Lilly - zff for all 7,y € Q. (18)
A3. The gradient of f exists and satisfies the Lipschitz condition

IVI(y) = V@ < Lally ~ 2l for all z,y € Q. (19)

Due to the equivalence of norms on IR", similar conditions to (18) and {19} hold
if we consider different norms than || - [, So, in order to simplify the notation, we
can assume that (18) and (19) hold with the same constants L, and Ly for all the
norms considered in this work. From these Lipschitz conditions it follows that

1Cty) - Cz) - C'a)w — )l < 2y = P (20)
and I
£6) = F(@) Vi) y -2} < 2y~ = o)

for all z,y € Q. Again, we can assume, without loss of generality, that (20) and (21)
hold for different norms with the same constants and that

Cy) ~ Cy(x) = Cya)ly - 2)| < Ly~ (22)

forall 7=1,...,m.

The assumption on the boundedness of {2 can be replaced by hypotheses that
state boundedness of a set of quantities depending on the iterates. This is frequently
done in global convergence theories for SQP algorithms. We prefer to state directly
Assumption Al since it seems to be the only reasonable assumption on the problem
that guarantees boundedness of the required guantities.

The following theorem is directly deduced from the general assumptions. It states
a bounded deterioration result for the feasibility of 2% in relation to the feasibility
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of y*. Briefly speaking, we prove that only a second order deterioration of feasibility
can be expected for a trial point = € 7.

Theorem 3.1. There exists ¢, > O (independent of k) such that, whenever y* € Q
is defined and x € wy, we have

IC* (@) < ICH(H*)} + eallz — ¥*f? (23)

Proof. Let j € {1....,m}. By the compactness of 2 and the continuity of C; there
exists p > 0 such that whenever C;(y) < —pand Cj(z) > 01it holds that [[z—y{| = p.
If CF (z) = 0, the inequality

Cf(z) < CF () (24)

holds trivially. If C;(z) > 0 we analyze three different cases.
Case 1: If C;(y*) > 0 (so CF (y*) = Cj(y*)) we have, by (22) that

Cy(x) < Cyh) + Ch)a — o) + il - 12

=3
So, if x € 7k,

Ci@) < G + Lz - 1
Therefore,

CH@) < OF () + L - I (29)

Case 2: 1 0 > C;(y*) > —p (so Cf (y*) = 0) and = € 7, we have that C;(y*) +
C}(yk)(if — %) < 0. But, by (22) we have that

0i(2) < Cy(6) + O (e~ 1) + Sz = 2
So,

L, | | L
Ci(a) < Zllo = o*1P = C7 (6") + Sz ~ oI

This implies that (25} also holds in this case.
Case 3: Now consider the case C;(y*) < —p (so Cf (y*) = 0). Let us define
p1 = max {C;{z), = € Q}. Clearly, we have that

Cf (@) < C7 )+ Blle - (26)
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for all x € Q2.
The desired results follows from the monotonicity of the norm |- | using (24),
(25) and (26). O

In the next theorem we compute the decrease of the objective function that can
be expected when we move from 3* to 2%+

Theorem 3.2. There ezist ¢ > 0, ¢3 > 0 (independent of k) such that, whenever
y* € Q is defined and z** is computed at Step 2 of Algorithm 2.1, we have that

F(Z5) < f(y*) — min {r, colld™®|%, 710k, calld®™™||6k}.

Proof. By (21) we have that
; L?! 2
£0) < 5(&) + (VF )y - )+ Zly -]
for all z,y € Q. So, since y* + d**" € (1 we have, for all ¢ € [0, 1], that

F* + 1) < FlyF) + ¢V F(yF), dP) + —=

= F(%) + 0.16(V £ (1), &) + 0.90(V f(4), a0 + =2

So, {17) implies that

2 Lo,
2

Idk tanH2

o.gctigd’famnuﬁ #2 L2
2n

k,tan ]2
= f(g*) + 0KV F (), do*m) + t—“ir”—(mz - 9*?).

f(yic + tdk,mn) S f(y'“) + O.lt(Vf(y’“), dk,tan> " “dk mnH

Therefore, if ¢ < 0 9" , we have that

Fly® +td>) < F(¥F) + 0.16(V F (¥, 455",

This implies that t; ey = min {¢(k:preak)s nL;

NOW, f(4ibrect) = min {1, . mnu} So,

0.09¢ 5};’2‘ }
Ly ="

t(k,i,dec) > min {1:
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Thus, by the definition of £(; ; gec), it follows that

0.009¢  0.18,

k e i de dk,tan < kY : 1 k . k., tan )
F" + tpiged™™) < f(y"} + min {0.1, L ,”dk,mH}Wf(y ), &7 )

So, by (17), we obtain

e R P i

k k.tan k :
+tiki.dec 4 < - 11 s 3
f(y {ki,dec) ) = f(y ) imn { o : 27}2L2 2n

Therefore,
P+t ") < F(4) = min {ea ¢4 2, exbiljd o],

_ ; 0.lc 0.009% _ 0.lc
where ¢, = min {55, 355 }and ¢3 = o

The desired result follows from the last inequality and {15). O

In the last theorem of this section we prove that Algorithm 2.1 is well defined.
This amounts to show that, for small enough 6,;, the inequality (11} is satisfied and,
so, the trial point z** is accepted as new iterate.

Theorem 3.3. Algorithm 2.1 is well defined.

Proof. Observe that
Ared;; — 0.1Pred;;

= 0.90, £ (%)= F (z5)]+(1=0,.)[|CT (@F) |- |CH ()] ~0.1(1-8, ) | C* (aF) |- O7 ()]
= 090, :[F(z*) — F(Z"))] +0.9(1 — 6:.)[|CT (z")] = [CT(¥*)]]
+{1 = 0 )[CT (") = 1CHEH)] = (1 = ) [|CT (7)) = 1CT ()]
= 0.9Pred;; + (1 - 8,.)[|CT (") — [CT(zF)]].
So, by (13} and (2),

Ared,; - 0.1Pred;,; > 0.45[|C7 (a%)| - |CT(4")] = [({IC* (v")] = ICT ("))

2> 0.45(1 = r}|C* (z*)] - [ICH (&) = ICT (")),
Therefore, if |CT(zF)| > 0, since ||y* — 2" < &, and |C¥(z)| is continuous, it
follows that Aredy,; — 0.1Pred,; > 0 if d;; is small enough. So, we proved that the
algorithm is well defined if the current point z* is infeasible.
If z* is feasible, {3) implies that v* = z* and |C*(y*)| = 0. If d**" % 0 we have
that f(zF) < f(y*) for all i = 0,1,2,.... So, the condition {13) is always satisfied
and, consequently, fy; = 1 for all 4 = 0,1,2,... Therefore, in this case, we have

Aredy, = 0.1Predy; = 0.9, 1[f(y*) = F()] = (1= )| (5)].
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So, by Theorems 3.1 and 3.2, we obtain that
Ared, ;—0.1Pred;; > 0.96, _; min {7, |/ d"™ |12, 7105, cal|d™™ |16 i Y —c; || 25—y ||

Therefore, (11) holds if

8k < min {(

0.96), 17 0.96; _1c  ksany 090k T
; 1 2)1/27( Kyl 2}1/2iidk’t H, ko1 l’
1 €1 C1

(0.991;3_.163
a1

),
So, we proved that z°*! is well defined when z* is feasible and d*#" % 0. O

The next theorem is an important tool for proving convergence of the model
algorithm. We are going to prove that the actual reduction Aredy ;... effectively
achieved at each iteration necessarily tends to 0. An immediate consequence will be
the feasibility of the limit points generated by the algorithm.

Theorem 3.4. Suppose that Algorithm 2.1 generates an infinite sequence. Then

lim ’l./i(fku gk) - w(ajk-{’l: gk) =0

k—00

Proof. Suppose, by contradiction, that there exists an infinite set of indices K; C
{0,1,2,...} and a positive number v > 0 such that

(@ ) < (2, 8:) —

for all k € K. Let us write vy = ¥(z*,6;) forall k € {0,1,2,...}.
Then, for all k € {0,1,2,...} we have that

Ure1 = Oes F(2"71) + (1 = ) [C7 (251))]
= Orer f (257 + (1 = By ) [CH ()] = (B f(2571) + (1 = ) |CF ()]
+Bef (") + (1 = ) |C ("))
= (Bes = O6) F(2F) + (B = Ba) IO + [0 F (@) + (1 = 6)1C7 ()]
= (B = Oe)(ICT (@™H)| = F(&*F1)) + (60 f (=) + (1 = 0)ICF (2")]] = we
= (0 = Op) (T = F@™)) + e — n, (27)

where 7, > O forall £ € {0,1,2,...} and v, > v > 0 for all k € K. Now, by the
definition of #; _; at Algorithm 2.1, we have that

Ok — Oxs1 +wi > 0. (28)
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forall k € {0,1,2,...}. By the compactness of {2, there exists an upper bound ¢ > 0
such that

ICT(a")| — f(a¥)| < ¢
for all k € {0,1,2,...}. Therefore, by (27) and {28), we have that
Bior = (6 = Oy + ) (ICHE )] = F@T) + 5 — 3 — s (ICF @) = F(2571))

< (Bj — 93'_;..1 -+ (.dj)C"?— sz’j — Y W= (9_'., - 9j+1)c+'§ifj -~ ¥ -+ ijc

for 7 = 0,1,...,k — 1. Adding these k inequalities, we obtain

k-1 k—1 k-1 k—1
e < Yo + (90 mgk)C“i"ZQCOJj-— Z’yj < ng+2C+ZQCWj“ Z"}’j (29)

for all k > 1. Since the series 3752, w; is convergent, and +; is bounded away from

0 for k € K, (29) implies that ¢4 is unbounded below. This contradicts the com-
pactness of 2. O

An easy consequence of Theorem 3.4 is that, when Algorithm 2.1 generates an in-
finite sequence (that is, it is not stopped at Step 1}, we have that limy o [CT{(zF)| =
0. This means that points arbitrarily close to feasibility are eventually generated.

Theorem 3.5. If Algorithm 2.1 does not stop at Step I for all k =0,1,2,..., then

lim |C*(z*)| = 0.

k—ro0

(In particular, every limit point of {z*} is feasible.)
Proof. By (2), (11} and (13) we have that

|C*(z*)| ~ [C*(y*)] 2 |
1 -7 < 1~ TPredk,iacc(k} < 1

e

C* () <

. TAredk:,iacc(k)

20 ,
= 1—““[@)(.’1"{:, Bk) - w($k+1’ 619)]

So, the desired result follows from Theorem 3.4. O

4 Convergence to Optimality

In the former section we proved that, if the algorithm does not break down at Step 1,
it achieves approximate feasibility up to any desired precision. In this section we are
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going to prove that, in that case, the optimality indicator ||d***™™}| cannot be bounded
away from zero. In practice, this implies that given arbitrarily small convergence
tolerances €feas, ope > 0, Algorithm 2.1 eventually finds an iterate z* such that
BCH(z®)|| < £eas and [[d**™| < e,,. For proving this result, we will proceed by
contradiction, assuming that |[d®*"|| is bounded away from zero for k large enough.

From this hypothesis (stated as Hypothesis C below) we will deduce intermediate
results that, finally, will lead us to a contradiction.

Hypothesis C. Algorithm 2.1 generates an infinite sequence {z*} and there exists
e>0, ko€ {0,1,2,...} such that

|5 > & for all k > k.

Lemma 4.1. Suppose that Hypothesis C holds. Then, there exist cg,cs > 0 (inde-
pendent of k) such that

FWF) = F(z%) > min {c;, c5054}

forall k > ko, i =0,1,..., tacc(k)
Proof. The result follows trivially from Theorem 3.2 and Hypothesis C. O

Lemma 4.2. Suppose that Hypothesis C holds. Then, there exist «, &, > 0, inde-
pendent of k and ¢, such that |C*(z*)] < min {e,, ads;} implies that O ; = Br 1.

Proof. Observe that |
Predy (1) = f(z*) - f(z*)
> flF) = f(5) = 1F(@*) = FO0P)] = FF) = FEH) = el — 2F)]

where ¢ is a constant that only depends on the norms and on a bound of ||V f(z)]|
on 1. Therefore, by (3), and Lemma 4.1,

pmﬁm&n-gcwuﬁnz min {ee, 560} — (¢ + 0.5)|CH(z5)].

Define
e m-mu-———-——04 O = CS
¢ +0.5° ¢+ 0.5

If |C*(z*)] < min {1, ad} we have that

&1

Pwﬁgn—%wwﬁﬁza
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This implies that any value of #,; in the interval [0, 1] satisfies (13). In particu-
lar ) ;1 satisfies (13}, as we wanted to prove. 0O

In the next Lemma, we prove that, under Hypothesis C, the penalty parame-
ters {fx} are bounded away from zero. It must be warned that this is a property
of sequences that satisfy Hypothesis C (which, in turn, will be proved to be non-
existent!) and not of all the sequences effectively generated by the model algorithm.

Lemma 4.3. Suppose that Hypothesis C holds. Then, there exists 6 > 0 such that
6. > 8 for all k € {0,1,2,...}.

Proof. We are going to show first that, if |C*(z*)| is sufficiently small, a step dx,
that satisfies o
CH ()] > —6is 30
C*a)] > i, (30)
18 necessarily accepted, where « is defined in Lemma 4.2.

In fact, assume that (30) holds. Then, by (13) and (2},

] =7

1-7a.
3 0

20 M

C* (=) 2

Predy; > 5(10%(a%)] ~ I+ (/)] 2

So, (30} implies that

6. < 20

i _T)a]?redkﬂ-. (31)

Now, by Theorem 3.1,
Aredkﬂv = PIEd]g’i -+ (1 - Qkﬂ)EIC“'(yk)[ - EC*(zk"‘)[] Z Pl‘edk,i - Clég,i-
Therefore, by (31), {30) implies that

Ared;; > Pred;; — palle! op;Pred;; > (]_ _ l).?_@__
' ’ a ’ (1—rja?

= F;)—— IG*’(a:k)l)Predk,z-.

So, if (30} holds and |C*(z%)] < %, the trial point 257 is necessarily accepted.
Let us define
0.9(1 — r)a?

20001
where £; is defined in Lemma 4.2. Let k; > k; be such thalt |C*(z*)] < &5 for
all £ > ki. Since o > Jgig—kl- this implies that ézo > Ez—éﬂ«}l for all & > k;.

. . . ! E
Therefore, a possible trust region radius such that 6, < i%f—ﬁ cannot correspond
to 7 = 0, so it is preceded by dr,—; which necessarily verifies

C* )]

&

g = min {Ely 7&51’71?1??.}:

dpi-1 X 10
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By the reasoning dispiayed above, the trial point 25! is accepted for all k > k.
+
Therefore, 6z ; > w forall k > ky, i =0,1,...,4acc(k). So, by Lemma 4.2, the

penalty parameter 6 ; is never decreased for all & > k;. This implies the desired
result. O

Finally, we prove, in Theorem 4.4, that Hypothesis C cannot be true.

Theorem 4.4. Let {z*} be an infinite sequence generated by Algorithm 2.1. Then,
there exists Ko, an infinite subset of {0,1,2,...}, such that

: ktanl .. <
lim a7 = 0. (32)

Proof. Suppose that the thesis of the theorem is not true. Then, there exists
ks € {0,1,2,...}, € > 0 such that Hypothesis C holds.
As in the beginning of the proof of Theorem 3.3, observe that, by Theorem 3.1,

Ared;; — 0.1Pred;;
= 0.9{0ka[f (¥) = F ()4 (1= 86 ) [|O7 ()| = O™ () I+ (1B ) (IO (5 | -ICF ()]

> 0.9k, f (y") = F(2*)] + 0.96,,[f (c") — f(¥")] = (1= 1)ICH(")] = erdi s
So, by Lemma 4.1, Lemma 4.3, and (3),

A.I‘edkﬂ; - O.IPredk,i > Ogg min {64, 055;;,1-} - C]C’+($k” - 615}%,@‘

for all £ > ko, ¢ = 0,1,1acc(k), where ¢ is a norm-dependent constant that also
depends on a bound of ||V f(z}| on Q.
Let us define

§ = min {(0.450¢,/c;)*/?,0.450¢5 /¢, }.
If dp s < & we have that
1645 < 0.456 min {cq, c504,},
so, when d;; < 5, we have that
Ared;; ~ 0.1Pred;; > 0.450 min {cq, ¢s8e,} — ¢|C7 (zF)] (33)

for all k > kg, i = 0,1, acc(k). Let ks > kg be such that

c|C*(z")] < 0.450 min {e,, 651%} (34)
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for all k = k2. By (33) and (34) we have that, for all &k > ky, if i € {0,1,2,...}
corresponds to the first trust-region radius 6y ; less than or equal to d (so, & > 8y >
]
160>

Aredk,i bt U‘lPredk,i Z 0.

This means that d;; > E% must be accepted. Therefore,

)
Ok iace(k) = 10

for all k > ks. So, if k > k; we have, by Lemma 4.1, Lemma 4.3 and (3), that
Predg ace(r) = Ok iaccin[f (&%) — F(25)] + (1 - Br jacety) [ICT (=%)] — |1CF ()]
= gk,z’acc(k}gf(yk)"f(zk’z)i+9k¢acc(k){f($k)"’”f(yk)]+(1~9k,mcc(k))ﬂc+(f‘»’k)I"!C+(yk)H

> BL5(1) = FE]= £ = £ =107 ()] 2 8 min {es, 55} ~¢[C* (24)] (39

for all £ > k,, where ¢’ is a constant that depends on the norm and the bound of
IV f(z)|l on Q. Now, let k3 > k4 be such that

(3545
o)

for all & > k3. By (33), Pred; ;occr) is bounded away from zero for all k& > k;.
This implies, by (11), that Aredy j...x) is bounded away from zero for all &£ > ;.
Clearly, this contradicts Theorem 3.4. This means that Hypothesis C cannot be
true. Therefore, the desired result is proved. O

10+ )] < ¥ min fes

5 Application: Hard-Spheres Problems

The Hard-Spheres problem belongs to the family of sphere packing problems, a class
of challenging problems dating from the beginning of the seventeenth century which
is related to practical problems in Chemistry, Biology and Physics (see [7, 32]).
It consists on maximizing the minimum pairwise distance between ¢ points on a
sphere in JR¥™. This problem may be reduced to a nonconvex nonlinear optimization
problem with a potentially large number of (nonoptimal) points satisfying optimality
conditions. We have, thus, a class of problems indexed by the parameters dim and g,
that provides a suitable set of test problems for evaluating nonlinear programming
codes.
The straightforward formulation of the Hard-Spheres problem is:

Maximize — minge; |lut — w?|]

subject to |Jw*||=1,k=1,...,q, (36)

where the vectors w* belong to R¥#™ and | - || is the Euclidean norm.

47



This is equivalent to
Minimize 1nax;z; (w',w’)
subject to [[wFP—1=0,k=1,...,¢q

Applying the classical trick for transforming minimax problems into constrained
minimization problems, we reduce (37) to the nonlinear program

(37)

Minimize z
subject to (w',w’) ~2z < 0, foralli# j, (38)
fw P ~1 = 0,k=1,...,q

The structure of the Hard-Spheres problems suggests a natural Restoration Step,
which does not rely on sophisticated algorithms for solving (2)-(3). Assume that

¥ = {wh, ..., w9 z) is the current point at the k—th iteration. Replacing
o
e e — = 1,...,¢
[jw? |
and

z ¢ max{{w’,w’), i # j}

we obtain a point z = (w',..., w7, z) that satisfies exactly the constraints. If {3) is

violated by z (so |z — z¥|| > BIICT(z*)]]), we replace x by z* + %%%u(:c — z*).
If this point violates (2) we declare “failure in improving feasibility” at the Restora-
tion Phase. In our experiments we used 38 = 4,r = 0.99. Obviously, this restoration
procedure relies on the specific structure of the constraints (38) and we take advan-
tage of the freedom allowed by the Inexact-Restoration algorithm on the choice of
the restored point.

For the Minimization Step we use the well-known linearly constrained minimiza-
tion solver implemented in the MINOS system, Version 5.4 (see [24]). The problem
to be solved by MINOS is to minimize the variable z on the intersection of polytope
defined by the linearization of the inequality constraints of (38) and the trust region
box around of y*. We used the defaults of MINOS for optimality and feasibility and
the “Warm Start” option at each Minimization Step. Since the subproblem solved
by MINOS is a Linear Programming problem, we can assume that MINOS finds a
global solution, so that the inequality f(2%) < F(y* + tisde)d ™) (see (15)) nec-
essarily holds. Therefore, in this case it is not necessary to specify the parameters
71, T2 and 7. In practice, each execution of MINOS was stopped with the default
convergence criterion relatively to the norm of the reduced gradient and signs of the
multipliers.

The nonnegative sequence for the penalty parameter of the merit function at
Step 1 of Algorithm 2.1, was w; = g, Where no = g X dim + 1 and the initial
penalty parameter was #_; = 0.5. After some preliminary tests we used p = 10.
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We used the following criterion to update the trust region radius dz,;. If the
sufficient reduction condition (11) does not hold at Step 4 in Algorithm 2.1, we set
Skiv1 = Ori/8. On the other hand, to restart at the beginning of an iteration, we
set, 5k,€3 = ma‘x{émm, 4519”1,@&:}7 with émin = 5(;,0 = (.5.

The theoretical properties of the Inexact-Restoration algorithm guarantee that,
if break-down does not occur at the Restoration Step, then given any ¢ > 0 there
exists k such that [|C*(z*)|| < e and [jd**"|| < . In our practical implementation
we declared “convergence” when [[C*(z*)|l < 1073 Since z* comes from the
Minimization Step performed by MINOS, when this occurs we necessarily have that
dk—l,tcm, =~ 0.

Let us comment now the choice of the parameters of LANCELOT. The manual
[6] {p.111) “strongly recommends the use of exact second derivatives whenever they
are available”. In fact we ran a few tests with the default approximation SR1 but
the results were worse than those obtained using exact second derivatives, and thus
this was the option adopted for all further tests. We also experimented several dif-
ferent options for the linear equation solver: without preconditioner, with diagonal
preconditioner and with a band matrix preconditioner. The best results were ob-
tained with the first option {no preconditioner). Moreover, after some preliminary
tests, we decided to use the “inexact Cauchy point” option. The maximum number
of iterations allowed was 1000. Finally, the gradient and constraints tolerances were
the same chosen for the Inexact-Restoration algorithm, namely 107%. Both codes
are in FORTRAN and the compiler option adopted for both was “-0O”.

6 Numerical experiments

Tests were run on a Sun SparcStation 20, with the following main characteristics:
128Mbytes of RAM, 70MHz, 204.7 mips, 44.4 Mflops. We ran both codes using
50 initial random points for each problem. The results are summarized in Table 1.
This table lists the eigtheen problems with the number of variables and constraints
and the statistic information related to the minimum distance between two points
(minimum. maximum, average) and CPU time {minimum,maximum, average) us-
ing the Inexact-Restoration algorithm {first row of each set) and the ones using
LANCELOT (second row).

The information contained in Table 1 is depicted graphically below. The intervals
{min, max) of distances/log(CPU times) are represented by vertical segments, the
averages are indicated with a diamond symbol for the Inexact—Restoration algorithm
and a bullet for LANCELOT. Graphs on the left refer to distances whereas graphs
on the right refer to log(CPU times).
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Problem size minimum distance between 2 points| CPU time {seconds)
2 var. |constr. min. max. average min. | max. |average
[3} 1| sy | L0514622) 1.0914262] 1.0822176) 0.46] 0.79) 0.6
10 1.0514656] 1.0914302] 1.0874007| 0.83] 2.51] 1.50
[3} 11 g |.1:0514622] 1.0514622 10514622) 0.64 0.91] 0.76
11 1.0514656| 1.0514656| 1.0514656] 1.10, 3.92] 1.81
{3} 37| 7g | 09447876 1.0514622| 1.0493287| 0.81 1.37 0.99
12 0.9447856] 1.0514656] 1.0430604] 1.53] 3.29] 224
[3} g0 oy | 0:9427907) 0.9564136) 0.9499126 0.88] 1.25] 1.00
13 0.9443516] 0.9564099) 0.9512710! 2.26] 8.06| 4.12
[3] s3] 105 (09161167 0.9338626) 0.9293394) 1.04) 147 1.24
14 0.9025741: 0.9338629| 0.9303515  2.49] 9.05| 5.12
[3_} 46| 190 | 0:8745439 0.9026562] 0.9008776] 1.16| 192) 1.47
15 0.8734529, 0.9026516, 0.9009286/ 3.25! 12.73] 7.37
[4] gg| 953 |..0:9824163] 1.0019895| 0.9951659) 5.20| 17.43) 812
22 0.9840223)  1.0019880] 0.9967615 30.49] 209.27| 69.85
41 93| o976 |L0:9693916] 1.0000000) 0.9827767 6.73] 16.74] 10.31
123 ] 0.9740944; 0.9918568| 0.9847650, 29.26/ 178.84| 89.80
(471 g7l 300 L0:9573460] 1.0000000 0.9734775| 7.13| 19.26) 12.34
L 24 0.9580083| 0.9828733| 0.9751985| 43.16| 239.77| 112.78
410 1011 325 0.9477678] 0.9616207| 0.9569177| 825/ 17.97 12.58
.25 0.9465833| 0.9619563| 0.9574963]| 49.00) 268.49] 131.18
(47 105| 35 | 0-9327032] 0.9583427) 0.0474299] 9.99 29.60 15.57
126 ] 0.9367603| 0.9583423| 0.9491615| 39.90 565.90] 164.47
411 {g9| s7s | 0-9276386] 0.9394150) 0.9344075) 11.08) 33.88] 17.06
|27 0.9273834] 0.9389142] 0.9345753] 79.26 332.12] 173.13
51| 186 703 |0:9905835| 1.0045763| 0.9993300] 68.66 369.42] 149.48
.37 0.9911508] 1.0025367| 0.9979124| 444.81|2501.761154.08
571 qgy| 74y | 0-9842019] 1.0019176] 0.9917008] 93.85 527.66) 168.08
|38 0.9864684| 1.0019880| 0.9930711| 546.55/3105.86/1538.54
(51 196! 780 (29772092 0.9929902) 0.9871450| 108.71 461.15| 204.96
139 ] 0.9808159! 0.9920786, 0.9881178! 502.38]3161.88]1782.30
(571 901! gop |_0:97345%6 0.9886857) 0.9818932) 100.08) 600.04] 220.59
| 403 0.9701958,  0.9920282] 0.9810864| 863.85/3820.43|1907.57
1571 90| sg |L0:9686624 0.9818115| 0.9746239) 117.34) 435.91] 195.79
141 ] 0.9644272] 0.9819470, 0.9757435!1148.77|4669.87(2521.84
1510 91| gog I|0:9612090] 0.9793985) 0.9693361 105.37 641.68| 213.74
142 0.9599791] 0.9798367| 0.9702516] 807.57|4664.63]2473.78

Table 1. Minimum distances and CPU times
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The graphs in Figures 1-3 evidence the qualitative relative behavior of both
codes. Notice that the diamonds and bullets are always close together in the graphs
on the left, indicating that the quality of the optimal solutions obtained by both
codes is similar. On the other hand, the bullets rise faster than the diamonds on
the graphs on the right, which means that the CPU times for LANCELOT tend
to be higher than those of the Inexact—Restoration code. The linear fit of Inexact-
Restoration CPU times versus LANCELOT CPU times is y = 0.095 1 + 4.466 (see
Figure 4). Observe that, in fact, the linear coefficient is less than 0.1 .

In Figure 5 we compare the CPU times of both algorithms for the eigtheen prob-
lems considered. This figure shows clearly the good performance of our Algorithm,
specially when the size of the problem increases.
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Figure 5: CPU times: Inexact-Restoration (¢} and LANCELOT (e).

7  Final remarks

Since the method presented in this paper is a model algorithm, many possible im-
plementations can be given. The efficiency of different implementations should be
linked to the quality of the algorithms chosen for performing different steps. For the
Restoration Step we need an algorithm that solves (2)—(3). Since, in most cases, |}-|/
will be the sup-norm and {2 will be a box, we can choose any of the many available
methods for large-scale box-constrained minimization for solving this problem.

In the Minimization Step we need an approximate solution of (8). Generally, this
is a linearly constrained minimization problem. For its resolution active set methods
are generally recommended (see, for example, [23]}. However, last decade large-scale
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optimization research suggests that efficient implementations can also result from
the application of interior point methods to (8). See [33].

In this paper we did not use regularity assumptions to prove global convergence
of infinite sequences generated by the algorithm. This does not mean that regu-
larity is not playing any role in practical circumstances. Roughly speaking, lack
of regularity can cause a failure in Restoration Phase, resulting in break-down at
Step 1. In fact, our theoretical results show that, if the original problem is infeasible,
break-down will necessary take place for some (finite) value of the iteration %, that
is, an infinite sequence will not be generated. On the other hand, we proved that
when infinitely many points are generated, all the limit points are feasible. Finally,
the results on Section 4 show that at least one of these limit points is stationary in
the sense that limgeg, [|[d®%"]] = 0 when {z;}rek, is the corresponding convergent
subsequence. The relations between this type of stationarity and necessary or suffi-
cient conditions for local minimization remain to be investigated.
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Capitulo 3

Métodos gradiente espectral para
otimizacao com restricoes lineares
de igualdade

Resumo

No presente trabalho sado considerados problemas de otimizagdo com restricdes
lineares e canalizagbes. Primeiro, é definido um método gradiente espectral pre-
condicionado para o caso sem canalizacOes.Este algoritmo pode ser visto como um
método Quase-Newton onde as aproximagoes das Hessianas satisfazem uma equacio
secante fraca. A escolha espectral do passo estd inserida na aproximacao Hessiana
e o algoritmo completo estd combinado com uma estratégia de busca linear nédo
mondtona. As canalizacOes 520 incluidas na funcio objetivo usando um esquema de
penalizagao exponencial. Este esquema de penalizacio define as iteracfes externas
do algoritmo geral. Cada iteracio externa inclui a aplicagdo do método gradiente
espectral previamente definido para problemas com restricbes lineares de igualdade.
Conseqilentemente, um problema de programacio quadrética convexa com restri¢oes
lineares de igualdade deve ser resolvido em cada iteracdo interna. A matriz KKT
extendida associada a este problema fica constanie a menos que o processo seja
reiniciado. Nas iteracdes internas somente o lado direito do sistema KKT é modi-
ficado. Consegiientemente, técnicas de fatoragles esparsas podem ser efetivamente
aplicadas e exploradas. Sao apresentados promissérios resultados numéricos.
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Abstract

Linearly constrained optimization problems with simple bounds are con-
sidered in the present work. First, a preconditioned spectral gradient method
is defined for the case in which no simple bounds are present. This algorithm
can be viewed as a quasi-Newton method in which the approximate Hessians
satisfy a weak secant equation. The spectral choice of steplength is embedded
into the Hessian approximation, and the whole process is combined with a non-
monotone line search strategy. The simple bounds are then taken into account
by placing them in an exponential penalty term that modifies the objective
function. The exponential penalty scheme defines the outer iterations of the
process. Each outer iteration involves the application of the previously de-
fined preconditioned spectral gradient method for linear equality constrained
problems. Therefore, an equality constrained convex quadratic programming
problem needs to be solved at every inner iteration. The associated extended
KKT matrix remains constant unless the process is reinitiated. In ordinary
inner iterations, only the right hand side of the KKT system changes. There-
fore, suitable sparse factorization techniques can be effectively applied and
exploited. Encouraging numerical experiments are presented.

Key words: Linearly constrained optimization, quasi-Newton methods, ex-
ponential penalty methods, spectral gradient method, nonmonotone line search.
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1 Introduction

Spectral gradient methods have proved to be of great value in unconstrained opti-
mization problems. They were introduced by Barzilai and Borwein [1], and later
analyzed by Raydan [19]. They have been applied to find local minimizers of large
scale problems (Raydan [5, 4, 20]), and also to explore faces of large dimensions
in box-constrained optimization (see Bielschowsky et al. [3] and Friedlander et al.
[11]). More recently, spectral gradient methods were extended by Birgin et al. [6] to
minimize general smooth functions on convex sets. In this case, the spectral choice
of steplength was combined with the projected gradient method to obtain a robust
and effective low cost computational scheme.

In this work, we present a spectral gradient method for the linearly constrained
optimization problem

Minimize f(z} subject to Az =b, z > 0,

where [ : JR" — IR is a smooth function. We consider, first, the case in which the
bounds z > 0 are not present. For this case, we present a quasi-Newton method in
which the secant approximation satisfies a weak secant equation. Our method can
also be viewed as a preconditioned spectral gradient method (see Luengo et al. [16}),
in which the secant update plays the role of a preconditioner matrix that can be
reinitialized whenever some indicator of performance reveals that this is convenient.
The spectral choice of steplength is embedded into the secant matrix via a simple
Rayleigh quotient scalar multiplication, and the whole process is combined with a
nonmonotone line search strategy. The simple bounds are then taken into account
by means of an exponential penalty term that modifies the objective function. Each
modification of the penalty term defines a different outer iteration. At each outer
iteration we apply the preconditioned spectral gradient method for linear equality
constrained problems defined before.

Concerning the implementation, a basis for the null space of A is not required
at all. To obtain the search direction we need to solve a convex quadratic pro-
gramming problem at every inner iteration. As a consequence of the spectral choice
of steplength, the associated extended KKT matrix remains constant unless the
process is reinitialized, and only the right hand side of the KKT system changes.
Therefore, suitable sparse factorization techniques can be effectively exploited.

This work is organized as follows. In section 2 we present the spectral gradient
method for linear equality constrained problems. We describe the calculation of
the search direction, the nonmonotone line search and the convergence properties of
the method. In section 3, we present an exponential penalty approach to solve the
linearly constrained optimization problem with simple bounds. In section 4 we give
a global convergence result for the proposed outer scheme. In section 5, we describe
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implementation features. In section 6, we present computational results. Finally, in
section 7, we state some conclusions.

2 Linearly constrained preconditioned spectral
gradient without bounds

Let us consider the problem
Minimize F(z) subject to Az =1, (1)

where F : R" — IR, A € ™", F € C'{R"), and b lies in the range of A. We
denote g{z} = VF(z) for all z € IR".

In this section we define a quasi-Newton algorithm for solving (1). Assume that
0 < opmin < Omax < 00. Given z; € IR™ such that Az, = b and a positive definite
matrix By (this can be relaxed to 2 TB.Z > 0, where the columns of Z are a basis of
the null space of A}, the steps for obtaining zy,; are given by the following algorithm.

Algorithm 1 Preconditioned spectral gradient with linear equality constraints
Step 1: Obtain d; € IR" the unique solution of

o]
Minimize —idTBkd + g(zx)Td subject to Ad = 0. (2)

If dy = 0 terminate. (z is a stationary point of problem (1).)

Step 2: Compute, using a procedure that will be specified later (in Algorithm 2},
Ar > 0 (the steplength). Define

Tht1 = Tg + Apdg,
Sk = Tty — Tk,
Yp = Q($k+1) - 9(:231:),

Biwl = oy By, (3)
where

53 Bosg

. . : Tk o7
o = max | Gumin, MID | Qpay, =5 if spye >0
e =
Cmin else .
Return to Step 1.

The solution of (2) is given by

EEAIEI I S
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where g = ¢{zx). The matrix of the linear system is referred as the KKT-matrix.
Note that in the particular case in which B; = I, the solution dj, is the orthogonal
projection of —g(zy} on the null-space of A.

Remarks

1. With the appropriate changes on the bounds for ¢, we can define By, = o Bj
using ;f%%; instead of E?CS'%I‘ In this way it is easier to visualize the algorithm
as a quasi-Newton method in which, when the bounds for o4 are not violated,
the matrix By, satisfies the “weak secant equation”

si Bsy, = sty (5)

The geometrical meaning of (5) is that the directional derivative of the quadratic
model of F' coincides with the directional derivative of F at the previous point.

Obviously, the gradient of the quadratic model coincides with the gradient of F

at the current point. With our spectral choice, the directional derivatives of
the quadratic model on directions that are Bg-orthogonal to the increment

coincide with the directional derivative of F at the current point.

2. If no constraints are present at all and By = I this algorithm is, essentially,
the one defined by Raydan in [20]. The present algorithm generalizes also in
many senses the preconditioned spectral gradient method introduced in [16],
where Bp plays the role of the preconditioner matrix.

T
3. The quantity 5%% is frequently refered as a Rayleigh quotient. In fact, if
k
F € C*(IR"), we have:

1
Yp = [/(; VZF(J;;C + tsk)dt]sk.
So, defining wy, = Boésk and

~i_rt .t
Ay =By 7] /O V2 (s + ts)dt] By 7,

we obtain: . - \
SpYe | Wi Apw
st Bysy wiwg

T
Therefore, ;ﬁ% is a Rayleigh quotient of Ay in the classical sense.
k

In Algorithm 2 we describe the line-search procedure, that is to say, the way
in which we choose A, at each iteration. We adopted a nonmonotone line-search



strategy. This means that, following [6, 15, 20}, we do not impose decrease of the
objective function at every iteration. Instead, we choose a positive integer M at
the beginning of the process and we accept a trial point when a sufficient decrease

is obtained in relation to the maximum functional value among the M last iterations.

Algorithm 2 Nonmonotone line-search procedure
We assume that v € (0,1) is given independently of the iteration number k& and
that di has been computed using (2).
Step 1 Set A + 1.
Step 2 Set 2. = 7 + Ady.
Step 3 If
Flz4) < max oo;omin , o F @) + 7Mdes g(z)), (6)

then define A; = A and finish the line-search.
If (6} does not hold, define

Anew € [0.1X, 0.9], (7)

set A 4 Apew and go to Step 2.

Algorithm 1 admits many possible implementations according to the choice of
the matrix By. The “pure” spectral gradient method with linear constraints corre-
sponds to By = I. Our approach here, similarly to the one of [16], is to consider
that Algorithm 1 could be re-initiated with a different initial matrix By whenever

some indicator of performance reveals that this is convenient. The whole process is
described below.

Algorithm 3 Spectral gradient for linear equality constraints with re-initialization
Assume that the positive definite matrix By is given, as well as the positive

integer M and the sufficient decrease parameter v € (0, 1).

Step 1. Set kount + 0,k + kount

Step 2. Execute Algorithm 1 with the line-search procedure given by Algorithm 2.

Step 3. If Algorithm 1 terminates at Step 1, terminate the execution of Algorithm 3

£00.

Step 4. Decide whether it is necessary to re-initiate Algorithm 1 (YES-NO).

Step 5. If NO, set kount + kount + 1,k + k+ 1 and go to Step 2.

Step 6. If YES, define a new By, set kount « kount + 1, k& + 0 and go to Step 2.
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The following observation plays an important role in our convergence analysis
and also in our implementation. Let (dy, 1) be a solution of the system (4). Then
d) belongs to the null space of A, that is, for some wy, dy = Zwy where the columns
of Z form a basis of the null space of A. Therefore

By Zwy, + ATy, = —gy.

So,
ZTB 2wy, + ZT ATy, = —Z7 gy

Since AZ = 0 and B is positive definite, we have

Wy, = —(ZTBkZ)“lZTgk,

and hence
dy = ~Z(ZT By Z) 27 g,. (8)
Now, using the update for the matrix By in Algorithm 1, we obtain
dy = ~Z2(27ByZ)' 2" (ﬁk—> . (9)
G-

Therefore, the search direction d, can be obtained using the KK T-matrix of the last
re-initialization the corresponding independent vector by means of

2 %)= a0

QOur next result establishes the convergence properties of Algorithm 3.

Theorem 1 Suppose that at all initializations of By the eigenvalues of ZF ByZ are
clustered in a strictly positive closed and bounded interval. Then Algorithm 3 is well
defined and every limit point is stationary.

Proof. Since the eigenvalues of Z7ByZ remain in the strictly positive interval
[Amin; Amax), for all initializations of By, then we can assume for the sake of clarity,
and without loss of generality, that no re-initialization is performed, and that the
smallest and largest eigenvalues of ZT By Z are Amin and Apay respectively.

If z; is not a constrained stationary point, then Z7g; # 0, and the search
direction di in (9) satisfies

T 1 T _NT¢oT 17T 1 Z7 g: )12
Gedi = — (Z7gr)" (27 BoZ) (27 gx) £ ——— < 0.
G Cmax Amax
(Throughout this paper || - || means || - |l,). Hence, a stepsize satisfving (6) will be

found after a finite number of trials, and Algorithm 3 is well defined.
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Let Z be an accumulation point of {z;}, and relabel {zy} a subsequence con-
verging to . Suppose, by contradiction, that Z is not stationary. Then [|Z To(z)| =
§ > 0. This implies by continuity that

127 g(z)]| > d/2, (11)

for k large enough on the subsequence that converges to Z. We consider two cases:
Case 1. Assume that inf A\, = 0. Hence, there exists a subsequence {z;}x such
that

lim )\k = 0.
k—oo, keX
In that case, from the way A; is chosen in {6), there exists an index k sufficiently
large such that for all k > k, k € K, there exists wy, (0 < 0.1 < wi < 0.9), for which
Ap/wy > 0 fails to satisfy condition (6), i.e.,

Ak A A
Flzx + ;‘;dk) > max, Flzp.;) + ’}’ﬁ(g(fk):dk) > Fxi) + ’:f’;"z"(g(xfc);dk%
As a consequence,

S > Zi), di)-

Ak/wk 'Y(g( }c) k>

By the mean value theorem, this relation can be written as
(g(xk + tpdy), dey > v{glzg),de), forallke K, k> ;_G, (12}

where 15 is a scalar in the interval [0, A\y/wy] that goes to zero as £ € K goes to
infinity.

Taking a convenient subsequence such that di/||di || is convergent to d, and taking
limits in (12) we deduce that (1 — v){g{Z),d) > 0. (In fact, observe that {|{dy||}x is
bounded and so tx||di]] — 0.) Since (I ~ ) > 0 and {g(zx),dr) < 0 for all &, then
(9(z),d) =0
Using (9) this implies that {o;}, (ZTg)T (2T By Z) " (Z% gx)} goes to zero on that
subsequence. However,

1270l

- }\max Cmax

(70 (27 BoZ) (2T gh) 2
k-1

Therefore, || Z7 g|| goes to zero when k € K goes to infinity. Thus, by continuity,
for & large enough on that subsequence we have that

127 gl < 6/2,

which contradicts (11).
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Case 2. Assume that infA\; > w > 0. Using the first part of the proof of
the theorem in [15, p. 709, we obtain a monotonically nonincreasing sequence
{F(zuw)}. Indeed, let I(k) be an integer such that k — min{k, M — 1} < I(k) < &,
and

Floug) =  max  [Flzr)].
0<j< min {k,M)}

From (6) it follows that, for & > M (see [15] for details)
Floyw) < Flaug-1) + v\ -1{9(Tuw)-1), digy-1)-
Using {9) and (11), we obtain
Y Auy— -
Flziwy) = Flogw-n) - #(ZTQ(@(H“I))T{ZTBOZ) HZT gl -1))

v w | 2T g2y 1) I

amax )\max

< Flogw-n) ~

v w 82

< Flogw-1)) — m""
ax max

When k — oo, clearly F(zyg)) — —oo which is a contradiction. In fact, f is a
continuous function and so F(zy) converges to F(Z). O

3 Adding bounds on the variables

Now, we consider the following linearly constrained optimization problem with sim-
ple bounds :

Minimize f(z)} subject to Az =b, = >0, (13)

where f : R" — IR, A ¢ R™" ¢ € R", f € C*(R"). Our arguments below can
be easily extended to a problem with simple upper and lower bounds:

Minimize f(z) subject to Az =1b, £ <z <,

however we will restrict ourselves to the case (13) in order to simplify the notation.

We eliminate the positivity constraints in (13) using penalization. There are
many possibilities to do this. The reputation of the logarithmic barrier function
lead us to try an interior-point scheme at early stages of this work. This idea did
not work well. Roughly speaking, the first trial step almost always violates the
bounds z > 0 so that, at most inner iterations, the step must be reduced. As a
consequence, if there is any benefit in the spectral choice of the step, this benefit
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disappears when the method is associated to the logarithmic barrier function. Of
course, this does not mean that the [og-function is not effective when it is associated
to the pure Newtonian direction, as many theoretical and practical studies show.

In order to preserve the smoothness of the objective function and to keep the
variables unconstrained, we decided to consider the modified exponential penalty
function [2, 17, 18] given by:

axp(e) = | € if 2 <0
P 1424122 ifz>0.

As a consequence, we have to solve the following minimization subproblem for
each penalty parameter p:

Minimize F(z) = f(z) + : > waxp(—pz;), subject to Az =b. (14)
=1
The meaning of y; will be given later. We are only going to assume that 0 <
Umin < Hi S fmer < 00 for all ¢ = 1,...,n. The outer algorithm consists in
solving a sequence of penalty problems (14). Each penalty problem is solved using
Algorithm 3. Clearly, the exponential penalty approach does not require positivity
of the initial point.

4 Global convergence

In this section, we will show that, under certain conditions, the scheme based on suc-
cessive approximate minimizations of {14) really works. Similar results, for related
algorithms, were given, for example, in [2] and [17]. The outer scheme proposed in
the previous section is an exponential Lagrangian method. At each outer iteration,
the sequence of inner steps will be given by Algorithm 1. Accordingly, an inexact
stopping convergence criterion will be defined, based on computable quantities.

We will need several assumptions. The first assumption guarantees that, at each
outer iteration, Algorithm 1 will be able to stop.

Assumption 1. There ezists py > QO such that, if p > po and pi € [min, fmaz), the
level sets of F(x) in (14) are bounded.

Observe that Assumption 1 is stronger than saying that f(z) has bounded level
sets on the feasible region Az = b, z > 0, since it involves the behavior of f(z) on
infeasible points too. If f(z) goes to —oc very quickly for z; — —o0, Assumption 1
might not hold. It can be argued that, in this case, it is inexpensive to modify the
definition of f(z) in the infeasible region, but even this operation is risky and can
create undesirable local minimizers.
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Now, we are able to define the outer algorithm. Each iterate of this algorithm
will be z* € IR™, whose existence is guaranteed by Assumption 1.

Algorithm 4 Quter tterations
Let g, > Oforall £ =0,1,2,... be such that imy_,, g = 0. Let py be given by

Assumption 1, as well as ppin and fme,. Let 7 € (0,1), n > 1. Initialize 0_; = 0
and k « 0.

Step 1. Choose uf € [tmin, timaz) for alli=1,...,n.
Step 2. Define

Fy(z) = f(x) + ‘s“iﬂf axp{~prT:).

=1

Apply Algorithm 1 for
Minimize Fi.(z) subject to Ax = b.
Use, as stopping criterion, the test
dll < ex,

where d is the solution of (2). (From now on, with some abuse of notation, we will
denote d;, = d in this section.) The final iterate of Algorithm 1 so far obtained will
be called z*.

Step 3. Compute p* € R" by
Step 4. Define
op = max {{min {gf,2f},i=1,...,n}.

Step 5. If oy < 10k define pr.; = pp. Else, define pr1 = nps.
Step 6. Set k£« k+ 1. Go to Step 1.

The vector ¥ is intended to be an estimator of the Lagrange multipliers asso-
ciated to the inequality constraints. For this reason, the choice p* = g’“‘l could
be quite natural at Step 2, if the safeguards defined by finin and pe, are not vio-
lated. However, this specific choice is not necessary for proving convergence. The
motivation of Step 4 of the algorithm is that the conditions on positivity and com-
plementarity that relate the solution and the Lagrange multipliers can be written
as

min {p;,zi} =0, i=1,...,n

Therefore, Step 4 measures the progress related to the positivity-complementarity
requirement. If this progress is satisfactory, it is not necessary to increase the penalty
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parameter. In our practical implementations we used pf = 1, so that the whole
practical process can be interpreted as a penalty scheme where the tests of Step 4
determine if the penalty parameter must be increased or not.

In addition to Assumption 1, other assumptions for convergence of Algorithm 4
are merged in the hypothesis of the following theorem. The main one is that the
sequence of inequality Lagrange multiplier estimates must be bounded. If this hap-
pens, we can guarantee that limit points of {z*} are stationary points of (13). Of
course, in practical terms we also need that these limit points exist, which means
that a bounded subsequence of {z*} must exist.

Theorem 2. Assume that {¢*} is bounded. Then, every limit point of {zF} is a
stationary point of (13).

Proof. Let z* € IR™ be a limit point of {z*} and let K; C IV be such that
limpeg, ¥ = z*. Take Ky C K such that limge K y_k = p*. Clearly,

u > 0.

Define, with some abuse of notation, By € R™ " the mairix used at the last inner
iteration of the outer iteration & (which gave |ldi|l < &x). By the hypothesis of
Theorem 1 and the safeguards on ay, the eigenvalues of the B,’s are clustered in
a strictly positive interval. Therefore, there exists K3 C K5 and a positive definite
matrix B, such that

lim By = B..
ke K3
Taking limits for ¥ € Kj in ||di|| < ex, we obtain, by (8), that
Z(Z'B.Z)'ZTV(Vf(z") - ) = 0.
This implies that there exists A € IR™ such that
Viz*)+ATA — p* =0, (16)

with p* > 0.
Now, we consider two cases. In the first case, there exists kg € IV such that
o < Top.1 for all k > k. By continuity, this implies that

min {gf, 2]} =0V i=1,...,n (17)

Clearly, (16) and (17) imply that z* is a stationary point of (13}.

In the second case limg.,o o = 00. By hypotheses, {Ek} is bounded. Therefore,
by (15) and the choice of 1%, {axp'(—pr2¥)} is bounded for all i = 1,...,n. By the
definition of axp(z), this implies that infz® > 0 for all = 1,...,n. Therefore,
z* > 0.

70



Now, if z7 > 0, taking £ € K3 large enough we have that
¥
zF > ~—2§— > 0.

So,

lim ppz® = oc.
kEKapk i

By the boundedness of j and (15}, this implies that &f — 0. So, g = 0. This
means that complementarity holds. Thus, the proof is complete. O

5 Implementation features

This section deals with some specific algorithmic choices. We present the results
of computer experiments in the next section. Remember that, as we said in the
previous section, we used g = 1 in our implementation of outer iterations.

Computation of o; and d; in Algorithm 1. The expression for ¢y can be
simplified when k > 1 as follows. Notice first that

SEB}:;S& _ Ak8£3kdk

Qp.y Qg1

SEBQS];; =

From (4) we obtain that Bydy = —g; — AT%. Since s is a feasible direction, then

sTAT =0, and so s] Bydy, = ~s7 gg. Hence,
ApsT Az
T &5 9k kT
53 Bosy = — = - di gx-
Q1 Qg

So, the expression for a4 can be reduced to

dgyk
Akf{fgk

G = — Gpy.

For this new expression the vector s, is not required, and the calculation of d% g,
can be reused in (8) for each trial step during the nonmonotone line search.

On the other hand, the direction d; could be obtained by solving the system (4).
If the order of the system were small it could be solved using the LU factorization
with partial pivoting or the QR factorization. Using these linear solvers, the cost of
solving the system would be O(n?) floating point operations. For large-scale linear
systems this cost becomes prohibitive. So, it is convenient to compute dy by solving
instead the system (10). In this case, we will solve several systems for consecutive
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iterations, with different independent vectors, using only one factorization. More-
over, since we want to exploit the fact that the KKT matrix is symmetric we use
the subroutine MA27 of Duff and Reid [10]. This routine is suitable for solving
specifically sparse symmetric indefinite linear systems. Finally, we note that the
block By changes when a re-initialization is needed in Step 6 of Algorithm 3, so the
KKT-matrix changes too. However the sparsity structure is constant during the
whole process and we can also exploit this fact using suitable routines from MA27.

Initial point. To start Algorithm 3 we need an initial point zg, which must
satisfy the linear equality constraints Az = b. That point can be easily obtained

solving the linear system
-I AT Ty | _ 0
A 0 y | | b

Observe that the matrix of this system has the same structure as the KKT matrix
of (4). So, we used again the subroutine MA27.

Stopping criterion. The outer exponential algorithm was stopped when, at a
solution of (14), we have that '

2?1'2—5\7,7;31,...,?’& (18)
and, foralli=1,...,n,
! .
axp'(—pz;) <& whenever z; > €. (19)

Condition (18) indicates that the current outer iterate is (almost) feasible. The
quantities axp’(—pz;} are estimates of the Lagrange multipliers corresponding to
the constraints —z; < 0. Therefore, (19) indicates that the current point satisfies
(approximately) the complementarity conditions. The fact that the gradient of the
objective function is (approximately) a linear combination of the gradients of the
active constraints must be guaranteed by the convergence criterion used in the inner
algorithm. By (8) this property will hold if di, = 0. Therefore, as inner convergence
criterion of Algorithm 1, we used:

il < &" (20)

Arxgle criterion. Since we do not have direct access to positive-definiteness of
the matrices Z7 B, Z, we must control the fact that descent directions are effectively
generated in an indirect way. Here we decided to use

VF(zx)Tdi < —0|di]|*. (21)
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Inequality (21) says that the appropriate Rayleigh quotient (see the proof of Theo-
rem 1) related to Z7 B, Z is positive.
When (21) is not satisfied we have to consider two cases:

1. If it happens immediately after a re-initialization (k = 0) we define B, =
B, + pl, p > 0 and a new factorization of the KKT-matrix is performed. This
procedure is repeated until the angle condition is satisfied.

2. Otherwise, we perform a re-initialization and continue with Step 2 of Algo-
rithm 3.

Re-initialization criterion at Step 4 in Algorithm 3. Among the many
possible re-starting procedures, we decided to use, after preliminary experiments,
the following one, which depends of a positive integer parameter p:

(a) If we are at the first outer iteration or if at the previous outer iteration the
inner algorithm converged within limit iterations, then at the current outer iteration
the algorithm is restarted every p* inner iterations.

(b) If, at the previous outer iteration, the inner algorithm did not converge after
limit iterations, at the current outer iteration the algorithm is restarted every p
iterations.

(¢) The inner algorithm is restarted if condition (21) is not satisfied.

The rationale behind (a) is that, at the first iterations of the inner algorithm,
large steps are expected so that the Hessian changes more abruptly than at the final
iterations. Therefore, restarts must be more frequent at the first iterations than at
the final ones. However, we turn to criterion {b), that restarts the algorithm after
equally spaced iterations if criterion (a} did not work well.

Several strategies can be proposed for choosing By when re-initialization is rec-
ommended. Since in all our experiments f € C*(JR"™) we adopt the most obviocus
one, that is

By = V2F(xkcmnt) (22)

Nonmonotone line-search. When {6) does not hold in Algorithm 2, we com-

pute the new step size using quadratic interpolation with safeguards. See for instance
9, p. 127].

Updating the penalty parameters. After finishing each outer iteration we
update the penalty parameter p in a typical way: pge: = 10p. At the first outer
iteration we used p; = 10.
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6 Numerical experiments

We tested our algorithm using the following family of problems. Given a positive
integer x, we define

\inimive L k=2 2
Minimize 5 S5 (Twugit) — Trti)
subject tO.’II,H_z‘—:Ez'.f.l +z;=0, 1=1,...,8h—1,
aigmigaiﬁ'l: 3.21?-..71%7

0.4(ttiqs — 05) €y C06{(iae — i), i=1,...,6—1,

where the constants o; are defined by o; = 1.0 + (1.01)*",

These problems arise in the optimal placement of nodes in a scheme for solving
ordinary differential equations with given boundary values {13]. We solve these
problems for different values of .

For the numerical experiments we set the following default parameters:

limit = 300, maximum number of inner iterations.

g = 1078, tolerance for stopping criterion for outer iterations.

g = 107%, tolerance for stopping criterion for internal iterations.

~ = 1074, tolerance for nonmonotone line search.

6 = 107%, constant in the angle criterion.

Qmin = 1073, omax = 10%, the safeguards interval for the spectral parameter c.

We tried to solve all the problems using M = 0,5 and 10 for the nonmonotone
line search procedure (Algorithm 2). Note that for M = 0 we are forcing monotone
decrease of the objective function at every iteration. We consider p = 1,2,3. The
case p = 1 means that we re-start Algorithm 1 at every iteration. Therefore, this
case corresponds to Newton's method.

All the numerical experiments were run on a SUN Ultra 1 Creator in double
precision FORTRAN, with the optimization option -O.

The numerical results are shown in Tables 1, 2 and 3, corresponding to different
values of the parameter p. For each table we report the parameter x, the number
of rows of the matrix A (m), the number of variables (columns of A) (n}, the outer
iterations (Quter), the inner iterations {/nner) and the CPU time in seconds ( Time)
for M = 0,5,10. Tables 4 and 5 show the performance of our code (with p = 2,3)
against an implementation of the Stationary-Newton Method, with M = 10. We
report the number of outer iterations, inner iterations and the CPU time for the
same set of problems.

Finally, in Table 6 we compare the CPU time obtained with our method (p = 2, 3,
and M = 0,10.) against the well-known package LANCELOT (7, 8]. We used the
following defaults parameters for LANCELOT:
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e exact-second-derivatives-used
e cg-method-used

e inexact-Cauchy-point-required
e infinity-norm-trust-region-used

o gradient-tolerance 1.0D-06

constralints-tolerance 1.0D-06

In all the experiments we verify that the three methods that we used (spectral
gradient, stationary Newton and LANCELOT) converge to the same solution.

Table 1: Spectral Method, p = 1 (NEWTON)

Problems M=20 M=5 M =10

k] m| n | Outer | Inner | Time | Outer | Inner | Time | Outer | Inner | Time
50 49 99 5 38 0.14 5 32 0.11 3 32 0.11
100 99 199 5 42 0.23 5 55 0.26 3 57 0.27
150 | 149 299 5 48 0.38 5 62 0.43 5 63 0.45
200 | 199 309 5 80 0.80 5 67 0.65 5 67 .65
250 | 249 499 5 &1 1.08 5 84 1.11 5 84 1.11
300 | 299 599 5 G0 1.47 5 96 1.50 5] 895 1.49
350 | 349 699 5 77 1.53 3 100 1.85 3 113 2.04
400 | 399 799 5 148 3.35 5 120 2.55 5 120 2.55
450 | 449 809 5 136 3.38 3 133 3.29 5 138 3.38
500 | 499 999 5 139 4.05 5 139 4.01 5 141 4.00
550 | 549 1 1099 5] 320 1 12.36 3 711 ¢+ 31.39 5 688 | 30.60
600 | 599 | 1199 5 704 | 34.44 5 732 | 34.94 5 718 | 34.46
650 | 649 | 1299 3 623 | 33.16 5 703 | 38.10 5 549 | 28.79
700 | 699 | 1399 2 722 | 50.28 5 710 | 38.84 3 715 | 58.65
750 { 749 | 1499 5 739 | 45.88 5 739 | 45.46 3 732 | 45.28
200 | 799 | 1599 5 731 | 48.62 3 754 | 48.82 b 609 | 37.92
850 | 849 | 1699 4 449 | 42.52 4 441 | 41.67 4 444 1 41.80
900 | 899 | 1799 4 441 | 32.73 4 439+ 32.40 4 439 | 3243




Table 2: Spectral Method, p =2

Problems M=0 M=5 M= 10

K| m | n | Outer | Inner | Time | Outer | Inner | Time [ Outer [ Inner | Time
a0 49 99 5 204 0.20 5 65 (.09 5 62 0.09
100 a9 199 5 148 0.32 5 127 G.24 5 136 0.25
150 | 149 299 5 147 0.45 5 266 0.67 5 225 0.57
200 1 199 399 5 342 1.30 5 368 1.46 5 366 1.44
250 | 249 499 3 350 1.77 5 361 1.77 5 353 1.75
300 | 299 599 5 380 2.44 3 396 2.49 5 425 2.90
350 | 349 699 5 527 4.34 5 487 417 5] 563 4.93
400 | 399 799 5 404 3.92 5 415 4.03 5 493 5.69
450 | 449 899 4 605 7.10 4 570 6.82 4 630 7.67
500 | 499 999 5 447 5.83 5 458 5.97 5 486 6.55
550 | 549 § 1099 5 860 | 16.34 5 641 9.00 3 696 9.30
600 | 589 | 1199 3 764 | 11.58 5 715 | 11.40 5 696 | 10.96
650 | 649 | 1299 5 934 | 15.16 5 796 | 14.57 3 915 | 16.77
700 1 689 | 1399 5 974 | 25.96 5 956 | 22.46 5 1270 | 47.13
750 1 749 | 1499 6 888 . 20.15 5 901 | 18.14 3 880 | 18.84
800 1 799 | 1599 5 975 | 25.00 5 1303 | 44.40 5 909 : 20.98
850 | 849 | 1699 3 1346 | 54.73 5 916 | 25.06 4 899 | 23.18
900 | 899 | 1799 5 973 | 24.74 5 1392 | 54.48 5 989 | 26.68

Table 3: Spectral Method, p=3
Problems M=20 M=5 M=10

k| m | n]Outer | Inner | Time | Outer | Inver | Time | Outer | Inner | Time
50 49 99 5 318 0.30 59 144 G.15 5 222 .20
100 99 199 5] 183 0.36 5 205 0.50 5 330 .55
130 | 149 299 5 266 0.73 5 282 (.69 5 323 (.80
200 | 199 399 5 371 1.34 5 360 1.33 5 407 1.70
250 | 249 499 5 342 1.67 3 434 2.18 5 434 2.15
300 | 299 599 5 488 3.59 5 560 3.33 4 477 2.98
350 1 349 699 5 606 4.92 5 457 3.64 5 465 3.70
400 | 399 799 5 444 4.24 5 452 4.29 3 485 4.66
450 | 449 899 4 624 6.91 5 534 5.72 5 543 5.72
500 | 499 999 5 525 6.62 5 546 7.08 5 331 6.93
530 | 549 | 1099 3 954 | 14.97 5 753 1 10.23 5 716 9.73
600 | 599 | 1199 5 907 | 12.75 3 745 1 11.44 5 827 | 12.31
650 | 649 | 1299 5 965 | 15.45 5 888 | 15.33 5 807 | 14.94
700 | 699 | 1399 5 1030 | 24.89 6 914 | 14.90 6 808 | 17.98
70 | 749 | 1499 5 967 | 17.70 5 842 | 17.00 6 905 | 19.25
800 ] 789 | 1599 5 1231 ; 27.56 6 1046 | 22.22 6 1039 | 22.25
850 1 849 | 1699 5 1125 | 31.38 4 977 | 23.10 5 930 | 24.53
900 | 899 | 1799 3 858 | 23.54 5 956 | 21.92 3 1026 | 25.05
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Table 4: Spectral Method vs. Stationary-Newton, p =2, M = 10

Problems Spectral Method |  Stationary-Newton

« 1 m | n | OCuter | Inner [ Time | Outer | Inner { Time |
50 | 49 99 5 621 0.09 5 264 0.19
1301 99| 199 5 136 1 0.25 5 310 0.47
150 | 149+ 299 5 225 0.57 5 327 0.78
200 ] 1997 399 5 366 1.44 3 410 1.52
250 | 249 499 5 353 1.75 3 568 2.38
300 299\ 599 5 425 2.90 5 648 3.93
350 | 349 | 699 5 563 4.93 5 385 4.50
400 | 399 | 799 4] 493 5.69 i} 877 | 10.26
450 | 449 | 899 4 630 7.67 5 320 4.85
500 | 499 1 999 5 486 | 6.55 3 697 7.72
550 | 549 1 1099 5 696 | 9.30 5| 1067 | 23.24
600 | 599 | 1199 3 696 + 10.96 8| 1115 19.51
650 | 649 1299 3 915 | 16.77 5| 1275 ] 31.66
700 | 699 | 1399 51 1270 47.13 51 1169 | 24.89
750 | 749 | 1499 5 880 1 18.84 51 1462 | 40.16
800 | 799 | 1599 5 909 | 20.98 5| 1376 | 40.07
850 | 849 | 1699 4 899 | 23.18 51 1322 | 45.85
900 | 899 | 1799 5 989 | 26.68 51 1077 33.156

Table 5: Spectral Method vs. Stationary-Newton, p=3,M =10

Problems Spectral Method Stationary-Newton

x| m{ =niOuter [ Inper | Time | Outer | Inner | Time
50 44 99 5 222 0.20 3 300 0.19
100 99 199 5 330 0.55 5 322 0.40
150 | 149 209 5 323 .80 5 328 0.63
2001 199 389 5 407 1.34 4 463 1.48
250 | 249 | 499 5 434 2.15 5 386 1.57
300 | 299 599 5 477 2.98 5 412 2.16
350 1 349 | 699 3 465 3.70 3 411 2.57
400 | 399 799 5 485 4.66 5 479 4.16
450 | 449 | 899 5 543 5.72 5 686 5.92
300 | 499 | 999 5] 531 6.93 5 721 8.17
550 | 549 | 1099 3 716 9.73 5 1074 | 14.37
600 | 599 | 1199 5 827 1 12.31 5 1163  17.32
650 | 649 @ 1299 5 907 | 14.94 5 939 | 16.17
700 | 699 | 1309 6 908 | 17.98 5 1236 | 21.17
750 | 749 | 1489 6 906 | 19.25 5 1298 | 33.54
800 | 799 | 1599 6 1039 | 22.25 5 875 1 20.93
850 | 849 | 1699 5 930 | 24.53 3 1287 | 38.05
900 | 899 | 1799 5 1026 | 25.05 5 1288 | 40.76
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Table 6: CPU time of Spectral Method vs. CPU time of LANCELOT

Problems p=2 p=3 LANCELOT
k| m | nl M=0M=101M=0]M=10

a0 | 49 99 0.20 0.09 (.30 0.20 1.07
100 7 99 199 0.32 0.25 0.36 0.55 5.98
150 1 149 | 299 0.45 0.57 0.73 0.80 14.63
200 ) 199 | 399 1.30 1.44 1.34 1.70 33.64
250 | 249 | 489 1.77 1.75 1.67 2.15 36.69
300 1 289§ 399 2.44 2.90 3.59 2.98 52.81
350 | 349 | 699 4.34 4.93 4.92 3.70 68.03
400 § 399 ;. 799 3.92 5.69 4.24 4.66 115.01
450 | 449 | 899 7.10 7.67 6.91 5.72 93.12
500 | 499 ; 999 5.83 6.55 6.62 6.93 167.43
530 | 549 | 1099 16.34 9.30 1497 9.73 210.72
600 | 599 | 1199 11.58 10.96 12.75 12.31 242.94
650 | 649 | 1299 15.16 16.77 15.45 14.94 263.84
700 | 699 | 1399 25.96 47.13 24.89 17.98 331.65
750 | 749 | 1499 20.15 18.84 17.70 19.25 349.01
800 ; 799 | 1599 25.00 20198 27.56 22.25 351.11
850 | 849 | 1699 54.73 23.18 31.38 24.53 430.93
900 | 899 | 1799 24.74 26.68 23.54 25.05 475.93

7  Final remarks

As we mentioned in the Introduction, spectral gradient methods for unconstrained
and bound constrained problems have shown to be very effective when compared to
conjugate gradient methods and with other methods especially designed for large
scale problems. See [6, 20]. In fact, as we can see in Tables 1-6 the performance
of our method was satisfactory for small scale problems and very attractive and
encouraging for large scale problems. Now, we proceed to the analysis of these
tables.

First of all, we consider Tables 1-3 separately. Table 1 (p = 1) shows that
there is no difference between monotone (M = 0) and nonmonotone versions (M =
5,10), except for problems with x = 650 and x = 800. Cleatly, p = 1, M = 0
corresponds, essentially, to a projected Newton’s method with backtracking (and
modified exponential penalization}. On the other hand, Tables 2 and 3 (p = 2 and
3 respectively) show that the nonmonotone version was better than the monotone
one, specially for large scale problems.

Now, if we consider Tables 1~3 jointly we note that in most of the experiments
the number of inner iterations for p = 2 and 3 was greater than for p = 1. However,
for large scale problems, the CPU time for p = 2 and 3 and nonmonotone versions
were less than those corresponding to the case p = 1.

Tables 4 and 5 show that performing the spectral correction of the Hessian at
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inner iterations is better than not correcting at all, as the Stationary Newton method
does.

Finally, Table 6 shows that using any implementation of the spectral method
(p = 2 or 3) in the monotone or nonmonotone line search is more effective than using
LANCELOT (with the mentioned default parameters} on this set of problems.

Let us try to explain the reasons for this state of facts.

(1) The performance of our method was better than Newton’s method except for
small problems. (Observe that the sparsity pattern of the matrix {4) is suitable for a
rather quick factorization using MA27.) The fact that Newton’s method, in any of its
variations, is very effective when the linear algebra associated to it is not prohibitive
is well known in numerical optimization. Moreover, in that case, the association of
Newton with the logarithmic barrier function (see, for example [21, 22]) is usually
profitable. It could be easy to construct examples where the situation is completely
different, just placing an objective function with a dense or badly structured Hessian.
On the other hand, the fact that in our method we do not factorize that matrix in
each iteration is a very important advantage, as can be clearly observed comparing
the CPU time for large scale problems.

{2) More important is the fact that the spectral preconditioned methods out-
performed stationary Newton variations. In fact, stationary Newton methods {(with
restarts) are good alternatives to Newton when this is not affordable. So, it is inter-
esting to observe that with minimal corrections, which do not increase the computa-
tional cost of Newton’s stationary methods, we can obtain significant improvements
of the overall performance.

{3) The fact that explains the superiority of the methods introduced in this paper
against LANCELOT is, essentially, that the matrix A has a structure that makes
the factorization of (4) affordable. LANCELOT does not use factorizations at all
and, so, this advantage is lost.

{4) As in [6, 15, 20] the numerical results for large scale problems using a non-
monotone line search were better than those using monotone ones.

Given the above observations and possible explanations, let us forecast the prac-
tical future of algorithms like the ones presented in this paper. First of all, it is
clear for us that they are not going to replace Newton's method, when the linear
algebra cost associated to the latter is moderate. However, in situations where a
Newton iteration can be performed but is rather expensive, a spectral Hessian scal-
ing performed at most iterations must be more effective than merely repeating the
previous Hessian.

If a factorization of (4} is so expensive that it cannot be performed even in a
single iteration, two different situations can be distinguished. In the first situation,
the matrix responsible by the linear algebra cost associated to the factorization of
(4) is the constraint matrix A. In this case, Algorithm 1 cannot be implemented
either and, certainly, this is the case in which it is recommendable to incorporate
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the constraints Ax = b to the objective function, as LANCELOT does (see [7, 14]}.
In the second case, the Hessian of the objective function is the one that makes the
factorization (4) impossible. In this case, the factorization of

I A7
A 0
is probably affordable, and the spectral gradient method based on By, = [ can be
comparatively efficient. In an extreme case, the problem is unconstrained (m = 0),
a situation where the spectral gradient technique has proved to be effective.
Finally, a few words must be said with respect to the penalty strategy used here.
There exist at least two completely different strategies for dealing with the bounds.
The most classical one is the active set strategy described, for example, in [12] and
many other text books and papers. In the last decade, interior point algorithms like
the ones described in {22] became increasingly popular. The association of interior
point (logarithmic barrier) algorithms with Newtonian directions seems to be very
effective. However, this does not seem to be the case when Newtonian directions
cannot be computed at all. In this case, we feel that the modified exponential
penalization is a good alternative although much research is necessary in order to

balance the termination criterion of the inner algorithm with the global convergence
criterion.
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Capitulo 4

Um meétodo secante multipoint
com memoria limitada para
otimizacao com canalizacoes

Resumo

No presente trabalho é apresentade um novo algoritmo para problemas de mi-
nimizacdo com canalizacboes de uma funcdo diferenciavel. O modo de tratar as
restricoes ativas é similar ao usado em alguns dos novos solvers quadréticos. Sdo
usadas aproximacoes multipoint secante simétricas das Hessianas. Dado que estas
aproximagdes ndo forcam que as aproximagdes sejam definidas positivas é possivel
acumular, e usar eficientemente, informacio de curvatura negativa. Sao apresenta-
dos resultados numéricos.
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1 Introduction
The problem considered in this paper is
Minimize f(z) subject to z € £, (1)

where
Q={zre R"|{<z<u}, (2)

fbu€ R £ <wand f:R®— IR has continuous first partial derivatives.

This is a very important problem in practical optimization. On one hand,
many physical, engineering and industrial problems admit mathematical models
of type (1). On the other hand, one of the most effective approaches for solving
general constrained optimization problems, based on augmented Lagrangians, relies
on effective algorithms for solving (1). See [11, 12, 29]. Finally, recent work on com-
plementarity and variational inequalities reduce these problems to box-constrained
minimization problems in an efficient way. See [1] and references therein.

All practical methods for solving (1) are iterative. Given z* € Q, many methods
compute a quadratic model of f, whose gradient at z* coincides with the gradient
of f, and whose Hessian is an approximation of the Hessian of f. At least three
different (but related} ways of dealing with this approximation have been considered
in recent literature.

1. In [8] the quadratic model is used to compute a “Cauchy point” and this
point is used to decide the face to which the first trial point will belong.
The quadratic model is (approximately} minimized on that face, giving the
first trial point. The effective new point 2%*! is computed using a line-search
procedure. A related guessing-active-set strategy was proposed in [23]. See
[321.

2. In [11, 28] the first trial point must belong to a trust-region ||z — z*||,, < 6.
Since the intersection of this trust-region with © is an n-—dimensional box,
the Cauchy point is used to decide the face of this box to which the first trial
point must belong. If a sufficient decrease condition fails to hold the size of
the trust-region is reduced, and the process is repeated.

3. In [27] the box-trust-region approach is also used but, instead of restricting
the search of the trial point to a face determined by the Cauchy point, the
whole box is explored using a specific algorithm for box-constrained quadratic
minimization. See [2, 26, 27].
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In the algorithms introduced in this paper we also use quadratic models, but
the way of dealing with constraints differ from the ones described above. Roughly
speaking, our proposal here is to deal with constraints in the same way the quadratic
solvers [2, 16, 26] do. This means that an algorithm for unconstrained minimization
on the current face is used, until a separate indicator says that this is not worthwhile
anymore. In this case, the face is abandoned along a direction defined in [24, 25, 26]
for convex minimization. For this direction, interesting physical interpretations were
given in [16]. See also [17, 18, 19, 20, 21, 22]. Moreover, when, in the unconstrained
search process within a face, the algorithm hits a bound, several new constraints are
added to the trial point in order to avoid the costly process of adding one constraint
per iteration.

The main motivation for this approach is to allow one to try conservative strate-
gies for dealing with faces of the feasible region. In fact, recent numerical studies [15]
showed that, for box-constrained quadratic minimization, conservative strategies are
more efficient than strategies that abandon the current face with mild criteria. In the
presence of dual-degenerate solutions conservative strategies tend to avoid zigzag-
ging between the optimal face and a face with larger dimension.

In an extreme case, the algorithm will be able to explore a face until a minimizer
on that face is found, or a lower-dimensional face is reached. In other words, a single
parameter will cause the algorithm to be more or less persistent in the process of
exploring a fixed face. In general, conservative strategies will be more conservative
that those described in [8, 11, 27], whereas liberal strategies tend to agree with some
of them.

In already published algorithms, different ways of computing the Hessians of the
quadratic models are considered. The true Hessian of f and limited memory BFGS
and SR1 quasi-Newton approximations are the best known alternatives. See [8, 11].
An interesting Gauss-Newton Hessian approximation for augmented Lagrangians
has been tested in [29]. In many cases the true Hessian is very costly or difficult to
compute and finite-difference computations (even using the sparse schemes of [10])
are also time-consuming. In these cases, the truncated-Newton approach, where
each ‘Hessian x vector’ product is replaced by an incremental quotient can be used,
but, since each of these products involves an additional gradient evaluation, this
alternative can also be inefficient. Moreover, in this approach, information about
the Hessian matrix obtained at the current iteration is not used on the next one.

On the other hand, quasi-Newton Hessian approximations (see, e.g., [14]) are
able to accumulate such kind of information. These approximations involve only
one gradient evaluation per iteration, but the quadratic model does not fit with
the true function so well, as true-Hessian models do. In the large-scale case, most
known quasi-Newton Hessian approximations, which do not preserve sparsity, cannot
be completely stored and, so, limited-memory alternatives have been developed.
See 8, 9].
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QOur limited memory approach will be based on the multipoint symmetric secant
approximations of the Hessian matrix proposed in [4]. These approximations are
an extension of the classical multipoint secant scheme (see {30, 33] and references
therein) with the advantage that they use the symmetry of the Hessian matrix in a
natural way. The idea is that the Hessian approximation should be such that the
gradient of the quadratic model agrees with the gradient of f at some previous m
points. However, since this objective conflicts with the symmetry, the most “fresh”
information carried by the gradient values is privileged. Finally, the tendency to in-
stability of the sequential secant approach is overcome with the approach of {5, 6, 7].
Since multipoint symmetric secant schemes generate better Hessian approximations,
comparing e.g. to BFGS, they fit well with the conservative procedures for dealing
with active constraints considered in this research.

The organization of this paper is as follows. The general model algorithm, which
is independent of the choice of Hessian approximations, is described in Section 2,
where basic global convergence theorems are also proved. In Section 3 we describe
the multipoint secant scheme, which is used within the faces. In Section 4 we discuss
some implementations details. The numerical results are given in Section 5. Finally,
the conclusions are presented in Section 6.

2 Global convergence framework

As in [26], let us divide the feasible set 2 into disjoint open faces, as follows. For all
Ic{L2,...,nn+1l,n+2,...,2n}, we define

Fr={zeQ|n=4ifiel, z;=wifn+i €, {; <z <u otherwise}.

Let [F;} denote the smallest linear manifold that contains F7, and 57 denote
the subspace obtained by the parallel translation of [Fi]. If z € F}, the orthogonal
projection of ~V f(z) on S; will be called “negative internal gradient” and denoted
g1(x).

The “negative chopped gradient” (see [16, 26]) gc(z) is defined by

__of
g0l = - 5a)
if
. of
z; = 4£; and o (z) <0
or
z; = u; and gci {z) > 0.

In all the other cases (for example, if 4; < z; < u;) the i—th component of go(z) is
defined to be 0.
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Observe that
g1(z) L gclz)

and that, defining gp(z) = g;(z) + ge{x), the stationary points of (1) are the points
that satisfy gp(z) = 0. The vector gp{z) is called (non-continuous) negative pro-
jected gradient. In spite of the lack of continuity of gp(z) it is easy to see that
z* = 2 and ilgp(z®)|| — 0 imply that gp(z) = 0.

The main algorithm presented in this paper is an active set method with a
special procedure for dropping constraints. It calls a Sub-algorithm for a mini-
mization on current face. For a given Fj, the Sub-algorithm generates iterates
{zF g*+1 2%+2 .} C F;, which are assumed to meet the following requirements:

A1l. Forall k € IV, if z¥*! is computed by the Sub-algorithm, then f(z**) < f(z%).
A2. If {zF 2% 2F*2 |} C Fy is a set of infinitely many iterates computed by the
Sub-algorithm, then gr(z*) — 0.

A3. The Sub-algorithm terminates when it generates an iterate that belongs to the
boundary F; — Fy.

The main model algorithm is the one given below. (] - || will be the Euclidean
norm throughout the paper, although many times it can be replaced by an arbitrary
norm on IR".)

Algorithm 2.1
Assume that 2° € Q is an arbitrary initial point, 7 € (0,1), 0 < Omin < Fmaez < 00

and 4 € (0,1). Let F; be the face that contains the current iterate z*. The new
iterate z*11 is computed as follows.
Step 1: If {|gp(z*)|| = 0 terminate the execution of the algorithm. (z* is stationary.)
if

lgc(=®)]]

lor@R = ¥
compute %! at Step 2. Otherwise, compute z*** using the Sub-algorithm.
Step 2: Choose 0k € [Tumin, Tmaz)- L@t Qe be the maximum value of o such that

the segment [z*, 2% + agc(z®)] is contained in Q. Set @ « min {0k, ez }- If

F(z* + age(a™)) < f(z*) - ballge(=")|? (4)

set ap = @, 271 = ¥ -+ apgo(z*) and finish the iteration. Else, choose & + ey €

[0.1ev,0.90] and repeat the test {4).
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To prove global convergence, we assume in the next theorem that V f(z) satisfies
a Lipschitz condition: There exists L > ( such that

Vi) = V@)l < Lily — 2| (3)
for all z,y € . This implies that

F) < £+ (V)y =) + 5y~ (©

for all z,y € €L

Theorem 2.1. Algorithm 2.1 is well defined, and every limit point of its iterates is
a stationary point for problem (1).
Proof. Let us call

Ky = {k € IN | [igc(z")li/llgr(z*)I| = n}.

The proof that the algorithm is well defined consists on showing that, for all k € K,
after a finite number of reductions of «, the condition (4) is satisfied. In fact, by (6),
we have that for all o > 0,

Fla* + agole) < £(6) — allool@)iE + S oo

This implies that (4) holds for a < mfﬂ Therefore, the new iteration is well
defined.

Moreover, the « accepted at Step 2 of Algorithm 2.1 is bounded below by the
positive

& = min{omin, 2(1(;9)}
Therefore, at Step 2, we have
F(a®) = F(2*) > banige (). 7
Since f(z) < f(zF) for all k € IV, (7) implies that either K is finite or
> llgp(=")]? < (8)

kel

In the infinite case, (8) implies that gp(z*) — 0 for k € K. Therefore, every limit
point of {z¥, k € K} is stationary.

If K, is finite, there exists kg € IN and & face F; such that z* € F; for all
k > kg. Therefore, z*7! is computed by the Sub-algorithm for all & > k. So, by
Axiom A2, limg_,o lgr{z®)]] = 0. But, for all k¥ > &y, the inequality {3) does not
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hold. Therefore, limg_, . l|gp(x*)|| = 0. As before, this means that every limit point
of {z*} is stationary. QED

As we saw before, the stationary points of our problem are characterized by
gp{z) = 0. If z is a stationary point such that z; = £; {or z; = %;) and %; = we
say that x is degenerate. In the following theorem we prove that, if degenereﬁ;e points
do not exist, the algorithm identifies the active constraints at the cluster points in
a finite number of iterations.

Theorem 2.2. Assume that all the stationary points of (1) are nondegenerate.
Then, there exists I C {1,2,...,2n} such that all the limit points of the sequence
generated by Algorithm 2.1 are stationary and belong to F;. Moreover, there ezists
ko € IN such that 2% € Fy for all k > ky

Proof. Let us prove first that Step 2 cannot be executed infinitely many times. We
proceed by contradiction. If the iterate 57! is computed at Step 2 infinitely many
times, there exists a constraint that is abandoned infinitely many times. Without
loss of generality, assume that this constraint is z; = ¢;. So, there exists an infinite
set K; C IV such that

-’Ef = giv x?m}«l > gi: (9)
d
Lt <o, (10)

and z5*! is computed at Step 2 for allk € K. Let 2* be a limit point of {z*, k € K, }.
By the proof of Theorem 2.1, z* is stationary and, by (9) and (10), ] = ¥£; and
%(m*) < 0. Now, since z* is stationary, %(m*) > 0. So, z* is degenerate, which
contradicts the hypothesis. Therefore, we iyroved that there exists k¢ € IV and
I < {1,2,...,2n} such that z¥ € Fy for all £ > ko. This implies that, for all
k > ko, %! is computed by the internal unconstrained algorithm. So, by Axiom A2,
gr{z®) — 0. Since (3) does not hold for all £ > ko this implies that gp(zf) — 0
and, all the limit points are stationary. Suppose now that z* is a limit point. By
continuity, since g;(z¥) — 0, we have that

8]‘(
835

") =0

for all i such that ¢ ¢ [ and n+¢ € I. Since z* is nondegenerate, this implies that
¢; < x¥ < u;. Therefore, z* € Fy, as we wanted to prove. QED.
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3 The limited-memory multipoint secant method

The multipoint secant method is going to be used as Sub-algorithm at Step 1 of
Algorithm 2.1. Given z* € F; (not satisfying (3)), a symmetric Hessian approxima-
tion By € IR™™ (which is going to be a low-rank modification of a multiple of the
Identity matrix) and a trust region radius dg, Algorithm 3.1 shows how %! € Fy is
obtained. The method is interrupted (and restarted in a new face) if 2¥¥! € Fy — F7.
To simplify the notation, suppose that the face F} is the interior of 2. The extension
to a general F is straightforward.

Algorithm 3.1
Step 1. Consider the problem

Minimize Q(z) = —é—zTBkz +{V f(z*), 2). (11)

Starting with z° = 0, apply the conjugate gradient algorithm to (11) until it gener-
ates 27, for which one of the following criteria is satisfied:

1. 27 violates the constraints given by

127 ]loo < 6y £< 2"+ 27 < (12)

2. The conjugate gradient method generates a direction along which Q(z) tends
to —oc.

3. The gradient of the quadratic Q(z) is null at 27.

In the first case, compare the value of Q(z) at the projection of 27 on the region
(12) with the value of @(z) at the further point from z7 that satisfies (12) on the
segment (2771, 27]. Define 24 as the argument of the minimum between these two
values.

In the second case, assuming that 27~! is the last computed vector by the conju-
gate gradient algorithm and that ¢/~ is the generated direction, proceed as in the
previous case replacing 27 by 227! + Md’~!, where M is a large positive number.

In the third case, define zgq0 = 27.

Step 2. Define

k
Zirigl = T Zirial,

Pred = —Q(zyim), Ared= f(z*) = f(&* + 2iat).
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If Ared < 0.1Pred, replace d; + 0.5]|2riullco and go to Step 1.
If 0.1Pred < Ared < Pred define 2% = 2,401, St41 = 0.
If Ared > Pred define 25! = 2,0, Syt = 36;.

Many general theories can be invoked to prove that, under boundedness assump-
tions on || By, Algorithm 3.1 satisfies the axioms A1-A3. In particular, see [11].
The main goal of this research is to show that, if we generate the matrices By us-
ing secant multipoint formulae, the combination of Algorithms 2.1 and 3.1 is quite
efficient.

Let us now describe the multipoint secant generation of the matrices By.

Denote s% = zFFl — 2% yF = gk+1 _ ok Suppose that the vectors s%, ..., s !
have been generated somehow, and that they are linearly independent. The ideal
aim would be to construct a Hessian approximation B" € IR™*" such that

(BT = B", (13)

B's'=y', i=0,...,n~1 (14)

However, in general, this is impossible, because the system of n(n — 1}/2 + n?
equations (13) and (14) in n® unknown elements of B" is overdetermined. The
information about the symmetry of the Hessian matrix conflicts here with the in-
formation carried by the pairs {s*,4’}. The idea of the sequential symmetric secant
methods introduced in [4] is to release in a natural way relations (14} in order to
have B™ well defined. It can be done non-uniquely. The uniqueness can be achieved
by ranging the pairs {s%,y'} in accordance with the reliability of the information
that they carry. For example, for i > 7, one can consider {s¢,4'} as more reliable
for the Hessian approximation than {s?, 47}, because the first pair was computed at
a more recent iteration, and therefore it carries more fresh information. Then, in
the process of constructing the Hessian approximation B™, it is natural to use the
pairs {s%,3'} sequentially for i =n—1,n—2,...,0. For any current {s%,3'}, we can
ignore the part of its information, which conflicts with the more fresh information
{s7,9'}, j=n—1,....1— 1, that have already been used.

To clarify this idea, suppose for the moment, that the vectors s" %, i=1,...,n,
are parallel to the coordinate axes ¢'. Then the first column and the first row of
the Hessian matrix can be approximated by the standard finite-difference formula
as y"+/l|s"*||. The second column and row, in their parts outside the first column
and row, are approximated by ™ %/[/s"~?||, and so on. To fill in the nonfilled part
of the ith row and column, the components y}~/||s"~"l|, j = i,...,n, are used (see
Fig. 1).
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Figure 1: Symmetric secant approzimation of the Hessian matriz.

In the general case of arbitrary vectors s 7%, the space can be linearly transformed
so that, in the new space, the vectors §° are parallel to the new coordinate axes
&', Then the described approach can be used to approximate the Hessian matrix in
the new space. After returning back to the original space, we get the approximation

B" = S Tsym(STY)S"1, (15)

where S = [s% ..., 8" Y = [°,...,y*" 1] € R"*", and for any matrix A, the
symimetrization operation is defined as

o ) Ay, 127,
(symA)s; = { Aji, otherwise.
Note that B® = f7 if f(x) is quadratic. If not, the multipoint secant approximation
(15) gives a good approximation to f"(z™), provided that the matrix S is “safely”
nonsingular (see [4}).

Let us compare the approximation {15) with the one B" = Y'S~! given by
the classic multipoint secant method [33]. In the new subspace, where 5 || &,
i=1,...,n, it is easy to see for each element of approximation, how “fresh” is the
information involved in its computation. Comparing these two approximations, say,
row by row (see Fig. 2), one can see that the symmetric one uses more “fresh”
information comparing to the classic one, which uses in each row all spectrum of
information, from the most “fresh” to the “oldest”. Such comparison of {15} with
the symmetric versions of the secant method proposed in [35] leads to the same
conclusions. This is the reason why in the symmetric case {f'7 = f"), (15) generates
better approximations, and why this approach is applied here in the limited-memory
framework. An important property of (15) is that B® can be obtained from any
initial B € IR™ ™ as the result of n sequential updatings by the rank-two formula

k. pkok\ (kT o ki k ok kYT k_ pkok ok k(A ENT
Bk+1SBk+(y BS)(C)TC(y BS) M<y BS:S>C(C) ,(16)
(Sk,6k> <3k,Ck>2

k

where ¢* is any vector in IR", such that
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Figure 2: The symmeiric (left) and the classic (right) secant approzimations with
indication, for each element, the iteration at which its pair {s,y} was computed.

(cF,sy =0, 0<i<k, (17)
(c*, sy # 0. (18)

The sequence {B*}7 is well defined by {16)-(18) in the sense that there is no
break-down for all k = 0,...,n — 1. Though we assume from now on that B° is
symmetric, some of the further assertions don’t require this assumption.

It can be easily shown by analogy with [7] that formulas (16)-(18) generate

symmetric Hessian approximations that satisfy for all £ = 0,...,n—1 the following
equations
(SFYTBH1IgE = sym((S¥)TYH), (19)
(")TBF18% = §TY*  ws L SF (20)
(S5TB* s = (Y¥)Ts, s L Sk (21)
where §% = [¢% ..., s*], Y* = [0, ..., "] € R***+U These equations imply
BHigh = o, (22)

Note that the vector ¢* is not uniquely defined by (17) and (18). The uniqueness
can be obtained, if we assume that B**! is the solution to the following problem

Minimize  ||B — B¥||p, (23)
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subject to:  (SF)TBS* = sym((5*)TY*),
("Y' BS* = sTY*, Vs 1 SF,
(85TBs = (Y*)Ts, Vs L SF

where || - || is the Frobenius matrix norm, and B* is supposed to satisfy equations
similar to (19) and (20). The solution fo this problem is unique, and it is given by

formula {16) with
cfc — [I _ Sk—l((Sk—l)Tskml)——l(Sk—-i)T]sk.

This means that the sequence {c*}§™" results from the Gram-Schmidt orthogonal-
ization process applied to the sequence {s*17~!. Denoting

ko | 0 Cx nx{k+1)
¢ Licau’“"ncku}m ™

we see that (C*)TC* = I and
¢t = [I - CFY(CF 1Tk, (24)

This choice of ¢ assures that the equation

sTB*s = sTB%, Vs L S§%! (25)
holds for all k= 1,...,n. Note that the sequence of approximations B* is uniquely

defined by (19)-(21) and (25). Our limited-memory approach will be essentially
based on this property.

In the limited-memory methods, the Hessian matrix is approximated by a low-
rank modification of a simple matrix BY. In the next theorem, we present the
multipoint symmetric secant approximations in the form that will be useful for im-
plementation in the framework of the limited-memory approach. For the simplicity,
the upper indices of $* and ¥* will be omited.

Theorem 3.1. Let S = [s°, ..., %] € R™"+Y be a full-rank mairiz. Suppose that

the matrices BY, ..., B*¥* are generated by formulas (16) and (24). Then for any
BO =t }Rnxn7

Bl = (I-S5(8T8)"*sT\BY(I - S(S8TS)~tsT) (26)
N [ 5 v } [ —(ST8) tsym(YTS)(STS) 1 (STS)*} [ s’f}
' (8751 0 VI

where Y = [y°, ..., yF € RP*+1),



Proof. Let S, € IR™ "~ %~1) be any matrix such that
STS, = I and STS = 0.

Then equations (19)-{21) and (25) can be written as

ST sym{STY) Y75,
[S’I]Bk+1[5 SL];{ )S%Y ) S?BOE’L} (27)

By the assumption, the matrix [S .S.] € R™™" is nonsingular. Then

[ s s, ]_1 _ [ (ng%mls‘ } _
Therefore, with the use of the evident relations
§5.8T =1-5(875)71s7,
sym(YT8) = STY — Y78 = —sym(STY),
formula (26) can be easily derived from (27). QED

In the limited-memory methods, the initial Hessian approximation is usually
chosen as BY = ~I, where the positive scalar v may depend on k. For this important
special case, formula {26) can be written as

BF = 4] (28)
! ~Wsym(YTS)W —yW W ST
+ | Y}[ 14 o || YT

where W = (STS)™! ¢ RFEFDxk+1) " The middle matrix is of the size 2(k + 1} x
2(k +1). For k < n, this means that the matrix B*t! is a low-rank correction of
+I. It is the most essential property of the limited-memory methods.

4 Some implementation features

This section deals with some specific implementation choices. We present the results
of computer experiments in the next section.

Update of matrix S at the k-th algorithm. After computing the new point
Zr41 we have to update the matrix S of the multipoint secant method. So, given
the matrix Si—1 € IR™*P and the current search direction we have to decide whether
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we define the matrix Sy simply adding the vector s; to Sp—; as new colummn or it
will be necessary re-construct the matrix S, in another suitable way.

Suppose that Sp_1 = Qr_1Rk—1, where (1 € IR™P is an orthogonal matrix
and Rx_; € IRP*P is an upper triangular matrix. The matrix Sg-1 is composed
of some of the previous search directions s;, although the columns of S;..; are not
supposed to be ordered by the iteration number i. Let m; be the maximal number
of columns related to the limited memory size. Let my be the parameter that does
not allow to have in S vectors s; with 1 < k — mq (we called such vectors too old).
Now, the Sy matrix is updated carefully using the following algorithm:

Algorithm 4.1: Update the matrix S,_; at k-iteration

For simplicity, we denote s, = 85, 5. = Sp1, Qe = Qie1, Be = By, 5= 5, @ =
Qi and R = Ry,

Step 1: if S; has a too old vector at the last column then set p = p — 1. That

is, we exclude the last column in S, and @, and we exclude the last column and
the last row in K.

Step 2: If p < m; and there is not too old vector in S, then set

r=Qise a=s—Q, p=ld, ¢=g¢/p andr.=slg
If p > wils.|] then

R, r

setp=p+1, S=[S5 s, Qm[ch}andR;{D -

} STOP.

Step 3: set p=1,5 = [5],@ = [s./]|s.]]] and R = [|sc[]].

Step 4: check one by one the vectors s; that compose the columns of S, in
decreasing order of ¢, do:

While i > k£ — my and p # my, then set

r=Q%;, q=s-Qr, p=lql, g=4q/p andr.=siq.

If p> wils;|l then

sip=p+l S=iS.s) Q=@dadr=|p ||

Computation of o at Step 3 in Algorithm 2.1. Recall that in Algorithm 2.1
we define the step length « in the chopped direction ge as the minimum between oy,
and Qaz, Where o € [Gpmin, Omaee). To take into account the approximated second

order information at this step we adopted the spectral choice (see [34], [31]):
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. STyk . T
o, = { max (crmin,mm (amax, m if spyp > 0

Tmin else .
where By gives the second order information (see (11}).

Initial Hessian approximation. At the beginning of the iterations in each
face, the initial Hessian approximation is chosen as B® = ~I, where we set the
constant v equal to the absolute value of the objective function at the first approx-

imation in that face. (See [14]). If v is less than a tolerance ¢ we set v = 1.0, that
is, we choose BY = [. '

Stopping criterion at Step 1 in Algorithm 3.1. The conjugate gradient
is applied until the new approximation violates the constraints or the algorithm
generates a direction with negative curvature or the gradient of the quadratic is null
at this approximation. The last one option means that we stopped if the the 2-norm
of the quadratic approximation at the new approximation was less than or equal to

0.1 times the 2-norm of the quadratic approximation at the initial approximation,
that is, zero.

5 Numerical experiments

Algorithm 2.1, with the Sub-algorithm 3.1 and the multipoint secant generation of
the matrices B; define an implementable algorithm for box-constrained minimiza-
tion of differentiable functions. A particular implementation also depends of some

parameters. We adjusted them using a small set of test problems. The default
parameters of our implementation are:

e ¢ = 107%, tolerance for 2-norm of projected gradient gp.

® Omin = 1073, 0nae = 10°, the safeguards interval for the spectral parameter o.
e m, = 5, maximal number of columns related to the limited memory size.

e ms = 5, integer that does not allow to have too old vectors in the S matrix.
e 4 = 0.5, the trust region radius for Algorithm 3.1.

e w = 0.1, tolerance used in Algorithm 4.1.

e 77 = 0.9, tolerance used in Algorithm 2.1 to quit the face or not.

e ¢ =107* parameter used for the line search in Algorithm 2.1.
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The resulting code, named BSS, was compared against the well known package
LANCELOT [11, 18], using a set of 20 bound constrained problems from the CUTE
[3] collection. In Table 1 we reported the name of the problem, the type of objective
function and the number of variables.

All the experiments were run on a SUN Sparc Ultral. LANCELOQOT and BSS are
formulated in Fortran 77 and were compiled with {77 compiler. In both of cases we
used the optimization compiler option “-O7”.

We used the following default options for LANCELOT:

e exact-second-derivatives-used

s bandsolver-preconditioned~cg-solver-used 5

exact~-Cauchy-point-required

solve-bgp-accurately

gradient—tolerance 1.0D-06

e constraints~tolerance 1.0D-06

| Problem | Objective function | n |
BQPGABIM | quadratic 50
CHEBYQAD | sum of squares 50
DECONVB | sum of squares 61
HARKERP2 | quadratic 100
HS110 sum of squares 100
5368 other 100
EXPLIN other 500
EXPLIN2 other 500
EXPQUAD other 500
QRTQUAD | other 500
BDEXP other 10000
CVXBQP1 quadratic 10600
HATFLDC sum of squares 10000
NONSCOMP | sum of squares 10000
NCVXBQP1 | quadratic 10000
NCVXBQP2 | quadratic 10000
PENTDI quadratic 10000
PROBPENL | other 10000
QUDLIN quadratic 10000
TORSION3 | quadratic 14834

Table 1. Test problems.
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The numerical results are shown in Table 2. We listed the name of the prob-
lem, the number of variables, the final value of the objective function and the CPU
time (in seconds) for both of algorithms BSS and LANCELOT. We compare three
versions of LANCELOT. For the first one (LAN(1)) we used the

option, for the second one {(LAN(2)} we used
option and, finally, in LAN(3) we used
. We get the same solution in all of the test problems using LANCELOT and
BSS, except for problem S368 and BDEXP. For S368 the version LAN(2) reached
the maximum number of iterations and for BDEXP the version LAN(3) exceded the
maximum CPU time allowed.

Problem n f{x) CPU Time

BSS [LAN(1) | LAN(2) [ LAN(3)
BQPGABIM 50 | -3.7903D-05 [ 0.06 0.04 10.71 0.11
CHEBYQAD 50 | 5.3863D-03 | 306.11 4.56 79.52 4.51
DECONVB 61 | 8.6383D-03 | 1.84 0.36 0.77 0.46
HARKERP?2 100 | -5.0000D-01 1 0.80 0.94 0.95 0.95
HS110 100 | -9.9800D+19 | 0.01 0.04 0.04 0.04
S368 100 | -1.3360D+02 | 3.88 3.14 | ®425.79 29.87
EXPLIN 500 | -1.2523D+07 |  0.10 0.45 0.47 0.48
EXPLIN2 500 | -1.2464D+07 |  0.65 0.48 0.51 0.52
EXPQUAD 500 | -2.6553D+08 |  0.83 3.07 3.40 3.12
QRTQUAD 500 | -2.6553D+08 | 0.81 3.08 3.48 3.15
BDEXP 10000 | 3.9288D-03 , 3.76 8.27 12.82 (ex)
CVXBQP1 10000 | 2.2502D+06 @ 29.88 4.76 4.97 4.87
HATFLDC 10000 | 6.9494D-11 1 9.55 4.63 5.01 4.76
NONSCOMP | 10000 | 3.0559D-14 | 7.84 6.63 5.48 6.27
NCVXBQP1 | 10000 | -1.9855D+10| 0.95 8.31 8.80 8.55
NCVXBQP2 | 10000 | -1.3340D+10 | 9.25 11.94 12.75 11.50
PENTDI 10000 | -7.5000D-01 | 0.56 3.05 6.40 3.17
PROBPENL | 10000 | 1.9998D-08 | 0.62 27.63 51.45 51.73
QUDLIN 10000 | -4.9995D+09 |  1.09 8.30 8.01 7.81
TORSION3 | 14884 | -1.2138D+00 | 358.63 17.26 22.58 21.65

Table 2. Performance of BSS versus LANCELOT.
(). maximum limit of iterations reached.
+}. maximum CPU time reached.

100



6 Conclusions

Active set methods are among the most traditional tools of constrained optimiza-
tion. Their appeal come from the fact that they allow the algorithmic designer to
take full advantage of previously developed unconstrained optimization techniques.
As far as new ideas in unconstrained minimization continue to be introduced, the
implementation of active set methods based on those ideas is a natural task.

The unconstrained optimization technique exploited in this paper is the memo-
ryless multipoint symmetric secant scheme. As many other quasi-Newton methods
this method exploits well the unconstrained structure. The fulfillment of several se-
cant equations within a given face (or subspace) usually guarantee that Newton-like
directions inside that face are produced. On the other hand, since the approximate
Hesslans so far generated are not necessarily positive definite, a trust-region strat-
egy for global convergence is in order. In this paper we adopted the memoryless
approach, thanks to which large problems can be solved. Moreover, a small number
of low-rank corrections guarantees that the Hessian approximations possess a small
number of different eigenvalues and, so, the conjugate-gradient method is efficient
for dealing with the quadratic models.

The comparison with LANCELOT seems to reveal that the method so far in-
troduced is reliable. It is interesting to observe that the new method worked very
well in problems where the performance of LANCELOT was rather poor (S368,
PROBPENL} whereas LANCELOT was much more efficient in others (CHEBYQAD.,
CVXBQP1, TORSION3). This seers to indicate that the trust-region strategy of
LANCELOT and other box-constrained solvers is complementary to the active-set
strategy in the sense that difficult problems for one of them are relatively easy for
the other.

As we mentioned in the introduction, one of the main purposes of box-constrained
solvers relies on its application as subalgorithms for more general algorithms for
nonlinear programming. (See [12, 29]). This will be the object of our practical
research in the near future.
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Conclusoes Gerais

No presente trabalho estudamos o problema de minimizar uma func¢do geral
sujeita a restrigdes do ponto de vista da resolugfo numérica do problema.

A idéia dos métodos baseados no Lagrangeano Aumentado para programacio
nao linear para problemas de grande porte ficou consolidada com os trabalhos de
Conn, Gould and Toint no algoritmo LANCELOT. No novo algoritmo ALBOX apre-
sentamos algumas diferencas com essa formulagiio para a resolugdo do subproblema
quadritico. A principal diferenca esta relacionada em explorar uma caixa de regifo
de confianca no lugar de usar a informacao do ponto de Cauchy aproximado. Outra
diferenca, que mostrou ser muito eficiente computacionalmente, foi 0 uso de uma
simplificacdo convexa da Hessiana verdadeira do modelo quadratico. O objetivo de
usar ALBOX néo é somente mostrar que ele pode resolver problemas da vida real
sendo também fazer comparaces frente a outros coédigos. Este ultimo é de grande
utilidade pois assim € possivel ajustar pardmetros e testar algumas variantes e alter-
nativas do mesmo cédigo. O resultado desta comparagio parece indicar que ALBOX
pode ser usado como um algoritmo competitivo para a resolugdo de problemas de
programacao nao linear.

Apresentamos um algoritmo modelo de tipo restauracao inexata para um pro-
blema de minimizac¢ao com restrigdes ndo lineares e varidveis em {2, um conjunto
fechado e convexo do espaco n-dimensional geral. Pelo fato de ser um algoritmo
modelo admite diferentes implementacoes, e a eficiéncia do algoritmo dependera dos
métodos escolhidos para realizar cada uma das fases. Como na prética estamos
interessados no caso em que {0 seja um politopo, usando normas convenientes na
formulacao dos problemas de cada fase, é possivel usar qualquer algoritmo ou pacote
disponivel para problemas de minimizacdo com restri¢Ges lineares para problemas de
grande porte. Na nossa implementagao usamos MINOS [67] na fase de minimizagéo.
Os resultados numéricos obtidos usandc o HSP mostraram a eficiéncia da nossa
implementacdo assim como da estratégia de restauragac inexata.

Apresentamos um algoritmo para minimizacdo com restricoes lineares e cana-
lizagoes usando um método Quase-Newton onde a matriz de atualizacdo é obtida
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usando uma escolha espectral associada a um quociente de Rayleigh e combinada
com uma busca linear ndo monétona. Pela estrutura do problema foi possivel usar
técnicas de fatoracOes esparsas. Na nossa implementacdo usamos o cédigo MA27T
[39]. O uso de fatoracdes esparsas pode ser decissivo na performance de um algo-
ritmo sempre que seja possivel explorar a estrutura de esparsidade da matriz das
restri¢bes. Além disso, o fato de nfo fatorar a matriz KKT em cada iteracdo é uma
importante vantagem do nosso algoritmo, o que pode ser observado nos resultados
numéricos. Como aconteceu em outros trabalhos baseados no gradiente espectral a
busca linear ndo mondtona mostrou-se mais eficiente que a busca linear mondtona.
Por outro lado, a penalizacdo exponencial modificada parece ser uma boa alternativa
em relacdo as classicas estratégias de penalizacdo quando direcdes Newtonianas néao
podem ser calculadas.

No ltimo Capitulo consideramos um método para um problema de minimizacao
com canalizagdes. O método explora a estratégia de restri¢oes ativas com um es-
quema multipoint secante simétrico com meméria limitada. Dado que as aproxi-
magoes Quase-Newton nio sao necessariamente definidas positivas usamos uma es-
tratégia de regido de confianga para a convergéncia global do algoritmo. A memoria
limitada é uma metodologia adequada para resolver problemas de grande porte.
Além disso, atualizacles com correcbes de posto pequeno asseguram que as aprox-
imacdes das Hessianas tém um nimero pequeno de autovalores diferentes e portanto
o método dos gradientes conjugados € eficiente para tratar com modelos quadraticos.
Os resultados numeéricos e as comparacoes mostraram que o método apresentado é
confidvel.

Finalmente, e utilizando o que aprendemos, estudamos e experimentamos pode-
mos sugerir algumas futuras linhas de pesquisa, por exemplo:

e continuar trabalhando em métodos de tipo Lagrangeano Aumentado e testar
com um conjunto malor de problemas testes o qual permitird ajustar alguns
pardmetros assim como ter uma maior compreensao do comportamento destes
métodos. Em particular, testar com problemas de grande porte.

¢ analisar outras alternativas para resolver os problemas de minimizacio das
fases de restauracao e minimizacao no Algoritmo do Capitulo 2.

¢ considerando os bons resultados obtidos usando a penalizagdo exponencial
seria interesante estudar cuidadosamente o critério de parada das iteracGes
internas e relacdo comn o critério de convergéncia global do algoritmo completo
do Capitulo 3. Por outro lado outras estratégias para tratar as restrigoes de
canalizacOes poderiam ser consideradas.

¢ continuar fazendo experimentos numéricos com o algoritmo do Capitulo 4 e
comparar numericamente com algum outro algoritmo que use memdria limi-
tada.
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Apéndice

Neste apéndice incluimos a formulacdo do Hard Sphere Problem {HSP) em for-
mato SIF {Standard Input Format) usado para comparar os algoritmos dos Capitulos
1 e 2 com LANCELOT. O SIF ¢ a linguagem formal para formular problemas
de programacao nao linear e ingressar dados os dados do problema que requer
LANCELOT.

Atualmente existem mais de mil problemas escritos neste formato no sistema
CUTE (Constrained and Unconstrained Testing Environment), dos mesmos autores
do LANCELOT, e que pode ser obtida via internet.

A seguir apresentamos a nossa formulacio do HSP, chamada KISSING.SIF, que
foi incluida no CUTE em Outubro de 1998.
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* SET UP THE INITIAL DATA =
s ok s o ok o o ok oK K Sk ok ok 3 o oK o ok sk ok SR ok ok ok

FAME KISSING
Problem: KISSING NUMBER PROBLEM

Source: This problem is associated to the family of Hard-Spheres
problem. It belongs to the family of sphere packing problems, a
class of challenging problems dating from the beginning of the
17th century which is related to practical problems in Chemistry,
Biology and Physics. It consists on maximizing the minimum pairwise
distance between NP points on a sphere in \R“{MDIM}.

This problem may be reduced to a nonconvex nonlinear optimization
problem with a potentially large number of (nonoptimal) points
satisfying optimality conditions. We have, thus, a class of problems
indexed by the parameters MDIM and NP, that provides a suitable

set of test problems for evaluating nonlinear programming codes.
After some algebric manipulations, we can formulate this problem as

Minimize =z
subject to
z \geq <x_i, x_j> for all different pair of indices i, j
flx_il]"2 = 1 for all i = 1,...,NP
The goal is to find an objective value less than 0.5 (This means
that the NP points stored belong to the sphere and every distance
between two of them is greater than 1.0).
Obs: the starting point is aleatorally chosen although each

variable belongs to [-1.,1.].
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M. Mello and E. A. Pilotta, Tech. Report RP 28/98,
IMECC-UNICAMP, Campinas, 1998.

{2] "Inexact-Restoration Algorithm for Constrained
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[3] "Sphere Packings, Lattices and Groups", J. H. Conway
and N. J. C. Sloane, Springer-Verlag, NY, 1888.

SIF input: September 29, 1998
Jose Mario Martinez
Elvio Angel Pilotta

classification LRR2Z-RN-V-V
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iE
*IE
*1E
*IE
*IE
*IE
*1E
*IE
*IE
*IE
*IE
*I1E
*TE
*1E
*1E

IE

IE
*IE

Number of points: NP >= 12

NP 12
NP 13
NP 14
NP 15
NP 22
NP 23
NP 24
NP 25
NP 26
NP 27
NP 37
NP 38
NP 39
kP 40
NP 41
NP 42

Dimension: MDIM >= 3

MDIM 3
MDIM 4



*IE MDIM

5

*  Other useful parameters.

IA N~
IE 1

VARIABLES

DO I
DO J
X X(I,3
ap J
0D I
X Z

GROUPS

XN 0BJ

NP

Z

-1
1

1.0

*  Inequality constraints.

DO I

IA I+

D0 J

XL IC(I,J)
ND

*  Equality constraints.

DD I
XE EC(I)
KD

CONSTANTS
Do I

X KISSIKNG
ND

BOUNDS

1
I
I+
Z

1

EC(I)

-1.0

1.0
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D0 I 1 NP

DO J 1 MDIM
¥R KISSING X(I,1)
KD

XR KISSING 2

START POIKT

XV KISSING X1,1 -0.10890604
XV KISSING X1,2 0.85395078
XV KISSIKG Xi,3 ~0.45461680
XV KISSING X2,1 0.49883922
XV KISSING X2,2 -0.18439316
XV KISSING X2,3 -0.04798594
XV KISSING X3,1 0.28262888
XV KISSING  X3,2 -0.48054070
XV KISSINRG X3,3 0.46715332
XV KISSING X4,1 -0.00580106
Xv KISSING  X4,2 -0.49987584
XV KISSING  X4.3 -0.44130302
XV KISSING  X5,1 0.81712540
LV KISSING X5,2 -(.36874258
XV KISSING X5,3 -0.68321896
XV KISSING X56,1 0.29642426
iV KISSING X6,2 0.82315508
XV KISSIKG X6,3 0.35938150
XV KISSING  X7,1 0.092151862
XV KISSING X7,2 ~0.53564686
XV KISSING X7,3 0.00191436
XV KISSING X8,1 0.11700318
XV KISSIEG  X8,2 0.96722760
XV KISSING X8,3 -0.14816438
XV KISSING X9,1 0.01791524
XV KISSING X9,2 0.17759446
XV KISSING X9,3 -(0.61875872
XV KISSING  X10,1 ~-0.63833630
XV KISSING  X10,2 0.80830972
XV KISSING  X10,3 0.45846734
XV KISSING  X11,1 0.28446456
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XV KISSING X11,2 0.45686938

XV KiSSING  X11,3 0.16368980
XV KisSING Xi2,1 0.76557382
XV KISSING X12,2 0.16700944
XV KISSING X12,3 -0.31647534

ELEMENT TYPE

EV PROD X Y
EV QUA v

ELEMENT USES

* Inequality constraints.

Do I 1 N-

14 I+ I 1

Do J I+ NP

DO K 1 MDIM
XT A(I,J,K) PROD

ZV A(I,3,K) X X(1I,KX)
ZV A(I,J,K) Y X(J,K)
ND

* Equality constraints.

DO I 1 NP

DO K 1 MDIM
XT B(I,K) QuA

ZV B(I,K) v X(I,K)
ND

GROUP USES

* Inequality constraints.

DO I 1 N-
IA I+ I 1

DO J I+ NP
D0 K 1 MDIM
XE 1c(I,1) A{I,],K)

KD
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* Equality constraints.

PO I 1

DO K 1

XE EC(D) B(I,K)
ND

0BJECT BOUND

* Solution
*¥XI, SOQLUTION

ENDATA

s e ok o e o o ok ok o ok 3 ok ok ok ook o ok ok o Sk
*# SET UP THE FUNCTION =*

* AND RANGE ROUTINES =
53K s o ok oK ok o ok K oK R ok ok ok ok o ok o

ELEMENTS KISSING
INDIVIDUALS

4.47214D-01

* Product of 2 elemental variables.

T PROD

X
Y
X Y

oA 2 '™

= obd e B

* Square of an elemental variables.

T QUA

g

v
v

ENDATA

V*V
V+V
2.0
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