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Resumo 

Nesta tese apresentamos métodos numéricos para problemas de mm1m1zação 
com restrições. O Capítulo 1 está baseado no artigo "Validation of an Augmented 
Lagrangian algorithm with a Gauss-Newton Hessian approximation using a set of 
Hard-Spheres Problems", de Krejié, Martínez, Mello e Pilotta. O Capítulo 2 está 
baseado no artigo "Inexact-Restoration algorithm for constrained optimization", de 
Martínez e Pilotta, onde é considerado um novo método de tipo restauração ine­
xata para um problema de minimização com restrições gerais. O Capítulo 3 está 
baseado no artigo "Spectral Gradient method for linearly constrained optimiza­
tion", de Martínez, Pilotta e Raydan, onde é considerado um novo método para um 
problema de minimização com restrições lineares e canalizações usando gradiente 
espectral precondicionado e penalização exponencial. O Capítulo 4 está baseado 
no artigo "A limited-memory multipoint secant method for bound constrained op­
timization", de Burdakov, Martínez e Pilotta, onde é considerado um novo método 
para um problema de minimização com canalizações usando uma estratégia deres­
trições ativas e um método secante simétrico multipoint com memória limitada para 
resolver um subproblema quadrático em cada face. 

Abstract 

We present numerical methods for constrained minimization problems. Chap­
ter 1 is based on the paper "Validation of an Augmented Lagrangian algorithm with 
a Gauss-Newton Hessian approximation using a set of Hard-Spheres Problems", 
by Krejié, Martínez, Mello and Pilotta. Chapter 2 is based on the paper "Inexact­
Restoration algorithm for constrained optimization", by Martínez and Pilotta, where 
we introduce an inexact-restoration method for solving a general constrained min­
imization problem. Chapter 3 is based on the paper "Spectral Gradient method 
for linearly constrained optimization", by Martínez, Pilotta, and Raydan, where 
we introduce a new method for this problem which uses exponential penalization. 
Chapter 4 is based on the paper " A limited-memory multipoint secant method 
for bound constrained optimization", by Burdakov, Martínez and Pilotta, where we 
introduce a new method for bound constrained optimization that uses active set 
methods for solving a quadratic subproblem in each face. 
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Introdução Geral 

O problema de minimizar uma função sujeita a restrições é um problema que 
aparece em diferentes áreas das ciências e tecnologia e que têm muitas aplicações. 
Embora, muitas vezes tais problemas podem ser formulados com grande simplici­
dade a resolução numérica deles pode ser um problema difícil. Portanto, é preciso 
dispor de métodos competitivos e algoritmos eficientes destinados a resolver estes 
problemas, e particularmente, quando esses problemas são de grande porte. Uma 
vez proposto um novo método, e além de provar os resultados teóricos tais como con­
vergência, é de fundamental importância fazer numerosos experimentos numéricos 
para a validação do algoritmo. A validação de novos algoritmos requer a comparação 
deles com outros métodos computacionais já bem estabelecidos (e não necessaria­
mente do mesmo tipo) para um mesmo conjunto de problemas. 

O mais consolidado método do tipo Lagrangeano Aumentado atualmente dispo­
nível é o implementado no pacote LANCELOT [24]. Apresentamos um novo algo­
ritmo, chamado ALBOX, baseado na idéia do Lagrangeano Aumentado. Ambos os 
códigos minimizam a função Lagrangeano Aumentado com canalizações nas variáveis 
resolvendo um suproblema quadrático. A principal diferença entre os códigos é 
que enquanto LANCELOT minimiza a quadrática na face determinada por uma 
aproximação do ponto de Cauchy generalizado, ALBOX procura o minimizador da 
quadrática em toda a caixa da região de confiança do subproblema. Uma outra ca­
racterística de ALBOX é que usamos uma surpreendentemente efetiva simplificação 
da Hessiana verdadeira do Lagrangeano. 

Para fazer os experimentos numéricos e comparações dos códigos usamos uma 
família paramétrica de problemas conhecida como Hard-Spheres Problem (HSP). 
Estes problemas pertencem á família de problemas de empacotamento, datam do 
século dezessete e vários deles continuam abertos. Além disso, estes problemas 
estão relacionados a problemas práticos em química, biologia e física. Para utilizar 
LANCELOT com este problema .foi necessário formular o HSP no formato SIF (Stan-
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dard Input Format), o formato utilizado no CUTE (Constrained and Unconstrained 
Testíng Environment) [10]. 

Ao formular um novo método de minimização é conveniente explorar a estrutura 
do problema, e particularmente, das restrições. Assim, e dependendo das restrições 
propomos outros três novos métodos para resolver o problema de minimização de 
uma função geral e continuamente diferenciável, sujeita a três classes de restrições: 
gerais, lineares e canalizações. 

Para o primeiro método de minimização proposto consideramos um problema 
com restrições não lineares e variáveis em f!, um conjunto fechado e convexo do 
espaço n-dimensional. Embora, na prática estamos interessados no caso que rl 
seja um poli topo. Muitos algoritmos para resolver este problema estão baseados em 
métodos factíveis, os quais tem a vantagem que, às vezes, soluções factíves não ótimas 
são úteis nas aplicações, o que não acontece com as aproximações não factíveis. A 
dificuldade desta estratégia é que às vezes pode ser muito difícil obter essas aproxi­
mações factíveis. Por outro lado, existem outros métodos opostos a esta idéia basea­
dos em Programação Quadrática Seqüencial (SQP). Portanto, é interessante consi­
derar métodos do tipo restauração inexata onde a factibilidade é controlada em cada 
iteração com um mecanismo interno que determina o grau de precisão requerida nas 
restrições. O novo algoritmo modelo gera aproximações factíveis com relação a rl. 
Cada iteração do algoritmo tem duas fases: Restauração e Minimização. Dado um 
ponto xk, na fase de Restauração é achado um ponto intermediário yk em f! tal 
que a infactibilidade seja menor que a infactibilidade em xk, e usando esse ponto 
intermediário é construída uma região factível aproximada. Na fase de Minimização 
é encontrada uma nova aproximação na região factível aproximada usando uma es­
tratégia de região de confiança. O novo ponto é aceito se o valor da função de 
mérito nesse ponto é menor que em xk Se f! é um politopo as duas fases podem 
ser formuladas como um problema de minimização com restrições lineares e algorit­
mos disponíveis para estes problemas podem ser usados. Para testar o novo método 
fizemos uma implementação que comparamos com LAI\CELOT usando o problema 
HSP, obtendo ótimos resultados. 

Para o segundo método proposto consideramos um problema de minimização com 
restrições lineares de igualdade. Apresentamos um método Quase-l\ewton onde a 
aproximação secante satisfaz uma equação secante fraca. O método pode ser visto 
como um método gradiente espectral precondicionado, onde a atualização secante 
é a matriz do precondicionamento e que pode ser reiniciada se algum indicador 
da performance indique que seja conveniente. A escolha espectral do passo é um 
quociente de Rayleigh que usamos, como fator na atualização secante, combinada 
com uma busca linear não monótona. O próximo passo foi acrescentar canalizações 
nas variáveis no problema inicial. Estas canalizações são incluídas na função ob­
jetivo com uma estratégia de penalização exponencial. Para obter a direção de 
descida temos que resolver um problema de programação quadrática convexa em 
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cada iteração. Uma conseqüência da escolha espectral do passo é que a matriz KKT 
associada é mantida constante a menos que o processo seja reiniciado e somente o 
lado direito do sistema KKT muda nas iterações internas, portanto foi possível ex­
plorar técnicas de fatorações esparsas. Fizemos uma implementação e apresentamos 
alguns resultados computacionais. 

Finalmente, no terceiro método consideramos um problema de minimização su­
jeito a restrições de canalizações, o qual é um problema muito importante em algo­
ritmos de otimização prática. Por um lado muitos problemas da física, engenharia 
e problemas industriais têm esta formulação. Por outro lado, muitos algoritmos 
de otimização, baseados em Lagrangeano Aumentado (LANCELOT, ALBOX), re­
solvem iterativamente subproblemas de minimização com canalizações. Do mesmo 
modo que esses algoritmos, no novo método é necessário resolver um subproblema 
quadrático em cada iteração mas as restrições são tratadas de um modo diferente. A 
região factível é subdividida em faces e um algoritmo para minimização irrestrita é 
aplicado em cada face até que algum parãmetro indique que não seja conveniente con­
tinuar explorando essa face. Nesse caso a face é abandonada na direção do gradiente 
chopado [42]. Existem diferentes formas de calcular a matriz Hessiana do modelo 
quadrático. A melhor alternativa é usar a Hessiana verdadeira embora, às vezes, é 
muito caro computacionalmente de se calcular. Outras alternativas possíveis, e que 
mostraram ser eficientes, são as aproximações Quase-Newton BFGS ou SRl com 
memória limitada. No nosso algoritmo calculamos aproximações da matriz Hes­
siana usando um método multipoint secante simétrico [11]. Esta estratégia é uma 
extensão do clássico esquema secante multipoint que explora a simetria da matriz 
Hessiana.A idéia é que a aproximação Hessiana deveria a ser tal que o gradiente do 
modelo quadrático coincida como o gradiente da função objetivo em alguns pontos 
anteriores. Como esta estratégia entra em conflito com a simetria, a informação das 
últimas iterações é privilegiada. Para testar a performance do novo algoritmo fize­
mos uma implementação e mostramos alguns resultados numéricos com comparações 
com LANCELOT. 

Este trabalho está organizado da seguinte forma: cada um dos quatro capítulos 
seguintes contém um artigo em inglês de co-autoria do dissertante, o qual já foi aceito 
para publicação ou está sendo submetido em alguma revista internacional, precedido 
pelo correspondente resumo em língua portuguesa. O Capítulo 1 está baseado no 
artigo "Validation of an Augmented Lagrangian Algorithm with a Gauss-Newton 
Hessian Approximation Using a Set of Hard-Spheres Problems", escrito em cola­
boração com Natasa Krejié (Institute of Mathematics,University of Novi Sad, Yu­
goslavia), José Mario Martínez e Margarida Mello (IMECC- Universidad Estadual 
de Campinas), e que já foi aceito e será publicado em Computational Optimiza­
tion and Applications neste ano. O Capítulo 2 está baseado no artigo "Inexact­
Restoration Algorithm for Constrained Optimization", escrito em colaboração com 
José Mario Martínez e que já foi aceito e será publicado em Journal o f Optimization 
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and Applications (JOTA) no Vol. 104 Nro. 2 deste ano. O Capítulo 3 está baseado 
no artigo "Spectral Gradient Method for Linearly Constrained Optimization", es­
crito em colaboração com José Mario Martínez e Marcos Raydan (Departamento de 
Computación, Facultad de Ciencias, Universidad Central de Venezuela), e que foi 
submetido para publicação em Journal o f Optimization and Applications em 1999. O 
Capítulo 4 está baseado no trabalho "A limited-memory multipoint secant method 
for bound constrained optimization", escrito em colaboração com Oleg Burdakov 
(Computing Center, Russian Academy of Sciences, Moscow, Russia) e José Mario 
Martínez, e que será submetido para publicação proximamente. Por último, apre­
sentamos algumas Conclusões gerais deste trabalho, as Referências Bibliográficas e o 
Apêndice, onde foi incluída a formulação do Hard-Sphere Problems em formato SIF 
(Standard Input Format), escrita em colaboração com José Mario Martínez, e que 
foi aceita em Outubro de 1998 no conjunto de problemas testes CUTE (Constrained 
and Unconstrained Testing Environment) [10]. 
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Capítulo 1 

Validação de um algoritmo 
Lagrangeano Aumentado com uma 
aproximação Gauss-Newton da 
Hessiana usando o Hard-Spheres 
Problem (HSP) 

Resumo 

É apresentado um algoritmo Lagrangeano Aumentado que usa aproximações 
Gauss-Newton da Hessiana em cada iteração interna e é testado usando uma família 
de Hard-Spheres Problems (HSP). O modelo Gauss-Newton convexifica a aproxi­
mação quadrática da função Lagrangeano Aumentado aumentando a eficiência do 
solver quadrático iterativo. O método resultante é consideravelmente mais eficiente 
que o correspondente algoritmo que usa Hessianas verdadeiras. É apresentado um 
estudo comparativo com o bem conhecido pacote LA:'\CELOT. 

5 



Validation of an Augmented Lagrangian Algorithm 
with a Gauss-Newton Hessian Approximation 

Using a Set of Hard-Spheres Problems 

Natasa Krejié * José Mario Martínez t 
Elvio A. Pilotta t 

May 7, 1998 

Abstract 

Margarida Mello t 

An Augmented Lagrangian algorithm that uses Gauss-Newton approxi­
mations of the Hessian at each inner iteration is introduced and tested using 
a family of Hard-Spheres problems. The Gauss-Newton model convexifies 
the quadratic approximations of the Augmented Lagrangian function thus in­
creasing the efficiency of the iterative quadratic solver. The resulting method 
is considerably more efficient that the corresponding algorithm that uses true 
Hessians. A comparative study using the well-known package LANCELOT is 
presented. 

"lnstitute of Mathematics, University of Novi Sad, Trg Dositeja Obradoviéa 4, 21000 Novi Sad, 
Yugoslavia, E-mail: natasa@unsim.im.ns.ac.yu. This author was supported by FAPESP (Grant 
96/8163-9). 

lDepartment of Applied Mathematics, IMECC-UNICAMP, University of Campinas, CP 
6065, 13081-970 Campinas SP, BraziL These authors were supported by PRONEX, FAPESP 
(Grant 90-3724-6), CNPq and FAEP-UNICAMP. E-mail: martinez@ime.unicamp.br, mar­
garid@ime.unicamp.br, pilotta@ime.unicamp.br 

6 



1 Introduction 

In recent years we have been involved with the development of algorithms based 
on sequential quadratic programming [11] and inexact restoration [17, 16] for mini­
mization problems with nonlinear equality constraints and bounded variables. 

The validation of these algorithms require their comparison with well established 
compu ter methods for the same type of problems, which include methods of the same 
family (as other SQP methods in the first case and GRG like methods in the second) 
as well as methods that adopt a completely different point of view, as is the case 
of Penalty and Augmented Lagrangian algorithms. The most consolidated practical 
Augmented Lagrangian method currently available is the one implemented in the 
package LANCELOT, described in [4]. This was the method used, for example, in 
[11], to test the reliability o f a new large-scale sequential quadratic programming 
algorithm. 

In the course of the above mentioned experimental studies we felt the necessity 
of intervening in the Augmented Lagrangian code in a more active way than the 
one permitted to users of LANCELOT. As a result of this practical necessity, we 
became involved with the development of a different Augmented Lagrangian code, 
which preserves most of the principies of the LANCELOT philosophy, but also has 
some important differences. 

Following the !ines of [4], a modem Augmented Lagrangian method is essentially 
composed by three nested algorithms: 

• The externai algorithm updates the Lagrange multipliers and the penalty pa­
rameters, decides stopping criteria for the internai algorithm and the rules for 
declaring convergence or failure of the overall procedure. 

• An internai algorithm minimizes the augmented Lagrangian function with 
bounds on the variables. Trust region methods, where the subproblem consists 
on the minimization of a quadratic model on the intersection of two boxes, the 
one that defines the problem and the trust-region box, are used both in [4] 
and in our implementation. 

• A third algorithm deals with the resolution o f the quadratic subproblem. \Vhile 
LANCELOT restricts its search to the face determined by an approximate 
generalized Cauchy point, our code explores the domain of the subproblem as 
a whole. 
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The second item, specifically where it deals with the formulation of the quadratic 
subproblem, is the one in which we felt more strongly the desire to intervene. On 
one hand, we tried many alternative sparse quasi-I\ewton schemes (without success, 
up to now). On the other hand, we used a surprisingly effective simplification 
of the true Hessian of the Lagrangian, called, in this paper, "the Gauss-Newton 
Hessian approximation" by analogy with the Gauss-Newton method for nonlinear 
least-squares, which can be interpreted as the result of excluding from the Hessian 
of a sum of squares those terms involving Hessian of individual components. 

In order to validate our augmented Lagrangian implementation we selected a 
family of problems in which we have particular interest, known as the family of 
Hard-Spheres problems. 

The Hard-Spheres Problem belongs to a family of sphere packing problems, a 
class of challenging problems dating from the beginning of the seventeenth century. 
In the tradition of famous problems in mathematics, the statements of these prob­
lems are elusively simple, and have withstood the attacks of many worthy math­
ematicians (e.g. Newton, Hilbert, Gregory), while most of its instances remain 
open problems. Furthermore, it is related to practical problems in chemistry, biol­
ogy and physics, see, for instance, the list of examples in [19], concerning mainly 
three-dimensional problems, or peruse the 1550-item-long bibliography in [5]. The 
Hard-Spheres Problem is to maximize the minimum pairwise distance between p 
points on a sphere in JRn. This problem may be reduced to a nonlinear optimization 
problem that turns out, as might be expected from the mentioned history, to be a 
particularly hard, nonconvex problem, with a potentially large number of (nonopti­
mal) points satisfying KKT conditions. We have thus a class of problems indexed by 
the parameters n and p, that provides a suitable set of test problems for evaluating 
Nonlinear Programming codes. 

Very convenient is the fact that the Hard-Spheres Problem may be regarded 
as the feasibility problem associated with another famous problem in the area, the 
Kissing Number Problem, which seeks to determine the maximum number Kn of 
nonoverlapping spheres o f given radius in JRn that can simultaneously touch (kiss) 
a central sphere of same radius. Thus, if the distance obtained in the solution of 
the Hard-Spheres Problem, for given n and p, is greater than or equal to the radius 
of the sphere on which the points lie, one may conclude that Kn 2: p. We use the 
known solution of the three-dimensional Kissing I\umber Problem to calibrate our 
code, described below, and choose for testing the code values of n, p that might 
bring forth new knowledge about the problem, or strengthen existing conjectures 
about the true (but, alas, not rigorously established) value of Kn, from the following 
table of known values/bounds of Kn given in [5]: 
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n !Cn 

~ ~ 
3 12 
4 24-25 
5 40-46 
6 72-82 
7 126-140 
8 240 
9 306-380 

10 500-595 
11 582-915 
12 840-1416 

Table 1: Known valuesjbounds of Kn· 

This paper is organized as follows. In Section 2 we formulate the Hard-Spheres 
Problem as a nonlinear programming problem and we relate the main characteristics 
of ALBOX, our Augmented Lagrangian Algorithm. In Section 3 we explain how the 
main algorithmic parameters of ALBOX were chosen. (Here we follow a previous 
study in [15].) In Section 4 we introduce the Gauss-Newton Hessian approximation 
and discuss the effect of its use in comparison with the use of true Hessians of 
the Lagrangians. In Section 5 we describe the parameters used with LANCELOT. 
The numerical experiments, obtained by running ALBOX and LANCELOT for a 
large number of Hard-Spheres problems, are presented in Section 6. Finally, some 
conclusions are drawn in Section 7. 

2 ALBOX 

The straightforward formulation of the Hard-Spheres Problem leads to the following 
maxmin problem, where r is the radius of the sphere, centered on the origin, on which 
the points lie: 

max min#J IIYi- yJII 
s.t. IIYkll = 2r, k = 1, ... ,p. 

(1) 

The vectors yk belong to JFtn and 11 · 11 is the Euclidean norm. Since the answer to 
the problem is invariant under the choice ofpositive r, we let r= 1/2. Furthermore, 
using the definition o f (-, -), the standard inner product in JFtn, and the constraints, 
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it is easy to see that (1) is equivalent to 

min maxi;fi 
s.t. 

(yi, yi) 

llvkll = 2r, k = 1, ... ,p. 
(2) 

Applying the classical trick for transforming minimax problems into constrained 
minimization problems, we reduce (2) to the nonlinear program 

min z 
s.t. z :2: (yi, yi), 'f i f j, (3) 

llvkll - 1, k = 1, ... ,p. 

Adding slack variables to the first set of constraints and squaring the second set 
of equations in order to avoid nonsmoothness in the first derivatives, we obtain 

min z 
s.t. z 

which is of the general form 

Wíj = 
= 

w > 

mm f(x) 
s.t. h(x) = O 

e :S x :S u. 

o, 'f i f j, 
1, k = 1, .. . ,p, 
o. 

ALBOX, the augmented Lagrangian code developed, approximately solves 

at each Outer Iteration, where 

mm L(x, À, p) 
s.t. f. :S x :S u, 

L(x, À, p) = f(x) +I: À;h;(x) +L p;hf(x) 

(4) 

(5) 

(6) 

(7) 

is the augmented Lagrangian function associated with (5), À is the current approx­
imation to the Lagrange multipliers and p (:2: O) is the current vector of penalty 
parameters. These are updated at the end of the Ou ter Iteration. 

Subproblem (6) is solved using BOX, the box-constrained solver described in [10]. 
This iterative method minimizes a quadratic approximation to the objective function 
on the intersection of the original feasible set, the box f. :S x :S u, and the trust 
region (also a box), at each iteration. If the original objective function is sufficiently 
reduced at the approximate minimizer of the quadratic, the corresponding trial point 
is accepted as the new iterate. Otherwise, the trust region is reduced. The main 
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algorithmic difference between BOX and the method used in [2] is that in BOX the 
quadratic is explored on the whole intersection of the original box and the trust 
region whereas in [2] only the face determined by an "approximate Cauchy point" 
is examined. 

ALBOX is a double precision FORTRAN 77 code that aims to cope with large­
scale problems. For this reason, factorization of matrices is not used at ali. The 
quadratic solver used to solve the subproblems of the box-constraint algorithm, 
QUACAN, visits the different faces of its domain using conjugate gradients on the 
interior of each face and "chopped gradients" as search directions to leave the faces. 
We refer the reader to [1], [9] and [10], for details on the actual implementation of 
QUACAN. In most iterations of this quadratic solver, a matrix-vector product of 
the Hessian approximation and a vector is computed. Occasionally, an additional 
matrix-vector product may be neccessary. 

The performance of ALBOX, and, in fact, of most sophisticated algorithms, 
depends on the choice of many parameters. The most sensitive parameters were 
adjusted using the Kissing Problem with n = 3 and p = 12 (Icosahedron Problem). 
We discuss these choices in the next section. A similar analysis was carried out for 
LANCELOT, and is described in section 5. 

3 Choice of parameters for ALBOX 

3.1 Penalty parameters and Lagrange multipliers 

The vector p ofpenalty parameters associated with the equality constraints h(x) =O 
are updated after each Outer Iteration. We considered two possibilities: to update 
each component according to the decrease of the corresponding component of h(x) 
or using a global criterion based on h(x). The specific alternatives contemplated 
were, assuming x to be the initial point at some outer iteration and x the final one: 

1. increase Pi only if Jh(x)il is not sufficiently smaller than Jh(x)il; 

2. increase Pi only if lih(x)lloo is not sufficiently smaller than llh(x)lloo· 

Preliminary experiments revealed, perhaps surprisingly, that the "global strat­
egy" 2 is better than the first. In fact, when Pi is not updated, but the other 
components of p are, the feasibility levei lh(x)il tends to deteriorate at the next 
iteration and, consequentely, a large number of Outer Iterations becomes necessary. 
In other words, it seems that a strategy based on 1 encourages a zigzagging be­
havior, with successive iterates alternatingly satisfying one constraint or another. 
Thus, although the original formulation allows for one penalty parameter for each 
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equality constraint, in practice it is as if we worked with one parameter for all of 
them, since they are all initialized at the same value (tests indicate that 10 is an 
adequa te initial value) and are all updated according to the same rule ( once again 
based on tests, they are increased by a factor of 10 when sufficient improvement of 
feasibility is not detected). Here we considered that "a sufficiently smaller than b" 
means that a :S 0.01b. 

It must be pointed out that the behavior of penalty parameters is not inde­
pendent of the strategy for updating the Lagrange multipliers. With algorithmic 
simplicity in mind, we adopted a "first order formula". Letting ,\ be the Lagrange 
multiplier at the start of a new Outer Iteration and À, p be the Lagrange multipliers 
and penalty parameters at the previous iteration, we set 

,\i = Ài + Pih(x)i 

for all i = 1, ... , m. Initially, À = O. 

3.2 Stopping criteria for box-constraint solver 

Each ou ter iteration ends when one of the severa! stopping cri teria for the algorithm 
that solves the augmented Lagrangian box-constrained minimization problem ( 6) is 
reached. There is the usual maximum number of iterations safeguard, which is set 
at 100 for QT.JACAN calls. 

Other than that, we consider that the box-constraint algorithm BOX converges 
when 

llgp(x)lb :SE, 

where gp(x) is the "continuous projected gradient" of the objective function of (6) 
at the point x. This vector is defined as the difference between the projection of 
x- \1 L(x, À, p) on the box and the point x. The tolerance é may change at each 
Outer Iteration. We tested two strategies for é: one that defines é dynamica!ly 
depending on the degree of feasibility of the current iterate and another that fixes é 

at w-s. Althought not conclusive, results for the Icosahedron Problem were better 
when the constant E strategy was used. This was, therefore, the strategy adopted 
for further tests. Incidentally, the opposite was adopted in [8], where a similar 
Augmented Lagrangian Algorithm was used to solve linearly constrained problems 
derived from physical applications. Theoretical justifications for the inexact mini­
mization of subproblems in the augmented Lagrangian context can also be found in 
[12, 13]. 

The box-constraint code admits other stopping criteria. For instance, execution 
may stop if the progress during some number of consecutive iterations is not good 
enough or if the the radius of the trust region becomes too small. Nevertheless, best 
results were obtained inhibiting these alternative stopping criteria. 
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3.3 Parameters for the quadratic solver 

QUACAN is the code called to minimize quadratic functions (augmented Lagrangians 
in this case) subject to box constraints. Its efficiency, or lack thereof, plays a crucial 
role in the overall behavior of the Augmented Lagrangian Algorithm. Its parameters 
must therefore be carefully chosen. 

Firstly we examine the convergence criterion. If the projected gradient of the 
quadratic is null, the corresponding point is stationary. Accordingly, convergence is 
considered achieved when the norm of this projected gradient is less than a fraction 
of the corresponding norm at the initial point. In this case, we use "non-continuous 
projected gradients," in which the projections are not computed on the feasible box 
but on the active constraints. Fractions 1/10, 1/100 and 1/100000 were tested on 
the Icosahedron Problem, and the first choice provided the best behavior, being the 
one employed subsequently. 

The maximum number of iterations allowed is also an important parameter, since 
otherwise we may invest too much effort solving problems only distantly related to 
the original one. We found that the number of variables of the problem, np+ (~) + 1, 
is a suitable delimiter in this case. Other non-convergence stopping criteria were 
inhibited. 

The radius of the trust region determines the size of the auxiliary box used in 
QUACAN. The nonlinear programming algorithm is sensitive to the choice of o, the 
first trust region radius. After testing different values, we selected o = 10 as an 
appropriate choice. 

Another important parameter is TJ E (0, 1), the parameter that determines 
whether the next iterate must belong to the same face as the current one, or not. 
Roughly speaking, if TJ is small, the algorithm tends to leave the current face as 
soon as a mild decrease of the quadratic is detected. On the other hand, if TJ "" 1, 
the algorithm only abandons the current face when the current point is dose to a 
stationary point of the quadratic on that face. A rather surprising result was that, 
for the Icosahedron Problem, the conserva tive value TJ = .95 was better than smaller 
values. 

Finally, when the quadratic solver hits the boundary of its feasible region, an 
extrapolation step may be tried, depending on the value of the extrapolation pa­
rameter "I 2: 1. If í is large, new points will be tried at which the number of active 
bounds may be considerably increased. No extrapolation is tried when 1 = 1. Tests 
indicated that "I = 10 is a convenient choice for the Hard-Spheres Problem. 



4 Approximate Hessian 

The nonlinear optimization problem (4) obtained in section 2 is the version of the 
Hard-Spheres Problem that was chosen for our tests. It was pointed out that (4) is 
of the general form 

min f(x) 
s.t. h(x) = O 

e:::::: x:::::: u. 

whose associated augmented Lagrangian is 

L(x, À, p) = f(x) +(À, h(x)) + ~llh(x)ll~· 

Thus 
m 

V L(x, À, p) =V f(x) +L Àivhi(x) + ph'(x)Th(x) 
i=l 

and 
m 

V 2 L(x, À, p) = v2 f(x) + +ph'(xfh'(x) +'L[\+ phi(x)]v2hi(x). 
i==l 

Although v 2 L(x, À, p) tends to be positive defini te when p is large, À is close to 
the correct Lagrange multipliers and x is close to a solution, this is not the case 
at the early stages of augmented Lagrangian calculations. On the other hand, the 
simplified matrix obtained by neglecting the term involving second order derivatives 
of the constraint functions 

B(x, p) = V2 f(x) + +ph'(xfh'(x) 

is always positive semidefinite in our case, independently of p and x. Of course, this 
is always the case when f is a convex function. 

Another insight into B(x, p) is provided by examining the problem 

min f(x) 
s.t. h'(z)(x- z) + h(z) =O 

e:::::: x:::::: u, 
(8) 

where z is the current point being used in a BOX iteration. Problem (8) is obtained 
by replacing the original h(x) = O constraints with its first order (linear) approx­
imation. But B(z, p) happens to be the Hessian of the augmented Lagrangian 
associated with (8) at z! Furthermore, both the augmented Lagrangian associated 
with (8) and its gradient evaluated at z coincide with their counterparts associated 
with the original problem (4), evaluated at z. 

The matrix vector products V2 L(x, À, p)v and B(x, p)v seem cumbersome to 
compute at a first glance. But taking advantadge of their structure enables the 
computation to be done in O(np) time. 
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In principie, using the true Hessian of the Lagrangian should the best possi­
ble choice, since it represents better the structure of the true problem. However, 
available algorithms for minimizing quadratics in convex sets are much more effi­
cient when the quadratic is convex than otherwise. QUACAN is not an exception 
to this rule. Therefore, in the interest of improving the overall performance of the 
augmented Lagrangian algorithm, we decided to use B(x, p) as Hessian Lagrangian 
approximation. 

The results were indeed impressive. Table 2 lists the average statistics obtained 
for four o f the eighteen test sets, where each ( n, p) pair was run for fifty random 
starting points. The average number of Outer iterations, BOX iterations, Function 
evaluations, Matrix Vector Products, CPU time in seconds and minimum distance 
are given for the runs using the exact Hessian ( first row o f each set) and the ones 
using the approximate Hessian (second row). The minimum distances obtained 
were very dose and on some instances the minimum distance obtained using the 
approximate Hessian was smaller than the one obtained using the exact Hessian. 
While the number of Outer iterations does not differ very much from one choice to 
the other, the number of BOX iterations and, consequently, the number of Matrix 
Vector Products sensibly decreases. The overall result is a marked decrease in CPU 
time. In Figure 1 we plot the average CPU times, for ali eighteen tests, using the 
exact Hessian versus the CPU times using the approximate Hessian. Also shown is 
the line that gives the best fit of the data by a linear (not affine) function, namely 
y = 0.374138 x, that is, the approximate Hessian option implies in a decrease of 
almost two thirds in CPU times. 

Problem size Ou ter Box Funct. CPU Min 

[~ l it. it. e vai. 
MVP 

time dist. 

3 76 i 55 10 
4 320 253 22 
5 852 703 37 

Table 2: Running ALBOX with exact (first row) and approximate Hessian (second 

row). 
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Figure 1: CPU times using exact Hessian (x-axis) versus using approximate Hessian 

(y-axis). 

5 Choice of parameters for LANCELOT 

LANCELOT allows for the choice of exact or approximate first and second order 
derivatives. However, LANCELOT's manual [3] (p.lll) "strongly recommends the 
use of exact second derivatives whenever they are available", and, on the other hand, 
there is no provision for an user supplied Hessian approximation. In fact we ran a 
few tests with the default approximation (SR1) but the results were worse than 
those obtained using exact second derivatives, and thus this was the option adopted 
for all further tests. In the light of the experiments described in the previous section, 
this provides corroborating evidence to the effect that general purpose, consolidated 
packages, designed to provide a good performance with little interference from the 
user, may be more convenient to use than open ended, low-level interface codes, 
such as ALBOX; but, for the user willing to "get his hands dirty" the latter rawer 
code might not only prove competitive, it may actually outperform the former code, 
with its more polished though restrictive finish. 

We also experimented with severa! different options for solving the linear equa­
tion solver, namely, without preconditioner, with diagonal preconditioner and with 
a band matrix preconditioner. The best results were obtained with the first option 
(no preconditioner). Another choice that slowed the algorithm, without noticeable 
improve the quality of solution, was requiring that the exact Cauchy point be com­
puted. We settled to use the inexact Cauchy point option. The maximum number of 
iterations allowed is 1000. Finally, the gradient and constraints tolerances were the 
same chosen for ALBOX, namely 10-8 The FORTRAN compiler option adopted 
for LA:\CELOT and ALBOX was "-0". 
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6 N umerical experiments 

Tests were run on a Sun SparcStation 20, with the following main characteristics: 
128Mbytes of RAM, 70MHz, 204.7 mips, 44.4 Mfiops. Results for the fifty runs for 
each ( n, p) pair are summarized in the following tables. Table 3 summarizes the 
statistics that are "machine independent," typically involving number of iterations, 
number of function evaluations, with the exception of the optimal distances found. 
Quotes are needed because this is not completely accurate, since these numbers will 
in fact depend on machine precision, compiler manufacturer, and the like. Never­
theless, they certainly provide more independent grounds for comparison than CPU 
times, presented in Table 4, along with optimal distances. 

Table 3 presents the mininum, maximum and average amounts of ou ter and BOX 
iterations, function evaluations, Quacan iterations and matrix-vector-productsjcon­
jugate-gradient iterations (for Box and LANCELOT, respectively). First row of 
each set corresponds to ALBOX and second to LANCELOT. Unfortunately the 
only statistics available for both is the number of function evaluations. We paired 
the number of matrix-vector-products (MVP) output by ALBOX with the number of 
conjugate-gradient iterations (CGI) produced by LANCELOT, since each conjugate­
gradient iteration involves a matrix-vector-product. 

Although the algorithms behave very differently timewise, as we will shortly see, 
this is not a direct consequence of the number of function evaluations each performs. 
The best least-squares fit by a first degree polynomial gives y = 5.74631+0.855356x, 
where y is the number of function evaluations of ALBOX and x is the corresponding 
amount for LANCELOT, whereas a similar fit involving CPU times will give a 
coefficient of less than a third. On Figure 2 we plot the function evaluation pairs 
for all eighteen instances along with the best fit obtained. 
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Problem size Onter itcr. BOX iter. Function eval. Quaca.n iter. MVP/CG! 

[~~] va.r. constr. nun. max. a ver. rnm. max. a ver. mm. ma.x. a ver age rnm. rna.x. a.verage rnm. rrtax. a.verage 

[ 1
3
0] 

4 5 4.64 21 55 34.74 25 77 45.52 309 2343 1063.70 340 2702 1194.70 
76 55 

15 61 38.06 16 71 43.28 377 1949 992.02 

[ t
3
1] 

89 66 
3 5 4.70 18 61 34.64 22 8:3 46.72 247 2940 12:17.06 292 3292 1398.22 

-· 
20 62 38.02 21 80 43.44 511 2709 1031.52 

[ t
3
2] 

1---

103 78 
2 5 3.7 18 63 35.7 23 89 48.06 432 3:102 1547.86 497 :1677 1741.58 

22 58 39.66 24 66 45.34 553 1776 1069.04 
.. -----·-· -------

[i~,] 
4 6 4.8 29 71 46.04 35 100 60.46 912 4279 2352.04 978 4719 2565.88 

118 91 ·-
24 85 51.58 25 94 59.18 991 3940 2041Ll6 

+-· . 

[i:] 4 5 ti. 78 27 75 17.86 34 l04 64.2 933 1923 2707.96 1017 5382 2962.811 
134 105 ---- ·-· 

27 84 52.28 29 96 60.14 967 4248 2313.42 

17:] 
·-- --

4 5 4.56 32 110 60.16 41 HO 77.76 1625 8:185 4129.74 1751 8742 4443.5 
151 120 ·- --------c-· 

30 91 56.84 33 112 65.14 1107 5652 :3014.98 
-·--· 

[ 2~] 
;j 5 11.34 52 115 78.02 62 148 97.4 5688 16767 10502 6097 17871 11222.14 

320 253 -- -· ------·--
15 225 104.12 49 262 120 5122 37546 12:181.08 

·- --~-- r---- -- - -· ·-· 

[ ~~] 3 6 4.7 50 168 89.86 59 199 111.04 5807 25830 13741.68 6240 26912 111598.14 
:l4G 276 

37 176 108.90 39 208 124 .• 58 11799 29:167 14607.08 

[~;I] 373 

------ - - -·-·---r-· 
2 5 4.14 45 141 86.36 58 183 107.91 6282 28049 14076.54 6769 2[)825 15008.52 

300 
49 210 l18.02 53 251 136.04 6551 37259 17127.56 

~--· -

Table 3: i\LBOX x LANCELOT test results 



-- ----· 
BOX iter. Function eval. Quacan i ter. MVP/CGI Problem size Outer iter. 

[;] var. constr. ffil!l. max. a ver. mm. rnax. a ver. mm. max. avera.gc mm. max. average ffilll. max. average 
~00 

97.8 75 226 120.6 10492 35660 17105.3 11034 37639 18143.06 

[ ~~ 1 
4 5 4.18 63 180 

401 325 -
M 225 119.70 60 262 137.48 6870 38419 18736 

[ 4 ] 
4 6 4.24 51 176 95.36 63 216 117.22 6765 38932 17185.16 7a17 40932 18237.14 

26 
4:10 351 

5:1 266 131.40 59 311 150.5 5094 1n:n 21796.3 

[ ;~] 4 5 4.3 62 206 99.48 76 254 122.12 11480 45129 19490.14 12169 47121 20616.06 
460 :m 

62 215 128.86 68 253 147.6 9420 41799 21533.96 
-

[ }7] 

4 8 4.5G 80 800 1G0.02 102 984 l93.14 27836 471751 6iH77.98 29476 497038 G7020.22 
852 70il ··-

85 334 190.42 95 381 218.G 9119 960:16 56898.88 

[ ;~] 4 6 4.56 89 600 166.2 107 717 200 2~)221! 326333 67968.66 30804 340424 71260.98 
894 741 --· ---- -

110 380 218.90 123 439 250.96 28894 161810 80:l71.82 

1~ 5 9] 
··-· "" 

4 7 4.88 78 700 195.8 89 815 231.32 26692 4118509 88565.94 27892 472730 92421.82 
9:37 780 

91 385 231.24 99 453 263.44 24178 160611 85971.64 
- - " - -··· 

[4[~] 
4 7 4.94 90 700 202.86 106 880 242.94 34936 463883 98265.46 36614 485784 102815.68 

981 820 
139 429 226 . .5() 154 491 257.66 41872 180296 89191.74 

[ :1] 
1026 

4 8 11.86 93 800 225.08 117 9.54 271.64 36194 5117421 117417.34 :~8311 577662 122923.74 
861 

126 404 2[>9.94 148 tl66 296.78 46484 202879 106628.12 

l~2] 
529036 

--- " 

4 7 4.64 109 700 212.34 132 887 256.08 47402 502810 109629.66 49993 114743.76 
1072 903 

102 410 246.41 115 499 281.32 347:JO 200558 103288.96 

Tablc 3: ALBOX x LANCELOT test results, cont. 
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Figure 2: Number of function evaluations of LANCELOT versus ALBOX. 

Further still from providing an explanation for the higher efficiency of AL­
BOX is the comparison of MVP versus CGI. In this case the best fit gives y = 
-1320.36 + 1.10655x, where y is the number of MVP and xis the number of CGI. 
This suggests that, although both iterations involve a matrix-vector-product, a CGI 
is substantially costlier, timewise, than the MVP performed in ALBOX. A main 
factor for this is that the matrix-vector-product in LANCELOT's conjugate gradi­
ent iteration deals with the true Hessian, whereas the one in ALBOX involves the 
approximate ( and simpler) Hessian. Figure 3 contains the line corresponding to the 
best linear fit and the position of the (CGI, MVP) pairs. 
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Figure 3: Number of CGis of LANCELOT versus number of MVPs of ALBOX. 



Next we have Table 4, that presents similar statistics involving the optimal dis­
tances encountered and the CPU times, in seconds. The first (resp., second) row for 
each (n,p) pair gives the numbers obtained by ALBOX (resp., LANCELOT). 

The information contained in Table 4 is depicted graphically below. The in­
tervals (min., max) of distances/CPU times are represented by vertical segments, 
the averages are indicated with a diamond symbol for ALBOX and a bullet for 
LANCELOT. Graphs on the left refer to distances whereas graphs on the right refer 
to CPU times. 

min. 
dist. 

1.1 

1 

.9 

L~ 
r TT 

iT 

~i~~ f 12.75 

10.23. 

7.71 

5.19 

2.67 

Figure 4: ALBOX (o) and LANCELOT ( •) results for n = 3. 

The graphs in Figures 4-6 evidence the qualitative relative behavior of both 
codes. Notice that the diamonds and bullets are always close together in the graphs 
on the left, indicating that the quality of the optimal solutions obtained by both 
codes is similar. On the other hand, the bullets rise faster than the diamonds on 
the graphs on the right, which means that the CPU times for LANCELOT tend 
to be higher than those for ALBOX. The linear fit of ALBOX CPU times versus 
LANCELOT CPU times, y = 0.31054x-the coef!icient is less than one third-, 
ploted in Figure 7 confirms this. 

Finally, it should be noted that CPU times increase sharply as a function of 
problem size (represented, for instance, by the number of constraints). We tried 
severa! fits (linear, quadratic, exponential) and, though none seemed to provide a 
very good model for the data, the quadratic fit was the best one. 
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Problem size )I mininum distance between 2 points CPU time ( seconds) 

[~] var. constr. min. max. 
I 

min. a ver age max. a ver age 

lloll 76 55 
1.05146221 1.0914262 1.083236331 0.170 1.010 0.476 

1.0514656 1.0914302 1.08740069 0.830 2.510 1.499 

[l1] 89 66 
1.0514622 1.0514622 1.05146223 0.170 1.4201 0.636 

1.0514656 1.0514656 1.05146564 1.100 3.920 1.807 

ll2J 1031 78 
0.9463817 1.0514622 1.04515739 0.290 1.870 0.906 
0.9447856 1.0514656 1.04306044 1.530 3.290 2.243 

I [l3] 

I 0.9281797 0.9564136 0.94887941 0.640 2.770 1.546 
118 91 

0.9443516 0.9564099 0.95127102 2.260 8.060 4.119 

[ 1
3
4] 134 105 

0.8995904 0.9338626 0.92985570 0.750 3.640 2.060 

0.9025741 0.9338629 0.93055146 2.490 9.050 5.120 

[Al 151 120 
0.8745438 0.9026561 0.90092361 1.420 6.830 3.536 

0.8734529 0.9026516 0.90092861 3.250 12.730 7.367 I 
I 0.9823127 1.0019894 0.99780958 11.560 31.310 20.032 
I [2\] I 

320 253 I 

I 0.9840223 1.0019880 0.99676146 30.490 209.270 69.851 

[2~] 346 276 
0.9723134 0.9999999 0.98629231 12.080 52.350 27.9311 
0.9740944 0.9918568 0.98476502 29.260 178.840 89.796 

[2~] 373 300 I 0.9630174 o. 9999999/0.97698487 14.830 61.260 30.918 

0.9580083 0.9828733 0.97519850 43.1601 239.770 112.781 

b~l\ 4011 325 I 0.9529038 0.9619429 o.95809771 I 25.150 86.570 41.290 
0.9465833 0.9619563 0.95749630 49.000 268.490 131.181 1 

[2~] 430 351 
I 0.9386238 0.9583427 0.95079467 18.830 106.930 46.326 

0.9367603 0.9583423 0.949161501 39.900 565.900 164.466 

b~l 460 378 
0.9204666 0.9390862 0.93510260 32.770 126.840 55.681 

I 0.9273834 0.9389142 0.93457532 79.260 332.120 173.134 I 

lt7l I 852 703 
0.9923706 1.0036282 0.99867534 163.670 2786.230 373.141 

0.9911508 1.0025367 0.99791248 444.810 2501.760 1154.082
1 

[ 3
5
s] 894 741 

0.98649971 0.9977500!0.99318755 186.141 1988.719 409.580 

0.9864684 1.001988010.99307107 546.550 3105.860 1538.541 

[s59] 937 780 
0.9758879 0.9926700 0.98798399 166.400 2944.560 568.289 

0.9808159 0.9920786 0.98811785 502.380 3161.880 1782.302 

[ 1o] 981 820 
0.9750429 0.9883235 0.98179030 233.309 3114.030 657.233 

0.9701958 0.9920282 0.98108644 863.850 3820.430 1907.569 

I [ 1d 11026 I 861 
0.9685664 0.9835789 0.97594060 256.301 3834.699 812.938 

0.9644272
1 

0.9819470 0.97574346 1148.770 4669.870 2521.840 

I [ 12JI10721 
903 

I 0.9606935 0.9779378/0.96928704 420.170 4527.652 1000.608 
I 
I 0.9599791 0.9798367 0.970251601 807.570 4664.630 2473.782 

Table 4: Minimum distances and CPU times 
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Figure 5: ALBOX (o) and LANCELOT ( •) results for n = 4. 
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Figure 6: ALBOX (o) and LANCELOT ( •) results for n = 5. 
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Figure 7: CPU times of LANCELOT versus those of ALBOX. 

7 Conclusions 

The main aspects of the Augmented Lagrangian methodology for solving large-scale 
nonlinear programming problems have been consolidated after the works of Conn, 
Gould and Toint which gave origin to the LANCELOT package. This algorithmic 
framework has been very useful in the last ten years for solving practical problems 
and for comparison purposes with innovative nonlinear programming methods. Very 
likely, this tendency will be maintained in the near future. 

The present research was born as a result of our need to have more freedom 
in the formulation and resolution of the quadratic subproblems that arise in the 
LANCELOT-like approach to the Augmented Lagrangian philosophy. On one hand, 
we decided to exploit more deeply the whole trust region by means of the use of a 
box-constraint quadratic solver. On the other hand, perhaps more importantly, we 
tested a Gauss-Newton convex simplification of the quadratic model which turned 
out to be much more efficient than the straight Newton-like version of this model. 
Behind this gain of efficiency is the fact that the quadratic solver, though able to 
deal with nonconvex models, is far more efficient when the underlying quadratic has 
a positive semidefinite Hessian. It is usual, in Numerical Analysis, that a decision on 
the implementation of a high levei algorithm depends on the current technology for 
solving low-level subproblems. It must only be warned that such a decision could 
change if new more efficient algorithms for solving the subproblems (nonconvex 
quadratic programming in our case) are found. 

Our main objective is to use ALBOX, not only for solving real-life problems, 
but also for testing alternative nonlinear programming methods against it. We feel 
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that having a deep knowledge of the implementation details of the code will enable 
us to be much more exacting when testing new codes, since it will be possible to 
fine tune the standard against which the new code is tested. The present study, 
apart from calling the reader's attention to convex simplified Gauss-Newton like 
subproblems, had the objective of validating our code, by means of its comparison 
with LANCELOT, using a set of problems that have an independent interest. The 
result of this comparison seems to indicate that ALBOX can be used as a competi tive 
tool for nonlinear programming calculations. 
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Capítulo 2 

Um algoritmo de Restauração­
Inexata para minimização com 
restrições 

Resumo 

É apresentado um novo algoritmo modelo para resolver problemas de programação 
não linear. Não são acrescentadas variáveis de folga para tratar as restrições de de­
sigualdade. Cada iteração do método procede em duas fases. Na primeira fase, é 
melhorada a factibilidade da aproximação atual e na segunda fase o valor da função 
objetivo é reduzido num conjunto factível aproximado. O ponto que resulta da 
segunda fase é comparado com o ponto atual usando uma função de mérito que 
combina factibilidade e otimalidade. Esta função de mérito inclui um parâmetro 
de penalização que muda em cada iteração. Além disso, para este parâmetro de 
penalização é implementado um adequado procedimento pelo qual esse parâmetro 
pode crescer ou decrescer ao longo das iterações. As condições para a factibilidade 
na primeira fase e para a otimalidade na segunda são simples e o método resultante 
admite implementações para problemas de grande porte. Provamos com adequadas 
hipóteses, e sem usar regularidade ou existência de derivadas segundas, que todos 
os pontos limites de uma seqüência gerada pelo algoritmo são factíveis, e que uma 
adequada medida da otimalidade pode ser feita tão pequena quando se desejar. O 
algoritmo é implementado e comparado com LANCELOT usando um conjunto de 
Hard-Spheres problems. 
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Inexact-Restoration Algorithm for Constrained 
Optimization 

José Mario Martínez * Elvio A. Pilotta t 

September 29, 1998 

Abstract 

We introduce a new model algorithm for solving nonlinear programming 
problems. No slack variables are introduced for dealing with inequality con­
straints. Each iteration of the method proceeds in two phases. In the first 
phase, feasibility of the current iterate is improved and in second phase the 
objective function value is reduced in an approximate feasible set. The point 
that results from the second phase is compareci with the current point using a 
nonsmooth merit function that combines feasibility and optimality. This merit 
function includes a penalty parameter that changes between different itera­
tions. A suitable updating procedure for this penalty parameter is included 
by means of which it can be increased or decreased along different iterations. 
The conditions for feasibility improvement at the first phase and for optimality 
improvement at the second phase are mild, and !arge-scale implementations 
of the resulting method are possible. We prove that under suitable conditions, 
that do not include regularity or existence of second derivatives, all the limit 
points of an infinite sequence generated by the algorithm are feasible, and that 
a suitable optimality measure can be made as small as desired. The algorithm 
is implemented and tested against LAN CELOT using a set of hard-spheres 
problems. 

Key words: Nonlinear programming, trust regions, feasible methods, global 
convergence, numerical experiments. 
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1 Introduction 

Feasible methods for solving minimization problems with inequality and equality 
constraints [1, 2, 17, 19, 20, 21, 22, 27, 28, 29, 30, 31] have a strong reputation 
among practitioners of nonlinear programming and, for this reason, are incorpo­
rated to well known user-oriented libraries. The reason is that, very frequently, 
feasible nonoptimal solutions are useful in engineering applications, whereas non­
feasible approximations are not, even when they are "quasi-optimal". In the 80's 
very few papers in the mainstream of the optimization literature were dedicated to 
feasible methods. That decade was dominated by SQP (sequential quadratic pro­
gramming) models and the usual criticism against feasible methods was that it is 
very difficult and, frequently, not worthwhile, to follow very curved feasible regions, 
especially when the current approximation is far from the solution. In the last few 
years (we write in 1998) many researchers realized that at least a subfamily of fea­
sible methods (those based on the barrier approach) was perhaps unfairly despised. 
See [33]. Obviously, the barrier approach is not applicable to equality constraints 
and must be combined with SQP-like schemes in order to deal with equalities. 

The preference for feasibility cannot be ignored in practical applications but, on 
the other hand, the SQP criticism based on high-curvature domains must also be 
taken into account. These two facts motivated us to develop (see [18]) theoreti­
cally justified algorithms for constraints of the form h(x) = O, !! ::; x ::; u where 
feasibility is controlled at every iteration, with an internai mechanism that automat­
ically determines the degree of precision required in the constraints. An interesting 
related method that does not use merit functions was introduced in [2]. We no­
tice that some practical SGRA algorithms [20, 21, 22] successfully used "Inexact­
Restoration" procedures in applications. 

In [18] we need to introduce slack variables for dealing with inequality constraints, 
so that the feasible region takes the the canonical form above. This transformation 
can increase the number of variables in an undesirable way, leading to expensive sub­
problems. Therefore, it is interesting to introduce Inexact-Restoration algorithms 
that deal with inequality constraints without the slack-variable transformation. 

Let us state the nonlinear programming problem in the form 

Minimize f(x) 

subject to C(x)::; O, x E \1, (1) 

where f : IRn ~ IR and C : IRn ~ IRm are continuously differentiable and \l C IRn 
is closed and convex. In practice, we are mostly interested in the case in which \l 
is a polytope. Each equality constraint appearing in the original formulation of the 
nonlinear programming problem can be transformed into two inequality constraints. 
It will be seen that this does not increase the complexity of the method introduced 
here. 
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The new model algorithm generates feasible iterates with respect to r2 (xk E r2 
for ali k =O, 1, 2, ... ) Each iteration includes two different procedures: Restoration 
and !vlinimization. In the Restoration Step (which is executed once per iteration) an 
intermediate point yk E r2 is found such that the infeasibility at yk is a fraction of the 
infeasibility at xk. Immediately after Restoration we construct an approximation 
1rk of the feasible region using available information at yk In the lvlinimization 
Step we compute a trial point zk,i E 7rk such that f(zk,i) << f(yk) ( << means 
"sufficiently smaller than" here) and llzk,i- ykll :<:; 5k,i, where 5k,i is a trust-region 
radius. The trial point zk,i is accepted as new iterate if the value of a nonsmooth 
( exact penalty) merit function at zk,i is sufficiently smaller than its value at xk. If 
zk,i is not acceptable, the trust-region radius is reduced. 

When r2 is a polytope, the approximate feasible region 7rk is a polytope too. So, 
if 11·11 is the sup-norm, the Minimization Step consists of an inexact (approximate) 
minimization of f with linear constraints. In that case, the Restoration Step also 
represents an inexact minimization of infeasibility with linear constraints. Therefore, 
available algorithms for (large-scale) linearly constrained minimization (see [13, 14, 
23]) can be fully exploited. 

As mentioned above, the new algorithm is related to classical feasíble meth­
ods for nonlinear programming, such as the Generalized Reduced Gradient (GRG) 
method and the family of Sequential Gradient Restoration algorithms (SGRA). See 
[1, 2, 17, 20, 21, 22, 27, 28, 29, 30, 31]. However, in our approach the successive 
approximations to the solution o f (1) are not necessarily feasible (o r nearly feasible) 
with respect to C(x) :<:; O. In spite of that, the necessity of considering and probably 
improving feasibility is taken actively into account at ali the iterations. This strategy 
is quite different than the one adopted in Sequential Quadratic Programming (SQP) 
algorithms, where the trial point at each iteration is obtained after considering only 
a linear model of the constraints. 

The convergence theory developed in this paper has severa! points in common 
with global convergence theories for different SQP-like algorithms with trust-regions 
(see [5, 10, 12, 25, 26]), in particular the one developed in [15]. The new model 
algorithm is also related to the method introduced in [18] for problems where the 
constraints are given in the form C(x) = O, x E O. In [18] the merit function 
is an augmented Lagrangian, while here we consider the exact penalty-like merit 
function used, for example, in [3, 4, 16, 25] for forcing convergence of SQP and 
other nonlinear programming algorithms. Another remarkable difference is that the 
algorithm introduced in this paper use trust-regions centered on the intermediate 
point yk instead of the more usual trust-regions centered on the current point xk 

Consequently, only the Minimization Step is repeated after a reduction of the trust­
region radius. 

A rigorous description of the new model algorithm is given in Section 2, together 
with further motivation. In Section 3 we prove that the algorithm is well defined, 
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that is, given a current point xk E n that does not satisfy the stopping criteria, 
a new iterate xk+l is found after a finite number of reductions of the trust-region 
radius. In the same section we prove that, when an infinite sequence is generated, 
we obtain points arbitrarily close to feasibility. In Section 4 we prove that a quantity 
that measures first-order optimality can be made as small as desired. In Section 5 
we give an application and we describe the practical implementation oriented to 
it. In Section 6 we compare our implementation against the well-known augmented 
Lagrangian code LANCELOT. Conclusions are given in Section 7. 

Notation. 
In this work we use two (perhaps different) norms. We denote I· I a monotone 

norm on !Rm (lvl::; lwl whenever O::; v::; w) and 11·11 an arbitrary norm on !Rn. 
We denote C'(x) E !Rmxn the Jacobian matrix of C(x) and Cj(x) = 'i7C1(x)T 

for ali j = 1, ... , m. 
We also denote Cj(x) = max{ C1(x), O} and c+(x) = (Ci(x), ... , C;t;(x)f. 

2 Description of the Model Algorithm 

Before giving a rigorous description of the algorithm, we will comment some of its 
main features. 

2.1 Restoration Step 

As we mentioned in the Introduction, given the current iterate xk E n, the model 
algorithm computes an intermediate "more feasible" point yk E n. The conditions 
that must be satisfied by yk are 

IC+(yk)l ::; riC+(xk)l 

IIYk- xkll ::; ,BIC+(xk)l. 

(2) 

(3) 

where r E [O, 1) and (3 > O are parameters given independently of k. Condition 
(2) states the necessity of having an intermediate point at least as feasible as xk 

Condition (3) imposes that yk must be equal to xk if the current point is feasible. 

2.2 Approximate Linearized Feasible Region 

After the computation of yk with the conditions (2) and (3) we define a linear 
approximation of the feasible region of (1), containing the intermediate point yk 
This auxiliary region is given by 

1ík = {X E n I cj (yk) + Cj (yk) (X - yk) ::; cj+ (yk) whenever Cj (yk) 2: -p}' ( 4) 

33 



where p > O is a parameter given independently of the iteration index k. So, 7ik 
is the intersection of í2 with the linear approximations of the sets Cj(x) ::; Cj(yk), 
excluding the índices j that correspond to constraints that, according to the tol­
erance p, are strongly satisfied at yk. If p is large the approximate feasible region 
takes into account ali the constraints Cj(x) ::; O, independently of Cj(yk). On the 
other hand, if p is small, only the constraints violated at yk tend to be considered 
in the definition of 7ik. In other words, if Cj(yk) < -p, it is considered that the 
approximation of the set Cj(x) ::; O that uses information at yk is the whole space 
!Rn. In principie, it should be better to use a large p, for this gives a more faithful 
representation of the true feasible region. However, the subproblem involved in the 
Minimization Step is simpler when p is small. 

2.3 Minimization Step 

The objective of the Minimization Step is to obtain zk,i E 7ik n lBk,i such that 
f(zk,i) << f(yk), where 

(5) 

and 5k,i > O is a trust-region radius. The first trial point at each iteration is obtained 
using a trust-region radius 5k,O· Successive trust-region radius are tried until a point 
zk,i is found such that the merit function at this point is sufficiently smaller than 
the merit function at xk. 

The minimization step is preceded by the computation of the Cauchy-like direc­
tion (independent of i) 

(6) 

where Pk(z) denotes the orthogonal projection of z on 7ik and TJ > Ois an arbitrary 
scaling parameter independent of k. It turns out that dk,tan is a feasible descent 
direction for f on 7ik. Its norm will be used to define a convergence criterion for 
the algorithm. The trial point yk + dk,tan belongs to 7ik but it does not necessarily 
belong to lBk,i· So, we define the breakpoint yk + t(k,i,break)dk,tan by 

(7) 

Moreover, the value of the objective function f at yk + t(k,i,break)dk,tan is not nec­
essarily smaller than f (yk), therefore a sufficiently smaller functional value f (yk + 
f(k,i,dec)dk,tan) must be obtained using a classical backtracking procedure. Finally, 
zk,i E 7ik n lBk,i will be any point such that f(zk,i) ::; f(yk + t(k,i,dec)dk,tan). Al­
ternatively, zk,i can be any point o f 7ik n lBk,i such that f ( zk,i) ::; f (yk) - T1Ók,i o r 
f(zk,i) ::; f(yk)- T2, where 7 1 and T2 are nonnegative parameters of the algorithm. 
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This means that, for computing the trial point zk,i in an efficient way, we can apply 
any reasonable algorithm (with a mild convergence criterion) to the resolution of 
the minimization problem 

Minimize f(x) subject to x E 7rk n lBk,i· (8) 

Clearly, (8) is a linearly constrained optimization problem if 11·11 is the sup-norm. 

2.4 Merit Function and Penalty Parameter 

The comparison of zk,i and xk involves the evaluation of a merit function at both 
points. We decided to use the exact penalty-like nonsmooth merit function, given 
by 

1/;(x, IJ) = !Jf(x) + (1-IJ)IC+(x)l (9) 

where IJ E (0, 1] is a penalty parameter used to give different weights to the objective 
function and to the feasibility objective. The choice of the parameter IJ at each iter­
ation depends of practical and theoretical considerations. For example, if IC+(xk)l 
is large, the weight assigned to f(x) must be small, for it does not make sense to 
worry about the functional values if the current point is far from the feasible region. 
Our choice of the penalty parameter automatically takes in to account this practical 
necessity. 

Roughly speaking, we wish that the merit function at the new point should be 
less than the merit function at the current point xk That is, we want Aredk,í > O, 
where Aredk,i, the "actual reduction of the merit function", is defined by 

(10) 

So, 
Aredk,i = !Jk,i[f(xk)- f(zk,i)] + (1- ek,i)[IC+(xk)I-IC+(zk,i)l]. 

However, as in unconstrained optimization, merely a reduction of the merit function 
is not sufficient to guarantee convergence. In fact, we need a "sufficient reduction" 
of the merit function, that will be defined by the satisfaction of the following test: 

(11) 

where Predk,i is a positive "predicted reduction" of the merit function between xk 
and zk,i. In our case, we define 

The quantity Predk,i defined above can be nonpositive depending on the value of the 
penalty parameter. Fortunately, if !Jk,i is small enough, Predk,i is arbitrarily close 
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to IC(xk) I - IC(yk) I which is necessarily nonnegative. Therefore, we will always be 
able to choose ek,i E (0, 1] such that 

When the criterion (11) is satisfied, we accept xk+l = zk,i. Otherwise, we reduce 
the trust-region radius. 

2.5 Description of the Model Algorithm 

Assume that p > O, TJ > O, /3 > O, r E [0, 1), Ómín > O, r 1 > O, T2 > O are algo­
rithmic parameters given independently of k and 2::;~ 0 wk is a convergent series of 
nonnegative terms. Suppose that x0 E íl is an initial approximation to the solution 
and that 8_ 1 E (O, 1) is an initialization of the penalty parameter. Given xk E íl, 
ek-1 E (0, 1], ok,O 2: Omin, the steps for computing xk+l or for stopping the process 
are given by the following algorithm. 

Algorithm 2.1 
Step 1. Compute yk, dk,tan and decide termination 

Compute yk E íl such that (2) and (3) hold. If this is not possible, stop the 
execution of the algorithm declaring "failure in improving feasibility". Otherwise, 
set i +- O, define 

ek,-1 = min {1, min {11-1, ... ' l)k-1} + wk} 

and compute dk,tan using (6). If c+(xk) =O and dk,tan =O terminate the execution 
of the algorithm declaring "finite convergence". 
Step 2. Minimization Step 

Compute t(k,i,break) using (7). Define t(k,í,dec) as the first term t of the sequence 
{ tk,h tk,2 •... } such that 

(14) 

where {tk,j} is defined by tk,1 = t(k,í,break) and tk,j+l E [O.ltk,j• 0.9tk,j] for ali j = 
1, 2, ... 

Compute zk,í E 7fk n IBk,í such that 

Step 3. Choice o f the penalty parameter 
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Define, for ali B E [O, 1], 

Predk,i(B) = B[f(xk)- f(zk,i)] + (1- B)[IC+(xk)l- IC+(yk)l]. 

Choose Ok,i the supremum of the values of e in the interval [O, Bk,i-1] such that 

Predk,;(e)?: ~[lc+(xk)I-IC+(yk)l]. (16) 

Step 4. Acceptance or rejection o f the trial point 
Define Aredk,i and Predk,i as in (10) and (12) respectively. If the test (11) 

is satisfied, define xk+1 = zk·i, ek = ek,i, iacc(k) = i ("iacc" means "accepted i") 
and finish the iteration. If (11) does not hold, choose ók,i+l E [0.18k,i. 0.96k,;Í, set 
i +- i + 1 and go to Step 2. 

2.6 Some Remarks and Elementary Properties 

By means of the introduction of the nonnegative parameters wk a "moderate" in­
crease of the penalty parameter between different iterations is permitted. This 
prevents the possibility of inheriting artificially small penalty parameters from the 
very beginning of the iterative process. It is easy to see that the sequence of 
penalty parameters finally used at each iteration { Bk} is convergent. In fact, defining 
ek,small = min {B-1, ... , Ih} and ek,large = ek,small + Wk, we see that ek+1 ~ ek,large 
and ek ?: Bk,smau for all k. Clearly, {Ok,lar9e} and {Bk,smau} are convergent to the 
same limit, so { ilk} is also convergent. We can also prove, by induction, that ek,i > O 
for ali k, i. 

It is easy to verify that dk,tan is a descent direction. In fact, since yk E 7rk, we 
have that 

II(Yk- ry\1 f(yk))- Pk(Yk -17\,1 f(yk))ll2 ~ II(Yk- ry\1 f(yk))- Ykll2· 

Therefore, 

IIYk- Pk(Yk -17\,1 f(yk))ll~ + 1117\1 f(yk)ll~ + 2ry(Pk(Yk- ry\1 f(yk))- yk, \,1 f(yk)) 

~ 1117\1 f(yk) 11~. 

so, 

(17) 

where c > O is a norm-dependent constant. We can use classical arguments for 
justifying backtracking with Armijo-like conditions (see [11], Chapter 6), to show 
that t(k,i,dec) is well defined at Step 2 of Algorithm 2.1. In other words, given the 
current point xk and the trust-region radius ók,i it is possible to compute, in finite 
time, the trial point zk,i. 
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3 General Assumptions and Consequences 

From now on, we will suppose that the nonlinear programming problem (1) satisfies 
the assumptions A1, A2 and A3 stated below. These will be the only assumptions 
on the problem that are needed for proving convergence. In particular, no regular­
ity assumptions are used in the proofs and second derivatives of f and C are not 
assumed to exist. 

Al. Sl is convex and compact. 
A2. The Jacobian matrix of C(x) exists and satisfies the Lipschitz condition 

IIC'(y)- C'(x)ll :S L1IIY- xll for ali x, y E Sl. (18) 

A3. The gradient of f exists and satisfies the Lipschitz condition 

I IV' f(y)- V' f(x)ll :S L2IIY- xli for all x, y E rl. (19) 

Due to the equivalence of norms on !Rn, similar conditions to (18) and (19) hold 
if we consider different norms than 11 · li· So, in order to simplify the notation, we 
can assume that (18) and (19) hold with the same constants L 1 and L 2 for ali the 
norms considered in this work. From these Lipschitz conditions it foliows that 

IIC(y)- C(x)- C'(x)(y- x)ll :S ~ 1 IIY- xll 2 (20) 

and 
L2 2 lf(y)- f(x)- (V' f(x), Y- x)l :S 2IIY- xll (21) 

for all x, y E rl. Again, we can assume, without loss of generality, that (20) and (21) 
hold for different norms with the same constants and that 

ICJ(Y)- CJ(x)- Cj(x)(y- x)l :S ~ 1 IIY- xll 2 (22) 

for allj = l, ... ,m. 
The assumption on the boundedness of rl can be replaced by hypotheses that 

state boundedness of a set of quantities depending on the iterates. This is frequently 
done in global convergence theories for SQP algorithms. We prefer to state directly 
Assumption A1 since it seems to be the only reasonable assumption on the problem 
that guarantees boundedness of the required quantities. 

The following theorem is directly deduced from the general assumptions. It states 
a bounded deterioration result for the feasibility of zk,i in relation to the feasibility 
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of yk. Briefiy speaking, we prove that only a second order deterioration of feasibility 
can be expected for a trial point x E 7rk. 

Theorem 3.1. There exists c1 > O (independent of k} such that, whenever yk E íl 
is defined and x E 7rk. we have 

(23) 

Proof. Let j E {1, ... , m}. By the compactness of fl and the continuity of CJ there 
exists p >O such that whenever CJ(Y) < -p and CJ(x) 2: O it holds that llx-yll 2: p. 

If c; (x) = o, the inequality 

holds trivially. If Cj ( x) > O we analyze three different cases. 
Case 1: If CJ(Yk) 2: O (so Ct(yk) = CJ(Yk)) we have, by (22) that 

L 
CJ(x) :S CJ(Yk) + Cj(yk)(x- yk) + i"llx- Ykll 2

• 

Therefore, 

(24) 

(25) 

Case 2: If o > Cj(yk) ::: -p (so ct(yk) = O) and X E 7rk we have that Cj(yk) + 
Cj(yk)(x- yk)::; O. But, by (22) we have that 

So, 

CJ(x) :S ~ 1 llx- Ykll 2 = CJ(yk) + ~ 1 llx- Ykll 2 

This implies that (25) also holds in this case. 
Case 3: Now consider the case CJ(Yk) < -p (so Ct(yk) = 0). Let us define 
p1 = max {Ct(x), x E fl}. Clearly, we have that 

(26) 
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for ali x E í2. 
The desired results follows from the monotonicity of the norm I · I using (24), 

(25) and (26). D 

In the next theorem we compute the decrease of the objective function that can 
be expected when we move from yk to zk,i. 

Theorern 3.2. There exist c2 > O, c3 > O (independent o f k) such that, whenever 
yk E í2 is defined and zk.i is computed at Step 2 of Algorithm 2.1, we have that 

Proof. By (21) we have that 

Lz 2 f(y):; f(x) + ('Vf(x),y- x) + 2IIY- xll 

for ali x, y E í2. So, since yk + dk,tan E í2 we have, for ali tE [O, 1], that 

t2L j(yk + tdk,tan) :; j(yk) + t(\1 j(yk), dk,tan) + Tlldk,tanll2 

= f(yk) + O.lt('V f(yk), dk,tan) + o.gt(\1 f(yk), dk,tan) + t2~z !ldk,tanli2 

So, ( 17) implies that 

O 9ct'jldk,tanll2 t2 L 
j(yk + tdk,tan) :; j(yk) + O.lt(\1 J(yk), dk,tan) _ · ~7) + Tlldk,tanll2 

= f(yk) + o.1t('V f(yk), dk,tan) + t1W~anll
2 

(tL2 _ o:c). 

Therefore, if t :; ~i~, we have that 

This implies that t(k,i,dec) 2: min {t(k,i,break)• ~~;c}. 
. {1 'ki } s Now, t(k,i,break) = mm , lld'·'anll . o, 

. 0.09c ok,i } 
t(k,i,dec) 2: mm {1, 7)Lz ' lldk,tanll , 
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Thus, by the definition of t(k,i,dec)• it follows that 

f(y k + t . dk,tan) < f(yk) + . {O 1 0.009c 0.1c5k,i }(V'f( k) dk,tan) 
(k,t,dec) - mm . ' 77L2 ' jjdk,tan li y ' . 

So, by (17), we obtain 

f( 
k dk,tan) f( k) . {0.1cjjdk,tanll2 0.009c2 jjdk,tanll2 0.1côk,illdk,tanjj} 

y +t(k,i,dec) :S Y - mm 277 • 27)2 L
2 

' 27) · 

Therefore, 

where c = min { O.lc 0·009c'} and c = O.lc. 
2 2ry ' 2ry2Lz 3 2ry 

The desired result follows from the last inequality and (15). D 

In the last theorem of this section we prove that Algorithm 2.1 is well defined. 
This amounts to show that, for small enough c5k,i, the inequality (11) is satisfied and, 
so, the trial point zk,i is accepted as new iterate. 

Theorem 3.3. Algorithm 2.1 is well defined. 

Proa f. Observe that 
Aredk,i- 0.1Predk,í 

= 0.9Bk,i[J (xk)- f (zk·i) ]+(1-Bk,;) [jc+ (xk) 1-IC+ (zk,i) 1]-0.1 (1-Bk,i) [i c+ (xk) 1-IC+ (yk) ll 

= 0.9Bk,i[f(xk)- f(zk,i)] + 0.9(1- Bk,;)[jC+(xk)I-IC+(yk)l] 

+(1- Bk,i)[IC+(xk)i-IC+(zk,i)i]- (1- Bk,;)[jc+(xk)i -IC+(yk)l] 

= 0.9Predk,i + (1- Bk,i)[jc+(yk)I-IC+(zk,illl-

So, by (13) and (2), 

Aredk,í- 0.1Predk,i 2: 0.45[jc+(xk)i -IC+(yk)IJ-I(IC+(yk)l- jC+(zk,íllll 

2: 0.45(1- r)jc+(xk)I-I(IC+(yk)I-IC+(zk,i)l)i. 

Therefore, if jC+(xk)l > O, since jjyk- zk,ill ::; Ôk,i and jC+(x)l is continuous, it 
follows that Aredk,í- 0.1Predk,í 2: O if Ôk,i is small enough. So, we proved that the 
algorithm is well defined if the current point xk is infeasible. 

If xk is feasible, (3) implies that yk = xk and jC+ (yk) I = O. If dk,tan # O we have 
that f(zk•') < f(yk) for ali i = 0,1, 2, .... So, the condition (13) is always satisfied 
and, consequently, Bk,i = Bk,-l for ali i = O, 1, 2, ... Therefore, in this case, we have 

Aredk,í- 0.1Predk,i = 0.9Bk,-1[f(yk)- f(zk,i)]- (1- Bk,-l)IC+(zk,í)j. 
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So, by Theorems 3.1 and 3.2, we obtaín that 

Aredk,i-0.1Predk,i 2: 0.9Bk,-l mín { Tz, Czlldk,tanll 2 , T1Ók,i, c3lldk,tanll6k,i}-clllzk,i_Ykll 2 

Therefore, ( 11) holds íf 

6k,i:::; min {(0.9Bk,-JT2)!/2, (0.9Bk,-lc2)!/21idk,tanll, 0.9Bk,-JTJ' (0.9Bk,-lc3)!/2lldk,tanll}. 
C1 C1 CJ C1 

So, we proved that xk+l ís well defined when xk ís feasíble and dk,tan f O. O 

The next theorem ís an ímportant tool for províng convergence of the model 
algoríthm. \Ve are goíng to prove that the actual reduction Aredk,iacc(k) effectívely 
achieved at each íteration necessarily tends to O. An immediate consequence will be 
the feasibílíty of the limit poínts generated by the algorithm. 

Theorem 3.4. Suppose that Algorithm 2.1 generates an infinite sequence. Then 

Proof. Suppose, by contradiction, that there exists an ínfiníte set of indíces K 1 c 
{0, 1, 2, ... } anda positive number r> O such that 

1/;(xk+l' ek) :::; 1/;(xk' ek) -r 

for all k E K 1 . Let us write 1/:k = 1/;(xk, ek) for all k E {0, 1, 2, ... }. 
Then, for all k E {0, 1, 2, ... } we have that 

1/Jk+l = ek+Jf(xk+l) + (1- ek+~)IC+(xk+l)l 

= ek+lf(xk+l) + (1- ek+!)IC+(xk+l)l- [Bkf(xk+l) + (1- ek)IC+(xk+1)1] 

+[Bd(xk+l) + (1- ek)IC+(xk+l)l] 

=(Ih+!- ek)f(xk+l) + (ek- ek+!)IC+(xk+l)l + [Bd(xk+l) + (1- ek)IC+(xk+l)l] 

= (ek- ek+l)(lc+(xk+l)l- J(xk+l)) + [Bd(xk) + (1- ek)IC+(xk)l]- rk 

= (ek ek+J)(IC+(xk+l)l J(xk+l)) + 1/:k- 'lb (27) 

where 'lk 2: O for all k E {0, 1, 2, ... } and 'lk 2: 'I> O for all k E K 1 . Now, by the 
definition of ek,-l at Algorithm 2.1, we have that 

(28) 
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for ali k E {0, 1, 2, ... }. By the compactness of S"l, there exists an upper bound c> O 
such that 

IC+(xk)l- f(xk)l :S c 

for ali k E {0, 1, 2, ... }. Therefore, by (27) and (28), we have that 

7/Jj+l = (ej - ej+1 + Wj )(IC+(xj+1 )I - f(xj+ 1
)) + 7/Jj - /j - Wj(lc+ (xj+l) I - f(xi+l)) 

:::; (Bj- ej+l + Wj)C + 7/Jj -/j + WjC = (Bj- 0j+1)c + 7/Jj- "(j + 2WjC 

for j = O, 1, ... , k - 1. Adding these k inequalities, we obtain 

k-1 k-1 k-1 k-1 

7/Jk :::; 1/Jo + (Bo - ek)c +L 2cwj- L /j ::; 7/Jo + 2c +L 2CWj- L /j (29) 
j=O j=O j=O j=O 

for all k 2: 1. Since the series L::~o w1 is convergent, and /k is bounded away from 
O for k E K 1 , (29) implies that 7/Jk is unbounded below. This contradicts the com-
pactness of S"l. O 

An easy consequence ofTheorem 3.4 is that, when Algorithm 2.1 generates an in­
finite sequence (that is, it is not stopped at Step 1), we have that limk-->oo IC+(xk)l = 
O. This means that points arbitrarily dose to feasibility are eventually generated. 

Theorem 3.5. lf Algorithm 2.1 does not stop at Step 1 for all k =O, 1, 2, ... , then 

(In particular, every limit point o f { xk} is feasible.) 

Proof. By (2), (11) and (13) we have that 

+ k IC+(xk)l- iC+(yk)l 2 20 
IC (x )I :S 

1 
_ ~ :S ~Predk,iacc(k) :S ~Aredk,iacc(k) 

20 . 
= -l-[7,!J(xk, ek) -7/J(xk+l' ek)]. 

-r 

So, the desired result follows from Theorem 3.4. O 

4 Convergence to Optimality 

In the former section we proved that, if the algorithm does not break down at Step 1, 
it achieves approximate feasibility up to any desired precision. In this section we are 
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going to prove that, in that case, the optimality indicator lldk,tanll cannot be bounded 
away from zero. In practice, this implies that given arbitrarily small convergence 
tolerances E feas, Eopt > O, Algorithm 2.1 eventually finds an iterate xk such that 
nc+(xk)ll ::::; Ejeas and lldk,tanll ::::; Eopt· For proving this result, we will proceed by 
contradiction, assuming that lldk,tanll is bounded away from zero for k large enough. 
From this hypothesis (stated as Hypothesis C below) we will deduce intermediate 
results that, finally, willlead us to a contradiction. 

Hypothesis C. Algorithm 2.1 generates an infinite sequence {xk} and there exists 
é > O, k0 E {0, 1, 2, ... } such that 

lldk,tanll ;::: é for ali k ;::: ko. 

Lemma 4.1. Suppose that Hypothesis C holds. Then, there exist c4 , c5 > O {inde­
pendent o f k) such that 

f(yk) - f(zk,i) 2: min { c4, csôk,i} 

for ali k 2: k0 , i= O, 1, ... , iacc(k) 

Proof. The result follows trivially from Theorem 3.2 and Hypothesis C. O 

Lemma 4.2. Suppose that Hypothesis C holds. Then, there exist a, é 1 > O, inde­
pendent of k and i, such that IC+(xk)l ::::; min {él, a<lk,i} implies that ek,i = ek,i-l· 

Proof. Observe that 
Predk,;(1) = f(xk)- f(zk,i) 

2: J(yk)- f(zk,i)- if(xk)- f(yk)l 2: f(yk)- f(zk,i)- ciiYk- xkll 

where c is a constant that only depends on the norms and on a bound of IIY'f(x)ll 
on !1. Therefore, by (3), and Lemma 4.1, 

1 
Predk,i(1)- 2IC+(xk)l;::: min {c4,c56k,i}- (cp+0.5)IC+(xk)l. 

Define 
c4 

é - --;c--'-::-::-
1- cp + 0.5' 

If IC+(xk)l::::; min {c1,aô} we have that 
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This implies that any value of lh,i in the interval [O, 1] satisfies (13). In particu­
lar lh,i-1 satisfies (13), as we wanted to prove. O 

In the next Lemma, we prove that, under Hypothesis C, the penalty parame­
ters { élk} are bounded away from zero. It must be warned that this is a property 
o f sequences that satisfy Hypothesis C ( which, in turn, will be proved to be non­
existent!) and not of all the sequences effectively generated by the model algorithm. 

Lemma 4.3. Suppose that Hypothesis C holds. Then, there exists ê > O such that 
Ih 2: ê for all k E {0, 1,2, ... }. 

Proof. We are going to show first that, if JC+(xk)J is sufficiently small, a step Ôk,i 
that satisfies 

lc , ( k)· a -
T X I 2: 10 Ók,i 

is necessarily accepted, where a is defined in Lemma 4.2. 
In fact, assume that (30) holds. Then, by (13) and (2), 

Predk,i 2: ~[lc+(xk)l-IC+(yk)l] 2: 1
; r JC+(xk)l:;:: (

1 ;;)a õk,i· 

So, (30) implies that 
20 

Ôk,i ::; -;::( :---::)-Predk.i· 1- r a · 

Now, by Theorem 3.1, 

Aredk,í = Predk,í + (1- lh,i)[IC+(yk)l- IC+(zk,i)l] 2: Predk,i- c1õ~,;· 

Therefore, by (31), (30) implies that 

(30) 

(31) 

20cl 200c1 + k 
Aredk.i 2: Predk i - ( ) õk ;Predk i :;:: (1 - ( ) 2 IC (x ) J)Predkí-

, '1-ro:' ' 1-ra ' 

So, if (30) holds and JC+(xk)J::; 0 · 9 ~~~;/"', the trial point zk,i is necessarily accepted. 
Let us define 

where t: 1 is defined in Lemma 4.2. Let k1 :;:: k0 be such that JC+(xk)J ::; c2 for 
all k :;:: k1. Since Ômin 2: JC+1xkl!, this implies that õk,O 2: ]c+ixk)J for all k 2: k1. 

Therefore, a possible trust region radius such that Jk,i < ic+ixkll cannot correspond 
to i = O, so it is preceded by õ k,i- 1 which necessarily verifies 
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By the reasoning displayed above, the trial point zk,i-l is accepted for ali k 2: k1 . 
< IC+(xk)l . . Therefore, uk,i 2: " for ali k 2: k1 , z =O, 1, ... , zacc(k). So, by Lemma 4.2, the 

penalty parameter (h,i is never decreased for ali k 2: k1. This implies the desired 
result. O 

Finally, we prove, in Theorem 4.4, that Hypothesis C cannot be true. 

Theorem 4.4. Let {xk} be an ínfinite sequence generated by Algorithm 2.1. Then, 
there exists K2, an infinite subset of {0, 1, 2, .. . }, such that 

lim lldk,tanll =O. 
kEK2 

(32) 

Proof. Suppose that the thesis of the theorem is not true. Then, there exists 
k0 E {0, 1, 2, ... }, e> O such that Hypothesis C holds. 

As in the beginning of the proof of Theorem 3.3, observe that, by Theorem 3.1, 

Aredk,i- 0.1Predk,í 

= 0.9{ Bk,i[f(xk)- f(zk,í)]+(1-Bk,í)[IC+(xk) 1-IC+(yk) 1]}+(1-Bk,;)[ic+(yk) 1-iC+(zk,í) ll 

2: 0.9Bk,i[f(yk)- f(zk,i)] + 0.9Bk,;[J(xk)- J(yk)]- (1- r)IC+(xk)l- c1ó~,i· 

So, by Lemma 4.1, Lemma 4.3, and (3), 

for ali k 2: ko, i = O, 1, iacc(k), where c is a norm-dependent constant that also 
depends on a bound of llvf(x)ll on íl. 

Let us define 
i5 = min {(0.45êc4/c1) 112,0.45êc5 /cl}. 

If ok,i ::; i5 we have that 

c1ó~,í ::; 0.45ê min { c4 , c5ok,i}, 

so, when 5k,i ::; 15, we have that 

for ali k 2: ko, i= O, 1, iacc(k). Let k2 2: k0 be such that 

ciC+(xk)l::; 0.45ê min {c4,cs
1
15
0

} 

46 

(34) 



for all k 2': kz. By (33) and (34) we have that, for all k 2: k2 , if i E {0, 1, 2, ... } 
corresponds to the first trust-region radius ok,i less than or equal to J (so, J 2: ok,i 2': 
lJO), 

Aredk,i - 0.1Predk,i 2': O. 

This means that ok,i 2': !o must be accepted. Therefore, 

J 
ok,iacc(k) 2': 10 

for ali k 2': kz. So, if k 2': kz we have, by Lemma 4.1, Lemma 4.3 and (3), that 

Predk,iacc(k) = ek,iacc(k)[f(xk)- f(zk,i)] + (1- ek,iacc(k))[IC+(xk)l- IC+(yk)IJ 

= ek,iacc(kl [f (yk)- f (zk,i)] +Bk,iacc(kl [f (xk)- f (yk)] + (1-Bk,iacc(kl) [I C+ (xk) 1-IC+ (yk) I] 

2': B[f(yk)- f(zk,i)]-lf(xk)- f(yk)I-IC+(xk)l2': ê min {c4, c;~}-c'jC+(xk)i (35) 

for all k 2': kz, where c' is a constant that depends on the norm and the bound of 
ll\7 f(x)ll on í1. Now, let k3 2': k2 be such that 

c'IC+(xk) I :::; ~ min { c4 , c;~} 
for all k 2': ks. By (35), Predk,iacc(k) is bounded away from zero for all k 2': k3. 
This implies, by (11), that Aredk,iacc(k) is bounded away from zero for ali k 2': k3 . 

Clearly, this contradicts Theorem 3.4. This means that Hypothesis C cannot be 
true. Therefore, the desired result is proved. O 

5 Application: Hard-Spheres Problems 

The Hard-Spheres problem belongs to the family of sphere packing problems, a class 
of challenging problems dating from the beginning of the seventeenth century which 
is related to practical problems in Chemistry, Biology and Physics (see [7, 32]). 
lt consists on maximizing the minimum pairwise distance between q points on a 
sphere in JR.dim. This problem may be reduced to a nonconvex nonlinear optimization 
problem with a potentially large number of (nonoptimal) points satisfying optimality 
conditions. We have, thus, a class ofproblems indexed by the parameters dim and q, 
that provides a suitable set of test problems for evaluating nonlinear programming 
codes. 

The straightforward formulation of the Hard-Spheres problem is: 

Maximize mini;tj llwi- wjll 
subject to llwkll = 1, k = 1, ... , q, 

(36) 

where the vectors wk belong to JR.dim and 11 · 11 is the Euclidean norm. 
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This is equivalent to 

Minimize max;,;j 
subject to 

(wi, wJ) 
[[wk\1 2- 1 =O, k = 1, ... , q. 

(37) 

Applying the classical trick for transforming minimax problems into constrained 
minimization problems, we reduce (37) to the nonlinear program 

Minimize 
subject to 

z 
(wi, wJ) - z < O, for all i f j, 

[[wk[[ 2- 1 - O, k = 1, ... , q. 
(38) 

The structure of the Hard-Spheres problems suggests a natural Restoration Step, 
which does not rely on sophisticated algorithms for solving (2)-(3). Assume that 
xk = ( w 1 , ... , wª, z) is the current point at the k-th iteration. Replacing 

. wJ 
J • 1 

w +--[[wJll' J = , ... ,q 

and 
z +-- max{ (wi, wJ), i f j} 

we obtain a point x = (w1, ... , wª, z) that satisfies exactly the constraints. If (3) is 
violated by x (so [[x- xk[j > ;3[[C+(xk)[j), we replace x by xk + $l/ 1 ~+~~;iil (x- xk). 

If this point violates (2) we declare "failure in improving feasibility" at the Restora­
tion Phase. In our experiments we used ;3 = 4, r = 0.99. Obviously, this restoration 
procedure relies on the specific structure of the constraints (38) and we take advan­
tage of the freedom allowed by the Inexact-Restoration algorithm on the choice of 
the restored point. 

For the Minimization Step we use the well-known linearly constrained minimiza­
tion solver implemented in the MINOS system, Version 5.4 (see [24]). The problem 
to be solved by MINOS isto minimize the variable z on the intersection of polytope 
defined by the linearization of the inequality constraints of (38) and the trust region 
box around of yk We used the defaults of MINOS for optimality and feasibility and 
the "Warm Start" option at each Minimization Step. Since the subproblem solved 
by MINOS is a Linear Programming problem, we can assume that MINOS finds a 
global solution, so that the inequality f(zk,i) :S f(yk + t(k,í,dec)dk,tan) (see (15)) nec­
essarily holds. Therefore, in this case it is not necessary to specify the parameters 
71, 72 and 7). In practice, each execution of MINOS was stopped with the default 
convergence criterion relatively to the norm of the reduced gradient and signs of the 
multipliers. 

The nonnegative sequence for the penalty parameter of the merit function at 
Step 1 of Algorithm 2.1, was wk = (l;k)', where n = q x dim + 1 and the initial 
penalty parameter was 8_ 1 = 0.5. After some preliminary tests we used p = 10. 
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We used the following criterion to update the trust region radius ok,í· If the 
sufficient reduction condition (11) does not hold at Step 4 in Algorithm 2.1, we set 
ok,i+l = ok,í/8. On the other hand, to restart at the beginning of an iteration, we 
set Ok,O = max{ Omin, 4ok-1,acc}, with Omín = iio,o = 0.5. 

The theoretical properties of the Inexact-Restoration algorithm guarantee that, 
if break-down does not occur at the Restoration Step, then given any e: > O there 
exists k such that IJC+(xk)ll :Se: and lldk,tanll :S c. In our practical implementation 
we declared "convergence" when li C+ (xk) lloo :S 10-8 Since xk comes from the 
Minimization Step performed by MINOS, when this occurs we necessarily have that 
dk-l,tan ~ 0. 

Let us comment now the choice of the parameters of LANCELOT. The manual 
[6] (p.111) "strongly recommends the use of exact second derivatives whenever they 
are available". In fact we ran a few tests with the default approximation SR1 but 
the results were worse than those obtained using exact second derivatives, and thus 
this was the option adopted for ali further tests. We also experimented severa! dif­
ferent options for the linear equation solver: without preconditioner, with diagonal 
preconditioner and with a band matrix preconditioner. The best results were ob­
tained with the first option (no preconditioner). Moreover, after some preliminary 
tests, we decided to use the "inexact Cauchy point" option. The maximum number 
o f iterations allowed was 1000. Finally, the gradient and constraints tolerances were 
the same chosen for the Inexact-Restoration algorithm, namely 10-8 . Both codes 
are in FORTRAN and the compiler option adopted for both was "-0". 

6 N umerical experiments 

Tests were run on a Sun SparcStation 20, with the following main characteristics: 
128Mbytes of RAM, 70MHz, 204.7 mips, 44.4 Mflops. We ran both codes using 
50 initial random points for each problem. The results are summarized in Table 1. 
This table lists the eigtheen problems with the number of variables and constraints 
and the statistic information related to the minimum distance between two points 
(minimum, maximum, average) and CPU time (minimum,maximum, average) us­
ing the Inexact-Restoration algorithm (first row of each set) and the ones using 
LANCELOT (second row). 

The information contained in Table 1 is depicted graphically below. The intervals 
(min, max) of distances/log(CPU times) are represented by vertical segments, the 
averages are indicated with a diamond symbol for the Inexact-Restoration algorithm 
and a bullet for LANCELOT. Graphs on the left refer to distances whereas graphs 
on the right refer to log( CPU times). 
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Problem size llminimum distance between 2 points CPU time ( seconds) 

[~] 
; 

var. constr. min. max. average m1n. max. average 

[lo] 31 55 
1.0514622 1.0914262 1.08221761 0.46 0.79 0.61 
1.0514656 1.0914302 1.0874007 0.83 2.51 1.50 

[ 13t] 34 66 
1.0514622 1.0514622 1.0514622 0.64 0.91 0.76 
1.0514656 1.0514656 1.0514656 1.10 3.92 1.81 

[l2] 37 78 
0.9447876 1.0514622 1.0493287 0.81 1.37 0.99 
0.9447856 1.0514656 1.0430604 1.53 3.29 2.24 

[ 1
3
3] 40 91 

0.9427907 0.9564136 0.9499126 0.88 1.25 1.001 
0.9443516 0.9564099 0.9512710 2.26 8.06 4.12 

[ l4] 43 105 
0.9161167 0.9338626 0.9293394 1.04; 1.47 1.24 
0.9025741 0.9338629 0.9305515 2.49 9.05 5.12 

[ l5] 46 120 
0.8745439 0.9026562 0.9008776 1.16, 1.92 1.47 
0.8734529 0.9026516 0.9009286 3.25 12.73 7.37 

[2~] 89 253 
0.9824163 1.0019895 0.9951659 5.29 17.43 8.12 
0.9840223 1.0019880 0.9967615 30.491 209.27 69.85 

[243]1 93 276 
0.9693916 1.0000000 0.9827767 6.73 16.74 10.31 
0.9740944 0.9918568 0.9847650 29.26 178.84 89.80 

[~] 97 300 
0.9573460 1.0000000 0.9734775 7.13 19.26 12.34 
0.9580083 0.9828733 0.9751985 43.16 239.77 112.78 

[2\] 101 325 
0.9477678 0.9616207 0.9569177 8.25 17.97 12.58 

0.9465833 0.9619563 0.9574963 49.00 268.49 131.18 

[2~] 105 351 
0.9327032 0.9583427 0.9474299 9.99 29.60 15.571 

0.9367603 0.9583423 0.9491615 39.90 565.90 164.47 

[z~] 109 378 
0.9276386 0.9394150 0.9344075 11.08 33.88 17.06 
0.9273834 0.9389142 0.9345753 79.26 332.12 173.131 

[~7] 186 703 
I 

0.9905835 1.0045763 0.9993300 68.66 369.42 149.481 
0.9911508 1.0025367 0.9979124 444.81 2501.76 1154.08' 

[ 3
5
8] 191 741 

0.9842019 1.0019176 0.9917008 93.85 527.66 168.08 

0.9864684 1.0019880 0.9930711 546.55 3105.86 1538.54 

[ ~9] 1961 780 
0.9772092 0.9929902 0.9871450 108.71 461.15 204.96 
0.9808159 0.9920786 0.9881178 502.38 3161.88 1782.301 

2011 
' 0.9734556 0.9886857 0.9818932 100.08 600.04 220.59 [ Ío] 820 I 0.9701958 0.9920282 0.9810864 863.85 3820.43 1907.57 

' 

[id 2061 861 
0.9686624 0.9818115 0.9746239 117.34 435.91 195.79 

0.9644272 0.9819470' 0.9757435 1148.77 4669.87 2521.84' 

[ 12] 211! 903 
0.9612090 0.9793985 

' 
0.9693361 105.37 641.68 213.741 

i 0.9599791 0.9798367 0.9702516 807.57 4664.63 2473.78 

Table 1: Minimum distances and CPU times 
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Figure 1: Inexact-Restoration (o) and LANCELOT ( •) results for n = 3. 
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Figure 2: Inexact-Restoration (o) and LANCELOT ( •) results for n = 4. 
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Figure 3: Inexact-Restoration (o) and LANCELOT ( •) results for n = 5. 
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The graphs in Figures 1-3 evidence the qualitative relative behavior of both 
codes. Notice that the diamonds and bullets are always dose together in the graphs 
on the left, indicating that the quality of the optimal solutions obtained by both 
codes is similar. On the other hand, the bullets rise faster than the diamonds on 
the graphs on the right, which means that the CPU times for LANCELOT tend 
to be higher than those of the Inexact-Restoration code. The linear fit of Inexact­
Restoration CPU times versus LANCELOT CPU times is y = 0.095 x + 4.466 (see 
Figure 4). Observe that, in fact, the linear coefficient is less than 0.1 . 

In Figure 5 we compare the CPU times of both algorithms for the eigtheen prob­
lems considered. This figure shows clearly the good performance of our Algorithm, 
specially when the size of the problem increases. 

CPU times 
3000 

250 • • 
2000 • • 
1500 • 

• 
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50 

• • • • o o o o o o Problems 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Figure 5: CPU times: Inexact-Restoration (o) and LANCELOT (•). 

7 Final renaarks 

Since the method presented in this paper is a model algorithm, many possible im­
plementations can be given. The efficiency of different implementations should be 
linked to the quality of the algorithms chosen for performing different steps. For the 
Restoration Step we need an algorithm that solves (2)-(3). Since, in most cases, 11· il 
will be the sup-norm and !1 will be a box, we can choose any of the many available 
methods for large-scale box-constrained minimization for solving this problem. 

In the Minimization Step we need an approximate solution of (8). Generally, this 
is a linearly constrained minimization problem. For its resolution active set methods 
are generally recommended (see, for example, [23]). However, last decade large-scale 
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optimization research suggests that efficient implementations can also result from 
the application of interior point methods to (8). See [33]. 

In this paper we did not use regularity assumptions to prove global convergence 
of infinite sequences generated by the algorithm. This does not mean that regu­
larity is not playing any role in practical circumstances. Roughly speaking, lack 
of regularity can cause a failure in Restoration Phase, resulting in break-down at 
Step 1. In fact, our theoretical results show that, if the original problem is infeasible, 
break-down will necessary take place for some (finite) value of the iteration k, that 
is, an infinite sequence will not be generated. On the other hand, we proved that 
when infinitely many points are generated, ali the limit points are feasible. Finally, 
the results on Section 4 show that at least one of these limit points is stationary in 
the sense that limkEK,IIdk,tanll =O when {xk}kEK, is the corresponding convergent 
subsequence. The relations between this type of stationarity and necessary or suffi­
cient conditions for local minimization remain to be investigated. 
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Capítulo 3 

Métodos gradiente espectral 
otimização com restrições 

para 
lineares 

de igualdade 

Resumo 

No presente trabalho são considerados problemas de otimização com restrições 
lineares e canalizações. Primeiro, é definido um método gradiente espectral pre­
condicionado para o caso sem canalizações.Este algoritmo pode ser visto como um 
método Quase-Newton onde as aproximações das Hessianas satisfazem uma equação 
secante fraca. A escolha espectral do passo está inserida na aproximação Hessiana 
e o algoritmo completo está combinado com uma estratégia de busca linear não 
monótona. As canalizações são incluídas na função objetivo usando um esquema de 
penalização exponencial. Este esquema de penalização define as iterações externas 
do algoritmo geral. Cada iteração externa inclui a aplicação do método gradiente 
espectral previamente definido para problemas com restrições lineares de igualdade. 
Conseqüentemente, um problema de programação quadrática convexa com restrições 
lineares de igualdade deve ser resolvido em cada iteração interna. A matriz KKT 
extendida associada a este problema fica constante a menos que o processo seja 
reiniciado. Nas iterações internas somente o lado direito do sistema KKT é modi­
ficado. Conseqüentemente, técnicas de fatorações esparsas podem ser efetivamente 
aplicadas e exploradas. São apresentados promissórias resultados numéricos. 
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Spectral gradient methods for linearly 
constrained optimization 

J. M. Martínez * E. A. Pilotta t M. Raydan t 
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Abstract 
Linearly constrained optimization problems with simple bounds are con­

sidered in the present work. First, a preconditioned spectral gradient method 
is defined for the case in which no simple bounds are present. This algorithm 
can be viewed as a quasi-Newton method in which the approximate Hessians 
satisfy a weak secant equation. The spectral choice of steplength is embedded 
into the Hessian approximation, and the whole process is combined with a non­
monotone line search strategy. The simple bounds are then taken into account 
by placing them in an exponential penalty term that modifies the objective 
function. The exponential penalty scheme defines the outer iterations of the 
process. Each outer iteration involves the application of the previously de­
fined preconditioned spectral gradient method for linear equality constrained 
problems. Therefore, an equality constrained convex quadratic programming 
problem needs to be solved at every inner iteration. The associated extended 
KKT matrix remains constant unless the process is reinitiated. In ordinary 
inner iterations, only the right hand side of the KKT system changes. There­
fore, suitable sparse factorization techniques can be effectively applied and 
exploited. Encouraging numerical experiments are presented. 

Key words: Linearly constrained optimization, quasi-Newton methods, ex­
ponential penalty methods, spectral gradient method, nonmonotone line search. 
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1 Introduction 

Spectral gradient methods have proved to be of great value in unconstrained opti­
mization problems. They were introduced by Barzilai and Borwein [1], and !ater 
analyzed by Raydan [19]. They have been applied to find local minimizers of large 
scale problems (Raydan [5, 4, 20]), and also to explore faces o f large dimensions 
in box-constrained optimization (see Bielschowsky et ai. [3] and Friedlander et ai. 
[11]). More recently, spectral gradient methods were extended by Birgin et ai. [6] to 
minimize general smooth functions on convex sets. In this case, the spectral choice 
of steplength was combined with the projected gradient method to obtain a robust 
and effective low cost computational scheme. 

In this work, we present a spectral gradient method for the linearly constrained 
optimization problem 

Minimize f(x) subject to Ax = b, x 2 O, 

where f : IRn --7 IR is a smooth function. We consider, first, the case in which the 
bounds x 2 O are not present. For this case, we present a quasi-Newton method in 
which the secant approximation satisfies a weak secant equation. Our method can 
also be viewed as a preconditioned spectral gradient method (see Luengo et al. [16]), 
in which the secant update plays the role of a preconditioner matrix that can be 
reinitialized whenever some indicator of performance reveals that this is convenient. 
The spectral choice of steplength is embedded into the secant matrix via a simple 
Rayleigh quotient scalar multiplication, and the whole process is combined with a 
nonmonotone line search strategy. The simple bounds are then taken into account 
by means of an exponential penalty term that modifies the objective function. Each 
modification of the penalty term defines a different outer iteration. At each outer 
iteration we apply the preconditioned spectral gradient method for linear equality 
constrained problems defined before. 

Concerning the implementation, a basis for the null space of A is not required 
at ali. To obtain the search direction we need to solve a convex quadratic pro­
gramming problem at every inner iteration. As a consequence of the spectral choice 
of steplength, the associated extended KKT matrix remains constant unless the 
process is reinitialized, and only the right hand side of the KKT system changes. 
Therefore, suitable sparse factorization techniques can be effectively exploited. 

This work is organized as follows. In section 2 we present the spectral gradient 
method for linear equality constrained problems. We describe the calculation of 
the search direction, the nonmonotone line search and the convergence properties of 
the method. In section 3, we present an exponential penalty approach to solve the 
linearly constrained optimization problem with simple bounds. In section 4 we give 
a global convergence result for the proposed outer scheme. In section 5, we describe 
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implementation features. In section 6, we present computational results. Finally, in 
section 7, we state some conclusions. 

2 Linearly constrained preconditioned spectral 
gradient without bounds 

Let us consider the problem 

Minimize F(x) subject to Ax = b, (1) 

where F : IR.n --+ IR, A E IR.mxn, F E C1(IR.n), and b lies in the range of A. We 
denote g(x) = \1 F(x) for all x E IR.n. 

In this section we define a quasi-Newton algorithm for solving (1). Assume that 
O < C>min < <Ymax < oo. Given Xk E IR.n such that Axk = b and a positive definite 
matrix Bk (this can be relaxed to zr BkZ >O, where the columns of Z are a basis of 
the null space of A), the steps for obtaining Xk+l are given by the following algorithm. 

Algorithm 1 Preconditioned spectral gradient with linear equality constraints 
Step 1: Obtain dk E IR.n the unique solution of 

Minimize ~dT Bkd + g(xkf d subject to Ad = O. 

If dk =O terminate. (xk is a stationary point of problem (1).) 

(2) 

Step 2: Compute, using a procedure that will be specified !ater (in Algorithm 2), 
Àk > O ( the steplength). Define 

where 

Return to Step 1. 

Yk = g(xk+l)- g(xk), 

Bk+l = o:kBo, 

max ( O:min, min ( O:max, sl~:,)) 
O:min 

The solution of (2) is given by 
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if s[ Yk >O 

else . 

(3) 

(4) 



where 9k = g(xk). The matrix of the linear system is referred as the KKT-matrix. 
Note that in the particular case in which Bk =I, the solution dk is the orthogonal 
projection of -g(xk) on the null-space of A. 
Remarks 

1. With the appropriate changes on the bounds for ak we can define Bk+l = akBk 
T T 

using {'BYk instead of JkBy, . In this way it is easier to visualize the algorithm 
sk kSk sk osk 

as a quasi-Newton method in which, when the bounds for ak are not violated, 
the matrix Bk+l satisfies the "weak secant equation" 

(5) 

The geometrical meaning of (5) is that the directional deriva tive ofthe quadratic 
model of F coincides with the directional derivative of F at the previous point. 
Obviously, the gradient of the quadratic model coincides with the gradient of F 
at the current point. With our spectral choice, the directional derivatives of 
the quadratic model on directions that are Bk-orthogonal to the increment 
coincide with the directional derivative of F at the current point. 

2. If no constraints are present at ali and B0 = I this algorithm is, essentially, 
the one defined by Raydan in [20]. The present algorithm generalizes also in 
many senses the preconditioned spectral gradient method introduced in [16], 
where Bo plays the role of the preconditioner matrix. 

T 

3. The quantity I'BYk is frequently refered as a Rayleigh quotient. In fact, if 
sk osk 

F E C 2 (IR.n), we have: 

1 

So, defining wk = BJ sk and 

we obtain: 
sf Yk _ wf Akwk 
T - T · 

skB0sk wk wk 

Therefore, 
T 

I'BYk is a Rayleigh quotient of Ak in the classical sense. 
sk osk 

In Algorithm 2 we describe the line-search procedure, that is to say, the way 
in which we choose Àk at each iteration. We adopted a nonmonotone line-search 



strategy. This means that, following [6, 15, 20], we do not impose decrease of the 
objective function at every iteration. Instead, we choose a positive integer 1\!I at 
the beginning of the process and we accept a trial point when a sufficient decrease 
is obtained in relation to the maximum functional value among the M last iterations. 

Algorithm 2 Nonmonotone line-search procedure 
We assume that f E (0, 1) is given independently of the iteration number k and 

that dk has been computed using (2). 
Step 1 Set À +-- 1. 
Step 2 Set x+ = Xk + Àdk. 
Step 3 If 

F(x+) ::; max OSiS min {k.M}F(xk-j) + ~!À(dk, g(xk)), 

then define Àk = À and finish the line-search. 
If (6) does not hold, define 

Ànew E [0.1À, 0.9ÀJ, 

set À +-- Ànew and go to Step 2. 

(6) 

(7) 

Algorithm 1 admits many possible implementations according to the choice of 
the matrix B0 . The "pure" spectral gradient method with linear constraints corre­
sponds to B0 = I. Our approach here, similarly to the one of [16], is to consider 
that Algorithm 1 could be re-initiated with a different initial matrix B0 whenever 
some indicator of performance reveals that this is convenient. The whole process is 
described below. 

Algorithm 3 Spectral gradient for linear equality constraints with re-initialization 
Assume that the positive definite matrix B0 is given, as well as the positive 

integer M and the sufficient decrease parameter f E (0, 1). 
Step 1. Set kount +-- O, k +-- kount 
Step 2. Execute Algorithm 1 with the line-search procedure given by Algorithm 2. 
Step 3. If Algorithm 1 terminates at Step 1, terminate the execution of Algorithm 3 
to o. 
Step 4. Decide whether it is necessary to re-initiate Algorithm 1 (YES-NO). 
Step 5. If NO, set kount +-- kount + 1, k +-- k + 1 and go to Step 2. 
Step 6. If YES, define a new B 0 , set kount +-- kount + 1, k +-- O and go to Step 2. 
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The following observation plays an important role in our convergence analysis 
and also in our implementation. Let ( db 1/Jk) be a solution of the system ( 4). Then 
dk belongs to the null space of A, that is, for some Wk, dk = Zwk where the columns 
of Z form a basis of the null space of A. Therefore 

BkZWk + AT ?j;k = -gk. 

So, 
zTBkZwk + zr AT ?j;k = _zT gk. 

Since AZ = O and Bk is positive definite, we have 

and hence 
dk = -Z(ZTBkz)-1ZTgk. (8) 

Now, using the update for the matrix Bk in Algorithm 1, we obtain 

(9) 

Therefore, the search direction dk can be obtained using the KKT-matrix of the last 
re-initialization the corresponding independent vector by means of 

[ ~ ~T ] [ :: ] = [ -~ ] (10) 

Our next result establishes the convergence properties of Algorithm 3. 

Theorem 1 Suppose that at all initializations o f B0 the eigenvalues o f zr B0Z are 
clustered in a strictly positive closed and bounded interval. Then Algorithm 3 is well 
defined and every limit point is stationary. 

Proof. Since the eigenvalues of zr B0 Z remain in the strictly positive interval 
[Àmin, ÀmaxL for all initializations of B 0 , then we can assume for the sake of clarity, 
and without loss of generality, that no re-initialization is performed, and that the 
smallest and largest eigenvalues of zr B0Z are Àmin and Àmax respectively. 

If Xk is not a constrained stationary point, then zr gk # O, and the search 
direction dk in (9) satisfies 

IIZT gkll 2 <o. 
O:max Àmax 

(Throughout this paper 11 · 11 means 11 · lb). Hence, a stepsize satisfying (6) will be 
found after a finite number of trials, and Algorithm 3 is well defined. 



Let x be an accumulation point of {xk}, and relabel {xk} a subsequence con­
verging to x. Suppose, by contradiction, that xis not stationary. Then IIZT g(x)ll = 
S > O. This implies by continuity that 

(11) 

for k large enough on the subsequence that converges to x. We consider two cases: 
Case 1. Assume that inf Àk =O. Hence, there exists a subsequence {xk}K such 

that 
lim Àk =O. 

k-roo, kEK 

In that case, from the way Àk is chosen in (6), there exists an index k sufficiently 
large such that for all k :::0: k, k E K, there exists wk> (O< 0.1 ::; wk ::; 0.9), for which 
Àk/wk > O fails to satisfy condition (6), i.e., 

Àk Àk Àk 
F(xk + -dk) > max F(xk-j) + 1-(g(xk), dk) 2 F(xk) + ~!-(g(xk), dk)· 

Wk 0$J$M Wk Wk 

As a consequence, 

By the mean value theorem, this relation can be written as 

where tk is a scalar in the interval [0, Àk/wk] that goes to zero as k E K goes to 
infinity. 

Taking a convenient subsequence such that dk/lldkll is convergent to d, and taking 
limits in (12) we deduce that (1-l)(g(x),d) 2 O. (In fact, observe that {lldkii}K is 
bounded and so tklldkll -t 0.) Since (1 -1) >O and (g(xk), dk) <O for all k, then 
(g(x), d) =o. 
Using (9) this implies that {aj;2 1(ZTgk)Y(ZTB0 Z)- 1(ZTgk)} goes to zero on that 
subsequence. However, 

Therefore, IIZT gkll goes to zero when k E K goes to infinity. Thus, by continuity, 
for k large enough on that subsequence we have that 

which contradicts (11). 

66 



Case 2. Assume that inf Àk 2: w > O. Using the first part of the proof of 
the theorem in [15, p. 709], we obtain a monotonically nonincreasing sequence 
{F(Xt(k))}. Indeed, Jet l(k) be an integer such that k- min{k, M- 1}::; l(k) ::; k, 
and 

F(xt(k)) = m11x [F(xk-J)]. 
O:SJ:S mm {k,M} 

From (6) it follows that, for k > M (see [15] for details) 

F(xt(k)) :S F(xt(l(k)-1)) + !Àt(k)-l (g(xt(k)-J), dt(k)-J). 

Using (9) and (11), we obtain 

F(xt(t(kJ-!J) - 1 Àt(kJ-! (zr g(xt(k)-J)f (zr BoZ)-1(Zr g(xt(k)-J)) 
O<t(k)-1 

'Y w ,)2 
::; F(Xt(l(k)-l)) - 4 ' À 

Ctmax max 

When k -t oo, clearly F(xt(k)) -t -oo which is a contradiction. 
continuous function and so F(xk) converges to F(x). 

3 Adding bounds on the variables 

In fact, f is a 
o 

Now, we consider the following linearly constrained optimization problem with sim­
pie bounds: 

Minimize f(x) subject to Ax = b, x 2: O, (13) 

where f : IRn -t IR, A E IRmxn, x E IRn, f E C 1(1Rn). Our arguments below can 
be easily extended to a problem with simple upper and lower bounds: 

Minimize f(x) subject to Ax = b, e::; X::; u, 

however we will restrict ourselves to the case (13) in order to simplify the notation. 
We eliminate the positivity constraints in (13) using penalization. There are 

many possibilities to do this. The reputation of the logarithmic barrier function 
lead us to try an interior-point scheme at early stages of this work. This idea did 
not work well. Roughly speaking, the first trial step almost always violates the 
bounds x > O so that, at most inner iterations, the step must be reduced. As a 
consequence, if there is any benefit in the spectral choice of the step, this benefit 
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disappears when the method is associated to the logarithmic barrier function. Of 
course, this does not mean that the log-function is not effective when it is associated 
to the pure Newtonian direction, as many theoretical and practical studies show. 

In order to preserve the smoothness of the objective function and to keep the 
variables unconstrained, we decided to consider the modified exponential penalty 
function [2, 17, 18] given by: 

axp(z) = { ifz:c;O 
if z >O. 

As a consequence, we have to solve the following minimization subproblem for 
each penalty parameter p: 

Minimize F(x) = f(x) + ~ t J.liaxp( -pxi), subject to A.x = b. (14) 
p i;l 

The meaning of J.li will be given !ater. We are only going to assume that O < 
J.lmin :=:; J.li :::; f.lmax < oo for ali i = 1, ... , n. The ou ter algorithm consists in 
solving a sequence of penalty problems (14). Each penalty problem is solved using 
Algorithm 3. Clearly, the exponential penalty approach does not require positivity 
of the initial point. 

4 Global convergence 

In this section, we will show that, under certain conditions, the scheme based on suc­
cessive approximate minimizations of (14) really works. Similar results, for related 
algorithms, were given, for example, in [2] and [17]. The ou ter scheme proposed in 
the previous section is an exponential Lagrangian method. At each outer iteration, 
the sequence of inner steps will be given by Algorithm 1. Accordingly, an inexact 
stopping convergence criterion will be defined, based on computable quantities. 

We will need severa! assumptions. The first assumption guarantees that, at each 
outer iteration, Algorithm 1 will be able to stop. 

Assumption 1. There exists Po > O such that, if p 2: Po and J.li E [J.lmin, f.lmaxL the 
level sets of F(x) in (14) are bounded. 

Observe that Assumption 1 ís stronger than saying that f(x) has bounded leve! 
sets on the feasible region A.x = b, x 2: O, since it involves the behavior of f(x) on 
infeasible points too. If f(x) goes to -oo very quickly for Xi-+ -oo, Assumption 1 
might not hold. It can be argued that, in this case, it is inexpensive to modify the 
definition o f f ( x) in the infeasible region, but even this operation is risky and can 
create undesirable local minimizers. 
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Now, we are able to define the outer algorithm. Each iterate of this algorithm 
will be xk E IR.n, whose existence is guaranteed by Assumption 1. 

Algorithm 4 Outer iterations 
Let Ek > O for all k = O, 1, 2, ... be such that limk->oo Ek = O. Let p0 be given by 

Assumption 1, as well as f.lmin and f.lmax· Let T E (0, 1), 7J > 1. Initialize o-_1 = O 
and k +-O. 
Step 1. Choose f-17 E [f.lmin, f.lmax] for all i = 1, ... , n. 
Step 2. Define 

Apply Algorithm 1 for 

Minimize Fk(x) subject to Ax = b. 

Use, as stopping criterion, the test 

where d is the solution of (2). (From now on, with some abuse of notation, we will 
denote dk = d in this section.) The final iterate o f Algorithm 1 so far obtained will 
be called xk. 
Step 3. Compute 1!/ E IR.n by 

Step 4. Define 
ak = max {!min {.!:!.~· xÍ}I, i= 1, ... , n}. 

Step 5. If ak ::; rak-1 define Pk+l = Pk· Else, define Pk+l = 7JPk· 
Step 6. Set k +- k + 1. Go to Step 1. 

(15) 

The vector f.lk is intended to be an estimator of the Lagrange multipliers asso­
ciated to the inequality constraints. For this reason, the choice f.lk = l:!.k- 1 could 
be quite natural at Step 2, if the safeguards defined by f.lmin and f.lmax are not vio­
lated. However, this specific choice is not necessary for proving convergence. The 
motivation of Step 4 of the algorithm is that the conditions on positivity and com­
plementarity that relate the solution and the Lagrange multipliers can be written 
as 

min {f.L;, xi} = O, i = 1, ... , n. 

Therefore, Step 4 measures the progress related to the positivity-complementarity 
requirement. If this progress is satisfactory, it is not necessary to increase the penalty 
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parameter. In our practical implementations we used ILf = 1, so that the whole 
practical process can be interpreted as a penalty scheme where the tests of Step 4 
determine if the penalty parameter must be increased or not. 

In addition to Assumption 1, other assumptions for convergence of Algorithm 4 
are merged in the hypothesis of the following theorem. The main one is that the 
sequence of inequality Lagrange multiplier estimates must be bounded. If this hap­
pens, we can guarantee that limit points of {xk} are stationary points of (13). Of 
course, in practical terms we also need that these limit points exist, which means 
that a bounded subsequence of {xk} must exist. 

Theorem 2. Assume that {l} is bounded. Then, every limit point of {xk} zs a 
stationary point o f {13). 

Proa f. Let x* E IRn be a limit point of { xk} and let K1 c IN be such that 
limkEK1 xk = x*. Take K2 C K1 such that limkEKz 1:I/ = 1!:.*. Clearly, 

i!:.' :2: O. 

Define, with some abuse of notation, Bk E IRnxn the matrix used at the last inner 
iteration of the outer iteration k (which gave lldkll ::; Ek)· By the hypothesis of 
Theorem 1 and the safeguards on o:k, the eigenvalues of the Bk's are clustered in 
a strictly positive interval. Therefore, there exists K 3 C K2 and a positive definite 
matrix B, such that 

lim Bk = B,. 
kEKa 

Taking limits for k E K3 in lldkll ::; Ek, we obtain, by (8), that 

Z(Z7 B,z)-1 Z7 \7(\7 f(x*) -f!:.*) =O. 

This implies that there exists À E JRm such that 

\7f(x')+A7 À-f!:.*=0, (16) 

with 1!:.* :2: O. 
Now, we consider two cases. In the first case, there exists k0 E IN such that 

Ih ::; Tak-l for ali k :2: k0 . By continuity, this implies that 

min{f:!:;,x;}=O V i=1, ... ,n. (17) 

Clearly, (16) and (17) imply that x* is a stationary point of (13). 
In the second case limk-+co Pk = oo. By hypotheses, {J.tk} is bounded. Therefore, 

by (15) and the choice of Jlk, {axp'( -pkxf)} is bounded for all i= 1, ... , n. By the 
definition of axp(z), this implies that inf xf :2: O for all i = 1, ... , n. Therefore, 
x* :2: O. 
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So, 

Now, if xj > O, taking k E K 3 large enough we have that 

x' 
xk >...i> O. 

I - 2 

I. k 
1m PkXi = oo. 

kEKs 

By the boundedness of Jlk and (15), this implies that Jlk -+ O. So, 11' = O. This 
-t -t 

means that complementarity holds. Thus, the proof is complete. O 

5 Implementation features 

This section deals with some specific algorithmic choices. We present the results 
of computer experiments in the next section. Remember that, as we said in the 
previous section, we used 11f = 1 in our implementation of outer iterations. 

Computation of ak and dk in Algorithm 1. The expression for ak can be 
simplified when k 2: 1 as follows. Notice first that 

TE 8[ Bk8k Àk8k Bkdk 
8 k o 8 k = = --'--"---"-...:. 

Üik-1 Üik-1 

From (4) we obtain that Bkdk = -gk- AT 1/Jk. Since 8k is a feasible direction, then 
8[AT =O, and so s[Bkdk = -8[gk. Hence, 

So, the expression for ak can be reduced to 

For this new expression the vector sk is not required, and the calculation of df gk 
can be reused in (6) for each trial step during the nonmonotone line search. 

On the other hand, the direction dk could be obtained by solving the system (4). 
If the order of the system were small it could be solved using the LU factorization 
with partia! pivoting or the QR factorization. Using these linear solvers, the cost of 
solving the system would be O(n3 ) fioating point operations. For large-scale linear 
systems this cost becomes prohibitive. So, it is convenient to compute dk by solving 
instead the system (10). In this case, we will solve severa! systems for consecutive 
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iterations, with different independent vectors, using only one factorization. More­
over, since we want to exploit the fact that the KKT matrix is symmetric we use 
the subroutine MA27 o f Duff and Reid [10]. This routine is suitable for solving 
specifically sparse symmetric indefinite linear systems. Finally, we note that the 
block B 0 changes when a re-initialization is needed in Step 6 of Algorithm 3, so the 
KKT -matrix changes too. However the sparsity structure is constant during the 
whole process and we can also exploit this fact using suitable routines from MA27. 

Initial point. To start Algorithm 3 we need an initial point x 0 , which must 
satisfy the linear equality constraints Ax = b. That point can be easily obtained 
solving the linear system 

Observe that the matrix of this system has the same structure as the KKT matrix 
of (4). So, we used again the subroutine MA27. 

Stopping criterion. The outer exponential algorithm was stopped when, at a 
solution of (14), we have that 

Xi ~ -E 'if i= 1, ... , n (18) 

and, for ali i = 1, ... , n, 

axp' (-pxi) ::; E whenever xi ~ E. (19) 

Condition (18) indicates that the current outer iterate is (almost) feasible. The 
quantities axp' (-pxi) are estimates o f the Lagrange multipliers corresponding to 
the constraints -xi ::; O. Therefore, (19) indicates that the current point satisfies 
( approximately) the complementarity conditions. The fact that the gradient o f the 
objective function is (approximately) a linear combination of the gradients of the 
active constraints must be guaranteed by the convergence criterion used in the inner 
algorithm. By (8) this property will hold if dk = O. Therefore, as inner convergence 
criterion of Algorithm 1, we used: · 

(20) 

Angle criterion. Since we do not have direct access to positive-definiteness of 
the matrices zr BkZ, we must control the fact that descent directions are effectively 
generated in an indirect way. Here we decided to use 

(21) 
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Inequality (21) says that the appropriate Rayleigh quotient (see the proof of Theo­
rem 1) related to zr BkZ is positive. 

When (21) is not satisfied we have to consider two cases: 

1. If it happens immediately after a re-initialization (k = O) we define Bk = 
Bk + pl, p > O anda new factorization of the KKT-matrix is performed. This 
procedure is repeated until the angle condition is satisfied. 

2. Otherwise, we perform a re-initialization and continue with Step 2 of Algo­
rithm 3. 

Re-initialization criterion at Step 4 in Algorithm 3. Among the many 
possible re-starting procedures, we decided to use, after preliminary experiments, 
the following one, which depends of a positive integer parameter p: 

(a) If we are at the first outer iteration or if at the previous outer iteration the 
inner algorithm converged within limit iterations, then at the current ou ter iteration 
the algorithm is restarted every pk inner iterations. 

(b) If, at the previous ou ter iteration, the inner algorithm did not converge after 
limit iterations, at the current outer iteration the algorithm is restarted every p 
iterations. 

(c) The inner algorithm is restarted if condition (21) is not satisfied. 
The rationale behind (a) is that, at the first iterations of the inner algorithm, 

large steps are expected so that the Hessian changes more abruptly than at the final 
iterations. Therefore, restarts must be more frequent at the first iterations than at 
the final ones. However, we turn to criterion (b ), that restarts the algorithm after 
equally spaced iterations if criterion (a) did not work well. 

Severa! strategies can be proposed for choosing B0 when re-initialization is rec­
ommended. Since in all our experiments f E C2 (JRn) we adopt the most obvious 
one, that is 

(22) 

Nonmonotone line-search. When (6) does not hold in Algorithm 2, we com­
pute the new step size using quadratic interpolation with safeguards. See for instance 
[9, p. 127]. 

Updating the penalty parameters. After finishing each outer iteration we 
update the penalty parameter p in a typical way: Pk+l = 10Pk· At the first outer 
iteration we used p1 = 10. 
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6 N umerical experiments 

We tested our algorithm using the following family of problems. Given a positive 
integer rc, we define 

'1' . . 1 "''-2( )2 .l.Y llllffilZ€ 2 L...í:::::l X~~:+i+l - XK+i 

subject to x<+i- Xi+1 + Xi =O, í = 1, ... , rc- 1, 

where the constants ai are defined by ai= 1.0 + (1.01)i-1. 

These problems arise in the optimal placement of nodes in a scheme for solving 
ordinary differential equations with given boundary values [13]. We solve these 
problems for different values of K.. 

For the numerical experiments we set the following default parameters: 
limit = 300, maximum number of inner iterations. 
c = 10-8 , tolerance for stopping criterion for ou ter iterations. 
c' = 10-6 , tolerance for stopping criterion for internai iterations. 
~f = 10-4

, tolerance for nonmonotone line search. 
() = 10-9 , constant in the angle criterion. 
Ctmin = 10-3

, etmax = 103
, the safeguards interval for the spectral parameter a. 

We tried to solve all the problems using M = O, 5 and 10 for the nonmonotone 
line search procedure (Algorithm 2). Note that for j\;J =O we are forcing monotone 
decrease of the objective function at every iteration. We consider p = 1, 2, 3. The 
case p = 1 means that we re-start Algorithm 1 at every iteration. Therefore, this 
case corresponds to Newton's method. 

Ali the numerical experiments were run on a SU.í\ Ultra 1 Creator in double 
precision FORTRAN, with the optimization option -0. 

The numerical results are shown in Tables 1, 2 and 3, corresponding to different 
values of the parameter p. For each table we report the parameter rc, the number 
of rows of the matrix A (m), the number of variables (columns of A) (n), the outer 
iterations ( Outer), the inner iterations (Inner) and the CPU time in seconds (Time) 
for M =O, 5, 10. Tables 4 and 5 show the performance of our code (with p = 2, 3) 
against an implementation of the Stationary-Newton Method, with M = 10. We 
report the number of outer iterations, inner iterations and the CPU time for the 
same set of problems. 

Finally, in Table 6 we compare the CPU time obtained with our method (p = 2, 3, 
and M =O, 10.) against the well-known package LA.í\CELOT [7, 8]. We used the 
following defaults parameters for LANCELOT: 
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• exact-second-derivatives-used 

• cg-method-used 

• inexact-Cauchy-point-required 

• infinity-norm-trust-region-used 

• gradient-tolerance l.OD-06 

• constraints-tolerance l.OD-06 

In ali the experiments we verify that the three methods that we used ( spectral 
gradient, stationary Newton and LANCELOT) converge to the same solution. 

Table 1: Spectral Method, p = 1 (NEWTON) 

Problems M-0 M = 5 M- 10 
I< m n Uuter lnner Ttme 1 Uuter lnner Time Uuter lnner Time 

50 49 99 

~I 
38 0.14 

; I 
32 0.11 5 32 0.11 

100 99 199 42 0.23 55 0.26 5 57 0.27 
150 149 299 48 0.38 5 62 0.43 5 65 0.45 

• 
200 199 399 5 80 0.80 5 67 0.65 5 67 0.65 
250 249 499 5 81 1.08 5 84 l.ll 5 84 1.11 
300 299 599 5 90 1.47 5 96 1.50 5 95 1.49 
350 349 699 5 77 1.53 5 100 1.85 5 113 2.04 
400 399 799 5 148 3.35 5 120 2.55 5 I 120 2.55 
450 449 899 5 136 3.38 5 133 3.29 I 5 • 138 3.38 
500 499 999 5 139 i 4.05 5 139 4.01 I 5 141 4.00 
550 549 1099 5 320 i 12.56 5 7ll 31.39 5 688 30.60 
600 599 1199 5 704 34.44 5 732 34.94 5 718 34.46 
650 649 1299 5 623 33.16 5 703 38.10 5 549 28.79 
700 699 1399 5 722 59.28 5 719 58.84 5 715 58.65 
750 749 1499 5 739 45.88 5 739 45.46 5 732 45.28 
800 799 1599 5 731 48.62 5 754 48.82 5 609 37.92 
850 849 1699 4 449 42.52 4 441 41.67 4 444 41.80 
900 899 1799 4 441 i 32.73 4 439 32.40 4 439 32.43 
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Table 2: Spectral Method, p = 2 

Problems M=O M= 5 M = 10 

" m n Ou ter Inner Time vuter Inner Time Uuter Inner Time 
50 49 99 5 204 0.20 5 65 0.09 5 62 0.09 

100 99 199 5 148 0.32 5 127 0.24 5 136 0.25 
150 149 299 5 147 0.45 5 266 0.67 5 225 0.57 
200 199 399 5 342 1.30 5 368 1.46 5 366 1.44 ' 
250 249 499 5 350 1.77 5 361 1.77 I 5 353 1.751 
300 299 599 5 380 2.44 5 396 2.49 5 425 2.90 
350 349 699 5 527 4.34 5 487 4.17 5 563 4.931 
400 399 799 5 404 3.92 5 415 4.03 5 493 5.69 
450 449 899 1 4 605 7.10 I 4 570 6.82 4 630 7.67 
500 499 999 1 5 447 5.831 5 458 5.97 5 486 6.55 
550 549 1099 I 5 860 16.34 I 5 641 9.00 5 696 9.30 
600 599 1199 I 5 764 11.58 5 715 11.40 5 696 10.96 
650 649 1299 5 934 15.16 5 796 14.57 5 915 16.77 
700 699 1399 . 5 974 25.96 5 956 22.46 5 1270 47.13 
750 749 14991 6 888 20.15 5 901 18.141 5 880 18.84 
800 79911599 5 975 25.00 5 1303 44.40 5 909 20.98 
850 849 1699 5 1346 54.73 5 916 25.06 !I 899 23.18 
900 899 I 1799 5 973 24.74 5 1392 54.48 I 989 26.68 

Table 3: Spectral Method, p = 3 

Problems M-0 M 5 M-10 

" m n Uuter Inner I Time Ou ter Inner Time Ou ter Inner Ttme 
50 49 99 5 318 0.30 5 144 0.15 5 222 o.2o I 

100 99 199 5 183 0.36 5 295 0.50 5 330 0.55 
150 149 299 5 266 0.73 5 282 0.69 5 ' 323 0.80 
200 199 399 5 371 1.34 5 360 1.33 si 407 1.70 
250 249 499 5 342 1.67 5 434 2.18 

~I 
434 2.15 

300 299 599 5 488 3.59 5 560 3.33 477 2.98 ' 
350 349 699 5 606 4.92 5 457 3.64 

~ I 465 3.70 
400 399 799 5 444 4.24 5 452 4.29 485 4.66 
450 449 899 4 624 6.91 5 534 5.72 5 543 5.72 
500 499 999 5 525 6.62 5 546 7.08 ' 5 531 6.93 
550 549 1099 5 954 14.97 5 753 10.231 5 716 9.73 
6oo 1 599 1199 5 i 907 12.75 5 745 5 827 12.31 

- I 11.441 
650 . 649 1299 o ' 965 15.45 5 888 15.53 5 907 14.94 
700 699 1399 - I 1030 24.89 6 914 14.9o I 6 908 17.98 o I 
750 749 1499 5 i 967 17.70 5 842 17.00 I 6 905 19.25 

1800 799 1599 5 1231 27.56 6 1046 22.22 ' 6 1039 22.25 
850 849 1699 5 1125 31.38 :I 977 23.10 5 930 24.53 

' 900 899 1799 5 858 23.54 956 I 21.92 5 1026 25.05 
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Table 4: Spectral Method vs. Stationary-Newton, p = 2, M = 10 

Problems Spectral Method Stationary-Newton 

" m n 1 vuter Inner Time Ou ter lnner Time 

50 49 99 5 62 0.09 5 264 0.19 
100 99 199 5 136 0.25 5 310 0.47 
150 i 149 299 5 225 0.57 5 327 0.78 
200 199 399 5 366 1.44 5 410 1.52 
250 249 499 5 353 1.75 5 568 2.38 
300 299 599 5 425 2.90 5 648 3.93 
350 349 699 5 563 4.93 5 585 4.50 
400 399 799 5 493 5.69 5 877 10.26 
450 449 899 4 630 7.67 5 520 4.85 
500 499 999 5 486 6.55 5 697 7.72 
550 549 1099 5 696 9.30 5 1067 23.24 
600 599 1199 5 696 ! 10.96 5 1115 19.51 
650 649 1299 5 915 16.77 5 1275 31.66 
700 699 1399 5 1270 47.13 5 1169 24.89 
750 749 1499 5 880 18.84 5 1462 40.16 
800 799 1599 5 909 20.98 5 1376 40.07 
850 849 1699 4 899 23.18 5 1322 45.85 
900 899 1799 5 989 26.68 5 1077 33.15 

Table 5: Spectral Method vs. Stationary-Newton, p = 3, M = 10 

Problems Spectral Method Stationary-Newton 

" m n Outer lnner Time Uuter lnner Time 

50 49 99 5 222 0.20 5 309 0.19 
100 99 199 5 330 0.55 5 322 ' 0.40 
150 149 299 5 323 0.80 5 328 0.63 
200 199 399 5 407 1.34 4 463 1.48 
250 249 499 I 5 434 2.15 5 386 1.57 
300 299 599 5 477 2.98 5 412 2.16 
350 349 699 5 465 3.70 5 411 2.57 
400 399 799 5 485 4.66 1 5 479 4.16 
450 449 899 5 543 5.72 I 5 686 5.92 
500 499 999 5 531 6.93 5 721 8.17 
550 549 1099 5 716 9.73 5 1074 14.37 
600 599 1199 5 827 12.31 5 1163 17.32 
650 649 1299 5 907 14.94 5 939 16.17 
700 699 1399 6 908 17.98 5 1236 21.17 
750 749 1499 6 905 19.25 5 1298 33.54 
800 799 1599 6 1039 22.25 5 875 20.93 
850 849 1699 5 930 24.53 5 1287 38.05 
900 899 1799 5 1026 25.05 5 1288 40.76 



Table 6: CPU time of Spectral Method vs. CPU time of LANCELOT 

Problems p-2 p-3 LANCELOT 

" m n M -0 M -10 M -0 M -10 

1 5o 49 1 99 0.20 0.09 0.30 l 0.20 1.07 
100 99 i 199 0.32 0.25 0.36 0.55 5.98 
150 149 299 0.45 0.57 0.73 0.80 14.63 
200 199 399 1.30 1.44 1.34 1.70 33.64 
250 249 499 1.77 1.75 1.67 2.15 36.69 
300 299 599 2.44 2.90 3.59 2.98 52.81 
350 349 699 4.34 4.93 4.92 3.7o I 68.03 
400 399 799 3.92 5.69 4.24 4.66 115.01 
450 449 899 7.10 7.67 6.91 5.72 l 93.12 
500 499 999 5.83 6.55 6.62 6.931 167.43 
550 549 1099 16.34 9.30 14.97 9.73 210.72 
600 599 1199 11.58 10.96 12.75 12.31 242.94 
650 649 1299 15.16 16.77 15.45 14.94 263.84 
700 699 1399 25.96 47.13 24.89 17.98 331.65 
750 749 1499 20.15 18.84 17.70 19.25 349.01 
800 799 1599 25.00 20.98 27.56 22.25 351.11 
850 849 1699 54.73 23.18 31.38 24.53 430.93 
900 899 1799 24.74 26.68 23.54 25.05 475.93 

7 Final renaarks 

As we mentioned in the Introduction, spectral gradient methods for unconstrained 
and bound constrained problems have shown to be very effective when compared to 
conjugate gradient methods and with other methods especially designed for large 
scale problems. See [6, 20]. In fact, as we can see in Tables 1-6 the performance 
of our method was satisfactory for small scale problems and very attractive and 
encouraging for large scale problems. Now, we proceed to the analysis of these 
tables. 

First of ali, we consider Tables 1-3 separately. Table 1 (p = 1) shows that 
there is no difference between monotone (M =O) and nonmonotone versions (M = 
5, 10), except for problems with K = 650 and K = 800. Clearly, p = 1, M = O 
corresponds, essentially, to a projected Newton's method with backtracking (and 
modified exponential penalization). On the other hand, Tables 2 and 3 (p = 2 and 
3 respectively) show that the nonmonotone version was better than the monotone 
one, specially for large scale problems. 

Now, if we consider Tables 1-3 jointly we note that in most of the experiments 
the number of inner iterations for p = 2 and 3 was greater than for p = 1. However, 
for large scale problems, the CPU time for p = 2 and 3 and nonmonotone versions 
were less than those corresponding to the case p = 1. 

Tables 4 and 5 show that performing the spectral correction of the Hessian at 
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inner iterations is better than not correcting at all, as the Stationary Newton method 
does. 

Finally, Table 6 shows that using any implementation of the spectral method 
(p = 2 or 3) in the monotone or nonmonotone line search is more effective than using 
LANCELOT (with the mentioned default parameters) on this set of problems. 

Let us try to explain the reasons for this state of facts. 
(1) The performance of our method was better than Newton's method except for 

small problems. (Observe that the sparsity pattern ofthe matrix (4) is suitable for a 
rather quick factorization using MA27.) The fact that Newton's method, in any ofits 
variations, is very effective when the linear algebra associated to it is not prohibitive 
is well known in numerical optimization. Moreover, in that case, the association of 
Newton with the logarithmic barrier function (see, for example [21, 22]) is usually 
profitable. It could be easy to construct examples where the situation is completely 
different, just placing an objective function with adense or badly structured Hessian. 
On the other hand, the fact that in our method we do not factorize that matrix in 
each iteration is a very important advantage, as can be clearly observed comparing 
the CPU time for large scale problems. 

(2) More important is the fact that the spectral preconditioned methods out­
performed stationary Newton variations. In fact, stationary Newton methods (with 
restarts) are good alternatives to Newton when this is not affordable. So, it is inter­
esting to observe that with minimal corrections, which do not increase the computa­
tional cost of Newton's stationary methods, we can obtain significant improvements 
of the overall performance. 

(3) The fact that explains the superiority of the methods introduced in this paper 
against LANCELOT is, essentially, that the matrix A has a structure that makes 
the factorization of (4) affordable. LANCELOT does not use factorizations at all 
and, so, this advantage is lost. 

( 4) As in [6, 15, 20] the numerical results for large scale problems using a non­
monotone line search were better than those using monotone ones. 

Given the above observations and possible explanations, let us forecast the prac­
tical future of algorithms like the ones presented in this paper. First of all, it is 
clear for us that they are not going to replace Newton's method, when the linear 
algebra cost associated to the latter is moderate. However, in situations where a 
Newton iteration can be performed but is rather expensive, a spectral Hessian scal­
ing performed at most iterations must be more effective than merely repeating the 
previous Hessian. 

If a factorization of ( 4) is so expensive that it cannot be performed even in a 
single iteration, two different situations can be distinguished. In the first situation, 
the matrix responsible by the linear algebra cost associated to the factorization of 
( 4) is the constraint matrix A. In this case, Algorithm 1 cannot be implemented 
either and, certainly, this is the case in which it is recommendable to incorporate 
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the constraints Ax = b to the objective function, as LANCELOT does (see [7, 14]). 
In the second case, the Hessian of the objective function is the one that makes the 
factorization ( 4) impossible. In this case, the factorization of 

is probably affordable, and the spectral gradient method based on Bk = I can be 
comparatively effi.cient. In an extreme case, the problem is unconstrained (m = 0), 
a situation where the spectral gradient technique has proved to be effective. 

Finally, a few words must be said with respect to the penalty strategy used here. 
There exist at least two completely different strategies for dealing with the bounds. 
The most classical one is the active set strategy described, for example, in [12] and 
many other text books and papers. In the last decade, interior point algorithms like 
the ones described in [22] became increasingly popular. The association of interior 
point (logarithmic barrier) algorithms with Newtonian directions seems to be very 
effective. However, this does not seem to be the case when Newtonian directions 
cannot be computed at all. In this case, we feel that the modified exponential 
penalization is a good alternative although much research is necessary in order to 
balance the termination criterion of the inner algorithm with the global convergence 
criterion. 
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Capítulo 4 

Um método secante multipoint 
com memória limitada para 
otimização com canalizações 

Resumo 

No presente trabalho é apresentado um novo algoritmo para problemas de mi­
nimização com canalizações de uma função diferenciável. O modo de tratar as 
restrições ativas é similar ao usado em alguns dos novos solvers quadráticos. São 
usadas aproximações multipoint secante simétricas das Hessianas. Dado que estas 
aproximações não forçam que as aproximações sejam definidas positivas é possível 
acumular, e usar eficientemente, informação de curvatura negativa. São apresenta­
dos resultados numéricos. 
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A limited-memory multipoint secant method for 
bound constrained optimization 
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Abstract 

A new algorithm for box-constrained minimization of differentiable func­
tions is introduced. The way for dealing with active constraints is similar to 
the one used by some of the recently introduced quadratic solvers. Memoryless 
multipoint symmetric secant Hessian approximations are used. Since these ap­
proximations do not force positive definiteness, it is possible to accumulate, 
and use efficiently, negative curvature information. Numerical experiments 
are given. 
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1 Introduction 

The problem considered in this paper is 

Minimize f(x) subject to x E rl, (1) 

where 
n = {x E !Rn I c:::: X:::: u}, (2) 

C, u E !Rn, C < u and f : !Rn -+ IR has continuous first partia] derivatives. 
This is a very important problem in practical optimization. On one hand, 

many physical, engineering and industrial problems admit mathematical models 
o f type ( 1). On the other hand, one of the most effective approaches for solving 
general constrained optimization problems, based on augmented Lagrangians, relies 
on effective algorithms for solving (1). See [11, 12, 29]. Finally, recent work on com­
plementarity and variational inequalities reduce these problems to box-constrained 
minimization problems in an efficient way. See [1] and references therein. 

All practical methods for solving (1) are iterative. Given xk E n, many methods 
compute a quadratic model o f f, whose gradient at xk coincides with the gradient 
of f, and whose Hessian is an approximation of the Hessian of f. At least three 
different (but related) ways of dealing with this approximation have been considered 
in recent literature. 

1. In [8] the quadratic model is used to compute a "Cauchy point" and this 
point is used to decide the face to which the first trial point will belong. 
The quadratic model is ( approximately) minimized on that face, giving the 
first trial point. The effective new point xk+I is computed using a line-search 
procedure. A related guessing-active-set strategy was proposed in [23]. See 
[32]. 

2. In [11, 28] the first trial point must belong to a trust-region llx- xkiloc :S ii. 
Since the intersection of this trust-region with n is an n-dimensional box, 
the Cauchy point is used to decide the face of this box to which the first trial 
point must belong. If a sufficient decrease condition fails to hold the size of 
the trust-region is reduced, and the process is repeated. 

3. In [27] the box-trust-region approach is also used but, instead of restricting 
the search of the trial point to a face determined by the Cauchy point, the 
whole box is explored using a specific algorithm for box-constrained quadratic 
minimization. See [2, 26, 27]. 
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In the algorithms introduced in this paper we also use quadratic models, but 
the way of dealing with constraints differ from the ones described above. Roughly 
speaking, our proposal here is to deal with constraints in the same way the quadratic 
solvers [2, 16, 26] do. This means that an algorithm for unconstrained minimization 
on the current face is used, until a separate indicator says that this is not worthwhile 
anymore. In this case, the face is abandoned along a direction defined in [24, 25, 26] 
for convex minimization. For this direction, interesting physical interpretations were 
given in [16]. See also [17, 18, 19, 20, 21, 22]. Moreover, when, in the unconstrained 
search process within a face, the algorithm hits a bound, severa! new constraints are 
added to the trial point in order to avoid the costly process of adding one constraint 
per iteration. 

The main motivation for this approach is to allow one to try conservative strate­
gies for dealing with faces of the feasible region. In fact, recent numerical studies [15] 
showed that, for box-constrained quadratic minimization, conservative strategies are 
more efficient than strategies that abandon the current face with mild cri teria. In the 
presence of dual-degenerate solutions conservative strategies tend to avoid zigzag­
ging between the optimal face and a face with larger dimension. 

In an extreme case, the algorithm will be able to explore a face until a minimizer 
on that face is found, or a lower-dimensional face is reached. In other words, a single 
parameter will cause the algorithm to be more or less persistent in the process of 
exploring a fixed face. In general, conservative strategies will be more conservative 
that those described in [8, 11, 27], whereas liberal strategies tend to agree with some 
of them. 

In already published algorithms, different ways of computing the Hessians of the 
quadratic models are considered. The true Hessian of f and limited memory BFGS 
and SR1 quasi-Newton approximations are the best known alternatives. See [8, 11]. 
An interesting Gauss-Newton Hessian approximation for augmented Lagrangians 
has been tested in [29]. In many cases the true Hessian is very costly or difficult to 
compute and finite-difference computations (even using the sparse schemes of [10]) 
are also time-consuming. In these cases, the truncated-l\ewton approach, where 
each 'Hessian x vector' product is replaced by an incrementai quotient can be used, 
but, since each of these products involves an additional gradient evaluation, this 
alternative can also be inefficient. Moreover, in this approach, information about 
the Hessian matrix obtained at the current iteration is not used on the next one. 

On the other hand, quasi-Newton Hessian approximations (see, e.g., [14]) are 
able to accumulate such kind of information. These approximations involve only 
one gradient evaluation per iteration, but the quadratic model does not fit with 
the true function so well, as true-Hessian models do. In the large-scale case, most 
known quasi-Newton Hessian approximations, which do not preserve sparsity, cannot 
be completely stored and, so, limited-memory alternatives have been developed. 
See [8, 9]. 
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Our limited memory approach will be based on the multipoint symmetric secant 
approximations of the Hessian matrix proposed in [4]. These approximations are 
an extension of the classical multipoint secant scheme (see [30, 33] and references 
therein) with the advantage that they use the symmetry o f the Hessian matrix in a 
natural way. The idea is that the Hessian approximation should be such that the 
gradient of the quadratic model agrees with the gradient of f at some previous m 
points. However, since this objective confiicts with the symmetry, the most "fresh" 
information carried by the gradient values is privileged. Finally, the tendency to in­
stability of the sequential secant approach is overcome with the approach of [5, 6, 7]. 
Since multipoint symmetric secant schemes generate better Hessian approximations, 
comparing e.g. to BFGS, they fit well with the conservative procedures for dealing 
with active constraints considered in this research. 

The organization of this paper is as follows. The general model algorithm, which 
is independent of the choice of Hessian approximations, is described in Section 2, 
where basic global convergence theorems are also proved. In Section 3 we describe 
the multipoint secant scheme, which is used within the faces. In Section 4 we discuss 
some implementations details. The numerical results are given in Section 5. Finally, 
the conclusions are presented in Section 6. 

2 Global convergence framework 

As in [26], let us divide the feasible set S1 into disjoint open faces, as follows. For all 
I c {1,2, ... ,n,n+l,n+2, ... ,2n}, we define 

F r = {X E S1 I X i = ei if i E I, X i = U; if n + i E I, i; < X i < Ui otherwise}. 

Let [Fr] denote the smallest linear manifold that contains FI, and Sr denote 
the subspace obtained by the para!! e! translation o f [Fi]. If x E F r, the orthogonal 
projection of -'V f(x) on Sr will be called "negative interna! gradient" and denoted 
9r(x). 
The "negative chopped gradient" (see [16, 26]) gc(x) is defined by 

i f 

o r 

8! 
[gc(x)]; =- ox; (x) 

Xi = J!i and 

Xi =ui and 

::i(x)<O 
8f 
8xi (x) >O. 

In all the other cases (for example, if R; < Xi < ui) the i-th component of gc(x) is 
defined to be O. 
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Observe that 
9I(x) j_ 9c(x) 

and that, defining gp(x) = 9I(x) + gc(x), the stationary points of (1) are the points 
that satisfy gp(x) = O. The vector gp(x) is called (non-continuous) negative pro­
jected gradient. In spite of the !ack of continuity of gp(x) it is easy to see that 
xk -7 x and llgp(xk) li -7 O imply that gp(x) =O. 

The main algorithm presented in this paper is an active set method with a 
special procedure for dropping constraints. It calls a Sub-algorithm for a mini­
mization on current face. For a given FI, the Sub-algorithm generates iterates 
{xk, xk+1 , xk+2

, .• • } C FI, which are assumed to meet the following requirements: 

AI. For ali k E IN, if xk+I is computed by the Sub-algorithm, then f (xk+l) < f ( xk). 
A2. If { xk, xk+l, xk+2 , •• . } C FI is a set of infinitely many iterates computed by the 
Sub-algorithm, then 9I(xk) -7 O. 
A3. The Sub-algorithm terminates when it generates an iterate that belongs to the 
boundary FI - F1. 

The main model algorithm is the one given below. (li · 11 will be the Euclidean 
norm throughout the paper, although many times it can be replaced by an arbitrary 
norm on JRn.) 

Algorithm 2.1 
Assume that x0 E í2 is an arbitrary initial point, 77 E (O, 1), O < O"min ::; O"max < oo 

and e E (0, 1). Let FI be the face that contains the current iterate xk. The new 
iterate xk+1 is computed as follows. 
Step 1: If llgp(xk)ll =O terminate the execution ofthe algorithm. (xk is stationary.) 
If 

(3) 

compute xk+l at Step 2. Otherwise, compute xk+l using the Sub-algorithm. 
Step 2: Choose O"k E [O"min, O"maxl· Let amax be the maximum value of a such that 
the segment [xk, xk + agc(xk)] is contained in íl. Set a f- min { O"k, amax}· If 

(4) 

set ak =a, xk+l = xk + akgc(xk) and finish the iteration. Else, choose a f- anew E 
[O.la, 0.9a] and repeat the test (4). 
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To prove global convergence, we assume in the next theorem that v j(x) satisfies 
a Lipschitz condition: There exists L > O such that 

li v f(y)- V f(x)ll :S LIIY- xll (5) 

for ali x, y E O. This implies that 

L 
f(y) :S f(x) +(v f(x), y- x) + 2IIY- xll 2 (6) 

for ali x,y E O. 

Theorem 2.1. Algorithm 2.1 is well dejined, and every limit point of its iterates is 
a stationary point for problem ( 1). 
Proof. Let us cal! 

The proof that the algorithm is well defined consists on showing that, for ali k E K1o 
after a finite number ofreductions of a, the condition (4) is satisfied. In fact, by (6), 
we have that for ali a 2: O, 

This implies that ( 4) holds for a ::; 2
(
1
[

0
). Therefore, the new iteration is weli 

defined. 
Moreover, the a accepted at Step 2 of Algorithm 2.1 is bounded below by the 

positive 
_ . 2(1 +O) 
a= mm{O"min, 

10
L }. 

Therefore, at Step 2, we have 

f(xk)- f(xk+l) 2: 0&77llgp(xk)II 2
- (7) 

Since f(xk 71 ) ::; j(xk) for ali k E IN, (7) implies that either K 1 is finite or 

L llgp(xk)ll2 < oc. (8) 
kEK1 

In the infinite case, (8) implies that gp(xk) -+O for k E K 1. Therefore, every limit 
point o f { xk, k E K i} is stationary. 

If K 1 is finite, there exists k0 E IN and a face FI such that xk E Fr for ali 
k 2: ko. Therefore, xk+l is computed by the Sub-algorithm for ali k 2: ko. So, by 
Axiom A2, limk-+oc II9I(xk) I! = O. But, for ali k 2: k0 , the inequality (3) does not 

89 



hold. Therefore, limk-+oo llgp(xk) li = O. As before, this means that every limit point 
of {xk} is stationary. QED 

As we saw before, the stationary points of our problem are characterized by 
gp(x) =O. If xis a stationary point such that Xi =fi (or Xi =ui) and i!;= O we 
say that x is degenerate. In the following theorem we prove that, if degenera te points 
do not exist, the algorithm identifies the active constraints at the cluster points in 
a finite number of iterations. 

Theorem 2.2. Assume that ali the stationary points of (1) are nondegenerate. 
Then, there exists I C {1, 2, ... , 2n} such that ali the limit points of the sequence 
generated by Algorithm 2.1 are stationary and belong to F1 . Moreover, there exists 
k0 E IN such that xk E FI for ali k 2 k0 

Proof. Let us prove first that Step 2 cannot be executed infinitely many times. We 
proceed by contradiction. If the iterate xk+l is computed at Step 2 infinitely many 
times, there exists a constraint that is abandoned infinitely many times. Without 
loss of generality, assume that this constraint is xi = ei. So, there exists an infinite 
set K 1 C IN such that 

a f ( k 
OXi X ) <O, 

(9) 

(10) 

and xk+l is computed at Step 2 for ali k E K 1 . Let x* be a limit point o f { xk, k E K 1}. 

By the proof of Theorem 2.1, x* is stationary and, by (9) and (10), xj = ei and 
if;(x') ::; O. Now, since x* is stationary, if;(x*) 2 O. So, x* is degenerate, which 
contradicts the hypothesis. Therefore, we proved that there exists k0 E IN and 
I C {1, 2, ... , 2n} such that xk E F1 for ali k 2 k0 . This implies that, for ali 
k 2 k0 , xk+l is computed by the interna! unconstrained algorithm. So, by Axiom A2, 
g1 (xk) ---7 O. Since (3) does not hold for ali k 2 k0 this implies that gp(xk) -+ O 
and, ali the limit points are stationary. Suppose now that x* is a limit point. By 
continuity, since 9I(xk) ---7 O, we have that 

o f (x*) =o 
OXi 

for ali i such that i tf. I and n +i tf. I. Since x* is nondegenerate, this implies that 
ei < x;: <ui. Therefore, x* E F1 , as we wanted to prove. QED. 
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3 The limited-memory multipoint secant method 

The multipoint secant rnethod is going to be used as Sub-algorithrn at Step 1 of 
Algorithm 2.1. Given xk E FI (not satisfying (3)), a syrnrnetric Hessian approxirna­
tion Bk E IRnxn (which is going to be a low-rank rnodification of a rnultiple of the 
Identity matrix) and a trust region radius õk, Algorithrn 3.1 shows how xk+1 E FI is 
obtained. The rnethod is interrupted ( and restarted in a new face) if xk+1 E FI- FI. 
To simplify the notation, suppose that the face FI is the interior of n. The extension 
to a general FI is straightforward. 

Algorithm 3.1 
Step 1. Consider the problem 

Minimize Q(z) = ~zT Bkz + (\7 f(xk), z). (11) 

Starting with z0 = O, apply the conjugate gradient algorithrn to (11) until it gener­
ates zi, for which one of the following cri teria is satisfied: 

1. zi violates the constraints given by 

(12) 

2. The conjugate gradient rnethod generates a direction along which Q(z) tends 
to -oc. 

3. The gradient of the quadratic Q(z) is null at zi. 

In the first case, compare the value of Q(z) at the projection of zi on the region 
(12) with the value of Q(z) at the further point from zi that satisfies (12) on the 
segrnent [zi-1

, zij. Define Ztrial as the argurnent of the rninirnurn between these two 
values. 

In the second case, assuming that zi-1 is the last cornputed vector by the conju­
gate gradient algorithrn and that di- 1 is the generated direction, proceed as in the 
previous case replacing zi by zi- 1 + Mdi- 1 , where M is a large positive number. 

In the third case, define Ztrial = zi. 
Step 2. Define 

k 
X trial = X + Ztrial , 

Pred = -Q(Ztrial), Ared = f(xk) - f(xk + Ztrial)· 
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If Ared < 0.1Pred, replace /jk +- 0.5jlztríatlloo and go to Step 1. 
If 0.1Pred:::; Ared:::; Pred define xk+l = Xtríal, 5k+l = /jk· 

If Ared > Pred define xk+l = Xtríah /jk+l = 35k. 

Many general theories can be invoked to prove that, under boundedness assump­
tions on IIBkll, Algorithm 3.1 satisfies the axioms A1-A3. In particular, see [11]. 
The main goal of this research is to show that, if we generate the matrices Bk us­
ing secant multipoint formulae, the combination of Algorithms 2.1 and 3.1 is quite 
efficient. 

Let us now describe the multipoint secant generation of the matrices Bk· 
Denote sk = xk+l - xk, yk = gk+1 - gk Suppose that the vectors s0, ... , sn-l 

have been generated somehow, and that they are linearly independent. The ideal 
aim would be to construct a Hessian approximation Bn E IR.nxn such that 

(13) 

(14) 

However, in general, this is impossible, because the system of n(n- 1)/2 + n2 

equations (13) and (14) in n2 unknown elements of Bn is overdetermined. The 
information about the symmetry of the Hessian matrix confl.icts here with the in­
formation carried by the pairs {si,yí}. The idea ofthe sequential symmetric secant 
methods introduced in [4] is to release in a natural way relations (14) in order to 
have Bn well defined. It can be done non-uniquely. The uniqueness can be achieved 
by ranging the pairs {si, yi} in accordance with the reliability of the information 
that they carry. For example, for i > j, one can consider {si, yi} as more reliable 
for the Hessian approximation than {sJ, yJ}, because the first pair was computed at 
a more recent iteration, and therefore it carries more fresh information. Then, in 
the process of constructing the Hessian approximation Bn, it is natural to use the 
pairs {si, yi} sequentially for i= n -1, n- 2, ... , O. For any current { s', yi}, we can 
ignore the part of its information, which confl.icts with the more fresh information 
{sJ, yj}, j = n- 1, ... , i- 1, that have already been used. 

To clarify this idea, suppose for the moment, that the vectors sn-i, i = 1, ... , n, 
are parallel to the coordinate axes e'- Then the first column and the first row of 
the Hessian matrix can be approximated by the standard finite-difference formula 
as yn- 1/llsn-lll· The second column and row, in their parts outside the first column 
and row, are approximated by yn-z /llsn- 2 11, and so on. To fill in the nonfilled part 
of the ith row and column, the components y;-i/llsn-íll, j =i, ... , n, are used (see 
Fig. 1). 
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I 

Figure 1: Symmetric secant approximation of the Hessian matrix. 

In the general case of arbitrary vectors sn-i, the space can be linearly transformed 
so that, in the new space, the vectors 3n-i are parallel to the new coordinate axes 
ei. Then the described approach can be used to approximate the Hessian matrix in 
the new space. After returning back to the original space, we get the approximation 

where S = [s0 , ... ,sn-1], Y = [y0 , ... ,yn-1] E 
symmetrization operation is defined as 

i ?:. j, 
otherwise. 

(15) 

and for any matrix A, the 

Note that Bn =f", if f(x) is quadratic. Ifnot, the multipoint secant approximation 
(15) gives a good approximation to f"(xn), provided that the matrix S is "safely" 
nonsingular ( see [ 4]). 

Let us compare the approximation (15) with the one Bn = YS- 1 given by 
the classic multipoint secant method [33]. In the new subspace, where sk-i 11 eí, 
i = 1, ... , n, it is easy to see for each element o f approximation, how "fresh" is the 
information involved in its computation. Comparing these two approximations, say, 
row by row ( see Fig. 2), one can see that the symmetric one uses more "fresh" 
information comparing to the classic one, which uses in each row all spectrum of 
information, from the most "fresh" to the "oldest". Such comparison of (15) with 
the symmetric versions of the secant method proposed in [35] leads to the same 
conclusions. This is the reason why in the symmetric case (f'rr =f"), (15) generates 
better approximations, and why this approach is applied here in the limited-memory 
framework. An important property of (15) is that Bn can be obtained from any 
initial B 0 E JR.nxn as the result of n sequential updatings by the rank-two formula 

where ck is any vector in JR.n, such that 



••• : o 
• • 
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: o 
' 

Figure 2: The symmetric (left) and the classic (right) secant approximations with 
indication, for each element, the iteration at which its pair { s, y} was computed. 

(c\ s') = O, O ::; i < k, 
(ck,sk)#O. 

(17) 

(18) 

The sequence { Bk}0 is well defined by (16)-(18) in the sense that there is no 
break-down for all k = O, ... , n - 1. Though we assume from now on that B 0 is 
symmetric, some of the further assertions don't require this assumption. 

It can be easily shown by analogy with [7] that formulas (16)-(18) generate 
symmetric Hessian approximations that satisfy for ali k =O, ... , n- 1 the following 
equations 

(SkfBk+lSk 

(i)r Bk+l sk 

(SkfBk+ls 

- sym((SkfYk), 
sTYk, 'ds j_ Sk, 

- (Ykfs, 'ds.lSk, 

where sk = [s0 , ... , sk], yk = [y0 ' ... , yk] E IRnx(k+l). These equations imply 

Bk+I8k = yk 

(19) 

(20) 
(21) 

(22) 

Note that the vector ck is not uniquely defined by (17) and (18). The uniqueness 
can be obtained, if we assume that Bk+1 is the solution to the following problem 

Minimize (23) 
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subject to: (SkfBSk = sym((SkfYk), 

(skfBSk = sTYk, Vs ..L Sk, 

(SkfBs = (Ykfs, Vs ..L Sk, 

where 11 · li F is the Frobenius matrix norm, and Bk is supposed to satisfy equations 
similar to (19) and (20). The solution to this problem is unique, and it is given by 
formula (16) with 

This means that the sequence { ck}ô-1 results from the Gram-Schmidt orthogonal­
ization process applied to the sequence { sk}g-1 Denoting 

Ck = [~~~:~~' ... ' 11~:11] E JRnx(k+ll, 

we see that (Ck)TCk =I and 

ck =[I_ ck-l(ck-lf]sk. (24) 

This choice of ck assures that the equation 

sTBks = sTB0s, Vs ..L Sk-l (25) 

holds for ali k = 1, ... , n. Note that the sequence of approximations Bk is uniquely 
defined by (19)-(21) and (25). Our limited-memory approach will be essentially 
based on this property. 

In the limited-memory methods, the Hessian matrix is approximated by a low­
rank modification of a simple matrix B0 . In the next theorem, we present the 
multipoint symmetric secant approximations in the form that will be useful for im­
plementation in the framework of the limited-memory approach. For the simplicity, 
the upper índices of Sk and yk will be omited. 

Theorem 3.1. Let S = [s0 , ..• , sk] E JRnx(k+l) be a full-rank matrix. Suppose that 
the matrices B 1

, •.. , Bk+l are generated by formulas (16) and (24). Then for any 
Bo E mnxn, 

(26) 



Proof. Let S!.. E IRnx(n-k-l) be any matrix such that 

SIS!.. =I and SIS =O. 

Then equations (19)-(21) and (25) can be written as 

[ 
S. T ] Bk+l [ S S l _ [ sym(.STY) 
SI !.. - SIY 

By the assumption, the rnatrix [ S S .L] E IRnxn is nonsingular. Then 

Therefore, with the use of the evident relations 

S.LSI =I- S(Srs)- 1Sr, 

sym(YT S) - sTy- yT s = -sym(STY), 

formula (26) can be easily derived from (27). QED 

(27) 

In the limited-rnemory rnethods, the initial Hessian approximation is usually 
chosen as B 0 = 1I, where the positive scalar 1 may depend on k. For this irnportant 
special case, formula (26) can be written as 

where W = (ST S)- 1 E JR(k+l)x(k+l). The middle matrix is of the size 2(k + 1) x 
2(k + 1). For k « n, this means that the matrix Bk+l is a low-rank correction of 
,I. It is the most essential property of the limited-memory methods. 

4 Some implementation features 

This section deals with some specific irnplementation choices. We present the results 
of cornputer experirnents in the next section. 

Update of matrix S at the k-th algorithm. After computing the new point 
Xk+J we have to update the matrix S of the multipoint secant method. So, given 
the matrix Sk-l E IRnxp and the current search direction we have to decide whether 
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we define the matrix Sk simply adding the vector sk to Sk-l as new column or it 
will be necessary re-construct the matrix Sk in another suitable way. 

Suppose that Sk-l = Qk-lRk-l, where Qk-l E IRnxp is an orthogonal matrix 
and Rk-l E JRPXP is an upper triangular matrix. The matrix Sk-l is composed 
of some of the previous search directions si, although the columns of Sk-l are not 
supposed to be ordered by the iteration number i. Let m1 be the maximal number 
of columns related to the limited memory size. Let m2 be the parameter that does 
not allow to have in Sk vectors Si with i< k- m2 (we called such vectors toa old). 
Now, the Sk-l matrix is updated carefully using the following algorithm: 

Algorithm 4.1: Update the matrix Sk-l at k-iteration 
For simplicity, we denote se= sk, Se= Sk-l, Qe = Qk-t. Re = Rk-l• S = Sk, Q = 

Qk and R= Rk· 
Step 1: if Se has a too old vector at the last column then set p = p- 1. That 

is, we exclude the last column in Se and Qc, and we exclude the last column and 
the last row in Re. 

Step 2: If p < m1 and there is not too old vector in Se then set 

-QT r- c Se, p = llqll, q = qjp 

If p > wllsell then 

set p = p + 1, S = [Se se], Q = [Qc q] and R= [ ~c ;, ] STOP. 

Step 3: set P = 1, S =[se], Q = [sc/llseiiJ and R= [llseiiJ. 
Step 4: check one by one the vectors si that compose the columns of Se, m 

decreasing order of i, do: 
While i 2: k- m2 and p # m1, then set 

r=Qrsi, q=si-Qr, p=llqll, q=qjp andr,=sfq. 

If p > wllsill then 

set p = p + 1, S = [Se si], Q = [Q q] and R= [ ~ ;, ] . 

Computation of a at Step 3 in Algorithm 2.1. Recall that in Algorithm 2.1 
we define the step length a in the chopped direction gc as the minimum between CYk 

and amax• where !Jk E [umin. !Jmaxl· To take into account the approximated second 
order information at this step we adopted the spectral choice (see [34], [31]): 



_ { max (o-min, min (o-maoo ;IBYk ) ) 
(jk - Sk kSk 

O"min 

where Bk gives the second order information (see (ll)). 

if sf Yk > O 

else . 

Initial Hessian approximation. At the beginning of the iterations in each 
face, the initial Hessian approximation is chosen as B0 = 1I, where we set the 
constant 1 equal to the absolute value of the objective function at the first approx­
imation in that face. (See [14]). If 1 is less than a tolerance é we set 1 = 1.0, that 
is, we choose B 0 = I. 

Stopping criterion at Step 1 in Algorithm 3.1. The conjugate gradient 
is applied until the new approximation violates the constraints or the algorithm 
generates a direction with negative curvature or the gradient of the quadratic is nu!! 
at this approximation. The last one option means that we stopped if the the 2-norm 
of the quadratic approximation at the new approximation was less than or equal to 
0.1 times the 2-norm of the quadratic approximation at the initial approximation, 
that is, zero. 

5 N umerical experiments 

Algorithm 2.1, with the Sub-algorithm 3.1 and the multipoint secant generation of 
the matrices Bk define an implementable algorithm for box-constrained minimiza­
tion of differentiable functions. A particular implementation also depends of some 
parameters. We adjusted them using a small set of test problems. The default 
parameters of our implementation are: 

• é = 10-5 , tolerance for 2-norm of projected gradient gp. 

• D"min = 10-3 , D"max = 103 , the safeguards interval for the spectral parameter o-. 

• m1 = 5, maximal number of columns related to the limited memory size. 

• m2 = 5, integer that does not allow to have too old vectors in the S matrix. 

• 5 = 0.5, the trust region radius for Algorithm 3.1. 

• 0.: = 0.1, tolerance used in Algorithm 4.1. 

• 7J = 0.9, tolerance used in Algorithm 2.1 to quit the face or not. 

• () = 10-4
, parameter used for the line search in Algorithm 2.1. 
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The resulting code, named BSS, was compared against the well known package 
LANCELOT [11, 13], using a set of 20 bound constrained problems from the CUTE 
[3] collection. In Table 1 we reported the name of the problem, the type of objective 
function and the number of variables. 

All the experiments were run on a SUN Sparc Ultral. LANCELOT and BSS are 
formulated in Fortran 77 and were compiled with f77 compiler. In both of cases we 
used the optimization compiler option "-0". 

We used the following default options for LANCELOT: 

• exact-second-derivatives-used 

• bandsolver-preconditioned-cg-solver-used 5 

• exact-Cauchy-point-required 

• solve-bqp-accurately 

• gradient-tolerance 1.00-06 

• constraints-tolerance 1.00-06 

I Problem I Objective function I nl 
BQPGABIM quadratic 50 
CHEBYQAD sum of squares 50 
DECONVB . sum of squares 61 
HARKERP2 quadratic 100 
HS110 sum of squares 100 

. 8368 other 100 
EXPLIN other 500 
EXPLIN2 other 

500 I 
EXPQUAD other 500 
QRTQUAD other 500' 
BDEXP other 10000 
CVXBQP1 quadratic 10000 

I ~AT,FLDC sum of squares 10000 I 
I NONSCOMP sum of squares 10000 

NCVXBQP1 quadratic 10000 
NCVXBQP2 quadratic 10000 
PENTDI quadratic 10000 
PROBPENL other 10000 
QUDLIN quadratic 10000 
TORSION3 quadratic 14884 

Table 1. Test problems. 



The numerical results are shown in Table 2. We listed the name o f the prob­
lem, the number of variables, the final value of the objective function and the CPU 
time (in seconds) for both of algorithms B88 and LANCELOT. We compare three 
versions of LAI\CELOT. For the first one (LAI\(1)) we used the 

option, for the second one (LAN(2)) we used 
option and, finally, in LAN ( 3) we used 

We get the same solution in ali of the test problems using LANCELOT and 
B88, except for problem 8368 and BDEXP. For 8368 the version LAN(2) reached 
the maximum number of iterations and for BDEXP the version LAN(3) exceded the 
maximum CPU time allowed. 

Problem ni f(x) CPU Time 
B88 LAN(1) LAN(2) 

BQPGABIM 50 -3.7903D-05 0.06 0.04 10.71 
CHEBYQAD 50 5.3863D-03 306.11 4.56 79.52 
DECOI\VB 61 8.6383D-03 1.84 0.36 0.77 
HARKERP2 100 -5.0000D-01 I 0.80 0.94 0.95 
H8110 100 -9.9800D+19 0.01 0.04 0.04 
8368 100 -1.3360D+02 3.88 3.14 (>)425.79 
EXPLIN 500 -1.2523D+07 0.10 0.45 0.47 
EXPLIN2 500 -1.2464D+07 0.65 0.48 0.51 

,EXPQUAD 500 -2.6553D+08 0.83 3.07 3.40 
I QRTQUAD 500 -2.6553D+08 0.81 I 3.08 3.48 

BDEXP 10000 3.9288D-03 3.76 8.27 12.82 
CVXBQP1 10000 2.2502D+06 29.88 4.76 4.97 
HATFLDC 10000 6.9494D-ll 9.55 4.63 5.01 

i NOI\8COMP 10000 3.0559D-14 7.84 6.63 5.48 
NCVXBQP1 10000 -1.9855D+10 0.951 8.31 8.80 
NCVXBQP2 10000 -1.3340D+l0 9.25 11.94 12.75 
PENTDI 10000 -7.5000D-01 0.56 3.05 6.40 

I PROBPENL 10000 1.9998D-08 0.62 27.63 51.45 
QUDLIN 10000 -4.9995D+09 1.09 8.30 8.01 
TOR8ION3 14884 -1.2138D+OO 358.63 17.26 22.58 

Table 2. Performance of B88 versus LANCELOT. 
(•): maximum limit of iterations reached. 
(*'): maximum CPU time reached. 

100 

LAN(3) 
0.11 
4.51 
0.46 
0.95 
0.04 

29.87 
0.48 
0.52 
3.12 
3.15 

(••) 

4.87 
4.76 
6.27 
8.55 

11.50 
3.17 

51.73 
7.81 

21.65 



6 Conclusions 

Active set methods are among the most traditional tools of constrained optimiza­
tion. Their appeal come from the fact that they allow the algorithmic designer to 
take fui! advantage of previously developed unconstrained optimization techniques. 
As far as new ideas in unconstrained minimization continue to be introduced, the 
implementation of active set methods based on those ideas is a natural task. 

The unconstrained optimization technique exploited in this paper is the memo­
ryless multipoint symmetric secant scheme. As many other quasi-Newton methods 
this method exploits well the unconstrained structure. The fulfillment of severa! se­
cant equations within a given face (or subspace) usually guarantee that Newton-like 
directions inside that face are produced. On the other hand, since the approximate 
Hessians so far generated are not necessarily positive definite, a trust-region strat­
egy for global convergence is in order. In this paper we adopted the memoryless 
approach, thanks to which large problems can be solved. Moreover, a small number 
of low-rank corrections guarantees that the Hessian approximations possess a small 
number of different eigenvalues and, so, the conjugate-gradient method is efficient 
for dealing with the quadratic models. 

The comparison with LANCELOT seems to reveal that the method so far in­
troduced is reliable. It is interesting to observe that the new method worked very 
well in problems where the performance of LANCELOT was rather poor (S368, 
PROBPENL) whereas LANCELOT was much more efficient in others (CHEBYQAD, 
CVXBQP1, TORSION3). This seems to indicate that the trust-region strategy of 
LAN CELOT and other box-constrained solvers is complementary to the active-set 
strategy in the sense that difficult problems for one of them are relatively easy for 
the other. 

As we mentioned in the introduction, one o f the main purposes o f box-constrained 
solvers relies on its application as subalgorithms for more general algorithms for 
nonlinear programming. (See [12, 29]). This will be the object of our practical 
research in the near future. 
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Conclusões Gerais 

No presente trabalho estudamos o problema de minimizar uma função geral 
sujeita a restrições do ponto de vista da resolução numérica do problema. 

A idéia dos métodos baseados no Lagrangeano Aumentado para programação 
não linear para problemas de grande porte ficou consolidada com os trabalhos de 
Conn, Gould and Toint no algoritmo LANCELOT. ?\o novo algoritmo ALBOX apre­
sentamos algumas diferenças com essa formulação para a resolução do subproblema 
quadrático. A principal diferença está relacionada em explorar uma caixa de região 
de confiança no lugar de usar a informação do ponto de Cauchy aproximado. Outra 
diferença, que mostrou ser muito eficiente computacionalmente, foi o uso de uma 
simplificação convexa da Hessiana verdadeira do modelo quadrático. O objetivo de 
usar ALBOX não é somente mostrar que ele pode resolver problemas da vida real 
senão também fazer comparações frente a outros códigos. Este último é de grande 
utilidade pois assim é possível ajustar parâmetros e testar algumas variantes e alter­
nativas do mesmo código. O resultado desta comparação parece indicar que ALBOX 
pode ser usado como um algoritmo competitivo para a resolução de problemas de 
programação não linear. 

Apresentamos um algoritmo modelo de tipo restauração inexata para um pro­
blema de minimização com restrições não lineares e variáveis em S1, um conjunto 
fechado e convexo do espaço n-dimensional geral. Pelo fato de ser um algoritmo 
modelo admite diferentes implementações, e a eficiência do algoritmo dependerá dos 
métodos escolhidos para realizar cada uma das fases. Como na prática estamos 
interessados no caso em que S1 seja um politopo, usando normas convenientes na 
formulação dos problemas de cada fase, é possível usar qualquer algoritmo ou pacote 
disponível para problemas de minimização com restrições lineares para problemas de 
grande porte. Na nossa implementação usamos 1viiNOS [67] na fase de minimização. 
Os resultados numéricos obtidos usando o HSP mostraram a eficiência da nossa 
implementação assim como da estratégia de restauração inexata. 

Apresentamos um algoritmo para minimização com restrições lineares e cana­
lizações usando um método Quase-Newton onde a matriz de atualização é obtida 
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usando uma escolha espectral associada a um quociente de Rayleigh e combinada 
com uma busca linear não monótona. Pela estrutura do problema foi possível usar 
técnicas de fatorações esparsas. Na nossa implementação usamos o código MA27 
[39]. O uso de fatorações esparsas pode ser decissivo na performance de um algo­
ritmo sempre que seja possível explorar a estrutura de esparsidade da matriz das 
restrições. Além disso, o fato de não fatorar a matriz KKT em cada iteração é uma 
importante vantagem do nosso algoritmo, o que pode ser observado nos resultados 
numéricos. Como aconteceu em outros trabalhos baseados no gradiente espectral a 
busca linear não monótona mostrou-se mais eficiente que a busca linear monótona. 
Por outro lado, a penalização exponencial modificada parece ser uma boa alternativa 
em relação às clássicas estratégias de penalização quando direções Newtonianas não 
podem ser calculadas. 

No último Capítulo consideramos um método para um problema de minimização 
com canalizações. O método explora a estratégia de restrições ativas com um es­
quema multipoint secante simétrico com memória limitada. Dado que as aproxi­
mações Quase-Newton não são necessariamente definidas positivas usamos uma es­
tratégia de região de confiança para a convergência global do algoritmo. A memória 
limitada é uma metodologia adequada para resolver problemas de grande porte. 
Além disso, atualizações com correções de posto pequeno asseguram que as aprox­
imações das Hessianas têm um número pequeno de autovalores diferentes e portanto 
o método dos gradientes conjugados é eficiente para tratar com modelos quadráticos. 
Os resultados numéricos e as comparações mostraram que o método apresentado é 
confiável. 

Finalmente, e utilizando o que aprendemos, estudamos e experimentamos pode­
mos sugerir algumas futuras linhas de pesquisa, por exemplo: 

• continuar trabalhando em métodos de tipo Lagrangeano Aumentado e testar 
com um conjunto maior de problemas testes o qual permitirá ajustar alguns 
parâmetros assim como ter uma maior compreensão do comportamento destes 
métodos. Em particular, testar com problemas de grande porte. 

• analisar outras alternativas para resolver os problemas de minimização das 
fases de restauração e minimização no Algoritmo do Capítulo 2. 

• considerando os bons resultados obtidos usando a penalização exponencial 
sería interesante estudar cuidadosamente o critério de parada das iterações 
internas e relação com o critério de convergência global do algoritmo completo 
do Capítulo 3. Por outro lado outras estratégias para tratar as restrições de 
canalizações poderiam ser consideradas. 

• continuar fazendo experimentos numéricos com o algoritmo do Capítulo 4 e 
comparar numericamente com algum outro algoritmo que use memória limi­
tada. 
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Apêndice 

Neste apêndice incluimos a formulação do Hard Sphere Problem (HSP) em for­
mato SIF (Standard Input Format) usado para comparar os algoritmos dos Capítulos 
1 e 2 com LANCELOT. O SIF é a linguagem formal para formular problemas 
de programação não linear e ingressar dados os dados do problema que requer 
LANCELOT. 

Atualmente existem mais de mil problemas escritos neste formato no sistema 
CUTE (Constrained and Unconstrained Testing Environment), dos mesmos autores 
do LANCELOT, e que pode ser obtida via internet. 

A seguir apresentamos a nossa formulação do HSP, chamada KISSING. SIF, que 
foi incluida no CUTE em Outubro de 1998. 
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*************************** 
* SET UP THE INITIAL DATA * 
*************************** 

NAME KISSING 

* Problem: KISSING NUMBER PROBLEM 

* * Source: This problem is associated to the family of Hard-Spheres 
* problem. It belongs to the family of sphere packing problems, a 
* class of challenging problems dating from the beginning of the 
* 17th century which is related to practical problems in Chemistry, 
* Bíology and Physics. It consists on maximizing the minimum pairwise 
* distance between NP points on a sphere in \R-{MDIM}. 
* This problem may be reduced to a nonconvex nonlinear optimization 
* problem with a potentially large number of (nonoptimal) points 
* satisfying optimality conditions. We have, thus, a class of problems 
* indexed by the parameters MDIM and NP, that provides a suitable 
* set of test problems for evaluating nonlinear programming cedes. 
* After some algebric manipulations, we can formulate this problem as 

* 
* 
* 
* 
* 

Minimize z 

subject to 

* z \geq <x_i, x_j> for all different pair of indices i, j 

* 
* 
* 

llx_ill-2 = 1 for all i= 1, ... ,NP 

* The goal is to find an objective value less than 0.5 (This means 
* that the NP points stored belong to the sphere and every distance 
* between two of them is greater than 1.0). 

* * Obs: the starting point is aleatorally chosen although each 
* variable belongs to [-1. ,1.]. 

* 
* * References: 
* [1] "Validation of an Augmented Lagrangian algorithm with 
* a Gauss-Newton Hessian approximation using a set of 
* Hard-Spheres problems", N. Krejic, J. M. Martinez, 
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* 
* 

M. Mello and E. A. Pilotta, Tech. Report RP 29/98, 
IMECC-UNICAMP, Campinas, 1998. 

* [2] "Inexact-Restoration Algori thm for Constrained 
* Optimization", J. M. Martinez and E. A. Pilotta, 
* Tech. Report, IMECC-UNICAMP, Campinas, 1998. 
* [3] "Sphere Packings, Lattices and Groups", J. H. Conway 
* and N. J. C. Sloane, Springer-Verlag, NY, 1988. 

* 
* 
* SIF input: September 29, 1998 
* Jose Mario Martinez 
* Elvio Angel Pilotta 

* 
* classification LQR2-RN-V-V 

***************************************************************** 

* Number of points: NP >= 12 

IE NP 
*IE NP 
*IE NP 
*IE NP 
*IE NP 
*IE NP 
*IE NP 
*IE NP 
*IE NP 
*IE NP 
*IE NP 
*IE NP 
*IE NP 
*IE NP 
*IE NP 

IE NP 

* Dimension: 

IE MDIM 
*IE MDIM 

MDIM >= 3 

12 
13 
14 
15 
22 
23 
24 
25 
26 
27 
37 
38 
39 
40 

3 
4 

41 
42 
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*IE MDIM 5 

* Other useful parameters. 

IA N- NP -1 
IE 1 1 

VARIABLES 

DO I 1 NP 
DO J 1 MDIM 
X X (I' J) 
OD J 
OD I 
X z 

GROUPS 

XN OBJ z 1.0 

* Inequality constraints. 

DO I 1 N-
IA I+ I 1 
DO J I+ NP 
XL IC(I,J) z -1.0 
ND 

* Equality constraints. 

DO I 1 NP 
XE EC(I) 
ND 

CONSTANTS 

DO I 1 NP 
X KISSING EC(I) 1.0 
ND 

BOUNDS 
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DO I 1 NP 
DO J 1 MDIM 
XR KISSING X (I, J) 

ND 

XR KISSING z 

START POINT 

XV KISSING X1,1 -0.10890604 
XV KISSING X1,2 0.85395078 
XV KISSING X1,3 -0.45461680 
XV KISSING X2,1 0.49883922 
XV KISSING X2,2 -0.18439316 
XV KISSING X2,3 -0.04798594 
XV KISSING X3,1 0.28262888 
XV KISSING X3,2 -0.48054070 
XV KISSING X3,3 o .46715332 
XV KISSING X4,1 -0.00580106 
XV KISSING X4,2 -0.49987584 
XV KISSING X4,3 -o .44130302 
XV KISSING X5,1 0.81712540 
XV KISSING X5,2 -0.36874258 
XV KISSING X5,3 -0.68321896 
XV KISSING X6,1 0.29642426 
XV KISSING X6,2 0.82315508 
XV KISSING X6,3 0.35938150 
XV KISSING X7,1 0.09215152 
XV KISSING X7,2 -0.53564686 
XV KISSING X7,3 0.00191436 
XV KISSING X8,1 0.11700318 
XV KISSING X8,2 0.96722760 
XV KISSING X8,3 -0.14916438 
XV KISSING X9,1 0.01791524 
XV KISSING X9,2 0.17759446 
XV KISSING X9,3 -0.61875872 
XV KISSING X10,1 -0.63833630 
XV KISSING X10,2 0.80830972 
XV KISSING X10,3 0.45846734 
XV KISSING X11, 1 0.28446456 
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XV KISSING X11,2 0.45686938 
XV KISSING X11,3 0.16368980 
XV KISSING X12,1 0.76557382 
XV KISSING X12,2 o .16700944 
XV KISSING X12,3 -0.31647534 

ELEMENT TYPE 
EV PROD X 
EV QUA v 

ELEMENT USES 

* Inequality constraints. 

DO I 1 
IA I+ I 1 
DO J I+ 
DO K 1 
XT A(I,J,K) PROD 
ZV A(I,J,K) X 
ZV A(I,J,K) y 

ND 

* Equality constraints. 

DO I 1 

DO K 1 
XT B(I,K) QUA 
zv B (I, K) v 
ND 

GROUP USES 

* Inequali ty constraints. 

DO I 1 
IA I+ I 1 
DO J I+ 

DO K 1 
XE IC(I,J) A(I,J,K) 
ND 
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y 

N-

NP 
MDIM 

X(I,K) 
X(J,K) 

NP 
MDIM 

X(I,K) 

N-

NP 
MDIM 



* Equality constraints. 

DO I 
DO K 
XE EC(I) 
ND 

OBJECT BOUND 

* Solution 
*XL SOLUTION 

ENDATA 

1 
1 
B(I,K) 

*********************** 
* SET UP THE FUNCTION * 
* AND RANGE ROUTINES * 
*********************** 

ELEMENTS 
INDIVIDUALS 

KISSING 

4.47214D-01 

* Product of 2 elemental variables. 

T PROD 

F 

G X 
G y 

H X y 

X * y 
y 

X 

1.0 

* Square of an elemental variables. 

T QUA 

F 
G V 
H V 

ENDATA 

v 

v * v 
v + v 
2.0 
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