ESPAÇOS VETORIAIS TOPOLOGICOS . DE FUNÇÕES CONTINUAS

SAMUEL NAVARRO

Dissertação apresentada ao Instituto de Matemática , Estatistica e Ciencia da Computação da Universidade Estadual de Campinas, como requisito parcial para a obtenção do título de Doutor em Matemática .

Orientador:

Prof.Dr.João B.Prolla.

CAMPINAS

Dezembro de 1981

UNICAMP
RIBLIOTECA CENTRAL

AGRADECIMENTOS

Quero expresar meu sincero agradecimento ao professor João B.Prolla , pela segura orientação e grande dedicação dispensada antes e durante a elaboração deste trabalho.

Um especial reconhecimento aos profeso - res Mario Matos e Jorge Mujica pelas valiosas e produtivas discusões sostenidas, e aos colegas do grupo de Análise Funcional e Teoria de Aproximação pela constante disposição ao intercambio de ideias .

Agradezco o apoio outorgado pela Organização de Estados Americanos , o Conselho Nacional de Pesquisa ,a Universidade Estadual de Campinas e a Universidade de Santiago de Chile .

O agradecimento inexpresavel pelo sacrificio, estimulo e amor para Rosa Maria, Ana e Antonio.

INDICE

IN⊤RODUÇÃO	i - i v
CAPITULO 1 : Preliminares.	7
§ 1 Corpos valorizados e espaços vetoriais topológic	os.I
§ 2 Classes de espaços localmente F-convexos.	5
§ 3 Espaços de transformações lineares.	6
§ 4 Dualidade.	3
§ 5 DF-espaços e espaços reflexivos.	g
§ 6 Classes de espaços topológicos.	11
§ 7 Espaços de funções.	12
CAPITULO 2 : Espaços F-tonelados.	14
§ 1 Relações entre C(X;F),E,e C(X;E).	14
§ ? Propriedades dos espaços F-tonelados.	21
§ 3 Condições para que C(X;E) seja F-tonelado.	26
CAPITULO 3 : Espaços F-bornológicos.	39
CAPITULO 4 : DF-espaços.	4.4
§ 1 Propriedades dos DF-espaços.	44
§ 2 Condições para que C(X;F) e C(X;E) sejam	
DF-espaços.	50
CAPITULO 5 : Espaços reflexivos, de Schwartz e de	
Monte?.	59
§ 1 Propriedades dos espaços de Schwartz e quase -	
normados.	59
§ 2 Condições para que $C(X;F)$ e $C(X;E)$ sejam espaços	
de Schwartz ou quase normados.	6.3
§ 3 Completude de C(X;F).	67
§ 4 Espaços reflexivos e de Montel.	70
BIBLIOGRAFIA.	76

INTRODUÇÃO

Em 1954 , L.Nachbin [15], apresentou teoremas de caracterização dos espaços topológicos para os quais o espaço de funções continuas sobre R ou C , munido da topologia compacto aberta , resultasse to nelado ou bornológico .

Estes resultados foram também obtidos independentemente por T. Shirota $\begin{bmatrix} 20 \end{bmatrix}$, e são agora conhecidos como os teoremas de Nachbin-Shirota .

Posteriormente em 1971-75 ,G.Bach man ,E.Beckenstein ,L.Narici e S.Warner [1], [2], [3] provaram os teoremas de Nachbin-Shirota para o caso de um corpo valorizado não arquimedeano completo .W.Govaerts $\begin{bmatrix} 7 \end{bmatrix}$, apresentou em 1980 um teorema de Nachbin-Shirota para o caso F-bornológico sem a hipótese do corpo ser completo .

A partir de 1975 varios autores procuraram teoremas do tipo Nachbin-Shirota para o caso vetorial (real ou complexo), isto é, para espaços de funções continuas definidas num espaço topológico X e com valores num espaço vetorial topológico localmente convexo E sobre o corpo R ou C.

Os resultados mais importantes nes direção, são devidos a Schmets [18], Mujica [14], R. Hollstein [9], e Mendoza [11].

Nosso estudo e dedicado a obter teoremas do tipo Nachbin-Shirota para o espaço de funções continuas definidas num espaço topológico ultraregular X e con valores num espaço localmente F-convexo E . O estudo e extendido a outros tipos de espaços alem dos F-to nelados e F-bornológico .

Os espaços localmente F-convexos for ram introduzidos por A. Monna e tratados detalhadamente na tese de Van Tiel $\begin{bmatrix} 22 \end{bmatrix}$.

Desde a definição de Monna , a teoria dos espaços localmente F-convexos teve um gradual de senvolvimento que ainda não alcanza o nível dos espaços localmente convexos reais ou complexos . Introduziremos algumas definições ainda não consideradas nos trabalhos de espaços vetoriais topológicos não arquimedeanos . No -ssa preocupação foram os resultados essenciais para uma boa análise do espaço de funções continuas .

Despois de introduzir alguns tipos de espaços localmente F-convexos , analizamos o espaço de funções continuas escalares , isto $\tilde{\mathbf{e}}$, as funções definidas num espaço topológico ultraregular X com valores num corpo valorizado $(F,|\ |)$, e obtivemos alguns resultados do tipo teoremas de Nachbin [15] e Warner [23] .

No primeiro capitulo apresentamos um resumo das definições e proposições principais que usaremos nos capitulos posteriores .

No segundo capítulo , paragrafo primeiro ,apresentamos resultados importantes do espaço de funções continuas que permitem dar condições necessarias

para propriedades do espaço localmente F-convexo C(X;E). No segundo paragrafo damos as pincipais propriedades dos espaços F-tonelados. No § 3, apresentamos uma extensão de um teorema de Mujica [14], que permitira junto a uma extensão de um teorema de Mendoza [11], obter um dos resultados mais gerais sobre condições para C(X;F) e E que implicam ser C(X;E) um espaço F-tonelado.

No capītulo 3 estudamos condições para que o espaço C(X;E) seja F-bornológico . Neste capītulo como também no anterior são considerados as noções de suporte de um subconjunto F-convexo de C(X;E) e de um funcional linear continuo sobre C(X;E) . O método de demonstração dos teoremas principais do capītulo 2 e 3 seguem o esquema de demonstração dos teoremas 1 e 2 de Nachbin [15] .

No capítulo 4 consideramos o análogo para o caso de espaços localmente F-convexos dos DF-espaços definidos por Grothendieck [8] para o caso real ou complexo. No primeiro parágrafo damos as propriedades gerais dos DF-espaços e no segundo extendemos um teorema de Hollstein ao caso não arquimedeano. Obtemos também um teorema para o caso de funções escalares que extende o teorema de Warner [23]. Aquí consideramos os espaços topológicos que chamamos de W-compacto (espaços com a condição dada por Warner em [23] Th. 12).

No primeiro paragrafo do capítulo 5 introduzimos uma definição de espaço de Schwartz que e a naloga à definição de Grothendieck [8]. Damos as propriedades gerais destes espaços e obtemos um teorema de caterização para o caso do espaço de funções escalares e condições para o caso vetorial. Os espaços quase normados são definidos também em forma analoga à de Grothendi-

ek [8] . As propriedades e o estudo de C(X;F) e C(X;E) são apresentados .

No segundo paragrafo do capítulo 5, provamos um analogo do teorema de Warner $\begin{bmatrix} 23 \end{bmatrix}$ Th. 1.,sobre a completude e quase completude do espaço C(X;F), usamos na demonstração essencialmente o teorema de Tietze provado por Ellis $\begin{bmatrix} 6 \end{bmatrix}$ para o caso não arquimedeano .

No ultimo paragrafo os espaços reflexivos, semi reflexivos, Montel, semi Montel, c-Montel e semi-c-Montel são introduzidos, apresentamos algumas propriedades gerais e obtemos condições sobre X e sobre E para que C(X;F) e C(X;E) tenham algumas destas propriedades.

PRELIMINARES

§ 1 Corpos valorizados e espaços vetoriais topológicos.

Un corpo valorizado não arquimedeano(n.a) (F,| |) \bar{e} um par onde F \bar{e} um corpo e | | \bar{e} uma valorização não arquimedeana, isto significa que a função

verifica as seguintes propriedades:

- i) $|\lambda| \ge 0$ para todo $\lambda \in F$ e $|\lambda| = 0$ se e somente se $\lambda = 0$
- ii) $|\lambda \cdot \gamma| = |\lambda| \cdot |\gamma|$ para todo $\lambda, \gamma \in F$ iii) $|\lambda + \gamma| \le \max\{|\lambda|, |\gamma|\}$ para todo λ, γ em F
- I.1 OBSERVAÇÃO : a) iii) implica que $|\lambda + \gamma| \le |\lambda| + |\gamma|$ para todo $\lambda, \gamma \in F$.
 - b) Se $|\lambda| \neq |\gamma|$ então $|\lambda + \gamma| = \max\{|\lambda|, |\gamma|\}$
- 1.2 DEFINIÇÃO : a) Uma valorização é dita trivial e (F; | |) é dito trivialmente valorizado se $|\lambda| = 1$, para todo $\lambda \in F$, $\lambda \neq 0$ b) Se (F; | |) é um corpo não trivialmente valorizado e $G = \{\alpha \in |F| : |\alpha|\}$, então a valorização é dita discreta se G possui um elemento mínimo, em caso contrario a valorização é dita densa.
- 1.3 OBSERVAÇÃO: Uma valorização de um corpo F define uma topología que converte F num corpo topológico de maneira natural.
- 1,4 DEFINIÇÃO : Um corpo não trivialmente valorizado n.a.(F, | |)
 ē um corpo local se ē um corpo topológico localmente compacto quando (F, | |) ē munido da topología natural.Isto equivale a dizer que (F, | |) tem valorização discreta, que o corpo

dos restos \tilde{e} finito (o corpo dos restos \tilde{e} o quociente do anel $\{\lambda \in F ; |\lambda| \leq 1\}$ e o ideal $\{\lambda \in F ; |\lambda| < 1\}$), e que o corpo topológico $(F, |\cdot|)$ \tilde{e} completo.

1.5 EXEMPLO : O exemplo mais importante de corpo local \tilde{e} o do completamento de Q (corpo dos números racionais) munido da valorização p-adica. Esta valorização \tilde{e} definida da seguinte forma: p tem que ser um número primo e para cada x em Q escrever $x = p^k$ a/b onde k \tilde{e} um número inteiro e p não divide o produto ab , então

 $|x|_{p} = p^{-k}$ se $x \neq 0$ $|x|_{p} = 0$ se x = 0.

- 1.6 DEFINIÇÃO: Um corpo valorizado n.a. (F, | |) ē esferica mente completo se dada uma familia de bolas de F, duas a duas com interseção não vazia, essa familia tem interseção não vazia. Isto ē equivalente a dizer que toda coleção de bolas fechadas totalmente ordenada (⊊) tem interseção não vazia.
- 1.7 OBSERVAÇÃO: a) Todo corpo esfericamente completo e completo (Van Tiel [22] Th,1.2.)

b) Todo corpo local é esfericamente completo (Van Tiel [22] Th,l.2 Cor.)

Um estudo mais detalhado e completo sobre corpod valorizados pode ser visto em Prolla [17]Chap.l, e em Narici et al.[16] Chap.l.

1.8 DEFINIÇÃO : Um espaço vetorial topológico (e.v.t) sobre um corpo (F,| |) é um par (E, τ_E) onde E é um espaço vetorial sobre F e τ_E é uma topología sobre E compativel com a estrutura de espaço vetorial. Isto quer dizer que as a plicações

(x,y) \longrightarrow x+y \in (λ,x) \longrightarrow λx de ExE em E e de FxE em E respectivamente, são conti

- nuas. (ExE e FxE munidos de suas correspondientes topologías produto).
- 1.9 DEFINIÇÃO : Sejâ E um espaço vetorial e M um subconju \underline{n} to de E ;
 - a) M \tilde{e} dito \tilde{nao} arquimedeano se M + M \tilde{m} M
 - b) M e dito F-convexo se para todo λ,γ F tal que $|\lambda|$, $|\gamma| \le 1$ e para todo x,y M , o vetor $\lambda x + \gamma y$ pertence a M.
- 1.10 OBSERVAÇÃO : Seja (E, T_E) um e.v.t. e M um subconjunto de E;
 - a) Se M $\tilde{\mathbf{e}}$ F-convexo ent $\tilde{\mathbf{a}}$ o fecho de M , $\tilde{\mathbf{M}}$, $\tilde{\mathbf{e}}$ F-convexo.
 - b) Se M é F-convexo então M é aberto ou o interior, M, de M é vazio.
 - c) Existe um menor conjunto F-convexo em E que contém M . Este conjunto é chamado <u>envoltória</u> F-convexa de M e é denotado por <M>
 - d) $\overline{\langle M \rangle} = \overline{\langle M \rangle}$
 - e) Se M e aberto, <M> e aberto.
- 1.11 DEFINIÇÃO : Seja E um e.v.t., & um filtro em E .Se possui uma base de conjuntos F-convexos, então & é dito um filtro F-convexo.
- 1.12 DEFINIÇÃO : Se o filtro de vizinhanzas da origem em (E,τ_E) é um filtro F-convexo então (E,τ_E) é dito um espaço localmente F-convexo.
- 1.13 EXEMPLO : Um corpo valorizado (F, | |) não arquime deanc é de maneira natural um espaço localmente F-convexas xo,pois as holas abertas centradas em O são F-convexas
- 1.14 DEFINIÇÃO : Um subconjunto Μ de (Ε,τ_F) e dito c-<u>com</u>

pacto se todo filtro F-convexo em M possui algum ponto aderente em M. Esta definição \tilde{e} devida a T.A Springer (ver [21], p.21)

- 1.15 OBSERVAÇÃO: Um corpo (F, | |) é esféricamente completo se e somente se a bola unitaria é c-compacta.(T.A Springer [21] p.21)
- 1.16 DEFINIÇÃO : Sejam M, N, L, subconjuntos de (E,τ_E) ;
 a) M <u>absorve</u> N se existe $\delta > 0$ tal que $N \subseteq \lambda M \text{ para todo } \lambda \in F \text{ tal que } |\lambda| \ge \delta$
 - b) M \bar{e} absorvente se absorve todos os pontos de E.
 - c) L é <u>limitado</u> se é absorvido por todas as vizinhançãs da origem de (E, τ_E) .
 - d) M \bar{e} bornívoro se absorve todos os conjuntos limitados de (E,τ_F) .
- 1.17 OBSERVAÇÃO : Se M \bar{e} F-convexo então M absorve N se existe λ eF tal que N \subseteq λ M.
- 1.18 DEFINIÇÃO : Uma função p: E \longrightarrow R₊ \tilde{e} uma <u>seminorma</u> não arquimedeana (n.a) sobre o espaço vetorial E ,se satisfaz:
 - i) $p(\lambda x) = |\lambda| p(x)$ para todo $\lambda \in F$, $x \in E$ ii) $p(x + y) \le \max\{p(x), p(y)\}$ para todo $x, y \in E$
- 1.19 NOTAÇÃO : Denotamos por $\Gamma(\tau_E)$ o conjunto de seminor mas n.a. continuas sobre o espaço vetorial topológico (E,τ_E) tais que $p(E) \subset |F|$. Quando não houver perigo de confusão escreveremos Γ em vez de $\Gamma(\tau_E)$.

§ 2 Classes de espaços localmente F-convexos.

Nesta seção (E, τ_E) é um espaço localmente F-convexo sobre (F, $|\ |$), um corpo valorizado não arquimedeano.

- 1.20 DEFINIÇÃO : (E, T_E) é um <u>espaço metrizável</u> não arquime deano se verifica alguma das condições seguintes:
 - a) A topología τ_E é definida por uma distancia d , invariante por translações e verificando $d(x,y) \leq \max^{\{\{d(x,z),d(y,z)\}}$

para todo x,y,z em E.

- b) Existe um sistema fundamental enumeravel de vizinhançãs F-convexas da origem, que pode ser esco lhido decrescente.
- c) A topología ^TE é definida por uma fa milia enumerável crescente de seminormas não arquimedeanas.
- 1.21 DEFINIÇÃO : Se (E, τ_E) é metrizavel n.a. e completo,diz se que (E, τ_E) é um espaço de Fréchet.
- 1.22 DEFINIÇÃO : Um subconjunto T de um e.v.t. (E, τ_E) é chamado F-tonel se é F-convexo, absorvente e fechado.
- 1.23 DEFINIÇÃO : Um espaço localmente F-convexo (E, τ_E) é di to F-tonelado , se todo F-tonel de (E, τ_E) for τ_E -vizinhança da origem.
- 1.24 EXEMPLOS : a) Se (E, τ_E) \tilde{e} um espaço localmente F-convexo de Baire , então (E, τ_E) \tilde{e} F-tonelado.
 - b) Como consequencia de a) ,todo espaço de Fréchet (em particular todo espaço normado n.a.completo) ē F-tonelado.

- Para a) e b) ver Monna([12] p.366).
- 1.25 DEFINIÇÃO : Se todo conjunto F-convexo e bornívoro de (E,τ_E) é uma vizinhança da origem,então (E,τ_E) é dito um espaço F-bornológico .
- 1.26 EXEMPLO : Se (E,τ_E) \tilde{e} um espaço metrizavel n.a., então (E,τ_E) \tilde{e} F-bornológico. (Van Tiel [22] Th.3.17 e Th, 4.30).
- 1.27 DEFINIÇÃO : Seja (E,τ_E) um espaço localmente F-convexo , dizemos que:
 - a) (E, τ_E) \tilde{e} um $\underline{espaço}$ \underline{semi} -c- \underline{Montel} se to do conjunto fechado e limitado em E \tilde{e} c-compacto.
 - b) (E, τ_E) \bar{e} um $\underline{espaço}$ $\underline{semi-Montel}$ se todo conjunto fechado e limítado em \bar{E} \bar{e} compacto.
 - c) (E, τ_E) \tilde{e} um $\underline{espaço}$ c- \underline{Montel} se (E, τ_E) \tilde{e} F-tonelado e semi-c-Montel.
 - d) (E, τ_E) \tilde{e} um $\underline{espaço}$ \underline{de} \underline{Montel} se (E, τ_E) \tilde{e} F-tonelado e semi-Montel.

§ 3 Espaços de transformações lineares.

Nesta seção (E,τ_E) e (G,τ_G) são espaços localmente F-convexos sobre o mesmo corpo valorizado n.a. $(F,|\ |\)$. $\mathcal{L}(E,G)$ denota o espaço de transformações linea res continuas de E em G.

Dada uma cobertura \mathfrak{S} de E por conjuntos limitados, define-se em $\mathcal{L}(\mathsf{E},\mathsf{G})$ uma topología τ . Um sigtema fundamental de vinzinhanças da origem em τ \in formado pelos conjuntos $\bigcap_{i} \mathsf{M}(\mathsf{A}_i,\mathsf{U}_i)$, onde $\mathsf{m} \in \mathsf{N}$, $\mathsf{M}(\mathsf{A}_i,\mathsf{U}_i) = \{\mathsf{f} \in \mathcal{L}(\mathsf{E},\mathsf{G}) \; ; \; \mathsf{f}(\mathsf{A}_i) \subseteq \mathsf{U}_i \}$, $\mathsf{A}_i \in \mathfrak{S}$ e U_i \in uma τ_{G} -vizinhança da origem em G , para todo i .

- 1.28 EXEMPLOS a) A topología definida pela família ${\sf S}$ dos conjuntos finitos de ${\sf E.Esta}$ topología ${\sf \tilde{e}}$ denotada por ${\sf \tau}_{\sf S}$
 - b) A topología definida pela família [©] dos conjuntos compactos de E. Esta topología é denotada por ^Tc.
 - c) A topología definida pela família [©] dos conjuntos limitados de E. Esta topología é denotada por ^Tb.
- 1.29 NOTAÇÕES : a) Nocaso particular em que (G, τ_G) é o corpo (F, | |), $\mathcal{L}(E, G)$ é denotado por (E, τ_E) , e é dito o <u>dual topológico</u> de (E, τ_E) . Quando não houver perigo de confusão.escreveremos simplesmente E'.
 - b) (E', τ_s) ē denotado por E' ou tambem por (E', σ (E',E)) e ē dito <u>dual fraco</u> de E.
 - c) (E', τ_b) é denotado por E' ou também por (E', β (E',E)) e é dito o <u>dual forte</u> de E.
- 1.30 OBSERVAÇÃO : Se δ_{χ} : E' \longrightarrow F é a função definida por $\delta_{\chi}(f) = f(\chi)$ para fɛE' e χ ɛE ,a aplicação χ \longrightarrow δ_{χ} é uma aplicação de E sobre $(E_{\sigma}')'$ (Van Tiel, [22] Th.4.10). Por tanto pode-se identificar E com $(E_{\sigma}')'$. Como consequencia disto, existe em E uma to pología induzida pela topología τ_{χ} de $(E_{\sigma}')'$, esta topología é chamada topología fraca sobre E e denotada por $\sigma(E,E')$, e o espaço E com a topología $\sigma(E,E')$

 $\tilde{\mathbf{e}}$ denotado por \mathbf{E}_{σ} .

§ 4 <u>Dualidade</u>.

Se (E,τ_E) é um espaço localmente F-convexo, diremos que uma topología τ sobre E é compatível com a dualidade (emtre E e E') se (E,τ) é localmente F-convexo e $(E,\tau_F)=(E,\tau)$ '.

1.31 EXEMPLO : A topología fraca de E é uma topología com pativel com a dualidade e é a menos fina das topologías compativeis sobre E.

Suporemos de agora em diante que o corpo (F, | |) é esfericamente completo, já que esta hipótese garante a não trivialidade do dual de um espaço localmente F-convexo. Isto é consequencia do teorema de Ingleton[10] e sua generalização para espaços F-convexos (ver Monna[16] e Van Tiel[22]).

- 1.32 DEFINIÇÃO : Dado M um subconjunto de E, definimos:
 - a) 0 polar de M em E' como o conjunto $MO = \{f \in E' ; |f(x)| \le 1 \text{ para todo } x \in M\}$
 - b) 0 bipolar de M em E como o conjunto $M^{OO} = \{f \in E ; |f(x)| \le 1 \text{ para todo } f \in M^O\}$
- 1.33 DEFINIÇÃO : Dado M um subconjunto de E , dizemos que M $\tilde{\epsilon}$ Γ -<u>fechado</u> se para todo $x \, \epsilon \, E$, $x \not \in M$, existe uma sem<u>i</u> norma $p \, \epsilon \, \Gamma = \Gamma(\tau_E)$ tal que $p(M) \, \underline{\leq} \, 1$ e p(x) > 1.
- 1.34 EXEMPLO : Se (F, | |) \tilde{e} um corpo esfericamente com -

pleto e M \subseteq E é um subespaço fechado de (E, τ_E), então M é Γ -fechado. (A prova segue dos teoremas 3.11 e 4.7 de Van Tiel [22]).

- 1.35 OBSERVAÇÃO : Se M e um subconjunto de E ,então
 - a) M= M00 se e somente se M $\tilde{\rm e}$ Γ -fechado (Van Tiel [22] Th.4.13, 29).
 - b) Numa S-topología sempre se pode supor que todo ΜεS € Γ-fechado (Van Tiel [22] Th.4.9).
 - c) Se M é l'-fechado, então M é F-convexo e fechado.

Na teoría da dualidade não arquimedeana, não existe um análogo geral do <u>teorema dos bipolares</u> do caso arquimedeano. Existem dois resultados que dependem das propriedades do corpo (F, | |);

1.36 PROPOSIÇÃO : a) Se $(F,|\cdot|)$ é um corpo discreto e se M é um subconjunto F-convexo e fechado de (E,τ_F) , então

M = M00

b) Se (F, $|\ |$) é um corpo denso e se M é um subconjunto F-convexo e fechado de (E, τ_F) , então

 $Moo \subseteq \lambda M$

para todo $\lambda \in F$ tal que $|\lambda| > 1$.

§ 5 DF-espaços e espaços reflexivos.

1.37 DEF[NIÇÃO : Uma família $\{B_i\}_{i\in I}$ de conjuntos limitados de (E,τ_F) é dita <u>fundamental</u> se para todo limitado L

- de (E, τ_E), existe j ϵ I tal que L \subseteq B $_j$.
- 1.38 DEFINIÇÃO : Um espaço localmente F-convexo (E, τ_{E}) e um DF-espaço se:
 - i) Existe uma família fundamental enumerá vel de limitados de (E, τ_F).
 - ii) Todo conjunto bornívoro que é interseção de uma família enumeravel de vizinhanças F-convexas da origem em E, é uma vizinhança da origem em E.
- 1.39 OBSERVAÇÃO : Se (F, | |) é um corpo esfericamente com pleto, a condição ii) de 1.38 pode ser enunciada da seguinte forma equivalente:
 - ii)' Todo conjunto fortemente limitado de E' que e união enumeravel de conjuntos equicontinuos de E' e um conjunto equicontinuo.
- 1.40 EXEMPLOS : a) Todo espaço normado n.a. e um DF-espaço.
 - b) Todo espaço em que os F-toneis bornívo ros são vizinhanças da origem e que possui uma família fundamental enumerável de limitados, é um DF-espaço.
 - c) Todo corpo valorizado,com a topología induzida pela valorização,e um DF-espaço.
- 1.41 DEFINIÇÃO : Seja (E, τ_E) um espaço localmente F-convexo, dizemos que:
 - a) (E,τ_E) \tilde{e} um espaço <u>semi-reflexivo</u> se $E''=(E_{\beta}^+)'=(E_{\sigma}^+)'=E$

isto significa que a topología forte $\beta(E',E)$ é compativel com a dualidade emtre E' e E .

§ 6 Classes de espaços topológicos.

- 1.42 DEFINIÇÃO: Um espaço topológico X é dito <u>ultraregular</u> se é Hausdorff e cada ponto tem um sistema fundamental de vizinhanças abertas e fechadas.
- 1.43 OBSERVAÇÃO: Um espaço topológico que verifica a segunda propriedade de 1.42 i.e. que cada ponto possui um sistema fundamental de vizinhanças abertas e fechadas, é chamado de espaço 0-dimensional.

Pode-se ver facilmente que um espaço $\tilde{\mathrm{e}}$ ultraregular se e somente se $\tilde{\mathrm{e}}$ O-dimensional e T_1 .

Se X e um espaço ultraregular, existe uma compactificação $\beta_0 X$ de X, que e chamada a compactificação de Banaschewski ,tal que:

- a) $\beta_0 X$ \bar{e} um espaço ultraregular.
- b) Dado um espaço ultraregular Y e uma função f de X em Y continua, existe uma única extensão continua β_0 f de β_0 X em β_0 Y.
- c) Se C \tilde{e} um subconjunto aberto e fechado de X ,então o fecho de C em $\beta_0 X$ \tilde{e} um conjunto aberto e fechado de $\beta_0 X$.
- d) Dois conjuntos abertos e fechados disjuntos em X tem fechos abertos e fechados disjuntos em $\beta_0 X$

A demonstração dos enunciados anteriores e mais detalhes sobre a compactificação de Banaschewski podem ser vistos em Bachman et al. [3] .

1.44 NOTAÇÃO : Dado um espaço X ultraregular denotamos por $v_0 X$ o conjunto dos $x \in \beta_0 X$ tais que se $\{v_n\}_{n \in N}$ e uma sequência de vizinhanças de x abertas e fechadas em $\beta_0 X$, então

$$(\bigcap_{n} V_{n}) \cap X \neq \phi$$

- 1.45 DEFINIÇÃO : Um espaço X ultraregular \tilde{e} um Q_0 -espaço se $X = v_0 X$.
- 1.46 DEFINIÇÃO : a) Um espaço topológico X é dito W-compac to se toda união enumerável de compactos de X é relativamente compacta.
 - b) Um espaço topológico X é dito <u>fortemen</u> te <u>contavelmente compacto</u> se toda sequência em X é relativamente compacta.
- 1.47 EXEMPLOS : a) Todo espaço compacto é W-compacto e con sequentemente fortemente contavelmente compacto.
 - b) Se $\,\Omega\,$ ē o primeiro ordinal não contavel, então o espaço $\,\left[0\,,\Omega\right]\,$ com a topología da ordem ē um espaço W-compacto que não ē compacto.

§ 7 Espaços de funções

Vamos supor nesta seção que X é um espaço topológico, (E,τ_E) é um espaço vetorial topológico so bre $(F,|\cdot|)$, um corpo valorizado não arquimedeano.

1.48 NOTAÇÃO: a) Denotamos por E^X o espaço das funções de X em E ,munido da topología que tem uma base de vizinhanças da origem dada pelos conjuntos

$$M(S,U) = \{ f \in E^X : f(S) \subseteq U \}$$

onde $S \subseteq X$ ë finito e U ë uma vizinhança da origem em (E, τ_F) .

b) Denotamos por C(X,E) o espaço das funções continuas de X em E, munido da topología compacto-aberta,isto e,a topología que tem uma base de vizinhanças da origem dada pelos conjuntos

$$M(K,U) = \{f \in C(X,E) ; f(K) \subseteq U \}$$

onde K⊆X é compacto e U é uma vizinhança da origem em (Ε,τ_r) .

c) Denotamos por C*(X,E) o espaço das funções continuas de X em E tal que sua imagem é relativamente compacta em E, munido da topología da convergencia uniforme, isto é, a topología que tem uma base de vizinhanças da origem dada pelos conjuntos

$$M^*(X,U) = \{f \in C^*(X,E) ; f(X) \subseteq U \}$$

onde U $ilde{ ilde{e}}$ uma vizinhança da origem em (E, $au_{ ilde{E}}$) .

E S P A Ç O S F - T O N E L A D O S

§1 Relações entre C(X,F), E,e C(X,E).

Consideraremos nesta seção X um espaço topológico ultraregular, $(F,|\cdot|)$ um corpo valorizado não arquimedeano esfericamente completo, C(X,F) o espaço das funções continuas sobre X com valores no corpo F, C(X,F) é considerado com a topología compacto aberta. Consideraremos também (E,τ_E) um espaço localmente F-convexo e C(X,E) o espaço das funções continuas com valores em E, munido da topología compacto - a berta. Supomos (E,τ_F) Hausdorff.

2.1 PROPOSIÇÃO : C(X,F) pode ser identificado com um subespaço fechado complementado de C(X,E).

DEMONSTRAÇÃO : Seja $e_0^{\ \epsilon}$ E e $\gamma \ \epsilon$ E', $\gamma(e_0)=1$, a existencia de $\gamma \ \epsilon$ E' com esta condição $\tilde{\epsilon}$ garantida pela hipótese de completude esférica do corpo (F,| |) .

 $\hbox{Considerar a função} \quad \psi \colon \ C(X,F) \longrightarrow C(X,E)$ definida por $\psi(f) = f \cdot e \quad . \hbox{Claramente} \quad \psi \ \tilde{e} \ injetora \, .$

 $Vamos\ mostrar\ que\ \psi(C(X,F))\ \tilde{e}\ fechado$ em C(X,E) . Seja h uma função de C(X,E) no fecho de $\psi(C(X,F))$, então existe um net $\{f_{\alpha}\}$ em C(X,F) tal que

(1)
$$\psi(f_{\alpha}) = f_{\alpha} \cdot e_{0} \longrightarrow h \quad em \quad C(X,E)$$

Logo como γ é continua resulta que $f_{\alpha} \longrightarrow \gamma$ oh em C(X,F) donde

(2)
$$f_{\alpha} \cdot e_0 \longrightarrow (\gamma \circ h) e_0$$
 em $C(X,E)$.

como C(X,E) é Hausdorff de (1) e (2) tem-se que $h=\psi(\gamma\circ h)$, isto mostra que $h\in\psi(C(X,F))$. Note-se que $\psi\colon C(X:F)\longrightarrow \psi(C(X;F))$ é um isomorfismo vetorial topológico.

a) Seja $f_{\alpha} \longrightarrow f$; temos que demostrar que $\psi(f_{\alpha}) \longrightarrow \psi(f)$. Seja M(K;U) uma vizinhança F-convexa de 0 em $\psi(C(X;F)$, então existe $B_{\delta} \subseteq F$ tal que $B_{\delta} \cdot e_{0} \subseteq U$, então para $\alpha \geq \alpha_{0}$, existe α_{0} , tem-se que $(f_{\alpha} - f)(K) \subseteq B_{\delta}$, donde $(f_{\alpha} - f)e_{0}(K) \subseteq B_{\delta} e_{0} \subseteq U$.

b) Seja $\psi(f_{\alpha}) \longrightarrow \psi(f)$ temos que demonstrar que $f_{\alpha} \longrightarrow f$. Seja $M(K;B_{\delta})$ uma vizinhança de 0 em C(X;F) ,então existe U vizinhança de 0 em E tal que $p_U(e_0) < 1/\delta$ $(p_U(e) = \inf \{|\lambda| \; ; \; e \; \epsilon \; \lambda U\} \;)$, para M(K;U) existe α_0 tal que $\alpha > \alpha_0$, $\psi(f_{\alpha}) - \psi(f) \epsilon M(K;U)$ isto é $p_U((f_{\alpha} \; e_0 - f \; e_0)(k)) \leq 1$ para todo $k \; \epsilon \; K$. Logo para $\alpha > \alpha_0$, $|f_{\alpha}(k) - f(k)| \cdot 1/\delta \leq 1$ para todo $k \; \epsilon \; K$. Don de $(f_{\alpha} - f)(K) \subseteq B_{\delta}$.

Falta mostrar que $\,\psi(\,C(\,X\,;F\,)\,)\,$ ē complementado em $\,C(\,X\,;E\,)\,.$ Para isto consideremos

$$\pi : C(X;E) \longrightarrow \psi(C(X;F)$$

a função definida por $\pi(h)=(\gamma\circ h)e_0$.Claramente a função π é linear e sobrejetora;vamos mostrar que ela é idempotente,isto é que $\pi^2=\pi$.

Se $h=g \cdot e$ onde $g \in C(X;F)$, então $\gamma \circ h=g$ e $(\gamma \circ h)e = g \cdot e_0 = h$ por tanto $\pi(h)=h$ se $h \in \psi(C(X;F))$. Logo se $h \in C(X;E)$ como $\pi(h) \in \psi(C(X;F))$ resulta $\pi(\pi(h)) = \pi(h)$. Donde $\pi^2 = \pi$.

Finalmente vamos provar que π \in continua. Seja $M(K;B_{\delta})$ uma vizinhança de 0 em C(X;F), como γ \in um elemento de E', existe uma vizinhança U de 0 em E tal que $\gamma(U) \subseteq B_{\delta}$, então $\pi(M(K;U)) \subseteq \psi(M(K;B_{\delta}))$. Con cluimos que π \in uma projeção continua de C(X;E) sobre $\psi(C(X;F))$.

2.2 PROPOSIÇÃO : E pode ser identificado com um subespaço fechado complementado de C(X;E).

DEMONSTRAÇÃO : Considerar a função $\gamma\colon E^{-----} C(X;E)$ definida por $\gamma(e)=f_e$ onde $f_e(x)=e$ para todo $x\in X$. Claramente γ \tilde{e} injetora sobre o subespaço de C(X;E) das funções constantes . Vamos provar que $\gamma(E)$ \tilde{e} fechado em C(X;E). Seja h um elemento no fecho de $\gamma(E)$ em C(X;E), então existe um net $\{e_{\alpha}\}$ em E tal que $\{e_{\alpha}\}$ h em C(X;E). Vamos provar que h $\{e_{\alpha}\}$ constante. Sejam $\{e_{\alpha}\}$ considerar a vizinhança de $\{e_{\alpha}\}$ $\{e_{\alpha}\}$ tal que $\{e_{\alpha}\}$ onde $\{e_{\alpha}\}$ $\{e_{\alpha}\}$ $\{e_{\alpha}\}$ tal que $\{e_{\alpha}\}$ $\{e_{\alpha}$

$$(f_{e_{\alpha}} - h) \in M(\{x,y\},U)$$

donde $e_{\alpha_0} + h(x) \in U$, $e_{\alpha_0} - h(y) \in U$ e como $U \in F$ convexa $h(x) - h(y) \in U$ logo como $E \in Hausdorff$ temos
que h(x) = h(y) logo $h \in \gamma(E)$.

Note-se que γ é um isomorfismo vetorial topológico de E sobre $\gamma(E)$.

a) Seja $e_{\alpha} \longrightarrow e$; temos que demons - trar que $\gamma(e_{\alpha}) \longrightarrow \gamma(e)$. Seja M(K;U) uma vizi - nhança F-convexa da origem em C(X;E), então existe α_0 tal que $\alpha \ge \alpha_0$ implica $e_{\alpha} - e_0 \in U$. Logo $(f_{e_{\alpha}} - f_{e})(K) \subseteq U$ de aqui resulta que $(\gamma(e_{\alpha}) - \gamma(e))(K) \subseteq U$.

b) Seja $\gamma(e_{\alpha}) \longrightarrow \gamma(e)$ em C(X;E) temos que demonstrar que $e_{\alpha} \longrightarrow e$ em E. Seja U uma vizinhança F-convexa de 0 em E, então existe α_0 tal que $\alpha \ge \alpha_0$, $\gamma(e_{\alpha}) - \gamma(e)$)($\{x\}$) $\subseteq U$ logo resulta que $(f_{e_{\alpha}} - f_{e})(x) = e_{\alpha} - e \in U$.

Falta mostrar que E é complementado,Para isto consideremos a função

$$\pi : C(X;E) \longrightarrow \gamma(E)$$

a função definida por $\pi(f)=\gamma(f(x_0))$ onde x_0 \tilde{e} um elemento arbitrario fixo de X. Podemos anotar $\pi=\gamma_0\delta_{X_0}$ (δ_{X_0} \tilde{e} a função avaliação). Claramente π \tilde{e} linear . Vamos mostrar que $\pi^2=\pi$. Seja $f \, \epsilon \, \gamma(E)$, então existe e $\epsilon \, E$ tal que $f=\gamma(e)$, isto \tilde{e} f(x)=e para todo $x \, \epsilon \, X$. Logo $\delta_{X_0}(f)=e$, então $\gamma(\delta_{X_0}(f))=\gamma(e)=f$ portanto $(\gamma_0\delta_{X_0})(f)=\pi(f)=f$. Logo se $f \, \epsilon \, C(X;E)$ como $\pi(f) \, \epsilon \, \gamma(E)$ temos que $\pi(\pi(f))=\pi(f)$ donde resulta que $\pi^2=\pi$.

Finalmente vamos provar que π é continua. Como γ é uma função continua basta provar que δ_{X_0} é continua .Seja U uma vizinhança de O em E ,então $\delta_{X_0}(M(\{x_0\},U))\subset U$ logo δ_{X_0} é continua de C(X;E) sobre $\gamma(E)$.

2.3 NOTAÇÃO : Sejam (E_n, τ_n) uma sequência de espaços localmente F-convexos;

a) (E, τ) = lim (E, τ_n) denota o limite indutivo dos espaços localmente F-convexos (E, τ_n).

b) $\sum_{n=1}^{\infty} v_n$ denota o conjunto de todas as somas finitas $\sum_{i=1}^{\infty} x_i$ onde $x_i \in V_i$.

2.4 PROPOSIÇÃO : Seja (E, τ) = lim (E $_n$, τ_n) onde a sequência dos espaços (E $_n$, τ_n) é crescente ,então uma ba se de vizinhanças da origem em E é dada pela família

 $\{\sum_{n=1}^{\infty}V_{n}:V_{n}\in\mathcal{V}_{n},\mathcal{V}_{n}\in\mathcal{V}_{n},\mathcal{V}_{n}\in\mathcal{V}_{n}\}$ convexas de 0 em (E_{n},τ_{n})

DEMONSTRAÇÃO : Seja U uma vizinhança F-convexa da origem em (E,τ) . Como a topologia induzida por τ sobre E \tilde{e} menos fina que τ_n , existe para cada $n \in N$

uma vizinhança $V_n \in V_n'$ tal que $V_n \subset U$. Seja $y \in \Sigma' V_n$, existe N_0 tal que $y \in \Sigma' V_i \subset U + \ldots \underbrace{N}_{i=1} + U \subset U$

a última inclusão obtem-se da condição que U é F-convexa. Logo $\sum\limits_{n=1}^\infty V_n \subset U$. Concluimos que a família $\{\sum\limits_{n=1}^\infty V_n\}$ é uma base de vizinhanças de 0 .

2.5 TEOREMA : Seja X um espaço ultraregular, W-com pacto e (E_n, τ_n) uma sequência crescente de espaços localmente F-convexos. Se $(E, \tau) = \lim_{n \to \infty} (E_n, \tau_n)$, então lim $C(X; E_n)$ e um subespaço topológico denso em C(X; E)

DEMONSTRAÇÃO : Seja i: lim $C(X;E_n) \longrightarrow C(X;E)$ a função inclusão que é evidentemente continua, vamos mos trar que i é aberta na imagem para concluir que o es paço lim $C(X;E_n)$ tem a topologia induzida por C(X;E).

Seja $\mathcal U$ uma vizinhança F-convexa de 0 em $\lim_{n \to \infty} C(X; E_n)$, temos que provar que $\mathrm{i}(\mathcal U)$ é uma vizinhança de 0 em $\mathrm{i}(\lim_{n \to \infty} C(X; E_n))$, pela proposição 2.4, existe uma vizinhança da forma $\lim_{n \to \infty} M(K_n, V_n)$ contida em $\mathcal U$, onde K_n é um subconjunto compacto de X para cada $n \in \mathbb N$ e V_n é uma vizinhança de 0 em E_n para todo $n \in \mathbb N$.

Consideremos o compacto K tal que

$$\bigcup_{n=1}^{\infty} K_n \subset K$$

e a vizinhança

$$V = \sum_{n=1}^{\infty} V_n$$

Afirmamos que a vizinhança da origem M(K,V) verifica

como U é um conjunto fechado, basta mostrar que

$$M(K;V) \cap \bigcup_{n=1}^{\infty} C(X;E_n) \subset \sum_{n=1}^{\infty} M(K_n,V_n)$$

Sejam $g \in M(K;V) \cap C(X;E_p)$ e W uma vizinhança de O em Ijm $C(X;E_n)$, temos que mostrar a existencia de uma função $v \in M(K_n,V_n)$ que satisfaz $v \in g + W$, mas como $W \in uma$ vizinhança de O no limite indutivo, existe $M(L_p,S_p)$ vizinhança de O em $C(X;E_p)$ tal que $M(L_p,S_p) \subset W$. Finalmente so temos que mostrar a existencia de uma função $v \in \Sigma M(K_n;V_n)$ que satisfaz

$$v \in g + M(L_p;S_p)$$

Consideremos o conjunto seguinte

$$G(a) = \{ x \in X ; g(x) - g(a) \in S_p \}$$

G(a) é uma vizinhança aberta e fechada de a em X como $K \subseteq X$ é compacto, existe $G(a_1),\ldots,G(a_m)$ tais que $K \subset \bigcup_{i=1}^m G(a_i)$. Sem perda de generalidade podemos supor que $i \in S$ ta união é disjunta.

Por outra parte como $g \in M(K;V)$ e $a_i \in K$ para todo $i=1,\ldots,m$, temos que $g(a_i) \in V$ isto significa que existe $q_i \in Z$ tal que

$$g(a_i) = \sum_{j=1}^{q_i} b_j^i$$

onde $b_j^i \in V_j$ para cada $j = 1, \ldots, q_i$, e para cada $i = 1, \ldots, m$. Vamos supor que $q_1 = q_2 = \ldots, q_m = q$ onde $q \in Z$ e q \tilde{e} major que p.

Definimos
$$u_{j} \in C(X) \times E_{j}$$
 pela fórmula
$$u_{j} = \sum_{i}^{m} X_{G(a_{i})} b_{j}^{i}$$

como $\mathbb{N}_{\mathbf{j}}^{\mathbf{i}} \in \mathbb{V}_{\mathbf{j}}$ e $\mathbb{V}_{\mathbf{j}}$ ē F-convexo, resulta que $\mathbb{U}_{\mathbf{j}}(\mathbf{X}) \subseteq \mathbb{V}_{\mathbf{j}}$

donde $u_i \in M(K_i; V_i)$. Podemos agora definir

$$u = \sum_{j=1}^{q} u_{j} \in \sum_{j=1}^{q} M(K_{j}; V_{j})$$

temos então que

(*)
$$(u - g)(x) \in S_{p}$$

para cada
$$x \in \overset{m}{\Sigma} G(a_i)$$
. Com efeito, da equivalencia $u = \overset{q}{\underset{j=1}{\Sigma}} u_j = \overset{m}{\underset{j=1}{\Sigma}} \chi_{G(a_i)} b_j^i = \overset{m}{\underset{i=1}{\Sigma}} \chi_{G(a_i)} g(a_i)$

obtemos que
$$u(x) - g(x) = \sum_{i=1}^{m} \chi_{G(a_i)}(x)(g(a_i) - g(x))$$

Como a união dos G(a;) é disjunta,para cada x nião existe um único i_0 tal que $x \in G(a_{i_0})$, logo

$$u(x) - g(x) = g(a_{i_0}) - g(x) \in S_p$$

Definimos finalmente a função v como

$$\mathbf{v} = \chi_{\mathcal{H}} \cdot \mathbf{u} + (1 - \chi_{\mathcal{H}}) \cdot \mathbf{g}$$

onde $\mathcal{H} = \bigcup_{i=3}^{m} G(a_i)$, então $v - g = \chi_{\mathcal{H}}(u - g)$

Usando (*) pode-se ver claramente que (v - g)(X) \subseteq S donde resulta que $(v - g)(L_p) \subseteq S_p$

Afirmamos que a função assim definida é um elemento de $\sum_{j=1}^{\infty} M(K_{j}, V_{j})$. Com efeito ja que u é um elemento da soma finita $\sum_{j=1}^{q} M(K_{j}, V_{j})$ tem-se que

$$\chi \cdot u \in \mathcal{L}_{j=1}^{q} M(K_{j}, V_{j})$$

também temos que

logo
$$v \in \sum_{j=1}^{q} M(K_j, V_j) + M(K_{q+1}, V_{q+1})$$

temos mostrado que i(lim $C(X;E_n)$) tem a topología induzida por C(X;E).

Para concluir, a densidade \mathcal{E} consequencia da densidade do produto C(X) Q E em C(X;E) ja que

$$C(X) \mathbb{Q} \quad E \subset \bigcup_{n=1}^{\infty} C(X; \mathbb{E}_n)$$
.

§2 Propriedades dos espaços F-tonelados.

Nesta seção (E,_{TE}) é um espaço local - mente F-convexo sobre um corpo não trivialmente valor<u>i</u> zado não arquimedeano.

2.6 PROPOSIÇÃO ; Seja S <u>um subespaço vetorial topologico denso de</u> (E, τ_E) , <u>então</u> (E, τ_E) <u>é</u> F-tonelado <u>se</u> S <u>e</u> F-tonelado

DEMONSTRAÇÃO : Seja T um F-tonel em E ,então T \cap S é um F-tonel em S ,logo existe U vizinhança aberta de O em S tal que U \subseteq T \cap S . Como U é aherto na topologia relativa, existe V vizinhança de O em E tal que U = V \cap S .

Afirmação: V está contido em T. Com efeito suponhamos que $V \cap T^C \neq \phi$. Como $V \cap T^C$ é um aberto de E e S é denso em E existe $x \in V \cap T^C \cap S$. Logo existe x tal que $x \in V \cap S$ e $x \in T^C$, mas $V \cap S \subset T$. Esta contradição permite afirmar que T é uma vizinhançaa de O em E, logo E é F-tonelado.

2.7 PROPOSIÇÃO : Se (E, τ_E) <u>e o limite indutivo de uma familia</u> $\{(E_i, u_i)\}$ is I de espaços F-tonelados, então (E, τ_E) <u>e</u> F-tonelado

DEMONSTRAÇÃO : Isto $\tilde{\mathbf{E}}$ imediato da definição de limite indutivo. Com efeito se T $\tilde{\mathbf{E}}$ um F-tonel em E, então $\mathbf{u_i^{-1}}(T)$ $\tilde{\mathbf{e}}$ um F-tonel em cada $\mathbf{E_i}$ que por ser F-tonel lado $\tilde{\mathbf{e}}$ uma vizinhança de 0 em cada $\mathbf{E_i}$ do qual deducimos que T $\tilde{\mathbf{e}}$ uma vizinhança de 0 em E na topologia limite indutivo.

- 2.8 COROLARIO : $\underline{0}$ quociente separado de um espaço F-tonelado .
- 2.9 DEFINIÇÃO : Dado (E, T_E) um espaço localmente <u>F</u> convexo Hausdorff, um subconjunto M de E, limitado e F-convexo, e dito <u>completante</u> se o espaço ([M], p_M) e um espaço normado não arquimedeano completo.

 ([M] denota o subespaço vetorial de E gerado por M e p_M denota a seminorma n.a. definida por

$$p_{M}(e) = \inf\{|\lambda| ; e_{\epsilon}\lambda^{M}\}\}.$$

2.10 PROPOSIÇÃO : Sejam $(E_{\alpha}, \tau_{\alpha})_{\alpha \in I}$ uma familia de espaços localmente F-convexos e Hausdorff, $(F, | \cdot |)$ um corpo esfericamente completo , $T \subseteq (E, \tau) = \frac{\Pi}{I} (E_{\alpha}, \tau_{\alpha})$ um subconjunto F-convexo que absorve os conjuntos com pletantes de E , então existe um conjunto finito $J \subseteq I$ tal que θ $E_{\alpha} \subseteq T$

DEMONSTRAÇÃO : Podemos sem perda de generalidade supor que T \neq E . Para provar a proposição vamos supor contrariamente que para todo J \subseteq I , J finito,existe e \in \oplus \to \oplus \to \oplus tal que e \notin T . I-J

Se
$$J=\phi$$
 existe $e^1 \in \Theta$ E_{α} , $e_1=(s_{\alpha}^1)_{\alpha \in I}$

tal que se $~[\lambda_{\uparrow}]>1$, $e^1\not\in\lambda_{\uparrow}T$. Chamemos $J_{\uparrow}=\{\alpha\epsilon\,I~;~s^1_{\alpha}\,\neq\,0~\}$.

Se
$$J = J_1$$
 existe $e^2 \in \bigoplus_{\alpha \in I - J_1} E_{\alpha}$, $e^2 = (s_{\alpha}^2)_{\alpha \in I}$

tal que se $|\lambda_2| > 2$, $e^2 \notin \lambda_2 T$. Chamemos J_2 o conjunto $J_2 = J_1 \cup \{\alpha \in I : s_\alpha^2 = 0\}$. Por indução podemos formar as seguintes sequências $\{e^n\}_{n \in \mathbb{N}}$, $\{J_n\}_{n \in \mathbb{N}}$, $\{\lambda_n\}_{n \in \mathbb{N}}$ que verificam :

$$\begin{array}{lll} e^n \in \bigoplus_{I=J_{n-1}}^{E_{\alpha}} & , & J_{n-1} = J_{n-2} & \cup \; \{\; \alpha \in I \; \; ; \; s_{\alpha}^{n-1} \neq 0 \; \} \\ \\ e^n \notin \lambda_n T & , |\lambda_n| > n \; . \end{array}$$

Consideremos
$$B_n = \{e^n ; |\lambda| \leq 1 \}$$
. $B_n \subset \prod_{\alpha \in I - J_{n-1}} E_{\alpha}$.

 B_n \tilde{e} F-convexo, completo e limitado, ja que B_n \tilde{e} j somorfo \tilde{a} bola unitaria de (F,||), que \tilde{e} c-compacta e portanto completa (T.A.Springer [21],n9 2.1 e N.De Grande-De Kimpe,[5].prop. 1).

Podemos considerar $B=\prod_{n=1}^{II}B_n$, como um subconjunto de $\prod_{\alpha \in I} E$. O conjunto B \tilde{e} F-convexo , limitado e completo em E, portanto B \tilde{e} completante .Logo existe $\delta c F$, tal que $B \subset \delta T$. Seja $n \epsilon N$ tal que $|\lambda_n| > |\delta|$, para λ_n tem-se que $e^n \epsilon \lambda_n T$, esto contradiz a eleição dos e^n . Logo existe $J \subset I$, J finito que verifica $\theta \in A \cap I = A$

2.1] PROPOSIÇÃO : Se (E,τ_E) <u>e</u> <u>Hausdorff</u> <u>e</u> $T \subset E$ <u>e</u> <u>um</u> F-<u>tonel</u>, <u>então</u> T <u>absorve</u> <u>os conjuntos completantes de</u> (E,τ_E) .

DEMONSTRAÇÃO : Seja M um conjunto F-convexo de E , e seja ([M], p_{M}) o espaço normado n.a completo corres -pondente . Pela observação 1.24.b) ,o espaço ([M], p_{M}) é F-tonelado.

O conjunto T∩M ẽ um F-tonel em ([M],p_M) ja que a topologia induzida por τ_E ẽ menos fina que a topologia dada pela norma p_M sobre [M] . Com efeito seja U uma τ_E -vizinhança de 0, como M \tilde{e} limitado, existe λ ε F tal que λ M \subset U , de aqui obtemos que a p_M -bola $B(0,|\lambda|)=\{\,x\,\varepsilon\,M\,\,;\,\,p_M(x)<|\lambda|\,\}$ \tilde{e} contida em U \cap [M] .

Logo Tr [M] é uma p_M -vizinhança da origem em [M] que absorve o p_M -limitado conjunto M logo existe y ϵ F tal que

$$M \subset \gamma$$
 ($T \cap [M]$) $\subseteq \gamma T$

- 2.12 DEFINIÇÃO : Seja (E,τ) um espaço localmente F-convexo, consideremos sobre E a topologia τ^t que tem como um sistema fundamental de vizinhanças da origem a família de todos os F-tonéis de (E,τ) .
- 2.13 PROPOSIÇÃO : $\frac{0}{\tau} \frac{\text{espaço}}{\text{t}}$ (E, τ) $\frac{\tilde{e}}{\tilde{e}}$ F-tonelado se $\frac{e}{\tau}$

DEMONSTRAÇÃO : Supomos que (E, τ) é F-tonelado então todo τ - F - tonel é vizinhança de O logo τ é mais fina que τ^t .

Por outra parte ,como (E, τ) é F-convexo as τ -vizinhanças de 0 que são F-convexas e τ fechadas forman um sistema fundamental,logo τ^t é mais fina que τ .

Supondo agora que $\tau=\tau^t$,resulta que todo F-tonel de (E, τ) é uma τ -vizinhança da origem. Logo (E, τ) é F-tonelado.

2.14 PROPOSIÇÃO : Sejam (E,τ_E) e (G,τ_G) dois espaços localmente F-convexos e $f:(E,\tau_E)$ \longrightarrow (G,τ_G) uma aplicação linear continua, então a aplicação $f:(E,\tau^t)$ \longrightarrow (G,τ^t) $\underline{\tilde{e}}$ continua .

DEMONSTRAÇÃO : Seja U uma τ_G^- vizinhança de O ,

pela definição de τ_G^t , existe T um F-tonel em (G,τ_G) tal que $T\subseteq U$, como f é linear e continua o conjunto $f^{-1}(T)$ é uma τ_E^t -vizinhança de O e $f(f^{-1}(T))\subseteq T\subseteq U$ logo f é continua .

2.15 TEOREMA : Seja $(E_{\alpha}, \tau_{\alpha})_{\alpha \in I}$. uma familia de espa cos localmente F-convexos e Hausdorff .

Se $(E,\tau) = \prod_{\alpha \in I} (E_{\alpha}, \tau_{\alpha})$ e $(E,\gamma) = \prod_{\alpha \in I} (E_{\alpha}, \tau_{\alpha}^{t})$ temse que $\gamma = \tau^{t}$

DEMONSTRAÇÃO : a) $\gamma \subset \tau^{t}$. Seja $i:(E,\tau^{t}) \longrightarrow (E,\gamma)$ temos que demonstrar que i \tilde{e} continua.

tão i $\bar{\rm e}$ continua se e somente se a composição $~{\rm q}_\alpha$ oi $\bar{\rm e}$ continua para todo $~\alpha\epsilon I$,mas $~{\rm q}_\alpha$ oi = ${\rm p}_\alpha$ logo i $\bar{\rm e}$ continua.

 $b)\ \tau^t \subset \gamma\ \ \ \mbox{19 caso}\ \ I\ \ \ \mbox{\tilde{e} \underline{finito}$. En-t\~ao a topologia produto coincide com a topologia soma direta localmente F-convexa.}$

2º caso) I é <u>infinito</u>.Va-mos mostrar que todo F-tonel T de (E,τ) é uma vizinhança de 0 em $(E;\gamma)$.Pela proposição 2.11., T absorve os conjuntos completantes de (E,τ) logo pela proposição 2.10., existe $J\subset I$, J finito ,tal que \emptyset $E\subset T$. Como T é fechado temos que $\alpha\epsilon I-J$

(2)
$$T \cap \prod_{\alpha \in J} E_{\alpha}$$

 $\tilde{\mathbf{e}}$ uma vizinhança de 0 em $\mathbb{I}_{\alpha}(\mathbf{E}_{\alpha},\tau_{\alpha}^{t})$, de aqui obte - mos que

 \vec{e} uma vizinhança de 0 em $\prod\limits_{\alpha \in T} (E_{\alpha}, \tau_{\underline{\alpha}}^t)$ e finalmente de (1) e (2) e da hipótese que \vec{v} . T \vec{e} F-convexo

logo T $\tilde{\mathbf{e}}$ uma vizinhança de 0 em \mathbf{H} $(\mathbf{E}_{\alpha}, \mathbf{\tau}_{\alpha}^t)$.

- 2.16 COROLARIO : $\underline{0}$ produto \underline{de} espaços F-tonelados $\underline{\tilde{e}}$ F tonelado.
 - §3 Condições para que C(X;E) <u>seja</u> F-<u>tonelado</u> .

Nesta seção X é um espaço topologico ultraregular e E é um espaço localmente F-convexo sobre um corpo esfericamente completo (F,||).

Nas proposições 2.1. e 2.2 temos mostra do que C(X;F) e E são subespaços fechados comple - mentados de C(X;E) e portanto existem dois espaços quocientes separados de C(X;E), isomorfos a C(X;F) e E respeitivamente. Pelo corolario 2.8. a propriedade de ser F-tonelado é invariante sob formação de quocientes separados. Logo podemos enunciar o seguiente teorema:

2.17 TEOREMA : Se C(X;E) \tilde{e} F-tonelado, então C(X,F) e E são F-tonelados .

A seguinte parte desta seção é dedicada à búsqueda de condições suficientes para que C(X;E) seja

F-tonelado.

- 2.18 LEMA : <u>Dada uma função</u> $\Psi \epsilon C(X;E)$, <u>existem</u> f, g <u>em</u> C(X;E) <u>e existem</u> U, V <u>abertos não vazios</u> de $\beta_0 X$ tais que
 - 1) βof <u>ẽ nula</u> em Ù
 - 2) $\beta_0 g = \frac{\bar{e}}{nula} em V$
 - 3) $\Psi = f + q$

DEMONSTRAÇÃO :Seja U $\neq \phi$ um conjunto aberto e fecha do de X tal que U $^{\rm C}$ $\neq \phi$. Fazemos V = U $^{\rm C}$ e definimos

$$f(x) = \begin{cases} \Psi(x) & \text{se } x \epsilon V \\ 0 & \text{se } x \epsilon U \end{cases} \qquad g(x) = \begin{cases} 0 & \text{se } x \epsilon V \\ \Psi(x) & \text{se } x \epsilon U \end{cases}$$

Os fechos de V e V em $\beta_0 X$ são conjuntos abertos e fechados de $\beta_0 X$ (ver 1.43. d)) Pela continuidade temse $\beta_0 f$ e $\beta_0 g$ são nulas em \overline{U} e \overline{V} respectivamente e pela definição Ψ == f+g.

2.19 PROPOSIÇÃO : Seja T um subconjunto proprio do espaço C(X;E) tal que $0 \epsilon T$ e T é não arquimedeano . Então existe um menor compacto $K(T) \subseteq \beta_0 X$ tal que ,para todo $\psi \epsilon C(X;E)$, se $\beta_0 \psi$ é nula numa vizinhança de K(T) então $\psi \epsilon T$.

DEMONSTRAÇÃO : Denotemos por A o conjunto de todos os compactos $K\subseteq\beta_0\,X$ para os quais se verifica a propriedade :

(*) Se $\psi_{\varepsilon}C(X;E)$ e $\beta_{0}\psi$ é nula numa vizinhança de K então ψ é um elemento de T .

O conjunto A é não vazio ja que a função O perten-

ce a T donde $\beta_0 X$ pertence a A.

O conjunto vazio não é um elemento de A, com efeito, supomos que $\phi\epsilon$ A, então se $\psi\epsilon$ C(X;E) e $\beta_0\psi$ é nula num aberto de β_0X então $\psi\epsilon T$, mas pelo lema anterior isto significa que toda função $\rho\epsilon C(X;E)$ é um elemento de A ja que existe A0, A1, A2, A3, A4, A5, A6, A7, A8, A8, A9, A9,

Vamos mostrar agora que a interseção de dois elementos de A é um elemento de A . Sejam H e K ϵ A,seja ψ ϵ C(X;E) tal que

$$\beta_0 \psi = 0$$
 em W

onde W $\tilde{\mathbf{e}}$ uma vizinhança aberta de H \cap K. Sejam U vizinhança aberta e fechada de H em $\beta_0 X$ e V vizinhança aberta e fechada de K \setminus W em $\beta_0 X$, dis junta de U, então definimos as seguintes funções:

$$f(x) = \begin{cases} \beta_0 \psi(x) & \text{se } x \epsilon U \\ 0 & \text{se } n \tilde{a} o \end{cases} \qquad g(x) = \begin{cases} 0 & \text{se } x \epsilon U \\ \beta_0 \psi(x) & \text{se } n \tilde{a} o \end{cases}$$

ja que U é aberto e fechado, f, g pertencem a $C(\beta_0X;\beta_0E)$ é ainda mais como f(x)=0 se $x\in W\cup V$, que é uma vizinhança de K, resulta que f/X, a restrição de f a X, pertence a T; da mesma forma como g(x)=0 em U, e U é vizinhança de H, então g/X pertence a T. Podemos concluir então que

$$\psi = \beta_0 \psi / X = f / x + g / X \epsilon T + T \subset T$$

o que prova que $H \cap K$ pertence a A.

Finalmente vamos mostrar que a interseção de todos os elementos de $\,A\,$ $\tilde{e}\,$ um elemento de $\,A\,$.

Seja W vizinhança de \cap K ,aberta em $\beta_0 X$, como o KeÅ complemento W $\tilde{\epsilon}$ $\tilde{\epsilon}$ compacto de $\beta_0 X$ e W $\tilde{\epsilon}$ ψ ,existe $\eta_0 X$ tal que

$$W^{C} \subset \bigcup_{i=1}^{n} K_{i}^{C}$$

para K_{i} , i=1...n, em . De aqui obtemos que

$$\bigcap_{i=1}^{n} K_{i} \quad \forall$$

Seja $\psi \epsilon C(X;E)$ e $\beta_0 \psi$ nula numa vizinhança W da interseção \bigcap K, pelo anterior \bigcap $K_1 \subset W$, logo $\beta_0 \Psi$ é nula numa vizinhança de uma interseção finita de elementos de A, usando indução podemos concluir que pertence a T. Fazemos $K(T) = \bigcap$ K, K(T) é o menor elemento de A.

- 2.20 DEFINIÇÃO : O conjunto K(T) da proposição anterior é chamado de suporte de T
- 2.21 PROPOSIÇÃO : Seja $T \subset C(X;E)$ um conjunto não ar quimedeano tal que $0 \in T$ e o suporte K(T) de T es ta contido em X. Se existe U vizinhança F-convexa de O em E tal que $M(X;U) \subset T$, então

$$M(K(T);U) \subset T$$

DEMONSTRAÇÃO : Seja Ψ uma função em M(K(T);U). Considerar $\Psi^{-1}(U)$, este conjunto \tilde{e} aberto e fechado de X que contem K(T). Definimos as funções seguin tes:

$$\rho = \chi_{\Psi^{-1}(U)} \cdot \Psi \qquad \qquad \eta = (1 - \chi_{\Psi^{-1}(U)}) \cdot \Psi$$

 \tilde{e} um elemento de M(X;U) logo $\Psi \epsilon T$, η \tilde{e} uma fun - \tilde{c} \tilde{a} o nula numa vizinhança aberta de K(T) , logo $\eta \epsilon T$

donde $\Psi = \rho + \eta \epsilon T + T \subset T$, logo $\Psi \epsilon T$.

2.22 NOTAÇÃO : Dado $\Lambda \epsilon C(X;E)$ '; D_{Λ} denotarã a fam \overline{I} lia de todos os conjuntos U abertos e fechados de X que verificam a condição :

$$\Lambda(\Psi \cdot \chi_{\Pi}) = 0$$
 para todo $\Psi \in C(X; E)$.

DEMONSTRAÇÃO
$$:\chi_V = \chi_V \cdot \chi_U$$
 ,logo $\Lambda (\Psi \cdot \chi_V) = \Lambda ((\Psi \cdot \chi_V) \cdot \chi_U)$

- 2.24 COROLARIO : D_A $\underline{\tilde{e}}$ \underline{um} \underline{anel} \underline{de} $\underline{conjuntos}$. Isto \underline{quer} \underline{dizer} \underline{que} D_A $\underline{\tilde{e}}$ $\underline{fechado}$ \underline{para} $\underline{união}$ \underline{finita} \underline{e} $\underline{diferença}$ \underline{de} $\underline{conjuntos}$.
- 2.25 DEFINIÇÃO : Dado $\Lambda \epsilon C(X;E)'$ definimos o conjunto

$$supp\Lambda = (\bigcup_{V \in D_{\Lambda}} V)^{c}$$

que será chamado <u>suporte</u> <u>do funcional</u> .

2.26 OBSERVAÇÃO : Para cada $\Lambda\epsilon C(X;E)$ ' existe uma semi norma n.a. p_{Λ} em E , um compacto K de X e $\lambda_{\Lambda}\epsilon R^+$ tal que

$$|\Lambda(\psi)| \leq \lambda_{\Lambda} \sup_{k \in K} p_{\Lambda}(\psi(k))$$
.

Como consequência disto tem-se que supp $\Lambda \subseteq K$.

2.27 PROPOSIÇÃO : Seja $\Lambda \in C(X;E)$, $\Lambda \neq 0$, então o su porte de Λ \tilde{e} \tilde{n} ao vazio .

DEMONSTRAÇÃO : Suponhamos que supp $\Lambda = \phi = (\begin{array}{c} \cup \\ V \in D \end{array})^C$

ou equivalentemente que $X = \begin{picture}(100) \put(0.00){\line(0.00){100}} \put(0.00){\line(0.00){100$

 $\Lambda (\psi \cdot \chi_A) = 0$ para todo $\psi \in C(X; E)$,

finalmente pela propriedade de K e como $A^{C} \subset K^{C}$ temos

$$\Lambda \left(\psi \right) \; = \; \Lambda \left(\psi \boldsymbol{\cdot} \boldsymbol{\chi}_{\boldsymbol{A}} \right) \; + \; \Lambda \left(\psi \boldsymbol{\cdot} \boldsymbol{\chi}_{\boldsymbol{A}} \boldsymbol{c} \right) \; = 0 \; + \; 0 \; = \; 0$$

para todo $\psi \in C(X;E)$. Logo $\Lambda=0$ o que contradiz no -ssa hipótese inicial.

2.28 PROPOSIÇÃO : Seja $\Lambda \in C(X;E)$, $\Lambda \neq 0$, e A um sub conjunto aberto de X que intersepta o suporte de Λ , então existe uma função $\psi \in C(X;E)$ tal que

$$\psi (A^C) = \{0\} \quad \underline{e} \quad \Lambda (\psi) = 1$$

DEMONSTRAÇÃO : Seja $x \in A \cap \text{supp } \Lambda$, como $A \in \text{aberto}$ e $X \in \text{Ultraregular existe}$ U aberto e fechado de X tal que $x \in U \subseteq A$, donde resulta que $U \cap \text{supp } \Lambda \neq \phi$. Logo $U \notin D_{\Lambda}$ e pela definição de D_{Λ} . existe $\rho \in C(X;E)$ tal que $\Lambda (\rho \cdot \chi_{||}) \neq 0$. Considerando a função

$$\Psi = \chi_{\mathbf{U}} \cdot \rho \cdot |\Lambda(\rho \cdot \chi_{\mathbf{U}})|^{-1}$$

resulta $\Lambda(\psi) = 1$ e como $A^C \subset U^C$, $\psi(A^C) = \{0\}$.

2.29 PROPOSIÇÃO : Seja $\Lambda \in C(X;E)'$, se $\Lambda(\psi)=0$ para todo ψ que \tilde{e} nula numa vizinhança aberta e fechada de supp Λ , então $\Lambda(\rho)=0$ para toda ρ que \tilde{e} nula em

supp A

DEMONSTRAÇÃO : Supondo que $\psi(x)=0$ para todo $x \in \sup \Lambda$, seja p_Λ a seminorma não arquimedeana em E considerada na observação 2.26. Seja

$$C_i = \{x \in X : p_{\Lambda}(\psi(x)) < 1/i \}.$$

Cada C_i \tilde{e} um conjunto aberto e fechado que cont \tilde{e} m o supp . Como $\psi = \chi_{C_i} \cdot \psi + (1 - \chi_{C_i}) \cdot \psi$, resulta que $\Lambda(\psi) = \Lambda(\psi \cdot \chi_{C_i})$

ja que a função (1 - $\chi_{\tilde{C}_1}$) \tilde{e} nula numa vizinhança aberta e fechada C_i do supp $_{\Lambda}$. Seja agora K o compacto considerado na observação 2.26. Resulta que

$$\begin{split} |\Lambda\left(\upsilon\right)| &= |\Lambda\left(\chi_{C_{\mathbf{i}}}^{\bullet\psi}\right)|_{\cdot} \leq \lambda_{\Lambda} \cdot \sup_{k \in K} p \left(\chi_{C_{\mathbf{i}}}(x) \cdot \psi(x)\right) \leq \lambda_{\Lambda} \cdot (1/i) \\ \text{Logo} \qquad \Lambda\left(\psi\right) &= 0 \ . \end{split}$$

- 2.30 NOTAÇÃO : Dado $W \subset C(X;E)$ ' denotamos por suppW a união dos conjuntos supp A para todo $A \in W$.
- 2.31 DEFINIÇÃO : Um conjunto $L \subset X$ \tilde{e} dito $F-\underline{limitante}$ se toda função de C(X;F) \tilde{e} limitada em L .
- 2.32 DEFINIÇÃO : Dados X um espaço ultraregular e (E, T_E) um espaço localmente F-convexo , diremos que X tem a propriedade do suporte anulante , se para todo A em C(X;E)', ψ e nula no supp A implica $\Lambda(\psi)=0$.
- 2.33 PROPOSIÇÃO : Se X $\stackrel{\frown}{e}$ ultraregular e Lindelof , então X tem a propriedade do suporte anulante

DEMONSTRAÇÃO : Seja C(X;E)' e seja $W \subset X$ um con-

junto aberto e fechado que contem supp Λ , isto implica que $W^{C} \subset V$, como X \in Lindelof e W^{C} \in fechado $V_{\varepsilon}D_{\Lambda}$ ∞ temos que $W^{C} \subset V$ V_{i} com $V_{i} \in D_{\Lambda}$. Supomos sem perda i=1 de generalidade que a união \in disjunta .

Consideremos o conjunto aberto e fechado

$$U_i = W^{c} \cap V_i$$

pela proposição 2.23. U $_{i}$ ϵ D_{Λ} , então em cada ponto -x de X temos que

$$\chi_{W} c(x) = \sum_{i=1}^{\infty} \chi_{U_i}(x)$$

vamos a mostrar que

$$X_{W^{c}} = \sum_{i=1}^{\infty} X_{U_{i}}$$
.

Seja LC X um conjunto compacto então L \cap W C $\stackrel{\circ}{=}$ compacto ,logo L \cap W C C \cup U $_{i}$ C \cup U $_{i}$, para todo n>N(L) . i=l i=l

donde $L \cap W \subset L \cap (\bigcup_{i=1}^{n} U_i)$, para todo n > N(L).

Por outra parte como $U_{i} \subset W^{C}$ tem-se que $U_{i} \subset W^{C}$

portanto L \cap (\cup U $_{i}$) \subset L \cap W c , para todo n > N(L) .

Resulta então que $L \cap (\bigcup_{i=1}^{U} U_i) = L \cap W^C$, para todo

n > N(L) . Logo

$$\begin{pmatrix} \sum_{i=1}^{n} \chi_{U_i} - \chi_{W}c \end{pmatrix} (L) = \{0\}$$

para todo n > N(L). Finalmente se ψ \tilde{e} nula em W

$$\Lambda(\psi) = \Lambda(\psi \cdot \chi_{W}) + \Lambda(\psi \cdot \chi_{W}c) = \Lambda(\psi \cdot \chi_{W}c) =$$

$$= \Lambda(\psi \cdot \sum_{i=1}^{\infty} \chi_{U_{i}}) = \sum_{i=1}^{\infty} \Lambda(\psi \cdot \chi_{U_{i}}) = 0$$

pela proposição 2.29. resulta que X tem a propriedade do suporte anulante.

2.34 PROPOSIÇÃO : <u>Seja X um espaço topológico ultraregu</u>
<u>lar com a propriedade do suporte anulante</u>. <u>Então dado um F-tonel T de C(X;E), o conjunto</u> supp TO <u>e um conjunto</u> F-limitante

DEMONSTRAÇÃO : Supomos que existe $f \in C(X;E)$ não limitada em supp T^o , então podemos escolher uma sequência de pontos $\{x_n\}$ em supp T^o e uma sequência de funções $\{A_n\}$ em T^o que verifiquem

i)
$$f(x_n) + 1 < f(x_{n+1})$$
 para todo $n \in \mathbb{N}$
ii) $x_n \in \sup_{j < n} \Lambda_n$ para todo $n \in \mathbb{N}$
iii) $x_n \notin \bigcup_{j < n} \sup_{j < n} \Lambda_j$ para todo $n \in \mathbb{N}$

Seja
$$V_n = \{x \in X : |f(x) - f(x_n)| < 1/2 \}$$
 e seja

$$B_n = V_n \cap (\bigcup_{j < n} supp \Lambda_j)^c$$

para todo $n \in \mathbb{N}$. Pode-se observar que $x_n \in \mathbb{B}_n$ e $x_{n+1} \notin \mathbb{B}_n$ e que \mathbb{B}_n é um conjunto aberto que intersepta o suporte de \mathbb{A}_n , pela proposição 2.28. existe \mathbb{U}_n conjunto aberto e fechado de \mathbb{X} tal que

e existe $h_{n} \in C(X; E)$ que cumpre

$$\Lambda_{n}(h_{n} \cdot \chi_{U_{n}}) = 1$$

construimos a função $\psi = \sum_{t=1}^{\infty} c_t \cdot h_t \cdot \chi_{U_t}$, onde os c_t

são definidos por

$$c_{1} = f(x_{1})$$

$$c_{t} = f(x_{t}) - \sum_{i=1}^{\Sigma} c_{i} \Lambda_{t}(h_{i} \cdot \chi_{U_{i}})$$

a sequência $\{U_n^-\}$ é localmente finita logo $\psi \in C(X;E)$.

Por outra parte ja que $U_{n+j} \subseteq (\text{supp } \Lambda_n)^c$ tem-se que :

$$\Lambda_{n}(\ h \cdot \chi_{U_{n+\mathbf{j}}}) \ = \ 0$$

para todo $h \in C(X;E)$ e para todo $j \in N$.(X tem a propriedade do suporte anulante) .

Obtemos então que :

$$\begin{split} |\Lambda_{n}(\psi)| &= |\Lambda_{n}(\sum_{t=1}^{\infty} c_{t} \cdot h_{t} \cdot \chi_{U_{t}})| = |c_{n}| + \sum_{t=1}^{n-1} c_{t} \cdot \Lambda_{n}(h_{t} \cdot \chi_{U_{t}})| \\ &= |f(x_{n})| > n-1 . \end{split}$$

podemos concluir com isto que a sequência $\{\Lambda_n\}$ de Tonão e fracamente limitada ,o que contradiz o fato que Té absorvente (ver Van Tiel [22] Th. 4.11 ,59) . Logo supp To é um conjunto F-limitante de X .

2.35 TEOREMA : Seja X um espaço topológico ultraregular, com a propriedade do suporte anulante e tal que C(X;E) $\stackrel{c}{\underline{e}}$ F-tonelado . Então se $C(\beta_0X;E)$ $\stackrel{c}{\underline{e}}$ F-tonelado .

DEMONSTRAÇÃO : Consideremos C*(X;E) o espaço definido em 1.48.,c) . Observemos que C*(X;E) \tilde{e} isomorfo ao espaço C($\beta_0 X$;E) .

Seja T um F-tonel em C(X;E), ja que

Seja T um F-tonel em C(X;E) , ja que a inclusão

$$i : C^*(X;E) \longrightarrow C(X;E)$$

 \tilde{e} continua ,resulta que $T\subset C^*(X;E)$ \tilde{e} um F-tonel em $C^*(X;E)$, como $C(\beta_0X;E)$ \tilde{e} F-tonelado o espaço $C^*(X;E)$ \tilde{e} F-tonelado e portanto $T\subset C^*(X;E)$ \tilde{e} uma vizinhança de O em $C^*(X;E)$. Logo existe U vizinhança de O em E tal que

$$M*(X;U) \cap T \subset C*(X;E)$$

onde $M^*(X;U) = \{ f \in C^*(X;E) ; f(X) \subset U \}$ \tilde{e} uma vizinhança de O em $C^*(X;E)$.

Vamos mostrar que o fecho de $M^*(X;U)$ em C(X;E) é o conjunto M(X;U). Com efeito, seja Ψ um elemento de M(X;U) e seja $K\subseteq X$ compacto e seja V uma vizinhança F-convexa de V0 em V1. Formamos os conjuntos

$$U_{x} = \{ y \in X ; \Psi(x) - \Psi(y) \in V \}$$

cada U_X \bar{e} um conjunto aberto e fechado de X . Como K \bar{e} compacto existe k_1 ,..... k_n em K e U_{k_1} ,..... U_{k_n} tal que

$$K \subset \bigcup_{i=1}^{n} U_{k_i}$$

anotamos $\mathbf{U_i}$ em lugar de $\mathbf{U_k}$. Podemos supor sem perda de generalidade que a união dos $\mathbf{U_i}$ é disjunta. Afirmamos que a função

$$\gamma = \sum_{i=1}^{n} \chi_{U_i} \cdot e_i$$

onde $e_i = \Psi(k_i)$, \tilde{e} a função de M*(X;U) que verifica

mas isto é claro ja que se $k\epsilon K$ então $k\epsilon U_{j}$ para algúm je {1, n} , logo

$$\gamma(k) - \Psi(k) = \sum_{i=1}^{n} \chi_{U_{i}}(k)e_{i} - \Psi(k)$$

$$= e_{i} - \Psi(k) = \Psi(k_{i}) - \Psi(k)$$

donde $\gamma(k) - \Psi(k) \in V$.

(*)
$$M(X;U) \subset T$$

ja que T é fechado e M*(X;U) está contido em T.

Analizamos agora o conjunto supp T^{o} . Pela proposição 2.34., supp T^{o} é um conjunto limitante de X, como C(X;F) é F-tonelado, pelo teorema de Nachbin-Shirota não arquimedeano provado por Bachman, Beckenstein e Narici (ver [1],e [2]. $\S4$.), podemos concluir que supp T^{o} é um conjunto relativamente compacto de X.

Consideremos $\psi \epsilon C(X;E)$ tal que ψ $\tilde{\epsilon}$ nu la em supp Γ^0 . Tem-se que ψ $\tilde{\epsilon}$ nu la em supp Λ para todo $\Lambda \epsilon T^0$. Logo como X tem a propriedade do suporte anulante

$$\Lambda\left(\psi\right)=0$$
 para todo $\Lambda \epsilon T^0$
$$\Lambda\left(\lambda \psi\right)=0$$
 para todo $\lambda \epsilon F$, $|\lambda|>1$ e $\Lambda \epsilon T^0$

donde $\lambda\psi\epsilon T^{00}\subset\lambda T$ (ver proposição 1.36. a) e b)). Portanto ψ nula em supp T^0 implica que $\psi\epsilon T$. Pela propriedade de K(T) temos que

$$K(T) \subseteq supp To \subseteq \chi$$

logo pela proposição 2.21 e por (*) obtem-se

$$M(K(T); U) \subseteq T$$

donde T é uma vizinhança de 0 em C(X;E).

2.36 COROLARIO : Seja X um espaço ultraregular com a propriedade do suporte anulante . Se C(X;F) é F-tone-lado e E lim E, onde E, e uma sequência crescente de espaços normados n.a. e completos (ou espaços de Frechet, mais generalmente), então C(X;E) é F-tone-lado .

DEMONSTRAÇÃO : Se K $\bar{\rm e}$ compacto e $\rm E_i$ $\bar{\rm e}$ normado n.a e completo ou $\rm E_i$ $\bar{\rm e}$ um espaço de Frechet, então o espaço $\rm C(K;E_i)$ $\bar{\rm e}$ F-tonelado.

Pelo teorema 2.5 ,o limite indutivo dos espaços $C(K;E_i)$ \tilde{e} um subespaço denso de C(X;E).

Pela proposição 2.7 o limite indutivo dos espaços $C(K;E_{\hat{1}})$ é F-tonelado , e pela proposição 2.6 ,resulta que C(K;E) é F-tonelado .

 $Em\ particular\ tomando\quad K=\beta_0\,X\quad resulta$ $C(\beta_0\,X;E)\quad F\text{-tonelado}\quad .\ Pelo\ teotema\quad 2.35\quad obtemos\ fi\ \text{-}$ $nalmente\ que\quad C(X;E)\quad \tilde{e}\quad F\text{--tonelado}\quad .$

CAPITULO 3

ESPAÇOS F-BORNOLOGICOS

Consideramos neste capītulo X espaço topologico ultraregular , (E,τ_E) um espaço localmente F-convexo T_2 e $(F,|\cdot|)$ um corpo não trivialmente valoriza do, não arquimedeano . C(X;E) \tilde{e} o espaço definido em 1.48. b) , isto \tilde{e} o espaço das funções continuas com a topologia compacto aberta .

3.1 OBSERVAÇÃO : Da mesma forma trivial como foi provada a proposição 2.7. Pode provarse o seguinte:

O limite indutivo de espaços F-bornol \overline{o} gicos \overline{e} F-bornol \overline{o} gico . Consequentemente , o quociente de um espaço F-bornol \overline{o} gico \overline{e} F-bornol \overline{o} gico .

3.2 TEOREMA : Se C(X;E) \overline{e} F-bornologico, então C(X;F) e E são F-bornologicos

DEMONSTRAÇÃO: Como a propriedade de ser F-bornológico é invariante sob formação de quocientes, das proposições 2.1 e 2.2., resulta que C(X;F) e E são isomorfos a quocientes de C(X;E) e portanto ambos são F-bornológicos.

3.3 PROPOSIÇÃO : <u>Seja</u> T ⊂ C(X;E) <u>um conjunto bornívoro</u>.

<u>Se</u> E <u>ẽ metrizavel então existe uma vizinhança</u> F-<u>conve</u>

<u>xa</u> U <u>da origem em</u> E <u>tal que</u> M(X;U) ⊂ T

DEMONSTRAÇÃO : Seja { U_n } uma sequência fundamental

de vizinhanças F-convexas de 0 em E, supomos que a se quência dos $\, {\rm U}_{\rm n} \,$ $\, \bar{\rm e} \,$ decrescente .

Vamos supor que a afirmação da proposição \tilde{e} falsa , então para cada n , existe $\lambda_n \epsilon F$, $|\lambda_n| > n$ e existe $f_n \epsilon M(X; \lambda_n^{-1} U_n)$, tal que $f_n \not \in T$. Como a se quência dos U_n \tilde{e} decrescente temos que

$$\lambda_n f_n \longrightarrow 0$$
 em $C(X;E)$

Com efeito seja M(K;V) uma vizinhança de 0 em C(X;E) existe N tal que $U_n \subseteq V$ e ainda mais $U_{n+j} \subseteq V$ para todo $j \in N$, como $\lambda_{N+j} f_{N+j}(x) \in U_{N+j}$ para todo $x \in X$ temos que $\lambda_n f_n \in M(K;V)$ para todo $n \in N$. Como T \tilde{e} bornivoro, existe $\delta > 0$ tal que $|\lambda| > \delta$ implica que $\{\lambda_n f_n\} \subseteq \lambda T$, em particular para algum $j \in \{1, \ldots, n\}$ temos $|\lambda_j| > \delta$ e

$$\lambda_{j}f_{j} \in \lambda_{j}T$$

donde $f_j \in T$ isto contradiz a eleição de f_j .Logo existe U.

Da proposição 2.19 resulta que para um conjunto F-convexo e bornívoro $T \subseteq C(X;E)$, existe um conjunto compacto $K(T) \subseteq X$ chamado suporte de T que verifica o seguinte : Se $\beta_0 f \in C(\beta X;E)$ é nula numa vizinhança aberta de K(T), então $f \in T$.

3.4 PROPOSIÇÃO : Seja $T \subseteq C(X;E)$ um conjunto F-convexo e bornívoro e (E,τ_E) um espaço localmente F-convexo metrizavel. Se $K(T) \subseteq X$, então existe U uma vizinhança F-convexa de O em E tal que

$$M(K(T);U) \subseteq T$$

DEMONSTRAÇÃO : Pela proposição anterior, existe U vi

zinhança F-convexa de O em E tal que M(X;U)⊂T. Pela proposição 2.21. concluimos que

$$M(K(T);U)\subseteq T$$
.

3.5 PROPOSIÇÃO : Se $T \subset C(X; E)$ $\stackrel{\frown}{\underline{e}}$ F-convexo e bornīvo - ro , então $K(T) \subset v_0 X$

DEMONSTRAÇÃO : Supomos que $K(T) \notin \nu_0 X$, seja $x\epsilon K(T)$ e $x \not \in \nu_0 X$ então existe uma sequência $\{A_j\}$ de vizinhanças abertas e fechadas de x em $\beta_0 X$ tal que

$$(\bigcap_{i=1}^{\infty} A_i) \cap X = \phi$$

podemos supor que $A_0 = \beta_0 X$ e que $\{A_j\}$ é decrescente. Consideramos

$$B_i = A_0 \setminus A_i$$

{B_i} ē uma sequência crescente de conjuntos abertos e fechados tal que

$$X \stackrel{\subseteq}{=} \begin{array}{c} \infty \\ \cup \\ i=1 \end{array}$$

Temos que para cada $i \in N$, existe $f_i \in C(X;E)$ tal que

$$\beta_0 f_i(B_i) = 0$$
 e $f_i \notin T$

a existencia das f_i \bar{e} garantida pela definição de K(T) Com efeito suponhamos que existe $i_0\epsilon N$ tal que para toda $f\epsilon C(X;E)$ se $\beta_0 f(B_i^{})=0$ então $f\epsilon T$, isto significa que K(T) deve estar contido em $B_i^{}$ ja que o conjunto $B_i^{}$ \bar{e} compacto de $\beta_0 X$, esta \bar{e}^0 uma contradição ja que $\chi_{\epsilon} K(T)$ e $\chi \not\in B_i^{}$.

Afirmação : Dado $\lambda_i \in F$, a sequência $\{\lambda_i f_i\}$ é convergente a 0 em C(X;E). Para mostrar isto ,consideremos

M(K;U) uma vizinhança de 0 em C(X;E) . Como K \widehat{e} um subconjunto compacto de X , existe $J_n^{\ \subset} N$ tal que J_n \widehat{e} finito e

$$\begin{array}{ccc} K \subset \cup & B & \cap X \\ & i \in J_n \end{array}$$

seja $M = \max J_n$, ja que $\{B_i\}$ \tilde{e} crescente tem-se

$$K \subseteq B_m \cap X \subseteq B_{M+j} \cap X$$

para todo jeN . Então

$$\lambda_{M+j} f_{M+j}(K) \subset \lambda_{M+j} f_{M+j}(B_{M} \cap X)$$

$$\lambda_{M+j} f_{M+j}(B_{M+j} \cap X) = \{0\}$$

logo para todo $n \ge M$, $\lambda_n f_n \in M(K; U)$.

Consideremos $A=\{\lambda_{\bf j}\,{\bf f}_{\bf j}\}$ onde $\lambda_{\bf j}\,\epsilon\, F$ e $|\lambda_{\bf j}|\to\infty$, A $\tilde{\bf e}$ um conjunto limitado e T $\tilde{\bf e}$ bornívoro, logo existe $\delta>0$ tal que para todo $\lambda\epsilon F$, $|\lambda|>\delta$ temse

$$A \subset \lambda T$$

em particular existe λ_{M} com $|\lambda_{M}| > \delta$ tal que

$$\lambda_M f_M \epsilon \lambda_M T$$

donde $f_{\mbox{\scriptsize M}}\,\epsilon\, T$; o que contradiz a eleição dos $~f_{\mbox{\scriptsize i}}$. Esta contradição implica que $~K(T)\subseteq \nu_0\, X$.

3.6 TEOREMA : Se C(X;F) $\underline{\tilde{e}}$ F-bornologico \underline{e} (E,τ_E) $\underline{\tilde{e}}$ metrizavel . Então C(X;E) $\underline{\tilde{e}}$ F-bornologico .

 $\mathsf{DEMONSTRAÇÃO}$: Seja $\mathsf{T} \subseteq \mathsf{C}(\mathsf{X};\mathsf{E})$ F-convexo e bornívoro

Vamos provar que T é vizinhança da origem de C(X;E). Pela proposição 2.19. ,visto que T é F-convexo, existe um compacto $K(T) \subseteq \beta_0 X$, conjunto suporte de T. Pela proposição anterior,na verdade K(T) esta contido em $\nu_0 X$. Entretanto como C(X;F) é F-bornológico, pelo teorema de Nachbin-Shirota não arquime deano provado por Govaerts (|7|), podemos afirmar que X é um Q_0 espaço. Logo $K(T)\subseteq X$. Pela proposição 3.4. existe U vizinhança de O em E tal que

 $M(K(T);U) \subset T$

donde T é uma vizinhança de O em C(X;E).

DF - ESPAÇOS

§ 1 <u>Propriedades</u> <u>dos</u> DF-<u>espaços</u>

Nesta seção (E, τ_E) é um espaço local - mente F-convexo T $_1$,(F,| |) é um corpo valorizado não arquimedeano onde a valorização é não trivial .

4.1 PROPOSIÇÃO : Supomos que (F, | |) $\underline{\tilde{e}}$ esfericamente completo . Se (E, τ_E) $\underline{\tilde{e}}$ metrizavel n.a. ,então E_{β}^{\dagger} $\underline{\tilde{e}}$ um DF-espaço .

DEMONSTRAÇÃO : Seja $\{U_n\}$ um sistema fundamental enumeravel de vizinhanças da origem em (E,τ_E) . Consideremos $\{U_0^0\}$ a família dos polares de U_n em E'. $\{U_0^0\}$ resulta uma família enumeravel de limitados em E'_β ja que cada U_n^0 é equicontinuo (ver Van Tiel [22]. Th.4.3) portanto fortemente limitado .

A familia {U_0} \tilde{e} fundamental . Com e -feito ,se LCE' \tilde{e} limitado , LO \tilde{e} uma vizinhança de O em E logo existe U_n tal que U_nCL . Portanto tem -se que LOCUO . Isto prova (i) da definição 1.38.

Seja agora $V = \bigcap_{n \in \mathbb{N}} V_n$ um conjunto bor

nívoro ,onde cada V_n é uma vizinhança F-convexa da o rigem em E_{β}^+ . V resulta F-convexa e fechada , logo pelo teorema dos bipolares não arquimedeano (Proposição 1.36) , dado $\lambda \epsilon F$, $|\lambda| > 1$ obtem-se

(*) ¥00 € ¥

Vamos mostrar que Vº é limitado em (E, τ_E). Seja U vizinhança de 0 em E ,como Uº é limitado em E' e V é bornívoro ,existe $\lambda\epsilon F$ tal que Uº C V . Logo

$Vo \subset \alpha Uoo \subset \alpha \gamma U$

para algúm $\gamma \epsilon F$, $|\gamma| > 1$. Isto prova que V° é limitado. Portanto V° é uma vizinhança de O em E'. Por (*) o mesmo ocorre com V. Logo (ii) da Definição 1.38. está satisfeita então E' é um DF-espaço.

4.2 PROPOSIÇÃO Seja (E, τ_E) um DF-espaço , então E' \underline{e} um espaço de Frechet .

DEMONSTRAÇÃO : Seja $\{B_n\}$ uma familia fundamental enumeravel de limitados de E , e seja U_m uma base enumeravel de vizinhanças de O em $(F,|\ |\)$, então a familia $\{M(B_n,U_m)\}_{n,m\in N}$ é uma base enumeravel de vizinhanças da origem no espaço E_{β}^{\dagger} .

Para mostrar a completude , escolhemos $(f_i)_{i\in N}$ uma sequência de Cauchy em E', esta sequência \tilde{e} fortemente limitada em E', logo como (E,τ_E) \tilde{e} um DF-espaço , (f_i) \tilde{e} equicontinuo . Por outra parte definimos $f(x) = \lim_{i \to \infty} f_i(x)$ (a existencia de f(x) \tilde{e} garantida pela completude de $(F,|\cdot|)$). Então f pertence ao fecho de (f_i) na topologia da convergencia simples em F^E . Finalmente por Prolla ([22], 2.57) obtemos que $f\epsilon E'$ \tilde{e} portanto (f_i) \tilde{e} convergente .

4.3 PROPOSIÇÃO : Seja (F, | |) um corpo esfericamente completo . Se E \overline{e} um DF-espaço e M \subseteq E \overline{e} um subes-

paço fechado de E, então E/M é um DF-espaço.

DEMONSTRAÇÃO : Para provar a existencia de uma família fundamental enumerável de limitados em E/M vamos a nalizar o dual forte de E/M.

Consideremos a função $\Psi: M^{O} \longrightarrow (E/M)'$ definida por $\Psi(f) = fov^{-1}$ onde v é a aplicação quociente. Vamos mostrar que Ψ é um isomorfismo vetorial topologico do espaço $(M^{O},\beta(E',E))$ sobre o espaço $((E/M)',\beta((E/M)',E/M))$:

Claramente podemos ver que Ψ é um isomorfismo vetorial. Para mostrar a continuidade de Ψ , como Mº é metrizável com a topologia induzida pelo dual forte do DF-espaço E basta mostrar que Ψ leva sequências convergentes a 0 em Mº sobre conjuntos limitados em (E/M)'.

Seja $\{f_i\}$ uma sequencia convergente a 0 em Mº, $\{f_i\}$ ë um conjunto fortemente limitado em E' logo $\{f_i\}$ ë equicontinuo em E', portanto $\{f_i \circ v^{-1}\}$ ë equicontinuo em (E/M)', logo $\{f_i \circ v^{-1}\} = \{\Psi(f_i)\}$ ë limitado em (E/M)'.

Para mostrar que Ψ é aberta, consideremos a vizinhança de 0 seguinte $U = M^0 \cap A^0$, onde A é um limitado de E, então

$$Ψ(U) = Ψ(M^0 \cap A^0) =$$

$$= \{ fov^{-1} ; fεM^0 e fεA^0 \}$$

Pode-se verificar facilmente que $(v(A))^\circ$ é uma vizi - nhança da origem em $(E/M)^+$ que esta contida em $\Psi(U)$, basta observar para isto que se $g\varepsilon(v(A))^\circ$ então

 $g = (gov)ov^{-1}$ onde $gov \in M^o$ e $gov \in A^o$.

Assim mostramos que Ψ \tilde{e} um isomorfis - mo vetorial topologico de MO sobre (E/M)' com as correspondentes topologias fortes .

Seja agora L um limitado em (E/M), então Lº ē uma vizinhança de O em (E/M)'.Pelo provado acima, afirmamos que existe A⊆E limitado, que podemos ainda supor Γ-fechado pela observação 1.35. b) tal que

(*)
$$\Psi(A^{0} \cap M^{0}) \subset L^{0}$$

obtemos então que

$$v^{-1}(L) \subset (A^{\circ} \cap M^{\circ})^{\circ}$$

logo

$$L \subset v(A^{\circ \circ} \cup M^{\circ \circ}) = v(A^{\circ \circ}) \cup v(M^{\circ \circ})$$

como A e M são Γ-fechados então

$$L \subseteq V(A) \cup V(M) \subset V(A)$$

podemos portanto afirmar que dado um limitado L de E/M existe um limitado a em E tal que $L\subseteq \nu(A)$, logo existe em E/M um sistema fundamental énumeravel de limitados $\{\nu(B_n)\}$ onde $\{B_n\}$ é o sistema fundamental enumeravel de limitados de E.

Para mostrar a segunda condição de DF-espaço , seja V_n uma sequência de vizinhanças de 0 em E/M tal que a interseção $V=\bigcap_{n\in\mathbb{N}}V_n$ é um conjunto bornívoro em E/M . A seguinte relação é válida

$$v^{-1}$$
 (V) = v^{-1} ($\bigcap_{n \in \mathbb{N}} V_n$) = $\bigcap_{n \in \mathbb{N}} v^{-1} (V_n)$

 \tilde{e} evidente que $v^{-1}(V)$ \tilde{e} bornivoro em E , ja que se A \tilde{e} limitado em E , v(A) \tilde{e} limitado em E/M . Logo existe $\lambda \epsilon F$ tal que $v(A) \subseteq \lambda V$ ou seja

$$A \subseteq v^{-1}(v(A)) \subseteq \lambda v^{-1}(V)$$

v⁻¹(V) é bornívoro e é a interseção de uma família enumerável de vizinhanças F-convexas de O no DF-espaço E e em consequencia V é uma vizinhança de O em E/M.

4.4 LEMA : <u>Seja E um espaço vetorial topológico</u>
com um sistema fundamental enumeravel de vizinhanças de
0 . <u>Então dada uma sequência</u> Η_η <u>de limitados, existe</u>
{μ_η <u>sequência limitada em (F, |) tal que</u>

$$n \in \mathbb{N}^{-\mu} n^H n$$

<u>ẽ limitada</u> .

DEMONSTRAÇÃO : Seja { V_n } sequência fundamental de crescente de vizinhanças de 0 em E . Dado o par (V_n, H_n) existe $\delta_n > 0$ tal que , para todo $\lambda \epsilon F$ tal que $|\lambda| \ge \delta_n$ tem-se $H_n \subseteq \lambda V_n$.

Para (V_1,H_1) seja $\delta_1'=\delta_1$, para (V_s,H_s) seja $\delta_s'=\max\{\delta_{s-1},\delta_s\}$. Obtemos desta forma uma sequência crescente de números $\{\delta_1'\}$ em R. Escolhemos λ_i ϵ F tal que $|\lambda_i|>\delta_i$.

 $\frac{\text{Afirmação}}{i \in \mathbb{N}}: \begin{array}{c} \cup \lambda_{i}^{-1} \text{ H}_{i} & \tilde{e} \text{ um conjunto li-} \\ \end{array}$

mitado em E. Com efeito seja V uma vizinhança de O em E, temos que provar que existe O tal que para α ϵ F e $|\alpha| > \delta$ então \cup λ \tilde{i} H, α V.

Podemos supor sem perda de generalidade que V é equilibrada . Existe n_0 tal que $V_m \subseteq V$ para todo $m > n_0$. Donde $\lambda_m^{-1} H_m \subseteq V_m \subseteq V$ para todo $m > n_0$. Logo

$$(1) \qquad \qquad \begin{array}{c} \overset{\infty}{\cup} H \\ s = n_0 \end{array} S \subseteq V$$

$$A = \bigcup_{s=1}^{n_0-1} \lambda_s^{-1} H_s \subset \alpha V$$

4.5 PROPOSIÇÃO : Seja E um DF-espaço sobre (F, | |) esfericamente completo . Dada { V_n } uma sequência de vizinhanças de 0 em E , existe sequência { λ_n } em F tal que $V = \cap_{\lambda_n} V_n$ e uma vizinhança de 0 em E .

DEMONSTRAÇÃO : Podemos supor sem perda de generalida de que V_n é F-convexa para todo $n \in N$. Consideremos $H_n = V_n^0$, H_n é equicontinuo , logo fortemente limita do em E'. Como E é um DF-espaço , E' é metrizável (ver proposição 4.2) ,logo pela proposição 4.4. ,existe uma sequência limitada $\{\mu_n\}$ em F tal que

$$H = \bigcup_{n \in \mathbb{N}} \mu_n H_n$$

é limitado em E'. Temos um conjunto H que é união enumerável de conjuntos equicontinuos e que é fortemente limitada. Usando novamente o fato que E é DF-

espaço, obtemos pela Observação 1.39. que H é equicontinuo. Logo Hº é uma vizinhança de 0. Consideran do as relações seguintes;

$$Ho = \left(\begin{array}{cc} \cup \mu_n H_n \\ n \in N \end{array} \right) \circ = \begin{array}{cc} \cap \mu_n^{-1} v_n \circ \circ \circ & \cap \mu_n^{-1} \alpha_n V \\ n \in N \end{array}$$

onde $\alpha_n \in F$ e $|\alpha_n| > 1$, para todo $n \in N$, obtemos que se $A_n = \mu_n^{-1} \alpha_n$, então o conjunto

$$V = \bigcap_{n \in \mathbb{N}} \lambda_n V_n$$

é uma vizinhança de 0 em E.

§ 2 Condições para que C(X;F) e C(X;E) sejam DF-espaços.

Nesta seção o espaço topologico X é ul traregular , o espaço vetorial topológico (E,τ_E) é local mente F-convexo e o corpo $(F,|\;|)$ tem uma valorização não trivial não arquimedeana.

4.6 PROPOSIÇÃO : <u>Sejam M₁,....M_k conjuntos F-conve</u>

<u>xos de E, sejam U uma vizinhança F-convexa de O em</u>

<u>E e K um conjunto compacto de X . Então</u>

$$M(K;U + \sum_{m=1}^{K} M_{m}) \subset M(K;U) + \sum_{m=1}^{K} M(X;M_{m})$$

DEMONSTRAÇÃO : Seja f ϵ M(K;U + $\sum\limits_{m=1}^{k}$ M(X;M_m) , consideremos o compacto

$$S = \{x \in K : p_U(f(x)) \ge 1\}.$$

$$\lim_{x \to \infty} p_U(f(x)) \ge 1\}.$$

$$\lim_{x \to \infty} p_U(f(x)) \ge 1$$

$$\lim_{x \to \infty} p_U(f(x)) \ge 1$$

e consideremos os conjuntos abertos e fechados

$$V_{j} = \{x \in X ; p_{U}(f(x) - f(x_{j})) < 1 \}$$

onde os x_j são elementos de S. Notamos que V_j é aberto e fechado porque a seminorma é não arquimedeana e V_j é imagem inversa por f da bola B_{p_1} (f(x_j),1/2).

A compacidade de S implica a existencia de $t\in\mathbb{N}$ tal que S $^{\subset}$ U $_{j}$, podemos supor que esta união \tilde{e} disjunta

Por outra parte , para cada x_j , j=1,...

...t , existe
$$\begin{matrix} k & & k \\ \Sigma & h^{m} & \varepsilon & \Sigma & M \\ m=1 & & m=1 \end{matrix} _{m}$$

tal que

(*)
$$f(x_{j}) + \sum_{m=1}^{k} h_{j}^{m} \in U$$

Finalmente podemos mostrar que

$$f = f + \sum_{m=1}^{k} \sum_{j=1}^{k} \chi_{i,j} \otimes h_{j}^{m} - \sum_{m=1}^{k} \sum_{j=1}^{k} \chi_{i,j} \otimes h_{j}^{m}$$

pertence ao conjunto

$$M(K;U) + \sum_{m=1}^{K} M(X;M_m)$$

para isso basta mostrar que

$$f + \sum_{m=1}^{k} \sum_{j=1}^{\Sigma} \chi_{V_{j}} \otimes h_{j}^{m} = f - \sum_{j=1}^{t} \chi_{V_{j}} \otimes f(\chi_{j}) + \sum_{j=1}^{t} \chi_{V_{j}} \otimes f(\chi_{j})$$

e que
$$G_{\mathbf{j}}(K) = (f - \sum_{j=1}^{L} \chi_{\mathbf{j}} \otimes f(x_{j}))(K)$$

$$G_{\mathbf{j}}(K) = (\sum_{j=1}^{L} \chi_{\mathbf{j}} \otimes f(x_{j}) + \sum_{m=1}^{L} \sum_{j=1}^{L} \chi_{\mathbf{j}} \otimes h_{\mathbf{j}}^{m})(K)$$

verificam $G_1(K) \subseteq U$, $G_2(K) \subseteq U$.

Seja x ϵ K , se x ϵ \cup V $_j$ então existe j_o tal que x ϵ V $_{j_o}$ logo $G_1(x) = f(x) - f(x_{j_o})$, portanto $p_U(G_1(x)) > 1$ o que significa $G_1(x) \in U$.

Seja x є K , se x ¢ \cup V j então x¢S ,logo $G_1(x) = f(x)$ como x¢S , $p_U(f(x))<1$ logo $G_1(x)$ є U .

Seja x & K , se x& \cup V , existe jo tal que x& V então $G_2(x) = f(x_{j_0}) + \sum_{m=1}^{\Sigma} h_j^m$, logo por (*) tem-se

 $G_2(x) \in U$.

SejaxeK, se $x \notin \cup V_j = G_2(x) = 0 \in U$.

Concluimos que $f \in M(K;U) + \sum_{j=1}^{K} M(X;M_m)$.

4.7 PROPOSIÇÃO : Sejam X um espaço topológico fortemen te contavelmente compacto . Se $\{B_n\}$ é uma sequência fundamental de limitados em E , então $M(X;B_n)$ é uma sequência fundamental de limitados em C(X;E) .

DEMONSTRAÇÃO : È evidente que cada $M(X;B_n)$ é limita-

do . Supomos contrariamente que existe $L \subseteq C(X;E)$ limitado tal que $L \setminus M(X;B_n) \neq \phi$ para todo $n \in N$. Seja $f_n \in L \subseteq M(X;B_n)$ e $x_n \in X$ tal que

$$f_n(x_n) \notin B_n$$

Consideremos A = { x_n ; $n \in \mathbb{N}$ }. Pela h<u>i</u> põtese sobre X sua aderência \overline{A} \in compacta em X . Afirmamos que $\bigcup_{n \in \mathbb{N}} f_n(\overline{A})$ \in limitado .

Com efeito , seja V 'uma vizinhança de 0 em E , como L \subseteq C(X;E) $\stackrel{\leftarrow}{e}$ limitado , existe $\delta>0$ tal que $\lambda\epsilon F$, $|\lambda|>\delta$ implica

$$L \subseteq \lambda M(\overline{A}; V)$$

Donde { f(a) ; f \in L e a \in A } \subset V , em particular { f_n(a) ; n \in N e a \in A } \subset V , portanto o conjunto \cup f_n(A) \in limitado em E , e de aqui que existe j \in N n \in N tal que \cup f_n(A) \subset B_j . Em particular obtemos que n \in N e a inda mais obtemos que f_j(A) \subset B_j e a inda mais obtemos que f_j(x_j) \in B_j . Isto contradiz a eleição dos f_j e x_j , e estabelece a proposição .

4.8 TEOREMA : <u>Sejam X um espaço ultraregular e W-compacto e (F, |) um corpo esfericamente completo .</u>

<u>Então se E é um DF-espaço , C(X;E) é tambem um DF-espaço .</u>

DEMONSTRAÇÃO : Seja $\{V_n\}$ uma sequência de vizinha<u>n</u>

ças F-convexas de 0 em C(X;E). Seja V = $\bigcap_{n \in N} V_n$.

Temos que mostrar que se V é bornívoro, então V é uma vizinhança de O em C(X;E). A prova é por recorrencia . Constroem-se sequências $\{\lambda_i\}$, $\{U_j\}$, $\{K_i\}$ de escalares de F, vizinhanças de O em E e compactos em X, respactivamente, com as propriedades seguintes

(1)
$$M(X; \lambda_i B_i) \subseteq V$$
 para todo $i \in N$

(2)
$$M(K_i, U_i) \subseteq V_i$$
 para todo $i \in N$

(3)
$$\lambda_{j}B_{j} \subset U_{j}$$
 para todo i , j em N

cada B_i pertence a uma família fundamental de limitados de E que é enumeravel, esta família existe ja que E é um DF-espaço. Vamos supor que cada B_i é F-convexo e fechado.

Supomos que existe λ_i , U_i , K_i para $i=1,\ldots,n$, com as propriedades (1), (2), (3). Como B_{n+1} \tilde{e} limitado em E, $\underbrace{\text{existe}}_{n+1} \lambda_{n+1} \epsilon$ F tal que

a)
$$\lambda_{n+1}B_{n+1} \subset \bigcap_{i=1}^{n} U_i$$

b)
$$M(X; \lambda_{n+1} B_{n+1}) \subseteq V$$

a existencia de λ_{n+1} para o caso a) \bar{e} garantida ja que a interseção finita dos U_i \bar{e} uma vizinhança de 0 em E , para o caso b) a hipotese que V \bar{e} bornívoro garante a existencia do λ_{n+1} .

Ja que V_{n+1} é uma vizinhança de 0 em C(X;E) , existe K_{n+1} compacto de X e W_{n+1} vizi - nhança de 0 em E tal que

c)
$$M(K_{n+1}; W_{n+1}) \subset V_{n+1}$$
.

$$\underbrace{\text{Construimos}}_{n+1} \text{ o conjunto } U_{n+1} = W_{n+1} + \underbrace{\sum_{i=1}^{n+1} \lambda_i B_i}_{n+1}, U_{n+1}$$

ẽuma vizinhança de O F-convex e satisfaz

$$\lambda_{\mathbf{j}}^{\mathbf{B}}\mathbf{j} \subseteq \mathbf{U}_{n+1}$$

para todo $j=1,\ldots,n,n+1$. Por a) obtemos que $\lambda_{n+1}B_{n+1}\subset U_i$, para todo $i=1,\ldots,n$. Logo tem-se que $\lambda_jB_j\subset U_i$ para todo $i,j=1,\ldots,n+1$.

Então existem λ_{n+1} , U_{n+1} , K_{n+1} , que verificam as propriedades (1) e (3), falta mostrar que $M(K_{n+1};U_{n+1}) \subseteq V_{n+1}$, o que estabeleceria (2)

Como
$$\bigcap_{i \in \mathbb{N}} V_i = V \subseteq V_{n+1}$$
 e como

 $M(\,X\,;\lambda_{\,\hat{1}}\,B_{\,\hat{1}}^{}\,)\subseteq V$ para todo i == 1,....,n+l .Então , ja que $V_{\,n+1}^{}$ é F-convexa

d)
$$\sum_{i=1}^{n+1} M(X; \lambda_i B_i) \subseteq V_{n+1}$$
.

Por c) e d) resulta

$$M(K_{n+1}; W_{n+1}) + \sum_{i=1}^{n+1} M(X; \lambda_i B_i) \subseteq V_{n+1}$$

usando a proposição 4.6. resulta que

$$M(K_{n+1}; W_{n+1} + \sum_{i=1}^{n+1} M(X; \lambda_i B_i)) \subseteq V_{n+1}$$

ou seja

$$M(K_{n+1};U_{n+1}) \subseteq V_{n+1}$$

Logo $\{\lambda_i\}$, $\{U_i\}$, $\{K_i\}$ existem e verificam as propriedades (1) , (2) , (3) .

Resulta da propriedade (3) que a sequência de vizinhanças F-convexas e fechadas $\{U_n\}$ tem interseção bornívora em E, Se chamamos $U=\bigcap_{n\in N}U_n$, então U é uma vizinhança de 0 no DF-espaço E.

Como X é W-compacto ,existe K subconjunto compacto de X tal que \cup K \cap K . Pela propriedade (2) obtemos

$$\bigcap_{n \in \mathbb{N}} M(K; U_n) \subseteq \bigcap_{n \in \mathbb{N}} M(K_n; U_n) \subseteq \bigcap_{n \in \mathbb{N}} V_n = V$$

Donde

$$M(K;U) \subseteq \bigcap_{n \in \mathbb{N}} M(K;U_n) \subseteq V$$
.

Logo V é uma vizinhança de O em C(X;E).

A primeira parte da definição de DF-espaço é verificada neste caso ja que existe uma sequência fundamental de limitados $\{B_n\}$ em E e pela proposição 4.7. a sequência $\{M(X;B_n)\}$ é uma família fundamental e numeravel de limitados em C(X;E).

4.9 TEOREMA : Seja (F, | |) um corpo esfericamente completo . Então, C(X;F) \underline{e} um DF-espaço se e somente se , X \underline{e} W-compacto .

DEMONSTRAÇÃO : Se X $\tilde{\text{e}}$ W-compacto,como (F,||) $\tilde{\text{e}}$ um DF-espaço , pelo teorema 4.8 resulta que $\mathcal{C}(X;F)$ $\tilde{\text{e}}$ um DF-espaço .

Reciprocamente, suponhamos que C(X;F) é um DF-espaço. Seja $\{K_n\}$ uma sequência de subconjuntos compactos de X, devemos provar que existe $K^{\subset}X$, compacto tal que

Formamos as vizinhanças de 0 em C(X;F)

$$M(K_n; B_1)$$

onde B = { $\lambda \varepsilon F$; $|\lambda| < \delta$ }. Pela proposição 4.5. exis te uma sequência { λ_n } em F tal que

$$\frac{\cap}{n \in \mathbb{N}} \lambda_n^{\mathsf{M}(\mathsf{K}_n;\mathsf{B}_1)}$$

 \tilde{e} uma vizinhança de 0 em C(X;F) . Logo existe K subconjunto compacto de X tal que

(*)
$$M(K;B_{\delta}) \subseteq \bigcap_{n \in \mathbb{N}} \lambda_n M(K_n;B_{\tilde{I}})$$
.

Afirmação: $K_n^{\ C}K$ para todo $n\in N$. Suponhamos contrariamente, exista $n_0\in N$ tal que $K_{n_0}\not\subset K$. Então existe $x\in K_{n_0}$, $x\not\in K$ e existe $f\in C(X;F)$ tal que

$$f(x) = 1$$
 e $f(K) = \{0\}$

considerando $\gamma\epsilon F$ tal que $|\gamma|\!>\!|\lambda_{n_0}|$,obtemos que $\gamma f\,\epsilon\, M(\,K\,;\!B_{\,\delta})$ ja que $f(\,K\,)\,=\{0\}$ $B_{\,\delta}$. Por outro lado $\gamma f\not\in \lambda_{n_0}^{}M(\,K_{n_0}^{};\!B_{\,1}^{})$, ja que $\gamma f(\,x\,)\,=\,\gamma$ e $|\gamma|\cdot|\lambda_{n_0}^{}|$, o que contradiz (*) .

Na proposição 4.3. mostramos que o quociente separado de um DF-espaço é um DF-espaço. No capitulo 2, teoremas 2.1 e 2.2 mostramos que C(X;F)

- e E , podem ser considerados como subespaços fechados complementados de $\mathcal{C}(X;E)$.Com estes elementos e com os teoremas 4.8 e 4.9. , temos demonstrado o seguinte :
- 4.10 COROLARIO : <u>Seja X um espaço topológico</u> ,(F; | |)

 <u>um corpo esfericamente completo</u> , <u>então</u> C(X;F) <u>e</u> E

 <u>são DF-espaços se,e somente se</u> , C(X;E) <u>e um DF-espa-</u>
 <u>ço</u> .

CAPITULO 5

ESPAÇOS REFLEXIVOS , DE SCHWARTZ e DE MONTEL.

§ 1 Propriedades dos espaços de Schwartz e quase-normados .

Nesta seção (F, |) \bar{e} um corpo não trivialmente valorizado ,não arquimedeano e (E, τ_E) \bar{e} um espaço vetorial topológico .

As definições apresentadas a continuação, são uma adaptação direta das definições apresentadas por Grothendieck [8] , ao caso não arquimedeano .

- 5.1 DEFINIÇÃO : Seja V um subconjunto de E , V ē dito totalmente limitado relativamente a um subconjunto U de E se : dado $\lambda \epsilon F$, $\lambda \neq 0$, existe x_1, \ldots, x_n em E tal que $V \subseteq \bigcup_{i=1}^n (x_i + \lambda U)$
- 5.2 DEFINIÇÃO : Um espaço localmente F-convexo é cha mado <u>espaço de Schwartz</u> se dada U uma vizinhança F-convexa de zero , existe uma vizinhança F-convexa de zero V que é totalmente limitada relativamente a U .
- 5.3 DEFINIÇÃO : Um subconjunto A de E, é dito <u>total</u> <u>mente limitado</u> se é totalmente limitado relativamente a todas as vizinhanças de zero do espaço E.
- 5.4 OBSERVAÇÃO : Todo corpo local é um espaço de

Schwartz, ja que existe uma vizinhança compacta de O que é totalmente limitada relativamente a qualquer outra vizinhança de O do corpo.

5.5 PROPOSIÇÃO : Seja $\{E_i\}_{i \in I}$ uma família de espaços de Schwartz e $E = \prod_{i \in I} E_i$, então E $\underbrace{\acute{e}}$ também um espaços de Schwartz .

DEMONSTRAÇÃO : Seja U uma vizinhança de O F-convexa em E , e seja $\lambda\epsilon F$, $\lambda\neq 0$. Supomos sem perda de generalidade que

$$U = \prod_{i \in J} U_i \quad x \quad \prod_{i \in I} E_i$$

onde J \tilde{e} um subconjunto finito de I e cada U_i , i \tilde{e} \tilde{e} uma vizinhança F-convexa de O em E_i . Como E_i \tilde{e} um espaço de Schwartz , para cada i \tilde{e} J , existe V_i vizinhança F-convexa de O em E_i tal que

$$(\text{``}) \qquad \qquad \text{V}_{i} \subset \bigcup_{j=1}^{m_{i}} (x_{j}^{i} + \lambda \text{U}_{i})$$

Consideremos

$$V = \Pi V_i \times \Pi E_i$$

pela inclusão (*) temos que

$$V \subseteq \prod_{i \in J} (\bigcup_{j=1}^{m_i} (x_j^i + \lambda U_i) x \prod_{i \in I} E_i$$

por outra parte vemos claramente que

onde
$$\alpha_s \in \Pi$$
 ($\bigcup_{i=1}^{m_i} x_j^i$) e $t = \prod_{i \in J} m_i$

logo

finalmente fazendo $\hat{\alpha}_{s} = (\alpha_{s}, 0)$

$$V \subset \bigcup_{s=1}^{t} (\hat{\alpha}_{s} + \lambda (\prod_{i \in J} U_{i} \times \prod_{i \in I \setminus J} E_{i}))$$

e portanto V é totalmente limitada relativa a U .

5.6 PROPOSIÇÃO : <u>Todo subespaço de um espaço de Schwartz</u> .

DEMONSTRAÇÃO : Seja S subespaço de E, E espaço de Schwartz. Seja U uma vizinhança F-convexa de O em S entaõ existe M vizinhança da origem em E tal que U = MoS, e existe N vizinhança da origem em E tal que N ē totalmente limitada relativamente a M.

Afirmamos que $V=N\cap S$ é uma vizinhan - ça de 0 em S, totalmente limitada relativamente a V. Seja $\lambda\epsilon F$, $\lambda\neq 0$, então existe x_1,\ldots,x_n , em E talque $N\subseteq \bigcup_{i=1}^n (x_i+\lambda M)$. Consideremos

$$J = \{ i ; S \cap (x_i + \lambda M) \neq \phi \}$$

Para $i \in J$, seja $s_i \in S \cap (x_i + \lambda M)$, então se $v \in V$, $v = x_i + m$ e $v \in S$. De outra forma podemos anotar $v = s_i + x_i - s_i + m$, como $M \in F$ -convexo resulta $v = s_i + m'$. Logo $v - s_i \in \lambda M$ e $v - s_i \in S$, então $v \in (s_i + \lambda M \cap S)$.

5.7 PROPOSIÇÃO : <u>Todo subconjunto limitado de um espaço</u>

de Schwartz E, <u>e</u> totalmente limitado.

DEMONSTRAÇÃO : Seja A E limitado e seja U uma vizinhança F-convexa da origem em E . Dado $\lambda \epsilon F$, $\lambda \neq 0$, temos que para λU existe uma vizinhança V da origem em E tal que dado $\alpha \epsilon F$, $\alpha \neq 0$, existe g_1,\ldots,g_n em E que verificam

(*)
$$V \subseteq \bigcup_{j=1}^{n} (g_{j} + \alpha(\lambda U))$$

Por outra parte A é limitado . Logo para $\gamma\epsilon F$ ($|\gamma|$ maior que um certo $\delta >0$), tem-se

$$A \subseteq \gamma V$$

Fazendo $\alpha = \gamma^{-1}$ em (*) resulta

$$\gamma^{V} \subset \bigcup_{j=1}^{n} (\gamma^{g}_{j} + \lambda^{ij})$$

se e_j = γg_j resulta

$$A \subset \bigcup_{j=1}^{n} (e_{j} + \lambda U)$$

logo A é totalmente limitado em E.

5.8 DEFINIÇÃO : Seja (E, τ_E) um espaço localmente F-convexo . (E, τ_E) é chamado <u>quase normado</u> se para toda vizinhança U de zero em E , existe V vizinhança de zero em E tal que : dado $\lambda \epsilon F$, $\lambda \neq 0$, existe B_{λ} limitado em E que verifica

$$V \subset B_{\lambda} + U$$
.

5.9 EXEMPLO : Todo espaço de Schwartz e quase normado . 5.10 PROPOSIÇÃO : Se E $\stackrel{\circ}{e}$ quase normado e M E $\stackrel{\circ}{e}$ um subespaço de E , enta $\stackrel{\circ}{o}$ E/M $\stackrel{\circ}{e}$ quase normado .

DEMONSTRAÇÃO : Seja U uma vizinhança de O no espaço quociente E/M então U = $\nu(S)$ onde S é uma vizinhança de O em E e ν é a aplicação canónica de E sobre E/M . Para S existe T vizinhança de O em E tal que se $\lambda \epsilon F$, $\lambda \neq 0$ existe B_{λ} limitado em E tal que

$$T \subset B_{\lambda} + S$$

logo em E/M temos

$$\nu(T) \subset \nu(B_{\lambda}) + \nu(S)$$

portanto como $\mbox{ ν}(\mbox{B}_{\lambda})$ é limitado em E/M , resulta o espaço E/M ser quase normado .

§ 2 <u>Condições para que</u> C(X;F) <u>e</u> C(X;E) <u>sejam</u> espaços de Schwartz ou quase normados .

Nesta seção supomos que X é um espaço topológico ultraregular , $(F,|\ |)$ é um corpo não tri vialmente valorizado não arquimedeano , e $(E;\tau_E)$ um espaço localmente F-convexo, Hausdorff .

- 5.11 TEOREMA : <u>Dadas as seguintes proposições</u>
 - a) C(X;F) <u>e um espaço de Schwartz</u> .
 - b) Todo subconjunto limitado de C(X;F) é totalmente limitado .

- c) Todo subconjunto compacto de X $\tilde{\mathbf{e}}$ finito .
- d) A topologia induzida por F^{X} e a topologia compacto aberta coincidem em C(X;F).

tem-se que 10 a) implica b), 20 b) implica c), 30 c) implica d), 40 Se o corpo (F, | |) for local d) implica a).

DEMONSTRAÇÃO : 10) segue da proposição 5.7.

2º) Seja K um subconjunto compacto e infinito de X . Denotamos por \boldsymbol{B}_1 o conjunto

$$B_1 = \{ \alpha \epsilon F ; |\alpha| \le 1 \}$$

e por V₁ o conjunto

$$V_1 = \{ \alpha \in F ; |\alpha| < 1 \}$$

Então o conjunto limitado $M(X;B_1) = \{ f \in C(X;F); f(x) \le l \}$ para todo $x \in X$ \in totalmente limitado relativamente \widetilde{a} vizinhança $M(K;V_1)$ de O em C(X;F). Portanto existem $\{f_i\}$, $i=1,\ldots,n$, em C(X;F) tal que

$$M(X;B_{1}) \subseteq \bigcup_{i=1}^{n} (f_{i} + M(K;V_{1}))$$
.

Escolhendo k_1,\dots,k_n , n pontos diferentes de $\,K$, temos que para cada $\,i$, existe uma função $\,g_i \epsilon C(X;F)$ tal que

$$|g_{i}(x)| < 1$$
 para todo $x \in X$

$$g_{i}(k_{j}) = \delta_{ij}$$
 para todo $i,j = 1,...,n$.

Fazemos $\Psi = \sum_{i=1}^{n} a_i g_i$ onde os a_i são elementos de F

que verificam as condições seguintes

$$|a_{i}| = 1$$
 se $|f_{i}(k_{i})| < 1$
 $|a_{i}| = 0$ se $|f_{i}(k_{i})| \ge 1$

Afirmação $\Psi \notin M(X;B_{\frac{1}{4}})$. Com efeito , para cada $i=1,\ldots,n$, temos que

$$|(\Psi - f_{i})(k_{i})| = |\sum_{j=1}^{n} a_{j}g_{j}(k_{i}) - f_{i}(k_{i})| =$$

$$= |a_{i} - f_{i}(k_{i})|$$

$$= \max\{|a_{i}|, |f_{i}(k_{i})|\} \ge 1$$

Logo (Ψ - f_i) $\not\in$ M(K;V₁) para todo $i=1,\ldots,n$,(a \widehat{u} ltima equivalência tem-se pela definição dos a_i e pela observação 1.1. b)).

Por outra parte, pela eleição das funções g_i e como B_I é um conjunto F-convexo, tem-se que Σ $a_ig_i(x)\epsilon B_i$, para todo $x\epsilon X$. Esta contradição prova que K deve ser finito.

39) A topología de C(X;F) \tilde{e} a compacto aberta . Se todo compacto de X \tilde{e} finito , então a topología da convergencia simples e a topología compacto aberta coincidem, (F^X tem a topología da convergencia simples) .

49) Pela observação 5.4 se F \tilde{e} lo -cal então F \tilde{e} um espaço de Schwartz e pela proposi - ção 5.5. o produto F X \tilde{e} também um espaço de Schwartz donde o espaço C(X;F) resulta ser de Schwartz.

5.12 OBSERVAÇÃO : Na demonstração de 39) do teorema

anterior , foi provado que se todo compacto de X é finito, então a topologia simples e a topologia compacto aberta coincidem em C(X;F) . Podemos também concluir que a topologia fraca $\sigma(C(X;F),C(X;F)')$ coincide com as anteriores . Com efeito seja M(S;V) uma vizinhança de 0 na topología simples, isto \tilde{e} S = $\{x_1, \dots, x_n\}$ e V e uma vizinhança de O em F. Mas se considera - mos $U = \bigcap_{i=1}^{n} x_i$ (V) , onde δ e a função avaliação x_i resulta que U \tilde{e} uma vizinhança de O em $\sigma(C(X;F), -$

C(X;F)') tal que $U \subset M(S;V)$.

: <u>Se</u> (Ε,τ_F) <u>ẽ quase</u> <u>normado</u> <u>,então</u> <u>o</u> 5.13 TEOREMA espaço C(X;E) e quase normado.

DEMONSTRAÇÃO : Seja W uma vizinhança de O em E, e seja M(K;U)⊂W onde K⊂X é compacto e U é uma vi zinhança de 0 em E que é F-convexa . Como E é quase normado existe V vizinhança de O em E tal que para todo $\lambda \epsilon F$, $\lambda \neq 0$, existe B_{λ} limitado em E tal que

$$V \subset B_{\lambda} + \lambda U$$

por tanto no espaço C(X;E) temos a relação

$$M(K;V) \subseteq M(K;\lambda U + B_{\lambda}) \subseteq \lambda M(K;U) + M(X;B_{\lambda})$$

a ultima inclusão é consequência da proposição 4.6. . Logo dado W existe a vizinhança M(K;V) com as pro priedades requeridas .

5.14 COROLARIO : Dado qualquer espaço ultraregular X C(X;F) \tilde{e} sempre quase normado .

Pelas proposições 2.1 e 2.2., C(X;F) e E são subespaços complementados de C(X;E) e portan to isomorfos a quocientes separados de C(X;E). Logo pela proposição 5.10. epelo teorema anterior podemos e nunciar o seguinte teorema :

5.14 TEOREMA : Os espaços C(X;F) e E são quase normados se, e somente se , C(X;E) e quase normado .

§ 3 Completude de C(X;F)

Durante toda esta seção X é um espaço ultraregular , (F, |) é um corpo não trivialmente valo rizado esfericamente completo .

No caso que $(F, | \ |)$ é um corpo local , Ellis |6|, provó um análogo do teorema de extensão de Tietze para um espaço ultraregular .

Observamos que da prova do teorema de E-Ilis-Tietze, pode-se deducir que uma função f definida e continua num subconjunto K compacto de um espaço ultraregular X, tem uma extensão a todo o espaço X que resulta ser limitada pela mesma constante que limita f em K.

- 5.15 NOTAÇÃO : O conjunto & (X;F) denota o espaço das funções definidas em X com valores em F, com a topologia da convergencia uniforme sobre os compactos de X.
- 5.16 OBSERVAÇÃO : Quando (F, | |) ē um corpo <u>local</u> não

trivial, (F; | |) \in completo, donde resulta que o espaço $\mathcal{F}(X;F)$ \in completo (Bourbaki [4], Chap. X,§ I,5, th .1).

- 5.17 DEFINIÇÃO : Um espaço vetorial topológico e dito quase completo se todo subconjunto fechado e limitado e completo .
- 5.18 TEOREMA : Se (F, | |) $\underline{\tilde{e}}$ um corpo local não trivial, as proposições seguintes são equivalentes
 - a) C(X;F) \tilde{e} completo.
 - b) C(X;F) ē quase completo.
 - c) Toda função $f \in \mathcal{G}(X;F)$, cujas restrições a cada compacto de X são continuas, \tilde{e} um elemento de C(X;F).

DEMONSTRAÇÃO : 19) a) implica b) segue da definição .

Supomos que f_K pertence a C(K;F), pela observação concernente ao teorema de Ellis-Tietze , existe \widehat{f}_K em C(X;F) , extensão de f_K tal que

$$\sup_{X} |\hat{f}_{K}(x)| < \sup_{X} |f(x)|$$

A o conjunto seguinte

$$A = \{ h \in C(X;F) ; \sup_{X} |h(x)| \leq \sup_{X} |f(x)| \}.$$

Resulta do anterior que $\alpha(D)$ é uma base de filtro em C(X;F) e em A. Afirmamos que o filtro gerado é convergente a f em $\mathfrak{G}(X;F)$. Com efeito , seja M(K:U) + f uma vizinhança de f em $\mathfrak{G}(X;F)$, então o conjunto $B_H = f$; f ; f s , f s compacto f , pertence a f contido em f compacto f , f pertence a f contido em f compacto f compacto f segue dado f contido em f compacto f compacto f convergente a f em f compacto f convergente f compacto f convergente f compacto f compacto f convergente f compacto f compacto f convergente f compacto f convergente f compacto f convergente f compacto f convergente f convergente f compacto f compacto f convergente f converge

Para o caso geral , supomos que f \bar{e} um elemento de G (X;F) cujas restrições aos compactos de X são continuas . Seja $(\alpha_n)_n$ uma sequência em F com valores absolutos estritamente crescente . Considera mos as funções f_n definidas por

$$f_n(x) = f(x)$$
 se $|f_n(x)| < \alpha_n$
 $f_n(x) = \alpha_n$ se $|f_n(x)| > \alpha_n$

cada f_n ẽ uma função limitada cujas restrições aos co<u>n</u> juntos compactos de X são continuas . A continuidade das restrições a cada compacto K de X segue do fato que

$$f^{-1}(B(0,|\alpha_n|) \cap K \ e \ f^{-1}(B(0,|\alpha_n|)^c) \cap K$$

são conjuntos abertos e fechados de K.

Pode-se concluir que $f_n \epsilon C(X;F)$.

Por outra parte como $\lim_n f_n = f$ em G(X;F) e como o fecho da sequência f_n ē completo em C(X;F) e portanto fechado em G(X;F), resulta que $f_EC(X;F)$.

39) c) implica a) Ver Bourbaki ([4] Chap.X ,§1.5) .

§ 4 Espaços reflexivos e de Montel.

Nesta seção consideramos X ultraregular, (E, τ_E) espaço localmente F-convexo T, (F; | |) corpo esfericamente completo .

5.19 PROPOSIÇÃO : Se { E; } is I \underline{e} uma família de espaços semi-c-Montel , então o produto cartesiano E = II E; \underline{e} um espaço semi-c-Montel .

DEMONSTRAÇÃO : Seja A \subset E um conjunto limitado F-convexo , existe em cada E , conjuntos limitados A tais que A \subset Π A , podemos supor sem perda de genetic I

ralidade que A_i é F-convexo . Como E_i é um espaço semi-c-Montel , cada A_i é relativamente c-compacto em E_i . Por um teorema de T.A.Springer [21] (Th,1.17) o produto π A_i é relativamente c-compacto, e coi ϵI

mo $A\subset \Pi$ $A_{\dot{1}}$, A \tilde{e} relativamente c-compacto . i ϵI

- 5.20 OBSERVAÇÃO : a) Todo espaço reflexivo é F-tonelado . (Van Tiel [22] ,Th,4.27.).
 - b) Todo espaço de Montel $\bar{\rm e}$ reflexivo. (Van Tiel [22], Th, 4.28. Cor. l .) .
 - c) Todo espaço c-Montel \vec{e} reflexivo. (Van Tiel [22], Th, 4.28. Cor. 1.) .
 - d) Todo espaço reflexivo \tilde{e} c-Montel. (De Grande-De Kimpe $\begin{bmatrix} 5 \end{bmatrix}$ p. 178 .) .
 - e) Todo espaço semi-c-Montel é semi-reflexivo . (Van Tiel [22] Th. 4.26.) .
- 5.21 TEOREMA : Considerar as seguintes proposições
 - a) C(X;F) e um espaço c-Montel.
 - b) C(X;F) ē um espaço reflexivo.
 - c) $C(X;F) \stackrel{\leftarrow}{e} um espaço de Montel.$
 - d) C(X;F) <u>e</u> <u>um</u> <u>espaço</u> <u>semi</u> <u>Montel</u>.
 - e) C(X;F) <u>e</u> <u>um</u> <u>espaço</u> <u>semi-c-Montel</u>.
 - f) C(X;F) <u>e um espaço semi reflexivo</u>.
 - g) $C(X;F) \stackrel{\underline{e}}{\underline{e}}$ exatamente o espaço F^{X} .
 - então , a) implica b) , c) implica d) , d) implica e) ,
 e) implica f) , g) implica a) . Se F e um corpo local
 então todas as proposições são equivalentes .

DEMONSTRAÇÃO : 19) a) implica b) segue da observação 5.20.c.

20) Se (F,||) é um corpo local, N De Grande-De Kimpe([5] p. 178) mostrou que todo espaço reflexivo é um espaço de Montel , logo temos a) implica b) ,neste caso .

30) c) implica d) e d) implica e) seguem diretamente das definições .

49) e) implica f) segue da observa - \tilde{ao} 5.20. e .

59) Supomos que $(F;[\])$ \tilde{e} um corpo local e que C(X;F) \tilde{e} um espaço semireflexivo . Vamos provar que todo conjunto compacto K de X \tilde{e} finito.

Suponhamos contrariamente que K \bar{e} compacto e infinito ; escolhemos uma sequência (k_i) de pontos diferentes de K, chamamos k o ponto aderente de (k_i) em K, supomos sem perda de generalidade que $k \neq k_i$ para cada i.

Como X $\tilde{\rm e}$ ultraregular, podemos construir uma sequência (f_n) de funções em C(X;F) que cumprem

i)
$$f_n(k_i) = 1$$
 se $i \le n$

$$ii) f_n(k) = 0$$

iii)
$$|f_n(x)| < 1$$
 para todo $x \in X$

da propriedade iii), segue que $\{f_n\}$ \bar{e} um conjunto $l\underline{i}$

motado . Pela semireflexividade de C(X;F) existe f, ponto aderente de f_n em C(X;F) (Van Tiel [22] Th. 4.25.20 .). Claramente se ve que f \tilde{e} também um ponto -aderente dos conjuntos $\{f_n : n \ge m\}$, para qualquer m Temos então que dado δ positivo, existe $n \in \mathbb{N}$, $n \ge m$ tal que

$$[f(k_m) - f_n(k_n)| < \delta$$
.

de aqui necessariamente resulta que $|f(k_m)|=1$, para todo $m\epsilon N$. Da mesma forma podemos obter que $|f(k_m)|=1$. Como |f|=0. Como |f|=0 uma função continua e |k|=0 indica que |f|=0, a contradição resultante nos indica que |f|=10. |f|=11.

Pela observação 5.12., C(X;F) tem a topologia fraca $\sigma(C(X;F),C(X;F)')$, logo C(X;F) ē quase completo , ja que todo limitado fechado é fracamen te compacto, donde compacto em C(X;F). Pelo teorema 5.18. toda função $f \in \mathcal{F}(X;F)$ cuja restrição aos compactos de X é continua é um elemento de C(X;F), como os compactos de X são finitos tem-se que toda $f \in \mathcal{F}(X;F)$ pertence a C(X;F).

69) g) implica a). Como todo corpo valo rizado esfericamente completo \tilde{e} um espaço c-Montel (Van Tiel [22], p 271), e como X resulta ter a topologia discreta então $C(X;F)=F^X$. Segue da proposição 5. 19 e do corolario 2.16, que C(X;F) \tilde{e} um espaço c-Montel.

5.22 PROPOSIÇÃO : Se $(E_i)_{i \in I}$ é uma família de espaços localmente F-convexos semi reflexivos , então o produto cartesiano $E = II E_i$ é um espaço localmente F-convexos semi reflexivo .

DEMONSTRAÇÃO : Seja A um subconjunto de E , F-convexo , fracamente limitado e fracamente fechado , então existe $(A_i)_{i \in I}$ uma família de conjuntos fracamente limitados e fechados , que podemos supor que são F-convexos , tal que $A_i^{\subset E_i}$ e $A \subset_{i \in I}^{\Pi_I} A_i$, segue de Van Tiel ([22] Th. 4.25.) , que cada A_i é fracamente c-compacto e segue de T.A.Springer ([21],1.17.), que o produto A_i é fracamente c-compacto e como consequência de A_i é fracamente c-compacto e como consequência de A_i

Van Tiel ([22], 4.26), resulta que E \bar{e} semi reflexi - vo .

5.23 OBSERVAÇÃO : O produto de espaços de Montel é um espaço de Montel . A demonstração segue a mesma direção da prova da proposição 5.19., sobre o produto de espaços semi-c-Montel, e usa o resultado do corolario 2.16.

Temos mostrado que o produto de espaços reflexivos , semi reflexivos , Montel , semi Montel , c-Montel e semi-c-Montel , é novamente um espaço do mes-mo tipo .

Do teorema 5.21. resulta que se C(X;F) tem alguma das propriedades acima mencionadas e se o corpo \tilde{e} local, então X tem a topologia discreta e portanto $C(X;E) = E^{X}$ para todo espaço localmente F-convexo E. Podemos então enunciar o seguinte teorema:

5.24 TEOREMA : Se (F, | |) <u>e um corpo local e se os espaços</u> C(X;F) <u>e E são ambos espaços localmente</u> F
<u>convexos reflexivos (respectivamente semi reflexivos , Montel , semi Montel , c-Montel , semi-c-Montel), então C(X;E) <u>e reflexivo (respectivamente semi reflexivo , Montel , semi Montel , c-Montel , semi-c-Montel) .</u></u>

No capítulo 2 , § 3 .provamos que se C(X;E) é F-tonelado , então C(X;F) e E são F-tonelados .

Facilmente se prova que se M \tilde{e} um sub espaço fechado de um espaço S 'semi reflexivo (respectivamente semi Montel , semi-c-Montel), então M \tilde{e} semi reflexivo (respectivamente semi Montel , semi-c-Montel) .

Destas observações concluimos que o reciproco do teorema 5.24. é verificado.Podemos enun - ciar:

5.25 TEOREMA : Se (F, | |) é um corpo local, então C(X;F) e E são reflexivos (respectivamente semi reflexivo, Montel, semi Montel, c-Montel, semi-c-Montel) se, e somente se, C(X;E) é reflexivo (respectivamente semi reflexivo, Montel, semi Montel, c-Montel, semi-c-Montel).

BIBLIOGRAFIA

- [1] <u>G.Bachman, E.Beckenstein and L.Narici</u>, Function algebras over valued fields, Pac.J.Math., 44 (1973), 45-57.
- [2] <u>G.Bachman, E.Beckenstein</u> and <u>L.Narici</u>, Function algebras over valued fields and measures , I,II , Atti Acad.Naz. Lincei Rend.Cl.Sci.Fis.Mat.Nat.,51 (1971) , 293-300 ,52 (1972) , 120-125 .
- [3] <u>G.Bachman, EBeckenstein, L.Narici</u> and <u>S.Warner</u>, Rings of continuous function with values in a topological field, Irans. Amer. Math. Soc. 204 (1975), 91-112.
- [4] N.Bourbaki, General Topology Chap. X, Addison-Wesley. Pub.Co.
- [5] N.De Grande-De Kimpe, c-compactness in locally K-convex spaces, Indag. Math. 33 (1971), 176-180.
- [6] R.Ellis, A non-archimedean analogue of the Tietze-Urysohn extension theorem , Indag. Math. 29 (1967) , 332-333 .
- [7] W.Govaerts, Bornological spaces of non-archimedean valued functions with the compact-open topology, Proc. A.M.S. 78 (1980), 132-134.
- [8] A. Grothendieck, Sur les espaces (F) et (DF), Summa Brasiliensis Math., 3 (1954) Fasc. 6, 57-122.
- [9] R, Hollstein, Permanence properties of C(X;E), (por a-

- parecer) .
- [10] <u>A.Ingleton</u>, The Hahn-Banach theorem for non-archimedean valued fields, Proc. Cambridge Phil. Society, 48 (1952) 41-45.
- [11] <u>J.Mendoza</u>, Algunas propiedades de $C_c(X;E)$.(por apare -) cer.
- [12] A.Monna, Espaces localement convexes sus un corps value, Indag. Math. 21 (1959), 391-405.
- [13] A.Monna, Espaces vectoriels topologiques sur un corps value, Indag. Math. 24 (1962), 351-367.
- [14] J.Mujica, Spaces of continuous functions with values in an inductive limit, Functional Analysis, Holomorphy and Approx. Theory (G.Zapata, ed) Marcel Dekher. New York. (por aparecer).
- [15] <u>L.Nachbin</u>, Topological vector spaces of continuous functions, Proc. Nat. Acad. Sci. U.S.A., 40 (1954), 471-474.
- [16] <u>L.Narici, E.Beckenstein and G.Bachman</u>, Functional analy sis and valuation theory, Marcel Dekher. Inc. New York 1971.
- [17] <u>J.B.Prolla</u>, Topics in functional analysis over valued division rings, North Holland Publ. Co. Amsterdam (por aparecer).
- [18] J. Schmets, An example of the barrelled spaces associated to C(X;E), (por aparecer).

- [19] J. Schmets, Bornological and ultrabornological C(X;E) spaces, Nanuscripta Math., 21 (1977), 117-133.
- [20] T.Shirota, On locally convex vector spaces of continuous function, Proc.Japan Acad. 30 (1954), 294-298.
- [21] T.A. Springer, Une notion de compacité dans la théorie des espaces vectoriels topologiques, Indag. Math. 27 (1965), 182-189.
- [22] <u>J.Van Tiel</u>, Espaces localement K-convexes, I,II,III, Indag.Math. 27 (1965) , 249-289 .
- [23] S. Warner, The topology of compact convergence on continuous function spaces, Duke Math. J. 25 (1958), 265-282.