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Introducgao

Muitos problemas em matemdtica podem ser postos na forma de equacdes fun-
cionais do tipo
F(u) =0, (0.0.1)

com a possivel solucdo pertencente a uma, certa classe de funcdes admissiveis contida
em algum espago de Banach X.

Na tentativa de resolver a equagao (0.0.1), a qual usualmente é nio linear, véarios
métodos foram desenvolvidos: principios de contragdo, métodos de ponto fixo, grau
de Leray-Schauder [42, 52, 47}, métodos de iteragbes monoténicas [4], método de
Galerkin, operadores monoténicos [32, 13, 34], estudo das singularidades de fun-
cionais definidos em espagos de Banach [19], teoria de Morse [52, 11, 16, 50], teorema
da fun¢do implicita generalizado [5, 42], métodos variacionais, etc. Neste trabalho
fazemos uso dos métodos variacionais.

E dito que se emprega o método variacional para resolver o problema (0.0.1)
quando este possui a assim chamada estrutura variacional, ou seja, o operador F
pode ser visto como a derivada de algum funcional J : X — IRY, isto §,

Flu) = VJ(w). (0.0.2)

Portanto, a equagéo (0.0.1) reduz-se ao problema de encontrar os pontos criticos do
funcional J.

A pré-histéria dos métodos variacionais, se é que assim podemos chamar, tem
inicio com o principio do minimo com Heron de Alexandria (aproximadamente 100
dC). Baseado no principio aristotélico que diz que a natureza nada faz de modo
mais dificil, Heron, em sua obra chamada Catéptrica (ou reflexdao), provou por um
argumento geométrico simples a igualdade dos 4ngulos de incidéncia e reflexdo, isto
é, se um raio de luz deve ir de uma fonte ao olho de um observador passando antes
por um espelho, entdo o caminho mais curto possivel é aquele em que os angulos de
incidéncia e reflexdo sdo iguais.

Este principio foi mais tarde generalizado por Pierre de Fermat por volta de
1650. Fermat escreveu nove artigos importantes sobre o método de méximos e
minimos. Os dois ultimos desta série [24], The analysis of refractions e The synthesis
of refractions, tém como conseqiiéncia a lei da refragao da luz, hoje conhecida como
lei de Snell. Nestes trabalhos Fermat enuncia o seu principio: a natureza opera
por meios e modos que sGo mais fdceis e mais rdpidos, o que na éptica geométrica
significa que o caminho seguido por um raio de luz de um ponto A até um ponto



B é aquele que torna minimo o tempo de percurso entre esses pontos. Ou seja,
entre todos os caminhos possiveis, a natureza escolhe aquele que o raio de luz pode
percorrer no menor tempo possivel. Alguns autores (veja, por exemplo, Goldstine
[29]) veém nos trabalhos de Fermat o inicio do calculo das variagoes, devido ao fato
de ser a primeira contribuicao real e que certamente serviu de inspiragio para a
solugdo do problema da braquistécrona por John Bernoulli em 1696/97 [9]. Como
se sabe, Bernoulli substituiu a particula movendo-se sob a agéo da gravidade por um
raio de luz passando através de uma série de meios 6pticos com densidades diferentes.
Fermat antecipou o cdlculo diferencial estabelecendo uma condigio necesséria para
o maximo ou minimo de um polinémio, a qual é equivalente ao anulamento de sua
derivada.

Em 1744, em seu livro sobre cdlculo das variagdes, Euler [23], e posteriormente
Lagrange com um tratamento mais analitico, fornece uma extensao da condigao
necesséria de Fermat para o extremo de uma fungéo real para o caso de um funcional,
as assim chamadas Equacgoes de Euler-Lagrange.

No século passado Dirichlet e Riemann desenvolveram a primeira idéia impor-
tante e sistemdatica de transformar um problema de equagoes diferenciais em uma
questao do célculo das variagGes. Surgem assim os métodos diretos do calculo das
variagOes, os quais consistem em estudar diretamente o funcional sem fazer qual-
quer uso de sua equagdo de Euler-Lagrange. Dirichlet e Riemann utilizaram esse
procedimento para provar a existéncia de uma solugdo para o que hoje chamameos
de Problema de Dirichlet para a equagdo de Laplace em uma regido plana limitada,

Pu P
oz?  Oy?

e com u coincidindo com uma dada fungéo sobre o bordo da regiao.
A equagdo (0.0.3) € a equagio de Euler—Lagrange_ para o funcional:

I(w) = / / (5a)" + (5 Oy i dy, (0.0.4)

o qual assume somente valores ndo negativos. Possivelmente por esse fato, Dirichlet
e Riemann admitiram sem demonstragio a existéncia de um minimo para esse fun-
cional, o que para a época era tida como um fato natural, obtendo assim a existéncia
de uma solugdo de (0.0.3). Este argumento foi utilizado por Riemann em seus arti-
gos sobre fun¢des holomorfas, superficies de Riemann e integrais abelianas. A ele se
deve a nomenclatura Principio de Dirichlet para denominar esse método. Mas, em
1870, a validade do Principio de Dirichlet foi posta em diivida com o contra-exemplo

=0,. (0.0.3)
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apresentado por Weierstrass que fazia distingdo entre as nogoes de minimo e infimo.
Somente neste século é que o Principio de Dirichlet foi posto em bases sélidas por
Hilbert [30, 31].

No final dos anos vinte, duas teorias tidas como fundamentais, a primeira de
Morse [39] e a segunda dos mateméticos russos Ljusternik e Schnirelman [38], mar-
cam o pascimento dos métodos de minimax. Tais' métodos estdo principalmente -
relacionados com a existéncia de pontos criticos de funcionais distintos de minimos
e maximos. A elegancia da ferramenta abstrata e a abrangéncia das aplicagtes
em problemas considerados dificeis para aquela época, como, por exemplo, a exis-
téncia de geodésicas fechadas em variedades compactas, fizeram de tais' métodos
uma prdspera area de pesquisa. Um importante progresso da teoria de Ljusternik-
Schnirelman foi marcado nos anos setenta pelos trabalhos de Browder [15], Kras-
noselski [33], Palais [43], Schwartz [53] e Vainberg [60] que estenderam a teoria para
variedades de dimenséo infinita.

Um novo impulso no uso de métodos variacionais no estudo das equagdes di-
ferenciais néo lineares foi dado por Ambrosetti e Rabinowitz [6] com a formulago
do Teorema do Passo da Montanha, o Teorema do Ponto de Sela de Rabinowitz
[49] e generaliza¢des envolvendo nogdo de enlace em dimensdo infinita de Benci e
Rabinowitz [10].

No presente trabalho estudamos a questdo de existéncia e multiplicidade de
solugbes para alguns problemas elipticos néo lineares fazendo uso do método varia-
cional.

O primeiro capitulo é dedicado ao estudo do problema de Dirichlet para equagoes
elipticas semilineares com a funcéo nao linearidade tendo crescimento exponencial.
Um tipico modelo é o seguinte problema:

{ —Ayu=Xe*", em Q,

u=0 sobre 052, (0.0.5)

sendo 2 um subconjunto limitado do RY, com fronteira 8 suave e A e a sdo
parametros reais sujeitos a certas restricoes que possibilitam a existéncia de solugoes.

Para o caso em que « = 1, o problema (0.0.5) é bem conhecido e estudado
por diversos autores. Primeiramente considerado por Liouville [37], para N =1, e
posteriormente por Bratu [12], para N = 2, e Gelfand [27], para N > 1. Durante as
trés dltimas décadas esse problema tem sido muito estudado (veja [17, 18, 26] e suas
referéncias). Como observado em [26], o problema {0.0.5) tem a sua importéneia
uma vez que aparece em modelos matematicos associados a fendmenos astrofisicos
e aos problemas de reagoes de combust&o.
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No segundo capitulo considera-se uma equagao eliptica em IRY, tendo como
modelo o seguinte problema:

—Apu = |[ulP" "2y + Aa(z)|u|? %y, em RV,
v>0, in RV, (0.0.6)
Jrv [VulP dz < oo,

Como observado em [46], o problema (0.0.6), para o caso em que p = 2, é
motivado pelo estudo de ondas estacionarias do tipo ¥(z,t) = exp(—iEt/h)v(z) da
equagao de Schrodinger nao linear em RV:

ov h?
h— = ——AV 4+ V(2)¥ — 4| ¥ 1T 0.
thor = =5~ AU+ V(2)¥ — T[T, (0.0.7)
Como ¢é facil ver, uma funcdo ¥ dessa forma satisfaz a equagao (0.0.7) se, e somente
se, a funcao v resolve a equagao eliptica

2

h
— — — —|nla—1
5 Av+ (V(z) — Ew |v|? M, (0.0.8)

que ap6s mudanga de varidveis pode ser reescrita como
—Av + b(z)v = —|v|*", (0.0.9)

na qual b(z) = 2(V(z) — E).

Uma importante diferenca entre os dois problemas abordados neste trabalho
encontra-se na nogao de criticalidade envolvida. Como usualmente acontece, tal
nocao esta intimamente relacionada ao espago de fungoes escolhido para a obtencao
de solugbes e nas relacoes deste com os espacgos LP. Desse modo, para o problema
com crescimento exponencial, a nog¢ao de criticalidade é dada pelo valor de a e
¢ motivada pela imersao de Trudinger-Moser, a qual relaciona espacos de Orlicz
determinados pela funcio ¢(t) = exp(8|t|"/N~V), para qualquer 8 > 0, com o
espago L'. Ao passo que no segundo problema, o significado de criticalidade é dado
por p* e é motivada imersao de Sobolev do espago WP em L° para s satisfazendo
certas relagoes envolvendo p e N.

Como sabemos, a aplicabilidade do método variacional depende da geometria
do funcional associado ao problema e de alguma condicdo de compacidade, por
exemplo, a condigao de Palais—Smale. E nessa tltima que encontramos algumas
dificuldades, pois lidamos com, o que se convencionou chamar, problemas com perda
de compacidade. Tal perda origina-se da falta de compacidade das imersoes. Ao
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estudar no capitulo 1 problemas com crescimento exponencial critico, a imersdao do
espago Wy () no espago de Orlicz determinado por ¢(t) = exp(an|t¥/¥-1), com

1/N-1 ) o . . <
ay = Nwy_; e wn-; é o volume da esfera unitria (N — 1)-dimensional, nao é
compacta. Para os problemas do capitulo 2, a invaridncia por translacdes em RY
é a tipica dificuldade no estudo de problemas elipticos em dominios ilimitados, pois
causa perda de compacidade das imersoes de Sobolev. Mais ainda, essa dificuldade
ndo é uma particularidade de dominios ilimitados, pois, mesmo a versao local desses
problemas apresenta perda de compacidade em vista da imersao de Wy? () em
L*"(2) nao ser compacta.

O que unifica o estudo dos dois problemas é a verificacdo com auxilio de dois
lemas de Lions [35] de um resultado abstrato que estabelece que toda seqiiéncia
limitada no espaco de Sobolev apropriado, cuja derivada do funcional nestes pontos
converge para zero, possui uma subseqiiéncia que converge fracamente para uma
solugdo do problema. Isto nos permite obter pelo menos uma solucéo do problema
(0.0.5). Para obter uma segunda solucao de (0.0.5) ou uma solu¢ao ndo trivial para
(0.0.6), assumimos unicidade de solugéo e empregamos um argumento semelhante
ao utilizado por Brezis e Nirenberg no famoso artigo [14].

Finalmente, ainda sobre os capitulos, informamos que sao independentes entre
si, dado que resolvemos escrevé-los na forma de artigo a fim de serem submetidos a
publicacao.



Capitulo 1

Liouville-Gelfand type problems

for the N-Laplacian on bounded
domains of RY

1.1 Introduction

In this article, we study the existence and multiplicity of nonzero solutions for the
following quasilinear elliptic problem

u >0, in (,
u =10, on 01},

—Ayu = —div(|Vu|"2Vu) = A f(z,u), in £,
(P)x {

where 2 is a bounded smooth domain in RY(N > 2) with boundary 8Q, A > 0 is a
real parameter, and the nonlinearity f(z,s) satisfies

(f1) f: Q2 x R — R is a continuous function and f(z,0) > 0, for every z €,
and the growth condition

(f)ao There exists ap > 0 such that

|f(z, s)| { 0, V o > ag, unif. on §,

s—o0 exp(asN/N-1) =\ +o0, Y a < ag, unif. on Q.



In the literature [1, 21, 25], f(z, s) is said to have subcritical or critical growth
when oy = 0 or o9 > 0, respectively. We note that such notion is motivated by
Trudinger-Moser estimates [41, 59] which provide

exp(aju/NN1) € LMQ), YVu e WHN(Q), Ya >0, (1.1.1)
and

sup exp(ajufN N dz <C(N)ER,Va<ay= NwN 1 (1.1.2)

II"IIW01,N51

where wy, is the volume of S*. We also observe that a typical and relevant case to
be considered for problem (P), is given by f(z,s) = exp(aps™/VN ).

In our first result, we establish the existence of a solution for (P), when A > 0
is sufficiently small,

Theorem 1.1.1 Suppose f(z,s) satisfies (f1) and (f)ao- Then, there ezists A>0
such that problem (P)x possesses at least one solution for every A € (0, ).

To obtain the existence of a second solution for problem (P), in the subcritical
case, we assume that f(z, s) satisfies

(f2) There are constants § > N and R > 0 such that
0 < 0F(z,s) < sf(z,s), Yz €, s> R.

Theorem 1.1.2 (Second solution: Subcritical case) Suppose f(z,s) satisfies (f1),
(f2) and (f)ay, with cp = 0. Then, there exists X > 0 such that problem (P),
possesses at least two solutions for every X € (0, ).

Note that (f2) is the version of the famous Ambrosetti-Rabinowitz condition [6]
for the N-Laplacian. It implies, in particular, that f(z,s)/s" — oo, as s — oo,
uniformly on .

In our next result, we provide the existence of two solutions for (P), when
f(z, s) has critical growth. In that case, we shall need to suppose a stronger version
of condition ( f2),

(f2) For every 6 > N, there exists R(6) > 0 such that
0 < 8F(z,s) < sf(z,s),V z €, s> R(H).
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Assuming the following further restriction on the growth of f(z, s),
(fs) There exists an open set {2 C Q such that

o f(z,s)
sll.%lo inf NNy O
=t exp(aps )

we obtain

Theorem 1.1.3 (Second solution:  Critical case) Suppose f(x,s) satisfies (f1),
(f2), (f3) and (f)ao, with ap > 0. Then, there exists X > 0 such that problem (P))
possesses at least two solutions for every A € (0, X).

Exploiting the convexity of the primitive F(z, s), in our final result we are able
to consider a weaker version of (f3), obtaining the same conclusion of Theorem 1.1.3.
More specifically, we suppose

(f3) There exist an open set { C

8
lim, inf —J 228
$=00 ze) exp(cps™/N-1)

= 00,

where 8 = &Uv‘l:ﬁ if N =3, and 8 = 5 otherwise.

(f1) F(z,.) is convex on [0, 00) for every z € ) C Q, {2 given by (f3),

Theorem 1.1.4 (Second solution: Convex Critical case) Suppose f(z,s) satisfies
(f1), (f2), (fz), (fa) and (f)ao, with g > 0. Then, there exists A > 0 such that
problem (P), possesses at least two solutions for every A € (0, ).

We observe that Theorem 1.1.4 establishes the existence of two solutions of (P)x
for A > 0 sufficiently small when f(z, s) = exp(aps™/N1).
As it is well known, the classical Liouville-Gelfand problem is given by

u >0, in Q,
u =0, on 0F,

—Au = Xe¥, in §,
(LG)»

where (2 is a bounded domain in RN (N > 1) with boundary 82, and A > 0 is a real
parameter. First considered by Liouville [37], for the case N = 1, and afterwards
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by Bratu [12], for N = 2, and Gelfand [27], for N > 1, this problem has been
extensively studied during the last three decades (See [17, 18, 26] and references
therein). As observed in [26], problem (LG), is of great relevance since it appears
in mathematical models associated with astrophysical phenomena and to problems
in combustion reactions.

In [18], Crandall and Rabinowitz used bifurcation theory to establish the exis-
tence of one solution for problem (LG),, for A > 0 sufficiently small, and a nonlin-
earity f(z,s) replacing e’. In [18] no growth restriction on f(z, s) is assumed. To
obtain such result, those authors assume f(z,s) € C*(Q x R, R), f,(z,0) > 0 and
fss(z,8) > 0, for every z € Q and s > 0 Supposing that f(z,s) has a subcritical
growth, they show that this solution is a local minimum for the associated functional.
Then, using critical point theory, they are able to prove the existence of a second
solution. We note that Theorems 1.1.3 and 1.1.4 improve the last mentioned result
of [18] when N = 2 since they allow f(z,s) to have critical growth. In particular,
we may consider f(z,s) = e*".

In [26], Garcia Azorero and Peral Alonso proved the existence of solutions for
(LG)x, with A > 0 sufficiently small, when the Laplacian is replaced by a p-Laplacian
operator. The nonexistence of solutions for (LG), for this more general class of
operators, when A > 0 is sufficiently large, was also established in [26]. We should
also mention the article by Clément, Figueiredo and Mitidieri [17], where the exact
number of solutions for an operator more general that the p-Laplacian is established
when (2 is an open ball of R". In [17], it is not assumed any growth restriction on
f(z,s).

We note that the solutions mentioned in Theorems 1.1.1-1.1.4 are weak solutions
of (P)x (See [49]). We also observe that in this article, we use minimax methods to
derive such solutions.

To prove Theorem 1.1.1, we first provide an abstract result that establishes the
existence of a critical point for a functional of class C' defined on a real Banach
space assuming a version of the famous Palais-Smale condition for the weak topology
(See Definitions and Proposition 1.2.2 in Section 1.2). Motivated by the argument
used in [45], we prove that the associated functional satisfies such condition under
hypotheses (f1) and (f)s,. Taking A > 0 sufficiently small, we are able to apply
the mentioned abstract result. In our proof of Theorem 1.1.2, we use condition ( f2)
to verify that the associated functional satisfies the Palais-Smale condition. As in
[18], this provides the existence of a second solution for (P)x via the Mountain Pass
Theorem [6].

In the proofs of Theorems 1.1.3 and 1.1.4, we argue by contradiction, assuming
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that Theorem 1.1.1 provides the only possible solution of (P),. This assumption
and condition (f2) allow us to use the argument of Brezis and Nirenberg [14] and
a result of Lions [35] to verify that the associated functional satisfies the Palais-
Smale condition on a given interval of the real line.We use conditions (f3) and (f3),
respectively, to establish that the level associated with the Mountain Pass Theorem
belongs to this interval. As in the proof of Theorem 1.1.2, that implies the existence
of a second solution.

Finally, we should mention that the existence of a nonzero solution for (P)y
when f(z,0) = 0 has been intensively studied in recent years (See [1, 2, 21, 25] and
references therein) . As it is shown in [1] (See also [21]), when f(z,s) > 0, for s > 0,
a weaker version of (f3) may be considered. We also observe that our method may
be used to improve such results since in those articles a stronger version of (f2) is
assumed. Condition (f3) can also be used in that setting to study the case where
f(z, s) may assume negative values.

The article is organized in the following way: In Section 1.2, we introduce the
notion of Palais-Smale condition for the weak topology and establish two abstract
results which are used to prove our results. There, we also recall the variational
framework associated with (P), and state a version of Trudinger-Moser inequality
(1.1.2) for WHN(Q) when (2 is an open ball in IRV . In section 1.2, we also state a
result by Lions [35] that will be used, via contradiction, to verify (PS),, for ¢ below
a given level, when condition (f),, holds with oy > 0. In Section 1.3, we prove
the weak version of Palais-Smale condition for the associated functional. In Section
1.4, we prove Theorems 1.1.1 and 1.1.2. In Section 1.5 we establish the estimates
that are used to prove Theorem 1.1.3. In Section 1.6, we prove Theorem 1.1.3. In
Section 1.7, we establish the estimates for the associated functional when conditions
(f3) and (f,) are assumed. There, we also present the proof of Theorem 1.1.4. In
Appendix A, we prove the Trundinger-Moser inequality mentioned in Section 1.2.
Finally, in Appendix B, we prove an inequality for vector fields on R", used in
Section 1.7 to establish the necessary estimates.

1.2 Preliminaries

Given E a real Banach space and ® a functional of class C' on E, we recall that
® satisfies Palais-Smale condition at level ¢ € IR [Denoted (PS).] on an open set
O C E if every sequence (u,) C O for which (i) ®(u,) — ¢ and (ii) ®'(u,) — 0, as
n — 00, possesses a converging subsequence. We also observe that ® satisfies (PS),
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if it satisfies (PS). on F, and we say that ® satisfies (PS) when it satisfies (PS),
for every ¢ € IR. Finally, we note that every sequence (u,) C F satisfying (i) and
(ii) is called a Palais-Smale [(PS)] sequence.

To establish the existence of a critical point when the functional is bounded from
below on a closed convex subsets of E, we introduce a version of the Palais-Smale
condition for the weak topology.

Definition 1.2.1 Given c € IR, we say that ® € C'(E, R) satisfies the (wPS), on
A C E if every sequence (u,) C A for which ®(u,) — ¢ and ¥ (u,) — 0, asn — oo,
possesses a subsequence converging weakly to a critical point of . We say that ®
satisfies (wWPS) on A if ® satisfies (wPS). on A, for every c € R. When ® satisfies
(wPS) on E, we simply say that ® satisfies (wPS).

Assuming

(®,) There exist a closed bounded set A C E, constants v < b € IR, and u, 6;21
such that

(i) ®(u) >, Vu € A,
(ii) ®(u) 2 b > P(ug), YV u € 04,
we define
¢ = ir€1£ O (u). (1.2.3)

The following abstract result provides a critical point for ¢ under conditions
(®,) and (wPS).

Proposition 1.2.2 Let E be a real Banach space. Suppose ® € C*(E, IR) satisfies
(®,), with A a closed bounded convex subset of E. Then, ® possesses a critical point
u € A provided it satisfies (wPS),., on A.

Proof: Arguing by contradiction, we suppose that ® does not have a critical point
u € A. Under this assumption, we claim that & satisfies (PS)., on A. Effectively,
given a sequence (up) CA such that ®(u,) — ¢; and ¥(u,) — 0, as n — oo,
by (wPS),,, (u.) possesses a subsequence converging weakly to a critical point w.
Furthermore, u € A since A is a closed convex subset of E. This contradicts our
assumption and proves the claim.

We note that v < ¢; < ®(ug). If e = ®(uo), the conclusion is immediate. Thus,
we may assume ¢; < $(ug) < b. In this case, we take 0 < & < ®(up) — ¢1. Then, we
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argue as in Proposition 2.7 of [49], using a local version of the Deformation Lemma.

[54], to obtain a contradiction with the definition of ¢,. Proposition 1.2.2 is proved.
]

Remark 1.2.3 When ® satisfies (PS)., on ;1, the second part of the proof of

Proposition 1.2.2 shows that actually ® possesses a local minimum u €A such that
®(u) =q.

Taking b € IR and A, given by (®;), we consider
(®2) There exists e € E \ A such that
Ple) <b< B(u), VucdA,
and we define
c2 = sill&grf‘I{‘lg,yx@(u) > b,

where
I'={g€C([0,1},E); ¢(0) =wuo, g(1)=e}.

As a consequence of Proposition 1.2.2, Remark 1.2.3 and the argument employed
in [54], we obtain the following version of the Mountain Pass Theorem [6].

Proposition 1.2.4 Let E be a real Banach space. Suppose ® € C'(E, R) satisfies
(®1), with A closed and convex subset of E, and (®;). Then, ® possesses at least
two critical points provided it satisfies (PS)., for every ¢ < c;.

Proof: By Proposition 1.2.2 and Remark 1.2.3, ¢ possesses a local minimum w; 62
such that ®(u;) = ¢;. Furthermore, if ® does not have any critical point on 0A,
we may invoke the local version of the Deformation Lemma [54] one more time to
obtain a neighbourhood V of 4y and € > 0 such that uo € V, e € V and

c1 < max{®(uo), ®(e)} < uie%fA b(u)+e < uie%fv ®(u) < ¢o.
Consequently, by the Mountain Pass Theorem [6], c; is a critical value of ®. The

proposition is proved. .
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Observe that when ¢; = ¢, by the above proof, ® must have a critical point
u € 0A such that ®(u) = ¢;.

Now, we recall the variational framework associated with problem (P),. Con-
sidering the Sobolev space Wy (2) endowed with the norm

1N 1,N
full = ([ 1vul¥ds) ™, ¥ ue W @),
the functional associated with (P)y I : Wy () — IR is given by

Iy(u) = %/ﬂ |Vu|Y dz — /\/QF(x, w)dz, ¥V ue Wy (Q), (1.2.4)

where we assume f(z,s) = f(z,0), for every z € Q, s < 0, and we take F(z,s) =
fo f(z,t)dt, for z € 2, s € R. Under the hypothesis (f)a,, the functional I, is well
defined and belongs to C*(Wy™ (), R) (See [1, 21]). Furthermore,

L(uwv = /n |Vu|¥N2VuVuvdz — )\/Q f(z,wvdz, ¥ u,ve Wy (Q).

Thus, every critical point of I, is a weak solution of (P),.
We also remark that if f(z, s) satisfies conditions (f;) and (f)s,, then, for every
B > oy, there exists C = C() > 0 such that

max{|(z, )], [F (2, 5)[} < Cexp(Bls|*), Yz €D, s> 0. (1.25)

As a direct consequence of (1.1.1) and (1.2.5), we obtain that F(z,u(z)) € L'(Q2)
and f(z,u(zx)) € LI(R), for every q > 1, whenever u € W™ (Q).

The following lemma establishes a version of Trudinger-Moser inequality (1.1.2)

for WN(Q2) when (2 is an open ball in R".

Lemma 1.2.5 Let B(zo, R) be an open ball in R with radius R > 0 and center
zo € RN. Then, there exist constants & = &(N) > 0 and C(N, R) > 0 such that

/ exp(a|ulVN "1 dz < C(N, R),
B(zﬂvR)

for every u € WHN(B(zo, R)) such that ||ullwinB(zo,r) < 1-
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Proof: For the sake of completeness, we present the proof of Lemma 1.2.5 in Ap-
pendix A. =

Finally, we state a theorem due to Lions [35] which will be essential to verify,
via contradiction, that the functional I, satisfies (PS)., for ¢ below a given level,
when f(z, s) satisfies the critical growth condition.

Theorem 1.2.6 Let {u, € WV (Q) | |luall = 1} be a sequence in WE™N(Q) con-

=1

verging weakly to a nonzero function u. Then, for every 0 < p < (1 — |[u]|]N)71, we
have

N
sup [ exp (paNlunlm) dr < oo.
nelN JQ

1.3 (wPS) condition

In this section, we shall prove a technical result that will be used to establish (wPS)
condition for the functional /)(u), defined by (1.2.4), when the nonlinearity f(z, s)
satisfies the critical growth condition,

(fs) There exist a,C > 0 such that
|f(z,s)| < Cexp (a|s|ﬁj{_l) ,Vzef, se R

Our objective is to verify that any bounded sequence (u,) C Wg™ () such that
I} (un) — 0, as n — oo, possesses a subsequence converging weakly to a solution of
(P)x. Such result provides (wPS) condition for the functional 1.

Considering that next result is independent of the parameter A > 0, we denote
by (P) and I the problem (P), and the functional I, respectively.

The proof of the following proposition is based on the argument used in [45] for
the Neumann problem (See also [21]).

Proposition 1.3.1 Let 2 be a bounded smooth domain in RY. Suppose f(z,s) €
C(Q2 x R, IR) satisfies (f5). Then, any bounded sequence (u.) C WM (Q) such that
I'(up) — 0, as n — oo, possesses a subsequence converging weakly to a solution of

(P).

Remark 1.3.2 (i) Note that Proposition 1.3.1 generalizes to the N-Laplacian a well
known fact for the Laplacian operator on Q@ C RN, N > 2, when the nonlinearity
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f(z, ) satisfies the polynomial critical growth condition. (ii) We also observe that in
Proposition 1.3.1 it is not assumed that (u,) is a Palais-Smale sequence since I(u,)
may be unbounded. (iti) Finally, we note that in [55], we prove a similar result for
the p-Laplacian on ) = RN .

The proof of Proposition 1.3.1 will be carried out in a series of steps. First, by the
Sobolev Embedding Theorem, Banach-Alaoglu Theorem and the characterization of
C(Q)*, given l;}y the Riesz Representation Theorem [51], we may suppose that there
exist u € Wy () and g € M(Q), the space of regular Borel measure on ), such
that

u, — u, weakly in WOI’N(Q),

[Vun [V — p, weaklyx in M(Q),

u, — u, strongly in LP(9), 1 < p < oo, (1.3.6)
U, (z) — u(z), a. e. in ,

[un(z)| < hy(z), a. €. in 2, where h, € LP(2), 1 < p < oo.

Now, we fix 0 < o < oo such that Qo1 < &, with & given by Lemma 1.2.5.
Setting (2, = {z € Q | pu(z) > g}, we have that (), is a finite set since p is a
bounded nonnegative measure on 2. Furthermore,

Lemma 1.3.3 Let K C (2\ Q5,) be a compact set. Then, there exist ¢ > 1 and
M = M(K) > 0 such that

[ 1f(@ un(@))leds < M, ¥n e N.

Proof: To prove such result, we take ¢ > 1 such that aanNfT < & and consider
ry = dist(K, 00U, ) > 0, the distance between K and 0Q2 U},. For every z € K,
there exists 0 < r, < r; such that

W(B(z,2r2)) + lullv sz aray < 0" - (1.3.7)
Using the compactness of K, we find j € IV so that

K C OB(a:i,rmi) = OBi. (1.3.8)

i=1 i=1

Applying (1.3.6) and (1.3.7), we find ny € IV such that
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lunlliny <oV, Y >ny, 1<i <.

Consequently, from Lemma 1.2.5, (fs), (1.3.8) and our choice of g, there exists
M > 0 such that

[ 1 (@ un(z))tde < i [, exp (& (—-'—“ﬂ)-'——) WN_) <M,

len llw.m B,)

for every n > ngy. This proves the lemma. u

Lemma 1.3.4 Let K C (2\ Q,) be a compact set. Then, Vu, — Vu, strongly in
(LY(K))Y, asn — co.

Proof: Taking v € C§°(Q2 \ Q,) such that ¢y = 1, on K, and 0 < ¢ < 1, and
considering that

(lal¥2a — |b]¥2b) - (a — b) > 2% N|ja —b|", Va,b € R", (1.3.9)

we obtain

22NV, — V|| P ) <

< Jo [V ¥ =2V, — [Vu|N-2Vu).(Vu, — Vu)| ¢ dz =
= Jo |[Vun|V¢ — [Vun|¥~2(Vu, . Vu)yp —

— |VulN2(Vu.V(u, — u))¢] dr.

(1.3.10)

As I'(up) — 0, as n — oo, we have

/n (V¥ (Vttn V) + (Vi Vi) — 9 f (2, u)u] dz = 0(1),  (1.3.11)
as n — oo. Moreover, since (¢u,) is a bounded sequence in WM (Q), we also have
/Q (V0[N + [Vt V2 (Vi Vi Jun — $f (2, )] dz=0(1),  (1.3.12)

as n — 0o. Combining (1.3.10)-(1.3.12), we obtain
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22NV, — V| v gy <
< fo¥f (2, un) (U — u) dz + fo [Vua |V 2 (u — u,)(Vu, V) dz+
+ o [Vu|N"2(Vu.V(u — u,))pdz + o1), as n — oo.

Applying Lemma 1.3.3, for the compact set suppy C (2 \ ©,), and using Holder’s
inequality, we get

22 M| Vu, — Vu|| v <

: 1 _
< ||psill Loy M7 ||urn — UHL;&(Q) + IVl ooy [ V|5 g Il — tn () +
+ Jo IVu|N2(Vu.V(u — u,)) dz + o(1), as n — oo.

The hypothesis that (u,) C Wy (Q) is bounded and (1.3.6) show that Vu, — Vu,
strongly in (LY (K))", as desired. The lemma is proved. =
As a direct consequence of Lemma 1.3.4, we have

Corollary 1.3.5 The sequence (u,) C W™ (Q) possesses a subsequence (un,) sat-
isfying Vu,, () — Vu(z), for almost every z € Q.

The following Lemma shows that I’ (u) restricted to Wy " (2\Q, ) is the null operator.
Lemma 1.3.6
(I'(w), $) = /n VN2 (Vu. V) de — /Q flz,w)pdz =0, (1.3.13)

for every ¢ € C°(Q2\ 5).
Proof: Given ¢ € C(2\ Q,), by Holder’s inequality and the fact that (u,) C
Wy () is a bounded sequence, we have that (|Vuy,, |V ~2Vu,,.V¢) is a family of
uniformly integrable functions in L*(£2). Thus, by Vitali’s Theorem [51] and Corol-
lary 1.3.5, we get

/Q IViin, [N 2(Vauy, . V) dz — /Q [VuN—2(Vu.V¢)dz, asi— co. (1.3.14)
We also assert that

/Qf(a:, Un, )P dT — /Qf(a:,u)qua:, as i — 00, (1.3.15)
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for every ¢ € C§°(2\€2,). Effectively, by Lemma, 1.3.3, there exist ¢ > 1 and M; > 0
so that

[ 1f(@u)itdo < My, (1.3.16)

where K, = supp¢. Given € > 0, from (1.3.6) and Egoroff’s Theorem, there exists
E C Q such that |E| < € and u,(z) — u(z), uniformly on (2 \ E). Using Holder’s
inequality, (1.3.16), and (fs), we get M, > 0 such that

| Jo(f(z,un) — f(z,u))pdz| < .
< Jo\g [f(@,un) — f(z,u)||¢|dz + Mae 7.
As € > 0 can be chosen arbitrarily small and f(z, u,(z)) — f(z,u(z)), uniformly on

Q\ E, we derive (1.3.15). Now, we use (1.3.14), (1.3.15) and the fact that I'(u,) — 0,
as n — oo, to verify that (1.3.13) holds. =

In the following, we conclude the proof of Proposition 1.3.1. In view of (1.1.1),
(fs) and the density of C$*(Q) in Wy (), it suffices to show that relation (1.3.13)
holds for every ¢ € C°(R2). R

Given ¢ € Cg°(f2) such that suppp N, = 0, we take K = suppg, ), =
QNK ={y1,...,u}, 1 <1 <j, and r; > 0 such that 2r; < |y; — Ym|, ¢ = m, and
2r; < dist(K, 0f2). We consider, ¢ € C°(R, IR) such that 0 < ¢ < 1,¢% =1, on
[0,1], and ¥ =0, on [2,00), and we define

1,b,-,(x)=¢(-|§;—yil-), Vze 1<i<l,0<r<r.

We also set ¢111-(z) = 1—-3%_, ¥ .(z), for every z € . Hence, ¢(z) = Y1t} ¢¥i(z)
and @Y1, € C5°(02\ §25). From Lemma 1.3.6, we have

— Y fo fl@,w)dhiedz, YO <r<rTy.
Applying Hoélder’s inequality, for every 1 <i <[, we get
| o | Va2V (6,)) do] <
o, 1Vul” dz] ™ [V @llzooclitbir v + (1.3.18)
+ 19l IVitir o a]

where B; = B(y;,2r), 0 < r < r;. On the other hand, from the first Trudinger-Moser
inequality (1.1.1) and (f5), we find M3 > 0 such that, for every 1 < ¢ <1,

19



N-—
| £ (2,000 dal < Mallglloqon | B 5 s vy (13.19)
We use our definition of 1; , to get My > 0 so that

”wi,f‘”Wl'N(B.') <M, VO<r< r, 1<i<l.

Consequently, given € > 0, by Lebesgue’s Dominated Convergence Theorem,
(1.3.18) and (1.3.19), we find 0 < r3 < r; so that

{ | fo IVuN2(Vu.V(¢;,)) dz| < e, (1.3.20)
| fo flz,u)dpirdx] <€, V1<i<I, 0<rT<T0 -

for every 0 < r < ry, 1 <4 < 1. From (1.3.17), (1.3.20) and the fact that ¢ > 0

can be chosen arbitrarily small, we obtain that (1.3.13) holds for every ¢ € C§°(2).

This concludes the proof of Proposition 1.3.1. =
As a direct consequence of Proposition 1.3.1, we have the following results:

Corollary 1.3.7 Let §) be a bounded smooth domain in RY. Suppose that
f(z,s) € C(2 x R,R) satisfies (fs). Then, I satisfies (wPS) on A, for every
bounded set A C W, ().

Corollary 1.3.8 Let ) be a bounded smooth domain in RN . Suppose that f(z,s) €
C(Q2 x IR, R) satisfies (fs). Then, I satisfies (wPS) provided every (PS) sequence
associated with I possesses a bounded subsequence.

1.4 Theorems 1.1.1 and 1.1.2

In this section, we apply the abstract results described in Section 1.2 to prove
Theorems 1.1.1 and 1.1.2.

Proof of Theorem 1.1.1: The weak solution of problem (P,) will be established
with the aid of Proposition 1.2.2. For this, it suffices to verify that I, for A > 0
sufficiently small, satisfies (®;) and (wPS),, on the closure of B(0, p), denoted by
B0, p], for some appropriate value of p > 0.
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N-1

Given 8 > ag, we take p € (O, (giv—)T) and use (1.2.5) to obtain C; > 0

o]
such that N
L(u) > %|[ul|Y — AC1 [ exp(Blu|7T)dx =

N
= Hlull™ - AC: o exp(Bllull# () ™) da,

for every u € Wy (Q) such that |lu|| < p. Hence, by Trudinger-Moser inequality
(1.1.2), we find C2(N) > 0 such that

1
I(u) 2 Fllull™ = AC2(N),

for every u € B[O, p].

Taking X = N71Co(N)"'p", up = 0, ¥ = —XC2(N), b = 0, and considering
e = ¢, ¢ given by (1.2.3), we have that I, satisfies condition (®,), for every
0< A<

Finally, we observe that conditions (f;), (f)a, and Corollary 1.3.7 imply that I,
satisfies (WPS) condition on B0, p]. Theorem 1.1.1 is proved. u

Before proving Theorem 1.1.2, we note that, from (f1) and (f2), there exists a
constant C' > 0 such that

F(z,s)>C|s|’—C,Vz e, s>0. (1.4.21)

Proof of Theorem 1.1.2: Considering X > 0, given in the proof of Theorem 1.1.1,
we have that the functional I, satisfies (®;), for every A € (0,). Thus, by Propo-
sition 1.2.4 , it suffices to verify that I, satisfies (®;) and (PS) for such values of

A
Choosing u € W™ (Q) \ {0} such that u(z) > 0, for every z € Q, from (1.4.21),

we obtain

I(tu) < ﬁV—HuHN —)\Ct"/ v’ dz + C|9).
- N Q

Therefore, I)(tu) — —o0, as t — 400, since C > 0 and § > N. Consequently,
I, satisfies ®,.

Now, we shall verify that I, satisfies (PS). Let (u,) C W™ () be a sequence
such that (I)(u,)) C IR is bounded, and I}(u,) — 0, as n — oo, i.e,

I%/Q|Vun|Ndx — )\/QF(:t,un)dx| <C<o,VneN, (1.4.22)
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and

N-2 _
| /Q V|V -2V, Vo dz — A /Q F(z, un)vda| < eallol], (1.4.23)

for every v € Wy (), where ¢, — 0, as n — oc. Taking 6 > N, given by (f2), we
use (1.4.22) and (1.4.23) to get

[1 [Vu, [N dz — )\/0(0F(:v,un) — f(z, un)un) dz < C + &, |unll.

From this inequality, (f2), and our definition of f(z,s) for s < 0, we conclude that
(us) is a bounded sequence in W,V (). Consequently, we may assume that

un, — u weakly in Wy'"(Q), u, — u strongly in L), V ¢ > 1.
From (1.4.23), with v = u,, — u, we have
lim { / Vit |V 2V V (1 — ) dz — A / F(@,un)(un —u)dz) =0.  (1.4.24)

Using Holder’s inequality, we may estimate the second integral in the above
equation,

| (@) — ) dal < ([ 1@, ua)|P d) P — e,

where p,q > 1 are fixed with % + % = 1. Noting that (u,) is a bounded sequence,

we may find 3 > ap = 0 such that Bp||u.||¥/V ! < ay, for every n € IN. Hence, by
(1.2.5), we have

1
n N
15620 — it < €{ [ exp (lunl P 2 .
Thus, by Trudinger-Moser inequality (1.1.2), we obtain C2 > 0 such that

|Lf(m7 un)(un - U) dx| S Cg”'un - UHLq.

Since u, — u strongly in L4(2), from (1.4.24) and the above inequality, we have

|Vun|N *Vu,V(u, —u)dz = 0.

n—»oo
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On the other hand,
lim / IVuN V0V (4, — u)dz = 0
because u, — u weakly in W’ (Q) Consequently,
lim / (Ve |V 2V, — |V |V ~2V0) (Vi — Vi) dz =
Thus, by inequality (1.3.9), we have
n_m/ |Vu, — Vul|¥ dz =
This implies that I, satisfies (PS) condition. Theorem 1.1.2 is proved. .

Remark 1.4.1 As it is shown in [20] (See also [28].), any solution of (P), is in
Ct=(2), for N > 3, and in C**(2), for N = 2.

1.5 Estimates

We start this section with the definition of Moser functions (See [41]). Let zo € Q
and R > 0 be such that the ball B(zy, R) of radius R centered at z, is contained in
2. The Moser functions are defined for 0 < r < R by

(log—?)N_ﬁ;l, if 0<|z—zo| <,

1 1 R
M:,- )= —— < Og(|a:—z ') .
@ wyy (1og§)131v’ if r<|r—zo <R,

\

Then, M, € WM (Q),[IM,]| = 1 and supp (M,) is contained in B(zo, R).
Considering §2 given by (f3), we take o € 2 and consider the Moser sequence
M,(z) =M Bn (z) where R, = (logn)' & " for every n € IN. Without loss of gener-
ality, we may suppose that supp(M, ) C Q, for every n € IN.

Taking A > 0 and uy, for A € (0, ), given in the proof of Theorem 1.1.1, we
have
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Proposition 1.5.1 Suppose f(z,s) satisfies (f1),(f)ao, with o > 0, and (fs).
Then, for every A € (0, \), there exists n € IN such that

1
max{y (s + tMy) | ¢ 2 0} < I(ua) + - %:-)N-l.

The proof of Proposition 1.5.1 will be carried out through the verification of

several steps. First, we suppose by contradiction that, for every n, we have
1 an\n_q
ma.x{IA(u,\ +tMn) | t> 0} > I,\(u,\) + -ﬁ -&-—) . (1.5.25)
0

Now, we apply the argument employed in the proof of Theorem 1.1.2 to conclude
that I)(uy + tM,) — —oo, as t — oo, for every n € IN. Thus, there exists t, > 0
such that

I,\(u,\ + tnMn) = ma.x{I,\(u)‘ + tMn) I t> 0} (1.5.26)

The following lemmas provide estimates for the value of ¢,.

Lemma 1.5.2 The sequence (t») C R is bounded.

Proof: Since %[I aur +tM,)] = 0 for t = ¢, it follows that

/Q IV (up + £ M) [V "2V (s + ta M) - VM, dz = A /n F(z, u + tn M) M, dz.
Invoking Holder’s inequality, we obtain
lun + t Mal|¥=1 > A /ﬂ F(@, ux + taMy) M, dz. (1.5.27)

We observe that given M > 0, from (f3;), there exists a positive constant C' such
that
f(z,s) > Mexp(apls|V/N ") =C, Vs>0,z€ (1.5.28)

Thus, from (1.5.27)-(1.5.28), the definition of the function M, and the nonnegativity
of uy, we have

lus + ta M|V~ > AM exp(Qoltn M| 77 )M, dx
B(zo,Ry)

- X M, dzx.
B(zo,Rn)
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Using the definition of the function M,, one more time, we find C > 0 such that

MMt > AM / t M. |FT)M, d
s+ DI =AM [ exp(aoltn M) Mo do

N-1
A N N 1
- MCRY = :\——A{mexp [(ﬂ n = 1) Nlogn] R,I:’(logn)N_N‘
N anN

—ACRY.
Hence, from the definition of R,,, we get
AMwR,
N ~
llur + Ma N1 > —nguexp [(g—otF — 1) Nlogn} — ACRY. (1.5.29)
N

Since R, — 0, as n — oo, from (1.5.29), we conclude that (¢,) C IR is a bounded
sequence. Lemma 1.5.2 is proved. n

Lemma 1.5.3 There ezist a positive constant C = C(A, a9, N) and ng € IN such
that

CRVN
gNIN-1L > IV Ty > o,
" T (lgmA =™
Proof: From equation (1.5.25),
L)+ (w1 < L [ 19+ )| do — X [ F(@,us + taM) do.
N g — N Ja Q
Hence,
N-1 N
L(E)™ < By [ (Pl M0 ~ Pl ) e +
1N N—k k
fl \Y “*|IVM,|" dz.
+ N & (k)t"/9| uxl" " " dz
Furthermore,

tnMn
F(z,ux +t-M,) — F(z,uy) = /0 f(z,s +ur)ds > —mt, My,
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where m > 0 is given by (f1) and (f),,. Consequently,

1 an N-1 tN

(e~ < n

N(ao) < N+ Amt, jde+
N—

+ Z (k)tf,/9|Vu,\|N"k|VMn|kdx. (1.5.30)

On the other hand, from the definition of the sequence (M,,), we have

_ RYMwpT, [ 20l0gn)F 1 1 1
/M dg = =22 { N0 ) gy | (153D
o 1
L Vsl 4V M d < O(N, m, M K)o (1.5.32)

where C(N,n, \ k) = 2= ]v"”k)‘ 1 - ) [V [Na*.

Using (1.5.30)-(1.5.32) and Lemma 1.5.2, we find a constant C > 0 such that

( )N 1 RN
tN/N—l > (9‘_1_\7_)( )1/(N 1)
" ~ o (log N)i/»
A direct application of Mean Value Theorem to the function h(s) = (1 — s)*/(¥ -1
on the above relation provides the conclusion of Lemma 1.5.3. .
Now, we shall use Lemmas 1.5.2 and 1.5.3 to derive the desired contradiction.
From (1.5.29), Lemma 1.5.3 and the definition of R,,, we obtain
AMuwy, CN
Mwp", exp (_ao

“uz\ + tnMn”N_l Z N

) ~)CRY.

anN
Thus

N-1
AMw\N ( ooCN
—n o*(-

But, this contradicts Lemma 1.5.2, since M can be arbitrarily chosen and R, — 0,
as n — o0o. Proposition 1.5.1 is proved. =

) < (uall + )V + ACRY.
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1.6 Theorem 1.1.3

In this section, after the verification of some preliminary results, we prove Theorem
1.1.3.

Lemma 1.6.1 Suppose f(z,s) satisfies (f1), (f2) and (f)ao. Then, any (PS) se-
quence (u,) C Wo'™ () associated with Iy possesses a subsequence (u.,) converging
weakly in Wy () to a solution u of (P)x. Furthermore,

/QF(J:, Un,(z)) dz — /Q F(z,u(z))dz, asn — oo.

Remark 1.6.2 We note that Lemma 1.6.1 also holds when f(z, s) satisfies (f2) and
(f)ao for s < —R(6), and s < 0, respectively.

Proof: Consider a sequence (u,) C Wy () such that

I(us) — ¢,

{ I (u,) — 0, as n — oo. (1.6.33)
Arguing as in Section 1.4, we obtain that (u,) is a bounded sequence. Therefore, by
Proposition 1.3.1, there exists a subsequence, that we continue to denote by (u,),
converging weakly in W,'" () to a solution u of (P)y. Moreover, we may assume
that u,(z) — u(z), for almost every z € 2. From (1.6.33) and (f;), we get

luz I <z 1Y + /\/Qf(w, 0)u, (z) dz < || I (un)lllluz | = O, (1.6.34)

as n — oo. Hence, u,(z) — u(z) > 0, as n — oo, for almost every = € (2. Now, we
fix §; > N, and we consider R, = R(6,) > 0 given by (f2). From (1.6.33) and (f2),
we find M; > 0 such that

1
/{|u,.(m)|zR1} [Ef(m’u"(x))u"(x) - F(.’B,un(w))] dz < M. (1.6.35)

Observing that |{z € Q | un(z) < —R;}| — 0, as n — oo, from (1.2.5), (1.6.34),
(1.6.35) and Holder’s inequality, we have

/{ F(z)>R1} [H_if(x’ Uy (2))uy (z) — F(z, u:(:z:))] dr < M;. (1.6.36)
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Given € > 0, we take 0, > 6, such that 1ML < ¢ and R, > max{Ry, R(6;)}, R(6,)
given by (/). Applying (1.6.36) and (f3), we obtain
+
/{ oy F@ @)l <e (1.6.37)

Applying Egoroff’s Theorem, we find F C 2 such that |E| < € and u,(z) — u(z),
as n — oo, uniformly on (2 \ E). Hence, from (1.2.5) and (1.6.34), we have

| Jo [F(z, un()) — F(z,u(z))] dz <

Fixed ¢ > 1, we use (1.2.5) and Holder’s inequality to get M, > 0 such that

L IF(@,u(z))] dz < Met. (16.39)
From (1.6.37), (1.6.39) and Lesbegue’s Dominated Convergence Theorem, we have

Jg |F(z,u (@) dz < €+ [pniocun)<ray | F (T ug (7)) dz <
Se+ fEﬂ{?Sun(x)sRQ} |F(z, u(z))| dx + o(1) <
< e+ Maes +0(1), as n — oo.

The above inequality, (1.6.38), (1.6.39) and the fact that € > 0 can be chosen

arbitrarily provide the conclusion of the proof of Lemma 1.6.1. u
NZ1

Considering c) = I (uy) + ziv (%ﬁl) , with u, given by the proof of Theorem

1.1.1, we shall verify that I, satisfies (PS) condition below the level c,, whenever

we suppose that u = u, is the only possible solution of (P);.

Lemma 1.6.3 Suppose f(z,s) satisfies (f1), (fa), with ap > 0, and (f2). Assume
that uy s the only possible solution of (P)x, for 0 < XA < A. Then, I satisfies (PS).,

N—
for every ¢ < cx = Iy(uy) + 7%,— (%fjl)

Proof: Let (u,) C Wy () be a sequence such that

L(u,) — ¢ < ey,
{ I (un) — 0, as, n — oo. (1.6.40)

Since uy is the only solution of (P),, by Lemma 1.6.1, we may assume that u, — uy,
as n — oo, weakly in Wy'N () and
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/QF(:B, un(z))dz —>/ﬂF(x, ur(z))dz, as n — oo.

From (1.6.40) and (1.6.41), we have

luall¥ = N (c+ i F(:c,u,\(:v))dx) 88 1 — oo,

Taking v, = Wﬁnnﬂ’ we get that

U

[IN(c+a)#*’

Up —= V=
where d = A [ F(z,ux(z))dz. Considering 8 > g such that

! 1 [an N-1
c < /\(U/\)+—]V(F) ,

by (1.2.5), we find ¢ > 1 and C > 0 so that

|f(z,9)|" < Cexp (Bls|™1), Yz €Q, s€ R.
Thus,

N N_
[ 1@ un(@)Idz < C [ exp (Blunl P ua(@)¥7) da,
for every n € IN. On the other hand, by (1.6.43),

1=l < DY gy

Consequently, from (1.6.42), there exists p > 0 such that

B N N\ 71
—fu 71T < p < 1-— .
o el ™ < p < (1= Jol)")

Hence, by Theorem 1.2.6 and (1.6.44), there exists M > 0 such that

[ i@ m@)lrde < M, ¥ne N,

(1.6.41)

(1.6.42)

(1.6.43)

(1.6.44)

Applying Egoroff’s Theorem, the above inequaltiy and the argument employed in

the proof of Proposition 1.3.1, we obtain
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/nf(x, Un(Z))un(z) dz — /s; f(z,ur(z))ur(z) dz, as n — oo.
Therefore, by (1.6.40),

leall™ = & [ (o, wr(@)us(e) do = fuall™.

The Lemma 1.6.3 is proved.

Now, we may conclude the proof of Theorem 1.1.3. Arguing by contradiction,
we suppose that uy, for 0 < X < ), is the only possible solution of (P),. By Lemma
1.6.3, I, satisfies (PS), for every ¢ < ¢,. Furthermore, by the argument employed in
the proof of Theorem 1.1.1, I, satisfies (®;) on B0, p], for p > 0 sufficiently small.
Hence, Proposition 1.2.2 and Remark 1.2.3 imply u,€ é[O, p). Invoking Propositions
1.5.1 and 1.2.4 and Lemma 1.6.3, we conclude that I, possesses at least two critical
points. However, this contradicts the fact that uy is the only critical point of I,.
Theorem 1.1.3 is proved. .

1.7 Theorem 1.1.4

In this section we establish a proof of Theorem 1.1.4. The key ingredient is the
verification of Proposition 1.5.1 under conditions (f3) and (f;). To obtain such
result we exploit the convexity of the function F(z,s) and the fact that u,, for
A € (0,]), is a solution of (P),.

First, we state a basic result that will be used in our estimates.

Lemma 1.7.1 Leta,b€ RN N > 2, and {(.,.) the standard scalar product in R" .
Then, there ezists a nonnegative polynomial p,(z,y) (p, =0) such that

la+ 8" < lal™ + Nlal¥~*(a,8) + oY + py (lal, [b]). (1.7.45)

Furthermore, the smallest exponent of the variable y of p,(z,y) is 3/2 for N =3
and 2 for N > 4, and the greatest exponent of y is strictly smaller than N.

Proof: We present a proof of Lemma 1.7.1 in Appendix B. .

Now, we are ready to establish the version of Proposition 1.5.1. Consider 3, §
given by (f;). Let zo € Q and the Moser sequence associated M,, = Mg, , where

R, = (logn)~ N_zvsl— if N> 3, and R, = R if N = 2, where R > 0 is chosen so
that B(zo, R) C 2.
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Proposition 1.7.2 Suppose f(z, s) satisfies (f1), (f)ao, Withag > 0, (fs), and (fs).
Then, for every X\ € (0, \), there exists n € IN such that

1 aN)N—l.

ma.x{IA(u,\ +tM,) |t > 0} < L(uy) + —=(—
N (87))

Arguing as in the proof of Proposition 1.5.1, we suppose by contradiction that
for every n € IN, (1.5.25) holds. As before, there exists ¢, € IR satisfying equation
(1.5.26). The following two results are versions of Lemmas 1.5.2 and 1.5.3 for this
new situation.

Lemma 1.7.3 The sequence (t,) C IR is bounded.

Proof: Arguing as in the proof of Lemma 1.5.2, we have that equation (1.5.27) must
hold. By (fi) and (f4), for every z € €, the function f(z,.) is positive on [0, c0)
and nondecreasing. Thus, from (1.5.27),

N-1
lux + taMa| V1 > A /B i

n

) f(z, tnMn) M, dz. (1.7.46)

Now, by (f3), given M > 0 there exists Ry > 0 such that
P f(z,s) > Mexp(aosﬁ%), V s> Ry, z € L (1.7.47)

Consequently, by the definition of M,,, for n sufficiently large, we get

N-1 oy & log RN
i N-1 > -~ “o nNTx _ n
tollus + tn My|| > AMwp", exp l(OANt 1+ Nloan logn+
(V —1)(1 — B) log(logn)
Niogn Nlognj.

Now, from definition of R,,, we have

log Ry _ (8—1)(N —1)log(logn)
Nlogn Nlogn

— 0, asn — oo.

Thus, we conclude that (¢,) C R is a bounded sequence. The lemma is proved. ®
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Lemma 1.7.4 There erist ny > 0, and a postive constant C(\,ap,N) > 0
(C(\, ao,2) = 0) such that

N
t;’:’/N_lza_N._ﬂg_N, VnZno,
a  (logn)"/

where y=3/2if N=3, andy=2 i{f N > 4.

Proof: From equations (1.5.25)-(1.5.26), we have

l, «
I,\(U,\) + N(a%)lv_l S I,\(u,\ + tnMn).

Consequently,

1 Qo )N—l

1 N N
¥ ~ (Vs + V(M) ¥ = [Vur|*) do

— A /ﬂ (F(2,ux + taMy) — F(z, uy)) dz. (1.7.48)
Using Lemma 1.7.1 with @ = Vu,(z), and b = V(t,M,(z)), we have
/Q (IVus + V(taMy)¥ — [Var V) dz < (1.7.49)

/n (NVur" 2V V(ta M) + [Vt MY + 1, (IVal, [V (£ M) de

From (1.7.48), (1.7.49), ||Ma.|| = 1, and the fact that u, is a solution of (P)y, we
obtain

L&oyv-1 o tn _y /Q [(F(z, ur + taMy) — F(z,u3) — F(z, u)tnM,,)

N anN - N
+ py (|Vual, V(8. M,)|)] dz. (1.7.50)
Hence, from (1.7.50) and (fy), we get
-1—(&)”‘1 < g+'/p (IVus|, |V(t. M,)|) dz. (1.7.51)
N'ay =N JoN ’

In the particular case N = 2, from Lemma, 1.7.1, we have that p, = 0. From (1.7.51),

we obtain .
. o
tflv'l > hail

= an
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Thus, it suffices to consider N > 3. Using the definition of the function M,, we

obtain the following estimates
N-k
N, "N
BaWnsy 1> 0,1<k<N. (17.52)
(N —k)(logn)¥
Now, from (1.7.52), Lemma 1.7.3, and the definition of the polynomial p,, (z,y) (See
Lemma 1.7.1.), there exists a positive constant C such that
CRY
L e
Jon Vsl IV @M o < e,
where v = 3/2, for N = 3, and y = 2, for N > 4. Hence, from (1.7.51), (1.7.53), we
have

S 1Vl VMo d < Vs ey

(1.7.53)

ﬁ > 1 o N1 GR,I:I
NENa) T logn)®
Arguing as in the proof of Lemma 1.5.2, we get the conclusion of Lemma 1.7.4. ®
To prove Proposition 1.7.2, we use Lemmas 1.7.3 and 1.7.4 to derive the desired
contradiction. From (1.7.46) and (1.7.47), for n sufficiently large, we have

t8jux + ta M| > AM / exp(a()]tnM,,j#V-—:)M;-ﬂ dz.

( 0, N

Using the definition of M,, and Lemma 1.7.4, we get

N-(1-p) —NCRN logn
tP|lus + ta My|| > AMwy, 7 exp( (ogn)/™

N-1)(1-8

) RN (logn)~— ™ —, (1.7.54)

for N > 3, and
L
tP||uy + ta M, > AMwN 1R"’exp[( —1)Nlogn] > /\Mw RN (1.7.55)
N

for N = 2.
From the definition of R,,, we obtain
(N -1)(1-5) RNlogn
RN(lOg n) = 1, and W = (1756)

From (1.7.54) or (1.7.55) and (1.7.56), we have a contradiction because the left hand
sides of (1.7.54) and (1.7.55) are bounded and M can be chosen arbitrarily large
This proves Proposition 1.7.2.

Finally, we observe that the proof of Theorem 1.1.4 follows the same argument
employed in the proof of Theorem 1.1.3, with Proposition 1.7.2 replacing Proposition
1.5.1.
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1.8 Appendix A

In this Appendix, we prove Lemma 1.2.5. First, we note that, without loss of
generality, we may suppose B(zy, R) = B(0,R) = B

Setting up = BLR [, u(T)dz, we may apply Lemma 7.16 in [28] to find C =
C(N) > 0 such that

Vu(y .
[u(z) — up| < C(N)/ ——l——(—lNJ—ldy, a. e. in Bpg.
Taking v(z) = u(z) — um, b € LP(Br), p > 1, ¢ = ;2;, and we use Holder’s

inequality, as in [59], to obtain

I8, |h($)||v(1w)| dr <

<C(N) [f Jonxsn ST dxdy] [f onxng e dody

EEED

2~

Observing that the diameter of Bg is equal to 2R, we get a constant C;(N) > 0
such that

h
// | (:c)| d:cdy<01(N)‘1”h”L”(BR)R v
BrxBr |x —

Applying Hélder’s 1nequahty one more time, we find C2(N) > 0 such that

h
J LG BT

R|x— l q

Combining the above inequalities, we find C3(N) > 0 such that
[, r@Iv@)]dz < Co(N)a'F* BY hllon [ Vulliv o,
for every h € LP(Bg). Therefore,
lollzan < Co(N)g" ™ B [ Vullov gp),
for every q¢ > 1. Consequently, there exists C4y(N) > 0 so that

/ |lu — u}\,IITV)'V'—qT dz < C'4(N)quN,

Bg
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whenever u € WHN(Bg), [lullw.~ sz < 1. Now, we use the power series expansion
of ¥(t) = €' and the above inequality to derive

S, exp(alu — uy|¥7) dz <
_<_ IBRI + afBR |U —_ uMI_NN_—I dl’ + RN Eoo an4gN2qqq,

q=2 q!

if ||ullwr.npr) < 1. Hence, there exist & = &(N) > 0, and C5(N) > 0 such that
. . . N
/BR exp (&2N|u — uMIW—_l) dr < Cs(N)RY + 4271 ||u — uM”ﬁ‘f(BR)'
Since
fuse| < Co(N)R™[ul| "B, ¥ u € WY (Bg),

for some Cg(N) > 0, we may use the convexity of the function ¢ (¢) = %=1 to obtain
C(N, R) > 0 such that

/Ba exp (&Iulﬁ) dx < C(N,R),

for every u € WV (Bg) satisfying ||u|lw.v(py) < 1. Lemma 1.2.5 is proved. u

1.9 Appendix B

In this Appendix we prove Lemma 1.7.1. First, we establish an inequality that will
be necessary in the sequel.

Lemma 1.9.1 Let z,y be real numbers with z > 0 and x+y > 0. Consider k= %,
where N € IN, and N > 3. Then, there ezist nonnegative constants Cy, Co such that

(z+9)* <o +ka* Ty + Jylf + Cralyl* ™ + Gzt
Furthermore, C; = Cy =0 if N =3 and 4, and C; =0 when N = 5.

Proof: Since z > 0 and (z +y)* = z*(1 +yz~!)*, it suffices to consider (1 + 2)* for
every z > —1.

(i) Case N = 3. Let g(2) = 1+ 22 + 1z)2 — (1 +2)3, for every z > —1. We must
show that the function ¢ is nonnegative. Direct calculation shows that ¢'(z) > 0
for every z > 0, and g(0) = 0. When z € [-1,0], we consider 7 = |z|. Thus,
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9(z) =h(r)=1-3r+r3 —(1—r)%, and #'(r) > 0, and k(0) = 0. Hence, g(z) >0
for every z > —1.

(i) Case N = 4. The proof is immediate.

(iii) Case N = 5. Consider the polynomial function:

P(z)=(1+2)3 - (1+ gz +123).
By L’Hospital’s Theorem, we have

P(z) 15

m =
|z|—0 22 8

Moreover, by Mean Value Theorem, we get

P(2)

m = (.
zl—00 22

Consequently, there exists a nonnegative constant C such that
5
(1+2)F < 1+§z+|z|% +C2, VzeR.
(iv) Case N > 6. Consider the polynomial function:
k k N
Pi(z)=(1+2)" — (1+kz+|2|*), where k = 2 and z > —1.

Arguing as above, we have

Pk(z) _ k(k —_ 1)
|z|n—>10 22 - 2 ’
and

Bilz)

jz]—o00 lzlk—l

Consequently, there exist nonegative constants C;, C; such that
(L+2)F <14kz+ 2" + Ci2|f 7t + Ce2%, V2 € R.

Lemma 1.7.3 is proved.
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Proof of Lemma 1.7.1: The proof is immediate when N = 2. Thus, it suffices to
verify the lemma for N > 3. Writing

la+ 0" = (ja+b")"? = (laf* + 2(a, b) + [6*)""2,
and using Lemma 1.9.1 with z = |a|?, and y = 2(a, b) + |b]?, we have

N
la+0|" < |a|¥ + Nla|¥"*(a, b) + 3!@1”‘2“’!2 + (2lal[b] + B]*)2 +
+ 2(N—2)/201|a'2(2|a|Ib[)(N—2)/2 + 2(N_2)/201|a|2|b|N_2 +
+ 4C|a|N 2B + 4Ca|aN 3B + Caola|V 4B
Applying Lemma 1.9.1 one more time, we obtain
la+8Y <lal" + Nla|¥"%(a,) + [b]¥ +py(|al, [b]),
where

py(lal ) = (5 +4Cy)alY2]b? + N2V —9/2|al(N-2/2jp 5202
+ 2N—201IaI(N+2)/2|b|(N—2)/2+2(N—2)/2CIIaI2IbIN—2+
4 ON2|g|N/2|p|N/2 | o(N=9/2(, || (N—4)/2|p|(N+4)/2 |
+ 2C1|al[b|NT + 4Ce|alV 316 + ColalN bl
Finally, since C;, = C, = 0if N = 3 and 5, and C; = 0 when N = 5, from the
definition of p, we conclude that the smallest exponent of |b| is 3/2, for N = 3, and

2, for N > 4, and the greatest exponent of |b| is strictly smaller than N. Lemma
1.7.1 is proved. u
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Capitulo 2

Quasilinear Dirichlet problems in
RY with critical growth

2.1 Introduction

In this article, we use variational methods to study the following quasilinear problem:

—Ayu = uP "l 4 Af(z,u) in RV,
(GP) > 0in R,
Jr~ [VulPdz < oo,
where A,u = —div(|Vu[P~2Vu) is the p—Laplacian of u, p* = Nﬁf; is the critical

Sobolev exponent, 1 < p < N, A > 0 is a real parameter and f : RN x R — R
satisfies the following conditions:

(f1) f € C(RY x R, R) and f(z,0) = 0.
(f2) Given R > 0 there exist 8z € [p, p*) and positive constants ag, bg > 0 such that

|f(z,8)| < aps®® 1 4bgr, V|z|]<R,Vs>0.

(f3) There exist r1,72,9 € (1,p*), with r; < ¢ < r2, an open subset {}y C RN c; €

L7 (R"),i=1,2, and a positive constant a such that

f(z,s) < er(@)s™ ! + cp(x)s™, Vz € RN, s>0,
F(z,s) > as?, Vz €, s20,

where F(z,s) = [§ f(z,t)dt.
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We also assume a version of the famous Ambrosetti-Rabinowitz condition [6],

(f4) Thereexist p< 7 < p*, 1< pu<p*, and c3 € LF&T(RN) such that
1
;f(a:,s)s ~ F(z,8) > —c3(x)s*, Ve € RN, 5> 0.

Observing that v = 0is a (trivial) solution of (GP), our objective in this article is
to apply minimax methods to study the existence of nontrivial solutions for (GP).
However, it should be pointed out that we may not apply directly such methods
since, under conditions (f1) — (f4), the associated functional is not well defined in
general. We also note that we look for weak solution u € DVP(IR") in the sense of
distributions (See definition in Section 2.2).

Our technique combines pertubation arguments, the concentration-compactness
principle [35, 36], appropriate estimates for the levels associated with the Mountain
Pass Theorem [6], and the argument employed by Brezis and Nirenberg [14] to study
semilinear elliptic problems with critical growth.

Considering ¢ € IR given by condition (f3), in our first result we also suppose
the following technical condition:

(H) q € (1,p*) satisfies p = p* — 25 < q.

Note that p < p, p = p and $ > p for p> < N, p? = N and p? > N, respectively. We
can now state our main theorem on the existence of a nontrivial solution for (GP):

Theorem 2.1.1 Suppose f satisfies (f1) — (fs), with q,r; given by (f3) and q sat-
isfying condition (H). Then,

1. If1 < ry < p, there exists \* > 0 such that problem (G P) possesses a nontrivial
solution for every A € (0,A*).

2. If p < 1 < p*, then problem (GP) possesses a nontrivial solution for every
A> 0.

We observe that a particular and relevant case associated with problem (GP) is
given by

—Apu = wP" "1 4+ Aa(z)u?! in RY,
(P) u > 0in RY,
fRN IVulpd:B < o0,
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where g € (1, p*) satisfies (H) and a : RN — IR is a continuous function satisfying
the condition

(@) a* = maz(a,0) € LF(RY) and 3 zo € R such that a(zo) > 0.
The following result is a direct consequence of Theorem 2.1.1,

Theorem 2.1.2 Suppose q satisfies (H) and a satisfies (ag). Then,

1. If1 < q £ p, there exists \* > 0 such that problem (P) possesses a nontrivial
solution for every A € (0, \*).

2. If p < q < p*, then problem (P) possesses a nontrivial solution for every A > 0.

We observe that f(z,s) = a(z)s?! satisfies (f1) — (f2), (f3) with r; = ¢ = o,
c1 =at and c; = 0, and (f4) with 7 = ¢ = p and c3 = 0if ¢ > p, and 7 € (p,p*),
u=qandc;;=(%—%)a+ifl<q$p.

Assuming the positivity of the primitive of the nonlinearity, we do not need to

consider condition (H). More specifically, supposing
(fs) F(z,s) =[5 f(z,t)dt >0 Vz € RN, s >0,

we obtain

Theorem 2.1.3 Suppose f satisfies (f1) — (fs), with r1 given by condition (f3).
Then,

1. If1 < r; < p, there ezists \* > 0 such that problem (G P) possesses a nontrivial
solution for every A € (0, \*).

2. If p < ry < p*, then problem (GP) possesses a nontrivial solution for every
A>0.

It is worthwhile to mention that Theorem 2.1.3 provides a version of Theorem
2.1.2 when a > 0, without assuming that g satisfies condition (H).

Problems involving critical Sobolev exponents have been considered by several
authors since the seminal work of Brezis and Nirenberg [14], mainly when the domain
is bounded. In recent years, the related problem for unbounded domain has been
intensively studied (See, e.g., [3, 7, 8, 40, 44, 61] and their references).

In [7], Ben-Naoum, Troestler and Willem proved the existence of a nontrivial
solution for (P), defined on a domain Q C RY, by considering the problem:
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(P') minimize E(u) = [o(IVul? + a(z)|u|?) dz,
on the constraint u € DVP(Q), fylulf" dz =1,

where a € LF%(Q), a < 0 on some subset of {2 with positive measure and ¢ >
p* — ;27 when p? > N.

A recent result by Alves and Gongalves [3] (See also [44]) establishes the existence

of a nontrivia‘l solution for (P), with h(z) replacing Aa(z) and satisfying h(z) > 0

and h € L#=. In [3], it is supposed that either 1 < ¢ < p and h is small, or
p<q<p*

In [8], Benci and Cerami considered the case p = ¢ = 2 and proved that prob-
lem (P) has at least one solution if a(z) is a negative function, strictly negative
somewhere, having L*/2 norm bounded and belonging to LP(IR"), for every p in a
suitable neighbourhood of %

Our theorems may be seen as a complement for the above mentioned results.
We observe that in Theorems 2.1.1 and 2.1.3 a more general class of nonlinearity is
considered. We also note that condition (f3) provides only a local growth restriction

on f~(z,s) = max{—f(z,s),0}. For example, we do not assume a~ € LFL_Q(RN)
in Theorem 2.1.2. Finally, we should mention that our argument also holds for
quasilinear equations defined on bounded or unbounded domains @ C R with
Dirichlet boundary conditions.

To prove Theorems 2.1.1 and 2.1.3, we first provide a technical result that es-
tablishes the existence of a weak solution in the sense of distributions for a class of
quasilinear problems which may not have the associated functional well defined. In
this technical result we assume the existence of a bounded sequence in D'? of almost
critical points for a sequence of functionals of class C!. The main tool for our proof
of this result is the concentration-compactness principle [35, 36]. To apply such
result, we modify the nonlinearity, obtaining a family of functionals. Employing
conditions (f2) — (f3), we show that these functionals satisfy the geometric hypothe-
ses of the Mountain Pass Theorem in a uniform way. Using this fact, (f4) and our
technical result, we are able to verify the existence of a sequence in D'?(R") con-
verging weakly to a solution of (GP). Finally, we argue by contradiction, assuming
that (G P) possesses only the trivial solution. This allows us to employ an argument
similar to the one used by Brezis and Nirenberg in [14], deriving a contradiction.

The article is organized in the following way: Section 2.2 contains some prelim-
inary materials, including the version of the Mountain Pass Theorem used in this
article. In Section 2.3, we establish the above mentioned technical result. In Section
2.4, the estimates for the geometric hypotheses of the Mountain Pass Theorem are
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verified. Section 2.5 is devoted to prove the estimates from above for the critical
levels. In Section 2.6, we prove Theorem 2.1.1. In Section 2.7, we establish the es-
timates when conditions (f3) and (fs5) are assumed. There, we also present a proof
of Theorem 2.1.3.

2.2 Preliminaries

Motivated by the Sobolev embedding W?(RYN) — LP'(RY), for 1 < p < N,
and p* = Nﬂ}p, we define D' = DYP(IRN) as the closure of D(IR"), the space of
C*-functions with compact support, with respect to norm given by

foll = ([, 1voraz) ™

Inspired by the work of Brezis and Nirenberg, [14], we make use in our argument of
the extremal functions associated with the above embedding. For this purpose, we
denote by S the best Sobolev constant, that is,

Pd
in { S |Vl x/ ‘ } (2.2.1)
u€DLP\{0} (fRN Iulp' dx)p F

The infimum in (2.2.1) is achieved by the functions (See Talenti [58], Egnell [22]),

N—

{velwv - p)fo - P} =
(e+lefr) ™

we(z) = , Vz € RN, ¢ >0, (2.2.2)

with
wellP = [lwel|Z,e = SMP, Ve > 0.

By weak solution of (GP), we mean a function « € D such that « > 0 a.e. in
IRY and the following identity holds:

/ IVuN Y Vg de —/ lufP" ¢ de — /\/ (z,u)dde = 0,
R
for every ¢ € D(RY).
Following a well known device used to obtain a solution for (GP), welet f(z,s) =

f(z,0) =0, for every z € RN and s < 0.
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To modify the nonlinearity, we choose ¢ € D(RY) satisfying 0 < ¢(z) < 1,
¢ = 1 on the ball B(0,1), and ¢ =0 on RN\ B(0,2). Let n € IN and ¢,(z) = ¢(Z).
Define fn(z,s) = én(z)f(z, s), and consider the sequence of problems:

~Apu = wP "L Afp(z,u), in RV,
(cP), { s

We now recall the variational framework associated with problem (GP),. Con-
sidering D'? endowed with norm |ju]| = ||Vul||r», the functional associated with
(GP), is given by

1 1
Iyn(u) = / |VulPdz — — P dz — )\/ (z,u) dz,
p p* RN

where vt = max{u,0} and F,(z,s) = [ fa(z,t)dt. By hypothesis (f2) and our
construction, the functional I, ,, is well defined and belongs to C*(D'?, R) (See[49]).
Furthermore,

I:\’n(u)(p = /}RN IVu[p_2Vu.V¢ dzx —[RN(U"')”‘_% dx — )\/RN fn(z,u)¢p dz.

for every u and ¢ € DVP,
Now, for the sake of completeness, we state a basic compactness result (See {7]
for a proof),

Proposition 2.2.1 LetQ be a domain, not necessarily bounded, of RY,1 <p < N,
1<q<p*,andac L? -q(Q) Then, the functional

DY (Q) - R : u —s /alulqu,
Q
s well defined and weakly continuous.

Finally, we state the version of the Mountain Pass Theorem of Ambrosetti-
Rabinowitz [6] used in this work. Given E a real Banach space, ® € C}(E, R) and
¢ € R, we recall that (u,) C E is a Palais-Smale (PS). sequence associated with
functional @ if ®(u,) — ¢, and ®'(u,) — 0, as n — oo.

Theorem 2.2.2 Let E be a real Banach space and suppose & € CYE, R), with
®(0) = 0, satisfies
(®1) There exist positive constants 3, p such that ®(u) > B, |lu|| = p,
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(®2) There exists e € E, |le|| > p, such that ®(e) < 0.
Then, for the constant

=i >
c=Infsupd(u) 2 B,

where T' = {y € C([0,1], E); v(0) = 0,7(1) = e}, there ezists a (PS). sequence (u;)
mn E associated with ®.

2.3 Technical result

In this section we study the existence of a weak solution in the sense of distributions
for the p-Laplacian in R". Consider g(z,s) € C(R" x R, IR) satisfying

(g1) Given R > 0 there exist positive constants ag, bg such that for every z € RN
with |z| < R, and s € R,

l9(z, 3)| < agls|P" ™! + bg.

The associated functional I in DP is defined by

1
Iw)=— Aq |VuPdz - ZR _G(z,u)dz, (2.3.3)

where G(z,s) = [; g(z,t)dt. It is clear that, under condition (g;), I may assume
the values +oco0. However, if we assume the following stronger version of condition

(gl),

(g2) There exist a > 0, b € Cy(IRY), the space of continuous functions with compact
support in IRY, such that, for every z € RN and s € R,

lg(z, )| < als”"~* + b(z),

then, I belongs to C}(D'?, R) and critical points of I are weak solutions of the
associated quasilinear equation in JRY. To establish the existence of a solution for
the associated equation when (g;) does not hold, we suppose the existence of a
sequence of functions {g,} C C(RY x IR, R) satisfying (g2) and converging to g.
More specifically, we assume

(g3) Given n € IN there exists g, € C(IR" x IR, R) satisfying (g2) and
9(z,s) = gn(z,s), ¥V |z| < n, s € RY.
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Let I, be the sequence of functionals in D'? associated with g,, via (2.3.3). We can
now state our main result in this section,

Proposition 2.3.1 Suppose g(z,s) € C(RN x R, R) satisfies (91) and (g3). Then,
any bounded sequence (u,) C DYP such that I, (u,) — 0, as n — oo, possesses a
subsequence converging weakly to a solution of

—Apu = g(z,u), in RV,
u € DP,

Remark 2.3.2 We observe that in [56], we prove a related result for the N -

Laplacian on bounded domain of RN when the nonlinearity possesses exponential

growth. But, unlike what happens in [56], here the functional is not of class C1.

The proof of Proposition 2.3.1 will be carried out through a series of steps.
First, by Sobolev embedding and the principle of concentration-compactness [35, 36],
we may assume that there exist u € D'P, a nonnegative measure v on R", and
sequences z; € R" . v; > 0 and Dirac measures 6z, such that

( u, — u, weakly in D1P,

un, — u, strongly in L{ _(RY), 1< s < p*,
un(z) — u(z), ae. in RY,
|un1p‘ —v= |u|p" + 2i vibs,, weakly* in M(RN)a
|Vun|P — u, weakly* in M(RY),
L Eillip/p* < oQ.

(2.3.4)

.

Lemma 2.3.3 There exists at most a finite number of points z; on bounded subsets
of RV.

Proof: First, we note that it suffices to prove that there exists at most a finite
number of points z; on B(0,r) for every r > 0. From (2.2.1) and Lemma 1.2 in [35],

we obtain 2
p({z:}) > SvP . (2.3.5)

Now, for every ¢ > 0, we set ¥ (x) = H(=H), z € RY, where v € D(RY),0 <
¥(z) < 1,9%(z) =1 on B(0,1), and ¢(z) = 0 on R" \ B(0,2). Since I, (u,) — 0, as
n — 00, and (Yeuy,) is a bounded sequence, we have

/RN IVun|P—2Vun.V(1,b5un) dz = /BN Gn(Z, Up)etn dz + 0(1).
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By conditions (g;), with R > 2r, and (g3), for n sufficiently large, we get

/};iN VU, P2V u, . V(eu,) dz < ag /RN [un|P Ve dz + bg ./I;IN |un|¥e dz + o(1).

Now, from (2.3.4), taking n — oo, we have

n—00

lim . VP 2Vun. V(Yeun) dz < ag /RN Yedv +br /RN |u|tpe dz.
Invoking Lemma 1.2 in [35] again and taking ¢ — 0, we obtain

p({z:i}) < arv({zi}) = arui.

X
Thus, from (2.3.5), we get agy; > Suiz"e‘ and, consequently, v; > %I—’;— Since }; u,-f‘ <
[

00, we conclude the proof of Lemma 2.3.3.

Lemma 2.3.4 Let K C RY be a compact set. Then, there exist ng € IN and
M = M(K) > 0 such that

/K Ign(z,un(x))lF"—T dr <M, Vn>n,.

Proof: Take ng € IN such that K C B(0,ng). From (g3), we have g,(z,un(z)) =
g(z,un(z)), for every z € K, and n > ny. Now, by condition (g;) with R = ny,

[ 190, un(@) P d < (2000) 7T e + (200) FIK ], ¥ 2 o

The lemma follows by the Sobolev embedding and the hypothesis that (uy) is a
bounded sequence. .

Lemma 2.3.5 Let K C (RN \ {z:}) be a compact set. Then u, — u strongly in
LP(K), as n — oo.

Proof: Let r > 0 such that K € B(0,r). By Lemma 2.3.3, there exists at most a
finite number of points z; on B(0,7). Since K is a compact set and K N {z;} = 0,
6 = d(K,{z;}), the distance between K and {z;}, with z; € B(0,r), is positive. Let
0 < &€ < 6 and define A, = {z € B(0,7) | d(z,K) < €}. Choose ¥y € D(R"),0 <
Y(z) £ 1,4 =1on Ag, and ¥y =0 on RN \ A.. By construction, we have

Joual o < [ lual do = [ bjual? da.
K Ae RN
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Since supp(y) C A and A, N {z;} = 0, with z; € B(0,r), from (2.3.4), we obtain

T}i_’ngosup/Klunlp dz < AQNQﬂdV:/RNz/Aul”‘dw:
= P g </ P dg.
[ ol dr < [ de

Now, taking ¢ — 0 and applying the Lebesgue’s Dominated Convergence Theorem,
we get

lim sup/ un|P” dz < / JulP" dz.
K K

n—oo

On the other hand, since u,, — u weakly in LP"(K), it follows that

“U”Lp*(x) < lim inf”un”LP"(K)'

n—o0

Consequently, as LP (K ) is uniformly convex, u, — u strongly in L?"(K). Lemma
2.3.5 is proved. s

Lemma 2.3.6 Let K C RN \ {z;} be a compact set. Then, Vu, — Vu strongly in
(L”(K))N, asn — oo.

Proof: Let ¥ € CP(RYN \ {z;}) such that ¥ = 1 on K and 0 < ¢ < 1. Using that
the function h : RY — IR, h(zx) = |z|P is strictly convex, we have

0 < (|Vun/"2Vun — |Vufr2Vu) V(un - u).
Consequently,

0 < / (VP Vin — |VulP2Va) .V (uy — u) de <
K

IA

/BN (|Vun|”"'2Vun - |Vu|”_2Vu) V(u, — vy dz,

and
Jx [(IVun P72V, — | VulP2Vu).(V(u, — u))] do <

< Jrn [[VunlPY — [Vun P2 (Vu,. Vu)y — (2.3.6)
— |VulP2(Vu.V (u, — v))9] dz.

On the other hand, since I, (u,) — 0, as n — oo, we also have
A% [Vl (Vun V) + (VunV9)u) — wgn(z, un)u] do = o(1),  (23.7)
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as n — oo. Moreover, since (¥u,) is a bounded sequence in D!P, we get

Aq [ unl? + [ unlP 2 (Vun V) — ga(z, ua)u] do = o(1), (2.3.8)
as n — co. Combining (2.3.6)-(2.3.8), we obtain

0 < [x [(|Vun|P2Vu, — |VulP72Vu).V(u, — u)] dz <
< T $90(@, tn) ttn — ) d2 + [y [V P2(V b V) (tn — ) dt
+ [~ [VulP~2Vu.V(u — u, )y dz + o(1), as n — oo.

Applying Lemma 2.3.4 for the compact set Q = supp(¢), and using Holder’s in-
equality, we get
0 < [ [(|Vun|P~2Vu, — |VulP™2Vu).V(u, — u)] dz <

*

< M7 (Jun — 1o @) + [ VYl L@ [Pl — nll o+
+ [pr [VulP~2Vu(Vu, — Vu)y dz + o(1), as n — oo.

Now, applying Lemma 2.3.5 for the compact set Q = supp(¢) C (RN \ {z;}), from
(2.3.4) and boundedness of (u,), we have

/ (IVunlp_2Vun - |Vu|”_2Vu) V(up —u)dz — 0, as n — oo.
K

Considering that
C,la — b|P ifp>2,
P20 — |bP2%b,a —b) > & 7 jachr -
for every a, b € RN (See [57]), if p > 2, we get

lim C, A{ |Vu, — VulPdz = 0.

n—0o0

Furthermore, when 1 < p < 2, we have

. |Vuyn — Vul?
dz = 0. 2.3.9
11 O [ (Tl Ty (239)
Thus, by Holder’s inequality,

m%__zld:vg

J 1V (un = w)lPdz = [ o~ 'Vli”;";)e'fg_z) (IVun| + |Vul)

Un —U 2
< (Jx reegdsm do)” (Jx(IVunl + |Vul)? dz)

2-p
2
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Finally, from this last inequality, (2.3.9), and the boundedness of (u,), we have

lim /K |Vun — Vul?de = 0.

n—o0

Lemma 2.3.6 is proved. .
As a direct consequence of Lemma, 2.3.6, we have

Corollary 2.3.7 The sequence (un,) C D' possesses a subsequence (un;) satisfying
Vun;(z) — Vu(z), for almost every z € RY.

Finally, we conclude the proof of Proposition 2.3.1: Given ¢ € D(RR"), take
no > 0 such that supp(¢) C B(0,n0). From (g3), we have

gn(z,8) = g(z,8), Vz € supp(¢), and n > ny. (2.3.10)
Condition (g;), with R > ng, and (2.3.10) provide
lgn(z, 8)¢(2)| < (ars® ~* + br)|o(z)|, Yz € supp(¢), s € RN, n>no.  (2.3.11)

Invoking (2.3.4), (2.3.11) and the fact that (u,) C D is a bounded sequence, it
follows that (gn(z,un)¢) and (|Vu,|P~2Vu,Vé) are uniformly integrable families in
LY(RY). Thus, by Vitali’s Theorem and Corollary 2.3.7, we get

limn—co [RN gn(%, un(2))d(z) dz = [prv 9(z, u(z))¢(z) dz, V¢ € D(RY),
limp—oo [~ |VUnlP2Vu,Védz = [pn |[VulP2VuVédz, V¢ € D(RY).

(2.3.12)
Consequently, from (2.3.12) and I, (u,,) — 0, as n — oo, we have

/RN VPV uVe dz — /m 9(z, u(z))d(z) dz = 0, V¢ € D(R™).

Proposition 2.3.1 is proved.

2.4 Mountain pass geometry

In this section, we prove that the family of functionals I, satisfies conditions (®1)
and (®3) of Theorem 2.2.2 in a uniform way.

Lemma 2.4.1 Suppose f satisfies (f2) and (f3). Then,
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1. If1 < ry < p, there exists \* > 0 such that, for every A € (0, \*), I, satisfies
(®1), with B and p independent of n.

2. Ifp <11 <p*, then for every A > 0, I, satisfies (®1), with 8 and p indepen-

dent of n.
Proof: Let v € D', and u # 0. Using Holder’s inequality with exponents ;?_LE
and ;L:, i = 1,2, we have :
S @ e < el e e (2413)

Now, from the definition of ¢, (f3), (2.2.1) and (2.4.13), we get

1 1 .
Bnl) = Sl? = Sl = [ Fa(eu)do >
1 1

> S|P = =|lu)F.e — Al = Nu|lie = Alle s Null. >
R Y 1 WY % R

1 1 . A
> = p__ P o - o
e L e S

A .
W”Q“LF‘%E [lee]|2.

Case 1: 1 < r; < p. We have

N 1 JC 1
D) 2 ul? (5 = Sl 7) = 3 (= S:;/pln ™+ — L ).

Consider

Q(t) = ——t”? and R(t) = ————”61” = ”+———”02” 2 472
= ogrip r19m/P roSTal?

Since Q(t) — 0, as t — 0, there exists p > 0 such that

l—62(10)>0
p

Now, we choose A* > 0 such that

% — Q(p) = A"R(p) > 0.
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Consequently, there exist p and 8 > 0, with p and 8 independent of n, such that
Din(u) 2 B, |lufl = p.

Case 2: p < ry < p*. We have

1 . A
p-r _ - -p __
p*Spt/p“u” rlSrl/p”clnL;iz__r;“u”

1
D) 2 [P (> -
p

A
AN . r2—p
—ssleall__g_llul™?).
Considering

1
p*SP*/P

t”'l -p 4

. A A
— p*—p . $T2—P
Q) = gt P glleall et el et

we note that Q(t) — 0, as t — 0, since p < r; < ry. Hence, there exists p > 0 such
that

1
==Q(p)>0
» (p)
Consequently, we get p and 8 > 0, with p and 8 > 0 independent of n, such that
Din(u) 2 B, |lull = »p.
Lemma, 2.4.1 is proved. =

Lemma 2.4.2 Suppose f satisfies (f2) and (f3). Then, for every A > 0 andn € IN,
I satisfies (®3).

Proof: Consider Q given by (f3) and ¢ € D(IRY), a positive function with
supp(¢) C Q. For every t > 0, we have

La(t9) < t—/ VPP dz — —f

q q
Aat /R _l¢|¢dz.

Since p* > p, there exists ¢t > 0 sufficiently large such that I, ,(t¢) < 0 and ||t¢|| > p,
with p given by Lemma 2.4.1. This proves the lemma.
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2.5 Estimates

Considering 29 given by (f3), we take zg € Qo and r¢ > 0 such that B(zg, 2r9) C Qo.
Now, let ng € IN be such that B(zy, 2r¢) C B(0,n¢). Choose ¢ € D(IR") satisfying
0< ¢ <1, ¢=1on the ball B(zg, ), and ¢ = 0 on R" \ B(zg,2r). Given £ > 0
and w, defined in Section 2.2, set

dw,

 llowelle

Then, v, satisfies (See, e.g., [14], [40])

Ve

X, = [RN |Vve|Pdz < S + O(s'NTTz), as e — 0. (2.5.14)

Proposition 2.5.1 Suppose f satisfies (f2) and (fs), with q satisfying condition
(H). Then, for every A > 0, there existe > 0, ng € IN and d) > 0 such that, for
every n 2 nyg,

1
max{Ira(tve) | £ > 0} < dy < NS%'

Proof: From (f3) and the definitions of ¢,, and v., we have

tP 7
Iyn(tve) = ;XE — ;;— - /RN Fo(z,tve) dz <
tP P
< x-S _ /\tq/ alvel?dz = Jx(tve).
P p* RN

Thus, to prove the proposition, it suffices to obtain € > 0 and d) > 0 such that
1 x
ma.x{J,\(tve) ' t2> 0} <d) < NSP.

We argue as in the proof of Lemma 2.4.2. Given £ > 0, there exists some t. > 0
such that

d .
ntlzagc Ja(tve) = Ja(teve) and Et—J,\(tvE) =0int =t,.

This implies
1

0<t. < XFP.
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On the other hand, from Lemma 2.4.1 and (2.5.14), we have
1P -
0<BS It < XS+ 0@ 7).

Hence, there exists ag > 0 such that

Since the function h(s) = £X, — &
P

obtain

1 XN
Ia(teve) < --1\7Xep — daag? /RN |ve|? dz.
From (2.5.14) and using the inequality
(b+¢c)* <b*+a(b+c)* e Vb, ¢>0, Va > 1,

withb=S§,c= O(el'v';'z), and o = 1—;’—, we get
1 N-p
Ia(teve) < N—SN/”-FO(E ) — )\ag/RN alv|?dz.
Thus, there exists M > 0 such that

N/p Ao q
Ia(teve) < ——s e (M- —[RN alvel9dz ) <

N—p
e r
N—
daad g #
< —SN/p—l—e P <M-— _0/ — d:t:).
N 52 JBO (¢ 4 |z)7T)

By changing variables, we obtain

Ia(teve) < -]%,-SN/P +ePt (M—

2 gN-1
(B 2=p)q i (e=UN 4 2=) ds)
° 1+ sp/(P—l))
Furthermore, for £ > 0 sufficiently small, we have
1 $N-1 SN-1 (=N
N

e P 1 2
——ds > / -
/o (1 4 sp/@-1)) 52 0 (1 4 sp/t-1)) "5

q

—/\awN 1€

ds >

53

1
is increasing on the interval (0, X7 *)

?
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because g(s) = (14 s?/®D)"1 > g(1) = 271 for 5 € [0,1]. Consequently, there
exists a positive constant C, such that

Ja(teve) < %SN/” + €N_;2 (M - )\Ce[(%;ﬂ—ﬁfa)q+u_: N+L;—N']>‘

Since ((N =p) (N—p))q+(p ;)N+p N .
find g9 > 0 such that

is negative, when ¢ satisfies condition (H), we

X=e Nop) Nepygi (p=UN | p=N
Jx (tsoveo) < dy= ‘—S /p_+_€ P (M )\CEL( )a ])

< ——SN/”.
N

Proposition 2.5.1 is proved. u

2.6 Theorem 2.1.1

In view of Lemmas 2.4.1 and 2.4.2, we may apply Theorem 2.2.2 to the se uence
of functionals Iy, obtaining a positive level cj », and a (PS )c,\,n sequence ( )J in
D je.,

IA,n(uJ(-")) — cyn and I;,n(uj(-")) — 0 as j — oo.

Moreover, from Lemma 2.4.1 and Proposition 2.5.1 , we have
. 1 vy
0< B <cyn=infsupl),(u) <d)< =57,
’ Y€l uey N
Taking a subsequence if necessary, we find ¢y € [8, d,] such that
c) = 1}51(}0 Can-

Thus, given 0 < ¢ < min{cy, lS'N/”} there exists ng > 0 such that cy, € (cx —
(n)

€, cx + ¢) for every n > ng. Now, for each n > ng, there exists u, = u;,’ satisfying
cx— € < Innlun) < cx +¢, (2.6.15)

and 1
13 n(un)ll < — (2.6.16)
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Lemma 2.6.1 The sequence (uy,) is bounded in D'P.

Proof: From (f;), there exist 7 € (p,p*) and p € (1,p*) such that

1. 1 1 1 1 .
Iy n(un -~ =1 n)Un =\—— — np - - = I .
wnltn) = Th(n)in = = Dl + (7 = Dl +
1
+ )\/RN (;fn(x,un)un - Fn(:c,un)) dz > (2.6.17)
1 1 1 1 -
> Il P o +r _ +iu
2 (2= Dl + = el = [ caleluit*da.
> (5= Dunll? + (5 = Mt — Mesl g llutllye
= p r p/tP =

On the other hand, from (2.6.15) and (2.6.16), we have
1, 1
In,,\(un) — ; n,)\(un)un <C+ ;Hunll (2.6.18)

Denoting h(t) = (£ — x)t*" — Alleal|t, for ¢ > 0, from (2.6.17), (2.6.18), and using
that h(t) is bounded from below, we conclude that the sequence (u,) is bounded in
DY?. Lemma 2.6.1 is proved. n

Applying Proposition 2.3.1 to the diagonal sequence (u,), we obtain a weak
solution u for problem (G P). The final step is the verification that u is nontrivial.
First of all, we note that v~ = 0. Effectively

/I;%N IV(u;)]p dr < A{N (IV(u:)F + IV(U;)P)E do =

= ./RN |Vu,|Pdz.

Thus, the sequence (u;) is bounded in DV?. Consequently, I:\,n(un)(u; ) — 0, as
n — oo. Since I:\’n(un)(u,'{) = %Hu;ll”, it follows that u; — 0 in DV as n — oo.

Now, we assume by contradiction that « = 0 is the only possible solution of
(GP). Let

= lim [u|P dz.
n—oo JpN

From (f3) and (2.6.16), we have

b4 4 . *
0= r}l_r}go]/\,n(un)un > nh—’l%(:/IRN (qunlp - 'u:l' P _ ’\Cllun'” _ /\c2|unlr2) dz.
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Consequently, by Proposition 2.2.1, we have

n—o0

lim . |Vuy|Pdz < L. (2.6.19)

We claim that [ > 0. Effectively, arguing by contradiction, we suppose that | = 0.
Under this assumption, from (2.6.19) and (f3), Irn(un) — 0, as n — oc. But this
is impossible in view of (2.6.15). The claim is proved.

Invoking (2.2.1), we have

O\ 7
IVuall2 > IV ()% > S( /B luil ) . (2.6.20)
As a direct consequence of (2.6.20), and (2.6.19), we obtain

N
1> 8% (2.6.21)
By (f4), (2.6.15) and (2.6.16), we get

1 : : 1.,
NSN/I, > dy>cy= ,}I_I.Iololf\:"(u") = lim [I,\,n(un) - ;Ik’n(un)un] =

: 1 1 1 1 .
= [lim [(; = NVual” + (-~ - F)”U:Hiw - [RNCauﬁ dw} >

1 1 "
Jlim i F)HU:{”'ZP* - /RNCSU’J dm} :

. 1 1
> lim [(I_? - ;)S”un”ip* + (

Consequently, from Proposition 2.2.1 and (2.6.21), we have

1 1 1 . 1 1
—gNlr 5 (Z_ Z\gP/P >
N (p 7') + (7' p*) -
> (2 — 2)eity Z_ Z\gN/p = _gN/p,
= (p 7') "+ (7' p*) N
This concludes the proof of Theorem 2.1.1. n

2.7 Theorem 2.1.3

In this section we establish a proof of Theorem 2.1.3. The key ingredient is the
verification of Proposition 2.5.1 under conditions (f3) and (fs). To obtain such
result we exploit the positivity of the function F(z,s). Considering the extremal
functions w, defined by (2.2.2), we have
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Proposition 2.7.1 Suppose f satisfies (f2),(fs), and (fs). Then, for every A > 0,
there exist e > 0, ng € IN and d) > 0 such that, for every n > ng

1
max{Iyn(twe) | t > 0} < dy < NS%'

Proof: Let ng € IN such that Qp = B(0,n9) N Qo # @. From (f2), (f3),(fs) and our
definition of Iy, for every n > ng, we have

I (tw,) = (t;p — pi)SN/p )\/ ¢n(z)F(z,tw.) dz <

Pt
(5 =) = [ 6u(@)F (@, twe) da <
4 {0
P P
< (__ _ p_)SN/P ,\atq/ |lwe|?dz = Ja(twe).

Thus, it suffices to obtam € > 0 and dy > 0 such that
1
max{Jx(tw.) | t > 0} < dy < TV-SN/”.

To prove such result we follow the argument employed in [3]. By (2.2.2), the sequence
we is bounded in L'e (RN) and w.(z) — 0 a.e. in R", as e — 0. Thus, we — 0

weakly in L'e (RN ), as € — 0. On the other hand, the restriction w, |, belongs
to W“’(Qo). Hence, by the Sobolev Embedding Theorem, w, — 0 strongly in

L™(B(0,2n)), for every 1 < r < p*. Consequently,
hm/ |lwel?dz = 0.
Therefore, there exists g > 0 such that
0 < Ja(we,) < %SN/”. (2.7.22)
Now, arguing as in the proof of Lemma 2.4.2 , we take t., > 0 such that

Ix(teoWeo) = max{Ja(twe) | t > 0}.
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Since d%I,\,n(thO) =0, for t = t.,, we get
(#271 — 221 SN/P _ xatd?! /QO [eo|? daz = 0. (2.7.23)

From (2.7.22) and (2.7.23), we have

0<t, <1
Observing that the function k(%) = %’ - %’7 achieves its maximum at ¢t = 1, we get

1
JA(teoweo) <dy= J,\(wso) < ']VSN/p.
Proposition 2.7.1 is proved. u
Finally, we observe that the proof of Theorem 2.1.3 follows by the same argument
employed in the proof of Theorem 2.1.1, with Proposition 2.7.1 replacing Proposition
2.5.1.
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