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Abstract

From the definition of fuzzy derivative and integral via Zadeh’s extension of the derivative
and integral for classical functions we obtain a fundamental theorem of calculus and develop
a new theory for fuzzy differential equations (FDEs). Different from the previous concepts of
fuzzy derivatives (Hukuhara and generalized derivatives) and integrals, defined for fuzzy-set-valued
functions, the approach we propose deals with fuzzy bunches of functions (fuzzy subsets of spaces
of functions). Under reasonable conditions, the new operations are equivalent to differentiating
(or integrating) the classical functions of the levels.

We present the most known previous approaches of FDEs. Comparisons with the new theory we
propose are carried out calculating fuzzy attainable sets of the solutions. Under certain conditions,
the solutions via strongly generalized derivative coincide with solutions using our approach. The
same happens with solutions to fuzzy differential inclusions and Zadeh’s extension of the crisp
solution. Although these two methods do not treat FDEs, they are widespread for making use of
classical functions (similarly to what is proposed in this thesis) and for preserving properties of
classical dynamical systems. These are advantageous features since it shows that the new theory
presents desirable properties of the other two mentioned theories (allowing for instance periodicity
and stability of solutions), besides treating FDEs.

The theory is illustrated by applying it on biological models and commenting the results.

Keywords: Fuzzy differential equations; Zadeh’s extension; Fuzzy derivative; Fuzzy integral;
Analysis.

Resumo

A partir da proposta das definições de derivada e integral fuzzy via extensão de Zadeh dos respec-
tivos operadores para funções clássicas, obtemos uma versão do teorema fundamental do cálculo
e desenvolvemos uma nova teoria de equações diferenciais fuzzy (EDFs). Diferentemente dos con-
ceitos anteriores de derivadas (Hukuhara e generalizadas) e integrais para funções fuzzy, em que as
funções assumem valores em conjuntos fuzzy, a abordagem aqui proposta lida com tubos fuzzy de
funções (subconjuntos fuzzy de espaços de funções). Sob condições razoáveis, as novas operações
equivalem a diferenciar (ou integrar) as funções clássicas dos níveis.
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Apresentamos as abordagens anteriores de EDFs mais conhecidas e, para realizar comparações
com a nova teoria, calculamos os conjuntos atingíveis fuzzy das soluções. Provamos que algumas
soluções da teoria proposta equivalem às via derivada fortemente generalizada. Também demons-
tramos a equivalência, sob determinadas condições, com as soluções via inclusões diferenciais fuzzy
e extensão de Zadeh da solução clássica. Apesar destas duas abordagens não tratarem de EDFs,
elas são largamente difundidas por utilizarem derivadas de funções clássicas (de modo similar
ao aqui proposto) e de preservarem características das soluções de sistemas dinâmicos clássicos.
Esses são fatos vantajosos, pois mostram que a teoria proposta, além de tratar de EDFs, possui
propriedades desejáveis das outras duas mencionadas, permitindo a ocorrência de estabilidade e
periodicidade de soluções, por exemplo.

A teoria é ilustrada através de sua aplicação em modelos biológicos e análise dos resultados.

Palavras-chave: Equações diferenciais fuzzy; Extensão de Zadeh; Derivada Fuzzy; Integral fuzzy;
Análise.
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The time has come
For closing books

And long last looks must end
And as I leave

I know that I am leaving my best friend
A friend who taught me right from wrong

And weak from strong
That’s hard to learn.

(...)
To Sir, with Love.

Don Black and Mark London

So much things to say.

Bob Marley
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List of Symbols

a, b, f, g, x, y, etc. (lower case): non-fuzzy elements.

A, B, F, G, X, Y, etc. (capital letters): (fuzzy or non-fuzzy) subsets.

U,V: general non-fuzzy universes.

Kn the family of all nonempty compact subsets of Rn.

Kn
C the family of all nonempty compact and convex subsets of Rn.

F(U): the family of all fuzzy subsets of U.

FK(U): the family of all fuzzy subsets of U with nonempty compact α-cuts.

FC(U): the family of all fuzzy subsets of U with nonempty compact and convex α-cuts.

[A]α: α-cut of the fuzzy subset A.

aα
−, aα

+: lower and upper endpoints of the α-cut of the fuzzy number A, that is, [A]α = [aα
−, aα

+].

E([a, b];U): general space of functions from [a, b] to U.

E([a, b]; F(U)): general space of functions from [a, b] to F(U).

C([a, b];Rn): space of continuous functions from [a, b] to Rn.

AC([a, b];Rn): space of absolutely continuous functions from [a, b] to Rn (see Appendix).

Lp([a, b];Rn): Lp space of functions from [a, b] to Rn (see Appendix).

f̂ : Zadeh’s extension of function f (see Section 2.2).

D̂: Zadeh’s extension of the derivative operator D (see Subsection 3.2.2).
∫̂
: Zadeh’s extension of the integral operator

∫
(see Subsection 3.2.1).

a ∧ b: a ∧ b = min{a, b}.

d∞: Pompeiu-Hausdorff metric for spaces of fuzzy subsets (see Section 2.4).

dE: Endographic metric for spaces of fuzzy subsets (see Section 2.4).

dp: Lp type metric for spaces of fuzzy subsets (see Section 2.4).

B(X, q): closed ball B(X, q) = {A ∈ FC(R) : d∞(X, A) ≤ q}.

F ′
H(x): Hukuhara derivative of the fuzzy function F at x (see Subsection 3.1.2).

F ′
G(x): strongly generalized derivative of the fuzzy function F at x (see Subsection 3.1.2).

F ′
gH(x): generalized Hukuhara derivative of the fuzzy function F at x (see Subsection 3.1.2).

F ′
g(x): fuzzy generalized derivative of the fuzzy function F at x (see Subsection 3.1.2).
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Chapter 1

Introduction

The first example Zadeh describes in the first publication on fuzzy sets (Zadeh, 1965) is about
taxonomy (classification of organisms). More specifically, it illustrates the lack of sharpness in
the classification of beings into animals. A dog, a horse and a bird are animals; a rock and a
plant are clearly not animals; a starfish and a bacteria, though, are not so clearly in or out the
group of animals. This shows that human beings’ classification is subjective. In the beginning this
argument was not enough to convince the scientific community of the importance of the proposed
theory and, after initially being the object of much skepticism and derision (see Zadeh (2008)),
fuzzy set theory is now widespread in many different fields of knowledge and human reasoning
modeling.

The modeling of any phenomena by humans is also subjected to the limitation of the human
being in understanding, collecting data, interpreting and concluding. Besides, it is very common
that the phenomena itself have some kind of inherent uncertainty (noise), reinforcing the need of
a theory that deals with this type of concept.

Fuzzy Sets and Mathematical Biology

Mathematical biology (see e.g. Edelstein-Keshet (1988) and Murray (2004)) consists in employing
mathematical tools to model biological phenomena, such as epidemiology problems, population
dynamics, ecological systems and genetics. As cited before, uncertainties are present in the process
of modeling, as well as in the behavior such as in viruses and populations in general. To deal with
uncertainties there are mainly two kinds of approaches: the probabilistic one and the fuzzy one.
We are interested in the last one.

The employment of fuzzy sets theory is present in many studies in biological problems:

• In epidemiology the SI (suscetiptible-infectious) system has been explored in various research
articles (Barros et al., 2003; Cabral, 2011; Cabral and Barros, 2012; Santo Pedro and Barros,
2013); communicable diseases such as HIV (Jafelice, 2003; Jafelice et al., 2004) and dengue
(Gomes and Barros, 2009; Silveira and Barros, 2013) have also been modeled and studied.
Other studies of interest are Barros and Bassanezi (2010); Massad et al. (2008); Ortega et al.
(2003).

1



2 CHAPTER 1. INTRODUCTION

• In population dynamics exponential and logistic growth, prey-predator models, among others
have been explored (Barros and Bassanezi, 2010; Cecconello, 2010; Křivan and Colombo,
1998; Simões, 2013; Silva et al., 2013).

• In diagnosis and other applications in medicine (Barros and Bassanezi, 2010; Castanho et al.,
2013; Majumder and Majumdar, 2004; Massad et al., 2008; Silveira et al., 2008; Fialho et al.,
2012).

The probabilistic approach deals with random (or stochastic) processes, that is, it has to do
with the measure of the chance of occurrence of events. Fuzzy approaches were created to model
entities whose sets have nonsharp boundaries in which the elements may have partial membership
to it, not being considered completely in or completely out of the given set. But it also plays
important role in the theory of possibility which uses fuzzy sets theory and deals with partial
knowledge and the related uncertainties. What we see in general is the presence of both kinds
of uncertainties in the biological phenomena, though the modeling is complex and few dared to
explore and apply this joint approach (see Gomes and Barros (2009); Missio (2008); Silveira and
Barros (2013); Fialho et al. (2012)).

Modeling of various phenomena frequently makes use of differential equations. In order to
include the imprecision, the fuzzy approach is often used. In particular, differential inclusions and,
more recently, fuzzy differential equations, or even fuzzy differential inclusions have been used.

In population dynamics, for example, Křivan (1995) recalls that individuals may exhibit some
preferences or strategies, that is, inside a group they do not behave all in the same manner.
Environmental or demographic noise also is another source of uncertainty. Via standard theory of
differential equations, it is not possible to take these factors into account.

Křivan (1995) and Křivan and Colombo (1998) claim for the use of fuzzy differential inclusions
in population dynamics. According to these studies, the stochastic approach, via the use of white
noise (a linear term in the differential equation) to model the uncertainty of the dynamics, is not
the most appropriate one. The probabilistic approach would be suitable for the “hard sciences”,
such as physics and electronics, not for a “soft science” as biology. The white noise would emphasize
short time scales and would lead to mathematically tractable models, hence it was used to treat
many problems, but there are many others that demand for a different approach. The alternative
would be the deterministic noise, including what they call the unknown-but-bounded-noise, i.e.,
the imprecision enters the dynamics via a parameter whose only assumption is that its values
belong to a bounded set U , which may depend on time or the state variable. This approach leads
to differential inclusions (see Aubin and Cellina (1984)) and considering some kind of “preference”
of some parameter(s) in U , determines a higher membership degree of a more suitable solution
characterizing differential inclusions that are fuzzy.

It is also possible to define fuzzy derivatives and consider the function as fuzzy as it has been
done by many authors (Puri and Ralescu, 1983; Kaleva, 1987; Seikkala, 1987; Bede and Gal, 2005;
Stefanini and Bede, 2009; Chalco-Cano et al., 2011b; Barros et al., 2013). The first proposal,
based on the Hukuhara derivative for interval-valued functions, has been criticized for presenting
nondecreasing fuzziness. In other words, a dynamical system whose initial uncertainty is different
from zero does not evolve to nonfuzzy states. This situation is not consistent with population (or
nuclear) decay model.
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Initial Value Problems

This thesis treats fuzzy initial value problems (FIVP). An initial value problem (IVP) is a system
of an ordinary differential equation together with a value called initial condition:

{
x′(t) = f(t, x(t))
x(0) = x0

. (1.1)

In what we call the “classical case”, the solution is usually defined as a real-valued continuous
function x(·) that satisfies the initial condition and the differential equation at every t in a given
domain. The function x(·) is interpreted as a curve such that the direction to be followed is
determined by the function f , at each real value t. In this case, the solution is a real-valued
function with real-valued argument. We call the IVP a “classical IVP” and the solution a “classical
solution”.

This approach is widely used to model physical, biological, chemical phenomena. In a biological
interpretation, x can be the number of individuals of a population (ants, fishes, predators, humans,
viruses, infected people), t is time and f is the rate with which the population changes in quantity.
The ability of modeling various phenomena, as well as theorems regarding existence of solution
and practical techniques to find it (analitically or numerically), justifies wide use of IVPs.

Fuzzy set theory treats of sets in a universe such that the elements have partial membership
degree. That is, it is admissible that an element is not completely in or completely out of the
set, but presents an intermediate degree. The success of fuzzy set theory, specially in modeling
some control problems, has generated interest in many fields. Several concepts of the “non-fuzzy”
theory were extended to the fuzzy case. This is no different in differential equations theory.

Fuzzy Initial Value Problem

Problem (1.1) becomes a new problem if any parameter presents fuzziness and it is called fuzzy
initial value problem. The first time the term Fuzzy Differential Equation (FDE) was used, was
Kandel and Byatt (1980) and only in 1987 did FDE took on characteristic of the way it is used
nowadays (Kaleva, 1987; Seikkala, 1987). Kaleva (1987) made use of the Hukuhara derivative for
fuzzy-set-valued functions and Seikkala (1987) used an equivalent definition. In both studies, the
FIVP was defined using a fuzzy differential equation and a fuzzy initial value:

{
X ′(t) = F (t, X(t))
X(0) = X0

. (1.2)

The function F is a fuzzy-set-valued function, that is, its values are fuzzy sets. Hence, the derivative
X ′ of the unknown function X is also fuzzy. It means that the direction to be followed by the
solution is a fuzzy set and the solution, at each t, is also a fuzzy set.

There is also an integral equation associated with (1.2) as in the classical case. It involves a
fuzzy integral and the Minkowski sum and one realizes that the solution to this kind of equation
always has nondecreasing diameter. That is, the fuzziness (or, according to the interpretation,
the uncertainty) does not decrease with time. As it will be fully explained in Section 4.2, this is
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considered a shortcoming since this is not expected from phenomena such as decay in population
dynamics.

Generalizations of the Hukuhara derivative fixed this defect (see next Historical Overview
section nd Section 4.3), but before that, other interesting approaches emerged and are still being
intensively studied, namely the fuzzy differential inclusions (FDIs) and Zadeh’s extension of the
classical (or crisp) solution. These other approaches are based on a completely different view of
fuzzy differential equations. Though they receive this classification, they are not really FDEs.
There is no equality between the derivative of a fuzzy function and the function that determines
the direction of the dynamic since there is no derivative of fuzzy function. The derivative is that
of classical functions. At each crisp pair (t, x), there are different possible values of the function
f , each one with a membership degree to the set “fuzzy direction field”. In the FDIs case, the
memberhip degree of the initial solution (to the set “fuzzy initial condition”) and the direction
field establish the membership degree of a non-fuzzy function (or its attainable set) to the solution
of the FIVP. The common approach of Zadeh’s extension of the classical solution solves classical
differential equations. The initial condition and fuzzy parameters determine the solution, which is
a fuzzy-set-valued function.

A novel idea has been recently developed and connects both mentioned interpretations for
FIVPs (Barros et al., 2013; Gomes and Barros, 2012, 2013). This is the subject of this thesis. A
fuzzy derivative is proposed, defined via Zadeh’s extension of the derivative operator, denoted by
D̂, and it turns out to be based on differentiating classical functions. Moreover, a fuzzy differential
equation has to be satisfied. Comparisons of the results between this and the other approaches
are inevitable and, in fact, the new derivative leads to the same solutions produced by the other
methods, provided some conditions are satisfied (see Section 3.3).

In summary, a solution to IVP (1.1) is a function x(·) ∈ E([a, b];Rn), where E([a, b];Rn) is a
space of functions from [a, b] to Rn and f : [a, b]×Rn → Rn (see Figure 1.1). In the novel approach
developed in this thesis, a solution to FIVP (1.2) is a fuzzy set of a space of functions, that is,
X(·) ∈ F(E([a, b];Rn)), where F(X) denotes all the fuzzy sets of the universe X. In words, each
crisp function has membership degree to the fuzzy set “solution”. Moreover, F : [a, b] × F(Rn) →
F(Rn), as illustrated in Figure 1.2. A solution to FDIs is also of type X(·) ∈ F(E([a, b];Rn)),
but the domain of the right-hand-side function is crisp, that is, F : [a, b] × Rn → F(Rn). The
space of the solutions of the approach of Hukuhara derivative (or H-derivative) and the strongly
generalized derivative (or GH-derivative) is another one: X(·) ∈ E([a, b]; F(Rn)). In words, X(·)
is a function that maps real values into fuzzy values. The right-hand-side function is of type
F : [a, b] × F(Rn) → F(Rn). The illustrations of these two approaches are displayed in Figures
1.3 and 1.4. Finally, Zadeh’s extension of the crisp solution solves classical differential equations
and extends the solution at each t ∈ [a, b] such that X(·) ∈ E([a, b]; F(Rn)).

The fuzziness in the solution enriches the theory of differential equations since the solutions
are not composed of single points, but of sets of points associated with membership degrees. In
the words of Cellina (2005), writing about multi-valued functions (which is a particular case of
fuzzy-set-valued functions), “while to describe the behaviour of a point valued function is easy (a
point can only displace itself), a set, besides displacing can be larger or smaller, can be convex or
not. All these different facts are relevant to the problem of the existence of solutions and to their
properties.”
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Historical Overview

Kandel and Byatt (1980) first used the term “fuzzy differential equations”, with a completely
different meaning from nowadays. They used and extended Zadeh’s definition of the probability of
a fuzzy event and solved differential equations involving the membership function of a given fuzzy
set (which was not the unknown variable).

Later on, Puri and Ralescu (1983) defined the derivative for fuzzy functions based on the
concept of Hukuhara derivative for set-valued functions. The first theorem of existence using
this derivative was proposed by Kaleva (1987), where the Lipschitz condition was used to assure
existence and uniqueness of solution to a fuzzy initial value problem (FIVP). With an equivalent
derivative, in the same year Seikkala published similar result. Both explored the equivalence of
the FIVP with a fuzzy integral equation using Aumann integral for fuzzy-set-valued functions
proposed by Puri and Ralescu (1986) (a generalization of the Aumann integral for set-valued
functions). A version of Peano theorem of existence of solution was published by (Kaleva, 1990).
Kaleva proved that the continuity of the function F in (1.2) and local compactness of the domain
and the codomain of the state variable assured existence of solution to the FIVP.

Many other studies regarding solutions to FIVPs using the Hukuhara derivative were pub-
lished. Wu et al. (1996) proposed an existence and uniqueness theorem based on approximation
by successive iterations. Lupulescu (2009b) established local and global existence and uniqueness
results for functional (or delay) differential equations. See also Bede (2008); Lakshmikantham and
Mohapatra (2003); Lupulescu (2009a); Nieto (1999).

The concept of Hukuhara derivative to solve FDE, in spite their use in many research articles, is
considered to be defective since the differentiable functions have non-decreasing diameters. There-
fore the solutions to differential equations cannot have decreasing diameter and, consequently, no
periodic behavior can be modeled (nor can contractie nehavior), except in the crisp case.

Based on the theory of differential inclusions for set-valued functions (interested readers can
find good review and list of references by Cellina (2005) and the main results by Aubin and Cellina
(1984) and Filippov (1963)), Aubin (1990) and Baidosov (1990) proposed to solve fuzzy differential
inclusions. The idea is to solve differential inclusions considering the membership degrees for initial
conditions, right-hand-side functions and solutions.

Hüllermeier (1997) suggested solving differential inclusions for each level of the right-hand side
fuzzy function (a multi-valued function). Using this interpretation, Diamond (1999) proved an
existence theorem for fuzzy differential inclusions with fuzzy initial condition. It stated that if
some hypotheses are met, the solutions of the differential inclusions produce a fuzzy bunch of
functions, that is, a fuzzy set of a classical space of functions. Moreover, its attainable sets are
fuzzy numbers.

The solution of a fuzzy differential inclusion may present decreasing diameter, overcoming the
Hukuhara defect. This advantage and the richness of the fuzzy and the multi-valued functions led
many other authors to study this theory (see Barros et al. (2004); Křivan and Colombo (1998);
Lakshmikantham and Mohapatra (2003); Mizukoshi et al. (2007); Zhu and Rao (2000)).

This approach seems attractive on the one hand since it has no fuzzy derivatives. Hence
it avoids the problem of solving equations with fuzzy sets, which looks much more complicated
(minimization and maximization problems have to be frequently solved). On the other hand,
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solving differential inclusions is not an easy task as well. Zadeh’s extension of the solution of
the crisp initial value problem is intuitive and easier to solve (see Buckley and Feuring (2000);
Mizukoshi et al. (2007); Oberguggenberger and Pittschmann (1999)). It also preserves the main
properties of the crisp case. Mizukoshi (2004) and Mizukoshi et al. (2009) proved that solutions
that are stable for classical models are also stable for the fuzzy case. It does not use any fuzzy
derivative, as in fuzzy differential inclusions. In fact, under certain conditions, these two approaches
are very similar and produces the same solutions for FIVPs.

Bede and Gal (2005) proposed and developed the theory for the first generalizations of the
Hukuhara derivative. The strongly generalized and the weakly generalized differentiabilities are
derivatives for fuzzy functions that differentiate all Hukuhara differentiable functions and others,
including a class of functions with decreasing diameter. They also proved an existence theorem,
assuring two solutions to FIVPs, one for models of nonincreasing processes and the other one
with nondecreasing diameter, using the strongly generalized differentiability. A characterization
result was also obtained (Bede, 2008) stating that the fuzzy differential equations are equivalent
to classical differential equations systems. That is, it is possible to solve many FIVPs by using
only classical theory.

Stefanini and Bede (2009) more recently suggested other more general derivatives, the gener-
alized Hukuhara derivative and the most general so far, the fuzzy generalized derivative. These
generalized derivatives have been extensively studied (see Bede and Gal (2005); Bede and Ste-
fanini (2013); Chalco-Cano et al. (2011b); Stefanini and Bede (2009)). Some interesting behaviors
of solutions to FIVPs via generalized derivatives are novel in the field of differential equations.
Phenomena such as “switch points”, in which other solutions arise at determined points of the
dynamics (even in very well-behaved dynamics), do not exist in classical theory.

Another derivative, namely the π-derivative, was extended from the case in which the functions
are set-valued to the fuzzy-set-valued ones (see Chalco-Cano et al. (2011b)). The π-derivative is
based on the embedding of the family of nonempty compact sets of Rn in a real normed linear
space.

Barros et al. (2010) suggested the use of Zadeh’s extension to define the derivative and inte-
gral operators. Barros et al. (2013) further investigated these concepts and stated an existence
theorem for solutions to FIVPs. The proof is based on the theorem of existence of solutions of
fuzzy differential inclusion, revealing a connection between these two approaches. The mentioned
theorem is part of this thesis, as well as other results connecting Zadeh’s extension of the derivative
operator and via generalized derivatives. It will be clear that all approaches mentioned here have
some similarities. Some of these results have already been published (Barros et al., 2013; Gomes
and Barros, 2012, 2013).

Chapter 2 contains some necessary basic concepts that are introduced and discussed such as
the definition of fuzzy sets, Zadeh’s extension principle, fuzzy arithmetics and fuzzy functions. The
different approaches to fuzzy derivatives and fuzzy integrals commented previously are presented
in Chapter 3, as well as results connecting them. In Chapter 4 the various interpretations of FIVPs
and results of existence of solutions are discussed, followed by final comments in Chapter 5.
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Chapter 2

Basic Concepts

Some basic concepts are presented in this chapter. For a deeper understanding, the reader can
refer to Bede (2013), Diamond and Kloeden (1994), Klir and Yuan (1995), Nguyen and Walker
(2005), Pedrycz and Gomide (2007) and Barros and Bassanezi (2010) (in Portuguese) and the
papers cited in this thesis.

2.1 Fuzzy Subsets

Definition 2.1.1 A fuzzy subset A of a universe U is characterized by a function

µA : U → [0, 1] (2.1)

called membership function.

If
µA : U → {0, 1} (2.2)

the subset A is said to be crisp.
The crisp case (2.2), µA is called the characteristic function (or indicator function) and it is

often denoted by χA. If χA(x) = 0, then x does not belong to A, whereas if χA(x) = 1, then x
belongs to A. The fuzzy subset is a generalization in which an element of U has partial membership
to A characterized by a degree in the interval [0, 1]. Hence the assignment µA(x) = 0 means that
x does not belong to A, while the closer µA(x) is to 1, the more x is considered in A.

Some important classical subsets related to fuzzy subsets are defined in what follows.

Definition 2.1.2 Given a fuzzy subset A of a universe U, its α-cuts (or α-levels) are the subsets

[A]α =

{
{x ∈ U : µA(x) ≥ α}, if α ∈ (0, 1]
cl {x ∈ U : µA(x) > 0}, if α = 0

where cl Z denotes the closure of the classical subset Z.
The support is

supp A = {x ∈ U : µA(x) > 0}.

9
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The family of the fuzzy numbers coincides with FC(R) (see Figures 2.1 and 2.2 for examples
of fuzzy sets in R, one that is a fuzzy number and another that is not). Theorem 2.1.4 assures
that all α-cuts of a fuzzy number are nonempty closed and bounded intervals with some properties
whereas Theorem 2.1.5 is its converse, that is, if a family of nonempty closed intervals has some
properties, they are the α-cuts of a unique fuzzy number. Hence, when dealing with fuzzy numbers
it suffices to operate with their α-cuts; it is equivalent to operating with the fuzzy number itself.

Theorem 2.1.4 (Stacking Theorem, Negoita and Ralescu (1975)) A fuzzy number A satisfies the
following conditions:
(i) its α-cuts are nonempty closed intervals, for all α ∈ [0, 1];
(ii) if 0 ≤ α1 ≤ α2 ≤ 1 then [A]α2 ⊆ [A]α1;
(iii) for any nondecreasing sequence (αn) in [0, 1] converging to α ∈ (0, 1] we have

∞⋂

n=1

[A]αn
= [A]α;

and
(iv) for any nonincreasing sequence (αn) in [0, 1] converging to zero we have

cl

(
∞⋃

n=1

[A]αn

)
= [A]0.

Theorem 2.1.5 (Characterization Theorem, Negoita and Ralescu (1975)) If {Aα : α ∈ [0, 1]} is
a family of subets of R such that
(i) Aα are nonempty closed intervals, for all α ∈ [0, 1];
(ii) if 0 ≤ α1 ≤ α2 ≤ 1 then Aα2 ⊆ Aα1;
(iii) for any nondecreasing sequence (αn) in [0, 1] converging to α ∈ (0, 1] we have

∞⋂

n=1

Aαn
= Aα;

and
(iv) for any nonincreasing sequence (αn) in [0, 1] converging to zero we have

cl

(
∞⋃

n=1

Aαn

)
= A0,

then there exists a unique fuzzy number A such that {Aα : α ∈ [0, 1]} are its α-cuts.

If A is a fuzzy number we denote its α-cuts by Aα = [a−
α , a+

α ] where a−
α and a+

α are the lower and
upper endpoints of the closed interval [A]α.

A particular kind of fuzzy numbers is the triangular fuzzy number. If A is a triangular fuzzy
number with support [a, c] and core {b}, it is denoted by (a; b; c) and its membership function is
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In order to deal with fuzzy subsets of general spaces, we present a generalization of Theorems
2.1.4 and 2.1.5 from the space R to more general topological spaces. Cecconello (2010) has proved
it and, since we will deal not only with fuzzy subsets of R, but with fuzzy subsets of spaces of
functions as well, we state these results in what follows.

Theorem 2.1.7 (Cecconello, 2010) Let X be a topological space. A fuzzy subset A ∈ FK(X)
satisfies the following conditions:
(i) if 0 ≤ α1 ≤ α2 ≤ 1 then [A]α2 ⊆ [A]α1;
(ii) for any nondecreasing sequence (αn) in [0, 1] converging to α ∈ (0, 1] we have

∩∞
n=1[A]αn

= [A]α;

and
(iii) for any nonincreasing sequence (αn) in [0, 1] converging to zero we have

cl (∪∞
n=1[A]αn

) = [A]0.

Theorem 2.1.8 (Cecconello, 2010) Let X be a topological space. If {Aα : α ∈ [0, 1]} is a family
of subets of X such that
(i) Aα are nonempty compact subsets, for all α ∈ [0, 1];
(ii) if 0 ≤ α1 ≤ α2 ≤ 1 then Aα2 ⊆ Aα1;
(iii) for any nondecreasing sequence (αn) in [0, 1] converging to α ∈ (0, 1] we have

∩∞
n=1Aαn

= Aα;

and
(iv) for any nonincreasing sequence (αn) in [0, 1] converging to zero we have

cl (∪∞
n=1Aαn

) = A0,

then there exists a unique fuzzy subset A ∈ FK(X) such that {Aα : α ∈ [0, 1]} are its α-cuts.

We finish this section by presenting the linear structure in FK(Rn) used in the literature.
Consider the fuzzy subsets A, B ∈ FK(Rn) and λ ∈ R,

µA+B(z) = sup
x+y=z

min{µA(x), µB(y)}

and

µλA(z) =

{
µA(z/λ), if λ 6= 0
χ0(z), if λ = 0

.

From the theory presented in the next section, it can be proved that

[A + B]α = [A]α + [B]α and [λA]α = λ[A]α,

where
[A + B]α = {a + b : a ∈ [A]α, b ∈ [B]α}

and
[λA]α = {λa : a ∈ [A]α}.
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A generalization of item (b) and its proof can be found in Cecconello (2010) (in Portuguese).

Theorem 2.2.5 (Cecconello, 2010) Let U and V be two Hausdorff spaces and f : U → V be a
function. If f is continuous, then f̂ : FK(U) → FK(V) is well-defined and

[f̂(A)]α = f([A]α) (2.4)

for all α ∈ [0, 1].

Proof. (Adapted from Cecconello (2010)) From Definition 2.3, f̂(A) is a fuzzy subset in V. To
prove that f̂ : FK(U) → FK(V), it is needed to prove that the α-cuts [f̂(A)]α are nonempty
compact subsets of V. Since f is continuous, it assigns compact subsets to compact subsets, hence
it suffices to prove Equation [f̂(A)]α = f([A]α).

Equation (2.4) will be proved. First we show that

(i) f([A]α) ⊆ [f̂(A)]α. Consider A ∈ FK(U) and y ∈ f([A]α). Then there exists x ∈ [A]α such

that y = f(x). From Definition 2.3 (Zadeh’s extension), µ
f̂(A)

(y) = supx∈f−1(y) µA(x) ≥ α. Hence

y ∈ [f̂(A)]α and the conclusion is f([A]α) ⊆ [f̂(A)]α. Now we show that

(ii) [f̂(A)]α ⊆ f([A]α). Let us remark first that, since U and V are Hausdorff spaces, a single

point y ∈ V is closed. Moreover, the continuity of f implies that f−1(y) is closed. Since [A]0
is compact, f−1(y) ∩ [A]0 is also compact. For α > 0, consider y ∈ [f̂(A)]α. Then µ

f̂(A)
(y) =

supx∈f−1(y) µA(x) ≥ α > 0 and, therefore, there exist x ∈ f−1(y) such that f−1(y) ∩ [A]0 6= ∅.
Also, since µA(x) is upper semicontinuous and f−1(y) ∩ [A]0 is compact, the supremum is

attained, that is, there exists x ∈ f−1(y) ∩ [A]0 with µ
f̂(A)

(y) = µA(x) ≥ α. Hence y = f(x) for

some x ∈ [A]α, that is, y ∈ f([A]α).
For α = 0, the results obtained yields

⋃

α∈(0,1]

[f̂(A)]α =
⋃

α∈(0,1]

f([A]α) ⊆ f([A]0).

Since f([A]0) is closed,

[f̂(A)]0 = cl


 ⋃

α∈(0,1]

[f̂(A)]α


 = cl


 ⋃

α∈(0,1]

f([A]α)


 ⊆ f([A]0)

Hence [f̂(A)]α ⊆ f([A]α) for all α ∈ [0, 1] and (2.4) follows from (i) and (ii).

A fuzzy-set-valued function whose domain is not fuzzy is extended in the following way using the
following definition. It is a more general case than Definition 2.2.1 and it has a wider application.

Definition 2.2.6 (Zadeh, 1975; Nguyen, 1978) Let U and V be two topological spaces and F :
U → F(V) a function. For each A ∈ F(U) we define Zadeh’s extension of F as F̂ (A) ∈ F(V)
where its (unique) membership function is given by

µ
F̂ (A)

(y) = sup
x∈U

{µF (x)(y) ∧ µA(x)}. (2.5)

for all y ∈ V.
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2.3 Fuzzy Arithmetics for Fuzzy Numbers

The α-cuts of fuzzy numbers are closed intervals so it is inevitable the influence of the concepts
of the interval arithmetic on the arithmetic of fuzzy numbers. The first fuzzy arithmetic approach
presented in this study is equivalent to the interval arithmetic with α-cuts of fuzzy numbers.

2.3.1 Standard Interval Arithmetic (SIA) and Zadeh’s Extension

The standard interval arithmetic (SIA) (Moore, 1966) can be regarded as the united extension
of the operators addition (+), subtraction (−), multiplication (·) and division (÷) between real
numbers. For instance, the addition of two intervals A = [a−, a+] and B = [b−, b+], is defined by
applying the operation “addition” on every single pair (a, b) ∈ A × B, that is,

A + B = {a + b : a ∈ A, b ∈ B}

The other three operations are defined likewise, i.e,

A − B = {a − b : a ∈ A, b ∈ B}
A · B = {a · b : a ∈ A, b ∈ B}
A ÷ B = {a ÷ b : a ∈ A, b ∈ B, 0 /∈ B}.

It is obvious from the definition of SIA that the arithmetic for real numbers is a particular case.
The fuzzy arithmetic based on SIA is the application of SIA on the α-cuts of two fuzzy numbers.

It is equivalent to Mizumoto and Tanaka’s proposal Mizumoto and Tanaka (1976) of Zadeh’s
extension of the arithmetic operators, defined for real numbers. Given a arithmetic operator
⊙ ∈ {+, −, ·, ÷} and two fuzzy numbers A and B, Zadeh’s extension is given by

µA⊙B(c) = sup
a⊙b=c

min{µA(a), µB(b)} (2.6)

Since the arithmetic operators are continuous functions (except division by zero), it is equivalent
to operating on the elements of the α-cuts.

Consider two fuzzy numbers A and B with α-cuts [A]α = [a−
α , a+

α ] and [B]α = [b−
α , b+

α ]. Using
Zadeh’s extension (Definition 2.2.1), levelwise the sum is equivalent to

[A + B]α = [a−
α + b−

α , a+
α + b+

α ],

the subtraction is
[A − B]α = [a−

α − b+
α , a+

α − b−
α ],

the product is

[A · B]α =

[
min

s,r∈{−,+}
as

α · br
α, max

s,r∈{−,+}
as

α · br
α

]
,

and the division is

[A ÷ B]α =

[
min

s,r∈{−,+}

{
as

α

br
α

}
, max

s,r∈{−,+}

{
as

α

br
α

}]
, 0 /∈ supp B.
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As mentioned above, this is the same as interval arithmetic on α-cuts.
Note that the difference between two identical nonzero width intervals is never the crisp number

zero. That is, there is no additive inverse (there is no multiplicative inverse either). The difference
in the limit

lim
h→0+

F (x + h) − F (x)

h

of a constant non-crisp function F is a constant noncrisp fuzzy number. The division by a variable
tending towards zero is not defined. Therefore, to define the derivative of a fuzzy-number-valued
function with the above arithmetic leads to a serious shortcoming.

This problem in defining the derivative happens due to the fact that this arithmetic takes into
account every possible result. The sum is the same as Minkowski sum, in which all elements of
a subset are added to all elements of the other subset, generating a the largest possible subset
as result. The same happens to the subtraction. There are some approaches to overcome this,
considering some kind of dependency between the variables.

2.3.2 Interactive Arithmetic

Dubois and Prade (1981) proposed the addition of interactive fuzzy numbers using the generaliza-
tion of Zadeh’s extension via t-norms. Fullér and Keresztfalvi (1992) explored it arguing that it
provides a means of controlling the growth of uncertainty in calculations, differently from the arith-
metic via traditional Zadeh’s extension. To define interactivity, the concept of joint membership
(analogous to joint possibility distribution, from the possibility theory) is needed.

Definition 2.3.1 If A1 and A2 are two fuzzy numbers, C is said to be their joint membership if

µAi
(ai) = max

aj∈R,j 6=i
µC(a1, a2).

Two fuzzy numbers A1 and A2 are said to be non-interactive if their joint membership satisfies

µC(a1, a2) = min{µA1(a1), µA2(a2)}.

In words, the joint membership is given by the t-norm of minimum. Otherwise, they are said to
be interactive.

The generalization in Dubois and Prade (1981) admits that any t-norm T can replace the min
operator in (2.6). In Carlsson et al. (2004) a generalization of the t-norms case can be found, using
joint membership:

µ
f̂(A1,A2)

(y) =

{
sup(a1,a2)∈f−1(c) µC(a1, a2), if f−1(c) 6= ∅
0, if f−1(c) = ∅ . (2.7)

In Fullér (1998) addition, subtraction, multiplication and division are obtained extending the
respective crisp operators via Formula (2.7) where the joint membership are t-norms. In Carlsson
et al. (2004) a particular case of joint membership is used to define addition and subtraction of
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interactive fuzzy numbers. It is based on completely correlated fuzzy numbers, i.e., given two fuzzy
numbers A1 and A2, their joint membership is

µC(a1, a2) = µA1 · χ{qa1+r=a2}(a1, a2) = µA2 · χ{qa1+r=a2}(a1, a2),

where χ{qa1+r=a2} is the characteristic function of the line

{(a1, a2) ∈ R2|qa1 + r = a2}.

2.3.3 Constraint Interval Arithmetic (CIA)

Lodwick (1999) proposed the constraint interval arithmetic (CIA), which deals with dependencies.
He redefined intervals as single-valued functions. That is, an interval [a−, a+] is given by the
function AI(a−, a+, λA) = {a : a = (1 − λA)a− + λAa+, 0 ≤ λA ≤ 1}.

Addition, multiplication, subtraction and division between two intervals A = [a−, a+] and
B = [b−, b+] are given by the formula

A ◦ B = {z : [(1 − λA)a− + λAa+] ◦ [(1 − λB)b− + λAa+], 0 ≤ λA ≤ 1, 0 ≤ λB ≤ 1}

where ◦ stands for any of the four arithmetic operations. In the case in which the two variables
are the same,

A ◦ A = {z : [(1 − λA)a− + λAa+] ◦ [(1 − λA)a− + λAa+], 0 ≤ λA ≤ 1}

where, unlike SIA, A − A = [0, 0] and A ÷ A = [1, 1] (see Lodwick and Jenkins (2013)).
Lodwick and Untiedt (2008) extended this idea to the fuzzy case, based on the affirmation that

arithmetic of fuzzy numbers is arithmetic of intervals in each α-cut. They also have demonstrated
that this arithmetic for fuzzy numbers is the same as gradual number arithmetic (see Dubois and
Prade (2008)).

This approach can be interpreted as a particular case of the arithmetic presented in Subsection
2.3.2, where A is completely correlated to A with q = 1 and A and B are noninteractive.

2.3.4 Hukuhara and Generalized Differences

In order to overcome the difficulty of not having additive inverse, Hukuhara (1967) defined the
Hukuhara difference for intervals and Puri and Ralescu (1983) used it to define the Hukuhara
difference for elements of FC(Rn).

Definition 2.3.2 (Puri and Ralescu, 1983) Given two fuzzy numbers, A, B ∈ FC(R) the Hukuhara
difference (H-difference for short) A ⊖H B = C is the fuzzy number C such that A = B + C, if it
exists.

The Hukuhara difference has the property A ⊖H A = {0}. However, this difference is not
defined for pairs of fuzzy numbers such that the support of a fuzzy number has bigger diameter
than the one that is subtracted. Stefanini and Bede (2009) and Stefanini (2010) proposed two new
definitions for difference of fuzzy numbers, which generalizes the Hukuhara difference.
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Definition 2.3.3 (Stefanini, 2010; Stefanini and Bede, 2009) Given two fuzzy numbers A, B ∈
FC(R), the generalized Hukuhara difference (gH-difference for short) A ⊖gH B = C is the fuzzy
number C, if it exists, such that

{
(i) A = B + C or
(ii) B = A − C.

Definition 2.3.4 (Stefanini, 2010; Bede and Stefanini, 2013) Given two fuzzy numbers A, B ∈
FC(R), the generalized difference (g-difference for short) A ⊖g B = C is the fuzzy number C, if it
exists, with α-cuts

[A ⊖g B]α = cl
⋃

β≥α

([A]β ⊖gH [B]β), ∀α ∈ [0, 1],

where the gH-difference ⊖gH is with interval operands [A]β and [B]β.

Example 2.3.5 The fuzzy numbers A and B with membership functions defined by

µA(x) =





x + 1, if x ∈ [−1, 0],
−x + 1, if x ∈ (0, 1],
0, otherwise

µB(x) =

{
1, if x ∈ [−1, 1],
0, otherwise

have, as gH-difference levelwise,

[A ⊖gH B]α = [−α, α],

for all α ∈ [0, 1]. This is not a fuzzy number. But for the g-difference we have

[A ⊖g B]α = cl
⋃

β≥α

[−β, β]

= [−1, 1]

for all α ∈ [0, 1] and this is a fuzzy number.

Example 2.3.5 illustrates that the Definition 2.3.4 is more general than 2.3.3, that is, it is
defined for more pairs of fuzzy numbers. This means that whenever the gH-difference exists the
g-difference exists and it is the same. In terms of α-cuts we have

[A ⊖gH B]α = [min{a−
α − b−

α , a+
α − b+

α }, max{a−
α − b−

α , a+
α − b+

α }]

and

[A ⊖g B]α =

[
inf
β≥α

min{a−
β − b−

β , a+
β − b+

β }, sup
β≥α

max{a−
β − b−

β , a+
β − b+

β }
]

.

for all α ∈ [0, 1].
The g-difference is not defined for every pair of fuzzy numbers, though. But among the differ-

ences that generalize the H-difference, it is the most general proposed so far. This possibility of
non-existence of the g-difference is illustrated in the next example.
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Example 2.3.6 Consider the fuzzy numbers A and B with membership functions defined by

µA(x) =





1, if x ∈ [2, 3],
0.5, if x ∈ [0, 2) ∪ (3, 5],
0, otherwise

µB(x) =





1, if x ∈ [2, 3],
0.5, if x ∈ [−1, 2) ∪ (3, 4],
0, otherwise

The gH-difference levelwise is

[A ⊖gH B]α =

{
{0}, if 0.5 < α ≤ 1,
{1}, if 0 ≤ α ≤ 0.5.

Hence we have the g-difference levelwise

[A ⊖g B]α =

{
{0}, if 0.5 < α ≤ 1,
{0} ∪ {1}, if 0 ≤ α ≤ 0.5,

which is not a fuzzy number.

2.4 Fuzzy Metric Spaces

This section reviews some important definitions and results regarding fuzzy metric spaces. They
can be found, together with proofs, in several references, e.g. Puri and Ralescu (1983); Diamond
and Kloeden (1994); Bede (2013).

The most used metric for fuzzy numbers is the Pompeiu-Hausdorff, based on Pompeiu-Hausdorff
distance for compact convex subsets of a metric space U. It is in turn based on the concept of
Hausdorff separation.

Definition 2.4.1 Let A and B be two nonempty compact subsets of a metric space U. The pseu-
dometric

ρ(A, B) = sup
a∈A

d(a, B),

where

d(a, B) = inf
b∈B

||a − b||

is called Hausdorff separation.

Definition 2.4.2 Let A and B be two nonempty compact subsets of a metric space U. The
Pompeiu-Hausdorff metric dH is given by

dH(A, B) = max{ρ(A, B), ρ(B, A)}.

For the space FK(U) (recall that the space of fuzzy numbers FC(R) is a particular case where
U = R), the Pompeiu-Hausdorff metric is defined as follows.
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Definition 2.4.3 Let A and B be subsets of FK(U), where U is a metric space. The Pompeiu-
Hausdorff metric d∞ is defined as

d∞(A, B) = sup
α∈[0,1]

dH([A]α, [B]α).

In the case of fuzzy numbers, that is, A, B ∈ FC(R), d∞(A, B) can be rewritten as

d∞(A, B) = sup
α∈[0,1]

max{|a−
α − b−

α |, |a+
α − b+

α |}.

Another known metrics are the endographic and the Lp-type distances.

Definition 2.4.4 Let A and B be subsets of FK(U), where U is a metric space. The endographic
metric dE is defined as

dE(A, B) = dH(send(A), send(B)),

where
send(A) = ([A]0 × [0, 1]) ∩ end(A)

with
end(A) = {(x, α) ∈ Rn × [0, 1] : µA(x) ≥ α)}.

Definition 2.4.5 Let A and B be subsets of FK(U), where U is a metric space. The dp distance
is defined as

dp(A, B) =
(∫ 1

0
dH([A]α, [B]α)pdα

)1/p

.

We denote by B(X, q) the closed ball

B(X, q) = {A ∈ FC(U) : d∞(X, A) ≤ q}.

The following theorem is a well-known result.

Theorem 2.4.6 (Puri and Ralescu, 1986) The space of fuzzy numbers endowed with the d∞ metric
(FC(R), d∞) is a complete metric space.

Note that (FC(R), d∞) is not separable. There exist other metrics that make the space of fuzzy
numbers separable, but not complete (e.g. dp with 1 ≤ p < ∞ (Bede, 2013) and dE (Barros et al.,
1997; Kloeden, 1980)).

Another important result is the Embedding Theorem. It connects the space of fuzzy numbers
to a subset of pairs of crisp functions, that define the endpoints of the α-cuts of fuzzy numbers.
In other words, it allows us to use a well-known theory and tools for real functions, instead of
operating with fuzzy numbers, which is more complicated. A general version of the theorem is for
the space FC(Rn) and is as follows.

Theorem 2.4.7 (Embedding Theorem, Puri and Ralescu (1983); Kaleva (1990); Ma (1993))
There exists a real Banach space X such that the metric space (FC(Rn), d∞) can be embedded
isometrically into X.
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Another application of the d∞ metric is a result analogous to Theorem 2.2.4 (b), stated in Huang
and Wu (2011). It regards continuity of fuzzy-number valued functions and Zadeh’s extension. The
concept of fuzzy function will be further explored in the next section.

Theorem 2.4.8 (Huang and Wu, 2011) Let F : R → FC(R) be a d∞-continuous function. Then
Zadeh’s extension F̂ : FC(R) → FC(R) is well-defined, is d∞-continuous and

[F̂ (A)]α =
⋃

a∈[A]α

[F (a)]α

for all α ∈ [0, 1].

Example 2.4.9 Let
F (x) = Λx

with Λ ∈ FC(R). Then F is a d∞-continuous function and F : R → FC(R). Applying Theorem
2.4.8,

[F̂ (X)]α =
⋃

x∈[X]α

[Λx]α =
⋃

x∈[X]α

x[Λ]α = [X]α[Λ]α = [ΛX]α

where multiplication between intervals and multiplication between fuzzy numbers is the one defined
in Subsection 2.3.1.

As result,
F̂ (X) = ΛX.

Since the mentioned results are important in this study, whenever we treat limits of sequences of
fuzzy subsets or continuity of fuzzy-set valued functions, it will assumed to be with respect to the
d∞ metric, unless another distance is specified.

2.5 Fuzzy Functions

Dubois and Prade (1980) called fuzzy functions both the fuzzy bunches of functions and the fuzzy-
set-valued functions. The same is done in this text. In the literature in general, fuzzy calculus
deals only with mappings from a crisp space to a fuzzy space, although a mapping from a fuzzy
space to another fuzzy space is a more general fuzzy-set-valued function. The fuzzy-set-valued
functions that will be treated will take R to F(Rn). A fuzzy-number-valued function is a more
restricted case, since its images are fuzzy numbers. Fuzzy-set-valued functions are generalizations
of set-valued functions. A set-valued function on I is a mapping G : I → P(Rn) such that G(t) 6= ∅
for all t ∈ I, where I is an interval.

A fuzzy bunch of functions (or fuzzy bunch, for short) is a fuzzy subset of a crisp space of
functions. To be precise, it is not a function, but it is used to define solutions to fuzzy initial
value problems and to each fuzzy bunch of functions corresponds a fuzzy-set-valued function, via
attainable fuzzy sets. For each fuzzy bunch F ∈ F(E([0, T ];Rn)), the attainable fuzzy sets at t,
F (t), are the fuzzy sets of Rn

[F (t)]α = [F ]α(t) = {f(t) : f ∈ [F ]α}.
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Example 2.5.1 The mapping F (x) = Ax, where A = [−1, 1], is a set-valued function whose
images are intervals.

Example 2.5.2 The mapping F (x) = Ax, where A = (−1; 0; 1) is a fuzzy-set-valued function
whose images are triangular fuzzy numbers.

Example 2.5.3 Consider f1, f2 and f3 continuous functions on an interval [a, b]. The fuzzy subset
F ∈ F(C([a, b];R)) such that

µF (f) =





α, if f = f1 + α(f2 − f1)

α, if f = f3 + α(f2 − f3)

0, otherwise

,

has triangular fuzzy numbers as attainable fuzzy sets. This is defined in Gasilov et al. (2012) and
is a particular kind of fuzzy bunch of functions, called triangular fuzzy function.

The fuzzy-number-valued function of the previous example can be constructed by considering
the triangular fuzzy function with f1(x) = −x, f2(x) = 0 and f3(x) = x, x ∈ R and calculating its
attainable sets.

Using the definition of attainable sets, to each fuzzy bunch there corresponds only one fuzzy-set-
valued function. But the converse is not true, as the next examples illustrate.

Example 2.5.4 Barros et al. (2010) define the fuzzy bunches in FK(AC([0, 2];R)) (see Appendix
for definition of AC([a, b];R)) such that

F1 = {x(·) : x(t) = a, a ∈ [0, 2]}
F2 = F1 ∪ {y(·) : y(t) = 2 − t} (2.8)

where x, y : [0, 2] → [0, 2].
We have [F1]α = [F2]α = [0, 2], for all α ∈ [0, 1], though F1 6= F2.

Example 2.5.5 The fuzzy bunches of functions F1, F2 ∈ F(C([−1, 1];R))

µF1(f) =





α, if f : f(x) = −x(1 − α)

α, if f : f(x) = x(1 − α)

0, otherwise

,

and

µF2(f) =





α, if f : f(x) = −|x|(1 − α)

α, if f : f(x) = |x|(1 − α)

0, otherwise

,

are not equal, though their attainable sets are the same: they are the images of the function in
Example 2.5.1. Each function in F1 is a straight line on [−1, 1], different from the functions in
F2, as Figures 2.6 and 2.7 exemplify.
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where fλ
β (·) = (1 − λ)f−

β (·) + λf+
β (·) and

Bα = cl


 ⋃

β1,β2≥α

⋃

0≤λ≤1

fλ
β1,β2

(·)

, α ∈ [0, 1]

where fλ
β1,β2

(·) = (1 − λ)f−
β1

(·) + λf+
β2

(·).
If the families {Aα : α ∈ [0, 1]} and {Bα : α ∈ [0, 1]} each define a fuzzy bunch of functions, we

call them representative affine fuzzy bunch of functions of first kind (or representative bunch of first
kind for short) and representative affine fuzzy bunch of functions of second kind (or representative
bunch of second kind for short), respectively.

It is important to remark that whenever the symbol F̃ (x) is used where F̃ is a fuzzy bunch of
functions, it refers to the attainable fuzzy sets of F̃ at x.

Example 2.5.7 Consider the triangular fuzzy functions of Gasilov et al. (2012) (see Example
2.5.3) with f2 − f1 = f3 − f2, that is, the attainable sets are symmetrical triangular fuzzy numbers,
and f1(x) 6= f3(x) for all x. This is an example of representative bunches of first kind.

Example 2.5.8 A function F : [a, b] → F0
C (R), where f±

α (x) are continuous, defines representative
bunches of first and second kinds in C([a, b];R). In order to prove this statement, it suffices to
demonstrate that the subsets Aα and Bα of Definition 2.5.6 satisfy conditions (i), (ii), (iii) and
(iv) of Theorem 2.1.8. We prove this with respect to Aα. For Bα the reasoning is analogous.

Let us first prove (i), that is, Aα are nonempty compact sets, for all α ∈ [0, 1]. Since Aα =

cl

(
⋃

β≥α

⋃
0≤λ≤1

fλ
β (·)

)
contains f±

α (·), it is nonempty. Note that the continuity in α implies

f±
αn

(x) → f±
α (x) if αn → α

for αn, α ∈ I ⊂ [0, 1], for all x ∈ [a, b]. According to Dini’s Theorem (Bartle and Sherbert, 2011),
pointwise convergence implies uniform convergence if the pointwise limits define a continuous func-
tion, the sequence of functions is monotonic and each function is defined on a compact set. Since
this is the case, the convergence is uniform in x. Hence

f±
αn

(·) → f±
α (·) if αn → α.

Similarly,
fλn

α (·) → fλ
α(·) if λn → λ.

As a consequence,
fλn

αn
(·) → fλ

α(·) if αn → α and λn → λ

for αn, α ∈ I ⊂ [0, 1] and λn, λ ∈ [0, 1].
This means that

⋃
β≥α

⋃
0≤λ≤1

fλ
β (·) is sequentially compact. Since C([a, b];R) is a metric space,

sequentially compactness is equivalent to compactness. Hence
⋃

β≥α

⋃
0≤λ≤1

fλ
β (·) is closed and equals

Aα.
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(a) (b) (c)

Figure 2.8: Level set functions of the (a) 1-cut, (b) 0.6-cut and (c) 0.2-cut of a fuzzy-number-valued
function, supposed to have only these three α-cuts different from each other.

(a) (b) (c)

(d) (e) (f)

Figure 2.9: Convex combinations of the level set functions of the (a) 1-cut, (b) 0.6-cut and (c)
0.2-cut of a fuzzy-number-valued function and construction of the α-cuts of the representative
bunch of first kind. These α-cuts of the representative bunch of first kind are defined as the union
of the convex combinations corresponding to the α-cut and the α-cuts above: (d) 1-cut, (e) 0.6-cut
and (f) 0.2-cut.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.10: Convex combinations of the level set functions of the (a) 1-cut, (b) 0.6-cut, (c) 0.2-
cut, (d)-(e) 1-cut with 0.6-cut, (f)-(g) 1-cut with 0.2-cut and (h)-(i) 0.2-cut with 0.6-cut of a
fuzzy-number-valued function and construction of the α-cuts of the representative bunch of second
kind. These α-cuts of the representative bunch of second kind are defined as the union of the
convex combinations corresponding to the α-cut and the α-cuts above: (j) 1-cut, (k) 0.6-cut and
(l) 0.2-cut.
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Condition (ii) states that if 0 ≤ α1 ≤ α2 ≤ 1 then Aα2 ⊆ Aα1. Indeed,

Aα2 =
⋃

β≥α2

⋃

0≤λ≤1

fλ
β (·) ⊆


 ⋃

α1≤β<α2

⋃

0≤λ≤1

fλ
β (·)


⋃


 ⋃

β≥α2

⋃

0≤λ≤1

fλ
β (·)


 = Aα1 .

We now prove condition (iii), that is, for any nondecreasing sequence (αn) in [0, 1] converging
to α ∈ (0, 1] we have ∩∞

n=1Aαn
= Aα. From condition (ii) we have Aα ⊆ ∩∞

n=1Aαn
. To prove

Aα ⊇ ∩∞
n=1Aαn

consider f ∈ ∩∞
n=1Aαn

. The function f is in each Aαn
and it can be written as

f = fλn

βn
, with βn ∈ [αn, 1], λn ∈ [0, 1] (it is the same function f but written differently, according

to the set Aα in which it is). Hence βn admits subsequence converging to β ∈ [α, 1] and λn admits

subsequence converging to λ ∈ [0, 1], so that it defines fλ
β ∈ Aα. Therefore, Aα ⊇ ∩∞

n=1Aαn
and

condition (iii) is proved.
The last condition is proved if for any nonincreasing sequence (αn) in [0, 1] converging to zero

we have cl (∪∞
n=1Aαn

) ⊆ A0 and cl (∪∞
n=1Aαn

) ⊇ A0. We first simplify the expression

cl

(
∞⋃

n=1

Aαn

)
= cl




∞⋃

n=1

⋃

β≥αn

⋃

0≤λ≤1

fλ
β (·)


 = cl


⋃

β>0

⋃

0≤λ≤1

fλ
β (·)


 .

Note that

cl


⋃

β>0

⋃

0≤λ≤1

fλ
β (·)


 ⊆ cl


⋃

β≥0

⋃

0≤λ≤1

fλ
β (·)


 = A0

which is the first inclusion. To prove the second one we need to prove that f ∈ A0 =
⋃

β≥0

⋃
0≤λ≤1

fλ
β (·)

implies f ∈ cl

(
⋃

β>0

⋃
0≤λ≤1

fλ
β (·)

)
. There are two possibilities for f ∈ A0: (a) f ∈ ⋃

β>0

⋃
0≤λ≤1

fλ
β (·) or

(b) f ∈ ⋃
β=0

⋃
0≤λ≤1

fλ
β (·) =

⋃
0≤λ≤1

fλ
0 (·). We only need to prove case (b). We use the fact that F (x) is

a fuzzy number and therefore satisfies

cl

(
∞⋃

n=1

[f−
αn

(x), f+
αn

(x)]

)
= [f−

0 (x), f+
0 (x)]

for (αn) a nonincreasing sequence converging to zero. Hence

f±
αn

(x) → f±
0 (x) and fλn

αn
(x) → fλ

0 (x)

for αn ց 0 and λn → λ, αn ∈ [0, 1] and λn, λ ∈ [0, 1]. Using the same arguments as before we have

fλn

αn
(·) → fλ

0 (·)

uniformly and hence fλ
0 (·) is a point of closure. This means that fλ

0 (·) ∈ cl

(
⋃

β>0

⋃
0≤λ≤1

fλ
β (·)

)
. That

is, the second inclusion is also satisfied and we have obtained the equality of condition (iv).
Having proved (i), (ii), (iii) and (iv), it follows that Aα are α-cuts of the representative bunch

of first kind of F .
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Example 2.5.9 Consider the fuzzy-number-valued function F : [−1, 1] → FC(R) with α-cuts

[F (x)]α =





[10x2 − 12, 10x2 + 2] , if 0 ≤ α ≤ 0.5

[−1, 1] , if 0.5 < α ≤ 1
.

The representative bunch of first kind is given by the α-cuts

[F̃1(·)]α =





2⋃

i=1

⋃

0≤λ≤1

yλ
i (·), if 0 ≤ α ≤ 0.5

⋃

0≤λ≤1

yλ
1 (·), if 0.5 < α ≤ 1

and the representative bunch of second kind is defined by

[F̃1(·)]α =





4⋃

i=1

⋃

0≤λ≤1

yλ
i (·), if 0 ≤ α ≤ 0.5

⋃

0≤λ≤1

yλ
1 (·), if 0.5 < α ≤ 1

where





yλ
1 (·) : yλ

1 (x) = (1 − λ)(10x2 − 12) + λ(10x2 + 2),

yλ
2 (·) : yλ

2 (x) = (1 − λ)(−1) + λ,

yλ
3 (·) : yλ

3 (x) = (1 − λ)(−1) + λ(10x2 + 2),

yλ
4 (·) : yλ

4 (x) = (1 − λ)(10x2 − 12) + λ,

for all λ ∈ [0, 1].

Figures 2.11 and 2.12 present some of the elements of the supports of F̃1(·) and F̃2(·). It is
remarkable that F̃2(·) has more elements in its support than in the support of F̃1(·) (in fact, F̃2(·)
contains F̃1(·)). Moreover, some elements in F̃2(·) have different behavior than those in F̃1(·),
though both fuzzy bunches have the same attainable sets.

Example 2.5.10 Consider the fuzzy-number-valued function F : [0, 0.5] → F0
C (R) with α-cuts

[F (x)]α =





[x2 − 3 + α, (1 − 2α)x2 − 2α + 2] , if 0 ≤ α ≤ 0.5

[x2 − 3 + α, (2α − 1)x2 − 6α + 4] , if 0.5 < α ≤ 1
.
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Figure 2.11: Some elements of the support
of the representative bunch of first kind of
Example 2.5.9. The real-valued functions
are the convex combinations of a level set
function (of a fuzzy number-valued function)
with the opposite level set function in the
same α-cut.

Figure 2.12: Some elements of the support
of the representative bunch of second kind
of Example 2.5.9. The real-valued functions
are the convex combinations of a level set
function (of a fuzzy number-valued function)
with opposite level set function that may be-
long to different α-cuts.

The representative bunch of first kind is given by the α-cuts

[F̃1(·)]α =





cl






 ⋃

β>0.5

⋃

0≤λ≤1

fλ
β


⋃


 ⋃

α≤β≤0.5

⋃

0≤λ≤1

gλ
β





, if 0 ≤ α ≤ 0.5

⋃

β≥α

⋃

0≤λ≤1

fλ
β , if 0.5 < α ≤ 1

=






 ⋃

β≥0.5

⋃

0≤λ≤1

fλ
β


⋃


 ⋃

α≤β≤0.5

⋃

0≤λ≤1

gλ
β


, if 0 ≤ α ≤ 0.5

⋃

β≥α

⋃

0≤λ≤1

fλ
β , if 0.5 < α ≤ 1

where




fλ
β (·) : fλ

β (x) = (1 − λ)(x2 − 3 + β) + λ((2β − 1)x2 − 6β + 4),

gλ
β(·) : gλ

β(x) = (1 − λ)(x2 − 3 + β) + λ((1 − 2β)x2 − 2β + 2),

for all λ ∈ [0, 1] and β ∈ [0, 1].

We define semicontinuity of set-valued functions as follows.

Definition 2.5.11 (Diamond and Kloeden, 1994) A set-valued function F : Ω → P(Rn), Ω ∈ Rm,
is upper semicontinuous (usc) at t0 ∈ Ω if for every ǫ > 0 there exists a δ = δ(t0, ǫ) > 0 such that

ρ(F (t), F (t0)) < ǫ
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if ||t − t0|| < δ, t ∈ Ω.

Definition 2.5.12 (Diamond and Kloeden, 1994) A set-valued function F : Ω → P(Rn), Ω ∈ Rm,
is lower semicontinuous (lsc) at t0 ∈ Ω if for every ǫ > 0 there exists a δ = δ(t0, ǫ) > 0 such that

ρ(F (t0), F (t)) < ǫ

if ||t − t0|| < δ, t ∈ Ω.

The set-valued function F is said to be usc (lsc) if it is usc (lsc) at every t ∈ Ω. If it is both
usc and lsc, the function is continuous.

Example 2.5.13 The set-valued functions F, G : R → P(R) such that

F (x) =

{
[−1, 1], if x = 0

{0}, if x 6= 0
and G(x) =

{
[−1, 1], if x 6= 0

{0}, if x = 0

are usc and lsc, respectively.

The concept of semicontinuity of fuzzy-set-valued functions is similar.

Definition 2.5.14 (Diamond and Kloeden, 1994) A fuzzy-set-valued function F : Ω → FK(Rn),
Ω ∈ Rm, is upper semicontinuous (usc) at t0 ∈ Ω if for every ǫ > 0 there exists a δ = δ(t0, ǫ) > 0
such that

ρ([F (t0)]
α, [F (t)]α) < ǫ

if ||t − t0|| < δ, t ∈ Ω, for all α ∈ [0, 1].

Definition 2.5.15 (Diamond and Kloeden, 1994) A fuzzy-set-valued function F : Ω → FK(Rn),
Ω ∈ Rm, is lower semicontinuous (lsc) at t0 ∈ Ω if for every ǫ > 0 there exists a δ = δ(t0, ǫ) > 0
such that

ρ([F (t)]α, [F (t0)]
α) < ǫ

if ||t − t0|| < δ, t ∈ Ω, for all α ∈ [0, 1].

The fuzzy-set-valued function F is said to be usc (lsc) if it is usc (lsc) at every t ∈ Ω. If the
fuzzy-set-valued function F is usc (lsc), the set-valued functions [F ]α : Ω → Kn are clearly usc (lsc).
The converse implication is not necessarily true, unless [F ]α are uniformly usc (lsc) in α ∈ [0, 1].
As a result of these definitions, a fuzzy-set-valued function F is d∞-continuous if and only if it
is usc and lsc. In this text if a function is d∞-continuous it will be said that it is continuous. If
another metric is used we will specify it.

Let us denote by C([a, b]; FC(Rn)) the space of continuous fuzzy-set-valued functions from [a, b]
to FC(Rn) endowed with the metric H(F, G) = supx∈[a,b] d∞(F (x), G(x)) for F, G ∈ C([a, b]; FC(Rn)).
The next result is important to assure existence of solution of FDEs.

Theorem 2.5.16 (Bede, 2013) The space C([a, b]; FC(R)) is a complete metric space.
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Figure 2.13: Real-valued functions delimiting the 0-cut (continuous line) and defining the core
(dashed-dotted line) of a fuzzy function.)

We finish this section by presenting different ways to graphically illustrate fuzzy functions.
Consider F : [a, b] → F(R) a fuzzy-set-valued function and F̃ ∈ F(E([a, b],R)).

1. Fuzzy-set-valued function (or fuzzy attainable sets):

(a) level set function plot: presents real-valued functions that define two important levels
of the fuzzy function, the 0-cut and the core (Figure 2.13).

(b) gray scale plot: for different values of x we associate a degree of gray to the possible
values of F (x), so that the darker the color, the higher the membership degree (Figure
2.14).

2. Fuzzy bunch of functions:

(a) gray scale plot: for different crisp functions we associate a degree of gray, so that the
darker the color, the higher the membership degree to F̃ (Figure 2.15).

2.6 Summary

Basic concepts such as the definition of fuzzy sets, fuzzy arithmetic and fuzzy metric spaces were
reviewed in this chapter. We recalled Zadeh’s extension principle and some of its results which
will play important role in the definition of derivative and integral used in this thesis. We also
defined and pointed out differences and connections between fuzzy-set-valued functions and fuzzy
bunches of functions. Two special kinds of fuzzy bunch of functions were defined to connect with
fuzzy-number-valued functions. All the presented concepts will be extensively used to develop the
fuzzy calculus and the FDE theory proposed in this thesis.
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Figure 2.14: Fuzzy function F represented by gray scale: at each x the fuzzy number F (x) is
displayed such that the darker the color, the higher the membership degree of each point to F (x).

Figure 2.15: Fuzzy bunch of functions F̃ with membership degree represented by gray scale: the
darker the color, the higher the membership degree of each real-valued function to F̃ .



Chapter 3

Fuzzy Calculus

Arithmetic for fuzzy numbers can be seen as interval arithmetic on its α-cuts. Therefore, fuzzy
calculus for fuzzy-number-valued function is equivalent to interval calculus on α-cuts of these
functions (interval-valued functions). This interpretation is valid for some approaches, for example
in the Hukuhara derivative and its generalizations and in the Aumann, Henstock and Riemann
integrals that will be presented in Section 3.1. Fuzzy calculus has been extensively investigated
(see e.g. Puri and Ralescu (1983, 1986); Kaleva (1987); Seikkala (1987); Wu and Gong (2001);
Bede and Gal (2005); Stefanini and Bede (2009)).

The definitions of derivative and integral proposed in this study have already been introduced
in Barros et al. (2013), Gomes and Barros (2012) and Gomes and Barros (2013). They are not
connected with interval calculus, since they operate on fuzzy bunches of functions. Some compar-
isons between these operators and those for fuzzy-set-valued functions are subjects of this thesis.
In Section 3.2 these results are explored.

We first review known approaches (see Puri and Ralescu (1983, 1986); Seikkala (1987); Gal
(2000); Bede and Gal (2005, 2004b); Stefanini and Bede (2009); Wu and Gong (2001)), defined for
fuzzy-set-valued functions. The interested reader can also refer to some other approaches in the
literature (e.g. Chang and Zadeh (1972); Dubois and Prade (1980); Goetschel Jr. and Voxman
(1984); Chalco-Cano et al. (2011b)).

3.1 Fuzzy Calculus for Fuzzy-Set-Valued Functions

We review in this section some known approaches for integrals (Aumann, Riemann and Henstock
integrals) and derivatives (Hukuhara and generalized derivatives) for fuzzy-set-valued functions.
We also present results connecting these fuzzy integrals and derivatives.

3.1.1 Integrals

The first integral proposed for fuzzy-number-valued functions is based on Aumann integral for
multivalued functions (Aumann, 1965). Kaleva defined it in Kaleva (1987). The same idea can be
found in Puri and Ralescu (1986) who were studying the topic of fuzzy random variables.

35
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Denote by S(G) the subset of all integrable selections of a set-valued function G : I → P(Rn),
i.e.,

S(G) = {g : I → Rn : g is integrable and g(t) ∈ G(t), ∀t ∈ I}.

Definition 3.1.1 (Puri and Ralescu, 1986; Kaleva, 1987) The Aumann integral of a fuzzy-set-
valued function F : [a, b] → FC(Rn) over [a, b] is defined levelwise

[
(A)

∫ b

a
F (x) dx

]

α

=
∫ b

a
[F ]α dx

=

{∫ b

a
g(x) dx : g ∈ S([F (x)]α)

}

for all α ∈ [0, 1].

The function F : [a, b] → FC(Rn) is said to be Aumann integrable over [a, b] if (A)
∫ b

a F (x) dx ∈
FC(Rn).

The following integrals have been defined for functions F : [a, b] → FC(R).

Definition 3.1.2 (Gal, 2000; Wu and Gong, 2001) The Riemann integral of a fuzzy-number-
valued function F : [a, b] → FC(R) over [a, b] is the fuzzy number A such that for every ǫ > 0 there
exist δ > 0 such that for any division d : a = x0 < x1 < ... < xn = b with xi −xi−1 < δ, i = 1, ..., n,
and ξi ∈ [xi − xi−1]

d∞

(
n−1∑

i=1

F (ξi)(xi − xi−1), A

)
< ǫ.

The function F : [a, b] → FC(R) is said to be Riemann integrable over [a, b] if A ∈ FC(R). We
denote (R)

∫ b
a F (x) dx = A

Definition 3.1.3 (Bede and Gal, 2004b; Wu and Gong, 2001) Consider δn : a = x0 < x1 < ... <
xn = b a partition of the interval [a, b], ξi ∈ [xi −xi−1], i = 1, ..., n, a sequence ξ in δn and δ(x) > 0
a real-valued function over [a, b]. The division P (δn, ξ) is considered to be δ-fine if

[xi−1, xi] ⊆ (ξi−1 − δ(ξi−1), ξi−1 + δ(ξi−1))

The Henstock integral of a fuzzy-number-valued function F : [a, b] → FC(R) over [a, b] is the
fuzzy number A such that for every ǫ > 0 there exist a real-valued function δ such that for any
δ-fine division P (δn, ξ),

d∞

(
n−1∑

i=1

F (ξi)(xi − xi−1), A

)
< ǫ.

The function F : [a, b] → FC(R) is said to be Henstock integrable over [a, b] if A ∈ FC(R). We
denote (H)

∫ b
a F (x) dx = A.

Henstock integral is more general than Riemann, i.e., whenever a function is Riemann inte-
grable, it is Henstock integrable as well.
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Remark 3.1.4 If we write that a function is integrable, without specifying whether it is Aumann,
Riemann or Henstock, we mean it is integrable in all these three senses.

Corollary 3.1.5 (Bede, 2013; Kaleva, 1987; Wu and Gong, 2001) If a function F : [a, b] → FC(R)
is continuous then it is integrable. Moreover,

[∫
F
]

α
=
[∫

f−
α ,
∫

f+
α

]

for all α ∈ [0, 1].

Theorem 3.1.6 (Bede, 2013; Kaleva, 1987; Wu and Gong, 2001) Let F : [a, b] → FC(R) be
integrable and a ≤ x1 ≤ x2 ≤ x3 ≤ b. Then

∫ x3

x1

F =
∫ x2

x1

F +
∫ x3

x2

F.

Theorem 3.1.7 (Bede, 2013; Kaleva, 1987; Wu and Gong, 2001) Let F, G : [a, b] → FC(R) be
integrable, then

(i)
∫
(F + G) =

∫
F +

∫
G;

(ii)
∫
(λF ) = λ

∫
F , for any λ ∈ R;

(iii) d∞(F, G) is integrable;

(iv) d∞(
∫

F,
∫

G) ≤ ∫
d∞(F, G).

3.1.2 Derivatives

The Hukuhara differentiability for fuzzy functions is based on the concept of Hukuhara differen-
tiability for interval-valued functions (Hukuhara, 1967).

Definition 3.1.8 (Puri and Ralescu, 1983) Let F : (a, b) → FC(Rn). If the limits

lim
h→0+

F (x0 + h) ⊖H F (x0)

h
and lim

h→0+

F (x0) ⊖H F (x0 − h)

h

exist and equal some element F ′
H(x0) ∈ FC(Rn), then F is Hukuhara differentiable (H-differentiable

for short) at x0 and F ′
H(x0) is its Hukuhara derivative (H-derivative for short) at x0.

Example 3.1.9 The fuzzy-number-valued function of Example 2.5.2, F (x) = Ax with A = (−1; 0; 1),
is an H-differentiable function for x ≥ 0 and

F ′
H(x) = A.

For x < 0, F is not H-differentiable since F (x + h)⊖H F (x) is not defined. Considering x > 0, F
is a particular case of Example 8.30 in Bede (2013), which shows that any function G(x) = Bg(x)
with g(x) > 0, g′(x) > 0 and B a fuzzy number is H-differentiable. Moreover,

G′
H(x) = Bg′(x).
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An H-differentiable fuzzy function has H-differentiable α-cuts (that is, its α-cuts are interval-
valued H-differentiable functions). The converse, however, is not true, unless its α-cuts are uni-
formly H-differentiable (see Kaleva (1987)).

Definition 3.1.10 (Seikkala, 1987) Let F : [a, b] → FC(R). If

[(f−
α )′(x0), (f+

α )′(x0)]

exists for all α ∈ [0, 1] and defines the α-cuts of a fuzzy number F ′
S(x0), then F is Seikkala

differentiable at x0 and F ′
S(x0) is the Seikkala derivative of F at x0.

Kaleva (1987) proved that if F : [a, b] → FC(R) is H-differentiable, then f−
α (x) and f+

α (x) are
differentiable and

[F ′(x0)]α = [(f−
α )′(x0), (f+

α )′(x0)],

that is, if F is H-differentiable, it is Seikkala differentiable and the derivatives are the same.

Theorem 3.1.11 (Kaleva, 1987) Let F : [a, b] → FC(Rn) be a H-differentiable function. Then it
is continuous.

Theorem 3.1.12 (Kaleva, 1987) Let F, G : [a, b] → FC(Rn) be H-differentiable functions and
λ ∈ R. Then (F + G)′

H = F ′
H + G′

H and (λF )′
H = λF ′

H .

It is easy to see that if F is Seikkala (or Hukuhara) differentiable, (f−
α )′(x) ≤ (f+

α )′(x), hence
the function diam [F (x)]α = f+

α (x) − f−
α (x) is nondecreasing on [a, b]. It means that the function

has nondecreasing fuzziness. As will be clear in Chapter 4, this is considered a shortcoming since
an H-differentiable function can not represent a function with decreasing fuzziness or periodicity.
In order to overcome this, the generalized differentiability concepts were created. They generalize
the H-differentiability, that is, they are defined for more cases of fuzzy-number-valued functions
and whenever the H-derivative of a function exists, its generalization exist and has the same value.

Definition 3.1.13 (Bede and Gal, 2004a, 2005) Let F : (a, b) → FC(R). If the limits of some
pair

(i) lim
h→0+

F (x0 + h) ⊖H F (x0)

h
and lim

h→0+

F (x0) ⊖H F (x0 − h)

h
or

(ii) lim
h→0+

F (x0) ⊖H F (x0 + h)

−h
and lim

h→0+

F (x0 − h) ⊖H F (x0)

−h
or

(iii) lim
h→0+

F (x0 + h) ⊖H F (x0)

h
and lim

h→0+

F (x0 − h) ⊖H F (x0)

−h
or

(iv) lim
h→0+

F (x0) ⊖H F (x0 + h)

−h
and lim

h→0+

F (x0) ⊖H F (x0 − h)

h



3.1. FUZZY CALCULUS FOR FUZZY-SET-VALUED FUNCTIONS 39

exist and are equal to some element F ′
G(x0) of FC(R), then F is strongly generalized differentiable

(or GH-differentiable) at x0 and F ′
G(x0) is the strongly generealized derivative (GH-derivative for

short) of F at x0.

An (i)-strongly generalized differentiable function presents nondecreasing diameter, since it
is the definition of the H-differentiability. (ii)-strongly generalized differentiability (we call (ii)-
differentiability, for short) on the other hand implies in nonincreasing diameter. The (iii) and (iv)-
differentiability cases correspond to points where the function changes its behavior with respect
to the diameter. It means that a strongly differentiable non-crisp function may present periodical
behaviour, as well as convergence to a single point.

In case F is defined on a closed interval, that is, F : [a, b] → FC(R), we define the derivative at
a using the limit from the right and at b using the limit from the left.

Example 3.1.14 The fuzzy-number-valued function of Example 2.5.2, F (x) = Ax with A =
(−1; 0; 1), is a GH-differentiable function for x ∈ R and

F ′
gH(x) = A.

Different from the H-derivative case, the GH-derivative of F is defined for x < 0. According to
Example 8.35 in Bede (2013), any function G(x) = Bg(x) with B a fuzzy number and g : (a, b) → R
differentiable with at most a finite number of roots in (a, b) is GH-differentiable. Moreover,

G′
H(x) = Bg′(x).

Example 3.1.14 illustrates that, different from the H-derivative, GH-differentiable functions can
have decreasing diameter.

Definition 3.1.15 (Bede and Gal, 2005) Let F : (a, b) → FC(R) and x0 ∈ (a, b). For a nonin-
creasing sequence hn → 0 and n0 ∈ N we denote

A(1)
n0

=
{
n ≥ n0; ∃E(1)

n := F (x0 + hn) ⊖H F (x0)
}

,

A(2)
n0

=
{
n ≥ n0; ∃E(2)

n := F (x0) ⊖H F (x0 + hn)
}

,

A(3)
n0

=
{
n ≥ n0; ∃E(3)

n := F (x0) ⊖H F (x0 − hn)
}

,

A(4)
n0

=
{
n ≥ n0; ∃E(4)

n := F (x0 − hn) ⊖H F (x0)
}

.

The function F is said to be weakly generalized differentiable at x0 if for any nonincreasing
sequence hn → 0 there exists n0 ∈ N, such that

A(1)
n0

∪ A(2)
n0

∪ A(3)
n0

∪ A(4)
n0

= {n ∈ N; n ≥ n0}
and moreover, there exists an element in FC(R), such that if for some j ∈ {1, 2, 3, 4} we have
card (A(j)

n0
) = +∞, then

lim
hnց0,n→∞,n∈A

(j)
n0

d∞

(
E(j)

n

(−1)j+1hn

, F ′(x0)

)
= 0.
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Definition 3.1.15 is more general than Definition 3.1.13, that is, it is defined for more cases of
fuzzy-number-valued functions and whenever the latter exists, the former also exists and has the
same value.

The next definition is equivalent to Definition 3.1.15 (see Bede and Stefanini (2013)).

Definition 3.1.16 (Stefanini and Bede, 2009; Bede and Stefanini, 2013) Let F : (a, b) → FC(R).
If the limit

lim
h→0

F (x0 + h) ⊖gH F (x0)

h

exist and belongs to FC(R) then F is generalized Hukuhara differentiable (gH-differentiable for
short) at x0 and F ′

gH(x0) is the generealized Hukuhara derivative (gH-derivative for short) of F at
x0.

Theorem 3.1.17 (Bede and Stefanini, 2013) Let F : [a, b] → FC(Rn) be a gH-differentiable func-
tion at x0. Then it is levelwise continuous at x0.

Theorem 3.1.18 (Bede and Stefanini, 2013) Let F : [a, b] → FC(R) be such that the functions
f−

α (x) and f+
α (x) are real-valued functions, differentiable with respect to x, uniformly in α ∈ [0, 1].

Then the function F (x) is gH-differentiable at a fixed x ∈ [a, b] if and only if one of the following
two cases holds:

a) (f−
α )

′
(x) is increasing, (f+

α )
′
(x) is decreasing as functions of α, and

(
f−

1

)′
(x) ≤

(
f+

1

)′
(x),

or
b) (f−

α )
′
(x) is decreasing, (f+

α )
′
(x) is increasing as functions of α, and

(
f+

1

)′
(x) ≤

(
f−

1

)′
(x).

Moreover,

[
F ′

gH(x)
]

α
= [min{

(
f−

α

)′
(x),

(
f+

α

)′
(x)}, max{

(
f−

α

)′
(x),

(
f+

α

)′
(x)}],

for all α ∈ [0, 1].

The next concept further extends the gH-differentiability.

Definition 3.1.19 (Stefanini and Bede, 2009) Let F : (a, b) → FC(R). If the limit

lim
h→0

F (x0 + h) ⊖g F (x0)

h

exist and belongs to FC(R) then F is generalized differentiable (g-differentiable for short) at x0 and
F ′

g(x0) is the fuzzy generealized derivative (g-derivative for short) of F at x0.

Example 3.1.20 Recall the fuzzy-number-valued function of Example 2.5.10, F : [0, 0.5] → FC(R)
with α-cuts

[F (x)]α =





[x2 − 3 + α, (1 − 2α)x2 − 2α + 2] , if 0 ≤ α ≤ 0.5

[x2 − 3 + α, (2α − 1)x2 − 6α + 4] , if 0.5 < α ≤ 1
.
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We try to calculate the gH and the g-derivative of F .
First we try to find the limit

lim
h→0

F (x + h) ⊖gH F (x)

h

that defines the gH-differentiability. We make use of

[F (x + h) ⊖gH F (x)]α = [min{f−
α (x + h) − f−

α (x), f+
α (x + h) − f+

α (x)},

max{f−
α (x + h) − f−

α (x), f+
α (x + h) − f+

α (x)}]

for all α ∈ [0, 1].
For α ∈ [0, 0.5] we obtain

[F (x + h) ⊖gH F (x)]α = [(1 − 2α)(2xh + h2), 2xh + h2].

Thus

lim
h→0

[F (x + h) ⊖gH F (x)]α
h

= [(1 − 2α)2x, 2x]

and as consequence

lim
h→0

[F (x + h) ⊖gH F (x)]0
h

= {2x}

and

lim
h→0

[F (x + h) ⊖gH F (x)]0.25

h
= [x, 2x].

The condition

α < β ⇒ lim
h→0

[F (x + h) ⊖gH F (x)]β
h

⊂ lim
h→0

[F (x + h) ⊖gH F (x)]α
h

does not hold, hence limh→0
[F (x+h)⊖gHF (x)]α

h
can not be a fuzzy number and the gH-derivative is not

defined for this function.
We now calculate the limit

lim
h→0

F (x + h) ⊖g F (x)

h

that defines the g-differentiability. We use

[F (x + h) ⊖g F (x)]α =
[

inf
β≥α

min{f−
β (x + h) − f−

β (x), f+
β (x + h) − f+

β (x)} ,

sup
β≥α

max{f−
β (x + h) − f−

β (x), f+
β (x + h) − f+

β (x)}
]

which, in this case, holds true for all α ∈ [0, 1]. Since f−
β (x + h) − f−

β (x) = 2xh + h2 and
f+

β (x + h) − f+
β (x) = (1 − 2α)2xh + h2 for β ≤ 0.5 and f−

β (x + h) − f−
β (x) = 2xh + h2 and

f+
β (x + h) − f+

β (x) = (2α − 1)2xh + h2 for β > 0.5, we obtain for α > 0.5:

lim
h→0

[F (x + h) ⊖g F (x)]α
h

= cl
⋃

β≥α>0.5

[(2β − 1)2x, 2x] = [(2α − 1)2x, 2x].
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For α ≤ 0.5,

lim
h→0

[F (x + h) ⊖g F (x)]α
h

= cl


 ⋃

0.5≥β≥α≥0

[(1 − 2β)2x, 2x]


⋃


 ⋃

β>0.5

[(2β − 1)2x, 2x]


 = [0, 2x].

We have obtained the fuzzy number F ′
g : [0, 0.5] → FC(R) with α-cuts

[F ′
g(x)]α =





[0, 2x] , if 0 ≤ α ≤ 0.5

[(2α − 1)2x, 2x] , if 0.5 < α ≤ 1
.

as the g-derivative.

The g-difference is not defined for all pairs of fuzzy numbers, as we showed in Example 2.3.6.
The same happens to the g-derivative, that is, it is not always well-defined.

Example 3.1.21 The Definition of the g-derivative of the fuzzy-number-valued function of Exam-
ple 2.5.9 leads to

[F ′
g(x)]α =





{20x}⋃{0}, if 0 ≤ α ≤ 0.5

{0}, if 0.5 < α ≤ 1
.

That is, it is not a fuzzy-number-valued function. Hence F is not g-differentiable.

The function F in Example 3.1.21 has f−
α (x) and f+

α (x) differentiable real-valued functions
with respect to x, uniformly with respect to α ∈ [0, 1], but it is not g-differentiable. In the case
a function is g-differentiable and satisfy the just mentioned hypothesis, it has a formula that has
been proved by Bede and Stefanini (2013).

Theorem 3.1.22 Let F : [a, b] → RF with f−
α (x) and f+

α (x) differentiable real-valued functions
with respect to x, uniformly with respect to α ∈ [0, 1]. Then

[
F ′

g(x)
]

α

=

[
inf
β≥α

min{
(
f−

β

)′
(x),

(
f+

β

)′
(x)}, sup

β≥α
max{

(
f−

β

)′
,
(
f+

β

)′
(x)}

]

whenever F is g-differentiable.

Proof. See Bede and Stefanini (2013).
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3.1.3 Fundamental Theorem of Calculus

Theorem 3.1.23 (Kaleva, 1987) Let F : [a, b] → FC(Rn) be continuous, then G(x) =
∫ x

a F (s)ds
is H-differentiable and

G′
H(x) = F (x).

Theorem 3.1.24 (Kaleva, 1987) Let F : [a, b] → FC(Rn) be H-differentiability and the H-derivative
F ′

H be integrable over [a, b]. Then

F (x) = F (a) +
∫ x

a
F ′

H(s)ds,

for each x ∈ [a, b].

The H-differentiable is equivalent to strongly generalized differentiability (i) in Definition 3.1.13.
For the case (ii) in the same definition, Bede and Gal have proved the following theorem.

Theorem 3.1.25 (Bede and Gal, 2010) Let F : [a, b] → FC(R) be (ii)-differentiable. Then the
derivative F ′

G is integrable over [a, b] and

F (x) = F (b) −
∫ b

x
F ′

G(s)ds,

for each x ∈ [a, b].

3.2 Fuzzy Calculus for Fuzzy Bunches of Functions

Recently, Barros et al. (2013) and Gomes and Barros (2012) elaborated the fuzzy calculus for fuzzy
bunches of functions, based on the definitions of derivative and integral via Zadeh’s extension of
the correspondent operators for classical functions. This original theory is reviewed and further
developed in the present section.

3.2.1 Integral

The integral operator will be represented by
∫
, i.e.,

∫
: L1([a, b];Rn) → AC([a, b];Rn)

f 7→ ∫ t
a f

t ∈ [a, b] (see Appendix for definitions of spaces of functions).

Definition 3.2.1 (Barros et al., 2010; Gomes and Barros, 2012) Let F ∈ F(L1([a, b];Rn)). The
integral of F is given by

∫̂
F , whose membership function is

µ∫̂
F

(y) =





sup
f∈
∫

−1
y

µF (f), if
∫−1 y 6= ∅

0, if
∫−1 y = ∅

, (3.1)

for all y ∈ AC([a, b];Rn). In words,
∫̂

is Zadeh’s extension of the operator
∫
.
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The next theorem is a consequence of Theorem 2.2.5.

Theorem 3.2.2 If F ∈ F(L1([a, b];Rn)),
[∫̂

F
]

α
=

∫
[F ]α

= {∫ f : f ∈ [F ]α ⊂ L1([a, b];Rn)} ,

for all α ∈ [0, 1].

Proof. Since the integral is a continuous operator, the result follows directly from Theorem 2.2.5.

We next define a linear structure in F(L1([a, b];Rn)). Given two fuzzy bunches of functions F
and G and λ ∈ R,

µF +G(h) = sup
f+g=h

min{µF (f), µG(g)},

µλF (f) =

{
µF (h/λ) if λ 6= 0
χ0(f) if λ = 0

.

Since these operations are Zadeh’s extension of addition and multiplication by scalar, which are con-
tinuous (except multiplication by zero), Theorem 2.2.5 assures that given F, G ∈ FK(L1([a, b];Rn))
and λ ∈ R,

F + G ∈ FK(L1([a, b];Rn)) and [F + G]α = [F ]α + [G]α

and
λF ∈ FK(L1([a, b];Rn)) and [λF ]α = λ[F ]α

for all α ∈ [0, 1].

Theorem 3.2.3 Let F, G ∈ FK(L1([a, b];Rn)), then

(i)
∫̂
(F + G) =

∫̂
F +

∫̂
G;

(ii)
∫̂
λF = λ

∫̂
F , for any λ ∈ R.

Proof. From Theorem 2.2.5 and the linearity of the integral operator,

[
∫̂
(F + G)]α =

∫
[F + G]α

=
∫ {h : h = f + g, f ∈ [F ]α, g ∈ [G]α}

= {∫ (f + g), f ∈ [F ]α, g ∈ [G]α}
= {∫ f +

∫
g, f ∈ [F ]α, g ∈ [G]α}

= {∫ f, f ∈ [F ]α} + {∫ g, g ∈ [G]α}
=

∫
[F ]α +

∫
[G]α

= [
∫̂
F ]α + [

∫̂
G]α
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and

[
∫̂
λF ]α =

∫
[λF ]α

= {∫ λf : f ∈ [F ]α}
= {λ

∫
f : f ∈ [F ]α}

= λ{∫ f : f ∈ [F ]α}
= λ

∫
[F ]α

= λ[
∫̂
F ]α

for all α ∈ [0, 1].

Example 3.2.4 Let A be the symmetrical triangular fuzzy number with support [−a, a], a > 0.
The fuzzy function F (·) ∈ F(L1([0, T ];R)) such that

[F (·)]α = {f(·) : f(t) = γt, γ ∈ [A]α}
where f(·) : [0, T ] → R, for each α ∈ [0, 1], has attainable sets

F (t) = At. (3.2)

To determine the integral of F using Definition 3.2.1, we need to explicit the membership function
of A and F :

µA(γ) =





γ

a
+ 1, if − a ≤ γ < 0

−γ

a
+ 1, if 0 ≤ γ < a

0, otherwise

(3.3)

and

µF (f) =





γ

a
+ 1, if f(t) = γt with − a ≤ γ < 0

−γ

a
+ 1, if f(t) = γt with 0 ≤ γ < a

0, otherwise

(3.4)

Formula (3.1) states that µ∫̂
F

(y) 6= 0 only if there exists f such that
∫

f = y and µF (f) 6= 0.

In this example, it happens only if f(t) = γt with γ ∈ [A]α, that is, y = γt2/2.

µ∫̂
F

(γt2/2) = sup∫ f=γt2/2 µF (f)

= sup∫ (γt)=γt2/2 µF (γt)

= µF (γt)

=





γ
a

+ 1, if − a ≤ γ < 0

−γ
a

+ 1, if 0 ≤ γ < a

0, otherwise

= µA(γ).

(3.5)
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Hence

µ∫̂
F

(f) =





γ

a
+ 1, if f(t) = γt2/2 with − a ≤ γ < 0

−γ

a
+ 1, if f(t) = γt2/2 with 0 ≤ γ < a

0, otherwise

(3.6)

or
[F (·)]α = {f(·) : f(t) = γt2/2, γ ∈ [A]α}.

For each α ∈ [0, 1], its attainable sets are

F (t) = At2/2.

The Aumann integral of (3.2) can be calculated levelwise and we obtain the same attainable sets
as obtained with

∫̂
:

[
∫

F (t)]α = [
∫

f−
α ,
∫

f−
α ]

= [−at2/2, at2/2]

= [A]αt2/2.

The next section introduces the derivative operator for fuzzy bunches of functions. It is defined
for more restricted spaces than the integral since they are extensions of the classical case. Also,
different from the integral case, we explore the derivative on different spaces (Example 3.2.12)
due to the fact that it is not a continuous operator (in general). We are more interested, though,
in differentiating fuzzy bunches of the space of absolutely continuous functions (see Appendix),
since we can differentiate more elements in this space than in the space of differentiable functions.
Furthermore, it is used and has been explored in the differential inclusions theory, which, as already
mentioned, has important connections with the theory we propose to develop.

3.2.2 Derivative

The derivative operator in the sense of distributions (see Aubin and Cellina (1984)) will be repre-
sented by D, that is,

D : AC([a, b];Rn) → L1([a, b];Rn)
f 7→ Df

Thus, there exists Df(t) a.e., in [a, b].

Definition 3.2.5 Let F ∈ F(AC([a, b];Rn)). The derivative of F is given by D̂F , whose mem-
bership function is

µ
D̂F

(y) =

{
supf∈D−1y µF (f), if D−1y 6= ∅
0, if D−1y = ∅ . (3.7)

for all y ∈ L1([a, b];Rn). In words, D̂ is Zadeh’s extension of operator D.
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Example 3.2.6 Let F (·) be the same fuzzy bunch as in Example 3.2.4. We note that
F (·) ∈ F(AC([a, b];R)).

Following the same reasoning as Example 3.2.4,

µ
D̂F

(γ) = supDf=γ µF (f)
= supD(γt)=γ µF (γt)
= µF (γt)

=





γ
a

+ 1, if − a ≤ γ < 0
−γ

a
+ 1, if 0 ≤ γ < a

0, otherwise
= µA(γ).

(3.8)

It means that the support of D̂F (·) is composed of constant functions such that, at each instant
t, the derivative of F (·) is always the fuzzy number A.

Lemma 3.2.7 For D defined as above, the preimage D−1g is a closed nonempty subset of the
space of functions AC([a, b];Rn) with respect to the uniform norm for each g ∈ L1([a, b];Rn).

Proof. D−1g is a finite dimensional subspace of AC([a, b];Rn) since D−1g = {f + k : k ∈ Rn} for
f ∈ AC([a, b];Rn) such that f =

∫ x
a g. Hence D−1g is closed.

Theorem 3.2.8 (Barros et al., 2013) Let F ∈ FK(AC([a, b];Rn)). Then

[D̂F ]α = D[F ]α.

Proof. D−1(g) 6= ∅ and it is closed, according to Lemma 3.2.7. Thus, [F ]0 ∩ D−1(g) is compact,
since it is a closed subset of the compact set [F ]0.

We show inclusion [D̂(F )]α ⊂ D([F ]α) considering two cases: α ∈ (0, 1] and later α = 0.
(i) For α ∈ (0, 1], let g ∈ [D̂(F )]α, then

α ≤ D̂(F )(g) = sup
h∈D−1(g)

F (h) = sup
h∈[F ]0∩D−1(g)

F (h) = F (f)

for some f , since F is an upper semicontinuous function (that is, the membership of F is usc) and
[F ]0 ∩ D−1(g) is compact. So, F (f) ≥ α. That is, f ∈ [F ]α ∩ D−1(g). Hence g ∈ D([F ]α).
(ii) For α = 0,

∪α∈(0,1][D̂(F )]α ⊂ ∪α∈(0,1]D([F ]α) ⊆ D([F ]0).

Consequently,

[D̂(F )]0 = ∪α∈(0,1][D̂(F )]α ⊂ ∪α∈(0,1]D([F ]α) ⊆ D([F ]0) = D([F ]0).

The last equality holds because D is a closed operator.
Now, the inclusion D([F ]α) ⊂ [D̂(F )]α is considered next. If g ∈ D([F ]α), there exists f ∈ [F ]α

such that D(g) = f . Thus,

D̂(F )(g) = sup
h∈D−1(g)

F (h) ≥ F (f) ≥ α ⇒ g ∈ [D̂(F )]α

for all α ∈ [0, 1]. Thus, the theorem is proved.
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Example 3.2.9 Consider g : [a, b] → R a differentiable and positive function, A = (c; d; e) a
triangular fuzzy number and the fuzzy-number-valued function

F (x) = Ag(x).

We have
[F (x)]α = [f−

α (x), f+
α (x)]

with
f−

α (x) = [a + α(b − a)]g(x) and f+
α (x) = [e − α(e − d)]g(x)

differentiable with respect to x and continuous with respect to α.
The continuity in α means that F (x) ∈ F0

C(R). It will be proved in Theorem 3.3.3 that the
representative bunch of first kind of this function has compact α-cuts in AC([a, b];R), since it
satisfies the hypotheses of the theorem.

The derivative of the representative bunch of first kind has α-cuts

[D̂F̃ ]α =
⋃

β≥α

⋃

0≤λ≤1

(fλ
β )′

= (1 − λ)[a + α(b − a)]g′ + λ[e − α(e − d)]g′

= {a · g′, a ∈ [A]α}
for all α ∈ [0, 1], that is,

D̂F̃ = Ag′.

It is a similar result as in Example 3.1.14 for GH-derivative, in terms of attainable sets.

Example 3.2.10 Let
f(x) = Becx (3.9)

be a fuzzy-set-valued function where c is a real constant and B is a fuzzy subset of R such that
B(1) = 1, B(0.5) = 0.5 and B(x) = 0 everywhere else. Hence f(x) is not differentiable using
Hukuhara or any generalized derivatives since it is not a fuzzy-number-valued function. On the
other hand, the fuzzy bunch of functions with α-levels

[f̃(·)]α =





{y1(·), y2(·)}, if 0 ≤ α ≤ 0.5

{y1(·)}, if 0.5 < α ≤ 1
,

where y1(x) = ecx and y2(x) = 0.5ecx, has (3.9) as attainable fuzzy sets and is D̂-differentiable.
Since this α-levels are compact subsets of AC([a, b];R), we apply Theorem 3.2.8 and obtain

[D̂f(·)]α =





{z1(·), z2(·)}, if 0 ≤ α ≤ 0.5

{z1(·)}, if 0.5 < α ≤ 1
,

where z1(x) = cecx and z2(x) = 0.5cecx. Its attainable sets are

D̂f(x) = cBecx.
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Remark 3.2.11 We cannot use Hukuhara of the generalized derivatives to differentiate fuzzy-set-
valued functions whose images are not fuzzy numbers, as the function in Example 3.2.10. On the
other hand, we can use D̂ on its fuzzy bunches of functions and assume its attainable fuzzy sets as
derivative.

Example 3.2.12 (Barros et al., 2013) The operator D̂ : FK(C1([a, b];Rn)) → FK(C([a, b];Rn))
is well-defined and for each F ∈ FK(C1([a, b];Rn)) we have

[D̂F ]α = D[F ]α

for all α ∈ [0, 1], if C1([a, b];Rn) is endowed with the norm ‖ x ‖1= sup0≤t≤T {|x(t)| + |x′(t)|} and
C([a, b];Rn) is endowed with the the usual supremum norm. The result follows from Theorem 2.2.5
since D is a continuous function for these spaces.

Another possibility of D being a continuous operator is as follows.

Theorem 3.2.13 (Barros et al., 2013) Consider the subset of AC([0, T ];Rn):

ZT (Rn) = {x(·) ∈ C([0, T ];Rn) : ∃ x′(·) ∈ L∞([0, T ];Rn)},

with ZT (Rn) having the uniform norm topology and L∞([0, T ];Rn) with the weak*-topology. Thus,

D̂ : FK(ZT (Rn)) → FK(L∞([0, T ];Rn)),

where D̂ is Zadeh’s extension of the derivative D, is well defined, that is, for each F ∈ FK(ZT (Rn)),
the α-level [D̂F ]α is a compact subset of FK(L∞([0, T ]; Rn)) and [D̂F ]α = D[F ]α.

Proof. The result follows from the Theorem 2.2.5 because

D : ZT (Rn) → L∞([0, T ];Rn)

is a continuous linear operator (see Aubin and Cellina (1984) - page 104).

Theorem 3.2.14 Let F, G ∈ FK(AC([a, b];Rn)), then

(i) D̂(F + G) = D̂F + D̂G;

(ii) D̂λF = λD̂F , for any λ ∈ R.

Proof. This proof is completely analogous to the one of Theorem 3.2.14, due to the linearity of
the derivative operator.

[D̂(F + G)]α = D[F + G]α
= {D(f + g), f ∈ [F ]α, g ∈ [G]α}
= {Df +

∫
g, f ∈ [F ]α, g ∈ [G]α}

= {Df, f ∈ [F ]α} + {Dg, g ∈ [G]α}
= D[F ]α + D[G]α
= [D̂F ]α + [D̂G]α
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and

[D̂λF ]α = D[λF ]α
= {Dλf : f ∈ [F ]α}
= λ{Df : f ∈ [F ]α}
= λD[F ]α
= λ[D̂F ]α

for all α ∈ [0, 1]. Thus using Theorem 2.1.8 we obtain the desired result.

3.2.3 Fundamental Theorem of Calculus

We also obtain a result connecting the concepts of derivative and integral for fuzzy bunches of
functions as in the classical case and in the fuzzy-set-valued function case.

Theorem 3.2.15 Let F ∈ FK(L1([a, b];Rn)). Hence

D̂
(∫̂

F
)

= F,

that is, [
D̂
(∫̂

F
)]α

= [F ]α.

for all α ∈ [0, 1].

Proof. Since Theorem 3.2.2 holds,

[
∫̂
F ]α =

∫
[F ]α

= {∫ f : f ∈ [F ]α}

for all α ∈ [0, 1] and
∫̂
F ∈ FK(AC([0, T ];Rn)). Then Theorem 3.2.8 holds and,

[D̂
∫̂
F ]α = D[

∫̂
F ]α

= {D
∫

f : f ∈ [F ]α}
= [F ]α

for all α ∈ [0, 1] .

3.3 Comparison

We can associate more than one fuzzy bunch of functions with the same attainable fuzzy sets.
Choosing the suitable fuzzy bunch may lead to equivalence of D̂ with derivatives for fuzzy-set-
valued functions and equivalence of

∫̂
with integrals for fuzzy-set-valued functions (in terms of
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attainable sets). In this section the similarities of the proposed theory with other approaches are
demonstrated.

The motivation for this comparison and the definition of the two different fuzzy bunches of
functions of Definition 2.5.6 is what happens with the fuzzy-number-valued functions of Examples
3.1.20 and 3.1.21. In the former the gH-derivative does not exist whereas the g-derivative does and
in the latter both do not exist. We calculate the D̂-derivative of the corresponding fuzzy bunches of
the fuzzy-valued functions in Examples 3.1.20 and 3.1.21 next. The fuzzy-number-valued functions
do not meet the conditions of the theorems to be stated, revealing the importance of the hypotheses
of these theorems.

Example 3.3.1 Recall Examples 2.5.10 and 3.1.20 where the representative bunch of first kind is
given by the α-cuts

[F̃1(·)]α =






 ⋃

β≥0.5

⋃

0≤λ≤1

fλ
β


⋃


 ⋃

α≤β≤0.5

⋃

0≤λ≤1

gλ
β


, if 0 ≤ α ≤ 0.5

⋃

β≥α

⋃

0≤λ≤1

fλ
β , if 0.5 < α ≤ 1

where





fλ
β (·) : fλ

β (x) = (1 − λ)(x2 − 3 + β) + λ((2β − 1)x2 − 6β + 4),

gλ
β(·) : gλ

β(x) = (1 − λ)(x2 − 3 + β) + λ((1 − 2β)x2 − 2β + 2),

for all λ ∈ [0, 1]. Since





(fλ
β )′(·) : fλ

β (x) = (1 − 2λ + 2βλ)2x,

(gλ
β)′(·) : gλ

β(x) = (1 − 2βλ)2x,

using Theorem 3.2.8 to calculate D̂F̃1(·) we obtain

[D̂F̃1(·)]α =






 ⋃

β≥0.5

⋃

0≤λ≤1

(fλ
β )′


⋃


 ⋃

α≤β≤0.5

⋃

0≤λ≤1

(gλ
β)′


, if 0 ≤ α ≤ 0.5

⋃

β≥α

⋃

0≤λ≤1

(fλ
β )′, if 0.5 < α ≤ 1

At x ∈ [0, 0.8]

[D̂F̃1(x)]α = [m, M ]
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with

m =





min






 ⋃

β≥0.5

⋃

0≤λ≤1

(fλ
β )′(x)


⋃


 ⋃

α≤β≤0.5

⋃

0≤λ≤1

(gλ
β)′(x)





 , if 0 ≤ α ≤ 0.5

min




⋃

β≥α

⋃

0≤λ≤1

(fλ
β )′(x)



 , if 0.5 < α ≤ 1

=





0, if 0 ≤ α ≤ 0.5

(2α − 1)2x, if 0.5 < α ≤ 1

and

M =





max






 ⋃

β≥0.5

⋃

0≤λ≤1

(fλ
β )′(x)


⋃


 ⋃

α≤β≤0.5

⋃

0≤λ≤1

(gλ
β)′(x)





 , if 0 ≤ α ≤ 0.5

max




⋃

β≥α

⋃

0≤λ≤1

(fλ
β )′(x)



 , if 0.5 < α ≤ 1

=





2x, if 0 ≤ α ≤ 0.5

2x, if 0.5 < α ≤ 1

Hence the attainable sets of the D̂-derivative are

[D̂F̃1(x)]α =





[0, 2x] , if 0 ≤ α ≤ 0.5

[(2α − 1)2x, 2x] , if 0.5 < α ≤ 1

that is, the same as the g-derivative of the fuzzy-number-valued function F .

Example 3.3.2 Recall Examples 2.5.9 and 3.1.21 where the representative bunch of first kind is
given by the α-cuts

[F (x)]α =





[10x2 − 12, 10x2 + 2] , if 0 ≤ α ≤ 0.5

[−1, 1] , if 0.5 < α ≤ 1
.

and the representative bunch of second kind is defined by

[F̃1(·)]α =





2⋃

i=1

⋃

0≤λ≤1

yλ
i (·), if 0 ≤ α ≤ 0.5

⋃

0≤λ≤1

yλ
1 (·), if 0.5 < α ≤ 1
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where





yλ
1 (·) : yλ

1 (x) = (1 − λ)(10x2 − 12) + λ(10x2 + 2),

yλ
2 (·) : yλ

2 (x) = (1 − λ)(−1) + λ,

yλ
3 (·) : yλ

3 (x) = (1 − λ)(−1) + λ(10x2 + 2),

yλ
4 (·) : yλ

4 (x) = (1 − λ)(10x2 − 12) + λ,

for all λ ∈ [0, 1].
The derivatives of the representative bunch of first kind is given by the α-cuts

[D̂F̃1(·)]α =





2⋃

i=1

⋃

0≤λ≤1

(yλ
i )′(·), if 0 ≤ α ≤ 0.5

⋃

0≤λ≤1

yλ
1 (·), if 0.5 < α ≤ 1

and the representative bunch of second kind is defined by

[D̂F̃2(·)]α =





4⋃

i=1

⋃

0≤λ≤1

(yλ
i )′(·), if 0 ≤ α ≤ 0.5

{(y1)
′(·)}

⋃

0≤λ≤1

yλ
1 (·), if 0.5 < α ≤ 1

where





(y1)
′(·) : (y1)

′(x) = 20x,

(y2)
′(·) : (y2)

′(x) = 0,

(y3)
′(·) : (y3)

′(x) = λ20x,

(y4)
′(·) : (y4)

′(x) = (1 − λ)20x,

for all λ ∈ [0, 1].
In terms of attainable sets, the derivative of the representative bunch of first kind has attainanble

sets

[D̂F̃1(x)]α =





{0}⋃{20x}, if 0 ≤ α ≤ 0.5

{20x}, if 0.5 < α ≤ 1
.

The derivative of the representative bunch of second kind for x ∈ [0, 1] has attainanble sets

[D̂F̃2(x)]α =





[0, 20x], if 0 ≤ α ≤ 0.5

{20x}, if 0.5 < α ≤ 1
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and for x ∈ [−1, 0],

[D̂F̃1(x)]α =





[20x, 0], if 0 ≤ α ≤ 0.5

{20x}, if 0.5 < α ≤ 1
.

Hence the derivative of the representative bunch of first kind at each x ∈ [−1, 1] does not define
fuzzy numbers while the derivative of the representative bunch of second kind does.

Example 3.3.1 illustrates that the D̂-derivative of the fuzzy bunch of first kind of the given
fuzzy-number-valued function F exists but its attainable sets are not fuzzy numbers (while the
gH-derivative of the fuzzy-number-valued function does not exist). The result that we state next
regards the necessary conditions for equivalence between the gH-derivative of a fuzzy-number-
valued function and the D̂-derivative of the corresponding fuzzy bunch of first kind. The result we
state later is connected with Example 3.3.2, that is, it is necessary that the g-derivative exist for the
equivalence with the derivative of the representative bunch of second kind. The D̂ derivative in this
last case provided a fuzzy-number-valued function, which no derivative for fuzzy-number-valued
functions that we presented can do.

Theorem 3.3.3 Let F : [a, b] → F0
C (R) be such that the functions f−

α (x) and f+
α (x) are real-valued

functions, differentiable with respect to x, uniformly in α ∈ [0, 1]. Suppose also that one of the
following two cases holds:

a) (f−
α )

′
(x) is increasing, (f+

α )
′
(x) is decreasing as functions of α, and

(
f−

1

)′
(x) ≤

(
f+

1

)′
(x),

or
b) (f−

α )
′
(x) is decreasing, (f+

α )
′
(x) is increasing as functions of α, and

(
f+

1

)′
(x) ≤

(
f−

1

)′
(x).

Then F generates a representative bunch of first kind F̃ (·) with compact α-levels and whose
D̂-derivative has attainable sets

[
D̂F̃ (x)

]
α

= [min{
(
f−

α

)′
(x),

(
f+

α

)′
(x)}, max{

(
f−

α

)′
(x),

(
f+

α

)′
(x)}].

In words, the D̂-derivative coincides with the gH-derivative at each x.

Proof.
We prove that the sets Aα in Definition 2.5.6 are α-cuts of a fuzzy set in AC([a, b];R) using the

same arguments as in Example 2.5.8. The only difference is to demonstrate compactness, which
we do next. Note that any sequence (fλi

αi
) in

⋃
β≥α

⋃
0≤λ≤1

fλ
β (·) has a convergent subsequence whose

limit belongs to
⋃

β≥α

⋃
0≤λ≤1

fλ
β (·), due to the continuity of fλ

β (·) as function of the real parameters

λ and β defined on closed intervals (compact subsets) [0, 1] and [α, 1], respectively. And since f±
β
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are differentiable, so are fλ
β . According to Frink Jr (1935), the differentiability with respect to

x, uniformly in α ∈ [0, 1], assures that if a sequence of functions converges to a function f , the
sequence of its derivatives converges to f ′. Since f is differentiable, it belongs to AC([a, b];R). As
a result,

⋃
β≥α

⋃
0≤λ≤1

fλ
β is compact in AC([a, b];R) and it is equal to its closure and hence to Aα.

We next make use of Theorem 3.2.8 since F̃ ∈ FK(AC([a, b];R)):

[D̂F̃ ]α = D[F̃ ]α
=

⋃

β≥α

⋃

0≤λ≤1

(fλ
β )′

for all α ∈ [0, 1]. And we observe that for case a)
⋃

0≤λ≤1

(fλ
β )′(x) = [(f−

β )′(x), (f+
β )′(x)]

and
(f−

α )′(x) ≤ (f−
β )′(x) ≤ (f−

1 )′(x) ≤ (f+
1 )′(x) ≤ (f+

β )′(x) ≤ (f+
α )′(x)

for 0 ≤ α ≤ β ≤ 1,
[(f−

β )′(x), (f+
β )′(x)] ⊆ [(f−

α )′(x), (f+
α )′(x)].

Hence

[D̂F̃ (x)]α =
⋃

β≥α

[(f−
β )′(x), (f+

β )′(x)]

= [(f−
α )′(x), (f+

α )′(x)]

for all α ∈ [0, 1].
Similarly, case b) leads to

[D̂F̃ (x)]α = [(f+
α )′(x), (f−

α )′(x)].

As result we obtain the desired expression,
[
D̂F̃ (x)

]
α

=
[
min{(f−

α )′(x), (f+
α )′(x)}, max{(f−

α )′(x), (f+
α )′(x)}

]
,

for all α ∈ [0, 1], which the same as stated in Theorem 3.1.18 for the gH-derivative.

A similar result for connecting D̂-derivative and g-derivative is presented in what follows.

Theorem 3.3.4 Let F ∈ [a, b] → F0
C(R) be a function such that f−

α (x) and f+
α (x) are differentiable

real-valued functions with respect to x, uniformly with respect to α ∈ [0, 1]. Then F generates
a representative bunch of second kind F̃ (·) with compact α-levels and whose D̂-derivative has
attainable sets

[D̂F̃ (x)]α =

[
inf
β≥α

min
{
(f−

β )′(x), (f+
β )′(x)

}
, sup

β≥α
max

{
(f−

β )′(x), (f+
β )′(x)

}]

It means that the values of the g-derivative of F (x) and the attainable sets of the D̂-derivative of
F̃ (·) coincide in every x ∈ [a, b], whenever the g-derivative exists.
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Proof. Using the same argument of the previous proof, it follows that the resultant Bα in Definition
2.5.6 are compact sets in AC([a, b];R) and are the α-cuts of the representative bunch of second
kind of F , F̃ . We use Theorem 3.2.8 and obtain

[D̂F̃ ]α = D[F̃ ]α
=

⋃

β,γ≥α

⋃

0≤λ≤1

(fλ
β,γ)′

We will prove that L = infβ,γ≥α

{
(fλ

β,γ)′(x)
}

is attained, that is, that there exists a triple

(λ, β, γ) such that (fλ
β,γ

)′(x) = L with β, γ ∈ [α, 1], λ ∈ [0, 1]. From the definition of infimum,

y ≥ L if y ∈ ⋃
β,γ≥α

⋃
0≤λ≤1

(fλ
β,γ)′(x) and there exists a sequence (yn), yn = (fλn

βn,γn
)′(x) such that

(fλn

βn,γn
)′(x) → L, L ≤ (fλn

βn,γn
)′(x).

To the sequence (yn) in R there corresponds a sequence (gn(·)) of functions such that gn(·) =
(fλn

βn,γn
)′(·). This sequence of functions has a convergent subsequence, since the set is sequentially

compact (where we use the same result in Frink Jr (1935) as previously used). This subsequence
of functions defines a subsequence in (yn), ynk

= gnk
(x). The subsequence (ynk

) also converges to
L. The limit of gnk

(·) is attained for some triple (λ, β, γ) and its value in x is

(fλ
β,γ

)′(x) = lim gnk
(x) = lim ynk

= L.

Similarly we prove that the supremum M is also attained. Now we prove that

L = inf
β≥α

min
{
(f−

β )′(x), (f+
β )′(x)

}
.

For any (fλ
β,γ)′(x), we have

(f−
β )′ ≤ (fλ

β,γ)′(x) ≤ (f+
γ )′ or (f+

γ )′ ≤ (fλ
β,γ)′(x) ≤ (f+

β )′.

Hence
inf
β≥α

min
{
(f−

β )′(x), (f+
β )′(x)

}
≤ inf

β,γ≥α

{
(fλ

β,γ)′(x)
}

.

Since ⋃

β≥α

{
(f−

β )′(x), (f+
β )′(x)

}
⊂

⋃

β,γ≥α

{
(fλ

β,γ)′(x)
}

the equality of the infimum holds.
Hence the value L = infβ≥α min

{
(f−

β )′(x), (f+
β )′(x)

}
is attained by (f−

β )′(x) or (f+
β )′(x), for

some β ≥ α. The same happens to M = supβ≥α max
{
(f−

β )′(x), (f+
β )′(x)

}
. As a consequence,

there are four possible cases:

1) L = (f−
β1

)′(x) and M = (f+
β2

)′(x) and any value between L and M is attained by (fλ
β1,β2

)′(x)
for some λ ∈ [0, 1];
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2) L = (f+
β1

)′(x) and M = (f−
β2

)′(x) and any value between L and M is attained by (fλ
β2,β1

)′(x)
for some λ ∈ [0, 1];

3) L = (f−
β1

)′(x) and M = (f−
β2

)′(x) and any value between L and M is attained by (fλ
β1,β1

)′(x)
or (fλ

β2,β1
)′(x) for some λ ∈ [0, 1].

4) L = (f+
β1

)′(x) and M = (f+
β2

)′(x) and any value between L and M is attained by (fλ
β1,β1

)′(x)
or (fλ

β1,β2
)′(x) for some λ ∈ [0, 1].

It proves that all values in
[

inf
β≥α

min
{
(f−

β )′(x), (f+
β )′(x)

}
, sup

β≥α
max

{
(f−

β )′(x), (f+
β )′(x)

}]

are attained.
Then the same expression as in Theorem 3.1.22 for g-differentiable functions is found and the

desired result is proved.

The attainable sets of the
∫̂
-integral of certain bunches of functions also coincide with integrals

for fuzzy-set-valued functions, as it will be stated in Theorem 3.3.5.

Theorem 3.3.5 Let F : [a, b] → F0
C (R) be continuous. Then the

∫̂
-integral of the representative

bunch of first kind has attainable fuzzy sets
[∫̂ x

a
F̃

]

α

=
[∫ x

a
f−

α ,
∫ x

a
f+

α

]

for all α ∈ [0, 1].
In words, the

∫̂
-integral coincides with the integrals for fuzzy-set-valued functions at each x.

Proof. It is not hard to prove the compacity of Aα (Definition 2.5.6) in L1([a, b];R). This is
assured by the arguments that were used in proving compacity in AC([a, b];R). Following the
reasoning of the previous results one demonstrate that Aα are the α-cuts of a fuzzy subset in
L1([a, b];R).

We observe that
∫ x

a fλ
β is well-defined and that

∫ x

a
f−

α ≤
∫ x

a
fλ

β and
∫ x

a
fλ

β ≤
∫ x

a
f+

α

for all λ ∈ [0, 1] and 0 ≤ α ≤ β ≤ 1. Hence we obtain, for all α ∈ [0, 1],

[
∫̂
F̃ ]α =

⋃

β≥α

⋃

λ∈[0,1]

∫ x

a
fλ

β

= [
∫

f−
α ,
∫

f+
α ]

where the last identity holds due to the continuity of
∫ x

a fλ
β (x) on λ, β and x. Thus, we have

proved that the attainable sets of the
∫̂
-integral of F̃ have the same expression of the integrals for

fuzzy-set-valued functions at each x.
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3.4 Summary

This chapter reviewed fuzzy calculus for fuzzy-set-valued functions and presented the new fuzzy
calculus using fuzzy bunches of functions. The concepts and results here displayed are essential
for the development of the various approaches of FDEs, to be presented in the next chapter.



Chapter 4

Fuzzy Differential Equations

We review some approaches of FDEs in this chapter and propose and explore a new theory of FDEs
using the D̂-derivative introduced in Subsection 3.2.2. Two theorems of existence of solutions to
FIVPs are proved and we compare the theory with other approaches, exemplifying with biological
models.

4.1 Approaches of FIVPs

Fuzzy differential equations have been extensively studied after Kandel and Byatt first used this
expression in 1980. However, the treated problems were not FDEs, strictly, since they did not
explicitly use fuzzy sets. Only after the definition of Hukuhara derivative in 1983 did Kaleva (1987)
developed a theory for FDEs proposing an existence and uniqueness theorem for solutions to fuzzy
initial value problems. Simultaneously, Seikkala built up a similar theory for fuzzy-number-valued
functions. The proposal of this chapter is to solve

{
X ′(t) = F (t, X(t))
X(0) = X0

(4.1)

where F is a function that indicates the direction of the state variable X at a given instant t.
The function F is real-valued in the crisp initial value problem (IVP) as well as the initial

condition and the solution. This can be interpretated as a crisp alternative (unique, given some
conditions) for the direction to the state variable to follow, at each instant t.

The fuzzy function F indicates a fuzzy direction to be followed in the fuzzy initial value problem
(FIVP). In this case, there are two interpretations. One can fill this trajectory with different crisp
solutions, attaching a membership degree to each of them, or one can fill this trajectory with a
function that assigns to each instant t a fuzzy subset (that is, the state variable is fuzzy). In
the first approach the solution is a fuzzy bunch of functions while in the second one obtains a
fuzzy-set-valued function.

Kaleva and Seikkala’s theory of FDEs were made for fuzzy-set-valued functions. The existence
theorem for these fuzzy-valued functions is found in Section 4.3 is for this kind of functions. The
theory for FDEs using fuzzy bunches is what is original research and is presented in Section 4.6.
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Consider the FIVP
{

X ′(t) = F (t, X(t))
X(0) = X0

, (4.2)

where F : [0, T ] × FC(Rn) → FC(Rn) and X0 ∈ FC(Rn). A solution, if the derivative is Hukuhara
derivative, is a continuous fuzzy-set-valued function X : [0, T ] → FC(Rn) that satisfies X ′(t) =
F (t, X(t)), for all t ∈ [0, T ], and the initial condition X(0) = X0. In case the derivative is the
strongly generalized derivative, the FIVP is defined only for case n = 1 and the solution is a
continuous fuzzy-number-valued function X : [0, T ] → FC(R) that satisfies X ′(t) = F (t, X(t)), for
all t ∈ [0, T ], and the initial condition X(0) = X0. If the derivative is D̂-derivative, the solution
is a fuzzy bunch of functions X(·) ∈ FK(AC([0, T ];Rn)) that satisfies D̂X(t) = F (t, X(t)) a.e. in
[0, T ] and the initial condition. That is, given a solution X(·), its derivative D̂X(·) calculated in
t (attainable set in t) must be equal to F (t, X(t)), a.e. in [0, T ]. Moreover, the attainable set at
t = 0, X(0) must satisfy the initial condition.

Fuzzy Differential Inclusions
Fuzzy differential inclusions are defined levelwise

x′(t) ∈ [F (t, x(t))]α
x(0) ∈ [X0]α

(4.3)

for all α ∈ [0, 1], where [F ]α : [0, T ] × Rn → Kn
C and [X0]α ∈ Kn

C . The solution to 4.3 is a fuzzy
bunch of functions X(·) ∈ FK(AC([0, T ];Rn)) whose elements (functions) of its α-cuts satisfies the
differential inclusions (4.3) a.e. in [0, T ].

Note that there is no fuzzy derivative. We use the classical derivative for real-valued functions
and there is no equality between fuzzy sets, hence we do not have a fuzzy differential equation).

Zadeh’s Extension of the Classical Solution
Consider the classical IVP

{
x′(t) = f(t, x(t), w)
x(0) = x0

, (4.4)

where f : [0, T ] × Rn+p → Rn, with w a parameter in Rp, is continuous and x0 ∈ Rn. If the
parameter w and/or the initial condition x0 are now fuzzy subsets (W and X0), the solution
via Zadeh’s extension of the classical solution is a fuzzy-set-valued function X : [0, T ] → F(Rn)
obtained from use of Zadeh’s extension on the solution of (4.4) at each t ∈ [0, T ], x(t, x0, w), that
depends on x0 and w. In other words, X is a solution to the fuzzy initial value problem if

X(t) = x̂(t, X0, W ).

As in the previous case, since there is no fuzzy derivative, it is not a fuzzy differential equation.
Note that in each case, the right-hand-side term of the differential equation belongs to a different

space or is defined over a different space. However, to compare all the approaches we need to analyse
equivalent FIVPs, in some sense.
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First, given the function of the right-hand-side term of the differential equation of one approach,
we want to be able to find the corresponding function for the other approaches. Second, we want
to compare the five different kinds of FIVPs when they are modeling the same phenomenon. For
instance, consider λ ∈ R, x ∈ R and

f(x) = λx.

It is intuitive to compare IVP (4.4) with this f to FIVP (4.2) having

F (X) = λX,

X ∈ F(R), since the idea of both is that the rate of change of the variable x (or X) is proportional
do the variable itself. In this case, the FDI (4.3) is also well defined when H(x) = λx.

However, when F is given, it is not always possible to find a corresponding expression for f ,
as, for example, in the case [F (X)]α = [x−

0 , x+
α ] for [X]α = [x−

α , x+
α ]. Hence, a good alternative is

to consider Zadeh’s extension of f . But, in this case, given f , we cannot always find explicitly
the expression of F . If f = x(1 − x), Zadeh’s extension of f is not F (X) = X(1 − X), unless the
multiplication here carries some kind of interactivity (see Subsections 2.3.2 and 2.3.3). But the
Hukuhara and strongly generalized differentiability approaches use other arithmetic to define the
derivatives, hence the use of different arithmetics in each side of the equation could be criticized
for not being the same.

In conclusion, we will first take into consideration the interpretation of the FIVP. We will
compare the different approaches trying to model the same biological phenomenon.

The solution may belong to different spaces as well. To compare the solutions to the different
approaches we do the same as when comparing the derivatives in Section 3.3. That is, in case the
solution is a fuzzy bunch of functions (via D̂-derivative and FDIs), we compare the approaches to
the fuzzy attainable sets defined in Section 2.5.

This comparison will be carried out for the exponential decay and the logistic models. The
classical models are the following IVPs

x′(t) = −λx(t), x(0) = x0 (exponential decay) (4.5)

and
x′(t) = ax(t)(k − x(t)), x(0) = x0 (logistic equation) (4.6)

with λ, a, k, x0 > 0.
We are interested in these models for mathematical and biological reasons. Mathematically,

these models are interesting for their equilibrium points: x = 0 in (4.5) and x = 0 and x = k in
(4.6). Moreover, x = 0 in (4.5) and x = k in (4.6) are asymptotically stable, which means that,
given an initial condition in a certain neighborhood, the solution will tend to these equilibrium
points. Indeed, any positive initial condition will lead to this behaviour. The biological meaning of
this is that a population that is represented by equation (4.5) tends to disappear. This is consistent
with the model, since the mathematical equation means that the rate of change is negative and
proportional to the existing population. A population whose which is modeled by (4.6) will tend
to the constant k, called carrying capacity (the amount of the population that the environment
can support), since if x < k the rate of change is positive and if x > k it is negative.



4.2. HUKUHARA DERIVATIVE 63

It is interesting to examine the fuzzy case of these two models because the first one has Zadeh’s
extension given by −λX, as has already been mentioned. Hence the formula is similar to the
classical case. And, as it has been discussed earlier, Zadeh’s extension is a good criteria to decide
which FIVPs to compare. The expression of Zadeh’s extension of the logistic model, on the other
hand, does not have the same representation with the standard arithmetic for fuzzy numbers. But
this does not mean that the fuzzy logistic model cannot be written as X ′(t) = AX(t)(K − X(t)),
where all the involved terms are fuzzy. The examples involving the logistic case will use parameters
based on the research of Gause (1969), presented as an example by Edelstein-Keshet (1988). Gause
carried out an experiment of cultivation of the yeast Scrhizosaccharomyces kephir and found out
that, begining with the amount of x0 = 0.45 the population of this yeast clearly satisfied the
logistic equation with parameters k = 5.8 and a = 0.01 for a total time of 160 hours.

4.2 Hukuhara Derivative

Kaleva (1987) stated conditions for existence of solution to differential equations in which the
involved functions were fuzzy-set-valued functions and the derivative was also fuzzy (namely, the
Hukuhara derivative). Seikkala (1987) independently reached similar results using an equivalent
fuzzy derivative. Both proposed a theorem for existence and uniqueness of solutions to FIVPs,
that is, a Picard-Lindelöf type theorem. Kaleva (1990) also proved that the Peano Theorem does
not hold because the metric space (FC(Rn), d∞) generally is not locally compact. Later on, Nieto
succeeded in proving a Peano type Theorem, adding a condition (boundedness) to its classical
version. By solution we mean a fuzzy-set-valued function X : [0, T ] → FC(Rn) that satisfies the
differential equation for each t ∈ [0, T ] and the initial condition in (1.2).

We are interested in studying

{
X ′

H(t) = F (t, X(t))
X(0) = X0

, (4.7)

where F : [0, T ] × FC(R) → FC(R) is continuous and X0 ∈ FC(Rn). First, we need the following
lemma.

Lemma 4.2.1 (Kaleva, 1987) A fuzzy-set-valued function x : [0, T ] → FC(Rn) is a solution to
FIVP (4.7) if and only if it is continuous and satisfies

X(t) = X0 +
∫ t

0
F (s, X(s))ds

for all t ∈ [0, T ].

Kaleva remarked that it is not possible to extend Lemma 4.2.1 for t < 0, due to the property
of nondecreasing diameter of the α-levels.

Theorem 4.2.2 (Nieto, 1999) Consider F : [0, T ] × FC(Rn) → FC(Rn) continuous and bounded.
Then there is at least one solution to FIVP (1.2) on [0, T ].



64 CHAPTER 4. FUZZY DIFFERENTIAL EQUATIONS

The following result is close to Picard-Lindelöf type theorem, since it establishes continuity
and the Lipschitz condition as sufficient for existence and uniqueness of soltution.

Theorem 4.2.3 (Kaleva, 1987) Consider a continuous function F : [0, T ] × FC(Rn) → FC(Rn)
satisfying the Lipschitz conditon in the second argument, that is, there exists k > 0 such that

d∞(F (t, X), F (t, Y )) ≤ kd∞(X, Y )

for all t ∈ [0, T ], X, Y ∈ FC(Rn). Then there is a unique solution to FIVP (1.2) on [0, T ].

A characterization theorem, stated in Bede (2008) simplifies the calculations. The result assures
that it suffices to calculate a system of crisp ODEs.

Theorem 4.2.4 (Bede, 2008, 2013) Consider a continuous function F : R0 → FC(R), R0 =
[0, T ] × B(X0, q), q > 0, X0 ∈ FC(R), such that

[F (t, x)]α = [f−
α (t, x−

α , x+
α ), f+

α (t, x−
α , x+

α )], α ∈ [0, 1]

with f−
α (t, x−

α , x+
α ) and f+

α (t, x−
α , x+

α ) equicontinuous and uniformly Lipschitz in the second and third
arguments, that is, there exists L > 0 such that

∣∣∣f−
α (t, x−

α , x+
α ) − f+

α (t, x−
α , x+

α )
∣∣∣ ≤ L(|x−

α − y−
α )| + |x+

α − y+
α )|),

for any (t, x), (t, y) ∈ R0 and for any α ∈ [0, 1]. Then the FIVP (1.2) has a unique solution in an
interval [0, k], for some k > 0, characterized levelwise by the system of crisp ODEs





(x−
α )′(t) = f−

α (t, x−
α (t), x+

α (t))
(x+

α )′(t) = f+
α (t, x−

α (t), x+
α (t))

x−
α (0) = (x−

0 )α

x+
α (0) = (x+

0 )α

, (4.8)

α ∈ [0, 1].

Some examples with biological interpretation will illustrate the use of Hukuhara derivative in
FIVPs.

Example 4.2.5 Consider the decay model

{
X ′

H(t) = −λX(t)
X(0) = X0

, (4.9)

where λ ∈ R+ and X0 ∈ FC(R), supp(X0) ⊂ R+. From now on we denote [X0]α = [(x0)
−
α , (x0)

+
α ].

The crisp case associated to System (4.9) is frequently used to model population growth (or
decay, depending on the sign of λ) or nuclear decay. It is a simple model, yet a reasonable approx-
imation for a short period of observation of the phenomenon. The interpretation of FIVP (4.9) is
the decay model with non-fuzzy coefficient and fuzzy initial condition. One explanation is that X0
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can be a label such as “high” or “small” and each real number in R has a membership degree to
this subset. Another interpretation is that there is a partial knowledge of the initial condition, and
the most likely values have membership degrees close to one.

Levelwise, solving (4.9) is equivalent to solving
{

[X ′
H(t)]α = [−λX(t)]α

[X(0)]α = [X0]α

for all α ∈ [0, 1].
Hence,

{
[x−

α (t), x+
α (t)] = [−λx+

α (t), −λx−
α (t)]

[x−
α (0), x+

α (0)] = [x−
0α, x+

0α]
,

that is,





(x−
α (t))′ = −λx+

α (t)
(x+

α (t))′ = −λx−
α (t)

x−
α (0) = x−

0α

x+
α (0) = x+

0α

. (4.10)

The solution one obtains is:
{

x−
α (t) = c(1)

α eλt + c(2)
α e−λt

x+
α (t) = −c(1)

α eλt + c(2)
α e−λt

with

c−
α =

x−
0α − x+

0α

2
and c+

α =
x−

0α + x+
0α

2
.

for all α ∈ [0, 1].
Since it models population or nuclear particles, there is no meaning in the solution when it

assumes negative values. This is why it is omitted in Figures 4.2 and 4.3. The result of nonzero
membership degree to negative values is a defect resulting of the Hukuhara derivative. Hence,
from t ≈ 40 on, the solution has no biological meaning anymore, since in the calculations negative
values for the state variable are used. Furthermore, in a population that is decreasing proportionaly
to its quantity it is expected that it tends towards zero, no matter its initial value, uncertainty
or its membership to a determined subset (“large”, “medium” or “small”, for instance). It is
expected, actually, that the fuzziness goes to zero. Hence the increasing fuzziness (or diameter) is
not considered a good modeling of the decay phenomenon.

Example 4.2.6 Consider the coefficient of X also fuzzy in the decay model:
{

X ′
H(t) = −ΛX(t)

X(0) = X0
, (4.11)

where Λ ∈ FC(R), supp(Λ) ⊂ R+, X0 ∈ FC(R) and supp(X0) ⊂ R+. From now on we always
consider [Λ]α = [λ−

α , λ+
α ].
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Figure 4.2: The 0-level (continuous line) and the core (dashed-dotted line) of solution to the decay
model via Hukuhara derivative in Example 4.2.5. Initial condition (0.35; 0.45; 0.55) and parameter
λ = 0.02.

Figure 4.3: Attainable fuzzy sets of solution to the decay model via Hukuhara derivative in Example
4.2.5. Initial condition (0.35; 0.45; 0.55) and parameter λ = 0.02.



4.2. HUKUHARA DERIVATIVE 67

Figure 4.4: The 0-level (continuous line) and the core (dashed-dotted line) of solution to the decay
model via Hukuhara derivative in Example 4.2.6. Initial condition (0.35; 0.45; 0.55) and parameter
Λ = (0.016; 0.020; 0.024).

The biological meaning of this model is the same as the previous one. The sole difference is in
the parameter Λ, which is fuzzy in the present example.

Since [−ΛX(t)]α = [−λ+
α x+

α (t), −λ−
α x−

α (t)], the FDE in levels is equivalent to the following
system of differential equations





(x−
α (t))′ = −λ+

α x+
α (t)

(x+
α (t))′ = −λ−

α x−
α (t)

x−
α (0) = x−

0α

x+
α (0) = x+

0α

(4.12)

The solution is




x−
α (t) = c(1)

α e
√

λ−

α λ+
α t + c(2)

α e−
√

λ−

α λ+
α t

x+
α (t) = −

√
λ−

α

λ+
α

c(1)
α e

√
λ−

α λ+
α t +

√
λ−

α

λ+
α

c(2)
α e−

√
λ−

α λ+
α t

with

c(1)
α =

x−
0α −

√
λ+

α /λ−
α x+

0α

2
and c(2)

α =
x−

0α +
√

λ+
α /λ−

α x+
0α

2
.

for all α ∈ [0, 1].
As in the previous case, no matter the fuzziness of the initial condition or the parameter, it is

not expected to increase the diameter of the solution, though it always happens when employing the
Hukuhara derivative.
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Figure 4.5: Attainable fuzzy sets of solution to the decay model via Hukuhara derivative in Example
4.2.6. Initial condition (0.35; 0.45; 0.55) and parameter Λ = (0.016; 0.020; 0.024).

Example 4.2.7 Another well known biological model is the logistic growth
{

X ′
H(t) = aX(t)(k − X(t))

X(0) = X0
. (4.13)

Here we assume fuzziness only in the initial condition, that is, X0 ∈ FC(R) and supp(X0) ⊂ R+.
The other parameters are non-fuzzy, a ∈ R+ and k ∈ R+.

The model takes into account that the environment has a limited number of individuals it can
support, in a given population. This is characterized by the parameter k, called carrying capacity,
here considered constant. Parameter a has to do with the reproduction. The term akX(t) corre-
sponds to the growth rate, controled by the term −aX(t)2, which corresponds to intraspecific compe-
tition. If the population is modeled by a crisp variable, note that if X(t) ≈ 0, X ′

H(t) ≈ akX(t), that
is, there is no obstruction for the population to grow. The change rate is positive while X(t) < k,
but it tends towards zero while X(t) tends to k. For X(t) > k, that is, above the carrying capacity,
the change of rate is negative.

The Hukuhra difference is not defined for k ⊖H X(t) if X(t) is fuzzy. Therefore we use the
difference based on SIA (or gH-difference, which gives us the same result for this case). Note that
0 < u < v implies

min{au(k − u), au(k − v), av(k − u), av(k − v)} = au(k − v)

and
max{au(k − u), au(k − v), av(k − u), av(k − v)} = av(k − u).

Hence
[aX(t)(k − X(t))]α = [ax−

α (t)(k − x+
α (t)), ax+

α (t)(k − x−
α (t))]
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Figure 4.6: The 0-level (continuous line) and the core (dashed-dotted line) of solution to the logistic
model via Hukuhara derivative in Example 4.2.7. Initial condition (0.35; 0.45; 0.55) below carrying
support k = 5.8 and growth parameter a = 0.01.

where we used the fact that 0 < x−
α (t) < x+

α (t).

We solve





(x−
α (t))′ = ax−

α (t)(k − x+
α (t))

(x+
α (t))′ = ax+

α (t)(k − x−
α (t))

x−
α (0) = x−

0α

x+
α (0) = x+

0α

(4.14)

numerically, by applying first-order Euler method. That is, we approximate x−
α (t), x+

α (t), x−
α (t+h)

and x+
α (t + h) by u(i)

α , v(i)
α , u(i+1)

α and v(i+1)
α such that

u(i+1)
α = u(i)

α + h · a u(i)
α (k − v(i)

α )

and

v(i+1)
α = v(i)

α + h · a v(i)
α (k − u(i)

α ),

where i = 1, 2, ..., n, n is the number of divisions of [0, T ] and h = T/(n − 1) is the size of each
subinterval of [0, T ].

The results are illustrated in Figures 4.6, 4.7, 4.8 and 4.9. As expected, the solution has
increasing diameter. Since the core of the initial condition is just one point, the core of the
solution is the same as the solution of the crisp case, with initial condition x−

01 = x+
01. But as in

the decay model, it is expected, no matter the initial condition, from“very small” to “very large”,
that the population goes to a determined value (k, in this case) as t increases.
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Figure 4.7: Attainable fuzzy sets of solution to the decay model via Hukuhara derivative in Example
4.2.7. Initial condition (0.35; 0.45; 0.55) below carrying support k = 5.8 and growth parameter
a = 0.01.

Figure 4.8: The 0-level (continuous line) and the core (dashed-dotted line) of solution to the logistic
model via Hukuhara derivative in Example 4.2.7. Initial condition (8.5; 9.0; 9.5) above carrying
support k = 5.8 and growth parameter a = 0.01.
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Figure 4.9: Attainable fuzzy sets of solution to the decay model via Hukuhara derivative in Example
4.2.7. Initial condition (8.5; 9.0; 9.5) above carrying support k = 5.8 and growth parameter a =
0.01.

We now try another approach. As mentioned at the beginning of this Section, other arithmetics
can be used. Though interactivity is not used in the definition of the Hukuhara derivative, let us
see what happens if we admit the CIA to calculate the differential field aX(k − X):

[aX(k − X)]α = [ min
x∈[X]α

{ax(k − x)}, max
x∈[X]α

{ax(k − x)}].

We use again the Euler method, calculating at each step the minimum and the maximum in the
last equation and solving

[(x−
α )′(t), (x+

α )′(t)] =

[
min

x∈[X(t)]α
{ax(t)(k − x(t))}, max

x∈[X(t)]α
{ax(t)(k − x(t))}

]
.

Since f(x) = ax(k − x) is a parabola with maximum value at x = k/2, it is not hard to to
determine the minimum and the maximum at each step:

• If x−
α (t) < k/2 < x+

α (t), the maximum of f(x) is attained by x = k/2. And the minimum is
attained at min{ax−

α (k − x−
α ), ax+

α (k − x+
α )}.

• If x+
α (t) < k/2, f(x) is increasing with respect to x ∈ [x−

α , x+
α ], hence the minimum is f(x−

α )
and the maximum is f(x+

α ).

• If x+
α (t) < k/2, f(x) is decreasing with respect to x ∈ [x−

α , x+
α ], hence the minimum is f(x+

α )
and the maximum is f(x−

α ).
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Figure 4.10: The 0-level (continuous line) and the core (dashed-dotted line) of solution to the logis-
tic model with CIA and Hukuhara derivative in Example 4.2.7. Initial condition (0.35; 0.45; 0.55)
below carrying support k = 5.8 and growth parameter a = 0.01.

The results are displayed in Figure 4.10. It is different from the result employing noninteractive
arithmetic, especially when the 0-level start to assume negative values. It is mathematically inter-
esting, though biologically it is meaningless from t ≈ 125, since negative values are used to calculate
the upper 0-level set function and negative values do not make sense as number of individuals.

Nevertheless, as mentioned before, it seems incoherent to use different arithmetics to define the
derivative and to operate with the right-hand-side function. One would expect thence to define the
derivative via CIA.

We remark that the examples we solved are in accordance with the hypotheses of Theorem
4.2.4, that is, each α-cut of the function F can be written as function of x−

α and x+
α . However, this

is not always true and solving the system may become more complicated if we drop this condition.
The reader can refer to Chalco-Cano and Román-Flores (2009) for further information about this
subject. To briefly illustrate this case, consider the next example.

Example 4.2.8 Consider FIVP (4.7) with F such that

[F (t, X(t))]α = [x−
0 (t), x+

α (t)]

which is equivalent to

{
(x−

α )′(t) = x−
0 (t), x−

α (0) = (x−
0 )α

(x+
α )′(t) = x+

α (t), x+
α (0) = (x+

0 )α
.
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The second equation can be solved directly: x+
α (t) = (x+

0 )αet. The first one needs two steps and
we begin with α = 0:

(x−
0 )′(t) = x−

0 (t), x−
0 (0) = (x−

0 )0

which leads to x−
0 (t) = (x−

0 )0e
t and

(x−
α )′(t) = (x−

0 )0e
t, x−

α (0) = (x−
0 )α

The result is
{

x−
α (t) = (x−

0 )0e
t + (x−

0 )α − (x−
0 )0

x+
α (t) = (x+

0 )αet
.

Example 4.2.8 illustrated the fact that the function F in FIVP (4.7) may not be written directly
as function of x−

α and x+
α (in this example, F is function of x−

0 and x+
α ). The process of solving

may become more difficult but since F satisfies the existence Theorem 4.2.3, there is a solution
(and we managed to find it).

4.3 Strongly Generalized Derivative

As stated before, the strongly generalized derivative (see Definition 3.1.13) “fixes” the defect of
nondecreasing length of the support of a H-differentiable fuzzy function. In this Section we present
the existence and uniqueness of two solution theorem, first stated by Bede and Gal (2005). As
in the Hukuhara case, Bede and Gal prove the equivalence of the solution to an FIVP with
integral equations, in such manner that, provided some conditions, there is always a solution with
increasing diameter (strongly generalized differentiability of type (i)) and other with decreasing
diameter (strongly generalized differentiability of type (ii)). The possibility of change of type of
differentiability (i)-(iv) characterizes interesting phenomena called switch points.

We restate the FIVP we will study:
{

X ′
G(t) = F (t, X(t))

X(0) = X0

, (4.15)

where F : R × FC(R) → FC(R) is continuous and X0 ∈ FC(R). As in Hukuhara derivative case,
there is a result connecting FDEs with fuzzy integral equations.

Theorem 4.3.1 (Bede and Gal, 2005) The FIVP (4.15) is equivalent to the integral equation

X(t) = X0 +
∫ t

0
F (s, X(s))ds,

if the derivative considered is type (i), or to the integral equation

X0 = X(t) + (−1)
∫ t

0
F (s, X(s))ds,

if the derivative considered is type (ii), on some interval [t1, t2] ⊂ [0, T ].
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Based on the next lemma, Bede (2013) proves the existence and uniqueness of two solutions
(Theorem 4.3.3).

Lemma 4.3.2 (Bede, 2013) Let X ∈ FC(R) be such that [X]α = [x−
α , x+

α ], α ∈ [0, 1], x−
α and x+

α

differentiable, with x− strictly increasing on [0, 1], such that there exist the constants c1 > 0, c2 < 0
satisfying (x−

α )′ ≥ c1 and (x+
α )′ ≤ c2 for all α ∈ [0, 1].

Let F : [a, b] → FC(R) be continuous with respect to t, having the level sets [F (t)]α =

[f−
α (t), f+

α (t)] with bounded partial derivatives ∂f−

α (t)
∂α

and ∂f+
α (t)
∂α

, for all t ∈ [a, b].
If one of the following two cases occur

a) x−
1 < x+

1 or

b) x−
1 = x+

1 and the core [F (s)]1 consists of exactly one element for any s ∈ [a, b],

then there exists h > a such that the H-difference

X ⊖

∫ t

a
F (s)ds

exists for any t ∈ [a, h].

Theorem 4.3.3 (Bede, 2013) Let R0 = [0, T ]×B(X0, q), q > 0, X0 ∈ FC(R) and F : R0 → FC(R)
be continuous such that the following assumptions hold:

(i) There exists a constant L > 0 such that

d∞(F (t, X), F (t, Y )) ≤ Ld∞(X, Y )

for all (t, X), (t, Y ) ∈ R0.
(ii) Let [F (t, X)]α = [f−

α (t, X), f+
α (t, X)] be the level set representation of F , then f−

α , f+
α :

R0 → R have bounded partial derivatives with respect to α ∈ [0, 1], the bounds being independent
of (t, X) ∈ R0 and α ∈ [0, 1].

(iii) The functions x−
0 and x+

0 are differentiable (as functions of α), existing c1 > 0 with(
x−

0

)′

α
≥ c1, and c2 < 0 with

(
x+

0

)′

α
≤ c2, for all α ∈ [0, 1], and we have the following possibilities

a) (x0)
−
1 < (x0)

+
1

or
b) if (x0)

−
1 = (x0)

+
1 then the core [F (t, X)]1 consists in exactly one element for any (t, X) ∈ R0,

whenever [X]1 consists in exactly one element.
Then the FIVP (1.2) has exactly two solutions on some interval [0, k], k > 0.

The solution of FIVPs using strongly generalized differentiability, as in Hukuhara case, can
also be obtained by solving systems of crisp ODEs to find the level set functions of the solution.

Theorem 4.3.4 (Bede, 2013) Let R0 = [0, T ]×B(X0, q), q > 0, X0 ∈ FC(R) and F : R0 → FC(R)
be such that

[F (t, X)]α = [f−
α (t, x−

α , x+
α ), f+

α (t, x−
α , x+

α )], ∀α ∈ [0, 1]
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and the following assumptions hold:
(i) f±

α (t, x−
α , x+

α ) are equicontinuous, uniformly Lipschitz in their second and third arguments,
that is, there exists a constant L > 0 such that

|f±
α (t, x−

α , x+
α ) − f±

α (t, y−
α , y+

α )| ≤ L(|x−
α − y−

α | + |x+
α − y+

α |),

∀(t, X), (t, Y ) ∈ R0, α ∈ [0, 1].
(ii) f−

α , f+
α : R0 → R have bounded partial derivatives with respect to α ∈ [0, 1], the bounds

being independent of (t, X) ∈ R0 and α ∈ [0, 1].

(iii) The functions x−
0 and x+

0 are differentiable, existing c1 > 0 with
(
x−

0

)′

α
≥ c1, and c2 < 0

with
(
x+

0

)′

α
≤ c2, for all α ∈ [0, 1], and we have the following possibilities

a) (x0)
−
1 < (x0)

+
1

or
b) if (x0)

−
1 = (x0)

+
1 then the core [F (t, X)]1 consists in exactly one element for any (t, X) ∈ R0,

whenever [X]1 consists in exactly one element.
Then the FIVP (1.2) is equivalent on some interval [t0, t0 + k] with the union of the following

two ODEs: 



(x−
α )

′
(t) = f−

α (t, x−
α (t), x+

α (t))

(x+
α )

′
(t) = f+

α (t, x−
α (t), x+

α (t))

x−
α (t0) = (x0)

−
α , x+

α (t0) = (x0)
+
α

, α ∈ [0, 1] (4.16)





(x−
α )

′
(t) = f+

α (t, x−
α (t), x+

α (t))

(x+
α )

′
(t) = f−

α (t, x−
α (t), x+

α (t))

x−
α (t0) = (x0)

−
α , x+

α (t0) = (x0)
+
α

, α ∈ [0, 1]. (4.17)

Example 4.3.5 Consider the decay model
{

X ′
G(t) = −λX(t)

X(0) = X0

, (4.18)

where λ ∈ R+, X0 ∈ FC(R) and supp(X0) ⊂ R+.
The (i)-differentiable solution is Hukuhara differentiable solution, the same as in Example 4.2.5.

The other solution is the one obtained solving




(x−
α (t))′ = −λx−

α (t)

(x+
α (t))′ = −λx+

α (t)

x−
α (0) = x−

0α

x+
α (0) = x+

0α

. (4.19)

The solution is
{

x−
α (t) = x−

0αe−λt

x+
α (t) = x+

0αe−λt

for all α ∈ [0, 1].
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Figure 4.11: Solutions to the decay model via strongly generalized derivative in Example 4.3.5: the
0-level (continuous line) of the (i)-differentiable solution (in the strongly generalized sense), the
0-level (dashed line) of the (ii)-differentiable solution and the core (dashed-dotted line) of both.
Initial condition (0.35; 0.45; 0.55) and parameter λ = 0.02.

Figure 4.12: Attainable fuzzy sets of the (ii)-differentiable solution to the decay model via strongly
generalized derivative in Example 4.3.5. Initial condition (0.35; 0.45; 0.55) and parameter λ = 0.02.
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The (ii)-differentiable solution is a good alternative to the Hukuhara differentiable solution,
since it “fixes” the deffect of increasing diameter of the solution of the decay model. It is biolog-
ically more meaningful in Example 4.3.5 since it is expected that the uncertainty vanishes as the
population gets close to zero.

Example 4.3.6 As in Example 4.2.6, consider the coefficient of X also fuzzy in the decay model:
{

X ′
G(t) = −ΛX(t)

X(0) = X0

, (4.20)

where Λ ∈ FC(R), supp(Λ) ⊂ R+, X0 ∈ FC(R) and supp(X0) ⊂ R+.
The (i)-differentiable solution is Hukuhara differentiable solution, the same as in Example 4.2.6.

The other solution is obtained by solving




(x−
α (t))′ = −λ−

α x−
α (t)

(x+
α (t))′ = −λ+

α x+
α (t)

x−
α (0) = x−

0α

x+
α (0) = x+

0α

. (4.21)

The solution is




x−
α (t) = x−

0αe−λ−

α t

x+
α (t) = x+

0αe−λ+
α t

. (4.22)

This solution is defined while x−
α (t) < x+

α (t), that is, for

t < Tm =
1

λ+
α − λ−

α

ln

(
x+

0α

x−
0α

)
.

The solution also has to satisfy x−
α (t) ≤ x−

β (t) and x+
α (t) ≥ x+

β (t) for 0 ≤ α ≤ β ≤ 1. For the same
values as Example 4.2.6, that is, X0 = (0.35; 0.45; 0.55) and Λ = (0.016; 0.020; 0.024), numerically
we find Tm ≈ 48. The solution is displayed in Figures 4.13 and 4.14. It is clear that the solution
does not exist from Tm ≈ 44 on.

The condition x−
α (t) < x+

α (t) restricts the domain for which the solution is defined. This is
a particular problem of the solution with decreasing diameter, that is, the Hukuhara differentiable
solution does not degenerates and hence its domain is bigger. On the other hand, since this par-
ticular problem is an application in population modeling, it does not make sense (biologically) that
x−

α (t) < 0, what limits the Hukuhara solution as well.

Note also that if the initial condition is crisp with x−
α (t) = x+

α (t), we have ln
(

x+
0α

x−

0α

)
= 0 and

hence there is no domain for the solution. This is in accordance with the existence Theorem 4.3.3.

Example 4.3.7 The FIVP
{

X ′(t) = aX(t)(k − X(t))

X(0) = X0

. (4.23)
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Figure 4.13: Solutions to the decay model via strongly generalized derivative in Example 4.3.6: the
0-level (continuous line) of the (i)-differentiable solution (in the strongly generalized sense), the
0-level (dashed line) of the (ii)-differentiable solution, defined for t < Tm, Tm ≈ 48, and the core
(dashed-dotted line) of both (for the (ii)-differentiable solution, it is defined for t < Tm). Initial
condition (0.35; 0.45; 0.55) and parameter Λ = (0.016; 0.020; 0.024).

Figure 4.14: Attainable fuzzy sets of the (ii)-differentiable solution to the decay model via strongly
generalized derivative in Example 4.3.6, which is defined for t < Tm, Tm ≈ 48. Initial condition
(0.35; 0.45; 0.55) and parameter Λ = (0.016; 0.020; 0.024).
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Figure 4.15: Solutions to the logistic model via strongly generalized derivative in Example 4.3.7:
the 0-level (continuous line) of the (i)-differentiable solution (in the strongly generalized sense), the
0-level (dashed line) of the (ii)-differentiable solution and the core (dashed-dotted line) of both.
Initial condition (0.35; 0.45; 0.55) below carrying support k = 5.8 and growth parameter a = 0.01.

where X0 ∈ FC(R) and supp(X0) ⊂ R+, a ∈ R+ and k ∈ R+ was evaluated numerically in Example
4.2.7 using the Hukuhara derivative (which is equal to (i)-differentiability).

The (ii)-differentiable solution is obtained considering





(x−
α (t))′ = ax+

α (t)(k − x−
α (t))

(x+
α (t))′ = ax−

α (t)(k − x+
α (t))

x−
α (0) = x−

0α

x+
α (0) = x+

0α

. (4.24)

In order to solve it numerically, we approximate x−
α (t), x+

α (t), x−
α (t + h) and x+

α (t + h) by u(i)
α ,

v(i)
α , u(i+1)

α and v(i+1)
α such that

u(i+1)
α = u(i)

α + ha v(i)
α (k − u(i)

α )

and
v(i+1)

α = v(i)
α + ha u(i)

α (k − v(i)
α ),

where i = 1, 2, ..., n, n is the number of divisions of [0, T ] and h = T/(n − 1) is the size of each
subinterval of [0, T ].

The reader may observe in Figure 4.15 of the previous example that the diameter decreases
and the function tends to k. As it was earlier observed, no matter the positive initial condition,
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the trajectory of the classical case always tends towards k, and that is what is expected from
Equation (4.23), considering the phenomenon that originated it. Hence it does not matter the
initial fuzziness as well, it is certain that, after a certain time, the state varible will be very close
to the carrying capacity. With this point of view the (ii)-differentiable solution is more appropriate.

Example 4.3.8 (Bede and Gal, 2010; Bede, 2013) This example is similar to the one presented
in Bede and Gal (2010) and in Bede (2013). The authors propose to numerically solve

{
X ′

H(t) = AX(t)(K ⊖gH X(t))

X(0) = x0

, (4.25)

where x0 ∈ R0, K ∈ FC(R), supp(K) ⊂ R+, A ∈ FC(R) and supp(A) ⊂ R+. The values of the
parameters are different from Bede and Gal (2010); Bede (2013). We set [K]α = [k−

α , k+
α ] and

[A]α = [a−
α , a+

α ]
The crisp initial value does not meet condition (iii) of Theorem 4.3.3, that guarantees two

solutions. In fact, only the Hukuhara differentiable (or (i)-differentiable) solution is admitted,
since the initial condition is not fuzzy.

We obtain it by solving





(x−
α )

′
(t) = f−

α (t, x−
α (t), x+

α (t))

(x+
α )

′
(t) = f+

α (t, x−
α (t), x+

α (t))

x−
α (t0) = (x0)

−
α , x+

α (t0) = (x0)
+
α

, α ∈ [0, 1] (4.26)

To obtain the expression of f−
α and f+

α , note that the supports of A and X are positive, in order
to preserve the biological meaning. Hence

[AX]α = [A]α[X]α = [a−
α x−

α , a+
α x+

α ].

Also,
[K ⊖gH X]α = [min{k−

α − x−
α , k+

α − x+
α }, max{k−

α − x−
α , k+

α − x+
α }],

provided K ⊖gH X defines a fuzzy number. As a result,

{
f−

α (t, x−
α , x+

α ) = mins,p∈{−,+}{as
αxs

α(kp
α − xp

α)}
f+

α (t, x−
α , x+

α ) = maxs,p∈{−,+}{as
αxs

α(kp
α − xp

α)} , α ∈ [0, 1]. (4.27)

We solve it using the Euler method, calculating at each step the minimum and maximum needed
to determine f−

α and f+
α . If at some point (x−

α )′(t) = (x+
α )′(t), that is, f−

α = f+
α , then the solution

would be (iv)-differentiable, according to Definition 3.1.13. Hence, considering this point as new
initial condition, from this point on it would have decreasing diameter or increasing diameter,
that is, be (i)-differentiable or (ii)-differentiable. The new problem would meet all conditions of
Theorem 4.3.3 and we would be able to find these two solutions.

This point at which there are two options of solutions, each one with a different differentiability,
is called switch point. With the parameters used in this example, there is no such point. Hence,
there exists only the Huuhara differentiable solution.
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Figure 4.16: The 0-level (continuous line) and the core (dashed-dotted line) of the (i)-differentiable
solution to the logistic model via strongly generalized derivative in Example 4.3.8. Initial condition
0.45 below carrying support K = (5.3; 5.8; 6.3) and growth parameter A = (0.005; 0.010; 0.015).

4.4 Fuzzy Differential Inclusions

The theory of differential inclusions was developed to deal with some kinds of uncertainties not
described by classical dynamical systems. These uncertainties are due, for instance, to partial
knowledge arisen from the impossibility of total understanding of a phenomenon or to the igno-
rance of laws related to the control of the system. Control can be direction, accelaration, fuel,
temperature, weight or other variables that may affect the system.

The mathematical model involves a family of differential equations

x′(t) = f(x(t), u(t)), u(t) ∈ U((x(t)), (4.28)

where x ∈ Rn is the state variable, u ∈ Rm is the control and U is the subset of admissible controls.
Together with x, u defines the velocity of the system.

Defining the set-valued map H : Rn → P(Rn) as H(x) = f(x, U(x)) = {f(x, u)}u∈U(x), the
equation in (4.28) can be rewritten as

x′(t) ∈ H(x(t), u(t)). (4.29)

We have the following problem: finding a solution x, that is, an everywhere differentiable
function that satisfies (4.28) and a given initial condition. This problem is said to be parametrizable,
that is, there exists a single-valued function f of two variables x, u such that, for every x, H(x) =
f(x, U). The initial condition can also assume values in a given set of Rn. Being parametrizable
is an important property, since f continuous implies that, for every fixed u0 ∈ U , x 7→ f(x, u0)
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is a continuous selection. The existence of a continuous selection guarantees at least one solution
to the Problem (4.29), that is, an everywhere differentiable function that satisfies the inclusion,
obtained by solving the differential equation (4.28) (and given an initial condition x(0) = x0).

The differential inclusion can take a more general form:

{
x′(t) ∈ F (t, x(t))
x(0) ∈ Γ

(4.30)

where F : R × Rn → P(Rn) and Γ ⊂ Rn. In this case, which we call the time dependent case,
the selections of F that are measurable with respect to the time variable are considered, and
hence the concept of solution is also more general. It is an absolutely continuous (see Appendix)
function that satisfies the inclusion a.e. in (4.30), obtained by solving the differential equation
x′(t) = f(t, x(t)), x(0) = x0 ∈ Γ, where f is a selection of F .

The absolutely continuous functions are the weakest acceptable solutions, according to Aubin
and Cellina (1984), since they are continuous and, moreover, they are differentiable except on a
set of measure zero. This allows solutions with discontinuities in its derivatives at some points and
at the same time avoids some bizarre cases (such as a function that has derivative zero a.e. but is
strictly monotonic).

A fuzzy differential inclusion is a generalization of a differential inclusion and was first proposed
by Aubin (1990) and Baidosov (1990). It is symbolically written as

{
x′(t) ∈ F (t, x(t))
x(0) ∈ X0

(4.31)

and, as Hüllermeier (1997) proposed, is interpreted levelwise as the family of differential inclusions

{
x′(t) ∈ [F (t, x(t))]α
x(0) ∈ [X0]α

(4.32)

for all α ∈ [0, 1], where [F ]α : [0, T ] × Rn → Kn
C and [X0]α ∈ Kn

C .
A solution to Problem (4.32) is an absolutely continuous function x : [0, T ] → Rn that satisfies

the inclusion a.e. in [0, T ] and x(0) = x0 ∈ [X0]α. The set of all solutions of (4.32) is denoted by
Σα(x0, T ) and the attainable set at t ∈ [0, T ] by Aα(x0, t). Diamond (1999) proved that the sets
Σα(x0, T ) are the α-cuts of the fuzzy solution Σ(x0, T ) of (4.31), a fuzzy subset of ZT (Rn) (see
Appendix), that is, Σ(x0, T ) ∈ F(ZT (Rn)).

In the fuzzy differential inclusions some trajectories may have more “preference” than the others
which is characterized by the value of its membership degree. This discrimination does not exist
in the traditional differential inclusions.

The following assumption assures that all the absolutely continuous solutions to Problem (4.32)
are defined on the same interval of existence.

Let Ω be an open subset of R × Rn such that (0, x0) ∈ Ω and H a mapping from Ω into the
compact and convex subsets of Rn. If there exist b, T, M > 0 such that:

• the set Q = [0, T ] × (x0 + (b + MT )Bn) ⊂ Ω, where Bn is the unit ball of Rn;
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• H maps Q into the ball of radius M

then it is said that the boundedness assumption holds (see Diamond (1999) and Aubin and Cellina
(1984)).

Existence Theorem

Diamond (1999) proved existence of solutions to FDIs for the time-dependent case. It does not
requires continuity of the differential field, but needs upper semicontinuity and boundedness as-
sumption.

Theorem 4.4.1 (Diamond, 1999) Suppose that X0 ∈ FC(Rn), let Ω be an open set in R × Rn

containing {0}×supp(X0) and let F : Ω×FC(Rn) → FC(Rn) be usc. Suppose that the boundedness
assumption holds for all x0 ∈ supp(X0) and

x′ ∈ [F (t, x)]0, x(0) ∈ supp(X0).

The families Σα(X0, T ) of all solutions to (4.32) are compact subsets in ZT (Rn) for all α ∈
[0, 1]. Moreover, these subsets are α-cuts of a fuzzy subset of ZT (Rn), Σ(X0, T ) ∈ FK(ZT (Rn)),
which is the solution to (4.31). The attainable sets Aα(X0, t) of Σα(X0, T ) define the fuzzy subset
A(X0, t) ∈ FK(Rn).

The selection method is considered in order to search for solutions. It consists in finding a
selection f(t, x) of the set-valued function [F (t, x)]α and solving the classical IVP

{
x′(t) = f(t, x(t))
x(0) = x0

, (4.33)

where x0 ∈ [X0]α. If f is continuous and bounded, for instance, there will be a solution to (4.33)
and hence a solution to the differential inclusion.

Example 4.4.2 Let us solve the fuzzy differential inclusion associated to the family of problems

{
x′(t) ∈ [−λx(t)]α
x(0) = x0 ∈ [X0]α

, (4.34)

where λ, x0 ∈ R+, X0 ∈ FC(R) and supp(X0) ⊂ R+. The function [−λx(t)]α is a singleton,
therefore (4.34) is equivalent to

{
x′(t) = −λx(t)
x(0) = x0 ∈ [X0]α

, (4.35)

The set of all solutions is

Σα(X0, T ) = {x : x(t) = x0e
−λt, x0 ∈ [X0]α}.
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Figure 4.17: Attainable sets of the 0-level (continuous line) and the core (dashed-dotted line) of
solution to the decay model via FDIs in Example 4.4.2. Initial condition (0.35; 0.45; 0.55) and
parameter λ = 0.02.

Figure 4.18: Solution to the decay model via FDIs in Example 4.4.2, that is, a fuzzy bunch of
functions whose membership of each function to the solution is represented by the scale of gray:
the darker the color the higher the membership degree. Initial condition (0.35; 0.45; 0.55) and
parameter λ = 0.02.
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These are the α-cuts of the fuzzy bunch of functions that is the solution to the FDI. Its attainable
sets are

A(X0, t) = e−λtX0.

Note that the FDI (4.34) is comparable with the decay model with initial condition in Example
4.3.5, since F (t, X) = λX is Zadeh’s extension of f(t, x) = λx. Indeed, the attainable sets A(X0, t)
are the same as the solution at t via (ii)-differentiability, the one that presents decreasing diameter.
And it is obviously different from the H-differentiable solution, that has increasing diameter.

Example 4.4.3 Now we also consider the parameter as a fuzzy number:
{

x′(t) ∈ [−Λx(t)]α
x(0) = x0 ∈ [X0]α

, (4.36)

where Λ ∈∈ FC(R), supp(Λ) ⊂ R+, x0 ∈ R+, X0 ∈ FC(R) and supp(X0) ⊂ R+.
All solutions to (4.36) are confined between two values, for each t:

{
x−(t) = min{x(t) : x′(t) = λ(t)x(t), λ(t) ∈ [−Λ]α, x(0) ∈ [X0]α}
x+(t) = max{x(t) : x′(t) = λ(t)x(t), λ(t) ∈ [−Λ]α, x(0) ∈ [X0]α} .

That is,
{

x−(t) = x−
0αe−λ+

α t

x+(t) = x+
0αe−λ−

α t
.

The set of all solutions has the attainable sets

Aα(X0, t) = [x−
0αe−λ+

α t, x+
0αe−λ−

α t].

The FDI that has been just solved is also comparable to one FDE in the previous section, namely
System (4.20). The present solution has decreasing diameter, hence it is clearly different from
H-differentiable solution. It also has different attainable sets from the (ii)-differentiable solution.
We showed in Example 4.3.6 that the (ii)-differentiable solution colapses at a certain value of t.
The solution via differential inclusions is defined for all t > 0, preserving the property of assintotic
solution of the classical case.

Example 4.4.4 Let us solve the fuzzy differential inclusion associated to the family of problems
{

x′(t) ∈ [a(k − x(t))]α
x(0) = x0 ∈ [X0]α

, (4.37)

where a, k, x0 ∈ R+, and X0 ∈ FC(R) and supp(X0) ⊂ R+. As in Example 4.4.2, the function
[a(k − x(t))]α is a singleton. The set of all solutions of (4.37) is obtained by solving the classical
case and varying the value of the initial condition (as in Example 4.4.2):

Σα(X0, T ) =

{
x : x(t) =

kx0e
akt

k + x0(eakt − 1)
, x0 ∈ [X0]α

}
. (4.38)

The fuzzy solution Σ(X0, T ) has α-cuts given by (4.38).
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Figure 4.19: Attainable sets of the 0-level (continuous line) and the core (dashed-dotted line) of
solution to the decay model via FDIs in Example 4.4.3. Initial condition (0.35; 0.45; 0.55) and
parameter Λ = (0.016; 0.020; 0.024).

Figure 4.20: Attainable sets of the 0-level (continuous line) and the core (dashed-dotted line) of
solution to the logistic model via FDIs in Example 4.4.4. Initial condition (0.35; 0.45; 0.55) and
parameters k = 5.8 and a = 0.01.
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Figure 4.21: Solution to the logistic model via FDIs in Example 4.4.4, that is, a fuzzy bunch of
functions whose membership of each function to the solution is represented by the scale of gray:
the darker the color the higher the membership degree. Initial condition (0.35; 0.45; 0.55) and
parameters k = 5.8 and a = 0.01.

The classical functions that constitute the fuzzy solution in the Example 4.4.4 are solutions of
the associated classical just as in Example 4.4.2 and hence preserves the properties of the classical
case. In these two examples the method for finding solutions is the same as the one that will be
presented in the next section, hence the solutions are the same.

4.5 Extension of the Crisp Solution

Zadeh’s extension of the crisp solution is a very intuitive method. It consists in solving a crisp
ODE and extending the crisp solution according to a fuzzy parameter (that is, the initial condition
or some other parameter is considered to be fuzzy). As it will be clear, besides intuititive, the fuzzy
solution preserves properties from the crisp solution. Hence the function may present decreasing
length of its support, periodicity and other behaviors that may be inherent of the phenomena
being modeled.

Buckley and Feuring (2000) and Oberguggenberger and Pittschmann (1999) presented this
method for solving first-order FIVPs. Many other authors developed the same idea in the following
years (see for instance Mizukoshi et al. (2007); Cecconello (2010); Gasilov et al. (2012)), though
the authors not always use the specific term Zadeh’s extension of the solution.

It should be clear that this method does not solve a fuzzy differential equation and has no
fuzzy derivatives involved. Solutions are obtained by extending the operator that associates each
crisp ODE and its parameter to a crisp solution, in each value in the domain. The result of this
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operation is a fuzzy subset of Rn. Buckley and Feuring (2000) claim that it is equivalent to the
united extension of the operator that associates each crisp ODE and its parameter to a crisp
solution (obtaining a fuzzy subset of a space of functions) and calculating its attainable sets. This
is a connection to the approach via fuzzification of the derivative operator (see Section 4.6).

We consider the crisp IVP

{
x′(t) = f(t, x(t), w)
x(0) = x0

, (4.39)

where x0 ∈ Rn, w ∈ Rk and f : R × Rn → Rn is continuous. A solution is a continuous function
that satisfies the initial condition and the differential equation for all t. For each pair of parameter
and initial condition there is a solution associated with (4.39) that we denote by x(·, x0, w).

Autonomous FIVP with Fuzzy Initial Condition

Let us first consider that a phenomena is modeled by system (4.39) and that only its initial
condition is a fuzzy subset. Each element x0 of this fuzzy subset X0 leads to a different solution
x(·, x0). It is natural to consider that, given an initial value, there is a solution and, given a set
of initial values, there is a set of solutions. Each classical solution evaluated at t is associated with
the membership of the correspondent initial value via Zadeh’s extension. This fuzzy subset is the
solution to the FIVP at t. In other words, given x(·, x0) a solution to (4.39), if the initial condition
is the fuzzy subset X0, the solution to the FIVP is based on Zadeh’s extension of x(t, x0), that is,
x̂(t, X0), X0 ∈ FC(Rn).

Mizukoshi et al. (2007) considered the autonomous system:

{
x′(t) = f(x(t))
x(0) = x0

, (4.40)

with fuzzy initial value. They have proved existence and uniqueness of the solution via Zadeh’s
extension of the classical solution and also demonstrated the equivalence with the fuzzy differential
inclusion

{
x′(t) = f(x(t))
x(0) ∈ X0

, (4.41)

where X0 ∈ FC(Rn).

Theorem 4.5.1 (Mizukoshi et al., 2007) Consider U an open set in Rn and suppose that the
IVP (4.40) admits only one solution x(·, x0) for each x0 ∈ U , with f continuous. Suppose also
that x(t, ·) depends continuously on the initial condition. Given X0 ∈ FC(U), Zadeh’s extension
x̂(t, X0) of x(t, X0), that is, the solution of the FIVP with fuzzy initial condition correspondent to
(4.40), is well-defined. Moreover, the solution coincides with the (attainable sets of the) solution
of the FDI (4.41).
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Remark 4.5.2 We can assure existence of the solution by using Lipschitz condition. That is, if
there exists a constant L > 0 such that

||f(x) − f(y)|| ≤ L||x − y||

then there is only one solution x(·, x0), for each x0 ∈ Rn, to IVP (4.40).

Remark 4.5.3 Theorem 4.5.1 establishes that, given some conditions, the attainable sets of the
solution via FDIs are the same as the solution calculated at each t ∈ via Zadeh’s extension of the
classical solution.

Example 4.5.4 Let us consider the classical decay model

{
x′(t) = −λx(t)
x(0) = x0

, (4.42)

where λ ∈ R+ and x0 ∈ R+. The solution is known to be

x(t) = x0e
−λt.

According to the method of the present section, if the initial condition x0 is considered to be
fuzzy, that is, x0 = X0 ∈ FC(R), the solution to the new problem is Zadeh’s extension of the
solution x(t) = x(t, x0) with respect to the initial condition. Levelwise we obtain

[X(t)]α = x̂(t, X0) = {x0e
−λt, x0 ∈ [X0]α}.

Example 4.5.5 The logistic model

{
x′(t) = ax(t)(k − x(t))
x(0) = x0

, (4.43)

where a, k, x0 ∈ R+ is known to have the solution

x(t) =
kx0e

akt

k + x0(eakt − 1)
.

Considering the initial condition x0 a fuzzy number X0, the solution to the new problem is
Zadeh’s extension of the solution x(t) = x(t, x0):

[X(t)]α = x̂(t, X0) =

{
kx0e

akt

k + x0(eakt − 1)
, x0 ∈ [X0]α

}
.
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FIVP with Fuzzy Initial Condition and Fuzzy Parameter

The general case, in which the FIVP is not autonomous and there are other fuzzy parameters
influencing the differential equation, is treated by Bede (2013). If the parameter w is also fuzzy,
the solution to the FIVP is Zadeh’s extension of x(t, x0, w), that is, x̂(t, X0, W ), X0 ∈ FC(Rn),
W ∈ FC(Rk). According to result in Perko (200), Lipschitz condition on the second and third
variables of f assures existence, uniqueness and continuity of the solution, with respect to the
parameter w and the initial condition. Bede (2013) uses this result to state the existence and
uniqueness theorem for the FIVP.

Remark 4.5.6 Many authors write X ′(t) = F̂ (t, X(t), W ), X(0) = X0, which is just a notation.
As we said, this is not a fuzzy diffential equation since there is no fuzzy derivative, hence X ′(t)
does not make sense.

Theorem 4.5.7 (Bede, 2013) Let f : [t0, t0 + p] × [x0 − q, x0 + q] × B(w, r) and assume that F is
Lipschitz in its second and third variables, that is, there exist constants L1 > 0 and L2 > 0 such
that

||f(t, x, w) − f(t, y, w)|| ≤ L1||x − y||
and

||f(t, x, w) − f(t, x, z)|| ≤ L2||w − z||
Then the solution to (4.39) with fuzzy parameter, defined as Zadeh’s extension x̂(t, X0, W ),

where x(·, x0, w) is solution to (4.39) in its classical form, is well defined, unique and continuous.
Moreover, it is can be defined levelwise:

[X(t)]α = [x̂(t, X0, W )]α = x(t, [X0]α, [W ]α).

Example 4.5.8 Now in the decay model we also consider the parameter λ as a fuzzy number.
The solution is Zadeh’s extension of the solution x(t) = x(t, x0, λ) with respect to the x0 and λ.
Levelwise we obtain

[X(t)]α = x̂(t, X0, Λ) = {x0e
−λt, x0 ∈ [X0]α, λ ∈ [Λ]α}.

Hence
[X(t)]α = [x−

0αe−λ+
α t, x+

0αe−λ−

α t].

In this case, the solution is the same as via FDIs (see Example 4.4.3), but it does not happen in
general (see Allahviranloo et al. (2009)).

Example 4.5.9 Now consider the parameter k and a in the logistic model as fuzzy numbers K
and A with supp(K) ⊂ R+ and supp(A) ⊂ R+ and set Z = A × K. The solution is Zadeh’s
extension of the solution x(t) = x(t, x0, z) with respect to x0 and z = k × a. Levelwise we obtain

[X(t)]α = x̂(t, X0, Z) =

{
kx0e

akt

k + x0(eakt − 1)
, x0 ∈ [X0]α, a ∈ [A]α, k ∈ [K]α

}
.

To obtain the expression of the level set functions we need to find the minimum and the maximum
of the expression above. We calculate numerically the 0-levels and cores of the solution at each
t ∈ [0, T ] and display it in Figure 4.22.
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Figure 4.22: The 0-level (continuous line) and the core (dashed-dotted line) of solution to
the logistic model via Zadeh’s extension of the classical solution in Example 4.5.9. Initial
condition (0.35; 0.45; 0.55) below carrying support K = (5.3; 5.8; 6.3) and growth parameter
A = (0.005; 0.010; 0.015).

Zadeh’s extension of the classical solution is an intuitive method. However, calculating the
solution at each t in the domain is not obvious. It demands minimization and maximization
for each t and each α-cut and, most of the times, it cannot be done analitically. The previous
approaches present the same difficulty. The next approach does not solve this problem, since
operating with fuzzy subsets is complex, which also makes the theory more challenging. On the
contrary, the next approach unifies all the others presented so far.

4.6 Extension of the Derivative Operator

We next study FDEs using the D̂-derivative. This derivative operates on fuzzy subsets of functions,
but the equality in the fuzzy differential equation is evaluated for each t, that is, on the attainable
sets.

Consider the FIVP
{

D̂X(t) = F (t, X(t))
X(0) = X0

, (4.44)

where X0 ∈ F(Rn) and D̂X(t) ∈ F(Rn) is the attainable set of the D̂-derivative (see Subsection
3.2.2) of the fuzzy bunch of functions X(·) at t.

This approach is not equivalent to any other considered, but has many similarities with them.
Some points should be highlighted:
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(i) D̂ is a fuzzy derivative and so are Hukuhara and strongly generalized derivatives. Fuzzy
differential inclusions and Zadeh’s extension of the classical solution do not use fuzzy deriva-
tives.

(ii) D̂-derivative does not differentiate fuzzy-set-valued functions (differently from Hukuhara and
strongly generalized Hukuhara derivatives). It operates on fuzzy bunches of functions (fuzzy
subsets of spaces of classical functions).

(iii) Provided some conditions, D̂-derivative operates by differentiating classical functions (as
fuzzy differential inclusions and Zadeh’s extension of the classical solution).

(iv) The FIVP demands equality between the fuzzy subset of the left-hand-side and the fuzzy
subset of the right-hand-side, as with Hukuhara and strongly generalized Hukuhara deriva-
tives.

In what follows we will prove that

(a) Provided some hypotheses hold, the solution of the FIVP via FDIs is one solution via Zadeh’s
extension of the derivative operator.

(b) Provided some hypotheses hold, the solution of the FIVP via Zadeh’s extension of the classical
solution is one solution via Zadeh’s extension of the derivative operator (in the sense of
attainable sets).

(c) Provided some conditions hold, the solutions of the FIVP via strongly generalized Hukuhara
derivative (and particularly, via Hukuhara derivative) are solutions via Zadeh’s extension of
the derivative operator (in the sense of attainable sets).

Items (a) and (b) will be briefly illustrated in the next example.

Example 4.6.1 We solved the decay model with nonfuzzy coefficient using other methods. Now
consider

{
D̂X(t) = −λX(t)
X(0) = X0

, (4.45)

where λ ∈ R+, X0 ∈ FC(R and supp(X0) ⊂ R+.
The solution via FDIs,

Σα(X0, T ) = {x : x(t) = x0e
−λt, x0 ∈ [X0]α}.

is solution to (4.45), since X(·) = Σ(X0, T ) satisfies the hypothesis of Theorem 3.2.8 and hence

[D̂X(·)]α = D[X(·)]α
= {Dx(·) : x(t) = x0e

−λt, x0 ∈ [X0]α}
= {λx(·) : x(t) = x0e

−λt, x0 ∈ [X0]α}
= [λX(·)]α
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for all α ∈ [0, 1].
Since it has already been shown that the attainable sets of the cited solution is solution via

Zadeh’s extension of the crisp solution, the FIVP via Zadeh’s extension of the crisp solution and
FDIs have the same solution, which is one solution via D̂-derivative.

The fact that the solutions via FDIs and via D̂-derivative are the same is not a mere coincidence.
In what follows we make this connection between these two theories. Let us first recall the FIVP
modeled by FDIs:

{
x′(t) ∈ F (t, x(t))
x(0) ∈ X0

(4.46)

Levelwise it is equivalent to
{

x′
α(t) ∈ [F (t, xα(t))]α

xα(0) ∈ [X0]α
. (4.47)

Taking the union of all functions xα(·)
{ ⋃

x′
α(t) ⊆ ⋃

[F (t, xα(t))]α⋃
xα(0) ⊆ [X0]α

. (4.48)

The union of all solutions xα(·) of the differential inclusion (4.47) defines the α-cut of the
solution X(·) of problem (4.46). We can rewrite last system as

{
D [X(t)]α ⊆ ⋃

[F (t, xα(t))]α
[X(0)]α ⊆ [X0]α

,

where [X(·)]α = {xα(·) : xα(·) is solution to (4.47) }.
We have [X(0)]α = [X0]α by the construction of the solution. We are interested in finding

conditions for [
D̂X(t)

]
α

= [F (t, X(t))]α (4.49)

to hold, that is, [
D̂X(t)

]
α

⊆ [F (t, X(t))]α (4.50)

and [
D̂X(t)

]
α

⊇ [F (t, X(t))]α . (4.51)

If D [X(t)]α =
[
D̂X(t)

]
α
, the condition

[F (t, X(t))]α =
⋃

[F (t, xα(t))]α (4.52)

guarantees (4.50) Since X(·) is a solution via FDIs, it has compact α-cuts in ZT (R) and hence
Theorem 3.2.8 can be used.

Hence the solution via FDIs is a good candidate for being a solution to (4.44), provided con-
dition (4.52) holds. We need only to prove (4.51).
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Example 4.6.2 The function F (t, X(t)) = λX(t), where λ ∈ R, satisfies condition (4.52), that
is,

∪xα∈[X]α [λxα(t)]α = [λX(t))]α.

If the parameter Λ is fuzzy, we also have that:

∪xα∈[X]α [Λxα(t)]α = [ΛX(t))]α.

Note that λX is Zadeh’s extension of λx with respect to x according to Definition 2.2.1. And
according to Definition 2.2.6, ΛX is Zadeh’s extension of Λx. On the other hand, (1 − X)X is
not Zadeh’s extension of (1 − x)x and

∪xα∈[X]α [(1 − xα(t))xα(t)]α ⊂ [(1 − X(t))X(t)]α.

To prove the existence Theorem 4.6.4 we will need some results.

Theorem 4.6.3 (Michael’s Selection Theorem, see e.g. Aubin and Cellina (1984)) Let X be a
metric space, Y a Banach space and G a map from X to convex and closed subsets of Y. If G is
lower semicontinuous then there exists a continuous selection f : X → Y of G.

The following statement is a result of Michael’s Selection Theorem according to Aubin and
Cellina (1984), page 83: if X is a paracompact space (Rn is paracompact), for any y0 ∈ G(x0) the
set-valued map G0 defined by

G0(x0) = {y0}, G0(x) = G(x) ∀x 6= x0

is also lsc with convex values and hence there exists a continuous selection g0 of G0. In other
words, for every y0 in G(x0) there passes a continuous selection of G.

Now we are able to prove the existence Theorem 4.6.4, one of the main results of this study,
already published (Barros et al., 2013).

Theorem 4.6.4 (Barros et al., 2013) Let X0 ∈ FC(Rn) and Ω be an open set in R×Rn containing
{0}×suppX0 and F : R×FK(Rn) → FK(Rn) a fuzzy-set-valued function such that F (t, x) = F |Ω is
continuous with [F (t, x)]α compact, convex and [F (t, X)]α =

⋃
x∈[X]α [F (t, x)]α. Also, suppose that

the boundedness assumption holds. Then, there exists a solution X(·) ∈ FK(ZT (Rn)) for problem
(1.2). Moreover, [X(t)]α are compact and connected in Rn, for all α ∈ [0, 1].

Proof. The stated hypotheses are stronger than those in Theorem 4.4.1, including condition
(4.52). Hence the solution X(·) to (4.46), whose existence is guaranteed, satisfies (4.50). In what
follows we prove that X(·) also satisfies (4.51).

We want to prove that given z ∈ [F (s, x)]α there exists x(·) ∈ [X(·)]α such that x′(s) = z, or
z ∈ D[X]α. Note that, given z ∈ [F (s, x)]α, there exists y(·) ∈ [X(·)]α such that y(s) = x, hence
z ∈ [F (s, y(s))]α. Michael’s Selection Theorem applied to [F (t, y(t))]α guarantees that there exists
a continuous selection z(·) such that z(t) ∈ [F (t, y(t))]α, for all t ∈ [0, T ].
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We use this selection z(·) to define

x(t) = x0 +
∫ t

0
z(τ)dτ

for some x0 ∈ [X0]α.

This function x(·) belongs to [X(·)]α, since x′(t) = z(t) for all t ∈ [0, T ]. Hence we have proved
(4.51).

Remark 4.6.5 Theorem 4.6.4 establishes that, provied some conditions hold, the solution via FDIs
is the same as via D̂-derivative, that is, the fuzzy bunches of functions that satisfy the respective
FIVPs are the same. Consequently, the attainable sets obtained from the two methods are the
same.

FIVPs using Zadeh’s extension of real-valued functions has a rich literature (see Kaleva (2006);
Cecconello (2010); Mizukoshi et al. (2007); Chalco-Cano et al. (2011a)). The generalized case,
though, is not much mentioned. In what follows we use the second case, that is, f : Rn → F(Rn),
which has a wider application.

Corollary 4.6.6 Let X0 ∈ FC(R), Ω be an open set in R × Rn containing {0} × suppX0, f :
R × R → FC(R) be d∞-continuous and f̂ : R × FC(R) → FC(R) be Zadeh’s extension of f . Also,
let the boundedness assumption hold. Then the FIVP (4.44), with right-hand-side function f̂ , has
a solution.

Proof. From Theorem 2.4.8 f̂ is d∞-continuous and [f̂(t, X)]α =
⋃

x∈[X]α [f(t, x)]α. Thus the
conditions of Theorem 4.6.4 are satisfied and therefore the FIVP (4.44) has a solution.

Example 4.6.7 The FIVP

{
D̂X(t) = −ΛX(t)
X(0) = X0

, (4.53)

λ ∈ R+, X0 ∈ FC(R and supp(X0) ⊂ R+.

where Λ ∈ FC(R), supp(Λ) ⊂ R+, X0 ∈ FC(R and supp(X0) ⊂ R+, has right-hand-side
function given by Zadeh’s extension, according to Definition 2.2.6. Indeed, F (X) = −ΛX is
Zadeh’s extension of G(x) = Λx.

We apply Theorem 4.6.4 and the solution via fuzzy differential inclusions of Example 4.4.3 is
solution to (4.53). Hence the attainable sets of the solution are

X(t) = [x−
0αe−λ+

α t, x+
0αe−λ−

α t].
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Mizukoshi et al. (2007) have proved that the solution of an IVP with fuzzy initial condition
via Zadeh’s extension of the classical solution is the same as the solution of the associated FDI
(in terms of attainable sets), provided the function f is continuous and the IVP has a unique
solution. As a result of Theorem 4.6.4 and Corollary 4.6.6, if the right-hand-side function F is
Zadeh’s extension of a continuous function f : R×R → R, the solution of the FDI is a solution to
the associated FIVP with the derivative via Zadeh’s extension. Hence, if the associated IVP has a
unique solution for each initial condition, we have the same attainable sets of the fuzzy solutions
for the three mentioned approaches.

We next prove the following autonomous case: if the differential field F is Zadeh’s extension of
f : Rn → Rn, the solutions via FDI, Zadeh’s extension of the classical solution of

{
x′(t) = f(x(t))
x(0) = x0

, (4.54)

and D̂-derivative are the same (in terms of attainable sets).

Theorem 4.6.8 Consider the FIVP
{

D̂X(t) = f̂(X(t))
X(0) = X0

, (4.55)

where X0 ∈ FC(Rn), f̂ is Zadeh’s extension of a continuous function f : Rn → Rn such that (4.54)
has only one solution. Then the solution of (4.55) is given by Zadeh’s extension of the solution of
(4.54), X(·) = x̂(·, x0).

Proof. Note that Zadeh’s extension of the solution was previously (Section 4.5) defined at each
t ∈ [0, T ]. However, it is also possible to define it as a fuzzy bunch of functions, considering the
solution not at each t, but as the whole function. Gasilov et al. (2013) and Buckley and Feuring
(2000) claim that both approaches are equivalent in terms of attainable sets. The approach we
adopt here is the one that deals with fuzzy bunch of functions.

Consider xα(·, x0) an element of the α-cut of Zadeh’s extension X(·) = x̂(·, x0) of the solution
x(·, x0) to (4.54).

Dxα(·) = f(xα(·))⋃
xα∈[X(·)]α Dxα(·) =

⋃
xα∈[X(·)]α f(xα(·))

D
⋃

xα∈[X(·)]α xα(·) = f(
⋃

xα∈[X(·)]α xα(·))
D[X(·)]α = f([X(·)]α)

Since X(·) is also solution (fuzzy bunch of functions) via FDIs, we have X(·) ∈ FK(ZT (Rn)) and
Theorem 3.2.8 is valid. Also, since f is continuous, Theorem 2.2.4 holds. Hence

[
D̂X(·)

]
α

= D[X(·)]α = f([X(·)]α) = [f̂(X(·))]α

for all α ∈ [0, 1]. Thus
D̂X(·) = f̂(X(·))
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and, in particular,

D̂X(t) = f̂(X(t))

for all t ∈ [0, T ].

Remark 4.6.9 Theorem 4.6.8 establishes that, under some conditions, the fuzzy bunches of func-
tions of the solution via Zadeh’s extension of the classical solution is the same as via D̂-derivative.
Consequently, the attainable sets obtained from the two methods are the same.

Example 4.6.10 The solution of the logistic model

{
D̂X(t) = f̂(t, X(t)))
X(0) = X0

, (4.56)

where f(t, x) = ax(k − x), a, k ∈ R+, X0 ∈ FC(R and supp(X0) ⊂ R+ is based on the solution of
Example 4.5.5, that is, the same problem solved via Zadeh’s extension of the crisp solution. In that
example, we solved the classical differential equation. Instead of extending the solution at each t of
the domain, here we extend the solutions as elements in the space of functions. Hence we consider
the solution x()̇ such that

x(t) =
kx0e

akt

k + x0(eakt − 1)
.

Applying Theorem 4.56, a solution to (4.56) is Zadeh’s extension of x(·) = x(·, x0),

X(·) = x̂(·, X0).

As in Example 4.6.1, it can be verified that the solution satisfies (4.56) by applying Theorem 3.2.8:

[D̂X]α = D[X]α

=

{
Dx(·) : x(t) =

kx0e
akt

k + x0(eakt − 1)
, x0 ∈ [X0]α

}

=

{
ax(·)(k − x(·)) : x(t) =

kx0e
akt

k + x0(eakt − 1)
, x0 ∈ [X0]α

}

= [f̂(t, X(t))]α

.

Note that we do not have the expression for f̂ in terms of the standard arithmetic. As it has been
already mentioned, f̂(t, X(t))) * aX(t)(k − X(t)), hence

{
D̂X(t) = aX(t)(k − X(t))

X(0) = X0

, (4.57)

is a different problem, which will be solved using other method (see Theorem 4.6.11 and Example
4.6.12).
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Figure 4.23: Solution to the logistic model via D̂-derivative in Example 4.6.10, that is, a fuzzy
bunch of functions whose membership of each function to the solution is represented by the scale
of gray: the darker the color the higher the membership degree. Initial condition (0.35; 0.45; 0.55)
and parameters k = 5.8 and a = 0.01.

In Section 3.3 a connection between the generalized differentiabilities and the D̂-derivative was
established. Since they coincide for the representative bunches of functions of a special class of
fuzzy-number-valued numbers (see Theorems 3.3.3 and 3.3.4), it is natural to wonder if the solution
to an FIVP also coincides in both approaches. Indeed, provided some conditions hold, they do: the
hypotheses of the characterization Theorem 4.3.4 for strongly generalized differentiability assure
us that we have two solutions (fuzzy-number-valued functions) that generate two differet fuzzy
bunches of functions that are solutions to the corresponding FIVP with D̂-derivative.

Theorem 4.6.11 Assume the hypotheses of Theorem 4.3.4 hold true for F and X0 in FIVP (4.44)
and that the solutions obtained from (4.16) and (4.17) belong to F0

C (R). Then FIVP (4.44) has at
least two solutions.

Proof. Theorem 4.3.4 assures two solutions via strongly generalized differentiability. We will
prove that if the solutions assume values in F0

C (R), they satisfy Theorem 3.3.3 which provides us
with two representative bunches of functions whose derivative is the same as those via generalized
Hukuhara differentiability.

Let X be the solution to the FIVP via strongly generalized differentiability obtained by solving
(4.16). It is obvious that X is continuous and x−

α and x+
α are differentiable with respect to t.

We will prove that this differentiability is uniform with respect to α ∈ [0, 1]. Since X is strongly
generalized differentiable, it is gH-differentiable (the latter is more general than the former) and,
by Theorem 3.1.18, it satisfies a) or b) of Theorem 3.3.3.
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First we will show uniform differentiability, that is, given ǫ > 0, there exists δ > 0 such that
∣∣∣∣∣
x±

α (t + h) − x±
α (t)

h
− (x±

α )′(t)

∣∣∣∣∣ < ǫ

if |h| < δ, for all α ∈ [0, 1]. In what follows we will use the fact that x−
α and x+

α are solutions to
(4.16) and thus satisfy

x±
α (t + h) = x±

α (t) +
∫ t+h

t
f±

α (s, x−
α (s), x+

α (s))ds.

Therefore,
∣∣∣∣∣
x±

α (t + h) − x±
α (t)

h
− (x±

α )′(t)

∣∣∣∣∣ =

=

∣∣∣∣∣
x±

α (t + h) − x±
α (t)

h
− f±

α (t, x−
α (t), x+

α (t))

∣∣∣∣∣

=

∣∣∣∣∣
x±

α (t + h) − x±
α (t) − hf±

α (t, x−
α (t), x+

α (t))

h

∣∣∣∣∣

=

∣∣∣∣∣
x±

α (t) +
∫ t+h

t f±
α (s, x−

α (s), x+
α (s))ds − x±

α (t) − ∫ t+h
t f±

α (t, x−
α (t), x+

α (t))ds

h

∣∣∣∣∣

≤
∫ t+h

t |f±
α (s, x−

α (s), x+
α (s)) − f±

α (t, x−
α (t), x+

α (t))| ds

|h|
The hypothesis of equicontinuity ensures that there is a δ > 0 such that

∣∣∣f±
α (s, x−

α (s), x+
α (s)) − f±

α (t, x−
α (t), x+

α (t))
∣∣∣ < ǫ if |s − t| < δ,

that is, ∫ t+h

t

∣∣∣f±
α (s, x−

α (s), x+
α (s)) − f±

α (t, x−
α (t), x+

α (t))ds
∣∣∣ < ǫ|h|.

This is means that ∣∣∣∣∣
x±

α (t + h) − x±
α (t)

h
− (x±

α )′(t)

∣∣∣∣∣ < ǫ.

if |h| < δ, that is, x−
α and x+

α are differentiable real-valued functions with respect to t, uniformly
with respect to α.

We have proved that the solution X obtained by solving (4.16) satisfies the conditions of
Theorem 3.3.3. Hence the representative bunch of first kind, X̃(·) has D̂-derivative equal to gener-
alized Hukuhara derivative (in terms of attainable sets), which is the same as strongly generalized
differentiability, since both exist. Thus

F (t, x(t)) = X ′
G(t) = X ′

gH(t) = D̂X̃(t)

and it is proved that X̃ is a solution to FIVP (4.44).
Following the same reasoning one obtains that the solution to (4.17) leads to other representa-

tive bunch of first kind which is also solution to (4.44).
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Example 4.6.12 All examples in Section 4.3, that is, Examples 4.3.5, 4.3.6, 4.3.7 and 4.3.8 have
solutions X with X(t) ∈ F0

C (R). Hence, the representative bunches of first kind are solutions of the
respective problems using the D̂-derivative.

The last example of this section regards a system in which the state variable has values in R2.
The solution we look for belongs to FK(AC([0, T ];R2)).

Example 4.6.13 Consider
{

D̂X(t) = F (X(t)))
X(0) = X0

, (4.58)

where X0 ∈ F(R2) and F : F(R2) → F(R2) such that

µF (X)(z, y) = µX(y, z)

We will try the solution obtained via Zadeh’s extension of the following associated problem:
{

y′(t) = z(t), y(0) = y0

z′(t) = y(t), z(0) = z0
, (4.59)

whose solution is

x(t, x0) =

(
y(t)
z(t)

)
=

y0

2

(
et + e−t

et − e−t

)
+

z0

2

(
et − e−t

et + e−t

)
(4.60)

where x0 =

(
y0

z0

)
.

The function x(t, x0) is continuous with respect to the initial condition. Hence Zadeh’s extension
of this solution can be defined levelwise

[x̂(t, X0)]α = x̂(t, [X0]α) = {x(t, x0), x0 ∈ [X0]α}
Hence

[
D̂x̂(·, X0)

]
α

= D{x(·) : x(t) = x(t, x0), x0 ∈ [X0]α}
= {x′(·) : x(t) = x(t, x0), x0 ∈ [X0]α}

where

x′(t, x0) =

(
y′(t, y0, z0)
z′(t, y0, z0)

)
= y0

2

(
et − e−t

et + e−t

)
+ z0

2

(
et + e−t

et − e−t

)

=

(
z(t, y0, z0)
y(t, y0, z0)

)

Thus,
[
D̂x̂(t, X0)

]
α

= {(z(t), y(t)) : x(t, x0) = (y(t), z(t)), x0 ∈ [X0]α}
= [F (x̂(t, X0))]α .
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The method that has been used to solve the last example is based on Zadeh’s extension of the
classical solution. We have also shown that other techniques to find solutions to FIVPs involving
D̂-derivative are solving the FIVP via strongly generalized derivative and taking the representative
bunches as solutions via D̂-derivative; and using fuzzy differential inclusions.

4.7 Summary

We reviewed the most known approaches for FDEs: using Hukuhara and strongly generalized
derivatives; via FDIs and via Zadeh’s extension of the crisp solution. We developed new theory
using D̂-derivative and demonstrated two existence theorems. We compared this new theory with
the previous ones and illustrated with examples.
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Chapter 5

Conclusions

The proposal of Barros et al. (2010) of fuzzifying the derivative and integral operators via Zadeh’s
extension has been developed in this thesis and published in Barros et al. (2013); Gomes and Barros
(2012, 2013). It was verified the need of operating with fuzzy bunches of functions, which is not
used in the traditional calculus of fuzzy functions, that is, calculus for fuzzy-set-valued functions.
We have exposed both kinds of calculus and compared them. Under suitable conditions, they
coincide in the sense of attainable sets. Other results are a Fundamental Theorem of Calculus
and a theory of FDEs. It is worth remarking that the calculus via fuzzification the derivative and
integral operators is equivalent to differentiating and integrating the crisp functions of the levels,
provided some conditions hold.

The most known approaches of FDEs (Hukuhara and strongly generalized differentiabilities,
FDIs and Zadeh’s extension of the crisp solution) were presented and compared to the one via
fuzzifying the derivative operator. We have proved theorems of existence of solutions to first-order
FIVPs. The first theorem was based on the differentiation of crisp functions, similarly to FDIs and
Zadeh’s extension of the solution. Indeed, this similarity led to the result: a solution to certain
FIVPs via FDIs are the same as via fuzzification of the derivative.

The most recent results regards equivalence (in the sense of attainable sets) of certain fuzzy
bunches of functions and the generalized derivatives. We proved that the solution to an FIVP via
strongly generalized derivative produces a fuzzy bunch of functions with same attainable sets and
with derivative with the same attainable sets as the fuzzy-set-valued functions differentiated.

Future Work

As presented in Subsection 2.3, arithmetics of fuzzy numbers may admit interactivity between
elements. Comparisons with new theories of fuzzy calculus and FDEs considering interactive fuzzy
numbers should also be carried out in the future.

The equivalence of the FIVP

{
D̂X(t) = F (t, X(t))

X(0) = X0

103
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(where F : [0, T ] × F(Rn) → F(Rn) is a continuous function) with the integral equation

X(t) = X0 +
∫̂ t

0F (s, X(s))ds (5.1)

has also been proposed (Gomes and Barros, 2012). Summation as occurs in this equation, however,
is not the same as in the Minkowski sum:

X(t) = X0 +
∫̂ t

0F (s, X(s))ds

is interpreted as the fuzzy set with α-cuts defined as the union of elements

{x0 +
∫ t

0f(s, x(s))ds : x0 = x(0) ∈ [X0]
α, f(·, x(·)) ∈ [F (·, X(·))]α}

where x0 +
∫ t

0f(s, x(s))ds is a solution to the classical associated IVP

{
Dx(t) = f(t, x(t))

x(0) = x0
.

The use of constraint interval arithmetic, the interactive arithmetic and an arithmetic that
explicitly models dependency among the terms involved in the equation (in this case, crisp func-
tions) should be studied. What this interactivity means and how to operate with it is an interesting
subject for further research.

Other future research should look for application and develop a theory for the appropriateness
of the derivative and integral via Zadeh’s extension in modeling the derivative and the integral
of fuzzy variables in real problems. Certainly numerical methods for solving fuzzy differential
equations will also be required.
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Appendix A

Prerequisites

The following concepts may be found in Ash (1972); Aubin and Cellina (1984); Hönig (1977);
Rudin (1973).

Continuity and semicontinuity

Definition A.0.1 A function f : X → R is said to be upper (lower) semi-continuous at x0 if for
any ǫ > 0 there exist a δ > 0 such that f(x) < f(x0) + ǫ (f(x) > f(x0) − ǫ) whenever |x − x0| < δ.

Definition A.0.2 A family of real-valued functions {fα}α is equicontinuous if given ǫ > 0 and x0

there exists δ > 0 such that
|fα(x) − fα(x0)| < ǫ

whenever |x − x0| < δ, for all fα.

Spaces of functions

Denote by L0(Ω) the space of all Lebesgue measurable functions on Ω ⊆ Rn. The Lp spaces, to be
defined in what follows, are contained in L0.

Definition A.0.3 Let Ω be a measurable set, f ∈ L0(Ω) and

||f ||p =

{
(
∫

Ω |f(t)|pdt)1/p , if 0 < p < ∞
ess sup |f |, if p = ∞ . (A.1)

The space Lp(Ω) is the collection of the equivalence classes of all Lebesgue measurable functions
such that

||f ||p < ∞
and equivalence means f ∼ g iff f = g a.e.

The ess sup is the essential supremum,

ess sup f = inf{c ∈ R : µ{ω : f(ω) > c} = 0}
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that is, the smallest value c such that f ≤ c a.e. Hence ||f ||∞ < ∞ means that f is bounded
except on a set of measure zero.

If Ω is a measurable set, we say that f is Lebesgue integrable if

∫

Ω
|f(t)|dt < ∞.

Definition A.0.4 (See e.g. Aubin and Cellina (1984)) A function f : [a, b] → R is called ab-
solutely continuous if, given ǫ > 0, there exists δ > 0 such that for every countable collection of
disjoint subintervals [ak, bk] of [a, b] such that

∑
(bk − ak) < δ

we have ∑
(f(bk) − f(ak)) < ǫ.

Equivalently, we can say that a function f : [a, b] → R is absolutely continuous if it has a
derivative almost everywhere (that is, except on a set of measure zero) and

f(x) − f(a) =
∫ x

a
f ′(s) ds.

This result is stated in the Lebesgue Theorem:

Theorem A.0.5 (See e.g. Hönig (1977)) a) Let g ∈ L1([a, b]) and

f(x) =
∫ x

a
g(t)dt, x ∈ [a, b].

Then f is absolutely continuous and f ′ = g a.e.
b) Let f : [a, b] ∈ R be an absolutely continuous function. Then f ′ is integrable in [a, b], that

is, f ′ ∈ L1([a, b]), and

f(x) − f(a) =
∫ x

a
f ′(t) dt, x ∈ [a, b].

The set of all absolutely continuous functions f : [a, b] → Rn is denoted by AC([a, b];Rn).
The notation AC([a, b],Rn) and Lp([a, b];Rn) stand for the generalization of these spaces from
codomain R to Rn. Derivative and integral are calculated term-by-term on the n-dimensional
vector. A subset of AC([a, b],Rn) that will be used is

Z([a, b],Rn) = {x(·) ∈ C([a, b];Rn) : x′(·) ∈ L∞([0, T ];Rn)}

and will be denoted ZT (Rn) when [a, b] = [0, T ].
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