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Resumo

Neste trabalho apresentamos alguns resultados de existéncia de solugdo
para sistemas de equactes diferenciais parciais ndo lineares consistindo de
uma equacdo do tipo Cahn-Hilliard e vérias equagdes do tipo Allen-Cahn.
Tais sistemas sao analogos ac modelo proposto por Fan, L.-Q. Chen, S. Chen
e Voorhees a fim de modelar o fendmeno “Ostwald ripening” em sistemas
bifasicos. Utilizamos o método de Faedo-Galerkin e argumentos de compaci-
dade a fim de obter resultados de existéncia e unicidade de solucoes fracas.

Abstract

We analyze a family of systems consisting of a Cahn-Hilliard and several
Allen-Cahn tvpe equations. These systems are analogous to one proposed
by Fan, L.-QQ. Chen, S. Chen and Voorhees for modeling Ostwald ripening
in two-phase systems. We prove results on existence and uniqueness of weak
solutions by using the Faedo-Galerkin method and compactness arguments.



Introducao

“Ostwald ripening” é o nome que se da a um processo de evolucdo microestrutural que tem
sido comumente observado em uma ampla gama de sistemas bifdsicos. Devido & sua grande
importancia pratica em vérios campos de aplicac@o, que incluem por exemplo indistrias
de fundicao, processos de soldagem, e varios outros processos industriais, este mecanismo
de crescimento cristalino tem sido bastante estudado (veja, por exemplo, Tavare [8]).

Trata-se basicamente de um mecanismo de crescimento de cristais de uma certa fase
gquando dispersa em uma matriz de outra fase. Observa-se experimentalmente que durante
tal processo o tamanho médio da fase dispersa geralmente cresce devido & difuséo através
da fase da matriz, o que é em geral acompanhado de uma diminuicao do nimero inicial
de particulas cristalinas da fase dispersa.

Do ponto de vista fisico, sabe-se que o mecanismo que controla a evolucdo deste
fendmeno estd relacionado a reducdo da drea interfacial total, o que implica que a energia
interna total sistema tende a decrescer. Observa-se também que tal energia pode depender,
além da estrutura geométrica das interfaces, da sua orientagao cristalografica.

Do ponto de vista da modelagem matemadtica, um procedimento comum é modelar
este tipo de fendmeno de forma a que ele seja governado por equagdes parciais que descre-
vem adequadamente o mecanismo de difusao do soluto (fase dispersa) na fase da matriz,
acopladas a equagoes que regem o desenvolvimento das interfaces e que regulam a troca
espacial de material. Entretanto, como as regides correspondentes as diversas fases nao
sdo conhecidas a priori, o estudo das solugbes de tais sistemas de equagbes (em seus
vérios aspectos, tanto teéricos quanto numéricos) em geral inclui questdes relativas a pro-
blemas de fronteira livre e sao de analise e simulacdo numérica bastante complicadas. Em
outras palavras, um aspecto bastante dificil deste tipo de problema € o do modelamento
adequado da interface entre as fases. Uma alternativa bastante promissora ao enfoque que
introduz uma interface que funciora como fronteira livre ¢ na qual hd descontinuidade



nos valores de certas propriedades fisicas (0 que leva aos chamados problemas do tipo
Stefan), é a de utilizar os chamados modelos de campos de fase (“phase field models”).
Estes sao modelos continuos que permitem que as interfaces tenham espessura e estrutura
interna. Isso € obtido pela utilizacdo de certas varidveis, com o nome genérico de campos
de fases { “phase fields”), de tal forma que as interfaces sdo dadas por superficies de nivel
adequadas destas funcdes. Como referéncia histérica, lembramos que o primeiro modelo
de campo de fases para o estudo da transigio sdlido/liquido foi proposto por Langer [7]
(veja também Caginalp [1]}.

Formulacoes nestes termos sao bastante convenientes para a computacio de situacoes
realistas envolvendo interfaces de estrutura complicada, tais como os chamados cresci-
mentos dendriticos {veja, por exemplo, Caginalp e Socolovsky [2]). Outra vantagem deste
tipo de modelo é a de que eles sdo embasados na termodinamica (inclusive irreversivel)
subjacente ao fendmeno.

Neste trabalho, estudamos um sistema de equagdes diferenciais parciais nio lineares
formado pelo acoplamento de uma equacdo parabdlica ndo linear de quarta ordem e vérias
de segunda ordem. Mais especificamente, temos o acoplamento de uma equacao do tipo
Cahn-Hilliard e vérias do tipo Allen-Cahn. Este tipo de sistema foi introduzido por
Cahn e Novick-Cohen [4] como uma extensao dos trabalhos originalmente apresentados
por Cahn e Hilliard {3, 5]. Tal extensdo permitiu a modelagem da ocorréncia simultinea
dos fendmenos de separacao de fases e de ordenacdo. Tal posssibilidade responde a um
dos maiores interesses no estudo cristalogréifico de ligas: a estrutura ou regularidade da
distribuicdo das particulas no espago. Em nosso caso, o sistema proposto por Fan et al.
6] lanca mao da descricdo através de campos de fase a fim de modelar o crescimento
de cristais levando em conta a complexidade da evolucdo microestrutural e a difusdo
long-range em materiais bifdsicos simultaneamente.

A apresentacdo dos capitulos segue a ordem cronolégica de desenvolvimento da pesquisa.
No Capitulo 1, obtemos um resultado de existéncia e unicidade de solucdo para uma
familia de sistemas relacionados ao sistema proposto por Fan et al. [6]. No Capitulo 2,
obtemos existéncia e unicidade de uma solucéo generalizada para o modelo proposto por
Fan et al. [6]. No Capitulo 3, melhoramos a regularidade da solugio obtida no Capitulo 1.
No Capitulo 4, apresentamos uma nova familia de sistemas também relacionados ao sis-
tema proposto por Fan et al. [6] para a qual apresentamos resultados de existéncia e
unicidade de solugdo com a mesma regularidade da solugdo obtida no Capitulo 3. Para
efeito de completude, no Capitulo 5, apresentamos resultados de existéncia e unicidade



de solugdo para o modelo proposto por Fan et al. [6] quando temos a limitacio inferior da
densidade de energia livre local associada ao sisterna. Terminamos a apresentacdo com-
pilando os resultados obtidos neste trabalho e discutindo o desenvolvimento da pesquisa.



Capitulo 1

Existéncia e Solucoes Aproximadas
de um Modelo para “Ostwald
Ripening”

Resumo

Utilizando um esquema de elementos finitos baseado no método de Euler atrasa-
do. analisamos uma discretizagio completa de um sistema formado por uma equacio
do tipo Cahn-Hilllard e varias do tipo Allen-Cahn. Tal sistema foi proposto por Fan,
L.-Q. Chen, S. Chen e Voorhees para modelar o fendmeno de “Ostwald ripening”
em sistemas de duas fases. Como conseqiéncia desta andlise, provamos a existéncia
e unicidade das solugtes dos problemas discretos bem como a convergéncia destas
solugbes para a solucao do problema original.

et



Existence and Approximate Solutions of a Model for
Ostwald Ripening

Patricia Nunes da Silva José Luiz Boldrini

nunes@ime.unicamp.br boldrini@ime.unicamp.br

Abstract
We analyze a fully discrete finite element scheme based on the backward Euler
method for a system consisting of a Cahn-Hilliard and several Allen-Cahn type
equations. This system was proposed by Fan, L.-Q. Chen, S. Chen and Voorhees for
modeling Ostwald ripening in two-phase systems. As a consequence of the analysis,
we prove the existence and unigueness of solutions of the discrete problems, as well
as their convergence to the solution of the original system.

1.1 Introduction

Ostwald ripening is a phenomenon observed in a wide variety of two-phase systems in
which there is coarsening of one phase dispersed in the matrix of another. Because
its practical importance, this process has been extensively studied in several degrees of
generality. In particular for Ostwald ripening of anisotropic crystals, Fan. Chen, Chen
& Voorhees {1998) presented a model taking in consideration both the evolution of the
compositional field and of the crystallographic orientations. In the work of Fan et al.
(1998}, there are also numerical experiments used to validate the model, but there is no
rigorous mathematical analysis of the model.

Our objective in this paper is to do such mathematical analysis for a family of models of
Ostwald ripening related to that presented by Fan et al. {1998). Such family is constituted
of the following Cahn-Hilliard and Allen-Cahn equations:

atC: AUJ (11)
w=D|0.F - AAc|. (1.2)
8,6; = —I, {Bgi.f _ ,\iMi}, i=1,....p, (1.3)



subject to the initial conditions

cz,0) = colx), x €8, (1.4)
B;{x,0) = Oy(x), x € {), i=1....p (1.5)

and boundary conditions

Oc  Ouw

~—8n———an~—0 on 09, (1.6)
% _0 on 00, fori=1 (L.7)
5, =0 on , fori=1,....,p )

Here, Q@ is the physical region where the Ostwald process is occurring, ¢{z,t), for
t € {0,7], 0 < T < +oc, z € £, is the compositional field (fraction of the soluto with
respect to the mixture); 6;(z,t), for 1 = I1,...,p, are the crystallographic orientations
fields; D. A, L;. A; are positive constants related to the material properties and 5‘% denotes
the exterior normal derivative at the boundary. The function F = F(¢,th,... ,§,) 1s the
local free energy density whose exact form will be presented in the next section.

We analyze a fully discrete finite element scheme based on the backward Euler method
for a model closely related to that presented by Fan et al. (1998). In this analysis, we show
that the approximate solutions converge to a solution of the original continuous model
and this, in particular, will furnish a rigorous proof of the existence of weak solutions (see
the statement of Theorem 1.1). Our approach is similar to that used by Copetti & Elliott
(1992) for the Cahn-Hilliard equation (with logarithm singularity in the free energy).

1.2 Technical hypotheses and existence of solutions

Throughout this paper, we assume that  is a bounded domain in R%, 1 < d < 3, which
has Lipschitz boundary. Standard notation will be used for the required functional spaces.

Similarly as in Fan et al. (1998), it is assumed that the local free energy F has the
following form:

A B D,
Fle:br, - bp) = ‘“5(6 —em)? + Z(C —cm)t + Y(C ~ cg)*
D ? 5 v P (1.8)
+——§(C_C5)4“ /Zg(cgz)'*’zz f‘in“z Z Ezjf(gzgj)
i=1 i=1 i==l ij=1

i0



A B, D,, Dg, v, 0, 4% j=1....,p, are positive constants related to the material
properties, ¢, and cg are the solubilities or equilibrium concentrations for the matrix
phase and second phase, respectively, and ¢, = {¢s -+ ¢z)/2.

Functions f and g are assumed to satisfv the following properties:

]f(a,b) - fluv) &V Fu, o) - (4~ a,v — 5)1

(1.9)
< Fi{u— a)® + F(v — b)° (3 max{Fy, F3}[(u,v) - (a, b)F)

and

1g(a, b) — glu,v) + Vglu,v) (u—a,v— b)i < Gilu —a)* + Golv — b)* {1.10)

for all (u,v),(a,b) € R? and fixed constants Fy, F»,G1, G2 > 0. We remark that the
previous assumptions on the functions f and g imply that the difference between f(a,b)
and g(a,b) and their Taylor polynomials of degree one at (u, v), respectively, are bounded
up to a multiplicative fixed constant by the square of the Euclidean distance between
(u,v) and (a,b).

We also remark that the local free energy F is assumed to have form like the one
stated above in order to comply to a requirement of Chen & Fan {1996) ~ Chen, Fan &
Geng (1997) that 1t should have 2p degenerate minima at the equilibrium concentration
cs to distinguish the 2p orientations differences of the second phase grains in space.

The results of this work apply, for instance, to a family of problems which contains a
local free energy density given as in (1.8) but with

gle.8;) = gep(c — ca)go(Bs)  and  f{6:,6;) = 2(0:)92(8;)
where the functions g, M = 2 or ¢g, are given by

o gM*  3M?
gu(uy =u* forlu| <M and gpylu)=6M? — Tl + T?)— for |u| > M.
1 U=
This example coincides in a ball of radius min{cg, 2} with the local free energy density
presented by Fan et al. (1998), having therefore the same local minima and satisfying the
cited requirement.

We denote by w, the difference between a function w and its average, that is

Q
Under the previous hypotheses we will prove the following:

11



THEOREM 1.1 Givencg, g, ... 0,0 € H(S), there exist unique functions ¢, w, &y,... .6,
such that ¢(-, 0) = ¢{-), 8:(-,0) = bie(-) and
ce L0, T, H'(), 8ice L0, T,[HYQ))) and Vibe € L¥0,T, H(Q))
Viw e L0, T, H{(Q)),
g, € L=(0, T, HY Q). 8,6, € L*(0,T. [H*(Q)]) and Vtd,8; € L*0, T, H'()),
8.F(c,0:,....80,), 0o F(c,0:,...,0,) € L=(0,T,LHQ)),

for i =1,...,p, and such that for all n,m; € C{{0,T]; H*(£2)} there hold

/:((atc, ) + (VT Vn))dt =0, (1.11)
T
/0 [(u — DaF(c. b, ... ,6,), n) ~ DA(Ve, vn)] dt = 0, (1.12)
T _
]{) (0:,m) + (00, F (e b1, .. 6,),7m3) + LA(V8;, V)] de = 0, (1.13)
for i = 1....,p and where {-,-) denotes the duality pairing between H*((2) and its dual

and {-,-) denotes the inner product in L*{(Q).

We remark that equation (1.11) implies that the average of ¢ is conserved.

We also remark that the whole sequence of approximate solutions to be constructed
in the mext section converges in a suitable sense to the solution of (1.11)~(1.13} (see the
statement of Theorem 1.3 for details.)

For sake of simplicity of exposition, in the next sections, we consider only two orien-
tations field variables. The presented results are straightforward extended to any number
of such variables.

1.3 Discretization and approximate solutions
To obtain approximate solutions, let us consider 7" a quasi-uniform family of triangula-
tions of ©, £ = U,c7+7. with mesh size h. Let S* € H'(Q) be the finite element space

of continuous functions on € which are linear on each 7 € 7. Denote by {z;}¥, the set
of nodes of 7" and let {x;};_; be the basis of S" defined by x;(z;) = §;;. We indicate by

12



(-,-) and by | - | the inner product and the norm in L*(Q2) respectively and by |- |; the
seminorm |V - |

Let k = % denote the time step where N is a given positive integer. Recalling that
we took p = 2, the finite element problem corresponding to {1.1}-{1.7) becomes to find
cr W, e, 0% e St n=1,...,N such that ¥x, p1, o € 5,

(BCT, %) + (VW™ V) = 0 (1.14)

(W™, x) = D(a.F(C", %, 85). x) + AD(VC™, V). (1.15)
(807, 1)) + ML (VOR. V) + L, (891}“(0”, or.en), ,ul) =0, (1.16)
(003, 12) = Yo L5(VOE, Viia) + L (86, F(C™, 7. 0%), 1) =0, (1.17)

with C° = ¢ff, where ¢} is some approximation of ¢y in S*, 0% = #% and ©F = 8%, where
g is some approximation of 8; in 5", and

AL Zn—l

az" = k

for a given sequence {Z™}2,.

In the proof of existence of solutions, we use the discrete Green’s operator G* : §¢ ~—
St defined by

(VG*,Vx) = (v,x) VxeS, (1.18)

where St = {x € §", (x.1) =0}
Writing |x]%, = IG"x1?, it follows from (1.18) that

X120 = (G"x x) = (x: G™x) (1.19)
Throughout this section, we suppose that

4A,
D{A+4vG\)? 204Gy + 2(F, + )] }

y| |

k < min { (1.20)

with ¥ = max{eis, 29} and L = max{L;, L, }.
Concerning Problem (1.14}-(1.17), we have the following result:

i3



THEOREM 1.2 Suppose that cf, 67,65, € 5" Then there exists a unique solution
{Cm W, 07, 03} to (1.14)-(1.17).

Proof. Uniqueness. Let {CT, WD, @’fl, 631} and {C}, W7}, 0%, 0%} be two solutions of
(1.14)—(1.17) and set 2¢ = C7 = CF, z¥ = W] — W] and 2% = OF — 07, We start, stating
the result when n = 1. Since C? = 6'2 =} a,nd QY = 0% =64, i = 1,2, it follows from
(1.14)-(1.17) that 2°, 2%, 2% and 2% satisfy

(2% x) + k{Vz¥ Vyx) =0, (1.21)
i
S(2.%) = (9F(CT, 011, 05,) — B.F(CF. 05, 0h). x) + Al V24, V), (1.22)
1
E( % )+A (v251 v}u’l) (661‘7:(071 ?1597211) ‘"68-7:(051 11127632):}“‘1) =0,
(1.23)
1
T (2% 2 = 2a( V2%, Vo) + (00, F(CF. 011 O31) = 80, F(CF. O, O ). ) = 0,
(1.24)

Taking x = 2% in {1.21) and x = 2° in {1.22}, subtracting the resulting equations and
taking u; = 2% in (1.23)—(1.24), we obtain

éfz“h + Af2°f; = (8 F(CT, 07,0}, ) — 3.F(C3, n), z ) (1.25)
i—l 4 Al = (05, F(CT, 00, 00) - 8, F(CF, 0%, 08,).2% ) (1.26)
and
k—lglfﬂ?%\?lze?!%x—(aaf(c;“, o, 0% — 8, F(CF, ),z ) (1.27)
Writing

o(c) = —Alc—em) + Blc— cm)® + Do(c — ¢o)®* + Dalc—cg)®  and  ¢(6;) = 667,

14



we have

(8.F(CF, 07, 03,) — &.F(C3, 0%, O), 2) = (4(CT) — 6(CE), 2)
— 7(2:9(CT. %) + 0.9(CT,O8,) - 9:9(CF, O%) - 0.9(C5, O3,). 7).
(85, F(CF. 01,03 — 00, F(CE, O, 03,), 2)

+ (21200 (67:. 03) = 0 (0%, O%)] + 2u 00/ (65, OF) — ./ (65,. O3], 2)

BH(O1) = V(O%) — 113 9(CT. OL) ~ 85,9(C3, O] 2)

and

(007 (CT. 651 03) - 00, F(C3, 0. 03), 2
= (%(631) - 74’(@22) o "/[8929‘(0? @gl) - a&zg(cgﬂ 832)3 Z)

+ (£2200: (671, €31) = 0,1 (O, 0] + £21[0. (05, OF,) - 8, (O, OF)], 7).

From the Mean Value Theorem, there exists C such that

(tcp) - otcp).) = (FOCt -z = (FO=2).

Hence,
~(6(CF) = 8(C5). 2%) = = (3[BT =~ e)® + DalC = ca)? + Ds(C = c)?]2*, 2°)
+ A2, 2°) < Al
In the same way, there exist é1 and ég, such that
- (w(e7) - v(Oy), %) = —(366Hey - 03),2) <0, i=12.

Therefore, (1.25)—(1.27) become

2

2+ M2 < AP+ Y (001 80) - Bug(C, 03), ), (1.28)

fa=l

15



[z |27 < c«(aelg(czz Or,) = 3,9(CY, O%). 2" )
3) — 0. (07, 0], 2* )
~ (en[.£(65,0%) = 0,f (O, O], 2" )

kL,

/’”"“\/‘"‘"‘\

and
i 02142 A b2 <~[8 Cr ety — 8 cnoen 82
1271° + Qo2 ] < 6,9(CT. O3,) 6.9(C7,0%). 2

kLo
32)}7 ng

— (e12[0.7(67;, 03) - 8.5(6%, )
- (1005, 0%) - 8.7(05:, 7). 2.

By adding the last two equations, we are left with

1 22 212 4 6112 d212
R P P RPEL
2
<73 (1009(CT, €4 — Bu9(C3, O3)12%,1)

i=x]

— e[V £(67,05) — V(O 03] - (2", 2%). 1)
- 21 ([VF(05,00) = V(O 0%)] - (+".2"),1).

By adding {1.28) and the last equation and using (1.9) and (1.10), we obtain
k bW c 1 1 ] 15
—Eiz Bk Az + kL "+ T 1202 P A 2P Nl2P )2

< A2+ 29 G + ol

f==]

+ 2e1[ P P+ Bp[2% 7] 4 2em[Fy 2% + |27,

which by writing £ = max{z1», €91 }, furnishes

i
91[2+”_1392I2+A11381! -r')\g[ 922

k w2 c|2
Bl 2+ ol

2
<A+ 4GP+ > 2Gy +E(F + F)) |25

gzl

16



By taking x = 2¢in {1.21) and using Holder’s and Young's inequalities, it results

1 . 1 : .
A i = L] LR W P e W P

k 62
E%Z ‘1%/\"4{ kLl | kL

w kD[A + 4vG,? 2
< 3l : zc§+;2wcz+c(a+m jl 2.
Therefore,
kDA + 4vG
{:,\c — 1 } ! CE‘)_a__ z [W — ‘)[’YGZ‘F (Fl -z*Fg)} :zf},—liz < 0.
Since our assumptions on k imply that A, — M >0and - —2 vGy 4+ E(Fy +
F3)] > 0, we finally obtain
Y P R 1)
Moreover, since (z¢, 1) = 0, Poincaré inequality implies that |z¢| = 0, and (1.22) now

implies that [z¥| = 0. By induction on n, we conclude the proof of unigueness.

Existence. As in Copetti & Elliott (1992), the existence of a solution of {1.14)-(1.17)
for each n = 1,..., N will be obtained by considering a minimization problem. In our
case, such problem is to find (C.©;,©0,) € K* x §* x 5" such that

J:h(cﬁ 61762) = min fh(X:Ml?“?): (}*29)

(X1, ) ER R x Shx §h
where K" = {x € 5%, (x,1) = (¢.1)}, S" as before and
Ac

FHO0 w1, p2) = (FOG i pi2) 1) + X + 9Dklk CHL,
»)‘M 2 Az 12 1 n—112 ~12
T—gzﬂil1+fjluziz+§k—h|w CHEN ZkLgm—@? .

with F as in (1.8} and |- |- as defined in (1.19).
It follows from {1.9) and (1.10) that exists mx € R such that F(c, 8;,6:) > mx. Thus,
from the definition of F*, we conclude that F” is bounded below in K x S x §":

Ac
FMx: s o) = mg| Q] +75X§+Z

7,-—1

—O7 7! 2 ms|Ql.

[\D

k L;
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Let d = infxrgnnge F*(x pir. pto) and {Xm, fiim, Mam} be a minimizing sequence of F*
in K% x 8% »% S*, that is the limit of F* (X, fi1ms fom) When m goes to infinity is equal to
d. It results from the above estimate and the Poincaré inequality that {xm, tim: dom 18
bounded in L?(Q) x L*(Q) x L*(Q). As a consequence, recalling that K" x §" x §% is finite
dimensional, there exists (C,0,,0,) € S* x §* x S* and a subsequence {Xm, tim; Hom }
such that

Y converges to C and fhim COTIVETgZES 10 ©); n S*.

Since K™ is closed, C € K’ and the continuity of F* in S* x §% x S" vields that
F'"(Xoms Bims Ham) converges to F*(C,©;,0,) and also to d. Therefore, there exists a
solution (C,©;,02) to (1.29). By the standard arguments of calculus of variations, the
minimizer (C, 0, ©,) satisfies: V(x, 11, ta) € S x §* x S*,

AV V) + (8F(C.0.0x) + 5 (Gh (Qi%cﬁi) ,X> ALy =0,

_oon—1
MO, Va) + (0, F(C.0,, ), ) + 7 (MMM ~o.

1 /0, -06e5!
2(VE2, Vi) + (00, F(C. 01, 62). 1) + - (eﬁﬁwﬁw) o,

where A = ‘—}2—3 (c‘iJF (C,0,,0,), 1) is a Lagrange multiplier, and G” is the discrete Green’s
operator defined in {1.18). By defining

Cr=C, Wr=XD-G"8C"), O'=0;, and O} =0y,
it follows that {C™, W™ @7, ©2} is a solution of {1.14)—(1.17}. |

Now, we proceed to obtain a priori estimates for the previous approximate solutions.
We start with the following Lemma:

Lemma 1.1 The following stability estimates hold
kZJW LR % }: acTE+jCnR < C (1.30)

and

;CZZ;@@TF < k222‘86 ? + Zr@n Z

Pl gl r=] i=l =1

Rl o~ 1

<C. (1.31)
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Proof. Choosing x = W™ in (1.14), x = 9C™ in (1.15) and u; = 007 in (1.16)-{1.17), we
obtain

St = —%(BO”- W) =~ (6.7 or.0p).00") - A (ver, viacT).

L_1 1872 4+ ) (\7@“ [8@’;}) = —(c%lf(C“, ?,@3),8@?)

and

Lizfaegf + (Ve v[pes)) = - (8, F(Cm 67, 67), 001 ).

Hence, summing the above equations, we obtain
1 211
— W™+ A VO, V[aC™] ) + {——— QO + )\ (Ver, Ve }
SR+ e ) > |ploer + (ver. vioer) 2
= -VF(C", 07,0%) - - (aC", 007, 003%).

To estimate the terms at the right-hand side, let us note that the function
[F+ HJ(C™, ©7,03%) is convex, where

2
H(C™.©},05) = ‘f(cn—cm)2+ vy g(C" 07 - Z Z e/ (07, 07).
N gzl

=1 ig=1

We also observe that

VH(C", ©F,03) (0C", 007, 503)
2
= A(C" = ¢,)C™ + 7Y _Vg(C™,OF) - (8C",807)

i=1

— eV f(OF,03) - (007,003) —en V (03, 07) - (603, 007).

19



Thus, by using the convexity of F -+ H, we obtain

LVF(Cm. 1,03 - (O~ C"L 0t — e, 0f - 03)

1
e e e + H(CL 0p 7 07

[F(C™,07,8%) — H(C™, o7, 07)]
H(C™, ©1,03) - (3C™, 007, 00%)

~F(C’” Loyl el - F(C", 0r,65)]

A
(07 = 0 = (O = )+ AC” — 6,)0C"

1.
) [E 0(C™,077) = g(Cm. O] + Vo(C, 07 - (0™, 28

[2=31

.__m[
=

Now, by using (1.9) and (1.10)

F(O7,057) — F(O7, O5)] + V(€}.03) (ae?;a@s)}

R S

03,011 — F(on, 0m)] + VF(©5,67) (a@z,a@@] .

__v];(cn @?‘ 93) : (acn‘ a@?' 893)

1
< E{f(cn—l,@?—h@g-l) F(C", 0F, 08 «f-— (C’n L—omyert—-cm

+ 2kvG1(8C™)? + k Z |7G2 + 2(F + Fz)] (007)*
i=1

1 . -
_ e ooy - (e ep o) + FAT R ooy
2
+ k Z{"F/GQ -%-t:(Fl + FQ)J (a@?)Q
=1

Let us note that
[lOnIQ [ nwl%?]
2k

(ver, viger)) = +3 é‘?C”hw— ollC™ il + 5 IBC”J%

20



Therefore, (1.32) becomes

k kA ke ... 2 kN
EW”@ + “72_‘9.53(3“ T+ Taiécnéﬂ +

fz=]

9 n2 n? 72

(jz:‘(cnml Q1 o) — F(C o, 0, )

K2 (A + 49G1) -
-+ L_—Eacnr? | kZZ Gy + T Fl + FQ)]]aen
=1
Now, the term having |0C™|* can be estimated by taking x = 6C™ in {1.14). We obtain

1
T ED(A + 4vGy)

ED(A+4+Gy)
4

ac™|? (W o va(;ﬂ)

l *nlizﬂ_

acm i,

and therefore,

ko K e mn . Fhen mo kN[ 2 0 o
st Sejacnt « Deanong - 302 |2 joer+ Hoer - aljer

jz=l

< (f(c*“**l,@g*“"l,eg"i) — F(C",07,05),1)

ED(A + 4G4
W[ A+ 4y ﬂacmw» th;ﬁ( - R)joere.

8
That is,
T kD(A+4vG)?) k,\,_, .
e e P B e el
2
; L~ kL;[vGy + Z(Fy + Fy)] ni2 ni2 L KA on Az
—k;{ . 1907 +5_j 159! + 5 oller]

< (F(C™, @0, 05 — F(C. 07, 6),1)



By summing over n, 1t results that

N kD(A+ 44Gy)? e )\ 2 A
1 — kLi[vGe + E(F) + Fy)] k2
+kzz{ R }ae 33 e
r=l dml : re=lodml
n on on A, 2N
+ (F(C", 81,65),1) < (F(C*,61,09).1) + FIC° + X FH1ORfE < Cef, 6, 65),

1=1
and (1.30) is proved since we have (1.20) and F is bounded below.
The above inequality gives an estimate to (F{C", ©F,0%),1). Using such estimate,
(1.30) and the Poincaré inequality, we obtain
O +e3 < C
and (1.31) is proved. ]

We also have:

LevwMa 1.2 For ¢, > 0, where t,, = nk, there holds

thW”E"—i-th ACTE + Zz 8@”!2+kZZtr!é)9Tiz <C. (133

re=1 =]

Proof. From equation (1.15}. we have
(W™, x) = D (a [acf(cm, er, @3)} X) + AD(VAC™, Ty).
By taking x = 0C"™ in the above equation and y = W™ in (1.14), it results
(YW, VAW = (8C", 8™ = D (a [ 8,F(C™ O, eg)] , am) + ADI8C .
As it was noted before, we could rewrite the above equation as

1 AP TASR 21 is ni2 § n n n n i n|2
SO+ 5w + (ala.Ficm er,em)].ac7) + Ao =0,
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By taking p = 00O7 in (1.16)-(1.17}, we obtain

1

10071 + x(ver.viser]) + (e F(cm, 01,05),007 ) =0
and

(sert,007) < xi(ver, v]oer] ) + (a7 (Cm 017 037, 987 = 0.

By subtracting the above two equations, we obtain
1 1 1
71905 + kxjo07 % + k(0)0sF(Cm 0, 09)| 607 ) = - (90771, 007).

Dividing by & and using the Holder’s and Young’s inequalities, it results

! ( I E " 7 i i 13 n
Ser (001 = 18017 + 21067 + (9]36, F(C™, 67, 67)] 007 ) < 0
and
ZkL (10012 — 6057 2] + 2, 0012 + (8]0, F(C", ©7,07)], 008 ) < 0
Therefore,

1 iz ‘mﬁ_ n|2 132 ol ni2 |2
SOl wiaw L+ AcdoCm +Z -0[1007 ] + M|0O7

(1.34)

/""‘"\

VIaF(C, 08, On)] - (acn,ae;:a@g),l) <0.
We note that if A(r, ) is a convex function, we have
VIk(r, ) — h{u,v)j- (r —u,s —v) > 0.

Now we use a convexity argument similar tc the one used in the last Lemma. Observe
that the function [F + H}(C", O}, ©2} is convex, if we take

2
e Y (eit-'s SYY sren e,
=1

1=l igg=1

H(C™, 07, 01) =

23



We also have

A
VI[oH (C", €7, 83)] - (9C", 067.003) =

Vig(C™, 0F) — g(C™ 0771 - (9C™, 067)

HC™ ~ ¢m) ~ (C™1 — ¢)]OC™

]
1

ro -
il

m Fye |-
'l\’J“

—V[f(e1.05) - f(e17, 057 - (907, 083)
- ZfiVLf(@” On) — FlO3L @7 1) - (087, 8OT).
Thus, since F + H is a convex function, we obtain
VIOF(C™, 07, 03)] - (JC™, 007, 86%) > —V[aH(C™, 07,85)] - (9C™, 0%, 583).

The above inequality and (1.34) imply that

Q%D_a{gwnm —|8W™ |2 +,\lacnl?+2[ olloer Md@@?lﬂ

— (VIgH(C™, ©7,03)] - (9C™, 5@?7393)7 1) <0.

That is,
k S
%ag;ww%} W +Ac|80”1f+zwl—8 8@?!2§+ZA ser|?

- i=1

< AJgCT? + %;(v [s(cm. ) - g(cnt o] - (oem,aen), 1)
- %2#;1 £ij (V [f(@?, o) — fler, @?”)} - (907, 907), 1)

2
< AC™? + ?Z< H{BC™M? + GL(007)?] + Zs (007 + F»(307)7, )

g1

< (A+4G)laC™? + f: 2(vGy + E(Fy + F)][067 .

TET i
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From (1.14), we obtain

2

1 iy i\ n" n|2
SOl + 5510 + :|0C™ ] Z

5701007 ] TZA er?

3 gzl

2
< —(A+9G) (VW™ VIC™) + > 211Gy +E(F + )] 1007
g1

L A+ 4Gy

< oY m”[ﬁwac*f WZQKGQ—F INEES

Multiplving the above inequality by 2k yvields

=

2 2

1 . |

5 W2 — W3+ kO™ E + § :L—ua@ﬂ? — [6er 1 +2k§ Ajoer s
iml gaml

EA+4vG)? ., : _ i
< HAZ IO iprp 4 1Y 419G +2(E + B 06},

t=]

Now, by multiplying by ¢, = nk, we obtain

st W2 — b WP+ kA 8CT +Z tmaeﬁ?—tn_ |07 ]

gl

: : k
wktnz/\igaeyﬁ < i+ Z |06 +

=1

ET{A +47G,)?

P L

+ kT Z A[vGy + E(F + )] 007 .

izl

By summing over n we obtain

%Jw + kA Zt 150f|?+z tnia@”|2+2k22t loers

re=2 fel
< KT ( '4+4 Gy Ziﬂ |1+kTZZ4"fG2—" (R + B)]joer?
P2 gee]
ZW ”wkZZm@’" e “!wwz

r=2 fm=1
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From (1.30), with n = 1, and recalling that ¢, = k, it follows that

2 2
W + k0| OCHT + 1 Y 1001 + 2kt Y 1901 < C.

i=1 =1

Therefore, using Lemma 1.1, we conclude that

n 2 n 2
LW+ B £10CTE =) h|007 P+ k> Y 41807 < C.
ral

gl =1 i=1

1.4 Convergence of the approximate solutions

In this section we pass to the limit in the sequence of approximate solutions. We start
introducing the H*'-projection, R* : H'(}) —» S%, defined by
(VR"w,Vy) = (Vu, Vy) ¥y € §*
(R'v,1) = (v,1).
It holds that R"v converges to v in H'(92) strongly and |R"v|; < |vh.
Given cf, fho. fg € H'(Q), let us take cf = Phcy, 0% = P*8)y and 8%, = P"8y, where
Py is the unique solution of
(Prw,x) = (w,x), VxeS5"
Therefore ¢, 6%, and 65, satisfy the assumptions of Theorem 1.2
For t € (fn-1,%n), 1 <n < N, we define the following piecewise constant functions
ch(t) = C™, wi(t) = W™,
o1(t) = o1, B34(t) = O3
we(t) = 0. F(C", 01, 03),
Fi(t) = 85, F(C™, 7, 08), for 1=1,2.

Analogously, for a given £ € C*°(0,T)}, we define

é-k(t) = g(tn—i) = gnwl fort e (tn—-lstn)? 1 <n< N.
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We also denote by 2f, @fk_., @k and ég the corresponding piecewise linear continuous func-
tions on [0, 7] defined by

Sty =C" n=0,....N,
Pty =07, n=0,...,N,
O (ta) =©F, n=0,... N,
Gltn) =€, n=0,.. ,N—1,
E(T) = ¢V,
Now, the estimates given (1.30), (1.31) and (1.33) easily imply that
&, oh., o5 are uniformly bounded in L0, T, H' (),
e, o, f%k are uniformly bounded in ~ L%(0, T, H'(£2)),

Viod, Via g, Viedh,  are uniformly bounded in  L2(0, T, H'()).
Since we have the injection of H*(€2) into L8(€1), (1.9) and (1.10}, it results
Fe, Foio FP2 are uniformly bounded in ~ L*(0, T, L*(Q0)).

Now we prove that /£, W™ is uniformly bounded in H*(?). From estimate in (1.33),
to obtain this result, it is enough to show that

LW < O

For this, let us recall the definition of W™:
D

,‘I”.‘?’L o
' 2

8. F(C™, 08, 01),1) — GHOC™).
( )

Now, to estimate the first term in the right hand side, we use the injection of H*(Q)
into L%(?) and (1.10} to obtain an uniform estimate of 8. F(C™, @7, ©%) in L*(Q). Since
G"(BC™) has zero mean value, we obtain from (1.33) that

£ WP < C 4 1,C|GMOC™) 2 < C+t,ClW™2 < C.
The obtained estimate for W7, implies that
Viwf is uniformly bounded in L2(0, T, HY(Q)).
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Therefore there exist {c. &, w, Fe, Fo, F%), {6, 8;,6,, 0,} such that

¢, 0, 0s € L=(0,T, H (),
¢ By, 6, € L=(0,T, H(Q),
V0,2, V108, V198, € 120, T, H'(Q)),
Fe, Fu FP e [0, T, LAHQ)),
Viwe L®0,T, H'()

and subsequences {ci, &, wh, Fe.}, {F5 0k 8L}, i=1,2 such that

¢l converges weakly-star to ¢ in L™(0,7, H'(Q)),
7% converges weakly-star to ¢ in L0, T, H'()),
V0Tl converges weakly to Vi€ in L*(0,T, H*(Q)),
6% converges weakly-star to #; in L®(0,T, H'(Q)),

5& converges weakly-star to 6’?; in L>(0, T, HY(Q)),

\/E@t@i‘k converges weakly to V8,8, in L2(0,T, H'()),

Viu?  converges weakly-star to  Viw in  L=(0,T, HH{Q)),

FE. converges weakly-star to  F¢ in L>®{0,T, L*(Q)),
FP converges weakly-star to F% in  L*®(0,7,L*Q)).

Moreover, by calling Qr = Q x (0, T) and observing that

N
l k““cfc“.cz () Z/ e —ciffdt <k {HZJQC’W?} 5
I 1)1c

r=1

it results from (1.30) that €= c. In the same way, (1.31} and

N
91 Oilliz0p < kz |07 — @77 1? = ° [kz [8@“2}
r=1 =l
imply that 8, = 6, and g{g = #s.
We also observe that for £ € C°°(0,7), as k goes to zero, we have that
£, converges to £ in L*0,T),

g converges to & in  L*0,T).

28



To prove that we obtain a solution in the limit, we proceed as follows. Given n €
HY(D), we set x = Ry and multiply equations (1.14} and (1.15) by k"' to get

—k[OEPIC™ x) + T x) —&HC x) + k&I VW, V) =0,
PV, x) — kDé”“l(acF(C”,@?,@g), X) — kADETH VO™, V) = 0.

By summing over n the previously resulting equations, we obtain

N-1
—k Y BETHCT, X) = EM(CN, x) + €8T CY ) + €Y(CY x) — £°(C% )
=]

Y

kY ETHYWT, V) =0,
Tl
N
EY et KWT — D8.F(CT,0],0]). X) — A DV, vx)} =0
r=1

or, equivalently,
T ] ,
_fG &) (k. x) + &) (Vwpk, Vx)ldt + €Y7HCY, x) — €%(co, x) = 0

and

T
/ & [(wh = Do x) — AD(Vel, V) dt = 0.
0
Choosing € such that £(7") = 0 and £(0) # 0, using the bounds on vtw!, ¢} and Ff,

and observing that ||x[lgi oy remains bounded as k, h go to zero and £¥~! converges to
£(T), we can pass to the limit to obtain

—fo [E8) (e, n) + £()(Vw, Vldt — £(0){co, ) =0, (1.43)

T
/ £(%) Ku ~ DF* n) — AD(Ve, vn)]dt =0
4]
which implies
G,y + (Vw, Vi) =0 ae in (0,7,
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(w — DFe, n) - AD(Ve, V)  ae in (0,7).
An integration by parts of (1.43) gives
(c(0) —co,m) =0 ¥pe HY(Q)

and we conclude that ¢(0) = ¢
It remains to show that

FC=0.F(c,0.8) and  F¥ =38 Fle,0,60), i =1,2. (1.44)

In order to obtain the first equality in (1.44), we argue as Copetti & Elliott (1992). We
start defining, for given M > 0, ’

Fylf)= max{~M, min{ M, f}} and Garlu, v, v2) = Fiy (5(;-7‘—(%7?/’1,%‘2))‘

To obtain (1.44), we first show that, in some weak sense, the truncation of the sequence
(Ff,) converges to the truncation of 8, F (¢, 81, 8;) when A and % go to zero. That is, for
each M, Fu(Ff.) converges to ¢ar(c, 81, 62). To conclude the proof, we show that when
M goes to infinity, ¢a(c, 61,0} converges in a suitable weak sense to F°. Since it also
converges to 0, F (¢, 6, 65) this will give the desired identification

For this, let 7 > 0, and observe that &, 87, are uniformly bounded in H'((r,T) x ).
Since the injection of HY{r,T) x Q) into L*({(r,T) x ) is compact, such estimates
guarantee the existence of some subsequences ¢ and #7 such that

¢} converges to ¢ and #% converges to §; in L*(r, T, L*(Q)) strongly. (1.43)

Now, let us observe that for ¢,_; < ¢ < ¢, it holds that

[FM (f;fk) ~ &ur{cf, 07, ggk)j (z)

= [Fu(a.7(c" 07, 0m)) - oul(C™, €7, 63)] @)
= [Fu(o.7(c™ 07.08) - Fu(aF(C 01.09) ] (@) = 0.
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We also have

[T &(t) (FM (ﬁfk) — dprle, 8,09, 77) dté

T
= / (Y [one(ch, 0. 05) — darle, 01, 02)] + [Far(Ffp) — dar(ch, 00, 050, W)dt‘

/ £t} {oum Ck 911; 92&) Par{c, 91-.92):77)de- (1.46)

By using the fact that ¢, is Lipschitz continuous, it results that

T T 2
/ 5@)(@3{(@:9&,9;)—@..mc,ez;ag)m)dt‘ <C [ gl [l = ol + Y 6%~ o] Inle

Since (1.45) holds true, the right hand side of the above expression tends to zero as
k., h go to zero. Therefore, taking the limit in (1.46) when &, h go to zero, we obtain

[T E(t) (FM (fffk)m) dt{ converges to ;fT £(t) (@M(c 61,62}, )dt[ (1.47)

Now, we derivet some estimates to pass to the limit in M. Defining
Qf,tf = {:z:, f}‘;’k(a:,t)’ > M}, it follows from the boundedness of F¥, in L>={(0, T, L*(02))

that
L.

M

Fiwlz, t)f dr < |FF < C,

which vields
A, ks
iQM [ - 1/[2
Thus, for all n € L>(Q) N H*(Q1) and 7 > 0, we have

[ e (7h - ma(zm) el = [Te [ 75 ()

r !
<lehalitle [ [ [15] = 0] daat
T Sy -
T

H 1 i CT
< el ([ 103072155000 5T )
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and the boundedness of Ff, in L={0, T, L*(Q)) yields

o |
| (7 - B () n)ae) < 5

Thus, with the convergences given by (1.42) and (1.47) when k&, h go to zero, we obtain

1€ col 7l oo

[ (5~ oute.60.80)t] < S el (1.45)

Since the regularities of ¢, 6, and f imply that 8.F(c, 8,,0;) € L*(Q7), as M goes to
infinity, we have that

oarlc, b, 6;) converges to 8. F(c,0,,6,) in L*(7,T,L*Q));
and (1.48) gives
F¢ = 8. F(c,0,,0z) in (1,T).

Since 7 is arbitrary, {1.44) follows.

Using similar arguments, we can pass to the limit in the equations for the crystallo-
graphic variables §;. For this, given n € H'(Q), we set 4 = R"n and from equation (1.17),
we can pass to the limit as &, & go to zero to obtain

/ (€6, 1) + EONLATE:, Via) + L(FP, )]t — (B0 p) =0, (1.49)
which implies
(80, m) + Lixi(V6,, V) + L, (ﬁi,n) =0 ae in (0,T).
An integration by parts in (1.49) gives
(6:(0) = bi.m) =0 ¥npe H(Q),

and, therefore, 8;{0} = 8y, i = 1,2.
To obtain the remaining identifications in (1.44), we proceed as before. For given
M > 0, we define

Fr(f) = max{—M,min{M, f}} Unrl{u, v1,v2) = Far (392-}—(?«&; U1, Uz))
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and
OhF = {:c, 7—‘92(;::12)' > M}.
Similarly as before. we can show that
Fh = 3y Fle,8:,6,) and  F =85, Flc, 6, 6,).

We conclude that the previous limit functions correspond in fact to a solution of
(1.11)-(1.13) in the case when p = 2. The case when p > 2 is similar.

Since by Proposition 1.1 below there is at most one such solution, by standard argu-
ment, we conclude that the whole sequence of approximate solutions converges. Thus we
have the following resuit:

THEOREM 1.3 The sequence of approximate solutions constructed in Section 1.3 con-
verges to the solution of (1.11)-{1.13) in the sense presented in {1.35)-(1.41).

1.5 Uniqueness

In this section, we conclude the proof of Theorem 1.1 establishing the uniqueness.

ProposITION 1.1 Under the hypotheses stated in Theorem 1.1, (1.11)-(1.13) has at most
one solution.

Proof. We will use an idea similar to that in Eliiott & Luckhaus (1991). Let w € [HY(Q)]',
be such that (u,1) = 0. We introduce the Green’s operator G defined by:

Gu € HY(S), / Gu=0,
2

(VGu, V) = {u,n), V€ HY(Q),

where {-,-) denotes the duality pairing between H'(Q) and its dual.

Let 2¢ = ¢' — %, 2% = w!' —w? and 2% = @} — 62, i = 1,... ,p be the differences of
two pair of solutions to (1.11)-(1.13) as in Theorem 1.1. By taking such differences as
multipliers, we find from (1.12)-(1.13) that

DAV = (24.2) — D(.F( 6L, 6)) - OF(E 8, .8), ),

D d i H 1 .
QLI_?ZW = DNV D(ﬁgf(ch 0l,...,01) — 85, F (2, 62,... 6%, 29‘) =0,
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fori=1,...,p. By adding the above equations, using (1.9}, (1.10) and the convexity of
the function [F + Hl(c, 8y,....6,) with

A F P
H(c:gi;“-:g;v) ’)(C_Cm +‘/ch9 ZZ’EZJ.]C(BZQJ)'J

=1 dm1 gl
we obtain
DA ]v 652_’_i D 4, 91|2+D§:A Avi 8:12
VETT L, p 27
Fa
< (zw,zc) + [A + 2pyGy]|2°]? + 22[1;62 +E(p— 1)(F, + )25 2,
=1

where 7 = max{e;;} and Fy, Fp, G1 and G are as in (1.9) and (1.10). We observe that
since the average of ¢ is conserved, we have (2¢,1) = 0. By (1.11), we have

2V = Gz and |2 = (VG2°, V2°).

Therefore, (z . ) ( 2°) = —(Vgzf, VG=) and we have

D d A+2p /G] i
c§2 E : Pl ! 512 2 : &; |2

ml

A standard Gronwall argument then vields VGz° = 0 and 2% = 0 since
2A0=0 and %0)=0, i=1,...,p
Since |2¢* = (VGz°, Vz°) = 0, we have 2° = 0,
Finally, the uniqueness follows from the fact that (1.12) together 2° = 0 and 2% =0

imply that {z¥]? = 0. -

Theorem 1.1 is now consequence of the previous results.
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Capitulo 2

Uma Solucao Generalizada de um
Modelo para “Ostwald Ripening”

Resumo

Analisamos um sistema nao linear formado por uma equacdo do tipo Cahn-
Hilliard e vérias do tipo Allen-Cahn. Tal sistema fol preposto por Fan, L.-Q. Chen,
S. Chen e Voorhees para modelar o fenémeno de “Ostwald ripening” em sistemas
bifasicos. Provamos existéncia e unicidade de uma solucéo generalizada do sistema
nao linear cuja componente de concentracio estd em L%,



A Generalized Solution of a Model for Ostwald

Ripening
Patricia Nunes da Silva José Luiz Boldrini
nunes@ime.unicamp.br boldrini@ime.unicamp.br
Abstract

We analyze a system consisting of a Cahn-Hilliard and several Allen-Cahn type
equations. This system was proposed by Fan, L.-Q. Chen, S. Chen and Voorhees
for modeling Ostwald ripening in two-phase systems. For such system, we prove the
existence of a generalized solution whose concentration component is in L™,

2.1 Introduction

Ostwald ripening is a phenomenon observed in a wide variety of two-phase systems in
which there is coarsening of one phase dispersed in the maitrix of another. Because its
practical importance, this process has been extensively studied in several degrees of gen-
erality. In particular for Ostwald ripening of anisotropic crystals, Fan et al. [6] presented
a model taking in consideration both the evolution of the compositional field and of the
crystallographic orientations. In the work of Fan et al. [6], there are also numerical ex-
periments used to validate the model, but there is no rigorous mathematical analysis of
the model. Our objective in this paper is to do such mathematical analysis.

By defining orientation and composition field variables, the kinetics of coupled grain
growth can be described by their spatial and temporal evolution, which is related with
the total free energy of the system. The microstructural evolution of Ostwald ripening

The first author is supported by FAPESP, grant 08/15946-3
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can be described by the Cahn-Hilliard/Allen-Cahn system:

Gic =V - [DV (8.F — r.Ac), (z,t) € Qr
31591- = —Li (692,}-— KiAH.i), (1‘ ?f) € —QT (2 1)
Bnc = 8n (8, F — keAc) = 8n8, = 0, (z,t) € Sp "

clz,0) = clz), 6;{z.0) =8z}, ze

fori=1,....p.

Here, € is the physical region where the Ostwald process is occurring; Qr = Qx (0,7},
Sy =00 x (0,T); 0 < T < +oc; n denotes the unitary exterior normal vector and &, is
the exterior normal derivative at the boundary; ¢(z,¢) is the compositional field (fraction
of the soluto with respect to the mixture) which takes the value ¢, within the matrix
phase, the value ¢z (# ¢,) within a second phase grain and intermediate values between
co and cg at the interfacial region between the matrix phase and a second phase grain;
0;(xz,t), for ¢ = 1,...,p, are the crystallographic orientations fields; D, &, L;. x; are
positive constants related to the material properties. The function F = F(c¢,6,... .8,)
is the local free energy density which is given by

(C - Cm)4 + %(C - Ca)4

«rz (c—cs) ~@~Z [”%(C“ ca)?6? + 94} Z Z “”9292

t=1 il

where ¢, and ¢z are the solubilities in the matrix phase and the second phase respec-
tively, and ¢, = (¢ + ¢3)/2. The positive coefficients A, B, D,, Dg, 7. 6 and &; are
phenomenological parameters.

In this paper we obtain a (p + 2)-tuple which satisfies a variational inequality related
to Problem (2.1) and also satisfies the physical requirement that the composition field
variable takes values in the closed interval defined by ¢, and ¢g. That is, the composition
field variable should take values in the closure of the set {u € R, ¢jm < ¥ < Cmay} Where
Crmin = min{cy, cs} and e = max{c,, cs}-

Our approach to the problem is to analyze a three-parameter family of suitable systems
which contain a logarithmic perturbation term and approximate the model presented by
Fan et al. [6]. In this analysis, we show that the approximate solutions converge to a
generalized solution of the original continuous model and this, in particular, will furnish
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a rigorous proof of the existence of weak solutions (see the statement of Theorem 2.1).
Our approach is similar to that used by Passo et al. [3] for an Cahn-Hilliard/Allen-Cahn
svstem with degenerate mobility.

2.2 Existence of Solutions

By making a change of variables in the composition field variable to normalize the in-
terval where the composition field varies, and rescaling the coefficients and the local free
energy density, and by using the same notation as before to ease the exposition, we could
rewrite (2.1) in the new variable as

(9,0 = V[DV(8,F — k.Ac)] | (z,t) € Qr
8192- - -‘Li (891.7:- — fiz.ﬁgz) . (If) & QT
{ OnC =0 (OcF — 6.Ac) = 0,0, =0, (x,£) € St (2.3)

c(z,0) =colz), 0:i(z,0) =0p(z), z€Q
0<e< (2.1) € Q

fore=1,....p.

Throughout this paper, standard notation will be used for the required functional
spaces. We denote by f the mean value of f in Q of a given f € L} Q). We will prove
the following:

THEOREM 2.1 Let T > 0 and Q@ C R?, 1 < d < 3 be a bounded domain with Lipschitz

boundary. For all ¢y, 0.7 = 1,...,p. satisfving cg, G € H'(Q), for i = 1,...,p,
0 < ¢ <1 and @ € [0,1], there exists a unique {p + 2)-tuple {c,w — T, 91.... . 6,)
such that, fort=1.... .p,

(a) ¢, 6; € L0, T, H{(M) N L*(0, T, H*()),

(b) w € L*(0, T, H*{Q));

(¢) Bc € L2(0, T, [ (Q)]). 8,6; € L*(Qr);

(d) 0<e<1ae inQp

(e) O.F(c,01,....0,), 05,F(c,01....,6,) € L*Qr);
(f) (=, 0) = colz), Oi(x,0) = bip(x);

(8) Oncjs,. = Onby; = 01in L2{Sy).
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(h) We call the (p+2)-tuple (¢, w,8,, ... ,6,) a generalized solution in the following sense

T
/ {Byc. B)dt = —f VYwVe, Vée L*0,T, H (), (2.4)
] Qr

T
f £() {k.D(Ve, Vo ~ V) — (w — DOF(c, b, ... 6).6—c)}dt >0,  (23)
0

Ve e Cl0,T7),£20, Vo€ K ={ne H'(Q), 0<n<1,7="75} and

J] asw=-] / LB, F (e, b1, .6,) ~ D6, (26)
O Qr

Vo, € L2(Qr),i=1....,p, and where F is given by (2.2), {-,-) denotes the duality pairing
between H*(£2) and its dual and (-, -) denotes the inner product in L?(§2).

REMARK.

(i). The inequality obtained in {2.5) is similar to one obtained by Elliott and Luckhaus [3]
in the case of the deep quench limit problem for a system of nonlinear diffusion
equations.

(ii). We observe that (2.5) comes from the fact that classically w is expected to be equal
to D (8.F — k.Ac¢) up to a constant.

(iii}. The solution presented in Theorem 2.1 is a generalized solution of (2.3). In fact, if
we had higher regularity for this solution, we could obtain that (2.5) holds as an
equality in the region where 0 < ¢(z, ¢} < 1. This can be rigorously obtained in the
one-dimensional case (see Remark at the end of the paper).

The above uniqueness is proved below.
LemMa 2.1 Under the hypotheses stated in Theorem 2.1, in the (p+2)-tuple which solves

(2.4)~(2.6), the components ¢,#;,... 6, are uniquely determined and the component w
is uniquely determined up to a constant.

Proof. We argue as Elliott and Luckhaus [5]. We introduce the Green'’s operator G: given
f e lHY (MY = {f € I H(Q)), {(f,1) = 0}, we define Gf € H*{{2) as the unique
solution of

/VGwa:(fgw), vy € HY(Q)  and /G’fz().
Y Q2
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Let z¢ = ¢; — ¢, 2% = wy — w» and 2% = 6;; — G5, 1= 1,...,p be the differences of two
pair of solutions to (2.4)-{2.6) as in Theorem 2.1. Since equation (2.4) implies that the
mean value of the composition field in  is conserved, we have that (2¢,1) = 0 and we
find from (2.4) that

—Gz = z%.
The definition of the Green operator and the fact that (z°. 1) = 0 give
—(VGz,VG2) = —(Gzf, 2°) = (2%, 2°) = (¥, 2°).
We find from (2.5) that
— ke DIV + (2%, 2°) — D(8:F (1,001, .. 0p1) — OeF (e, 019, ... ,B),2) > 0.
Thus, we have
%&%1VGZC§ + ke DIVZR < —D(BF(c1, 01y, 1 001) — OF (2, B1a, ... ,Bya), 2°).

We find from (2.6} that

D d
5T, dtl 512 + Dr|V25 7 + D(8g,F(c1,6h1,. .., 0p1) — 09, Flca, bho, ... ,0p2),2") = 0.
By adding the above equations, using the convexity of the function {F + H](¢,0;, ... ,6;)
with
4 ~ r
Hic b ) =5 (6 — ep)? + EZ c—co)?0? — E Z “”9292

1=l 1;-‘3“"1

and integrating by parts, we obtain

r
itk v c|2 CDivzcEQ + 6,12
9d2§1 G2°)° + Kk D|V ¢ Z{IZL dt[z I+ Dk|V25 2 27
S (V(H(Cl,glh... ,le) - H(CQT Q}z?... ?gpg)} (Z Z 1)

In order to estimate the term at the right hand side of the above inequality, we use the
regularity of ¢ and 8; to obtain

t

. , o Coaiy ReDD Dg;
(VG0 = c3b%) - (25 2%), 1) < CllP + 2% + —;C;EVZCF + —glegiéz
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and

ol V(8 = ) (. £9),1) < Ol + ]+ s Va4 B O,

The above inequalities together (2.7} imply that

ry
op s FeD o oo DdI&?!DK)z oo
2dt]vg P+ 2|9 =S {—m,)L =12 5725

i:l
<C [ltﬂwn\ + Z Hzeilgﬁm)} :
i=1

From the definition of the Green operator, we have that |2°]% = (VGz¢, Vz¢). Using the
Hélder inequality, we can rewrite the above inequality as

c2=’§c 812 4 Dk, ;12
Odtlvgzl +Z[2Ldt[ e 2iz|}

]EVQZCIQ?LZ(Q} + Z H'Zei”i?{mj( :

i=]

<C

A standard Gronwall argument then yields
VGz=0 and A=0, di=1,....p
since
Gz°(0)=0 and A0)=0, i=1,...,p

The uniqueness is proved since [z¢|? = (VGz°, Vz°) = (. Furthermore, {2.4) together
2¢ = 0 imply that |Vz2*|* = 0. u

As a corollary of this, we have the following:

LEmMA 2.2 Under the conditions of Theorem 2.1, in the cases where @ is either 0 or 1,
we have a solution of (2.4)-{2.6}.

Proof. In such cases, since 0 < ¢{z) < 1, we have in fact that either ¢(z) = 0 o
co(z) = 1. Now, take ¢ identically zero or one, respectively. Then, equation (2. 4)
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trivially satisfied and will imply that w is a constant. Otherwise, (2.5) is also trivially
satisfied and to obtain a solution of the problem {2.4)-(2.6), we just have to solve the
heat equation (2.6).

|

Since by the above lemma, we have uniqueness of ¢, to prove Theorem 2.1, 1t just
remain to deal with the cases where the mean value of the initial condition ¢ is strictly
between to zero and one.

Thus, in the following we assume that

Co, gz{}eHl(Q) iml?"'apﬁ

2.8
0< <1, we(0.1), (28)

To obtain the result in Theorem 2.1, we approximate system (2.3) by a three-parameter
family of suitable systems which contain a logarithmic perturbation term and then pass to
the limit. In Section 2.3, we use the results of Passo et al. [3] to construct such perturbed
systems and together with some ideas presented by Copetti and Elliott [2] and by Elliott
and Luckhaus [5], we take the limit in these systems in the last three sections.

For sake of simplicity of exposition, without loosing generality, we develop the proof
for the case of dimension one and for only one orientation field variable, that is, when {2
is a bounded open interval and p is equal to one, and thus we have just one orientation
field that we denote #. In this case, the local free energy density is reduced to

A . B ) D
Flc, 0} = — 5(6 — Cm) Z(C O L %(c — o)t + —4~’3-(c — )"
5 (2.9
- le- o) 0 + 7?

Even though the crossed terms of (2.2) involving the orientation field variables are absent
in above expression, when extending the result for p greater than one, they will not bring
any difficulty as we point out at the end of the paper.

2.3 Perturbed Systems

In this section we construct a three-parameter family of perturbed systems. The auxiliary
parameter M controls a truncation of the local free energy F which will permit the appli-

e

cation of an existence result of Passo et al. [3]. The parameters ¢ and ¢ are related with
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the logarithmic term whose introduction will enable us to guarantere that the composition
field variable ¢ takes values in the closure of the set /.

For each positive constants o, M and £ € (0,1), we define tkae perturbed local free
energy density as follows:

Foearle,8) = fle) + gar(0) + hps{c, 8) + [ Fy(e) + Fo (1 — ). (2.10)

!

where the first three terms give a truncation of the original F(c, #} given in (2.9), and
the last term is a logarithmic perturbation. To obtain a trunc ation of the local free
energy density, we introduce bounded functions whose summatiom coincides with F for
(c.9) € [0,1] x [—M,M]. Let f, gr and Ay be such that

£ = S le=anf + D= ea) 4 22 e =)t + 22 (= e5), 0SS,
0ul6) = SROE0) e hag(e.8) = (c)ha (M30)
with
hile) = —2(c—ca)?, 0<e<],

Qutside the intervals [0, 1] and [—M, M|, we extend the above fun ctions to satisfy

| fllezm) < Us, llgallcemy < Vo(M), (2.11)
Wharllczmey < Zo(M), [hllc2my < We (2.12)
\ha(M; 6)] < K67, hL(M:8)] < KB, ¥YM >0, V8 €R, (2.13)

where Up. Wy, K > 0 are constants and, for each M, Vy{ M} and Z;( M) are also constants.
We took the logarithmic term £{F, (¢) — F, (1 ~¢)] as in Passo et al. [3]. Let us denote

F(s) = slns.

For o € {0,1/e), we choose F.(s) such that

— +lno, ifs <o,

20—s
Fi(s) = ins+1, fo<s<i-o,
7 fols), fl—oc<s<2,
1, if s > 2,
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where f, € C*{{1 — o, 2]) is chosen having the following properties:

L<F, >0
fol-0)=F(-0), f2)=1
0.

Fl-e)=F'(1-0) f(2)=
Defining
1 &
Fis) =3+ [ Fie
we have

F,e C*(R) and F'>0.

Clearly, F,.ar has a lower bound which is independent of o and e. We claim that F.pr
can also be inferiorly bounded independently of M. To prove this fact, we just have to
estimate gns(8) + harc, ). We have

¢
g (0) + har(c, 0) = Zhg(ﬁ*’ﬁ 0) + hi(c)ha(M; 6)

5 4 W) 2
= —h A/: LY e - =1 > —t =0
T (M5 0) | Ra(M; ) + Sha()| 2 ==L > =

Therefore, we have

Z: 2
~Up— =2 — 2 < Foy(c.8) in R2
0= T g Seule ) in R (2.14)
Foentlc, 8) < Uy + ga(8) — hpr(c,8) in cll.
The perturbed systems are given by
Osc = D (O Fsenr(c,0) — Kelas), - (z,t) € Qr
08 = —L [ Foeri(c, ) — by) . (z,t) € Qr (2.15)
15
OnC = On{0cFuert(C,8) — Kelyp) = 80 =0, (z,1) € St
c(z,0) = colz), 6z, 0) = bp(x), r €
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To solve the above problem, we shall use the next proposition which is an existence result
stated by Passo et al. [3] to the following system:

Oeu = [g; (u, v) (filu, v) — miuge), ], (2,1) € Qr

Ov = —golu, v) [folu, v) — Kovg,), {(z,t) € Qr (2.16)
Optt = Oqttyy = dpv =0, (x,t) € S

u(z,0) = uolz), v(z,0) =volx), z&0

where ¢; and f; satisfy:
(H1) ¢; € C(R*, R"), with gmin < ¢ € Gmax for some 0 < gmm < Gmax;

(H2) . € C*(R* R) and fy € C(R%R), with || filler + [[fellce < Fy for some Fy > 0.

ProposiTioN 2.1 Assuming (H1), (H2) and ug, wy € H'()), there exists a pair of
functions (u, v) such that:

(i). we L=(0, T, H' () N L2(0, T, H*(Q)) n C([0, T HA(Q), A < 1
). ve L0, T, HY(Q)) N L2(0, T, H2 () N C([0, T); HMQ), A < 1
(iii). du € L*(0,T,[HY(Q))), 0w e L*(Qr)

). 4(0) = ug and v(0) = vy in L*(2)

(v). Batys, = Oqvis, =0 in L*(Sr)

(vi). (u,v) solves (2.16) in the following sense:

11
/ (Deu, @) /[ g, VY Filu, v) — Kigs )20, Y& € L2(0,T, HY(D))
£
f &%bu = // go(u, V) folu, v) — Kovgg ), Vi € L¥(Qp).
Q
REMARK. The regularity of the test functions with respect to ¢ allow us to obtain the
integrals over (0,t), instead of (0, T} as originally presented by Passo et al. [3].

Applying the above proposition, for each £, 0, M > 0 there exists a solution {cyear, Opers)
of Problem {2.15) in the following sense

t
/ <atco'sfvf7 @> - = / D(acfasM(ccrzMa 9551‘4) - "gc[casM]zz)zém (217)
0 0
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for o € L*(0, T, H*{(2}) and

/ Oiblperst = — // L(8sFeri{Cosrty Oens) — K|foertzz )V, (2.18)
Qs Q.

for v € L* Q7).
Let us observe that equation for ¢ in equation (2.17) implies that the mean value of
Coeps i §2 1S given by

Co’sfvf(t) =0y € ({J 1) (219)

2.4 Limit as M — oo

In this section we obtain some a priori estimates that allow taking the limit in the pa-
rameter M. Actually, some of these estimates are also independent of the parameters o
and ¢ and will be useful in next sections.

LEMMA 2.3 There exists a constant C; independent of M (sufficiently large), o (suffi-
ciently small} and £ such that

(1), lesentllzoerormrey < Cr

(i1). |fsenslliotormey < Ch
(ii1). {[{OcFoert = KclCosrt)an)zlirz.y < C
(iv). 10sFserr — &l0sert Jzziizziar < Ch
(v). WOecaertllrzio oy < G

(vi). [18oearllrziary < Ch
(vil). [ Fpens (Cosrt Boer)lnooroiyy S Ch

Proof. To obtain items {ili}, (iv) and (vii), we argue as Passo et al. [3] and Elliott and
Garcke [4]. First, we observe that by the regularity of cs.ar and 8,57, we could take

ac-;rcraM - Kc(caeM)zz and  gFeenr — ﬁ(gc}“aM)m:
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as test functions in the equations {2.17) and (2.18), respectively, to obtain

t
/ <8tcc:rsM: 6CF05N[ - K’C(CO“E “vf)a::r) + / atgasMaefasM’ (Bosf\/f)
]

””/ D[(acfaaﬂ/f ccraM :m:) // t%f'm, MO K’(QG‘EM)E:EJ
O Qe

Also, given a small & > 0, we consider the functions

(2.20)

1 t
Fas:\{h = fcre;’lcf(ccra:‘vf}z: 90‘63\/!) and Co“sMh(tg-'E) = ?Lf Co—g;\j(”f', E)d’f“
t—h

where we set cyear{f, ) = cylz) for t < 0. Since dicrensnlt, ) € Ly}, we have

[4 .
/ <(CorsMh)t: [ac}‘aaMh — K¢ (Cas;\{h)a:a:}}dt -+ // (Qas.:l/{)tgaﬁfaeﬁi’h - "i(gasM)sz
0 97

Ke

= “llegera())af* + = ggcrsfvf () + Foenrnlt)
ol 2
~LF%M$+;Wﬁ+ﬂwm%ﬁ

Taking the limit as / tends to zero in the above expression and using (2.20), we obtain

f D a fc}“sM CU’z: // 59}:0'51'\1 - Fl:( UEM)I.’L’J2
2 o
+ T"’H[Cgsﬂmx(f)“L?(Q) + 5”{9%;%}:):(5)“1,2 o T / Foen(t)

= Slieoelai) + 51B0le B+ | Fueaslen.bo)

for almost every ¢t € {0, T}. Using {2.8) and (2.14), we could choose M and o, depending
only on the initial conditions, to obtain for all M > M, and all o < gy

/ D a fos’\v! - "'ic Coel U’ .II‘) / L aﬁfaew ( UEM)zx]z
2 for (2.21)

which implies items (iii), (iv) and (vii} since we have (2.14). Using the Poincaré inequality
and (2.19), item (1) is also verified.



To prove item (vi), we choose ¢ = 0,0,.5; as a test function in (2.18), which yields
/ [0:05c0e)* = — [] L(OsFoers — Klboert)az)0tbacns
Sr S

1/2 : 1/2
< (// LA (89 Fpers — fi(ﬂ;ﬂf)mf) (/ {c’)’t@%w]z) .
QT Q’T
fggs:w < 2/ 16017 + 2t // (0s85ens)?dr < Co,
1 2 Qr

item {vi) and (2.21), then item (i1} is verified. Finally, item (v) follows since

Ujaﬁcm ) < ([[Q (8 Frert — KoloensJoe)e] ) (/f ox)

for all ¢ € L0, T, HY(Q)).

Since we have

REMARK. From (2.21), using (2.14), we obtain

[/ D[(@CfggM ngu :1:3: // L 36-7:55:\/1 ( ceM)xx}
Qr r

Ke ot
+ “:;,Eé%%cazM(t)lzsé 2y l [rensin(t )HL?(Q) < Ch.

(2.22)

Lemma 2.4 For M sufficiently large and ¢ sufficiently small, there exist a constant Cj
independent of ¢. M and ¢ and a constant C{c) independent of M and = such that

(). 0cFoertll 2o mrinyy < Chs
(it). [10pFaenellLoor < Cs,
)
)

(i) ||

coentlzaliznm < Cs,

(iv

Proof. First, we prove items (ii) and (iv). From Lemma 2.3(iv), we have

/f (OgFaers)” — 2"3/ 0o Frert[Bres ze + K // Brerr]2, < Cs. (2.23)
Qr Qr O

al

1 0sentlzell 2o < Ca,



Since

aﬁfUEJ’Vf{QGSM]Zi‘” = [gf’w’(gcre;’w) + aﬁhM(CO“st QGEI‘Kf)Ej;gGEJWE.ZI
= ggi’\ff(gﬁez‘\/f) - hl (cas.M)h{_) (ﬂ/f; GGEMHWJEM'}Iz:

using (2.12) and (2.13}. we obtain

KZQ

Qﬁaﬁfaefﬂ 5905}&’[!:5 S 2 rQG' ‘u’j + CB Egggﬂ/[ Wrggg‘e’\/f}

Thus, from Lemma 2.3(ii), it follows from (2.23} that

/ (Og Frerr) /f Ooers)?, < Cs.
QT QT

Now, we prove item (iii). Defining, Hocns = OcFvers — KelCoentleas Since [coenrlzyg. = 0, we

have
f/ HJEM == [ aCFO—EM’
Qp Qr
// [HasM}i < 4.
G

Using the definition of F. s, given in (2.10), and an integration by parts, we obtain

// ngy = / (acf e )+ 2R ]/ F” Co’= M F (1 - Cgeﬁ-f)}[caezwgi
QT fo

-2, / / (P (Count) + P (Coen Vo (M Brens)) [Conrilon -+ 2 / / leoentl2.
Qo Qr

On the other hand, we can write

/ HE“E.M = /f {Hﬁeﬂf - Ha*sM? + // Hg&wz g Cp // [HO"S.-M]?: —E—/ (8{2}‘551\4’)2
Qo . Qr o r Qr Q7

where Cp denotes the Poincaré constant. From these two last results, item (iii) follows
recalling that [F)(coens) -+ FJ (1 — ¢penr)] = 0 and using {2.11), {2.12), (2.13) and Lem-
ma 2.3(ii).

and from Lemma 2.3(iii),

(@]
]



Finally, recalling that for each o, F.(s) is bounded in R, using again the definition of
f and hjyr and Lemma 2.3(ii), we obtain

18 Frens [20ps < C / / L Cause) P+ (8 rene) Plba 3 B
T

+ 52[FCII(CG&M) - Fé(l - co’sM’)}}
< C{Z307] + 18oearlise] + Clo)} < Cila).
An analogous argument shows that || [5(;}}5:\4}&5%2{%) is also bounded by a constant which
depends only on o. Thus, we have proved the item (i).

We can now state the following result.

PRrROPOSITION 2.2 For ¢ {sufficiently small), there exists a pair (¢, 8,.) such that:
(). coe € L7°(0, T, HH()) N L2(0, T, H3(D))

(ii). B, € L>(0, T, HX(Q)) n L*{(0, T, H*())

(iil). Bcee € LA0, T, [HH))), by € L* Q1)

7). acfae(cas:gas): 56}« E(Casagas) = LQ(QT)

1). [CG”:‘E:L'%ST

)

(v). €oe(0) = co and 6,.(0) = 8 in L*(Q)
) = {9052%1, =0in L*(Sr)
)

1). (Coe, Bse) sOlves the perturbed system (2.15) in the following sense:
T
/ <8tccrsa é) = -f D[acfaa(ccrse 905) - ﬁc(cas)mx}xéx (224)
¢ Qr
for all 9 € L*{0, T, H(Q)), and
J[ dtei=— [ LOFulnbe) = ntBdle 229
Or Qg
for all ¥ € L?(Qyr), and F,. is given by

Foele,0) = flc) + %94 + hy{c)8? + c[F,(c) + F.(1 - ¢)].
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Proof. First, let us observe that from Lemma 2.3(iii) and Lemma 2.4{i), the norm of
(Coert]poe IN L?(Q7) is bounded by a constant which does not depend on M. This fact,
the estimates of Lemmas 2.3 and 2.4 together with a compactness argument imply that
there exists a subsequence {still denoted by {(cs.ns,05c07)}) that satisfies (as M goes to
infinity}

Coerds Poenrr converge weakly-* to Coerbpe in L=(0,T, HY(Q)),
Coe M » converges weakly to cee in L*0,7T, H¥Q)),

O e i » converges weakly to 0, in L0, T, H*Q)).

OrCoents converges weakly to .. in L0, T, [HHO]),
Ogens, converges weakly to Oy in L*Qrp)

Coents Qoenr converge to CoerBpe in LF(Qp).

By recalling Lemmas 2.3 and 2.4, items (i}-(iii) now follow. Now, items (i) and (ii) of
Lemma 2.4 imply that
OeFoert(Cocrr, Boenr) converges weaklvto G in L*(Qrp),
OpFoers(Coerts Ooers)  converges weakly to H in  L*(Qrp).
Since the strong convergence of the sequence {c..;) implies that (at least for a subse-
quence) &.Fyenr{Coctss Orear) converges pointwise in Qp, it follows from Lemma 1.3 from
Lions [7], p. 12, that G = 0,F,.(¢pe, 05c). Similarly, we have H = 83 F,.(Coe, b5:). Thus
item {iv) is proved.
Item (v) is straightforward. Now, by compactness we have that
Coers  COMVEIgES to ¢, in L0, T, H*7Q)), A >0,
Bycrs  converges to 8, in  L*(0.T,H*MQ)), A>0,
which imply item (vi).
To prove item (vii), by using the previous convergences, we pass to the limit as M
goes to infinity in the equations (2.17) and (2.18).

2.5 Limit as ¢ — 0F

In this section we obtain some a priori estimates that allow taking the limit in the pa-
rameter o.



First, let us note that (2.24) implies that the mean value of ¢, in Q is given by
coe(t) =75 € (0, 1), (2.26)
We start with the following Lemma.

LeMMA 2.5 There exists a constant C; independent of ¢ and ¢ (sufficiently small) such
that

(). leoellzeormnyy < C1
(). [0selirecormny <G
(iti). [{8eFos = KelCos)azlelliziarn < Ch
(iv). 10sFoe — (0o Jazllr2(0ry £ C1
(v). l8icoelizormoyn < C1
(vi). 10foelirzinn < O
(vii). [ FoelCoes el < C

Proof. Let us observe that in the proof of Proposition 2.2, we have identified the weak
limits, when M goes to infinity, of the sequences 0.F, .y and dsF,ons 8s 0. F e and 9 F 5e,
respectively. Thus, by taking the inferior limit as M goes to infinity, of estimate (2.22),
we obtain

K K
—56‘ %(CUS)EH%“(O,T,B(Q)} - ‘.Z‘H(gae)a:l‘ioo(o,:r,z,z{m)

i

F | (2.27)
+ D0 Foe — HC(Caa)m}m;iQLz(QT) + L{|0s Fe — "Q(cha)a::c“%z(ﬂr) < G

The items (iii) and (iv) follow from (2.27). Using (2.27), Poincaré’s inequality and (2.26),
we obtain item (i). To prove items (ii), (v) and (vi}), we just take the inferior limit of
items (ii), (v) and (vi) of Lemma 2.3. Finally, the estimates and convergences obtained
in Section 2.4, (2.11), (2.12), (2.13), the choice of F, and item (vii) of Lemma 2.3 vield
item (vii).

As Passo et al. [3], by arguing in a standard way (see Bernis and Friedman [1] for a
proof, p. 183), we obtain

(a1
(1]



CoroOLARY 2.1 There exists a constant C, independent of £ and o (sufficiently small)
such that

<G and 6. <G

€zl o34 b B TRTE
By Corollary 2.1, we can extract a subsequence (still denoted by (¢, fse)) such that
(Cos, Bse) converges uniformly to (e, 8.) in ¢l Qr as o goes to zero,
. € CO08(clQy)  and 6. € COTE(clQy).
We now demonstrate that the limit ¢, lies within the interval
IT={ceR0<c<l1}
LemMA 2.6 Q7 \ Ble)| = 0 with B(c) = {{x.t) € cIQr, ¢(z,t) € I}.

Proof. Arguing as Passo et al. (3], let N denote the operator defined as minus the
inverse of the Laplacian with zero Neumann boundary conditions. That is, given f €
[HY ) = {f € [HHD)], (f,1) = 0}, we define Nf € H(Q) as the unique solution
of

f (NFYW = (f.0), Yo e HY(Q)  and / NFf=0.
2 2

By (2.26) and Lemma 2.5(i), N{c,. — &7) is well defined. Choosing
¢ = N(cye — Toe) as a test function in the equation (2.24), we have

T
/ (atCo‘s \ (Car - Cas) dt / D a —;CG': fgc( UE)$$ [\ (CW - ae)]x
Qe

/ D Co“: - Cg 8 faa( o-s DK*C f/ {(Cas)xl
S Qr

Now, estimates in Lemma 2.5 and the definition of N imply

// {CJE - ?ﬂ;)acfae(ca'szgaa) S C4- (228)
J oap
We observe that the following identity holds for any m € R,

(¢ = m)0.Feelc,0) = (c = m)[f'(c) + KL () + 2(F,(c) — Fo(1 = ¢})]
=e{c[FL{c) ~ 1]+ (1 — ¢)[F, (1 — ¢} — 1] + 2} (2.29)
+ (c—m)[f'{c) + h{c)8?] —e —emFl{c) — (1 ~ m)FL(1 - ¢)
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We observe that the terms inside the braces are bounded from below since for any ¢ €
(0,1/e), we have

—l/e<colno <s[Fl(s)~1<0, s<o,
~1/e<slns=sF (5)—1] <0, c<s<1~g,
~2<s[Fl{s)—1<0, 1—-0<s<2,
0=slF.(s)—1], s=>2.

We now recall that the mean value of ¢, in €2 is conserved and is equal to &g which belongs
to the interval (0.1). Thus, since f', k| are uniformly bounded, using the estimates in
Lemma 2.5, by setting m = &,, = ¢ in (2.29), it follows from (2.28) that

—ep/f Fo(coe) + Foll —cge)l — & /f (Co— D) F {Coe) + (1 — T — P)FL(1 — Coe)]
Qr Qr
— | / (@F. (ce) + (1 = E)FL(1 — cou)]+ < Ci.
S

where p = min{Cy, 1 — & }. Noting that F, <1, we obtain

< [[ B+ RO a0 (2.30)
Qr

To complete the proof, suppose by contradiction that the set Qp \ B{c.) has a positive
measure. Now suppose that

A= {(xat) €Qr, ¢. < O}

has positive measure. Since F, < 1, the estimate (2.30) gives

—5// Fi(co:) < Ca.
A

Note, however, that the uniform convergence of ¢,. implies that
YA >0, 3o, Coe <A Vizt)e A o <oy

therefore, due to the convexity of F,, we have F.(c,.) < F.(A). hence

A = 5/[ rvs— [[ Rl s

:‘ ’
Z



which leads to a contradiction for A sufficiently smali. The same argument shows that
B ={(x,t) € Qp, ¢. > 1} has zero measure.

In the next lemma we derive additional estimates which allow us to pass to the limit
as o tends to zero. Its proof follows directly from the estimates of Lemma 2.5.

LeyvMA 2.7 There exists a constant C3 which is independent of ¢ and ¢ (sufficiently
small) such that

(1). 10sFsellzinry < Cs,
(ii)' F%ECGE]MHL?(QT) < (s,
(iii)- H{‘gas}m%sz(QT} < 03:

To pass to the limit as o goes to zero, we need an estimate of 3, F,. that is independent
of &. We cannot repeat the argument that we used in Lemma 2.4 because there we
obtained a constant that depends on o. The desired estimate will be obtained by using the
next lemma, presented by Copetti and Elliott [2], p. 48, and by Elliott and Luckhaus [5],
p. 23.

LemMa 2.8 Let v € L) such that there exist positive constants §; and &) satisfving
8y < ! / dr<1-80
IS ] vaxr — Ody,
192} Jo

9] /p (Jv = 14 + [=v] ) dz < 87, (2.31)

If 166, < 6% then

Ql
=

7 =Hz e, vlz)>1-26} < (1-4)
and

195 =He e wvlz) <26} <(1-d)Q



Our task is now to verifv the hypothesis of this last lemma for the functions ¢,.. To
obtain (2.31), we note that items (ii} and (vii) of Lemma 2.5, {2.11) and (2.12} imply
that, for almost everv t € [0, 77,

gngc,(cm) F(1 = o)lde < Oy + | Fleos) + 0820 /4+ haleo)Oell o s oy < C-
{1
Now, since FO.(S) > —1/63 we have

ng(cM)dxﬁs:f Fg(cm)dxﬁ%sf Foley:)dx
o {ere20} {cre<0)
> —z[Qe j‘+c‘\1mi/?—Cas(ut)}-wdx—w{flﬁﬁl*?ﬂﬁm“30i%fi¢a(t)!%z,zm>ﬂ|l/2
7

i

In the same way, we have

Q

6/Fg(1 —~ Coe)dx > —z|Qle™ 4+ ¢|In a%f{cgs(-;t) —1].dx
0 0
—zolllno| + 20 + 1]1Q| — e0llep: () poiny |7

Thus, using the above estimates and Lemma 2.5(i), we obtain

/ﬂ&rs( t) - l]+d3‘3m/;j-—cﬁ(.?t)1+dxs

£l lno]

The equation (2.26) says that the mean value of ¢, is equal to & which belongs to (0, 1).
Thus there exists 9; > 0, such that &, < @ < 1 — 6. Using Lemma 2.8, for ¢ sufficiently
small, we have for almost every ¢t € [0, 7

Q5 ={2€Q  celzt) >1-28} < (1-4)19,

2.32
Ol ={reQ, culzrt) <26} <(1-4)[Q (2:32)

We are now in position to estimate 9, F,.(¢se, oc ).

LEMMA 2.9 There exists a constant C; which is independent of # and o (sufficiently
small} such that

géacfcrs(caesgas)égﬂ-’{ﬂf} < Cy.
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Proof. First, let us recall that
OoFoe = ['{Cos) + Py (Coe )02, + €[Fy{coe) — Fo{l — coe)l-

In view of Lemma 2.5(ii}, {2.11) and {2.12). the main difficulty in the argument is to cbtain
the  desired  estimate is to obtain a bound for the norm  of
e[Fi(cpe) — FL(1 = o)) in L?(Qr). Arguing as Copetti and Elliott {2], we obtain this
bound by using the next equality

i n ~/ ! ]2
“g[Fc'(cOf) - F, ( CGE)] [F (Cdf) (} CJE)” VL2(32)

| . (2.33)
= EIE[F;(ng) - (} C::rc LZ{QT} f/ 5 F’ Cg;-‘ Fé.(l — Cgs)})

and estimating the term at the left hand side and the last term at the right hand side of
the above equation.
Let us note that using Poincaré inequality and Lemma 2.5(iii}, we obtain

Hacfaf(ccrsagas) - &c(cas)mz - acfm(cosa 905) - ﬁc(cas)x:sIEL?(QT) < (.

Recalling that czjg. = 0, we have

36.7-}5(855: Hcrs) - ‘K&c(co‘e)zx = ff(cas) -+ hg(cos)ggg -+ 8fFé—(Cas) - Fé(l - Caa)l‘

Thus, using the estimates for {¢,: ). in Lemma 2.7(i1) and for ,. in Lemma 2.5(i1) together
(2.11) and (2.12), we obtain

lelF7(coe) = Fo(1 = co2)] = el Fi{coe) — Fyll = coe)liizzan) < Ci (2.34)

We now use the monotonicity of F/.(s) — F/(1 — 5) and (2.32) to obtain for almost every
tel0,7):

EEFZ’(CG’S} - Fé(z - Ccrs)]
= e[Q]™ / [Fé(cae)—F;(1~cas)é+slﬂl”1f [Fl{ces) — FL{1 = cqe)]
- 0,10

< (1= 3 QIR [Filcos) — FL(l = coa)llipre + € [FL (1 — 26;) — F.(26:)] .
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In the same way, observing that F. (26,) — F. {1 — 24;) < 0, we have

[Py (Cos) = Fy{l =] 2 = (1 = 87 QU2 [le[Fylcoe) = Fo(1 = coe)lllzaqe
2 [FL{26;) — F, (1 —261)].

o

Therefore, by using that (a + 5)® < a® (1 + é) + 5 (1 + &), we have

2 1 ) ;
(E[Fé(caa) - Fof.(l - Cga)l) S_ = (1 -+ S—) [Fé (1 — 201) - F; (261}}2
1
1 [ sl i T
+ {1 - 5%)?’?5@&;@@8) — F(1- ch)iIé%%Q)'

[u b

Multiplying the above estimate by |Q], integrating it in ¢ and using (2.33) and (2.34), it
results that for o sufficiently small, we have

: Y v 1 ’ 't Y
SllelFolese) = FL(1 = coe)]Fagqry < €l (1 + 51—) [Fy (261) - Fy {1—28))
2

+

1y (eoe) = Fall = e0e)] — FTF3ees) = 31— 00

< Q7] (1 + Oi) [F'(26,) = F' (1= 26,)]" + Cy < Ca.

1

L Gr)

We define
Woe = D(ac-?:o's(crfs: 90’&‘) " &c[cas:la::r):
the estimates in Lemmas 2.5, 2.7 and 2.9 and Lemma 2.6 imply

wye  converge weakly to  w. in L*(0,T, H'(Q)),
where w, = D(8,Fc(e..8:) — Kelce)ez),

and where F. is defined as in the next Proposition. Therefore, arguing as in Proposi-
tion 2.2, we can pass to the limit as o goes to zero in equations (2.24) and (2.25) to
obtain

PrOPOSITION 2.3 There exists a triplet {c.,w.,f:) such that:

(). e, 8. € L®(0, T, HH(Q)),
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. Be. € L20,T,[HYQ)))  and 86, € L2(Qy),
i1). [celos, [Oelea € L*(Qr),

). 190\ Ble) =0,

Ve OpFelce, 6e), OpFelce, ) € L (r),

A, w, € L0, T, HH))

ii). ¢(0) = col@), e (0) = Op()

. gcs}x;ST = [8:“!\/[}3:‘57_ =0in LQ(ST)

. (e, we, O.) satisfies
T .

/ (Bycs, 8)dt = — / / wlabe, Vo € L(0,T, H'(Q))
Q Qp

We = D[acfs(ce: 96) - ﬁ:c(ca)zz! (235)

/ Obetp = — // L(a5-7:5(ca: 95) - ﬁ(ga)xz)w: Yy € LQ(QT)
Or O

where, since ¢, € {0,1} a.e in Qr,
A B

Fele.0) = —(c~ tm)” + y

¢ " \

+ 2 - 2262 + e[ F(c) + F(1 - ¢)]

with F(s) = slns.

2.6 Limit ase— 0"

In this section we finally prove Theorein 2.1. We start by observing that, as before, we
have the mean value of ¢, in Q given by

e =705 €{0,1),

Since the estimates obtained for ¢ in Lemmas 2.5, 2.7 and 2.9 do not depend on ¢, we
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LEMMA 2.10 There exists a constant (' independent of ¢ such that
(1). lledl Loy S Ch

(11). {8l iy < C1

(iil). [[(w:)ellzzary £ C1

(iv)' Haﬂfe - K’(Qe)mx

o <01
(v). [[Oscellzorimy; < G
(vi). 1882200y £ Ch

(vii). ||OeFele, O}z iam < Cu,

(viii). O Feles O )ll2ar < Cs
(ix). {Heelzzllzoory < Ch,

(). [B:lzzilizng) < G

Now, we complete the proof of Theorem 2.1.
Proof in the case d = 1 and p = 1: We recall

_ A 9 B 4 Dg 4 Ds ' PR 9,2 ) 4
Fle,0) = — 2(0 Cm)” + 4(C_Cm) T (=) + 1 (c—cs)” — 2(6—-%) g +19
Then, we argue as Elliott and Luckhaus (5], p. 35. For this, let

FeRK ={pcH()), 0<op<1} and p<¢’<l-p

for some small positive p. We have [F'(¢?) — F'{1 — ¢*)} € L*({)) because p < ¢ < 1 —p.
Hence it follows from (2.35) that

T T
f E(t)(we, 07 — ¢ )dt = D/ E(ENO.Fles, 0.) +e[F'lce) = F'(1 ~ ¢.)] — kelCe)ze, & — . )dt.
0 ]
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Integrating by parts and rewriting, we obtain
T
f f(t) {KC(VCE, v@p) - (ws - ac'j:(cf: 9-’5)7 @p - CE)} dt
! T T
= / E(t) ko (Vee, Ve )dt + s/ EENIF(¢F) = F'(1 — )] = [F'(ce) = F'(1 = ¢.)], 0" — c.)dt
0 0

T
. / £ ([F(67) — F'(1 - 671, ¢ - c.)dt.
G

By using the monotonicity of F/{-) — F"{1 — .} and the convergence propetties of {c,, w, 6.}
we may pass to the limit and obtain for £ € C[0,T], £ > 0, that

[ 60 Ve, ¥6°) = (0 - 07,00, - )

= lim /T E(t) {£e(Viee, Vo) — (w — 8.F(¢,,8.), 6" — ¢, )} dt

— 1
g3

T T
> liminf / E(t)ko(Vey, Ve dt — lime f ) ([F(69) = F'(1 ~ 6°)], & — c.)dt
g+ o 0

T
> / E(t)r(Ve, Ve)dt.
4]
Furthermore, since any ¢ € K = {¢ € H*{}}, 0< ¢ < 1,7 = &} can be approximated

by ¢ € K™, for small p with p < ¢ <1 — p, we may pass to the limit as p goes to zero
in the left hand side of the above inequality and obtain

T
f () {he(Ve, Vo = V) = (w = 8:.F(c.8),0 — c)} dt 2 0 (2.36)
0
for €€ Cl0.T), £>0,and 90 € K.
Arguing as in the previous sections we also obtain

T “
] (Dre. Syt = f / wab, V6 € LX(0,T, HQ)) (2.37)
g Qr

and

/ 960 = — / / L7 (c.0) — kb )i, Vi € LO7), (2.38)
Qp Qr
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Thus, for spatial dimension one and p = 1, Theorem 2.1 is a direct consequence of
Lemma 2.10, (2.36}, (2.37} and (2.38).
|

Now we argue that slight changes in the arguments previously presented prove the
Theorem for higher spatial dimensions and p > 1.

Proof. Firstly, we discuss the case when the spatial dimension satisfies d = 2,3. We
start by remarking that, as observed by Passo et al. [3], Proposition 2.1 is valid for
any dimension. Also, all of our previous arguments hold for dimensions d = 2, 3, except
the result of Corollary 2.1, where the fact that dimension was one was essential. This
result was only used, after Coroliary 2.1, to extract an uniformly convergent subsequence
that will be used in the proof of Lemma 2.6 to conclude that the measure of the set
Qp \ B{c.) is zero {where B{c) = {{z.t) € ¢IQp, c(x,t) € I}). Thus, to obtain the results
in Lemma 2.6, in higher dimensions, we have to slightly modify our arguments. We just
do that by means of a compacity argument used to extract a subsequence which converges
almost uniformly in Q7. Thus, we just repeat the contradiction argument presented in the
proof of Lemma 2.6 with the only difference that now we suppose by contradiction that
there exists a subset of Qr \ B{c.) that has positive measure and where the convergence
is uniform.

Also, in higher dimensions, we use an argument of elliptic regularity of the Laplacian
to obtain estimates in L2(0, T, H*(2)} and in L*{0,T, H*(Q)).

Now we explain the necessary modifications when the number of crystallographic ori-
entations is larger than one. In this case, the local free energy density is given by

A B D D
B == ={c— 22— S Rt ORI S et N PR
~E & P
-3 {(c~ ca)"—@f-i—z@?} LY g
i EEES

Let us note that the introduction of the mixed terms depending only on the §;’s (the last
terms) will not change greatly the arguments presented in the case when p was equal to
one. In the following we point out how our previous estimates can be extended for the
case when p is larger than one.

The main feature of the perturbed systems in Section 2.3 is that their corresponding
local free energy density have lower bounds that do not depend on the truncation pa-
rameter M. Since the extended local free energy just introduces non negative terms, we
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can define a similar truncation that maintains the same property. with such perturbed
systems it is then possible to similarly establish Lemma 2.3.

As for Lemma 2.4, we treat the new terms by using the immersion of H'(Q2) in L4(2)
and the estimates for the orientation field variables given in Lemma 2.3.

After we have extended the results of Lemmas 2.3 and 2.4, all the other lemmas are
their direct consequence without any significative change due to the introduction of the
new ferms.

|

REMARK. We conclude with a brief remark about the solution obtained in Theorem 2.1.
We note that in dimension one, using Corollary 2.1 we could extract a subsequence ¢,
that converges uniformly in ¢l Q7 to ¢. Thus, the set {{z,¢) € clQp,0 < ¢{x,t) < 1} isan
open set. With such information, when taking the limit as ¢ goes to zero, we could choose
test functions with support in this set. Thus, when taking limit in {2.33), we will obtain
an equality in (2.5) in the region where 0 < ¢(z,%) < 1, and we can view the problem as
a free boundary value problem. In this sense, we call our solution a generalized solution.
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Capitulo 3

Uma Solucao Fraca de um Modelo
para “Ostwald Ripening”

Resumo

Analisamos uma familia de sistemas que acomplam uma equacdo do tipo Cahn-
Hilliard a varias equacdes do tipo Allen-Cahn, Tais sistemas si0 andlogos ao pro-
posto por Fan. L.-Q. Chen, 5. Chen e Voorhees para modelar o fenémeno “Ostwald

ripening” em sistemas bifdsicos. Para tal familia, provamos a existéncia e uricidade
de uma solucio fraca.
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A Weak Solution of a Model for Ostwald Ripening

Patricia Nunes da Silva José Luiz Boldrini

nunes@ime.unicamp.br boldrini@ime.unicamp.br

Abstract

We analyze a family of systems consisting of a Cahn-Hilliard and several Allen-
Cahn type equations. These systems are analogous to one proposed by Fan, L.-Q.
Chen, S. Chen and Voorhees for modeling Ostwald ripening in two-phase systems.
For such systems, we prove the existence and uniqueness of a weak solution.

3.1 Introduction

Ostwald ripening is a phenomenon observed in a wide variety of two-phase systems in
which there is coarsening of one phase dispersed in the matrix of another. Because
its practical importance, this process has been extensively studied in several degrees of
generality. In particular for Ostwald ripening of anisotropic crystals, Fan et al. {1998)
presented a model taking in consideration both the evolution of the compositional field
and of the crystallographic orientations. In the work of Fan et al. (1998), there are also
numerical experiments used to validate the model, but there is no rigorous mathematical
analysis of the model.

Our objective in this paper is to do such mathematical analysis for a family of models of
Ostwald ripening related to that presented by Fan et al. (1998). Such family is constituted
of the following Cahn-Hilliard and Allen-Cahn equations:

e =V - IDV (0. F — rAc)l, (z,t) € Qr
3391‘ = -""Lz‘ (691..7:' - n‘{,zﬁgt) s (.?J,t) = QT (3 1)
B = On (B.F — kolAc) = Opi = 0, (z,t) € St '

oz, 0) = co(z), 0;(x,0) = bz}, z€Q

The frst author is supported by FAPESP, grant 98/15946-5
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fori=1,...,p

Here, Q is the physical region where the Ostwald process is occurring: Qp = Qx (0,7T);
Sr =00 x{0,T); 0 < T < +oc; n denotes the unitary exterior normal vector and J,
is the exterior normal derivative at the boundary; ¢(z,?), for t € [0,7], 0 < T < +oc,
z € 0, is the compositional field (fraction of the soluto with respect to the mixture);
§;(x,t), for i = 1,...,p, are the crystallographic orientations fields; D, k., L;, ; are
positive constants related to the material properties. The function F = Flc,6,,... ,0,)
is the local free energy density whose exact form will be presented in the next section.

In this paper we obtain a unique (p-+2)-tuple which is a weak solution to Problem (3.1).

Throughout this paper, standard notation will be used for the required functional
spaces and we denote by f the mean value of f in © of a given f € L}(Q).

3.2 Technical hypotheses and existence of solutions

Similarly as in Fan et al. (1998), it is assumed that the local free energy F has the
following form:

A B
Fle, by, ... 0,) = —w_)—(c— em)? + z(cw ) ® + Z {c—co)"
Ds i\ 5 2 (3.2)
+T(C*C§) _ﬂf,zg(cagi +ZZG "Lzzvzjf(gmg
fxl i1 il iy=1
A, B, D,, D, v. 0 , €45, 15 j =1,...,p are positive constants related to the material

properties, ¢, and ¢g are the solubilities or equilibrium concentrations for the matrix
phase and second phase, respectively, and ¢, = (¢, + ¢5)/2.
Functions f and ¢ are assumed to satisfy the following properties:

feC{R*R) and geC*RLR),

|£(0,b) = Flu.v) + Vf(u,0) - (= a,v ~ B)]
< Fi(u—a)? + Fy(v — b)? (< max{F. K }H(w.v) = (a,5)]?)

and

lgla,b) — g{u,v) + Vglu,v) - (u—a,v - b)| < G1{u—a)* + Galv — b)° (3.4)
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for all (u,v), (a.b) € R? and fixed constants Fy, Fe,G;, G2 > 0. We remark that the
previous assumptions on the functions f and g imply that the difference between f(a, b}
and g{a, b) and their Taylor polynomials of degree one at (u, v}, respectively, are bounded
up to a multiplicative fixed constant by the square of the Euclidean distance between
(u,v) and (a, b).

We also remark that the local free energy F is assumed to have form like the one
stated above in order to comply to a requirement of Chen & Fan (1996) - Chen et al.
(1997) that it should have 2p degenerate minima at the equilibrium concentration ¢g to
distinguish the 2p orientations differences of the second phase grains in space.

The results of this work apply, for instance, to a family of problems which contains a
local free energy density given as in (3.2} but with

9(c. 8;) = gey(c — ¢o)g2(6:) and  f(6;,0;) = g2(6;)g2(6;)
where the functions gy, M = 2 or ¢g, are given by

8M3  3M*

gu(u)y=u* for jul <M and gylu) =6M?% - l M

for luj > M.

This example coincides in a ball of radius min{cs, 2} with the local free energy density
presented by Fan et al. (1998}, having therefore the same local minima and satisfying the
cited requirement.

Under the previous hypotheses we will prove the following:

THEOREM 3.1 Let T > 0 and O C RY% 1 < d < 3 be a bounded domain with Lipschitz
boundary. For all ¢g. 6,7 = 1,... ,p, satisfving cg, 8 € H'(Q), there exists a unique
{p+1)-tuple (¢, 0y,...,0;) such thas, fori=1,... ,p,

(a) ¢ € L>=(0,T, H'()) ’TLQ(O T. H3(Q))

(b} #; € L*=(0, T, HE(Q)) N L0, 7T, H2(Q));

(¢) dec € L0, T, [HHQ)]'): 0.6, € L*(r);

(d) 8.F(c, 81, ... ,6p), 8o, Flc,b,...,6,) € L(Qr);

(e) (513 0) = oz}, 8i(z,0) = Gi(z);

(£)
(g)

= in LQ(ST);
e, 91‘ ..., 0y} satisfies

T
/ {Ore. d)Ydt = wf DV (0. F(c.b1,...,68,) — k. AC)V P, (3.3)
0 Qr
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Yo € 12(0, T, HY(Q)) and

/ 5¢9;L‘2 . // Li(agif(c, 31, e ,923) - KZAQZ)’UE (36)
4Gty Qr

Vo € L), i =1,....p, and where F is given by (3.2), (-, -} denotes the duality pairing
between H*({2) and its dual and (-, ) denotes the inner product in L*(2).

The above uniqueness is proved below.

LeEmMA 3.1 Under the hypotheses stated in Theorem 3.1, in the (p+1)-tuple which solves
(3.3)-(3.6) is uniquely determined.

Proof. We argue as Elliott & Luckhaus (1991). We introduce the Green's operator G-
given f € [HY(Q), = {f € [HYQ)Y, {(f.1) = 0}, we define Gf € H(?) as the unique
solution of

/‘VGszgm{f,@), v € HHQ)  and /G‘fmo.
Q 194

Let 2 = ¢y —cp and 2% = 0;; — 8,5, 1= 1,..., p be the differences of two pair of solutions
to (3.5)-(3.6) as in Theorem 3.1. Let

¥ = Di@cf'(ci, 811,. o :gpl) - 86.7:(62; 612, - ,gpg) — &CAZC].

Since equation (3.3) implies that the mean value of the composition field in ) is conserved,
we have that (2¢.1) = 0 and we find from (3.5) that

— Gz = 2%
The definition of the Green operator and the fact that {2, 1) = 0 give

~(VGzf, VG2 = ~(Gzf, %) = (29, 2°) = (2%, 2).

Thus
id 2 . :
;EEIVGZCJH -+ (D[@cf(cl, 911, EIIPI 9;;.1) - (')6.7:(@,912, - ,6pg) - K,QAZCJE; ZC) = 0.
We find from (3.6) that
D d .
,)L de l ”Jf”DEz‘VZ [ -+ (391--7:(61:@11;'-- 75’?1)“89{.7’(@,912,... ,ng),z"‘) = {).
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By adding the above equations, using the convexity of the function [F + H](c, 01, .. . 0,)
with

H(c.6,,...,6,) =

b |

Sle—em)+ 93 ale Z Z £iif (8:.0;)

1=l iF =l

and integrating by parts, we obtain

Dd, ,
o Lzt Tt D&Wzﬁlz}

< (V(H(Chgllt v 79391) - H(Cﬁagli’.: s :6112)) : (an 2915 s =Zep)7 1)

\ng ? + KDV + ; [ (3.7)

In order to estimate the term at the right hand side of the above inequality, we observe
that (3.3) and (3.4) imply that

£, (V{F (B, 851) — FlOi2, B52)) - (2%, 2%0), 1) < 225 Fy (2% + 22, Fp1 2% 2
and
¥(V{gler, i) — glea. 02)) - (25, 2%). 1) € 29G4 2°7 + 29Ga |22

The above inequalities together {3.7) imply that

1d D d Dx;
__|§" < vc2<§: ;|2 zve,
2dt’ 051 ‘ | [213 dtlz P Ve ]}

iizcuiz{n) + Z Hzgil|%2(9}} :
i==1

From the definition of the Green operator, we have that |2°]* = (VGz¢, Vz¢). Using the
Holder inequality, we can rewrite the above inequality as

Dk;
i 915‘2%_______“ 6;12
*Z[zLdt 5 V2 '}

C b; e ”62'1[%2(9‘}} :
=

A standard Gronwall argument then yields

d
el v Zc?;
= V]

VGz¢ =10 and =0 i=1,...,p



since
Gz¢(0) =0 and  H(0)=0, i=1,....p

The uniqueness is proved since |2°/? = (VGz°, Vz¢) = (. N

We remark that equation (3.5) implies that the average of ¢ is conserved.

To obtain the result in Theorem 3.1, we approximate system (3.1) by a family of
suitable systems and then pass to the limit. In Section 3.3, we use the results of Dal
Passo, Giacomelli & Novick-Cohen (1999) to prove existence of solutions of such perturbed
systems and to take the limit in these systems in the last sections.

For sake of simplicity of exposition, without loosing generality, we develop the proof
for the case of dimension one and for only one orientation field variable, that is, when {2
is a bounded open interval and p is equal to one, and thus we have just one orientation
field that we denote €. In this case, the local free energy density is reduced to

A B D, D )
Fle 8) = —~2—(c ~cm)? + —4—(c —cm)t + (c—co)® + —f(c — 5}t —vgle, 8) + 284.
(3.8)

The presented results are straightforward extended to any number of such variables.

3.3 Perturbed Systems

In this section we construct a family of perturbed systems. Such family depends on an
auxiliary parameter M which controls a truncation of the local free energy F which will
permit the application of an existence result of Dal Passo et al. (1999). We consider

Farlc,0) = Flc,8), —M<c8<M.

Outside the set [—M, M| x [— M, M], we extend the above function to satisfy

l0Fuilcrmemy S Ue(M)  and  {[0aFulemery < Vo(M), (3.9)

aAP S KO+ and QAP K01

0 FuP < Kl®+6°+1] and  [0pFu]? < Kic* + 6 + 1], '
(Ful < Kc* + 6% + 1] and  Fur > mz, (3.11)
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YM > 0, Ve, 8 € R, where K > 0 and msr are constants and, for each M, Uyg(M) and
Vo( M) are also constants.

REMARK. The above properties are not restrictive since they were already satisfied by
the original energy density (3.8).
The perturbed systems are given by

Os¢ = D (0. Fp(c. 0) — Kelaz) s (z,t) € QOr

Ol = ~L{OpFar(c, 8) — kb4, {z,t) € OF (3.12)
OnC = On(0.Frr(c, 0) = Kelpz) = G0 =0 (2,t) € St

clz,0) = ¢olz), Bz, 0) = b(z), z€f

To solve the above problem, we shall use the next proposition which is an existence result
stated by Dal Passo et al. (1999) to the following system:

atu = [QE (U, L) (fl (u"f U} - Kzluﬂtm)x]z : (:Cv t)
Ow = ~go(u, v) [ folu, v) — Kkavee], (2.t} € Qp
Optt = Oqige = Opqv = 0 x,t)

u{z,0) = uglx), v(z,0) = v(z), z €8]

(3.13)

where g; and f; satisfy:

(H}‘) gi € C(R2: R+): Wi%h Ymin S q; S Gmax fGr some O < Gmin é Gmax:
(H2) f, € CYR* R) and f» € C(R%LR), with || fille: + || fallce € Fy for some Fy > 0.

PROPOSITION 3.1 Assuming (H1), (H2) and wg, vg € H'(C), there exists a pair of
functions (u.v) such that:

(). we L=, T, H'(Q) N L20. T, H3(Q) n C([0, T H}(Q)), A < 1
(il). v & L®(0, T, HY{)) 0 L*0, T, H{Q) n C([0,T}; HX(Q)), A < 1
(iii). du € L0, T, [HHM), 6w € L* Q)

(iv). u(0) = ug and v(0) = v in L2($)

v). Oats = Oqui. =0 in L*(Sy)
|5 157
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(vi). (u,v) solves {3.13) in the following sense:

[ower== [[ awotites) - muen voc 0.7.8@)

f o = [fp g2(u. 0)(f2(w, ) = Kovee )4, W0 € L* (7).
REeEMARK. The regularity of the test functions with respect to ¢ allow us to obtain the
integrals over (0,1}, instead of {0, T} as originally presented by Dal Passo et al. (1999}.

Since (3.9) holds, applying the above proposition, for each M > ( there exists a
solution (¢, Bas) of Problem (3.12) in the following sense

I3
/ (Oicpr, @) = %/f D{(0.Farlcar. On) — £elCaslzn)2Pas (3.14)
0 0,
for 6 € 12(0, T, H'(Q)) and

/ Ot = — jf L{0sFrs(car, Oar) — 8[0nr]aa)its (3.15)
o o

for v € L?(Qr).
Let us observe that equation for ¢ys in equation {3.14) implies that the mean value of
¢y in £ is given by

Cas (t) = :'56- (316)

3.4 Limit as M — o

In this section we obtain some a priori estimates that allow taking the limit in the pa-
rameter M.

LEMMA 3.2 There exists a constant C) independent of M (sufficiently large) such that
(i}, lleallosormmy < Cy
(). [|6ul zeormioy £ C1

(iii)‘ “(ach - &C(CM):cx)IHL'Z(QT} < Ci



N 0 F s — #{0ns )zl 200y < C
(v). W1Brear]l 2o oy < Ch
(vi). [iG:barliLeingy < €y

(vii). [ Fulens Oar)lleeor iy £ G

Proof. To obtain items (iil}. {iv) and (vii), we argue as Passo et al. Dal Passo et al.
(1999) and Elliott & Garcke (1996). First, we observe that by the regularity of ¢ and
A, we could take

ach - r‘@c(CM)m and Oy Fn — fﬁ(g_.w)m

as test functions in the equations (3.14) and (3.15), respectively, to obtain

{
/ (Breng, OeFos — KelCat)za) +/ OO0 Fns — K(Ons)an

j Di(8.Far = kelear)a) / L8 Fpr — 6(9n1)2z)?
2

Also, given a smaﬂ h > 0, we consider the functions

(3.17)

h

where we set cnr(t, x) = cp(x) for t < 0. Since d;epmlt, z) € L?(Qr), we have
fei“cMh)t’ 1GcFrn — Kolcmn)eal)dt + f/o (021 )09 Farn — 8001 )z]
= [ (5 leun(tl? + 51O + Fa(0]
_ /9 [%?[CQMQ + gneejz;? +j:M(CG?90)} _

Taking the limit as A tends to zero in the above expression and using (3.17), we obtain

/ D 8 g — K,c Cw a:x /f Liaﬁ}‘w - 5(9’\/[)::.7,]
pf pt
= Sllenle Ol + F1blOle, = [ Fulo)

= Tfmco]zﬂp(sz} + .‘2‘\!%905&@2(9; + / Frlco, bo)
“~ Q

1/t
emnlt,x) = / eu{7, z)dr
t—h
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for almost every ¢ € (0, T]. Using the regularity of the initial conditions {see Theorem 3.1)
and {3.11), we could choose My, depending only on the initial conditions, to obtain for
all M > M,

/ Dl(éc}'—ﬂ - n‘@c(ci‘vf)mx)xéz + f/ Li’-BBFM N ﬁ(gM)J:I]Q
Qe fr

. (3.18)
Keyr T B T
+ ?lficﬁf}x(f}iiiz(m =+ ;!([&M]x(ﬂiffﬂ(m + /QfM(’:) < Gh

which implies items (iii}, {iv) and {vii) since we have {3.11). Using the Poincaré inequality
and (3.16), item (1) is also verified.
To prove item (vi), we choose v = 0,8, as a test function in (3.15), which vields

/ 10007 = f/ L{OgFrr — 6(0nr)ex)0:0nr
Qr Q-

1/2 1/2
< (/ L0 F 2 — ﬁ(&w)m)g) (f/ [@tQMF)
Qr Qr
f@ij < 2/ 10o1% + 2t // (D8ar Y dr < Oy,
¥] 0 Qe

item (vi) and (3.18), then item (ii) is verified. Finally, item (v) follows since

[/Tatw@{ (// D*[(8eFps — KelCas)ag)s] ) (//QT% )1/2

for all ¢ € L2(0, T, H'(%)).

Since we have

REMARK. From (3.18}, using (3.11), we obtain

f QTDf(ach — Kelear)ea)z)” + /fﬂT L8y Frs ~ 6(0nsr)za)?

K EF] 1 K*; s
+ Slllen @lalte) + 5 M0ule(B)Eer0) < Cre

LeMMa 3.3 For M sufficiently large, there exist a constant Cj independent of M such
that
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(1) 10:Farllzzormny < Cs,
(it). {0 Farllzzry < Cs,
(iii). {flearleellizian < Cs,
(1v). 8nlezllzziorn < Cs,

Proof. First, we prove items {ii) and {iv). From Lemma 3.2{(iv), we have

/ (BeFnr)? — 7hf O FutlOnrlne + K // 0.2, < Cs. {3.19)
Qr Qr Sp

Using (3.10}, we obtain

2

20 F 211001 |2z < 3‘ 012, +CalcS, + 605, + 1]

Thus, from Lemma 3.2(ii), it follows from (3.19) that

ey e
Qo Op

Now, we prove item (ili}. Defining, Hy; = 8.Far — Ke[Carlea, since [carlzg, = 0, we have

f Hy = / OcF o,
Qr Qr

// (Hy)2 < C.
Gr
We have

/ = / @y -2 /fQT(ac:EM)[cM]MMg //Q[W]

On the other hand. we can write

/ Hj; ﬂ/ (Hy — Hul? “?*/ }Eﬁ <Cp ff (Hul2 + // (8.Fu)*
O Qr O Sp QT
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where C'p denotes the Poincaré constant. Now, item (iii) follows from (3.10} and Lem-
ma 3.2(i} and (ii).
Finally, using again {3.10) and Lemma 3.2(i) and (ii}. we obtain

”acj:f"foiB(QT) g C3.

Lemma 3.2(1) and (ii} imply that ii{é‘chij%Q(QT) is also bounded by a constant. Thus,
we have proved the item (i).
We can now state the following result.

ProPoSITION 3.2 There exists a pair (¢, ) such that:
(). € L2(0, T, HY(Q)) N L2(0, T, H¥())
(ii). 6.€ L=(0, T, H*(Q)) N L2(0,T, H*(Q))
(iii). dc € L2(0, T, [HY(Q))), 86 € L*(Qy)
(iv). 8.F(c.8), 9sF(c.0) € L*(Qr)
). ¢(0) = ¢ and 8(0) = 6, in L*(Q)
(). oy, = Blar, = 0in L3(55)
)

i). (¢, 0) solves the perturbed system (3.12) in the following sense:

/ (e, &) / Dia.Flc.8) — k() prlte
Q7

for all ¢ € L*(0, T, HY(Q2)), and

/ 8,60 = — f f L(0sF(c,6) — ko))
. O Qr

for all v € L?(Q7), and F is given by (3.8).

Proof. First, let us observe that from Lemma 3.2(iii) and Lemma 3.3(i), the norm of
[earlere In L?(Q27) is bounded by a constant which does not depend on M. This fact, the
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estimates of Lemmas 3.2 and 3.3 together with a compactness argument imply that there
exists a subsequence (still denoted by {{cas,8xs)}) that satisfies (as M goes to infinity)

cass Bur converge weakly-* to c.§ in L=(0,T, H{(Q)).
e, converges weakly to ¢ in L*0,T, H*(Q)),

s, converges weakly to # in L0, T,H*(Q),

drcar, converges weakly to ¢ in L0, T, [HHM],
3:0xs. converges weakly to 84 in L*Qg)

Cars Oar converge to c,§ in L*Qyp).

By recalling Lemmas 3.2 and 3.3, items {i)—(iii) now follow. Now, items (i) and (ii} of
Lemma 3.3 imply that

OuFuslcar, 0} converges weakly to G in  L*(Q4)

T

Oy Faslenr,0r) converges weakly to H in  L*{Qp).

Since the strong convergence of the sequence (c)s) implies that (at least for a subsequence)

8. Fyr(car, Brr) converges pointwise in Qp, it follows from Lemma 1.3 from Lions (1969),

p. 12, that G = 8,F(c¢,6). Similarly, we have H = 93F (¢, #). Thus item (iv) is proved.
Item (v) is straightforward. Now, by compactness we have that

ey convergesto ¢ in  L*0,T,H*™*(Q)). p>0,
fy converges to # in L*0,T,H*?(Q)). p>0,

which imply item (vi).

To prove item (vii}, by using the previous convergences, we pass to the limit as M goes
to infinity in the equations (3.14) and (3.15). Now, we complete the proof of Theorem 3.1.
We argue that slight changes in the arguments previously presented prove the Theorem
for higher spatial dimensions and p > 1.

Proof. Firstly, we discuss the case when the spatial dimension satisfies d = 2,3. We
start by remarking that, as observed by Dal Passo et al. (1999). Proposition 3.1 is valid
for any dimension. Also, all of our previous arguments hold for dimensions d = 2,3. In

higher dimensions, we use an argument of elliptic regularity of the Laplacian to obtain
estimates in L2(0,. T, H*(Q)) and in L2(0, T, H3(Q)).
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Now we explain the necessary modifications when the number of crystallographic ori-
entations is larger than one. In this case, the local free energy density is given by

A B . D
Fled) =~ 5lc~cm)’ + Jle=cn)t+ e—ca)t+ méi(c— cs)’
14 5 14
— Vv Pt Ny
; 9le.6:) + 6 .i_;le”f(euej) .

Let us note that the introduction of the mixed terms depending only on the 8;’s {the last
terms) will not change greatly the arguments presented in the case when p was equal to
one. In the following we point out how our previous estimates can be extended for the
case when p is larger than one.

The main feature of the perturbed systems in Section 3.3 is that their corresponding
local free energy density satisfy (3.9)-(3.11). Since we have (3.3), we can define a similar
truncation that maintains the same properties, with such perturbed systems it is then
possible to similarly establish Lemma 3.2.

As for Lemma 3.3, we treat the new terms by using the immersion of H*(Q) in L*(Q)
and the estimates for the orientation field variables given in Lemma 3.2.

After we have extended the results of Lemmas 3.2 and 3.3, we can restate Proposi-
tion 3.2 without any significative change due to the introduction of the new terms.

|
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Capitulo 4

Reducao da Ordem dos Termos
Mistos

Resumo

Analisamos uma familia de sistemas que acomplam uma equagio do tipo Cahn-
Hilliard a vérias equagdes do tipo Allen-Cahn. Tais sistemas sdo andlogos ao pro-
posto por Fan, L.-Q. Chen, S. Chen ¢ Voorhees para modelar o fenémeno “Ostwald
ripening” em sistemas bifdsicos. Para tal familia, provamos a existéncia e unicidade
de ama solucio fraca.



A Weak Solution of a Model for Ostwald Ripening

Patricia Nunes da Silva José Luiz Boldrini

nunes@ime.unicamp.br boldrini@ime.unicamp.br

Abstract

We analyze a family of systems consisting of a Cahn-Hilliard and several Allen-
Cahn type equations. These systems are analogous to one proposed by Fan, L.-Q.
Chen, 8. Chen and Voorhees for modeling Ostwald ripening in two-phase systems.
For such systems, we prove the existence and uniqueness of a weak solution,

4.1 Introduction

Ostwald ripening is a phenomenon observed in a wide variety of two-phase systems in
which there is coarsening of one phase dispersed in the matrix of another. Because its
practical importance, this process has been extensively studied in several degrees of gen-
erality. In particular for Ostwald ripening of anisotropic crystals, Fan et al. [4] presented
a model taking in consideration both the evolution of the compositional field and of the

crystallographic orientations.

Our objective in this paper is to do a mathematical analysis for a family of models of
Ostwald ripening related to that presented by Fan et al. [4]. Such family is constituted of

the following Cahn-Hilliard and Allen-Cahn equations:

8150 =V {D\“f' (BC}”,\ e RCAC)l s (m, t) & QT
Of; = —-L; (891,?;\ - H,zi:xgz) , (Cb“, f) € Qr
OnC = Og (8,Fs — K Ac) = Oub; =0, (z.t) € St

e(z.0) = ¢olz), Bi(x,0) =8z}, z€Q

fore=1....,p

(4.1)

Here, €2 is the physical region where the Ostwald process is occurring; Qr = Qx (0, T):
Sr =00 % (0,7); 0 < T < +oc; n denotes the unitary exterior normal vector and dy

The first author is supported by FAPESP, grant 98/15946-5
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is the exterior normal derivative at the boundary: ¢(z,t), for t € [0,7], 0 < T < +oc,
z € €, is the compositional fleld (fraction of the soluto with respect to the mixture);
6;(z,t), for ¢ = 1,...,p, are the crystallographic orientations fields; D, &., L;, x; are
positive constants related to the material properties. The function Fy = Fy(c, 61,...,6,)
is the local free energy density which is given by

A D
Fale, 01, 18) = =2 (e — ) + e — )t + 2(e — )’
2 4 4
Ds LN i 215 12-4 . @ pa & g0 (4.2)
[ — L —_— — JE=A L A3 i pep2
e e e+ 3 |~ Hlem eI + I IELE
= il ofstgm

where A € {0,1); ¢, and cg are the solubilities in the matrix phase and the second phase
respectively, and ¢, = (¢u + ¢3)/2. The positive coefficients 4, B, D,, D3, ~v. ¢ and =
are phenomenological parameters.

In this paper we obtain a unique (p-+1)-tuple which is a weak solution to Problem {4.1).

Our approach to the problem is to analyze a family of suitable systems which ap-
proximate the A-model presented at (4.1). In this analysis, we show that the approximate
solutions converge to a solution of the original A-model and this, in particular, will furnish
a rigorous proof of the existence of weak solutions (see the statement of Theorem 4.1). Our
approach uses an existence result presented by Passo et al. [1] for an Cahn-Hilliard/Allen-~
Cahn system with degenerate mobility.

Throughout this paper, standard notation will be used for the required functional
spaces. We denote by f the mean value of f in Q of a given f € L1(9).

4.2 Existence of Solutions

In this section we present our main result:

THEOREM 4.1 Let 7 > 0 and 2 C R?, 1 < d < 3 be a bounded domain with Lipschitz
boundary. For all ¢g, 6,0, ¢ = 1,...,p, satisfving ¢y, 8,0 € H*(Q), there exists a unique
(p+ 1)-tuple {c,0,.... .0,) such that, for i = 1,... ,p,

(a) ¢ € L=(0, T, HH(Q)) N L*(0, T, H*(Y));

(b) 8; € L>=(0, T, HH Q) " L*(0,T, H*{(SY));

90



(¢ e € L2(0.T. [HY )], 8.6; € L*(Qr);

(d) 8.7:)\(6 (91 76}'1)> 55 .7:)\((; 5’ ..... ,QP)GLQ(QT);
(&) (. 0) = colz), 6.z, 0) = By (z);

(f) Bacys, = Onbiy,, =01in L*(S7);

(g) (c 912 ..., By} satisfies

T
f {Ghe, d)dt = — / DV(8.F:(c.br,...,0,) — kAc)V, (4.3)
0 JJ ar

Vo e L2(0, T, H(Q)) and

/ 33‘9 2./2 = // L 59 fA C 91, ca 79?’) — fil.ﬁgz)’w% {44)
Qg

Yy; € L?{(Q7).i = 1,...,p, and where F is given by (4.2), {-,-) denotes the duality
pairing between H*({1) and its dual and (-, -) denotes the inner product in L*(Q).

The above uniqueness is proved below.

LeMMA 4.1 Under the hypotheses stated in Theorem 4.1, in the (p+1)-tuple which solves
(4.3)-{4.4) are uniquely determined.

Proof. We argue as Elliott and Luckhaus [3]. We introduce the Green’s operator G: given
f e [H (D w = {f € [HY(Q)], (f,1) = 0}, we define Gf € H'({)) as the unique
solution of

fvc:fwmg,@), Vo€ H'()  and fomO.
Q Q

Let 26 =¢; —¢s and 2% = 0,1 — b0, 1 = 1....,p. be the differences of two pair of solutions
o (4.3)-(4.4) as in Theorem 4.1. Let

¥ = D{aCFA(CL 911, ca :gpl) — 867-';\(02,912, e ,epg) et K,CAZCE.

Since equation (4.3} implies that the mean value of the composition field in © is conserved,
we have that (z°. 1) = 0 and we find from {4.3) that

—Gzf = 2%,
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The definition of the Green operator and the fact that (2°,1) = 0 give
— (VG2 ,VG=*) = —(Gzf, 2°) = (29, 2°) = (2", 2°).

Thus

%g"lVG : (DJ'a fA(Ci 911- - gpl) — SCJ”:,\(CQ,@H, . ,Gpg) — ;“‘CC.AZC:}%ZC) = {.

We find from (4.4) that

D d ‘

*é"i—gt" Z f -?-DHZJV,HH '2+D(89FA(C1 9;1.... pl)—agif,\(c’ggglg,... ,ng),zgl) = (),
By adding the above equations, using the convexity of the function [Fy+ H,}{c. 8:,... ,6,)
with

A £
H,\(c,é’h..._ﬁp):g{ - Cp)? Z(c—ca 2lgl2mA ZZ 3928”
St
and integrating by parts, we obtain
1d D d
- “\7 5!2 + K Vv er2 ) 712
5 o G2°1" + k. D|V2° +§L’L dtlz ] (5)

¥

< (V(HA(CLQM: s Op1) = Ha(e2, 012, 1 82)) - (25, 2. zep)? 1)

In order to estimate the term at the right hand side of the above inequality, we observe
that since ¢;,6;; € L™(0,T, H'((2)), we have

v({c1 — Ca)lez'llzw\ — ez = Ca)lgz‘ﬁ?w'\zc) = (20 * + (2 ~ o) (01777 = [62]774), 29

KoL) D
< ‘Ef f| 2% [stm)‘f”cJZ (20>
_‘2 — ,\ ¥ . — )
B2 (e~ o)1 sg(6) ~ (2 = o)l — sn(6i). 2°)
koD . Dr; .
< 1 V2720 + “‘“—‘“Vﬁ 320 + Cll2% 13000y + Clzl3e
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and

£i(067 fi26%, 2%) = ey;(2% 07 5+ B0+ 052) (051 — f0), 2%)
Dr; Dx

_ R gLt L

= 8( )H 2 HLZ(Q T 8(}')— 1)

The above inequalities together (4.5) imply that

oy, D d - Dx;
L2 (32; 2 zl 812
’)dttvg S+ v E[QL a1V |]

?
<C { 2oy T Zz |,252(Q}} :

=1

HVzHJ'H%z(_ + Cllz% |32y -+ Cllz% 113210y

From the definition of the Green operator, we have that [z°]? = (V§z°, Vz°). Using the
Hélder inequality, we can rewrite the above inequality as

- Dx;
52 ci? 2 li 4,12
‘Jdtlvg "+ V | Tz[zL i vz []

CIvg:z ll; *‘?‘Z[ !!%Z{Q)J -

A standard Gronwall argument then vields uniqueness since

20 =0 and ZH(0)=0, i=1,...,p

To obtain the result in Theorem 4.1, we approximate system (4.1) by a family of
suitable svstems and then pass to the limit. In Section 4.3, we use the results of Passo et
al. [1] to prove existence of solutions of such perturbed systems and to take the limit in
these svstems in the last sections.

For sake of simplicity of exposition, without loosing generality, we develop the proof
for the case of dimension one and for only one orientation field variable, that is, when
is a bounded open interval and p is equal to one, and thus we have just one orientation
field that we denote #. In this case, the local free energy density is reduced to

A D
Fale.0) == Slc= e+ Bl e+ Baem eyt e B2 e — gy
P 4 4 (4.6)
- E‘(c — o)1 + 194.



Even though the crossed terms of (4.2} involving the orientation field variables are absent
in above expression, when extending the result for p greater than one, they will not bring
any difficulty as we point out at the end of the paper.

4.3 Perturbed Systems

In this section we construct a family of perturbed systems. Such family depends on an
auxiliary parameter M which controls a truncation of the local free energy Fy which will
permit the application of an existence result of Passo et al. [1]. We consider

Fale, 0) = Fyle,8), —M <c <M

Outside the set [—M, M] x [=M, M], we extend the above function to satisfy

e Fanrlicimer) < Ug(M) and WOs Fontlloremy < Vo(M), (4.7)

8, FanP < K[c®+6°+1] and  |8Fwml? < K[t +60*+1], (48)

B FauP < K[®+6°+1] and  [BuFwml® < K[t + 6%+ 1], '
[P < Klc* + 0% + 1] and  Far > mr(A), (4.9)

YM >0, ¥e,0 € R, where K > 0 is a constant, for each A, mz(}) is a constant, and, for
each M, Up(M) and Vo (M) are also constants.

ReMARK. The above properties are not restrictive since they were already satisfied by
the original energy density (4.6).
The perturbed systems are given by

Oy = D{0.Foni(e.8) — Kelaz) py (z,t) € Qr

08 = ~L [95F(c,8) — wbzz), (x,t) € Qr (4.10)
OnC = Oa(0.Fani(C,8) — KeCrz) = Onf =0, (z,t) € S

o(,0) = colz),  8(x,0) = Bo(z), 1€

To solve the above problem, we shall use the next proposition which is an existence result
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stated by Passo et al. [1} to the following system:

Sy = [y (u,v) (frlu,v) — f‘ﬁluxr)xézz ()
O = —qolu, v) [folu, v) = Kotz . (z,t) € Qr
Onltt = Oqilgy = Oqv = 0, z,t)
u(z,0) = uylz), v{z.0)=vlz), z €82

(4.11)

where ¢; and f; satisfy:
(Hl) q; S C(RQ: R-L) with Jmin < g; < Jmax for some 0< Grmin < Gmax:

(H2) f1 € CHR* R) and f» € C(R% R), with [[filler + || fallce < Fp for some Fy > 0.

ProposITION 4.1 Assuming (H1), (H2) and ug, vy € H'{(Q), there exists a pair of
functions {u,v) such that:

(1). we L=, T, HY(Q)) N L0, T, H3() N C{0, T H(Q)), p < 1
(i), v e L=(0, T, H' (Q)) N L2(0, T, H*{O) N C{0, T H?(Q)), p < 1
(i), o € LA(0, T,[HHY)]), O e L*(Qr)

(iv). ¢(0) = ug and v(0) = vy in L*(2)
(v). Baug, = Onuy, = 0in L*(Sy)
(vi). (u, z,) solves (4.11) in the following sense:

/ (Byu, §)y = — ff g (w, V) (fi(u.v) — Kiton)z0:, Yo € L¥(0,T, H(Q))
o 2
[ v =[] astwodiat o) - ravealw, o€ @)
Qt Qg
REMARK. The regularity of the test functions with respect to ¢ allow us to obtain the
integrals over (0,¢), instead of (0,7) as originally presented by Passo et al. [1].

Since (4.7) holds, applying the above proposition, for each M > 0 there exists a
solution {cansr, @rpr) of Problem (4.10) in the following sense

{
/ {(Ocons, @) = ’“‘/ D(8.Fantlcanr. Orne) — 6elerntlnn )2 Oo (4.12)
0 Qe
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for 6 € L2(0, T, H'()) and

f by = — // L(8gFoarlcans, Oanr) — K10anr )2 )V, (4.13)
2 5

for v € L*(Qr).
Let us observe that equation for ¢y, in equation (4.12) implies that the mean value
of ¢yar in € is given by

anmlt) =6 (4.14)

4.4 Limit as M — o©

In this section we obtain some a priori estimates that allow taking the limit in the pa-
rameter i

LEMMA 4.2 There exists a constant C independent of M (sufficiently large) such that
(1). llesmlle=rmey < G

(). l[6arllz=ormtioy < O

(iil)- [[{@eFasr — Kclerss)as)elizzarn < Ca

(iv). [|[0sFanr — fi(gAM)mHLE(QT) <

(). IGeanel 2o rimoyy < Ch

(vi). 180xarllrzgny <G

(vit). Faar(erar, Oano)ll=oreioy < C:

Proof. To obtain items {iii). (iv) and (vii}, we argue as Passo et al. [1] and Elliott and
Garcke [2]. First, we observe that by the regularity of ciar and €,ar, we could take

OuFont — BelCanr)ze  and  8Fons — 6{0aas) s
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as test functions in the equations (4.12) and (4.13}, respectively, to obtain

t
/ {Brcant, OcFane — KelCant)pn) + / B:Oni B Fons — 5(0xns )z

/ D0 Fons — KelCans) oz f/ Li8sFonr — Klbanr) ezl
0, Qo

Also, given a small i > 0, we consider the functions

(4.15)

;. 34
Faran = Fore(Cantn, Orar) and Cun(t. x) = 7 / e (7, 2)dr
Ji—h
where we set ¢y (t, ) = ¢olz) for t < 0. Since Goammlt, ) € L2(r), we have

4
f {crarn)es [OcFanen — KelCantn)aa))dt +/ (Ornr )10 Fanen — wlbans)zz)
0 2
He 2 Ky,
= / [EHC,\Mh(t)]ziz + ggigmﬂx(tﬂ“ + fAMh(t)] ‘"““f [ 5 ~{[co] ‘] [Bo]of* + Fone(co, 90)} :
Q i

Taking the limit as A tends to zero in the above expression and using (4.15), we obtain

/ . D{(0:Fonr — Keleans)zz) // LIBoFans — K(0rn1)za]”

t 117
Ke
+ SOy + S Brarke@)ey + [ Foelt)

it 5y .
Sleole e + 5 10l iy + | Fon )

(!
|\)|?‘

for almost every ¢ € (0,T]. Using the regularity of the initial conditions (see Theorem 4.1)
and (4.9), we could choose Mj, depending only on the initial conditions, to obtain for all
M > M,

/ Di(8:Font — tclCont)a) // L{0s Farr — £(0xa1)za)
O Qr

(4.16)
+ el Ol 1wwummm+fﬂM <q

Nl??

which implies items (iii), {iv) and {vii} since we have {4.9). Using the Poincaré inequality
and (4.14), item (i) is also verified.
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To prove item (vij, we choose ¥ = 0,0, as a test function in {4.13), which vields

f/ 10,0, = ffﬂ L(BoFns — w(Oxas) ) 0o
Qr T
1/2
(f/ (O Fons — K(Orar)ax) ) (/ [0:85n1] ) .
QT O’I‘

/ Frar < 2/ 1661 + 2t // (Bebsnr)*dT < Co,
) 0 o

item (vi) and (4.16), then item (ii) is verified. Finally, item (v) follows since

[l < (I, 0 -sinni)” (I )

for all 9 € L?(0, T, H'(Q)).

Since we have

REMARK. From (4.16), using (4.9}, we obtain

/ ) D(0:Fapr — £c(Crns)as) // LiBs Fopr — k(Orar)az)
T QT
+ ”2—“[0)\11/!( Nallfzge) + é"'”gAML( Wiz < Ch.

LemmMa 4.3 For M sufficiently large, there exist a constant Cy independent of M such
that

(1). 1oFarellr2ormay < Cs,
(i) l10sFans 2o < Cs,
(iil). Ueanrlezlinzios < Cs,
(iv). lBrnrlzaliz2iem < Cs,

Proof. First, we prove items (ii) and (iv). From Lemma 4.2(iv), we have

/ (B Fanr)? — 25/ FeFont(Onnt)oe + & // (a2, < Cs. (4.17)
Qr O Qr
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Using (4.8), we obtain
; R Kg 2 T 6 I3
2105 F a1 10t )zz < —,2~§9,\ML;$ + Cs{as + By + 11

Thus, from Lemma 4.2(ii}, it follows from (4.17) that

2
/f (69?,\_%{)2 -+ %"” ff ig)\wjim < .
i S

Now, we prove item (ili). Defining, Hay = 0cFanr — KelCanrizes since [cauleg = 0, we

have
/ Hn = / O Fant
o O

/ (Hanls < Cy.

and from Lemma 4.2(iii),

We have

/ Hiy = f (8cFoane)* ~ 2] (BeFonr)orntlas + K2 /f [Caar)zg-
Qr Qr Qr o

On the other hand, we can write

f Hiy = [ [(Haa — Hapr]* + / o
Qr Qr
< Cp / Hyurlz f/ (8.Fau)”
S

where Cp denotes the Poincaré constant. Now, item (iii) follows from (4.8) and Lem-
ma 4.2(1) and (ii).
Finally, using again {4.8) and Lemma 4.2{i) and (ii), we obtain

IteR -7:)\7\4 L2(9r) < Cs.

Lemma 4.2(i) and (ii) imply that Héacf)\ﬁ,j]mﬂig(nr) is also bounded by a constant. Thus,
we have proved the item (i).
We can now state the following result.
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ProprOSITION 4.2 There exists a pair (¢, 6,) such that:
(i). ¢y € L=(0, T, HY{(Q)) N L*(0,T, H*(Y))
(ii). 8 € L®(0, T, H* () n L*{0, T. H*(Q))

i), Gy € L2(0, T, [HHQ)), 86, € L2 (Qr)

Y. 0, F (e, b5)s BaFalca. 0)) € L2 (Qp)

). [eale. = {Q*}SEWST =0in L*(Sy)

Jx%ST

)
)
(v). ex(0) = ¢p and 6,(0) = 6y in L*(Q)
)
)

i). {cy, 6y) solves the perturbed system (4.10) in the following sense:

T
[ (Ghn, 0) = — / ] DIBFrler.63) — re(ca)nelads
] Qo

for all © € L?(0, T, H*(Q)), and

f O =~ [/ L(GaF(ca,05) — £(03)z)¥
Qp Or
for all v € L*(Qr), and F, is given by (4.6).

Proof. First, let us observe that from Lemma 4.2(iii) and Lemma 4.3(i), the norm of
[eanslzze in L2(Q7) is bounded by a constant which does not depend on M. This fact, the
estimates of Lemmas 4.2 and 4.3 together with a compactness argument imply that there
exists a subsequence (still denoted by {{caar,%air)}) that satisfies (as M goes to infinity)

et Gar converge weakly-* to ey in L0, T, HY{Q)),
e, converges weakly to ex in L0, 7T, H*(Q)),

NS converges weakly to 8y, in L?(0,T, H*(Q)),

dseanr, converges weakly to Siex in L0, T, [HY{Q)]),
3B, converges weakly to 8,0, in L*Q)

Cangs s converge to e, By in LEH(Qy).
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By recalling Lemmas 4.2 and 4.3, items (i)-(iii) now follow. Now, items (i) and (ii} of
Lemma 4.3 imply that

. Fanrlcaar, Ong)  converges weakly to G in  L*(Qp),

OeFonr(Gonr, Oanr)  converges weakly to M in LQ(QT).

Since the strong convergence of the sequence {c, ;) implies that (at least for a subsequence)
0. Fns(Cangs Oanr) converges pointwise in Qp, it follows from Lemma 1.3 from Lions [3],
p. 12. that § = 8.F.{c,,8,). Similarly, we have H = $hF,(cy,#y). Thus item (iv) is
proved.

Item (v) is straightforward. Now, by compactness we have that

chw converges to ¢y in L0, T, H*?(Q)), p>0,
By converges to @, in L7(0,T,H* 7)), p>0,

which imply item (vi).

To prove item {vii), by using the previous convergences, we pass to the limit as M goes
to infinity in the equations (4.12) and {4.13). Now, we complete the proof of Theorem 4.1.
We argue that slight changes in the arguments previously presented prove the Theorem
for higher spatial dimensions and p > 1.

Proof. Firstly, we discuss the case when the spatial dimension satisfies d = 2,3. We
start by remarking that, as observed by Passo et al. [1], Proposition 4.1 is valid for any
dimension. Also, all of our previous arguments hold for dimensions d = 2,3. In higher
dimensions, we use an argurent of elliptic regularity of the Laplacian to obtain estimates
in L?(0, T, H*(Y)) and in L0, T, H*(O)).

Now we explain the necessary modifications when the number of crystallographic ori-
entations is larger than one. In this case, the local free energy density is given by

4 2, B ¢, Da 4

Fale,0) = — Fle—cm)® + Z(C—Cm) ﬂ“T(c—ca)

, B
— 23 e~ ca)?lBP + 94 Z gz .
T =l

Let us note that increasing the introduction of the mixed terms depending only on the 6;’s
(the last terms) will not change greatly the arguments presented in the case when p was
equal to one. In the following we point out how our previous estimates can be extended
for the case when p is larger than one.

+ %(C - C@)
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The main feature of the perturbed systems in Section 4.3 is that their corresponding
local free energy density have lower bounds that do not depend on the truncation pa-
rameter M. Since the extended local free energy just introduces non negative terms, we
can define a similar truncation that maintains the same property, with such perturbed
svstems it is then possible to similarly establish Lemma 4.2.

As for Lemma 4.3, we treat the new terms by using the immersion of H*(Q2) in L*{Q2)
and the estimates for the orientation field variables given in Lemma 4.2.

After we have extended the results of Lemmas 4.2 and 4.3, all the other lemmas are
their direct consequence without any significative change due to the introduction of the

new terms.
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Capitulo 5

Densidade de Energia Livre
Limitada Inferiormente

Resumo

Analisamos um sistema de equagdes diferenciais parciais proposto por Fan, L.-
Q. Chen, 8. Chen e Voorhees no caso em que a densidade de energia livre local
¢ limitada inferiormente. Tal sistema modela o fenémeno “Ostwald ripening” em
sistemas bifdsicos e acopla uma equagao do tipo Cahn-Hilliard a vdrias equagdes do
tipo Allen-Cahn. Provamos a existéncia e unicidade de uma solugio fraca.



A Weak Solution of a Model for Ostwald Ripening

Patricia Nunes da Silva José Luiz Boldrini

nunes@ime. unicamp.br boldrini@ime. unicamp.br

Abstract

We analyze a system of partial differential equations proposed by Fan, L.-Q.
Chen, S. Chen and Voorhees in the case that the local free energy density has a
jower bound. This system consists of a Cahn-Hilliard and several Allen-Cahn type
equations and model Ostwald ripening in two-phase systems. We prove the existence
and uniqueness of a weak solution.

5.1 Introduction

(Ostwald ripening is a phenomenon observed in a wide variety of two-phase systems in
which there is coarsening of one phase dispersed in the matrix of another. Because its
practical importance, this process has been extensively studied in several degrees of gen-
erality. In particular for Ostwald ripening of anisotropic crystals, Fan et al. [4] presented
a model taking in consideration both the evolution of the compositional field and of the
crystallographic orientations.

Our objective in this paper is to do a mathematical analysis for a model of Ostwald
ripening presented by Fan et al. [4] in the case that the local free energy density has a
lower bound. Such model is constituted of the following Cahn-Hilliard and Allen-Cahn

equations:
Oic =V - [DV (8.F — r.Ac)], (z,t) € Qr
8t9i = "'Li (&991,.? o ﬁlz_ﬁgz) . (33, t) & ..QT (_ })
3.
One = Oy (O.F — K Ac) = 346; =0, (z,t) € St

c(x,0) = colz), 6;(z,0) =bp{z), €0

The first author is supported by FAPESP, grant 98/15946-5
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fori=1,...,p

Here, 2 is the physical region where the Ostwald process is occurring; {2y = 2% {0,7);
Sr=080x(0,7); 0 <T < +00; n denotes the unitary exterior normal vector and Jy
is the exterior normal derivative at the boundary; ¢{z,t), for 1 € [0,7], 0 < T < +ox,

z € Q, is the compositional field (fraction of the soluto with respect to the mixture);
;(z,t), for ¢ = 1,...,p, are the crystallographic orientations fields; D, k., L;, «; are
positive constants related to the material properties. The function F = F{c,6y,... ,6,)
is the local free energy density which is given by
A B D
Fle,by,...,0,) = ...,.5_(,3 ~ Cyn)? Z(c — )t + wf(c —co)?
D 4 - 7 252 L 0 —~ v S o o (5:2)
-%'—I(C — ) + 2:1 —5(6 - )i + 19;- + Zl ‘;1 3@‘ o5
== =1 ffj=

¢e and ¢z are the solubilities in the matrix phase and the second phase respectively, and
Cm = (€o +¢5)/2. The positive coefficients A, B, D,, Dg, 7, ¢ and ¢;; are phenomenolog-
ical parameters.

In this paper we obtain a unique {p+1)-tuple which is a weak solution to Problem {5.1)
when local free energy density given in (5.2) is such that

Flc,b1,...,0,) = me, Ve, 0, ... .8, € R

We remark that the above assumption is satisfied, for example, if there exists E > 0 such
that (D, + Dg) — pv, 6 — vE > 0.

Qur approach to the problem is to analyze a family of suitable systems which ap-
proximate the model presented at (5.1). In this analysis, we show that the approximate
solutions converge to a sclution of the original model and this, in particular, will furnish a
rigorous proof of the existence of weak solutions (see the statement of Theorem 5.1). Qur
approach uses an existence result presented by Passo et al. [1] for an Cahn-Hilliard/Allen-
Cahn system with degenerate mobility.

Throughout this paper, standard notation will be used for the required functional
spaces. We denote by f the mean value of f in ) of a given f € L1(Q).

5.2 Existence of Solutions

In this section we present our main result:
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THEOREM 5.1 Let T > 0 and 2 € RY 1 < d < 3 be a bounded domain with Lipschitz
boundary. For all ¢p, 6.1 = 1,...,p, satisfying ¢, G € HY(S2), there exists a unique
(p -+ 1)-tuple (c,8,... .6, such that, fori = 1,....p,

(a) c € L>=(0, T, HY()) n L*(0. T, H*(£Y));

(b) 8; € L>=(0.T. HY Q) N L0, T, H*(O));

(c) e € L*(0,T,[HY (), 8:8; € L*(Qr);

() 8,F(c, 01, ... .6,), 0a.Flc.by,....0,) € L*Q);
(e) clz,0) = colz), O:{z,0) = bn(z);

(f) ncyg, = Onby, = 01n L%(Sr):

(g) (¢,61,. .. ,0p) satisfles

T .
f (B¢, S)dt = — / f DV(8.F(c,6s,... .6,) — ke AC)VS, (5.3)
] Qr

Yo € L2(0, T, H(Q)) and

/ O = — // Li(0g. F(c.01,. .. ,0p) — 5Ny, (5.4)
Or ar

Vi, € L#(Qr),i=1,....p, and where F is given by (5.2}, (-, -) denotes the duality pairing
between H' (1) and its dual and (-, -) denotes the inner product in L?(Q2).

The above uniqueness is proved below.

LeMMa 5.1 Under the hypotheses stated in Theorem 5.1, the (p + 1)-tuple which solves
(5.3)-(5.4) is uniquely determined.

Proof. We argue as Elliott and Luckhaus [3]. We introduce the Green’s operator G: given
fe H D = {f € [H(Q), {(f.1) = 0}, we define Gf € H'(Q) as the unique
solution of

/vefwm(f,@}, voe HYQ)  and /Gf:(],
0 {1

Let 25 =c¢; —cpand 2% =0 — G5, 1 = 1,... , p, be the differences of two pair of solutions
to (5.3)-(5.4) as in Theorem 5.1. Let

2¥ = D[&C.’F(Cl, 911, L ,E}m) -— 8Cf(Cg, 9121 . ,ng) - K,C.ﬁzc].
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Since equation {5.3) implies that the mean value of the composition fleld in {2 is conserved,
., 1) = 0 and we find from (5.3} that

—~Gzf = 2%

we have that (2°

The definition of the Green operator and the fact that (2¢,1) = 0 give

) = (¥, ) = (2%, 2).

—(VGz,VG2*) = —(Gzf, »

We find from {5.4) that

D ‘
d |" F + DﬁiinQilz -t D(@gif(cl, 611, . 39;91) — 89if(62?9127 . ,9;,2),2’85) = 0.

2L; di
By adding the above equations, using the convexity of the function [F+ Hli(c, 6,,... ,6,)
with
A 2 Eij y22
Hc.f1... .0;) = S(c~ )’ Z )62 — ZZ 16262,
=1 ighj=1
and integrating by parts, we obtain
1d d
__m_v ci?_‘_ CDV Cl2 ]925 2
5 Gz KDV ¢ +Z L’L 7 + Dr;| V2% I} (5.5)

< (V(H(CI:GH:“- : p1> - (02;912;--- :gpQ)) : (Zc,i’?al:--- yzap):l)-

In order to estimate the term at the right hand side of the above inequality, we observe

that since ¢;,8;; € L>(0,T, H'(£2)), we have
) = “;’(26931 + (€2 — o) (65 — 0%), 2°)

(e = ca)bl) — (c2 — ca )b,
D’{H |
AvE o+ C || 2% !L 2ny 1 Cllz° ”Lzm)

Af((cl - Ca)ggil - (CQ - Ca)zgig Zgi)
K’CD < . Dfig
¥ ' ; Hv hL’)(Q) J CHZ riLz(Q} T C”Z !iLWQ)?
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and

5:](6213 12937 Z i) 5'9(2 92 + 932(931—}-932)(9 ng):zg")

Dr; Dk
< 2|2, )+ —— [V |2 + C] Clz%12: 0.
= 8(3’)"‘ 1)13 Z 2002) 8('p )H IIL £93) ?Z {lLQ(Q e AR (@)

The above inequalities together (5.5) imply that

kD "D d Dk,
VGz +C e? il P %vg
Odtlgl ~= V2] ;[mdt | |
14
< C e “rzgizei%]?z(gp}
i=1

From the definition of the Green operator, we have that |2°1* = (VG2z%, Vz°). Using the
Hélder inequality, we can rewrite the above inequality as

kD P {D d. o2 D&z‘v }

\vj c2 ey 1‘2‘{”
th[ G" o+ =1V > oL, dt’

14
<C {[?ngcim o)+ Z 125112 20
i=1

A standard Gronwall argument then yields uniqueness since
z°(0) =0 and 20)=0, i=1...,p
|

To obtain the result in Theorem 5.1, we approximate system (5.1) by a family of
suitable systems and then pass to the limit. In Section 5.3, we use the results of Passo et
al. 1] to prove existence of solutions of such perturbed systems and to take the limit in
these systems in the last sections.

For sake of simplicity of exposition, without loosing generality, we develop the proof
for the case of dimension one and for only one orientation field variable, that is, when )
is a bounded open interval and p is equal to one, and thus we have just one orientation
field that we denote #. In this case, the local free energy density is reduced to

A B . D,

Fled) = = Sle—cn) + Zle—cn)t + e —ca)t + e = c)’
- 5 (5.6)
g(c — o) 9% + ——94.
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Even though the crossed terms of (5.2) involving the orientation field variables are absent
in above expression, when extending the result for p greater than one, they will not bring
any difficulty as we point out at the end of the paper.

5.3 Perturbed Systems

In this section, we construct a family of perturbed systems. Such family depends on an
auxiliary parameter M which controls a truncation of the local free energy F which will
permit the application of an existence result of Passo et al. [1]. We consider

.ﬁw(c, 6) = }-(C, 8) -~ M < C}Q < M. (57)

Outside the set [—M, M] x [-M, M], we extend the above function to satisfy

0. Farllermery S Ug(M) and |Os Frsllomer) < Vo(M), (5.8)
0. Fur|? < K[c® +6° + 1] and B Far? < Kl + 6" + 1],
|05 Fnr!? < Kic® + 8% + 1] and [0 F > < K[c* +6* + 1],

|Farl < Kle* + 6 + 1] and Fur = mr, (5.10)

(5.9)

VM > 0, VYe,8 € R, where K > (0 is a constant, mys is a constant, and, for each M,
Us(M) and Vy(A) are also constants.

REMARK. The above properties are not restrictive since they were already satisfied by
the original energy density (5.6).
The perturbed systems are given by

Osc = D (0. Far(c, 0) — Koluz),y s {z,t} € Qp

Wl = —L [0sF1(c,8) — by, (z,t) € Qr (5.11)
One = 0n(0.Fs(€,0) — Kelpp) = I =0, (z,t) € St

c(x,0) = eglz), 8(z,0) = by(z), z el

To solve the above problem, we shall use the next proposition which is an existence result
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stated by Passo et al. [1] to the following system:

Jiu = [9?1(“: 1) (fz (U: 1‘) - mum)gz, (fft) € Oy
v = —ga(u, v) [folu, v) — kovee],  (2.8) € Or ;
(5.12)
Butt == Batiy = Oyv = 0, (z,t) € Sr
u(z,0) = ug(x), v(z,0) =volz), 2z€0

where ¢; and f; satisfyv:
(H1) ¢; € C(RER7), with gmin < ¢ < Grmax £0T 50me 0 < Gunin < Gomax;

(H2) f1 € CYR*% R) and f> € C(R? R), with {|filjc: + || fallce < Fy for some Fy > 0.

PROPOSITION 3.1 Assuming (H1), (H2) and ug, vy € H(Q), there exists a pair of
functions {u, v) such that:

(1). we L=(0, T, H () n L0, T, H3(Q)) n C{{0, T HMM)), A < 1
(). ve L=, T, HH{D) n L*(0, T, H2(Q)) N C0, T): HMO), A < 1
(iii). du € LA(0. T,[HHQ)), Ow € L*(Qr)
(iv). u(0) = up and v(0) = v in L2 ()
(v). Batys, = Oav, = 0in L*(Sr)
{(vi). (u,v) solves {5.12} in the following sense:
/ {Byu, §) // g1 (1, V) (fLlu, v) — Kiley)26e. Yo € L2(0, T, HHQ))
2
Jf owi =[] ww )t - svav. o e @n).
9 Q
REMARK. The regularity of the test functions with respect to ¢ allow us to obtain the
integrals over (0,t), instead of (0, T) as originally presented by Passo et al. [1].

Since {5.8) holds, applving the above proposition, for each M > 0 there exists a
solution {car, @ns) of Problem (5.11) in the following sense

i
/ (Decnr, &) = W/ D(0:.Far(car, Our) — Kelonrlzn) 20, (5.13)
0 0
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for ¢ € L*(0, 7, H*(Q)) and

f Oy = — // L(3gFn(car, Ons) — &[0ui]22)0, (5.14)
o Iy

for i € L*(Qr).
Let us observe that equation for ¢ in equation (5.13) implies that the mean value of
ca in £ is given by

car(t) =7 (5.15)

5.4 Limit as M — o

In this section we obtain some a priori estimates that allow taking the limit in the pa-
rameter M.

LEMMA 5.2 There exists a constant ) independent of M (sufficiently large) such that
(1)- llearll ooy < Ch

(i), l0arll ooy < Ci

(1), [{8:Fm = kelerr)as)allzzieyy < C

(iv). [18sFnr — 6(Oar)ezlL2iar < Cy

(v). li@cenl ez may; < C1

(vi). 19:0x L2002y < Co

(vil). [Far(ear. Odllzeriioy < C1

Proof. To obtain items (iii), (iv} and {vii), we argue as Passo et al. [1] and Elliott and
Garcke [2]. First, we observe that by the regularity of ¢); and 6, we could take

ach - ’gc(cM)a::c and 89-?:1\/[ - ﬁ(gM)zz
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as test functions in the equations (5.13) and (5.14). respectively, to obtain
i
/ (Occar, OcFns — KolCar)oa) + f 3z9w35fw — &(0n )2z

(5.16)
= —~f D(8:F = kolcar)zee)” // L{OsFar — k{ar)za)’-
Qs I8

Also, given: a small A > 0, we consider the functions

—t

Fae = Farlearn, Onr) and  cwnlt,z) =

i
5 fz~h car(T, z)dr

where we set ey {t, ) = ¢o(z) for t < 0. Since Seum(t, 1) € L*(Qr), we have

t
f ((C_Mh)t: [3c-7:,m - fic(cﬂm)ml)dt + / (Q;M)tgaaf;wh - &(HJW)Ixj
o 0,
.g-KfC 1 1 Y
= f [“é‘\[CMh(t)émfz + fﬁ?{gﬂi]z(ﬂ]? o f-Mh(t)]
(9
~ | Tl ealel* + SN B0l + Far(co, o) |
qlt2 2
Taking the limit as i tends to zero in the above expression and using (5.16), we obtain
J[ Dt - ntestant?+ [ vy~ et
Qg Qt
] RC
+ Flleae W2y + =103 )(1)] 1330y + ﬁw(f
2
K

—Ommumm+n%am@+/fw%%>

Evt?ﬁ

for almost every ¢ € (0, T]. Using the regularity of the initial conditions (see Theorem 5.1)

(5.7) and (5.10), we could choose My, depending only on the initial conditions, to obtain
for all M > M,

// D{(ach - ffc(cﬂ/i’)azz):c}? + ]/ L[aﬂfM - ’i(gM)xx]Q
Qo 2

K & (5.17)
+ g lleade@llza0) + F1Barle (a0 + A Fult) < C
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which implies items (iii), (iv) and (vii) since we have (5.10). Using the Poincaré inequality
and (5.15), item (1) is also verified.
To prove item {vi), we choose ¢ = 3,8, as a test function in (5.14), which vields

/f 201 = // L(BaF s — 6{011)22)0:00s
O Qr
1/2
(// 6gfwwfigw$$) (f azM)
Qr

f M< 2] IQQ[ ﬂ—{)f/\ até’M d/ <Cg
r

item (v1) and (5.17), then item (i1} s verified. Finally, item (v) follows since

1/2
/ 8t6‘vf @ ﬂ (/ D a FM' (CJW a:a: ) (// @53 )
0 i G

for all ¢ € L2(0,T, H(Q)).

Since we have

REMARK. From (3.17), using (5.10), we obtain

f/QTD M - hc(c’w’)xaz) 12 -+ //QT L[aan - K(HM)EI}Q
+ Slless Oalizaqy + Bl @E) < Cr.

...*

LEmMA 5.3 For M sufficiently large, there exist a constant Cs independent of M such
that

(). §0Furlrzer.m iy < Ca,
(i1). 0aFnll 20 < Cs,
(111) JEI{CM}E.’EELZ(QT} < C3r

(i\«') {HM’ z:c“ (1) < CS:
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Proof. First, we prove items (ii) and (iv). From Lemma 5.2(iv}, we have

/ 69.7:%[) - Oh/ ang{QM + K // [9\4 xx < (s, (5.18)
Q7 2

Using (5.9}, we obtain

2605 F 31 [02s)ez < ";j;* 0212, + Calch, + 05 + 1.

Thus, from Lemma 5.2(ii), it follows from (5.18) that

f/ 39.7:1{ ‘f"%// HMQ < Cs.
Cr = it

Now, we prove item (ili). Defining, Has == 8. Far ~ KelCaslzz, since CM] = (), we have

/ Hyp = / OcFar,
JJ oo 1 ar
/ Hy2 < Cy.
Qr
We have

/ u“—/ afﬂu “9/:/ 6?1,1 Cw *“!-"ﬁ: // Cwm
Qp S Qr

On the other hand, we can write

/ Hy = / [Hy — Hul? ‘?/ Hy' < CP/ [Hull "”/ (0 F )
r Qr Qr Qp Qp

where C'p denotes the Poincaré constant. Now, item (iii} follows from (5.9) and Lem-
ma 5.2(1) and (ii}.
Finally, using again {5.9) and Lemma 5.2(i} and (ii), we obtain

and from Lemma 5.2(iii),

Hacfﬁ/fH%Z(QT S Cg.

Lemma 3.2(i) and (ii) imply that |[[0.F]l12. 72(0y) 18 also bounded by a constant. Thus,
we have proved the item (i).
We can now state the following result.



ProPOSITION 5.2 There exists a pair {¢, #) such that:

(). ¢ L(0, T, HH{) 1 L0, T, H* ()
(). 8 € L=(0. T, HY(Q)) N L0, T, H(S))
).

(iil). e e L2(0, T, [HY(Q)), 86 € L3(Qy)
(iv). 8,F(c,8), 9F(c,0) € L*(Qr)

(v). ¢(0) = ¢y and 0(0) = 6 in L2(Q)

(D). [dloy,, = [Bley,, =00 L2(Sr)

{vii). (c,#) solves the perturbed system (5.11) in the following sense:

/ (Buc, 6) = //QTD(?fc@wﬁc()m}

for all ¢ € L?(0, T, H*(1))}, and

f Qr o =~ //QT L(85F(c,0) = £(8)ze )

for all v € L*(Q7), and F is given by (5.6).

Proof. First, let us observe that from Lemma 5.2(iii) and Lemma 5.3(i}, the norm of
[ear]zzz 10 L?($27) is bounded by a constant which does not depend on M. This fact, the
estimates of Lemmas 5.2 and 5.3 together with a compactness argument imply that there
exists a subsequence (still denoted by {{cas, 627)}) that satisfies (as M goes to infinity)

e B converge weakly-* to ¢, 8 in L0, T, H'{(Q)),
Carfs converges weakly to ¢ in L*0,T, H*(Q)),

621 converges weakly to 8 in L*0.T, H*(Q)),

et converges weakly to e in  L*(0.7,[H(Q)]),
0:8r, converges weakly to 8.6 in L*(Qyp)

car, Oar converge to c.6 in L*Qp).
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By recalling Lemmas 5.2 and 5.3, items (i)-{iii} now follow. Now, items (i} and (ii) of
Lemma 5.3 imply that

B.Farlcar. 0n) converges weaklvto G in L*(Qr),

OsFri(car, Bas) converges weakly to H in  L*(r).

Since the strong convergence of the sequence {cyr) implies that (at least for a subsequence)
3. Faslcar, Bar) converges pointwise in Qr to 8,F(c.0), it follows from Lemma 1.3 from
Lions [5], p. 12, that G = 8,F(c,8). Similarly, we have H = 0F (¢,8}. Thus item (iv) is
proved.

Item (v} is straightforward. Now, by compactness we have that

¢y converges to ¢ in L*0.T, H*?(Q)). p>0,
8y converges to 6 in L*0.7,H*?(Q), p>0,

which imply item (vi).

To prove item (vii}), by using the previous convergences, we pass to the limit as M goes
to infinity in the equations (5.13) and {5.14). Now, we complete the proof of Theorem 5.1.
We argue that slight changes in the arguments previously presented prove the Theorem
for higher spatial dimensions and p > 1.

Proof. Firstly, we discuss the case when the spatial dimension satisfies d = 2,3. We
start by remarking that, as observed by Passo et al. [1], Proposition 5.1 is valid for any
dimension. Also, all of our previous arguments hold for dimensions d = 2,3. In higher
dimensions, we use an argument of elliptic regularity of the Laplacian to obtain estimates
in L2(0, T, H*(Q)) and in L0, T, H?(Q)).

Now we explain the necessary modifications when the number of crystallographic ori-
entations is larger than one. In this case, the local free energy density is given by

_ .4. 2, B 4 D& 4 Dﬁ 4
J”:(C,G)m—«é_@mcm) —.—-le(c—cm) TE’(C"CQ) +*‘4’(C—CQ)
”?’Ep: 242 O 4 Zp Eij n2po
— '"j - (C— CQ) 8; -t 192 -+ =, ?91 G

Let us note that increasing the introduction of the mixed terms depending only on the 8;’s
(the last terms) will not change greatly the arguments presented in the case when p was
equal to one. In the following we point out how our previous estimates can be extended
for the case when p is larger than one.
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The main feature of the perturbed systems in Section 5.3 is that their corresponding
local free energy densitv have lower bounds that do not depend on the truncation pa-
rameter M. Since the extended local free energy just introduces non negative terms, we
can define a similar truncation that maintains the same property, with such perturbed
systems it is then possible to similarly establish Lemma 5.2.

As for Lemma 5.3, we treat the new terms by using the immersion of H1(Q} in L*(2)
and the estimates for the orientation field variables given in Lemma 5.2.

After we have extended the results of Lemmas 5.2 and 5.3, all the other lemmas are
their direct consequence without any significative change due to the introduction of the
new ierms. |
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Conclusao

A maljor dificuldade que encontramos no desenvolvimento deste trabalho foi devida ao
fato da densidade de energia livre local associada ao sistema de equacdes diferenciais
parciais proposto por Fan et al. [15] nao ser limitada inferiormente. A limitaco inferior
da densidade de energia livre local é uma caracteristica comumente presente em modelos
envolvendo somente a equacao de Cahn-Hilliard bem como em sistemas que acoplam
equagoes do tipo Cahn-Hilliard e do tipo Allen-Cahn. Em nosso caso, a falta de limitagao
é devida essencialmente aos termos, presentes na funcao F, que acoplam a varidvel de
campo associada & concentracio e as varidveis associadas as orientagoes cristalograficas.

A fim de contornar tal dificuldade e baseados nas observacdes feitas nos artigos sobre
as propriedades da funcdo F, propusemos, no Capitulo 1, uma familia de sistemas rela-
cionados ao sistema proposto originalmente por Fan et al. [15]. Em tal familia, a funcéo
F satisfaz as propriedades citadas e hd exemplos cujas respectivas funcoes F coincidem
em uma bola com a F proposta no modelo original. Para esta familia obtivemos um
resultado de existéncia e unicidade de uma solucao fraca. Ainda para esta familia, no
Capitulo 3, melhoramos a regularidade da solugao fraca.

No Capitulo 2, obtivemos existéncia e unicidade de uma solucao generalizada para o
modelo proposto por Fan et al. [15]; neste caso, obtivemos uma estimativa L no espaco
e no tempo para componente associada a concentracdo. Tal estimativa satisfaz uma exi-
géncia fisica de que a concentracao assuma valores em um intervalo fechado determinado
por valores associados ao modelo.

Ainda com o objetivo de limitar inferiomente o funcional de energia associado ao sis-
tema, no Capitulo 4, apresentamos uma nova familia de sistemas em que modificamos
a ordem dos termos que acoplam a varidvel de campo associada a concentracio e as
varidveis associadas as orientacgoes cristalograficas. Para tal familia apresentamos resul-
tados de existéncia e unicidade de solucdo com a mesma regularidade da solucdo obtida
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no Capitulo 3.

Para efeito de completude, no Capitulo 5, apresentamos resultados de existéncia e
unicidade de solu¢do para o modelo proposto por Fan et al. [15] em um caso especial em
que temos a limitacdo da densidade de energia livre local associada ao sistema. Obtivemos
existéncia e unicidade de uma solucio fraca.

Em termos de trabalhos futuros, pretendemos estudar o comportamento assintético
das soluctes obtidas bem como prosseguir o estudo destes sistemas incorporando efeitos
convectivos.
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