A TEORIA DOS PONTOS PRÓXIMOS SOBRE VARIEDADES DIFERENCIAVEIS SEGUNDO ANDRÉ WEIL

ANTONIO CARLOS GILLI MARTINS

DRIENTADOR

PROF.DR.EDUARDO SEBASTIANI FERREIRA

Dissertação apresentada ao Instituto de Matemática, Estatística e Ciência da Computação da Universidade Estadual de Campinas como requisito parcial para a obtenção do título de Mestre em Matemática.

Este trabalho foi realizado com auxílio financeiro do Conselho Nacional de Pesquisas (CNPq.).

Dutubro de 1977.

UNICAMP BIBLIOJECA CENTRAL

COORDENAÇÃO DOS CURSOS DE PÓS-GRADUAÇÃO

UNICAMP AUTORIZAÇÃO PARA QUE A UNICAMP POSSA FORNECER. A PRE-

Nome do Aluno: Antonio Carlos Gilli Martins

Nº de Identificação: 755025

Endereço para Correspondência:Ferreira Penteado 928 ap.2 Campinas

Curso:Matematica

Nome do Orientador: Eduardo Sebastiani Ferreira

Título da Dissertação ou Tese: Teoria dos pontos próximos sobre varie-

dades diferenciaveis segundo Andre Weil

Data proposta para a Defesa:

19 de Dezembro de 1977

(O Aluno deverá assinar um dos 3 itens abaixo)

1) Autorizo a Universidade Estadual de Campinas a partir des ta data, a fornecer, a preço de custo, cópias de minha Dissertação ou Tese a interessados.

				
Data	assinatura	do	aluno	

2) Autorizo a Universidade Estadual de Campinas, a fornecer, a partir de dois anos após esta data, a preço de custo, cópias de minha Dissertação ou Tese a interessados.

Data	assinatura	do	aluno	

3) Solicito que a Universidade Estadual de Campinas me consulte, dois anos após esta data, quanto à minha autorização para o forne cimento de cópias de minha Dissertação ou Tese, a preço de custo, a interessados.

25/10/77 Data

assinatura

ra do alunc

AGRADECIMENTOS

Ao prof. Eduardo Sebastiani Ferreira que, com sua segura orientação, permitiu a relização deste trabalho.

Aos meus país pela confiança e esforços feitos para que eu pudesse estudar,

Ao colega José Luís Boldrini e aos professores pelas discussões e ensinamentos.

Ao Conselho Nacional de Pesquisas - CNPq - pelo suporte financeiro que tornou possivel a realização deste traba-

Enfim, a todos que colaboraram direta ou indiretamente para a realização do mesmo.

A estes, uma palavra de gratidão.

Antonio Carlos Gilli Martins.

A TEORIA DOS PONTOS PRÓXIMOS SOBRE VARIEDADES DIFERENCIAVEIS SEGUNDO ANDRÉ WEIL

Introdução.

CAPITULO O-Notações e terminologias	. 1
CAPITULO 1-Algebra local	e
CAPITULO 2-A-pontos próximos	18
CAPITULO 3-Prolongamentos de V de espécie A	28
CAPITULO 4-Transitividade do prolongamento	38
BIBLIOGRAFIA	45

INTRODUÇÃO

Nos meados deste século, A. Weil se propoz a estudar algumas das idéias de seu mestre N.Bourbaki sobre a teoria dos pontos " próximos " ou " infinitamente vizinhos" sobre as variedades diferenciaveis que possuia dupla origem: a primeira era o retorno aos métodos de Fermat no cálculo infinitesimal de primeira ordem e , a segunda, a teoria dos jatos desenvolvida nos anos 40 por Ch. Ehresmann.

Essa teoria tem por objetivo fornecer, para o cálculo diferencial de ordem infinitesimal qualquer sobre uma variedade, métodos de cálculo e notações intrínsecas que sejam também bem adaptadas ao seu assunto, e, se possivel, mais cômodas que estas do cálculo tensorial clássico. de primeira ordem.

Na presente dissertação, o objetivo não é o de desenvolver a teoria dos pontos " próximos" para o cálculo infinite simal, mas sim o de aproveita - la no sentido de generalizar a teoria dos jatos de Ehresmann e intenciona-se ainda em fornecer definições e resultados, ou seja , pré-requisitos , para a teoria de prolongamentos de tipo A de uma variedade , que , naturalmente , generalizam o conceito dos fibrados de referenciais no sentido de (5).

Quanto a sua aplicabilidade aos modelos matemáticos, espera-se que esses prolongamentos de tipo A sirvam de ferramentas para a resolução de problemas na teoria dos pseudo-grupos de Lie infinitos, assim como foram úteis no estudo de G-estruturas em Geometria Diferencial , recentemente , por Morimoto e Koszul, e, ainda, por Morimoto-Nagoya Universty, 1975- que forneceu toda a teoria de G-estruturas sob esse ponto de vista.

Dessa forma, no capítulo O , é feita a abordagem dos elementos algébricos e geométricos básicos, com maior enfoque à ágebra das séries formais. No capítulo 1 a caracterização das álgebras locais através de quocientes das álgebra das séries formais por seus ideais de codimensão finita e , no capítulo 2 , a teoria sobre os A-pontos de V próximos de x de V.

O capítulo 3 é destinado a dar ao conjunto dos Apontos próximos a V uma estrutura de variedade fibrada sobre V e também fornecer alguns elementos para que, no capítulo 4, sejam da das, finalmente, as noções de prolongamentos algébricos de tipo A e sua transitividade.

CAPITULO 0

NOTAÇÕES E TERMINOLOGIAS

Será feita, neste capítulo, uma revisão suscinta dos conceitos básicos que serão usados, com finalidade de fixar terminologia e notações. A intenção é a de ser breve na recapitulação, ao mesmo tempo emque todo esforço será feito para dar ao leitor os conhecimentos necessários à uma leitura proveitosa desta dissertação. Para exposições mais detalhadas, o leitor deverá se dirigir aos textos existentes na bibliografia, (c.f. (1),(2),(5)).

Um corpo K será ,doravante, sempre suposto ser de característica zero.

์ น.(v+พ)=ถv + ยีพ

(u + v)w=uw + vw

 $(\lambda u)v=u(\lambda v)=\lambda(uv)$

quaisquer que sejam u,v,w, em A ex em K.

Uma álgebra é dita <u>associativa</u> quando se tem u(vw)=
=(uv)w para todos u,v e w em A, <u>comutativa</u> quando uv = vu quais
quer que sejam u e v em A e diz-se ainda que A possui <u>unidade</u> se
existe um elemento e em A tal que eu=ue=u para todo u em A.É
claro que uma álgebra A possui,no máximo ,uma unidade.

Sejam A e B duas álgebras. Uma aplicação linear $f\colon A \longrightarrow B$ chama-se um homomorfismo de álgebras quando se tem f(uv)=f(u)f(v) quaisquer que sejam u e v em A.Quando existem unidades e em A e e em B e além disso se tem f(e)=e', então f é dito um homomorfismo unitário.

Se a álgebra A possui uma unidade e , existe um ho momorfismo unitário natural h: K \longrightarrow A o qual leva o λ de K em h(λ)= λ e. Sendo e não nulo, h é injetor e fornece uma imersão canônica de K em A . Assim, identificando-se o λ de K com o λ e de A (o que equivale a identificar a unidade e de A com o 1 de K), poder-se-á sempre considerar K \subset A, para toda álgebra A com unidade,

Se A é uma álgebra com unidade 1,de dimensão finita sobre o corpo K,e se I é um ideal de A . A/I é o espaço vetorial quociente sobre K cuja dimensão será

 $\dim (A/I^{\perp}) = \dim A - \dim I$

e dim(A/I) será chamada de codimensão de I sobre K.

Supondo-se A uma álgebra com unidade , de dimensão finita n e que I seja um ideal de A de codimensão 1 , tem-se, de i-mediato que $A = (A/I) \bigoplus I$.Isso decorre do fato de que I não contém a unidade de A e ,assim sendo, A/I é identificado com K,

e, se se tomar uma base para A constituida por $v_1=1,v_2,\ldots,v_n$, os vetores v_2,v_3,\ldots,v_n formarão uma base de I e logo A é soma direta de K com I.

Nas condições acima ,vê-se ,claramente, que o ideal I de A é maximal e único satisfazendo $\dim(A/I)=1$ e A= I \bigoplus K .

Seja V um espaço vetorial de dimensão finita n bobre K . A <u>r-ésima potencia simétrica</u> de V é um par $(S^r(V), \psi)$ denotado apenas por $S^r(V)$, com as três propriedades seguintes :

1.) S r (V) é um espaço vetorial sobre K e $\,\psi\,$ é uma aplicação r-linear simétrica de V x V x ...x V $\,$ em S r (V) ;

2.) dim
$$S^{r}(V) = {n-r+1 \choose r}$$
;

3.) A imagem de VxVx...xV pela ψ gera $S^{\Gamma}(V)$.

As condições 2.) e 3.) quando acompanhadas de 1.) se tornam equivalentes a:

2!) Se { e_1,e_2,\ldots,e_n } é uma base de V então os elementos da forma $\psi(e_{m_1},e_{m_2},\ldots,e_m)$, onde $1 \le m_1 \le m_2 = \ldots \le m_r \le n$, constituem uma base de S^r(V).

Considerando, para cada $r \ge 0$, a r-ésima potencia simétrica de V e lembrando que $S^0(V)=K$, o conjunto $S(V)=\bigoplus_{r=0}^\infty S^r(V)$ tem, de modo natural, uma estrutura de álgebra, pois se $f \in S(V)$, então $f=(f_0,f_1,f_2,\ldots,f_n,\ldots)$ onde, com excessão de apenas um número finito dos f_j , todos os outros são nulos. Esta estrutura de álgebra é devida as seguintes operações: se f e g estão em S(V) e g em g.

$$f + g = (f_0 + g_0, f_1 + g_1, f_2 + g_2, \dots, f_n + g_n, \dots)$$

$$\alpha f = (\alpha f_0, \alpha f_1, \alpha f_2, \dots, \alpha f_n, \dots) \quad e$$

$$f \cdot g = (f_0 g_0, f_0 g_1 + f_1 g_0, \dots, f_{i+1} = f_i g_j, \dots)$$

Decorrem das definições acima as seguintes propriedades de S(V):

1.) S(V) munida da adição e produto por escalar é um espaço vetorial de dimensão infinita sobre o corpo K. Também com a lei de composição interna f.g , S(V) se torna uma álgebra associativa, comutativa, com elemento unidade e <u>livre</u> pois tem apenas um número finito de geradores, a saber , 1 e uma base de V.

 $2.) \; \mathsf{S}(\mathsf{V}) \; \acute{\mathrm{e}} \; \underbrace{\mathsf{graduada}}_{\mathsf{pois}} \; \mathsf{definindo} \; \mathsf{S}_{\mathsf{i}}(\mathsf{V}) = \bigoplus_{r=1}^{\mathfrak{D}} \mathsf{S}^{r}(\mathsf{V}),$ isto $\acute{\mathrm{e}} : \mathsf{S}_{\mathsf{i}}(\mathsf{V}) = \mathsf{S}^{\mathsf{D}}(\mathsf{V}) \bigoplus \mathsf{S}^{\mathsf{1}}(\mathsf{V}) \bigoplus \mathsf{S}^{\mathsf{2}}(\mathsf{V}) \bigoplus \cdots \bigoplus \mathsf{S}^{\mathsf{i}}(\mathsf{V}) \; \mathsf{e} \; \mathsf{tomando}$ em $\mathsf{S}_{\mathsf{i}}(\mathsf{V})$ o elemento $\mathsf{f} = (\mathsf{f}_0, \mathsf{f}_1, \mathsf{f}_2, \ldots, \mathsf{f}_{\mathsf{i}}) \; \mathsf{e} \; , \; \mathsf{em} \; \mathsf{S}_{\mathsf{k}}(\mathsf{V}), \; \mathsf{o} \; \mathsf{elemento}$ $\mathsf{g} = (\mathsf{g}_0, \mathsf{g}_1, \mathsf{g}_2, \ldots, \mathsf{g}_{\mathsf{k}}), \; \mathsf{pela} \; \mathsf{definic} \; \mathsf{a} \; \mathsf{o} \; \mathsf{da} \; \mathsf{multiplicac} \; \mathsf{a} \; \mathsf{o} \; \mathsf{tem} - \mathsf{se} \; \mathsf{que}$ $\mathsf{f} \cdot \mathsf{g} = (\mathsf{f}_0 \mathsf{g}_0, \mathsf{f}_1 \mathsf{g}_0 + \mathsf{f}_0 \mathsf{g}_1, \ldots, \mathsf{f}_1 \mathsf{g}_{\mathsf{k}}) \; \mathsf{e} \; , \; \mathsf{claramen} \; \mathsf{te} \; \mathsf{esse} \; \mathsf{produto} \; \mathsf{est} \; \mathsf{a} \; \mathsf{em} \; \mathsf{S}_{\mathsf{i}+\mathsf{k}}(\mathsf{V}). \; \mathsf{Ainda} \; \mathsf{observa-se} \; \mathsf{que}$ $\mathsf{K} = \mathsf{S}_0(\mathsf{V}) \subset \mathsf{S}_1(\mathsf{V}) \subset \mathsf{S}_2(\mathsf{V}) \subset \ldots, \subset \mathsf{S}_n(\mathsf{V}) \subset \ldots \; \mathsf{e} \; \mathsf{S}(\mathsf{V}) = \bigoplus_{\mathsf{i}=1}^{\mathfrak{D}} \mathsf{S}_{\mathsf{i}}(\mathsf{V}) \; , \; \mathsf{com} \; \mathsf{S}_{\mathsf{i}}(\mathsf{V}) . \; \mathsf{S}_{\mathsf{k}}(\mathsf{V}) \subset \mathsf{S}_{\mathsf{i}+\mathsf{k}}(\mathsf{V}).$

3.) Para cada inteiro i ≥ 0 , existe uma aplicação linear injetora ξ_i de $S^i(V)$ em S(V) que associa ao f_i de $S^i(V)$ o elemento $(0,0,\ldots,0,f_i,0,\ldots)$, cujos termos são todos nulos, com excessão, talvez, do f-esimo que é igual ao f_i . Isso fornece uma i-mersão natural que identifica $S^i(V)$ com sua imagem pela ξ_i .

As operações acima induzem em \widehat{S} (V) = $\widehat{\underline{I}}_{\underline{I}}^{\underline{I}}$ S¹(V), o completado de S(V), uma estrutura de álgebra chamada de $\underline{\underline{alge-bra}}$ das séries formais sobre V a um elemento de \widehat{S} (V) é uma sequencia f= (f₀,f₁,f₂,...,f_n,...) com f_j em S^j(V), para todo natural j. Da identificação de S¹(V) com $\xi_{\underline{I}}(S^{\underline{I}}(V))$ tem-se que

cada $S^{i}(V)$ é um subespaço vetorial de \hat{S} (V) e que S(V) é uma subálgebra de \hat{S} (V).

As seguintes notações também serão usadas para Ŝ(V):

$$K((V))$$
 , $K((X_1, X_2, ..., X_n))$ ou K_n

onde K é o corpo e n=dim V, e , para seus elementos

$$f = (f_0, f_1, f_2, \dots, f_n, \dots)$$
 ou $P = P(X_1, X_2, \dots, X_n)$.

Considerando o subconjunto $\mathcal{M}(v)$ de $\hat{s}(v)$ constituido pelas f de $\hat{s}(v)$ tais que f_0 = 0 , $\mathcal{M}(v)$ é um ideal de $\hat{s}(v)$ e um elemento f de $\hat{s}(v)$ é inversível se , e somente se , f não pertence a $\mathcal{M}(v)$; i.é: se,e somente se , f_0 \neq 0. De fato: se f está em $\hat{s}(v)$ e é inversível, como o 1 também está em $\hat{s}(v)$, existe g em $\hat{s}(v)$ tal que f.g = 1, o que implica que f_0 . g_0 = 1 e portanto $f_0 \neq 0$. Reciprocamente, se f não está em $\mathcal{M}(v)$ é possivel construir uma g em $\hat{s}(v)$ que seja a inversa da f e isso é feito por indução nas componentes da g.Como $f_0 \neq 0$, existe um g_0 em K tal que g_0 = $1/f_0$. Supondo-se agora ter construido g_0,g_1,\dots,g_{n-1} com n > 1 , define-se o g_0 pela seguinte formula:

$$g_n = \frac{f_1 g_{n-1} + f_2 g_{n-2} + \dots + f_{n-1} g_1 + f_n g_0}{f_0}$$

 g_n é bem definida e pertence "a $S^n(V)$ e é óbvio que o elemento $g = (g_0, g_1, \dots, g_n, \dots)$, o limite da sequencia em $\widehat{S}(V)$, satisfaz \widehat{O} desejado.

Verifica-se ainda que $\mathcal{M}(V)$ é o <u>ideal maximal de</u> $\widehat{\mathbb{S}(V)}$ e único com essa propriedade. Dra , demonstrar isso é o mesmo que mostrar que todo ideal $\mathcal G$ não trivial de $\widehat{\mathbb{S}(V)}$ está contido em $\mathcal M(V)$. Mas se existir um f em $\mathcal G$ tal que f não esteja em $\mathcal M(V)$, pela

propriedade de $\mathcal{M}(V)$ dada no parágrafo precedente, f é inversivel. e logo o 1 de $\hat{S}(V)$ está em \mathcal{G} e portanto $\mathcal{G}=\hat{S}(V)$. Dessa forma, se \mathcal{G} é não trivial então $\mathcal{G}\subset\mathcal{M}(V)$.

Como últimas observações sobre $\hat{S}(V)$, seguem*se que $\hat{S}(V) = \hat{S}^0(V) \oplus \mathcal{M}(V)$ e um resultado devido a Borel :

TEOREMA DE BOREL SOBRE SÉRIES DE TAYLOR:

A aplicação T definida na álgebra das funções numericas de Rⁿ indefinidamente diferenciaveis, na álgebra das séries formais em n variaveis, que a cada f associa o desenvolvimento formal de Taylor da f na origem O do Rⁿ é sobrejetora.

Esse desenvolvimento formal aqui será denotado por: $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \text{ é uma } n\text{-upla de inteiros não negativos },$ $X^{\alpha} = X_1^{\alpha_1} \cdot X_2^{\alpha_2} \cdot \dots \cdot X_n^{\alpha_n}, \qquad \alpha_1^{\alpha_1} = \alpha_1^{\alpha_1} \cdot \alpha_2^{\alpha_2} \cdot \dots \cdot \alpha_n^{\alpha_n} \text{ e Df a diferencial da}$ $f, \ 1\alpha = \alpha_1^{\alpha_1} + \alpha_2^{\alpha_2} + \dots + \alpha_n, \text{ então:}$

$$T(f) = \sum_{\alpha} \frac{1}{\alpha!} D^{\alpha} f(0) X^{\alpha} .$$

Demonstração: O leitor deverá consultar (4) .

$$f^{\hat{J}}(x_1,x_2,...,x_m)$$
 e $g^{\hat{J}}(x_1,x_2,...,x_m)$, $j=1,2,...,n$.

Dizer que f e g são <u>equivalentes de ordem k no ponto x</u>0, com k sendo um inteiro positivo ou nulo, é dizer que as funções f j e g j têm as mesmas derivadas parciais no ponto x0 até a ordem k inclusive ,para todo j=1,2,...,n. Ao se efetuar uma mudança de coordenadas nas vizinhanças dos pontos x0 e y0, as aplicações f e g serão representadas por novas funções numéricas de m variaveis:

 $\tilde{f}^j(\tilde{x}_1,\tilde{x}_2,\dots,\tilde{x}_m) = \tilde{g}^j(\tilde{x}_1,\tilde{x}_2,\dots,\tilde{x}_m) \ , j=1,2,\dots,n \ , e$ as derivadas parciais de ordem 4 k dessas novas funções se exprimirão, em função das derivadas parciais de ordem 4 k de f^j e g^j , por meio de polinômios. Isso mostra que , o fato de f e g serem equivalentes de ordem k numa vizinhança de x_0 , não depende das cartas locais escolhidas para as vizinhanças de x_0 , não depende das cartas locais escolhidas para as vizinhanças de x_0 e de y_0 . A propriedade " ser equivalente de ordem k " numa vizinhança do ponto x_0 define uma relação de equivalencia sobre o conjunto das aplicações diferenciaveis f, definidas em vizinhanças de x_0 , com valores em N e tais que $f(x_0)=y_0$. Uma classe de equivalencia será denominada um jato de ordem k de M em N.

CAPITULO 1

ALGEBRA LOCAL

Pretende-se ,neste capítulo, formecer alguns elemen tos da teoria das álgebras locais bem como caracterizá-las atravez de quocientes da álgebra das séries formais por ideais de co-dimen são finita de $R((X_1,X_2,\ldots,X_n))$.

Definição 1.1- Por uma álgebra local entender-se-á uma álgebra A de dimensão finita sobre o corpo R dos reais, associativa, comutativa, com elemento unidade 1 e possuindo um ideal I tal que A/I seja de dimensão 1 sobre R e que $I^{m+1}=\{0\}$, o ideal nulo de A, para um inteiro não negativo m.

Definição 1.2-Para uma álgebra local A, cujo ideal de codimensão 1 \in I,o menor inteiro m tal que I $^{m+1}$ =(0) \in chamado de altura de A.

Levando-se em consideração o que já foi dito à respeito de álgebras em geral no capitulo 0, o corpo R será identificado aqui com o subespaço de A formado pelos múltiplos escalares do elemento unidade 1 de A, e A será sempre vista como sendo a soma direta de R com I. Escrever-se-á $A=R \oplus I$ e I será , portanto , o único ideal maximal de A. Logo todo a em A se escreverá como $a=a_0+i_a$, de modo único , onde a_0 pertence á R e i_a à I.

Definição 1.3- Para todo a em A ,a componente a de R da decomposição de a em soma direta será chamada de <u>parte finita de a</u> .

Exemplo 1.4- A álgebra dos números duais.

Seja A= {a+b\tau : a,b ϵ R e τ é um elemento satisfazendo τ^2 =0}. Definindo-se naturalmente a adição,produto por escalar e a multiplicação para os elementos de A,vê-se ,de imediato ,que A é uma álgebra de dimensão 2 sobre R,comutativa,associativa,com uma unidade e um ideal gerado por τ . Como τ^2 =0,tem- se que esse ideal I satisfaz I 2 =(0),e daf A tem altura 1.Essa álgebra é conhecida como "a álgebra dos números duais".Outros exemplos irão,naturalmente ,aparecer mais adiante,juntamente com suas in-terpretações geométricas.

Proposição 1.5-Seja A uma álgebra local com ideal maximal I de codimensão 1.Estando A/I identificado com R,a aplicação ${\bf q}$ de A em R dada por ${\bf q}(a)=a_0$, a parte finita de a.é um homomorfismo canônico e sobrejetor.

Demonstração: É claro que a aplicação q é bem definida. Sendo $a=a_0+i_a, b=b_0+i_b, a_0,b_0 e \lambda \in R e i_a,i_b \in I, tem-se :$ $a+b=(a_0+b_0)+(i_a+i_b), \lambda a=\lambda a_0+\lambda b_0$ e

a . b = $a_0 \cdot b_0 + (a_0 i_b + i_a b_0 + i_a i_b)$.É decorrente das definições que q(a+ λ b) = q(a) + λ q(b) e q(a.b) = q(a) · q(b) , para todos a e b em A e λ em R.Note-se ainda que esse homomorfismo não dependeu da base de A,daí o fato dele ser canônico.Como A contém o elemento 1,dado qualquer a_0 em R , $a_0 \cdot 1$ pertence a A e q($a_0 \cdot 1$) = $a_0 \cdot 1$

Doravante ,sempre que se usar uma álgebra local / deverá ficar claro ao leitor que ela possui um ideal maximal I de codimensão 1 e sempre poderá ser decomposta em R 🕀 I .Quando houver necessidade de explicitar sua altura e seu ideal,a terna (A , I , m) conterá as informações desejadas.

Seja (A , Iî, m), uma álgebra local e suponha dada uma série formal $P=P(X_1,X_2,\ldots,X_h)$ com coeficientes em R. Sejam $P_m=P_m(X_1,X_2,\ldots,X_h)$ o polinômio de grau \neq m ,soma dos termos de grau \neq m na série formal P, e i_1,i_2,\ldots,i_h elementos de I.Por definição, o elemento $P_m(i_1,i_2,\ldots,i_h)$ de A será denotado por $P(i_1,i_2,\ldots,i_h)$. Uma vez que A tem altura m e que $I^{m+1}=\{0\}$, todos os produtos do tipo i_1,i_2,\ldots,i_h com $m_1+m_2+\ldots+m_h$ m são nulos e ,portanto tem sentido a identificação acima.

Lema 1.6- Dados i_1, i_2, \dots, i_h em I , a aplicação Φ definida em $R((X_1, X_2, \dots, X_h))$ com valores em (A, I, m) dada por $\Phi(P) = P(i_1, i_2, \dots, i_h)$ é um homomorfismo de álgebras.

Demonstração: Que Φ é bem definida e linear decorre imediatamente des definições. Agora, se P e Q estão em $R((X_1, X_2, \dots, X_h))$, por um lado tem-se:

 Φ (P.Q)=(P.Q)(i_1, i_2, \dots, i_b)=(P.Q)_m(i_1, i_2, \dots, i_b)=

 $\label{eq:controlledge} \begin{picture}(c) & & & & & \\ & & & & \\ & &$

 $\Phi(P).\Phi(Q)=P(i_1,i_2,...,i_h)$. $Q(i_1,i_2,...,i_h)$ =

Proposição 1.7-Sejam i_1, i_2, \ldots, i_h fixos em I.Supondo-se que,pela aplicação queciente q de I em $I/I^2, q(i_1), q(i_2), \ldots, q(i_h)$ geram I/I^2 , então a aplicação Φ de $R((X_1, X_2, \ldots, X_h))$ em A definida por $\Phi(P) = P(i_1, i_2, \ldots, i_h)$ é um homomorfismo sobrejetor.

Demonstração-:Pelo lema 1.6, Φ é homomorfismo. A demonstração da sobrejatividade é feita por recorrência sobre a altura m de A, mas aquí só será feita para o caso particular de m=2, para efeito de simplicidade dos cálculos , mas, no caso geral, ela é análoga. Assim, se m=2, I^3 =(0) e I^2 \neq (0) e I/I^2 é não trivial. O que se de seja é ,a partir de um elemento a de A , construir uma série formal P de R($\{X_1, X_2, \dots, X_h\}$), cuja imagem pela Φ seja a. Ora, dado a em A, a=a_0+i_a com a_0 em R e i_a em I. Como $\{q(i_j): j=1,2,\dots,h\}$ gera I/I^2 e $q(i_a)$ está em I/I^2 , tem-se que , para λ_j em R,

$$q(i_a) = \sum_{j=1}^{h} \lambda_j q(i_j) = q(\sum_{j=1}^{h} \lambda_j i_j) \quad \text{s que}$$

 $i_a = (\sum_{j=1}^h \lambda_j i_j) \mod I^2 \text{ i.e.} \quad i_a - (\sum_{j=1}^h \lambda_j i_j) \in I^2 \text{ e., portanto, e. soma fini}$ de elementos da forma $f_r g_r$ com $f_r e g_r$ em I, ou seja.

 $i_a - (j_{=1}^{\Sigma} \lambda_j i_j) = \sum_{r=1}^{m} f_r g_r, logo \ i_a = (j_{=1}^{\Sigma} \lambda_j i_j) + \sum_{r=1}^{m} f_r g_r,$ De modo análogo, cada f_r e cada g_r , com $r=1,2,\ldots,m$, pode ser escrito como:

$$f_r = \int_{\Xi_1}^h \sigma_j^r i_j + \sum_{s=1}^p d_s e_s , g_r = \int_{\Xi_1}^h \rho_j^r i_j + \sum_{t=1}^n b_t c_t$$
 onde
$$\sigma_j^r , \rho_j^r \in \mathbb{R}, b_t, c_t, d_s, e_s \in I, para todo t, s. Dessa forma$$

$$h$$

$$f_r g_r = \int_{J,k}^r \kappa_j^r \rho_k^r i_j i_k + (\int_{\Xi_1}^L \sigma_j^r i_j) (\sum_{t=1}^n b_t c_t) + (\sum_{t=1}^n d_t e_t) (\sum_{t=1}^n d_t e_t) + (\sum_{t=1}^n d_t e_t) (\sum_{t=1}$$

 $a = a_0 + \sum_{j=1}^{n} \lambda_{j} i_j + \sum_{r=1}^{n} \left(\sum_{j,k} \sigma_{j}^{r} \rho_{k}^{r} i_{j} i_{k}\right) \quad \text{para o a em A.}$

Toma-se ,então, a série formal (no caso um polinômio)

 $P = a_0 + \sum_{j=1}^{h} \lambda_j X_j + \sum_{r}^{m} (\sum_{j,k}^{r} \sigma_j^r \rho_k^r X_j X_k) = \text{portanto},$ \tilde{e} sobrejetora.

Definição 1.8- A dimensão de I/I² é chamada de <u>largura de</u> A.

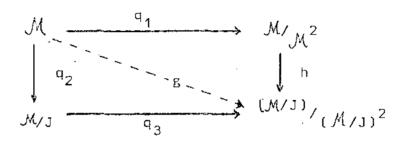
Proposição 1.9-Se a largura de A é <u>n</u> então A é isomorfa a um quociente de $R((X_1, X_2, ..., X_n))$ por um ideal J de $R((X_1, X_2, ..., X_n))$.

Demonstração - Como a largura de A é n ,então existem n elementos i_1,i_2,\ldots,i_n linearmente independentes em I e que geram I/I^2 . Então o homomorfismo Φ do lema 1.6 é ,pelo (1.7) sobrejetor . Tomando por J o núcleo de Φ e aplicando o teorema de isomorfismo para espaços vetoriais (anéis,grupos,...) tem-se que A é isomorfa a $R((X_1,X_2,\ldots,X_n))/J$.

Proposição 1.10- Todo quociente de R((X_1, X_2, \dots, X_n)) por um ideal J de codimensão finita de R((X_1, X_2, \dots, X_n)) e não trivial é uma álgebra local e sua largura é menor ou igual a \underline{n} .

Demonstração: Como a codimensão de J é finita,o quociente $R(\{X_1,X_2,\dots,X_n\}) \ / \ J \ é \ uma \ álgebra \ local pois preserva a comutatividade, associatividade, e possui também um elemento neutro e seu ideal maximal será <math>\mathcal{M}/J$, onde \mathcal{M} é o ideal maximal da álgebra $R(\{X_1,X_2,\dots,X_n\})$, Mas $R(\{X_1,X_2,\dots,X_n\})$ é uma álgebra graduada e ,pelo fato de $JC\ \mathcal{M}$, existe um inteiro k, não negativo ,

tal que $J \supset M^k$, assim $(M/J)^k = (0)$ para esse k e, consequentemente, $R((X_1, X_2, \dots, X_n))$ / J terá uma altura $\leq k$. Para a verificação de que sua largura é \leq n, considere o seguinte diagrama:



onde as q_1 , com i=1,2,3,são as aplicações quocientes naturais , $g=q_3$, q_2 , portanto sobrejetora, e se deseja obter a h que seja li near e sobrejetora. Para se ter uma boa definição de h é necessário que o núcleo de q_1 esteja contido no núcleo da g e assim definir h por $h(q_1(x)) = g(x)$. Para isso , se x está no núcleo de q_1 , então x pertence à \mathcal{M}^2 e, sem perda de generalidade, x pode ser escrito como x_1, x_2 , onde x_1 e x_2 estão em \mathcal{M} . Logo , para esse x, $g(x)=q_3(q_2(x))$ e $q_2(x)=q_2(x_1,x_2)=q_2(x_1)q_2(x_2)=(x_1+J)(x_2+J)$ e $q_2(x)$ está em $(\mathcal{M}/J)^2$, portanto $q_3(q_2(x))=0$ e x está no núcleo da g. h , como definida acima . é , dessa forma linear e sobrejetora e se tem que

 $\dim(\frac{(\mathcal{M}J)}{(\mathcal{M}J)^2}) \neq \dim(\mathcal{M}/\mathcal{M}^2) = n , \{c.f. \text{ coromitians of } 1.11\} = n , \{c.f. \text{ coromitians$

Das proposições (1.9) e (1.10) tira-se a conclusão de que a <u>noção de álgebra local coincide com a noção de álgebra quociente, de dimensão finita sobre R, duma álgebra de séries formais sobre R, e ainda, o seguinte corolário:</u>

Corolário 1.11-Se \mathcal{M} é o ideal maximal de R((X₁,X₂,...,X_n)) formado das séries formais sem termos constantes, o quociente R((X₁,X₂,...,X_n))/ \mathcal{M} é uma álgebra local de altura m e lar gura n que será denotada por R_n^m

Demonstração: É claro que R^m é uma álgebra local.Resta apenas mos trar que sua altura é m e sua largura é n.Mas M ^{m+1} é contituido por todas as séries formais cujas componentes f_i & Sⁱ(V) são nules para todo O ≤ i ≤ m+1,e contêm todos os produtos de m+1 ou mais elementos de $\mathcal M$,consequentemente ($\mathcal M/_M$ m+1) $^{m+1}$ =(0) .Como V \tilde{e} isomorfa \tilde{a} $S^1(V)$,identificando-se o elemento X_1 de V ccm a sua imagem por esse isomorfismo, a série formal (0, X, 0, ..., 0, ...) está em ${\mathcal M}$ e o produto dessa série por si mesma m vezes resulta em $(0,0,\ldots,0,X_1^m,0,\ldots)$,com X_1^m em $S^m(V)$, que claramente não pertence a \mathcal{M}^{m+1} . Assim, $(\mathcal{M}/\mathcal{M}^{m+1})^m \neq (0)$ e la altura será m. Seja agora "para simplicidade de notação, $g = \mathcal{M}/\mathcal{M}^{m+1} =$ ={f + \mathcal{M}^{m+1} tal que f pertença a \mathcal{M} }. g^2 é o ideal de g formado pelos elementos de 🐧 que podem ser escritos como soma finita tipo $\tilde{g}\tilde{h}$ com \tilde{g} e \tilde{h} em θ .Assim, $\theta/\theta^2 = \{\alpha + \theta^2, \text{com } \alpha \in \theta\}$. Observando-se que,para toda f em ${\mathcal M}$,f pode ser decomposta por : $(0,f_1,f_2,f_3,\ldots,f_n,\ldots)=(0,f_1,0,\ldots,0,\ldots)+(0,0,f_2,f_3,\ldots,f_n,\ldots)$ e que se α ϵ $\mathcal G$, então α = f+ $\mathcal M$ $^{m+1}$,para alguma f em $\mathcal M$,tem-se: $\alpha = f + M^{m+1} = \{0, f_1, f_2, f_3, \dots, f_n, \dots\} + M^{m+1} =$

 $= \{(0,f_1,0,\ldots,0,\ldots)+\mathcal{M}^{m+1}\} + \{(0,0,f_2,f_3,\ldots,f_n,\ldots)+\mathcal{M}^{m+1}\} + \{(0,0,f_2,f_$

se $\{v_1, v_2, \dots, v_n\}$ é uma base de V e ,pelo :Lisomorfismo entre V e. $S^1(V)$, o conjunto $\{w_1, w_2, \dots, w_n\}$, imagem da base de V pelo isomorfismo. é uma base de $S^1(V)$ e os elementos $\alpha_i = (0, w_i, 0, \dots) + \mathcal{M}^{m+1}$, com i=1,2,...,n,constituem uma base para $\mathcal{J}/\mathcal{J}^2$, logo dim $\mathcal{J}/\mathcal{J}^2 = n$ e largura de $R(\{X_1, X_2, \dots, X_n\})/\mathcal{M}^{m+1}$ é n.

Proposição 1.12- Seja (A,I,m) uma álgebra local. Toda subálgebra B de A ,contendo a unidade 1 de A é uma álgebra local de altura menor ou igual a m.

Proposição 1.13-Seja (A,I,m) uma álgebra local.Toda álgebra quociente de A por um ideal J de A é uma álgebra local e tem altura menor ou igual a m .

Demonstração: Seja B = A/J a tal álgebra quociente de A. Como I/J é o ideal maximal de B e a associatividade e a comutatividade ê são preservadas pelo quociente, e , também ,dimensão de B é finita e B possui 1+J por unidade, B é uma àlgebra associativa, comustativa, com unidade, de dimensão finita sobre R ie com ideal I/J,

e,restando apenas demonstrar que, sua altura é $\stackrel{\checkmark}{=}$ m.Mas se a altura de $\stackrel{?}{=}$ fosse $\stackrel{?}{=}$ com $\stackrel{?}{=}$ $\stackrel{?}{=$

Proposição 1.14- Sejam (A,I,m) e (B,J,n) duas álgebras locais. En-tão seu produto tensorial $A \otimes B$ é uma álgebra local de altura m+n com ideal maximal $A \otimes J + I \otimes B$.

Demonstração- É claro que o produto tensorial de duas álgebras de dimensão finita é ainda uma álgebra de dimensão finita com a multiplicação definida por:

 $(a_1 \bigotimes b_1) \cdot (a_2 \bigotimes b_2) = (a_1 a_2) \bigotimes (b_1 b_2) ;$ e ,como A e B são comutativas, associativas, com unidades e e f, respectivamente, A \bigotimes B ,com a operação definida acima também se rá associativa, comutativa e terá por unidade e \bigotimes f. Também demons tra-se facilmente pelas definições que A \bigotimes J e I \bigotimes B são ideais de A \bigotimes B e, consequentemente, A \bigotimes J + I \bigotimes B é ideal de A \bigotimes B . Co-mo A \bigotimes J \cap I \bigotimes B = I \bigotimes J , tem-se : dim(A \bigotimes J + I \bigotimes B) = e dim(A \bigotimes J) + dim(I \bigotimes B) - dim(A \bigotimes J \cap I \bigotimes B) = edim A . dim J + dim I . dim B - dim I . dim J = dim A . dim B - 1. Assim A \bigotimes J + I \bigotimes B é maximal em A \bigotimes B e sua altura é m+n, pois sendo α um elemento de (A \bigotimes J + I \bigotimes B) $^{m+n+1}$, então α é soma finita de produtos de m+n+1 elementos da forma:

 $(a_1 \otimes b_1 + c_1 \otimes d_1) \cdot (a_2 \otimes b_2 + c_2 \otimes d_2) \cdot \cdot \cdot (a_{m+n+1} \otimes b_{m+n+1} + c_{m+n+1} \otimes d_{m+n+1}) \cdot A$ través de alguns cálculos mostra-se que o menor inteiro não negativo tal que os produtos acima não são necessariamente zero é m+n,e para os produtos de m+n+1 fatores ja resulta em zero, don de a altura de A \otimes B é n+m e a proposição fica verificada.

CAPITULO 2

A - PONTOS PRÓXIMOS

Neste capítulo, o conceito de álgebras locais passará a ter um significado geométrico, induzindo , assim, a definição de um A-ponto de V próximo de x,com x sendo um ponto sobre uma variedade V diferenciavel de classe C, e A uma álgebra local. No que se seguirá, a palavra diferenciavel será sempre usada no lugar de "indefinidamente diferenciavel" ou " de classe C" e o qualificativo poderá ser até omitido quando não houver perigo de confusão.

Seja D(V) a álgebra das funções diferenciaveis definidas em V com valores em R. Essa álgebra é associativa, comutativa, possuindo por unidade a aplicação constante igual a 1 e de dimensão infinita sobre R. Fixado um ponto x em V.o conjunto

$$I(x) = \{ f \in D(V) \text{ tais que } f(x) = 0 \}$$

é um ideal de D(V) e maximal com essa propriedade. Assim tem-se a seguinte proposição:

Proposição 2.1- $(I(x))^{m+1}$ é o ideal de D(V) formado por todas as funções de D(V) que se anulam em x bem como todas as suas derivadas de ordem $\leq m$.

Demonstração: Seja J o ideal de D(V) formado por todas as funções de D(V) que se anulam em x bem como todas as suas derivadas de or dem \leq m. Deseja-se mostrar que J $= (I(x))^{m+1}$. Seja f $\epsilon(I(x))^{m+1}$, então f é uma soma finita de produtos de m+1 elementos de I(x) , e , sem perda de generalidade,pode-se supor f como sendo dada ape nas por $f_1 f_2 \dots f_{m+1}$, com as f_i em I(x) ,para todo $i=1,2,\dots,m+1$. Tomando-se uma carta local para x & V e aplicando-se as regras ele mentares de diferenciação de funções, vê-se que $f_1 f_2 \cdots f_{m+1}(x) =$ = $f_1(x)f_2(x)...f_{m+1}(x)=0$ e que todas as derivadas de ordem $\leq m$ também se anulam em x \in V ,logo $(I(x))^{m+1}$ J.Supondo-se agora que f ϵ J , que (U, ϕ) $\check{\epsilon}$ uma carta local para x , que dimV=n ϵ que $\phi(x)=0$ ϵR^n , como f(x)=0 a composta $f \circ \phi^{-1}$ também se anula no ponto 0 de R $^{\rm n}$ bem como todas as suas derivadas de ordem $^{\rm L}$ m .Tomandoagora o desenvolvimento de Taylor de f∘o em torno da origem $(f_{\circ}\phi^{-1})(h) = (f_{\circ}\phi^{-1})(0) + \sum_{i=1}^{n} \frac{\partial}{\partial i} \frac{(f_{\circ}\phi^{-1})(0)}{i} + \dots + \sum_{\alpha \in m} \frac{1}{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{1}{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0)h^{\alpha} + \dots + \sum_{\alpha \in m} \frac{\partial}{\partial i} D^{\alpha} (f_{\circ}\phi^{-1})(0$ $\mathcal{L}_{m}(x)$ onde $\mathcal{L}_{m}(x) = \sum_{|\beta|=m+1} D^{\beta}(f_{0}\phi^{-1})(th) h^{\beta}, \alpha = (\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}), 0 < t < 1,$ $\alpha_1 = \alpha_1 + \alpha_2 + \alpha_3 + \dots + \alpha_n$ e as demais notações são como as definidas no teorema de Borel (c.f.pag-6-) e $B^{\alpha} = (\frac{3}{3}\frac{1}{x_1})^{\alpha} (\frac{3}{3}\frac{1}{x_2})^{\alpha} \cdots (\frac{3}{3}\frac{1}{x_n})^{\alpha}$ mas ,como f∘o tem todas as derivadas nulas atē a ordem m,ter-seā apenas $(f_{\circ}\phi^{-1})(h) = \mathcal{K}_{m}(x)$. Como cada $h^{\beta i}$ de h^{β} pertence a I(0), 1.é: o ideal das funções diferenciaveis de Rⁿ em R que se anulam na origem do Rⁿ, fo $\phi^{-1}\epsilon(I(0))^{m+1}$ e assim $f\epsilon(I(x))^{m+1}$.Portanto o resultado desejado está demonstrado.

Notação : $D^m(V,x)$ indicará a álgebra quociente $D(V)/(I(x))^{m+1}$.

Proposição 2.2- Sendo n= dimV , $D^m(V,x)$ é uma álgebra local isomorfa a $R_n^m = R((X_1,X_2,...,X_n))/M^{m+1}$

Demonstração: Seja (U. ϕ) uma carta local para x em V com ϕ (0)=0. Que $D^{m}(V,x)$ é uma álgebra local é decorrente das definições.Como R^{m}_{n} não é nada mais do que a álgebra dos polinômios,sobre R, de grau ém em n indeterminadas(a verificação é imediata) e,como pe la proposição (2.1) com a carta local (U, ϕ) dada acima, $D^{m}(V,x)$ também é a álgebra de polinômios sobre R de grau ém em n indeterminadas, logo o isomorfismo segue.

Corolário 2.3- O queciente de D(V) pelo ideal $\theta(x)$, das funções que se anulam em x bem como todas as suas derivadas, é isomorfo á $R_{\rm p}$.

Demonstração: Considerando-se que,se $\{U,\phi\}$ é uma carta local para x em V com $\phi(x)=0$, a álgebra das funções numéricas diferenciaveis em x é isomorfa a álgebra das funções numéricas diferenciaveis na origem do R^n , tem-se o diagrama abaixo que,pelo teorema de isomorfismo de anéis $\{grupos, \hat{a}lgebras, \ldots\}$, demonstra o desejado:

$$D(V) \longleftrightarrow D(R^{n}) \xrightarrow{T} R_{n}$$

$$Q \qquad \downarrow \qquad \qquad \downarrow$$

onde T : $\hat{D}(R^n) \longrightarrow R_n$ é a dada pelo teorema de Borel(c.f.pag 6)

e Q é a aplicação quociente natural de D(R n) no seu quociente por $\mathcal{C}(0)$.

Observação 2.4- Esse corolário significa em outras palavras, que existem sobre V funções diferenciaveis cujo desenvolvimento formal de Taylor no ponto x é uma série formal arbitrária nas coordenadas locais do ponto x. Também, se x é dado, poder-se-á, em tudo que se segue, trocar D(V) pela álgebra dos germes de funções diferenciaveis em x (c.f. (6)).

Seja A uma álgebra local com ideal maximal I.Sejam V uma variedade diferenciavel e D(V) a álgebra das funções numéricas diferenciaveis sobre V e x um ponto de V.

Definição 2.5- Chama-se um A-ponto de V próximo de x a todo homomorfismo de D(V) em A tal que a parte finita da imagem da f de D(V) em A seja igual a f(x).

Segundo A.Weil (c.f. (7)), um A-ponto de V próximo de x poderá ainda levar qualquer um dos seguintes nomes:

ponto próximo de x de espécie A sobre V ou infinitamente vizinho (próximo) de x de espécie A sobre V.Ainda ,se x' é um tal

ponto,o elemento de A que x' associa ao f de D(V) será denotado por uma das notações seguintes:

$$f(x')$$
; $x'(f)$ ou $Af(x')$.

Por definição ainda se tem:

 $f(x') = f(x) \mod I$

οü

 $f(x') - f(x) \in I$

Exemplos de pontos próximos de x de espécie A sobre V.

2.6- Sejam V uma variedade diferenciavel e A uma \underline{a} gebra local com ideal maximal I. A aplicação x' de D(V) em A dada por x'(f)= f(x) é um A-ponto de V próximo de \mathbf{x} .

 $\frac{2.7\text{-A aplicação x' de D(R^n)}}{\text{n}} \quad \text{em R}_n^m \quad \text{que a cada f}}$ associa seu desenvolvimento de Taylor de ordem $\quad \text{m} \quad \text{na origem 0 do}$ R^n define um R_n^m-ponto de R^n próximo de 0.

Exemplos menos triviaís aparecerão naturalmente no decorrer da dissertação.

Proposição 2.8- Seja x' um A-ponto de V próximo de x.A imagem em A do ideal I(x), das funções que se anulam no ponto x, por x' está contida no ideal maximal I de A.

Demonstração: Como, por definição de A-ponto próximo, para toda f. em D(V) , x'(f) = f(x) mod I e, para f em I(x), f(x)=0 , x'(f) = 0 modI, consequentemente x'(f) ϵ I e portanto x'(I(x)) \subset I.

Proposição 2.9~ Sendo $(I(x))^{m+1}$,o ideal das funções que se anulam em x bem como suas derivadas de ordem $\leq m$, e x' um A-ponto de V próximo de x, então $x'((I(x))^{m+1})$ está contido em I^{m+1} .

Demonstração: Como todo g em $\{I(x)\}^{m+1}$ é escrito como soma finita de produtos de m+1 elementos de I(x), é suficiente mostrar a proposição para $g = g_1g_2...g_{m+1}$ porque daí o resultado segue por linearidade. Mas x' é um homomorfismo de álgebras e x'(g) = =x' $(g_1.g_2....g_{m+1}) = x'(g_1).x'(g_2)...x'(g_{m+1})$, portanto, pela proposição (2.8), o resultado segue.

Corolário 2.10- Se A é uma álgebra local de altura m, então a imagem de $\left(I(x)\right)^{m+1}$ por um ponto x', A-próximo de x, está contida em $I^{m+1}=(0)$.

Como consequencia de (2.8),(2.9) e (2.10) tem - se que todo A-ponto de V próximo de x determina a altura de A e também um homomorfismo ,em A ,da álgebra $D^m(V,x)$, e reciprocamente.

Proposição 2.11-Se se escrever x'(f)= f(x) + L(f) em R \bigoplus I , a aplicação L : D(V) \longrightarrow I que a cada f associa o L(f) da decom posição acima é linear em R.

Demonstração: Sejam f e g em D(V) e λ em R.Então f+ λ g ϵ D(V) e L(f + λ g) = L(f) + λ L(g) pois , como x'(f+ λ g)=x'(f) + λ x'(g) , tem-se (f+ λ g)(x)+ L(f + λ g) = f(x)+ λ g(x) + L(f)+ λ L(g) e ,pela unicidade da decomposição em soma direta,o resultado vale.

Proposição 2.12- Dizer que um A-ponto x' de V próximo de x é um homomorfismo equivale a dizer que para todos f e g em D(V) vale L(fg)=L(f)g(x) + f(x)L(x) + L(f).L(g).

Demonstração: Sejam f e g em D(V). Então, desenvolvendo-se embos os lados de x'(fg) = x'(f)x'(g) tem-se:

(fg)(x)+L(fg)=(f(x)+L(f)).(g(x) + L(g))

f(x)g(x) + L(fg) = f(x)g(x) + L(f)g(x) + f(x)L(g) + L(f)L(g) e,novamente,pela unicidade da decomposição

 $L(f)L(g)=f(x)L(g)+L(f)g(x)+L(f)L(g) \ , \ \ \, quaisquer \ que$ sejam f e g em D(V).Reciprocamente, se uma aplicação linear L como definida acima é dada, define-se um A-ponto de V proximo de x to-mando-se por x' equele homomorfismo de álgebras que, para toda

f em D(V), coincide com o valor f(x) + L(f), isto \tilde{e} ; $\chi'(f) = f(x) + L(f)$. Verifica-se imediatamente que χ' \tilde{e} bem definido e que satisfaz a definição de A-ponto de V próximo de χ .

Como um caso particular de (2.12) , se altura de A for 1 , ter-se-á Γ^2 =(0) e o termo L(f)L(g) ,estando em Γ^2 ,é zero. Desta forma L(fg) se reduz a L(f)g(x) + f(x)L(g). e se Γ é gerado por um elemento τ com τ^2 =0 (c.f. exemplo 1.4) , a noção de A-ponto de V próximo de x se identifica com a noção de vetor tangente a V em x.pois um vetor tangente pode ser sempre entendido como uma derivação (c.f. (6) pág 62). Historicamente, esse era o ponto de vista de Fermat em seus trabalhos sobre o cálculo diferencial e, ainda mais, usou a letra o onde aqui se usou τ .

Definição 2.13- O homomorfismo canônico de D(V) em $D^{m}(V,x)$ que define \mathbf{o}_{ij} ponto próximo do exemplo (2.7) é dito ponto próximo de x canônico de posto m.

Lema 2.14- Para todo ponto x' próximo de x ,o valor de x' em toda função constante c de D(V) é a própria constante c.

Demonstração: Como x'(c) = x'(1.c) = c x'(1) para todo c (e a-quí identificarse a função com o número real c) em R , é suficiente demonstrar o lema para c=1.Sabendo-se que x'(1)=1+L(1), resta mostrar que L(1)=0. Se $L(1)\neq 0$ então:

x'(1) = x'(1.1) = x'(1) x'(1)1 + L(1) = (1 + L(1)).(1 +L(1))

= 1 + L(1) + L(1) + L(1)L(1) e ,assim ,

 $0 = L(1) \cdot (1 + L(1))$ e L(1) = -1 e portanto o escalar 1 esta em I , o que é um absurdo.Logo L(1)=0 e $x^*(1)=1$,

Proposição 2.15-Se a variedade V é a reta numérica R e supondo-se x' um A-ponto de R próximo de x_0 de R. x' é completamente determinado se se conhecer x'(i) em A , valor que x' associa a aplicação identidade de R considerada como um elemento de D(R).

Demonstração: De fato: supondo-se conhecidos $x'(i) = x_0 + L(i)$ e n=
=altura de A,para cada f dada em D(R) e pela formula de Taylor
com resto tem-se, numa vizinhança de x_0 , a expressão:

(I)
$$f(x) = f(x_0) + 3\sum_{i=1}^{n} \frac{1}{j!} f^j(x_0) (x-x_0)^j + \frac{f^{n+1}(x_0)}{(n+1)!} (x-x_0)^{n+1}$$

onde o ponto x_1 está no intervalo aberto (x_0,x_0+x) e depende funcionalmente de x,i.é: $x_1=g(x)$, e como se vê facilmente,

 $\frac{f^{n+1}(g(x))}{(n+1)!}(x-x_0)^{n+1} \text{ \'e função em D(R) e (I) poderá ser rescrita por:}$

(II)
$$f(x) = f(x_0) + \sum_{j=1}^{n} \frac{f^{j}(x_0)}{j!} (x - x_0)^{j} + \frac{f^{n+1}(g(x_0))}{(n+1)!} (x - x_0)^{n+1}$$

Convencionar-se-á neste ponto que aplicar o ponto próximo x' a f é o mesmo que aplicar x' ao desenvolvimento de Taylor da f pois pode-se ainda identificar x com a aplicação identidade de R pensada como sendo a carta global da variedade R.Desta forma, usando-se o lema 2.14 e as propriedades do homomorfismo x' tem-se: $x'(f) = x'(f(x_0)) + \sum_{j=1}^{n} \frac{f^{j}(x)}{j!} (x'(x-x_0))^{j} + \frac{x'(f^{n+1}(g(x)))}{(j+1)!} (x'(x-x_0))^{j+1} = \frac{f^{n+1}(g(x))}{(j+1)!} (x'(x-x_0))^{n+1}$

$$= f(x_0) + f'(x_0)(L(i)) + \dots + \frac{f^n(x_0)}{n!}(L(i))^n \text{ pois } x'(x-x_0) = x'(x)-x_0 = L(i)$$
 e

$$\frac{x'(f^{n+1}(g(x)))}{(n+1)!}(x'(x-x_0))^{n+1} \in I^{n+1}=(0).$$

O teorema que virá a seguir será de muita importancia porque ele permitirá saber como um A-ponto x' próximo de x em V atuará sobre uma função qualquer conhecendo-se apenas como e-le atua nas vizinhanças coordenadas (ou coordenadas locais) do ponto x em V.

Teorema 2.15. Um A-ponto x' de V próximo de x_0 fica completamen te determinado sabendo-se os valores ,em A, de x' nas coordenadas locais de x_0 de V.

Demonstração: Supondo-se que a altura de A seja m e que a dimensão de V seja n e ainda que (U, ϕ) seja uma carta local para x_0 em V com $\phi(x_0)=0$ (para efeito de simplicidade), se $\mathbf{X}^1,\mathbf{X}^2,\ldots,\mathbf{X}^n$ são as funções coordenadas do ponto \mathbf{X}_0 e $\mathbf{X}^1,\mathbf{X}^2,\ldots,\mathbf{X}^n$ são como a composta $\mathbf{f}_0\phi^{-1}$ \in $\mathbb{D}(\mathbb{R}^n)$, pode-se calcular sua fórmula de Taylor com resto, em torno da origem $\phi(\mathbf{X}_0)=0$ do \mathbb{R}^n , obtendo-se: $(\mathbf{f}_0\phi^{-1})(\tilde{\mathbf{X}}) = (\mathbf{f}_0\phi^{-1})(0) + \sum_{|\alpha|=1}^{n} \mathbb{D}^{\alpha}(\mathbf{f}_0\phi^{-1})(0)\tilde{\mathbf{X}}^{\alpha} + \cdots + \sum_{|\alpha|=m}^{n} \mathbb{D}^{\alpha}(\mathbf{f}_0\phi^{-1})(0)\tilde{\mathbf{X}}^{\alpha} + \cdots + \sum_{|\alpha|=m}^{n$

= $\{ \Pi_{\hat{\mathbf{1}}} \circ \phi \} (\mathbf{x}) = \mathbf{X}^{\hat{\mathbf{1}}} (\mathbf{x})$ é identificada com a i-ésima função coordenada de \mathbf{x}_0 em $\{ U, \phi \}$,o desenvolvimento acima assumirá a seguinte forma:

 $f(x) = f(x_0) + \sum_{|\alpha|=1}^{\alpha} (f_{\circ}\phi^{-1})(0) X^{\alpha}(x) + \ldots + \sum_{|\alpha|=m}^{m} \frac{1}{\alpha!} D^{\alpha}(f_{\circ}\phi^{-1}\phi) X^{\alpha}(x) + \sum_{|\alpha|=m}^{m} \frac{1}{\alpha!} D^{\alpha}(f_{\circ}\phi^{-$

Seja фuma aplicação diferenciavel de uma variedade V em uma outra W. A aplicação de D(W) em D(V) que a cada g em D(W) associa go¢ é .claramente um homomorfismo entre as álge⇔ bras D(W) e D(V).

Definição 2.17. Compondo-se esse homomorfismo acima com o homomorfismo de D(V) em A que define um A-ponto próximo de x de V.obtem-se um A-ponto de W próximo de $\phi(x)$ que será denotado por $\phi(x')$ ou mais explicitamente por $\phi(x')$.

CAPITULO 3

PROLONGAMENTO DE V DE ESPÉCIE A

Este capítulo é destinado a dar ao conjunto dos Apontos de V próximos de V uma estrutura de variedade diferenciavel de dimensão finita ,bem como demonstrar alguns resultados sobre o prolongamento de V de espécie A que serão úteis no capítulo seguinte.

O conjunto de todos es A-pontos de V próximos de x de V será denotado por AV_X , ${}^AV = \bigvee_{X \in V} ({}^AV_X)$ será o conjunto de todos os A-pontos de V próximos de V e definir-se-á a aplicação projeção $\pi_A : {}^AV \longrightarrow V$ por $\pi_A ({}^AV_X) = x$ para x em V.

Observação 3.1- Se x' ϵ A V $_{x}$ e f ϵ D(V) é identicamente nula em uma vizinhança de x,então decorre de (2.17) que x'(f)=0.Isso mostra que pode-se considerar x'(f) para qualquer função diferenciavel f definida em uma vizinhança de x ,se x' ϵ A V $_{x}$.

Observação 3.2- Se $A=R_p^r$, a noção de A-ponto próximo não é nada mais de que a noção de p^r -jatos de Ehresmann (c.f.(2.7) e (3)).

Teorema 3.3- Seja (U, $\frac{1}{2}$) uma carta local para x_0 em V com sistema de coordenadas $\{x^1, x^2, \dots, x^n\}$. Se $\{B^0=1, B^1, B^2, \dots, B^N\}$ é uma base para a álgebra A .onde $\{B^1, B^2, \dots, B^N\}$ gera o ideal maximal I de A, define-se $x_{i,\lambda}: \Pi^{-1}_A(U) \longrightarrow \mathbb{R}$ por

(3.4)
$$x'(x^{i}) = \sum_{\lambda=0}^{N} x_{i\lambda}(x')B^{\lambda},$$

para qualquer $x \in \Pi_A^{-1}(U)$, onde aquí é usada a observação(3.1) para $f = x^i$, $i = 1, 2, \ldots, n$. Então $\frac{A_V}{V}$ se torna uma variedade diferenciavel de dimensão igual a $\dim V$, $\dim_R A = n$, (N+1) pelas vizinhanças coordenadas $\Pi_A^{-1}(U)$ e com funções coordenadas $X_{i\lambda}$, $i = 1, 2, \ldots, n$ e $\lambda = 0, 1, 2, \ldots, N$. induzidas pelas $x \in X^1$, $x \in X^2$, $x \in X^2$ de x sobre $x \in X^2$.

Demonstração: Primeiramente deve-se observar que, da maneira como foram definidas as funções $\times_{i,\lambda}$ de $\pi_A^{-1}(U)$ em R , existe uma bijeção ξ entre $\pi_A^{-1}(U)$ e $\times^1(U) \times R^N \times \times^2(U) \times R^N \times \dots \times \times^n(U) \times R^N = \Omega \subset R^K$, onde $k=\eta(N+1)$ e $\times^1: U \longrightarrow R$ são as funções coordenadas do ponto \times_0 induzidas pela carta local (U, λ) , e ξ é dada por:

 $\xi(\mathbf{x}') = \{\mathbf{x}_{10}, \mathbf{x}_{11}, \dots, \mathbf{x}_{1N}, \mathbf{x}_{20}, \mathbf{x}_{21}, \dots, \mathbf{x}_{2N}, \dots, \mathbf{x}_{n1}, \mathbf{x}_{n2}, \dots, \mathbf{x}_{nN}\}$ com $\mathbf{x}_{i\lambda} = \mathbf{x}_{i\lambda}(\mathbf{x}')$ é dado no enunciado do teorema. Por (2.18) ξ é bem definida e injetora, pois se $\xi(\mathbf{x}') = \xi(\mathbf{y}')$ para dois A-pontos próximos na vizinhança de \mathbf{x}_{0} , então $\mathbf{x}_{i\lambda} = \mathbf{y}_{i\lambda}$ para todos i e λ e , portanto, $\mathbf{x}'(\mathbf{x}^{i}) = \mathbf{y}'(\mathbf{x}^{i})$, $\mathbf{i} = 1, 2, \dots, n$, e assim $\mathbf{x}' = \mathbf{y}'$. Para a sobrejeção, se $\mathbf{b} = (\mathbf{b}_{10}, \mathbf{b}_{11}, \dots, \mathbf{b}_{1N}, \dots, \mathbf{b}_{1N}, \dots, \mathbf{b}_{n1}, \mathbf{b}_{n2}, \dots, \mathbf{b}_{nN})$ é da do em Ω , então existe um \mathbf{z} em U com $\phi(\mathbf{z}) = (\mathbf{b}_{10}, \mathbf{b}_{20}, \dots, \mathbf{b}_{n0})$, i.é: $\mathbf{x}^{i}(\mathbf{z}) = \mathbf{b}_{i0}$, para $\mathbf{i} = 1, 2, \dots, n$

$$\mathbf{z}'(\mathbf{x}^i) = \sum_{\lambda = 0}^{N} b_{i\lambda} B^{\lambda}$$

define um A-ponto de V

próximo de z, que está claramente em $\Pi_A^{-1}(U)$ com $\xi(z')=b$ -.Transportando-se agora para $\Pi_A^{-1}(U)$ a topologia de $R^{n(N+1)}$ de modo que ξ seja homeomorfismo, tem-se , assim, um sistema de coordenadas locais para A_V .

Agoma, se $\Pi_A^{-1}(U_1) \cap \Pi_A^{-1}(U_2)$ é não vezio,com (U_1, ϕ) e (U_2, ψ) cartas locais em V,então existe um A-ponto próximo x' de x , com x $\epsilon U_1 \cap U_2$. Se as coordenadas locais de x em (U_1, ϕ) são x^1, x^2, \ldots, x^n e em (U_2, ψ) são y^1, y^2, \ldots, y^n então

$$x'(x^{i}) = \sum_{\lambda=0}^{\Sigma} a_{i\lambda} B^{\lambda} \qquad com(a_{i\lambda}) em \quad \Omega_{1}$$

$$N$$

$$x'(y^{j}) = \sum_{\lambda=0}^{\Sigma} b_{j\lambda} B^{\lambda} \qquad com(b_{j\lambda}) em \quad \Omega_{2}$$

ords $\Omega_1 = x^1(U_1) \times R^N \times \dots \times x^n(U_1) \times R^N$ (de modo análogo Ω_2) $a = (a_{10}, a_{11}, \dots, a_{1N}, a_{20}, a_{21}, \dots, a_{2N}, \dots, a_{n1}, a_{n2}, \dots, a_{nN}) = (a_{i\lambda})$ $a_0 = (a_{10}, a_{20}, \dots, a_{n0})$ e , também, analogamente, $b = (b_{j\lambda})$ e $b_0 = (b_{j0})$ para $j = 1, 2, \dots, n$, $\lambda = 1, 2, \dots, N$. Calculando-se o desenvolvimento de Taylor de y^j em torno de x, mas com $x \in U_1 \cap U_2 \subset U_1$, tem-se: $y^j = y^j(x) + \sum_{i=1}^n D^i(y^j \circ \phi^{-1})(a_0)(x^i - a_{i0}) + \dots +$

+...+ $\sum_{|\alpha|=m} \frac{1}{\alpha!} D^{\alpha} \{y^{j}, \phi^{-1}\} \{a_{0}\} \{(x-a_{0})^{\alpha}\} + \mathcal{R}_{m}(x,a_{0}) \text{ onde}$ $D^{i} = \frac{\partial}{\partial x^{i}}, \text{ com } i=1,2,\ldots,n. \ D^{\alpha} = (\frac{\partial}{\partial x^{1}})^{1} (\frac{\partial}{\partial x^{2}})^{\alpha 2},\ldots (\frac{\partial}{\partial x^{n}})^{m}$ $\{(x-a_{0})\}^{\alpha} = (x^{1}-a_{10})^{\alpha} (x^{2}-a_{20})^{\alpha} ,\ldots (x^{n}-a_{n0})^{\alpha} \text{ e.s. } \{x^{n}-a_{n0}\}^{\alpha} \text{ e.$

+...+ $\sum_{|\alpha|=m} \frac{1}{\alpha!} D^{\alpha} (y^{j_0} \phi^{-1}) (a_0) \{ (x'(x) - a_0) \}^{\alpha}$ e .assim :

 $x^*(y^j) = y^j(x) + \frac{n}{i\sum_{1}^{n}}D^i(y_0^j\phi^{-1})(a_0)L(x^i) + \ldots + \sum_{|\alpha|=m} \frac{1}{\alpha^i}D^\alpha(y^j\circ \tilde{\phi}^1)(a_0)(L(x))^\alpha$ com $L(x^i) = x^*(x^i - a_{i0}) = a_{i1}B^1 + a_{i2}B^2 + \ldots + a_{iN}B^N \quad I , i = 1, 2, \ldots, n \quad e$ $(L(x)) = (L(x^1)^{\frac{1}{\alpha}}L(x^2))^2 + \ldots + (L(x^n)^{\frac{1}{\alpha}})^m \quad \text{Escrevendo-se cada produto } B^1, B^2, B^3, \ldots, B^N$ B confrontando-se a expressão acima com a lada direito de () após alguns cálculos verifica-se que os elementos $b_{j\lambda}$ de b dependem polinomialmente de $D^\beta(y^j\circ \tilde{\phi}^1)(a_0)$, dos escalares γ^k_{1s} das combinações lineares dos produtos B^k, B^1 e dos números $a_{i\lambda}$ de a. Logo as mudanças de coordenadas em A^k V são de classe C^∞ e portanto A^k V tem uma estrutura diferenciavel de classe C^∞ e \hat{b} uma variedade diferenciavel de dimensão $n \cdot (N+1) = \dim V \cdot \dim_R A$. Observase ainda que esta estrutura diferenciavel não depende da base escolhida para A, pois mudanças de base, neste caso, são dadas através de matrizes inversíveis, constante , e portanto de classe C^∞ .

Befinição 3.5: A variedade ^{A}V definida acima, com a projeção $\Pi_{A}: ^{A}V \longrightarrow V \text{ é chamada de } \underline{\text{fibrade dos A-pontos de } V \text{ próximos de } V \text{ ou de prolongamento de espécie A de V. }$

Exemplo 3.6: O prolongamento de espécie A de uma variedade V qualquer, onde a álgebra A é a álgebra dos números duais, é sempre visto como o fibrado tangente á V e isso porque: Se X $\epsilon T_X V$, X é identificado com x's $^A V_X$ definido por x'(f) = f(x) +(Xf)\tau para toda f em D(V).

Exemplo 3.7: Se A = R_n^p, pela observação (3.2), $^A V$ é o fibrado dos referenciais de ordem p sobre V (c.f. (5) ,pags 38—45).

Definição 3.8- Sejam V e W variedades e $\Phi:V \longrightarrow W$ uma aplicação diferenciavel. Define-se $A_{\Phi}: A_{V} \longrightarrow A_{W}$ por (3.8) $(A_{\Phi}(x'))(g) = x'(go\Phi)$

para todo x' em ^AV e toda g em D(W) e chama-se à ^AΦ de <u>prolonga-</u> mento de φ de espécie A.

Esse prolongamento é bem definido pois se x'=y', então x'(f)= y'(f) para toda f em D(V). Mas para toda g em D(W) go Φ \in D(V) e logo x'(go Φ) = y'(go Φ) e assim ($^{A}\Phi$ (x'))(g) = =($^{A}\Phi$ (y'))(g) e portanto $^{A}\Phi$ (x')= $^{A}\Phi$ (y') . Corolário 3.9- $^{A}\Phi$: $^{A}\Psi$:

Demonstração: Como por definição $^{A}\Phi$ leva um A-ponto de V próximo de x em um A-ponto de W próximo de $\Phi(x)$, tomando-se cartas locais (U,Ψ) para x e $(\overline{U},\overline{\Psi})$ para $\Phi(x)$, que induzem as cartas locais $(\overline{\Pi}_A^{-1}(U),\Gamma)$ para x' e a $(\overline{\Pi}_A^{-1}(\overline{U}),\overline{\Gamma})$ para $\Phi(x)$ ', a composta $\overline{\Gamma}_A$ Φ or Γ : Ω \subset $R^{\Pi(N+1)}$ será, pelo mesmo raciocínio feito na demonstração de teorema 3.3 , diferenciavel.

Teorema 3.10- Sejam $\mathfrak{N}_1: M_1 \times M_2 \longrightarrow M_1$, i=1,2, as projeções usuais. Então $A(M_1 \times M_2)$ é identificada com $A(M_1 \times M_2)$ através de $\mathbf{z'} = (A_{\mathfrak{N}_1}(\mathbf{z'}), A_{\mathfrak{N}_2}(\mathbf{z'}))$

para todo z' de A(M1*M2) =

Demonstração- A demonstração consiste mais em interpretar o enun ciado do teorema do que , propriamente, efetuar caículos, pois, se

(x,y) $\epsilon M_1 \times M_2$, uma carta local para (x,y) ϵ da forma $(U_1 \times U_2 , \psi_1 \times \psi_2) \text{ onde } (U_1,\psi_1) \text{ ϵ carta local para \times em M_1 e}$ $(U_2,\psi_2) \text{ para y em M_2. Essa carta } (U_1 \times U_2 , \psi_1 \times \psi_2) \text{ induz em }$ $(U_1 \times U_2) \text{ um sistema de coordenadas locais $z^1,\ldots,z^{m_1+m_2}$, onde $z^i=x^i$, para <math>i=1,2,\ldots,m_1=\dim M_1$, e $z^{m_1+j}=y^j$ com $j=1,2,\ldots,m_2=\dim M_2$, isto ℓ , induz o sistema

$$z'(z^{i}) = \sum_{\lambda=0}^{N} z_{i\lambda} B^{\lambda}$$
 para $i=1,2,...,m_{1}$ e

 $x^{i}(z^{m}1^{+j}) = \sum_{\lambda=0}^{\infty} z_{m_{1}+j} a_{\lambda} B^{\lambda}$ para $j=1,2,...,m_{2}$

então $\{^A\!\Pi_1'(z')\}\ (z^i) = z'(z^i)\Pi_1') = z'(x^i)$, $z^i\in D(M_1), i=1,2,\ldots, M_1$ ou seja $^A\!\Pi_1'(z') = z'$ restrita à M_1 , e, analogamente, para $j=1,2,\ldots, M_2$, $^A\!\Pi_2'(z')\} = z'$ restrita à M_2 , se se pensar em z^{M_1+j} como elemento de $D(M_2)$.

Esse procedimento é obviamente reversivel, ou seja, a partir de um A-ponto de M₁ próximo de x e de um A-ponto de M₂ próximo de y, dadas as coordenadas locais de x e de y ,pode-se facilmente achar um z', A-ponto de M₁×M₂ próximo de (x,y), com a propriedade do enunciado do teorema fazendo o mesmo raciocínio, mas no sentido contrário, e , portanto ,essa identificação é bem definida. As unicidades dos pontos próximos em questão são decor-

rentes das definições de prolongamentos e pela própria construção deles.

Corolário 3.11- \wedge identificação Θ de $^{A}(M_1 \times M_2)$ com $^{A}M_1 \times ^{A}M_2$ é um difeomorfismo.

Demonstração: imediata por (3.9).

Corolário 3.12- Se M ,M, , M, são variedades diferenciaveis, então:

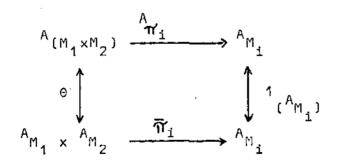
- 1.) $A(1_M) = 1_{A_M}$ onde 1_M é a aplicação identidade de M; e 1 é a identidade em A_M ;
- 2.) Se π_i (respect. $\overline{\pi}_i$) é a projeção de $\mathbf{M_1} \times \mathbf{M_2}$ (respect. $\mathbf{A_{M_1}} \times \mathbf{A_{M_2}}$) sobre $\mathbf{M_i}$ (respect. $\mathbf{A_{M_i}}$) , i=1,2, então $\mathbf{M_1} = \overline{\pi}_i$, i=1,2.

Demonstrações: 1.) Dado x' em A M , como 1_{M} é diferenciavel , ela admite o prolongamento $^{A}(1_{M})$ de A M em A M. Mas ,por definição :

 $(^{A}(1_{M})(x'))(g)=x'(go1_{M})=x'(g)$ para toda g em D(M) ,logo

$$A(1_M)(x') = x'$$
 para todo x' em A_M . Assim $A(1_M) = 1_{A_M}$.

2.) Como $^{A}(M_1 \times M_2)$ e $^{A}M_1 \times ^{A}M_2$ são $^{\Theta}$ difeomorfos , tem-se que o diagrama abaixo é comutativo



para i=1,2 e

o resultado segue imediatamente.

Lema 3.13- Sejam ϕ_1 : $M_1 \longrightarrow N_1$ ϕ_2 : $M_2 \longrightarrow N_2$ e ψ : $N_1 \longrightarrow N_2$ applicações diferenciaveis . com M_1 . M_2 . N_1 . N_2 e N_1 variedades diferenciaveis. Então :

1.) Se
$$\phi_1$$
 é sobrejetore $A(\psi \circ \phi_1) = A\psi \circ A\phi_1$

2.)
$$A(\phi_1 \times \phi_2) = A \phi_1 \times A \phi_2$$

Demonstração: 1.) Como $\psi \circ \phi_1$ é diferenciavel , seu prolongamento existe e é definido por $^A(\psi \circ \phi_1)(x')$ (g) = x' (go($\psi \circ \phi_1$)) para x' em $^A M_1$ e g em D(N). Mas

=
$$(A(\psi \circ \phi_1)(x'))(g)$$
 para todo x' em A_1 e toda g em $D(N)$.

Portanto

$$A(\psi \circ \phi_1) = A\psi \circ A\phi_1$$

2.) Observando-se que , se $\pi_i: M_1 \times M_2 \xrightarrow{} M_i$ e $p_i: N_1 \times N_2 \xrightarrow{} N_i$, para i=1,2 , são as projeções naturais,o diagrama (I) abaixo é comutativo

um lado:

 $=\widetilde{p}_{i}(^{A}(\phi_{1}\circ\pi_{1})(z'),^{A}(\phi_{2}\circ\pi_{2}')(z') \qquad \text{onde } \theta$ é o difeomorfismo entre $^{A}(M_{1}x^{A}M_{2}) \quad e \quad ^{A}M_{1}x^{A}M_{2} \quad , \quad e \text{ por outro lado:}$ do:

 $(^{A}p_{i}\circ ^{A}(\phi_{1}\times\phi_{2}))(z')=^{A}(p_{i}\circ (\phi_{1}\times\phi_{2}))(z')$. Comparando-se ambos os lados e usando o diagrama (I) , o (II) é comutativo para i=1,2, e o resultado

$$A_{\phi_1} x^{A_{\phi_2}} = A_{(\phi_1 x \phi_2)}$$
 segue.

Lembrando-se que, para qualquer que seja a álgebra local A foi convencionado considerar R como subespaço de A ,e , nestas condições, se x está na variedade V , a aplicação de D(V) em RC A dada por f \longrightarrow f(x) define um A-ponto de V próximo de x (c.f. exemplo 2.6) que será identificado com o x. Assim V se acha identificada com uma subvariedade $\mathop{\mathcal{C}}$ de $\mathop{\mathcal{C}}$ que constitui exa tamente dos ponto próximos do tipo acima.

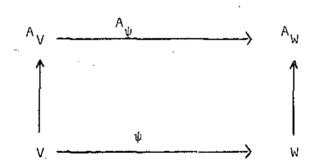
Realments: se x' é um ponto de tipo acima,tomando_se uma carta local em ${}^A V$ de x' com coordenadas locais dadas por $\left\{x_{i\lambda} \quad \text{com } i=1,2,\ldots,n \quad \text{e } \lambda=0,1,2,\ldots,N \right\}$, cada x_i é obtido attravés da carta local (U,ϕ) de x com coordenadas locais x^1,x^2 , x^3,\ldots,x^n , da maneira habitual

$$x'(x^i) = \sum_{\lambda=0}^{N} x_{i\lambda} B^{\lambda} = x_{i0}$$
 para todo $i=1,2,...,n$, devido

a condição imposta ao x',i.é: $x'(x^i)=x^i(x)=x_{i,0}$. Assim associou-se a esse ponto próximo a n(N+1)-úpla de números reais:

(a_{10} ,0,0,...,0, a_{20} ,0,...,0,...,0, a_{n0} ,0,...,0) e uma carta local para x' nesse subconjunto $\mathscr B$ de A V é a restrição a B de uma carta para x' em A V,donde B é uma subvariedade de A V com dimensão igual a de V.

Se W também é uma variedade, analogamente W será identificada com uma subvariedade de A W e é imediato que , se $^{\psi}$ é uma aplicação diferenciavel de V em W , A $^{\psi}$ induz sobre V A V a mesma aplicação $^{\psi}$ de V em W, considerando-se W como contido em A W, ou seja , o diagrama abaixo é comutativo



onde as setas verticais indicam as inclusões mencionadas.

CAPITULO 4

TRANSITIVIDADE DO PROLONGAMENTO

Neste último capítulo será feito um estudo suscinto sobre algumas propriedades do prolongamento de espécie A de uma variedade V, sobre o comportamento dos prolongamentos das leis de composição interna de uma álgebra B pela álgebra A e , por fimo quê significa a transitividade do prolongamento.

Supondo-se que,em uma variedade V, exista uma lei de composição interna f diferenciavel, seu prolongamento ^Af será uma lei de composição interna sobre a variedade ^AV e se f é comutativa (respect. associativa),o mesmo acontecerá com ^Af. A demonstração que se seguirá será para o caso comutativo, mas para o associativo o procedimento é análogo.Para simplicidade des cálculos, supor-se-á V uma variedade de dimensão 2, A terá uma base formada por {1,8} e sua altura será também igual a 2.

Sejam (x,y) em VxV , $\{U_1,\psi_1\}$ carta local para x induzindo as coordenadas locais $\{x^1,x^2\}$, $\{U_2,\psi_2\}$ carta local para y com coordenadas locais $\{y^1,y^2\}$, x' um A-ponto de V próximo de x dado por x' $\{x^1\}=a_{10}+a_{11}B$, x' $\{x^2\}=a_{20}+a_{21}B$ e y' um A-ponto de V

próximo de y dado por y'(y¹)=b₁₀+b₁₁B e y'(y²)=b₂₀+b₂₁B. Deseja-se mostrar que ${}^Af(x',y')={}^Af(y',x')$ para todos x' em AV_x e y' em AV_x . Mas ${}^Af(x',y')(g)=(x',y')(gof)$ para toda g em D(V), assim desenvolvendo gof em Taylor na carta ${}^U1^{\times U}_2$ de (x,y) , tem-se, devido a convenção usada em (2.15)e(2.16), que:

$$gof = g(f(x,y)) + \frac{\partial (gof)}{\partial x^{1}}(x,y)(x^{1}-a_{10}) + \frac{\partial (gof)}{\partial x^{2}}(x,y)(x^{2}-a_{20}) +$$

$$+\frac{\partial (g \circ f)}{\partial y^{1}}(x,y)(y^{1}-b_{10}) + \frac{\partial (g \circ f)}{\partial y^{2}}(x,y)(y^{2}-b_{20}) + \mathcal{C}_{2}(x,y)$$

e,aplicando-se (x',y') na expressão acima :

(A)
$$(x',y')(gof) = g(f(x,y)) + {\frac{\partial(gof)}{\partial x^1}(x,y) \cdot a_{11} + \frac{\partial(gof)}{\partial x^2}(x,y) \cdot a_{21} +$$

$$+\frac{\partial(g \circ f)}{\partial y^{1}}(x,y)b_{11} + \frac{\partial(g \circ f)}{\partial y^{2}}(x,y)b_{21}B$$
.

Desenvlovendo-se agora gof na carta $(U_2 \times U_1)$ do ponto (y,x) e aplicando (y',x') nesse desenvolvimento do mesmo modo que o feito accima obtém-se a expressão:

$$(\triangle \triangle) \quad (y',x')(gof) = g(f(y,x)) + (\frac{\partial (gof)}{\partial y^1}(y,x)b_{11} + \frac{\partial (gof)}{\partial y^2}(y,x)b_{21} + \frac{\partial (gof)}{\partial y^2}(y,x)b_$$

$$+\frac{\partial(g \circ f)}{\partial x^{1}}[y,x]a_{11} + \frac{\partial(g \circ f)}{\partial x^{2}}\{y,x]a_{21}\}B$$

como para toda g em D(V),
$$\frac{\partial^{k}(g \circ f)}{\partial x^{i} \partial y^{j}}(y,x) = \frac{\partial^{k}(g \circ f)}{\partial y^{j} \partial x^{i}}(x,y)$$

para $0 \le i+j = k$, (y',x')(gof) = (x',y')(gof) acarretando em $A_{f(x',y')(g)} = A_{f(y',x')(g)}$ para toda g em D(V) e portanto

$$A_{f(x',y')} = A_{f(y',x')}$$
 para todo x' em A_{x} e y' em A_{y} .

Através desse resultado, conclui-se que, se G é um grupo de Lie com multiplicação μ , AG também será um grupo de Lie com a multiplicação $^{\Lambda}\mu: ^AG$ x AG .

Lema 4.1: Seja V=R com a sua estrutura de corpo.Prolongandose a ^AR as leis de composição internas de R , ^AR tem uma estrutura de álgebra que é isomorfa a A.

Demonstração: Como os prolongamentos da adição e da multiplicação de R não são nada mais do que a adição e multiplicação no prolongamento, ainda tendo-se que $\dim_R {^AR} = \dim_R A$. $\dim_R R = \dim_R A$, o issomorfismo é dado por $x' \longrightarrow x'$ (i) onde i é a coordenada natural de R (c.f. 2.15).

Supondo-se que V seja um espaço vetorial de dimensão finita n sobre R (então V é isomorfa ao R^{n}), o prolongamento a A V da adição de vetores de V determina sobre A V uma estrutura de grupo abeliano.Por outro lado,pode-se ainda prolongar a

$$A_{(R \times V)} = A_{R \times A_{V}} = A_{X} A_{V}$$

a multiplicação m de RxV em V dada por m(λ ,v) = λ y. Através dessas duas leis ,^AV tem uma estrutura de <u>A-módulo</u>. Ainda mais, se se fixar uma base de V , ^AV com essa estrutura de A-módulo se identificará , <u>canonicamente</u> , com o produto tensorial A \bigotimes V , considerado como um parmódulo. De fato : como V é isomorfa ao Rⁿ AV isomorfa a Aⁿ=AxAx...xA (n vezes).como ainda A é isomorfa a A \bigotimes R tem-se:

$$A_{V \subseteq A}^{n} \subseteq (A \otimes R)^{n} \subseteq A \otimes R^{n} \subseteq A \otimes V$$
.

Além disso, se existir em V uma multiplicação que a torna uma álgebra comutativa sobre R,o prolongamento dessa multiplicação a A V determina, juntamente com as leis precedentes, uma estrutura de álgebra em A V de forma que A V se identifica , ainda canonicamente, com A \otimes V munido da estrutura correspondente.

Lema 4.2 - Seja B uma álgebra local e V uma variedade. Dado x' em $^{\rm B}$ V , a aplicação f $\xrightarrow{\rm B}$ f(x') define um homomorfismo entre D(V) e $^{\rm B}$ R = B .

Demonstração: Dado x' em BV , como f: $V\longrightarrow R$ é diferenciavel, seu prolongamento ${}^Bf: {}^BV\longrightarrow {}^BR=B$ é dado por :

 $\binom{B}{f(x')}(h) = x'(hof)$ qualquer que seja h em B(V), e , ainda, define um B-ponto de R próximo de f(x). Mas por (2.15) é suficiente conhecer esse B-ponto próximo na aplicação identidade de R, ou seja :

 ${B \choose f(x')}(i) = x'(iof) = x'(f)$ para toda f em D(V).

Como por definição x' é um homomorfismo de álgebras tem-se :

$$B(f + \lambda g)(x') = Bf(x') + \lambda Bg(x')$$

B(f,g)(x') = Bf(x'), Bg(x') para todas f e g em D(V) e todo λ em R , e portanto o resultado segue.

Lema 4.3 - Sejam A e B duas álgebras locais e V uma variedade. Dado x'' em (^BV) , a aplicação f \xrightarrow{A} $(^Bf)(x'')$ é um homomorfismo entre as álgebras D(V) e $^AB = A \otimes B$.

Demonstração : Como B é uma álgebra de dimensão finita k sobre R,

B tem uma estrutura diferenciavel definida por uma carta global com funções coordenadas sendo transformações lineares de B em R, aquí denotadas por β^1 , β^2 , β^3 , . . . , β^k , e assim :

$$A_{\{B}(f+\lambda g))(x'') (\beta^{j}) = A_{\{B}f + \lambda^{B}g\}(x'')(\beta^{j}) \qquad (por 4.2)$$

$$= x''(\beta^{j}o(^{B}f+\lambda^{B}g)) \qquad (pela definição)$$

$$= x''(\beta^{j}o^{B}f+\lambda\beta^{j}o^{B}g) \qquad (linearidade de\beta^{j})$$

$$= x''(\beta^{j}o^{B}f)+\lambda x''(\beta^{j}o^{B}g) \qquad (x'' \in linear)$$

$$= A_{\{B}f\}(x'')(\beta^{j})+A_{\{B}g\}(x'')(\beta^{j})$$

$$= (A_{\{B}f)+A_{\{B}g\})(x'')(\beta^{j})$$

portanto $^{A}(^{B}f)(x'')$ é linear. Agora , dado x'' em $^{(B}V),x''$ sendo um A-ponto de ^{B}V próximo de x' , com relação ao produto de funções tem-se :

$$B(f,g)(x') = (Bf)(x') \cdot (Bg)(x') = (Bf, Bg)(x')$$
 i.e.

 $B(f,g) = prod_B \circ (^Bf \times ^Bg)$ onde $prod_B \in a multipli$ cação da álgebra B. Mas ,se $prol_A$ $\in o$ prolongamento da estrutura algébrica de B de espécie A , pelo diagrama abaixo

observa-se que:

$${}^{A}(^{B}(f \cdot g)) = {}^{A}\operatorname{prod}_{B} \circ {}^{A}(^{B}f \times {}^{B}g)$$

$$= \operatorname{prod}_{A \otimes B} \circ ({}^{A}(^{B}f) \times {}^{A}(^{B}g)) \quad (lema 3.13-2)$$

$$= {}^{A}(^{B}f) \operatorname{prod}_{A \otimes B} {}^{A}(^{B}g) \quad para todes$$

f e g em D(V) e x'' fixado , o que demonstra o lema.

Corolário 4.4- Se x'' de $^{(B)}$ V) é um A-ponto próximo de x'de $^{(B)}$ V e x' um B-ponto de V próximo de x de V, a aplicação z' de D(V) em A \bigotimes B definida por

$$z^{*}(f) = {A \choose B}(x^{*})$$

é um homomorfismo de álgebras cuja parte finita de $(B_f)(x^*)$, considerado como um elemento de $A \otimes B$, é f(x).

Feito tudo isso, está-se agora em condições de enun ciar e demonstrar o teorema fundamental da transitividade dos prolongamentos:

TEOREMA 4.5 - SEJAM A E B DUAS ALGEBRAS LOCAIS E V UMA VARI
EDADE DIFERENCIAVEL. EXISTE UM ISOMORFISMO CANONICO ENTRE O PRO
LONGAMENTO DE ESPECIE A

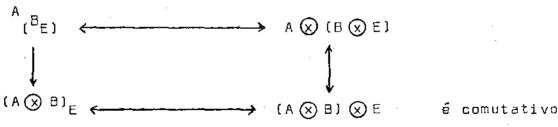
B DE V E O PROLONGAMENTO DE ESPECIE B DE V.

Demonstração: Seja f em D(V). Pode-se então efetuar seu prolon gamento de espécie B obtendo-se , assim , B f: B V \longrightarrow B R = B ,

e depois o de espécie A resultando em $({}^{\mathfrak{G}}\mathfrak{f}): ({}^{\mathfrak{G}}\mathfrak{V}) \longrightarrow {}^{\mathsf{A}}\mathfrak{B} = A \times \mathfrak{A}$ Se x'' pertence a (^BV) e é fixado , (^Bf)(x'') é pois um elemento de $A \otimes B$. Pelos lemas (4.2) ,(4.3) e pelo corolário(4.4), a aplicação $f \xrightarrow{A} (B_f)(x'')$ é um homomorfismo de B(V) em $A \otimes B$ e se x'' é um A-ponto de $^{\mathsf{B}}\mathsf{V}$ próximo de x' que,por sua vez, A é um B-ponto de V próximo de x de V , a parte finita de (^Bf)[x'') é f(x). Desta forma a aplicação z': D(V) → → A ⊗ B dada por

$$z'(f) = A(Bf)(x'')$$

define um A 🗙 8 -ponto de V próximo de x e a aplicação de (^{B}V) no prolongamento de espécie A \otimes B de V. Resta mostrar que essa aplicação é um isomorfismo da primeira variedade na segunda. Mas como isso é uma propriedade puramente local com relação a V , é suficiente verificá-lo quando V é um subconjunto aberto de um espaço vetorial E. Ora ,já se sabe que $^{'}$ (BE) e A \otimes (B \otimes E) são isomorfos e que o Ax B -prolongamento de E também é isomorfo a (A(X)B)(X)E e que o produto tensorial é associativo e assim o diagrama



e,portanto, o resultado segue.

Corolário 4.6- (BV) é difeomorfo à (A \otimes B)_V.

BIBLIOGRAFIA

- (1) BOURBAKI, N. Comutative álgebra, Paris, Hermann. 1961, cap. 3.
- (2) LIMA, E. L. <u>Cálculo tensorial</u>. Rio de Janeiro, IMPA, 1965.

 (Notas de matemática , 32)
- (3) MORIMOTO, A. <u>Prolongations of geometric structures</u>. Nagoya
 Univ., Mathematical Institute, 1969.
- (4) NARASIMHAN, R. Analysis on real and complex manifolds. Paris, Masson & Cia, 1968.
- (5) RODRIGUES, A. A. M. <u>G-structures et pseudo-groupes de Lie</u>.

 Université de Grenoble, 1969. Notas de um curso dado em

 1967-68.
- (6) SAGLE, A.A., WALDE, R. E. <u>Introduction to Lie groups and</u>
 Lie algebras. New York, Academic Press, 1973.
- (7) WEIL, A. Théorie des points proches sur les variétés differentiables. Colloq. Geom. Diff. Strasbourg, 1953. p. 111-117.