

Bruno Henrique Cervelin

Sobre um Método de Minimização Irrestrita Baseado em Derivadas Simplex

Campinas 2013

Universidade Estadual de Campinas

Instituto de Matemática, Estatística e Computação Científica

Bruno Henrique Cervelin

Sobre um Método de Minimização Irrestrita Baseado em Derivadas Simplex

Orientadora: Profa. Dra. Maria Aparecida Diniz Ehrhardt.

Dissertação de mestrado apresentada do Instituto de Matemática, Estatística e Computação Científica da Unicamp para obtenção do título de Mestre em matemática aplicada.

Este exemplar corresponde à versão final da dissertação defendida pelo aluno Bruno Henrique Cervelin, e orientada pela Profa. Dra. Maria Aparecida Diniz Ehrhardt.

Assinatura da Orientadora

monor hiliand

Campinas 2013

iii

FICHA CATALOGRÁFICA ELABORADA POR MARIA FABIANA BEZERRA MULLER - CRB8/6162 BIBLIOTECA DO INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA - UNICAMP

Cervelin, Bruno Henrique, 1988-C337s Sobre um método de minimização irrestrita baseado em derivadas simplex / Bruno Henrique Cervelin. – Campinas, SP : [s.n.], 2013.

> Orientador: Maria Aparecida Diniz Ehrhardt. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica.

1. Otimização sem derivadas. 2. Programação não-linear. 3. Métodos de busca padrão. 4. Otimização matemática. 5. Algoritmos. I. Ehrhardt, Maria Aparecida Diniz,1956-. II. Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica. III. Título.

Informações para Biblioteca Digital

Título em inglês: About an unconstrained minimization method based on simplex derivatives Palavras-chave em inglês: Derivative-free optimization Nonlinear programming Pattern search methods Mathematical optimization Algorithms Área de concentração: Matemática Aplicada Titulação: Mestre em Matemática Aplicada Banca examinadora: Maria Aparecida Diniz Ehrhardt [Orientador] José Mario Martínez Perez Ernesto Julián Goldberg Birgin Data de defesa: 08-04-2013 Programa de Pós-Graduação: Matemática Aplicada

Dissertação de Mestrado defendida em 08 de abril de 2013 e aprovada

Pela Banca Examinadora composta pelos Profs. Drs.

marchland

Prof.(a). Dr(a). MARIA APARECIDA DINIZ EHRHARDT

Jonn -

Prof.(a). Dr(a). JOSÉ MARIO MARTÍNEZ PÉREZ

Prof.(a). Dr(a). ERNESTO JULIÁN GOLDBERG BIRGIN

Agradecimentos

Agradeço à Capes pela ajuda financeira.

Aos meus amigos que tanto me ajudaram e tanto me atrapalharam a concluir este projeto.

À Sandra por me fazer sorrir nas horas em que tudo parecia perdido.

À Cheti, a melhor orientadora que qualquer aluno poderia esperar.

Mas, principalmente, agradeço aos meus pais, sem o seu suporte jamais teria concluído mais esta etapa.

Resumo

O objetivo deste trabalho é apresentar alguns métodos de minimização irrestrita sem derivadas, tais como, Nelder-Mead, busca padrão e SID-PSM, assim como compará-los. Ainda pretendemos apresentar o problema de otimização de parâmetros de algoritmos, e aplicar o método SID-PSM de modo a encontrar parâmetros ótimos para o próprio método SID-PSM em relação ao número de avaliações de função que o método realiza. Os experimentos numéricos realizados mostram que o SID-PSM é mais robusto e mais eficiente que os métodos clássicos sem derivadas (busca padrão e Nelder-Mead). Outros experimentos nos mostram o potencial do problema de otimização de parâmetros de algoritmos em melhorar tanto a eficiência quanto a robustez dos métodos.

Palavras chave: Otimização sem derivadas; Otimização de parâmetros de algoritmos; SID-PSM; Otimização irrestrita; Derivadas simplex.

Abstract

The aim of this paper is to present some derivative-free methods for unconstrained minimization problems, such as Nelder-Mead, pattern search and SID-PSM, and compare them. We also intend to present the problem of optimal algorithmic parameters, and apply the method SID-PSM in order to find optimal parameters for the method SID-PSM itself in relation to the number of function evaluations performed by the method. The numerical experiments performed show that the SID-PSM is more robust and more efficient than the classical derivative-free methods (pattern search and Nelder-Mead). Other experiments show us the potential of the problem of optimal algorithmic parameters to improve both the efficiency and the robustness of the methods.

Keywords: Derivative-free optimization; Optimal algorithmic parameters; SID-PSM; Unconstrained minimization; Simplex derivative.

Lista de Notação

Aqui incluímos uma lista de notações usadas ao longo deste projeto:

• $||x|| \longrightarrow \text{norma-2 de } x \in \mathbb{R}^n$,

$$\|x\| = \sqrt{\sum_{i=1}^{n} x_i^2};$$

• $||x||_{\infty} \longrightarrow$ norma-infinito de $x \in \mathbb{R}^n$,

$$||x||_{\infty} = \max_{i=1,\dots,n} \{|x_i|\};$$

• $||H||_F \longrightarrow$ norma de Frobenius de $H \in \mathbb{R}^{m \times n}$,

$$||H||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n h_{ij}^2}$$

- $|S| \longrightarrow$ cardinalidade do conjunto S;
- $\mathcal{L}(x_0) \longrightarrow$ conjunto de nível de uma função f, associado a $f(x_0)$, com $x_0 \in \mathbb{R}^n$,

$$\mathcal{L}(x_0) = \{ x \in \mathbb{R}^n : f(x) \le f(x_0) \};$$

• $L(S) \longrightarrow$ matriz de diferença entre pontos do conjunto $S = \{y^0, y^1, \dots, y^q\} \subset \mathbb{R}^n$,

$$L(S) = [y^1 - y^0, \dots, y^q - y^0].$$

Podemos também omitir qual o conjunto no qual estamos avaliando a função quando não atrapalhar no entendimento do texto, ou seja, podemos representar L(S) = L;

• $\delta f(S) \longrightarrow$ vetor de diferença de valor da função f nos pontos do conjunto $S = \{y^0, y^1, \dots, y^q\} \subset \mathbb{R}^n$,

$$\delta f(S) = \begin{bmatrix} f(y^1) - f(y^0) \\ f(y^2) - f(y^0) \\ \vdots \\ f(y^q) - f(y^0) \end{bmatrix};$$

• $N(A) \longrightarrow$ núcleo da matriz $A \in I\!\!R^{m \times n}$,

$$N(A) = \{ x \in \mathbb{R}^n : Ax = 0 \};$$

• $sign(c) \longrightarrow sinal do número c \in \mathbb{R}$,

$$sign(c) = \begin{cases} +1 & \sec c \ge 0\\ -1 & \sec c < 0 \end{cases};$$

• $B(y, \Delta) \longrightarrow$ bola centrada em $y \in \mathbb{R}^n$ de raio $\Delta > 0$,

$$B(y,\Delta) = \{ x \in \mathbb{R}^n : \|x - y\| \le \Delta \}.$$

Conteúdo

Introdução 1		
1	Métodos de Busca Direta 1.1 Métodos de Busca Simplex 1.1.1 Método de Nelder-Mead 1.2 Métodos de Busca Padrão	3 3 4 5
2	Derivadas Simplex 2.1 Gradiente Simplex 2.2 Hessiana Simplex	10 10 16
3	Métodos de Busca Linear 3.1 Métodos de Busca Linear Baseados em Gradientes Simplex 3.2 Método do Filtro Implícito	19 20 20
4	Método de busca padrão usando derivadas simplex	22
5	Experimentos numéricos preliminares 5.1 Ajuste de parâmetros	26 28 32
6	Otimização de parâmetros de algoritmos	36
7	Conclusão	45
Ar	Anexo A - Resultados numéricos	
Ar	Anexo B - Base positiva com ângulos uniformes	
Re	Referências	

Introdução

Neste trabalho estamos interessados em resolver problemas do tipo

$$\min_{x \in \mathbb{R}^n} f(x),\tag{1}$$

onde $f : \mathbb{R}^n \to \mathbb{R}$ é uma função continuamente diferenciável. Em geral, para resolver tais problemas utilizamos métodos que se baseiam em alguma derivada de f. Exemplos são o método de Newton e os métodos Quase-Newton [3, 14]. Apesar da já conhecida eficiência desses métodos e de toda sua base teórica, vários pesquisadores trabalham com métodos que não utilizam derivadas nem aproximações locais para elas. Esses métodos constituem a classe de *derivative-free methods*.

Desenvolvidos inicialmente como heurísticas, hoje esses métodos ganharam uma ampla teoria de convergência, em alguns casos, tão forte quanto a dos métodos que se baseiam em derivadas [13]. Exemplos de subclasses são os métodos de busca direta, dentre os quais podemos citar os métodos Nelder-Mead [16] e busca coordenada [6], e também os métodos de busca linear, aos quais pertence o método do filtro implícito [11].

A ideia principal dos métodos que não utilizam derivadas não é competir com os métodos clássicos de otimização, mas sim utilizá-los quando estes falham, como por exemplo nos casos em que, apesar de sabermos teoricamente que as derivadas existem, não podemos calculá-las analiticamente. Outra vantagem desses métodos é a sua simpliciade de implementação, além de bons resultados numéricos na prática.

Um exemplo de problema onde, apesar de sabermos da existência teórica das derivadas, não temos acesso a elas, pode ser encontrado em [17]. O autor resolve o problema de minimizar a área de figuras, em que a função área é diferenciável. Porém pode ser complicado obtê-la e uma alternativa é resolver o problema utilizando simulação. Neste caso as funções apresentam "ruídos", tornando inviável a diferenciação numérica. Logo a melhor alternativa é utilizar métodos sem derivadas.

O método Nelder-Mead está entre os métodos sem derivadas mais utilizados. Apesar de não possuir convergência teórica garantida e resultados insatisfatórios em alguns problemas [20], no geral, ele funciona bem. Esse método consiste em, a partir de um simplex, substituir o pior ponto (com maior valor de função objetivo) por outro melhor, fazendo reflexão, expansão ou contração através da face oposta ao vértice. Ou ainda, quando todas as outras formas falham, redução do tamanho do simplex. Esse método está na classe dos métodos de busca simplex. Outra classe que se destaca é a de busca padrão. Partindo de uma aproximação para o minimizador da função, estes métodos procuram uma aproximação melhor, andando por direções de um conjunto ordenado por um padrão pré-definido. Dentro dessa classe está o método de busca coordenada que, apesar de sua simplicidade, possui ampla teoria de convergência.

Alguns métodos da classe de busca padrão podem fazer parte da classe de busca direta, na qual só se faz uso do valor da função de forma comparativa. Nesse caso não precisamos avaliar numericamente o valor da função, precisamos apenas avaliar se o ponto é melhor ou pior que o atual. Entretanto não podemos utilizar estratégias mais elaboradas para tentar acelerar a convergência, como por exemplo, a condição de decréscimo suficiente de Armijo-Goldstein-Wolfe [9] ou busca por direções dadas por derivadas simplex [11].

Um método de busca padrão que se destaca é o método SID-PSM (SImplex Derivatives in Pattern Search Method - derivadas simplex no método de busca padrão), desenvolvido por Custódio e Vicente [7]. Esse método não é de busca direta, pois nele utilizamos os valores da função objetivo para calcular derivadas simplex. O diferencial desse método é a possibilidade de utilizar estas derivadas para procurar uma direção de descida em potencial, calcular o tamanho do passo na próxima iteração, ordenar e/ou podar o conjunto de direções de pesquisa, ou até mesmo como critério de parada.

Neste trabalho discutiremos, no Capítulo 1, algumas características dos métodos de busca direcional e algumas de suas subclasses. No Capítulo 2, mostraremos algumas propriedades interessantes sobre derivadas simplex, para então, no Capítulo 3, trabalharmos com métodos de busca linear sem derivadas. No Capítulo 4, faremos um estudo sobre o método SID-PSM, mostrando quais as opções e possibilidades de uso. No Capítulo 5, seguiremos com alguns experimentos numéricos comparando o método SID-PSM com outros métodos estudados. E, por fim, no Capítulo 6 apresentaremos o problema de otimização de parâmetros de algoritmos e aplicaremos o método SID-PSM para otimizar a ele mesmo (além de apresentarmos algumas comparações).

Capítulo 1

Métodos de Busca Direta

Os métodos de busca direta são métodos iterativos que fazem parte da classe derivative-free, cuja principal característica é não calcular diretamente as derivadas das funções envolvidas no problema. Nos métodos de busca direta não calculamos nem aproximamos as derivadas [13], e ainda utilizamos os valores da função objetivo apenas de forma comparativa, ou seja, em uma iteração k, ordenamos p pontos $x_k^0, x_k^1, \dots, x_k^p$ de modo que

$$f(x_k^0) \le f(x_k^1) \le \dots \le f(x_k^p).$$
 (1.1)

Assim não precisamos avaliar numericamente a função objetivo; porém não podemos utilizar estratégias de decréscimo suficiente, como por exemplo a condição de Armijo-Goldstein-Wolfe [9].

Esta classe de métodos pode ser divida em duas subclasses: métodos de busca simplex e métodos de busca padrão.

1.1 Métodos de Busca Simplex

Métodos de busca simplex têm uma grande importância em aplicações, visto que o método de Nelder-Mead [16], que faz parte desta classe, mesmo com sua falta de resultados teóricos em relação à convergência, é um dos métodos de busca direta mais utilizados, isto devido à facilidade de implementação e aos bons resultados obtidos na prática.

Um simplex é um conjunto de n+1 pontos no \mathbb{R}^n . Chamamos os pontos x_0, x_1, \ldots, x_n , que definem o simplex, de vértices, e trabalhamos sempre com simplex não degenerados, ou seja, o conjunto $\{x_1 - x_0, x_2 - x_0, \ldots, x_n - x_0\}$ é linearmente independente.

Métodos simplex consistem em, a cada iteração k, ordernar n+1 pontos $x_k^0, x_k^1, \ldots, x_k^n$ como em (1.1) e substituir o ponto x_k^n por um de menor valor de função objetivo. A maneira mais usual é fazer este novo ponto como a reflexão de x_k^n através do centróide da face oposta do simplex, como mostrado na Figura 1.1.

Figura 1.1: Simplex refletindo vértice x_0^2 pelo centróide da face oposta

1.1.1 Método de Nelder-Mead

O método de Nelder-Mead [16] é um método de busca simplex; a cada iteração k ordenamos os n + 1 pontos e tentamos substituir o pior deles, x_k^n , por um ponto de menor valor de função objetivo. O diferencial deste método é a possibilidade de contração ou expansão do simplex. Assim, a cada iteração, após ordenar os pontos, tentamos:

- 1. refletir x_k^n pelo centróide da face oposta calculando $x_k^r = (1+\rho)\bar{x} \rho x_k^n$, onde $\rho > 0$ é o coeficiente de reflexão e $\bar{x} = \sum_{i=0}^{n-1} x_k^i / n$ é o centróide da face oposta a x_k^n ;
- 2. se $f(x_k^r) < f(x_k^0)$, tentamos expandir o simplex calculando $x_k^e = (1 + \rho \chi)\bar{x} \rho \chi x_k^n$, onde $\chi > 1$ é o coeficiente de expansão; se $f(x_k^e) < f(x_k^r)$ aceitamos x_k^e e terminamos a iteração. Caso contrário aceitamos x_k^r e terminamos a iteração.
- 3. Se $f(x^r) \leq f(x^{n-1})$ aceitamos x_k^r e terminamos a iteração.
- 4. Se $f(x_k^r) > f(x_k^{n-1})$, fazemos uma contração. Dois tipos de contrações são permitidos:
 - Contração externa: se $f(x_k^{n-1}) < f(x_k^r) < f(x_k^n)$ calculamos $x_k^c = (1 + \rho \gamma)\bar{x} \rho \gamma x^n$, onde $0 < \gamma < 1$. Se $f(x_k^c) < f(x_k^r)$ aceitamos x_k^c e terminamos a iteração, caso contrário, vá para o passo 5.
 - Contração interna: Se $f(x_k^r) \ge f(x_k^n)$, calculamos $x_k^c = (1 \gamma)\bar{x} + \gamma x^n$. Se $f(x_k^c) < f(x_k^n)$ aceitamos x_k^c e terminamos a iteração, caso contrário, vá para o passo 5.

5. Fazemos a redução do simplex, calculando $v_k^i = x_k^0 + \sigma(x_k^i - x_k^1)$, para todo $i = 1, \ldots, n$. Os vértices da próxima iteração serão $x_k^0, v_k^1, v_k^2 \ldots v_k^n$.

Como dito anteriormente, o método de Nelder-Mead não possui garantia de convergência para problemas n-dimensionais, porém para problemas com até 2 variáveis temos os seguintes teoremas demonstrados em [12].

Teorema 1 Seja $f : \mathbb{R} \to \mathbb{R}$ estritamente convexa, limitada inferiormente. Se aplicamos o Algoritmo de Nelder-Mead, com $\rho\chi \ge 1$, partindo de um simplex inicial não degenerado, então a sequência de pontos gerados pelo método converge ao minimizador.

Teorema 2 Seja $f : \mathbb{R}^2 \to \mathbb{R}$ estritamente convexa com curvas de nível limitadas. Se o simplex inicial é não degenerado e o Algoritmo de Nelder-Mead usa $\rho = 1$ e $\gamma = 0, 5$, então os três vértices limites do simplex possuem o mesmo valor de função.

Teorema 3 Seja $f : \mathbb{R}^2 \to \mathbb{R}$ estritamente convexa com curvas de nível limitadas. Se o simplex inicial é não degenerado e o Algoritmo de Nelder-Mead usa $\rho = 1, \chi = 2$ e $\gamma = 0, 5$, então a sequência de diâmetros dos simplex tende a zero, ou seja,

$$\max_{i \neq j} \|x_k^i - x_k^j\| \to 0.$$

Devemos enfatizar que mesmo para funções estritamente convexas no \mathbb{R}^2 , não temos garantia que o método converge para um ponto estacionário.

1.2 Métodos de Busca Padrão

Os métodos desta classe avaliam a função objetivo em um padrão de pontos para então decidir qual o próximo iterando (aproximação para o minimizador). O padrão mais intuitivo é definido pelas coordenadas cartesianas, positivas e negativas, pois desta forma temos um conjunto gerador positivo para o \mathbb{R}^n .

Definição 1 Um conjunto gerador positivo no \mathbb{R}^n é um conjunto de vetores cuja combinação linear positiva gera o \mathbb{R}^n .

O conjunto $\{v_1, \ldots, v_k\}$ é dito positivamente dependente se um de seus vetores está no cone convexo positivo gerado pelos vetores restantes, ou seja, um de seus vetores é uma combinação linear positiva dos outros; caso contrário, o conjunto é positivamente independente.

Uma base positiva no \mathbb{R}^n é um conjunto positivamente independente que gera postivamente o \mathbb{R}^n .

No método de busca coordenada [8], a partir de um ponto x_k , procuramos um ponto x_{k+1} que diminua o valor da função objetivo andando uma distância $\alpha_k > 0$ nas direções cartesianas (positivas e negativas), ou seja, procuramos x_{k+1} no conjunto $\{x_k + \alpha_k d : d \in \{e_1, e_2, \ldots, e_n, -e_1, \ldots, -e_n\}\}$. Este processo está representado na Figura 1.2.

Se não for encontrado nenhum ponto que diminua o valor da função, declaramos fracasso da iteração, reduzimos o tamanho do passo α_k e repetimos o processo anterior. Caso contrário, declaramos sucesso, aceitamos x_{k+1} e repetimos o processo anterior. Um possível critério de parada é o tamanho de α_k .

Por simplicidade de notação trataremos as matrizes com que trabalhamos como conjuntos; por exemplo, se tivermos uma matriz $A \in \mathbb{R}^{n \times m}$ e $a^i \in \mathbb{R}^n$ for uma coluna de A, diremos que $a^i \in A$.

Podemos descrever os métodos de busca padrão de uma forma mais geral, assim como feito em [6], em que os autores dividem este tipo de método em três passos.

No primeiro passo, o de busca, avaliamos finitos pontos em uma malha

$$M_k = \{ x_k + \alpha_k D z_k : z_k \in \mathbb{Z}_+^{|D|} \},$$
(1.2)

onde D é um conjunto gerador positivo do \mathbb{R}^n ; se encontrarmos $y \in M_k$ tal que $f(y) < f(x_k)$ declaramos sucesso da iteração, fazemos $x_{k+1} = y$ e pulamos o segundo passo.

No segundo passo, o de pesquisa, avaliamos os pontos do conjunto

$$P_k = \{x_k + \alpha_k d : d \in D_k\},\$$

onde $D_k \subset D$ é uma base geradora positiva do \mathbb{R}^n , seguindo um padrão pré-definido, até encontrarmos $x \in P_k$ tal que $f(x) < f(x_k)$. Neste caso, declaramos sucesso e definimos $x_{k+1} = x$. Senão, tendo avaliado todos os pontos de P_k sem obter decréscimo de f, declaramos fracasso. Notemos que $P_k \subset M_k$.

O terceiro passo é a atualização de parâmetros. Se declaramos sucesso, podemos manter ou aumentar o tamanho do passo, fazendo $\alpha_{k+1} \in [\alpha_k, \gamma \alpha_k]$, com $\gamma \geq 1$; caso contrário, fazemos $x_{k+1} = x_k$ e diminuímos o tamanho do passo, tomando $\alpha_{k+1} \in [\beta_1 \alpha_k, \beta_2 \alpha_k]$, com $0 < \beta_1 \leq \beta_2 < 1$.

Existem muitos trabalhos que exploram a questão da convergência para os diferentes tipos de métodos de busca padrão, porém Virginia Torczon, em [18], unificou estes métodos sob a mesma teoria de convergência. Apresentaremos, a seguir, alguns resultados deste artigo.

Na iteração k, as direções nas quais procuramos o candidato a x_{k+1} devem estar em um padrão definido por uma base $B \in \mathbb{R}^{n \times n}$ e uma matriz geradora $C_k \in \mathbb{Z}^{n \times p}$, onde p > 2n, que pode ser particionada em três componentes:

$$C_k = [A_k \qquad -A_k \qquad L_k] = [\Gamma_k \qquad L_k].$$

Devemos impor que A_k esteja em um subconjunto finito $A \subset \mathbb{Z}^{n \times n}$ de matrizes não singulares, e $L_k \in \mathbb{Z}^{n \times (p-2n)}$ contenha pelo menos uma coluna, a coluna de zeros. O padrão de pontos é definido pelas colunas da matriz $\bar{P}_k = BC_k$. Assim, dado o tamanho do passo α_k , os canditados a x_{k+1} têm a forma $\bar{x}_{k+1}^i = x_k + \alpha_k Bc_k^i$, onde $c_k^i \in C_k$, para todo $i = 1, 2, \ldots, p$.

Vemos que esta definição engloba a forma como o método foi descrito anteriormente. A autora impõe algumas hipóteses para demonstrar a convergência. Os passos de busca e pesquisa devem satisfazer:

• todo canditado a novo iterando na iteração k é da forma

$$\bar{x}_{k+1} = x_k + \alpha_k d_k$$

 $\operatorname{com} d_k \in \bar{P}_k;$

• se min{ $f(x_k + \alpha_k d_k)$: $d_k \in \bar{P}_k$ } < $f(x_k)$, então $f(x_{k+1}) < f(x_k)$.

Definitions $\theta = \tau^{\omega_0}$, com $1 < \tau \in \mathbb{Q}$ e $0 > \omega_0 \in \mathbb{Z}$, e $\lambda_k \in \{\tau^{\omega_1}, \tau^{\omega_2}, \dots, \tau^{\omega_L}\}$, com $L < \infty$ e $\omega_j \in \mathbb{Z}_+ \forall j = 1, \dots, L$.

- Se foi declarado sucesso, $\alpha_{k+1} = \lambda_k \alpha_k$.
- Caso contrário, $\alpha_{k+1} = \theta \alpha_k$.

Abaixo enunciaremos alguns resultados interessantes que estão demonstrados em [18].

Lema 1 Existe uma constante $\zeta_* > 0$, independente de k, tal que para qualquer ponto \bar{x}_{k+1} testado pelo método temos que

$$\|x_k - \bar{x}_{k+1}\| \ge \zeta_* \alpha_k.$$

Teorema 4 Qualquer iterando x_k produzido por um método de busca padrão pode ser escrito como

$$x_k = x_0 + (\beta^{r_{li}} \gamma^{-r_{ls}}) \alpha_0 B \sum_{j=0}^{k-1} z_j,$$

onde:

- x_0 é o ponto inicial;
- $\beta/\gamma \equiv \tau$, com β , $\gamma \in \mathbb{N}$ e primos entre si, e τ é definido como na atualização de α_k ;
- $r_{ls} e r_{li} dependem de k;$
- α_0 é o tamanho do passo inicial;
- B é a matriz de base, e
- $z_k \in \mathbb{Z}^n, \ k = 0, \dots, k 1.$

Este teorema nos mostra que todo ponto analisado pelo método de busca padrão fica em uma malha inteira gerada por x_0 e as colunas de $\beta^{r_{li}}\gamma^{r_{ls}}\alpha_0 B$.

Com o próximo resultado a autora demonstra que, usando decréscimo simples, o método gera uma sequência de tamanhos de passo limitada inferiormente por 0.

Teorema 5 Se o conjunto de nível $\mathcal{L}(x_0)$ é compacto, então

$$\liminf_{k \to +\infty} \alpha_k = 0$$

Em [19] a autora demonstra a seguinte proposição.

Proposição 1 Se o conjunto de nível $\mathcal{L}(x_0)$ é compacto, f continuamente diferenciável e

$$\liminf_{k \to +\infty} \|\nabla f(x_k)\| \neq 0,$$

então existe uma constante $\alpha_{li} > 0$ tal que para todo k, $\alpha_k > \alpha_{li}$.

Usando esta proposição, em [18] é demonstrada a convergência fraca do método.

Teorema 6 Suponha que $\mathcal{L}(x_0)$ é compacto e f é continuamente diferenciável em uma vizinhança de $\mathcal{L}(x_0)$. Então a sequência dos iterandos $\{x_k\}$ gerada pelo método de busca padrão satisfaz

$$\liminf_{k \to +\infty} \|\nabla f(x_k)\| = 0.$$

Podemos modificar o método para que ele tenha uma convergência forte, ou seja, para que satisfaça $\lim_{k \to +\infty} \|\nabla f(x_k)\| = 0$. Para isso devemos impor novas condições.

A autora ainda demonstra a existência de um limitante superior, em termos de α_k , para a norma das direções a serem avaliadas.

Lema 2 Dada a constante $\mathfrak{C} > 0$ tal que, para todo k, $||c_k^j|| < \mathfrak{C}$ para $j = 1, \ldots, p$, temos que existe uma constante $\psi_* > 0$, independente de k, de modo que qualquer ponto \bar{x}_{k+1} avaliado pelo método de busca padrão satisfaz:

$$\alpha_k \ge \psi_* \| x_k - \bar{x}_{k+1} \|.$$

Para garantir que $\lim_{k \to +\infty} \alpha_k = 0$ podemos, por exemplo, impedir que o tamanho do passo cresça, tomando $\omega_i = 0, i = 1, ..., L$.

Assim é possível demonstrar a convergência forte:

Teorema 7 Suponha $\mathcal{L}(x_0)$ compacto e f continuamente diferenciável em uma vizinhança de $\mathcal{L}(x_0)$. Suponha ainda que as colunas das matrizes geradoras têm normas limitadas, que $\lim_{k \to +\infty} \alpha_k = 0$, e que, se $\min\{f(x_k + \alpha_k d) : d \in \bar{P}_k\} < f(x_k)$, então $f(x_{k+1}) \leq \min\{f(x_k + \alpha_k d) : d \in \bar{P}_k\}$. Daí a sequência dos iterandos gerada pelo método de busca padrão satisfaz:

$$\lim_{k \to +\infty} \|\nabla f(x_k)\| = 0.$$

Existem muitos métodos de busca padrão que não se encaixam na definição de busca direta, pois utilizam o valor numérico da função objetivo. Um exemplo é o método SID-PSM [7], que utiliza o valor da função objetivo para calcular derivadas simplex e modelos para a função. Porém a teoria de convergência para estes métodos é a mesma que para os métodos de busca direta (desde que satisfaça as condições impostas pela autora).

(a) Busca padrão com sucesso até encontrar o ponto x_2 ; neste ponto a busca falha.

(b) Reduzindo o tamanho do passo pela metade a busca coordenada continua e encontra $x_{3}. \label{eq:x3}$

Figura 1.2: Busca coordenada com ponto inicial $x_0 = (-4, 4)^{\top}$, $\alpha_0 = 4$ e padrão de pesquisa dado por $\{-e_1, e_2, e_1, -e_2\}$

Capítulo 2

Derivadas Simplex

Alguns métodos da classe *derivative-free* baseiam-se em modelos de interpolação para a função objetivo. Muitos tipos de modelo podem ser utilizados, mas, em geral, usam-se modelos de interpolação polinomial. Sob algumas hipóteses os coeficientes desses polinômios podem ser vistos como aproximações para as derivadas da função original.

2.1 Gradiente Simplex

Sejam $S = \{y^0, y^1, \dots, y^n\}$ um simplex não degenerado e $f : \mathbb{R}^n \to \mathbb{R}$.

O gradiente simplex de f baseado em $y^0,$ calculado por S, é definido como a solução do sistema

$$L(S)^{\top} \nabla_S f(y^0) = \delta f(S).$$

Caso |S| > n + 1, o gradiente simplex é definido como a solução do problema

$$\min_{x \in \mathbb{R}^n} \|L(S)^\top x - \delta f(S)\|,\tag{2.1}$$

e caso |S| < n + 1, o gradiente simplex é definido como a solução de norma mínima do problema (2.1).

No caso onde |S| = n + 1, temos

$$(y^j - y^0)^\top \nabla_S f(y^0) = f(y^j) - f(y^0),$$

para todo j = 0, 1, ..., n. Se definirmos a função linear

$$m(x) = f(y^0) + \nabla_S^{\top} f(y^0)(x - y^0), \qquad (2.2)$$

vemos que $m(y^j) = f(y^j)$, para todo j = 0, 1, ..., n, ou seja, m é o polinômio de grau 1 que a interpolação linear da função f em torno de y^0 (avaliada) sobre os pontos de S nos dá. Vemos assim que os elementos do vetor $\nabla_S f(y^0)$ são os coeficientes da interpolação linear de f em torno de y^0 . Uma amostra S com q elementos é dita posicionada (para o cálculo do gradiente simplex) quando a matriz

$$M = \begin{bmatrix} 1 & y_1^0 & \dots & y_n^0 \\ 1 & y_1^1 & \dots & y_n^1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & y_1^q & \dots & y_n^q \end{bmatrix},$$

que define o sistema linear da interpolação, tem posto coluna completo. O fato da amostra ser posicionada não é suficiente para nossas aplicações, precisamos de uma medida de bomposicionamento. Para isso usaremos a ideia de Λ -posicionamento, introduzida por Conn, Scheinberg e Vicente em [4]. Nesta definição usa-se a decomposição em valor singular da matriz $\frac{L^{\top}}{\Lambda}$.

Definição 2 Seja $A \in \mathbb{R}^{m \times n}$. A decomposição em valor singular de A (SVD, do inglês Singular Value Decomposition) é a fatoração

$$A = UDV^{\top}$$
.

onde $U \in \mathbb{R}^{m \times m}$ e $V \in \mathbb{R}^{n \times n}$ são matrizes ortogonais, e $D \in \mathbb{R}^{m \times n}$ é uma matriz diagonal com $d_{11} \geq d_{22} \geq \ldots \geq d_{pp} \geq 0$, onde $p = \min\{m, n\}$.

Definição 3 Se $A = UDV^{\top} \in \mathbb{R}^{m \times n}$ é a decomposição SVD de A, com posto(A) = p, então a decomposição SVD reduzida de A é a fatoração

$$A = \hat{U}\hat{D}\hat{V}^{\top}.$$

onde $\hat{U} = [u^1, u^2, \dots, u^p], \ \hat{V} = [v^1, v^2, \dots, v^p] \ e \ \hat{D} \in \mathbb{R}^{p \times p}$ é um matriz diagonal, com $\hat{d}_{11} = d_{11}, \ \hat{d}_{22} = d_{22}, \dots, \ \hat{d}_{pp} = d_{pp}.$

Pela ortogonalidade de U e V pode-se demonstrar que $\hat{U}^{\top}\hat{U}=I$ e $\hat{V}^{\top}\hat{V}=I$ na decomposição SVD reduzida.

Definição 4 Seja $\Lambda > 0$ dado. Seja $\phi = \{\phi_0(x), \phi_1(x), \dots, \phi_p(x)\}$ uma base para \mathcal{P}_n^d (polinômios do \mathbb{R}^n com grau menor ou igual a d).

Um conjunto $Y = \{y^0, y^1, \dots, y^p\}$ é dito Λ -posicionado, para interpolação linear, na bola unitária centrada em 0 se, e somente se, para qualquer $x \in B(1,0)$ existe $\lambda(x) \in \mathbb{R}^p$ tal que

$$\sum_{i=0}^{p} \lambda_i(x)\phi(y^i) = \phi(x) \qquad \text{com} \qquad \|\lambda(x)\| \le \Lambda.$$

Ainda em [4] os autores demonstram o seguinte teorema:

Teorema 8 Seja uma amostra $S \subset \mathbb{R}^n$ de modo que |S| = p, e tomemos D matriz diagonal proveniente da decomposição SVD reduzida da matriz $\frac{L^{\top}}{\Delta}$.

Se $||D^{-1}|| \leq \Lambda$, então o conjunto S é $(\sqrt{p}\Lambda)$ -posicionado na bola unitária centrada em 0. Reciprocramente, se o conjunto S é Λ -posicionado na bola unitária centrada em 0, então D é não singular e

 $\|D^{-1}\| \le \theta \Lambda,$

onde $\theta > 0$ depende de n, mas não depende de S e Λ .

Em particular, a segunda parte do teorema é válida com $\theta = 1$. Assim consideraremos, neste trabalho, que uma amostra é Λ -posicionada se $||D^{-1}|| \leq \Lambda$, onde D é matriz diagonal proveniente da decomposição SVD reduzida da matriz $\frac{L^{\top}}{\Lambda}$.

Nas funções com gradiente Lipschitz contínuo, o gradiente simplex pode ser visto como uma aproximação para o vetor gradiente, contudo essa aproximação não é vista como uma aproximação local, dado que sua construção se é feita a partir de pontos de interpolação. A seguir apresentamos uma demonstração detalhada para esta propriedade, a demonstração foi baseada na apresentada em [6] porém apresentamos alguns detalhes omitidos na original.

Teorema 9 Seja $S = \{y^0, y^1, \dots, y^q\}$ uma amostra Λ -posicionada para o cálculo de um gradiente simplex em \mathbb{R}^n . Considere a bola fechada $B(y^0, \Delta)$, onde $\Delta = \max_{j=1,\dots,q} \|y^j - y^0\|$. Seja $L = [y^1 - y^0, \dots, y^q - y^0]$ e UDV^{\top} a decomposição SVD reduzida de $\frac{L^{\top}}{\Delta}$.

Se ∇f for Lipschitz contínuo em um conjunto aberto $\Omega \supset B(y^0, \Delta)$, com constante $\gamma > 0$, então o erro do gradiente simplex em y^0 , como uma aproximação para $\nabla f(y^0)$, satisfaz

$$\|\hat{V}^{\top}[\nabla f(y^0) - \nabla_S f(y^0)]\| \le \left(\sqrt{q}\frac{\gamma}{2}\Lambda\right)\Delta,$$

 $onde \ \hat{V} = I \ se \ q \geq n \ e \ \hat{V} = V \ se \ q < n.$

Demonstração: Pela definição do gradiente simplex temos

$$(y^{i} - y^{0})^{\top} \nabla_{S} f(y^{0}) = f(y^{i}) - f(y^{0}).$$
(2.3)

O teorema do valor médio na forma integral nos diz que

$$f(y^{i}) - f(y^{0}) = \int_{0}^{1} (y^{i} - y^{0})^{\top} \nabla f(y^{0} + t(y^{i} - y^{0})) dt.$$
(2.4)

Sabemos que

$$(y^{i} - y^{0})^{\top} (\nabla f(y^{0}) - \nabla_{S} f(y^{0})) = (y^{i} - y^{0})^{\top} \nabla f(y^{0}) - (y^{i} - y^{0})^{\top} \nabla_{S} f(y^{0});$$

usando (2.3) obtemos

$$(y^{i} - y^{0})^{\top} (\nabla f(y^{0}) - \nabla_{S} f(y^{0})) = (y^{i} - y^{0})^{\top} \nabla f(y^{0}) - f(y^{i}) + f(y^{0}).$$

Usando (2.4) temos

$$\begin{split} (y^i - y^0)^\top \nabla f(y^0) - f(y^i) + f(y^0) &= \\ &= (y^i - y^0)^\top \nabla f(y^0) - \int_0^1 (y^i - y^0)^\top \nabla f(y^0 + t(y^i - y^0)) dt \leq \\ &\leq |\int_0^1 (y^i - y^0)^\top \nabla f(y^0 + t(y^i - y^0)) dt - (y^i - y^0)^\top \nabla f(y^0)| \leq \\ &\leq \int_0^1 |(y^i - y^0)^\top \nabla f(y^0 + t(y^i - y^0)) - (y^i - y^0)^\top \nabla f(y^0)| dt \leq \\ &\leq \int_0^1 \|(y^i - y^0)\| \|\nabla f(y^0 + t(y^i - y^0)) - \nabla f(y^0)\| dt. \end{split}$$

Do fato que ∇f é Lipschitz contínuo

$$\begin{split} &\int_0^1 \|(y^i - y^0)\| \|\nabla f(y^0 + t(y^i - y^0)) - \nabla f(y^0)\|dt \le \\ &\leq \|(y^i - y^0)\| \int_0^1 \gamma \|y^0 + t(y^i - y^0) - y^0\|dt = \\ &= \|(y^i - y^0)\| \int_0^1 \gamma t\|(y^i - y^0)\|dt = \|(y^i - y^0)\|^2 \frac{\gamma}{2}. \end{split}$$

Assim mostramos que

$$(y^{i} - y^{0})^{\top} (\nabla f(y^{0}) - \nabla_{S} f(y^{0})) \le \frac{\gamma}{2} ||y^{i} - y^{0}||^{2}, \quad \forall i = 1, \dots, q.$$

Como

$$\begin{split} \|L^{\top}(\nabla f(y^{0}) - \nabla_{S}f(y^{0}))\| &\leq \sqrt{q} \|L^{\top}(\nabla f(y^{0}) - \nabla_{S}f(y^{0}))\|_{\infty} = \\ &= \sqrt{q} \max_{i=1,\dots,q} (y^{i} - y^{0})^{\top} (\nabla f(y^{0}) - \nabla_{S}f(y^{0})) \leq \\ &\leq \sqrt{q} \max_{i=1,\dots,q} \|y^{i} - y^{0}\|^{2} \frac{\gamma}{2}, \end{split}$$

 $ent \tilde{a} o$

$$\|L^{\top}(\nabla f(y^0) - \nabla_S f(y^0))\| \le \frac{\gamma}{2}\sqrt{q}\Delta^2.$$

Multiplicando os dois lados da desigualdade por $\frac{1}{\Delta}$ e substituindo $\frac{L^{\intercal}}{\Delta}$ por sua decomposição SVD reduzida temos

$$\|UDV^{\top}(\nabla f(y^0) - \nabla_S f(y^0))\| \le \frac{\gamma}{2}\sqrt{q}\Delta.$$
(2.5)

Estamos trabalhando sempre com amostras posicionadas, então Ltem sempre posto completo. Consideraremos dois casos:

1. $q \ge n$: neste caso, $U \in I\!\!R^{q \times n}$, $D \in I\!\!R^{n \times n}$, $V \in I\!\!R^{n \times n}$, V é ortogonal e $U^{\top}U = I$;

$$\|U^{\top}UDV^{\top}(\nabla f(y^0) - \nabla_S f(y^0))\| \le \frac{\gamma}{2}\sqrt{q}\Delta \Rightarrow$$
$$\Rightarrow \|DV^{\top}(\nabla f(y^0) - \nabla_S f(y^0))\| \le \frac{\gamma}{2}\sqrt{q}\Delta,$$

 \max

$$\|D^{-1}DV^{\top}(\nabla f(y^{0}) - \nabla_{S}f(y^{0}))\| \le \|D^{-1}\| \|DV^{\top}(\nabla f(y^{0}) - \nabla_{S}f(y^{0}))\| \le \frac{\gamma}{2}\sqrt{q}\|D^{-1}\|\Delta,$$

daí,

$$\|V^{\top}(\nabla f(y^0) - \nabla_S f(y^0))\| \le \frac{\gamma}{2}\sqrt{q}\|D^{-1}\|\Delta_y$$

e como V é ortogonal temos

$$\|\nabla f(y^0) - \nabla_S f(y^0)\| \le \frac{\gamma}{2}\sqrt{q}\|D^{-1}\|\Delta \le \left(\sqrt{q}\frac{\gamma}{2}\Lambda\right)\Delta.$$

2. q < n: neste caso $U \in \mathbb{R}^{q \times q}$, $D \in \mathbb{R}^{q \times q}$, $V \in \mathbb{R}^{q \times n}$ e U é ortogonal, assim a desigualdade (2.5) pode ser reescrita como

$$\|DV^{\top}(\nabla f(y^0) - \nabla_S f(y^0))\| \le \frac{\gamma}{2}\sqrt{q}\Delta.$$

 Como

$$\|D^{-1}DV^{\top}(\nabla f(y^{0}) - \nabla_{S}f(y^{0}))\| \le \|D^{-1}\| \|DV^{\top}(\nabla f(y^{0}) - \nabla_{S}f(y^{0})\| \le \frac{\gamma}{2}\sqrt{q}\|D^{-1}\|\Delta,$$

concluímos que

$$\|V^{\top}(\nabla f(y^0) - \nabla_S f(y^0))\| \le \frac{\gamma}{2}\sqrt{q}\|D^{-1}\|\Delta \le \left(\sqrt{q}\frac{\gamma}{2}\Lambda\right)\Delta,$$

completando a demonstração.

Neste teorema vemos que o erro é projetado sobre $N\left(\frac{L^{\top}}{\Delta}\right)$; se q < n, então $N\left(\frac{L^{\top}}{\Delta}\right) \neq \emptyset$ e, portanto, não temos garantia sobre a precisão do gradiente simplex. Porém, mesmo no caso indeterminado, quando $q \approx n$, o gradiente simplex ainda pode nos fornecer informações relevantes sobre o gradiente.

Outra característica do gradiente simplex que usaremos é que, sob certas hipóteses, este é uma ϵ -aproximação para as componentes grandes do gradiente, apresentaremos aqui a definição de ϵ -aproximação seguida da demonstração da propriedade anterior como foi apresentada em [1].

Definição 5 Seja $g \in \mathbb{R}^n$ não nulo $e \epsilon \ge 0$. Defina $J^{\epsilon}(g) = \{i \in \{1, \ldots, n\} ||g_i| + \epsilon \ge \|g\|_{\infty}\}$, e para todo $i \in \{1, \ldots, n\}$ defina

$$d_i^{\epsilon}(g) = \begin{cases} sign(g_i) & se & i \in J^{\epsilon}(g) \\ 0 & c.c. \end{cases}$$

O vetor $g \notin uma \epsilon$ -aproximação para as componentes grandes de um vetor não nulo $v \in \mathbb{R}^n$ se, e somente se, $i \in J^{\epsilon}(g)$ sempre que $|v_i| = ||v||_{\infty}$ e se $sign(g_i) = sign(v_i)$ para todo $i \in J^{\epsilon}(g)$.

Teorema 10 Seja $B(x, \Delta)$ a bola centrada em x com raio

$$\Delta = \sigma \alpha \max_{b \in \bar{B}} \|b\|,$$

onde $\sigma > 0$ e \overline{B} é uma base positiva para o \mathbb{R}^n . Tomemos $S \subset B(x, \Delta)$ uma amostra Λ -posicionada. Assuma que f é continuamente diferenciável em um conjunto aberto Ω contendo $B(x, \Delta)$, e que ∇f seja Lipschitz contínuo em Ω com constante $\gamma > 0$.

Então, se

$$\alpha \le \frac{\|\nabla f(x)\|_{\infty}}{\sqrt{q\gamma}\Lambda\sigma \max_{b\in\bar{B}}\|b\|},\tag{2.6}$$

o gradiente simplex negativo $-\nabla_S f(x)$ é uma ϵ -aproximação para as componentes grandes de $-\nabla f(x)$, onde

$$\epsilon = \left(\sqrt{q}\gamma\Lambda\sigma\max_{b\in\bar{B}}\|b\|\right)\alpha.$$

Demonstração: Para i no conjunto

$$I = \{i \in \{1, \dots, n\} || \nabla f(x)_i| = \| \nabla f(x) \|_{\infty} \},\$$

do Teorema 9 temos

$$\begin{aligned} \|\nabla_S f(x)\|_{\infty} &= \|\nabla f(x) - \nabla f(x) + \nabla_S f(x)\|_{\infty} \\ &\leq \|\nabla f(x)\|_{\infty} + \|\nabla f(x) - \nabla_S f(x)\|_{\infty} \\ &= \|\nabla f(x) - \nabla_S f(x)\|_{\infty} + |\nabla f(x)_i| \\ &\leq 2\|\nabla f(x) - \nabla_S f(x)\| + |\nabla f(x)_i| \\ &\leq \sqrt{q}\gamma\Lambda\Delta + |\nabla f(x)_i| \\ &= \epsilon + |\nabla f(x)_i|. \end{aligned}$$

Do Teorema 9 também obtemos que

$$-\nabla_S f(x)_i = -\nabla f(x)_i + \xi_i, \text{ onde } |\xi_i| \le \sqrt{q} \frac{\gamma}{2} \Lambda \Delta.$$

Se $-\nabla f(x)_i \in \xi_i$ têm o mesmo sinal, então $\nabla f(x)_i \in \nabla_S f(x)_i$ também têm. Caso contrário, eles têm o mesmo sinal se

$$|\xi_i| \le \frac{1}{2} \|\nabla f(x)\|_{\infty} = \frac{1}{2} |\nabla_S f(x)_i|.$$

 $\begin{aligned} \operatorname{Mas} \Delta &= \sigma \alpha \max_{b \in \bar{B}} \|b\|, \ \mathrm{e} \ \alpha \leq \frac{\|\nabla f(x)\|_{\infty}}{\sqrt{q} \gamma \Lambda \sigma \max_{b \in \bar{B}} \|b\|}, \ \mathrm{assim \ obtemos} \\ |\xi_i| &\leq \frac{1}{2} \left(\sqrt{q} \gamma \Lambda \sigma \max_{b \in \bar{B}} \|b\| \right) \alpha \\ &\leq \frac{1}{2} \left(\sqrt{q} \gamma \Lambda \sigma \max_{b \in \bar{B}} \|b\| \right) \frac{\|\nabla f(x)\|_{\infty}}{\sqrt{q} \gamma \Lambda \sigma \max_{b \in \bar{B}} \|b\|} \\ &= \frac{1}{2} \|\nabla f(x)\|_{\infty} = \frac{1}{2} |\nabla S f(x)_i|, \end{aligned}$

logo $\nabla f(x)_i$ e $\nabla_S f(x)_i$ têm o mesmo sinal, concluindo a demonstração.

2.2 Hessiana Simplex

Podemos tomar outra classe de modelos para f, como por exemplo modelos de interpolação quadrática, ou seja, criaremos uma função

$$m(x) = f(y^0) + (x - y^0)^\top \nabla_S f(y^0) + \frac{1}{2}(x - y^0)^\top \nabla_S^2 f(y^0)(x - y^0), \qquad (2.7)$$

tal que para todo $j = 0, 1, ..., q, m(y^j) = f(y^j).$

A matriz $\nabla_S^2 f(y^0)$ é chamada Hessiana simplex [6]. Supondo que f é duas vezes diferenciável e $\nabla^2 f$ é Lipschitz contínua, então esta é uma matriz simétrica, logo, podemos impor que $\nabla_S^2 f(y^0)$ também seja, daí a Hessiana simplex está unicamente determinada quando nossa amostra S possui (n + 1)(n + 2)/2 pontos.

Definição 6 Seja $Y = \{y^0, \ldots, y^q\}$ $e \Phi = \{\Phi_0, \ldots, \Phi_p\}$ uma base para \mathcal{P}_n^2 . Se a matriz

$$M(Y, \Phi) = \begin{bmatrix} \Phi_0(y^0) & \Phi_1(y^0) & \dots & \Phi_p(y^0) \\ \Phi_0(y^1) & \Phi_1(y^1) & \dots & \Phi_p(y^1) \\ \vdots & \vdots & \vdots & \vdots \\ \Phi_0(y^q) & \Phi_1(y^q) & \dots & \Phi_p(y^q) \end{bmatrix},$$

que define o sistema linear da interpolação quadrática, for não singular, então o conjunto Y é dito posicionado (no sentido de interpolação quadrática).

Em [6] os autores demonstram o seguinte teorema:

Teorema 11 Seja $Y = \{y^0, \ldots, y^q\}$, com q + 1 = (n + 1)(n + 2)/2, seja um conjunto posicionado (no sentido de interpolação quadrática) contido na bola $B(y^0, \Delta)$, onde $\Delta = \max_{i=1...q} ||y^0 - y^i||$.

Suponhamos que f seja duas vezes diferenciável em um conjunto aberto $\Omega \supset B(y^0, \Delta) \ e \ \nabla^2 f$ seja Lipschitz contínua em Ω com constante $\gamma > 0$. Então:

• o erro entre a Hessiana simplex e a Hessiana da função satisfaz

$$\|\nabla^2 f(y^0) - \nabla^2_S f(y^0)\|_F \le \kappa_{eh} \Delta;$$

• o erro entre o gradiente simplex e o gradiente da função satisfaz

$$\|\nabla f(y^0) - \nabla_S f(y^0)\| \le \kappa_{eg} \Delta^2,$$

onde κ_{eh} e κ_{eh} dependem de γ e da geometria do conjunto Y.

Quando temos menos de (n+1)(n+2)/2 pontos, nosso modelo fica indeterminado. Para este caso, em [6], é demonstrado o seguinte teorema: **Teorema 12** Sejam $Y = \{y^0, \ldots, y^q\}$, com q+1 < (n+1)(n+2)/2 e f uma função continuamente diferenciável em um conjunto aberto na bola $B(y^0, \Delta)$, onde $\Delta = \max_{i=1...q} ||y^0 - y^i||$, com o gradiente Lipschitz contínuo na bola $B(y^0, \Delta)$. Se Y for Λ -posicionado para interpolação linear então

$$\|\nabla f(y^0) - \nabla_S f(y^0)\| \le C_q \Lambda [\gamma + \|\nabla_S^2 f(y^0)\|_F] \Delta,$$

onde $C_q > 0$ depende de q e γ é a constante de Lipschitz do gradiente da função.

Uma escolha para $\nabla_S^2 f(y^0)$, sugerida em [5], é considerar a indeterminação apenas na matriz $\nabla_S^2 f(x_k)$, e escolhê-la de forma a minimizar a sua norma de Frobenius, ou seja, para encontrar o modelo resolvemos o problema:

$$\min_{\substack{H \in \mathbb{R}^{n \times n} \\ \text{s.a.}}} \frac{\frac{1}{4} \|H\|_F}{H \|_F} \\
= H^\top \\
m_H(y) = f(y) \quad \forall \quad y \in Y,$$
(2.8)

onde m_H é a mesma função m da equação (2.7) com $\nabla_S^2 f(y^0) = H$.

Em [6], os autores utilizam o conceito de Λ -posicionamento no sentido da norma mínima de Frobenius e demonstram que o uso desta estratégia limita o tamanho da Hessiana simplex.

Definição 7 Sejam $\Lambda > 0$ e um conjunto $B \in \mathbb{R}^n$ dados. Seja $\Phi = \{\phi_0(x), \phi_1(x), \dots, \phi_q(x)\}$ uma base para \mathcal{P}^2_n (polinômios do \mathbb{R}^n com grau menor ou igual a 2). Tomemos o problema

min
$$||M(\Phi_Q, Y)^\top \lambda(x) - \Phi_Q(x)||^2$$

s.a $M(\Phi_L, Y)^\top \lambda(x) = \Phi_L(x),$ (2.9)

onde Φ_L e Φ_Q são, respectivamente, as partes linear e quadrática de Φ e $M(\Phi, Y)$ é a matriz que define o sistema linear da interpolação nos pontos em Y.

Um conjunto $Y = \{y^0, y^1, \dots, y^p\}$ é dito Λ -posicionado em B, no sentido de norma mínima de Frobeinus, se, e somente se, para qualquer $x \in B$, a solução $\lambda(x) \in \mathbb{R}^p$ do problema (2.9) é tal que

$$\|\lambda(x)\|_{\infty} \le \Lambda.$$

Resolver o problema (2.9) implica em resolver a parte linear da interpolação satisfazendo a igualdade e passar a inderterminação do problema para a parte quadrática da interpolação.

Teorema 13 Sejam $Y = \{y^0, \ldots, y^q\}$, com q+1 < (n+1)(n+2)/2 e f uma função continuamente diferenciável em um conjunto aberto na bola $B(y^0, \Delta)$, onde $\Delta = \max_{i=1...q} ||y^0 - y^i||$, com o gradiente Lipschitz contínuo na bola $B(y^0, \Delta)$. Se Y for Λ_F -posicionado no sentido da norma mínima de Frobenius então

$$\|\nabla_S^2 f(y^0)\|_F \le C_{p,q} \gamma \Lambda_F.$$

onde $C_{p,q}$ é uma constante que depende de p e q, e γ é a constante de Lipschitz do gradiente da função.

Portanto o limitante do erro no Teorema 12 passa a ser dado por

$$\|\nabla f(y^0) - \nabla_S f(y^0)\| \le C_q \Lambda \gamma [1 + C_{p,q} \Lambda_F] \Delta.$$

Assim concluímos que os modelos construídos pela norma mínima de Frobenius representam bem a aproximação de Taylor de primeira ordem de f.

Capítulo 3

Métodos de Busca Linear

Métodos de busca linear sem derivadas seguem a mesma linha dos métodos com derivadas. Dada uma aproximação x_k para o minimizador, quando temos as derivadas escolhemos uma direção de descida d_k e definimos uma função $\phi : \mathbb{R}_+ \to \mathbb{R}$ tal que $\phi(\alpha) = f(x_k + \alpha d_k)$. A idéia é encontrar α_k tal que

$$f(x_k + \alpha_k d_k) < f(x_k), \tag{3.1}$$

se procuramos decréscimo simples, ou

$$f(x_k + \alpha_k d_k) < f(x_k) + \alpha_k \epsilon d_k^\top \nabla f(x_k), \qquad (3.2)$$

com $\epsilon \in (0, 1)$, se exigirmos o decréscimo suficiente de Armijo [3].

Uma forma de encontrar α_k que satisfaça uma das duas condições é o *backtracking*, onde avaliamos a função $\phi(\alpha)$ construída a partir de uma direção de descida, começando com um $\alpha_{inicial}$ "grande" e vamos reduzindo-o até que a condição de decréscimo exigida seja satisfeita.

Quando não dispomos das derivadas não podemos testar se a condição (3.2) é satisfeita, dado que esta utiliza o gradiente da função. Porém se substituirmos o gradiente da função pelo gradiente simplex da função, não estaremos fazendo uso de derivadas e ainda exigiremos decréscimo suficiente [6].

Outra dificuldade encontrada quando não utilizamos derivadas é que não podemos testar se a direção d_k é de descida, logo devemos ter alguma base teórica que nos dê uma direção de descida em potencial.

Neste caso definimos $\alpha_{final} < \alpha_{inicial}$, e realizamos o *backtracking*. Se atingirmos $\alpha \leq \alpha_{final}$ sem obter o decréscimo desejado, declaramos fracasso.

Uma direção de descida em potencial é dada por $-\nabla_S f(x_k)$. Exemplos de método que utilizam derivadas simplex como direção de busca são apresentados em [6] e [11].

3.1 Métodos de Busca Linear Baseados em Gradientes Simplex

Neste método consideraremos que a cada iteração temos um simplex $S^k = \{y_k^0, y_k^1, \ldots, y_k^n\}$. Vamos assumir que S_k é posicionado no sentido de interpolação linear, ou seja, $L(S^k) = [y_k^1 - y_k^0, \ldots, y_k^n - y_k^0]$ é não singular.

O método apresentado em [6] é um método de busca linear, e consiste em, a cada iteração, dada uma aproximação x_k para o minimizador, um inteiro $j_{max} > 0$ e $\mu \in (0, 1]$, atualizar a amostra até que possamos calcular o gradiente simplex desta satisfazendo $y_k^0 = x_k$ e

$$\Delta_k \le \|\nabla_S f(x_k)\|.$$

Definindo $d_k = -\nabla_S f(x_k)$, fazemos uma busca linear utilizando processo de *back-tracking*, avaliamos no máximo j_{max} vezes $f(x_k + \alpha_k^j d_k)$, de modo que $\alpha_k^{j+1} < \alpha_k^j$ para todo $j = 1, \ldots, j_{max}$.

Se o processo de busca linear falhar devemos fazer $\mu = \frac{1}{2}\mu$, $j_{max} = j_{max}+1$, calcular o gradiente simplex de uma amostra na qual $y_k^0 = x_k$ que satisfaça

$$\Delta_k \le \mu \|\nabla_S f(x_k)\|_{\mathcal{H}}$$

definir $d_k = -\nabla_S f(x_k)$ e repetir a busca linear.

Neste método, durante o cálculo do gradiente simplex, podemos avaliar a função objetivo em pontos que nos dão algum decréscimo. Assim, a aproximação para o minimizador na iteração k + 1 será o ponto que oferece menor valor de função objetivo avaliado na iteração k. Com a condição de que f seja limitada inferiormente no conjunto de nível $\mathcal{L}(x_0)$, seja continuamente diferenciável, e ∇f seja Lipschitz contínuo em um conjunto aberto contendo $\mathcal{L}(x_0)$ e os pontos avaliados pelo método, em [6] é demonstrado que este converge a pontos estacionários, ou seja,

$$\lim_{k \to \infty} \|\nabla f(x_k)\| = 0.$$

3.2 Método do Filtro Implícito

O método do filtro implícito [11] também é um método de busca linear guiado por derivadas simplex. Este método utiliza estratégias quase-Newton para encontrar aproximações da Hessiana no ponto atual [3]. Da mesma forma que o método anterior, neste temos que calcular um gradiente simplex que satisfaça

$$\Delta_k \le \|\nabla_S f(x_k)\|,$$

porém, ao invés de manter uma amostra e atualizá-la a cada iteração, este método cria uma nova a cada iteração.

Não é imposta nenhuma condição sobre a geometria do simplex, assim não é possível garantir o sucesso da busca linear, se esta falhar reinicia-se a aproximação para a Hessiana.

Este método vem sendo aplicado a funções com ruído, para as quais vem mostrando grande robustez numérica [6].

Capítulo 4

Método de busca padrão usando derivadas simplex

O método *SID-PSM* desenvolvido por Custódio e Vicente [7] tem como base os métodos de busca padrão apresentados no capítulo anterior. Porém não é um método exatamente de busca direta, uma vez que usamos o valor da função objetivo para resolver um sistema linear (ou um problema de quadrados mínimos). A resolução deste sistema é feita para encontrarmos alguma derivada simplex, que apesar de ser uma forma para aproximarmos a derivada da função, não é uma aproximação local, assim o método continua na classe *derivative-free*.

A cada iteração guardamos a informação dos pontos avaliados no final de uma lista \mathcal{L} , limitando o tamanho desta em no máximo l_{max} pontos. Duas opções são oferecidas para incluir elementos na lista:

- armazenar somente informação dos pontos que fornecem decréscimo na função objetivo. Dessa forma, se *L* for implementada como uma fila, seus pontos estarão sempre ordenados pelo valor da função objetivo;
- armazenar todos os pontos onde a função objetivo foi avaliada, independentemente de haver ou não decréscimo. Nesse caso temos que garantir que o iterando atual não seja removido da lista quando a atualizamos.

Antes do passo de busca, se \mathcal{L} possuir pelo menos n_{min} pontos, procuramos o maior subconjunto de $\mathcal{L} \cap B(x_k, \Delta_k)$ (com no máximo n_{max} pontos), que seja Λ -posicionado e contenha o ponto x_k , onde x_k é o iterando atual,

$$\Delta_k = \sigma \alpha_k \max_{d \in D_k} \|d\|,$$

 $n_{min} \leq n_{max}$ são inteiros positivos dados e $\sigma > 0$, ou seja, procuramos em \mathcal{L} por elementos que distem no máximo Δ_k de x_k e formem um conjunto Λ -posicionado. Se for possível encontrar esse conjunto, calculamos alguma derivada simplex em x_k e definimos alguma direção de descida em potencial d_p . Um exemplo de direção de descida em potencial é $d_p = -\nabla_S f(x_k)$. Usando as informações dos pontos armazenados na lista podemos construir um modelo de interpolação para a função f. Uma ideia bastante intuitiva para um ponto a ser testado no passo de busca é o minimizador desse modelo na bola $B(x_k, \Delta_k)$. Se o modelo construído for linear, seu minimizador na bola é dado por

$$x_k + \frac{\Delta_k}{\|d_p\|} d_p.$$

Para satisfazer as hipóteses de convergência precisamos garantir que todos os pontos avaliados na iteração k estejam em uma malha inteira do tipo $M_k = \{x_k + \alpha_k Dz : z \in \mathbb{Z}_+^n\}$, onde D é um conjunto finito que contém as bases geradoras positivas utilizadas pelo método. Assim, no passo de busca, devemos projetar o minimizador do modelo na bola, no conjunto M_k .

Se o passo de busca fracassar, devemos ordenar os vetores do conjunto D_k , depois prosseguimos com o passo de pesquisa. Os autores fazem algumas sugestões de formas de ordenação:

- manter sempre a ordem inicial;
- ordenar de forma aleatória;
- se na iteração k-1 for declarado sucesso usando a direção d_{k-1}^{j} , definir

$$D_{k} = \{ d_{k-1}^{j}, d_{k-1}^{j+1}, \dots, d_{k-1}^{|D|}, d_{k-1}^{1}, d_{k-1}^{2}, \dots, d_{k-1}^{j-1} \}$$

Caso contrário, manter a ordenação anterior;

• caso exista alguma direção indicadora de descida, ordenar D_k de modo que

$$\cos(d_k^1, d_p) \ge \cos(d_k^2, d_p) \ge \ldots \ge \cos(d_k^{|D|}, d_p);$$

• alguma combinação dos itens anteriores.

O procedimento para escolher o passo de pesquisa e sua atualização é o mesmo de busca padrão. Se a iteração foi um fracasso, devemos diminuí-lo. Caso a iteração tenha sido um sucesso, devemos mantê-lo ou aumentá-lo. Algumas opções para a atualização são:

- aumentar o passo a todo sucesso;
- aumentar somente quando a mesma direção oferecer decréscimo em duas iteração sucessivas;
- criar um modelo m_k utilizando as derivadas simplex e utilizar a ideia de decréscimo esperado, ou seja, definir

$$\rho_k = \frac{f(x_k) - f(x_{k+1})}{m_k(x_k) - m_k(x_{k+1})},$$

е

- se $\rho_k > \gamma_2$, aumentar o passo;

 $- \text{ se } \gamma_1 < \rho_k \leq \gamma_2, \text{ mantê-lo;}$

 $- \text{ se } \rho_k \leq \gamma_1$, diminuí-lo;

onde $\gamma_2 > \gamma_1 \ge 0$.

Para tentar diminuir o número de avaliações de função, Custódio e Vicente utilizam ideias apresentadas em [1]. Nesse artigo, os autores sugerem aplicar a ideia de poda no conjunto de direções de pesquisa para avaliarmos apenas direções de descida. Chamaremos de conjunto podado o conjunto resultante após a remoção das direções de subida.

Definição 8 Dado D_k um conjunto gerador positivo para o \mathbb{R}^n , o conjunto de direções podado, denotado D_k^p , é dado por

$$D_k^p = \{ d \in D_k : d^{\top} \nabla f(x_k) \le 0 \}.$$

Pela definição, vemos que o tamanho do passo α_k não interfere no conjunto podado. Assim o conjunto de pesquisa podado é definido como

$$P_k^p = \{x_k + \alpha_k d : d \in D_k^p\}.$$

Apesar de não possuirmos o vetor ∇f , podemos ter uma ϵ -aproximação para este, por exemplo, o gradiente simplex. Ainda no artigo [1] por Abramson, Audet e Dennis é demonstrado que uma ϵ -aproximação do gradiente poda o conjunto de direções de pesquisa para um conjunto unitário quando consideramos

$$D = \{-1, 0, 1\}^n,$$

e o conjunto gerador positivo

$$D_k = \{d^{\epsilon}(g_k)\} \cup \mathbb{A}(-\nabla f(x_k)),$$

onde g_k é uma ϵ -aproximação para $-\nabla f(x_k)$ e

$$\mathbb{A}(-\nabla f(x_k)) = \{ d \in D : -\nabla f(x_k)^t d < 0 \}$$

representa o conjunto de direções de subida em D. O único vetor de descida em D_k é $d^{\epsilon}(g_k)$, assim o conjunto D_k é podado para $\{d^{\epsilon}(g_k)\}$.

Sob as hipóteses do Teorema 10 do Capítulo 2, $-\nabla_S f(x_k)$ poda o conjunto gerador positivo do \mathbb{R}^n

$$D_k = \{ d^{\epsilon_k}(-\nabla_S f(x_k)) \} \cup \mathbb{A}(-\nabla f(x_k)),$$

para o conjunto unitário $\{d^{\epsilon_k}(-\nabla_S f(x_k))\}$, onde ϵ_k é dado pelo Teorema 10.

Não temos garantia de que a condição (2.6) seja satisfeita assintoticamente. Esta condição apenas nos indica o efeito da poda usando $-\nabla_S f$, e é mais provável que seja satisfeita em pontos onde o gradiente é relativamente grande.

Assim podemos resumir o método SID-PSM:

• Inicialização:

Dados $x_0 \in \mathbb{R}^n$, $\alpha_0 \in \mathbb{R}$ positivo e todas as constantes necessárias para a pesquisa, ordenação e atualização do passo, defina k = 0 e $\mathcal{L} = \{x_0\}$, a lista com os pontos já avaliados. Escolha o máximo de pontos a serem armazenados l_{max} , o máximo n_{max} e o mínimo n_{min} de pontos que serão utilizados nos cálculos das derivadas simplex. Escolha $\Lambda > 0$ e $\sigma > 0$.

• Identificação de conjunto Λ -posicionado e calculo de derivada simplex:

Se $|\mathcal{L}| > n_{min}$, defina $\Delta_k = \sigma \alpha_k \max_{d \in D_k} ||d||$. Procure um subconjunto S_k de $\mathcal{L} \cap B(x_k; \Delta_k)$, com o maior número de pontos possível (até n_{max}), tal que $x_k \in S_k$ e S_k seja Λ -posicionado. Se $|S_k| \ge n_{min}$ calcule uma derivada simplex baseado em S_k .

• Passo de busca:

Esse passo é opcional; se alguma derivada simplex está disponível, calcule a direção d_p que minimiza um modelo criado com esta derivada na bola $B(x_k; \Delta_k)$, e projetea na malha M_k . Se esse ponto oferecer decréscimo na função objetivo, ele será o ponto x_{k+1} ; declare sucesso e pule o passo de pesquisa (o ponto deve ou não ser armazenado na lista \mathcal{L} dependendo da estratégia escolhida).

• Passo de pesquisa:

Se a poda estiver sendo utilizada, encontre D_k^p ; caso contrário, ordene os pontos utilizando a estratégia escolhida. Avalie os pontos no conjunto de pesquisa, armazenando na lista \mathcal{L} conforme a estratégia adotada. Se encontrar decréscimo, esse será o ponto x_{k+1} ; declare sucesso e termine a pesquisa. Caso contrário declare fracasso.

• Atualização do passo:

Calcule o tamanho do passo α_{k+1} conforme a estratégia adotada, incremente k em 1 e volte para o passo de cálculo das derivadas simplex.

No próximo capítulo apresentaremos experimentos numéricos comparando a robustez e a eficiência (em termos do número de avaliações de função) do método SID-PSM com os métodos de busca padrão e Nelder-Mead.
Capítulo 5

Experimentos numéricos preliminares

Neste capítulo são apresentados resultados obtidos a partir de um conjunto de testes numéricos, extraído de [15], e algumas análises destes resultados. Este conjunto contém 35 problemas-teste de minimização irrestrita, onde a função objetivo é uma soma de quadrados. Os 20 primeiros têm dimensões entre 2 e 12. Os 15 últimos têm dimensão livre e foram resolvidos com dimensão 12 e 20. Implementamos o método de busca padrão no *software* MatLab. O comparamos com a função fminsearch do MatLab, que implementa o método de Nelder-Mead, e com o método SID-PSM, também implementado em MatLab disponível em [21].

Para fazer as comparações e analisar qual o melhor método, utilizamos a estratégia de perfil de desempenho apresentada em [10]. Esta estratégia compara n_s métodos, de um conjunto S, para a resolução de n_p problemas, de um conjunto P, usando medidas como número de iterações, número de avaliação de função ou tempo computacional. Definimos $m_{s,p}$ como o total da medida necessária para resolver o problema p pelo método s. Para cada problema p e método s, a taxa de desempenho $r_{s,p}$ é calculada:

$$r_{s,p} = \frac{m_{s,p}}{\min\{m_{s,p} : \forall s \in S\}}$$

se o problema p é resolvido pelo método s; caso contrário

$$m_{s,p} = r_M,$$

onde r_M é um parâmetro suficientemente grande.

Então, para cada $s \in S$, a função distribuição $\rho_s : \mathbb{R} \to [0,1]$ para a taxa de desempenho é construída:

$$\rho_s(t) = \frac{1}{n_p} |\{p \in P : r_{s,p} \le t\}|.$$

Essa função representa o desempenho do método s, é não-decrescente e constante por partes. Na análise do método s, dois pontos nos dão informações muito importantes, estes são: $\rho_s(1) \in \bar{t}$, tal que, $\rho_s(\bar{t}) = 1$. O valor de $\rho_s(1)$ representa a probabilidade do método s ser o mais eficiente, em termos do conjunto S, usando a medida $m_{s,t}$. A robustez do método s em termos do número de problemas que podem ser resolvidos é avaliada pelo menor valor de t, denotado \bar{t}_s , no qual $\rho_s(t) = 1$, se existe tal valor para $t < r_M$. Então, o melhor em termos de robustez será o método \hat{s} para o qual $\bar{t}_{\hat{s}} = \min{\{\bar{t}_s, \forall s \in S\}}$.

No nosso caso usaremos como medida o número de avaliações de função realizadas por cada um dos métodos para resolver problemas apresentados em [15].

Antes de apresentar os resultados obtidos precisamos ainda definir o que é resolver os problemas.

Definição 9 Sejam $\theta_p(s)$ o menor valor de função obtido pelo método s, em um conjunto de métodos S, ao resolver o problema p e $\hat{\theta}_p = \min_{\hat{s} \in S} \theta_p(\hat{s})$. Então se o método atinge um passo com tamanho menor que uma tolerância ϵ_{α} em menos de 10⁶ avaliações de função, e

$$\frac{\theta_p(s) - \hat{\theta}_p}{\hat{\theta}_p} \le 0,25 \quad \text{se}\,\hat{\theta}_p \neq 0,$$
$$\theta_p(s) \le \exp^2 \quad \text{se}\,\hat{\theta}_p = 0,$$

onde **eps** é o épsilon da máquina, diz-se que o método s resolve o problema p, em relação ao conjunto S.

Em outras palavras, dizemos que o método s resolve o problema p se a solução obtida por este é no máximo 25% pior que a melhor solução obtida.

Fizemos alguns testes com o método SID-PSM para verificar quais parâmetros nos forneceriam um melhor desempenho, e depois comparamos o desempenho do método, usando esses parâmetros, com os métodos de busca padrão e Nelder-Mead. Em todos os testes os seguintes parâmetros foram mantidos fixos no SID-PSM:

- utilizamos o gradiente simplex definido, ou seja, procuramos um conjunto Λ -posicionado com n + 1 elementos, desta forma $n_{min} = n_{max} = n + 1$;
- $\Lambda = 100 \text{ e} \sigma = 2;$
- fazemos $\alpha_k = 2\alpha_{k-1}$ ao aumentar o tamanho do passo e $\alpha_k = \frac{1}{2}\alpha_{k-1}$ ao diminuir;
- realizamos o passo de busca construindo um modelo quadrático para a função objetivo com os pontos armazenados na lista. Quando temos menos de (n+1)(n+2)/2pontos, resolvemos o problema (2.8) para encontrar o modelo. Quando temos entre (n+1)(n+2)/2 e (n+1)(n+2) pontos, resolvemos o problema de regressão

$$\min \frac{1}{2} \| M(\Phi, Y) \alpha - f(Y) \|^2,$$

onde α nos dá os coeficientes do modelo quadrático criado. O ponto testado no passo de busca é calculado encontrando o minimizador do modelo na bola $B(x_k, \Delta_k)$;

- a direção de descida em potencial é dada por $d_p = -\nabla_S f(x_k);$
- se temos a derivada simplex, ordenamos o conjunto de pesquisa pelo ângulo de seus vetores com a direção de descida em potencial, caso contrário, continuamos a pesquisa a partir do último vetor que ofereceu decréscimo;
- o método para se avalia mais de um milhão de vezes a função objetivo, ou quando o tamanho do passo é menor que 10^{-6} .

5.1 Ajuste de parâmetros

Primeiramente comparamos as formas de armazenar os pontos na lista L: armazenar todos os pontos avaliados (SID-ALL), ou apenas os pontos que oferecem decréscimo da função objetivo (SID-SUC).

Utilizamos como conjunto de direções de pesquisa permutações do conjunto $D = \{-e, e_1, \ldots, e_n\}$ onde e é o vetor unitário, e aumentamos o tamanho do passo em todo sucesso.

Em ambos os casos limitamos o tamanho da lista em (n + 1)(n + 2) pontos.

Avaliamos os 20 primeiros problemas apresentados em [15]. Os resultados obtidos estão apresentados na tabela 1 no Anexo A. Com estes resultados fizemos o gráfico da Figura 5.1.

Figura 5.1: Perfil de desempenho dos métodos SID-SUC e SID-ALL.

Deste gráfico vemos claramente que o método SID-ALL é superior ao SID-SUC, tanto na eficiência quanto na robustez, resolvendo cerca de 75% dos problemas testados com o número mínimo de avaliações de função e 95% no total. Já o método SID-SUC

resolve apenas 25% dos problemas com o número mínimo de avaliações de função e no total apenas 55%. Podemos destacar que, para atingir esta robustez, o método SID-SUC realiza em torno de 2^5 vezes o número de avaliações de função que o SID-ALL necessita para atingir a sua robustez máxima (o eixo x está em escala logarítmica).

A partir disso decidimos utilizar em todas as versões do SID-PSM o armazenamento de todos os pontos.

Comparamos as quatro diferentes formas de definir os conjuntos de pesquisa sugeridas pelos autores do método. Estas são:

D0: permutações do conjunto $D = \{-e, e_1, \dots, e_n\};$

D1: permutações do conjunto $D = \{e_1, \ldots, e_n, -e_1, \ldots, -e_n\};$

- D2: permutações do conjunto $D = \{e, -e, e_1, \dots, e_n, -e_1, \dots, -e_n\};$
- D3: D é uma base geradora positiva com ângulos de tamanho uniforme entre seus vetores¹, os conjuntos D_k 's são permutações de D.

Mantivemos a mesma forma de atualização do passo.

Os dados obtidos desses testes estão disponíveis nas tabelas 2 e 3 no Anexo A. Com estes dados fizemos o gráfico da Figura 5.2 que contem o perfil de desempenho para estes métodos.

Para facilitar a análise da eficiência, plotamos novamente estes dados na Figura 5.3, porém mudamos o limite do eixo x para podermos verificar melhor como é a variação da eficiência dos métodos com poucas avaliações de função.

Por estes gráficos vemos que o método mais robusto é o D2, chegando a resolver 70% dos problemas testados, porém este é pouco eficiente, ficando empatado o D1 neste quesito, resolvendo apenas 25% dos problemas com o número mínimo de avaliações de função. O método D0 é o menos eficiente e também o menos robusto, já o D3 é o mais eficiente e, apesar de não ser muito robusto (resolvendo apenas 50% dos problemas testados), ele resolve 45% dos problemas com o menor número de avaliações de função objetivo.

Usando o conjunto de pesquisa dado por D3, analisamos o desempenho de 4 tipos de atualização do tamanho do passo, estes são:

P0: aumentar o tamanho do passo em todo sucesso;

- P1: utilizar a ideia de decréscimo esperado permitindo que α_k diminua, com $\gamma_1 = \frac{1}{4}$ e $\gamma_2 = \frac{3}{4}$;
- P2: utilizar a ideia de decréscimo esperado sem permitir que α_k diminua, neste caso $\gamma_1 = 0$ e $\gamma_2 = \frac{3}{4}$;

 $^{^{1}}$ ver Anexo B

Figura 5.2: Perfil de desempenho do método SID-PSM utilizando os 4 tipos de bases disponíveis na implementação.

P3: aumentar o tamanho do passo somente quando uma mesma direção oferece decréscimo por duas iterações seguidas.

Os dados obtidos destes testes estão aprensentados nas tabelas 2 e 3 no Anexo A. Com estes dados fizemos o gráfico apresentado na Figura 5.4, com o perfil de desempenho para os métodos citados.

Novamente, para uma melhor análise da eficiência, plotamos o gráfico com um zoom no eixo x. Este novo gráfico está apresentado na Figura 5.5.

Destes gráficos vemos que a maior eficiência é obtida com P0, seguida por P1. A estratégia P2 foi a menos eficiente e menos robusta, sendo a maior robustez apresentada com P0, seguida por P1.

Comparamos, por fim, o uso ou não da poda. Testamos três possibilidades:

Poda 0: não utiliza a poda;

Poda 1: poda o conjunto D_k e testa apenas a direção mais promissora;

Poda 2: poda o conjunto D_k e testa todas as direções no conjunto podado.

Testamos duas combinações, a primeira utiliza D2 e P1 e a segunda utiliza D3 e P3. Os dados desses testes estão disponíveis nas tabelas 6, 7, 8 e 9 no Anexo A, com estes

Figura 5.3: Perfil de desempenho do método SID-PSM utilizando os 4 tipos de bases disponíveis na implementação, com ênfase na eficiência dos métodos.

dados fizemos o gráfico apresentado na Figura 5.6 com o perfil de desempenho para este conjunto de métodos.

Da mesma forma que fizemos para os gráficos anteriores, construímos o gráfico na Figura 5.7 dando um *zoom* no eixo x do gráfico da Figura 5.6.

Primeiramente vemos que, no geral, o uso de P1 D2 nos dá um método mais robusto que o uso de P3 D3. Já quando comparamos a eficiência dos métodos, aparentemente o uso de P3 D3 é melhor (apesar do método P1 D2 poda 1 ser o segundo mais eficiente). Quanto ao uso da poda, nada podemos concluir, dado que cada uma das versões apresentou resultados diferentes: o método P1 D2 poda 0 é o segundo em robustez (empatado com o P3 D3 poda 0) e o segundo menos eficiente, empatado com o método P3 D2 poda 1. Já o método P1 D2 poda 1 é o mais robusto e segundo em termos de eficiência e, ainda, o P1 D2 poda 2 fica em terceiro em robustez e é o segundo menos eficiente. O método P3 D3 poda 0 é o mais eficiente e está em segundo em robustez, já o P3 D3 poda 1 é o menos robusto e o terceiro mais eficiente, enquanto o P3 D3 poda 2 é o menos eficiente e o segundo pior em termos de robustez.

Figura 5.4: Perfil de desempenho do método SID-PSM utilizando os 4 tipos de atualização de passo disponíveis na implementação.

5.2 Comparação entre métodos

Com as análises feitas na seção anterior decidimos utilizar o método SID-PSM com os parâmetros P1 D2 poda 1, o qual chamamos de SID-PSM1, e P3 D3 poda 0, que chamamos de SID-PSM2.

Comparamos SID-PSM com o método Nelder-Mead e com o método de busca padrão sem o uso de derivadas simplex implementado de duas formas:

- BP1: Os conjuntos de pesquisa são permutações do conjunto D, base positiva minimal com ângulos de tamanho uniforme entre seus vetores;
- BP2: Os conjuntos de pesquisa são permutações do conjunto $D = \{e, -e, e_1, \dots, e_n, -e_1, \dots, -e_n\}.$

Para ambos os casos fizemos o passo aumentar sempre que uma mesma direção oferecesse decréscimo em duas iterações seguidas.

Utilizamos todos os testes apresentados em [15].

Os dados obtidos por esses métodos estão disponíveis nas tabelas 10, 11, 12 e 13 no Anexo A, com estes dados construímos o gráfico apresentado na Figura 5.8 com o perfil de desempenho dos métodos comparados.

Tanto o SID-PSM1 quanto o SID-PSM2 se destacam do restante dos métodos tanto na robustez quanto na eficiência, sendo que ambos possuem aproximadamente a mesma

Figura 5.5: Perfil de desempenho do método SID-PSM utilizando os 4 tipos de atualização de passo disponíveis na implementação, com ênfase na eficiência dos métodos.

robustez (resolveram em torno de 60% dos problemas), e também a mesma eficiência, resolvendo cerca de 40% dos problemas com a menor quantidade de avaliações de função. Para efeito de comparação, o melhor entre os outros três métodos testados foi o Nelder-Mead, que resolveu apenas 15% dos problemas com o menor número de avalições de função e, no total, resolveu cerca de 50% dos problemas.

Figura 5.6: Perfil de desempenho do método SID-PSM sem poda, com poda e apenas direção mais promissora.

Figura 5.7: Perfil de desempenho do método SID-PSM sem poda, com poda e apenas direção mais promissora, com ênfase na efeiciência.

Figura 5.8: Perfil de desempenho dos método SID-PSM1, SID-PSM2, Nelder-Mead, BP1 e BP2.

Capítulo 6

Otimização de parâmetros de algoritmos

Em geral, métodos matemáticos dependem de alguns parâmetros que podem influenciar (muito) na sua eficiência. Os autores dos métodos costumam apresentar sugestões para esses parâmetros, algumas vezes totalmente arbitrários. Neste capítulo, seguindo as ideias apresentadas em [2], encontraremos os parâmetros ótimos, que maximizam a eficiência, do método SID-PSM. Este problema não é diferenciável, logo a teoria de convergência apresentada anteriormente não pode ser aplicada. Ainda assim podemos aplicar os métodos e esperar bons resultados.

Nosso problema é: dado um método s, que depende dos parâmetros x_i , i = 1, ..., n, encontrar parâmetros ótimos x_i^* , i = 1, ..., n, que minimizam alguma medida de desempenho do método.

Visto que no capítulo anterior tanto o SID-PSM1, quanto o SID-PSM2 obtiveram o desempenho muito semelhante, e o SID-PSM1 utiliza mais as derivadas simplex, o que pode siginificar um maior potencial a ser explorado, decidimos modificar alguns de seus parâmetros para minimizar o número de avaliações de função realizadas. Utilizamos um subconjunto P de problemas do pacote CUTEr, disponível em [22]. Este subconjunto é uma seleção de 22 problemas-teste para minimização irrestrita cuja função objetivo é a soma de quadrados. Os autores deste subconjunto, Moré e Wild, selecionaram os problemas deste pacote especificamente para teste de *softwares derivative-free*. São sugeridas várias dimensões para os problemas, utilizamos sempre a menor, resolvendo apenas uma vez cada um dos problemas. Assim os problemas resolvidos têm dimensão entre 2 e 11. Como estamos utilizando o número de avaliações de função como medida de desempenho, definimos nossa função objetivo como a soma do número de avaliações de função realizadas pelo método SID-PSM1 para resolver cada um dos problemas em P, como sugerida em [2].

Os parâmetros que deixamos como variáveis do nosso problema foram: $\gamma_1 \in \gamma_2$ (medidas de qualidade do modelo), ϕ (parâmetro de crescimento do passo), θ (parâmetro de decrescimento do passo), $\overline{\Lambda} \in \sigma$, onde $\overline{\Lambda} = \frac{\Lambda}{100}$ é um reescalamento feito para evitar erros numéricos. Essas variáveis não podem assumir quaisquer valores, então, teoricamente estamos trabalhando com o problema restrito:

$$\min \quad f(x) = \sum_{i \in P} f_i(x)$$
s.a $x \in \Omega \subset I\!\!R^6,$

$$(6.1)$$

onde $f_i: \Omega \to \mathbb{R}$ é o número de avaliações de função que o método SID-PSM1 gasta para resolver o problema $i \in P$, utilizando os parâmetros dados por x, e

$$\Omega = \left\{ \begin{aligned} & \gamma_1 < \gamma_2 \\ & 0 \le \theta < 1, \\ & \phi \ge 1, \\ & \gamma_1, \gamma_2, \sigma, \bar{\Lambda} \ge 0 \end{aligned} \right\}.$$

Se definirmos $\theta = 0$, já no primeiro fracasso teremos o critério de parada satisfeito, porém, é provável que ainda estejamos muito longe do ótimo. Queremos evitar isso durante a otimização do método. Uma alternativa é penalizar a função f quando a execução é interrompida longe do menor valor de função obtido pelo SID-PSM1, utilizando os parâmetros iniciais.

Vamos definir $g^0 \in \mathbb{R}^{|P|}$, o vetor com os menores valores de função obtidos ao aplicar o SID-PSM1 aos problemas em P, utilizando os parâmetros iniciais. Seja $g : \Omega \to \mathbb{R}^p$ tal que $g_i(x)$ é o menor valor de função obtido pelo método SID-PSM1 aplicado ao problema $i \in P$, utilizando os parâmetros dados por x.

Queremos que o método com os parâmetros otimizados resolva os problemas tão bem quanto o método com os parâmetros originais. Esperamos que o método otimizado satisfaça:

$$g(x^*) \le 1.25g^0, \tag{6.2}$$

onde $x^* \in \Omega$ é o vetor com os parâmetros ótimos. Não queremos restringir o problema apenas aos pontos que satisfazem essa condição, mas queremos evitar pontos que não a satisfazem. Para isso criamos o vetor $g^+(x) \in \mathbb{R}^{|P|}$ tal que

$$g_i^+(x) = \max\left\{g_i(x) - 1.25g_i^0, 0\right\},\$$

para todo i. Dessa forma obtemos uma função de penalização $p: \Omega \to \mathbb{R}$, tal que

$$p(x) = \frac{\|g^+(x)\|}{\|g_0\|} M,$$

onde M > 0 é um valor grande o suficiente.

Utilizando esta função de penalização, definiremos $f^p : \Omega \to \mathbb{R}$, tal que

$$f^p(x) = f(x) + p(x).$$

O método SID-PSM, da forma como foi estudado nesse trabalho, é um método de minimização irrestrita, logo não podemos aplicá-lo para resolver (6.1). Vamos criar

uma função $\bar{f} : \mathbb{R}^6 \to \mathbb{R}$ tal que, se $x \in \Omega$, $\bar{f}(x) = f^p(x)$, caso contrário, $\bar{f}(x) = M \ge \sup_{y \in \Omega} f(y)$.

Para todo $i \in P$, f_i é limitada superiormente pelo máximo de avaliações de função que o SID-PSM1 pode realizar, no nosso caso 10^6 . Como f é a soma de todos os f_i 's, então f é limitada superiormente por $|P|10^6$. Assim um possível valor para M é $(|P| + 1)10^6$.

Desta forma podemos definir \bar{f} como

$$\bar{f}(x) = \begin{cases} f^p(x) & \text{se } x \in \Omega \\ (|P|+1)10^6 & \text{c. c.} \end{cases}$$
(6.3)

Aplicamos os métodos SID-PSM1 e SID-PSM2 à função (6.3), a fim de obter os parâmetros ótimos do método SID-PSM1. O ponto inicial foi

$$x^{0} = \begin{bmatrix} \gamma_{1} \\ \gamma_{2} \\ \phi \\ \theta \\ \bar{\Lambda} \\ \sigma \end{bmatrix} = \begin{bmatrix} 0, 25 \\ 0, 75 \\ 2 \\ 0, 5 \\ 1 \\ 2 \end{bmatrix},$$

onde $f^p(x^0) = 213551$, e obtivemos

$$x_{1}^{*} = \begin{bmatrix} 1,25047302246094 \\ 4,00047302246094 \\ 4,00047302246094 \\ 0,500473022460938 \\ 1,00041198730469 \\ 6,00047302246094 \end{bmatrix} \quad e \quad x_{2}^{*} = \begin{bmatrix} 0,356119791666667 \\ 0,727660636235692 \\ 2,24152294576982 \\ 0,227170815547733 \\ 0,448801810194877 \\ 2 \end{bmatrix}$$

em 175 e 199 avaliações de função, parâmetros ótimos usando SID-PSM1 e SID-PSM2, respectivamente. Os valores da função f^p para esses dois pontos são

$$f^p(x_1^*) = 20782, 8391252206$$
 e $f^p(x_2^*) = 24324, 3851498036.$

Comparamos o desempenho do SID-PSM1, original e otimizado (com as duas soluções encontradas), para resolver os problemas em P, os dados obtidos estão disponíveis na tabela 18 no Anexo A. A Figura 6.1 nos dá o perfil de desempenho destes métodos.

Resolvemos novamente todos os problemas apresentados em [15] com o método SID-PSM1, desta vez utilizando os parâmetros otimizados, os dados são apresentados nas tabelas 14 e 15 no Anexo A. O gráfico apresentado na Figura 6.2 mostra o perfil de desempenho comparando o SID-PSM1 com uso dos parâmetros originais e otimizados.

Em ambos os gráficos podemos ver que as duas soluções não foram satisfatórias, pois, pioram tanto a robustez quanto a eficiência do método. Pela parte não inteira de $f^p(x_1^*)$ e $f^p(x_2^*)$ sabemos que ambos os pontos não satisfazem a condição (6.2), assim

Figura 6.1: Perfil de desempenho do método SID-PSM1 com parâmetros originais, dados por x_1^* e por x_2^* resolvendo problemas P.

devemos aplicar uma mudança na forma de penalização para que a solução seja mais robusta. Em relação à eficiência, apesar de termos diminuído o valor de f^p , a eficiência, mesmo nos problemas do pacote CUTEr, não melhorou. Isso, provavelmente, porque as comparações são feitas problema a problema, enquanto a otimização é feita em conjunto, logo se um problema gasta 10^5 avaliações de função e outros três gastam 10^2 , os três últimos podem aumentar o número de avaliações que realizam que não irão interferir tanto no valor final da função objetivo. Uma possível solução para isso é aplicar pesos para cada um dos problemas.

Estas duas estratégias serão aplicadas a seguir. Vamos definir f_i^0 como o número de avaliações de função necessárias para o método SID-PSM1, utilizando os parâmetros originais, resolver o problema *i*. Seja $\hat{f} : \mathbb{R}^6 \to \mathbb{R}$, tal que

$$\hat{f}(x) = \sum_{i \in P} \frac{f_i(x)}{f_i^0}.$$

Desta forma estamos dando pesos inversamente proporcionais ao número de avaliações de função gasto originalmente. Para tentarmos garantir a robustez do método com a solução encontrada, iremos aplicar uma penalização, de modo que a função a ser otimizada é

$$\hat{f}_{\bar{\Omega}}(x) = \begin{cases} \hat{f}(x) & \text{se } x \in \bar{\Omega} \\ (|P|+1) & \text{c. c.} \end{cases},$$
(6.4)

Figura 6.2: Perfil de desempenho do método SID-PSM1 com parâmetros originais e otimizados, resolvendo problemas apresentados em [15].

onde $\overline{\Omega}$ é o conjunto Ω original intersecção com os parâmetros que fazem com que os menores valores de função encontrados pelo método SID-PSM1, ao resolver os problemas em P, sejam 25% maiores que as soluções encontradas utilizando os parâmetros originais em no máximo um problema.

Aplicamos os métodos SID-PSM1 e SID-PSM2 à função (6.4), O ponto inicial foi

$$x^{0} = \begin{bmatrix} \gamma_{1} \\ \gamma_{2} \\ \phi \\ \theta \\ \bar{\Lambda} \\ \sigma \end{bmatrix} = \begin{bmatrix} 0, 25 \\ 0, 75 \\ 2 \\ 0, 5 \\ 1 \\ 2 \end{bmatrix}$$

onde $\hat{f}_{\bar{\Omega}}(x^0) = 22$, e obtivemos

$$x_3^* = \begin{bmatrix} 0, 10156250000000\\ 0, 750976562500000\\ 2\\ 0, 5\\ 1\\ 2 \end{bmatrix} \quad e \quad x_4^* = \begin{bmatrix} 0, 0052083333333333\\ 0, 719187084463023\\ 2\\ 0, 5\\ 1\\ 2 \end{bmatrix},$$

em 165 e 172 avaliações de função, parâmetros ótimos usando SID-PSM1 e SID-PSM2, respectivamente. Os valores da função $\hat{f}_{\bar{\Omega}}(x)$ para esses dois pontos são

$$\hat{f}_{\bar{\Omega}}(x_3^*) = 17,0288769517664$$
 e $\hat{f}_{\bar{\Omega}}(x_4^*) = 18,6011524091986.$

Comparamos o desempenho do SID-PSM1, original e otimizado (com as duas soluções encontradas), para resolver os problemas em P, os dados obtidos estão na tabela 19 no Anexo A. A Figura 6.3 nos dá o perfil de desempenho destes métodos.

Figura 6.3: Perfil de desempenho do método SID-PSM1 com parâmetros originais, dados por x_3^* e por x_4^* resolvendo problemas P.

Resolvemos novamente todos os problemas apresentados em [15] com o método SID-PSM1, desta vez utilizando os parâmetros otimizados, disponibilizamos os resultados obtidos nas tabelas 16 e 17 no Anexo A. O gráfico apresentado na Figura 6.4 mostra o perfil de desempenho comparando o SID-PSM1 com uso dos parâmetros originais e otimizados.

Para facilitar a análise plotamos os dados do gráfico 6.4 mudando a escala do eixo x, para podermos analisar como se comporta o método com as diferentes soluções utilizando poucas avaliações de função, este novo gráfico está apresentado na figura 6.5.

Podemos ver que as soluções foram bastante satisfatórias, gerando parâmetros mais eficientes e mais robustos que os originais. Por exemplo quando passamos a utilizar os parâmetros dados por x_4^* , aumentamos a eficiência em cerca de 15% e a robustez em aproximadamente 10%. Isso mostra o grande potencial desta técnica para obter resultados melhores e mais rápidos.

Figura 6.4: Perfil de desempenho do método SID-PSM1 com parâmetros originais e otimizados, resolvendo problemas apresentados em [15].

É importante ressaltar a escolha do valor 1, 25 nas duas formas de penalização. Esta escolha não está necessariamente ligada à forma como definimos "resolver o problema". Por exemplo, na figura 6.6 mudamos o limitante do erro na definição 9 do Capítulo 5 para

$$\frac{\theta_p(s) - \hat{\theta}_p}{\hat{\theta}_p} \le 10^{-5} \qquad \operatorname{se} \hat{\theta}_p \neq 0,$$

e resolvemos os problemas de [15] com os parâmetros originais, $x_3^* \in x_4^*$.

Neste caso vemos uma pequena perda de robustez quando utilizamos os parâmetros dados por x_3^* , porém quando utilizamos os parâmetros dados por x_4^* continuamos com a melhora tanto na robustez quanto na eficiência do método.

Tentamos resolver o problema exigindo $g_i(x) \leq g_i^0$ (utilizando a definição original para "resolver os problemas"), porém continuamos sem resultados satisfatórios para a função f^p e, ao otimizar a função $\hat{f}_{\bar{\Omega}}$, o ponto ótimo foi o ponto inicial.

Figura 6.5: Perfil de desempenho do método SID-PSM1 com parâmetros originais e otimizados, resolvendo problemas apresentados em [15], com zoom no eixo x.

Figura 6.6: Perfil de desempenho do método SID-PSM1 com parâmetros originais e otimizados, resolvendo problemas apresentados em [15], com mudança na definição de resolver o problema.

Capítulo 7

Conclusão

O método SID-PSM se mostrou eficiente na resolução dos problemas sugeridos em [15]. Tanto em relação ao número de avaliações de função quanto em relação à quantidade de problemas resolvidos, esse método se mostrou superior aos métodos Nelder-Mead e de busca padrão.

No artigo [15], os autores sugerem uma lista de problemas de minimização irrestrita onde a função objetivo é uma soma de quadrados. Os problemas de 1 a 20 têm dimensão fixa. O restante tem dimensão livre. Nos problemas de dimensão livre usamos no máximo 20 variáveis, isso porque o SID-PSM possui iterações muito caras: a lista \mathcal{L} cresce quadraticamente com o tamanho do problema. Ignorando a distância dos pontos da lista até o iterando, vemos que o total de verificações por Λ -posicionamente que o método realiza por iteração é da ordem de n^2 .

Por esse motivo, o método SID-PSM pode não ser uma boa alternativa quando se trabalha com problemas grandes, cujo cálculo da função objetivo é rápido. Porém se o custo de avaliar a função for muito caro (como no caso do problema apresentado no Capítulo 6), pode ser uma boa alternativa aos métodos clássicos sem derivadas.

O problema de otimização de parâmetros, apresentado no Capítulo 6, foi resolvido utilizando o *software* SID-PSM. Escolhemos um método *derivative-free* pois não temos acesso nem mesmo à função, ainda menos a suas derivadas. Esse fato inviabiliza o uso de qualquer método que faz uso de derivadas. A escolha do SID-PSM dentre outros métodos sem derivadas se deu pelo fato que nosso problema é pequeno (6 variáveis) e o custo de avaliar a função objetivo é muito grande, que como visto anteriormente é o tipo de problema em que o SID-PSM se destaca.

Ainda sobre o problema de otimização de parâmetros de algoritmos, os resultados da otimização da primeira função sugerida não foram satisfatórios, algumas justificativas para este fato estão na simplicidade da função objetivo.

Já a segunda função, mais elaborada, com peso para cada um dos termos da sua soma, nos ofereceu resultados satisfatórios, melhorando tanto a robustez quanto a eficiência do método SID-PSM1. O que demonstra a possibilidade de utilizar o método SID-PSM, e outros métodos de otimização sem derivada, para melhorar métodos já conhecidos, fazendo com que estes atinjam o máximo de seu potencial.

Anexo A - Resultados numéricos

Apresentamos aqui as tabelas com os resultados numéricos obtidos ao aplicar os métodos nos problemas:

SID-PSM	Armazena	todos	Armazena	sucesso
	# de Avaliações	Menor valor	# de Avaliações	Menor valor
Rosen	334	1,1938e-17	539	2,3669e-11
Froth	89	0	70	0
BadscaP	183	1,1256e-08	156	1,1285e-08
BadscaB	487	2,1261e-13	442	5,7579e-07
Beale	235	6,4168e-18	237	6,8072e-14
JenSam	251	1,2436e+02	246	1,2436e+02
Helix	440	7,1504e-17	658	7,8210e-10
Bard	401	8,2149e-03	540	8,2148e-03
Gauss	213	1,1279e-08	155	1,1281e-08
Meyer	254630	3,1796e+08	210111	1,6779e+04
Gulf	2649	1,9180e-17	1236	2,8976e-13
Box	420	5,9298e-02	570	5,9298e-02
Sing	803	1,1930e-12	2577	8,2100e-08
Wood	613	1,6825e-16	1590	3,8592e-09
KowOsb	873	3,0750e-04	1564	3,0750e-04
BD	474	8,5822e+04	843	8,5822e + 04
Osb1	171	1,1529	300	1,1529
Biggs	12854	5,7542e-11	44551	2,3753e-07
Osb2	16971	3,4543e-01	909164	3,4543e-01
Watson	5208	2,8951e-05	773540	7,6699e-05

Tabela 1: Reultados numéricos da comparação do SID-PSM usando o armazenamento de todos os pontos ou apenas dos pontos que oferecem decréscimo

#de Avaliações	D0	D1	D2	D3
Rosen	334	617	579	323
Froth	89	113	158	89
BadscaP	183	1302	452	1000001
BadscaB	487	588	1205	103304
Beale	235	442	180	347
JenSam	251	249	480	320
Helix	440	690	591	447
Bard	401	413	588	321
Gauss	213	224	289	207
Meyer	254630	30007	1000003	92150
Gulf	2649	20428	19586	1871
Box	420	333	437	436
Sing	803	804	948	633
Wood	613	1091	923	562
KowOsb	873	1129	1252	420
BD	474	515	794	355
Osb1	171	292	334	172
Biggs	12854	12052	18052	12500
Osb2	16971	43681	75993	9503
Watson	5208	543221	1000004	7472

Tabela 2: Número de avaliações de função realizadas pelo método SID-PSM para resolver cada um dos problemas utilizandos os diferentes tipos de conjunto de pesquisa

Menor valor	D0	D1	D2	D3
Rosen	1,1938e-17	1,1052e-17	3,1543e-18	4,9021e-19
Froth	0	0	0	0
BadscaP	1,1256e-08	9,1785e-08	4,3248e-08	$4,\!5941e\text{-}07$
BadscaB	2,1261e-13	3,6647e-17	2,1793e-13	2,4288e-12
Beale	6,4168e-18	8,7687e-18	0	1,1874e-18
JenSam	1,2436e+02	1,2436e+02	1,2436e+02	1,2436e+02
Helix	7,1504e-17	8,6822e-18	5,3659e-19	1,2601e-16
Bard	8,2149e-03	8,2149e-03	8,2149e-03	8,2149e-03
Gauss	1,1279e-08	1,1279e-08	1,1279e-08	1,1279e-08
Meyer	3,1795e+08	8,8043e+01	4,2491e+04	7,7035e+03
Gulf	1,9180e-17	1,3798e-14	8,4610e-20	5,7945e-19
Box	5,9298e-02	0	0	3,0624e-23
Sing	1,1930e-12	2,1927e-13	1,0389e-10	1,1424e-12
Wood	1,6825e-16	2,1908e-15	1,2039e-16	1,0909e-12
KowOsb	3,0751e-04	3,0751e-04	3,0751e-04	3,0751e-04
BD	8,5822e+04	8,5822e+04	8,5822e + 04	8,5822e + 04
Osb1	$1,\!1529$	$1,\!1529$	$1,\!1529$	1,1529
Biggs	5,7542e-11	1,5567e-08	6,0344e-13	2,4278e-01
Osb2	3,4543e-01	4,0137e-02	4,0137e-02	4,0137e-02
Watson	2,8952e-05	2,3887e-06	4,8397e-05	5,5071e-08

Tabela 3: Menor valor de função encontrado pelo método SID-PSM ao resolver cada um dos problemas utilizandos os diferentes tipos de conjunto de pesquisa

#de Avaliações	P0	P1	P2	P3
Rosen	323	193	190	196
Froth	89	89	89	89
BadscaP	1000001	13490	13149	168
BadscaB	103304	414	411	1000000
Beale	347	107	166	139
JenSam	320	181	202	105
Helix	447	298	355	222
Bard	321	258	326	186
Gauss	207	106	143	107
Meyer	92150	29430	37422	1000000
Gulf	1871	1325	1406	220645
Box	436	227	254	189
Sing	633	659	501	581
Wood	562	664	452	292
KowOsb	420	296	245	230
BD	355	277	307	197
Osb1	172	145	160	154
Biggs	12500	2203	16239	289893
Osb2	9503	3914	4589	1462
Watson	7472	4385	5987	2188

Tabela 4: Número de avaliações de função realizadas pelo método SID-PSM para resolver cada um dos problemas utilizandos os diferentes tipos de atualização de passo

Menor valor	D0	D1	D2	D3
Rosen	4,9021e-19	1,0332e-17	8,1150e-18	1,09815e-17
Froth	0	0	0	0
BadscaP	$4,\!5941\mathrm{e}{-}07$	$2,\!6815e-04$	5,7999e-04	1,3452e-01
BadscaB	2,4288e-12	1,0361e-13	6,0393e-14	9,6507e+11
Beale	1,1874e-18	2,3238e-16	1,4426e-17	1,2570e-18
JenSam	1,2436e+02	1,2436e+02	1,2436e+02	1,2436e+02
Helix	1,2601e-16	4,8701e-17	2,5418e-16	1,7358e-16
Bard	8,2149e-03	8,2149e-03	8,2149e-03	8,2149e-03
Gauss	1,1279e-08	1,1279e-08	1,1279e-08	1,1279e-08
Meyer	7,7035e+03	1,9638e+04	1,2553e+04	5,5192e+07
Gulf	5,7945e-19	1,6192e-17	1,2078e-18	2,6717e-07
Box	3,0625e-23	1,1656e-29	8,2608e-28	1,3259e-20
Sing	1,1424e-12	1,8215e-18	7,5256e-12	1,8877e-09
Wood	1,0909e-12	1,8726e-15	1,1499e-09	4,5421e-16
KowOsb	3,0750e-04	3,0750e-04	3,0750e-04	3,0750e-04
BD	8,5822e + 04	8,5822e+04	8,5822e+04	8,5822e + 04
Osb1	$1,\!1529$	$1,\!1529$	$1,\!1529$	1,1529
Biggs	2,4279e-01	1,9731e-16	2,4274e-01	2,4275e-01
Osb2	4,0137e-02	4,0137e-02	4,0137e-02	4,0137e-02
Watson	5,5071e-08	5,4737e-07	2,6957e-06	1,6966e-06

Tabela 5: Menor valor de função encontrado pelo método SID-PSM ao resolver cada um dos problemas de MGH utilizandos os diferentes tipos de atualizações de passo

#de Avaliações	sem poda	mais promissora	poda
Rosen	322	147	394
Froth	158	79	93
BadscaP	120	1121	176798
BadscaB	681	462	683
Beale	257	97	184
JenSam	186	171	126
Helix	450	290	113
Bard	288	203	147
Gauss	130	98	102
Meyer	49455	94025	16355
Gulf	1020	1275	1422
Box	314	178	199
Sing	547	483	507
Wood	528	389	593
KowOsb	523	263	346
BD	376	217	281
Osb1	274	122	140
Biggs	1605	2682	1197
Osb2	3348	3822	5600
Watson	12385	4498	3632

Tabela 6: Número de avaliações de função realizadas pelo método SID-PSM para resolver cada um dos problemas de MGH utilizandos D2, P1 e os diferentes tipos de poda

Menor valor	sem poda	mais promissora	poda
Rosen	1,5998e-017	5,7629e-017	1,3769e-017
Froth	0,0000e+000	0,0000e+000	0,0000e+000
$\operatorname{BadscaP}$	5,6801e-006	3,3184e-004	2,2243e-004
BadscaB	3,0924e-012	8,4295e-013	1,0178e-012
Beale	7,7912e-018	1,5973e-018	4,7222e-018
JenSam	1,2436e+002	1,2436e+002	1,2436e+002
Helix	1,6569e-017	3,9727e-018	0,0000e+000
Bard	8,2149e-003	8,2149e-003	8,2149e-003
Gauss	1,1279e-008	1,1279e-008	1,1279e-008
Meyer	4,1691e+003	4,6695e+002	1,9673e+004
Gulf	1,2157e-016	1,0486e-017	1,3257e-015
Box	1,9010e-027	6,4782e-028	1,6785e-026
Sing	6,2380e-011	6,1195e-015	3,4656e-011
Wood	3,4136e-017	5,0894e-016	3,0236e-015
KowOsb	3,0751e-004	3,0751e-004	3,0751e-004
BD	8,5822e + 004	8,5822e + 004	8,5822e + 004
Osb1	1,1529e+000	1,1529e+000	1,1529e+000
Biggs	2,0288e-016	1,9088e-014	1,8069e-013
Osb2	4,0138e-002	4,0138e-002	4,0138e-002
Watson	2,0141e-004	3,7917e-005	3,0685e-005

Tabela 7: Menor valor de função encontrado pelo método SID-PSM ao resolver cada um dos problemas de MGH utilizandos D2, P1 e os diferentes tipos de poda

#de Avaliações	sem poda	mais promissora	poda
Rosen	196	172	185
Froth	89	70	78
BadscaP	168	241	164
BadscaB	1000000	1000000	1000000
Beale	139	98	107
JenSam	105	179	1777
Helix	222	190	311
Bard	186	5137	3009
Gauss	107	75	95
Meyer	1000000	1000000	16184
Gulf	220645	90211	75555
Box	189	12936	192
Sing	581	567	798
Wood	292	274	313
KowOsb	230	250	299
BD	197	164	178
Osb1	154	117	141
Biggs	289893	302414	288325
Osb2	1462	2085	2497
Watson	2188	11619	40741

Tabela 8: Número de avaliações de função realizadas pelo método SID-PSM para resolver cada um dos problemas de MGH utilizandos D3, P3 e os diferentes tipos de poda

Menor valor	sem poda	mais promissora	poda
Rosen	1,0981e-17	3,8352e-15	3,02e-17
Froth	0	0	0
$\operatorname{BadscaP}$	1,3452e-01	1,2736e-01	1,3274e-01
BadscaB	9,6507e+11	$9,6513e{+}11$	$9,6513e{+}11$
Beale	1,2570e-18	2,1263e-16	1,5511e-17
JenSam	1,2436e+02	1,2436e+02	1,2436e+02
Helix	1,7358e-16	4,5445e-16	4,1853e-16
Bard	8,2149e-03	8,2149e-03	8,2149e-03
Gauss	1,1279e-08	1,1279e-08	1,1279e-08
Meyer	5,5192e+07	$3,8658e{+}07$	6,6232e + 06
Gulf	2,6717e-07	6,5014e-05	1,4565e-04
Box	1,3259e-20	1,1605e-08	1,543e-20
Sing	1,8877e-09	2,8514e-10	1,8272e-09
Wood	4,5421e-16	5,5723e-17	4,1877e-17
KowOsb	3,0751e-04	3,0751e-04	3,0751e-04
BD	8,5822e+04	8,5822e + 04	8,5822e + 04
Osb1	1,1529	1,1529	$1,\!1529$
Biggs	2,4276e-01	2,4275e-01	2,4275e-01
Osb2	4,0138e-02	4,0138e-02	4,0138e-02
Watson	1.6967e-06	4.6896e-06	3.0766e-06

Tabela 9: Menor valor de função encontrado pelo método SID-PSM ao resolver cada um dos problemas de MGH utilizandos D3, P1 e os diferentes tipos de poda

# de Avaliações	SID-PSM1	SID-PSM2	BP1	BP2	Nelder-Mead
Rosen	287	196	11026	3532	189
Froth	158	89	70	139	87
BadscaP	236	168	67	356	727
BadscaB	8379	1000000	1000000	3197	307
Beale	216	139	2202	128	132
JenSam	223	105	2708	325	98
Helix	270	222	14351	3145	295
Bard	263	186	81994	11674	274
Gauss	182	107	438	258	170
Meyer	1000004	1000000	1000000	497419	1819
Gulf	419308	220645	1000000	374205	536
Box	7488	189	16500	692	477
Sing	477	581	56456	53317	761
Wood	433	292	31846	455	601
KowOsb	522	230	46734	17178	317
BD	500	197	2792	1473	400
Osb1	287	154	148	267	192
Biggs	6059	289893	1000002	1895	1015
Osb2	3534	1462	123039	19322	4609
Watson	16775	2188	1000004	459659	5344

Tabela 10: Número de avaliações de função realizadas pelos métodos SID-PSM1, SID-PSM2, BP1, BP2 e Nelder-Mead para resolver problemas de dimensão fixa de MGH

# de Avaliações	SID-PSM1	SID-PSM2	BP1	BP2	Nelder-Mead
Rosex $m = n = 12$	8749	1895	254154	24144	18401
Rosex $m = n = 20$	33510	4614	517808	39808	29007
Singx $m = n = 12$	4864	2197	279141	173310	3284
Singx $m = n = 20$	24897	4357	542012	283806	13606
Pen I m = 13, n = 12	14895	3272	411284	480784	10743
Pen I m = 21, n = 20	46687	5738	1000002	509604	61642
Pen II m = 24, n = 12	96879	20937	1000001	1000001	14092
Pen II m = 40 , n = 20	184782	12438	1000011	730558	37370
Vardim $m = 14, n = 12$	8159	793	19336	29918	8662
Vardim $m = 22, n = 20$	63555	2452	192037	206980	15580
Trig $m = n = 12$	1132	777	5541	1279	3511
Trig $m = n = 20$	2500	2278	17281	1967	36771
BV m = n = 12	1002	922	61607	15629	1974
BV m = n = 20	2078	9529	431406	125031	15295
IE $m = n = 12$	859	389	836	938	1940
IE $m = n = 20$	1688	744	1920	1651	22820
Trid $m = n = 12$	2564	526	1716	17046	1840
Trid $m = n = 20$	13306	1118	40575	88863	5330
Band $m = n = 12$	1625	586	850	18987	2291
Band $m = n = 20$	67971	1746	2631	1000011	12338
Lin m = 24, n = 12	581	332	305	534	552
Lin m = 40, n = 20	925	459	451	862	937
Lin1 m = 24, n = 12	667	317	353	604	611
Lin1 m = 40, n = 20	1046	506	587	1035	1126
Lin1 m = 200, n = 20	1045	503	547	997	1167
Lin0 m = 24, n = 12	751	321	368	607	578
Lin0 m = 40, n = 20	1070	622	636	997	1094
Lin0 m = 200, n = 20	1290	565	610	941	1130

Tabela 11: Número de avaliações de função realizadas pelos métodos SID-PSM1, SID-PSM2, BP1, BP2 e Nelder-Mead para resolver problemas de dimensão livre de MGH

Menor valor	SID-PSM1	SID-PSM2	BP1	BP2	Nelder-Mead
Rosen	5,7629e-017	5,7629e-017	9,1263e-007	1,4699e-009	4,1940e-014
Froth	0,0000e+000	0,0000e+000	0,0000e+000	0,0000e+000	0,0000e+000
BadscaP	3,3184e-004	3,3184e-004	1,3514e-001	1,7152e-006	1,2228e-021
BadscaB	8,4295e-013	8,4295e-013	9,5888e+011	8,5843e-003	4,2266e-014
Beale	1,5973e-018	1,5973e-018	5,7101e-009	0,0000e+000	1,7714e-014
JenSam	1,2436e+002	1,2436e+002	1,2436e+002	1,2436e+002	1,2436e+002
Helix	3,9727e-018	3,9727e-018	3,0241e-007	1,0613e-008	3,1602e-013
Bard	8,2149e-003	8,2149e-003	8,2150e-003	8,2149e-003	8,2149e-003
Gauss	1,1279e-008	1,1279e-008	1,1337e-008	1,1280e-008	1,1279e-008
Meyer	4,6695e+002	4,6695e+002	1,8481e+008	1,6780e+004	8,7946e+001
Gulf	1,0486e-017	1,0486e-017	2,4524e-003	3,6305e-009	2,0393e-017
Box	6,4782e-028	6,4782e-028	4,6997e-011	0,0000e+000	9,8127e-017
Sing	6,1195e-015	6,1195e-015	4,8412e-007	5,2989e-008	3,7045e-021
Wood	5,0894e-016	5,0894e-016	4,0008e-007	3,6835e-011	2,7519e-013
KowOsb	3,0751e-004	3,0751e-004	3,0751e-004	3,0751e-004	3,0751e-004
BD	8,5822e + 004				
Osb1	1,1529e+000	1,1529e+000	1,1529e+000	1,1529e+000	1,1529e+000
Biggs	1,9088e-014	1,9088e-014	2,4306e-001	3,0637e-001	5,6556e-003
Osb2	4,0138e-002	4,0138e-002	4,0138e-002	4,0138e-002	4,0138e-002
Watson	3,7917e-005	3,7917e-005	2,3050e-004	3,9131e-006	1,7000e-004

Tabela 12: Menor valor de função encontrado realizadas pelos métodos SID-PSM1, SID-PSM2, BP1, BP2 e Nelder-Mead para resolver problemas de dimensão fixa de MGH

Menor valor	SID-PSM1	SID-PSM2	BP1	BP2	Nelder-Mead
Rosex $m = n = 12$	1,3370e-010	1,3370e-010	1,3933e-006	8,8191e-009	3,7562e+000
Rosex $m = n = 20$	3,0081e-008	3,0081e-008	2,2349e-006	1,4699e-008	2,4634e+001
Singx m = n = 12	8,5956e-010	8,5956e-010	1,5355e-006	1,5897e-007	9,5225e-006
Singx m = n = 20	2,0885e-009	2,0885e-009	3,7795e-006	2,6495e-007	7,3816e-005
Pen I m = 13, n = 12	8,7863e-005	8,7863e-005	8,7859e-005	8,7858e-005	9,7424e-005
Pen I m = 21, n = 20	1,5778e-004	1,5778e-004	1,5778e-004	1,5778e-004	1,7276e-004
Pen II m = 24, n = 12	6,2193e-004	6,2193e-004	6,1752e-004	6,1785e-004	6,2378e-004
Pen II m = 40 , n = 20	6,3937e-003	6,3937e-003	6,3903e-003	6,3897e-003	6,4302e-003
Vardim $m = 14, n = 12$	3,1135e-010	3,1135e-010	3,7345e-008	2,1459e-008	4,5329e+000
Vardim $m = 22, n = 20$	1,6500e-008	1,6500e-008	6,1844e-007	2,6920e-007	1,4634e+001
Trig $m = n = 12$	3,8281e-004	3,8281e-004	3,0271e-005	3,8281e-004	6,2723e-007
Trig $m = n = 20$	1,0851e-003	1,0851e-003	6,8622e-006	2,4771e-003	1,3492e-006
BV m = n = 12	4,4791e-018	4,4791e-018	1,6459e-008	2,8913e-009	2,4817e-013
BV m = n = 20	2,0992e-010	2,0992e-010	2,2072e-007	3,3530e-008	9,9779e-013
IE $m = n = 12$	9,1433e-015	9,1433e-015	3,5390e-012	2,8998e-012	1,1014e-011
IE $m = n = 20$	2,9859e-011	2,9859e-011	9,5698e-012	7,5604e-012	1,3676e-011
Trid $m = n = 12$	1,0769e+000	1,0769e+000	1,7794e-009	1,0769e+000	1,2260e-010
Trid $m = n = 20$	1,1142e+000	1,1142e+000	7,1253e-001	1,1142e+000	8,2382e-010
Band $m = n = 12$	3,0546e+000	3,0546e+000	2,1916e-010	3,0546e+000	3,1833e-010
Band $m = n = 20$	3,0762e+000	3,0762e+000	9,0233e-010	3,0762e+000	3,2082e-010
Lin m = 24, n = 12	0,0000e+000	0,0000e+000	1,1846e-015	0,0000e+000	1,3182e-015
Lin m = 40, n = 20	0,0000e+000	0,0000e+000	3,7032e-014	0,0000e+000	3,3102e-015
Lin1 m = 24, n = 12	5,6327e+000	5,6327e+000	5,6327e+000	5,6327e+000	5,6327e+000
Lin1 m = 40, n = 20	9,6296e+000	9,6296e+000	9,6296e+000	9,6296e+000	9,6296e+000
Lin1 m = 200, n = 20	4,9627e+001	4,9627e+001	4,9626e+001	4,9626e+001	4,9626e+001
Lin0 m = 24, n = 12	7,1333e+000	7,1333e+000	7,1333e+000	7,1333e+000	7,1333e+000
Lin0 m = 40, n = 20	1,1130e+001	1,1130e+001	1,1130e+001	1,1130e+001	1,1130e+001
Lin0 m = 200, n = 20	5,1126e+001	5,1126e+001	5,1126e+001	5,1126e+001	5,1126e+001

Tabela 13: Menor valor de função encontrado realizadas pelos métodos SID-PSM1, SID-PSM2, BP1, BP2 e Nelder-Mead para resolver problemas de dimensão livre de MGH

# de Avaliações	x_1^*	x_2^*	x_3^*	x_4^*
Rosen	204	237	232	178
Froth	61	77	79	79
BadscaP	578	450	1123	4915
BadscaB	509	421	584	515
Beale	205	112	97	97
JenSam	128	202	112	112
Helix	223	203	316	256
Bard	177	120	281	281
Gauss	79	90	98	98
Meyer	48840	22847	92225	100001
Gulf	1144	1063	1104	1354
Box	449	227	145	150
Sing	537	394	282	570
Wood	317	606	441	368
KowOsb	317	295	232	253
BD	233	245	243	219
Osb1	125	97	122	122
Biggs	1703	1058	2490	1347
Osb2	3867	3647	4981	2909
Watson	10181	3536	5955	4621

Tabela 14: Número de avaliações de função realizadas pelo método SID-PSM1 utilizando os parâmetros dados por x_1^* , x_2^* , x_3^* e x_4^* para resolver problemas de dimensão fixa de MGH

# de Avaliações	x_1^*	x_2^*	x_3^*	x_4^*
Rosex $m = n = 12$	6713	4695	3419	3193
Rosex $m = n = 20$	41270	19264	12438	10618
Singx $m = n = 12$	5258	3408	2734	2151
Singx $m = n = 20$	24082	8178	7518	6791
Pen I m = 13, n = 12	10994	13774	8014	9180
Pen I m = 21, n = 20	38209	30692	18320	21657
Pen II m = 24, n = 12	2796	52291	4719	1631
Pen II m = 40 , n = 20	79998	21583	17433	17473
Vardim $m = 14, n = 12$	8436	4912	6086	5903
Vardim $m = 22, n = 20$	82246	45020	33865	35177
Trig $m = n = 12$	715	807	834	845
Trig $m = n = 20$	2864	289	1705	1594
BV m = n = 12	525	531	602	576
BV m = n = 20	1894	922	1299	1305
IE m = n = 12	617	462	530	530
IE $m = n = 20$	2036	1357	1001	1405
Trid $m = n = 12$	768	1146	1080	1034
Trid $m = n = 20$	2419	3853	6175	5811
Band $m = n = 12$	2657	2356	1687	1580
Band $m = n = 20$	2304	2857	2986	2142
Lin m = 24, n = 12	159	135	207	207
Lin m = 40, n = 20	272	207	270	270
Lin1 m = 24, n = 12	312	247	267	267
Lin1 m = 40, n = 20	431	353	318	366
Lin1 m = 200, n = 20	450	293	281	281
Lin0 m = 24, n = 12	291	223	327	307
Lin0 m = 40, n = 20	480	270	365	408
Lin0 m = 200, n = 20	375	317	319	319

Tabela 15: Número de avaliações de função realizadas pelo método SID-PSM1 utilizando os parâmetros dados por x_1^* , x_2^* , x_3^* e x_4^* para resolver problemas de dimensão livre de MGH

Menor valor	x_1^*	x_2^*	x_3^*	x_4^*
Rosen	2,1349e-016	2,1349e-016	4,7609e-017	9,2872e-018
Froth	0,0000e+000	0,0000e+000	0,0000e+000	0,0000e+000
BadscaP	2,2765e-004	2,2765e-004	3,3184e-004	8,7713e-005
BadscaB	5,1046e-016	5,1046e-016	2,1891e-013	5,2554e-017
Beale	1,9765e-015	1,9765e-015	1,5973e-018	1,5973e-018
JenSam	1,2436e+002	1,2436e+002	1,2436e+002	1,2436e+002
Helix	2,9016e-017	2,9016e-017	3,7845e-017	9,5431e-017
Bard	8,2149e-003	8,2149e-003	8,2149e-003	8,2149e-003
Gauss	1,1279e-008	1,1279e-008	1,1279e-008	1,1279e-008
Meyer	1,7105e+003	1,7105e+003	6,4792e+002	2,0849e+003
Gulf	5,1944e-017	5,1944e-017	3,3097e-016	1,9783e-016
Box	6,6040e-022	6,6040e-022	4,8294e-031	2,6641e-029
Sing	4,4262e-017	4,4262e-017	4,1023e-016	8,1825e-022
Wood	1,1280e-013	1,1280e-013	2,0932e-017	1,2565e-014
KowOsb	3,0751e-004	3,0751e-004	3,0751e-004	3,0751e-004
BD	8,5822e + 004	8,5822e + 004	8,5822e + 004	8,5822e + 004
Osb1	1,1529e+000	1,1529e+000	1,1529e+000	1,1529e+000
Biggs	7,8742e-016	7,8742e-016	2,6439e-013	3,2346e-012
Osb2	4,0138e-002	4,0138e-002	4,0138e-002	4,0138e-002
Watson	1,3684e-006	1,3684e-006	1,8406e-005	1,3967e-005

Tabela 16: Menor valor de função encontrado realizadas pelo método SID-PSM1 utilizando os parâmetros dados por x_1^* , x_2^* , x_3^* e x_4^* para resolver os problemas de tamanho fixo de MGH

Menor valor	x_1^*	x_2^*	x_3^*	x_4^*
Rosex $m = n = 12$	1,6211e-008	1,6211e-008	9,7624e-012	1,2817e-010
Rosex $m = n = 20$	3,2858e-007	3,2858e-007	2,2831e-010	7,1620e-009
Singx $m = n = 12$	2,2495e-006	2,2495e-006	2,2948e-011	2,2443e-008
Singx $m = n = 20$	1,5672e-007	1,5672e-007	3,3618e-009	1,8259e-008
Pen I m = 13, n = 12	8,7859e-005	8,7859e-005	8,7858e-005	8,7858e-005
Pen I m = 21, n = 20	1,5794e-004	1,5794e-004	1,5778e-004	1,5778e-004
Pen II m = 24, n = 12	6,3114e-004	6,3114e-004	6,2474e-004	6,2380e-004
Pen II m = 40 , n = 20	6,3949e-003	6,3949e-003	6,3955e-003	6,3963e-003
Vardim $m = 14, n = 12$	1,1983e-009	1,1983e-009	1,0403e-011	4,4049e-012
Vardim $m = 22, n = 20$	4,2687e-006	4,2687e-006	1,7284e-005	1,9693e-010
Trig $m = n = 12$	1,0362e-012	1,0362e-012	3,8281e-004	3,8281e-004
Trig $m = n = 20$	4,4712e-011	4,4712e-011	1,0851e-003	1,0851e-003
BV m = n = 12	2,3958e-014	2,3958e-014	4,4791e-018	5,7830e-018
BV m = n = 20	2,2322e-009	2,2322e-009	2,0992e-010	1,9748e-013
IE m = n = 12	1,6531e-013	1,6531e-013	6,3419e-019	6,3419e-019
IE $m = n = 20$	3,1073e-011	3,1073e-011	2,1020e-011	1,5413e-013
Trid $m = n = 12$	5,9358e-010	5,9358e-010	1,0769e+000	1,0769e+000
Trid $m = n = 20$	1,9509e-012	1,9509e-012	1,1142e+000	1,1142e+000
Band $m = n = 12$	3,0546e + 000	3,0546e + 000	3,0546e + 000	3,0546e+000
Band $m = n = 20$	3,0762e+000	3,0762e+000	3,0762e+000	3,0762e+000
Lin m = 24, n = 12	0,0000e+000	0,0000e+000	0,0000e+000	0,0000e+000
Lin $m = 40, n = 20$	0,0000e+000	0,0000e+000	0,0000e+000	0,0000e+000
Lin1 m = 24, n = 12	5,6327e+000	5,6327e+000	5,6327e+000	5,6327e+000
Lin1 m = 40, n = 20	9,6296e+000	9,6296e+000	9,6296e+000	9,6296e+000
Lin1 m = 200, n = 20	4,9626e+001	4,9626e+001	4,9627e+001	4,9627e+001
Lin0 m = 24, n = 12	7,1333e+000	7,1333e+000	7,1333e+000	7,1333e+000
Lin0 m = 40, n = 20	1,1130e+001	1,1130e+001	1,1130e+001	1,1130e+001
Lin0 m = 200 , n = 20	5,1126e+001	5,1126e+001	5,1126e+001	5,1126e+001

Tabela 17: Menor valor de função encontrado realizadas pelo método SID-PSM1 utilizando os parâmetros dados por x_1^* , x_2^* , x_3^* e x_4^* para resolver os problemas de tamanho livre de MGH

# de Avaliações	x_0	x_1^*	x_2^*	x_3^*	x_4^*
Lin m = 45, n = 9	217	329	214	217	217
Lin1 m = 35, n = 7	213	172	131	213	213
Lin0 m = 35, n = 7	201	202	132	220	220
Rosen $m = n = 2$	2620	206	634	404	363
Helix $m = n = 2$	464	356	768	317	473
Sing $m = n = 4$	5872	460	1599	5548	766
Froth $m = n = 2$	141	102	128	138	120
Bard $m = 15, n = 3$	377	165	420	180	178
KowOsb $m = 11, n = 4$	1010	1042	501	544	1653
Meyer $m = 16, n = 3$	7442	182	167	7520	6372
Watson $m = 31, n = 6$	77450	1473	864	65821	38527
Box $m = 10, n = 3$	17384	562	258	3548	1739
$JenSam\ m=10,\ n=2$	115	118	122	108	116
BD $m = 20, n = 4$	202	142	175	202	226
Cheby $m = n = 6$	607	438	512	448	689
Brown $m = n = 10$	10801	2648	3831	11682	11779
Osb1 m = 33, n = 5	47810	774	169	14584	31937
Osb2 m = 65, n = 11	76798	5914	8779	50050	72303
Bdqrtic $m = n = 8$	360	491	373	313	316
Cube $m = n = 5$	117	123	171	117	117
Mancino $m = n = 5$	320	345	265	304	335
Heart8ls $m = n = 8$	13429	4448	4007	7493	12320

Tabela 18: Número de avaliações de função realizadas pelo método SID-PSM1 utilizando os parâmetros dados por x_0 , x_1^* , x_2^* , x_3^* e x_4^* para resolver os problemas em [22]

# de Avaliações	x_0	x_1^*	x_2^*	x_3^*	x_4^*
Lin $m = 45, n = 9$	6	6	6	6	6
Lin1 m = 35 , n = 7	2,8949	2,8949	$2,\!8949$	$2,\!8949$	2,8949
Lin0 m = 35 , n = 7	3,1433	3,1433	3,1433	$3,\!1433$	$3,\!1433$
Rosen $m = n = 2$	1,4980e-03	9,0807e-04	1,2509e-02	1,6624e-03	1,1383e-03
Helix $m = n = 2$	1,5224e-03	4,2732e-03	2,0226e-03	1,2284e-03	1,0183e-03
Sing $m = n = 4$	3,2039e-03	6,4713e-03	5,6258e-03	2,8553e-03	1,0325e-03
Froth $m = n = 2$	6,9989	6,9989	$6,\!9989$	$6,\!9989$	6,9989
Bard $m = 15, n = 3$	9,0636e-02	9,0636e-02	9,0729e-02	9,0639e-02	9,0636e-02
KowOsb $m = 11, n = 4$	1,7545e-02	1,7539e-02	1,7537e-02	1,7536e-02	1,7540e-02
Meyer $m = 16, n = 3$	7,4812e+03	5,1040e+03	4,9880e+03	7,6773e+03	6,4439e+03
Watson $m = 31$, $n = 6$	6,3479e-02	7,4270e-02	5,3154e-02	6,7054e-03	6,8497e-02
Box $m = 10, n = 3$	1,1662e-03	1,2536e-02	2,4179e-04	9,2911e-04	9,1736e-04
JenSam m = 10, n = 2	1,1151e+01	1,1151e+01	1,1151e+01	1,1151e+01	1,1151e+01
BD $m = 20, n = 4$	2,9295e+02	2,9295e+02	2,9295e+02	2,9295e+02	2,9295e+02
Cheby $m = n = 6$	1,6536e-04	2,5070e-04	2,5660e-04	1,6676e-04	1,1754e-04
Brown $m = n = 10$	4,4218e-03	2,1231e-03	8,0507e-03	4,4680e-03	3,5859e-03
Osb1 m = 33, n = 5	9,3617e-01	4,6473e-01	1,0517	1,1231	9,3896e-01
Osb2 m = 65, n = 11	2,0039e-01	2,0034e-01	2,0035e-01	2,0044e-01	20039e-01
Bdqrtic $m = n = 8$	3,1998	$3,\!1998$	$3,\!1998$	$3,\!1998$	$3,\!1998$
Cube $m = n = 5$	0	2,6862e-04	3,6902e-03	0	0
Mancino $m = n = 5$	4,2324e-03	2,1923e-02	2,8594e-02	3,8492e-03	4,1139e-03
Heart8ls $m = n = 8$	1,0983e-02	3,5251e-02	3,5542e-02	8,4200e-03	1,2180e-02

Tabela 19: Menor valor de função encontrado realizadas pelo método SID-PSM1 utilizando os parâmetros dados por x_0 , x_1^* , x_2^* , x_3^* e x_4^* para resolver os problemas em [22]

Anexo B - Base positiva com ângulos uniformes

Inicialmente neste Anexo demonstraremos alguns resultados que serão necessários para a construção da base positiva com ângulos de amplitude uniforme.

Proposição 2 Seja $V = \{v_1, \ldots, v_n\} \subset \mathbb{R}^n$ de modo que, $||v_j|| = 1 \quad \forall j = 1, \ldots, n e$ $v_j^\top v_i = a \neq \pm 1, \quad \forall i \neq j, então V \notin uma base para o \mathbb{R}^n.$

Demonstração: Como $a \neq \pm 1$, claramente os vetores são linearmente independentes, logo, como temos um conjunto com n vetores linearmente independentes no \mathbb{R}^n , este conjunto é uma base para o \mathbb{R}^n .

Proposição 3 Seja $V = \{v_1, \ldots, v_n\} \subset \mathbb{R}^n$ uma base para o \mathbb{R}^n , então $\overline{V} = \{v_1, \ldots, v_n, -\sum_{i=1}^n v_i\}$ é uma base positiva para o \mathbb{R}^n

Demonstração: Seja $x \in \mathbb{R}^n$, como V é base, isso implica que existem α_i , $i = 1, \ldots, n$, tais que

$$x = \sum_{i=1}^{n} \alpha_i v_i$$

Se $\alpha_i \geq 0 \ \forall i, V$ satisfaz a condição de ser base positiva, logo \bar{V} também satisfaz. Caso contrário, seja $j = \arg \min_{i=1,\dots,n} \alpha_i$ e $\beta = -\alpha_j$, assim

$$\bar{\alpha}_i = \alpha_i + \beta \ge 0 \qquad \forall i = 1, \dots, n,$$

daí temos

$$x = \sum_{i=1}^{n} \bar{\alpha}_{i} v_{i} + \beta(-\sum_{i=1}^{n} v_{i}\}),$$

ou seja, conseguimos construir x como uma combinação linear positiva dos elementos de \bar{V} , logo \bar{V} é base positiva, e ainda, como tem n + 1 elementos é minimal.

Com esses resultados em mãos podemos começar a construir nossa base positiva com ângulos uniformes. Tomemos n+1 vetores v_1, \ldots, v_{n+1} no \mathbb{R}^n de modo que o ângulo entre os pares v_i, v_j $(i \neq j)$ tenham a mesma amplitude α . Assumindo que os n+1vetores estão normalizados, essa imposição é expressa como

$$a = \cos(\alpha) = v_i^{\top} v_j, \qquad i, j \in \{1, \dots, n+1\}, i \neq j,$$
 (1)

onde $a \neq 1$.
Proposição 4 O valor de a na equação (1) $\acute{e} - 1/n$.

Demonstração: Fixemos o índice j e seja $\mathcal{I}_j = \{1, \ldots, n+1\} \setminus \{j\}$. Sabemos, pela Proposição 2, que o conjunto $\{v_i : i \in \mathcal{I}_j\}$ forma uma base para o \mathbb{R}^n . Logo existem constantes $\gamma_i, i \in \mathcal{I}_j$ tais que

$$v_j = \sum_{i \in \mathcal{I}_j} \gamma_i v_i.$$
⁽²⁾

Temos que $1 = ||v_j||^2 = v_j^{\top} v_j$, assim substituindo um dos v_j por (2) obtemos

$$\|v_j\|^2 = v_j^\top (\sum_{k \in \mathcal{I}_j} \gamma_k v_k) = \sum_{k \in \mathcal{I}_j} \gamma_k v_j^\top v_k = \sum_{k \in \mathcal{I}_j} \gamma_k a.$$

Assim

$$\sum_{k \in \mathcal{I}_j} \gamma_k = \frac{1}{a} \qquad \forall j = 1, \dots, n+1.$$

Claramente esse sistema é determinado e por inspeção facilmente vemos que sua solução é

$$\gamma_i = \gamma_i = \frac{1}{an} \qquad \forall i, j = 1, \dots, n+1.$$
 (3)

Por outro lado sabemos que, para todo $k \neq j, v_k^\top v_j = a,$ novamente utilizando (2), obtemos

$$v_k^{\top} v_j = v_k^{\top} (\sum_{i \in \mathcal{I}_j} \gamma_i v_i) = \sum_{i \in \mathcal{I}_j} \gamma_i v_k^{\top} v_i = \sum_{i \in \mathcal{I}_j \setminus \{k\}} \gamma_i a + \gamma_k.$$

Por (3) temos então

$$a = v_k^{\top} v_j = (n-1)\frac{a}{an} + \frac{1}{an}.$$

Multiplicando a igualdade por an teremos

$$a^2n - (n-1)a - 1 = 0.$$

Esta equação possui raiz em a = 1 e a = -1/n. Como, por hipótese, $a \neq 1$, concluímos a demonstração.

Agora que sabemos a forma como devem se comportar os vetores v_i 's, procuramos uma forma de encontrá-los. Primeiramente vamos encontrar a matriz $V = [v_1 \dots v_n]$, $n \times n$, tal que

$$V^{\top}V = A$$

onde A é a matriz dada por

$$A = \begin{bmatrix} 1 & -1/n & \dots & -1/n \\ -1/n & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ -1/n & -1/n & \dots & 1 \end{bmatrix}.$$

 ${\cal A}$ é simétrica e definida positiva. Logo, podemos utilizar a decomposição de Cholesky

$$A = GG^{\top},$$

onde $G \in \mathbb{R}^{n \times n}$ é uma maitr
z triangular inferior com diagonal positiva. Dada a decomposição, vemos claramente que uma escolha par
aV é

$$V = [v_1 \dots v_n] = G^\top.$$

O vetor v_{n+1} é calculado por

$$v_{n+1} = -\sum_{i=1}^{n} v_i.$$
 (4)

Nos resta agora mostrar que $v_{n+1}^{\top}v_{n+1} = 1$ e $v_{n+1}^{\top}v_j = -1/n$ para todo $j = 1, \ldots, n$. Da própria equação (4) temos

$$v_{n+1}^{\top}v_{n+1} = (\sum_{i=1}^{n} v_i)^{\top}(\sum_{j=1}^{n} v_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} v_i^{\top}v_j =$$
$$= \sum_{i=1}^{n} \sum_{\substack{j=1\\j \neq i}}^{n} v_i^{\top}v_j + \sum_{i=1}^{n} v_i^{\top}v_i = (1-n) + n,$$

 $\mathrm{da}i$

$$v_{n+1}^{\top}v_{n+1} = 1.$$

Novamente utilizando a (4) temos, fixando j arbitrário,

$$v_{n+1}^{\top}v_j = (-\sum_{i=1}^n v_i)^{\top}v_j = -\sum_{i=1}^n v_i^{\top}v_j = \frac{n-1}{n} - 1 = -\frac{1}{n}.$$

Assim, encontramos un conjunto $\{v_1, \ldots, v_{n+1}\}$ no \mathbb{R}^n com ângulos de tamanho uniforme entre si. E pela Proposição 3 este conjunto é uma base minimal para o \mathbb{R}^n .

Bibliografia

- M.A. Abramson, C. Audet e J.E. Dennis, Generalized pattern searches with derivative information, *Math. Program.*, 100, pp. 3-25, 2004.
- [2] C. Audet e D. Orban, Finding optimal algorithmic parameters using derivative-free optimization, *SIAM Journal on Optimization*, 3, pp. 642-664, 2006.
- [3] M.S. Bazaraa, H.D. Sherali e C.M. Shetty, Nonlinear Programming: Theory and Algorithms, John Wiley & Sons, Inc., New York, 1979.
- [4] A.R. Conn, K. Scheinberg e L.N. Vicente, Geometry of sample sets in derivative free optimization: Polynomial regression and underdetermined interpolation, *IMA J. Numer. Anal.*, 28, pp. 721-748, 2008.
- [5] A.L. Custódio, H. Rocha e L.N. Vicente, Incorporating minimum Frobenius norm models in direct search, *Computational Optimization and Applications*, pp. 265-278, 2010.
- [6] A.L. Custódio, K. Scheinberg e L.N. Vicente, Introduction to Derivative-Free Optimization, MPS-SIAM Series on Optimization 8, 2009.
- [7] A.L. Custódio e L.N. Vicente, Using sampling and simplex derivatives in pattern search methods, SIAM Journal on Optimization, 18, pp. 537-555, 2007.
- [8] W.C. Davidson, Variable metric method or minimization, SIAM Journal Optimization, 1, pp. 1-17, 1991.
- [9] J.E. Dennis e R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, *SIAM Classics in Applied Mathematics* 16, 1987.
- [10] E.D. Dolan e J.J. Moré, Benchmarking optimization software with performance profiles, *Springer-Verlag*, 2001.
- [11] C.T. Kelley, Iterative Methods for Optimization, SIAM 7, 1999.
- [12] J.C. Lagarias, J.A. Reeds, M.H. Wright e P.E. Wright, Convergence properties of the Nelder-Mead simplex algorithm in low dimensions, *SIAM Journal on Optimization* 9, pp. 112-147, 1998.

- [13] R.M. Lewis, L.V. Torczon e M.W. Trosset, Direct search methods: then and now, Journal of Computational and Applied Mathematics, 124, Issues 1-2, pp. 191-207, 2000.
- [14] D.G. Luenberger, Linear and Nonlinear Programming, 2^a edição, New York, Addison
 Wesley Publishing Company, 1986.
- [15] J.J. Moré, B.S. Garbow e K.E. Hillstrom, Testing unconstrained optimization software, ACM Transactions on Mathematical Software, 7, pp. 17-41, 1981.
- [16] J.A. Nelder e R. Mead, A simplex method for function minimization, *The Computer Journal*, 7, pp. 308-313, 1965.
- [17] L.G. Pedroso, M.A. Diniz-Ehrhardt (coorientadora), J.M. Martínez (orientador), Programação Não Linear Sem Derivadas, tese de doutorado, IMECC, UNICAMP, 2009.
- [18] V. Torczon, On the convergence of pattern search algorithm, SIAM Journal on Optimization, 7, pp. 1-25, 1997.
- [19] V. Torczon, On the convergence of the multidirectional search algorithm, SIAM Journal on Optimization, 1, pp. 123-145, 1991.
- [20] P. Tseng, Fortified-descent simplicial search method: a general approach, SIAM Journal on Optimization, 10, pp. 269-288, 1999.
- [21] http://ferrari.dmat.fct.unl.pt/personal/alcustodio/sid_psm_1.2.tar.gz acessado em 04/07/2012.
- [22] http://www.mcs.anl.gov/~more/dfo/ acessado em 03/10/2012.