DISTRIBUIÇÃO DE TEMPERATURA EM UM ESCOAMENTO DE UM FLUÍDO NEWTONIANO ENTRE DUAS PLACAS POROSAS COM GRADIENTE DE PRESSÃO PULSANTE

MÉRICLES THADEU MORETTI

Orientador

Prof. Dr. RAKESH KUMAR BHATNAGAR

Dissertação apresentada ao Instituto de Matemática, Estatística e Ciência da Computação da Universidade Estadual de Campinas como requisito parcial para obtenção do título de Mestre em Matemática.

Dezembro - 1979.

UNICAMP BIBLIOTECA CENTRAL

Ao meu saudoso pai À minha mãe, Sàra À minha esposa, Saça Ao meu filho, Dámian

AGRADECIMENTOS

Ao Prof. Dr. RAKESH KUMAR BHATNAGAR pela orientação e estímulos recebidos durante o transcorrer desta pesquisa.

INDICE

REFERÊNC.	IAS	•	* * *		* •		• •	• •	•	•	\$	•	•	•	٠	÷	•	•
CAPÍTULO	IV		DISCU	ISSÕES	DOS	RESULI	CADO:	5.	•	Þ	٠	•	•	•	*	P	•	ą
CAPÍTULO	III		SOLUÇ	ÕES D	AS E	QUAÇÕES	5.	• •	*	•	•	•	•	-	٠	٠	٠	*
CAPÍTULO	II	-	FORMU	JLAÇÃO	DOS	PROBLE	emas	· •	•		٠	•	٠	•	٠	÷	•	÷
CAPÍTULO	I	-	INTRO	DUÇÃO	E E	QUAÇÕES	GE	RAI	S	•	•	•	•	•	*	٠	•	•

RESUMO

Nesta pesquisa discutiremos as soluções das equações de Navier-Stokes e da energia para um fluido viscoso incompressível entre duas placas paralelas e fixas com gradiente de pressão pu<u>l</u> sante.

Assumimos ainda que em uma das placas o fluido está sendo injetado com velocidade constante e a placa oposta absorve com a mesma velocidade.

As soluções da equação da energia obtidas sob dois tipos de condições térmicas, isto é: (i) as placas são mantidas na tem peratura constante e diferentes, (ii) uma das placas se mantém na temperatura constante e a outra placa está isolada.

As soluções analíticas envolvem 4 parâmetros físicos e os gráficos para as soluções estáveis e instáveis são exibidos variando esses parâmetros.

De um modo geral a solução estável para ambos tipos de condições térmicas variam quase linearmente entre as placas.

Observamos também que para maiores valores do parâmetro de frequência, o perfil da solução justável para o tipo (i) de condição térmica, perde a forma parabólica achatada. E para o ti po (ii), é interessante observar que a solução justável diminui com o aumento da frequência, tanto para a velocidade de injeção nula ou não.

Em geral, para uma certa frequência fixa, notamos que a temperatura aumenta com o número de Reynolds. E so acontecendo o mesmo para o número de Prandtl, quando a frequência que fixarmos for menor entre as quais escolhemos para o problema proposto.

CAPÍTULO I

INTRODUÇÃO E EQUAÇÕES GERAIS

1.1 - As equações de movimento de um fluído incompressível visco so são dados pelas seguintes equações, usando notação tensorial cartesiana:

EQUAÇÃO DE CONTINUIDADE:

$$\frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}_{i}} = 0 \tag{1}$$

EQUAÇÃO DE MOVIMENTO:

$$\rho\left[\frac{\partial U_{i}}{\partial t} + \frac{U_{j}\partial U_{i}}{\partial x_{j}}\right] = \frac{\partial T_{ij}}{\partial x_{j}} + \rho X_{i} , \qquad (2)$$

onde $x_i = (x_1, x_2, x_3)$ representa a força externa, T_{ij} o tensor de tensão que representa a ação do elemento de fluído em x_i no tem po t, ρ é a densidade do fluído e U_i representa o vetor de velocidade.

Num escoamento em que consideramos as forças externas au sentes, escrevemos $X_i = 0$.

A equação (l) também é chamada Equação de Conservação da Massa, nos diz que a variação de massa num mesmo sistema é igual a massa a ele fornecida, num mesmo tempo.

As equações (2) são chamadas Equações de Navier-Stokes , descrevendo o movimento de um fluído viscoso. Essas equações tam bém são chamadas Equações da Quantidade de Movimento, dizendo que a variação da quantidade de movimento de um sistema é igual a ra zão em que a quantidade de movimento é fornecido pela aplicação de forças de campo e forças de contato, num mesmo tempo.

No escoamento bidimensional consideramos todas as propriedades e características do fluído como função apenas de duas co ordenadas $x_1 e x_2$ e do tempo t, não dependendo da direção x_3 , por exemplo, no instante t.

Examinando com cuidado as equações (2), vemos que para o estudo deste fluído devemos achar a solução de 4 equações diferenciais parciais não lineares sob dadas condições de contorno e iniciais. Nem sempre a solução dessas equações são fáceis, por isso nos restringimos a um caso mais simples.

Além disso as 4 equações encolvem 10 incógnitas; 6 comp<u>o</u> nentes de tensor de tensão, 3 componentes da velocidade e a pre<u>s</u> são isotrópica.

Fica evidente que se o tensor de tensão pudesse ser expresso em termos da velocidade e suas derivadas, o estudo do movimento tornaria mais fácil.

Em 1845, Sir Gabriel Stokes enunciou o seguinte, que é fundamental para a dinâmica dos fluídos: "Num mesmo tempo t, o tensor de tensão é função do tensor de deformação E_{ij}", onde o tensor de deformação é simétrico e dado por:

$$E_{ij} = \frac{1}{2} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) .$$

1.2 - FLUIDO PERFEITO

A equação do tensor de tensão para um fluído perfeito(ou fluído não viscoso) é dado por:

$$\mathbf{T}_{\mathbf{i}\mathbf{j}} = -\mathbf{p}\delta_{\mathbf{i}\mathbf{j}} , \qquad (3)$$

onde p significa a pressão isotrópica e δ_{ij} é o Delta de Kronecker.

A equação (3) foi dada por Bernoulli em 1738 e foi o pon-

1.3 - FLUIDO NEWTONIANO

A equação em que o tensor de tensão é expresso por:

$$\mathbf{T}_{\mathbf{ij}} = -\mathbf{p}\delta_{\mathbf{ij}} + \mu \mathbf{E}_{\mathbf{ij}} , \qquad (4)$$

onde µ representa a viscosidade do fluído, é chamada Equação Cons titutiva de Newton.

Os fluídos que obedecem a equação (4) são chamados Fluídos Newtonianos.

Observemos que a equação constitutiva de Newton tem apenas um parâmetro físico μ de viscosidade que não depende do est<u>a</u> do de movimento e que o fluído em repouso tem apenas pressão hidrostática isotrópica.

1.4 - AS EQUAÇÕES NAS COORDENADAS CARTESIANAS

Tendo em vista a equação constitutiva (4) e as equações

de movimento (2) e usando a convenção de soma, o sistema de quatro equações (1) e (2) nas coordenadas (x,y,z), passam à forma:

EQUAÇÃO DE CONTINUIDADE:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0.$$
 (5)

EQUAÇÕES DE MOVIMENTO:

$$\rho \left[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}\right] = \rho X_1 - \frac{\partial p}{\partial x} + \mu \nabla^2 u,$$

$$\rho \left[\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z}\right] = \rho X_2 - \frac{\partial p}{\partial y} + \mu \nabla^2 v,$$

$$\rho \left[\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z}\right] = \rho X_3 - \frac{\partial p}{\partial z} + \mu \nabla^2 w,$$
(6)

onde ∇^2 é o operador de Laplace e é dado por:

$$\nabla^2 = (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2})$$
 e onde u,v, e w são componentes do

vetor de velocidade U, nas direções x,y e z respectivamente.

Desejamos informações sobre a temperatura, por isso es - crevemos a equação da energia:

$$\rho c_{\mathbf{p}} \left[\frac{\partial \mathbf{T}}{\partial t} + \mathbf{U}_{j} \frac{\partial \mathbf{T}}{\partial \mathbf{x}_{j}} \right] = \mathbf{k} \nabla^{2} \mathbf{T} + \phi , \qquad (7)$$

onde T representa a temperatura e k e c a condutividade e o p calor específico respectivamente, e $\phi = E_{ij} \cdot T_{ij}$ é chamada Função Dissipação e é a taxa em que as tensões de cisalhamento realizam trabalho irreversível sobre o fluído.

Tendo em vista a equação constitutiva (4) e usando a convenção de soma, a equação (7) passa à forma:

$$\rho c_{p} \left[\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} \right] = k \nabla^{2} T + \phi , \qquad (8)$$

onde ϕ em coordenadas cartesianas é dada por:

$$\phi = 2\mu \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial w}{\partial z} \right)^2 + \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 \right]$$

$$+\frac{1}{2}(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial v})^2+\frac{1}{2}(\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z})^2]$$

No próximo capítulo faremos a formulação dos problemas f<u>í</u> sicos em consideração e obteremos as soluções sob várias condições térmicas.

CAPÍTULO II

FORMULAÇÃO DOS PROBLEMAS

Consideramos o escoamento laminar bidimensional de um fluído newtoniano incompressível entre duas placas paralelas e porosas distantes h uma da outra e supomos as forças externas ausentes.

Suponhamos ainda que em uma das placas o fluído está sen do injetado com velocidade constante V e a placa oposta absorve com a mesma velocidade.

Escoamento em placas porosas é importante na refrigeração por transpiração e no processo de difusão gasosa. No caso do escoamento ser pulsante, tem a sua importância na diálise de sa<u>n</u> gue em rins artificiais [1].

A equação (5) nos diz que u é função de y e t, e ainda v é identicamente igual a V.

Em vista das considerações acima as equações (6) tornamse:

$$\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \alpha \frac{\partial^2 u}{\partial y^2} , \qquad (9)$$

e

$$0 = -\frac{1}{\rho} \frac{\partial p}{\partial y} , \qquad (10)$$

onde $\alpha = \frac{\mu}{\alpha}$ é a viscosidade cinemática.

Do fato que o fluído é viscoso, as condições de contorno são dadas por:

$$u = 0$$
 para $y = 0$ e $y = h$. (11)

A equação da energia (8) passa à forma:

$$\rho c_{p} \left[\frac{\partial T}{\partial t} + V \frac{\partial T}{\partial y} \right] = k \frac{\partial^{2} T}{\partial v^{2}} + \mu \left(\frac{\partial u}{\partial y} \right)^{2} .$$
 (12)

A solução da equação (12) será dada sob dois tipos de con dições térmicas:

TIPO (i)

$$T = T_1 em y = 0 e T = T_2 em y = h.$$
 (13)

TIPO (ii)

$$T = T_1 em y=0 e \frac{\partial T}{\partial y} = 0 em y = h.$$
 (14)

As condições do tipo (i) significam que a placa y=0 es tá mantida a temperatuta constante T_1 e a placa y=h a T_2 .

Por outro lado as condições do tipo (ii) significam que a placa y = 0 está mantida a temperatura constante T_1 e no entanto a placa y = h está isolada.

Analisaremos o problema exposto acima sob quatro situações distintas. PROBLEMA 1: Quando a velocidade $V \neq 0$ e o gradiente de pressão é pulsante e dado por:

$$\frac{1}{\rho} \frac{\partial p}{\partial x} = \mathbf{A} + \mathbf{B} \mathbf{e}^{\mathbf{i}\omega \mathbf{t}} , \qquad (15)$$

onde A e B são constantes conhecidas e ω a frequência. Deste modo a equação (9) passa à forma:

$$\frac{\partial u}{\partial t} + V \frac{\partial u}{\partial y} = -A - B e^{i\omega t} + \alpha \frac{\partial^2 u}{\partial y^2} , \qquad (16)$$

e a equação da energia será dada pela equação (12).

PROBLEMA 2: Quando a velocidade V = 0 e o gradiente de pressão é dado pela equação (15).

Assim a equação (9) passa à forma:

$$\frac{\partial u}{\partial t} = -A - B e^{i\omega t} + \alpha \frac{\partial^2 u}{\partial y^2} , \qquad (17)$$

e a equação da energia (12) toma ã forma:

$$\rho \sigma_{\mathbf{p}} \frac{\partial \mathbf{T}}{\partial \mathbf{t}} = k \frac{\partial^2 \mathbf{T}}{\partial \mathbf{y}^2} + \mu \left(\frac{\partial \mathbf{u}}{\partial \mathbf{y}}\right)^2 . \tag{18}$$

PROBLEMA 3: Consideramos o escoamento estacionário, a velocidade $V \neq 0$ e o gradiente de pressão constante, ou seja:

$$\frac{1}{\rho} \frac{\partial p}{\partial x} = A.$$
(19)

Deste modo a equação (9) passa à forma:

$$\nabla \frac{du}{dy} = -A + \alpha \frac{d^2 u}{dy^2} , \qquad (20)$$

e a equação da energia (12) se torna:

$$\rho c_{p} V \frac{dT}{dy} = k \frac{d^{2}T}{dy^{2}} + \mu \left(\frac{du}{dy}\right)^{2} , \qquad (21)$$

PROBLEMA 4: Consideramos o escoamento estacionário, a velocidade V = 0 e o gradiente de pressão dado pela equação (19).

Assim a equação (9) passa à forma:

$$0 = -A + \alpha \frac{d^2 u}{dy^2} , \qquad (22)$$

e a equação de energia (12) toma à forma:

$$0 = \frac{k}{c_{p}} \frac{d^{2}T}{dy^{2}} + \frac{\mu}{c_{p}} (\frac{du}{dy})^{2} .$$
 (23)

Esse escoamento é chamado, Escoamento de Poissoville. A equação (10) justifica o gradiente de pressão dado pelas equações (15) e (19).

CAPÍTULO III

SOLUÇÕES DAS EQUAÇÕES

SOLUÇÕES DAS EQUAÇÕES DO PROBLEMA 1.

3.1 - SOLUÇÃO DA EQUAÇÃO (16)

Para acharmos a solução da equação (16) sob as condições (11), escrevemos o campo de velocidade na forma:

$$u(y,t) = \overline{u}(y) + \widetilde{u}(y,t) = \overline{u}(y) + f(y)e^{1\omega t}$$
, (24)

onde $\overline{u}(y)$ representa a parte estável e $\widetilde{u}(y,t)$ a parte instável.

Substituindo a equação (24) na equação (16), obtemos:

$$i\omega f e^{i\omega t} + V[\frac{d\overline{u}}{dy} + e^{i\omega t} \frac{df}{dy}] = -A - Be^{i\omega t}$$

$$+ \alpha \left[\frac{d^2 \overline{u}}{dy^2} + e^{i\omega t} \frac{d^2 f}{dy^2} \right].$$
 (25)

Comparando os termos estáveis e instáveis e simplificando, obtemos respectivamente:

$$V \frac{d\overline{u}}{dy} = -A + \alpha \frac{d^2\overline{u}}{dy^2} , \qquad (26)$$

e

$$i\omega f + V \frac{df}{dy} = -B + \alpha \frac{d^2 f}{dy^2} , \qquad (27)$$

sujeitas as condições:

$$\bar{u} = 0 \ e \ f = 0 \ para \ y = 0 \ e \ y = h.$$
 (28)

3.1.1 - SOLUÇÃO DA EQUAÇÃO ESTÁVEL (26)

Antes de calcularmos a solução desta equação a tornare mos adimensional fazendo $\overline{u} \equiv \overline{u} \frac{Ah}{V}$ e $\eta = \frac{V}{h}$ obtendo então:

$$\overline{u}^* - R\overline{u}^* - R = 0$$
, (29)

onde as picas representam a derivada com respeito a η e $R = \frac{Vh}{\alpha}$ o número de Reynolds.

As condições de contorno passam à forma:

$$\overline{u}(\eta) = 0$$
 para $\eta = 0$ e $\eta = 1$. (30)

Usando o método dos coeficientes a determinar e as condições de contorno (30), vem:

$$\overline{u}(\eta) = \frac{e^{R\eta} - 1}{e^{R} - 1} - \eta$$
 (31)

Essa solução é a mesma que Berman [2] obteve para o escoamento estacionário de um fluído newtoniano. 3.1.2 - SOLUÇÃO DA EQUAÇÃO INSTÁVEL (27)

Obtemos a equação adimensional fazendo f = f $\frac{h^2 B}{\alpha}$ e $\eta = \frac{y}{h}$, tornando-se:

$$f'' - Rf' - iM^2 f - 1 = 0 , \qquad (32)$$

onde $M^2 = \frac{h^2 \omega}{\alpha}$ é o parâmetro de frequência.

As condições de contorno passam à forma:

$$f(\eta) = 0$$
 para $\eta = 0$ e $\eta = 1$. (33)

Usando o mesmo método anterior e as condições (33), obtemos:

$$f(\eta) = \frac{i}{M^2} \left[1 + \frac{(1 - e^{D_2})e^{D_1\eta} - (1 - e^{D_1})e^{D_2\eta}}{(e^{D_2} - e^{D_1})} \right], \quad (34)$$

onde $D_{1,2} = \frac{1}{2} [R \pm (R^2 + 4iM^2)^{1/2}].$

Recentemente Bhatnagar [3] generalizou o problema citado acima para o escoamento de um fluído viscoelástico entre dois planos paralelos e porosos.

3.2 - SOLUÇÃO DA EQUAÇÃO DA ENERGIA (12)

Fazendo T e u adimensionais pelas relações, $T^* = \frac{T - T_1}{T_2 - T_1}$,

$$u \equiv u \frac{Ah}{V}$$
 e $\eta = \frac{Y}{h}$, a equação (12) torna-se:

$$\rho c_{p} \left[\frac{\partial T^{*}}{\partial t} + \frac{V}{h} \frac{\partial T^{*}}{\partial \eta} \right] = \frac{k}{h^{2}} \frac{\partial^{2} T^{*}}{\partial \eta^{2}} + \frac{\mu}{T_{2} - T_{1}} \frac{A^{2}h^{2}}{V^{2}} \frac{1}{h^{2}} \left(\frac{\partial u}{\partial \eta} \right)^{2} .$$
(35)

Escrevemos a solução desta equação na forma:

$$T^{*}(\eta,t) = \overline{T}(\eta) + \widetilde{T}(\eta,t) = \overline{T}(\eta) + \widetilde{T}(\eta)e^{i\omega t}, \qquad (36)$$

onde $\overline{T}(n)$ representa a parte estável e $\widetilde{T}(n,t)$ a instável. Substituindo a equação (36) na equação (35), obtemos

$$\rho c_{p} \left[i\omega \tilde{T} e^{i\omega t} + \frac{V}{h} (\bar{T}' + \tilde{T}' e^{i\omega t}) \right] = \frac{k}{h^{2}} \left[\bar{T}'' + \tilde{T}'' e^{i\omega t} \right] + \frac{\mu}{T_{2} - T_{1}} \frac{A^{2}h^{2}}{V^{2}} \frac{1}{h^{2}} \left[\frac{\partial u}{\partial \eta} \right]^{2} .$$

$$(37)$$

Comparando os termos estáveis e instáveis, obtemos respectivamente:

$$\overline{\mathbf{T}}^* - \sigma R \overline{\mathbf{T}}^* = E \sigma \left(\overline{\mathbf{u}}^* \right)^2 , \qquad (38)$$

$$\tilde{T}'' - \sigma R \tilde{T}' - i M^2 \sigma \tilde{T} = - 2 E \sigma R \frac{B}{A} f' \bar{u}' , \qquad (39)$$

onde $\sigma = \frac{\mu c_p}{k}$ é o número de Prandtle $E = \frac{\frac{A^2 h^2}{v^2}}{c_p (T_2 - T_1)}$ o número de Eckert.

As condições térmicas (13) e (14) passam à forma:

TIPO (i)

$$T(0) = 0$$
 , $T(1) = 1$, (40)

e

$$\tilde{T}(0) = 0$$
 , $\tilde{T}(1) = 0$, (41)

TIPO (ii)

$$\overline{T}(0) = 0$$
 , $\overline{T}'(1) = 0$, (42)

e

$$\tilde{T}(0) = 0$$
 , $\tilde{T}'(1) = 0$. (43)

Substituindo a expressão \overline{u} dada pela equação (31), obtemos a seguinte equação determinando \overline{T} :

$$\overline{T}'' - \sigma R \overline{T}' = -\sigma E \left[\frac{R^2 e^{2R\eta}}{(e^R - 1)^2} - \frac{2R e^{R\eta}}{e^R - 1} + 1 \right] .$$
(44)

Similarmente substituindo as expressões de f dado por (34) e \overline{u} , vem a seguinte equação determinando \tilde{T} :

$$\tilde{T}'' - \sigma R \tilde{T}' - i M^2 \sigma \tilde{T} = -2E_{\sigma} R \frac{B}{A} \frac{i}{M^2 (e^R - 1) (e^{D_2} - e^{D_1})} \cdot [D_1 R (1 - e^{D_2}) e^{(R + D_1)\eta} - D_2 R (1 - e^{D_1}) e^{(R + D_2)\eta} + D_1 (1 - e^{D_2}) (1 - e^R) e^{D_1 \eta} + D_2 (1 - e^{D_1}) (e^R - 1) e^{D_2 \eta}].$$
(45)

Para maior facilidade nos cálculos, escrevemos simples - mente:

$$\tilde{T}^{*} - \sigma R \tilde{T}^{*} - i M^{2} \sigma \tilde{T}^{*} = \frac{B}{A} (-a_{1}e^{(R+D_{1})\eta} + a_{2}e^{(R+D_{2})\eta} - a_{3}e^{D_{1}\eta} - a_{4}e^{D_{2}\eta}), \qquad (46)$$

*

onde,

\$

$$a_1 = 2E\sigma R^2 \frac{1}{M^2(e^R-1)(e^D - e^D)} D_1(1 - e^D)$$

$$a_2 = 2E\sigma R^2 \frac{i}{M^2(e^R-1)(e^2-e^1)} D_2(1-e^1)$$
,

$$a_3 = -2E\sigma R - \frac{i}{M^2(e^{D_2} - e^{D_1})} D_1(1 - e^{D_2})$$

$$a_4 = 2E\sigma R = \frac{i}{M^2(e^2 - e^{D_1})} D_2(1 - e^{D_1}).$$

3.2.1 - SOLUÇÃO DA EQUAÇÃO PARA $\overline{T}(\eta)$

Usando o método de variação de parâmetros encontramos a solução da equação para $\overline{T}(\eta)$, que é:

$$\overline{T}(\eta) = C_1 + C_2 e^{\sigma R \eta} - \frac{\sigma E e^{2R \eta}}{2(2-\sigma)(e^R - 1)^2} + \frac{2\sigma E e^{R \eta}}{R(1-\sigma)(e^R - 1)} + \frac{E \eta}{R} + \frac{E}{\sigma R^2}.$$

Calculando agora as constantes $C_1 \in C_2$ na solução $\overline{T}(\eta)$ para o tipo (i) de condição térmica (40), vem:

$$\overline{T}(n) = \frac{e^{\sigma R \eta} - 1}{e^{\sigma R} - 1} \left[1 + \frac{\sigma E(e^{R} + 1)}{2(2 - \sigma)(e^{R} - 1)} - \frac{E(1 + \sigma)}{R(1 - \sigma)} \right] + \frac{\sigma E(1 - e^{2R \eta})}{2(2 - \sigma)(e^{R} - 1)^{2}}$$

$$2\sigma E(e^{R \eta} - 1) = E\eta$$
(47)

$$+ \frac{2\sigma E(e^{R(1)} - 1)}{R(1 - \sigma)(e^{R} - 1)} + \frac{E\eta}{R}, \qquad (47)$$

e para o tipo (ii) de condição térmica (42):

$$\overline{T}(n) = \frac{(e^{\sigma Rn} - 1)}{\sigma Re^{\sigma R}} E\left[\frac{\sigma Re^{2R}}{(2 - \sigma)(e^{R} - 1)^{2}} - \frac{2\sigma e^{R}}{(1 - \sigma)(e^{R} - 1)} - \frac{1}{R}\right] +$$

$$+ \frac{\sigma E (1 - e^{2R\eta})}{2 (2 - \sigma) (e^{R} - 1)^{2}} + \frac{2\sigma E (e^{R\eta} - 1)}{R (1 - \sigma) (e^{R} - 1)} + \frac{E\eta}{R} , \qquad (48)$$

3.2.2 - SOLUÇÃO DA EQUAÇÃO PARA $\tilde{T}(n)$.

Para acharmos a solução da equação para $\tilde{T}(\eta)$ usaremos o mesmo método anterior, obtemos então a solução geral:

$$\tilde{T}(\eta) = C_1 e^{\lambda_1 \eta} + C_2 e^{\lambda_2 \eta} + \frac{B}{A} \left[- \frac{a_1 e^{(R+D_1)\eta}}{(R+D_1 - \lambda_1)(R+D_1 - \lambda_2)} \right]$$

$$+ \frac{a_{2}e^{(R+D_{2})n}}{(R+D_{2}-\lambda_{2})(R+D_{2}-\lambda_{1})} - \frac{a_{3}e^{D_{1}n}}{(D_{1}-\lambda_{1})(D_{1}-\lambda_{2})} - \frac{a_{4}e^{D_{2}n}}{(D_{2}-\lambda_{1})(D_{2}-\lambda_{2})},$$

onde $\lambda_{1,2} = \frac{1}{2} [\sigma R \pm (\sigma^2 R^2 + 4i M^2 \sigma)^{1/2}]$.

Determinando agora as constantes $C_1 \in C_2$ na solução $\tilde{T}(n)$ para o tipo (i) de condição térmica (41), vem:

$$\frac{\tilde{T}(\eta)}{\frac{B}{A}} = \frac{e^{\lambda_2 \eta} - e^{\lambda_1 \eta}}{e^{\lambda_2} - e^{\lambda_1}} [b_1(e^{R+D_1} - e^{\lambda_1}) + b_2(e^{\lambda_1} - e^{R+D_2})]$$

$$+ b_3(e^{D_1} - e^{\lambda_1}) + b_4(e^{D_2} - e^{\lambda_1}) + b_1[e^{\lambda_1 \eta} - e^{(R+D_1)\eta}]$$

$$+ b_{2} \left[e^{(R+D_{2})\eta} - e^{\lambda_{1}\eta} \right] + b_{3} \left(e^{\lambda_{1}\eta} - e^{D_{1}\eta} \right), \qquad (49)$$

,

ŧ

onde

$$b_{1} = \frac{\hat{a}_{1}}{(R + D_{1} - \lambda_{1})(R + D_{1} - \lambda_{2})}$$

$$b_{2} = \frac{a_{2}}{(R + D_{2} - \lambda_{2})(R + D_{2} - \lambda_{1})}$$

$$b_{3} = \frac{a_{3}}{(D_{1} - \lambda_{1})(D_{1} - \lambda_{2})} , \quad b_{4} = \frac{a_{4}}{(D_{2} - \lambda_{1})(D_{2} - \lambda_{2})}$$

e para o tipo (ii) de condição térmica (43):

$$\frac{\tilde{T}(\eta)}{\frac{B}{A}} = \frac{e^{\lambda_2 \eta} - e^{\lambda_1 \eta}}{\lambda_2 e^{\lambda_2} - \lambda_1 e} \{b_1 [(R+D_1)e^{R+D_1} - \lambda_1 e^{\lambda_1}] + \frac{e^{\lambda_2 \eta} - e^{\lambda_1 \eta}}{\lambda_2 e^{\lambda_2} - \lambda_1 e^{\lambda_1}} \}$$

$$+ b_{2} [\lambda_{1}e^{\lambda_{1}} - (R+D_{2})e^{R+D_{2}}] + b_{3}(D_{1}e^{D_{1}} - \lambda_{1}e^{\lambda_{1}}) +$$

$$+ b_4 (D_2 e^{D_2} - \lambda_1 e^{\lambda_1}) + b_1 [e^{\lambda_1 \eta} - e^{(R+D_1)\eta}] +$$

Ŧ

$$+ b_{2} \left[e^{(R+D_{2})\eta} - e^{\lambda_{1}\eta} \right] + b_{3} \left(e^{\lambda_{1}\eta} - e^{\lambda_{1}\eta} \right) + b_{4} \left(e^{\lambda_{1}\eta} - e^{\lambda_{2}\eta} \right).$$
(50)

SOLUÇÕES DAS EQUAÇÕES DO PROBLEMA 2:

3.3 - SOLUÇÃO DA EQUAÇÃO (17)

Para acharmos a solução da equação (17) sob as condições (11), escrevemos o campo de velocidade na forma (24).

Substituíndo a equação (24) na equação (17) obtemos:

$$i\omega f e^{i\omega t} = -A - B e^{i\omega t} + \alpha \left(\frac{d^2 u}{dy^2} + e^{i\omega t} \frac{d^2 f}{dy^2}\right) .$$
 (51)

Comparando os termos estáveis e instáveis e simplificando, obtemos respectivamente:

$$0 = -A + \alpha \frac{d^2 \overline{u}}{dy^2} , \qquad (52)$$

е

$$i\omega f = -B + \alpha \frac{d^2 f}{dy^2} , \qquad (53)$$

sujeitas as condições (28).

3.3.1 - SOLUÇÃO DA EQUAÇÃO (52)

Tornamos a equação (52) adimensional fazendo $\overline{u} = \frac{Ah^2}{\alpha} \overline{u}$ e $\eta = \frac{Y}{b}$, obtemos então:

$$\overline{u}^{\prime\prime} - 1 = 0 \tag{54}$$

Integrando a equação (54) duas vezes e fazendo uso das condições (30), obtemos a solução:

$$\overline{u}(\eta) = \frac{1}{2} (\eta^2 - \eta) .$$
 (55)

3.3.2 - SOLUÇÃO DA EQUAÇÃO (53)

Tornamos a equação (53) adimensional escrevendo $f = \frac{Bh^2}{\alpha} f$ e $\eta = \frac{Y}{h}$, obtemos então:

$$f'' - iM^2 f - 1 = 0 , (56)$$

cuja solução sob as condições (33) é:

$$f(\eta) = \frac{i}{M^2} \left[1 + \frac{(1 - e^{S_2})e^{S_1}\eta - (1 - e^{S_1})e^{S_2}\eta}{(e^{S_2} - e^{S_1})} \right], \quad (57).$$

onde $S_{1,2} = \pm (iM^2)^{1/2}$.

3.4 - SOLUÇÃO DA EQUAÇÃO DA ENERGIA (18)

Fazendo T e u adimensionais pelas relações $T^* = \frac{T-T_1}{T_2 - T_1}$, u = u $\frac{Ah^2}{\alpha}$ e $\eta = \frac{Y}{h}$, a equação (18) torna-se:

$$\rho c_{p} \frac{\partial T^{\star}}{\partial t} = \frac{k}{h^{2}} \frac{\partial^{2}T}{\partial \eta^{2}} + \frac{\mu}{(T_{2} - T_{1})h^{2}} \left(\frac{\partial u}{\partial \eta}\right)^{2} \frac{A^{2}h^{4}}{\alpha^{2}} .$$
 (58)

UNICAMP BIBLIOTECA CENTRAL Escrevemos a solução da equação (58) na forma (36), que substituída em (58), vem:

$$\frac{i\omega h^2}{\alpha} \tilde{T} e^{i\omega t} = \frac{k}{\mu c_p} (\bar{T}" + \tilde{T}" e^{i\omega t}) + \frac{\frac{A^2 h^4}{2}}{c_p (T_2 - T_1)} (\frac{\partial u}{\partial \eta})^2 .$$
(59)

Comparando os termos estáveis e instáveis e simplificando, obtemos respectivamente:

$$0 = \frac{1}{\sigma} \overline{T}^{"} + E \left(\overline{u}^{"}\right)^{2} , \qquad (60)$$

e

$$iM^{2}\tilde{T} = \frac{1}{\sigma}\tilde{T}'' + 2E_{\sigma}\frac{B}{A}u'f', \qquad (61)$$

onde E = $\frac{\frac{A^2h^4}{2}}{c_p(T_2 - T_1)}$ é o número de Eckert assim definido quan

do o número de Reynolds é zero.

3.4.1 - SOLUÇÃO DA EQUAÇÃO (60)

Substituindo a equação (55) na equação (60), obtemos:

$$\overline{T}'' + \frac{\sigma E}{4} (4\eta^2 - 4\eta + 1) = 0.$$
 (62)

Integrando duas vezes a equação (62), obtemos a solução

para o tipo (i) de condição térmica (40):

$$\overline{T}(\eta) = \frac{\sigma E}{4} \left(\frac{\eta}{6} - \frac{\eta^2}{2} + \frac{2\eta^3}{3} - \frac{\eta^4}{3}\right) + \eta , \qquad (63)$$

e para o tipo (ii) de condição térmica (42):

$$\overline{T}(\eta) = \frac{\sigma E}{4} \left(\frac{\eta}{3} - \frac{\eta^2}{2} + \frac{2\eta^3}{3} - \frac{\eta^4}{3} \right) .$$
 (64)

3.4.2 - SOLUÇÃO DA EQUAÇÃO (61)

Substituindo as expressões de f dada por (57) e a expressão de \overline{u} na equação (61), vem a seguinte equação determinando $\widetilde{T}(n)$:

$$\tilde{T}$$
" - $iM^2\sigma\tilde{T} = (-2a_1\eta e^{1\eta} + 2a_2\eta e^{2\eta} + a_1e^{1\eta} - a_2e^{2\eta})\frac{B}{A}$, (65)

onde

$$a_{1} = \sigma E \frac{i}{M^{2}(e^{S_{2}} - e^{S_{1}})} S_{1}(1 - e^{S_{2}}),$$

e

$$a_{2} = \sigma E \frac{i}{M^{2}(e^{S_{2}} - e^{S_{1}})} S_{2}(1 - e^{S_{1}}).$$

Usando o método de variação de parâmetros, obtemos a solução da equação (65) para o tipo (i) de condição térmica (41):

$$\frac{\tilde{T}(\eta)}{\frac{B}{A}} = \frac{e^{p_2\eta} - e^{p_1\eta}}{e^{p_1} - e^{p_2}} [(-b_1 - b_2 + d_1 + d_2)e^{p_1} + (-b_1 + b_2)e^{s_1} + (d_1 - d_2)e^{s_2}]$$

$$+(-b_{1}-b_{2}+d_{1}+d_{2})e^{p_{1}n}+(-2b_{1}n+b_{1}+b_{2})e^{s_{1}n}+(2d_{1}n-d_{1}-d_{2})e^{s_{2}n}, (66)$$

onde
$$p_{1,2} = \pm (iM^2 \sigma)^{1/2}$$
 e

$$b_{1} = \frac{a_{1}}{(p_{2} + s_{1})(p_{1} + s_{1})} , \quad b_{2} = \frac{4a_{1}s_{1}}{(p_{2} + s_{1})^{2}(p_{1} + s_{1})^{2}}$$

$$d_1 = \frac{a_2}{(p_2 + s_2)(p_1 + s_2)}$$
, $d_2 = \frac{4a_2s_2}{(p_2 + s_2)^2(p_1 + s_2)^2}$

e para o tipo (ii) de condição térmica (43):

$$\frac{\tilde{T}(n)}{\frac{B}{A}} = \frac{e^{p_2 n} - e^{p_1 n}}{p_1 e^{p_1} - p_2 e^{p_2}} \{(-b_1 - b_2 + d_1 + d_2)p_1 e^{p_1} + [-2b_1 + S_1 (-b_1 + b_2)]e^{S_1}$$

+
$$[2d_1 + s_2(d_1 - d_2)]e^{s_2}$$
 + $(-b_1 - b_2 + d_1 + d_2)e^{p_1\eta}$
+ $(-2b_1\eta + b_1 + b_2)e^{s_1\eta}$ + $(2d_1\eta - d_1 - d_2)e^{s_2\eta}$. (67)

3.5 - SOLUÇÕES DAS EQUAÇÕES DO PROBLEMA 3

A solução da equação (20) é um caso particular da equação (16) com $\frac{\partial}{\partial t} = 0$ e B = 0 e é dada pela equação (31), para \overline{u} .

Da mesma maneira a solução da equação da energia (21) é um caso particular da equação (12) ou da equação (38) na forma adimensional, cuja solução para os tipos (i) e (ii) de condições térmicas são dadas pelas equações (47) e (48), respectivamente para T. Notamos que neste problema não temos parte instável T.

3.6 - SOLUÇÕES DAS EQUAÇÕES DO PROBLEMA 4

Como aqui V = 0 e $\frac{1}{\rho} \frac{\partial p}{\partial x} = A$, as equações (22) e (23) para determinar u e T são formas especiais das equações (20) e (21), respectivamente. Por isso não precisamos resolver estas equações que na forma adimensional são as mesmas que as equações (54) e (60), cujas soluções são dadas pelas equações (55) para \overline{u} e as equações (63) e (64) para \overline{T} com os tipos (i) e (ii) de condições térmicas, respectivamente.

Notamos também que neste problema não existe parte inst<u>ã</u> vel para \tilde{T} .

CAPÍTULO IV

DISCUSSÕES DOS RESULTADOS

Para nossos cálculos de \overline{T} , \overline{T} e ambas condições térmicas, fixaremos o número de Prandtl $\sigma = 0,4$ e 0,6 , o número de Eckert E = 0,5 e o parâmetro de frequência M = 5,10 e 15.

Para mostrar as diferenças entre a distribuição de temp<u>e</u> ratura, discutiremos primeiro o caso em que o número de Reynolds R = 0 e depois os casos para $R \neq 0$. Escolhemos os valores de R = 0,2, 0,4, 0,6 e 0,8.

4.1 - COMPORTAMENTO DE $\overline{T}(\eta)$ PARA O TIPO (1) DE CONDIÇÃO TÉRMI-CA .

Na figura 1 mostramos \overline{T} contra n, calculados através da equação (63), para R = 0, E = 0,5, σ = 0,4 e 0,6.

Observamos que para ambos valores do parâmetro σ , \overline{T} varia linearmente de 0 a l e as diferenças entre \overline{T} para os dois valores de σ são insignificantes.

Nas figuras 2 e 3 temos amostras de \overline{T} , obtidos através da equação (47), para R = 0,2 , 0,4 , 0,6 e 0,8, E = 0,5 e σ = 0,4 , 0,6 respectivamente.

Aqui também observamos a variação quase línear de \overline{T} de 0 a 1, mas acontece que \overline{T} decresce com o aumento de R para um fixo σ , por exemplo, $\sigma = 0,4$ na figura 2. O mesmo acontece para $\sigma = 0,4$ e 0,6 com R fixo, por exemplo, comparando as curvas de \overline{T} para R = 0,4 nas figuras 2 e 3. 4.2 - O COMPORTAMENTO DE $\overline{T}(\eta)$ PARA O 29 TIPO DE CONDIÇÃO TÉRMICA

A figura 4 nos mostra os gráficos de \overline{T} , obtidos através da equação (64), para R = 0, E = 0,5, σ = 0,4, 0,6 e a figura 5 para os casos R = 0,2, 0,4, 0,6, 0,8 e os mesmos E e σ , calculados através da equação (48).

Observamos que ao contrário em \overline{T} para o tipo (i)de con dição térmica, o comportamento de \overline{T} para o tipo (ii) de condicão térmica não é mais linear, acentuando-se perto das placas.

Na figura 4, \overline{T} aumenta com σ e tem valor máximo na pla ca isolada $\eta = 1$. E na figura 5 este comportamento se repete, tomando qualquer R fixo.

Da mesma maneira \overline{T} aumenta com R, tomando σ fixo e tem novamente máximo na placa isolada $\eta = 1$.

Comparando as figuras 4 e 5, notamos que \overline{T} máximo para R = 0 é maior do que os máximos para R = 0,2 , 0,4 , 0,6 e 0,8. Concluímos assim, também a discussão dos problemas 3 e 4.

4.3 - COMPORTAMENTO DE $\tilde{T}(\eta)$ PARA O TIPO (i) DE CONDIÇÃO TÉRMICA

Nas figuras 6, 7 e 8 mostramos os gráficos de T para o tipo (i) de condição térmica, calculados através da equação (66), para o caso R = 0, E = 0.5, $\sigma = 0.4$ e 0.6 escolhendo M = 5, 10 e 15 respectivamente.

Na figura 6 para M = 5, observamos que o perfil de temperatura tem a forma de uma parábola achatada na região central de η e além disso \tilde{T} é simétrico e aumenta com σ .

Nas figuras 7 e 8 a situação é totalmente diferente , \tilde{T} perde a forma parabólica, mas continua simétrica.

Na figura 7 para M = 10, observamos dois picos perto dos contornos no perfil de \tilde{T} . Assim acontece que \tilde{T} cresce rapidamente até o 1º pico e fica quase constante na região central em torno de $\eta = 0.5$, depois cresce até o 2º pico e decresce rapidamente perto de $\eta = 1$.

Em geral \tilde{T} para $\sigma = 0,4$ é menor que \tilde{T} para $\sigma = 0,6$ perto dos contornos e maior na região central.

Na figura 8 para M = 15, o comportamento é o mesmo observado na figura 7, só que as distâncias entre os picos e a região central são maiores.

Passando do parâmetro de frequência de M = 10 para M = 15, \tilde{T} aumenta perto dos contornos e diminui na região central.

Por outro lado comparando a figura 6 com a figura 7, é fácil ver que \tilde{T} diminui.

Nas figuras 9, 10 e ll temos T para R = 0,2, 0,4 , 0,6 e 0,8 , E = 0,5 , $\sigma = 0,4$, 0,6 e M = 5, 10 e 15 res pectivamente, obtidos da equação (49).

Na figura 9 para M = 5, o perfil de T tem a forma parabólica achatada para cada R e σ considerados, como anterior mente observado na figura 6 para R = 0. Notamos que \tilde{T} aqui tam bém cresce com R e σ . E aumentando R a diferença de \tilde{T} para $\sigma = 0,4$ e 0,6 se torna cada vez maior.

Nas figuras 10 e 11, como nas figuras 7 e 8 para o

caso R = 0, as curvas T perdem a forma parabólica e aparecem dois picos.

Na placa em que a temperatura é mais alta (T=1), T é maior.

Na figura 11, as curvas para $\sigma = 0,4$ e R = 0,8 mostram que \tilde{T} não tem caráter constante, acontecendo o contrário para R menores.

Comparando as figuras 10 e 11 para M = 10 e 15 respectivamente, notamos que \tilde{T} aumenta com a frequência. Como ante riormente nas figuras 6 e 7 para M = 5 e 10 respectiva mente, \tilde{T} diminui com o aumento da frequência, o mesmo acontece com as figuras 9 e 10.

4.4 - COMPORTAMENTO DE $\tilde{T}(\eta)$ PARA O TIPO (ii) DE CONDIÇÃO TÉRMICA

• Nas figuras 12, 13 e 14 temos os gráficos de \tilde{T} para o tipo (ii) de condição térmica, calculados através da equação (67), para os parâmetros R = 0, E = 0,5, $\sigma = 0,4$, 0,6 e para M = 5, 10 e 15 respectivamente.

Na figura 12, para M = 5, observamos que \tilde{T} cresce rap<u>i</u> damente até certo η e depois varia quase linearmente atenuandose perto da placa isolada onde tem valor máximo.

Notamos também, como anteriormente que T para $\sigma = 0,6$ é maior do que para $\sigma = 0,4$ em toda região, exceto numa pequena região central, e ainda \tilde{T} não tem a forma parabólica como no caso de \tilde{T} para o tipo (i) de condição térmica e M = 5.

Nas figuras 13 e 14 para M = 10 e 15 respectivamente, observamos que \tilde{T} cresce muito mais rápido em comparação com M = 5, tendo picos muito perto da placa $\eta = 0$. A partir do pico, decresce até certo valor de η e depois cresce continuamente até a placa isolada, onde também tem máximo.

Em geral T para $\sigma = 0,6$ é maior do que para $\sigma = 0,4$ perto das placas e menor na região central.

Em contrário com \tilde{T} para o tipo (i) de condição térmica, \tilde{T} diminui mudando o parâmetro de M = 10 para M = 15, e de M = 5 para M = 10 ocorre o mesmo verificado em \tilde{T} para o tipo (i) de condição térmica.

Nas figuras 15, 16 e 17 estão desenhados os gráficos de \tilde{T} , obtidos da equação (50), para R = 0,2 , 0,4 , 0,6 e 0,8 E = 0,5 , $\sigma = 0,4$, 0,6 e M = 5, 10 e 15 respectivamente.

Na figura 15, \tilde{T} tem o mesmo comportamento para cada σ e R \neq 0 como na figura 12 para R = 0. A única diferença é que os máximos de \tilde{T} para R = 0 são maiores que todos os máximos para R = 0,2 , 0,4 , 0,6 e 0,8.

Nas figuras 16 e 17 os perfis de \tilde{T} para $R \neq 0$ tem o mesmo comportamento como nas figuras 13 e 14 para R = 0, mas notamos, por exemplo, na figura 17 para M = 15 que \tilde{T} para maio res valores de R, cresce muito rapidamente perto da placa $\eta = 0$ e decresce também com muita rapidez aproximando-se do eixo η e depois cresce uniformemente com rapidez até a placa isolada.

Também aqui, em geral T cresce com R e σ , exceto nas regiões centrais.

REFERÊNCIAS

- 1 WANG, C.Y., Pulsatile Flow in a Porous Channel, ASME Journal of Applied Mechanics, vol. 38, 1971, p. 553-555.
- 2 BERMAN, A.S., Laminar Flow in an Annulus with Porous Walls, Journal of Applied Physics, vol. 29, 1958, p. 71-75.
- 3 BHATNAGAR, R.K., Fluctuating Flow of a Viscoelastic Fluid in a Porous Channel, ASME Journal of Applied Mechanics, vol. 46, 1979, p. 21-25.
- 4 HUGHES, W.F. e BRIGHTON, J.A., Dinâmica dos Fluídos, Editora McGraw-Hill do Brasil, 1974.
- 5 SHAMES, I.H., Mecânica dos Fluidos, Vols. I e II, Editora Edgard Blücher, 1973.
- 6 SCHLICHTING, H., Boundary Layer Theory, Verlag G. Braun, 1965.

LEGENDAS DAS FIGURAS

na Secondaria

Figura 8 - Gráficos de T para o tipo (i) de condição térmica,
para R = 0, E = 0,5, M = 15 e
$$\sigma = 0,4 - - - \sigma = 0,6$$

- Figura 12 Gráficos de T para o tipo (ii)de condição térmica , para R=0, E=0,5, M=5 e $\sigma = 0,4 - - - \sigma$ $\sigma = 0,6 - - - \sigma$

Figura 13 - Gráficos de T para o tipo (ii) de condição térmica, para R = 0, E = 0,5 , M = 10 e σ = 0,4 - - - σ = 0,6 ----

Figura 14 - Gráficos de T para o tipo (ii) de condição térmica,
para R=0, E = 5, M = 15 e
$$\sigma = 0,4 - - - \sigma = 0,6$$

Figura 15 - Gráficos de \tilde{T} para o tipo (ii) de condição térmica, para R = 0,2 , 0,4 , 0,6 e 0,8, E = 0,5 , M = 5, e $\sigma = 0,4 - - - - \sigma = 0,6 - - - - \sigma = 0,6 - - - - - \sigma$

Figura 16 - Gráficos de \tilde{T} para o tipo (ii) de condição térmica, para R = 0,2, 0,4, 0,6 e 0,8, E = 0,5, M = 10, e $\sigma = 0,4 - - - \sigma = 0,6$

Figura 17 - Gráficos de \tilde{T} para o tipo (ii) de condição térmica, para R = 0,2,0,4,0,6 e 0,8, E = 0,5, M = 15, e $\sigma = 0,4$ - - - $\sigma = 0,6$ ----

ੰ

Fig. 2

Fig 5

Fig 8

Fig 10

. .

Fig II

• •

