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Epigraph

16.
Aufwärts.

„Wie komm ich am besten den Berg hinan?“
Steig nur hinauf und denk nicht dran!

Friedrich Wilhelm Nietzsche

Die fröhliche Wissenschaft.

28.
Trost für Anfänger.

Seht das Kind umgrunzt von Schweinen,
Hülflos, mit verkrümmten Zeh’n!
Weinen kann es, Nichts als weinen —
Lernt es jemals stehn und gehn?
Unverzagt! Bald, sollt’ ich meinen,
Könnt das Kind ihr tanzen sehn!
Steht es erst auf beiden Beinen,
Wird’s auch auf dem Kopfe stehn.

Friedrich Wilhelm Nietzsche

Die fröhliche Wissenschaft.

A vida é a arte do encontro,
embora haja tanto desencontro pela vida.

Vinicius de Moraes

Samba da Benção

16.
Upward

“How do I best get to the top of this hill?”
Climb it, don’t think it! and maybe you will.

Friedrich Wilhelm Nietzsche

The Gay Science

28.
Consolation for Beginners

See the child, with pigs she’s lying,
helpless, face as white as chalk!
Crying only, only crying —
will she ever learn to walk?
Don’t give up! Stop your sighing,
soon she’s dancing ‘round the clock!
Once her own two legs are trying,
she’ll stand on her head and mock.

Friedrich Wilhelm Nietzsche

The Gay Science

Life is the art of encounters,
though there are so many misconnections in life.

Vinicius de Moraes

Samba da Benção
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Resumo

As reflexões de ondas sísmicas na subsuperfície terrestre podem ser colocadas em duas

categorias disjuntas: reflexões primárias e múltiplas. Reflexões primárias carregam in-

formações pontuais sobre um refletor específico, enquanto reflexões múltiplas carregam

informações sobre interfaces e pontos de reflexão variados. Consequentemente, é usual

tentar atenuar reflexões múltiplas e trabalhar somente com reflexões primárias. Neste

trabalho, a teoria de ondas acústicas é desenvolvida somente a partir da equação da onda.

Um resultado que demonstra como a propagação de ondas acústicas pode ser descrita

somente com uma única multiplicação por matriz é exposta. Este resultado permite que

um algoritmo seja desenvolvido que, em teoria, pode ser usado para remover todas as re-

flexões múltiplas que refletiram na superfície pelo menos uma vez. Uma implementação

prática deste algoritmo é mostrada. Por conseguinte, a teoria de análise de componentes

independentes é apresentada. Suas considerações teóricas e práticas são abordadas. Final-

mente, ela é usada em conjunção com o método de eliminação de múltiplas de superfície

para atenuar múltiplas de quatro dados diferentes. Estes resultados são então analisados

e a eficácia do método é avaliada.

Palavras-chave: Método sísmico de reflexão, Ondas sísmicas, Processamento de sinais,

Análise de componentes independentes
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Abstract

The reflections of seismic waves in the subsurface of the Earth can be placed under two

disjoint categories: primary and multiple reflections. Primary reflections carry point-

wise information about a specific reflector while multiple reflections carry informations

about various interfaces and reflection points. Consequently, it is customary to attempt

to attenuate multiple reflections and work solely with primary reflections. In this work,

the theory of acoustic waves is developed solely from the wave equation. A result that

shows how acoustic wave propagation can be described as a single matrix multiplication

is exposed. This result enables one to develop an algorithm that, in theory, can be used

to remove all multiple reflections that haved reflected on the surface at least once. The

practical implementation of this algorithm is shown. Thereafter, the theory of indepen-

dent component analysis is presented. Its theoretical and practical considerations are

addressed. Finally, it is used in conjuction with the surface-related multiple elimination

method to attenuate multiples in four different datasets. These results are then analyzed

and the efficacy of the method is evaluated.

Keywords: Seismic reflection method, Seismic waves, Signal processing, Independent

component analysis
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Chapter 1

Introduction

Все счастливые семьи похожи друг
на друга, каждая несчастливая семья
несчастлива по-своему.

Лев Николаевич Толстой

Анна Каренина

Every direct problem resembles on another;
each inverse problem is inverse in it’s own
way.

1.1 Description of the problem

A typical problem in exploration geophysics is the imaging of the distribution of materials

in the interior of the Earth. These materials are commonly arranged in a stratified

fashion, that is, one layer sits atop another. These layers possess their own set of physical

properties, such as density, porosity, permeability, etc., that may or may not vary within

the layer. One particular property that these layers have is the velocity with which seismic

waves propagate within them. This is interesting to the problem because when seismic

waves cross from one medium to another medium with differing velocity, part of the

wave will be reflected, while another will be refracted. Furthermore, the reflected wave

will carry information of the media it has traveled through, and of the medium it reflected

from. The reflected waves can be recorded and their analysis can give rise to information

1



1.2. Multiples and their removal 2

of the disposition of material in the subsurface. Roughly, this is the method of reflection

seismology.

Amongst the many methods in exploration geophysics, reflection seismology is by

far the most common one used when attempting to build a detailed image of the Earth’s

interior. It uses the reflection of seismic waves to estimate the positions of layers inside

the earth and some of their physical properties. A typical experiment consists in creating

seismic waves and measuring their reflections in what is called a trace. These seismic

waves can reflect and refract multiples times. The events that come from a wave that

reflected once is called a primary,* while an event that derives from a wave that was

reflected more than once is called a multiple.

1.2 Multiples and their removal

The primary reflections have the interesting property that they carry information of the

medium it traveled in and of the reflector it rebounded on. On the other hand, multiple

reflections carry information of many reflectors. Such a distinction is important since it

means that by studying primary reflections, one may gain information of its associated

reflector, something that cannot be done with multiple reflections. Consequently, primary

reflections are considered more valuable in the seismic reflection method.

Furthermore, the most common imaging algorithms make the assumption that the

received waves only reflected once, that is, it assumes all events are primary. However,

for all but the most simple geologies, this is untrue, and multiples arrive intermixed with

primaries. Therefore, in order to use the gathered data in these algorithms, one must

first remove the multiples.

Verschuur (2006) and Yilmaz (2001) separate multiple removal methods in two cat-

egories: methods that rely on the different spacial behavior of multiples, and methods

that use their predictability. Methods of the first type are based on the assumption

that multiples have differing (moveout) velocities, and exhibit different local dips when

compared to primaries. These methods include: f -k, slant-stack and Radon filtering,

and high-resolution Radon filtering. Methods of the second type are based on the fact

that, if the velocity distribution and the source wavelet are known, then it is possible to

predict the multiples. These methods are usually divided in two parts: prediction and

subtraction. The prediction step concerns itself with estimating the source wavelet and

*A primary event is not to be confused with a P-wave. The adjective primary in the former refers to the
type of reflection event, while in the latter, refers to the type of wave (compressional or longitudinal)
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effectively predicting the multiples. Estimation of the wavelet can be done with methods

like predictive deconvolution and blind deconvolution.

For the prediction of the multiples, there exists methods such as surface-related mul-

tiple elimination (SRME), free-surface multiple elimination (FSME) and internal multiple

removal by inverse scattering.

In the present work, the methods of SRME will be studied, in connection to indepen-

dent component analysis (ICA).

1.3 Independent component analysis

ICA is a technique which, among other applications, can solve the problem of blind

deconvolution. ICA can also solve the more general case of blind source separation (BSS).

The problem of blind source separation is the following: given a combination of a number

of source signals, separate these “mixtures” into their individual, original signals. The

fact that how these combinations are performed are unknown gives meaning to the term

blind. It is quite clear that in such formulation, the problem is tremendously ill-posed.

Depending on the mixtures, it can impossible solve uniquely, or even impossible to solve

at all. Therefore, in order to recover the sources, additional hypotheses are necessary.

Different hypotheses lead to different solutions. The method of ICA supposes that the

sources are statistically mutually independent. Furthermore, in linear ICA, which will be

used exclusively, the mixtures are linear combinations of the sources. With these a priori

informations, the problem can be solved uniquely.†

The purpose of this work is to exploit the use of ICA in the extraction of both the

primary and the multiple reflections. While the use of ICA for blind deconvolution has

been used since the 1990s, its application to seismic signal processing is more recent,

dating from the beginning of the 2000s. Newer still is the application of ICA in multiple

removal, having being recently pioneered in Lu (2006), Kaplan and Innanen (2008) and Lu

and Liu (2009).

1.4 SRME and ICA

The main focus of this work will be concerned with the SRME algorithm and how the

technique of ICA can be used to enhance it. In order to develop the theory of SRME, one

†Under a few more assumptions, and except for scaling constants and permutations.
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must first study the mathematical description of acoustic wave phenomena. Chapter 2

treats this subject in a way that will make the theoretical development of SRME simpler.

The following chapter will do exactly that, describe how the algorithm of SRME works,

in both one and two dimensions. In Chapter 4 the problem of ICA is more precisely

formulated. A technique for performing ICA is also developed, based on negentropy.

With both SRME and ICA algorithms appropriately derived and described, Chapter 5

exposes how both can be used in conjunction to attenuate multiples. Synthetic and field

data are presented showing positive results, which are then analyzed in the conclusion.

The conclusion also includes observations on the present work and prospects for future

work.



Chapter 2

Acoustic wave theory

The fundamental laws necessary for the mathematical treatment of a large
part of physics and the whole of chemistry are thus completely known, and
the difficulty lies only in the fact that application of these laws leads to
equations that are too complex to be solved.

Paul Dirac

Proceedings of the Royal Society A, Vol. 123, No. 792

2.1 Introduction

In order to derive the SRME process, a certain amount of theory must be developed. This

is the purpose of this chapter, to establish the necessary results needed to derive SRME

in a two- and three-dimensional setting, though it can be applied in any n-dimensional

space.

Acoustic waves are generated by sources that excite the medium causing a variation

in pressure and particle velocity in its vicinities. The well known acoustic wave equation

is a partial differential equation that describes how the pressure evolves in time. Letting

this acoustic pressure be denoted p(x, t) for each spacial coordinate x ∈ R
3 and each time

t ∈ R, the equation is given by

∆p(x, t)− 1
c(x)2

∂2

∂t2 p(x, t) = f (x, t) (2.1)

The term f is the “source term” because it is a source of acoustic variation independent

of the natural propagation of the waves. Inside of a “source-free region”, the term is set

5



2.2. The second Rayleigh integral 6

to zero. In the next section, we will establish how a point in such a region is affected by

a previously existent wave field. It is paramount to the SRME algorithm as will be seen

subsequently.

2.2 The second Rayleigh integral

Let xA be a point inside a source-free region V ⊆ R
3. Following Berkhout (1985) we will

establish certain results on how p(xA, t) can be described if p(x, t) is known elsewhere.

Inside V, p satisfies the wave equation 2.1. Therefore, the Fourier transformed*

P(x, ω) = F [p(x, t)](ω) satisfies the Helmholtz equation, which is obtained Fourier

transforming both sides of the wave equation:

∆P(x, ω) + k(x)2P(x, ω) = 0, (2.2)

where and k(x) = ω/c(x).

The first objective of this section will be to describe the pressure p inside V using only

information of p on the boundary of S of V. To do that, we will make use of the Green’s

function of the wave equation. The Green’s function g is the solution to the equation

∆g− 1
c(x)2

∂2g

∂t2 = δ(xA − x)δ(t). (2.3)

It is well known (Bleistein, 1984) that if c(x) is a constant c, in three dimensions, g is

given by

g(x, t) =
δ
(

t− ‖xA−x‖
c

)

4π‖xA − x‖ , (2.4)

or, in the frequency domain,

G(x, ω) =
e−iω

‖xA−x‖
c

4π‖xA − x‖ . (2.5)

Now, Green’s second identity states that if u and v are twice continuously differen-

tiable inside a compact region E ⊂ R
3 which has a piecewise smooth boundary ∂E, then

*The Fourier transform used here will be F [ f (t)](ω) =
∫

R

f (t) exp(−itω)dt.
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the following holds.

∫

E

[u∆v− v∆u] dV =
∮

∂E

[u∇v− v∇u] · n dS, (2.6)

where the unit normal vector n points outward. Let us suppose that V is compact, its

boundary S is piecewise smooth and that P is twice continuously differentiable. Taking

u = P and v = G, Equation 2.6 becomes

∫

V

[P∆G− G∆P] dV =
∮

S

[P∇G− G∇P] · n dS. (2.7)

By construction ∆G = δ(xA − x) − k2G and ∆P = −k2P. Replacing these values in

Equation 2.7, we obtain

∮

S

[P∇G− G∇P] · n dS =
∫

V

[P(δ(xA − x)− k2G) + k2GP)] dV

=
∫

V

Pδ(xA − x) dV.

Finally, using the sift property of the delta function,

P(xA, ω) =
∮

S

[P∇G− G∇P] · n dS. (2.8)

So far we can describe the wave field at a point xA from the information of that wave

field over some boundary S. We would like for that boundary to be a simple one, namely

the plane z = 0. However, there is no compact region with a boundary such as that. A

way around this issue is to take a succession of compact regions whose limit is z = 0.

Therefore, let us suppose that

V = {x ∈ R
3 | z > 0, ‖x− xA‖ < R}. (2.9)

and that V is source free for all R ∈ R. Without loss of generality, xA ∈ V. It is clear that

the boundary S of V is

S = {x ∈ R
3 | z = 0, ‖x− xA‖ < R}

︸ ︷︷ ︸

S1

∪ {x ∈ R
3 | z > 0, ‖x− xA‖ = R}

︸ ︷︷ ︸

S2

. (2.10)
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Noting that on S2, ‖xA − x‖ = R,

∫

S2

[P∇G− G∇P] · n dS2 =

2π∫

0

π/2∫

0

[P∇G− G∇P] · r R2 sin θ dϕ dθ

=

2π∫

0

π/2∫

0

R2[P∂rG− G∂rP] sin θ dϕ dθ.

By simultaneously introducing and removing R2ikGP sin θ to the integral one obtains

∫

S2

[P∇G− G∇P] · n dS2 =

2π∫

0

π/2∫

0

R2[P∂rG− G∂rP− ikGP + ikGP] sin θ dϕ dθ

=

2π∫

0

π/2∫

0



 RP
︸︷︷︸

bounded

R(∂rG− ikG)
︸ ︷︷ ︸

→0

− RG
︸︷︷︸

bounded

R(∂rBP− ikP)
︸ ︷︷ ︸

→0



 sin θ dϕ dθ.

Applying the Sommerfeld conditions, the above equation establishes that as R→ ∞,

the integral over S2 vanishes. As such, Equation 2.11 becomes

P(xA, ω) =
∫

z=0

[P∇G− G∇P] · n dS. (2.15)

Note that if G in the above equation was replaced with G + H, it remains unchanged

as long as ∆H + k2H = 0 and G + H satisfies Sommerfeld conditions. Let us choose an

H such that G + H = 0 on z = 0. It is not hard to verify that

H(x′, ω) = − e−ik‖xA−x′‖

4π‖xA − x′‖ , (2.16)

where x′ = (x, y,−z) is such a function. Therefore, the second part of the integrand in

Equation 2.15, now (G + H)∇P · n, is identically zero on z = 0 and the equation reduces

to

P(xA, ω) =
1

4π

∫

z=0

P(x, ω)∇
(

e−ikρ

ρ
− e−ikρ′

ρ′

)

· n dS, (2.17)

where ρ = ‖xA − x‖ and ρ′ = ‖xA − x′‖.
The Rayleigh integral is obtained evaluating the above expression. A simple calcula-
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tion yields

∇G · n =
1 + ikρ

ρ
G cos φ, (2.18)

where cos φ = r · n is the angle between xA − x and n. Similarly for H,

∇H · n =
1 + ikρ′

ρ′
H cos φ′, (2.19)

where cos φ′ = r′ · n′ is the angle between xA − x′ and n′.
On z = 0, certain simplifications can be made. First, x = x′, so r = r′, ρ = ρ′ and

G = −H. Also, n = −n′, and thus cos φ = − cos φ′. As consequence, ∂nG = ∂nH and

Equation 2.17 becomes

P(xA, ω) =
1

2π

∫

z=0

P(x, ω)

(
1 + ikρ

ρ2 e−ikρ cos φ

)

dS. (2.20)

Equation 2.20 is known and the Rayleigh integral of the second kind.

2.3 Matrix formulation

By letting

W(xA − x, ω) =
1 + ikρ

2πρ2 e−ikρ cos φ, (2.21)

Equation 2.20 can be written as

P(xA, ω) =

∞∫

−∞

∞∫

−∞

W(xA − x, yA − y, zA, ω)P(x, y, 0,ω)dx dy. (2.22)

This equation is a convolution in x and y between W(x, ω) and P(x, ω):

P(x, y, z, ω) = W(x, y, z, ω) ∗
x,y

P(x, y, 0, ω). (2.23)

If P(x, ω) does not vary laterally, that is, it does not depend on y, Equation 2.20

becomes

P(xA, ω) = − ik

2

∫

z=0

P(x, z, ω)H
(2)
1 (kρ)dx, (2.24)

where H
(2)
1 is the first order Hankel function of the second kind (Berkhout, 1985). In
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matrix and a column vector, respectively. Equation 2.26 can be written as

P+(zj) = W+(zj, zj−1)P+(zj−1). (2.27)

There are two observations to be made about the previous equation. Firstly, W+(zj, zj−1)

can both be seen as the propagator matrix from level zj−1 to level zj. It can also be seen as

the response to the spacial-temporal impulse. To see that, set P(zj−1) = [0, . . . , 0, 1, 0, . . . , 0]T.

It is clear that P(zj) = (W+)i(zj, zj−1). Therefore, the i-th column of W+(zj, zj−1) is the

response of an impulsive source at (xi, zj−1) measured along the level zi.

Our model of wave propagation is almost concluded. To finalize it, we must add

reflection and transmission through interfaces, since the matrices W+ only describe

propagation through homogenous media. It can be shown (Berkhout, 1985; Verschuur,

1991) that they can both be described by matrix operations, just as propagation was.

Transmission across the interface zj can be written as

P+(z+j ) = T+(zj)P+(z−j ), (2.28)

where the superscripts − and + on zj refer to the quantities before and after transmission,

respectively. Now that reflection will be included in the model, we refer to P+ as the

downgoing wave field (which is the one we have been discussing so far) and P− as the

upgoing wave field, which will be presented shortly. Again in Berkhout (1985); Verschuur

(1991) it is shown that

P−(zj) = R(zj)P+(zj), (2.29)

where R(zj) describes how the wave field is reflected on the level zj. Each column of

the matrix describes the upward-traveling impulse response of an impulsive source at

(xn, zj) as described in de Bruin et al. (1990). To end the chapter, let us introduce a few

more definitions: W−(zj−1, zj) =
[
W+(zj, zj−1)

]T,

W+(zn, z0) = W+(zn, zn−1)T(zn−1)W
+(zn−1, zn−2)T(zn−2) · · ·T(z1)W

+(z1, z0), (2.30)

and

W−(z0, zn) = W+(zn, z0). (2.31)

Finally, note that P+(zj) and P−(zj) are vectors and correspond to one shot. Let

P+
n (z0) correspond to a shot with source signature S+

n (z0) that was placed at position xn

on the z0 plane. The matrix P+(z0) is defined by having its n-th column be P+
n (z0). The

matrices S+(z0) and P−(z0) are defined similarly.



Chapter 3

Surface-Related Multiple Elimination

It was the future reflected
It felt familiar but new

MGMT

Future Reflections

3.1 Introduction to multiples

Multiple is the name given to an event in a seismic section resulting from waves that

reflected multiple times in the subsurface (Sheriff and Geldart, 1995). In this sense,

multiples oppose primaries, which incur only one reflection in the subsurface. It is wise to

note that a seismic trace does not record only multiples and primaries, but all other sort

of events, such as direct waves, refracted waves and so on; the seismic section contains

all wave phenomena along with other sorts of noise. Multiples are nonetheless quite

important in the analysis of the data, since they tend to have comparable amplitude to

those of some primaries, and they are not always temporally separated from the data as

much as direct waves.

It is common to depict wave paths as rays. Rays arise from applying the method

of characteristics to the wave equation, and are perpendicular to the wavefront (see

Bleistein, 1984; Červený, 2001). They not only provide a solid mathematical treatment of

wave propagation, but they are also a powerful visualization tool.

Figure 3.1 below shows the ray paths of a primary reflection and a multiple reflection

(solid blue and dashed red, respectively). They both result from a source placed at S and

13
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Each colored dot in Figure 3.2 is an arrival of a certain feature of the wave. The green

one for example, is an arrival of the direct wave. These different components of the wave

field can be depicted, as we have before, as rays. The corresponding rays to these arrivals

are shown in Figure 3.3. Thus, the green dot in Figure 3.2 at 4.75 km and 0.2 s means

that, in Figure 3.3, the green ray took 0.2 s to travel from the source position (5 km) to the

receiver at 4.75 km.

Figure 3.3: Ray paths of the different events of Figure 3.2.

It is important to observe that the multiples, though similar to the primaries in shape,

are different. They have a different moveout behavior and thus cannot simply be treated

as the primary shifted in time. However, it is important to note that for some types of

multiples this treatment can be effective (see Robinson and Treitel, 2009, chap. 11). In

this work, we shall exploit another method for predicting multiples, SRME.

SRME is a tool for predicting and eliminating surface multiples. Surface multiples

are multiples that have at least one reflection in the acquisition surface, in contrast with

internal multiples, which reverberate only in the internal layers of the earth. In the marine
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case, surface multiples are very important. Since the acquisition surface is a free surface

with normal reflection coefficient close to −1,* its multiples tend to appear prominently

in the seismic gathers.

3.2 1D SRME

Before the 2D case is tackled, it is interesting to establish exactly how SRME works in one

dimension. A detailed overview of the technique is given by Dragoset et al. (2010), and

it includes the one dimensional case. A similar treatment is given by Verschuur (2006).

As was stated in the introduction, SRME fits in the predict-subtract schemes of multiple

removal techniques. The prediction part will be addressed first.

The convolutional model of the earth states that if a receiver is placed at the same

position as the source, the source has a signature of s(t) and the impulse response of the

earth is r(t), then the trace recorded will be given by p(t) = (s ∗ r)(t). The trace p(t)

contains the primaries and the multiples of all orders. First the case with a Dirac delta

source will be considered.

3.2.1 Ideally impulsive source

Let x(t) denote the trace measured with a Dirac delta source, that is, x(t) = (δ ∗ r)(t).

For simplicity the convolution will be denoted pointwise, that is, x(t) = δ(t) ∗ r(t). Also,

denote the part of x(t) which only contains the primaries as x0(t). In this scenario, it is

possible to write the first order multiples, that is, the multiples that reflected only once

in the surface as a function of x0(t).

The multiple that reflected only once in the surface can be seen as two separate events.

The first event is the wave path up until it reflects off the surface. The second event is

the wave path after it reflects off the surface. The first event is clearly the primary. The

second event can be seen as the response of the earth to reflected part of the first event.

Since we are trying to model only the multiple, we suppose we only measure the second

event. Therefore, the first order multiple can be written as

m1(t) = r0x0(t)
︸ ︷︷ ︸

Reflected primary

∗ x0(t).
︸ ︷︷ ︸

Reponse to primary

(3.1)

*Considering the va = 343 m s−1, vw = 1560 m s−1, ρa = 1.2 kg m−3 and ρw = 1020 kg m−3, a simple
calculation yields R⊥ = (vaρa − vwρw)/(vaρa + vwρw) ≈ −0.99948.





3.2. 1D SRME 18

produce exactly that.

F [x(t)](ω) = F



∑
n≥0

rn
0 x0(t) ∗ · · · ∗ x0(t)
︸ ︷︷ ︸

n+1 times



 (ω)

= ∑
n≥0

rn
0F [x0(t) ∗ · · · ∗ x0(t)](ω)

= ∑
n≥0

rn
0F [x0(t)](ω)n+1

= F [x0(t)](ω) ∑
n≥0

rn
0F [x0(t)](ω)n (3.5)

From now on, F [ f (t)](ω) will be denoted simply as F(ω). In this notation, one can write

Equation 3.5 as

X(ω) = X0(ω) ∑
n≥0

rn
0 X0(ω)n. (3.6)

Note that the sum above is the Laurent series of the function 1/(1− r0X0(ω)), which

converges for |X0(ω)| < 1. In practice, one does not have X0(ω). However, one does

have X(ω), which can be normalized to have unit L2 norm.† This will guarantee that

|X(ω)| < 1, which in consequence will guarantee that |X0(ω)| < 1. Hence,

X(ω) =
X0(ω)

1− r0X0(ω)
. (3.7)

This equation can be manipulated to yield

X0(ω) =
X(ω)

1 + r0X(ω)
(3.8)

which is remarkably similar to Equation 3.7. Again, with |X(ω)| < 1, one can write the

previous equation as

X0(ω) = X(ω) ∑
n≥0

(−r0)
nX(ω)n. (3.9)

This is the first main result of SRME. It provides the primaries in terms of full data

record, containing all order multiples. However, it fails to be useful in practice for two

reasons. First, r0 needs to be known. This is not a major drawback in the marine case,

†By Parseval’s Theorem, ‖x(t)‖2 = ‖X(ω)‖2, therefore, normalizing to unit L2 norm will force the
signal to have |X(ω)| < 1 for all ω.
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since r0 can be approximated to −1. In the land case, this is dealt with in a different

manner. The second shortcoming is that the equation assumes a Dirac delta source. This

shall be addressed henceforth.

3.2.2 Arbitrary source

In order to include the source signature s(t), first note that the trace p(t) resulting from

such source can be written as

p(t) = s(t) ∗ r(t)

= s(t) ∗ δ(t) ∗ r(t)

= s(t) ∗ x(t). (3.10)

Equivalently, the multiple-free p0(t) response with s(t) source is given by

p0(t) = s(t) ∗ x0(t). (3.11)

Recalling Equation 3.4, one may write it as

x(t) = x0(t) + r0x0(t) ∗ x0(t) + r2
0x0(t) ∗ x0(t) ∗ x0(t) + . . .

= x0(t) ∗ [δ(t) + r0x0(t) + r2
0x0(t) ∗ x0(t) + . . . ]

= x0(t) ∗ [δ(t) + r0x(t)]. (3.12)

The equation above can be convolved with s(t) to yield an expression for p(t).

x(t) ∗ s(t) = x0(t) ∗ s(t) + r0x0(t) ∗ x(t) ∗ s(t)

p(t) = p0(t) + r0x0(t) ∗ s(t) (3.13)

Let a(t) be a function such that a(t) ∗ s(t) = r0δ(t), that is, it acts as a deconvolution for

the source s(t). In this case, Equation 3.11 can be written in function of a(t):

p0(t) ∗ a(t) = r0x0(t) ∗ a(t),

which can be incorporated into Equation 3.13 producing the following result

p(t) = p0(t) + p0(t) ∗ a(t) ∗ p(t). (3.14)
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In the Fourier domain, the equation becomes

P(ω) = P0(ω) + P0(ω)A(ω)P(ω).

Solving for P0(ω) one obtains

P0(ω) =
P(ω)

1 + A(ω)P(ω)
, (3.15)

which, expanded as a series in the time domain, becomes

p0(t) = p(t)− a(t) ∗ p(t) ∗ p(t) + a(t) ∗ a(t) ∗ p(t) ∗ p(t) ∗ − . . . . (3.16)

This result is the essence of 1D SRME. It establishes that the primary can be obtained

by adding successive autoconvolutions of the trace to itself, as long as these autoconvolu-

tions are properly deconvolved with respect to the source. The process can be proposed

in an iterative manner.

Algorithm 3.1 Iterative 1D SRME

Choose p
(0)
0 (t) = p(t).

for 0 ≤ i < ∞ do

Calculate a(t) such that it minimizes ‖p
(i)
0 − a(t) ∗ p

(i)
0 (t) ∗ p(t)‖

p
(i+1)
0 ← p

(i)
0 − a(t) ∗ p

(i)
0 (t) ∗ p(t)

end for

In practice, calculating a(t) is complicated, since it involves knowledge of the source

wavelet and the reflectivity coefficient. The usual way to surpass this obstacle, is by

choosing a(t) to be of a finite length N f and finding the coefficients that lead to the

smallest L2 norm of p
(i)
0 − a(t) ∗ p

(i)
0 (t) ∗ p(t). The reasoning behind this, is that when

the correct a(t) is chosen, Algorithm 3.1 will generate the series present in Equation 3.16.

Therefore the multiples will be correctly removed, causing the L2 norm to decrease.

As such, the criteria for finding the correct a(t) is chosen to be exactly that one which

decreases the L2 norm. When this process is done at each iteration, it is called adaptive

SRME. It is a process with its own pitfalls, and the purpose of this work is to overcome

some of them.
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3.3 2D SRME

In the 2D case the power of the matrix notation and overall theory developed in Chapter 2

will become evident. Let P−tot(z0) denote the total upgoing wave field measured (in the

frequency domain) at the level z0. It is composed of the response of the propagated

source signature S+(z0), but also, in a recursive manner, the reflected upgoing wave field.

This can be seen with the aid of the following diagram.

Π(z0)S
+(z0) + Π(z0)R(z0)P

−
tot(z0) P−tot(z0)

Figure 3.5: Block diagram representing Equation 3.18.

Following the introduction of the source energy S+(z0), it is propagated through the

interfaces, reflecting off of each them as it travels through the subsurface. The operator

Π(z0), given by the following equation, describes this propagation.

Π(z0) =
n

∑
m=1

W−(z0, zm)R(zm)W
+(zm, z0) (3.17)

After the source has been fully propagated downwards and upwards, the total wave

field (at that point) reaches the surface. It then reflects off of it; the reflection is obtained

multiplying it by R(z0). This wave field is then propagated with Π(z0). Once again it

reaches the surface and is reflected off of it. This recursion, described by Berkhout (1985),

can be expressed in the following manner.

P−tot(z0) = Π(z0)
[
S+(z0) + R(z0)P

−
tot(z0)

]
(3.18)

Remember that this is a multi-record notation, and each column of the matrices P+
tot and

S+ correspond to a different shot. Assuming a constant reflection coefficient of r0 as was

done in the previous section, the reflection matrix becomes R(z0) = r0I and Equation 3.18

becomes

P−tot(z0) = Π(z0)
[
S+(z0) + r0P−tot(z0)

]
. (3.19)

The primary reflections are obtained by only propagating the source signatures once,

that is P−(z0) = Π(z0)S
+(z0). This term includes internal multiples, as SRME fails to
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produce them in the recursive manner given above. Therefore we have

P−tot(z0) = P−(z0) + r0Π(z0)P
−
tot(z0). (3.20)

Now, let us define a deconvolution matrix A such that S+(z0)A = r0I. If such matrix

exists, P−(z0)A = r0Π(z0) and Equation 3.20 can be written as

P−tot(z0) = P−(z0) + P−(z0)AP−tot(z0), (3.21)

which can be solved for P−(z0) yielding

P−(z0) = P−tot(z0)
[
I + AP−tot(z0)

]−1
. (3.22)

Algorithm 3.2 Iterative 2D SRME

Choose P(0) = Ptot.
for 0 ≤ i < ∞ do

Calculate A such that it minimizes ‖P(i) − P(i)APtot‖

P(i+1) ← P(i) − P(i)APtot

end for

The previous equation constitutes the main result of SRME. The primary reflection

can be written as a function of the total data P−tot(z0) and the deconvolution operator A.

These quantities are all related to the surface z0, and they involve no knowledge of the

subsurface. However, the operator A is not known a priori. Nonetheless, as long as a

suitable inverse for S+(z0) can be found and if I + AP−tot(z0) has an inverse, P−(z0) can

be obtained. Equation 3.22 stands as the two-dimensional version of Equation 3.15. From

it, we can adapt the Algorithm 3.1 for the 2D case.

Algorithm 3.2 is based on the approach first shown in Verschuur et al. (1992) and

detailed in Berkhout and Verschuur (1997). It is important to note that this algorithm can

be extended to the three dimensional case (see Dragoset et al., 2010).



Chapter 4

Independent Component Analysis

Young man, in mathematics you don’t
understand things. You just get used to
them.

John von Neumann

4.1 Introduction

4.1.1 Motivation

The method of independent component analysis was historically motivated by the desire

to separate mixtures of independent signals (Herault and Jutten, 1987). That is, suppose

that one has observed n random variables, {xi}i∈{1,...,n}. Suppose also, that these random

variables are linear combinations of statistically mutually independent random variables

{si}i∈{1,...,n}, that is

x1 = a11s1 + · · ·+ a1nsn
...

xn = an1s1 + · · ·+ annsn,

(4.1)

which can be more succinctly written as:

x = As, (4.2)

23
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where (x)i = xi, (A)ij = aij and (s)i = si, for i ∈ {1, . . . , n}. While there exists results

for rectangular matrices A (Comon, 1994; Taleb and Jutten, 1999), this work will concern

itself with the square case. Without loss of generality, these random variables will be

considered zero mean. Thus the problem ICC attempts to solve can be stated as follows.

Problem 1 (Separation). Given a random vector x, such that

x = As,

recover the random vector s under the assumption that the components of s are statistically

mutually independent.

If the mixture matrix A was known and invertible, the problem could be easily solved

by s = A−1x. However, A is not known a priori — fact which will be remedied by

assuming the mutual statistical independence of the components of s.

The rest of this chapter will be concerned with developing the appropriate machinery

to solve this problem efficiently. Some theorems regarding the “solvability” of the ICA

problems (separability, identifiability and uniqueness) are well exposed and proved in

Eriksson and Koivunen (2004), in which earlier work (Comon, 1994; Taleb and Jutten,

1999; Cao and Liu, 1996) is expanded. For our purposes, it suffices to know that Problem 1

has a solution under the mild assumptions that A is full column rank and at most one

source sj is Gaussian.

4.1.2 History

While the mathematical formulation of the problem as shown above was first given

by Comon (1994), the method of ICA was known earlier. In particular, the works of

Herault and Jutten were the first published results to blindly separate signals based

on the criterion of independence. They worked on the problem in as early as 1983,

culminating in their article Herault and Jutten (1987), where they expose an algorithm

to perform ICA. The work was presented in 1986, and consisted in using an adaptive

neural network to separate two mixtures of independent signals. It coined the term ICA,

in connection with PCA (principal component analysis).

In 1987, identifiability, a key aspect of ICA, was developed and finally published in

Giannakis et al. (1989). Throughout the late 1980s and early 1990s, efforts were made in

optimizing the algorithm and establishing firmer theoretical grounds for it.

However, it was only in 1994 that Comon proposed a polynomial time algorithm

for performing ICA, based on mutual information. In his aforementioned article, the
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problem was formulated mathematically and criteria for its solution were established,

extending previous results.

From then on, ICA garnered the attention of the signal processing community, and

was established as a mature line of research. Currently, ICA is used in a myriad of differ-

ent areas, from neuroscience, in the analysis of EEG (electroencephalography) signals, to

geophysics, in the analysis of seismic signals.

4.2 ICA by maximizing nongaussianity

Problem 1 can be tackled in a number of different ways. As was described above, the first

algorithm to perform ICA a neural network described in Herault and Jutten (1987). Sub-

sequently, other approaches were developed, such as the infomax approach by Linkster

(1992) that was based on optimizing mutual information. This optimization benefits from

the use of other gradients which were first described independently by Cardoso (1996)

and by Amari et al. (1997).

However, other approaches not based on information have surfaced. These include

maximum likelihood algorithms (Gaeta and Lacoume, 1990; Pham et al., 1992), tensorial

methods (Cardoso, 1989, 1990) (including the JADE algorithm first described in Cardoso

and Souloumiac (1993)), and negentropy based methods. It is with this last class of meth-

ods that the following sections will be concerned with, following primarily Hyvärinen

(1999) and Hyvärinen et al. (2001). They will be used because of their fast convergence,

relatively simple theoretical basis, and attested competence.

4.2.1 Nongaussianity and the Central Limit Theorem

The idea behind using nongaussianity to maximize mutual independence is based on

an interpretation of the Central Limit Theorem (CLT). While there are many CLTs, the

following formulation is of interest.

Theorem 1 (Central Limit Theorem). Let {ηn}n∈N be a sequence of independent random

variables with finite variances. Define

ζn =
n

∑
i=1

ηi and χn =
ζn − E[ζn]

Var[ζn]
.
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Then, if the Lindeberg condition* is satisfied, χn converges weakly† to a Gaussian distribution

with zero mean, and unitary variance as n→ ∞.

In the application at hand, it is impossible to predict whether the random variables

will satisfy the Lindeberg condition, therefore, the proof will be omitted. The reader can

refer to Koralov and Sinai (2007) for more details.

The importance of the CLT lies on the fact that it states that sums of independent

random variables tend to be “more Gaussian” than each random variable by itself. There-

fore, an indirect measure of independence is nongaussianity, or how much a random

variable deviates from being Gaussian. Important measures of nongaussianity include

kurtosis and negentropy.

Before these measures are presented, it is important to expose how they will be used

in practice. Recalling the ICA model, x = As. Assuming A is invertible, s = A−1x,

that is, si is given by a linear combination of xi. Therefore, a linear combination of s,

qTs, is a linear combination bTx of x. Clearly bTx = bTAs, and consequently, q = ATb.

By the CLT, in general terms, the more nongaussian qTs, the more independent that

random variable will be. However, qTs will be the most independent when qTs ∝ si,

since any linear combination of the si are more Gaussian than each si independently.

Therefore, maximizing the nongaussianity of qTs, one obtains a scaled version of one

of the sources. The obtained random variable is called an independent component (IC).

Also, since qTs = bTx, the right hand, which is known, can be used for the maximization

of nongaussianity. The problem can be written as

max
b

nongaussianity of bTx

s. t. ‖q‖ = 1.

* The Lindeberg condition is that

lim
n→∞

1
Var[ζn]

n

∑
i=1

∫

{

x∈R:|x−E[ηi ]|≥ε
√

Var[ζn ]
}(x− E[ηi])

2 dFi(x) = 0

for every ε > 0. Intuitively, the Lindeberg condition states that
ηn − E[ηn]
√

Var[ηn]
become small as n increases.

†The sequence of probability measures Pn converges to P weakly if

lim
n→∞

∫

R

f (x)dPn(x) =
∫

R

f (x)dP(x)

for every continuous bounded function f .
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The whole problem lies on accurately measuring nongaussianity of bTx and finding its

global maxima, subject to the appropriate constraint.

4.2.2 Nongaussianity by kurtosis

Kurtosis is defined as the fourth cumulant of a random variable. For a zero mean random

variable, it is given by‡

kurt[x] = E[x4]− 3(E[x2])2.

The importance of kurtosis, lies in the fact that the kurtosis of a Gaussian random variable

is zero. Since all random variables are assumed to be zero mean, this fact will stated

and proved for a zero mean Gaussian variable, however it is still valid for any Gaussian

variable.

Proposition 1. Let xg be a zero mean Gaussian variable such that Var[xg] = σ2. Then

kurt[xg] = 0.

Proof. Let ϕ(ω) be the characteristic function of xg, that is ϕ(ω) = E[exp(iωx)]. Then

ϕ(ω) = exp
(

−1
2

ω2σ2
)

.

This stems directly from the fact that ϕ(ω)/2π is the inverse Fourier transform of

pxg(x) =
1√

2πσ2
exp

(−x2

2σ2

)

. Now, let M(t) = ϕ(−it) be the moment generating func-

tion of xg. By definition, its Taylor series is given by

M(t) =
∞

∑
k=0

E[xk]
tk

k!
.

Therefore, in order to calculate the second and fourth moments of xg one must find the

second and fourth order terms of the Taylor expansion of M(t). Since

M(t) = exp
(

1
2

t2σ2
)

‡The general expression is (Hyvärinen et al., 2001, chap. 2)

kurt[x] = E[x4]− 3(E[x2])2 − 4 E[x3]E[x] + 12 E[x2](E[x])2 − 6(E[x])4.
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we have that

M(t) =
∞

∑
k=0

(t2σ2/2)k

k!

=
∞

∑
k=0

σ2k

2k

t2k

k!

=
∞

∑
k=0

σ2k · (2k)(2k− 1) · · · (k + 1)
2k

t2k

(2k)!
.

As was expected, E[x2] = (σ2 · 2)/2 = σ2. Moreover, E[x4] = (σ4 · 4 · 3)/22 = 3σ4.

Consequently, kurt[xg] = 3σ4 − 3(σ2)2 = 0.

In light of this, kurtosis is an attractive measure of nongaussianity. However, some

caution must be had when using kurtosis for that purpose. Firstly, not all zero kurtosis

random variables are Gaussian. These so called mesokurtic random variables do not

appear much in practice, and can be safely ignored for the purposes of the applications

at hand. Also, it is not wise to use kurtosis compare the nongaussianity of leptokurtic

(positive kurtosis) random variables with platykurtic (negative kurtosis) random vari-

ables. This is because, while leptokurtic random variables can have arbitrarily large

kurtosis, the kurtosis of platykurtic random variables are bounded by below.

Established the measure of nongaussianity, the problem can be stated as:

max
b
| kurt[bTx]|

s. t. ‖q‖ = 1.

There is a problem, however. Prima facie, it is impossible to obtain ‖q‖ from b, since

q = ATb, and the mixing matrix A is unknown. Therefore, it is important to apply a

whitening preprocessing to x. Whitening x refers to applying a linear transformation V

to x, such that E[Vx(Vx)T] = I. Let z = Vx. This linear transformation can be given

by V = D−1/2ET, where E[xxT] = EDET is a spectral decomposition (Hyvärinen et al.,

2001). Note that the ICA model and the ICs remain the same: z = (VA)s, while the

mixing matrix changes. Now, the function to be maximized is | kurt[wTz]|, subject to the

same constraint as before. However, since q = ATb, and b = VTw,

‖q‖2 = (ATVTw)T(ATVTw) = wTVAATVTw. (4.3)
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Furthermore,

I = E[zzT]

= E[(VAs)(VAs)T], since z = VAs.

= E[VAssTATVT]

= VA E[ssT]ATVT , since s has mutually independent components.

= VAATVT. (4.4)

Substituting Equation 4.4 in Equation 4.3, one obtains ‖q‖ = ‖w‖. The maximization

problem becomes:
max

w
| kurt[wTz]|

s. t. ‖w‖2 = 1.
(4.5)

The whitening step is paramount to a practical solution via maximization of nongaus-

sianity. Without it, it would be quite hard to algorithmically constrain q to lie on the unit

sphere.

The first order necessary Karush–Kuhn–Tucker (KKT) conditions for this problem are

the following (Nocedal and Wright, 2006, chap. 12). Let

L(w, λ) = −| kurt[wTz]|+ λ(‖w‖2 − 1),

and w∗ be a local minimum of the aforementioned maximization problem. Then there

exists a λ∗ such that

∇wL(w∗, λ∗) = 0.

This is also known as the method of Lagrange multipliers, and is equivalent to

∂| kurt[wTz]|
∂w

∣
∣
∣
∣
w=w∗

= λ
∂(‖w‖2 − 1)

∂w

∣
∣
∣
∣
w=w∗
,

which yields

2λw∗ = 4 sign (kurt[w∗Tz])(E[z(w∗Tz)3]− 3w∗‖w∗‖2),

or simply

w∗ = λ̃(E[z(w∗Tz)3]− 3w∗).

An iteration to solve this equation follows.
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Algorithm 4.1 FastICA for kurtosis

Choose random vector w0.
while wT

n wn−1 6= 1 do

w+ ← E[z(wT
n−1z)3]− 3wn−1

wn ←
w+

‖w+‖
end while

It is the basis for the FastICA algorithm, developed in Hyvärinen (1999), which shall

be revisited in the following section.

4.2.3 Nongaussianity by negentropy

Another attractive measure of nongaussianity is negentropy, based on differential entropy.

Differential entropy of a random variable x is defined as

h(x) = −
∫

R

px(ξ) log px(ξ)dξ. (4.6)

It can be seen as a measure of randomness. For a more detailed discussion, see Cover

and Thomas (2006). In the present discussion, it suffices to show an important property.

Proposition 2. Let xG be a zero mean Gaussian random variable. Then, for any zero mean

random variable y with Var[y] = Var[xG] ≡ σ2, h(xG) ≥ h(y). That is to say, a Gaussian

random variable is the most entropic amongst random variables of the same variance.

Proof. In order to prove this property, the Kullback-Leibler (KL) divergence will be intro-

duced. Let pu and pv be the probability density functions (pdfs) of u and v, respectively.

The KL divergence is defined as:

DKL(pu, pv) =
∫

R

pu(ξ) log
(

pu(ξ)

pv(ξ)

)

dξ (4.7)

for any pu, pv, DKL(pu, pv) ≥ 0.

In fact, from Jensen’s inequality (see Rudin, 1987, chap. 3), if ϕ is a strictly convex

function, E[ϕ(z)] ≥ ϕ(E[z]). Taking ϕ(z) = − log(z) and evaluating it at z = pv(ξ)/pu(ξ),
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it is true that

DKL(pu, pv) = Eu

[

ϕ

(
pv(ξ)

pu(ξ)

)]

≥

≥ ϕ

(

Eu

[
pv(ξ)

pu(ξ)

])

=

= − log
(∫

R

pu(ξ)
pv(ξ)

pu(ξ)
dξ

)

=

= − log
(∫

R

pv(ξ)dξ

)

= 0.

Now, let xG be the Gaussian random variable from the hypothesis, and y any zero mean

random variable. Therefore

0 ≤ DKL(pxG
, py) =

=
∫

R

py(ξ) log
(

py(ξ)

pxG
(ξ)

)

dξ =

= −h(y)−
∫

R

py(ξ) log(pxG
(ξ))dξ.

Substituting pxG
for its value of

exp
(

−ξ2

2σ2

)

√
2πσ2

and applying the logarithm rule yields

h(y) ≤ −
∫

R

py(ξ) log
(

1√
2πσ2

)

dξ −
∫

R

py(ξ) log(e)
(−ξ2

2σ2

)

dξ. (4.8)

The right-hand side, in turn, can be evaluated to

1
2

log(2πσ2) +
log(e)

2σ2 Ey[ξ
2] =

1
2

log(2πσ2) +
log(e)

2
=

=
1
2

log(2πeσ2) =

= h(xG). (4.9)

The last passage stems from the fact that h(xG) =
1
2

log(2πeσ2). Combining Equation 4.8

and Equation 4.9 one obtains, as wanted, h(y) ≤ h(xg).

From entropy, one can build a measure of nongaussianity called negentropy. It is

defined as

J(x) = h(xG)− h(x), (4.10)
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where xG is a Gaussian random variable with variance identical to that of x. In Sec-

tion 4.2.2, the random variables were whitened before the maximization problem was

treated numerically. Since the same whitening step will be performed in this case, all

random variables will be assumed to be white, that is, zero mean and unit variance.

From the previous property of entropy, negentropy is nonnegative and is only zero

when x is Gaussian. That is the reason negentropy is a very attractive measure of

nongaussianity. By maximizing negentropy given a fixed variance, one obtains the most

nongaussian random variable.

Note that in order to evaluate negentropy, one must know the pdf of the random

variable, or, equivalently, all of its moments. In practice, these moments are unknown,

and evaluating even the first higher order moments is both impractical and highly error-

prone. Therefore, an approximation of J must be made. The classic approach by the use

of cumulants yields the following approximation (first seen in Comon, 1994):

JC(x) =
E[x3]2

12
+

kurt[x]2

48
. (4.11)

This expression results from expanding the pdf in the basis of Hermite polynomials,

procedure detailed in Example 1 of Appendix A.

A latent problem with this expression is that it becomes unreliable as the data starts

to contain outliers. The reason is because the conventional estimates of kurtosis are

sensitive to isolated values that deviate too much from the mean.

A better method for approximating J is by using non-polynomial basis functions in

the expansion of the pdf. This is explained in Appendix A. For the present purposes it

suffices to choose a few of these functions Gi satisfying the following criteria (Hyvärinen

et al., 2001, chap. 5):

1. Estimating E[Gi(x)] must be simple and robust;

2. Gi(|x|) must not grow faster than quadratically;

3. Gi must measure aspects of the distribution related to entropy. In particular,

choosing G(x) = − log p(x) would clearly be optimal if p(x) was known, since

E[G(x)] = J(x).

Common choices for these are log cosh(x) and− exp
(

− x2

2

)

, but they are not exclusive

(see Hyvärinen, 1999; Hyvärinen et al., 2001, chap. 5). It is important to note that while

any number of functions can be chosen, it is wise to limit this number to one or two
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functions. This is because the more functions are used, the harder it becomes to estimate

the expected values E[Gi(x)], and the expression for the approximated negentropy.

Suppose only one function G is chosen. In this case, the nongaussianity cost function,

that is, the approximated negentropy is given by

J1(x) =
1
2

E[G(x)]2. (4.12)

Thus, the problem after whitening becomes

max
w

1
2

E[G(wTz)]2

s. t. ‖w‖2 = 1.
(4.13)

or

min
w
− 1

2
E[G(wTz)]2

s. t. ‖w‖2 = 1.
(4.14)

In this case, different from the solution of Equation 4.5, a quasi-Newton projection

method shall be employed. Let f (w) = − 1
2 E[G(wTz)]2. Therefore,

∂ f

∂w
= −E[G(wTz)]E[G′(wTz)z]

or
∂ f

∂wi
= −E[G(wTz)]E[G′(wTz)zi],

where G′ is the derivative of the real valued function G. The Hessian is then given by

∂2 f

∂wi∂wj
= − ∂

∂wj

[

E[G(wTz)]E[G′(wTz)zi]
]

= −∂ E[G(wTz)]

∂wj
· E[G′(wTz)zi]− E[G(wTz)] · ∂ E[G′(wTz)zi]

∂wj

= E[G′(wTz)zj]E[G′(wTz)zi]− E[G(wTz)]E[G′′(wTz)zizj]

or,

∇2 f = −E[G′(wTz)z]E[G′(wTz)z]T − E[G(wTz)]E[G′′(wTz)zzT].

Note that the second order information is contained in the last term, in G′′. Therefore it
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is justifiable to approximate ∇2 f by

∇2 f ≈ −E[G(wTz)]E[G′′(wTz)zzT]

≈ −E[G(wTz)]E[G′′(wTz)]E[zzT]

≈ −E[G(wTz)]E[G′′(wTz)]I.

Using H = −E[G(wTz)]E[G′′(wTz)]I is attractive because its inverse is simple to cal-

culate. In fact, the corresponding search direction is given by (see Nocedal and Wright,

2006, chap. 3)

−H−1∇ f = − −1
E[G(wTz)]E[G′′(wTz)]

I
[

−E[G(wTz)]E[G′(wTz)z]
]

= −E[G′(wTz)z]

E[G′′(wTz)]
,

giving rise to the following iteration (Hyvärinen, 1999).

Algorithm 4.2 FastICA for one nonlinearity

Choose random vector w0.
while ∇wn 6= 0 do

w+ ← E[zG′(wn
Tz)]− E[G′′(wn

Tz)]wn

wn+1 ←
w+

‖w+‖
end while



Chapter 5

ICA and SRME

It is a capital mistake to theorize before one has
data. Insensibly one begins to twist facts to
suit theories, instead of theories to suit facts.

Arthur Conan Doyle

A Scandal in Bohemia

5.1 Introduction

The SRME method is composed of two stages. First, there is the estimation of the

multiple-only common shot gather. Secondly, there is the subtraction of the multiple.

In the adaptive SRME, both steps are performed concurrently in each iteration. The

ICA-based method explored in this work is different. Instead of subtracting the multiples

from the gathers, the ICA based method will attempt to separate the two types of events.

In order to use ICA, the problem must be posed accordingly. Let p denote a full

common shot gather, p0 denote the primaries and m denote the multiples, all as column

vectors. The method shown in the Chapter 3 yields, from p, an estimate of m, which

shall be denoted as m̃. This estimate is then deconvolved to obtain a new estimate m̃d.

This deconvolution can be done in many ways. One such way is by adaptive filtering,

and can be performed by finding f(i) such that

f(i) = arg min
f∈R

Nf

‖p(i) − f ∗ m̃(i)‖,

35
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where the i superscript refers to the ith window, and setting m̃
(i)
d = f(i) ∗ m̃(i). Simply

put, m̃d is obtained using a window filter matching between p0 and m̃. This window

can be in time and space, and different authors have varying approaches (for a per trace

approach see Verschuur and Berkhout (1997) and for a windowed approach, see Ventosa

et al. (2012)). In this work, all of them will be tested, and the best method will be chosen

for each separate dataset. Since the predicted deconvolved multiples do not match the

true multiples exactly and the data is composed of only primaries and multiples, then

there is bound to be residue of primaries in m̃d. The second equation stems from the fact

that the total data is a linear combination of primaries and multiples.

m̃d = a21p0 + a22m (5.1)

p = a11p0 + a12m (5.2)

These two equations give rise to a 2× 2 system of equations

As = x, (5.3)

where sT = [pT
0 mT], xT = [pT m̃T

d ] and (A)ij = aij. Supposing that m and p0 are

independent, one may apply ICA. This formulation is similar to that of Donno (2011),

while Lu (2006) and Kaplan and Innanen (2008) use larger mixing matrices.

5.2 Single-reflector 1D models

In order to investigate the effectiveness of the ICA method for multiple removal it is

important to use both simple and complex models. The simplest models one may devise

are those of a flat-layered earth, with only one reflector. Two such models are Model 1,

displayed in Figure 5.1, and Model 2. These first simple tests will serve as basis for the

next, more complicated models.

5.2.1 Model 1

This model is essentially a single layered model, since the first reflector is the acquisi-

tion surface, and the model is deep enough (10 km, not shown) such that there are no

reflections on the bottom of the model. The 2D SRME method requires sufficient spacial

sampling of the source and receivers. It also requires close to zero-offset traces. In order

to satisfy these requirements, the acquisition was done placing the receptors at distances
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Figure 5.1: Velocity model. The reflectors are positioned at depths of 10 km and 500 m.
The velocities in the layers are 0 km s−1, 4 km s−1 and 6 km s−1.

(a) Common shot with partially re-
moved direct wave p.

(b) Predicted multiples m̃.

Figure 5.2: Common shot gather and its corresponding predicted (first) multiples. Notice
the artifacts generated by the residual direct wave.
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(a) Deconvolved multiples m̃d with an
105 point matching filter.

(b) Primaries resulting from subtrac-
tion p− m̃d.

(c) ICA-extracted primaries s1. (d) ICA-extracted multiples s2.

Figure 5.3: Common shot gather and its multiples by LS subtraction and ICA.
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from 0 km to 10 km, in steps of 10 m. Each shot simulation was equally ranged and

spaced. All sources and receivers were placed at a depth of 10 m.

In Chapter 3, Figure 3.2 shows the modeled response of the earth from a source placed

5 km from the origin. In order to apply SRME, the direct wave must be removed. For this

model, the direct wave was only be partially removed.

Figure 5.2 shows the common shot gather and its predicted first order multiples.

Figures 5.2a and 5.2b show that further processing must be done before subtraction

can be applied. This has been discussed in Section 5.1 where it was stated how the

source signature needs to be deconvolved. The deconvolved multiples, m̃d, and the

direct subtraction, p− m̃d, are shown in Figures 5.3a and 5.3b, respectively. Figures 5.3d

and 5.3c shows both ICs recovered applying FastICA (detailed in Algorithm 4.2) to the

input data of p and m̃d.

Number of filter points

1 35 70 105 140

ICA extraction 23.16% 3.76% 3.70% 3.41% 6.85%

LS subtraction 23.83% 3.78% 3.77% 3.53% 7.10%

Table 5.1: Error of the estimated primaries using differently sized filters. The error is
given by ‖p0 − pest

0 ‖/‖p0‖. Note that the length of the source is 70 samples.

The difference between Figure 5.3b is Figure 5.3c barely noticeable visually, if notice-

able at all. This is expected. In the model, none of the primaries intersected the multiples.

As such, there is to be very little “leakage” of primaries into the predicted multiples.

Most errors stem from the artifacts generated by less than ideal data. Relative errors are

shown in Table 5.1 for different filters.

5.2.2 Model 2

Model two is very similar to the previous one. The main differences will stem from how

the data is processed. Figure 5.4 depicts the velocity model. The acquisition is done

exactly as detailed above, with the same parameters.

The direct wave was correctly removed in the entire data, but the refractions were left

in. The reason why they were not removed is evident in Figure 5.5b: the refraction of

the multiple is predicted from the refraction of the primary. Also, in order to simulate a

more marine geometry, the data was cut as in a split-spread geometry.
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Figure 5.4: Velocity model. The reflectors are positioned at depths of 10 km and 600 m.
The velocities in the layers are 1.5 km s−1 and 6 km s−1.
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(a) Common shot with partially removed di-
rect wave p.
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(b) Predicted multiples m̃.

Figure 5.5: Common shot gather and its corresponding predicted multiple. The multiple
prediction panel shows no artifacts.
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(a) Deconvolved multiples m̃d with a 30

point matching filter.
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(b) Primaries resulting from subtraction p−
m̃d.
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(c) ICA-extracted multiples s2.
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(d) ICA-extracted primaries s1.

Figure 5.6: Common shot gather and its multiples by LS subtraction and ICA. Differences
indicated by the arrow.
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Figure 5.5 depicts the common shot section that will be worked on and its predicted

first multiple. One must notice how the first multiple in Figure 5.5b is on a much lower

scale than that in Figure 5.5a. This evidences the need for a correction before subtraction.

In order to subtract the multiple, as was done in the previous model, different tests

were performed. Since there are many parameters to set in each methods, only the one

yielding the best results will be displayed. Following are the results of those experiments.

Firstly, the least squares subtraction method was performed using windows. The

result displayed in Figure 5.6b is the one with the best performance, and it corresponds

to that of a time window of 90 traces, a spacial window of 35 traces and 30 point filter.

One can observe how the multiple was been well attenuated, but in a less than perfect

way. The residuals are seen under the arrow.

This can be attributed to the fact that the wavelet occupies many samples, and would

require a long filter to be correctly deconvolved. However, since the deconvolution

process becomes unstable as the filter grows, the length of 30 samples was the largest

filter that would not botch any window. Both the prediction of the multiples and the

least squares subtraction were performed with software from the DELPHI consortium,

which was generously provided by Eric Verschuur.

The ICA method is displayed in figures 5.6c and 5.6d. In this case, instead of doing

in only one window as before, short spacial windows of 6 traces were used. The result

is similar to what was seen before, the least squares subtraction in a simple model is

hard to be improved by ICA. However, in this result we see something that was not seen

before, namely, that primary leaked into the extracted multiple. This is marked with an

arrow in Figure 5.6c. Nonetheless, the extracted primaries also have less multiples. This

is seen by comparing the areas indicated by the arrows in figures 5.6b and 5.6d. The

area in the ICA extracted primary panel is slightly more discolored than that in the panel

corresponding to the LS subtraction.

Had we wanted to discriminate only the multiples it would be considered a regression

in the result of the least squares subtraction scheme. However, since the objective is to

obtain a panel with attenuated multiples, this can be seen as an improvement. With these

results at hand, we may now attempt to separate multiples and primaries on a slightly

more complicated model.
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5.3 Double-reflector 1D model

This model is also a constant velocity model, however it has two horizontal reflectors.

The acquisition, as previously, was done in a split-spread fashion, with the same spacing

of 10 m in both the shot and the receiver directions.

Figure 5.7: Velocity model. The reflectors are positioned at depths of 1 km and 300 m.
The velocities in the layers are 1.5 km s−1, 2.5 km s−1 and 6 km s−1.

The presence of two reflectors allows for the primary reflection of the second reflector

to overlap with the first multiple reflection of the second reflector on a common shot

panel. This overlap is indicated in Figure 5.8a by the red dashed arrow. The preprocessing

done to the data prior to the multiple prediction step was only the muting of the direct

wave and the refraction. Since the offsets were not distant enough for the refraction of

the multiple reflection to appear, it was also muted from the first primary.

One must note that there are in fact three multiples as is seen in Figure 5.8. The first

two events are the first and second multiple of the first reflector, respectively. The final

event is the first multiple of the second reflector.

The LS subtraction was performed in windows. The length in the time dimension

was 701 samples, i.e. the full trace, and in the space direction was 100 samples. Smaller

time and spacial windows made the process unstable, and presented zeroed windows in

some cases. The filter length was of 31 points. The results of this subtraction are seen in

Figure 5.9b.

A few things can be seen in the results of Figure 5.8. Regarding the multiples, it is

evident that no primaries were leaked to the extracted multiples as happened in Model

2. This serves to show that while the leakage may occur, it will depend on the data,
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(a) Common shot with muted direct wave
and first refraction p.
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(b) Predicted multiples m̃.

Figure 5.8: Common shot gather and its corresponding predicted multiple.

and even if it does happen, it will be of a low magnitude. Therefore, it can safely be

ignored. In the area indicated by the black solid arrow in figures 5.9b and 5.9d, the LS

subtraction shows a multiple that is not observed the panel of the ICA extraction. The

same observation can be made of the area marked by the blue dotted arrow. These areas

are of the first multiples of the first and second reflector, respectively. Therefore, the ICA

extraction performed better in terms of multiple removal.

In objective terms, the sample at offset −120 m and time 0.784 s (under the black solid

arrows) of p− m̃d had an amplitude of −1.135× 10−10, while the same sample in s1 had

an amplitude of −4.776× 10−11.

In relation to the primaries, one can also see slight improvements in the ICA panel over

the LS panel. Under the red dashed arrow, for example, on the sample at offset −1120 m

and time 1.096 s the magnitude of the ICA panel is higher than that of the LS. Precisely,

the sample of s1 has amplitude −5.105× 10−9 while that of p− m̃d is −4.491× 10−9. It

is a slight but positive difference, since it enhanced the primary reflection.

This model has shown that ICA can be a post-processing step after least squares

subtraction, since it attenuated the multiples while enhancing the primaries.
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(a) Deconvolved multiples m̃d with a 31

point matching filter.
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(b) Primaries resulting from subtraction p−
m̃d.
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(c) ICA-extracted multiples s2.
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(d) ICA-extracted primaries s1.

Figure 5.9: Common shot gather and its multiples by LS subtraction and ICA. Differences
indicated by the arrows.
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5.4 Field dataset

Following the two synthetic models, the next experiment was performed on a real dataset

acquired in the Jequitinhonha Basin which kindly ceded by Petrobras. The acquisition has

a receiver spacing of 25 m, which is the same spacing that between shots. The minimum

offset in a shot is −150 m and the maximum is −3125 m. The full data used features a

total of 878 shots; one of them is shown in Figure 5.10a. The recording time is of 7 s: 1751

samples recorded at every 4 ms.
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(a) Common shot panel p (clipped).
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(b) Predicted multiples m̃ (clipped).

Figure 5.10: Common shot gather and its corresponding predicted multiple.

After preparing the data and applying the prediction step of SRME, one obtains

Figure 5.10b. Figure 5.11a shows a window of the common shot panel in Figure 5.10a,

for a better view of the events. Analogously, Figure 5.11b shows the same window but

of Figure 5.10b. In these figures one can observe, by aid of the arrows, the first and most

prominent multiple reflection, as well as other multiples.
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(a) Common shot panel p (clipped).
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(b) Predicted multiples m̃ (clipped).

Figure 5.11: Windowed common shot gather and its predicted multiples.

Firstly, the horizontal small offsets in Figure 5.10a are a result of the technique used

to fill the data up to zero offset, which consisted of copying the closest offset trace (in

this case −150 m) to the offsets up to the zero offset. This technique is one of the three

most common ones used, the other two being zero-padding and extrapolation by Radon

transform.

The zero-padding technique is the one with the worst results but arguably the fastest,

while the Radon extrapolation provides the most accurate results at the cost of speed,

since it requires extensive human interaction. Copying the smallest offset trace is an in

between solution, since it is completely automated and provides reasonable results. Its

shortcomings, as can be seen in Figure 5.11b, is that the multiple is poorly predicted close

to the zero offset. Nonetheless, since the data that will be used for posterior processing

should only contain the original offsets, this is not an unsurmountable problem. It

should be noted, however, that for shallow water acquisitions, Radon extrapolation is

recommended, since small offset data becomes valuable.



5.4. Field dataset 48

Offset (m)

T
im

e
 (

s
)

 

 

−3000 −2000 −1000 0

0

1

2

3

4

5

6

7

−1

−0.5

0

0.5

1

1.5

x 10
6

(a) Deconvolved multiples m̃d.
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(b) Primaries resulting from p− m̃d.
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(c) ICA-extracted multiples s2.
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(d) ICA-extracted primaries s1.

Figure 5.12: Common shot gather and its multiples by LS subtraction and ICA.
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(a) Windowed deconvolved multiples m̃d.
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(b) Windowed primaries resulting from sub-
traction p− m̃d.
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(c) Windowed ICA-extracted multiples s2.
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(d) Windowed ICA-extracted primaries s1.

Figure 5.13: Windowed common shot gather and its multiples by LS subtraction and ICA.
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After the prediction, a least squares filter was applied with the following parame-

ters: time window of 700 samples and a spacial window of 100 samples. The process

resulted in two panels, namely, the one with attenuated multiples, and another with

the deconvolved multiple prediction. Following the filtering, ICA was performed using

the deconvolved multiples and the original common shot panel, in order for the real

multiples to be extracted.
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Figure 5.14: Difference panel s1 − (p− m̃d).

This is the same process that was applied to the synthetic datasets and its results can

be seen in Figure 5.12. The windowed version of these panels are displayed in Figure 5.13.

As in the previous model, thanks must be given to Eric Verschuur for allowing the use

of the software for prediction and subtraction of the multiples.

The results show above are hard to compare with such images, as the differences

between the two techniques are small. Therefore it is important to introduce a difference

panel, such as in Figure 5.14. In it, one observes the difference s1 − (p− m̃d) in a time
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window that focuses on the first multiple events. It is important to note that the ICA

panel s1 has been renormalized to obtain a meaningful comparison. If the ICA panel

attenuated the multiples better, than we should observe negative values on the multiples.

This is because its absolute value is lower than that of the LS subtraction. Likewise for

primaries, one should observe positive values for those. That is, in fact, what happens.

Observing the first multiple reflection (under the red arrow), they exhibit a black color,

which is characteristic of negative values. Those values above this event, which are

primaries, are almost all light gray, showing them to be positive. Consequently, it can be

said that the ICA extraction was successful, even though its improvement has about two

orders of magnitude less than the primary events.



Chapter 6

Conclusion

Tudo acaba, leitor; é um velho truísmo, a que se pode acrescentar que
nem tudo o que dura, dura muito tempo. Esta segunda parte não
acha crentes fáceis; ao contrário, a ideia de que um castelo de vento
dura mais que o mesmo vento de que é feito, dificilmente se despegará
da cabeça, e é bom que seja assim, para que se não perca o costume
daquelas construções quase eternas.

Machado de Assis

Dom Casmurro

Je n’ai fait celle-ci plus longue que parce que je n’ai pas eu le loisir
de la faire plus courte.

Blaise Pascal

Lettres provinciales

In this monograph, two different techniques were studied separately and then ap-

plied together in order to better attenuate certain types of multiple reflections in seismic

data. An overview of the problem was presented in the first section. Then, some basic

theory on the propagation of acoustic waves was developed in order to serve as a firm

mathematical basis for the technique of surface-related multiple elimination. Following

the mathematical description of the physical phenomena, the technique of independent

component analysis was formulated and described. It was then applied to the problem

at hand, serving as a bridge between geophysics and signal processing. Results were

52



53

shown in Chapter 5. These results stemmed from four different datasets. The first three

datasets were generated using simple synthetic models. They were first studied in order

to gauge the performance of the algorithm and to gain experience for more elaborate

data. The final dataset was real field data, of the Jequitinhonha Basin, Brazil.

The technique of ICA, applied after a least squares subtraction was shown to be

beneficial to the data in general. Even though the gain were slight, the technique showed

an improvement over the standard least squares elimination. This was seen particularly

well in the synthetic models. In the field dataset, a subtraction panel shows that ICA did

also improve the subtraction, however the nature of the data makes it hard to evaluate

the performance for higher order multiples, since they are hard to identify in real data.

Nonetheless, there are downsides to ICA. First of all, it requires an optimization

scheme that, though fast for one small common shot panel, may be a burden if applied

to the full data. Secondly, it adds one more step whose parameters need to be carefully

set for each different dataset, and maybe even different common shot panels of the

same acquisition. Since the gains were not dramatic, it means that one may be adding

an unnecessary amount of processing of prestack data for negligible differences in a

poststack section.

The study done here has room for expansion. There are a few things that could have

been done differently, that might also yield interesting results. First off, a lot of emphasis

was put on the nongaussianity aspect of ICA, and the only technique to separate signals

was FastICA. As is known, however, there are many complementary methods to the

negentropy approach, such as likelihood methods and tensorial methods. Furthermore,

more general forms of independent component analysis can be studied, such as one

using a convolutional model, instead of an additive model.

Regarding the prediction of the multiples, any method that accurately predicts mul-

tiples could be used for an estimation of the multiples. For example, wave field extrap-

olation methods could be successfully used in this case. The three dimensional version

of SRME could also be used, and since it obtains better results that the two dimensional

version used, it is possible that ICA will perform even better in that case.

This work has established that this field of research can be a healthy addition to the

plethora of multiple elimination and attenuation methods in seismic geophysics. The

results were positive and have opened up new avenues of future research in the area.
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Červený, V., 2001, Seismic Ray Theory: Cambridge University Press.

de Bruin, C. G. M., C. P. A. Wapenaar, and A. J. Berkhout, 1990, Angle-dependent

reflectivity by means of prestack migration: Geophysics, 55, 1223–1234.

Donno, D., 2011, Improving multiple removal using least-squares dip filters and indepen-

dent component analysis: Geophysics, 76, V91–V104.

Dragoset, B., E. Verschuur, I. Moore, and R. Bisley, 2010, A perspective on 3D surface-

related multiple elimination: Geophysics, 75, 75A245–75A261.

Eriksson, J., and V. Koivunen, 2004, Identifiability, Separability, and Uniqueness of Linear

ICA Models: IEEE Signal Processing Letters, 11.

Gaeta, M., and J.-L. Lacoume, 1990, Source separation without prior knowledge: the max-

imum likelihood solution: Proceedings of the European Signal Processing Conference,

621–624.

Giannakis, G., Y. Inouye, and J. Mendel, 1989, Cumulant based identification of mul-

tichannel moving-average models: Automatic Control, IEEE Transactions on, 34, 783–

787.

Herault, J., and C. Jutten, 1987, Space or time adaptive signal processing by neural

network models: AIP Conference Proceedings 151 on Neural Networks for Computing,

American Institute of Physics Inc., 206–211.

Hyvärinen, A., 1999, Fast and robust fixed-point algorithms for independent component

analysis: IEEE Transactions on Neural Networks, 10, 626–634.

Hyvärinen, A., J. Karhunen, and E. Oja, 2001, Independent Component Analysis: John

Wiley & Sons, Inc.

Kaplan, S. T., and K. A. Innanen, 2008, Adaptive separation of free-surface multiples

through independent component analysis: Geophysics, 73, V29–V36.

Koralov, L. B., and Y. G. Sinai, 2007, Theory of Probability and Random Processes, second

ed.: Springer. Universitext.

Kreyszig, E., 1978, Introductory Functional Analysis with Applications: John Wiley &

Sons, Inc.

Linkster, R., 1992, Local synaptic learning rules suffice to maximise mutual information

in a linear network: Neural Computation, 4, 691–702.

Lu, W., 2006, Adaptive multiple subtraction using independent component analysis:

Geophysics, 71, S179–S184.



Bibliography 56

Lu, W., and L. Liu, 2009, Adaptive multiple subtraction based on constrained indepen-

dent component analysis: Geophysics, 74, V1–V7.

Nocedal, J., and S. J. Wright, 2006, Numerical optimization, second ed.: Springer.

Springer Series in Operations Research and Financial Engineering.

Pham, D.-T., P. Garrat, and C. Jutten, 1992, Separation of a mixture of independent

sources through a maximum likelihood approach: Proceedings of the European Signal

Processing Conference, 771–774.

Robinson, E. A., and S. Treitel, 2009, Geophysical Signal Analysis, seg ed.: Society of

Exploration Geophysicists.

Rudin, W., 1987, Real and complex analysis: McGraw-Hill.

Sheriff, R. E., and L. P. Geldart, 1995, Exploration Seismology, 2 ed.: Cambridge Univer-

sity Press.

Sommerfeld, A., 1949, Partial Differential Equations in Physics: Academic Press.

Taleb, A., and C. Jutten, 1999, On undertermined source separation: Proceedings of the

IEEE International Conference on Acoustics, Speech, and Signal Processing, 1445–1448.

Ventosa, S., S. L. Roy, I. Huard, A. Pica, H. Rabeson, P. Ricarte, and L. Duval,

2012, Adaptive multiple subtraction with wavelet-based complex unary Wiener filters:

Geophysics, 77, V183–V192.

Verschuur, D. J., 1991, Surface-related Multiple Elimination: An Inversion Approach:

PhD thesis, Delft University of Technology.

——–, 2006, Seismic multiple removal techniques: past, present and future: EAGE Publi-

cations bv. Education Tour Series.

Verschuur, D. J., and A. J. Berkhout, 1997, Estimation of multiple scattering by iterative

inversion, Part II: Practical aspects and examples: Geophysics, 62, 1596–1611.

Verschuur, D. J., A. J. Berkhout, and C. P. A. Wapenaar, 1992, Adaptive surface-related

multiple elimination: Geophysics, 57, 1166–1177.

Yilmaz, Ö., 2001, Seismic Data Analysis: Processing, Inversion, and Interpretation of

Seismic Data: Society of Exploration Geophysicists, volume 1 of Investigations in

Geophysics.



Appendix A

Expansions of pdfs in functional bases

Except for boolean algebra (Section 1.2) there is no theory more
universally employed in mathematics than linear algebra; and there
is hardly any theory which is more elementary, in spite of the fact
that generations of professors and textbook writers have obscured its
simplicity by preposterous calculations with matrices.

Jean Dieudonné

Foundations of Modern Analysis

Suppose that one is able to write the pdf p(x) of a random variable x in the following

manner:

p(x) =
∞

∑
k=0

ckFk(x)φ(x), (A.1)

where φ(x) =
e−x2/2
√

2π
and the sum converges uniformly. Then one would have

∫

R

Fℓ(x)p(x)dx =
∫

R

[

Fℓ(x)
∞

∑
k=0

ckFk(x)φ(x)

]

dx

=
∞

∑
k=0

ck

[∫

R

Fℓ(x)Fk(x)φ(x)dx

]

.
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Suppose now that {Fi}i∈N is an orthogonal sequence with respect to the inner product

〈 f , g〉φ =
∫

R
f (x)g(x)φ(x)dx. Then

∫

R

Fℓ(x)Fk(x)φ(x)dx = 〈Fℓ, Fk〉φ

= δkℓ.

Consequently,

∫

R

Fℓ(x)p(x)dx =
∞

∑
k=0

ck

[∫

R

Fℓ(x)Fk(x)φ(x)dx

]

=
∞

∑
k=0

ckδkℓ

= cℓ.

In conclusion, in order to obtain the coefficients cℓ of the expansion in Equation A.1,

one simply needs to calculate the expected values E[Fℓ(x)]. Note that the supposition

of orthogonality is not restrictive, since any linearly independent set of functions can be

made orthogonal by applying the Gram-Schmidt orthogonalization process (see Kreyszig,

1978, chap. 3). Therefore, for any sequence of functions, one can turn it into a orthonormal

sequence.

Given a countable sequence of functions, {Fi}i∈N, one may make the following as-

sumptions:

(a) F0(x) = 1, so c0 = E[1] = 1;

(b) F1(x) = x, with c2 = 0, for a zero mean random variable;

(c) F2(x) = 1√
2
(x2 − 1), with c3 = 0, for a random variable with unit variance.

Again, these constraints are not restrictive. In a countable sequence of functions, the

functions 1, x, and x2 can be introduced and the sequence may be reordered to let them

be the first three functions. One can then apply a Gram-Schmidt orthogonalization to

obtain 1, x and x2 − 1. Finally, one may normalize them and relabel the sequence so as

to have F0, F1 and F2 as defined above.
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Since any random variable can be redefined as to have zero mean, and renormalized

to have unit variance (in case E[x2] 6= 0), the coefficients c1 and c2 can be assumed to

be both zero. Using the expansion in Equation A.1, one may calculate the differential

entropy of a certain random variable x.

h(x) = −
∫

R

p(x) log p(x)dx

=−
∫

R

φ(x)

(

1 +
∞

∑
k=3

ckFk(x)

)

log

[

φ(x) ·
(

1 +
∞

∑
k=3

ckFk(x)

)]

dx (A.2)

Letting ε =
∞

∑
k=3

ckFk(x), Equation A.2 can be more succinctly developed.

h(x) = −
∫

R

φ(x) · (1 + ε) · [log φ(x) + log(1 + ε)]dx

= −
∫

R

φ(x) log φ(x) + φ(x)ε log φ(x) + φ(x)(1 + ε) log(1 + ε)dx (A.3)

Observe that −
∫

R

φ(x) log φ(x) = h(xG), where xG is a Gaussian random variable with

unit variance. The second term in Equation A.3 can be shown to equal zero. In fact,

−
∫

R

φ(x)ε log φ(x)dx = −
∫

R

φ(x)

[
∞

∑
k=3

ckFk(x)

]

·
[

− log(2π)

2
− x2 log(e)

2

]

dx

=
∞

∑
k=3

[
log(2π)

2
ck

∫

R

Fk(x)φ(x)dx +
log(e)

2
ck

∫

R

x2Fk(x)φ(x)dx

]

=
∞

∑
k=3

[
log(2π)

2
ck〈1, Fk〉φ +

log(e)
2

ck〈x2, Fk〉φ
]

= 0, since Fk is orthogonal to polynomials of degree ≤ 2.

Therefore,

h(x) = −
∫

R

φ(x) log φ(x) + φ(x)(1 + ε) log(1 + ε)dx.
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Note also that, by a Taylor expansion, (1 + ε) log(1 + ε) = ε + ε2/2 + O(ε2).

−
∫

R

φ(x)(1 + ε) log(1 + ε)dx = −
∫

R

φ(x)(ε + ε2/2 + O(ε2))dx

= −
∫

R

φ(x)





∞

∑
k=3

ckFk(x) +
1
2

(
∞

∑
k=3

ckFk(x)

)2

+ O(ε)



 dx

= −
∫

R

φ(x)








∞

∑
k=3

ckFk(x) +
1
2

∞

∑
k=3

c2
k Fk(x)2 −

∞

∑
k=3
ℓ=4
k 6=ℓ

ckcℓFkFℓ + O(ε)








dx

= −
∞

∑
k=3

ck〈1, Fk〉φ +
∞

∑
k=3
ℓ=4
k 6=ℓ

ckcℓ〈Fk, Fℓ〉φ −
1
2

∞

∑
k=3

c2
k〈Fk, Fk〉φ −

∫

R

φ(x)O(ε)dx

= −1
2

∞

∑
k=3

c2
k −

∫

R

φ(x)O(ε)dx, since {Fi}i∈N is an orthonormal sequence.

Hence, h(x) may be approximated as

h(x) ≈ h(xG)−
1
2

∞

∑
k=3

c2
k , (A.4)

which is obtained disregarding the terms O(ε). This in turn, leads to

J(x) ≈ 1
2

r

∑
k=3

c2
k , (A.5)

which is obtained substituting Equation A.4 in the definition of negentropy (Equa-

tion 4.10) and truncating to r terms the infinite sum of c2
k.
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Example 1 (Hermite polynomials). Let {Hi}i∈N be the Hermite polynomials. These polynomi-

als are obtained applying the Gram-Schmidt procedure with respect to the internal product 〈·, ·〉φ
to the sequence {xi}i∈N. The first five (normalized) Hermite polynomials are (Abramowitz and

Stegun, 1972, pg. 775):

H0(x) = 1 H3(x) =
1√
6
(x3 − 3x)

H1(x) = x H4(x) =
1√
24

(x4 − 6x2 + 3)

H2(x) =
1√
2
(x2 − 1)

Note that no modifications must be made to the order of the sequence, since the first three functions

are exactly those required by the assumptions. Therefore, in this case,

J(x) ≈ c2
3 + c2

4

2
,

where c3 = E[H3(x)] and c4 = E[H4(x)]. Therefore,

E[H3(x)] = E
[

1√
6
(x3 − 3x)

]

=
1√
6
(E[x3]− 3 E[x])

=
E[x3]√

6
, since E[x] = 0;

E[H4(x)] = E
[

1√
24

(x4 − 6x2 + 3)
]

=
E[x4]− 6 + 3√

6
, since E[x] = 1

=
kurt[x]√

6
, since kurt[x] = E[x4]− 3,

and finally, one obtains J(x) ≈ E[x3]2

12
+

kurt[x]2

48
.
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