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Resumo 

Esta tese é uma coletânea de trabalhos feitos pelo candidato. Importantes 
ferramentas combinatórias são utilizadas, dentre as quais: funções geradoras, q­
cálculo, várias propriedades de seqüencias de números inteiros, etc; todas 
direcionadas para a teoria aditiva dos números (teoria de partições) e teoria de 
códigos. 

A tese consiste de seis trabalhos: três deles tratam de aspectos 
combinatóriaís (interpretações em terrnos de partições) de identidades do tipo 
Rogers-Ramanujan e onde várias seqüências de números inteiros aparecem. 

Um trabalho onde uma conjectura sobre transformação de Hankel e 
seqüencias de Catalan e Fibonacci foi provada. 

Um trabalho onde uma construção combinatória de uma classe de low­
density parity-check códigos é apresentada. Neste trabalho demonstra-se também 
uma interessante conexão entre uma seqüencia de números inteiros, definida por 
Odlyzko e Stanley, e esta classe de códigos. 

O último trabalho trata o problema de determinar a capacidade de canal 
de um sistema óptico usando um método numérico. 



Abstract 

This thesis consists of the publications done by the candidate. In these 
publications we have used many combinatorial tools including: generating 
functions, q-calculus, various properties of sequences of integer numbers etc. 
were used in the theory of partitions and the coding theory. 

The thesis consists of six papers: three of them take into consideration 
combinatorial aspects (interpretations in terms of different classes of partitions) o f 
ídentíties of the Rogers-Ramanujan type, are exp!ored and where dífferent 
sequences of integer numbers naturally appear. 

The fourth paper deals with Catalan sequence, discrete Hankel transform 
and Fibonacci sequence. A conjecture by Layman is proved. 

In the fifth paper a construction of a c!ass of Low-Density Parity-Check 
codes is proposed. An interesting connection between this class of codes and a 
sequence examined by Odlyzko and Stanley is also shown. 

The last paper deals with the prob!em of determining Shannon capacity of 
an optical system by a numerical method. 
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Introdução 

Esta tese é uma coletânea de trabalhos feitos pelo candidato. Consiste de seis 
trabalhos: três já publicados, um aceito para publicação e dois submetidos. 

Nestes trabalhos as ferramentas combinatórias: funções geradoras, q-cálculo, 
varias propriedades de seqüencias dos números inteiros, etc. foram usadas na teoria 
aditiva dos números (teoria de partições) e teoria da codificação. 

Os trabalhos estão agrupados pelos assuntos tratados e não estão em ordem 
cronológica. Em princípio podem ser lidos independentemente um do outro. No que 
segue apresentamos uma pequena descrição de cada um deles. 

1. "Fibonacci Numbers and Partitions" publicado no Fibonacci Quarterly, Vol. 41.3 
2003. Este é o primeiro trabalho que o candidato fez com seu orientador. O trabalho é 
baseado em duas conjecturas obtidas por Santos em sua tese de doutorado . Ferramentas 
de q-cálculo foram aplicadas em identidades do tipo Rogers-Ramanujan para se obter três 
interpretações combinatórias para os números de Fibonacci em termos de partições 
restritas e uma em termos de caminhos reticulados. Novas formulas para números de 
Fibonacci foram obtidas também. A interpretação combinatoria em termos de caminhos 
reticulados sai usando estas formulas. 

2. "Colored partitions and the Fibonacci sequence", submetido para a revista TEMA. 
Este pequeno trabalho pode ser visto como uma continuação de trabalho anterior. Aqui, 
temos uma nova interpretação dos números de Fibonacci, desta vez em termos de 
partições coloridas, mais uma nova fórmula para números de Fibonacci. Neste trabalho o 
candidato escreveu um pouco sobre historia e onipresença dos números de Fibonacci na 
natureza. 

3. "Polynomial generalizations of the Pell sequence and the Fibonacci sequence" 
aceito para publicação na revista Fibonacci Quarterly. Este é o trabalho mais longo nesta 
tese. Neste trabalho as mesmas ferramentas foram usadas para se obter generalizações 
polinomiais de seqüencias de Pell e Fibonaccí. As interpretações combinatórias foram 
apresentadas, junto com uma prova bijetiva de equivalência de duas classes de partições. 
Uma destes classes aparece na identidade sobre partições de Gõllnitz-Gordon, um 
resultado clássico na teoria de partições. 

4. "Catalan Numbers, the Hankel Transform, and Fibonacci Numbers", publicado no 
Journal of Integer Sequences, Vol. 5.1, 2002. Uma conjectura sobre transformação 
discreta de Hankel foi provada neste artigo. O trabalho despertou muita atenção. Vale 
mencionar que o candidato recebeu várias questões de diversos matemáticos 
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perguntando sobre detalhes e possíveis generalizações. O método aplicado usa teoria de 
polinômios ortogonais junto com funções geradoras e varias propriedades dos números 
de Fibonacci. 

5. "High-rate gírth-eight !ow-density parity-check codes on rectangular integer 
lattices", publicado em IEEE Transactions on Communications, Vol.:52.8, 2004. A 
construção combinatorial de uma classe de códigos low-density parity-check é 
apresentada neste trabalho. Estes códigos possuem grande girth -a propriedade desejada 
em caso de decodificação iterativa. Uma interessante e não esperada conexão entre uma 
seqüencia de números inteiros, definida por Odlyzko e Stanley, e esta classe de códigos 
foi provada no Teorema 3.1. Isso é a primeira aplicação dessa seqüencia na teoria de 
codificação. 

6. "Achievable Infonnation Rates for High-Speed Long-Haul Optical 
Transrnission", submetido ao Photonics Technology Letters. Este trabalho foi realizado 
durante o período em que o candidato esteve na University of Arizona, convidado pelos 
co-autores do trabalho anterior. Este trabalho apresenta uma excursão fora de área de 
seqüencias de números inteiros e combinatória. O problema de determinar a capacidade 
de canal de um sistema óptico é tratado usando um método numérico. O assunto tratado é 
difícil e existe grande interesse nele. Espera-se que este seja o primeiro numa serie de 
trabalhos relacionados com este tópico. 
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Fibonacci Numbers and Partitions 
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IMECC-UNICAMP, C.P. 6065, 13083-970 
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Abstract 
In this paper we present four different combinatorial interpreta­

tions for the Fibonacci numbers. Three in terms of restricted parti­
tions and one in terms of lattice paths. 

1 Introduction 

In a series of two papers ([6] and [7]) Slater gave a list of 130 identities of 
the Rogers-Ramanujan type. In [2] Andrews has introduced a two variable 
generalization in arder to look for combinatorial interpretations for those 
identities. In [5] one of us, Santos, gave conjectures for explicit formulas for 
families of polynomial that can be obtained using Andrews method for 74 
identities of the Slater's list. 

In this paper we are going to prove the conjectures given by Santos in [5] 
for identities 94 and 99. 

We show, also, that the family of polynomials Pn(q) related to identity 
94 given by 

Po(q) = 1, H(q) = l+q+q2 

(1.1) 
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is the generating functíon for partitions into at most n parts in which every 
even smaller than the largest part appears at least once and that the famíly 
Tn ( q) related to identíty 99 given by 

To(q) = 1, T1 (q) = 1 + q2 

(1.2) 
T;,(q) = (1 + q + q2n)Tn-l(q)- qTn-2(q) 

is the generating function for partitions into at most n parts in which the 
largest part is even and every even smaller than the largest appears at least 
once. 

In what follows we denote the Fibonacci numbers by Fn where F0 

O; F1 = 1 and Fn = Fn-l + F;,_ 2 , n 2: 2, and use the standard notatíon 

(A; q)n = (1- A)(l- Aq) ... (1- Aqn-1
) 

and 
co 

(A; q)oo = TI (1- Aqn), lql < 1. 
n=O 

We need also the following identities for the Gaussian polynomials 

[:] - [n~m] (1.3) 

[:] - [ n ~ 1 ] + qn-m [ :- ; J (1.4) 

[:] - [:~;]+qm[n~1] (1.5) 

where 

[:] (q; q)m 
for O ::; m ::; n, (1.6) - (q; q)m(q; q)n-m ' 

O otherwise 

2 The first family of polynomials 

We consider now the two variable function associated to identity 94 of 
Slater [7] which is: 
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(2.1) 

From thís we have that 

and in order to obtain a recurrence relation from this functional equation we 
make the following substitution 

00 

jg4(q,t) = LPntn. 
n=O 

Now we have: 
00 00 

n=O n=O 

which implies 

00 co 00 00 00 

L Pntn - L Pn-Jtn - L qPn-Jtn +L qPn-2tn = 1 + L rjn Pn-Jtn. 
n=O n=l n=l n=2 n=l 

From this last equation it is easy to see that 

(2.2) 
Pn(q) = (1 + q + q2n)Pn-J(q)- qPn-2(q). 

Santos gave in [5] a conjecture Cn(q), for an explicit formula for thís 
family of polynomials: 

C ( ) = ~ JSJ'+4J [ 2n + 1 ] 
n q .L.... q n- 5j 

J=-oo 
L 15J'+l4J+3 [ 2n + 1 J q -. 2 . n- bJ-

(2.3) 

In our next theorem we prove that this conjecture is true. 

Theorem 2.1. The family Pn(q) given in (2.2) is equal to Cn(q) gíven 
in (2.3). 
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Proof. Considering that C0 (q) 1 and C1 (q) = 1 + q + q2 we have to 
show that 

~ 15)
2
+4) l' 2n + 1 l _ ~ !5J'H4J+3 [ 2n + 1 J-

L.. q n- 5j J L.. q n- 5j - 2 
J=-oo ;=-oo 

= (l + q + ln) ( ~ qi5J
2
+4j [ 2n,~ 1 1- ~ qi5J'+I4j+3 [ 2n ~ 1 ] ) 

L.. n- oJ - 1 L.. n - 5) - 3 
;=-oo .J J=-oo 

-q c~ ª15j
2
+4j [ 2n-~ 3 l _ ~ ª15)'+14)+3 1 2n_~ 3 J) (2.4l 

~ 00 n- OJ - 2 J j~oo l n- OJ - 4 

If we apply (1.4) in each expression on the left side of (2.4) we get 

~ qi5P+4j rl 2n . ] + ~ qi5J'+9j+n+l [ :n J 
L.. n- 5J L.. n- OJ - 1 

;=-co J=-oo 

_ ~ q15)'+!4j+3 [ 2n J _ ~ ql5j 2+!9j+6+n [ 2n ] 
.L.. n- 5] - 2 L.. n- 5]- 3 
;=-oo ;=-co 

Applying now (1.5) to each sum in the expression above and replacing it in 
(2.4) we get after some cancellations 

~ qlSJ'+J+n [ 2n - 1 ] + ~ q15J'+9J+n+l [ 2n ~ 1 ] 
L.. n- 5] L.. n- ÕJ - 2 

;=-oo J=-oo 

_ ~ ql5j 2+9J+n+4 [ 2n ~ 1 ] _ ~ qi5J'+I9j+6+n [ 2n-~ 1 ] 
L.. n- 5J - 2 L.. n- OJ - 4 

J=-oo J=-oo 

= ~ qiSJ'+4J+l [ 2n ~ 1 ] _ ~ q15p+I4J+4 [ 2n ~ 1 ] 
L.. n - 5] - 1 L.. n - 5] - 3 

;=-co ;=-oo 

_ ~ q15J'+4J+I [ 2n ~ 3 ] + ~ qlsj'+14J+4 [ 2n ~ 3 ] .(2.5) 
L.. n - 5J 2 L.. n - 5] - 4 

J=-oo ;=-oo 

Considering the right side ofthe last expression and applying (1.4) on the 
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first two sums we get 

L
oo 15J'+4j+l le 2n- 2 l Loo 15J'+9J+l+n [ 2n- 2 Jl 

q -· lJ+ q -· 2 . n-~- . n-~-
1=-x J=-oo 

_ ~ ql5J'+l4J+4 [ 2n_~ 2 ] _ ~ ql5j'+l9J+6+n [ 2n_~ 2 l 
.L- n- OJ - 3 L- n- OJ - 4 

J=-oo J=-co J 

_ Loo 15j2+4J+l [ 2n- 3 ] Loo 15j'+14J+4 [ 2n- 3 ] 
q -· ') + q -· 4 . n- OJ - _ . n- oJ -

J=-oo J=-co 

Applying now (1.5) on the first and third sums on this last expression and 
making some cancellations we have that the right side of (2.5) is equal to: 

~ ql5J'-J+n [ 2n ~ 3 ] + ~ ql5i'+9J+l+n [ 2n ~ 2 ] 
L- n- ÔJ - 1 L- n ÔJ - 2 

J=-co J=-oo 

_ ~ ql5J2+9J+J+l+n [ 2n ~ 3 J _ ~ ql5J'+l9j+6+n [ 2n ~ 2 ] 
L- n- 5J - 3 L- n 5J - 4 

;=-oo J=-oo 

If we take now the left side of (2.5) and apply (1.4) to ali sums we get: 

~ ql5J'-J+n [ 2n - 2 ] + ~ ql5J'+4J+2n-l [ 2n ~ 2 ] 
L- n- 5J L- n- 5J - 1 

;=-oo ;=-oc 

+ ~ ql5J'+9J+n+l [ 2n ~ 2 ] + ~ q15j'+14j+2n+2 [ 2n ~ 2 J 
L- n- 5J - 2 .L- n- 5J - 3 

J=-oo J=-oo 

_ ~ ql5J2+9J+n+l [ 2n ~ 2 ] _ ~ q15j2+14j+2n+2 [ 2n ~ 2 ] 
L- n- 5J - 2 L- n- 5J - 3 

;=-oo ;=-oo 

- ~ ql5j
2
+14j+n+6 [ 2n ~ 2 ] - ~ ql5J'+24j+2n+9 rl 2n ~ 2 ] (2.6) 

L- n - 5J - 4 L- n - 5J - 5 
J=-co ;=-oo 

Applying now (1.5) on the first and fifth sums of this last expression and 
making cancellations with the sums from the right side given in (2.6) we are 
left with: 

~ ql5j2-6j+2n [ 2n --3 J + ~ ql5J'+4J+2n-l [ 2n ~ 2 ] 
L- n- uJ L- n- 5J - 1 

J=-00 J=-00 
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+ ~ ql5}'+l4j+2n+2 [ 2n . 2 Jl _ ~ ql5J'+4j+2n-l [ 2n -:- 3 J 
_L..- n- 5J - 3 L....t n - 5J - 2 

;=-oo J=-oo 

_ ~ ql5j2+l4j+2n+2 [ 2n -:- 2 J _ ~ ql5j2+24j+2n+9 I 2n -:- 2 " l 
L....t n - 5J - 3 L....t ' n- 5J - o J 

J=-oo J=-oo l 

Observing that the third sum cancels the fifth and replacing j by j + 1 
in the last sum we get after using (1.4) 

~ ql5j
2
+4J+2n+l [ 2n . 2 ] _ ~ ql5}'+4J+2n-l [ 2n-:- 3 ] 

L....t n- 5y - 1 _L..- n- 5J - 2 
J=-oo J=-oo 

which is identically zero by (1.5) completing the proof. O 
Next we make a few observations regarding the combinatorics of PN(q) 

given in (2.2). Knowing that PN(q) is the coefficient of tN in (2.1) that is: 

oo tn n2+n 

~ (1- t)(tq 2 ;~ 2 )n(tq; q2)n+l 

and considering that n2 + n = 2 + 4 + · · · + 2n we can see that the coefficient 
of t-'' in 

(tq2; q2)n(tq; q2)n+l 

is the generating function for partitions into exactly N parts in which every 
even smaller than the largest part appears at least once. Because of the 
factor (1- t) in the denominator we have proved the following theorem: 

Theorem 2.2: PN(q) is the generating function for partitions into at 
most N parts in which every even smaller than the largest part appears at 
least once. 

To see, now, the connection between the family of polinomiais PN( q) and 
the Fibonacci numbers we observe first that if we replace q by 1 in (2.2) we 
have 

Po(1) = 1; P1(1) = 3 

Pn(1) = 3Pn-l(l)- Pn-2(1) 
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and that for the Fibonacci sequence Fn we have also that F2 = 1; F4 = 3 
and 

which allow us to conclude that 

and from these considerations we have proved the following: 

Theorem 2.3: The total number of partitions into at most N parts in 
which every even smaller than the largest part appears at least once is equal 
to F2N+2· 

The family given in (2.2) has also an interesting property at q = . At 
this point we have 

Po(-1) = 1; H(-1) = 1 

Pn(-1) = Pn-!(-1) + Pn-z(-1) 

which tell us that for q -1 we have ali the Fibonacci numbers, i.e. 
Pn ( -1) = Fn+l· In order to be able to see what happens combinatorially at 
-1 we have to observe that when we change q by -q in (2.1) the only term 
that changes is (tq; q2)n+l and that now the coefficient of tN is going to be 
just the number of partitions as described in Theorem 2.3 having an even 
number of odd parts minus the number of partitíons of that type wíth and 
odd number of odd parts. We state this in our next theorem. 

Theorem 2.4. The total number of partitions into at most N parts 
in whích every even smaller than the largest part appears at least once and 
having and even number of odd parts mínus the number of those with an 
odd number of odd parts is equal to FN+l· 

In the table (2.1) we present, for a few values of n, all the results proved so 
f ar. The first column h as n, the second the partitions described in theorem 
2.4 with and even number of odd parts and the thírd column those with 
an odd number of odd parts. The fourth column has F2n+2 whích is the 
total number of partítíons in columns 2 and 3 and the fifth column has the 
dífference between the number of partitions on the second and third column 
which is Fn+l· 
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Partitions as described in Theorem 2.2 

'Nith an with an 
n even number of odd parts odd number of odd parts F2n+2 F,+I 

o 
"' 

I I 

I 

"' 
.. " " 3 1 

.. .. • 
4> .. .. " 

" " 
2 8 2 

" • • • • • • • • 
• • • • • • 

• .. .. • 
<!> 

.. • • • .. .. • 

.. .. .. .. .. • • .. .. .. • .. .. .. .. .. .. .. .. " " • .. .. • " " " " " " 21 3 3 .. .. .. • .. " .. .. .. " " " .. .. .. " . " .. .. .. " " .. .. .. " .. .. " .. " .. " . • • 
• .. • • • • " • • • 

• • • • .. " ••••••• 
" • .. .. .. • • •••• 

• . .. .. • .. 
Table 2.1 
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3 The second family of polynomials 

N ow we consider the two variable function given in Santos [5] associated 
to identity 99 of Slater [7] which is: 

oc in n2-+-n q . 
fgg(q, t) = I: (t· 2) (t . 2) 

n=O ,q n+l q,q n 
(3.1) 

From this we can get 

(1- t)(l- tq)fgg(q, t) = 1- tq + tq2 fgg(q, tq2) 

from which we obtain in a way similar to the one used to get (2.2) the 
following family of polynomials 

To(q) = 1: T1 (q) = 1 + q2 

(3.2) 

As for the family (2.2) Santos gave in [5] a conjecture for an explicity formula 
for (3.2) which is 

B ( ) = ~ 15P+2J [ 2n + 1 J _ ~ l5J'+BJ+1 [ 2n + 1 ] 
n q .L.... q n- 5] .L.... q n- 5) - 1 

J=-oo J=-oo 

(3.3) 

The proof for this conjecture is given in the next theorem. 

Theorem 3.1. The family Tn(q) given in (3.2) is equal to Bn(q) given 
in (3.3) 

Proof. Considering that B0 ( q) = 1 and B 1 ( q) = 1 + q2 we h ave to show 
that 
Bn(q) = (1 + q + q2n)Bn-1 (q)- qBn-z(q) which is: 

~ qlBi'+2J [ 2n + 1 ] _ ~ qlBJ'+SJ+l [ 2n,+ 1 ] 
.L.... n- 5) L.... n- uJ - 1 
J=-00 J=-00 

= (1 + q + q2n) c~ q15j
2
+2j [ 2n_-: 1 ] - ~ ql5J'+8j+l [ 2n---: 1 ] ) 

L.... n- DJ - 1 L.... n- 5J - 2 
=-co J=-co 
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-q ( ~ q15j'+2j [ 2n ~ 3 l - ~ l5j'+BJ+l [ 2n ~ 3 l) (3.4) 
_L. n- 5J 2 . L. n- 5) - 3 

J=-co J ;=-co -

We apply (1.4) on each sum on the left to get 

~ 0 15j
2
+2j [ 2n . ] + ~ q15J'+7J+n+l [ :n ] 

L. ~ n- 5; L. n- OJ - 1 
J=-oo ;=-co 

2n ] 
5j- 2 

_ ~ q15j 2 +8j+l [ 2n ] _ ..ç... q15j2 +13j+n+2 [ 
L. n - 5; - 1 L. n 

J=-oo ;=-oo 

Applying, now, (1.5) in all sums we obtain: 

~ q15P+2j [ 2n-~ 1 ] + ~ q15j'-3j [ 2n- 1 ] 
_L. n ~-l _L. n-~ 

J=-oo J=-oo 

Loo 15j'+7j+n+l [ 2n- 1 ] Loo 15j2+2j+2n [ 2n- 1 ] 
+ ª -· 2 + ª s· 1 . n - OJ - . n - J -

;=-oo J=-oo 

~ ql5j'+Sj+l [ 2n ~ 1 ] _ ..ç... q15j2+3j+n [ 2n ~ 1 ] 
L. n - 5J - 2 L. n - 5J - 1 

J=-oo J=-oo 

_ ~ ql5j 2 +13j+n+2 [ 2n_ . 1 ] _ ..ç... ql5j 2 +8j+2n [ 2n ~ 1 ] 
. L. n - ::J) - 3 L. n - 5J - 2 
J=-oo ;=-oo 

Replacing this in (3.4) and making cancellations we are left with: 

~ ql5j'-3j+n [ 2n -_1 ] + ..ç... q15P+7j+n+l [ 2n ~ 1 ] 
L. n- ::JJ _L. n- 5J - 2 

J=-oo ;=-oo 

_ ~ q15j 2 +3j+n [ 2n ~ 1 J _ ..ç... q!5j'+l3j+n+3 [ 2n ~ 1 ] 
_L. n- 5J - 1 L. n - 5) - 3 

J=-oo J=-oo 

= ~ ql5]'+2j+l [ 2n ~ 1 ] ..ç... ql5P+Sj+2 [ 2n ~ 1 J (3.5) 
L. n - 5J - 1 L. n - 5J - 2 

;=-co ;=-co 

_ ~ q15j'+2j+l [ 2n ~ 3 ] + ..ç... ql5j'+BJ+2 [ 2n-~ 3 ] 
L. n- 5J - 2 _L.. n- OJ - 3 

J=-oo J=-oo 
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A pplying ( 1.4) on the first two sums on the right si de o f this last expression 
we get for that side: 

00 2:::: ª15j
2
+2j+l 

j=-00 
[ 

2n- 2 ] Loo l5P+7j+n+l [ 2n. 2 ] 
5 . - + q -· 2 n- J 1 . n- OJ-

J=-oo 

~ ql5J 2 -r8J [ 2n ~ 2 lj _ ~ ql5j 2+l3j+n+l [ 2n ~ 2 ] 
L..t n- 5) - 2 L..t n- 5y - 3 

;=-co ;=-oo 

_ ~ ql5J'+2J+l [ 2n ~ 3 ] + ~ ql5J'+BJ+2 [ 2n ~ 3 ] 
L..t n - 5) - 2 L..t n - 5J - 3 

;=-oo ;=-co 

Using (1.5) on the first and third sums we get after cancellations 

~ ql5j 2 -3j+n [ 2n ~ 3 l + ~ ql5j 2+7J+n+! [ 2n ~ 2 J 
L..t n- 5) - 1 J L..t n- 5y - 2 

y=-oo J=-oo 

_ ~ ql5j2+3J+n [ 2n ~ 3 ] _ ~ l5P+l3j+2+n [ 2n ~ 2 J 
L..t n - 5) - 2 L..t n - 5) - 3 

;=-oo ;=-oo 

Applying (1.4) in all sums on the left side of (3.5) and making cancellations 
with the corresponding sums on the right we get: 

~ ql5j'-3j+n [ 2n- 2 J + ~ ql5J'+2j+2n-l [ 2n ~ 2 J 
L..t n- 5) L..t n- 5) - 1 

;=-oo ;=-co 

+ ~ ql5j 2 +12j+2n+2 [ 2n ~ 2 ] 
L..t n- 5)- 3 

J=-oo 

_ ~ ql5j2+3J+n [ 2n ~ 2 ] 
_L..t n- 5J -1 

J=-00 

_ ~ l5j2 +8j+2n [ 2n ~ 2 ] _ ~ ql5J'+l8J+2n+4 [ 2n-~ 2 ] 
L..t n - 5J - 2 L..t n - OJ 4 

;=-oo J=-oo 

= ~ ql5j
2
-3j+n [ 2n ~ 3 J _ ~ ql5J'+3j+n [ 2n ~ 3 J 

L..t n-5)-1 _L..t n-5]-2 
;=-oo ;=-co 

Using (1.5) on the first and fourth sums on the LHS we get: 

~ l5j2 -8j+2n [ 2n- 3 J 
L..t q n- 5J 

;=-00 

+ ~ ql5j 2+2j+2n-l [ 2n ~ 2 ] 
L..t n- 5J -1 

;=-00 
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+ ~ ql5j2+12j+2n+2 [ 2n --:- 2 J _ ~ q15j'-2J+2n-1 [ 2n--:- 3 ] 
.L. n- 5y - 3 L. n- 5J - 1 
;=-oo J=-oo 

~ ql5i'+8j+2n [ 2n --:- 2 . ] _ ~ q 15J'+l8j+5 [ 2n --:- 2 ] = O 
L. n- 5] - 2 L. n- 5) - 4 

J=-oo J=-oo 

Replacing j by j- 1 in the last sum and using (1.3) that sum cancels with 
the third. 

If we replace j by -j in the fourth sum using (1.3) and subtract from the 
second by (1.4) we get finally: 

00 

15J'-8J+2n [ 2n - 3 l + Loo 15j 2 -3j+3n-2~ 2n - 3 l 
q 5· J • q e• 1 . n-. J . n- OJ -

J=-00 ;=-00 - J 

_ ~ q15j
2
+8J+2n [ 2n --:- 2 J = O 

L. n- 5J- 2 
J=-00 

To see that this expression is, in fact, identically zero we apply (1.4) on the 
first two sums replacing j by -j and using (1.3) on the result which com­
pletes the proof. 

Considering that Tv ( q) is the coefficient o f tN in the sum 

oo tn n2+n 

~ (1- t)(t/ q2 )n(tq; q2)n 

and observing again that n 2 + n = 2 + 4 + · · · + 2n we see that the coefficient 
of tN in 

(tq2; q2)n(tq; q2)n 

is the generating function for partitions into exactly N parts in which the 
largest part is even and every even smaller the largest part appears at least 
once. From the presence of the factor (1 - t) in the denominator we have 
proved the following theorem: 

Theorem 3.2. Tn(q) is the generating function for partitions into at 
most N parts in which the largest part is even and every even smaller than 
the largest appears at least once. 
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Replacing now q by 1 in (3.2) we get 

To(l) = 1; T1 (1) = 2 

Tn(1) = 3Tn-J(l)- Tn-2(1) 

But for Fn we have 

F1 = 1; F3 = 2 

F2n+l = 3F2n-l - F2n-3 

which allow us to conclude that 

and by these results we have proved 

Theorem 3.3. The total number of partitions into at most N parts in 
which the largest part is even and every even smaller than the Jargest part 
appears at Jeast once is equal to F2n+l· 

For family (3.2) we have also that, at q = 1, we get all the Fibonacci 
numbers F:,, n 2: 2. 

T0(-1)=1; T1(-1)=2 

Tn( -1) = Tn-1( -1) + Tn-2( -1) 

i.e., Tn(-1) = Fn+2, n 2: O. 
If we make the same observation that have made for the first family of 

polynomials regarding the combinatorial interpretation at q = -1 we have 
proved the following result: 

Theorem 3.4. The total number of partitions into at most N parts in 
which the largest part is even and every even smaller than the largest part 
appears at least once and having an even number of odd parts minus the 
number of those with an odd number of odd parts is equal to FN+2 . 

In the table (3.1) we present, for a few values of n, all the results proved 
in this section. The first column has n, the second the partitions described in 
theorem 3.3 with and even number of odd parts and the third column those 
with an odd number of odd parts. The fourth column has F2n+l which is the 
total number of partitions in columns 2 and 3 and the fifth column has the 
difference between the number of partitions on the second and third column 
which is Fn+2· 
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Partitions as described in Theorem 3.3 

with an withan 
n even number of odd parts odd number of odd parts F2n+l Fn+2 

o <I> l l 

I <I> • • 2 2 

.. " .. .. 
<I> .. .. 

• .. .. 
2 5 3 

.. • • • 
• • 

• • • • • .. 
<I> • • .. .. .. .. • .. 

.. .. .. .. • .. .. • .. .. .. .. .. • .. .. .. .. l3 5 3 .. .. .. .. .. .. .. .. 
• .. • .. .. .. 

.. .. .. .. .. .. .. • •••••• .. .. .. .. .. • •••• . .. .. .. .. .. 

Table 3.1 
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4 A formula for Fn 

Using the fact that the Gaussian polynomias given in (1.6) are q-analogue 
of the binomial coefficient, i.e., that 

we may take the limits as q approaches 1 in (2.3) and (3.3) to get 

lím Cn(q) = lim ( ~ q15j
2
+4j r 2n +_1 ] _ ~ qlsj'+l4J+3 [ 2n_+ 1 ] ) 

q~l q~l L..t n- OJ L..t n- ::JJ - 2 
J=-x "- J=-oo 

_ ~ I( 2n+_l) _ ( 2n_+ l )l = Cn(l) 
L., 1 n- ::J) n- ::JJ - 2 J 

J=-oo L 

and 

lím ( ~ q15j
2
+2j [ 2n + 1 ] _ ~ q 15j>+Sj+l [ 2n + 1 ] ) 

q~l L..t n- 5) L..t n- 5J - 1 
;=-co J=-oo 

~ [( 2n+1) _ ( 2n+1 )] =Bn(1) 
L., n- 5) n 5) - 1 

J=-oo 

But as we have observed 

Cn(1) = Fzn+2 

which tell us that 

and 

and 

( 
2n+1 )] 

n- 5j- 2 
( 4.1) 

F2n+1 = jf;co [ ( ~n_+5~ ) - ( n ~n5; ~ 1 ) ] (4.2) 

5 Lattice path and Fibonacci 

In this section we are going to show how to express the Fibonacci numbers 
in terms of lattice path. 
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In Narayana [4], lemma 4A one can find the following formula 

which give the total number o f lattice paths from the origin to ( m, n) not 
touching the !ines y = x - t and y = x + s. 

But considering that we can write (4.1) and (4.2) as follows 

we can conclude just by comparing ( 4.4) and ( 4.5) with ( 4.3) that the fol­
lowing theorem holds: 

Theorem 5.1. F2n+í is the number of lattice paths from the origin to 
(n, n + 1) not touching the line y = x- i and y = x + 5- i, where i= 1, 2. 
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Abstract 

We present interesting combinatorial interpretations for the Fibonacci 
numbers in terms of colored partitions obtained by using finite versions of 
two identities o f the Rogers-Ramanujan type. New formula for the Fibonacci 
numbers is also given. 
Key words: Partitions, Fibonacci numbers, Rogers-Ramanujan identities. 

1 Introduction 

Considered for the first time in a modest example for the facility of calcu­
lation in positional number system (Liber abaci 1202.), the Fibonacci num­
bers showed to be intrinsic in nature (phyllotaxis), and omnipresent in arts 
(poetry, architecture, etc.). 

Many properties of these numbers are known. They appear in numerical 
mathematics (Adby[l]), game theory (Tosié[l4]), as well as in combinatorics 
and partition theory, where there are interpretations in terms of composi­
tions, for example: 
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The number o f compositions o f n in which no J's appear is Fn-d Andrewsí2}). 
Or in terms of partítions, one ínterpretation obtained by the authors is: 
The total number o f partitions into at most N parts in which every even 

smaller than the largest part appears at least once is equal to F2N +2 (San­
tos8Ivkovié{10j). 

In this paper we present two new combínatorial interpretatíons in terms of 
colored partitions based on identities number 63 and 62 in the Slater's list of 
identities of the Rogers-Ramanujan type [13]. We use a method introduced 
by Andrews[5], and used by Santos[9] to obtain finite versions of Rogers­
Ramanujan type identities. Basic tools are presented in the following section. 

2 Basic definitions 

We start with Gaussian polynomials (see Andrews[2]), that are q-analog 
of the binomial coefficients: 

[ 
n ] { (q)n if O < m < n = (q)m(q)n-m - -

m O otherwise 
(1.1) 

where 
(a; q)n = (1- a)(l- aq) ... (1- aqn-l) 

n a nonnegative integer. 
When dealing with the expression 

(1.2) 

we call the coefficients of xi in the expanded form of (1.2) the trinomial 
coefficients. 

It is easy to show that if 

(1.3) 

then 

'Ç""" n! 
~ h!(h + j)!(n- j- 2h)! 

(1.4) 
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(1.5) 

also 

(1.6) 

and 

(1. 7) 

The following expressions (Andrews & Baxter[7]) are q-analogs of the 
trinomial coefficient in the same way that the Gaussian polynomial is a q­

analog of the binomial coefficíent, that is, the limit of each one of them when 
q approaches 1 is equal to the trinomial coefficient given by (1.4) and (1.5). 

To(m,A,q)- :t(-l)J[mJ.] [~~~~ 1 .], (1.8) 
j=O q2 

T1(m,A,q) = :t(-q)J[m
1
.] [~~~~ 1 .] (1.9) 

j=O q2 

There are the following Pascal-triangle type relations: 

Ti(m,A,q) - Tl(m-1,A,q)+qm+AT0 (m-1,A+1,q) 
+qm-ATo(m- 1, A- 1, q) (1.10) 

To(m,A,q) - To(m-l,A-l,q)+qm+AT1(m-l,A,q) 
+q2m+2ATo(m- 1, A+ 1, q) (1.11) 

It is also valid (Andrews & Baxter[7]): 

T1(m, A, q)- qm-ATo(m, A, q)- T1(m, A+ 1, q) 

+qm+A+1To(m, A+ 1, q) =O (1.12) 

i_,From (1.8) and (1.9) we can see that 

To(m,A,q) =To(m,-A,q) 
T1(m, A, q) = T1(m, -A, q) 
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where we have used the following property of the Gaussian polynomials which 
follows from the definition (1.1): 

(1.15) 

3 The Main theorem 

3.1 Identity number 63 

We start this section by considering identity number 63 in the Slater's 
list [131 that is: 

' ' 

On the left side we introduce a new variable "t" in the following way: 

- ~00 (-t;q)n+lt3nq~n(n+l) 
- L.m=oO (t2 ;qhn+1 

_ 00 ( -tq;q)nt3nq~n(n+1) 

- I:n=O (1 t)(t2q;qhn+l 

in this sum the factor: 

(2.2) 

(2.3) 

(2.4) 

is clearly the generating function for partitions where every integer less then 
or equal to the largest part appears at least once and at most twice. We shall 
cal! them the green parts. 

The factor 

t2nq2+4+ ... +2n 

(2.5) 
(1- t)(1- t2q) ... (1 t2q2n+l) 

is the generating function for partitions where every even part less than 
or equal to the largest part appears at least once. These are the yellow parts. 

Notice that the largest yellow part that is even is equal to twice the largest 
green part. 
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I\ow we retum to (2.2). It is valid: 

(1- t)(l- t 2q)f63(q, t) = 1 + tV J53(q, tq) 

Taking j53(t, q) = 'i:.':=o Pn(q)tn from (2.6) we have: 

Po = P1 = 1; Pz = 1 + q 

Pn = Pn-l + qPn-2- (q- qn)Pn-3 

Santos in [8] conjectured: 

00 00 

(2.6) 

(2.7) 

(2.8) 

L qlfi'+!,fHlT1(n,5j+2,q!) (2.9) 
j=-oo j=-00 

We prove this in the appendix. 
Once having proved this theorem, we can make a connection between the 

green-yellow partitions and the Fibonacci numbers. Taking q ---+ 1 in (2.7) 
recurrent relation for the Fibonacci numbers appears. Thus, it is valid: 

Theorem 1. The total number of green-yellow partitions in which the 
number o f green parts plus twice the number o f yellow parts is smaller then 
or equal to N is equal to Fn+ 1 . 

Here, of course Fn is the n-th Fibonacci number. Considering that T1 is 
a q-analog of the trinomial coefficients we may take the limit in (2.9) when 
q approaches 1, getting a formula for the Fibonacci numbers: 

(2.10) 

3.2 Identity number 62 

Identity number 62 in the Slater's list [13] is very similar: 
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The new parameter "t" is introduced in the similar way: 

f ' _ oo ( -t; q)n+lt3nq~n(3n+l) 
J62(r, q) - 2:::: lt2· 2) 

n=O , ,q 2n+1 

(2.12) 

The only difference is that a generating function for the yellow parts now 
is: 

(1- t)(1- t2q) ... (1- t2q2n+l) 
(2.13) 

i.e., generating function for the partitions where every odd integer less 
than or equal to the largest part appears at least once. 

Bijection between the partitions of the yellow-green type connected with 
identity 63 and those connected with identity 62 is direct. 

Not surprisingly, when writing f 62 in a form I:::"=-oo Qntn polynomials 
Qn satisfy very similar recurrent relation as Pn: 

Qo = Ql = 1; Q2 = 1 + q 

Qn = Qn-l + qQn-2- (q- qn-l)Qn-3 

Explicit formula for this family is 

00 00 

L q~J
2

+"h+ 1 Q 1 (n,5j+2,q~) 
j=-00 j=-00 

(2.14) 

(2.15) 

Giving, at the end, the sarne formula (2.10) for the Fibonacci nurnbers. 
Observation: Identities 62 and 63 frorn the Slater's list are equal to the 

identities nurnber 46 and 44 respectively. 

4 Appendix 

Theorem 2. The family of polynomials defined in (2.9) satisfies recurrent 
relation (2. 7). 

Proof: To make calculation easier the base is changed by taking q ---+ q2• 

We need to prove: 

30 

L 



j=-00 j=-oo 

00 X 

= 2::: q15J'+7JTl(n-1,5j+l,q)- 2::: q15J'+l3J+1Tl(n-1,5j+2,q) (A.l) 
j=-00 j=-oo 

00 00 

+ 2::: q15J'+?J+lT1(n- 2, 5j + 1, q) - L q15J'+13H 2T1 (n- 2, 5j + 2, q) 
j=-co j=-oo 

+(ln - q2) (~oo q15J'+7Jrl (n- 3, 5j + 1, q)- j~oo q15J'+l3j+lT1 (n- 3, 5j + 2, q)) 

LFrom now on all the polynomials are in base "q", so we omit to explicitly 
state it, i.e., To(n -1, 5j + 2) = T0(n -1, 5j + 2, q). After applying (1.10) on 
both sums on the left and some cancellations, the expression is: 

00 00 2::: q15J2 +12j+n+ly0(n _ 1, 5j + 2) + L ql5j 2 +2J+n-1To(n _ 1, 5j) 

j=-co j=-oo 

00 co - L ql5J'+l8j+4+nTo(n- 1, 5j + 3)- L ql5]'+8J+nTo(n- 1, 5j + 1) 
j=-00 j=-oo 

co 00 

= I: q151'+?J+lrl ( n - 2, 5j + 1 l - L q15J'+l3j+2rl ( n- 2, 5j + 2J 
)=-co j=-oo 

+( q2n - q2) (~oo ql5J'+7Jrl (n- 3, 5j + 1) - J~oo ql5J'+l3J+lrl ( n - 3, 5j + 2)) 

By making "j --+ - j" and "j --+ j + 1" at the first sum on the left that 
sum cancels with third by (1.13). The two sums left on left side we transform 
by (1.12) so they are \Hitten using T1 polynomials. That side becomes: 

00 00 

L q15J'+3JT1(n- 1, 5j)- L q15J'+3JT1(n- 1, 5j) (A.2) 
j=-oo j=-oo 

Now we apply (Llü) on this two sums. Four resulting sums cancel by 
( 1.12) leaving: 
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00 00 

j=-oo j=-oc 

By (1.11) this two sums can be written as: 

co 00 

j=-oc j=-oo 

00 00 

~ l: ql5j'+l2i+3n-3To(n- 3, 5j + 3)- l: ql5j'+8j+nTo(n- 3, 5j + 1) 
j=-c;o j=-oo 

00 00 - L ql5j'+l3j+2nTl(n- 3, 5j + 2)- L ql5j'+2i+n-1To(n- 3, 5j + 3) 
j=-oo j=-oo 

The second and the fourth sum from this expression cancel with corre­
sponding sums on the right si de o f ( A.1). The third and the sixth cancel 
between themselves. 

Nw we return to the right side. By applying (1.10) on the first two sides 
o f ( A.1) and some cancellations that si de becomes: 

00 00 L ql5j'+l2i+n+lTo(n- 3, 5j + 2) + L ql5j'+2j+n-lTo(n- 3, 5j) 

j=-oo j=-oo 

00 00 

L ql5j'+l8j+n+4To(n- 3, 5j + 3)- L l5j'+8j+nTo(n- 3, 5j + 1) 
j=-00 j=-oc 

The first sum cancels with the third. The second and the fourth cancel 
with the remaining sums from the left side, thus proving the identity. 
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1 Introduction 

In this paper, in order to find polynomial generalizations and combina­
torial interpretations for the Pell sequence, we consider the identities 36 and 
34 of Slater[16] that are respectively: 

( -q; q
2

)oo ( 5 8) ( 3 8) ( 8 8) 

( 
2. 2) q ; q 00 q ; q 00 q ; q 00 

q 'q CC 
(1.1) 

( -q; q
2

)oo ( 7 8) ( 1 8) ( 8 8) 
= ( 2. 2) q ; q 00 q ; q CO q ; q CC 

q 'q co 
(1.2) 

where 
(a;q)n = (1- a)(l- aq) . .. (1- aqn-1

) 

n a nonnegative integer. 
These identities are the analytic counterparts of the Gollnitz-Gordon par­

tition identities first found by Gollnitz[8] and then rediscovered by Gordon[7]. 
We start by following Andrews[2], to provide a polynomial generalization 

for the Pell sequence anda combinatorial interpretation for this sequence. We 
offer a bijection between the class of partitions that appear in the Gollnitz­
Gordon identities and another class of partitions that can be obtained from 
the left side of (1.1). New formulas for the two related sequences are given. 
Details are in section 3. 
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A third polynomial generalization inc!uding a nice relation between the 
Pell numbers and the Fibonacci numbers is given in section 4. 

In section 5, by making use of the Rogers-Ramanujan identities, two new 
combinatorial interpretations for the Fibonacci numbers are given. 

2 Some definitions and results 

The Pell numbers 1, 2, 5, 12, ... defined by a0 = 1; a 1 = 2; an = 2an-l + 
an_2 are the denominators of the sequence of rational numbers: 

1 3 7 17 41 99 
l' 2' 5' 12' 29' 70' ... 

that are the continued fraction convergent to J2. 
The Gaussian polynomials are defined as follows: 

[ ~ ] = { (q)m(~Jn m 

For more details see Andrews[1]. 
When dealing with the expression 

if o.:;m.:;n 
otherwise 

(2.1) 

(2.2) 

(2.3) 

we cal! the coefficients of xJ in the expanded form of (2.3) the trinomial 
coefficients. 

It is easy to show that if 

(2.4) 

then 

(2.5) 

The fo!lowing expression (Andrews&Baxter[6]) is a q-analog of the trino­
mia! coefficient in the same way that the Gaussian polynomial is a q-analog 
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of the binomial coefficient, that is, íts limit, when q approaches 1, ís equal to 
the trinomíal coefficíent given by (2.6). 

"'( A ) _ ~(-l)j [ m] r 2m-2j ] "o m, -"-, q - L.., • j m _ A _ j 
)=0 i' -

(2.6) 

In order to condense the notatíon the followíng expression ís defined 

U(m,A, q) = T0 (m, A,q) + T0 (m,A + 1, q) (2.7) 

3 Polynomial generalizations and combinato­
rial interpretations for the Pell sequence 

3.1 A first polynomial gene:ralization for the Pell se­
quence 

We mentioned that, following Andrews[2] one can introduce a parameter 
t in the left hand side of (1.1), 

J( q, t) = f ( -tq; q:)ntnqn' 
n=O (t; q )n+l 

(3.1) 

From here a functional equation can be obtained: 

(1 - t)f(q, t) = 1 + (1 + tq)tqf(q, tq2
). (3.2) 

Knowing that the coefficient of tn in the expansion of (3.1) is a polynomial 
in q, i.e., that 

CC 

J(q, f) =L Pn(q)fn (3.3) 
n=O 

it is easy to see that 

Po(q) = 1 

P1(q)=1+q and (3.4) 
Pn(q) = (1 +q2n-l)Pn-l(q) + q>n-2Pn-2 

The whole procedure described above can be easily done with A. Sills' 
RRtools Maple package [15]. 
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The family of polynomials (3.4) appears in Gordon[7]. Pm(q) is inter­
preted as a generating function for partitions o f the form n = n 1 + n2 , .. + nk 
where n 1 :S 2m- 1, n; 2: ni+1 + 2 and n, 2: n;+J + 3 if n; ís even. 

Here we concentrate on the alternatíve combinatoria! interpretation. The 
equation (3. 1) wTitten in the fo!lowing form: 

1 DO (1 + tq)(1 + tl),,, (1 + tq2n-J )tnql+3+5+· +2n-J 
f(q, t) = 1-t; (1- tq2)(1- tq4),,, (1- tq2n) 

tells us that in this sum the coefficient of tN qM is the total number of parti­
tions of i\1 into exactly N parts in which every odd less than or equal to the 
largest part appears at least once and at most twice. 

1 
By taking into consideration the factor ( ) we have proved the fol-

1-t 
lowing theorem: 

Theorem 3.1. Pn(q) ís the generating function for partitions into at 
most n parts in which every odd less than or equal to the largest part appears 
at least once and at most twice. 

To see what is the relation between this family of polynomials and the 
Pell sequence we may replace q by 1 in (3.4). By doing this we get 

P0 (1) = 1 

P1(1) = 2 (3.5) 

Pn(1) = 2Pn-1(1) + Pn-2(1) 

which is the Pell sequence given at the beginning of section 2. 
From this observation we get the following combinatorial interpretation 

for the Pell sequence which we state as a theorem. 

Corollary 3.2. The total number of partitions into at most n parts in 
which every odd less that or equal to the largest part appears at least once 
and at most twice is equal to the Pell number Pn(l). 

In [5] Andrews proved the following explicit formula for the family of 
polynomials given by (3.4): 

00 00 

Pn(q) = L q16i'+2iU(n,8j)- L q16P-!4i+3U(n,3- 8j) (3.6) 
j=-oo j=-oo 
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where U(n,A) = U(n,A,q) given by (2.7). 
Knowing that Pn(l) is the Pell sequence, as we have seen in (3.5), we can 

get an exp!icit formula for this sequence by making use of formula (3.6) 

Pn(l) = limPn(q) = 
q-1 

00 00 

lim ""' q16i'+2iU(n, 8j)- ""' q16i'- 14i+3U(n, 3- Sj) 
q-1 L..t L..t 

j=-oo j=-oo 
00 

=L ~_::;(To(n,8j,q)+T 0 (n,8j+l,q)-
J=-oo 

To(n, 3- Sj, q)- T0 (n, 4- 8j,q)) 

= J;oo [(~)2 + (sj:l)2 (3~8j) 2 - (4~8j)J 

= )~J(~:~)2- (~:~)J 
It is natural to look for a bijection between the class of partitions defined 

by Gordon and the class appearing in theorem 3.1. It is sufficient to define 
a bijection that takes a partition of n where the biggest part is 2m - 1 or 
2m - 2, and satisfies the conditions defined by Gordon into a partition of n 
in exactly m parts in which every odd less then or equal to the largest part 
appears at least once and at most twice. We give one as follows: 

Take a partition from the class defined by Gordon. Let the number of 
parts of that partition be k. Let the biggest part be 2m- 2 or 2m- L Fix 
the number 2k - 1 from the biggest part, 2k - 3 from the second biggest 
part and proceed in the same manner until fixing one from the sma!lest part. 
Note that this is possible since n; ;::: n,+l + 2 and that, for this reason and 
n, ;::: n,+l if n, is even, if nothing or just one is left out from the biggest part, 
then nothing is left out from the second biggest part and similarly for the 
other parts. If one is left out we take it as a new part. See the illustration 
on the next page. 
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If the biggest part is :;=: 2k + l take two from the part of it that was not 
fixed, two from the second biggest part, and so on, until there is a part from 
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which only one ( or nothing) can be taken. If there is one, we take it. From 
the "taken" twos and possible one we make a new part for the new partition 
being formed. If there are still some parts that are left out we form another 
part in the same way. The partition obtained satisfies the conditions given 
in the theorem 3.1. We observe the following: 

1. A partition with m parts is obtained. To see this note that the number 
left out after fixíng 2k- 1 in the biggest partis minimally 2(m- k)- 1, so 
we are actually adding m - k parts. 

2. The biggest new-formed partis smaller then or equal to 2k-so there is 
no need to add new odd parts. 

3. By construction the new parts created forma non-increasing sequence, 
odd number can be formed only once -forming it twice would mean taking 
two ones from the same original part, which is impossible by construction. 
This argument also proves that the mapping defined by this procedure ís 
injective. 

The inversion mapping is defined similarly: Take a partition defined by 
conditions in the theorem 3.1. that has m parts. We let one copy of all 
odd parts fixed. Let the biggest of the fixed parts be 2k- l. Now, each 
of the remaining parts is transformed in the following manner: The biggest 
remaining part is divided in a way that two is added to the biggest fixed 
part, two to the second biggest part, etc. If the number divided is odd we 
add one to some fixed part at the end. Note that according to the partition 
definition the biggest remalning part cannot be bigger than 2k, so it can be 
divided among the fixed parts. The second biggest part ( and all remaining) 
is divided in the same manner, always starting by adding two's to the biggest 
fixed part. 

It is obvious that the resulting partition satisfies Gordon's conditions. Its 
biggest partis, by construction, smal!er than or equal to 2k- 1 + 2(m- k) 
and bigger than or equal to 2k- 1 + 2(m- k)- 1 = 2m-2, the last -1 
on the left side corresponding to the case when m - k = 1 and the collected 
partis one. 

3.2 A second polynomial generalization for the Pell 
sequence 

By considering, now, a two variable function fs4 (q, t) associated with 
equation 34 of Slater[16] given in (1.2) 
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, 00 ( -tq; q2)ntnqn2+2n 
~s4(q,rJ =.L c 2J 

n=O &, q n+l 

(3.7) 

and following the same steps used to get (3.2) we may obtain the functional 
equation 

(l- t)fs4(q, t) = 1 + (1 + tq)tq' is4(q, tq2) 

and by replacing fs4 ( q, t) with 

00 

in (3.7) we can get 

Do(q) = 1; 

(3.8) 

D1 (q) = 1 + q3 (3.9) 

Dn(q) = (1+q2n+1)Dn-1(q)+q2nDn-2(q) 

To find a combinatorial interpretation for this family of polynomials we can 
'IVTite (3. 7) in the following form: 

f ( -tq; q2)ntnqn'+2n = 

n=O (t;q2)n+1 

1 00 (1 + tq)(1 + tq3) ... (1 + tq2n-1)tnq(2+1)+(4+1) ... (2n-2+1)+(2n+l) 

(1- t) ~ (1- tq2)(q- tq4) ... (1- tq2n) 

which tells us that in this sum the coefficient of tN qM is the total number 
of partitions of M into exactly N parts in which the largest part is odd, 
appearing only once, and every odd smaller than the largest part and greater 
than or equal to 3 appears at least once and at most twice. 

By considering the factor 1/(1- t) and that for q = 1 

Do(l) = 1 

D1(1)=2 

Dn(1) = 2Dn-1(1) + Dn-2(1) 

which is the Pell sequence, we have proved the following: 
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Theorem 3.3. The total number of partitions into at most n parts in 
which the largest part is odd, greater than or equal to 3, appearing only once, 
and every odd smaller than the largest part and greater than or equal to 3 
appears at least once and at most twice is equal to the Pell number Dn(l). 

For the family of polynomials (3.9) an explicit formula in terms of the 
q-trinomial coefficients can be also found in Andrews[5]: 

00 00 

Dn(q) = L q16J'+6JU(n, 8j + 1)- L q16J'-lDJ+lU(n, -8j + 2) (3.11) 
j=-co j=-oo 

From which we have, again, the following formula for the Pell numbers: 

Jf;oo [ (sj: l) 
2 
+ (sj: 2) 

2
- ( -8;+ 2) 

2
- ( -8; + 3) J 

= Jtoo [ (sj: 1) 2- (sj: 3) J (3.12) 

This formula was proved in [14] by making use of an identity of Lebesgue 
that is also included in Slater's list. 

It is an easy matter to give a bijection between the two distinct inter­
pretations for the Pell sequence given in the corollary 3.2 and the theorem 
3.3. 

In the class of partitions described in the theorem 3.3 every odd part 
larger than or equal to 3 appears at least once and at most twice. We can 
subtract 2 from just one copy of each of those odd parts. By doing this 
we obtain a partition in the class described in theorem 3.2 It is clear that 
this procedure can be inverted. Note that now the largest part obtained is 
necessarily odd. 

We illustrate this in the table 2 where in the first column we have the 
partitions as described by the corollary 3.2, and in the second one those 
described by the theorem 3.3. 
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Corollary 3.2 Theorem 3.3 
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• .. .. .. .. .. .. • • .. • "' • .. • .. .. .. .. .. 
.. " .. .. 
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Table 2 
We observe that to get the partitions in column one we took n = 3 in 

(3.4) getting 

p3 (q) = 1 + q + qz + q3 + 2q4 + 2qs + qs + q7 + qs + qg 

and the ones in column two by taking n = 3 in (3.9) getting: 

D3(q) = 1 + q' + 2q4 + qs + q6 + q7 + qs + qg + q'o + ql! + q'2 + ql5 

3.3 New formulas for two related sequences 

Motivated by this formula it was possible to find and prove, by induction, 
the following two formulas: the first one gives us the sequence Sn of the 
partia! sums for the Pell numbers and the second the numerators Nm of the 
sequence of rational numbers given in 2.1. 

(3.13) 

where 

S, = 1, Sz = 3, Sn = 2Sn-1 + Sn-2 + 1; n ;:-: 3 (3.14) 

and 

(3.15) 

where 
N, = 1, N2 = 3, Nn = 2Nn-1 + Nn-2; n ;=-: 3 (3.16) 

4 Fibonacci numbers and a third polynomial 
generalization for the Pell sequence 

The following identity can be found in Giillnitz[8]: 
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Here we note that, by introducing the variable t in the following manner 
(again by use of Sills[l5]),: 

recurrent relation can be obtained: 

To(q) = 1 

T1(q) = l+q2 

Tn(q) = (1 + q2n)Tn-l + q2n-lTn-z(q) 

where we are taking 
00 

n=O 

Therefore we have a theorem involving Pell numbers: 

(4.2) 

Theorem 4.1. The total number of partitions into at most n parts in 
which the largest part is even, each even smaller than the largest part appears 
at least once and the odd's are distinct is equal to the Pell number Tn(1). 

What is nice about this theorem is the fact that for the Fibonacci numbers 
Fn defined by Fo =O; F1 = 1 and Fn = Fn-l + Fn-2> n :2: 2 we have proved 
in [12] (Theorem 3.3) that: 

"The total numbers of partitions into at most n parts in which the largest 
part is even and every even smaller than the largest part appears at least 
once is equal to F2n+1". This tells us that by adding the restriction "distinct 
odd's" we move from Fibonacci with odd index F2n+l to the Pell numbers 
Tn(1). 

5 Fibonacci numbers from the Rogers-Ramanujan 
identities 

The following polynomial generalization of the Fibonacci sequence has 
been used by Schur[17] to prove the Rogers-Ramanujan identities (see also 
Andrews[2]). 

Fo(q) = 1 
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F 1(q)=l (5.1) 

Fn(q) = Fn-1 + qnFn-2(q) 

which can obtained from the second of the Rogers-Ramanujan identities 
(Rogers[9]), that is: 

oo qn2+n oc 1 

~ (q; q)n = !1 (l _ q5n 2)(1 _ q5n 3)' 

by defining the following two variable function: 

co t2nqn(n+l) 

J(q,t) =:L (t· l 
n=O )qn+l 

(5.2) 

Considering that for q = 1 (5.1) is the Fibonacci sequence and that (5.2) 
can be wTítten ín the form: 

co f2nql+l+2+2+ ... +n+n 

~ (1- t)(tq; q)n 
(5.3) 

it is easy to see that we get a new combinatorial interpretation for the Fi­
bonacci numbers that is stated in the following theorem: 

Theorem 5.1. The total number of partitions into at most n parts in 
which every integer less than or equal to the largest part appears at least 
twice is equal to the Fibonacci number Fn. 

In [10] we find, also, a two variable function similar to (5.2) related to 
the first Rogers-Ramanujan identity (Rogers[9]) given by: 

(5.4) 

from which we get 

(1- t)fl(q, t) = 1 + t2qft(q, tq) 

Knowing this functional equation one can get the following recurrence rela­
tion for Pn(q): 

Po(q) = 1 

P1(q) = 1 

Pn(q) = Pn-1 + qn-1 Pn-2(q) 
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To get one more combinatorial interpretation for the Fibonacci numbers 
we observe that, for q = 1, (5.5) is the Fibonacci sequenee and that from the 
first sum in (5.4) we have the following niee result: 

Theorem 5.2. The total number of partitions in whieh the side of the 
Durfee squares equals to the largest part and the largest part plus the number 
of parts is at most n is equal to Fn. 
Acknowledgment: The authors would like to express their gratitude to the 
anonymous referee for pointing out appropriate referenees anda suggestion to 
look for a bijection between the partitions of Theorem 3.1 and the partitions 
arising in Gordon[7]. 
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Abstract 

We prove that the Hankel transformation of a sequence whose elements are 
the sums o f two adjacent Catalan numbers is a subsequence o f the Fibonacci 
numbers. This is dane by finding the explicit form for the coefficients in the 
three-term recurrence relation that the corresponding orthogonal polynomials 
satisfy. 

1 Introduction 

Let A= { a0 , a1, a2, ... } be a sequence ofreal numbers. The Hankel matrix 
generated by Ais the infinite matrix H [hi,j], where hi,j = ai+j-2 , i.e., 
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r ao a1 a2 a3 

I a1 a2 a3 a4 

H~ l "' a3 a4 as 
a3 a4 as a6 
a4 as as a7 

The Hankel matrix Hn af arder n is the upper-left n x n submatrix of H 
and the Hankel determinant of arder n of A, denoted by hn, is the determi­
nant of the corresponding Hankel matrix. 

For a given sequence A { a0 , a1o a2 , ... }, the Hankel transform of Ais the 
corresponding sequence of Hankel determinants {h0 , h1o h2 , .. . } (see Layman 
[5]). 

The elements of the sequence in which we are interested A005807 of the 
On-Line Encyclopedia of Integer Sequences (EIS) [10], also Il\RIA [3]) are 
the sums of two adjacent Catalan numbers: 

c(n) + c(n + 1) = -- + --1 (2n) 1 (2n + 2) 
n+1 n n+2 n+1 

(2n)!(5n + 4) 
n!(n + 2)! 

This sequence starts as follows: 

(n =O, 1,2, ... ). 

2, 3, 7, 19, 56, 174 ... 

In a comment stored with sequence A001906 Layman conjectured that 
the Hankel transformation of { an}n>O equals the sequence A001906 i. e., the 
bisection of Fibonacci sequence. In this paper we shall prove a slight gener­
alization of Layman's conjecture. 

The generating function G(x) for the sequence { an}n>o is given by 

G() -~ n_1((1-)l-4x)(l+x)) X - ~anX -- -1 
n=O X 2x 

(1) 

It is known (for example, see Krattenthaler [4]) that the Hankel determi­
nant hn of order n of the sequence { an}n;::o equals 

h n r:~n-l,Qn-2 ,Q2 r< 
n = aOf-'1 fJ2 ... f-'n-2/Jn-l, (2) 
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where {Pn}n~: is the sequence given by: 

L ao G(x) = anXn = -----"--::--;;-2---
P1X 1 + a 0x - ----'-_::_---,---,,--

8 x2 

1 + a 1x - 1 : Ó:~x 

(3) 
n=O 

The sequences { an}n~o and {Bn}n~ 1 are the coefficients in the recurrence 
relation 

Pn+!(x) = (x- an)Pn(x)- PnPn-1(x) 

where {Pn(x)}n~o is the monic polynomial sequence orthogonal with respect 
to the functional L determined by 

( 4) 

In the next section this functional is constructed and a theorem concern­
ing the polynomials {Pn(x)}n~o and the sequences {an}n~o and {Pn}n~l is 
proved. 

2 Main Theorem 

We would like to express L[f] in the form: 

L[f(x)] = l f(x)d?jJ(x), 

where ?j;(x) is a distribution, or, even more, to find the weight function w(x) 
such that w(x) = ?jJ'(x). 

Denote by F( z) the function 

00 

F(z) =L akz-k-1, 
k=O 

From the generating function (1), we have: 

F(z) = z-1 G(z-1
) = ~ { z -l- (z + l)R}. (5) 
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with 
1 

an=2- ' 
F2n+lF2n+3 

1 
Pn= 1+~, 

2n+l 

where Fi is the i-th Fibonacci number. 

Example 1. The first members of this sequence are: 

Po(x) - 1; 

P1(x) 
3 

X--: 
2' 

Pz(x) 
2 17 8 

- x- -x+-: 
5 5 

P3(x) 
3 70 2 . 95 21 

- X - -X -;--X--: 
13 13 13 

P4 (x) " 251 3 290 2 435 55 
- x·--x +-x --x+-. 

34 17 34 34 

Notice that Pn(O) = (-l)nF2n+2/F2n+J-

(11) 

Proof of Theorem 1. Denoting by Wn(x) = P212
,-

1
/

2)(x) (n:?: O) a 
special Jacobi polynomial, which is also known as the Chebyshev polynomial 
o f the fourth kind. 
The sequence o f these polynomials is orthogonal with respect to p(l/2.-1/ 2) (x) = 
(1- x) 112 (1 + x)- 112 on the interval ( -1, 1). These polynomials can be ex­
pressed (Szegii [9]) by 

W ( e) _ sin(n +~)e 
n COS - 1 2n sin -e 

2 

and satisfy the three-term recurrence relation (Chihara [1]): 

where 

Wn+l(x) =(x-a~) Wn(x)- (3~Wn_ 1 (x) (n =O, l, ... ), 

W-1(x) =O, W0 (x) = 1, 

* 1 A•* (3* * 1 ( ) ao= -2, ~n o, o = 7r, Pn = 4 n ;:o: 1 . 

If we use the weight function p(t) = (t- c)p(l/Z,-l/Z)(t), then the corre­
sponding coefficients &n and /Jn can be evaluated as follows ( see, for example, 
Gautschi [2]) 

(12) 
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!3, =f]* Wn-1(c)Wn+l(c) 
n n W~(c) , n E N. (13) 

Here, we use c= -3/2 and p(x) = (x + 3/2)(1- x) 112 (1 + x)-112 

If we write Àn = Wn( -3/2) then, using the three-term recurrence relation 
for Wn(x), we have 

4Àn+1 + 6Àn + Àn-1 = Ü, 

with initial values Ào = 1, À1 = -L 
So, we find 

Denoting by 
1 + y'5 

cjJ = --:--
2 

. 1-\"'5 
9 = 2 

the golden section numbers, we can write: 

In order to simplify further algebraic manipulations we shall use 

This formula is a special case of the identity (Vajda [12]): 

(14) 

(16) 

G(n+i)H(n+k) G(n)H(n+i-k) = (-1)n(G(i)H(k)-G(O)H(i+k)) (17) 

where G and H are sequences that satisfy the same recurrence relation as 
the Fibonacci numbers with possibly different initial conditions. However, 
we take both G and H to be the Fibonacci numbers and n -+ 2n + 1, 
i= 2, k = -2. 

Now 

(18) 
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and 

3 Àn+l 1 Àn ---------
2 Àn 4.\n+l 

-3F2n+lF:ln+3 + F:fn+3 + F:jn+l 

2F2n+lF2n+3 

F:J:n+2- F2n+lF2n+3 

2F2n+lF2n+3 
1 

2F2n+lF2n+3 o 

)f a new weight function p( x) is introduced by 

p(x) = p(ax + b) 

then we have 
&n- b /3 _ [Jn 

O:n= n-a a2 (n?: 0). 

Now, by using x ~--+ x/2- 1, ioeo, a = 1/2 and b = -1, we have the wanted 
weight function 

w(x) = p(~- 1) 1 R-X -(x+ 1) --0 
2 X 

Thus 

(19) 

and 
5 1 

!3n=l+ =l+--
(

,i,2n"-l ,~,2n+l)o p,2 '+' ' - <..p - 2n+l 

(20) 

finishing the proof o f ( 1) .O 

3 Layman's conjecture 

By making use of (2) we have that: 

( 
1 ) n-1 ( 1 ) n-2 ( 1 ) 

hn = a~ 1 + 2 1 + - 2 .. o 1 + -.2-
F3 F5 F2n-l 

(21) 
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Usíng (16) we can write (21) as: 

h = 
0
n (F1F5)n-l(F3F7)n-2(F5F9)n-3 ... F2n-3F2n+l (22) 

n Op2 F?- F} p2 
3 v 1 2n-1 

Since a0 = 2 = F3 the correspondíng factors cancel, therefore: 

(n?: 0), 

thus proving that Hankel transform of A005807equals A001519 -sequence of 
Fibonacci numbers with odd índices. 

As we have mentioned in the introduction, Layman observed that the 
Hankel transform of A005807 equals A001906 -sequence of Fibonacci numbers 
with even índices. This sequence is obtained if we start the Hankel matrix 
from o1 = 3, i.e., determinants wi!í have o1 on the position (1, 1). 

The proof of this fact is almost identical with the proof presented here, 
and so we do not include it. Notice that now we construct L[xn] = an+l and 
that a1 3 = F4 ; in (17) we take n -+ 2n. We also use the easily provable 
fact Pn(O) = (-l)nF2n+z/F2n+l (see Example 1). 

Finally we mention that, following Layman [5], it is known that the Han­
kel transform is invariant with the respect to the Binomial and Invert trans­
form, so all the sequences obtained from A005807 using these two transfor­
mations have the Hankel transform shown here. 
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Abstract -This paper introduces a combinarorial construction of gi.rtl!-eight high-rate 
low-density parity check codes based on integer lattices. Tl:ie parity cl!eck matrix of a code is 
defined as a point-line incidence matrix of a 1-configuration based on a rectangula:r integer 
lattice, and fue girtl:i-eight property is achieved by a judicious selection of sets of parallel 
!ines included in a configuration. A class of codes with a wide range of lengtbs and column 
weights is obtained. TI!. e resulting mat:rix of parity checks is an array of circulant matrices. 

Index Terms-Error control coding, iterative decoding, low-density parity cbeck codes, 
combinatorial desigus, finite geometries, grapb gi.rtb. 

I. INTRODUCTION 

Codes on graphs, especially low-density parity check (LDPC) codes, is a research area of 

great current interest. The theory of codes on graphs has not only yie!ded capacity-approaching 

codes, it has also opened new research avenues for investigating alternative optima! and sub­

optimal decoding schemes based on belief propagation. Applied on a Tanner graph of a linear 

b!ock code [12] [6], be!ief propagation algorithm gives an exact a posteriori probabi!ity mass 

function for a given a probability density function of ilie obse!'Ved variables, but only if ilie factor 

graph is cycle free. Extensive simulation results of MacKay and Neal [14] sbowed iliat message­

passing a!gorithm a!so performs well in graphs wiili cycles. However, the presence of short cycles 

hurts the performance. 

In this paper we address ilie problem of finding codes wiili good cycle properties. We are 

interested in "deterministic" sparse parity check matrices as opposed to the common "random 

code" assumption that has been wídely used in recent research [13]. One of the first attempts to 

design a deterministic LDPC for íterative decoding is due to Kou, Lin and Fossorier [3] and it is 

based on projective and Euclidean geometries. The codes given in [3] are one-step majority logic 

· This work is supported by the NSF under grant CCR 0208597. 
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decodable, and therefore the girth of the assocíated Tanner graph [6] is six. Lucas et. al showed 

that the such LDPC codes can be efficiently decoded by belief propagation algorithms [15]. A 

first attempt to construct deterministic codes with large girth is due to Margulis [ 18] who 

introduced an explícit construction of LDPC codes using k-regular graphs obtained as Caley 

graphs of lfi~(Fq), a speciallinear group, and iPG~(Fq), a projective general linear group, of 

dimension two over Fq, lhe finite field with q e!ements (q power of a prime). By careful selection 

of transformation matrices, the author was able to achieve good girth properties. This idea was 

further developed by Rosenthal and Vontobel [ 18]. They were able to construct a short code ( of 

length less than 5000) with girth 12. Recently, the explicit construction of families of LDPC with 

girth at least six has been discussed in J on-Lark Kim et. ai [ 17]. The authors extended Lazebnik 

and Ustimenko's [19] method for explicit construction of graphs with arbitrary large girth based 

on regular graphs. 

The code construction presented in this paper is based on balanced incomplete block designs 

(BffiD) [1]. More specifically, lhe codes are based on sub-designs of a 2-(v,k,l) design, where vis 

a number of parity bits, k is the column weight of a parity check-matrix. The parity-check matrix is 

a point-block incidence matrix of the design (V,B), where Vis a set of points and Bis a set of 

blocks of size k. As we have shown in [7], the removal of certain blocks from a design can result 

in eliminating Pasch and generalized Pasch configurations and, consequently, in increasing 

minimum distance of a code. In this paper we exploit the idea that a judicious selection of 

disregarded blocks can also increase the girth of a design. It is desirable property of a bipartite 

graph to have a large girth, because in the message passing decoding algorithm [10] on such 

graphs it takes more iterations until extrinsic information originating from different nodes in the 

bipartite graph becomes correlated. The construction of designs with high girths appears to be a 

very difficult problem in general [8]. However, the designs based on rectangular integer lattices 

introduced in [7] allow for a simple algorithm for finding a girth-eight sub-design. In [23] a 

condition for absence of cycles of lengths smaller than a given constant was given for array codes, 

but no explicit construction is given for girths larger than six. In this paper we give an explicit 

construction for k=3 using arithmetically constrained sequences. 

In this paper we are interested in very high rate codes (RCJ/4) for which the girth-eight 

property is much "rarer" than in low rate codes. We present a construction based on sets of parallel 

!ines on a rectangular integer lattice, which is conceptually simple, and gives a large family of 
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codes. The number of parity bits is equal to v=m·k, m>k, and the b!ocks are defined as !ines of 

different s!opes connecting points of an mxk integer lattice. 

Section TI introduces some definitions necessary for dealing with BIBDs. Section m 
introduces a construction of low-density parity check codes using rectangular integer lattices and 

construction of girth-eight codes. It also gives the bit errar rate (BER) performance of these codes 

in additíve white Gaussían (A WGN) channel obtained by computer simulations. 

TI. BALANCED lNCOMPLETE BLOCK DESJGNS AND LDPC CODES 

In this section we introduce some definítions. A balanced incomplete block design (BIBD) is a 

pair (V, B), where Vis a v-element set and B is a collection of b k-subsets of V, called blocks, such 

that each element of V is contained in exactly r blocks and any 2-subset of V is contained in 

exact!y À blocks. The parameter ris ca!led the replication number. The notation 2-(v, k, À) desígn 

is used for a BlBD on v points, block size k, and index À. In this paper we consider slightly 

different class of combinatorial designs called À-configurations. A À-configuration is an incídence 

structure of v points and b blocks such that i) each lock contains k points, ii) each point is incident 

with r blocks, and iii) two different points are contained in at most À blocks. A À-configuration 

can be obtained from a 2-(v,k,À) design by removing some of its blocks. Two blocks in a design 

are referred to as parallel íf they are disjoint. A design is called resolvable if there exists a 

partition of its block set B into parallel classes, each of which partitions the set V. As we will 

show, the !ines on a lattice introduced in [7] and analyzed in [19] and [20] forma resolvable 1-

configuration. 

We define the point-block incidence matrix of a (V,B) as a vxb matrix H=(hij), in which 

hij=l if the i-th element of Voccurs in the j-th block of B, and hij=O otherwise. It is easy to see that 

H is a matrix of parity checks of a Gallager code [2]. The row weight is r, column weight is k, and 

the code rate is R;::{b-min(v,b))lb. In this paper we are interested in designs in which no more than 

one block contains the same pair of points. Such codes are one-step majority logic decodable, or 

equivalently, there are no cycles of length four in a bipartite graph [6]. The main idea of this paper 

is that a 1-configuration with large girth can be constructed by removing whole classes of parallel 

blocks rather than removíng individual blocks. 

fi. LA TI!CE CONSTRUCTION OF 2-(v,k, 1) G!RTH-EIGHT l-CONFIGURA TIONS 
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In this section we address the problem of construction of resolvable 1-configurations with 

a wide range of block sizes. 2-(v,k, I) designs naturally come as girth-six designs because no pair 

of points occurs in more than one block. In other words, if IBI=b=(;)j(;) (i.e., design has 

maximum possible number of blocks, then the girth is g(V,B)=6. As we will show, for every 

design (V,B), there exists a 1-confíguration (V,B'), B'cB, such that g(V,B')2::8. In a 1-

confíguration, there exist a pair of points that are disconnected, i.e. there is no line incident with 

both of them. This is why the girth o f a 1-confíguration can be larger than six. Our construction is 

based on the integer lattice construction given in [7], and briefly summarized as follows. 

We define a class of 1-configurations as sets o f !ines connecting the points of a rectangular 

integer lattice. Consider a rectangular integer lattice L= { (x, y): O,; x,; k -1. O,; y ,; m -I } , where m is 

a prime. The construction can be readily generalized to the case when m is a prime power (i.e., 

m=p1
). Let l:L-Nbe an one-to-one mapping ofthe lattice L to the point set V. An exarnple of such 

mapping is a simple linear mapping l(x. y) = m·x+ y+!. The numbers l(x,y) are referred to as lattice 

point labels. 

A line with slope s, o::::;.,::m-1, starting at the point (O,a), Is the m set of points 

{(x,a+sxmodm):0:5x:5k-lj, where 0:5a:5m-l. We are concerned with a 1-configuration which is 

an incidence structure comprised ofpoints on the integer lattice and ali !ines of slopes s, o::::;.,::m-1. 

As mentioned earlier, two !ines are referred to as parallel if they do not have any common points. 

There are, therefore, m classes of parallel !ines in our 1-configuration corresponding to m different 

slopes. Each class of parallellines comprises m !ines. 

Example3.1: 

Figure 1 depicts the rectangular integer lattice with m=5 and k=3. It also shows two classes of 

parallel !ines (with slopes s=l and s=2). 

In our exarnple, the !ines of slope 1 are the points { 1,7,13), {2,8,14 }, {3,9,15} etc. We assume 

that the lattice labels are periodic in vertical (y) dimension, and therefore the line comprising 

points { 4, 10,11} also has the slope 1. The exarnples of !ines with slope two are { 1,8, 15} and 

(2,9,11 }. The slopes: 3,4, ... ,m-l can be defined analogously. Notice that no line ofinfinite slopes 

belongs to the design. Each column in TABLEI gives a set ofparallellines with slope s. A set of 

parallellines defines a resolvability class. 
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Figure l: An example of lhe rectangular grid for m=5 and k=3 

TABLEI 
Resolvability classes of a lattice design in Figure l 

s=O s-1 S=2 s=3 s=4 
{1,6,11} {l, 7, 13} {1, 8, 15} {1, 9, 12} {!,lO, 14} 
{2, 7, 12} {2, 8, 14} {2, 9, 11} {2, iO, 13} {2, 6, 15} 
{3, 8, 13} {3, 9, 15} {3, lO, 12} {3, 6, 14} {3, 7, 11) 
{4, 9, 14} {4, lO, ll} {4, 6, !3} {4, 7, 15} {4, 8, 12} 
{5, lO, 15} {5, 6, 12} {5, 7, 14} {5, 8, 11} {5, 9, 13} 

Remark 3.1: 

Notice that in general there are m parallel classes of blocks (!ines), each corresponding to lhe 

different slope. 

Lemma3.1: 

A set B of ali m k-element sets o f V obtained by taking the labels of the poínts along the !ines with 
sJopeS S, OgSín-J ÍS a 1-configuration. 

Proof' The desígn B containing ai! m k-element sets of poínts in V obtained by taking labels of 

points along the !ines wíth s!opes s, ogsm-l is a l-configuratíon. It can be readily verified by 

noticing that because m is a prime, for each lattíce poínt (x,y) there cannot be more than one line 

with slope s that passes through (x,y). 

Q.E.D. 

Remark 3.2: 

The generalization to the case when m is a power of prime is straightforward. 
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Remark 3.3: The block size is k, number of blocks is b=m2 and each point in the design occurs in 

exactly m blocks. The matrix o f parity checks o f a lattice code can be written in the fonn 

[

Hl.l H1.2 .. · H,.m 

H== Hz.1 Hz.2 ··· H2,m 

H:k.l H~.z · · · H:.m 

wherein each sub-matrix Hi,J is a circulant with column weight equal to one. H is a líne-point 

incidence matrix of a 1-configuration defined by a integer lattice defíned above. 

The position of the only nonzero position in the first column of Hi,J can be found by using cV I), 

the i-th element of the first base block in the class of blocks corresponding to the j-th slope (see 

[7]) . The construction can be readily extended to the case when m is a p, power o f prime. 

Remark3.4: 

Notice a similarity of the structure of the above parity-check matrix with that obtained in 

The codes denoted by LU(2,q) in [17] have square matrix of parity checks, while our codes have 

rectangular matrices of parity checks. It is not surprising because it was shown in [17] that 

LU(2;4) and LU(2;8) are equivalent to Euclidean geometry codes [3], while a square lattice design 

(which includes the lines with infínity slope) is equivalent to the Euclideari plane. Notice also 

similarity with a parity check matrix of array codes [23]. 

Remark3.5: 

The ensemble of ínteger-lattice codes defined by matrices of parity checks obtained by random 

selectíon of slopes and starting points has well defíned asymptotic distance distribution. Litsyn 

and Sheve!ev [21] showed that such an ensemble (they cal!ed it "Ensemble A") has superior 

distance dístribution compared to other ensembles they considered in [21]. 

Denote by B(s) a resolvability class corresponding to slope s, and B' a set of blocks of a 

sub-design composed of reso!vability classes corresponding to the slopes from the set S, i.e., 

B' = U~ 5 B(s), We are interested in the following problem: fínd a maximum cardinality slope set S, 

such that B' is a girth-eíght desígn. We are concerned wíth fínding a set of slopes of maximal 

cardinality because the slope set cardinality directly ínfluences the code rate, i.e. the larger slope 

set cardinality, the higher code rate. 

The problem of findíng a set of maximal cardina!ity for given integers m and k, is generally 
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difficult, i. e. the complexity o f the algorithm for finding sue h a set of slopes is exponential in m ·k. 

Instead of solving ha:rd problem of finding maximal slope set, we give a polynomial algorithm that 

constructs a set o f slopes S resulting in a girth-eight 1-configuration (V,B '). The algorithm is based 

on select, check and disregard procedure. 

s=O, S={s}. B'= B(s), S'={l, ... ,m-1}. 
while S';<0 
s=s+l 

if g(V, B' uB( s))?.8 

S=Su{s} 
S'=S'\{s) 
B'=B'uB(s) 

else 

end 
end 

S'=S'\{s} 

The function g:(V,B)-f Z+ gives the girth of a graph for a (V,B) design, and can be computed in 

time O((v+b)'vk) time (e.g. Dijkstra or Bellman-Ford algorithm-for more details see [16]). 

Clearly, the algorithm is greedy in the sense that a slope s does not satisfy the girth-eight criterion, 

it cbecks for tbe immediate next slope s+ L Altbough this method does not result in a maximal 

slope set, the simulation results of the different codes obtained through this method have shown to 

yield good performance (discussed !ater). 

In [23] Fan gave a condition for absence of cycles of an arbitrary length in a Tanner graph of an 

array code in terms of a relation among powers of a permutation matrix used as blocks in H. 

Notice however that this condition still requires a search for finding a desired set of powers, and is 

equivalent to a "triangle" condition in this paper (see Appendix). 

Note that finding a set of slopes for k=2 is trivial, because S={ l, ... ,v/2-l)is always a solution. 

However, for k=3, we deduce a simple way of generating a slope set S, such that B'=U,.,B(s) is a 

girth-eight design. The simplification stems from the interesting relationship between the elements 

of S with the "aritbmetic constrained" sequences defined by Odlyzko and Stanley [22]. 

Definition 3.1 : 

Given a fixed positive integer q, we define the arithmetically constrained sequence as the 

sequence Y (q) of positive integers 0= ao< a1 < a2 < ... by the conditions: 

1. a1 = q 

11. having chosen ao, a1. az ... an (n >0), let an+l be the least integer such that an+l > an and 

such that the sequence ao, a 1, a2 ... an, an+l contains no three terms ( not necessarily 
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consecutive) in an arithmetic progression. 

Furthermore, we define "earliest" sequence A: a0, a 1, a2 •. . an.... such that 

a
0 

= O, a 2n = 3an, a 2n+l = a,, + 1. It can be verified [23] that A is an arithmetically constrained 

sequence with the property that the temary expansion of a, = -~) 1 3' has t; =0 or 1 [Theorem 2, 

23] ("Earliest" corresponds to "greedy" when it comes to choosing the terms, for example: for the 

set { 1, 2}, since 3 cannot be considered in the sequence, the sequence considers the first possible 

number i.e., 4). 

Theorem 3.1: 

For m arbitrary and k=3, S ={a: a E A!\ a :S: m/2)results in a girth-eight 1-configuration (V,B'), 

where A is the earliest sequence. 

Proof' 

Given in Append.ix. 

Theorem 3.1 is consequence o f the fact that sequence of the set of slopes obtained from the 

algorithm is greedy and so is the earliest sequence. As we will in the next section, the codes 

obtained by the proposed slope selection algorithm or the above straight forward implication 

(k=3), have performance slightly worse than codes with a slope set with maximum card.inality. 

The lower bound on a minimum distance of acode with girth g, column weight k code is given by 

the following formula [2] 

dmin ~ 

1 +~·((k -l)L<•-'l'•J -1) 
k-2 

1 +~-( (k _ 1)L<g-2>t•J _ 1 )+ (k -l)L<g-2)t4J 
k-2 

if g/2odd 

if g /2 even 

The above bound can be aptly applied for the above girth-eight codes with g =8. 

IV. SIMULATION RESULTS 

The first experiment deals with the performance of codes obtained from the slope set generated 

using the above select and discard procedure. (Note that we do not consider high rate codes for the 

reason that we need to find a maximal slope set, which is a tough to obtain for high rate codes as it 

66 



involves large block lenglh). For the specific case of k=3 & m=53, either with lhe proposed 

algorithm (or using the theorem 3.1), we obtaln a s!ope set S~ {0, 1, 3, 4, 9, 10, 12, 13) resulting a 

code rate of R= 0.67 (and b = 424). On the other hand, with extensive computer search for a 

maximal slope set, we obtained Srnax ={7,8,14,16,19,33,35,41,42,45) resulting in acode rate of 

R=0.7 (and b= 530). As we can see from Figure 2, the code constructed from the maximal set of 

slopes is 2.8dB away from respective Shannon límit, while code constructed using polynomial 

time algorilhm is 3.4dB away from respective Shannon limit, which is not bad for such short 

codes. In this particular case lhe code constructed from the set with maximal cardinality slope set 

has better performance. However, we do not have enough evidence to state this as a general 

conc!usion. 

o 2 3 4 5 6 

Figure 2 

Performance comparison of LDPC codes with maximal set slopes and the linear time method 

The next simulation result gives the BER performance of girth-eight codes obtained from 

rectangular integer lattices in A WGN channel. Figure 3 show lhe comparison of girth-eight codes 

with random!y constructed codes with co!umn weights thtee and four respective!y. Girth-eight 

LDPC code with column weight thtee (k=3), code rate R=0.81 with set of s!opes 

S={0,1,3,4,9,10,12,13,27,28,30,31,36,37,39,40} and girth eight code with parameters k=4 and 

R=O. 76 are used. The result shows that girth eight codes constructed using above algorithm 

perform quite close to random codes. Random codes are generated such that cycles of length four 
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are omitted. 

::::::::: :::j:::::::::::::::: :::1:::::::::::: 

== = =~= === =~== = = --- -1-----:------ - -~- --- - - - - -

~==----------------9 

:::: ::i -D- Random(4Sl1,0.76) !-' 

: : :i -Q- Ginh Eght(48ll, 0.76, k=4) 

__ -i -o- Random(2Sl2,0.81) l 
! -l.::r Girth Eight (2512, 0.81, k=3) 

~~~~~~~~~~~~~~~~~~~ 
===~=========~====~ 

---~----~---------,----~ 
--4----...,----~----~----1 

' ' I 
~~-3~~~~~~~~~~~~~~~~~~~~ ----·-.,-- ===- :::::t====~===::;:::::) 

----:-------:-----,--\. --,-----:- ---,-----,----...,-----j 

Figure 3 
Performance of girth-eight codes in A WGN channel 

CONCLUSION 

We have given a simple construction of girth-eight codes usmg integer lattices. The 

construction is based on a judicious selection of sets of parallel !ines in the lattice sub-geometry. 

The construction gives a set of codes with a wide range o f lengths and rates. The algorithm used to 

create girth-eight codes can be readily generalized to higher girths. In the k=3 we have an explicit 

construction using arithmetic sequences. 
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Proof 

APPEND!X 

PROOF OF THEOREM 3.1 

John L. Fan [23] derived the condition for occurrence of a cycle in a particular class of Tanner 

graphs whose parity check matrix H has the structure defined as in remark 3.!. For the specific 

case of eliminating cycles of length six with k =3, the conditíon in [25] reduces to the followíng 

triangle condition. 

(l) 

Where: a= i 1 - i3 and /3== iz- i3 (the índices ih are associated wíth the sub matrices H 1 1
. such that 

h• h 

(2) 

For k=3, since ih E {1,2,3}, we have the obvious inequality, 

-k< a, fJ <k. (3) 

From (2) and (3), we are left with the possibility that a and fJ take values, with the opposite sign 

and with a different absolute value, from the set { -2, -1, 1, 2} or both to be equall or -1. Thus, the 

set of slopes S must be a subset of the earliest sequence A defined above. An arithmetic 

s, + s, 
progression, where, for example, s 2 = 

2 
corresponds to the case a = 2, fJ = -1 . 

Now we shall prove that in S cannot be values bigger that m/2: 

Let s3 be the potential slope considered to be inc!uded in S. s1 and s2 are two elements already in 

S. From now on, ali numbers, if not specifically stated differently, are considered in ternary 

expansion. 

Number d=m-s3 issmallerthan m/2.1fdishas l'sandO'sasdigitsonlyitisalreadyinS,in 

that case we take s2 =d, s, =0 and a= 1, fJ = 1 eliminating potential s3 • If that is not the case we 

can add to d a number s 1 made out O' s and 1 's as digits in that way that sum is a number that is 

made out O's and 2's. We do that simply by taking a digit of s1 to be 1 when a corresponding digit 

o f d is 1. We have d + s, < m. This result can be seen as double of the number that has only 1 's 

and O's as digits and is smaller than m/2. We constructeds2 , thus eliminatings3 • This 

constructíon corresponds to a = 2, fJ = -1 . 
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Achievable Information Rates for High-Speed Long-Haul 
Optical Transrnission 

Ivan B. Djordjevic, Milos Ivkovic, Bane Vasic, Senior Member, IEEE, and lldar Gabítov 

Abstract-Acl!ievable information rates for high-speed optical transmission (40 Gb/s and above) 
are calculated using finite state machine approach. Combined effect of ali major effects including: 
amplified spontaneous emission noise, Kerr nonlinearity (self-phase modulation, intrachannel four­
wave mixing, intrachannel cross-phase rnodulation), stimulated Raman scattering, chromatic 
dispersion (group velocity dispersion (GVD), second order GVD) and (optical/electrical) filtering on 
the Shannon capacity is considere!!.. The lower bound for the channel capacity is determine!!. for 
various dispersion maps and number of spans, and shown to depend strongly on the dispersion map 
and average launched power. The use:r bit rate maximizing the spectral efficiency is found to be 
around 25Gb/s .. 

Index Terms-Achievable information rates, Shannon capacity, finite state rnachine, fiber 
nonlinearities, optical communications, long-haul t:ransmission 

L INTRODUCTION 

Increase of optical bandwidth and improvement of spectral efficiency are common ways to increase the 
throughput of a dense wavelength-division-multiplexed (DWDM) system. Recent progress in DWDM 
transmission technology has lead to a fundamental and very difficult question: "What is the Shannon's 
capacity of a nonlinear fiber optics communication channel?" There have been numerous attempts to tackle 
this problem [1-13]. In ali ofthem it is assumed that the amplified spontaneous emission (ASE) from inline 
amplifiers is a predominant effect, while the effect of nonlinearities is taken into an account in an 
approximate fashion. 

In this paper we report the achievable information rates for high-speed long-haul optical transmission 
with independent uniformly distributed (i.u.d.) source and the combined effect of ASE noise, Kerr 
nonlinearity (self-phase modulation, intrachannel four-wave mixing, intrachannel cross-phase modulation), 
stimulated Raman scattering, chromatic dispersion (group velocity dispersion (GVD), second order GVD) 
and (optical/electrical) filtering. The method employs finite state machine approach outlined in [17-20], and 
was initially proposed for magnetic channels, which are essentially nonlinear as well. The propagation of 
the signal is modeled by NLSE, solved using the Fourier-split-step algorithm [14]. The ASE noise-signal 
interaction during transmission is taken into account, and the fiber channel is modeled as a channel with 
memory. Our approach is applicable to any transmission system and allows the usage of the achievable 
information rate as figure of merit for a long-haul transmission system similarly as Q-factor, eye opening or 
bit -error rate. 

The paper is organized as follows. The Section ll gives a brief glance on recent capacity calculation 
attempts, and underlines their limitations. Sections Ill and IV explain the channel model and our method, 
while Section V contains numerical results and conclusions. 
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ll. AN ÜVERVIEW OFPR!OR WORK 

In the existing literature the fiber nonlinearities are considered either as (i) the perturbation of a linear 
case [4], [12], as (ii) the multip!icative noise [6], or (iii) the dispersion was ignored [7-8]. Although the 
perturbative methods in general may yield to reliable results in lhe domain of validity [4], they are 
applicable in the regime of relatively small nonlinearities (which is not the case at 40Gb/s or higher). Mitra 
and Stark [6] treat a nonlinear noisy channel as a linear one with an effective nonlinear noise. However, as 
indicated in [2], such an approximation needs to be carefully justified for each particular transmission 
system. In dispersion free transmission [7-8] the nonlinear Schri:idinger equation (h'LSE) [14], (see also Eq. 
(1) in Section can be solved analyticaily, but such a result is only of academic interest [7]. In [3] Tang 
determined the channel capacity of a multispan DWMD system employing dispersive nonlinear opticai 
fibers and an ideal coherent optical receiver. The results obtained [3] are based on solving the NLSE by 
Voltera series expansion up to the first order. Such method is valid in systems for which the maximum non­
linear rotation is smail compared to 2n [3]. The channel capacity is determined using the Pinsker' s formula 
[15], which may lead to wrong conclusions, as it was shown in [2], especiaily when the signal-to-noise ratio 
tends to infinity. The statistics of optical transmission in a noisy nonlinear channel with weak dispersion 
management and zero average dispersion is considered in [2], and the lower bounds for channel capacity 
are determined (although numericai results are not reported). However, this method is applicable only for 
weak dispersion management systems with zero average dispersion, as described in [16]. The spectrai 
efficiency limits in DWDM systems with coherent detection in nonlinear regime limited by cross-phase 
modulation or four-wave mixing are reported in [1]. However, calculating the channel capacity when 
combined effects of ASE noise, Kerr nonlinearities, dispersion and filtering effects are taken into account is 
still an open problem. 

ill. CHANNEL MODEL 

The signal channel transmiSSIOn at high bit rate (40 Gb/s and above) is considered. The carrier­
suppressed RZ (CSRZ) modulator employed is composed of a laser diode, two MZ intensity modulators 
(the first serving as modulator, the second as a NRZ to RZ converter), and a PRBS generator. Erbium-dop­
ed fiber amplifiers (EDFA) and dispersion compensating fibers (DCF) are deployed periodicaily to 
compensate the loss and accumulated dispersion of the standard single mode fiber (SMF). The direct 
detection receiver observed is composed of an opticai filter, a PIN photodiode, an electricai filter, and a 
sampler followed by a decision circuit. An EDF A is used as a pre-amplifier. (Polarizatoion mode dispersion 
and polarization dispersion loss effects are ignored.) 

The propagation of a signai through the transmission mediais modeled by NLSE [14], 

oA a ; o' A fJ, a' A . l' , a IAI'I -;--A--/1 -+---+zr IAI -T --)A az 2 z'ar' 6ar' R ar ' (1) 

where z is the propagation distance aiong the fiber, relative time T; t- z I v, gives a frame of reference 

moving at the group velocity Vg, A(z,1) is the complex field amplitude of the pulse, a is the attenuation 
coefficient of the fiber, !3z is the group velocity dispersion (GVD) coefficient, 1)3 is the second-order GVD, 
y is the nonlinearity coefficient giving rise to Kerr effect nonlinearities: self-phase modulation (SPM), intra­
channel cross-phase modulation (IXPM) and intrachannel four-wave mixing (IFWM) and TR is the Raman 
coefficient describing the stimulated Raman scattering (SRS). 
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IV, CALCULA TION OF ACHIEV ABLE INFORlv!A T!ON RA TES USING FINlTE STA TE MACHINE APPROACH 

The methocl usecl in cletennining of a lower bouncl on the achievable infonnation rate is to estimate the 

mutual infonnation between the input ranclom process X and output process Yby modeling the channel as 
a finite state machine [17-20]. The finite state machine is described by the input alphabet X, output alphabet 

Y, finite set of states 5, and by the conditional probability density function determined from nonlinear 
channel mocleled by NLSE (1), p(Yn,sls'), s=(Xn-m• Xn-m+J,.,, X, Xn+J,,., Xn+ml (X;E{O,l}), where 2m+l is 
the channel memory, It is assumecl that m previous and m next bits influence the observed bit, and the state 
s is detennined by a sequence of 2m+ l input bits, Given the previous state s ', received sample Yn the 
"probabi!ity" p(Y"), Y"=(YJ,Y2,,. -.Yn), c by the BCJR algorithm [21] to the probability of the next state s at 

instance n, CX.n(s) can be detennined: 

a, ( s) ~L,- r, ( s ', s) a,_, ( s '), (2) 

where y,(s',s) isgivenby Y,(s',s)~p(s,Y,is'), 

The problem of computing channel capacity involves the maximization of mutual infonnation I( X, )') 
over ali possible input clistributions p(X) 

where 2m+ 1 denotes the memory and mutual infonnation can be calculated by 

with H, (Y)~-~logp(Y') being the output process entropy rate, According to the Shannon-McMillan-
n 

Breimann theorem [18-19], for a stationary ergodic finite-state Markov process Y, 

as n---t=, with H (Y) being the output process entropy. The conditional entropy H(Y 1 X) can be calculated 

in a similar fashion, 
As already mentioned, we reduce our attention to the unifonn-input infonnation rate (the case commonly 

considered in practical systems), also known as the achievable informatíon rate [19], 

V, NUMER!CAL RESULTS AND CONCLUS!ONS 

Consider a single channel transmission system at 40Gb/s bit-rate located at 1552524 nm (193.1 THz), 
The dispersion map ís composed of N spans of length L (96 or 48 km), consisting of 2L/3 km of D+ fiber 
followed by L/3 km of D- fiber, wíth pre-compensatíon of -320 ps/nm and corresponding post-com­
pensation, The D+ fiber parameters are as follows; dispersíon of 20 ps/(nm·km), dispersion slope of 0.06 
ps/(nm2-km), effectíve cross-sectíonal area equal to llO ,um2 and loss equal to 0.19 dB/km, The 

corresponding D- fiber parameters are: -40 ps/(nm·km), -0.12 ps/(nm2-km), 50 ,um2 and 025 dB/km, 

respectively. The nonlinear Kerr coefficient is set to 2.6 x 10'20 m2/W, anda carrier-suppressecl RZ signal 
fonnat ís assumed, The influence of optical and electrical fílters is taken into account as well. To 
compensate the fiber loss EDFAs with the noise figure of 6 dB are located after every fiber section. 
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The results given in Figs. 1-3. Two different span lengths, 96 km and 48 km, are observed. As expected, 
for larger channel memory and longer sequence of bits better lower bounds for the information rale are 
obtained. The channel capacity is monotonically decreasing function of the average launched power (Fig. 
2). Also the lower bound on the i.i.d. capacity varies with the dispersion map. It is also interesting (see Fig. 
3) that there exists the optimum bit rate (at around 25Gb/s), which means that it is best to use an error 
correction code having the rate of approximately 2/3 (=25/40). 

It is important to notice that the finite state machine can efficiently capture ali nonlinear effect one would 
!ike to include in the model as long as they have local character, i.e., the energy transfer between distant 
symbols is limited which is the case in practical systems , 
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Considerações finais 

Existem vanas formas de se dar continuidade aos trabalhos apresentados. Por 
exemplo, Prof. Dr. J. Cigler da Universitat Wien deu urna generalização de nosso 
trabalho "Catalan Numbers, the Hankel Transform, and Fibonacci Numbers" no artigo 
"Some Relations Between Generalized Fibonacci and Catalan Nurnbers" publicado em 
Sitzungsber Abt. II (2002) 211, de Ósterreichische Akademie der Disenchantrnent. 
O trabalho dele, por sua vez, pode ser generalizado e mais explorado. 

É bem conhecido que identidades de MacDonald podem ser vistas como 
generalizações multivariaveis de identidades de Rogers-Ramanujan. O candidato julga 
possível a obtenção de interpretações combinatórias, mais provavelmente em termos de 
partições, para estes identidades. 

Para finalizar, teoria de códigos é uma área de grande interesse no momento. 
Possíveis caminhos são inúmeros. Uma possibilidade é estudar códigos especializados 
para canais ópticos. Demanda para transmissão de dados em grandes velocidades está 
motivando o desenvolvimento de técnicas que tratam os limites físicos do canal. Isto 
representa uma oportunidade para se fazer um trabalho mais aplicado, mas com uma 
fundamentação matemática mais ligada à combinatória. 
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