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Resumeo

Esta tese € uma coletnea de trabalhos feitos pelo candidato. Importantes
ferramentas combinatdrias sdo utilizadas, dentre as quais: fungdes geradoras, g-
caleulo, vérias propriedades de segilencias de nimeros inteiros, efc: todas
direcionadas para a teoria aditiva dos niimeros {ieoria de particdes) e teoria de
cédigos.

A tese consiste de seis trabalhos: trés deles wratam de aspectos
combinatdriais (interpretacBes em termos de particdes) de identidades do tipo
Rogers-Ramanujan e onde vérias seqiiéncias de nlimeros inteiros aparecem.

Um trabalho onde uma conjectura sobre transformacZio de Hankel e
seqiiencias de Catalan e Fibonacci foi provada.

Um trabalho onde uma construciio combinatéria de uma classe de low-
density parity-check ¢6digos € apresentada. Neste trabalho demonstra-se também
uma interessante conexio entre uma seqliencia de ndmeros inteiros, definida por
Odlyzko e Stanley, e esta classe de cédigos.

O dltimo trabalho trata o problema de determinar a capacidade de canal
de um sistema Optico usando um método numérico.



Abstract

This thesis consists of the publications done by the candidate. In these
publications we have used many combinatorial fools including: generating
functions, g-calculus, various properties of sequences of integer numbers etc.
were used in the theory of partitions and the coding theory.

The thesis consists of six papers: three of them take into consideration
combinatorial aspects (interpretations in terms of different classes of partitions) of
identities of the Rogers-Ramanujan type, are explored and where different
sequences of integer numbers naturally appear.

The fourth paper deals with Catalan sequence, discrete Hankel transform
and Fibonacci sequence. A conjecture by Layman is proved.

In the fifth paper a construction of a class of Low-Density Parity-Check
codes is proposed. An interesting connection between this class of codes and a
sequence examined by Odlyzko and Stanley is also shown.

The last paper deals with the problem of determining Shannon capacity of
an optical systemn by a numerical method.
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Introducao

Esta tese € uma ccletnea de trabalhos feitos pelo candidato. Consiste de seis
trabalhos: trés ja publicados, um aceito para publicagio e dois submetidos.

Nestes trabalhos as ferramentas combinatérias: fungles geradoras, g-cdlculo,
varias propriedades de segiiencias dos nimeros inteiros, etc. foram usadas na teoria
aditiva dos niimeros (teoria de parti¢cdes) e teoria da codificagio.

Os trabalhos estdo agrupados pelos assuntos tratados € nfio estio em ordem
cronolégica. Em principio podem ser lidos independentemente um do outro. No que
segue apresentamos uma pequena descricdo de cada um deles.

1. "Fibonacci Numbers and Partitions” publicado no Fibonacei Quarterly, Vol. 41.3
2003. Este € o primeirc trabalho que o candidato fez com seu orientador. O trabalho €
baseado em duas conjecturas obtidas por Santos em sua tese de doutorado . Ferramentas
de g-célculo foram aplicadas em identidades do tipo Rogers-Ramanujan para se obter trés
interpretagdes combinatdrias para os nimeros de Fibonacci em termos de particdes
restritas e uma em termos de caminhos reticulados. Novas formulas para nidmeros de
Fibonacci foram obtidas também. A interpretacfo combinatoria em termos de caminhos
reticulados sai usando estas formulas.

2. "Colored partitions and the Fibonacci sequence”, submetide para a revista TEMA.
Este pequeno trabalho pode ser visto como uma continuagio de trabalho anterior. Aqui,
ternos uma nova interpretacio dos ndmeros de Fibonacci, desta vez em termos de
particdes coloridas, mais uma nova férmula para nimeros de Fibonacci. Neste trabalho o
candidato escreveu um pouco sobre historia e onipresen¢a dos niimeros de Fibonacci na
natureza.

3. "Polynomial generalizations of the Pell sequence and the Fibonacci sequence”
aceito para publicagfo na revista Fibonacci Quarterly. Este é o trabalho mais longo nesta
tese. Neste trabalho as mesmas ferramentas foram usadas para se obter generalizacSes
polinomiais de seqgiiencias de Pell e Fibonacci. As interpretagdes combinatérias foram
apresentadas, junto com uma prova bijetiva de equivaléncia de duas classes de particBes.
Uma destes classes aparece na identidade sobre particdes de Gollnitz-Gordon, um
resultado cldssico na teoria de parti¢des.

4, "Catalan Numbers, the Hankel Transform, and Fibonacci Numbers”, publicado no
Journal of Integer Sequences, Vol. 5.1, 2002. Uma conjectura sobre transformacio
discreta de Hankel foi provada neste artigo. O trabalho despertou muita atenc@o. Vale
mencionar que o candidato recebeu varias questSes de diversos matemdticos



perguntando sobre detalhes e possiveis generalizagdes. O método aplicado usa teoria de
polindmios ortogonais junto com funcdes geradoras e varias propriedades dos ndmeros
de Fibonacci.

5. "High-rate girth-eight low-density parity-check codes on rectangular integer
lattices”, publicado em IEEE Transactions on Communications, Vol.:52.8, 2004. A
construgio combinatorial de uma classe de cédigos low-density parity-check €
apresentada neste trabalho. Estes cédigos possuem grande girth -a propriedade desejada
em caso de decodificacfo iterativa. Uma interessante e nfo esperada conexfio entre uma
segliencia de nimeros inteiros, definida por Odlyzko e Stanley, e esta classe de codigos
foi provada no Teorema 3.1. Isso € a primeira aplicacdo dessa seqgiiencia na teoria de
codificagio.

6. "Achievable Information Rates for High-Speed Long-Haal Optical
Transmission”, submetido ao Photonics Technology Letters. Este trabalho foi realizado
durante o periodo em gue o candidato esteve na University of Arizona, convidado pelos
co-autores do trabalho anterior. Este trabalho apresenta uma excurs@o fora de drea de
segliencias de niimeros inteiros ¢ combinatdria. O problema de determinar a capacidade
de canal de um sistema optico € tratado usando um método numérico. O assunto tratado &
dificil e existe grande interesse nele, Espera-se gue este seja o primeiroc numa serie de
trabalhos relacionados com este tépico.
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Abstract
In this paper we present four different combinatorial interpreta-
tions for the Fibonacci numbers. Three in terms of restricied parti-
tions and ore in terms of lattice paths.

1 Introduction

In a series of two papers ([6] and [7]) Slater gave a list of 130 identities of
the Rogers-Ramanujan type. In [2] Andrews has introduced a two variable
generalization in order to look for combinatorial interpretations for those
identities. In [5] one of us, Santos, gave conjectures for explicit formulas for
families of polynomial that can be obtained using Andrews method for 74
identities of the Slater’s list.

In this paper we are going to prove the conjectures given by Santos in [5]
for identities 94 and 99.

We show, also, that the family of polynomials F,{g) related to identity
94 given by

Plg)=1, RAl@=1+q¢+¢
(1.1)
Pulg) = (1 + g+ ¢)Pa-1(q) — aFa2(q)
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is the generating function for partitions into at most n parts in which every
even smaller than the largest part appears at least once and that the family
Tr.{g) related to identity 99 given by

Tolg)=1 Ti(g)=1+¢
(1.2)
Tolg) = (1 4+ g+ ¢*)Th1(g) — ¢Tn2(q)

is the generating function for partitions into at most n parts in which the
largest part is even and every even smaller than the largest appears at least
once.

In what follows we denote the Fibonacei numbers by F, where Fy =
0; Fi=1and F,= F,_ 1+ F,_o5,n > 2, and use the standard notation

(Aigln=(1-A)1-Ag)...(1-Ad"™)

and
o0

(A9 =] -4, o<1

n=0

We need also the following identities for the Gaussian polynomials

2] = [a2n] .
:1 _ wn;ﬂﬂn-m{;:ﬂ (1.4)
2 el
where
[:%J - G P 0smsn o

0 otherwise

2 The first family of polynomials

We consider now the two variable function associated to identity 94 of
Slater [7] which is:



—LTL

fsmgt z

— (i;g )m (tg; g% )nas

From this we have that

(1-1)(1 ~tg)foslq, t) = 1 + tq” fou(gs %)

and in order to obtain a recurrence relation from this functional equation we
make the following substitution

foa(g, T) ZP i".

=0

Now we hawve:

(1~ 1)(1 ZPt —h&fZP (tg®)™

n={ n=0
which implies
ZP " — an " — Zan " +ZqP =14+ Zq%Pn i
=0 n==1 n=2
From this last equation it is easy to see that
Plg)=1; Alg)=1+q+¢

(2.2)
Po(q) = (1+ 9+ ¢*)Po1(0) — ¢Pa—2{g).

Santos gave in [5] a conjecture C,(g), for an explicit formula for this
family of polynomials:

o0

2,45 | 2n41 ; ; 2n+1

Cula) = 3 g | T | gt 2L L g
j=—oo

In our next theorem we prove that this conjecture is true.

Theorem 2.1. The family F,(g) given in (2.2) is equal to Cr(g) given
in (2.3).

10



Proof. Considering that Cy(g) = 1 and C,{g) = 1 + ¢ + ¢° we have to
show that

Colg) = (1 + g+ ¢™)Croi(g) — qChoz(g) that is:

o0 r <o -
sy | 1] 152 +14j+3 | 2Nl
ST Eel B STl P

j:moo j:—:x;

[e.0]
o n 1552445 2n—1 } 1552+ 14543 2n—1
CRTET Sl OIPLa I N D oF el M

N e | =3 ] S eitiids n—3
"'QQZ g 4jl:n—5j-“2_}im Z 91532€143+3i_ = } (2.4)

If we apply (1.4) in each expression on the left side of (2.4) we get

X

soas | 21 b on
155°+47 1552 +95+n-+1
S e S -

) _ n—>57 —~1
_}"—OQ Fmem 20

oQ

on s o o
. 1572414543 15524195 46+4n
S P o [ }

n—>545—3
J=w—o0

]_“"*DO

Applying now (1.5) to each sum in the expression above and replacing it in
(2.4) we get after some cancellations

2 7 — 1 = 2n—1
157+ 4+n - 1552 49j4+n+1 -
IR LA EN TS 3 Tl

_ n—>55—2
Jm—o F=—00
(o] o0
_ Z ISP 05t 2n -1 Z 15524105 +64+n 2n—1
_ n =57 — 2 n--5j—4
=00 =
_ N s n—1 1552414544 | 20— 1
M_Zq [n—Sy—l} Zq [n——5j—3
Je=—00 — 0
[s'e] x>
_ 157244541 2n—3 1572 +145+4 2n -3 .
.Zq [n~5jm2}+.zq n—5j—4 {(2.5)
Ju=—00 J=—00

Considering the right side of the last expression and applying (1.4) on the

11



first two sums we get

-

o]
15574+4541 | 2N — 2 I5240j+14n | 2R =2 ]
>4 [ n—5j—1| + Z 4 54 J

_ n-—-57—2
Tz j=—-o0
o0 o0
_ Z q15j2+14j+4 Zn — 2 _ Z q15j2-f~19j~:-5w%~n in—2 1
, n—2575—3 _ n—>5j—4 |
F==—00 JEme—00
o0 oo
. Z q15j2+4j+1 2n —3 4 Z q15j2+14j+4 2n -3
) n—>5)—2 , n—>5]—4
F=—c j=—c0

Applying now (1.5) on the first and third sums on this last expression and
making some cancellations we have that the right side of (2.5} is equal to:

- 2 2n 2n—2
155 wj+n - 1572 4+05+1+n -
L P B ol b P

) n-—58j—2
J=—c0 J=—00
0 (o3
_ Z g5 oL 2n—3 _ Z LT H10 464 2n ~ 2
_ n—5j-31" n—5j~4
FEm—00 J=—oo
If we take now the left side of (2.5} and apply (1.4) to all sums we get:
S 1552 —j+n | 21— 2 - 15724454 2n—1 2n—2
e[ ] 2
Eahad e} -l
o o]
1572495 +n+1 2n—2 155241454242 2n —2
2 ERaE oF w53
o u]
_ z g15j2+9j+n+1 2n — 2 i 1553145+ 2n+2 2n —2
_ n—5j—2 ¢ n—5j~3
J=m—0 e 0
bt 2 2n—2 [ 2n—2
_ 1552 +14j4n+6 L . 152247 4-2n+9 -
qu [n—5j—4] ,Zq Ln—-Sj——SJ{zﬁ)
=—00 J=—00

Applying now {1.5) on the first and fifth sums of this last expression and

making cancellations with the sums from the right side given in (2.6) we are
left with:

o0

- 1557 —6j+2n | 2N — 3 1552-+45+2n1 oM — 2
Z 1 [ n—23j } + Z 1 ;

Pl Pand n—2>57—1

12



i 15524145 +9n+2 2n -~ 1 = 1572445+ —1 2n — 3
T2 n—j—3J Zg n—5j—2

j=‘-‘00 —_—
[aa)
15§24+ 147+2n-42 n—2 1352 +245+2n-+0 1. n—2 1
- >4 Tl q | a2
] n—57—3 | n—57—3 |
Femos _‘]""“'—OO

Observing that the third sum cancels the fifth and replacing 7 by j + 1
in the last sum we get after using (1.4)

- 1552445 +2n+1 2n —2 _ = 15524454901 n—3
Zq [H—Sj—l] Zq n—>5j—2

j==cs J=—00
_ i g3 s fi i ins;; i : é
Py i
which is identically zero by (1.5) completing the proof. o

Next we make a few observations regarding the combinatorics of Pn(g)
given in (2.2). Knowing that Py(q) is the coefficient of £ in (2.1) that is:

co " qn2~+~n

; (1= £)(tg% ¢)n(ta; ¢%)nan

=0

and considering that n2+n = 244+ ..+ 2n we can see that the coefficient
of t¥ in
£ gnz-é—n
(1% 2% )n(tq; 4% )nsa
is the generating function for partitions into exactly N parts in which every

even smaller than the largest part appears at least once. Because of the
factor {1 — ¢) in the denominator we have proved the following theorem:

Theorem 2.2: FPy{g) is the generating function for partitions into at
most N parts in which every even smaller than the largest part appears at
least once.

To see, now, the connection between the family of polinomials Py (g) and
the Fibonacci numbers we observe first that if we replace ¢ by 1 in (2.2) we
have

Po(1)=1; P(1)=3
Pa(1) = 3Py _1(1) — Ppos(1)

13



and that for the Fibonacci sequence F, we have also that Fy = 1; Fy =
and

Fopyo = 35, — Fop g
which allow us to conclude that
Cn(l) = Pn(]-} = F2n+2

and from these considerations we have proved the following:

Thecrem 2.3: The total number of partitions into at most NV parts in
which every even smaller than the largest part appears at least once is equal
to Fonas.

The family given in (2.2) has also an interesting property at ¢ = —1. At
this point we have

P(~1)=1; P(-1) =1
Pa(=1) = Po_y(=1) + Pys(~1)

which tell us that for ¢ = —1 we have all the Fibonacci numbers, ie.
P,(~1) == Foy1. In order to be able to see what happens combinatorially at
—1 we have to observe that when we change g by —g in (2.1) the only term
that changes is (tg;¢*)ny1 and that now the coefficient of £V is going to be
just the number of partitions as described in Theorem 2.3 having an even
number of odd parts minus the number of partitions of that type with and
odd number of odd parts. We state this in our next theorem.

Theorem 2.4. The total number of partitions into at most N parts
in which every even smaller than the largest part appears at least once and
having and even number of odd parts minus the number of those with an
odd number of odd parts is equal to Fiv.1.

In the table (2.1) we present, for a few values of n, all the results proved so
far. The first column has 7, the second the partitions described in theorem
2.4 with and even number of odd parts and the third column those with
an odd number of odd parts. The fourth column has Fh, o which is the
total number of partitions in columns 2 and 3 and the fifth column has the
difference between the number of partitions on the second and third column
which is Flas.

14



Partitions as described in Theorem 2.2

with an with an
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3 The second family of polynomials

Now we consider the two variable function given in Santos [5] associated
to identity 99 of Slater [7] which is:

foo(g:1) z e (3.1)

(t; ¢* miqq)

n=0

From this we can get

(1~ )(1 ~ta) foolg. t) = 1 — tq + tq” foo (g, tq")
from which we obtaln in & way similar to the one used to get (2.2) the
following family of polynomials
To(g) =1 Tilg)=1+¢°
(3.2)
Tolg) = (1+ g+ ¢*")Tn-1(q) ~ qTn-2(q)

As for the family (2.2) Santos gave in [5] a conjecture for an explicity formula
for {3.2) which is

o

e o]
— 1555 +25 2n+1 _ 1542 +85+1 2n+1
Bn(q) = ZQ’ [n“5j} Zq 51 (3.3)

The proof for this conjecture is given in the next theorem.

Theorem 3.1. The family 7},(q) given in (3.2) is equal to B,(q) given
n {3.3)

Proof. Considering that By{g) = 1 and B;(g) = 1+ ¢* we have to show
that
Bo(g) = (14 g+ ¢*)Ba_1(q) — ¢Br_2(g) which is:

oG o0

z g15j2+2j n+1 | Z q15j2~+~8j+z 2n+1

_ T - 57 ) n—>5j—1
Frm 00 R

oo oo
_ I 155%+25 2n—1 _ 15248541 2n -1
(L+g+d™){ > ¢ {n—:’)j—l] > n 2
=0 J=—0

16
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o0

_ T 57405 2n —3 _ 155248541 | 2 —3
q<‘zq [n_gjmgl 2. q [n—ﬁj—S
j:u-woo -

Jm—00

We apply (1.4) on each sum on the left to get

= 2 2n - 2n
1552425 15524+Tj+n+1 :
.Zg iin—Sj}qu [n——»Sj—i}
JE=—0k 00
2n = 2n
_ 155%485+1 _ 15524135 4n+2 &
Zq {nmfm—z] _Zq [nm5j——2}
J=—00 J=—00

Applying, now, (1.5} in all sums we obtain:

ad 15j2+2j 27’?, -1 = 16j2M3j n—1
‘Zq {nWSj—z}‘*,Zq n—5j
FETads o] Je—00
o0 [w.w]
22y 2n — 1 £i21 04 2n—1
15j°+Tj+n+1 157%4+2j+2n
*,Zq [n—'éj—?}_l__zq {n—5j~1}
j=-o0 J=—oe
_ i Lo i+ 2n—1 _ i 157243j4n | 2 —1
_ n—>57—2 , g n—>53—1
j=—00 Jrm—o0
_ = 15§2413j--n+2 2n —1 _ = 1572485420 2n—1
‘Zq [n_;",j_g ‘Eq n—5j—2
NEade sl Nihuse =)

Replacing this in (3.4) and making cancellations we are left with:

S 1552-3j4n | 20— 1 = 185247 rt 1 2n~—1
Zq [n—Sg’}_i_Zq n-—~>55—2

J=—00 Fe=—r0

_ N isesin | 21— 1 T 1874 18jn3 2n—1
DT IS Y [
J=—00 J=—00

- - 1552 4+25+1 2n—1 15524842 2n—1
_qu {nmj_l q n—5j—2 (3.5)
=

g

8M8 'é'Mg

1872485+2 2n—3
n—>5j—3

_ Z g5 2n—-3
n—957—2

j=—o0

17



Applying (1.4} on the first two sums on the right side of this last expression
we get for that side:

o8 o0
z gt 2n—2 + Z 7T 2n— 2
5i—1 n—5j—2

J=—c0 j=—00
_ S 152 +8] 2n -~ 15724+13j-+n+1 2n —2
> [Mj_ﬂ S Ry
Jr e O j=—co
- S 1872427 +1 n—3 - 154248542 2n —3
qu {n—-&ij—2}+_zg n—5j—3
e O jz—m

Using (1.5) on the first and third sums we get after cancellations

- 155%-3j+n -3 | - 15/24Tj+n+1 2n -2
2. ¢ [n—5j~1j”*‘.zg n—5j -2
e F=—00
(o ]
- 185%+3j+n 2n — 1542.£135424n 2n -2
‘Zq I:'n—- 3—2} Zq [n—5j—3
J=—-c0 j_““OO

Applying (1.4) in all sums on the left side of (3.5) and making cancellations
with the corresponding sums on the right we get: ’

oC o0
15j2-3j4n | 20— 2 1552 42j+2nm1 n—2
2. {n—sj]"*',zg n—5j—1
j=—c0 j==oo
- 1552 4+125+2n+2 2n — 15524-35+n 2n — 2
+j§wq {n—53—~3} J;@q {n—Sj—l
o o0
. Z qzsj2+8j+2n 2n — 2 _ Z q}.5j2+18j+2n+4 2n—2
oot n—>57—2 — n—5j—4
= 2 2n 2n ~ 3
- 1552 —-3j+n - 157%4+35+n -
.Zq [n—&iy——l} Zq {n—5jm2}
JE=—o0 J=—co

Using (1.5) on the first and fourth sums on the LHS we get:

oo

o0
152—8j42n | 2N — 3 1552424 2n—1 2n -2
21 {n—-w]*zg n—5j—1

Grm—0 -0

18



N = 1552 4125+2n-+2 n—2 1552 —2j+2n—1 2n—3
> ¢ th53-3} Zg [n—5j~1

Jj=-co Jme0o
o2 [we]
— 1577 +87+2n n—2 _ 1572418745 2n — 2 _
2« {n-Sj—»‘Z} X n_ti_4a| =0
JE=—o F=—00

Replacing 7 by 7 — 1 in the last sum and using (1.3) that sum cancels with
the third.

If we replace j by —j in the fourth sum using (1.3} and subtract from the
second by (1.4) we get finally:

o0
Z g15j2——8j-!—2n 2n — Z g1532_33-%-3n 2 n—3 jt
, n— 53  n—57—1]
j=—o0 j=—o0
oo
. z q15j2~$m8j—§-2n 2n - 2 =0
, n—=55—2
j=w—co

To see that this expression is, in fact, identically zero we apply (1.4) on the
first two sums replacing 7 by —j and using (1.3) on the result which com-
pletes the proof.

Considering that Tx{q) is the coefficient of ¥ in the sum

o] t“q
Z (1—=1)(tq% ¢*)nltq; 0%)n

n=0

and observing again that n®+n = 2+4+--. 4 2n we see that the coefficient
of tV¥ in
" qn2+n
(242 ¢*)n(ta; ¢%)n
is the generating function for partitions into exactly N parts in which the
largest part is even and every even smaller the largest part appears at least

once. From the presence of the factor (1 —£) in the denominator we have
proved the following theorem:

Theorem 3.2. T,(g) is the generating function for partitions into at
most N parts in which the largest part is even and every even smaller than
the largest appears at least once.
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Replacing now ¢ by 1 in (3.2) we get

(l)=1 (1) =2
Tn(l) = 3Tn—1(1) - an?(l)

But for F,, we have

F]_ = }. Fg =2
Fony1 = 3Fop-1 — Fan—s

which allow us to conclude that
Bn(1) = Ta(l) = Fonpn

and by these results we have proved

Theorem 3.3. The total number of partitions into at most N paris in
which the largest part is even and every even smaller than the largest part
appears at least once is equal to Fo,1q.

For family (3.2) we have also that, at ¢ = —1, we get all the Fibonacci
numbers £, n > 2.

T(~1)=1 N {-1) =
To(=1) = Ty (—1) + Toos(—1)

Le., Th(~1) = Fye, n > 0.

If we make the same observation that have made for the first family of
polynomials regarding the combinatorial interpretation at g = —1 we have
proved the following result:

Theorem 3.4. The total number of partitions into at most N parts in
which the largest part is even and every even smaller than the largest part
appears at least once and having an even number of odd parts minus the
number of those with an odd number of odd parts is equal to Fyys.

In the table (3.1) we present, for a few values of n, all the results proved
in this sectionn. The first column has n, the second the partitions described in
theorem 3.3 with and even number of odd parts and the third colummn those
with an odd number of odd parts. The fourth column has F,,.,; which is the
total number of partitions in columns 2 and 3 and the fifth column has the
difference between the number of partitions on the second and third column
which is Fl,19.
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Partitions as deseribed in Theorem 3.3

with an with an
even zumber of odd parts odd number of odd paris Famet 1 Fsz
b i 1
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® @ @ &
$ e ®
] @ &
5 3
¢ © » @
2 %
L @
@ -] @ @
& ® e e @
@ ] 'y
®
® @
Sl TR N IEEREN NS
® ¢ o ® e 13 5
® e s ® ® e
e e ® 8% @ B ®us000a
® @ 2 o » #0%98
L X ]
® @ 2 @
Table 3.1
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4 A formula for F,

Using the fact that the Gaussian polynomias given in {(1.6) are g-analogue
of the binomial coefficient, i.e., that

im| ] = ()

we may take the limits as ¢ approaches 1 in {2.3) and (3.3) to get

S 1552445 | 2+ 1 = 1552414543 n+1
T A ED O

lim Chlg) = ﬁm(
g—1

g—1 4 |
Je= o - P
= 2 [< T ) - ( o )1 = Co(1)
jmmcois. 3] n—>57 — 2 J
and
i fe] 1 - 15j2+2j 2n “%" 1 i ind }-5]—2“’{"8]'«{»1 2?1 w.gim 1
}IE%BH(Q) gfg(z ’ [n—5j} Z 7 n-5 —1
J=—00 e
- j;m[( n—5j ) B ( n-—97—1 )} _Bn(l)

But as we have observed
Cp(1l) = Fonyo and Bp(1) = Fonyy
which tell us that
= [{2m+1 on+1 \]
anw—j;w_(n”w)n(n__sj_z)- (4.1)
and

e [ n+1 V]
Fongr = Z (n—5j)_(n—5j——1>_ (4.2)

jem—oo L

5 Lattice path and Fibonacci

In this section we are going to show how to express the Fibonacci numbers
in terms of lattice path.

22



In Narayana [4], lemma 4A one can find the following formula

|L(m, it 5)| = i K mflk?t15)>_(nw;?tii)+t>} (4:3)

Jj=—cc

which give the total number of lattice paths from the origin to (m,n) not
touching the linesy =z -t and y =z + s.
But considering that we can write (4.1) and (4.2) as follows

e 5 12550 )~ (e T )]

Fonia :j_io K sj;é:}% ) - ( (n + %Z(f(fﬁi) +1 )}(4'5)

we can conclude just by comparing (4.4) and (4.5) with (4.3) that the fol-
lowing theorem holds:

Theorem 5.1. Fy,.; is the number of lattice paths from the origin to
(n,n+ 1) not touching the line y =z —fand y =z +5— 14, wherei = 1,2.
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Abstract

We present interesting combinatorial interpretations for the Fibonacci
numbers in terms of colored partitions obtained by using finite versions of
two identities of the Rogers-Ramanujan type. New formula for the Fibonacci
numbers 1s also given.

Key words: Partitions, Fibonacci numbers, Rogers-Ramanujan identities.

1 Introduction

Considered for the first time in a modest example for the facility of calcu-
lation in positional number system (Liber abaci 1202.), the Fibonacci num-
bers showed to be intrinsic in nature (phyllotazis), and omnipresent in arts
(poetry, architecture, etc.).

Many properties of these numbers are known. They appear in numerical
mathematics (Adby(1]), game theory {Tosi¢[14]), as well as in combinatorics
and partition theory, where there are interpretations in terms of composi-
tions, for example:



The number of compositions of n in which no 1’s appear is F,,_1 (Andrews/2]).

Or in terms of partitions, cne interpretation obtained by the authors is:

The total number of partitions inte at most N parts in which every even
smaller than the largest part appears at least once is equal to Fopys (San-
tos&Ivkovié[10]).

In this paper we present two new combinatorial interpretations in terms of
colored partitions based on identities number 63 and 62 in the Slater’s list of
identities of the Rogers-Ramanujan type [13]. We use a method introduced
by Andrews[5], and used by Santos[9] to obtain finite versions of Rogers-
Ramanujan type identities. Basic tools are presented in the following section.

2 Basic definitions

We start with Gaussian polynomials {see Andrews|[2]), that are g-analog
of the binomial coefficients:

{9)n :
(R - (@Dmlgin-m f 0=m<mn (1.1)
m G otherwise

where
(@;@)n = {1 —a)(1—ag)...(1 —ag™ ')
n & nonnegative integer.
When dealing with the expression

(1+z+29)" (1.2)

we call the coefficients of z7 in the expanded form of (1.2) the trinomial
coefficients.
It is easy to show that if

)
13

Q+z+a?)r=3" ("?)ffﬂ’-n (1.3)

j=n N
then

n 7l
(j>2 - Zh!(h + )i n ~J —2h)! (1.4)

R>0
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also

@ - (—nj>2 (16)
(),=020,+(7),+020), oo

The following expressions (Andrews & Baxter[7]) are g-analogs of the
trinomial coefficient in the same way that the Gaussian polynomial is a ¢-
analog of the binomial coefficient, that is, the limit of each one of them when
g approaches 1 is equal to the trinomial coefficient given by (1.4) and {1.5).

and

Ty(m, A q) = g(wl)j{?}qz[ﬂfﬂj;ijjy (1.8)
Ti(m, A,q) — é(‘@j[ﬂgiﬂﬁj] (19)

There are the following Pascal-triangle type relations:

Tl(m~A:Q) = Tl(m”laA:g)+qm+AT0(m_1:A+1:Q)

+q" A To(m — 1,4 - 1,0) (1.10)
TO(m:A‘,Q) = TO(m“ 13A*17Q)+qm+ATl(mm IvA:Q)
+@* T (m -1, A+ 1,9) (1.11)

It is also valid (Andrews & Baxter[7]):

Tl(m= AJ Q) - QMMATO(mr A: Q) - TI (m7 A + 17 Q)
+g™ AT (m, A+ 1,¢) =0 (1.12)

;From (1.8) and (1.9) we can see that
To(m, A, q) = To(m,~A,q) (1.13)
T]. (mr A: Q) = Tl (ma '"'Aa Q) (114)

27



where we have used the following property of the Gaussian polynomials which
follows from the definition {1.1):

=l (1.15)

L

3 The Main theorem

3.1 Identity number 63

We start this section by considering identity number 63 in the Slater’s
list [13] that is:

i 4

n{n+1)

(5 8700 (0% 7)o (@ %o (0% %) oo{~ 0 Qoo = D _ g 2t (2.1)

S G

On the left side we mntroduce a new variable " in the following way:

. —tig) g g TR

foalt,a) =302, Fhdentes (2.2)
o (tggintngEnnh)

= 2nmo (1=t q:@)2n+1 (2_‘3)

in this sum the factor:

(1+1tq)...(1+tg") gt (2.4)

is clearly the generating function for partitions where every integer less then
or equal to the largest part appears at least once and at most twice. We shall
call them the green parts.

The factor

t?n. 24t 420

q
(1-0)(1 ) ... (1 -3¢

is the generating function for partitions where every even part less than

or equal to the largest part appears at least once. These are the yellow parts.

Notice that the largest yellow part that is even is equal to twice the largest
green part.

(2.5)
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Now we return to (2.2). It is valid:

(1—8)(1 ~ £°q) fes(q. 1) = 1+ 1°¢° faalg, t9) (2.6)
Taking fea(t, q) = > oo Palg)t” from (2.6) we have:

Phb=P=L1FA=1+g
Po=Pri+qP—(g— G )P (2.7)
(2.8)

Santos in [8] conjectured:

o0 oo

Po= 30 aF N0 5j+1,08) = 30 ¢ N0 57 +2,¢%) (29)

jmo0 j=—co

We prove this in the appendix.

Once having proved this theorem, we can make a connection between the
green-yellow partitions and the Fibonacci numbers. Taking ¢ — 1 in (2.7)
recurrent relation for the Fibonacei numbers appears. Thus, it is valid:

Theorem 1. The total number of green-yellow partitions in which the
number of green parts plus twice the number of yellow parts is smaller then
or equal to N 1s equal to Fr,.

Here, of course F, is the n-th Fibonacci number. Considering that 7} is
a g-analog of the trinomial coefficients we may take the limit in (2.9) when
g approaches 1, getting a formula for the Fibonacci numbers:

re= 2 ((00), (%)) 210

j=—o

3.2 Identity number 62

Identity number 62 in the Slater’s list [13] is very similar:

in{an+1)

(%5 o005 )6 ool }:( %9) 2
(2.11)
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The new parameter “t” is introduced in the similar way:

£ tSn n(Sn%l)
2(t.q) Z( Dt _

2.12
{52’9« )2'n~i—1 ( )

The only difference is that a generating function for the yellow parts now

is:
t2nq1+3+--.+2n—1
(1-2)(1—12%g)... (1 —t?g*F)
ie., generating function for the partitions where every odd integer less
than or equal to the largest part appears at least once.
Bijection between the partitions of the yellow-green fype connected with
identity 63 and those connected with identity 62 is direct.

Not surprisingly, when writing fs in a form > -
(), satisfy very similar recurrent relation as F,:

(2.13)

J.t" polynomials

N=—00

Go=Q1=1LGr=1+¢
Qn = Qn-1+ qQn_2 — (q - qn_l)anZi (2-14)

Explicit formula for this family is
Qn = g5+ Q,(n,55,4%) z gFHITIQ, (n, 55 + 2,9%) (2.15)

Jm—00 Je=—o0
Giving, at the end, the same formula (2.10) for the Fibonacci numbers.
Observation: Identities 62 and 63 from the Slater’s list are equal to the
identities number 46 and 44 respectively.

4 Appendix

Theorem 2. The family of polynomials defined in (2.9) satisfies recurrent
relation (2.7).

Proof: To make calculation easier the base is changed by taking ¢ — ¢°
We need to prove:
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o0 o0

- 5452 134 -
Z glaj 7JT (?’L 53 1. Q) Z qlaj 1—133+1?1(n:33_t23q>

0o j=—w

o0
= 5 &I - 1,55+ 1,9) Z g TIIT (n — 1,55 + 2,9) (A1)

j=—s0 j=—eo

0 w2 s a -2 ;

+ 2, @R =25+ 1,q) - > ¢ T (n - 2,5) + 2,q)
o0}
+(g® —~ Z gt%7" T (n— 3,5+ 1,9) Z g% T (n - 3,55 +2,q)
j=—cc J=moo

; From now on all the polynomials are in base “q”, so we omit to explicitly
state it, t.e.,, Tp(n— 1,55 +2) = To{n — 1,55 + 2,¢). After applying (1.10) on
both sums on the left and some cancellations, the expression is:

[eo]
q15_72-}-12j~+*’n“§"1T-G(n _ 1} 5‘? + 2) + Z q15j2+2j+n-1T0{n i 1, 5})

pR—

o

.

oG
q1532+18]+4+nT0(n — 1, 5‘? e 3) _ Z q15j2+8j+nTﬂ(n . 1’ 53 & 1)

Ms

j=—00
o0
_ q153‘2+7j+1T1{n — 2,55 +1)— Z q15j2+13j+2T1(n ~ 2,57 +92)
J=—o0 j=mc0
o]
+(g™ —¢%) ( 3 @ HUT(n 3,55+ 1) - Z GBI () 3 5 +z))
Je=m—00 J=—c0

By making “j — —;” and “j — j + 1” at the first sum on the left that
sum cancels with third by (1.13). The two sums left on left side we transform
by {1.12) so they are written using T} polynomials. That side becomes:

oG

DTN -15) - 3 ¢ -1,5)  (A2)

jx—oo j:'“-DC

Now we apply (1.10) on this two sums. Four resulting sums cancel by
(1.12) leaving:

31



o0 o]
ST (n = 2,55 = 1) = Y ¢TI (n - 2,55 +2)  (A3)

j=—o0 j=—o

By (1.11) this two sums can be written as:

o o0
z q15j2+2;;+n—1T0(n -3 55,-) 4+ Z q15j2+’?j«:~2nT1(n —3,5j+ 1)
j=—00 j=—00
oc , ' 00
+ Z gioj +12;;-:—3n—3;3*70(n _ 3: 53 - 3) N Z q15jz+83+nTD(n _ 3} 5_'] + 1)
j:—'-’.}O j=—OC
o . ) co
_ z qla; -i~13j+2nTl(n -3, 5j + 2) . Z q1532+2_‘;+n—1TD(n — 3, 53 < 3)
P— j=—o0

The second and the fourth sum from this expression cancel with corre-
sponding sums on the right side of (A.1). The third and the sixth cancel

between themselves.
Nw we return to the right side. By applying (1.10} on the first two sides
of (A.1) and some cancellations that side becomes:

oo e
Z g15j2«§—12j+n~+~1T0(n_ 3,55 +2) + Z q15j2+2j+n—1fp0(n - 3,54}

j:-—-—oo j=—00

o o0
= Y QTSR - 355 +3) — > ¢ (n — 3,55 + 1)

Fm—o0 F=—o0

The first sum cancels with the third. The second and the fourth cancel
with the remaining sums from the left side, thus proving the identity.
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1 Introduction

In this paper, in order to find polynomial generalizations and combina-
torial interpretations for the Pell sequence, we consider the identities 36 and
34 of Slater[16] that are respectively:

RSP AUt —a 2 -
Z( SO ) o8 () (e (L)

= (@ (% F)on
Z(Qg(;;z;);g): - = ((;i;;z)):(975qg)m(ql;qg)w(qs;qg)m (12)

n=

where
(a;0)n=(1—a)(l —ag)...(1 —ag™ 1)

n a nonnegative integer.

These identities are the analytic counterparts of the Golinitz-Gordon par-
tition identities first found by Gollnitz[8] and then rediscovered by Gordon|7].

We start by following Andrews|2], to provide a polynomial generalization
for the Pell sequence and a combinatorial interpretation for this sequence. We
offer a bijection between the class of partitions that appear in the Gollnitz-
Gordon identities and another class of partitions that can be obtained from

the left side of (1.1). New formulas for the two related sequences are given.
Details are in section 3.



A third polynomial generalization including & nice relation between the
Pell numbers and the Fibonacel numbers is given in section 4.

In section 3, by making use of the Rogers-Ramanujan identities, two new
combinatorial interpretations for the Fibonacci numbers are given.

2 Some definitions and results

The Pell numbers 1, 2, 5, 12,... defined by a5 = 1501 = 2;an = 20,1 +
o are the denominators of the sequence of rational numbers:

13 7 17 41 99

that are the continued fraction convergent 1o V3.
The Gaussian polynomials are defined as follows:

(LR (‘I)m(g;;ln—m if 0<m=n (2.2)
= B . )
m 0 otherwise
For more details see Andrews[1].
When dealing with the expression

(1+z+z5)" (2.3)

we call the coefficients of z7 in the expanded form of (2.3} the trinomial
coefficients.
It is easy to show that if

(1+z+22) = i (7)2:63'*” (2.4)

jmon M

6= 2G5 &

The following expression (Andrews&Baxter[6]) is a g-analog of the trino-
mial coefficient in the same way that the Gaussian polynomial is a g-analog

then
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of the binomisal coefficient, that is, its limit, when ¢ approaches 1, is equal to
the trinomial coefficient given by (2.6).

Ty(m, 4,9) = 2(—-33‘ pLlamaE] e

In order to condense the notation the following expression is defined

U(m:A:Q) == TO(m:qu} ‘%T@(TTZ,A%- 1}9) (27)

3 Polynomial generalizations and combinato-
rial interpretations for the Pell sequence

3.1 A first polynomial generalization for the Pell se-
guence

We mentioned that, following Andrews[2] one can introduce a parameter
¢ in the left hand side of (1.1),

(g )at"g™
B P AL S 3.1
fa:t) ; (%) nt1 (31
From here a functional equation can be obtained:
(1-8)f(a.t) =1+ (1 +tg)taf(q, tg°)- (32)

Knowing that the coefficient of ¢ in the expansion of (3.1) is a polyromial
in g, i.e., that

Fla.) =3 Pulo)t” (3.3)
=0}
it is easy to see that
Plg)=1
Plg)=1+gq and (3.4)

Pul@) = 1+ ¢ ) Paa(g) + ¢ Py

The whole procedure described above can be easily done with A. Sills’
RRtools Maple package [15].
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The family of polynomials (3.4) appears in Gordon[7]. F,(g) is inter-
preted as a generating function for partitions of the form n = n; +ns .. .+ ng
where ng < 2m — 1, n; 2> ngey 4+ 2 and ny 2> ngey =+ 3 i 0y s even.

Here we concentrate on the alternative combinatorial interpretation. The
squation {3.1) written in the following form:

f(g t) _ 1 i (1 e .qui + tq3) o (1 + tq2n~1).énql+3+5-§----+2n~1
= LRl R (1-tg?)(1—tg%)...(1—tg*™)

tells us that in this sum the coefficient of t¥¢™ is the total number of parti-
tions of M into exactly N parts in which every odd less than or equal to the
largest part appears at least once and at most twice.

By taking into consideration the factor

A7 we have proved the fol-
lowing theorem:

Theorem 3.1. F,(g) is the generating function for partitions into at
most 72 parts in which every odd less than or equal to the largest part appears
at least once and at most twice.

To see what is the relation between this family of polynomials and the
Pell sequence we may replace ¢ by 1 in (3.4). By doing this we get

P{l)=2 (3.5)
Pr(1} = 2P, (1) + Poa(1)
which is the Pell sequence given at the beginning of section 2.

From this observation we get the following combinatorial interpretation
for the Pell sequence which we state as a theorem.

Corollary 3.2. The total number of partitions into at most n parts in
which every odd less that or equal to the largest part appears at least once
and at most twice is equal to the Pell number F,(1).

In 5] Andrews proved the following explicit formula for the family of
polynomials given by (3.4):

Pug)= Y g*¥U(n,85)~ > ¢ U, 3-85)  (3.6)

j=—oo j:——oo
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where U(n, A) = U{n, A, g) given by (2.7).
Knowing that P,(1) is the Pell sequence, as we have seen in (3.5), we can
get an explicit formula for this sequence by making use of formula (3.6)

(1) = %ﬂpn(g) =

oo o]
lim Z 9,163'2-}-23'@7{%7 85) — Z qlﬁjz““j%b’(n,?sm&)

g—1

j=—o0 F=00
j=-—c0

To(n,3 - 85,q) — To(n, 4 - 8j,9))

- 21,7 (o) (e, ()

J=—c0
_ i Kn+1> _<n+1>
A 8+, \8i+3/,

It is natural to look for a bijection between the class of partitions defined
by Gordon and the class appearing in theorem 3.1. It is sufficient to define
a bijection that takes a partition of n where the biggest part is 2m — 1 or
2m — 2, and satisfies the conditions defined by Gordon into a partition of n
in exactly m parts in which every odd less then or equal to the largest part
appears at least once and at most twice. We give one as follows:

Take a partition from the class defined by Gordon. Let the number of
parts of that partition be k. Let the biggest part be 2m — 2 or 2m — 1. Fix
the number 2%k ~ 1 from the biggest part, 2k — 3 from the second biggest
part and proceed in the same manner until fixing one from the smallest part.
Note that this is possible since n; > nyq 4 2 and that, for this reason and
n; 2 Ny if m; is even, if nothing or just one is left out from the biggest part,
then nothing is left out from the second biggest part and similarly for the
other parts. If one is left out we take it as a new part. See the illustration
on the next page.
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If the biggest part is > 2k + 1 take two from the part of 4 that was not
fixed, two from the second biggest part, and so on, until there is a part from
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which only one (or nothing) can be taken. If there is one, we take it. From
the "taken” twos and possible one we make a new part for the new partition
being formed. If there are still some parts that are left out we form another
part in the same way. The partition obtained satisfles the conditions given
in the thecrem 3.31. We observe the following:

1. A partition with m parts is obtained. To see this note that the number
left out after fixing 2k — 1 in the biggest part is minimally 2{(m ~ k) - 1, so
we are actually adding m — & parts.

2. The biggest new-formed part is smaller then or equal to 2k-so there is
ro need to add new odd parts.

3. By construetion the new parts created form & non-increasing sequence,
odd number can be formed only once -forming it twice would mean taking
two ones from the same original part, which is impossible by construction.
This argument also proves that the mapping defined by this procedure is
injective.

The inversion mapping is defined similarly: Take a partition defined by
conditions in the theorem 3.1. that has m parts. We let one copy of all
odd parts fixed. Let the biggest of the fixed parts be 2k ~ 1. Now, each
of the remaining parts is transformed in the following manner: The biggest
remaining part is divided in a way that two is added to the biggest fixed
part, two to the second biggest part, etc. If the number divided is odd we
add one to some fixed part at the end. Note that according to the partition
definition the biggest remaining part cannot be bigger than 2k, so it can be
divided among the fixed parts. The second biggest part (and all remaining)
is divided in the same manner, always starting by adding two’s to the biggest
fixed part.

It is obvious that the resulting partition satisfies Gordon’s conditions. Its
biggest part is, by construction, smaller than or equal to 2k — 1 + 2{(m — k)
and bigger than or equal to 2k ~ 1 +2(m — k) — 1 = 2m —~ 2, the last -1
on the left side corresponding to the case when m — &k = 1 and the collected
part is one.

3.2 A second polynomial generalization for the Pell
sequence

By considering, now, a two variable function fss4{g,t) associated with
equation 34 of Slater{16] given in (1.2)
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. i (“fQI g2)ntnqn2-§-2n
faalg, 1) = z \ tt'qg} +1 (3.7)

and following the same steps used to get (3.2) we may obtain the functional
eguation

el

(1 —8)faalg,t) = 1+ (1 + tg)tq” faa(g, t4%) (3.8)
and by replacing fas{g, ¢) with

o0

> Dalg)t®
n=0
in {3.7) we can get
Dolg) =1
Di{g)=1+¢° (3.9)

Do(g) = (1+ ¢ Doea(g) + ¢*"* Dna(a)

To find a combinatorial interpretation for this family of polynomials we can
write (3.7} in the following form:

q2) tn nZ4+9n

Z{ tq; _

=0 {t;¢)nss
1 Z (1+tg)(1 +ig%) ... (1 + tg2 1 )erg@r i+ (i n—2+1)+(2n+1)
(1-1) 2= (1-1¢%)(g —tg%) ... (1 — tg*)

which tells us that in this sum the coefficient of ¥¢™ is the total number
of partitions of M into exactly N parts in which the largest part is odd,
appearing only once, and every odd smaller than the largest part and greater
than or equal to 3 appears at least once and at most twiece.

By considering the factor 1/(1 —¢) and that forg =1

Do(1) =1
Di(1)=2 (3.10)
Dp(1) =2D,_1 (1) + Dp_2(1)

which is the Pell sequence, we have proved the following:
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Theorem 3.3. The total number of partitions into at most n parts in
which the largest part iz odd, greater than or equal to 3, appearing only once,
and every odd smaller than the largest part and greater than or equal to 3
appears at least once and at most twice is equal to the Pell number 1,(1).

For the family of polynomials (3.9) an explicit formula in terms of the

-

g-trinomial coefficients can be also found in Andrews|5]:

[e0) o0
Di(g)= > ¢ U8 +1)— 3 ¢TI —8j +2) (3.11)

F=—00 Jm—c0

From which we have, again, the following formula for the Pell numbers:

£ 62) 7 ()
Pl 8i+1/, \8+2/, ~8i+2/, —8j+3/,

B jgco ngi Jg - <8ji 3) J (3.12)

This formula was proved in {14] by making use of an identity of Lebesgue
that is also included in Slater’s list.

It is an easy matter to give a bijection between the two distinct inter-
pretations for the Pell sequence given in the corollary 3.2 and the theorem
3.3.

In the class of partitions described in the theorem 3.3 every odd part
larger than or equal to 3 appears at least once and at most twice. We can
subtract 2 from just one copy of each of those odd parts. By doing this
we obtain a partition in the class described in theorem 3.2 It is clear that
this procedure can be inverted. Note that now the largest part obtained is
necessarily odd.

We illustrate this in the table 2 where in the first column we have the
partitions as described by the corollary 3.2, and in the second ome those
described by the theorem 3.3.
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Table 2
We observe that to get the partitions in column one we tock n = 3 in
{3.4) getting

Plg)=1+g+@+¢ +2"+2° + +d + +
and the ones in column two by taking n =3 in (3.9) getting:

Dy(g) =1+ +2¢"+¢" +¢* + ¢+ + ¢+ ¢ + ¢ + 7 +¢¥

3.3 New formulas for two related sequences

Motivated by this formula it was possible to find and prove, by induction,
the following two formulas: the first one gives us the sequence &, of the
partial sums for the Pell numbers and the second the numerators IV, of the
sequence of rational numbers given in 2.1.

we 3 [(8122)2” (83*14)2} (313)

Jm—wo
where
S1=1, S=3 8,=25_1+5,2+1; n>3 {3.14)
and -
0 7
N, = i . 3.15
j;m KSJL (83 + 4) J (319)
where
Ni=1l, Ny=3 N,=2N,_ 1+ Np_s; n=3 {3.16)

4 Fibonacci numbers and a third polynomial
generalization for the Pell sequence
The following identity can be found in Gollnitz(8]:

o {"_ n Ea s

(qq

- 1
H (1 = g8r=1)(1 — gBn—5)(1 — g¥~6) (4.1)

=0 nzl



Here we note that, by introducing the variable ? in the following manner
(again by use of Sills[13]),:

~tg; )nt"g
‘m“z( q(z(f;?)w

nintl)

(4.2)

recurrent relation can be obtained:

To(g) =1
Ti{gy=1+ q°
Tg)=(1+ QQH)Tn—l + qznann-»?(g)

where we are taking

= 2 Tn(@)i

n={

Therefore we have a theorem involving Pell numbers:

Theorem 4.1. The total number of partitions into at most n parts in
which the largest part is even, each even smaller than the largest part appears
at least once and the odd’s are distinct is equal to the Pell number 75,(1).

What is nice about this theorem is the fact that for the Fibonacci numbers
F,defined by Fo =0; F; =1 and F,, = F,_; + F,,—2, n > 2 we have proved
in {12] (Theorem 3.3) that:

“The total numbers of partitions into at most n parts in which the largest
part is even and every even smaller than the largest part appears at least
once is equal to Fo,4y”. This tells us that by adding the restriction “distinct
odd’s” we move from Fibonacci with odd index F,.: to the Pell numbers
Tn(1).

5 Fibonacci numbers from the Rogers-Ramanujan
identities
The following polynomial generalization of the Fibonacel sequence has
been used by Schur{17] to prove the Rogers-Ramanujan identities {see also
Andrews[2]).
Folg) =1
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Fg) = (5.1)
Folg) = Faoy + 4" Frz(g)

which can obtained from the second of the Rogers-Bamanujan identities
(Rogers!9}), that is:

o0

n -7 1
Z {q Un =11 (1 - 2)(1 - g3y’

=1

by defining the following two variable function:

tzn n{nt+1}

Faty =3 TL o (5:2)

n=0
Considering that for ¢ = 1 (5.1) is the Fibonacci sequence and that {5.2)
can be written in the form:

ot t:angl 4142424 Rt

2 {1 ~8)(tg g

=0

(5.3)

it is easy to see that we get a new combinatorial interpretation for the Fi-
bonaccl numbers that is stated in the following theorem:

Theorem 5.1. The total number of partitions into at most n parts in
which every integer less than or equal to the largest part appears at least
twice is equal to the Fibonacel number F,.

In [10] we find, also, a two variable function similar to (5.2) related to
the first Rogers-Ramanujan identity (Rogers[9]) given by:

(5.4)

_»Q
=
I
ils
’e?
b-.Q
;?z
OMS

from which we get

(1—t)filg,t) = 1+ qfi{g, tq)

Knowing this functional equation one can get the following recurrence rela~
tion for P, (g):

Py(g) =1
Pa (@ =1 (5.5)
Pog) =P,y +q¢" n—Q(Q)
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To get one more combinatorial interpretation for the Fiboraccl numbers
we observe that, for ¢ = 1, {5.5) is the Fibonacci sequence and that from the
first sum in {5.4) we have the following nice result:

Theorem 5.2, The total number of partitions in which the side of the

Durfee squares equals to the largest part and the largest part plus the number
of parts is at most n is equal to F,.
Acknowledgment: The authors would like to express their gratitude £o the
anonyrmous referee for pointing out appropriate references and a suggestion to
lock for a bijection between the partitions of Theorem 3.1 and the partitions
arising in Gordon|[7].
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Abstract

We prove that the Hankel transformation of o sequence whose elements are
the sums of two adjacent Catalan numbers is a subsequence of the Fibonacci
numbers. This is done by finding the explicit form for the coefficients in the
three-term recurrence relation that the corresponding orthogonal polynomials
satisfy.

1 Introduction

Let A = {ap, a1, a2, ...} be a sequence of real numbers. The Hankel matrix
generated by A is the infinite matrix H = [h;;], where h;; = a;4;_0, i€,



an as ao da
aq Qs {533 04
437} ag Qg s
ds g Qs dg

G4 G5 4 O7

The Hankel matriz H, of order n is the upper-left n x n submatrix of H
and the Hankel determinant of order n of A, denoted by h,, is the determi-
nant of the corresponding Hankel matrix.

For a given sequence A = {ag, a1, ag, ...}, the Hankel transform of A is the
corresponding sequence of Hankel determinants {hg, hy, R, . ..} (see Layman
5).

The elements of the sequence in which we are interested AQ05807 of the
On-Line Encyclopedia of Integer Sequences (EIS) [10], also INRIA [3]) are
the sums of two adjacent Catalan numbers:

4, = cln)+cn+1)= n-1%~1<2§> +ni2(i?j12>
(2n)!(5n + 4)

= m (TZ:O,LQ,...).

This sequence starts as follows:
2, 3, 7, 19, 56, 174...

In a comment stored with sequence A001906 Layman conjectured that
the Hankel transformation of {a,},>p equals the sequence A001906 i.e., the
bisection of Fibonacci sequence. In this paper we shall prove a slight gener-
alization of Layman’s conjecture.

The generating function G{x) for the sequence {a,}n>o0 is given by

G(z) = Zanx” = i ((1 — V1 ——2;133)(1-{- z) _ 1) (1)

It is known (for example, see Krattenthaler [4]} that the Hankel determi-
nant A, of order n of the sequence {a,}n>o equals

ho = ag By 8372 - B2 _oBa, (2)
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where {8, }n>1 is the sequence given by:

Glz) = Z Gpx™ = %0 a7 (3)
=0

Boz?
Loz —---

The sequences { oy, }nzo and { G, }n>1 are the coefficients in the recurrence
relation

1‘"?““(103’,'-

14 o2~

Pn+1(33) = (I - an)Pn(:ﬁ) - Bnpn_1<$)

where { P, (z) }n>o is the monic polynomial sequence orthogonal with respect
to the functional L determined by

Lig"l=a, (n=01,2...). 4

In the next section this functional is constructed and a theorem concern-
ing the polynomials {F,(z)}n>o and the sequences {an}tnxo and {Bulns>: is
proved.

2  Main Theorem

We would like to express L[f] in the form:

L@ = | s,
R
where %(x) is a distribution, or, even more, to find the weight function w(z)

such that w(z) = ¢'(z).
Denote by F(z) the function

F(z)= Z apz ™",

fez=

From the generating function (1), we have:

F(z)zz""lG’(z_z)m%{z—~1—(z+1)1/1~§}. (5)
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with 1
O =2 — = 31‘1 =1+ :
FETL"FIFQ?’J,-]—?S F§ﬂ+l

E>0 {11)
where F; is the 1-th Fibonacci number.

Example 1. The first members of this sequence are:

P{}(I) = 1_:
3
Plzy = - 5
17 8
Pyz) = z?— T+
Pz} = - Z_QEZ e ?-gsc — %32

13 13 137
251 290 435 85
B — 4 _ =¥ 3 avM e —
@) = ST T oty
Notice that P,(0) = (—=1)" Fanqo/Fonay.
Proof of Theorem 1. Denoting by Wy(z) = P> (z) (n > 0) a
special Jacobi polynomial, which is also known as the Chebyshev polynomial
of the fourth kind.

The sequence of these polynomials is orthogonal with respect to plt/2=1/?(z) =
(1 — 2)?(1 + )72 on the interval (—1,1). These polynomials can be ex-
pressed (Szegd [9]) by
s - 1)6
Whlcos8) = :I—l@:—%l—
2" sin 560
and satisfy the three-term recurrence relation (Chihara [1]):

Wasi() = (2 — o) Walz) = iWaa(z) (n=0,1,...),
Wm1($) = D, Wg(ﬂ:) =1,
where

* 1 * # * 1
a0=—§: O{nz{}, /Bomﬂ": ﬁnzz (nzl)

If we use the weight function p(t) = (¢ — c)pM/®Y/8(¢), then the corre-
sponding coefficients &, and 3, can be evaluated as follows (see, for example,
Gautschi [2])

P Wn-%—l(c) * Wn(c)
Gy = C W o) ”ﬂm’ (12)
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N W (eYWoa (e
Bn =5} 1',)2 n1(0)
Wi(c)
Here, we use ¢ = —3/2 and p(z) = (z + 3/2){1 — )"3{1 + z)~V/2
If we write A, = W,(—3/2) then, using the three-term recurrence relation
for W,.(x), we have

n & N. (13)

dhney +6An 4+ Apy =0,

with initial values Ao =1, Ay =-—1.
So, we find

I

An = Wo(—3/2) 2(;); {(\/5 + (B3 4+VE)+ (VE—1)(3— x/E)”} :

Denoting by

S

145 s_1-
2 T2
the golden section numbers, we can write:

6= (14)

= Wai=sj2) = L 2l )

In order to simplify further algebraic manipulations we shall use
Fon_1Fonig == F§n+1 +1 (16)
This formula is a special case of the identity (Vajda [12]}):
Gln+i)H(n+k)—-G(n)H(n+i~k) = (-1)"(G{)H{k)—GO)H(i+k)) (17)

where G and H are sequences that satisfy the same recurrence relation as
the Fibonacci numbers with possibly different initial conditions. However,
we take both G and H to be the Fibonacci numbers and n — 2n + 1,
i=2, k= —2.

Now
i - 1 A1 Angs _ 1 Fne1 Fongs
o 4 ’)‘921 4 F§n+1
i 1



and
. 3 B Ang1 1 Ap

S VW
—3Foni1 Fonys+ Fooa+ Fops
2P 1 Fons
Eg;+2'— Eén+1fén+3
2F9n 185003

1
2Fyn 1 Fonss

If a new weight function p{z) is introduced by
plz) = plaz +b)

then we have .
Gn—b 3
Gy == = ' 511 = "%
a a
Now, by using z + z/2 —~ 1, i.e., a = 1/2 and b = —1, we have the wanted
weight function

(n>0).

T 1 - I
w(x)—p(g——l)m—j(:c—i—l) )
Thus
5 1
o, =2 — — e = 2 19
(¢2n+1 — @2” ' 1)(¢2n+3 _ ¢2”"’"3) Foni1Fonss (19)
d
. Bo=1+ > 1t (20)
[ i (¢2ﬂ+1 . EQTH'}.)z — s F22n+1 ‘

finishing the proof of (1) .0J

3 Layman’s conjecture

By making use of (2) we have that:

. 1 L1 1 n-2 1
hn=a0<1~§~"}:;32‘> (1-}-:1':,;5} '--<§+F§ 1> (21}
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Using {16) we can write (21) as:

; _an(F&}“*1<F3F7>”‘2<F5Fs>“*3 FonosFines o)
. iy (Lshh) | sy
72 2 7 73

T 1

Since ag = 2 = F; the corresponding factors cancel, therefore:
hy, = FZn—H (7’& = G)

thus proving that Hankel transform of A005807equals A001519 -sequence of
Fibonacei numbers with odd indices.

As we have mentioned in the introduction, Layman observed that the
Hankel transform of AJ05807 equais A001906 -sequence of Fibonacci numbers
with even indices. This sequence is obtained if we start the Hankel matrix
from a; = 3, i.e., determinants will have a, on the position (1,1).

The proof of this fact is almost identical with the proof presented here,
and so we do not include it. Notice that now we construct Liz"| = a,..1 and
that a; = 3 = £4; in (17) we take n — 2n. We also use the easily provable
fact P, (0) = (=1)"Fop.o/ Fopq: (see Example 1).

Finally we mention that, following Layman [5], it is known that the Han-
kel transform is invariant with the respect to the Binomial and Invert trans-
form, so all the sequences obtained from AQ005807 using these two transfor-
mations have the Hankel transform shown here.
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Abstract -This paper introduces a combinatorial construction of girth-eight high-rate
low-density parity check codes based on integer latiices. The parity check matrix of a code is
defined as 2 point-line incidence matrix of a 1-configuration based on a rectangular integer
iattice, and the girth-eight property is achieved by a judicious selection of sets of parallel
lines included in a configuration. A class of codes with a wide range of lengths and column
weights is obtained. The resulting matrix of parity checks is an array of circulant matrices.

Index Terms-Error control coding, iterative decoding, low-density parity check codes,
combinatorial designs, finife geometries, graph girth,

I INTRODUCTION

Codes on graphs, especially low-density parity check (LDPC) codes, is a research area of
great current interest. The theory of codes on graphs has not only yielded capacity-approaching
codes, it has also opened new research avenues for investigating alternative optimal and sub-
optimal decoding schemes based on belief propagation. Applied on a Tanner graph of a linear
block code [12] [6], belief propagation algorithm gives an exact a posteriori probability mass
function for a given a probability density function of the observed variables, but only if the factor
graph is cycle free. Extensive simulation results of MacKay and Neal [14] showed that message-
passing algorithm alsc performs well in graphs with cycles. However, the presence of short cycles
hurts the performance.

In this paper we address the problem of finding codes with good cycle properties. We are
interested in “deterministic” sparse parity check matrices as opposed to the common “random
code” assumption that has been widely used in recent research [13]. One of the first attempts to
design a deterministic LDPC for iterative decoding is due to Kou, Lin and Fossorier [3] and it is

based on projective and Euclidean geometries. The codes given in [3] are one-step majority logic

- This work is supported by the NSF under grant CCR 0208597.
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decodable, and therefore the girth of the associated Tanner graph [6] is six. Lucas et af showed
that the such LDPC codes can be efficiently decoded by belief propagation algorithms [15]. A
first attempt to construct deterministic codes with large girth is due to Margulis [18] who
introduced an explicit construction of LDPC codes using k-regular graphs obtained as Caley

graphs of $L,(F ). a special linear group, and #GL, (F,), a projective general linear group, of
dimension two over ¥, the finite field with g elements (g power of a prime}. By careful selection

of transformation matrices, the author was able to achieve good girth properties. This idea was
further developed by Rosenthal and Vontobel [18]. They were able to construct a short code (of
length less than 5000) with girth 12. Recently, the explicit construction of families of LDPC with
girth at least six has been discussed in Jon-Lark Kim er. af [17]. The authors extended Lazebnik
and Ustimenko’s [19] method for explicit construction of graphs with arbitrary large girth based
on regular graphs.

The code construction presented in this paper is based on balanced incomplete block designs
(BIBD) [1]. More specifically, the codes are based on sub-designs of a 2-(v,k, 1} design, where v is
a number of parity bits, & is the column weight of a parity check-matrix. The parity-check matrix is
a point-block incidence matrix of the design (V,B), where V is a set of points and B is a set of
blocks of size k. As we have shown in [7], the removal of certain blocks from a design can result
in eliminating Pasch and generalized Pasch configurations and, consequently, in increasing
minimum distance of a code. In this paper we exploit the idea that a judicious selection of
disregarded blocks can also increase the girth of a design. It is desirable property of a bipartite
graph to have a large girth, because in the message passing decoding algorithm [10] on such
graphs it takes more iterations until extrinsic information originating from different nodes in the
bipartite graph becomes correlated. The construction of designs with high girths appears to be a
very difficult problem in general [8]. However, the designs based on rectangular integer lattices
introduced in {7] allow for a simple algorithm for finding a girth-eight sub-design. In [23] a
condition for absence of cycles of lengths smaller than a given constant was given for array codes,
but no explicit construction is given for girths larger than six. In this paper we give an explicit
construction for k=3 using arithmetically constrained sequences.

In this paper we are interested in very high rate codes (R=23/4) for which the girth-eight
property is much “rarer” than in low rate codes. We present a construction based on sets of parallel

lines on a rectangular integer lattice, which is conceptually simple, and gives a large family of
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codes. The number of parity bits is equal to v=m-k, m>k, and the blocks are defined as lines of
different slopes connecting points of an mxk integer lattice.

Section Il introduces some definitions necessary for dealing with BIBDs. Section II
introduces a construction of low-density parity check codes using rectangular integer lattices and
construction of girth-eight codes. It also gives the bit error rate (BER) performance of these codes

in additive white Gaussian (AWGN) channel obtained by computer simulations.

II. BALANCED INCOMPLETE BLOCK DESIGNS anND LDPC CODES

In this section we introduce some definitions. A balanced incomplete block design (BIBD) is a
pair (V, B), where V is a v-element set and B is a collection of b k-subsets of V, called blocks, such
that each element of V is contained in exactly r blocks and any Z-subset of V is contained in
exactly A blocks. The parameter r is called the replicarion number. The notation 2-(v, k, A) design
is used for a BIBD on v points, block size %, and index A. In this paper we consider slightly
different class of combinatorial designs called A-configurations. A A-configuration is an incidence

structure of v points and b blocks such that i) each lock contains & points, ii) each point is incident

with r blocks, and iii) two different points are contained in at most A blocks. A A-configuration
can be obtained from a 2-(v,k,4) design by removing some of its blocks. Two blocks in a design
are referred to as parallel if they are disjoint. A design is called resolvable if there exists a
partition of its block set B into parallel classes, each of which partitions the set V. As we will
show, the lines on a lattice introduced in [7] and analyzed in [19] and [20] form a resolvable 1-
configuration.

We define the point-block incidence matrix of a (V,B) as a vxb matrix H=(hy), in which
=1 if the i-th element of V occurs in the j-th block of B, and k;=0 otherwise. It is easy to see that
H is a matrix of parity checks of a Gallager code [2]. The row weight is r, column weight is &, and
the code rate is RX(b-min(v,5))/b. In this paper we are interested in designs in which no more than
one block contains the same pair of points. Such codes are one-step majority logic decodable, or
equivalently, there are no cycles of length four in a bipartite graph [6]. The main idea of this paper
is that a 1-configuration with large girth can be constructed by removing whole classes of parallel

blocks rather than removing individual blocks.

M. LATTICE CONSTRUCTION OF 2-(v,k, 1) GIRTH-EIGHT 1-CONFIGURATIONS
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In this section we address the problem of construction of resolvable l-configurations with
a wide range of block sizes. 2-(v,k 1) designs naturally come as girth-six designs because no pair

of points occurs in more than one block. In other words, if |Bl=b=(3)/(4) (.e., design has

maximum possible number of blocks, then the girth is g(V,B)=6. As we will show, for every
design (V.B), there exists 2 l-configuration (V,B"), B'cB, such that g(V,B')128. In a I-
configuration, there exist a pair of points that are disconnected, i.e. there is no line incident with
both of them. This is why the girth of a 1-configuration can be larger than six. Our construction is
based on the integer lattice construction given in [7], and briefly summarized as follows.

We define a class of 1-configurations as sets of lines connecting the points of a rectangular
integer lattice. Consider a rectangular integer lattice L={(x,y):0sx<k~10<y<m-1}, where m is
a prime. The comnstruction can be readily generalized to the case when m is a prime power (i.e.,
m:pl}. Let I:L—V be an one-to-one mapping of the lattice L to the point set V. An example of such
mapping is a simple linear mapping i(x,y) =m-x+y+1. The numbers I{x,y) are referred to as lattice
point labels.

A line with siope s, 0<5Sn-1, starting at the point (0,a), Is the m set of points

{(x,a+sxmodm):0S xSk-1}, where 0sa<m-1. We are concerned with a 1-configuration which is

an incidence structure comprised of points on the integer lattice and all lines of slopes s, 0<s<n-{.
As mentioned earlier, two lines are referred to as parallel if they do not have any common points.
There are, therefore, m classes of parallel lines in our 1-configuration corresponding to m different

siopes. Each class of parallel lines comprises m lines.

Example 3.1:
Figure 1 depicts the rectangular integer lattice with m=35 and k=3. It also shows two classes of

parallel lines (with slopes s=1 and s=2).

In our example, the lines of slope 1 are the points {1,7,13}, {2,8,14}, {3,9,15} etc. We assume
that the lattice labels are periodic in vertical (¥} dimension, and therefore the line comprising
points {4,10,11} also has the slope 1. The examples of lines with slope two are {1,8,15} and
{2,9,11}. The slopes: 3,4,...,m-1 can be defined analogously. Notice that no line of infinite slopes
belongs to the design. Each column in TABLEI gives a set of parallel lines with slope s. A set of

parallel lines defines a resolvability class.
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Figure 1: An example of the rectangular grid for m=5 and k=3

TABLE]
Resolvability classes of a lattice design in Figure 1

5=0 g1 5=2 5= s=4
{1,6,11} {1,7,13} {1, 8,15} {1,9, 12} {1, 10, 14}
{2,712} {2,8, 14} {2,911} {2,190, 13} {2,6, 1%}
{3,8,13} {3,9,15} {3, 10,123 {3,6, 14} {3,7, 11}
{4, 9,14} {4, 10,11} {4,86, 13} {4,7,1%3 {4,8.12}
{5, 10,153 {5,6,12} {5,7, 14} {5,811} {5,5,13}

Remark 3.1:
Notice that in general there are m parallel classes of blocks (lines), each corresponding to the

different slope.

Lemma 3.1:

A set B of all m k-element sets of V obtained by taking the labels of the points along the lines with
slopes s, 0ss<in-1 is a 1-configuration.

Proof: The design B containing all m k-element sets of points in V obtained by taking labels of
points along the lines with slopes s, §<59n-1 is a 1-configuration. It can be readily verified by
noticing that because m is a prime, for each lattice point (x,y) there cannot be more than one line

with stope s that passes through {x,y).
Q.ED.

Remark 3.2;

The generalization to the case when m is a power of prime is straightforward.
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Remark 3.3: The block size is k, number of blocks is b=m" and each point in the design occurs in

exactly m blocks. The matrix of parity checks of a lattice code can be written in the form

Hi.l HLZ e Hl.m

H,, H,, ... H,,
H = :2.§ :...2 s

Hyy Hegy oo Hy,

wherein each sub-matrix H;; is a circulant with column weight equal to one. H is 2 line-point

incidence matrix of a 1-configuration defined by a integer lattice defined above.

The position of the only nonzero position in the first column of H;; can be found by using &4/,

the i-th element of the first base block in the class of blocks corresponding to the j-th slope (see

[7D . The construction can be readily extended to the case when m is a p, power of prime.

Remark 3.4:
Notice a similarity of the structure of the above parity-check matrix with that obiained in [17].

The codes denoted by LU{2,q) in [17] have square matrix of parity checks, while our codes have
rectangular matrices of parity checks. It is not surprising because it was shown in [17] that
LU(2;4) and LU(2;8) are equivalent to Euclidean geometry codes {31, while a square lattice design
(which includes the lines with infinity slope) is equivalent to the Euclidean plane. Notice also

similarity with a parity check matrix of array codes [23].

Remark 3.5:
The ensemble of integer-lattice codes defined by matrices of parity checks obtained by random

selection of slopes and starting points has well defined asymptotic distance distribution. Litsyn
and Shevelev [21] showed that such an ensemble (they called it “Ensemble A™) has superior

distance distribution compared to other ensembles they considered in [21].

Denote by B(s) a resolvability class corresponding to slope s, and B’ a set of blocks of a
sub-design composed of resolvability classes corresponding to the slopes from the set §, ie.,

B'= UMB(s). We are interested in the following problem: find a maximum cardinality slope set 5,

such that B’ is a girth-eight design, We are concerned with finding a set of slopes of maximal
cardinality because the slope set cardinality directly influences the code rate, i.e. the larger slope

set cardinality, the higher code rate.

The problem of finding a set of maximal cardinality for given integers m and £k, is generally
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difficult, i.e. the complexity of the algorithm for finding such a set of slopes is exponential in m&.
Instead of solving hard problem of finding maximal slope set, we give a polynomial algorithm that
constructs a set of slopes § resulting in a girth-eight 1-configuration (V,B”). The algorithin is based

on select, check and disregard procedure.

5=0, S={s}, B'= B(s), §'={1,...m-1}.

while 3’22
s=g+]
gV, BUB(s)=8
S=8Us1
=875}
B'=8"_8(s)
else
S’'=5\{s}
end
end

The function g:{V,B)— Z, gives the girth of a graph for a (V,B) design, and can be computed in
time O((v+b)vk) ime (2.g. Dijkstra or Bellman-Ford algorithm-for more details see [16]).

Clearly, the algorithmn is greedy in the sense that a slope 5 does not satisfy the girth-eight criterion,
it checks for the immediate next slope s+1. Although this method does not result in a maximal
slope set, the simulation results of the different codes obtained through this method have shown to
vield good performance (discussed later).

In [23] Fan gave a condition for absence of cycles of an arbitrary length in a Tanner graph of an
array code in terms of a relation among powers of a permutation matrix used as blocks in H.
Notice however that this condition still requires a search for finding a desired set of powers, and is
equivalent to a “triangle” condition in this paper (see Appendix).

Note that finding a set of slopes for k=2 is trivial, because $={1,...,1/2-1}is always a solution.

However, for k=3, we deduce a simple way of generating a slope set S, such that B'=|]_ B(s) isa

girth-eight design. The simplification stems from the interesting relationship between the elements

of § with the “arithmetic constrained” sequences defined by Odlyzko and Stanley [22].

Definition 3.1:
Given a fixed positive integer ¢, we define the arithmetically constrained sequence as the
sequence Y (g) of positive integers 0= gy < 1 < a; < ... by the conditions:
i a1=g
ii.  having chosen ag, a1, a2 ... a, (n >0), let a,,; be the least integer such that a,,; > @, and
such that the sequence ag, a1, @2 ... @ an. contains no three terms ( not necessarily
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consecutive} in an arithmetic progression.
Furthermore, we define  “earliest” sequence A 4o, 4 @z ...4,. such ihat

a, =90,a,, =3a,.4,,., =a,, +1. It can be verified [23] that A is an arithmerically constrained
sequence with the property that the temmary expansion of a, = z:ﬁf has #; =0 or 1 [Thecrem 2,

237 (“Earliest” corresponds to “greedy” when it comes to choosing the terms, for example: for the

set {1, 2}, since 3 cannot be considered in the sequence, the sequence considers the first possible

number Le., 4.

Theorem 3.1:
For m arbitrary and k=3, S={a:ae€ Arna<m/2}results in a girth-eight 1-configuration (V,B"),
where A is the earliest sequence.
Proof:
Given in Appendix.

Theorem 3.1 is consequence of the fact that sequence of the set of slopes obtained from the
algorithm is greedy and so is the earliest sequence. As we will in the next section, the codes
obtained by the proposed slope selection algorithm or the above straight forward implication
(k=3), have performance slightly worse than codes with a slope set with maximum cardinality.

The lower bound on a minimum distance of a code with girth g, column weight k code is given by

the following formula [2]

r

k [(g-2)74] .
1+-£-2~~((k~—1) wi} if g/20dd

1+T§§ (=i 1) Dl 3f g/2even

The above bound can be aptly applied for the above girth-eight codes with g =8.

IV. SIMULATION RESULTS

The first experiment deals with the performance of codes obtained from the slope set generated
using the above select and discard procedure. (Note that we do not consider high rate codes for the

reason that we need to find a maximal slope set, which is a tough to obtain for high rate codes as it
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involves large block length). For the specific case of k=3 & m=33, either with the proposed
algorithm (or using the theorem 3.1), we obtain a slope set 8- {0, 1,3,4,9, 10, 12, 13} resulting a
code rate of R= 0.67 (and b = 424). On the other hand, with extensive computer search for a
maximal slope set, we obtained Smyx ={7,8,14,16,19,33,35,41,42,45} resulting in a code rate of
R=0.7 (and b= 530G). As we can see from Figure 2, the code constructed from the maximal set of
slopes is 2.8dB away from respective Shannon limit, while code constructed using polynormial
time algorithm is 3.4dB away from respective Shannon limit, which is not bad for such short
codes. In this particular case the code constructed from the set with maximal cardinality slope set
has better performance. However, we do not have enough evidence to state this as a general

conclusion.

- | ~I LDPC-Maximal Cardinality Slope Set
=== Shannon Limit (R=0.63)
e Shannon Limit (B=0.73 %

VYT
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ELTEEH

E, /N(dB)

Figure 2
Performance comparison of LDPC codes with maximal set slopes and the linear time method

The next simulation result gives the BER performance of girth-eight codes obtained from
rectangular integer lattices in AWGN channel. Figure 3 show the comparison of girth-eight codes
with randomly constructed codes with column weights three and four respectively. Girth-eight
LDPC code with column weight three (k=3), code rate R=0.81 with set of slopes
$={0,1,3,4,9,10,12,13,27,28,30,31,36,37,39,40} and girth eight code with parameters k=4 and
R=0.76 are used. The result shows that girth eight codes constructed using above algorithm

perform quite close to random codes. Random codes are generated such that cycles of length four
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are omitted.

vvvvv "0 Rancom(4811,0.76) 2
[ ! { =G~ Girth Eight(4811, €.76, k=4) [}
[ fe =~ ~O- Random(2512,0.81) i
, | e Girth Eight (3512, 0.81, k=3)
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Figure 3
Performance of girth-eight codes in AWGN channel

CONCLUSION

We have given a simple construction of girth-eight codes using integer lattices. The
construction is based on a judicious selection of sets of parallel lines in the lattice sub-geometry.
The construction gives a set of codes with a wide range of lengths and rates. The algorithm used to
create girth-eight codes can be readily generalized to higher girths. In the k=3 we have an explicit

construction using arithmetic sequences.
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APPENDIX
PROOF OF THEOREM 3.1

Proof:

Fohn L. Fan [23] derived the condition for occurrence of a cycle in a particular class of Tanner
graphs whose parity check matrix ¥ has the structure defined as in remark 3.1, For the specific
case of eliminating cycles of length six with & =3, the condition in [25] reduces to the following

triangle condition.
(s, =53+ fF(s; — 8} = O(mod m) (D)
Where: &&= i;— i3 and F= i — i3 (the indices i;, are associated with the sub matrices 5 5.7, Such that

ax0,B#20and ¢ # 8 (2)
For k=3, since i, € {1,2,3}, we have the obvious inequality,

k< o, f<E {(3)
From {(2) and (3), we are left with the possibility that & and S take values, with the opposite sign
and with a different absclute value, from the set {-2, -1, 1, 2} or both to be equal 1 or -1. Thus, the
set of slopes S must be a subset of the earliest sequence A defined above. An arithmetic

. 5+ 8
progression, where, for example, s, =

corresponds to the case @ =2, =~1.

Now we shall prove that in § cannot be values bigger that m/2:

Let s, be the potential slope considered to be included in S. s, and s, are two elements already in

S. From now on, all numbers, if not specifically stated differently, are considered in ternary

expansion.

Number d =m—s, is smaller than m/2 . If dis has 1’s and 07s as digits only it is already in S, in
that case we take s,=d, 5,=0 and & =1, 8 =1 eliminating potential s,. If that is not the case we
can add to d a number s, made out 0’s and 17s as digits in that way that sumn is a number that is
made out 0’s and 27s. We do that simply by taking a digit of s, to be 1 when a corresponding digit
of dis 1. We have d + s, <m. This result can be seen as double of the number that has only 1's
and 0’s as digits and is smaller than m/2. We constructeds,, thus eliminatings,. This

construction corresponds to ¢ =2, f=~1.
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Achievable Information Rates for High-Speed Long-Haul
Optical Transmission

Ivan B. Djordievic, Milos Ivkovic, Bane Vasic, Senior Member, IEEE, and Tidar Gabitov

Abstract—Achievable information rates for high-speed optical transmission (40 Gb/s and above)
are calculated using finite state machine approach. Combined effect of all major effects including:
amplified spontaneocus emission noise, Kerr nonlinesrity (self-phase modulation, intrachannel four-
wave mixing, intrachannel cross-phase modulation), stimulated Raman scattering, chromatic
dispersion {group velocity dispersion (GVD), second order GVD) and (optical/electrical) filtering on
the Shannon capacity is considered. The lower bound for the chanpel capacity is determined for
various dispersion maps and number of spans, and shown to depend strongly on the dispersion map
and average launched power. The user bit rate maximizing the spectral efficiency is found to be
around 25Gb/s..

Index Terms——Achievable information rates, Shannon capacity, finite state machine, fiber
nonlinearities, optical communications, long-haul transmission

L INTRODUCTION

Increase of optical bandwidth and improvement of spectral efficiency are common ways to increase the
throughput of a dense wavelength-division-multiplexed (DWDM) system. Recent progress in DWDM
transmission technology has lead to a fundamental and very difficult question: “What is the Shannon’s
capacity of a nonlinear fiber optics communication channel?” There have been numerous attempts to tackle
this problem [1-13]. In all of them it is assumed that the amplified spontaneous emission (ASE) from inline
amplifiers is a predominant effect, while the effect of nonlinearities is taken into an account in an
approximate fashion.

In this paper we report the achievable information rates for high-speed long-haul optical transmission
with independent uniformly distributed (i.u.d.) source and the combined effect of ASE noise, Kerr
nonlinearity (self-phase modulation, intrachanne] four-wave mixing, intrachannel cross-phase modulation),
stimulated Raman scattering, chromatic dispersion (group velocity dispersion (GVD), second order GVD)
and (optical/electrical) filtering. The method employs finite state machine approach cutlined in {17-20], and
was initially proposed for magnetic channels, which are essentially nonlinear as well. The propagation of
the signal is modeled by NLSE, solved using the Fourier-split-step algorithm [14]. The ASE noise-signal
interaction during transmission is taken into account, and the fiber channel is modeled as a channel with
memory. Our approach is applicable to any transmission system and allows the usage of the achievable
information rate as figure of merit for a long-haul transmission system similarly as Q-factor, eye opening or
bit-error rate.

The paper is organized as follows. The Section II gives a brief glance on recent capacity calculation
attempts, and underlines their limitations. Sections IIl and IV explain the channel model and our method,
while Section V contains numerical resuits and conclusions.
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H. AN OVERVIEW OF PRIOR WORK

In the existing literature the fiber nonlinearities are considered either as (i) the perturbation of a linear
case [4], [12], as (ii) the multiplicative noise [6], or (iii} the dispersion was ignored [7-8]. Although the
perturbative methods in general may yield to reliable results in the domain of validity [4], they are
applicable in the regime of relatively small nonlinearities (which is not the case at 40Gb/s or higher). Mitra
and Stark [6] treat a nonlinear noisy channel as a linear one with an effective nonlinear noise. However, as
indicated in [2], such an approximation needs to be carefully justified for each particular transmission
systern. In dispersion free transmission [7-8] the nonlinear Schrédinger equation (NLSE) [14], (see also Eq.
(1) in Section I}, can be sclved analytically, but such a result is only of academic interest {7]. In [3] Tang
determined the channel capacity of a multispan DWMD system employing dispersive nonlinear optical
fibers and an ideal coherent optical receiver. The results obtained in [3] are based on solving the NLSE by
Voltera series expansion up to the first order. Such method is valid in systems for which the maximum non-
linear rotation is small compared to 27 [3]. The channel capacity is determined using the Pinsker’s formula
[15], which may lead to wrong conclusions, as it was shown in [2], especially when the signal-to-noise ratio
tends to infinity. The statistics of optical transmission in a noisy nonlinear channel with weak dispersion
management and zero average dispersion is considered in [2], and the lower bounds for channel capacity
are determined (although numerical results are not reported). However, this method is applicable only for
weak dispersion management systems with zero average dispersion, as described in [16]. The spectral
efficiency limits in DWIDM systems with coherent detection in nonlinear regime limited by cross-phase
modulation or four-wave mixing are reported in [1]. However, calculating the channel capacity when
combined effects of ASE noise. Kerr nonlinearities, dispersion and filtering effects are taken into account is
still an open problem.

Y. CHANNEL MODEL

The signal channel transmission at high bit rate (40 Gb/s and above) is considered. The carrier-
suppressed RZ (CSRZ) modulator employed is composed of a laser diode, two MZ intensity modulators
(the first serving as modulator, the second as a NRZ to RZ converter), and a PRBS generator. Erbium-dop-
ed fiber amplifiers (EDFA) and dispersion compensating fibers (DCF) are deployed periodically to
compensate the loss and accumulated dispersion of the standard single mode fiber (SMF). The direct
detection receiver observed is composed of an optical filter, a PIN photodiode, an electrical filter, and a
sampler followed by a decision circuit. An EDFA is used as a pre-amplifier. (Polarizatoion mode dispersion
and polarization dispersion loss effects are ignored.)

The propagation of a signal through the transmission media is modeled by NLSE {14},
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where z is the propagation distance along the fiber, relative time T=r-z/v, gives a frame of reference
moving at the group velocity vg, A(z,T) is the complex field amplitude of the pulse, & is the attenuation
coefficient of the fiber, B; is the group velocity dispersion (GVD) coefficient, B is the second-order GVD,
v is the nonlinearity coefficient giving rise to Kerr effect nonlinearities: self-phase modulation (SPM), intra-

channel cross-phase modulation (IXPM) and intrachannel four-wave mixing (IFWM) and Ty is the Raman
coefficient describing the stimulated Raman scattering (SRS).
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1V, CALCULATION OF ACHIEVABLE INFORMATION RATES USING FINITE STATE MACHINE APPROACH

The method used in determining of a lower bound on the achievable information rate is to estimate the
mutual information between the input random process X and output process Y by modeling the channel as
a finite state mnachine [17-20]. The finite state machine is described by the input alphabet X output alphabet
¥, finite set of states S5, and by the conditional probability density function determined from nonlinear
channel modeled by NLSE (1), p(¥.sls™), s5(Xome Xmetseor Ko Xpstoeoos Xnam) (X:€{0,1}), where 2m+1 is
the channel memory. It is assumed that m previous and m next bits influence the observed bit, and the state
s is determined by a sequence of Zm+] input bits. Given the previous state s°, received sample ¥, the

“probability” p(Y"), Y"=(¥1.Y2.....Ys), ¢ by the BCIR algorithm [21] to the probability of the next state s at
instance 7, Oly(s) can be determined:

o, (sy=3 v (s.s)a,, (s, )
where 7, (s.5) isgiven by 7, {s'5}=p(s,7, |57.

The problem of computing channel capacity involves the maximization of mutual information X0
over all possible input distributions p(X)

Comer =lim‘1"maxfn (X 24 )’ 3

nepes T peiy
where 2m+1 denotes the memory and mutual information can be calculated by

I(XY)=H (V)-H(¥V|X), (4

with H, (}’);—%log p(Y") being the output process entropy rate. According to the Shannon-McMillan-

Breimann theorem [18-19], for a stationary ergodic finite-state Markov process ¥,
H, (V)=-2log p(r") = H(Y) 5)
f

as n—yoo, with H(Y) being the output process entropy. The conditional entropy H(y'| X) can be calculated
in a similar fashion.

As already mentioned, we reduce our attention to the uniform-input information rate (the case commonly
considered in practical systems), also known as the achievable information rate [19].

V. NUMERICAL RESULTS AND CONCLUSIONS

Consider a single channel transmission system at 40Gb/s bit-rate located at 1552.524 nm (193.1 THz).
The dispersion map is composed of N spans of length L (96 or 48 km), consisting of 2L/3 km of D+ fiber
followed by L/3 km of D- fiber, with pre-compensation of —320 ps/nm and corresponding post-com-
pensation. The D+ fiber parameters are as follows; dispersion of 20 ps/(nm-km), dispersion slope of 0.06
ps/(nmz-km), effective cross-sectional area equal to 110 pmz and loss equal to 0.19 dB/km. The
corresponding D- fiber parameters are: -40 ps/(nm-km), -0.12 ps/(nmz-km), 50 ﬂmz and 0.25 dB/km,
respectively. The nonlinear Kerr coefficient is set to 2.6 x 10%° m*W, and a carrier-suppressed RZ signal

format is assumed. The influence of optical and electrical filters is taken intc account as well. To
compensate the fiber loss EDFAs with the noise figure of 6 dB are located after every fiber section.
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The results given in Figs. 1-3. Two different span lengths, 96 km and 48 km, are observed. As expected,
for larger channel memory and longer sequence of bits better lower bounds for the information rate are
obtained. The channel capacity is monotonically decreasing function of the average launched power (Fig.
2). Also the lower bound on the i.1.d. capacity varies with the dispersion map. It is also interesting (see Fig.
3) that there exists the optimum bit rate (at around 25Gb/s), which means that it is best to use an error
correction code having the rate of approximately 2/3 (=25/40).

It is important to notice that the finite state machine can efficiently capture all nonlinear effect one would

like to include in the model as long as they have local character, i.e., the energy transfer between distant
symbols is limited, which is the case in practical systems.
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Fig. 1 Achievable information rate versus number of spans for two different map
strengths and two different span lengths. Bit rate is 40 Gb/s.
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“onsideracOes finais

Existem vérias formas de se dar continuidade aos trabalhos apresentados. Por
exemplo, Prof. Dr. J. Cigler da Universitdt Wien deu uma generalizacZo de nosso
trabalhe "Catalan Numbers, the Hankel Transform, and Fibonacci Numbers” no artigo
"Some Relations Between Generalized Fibonacci and Catalan Numbers” publicado em
Sitzungsber Abt, IT (2002) 211, de Osterreichische Akademie der Disenchantment.

O trabalho dele, por sua vez, pode ser generalizado e mais explorado,

£ bem conhecido que identidades de MacDonald podem ser vistas como
generalizacOes multivariaveis de identidades de Rogers-Ramanujan. O candidato julga
possivel a obtencdo de interpretacdes combinatérias, mais provavelmente em termos de
particdes, para estes identidades.

Para finalizar, teoria de cddigos € uma drea de grande interesse mo momento.
Possiveis caminhos s8¢ indmeros. Uma possibilidade é estudar cédigos especializados
para canais Opticos. Demanda para transmissdc de dados em grandes velocidades estd
motivando o desenvolvimento de técnicas que tratam os limites fisicos do canal. Isto
representa uma oportunidade para se fazer um trabalho mais aplicado, mas com uma
fundamentacfo matemadtica mais ligada & combinatoria.
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