UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA

Involuções cujo conjunto de pontos fixos possui duas componentes

Fábio Gomes Figueira

Tese de Doutorado orientada pelo Prof. Dr. Pedro L. Q. Pergher

> Campinas - SP 2004

Involuções cujo conjunto de pontos fixos possui duas componentes

Este exemplar corresponde à redação final da tese devidamente corrigida e defendida por Fábio Gomes Figueira e aprovada pela comissão julgadora.

Campinas, 8 de Novembro de 2004.

Orientador: Prof. Dr. Pedro Luiz Queiroz Pergher

Co-orientadora: Profa. Dra. Claudina Izepe Rodrigues

Banca Examinadora:

- 1. Prof. Dr. Pedro Luiz Queiroz Pergher (Orientador)
- 2. Prof. Dr. Caio José Colletti Negreiros
- 3. Prof. Dr. Carlos Biasi
- 4. Prof. Dr. Daciberg Lima Gonçalves
- 5. Profa. Dra. Ketty Abaroa de Rezende

Tese apresentada ao Instituto de Matemática, Estatística e Computação Científica, UNICAMP, como requisito parcial para obtenção do Título de Doutor em Matemática. Tese de Doutorado defendida por Fábio Gomes Figueira e aprovada em 8 de Novembro de 2004 pela Banca Examinadora constituída pelos doutores:

Orientador: Prof. Dr. Pedro Luiz Queiroz Pergher

Prof. Dr. Caio José Colletti Negreiros

Prof. Dr. Carlos Biasi

Prof. Dr. Daciberg Lima Gonçalves

Profa. Dra. Ketty Abaroa de Rezende

À minha esposa *Renata* e aos meus pais *Cândido e M. Cândida*

AGRADECIMENTOS

A Deus por guiar meus passos.

Ao Professor Pedro L. Q. Pergher, não só por ter proposto os problemas os quais deram como fruto esta tese, mas também pela orientação precisa e segura. Gostaria de agradecer, em particular, à amizade, à dedicação e ao incentivo, guiando meu crescimento tanto profissional quanto pessoal.

Ao Professor Robert E. Stong, da Virginia Universty - Charlottesville - Virginia, pelas inúmeras sugestões, algumas cruciais no que se refere à obtenção dos resultados desse trabalho. Podemos afirmar, sem nenhum exagero, que este trabalho é um fruto direto do intercâmbio científico que o Prof. P. Pergher mantém com o Professor Stong.

À Professora Claudina I. Rodrigues co-orientadora desta tese, pela gentileza e orientação nos primeiros anos deste projeto.

A todos os professores os quais contribuíram para minha formação.

Aos professores e colegas do Departamento de Matemática da Universidade Federal de São Carlos.

Aos amigos, que tornaram mais fácil suportar as longas horas de estudos e a distância da família.

Ao PICD-CAPES e DM-UFSCar pelo apoio financeiro para realizar o doutorado.

ABSTRACT

Let M^m be a closed and smooth manifold and $T: M^m \mapsto M^m$ be a smooth involution. The fixed point set F of T, $F = \{x \in M^m | T(x) = x\}$, consists of a disjoint union of closed submanifolds of different dimensions. We denote $F = \bigcup_{i=0}^n F^i$, $n \leq m$, where F^i means the union of *i*-dimensional components of F.

Suppose that F is of the form $F^n \cup F^j$, $0 \le j < n$, and that $F^n \cup F^j$ does not bound. By a result of J. Boardman, one then has that $m \le \frac{5}{2}n$. Our interest in this work is the determination of the upper bound for m, for each n. Specifically, we will determine this upper bound for j = 2 and j = n - 1. Results of this nature have previously been obtained by R. E. Stong and P. Pergher (j = 0) and S. Kelton (j = 1). When j = 2, the upper bound is $max\{2n, m(n-2) + 4\}$, where m(n) is the upper bound of Stong and Pergher for the case j = 0. When j = n - 1, the upper bound is 2n.

RESUMO

Sejam M^m uma variedade fechada, suave e $T: M^m \mapsto M^m$ uma involução suave. O conjunto de pontos fixos F de T, dado por $F = \{x \in M^m | T(x) = x\}$, consiste de uma união disjunta de subvariedades fechadas de diferentes dimensões. Denotemos por $F = \bigcup_{i=0}^n F^i$, $n \leq m$, onde F^i significa a união disjunta das componentes *i*-dimensionais de F.

Suponha que F tem a forma $F^n \cup F^j$, $0 \le j < n$, e que $F^n \cup F^j$ não borda. Por um resultado de J. Boardman, temos que $m \le \frac{5}{2}n$. Nosso interesse neste trabalho, é determinar o limite superior de m, para cada n. Especificamente, iremos determinar este limite superior para j = 2 e j = n - 1. Resultados desta natureza, foram obtidos por R. E. Stong and P. Pergher (j = 0) e S. Kelton (j = 1). Quando j = 2, o limite superior é max $\{2n, m(n-2) + 4\}$, onde m(n) é o limitante de Stong and Pergher para o caso j = 0. Quando j = n - 1, o limite superior é 2n.

Sumário

	Intr	odução	х	
1	Preliminares			
	1.1	Introdução	1	
	1.2	Bordismo de variedades	1	
	1.3	Bordismo de aplicações	3	
	1.4	Bordismo de fibrados	4	
	1.5	Bordismo de ações de grupos	6	
	1.6	O grupo de \mathbb{Z}_2 -bordismo principal	7	
	1.7	O Splitting Principle	9	
	1.8	Sequência exata de Conner e Floyd	12	
	1.9	Involuções e a característica de <i>Euler</i> módulo 2	15	
	1.10	Uma involução especial	16	
	1.11	O limitante $m(n)$ de Stong e Pergher	16	
	1.12	A fórmula de <i>Conner</i>	17	
	1.13	A classe de Wu	18	
	1.14	Funções simétricas	19	
	1.15	Teorema de Lucas	21	
2	Involuções Fixando $F^n \cup F^{n-1}$ 23			
	2.1	Introdução	23	
	2.2	Classes características especiais	25	
	2.3	Prova do Teorema 2.1	28	
3	Involuções Fixando $F^n \cup F^2$ 33			
	3.1	Introducão	33	
	3.2^{-}	Classes de bordismo estáveis de fibrados sobre variedades fechadas F^2 .	36	
	3.3	Prova do Teorema 3.1	40	
4	Lim	itantes Específicos	59	
	4.1	Introdução	59	

4.2	$\varphi(n,\beta)$ para <i>n</i> ímpar	60
4.3	$ \varphi(n,\beta) $ para n par $\dots \dots \dots$	66

Introdução

Na década de 60, P. E. Conner e E. E. Floyd escreveram um monumental trabalho, Differentiable Periodic Maps [4], no qual introduziram a noção de bordismo singular. Esta noção estendeu o importante trabalho de R. Thom da década de 50, Quelques propriétés globales des variétés differentiables [14], no qual havia sido mostrado que o bordismo de uma variedade é completamente determinado por certos invariantes algébricos denominados números de Stiefel-Whitney ou números característicos.

No bordismo singular introduzido por *Conner e Floyd*, o objeto de estudo era a classe de bordismo de um objeto dado por um par (M, f), onde M é uma variedade suave fechada e f é uma função contínua com domínio em M e com valores em um pré-fixado espaço topológico X. No caso em que $X = \{\text{ponto}\}$, o bordismo singular de *Conner e Floyd* reduzia-se ao bordismo usual de R. *Thom*, e semelhantemente a este último *Conner e Floyd* mostraram que o bordismo singular (para CW-complexos X) era completamente determinado por números característicos (os quais adicionalmente envolviam a cohomologia de X).

Neste contexto, um detalhe importante é que, quando G é um grupo de Lie compacto e X = B(G), onde B(G) é o espaço classificante para G-fibrados principais, então o bordismo singular de X reduz-se ao bordismo das ações suaves e livres de G em variedades fechadas (ou bordismo G-equivariante). Isso deu origem à original estratégia de se estudar ações de grupos através de técnicas de bordismo (mais especificamente, através de números característicos); em particular, um amplo estudo sobre involuções sob este ponto de vista foi levado a cabo por Conner e Floyd, com enfoque especial para as propriedades concernentes ao conjunto de pontos fixos das mesmas. Especificamente, se M é uma variedade suave e fechada e $T: M \mapsto M$ é uma involução suave, então o conjunto de pontos fixos de T, F, é uma subvariedade fechada de M, a qual pode ser escrita como $F = \bigcup F^i$, onde F^i denota a união (disjunta) das componentes i-dimensionais de F. O fibrado normal $\eta \mapsto F$ de F em M (o qual é uma união disjunta dos fibrados sobre as diversas componentes) é chamado o *fixed-data* da involução (M, T). Um dos resultados mais importantes de Conner e Floyd foi mostrar que o bordismo do *fixed-data* determina completamente o bordismo (equivariante) do par (M,T). Em outras palavras, se (M,T) e (N,S) são duas involuções com fixeddata $\eta \mapsto F \in \nu \mapsto V$, então foi mostrado que $(M,T) \in (N,S)$ são equivariantemente

cobordantes se, e somente se, $\eta \mapsto F \in \nu \mapsto V$ são cobordantes como fibrados.

A conveniência deste resultado é que o bordismo de fibrados é completamente determinado por números característicos (por ser o bordismo singular dos espaços classificantes); em outras palavras, a classe de bordismo de um fibrado $\eta \mapsto F$ pode ser vista como a classe de bordismo do par (F, g), onde g é uma função classificante para η , enquanto que o bordismo de involuções sem restrições não é determinado por números característicos (a não ser no caso especial em que as involuções em jogo sejam livres de pontos fixos; esse caso se reduz ao bordismo singular do espaço classificante BO(1), que é determinado por números característicos).

Um fenômeno observado por *Conner e Floyd* foi o fato que, se uma involução suave T atua em uma variedade m-dimensional M de tal sorte que o conjunto de pontos fixos F não borda (o que significa dizer que alguma F^i não borda), então m não pode ser muito grande relativamente a n, onde n é a dimensão da componente de F com maior dimensão (isto não ocorre caso F borde). O resultado de *Conner e Floyd* que trouxe à luz tal fenômeno foi o seguinte: para cada natural $n \ge 1$, existe um natural $\varphi(n) > n$ com a seguinte propriedade: se uma involução (M^m, T) fixa F de tal sorte que a dimensão da componente de F com maior dimensão da componente de F com maior dimensão é n, e se $m > \varphi(n)$, então (M^m, T) borda equivariantemente (o que em particular implica que F borda). Em outras palavras, com tal resultado *Conner e Floyd* mostraram a existência, para cada n > 0, de um patamar $\varphi(n)$ funcionando como um limitante superior para as possíveis dimensões de variedades M admitindo involuções $T: M \mapsto M$ cujo conjunto de pontos fixos, F, não borda e é tal que a dimensão de sua componente maximal é n.

A prova do resultado acima concernente à existência de $\varphi(n)$ tinha caráter apenas existencial, ou seja, o valor exato, para cada n, de $\varphi(n)$, não foi determinado explicitamente por *Conner e Floyd*. Posteriormente, isso foi completamente desvendado por *J. Boardman*, através de seu do famoso 5/2-Teorema de [1] (Bulletin of the American Math. Soc. - 1967). *Boardman* mostrou que, se uma involução (M^m, T) não borda equivariantemente e se o conjunto de pontos fixos F é tal que sua componente maximal tem dimensão n, então $m \leq 5/2n$. Em particular, isso significa que, se partimos de uma F que não borda e cuja componente maximal tenha dimensão n, e se desejamos tornar F o conjunto de pontos fixos de alguma involução (M^m, T) , então o máximo que eventualmente m pode atingir é 5/2n. Adicionalmente, e através de exemplos explícitos, *Boardman* mostrou que a estimativa em questão não pode ser melhorada (ou seja, diminuída) nas condições gerais segundo as quais a mesma foi formulada.

Essa generalidade do resultado de *Boardman* independe de n e abrange a possibilidade de F possuir componentes com todas as dimensões possíveis, de 0 a n; por causa dessa generalidade, este antigo resultado de *Boardman* possuía embutido em si uma classe atraente de problemas, a qual vem à luz mediante a observação simultânea de dois resultados posteriores da literatura, contidos em artigos diferentes, e nos quais a preocupação não era a obtenção de resultados tipo *Boardman*.

O primeiro desses é o seguinte resultado de C. Kosniowski e R. Stong: se (M^m, T)

fixa F o qual tem dimensão constante igual a n, e se m > 2n, então (M,T) borda equivariantemente ([5]; Topology, 1978). Isso implica que o fixed-data de (M,T) borda, e em particular F borda. Isso significa que, caso F não borde, então $m \leq 2n$. Por causa do exemplo dado pela involução "twist" $((F \times F, t), t(x, y) = (y, x))$, esta estimativa é a melhor possível, o que significa um limitante para m melhor que o de *Boardman* na situação especial em que F possui dimensão constante igual a n.

O segundo resultado é um teorema de *Royster* contido em [13] (Indiana Math. J.-1980; o objetivo desse artigo era classificar involuções fixando a união de dois espaços projetivos reais), segundo o qual, se (M,T) é uma involução fixando a união de um ponto com uma variedade F de dimensão ímpar n, então (M,T) é equivariantemente cobordante a uma específica involução definida em \mathbb{RP}^{n+1} , onde \mathbb{RP}^{n+1} denota o espaço projetivo real de dimensão n + 1. Em particular, $m = \text{dimensão}(M) \leq n + 1$ (na verdade é igual a n + 1), e por causa da involução em \mathbb{RP}^{n+1} acima, essa estimativa é a melhor possível. Evidentemente, isso é também um limitante para m muito melhor que o de *Boardman* na situação especial em que F possui, além da componente maximal n-dimensional (com n ímpar), componentes 0-dimensionais (quando componentes 0-dimensionais efetivamente ocorrem, então a quantidade das mesmas precisa ser ímpar, o que pode ser reduzido, via bordismo, a um único ponto).

Juntando os fatos acima, surge naturalmente o problema de se estabelecer um limitante para m (em termos de n) melhor que o de *Boardman*, quando alguma restrição sobre n (a dimensão da componente maximal de F) é imposta, ou quando adicionalmente algumas dimensões envolvidas em F (que em princípio seriam de 0 a n) são a priori omitidas (o resultado de *Boardman* e o resultado acima de *Kosniowski e Stong* seriam os *extremos* desse problema geral quando nenhuma condição é imposta sobre n). Tal problema pode ser formulado segundo a seguinte forma mais precisa: para cada número natural n, e para cada conjunto de naturais $X = \{p_1, p_2, ..., p_r\}$, onde $0 \le p_1 < p_2 < ... < p_r < n \in 0 \le r$, definimos m(n; X) como sendo o seguinte número natural:

 $m(n; X) = \max\{m \mid \text{existe involução } (M^m, T) \text{ fixando alguma } F \text{ que não borda e cuja componente maximal é n-dimensional, e tal que } F \text{ não possui componentes com dimensões diferentes de } n \text{ e daquelas especificadas na lista } X\}.$

Com tal formulação, o Teorema 5/2 de *Boardman* estabelece simplesmente que $m(n; X) \leq 5/2n$ para qualquer (n; X). O teorema acima citado de *Kosniowski e Stong* diz que, se X é a lista vazia, então m(n; X) = 2n para todo n; por outro lado, o resultado de *Royster* diz que m(n; (0)) = n + 1 quando n é ímpar.

É importante frisar que o valor de m(n; X) independe da quantidade de componentes de F com alguma dimensão específica $p_j \in X$; em outras palavras, m(n; X) não pode ser melhorado (diminuído) se alguma restrição sobre a quantidade de componentes de F com dimensão p_j é imposta. Isso decorre do seguinte fato, que será detalhado no Capítulo 1, Seção 1.8, Teorema 1.8.5: suponha que uma involução (M^m, T) fixa F, e seja F^i a união disjunta das componentes de F com dimensão i. Então existe uma involução (N^m, S) (a qual é equivariantemente cobordante a (M^m, T)) fixando $B = (F - F^i) \cup V^i$, onde V^i é uma subvariedade conexa i-dimensional de N^m . Em outras palavras, toda involução é equivariantemente cobordante a uma involução cuja parte i-dimensional F^i de seu conjunto de pontos fixos é conexa, para cada $0 \le i \le n$. Desta forma, m(n; X) é de fato uma função exclusivamente de n e de X (Corolário 1.8.6, Capítulo 1).

Uma vez que m(n; X) = 2n está estabelecido para a lista vazia X e para qualquer n, o passo seguinte é a análise de m(n; X) quando X é unitário, ou seja, quando Fpossui duas componentes com dimensões distintas $F^n \in F^j$, j < n. Como acima citado, o caso j = 0 e n ímpar foi resolvido por *Royster*, a saber $m(n; \{0\}) = n + 1$. Nesta direção, *P. Pergher* iniciou em ([9], 1997) o estudo do caso $m(n; \{0\})$ para n par. Especificamente, *P. Pergher* mostrou que $m(2n; \{0\}) \leq 3n + 3$ quando n é ímpar. Esse resultado foi obtido com uma sofisticação da técnica de *Royster*. Posteriormente, *R. Stong e P. Pergher* completaram em ([12], 2001) a análise de $m(n; \{0\})$ para qualquer n par. *Stong e Pergher* chamaram $m(n; \{0\})$ de m(n) e determinaram seu valor exato para cada n. A técnica utilizada consistiu inicialmente em mostrar que, se (M^m, T) fixa $F^n \cup \{ponto\}$, então $m \leq m(n)$, e isso foi obtido com a utilização de certas classes características especiais e a teoria de *Conner e Floyd*. A seguir, um exemplo $(M^{m(n)}, T)$ com F sendo do tipo $F^n \cup \{ponto\}$ foi construído para cada n. Pormenores sobre o valor de m(n) (o qual é expresso em termos de p e q, onde $n = 2^p q$ com q ímpar) serão vistos na Seção 1.14 do Capítulo 1.

O objetivo deste trabalho é continuar o estudo do caso $F = F^n \cup F^j$, j < n. Especificamente, mostraremos que $m(n; \{n-1\}) = 2n$ (Capítulo 2) e mostraremos também que $m(n; \{2\}) = max\{2n, m(n-2)+4\}$, onde m(n-2) é o número de Stong e Pergher acima citado (Capítulo 3). Com respeito a $m(n; \{1\})$, em sua tese de doutorado "Involutions fixing $\mathbb{R}P^j \cup F^{nv}$, defendida na University of Viginia-U.S.A em 2001 sob a orientação do Prof. Stong, Suzanne M. Kelton analisou limitantes para as dimensões de variedades com involução cujo conjunto de pontos fixos possui duas componentes, sendo que uma de tais componentes é um espaço projetivo real $\mathbb{R}P^j$. Isso seria uma linha de generalização para o caso $F = F^n \cup \{\text{ponto}\}$, uma vez que $\{\text{ponto}\} = \mathbb{R}P^0$. Entre os resultados obtidos, S. Kelton mostrou que se (M^m, T) fixa $F = F^n \cup \mathbb{R}P^1$, então $m \leq m(n-1) + 1$ se n é impar, $m \leq m(n-1) + 2$ se n é par, e tais estimativas são as melhores possíveis. Ocorre que uma variedade conexa F^1 é uma cópia de S^1 , a qual é homeomorfa a $\mathbb{R}P^1$; em outras palavras, tais resultados de S. Kelton mostram que $m(n; \{1\}) = m(n-1) + 1$ se n é ímpar, e $m(n; \{1\}) = m(n-1) + 2$ se n é par, o que encerra o estudo deste caso.

Os casos $m(n; \{n-1\}) \in m(n; \{2\})$ são, em essência, diferentes. O primeiro pode ser considerado como uma extensão do resultado de *Kosniowski e Stong* acima citado: se (M^m, T) fixa F o qual tem dimensão constante igual a n, e se m > 2n, então (M, T) borda equivariantemente ([5]; Topology, 1978). De fato, e isto será levado a cabo no Capítulo 2, provaremos que este resultado de Kosniowski e Stong continua verdadeiro se, além da componente F^n , outra componente F^{n-1} faz parte de F. A técnica consistirá em, usando certas classes características especiais, mostrar que se m > 2n então o fibrado normal sobre a componente F^n borda como fibrado; então, através de cirurgia equivariante, tal fibrado pode ser removido de F, e como consequência obtém-se nova involução (N^m, S) , cobordante à original, fixando $F - F^n =$ F^{n-1} . Usando-se o resultado de Kosniowski e Stong, conclui-se que (N^m, S) (e portanto (M^m, T)) borda equivariantemente. Conforme já explicado acima, isso implicará que $m(n; \{n-1\}) = 2n$.

O caso $m(n; \{2\})$ (levado a cabo no Capítulo 3) segue a filosofia do caso $m(n; \{0\})$ (o que pode ser intuído pela natureza do resultado). Em linhas gerais, a classe de bordismo de um fibrado $\nu \mapsto F$ dá origem à classe de bordismo equivariante de uma involução sem pontos fixos dada pela involução A que atua como antipodal nas fibras do fibrado em esferas $S(\nu)$. Segundo Conner e Floyd, caso $\nu \mapsto F$ seja o fixed-data de alguma involução, então $(S(\nu), A)$ borda como elemento do grupo de bordismo de involuções livres de pontos fixos. Ocorre que tal grupo de bordismo pode ser identificado ao grupo de bordismo singular de X = BO(1), o qual consiste das classes de bordismo de fibrados unidimensionais. Essa identificação é obtida associando-se $(S(\nu), A)$ ao fibrado-linha canônico $\lambda \mapsto S(\nu)/A$. Por outro lado, as classes de bordismo de fibrados unidimensionais são completamente determinadas por números característicos, conforme já citado anteriormente. Tomando-se em particular a situação na qual uma involução possui fixed-data do tipo $\nu \mapsto F = \eta \mapsto F^n \cup \mu \mapsto F^j$, j < n, isso dará origem a uma coleção de equações, obtidas por se igualar cada número característico de $\lambda \mapsto S(\eta)/A$ ao correspondente número característico de $\lambda \mapsto S(\mu)/A$. Quando j=0, $\mu \mapsto F^0$ é sempre o fibrado trivial sobre um ponto e $\lambda \mapsto S(\mu)/A$ é o fibrado linha canônico sobre $\mathbb{R}P^{m-1}$, cujos números característicos são explicitamente conhecidos.

Manipulando-se adequadamente as equações acima mencionadas com o suporte de certas classes características especiais e com o conhecimento explicito dos números de $\lambda \mapsto \mathbb{R}P^{m-1}$, obtém-se os limitantes do caso $F = F^n \cup F^0$. A abordagem do caso $F = F^n \cup F^2$ possuirá mesma natureza, sendo que a diferença crucial residirá no fato que, enquanto só existe uma possibilidade para classes de bordismo estáveis sobre o ponto (e esta é muito simples, dada pelos fibrados triviais), o mesmo não ocorre quando se considera todas as possíveis classes de bordismo de fibrados estáveis sobre variedades bidimensionais. De fato, este é um dos pontos cruciais na análise de $m(n; \{2\})$, o qual foi contornado através do Teorema 3.2.4, Capítulo 3. Neste teorema, mostramos que existem sete tais possíveis classes não nulas, e exibimos explicitamente um modelo para cada uma destas sete classes. Isto foi obtido com auxílio das classes de Wu, de um teorema de *Borel-Hirzebruch* e a estrutura de \mathcal{N}_* (vide Capítulo 1). Desta forma, na utilização da técnica acima descrita no caso $F = F^n \cup F^2$, a possibilidade de ocorrência de qualquer uma das sete classes β_1 , β_2 , β_3 , β_4 , β_5 , β_6 , β_7 sobre a componente F^2 é levada em conta.

Na prova do caso $F = F^n \cup F^2$, o limitante m(n-2) + 4 é mostrado ser efetivo para qualquer n e qualquer das classes β_i acima mencionadas. Neste contexto, surge naturalmente a questão sobre se o referido limitante pode ou não ser melhorado para específicos n e específicas classes β_i . Mais precisamente, tal questão dá origem à definição do número natural

 $\varphi(n,\beta_i) = \max \{ m \mid \text{existe involução } (M^m,T) \text{ fixando F do tipo } F = F^n \cup F^2, \text{ tal que a classe de bordismo estável sobre } F^2 \notin \beta_i \}.$

O Capítulo 4 é dedicado a este problema, e de fato mostramos que em várias situações o limitante m(n-2) + 4 pode ser melhorado. O número $\varphi(n, \beta_i)$ é calculado para uma ampla gama de pares (n, β_i) , incluindo neste contexto os pares com n ímpar e qualquer β_i . No entanto, este problema continua em aberto para muitos tais pares.

Nosso trabalho é constituído ainda pelo Capítulo 1, o qual é devotado aos prérequisitos necessários para o desenvolvimento dos capítulos subseqüentes. Em tais prérequisitos está incluída uma coletânea de alguns tópicos fundamentais da teoria de bordismo equivariante desenvolvida por *Conner e Floyd*.

Capítulo 1

Preliminares

1.1 Introdução

Neste capítulo apresentaremos as ferramentas e resultados da literatura necessárias para o entendimento dos nossos resultados, incluindo neste particular, noções básicas da teoria de bordismo equivariante, conforme desenvolvida por *Conner e Floyd* em [4]. Admitiremos que o leitor tenha noções de homologia, cohomologia, teoria de fibrados e classes de *Stielfel-Whitney*.

Seja M^n uma variedade *n*-dimensional fechada C^{∞} ; uma involução $T: M^n \mapsto M^n$ é uma aplicação C^{∞} satisfazendo $T^2 = Id$. As variedades e involuções envolvidas neste trabalho serão supostas de classe C^{∞} .

Dada uma involução $T: M^n \mapsto M^n$, o conjunto $F_T = \{x \in M^n | T(x) = x\}$ é chamado o conjunto de pontos fixos da involução; se $F_T = \emptyset$, dizemos que T é uma involução sem pontos fixos.

1.2 Bordismo de variedades

Dada uma variedade compacta W denotaremos por ∂W o bordo de W, o qual sabemos ser uma variedade fechada, isto é, compacta e sem bordo.

Definição 1.2.1 Dizemos que uma variedade *n*-dimensional fechada M^n borda se existe uma variedade compacta com bordo W^{n+1} tal que $\partial W^{n+1} = M^n$.

Definição 1.2.2 Dizemos que duas variedades fechadas $M^n \in V^n$ são cobordantes se a união disjunta $M^n \cup V^n$ borda.

É conhecido o fato que tal relação (de bordismo) é uma relação de equivalência no conjunto das variedades n-dimensionais fechadas.

Denotaremos por $[M^n]$ a classe de equivalência a qual M^n pertence segundo tal relação, denominada *classe de bordismo de* M^n . Seja \mathscr{N}_n o conjunto de tais classes e denote $\mathscr{N}_* = \bigcup_{n=0}^{\infty} \mathscr{N}_n$. Em \mathscr{N}_* pode-se introduzir as seguintes operações:

- $\mathcal{N}_* \times \mathcal{N}_* \xrightarrow{+} \mathcal{N}_* : [M^n] + [N^n] = [M^n \cup N^n]$ (união disjunta),
- $\mathcal{N}_* \times \mathcal{N}_* \xrightarrow{\bullet} \mathcal{N}_* : [M^n] \cdot [V^m] = [M^n \times V^m]$ (produto cartesiano).

Mostra-se que tais operações são bem definidas e \mathscr{N}_* é graduado por dimensão: se $\mathscr{N}_n \subset \mathscr{N}_*$ consiste das classes representadas por variedades *n*-dimensionais, então + e • satisfazem

$$\mathcal{N}_n \times \mathcal{N}_n \xrightarrow{+} \mathcal{N}_n \qquad e \qquad \mathcal{N}_n \times \mathcal{N}_m \xrightarrow{\bullet} \mathcal{N}_{n+m}.$$

 \mathcal{N}_* é um anel graduado comutativo com unidade, com respeito às operações acima [4, pg. 8]; tal anel é denominado o *anel de bordismo não orientado de Thom*. O grupo aditivo \mathcal{N}_* pode se escrever então como $\mathcal{N}_* = \bigoplus_{n=0}^{\infty} \mathcal{N}_n$; em cada \mathcal{N}_n , o elemento neutro é a classe das variedades *n*-dimensionais que são bordos.

Para manipular elementos de \mathscr{N}_* necessitamos dos números de Stiefel-Whitney : fixada uma variedade fechada M^n , existe uma única "classe fundamental de homologia módulo 2" $[M^n]_2 \in H_n(M^n, \mathbb{Z}_2)$. Portanto, para qualquer classe de cohomologia $\vartheta \in H^n(M^n, \mathbb{Z}_2)$ está definido o *índice de Kronecker* $\vartheta[M^n]_2 \in \mathbb{Z}_2$.

Seja $\tau \mapsto M^n$ o fibrado tangente à M^n (eventualmente denotaremos τ por $T(M^n)$). Seja $\mathbb{W}(M^n) = 1 + w_1 + w_2 + \cdots + w_n$ a classe de *Stiefel-Whitney* de M^n ; em outras palavras, $\mathbb{W}(M^n)$ é a classe de *Stiefel-Whitney* de $\tau \mapsto M^n$. Sejam r_1, r_2, \ldots, r_n inteiros não negativos com $r_1 + 2r_2 + \cdots + nr_n = n$. Podemos então formar o monômio $w_1(\tau)^{r_1} \cdot w_2(\tau)^{r_2} \cdots w_n(\tau)^{r_n}$ o qual é uma classe de cohomologia em $H^n(M^n, \mathbb{Z}_2)$.

Definição 1.2.3 O inteiro módulo 2, $w_1(\tau)^{r_1} \cdot w_2(\tau)^{r_2} \cdots w_n(\tau)^{r_n} [M^n]_2$, ou resumidamente $w_1^{r_1} \cdot w_2^{r_2} \cdots w_n^{r_n} [M^n]_2$, é chamado o número de Stiefel-Whitney de M^n associado ao monômio $w_1^{r_1} \cdot w_2^{r_2} \cdots w_n^{r_n}$.

Assim, associada a uma variedade fechada M^n , existe uma coleção de inteiros módulo 2, obtida ao considerarmos todos os possíveis monômios $w_1^{r_1} \cdot w_2^{r_2} \cdots w_n^{r_n}$. Dizemos que as variedades M^n, V^n possuem os mesmos números de *Stiefel-Whitney* se $w_1^{r_1} \cdot w_2^{r_2} \cdots w_n^{r_n} [M^n]_2 = w_1^{r_1} \cdot w_2^{r_2} \cdots w_n^{r_n} [V^n]_2$ para todos os monômios $w_1^{r_1} \cdot w_2^{r_2} \cdots w_n^{r_n}$ como acima.

A relação entre os números acima e os elementos de \mathcal{N}_* é dada pelo seguinte

Teorema 1.2.4 (Thom) Se M^n é uma variedade fechada, então $[M^n] = 0$ (isto é, M^n borda) se, e somente se, todos os números de Stiefel-Whitney de M^n são nulos. [4, pg. 45, 17.1] O resultado acima implica no importante

Corolário 1.2.5 As variedades C^{∞} fechadas n-dimensionais M^n e V^n pertencem à mesma classe de bordismo se, e somente se, possuem os mesmos números de Stiefel-Whitney.

Em outras palavras, um elemento de \mathcal{N}_* é completamente caracterizado pelos números de *Stiefel-Whitney* de qualquer um de seus representantes. Os números de *Stiefel-Whitney* são também chamados de *números característicos* de M^n .

Usando esta informação e lembrando que $\mathbb{W}(\mathbb{R}P^n) = (1+\alpha)^{n+1}$, onde α é o gerador de $H^1(\mathbb{R}P^n, \mathbb{Z}_2)$, é possível verificar o seguinte

Exemplo: $\mathbb{R}P^n$ borda se, e somente se, n é ímpar.

A estrutura de \mathcal{N}_* foi completamente determinada por *Thom* em [14]; tal estrutura é dada pelo seguinte

Teorema 1.2.6 \mathcal{N}_* é uma álgebra polinomial graduada sobre \mathbb{Z}_2 com um gerador em cada dimensão $n \neq 2^j - 1 (n \geq 0)$. [14]

1.3 Bordismo de aplicações

Para os fatos abaixo, vide [4].

Seja X um espaço topológico. Uma variedade singular em X é um par (M^n, f) , consistindo de uma variedade fechada M^n e uma função contínua $f: M^n \mapsto X$.

Definição 1.3.1 Dizemos que uma variedade singular (M^n, f) borda se existe uma variedade compacta V^{n+1} e uma função contínua $F: V^{n+1} \mapsto X$ tal que $\partial V^{n+1} = M^n$ e $F|_{M^n} = f$.

Definição 1.3.2 Dizemos que duas variedades singulares $(M_1^n, f_1) \in (M_2^n, f_2)$ são cobordantes se a união disjunta $(M_1^n \cup M_2^n, f_1 \cup f_2)$ borda (onde $(f_1 \cup f_2)|_{M_i} = f_i, i = 1, 2$).

A relação de bordismo entre variedades singulares é uma relação de equivalência na coleção de todos tais objetos.

Dada a variedade singular (M^n, f) , denotaremos por $[M^n, f]$ a sua classe de equivalência, denominada *classe de bordismo de* (M^n, f) . Seja $\mathscr{N}_n(X)$ o conjunto das classes de bordismo de variedades singulares (M^n, f) em $X \in \mathscr{N}_*(X) = \bigcup_{n=0}^{\infty} \mathscr{N}_n(X)$. Em $\mathscr{N}_*(X)$ pode-se introduzir a seguinte operação:

$$\mathscr{N}_*(X) \times \mathscr{N}_*(X) \xrightarrow{+} \mathscr{N}_*(X) : [M^n, f] + [N^n, g] = [M^n \cup N^n, f \cup g]$$

onde $f \cup g|_{M^n} = f$ e $f \cup g|_{N^n} = g$. Esta operação está bem definida e satisfaz

$$\mathscr{N}_n(X) \times \mathscr{N}_n(X) \xrightarrow{+} \mathscr{N}_n(X),$$

com tal operação, cada $\mathscr{N}_n(X)$ é um grupo abeliano no qual todo elemento tem ordem 2. Referimo-nos a $\mathscr{N}_n(X)$ como o grupo de bordismo n-dimensional não orientado de X. O grupo aditivo $\mathscr{N}_*(X)$ pode se escrever então como $\mathscr{N}_*(X) = \bigoplus_{n=0}^{\infty} \mathscr{N}_n(X)$; em cada $\mathscr{N}_n(X)$, o elemento neutro é a classe das variedades singulares n-dimensionais que são bordos.

Se (M^n, f) é variedade singular em $X \in V^m$ é uma variedade fechada, podemos construir a variedade singular em X $(M^n \times V^m, g)$, onde g(x, y) = f(x). Temos que $[M^n \times V^m, g]$ depende somente de $[M^n, f]$ e de $[V^m]$, e portanto temos a operação

 $\mathscr{N}_* \times \mathscr{N}_*(X) \xrightarrow{\bullet} \mathscr{N}_*(X)$ satisfazendo $\mathscr{N}_m \times \mathscr{N}_n(X) \xrightarrow{\bullet} \mathscr{N}_{m+n}(X).$

Isto define em $\mathscr{N}_*(X)$ uma estrutura de \mathscr{N}_* -módulo graduado. Note que, se $X = \{\text{ponto}\}, \text{então existe um isomorfismo natural de } \mathscr{N}_*\text{-módulo } \mathscr{N}_*(\{\text{ponto}\}) \cong \mathscr{N}_*.$

Podemos associar a uma variedade singular (M^n, f) em X certos números módulo 2 de maneira a estender naturalmente o que foi feito para elementos de \mathcal{N}_* : para cada classe de cohomologia $h \in H^m(X, \mathbb{Z}_2)$ e cada partição $i_1 + i_2 + \cdots + i_r = n - m$, temos o inteiro módulo 2

$$w_{i_1}(\tau)w_{i_2}(\tau)\cdots w_{i_r}(\tau)f^*(h)[M^n]_2$$

ou resumidamente $w_{i_1}w_{i_2}\cdots w_{i_r}f^*(h)[M^n]_2$. Tais números são denominados números de Whitney de f associados à classe de cohomologia h, e se reduzem aos números de Stiefel-Whitney usuais de M^n se colocamos $h = 1 \in H^0(X, \mathbb{Z}_2)$. Conforme citado na introdução, a classe de bordismo de (M^n, f) é completamente caracterizada por tais números sob certa condição sobre X, conforme o

Teorema 1.3.3 (Conner e Floyd) Sejam X um CW-complexo finito em cada dimensão e $f: M^n \mapsto X$ variedade singular em X. Então $[M^n, f] = 0$ em $\mathcal{N}_n(X)$ se, e somente se, todos os números de Whitney de f se anulam. [4, pg. 47, 17.2]

Corolário 1.3.4 Duas variedades singulares são cobordantes se, e somente se, possuem os mesmos números de Whitney.

1.4 Bordismo de fibrados

Sejam $\xi^k \mapsto M^n$, $\eta^k \mapsto V^n$ fibrados vetoriais k-dimensionais, onde os espaços base M^n e V^n são variedades fechadas n-dimensionais.

Definição 1.4.1 Dizemos que um fibrado vetorial $\xi^k \mapsto M^n$ borda se existe um fibrado $\zeta^k \mapsto W^{n+1}$, onde W^{n+1} é uma variedade compacta com $\partial W^{n+1} = M^n$ e tal que $\zeta^k|_{M^n} = \xi^k$.

Obs: Note que se $\xi^k \mapsto M^n$ borda, então M^n borda.

Definição 1.4.2 Dizemos que dois fibrados vetoriais $\xi^k \mapsto M^n \in \eta^k \mapsto V^n$ são cobordantes se a união disjunta $\xi^k \mapsto M^n \cup \eta^k \mapsto V^n$ borda.

Isto estabelece uma relação de equivalência na coleção dos fibrados como acima. A classe de bordismo de $\xi^k \mapsto M^n$ é denotada por $[\xi^k \mapsto M^n]$, ou as vezes simplesmente por $[\xi^k]$. A coleção formada por tais classes torna-se um grupo abeliano através da união disjunta (no qual todo elemento tem ordem 2) e torna-se um \mathcal{N}_* -módulo através da operação

$$[V^m] \bullet [\xi^k \mapsto M^n] = [p^*(\xi^k) \mapsto V^m \times M^n], \text{ onde } p: V^m \times M^n \mapsto M^n \notin p(x, y) = y,$$

e $p^*(\xi^K)$ significa o pullback de ξ^k através de p.

O \mathcal{N}_* -módulo em questão nada mais é que $\mathcal{N}_*(BO(k))$, onde BO(k) é o espaço universal classificante para fibrados vetoriais k-dimensionais. Com efeito, denotemos por $\mu^k = E(O(k)) \mapsto BO(k)$ o fibrado universal. A identificação nos dois sentidos é feita da seguinte maneira:

- (⇒) Dado $\xi^k \mapsto M^n$, escolhemos função classificante $f : M^n \mapsto BO(k)$ para ξ^k . Isto determina a variedade singular $(M^n, f) \in BO(k)$.
- (\Leftarrow) Dada variedade singular (M^n, f) em BO(k), associamos à mesma o pullback $f^*(\mu^k) \mapsto M^n$.

A associação assim estabelecida é bem definida. Mais ainda, tal associação preserva a soma e a estrutura de \mathcal{N}_* -módulos, além de ser uma bijeção. Desta forma, o \mathcal{N}_* -módulo de classes de bordismo de fibrados com base *n*-dimensional e fibra *k*-dimensional pode ser visto como o \mathcal{N}_* -módulo de bordismo singular $\mathcal{N}_n(BO(k))$.

Como exemplo de um fibrado vetorial que borda, tome N uma variedade que borda e $\mathbb{R}^n \mapsto N$ é o fibrado trivial n-dimensional.

Fixemos agora $[\xi^k \mapsto M^n] \in \mathcal{N}_n(BO(k))$, e tomemos seu correspondente $[M^n, f]$. Segundo o Corolário 1.3.4, o que determina $[M^n, f]$ são seus números de *Whitney*,

$$w_{i_1}w_{i_2}\cdots w_{i_r}f^*(h)[M^n]_2$$

onde $h \in H^m(BO(k), \mathbb{Z}_2)$ e $i_1 + i_2 + \cdots + i_n = n - m$. Ocorre que $H^*(BO(k), \mathbb{Z}_2)$ é a álgebra polinomial $\mathbb{Z}_2[w_1, w_2, \ldots, w_k]$, onde $w_i \in H^i(BO(k), \mathbb{Z}_2), 1 \leq i \leq k$, é a i-ésima classe de *Stiefel-Whitney* do fibrado universal $\mu^k \mapsto BO(k)$. Assim, um monômio básico $h \in H^m(BO(k), \mathbb{Z}_2)$ pode ser escrito como $h = w_{j_1}w_{j_2}\cdots w_{j_s}, \ j_1 + j_2 + \cdots + j_s = m$, e pela naturalidade das classes características, $f^*(w_{j_1}w_{j_2}\cdots w_{j_s}) = v_{j_1}v_{j_2}\cdots v_{j_s}$, onde $v_j = w_j(\xi^k)$ é a j-ésima classe característica de ξ^k . Segue que

$$w_{i_1}w_{i_2}\cdots w_{i_r}f^*(h)[M^n]_2 = w_{i_1}w_{i_2}\cdots w_{i_r}v_{j_1}v_{j_2}\cdots v_{j_s}[M^n]_2,$$

e portanto, os números de Whitney do fibrado $\xi^k \mapsto M^n$ são dados por

$$w_{i_1}w_{i_2}\cdots w_{i_r}v_{j_1}v_{j_2}\cdots v_{j_s}[M^n]_2$$

onde $i_1 + i_2 + \dots + i_r + j_1 + j_2 + \dots + j_s = n$, $v_j = w_j(\xi^k)$ e $w_{i_r} = w_{i_r}(\tau)$.

Desta forma, um fibrado borda se, e somente se, todos os números acima descritos se anulam.

Exemplo: Considere o fibrado linha canônico $\lambda_1^1 \mapsto S^1$. Temos $v_1 = w_1(\lambda_1^1) = \alpha$, o gerador de $H^1(S^1, \mathbb{Z}_2)$, portanto o número de *Whitney* $w_1(\lambda_1^1)[S^1]_2$ de λ_1^1 é não nulo. Segue que λ_1^1 não borda (embora S^1 borde).

1.5 Bordismo de ações de grupos

Como referência para os fatos abaixos, vide [4].

Sejam G um grupo de Lie compacto e M^n uma variedade fechada. Consideremos uma ação $C^{\infty} \psi : G \times M^n \mapsto M^n$, que denotaremos por (M^n, ψ) .

Definição 1.5.1 Dizemos que a ação (M^n, ψ) borda se existe ação C^{∞} ,

$$\Psi: G \times W^{n+1} \mapsto W^{n+1}$$

 $\operatorname{com} \partial(W^{n+1}) = M^n \in \Psi|_{M^n} = \psi.$

Definição 1.5.2 Dizemos que as ações $(M_1^n, \psi_1) \in (M_2^n, \psi_2)$ são cobordantes quando a união disjunta $(M_1^n, \psi_1) \cup (M_2^n, \psi_2) = (M_1^n \cup M_2^n, \psi_1 \cup \psi_2)$ borda.

A relação de bordismo assim introduzida é uma relação de equivalência. Não é difícil mostrar a reflexividade e a simetria, enquanto a transitividade necessita do teorema do colar equivariante para garantir a suavidade da ação.

Denotamos por $[M^n, \psi]$ a classe de bordismo de (M^n, ψ) , e por $I_*(G)$ a coleção das classes de bordismo das ações (M^n, ψ) . Definimos a operação de soma usando novamente a união disjunta de ações:

• $I_*(G) \times I_*(G) \xrightarrow{+} I_*(G) : [M^n, \psi] + [N^n, \phi] = [M^n \cup N^n, \psi \cup \phi].$

Tal operação depende somente das classes $[M^n, \psi]$ e $[N^n, \phi]$. Portanto a soma está bem definida e satisfaz $I_n(G) \times I_n(G) \xrightarrow{+} I_n(G)$, onde $I_n(G)$ é constituido pelas classes representadas por variedades *n*-dimensionais. Temos que + torna $I_n(G)$ um grupo abeliano no qual todo elemento tem ordem 2. Referimo-nos a $I_n(G)$ como o grupo de *G-bordismo n-dimensional irrestrito*. A razão do nome "irrestrito" é que podemos obter outros tipos de grupos de *G*-bordismo ao impormos restrições às ações consideradas. Nesta linha surge o importante grupo de G-bordismo principal, o qual é obtido impondo-se que todas as ações consideradas sejam livres. Tais grupos são denotados por $\mathcal{N}_n(G)$.

Podemos introduzir em $I_*(G)$ (e em $\mathscr{N}_*(G)$) uma estrutura de \mathscr{N}_* -módulo graduado como segue: dados $[M^n, \psi] \in I_n(G)$ e $[V^m] \in \mathscr{N}_m$, considere a ação

$$\Psi: G \times V^m \times M^n \mapsto V^m \times M^n \text{ dada por } \Psi(g, (v, m)) = (v, \psi(g, m)).$$

Verifica-se que $[V^m \times M^n, \Psi] \in I_{n+m}(G)$ depende somente das classes $[M^n, \psi]$ e de $[V^m]$, o que determina a estrutura pretendida.

1.6 O grupo de \mathbb{Z}_2 -bordismo principal

Particularizaremos as considerações anteriores para o caso em que $G = \mathbb{Z}_2$, e neste caso estaremos trabalhando com $\mathscr{N}_*(\mathbb{Z}_2)$ (o grupo de \mathbb{Z}_2 -bordismo principal), ou seja, o grupo abeliano formado pelas classes de bordismo $[M^n, \psi]$, onde M^n é uma variedade fechada e $\psi : \mathbb{Z}_2 \times M^n \mapsto M^n$ é uma ação livre \mathbb{C}^∞ . Dar uma tal ação é equivalente a dar uma aplicação $T : M^n \mapsto M^n$ com $T \circ T = Id$, ou seja, uma *involução*. O fato de ψ ser livre significa que T não tem pontos fixos. Usaremos então a notação $[M^n, T] \in \mathscr{N}_n(\mathbb{Z}_2)$ no lugar de $[M^n, \psi]$.

Dada uma involução sem pontos fixos (M^n, T) , temos o espaço de órbitas $\frac{M^n}{T}$, o qual ainda é uma variedade fechada, e a projeção $p: M^n \mapsto \frac{M^n}{T}$. Isto é um recobrimento a duas folhas de $\frac{M^n}{T}$.

Definição 1.6.1 Dada uma involução sem pontos fixos (M^n, T) , definimos o *fibrado* linha associado a T como sendo $\gamma \mapsto \frac{M^n}{T}$, onde o espaço total de γ é o espaço quociente $\frac{M^n \times \mathbb{R}}{(m-1)^n (T(n))^{-1}}$.

$$(m,r) \sim (T(m),-r)$$

Um exemplo desta situação é o fibrado linha canônico $\lambda_n^1 \mapsto \mathbb{RP}^n$, o qual é o fibrado linha associado à involução antipodal (S^n, A) . Observemos que o fibrado em esferas $S(\gamma) \mapsto \frac{M^n}{T}$ associado a γ é naturalmente identificado ao recobrimento $M^n \mapsto \frac{M^n}{T}$.

Teorema 1.6.2 A associação $[M^n, T] \mapsto [\gamma \mapsto \frac{M^n}{T}]$ define um isomorfismo de \mathcal{N}_* -módulos entre $\mathcal{N}_*(\mathbb{Z}_2)$ e $\mathcal{N}_*(BO(1))$. [3, pg 71, 20.4]

Podemos então reconhecer um elemento $[M^n, T]$ através dos números de Whitney do seu correspondente $[\frac{M^n}{T}, f] \in \mathcal{N}_n(BO(1))$. Lembramos que $H^*(BO(1), \mathbb{Z}_2)$ é a álgebra polinomial $\mathbb{Z}_2[c]$, onde $c \in H^1(BO(1), \mathbb{Z}_2)$. Colocando $f^*(c) = c \in H^1(\frac{M^n}{T}, \mathbb{Z}_2)$, tal elemento é denominado classe característica da involução (M^n, T) , e é na realidade a primeira classe de Whitney do fibrado linha $\gamma \mapsto \frac{M^n}{T}$ associado a (M^n, T) . **Definição 1.6.3** Dada uma involução sem pontos fixos (M^n, T) , definimos os números de involução de (M^n, T) como sendo os números de Whitney do seu correspondente $\gamma \mapsto \frac{M^n}{T}$. Ou seja, tais números são da forma $w_{i_1} \cdot w_{i_2} \cdots w_{i_r} c^k \left[\frac{M^n}{T}\right]_2$, onde os w_{i_j} são classes tangenciais de $\frac{M^n}{T}$.

Portanto, temos que $[M^n, T] = 0$ em $\mathcal{N}_n(\mathbb{Z}_2)$ se, e somente se, todos seus números de involução são nulos. Temos, portanto, o

Corolário 1.6.4 Duas involuções sem pontos fixos são cobordantes se, e somente se, possuem os mesmos números de involução.

De suma importância para nós serão as involuções sem pontos fixos dadas pelos fibrados involução, descritas a seguir. Considere um fibrado vetorial $\xi^k \xrightarrow{P} V^n k$ -dimensional com grupo O(k) (grupo ortogonal), onde V^n é uma variedade fechada. Existe o fibrado em esferas associado $S(\xi^k) \xrightarrow{P} V^n$ com fibra S^{k-1} , cujo espaço total é uma variedade fechada C^{∞} (n + k - 1)-dimensional. Existe uma involução sem pontos fixos,

$$T: S(\xi^k) \mapsto S(\xi^k),$$

atuando como a antipodal em cada fibra; isto decorre do fato que a involução antipodal $A : S^{k-1} \mapsto S^{k-1}$ comuta com todos os elementos do grupo ortogonal O(k). Referimo-nos ao par $(S(\xi^k), T)$ como o *fibrado involução* associado a ξ^k . Considere o *fibrado projetivo* associado a ξ^k dado por $\mathbb{RP}(\xi^k) \xrightarrow{P} V^n$, com projeção p, fibra \mathbb{RP}^{k-1} e espaço total $\mathbb{RP}(\xi^k) = \frac{S(\xi^k)}{T}$; temos então a classe característica $c \in H^1(\mathbb{RP}(\xi^k), \mathbb{Z}_2)$ da involução $(S(\xi^k), T)$. A estrutura de $H^*(\mathbb{RP}(\xi^k), \mathbb{Z}_2)$ pode ser obtida através do

Teorema 1.6.5 (*Leray-Hirsch*) Seja $E \xrightarrow{P} X$ um fibrado, onde X é um CW-complexo, e seja Λ um anel comutativo com unidade. Suponha que existam elementos homogêneos $\alpha_1, \alpha_2, \ldots, \alpha_r \in H^*(E, \Lambda)$ tal que, para cada $x \in X$, o Λ -módulo $H^*(E_x, \Lambda)$ seja livre com base $\{j_x^*(\alpha_1), j_x^*(\alpha_2), \cdots, j_x^*(\alpha_r)\}$, onde $E_x = p^{-1}(x)$ é a fibra sobre x e $j_x : E_x \mapsto E$ é a inclusão. Então o $H^*(X, \Lambda)$ -módulo $H^*(E, \Lambda)$ (via $p^* : H^*(X) \mapsto$ $H^*(E))$ é livre com base $\{\alpha_1, \alpha_2, \ldots, \alpha_r\}$. [8]

De fato, voltando para o fibrado projetivo $\mathbb{RP}(\xi^k) \xrightarrow{P} V^n$, notamos por construção que se $\mathbb{RP}^{k-1} \subset \mathbb{RP}(\xi^k)$ é uma fibra típica, então o fibrado linha $\gamma \mapsto \mathbb{RP}(\xi^k)$ é tal que $\gamma|_{\mathbb{RP}^{k-1}} \mapsto \mathbb{RP}^{k-1}$ é o fibrado linha canônico usual. Pela naturalidade das classes de *Stiefel-Whitney*, segue que $i^*(c) = \alpha \in H^1(\mathbb{RP}^{k-1}, \mathbb{Z}_2)$ é o gerador, onde $i : \mathbb{RP}^{k-1} \mapsto \mathbb{RP}(\xi^k)$ é a inclusão. Agora, $H^*(\mathbb{RP}^{k-1}, \mathbb{Z}_2)$ é um \mathbb{Z}_2 -módulo livre com base $1, \alpha, \alpha^2, \dots, \alpha^{k-1}$. Pelo teorema acima segue que $H^*(\mathbb{RP}(\xi^k), \mathbb{Z}_2)$ é um $H^*(V^n, \mathbb{Z}_2)$ módulo livre graduado com base $1, c, c^2, \dots, c^{k-1}$. Denotemos por

os fibrados tangentes. Baseado no fato que fibrados são localmente triviais, vale que $\tau(\mathbb{RP}(\xi^k))$ é a soma de *Whitney* $\tau_1 \oplus \tau_2$, onde τ_1 é o *pullback* $p^*(\tau(V^n))$ e τ_2 é o fibrado dos vetores tangentes paralelos às fibras. Coloquemos

$$\mathbb{W}(\tau(V^n)) = 1 + w_1 + w_2 + \dots + w_n$$
 e $\mathbb{W}(\xi^k) = 1 + v_1 + v_2 + \dots + v_k,$

as respectivas classes de *Stiefel-Whitney*. Pela naturalidade, temos que

$$\mathbb{W}(\tau_1) = 1 + p^*(w_1) + p^*(w_2) + \dots + p^*(w_n)$$

A classe total de τ_2 é dada pelo

Teorema 1.6.6 (Borel-Hirzebruch)

$$\mathbb{W}(\tau_2) = (1+c)^k + (1+c)^{k-1} p^*(v_1) + (1+c)^{k-2} p^*(v_2) + \dots + p^*(v_k).$$
[4, pg 61, 23.3]

[1, P8 01, 2010]

Como τ_2 é um fibrado (k-1)-dimensional, em particular vale a relação

$$c^{k} + c^{k-1}p^{*}(v_{1}) + c^{k-2}p^{*}(v_{2}) + \dots + p^{*}(v_{k}) = 0.$$

Juntando os fatos acima, e omitindo-se, para simplificar a notação, o símbolo p^* (daqui por diante estaremos sempre omitindo p^*), concluimos que

Corolário 1.6.7 A classe de Stiefel-Whitney do espaço total do fibrado projetivo associado a ξ^k é

$$\mathbb{W}(\mathbb{RP}(\xi^k)) = (1 + w_1 + w_2 + \dots + w_n) \cdot ((1 + c)^k + v_1(1 + c)^{k-1} + v_2(1 + c)^{k-2} + \dots + v_k).$$

1.7 O Splitting Principle

Para os fatos abaixo, vide [8].

Em geral, um fibrado vetorial $\eta^r \mapsto V^n$ r-dimensional sobre uma variedade fechada n-dimensional não necessariamente se decompõe em uma soma de *Whitney* de fibrados

unidimensionais $\lambda_1 \oplus \lambda_2 \oplus \cdots \oplus \lambda_r \mapsto V^n$. Se isso ocorresse, a classe de *Stiefel-Whitney* $\mathbb{W}(\eta^r) = 1 + v_1 + v_2 + \cdots + v_r$ se decomporia em fatores lineares

$$\mathbb{W}(\eta^r) = \prod_{i=1}^r \mathbb{W}(\lambda_i) = \prod_{i=1}^r (1 + v_1(\lambda_i))$$

No entanto, em argumentos que se baseiam em classes características e números de *Stiefel-Whitney*, em geral pode-se supor que a classe de *Stiefel-Whitney* de qualquer fibrado vetorial pode ser fatorada em fatores lineares. Isso decorre do seguinte resultado [8, seção 5]: dado qualquer $\eta^r \mapsto V^n$, existe uma variedade fechada W e uma função $f: W \mapsto V^n$ tal que o *pullback* $f^*(\eta^r) \mapsto W$ se decompõe como $\lambda \oplus \mu^{r-1} \mapsto W$, onde λ é um fibrado unidimensional; adicionalmente a induzida em cohomologia

$$f^*: H^*(V^n) \mapsto H^*(W)$$

é um monomorfismo. Iterando o resultado acima com $\mu^{r-1} \mapsto W$ no lugar de $\eta^r \mapsto v^n$ (e assim sucessivamente), e levando-se em conta que:

- i) pullback de soma de Whitney é a soma de Whitney dos pullbacks;
- ii) o pullback $(g \circ f)^*(\eta)$ é igual a $f^*(g^*(\eta))$;
- iii) composta de monomorfismos é monomorfismo;

conclui-se o seguinte:

Teorema 1.7.1 (Splitting Principle) Seja $\eta^r \mapsto V^n$ fibrado vetorial r-dimensional sobre a variedade fechada n-dimensional V^n . Então existe uma variedade fechada W e uma função $f: W \mapsto V^n$ tal que:

- i) o pullback $f^*(n^r) \mapsto W$ se decompõe em uma soma de Whitney de fibrados unidimensionais $\lambda_1 \oplus \lambda_2 \oplus \cdots \oplus \lambda_r \mapsto W$;
- ii) $f^*: H^*(V^n, \mathbb{Z}_2) \mapsto H^*(W, \mathbb{Z}_2)$ é um monomorfismo;

Como consequência, teremos pela naturalidade que

$$\mathbb{W}(\lambda_1 \oplus \lambda_2 \oplus \cdots \oplus \lambda_r) = (1+x_1)(1+x_2)\cdots(1+x_r) =$$

 $= f^*(1 + v_1 + v_2 + \dots + v_r) = 1 + f^*(v_1) + f^*(v_2) + \dots + f^*(v_r)$

onde $v_i \in H^i(V^n, \mathbb{Z}_2)$ é a *i*-ésima classe de η^r e $x_i \in H^1(W, \mathbb{Z}_2)$ é a primeira (e única) classe de λ_i .

Como f^* é homomorfismo de anéis, em argumentos utilizando classes características e números de *Stiefel-Whitney* (que envolvem monômios nas classes características), o

objeto $1 + v_1 + v_2 + \cdots + v_r$, que mora em $H^*(V^n, \mathbb{Z}_2)$, pode ser substituído pelo objeto $1 + f^*(v_1) + f^*(v_2) + \cdots + f^*(v_r)$, que mora em $f^*(H^*(V^n, \mathbb{Z}_2))$, o qual é uma cópia isomorfa (como anel) de $H^*(V^n)$ dentro de $H^*(W)$, e $1 + f^*(v_1) + f^*(v_2) + \cdots + f^*(v_r)$ se fatora em termos lineares conforme acima.

Quando se usa o *splitting principle*, por abuso de notação escreve-se:

$$\mathbb{W}(\eta^r) = 1 + v_1 + \dots + v_r$$
 se fatora como $\mathbb{W}(\eta^r) = (1 + x_1)(1 + x_2) \cdots (1 + x_r),$

sem mencionar a variedade W e os fibrados unidimensionais $\lambda_i \mapsto W$ (embora rigorosamente $1 + f^*(v_1) + \cdots + f^*(v_r)$ e não $1 + v_1 + \cdots + v_r$, seja igual a $\prod_{i=1}^n (1 + x_i)$).

Por exemplo, suponhamos $\xi^k \mapsto V^n$ fibrado k-dimensional sobre a variedade fechada $V^n \operatorname{com} W(V^n) = 1 + w_1 + w_2 + \cdots + w_n$, $W(\xi^k) = 1 + v_1 + v_2 + \cdots + v_k$. Já vimos que

$$\mathbb{W}(\mathbb{RP}(\xi^k)) = (1 + w_1 + \dots + w_n)(\sum_{j=0}^k (1+c)^j v_{k-j}).$$

Suponhamos que $\mathbb{W}(V^n)$ e $\mathbb{W}(\xi^k)$ se fatorem através do *splitting principle* como:

$$\mathbb{W}(V^n) = (1+x_1)(1+x_2)\cdots(1+x_n), \qquad \mathbb{W}(\xi^k) = (1+y_1)(1+y_2)\cdots(1+y_k);$$

temos então o

Teorema 1.7.2 A forma fatorada de $\mathbb{W}(\mathbb{RP}(\xi^k))$ é

$$\mathbb{W}(\mathbb{RP}(\xi^k)) = (1+x_1)(1+x_2)\cdots(1+x_n)(1+c+y_1)(1+c+y_2)\cdots(1+c+y_k).$$

Tal fatoração é mencionada no artigo [5], mas sem prova. Tal fatoração pode ser justificada em um contexto puramente algébrico: sejam c, y_1, y_2, \ldots, y_k indeterminadas de grau 1, e escreva $(1 + y_1)(1 + y_2) \cdots (1 + y_k) = 1 + v_1 + v_2 + \cdots + v_k$, onde v_i é a *i*-ésima função simétrica elementar nas variáveis y_1, \ldots, y_k . Então

$$(1+c+y_1)(1+c+y_2)\cdots(1+c+y_k) = (1+c)^k + (1+c)^{k-1}v_1 + \cdots + (1+c)v_{k-1} + v_k.$$

Tal fato é trivialmente verdadeiro para k = 1. Indutivamente, suponha o mesmo válido para k - 1. Escreva

$$(1+c+y_1)(1+c+y_2)\cdots(1+c+y_{k-1}) = \frac{1+v_1+v_2+\cdots+v_k}{1+y_k} = 1+v_1'+v_2'+\cdots+v_{k-1}'$$

Então, $v_1 = v'_1 + y_k$, $v_j = v'_j + v'_{j-1}y_k$ se $2 \le j \le k-1$ e $v_k = v'_{k-1}y_k$. Pela hipótese de indução, temos

$$(1+c+y_1)\cdots(1+c+y_{k-1}) = ((1+c)^{k-1} + (1+c)^{k-2}v_1' + \dots + (1+c)v_{k-2}' + v_{k-1}')$$

Então

Então

$$\begin{aligned} (1+c+y_1)\cdots(1+c+y_{k-1})(1+c+y_k) &= ((1+c)^{k-1}+\cdots+(1+c)v'_{k-2}+v'_{k-1})(1+c+y_k) = \\ &= (1+c)^k + (1+c)^{k-1}v'_1 + \cdots + (1+c)v'_{k-1} + ((1+c)^{k-1}y_k + (1+c)^{k-2}v'_1y_k + \cdots + v'_{k-1}y_k) = \\ &= (1+c)^k + (1+c)^{k-1}[v'_1+y_k] + \cdots + (1+c)[v'_{k-1}+v'_{k-2}y_k] + v'_{k-1}y_k = \\ &= (1+c)^k + (1+c)^{k-1}v_1 + (1+c)^{k-2}v_2 + \cdots + (1+c)v_{k-1} + v_k \qquad \Box \end{aligned}$$

1.8 Sequência exata de Conner e Floyd

Vimos na Seção 1.6 que o que caracteriza a classe de bordismo de uma involução sem pontos fixos (M^n, T) em $\mathcal{N}_n(\mathbb{Z}_2)$ são seus números de involução (que são números de *Whitney* do fibrado linha usual $\gamma \mapsto \frac{M^n}{T}$). Infelizmente, não existe a priori um tal critério para involuções (M^n, T) com $F_T \neq \emptyset$ (por exemplo, nem mesmo $\frac{M^n}{T}$ é em geral variedade fechada: tome $M = S^1 \subset \mathbb{R}^2$ e T a reflexão em uma coordenada; $\frac{M}{T}$ é o disco D^1). A sequência exata de Conner e Floyd de [4, pg 73, 28.1] contorna tal ponto; na realidade, tal sequência estabelece quando duas involuções são cobordantes e, adicionalmente, quando um determinado fibrado pode ser caracterizado como o fixed--data de alguma involução.

Seja então (M^n, T) involução suave na variedade fechada e *n*-dimensional M^n . Conforme dito na introdução, o conjunto de pontos fixos $F = F_T$ de T é uma subvariedade fechada de M^n , a qual pode ser escrita como $F = \bigcup F^i$, onde F^i denota a união (disjunta) das componentes *i*-dimensionais de F, $0 \le i \le n$; desta forma, cada F^i é uma subvariedade fechada *i*-dimensional de M^n , eventualmente desconexa, eventualmente vazia. O fibrado normal $\eta \mapsto F = \bigcup_{i=0}^n (\eta^{n-i} \mapsto F^i)$ é o fixed-data de (M^n, T) . F^n consiste das componentes de M^n restrita às quais T é a identidade. Desta forma, $\eta^0 \mapsto F^n$ é o fibrado 0-dimensional.

Conforme visto anteriormente, $I_n(\mathbb{Z}_2)$ denota o grupo de bordismo irrestrito de variedades *n*-dimensionais com involução, e $\mathcal{N}_r(BO(k))$ é o grupo de bordismo de fibrados *k*-dimensionais sobre variedades *r*-dimensionais. Portanto, no contexto acima, (M^n, T) representa uma classe em $I_n(\mathbb{Z}_2)$, enquanto cada $\eta^{n-i} \mapsto F^i$ representa uma classe em $\mathcal{N}_i(BO(n-i)), \ 0 \leq i \leq n$. Denotando

$$\mathscr{M}_n = \bigoplus_{k=0}^n \mathscr{N}_k(BO(n-k)),$$

temos então que (M^n, T) determina o elemento

$$[\eta \mapsto F] = [\bigcup_{i=0}^{n} \eta^{n-i} \mapsto F^i] = \sum_{i=0}^{n} [\eta^{n-i} \mapsto F^i] \in \mathcal{M}_n.$$

Conforme [4], tal elemento não depende da escolha do particular representante (M^n, T) de $[M^n, T] \in I_n(\mathbb{Z}_2)$. Mais ainda, e segundo [4], a aplicação

$$j_*: I_n(\mathbb{Z}_2) \mapsto \mathscr{M}_n$$
 dada por $j_*[M^n, T] = \sum_{i=0}^n [\eta^{n-i} \mapsto F^i]$

é um homomorfismo de \mathcal{N}_* -módulos.

Por outro lado, conforme visto na seção 1.6, se $\xi^k \mapsto V^r$ é qualquer fibrado vetorial k-dimensional sobre uma variedade fechada r-dimensional, temos o fibrado em esferas associado $S(\xi^k)$ e a involução livre de pontos fixos dada pela antipodal nas fibras de ξ^k , $(S(\xi^k), T)$ (o fibrado involução associado a ξ^k). Em outras palavras, $(S(\xi^k), T)$ representa uma classe em $\mathcal{N}_{n+k-1}(\mathbb{Z}_2)$. Em particular, um elemento

$$\alpha = \sum_{i=0}^{n} [\xi^{n-i} \mapsto V^{i}] \in \mathscr{M}_{n} \quad \text{dá origem ao elemento} \quad \sum_{i=0}^{n} [(S(\xi^{n-i}), T)] \in \mathscr{N}_{n-1}(\mathbb{Z}_{2}).$$

Conforme [4], esta associação é bem definida a nível de bordismo e estabelece um homomorfismo de \mathcal{N}_* -módulos

$$\partial: \mathscr{M}_n \mapsto \mathscr{N}_{n-1}(\mathbb{Z}_2).$$

(para i = n, convenciona-se que $\partial : \mathscr{N}_n(BO(0)) \mapsto \mathscr{N}_{n-1}(\mathbb{Z}_2)$ é o homomorfismo nulo). Temos então o

Teorema 1.8.1 (Sequência de Conner-Floyd) A sequência

$$0 \to I_n(\mathbb{Z}_2) \xrightarrow{j_*} \mathscr{M}_n \xrightarrow{\partial} \mathscr{N}_{n-1}(\mathbb{Z}_2) \to 0$$

é exata. [4, pg 73, 28.1]

Uma das consequências do teorema acima é que duas involuções (M^n, T) e (V^n, T') são cobordantes se e somente se seus fixed-data $\eta \mapsto F_T$, $\eta' \mapsto F_{T'}$ forem cobordantes. Em outras palavras, embora (M^n, T) não possua números característicos, a classe de (M^n, T) em $I_n(\mathbb{Z}_2)$ é indiretamente determinada por números característicos, a saber os números de $\eta \mapsto F_T$.

Outra consequência do teorema é que, se um fibrado $\eta \mapsto F = \bigcup_{i=0}^{n} (\eta^{n-i} \mapsto F^{i})$ é tal que $\partial[\eta] = 0$, então $[\eta] = j_{*}[M^{n}, T]$ para alguma (M^{n}, T) . Em outras palavras, se $\partial[\eta] = 0$, então η é cobordante a um fibrado μ que pode ser realizado como o *fixed-data* de uma involução. Na realidade, a demonstração do teorema acima diz algo mais forte que isso. A prova mostra que, de fato, o próprio η pode ser realizado como o *fixed-data* de uma involução. Isto significa que se η é cobordante a μ , então η é um *fixed-data* se e somente se μ o for.

Temos então um critério preciso para decidir se ou não um determinado fibrado $\eta \mapsto F$ é um fixed-data: $\partial([\eta]) = [S(\eta), T] \in \mathcal{N}_{n-1}(\mathbb{Z}-2)$, e conforme vimos a classe de $(S(\eta), T)$ em $\mathcal{N}_{n-1}(\mathbb{Z}_2)$ é determinada pelos números de Whitney da correspondente classe do fibrado linha $\lambda \mapsto \frac{S(\eta)}{T} = \mathbb{RP}(\eta)$ em $\mathcal{N}_{n-1}(BO(1))$. Assim, η é um fixed-data se e somente se todos os números de Whitney de $\lambda \mapsto \mathbb{RP}(\eta)$ forem nulos. Um exemplo interessante é o seguinte bem conhecido fenômeno: uma involução (M^n, T) (n > 0) não pode possuir um único ponto fixo $p \in M^n$. De fato, nesse caso o fibrado normal η seria o fibrado trivial n-dimensional $\mathbb{R}^n \mapsto p$, e portanto $\lambda \mapsto \mathbb{RP}(\eta)$ neste caso coincide com o fibrado linha canônico $\lambda \mapsto \mathbb{RP}^{n-1}$. A primeira classe característica de λ é o gerador

 $\alpha \in H^1(\mathbb{R}P^{n-1}, \mathbb{Z}_2)$, e portanto $\alpha^{n-1}[\mathbb{R}P^{n-1}]_2 \neq 0$ é um número característico de λ , o que nos dá a contradição.

Conforme acima, se (M^n, T) tem *fixed-data* $\eta \mapsto F$, então todos os números de *Whitney* de $\lambda \mapsto \mathbb{RP}(\eta)$ são nulos. Em particular, de suma importância para nós (e isto será exaustivamente usado nos Capítulos 2 e 3) é a seguinte consequência dos fatos acima:

Teorema 1.8.2 Seja (M^n, T) involução tal que F_T é da forma $F^j \cup F^p$, j ; ou seja, o conjunto de pontos fixos de <math>T só possui componentes j-dimensionais e p-dimensionais, j < p. Seja $\eta^{n-j} \mapsto F^j$, $\mu^{n-p} \mapsto F^p$ os respectivos fibrados normais. Então os fibrados-linha usuais $\lambda \mapsto \mathbb{RP}(\eta^{n-j}), \lambda' \mapsto \mathbb{RP}(\mu^{n-p})$ possuem os mesmos números de Whitney.

Outra consequência dos fatos acima é o seguinte

Teorema 1.8.3 Seja (M^n, T) involução com fixed-data $\eta \mapsto F$, e suponha $\eta \mapsto F = (\eta_1 \mapsto F_1) \cup (\eta_2 \mapsto F_2)$. Suponha $\eta_1 \mapsto F_1$ cobordante a um certo fibrado $\mu \mapsto G$ ($F_1 \in G$ podem significar várias componentes com diferentes dimensões, e o cobordismo nesse caso é componente a componente). Então existe involução (W^n, T') cobordante a (M^n, T) , cujo fixed-data é $(\mu \mapsto G) \cup (\eta_2 \mapsto F_2)$.

Prova: Temos

$$\partial([\mu] + [\eta_2]) = \partial([\mu] + [\eta_1] + [\eta_1] + [\eta_2]) = \partial([\eta_1] + [\eta_2]) = 0$$

Portanto existe involução (W^n, T') com *fixed-data* $\mu \cup \eta_2$. Adicionalmente, como $\mu \cup \eta_2$ é cobordante a $\eta_1 \cup \eta_2$, (W^n, T') é cobordante a (M^n, T) .

Na mesma direção temos o

Teorema 1.8.4 Se o fixed-data de (M^n, T) é $\eta \mapsto F = (\eta_1 \mapsto F_1) \cup (\eta_2 \mapsto F_2)$ e $(\eta_1 \mapsto F_1)$ borda. Então existe involução (W^n, T') cobordante a (M^n, T) , com fixed--data $(\eta_2 \mapsto F_2)$

Prova: $0 = \partial([\eta_1] + [\eta_2]) = \partial([\eta_2]).$

Finalmente, será de interesse para nós o fato segundo o qual toda involução pode ser suposta, para alguns efeitos, possuir a parte *i*-dimensional do seu conjunto de pontos fixos conexa para cada $0 \le i \le n$. (Vide comentário a respeito na introdução, quando introduzimos o número m(n; X)). De fato e mais precisamente, temos o seguinte

Teorema 1.8.5 Seja (M^n, T) , uma involução suave sobre uma variedade n-dimensional, com fixed-data $\eta \mapsto F = \bigcup_{i=0}^{n} (\eta^{n-i} \mapsto F^i)$. Então (M^n, T) é cobordante a uma involução (W^n, T') cujo fixed-data $\mu \mapsto G = \bigcup_{i=0}^{n} (\mu^{n-i} \mapsto G^i)$ é tal que cada G^i é conexa.

O teorema anterior decorre das seguintes considerações: se $\xi^r \mapsto V^n \in \theta^r \mapsto W^n$ são fibrados r-dimensionais sobre variedades fechadas n-dimensionais, então é conhecido o fato que a soma conexa

$$W^n \# V^n = \frac{(W^n - D_1) \cup (V^n - D_2)}{\sim}$$

onde $D_1 \in D_2$ significam discos abertos *n*-dimensionais em torno de pontos pré-escolhidos $p \in W^n \in q \in V^n$, e ~ significa identificar os bordos $\partial(D_1) \cong \partial(D_2) \cong S^{n-1}$ através de algum difeomorfismo C^{∞} , é cobordante à união disjunta $W^n \cup V^n$.

Como $\xi^r|_{\overline{D}_1} \in \theta^r|_{\overline{D}_2}$ são fibrados triviais, a construção $W^n \# V^n$ pode ser estendida aos fibrados, e temos a *soma conexa dos fibrados* $\xi^r \in \theta^r$, $\xi^r \# \theta^r \mapsto W^n \# V^n$, o qual é um fibrado *r*-dimensional sobre a variedade fechada $W^n \# V^n$. Também é conhecido o fato que o cobordismo entre $W^n \# V^n$ e $W^n \cup V^n$ se estende aos fibrados, ou seja, $\xi^r \# \theta^r \mapsto W^n \# V^n$ é cobordante a $(\xi^r \mapsto V^n) \cup (\theta^r \mapsto W^n)$.

Voltando a involução (M^n, T) com fixed-data $\eta \mapsto F = \bigcup_{i=0}^n (\eta^{n-i} \mapsto F^i)$, podemos aplicar o argumento acima iteradamente nas componentes de F^i para trocar F^i por G^i conexa com a utilização do Teorema 1.8.3, e a seguir iteradamente em cada dimensão $0 \le i \le n$ para obter o teorema acima.

Corolário 1.8.6 O número m(n; X) introduzido na página **xii**, Introdução, não depende da quantidade de componentes do conjunto de pontos fixos da involução com alguma dimensão específica fixada.

1.9 Involuções e a característica de *Euler* módulo 2

Se X é um CW-complexo finito, definimos

Definição 1.9.1 A característica de Euler de X mod 2 é o número

$$\chi(X) = \sum (-1)^i dim H_i(X, \mathbb{Z}_2) = \sum (-1)^i dim H^i(X, \mathbb{Z}_2)$$

reduzido módulo 2.

Tal número relaciona-se com involuções através do seguinte

Teorema 1.9.2 Se (M^n, T) é uma involução com conjunto de pontos fixos F, então

$$\chi(M^n) \equiv \chi(F) \pmod{2}.$$

[4, pg 70, 27.2]

É interessante destacar também que $\chi(M^n) \pmod{2}$ é um invariante de bordismo. Isto decorre do seguinte

Teorema 1.9.3 Seja M^n uma variedade fechada n-dimensional. Então $\chi(M^n) \pmod{2}$ coincide com o número de Stiefel-Whitney $w_n[M^n]_2$. [7, pg 130, 11.12]

Lembramos finalmente que, se M^n é uma variedade fechada e n é ímpar, então decorre da dualidade de *Poincaré* que $\chi(M^n) = 0$.

1.10 Uma involução especial

Seja $\eta^r \mapsto F^i$ qualquer fibrado vetorial *r*-dimensional sobre uma variedade fechada *i*-dimensional. Então, embora já saibamos que η^r pode não ser o *fixed-data* de alguma involução, η^r faz parte do *fixed-data* de uma certa involução, de tal sorte que além de η^r tal *fixed-data* contém somente mais uma componente, a qual é do tipo $\eta^1 \mapsto F^{r+i-1}$. Com efeito, considere $M^{r+i} = \mathbb{RP}(\eta^r \oplus \mathbb{R})$, onde $\mathbb{R} \mapsto F^i$ é o fibrado trivial unidimensional. Em M^{r+i} , considere a involução

$$[v,r] \xrightarrow{T} [v,-r].$$

O conjunto de pontos fixos de tal involução é $\mathbb{RP}(\eta)$ (correspondente aos elementos [v, 0]), com fibrado normal $\lambda \mapsto \mathbb{RP}(\eta^r)$ sendo o fibrado linha usual, unido com $\mathbb{RP}(\mathbb{R}) \cong F^i$ (correspondente aos elementos [0, r]) com fibrado normal $\eta^r \mapsto F^i$. Vide [3]. Sumarizando, temos:

Teorema 1.10.1 Seja $\eta^r \mapsto F^i$ fibrado vetorial real r-dimensional sobre uma variedade fechada i-dimensional F^i . Então existe uma involução (M^{r+i}, T) com conjunto de pontos fixos dado por $F_T = F^i \cup \mathbb{RP}(\eta)$ com fibrados normais $\eta^r \mapsto F^i \ e \ \lambda \mapsto \mathbb{RP}(\eta)$ onde λ é o fibrado linha usual sobre $\mathbb{RP}(\eta)$.

1.11 O limitante m(n) de Stong e Pergher

Na introdução, comentamos a respeito do fato que, para cada $n \in \mathbb{N}$, Stong e Pergher construiram, em [12], uma involução (M, T), de tal sorte que a dimensão de M é um específico número natural m(n) > n, com conjunto de pontos fixos da forma $\{pto\} \cup F^n$, e maximal com respeito a esta propriedade de possuir conjunto de pontos fixos da forma $\{pto\} \cup F^n$. Em outras palavras, se (N^r, T) possui conjunto de pontos fixos da forma $\{pto\} \cup F^n$, então $r \leq m(n)$. A seguir detalhamos m(n). Escreva $n = 2^p q$, onde $p \geq 0$ e $q \geq 1$, com q ímpar. Então

$$m(n) = \begin{cases} 2n + p + 1 - q & \text{,se } q \ge p \\ 2n + 2^{p-q} & \text{,se } q < p. \end{cases}$$

Note em particular:

- a) se n é impar, $n = 2^0 q$ $(q \ge 1)$ e portanto m(n) = 2n+1-q = 2q+1-q = q+1 = n+1, que é o resultado de *Royster* [13];
- **b)** se n = 2q, com q ímpar, então $m(n) = 2n + 1 + 1 q = 4q + 2 q = 3q + 2 = \frac{3}{2}n + 2$. Neste caso, este valor (maximal) melhora o resultado de *Pergher* [9], o qual mostra que um limitante é $\frac{3}{2}n + 3$;
- c) se $n = 2^p$, $p \ge 1$, então

$$m(n) = \begin{cases} 5 = \frac{5}{2}2, \text{ se } p = 1, \\ 2n + 2^{p-q} = 2^{p+1} + 2^{p-1} = 2^{p-1}(4+1) = 5 \cdot 2^{p-1} = \frac{5}{2}2^p = \frac{5}{2}n, \text{ se } p > 1. \end{cases}$$

Em outras palavras, se $n = 2^p \operatorname{com} p \ge 1$, os exemplos $(M^{m(n)}, T)$ de Stong e Pergher atingem o limite $\frac{5}{2}n$ de Boardman.

A seguir, enunciaremos o teorema de Stong e Pergher no formato em que o mesmo aparece em [12], com m(n) sendo escrito de forma um pouco diferente, a qual é mais adequada em alguns contextos.

Teorema 1.11.1 Seja (M^m, T) uma involução diferenciável sobre uma variedade fechada, tal que $F_T = \{pto\} \cup F^n$, onde F^n é uma subvariedade fechada de dimensão 0 < n < m. Se $n = 2^p(2q+1)$, então $m \leq m(n)$ onde

$$m(n) = \begin{cases} (2^{p+1} - 1)(2q+1) + (p+1) & se \ p \le 2q+2\\ (2^{p+1} - 2^{p-(2q+1)})(2q+1) + 2^{p-(2q+1)}(2q+2) & se \ p \ge 2q+1 \end{cases}$$

Adicionalmente, para cada n existe uma involução $(M^{m(n)}, T)$ com F_T sendo da forma $\{pto\} \cup F^n$.

1.12 A fórmula de *Conner*

Seja $\eta^r\mapsto F^n$ um fibrado r-dimensional sobre uma variedade fechada n-dimensional $F^n.$ Suponha

 $\mathbb{W}(F^n) = 1 + w_1 + \dots + w_n$ e $\mathbb{W}(\eta^r) = 1 + v_1 + \dots + v_r$.

O teorema de Borel-Hirzebruch 1.6.6 da página 9 nos diz que

$$\mathbb{W}(\mathbb{R}P(\eta^r)) = (1 + w_1 + \dots + w_n)\{(1+c)^r + v_1(1+c)^{r-1} + \dots + v_r\}$$

e por 1.6.5 da página 8 sabemos que $H^*(\mathbb{RP}(\eta^r), \mathbb{Z}_2)$ é um $H^*(F^n, \mathbb{Z}_2)$ -módulo livre graduado gerado por $1, c, c^2, \ldots, c^{r-1}$ e sujeito à relação $c^r = v_1 c^{r-1} + v_2 c^{r-2} + \cdots + v_r$.

Então, se $a_n \in H^n(F^n, \mathbb{Z}_2)$ e $a_n c^{n-1} = 0$, necessariamente $a_n = 0$. Note que $H^n(F^n, \mathbb{Z}_2) \cong \mathbb{Z}_2$ e $H^{n+r-1}(\mathbb{RP}(\eta^r), \mathbb{Z}_2) \cong \mathbb{Z}_2$. Segue que

$$a_n[F^n]_2 = a_n c^{r-1} [\mathbb{R}\mathbb{P}(\eta^r)]_2$$

Se $a_s \in H^s(F^n, \mathbb{Z}_2)$ com s > n, então $a_s c^{n+r-1-s}[\mathbb{RP}(\eta^r)]_2 = 0$ pois $a_s = 0$. Por outro lado, se s < n, então $a_s c^{n+r-1-s}[\mathbb{RP}(\eta^r)]_2$ pode ser calculado com o uso iterativo da relação $c^r = v_1 c^{r-1} + v_2 c^{r-2} + \cdots + v_r$. Isto é feito mais preciso através da *Fórmula de Conner* (vide [2]), a qual nos diz que se $p(c, w_i, v_j)$ é uma função polinomial de grau n + r - 1 nas classes c, w_i, v_j , então

$$p(c, w_i, v_j)[\mathbb{RP}(\eta^r)]_2 = \left\langle \frac{p(1, w_i, v_j)}{(1 + v_1 + \dots + v_r)} \right\rangle [F^n]_2$$

onde $\left\langle \frac{p(1,w_i,v_j)}{(1+v_1+\cdots+v_r)} \right\rangle$ é o termo de dimensão n de $\frac{p(1,w_i,v_j)}{(1+v_1+\cdots+v_r)}$. Assim, se

 $a_{n-i} \in H^{n-i}(F^n, \mathbb{Z}_2),$ temos que $a_{n-i}c^{r-1+i}[\mathbb{R}\mathbb{P}(\eta^r)]_2 = a_{n-i}\overline{v_i}[F^n]_2,$

onde $\overline{v_i}$ é a *classe dual* de v_i , definida por

$$(1+v_1+v_2+\cdots+v_r)(1+\overline{v_1}+\overline{v_2}+\cdots+\overline{v_r})=1.$$

1.13 A classe de Wu

Para definirmos a classe de Wu, precisaremos de algumas propriedades das operações cohomológicas Sq^i , conhecidas como quadrados de Steenrod. Tais operações são certos homomorfismos aditivos $Sq^i : H^n(X, \mathbb{Z}_2) \mapsto H^{n+i}(X, \mathbb{Z}_2)$, os quais satisfazem as seguintes propriedades (vide [7]):

1. Naturalidade. Se $f:X\mapsto Y$ é qualquer aplicação contínua, então $Sq^i\circ f^*=f^*\circ Sq^i.$

2. Se
$$a \in H^n(X, \mathbb{Z}_2)$$
, então $Sq^0(a) = a$, $Sq^n(a) = a \cup a$ e $Sq^i(a) = 0$ para $i > n$

3. A formula de Cartan:

$$Sq^{k}(a \cup b) = \sum_{i+j=k} Sq^{i}(a) \cup Sq^{j}(b),$$

onde \cup denota o produto *cup*.

Temos ainda a operação quadrado total dada por

$$Sq(a) = a + Sq^{1}(a) + Sq^{2}(a) + \dots + Sq^{n}(a)$$
, onde $a \in H^{n}(X, \mathbb{Z}_{2})$.

Note então que a formula de *Cartan* pode ser expressa como $Sq(a \cup b) = Sq(a) \cup Sq(b)$.

O seguinte fato é verdadeiro (vide [7]): se M^n é uma variedade conexa, fechada e *n*-dimensional e $0 \leq k \leq n$, existe uma e somente uma classe de cohomologia $v_k \in H^k(M^n, \mathbb{Z}_2)$ tal que, para qualquer $x \in H^{n-k}(M^n, \mathbb{Z}_2)$, vale que $v_k \cup x = Sq^k(x)$. Tal classe é chamada a *k*-ésima classe de Wu de M^n , e $V = 1 + v_1 + v_2 + \cdots + v_n$ é chamada a classe de Wu de M^n . Observe que pela caracterização de V e pela propriedade 2 acima temos que $v_k = 0$ se k > n - k. Então V assume a forma $V = 1 + v_1 + v_2 + \cdots + v_{[n/2]}$, onde [n/2] denota o maior inteiro menor que n/2.

A classe de Wu de M^n se relaciona com a classe de Stiefel-Whitney de M^n através do seguinte

Teorema 1.13.1 (*Wu***)** Se $W(M^n) = 1 + w_1 + w_2 + \cdots + w_n$ e $V(M^n) = 1 + v_1 + v_2 + \cdots + v_{[n/2]}$ denotam, respectivamente, as classes de Stiefel-Whitney e de Wu de M^n , então $Sq(V(M^n)) = W(M^n)$.

Por exemplo,

$$Sq(1 + v_1 + v_2 + \cdots) = 1 + v_1 + v_1^2 + v_2 + Sq^1(v_2) + v_2^2 + \text{termos com grau} \ge 3$$

= 1 + v_1 + v_1^2 + v_2 + v_1v_2 + v_2^2 + \text{termos com grau} \ge 3.

e em particular $v_1 = w_1$ e $v_2 = v_1^2 + w_2 = w_1^2 + w_2$. Em outras palavras, cada v_k pode ser explícita e recursivamente calculado em termos dos $w_{i's}$.

1.14 Funções simétricas

Para os fatos abaixo, vide por exemplo [7].

Sejam t_1, t_2, \ldots, t_n indeterminadas, às quais atribuímos grau 1, e considere o anel polinomial $\mathscr{F} = \mathbb{Z}_2[t_1, t_2, \ldots, t_n]$. Um polinômio $p(t_1, t_2, \ldots, t_n)$ de \mathscr{F} é dito ser uma função simétrica se $p(t_1, t_2, \ldots, t_n) = p(t_{\sigma(1)}, t_{\sigma(2)}, \ldots, t_{\sigma(n)})$ para toda permutação $\sigma : \{1, 2, \ldots, n\} \mapsto \{1, 2, \ldots, n\}$. A coleção \mathscr{C} formada por todas as funções simétricas é um subanel de \mathscr{F} . Considere o polinômio $(1+t_1)(1+t_2)\cdots(1+t_n) \in \mathscr{C}$. Tal polinômio contém termos com grau r onde $0 \leq r \leq n$. Podemos então escrever

$$(1+t_1)(1+t_2)\cdots(1+t_n) = 1 + \sigma_1 + \sigma_2 + \cdots + \sigma_n$$

onde σ_i é a soma de todos os monômios de grau *i*. Cada σ_i (o qual pertence a \mathscr{C}) é chamada *i-ésima função simétrica elementar*, e é conhecido o fato que \mathscr{C} é também um anel polinomial nos *n* geradores independentes $\sigma_1, \sigma_2, \ldots, \sigma_n$; ou seja,

$$\mathscr{C} = \mathbb{Z}_2[\sigma_1, \sigma_2, \dots, \sigma_n]. \text{ Note que } \sigma_1 = t_1 + t_2 + \dots + t_n, \quad \sigma_2 = \sum_{i < j} t_i t_j, \text{ e, em geral,}$$
$$\sigma_i = \sum_{j_1 < j_2 < \dots < j_i} t_{j_1} t_{j_2} \cdots t_{j_i}. \text{ Em particular } \sigma_n = t_1 t_2 \cdots t_n.$$

Tome agora qualquer natural n > 0, e seja \mathscr{C}_m o grupo aditivo formado por todas as funções simétricas de grau m. Considere o conjunto $\mathscr{L} = \{(i_1, i_2, \ldots, i_r)\}$ formado por todas as partições (i_1, i_2, \ldots, i_r) de m (ou seja, $i_1 + i_2 + \ldots + i_r = m$) com $i_t \leq n, \forall t, 1 \leq t \leq r$. Cada $(i_1, i_2, \ldots, i_r) \in \mathscr{L}$ da origem então à função simétrica $\sigma_{i_1}\sigma_{i_2}\cdots\sigma_{i_r}$. Decorre do fato acima citado que uma base para o grupo aditivo \mathscr{C}_m é portanto $\{\sigma_{i_1}\cdot\sigma_{i_2}\cdots\sigma_{i_r}, (i_1, i_2, \ldots, i_r) \in \mathscr{L}\}$.

De particular importância para nós serão certas funções simétricas especiais, as quais descreveremos a seguir. Fixe um natural k (o qual pode ser $\leq n$ ou > n), e seja ω uma partição (i_1, i_2, \ldots, i_r) de k tal que $r \leq n$. Então cada tal ω dá origem a uma função simétrica de grau k, denotada por S_{ω} , descrita por

$$S_{\omega} = \sum_{\substack{j_1 < j_2 < \dots < j_r \\ 1 \le j_i \le n}} \sum_{\sigma \in S_r} t_{j_{\sigma(1)}}^{i_1} t_{j_{\sigma(2)}}^{i_2} \cdots t_{j_{\sigma(r)}}^{i_r}$$

Temos então que S_{ω} pode ser expressa em termos das funções simétricas elementares $\sigma_1, \sigma_2, \ldots, \sigma_n$, e em especial, se $k \leq n$, então S_{ω} pode ser expressa em termos de $\sigma_1, \sigma_2, \ldots, \sigma_k$. Mais ainda, se $k \leq n$, é conhecido o fato que a expressão de S_{ω} como polinomial em termos de $\sigma_1, \sigma_2, \ldots, \sigma_k$ não depende de $n \text{ com } n \geq k$.

Por exemplo, se $n \ge 2$, então $S_2(\sigma_1, \sigma_2) = \sigma_1^2$, $S_{1,1}(\sigma_1, \sigma_2) = \sigma_2$. Se $n \ge 3$, então $S_3(\sigma_1, \sigma_2, \sigma_3) = \sigma_1^3 + \sigma_1 \sigma_2 + \sigma_3$, $S_{1,2}(\sigma_1, \sigma_2, \sigma_3) = \sigma_1 \sigma_2 + \sigma_3$, $S_{1,1,1}(\sigma_1, \sigma_2, \sigma_3) = \sigma_3$ (vide [7]).

O splitting principle, detalhado na Seção 1.7, permite estabelecer uma conexão entre funções simétricas e classes características. De fato se $\eta^r \mapsto V^n$ é um fibrado r-dimensional sobre uma variedade fechada n-dimensional, e se

$$\mathbb{W}(\eta^r) = 1 + v_1 + v_2 + \dots + v_r$$

é sua classe de Stiefel-Whitney, então o splitting principle nos diz que $\mathbb{W}(\eta^r)$ pode ser considerado na forma fatorada

$$\mathbb{W}(\eta^r) = 1 + v_1 + v_2 + \dots + v_r = (1 + x_1)(1 + x_2) \cdots (1 + x_r).$$

Em particular, cada v_i , $1 \leq i \leq r$, é a função simétrica elementar $\sigma_i(x_1, x_2, \ldots, x_r)$ (rigorosamente, $f^*(v_i) = \sigma_i(x_1, x_2, \ldots, x_r)$, onde f^* é o monomorfismo em cohomologia do *splitting principle*; também aqui o grau algébrico é dado pelo grau cohomológico).

Desta forma, e em sentido contrário, dada qualquer função simétrica

$$p(t_1, t_2, \ldots, t_r) \in \mathscr{C} \subset \mathscr{F},$$

sabemos que $p(t_1, t_2, \ldots, t_r)$ é uma polinomial nas funções simétricas elementares $\sigma_1, \sigma_2, \ldots, \sigma_r$, digamos, $q(\sigma_1, \sigma_2, \ldots, \sigma_r)$. Portanto $p(t_1, t_2, \ldots, t_r)$ dá origem à polinomial nas classes características $q(\sigma_1, \sigma_2, \ldots, \sigma_r)$.

Por exemplo, se $p(t_1, t_2, \ldots, t_r)$ é um polinômio simétrico e homogêneo de grau n, então $p(t_1, t_2, \ldots, t_r) = q(\sigma_1, \sigma_2, \ldots, \sigma_n) = q(v_1, v_2, \ldots, v_n)$ é uma soma de monômios nos $v_{i's}$ cada qual tendo grau n; em particular, se $\tau^n \mapsto V^n$ é o fibrado tangente a V^n , cada tal monômio dá origem a um número de *Stiefel-Whitney* de V^n . Portanto se V^n e M^n são variedades fechadas n-dimensionais cobordantes, faz sentido a identidade

$$p(t_1, t_2, \dots, t_r)[V^n]_2 = p(t_1, t_2, \dots, t_r)[M^n]_2$$

o que rigorosamente significa dizer que

$$q(w_1(V^n), w_2(V^n), \dots, w_n(V^n)) = q(w_1(M^n), w_2(M^n), \dots, w_n(M^n)).$$

Particularmente, se $I = (i_1, i_2, ..., i_r)$ é uma partição de n, então $S_I[V^n]_2$ é uma soma de números de *Stiefel-Whitney* de V^n , e portanto um invariante de cobordismo. Exemplo: $S_{1,2}[M^3]_2 = (w_1w_2 + w_3)[M^3]_2$.

1.15 Teorema de Lucas

Em computações envolvendo números característicos, tem bastante importância técnica determinar a paridade de coeficientes binomiais $\binom{a}{b}$. Neste contexto, o *teorema de Lucas*, o qual descreveremos a seguir, é muito útil.

Definição 1.15.1 Seja p um número natural primo. Dado um natural n, definimos a notação p-ádica de n como sendo:

$$n = n_k n_{k_1} \cdots n_2 n_1 n_0 = n_k p^k + n_{k-1} p^{k-1} + \dots + n_2 p^2 + n_1 p + n_0, \ (0 \le n_i < p).$$

Obs: Quando p = 2, temos a notação *diádica* (2-ádica) de *n* dada por:

$$n = n_k n_{k_1} \cdots n_2 n_1 n_0 = n_k 2^k + n_{k-1} 2^{k-1} + \dots + n_2 2^2 + n_1 2 + n_0, \ (0 \le n_i < 2).$$

que é equivalente a representar n na base 2 (forma binária). Como cada $n_i = 0$ ou 1, temos que n é dado por uma soma de potências distintas de 2.

Teorema 1.15.2 (Teorema de Lucas) Seja p um número primo e tome r e c em notação p-ádica:

$$\begin{aligned} r &= r_k r_{k_1} \cdots r_2 r_1 r_0 = r_k p^k + r_{k-1} p^{k-1} + \cdots + r_2 p^2 + r_1 p + r_0, \ (0 \le r_i < p), \\ c &= c_k c_{k_1} \cdots c_2 c_1 c_0 = c_k p^k + c_{k-1} p^{k-1} + \cdots + c_2 p^2 + c_1 p + c_0, \ (0 \le c_i < p). \\ Ent \tilde{a} o \ \binom{r}{c} &\equiv \ \binom{r_0}{c_0} \binom{r_1}{c_1} \binom{r_2}{c_2} \cdots \binom{r_k}{c_k} (mod \ p), \ convencionando-se \ que \ \binom{r}{c} = 0 \ se \\ c > r. \ [6] \end{aligned}$$
${\rm Em}$ nossas computações envolvendo números característicos, de fundamental importância será então o

Corolário 1.15.3 Tome r e c em notação diádica:

$$r = r_k 2^k + r_{k-1} 2^{k-1} + \dots + r_2 2^2 + r_1 2 + r_0,$$

$$c = c_k 2^k + c_{k-1} 2^{k-1} + \dots + c_2 2^2 + c_1 2 + c_0, \ r_i, c_i = 0 \ ou \ 1.$$

Sejam $R = \{i | r_i = 1\} e C = \{i | c_i = 1\}$. Então

$$\binom{r}{c} \equiv 1 \pmod{2}$$
 se, e somente se, $C \subset R$.

Prova: Basta aplicar o Teorema de Lucas observando que

$$\begin{pmatrix} 0\\0 \end{pmatrix} \equiv \begin{pmatrix} 1\\0 \end{pmatrix} \equiv \begin{pmatrix} 1\\1 \end{pmatrix} \equiv 1 (mod \ 2) \ e \begin{pmatrix} 0\\1 \end{pmatrix} \equiv 0 (mod \ 2).$$

г		1
L		I
L		

Capítulo 2

Involuções Fixando $F^n \cup F^{n-1}$

2.1 Introdução

O objetivo deste capítulo é determinar o valor de $m(n; \{n-1\})$. Conforme anunciado na introdução, mostraremos que $m(n; \{n-1\}) = 2n$. Recordemos que

 $m(n; \{n-1\}) = \max\{m \mid \text{existe involução } (M^m, T) \text{ fixando alguma } F \text{ que não borda}$ e cuja componente maximal é *n*-dimensional, e tal que F não possui componentes com dimensão $< n-1 \}$.

Em outras palavras, F é da forma $F^n \cup F^{n-1}$ ou F^n (e sabemos que, pelo Teorema 1.8.5, F^n e F^{n-1} podem ser assumidos conexos), e ainda com F^n ou F^{n-1} não bordante.

Note que a involução $T: \mathbb{R}P^{2n} \mapsto \mathbb{R}P^{2n}$ dada por

 $T[x_0, x_1, \dots, x_{2n}] = [-x_0, -x_1, \dots, -x_n, x_{n+1}, \dots, x_{2n}]$

fixa $\mathbb{RP}^n \cup \mathbb{RP}^{n-1}, \forall n \ge 1$, e ou n é par ou n-1 é par, portanto ou \mathbb{RP}^n não borda ou \mathbb{RP}^{n-1} não borda. Este exemplo mostra que, para qualquer $n \ge 1$, $m(n; \{n-1\}) \ge 2n$. Portanto $m(n; \{n-1\}) = 2n$ decorrerá do seguinte:

Teorema 2.1 Se (M^m, T) é uma involução cujo conjunto de pontos fixos F é da forma $F = F^n \cup F^{n-1}$, e se m > 2n, então (M^m, T) borda equivariantemente.

Com efeito, se (M^m, T) fixa $F = F^n \cup F^{n-1}$, não bordante, então o fixed-data de (M^m, T) não borda, e da sequência de Conner-Floyd 1.8.1 temos então que (M^m, T) não borda equivariantemente; pelo teorema acima, necessariamente $m \leq 2n$. Então $m(n; \{n-1\}) \leq 2n$, e dai $m(n; \{n-1\}) = 2n$.

Observe ainda que o Teorema 2.1 é, conforme já comentado na introdução, uma extensão do teorema de Kosniowski-Stong de [5], o qual diz que se (M^m, T) fixa $F = F^n$

e se m > 2n então (M^m, T) borda equivariantemente; ou seja, mostraremos que tal fato continua verdadeiro se, além de F^n , F possui componentes (n-1)-dimensionais. Nossa estratégia se respaldará na seguinte abordagem: suponha

$$(M^m, T)$$
 fixando $F = F^n \cup F^{n-1}$, e sejam $\eta \mapsto F^n$, $\mu \mapsto F^{n-1}$,

os respectivos fibrados normais em M^m . Note que η é (m - n)-dimensional e μ é (m - n + 1)-dimensional. Pelo Teorema 1.8.2, temos que os números de *Whitney* dos fibrados-linha

$$\lambda \mapsto \mathbb{RP}(\eta), \qquad \xi \mapsto \mathbb{RP}(\mu)$$

são iguais. Genericamente, tais números assumem a forma

$$W_{i_1}W_{i_2}\cdots W_{i_r}c^t[A]_2,$$

onde $i_1 + i_2 + \cdots + i_r + t = m - 1$, c é a classe de Stiefel-Whitney de λ (ou ξ), W_{i_l} são classes de Stiefel-Whitney de $\mathbb{RP}(\eta)$ (ou $\mathbb{RP}(\mu)$), e $A = \mathbb{RP}(\eta)$ (ou $A = \mathbb{RP}(\mu)$), sendo que estas classes são fornecidas pelo Teorema de Borel-Hirzebruch (1.6.6). A manipulação das mesmas é viabilizada pelo conhecimento da estrutura do anel de cohomologia $H^*(\mathbb{RP}(\eta), \mathbb{Z}_2)$, detalhada na Seção 1.6. Em particular, se $p(c, W_1, W_2, \ldots, W_{m-1})$ é uma polinomial qualquer homogênea de grau m - 1 nas classes $W_{i's}$ e c, temos que

$$p(c, W_1, W_2, \dots, W_{m-1})[\mathbb{RP}(\eta)]_2 = p(c, W_1, W_2, \dots, W_{m-1})[\mathbb{RP}(\mu)]_2,$$

onde no lado esquerdo as classes correspondem a $\mathbb{RP}(\eta)$ e no lado direito a $\mathbb{RP}(\mu)$. O que faremos então é utilizar certas polinomiais adequadas (e especiais) $p(c, W_1, \ldots, W_{m-1})$ na equação acima de tal sorte que $p(c, W_1, W_2, \ldots, W_{m-1})[\mathbb{RP}(\mu)]_2$ seja zero (por razões dimensionais), enquanto que $p(c, W_1, W_2, \ldots, W_{m-1})[\mathbb{RP}(\eta)]_2$ reproduza um número genérico de Whitney de $\eta \mapsto F^n$. Isto acarretará que todos os números de Whitney de η são nulos, e então η borda como fibrado. O Teorema 1.8.4 nos dirá então que (M^m, T) é cobordante a uma involução (W^m, T) fixando somente $\mu \mapsto F^{n-1}$. Como m > 2n > 2(n-1), o teorema de Kosniowski-Stong concluirá que (W^m, T) (e portanto (M^m, T)) borda equivariantemente.

As polinomiais acima citadas serão obtidas com o auxílio de certas polinomiais básicas nos $W_{i's}$ e c, denotadas por $W[r]_i$, as quais foram introduzidas por Stong e Pergher em [12]; tais polinomiais foram também crucialmente utilizadas em [11] e [10].

Na Seção 2.2, descreveremos as polinomiais $W[r]_i$, e na Seção 2.3 demonstraremos o Teorema 2.1.

2.2 Classes características especiais

Seja $\eta^k \mapsto F^n$ fibrado vetorial k-dimensional sobre a variedade fechada n-dimensional F^n , e seja $\lambda \mapsto \mathbb{RP}(\eta^k)$ o fibrado linha usual. Denotemos as classes de *Stiefel-Whitney*:

$$\mathbb{W}(F^n) = 1 + w_1 + w_2 + \dots + w_n$$
$$\mathbb{W}(\eta^k) = 1 + v_1 + v_2 + \dots + v_k$$
$$\mathbb{W}(\lambda) = 1 + c$$

Vimos em 1.6.6 que

$$\mathbb{W}(\mathbb{R}P(\eta^k)) = 1 + W_1 + W_2 + \dots + W_{n+k-1} = = (1 + w_1 + \dots + w_n) \{ (1+c)^k + (1+c)^{k-1} v_1 + \dots + (1+c) v_{k-1} + v_k \}.$$

Note que cada W_i é uma polinomial homogênea de grau i nos $w_{j's}, v_{t's}$ e c, obtida coletando-se a parte de grau i em

$$\left(\sum_{j=1}^{n} w_j\right) \left(\sum_{i=0}^{k} (1+c)^{k-i} v_i\right).$$

Agora, temos que 1 + c tem inverso multiplicativo em $H^*(\mathbb{RP}(\eta^k), \mathbb{Z}_2)$, e

$$\frac{1}{1+c} = 1 + c + c^2 + \dots + c^{n+k-1},$$

uma vez que $c^l = 0$, se $l > n + k - 1 = \text{dimensão} (\mathbb{RP}(\eta^k)).$

Então, para qualquer $d \in \mathbb{Z}$, temos que $(1+c)^d$ é da forma

$$1 + \varepsilon_1 c + \varepsilon_2 c^2 + \dots + \varepsilon_{n+k-1} c^{n+k-1},$$

onde $\varepsilon_i = 0$ ou 1. Segue que, para qualquer $d \in \mathbb{Z}$,

$$(1+c)^{d} \mathbb{W}(\mathbb{R}P(\eta^{k})) = \left(\sum_{j=1}^{n} w_{j}\right) \left(\sum_{i=0}^{k} (1+c)^{k-i+d} v_{i}\right) = (1+\varepsilon_{1}c+\varepsilon_{2}c^{2}+\dots+\varepsilon_{n+k-1}c^{n+k-1})(1+W_{1}+W_{2}+\dots+W_{n+k-1})$$

é tal que sua parte de grau i consiste em uma polinomial

$$p(c, W_1, \ldots, W_{n+k-1})$$

homogênea de grau i nos $W_{i's}$ e c. Em particular denotando-se

$$(1+c)^d \mathbb{W}(\mathbb{RP}(\eta^k)) = 1 + U_1 + U_2 + \dots + U_{n+k-1},$$

onde U_i é a parte homogênea de grau i, temos que se $t + i_1 + i_2 + \cdots + i_q = n + k - 1$, então

$$c^t U_{i_1} U_{i_2} \cdots U_{i_q} [\mathbb{RP}(\eta^k)]_2$$

é um número característico de $\lambda \mapsto \mathbb{RP}(\eta^k)$ (ou seja, um invariante de bordismo de $\lambda \mapsto \mathbb{RP}(\eta^k)$), observando que

$$c^t U_{i_1} U_{i_2} \cdots U_{i_q}$$

é uma polinomial de grau (n+k-1) nos $W_{j's}$ e c.

Por exemplo, se d = -2, então

$$\frac{1}{(1+c)^2} \mathbb{W}(\mathbb{R}P(\eta^k)) = (1+c+c^2+c^4+\cdots)(1+W_1+W_2+W_3+\cdots),$$

portanto

$$U_1 = W_1, \qquad U_2 = c^2 + W_2, \qquad U_3 = W_3 + c^2 W_1,$$

$$U_4 = W_4 + c^2 W_2 + c^4, \qquad U_5 = W_5 + c^2 W_3 + c^4 W_1.$$

Neste contexto, Stong e Pergher introduziram em [12] as classes $W[r], r \ge 0$. Especificamente

$$W[r] = (1+c)^{r-k} \mathbb{W}(\mathbb{RP}(\eta^k)) = \frac{1}{(1+c)^{k-r}} \mathbb{W}(\mathbb{RP}(\eta^k)).$$

A parte de grau i de W[r] foi denotada por $W[r]_i$, ou seja,

$$W[r] = 1 + W[r]_1 + W[r]_2 + \dots + W[r]_{n+k-1}.$$

Em outras palavras, $W[r]_i$ é obtida coletando-se os termos de grau i em

$$W[r] = (1 + w_1 + \dots + w_n) \left((1 + c)^r + (1 + c)^{r-1} v_1 + \dots + (1 + c) v_{r-1} + v_r + \frac{v_{r+1}}{1 + c} + \frac{v_{r+2}}{(1 + c)^2} + \dots + \frac{v_{r+i}}{(1 + c)^i} + \dots + \frac{v_k}{(1 + c)^{k-r}} \right),$$

e cada tal $W[r]_i$ é portanto uma polinomial homogênea de grau i nas classes $W_{j's}$ e c.

Em particular, sejam $\eta^k \mapsto F^n \in \mu^l \mapsto V^m$ fibrados $k \in l$ -dimensionais, respectivamente, sobre as variedades fechadas $F^n \in V^m$, com k+n = l+m e tal que os respectivos fibrados linhas $\lambda \mapsto \mathbb{RP}(\eta^k) \in \xi \mapsto \mathbb{RP}(\mu^l)$ sejam cobordantes.

Seja $t + i_1 + i_2 + \cdots + i_q = k + n - 1 = l + m - 1$ partição de k + n - 1 = l + m - 1. Tome números $0 \le r_1, r_2, \ldots, r_q$. Para cada r_j , considere $s_j = l + r_j - k$. Então $k - r_j = l - s_j = d_j$, e portanto, se

$$\mathbb{W}(\mathbb{RP}(\eta^k)) = 1 + W_1 + \dots + W_{n+k-1}$$
 e $\mathbb{W}(\mathbb{RP}(\mu^l)) = 1 + W'_1 + \dots + W'_{n+k-1},$

e
$$W[r_j]_{i_j}$$
 (coletada em $\frac{\mathbb{W}(\mathbb{RP}(\eta^k))}{(1+c)^{k-r_j}}$) é a polinomial $p(c, W_1, \dots, W_{n+k-1})$, então $W[s_j]_{i_j}$
(coletada em $\frac{\mathbb{W}(\mathbb{RP}(\mu^l))}{(1+c)^{l-s_j}}$) é a mesma polinomial $p(c, W'_1, \dots, W'_{n+k-1})$.

Portanto temos que

$$c^{t}W[r_{1}]_{i_{1}}W[r_{2}]_{i_{2}}\cdots W[r_{q}]_{i_{q}}[\mathbb{R}P(\eta^{k})]_{2} = c^{t}W[s_{1}]_{i_{1}}W[s_{2}]_{i_{2}}\cdots W[s_{q}]_{i_{q}}[\mathbb{R}P(\mu^{l})]_{2}$$

Em nossas computações, papel fundamental será desempenhado por algumas $W[r]_i$ especiais, especificamente $W[r]_{2r-1}, W[r]_{2r}, W[r]_{2r+1}, W[r]_{2r+2}$. A razão por trás disso é que tais classes satisfazem propriedades especiais, as quais simplificam certas computações. Tais propriedades são:

- 1) $W[r]_{2r-1} = w_{r-1}c^r + \text{termos envolvendo } c^x \text{ onde } x < r.$
- 2) $W[r]_{2r} = w_r c^r + \text{termos envolvendo } c^x \text{ onde } x < r.$
- 3) $W[r]_{2r+1} = (w_{r+1} + v_{r+1})c^r + \text{termos envolvendo } c^x \text{ onde } x < r.$
- **4)** $W[r]_{2r+2} = v_{r+1}c^{r+1} + \text{ termos envolvendo } c^x \text{ onde } x < r+1.$

Justifiquemos a propriedade 1). Sabemos que $W[r]_{2r-1}$ é obtida coletando-se a parte de grau 2r - 1 em W[r], e que tal parte consiste de monômios os quais tem a forma $U^j c^x$, onde j + x = 2r - 1 e U^j é uma classe de cohomologia proveniente de $H^j(F^n, \mathbb{Z}_2)$. Note que a parte de W[r] dada por $(1+c)^{r-1}v_1 + (1+c)^{r-2}v_2 + \cdots + v_r$ somente contribui na formação de monômios $U^j c^x$ onde x < r. Por outro lado cada termo

$$\frac{v_{r+i}}{(1+c)^i} (1 \le i \le k-r) \quad \text{de} \quad W[r]$$

tem todos os seus monômios divisíveis por v_{r+i} ; desta forma, tal termo contribui na formação de monômios $U^j c^x$ de tal sorte que v_{r+i} sempre divide U^j . Ou seja, $j \ge r+i \ge r+1$, e como j+x = 2r-1, segue que x < r. Em outras palavras, monômios $U^j c^x$ de $W[r]_{2r-1}$ com $x \ge r$ só podem ser coletados em

$$(1 + w_1 + w_2 + \dots + w_n)(1 + c)^r$$

Agora em $(1+c)^r$, o único termo c^x com $x \ge r$ é c^r . Segue que o único monômio $U^j c^x$ em $W[r]_{2r-1}$ com $x \ge r$ é $w_{r-1}c^r$.

Os mesmos argumentos fornecem a propriedade 2).

Quanto a propriedade 3), note inicialmente que novamente $(1+c)^{r-1}v_1 + \cdots + v_r$ somente contribui com termos envolvendo c^x com x < r. Por outro lado, se $i \ge 2$, o termo $\frac{v_{r+i}}{(1+c)^i}$ tem todos os seus monômios divisíveis por v_{r+i} , e portanto os monômios $U^j c^x$ provenientes do mesmo são tais que v_{r+i} divide U^j . Então $j \ge r+2$, e como j+x=2r+1, segue que x < r. Portanto os monômios U^jc^x de $W[r]_{2r+1}$ com $x \ge r$ devem ser obtidos em

$$(1 + w_1 + w_2 + \dots + w_n) \left((1 + c)^r + \frac{v_{r+1}}{1 + c} \right).$$

Como antes, o único tal monômio proveniente de

$$(1 + w_1 + w_2 + \dots + w_n)(1 + c)^r$$

é $w_{r+1}c^r$. Por outro lado, termos da forma $U^jc^x \operatorname{com} U^j = w_l v_{r+1}$ e $l \ge 1$ têm necessariamente x < r. Segue que o único monômio $U^jc^x \operatorname{com} x \ge r$ proveniente de

$$(1+w_1+w_2+\cdots+w_n)\left(\frac{v_{r+1}}{1+c}\right)$$

 $\acute{e} v_{r+1}c^r$.

A propriedade 4) é justificada usando os mesmos argumentos.

2.3 Prova do Teorema 2.1

Temos então involução (M^m, T) fixando $F = F^n \cup F^{n-1}$ com m > 2n, e desejamos mostrar que (M^m, T) borda equivariantemente. Conforme estratégia descrita na introdução deste capítulo, se $(\eta \mapsto F^n) \cup (\mu \mapsto F^{n-1})$ é o *fixed-data*, bastará então provar que $\eta \mapsto F^n$ borda como fibrado, o que é equivalente a mostrar que um número genérico de *Whitney*

$$w_{i_1}w_{i_2}\cdots w_{i_t}v_{j_1}v_{j_2}\cdots v_{j_s}[F^n]_2$$

é zero, onde $i_1 + i_2 + \dots + i_t + j_1 + j_2 + \dots + j_s = n$,

 $\mathbb{W}(F^n) = 1 + w_1 + w_2 + \dots + w_n, \qquad \mathbb{W}(\eta) = 1 + v_1 + v_2 + \dots + v_{m-n}$

são as classes de Stiefel-Whitney.

Ainda conforme descrito na introdução, isto será obtido considerando polinomiais adequadas $p(c, W_1, \ldots, W_{m-1})$ na equação

$$p(c, W_1, \dots, W_{m-1})[\mathbb{RP}(\eta)]_2 = p(c, W_1, \dots, W_{m-1})[\mathbb{RP}(\mu)]_2,$$

de tal maneira que

$$p(c, W_1, \dots, W_{m-1})[\mathbb{R}P(\eta)]_2 = w_{i_1}w_{i_2}\cdots w_{i_t}v_{j_1}v_{j_2}\cdots v_{j_s}[F^n]_2$$

e $p(c, W_1, \ldots, W_{m-1})[\mathbb{RP}(\mu)]_2$ seja zero por razões dimensionais.

Conforme descrito na seção anterior, uma classe $W[r]_i$ associada ao fibrado-linha $\xi \mapsto \mathbb{RP}(\mu)$ produz a mesma polinomial nos $W_{i's}$ e c que a classe $W[r-1]_i$ associada ao fibrado-linha $\lambda \mapsto \mathbb{RP}(\eta)$; de fato, com a notação da seção anterior,

$$s_j = l + r_j - k \Rightarrow s_j = (m - n) + r - (m - n + 1) = r - 1.$$

Com esse principio em mãos introduzimos as classes

$$\widetilde{W}_{2r} = W[r]_{2r} + W[r]_{2r-1}W[2]_1 \quad \text{considerada sobre} \quad \xi \mapsto \mathbb{RP}(\mu) \text{ e}$$

$$W_{2r} = W[r-1]_{2r} + W[r-1]_{2r-1}W[1]_1 \text{ considerada sobre } \lambda \mapsto \mathbb{R}P(\eta).$$

Então \widetilde{W}_{2r} e \overline{W}_{2r} produzem as mesmas polinomiais, e portanto a polinomial $p(c, W_1, \ldots, W_{m-1})$ dada por

$$c^{m-2n-1}\widetilde{W}_{2i_1}\widetilde{W}_{2i_2}\cdots\widetilde{W}_{2i_t}W[j_1]_{2j_1}W[j_2]_{2j_2}\cdots W[j_s]_{2j_s}$$

considerada sobre $\xi \mapsto \mathbb{RP}(\mu)$, coincide com a polinomial dada por

$$c^{m-2n-1}\overline{W}_{2i_1}\overline{W}_{2i_2}\cdots\overline{W}_{2i_t}W[j_1-1]_{2j_1}W[j_2-1]_{2j_2}\cdots W[j_s-1]_{2j_s}$$

considerada sobre $\lambda \mapsto \mathbb{R}P(\eta)$. Portanto nossa tarefa consistirá em mostrar os dois fatos abaixo:

- i) $p(c, W_1, \ldots, W_{m-1})[\mathbb{RP}(\eta)]_2 = w_{i_1}w_{i_2}\cdots w_{i_t}v_{j_1}v_{j_2}\cdots v_{j_s}[F^n]_2;$
- ii) $p(c, W_1, \ldots, W_{m-1})[\mathbb{RP}(\mu)]_2 = 0.$

Denotemos por

$$\mathbb{W}(F^{n-1}) = 1 + \theta_1 + \theta_2 + \dots + \theta_{n-1}, \qquad \mathbb{W}(\mu) = 1 + u_1 + u_2 + \dots + u_{m-n+1}$$

as classes de Stiefel-Whitney. Então

$$\mathbb{W}(\mathbb{R}P(\eta)) = (1 + w_1 + \dots + w_n) \{ (1 + c)^{m-n} + (1 + c)^{m-n-1} v_1 + \dots + v_{m-n} \} e$$

$$W(\mathbb{RP}(\mu)) = (1 + \theta_1 + \dots + \theta_{n-1}) \{ (1+c)^{m-n-1} + (1+c)^{m-n-2} u_1 + \dots + u_{m-n+1} \}.$$

Então $W[2]_1$, sobre $\xi \mapsto \mathbb{RP}(\mu)$ é coletado em

$$\frac{1}{(1+c)^{(m-n+1)-2}} \mathbb{W}(\mathbb{RP}(\mu)) = (1+\theta_1+\dots+\theta_{n-1})\{(1+c)^2+(1+c)u_1+u_2+\frac{u_3}{1+c}+\dots\}$$

e portanto $W[2]_1 = \theta_1 + u_1$; enquanto que $W[1]_1$ sobre $\lambda \mapsto \mathbb{RP}(\eta)$ é coletado em

$$\frac{1}{(1+c)^{m-n-1}} \mathbb{W}(\mathbb{R}P(\eta)) = (1+w_1+\dots+w_n)\{(1+c)+v_1+\frac{v_2}{1+c}+\dots\},\$$

ou seja, $W[1]_1 = c + w_1 + v_1$. Agora, pela Propriedade 2 da seção anterior, $W[r]_{2r}$ sobre ξ é dada por

 $W[r]_{2r} = \theta_r c^r + \text{ termos envolvendo } c^x \text{ com } x < r,$

enquanto pela Propriedade 1, $W[r]_{2r-1}$ sobre ξ é

$$W[r]_{2r-1} = \theta_{r-1}c^r + \text{ termos envolvendo } c^x \text{ com } x < r$$

Segue que

$$\widetilde{W}_{2r} = W[r]_{2r} + W[r]_{2r-1}W[2]_1 = = (\theta_r c^r + \text{ termos com } c^{x < r}) + (\theta_{r-1}c^r + \text{ termos com } c^{x < r})(\theta_1 + u_1) = = [\theta_r + \theta_{r-1}(\theta_1 + u_1)]c^r + \text{ termos com } c^{x < r}.$$

Agora, pela Propriedade 4 da seção anterior, $W[r-1]_{2r}$ sobre λ é dada por

$$W[r-1]_{2r} = v_r c^r + \text{ termos envolvendo } c^x \text{ com } x < r,$$

enquanto pela Propriedade 3, $W[r-1]_{2r-1}$ sobre λ é

 $W[r-1]_{2r-1} = (w_r + v_r)c^{r-1} + \text{ termos envolvendo } c^x \text{ com } x < r-1.$

Segue que

$$\overline{W}_{2r} = W[r-1]_{2r} + W[r-1]_{2r-1}W[1]_1 = = (v_rc^r + \text{ termos com } c^{x$$

Logo, $p(c, W_1, \ldots, W_{m-1})$ sobre $\xi \mapsto \mathbb{RP}(\mu)$, que é dado por:

$$c^{m-2n-1}\widetilde{W}_{2i_1}\widetilde{W}_{2i_2}\cdots\widetilde{W}_{2i_t}W[j_1]_{2j_1}W[j_2]_{2j_2}\cdots W[j_s]_{2j_s}$$

tem a forma (usando novamente a Propriedade 2 nos $W[j_i]_{2j_i}$)

 $\begin{array}{l} c^{m-2n-1} & \cdot [(\theta_{i_1} + \theta_{i_1-1}(\theta_1 + u_1))c^{i_1} + \operatorname{termos} \operatorname{com} \operatorname{potencias} \operatorname{em} c \operatorname{menores} \operatorname{que} i_1] \cdot \\ & \cdot [(\theta_{i_2} + \theta_{i_2-1}(\theta_1 + u_1))c^{i_2} + \operatorname{termos} \operatorname{com} \operatorname{potencias} \operatorname{em} c \operatorname{menores} \operatorname{que} i_2] \cdot \\ & \cdot \ldots \\ & \cdot [(\theta_{i_t} + \theta_{i_t-1}(\theta_1 + u_1))c^{i_t} + \operatorname{termos} \operatorname{com} \operatorname{potencias} \operatorname{em} c \operatorname{menores} \operatorname{que} i_t] \cdot \\ & \cdot (\theta_{j_1}c^{j_1} + \operatorname{termos} \operatorname{com} \operatorname{potencias} \operatorname{em} c \operatorname{menores} \operatorname{que} j_1) \cdot \\ & \cdot (\theta_{j_2}c^{j_2} + \operatorname{termos} \operatorname{com} \operatorname{potencias} \operatorname{em} c \operatorname{menores} \operatorname{que} j_2) \cdot \\ & \cdot \ldots \\ & \cdot (\theta_{j_s}c^{j_s} + \operatorname{termos} \operatorname{com} \operatorname{potencias} \operatorname{em} c \operatorname{menores} \operatorname{que} j_s). \end{array}$

Note que cada monômio na expressão acima (excluindo o termo c^{m-2n-1} que multiplica tudo) tem a forma $A_p c^t$, onde A_p provem do grupo de cohomologia $H^p(F^{n-1}, \mathbb{Z}_2)$ e p + t = 2n (pois $p(c, W_1, \ldots, W_{m-1})$ tem grau m - 1, e (m - 1) - (m - 2n - 1) = 2n). Além disso o monômio $A_p c^t$ com t máximo é claramente

$$\begin{array}{l} (\theta_{i_1} + \theta_{i_1 - 1}(\theta_1 + u_1))c^{i_1} \cdots (\theta_{i_t} + \theta_{i_t - 1}(\theta_1 + u_1))c^{i_t} \cdot \theta_{j_1}c^{j_1} \cdots \theta_{j_s}c^{j_s} = \\ = & [\theta_{i_1 - 1}(\theta_1 + u_1)] \cdots [\theta_{i_t} + \theta_{i_t - 1}(\theta_1 + u_1)] \cdot \theta_{j_1} \cdot \theta_{j_2} \cdots \theta_{j_s} \cdot c^{i_1 + \cdots + i_t + j_1 + \cdots + j_s} = \\ = & [\theta_{i_1 - 1}(\theta_1 + u_1)] \cdots [\theta_{i_t} + \theta_{i_t - 1}(\theta_1 + u_1)] \cdot \theta_{j_1} \cdot \theta_{j_2} \cdots \theta_{j_s} \cdot c^n = \\ = & A_n c^n \end{array}$$

Portanto, a expressão acima é dada por

$$c^{m-2n-1} \cdot (A_n c^n + \text{ monômios } A_p c^t \text{ com } t < n) =$$
$$= A_n c^{m-n-1} + (\text{ monômios } A_p c^{m-2n-1+t} \text{ com } t < n).$$

Agora em cada monômio $A_p c^{m-2n-1+t}$ com t < n, temos p + (m-2n-1) + t = m-1, logo p = 2n - t; ou seja, p > n. Como A_n e cada tal A_p provêm de $H^*(F^{n-1}, \mathbb{Z}_2)$, por razões dimensionais, $A_n = 0$ e $A_p = 0$. Portanto

$$p(c, W_1, \ldots, W_{m-1})[\mathbb{RP}(\mu)]_2 = 0.$$

Provemos agora que

$$p(c, W_1, \dots, W_{m-1})[\mathbb{R}P(\eta)]_2 = w_{i_1} w_{i_2} \cdots w_{i_t} v_{j_1} v_{j_2} \cdots v_{j_s} [F^n]_2,$$

o que encerrará a demonstração.

Temos que $p(c, W_1, \ldots, W_{m-1})$ sobre $\lambda \mapsto \mathbb{RP}(\eta)$, que é dado por:

$$c^{m-2n-1}\overline{W}_{2i_1}\overline{W}_{2i_2}\cdots\overline{W}_{2i_t}W[j_1-1]_{2j_1}W[j_2-1]_{2j_2}\cdots W[j_s-1]_{2j_s}$$

tem a forma (usando novamente a Propriedade 4 nos $W[j_i - 1]_{2j_i}$)

$$c^{m-2n-1} \quad \cdot [(w_{i_1}c^{i_1} + \text{termos com potências em } c \text{ menores que } i_1] \cdot \\ \cdot [(w_{i_2}c^{i_2} + \text{termos com potências em } c \text{ menores que } i_2] \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot [w_{i_t}c^{i_t} + \text{termos com potências em } c \text{ menores que } i_t] \cdot \\ \cdot (v_{j_1}c^{j_1} + \text{termos com potências em } c \text{ menores que } j_1) \cdot \\ \cdot (v_{j_2}c^{j_2} + \text{termos com potências em } c \text{ menores que } j_2) \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot (v_{j_s}c^{j_s} + \text{termos com potências em } c \text{ menores que } j_s).$$

Usando a mesma argumentação anterior, cada monômio na expressão acima (excluindo o termo c^{m-2n-1}) tem a forma $A_p c^t$, onde A_p provem do grupo de cohomologia $H^p(F^{n-1}, \mathbb{Z}_2)$ e p + t = 2n. Neste caso, o monômio $A_p c^t$ com t máximo é

$$(w_{i_1}c^{i_1})\cdots(w_{i_t}c^{i_t})\cdot(v_{j_1}c^{j_1})\cdots v_{j_s}c^{j_s} = w_{i_1}\cdots w_{i_t}v_{j_1}\cdot v_{j_2}\cdots v_{j_s}\cdot c^{i_1+\cdots+i_t+j_1+\cdots+j_s} = w_{i_1}\cdots w_{i_t}v_{j_1}\cdot v_{j_2}\cdots v_{j_s}\cdot c^n = A_nc^n.$$

Portanto, os monômios restantes A_pc^t são tais que t < n; como p + t = 2n, segue que p > n. Por razões dimensionais, segue que cada tal $A_p = 0$. Concluímos que

$$p(c, W_1, \dots, W_{m-1}) = c^{m-2n-1}(w_{i_1} \cdots w_{i_t} v_{j_1} \cdots v_{j_s} c^n) =$$
$$= w_{i_1} \cdots w_{i_t} v_{j_1} \cdots v_{j_s} c^{m-n-1} \in H^{m-1}(\mathbb{RP}(\eta), \mathbb{Z}_2).$$

Lembrando que $H^*(\mathbb{R}P(\eta),\mathbb{Z}_2)$ é um $H^*(F^n,\mathbb{Z}_2)$ -módulo livre gerado por

$$1, c, c^2, \dots, c^{m-n-1},$$
 temos que $w_{i_1} \cdots w_{i_t} v_{j_1} \cdots v_{j_s} c^{m-n-1}$

é zero (em $H^{m-1}(\mathbb{RP}(\eta),\mathbb{Z}_2)$) se e somente se $w_{i_1}\cdots w_{i_t}v_{j_1}\cdots v_{j_s}$ é zero (em $H^n(F^n,\mathbb{Z}_2)$). Como estamos assumindo F^n conexo, $\mathbb{RP}(\eta)$ também é conexo, e portanto

$$H^n(F^n, \mathbb{Z}_2) \cong \mathbb{Z}_2$$
 e $H^{m-1}(\mathbb{R}P(\eta), \mathbb{Z}_2) \cong \mathbb{Z}_2.$

Concluimos que

$$w_{i_1} \cdots w_{i_t} v_{j_1} \cdots v_{j_s} c^{m-n-1} [\mathbb{RP}(\eta)]_2 = w_{i_1} \cdots w_{i_t} v_{j_1} \cdots v_{j_s} [F^n]_2$$

e portanto

$$p(c, W_1, \dots, W_{m-1})[\mathbb{RP}(\eta)]_2 = w_{i_1} \cdots w_{i_k} v_{j_1} \cdots v_{j_s}[F^n]_2$$

Capítulo 3

Involuções Fixando $F^n \cup F^2$

3.1 Introdução

O objetivo deste capítulo é mostrar que $m(n; \{2\}) = max\{2n, m(n-2) + 4\}$, onde m(n-2) é o limitante de *Stong e Pergher* detalhado na Seção 11 do Capítulo 1. Lembremos que

 $m(n; \{2\}) = \max\{m \mid \text{existe involução } (M^m, T) \text{ fixando alguma } F \text{ que não borda, e}$ tal que F não possui componentes com dimensões diferentes de 2 e de $n\}.$

Em outras palavras, F é da forma $F^n \cup F^2$ ou F^n , com F não bordante, e novamente sabemos que F^n e F^2 podem ser assumidos conexos. O caso n = 3 será descartado, uma vez que $F^3 \cup F^2$ é um caso particular do capítulo anterior, ou seja, $m(3; \{2\}) = 6$ (note que nesse caso m(n-2) + 4 = 2n). Desta forma, suporemos daqui para frente que n > 3.

É interessante observar que, dependendo de n, podemos ter: 2n < m(n-2) + 4, 2n > m(n-2) + 4 ou 2n = m(n-2) + 4. De fato, se denotamos $n = 2^p q$, onde $p \ge 0$ e $q \ge 1$, com q impar, temos 2n = m(n-2) + 4 se q = p + 1, 2n < m(n-2) + 4 se $p \ge q$ e 2n > m(n-2) + 4 se p < q - 1 (vide Seção 11 do Capítulo 1).

Seja agora n > 3, fixo. Notemos inicialmente que existe involução (M^m, T) fixando F da forma $F^n \cup F^2$ não bordante para m = 2n e m = m(n-2)+4. De fato, como n > 3 podemos tomar F^n não bordante, lembrando que somente para n = 1 e 3 qualquer F^n borda. Considere $(F^n \times F^n, T)$, T(x, y) = (y, x), a qual tem fixed-data $\tau \mapsto F^n$, onde τ é o fibrado tangente a F^n . Tome agora qualquer F^2 que borda (por exemplo, a esfera S^2) e seja $\mathbb{R}^{2n-2} \mapsto F^2$ o fibrado trivial (2n-2)-dimensional sobre F^2 , o qual borda. Então um argumento idêntico ao do Teorema 1.8.4 (usando a sequência de *Conner e Floyd*) mostra que existe involução (W^{2n}, S) , cobordante a $(F^n \times F^n, T)$, cujo fixed-data é $(\tau \mapsto F^n) \cup (\mathbb{R}^{2n-2} \mapsto F^2)$. Isto exibe o exemplo para m = 2n.

Por outro lado, em [12], conforme mencionado no Capítulo 1, Seção 11, foi construido um exemplo maximal $(M^{m(n-2)}, T)$ cujo conjunto de pontos fixos F é da forma $F = F^{n-2} \cup \{p\}, p =$ ponto. Considere em $M^{m(n-2)} \times \mathbb{RP}^2 \times \mathbb{RP}^2$ a involução

$$S(m, x, y) = (T(m), y, x).$$

Então S fixa $(F^{n-2} \cup \{p\}) \times \mathbb{R}P^2 = (F^{n-2} \times \mathbb{R}P^2) \cup (\{p\} \times \mathbb{R}P^2)$, que é da forma $F^n \cup F^2$ com $F^2 = \mathbb{R}P^2$ não bordante. Isto exibe o exemplo para m = m(n-2) + 4.

Os exemplos acima mostram que para provar nosso resultado é suficiente provar o seguinte fato: para qualquer n > 3, se (M^m, T) é involução fixando $F = F^n \cup F^2$ não bordante, então ou $m \le 2n$ ou $m \le m(n-2) + 4$. Agora, denote por

$$(\mu \mapsto F^n) \cup (\eta \mapsto F^2)$$

o fixed-data de (M^m, T) , e suponha que $\eta \mapsto F^2$ borda como fibrado; em particular, F^2 borda e portanto F^n não borda. Então o Teorema 1.8.4 nos diz que (M^m, T) é equivariantemente cobordante a uma involução (W^m, S) cujo fixed-data é $\mu \mapsto F^n$. Como F^n não borda, $\mu \mapsto F^n$ não borda e portanto (M^m, T) não borda. Pelo teorema de Kosniowski e Stong de [5], segue que $m \leq 2n$. Em outras palavras, podemos supor a partir daqui que $\eta \mapsto F^2$ não borda. Nosso resultado ficará então completamente estabelecido após provarmos o seguinte

Teorema 3.1 Seja (M^m, T) involução fixando $F = F^n \cup F^2$ (não necessariamente não bordante), e suponha que o fibrado normal $\eta \mapsto F^2$ não borda. Então $m \leq m(n-2)+4$.

Nota: Observe que o teorema acima prova um pouco mais do que de fato necessitamos, uma vez que não é necessário supor $F^n \cup F^2$ não bordante (embora isto esteja também contemplado no teorema), mas apenas $\eta \mapsto F^2$ não bordante. Ou seja, o resultado também é verdadeiro quando $F^n \cup F^2$ borda, mas $\eta \mapsto F^2$ não borda.

Esse teorema segue a filosofia do resultado de *Stong e Pergher* de [12]: se (M^m, T) fixa $F^n \cup \{p\}$, p=ponto, então $m \leq m(n)$. Com efeito, neste caso, como p não borda, o fibrado normal $\eta \mapsto \{p\}$ automaticamente não borda. Conforme citado anteriormente, a técnica de *Stong e Pergher* consistiu em trabalhar com equações do tipo

$$p(c, W_1, \ldots, W_{m-1})[\mathbb{RP}(\eta)]_2 = p(c, W_1, \ldots, W_{m-1})[\mathbb{RP}(\mu)]_2$$

Ocorre que $\eta \mapsto \{p\}$ é trivial, portanto $\mathbb{RP}(\eta)$ neste caso é \mathbb{RP}^{m-1} , e o fibrado-linha usual $\lambda \mapsto \mathbb{RP}(\eta)$ se reduz neste caso ao fibrado-linha canônico $\lambda \mapsto \mathbb{RP}^{m-1}$, cujos números característicos são explicitamente conhecidos. Se $\mu \mapsto F^n$ é o fibrado normal e se $\mathbb{W}(\mu) = 1 + v_1 + \cdots + v_{m-n}, \ \mathbb{W}(F^n) = 1 + w_1 + \cdots + w_n,$ então $p(c, W_1, \ldots, W_{m-1})[\mathbb{RP}(\mu)]_2$

produzem polinomiais avaliadas em $[\mathbb{RP}(\mu)]_2$ nas incógnitas $c, w_{i's}, v_{j's}$. Stong e Pergher consideraram então polinomiais especiais $p(c, W_1, \ldots, W_{m-1})$ de modo que

$$p(c, W_1, \ldots, W_{m-1})[\mathbb{R}\mathrm{P}(\eta)]_2 = 1,$$

o que produziu equações do tipo

$$F(c, w_1, \ldots, w_n, v_1, \ldots, v_{m-n})[\mathbb{RP}(\mu)]_2 = 1$$

e após reduções, equações do tipo

$$G(w_1, \ldots, w_n, v_1, \ldots, v_{m-n})[F^n]_2 = 1$$

Isto acarreta a ocorrência de classes de cohomologia não nulas na expressão $G(w_1, \ldots, w_n, v_1, \ldots, v_{m-n})$, o que juntando com o fato que classes $v_{j's}$ não nulas só podem ocorrer em dimensões $\leq n = \dim(F^n)$, produz a desigualdade desejada (isto é um *sketch* geral da abordagem, a qual é extremamente técnica).

Em nosso caso com $F = F^n \cup F^2$, como $\eta \mapsto F^2$ não borda, a idéia é usar essa mesma técnica geral. A diferença crucial é que, enquanto $\eta \mapsto \{p\}$ só tem uma possibilidade (sendo o modelo simples $\mathbb{R}^m \mapsto \{p\}$), $\eta \mapsto F^2$ não bordante admite em princípio várias possibilidades. De fato, e esta será nossa primeira (e importante) tarefa, na seção 3.2 mostraremos que existem, a menos de bordismo, sete possibilidades, as quais serão denotadas por β_1, \ldots, β_7 , para tais $\eta \mapsto F^2$; mais ainda, exibiremos um modelo explícito para cada uma dessas possibilidades. Ou seja, para cada tal β_i , $1 \leq i \leq 7$, exibiremos um fibrado $\eta_i \mapsto F_i^2$ com $\beta_i = [\eta_i \mapsto F_i^2]$, e de tal sorte que os números característicos do fibrado-linha $\lambda \mapsto \mathbb{RP}(\eta_i)$ são explicitamente conhecidos; desta forma, quando fizermos a suposição que (M^m, T) tem fixed-data $(\mu \mapsto F^n) \cup (\eta \mapsto F^2)$, com $\eta \mapsto F^2$ não bordante, usando o Teorema 1.8.3, poderemos admitir então, sem perda de generalidade, que $\eta \mapsto F^2 = \eta_i \mapsto F_i^2$ para algum $1 \leq i \leq 7$.

Na Seção 3.3, provaremos o Teorema 3.1, observando então que as sete possibilidades para $\eta \mapsto F^2$ deverão ser levadas em conta nesta prova. Conforme será visto, primeiro será efetuada uma espécie de redução do problema através de dois importantes lemas, especificamente os Lemas 3.3.1 e 3.3.2. Esta redução eliminará de uma só vez as possibilidades $\beta_1, \beta_3, \beta_4, \beta_5, \beta_6$ e β_7 , restando a partir daí somente a possibilidade β_2 . Em outras palavras, após o estabelecimento dos Lemas 3.3.1 e 3.3.2, no Teorema 3.1 o fibrado $\eta \mapsto F^2$ poderá ser assumido sem perdas ser $\eta_2 \mapsto F^2$, e a prova se baseará então em abordagem com natureza semelhante à aquela utilizada por *Stong e Pergher* em [12] (aqui $\eta_2 \mapsto F^2$ fazendo o papel desempenhado por $\mathbb{R}^m \mapsto \{ponto\}$ em [12]).

3.2 Classes de bordismo estáveis de fibrados sobre variedades fechadas F^2

No Capítulo 1, Seção 1.4, introduzimos os grupos de bordismo de fibrados vetoriais k-dimensionais sobre variedades fechadas n-dimensionais, $\mathcal{N}_n(BO(k))$, os quais vimos terem fortes conexões com os grupos de bordismo de involuções. Também vimos que uma classe $[\eta^k \mapsto F^n] \in \mathcal{N}_n(BO(k))$ é completamente determinada pelos números de *Whitney* de $\eta^k \mapsto F^n$.

Nesta seção, nosso objetivo é determinar $\mathcal{N}_2(BO(k))$ para qualquer $k \geq 2$. Mostraremos que

$$\mathcal{N}_2(BO(k)) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$$

e exibiremos um representante explícito para cada um dos sete elementos não nulos de $\mathcal{N}_2(BO(k))$. Se $\eta^k \mapsto F^n$ é qualquer fibrado vetorial e se $\mathbb{R}^t \mapsto F^n$ é o fibrado trivial *t*-dimensional, temos o fibrado $\eta^k \oplus \mathbb{R}^t \mapsto F^n$. É fácil ver que, se

$$\eta^k \mapsto F^n$$
 é cobordante a $\mu^k \mapsto G^n$,

então

$$\eta^k \oplus \mathbb{R}^t \mapsto F^n$$
 é cobordante a $\mu^k \oplus \mathbb{R}^t \mapsto G^n$.

Então existe uma função bem definida

$$\Gamma^t : \mathscr{N}_n(BO(k)) \mapsto \mathscr{N}_n(BO(k+t)), \quad \text{dada por} \quad \Gamma^t[\eta^k] = [\eta^k \oplus \mathbb{R}^t].$$

Também é simples verificar que Γ^t é homomorfismo de \mathcal{N}_* -módulos.

Lema 3.2.1 Γ^t : $\mathcal{N}_n(BO(n)) \mapsto \mathcal{N}_n(BO(n+t))$ é um isomorfismo, para qualquer $t \ge 1$.

Prova: Como $\mathbb{W}(\eta^k \oplus \mathbb{R}^t) = \mathbb{W}(\eta^k)$ (axioma da soma para classes características), temos que qualquer número característico de $\eta^k \oplus \mathbb{R}^t$ se reduz a um número característico de η^k . Segue que, se $\eta^k \oplus \mathbb{R}^t$ borda, então η^k borda, mostrando a injetividade de Γ^t . Por outro lado, um resultado bem conhecido da teoria de fibrados (por exemplo, vide [8]) nos diz que, se X é um CW-complexo de dimensão $n \in \eta \mapsto X$ um fibrado vetorial k-dimensional com k > n, então η é equivalente a um fibrado $\nu \oplus \mathbb{R}^{k-n} \mapsto X$, onde ν é n-dimensional e $\mathbb{R}^{k-n} \mapsto X$ é o fibrado trivial (k-n)-dimensional sobre X. Como variedades n-dimensionais são CW-complexos n-dimensionais, concluimos que Γ^t é sobrejetora.

O lema acima nos diz que, para determinar $\mathcal{N}_n(BO(k))$, k > n, é suficiente determinar $\mathcal{N}_n(BO(n))$; mais ainda dado o fibrado $\eta^k \mapsto F^n$, com k > n, escrevendo-se $\eta^k = \nu^n \oplus \mathbb{R}^{k-n} \mapsto F^n$, temos que a classe de bordismo de η^k é completamente determinada pela classe de bordismo de $\nu^n \mapsto F^n$. Por essa razão, a classe de bordismo $[\nu^n \mapsto F^n]$ é também conhecida como classe de bordismo estável, indicando isso sua invariância por soma de fatores triviais.

Conforme mencionamos acima, nosso interesse é obter $\mathcal{N}_2(BO(k))$, qualquer $k \geq 2$, e portanto é suficiente analisar $\mathcal{N}_2(BO(2))$. Comecemos então com um fibrado vetorial bidimensional $\eta^2 \mapsto F^2$ sobre a variedade fechada F^2 . Temos então que $[\eta^2 \mapsto F^2]$ é completamente determinada pelos seus números de *Whitney*. Sejam

$$\mathbb{W}(F^2) = 1 + w_1 + w_2, \qquad \mathbb{W}(\eta^2) = 1 + v_1 + v_2$$

as classes de Stiefel-Whitney. Os possíveis números de Whitney de $\eta^2 \mapsto F^2$ são:

$$w_2[F^2], w_1^2[F^2], v_2[F^2], w_1v_1[F^2], v_1^2[F^2].$$

Uma classe de bordismo $[\eta^2 \mapsto F^2]$ não nula corresponde então a uma lista de valores 0 ou 1 atribuídos a cada um dos objetos acima listados, sendo que pelo menos um dos objetos deve ter valor 1. O total de possibilidades para tais listas é portanto 31 listas. O teorema abaixo reduzirá este total para 7 listas.

Teorema 3.2.2 $w_1^2 = w_2 e v_1^2 = w_1v_1$ é verdadeiro para classes de Stiefel-Whitney associadas a fibrados bidimensionais sobre variedades bidimensionais.

Prova: Conforme mencionado na Seção 1.2, Capítulo 1, o grupo de bordismo não orientado \mathscr{N}_2 é isomorfo a \mathbb{Z}_2 ; também é conhecido o fato que \mathbb{RP}^2 representa a classe de bordismo não nula de \mathscr{N}_2 . Segue que ou F^2 borda ou F^2 é cobordante a \mathbb{RP}^2 . No primeiro caso,

$$w_1^2[F^2]_2 = 0 = w_2[F^2]_2$$

No segundo caso

$$w_1^2[F^2]_2 = w_1^2[\mathbb{R}P^2]_2$$
 e $w_2[F^2]_2 = w_2[\mathbb{R}P^2]_2.$

Agora, sabemos que, se $\alpha \in H^1(\mathbb{R}P^2, \mathbb{Z}_2)$ é o gerador, então

$$\mathbb{W}(\mathbb{R}P^2) = (1+\alpha)^3 = 1+\alpha+\alpha^2.$$

Portanto,

$$w_1(\mathbb{RP}^2) = \alpha$$
 e $w_2(\mathbb{RP}^2) = \alpha^2 = w_1^2(\mathbb{RP}^2)$.

Segue que

 $w_1^2(F^2) = w_2(F^2)$. Em qualquer situação $w_1^2 = w_2$.

Seja agora $V(F^2) = 1 + u_1$, a classe de Wu de F^2 . Conforme vimos na Seção 1.13, $u_1 = w_1$. Pela caracterização da classe de Wu, temos $Sq^1(v_1) = u_1v_1 = w_1v_1$. Como também $Sq^1(v_1) = v_1^2$, segue o resultado.

O teorema acima nos diz que $\mathscr{N}_2(BO(2))$ possui no máximo sete classes não nulas. Mais ainda, qualquer classe $[\eta^2 \mapsto F^2] \in \mathscr{N}_2(BO(2))$ é completamente determinada pelos três números característicos

$$w_2[F^2]_2 = w_1^2[F^2]_2, \qquad v_2[F^2]_2, \qquad v_1^2[F^2]_2 = w_1v_1[F^2]_2.$$

As possibilidades para a lista de números associada a $\eta^2 \mapsto F^2$ são, portanto:

- **1)** $w_1^2 \neq 0, v_1^2 = 0, v_2 = 0$
- **2)** $w_1^2 \neq 0, v_1^2 \neq 0, v_2 = 0$
- **3)** $w_1^2 \neq 0, v_1^2 = 0, v_2 \neq 0$
- 4) $w_1^2 \neq 0, v_1^2 \neq 0, v_2 \neq 0$
- **5)** $w_1^2 = 0, v_1^2 \neq 0, v_2 = 0$
- 6) $w_1^2 = 0, v_1^2 = 0, v_2 \neq 0$
- 7) $w_1^2 = 0, v_1^2 \neq 0, v_2 \neq 0$

Em princípio nada nos garante, porem, que todas tais listas são realizáveis por classes de bordismo concretas, isto é, nada nos garante em princípio que existam de fato fibrados $\eta^2 \mapsto F^2$ com números característicos realizando todas as 7 possibilidades acima listadas. Nossa tarefa será concluída, portanto, ao exibirmos um modelo explícito de $\eta^2 \mapsto F^2$ para cada uma de tais listas.

Tome inicialmente $F^2 = \mathbb{R}P^2$, e já sabemos que $w_1^2[\mathbb{R}P^2]_2 = \alpha^2[\mathbb{R}P^2]_2 = 1$. Seja $\lambda \mapsto \mathbb{R}P^2$ o fibrado linha canônico, com $\mathbb{W}(\lambda) = 1 + \alpha$. Sobre $\mathbb{R}P^2$, podemos considerar então os seguintes fibrados bidimensionais:

- 1) $\eta_1 = \mathbb{R}^2 \mapsto \mathbb{R}P^2$ o fibrado trivial. Nesse caso $v_1^2 = 0, v_2 = 0$.
- 2) $\eta_2 = \lambda \oplus \mathbb{R} \mapsto \mathbb{R}P^2$, $\mathbb{R} \mapsto \mathbb{R}P^2$ o fibrado trivial unidimensional. Nesse caso $v_1 = \alpha$ e $v_2 = 0$. Portanto $v_1^2 = \alpha^2 \neq 0$.
- **3)** $\eta_3 = \lambda \oplus \lambda \mapsto \mathbb{RP}^2$. Temos $\mathbb{W}(\eta_3) = (1 + \alpha)^2 = 1 + \alpha^2$, ou seja, $v_1^2 = 0, v_2 \neq 0$.
- 4) $\eta_4 = \tau \mapsto \mathbb{R}P^2$, o fibrado tangente sobre $\mathbb{R}P^2$, o qual satisfaz $\mathbb{W}(\eta_4) = (1 + \alpha)^3 = 1 + \alpha + \alpha^2$. Ou seja, nesse caso $v_1^2 = \alpha^2 \neq 0$ e $v_2 = \alpha^2 \neq 0$.

Portanto, as quatro primeiras listas estão realizadas.

Para as três listas restantes, considere inicialmente o fibrado $\xi \oplus \mathbb{R} \mapsto \mathbb{R}P^1$, onde ξ é o fibrado linha canônico e \mathbb{R} é o fibrado trivial unidimensional sobre $\mathbb{R}P^1$. Temos então o fibrado projetivo associado $\mathbb{R}P(\xi \oplus \mathbb{R})$, o qual é uma variedade fechada bidimensional; coloquemos $K^2 = \mathbb{R}P(\xi \oplus \mathbb{R})$. Sejam $\nu \mapsto K^2$ o fibrado linha usual, e suponha $\mathbb{W}(\nu) = 1 + c, \ c \in H^1(K^2, \mathbb{Z}_2)$. Seja $\alpha \in H^1(\mathbb{R}P^1, \mathbb{Z}_2)$ o gerador; sabemos que $\mathbb{W}(\xi \oplus \mathbb{R}) = 1 + \alpha$. Pelo Corolário 1.6.7, temos que

$$W(K^{2}) = W(\mathbb{R}P^{1})((1+c)^{2} + (1+c)w_{1}(\xi \oplus \mathbb{R}) + w_{2}(\xi \oplus \mathbb{R})) =$$

= $(1+\alpha)^{2}(1+c^{2} + (1+c)\alpha) =$
= $(1+\alpha^{2})(1+c^{2} + \alpha + \alpha c) =$
= $1+c^{2} + \alpha + \alpha c,$

uma vez que $\alpha^2 = 0$.

Como em $H^*(K^2, \mathbb{Z}_2)$ vale a relação $c^2 = cw_1(\xi \oplus \mathbb{R}) + w_2(\xi \oplus \mathbb{R}) = c\alpha$ segue que $\mathbb{W}(K^2) = 1 + \alpha$, ou seja, $w_1(K^2) = \alpha$. Como $\alpha^2 = 0$, temos $w_1^2 = 0$, e portanto K^2 é uma variedade bidimensional que serve como base para possíveis fibrados que realizariam as listas 5, 6 e 7. Sobre K^2 , podemos obter fibrados fazendo-se somas de *Whitney* do fibrado linha $\nu \mapsto K^2$ (módulo estabilidade). Isto nos fornecerá os modelos 5, 6 e 7 restantes. De fato, temos:

- 5) $\eta_5 = \nu \oplus \mathbb{R} \mapsto K^2$, \mathbb{R} é o fibrado trivial unidimensional sobre K^2 . Nesse caso, $v_1 = c, v_2 = 0$. Como $H^*(K^2, \mathbb{Z}_2)$ é um $H^*(\mathbb{RP}^1, \mathbb{Z}_2)$ -módulo livre gerado por 1 e c, temos que $c\alpha$ é o elemento não nulo de $H^2(K^2, \mathbb{Z}_2)$. Como $c^2 = \alpha c$, segue que $v_1^2 = c^2 \neq 0$. Portanto $\nu \oplus \mathbb{R} \mapsto K^2$ é um modelo que realiza a Lista 5.
- 6) $\eta_6 = \nu \oplus \nu \mapsto K^2$. Nesse caso $\mathbb{W}(\eta_6) = (1+c)^2 = 1+c^2$, portanto $v_1 = 0, v_2 = c^2$. Então $v_1^2 = 0, v_2 \neq 0$, realizando a Lista 6.
- 7) Sabemos que existe fibrado bidimensional $\eta_7 \mapsto K^2$, tal que $\eta_7 \oplus \mathbb{R} \mapsto K^2$ é equivalente a $\nu \oplus \nu \oplus \nu \mapsto K^2$. Então $\mathbb{W}(\eta_7) = \mathbb{W}(\eta_7 \oplus \mathbb{R}) = \mathbb{W}(\nu \oplus \nu \oplus \nu) = (1+c)^3 = 1+c+c^2$. Portanto, nesse caso $v_1^2 = c^2 = v_2 \neq 0$, e η_7 realiza a Lista 7.

Observação 3.2.3 Uma análise geométrica da construção do fibrado projetivo e a definição do fibrado $\xi \oplus \mathbb{R} \mapsto \mathbb{R}P^1$ nos mostra que de fato K^2 é a garrafa de Klein.

Também podemos notar que um modelo alternativo que realiza a Lista 6 é dado por $\nu \mapsto \mathbb{CP}^1$, onde \mathbb{CP}^1 é o espaço projetivo complexo unidimensional (que é homeomorfo a S^2) e ν é o fibrado-linha complexo de *Hopf* (com dimensão complexa 1). Nesse caso, $\mathbb{W}(\mathbb{CP}^1) = 1$ e $\mathbb{W}(\nu) = 1 + \alpha$, onde $\alpha \in H^2(\mathbb{CP}^2, \mathbb{Z}_2)$ é o gerador. Ou seja, $\nu \mapsto \mathbb{CP}^1$ é cobordante a $\eta_6 \mapsto K^2$.

Sumarizando, o seguinte teorema foi provado

Teorema 3.2.4 Para qualquer $k \ge 2$, $\mathcal{N}_2(BO(k))$ possui exatamente sete classes não nulas, as quais podem ser explicitamente descritas como:

1) $\beta_1 = [\eta_1 \oplus \mathbb{R}^{k-2} \mapsto \mathbb{R}P^2], \ com \ w_1^2 \neq 0, v_1^2 = 0, v_2 = 0;$ 2) $\beta_2 = [\eta_2 \oplus \mathbb{R}^{k-2} \mapsto \mathbb{R}P^2], \ com \ w_1^2 \neq 0, v_1^2 \neq 0, v_2 = 0;$ 3) $\beta_3 = [\eta_3 \oplus \mathbb{R}^{k-2} \mapsto \mathbb{R}P^2], \ com \ w_1^2 \neq 0, v_1^2 = 0, v_2 \neq 0;$ 4) $\beta_4 = [\eta_4 \oplus \mathbb{R}^{k-2} \mapsto \mathbb{R}P^2], \ com \ w_1^2 \neq 0, v_1^2 \neq 0, v_2 \neq 0;$ 5) $\beta_5 = [\eta_5 \oplus \mathbb{R}^{k-2} \mapsto K^2], \ com \ w_1^2 = 0, v_1^2 \neq 0, v_2 = 0;$ 6) $\beta_6 = [\eta_6 \oplus \mathbb{R}^{k-2} \mapsto K^2], \ com \ w_1^2 = 0, v_1^2 = 0, v_2 \neq 0;$ 7) $\beta_7 = [\eta_7 \oplus \mathbb{R}^{k-2} \mapsto K^2], \ com \ w_1^2 = 0, v_1^2 \neq 0, v_2 \neq 0.$

Observação 3.2.5 A estrutura de grupo de $\mathcal{N}_2(BO(k))$ pode ser facilmente descrita se lembrarmos que a soma de classes de bordismo de fibrados é compatível com a soma módulo 2 das correspondentes listas de números de *Whitney*. Desta forma, temos que

$$\begin{array}{rclcrcrcrcrc} \beta_{1} + \beta_{2} & = & \beta_{5} & = & \beta_{3} + \beta_{4} \\ \beta_{1} + \beta_{3} & = & \beta_{6} & = & \beta_{2} + \beta_{4} \\ \beta_{1} + \beta_{4} & = & \beta_{7} & = & \beta_{2} + \beta_{3} \end{array}$$

Observação 3.2.6 Conforme já mencionado, se (M^m, T) é uma involução fixando $F^n \cup F^2$, com fixed-data $(\mu \mapsto F^n) \cup (\eta \mapsto F^2)$ e com $\eta \mapsto F^2$ não bordante, então o Teorema 1.8.3 nos diz que podemos admitir sem perdas que $\eta \mapsto F^2$ é exatamente um dos modelos explícitos descritos no Teorema 3.2.4; isto será tacitamente utilizado na seção seguinte.

3.3 Prova do Teorema 3.1

Conforme vimos na introdução deste capítulo, para mostrar que

$$m(n; \{2\}) = max\{2n, m(n-2) + 4\},\$$

é suficiente provar o Teorema 3.1, o qual estabelece que, se (M^m, T) é involução fixando $F^n \cup F^2$ tal que o fibrado normal $\eta \mapsto F^2$ não borda, então $m \leq m(n-2)+4$. Pela seção anterior, sabemos que $\eta \mapsto F^2$ pode ser assumido como sendo exatamente um dos sete modelos explícitos lá descritos. Seja $\mu \mapsto F^n$ o fibrado normal sobre F^n . A dimensão de

 $\eta \in m-2$, e a dimensão de $\mu \in m-n$. Por facilidade de notação, coloquemos m-n=k. Usando a mesma notação da seção anterior, seja

$$\mathbb{W}(\eta) = 1 + v_1 + v_2, \qquad \mathbb{W}(F^2) = 1 + w_1 + w_2,$$

e conforme lá visto, o que determina qual modelo explícito é $\eta \mapsto F^2$ é a lista de números $w_1^2[F^2]_2$, $v_1^2[F^2]_2$, $v_2[F^2]_2$. Conforme mencionado na Seção 3.1, a estratégia consistirá inicialmente em promover uma redução do problema, de tal sorte que, após tal redução, o único modelo a ser considerado será β_2 . Tal redução se dará através do

Lema 3.3.1 Se m > m(n-2) + 4, então necessariamente $v_2 = 0$ e $w_1^2 = v_1^2$.

Observando os sete modelos possíveis para $\eta \mapsto F^2$, vemos que o único que satisfaz $v_2 = 0$ e $w_1^2 = v_1^2$ é $\eta_2 \oplus \mathbb{R}^{m-4} \mapsto \mathbb{R}P^2$. Portanto, o lema acima prova o Teorema 3.1 para todas as possibilidades de $\eta \mapsto F^2$, com exceção do modelo acima especificado. Uma vez feito isso, focaremos então a seguir nossa análise neste particular modelo, e conforme já anteriormente mencionado, a prova para este particular modelo é inspirada na abordagem efetuada por *Stong e Pergher* em [12], onde o *fixed-data* era do tipo $(\mu^{m-n} \mapsto F^n) \cup (\mathbb{R}^m \mapsto \{ponto\}).$

Para provar o lema acima, usaremos o fato já fartamente utilizado antes, que

$$p(c, W_1, \ldots, W_{m-1})[\mathbb{RP}(\eta)]_2 = p(c, W_1, \ldots, W_{m-1})[\mathbb{RP}(\mu)]_2$$

para qualquer polinomial p nas classes características dos fibrados-linha usuais sobre $\mathbb{RP}(\eta) \in \mathbb{RP}(\mu)$. A estratégia agora será mostrar que, se m > m(n-2) + 4, então é possível escolher polinomiais p especiais de tal sorte que $p(c, W_1, \ldots, W_{m-1})[\mathbb{RP}(\mu)]_2 = 0$ (por razões dimensionais), enquanto que $p(c, W_1, \ldots, W_{m-1})[\mathbb{RP}(\eta)]_2$ reproduza os números $V_1^2[F^2]_2 \in V_2[F^2]_2$, onde $V = 1 + V_1 + V_2 + V_3 + V_4$ é a classe de *Stiefel-Whitney* do fibrado $\eta \oplus \tau \mapsto F^2$, onde $\tau \mapsto F^2$ é o fibrado tangente sobre F^2 . Em outras palavras, será provado o seguinte

Lema 3.3.2 Se m > m(n-2) + 4, então $V_2[F^2]_2 = 0$ e $V_1^2[F^2]_2 = 0$, onde V_1 e V_2 são classes de Stiefel-Whitney do fibrado $\eta \oplus \tau$.

Vejamos que o Lema 3.3.2 acarreta o Lema 3.3.1. De fato, temos

$$\mathbb{W}(\eta \oplus \tau) = \mathbb{W}(\eta)\mathbb{W}(\tau) = (1 + v_1 + v_2)(1 + w_1 + w_2) =$$
$$= 1 + (w_1 + v_1) + (w_2 + w_1v_1 + v_2) + (w_2v_1 + w_1v_2) + w_2v_2.$$

Portanto $V_1 = w_1 + v_1$ e $V_2 = w_2 + w_1v_1 + v_2$. Então

$$0 = V_1^2 [F^2]_2 = (w_1 + v_1)^2 [F^2]_2 = (w_1^2 + v_1^2) [F^2]_2$$

e portanto $w_1^2 = v_1^2$. Também,

$$0 = V_2[F^2]_2 = (w_2 + w_1v_1 + v_2)[F^2]_2.$$

Mas sabemos, pelo Teorema 3.2.2, que $w_1v_1 = v_1^2$ (e acabamos de mostrar que $v_1^2 = w_1^2$); portanto

$$0 = w_2 + w_1v_1 + v_2 = w_2 + v_1^2 + v_2 = w_2 + w_1^2 + v_2$$

Ainda pelo Teorema 3.2.2, temos $w_1^2 = w_2$, portanto $v_2 = 0$, o que prova o Lema 3.3.1.

A escolha das polinomiais necessárias para provar o Lema 3.3.2 é bastante técnica, e terá como componente crucial uma polinomial especial usada por *Stong e Pergher* em [12] (lá chamada *classe X*), a qual envolve classes do tipo $W[r]_i$ com r's especiais descritos em [12]. Outra componente será dada por certas funções polinomiais simétricas especiais, denominadas f_{ω} , associadas a fibrados-linha $\lambda \mapsto B^n$, quando se considera o principio *splitting* sobre o fibrado tangente a B^n e sobre λ .

Tais f_{ω} terão conexões com as funções simétricas S_{ω} detalhadas na Seção 1.14 ($\omega = \text{partições}$). Isto será estratégico, uma vez que, se $\omega = (1, 1)$, então $S_{\omega} = V_2$, e se $\omega = (2)$, então $S_{\omega} = V_1^2$. Ou seja, formalmente nossas polinomiais serão do tipo

 $f_{\omega}Xc^{potencia}.$

Seja $\mathbb{W}(F^n) = 1 + \theta_1 + \theta_2 + \dots + \theta_n$, $\mathbb{W}(\mu) = 1 + u_1 + u_2 + \dots + u_k$. Temos, conforme Corolário 1.6.7 da página 9,

$$\mathbb{W}(\mathbb{R}P(\mu)) = (1 + \theta_1 + \dots + \theta_n) \{ (1+c)^k + (1+c)^{k-1}u_1 + \dots + u_k \}$$

e as classes W[r] vistas no Capítulo 2 dadas por

$$W[r] = \frac{1}{(1+c)^{k-r}} \mathbb{W}(\mathbb{R}P(\mu)) =$$

 $= (1+\theta_1+\cdots+\theta_n)\{(1+c)^r+u_1(1+c)^{r-1}+\cdots+u_r+u_{r+1}(1+c)^{-1}+\cdots+u_k(1+c)^{r-k}\}.$

Já vimos as propriedades:

 $W[r]_{2r} = \theta_r c^r + \text{ termos com } c^x, \text{ onde } x < r \text{ e}$

$$W[r]_{2r+1} = (\theta_{r+1} + u_{r+1})c^r + \text{ termos com } c^x, \text{ onde } x < r.$$

A classe X acima mencionada, introduzida por $Stong \ e \ Pergher \ em \ [12]$, tem a forma

$$X = w[r_1]_{2r_1} \cdots w[r_h]_{2r_h} w[s_1]_{2s_1+1} \cdots w[s_t]_{2s_t+1}.$$

Note que a dimensão de X é

$$dim(X) = 2(r_1 + \dots + r_h) + 2(s_1 + \dots + s_t) + t.$$

Além disso, por causa das propriedades acima, temos que

$$\begin{aligned} X &= (\theta_{r_1}c^{r_1} + \text{termos com } c^x, \text{ onde } x < r_1) + \\ &+ (\theta_{r_2}c^{r_2} + \text{termos com } c^x, \text{ onde } x < r_2) + \\ &+ \cdots \\ &+ (\theta_{r_h}c^{r_h} + \text{termos com } c^x, \text{ onde } x < r_h) + \\ &+ (\theta_{s_1+1} + u_{s_1+1})c^{s_1} + \text{ termos com } c^x, \text{ onde } x < s_1 + \\ &+ (\theta_{s_2+1} + u_{s_2+1})c^{s_2} + \text{ termos com } c^x, \text{ onde } x < s_2 + \\ &+ \cdots \\ &+ (\theta_{s_t+1} + u_{s_t+1})c^{s_t} + \text{ termos com } c^x, \text{ onde } x < s_t. \end{aligned}$$

Usando argumento análogo ao da página 30, temos

$$X = \theta_{r_1} \cdots \theta_{r_h} (\theta_{s_1+1} + u_{s_1+1}) \cdots (\theta_{s_t+1} + u_{s_t+1}) c^{|r|+|s|} + \text{ termos com } c^x, \text{ onde } x < |r|+|s|,$$
$$|r| = r_1 + \cdots + r_h \ e \ |s| = s_1 + \cdots + s_t.$$

Escreva $n-2 = 2^p q$, com q ímpar. Em [12], a classe X é construida com uma escolha muito especial dos valores $r_1, r_2, \ldots, r_h, s_1, \ldots, s_t$, expressos em termos de p e q. O que se pretende com tal X (em termos desta lista de valores $r_{i's} \in s_{j's}$) é que as seguintes propriedades técnicas sejam satisfeitas:

1) $\dim(X) = 2(r_1 + \dots + r_h) + 2(s_1 + \dots + s_t) + t = m(n-2)$

2)
$$|r| + |s| + t = r_1 + \dots + r_h + s_1 + \dots + s_t + t > n - 2$$
,

lembrando que, com $n-2=2^pq$,

$$m(n-2) = \begin{cases} (2^{p+1}-1)q + p + 1 & \text{se } p \le q+1\\ (2^{p+1}-2^{p-q})q + 2^{p-q}(q+1) & \text{se } p \ge q. \end{cases}$$

A lista dos valores $r_{i's}$ e $s_{j's}$ acima mencionada é assim descrita:

- i) se $p \le q+1$, $r_1 = 2^p 2^{p-1}$, $r_2 = 2^p 2^{p-2}$, ..., $r_i = 2^p 2^{p-i}$, ..., $r_p = 2^p 2^{p-p} = 2^p 1$ e $s_j = 2^p 1$, onde $1 \le j \le q+1-p$ (notando que se p=q+1, os $s_{j's}$ não ocorrem);
- ii) se $p \ge q+1$, $r_1 = 2^p 2^{p-1}$, $r_2 = 2^p 2^{p-2}$, ..., $r_i = 2^p 2^{p-i}$, ..., $r_{q+1} = 2^p 2^{p-q-1}$, e nesse caso os $s_{j's}$ não ocorrem.

Com tais valores, em [12] é demonstrado que as propriedades 1 e 2 acima são satisfeitas. Note ainda que, como $c^{|r|+|s|}$ é a potência máxima de c que ocorre na classe X, a Propriedade 2 diz que cada monômio de X tem portanto um termo proveniente de $H^*(F^n, \mathbb{Z}_2)$ com dimensão > n-2. As polinomiais f_{ω} que construiremos adiante terão dimensão 4, e serão tais que cada um de seus monômios possuirá termo c^x , com $x \leq 2$, o que significa que a dimensão mínima do termo de cada tal monômio que provem da cohomologia de F^n será 2. Segue que, se m > m(n-2)+4, então $m-1 \geq m(n-2)+4$ e poderemos então considerar a polinomial

$$f_{\omega}Xc^{(m-1)-(m(n-2)+4)}$$

a qual terá dimensão m-1, podendo portanto ser avaliada em $\mathbb{RP}(\mu)$. Agora, seja $c^x A$ um monômio de f_{ω} , onde conforme dito acima $dim(c^x A) = 4$, $x \leq 2$ (e portanto $dim(A) \geq 2$) e A provem de $H^*(F^2, \mathbb{Z}_2)$. Pelo visto acima, cada monômio de $f_{\omega}X$ terá um termo proveniente de $H^*(F^n, \mathbb{Z}_2)$ com dimensão > n. Segue que

$$f_{\omega} X c^{(m-1)-(m(n-2)+4)} [\mathbb{R}P(\mu)]_2 = 0$$

por razões dimensionais.

Para computar a polinomial $f_{\omega}Xc^{(m-1)-(m(n-2)+4)}$ sobre $\mathbb{RP}(\eta)$, analisemos inicialmente como X se comporta sobre $\mathbb{RP}(\eta)$. Temos

$$\mathbb{W}(\mathbb{R}P(\eta)) = (1 + w_1 + w_2)\{(1 + c)^{m-2} + v_1(1 + c)^{m-3} + v_2(1 + c)^{m-4}\}$$

A classe X é um produto de $W[r's]_i$, e vimos em 2.2 que W[r] sobre $\mathbb{RP}(\mu)$ produz a mesma polinomial que W[l] sobre $\mathbb{RP}(\eta)$, onde m-2-l = m-n-r, ou seja, l = n + r - 2. Tal W[l] sobre $\mathbb{RP}(\eta)$ é

$$W[l] = \frac{\mathbb{W}(\mathbb{R}P(\eta))}{(1+c)^{m-n-r}} = (1+w_1+w_2)\{(1+c)^{n+r-2} + (1+c)^{n+r-3}v_1 + (1+c)^{n+r-4}v_2\}.$$

Ou seja,

$$W[l] = (1+c)^{n+r-2} + (1+c)^{n+r-3}v_1 + (1+c)^{n+r-4}v_2 + (1+c)^{n+r-2}w_1 + \dots + (1+c)^{n+r-4}v_2w_2.$$

Conforme acima descrito, as polinomiais f_{ω} que construiremos são formadas por monômios $c^{x}A$, onde $dim(A) \geq 2$ e A provem de $H^{*}(F^{2},\mathbb{Z}_{2})$; portanto, dim(A) só pode ser 2 neste caso. Observando W[l], o produto de $c^{x}A$ por cada termo da mesma sempre tem portanto um termo que provem daqueles provindos de $H^{i}(F^{2},\mathbb{Z}_{2})$ onde $i \geq 3$ (o qual é nulo por razões dimensionais), com exceção de $(1+c)^{n+r-2}$. Segue que, com exceção de $(1+c)^{n+r-2}$, todos os termos restantes de W[l] nada contribuiem em $f_{\omega}Xc^{potência}$. Portanto, podemos considerar W[l] módulo termos de dimensão positiva provenientes de $H^{*}(F^{2},\mathbb{Z}_{2})$ em nossas computações. Isto é, vamos analisar

$$W[l] \equiv (1+c)^{n+r-2},$$

para os valores de $r_{i's}$ e $s_{j's}$ considerados para a obtenção da classe X, ou seja, $r_i = 2^p - 2^{p-i}$ e $s_j = 2^p - 1$. Lembramos que $n - 2 = 2^p q$, ou seja, $n = 2^p q + 2$. Para cada r_i e s_j considere seus correspondentes l_i e l_j ; temos então

$$W[l_i] \equiv (1+c)^{n+r_i-2}.$$

Portanto, como $r_i = 2^p - 2^{p-i}$ e $n = 2^p q + 2$,

$$w[l_i]_{2r_i} = \binom{n+r_i-2}{2r_i}c^{2r_i} = \binom{\dots+2^{p+1}-2^{p-i}}{2^{p+1}-2^{p+1-i}}c^{2r_i}$$

e pelo teorema de Lucas, 1.15.2 da página 21, segue que $w[l_i]_{2r_i} = c^{2r_i}$, uma vez que

$$\begin{pmatrix} \dots + 2^{p+1} - 2^{p-i} \\ 2^{p+1} - 2^{p+1-i} \end{pmatrix} = 1, \text{ pois } \begin{cases} 2^{p+1} - 2^{p-i} = 2^p + 2^{p-1} + \dots + 2^{p-i+1} + 2^{p-i} \\ 2^{p+1} - 2^{p+1-i} = 2^p + 2^{p-1} + \dots + 2^{p-i+1}. \end{cases}$$

Agora,

$$W[l_j] \equiv (1+c)^{n+s_j-2},$$

e assim, como $s_j = 2^p - 1$ e $n = 2^p q + 2$,

$$w[l_j]_{2s_j+1} = \binom{n+s_j-2}{2s_j+1}c^{2s_j+1} = \binom{\dots+2^{p+1}-1}{2^{p+1}-1}c^{2s_j+1}.$$

Portanto, segue que $w[l_j]_{2s_j+1} = c^{2s_j+1}$, uma vez que

$$\binom{\dots+2^{p+1}-1}{2^{p+1}-1} = 1, \text{ pelo teorema de } Lucas.$$

Assim, a classe X sobre $\mathbb{RP}(\eta)$ é dada por

$$X = c^{2r_1 + 2r_2 + \dots + 2r_h + (2s_1 + 1) + \dots + (2s_t + 1)} +$$

+ (termos contendo elementos com dimensão positiva provenientes de $H^*(F^2, \mathbb{Z}_2)) =$

$$= c^{m(n-2)} +$$

+ (termos contendo elementos com dimensão positiva provenientes de $H^*(F^2, \mathbb{Z}_2)$).

Passemos agora a descrever as polinomiais f_{ω} atrás mencionadas. Em linhas gerais, tais polinomiais provêem de certas funções simétricas que podem ser associadas a fibrados-linha genéricos $\gamma \mapsto V^n$, V^n variedade fechada *n*-dimensional (e em particular aos nossos fibrados-linha usuais associados a fibrados projetivos), quando se leva em consideração o princípio *splitting*. Seja então, levando em conta tal princípio (vide Seção 1.7),

$$\mathbb{W}(V^n) = 1 + w_1 + \dots + w_n = (1 + x_1)(1 + x_2) \cdots (1 + x_n),$$

е

$$\mathbb{W}(\gamma) = 1 + c.$$

Considere l um natural e seja $\omega = (i_1, i_2, \dots, i_r)$ partição de l tal que $r \leq n$. Temos então a função simétrica de grau 2l dada por

$$f_{\omega} = \sum_{\substack{j_1 < j_2 < \dots < j_r \\ 1 \le j_i \le n}} \sum_{\sigma \in S_r} x_{j_{\sigma(1)}}^{i_1} (c + x_{j_{\sigma(1)}})^{i_1} x_{j_{\sigma(2)}}^{i_2} (c + x_{j_{\sigma(2)}})^{i_2} \cdots x_{j_{\sigma(r)}}^{i_r} (c + x_{j_{\sigma(r)}})^{i_r},$$

onde S_r é o grupo de permutações de r elementos (compare com os S_{ω} da Seção 1.14, página 20).

Como tal função é simétrica, ela pode ser expressa em uma polinomial nos $w_{i's}$ e c. Para obter nossas específicas f_{ω} , particularizemos as mesmas para o caso em que $l = 2 \ e \ \gamma \ \mapsto \ V^n$ é o fibrado-linha usual associado ao fibrado projetivo $\mathbb{RP}(\zeta^k)$, $\lambda \mapsto \mathbb{RP}(\zeta^k)$, onde $\zeta^k \mapsto B^n$ é um fibrado k-dimensional sobre uma variedade fechada B^n . Nesse caso, temos as partições $\omega = (1, 1) \ e \ \omega = (2)$, e a dimensão de f_{ω} será 4. O próximo lema relacionará tais f_{ω} com as S_{ω} da Seção 1.14 associadas ao fibrado $\tau^n \oplus \zeta^k \mapsto B^n$, onde τ^n é o fibrado tangente a B^n .

Lema 3.3.3 Para $\omega = (1, 1)$ ou $\omega = (2)$, vale que

$$f_{\omega}(\lambda \mapsto \mathbb{RP}(\zeta^k)) = S_{\omega}(\tau^n \oplus \zeta^k)c^2 + termos \ com \ c^x, \ x < 2.$$

Prova: Seja, pelo princípio *splitting*,

$$\mathbb{W}(B^n) = (1+x_1)\cdots(1+x_n), \qquad \mathbb{W}(\zeta^k) = (1+y_1)\cdots(1+y_k).$$

Então, pelo Teorema 1.7.2

$$\mathbb{W}(\mathbb{R}P(\zeta^k)) = (1+z_1)\cdots(1+z_n)(1+z_{n+1})\cdots(1+z_{n+k})$$

onde $z_i = x_i$ se $1 \le i \le n$ e $z_j = c + y_{j-n}$ se $n < j \le n + k$. Primeiro analisemos $\omega = (1, 1)$. Lembremos que S_{ω} neste caso é composto por monômios que são produtos de duas variáveis distintas de grau 1, ambas com potência 1. Como, pelo princípio *splitting*,

$$\mathbb{W}(\tau^n \oplus \zeta^k) = (1+x_1)\cdots(1+x_n)(1+y_1)\cdots(1+y_k),$$

temos que

$$S_{\omega}(\tau^n \oplus \zeta^k) = \sum_{i < j} x_i x_j + \sum_{i,j} x_i y_j + \sum_{i < j} y_i y_j.$$

Por outro lado, se $\gamma \mapsto V^n$ é qualquer fibrado-linha com

$$\mathbb{W}(\gamma) = 1 + c, \qquad \mathbb{W}(V^n) = (1 + x_1)(1 + x_2) \cdots (1 + x_n),$$

então f_ω é formado por todos os possíveis termos dos tipo

$$x_i(c+x_i)x_j(c+x_j)$$

com i < j. Em particular, $f_{\omega}(\mathbb{R}\mathrm{P}(\zeta^k))$ tem o formato

$$\sum_{i < j} z_i(c+z_i) z_j(c+z_j).$$

Tais termos provêm portanto de três fontes:

i) da parte $(1 + z_1) \cdots (1 + z_n) = (1 + x_1) \cdots (1 + x_n)$, a qual contribui com

$$\sum_{i < j} x_i(c + x_i) x_j(c + x_j)$$

ii) da parte $(1 + z_{n+1}) \cdots (1 + z_{n+k}) = (1 + c + y_1) \cdots (1 + c + y_k)$, a qual contribui com

$$\sum_{i < j} (c + y_i)(c + c + y_j)(c + y_j)(c + c + y_j) = \sum_{i < j} y_i(c + y_i)y_j(c + y_j)$$

iii) da mistura das variáveis de ambas as partes acima, o que contribui com

$$\sum_{i,j} x_i(c+x_i)(c+y_j)(c+c+y_j) = \sum_{i< j} x_i(c+x_i)y_j(c+y_j)$$

Na parte i), em cada termo

$$x_i(c+x_i)x_j(c+x_j)$$

o monômio com maior potência de c é

$$x_i x_j c^2$$
.

Portanto,

$$x_i(c+x_i)x_j(c+x_j) = x_ix_jc^2 + \text{ termos com } c^x, \ x < 2.$$

Analogamente, na parte ii), temos

$$y_i(c+y_i)y_j(c+y_j) = y_iy_jc^2 + \text{ termos com } c^x, \ x < 2$$

Na parte *iii*), temos

$$x_i(c+x_i)y_j(c+y_j) = x_iy_jc^2 + \text{ termos com } c^x, \ x < 2.$$

Juntando tais fatos, concluimos que

$$\begin{split} f_{\omega}(\mathbb{R}\mathcal{P}(\zeta^k)) &= & ((\sum_{i < j} x_i x_j)c^2 + \text{termos com } c^x, \text{ onde } x < 2) + \\ &+ ((\sum_{i < j} y_i y_j)c^2 + \text{termos com } c^x, \text{ onde } x < 2) + \\ &+ ((\sum_{i, j} x_i y_j)c^2 + \text{termos com } c^x, \text{ onde } x < 2) = \\ &= & ((\sum_{i < j} x_i x_j) + (\sum_{i, j} x_i y_j) + (\sum_{i < j} y_i y_j))c^2 + \\ &+ (\text{termos com } c^x, \text{ onde } x < 2) = \\ &= & S_{\omega}(\tau \oplus \zeta^k)c^2 + \text{ termos com } c^x, \text{ onde } x < 2). \end{split}$$

O que prova o resultado para $\omega = (1, 1)$. Analisemos agora $\omega = (2)$. Neste caso, S_{ω} é composto por monômios constituidos por uma única variável com potência 2. Segue que

$$S_2(\tau^n \oplus \zeta^k) = \sum_i x_i^2 + \sum_i y_i^2.$$

Por outro lado,

$$\begin{aligned} f_{\omega}(\mathbb{RP}(\zeta^k)) &= \sum_i x_i^2 (c+x_i)^2 + \sum_j (c+y_j)^2 (c+c+y_j)^2 = \\ &= \sum_i x_i^2 (c+x_i)^2 + \sum_j y_j^2 (c+y_j)^2 = \\ &= \sum_i x_i^2 (c^2+x_i^2) + \sum_i y_j^2 (c^2+y_j^2) = \\ &= ((\sum_i x_i^2) c^2 + \sum_i x_i^4) + (\sum_j y_j^2) c^2 + \sum_j y_j^4) = \\ &= (\sum_i x_i^2 + \sum_j y_j^2) c^2 + \text{ (termos com } c^x, \text{ onde } x < 2) = \\ &= S_{\omega}(\tau \oplus \zeta^k) c^2 + \text{ termos com } c^x, \text{ onde } x < 2), \end{aligned}$$

encerrando a demonstração.

Estamos agora em condições de provar o Lema 3.3.2, que era o nosso primeiro grande objetivo. Ou seja, provaremos que, se m > m(n-2)+4, então $V_2[F^2]_2 = 0$ e $V_1^2[F^2]_2 = 0$, onde V_1 e V_2 são as classes de *Stiefel-Whitney* do fibrado $\eta \oplus \tau$. Conforme explicado anteriormente, consideremos a polinomial $f_{\omega}Xc^y$, onde y = (m-1) - (m(n-2)+4), avaliada em $\mathbb{RP}(\mu)$ e $\mathbb{RP}(\eta)$.

Para que tal polinomial se anule sobre $\mathbb{RP}(\mu)$ (por razões dimensionais) vimos que o argumento era exibir f_{ω} com dimensão 4 e tal que cada um de seus monômios seja da forma $c^{x}A$, A proveniente de $H^{*}(F^{n}, \mathbb{Z}_{2})$ e $dim(A) \geq 2$. Pelo Lema 3.3.3, temos que

$$f_{\omega}(\mathbb{RP}(\mu)) = S_{\omega}(\tau^n \oplus \mu)c^2 + \text{ termos com } c^x, \ x < 2,$$

onde τ^n é o fibrado tangente a F^n , e $\omega = (1, 1)$ ou $\omega = (2)$. Como $S_{\omega}(\tau^n \oplus \mu)$ se expressa nas classes características de $\tau^n \oplus \mu$ (as quais provêm da cohomologia de F^n), temos que para tais ω

$$f_{\omega} X c^y [\mathbb{R} \mathbb{P}(\mu]_2 = 0.$$

Por outro lado, se $\omega = (1, 1), \tau^2$ é o fibrado tangente a F^2 , e

$$\mathbb{W}(\tau^2) = (1+x_1)(1+x_2), \qquad \mathbb{W}(\eta) = (1+y_1)(1+y_2),$$

então

$$S_{\omega}(\tau^2 \oplus \eta) = x_1 x_2 + y_1 y_2 + x_1 y_1 + x_1 y_2 + x_2 y_1 + x_2 y_2 = V_2(\tau^2 \oplus \eta)$$

e se $\omega = (2),$

$$S_{\omega}(\tau^2 \oplus \eta) = x_1^2 + x_2^2 + y_1^2 + y_2^2 = V_1^2(\tau^2 \oplus \eta).$$

Segue, usando o Lema 3.3.3 e o cálculo anterior da classe X para $\mathbb{RP}(\eta)$, que

$$f_{\omega}Xc^{y}[\mathbb{R}P(\eta)]_{2} = S_{\omega}(\tau \oplus \eta)c^{2} + (\text{termos com } c^{x}, \text{ onde } x < 2) \cdot \\ \cdot (c^{m(n-2)} + \text{termos contendo elementos com dimensão positiva } \\ \text{provenientes de } H^{*}(F^{2}, \mathbb{Z}_{2})) \ c^{y} \ [\mathbb{R}P(\eta)]_{2}.$$

Agora, cada termo envolvendo elementos de dimensão positiva proveniente de $H^*(F^n, \mathbb{Z}_2)$ multiplicado por $S_{\omega}(\tau \oplus \eta)$ dá zero, uma vez que $S_{\omega}(\tau \oplus \eta) \in H^2(F^2, \mathbb{Z}_2)$. Segue que

$$f_{\omega}Xc^{y}[\mathbb{R}P(\eta)]_{2} = S_{\omega}(\tau \oplus \eta)c^{m(n-2)+2+y} + (\text{termos com } c^{x}, \text{ onde } x < m(n-2)+2+y).$$

Note agora que cada termo envolvendo $c^x \operatorname{com} x < m(n-2) + 2 + y$ necessariamente terá termo proveniente de $H^*(F^2, \mathbb{Z}_2)$ com dimensão > 2, o que é zero. Portanto

$$f_{\omega} X c^{y} [\mathbb{R} \mathbb{P}(\eta)]_{2} = S_{\omega}(\tau \oplus \eta) c^{m(n-2)+2+y} [\mathbb{R} \mathbb{P}(\eta)]_{2} = \\ = S_{\omega}(\tau \oplus \eta) c^{m-3} [\mathbb{R} \mathbb{P}(\eta)]_{2} = \begin{cases} V_{2} c^{m-3} [\mathbb{R} \mathbb{P}(\eta)]_{2} & \text{se} & \omega = (1,1), \\ V_{1}^{2} c^{m-3} [\mathbb{R} \mathbb{P}(\eta)]_{2} & \text{se} & \omega = (2). \end{cases}$$

Lembrando finalmente que $H^*(\mathbb{RP}(\eta),\mathbb{Z}_2)$ é um $H^*(F^2,\mathbb{Z}_2)$ -módulo livre gerado por

$$1, c, c^2, \ldots, c^{m-3},$$

e usando argumento completamente semelhante ao da página 31, concluimos que

$$S_{\omega}(\tau \oplus \eta)c^{m-3}[\mathbb{R}\mathrm{P}(\eta)]_2 = S_{\omega}(\tau \oplus \eta)[F^2]_2$$

ou seja,

$$f_{\omega} X c^{y} [\mathbb{R} \mathbb{P}(\eta)]_{2} = \begin{cases} V_{2} [F^{2}]_{2} & \text{se} \quad \omega = (1, 1), \\ V_{1}^{2} [F^{2}]_{2} & \text{se} \quad \omega = (2). \end{cases}$$

Isto encerra a prova do Lema 3.3.2 (e conseqüentemente do Lema 3.3.1).

A tarefa acima encerrada reduz nosso trabalho, conforme já explicado, a provar o seguinte fato: se (M^m, T) é involução com *fixed-data* $(\mu \mapsto F^n) \cup (\eta_2 \oplus \mathbb{R}^{m-4} \mapsto \mathbb{R}P^2)$, onde $\eta_2 = \lambda \oplus \mathbb{R}$ e λ é o fibrado-linha canônico sobre $\mathbb{R}P^2$, então $m \leq m(n-2) + 4$. Para facilitar nossa tarefa, estabeleceremos algumas notações que serão válidas até o final do capítulo. Manteremos a notação já estabelecida

$$\mathbb{W}(F^n) = 1 + \theta_1 + \dots + \theta_n, \qquad \mathbb{W}(\mu) = 1 + u_1 + \dots + u_k, \qquad k = m - n.$$

Doravante, portanto, (M^m, T) será sempre uma involução com o *fixed-data* acima. Denotemos por $\alpha \in H^1(\mathbb{RP}^2, \mathbb{Z}_2)$ o gerador, e o fibrado

$$\eta_2 \oplus \mathbb{R}^{m-4} \mapsto \mathbb{R}\mathrm{P}^2 = \lambda \oplus \mathbb{R}^{m-3} \mapsto \mathbb{R}\mathrm{P}^2,$$

será denotado simplesmente por $\eta \mapsto \mathbb{RP}^2$. Sabemos que $\mathbb{W}(\eta) = 1 + \alpha$. A letra c será designada para denotar simultaneamente as primeiras classes de *Whitney* dos fibradoslinha usuais sobre $\mathbb{RP}(\eta) \in \mathbb{RP}(\mu)$, dependendo do contexto. Nossa estratégia consistirá em mostrar que, caso m > m(n-2) + 4, então é possível escolher polinomiais especiais $p(c, w_1, \ldots, w_{m-1})$ com dimensão m - 1 de tal sorte que

$$p(c, w_1, \ldots, w_{m-1})[\mathbb{RP}(\eta)]_2 = 1$$

(o que é viável, uma vez que os números característicos do fibrado-linha sobre $\mathbb{RP}(\eta)$ são explicitamente conhecidos) e

$$p(c, w_1, \ldots, w_{m-1})[\mathbb{RP}(\mu)]_2 = 0$$

(por razões dimensionais), o que nos dará a contradição. Tais polinomiais não serão únicas para todos os valores de n, sendo diferentes nos casos n par e n ímpar. Novamente, e particularmente para n par, a construção de tais polinomiais dependerá crucialmente da classe X de Stong e Pergher anteriormente usada.

Lema 3.3.4 Em $H^*(\mathbb{RP}(\eta), \mathbb{Z}_2)$, temos que $c^{m-1} = \alpha c^{m-2} = \alpha^2 c^{m-3}$, o qual é o gerador de $H^{m-1}(\mathbb{RP}(\eta), \mathbb{Z}_2)$.

Prova: Por 1.6.5 do Capítulo 1, sabemos que $H^*(\mathbb{RP}(\eta), \mathbb{Z}_2)$ é um $H^*(\mathbb{RP}^2, \mathbb{Z}_2)$ -módulo livre gerado por $1, c, c^2, \dots, c^{m-3}$. Segue que $\alpha^2 c^{m-3}$ é o gerador na dimensão *top*, ou seja, de $H^{m-1}(\mathbb{RP}(\eta), \mathbb{Z}_2)$. Agora, em $H^*(\mathbb{RP}(\eta), \mathbb{Z}_2)$ vale a relação

$$c^{m-2} = c^{m-3}w_1(\eta) + c^{m-4}w_2(\eta) + \dots + w_{m-2}(\eta)$$

e como $w_1(\eta) = \alpha$ e $w_i(\eta) = 0$ para i > 1, temos

$$c^{m-2} = c^{m-3}\alpha$$

Multiplicando por α e a seguir por c, temos

$$c^{m-2}\alpha = c^{m-3}\alpha^2$$
, e $c^{m-1} = c^{m-2}\alpha$

resultando em

$$c^{m-1} = c^{m-2}\alpha = c^{m-3}\alpha^2.$$

Nosso primeiro passo será mostrar o resultado para n ímpar, o qual é o caso mais simples. Se n é ímpar, n-2 é ímpar, e portanto m(n-2) + 4 = (n-1) + 4 = n + 3. Mostraremos nesse caso um fato mais forte do que aquele que está sendo proposto $(m \le n+3)$. De fato, mostraremos que nesse caso $m \le n+1$. Mais ainda, no Capítulo 4, veremos que esse caso particular tem por trás de si um fato ainda mais forte, o qual se constitui em um teorema de classificação: veremos que nesse caso (M^m, T) é equivariantemente cobordante à involução especial mencionada em 1.10.

Temos que

$$\mathbb{W}(\mathbb{R}P(\mu)) = (1 + \theta_1 + \dots + \theta_n)\{(1 + c)^k + (1 + c)^{k-1}u_1 + \dots + u_k\}$$

е

$$\mathbb{W}(\mathbb{R}P(\eta)) = (1 + \alpha + \alpha^2)\{(1 + c)^{m-2} + (1 + c)^{m-3}\alpha\}$$

A polinomial adequada nesse caso será oriunda de W[0] associada a μ , o que obriga a considerar W[l] associada a η , onde l = n - 2.

Em outras palavras, consideraremos as classes

$$\frac{1}{(1+c)^k} \mathbb{W}(\mathbb{R}P(\mu)) = (1+\theta_1+\dots+\theta_n) \{1+\frac{u_1}{(1+c)}+\dots+\frac{u_k}{(1+c)^k}\},\$$
$$\frac{1}{(1+c)^k} \mathbb{W}(\mathbb{R}P(\eta)) = (1+\alpha+\alpha^2) \{(1+c)^{n-2}+(1+c)^{n-3}\alpha\}.$$

Se m > n+1, $m-1 \ge n+1$, e então podemos considerar a polinomial $W[0]_1^{n+1}c^{m-1-(n+1)}$ associada a μ , a qual tem dimensão m-1 e é idêntica à polinomial $W[l]_1^{n+1}c^{m-1-(n+1)}$ associada a η . Temos que $W[0]_1$ sobre $\mathbb{RP}(\mu)$ é

$$W[0]_1 = \theta_1 + u_1,$$

enquanto $W[l]_1$ sobre $\mathbb{RP}(\eta)$ é

$$W[l]_1 = \binom{n-2}{1}c + \alpha + \alpha = \binom{n-2}{1}c = c,$$

uma vez que, sendo n-2 ímpar, $\binom{n-2}{1} \equiv 1 \pmod{2}$.

Então, sobre $\mathbb{RP}(\mu)$,

$$W[0]_1^{n+1}c^{m-1-(n+1)} = (\theta_1 + u_1)^{n+1}c^{m-1-(n+1)}$$

o que é zero uma vez que $(\theta_1 + u_1)^{n+1}$ provem de $H^{n+1}(F^n)$. Por outro lado, sobre $\mathbb{RP}(\eta)$,

$$W[l]_{1}^{n+1}c^{m-1-(n+1)} = c^{n+1} \cdot c^{m-n-2} = c^{m-1}$$

o qual pelo Lema 3.3.4 é o gerador de $H^{m-1}(\mathbb{RP}(\eta))$. Isto encerra a prova no caso n ímpar.

Iniciaremos então a abordagem do caso em que n é par. Considere portanto a partir de agora n par, e portanto n-2 também é par. Escreva $n-2 = 2^p q$, onde q é ímpar e p > 0. A escolha da polinomiais nesse caso não é tão simples como no caso n ímpar, demandando o uso da classe X. Conforme vimos, tal classe sobre $\mathbb{RP}(\mu)$ assume o aspecto geral

$$X = W[r_1]_{2r_1} W[r_2]_{2r_2} \cdots W[r_h]_{2r_h} W[s_1]_{2s_1+1} W[s_2]_{2s_2+1} \cdots W[s_t]_{2s_t+1},$$

e a mesma é usada com valores especiais dos $r_{i's}$ e $s_{i's}$ (do tipo $2^p - 2^i$) e levando em conta as propriedades especiais das classes do tipo $W[r]_{2r}$ e $W[r]_{2r+1}$. Ao utilizar tal tipo de classe para produzir polinomiais sobre $\mathbb{RP}(\mu)$, devemos levar em conta que as mesmas polinomiais deverão ser consideradas sobre $\mathbb{RP}(\eta)$, e portanto os pedaços $W[l]_{2r}$, $W[l]_{2r+1}$ sobre $\mathbb{RP}(\eta)$, onde l = n+r-2, devem ser utilizados, respectivamente, no lugar de $W[r]_{2r}$ e $W[r]_{2r+1}$. Nossa primeira tarefa será, portanto, computar os pedaços, $W[l]_{2r}$ e $W[l]_{2r+1}$ sobre $\mathbb{RP}(\eta)$.

Temos

$$W[l] = \frac{1}{(1+c)^{m-2-l}} \mathbb{W}(\mathbb{R}P(\eta)) = \frac{1}{(1+c)^{k-r}} \mathbb{W}(\mathbb{R}P(\eta)) =$$
$$= (1+\alpha+\alpha^2)\{(1+c)^{n+r-2} + (1+c)^{n+r-3}\}.$$

Então

$$W[l]_{2r} = \binom{n+r-2}{2r}c^{2r} + \binom{n+r-3}{2r-1}\alpha c^{2r-1} + \binom{n+r-2}{2r-1}\alpha c^{2r-1} + \binom{n+r-2}{2r-1}\alpha c^{2r-1} + \binom{n+r-3}{2r-2}\alpha^2 c^{2r-2}$$

е

$$W[l]_{2r+1} = \binom{n+r-2}{2r+1}c^{2r+1} + \binom{n+r-3}{2r}\alpha c^{2r} + \binom{n+r-2}{2r}\alpha c^{2r} + \binom{n+r-2}{2r-1}\alpha^2 c^{2r-1} + \binom{n+r-2}{2r-1}\alpha^2 c^{2r-1}.$$

Computemos então $W[l]_{2r}$ para $r = 2^p - 2^i$, onde $i = 0, 1, \ldots, p-1$. Lembremos que $n - 2 = 2^p q$, portanto $n = 2^p q + 2$. Para facilitar a notação escreveremos as vezes $2r = 2^{p+1} - 2^{i+1} = y$. Temos para $r = 2^p - 2^i$ que

$$\begin{split} W[l]_{2^{p+1}-2^{i+1}} &= \binom{2^p q + 2^p - 2^i}{2^{p+1} - 2^{i+1}} c^y \\ &+ \binom{2^p q + 2^p - 2^i}{2^{p+1} - 2^{i+1} - 1} \alpha c^{y-1} \\ &+ \binom{2^p q + 2^p - 2^i}{2^{p+1} - 2^{i+1} - 1} \alpha c^{y-1} \\ &+ \binom{2^p q + 2^p - 2^i}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{2^p q + 2^p - 2^i}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^{p+1} - 2^i}{2^{p+1} - 2^{i+1} - 1} \alpha c^{y-1} \\ &+ \binom{\cdots + 2^{p+1} - 2^i - 1}{2^{p+1} - 2^{i+1} - 1} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^{p+1} - 2^i - 1}{2^{p+1} - 2^{i+1} - 1} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^{p+1} - 2^i - 1}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^{p+1} - 2^i - 1}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^{p+1} - 2^i}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^{p+1} - 2^i}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^{p+1} - 2^i}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^{p+1} - 2^i}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^{p+1} - 2^i}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^{p+1} - 2^i}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^{p+1} - 2^i}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^{p+1} - 2^i}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^{p+1} - 2^i}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^{p+1} - 2^i}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^{p+1} - 2^i}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^{p+1} - 2^i}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^{p+1} - 2^i}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^p}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^p}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^p}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^p}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^p}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^p}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^p}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^p}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^p}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^p}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^p}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots + 2^p}{2^{p+1} - 2^{i+1} - 2} \alpha^2 c^{y-2} \\ &+ \binom{\cdots$$

Pelo teorema de *Lucas*, o coeficiente binomial $\binom{a}{b}$ é não nulo módulo 2 se, e somente se, a expansão diádica de *b* estiver contida na expansão diádica de *a*. Usando este principio, podemos decidir a paridade dos cinco termos acima; temos

$$\begin{aligned} \mathbf{i} \quad \begin{pmatrix} \cdots + 2^{p+1} - 2^i \\ 2^{p+1} - 2^{i+1} \end{pmatrix} &= 1 \quad \text{,pois} \quad \begin{cases} 2^{p+1} - 2^i = 2^p + 2^{p-1} + \dots + 2^{i+1} + 2^i & e \\ 2^{p+1} - 2^{i+1} = 2^p + 2^{p-1} + \dots + 2^{i+1} + 2^i & e \end{cases} \\ \end{aligned}$$

$$\begin{aligned} \mathbf{i} \quad \begin{pmatrix} \cdots + 2^{p+1} - 2^i - 1 \\ 2^{p+1} - 2^{i+1} - 1 \end{pmatrix} &= 0, \text{ pois} \\ \begin{cases} 2^{p+1} - 2^i - 1 = 2^p + \dots + 2^{i+1} + 0 + 2^{i-1} + \dots + 1 & e \\ 2^{p+1} - 2^{i+1} - 1 = 2^p + \dots + 2^{i+2} + 0 + 2^i + \dots + 1 \end{cases} \\ \end{aligned}$$

$$\begin{aligned} \mathbf{i} \quad \begin{pmatrix} \cdots + 2^{p+1} - 2^i \\ 2^{p+1} - 2^{i+1} - 1 \end{pmatrix} &= \begin{cases} 1 \quad \text{se} \quad i = 0 \\ 0 \quad \text{se} \quad i \ge 1 \end{cases}, \text{ pois} \\ \end{aligned}$$

$$\begin{aligned} \text{se} \quad i = 0 \begin{cases} 2^{p+1} - 1 = 2^p + 2^{p-1} + \dots + 2^i + 0 + 2^i + \dots + 1 \\ 2^{p+1} - 2^{i+1} - 1 \end{pmatrix} &= \begin{cases} 1 \quad 2^p + 2^{p-1} + \dots + 2^i + 0 + 2^i + 0 + 1 \\ 2^{p+1} - 2^{i+1} - 1 = 2^p + 2^{p-1} + \dots + 2^i + 0 + 1 \end{cases} \\ \end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} \text{se} \quad i = 1 \begin{cases} 2^{p+1} - 2^i = 2^p + 2^{p-1} + \dots + 2^i + 0 + \dots + 0 & e \\ 2^{p+1} - 2^{i+1} - 1 = 2^p + 2^{p-1} + \dots + 2^i + 0 + \dots + 0 & e \\ 2^{p+1} - 2^{i+1} - 1 = 2^p + 2^{p-1} + \dots + 2^{i+1} + 0 + 2^{i-1} + \dots + 1 \end{cases}$$

$$\begin{aligned} \mathbf{iv}) & \left(\begin{array}{c} \dots + 2^{p+1} - 2^{i} - 1\\ 2^{p+1} - 2^{i+1} - 2 \end{array} \right) = \begin{cases} 1 & \text{se} \quad i = 0\\ 0 & \text{se} \quad i \ge 1 \end{cases}, \text{ pois} \\ \\ \text{se} \quad i = 0 \begin{cases} 2^{p+1} - 2 = 2^{p} + 2^{p-1} + \dots + 2 + 0 & \text{e}\\ 2^{p+1} - 4 = 2^{p} + 2^{p-1} + \dots + 2^{2} + 0 + 0 \end{cases} \\ \\ \text{se} \quad i \ge 1 \begin{cases} 2^{p+1} - 2^{i} - 1 = 2^{p} + 2^{p-1} + \dots + 2^{i+1} + 0 + 2^{i-1} + \dots + 1 & \text{e}\\ 2^{p+1} - 2^{i+1} - 2 = 2^{p} + 2^{p-1} + \dots + 2^{i+2} + 0 + 2^{i} + \dots + 2 + 0 \end{cases}$$

e finalmente

$$\mathbf{v}) \quad \begin{pmatrix} \dots + 2^{p+1} - 2^i \\ 2^{p+1} - 2^{i+1} - 2 \end{pmatrix} = \begin{cases} 1 & \text{se} \quad i = 0 \text{ ou } 1 \\ 0 & \text{se} \quad i \ge 2 \end{cases}, \text{ pois}$$

$$\text{se } i = 0 \begin{cases} 2^{p+1} - 1 = 2^p + 2^{p-1} + \dots + 2 + 1 & \text{e} \\ 2^{p+1} - 4 = 2^p + 2^{p-1} + \dots + 2^2 + 0 + 0 \end{cases}$$

$$\text{se } i = 1 \begin{cases} 2^{p+1} - 2 = 2^p + 2^{p-1} + \dots + 2^2 + 0 & \text{e} \\ 2^{p+1} - 6 = 2^p + 2^{p-1} + \dots + 2^3 + 0 + 2 + 0 \end{cases}$$

$$\text{se } i = 2 \begin{cases} 2^{p+1} - 2^2 = 2^p + 2^{p-1} + \dots + 2^2 + 0 & \text{e} \\ 2^{p+1} - 2^3 - 2 = 2^p + 2^{p-1} + \dots + 2^4 + 0 + 2^2 + 2 + 0 \end{cases}$$

$$\text{se } i > 2 \begin{cases} 2^{p+1} - 2^i = 2^p + 2^{p-1} + \dots + 2^i + 0 + \dots + 0 & \text{e} \\ 2^{p+1} - 2^{i+1} - 2 = 2^p + 2^{p-1} + \dots + 2^i + 0 + \dots + 0 & \text{e} \end{cases}$$

Logo $W[l]_{2^{p+1}-2^{i+1}}$ para $r = 2^p - 2^i$ é dado por:

$$W[l]_{2^{p+1}-2^{i+1}} = \begin{cases} c^{y_0} + \alpha c^{y_0-1} & \text{se } i = 0 & (y_0 = 2^{p+1} - 2) \\ c^{y_1} + \alpha^2 c^{y_1-2} & \text{se } i = 1 & (y_1 = 2^{p+1} - 4) \\ c^{y_i} & \text{se } i \ge 2 & (y_i = 2^{p+1} - 2^{i+1}) \end{cases}$$

Ou seja,

$$\begin{array}{rcl} w[l]_{2^{p+1}-2} &=& c^{y_0} + \alpha c^{y_0-1} & \text{ se } r = 2^p - 1 \\ w[l]_{2^{p+1}-4} &=& c^{y_1} + \alpha^2 c^{y_1-2} & \text{ se } r = 2^p - 2 \\ w[l]_{2^{p+1}-2^{i+1}} &=& c^{y_i} & \text{ se } r = 2^p - 2^i & \text{ e } i \ge 2 \end{array}$$

onde $y_i = 2^{p+1} - 2^{i+1}$.

Agora considere a classe $w[l]_{2^{p+1}-1}$ para $r = 2^p - 1$. Temos

$$W[l]_{2^{p+1}-1} = {\binom{2^{p}q+2^{p}-1}{2^{p+1}-1}} c^{2^{p+1}-1} + {\binom{2^{p}q+2^{p}-2}{2^{p+1}-2}} \alpha c^{2^{p+1}-2} + {\binom{2^{p}q+2^{p}-1}{2^{p+1}-2}} \alpha c^{2^{p+1}-2} + {\binom{2^{p}q+2^{p}-2}{2^{p+1}-3}} \alpha^{2} c^{2^{p+1}-3} + {\binom{2^{p}q+2^{p}-1}{2^{p+1}-3}} \alpha^{2} c^{2^{p+1}-3} = {\binom{\cdots+2^{p+1}-1}{2^{p+1}-1}} c^{2^{p+1}-1} + {\binom{\cdots+2^{p+1}-2}{2^{p+1}-2}} \alpha c^{2^{p+1}-2} + {\binom{\cdots+2^{p+1}-1}{2^{p+1}-2}} \alpha c^{2^{p+1}-2} + {\binom{\cdots+2^{p+1}-2}{2^{p+1}-3}} \alpha^{2} c^{2^{p+1}-3} + {\binom{\cdots+2^{p+1}-1}{2^{p+1}-3}} \alpha^{2} c^{2^{p+1}-3}.$$

Mas

$$\begin{pmatrix} \dots + 2^{p+1} - 1\\ 2^{p+1} - 1 \end{pmatrix} = 1; \qquad \begin{pmatrix} \dots + 2^{p+1} - 2\\ 2^{p+1} - 2 \end{pmatrix} = 1; \qquad \begin{pmatrix} \dots + 2^{p+1} - 1\\ 2^{p+1} - 2 \end{pmatrix} = 1;$$

$$\begin{pmatrix} \dots + 2^{p+1} - 2\\ 2^{p+1} - 3 \end{pmatrix} = 0; \qquad \begin{pmatrix} \dots + 2^{p+1} - 1\\ 2^{p+1} - 3 \end{pmatrix} = 1.$$
Assim
$$\hline W[l]_{2^{p+1} - 1} = c^{2^{p+1} - 1} + \alpha^2 c^{2^{p+1} - 3}, \text{ para } r = 2^p - 1$$

$$W[l]_{2^{p+1}-1} = c^{2^{p+1}-1} + \alpha^2 c^{2^{p+1}-3}$$
, para $r = 2^p - 1$

Suponhamos agora $p \leq q+1$ e considere a classe Xdada por:

$$X = W[l_0]_{2^{p+1}-1}^{q+1-p} W[l_{p-1}]_{2^{p+1}-2^p} W[l_{p-2}]_{2^{p+1}-2^{p-1}} \cdots W[l_{p-i}]_{2^{p+1}-2^{i+1}} \cdots W[l_0]_{2^{p+1}-2},$$

onde cada l_i é obtido fazendo-se $r_i = 2^p - 2^i$, $i = 0, 1, \ldots, p - 1$.

Conforme mencionado na página 43, para tais valores dos $r_{i^\prime s}$ temos que a dimensão da classe X é m(n-2). Substituindo os valores determinados acima temos:

$$X = (c^{2^{p+1}-1} + \alpha^2 c^{2^{p+1}-3})^{q+1-p} \cdot c^{2^{p+1}-2^p} \cdots c^{2^{p+1}-2^3} \cdot (c^{y_1} + \alpha^2 c^{y_1-2})(c^{y_0} + \alpha c^{y_0-1})$$

onde $y_1 = 2^{p+1} - 2^2$ e $y_0 = 2^{p+1} - 2$.

Analisemos as parcelas acima com mais cuidado, fazendo $y = y_1$ e $z = y_0$. Note que

$$(c^{y} + \alpha^{2} c^{y-2})(c^{z} + \alpha c^{z-1}) = c^{y+z} + \alpha c^{y+z-1} + \alpha^{2} c^{y+z-2},$$

e com relação à primeira parcela

$$(c^{2^{p+1}-1} + \alpha^2 c^{2^{p+1}-3})^{q+1-p} = \sum_{i=0}^{q+1-p} \binom{q+1-p}{i} c^{(2^{p+1}-1)(q+1-p-i)} (\alpha^2 c^{2^{p+1}-3})^i = [c^{(2^{p+1}-1)(q+1-p)} + (q+1-p)c^{(2^{p+1}-1)(q-p)+2^{p+1}-3}\alpha^2].$$

Então multiplicando tais parcelas

$$\begin{split} & [c^{(2^{p+1}-1)(q+1-p)} + (q+1-p)\alpha^2 c^{(2^{p+1}-1)(q-p)+2^{p+1}-3}](c^{y+z} + \alpha c^{y+z-1} + \alpha^2 c^{y+z-2}) = \\ & = c^{(2^{p+1}-1)(q+1-p)+y+z} + \alpha c^{(2^{p+1}-1)(q+1-p)+y+z-1} + \alpha^2 c^{(2^{p+1}-1)(q+1-p)+y+z-2} + \\ & + (q+1-p)\alpha^2 c^{(2^{p+1}-1)(q-p)+2^{p+1}-3+y+z}. \end{split}$$

Levando em conta o fato que q é ímpar temos:

$$(q+1-p) \equiv \begin{cases} 0 \pmod{2} & \text{se } p \neq \text{par} \\ 1 \pmod{2} & \text{se } p \notin \text{impar} \end{cases}$$

Inserindo os fatos acima coletados na classe X, obtemos que

$$X = \begin{cases} c^t + \alpha c^{t-1} + \alpha^2 c^{t-2} & \text{se } p \text{ é par} \\ c^t + \alpha c^{t-1} & \text{se } p \text{ é ímpar,} \end{cases}$$

onde t = m(n - 2).

Seja agora, p > q + 1 e escreva p = q + s. Considere então a classe X dada por:

$$X = W[l_{p-1}]_{2^{p+1}-2^p} \cdots W[l_s]_{2^{p+1}-2^{s+1}},$$

com $l_{i's}$ sendo obtidos fazendo-se $r_i = 2^p - 2^i$, $i = s, \ldots, p - 1$.

Aqui também a dimensão da classe X é m(n-2). Note que $s \ge 2$, portanto

$$W[l_i]_{2^{p+1}-2^{i+1}} = c^{2^{p+1}-2^{i+1}}$$

para $s \leq i \leq p - 1$.

Segue que $X = c^t$ onde t = m(n-2).

Estamos agora em condições de exibir as polinomiais $p(c, W_1, \ldots, W_{m-1})$ que produzem números característicos nulos sobre $\mathbb{RP}(\mu)$ e não nulos sobre $\mathbb{RP}(\eta)$, como pretendíamos, no caso em que n é par. Tais polinomiais envolverão as classes X acima descritas para $p \leq q+1$ e p > q+1, lembrando que quando consideradas sobre $\mathbb{RP}(\mu)$ cada termo $W[l_i]_t$ deve ser substituído pelo correspondente $W[r_i]_t$, $l_i = n + r_i - 2$. Suponha então m > m(n-2) + 4, ou seja, $m-1 \geq m(n-2) + 4$, e considere inicialmente p > 1. Seja a classe $W[0]_2$ sobre $\mathbb{RP}(\mu)$. Temos

$$W[0]_2 = \theta_2 + \theta_1 u_1 + u_1 c + u_2$$

e portanto

$$W[0]_2^2 = \theta_2^2 + \theta_1^2 u_1^2 + u_1^2 c^2 + u_2^2$$

é tal que todos seus termos possui classe que provem de $H^*(F^n)$ com dimensão no mínimo 2. Por outro lado, vimos na página 43 que as classes X acima descritas possuem dimensão m(n-2) e são tais que todos os seus termos contêm elementos provindos de $H^*(F^n)$ com dimensão > n-2. Segue que

 $W[0]_{2}^{2}X$

é tal que todos seus termos contêm elementos provindos de $H^*(F^n)$ com dimensão > n, ou seja,

$$W[0]_2^2 X = 0$$

Observe que

$$dim(W[0]_2^2X) = m(n-2) + 4$$

como $(m-1) - (m(n-2) + 4) \ge 0$, podemos considerar a polinomial

$$W[0]_{2}^{2}Xc^{m-1-(m(n-2)+4)}$$

a qual tem dimensão m-1 e obviamente também é nula. Nossa tarefa estará portanto completada, quando p > 1, se provarmos que sobre $\mathbb{RP}(\eta)$ a polinomial acima produz número característico não nulo. Note que, sobre $\mathbb{RP}(\eta)$, $W[0]_2$ deve ser substituída por $W[n-2]_2$, e neste caso

$$W[n-2]_2 = \binom{2^p q + 2 - 2}{2} c^2 + \binom{n-2}{1} c\alpha + \binom{n-3}{1} c\alpha$$
$$= \binom{2^p q}{2} c^2 + c\alpha$$

uma vez que $\binom{n-2}{1}$ e $\binom{n-3}{1}$ são 1 e 0 (ou 0 e 1)mod 2. Por outro lado, como p > 1 e q é ímpar, 2 não comparece na partição diádica de $2^p q$. Pelo Teorema de Lucas, segue que

$$W[n-2]_2 = c\alpha$$

e portanto

$$W[n-2]_2^2 = c^2 \alpha^2.$$

Agora, nossas computações anteriores da classe X sobre $\mathbb{RP}(\eta)$ mostraram que os possíveis valores de X são do tipo:

$$X = c^{t} + \alpha c^{t-1} + \alpha^{2} c^{t_{2}}, \qquad X = c^{t} + \alpha c^{t-1}, \qquad X = c^{t}.$$
Como $\alpha^j = 0$ se $j \ge 3$, segue que para quaisquer desses casos temos

$$W[n-2]_2^2 X = \alpha^2 c^{t-2}.$$

Multiplicando por $c^{m-1-(m(n-2)+4)}$, concluímos que a polinomial correspondente sobre $\mathbb{RP}(\eta)$ origina a classe $\alpha^2 c^{m-3} \in H^{m-1}(\mathbb{RP}(\eta))$, a qual pelo Lema 3.3.4 é o gerador. Segue o resultado.

Suponhamos agora p=1,ou seja, n=2q+2 com qímpar. Note inicialmente que o cálculo acima

$$W[0]_2 = \theta_2 + \theta_1 u_1 + u_1 c + u_2,$$

também é válido neste caso. Portanto, as considerações acima se repetem, bastando argumentar porque nesse caso $W[n-2]_2^2 X$ origina o gerador de $H^{m-1}(\mathbb{RP}(\eta))$. Temos que

$$W[n-2] = (1+\alpha+\alpha^2)\{(1+c)^{2q} + (1+c)^{2q-1}\alpha\},\$$

portanto

$$W[n-2]_2 = {\binom{2q}{2}}c^2 + {\binom{2q-1}{1}}c\alpha + {\binom{2q}{1}}c\alpha + \alpha^2 + \alpha^2$$
$$= c^2 + c\alpha.$$

Segue que

$$W[n-2]_2^2 = c^4 + c^2 \alpha^2$$

Agora, vimos atrás que se p = 1 então $X = c^t + \alpha c^{t-1}$. Segue que

$$W[n-2]_2^2 X = (c^4 + c^2 \alpha^2)(c^t + \alpha c^{t-1}) = c^{4+t} + c^{3+t} \alpha + c^{2+t} \alpha^2 + c^{1+t} \alpha^3 =$$
$$= c^{4+t} + c^{3+t} \alpha + c^{2+t} \alpha^2.$$

Como cada tal termo, após multiplicação pela conveniente potência de c, reproduzirá o gerador de $H^{m-1}(\mathbb{RP}(\eta))$, módulo 2 um de tais termos sobrevive, o que encerra a prova e o capítulo.

Capítulo 4

Limitantes Específicos

4.1 Introdução

Conforme vimos no Capítulo 3, se (M^m,T) é involução fixando $F\,=\,F^2\,\cup\,F^n$ não bordante, então $m \leq max\{2n, m(n-2)+4\}$. Mais especificamente, e esta é a parte sutil do resultado, vimos que, se $\eta \mapsto F^2$ é o fibrado normal e este não borda, então $m \leq m(n-2) + 4$ (na realidade, vimos que, se $\eta \mapsto F^2$ borda, então a menos de bordismo ele pode ser removido do *fixed-data*, o que significa que de fato estaríamos considerando o caso já conhecido $Fix(T) = F^n$). Fixemos então nossa atenção no caso em que $\eta \mapsto F^2$ não borda, ou seja, no limitante $m \leq m(n-2) + 4$. Conforme visto, tal limitante independe de qual das sete classes de cobordismo estável $\beta_1, \beta_2, \ldots, \beta_7$ o fibrado η é um representante. No entanto, observemos que na página 50 mostramos que, quando n é impar (neste caso, m(n-2) + 4 = n - 1 + 4 = n + 3) e $\eta \in \beta_2$, então o limitante em questão pode ser melhorado para $m \le n+1 = m(n-2)+2$. Por causa dos exemplos especiais vistos na Secão 1.10 claramente este resultado é o melhor possível e pode ser concretamente realizado. Isto sugere o seguinte problema: fixados n um natural e $\beta \in \{\beta_1, \beta_2, \dots, \beta_7\}$, é possível melhorar o limitante $m \leq m(n-2) + 4$ para tais valores específicos de $n \in \beta$? Em outras palavras e mais especificamente, definamos o número:

$$\varphi(n,\beta) = \text{máximo} \{m \mid \exists \text{ involução } (M^m,T) \text{ com fixed-data } (\mu \mapsto F^n) \cup (\eta \mapsto F^2) \}$$

tal que
$$\eta \in \beta$$
.

Claramente pelo capítulo anterior temos

 $\varphi(n,\beta) \le m(n-2) + 4$ para qualquer *n* e qualquer β .

Também conforme o comentário acima temos que

$$\varphi(n, \beta_2) = m(n-2) + 2$$
 quando *n* é ímpar.

Para provar que $m(n; \{2\}) = max\{2n, m(n-2)+4\}$, foi necessário exibir exemplos nas dimensões *top*; especificamente, recordemos o exemplo considerado na dimensão m(n-2) + 4 (vide página 34): se $(M^{m(n-2)}, T)$ é a involução maximal de [12] fixando $\{ponto\} \cup F^{n-2}$, então a involução considerada foi

$$(M^{m(n-2)} \times \mathbb{R}P^2 \times \mathbb{R}P^2, T \times twist).$$

Nesse caso, como o fibrado normal da diagonal $\mathbb{RP}^2 \subset \mathbb{RP}^2 \times \mathbb{RP}^2$ em $\mathbb{RP}^2 \times \mathbb{RP}^2$ é o fibrado tangente $\tau \mapsto \mathbb{RP}^2$, temos que o fibrado normal de \mathbb{RP}^2 em $M^{m(n-2)} \times \mathbb{RP}^2 \times \mathbb{RP}^2$ é $\tau \oplus \mathbb{R}^{m(n-2)} \mapsto \mathbb{RP}^2$, ou seja, ele representa a classe β_4 . Em outras palavras, temos que $\varphi(n, \beta_4) = m(n-2) + 4$ para qualquer n. Note então a lista de resultados:

- i) $\varphi(n,\beta) \leq m(n-2) + 4, \ \forall n, \forall \beta;$
- ii) $\varphi(n, \beta_2) = m(n-2) + 2$, se *n* é ímpar;
- iii) $\varphi(n, \beta_4) = m(n-2) + 4, \ \forall n.$

Nosso objetivo neste capítulo será a obtenção de outros resultados concernentes a tais limitantes específicos. Veremos que em várias situações o limitante geral

$$\varphi(n,\beta) \le m(n-2) + 4$$

pode ser melhorado.

4.2 $\varphi(n,\beta)$ para *n* ímpar

Nesta seção consideraremos sempre n ímpar. Conforme visto, o limitante geral nesse caso é $\varphi(n,\beta) \leq m(n-2)+4 = n+3$. Para simplificar a redação, adotaremos as mesmas notações estabelecidas no Capítulo 3; isto quer dizer que (M^m, T) sempre significará uma involução fixando $(\mu \mapsto F^n) \cup (\eta \mapsto F^2)$, com

$$\mathbb{W}(F^n) = 1 + \theta_1 + \dots + \theta_n, \quad \mathbb{W}(\mu) = 1 + u_1 + \dots + u_k, \quad k = m - n,$$

 $\mathbb{W}(F^2) = 1 + w_1 + w_2, \qquad \mathbb{W}(\eta) = 1 + v_1 + v_2, \quad e \quad \eta \mapsto F^2$

não bordante.

Lema 4.2.1 Se
$$m \ge n+2$$
, então $\left(\binom{j}{2}(w_1+v_1)^2+v_2+v_1^2\right)=0.$

Prova: Temos que $m-1 \ge n+1$, portanto podemos considerar a polinomial

$$w[0]_1^{n+1} c^{m-1-(n+1)} \quad \text{sobre} \quad \mathbb{R}\mathcal{P}(\mu),$$

a qual corresponde à polinomial

$$w[n-2]_1^{n+1} c^{m-1-(n+1)}$$
 sobre $\mathbb{RP}(\eta)$.

Temos

$$w[0]_1 = \theta_1 + u_1$$
 e $w[n-2]_1 = \binom{n-2}{1}c + w_1 + v_1 = c + w_1 + v_1$

porque n-2 é ímpar. Portanto

$$w[0]_1^{n+1} c^{m-1-(n+1)} = (\theta_1 + u_1)^{n+1} c^{m-1-(n+1)}$$

é zero em $H^*(\mathbb{RP}(\mu))$, uma vez que $(\theta_1 + u_1)^{n+1}$ provem de $H^{n+1}(F^n)$.

Recordemos agora o fato decorrente da *fórmula de Conner* da Seção 12, Capítulo 1: se $\nu^k \mapsto W^n$ é um fibrado vetorial sobre uma variedade fechada *n*-dimensional com $\mathbb{W}(\nu^k) = 1 + v_1 + \cdots + v_k$, e se $w \in H^t(W^n)$ com $t \leq n$ e t + l = n + k - 1, então

$$w c^{l} [\mathbb{RP}(\nu^{k})]_{2} = w \overline{v_{n-t}} [W^{n}]_{2}$$

onde $\overline{\mathbb{W}(\nu^k)} = 1 + \overline{v_1} + \overline{v_2} + \cdots$ é a *classe dual* de $\mathbb{W}(\nu^k)$, caracterizada por

$$\mathbb{W}(\nu^k) \ \mathbb{W}(\nu^k) = 1$$

Usaremos este fato para computar a polinomial sobre $\mathbb{R}P(\eta)$. Em particular, temos que

$$c^{m-1} [\mathbb{R}P(\eta)]_2 = \overline{v_2} [F^2]_2 = (v_2 + v_1^2) [F^2]_2$$

Então,

$$(c+w_1+v_1)^{n+1} = \sum_{i=0}^{n+1} \binom{n+1}{i} (w_1+v_1)^i c^{n+1-i} =$$
$$= c^{n+1} + \binom{n+1}{1} (w_1+v_1) c^n + \binom{n+1}{2} (w_1+v_1)^2 c^{n-1} =$$
$$= c^{n+1} + \binom{n+1}{2} (w_1+v_1)^2 c^{n-1},$$

uma vez que n + 1 é par e $(w_1 + v_1)^i = 0$ se i > 2. Segue que

$$W[n-2]_{1}^{n+1}c^{m-1-(n+1)}[\mathbb{R}P(\eta)]_{2} = (c+w_{1}+v_{1})^{n+1}c^{m-1-(n+1)}[\mathbb{R}P(\eta)]_{2} = = \left(c^{m-1}+\binom{n+1}{2}(w_{1}+v_{1})^{2}c^{m-3}\right)[\mathbb{R}P(\eta)]_{2} = = \left(\binom{n+1}{2}(w_{1}+v_{1})^{2}+v_{2}+v_{1}^{2}\right)[F^{2}]_{2},$$

o que encerra a prova.

O Lema acima, nos dá imediatamente a

Proposição 4.2.2 Se $n \equiv 3 \pmod{4}$ e β é igual a $\beta_2, \beta_3, \beta_5$ ou β_6 então $\varphi(n, \beta) \leq n+1$.

Prova: De fato, suponha que $\varphi(n,\beta) > n+1$. Então existe involução (M^m,T) com $\eta \mapsto F^2 \in \beta$ tal que $m \ge n+2$, e pelo lema

$$\binom{n+1}{2}(w_1+v_1)^2+v_2+v_1^2=0.$$

Agora $n \equiv 3 \pmod{4}$ significa que 2 está na partição diádica do ímpar n, e portanto 2 não está na partição diádica do par n + 1. Pelo Teorema de Lucas 1.15.3, segue que

$$\binom{n+1}{2} \equiv 0 \pmod{2}$$
, portanto $v_2 = v_1^2$.

Como para β igual a $\beta_2, \beta_3, \beta_5$ ou β_6 é válido que $v_2 \neq v_1^2$, segue o resultado.

Por causa das involuções especiais da Seção 1.10, temos então o seguinte novo resultado na direção proposta:

Teorema 4.2.3 Se $n \equiv 3 \pmod{4}$ e β é igual a $\beta_2, \beta_3, \beta_5$ ou β_6 , então $\varphi(n, \beta) = n + 1$.

Esse limitante específico ($\varphi(n,\beta) = n+1$) tem por tráz de si um fato mais forte, que é um teorema de classificação. Se (M^m, T) é involução com *fixed-data*

 $(\mu \mapsto F^n) \cup (\eta \mapsto F^2)$, onde $\eta \in \beta_i$, i = 2, 3, 5 ou 6, $e n \equiv 3 \pmod{4}$,

então $m \leq n+1$ significa na realidade m = n+1 e já sabemos através da construção de 1.10 que existe uma involução especial (M_i^{n+1}, T_i) , i = 2, 3, 5 e 6, com o referido fixed-data. Temos a seguinte

Proposição 4.2.4 Se (M^m, T) tem fixed-data $(\mu \mapsto F^n) \cup (\eta \mapsto F^2)$, onde $\eta \in \beta_i$, i = 2, 3, 5 ou 6, $e \in n \equiv 3 \pmod{4}$, então (M^m, T) é equivariantemente cobordante à involução especial (M_i^{n+1}, T_i) .

Prova: Denotemos por $\mu_i \mapsto G_i^n$ o fibrado normal sobre a componente *n*-dimensional do conjunto de pontos fixos de (M_i^{n+1}, T_i) , i = 2, 3, 5 ou 6. Pela sequência de *Conner* e Floyd, temos que

$$\partial J_*([M^m, T] + [M_i^{n+1}, T_i]) = \partial ([\mu \mapsto F^n] + \beta_i + [\mu_i \mapsto G_i^n] + \beta_i) = \\ = \partial ([\mu \mapsto F^n] + [\mu_i \mapsto G_i^n]) = 0,$$

ou seja,

$$\partial[\mu \mapsto F^n] = \partial[\mu_i \mapsto G_i^n].$$

Agora, o homomorfismo ∂ da sequência de *Conner e Floyd* leva $\mathscr{N}_{n-1}(BO(1))$ isomorficamente sobre $\mathscr{N}_{n-1}(\mathbb{Z}_2) \cong \mathscr{N}_{n-1}(BO(1))$. Como $\mu \in \mu_i$ são fibrados unidimensionais, concluimos que

$$[\mu] = [\mu_i]. \quad \text{Então} \quad [\mu] + [\beta_i] = [\mu_i] + [\beta_i], \quad \text{ou seja}, \quad [\mu + \beta_i] = [\mu_i + \beta_i];$$

o que significa que (M^m,T) e (M^{n+1}_i,T_i) possuem fixed-data cobordantes. Segue o resultado. $\hfill\square$

Na mesma direção, temos o

Teorema 4.2.5 Se $n \equiv 1 \pmod{4}$ e β é igual a $\beta_1, \beta_2, \beta_6$ ou β_7 então $\varphi(n, \beta) = n + 1$.

Prova: A argumentação nesse caso é completamente similar. Se $\varphi(n,\beta) > n+1$, existe $(M^m, T) \operatorname{com} \eta \mapsto F^2 \in \beta$ tal que $m \ge n+2$, pelo lema

$$\binom{n+1}{2}(w_1+v_1)^2+v_2+v_1^2=0.$$

Agora $n \equiv 1 \pmod{4}$ significa que 2 não está na partição diádica do ímpar n, portanto 2 está na partição diádica do par n + 1. Segue que

$$\binom{n+1}{2} \equiv 1 \pmod{2},$$

portanto

$$(w_1 + v_1)^2 + v_2 + v_1^2 = w_1^2 + v_1^2 + v_2 + v_1^2 = w_1^2 + v_2 = 0,$$

ou seja, $w_1^2 = v_2$. Como para β é igual a $\beta_1, \beta_2, \beta_6$ e β_7 é válido que $w_1^2 \neq v_2$, concluimos que $\varphi(n, \beta) \leq n + 1$ para tais β 's. Novamente as involuções especiais de 1.10 mostram então que $\varphi(n, \beta) = n + 1$ para tais β 's.

Com prova completamente idêntica à da Proposição 4.2.4, temos na mesma direção a

Proposição 4.2.6 Se (M^m, T) tem fixed-data $(\mu \mapsto F^n) \cup (\eta \mapsto F^2)$, onde $\eta \in \beta_i$ para i = 1, 2, 6 ou 7, e se $n \equiv 1 \pmod{4}$, então (M^m, T) é equivariantemente cobordante à involução especial de 1.10, obtida a partir de $\eta \mapsto F^2$.

Juntando os Teoremas 4.2.3 e 4.2.5, temos o

Teorema 4.2.7 Se n é impar e β é igual a β_2 ou β_6 , então $\varphi(n,\beta) = n + 1$.

Desta forma, a questão de se computar $\varphi(n,\beta)$ está completamente resolvida se n é ímpar e β é igual a β_2, β_4 ou β_6 .

Observação: Considere o caso n ímpar e $\beta = \beta_4$, quando vimos que $\varphi(n, \beta) = n + 3$. Isto significa que os possíveis valores de m para os quais existe

 $(M^m,T) \quad \text{com fixed-data} \quad (\mu \mapsto F^n) \cup (\eta \mapsto F^2), \quad \text{onde} \quad \eta \mapsto F^2 \in \beta_4 \text{ e } n \text{ é impar},$

são m = n + 3, n + 2 e n + 1. Para m = n + 3 existe tal (M^m, T) , e a construção de 1.10 feita a partir de η mostra que (M^m, T) também existe para m = n + 1. É curioso observar que m + n + 2 não pode ser realizado. De fato, se existe tal (M^{n+2}, T) , então por 1.9 temos que

$$\chi(m^{n+2}) \equiv \chi(F^n) + \chi(F^2) \pmod{2},$$

onde χ é a característica de Euler módulo 2. Como n é ímpar, n+2 é ímpar, portanto

$$\chi(F^n) \equiv 0$$
 e $\chi(M^{n+2}) \equiv 0$. Segue que $\chi(F^2) \equiv 0$.

O representante explícito da classe β_4 por nós obtido tem base \mathbb{RP}^2 , portanto

$$\chi(\mathbb{R}P^2) \equiv 0$$
, o que é falso.

Juntando os fatos acima, notamos que se n é ímpar então $\varphi(n,\beta)$ está computado com exceção dos casos:

- i) $\varphi(n,\beta)$ se $n \equiv 3 \pmod{4}$ e β é igual a β_1 ou β_7 ;
- ii) $\varphi(n,\beta)$ se $n \equiv 1 \pmod{4}$ e β é igual a β_3 ou β_5 .

Os teoremas 4.2.8 e 4.2.9 computarão esses valores restantes de $\varphi(n,\beta)$.

Teorema 4.2.8 Se $n \equiv 3 \pmod{4}$, então $\varphi(n, \beta_1) = n + 3$. Se $n \equiv 1 \pmod{4}$, então $\varphi(n, \beta_3) = n + 3$.

Prova: Sabemos que, se $n \equiv 3 \pmod{4}$, então $\varphi(n,\beta) \leq n+3$ para qualquer β . Portanto a prova consistirá simplesmente em exibir involução na dimensão $top \ m = n+3$ nas situações acima consideradas. Seja a involução (\mathbb{RP}^{n+3}, T) onde T é dada em coordenadas homogenias por

$$T[x_0, x_1, \cdots, x_{n+3}] = [-x_0, -x_1, -x_2, x_3, \cdots, x_{n+3}]$$

Denotando por $\lambda_i \mapsto \mathbb{R}P^i$ o fibrado-linha canônico e por $n\lambda_i$ a soma de *Whitney* de *n* cópias de λ_i , temos que o *fixed-data* de *T* é

$$(3\lambda_n \mapsto \mathbb{R}P^n) \cup ((n+1)\lambda_2 \mapsto \mathbb{R}P^2).$$

Suponhamos primeiro $n \equiv 3 \pmod{4}$, ou seja, n = 4x + 3 para algum $x \ge 0$. Então n+1 = 4x + 4, e

$$\mathbb{W}((n+1)\lambda_2) = (1+\alpha)^{n+1} = (1+\alpha)^{4x+4} = (1+\alpha^4)^{x+1} = 1,$$

onde $\alpha \in H^1(\mathbb{RP}^2)$ é o gerador (e $\alpha^4 = 0$). Segue que $(n+1)\lambda_2 \mapsto \mathbb{RP}^2$ é cobordante ao fibrado trivial (n+1)-dimensional sobre \mathbb{RP}^2 , o qual é um representante explícito da classe β_1 . Segue que

$$\varphi(n,\beta_1) = n+3$$
 se $n \equiv 3 \pmod{4}$.

Por outro lado, se $n \equiv 1 \pmod{4}$, então n + 1 = 4x + 2 para algum $x \ge 0$. Segue que

$$\mathbb{W}((n+1)\lambda_2) = (1+\alpha)^{n+1} = (1+\alpha)^{4x+2} = (1+\alpha^4)^x (1+\alpha^2) = 1+\alpha^2.$$

Portanto, $(n+1)\lambda_2 \mapsto \mathbb{RP}^2$ tem a mesma classe de *Stiefel-Whitney* de

 $(2\lambda_2) \oplus \mathbb{R}^{n-1} \mapsto \mathbb{R}\mathrm{P}^2$

e então é cobordante a este fibrado, o qual é um representante de classe β_3 . Segue que

$$\varphi(n,\beta_3) = n+3$$
 se $n \equiv 1 \pmod{4}$.

Restam portanto os casos $\varphi(n,\beta_4)$ se $n \equiv 3 \pmod{4}$, e $\varphi(n,\beta_5)$ se $n \equiv 1 \pmod{4}$. Tais casos finais serão objetos do

Teorema 4.2.9 Se $n \equiv 3 \pmod{4}$, $\varphi(n, \beta_7) = n + 3$, e se $n \equiv 1 \pmod{4}$, então $\varphi(n, \beta_5) = n + 3$.

Prova: Como no Teorema 4.2.8, novamente aqui a prova se resume em exibir exemplos de involuções na dimensão m = n + 3 nas situações em jogo. Suponha primeiro $n \equiv 3 \pmod{4}$. Lembremos inicialmente que, para qualquer n ímpar, $\varphi(n, \beta_4) = n + 3$. Tome então involução (M^{n+3}, T) realizando isto, ou seja, com

$$\eta \mapsto F^2 \in \beta_4.$$

Agora, no Teorema 4.2.8 exibimos, para $n \equiv 3 \pmod{4}$, uma involução

$$(W^{n+3}, S)$$
 com $\eta' \mapsto F^{2'} \in \beta_1$

Pela Observação 3.2.5 (página 40), sabemos que $\beta_1 + \beta_4 = \beta_7$, ou seja,

$$(\eta \mapsto F^2) \cup (\eta' \mapsto F^{2'})$$

é cobordante a um fibrado $\nu^2 \mapsto G^2$ que realiza a classe β_7 . Segue que a involução

$$(M^{n+3} \cup W^{n+3}, T \cup S)$$

tem fixed-data do tipo $(\mu \mapsto F^n) \cup (\eta \mapsto F^2)$, onde $\eta \mapsto F^2$ representa a classe β_7

A prova que $\varphi(n, \beta_5) = n + 3$ se $n \equiv 1 \pmod{4}$ é completamente similar, bastando tomar a involução $(M^{n+3}, T) \operatorname{com} \eta \mapsto F^2 \in \beta_4$ (como acima), a involução (W^{n+3}, S) do Teorema 4.2.8 para $n \equiv 1 \pmod{4}$ e com $\eta \mapsto F^2 \in \beta_3$, e lembrar que $\beta_3 + \beta_4 = \beta_5$.

Portanto conhecemos $\varphi(n,\beta)$ para qualquer *n* ímpar e qualquer β . O quadro abaixo fornece a tabela para tais valores:

β_i	n	$\varphi(n,\beta_i)$
β_1	$n \equiv 1 \pmod{4}$	n+1
	$n \equiv 3 \pmod{4}$	n+3
β_2	$\forall n \text{ impar}$	n+1
β_3	$n \equiv 1 \pmod{4}$	n+3
	$n \equiv 3 \pmod{4}$	n+1
β_4	$\forall n \text{ impar}$	n+3
β_5	$n \equiv 1 \pmod{4}$	n+3
	$n \equiv 3 \pmod{4}$	n+1
β_6	$\forall n \text{ impar}$	n+1
β_7	$n \equiv 1 \pmod{4}$	n+1
	$n \equiv 3 \pmod{4}$	n+3

4.3 $\varphi(n,\beta)$ para *n* par

Para *n* par, o que sabemos até o momento é que $\varphi(n, \beta_4) = m(n-2) + 4$ e que $\varphi(n, \beta) \leq m(n-2) + 4$, $\forall \beta$. Para avançar mais precisaremos do

Lema 4.3.1 Se m > m(n-2) + 2, então $w_1^2 = v_1^2$.

Prova: Considere a classe X associada a $\mathbb{RP}(\mu)$ vista no Capítulo 3. Tal classe tem dimensão m(n-2) e é tal que todos seus termos contêm elementos provindos de $H^*(F^n)$ com dimensão maior que n-2. Considere também a classe $W[0]_1$ associada a μ , a qual é dada por

$$W[0]_1 = \theta_1 + u_1.$$

Então $W[0]_1^2 X = (\theta_1 + u_1)^2 X$ tem dimensão m(n-2) + 2 e é tal que todos seus termos contêm elementos provindos de $H^*(F^n)$ com dimensão maior do que n, portanto $W[0]_1^2 X = 0$. Como m > m(n-2) + 2, $m-1 \ge m(n-2) + 2$, portanto podemos considerar a polinomial

$$W[0]_1^2 X c^{m-1-(m(n-2)+2)}$$
 sobre $\mathbb{RP}(\mu)$,

a qual tem dimensão m-1 e obviamente produz número característico nulo quando avaliada sobre $[\mathbb{RP}(\mu)]_2$. Devemos então analisar a polinomial correspondente

$$W[n-2]_1^2 X c^{m-1-(m(n-2)+2)}$$
 sobre $\mathbb{R}P(\eta)$.

Primeiro observamos que

$$W[n-2]_1 = w_1 + v_1$$
, portanto $W[n-2]_1^2 = w_1^2 + v_1^2$,

e $w_1^2 + v_1^2$ provem de $H^2(F^2)$. Segue, por razões dimensionais, que qualquer termo de X contendo elementos provindos de $H^*(F^n)$ com dimensão maior que zero não contribui com a polinomial acima, uma vez que tal termo multiplicado por $w_1^2 + v_1^2$ dá automaticamente zero. Portanto a classe X sobre $\mathbb{RP}(\eta)$ deve ser analisada módulo o ideal de $H^*(\mathbb{RP}(\eta))$ gerado por $H^1(F^2) \oplus H^2(F^2)$. Em outras palavras, só nos interessa os termos da classe X do tipo $c^{\text{potência}}$. Agora, a classe X sobre $\mathbb{RP}(\mu)$ envolve classes do tipo $W[r]_{2r}$ para $r = 2^p - 2^i$, $i = 0, 1, \ldots, p - 1$, onde como antes estamos considerando $n - 2 = 2^p q$, q ímpar, $p \ge 1$, e $W[r]_{2r+1}$ para $r = 2^p - 1$. Para cada tal r, consideramos W[l] sobre $\mathbb{RP}(\eta)$, onde l = n + r - 2.

Temos que

$$W[l] = (1 + w_1 + w_2)\{(1 + c)^{n+r-2} + (1 + c)^{n+r-3}v_1 + (1 + c)^{n+r-4}v_2\}.$$

Então

 $W[l] \equiv (1+c)^{n+r-2}$ módulo o ideal gerado por $H^1(F^2) \oplus H^2(F^2)$.

Para $r = 2^p - 2^i$, $i = 0, 1, \dots, p - 1$, $p \ge 1$, e $n = 2^p q + 2$, temos então

$$W[l]_{2r} = W[l]_{2^{p-2^{i}}} \equiv \binom{n+r-2}{2^{p+1}-2^{i+1}} c^{2^{p+1}-2^{i+1}} \quad (\text{modulo } \langle H^{1}(F^{2}) \oplus H^{2}(F^{2}) \rangle),$$

onde $\langle H^1(F^2) \oplus H^2(F^2) \rangle$ denota o ideal gerado por $H^1(F^2) \oplus H^2(F^2)$. Agora,

$$\binom{n+r-2}{2^{p+1}-2^{i+1}} = \binom{2^p q + 2^p - 2^i}{2^{p+1}-2^{i+1}}$$

Como q é ímpar, $2^p q = 2^p + (\text{potências do tipo } 2^x, x > p)$. Assim, para algum $y \ge p+1$, temos que

$$2^{p}q + 2^{p} - 2^{i} = (2^{y} + \text{ potencias do tipo } 2^{x}, \ x > y) - 2^{i} = 2^{i} + 2^{i+1} + \dots + 2^{y-1} + \text{ (potencias do tipo } 2^{x}, \ x > y).$$

Por outro lado,

$$2^{p+1} - 2^{i+1} = 2^{i+1} + 2^{i+2} + \dots + 2^p.$$

Pelo Teorema de Lucas, segue que o coeficiente binomial acima é $\equiv 1 \pmod{2}$, e assim

$$W[l]_{2r} = c^{2r} \quad \left(\text{modulo } \left\langle H^1(F^2) \oplus H^2(F^2) \right\rangle \right),$$

para tais valores de r.

Agora, para $r = 2^p - 1$, temos que

$$W[l]_{2r+1} = W[l]_{2^{p+1}-1} \equiv \binom{2^p q + 2^p - 1}{2^{p+1} - 1} c^{2^{p+1}-1} \quad \left(\text{modulo } \left\langle H^1(F^2) \oplus H^2(F^2) \right\rangle \right).$$

Temos que

$$2^{p}q + 2^{p} - 1 = (2^{p} + \text{ potências do tipo } 2^{x}, \ x > p) + 2^{p} - 1 = = (2^{y} + \text{ potências do tipo } 2^{x}, \ x > y, \text{ onde } y \ge p + 1) - 1 = = 1 + 2 + 2^{2} + \dots + 2^{y-1} + (\text{potências do tipo } 2^{x}, \ x > y).$$

Por outro lado,

$$2^{p+1} - 1 = 1 + 2 + 2^2 + \dots + 2^p$$

O Teorema de Lucas nos garante então que o coeficiente binomial acima é $\equiv 1 \pmod{2}$, e assim

$$W[l]_{2r+1} = c^{2r+1} \quad \left(\text{modulo } \left\langle H^1(F^2) \oplus H^2(F^2) \right\rangle \right),$$

A conclusão é que, sobre $\mathbb{R}P(\eta)$, vale que

$$X \equiv c^{m(n-2)} \quad \left(\text{modulo } \left\langle H^1(F^2) \oplus H^2(F^2) \right\rangle \right).$$

Segue que

$$W[n-2]_1^2 X c^{m-1-(m(n-2)+2)} [\mathbb{R}P(\eta)]_2 = (w_1^2 + v_1^2) c^{m-3} [\mathbb{R}P(\eta)]_2$$
$$= (w_1^2 + v_1^2) [F^2]_2,$$

o que encerra a demonstração.

Corolário 4.3.2 Seja (M^m, T) involução com fixed-data $(\mu \mapsto F^n) \cup (\eta \mapsto F^2)$, onde n é par e $\eta \in \beta_1, \beta_3, \beta_5$ ou β_7 . Então $m \leq m(n-2) + 2$.

Prova: Basta observar que, para as classes $\beta_1, \beta_3, \beta_5 \in \beta_7$, temos $w_1^2 \neq v_1^2$.

Com o corolário acima em mãos, estamos agora em condições de computar $\varphi(n, \beta_1)$ para qualquer n par.

Teorema 4.3.3 Se n é par, $\varphi(n, \beta_1) = m(n-2) + 2$.

Prova: O corolário acima nos diz que $\varphi(n, \beta_1) \leq m(n-2) + 2$. Assim, é suficiente exibir um exemplo adequado na dimensão m(n-2)+2. Considere a involução maximal $(M^{m(n-2)}, T)$ de [12], a qual tem conjunto de pontos fixos do tipo $F^{n-2} \cup \{ponto\}$. Em $\mathbb{RP}^2 \times M^{m(n-2)}$, considere a involução

$$(x,y) \longmapsto (x,T(y)).$$

O conjunto de pontos fixos dessa involução é

$$(\mathbb{R}P^2 \times F^{n-2}) \cup (\mathbb{R}P^2 \times \{ponto\}),\$$

que é do tipo $F^n \cup \mathbb{RP}^2$. O fibrado normal de \mathbb{RP}^2 em $\mathbb{RP}^2 \times M^{m(n-2)}$ é o fibrado trivial m(n-2)-dimensional, o qual representa a classe β_1 . Segue o resultado.

Nossas próximas computações de $\varphi(n,\beta)$ para *n* par envolverão pares (n,β) bem mais específicos. Se $n \in \mathbb{N}$, escreva $n-2 = 2^p(2q+1)$. Isto dá origem à função

$$a(n) = p - 2q.$$

Lema 4.3.4 Com a notação acima, suponha $p \leq 2q+2$. Seja $\alpha \in H^1(\mathbb{RP}^2)$ o gerador. Então existe involução $(M^{m(n-2)+2}, T)$ fixando $F = \mathbb{RP}^2 \cup F^n$, e tal que o fibrado normal $\eta \mapsto \mathbb{RP}^2$ satisfaz

$$\mathbb{W}(\eta) = (1+\alpha)^{a(n)}.$$

Prova: Como anteriormente, considere a involução maximal $(M^{m(n-2)}, T)$ de [12], fixando $F^{n-2} \cup \{ponto\}$. Considere na esfera S^2 a involução antipodal $A : S^2 \mapsto S^2$. A involução produto $A \times T$ definida em $S^2 \times M^{m(n-2)}$ é livre de pontos fixos, portanto

$$V = \frac{S^2 \times M^{m(n-2)}}{A \times T}$$

é uma variedade fechada (m(n-2)+2)-dimensional. Em V considere a involução

$$[x, y] \longmapsto [x, T(y)].$$

É fácil verificar que tal involução não depende do representante da classe [x, y]. Além disso, pode-se mostrar que o conjunto de pontos fixos dessa involução é

$$\left(\frac{S^2 \times \{ponto\}}{A \times T} = \mathbb{R}P^2\right) \bigcup \left(\frac{S^2 \times F^{n-2}}{A \times T} = \mathbb{R}P^2 \times F^{n-2}\right).$$

É conhecido o fato que o fibrado normal η de \mathbb{RP}^2 em V é $(m(n-2))\lambda \mapsto \mathbb{RP}^2$, onde λ é o fibrado-linha canônico sobre \mathbb{RP}^2 (a argumentação para tal fato é decorrente do material da Seção 33 (páginas 114–117) de [3]. Segue que $\mathbb{W}(\eta) = (1+\alpha)^{m(n-2)}$. Como $p \leq 2q+2$, sabemos pelo Teorema 1.11.1 da página 17 que

$$m(n-2) = (2^{p+1}-1)(2q+1) + p + 1 = 2^{p+2}q + 2^{p+1} - 2q - 1 + p + 1 \equiv p - 2q \pmod{4},$$

uma vez que $p \ge 1$. Segue que

$$m(n-2) - (p-2q) = m(n-2) - a(n) = 4t,$$

para algum $t \ge 0$, e portanto

$$\mathbb{W}(\eta) = (1+\alpha)^{m(n-2)} = (1+\alpha)^{a(n)+4t} = (1+\alpha)^{a(n)}(1+\alpha^4)^t = (1+\alpha)^{a(n)},$$

como queríamos.

Obs: Note que, se p > 2q + 2, então m(n-2) é dado por

$$(2^{p+1} - 2^{p-(2g+1)})(2g+1) + 2^{p-(2g+1)}(2g+2) = 2^{p+2}g + 2^{p+1} + 2^{p-(2g+1)} \equiv 0 \pmod{4},$$

e neste caso $\eta \mapsto \mathbb{R}P^2$ é portanto um representante da classe β_1 , para a qual já temos exemplos de involuções com m = m(n-2) + 2 para todo n par; em outras palavras, a consideração de p > 2q + 2 não nos traz nada de novo.

O Corolário 4.3.2 nos fornece vários valores novos de $\varphi(n,\beta)$.

Teorema 4.3.5 Se $n \in \mathbb{N}$ é um natural par tal que $a(n) \equiv 1 \pmod{4}$ e $p \leq 2q+2$ (onde $n-2 = 2^p(2q+1)$), então $\varphi(n, \beta_5) = m(n-2) + 2$.

Prova: O Corolário 4.3.2 nos diz que $\varphi(n, \beta_5) \leq m(n-2) + 2$, portanto devemos exibir um exemplo adequado na dimensão m = m(n-2) + 2. O Lema 4.3.4 nos fornece um exemplo (M^m, T) com m = m(n-2) + 2 e com conjunto de pontos fixos do tipo $F_T = F^n \cup \mathbb{RP}^2$, tal que o fibrado normal $\eta \mapsto \mathbb{RP}^2$ satisfaz $\mathbb{W}(\eta) = (1+\alpha)^{a(n)} = 1+\alpha$, uma vez que $a(n) \equiv 1 \pmod{4}$. Portanto η representa β_2 . Por outro lado, temos o exemplo (W^m, S) considerado no Teorema 4.3.3, onde m = m(n-2)+2, $F_S = F^n \cup \mathbb{RP}^2$ e o fibrado normal $\nu \mapsto \mathbb{RP}^2$ representa a classe β_1 . Como $\beta_1 + \beta_2 = \beta_5$, temos que a involução $(W^m, S) \cup (M^m, T)$ providencia o exemplo desejado.

Obs: Os naturais da forma $2^{y}y$, onde y é qualquer número ímpar, satisfazem as condições exigidas pelo Teorema 4.3.5.

Teorema 4.3.6 Se $n \in \mathbb{N}$ é um natural par tal que $a(n) \equiv 2 \pmod{4}$ e $p \leq 2q+2$ (onde $n-2 = 2^p(2q+1)$), então $\varphi(n, \beta_3) = m(n-2) + 2$.

Prova: Novamente o Corolário 4.3.2 nos diz que basta exibir um exemplo adequado. O Lema 4.3.4 fornece um exemplo (M^m, T) com m = m(n-2) + 2, $Fix(T) = F^n \cup \mathbb{RP}^2$ e com $\eta \mapsto \mathbb{RP}^2$ satisfazendo $\mathbb{W}(\eta) = (1+\alpha)^{a(n)} = (1+\alpha)^2$, uma vez que $a(n) \equiv 2 \pmod{4}$. Portanto η representa β_3 .

Obs: Os naturais da forma $2^{y+1}y$, onde y é qualquer número ímpar, fornecem uma família de exemplos de naturais satisfazendo as condições impostas pelo Teorema 4.3.6.

Teorema 4.3.7 Se $n \in \mathbb{N}$ é um natural par tal que $a(n) \equiv 3 \pmod{4}$ e $p \leq 2q + 2$, então $\varphi(n, \beta_7) = m(n-2) + 2$.

Prova: Pelo Corolário 4.3.2, é suficiente exibir um exemplo na dimensão em questão. A construção deste exemplo segue os mesmos passos efetuados para a obtenção do exemplo do Teorema 4.3.5. Primeiro, o Lema 4.3.4 fornece um exemplo (M^m, T) com m = m(n-2)+2, com $F_T = F^n \cup \mathbb{RP}^2$ e com $\eta \mapsto \mathbb{RP}^2$ satisfazendo $\mathbb{W}(\eta) = (1+\alpha)^{a(n)} =$ $(1+\alpha)^3$, uma vez que $a(n) \equiv 3 \pmod{4}$. Portanto η representa β_4 . Por outro lado, temos o exemplo (W^m, S) considerado no Teorema 4.3.3, onde m = m(n-2) + 2 e $F_S = F^n \cup \mathbb{RP}^2$, e tal que $\nu \mapsto \mathbb{RP}^2$ representa β_1 . Como $\beta_1 + \beta_4 = \beta_7$, temos que a involução $(M^m, T) \cup (W^m, S)$ fornece o exemplo procurado. \Box

Obs: Os naturais da forma $2^{y+2-4x}y$, onde $x \ge 1$ e y é qualquer número ímpar com $y \ge 3$, contituem exemplos satisfazendo as condições do Teorema 4.3.7.

Nosso próximo e final objetivo, concernente ao cálculo de $\varphi(n,\beta)$ com n par, será mostrar que $\varphi(n,\beta_2) = \varphi(n,\beta_6) = m(n-2) + 4$ quando n é multiplo de 4. Especificamente, escreveremos daqui até o final n = 4(j+1) = 4j + 4 para $j = 0, 1, 2, \ldots$ Sumarizando, obteremos o

Teorema 4.3.8 $\varphi(n, \beta_2) = \varphi(n, \beta_6) = m(n-2) + 4$ para n = 4(j+1) = 4j + 4, onde $j = 0, 1, 2, \dots$

Prova: Temos os seguintes fatos em mãos:

- i) $\varphi(n,\beta) \leq m(n-2) + 4, \ \forall n, \forall \beta;$
- ii) existe exemplo (M^m, T) fixando $F^n \cup F^2$ onde $(\eta \mapsto F^2) \in \beta_4$, com m = m(n-2)+4, para qualquer natural n;
- iii) $\beta_2 + \beta_4 = \beta_6$.

Juntando tais fatos, vemos então que é suficiente apresentar exemplos (M^m, T) com m = m(n-2)+4, $n = 4(j+1) \in (\eta \mapsto F^2) \in \beta_2$. Tais exemplos, os quais descreveremos a seguir, nos foram fornecidos pelo Prof. R. E. Stong.

Dado n = 4j + 4, considere a variedade de *Dold*

$$M^{m} = P(2j+5, 2j+2) = \frac{S^{2j+5} \times \mathbb{C}P^{2j+2}}{A \times C},$$

onde $A: S^{2j+5} \mapsto S^{2j+5}$ é a aplicação antipodal e $C: \mathbb{CP}^{2j+2} \mapsto \mathbb{CP}^{2j+2}$ é a conjugação, isto é, a aplicação que a cada número complexo z associa o complexo conjugado \overline{z} . Em M^m , considere a involução induzida por $U \times L$, onde

$$U(x_0, x_1, x_2, x_3, \dots, x_{2j+5}) = (x_0, x_1, x_2, -x_3, \dots, -x_{2j+5})$$
$$L[z_0, z_1, z_2, \dots, z_{2j+2}] = [z_0, -z_1, -z_2, \dots, -z_{2j+2}].$$

O conjunto de pontos fixos da involução $(U \times L)$, é formado pelos pontos [x, z] tais que $(U \times L)[x, z] = [x, z]$; como $[x, z] = [-x, \overline{z}]$, isto é equivalente aos pontos [x, z] tais que (U(x), L[z]) = (x, [z]) ou $(U(x), L[z]) = (-x, [\overline{z}])$.

Para (U(x), L[z]) = (x, [z]) temos:

$$U(x) = x \iff x = (x_0, x_1, x_2, 0, \dots, 0),$$
 isto é, $x \in S^2 \subset S^{2j+5}$, e

 $L[z] = [z] \iff z = (z_0, 0, \dots, 0)$ ou $z = (0, z_1, z_2, \dots, z_{2j+2})$, isto é, $z \in (\mathbb{CP}^0 \cup \mathbb{CP}^{2j+1})$. Logo o conjunto de pontos fixos neste caso é da forma:

$$\frac{S^2 \times (\mathbb{C}\mathrm{P}^0 \cup \mathbb{C}\mathrm{P}^{2j+1})}{A \times C} = \mathbb{R}\mathrm{P}^2 \cup P(2, 2j+1) = \mathbb{R}\mathrm{P}^2 \cup F_1^{4j+4}$$

Para $(U(x), L[z]) = (-x, [\overline{z}])$ temos:

$$U(x) = -x \iff x = (0, 0, 0, x_3, \dots, x_{2j+5}), \text{ isto } \acute{e}, \quad x \in S^{2j+2} \subset S^{2j+5}, \text{ e}$$
$$L[z] = [\overline{z}] \iff (z_0, -z_1, \dots, -z_{2j+2}) = (\overline{z_0}, \overline{z_1}, \overline{z_2}, \dots, \overline{z_{2j+2}}),$$

isto é, $z_0 = r_0$ real e $z_j = ir_j$ imaginário puro se $j = 1, 2, \ldots, 2j + 2$, ou seja,

$$(z_0, -z_1, \dots, -z_{2j+2}) = (r_0, ir_1, \dots, ir_{2j+2}).$$

Agora, em $\mathbb{C}\mathrm{P}^{2j+2},$ temos que

$$(r_0, ir_1, \dots, ir_{2j+2}) \sim (-r_0, -ir_1, \dots, -ir_{2j+2}) \sim (ir_0, -r_1, \dots,) \sim (-ir_0, r_1, \dots,).$$

Então, considerando os elementos da forma $(r_0, ir_1, \ldots, ir_{2j+2})$, temos que

$$(r_0, ir_1, \ldots, ir_{2j+2}) \sim (-r_0, -ir_1, \ldots, -ir_{2j+2}),$$

o que nos dá uma identificação com $\mathbb{R}P^{2j+2}$. Assim, o conjunto de pontos fixos é

$$F_2^{4j+4} = \frac{S^{2j+2} \times \mathbb{R}\mathrm{P}^{2j+2}}{A \times C}.$$

Note que, como n = 4j + 4, e tomando

$$M^{m} = P(2j+5, 2j+2) = \frac{S^{2j+5} \times \mathbb{C}P^{2j+2}}{A \times C}$$

com involução T induzida pela involução $(U \times L)$, temos

$$m = 2j + 5 + 4j + 4 = 6j + 9 = 6j + 5 + 4 = m(4j + 2) + 4 = m(n - 2) + 4,$$

pois para n - 2 = 4j + 2 = 2(2j + 1) temos

$$m(2(2j+1)) = 3(2j+1) + 2 = 6j + 5.$$

Isto nos dá uma involução (M^m, T) tal que $F_T = \mathbb{R}P^2 \cup F^n$, com n = 4j + 4, $m = m(n-2) + 4 \in F^n = F_1 \cup F_2$.

A respeito do fibrado normal sobre a componente $\mathbb{R}P^2$, necessitamos de alguns fatos gerais sobre as variedades de *Dold*

$$P(l,s) = \frac{S^l \times \mathbb{C}P^s}{A \times C}.$$

É conhecido o fato que existem dois fibrados canônicos sobre P(l, s): um fibrado unidimensional $\lambda \mapsto P(l, s)$ (herdado do fibrado linha canônico real $\lambda \mapsto \mathbb{RP}^l$) e um fibrado bidimensional $\nu \mapsto P(l, s)$ (herdado do fibrado linha canônico complexo $\nu \mapsto \mathbb{CP}^s$). Mais ainda, se $0 \leq i \leq l$ e $0 \leq t \leq s$, e $S^i \hookrightarrow S^l$ e $\mathbb{CP}^t \hookrightarrow \mathbb{CP}^s$ são as inclusões canônicas (completando com zeros as coordenadas restantes), então sabe-se que

$$\frac{S^i \times \mathbb{CP}^t}{A \times C} = P(i, t)$$

é subvariedade de P(l, s) com fibrado normal

$$(l-i)\lambda \oplus (s-t)\nu \mapsto P(i,t),$$

onde λ , ν significam as restrições sobre P(i, t) dos prévios λ , ν . Na particular situação em que t = 0, temos que

$$P(i,t) = \frac{S^i \times \mathbb{CP}^0}{A \times C} \cong \mathbb{RP}^i$$

e nesse caso sabe-se também que $\nu \mapsto P(i,0)$ reduz-se à $\lambda \oplus \mathbb{R} \mapsto \mathbb{R}P^i$ (isso ocorre devido ao fato que em uma fibra $\mathbb{C} = \mathbb{R}^2$ sobre tal $\mathbb{R}P^i$, quocientada pela conjugação,

o eixo O_x é identificado com ele mesmo, produzindo a parcela \mathbb{R} , enquanto o eixo O_y é quocientado via $x \mapsto -x$, produzindo a parcela λ).

Usando as considerações acima, note que no exemplo em questão a componente $\mathbb{R}\mathrm{P}^2$ é na verdade

$$\frac{S^2 \times \mathbb{CP}^0}{A \times C},$$

e portanto o fibrado normal de \mathbb{RP}^2 em M^m é

$$(2j+3)\lambda \oplus (2j+2)\nu = (2j+3)\lambda \oplus (2j+2)(\lambda \oplus \mathbb{R}) =$$
$$= (2j+3)\lambda \oplus (2j+2)\lambda \oplus (2j+2)\mathbb{R} = (4j+5)\lambda \oplus (2j+2)\mathbb{R}$$

e como $4j + 5 \equiv 1 \pmod{4}$, tal fibrado é cobordante a $\lambda \oplus (m-3)\mathbb{R} \mapsto \mathbb{R}P^2$. Em outras palavras, $\eta \mapsto F^2$ representa β_2 como queriamos.

No quadro abaixo sumarizamos os valores de $\varphi(n,\beta)$ obtidos para n par:

β_i	n par	$arphi(n,eta_i)$
β_1	$\forall n \text{ par}$	m(n-2)+2
β_2	$n = 4p, \ p \ge 1$	m(n-2)+4
β_3	$a(n) \equiv 2 \pmod{4}$	m(n-2)+2
β_4	$\forall n \text{ par}$	m(n-2)+4
β_5	$a(n) \equiv 1 \pmod{4}$	m(n-2)+2
β_6	$n = 4p, \ p \ge 1$	m(n-2)+4
β_7	$a(n) \equiv 3 \pmod{4}$	m(n-2)+2

Referências Bibliográficas

- J. M. Boardman, On manifolds with involution, Bull. Am. Math. Soc. 73 (1967), no. 2, 136–138.
- P. E. Conner, Diffeomorphims of period two, Michigan Math. Journal (1963), no. 10, 341–352.
- [3] _____, Differentable periodic maps, second ed., Springer-Verlag, 1979.
- [4] P. E. Conner and E. E. Floyd, *Differentiable periodic maps*, Springer-Verlag, 1964.
- [5] Czes Kosniowski and R. E. Stong, *Involutions and characteristic numbers*, Topology 17 (1978), no. 4, 309–330.
- [6] E. Lucas, *Théorie des nombres*, 1878; reprint, Librarie Blanchard, Paris (1961).
- [7] J. W. Milnor and J. D. Stasheff, *Characteristic classes*, Princeton University Press, 1974.
- [8] Howard Osborn, Vector bundles, Academic Press, Inc, 1982.
- [9] Pedro L. Q. Pergher, Upper bounds of the dimension of manifolds with certain Z₂ fixed sets, Mathemática Contemporânea (1997), no. 13, 269-275.
- [10] _____, \mathbb{Z}_2^k actions fixing {point} $\cup v^n$, Fund. Mathem. (2002), no. 171, 83–97.
- [11] _____, on \mathbb{Z}_2^k actions, Topology Appl (2002), no. 117, 105–112.
- [12] Pedro L. Q. Pergher and R. E. Stong, *Involutions fixing* $(point) \cup F^n$, Transformation Groups (2001), no. 6, 79–86.
- [13] David C. Royster, Involutions fixing the disjoint union of two projective spaces, Indiana University Mathematics Journal 29 (1980), no. 2, 267–276.
- [14] R. Thom, Quelques propriétés globales des variété differentiables, Comment. Math. Helvet. 28 (1954), 18–188.