UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA Departamento de Matemática Aplicada e Computacional

Dissertação de mestrado

Restrições Duras e Brandas em Problemas de Minimização em Caixas

Benaia Sobreira de Jesus Lima

Orientador: Prof. Dr. José Mario Martínez Co-orientadora: Prof<u>a</u>. Dr<u>a</u>. Sandra Augusta Santos

Campinas 2002 \grave{A} minha família, dedico.

Agradecimentos

Agradeço:

- A Deus.
- À **FAPESP** pelo suporte financeiro.
- Ao meu orientador José Mario Martínez e à minha co-orientadora Sandra Augusta Santos, que me dedicou parte de seu precioso tempo além de dizer as coisas certas, em momentos oportunos.
- À professora Maria Aparecida Diniz Erhardt, por ceder gentilmente os programas das funções teste.
- À professora Véra Lucia da Rocha Lopes, pela meticulosa correção deste trabalho.
- Finalmente, agradeço aos amigos presentes nesta caminhada.

"Errar é humano, pôr a culpa nos outros também."

Resumo

Box é um algoritmo para minimizar uma função suave com variáveis canalizadas que usa região de confiança em forma de caixa. Em cada iteração de *Box*, minimiza-se aproximadamente um modelo quadrático na caixa interseção da caixa do problema com a caixa de confiança.

Nesta caixa interseção distinguem-se dois tipos de limites: duros, aqueles definidos pelo problema e brandos, aqueles introduzidos pela região de confiança. Os limites brandos podem ser satisfeitos com alguma folga sem afetar as propriedades de convergência do algoritmo.

Essa liberdade com relação aos limites brandos foi a motivação desse trabalho, o qual a explorou modificando o critério de parada do algoritmo que resolve aproximadamente o subproblema quadrático (*Quacan*), de modo a antecipar a convergência desse algoritmo. Um extenso conjunto de experimentos numéricos foi feito, no qual se compara o desempenho de *Quacan* não modificado com o de *Quacan* com as duas modificações introduzidas neste trabalho.

Palavras chave: minimização em caixas, região de confiança, minimização de quadráticas canalizadas.

Abstract

The algorithm *Box* minimizes smooth functions with simple bounds, using trust regions defined by the infinity norm. At each iteration of *Box*, a quadratic model is minimized approximately in the intersection of the problem box with the trust region. There are two types of bounds at this intersection box: hard bounds, that come from the problem, and soft bounds, that even satisfied with some flexibility, still maintain the convergence properties of the algorithm. The freedom of the soft bounds motivated this work: modifications for the stopping criterion of the bound-constrained quadratic solver were proposed to achieve earlier convergence. Numerical experiments are presented to analyze the performance of the proposed modifications against the original criterion.

Keywords: bound-constrained minimization, trust region, minimization of quadratics with simple bounds.

Sumário

	Intro	odução	1
1	Des	crição de Box-Quacan	3
	1.1	Introdução	3
	1.2	Minimização em caixas	4
	1.3	Quadráticas canalizadas	7
2	Mo	dificações	13
	2.1	Introdução	13
	2.2	Gradiente projetado contínuo \times Gradiente projetado não-contínuo	14
	2.3	Quacan-Contínuo	16
	2.4	Quacan-Modificado	17
	2.5	Interpretação geométrica	20
3	Exp	erimentos Numéricos	23
	3.1	Introdução	23
	3.2	Problemas-teste	24
	3.3	Definição de parâmetros	34

	3.3.1	Parâmetros comuns	34			
	3.3.2	Parâmetros específicos de Quacan-Modificado	35			
	3.3.3	Critério de parada	37			
3.4	Resultados numéricos					
	3.4.1	Tabelas gerais	38			
3.5	Anális	e percentual	71			
3.6	Come	ntários finais e conclusões	75			

Bibliografia

Introdução

Box-Quacan, proposto por Friedlander, Martínez e Santos [3], é um algoritmo do tipo região de confiança, que pode ser aplicado ao problema de minimizar uma função suave, com variáveis canalizadas, ou seja,

$$\begin{array}{ll} \text{minimizar} & f(x) \\ \text{sujeito a} & l \le x \le u \end{array}$$

onde $f(x) : \mathbb{R}^n \to \mathbb{R}$ é uma função não-linear de classe C^2 , os vetores $l \in u$ são os limites da caixa (podem conter uma ou mais coordenadas que sejam $+\infty$ e/ou $-\infty$), e o número de variáveis n é livre (possivelmente grande).

A minimização em caixas implementada em Box baseia-se na minimização de quadráticas canalizadas, implementada em Quacan.

Em cada iteração de *Box*, *Quacan* minimiza aproximadamente uma quadrática $(\Psi(x), \text{ aproximação da função objetivo})$ numa caixa formada pela interseção da caixa do problema original com a região de confiança, que também é uma caixa. Sendo x^k o iterando corrente de *Box*, e δ o raio da região de confiança, o problema que *Quacan* resolve aproximadamente é

minimizar aproximadamente $\Psi(x)$

sujeito a $l \leq x \leq u$ e $||x - x_k||_{\infty} < \delta$

A observação que motivou este trabalho foi a seguinte: para a convergência do algoritmo tanto faz resolver o problema acima, como minimizar aproximadamente a mesma quadrática na região Γ , dada por

$$\Gamma = \{ x \in \mathbb{R}^n \, | \, l \le x \le u \quad e \quad \|x - x_k\|_{\infty} < \bar{\delta} \},$$

onde $\bar{\delta}$ pode ser qualquer valor entre $\frac{\delta}{3} \in 3\delta$.

A idéia para tirar proveito desse fato é modificar o critério de parada de *Quacan*, tornando-o sensível a essa liberdade, e explorando-a de modo a antecipar a convergência.

No capítulo 1, faz-se uma descrição do algoritmo de região de confiança usado por *Box*, e do algoritmo usado por *Quacan*, para minimizar aproximadamente o modelo quadrático. No capítulo 2, introduz-se duas modificações.

O capítulo 3 encerra um extenso conjunto de experimentos numéricos, cujo objetivo é comparar o desempenho das modificações frente a *Box-Quacan* não modificado.

Capítulo 1 Descrição de Box-Quacan

1.1 Introdução

Muitas situações do mundo real levam à procura de um valor mínimo ou máximo para uma função de uma ou mais variáveis com valores dentro de uma região do espaço multi-dimensional. Dentre os vários algoritmos que se destinam à busca de solução para esses problemas, o presente capítulo apresenta *Box-Quacan*. Este é um algoritmo do tipo região de confiança aplicável a problemas de minimização de funções gerais (de classe C^2) com variáveis canalizadas.

Box é um algoritmo para minimizar funções gerais (de classe C^2) em caixas, introduzido por Friedlander, Martínez e Santos em [3] e implementado como subalgoritmo principal de Box9903, o qual é um algoritmo para minimizar funções gerais (de classe C^2) com restrições lineares ou não-lineares, ver [5].

Por sua vez, *Quacan* é um algoritmo para minimizar quadráticas canalizadas introduzido em [3] e implementado conforme [1].

A cada iteração de *Box*, *Quacan* minimiza aproximadamente um modelo quadrático, com variáveis canalizadas, daí o nome *Box-Quacan*.

1.2 Minimização em caixas

O problema considerado será:

$$\begin{array}{ll} \text{minimizar} & f(x) \\ \text{sujeito a} & x \in \Omega, \end{array} \tag{1.1}$$

onde $f : \mathbb{R}^n \to \mathbb{R}, \ \Omega = \{x \in \mathbb{R}^n \mid l \leq x \leq u; l, u \text{ vetores conhecidos de } \mathbb{R}^n\}, f \in C^2(\mathbb{R}^n)$. A expressão $l \leq x \leq u$ deve ser entendida como $l_i \leq x_i \leq u_i, \forall i = 1, ..., n$. O conjunto Ω é o que se define como uma caixa em \mathbb{R}^n .

Em [3] foi introduzido um algoritmo de região de confiança para resolver o problema (1.1). Tal algoritmo baseia-se na solução de uma seqüência de problemas quadráticos originários de aproximações quadráticas para f.

Tomando $B_k \in \mathbb{R}^{n \times n}$ uma aproximação simétrica para a matriz Hessiana $\nabla^2 f(x_k)$, $M_k > 0$ tal que $||B_k||_2 \leq M_k$ e usando a notação $g(x_k) = \nabla f(x_k)$, por Taylor, tem-se:

$$f(x) \approx f(x_k) + g(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k) (x - x_k)$$

$$\approx f(x_k) + g(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T B_k (x - x_k)$$

$$\leq f(x_k) + g(x_k)^T (x - x_k) + \frac{1}{2} M_k ||(x - x_k)||_2^2$$

$$= f(x_k) + g(x_k)^T z + \frac{1}{2} M_k ||z||_2^2 \quad \text{onde} \quad z = x - x_k$$

A segunda passagem vale pois $B_k \approx \nabla^2 f(x_k)$, enquanto a terceira se estabelece devido a: $(x - x_k)^T B_k(x - x_k) \leq ||(x - x_k)||_2 ||B_k(x - x_k)||_2 \leq ||B_k||_2 ||(x - x_k)||_2^2 \leq M_k ||(x - x_k)||_2^2.$ Algoritmo 1.1 - Região de confiança para minimização em caixas (Box)

Dados $0 < \delta_1 \le \delta_2 < 1$, $\alpha \in (0, 1)$, $\Delta_{min} > 0$, $\theta \in (0, 1]$, $x_0 \in \Omega$,

$$B_0 \approx \nabla^2 f(x_0) \in \Delta_0 \ge \Delta_{min}$$
, faça $k = 0$. Os passos para obter x_{k+1} sãos

Passo 1 (Define o raio inicial e calcula o limitante M_k)

 $\Delta \leftarrow \Delta_k$

Calcular $M_k > 0$ tal que $||B_k||_2 \le M_k$.

Passo 2 (Resolve o subproblema fácil)

Calcular $z_k^Q(\Delta)$ solução global de:

 $\begin{array}{ll} \text{minimizar} & Q_k(z) = \frac{1}{2}M_k \|z\|_2^2 + g_k^T z\\ \text{sujeito a} & l \leq x_k + z \leq u\\ & \|z\|_{\infty} \leq \Delta \end{array}$

Se $Q_k(z_k^Q) = 0$, pare.

Passo 3 (Calcula o passo)

Calcular $\bar{z}_k(\Delta)$ tal que: $\Psi_k(\bar{z}_k(\Delta)) \le \theta Q_k(z_k^Q(\Delta))$ $l \le x_k + \bar{z}_k \le u$ $\|z\|_{\infty} < \Delta$,

onde: $\Psi_k(z) = \frac{1}{2}z^T B_k z + g_k^T z.$

Passo 4 (Testa o decréscimo suficiente)

Se $f(x_k + \bar{z}_k(\Delta)) \leq f(x_k) + \alpha \Psi_k(\bar{z}_k(\Delta))$ então defina $z_k = \bar{z}_k(\Delta)$, $x_{k+1} = x_k + z_k, \ \Delta_k = \Delta$ e retorne ao passo 1.

Senão, troque Δ por Δ_{novo} onde $\Delta_{novo} \in [\delta_1 \| \bar{z}_k(\Delta)) \|_{\infty}, \delta_2 \Delta$] e volte ao passo 2.

Boa definição

Se x_k não é um ponto estacionário do problema 1.1 então x_{k+1} está bem definido e $f(x_{k+1}) < f(x_k)$.

Prova: Ver [9], *Teorema 7.3.3*, pag.138.

Convergência global

Seja $\{x_k\}$ uma seqüência infinita gerada pelo algoritmo 1.1. Se $\lim_{k \in K_1} = x^*$, onde K_1 é um subconjunto infinito de índices e M_k é limitado para $k \in K_1$, então x^* é um ponto estacionário para o problema (1.1).

Prova: Ver [9], *Teorema 7.3.4*, pág.139.

O desejo de que $||z||_{\infty} = ||x - x_k||_{\infty} \le \Delta$ fosse uma caixa motivou a escolha da norma infinito.

O passo 2 do algoritmo 1.1 é fácil de ser calculado pois M_k pode ser $||B_k||_{\infty}$ que é o máximo da soma dos módulos das linhas de B_k e z_k^Q é a projeção de $x_k - g_k/M_k$ na caixa interseção { $x \in \mathbb{R}^n | l \le x \le u, ||x - x_k||_{\infty} \le \Delta$ }. Assim $[z_k^Q(\Delta)]_i = \max\{l_i, \min\{[x_k - g_k/M_k]_i, u_i\}\}$ para todo i = 1, ..., n.

No passo 3 busca-se uma solução aproximada para o problema:

]

minimizar
$$\Psi_k(z)$$

sujeito a $l \leq x_k + z \leq u$ (1.2)
 $\|z\|_{\infty} \leq \Delta$

onde $\Psi_k(z) = \frac{1}{2}(x - x_k)^T B_k(x - x_k) + g(x_k)^T (x - x_k)$, tomando como aproximação inicial o ponto calculado no passo anterior. Assim, o algoritmo 1.1 depende fundamentalmente do sucesso em minimizar uma quadrática com variáveis canalizadas (passo 3). Dessa forma, é preciso resolver eficientemente problemas com essa formulação, tarefa sobre a qual versará a próxima seção.

1.3 Quadráticas canalizadas

O conjunto factível do problema (1.2) é a interseção de duas caixas, portanto uma caixa, daí o problema (1.2) pode ser visto na forma:

$$\begin{array}{ll} \text{minimizar} & \Psi(x) \\ \text{sujeito a} & l \le x \le u \end{array} \tag{1.3}$$

onde $\Psi(x) = \frac{1}{2}x^T H x + b^T x.$

Antes da apresentação do algoritmo principal para resolver o problema (1.3) alguns conceitos preliminares serão apresentados.

Definição 1: Uma face aberta, de uma caixa Ω , é um subconjunto $F_I \subsetneq \Omega$,

 $F_{I} = \{x \in \Omega | x_{i} = l_{i} \text{ se } i \in I, x_{i} = u_{i} \text{ se } i + n \in I, \ l_{i} < x_{i} < u_{i} \text{ nos outros casos } \} \text{ onde } I$ é um conjunto que satisfaz $I \subsetneq \{1, 2, ..., 2n\}, i \in i + n$ não estão simultaneamente em $I \in i \in \{1, 2, ..., n\}.$

Por exemplo, se o espaço ambiente é o \mathbb{R}^3 e a caixa Ω está definida pelos vetores $l = (2,3,0)^T$ e $u = (4,9,2)^T$ tem-se: $F_{\{6\}} = \{x \in \Omega | \ 2 < x_1 < 4, \ 3 < x_2 < 9$ e $x_3 = 2\},$ $F_{\{4,5\}} = \{x \in \Omega | \ x_1 = 4, \ x_2 = 9$ e $0 < x_3 < 2\},$ $F_{\{4,5,6\}} = \{x \in \Omega | \ x_1 = 4, \ x_2 = 9$ e $x_3 = 2\},$ se $I = \emptyset$ então F_{\emptyset} será o interior da caixa.

Claramente, se $I \neq J$ então a interseção entre F_I e F_J é vazia, mais ainda, Ω é a união de todas as suas faces abertas.

Na figura seguinte, $F_{\{6\}}$ é a região em hachurado, $F_{\{4,5\}}$ é o segmento que une os pontos $(4,9,0)^T$ e $(4,9,2)^T$ enquanto $F_{\{4,5,6\}} = (4,9,2)^T$.

 \bar{F}_I denotará o fecho de F_I , enquanto $V(F_I)$ denota a menor variedade linear afim que contém F_I .

Definição 2: Para cada $x \in \Omega$ define-se o gradiente projetado negativo $g_p(x) \in \mathbb{R}^n$, componente a componente, como:

$$[g_p(x)]_i = \begin{cases} 0 & \text{se } x_i = l_i \quad \text{e} \quad \frac{\partial \Psi}{\partial x_i}(x) > 0\\ 0 & \text{se } x_i = u_i \quad \text{e} \quad \frac{\partial \Psi}{\partial x_i}(x) < 0\\ -\frac{\partial \Psi}{\partial x_i}(x) & \text{nos outros casos} \end{cases}$$

Se x é um ponto interior à caixa então o gradiente projetado é igual ao gradiente não-projetado em x. É fácil ver que se x é minimizador local do problema (1.3) então $g_p(x) = 0$. Considerando $l = (2,3,0)^T$, $u = (4,9,2)^T$, x = (4,3,1) e -g = -g(x) = $-\nabla f(x) = (1,2,-1)^T$ tem-se $g_p(x) = (0,2,-1)^T$, veja figura seguinte.

Para se explorar a estrutura do problema (1.3) o gradiente projetado será decomposto em duas componentes ortogonais.

Definição 3: Para cada $x \in F_I$ define-se o gradiente interno $g_I(x) \in \mathbb{R}^n$, componente a componente, como;

$$[g_I(x)]_i = \begin{cases} 0 & \text{se } i \in I \text{ ou } i + n \in I \\ -\frac{\partial \Psi}{\partial x_i}(x) & \text{caso contrário} \end{cases}$$

Definição 4: Para cada $x \in F_I$ define-se o gradiente chopado $g_I^C(x) \in \mathbb{R}^n$, componente a componente, como;

$$[g_I^C(x)]_i = \begin{cases} 0 & \text{se } i \notin I & \text{e} & i+n \notin I \\ 0 & \text{se } i \in I & \text{e} & \frac{\partial \Psi}{\partial x_i}(x) > 0 \\ 0 & \text{se } i+n \in I & \text{e} & \frac{\partial \Psi}{\partial x_i}(x) < 0 \\ -\frac{\partial \Psi}{\partial x_i}(x) & \text{caso contrário} \end{cases}$$

Das definições de $g_p(x)$, $g_I(x)$ e $g_I^C(x)$ e levando em conta que $i \in i + n$ não figuram simultaneamente em I, qualquer que seja $I \subsetneq \{1, 2, ..., 2n\}$ tem-se:

- (1) $g_p(x) = g_I(x) + g_I^C(x)$
- (2) $g_I(x) \perp g_I^C(x)$

Vale notar que se $x \in F_I$, existem $\bar{t}, \bar{\bar{t}} \ge 0$ tais que $x + tg_I(x)$ sempre está na face $F_I, \forall t \in [0, \bar{t}]$ e $x + tg_I^C(x)$ sempre é factível, $\forall t \in [0, \bar{\bar{t}}]$.

Novamente tomando $l = (2,3,0)^T$, $u = (4,9,2)^T$, x = (4,3,1) e $-g = -g(x) = -\nabla f(x) = (1,2,-1)^T$ tem-se $g_p(x) = (0,2,-1)^T$. Aplicado as definições 3 e 4 decompõe-se o gradiente projetado em duas componentes ortogonais, $g_I(x) = (0,0,-1)^T$ e $g_C(x) = (0,2,0)^T$

O algoritmo para resolver aproximadamente o problema (1.3) está baseado na minimização parcial em cada uma das faces visitadas. Em cada ponto o algoritmo testa se a componente chopada é maior que uma fração pré-estabelecida do gradiente projetado. Quando isso acontece, o próximo iterando é o minimizador nessa direção; caso contrário, o próximo iterando é procurado na face em que se encontra o ponto (iterando) atual.

Algoritmo 1.2 - Quadráticas canalizadas(Quacan)

Dados $0 < \eta < 1, x_0 \in \Omega$ e $\varepsilon > 0$, o algoritmo gera uma seqüência x_k em Ω e pára quando $||g_p(x_k)||_2 < \varepsilon$. Assumindo que $x_k \in \Omega$ é tal que $||g_p(x_k)||_2 > \varepsilon$, tomando $I = I(x_k)$ tal que $x_k \in F_I$ e definindo $\Phi(x)$ por $\Phi(x) = argmin\{\Psi(y) | y = x + tg_I^C(x) \operatorname{com} y \in \Omega\}$, os passos seguintes definem x_{k+1} .

Passo 1

Se
$$||g_I^C(x_k)||_2 > \eta ||g_p(x_k)||_2$$
 então $x_{k+1} = \Phi(x_k)$

Senão vá ao passo 2.

Passo 2

Calcule, usando um algoritmo com boas propriedades para minimização em caixas, um ponto $z_k \in V(F_I)$ tal que $\Psi(z_k) < \Psi(x_k)$. Se $z_k \in \overline{F}_I$ então $x_{k+1} = z_k$. Senão vá ao passo 3.

Passo 3

Ache $x_{k+1} \in \overline{F}_I - F_I$ tal que $\Psi(x_{k+1}) < \Psi(x_k)$.

Diz-se que um algoritmo para minimizar $\Psi(x)$ em $V(F_I)$ tem boas propriedades para a minimização em caixas quando produz uma seqüência $\{z_0, z_1, z_2, ...\} \subsetneq V(F_I)$, $z_0 \in F_I$ que satisfaz:

(a) Se z_k e z_{k+1} estão definidos então $\Psi(z_{k+1}) < \Psi(z_k)$.

(b) Se z_{k+1} não está definido, a seqüência termina em z_k . Quando isso ocorre, z_k é um ponto estacionário da minimização de $\Psi(x)$ em $V(F_I)$ ou foi encontrada uma direção d_k tal que

$$\lim_{t \to \infty} \Psi(z_k + td_k) = -\infty.$$

Neste caso, se $z_k + td_k \in \Omega$ para todo t, o problema original não tem solução. Caso contrário, $z_k + td_k \notin \Omega$ para t suficientemente grande então escolhe-se o maior t que satisfaz: $z_{k+1} = z_k + td_k \in \Omega$ e $\Psi(z_{k+1}) < \Psi(z_k)$ e a seqüência, gerada pelo algoritmo interno, dá-se por terminada em z_{k+1} .

(c) Se a seqüência $\{z_k\}$ é infinita, então todo ponto limite deve ser um ponto estacionário de $\Psi(z)$ sujeito a $V(F_I)$. Se não existem pontos limite $(||z_k||_{\infty} \to -\infty)$, então

$$\lim_{k \to \infty} \Psi(z_k) = -\infty.$$

O algoritmo de gradientes conjugados satisfaz as propriedades (a), (b) e (c) e é o algoritmo que *Quacan* usa no passo 2.

Boa definição

O Algoritmo 1.2 está bem definido.

Prova: Ver [1], Teorema 2.1.

Convergência global

Seja $\{x_k\}$ uma seqüência infinita gerada pelo algoritmo 1.2. Então existe x^* ponto limite de $\{x_k\}$ tal que $g_p(x^*) = 0$. Se Ψ é convexa (H semi-definida positiva), todo ponto limite de $\{x_k\}$ é ponto estacionário para o problema 1.3.

Prova: Ver [1], Teorema 2.2.

Capítulo 2

Modificações

2.1 Introdução

O algoritmo *Quacan*, introduzido como o algoritmo 1.2, tem seu critério de parada baseado na norma do gradiente projetado não-contínuo, o qual foi definido no capítulo anterior (definição 2) e denominado simplesmente de gradiente projetado. Este capítulo apresenta duas modificações para o critério de parada de *Quacan*.

A primeira modificação recebeu o nome de *Quacan-Contínuo*, pois consiste em substituir o gradiente projetado não-contínuo pelo gradiente projetado contínuo no critério de parada de *Quacan*.

Visando uma diminuição no número de iterações de *Quacan* a cada iteração de Box, propõe-se um novo critério de parada envolvendo os gradientes projetados contínuo e não-contínuo. A esta segunda modificação deu-se o nome de *Quacan-Modificado*. Antes de se introduzir as modificações, define-se o gradiente projetado contínuo, prova-se que é contínuo e um contra-exemplo é apresentado para justificar a descontinuidade do g_p .

2.2 Gradiente projetado contínuo \times Gradiente projetado não-contínuo

Definição 5: Para todo $x \in \Omega$ define-se o gradiente projetado contínuo como,

$$g_{pc}(x) = x - P(x - g(x), l, u)$$

onde $g(x) = \nabla \Psi(x)$ e P é definido componente a componente por

$$[P(y, l, u)]_i = \begin{cases} l_i & \text{se } y_i < l_i, \\ y_i & \text{se } y_i \in [l_i, u_i], \\ u_i & \text{se } y_i > u_i. \end{cases}$$

Definição 6: Dados $x_0 \in \mathbb{R}^n$ e $\delta > 0$, define-se a bola de centro em x_0 e raio $\delta > 0$, e indica-se por $B(x_0, \delta)$, como $B(x_0, \delta) = \{x \in \mathbb{R}^n \mid d(x, x_0) < \delta\}$, onde d é uma função distância. Neste trabalho usou-se, para função distância, a norma - 2 e em alguns casos particulares a norma - ∞ .

Para justificar o fato do gradiente projetado não ser contínuo, basta considerar $\Psi(x,y) = x^2 + y^2$ e a caixa definida por $l = (1,2)^T$ e $u = (5,6)^T$.

Tome $x_0 = (1, 2)^T$ e $\varepsilon = \sqrt{5}$, como x_0 é um ponto fronteira para a caixa de limites $l \in u$ (doravante, indicada por $\Omega(l, u)$), para todo $\delta > 0$ a bola $B(x_0, \delta)$ contém pontos interiores à caixa $\Omega(l, u)$, veja figura abaixo

Seja x um desses pontos, então $||g_p(x)||_2 = ||g(x)||_2 > 2\sqrt{5} > \sqrt{5} = \varepsilon$. Como $g_p(x_0) = (0,0)^T$ tem-se: $\forall \delta > 0$ existe $x \in B(x_0,\delta)$ tal que $||g_p(x_0) - g_p(x)||_2 > \varepsilon$ e portanto g_p não é contínuo.

Resta mostrar que g_{pc} é contínuo. Como o operador identidade é contínuo e a diferença de operadores contínuos também é um operador contínuo, basta mostrar que o operador P da definição 5 é contínuo. Embora a norma euclidiana goze de maior popularidade na literatura, o uso da norma infinito na demonstração seguinte não ocasionará problema algum pois \mathbb{R}^n é um espaço vetorial de dimensão finita e nestes espaços duas normas quaisquer são equivalentes, ver [6], pp. 75.

Demonstração

Sejam $x_0 \in \mathbb{R}^n$ e $\varepsilon > 0$. Para assegurar a continuidade de P é suficiente exibir $\delta > 0$ tal que $P[B(x_0, \delta)] \subseteq B[P(x_0), \varepsilon]$.

Defina $I = \{1 \leq i \leq n \mid (x_0)_i \in (-\infty, l_i) \text{ ou } (x_0)_i \in (l_i, u_i) \text{ ou } (x_0)_i \in (u_i, \infty)\}$. Se $I = \emptyset$, basta tomar $\delta = \frac{\varepsilon}{2}$ que a demonstração seguirá naturalmente; caso contrário, tome $\delta = \frac{1}{2} \min_{i \in I} \{ |l_i - (x_0)_i|, |u_i - (x_0)_i|, |u_i - l_i|, \varepsilon \}$.

Para todo $x \in B(x_0, \delta)$ têm-se $||x - x_0||_{\infty} < \delta$. Como a norma infinito é o máximo das coordenadas $\max_{1 \le i \le n} |x_i - (x_0)_i| < \delta$, então

$$|x_i - (x_0)_i| < \delta, \forall i = 1, ..., n.$$

Segue imediatamente da definição de δ que $\delta < \varepsilon$ e o intervalo $((x_0)_i - \delta, (x_0)_i + \delta)$ está inteiramente contido no intervalo que contém $(x_0)_i$, se $i \in I$. Logo, $\forall x \in B(x_0, \delta), [P(x)]_i$ é calculado da mesma forma que se calcula $[P(x_0)]_i$ quando $i \in I$.

Portanto

$$- \operatorname{se} (x_0)_i \in (-\infty, l_i) \Rightarrow [P(x_0)]_i = l_i, \text{ pela argumentação anterior } x_i \in (-\infty, l_i),$$

logo $[P(x)]_i = l_i, \text{ portanto } |[P(x_0)]_i - [P(x)]_i| = |l_i - l_i| = 0 < \varepsilon;$
$$- \operatorname{se} (x_0)_i \in (l_i, u_i) \Rightarrow [P(x_0)]_i = (x_0)_i \text{ e } [P(x)]_i = x_i, \text{ pois } x_i \in (l_i, u_i) \text{ logo}$$

$$|[P(x_0)]_i - [P(x)]_i| = |(x_0)_i - x_i| < \delta < \varepsilon, \text{ então } |[P(x_0)]_i - [P(x)]_i| < \varepsilon;$$

$$- \operatorname{se} (x_0)_i \in (u_i, +\infty) \Rightarrow [P(x_0)]_i = u_i \text{ e como } x_i \in (u_i, +\infty) \quad [P(x)]_i = u_i,$$

portanto $|[P(x_0)]_i - [P(x)]_i| = |u_i - u_i| = 0 < \varepsilon.$

Ficou provado o seguinte: Dado $x \in B(x_0, \delta)$ então $|[P(x_0)]_i - [P(x)]_i| < \varepsilon, \forall i \in I$, ou seja, " $P(x) \in B(P(x_0), \varepsilon)$ ".

Quando $x \in B(x_0, \delta)$ e $(x_0)_i$ é tal que $i \notin I$ então $(x_0)_i = l_i$ ou $(x_0)_i = u_i$. Acontecendo $(x_0)_i = l_i$ tem-se $x_i \in ((x_0)_i - \delta, (x_0)_i]$ ou $x_i \in ((x_0)_i, (x_0)_i + \delta)$.

O primeiro caso conduz a $|[P(x_0)]_i - [P(x)]_i| = |l_i - l_i| = 0 < \varepsilon$, enquanto o segundo leva a $|[P(x_0)]_i - [P(x)]_i| = |(x_0)_i - x_i| < \delta < \varepsilon$.

Analogamente prova-se que $|[P(x_0)]_i - [P(x)]_i| < \varepsilon$ quando $(x_0)_i = u_i$.

Assim $\forall x \in B(x_0, \delta), P(x) \in B(P(x_0), \varepsilon)$, ou seja, $P[B(x_0, \delta)] \subseteq B[P(x_0), \varepsilon]$,

portanto P é contínuo. Pelas considerações iniciais pode-se afirmar que g_{pc} é contínuo.

2.3 Quacan-Contínuo

A cada iteração de *Box*, *Quacan* minimiza aproximadamente uma quadrática Ψ (modelo quadrático para a função objetivo do problema (1.1)) numa caixa fornecida por *Box*, que é a interseção da caixa original Ω , do problema (1.1), com a bola $||x - x_k||_{\infty} < \delta$, a qual é originária do algoritmo de região de confiança para minimização em caixas (o algoritmo 1.1). Sendo Ω essa caixa interseção e x_k o iterando corrente de *Box-Quacan*, o atual critério de parada de *Quacan* é dado por:

$$\|g_p(x)\|_2 \le \varepsilon \|g_p(x_k)\|_2$$

onde g_p é o gradiente projetado da definição 2 e ε é a precisão desejada. Doravante, o termo $||g_p(x)||_2$ será chamado " numerador" enquanto $||g_p(x_k)||_2$ será chamado de "denominador"

Quacan-Contínuo consiste em substituir o gradiente projetado não-contínuo pelo gradiente projetado contínuo no critério de parada de Quacan. Portanto Quacan-Contínuo se resume a Quacan com o seguinte critério de parada:

$$\|g_{pc}(x)\|_2 \le \varepsilon \|g_{pc}(x_k)\|_2$$

Este novo critério de parada para *Quacan* nunca tinha sido implementado e como em geral o gradiente projetado contínuo é menor que o não-contínuo, pode-se conjecturar que este novo critério forneça um menor número de iterações a cada chamada de *Quacan*. Isso acarretaria uma diminuição no tempo total de execuçao de *Box-Quacan*.

Porém antecipar a convergência de *Quacan* pode eventualmente elevar o número de iterações de *Box*, que neste caso estará recebendo pontos "ruins" de *Quacan*. Isso, é claro, pode aumentar o tempo de execução de *Box-Quacan*, frustando a pretensão inicial.

2.4 Quacan-Modificado

Foi mencionado na seção anterior que em geral o gradiente projetado contínuo é menor que o gradiente projetado não-contínuo; isso, junto ao fato do critério de parada de *Quacan* ser um quociente, fazem pensar que uma boa modificação para este critério de parada é tomar o numerador como sendo a norma-2 do gradiente projetado contínuo no ponto onde se deseja verificar a convergência e o denominador como a norma-2 do gradiente projetado não-contínuo em x_k (iterando corrente de *Box-Quacan*).

Por outro lado, sendo x_k o iterando corrente de *Box-Quacan*, $\Psi(x)$ a aproximação de segunda ordem de Taylor (em torno de x_k) para a função objetivo e δ o raio da região de confiança, a cada iteração de *Box* o problema que *Quacan* resolve é

> Minimizar aproximadamente $\Psi(x)$ sujeito a $x \in \Omega$ e $||x - x_k||_{\infty} < \delta$.

Nesta caixa interseção, onde se projeta o gradiente da quadrática para o cálculo do numerador do critério de parada, distinguem-se dois tipos de limites:

Limites duros: são aqueles introduzidos pela caixa Ω do problema original (o problema (1.1)).

Limites brandos: são aqueles que se originam no algoritmo de região de confiança usado por *Box* (o algoritmo 1.1). As restrições $||x - x_k||_{\infty} < \delta$ são brandas pois se originaram no algoritmo de região de confiança, e poderiam ser satisfeitas com alguma folga sem prejudicar as propriedades do algoritmo.

Para a convergência de *Box-Quacan*, tanto faz resolver o problema quadrático na caixa interseção fornecida por *Box* ou minimizar aproximadamente a mesma quadrática na região Γ_1 , dada por

$$\Gamma_1 = \{ x \in \mathbb{R}^n | x \in \Omega \quad \text{e} \quad \|x - x_k\|_{\infty} \le \bar{\delta} \},$$

onde $\bar{\delta}$ pode ser um valor qualquer do intervalo $[0.5\delta, 5\delta]$; nada impede que se tome outro intervalo. Essa liberdade para violar os limites brandos sem afetar a convergência global do algoritmo é animadora, pois uma implementação onde esse fato seja considerado poderia levar a um menor número de iterações a cada chamada de *Quacan*.

Qualquer implementação desse fato passa necessariamente por uma escolha bem definida para δ . Neste trabalho considerou-se $\delta = ||z_0 - z_j||_{\infty}$ onde z_0 é o ponto inicial do processo iterativo de *Quacan*, o qual é fornecido por *Box* e z_j é o iterando corrente de *Quacan*. Assim para cada iterando z_j considerou-se a caixa

$$\Gamma = \{ z \in \mathbb{R}^n | z \in \Omega \quad e \quad \|z - z_0\|_{\infty} \le \delta \},$$

onde $\delta = ||z_0 - z_j||_{\infty}$. Em relação a esta caixa foi definido o critério de parada de *Quacan-Modificado*, o qual declara convergência a *Quacan* quando este encontra um ponto z_j , cujo gradiente projetado contínuo satisfaz:

$$\|g_{pc}^{\Gamma}(z_j)\|_2 \le \varepsilon \|g_p(x_k)\|_2$$

onde $g_{pc}^{\Gamma}(z_j)$ é apenas uma notação para indicar que o gradiente projetado contínuo é calculado em relação à caixa variável Γ e $g_p(x_k)$ é calculado como no critério atual de *Quacan* (na verdade não é calculado por *Quacan* e sim herdado de *Box*).

Uma singela interpretação geométrica do critério atual e da última modificação descrita, serve de aperitivo para o exaustivo conjunto de experimentos numéricos relatados no capítulo seguinte. Lá estão confrontadas as duas *modificações* e *Box-Quacan* não modificado .

2.5 Interpretação geométrica

Especialmente nesta seção será usado subíndice para indicar coordenada de um ponto do espaço e superíndice para indicar um ponto do espaço.

Considere o problema de minimizar aproximadamente a quadrática $\Psi(x_1, x_2) = x_1^2 + x_2^2$ sobre a caixa definida por $l = (1, 1)^T$ e $u = (9, 9)^T$. É fácil ver que $x^s = (1, 1)^T$ é a solução global desse problema (veja a figura 2.1).

Tome $\varepsilon = 0.3$ e considere $x^k = (5,5)^T$, então $||g_p(x^k)||_{\infty} = ||g(x^k)||_{\infty} = 10$. Na solução x^s , o gradiente projetado é nulo, logo é de se esperar que exista uma vizinhança desse ponto onde o gradiente projetado seja suficientemente pequeno para satisfazer o critério de parada. A partir de x^s , os pontos sobre a face (lado) inferior da caixa, são da forma $x = (1 + x_1, 1)^T$ com $0 \le x_1 \le 8$; para estes pontos $g_p(x) = (-2(1 + x_1), 0)^T$ então $||g_p(x)||_{\infty} = 2(1 + x_1), x_1 \in [0, 8]$. Para satisfazer o critério de parada deve-se ter $||g_p(x)||_{\infty} < \varepsilon ||g_p(x^k)||_{\infty}$, ou seja, $2(1 + x_1) < 0.3 * 10$ e portanto $x_1 < 0.5$.

Analogamente, os pontos da forma $x = (1, 1 + x_2)^T$, $0 \le x_2 \le 8$ têm $g_p(x) = (0, -2(1 + x_2))^T$; se um destes pontos satisfaz o critério de parada tem-se $||g_p(x)||_{\infty} < \varepsilon ||g_p(x^k)||_{\infty}$, o que implica $2(1 + x_2) < 3$ dai $x_2 < 0.5$. A figura 2.1 apresenta em hachurado a região de aceitação para o atual critério de parada de *Quacan*, para $\varepsilon = 0.3$ e $x^k = (5, 5)^T$.

Figura 2.1: Região de aceitação para o critério atual

Para verificar o aumento da região de aceitação nem é preciso determiná-la fielmente para *Quacan-Modificado*. Aplicando-se o mesmo raciocínio e cálculos semelhantes, verifica-se que todos os pontos da caixa com limites l = (1, 1) e u = (4, 4), pertencem à região de aceitação para *Quacan-Modificado*, veja a figura abaixo.

Figura 2.2: Região de aceitação para Quacan-Modificado

A caixa de centro em (5,5) tem raio igual à tolerância estabelecida para o

decréscimo do raio. Se um dado iterando de *Quacan* cai dentro dessa caixa, *Quacan-Modificado* declara convergência neste ponto.

Vale notar que se $\varepsilon \leq 0.2$ a região de aceitação para o critério atual se resume ao ponto solução $x^s = (1,1)^T$, enquanto *Quacan-Modificado* sempre declara convergência em qualquer ponto da caixa de limites $l = x^s$ e $u = (l_1 + \frac{\varepsilon ||g_p(x^k)||_{\infty}}{2}, l_2 + \frac{\varepsilon ||g_p(x^k)||_{\infty}}{2})^T$.

Box-Quacan e suas modificações aqui descritas, têm seus critérios de parada implementados com a norma-2. A escolha da norma- ∞ para a interpretação geométrica se justifica por facilitar alguns cálculos, e principalmente por simplificar a confecção dos desenhos das regiões de aceitação. Além disso, as normas dois e infinito são equivalentes. Assim, o aumento da região de aceitação para Quacan-Modificado observado com a norma- ∞ também deve se verificar com a norma-2.

Capítulo 3 Experimentos Numéricos

3.1 Introdução

Este capítulo apresenta um exaustivo conjunto de experimentos numéricos, cujo objetivo é comparar o desempenho das modificações com o desempenho de *Box-Quacan* não modificado. Embora *Box-Quacan* seja aplicável a problemas com variáveis canalizadas, optou-se por trabalhar apenas com problemas irrestritos, pois se as modificações propostas não se mostrarem eficientes para esse tipo de problema não terão porquê sê-las para problemas restritos.

O capítulo está organizado da seguinte forma: na seção 3.2 é feita a descrição dos problemas teste; a seção 3.3 estabelece os parâmetros utilizados; na seção 3.4 estão as tabelas produzidas com os testes e na seção 3.5 é feita uma análise comparativa, em termos percentuais, do tempo de execução, do número de produtos matriz×vetor e do número de iterações de *Quacan*.

Esta análise compara o desempenho dos códigos em problemas de pequeno porte (problemas com dimensão menor ou igual a 100), problemas de médio porte (problemas com dimensão variando de 100 a 5000) e problemas de grande porte, ou seja, problemas com dimensão maior que 5000.

Naturalmente essa análise não pode omitir uma comparação global, a qual dará uma visão panorâmica do comportamento das modificações.

Os códigos utilizados estão implementados em FORTRAN 77 (Microsoft Power Station) com precisão dupla e os testes se processaram num PC, pentium III com 256Mb de memória RAM.

3.2 Problemas-teste

Como função objetivo para os problemas testes usou-se todas as funções de J.J.Moré, B.S.Garbow e K.E.Hillstrom [10], que são da forma,

$$f(x) = \sum_{i=1}^{m} f_i^2(x).$$

Para definir essas funções foi adotado o seguinte formato geral:

Nome da função

- (a) Dimensão [n, m]
- (b) Funções de definição (aqui se fornecerá $f_i, \forall i = 1, ..., m$)
- (c) Ponto inicial (x_0)
- (d) Valor mínimo de f.

No item (a), n é a dimensão do problema. Segue abaixo a lista completa de todas as funções.

(1) Função de Freudenstein e Roth

(a)
$$n = 2, m = 2$$

- (b) $f_1(x) = -13 + x_1 + ((5 x_2)x_2 2)x_2$
- $f_2(x) = -29 + x_1 + ((x_2 + 1)x_2 14)x_2$

(c)
$$x_0 = (0.5, -2)^4$$

(d) $f = 0 \text{ em } (5,4)^T, f = 48.9842... \text{ em } (11.41..., -0.8968...)^T$

(2) Função mal escalada de Powell

- (a) n = 2, m = 2
- (b) $f_1(x) = 10^4 x_1 x_2 1$ $f_2(x) = exp[-x_1] + exp[-x_2] - 1.0001$ (c) $x_0 = (0, 1)^T$
- (d) $f = 0 \text{ em} (1.098 \dots 10^{-5}, 9.106 \dots)^T$

(3) Função mal escalada de Brown

- (a) n = 2, m = 3(b) $f_1(x) = x_1 - 10^6$ $f_2(x) = x_2 - 2.10^{-6}$ $f_3(x) = x_1x_2 - 2$
- (c) $x_0 = (1, 1)^T$
- (d) $f = 0 \text{ em } (10^6, 2.10^{-6})^T$

(4) Função de Beale

- (a) n = 2, m = 3
- (b) $f_i(x) = y_i x_1(1 x_2^i),$ onde $y_1 = 1.5, y_2 = 2.25, y_3 = 2.625$
- (c) $x_0 = (1, 1)^T$
- (d) $f = 0 \text{ em } (3, 0.5)^T$

(5) Função de Jennrich e Sampson

- (a) $n=2, m \ge n$
- (b) $f_i(x) = 2 + 2i (exp[ix_1] + exp[ix_2])$
- (c) $x_0 = (0.3, 0.4)^T$
- (d) f = 124.362... em $x_1 = x_2 = 0.2578...$ para m = 10.

Função vale helicoidal (a) n = 3, m = 3(6)

(a)
$$n = 3, m = 3$$

(b) $f_1(x) = 10[x_3 - 10\theta(x_1, x_2)]$
 $f_2(x) = 10[(x_1^2 + x_2^2)^{\frac{1}{2}} - 1]$
 $f_3(x) = x_3$
onde,

$$\theta(x_1, x_2) = \begin{cases} \frac{1}{2\pi} \arctan(\frac{x_2}{x_1}), & \text{se } x_1 > 0\\ \\ \frac{1}{2\pi} \arctan(\frac{x_2}{x_1}) + 0.5, & \text{se } x_1 < 0 \end{cases}$$

(c)
$$x_0 = (-1, 0, 0)^T$$

(d) $f = 0 \text{ orm} (1 \ 0 \ 0)^T$

(d)
$$f = 0 \text{ em } (1,0,0)$$

(7)Função de Bard

- (a) n = 3, m = 15
- (a) n = 3, m = 15(b) $f_i(x) = y_i (x_1 + \frac{u_i}{v_i x_2 + w_i x_3}),$ onde, $u_i = i, v_i = 16 i, w_i = \min(u_i, v_i), e$

i	y_i	i	y_i	i	y_i
1	0.14	6	0.32	11	0.73
2	0.18	7	0.35	12	0.96
3	0.22	8	0.39	13	1.34
4	0.25	9	0.37	14	2.10
5	0.29	10	0.58	15	4.39

(c)
$$x_0 = (1, 1, 1)^T$$

(d)
$$f = 8.21487...10^{-3}$$

 $f = 17.4286... \text{ em } (0.8406..., -\infty, -\infty)$

Função Gaussiana (8)

- (a) n = 3, m = 15(b) $f_i(x) = x_1 exp[\frac{-x_2(t_i x_3)^2}{2}] y_i,$ onde $t_i = \frac{8-i}{2}$ e

i	y_i	i	y_i
$1,\!15$	0.0009	5,11	0.1295
2,14	0.0044	6,10	0.2420
$3,\!13$	0.0175	7,9	0.3521
4,12	0.0540	8	0.3989

- (c) $x_0 = (0.4, 1, 0)^T$
- (d) $f = 1.12793...10^{-8}$

(9) Função de Meyer

- (a) n = 3, m = 16
- (b) $f_i(x) = x_1 exp[\frac{x_2}{t_i + x_3}] y_i,$ onde $t_i = 45 + 5i$ e

i	y_i i		y_i	i	y_i
1	34780	6	13720	11	6005
2	28610	7	11540	12	5147
3	23650	8	9744	13	4427
4	19630	9	8261	14	3820
5	16370	10	7030	15	3307
				16	2872

- (c) $x_0 = (0.02, 4000, 250)^T$
- (d) f = 87.9458...

(10) Função de Gulf

- (a) $n = 3, n \le m \le 100$
- (b) $f_i(x) = exp[-\frac{|ix_2y_im|^{x_3}}{x_1}] t_i$ onde $t_i = \frac{i}{100}$ e $y_i = 25 + (-50ln(t_i))^{\frac{2}{3}}$ (c) $x_0 = (5, 2.5, 0.15)^T$
- (d) f = 0 em (50, 25, 1.5)

(11) Função caixa-tridimensional

- (a) $n = 3, m \ge n$ (b) $f_i(x) = exp[-t_ix_1] - exp[-t_ix_2] - x_3(exp[-t_i] - exp[-10t_i])$ onde $t_i = (0.1)i$
- (c) $x_0 = (0, 10, 20)^T$
- (d) f = 0 em (1, 10, 1), (10, 1, -1)e em qualquer ponto em que $x_1 = x_2$ e $x_3 = 0$

(12) Função de Wood

(a)
$$n = 4, m = 6$$

(b) $f_1(x) = 10(x_2 - x_1^2)$
 $f_2(x) = 1 - x_1$
 $f_3(x) = 90^{\frac{1}{2}}(x_4 - x_3^2)$
 $f_4(x) = 1 - x_3$
 $f_5(x) = 10^{\frac{1}{2}}(x_2 + x_4 - 2)$
 $f_6(x) = 10^{-\frac{1}{2}}(x_2 - x_4)$
(c) $x_0 = (-3, -1, -3, -1)^T$
(d) $f = 0 \text{ em } (1, 1, 1, 1)$

(13) Função de Kowalik e Osborne

(a) n = 4, m = 11

(b)
$$f_i(x) = y_i - \frac{x_1(u_i^2 + u_i x_2)}{u_i^2 + u_i x_3 + x_4}$$

onde

i	y_i	u_i	i	y_i	u_i
1	0.1957	4.0000	7	0.0456	0.1250
2	0.1947	2.0000	8	0.0342	0.1000
3	0.1735	1.0000	9	0.0323	0.0833
4	0.1600	0.5000	10	0.0235	0.0714
5	0.0844	0.2500	11	0.0246	0.0625
6	0.0627	0.1670			

(c)
$$x_0 = (0.25, 0.39, 0.415, 0.39)^T$$

(d)
$$f = 3.07505...10^{-4}$$

 $f = 1.02734...10^{-3} \text{ em } (+\infty, -14.07..., -\infty, -\infty)$

(14) Função de Brown e Dennis

- (a) $n = 4, m \ge n$
- (b) $f_i(x) = (x_1 + t_i x_2 exp[t_i])^2 + (x_3 + x_4 sen(t_i) cos(t_i))^2$ onde $t_i = \frac{i}{5}$ (c) $x_i = (25, 5, 5, -1)^T$

(c)
$$x_0 = (25, 5, -5, -1)^2$$

(d)
$$f = 85822.2...$$
 se $m = 20$

(15) Função de Osborne I

- (a) n = 5, m = 33
- (b) $f_i(x) = y_i (x_1 + x_2 exp[-t_i x_4] + x_3 exp[-t_i x_5])$ onde $t_i = 10(i-1)$ e

i	y_i	i	y_i	i	y_i	i	y_i
1	0.844	9	0.818	17	0.580	25	0.457
2	0.908	10	0.784	18	0.558	26	0.448
3	0.932	11	0.751	19	0.538	27	0.438
4	0.936	12	0.718	20	0.522	28	0.431
5	0.925	13	0.685	21	0.506	29	0.424
6	0.908	14	0.658	22	0.490	30	0.420
7	0.881	15	0.628	23	0.478	31	0.414
8	0.850	16	0.603	24	0.467	32	0.411
						33	0.406

(c)
$$x_0 = (0.5, 1.5, -1, 0.01, 0.02)^T$$

(d)
$$f = 5.46489 \dots 10^{-5}$$

Função EXP6 de Biggs (16)

- (a) $n = 6, m \ge n$
- (b) $f_i(x) = x_3 exp[-t_i x_1] x_4 exp[-t_i x_2] + x_6 exp[t_i x_5] y_i$ onde $t_i = (0.1)i$ e $y_i = exp[-t_i] - 5exp[-10t_i] + 3exp[-4t_i]$ (c) $x_0 = (1, 2, 1, 1, 1, 1)^T$
- (d) $f = 5.65565...10^{-3}$ se m = 13f = 0 em (1, 10, 1, 5, 4, 3)

(17) Função de Osborne II

- (a) n = 11, m = 65
- (b) $f_i(x) = y_i (x_1 exp[-t_i x_5] + x_2 exp[-(t_i x_9)^2 x_6]$ $+x_3 exp[-(t_i - x_{10})^2 x_7] + x_4 exp[-(t_i - x_{11})^2 x_8]$ onde $t_i = \frac{i-1}{10}$ e

i	y_i								
1	1.366	14	0.655	27	0.612	40	0.429	53	0.597
2	1.191	15	0.616	28	0.558	41	0.523	54	0.625
3	1.112	16	0.606	29	0.533	42	0.562	55	0.739
4	1.013	17	0.602	30	0.495	43	0.607	56	0.710
5	0.991	18	0.626	31	0.500	44	0.653	57	0.729
6	0.885	19	0.651	32	0.423	45	0.672	58	0.720
7	0.831	20	0.724	33	0.395	46	0.708	59	0.636
8	0.847	21	0.649	34	0.375	47	0.633	60	0.581
9	0.786	22	0.649	35	0.372	48	0.668	61	0.428
10	0.725	23	0.694	36	0.391	49	0.645	62	0.292
11	0.746	24	0.644	37	0.396	50	0.632	63	0.162
12	0.679	25	0.624	38	0.405	51	0.591	64	0.098
13	0.608	26	0.661	39	0.428	52	0.559	65	0.054
- (c) $x_0 = (1.3, 0.65, 0.65, 0.7, 0.6, 3, 5, 7, 2, 4.5, 5.5)^T$
- (d) $f = 4.01377...10^{-2}$

(18) Função de Watson

(a)
$$2 \le n \le 31, m = 31$$

(b) $f_i(x) = \sum_{j=2}^n (j-1)x_j t_i^{j-2} - \left(\sum_{j=1}^n x_j t_i^{j-1}\right)^2 - 1$
onde $t_i = \frac{i}{29}, 1 \le i \le 29$
 $f_{30}(x) = x_1$
 $f_{31}(x) = x_2 - x_1^2 - 1$
(c) $x_0 = (0, ..., 0)^T$
 $f = 2.28767...10^{-3}$ se $n = 6$
(d) $f = 1.39976...10^{-6}$ se $n = 9$
 $f = 4.72238...10^{-10}$ se $n = 12$

(19) Função de Rosenbrock estendida

(a) n par, m = n

(b)
$$f_{2i-1}(x) = 10(x_{2i} - x_{i-1}^2)$$

 $f_{2i}(x) = 1 - x_{2i-1}$

(c) $x_0 = (\xi_j)$ onde $\xi_{2j-1} = -1.2$ e $\xi_{2j} = 1$ (d) f = 0 em (1, 1, ..., 1)

d)
$$f = 0$$
 em $(1, 1, ..., 1)$

(20) Função singular de Powell estendida

(a)
$$n$$
 múltiplo de 4, $m = n$
(b) $f_{4i-3}(x) = x_{4i-3} + 10x_{4i-2}$
 $f_{4i-2}(x) = 5^{\frac{1}{2}}(x_{4i-1} - x_{4i})$
 $f_{4i-1}(x) = (x_{4i-2} - 2x_{4i-1})^2$
 $f_{4i}(x) = 10^{\frac{1}{2}}(x_{4i-3} - x_{4i})^2$
(c) $x_0 = (\xi_j)$
onde $\xi_{4j-3} = 3$, $\xi_{4j-2} = -1$, $\xi_{4j-1} = 0$ e $\xi_{4j} =$
(d) $f = 0$ na origem

1

(21) Função Penalty I

(a)
$$n$$
 variável, $m = n + 1$

(b)
$$f_i(x) = a^{\frac{1}{2}}(x_i - 1), \quad 1 \le i \le n$$

 $f_{n+1}(x) = \left(\sum_{j=1}^n x_j^2\right) - \frac{1}{4}$
onde $a = 10^{-5}$

(c)
$$x_0 = (\xi_j)$$
 onde $\xi_j = j$
(d) $f = 2.24997...10^{-5}$ se $n = 4$
 $f = 7.08765...10^{-5}$ se $n = 10$

(22) Função Penalty II

(a)
$$n$$
 variável, $m = 2n$
(b) $f_1(x) = x_1 - 0.2$
 $f_i(x) = a^{\frac{1}{2}} (exp[\frac{x_i}{10}] + exp[\frac{x_{i-1}}{10}] - y_i), \ 2 \le i \le n$
 $f_i(x) = a^{\frac{1}{2}} (exp[\frac{x_{i-n+1}}{10}] - exp[\frac{-1}{10}]), \ n < i < 2n$
 $f_{2n}(x) = \left(\sum_{j=1}^n (n-j+1)x_j^2\right) - 1$
onde $a = 10^{-5}$ e $y_i = exp[\frac{i}{10}] + exp[\frac{i-1}{10}]$
(c) $x_0 = (\frac{1}{2}, ..., \frac{1}{2})^T$
(d) $f = 9.37629...10^{-6}$ se $n = 4$
 $f = 2.93660...10^{-4}$ se $n = 10$

(23) Função variavelmente dimensionada (a) n variável m = n + 2

(a)
$$n$$
 variável, $m = n + 2$
(b) $f_i(x) = x_i - 1, \quad 1 \le i \le n$
 $f_{n+1}(x) = \sum_{j=1}^n j(x_j - 1)$
 $f_{n+2}(x) = \left(\sum_{j=1}^n j(x_j - 1)\right)^2$
(c) $x_0 = (\xi_j)$ onde $\xi_j = 1 - \frac{j}{n}$
(d) $f = 0$ em $(1, 1, ..., 1)^T$

(24) Função Trigonométrica (a) n variável, m = n

(a)
$$n$$
 variavel, $m = n$
(b) $f_i(x) = n - \left(\sum_{j=1}^n \cos x_j\right) + i(1 - \cos x_i) - \operatorname{sen} x_i$
(c) $x_0 = (\frac{1}{n}, \dots, \frac{1}{n})^T$
(d) $f = 0$

(25) Função quase linear de Brown

(a)
$$n$$
 variavel, $m = n$
(b) $f_i(x) = x_i + \left(\sum_{j=1}^n x_j\right) - (n+1), \quad 1 \le i < n$
 $f_n(x) = \left(\prod_{j=1}^n x_j\right) - 1$
(c) $x_0 = \left(\frac{1}{2}, \dots, \frac{1}{2}\right)^T$

(d)
$$f = 0$$
 em $(\alpha, \alpha, ..., \alpha^{1-n})$
onde α satisfaz $n\alpha^n - (n+1)\alpha^{n-1} + 1 = 0$; em particular, $\alpha = 1$
 $f = 1$ em $(0, 0, ..., 0, n + 1)$

(26) Função de discretização de um PVC¹

(a) *n* variável, m = n(b) $f_i(x) = 2x_i - x_{i-1} - x_{i+1} + \frac{(x_i + t_i + 1)^3}{2}h^2$ onde $h = \frac{1}{n+1}, t_i = ih$ e $x_0 = x_{n+1} = 0$ (c) $x_0 = (\xi_j)$ onde $\xi_j = t_j(t_j - 1)$ (d) f = 0

(27) Função de uma EID^2

(a)
$$n$$
 variável, $m = n$
(b) $f_i(x) = x_i + \frac{h}{2}(1 - t_i) \sum_{j=1}^i t_j (x_j + t_j + 1)^3$
 $+ \frac{ht_i}{2} \sum_{j=i+1}^n (1 - t_j)(x_j + t_j + 1)^3$
onde $h = \frac{1}{n+1}, t_i = ih$ e $x_0 = x_{n+1} = 0$

(c)
$$x_0 = (\xi_j)$$
 onde $\xi_j = t_j(t_j - 1)$
(d) $f = 0$

(28) Função tridiagonal de Broyden

- (a) n variável, m = n
- (b) $f_i(x) = (3 2x_i)x_i x_{i-1} 2x_{i+1} + 1$ onde $x_0 = x_{n+1} = 0$

(c)
$$x_0 = (-1, ..., -1)^T$$

(d) f = 0

¹PVC - Problema de Valor de Contorno

²EID - Equação Integral Discreta

(29) Função banda de Broyden

(a)
$$n$$
 variável, $m = n$
(b) $f_i(x) = x_i(2+5x_i^2) + 1 - \sum_{j \in J_i} x_j(1+x_j)$
onde $J_i = \{j : j \neq i, \max(1, i-5) \le j \le \min(n, i+1)\}$
(c) $x_0 = (-1, ..., -1)^T$
(d) $f = 0$

(30) Função linear (posto completo)

(a)
$$n$$
 variavel, $m \ge n$
(b) $f_i(x) = x_i - \frac{2}{m} \left(\sum_{j=1}^n x_j \right) - 1, \quad 1 \le i \le n$
 $f_i(x) = -\frac{2}{m} \left(\sum_{j=1}^n x_j \right) - 1, \quad n < i \le m$
(c) $x_0 = (1, ..., 1)^T$

(d)
$$f = m - n$$
 em $(-1, -1, ..., -1)$

(31) Função linear (posto um) (a) n variável m > n

(a)
$$n$$
 variavel, $m \ge n$
(b) $f_i(x) = i\left(\sum_{j=1}^n jx_j\right) - 1$
(c) $x_0 = (1, ..., 1)^T$
(d) $f = \frac{m(m-1)}{2(2m+1)}$ em qualquer ponto em que $\sum_{j=1}^n jx_j = \frac{3}{2m+1}$

(32) Função linear (posto um, com C.L.N.)³

(a)
$$n$$
 variável, $m \ge n$
(b) $f_1(x) = -1$, $f_m(x) = -1$
 $f_i(x) = (i-1)\left(\sum_{j=2}^{n-1} jx_j\right) - 1$, $2 \le i < m$
(c) $x_0 = (1, ..., 1)^T$
(d) $f = \frac{m^2 + 3m - 6}{2(2m - 3)}$ em qualquer ponto em que $\sum_{j=2}^{m-1} jx_j = \frac{3}{2m - 3}$

³C.L.N. - Colunas e Linhas Nulas

Função Chebyquad (33)

- (a) n variável, $m \ge n$
- (b) $f_1(x) = \frac{1}{n} \sum_{i=1}^n T_i(x_i) \int_0^1 T_i(x) dx$ onde T_i é o *i*-ésimo polinômio de Chebyshev no intervalo [0, 1], portanto: $\int_0^1 T_i(x) dx = 0 \quad \text{se } i \notin \text{ impar } e$ $\int_0^1 T_i(x) dx = \frac{-1}{(i^2 - 1)} \quad \text{se } i \notin \text{ par.}$ (c) $x_0 = (\xi_j)$ onde $\xi_j = \frac{j}{n+1}$ f = 0 para $m = n, \ 1 \le n \le 7$ e n = 9(d) $f = 3.51687...10^{-3}$ para m = n = 8 $f = 6.50395...10^{-3}$ para m = n = 10.

Definição de parâmetros 3.3

A modificação Quacan-Contínuo possui o mesmo conjunto de parâmetro que a versão não modificada, mas o mesmo não acontece com a versão Quacan-Modificado.

Parâmetros comuns 3.3.1

Aqui ficam relatados apenas os parâmetros de Box-Quacan que foram alterados para este trabalho, todos os não citados ficaram como sugerido nas orientações contidas em Box-Quacan.

Os parâmetros modificados foram: número máximo de iterações a cada chamada de Box itmax = 1.000.000; número máximo de avaliação de função nafmax = 1000 **itmax*; número máximo de iterações a cada chamada de Quacan mitqu = 5 * n, onde $n \in n$ a dimensão do problema e o limite inferior para o raio da região de confiança $epsd = 10^{-37}$.

3.3.2 Parâmetros específicos de Quacan-Modificado

Quacan-Modificado necessitou de três parâmetros adicionais para o melhor monitoramento da sequência gerada por *Quacan*.

O denominador do critério de parada está baseado no gradiente projetado não contínuo e como em geral o ponto inicial é um ponto interior à caixa e longe da solução, o gradiente projetado não contínuo neste ponto é muito grande. Em contra-partida, o gradiente projetado contínuo pode ser suficientemente pequeno para satisfazer o critério de parada, embora o ponto seja ruim.

Isso só pode acontecer se a caixa onde *Quacan* busca minimizar o modelo quadrático é muito pequena; como o gradiente projetado é grande, pode-se esperar que uma iteração seja suficiente para levar grande parte das componentes do iterando seguinte aos limites da caixa. Assim *Quacan* explora a região de minimização do modelo quadrático em uma iteração.

A observação desse fato motivou a inserção do parâmetro *pgpc*, o qual atua apenas na primeira iteração de *Quacan*. A cada chamada de *Quacan*, quando a desigualdade

$$\|g_{pc}^{\Gamma}(x_0)\|_2 < pgpc,$$

for satisfeita, aplica-se a este ponto o critério de parada de *Quacan-Modificado*, caso contrário faz-se

$$||g_{pc}^{\Gamma}(x_0)||_2 = ||g_p(x_0)||_2,$$

forçando *Quacan* a realizar uma iteração. Como em geral a aproximação inicial é ruim, este parâmetro deve ser bem pequeno (sempre positivo). Os experimentos numéricos for m obitidos com $pgpc = 10^{-17}$.

Para evitar iterações de *Quacan* com ínfima redução na norma do gradiente projetado contínuo, foi incluído o parâmetro *difnor* para gerenciar o decréscimo da norma deste gradiente no ponto atual em relação à antepenúltima iteração, assim quando a redução da norma for menor que *difnor* por duas iterações consecutivas, o processo iterativo de *Quacan* será interrompido e a convergência declarada no ponto atual. Testes prévios, com as funções 2, 6, 19 e 27, mostraram que para as funções anteriores à função de Rosenbrock, uma escolha razoável seria *difnor* = 10^{-4} e para os demais *difnor* = 10^{-5} .

Assim como *Box* que possui o parâmetro *epsd* para limitar o decréscimo do raio da região de confiança, *Quacan-Modificado* exigiu um limitante inferior para o raio da caixa variável (raiocvq), o qual pode tornar-se muito pequeno. Como o motivo da inclusão desse parâmetro é o mesmo da inclusão de *epsd* em *Box*, e tendo em vista que a cada iteração de *Box*, *Quacan* é requisitado a resolver um problema quadrático numa região com raio maior ou igual a *espd*, tem-se: $raiocvq \leq epsd$.

Em hipótese alguma deve-se ter raiocvq > epsd, pois neste caso Box poderia invocar Quacan com um raio δ tal que $epsd \leq \delta < raiocvq$, o que obviamente poderia induzir Box a um ponto estrangulado (ou seja, com raio da região de confiança menor que epsd); neste caso, Quacan não efetuaria iteração alguma, visto que a condição $\delta < raiocvq$ impõe convergência a Quacan neste ponto.

Nos experimentos numéricos adotou-se raiocvq = epsd.

3.3.3 Critério de parada

Embora *Box-Quacan*, modificado ou não, possa ser interrompido por outros motivos, em todos os problemas independente do *solver*, a convergência aconteceu devido à norma-2 do gradiente projetado ficar menor que a precisão desejada, que foi 10^{-5} , exceto para a função de Meyer onde se usou 10^{-3} . Isto não afetou a qualidade da solução obtida, mas evitou que *Box-Quacan* parasse por atingir o número máximo de iterações de *Box* (*itmax* = 10^6). Para*Quacan* a precisão desejada na primeira iteração foi 10^{-13} , e nas demais iterações, 10^{-5} .

3.4 Resultados numéricos

Os problemas definidos pelas funções de 1 a 18, os quais possuem dimensão fixa, foram resolvidos a partir de três pontos iniciais: x_0 sugerido na bibliografia e seus múltiplos $10x_0$ e $100x_0$. Porém, em alguns problemas, as aproximações iniciais $10x_0$ e $100x_0$ levaram a *overflow* ou o tempo de execução foi elevado⁴. Nestes casos, outros múltiplos de x_0 foram escolhidos. Para o problema 26 (PVC) o ponto inicial sugerido na bibliografia é o ponto ótimo.

Os problemas de 19 a 33 têm dimensões variáveis (problemas estendidos). Para cada um destes foram escolhidas três dimensões, e para cada uma destas o problema foi resolvido a partir de três pontos iniciais: x_0 sugerido na bibliografia, $10x_0$ e $100x_0$. Assim, como nos problemas de dimensão fixa, as aproximações iniciais $10x_0$ e $100x_0$ foram, em alguns casos, substituídas por outros múltiplos de x_0 para evitar *overflow* ou diminuir o

⁴Para a função de Gulf, $10x_0$ é o ponto ótimo.

tempo de execução.

No total foram gerados 189 testes, cujos resultados aparecem nas tabelas a seguir. A ocorrência de "Overflow" está indicada nas tabelas com um expoente "w" para o novo ponto inicial. A ausência desse expoente para um ponto diferente de x_0 ou $10x_0$ ou $100x_0$, significa que as aproximações iniciais $10x_0$ e/ou $100x_0$ exigiram um tempo de execução muito grande.

3.4.1 Tabelas gerais

O esforço computacional foi avaliado considerando-se os seguintes indicadores: **Tit-Box:** Total de iterações de *Box*. **Naf:** Número de avaliação de função.

Tit-Quacan: Total de iterações de Quacan. PMV: Produtos matriz×vetor.

As tabelas contam ainda com uma coluna "F" que informa o valor da função objetivo no ponto encontrado e uma coluna "Tempo" que registra o tempo de execução, o qual é dado em segundos.

Abaixo seguem as tabelas gerais dos experimentos.

Tabela 1. Fullçao de .	rieudenste	emer	10011 1V = 2,	m - 2	e ponto	micial x_0
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	6	7	19	25	48.984	0.06
Quacan Contínuo	6	7	19	25	48.984	0.06
Quacan Modificado	6	7	15	21	48.984	0.06

Tabela 1: Função de Freudenstein e Roth N = 2, m = 2 e ponto inicial x_0

Tabela 2: Função de Freudenstein e Roth N=2, m=2 e ponto inicial $10x_0$ Solver Tit-Box Naf Tit-Quacan PMVFunção Tempo Quacan 16 17 48.984 48 67 0.00Quacan Contínuo 16 1748 67 48.984 0.00 Quacan Modificado 16 17 46 65 48.984 0.00

Tabela 3: Função de Freudenstein e Roth N = 2, m = 2 e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	27	31	87	133	48.984	0.00
Quacan Contínuo	27	31	87	133	48.984	0.00
Quacan Modificado	27	31	81	127	48.984	0.00

Tabela 4: Função de Powell (mal escalada) N = 2, m = 2 e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	52	87	202	352	4.0477D-6	0.00
Quacan Contínuo	51	89	193	348	4.4978D-6	0.16
Quacan Modificado	52	87	188	338	4.0477D-6	0.00

Tabela 5: Função de Powell (mal escalada) N = 2, m = 2 e ponto inicial $10x_0$

	(-	
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	2	5	8	15	8.5357D-9	0.06
Quacan Contínuo	6489	42210	38903	120295	1.0919D-8	1.82
Quacan Modificado	2	5	8	15	8.5357D-9	0.00

Tabela 6: Função de Powell (mal escalada) N = 2, m = 2 e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	1	4	5	11	1.0200D-8	0.06
Quacan Contínuo	3	36	19	87	1.0200D-8	0.00
Quacan Modificado	1	4	5	11	1.0200D-8	0.00

- -

Б

Tabela 7: Função de	e Brown(m	al esca	$a_{1}a_{2}a_{3}a_{3}a_{4}a_{5}a_{4}a_{5}a_{5}a_{5}a_{5}a_{5}a_{5}a_{5}a_{5$	2, $m =$	3 e ponto ini	Icial x_0
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	28	50	105	194	1.0831D-11	0.00
Quacan Contínuo	39	69	114	245	zero	0.00
Quacan Modificado	28	48	100	185	zero	0.00

1 1 \

7 T

~

0

Tabela 8: Função de Brown(mal escalada) N = 2, m = 3 e ponto inicial $10x_0$ Solver Tit-Box Naf Tit-Quacan PMV Função Tempo Quacan $\overline{27}$ 44 93 1768.8887D-14 0.05 Quacan Contínuo 39 68 117 248 0.00 zero Quacan Modificado $\overline{27}$ 44 93 176 8.8887D-14 0.00

Tabela 9: Função de Brown(mal escalada) N = 2, m = 3 e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	25	41	81	161	zero	0.06
Quacan Contínuo	38	65	114	244	2.8211D-12	0.00
Quacan Modificado	25	41	80	160	zero	0.00

Tabela 10: Função de Beale N = 2, m = 3 e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	7	9	28	37	2.9425D-14	0.00
Quacan Contínuo	7	9	28	37	2.9425D-14	0.00
Quacan Modificado	7	9	16	25	2.9425D-14	0.00

Tabela 11: Função de Beale N = 2, m = 3 e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	49	63	164	245	8.2563D-22	0.06
Quacan Contínuo	49	63	164	245	8.2563D-22	0.05
Quacan Modificado	49	63	149	230	8.2533D-22	0.00

Tabela 12: Função de Beale N = 2, m = 3 e ponto inicial $100x_0$

			-	_		-
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	19	32	69	128	4.5171D-1	0.00
Quacan Contínuo	24	38	85	153	4.5157D-1	0.00
Quacan Modificado	11	19	32	65	4.5054D-1	0.00

. . . 1

Tabela 13: Fullção de	Jennrich e	Samp	Solution $N = 2$,	m = 10	e ponto	micial x_0
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	9	10	36	45	124.36	0.00
Quacan Contínuo	9	10	36	45	124.36	0.00
Quacan Modificado	9	10	34	43	124.36	0.00

Tabela 12: Função de Jonnrich e Sampson N 10 a ponto inicial r0

Tabela 14: Função de Jennrich e Sampson N = 2, m = 10 e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	7	8	21	28	2020	0.00
Quacan Contínuo	19	26	45	95	124.36	0.05
Quacan Modificado	7	8	7	14	2020	0.06

Tabela 15: Função de Jennrich e Sampson N=2, m=10 e ponto inicial $0.01x_0^w$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	9	13	24	42	124.36	0.06
Quacan Contínuo	9	13	24	42	124.36	0.05
Quacan Modificado	12	22	34	65	124.36	0.00

Tabela 16: Função vale helicoidal N = 3, m = 3 e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	43	78	442	666	1.6789D-11	0.06
Quacan Contínuo	20	40	397	550	1.6104D-11	0.06
Quacan Modificado	44	82	456	748	2.4214D-11	0.00

Tabela 17: Função vale helicoidal N = 3, m = 3 e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	22	37	207	298	1.5683D-11	0.05
Quacan Contínuo	40	70	531	751	1.8402D-11	0.00
Quacan Modificado	22	37	183	273	1.5698D-11	0.00

Tabela 18: Função vale helicoidal N = 3, m = 3 e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	21	37	221	316	1.5898D-13	0.00
Quacan Contínuo	34	65	582	829	1.8435D-11	0.05
Quacan Modificado	25	50	294	438	1.7496D-15	0.00

Tabela 19:	Função	de Bard	N = 3	B, m = 15	e ponte	o inicial	x_0
Solver	Tit-	Boy N	af Tit-(Juacan	PMV	Funcão	Te

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	12	15	80	97	8.2148D-3	0.06
Quacan Contínuo	12	15	80	97	8.2148D-3	0.00
Quacan Modificado	12	15	50	67	8.2148D-3	0.00

Tabela 20: Função de Bard N = 3, m = 15 e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	12	18	68	101	8.2148D-3	0.00
Quacan Contínuo	12	18	68	101	8.2148D-3	0.00
Quacan Modificado	12	18	61	94	8.2148D-3	0.00

Tabela 21: Função de Bard N = 3, m = 15 e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	20	33	120	197	8.2148D-3	0.05
Quacan Contínuo	20	33	120	197	8.2148D-3	0.05
Quacan Modificado	20	33	107	184	8.2148D-3	0.00

Tabela 22: Função Gaussiana N = 3, m = 15 e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	1	2	3	4	1.1292D-8	0.06
Quacan Contínuo	1	2	3	4	1.1292D-8	0.06
Quacan Modificado	1	2	2	3	1.1292D-8	0.00

Tabela 23: Função Gaussiana N = 3, m = 15 e ponto inicial $10x_0$

			-	_		
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	1	2	5	7	5.6422D-1	0.00
Quacan Contínuo	1	2	5	7	5.6422D-1	0.00
Quacan Modificado	1	2	5	7	5.6422 D-1	0.00

Tabela 24: Função Gaussiana N = 3, m = 15 e ponto inicial $100x_0$

			/	-		0
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	1	2	2	13	5.6422D-1	0.00
Quacan Contínuo	1	2	2	13	5.6422 D-1	0.00
Quacan Modificado	1	2	2	13	5.6422 D-1	0.00

Tabela 25: Fur	Tabela 25: Função de Meyer $N = 3, m = 16$ e ponto inicial x_0								
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo			
Quacan	851	1374	7041	9640	87.9458	0.77			
Quacan Contínuo	817	1315	9454	11938	87.9458	0.72			
Quacan Modificado	831	1334	7020	9543	87.9471	0.50			

Tabela 25: Função de Meyer N = 3, m = 16 e ponto inicial x_0

Tabela 26: Função de Meyer N = 3, m = 16 e ponto inicial $0.5x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	973	1548	8217	11088	87.9458	0.50
Quacan Contínuo	973	1548	8217	11088	87.9458	0.66
Quacan Modificado	968	1538	8170	11022	87.9460	0.55

Tabela 27: Função de Meyer N = 3, m = 16 e ponto inicial $0.1x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	1104	1733	9159	12342	87.9458	0.55
Quacan Contínuo	1104	1733	9159	12342	87.9458	0.60
Quacan Modificado	1089	1703	9006	12133	87.9465	0.71

Tabela 28: Função de Gulf N = 3, m = 99 e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	21	27	157	200	7.7548D-20	0.17
Quacan Contínuo	21	27	182	225	7.9130D-20	0.33
Quacan Modificado	21	27	142	185	1.8063D-12	0.16

Tabela 29: Função de Gulf N = 3, m = 99 e ponto inicial $0.1x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	26	36	189	238	8.5943D-16	0.16
Quacan Contínuo	26	36	196	246	8.5943D-16	0.17
Quacan Modificado	26	36	178	228	8.5945D-16	0.16

Tabela 30: Função de Gulf N = 3, m = 99 e ponto inicial $15x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	18	24	106	160	2.0602d-12	0.16
Quacan Contínuo	18	24	106	160	2.0602d-12	0.05
Quacan Modificado	18	24	85	139	2.0602d-12	0.11

Tabela 51. Função Caixa-triumensional $N = 5, m = 10$ é ponto inicial x_0								
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo		
Quacan	17	21	86	124	2.8156D-14	0.06		
Quacan Contínuo	17	21	86	124	2.8156D-14	0.05		
Quacan Modificado	17	$\overline{21}$	$\overline{74}$	112	2.8156D-14	0.05		

Tabela 31: Função Caixa-tridimensional N = 3, m = 10 e ponto inicial x_0

Tabela 32: Função Caixa-tridimensional N = 3, m = 10 e ponto inicial $50x_0^w$

Solver	Tit-Box	Nat	Tit-Quacan	PMV	Função	Tempo
Quacan	24	27	76	113	7.5588D-2	0.05
Quacan Contínuo	24	27	76	113	7.5588D-2	0.00
Quacan Modificado	24	27	75	112	7.5588D-2	0.06

Tabela 33: Função Caixa-tridimensional N = 3, m = 10 e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	28	32	89	135	7.5588D-2	0.05
Quacan Contínuo	28	32	88	133	7.5588D-2	0.05
Quacan Modificado	28	32	73	119	7.5588D-2	0.00

Tabela 34: Função de Wood N = 4, m = 6 e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	44	62	451	536	5.9892D-25	0.05
Quacan Contínuo	44	62	451	536	5.9892D-25	0.00
Quacan Modificado	44	62	416	500	3.5187D-25	0.00

Tabela 35: Função de Wood N = 4, m = 6 e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	49	60	457	546	5.9551D-18	0.05
Quacan Contínuo	49	60	457	546	5.9551D-18	0.00
Quacan Modificado	49	60	407	492	6.5435D-17	0.00

Tabela 36: Função de Wood N = 4, m = 6 e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	55	64	510	608	1.0035D-16	0.00
Quacan Contínuo	55	64	510	608	1.0035D-16	0.05
Quacan Modificado	56	67	469	569	8.9139D-17	0.00

Tabela 57: Fullção de	e nowalik	e Osb	orne $N = 4$,	m = 11	геронко ш	x_0
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	7	12	84	104	3.0750D-4	0.06
Quacan Contínuo	7	12	84	104	3.0750D-4	0.05
Quacan Modificado	7	12	74	94	3.0750D-4	0.00

Tabela 27: Função de Kowalik e Osborno λŢ 11 α ponto inicial x1

Tabela 38: Função de Kowalik e Osborne N = 4, m = 11 e ponto inicial $10x_0$ Solver Tit-Box Tit-Quacan PMV Função Naf Tempo Quacan 2540 288374 3.0750D-4 0.06 Quacan Contínuo 2540 288 374 3.0750D-4 0.00 Quacan Modificado 2540 232 319 3.0750D-4 0.00

Tabela 39: Função de Kowalik e Osborne N = 4, m = 11 e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	85	118	953	1149	3.0750D-4	0.06
Quacan Contínuo	93	136	1091	1324	3.0750D-4	0.06
Quacan Modificado	88	129	864	1073	3.0750D-4	0.05

Tabela 40: Função de Brown e Dennis N = 4, m = 20 e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	8	9	66	75	85822.2	0.00
Quacan Contínuo	8	9	66	75	85822.2	0.06
Quacan Modificado	8	9	66	75	85822.2	0.00

Tabela 41: Função de Brown e Dennis N = 4, m = 20 e ponto inicial $10x_0$ PMV Solver Tit-Box Naf Tit-Quacan Função Tempo Quacan 1516 133 85822.2 0.05 114Quacan Contínuo 133 85822.2 15161140.06Quacan Modificado 40 251491 839 85822.2 0.11

Tabela 42: Função de Brown e Dennis N = 4, m = 20 e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	22	27	179	219	85822.2	0.06
Quacan Contínuo	22	27	179	219	85822.2	0.06
Quacan Modificado	24	28	171	211	85822.2	0.05

Tabela 43: Fund	çao de Osb	orne 1	N = 5, M =	=33 e p	onto inicial	x_0
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	940	1414	18337	21926	4.7280D-2	2.14
Quacan Contínuo	940	1414	18337	21926	4.7280D-2	2.26
Quacan Modificado	491	743	7913	9810	4.7655D-2	1.31

าา **T** 1 1 10 \cap 1 т λT F 11 .

Tabela 44: Função de Osborne I N = 5, M = 33 e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	76	121	1407	1740	3.0380D-2	0.22
Quacan Contínuo	76	121	1407	1740	3.0380D-2	0.22
Quacan Modificado	85	133	1339	1641	3.0380D-2	0.17

Tabela 45: Função de Osborne I N = 5, M = 33 e ponto inicial $50x_0^w$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	447	675	9523	11280	4.7316D-2	1.32
Quacan Contínuo	447	675	9523	11280	4.7316D-2	1.43
Quacan Modificado	349	524	5893	7144	4.7466D-2	1.04

Tabela 46: Função EXP6 N = 6, m = 13 e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	1233	1658	17171	19376	2.4267D-1	2.36
Quacan Contínuo	1266	1715	20338	22652	2.4267D-1	2.91
Quacan Modificado	424	571	4428	5212	2.4267 D-1	1.15

Tabela 47: Função EXP6 N = 6, m = 13 e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	41	56	430	545	5.6556D-3	0.11
Quacan Contínuo	41	56	430	545	5.6556D-3	0.17
Quacan Modificado	42	58	346	454	5.6556D-3	0.11

Tabela 48: Função EXP6 N = 6, m = 13 e ponto inicial $50x_0^w$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	46	69	463	617	5.6556d-3	0.10
Quacan Contínuo	46	69	463	617	5.6556d-3	0.11
Quacan Modificado	46	69	357	510	5.6556d-3	0.06

Tabela 49. Fuliça	$N = 11, m = 00$ e ponto inicial x_0					
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	15	20	547	598	4.0137D-2	1.21
Quacan Contínuo	15	20	585	636	4.0137D-2	1.21
Quacan Modificado	15	20	540	591	4.0137D-2	1.10

Tabela 49: Função de Osborne II N = 11, m = 65 e ponto inicial x_0

N = 11, m = 65 e ponto inicial $5x_0^w$ Tabela 50: Função de Osborne II Função Solver Tit-Box Tit-Quacan PMV Naf Tempo 1.7898 Quacan 10 16 36 59 0.11 Quacan Contínuo 10 16 36 59 1.7898 0.11 Quacan Modificado 10 16 30 531.78980.11

Tabela 51: Função de Osborne II N = 11, m = 65 e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	11	17	38	65	1.7898	0.22
Quacan Contínuo	11	17	38	65	1.7898	0.17
Quacan Modificado	11	17	30	57	1.7898	0.22

Tabela 52: Função de Watson N = 12, m = 31 e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	12	13	432	444	1.5352D-8	0.27
Quacan Contínuo	14	15	840	854	2.5327D-9	0.39
Quacan Modificado	14	15	450	464	4.1453D-8	0.22

Tabela 53: Função de Watson N = 12, m = 31 e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	12	13	432	444	1.5352D-8	0.28
Quacan Contínuo	14	15	840	854	2.5327D-9	0.33
Quacan Modificado	12	13	403	415	1.6336D-8	0.16

Tabela 54: Função de Watson N = 12, m = 31 e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	12	13	432	444	1.5352D-8	0.27
Quacan Contínuo	14	15	840	854	2.5327D-9	0.33
Quacan Modificado	12	13	401	415	1.6336D-8	0.17

abela 55. Fullçao de I	COSCHDIDIOCK	esten	ulua $N = 10$	10000, m	= n e pointo	miciai <i>x</i>
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	21	26	85	115	1.2892D-11	4.89
Quacan Contínuo	21	26	85	115	1.2892D-11	5.28
Quacan Modificado	21	26	47	76	1.2888D-11	3.95

Tabela 55: Função de Rosenbrock estendida $\ N=10.000,\ m=n\,$ e ponto inicial x_0

Tabela 56: Função de Rosenbrock estendida N = 10.000 e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	54	65	195	271	3.3237D-17	10.93
Quacan Contínuo	54	65	195	271	3.3237D-17	11.92
Quacan Modificado	59	75	168	260	1.9100D-18	11.31

Tabela 57: Função de Rosenbrock estendida N = 10.000, m = n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	152	200	532	795	2.3287D-18	31.09
Quacan Contínuo	152	200	532	795	2.3287D-18	33.89
Quacan Modificado	160	212	511	789	2.4347D-19	32.69

Tabela 58: Função de Rosenbrock estendida N = 100.000, m = n e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	22	27	90	120	3.0006D-23	46.08
Quacan Contínuo	22	27	90	120	3.0006D-23	49.60
Quacan Modificado	22	26	57	789	3.3665D-16	39.44

Tabela 59: Função de Rosenbrock estendida N = 100.000, m = n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	59	77	219	315	2.2667 D- 15	120.73
Quacan Contínuo	59	77	219	315	2.2667 D- 15	133.03
Quacan Modificado	58	73	212	300	6.1629d-28	128.19

Tabela 60: Função de Rosenbrock estendida N = 100.000, m = n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	166	222	588	875	3.9443D-26	333.02
Quacan Contínuo	166	222	588	875	3.9443D-26	379.37
Quacan Modificado	162	216	569	845	2.0353D-23	370.20

ibela 01. 1 ulição de 110	SCHOLOCK C	sicila	10a = 1.0	00.000,	m = m c point	o miciai
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	22	26	96	124	3.3557D-15	441.60
Quacan Contínuo	22	26	96	124	3.3557D-15	502.40
Quacan Modificado	22	26	99	127	3.3579D-15	554.64

Tabela 61: Função de Rosenbrock estendida N = 1.000.000, m = ne ponto inicial x_0

Tabela 62: Função de Rosenbrock estendida N = 1.000.000, m = n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	58	74	227	319	2.2278D-18	1232.15
Quacan Contínuo	58	74	227	319	2.2278D-18	1501.83
Quacan Modificado	56	70	224	309	4.2912D-11	1421.80

Tabela 63: Função de Rosenbrock estendida $N = 10^6, m = n$ e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	153	199	562	814	6.4330D-19	3080.28
Quacan Contínuo	153	199	562	814	6.4330D-19	3996.11
Quacan Modificado	151	197	581	832	3.2873D-22	3770.86

Tabela 64: Função singular de Powell estendida N = 10.000, m = n e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	18	19	172	190	8.4371D-8	6.98
Quacan Contínuo	18	19	172	190	8.4371D-8	12.58
Quacan Modificado	18	19	172	190	8.4371D-8	7.63

Tabela 65: Função singular de Powell estendida $N = 10^4$, m = n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	24	25	226	251	5.0135D-8	14.17
Quacan Contínuo	24	25	226	251	5.0135D-8	14.94
Quacan Modificado	24	25	169	194	5.0135D-8	13.51

Tabela 66: Função singular de Powell estendida $N = 10^4$, m = n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	30	31	281	316	9.8501D-8	16.54
Quacan Contínuo	30	31	281	316	9.8501D-8	21.20
Quacan Modificado	30	31	281	316	9.8501D-8	19.22

bela 01. Fullçao siligula		II CSUC.	11010a $IV = 0$	50.000, 1	n = n c por	no miciai
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	19	20	190	209	4.9997D-8	22.02
Quacan Contínuo	19	20	190	209	4.9997D-8	24.11
Quacan Modificado	19	20	190	209	4.9997D-8	14.33

Tabela 67: Função singular de Powell estendida N = 30.000, m = n e ponto inicial x_0

Tabela 68: Função singular de Powell estendida $N = 3.10^4$, m = n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	24	25	225	250	1.5040D-7	27.08
Quacan Contínuo	24	25	225	250	1.5040D-7	28.57
Quacan Modificado	24	25	174	199	1.5040D-7	25.98

Tabela 69: Função singular de Powell estendida $N = 3.10^4$, m = n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	31	32	301	337	5.8371D-8	36.63
Quacan Contínuo	31	32	301	337	5.8371D-8	46.58
Quacan Modificado	31	32	287	323	5.8371D-8	40.42

Tabela 70: Função singular de Powell estendida N = 100.000, m = n e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	19	20	192	211	1.6667D-7	72.45
Quacan Contínuo	19	20	192	211	1.6667D-7	79.97
Quacan Modificado	19	20	192	211	1.6667D-7	85.45

Tabela 71: Função singular de Powell estendida $N = 10^6$, m = n e ponto inicial $10x_0$ Solver Tit-Box Naf Tit-Quacan PMV Função Tempo

						- • P • •
Quacan	25	26	246	272	9.9033D-8	98.04
Quacan Contínuo	25	26	246	272	9.9033D-8	101.45
Quacan Modificado	25	26	246	272	9.9033D-8	107.10

Tabela 72: Função singular de Powell estendida $N = 10^6$, m = n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	31	32	295	331	1.9457D-7	116.22
Quacan Contínuo	31	32	295	331	1.9457D-7	140.33
Quacan Modificado	31	32	295	331	1.9457D-7	126.77

Tabela 73: Funça	o Penalty	1 //	= 2000, m = 1	n+1 e	ponto inicia.	x_0
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	46	53	340	790	1.9555D-2	6.26
Quacan Contínuo	46	53	287	607	1.9555D-2	5.40
Quacan Modificado	46	53	253	525	1.9555D-2	6.04

Tabela 73: Função Penalty I N = 2000, m = n + 1 e ponto inicial x_0

N = 2000, m = n + 1 e ponto inicial $10x_0$ Tabela 74: Função Penalty I Tit-Quacan Solver Tit-Box Naf PMV Função Tempo 551.9555D-2Quacan 403 7.69 67 927 Quacan Contínuo 5567 494 1187 1.9555D-29.06 Quacan Modificado 55 67 461 1094 1.9555D-28.68

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	62	79	498	1227	1.9555D-2	9.12
Quacan Contínuo	69	88	647	1550	1.9555D-2	11.53
Quacan Modificado	65	83	624	1545	1.9995D-2	11.70

Tabela 76: Função Penalty I N = 10.000, m = n + 1 e ponto inicial x_0 Solver Tit-Box Naf Tit-Quacan PMV Função Tempo

Solver	TIU-DOX	Ivar	111-Quacan	L IVI V	runçao	rempo
Quacan	49	59	151	252	9.9001D-2	10.93
Quacan Contínuo	49	59	136	224	9.9001D-2	11.10
Quacan Modificado	49	59	145	258	9.9001D-2	12.31

Tabela 77: Função Penalty I N = 10.000, m = n + 1 e ponto inicial $10x_0$ PMV Solver Tit-Box Naf Tit-Quacan Função Tempo 9.9001D-2 Quacan 59 76 541 145247.95 Quacan Contínuo 60 77 346 859 9.9001D-2 31.92 Quacan Modificado 59 76 419 1116 9.9001D-2 41.14

Tabela 78: Função Penalty I	N = 10.000, m = n +	1 e ponto inicial	$100x_{0}$
-----------------------------	---------------------	-------------------	------------

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	70	98	888	2334	9.9001D-2	73.77
Quacan Contínuo	69	91	465	1127	9.9001D-2	45.03
Quacan Modificado	65	89	450	1185	9.9001D-2	42.02

Tabela 79: Função Penalty I $N = 50.000, m = n + 1$ e ponto inicial x_0							
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo	
Quacan	55	69	176	302	4.9776D-1	61.51	
Quacan Contínuo	84	132	4319	14366	4.9776D-1	2686.24	
Quacan Modificado	55	69	145	246	4.9776D-1	63.11	

Tabela 80: Função	N =	$N = 50.000, \ m = n + 1$ e ponto inicial $10x_0$					
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo	
Quacan	71	107	1396	4271	4.9776D-1	669.71	
Quacan Contínuo	91	135	3210	10534	4.9776D-1	1804.13	
Quacan Modificado	71	103	1469	4794	4.9776D-1	778.13	

Tabela 81: Função I	Penalty I	N =	50.000, m = r	n+1 e	ponto inicial	$100x_0$
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	74	104	473	1311	4.9776D-1	211.80
Quacan Contínuo	95	146	3531	11509	4.9776D-1	1995.94
Quacan Modificado	74	104	573	1691	4.9776D-1	282.16

Tabela 82: Função Penalty II N = 4, m = 2n e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	31	38	609	663	9.4634D-6	0.33
Quacan Contínuo	13	18	166	196	9.5359D-6	0.06
Quacan Modificado	22	30	281	346	9.5040D-6	0.11

Tabela 83: Função Penalty II N = 4, m = 2n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	30	35	598	644	9.4946D-6	0.16
Quacan Contínuo	23	28	263	302	9.5147D-6	0.00
Quacan Modificado	23	28	255	294	9.5147D-6	0.00

Tabela 84: Função Penalty II N = 4, m = 2n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	32	39	620	677	9.5262D-6	0.22
Quacan Contínuo	33	40	354	412	9.5033D-6	0.00
Quacan Modificado	33	40	337	394	9.5033D-6	0.00

Tabela 85: Função Penalty II $N = 10, m = 2n$ e ponto inicial x_0								
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo		
Quacan	97	130	5482	5883	2.9366D-4	7.36		
Quacan Contínuo	103	133	3178	3522	2.9366D-4	0.44		
Quacan Modificado	123	168	3504	3994	2.9366D-4	0.38		

Tabela 85: Função Penalty II N = 10, m = 2n e ponto inicial x_0

Tabela 86: Função Penalty II N = 10, m = 2n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	102	131	5653	6020	2.9366D-4	6.54
Quacan Contínuo	105	130	3114	3438	2.9366D-4	0.44
Quacan Modificado	134	179	3628	4177	2.9366D-4	0.28

Tabela 87: Função Penalty II N = 10, m = 2n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	114	146	6087	6540	2.9366D-4	7.20
Quacan Contínuo	115	146	3364	3774	2.9366D-4	0.33
Quacan Modificado	100	128	2509	2859	2.9374D-4	0.22

Tabela 88: Função Penalty II N = 15, m = 2n e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	114	174	11618	13088	1.6154D-3	31.81
Quacan Contínuo	77	95	2854	3093	1.6153D-3	0.49
Quacan Modificado	104	143	3522	4008	1.6153D-3	0.66

Tabela 89: Função Penalty II N = 15, m = 2n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	151	233	15877	18172	1.6154D-3	41.25
Quacan Contínuo	85	105	3027	3312	1.6153D-3	0.44
Quacan Modificado	97	126	3257	3663	1.6153D-3	0.38

Tabela 90: Função Penalty II N = 15, m = 2n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	118	168	10951	12216	1.6154D-3	28.07
Quacan Contínuo	86	102	2927	3149	1.6153D-3	0.39
Quacan Modificado	107	137	3348	3759	1.6153D-3	0.44

bola biti i aligad tarlat	onnonice ai		siiddad i'	000, m	n + = e pon	to initiat
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	34	61	24816	37821	9.3644D-20	29.22
Quacan Contínuo	30	52	5482	7217	zero	6.48
Quacan Modificado	34	62	1575	2196	5.4412D-25	2.86

Tabela 91: Função varia
velmente dimensionada $\ N=500, \ m=n+2$ e ponto inicial
 x_0

Tabela 92: Função variavelmente dimensionada N = 500 e ponto inicial $10x_0$ Solver Tit-Box Tit-Quacan PMV Função Tempo Naf 34 Quacan 61 24816 37821 9.3644D-20 28.40Quacan Contínuo 24 42 4460 6812 6.8053D-22 5.82Quacan Modificado 37 68 1800 1896 4.7286D-19 3.13

Tabela 93: Função varia
velmente dimensionada N = 500 e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	47	80	28767	44665	zero	34.27
Quacan Contínuo	33	54	9679	14865	2.2496D-22	11.69
Quacan Modificado	43	75	913	1379	2.7871D-10	1.75

Tabela 94: Função variavelmente dimensionada N = 1000, m = n + 2 e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	38	71	57559	90505	3.0779D-21	177.03
Quacan Contínuo	27	55	8069	12167	4.8246D-23	23.79
Quacan Modificado	38	72	75	178	1.7485D-22	1.38

Tabela 95: Função variavelmente dimensionadaN = 1000e ponto inicial $10x_0$ SolverTit-BoxNafTit-QuacanPMVFunçãoTempoQuacan427852890829475 3551D-23149 45

Quacan	42	78	52890	82947	5.3551D-23	149.45
Quacan Contínuo	34	65	10487	15829	1.3318D-22	34.49
Quacan Modificado	41	72	2422	3630	2.2464 D-21	8.63

Tabela 96: Função variavelmente dimensionada N = 1000 e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	48	88	56924	86142	4.8037D-22	160.43
Quacan Contínuo	33	57	12153	18559	3.5531D-21	36.58
Quacan Modificado	48	89	3637	5511	2.0731D-21	13.07

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	41	85	125685	196345	6.0320D-21	770.44
Quacan Contínuo	37	86	23062	35737	2.6819D-21	150.88
Quacan Modificado	44	92	99	236	1.0650D-21	2.14

Tabela 97: Função variavelmente dimensionada N = 2000, m = n + 2 e ponto inicial x_0

Tabela 98: Função variavelmente dimensionada N = 2000 e ponto inicial $10x_0$ Solver Tit-Box Naf Tit-Quacan PMV Função Tempo Quacan 49 102 107431 163999 2.9168D-21 650.87 Quacan Contínuo 32 70 21553 32812 1.2524D-21 135.84 Quacan Modificado 47 89 9454 14247 2.8239D-21 72.06

Tabela 99: Função varia
velmente dimensionada $\ N=2000$ e ponto inicial $\ 100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	70	132	147077	229407	3.3108D-20	922.09
Quacan Contínuo	47	99	60548	93995	7.7607D-22	427.60
Quacan Modificado	54	105	9418	14481	5.6918D-21	65.86

Tabela 100: Função Trigonométrica N = 500, m = n e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	17	34	3320	3610	2.6222D-7	7.91
Quacan Contínuo	17	34	3320	3610	2.6222D-7	8.18
Quacan Modificado	17	33	3466	3674	1.1889D-6	8.35

Tabela 101: Função Trigonométrica			$N = 500, \ m = n$ e ponto inicial $10x_0$			
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	17	33	3513	3714	1.1889D-6	9.12
Quacan Contínuo	17	33	3513	3714	1.1889D-6	10.11
Quacan Modificado	17	33	4199	4394	1.7253D-6	10.49

Tabela 102: Função	Trigonométrica	N = 500, m = n	e ponto inicial 10	$00x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	22	50	6182	6404	1.7497D-6	13.89
Quacan Contínuo	22	50	6182	6404	1.7497D-6	14.99
Quacan Modificado	23	50	6244	6439	1.7497D-6	14.83

Tabela 105: Fullçad) Trigonon	letrica	$N \equiv 1000,$	m = n	e ponto mic	a_0
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	21	45	16239	17999	4.0552D-7	79.15
Quacan Contínuo	21	45	16239	17999	4.0552D-7	82.11
Quacan Modificado	19	43	20684	22410	4.1509D-7	99.03

Tabela 103:]	Função	Trigono	métrica	N =	1000, $m = n$	e ponto	inicial	x_0
			-	-				

Tabela 104: Função	ela 104: Função Trigonométrica			$N = 1000, \ m = n$ e ponto inicial $10x_0$			
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo	
Quacan	20	41	19652	20122	5.2407D-7	94.30	
Quacan Contínuo	20	41	19652	20122	5.2407 D-7	96.12	
Quacan Modificado	20	41	19737	20214	4.9861D-7	95.36	

Tabela 105: Função '	$N = 1000, m = n$ e ponto inicial $100x_0$					
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	22	49	61432	61665	3.6614D-7	285.94
Quacan Contínuo	22	49	61432	61665	3.6614D-7	332.68
Quacan Modificado	22	49	61540	61790	3.9139D-7	304.61

Tabela 106: Função Trigonométrica N = 2000, m = n e ponto inicial x_0 Solver Tit-Box Naf Tit-Quacan PMV Função Tempo 10 Quacan 17321 20264 1.3836D-7 196.03 23

V						
Quacan Contínuo	10	23	17321	20264	1.3836D-7	201.74
Quacan Modificado	13	28	27469	30347	1.4181D-7	299.73

Tabela 107: Função	Trigonomé	étrica	N = 2000, n	al $10x_0$		
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	15	31	68376	68909	3.0153D-7	670.91
Quacan Contínuo	15	31	68376	68909	3.0153D-7	781.04
Quacan Modificado	16	32	73119	73716	3.0780D-7	743.25

Tabela 108: Função	Trigonom	étrica	N = 2000,	m = n e	ponto inicial	$100x_{0}$
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	22	50	114571	115098	2.5010D-7	1171.78
Quacan Contínuo	22	50	114571	115098	2.5010D-7	1331.56
Quacan Modificado	22	50	121584	122130	2.9766D-7	1332.33

Tabela 109: Função quase-linear de Brown $N = 200, m = n$ e ponto inicial x_0									
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo			
Box-Quacan	18	22	228	254	1.2547D-15	1.71			
Box-Quacan Contínuo	18	22	228	254	$1.2547 \text{D}{-}15$	1.65			
Box-Quacan Modificado	17	21	188	213	6.5040D-13	1.48			

Tabela 109: Função quase-linear de Brown N = 200, m = n e ponto inicial x

Tabela 110: Função quase-linear de Brown N = 200, m = n e ponto inicial $0.1x_0^w$ Tit-Box PMV Solver Naf Tit-Quacan Função Tempo Box-Quacan 15 19 200 223 3.8296D-12 1.43 Box-Quacan Contínuo 1519 200 223 3.8296D-12 1.43 Box-Quacan Modificado 16 20 99 123 3.3066D-14 0.88

Tabela 111: Função quase-linear de Brown N = 200, m = n e ponto inicial $0.01x_0^w$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Box-Quacan	18	20	218	240	2.8499D-14	1.48
Box-Quacan Contínuo	22	27	427	522	3.1270D-14	2.80
Box-Quacan Modificado	21	26	304	399	3.6565 D- 12	2.31

Tabela 112: Função quase-linear de Brown N = 500, m = n e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Box-Quacan	21	25	1264	1293	9.9914D-19	34.44
Box-Quacan Contínuo	21	25	1264	1293	9.9914D-19	33.89
Box-Quacan Modificado	21	25	1926	1955	6.4414D-18	56.19

Tabela 113: Função quase-linear de Brown N = 500, m = n e ponto inicial $0.05x_0^w$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Box-Quacan	20	25	347	455	1.1775D-10	11.80
Box-Quacan Contínuo	20	25	347	455	1.7475D-10	13.02
Box-Quacan Modificado	26	31	529	588	3.3136D-16	23.40

Tabela 114: Função quase-linear de Brown N = 500, m = n e ponto inicial $0.1x_0^w$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Box-Quacan	20	24	829	857	5.3127D-22	21.75
Box-Quacan Contínuo	20	24	829	857	5.3127D-22	22.58
Box-Quacan Modificado	17	21	376	401	2.7259D-13	11.25

Tabela 115: Função quase-linear de Brown $N = 700, m = n$ e pointo inicial x_0								
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo		
Box-Quacan	21	25	1774	1803	1.9664D-17	91.50		
Box-Quacan Contínuo	21	25	1774	1803	$1.9664 \text{D}{-}17$	90.90		
Box-Quacan Modificado	21	25	2746	2775	2.1077D-17	153.47		

Tabola 115: Função guaso linear de Brown λŢ 700 a ponto inicial r

Tabela 116: Função guase-linear de Brown N = 700, m = n e ponto inicial $0.01 x_0^w$ Solver Tit-Box Tit-Quacan PMV Naf Função Tempo Box-Quacan 57.79 17 211161 1186 2.3491D-13 Box-Quacan Contínuo 17 211161 1186 2.3491D-13 60.58 Box-Quacan Modificado 19 23235262 1.1148D-14 15.76

Tabela 117: Função quase-linear de Brown N = 700, m = n e ponto inicial $0.5x_0^w$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Box-Quacan	22	26	2848	2878	1.0167D-20	138.19
Box-Quacan Contínuo	22	26	2848	2878	1.0167D-20	145.00
Box-Quacan Modificado	20	24	250	278	6.9948D-14	14.06

Tabela 118: Função de discretização de um PVC N = 1000, m = n e ponto inicial $5x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Box-Quacan	1	2	3000	3001	8.8388D-8	29.00
Box-Quacan Contínuo	1	2	3000	3001	8.8388D-8	28.56
Box-Quacan Modificado	1	2	3000	3001	8.8388D-8	31.37

Tabela 119: Função de discretização de um PVC N = 1000, m = n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Box-Quacan	1	2	3000	3001	3.7871D-7	23.89
Box-Quacan Contínuo	1	2	3000	3001	3.7871D-7	26.30
Box-Quacan Modificado	1	2	3000	3001	3.7871D-7	25.21

Tabela 120: Função de discretização de um PVC N = 1000, m = n e ponto inicial $20x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Box-Quacan	1	2	3000	3001	2.2985D-6	29.27
Box-Quacan Contínuo	1	2	3000	3001	2.2985D-6	25.15
Box-Quacan Modificado	1	2	3000	3001	2.2985D-6	25.71

				= = = = ;	·· · P ···	
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	1	2	6000	6001	4.8166D-8	95.96
Quacan Contínuo	1	2	6000	6001	4.8166D-8	109.96
Quacan Modificado	1	2	6000	6001	4.8166D-8	99.14

Tabela 121: Função de discretização de um PVC N = 2000, m = n e ponto inicial $10x_0$

Tabela 122: Função de discretização de um PVC N = 2000, m = n e ponto inicial $20x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	1	2	6000	6001	2.9123D-7	117.76
Quacan Contínuo	1	2	6000	6001	2.9123D-7	101.39
Quacan Modificado	1	2	6000	6001	2.9123D-7	120.67

Tabela 123: Função de discretização de um PVC N = 2000, m = n e ponto inicial $30x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	1	2	6000	6001	1.5423D-6	98.10
Quacan Contínuo	1	2	6000	6001	1.5423D-6	101.11
Quacan Modificado	1	2	6000	6001	1.5423D-6	105.89

Tabela 124: Função de discretização de um PVC N = 5000, m = n e ponto inicial $50x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	1	2	15000	15001	1.6648D-6	639.82
Quacan Contínuo	1	2	15000	15001	1.6648D-6	1126.24
Quacan Modificado	1	2	25000	25001	1.6648D-6	1063.53

Tabela 125: Função de discretização de um PVC N = 5000, m = n e ponto inicial $55x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	3	4	75000	75003	2.6928D-6	3091.81
Quacan Contínuo	3	4	75000	75003	2.6928D-6	3235.06
Quacan Modificado	3	4	75000	75003	2.6928D-6	3197.76

Tabela 126: Função de discretização de um PVC N = 5000, m = n e ponto inicial $60x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	3	4	75000	75003	4.0673D-6	3100.16
Quacan Contínuo	3	4	75000	75003	4.0673D-6	3331.39
Quacan Modificado	3	4	75000	75003	4.0673D-6	3332.38

Tabela 127: Full	zao de uma	t L'.I.L	N = 500, 7	m = n	e ponto inicial	x_0
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	3	4	25	28	1.4842D-20	20.43
Quacan Contínuo	3	4	25	28	1.4845D-20	20.00
Quacan Modificado	3	4	25	28	1.4845D-20	19.77

Tabela 127: Função de uma E.I.D N = 500, m = n e ponto inicial x_0

Tabela 128: Função de uma E.I.D N = 500, m = n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	5	6	59	64	1.9325D-16	43.50
Quacan Contínuo	5	6	59	64	1.9325D-16	63.22
Quacan Modificado	5	6	59	64	1.9325D-16	45.81

Tabela 129: Função de uma E.I.D N = 500, m = n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	17	23	2056	2262	2.5809D-14	1861.59
Quacan Contínuo	17	23	2056	2262	2.5809D-14	1927.55
Quacan Modificado	17	23	1861	2065	2.7573D-14	1563.02

Tabela 130: Função de uma E.I.D N = 1000, m = n e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	3	4	25	28	2.9720D-20	78.81
Quacan Contínuo	3	4	25	28	2.9751D-20	87.11
Quacan Modificado	3	4	25	28	2.9751D-20	76.30

Tabela 131: Função de uma E.I.D N = 1000, m = n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	5	6	59	64	3.8603D-16	175.38
Quacan Contínuo	5	6	59	64	3.8603D-16	197.95
Quacan Modificado	5	6	59	64	3.8603D-16	178.12

Tabela 132: Função de uma E.I.D N = 1000, m = n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	16	22	3032	3384	7.1877D-14	10823.89
Quacan Contínuo	16	22	3032	3384	7.1877D-14	15607.74
Quacan Modificado	16	22	2663	3023	4.0810D-14	10322.04

Tabela 133: Funç	ao de uma	E.I.D	N = 2000,	m = n	e ponto inicia	x_0
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	3	4	25	28	5.9345D-20	337.08
Quacan Contínuo	3	4	25	28	5.9120D-20	331.03
Quacan Modificado	3	4	25	28	5.9120D-20	339.39

Tabela 133: Função de uma E.I.D N = 2000, m = n e ponto inicial x_0

Tabela 134: Função de uma E.I.D N = 2000, m = n e ponto inicial $5x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	4	5	39	43	1.0559D-11	591.98
Quacan Contínuo	4	5	39	43	1.0559D-11	517.84
Quacan Modificado	4	5	29	33	1.0600D-11	391.45

Tabela 135: Função de uma E.I.D N = 2000, m = n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	5	6	59	64	7.7158D-16	752.20
Quacan Contínuo	5	6	59	64	7.7158D-16	956.03
Quacan Modificado	5	6	59	64	7.7158D-16	745.12

Tabela 136: Função tridiagonal de Broyden N = 10.000, m = n e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	5	6	197	202	3.0962D-17	7.42
Quacan Contínuo	5	6	197	202	3.0962D-17	7.64
Quacan Modificado	5	6	197	202	3.0962D-17	7.47

Tabela 137: Função tridiagonal de Broyden N = 10.000, m = n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	11	12	261	272	2.6190D-19	9.22
Quacan Contínuo	11	12	261	272	2.6190D-19	13.67
Quacan Modificado	11	12	261	272	2.6190D-19	10.05

Tabela 138: Função tridiagonal de Broyden N = 10.000, m = n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	17	18	273	292	1.6155D-13	10.38
Quacan Contínuo	17	18	273	292	1.6155D-13	12.03
Quacan Modificado	17	18	273	292	1.6155D-13	12.03

abela 159: Fulição triu	lagonal de	DIOYO	100 I = 100	5.000, n	i = n e poinc	micial a
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	5	6	190	195	3.1041D-17	66.40
Quacan Contínuo	5	6	190	195	3.1041D-17	70.25
Quacan Modificado	5	6	190	195	3.1041D-17	69.37

Tabela 139: Função tridiagonal de Broyden N = 100.000, m = ne ponto inicial x_0

Tabela 140: Função tridiagonal de Broyden N = 100.000, m = n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	11	12	249	260	2.5818D-18	84.20
Quacan Contínuo	11	12	249	260	2.5818D-18	106.72
Quacan Modificado	11	12	249	260	2.5818D-18	92.49

Tabela 141: Função tridiagonal de Broyden N = 100.000, m = n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	17	18	263	282	1.6110D-12	95.35
Quacan Contínuo	17	18	263	282	1.6110D-12	128.58
Quacan Modificado	17	18	263	282	1.6110D-12	106.83

Tabela 142: Função tridiagonal de Broyden N = 1.000.000, m = n e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	5	6	182	187	3.1242D-17	633.51
Quacan Contínuo	5	6	182	187	3.1242D-17	701.13
Quacan Modificado	5	6	182	187	3.1242D-17	695.85

Tabela 143: Função tridiagonal de Broyden N = 1.000.000, m = ne ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	11	12	237	248	2.5808D-17	921.15
Quacan Contínuo	11	12	237	248	2.5808D-17	1126.68
Quacan Modificado	11	12	237	248	2.5808D-17	981.19

Tabela 144: Função tridiagonal de Broyden $N = 10^6$, m = n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	18	19	186	306	3.1899D-29	1056.71
Quacan Contínuo	18	19	286	306	3.1899D-29	1283.44
Quacan Modificado	18	19	235	255	3.1702D-29	925.88

Tabela 145: Funçao	banda de E	broyae	n N = 10.00	J0, m =	n e ponto m	x_0
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	7	8	112	119	1.2948D-13	20.22
Quacan Contínuo	7	8	112	119	1.2948D-13	14.66
Quacan Modificado	7	8	112	119	1.2948D-13	9.51

T 1 1 1 D 1 λT 10 000 . . . 1 1 4 1

Tabela 146: Função banda de Broyden N = 10.000, m = n e ponto inicial $10x_0$ Solver Tit-Box Naf Tit-Quacan PMV Função Tempo 17 3.2150D-15 Quacan 18 211 228 22.03 Quacan Contínuo 1718 211 228 3.2150D-15 25.92Quacan Modificado $\overline{17}$ 18 211 228 3.2150D-15 18.95

Tabela 147: Função banda de Broyden N = 10.000, m = n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	28	32	273	309	9.0289D-18	28.17
Quacan Contínuo	28	32	273	309	9.0289D-18	31.14
Quacan Modificado	28	32	266	302	1.2671D-17	23.34

Tabela 148: Função banda de Broyden N = 100.000, m = n e ponto inicial x_0 Solver Tit-Box Naf Tit-Quacan PMV Função Tempo 7 8 87.72 Quacan 106 113 1.2948D-13 Quacan Contínuo 7 1.2948D-13 8 113 87.34 106 Quacan Modificado 7 8 106 113 1.2948D-13 88.70

r	Fabela 149: Função ba	nda de Br	oyden	N = 100.00	0, m =	$n \mathrm{e} \mathrm{ponto} \mathrm{in}$	icial $10x_0$
	Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
	Quacan	17	18	204	221	3.2151D-15	163.24
	Quacan Contínuo	17	18	204	221	3.2151D-15	193.72
	Quacan Modificado	17	18	204	221	3.2151D-15	179.99

Tabela 150: Função banda de Broyden N = 100.000, m = n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	28	32	262	298	9.0290D-18	229.92
Quacan Contínuo	28	32	262	298	9.0290D-18	244.31
Quacan Modificado	28	32	255	291	1.2674D-17	230.85

Tabela 151: Função ba	nda de Br	oyden	N = 1.000.	$000, \ m$	= n e ponto i	inicial x_0
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	7	8	105	112	1.2948D-13	842.50
Quacan Contínuo	7	8	105	112	1.2948D-13	848.87
Quacan Modificado	7	8	105	112	1.2948D-13	887.65

Tabela 152: Função banda de Broyden N = 1.000.000, m = n e ponto inicial $10x_0$ Função Solver Tit-Box Naf Tit-Quacan PMV Tempo 17 3.2151D-15 1572.08 Quacan 18 197 214Quacan Contínuo 1718 197 214 3.2151D-15 1981.27 Quacan Modificado $\overline{17}$ 18 162 1793.2152D-15 1606.79

Tabela 153: Função banda de Broyden N = 1.000.000, m = n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	28	32	257	293	9.0305D-18	2196.69
Quacan Contínuo	28	32	249	285	1.2689D-17	2434.02
Quacan Modificado	28	32	220	256	9.0304D-18	2277.81

Tabela 154: Função linear-posto completo N = 2500, m = 2n e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	2	3	4	6	2500	11.37
Quacan Contínuo	2	3	4	6	2500	16.65
Quacan Modificado	2	3	4	6	2500	16.70

Tabela 155: Função linear-posto completo N = 2500, m = 2n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	3	4	6	11	2500	25.38
Quacan Contínuo	3	4	6	11	2500	25.76
Quacan Modificado	3	4	6	11	2500	28.01

Tabela 156: Função linear-posto completo N = 2500, m = 2n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	4	5	6	12	2500	22.25
Quacan Contínuo	4	5	6	12	2500	18.95
Quacan Modificado	4	5	6	12	2500	27.52

abela 157. Fullçao ille	ai-posto co	Jubie	10 11 = 5000	, m - 2	<i>in</i> e ponte) miciai <i>i</i>
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	2	3	5	7	5000	53.06
Quacan Contínuo	2	3	5	7	5000	56.40
Quacan Modificado	2	3	5	7	5000	59.93

Tabela 157: Função linear-posto completo N = 5000, m = 2n e ponto inicial x_0

Tabela 158: Função linear-posto completo N = 5000, m = 2n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	3	4	6	10	5000	75.41
Quacan Contínuo	3	4	6	10	5000	67.88
Quacan Modificado	3	4	6	10	5000	76.68

Tabela 159: Função linear-posto completo N = 5000, m = 2n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	4	5	6	12	5000	96.12
Quacan Contínuo	4	5	6	12	5000	87.66
Quacan Modificado	4	5	6	12	5000	86.72

Tabela 160: Função linear-posto completo N = 25000, m = 2n e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	2	3	5	7	25000	1462.72
Quacan Contínuo	2	3	5	7	25000	1368.96
Quacan Modificado	2	3	5	7	25000	1360.06

Tabela 161: Função linear-posto completo N = 25000, m = 2n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	3	4	7	12	25000	2390.08
Quacan Contínuo	3	4	7	12	25000	2310.10
Quacan Modificado	3	4	7	12	25000	2554.00

Tabela 162: Função linear-posto completo N = 25000, m = n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	4	5	7	13	25000	2648.45
Quacan Contínuo	4	5	7	13	25000	2351.74
Quacan Modificado	4	5	7	13	25000	2517.24
Tabela 105: Fullção inteal-posto 1			$N = 20, m = 70$ e ponto micial x_0			
------------------------------------	---------	-----	---------------------------------------	-----	---------	-------
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	3	8	84	131	17.1276	0.06
Quacan Contínuo	3	9	145	221	17.1276	0.05
Quacan Modificado	3	8	84	131	17.1276	0.05

Tabela 163: Função linear-posto 1 N = 20, m = 70 e ponto inicial x_0

Tabela 164: Função	N = 20, m =	:70 e p	onto inicia	al $10x_0$		
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	2	8	98	155	17.1276	0.06
Quacan Contínuo	2	8	98	155	17.1276	0.06
Quacan Modificado	3	10	56	96	17.1276	0.06

Tabela 165: Função linear-posto 1 N = 20, m = 70 e ponto inicial $40x_0$ Solver Tit Box Naf Tit Quacan PMV Eureão Tempo

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Funçao	Tempo
Quacan	3	8	45	79	17.1276	0.06
Quacan Contínuo	3	8	45	79	17.1276	0.06
Quacan Modificado	3	8	45	79	17.1276	0.05

Tabela 166: Função linear-posto 1 N = 30, m = 70 e ponto inicial x_0 Solver Tit-Box Naf Tit-Quacan PMV Função Tempo

Solver	1 It-Box	Nar	1 it-Quacan	PMV	Funçao	Tempo
Quacan	2	5	93	147	17.1276	0.11
Quacan Contínuo	2	6	280	404	17.1276	0.11
Quacan Modificado	2	6	150	235	17.1276	0.11

Tabela 167: Função linear-posto 1N = 30, m = 70 e ponto inicial $10x_0$ SolverTit-BoxNafTit-QuacanPMVFunçãoTempoQuacan61951671817.12760.27

a account	•	-0	010	• = •	1111-10	0
Quacan Contínuo	6	19	516	718	17.1276	0.23
Quacan Modificado	4	10	172	265	17.1276	0.11

Tabela 168: Função linear-posto 1 N = 30, m = 70 e ponto inicial $40x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	3	8	66	111	17.1276	0.11
Quacan Contínuo	3	8	66	111	17.1276	0.06
Quacan Modificado	3	8	66	111	17.1276	0.11

Tabela 169: Função linear-posto 1			$N = 40, \ m = 70$ e ponto inicial x_0			
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	2	7	125	192	17.1276	0.16
Quacan Contínuo	2	9	125	499	17.1276	0.39
Quacan Modificado	2	9	310	469	17.1276	0.22

Tabela 170: Função	N = 40, m =	:70 e p	onto inicia	al $10x_0$		
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	8	29	724	1041	17.1276	0.55
Quacan Contínuo	14	92	5045	7098	17.1276	2.64
Quacan Modificado	8	29	724	1041	17.1276	0.55

Tabela 171: Função linear-posto 1 N = 40, m = 70 e ponto inicial $40x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	4	16	412	588	17.1276	0.33
Quacan Contínuo	5	22	1675	2400	17.1276	1.26
Quacan Modificado	4	16	412	588	17.1276	0.39

Tabela 172: Função linear(posto um, com L.C.N.) N = 30, m = n e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	2	6	81	124	8.6315	0.00
Quacan Contínuo	2	6	81	124	8.6315	0.00
Quacan Modificado	2	4	81	124	8.6315	0.05

Tabela 173: Função linear (posto um, com L.C.N) N = 30, m = n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	2	6	29	52	8.6315	0.05
Quacan Contínuo	2	6	29	52	8.6315	0.06
Quacan Modificado	2	6	29	52	8.6315	0.00

Tabela 174: Função linear
(posto um, com L.C.N) N = 30, m = n e ponto inicial
 $50x_0^w$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	4	8	75	124	8.6315	0.00
Quacan Contínuo	3	5	8	23	8.6315	0.00
Quacan Modificado	3	5	8	23	8.6315	0.06

ela 175. Fullçao illear	posto um,	com .	L.C.N) N -	-40, m	-n e po	mo miciai
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	2	7	125	197	11.1298	0.05
Quacan Contínuo	2	7	125	197	11.1298	0.05
Quacan Modificado	2	7	125	197	11.1298	0.00

Tabela 175: Função linear(posto um, com L.C.N) N = 40, m = n e ponto inicial x_0

Tabela 176: Função linear
(posto um, com L.C.N) N =, m = 40n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	2	7	23	46	11.1298	0.00
Quacan Contínuo	2	3	4	11	11.1298	0.06
Quacan Modificado	2	3	4	11	11.1298	0.06

Tabela 177: Função linear(posto um, com L.C.N.) N = 40, m = n e ponto inicial $50x_0^w$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	4	9	80	134	11.1298	0.00
Quacan Contínuo	3	6	9	25	11.1298	0.00
Quacan Modificado	3	6	9	25	11.1298	0.00

Tabela 178: Função linear(posto um, com L.C.N.) N = 50, m = n e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	2	7	138	210	13.6288	0.05
Quacan Contínuo	2	7	138	210	13.6288	0.05
Quacan Modificado	2	7	138	210	13.6288	0.00

Tabela 179: Função linear(posto um, com L.C.N) N = 50, m = n e ponto inicial $10x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Funçao	Tempo	
Quacan	2	7	29	58	13.6288	0.00	
Quacan Contínuo	2	4	5	14	13.6288	0.05	
Quacan Modificado	2	4	5	14	13.6288	0.00	

Tabela 180: Função linear(posto um, com L.C.N) N = 50, m = n e ponto inicial $50x_0^w$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	3	8	50	91	13.6288	0.00
Quacan Contínuo	3	6	9	25	13.6288	0.00
Quacan Modificado	3	6	9	25	13.6288	0.05

Tabela 181: Fun	N = 10, m	= n e p	ponto inicial	x_0		
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	6	11	139	173	6.5039D-3	0.05
Quacan Contínuo	6	11	139	173	6.5039D-3	0.06
Quacan Modificado	6	11	146	179	6.5039D-3	0.11

M = 10ña Chab to inicial

Tabela 182: Funç	$N = 10, m = n$ e ponto inicial $10x_0$					
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	107	169	3131	3630	4.7727D-3	0.39
Quacan Contínuo	51	76	1288	1475	9.506D-3	0.17
Quacan Modificado	103	163	1283	1761	4.7727D-3	0.10

Tabela 183: Função Chebyquad N = 10, m = n e ponto inicial $100x_0$

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	152	242	4618	5309	4.7727D-3	0.49
Quacan Contínuo	54	76	1014	1148	4.7727D-3	0.11
Quacan Modificado	110	176	249	506	3.4111	0.22

Tabela 184: Função Chebyquad N = 15, m = n e ponto inicial x_0

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	15	26	841	944	3.5629D-3	0.17
Quacan Contínuo	15	26	841	944	3.5629D-3	0.22
Quacan Modificado	15	26	854	966	3.5629D-3	0.22

	Tabela 185: Funç	$N = 15, m = n$ e ponto inicial $10x_0$					
	Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
	Quacan	170	267	7826	8888	7.7081D-3	1.48
ĺ	Quacan Contínuo	86	132	1645	1951	1.1431D-2	0.44
ĺ	Quacan Modificado	108	172	374	629	2.8407	0.11

Tabela 186: Funçã	N = 15, m =	n e po	nto inicial 1	$00x_{0}$		
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	247	387	10683	12067	7.7081D-3	1.87
Quacan Contínuo	152	230	2061	2435	1.1431D-2	0.44
Quacan Modificado	166	261	260	609	6.4718	0.11

Tabela 187: Função Chebyquad			N = 20, m	$m = n$ e ponto inicial x_0			
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo	
Quacan	13	19	867	948	4.5729D-3	0.28	
Quacan Contínuo	13	19	867	948	4.5729D-3	0.60	
Quacan Modificado	13	19	874	955	4.5729D-3	0.33	

Tabela 187: Função Chebyquad Λ	$N = 20, \ m = n$ e ponto i	nicial x_0
--	-----------------------------	--------------

Tabela 188: Funç	N = 20, m =	$n = n$ e ponto inicial $10x_0$				
Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	267	421	17319	20099	6.8968D-3	5.44
Quacan Contínuo	47	68	2091	2379	1.2511D-2	0.66
Quacan Modificado	138	221	419	757	5.1394	0.39

Tabela 189: Função Chebyquad	$N = 20, \ m = n$	e ponto inicial	$100x_{0}$
3 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-)	I I I I I I I I I I I I I I I I I I I	

Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo
Quacan	368	580	20191	23356	6.8968D-3	4.89
Quacan Contínuo	60	82	2396	2719	1.2511D-2	0.77
Quacan Modificado	225	355	354	829	8.4786	0.22

De um modo geral, tanto as modificações quanto *Box-Quacan* não modificado apresentaram bom desempenho. Na função de Osborne I, devido ao seu rápido crescimento, o parâmetro $t_i = 10(i - 1)$ foi substituído por $t_i = 0.1(i - 1)$, para amortecer seu crescimento de modo que os cálculos se tornassem praticáveis.

Na função de Meyer, houve dificuldade para se introduzir modificações e atingir a convergência. Para evitar que a convergência fosse declarada por ser atingido o máximo número de avaliações de função ou porque a ordem da norma do gradiente projetado contínuo não se alterou depois de mil iterações consecutivas, foi imposto às modificações que $||g_{pc}(x)||_2 = ||g_p(x)||_2$, em todos os pontos cuja norma do gradiente projetado contínuo estivesse fora do intervalo $(0.8||g_p(x)||_2, 1.2||g_p(x)||_2)$.

Com a função caixa-tridimensional, começando com a aproximação inicial $10x_0$, aconteceu o único caso onde *Quacan-Modificado* convergiu e tanto *Quacan-Contínuo* quanto *Quacan não modificado* apresentaram *overflow*.

Estes são os problemas onde ocorreu algo excepcional, nos demais, houve harmonia no desempenho dos três códigos. Sempre que um apresentou *overflow* o mesmo aconteceu aos outros. Além disso, quando o ponto inicial foi substituído para diminuir o tempo de execução, isto foi feito porque os três programas exigiam um tempo de execução muito grande.

3.5 Análise percentual

Esta seção contém uma análise percentual dos dados das tabelas anteriores. Para melhor comparação, os problemas foram agrupados em três famílias: problemas de pequeno porte (dimensão menor ou igual a 100), problemas de médio porte (dimensão variando entre 100 e 5000) e problemas de grande porte (dimensão maior que 5000).

Os problemas de 1 a 18, que têm dimensão fixa, mais os problemas 22, 31, 32 e 33 compõem a primeira categoria, enquanto os problemas de grande porte (que chegam a ter um milhão de variáveis) se restringem aos problemas 19, 20, 21, 28, 29 e 30; os demais são de médio porte.

Os dados foram transformados em valores percentuais tomando como 100% o maior valor da coluna e calculando o percentual que os demais valores dessa coluna representam em relação a este. Feito isso, a tabela resumo de cada bloco de problemas foi obtida fazendo a média aritmética desses valores percentuais.

As tabelas 3.1, 3.2 e 3.3 mostram o desempenho, em termos percentuais, de Quacan não modificado, Quacan-Contínuo e Quacan-Modificado respectivamente.

Solver	Tit-Quacan	PMV	Tempo
Quacan	91.75	83.02	87.47
Quacan-Contínuo	96.87	96.42	91.52
Quacan-Modificado	71.14	77.25	76.68

 Tabela 3.1:
 Resumo das tabelas dos problemas de pequeno porte

Dentre os problemas de pequeno porte, para efeito do cálculo da coluna tempo, na tabela resumo (a tabela 3.1), foram excluídos os resultados das tabelas onde o tempo de execução medido pela CPU foi zero. Na maioria desses casos *Quacan-Modificado* foi o responsável pela exclusão da tabela, enquanto *Quacan* ou *Quacan-Contínuo* exigiam um pequeno tempo de execução, normalmente 0.05 ou 0.06, veja por exemplo as tabelas de 1 a 21. Devido às pequenas flutuações do número de iterações de Box e do número de avaliação de função, estas variáveis foram inibidas nas tabelas resumo.

Solver	Tit-Quacan	PMV	Tempo
Quacan	87.70	94.06	87.90
Quacan-Contínuo	88.30	79.84	70.43
Quacan-Modificado	78.26	67.50	68.53

 Tabela 3.3:
 Resumo das tabelas dos problemas de grande porte

Solver	Tit-Quacan	PMV	Tempo
Quacan	82.20	90.33	77.25
Quacan-Contínuo	94.77	89	91.50
Quacan-Modificado	77.50	86.76	79.58

A confecção da coluna "Tempo" das tabelas 3.2 e 3.3, não contou com dados de tabelas onde o número de iterações de *Box*, o número de avaliação de função, o número de iterações de *Quacan* e o número de produtos matriz×vetor foram iguais. Nessas tabelas embora o tempo, em geral, tenha variado pouco de código para código, *Quacan-Modificado* esteve em desvantagem na maioria dos casos. Isto pode ser visto, por exemplo, nas tabelas 154 a 158.

A qualidade da solução quase sempre foi a mesma para todos os códigos, mesmo nos casos onde houve diferença significativa no número de iterações de *Quacan* ou no número de produtos matriz×vetor. Os valores ótimos encontrados para a função objetivo sempre estiveram próximos. Isto pode ser visto na maioria das tabelas. Em alguns casos, *Quacan* forneceu melhor aproximação que as modificações, em outros foi superado por *Quacan-Modificado*. Exemplos desses fatos podem ser observados (quase exclusivamente) nas tabelas da função de Rosenbrock, tabelas 56 a 60.

A tabela 14 mostra um dos únicos exemplos em que a mudança de ponto inicial, x_0 para $10x_0$, fez com que Quacan e Quacan-Modificado convergissem para um ponto diferente daquele que convergiram quando foram utilizados com a aproximação inicial x_0 . Fato idêntico aconteceu na função de Chebyquad, tabelas 181 a 189. Neste problema, a mudança de inicialização, x_0 para $10x_0$ ou $10x_0$ para $100x_0$ fez com que Quacan-Modificado convergisse para outro ponto. Estes são os únicos casos desse tipo de ocorrência.

Em termos de robustez há de se ressaltar apenas dois fatos já comentados. Para a função de Meyer, as modificações convergiram, mas não pelo fato de a norma do gradiente tornar-se menor que a precisão estabelecida. Tal convergência só foi alcançada com a alteração descrita no final da seção 3.4. Quacan não modificado e Quacan-Contínuo, apresentaram overflow para a função caixa tridimensional quando se usou a aproximação inicial $10x_0$, enquanto Quacan-Modificado convergiu.

Tabela 3.4: Função Caixa-tridimensional $N = 3$,					$m = 10$ e ponto inicial $50x_0^2$			
	Solver	Tit-Box	Naf	Tit-Quacan	PMV	Função	Tempo	
	Quacan	24	27	76	113	7.5588D-2	0.05	
	Quacan-Contínuo	24	27	76	113	7.5588D-2	0.00	
	Quacan-Modificado	$\overline{24}$	$\overline{27}$	75	112	7.5588D-2	0.06	

Quacan-Contínuo se mostrou competitivo apenas para os problemas de médio porte; nos demais, o tempo de execução foi elevado, principalmente para os problemas de grande porte, como mostram a tabela 3.3 ou nas tabelas gerais, as tabelas 57 a 63, por exemplo.

3.6 Comentários finais e conclusões

A modificação *Quacan-Contínuo* teve um desempenho ruim frente a *Quacan-Modificado* e não modificado. Em *Quacan-Contínuo*, o critério de parada está baseado no gradiente projetado contínuo, o qual é menos exigente que o não contínuo, ou seja, num determinado iterando o gradiente projetado contínuo pode ser suficientemente pequeno para satisfazer o critério de parada, enquanto o gradiente projetado não contínuo, nesse mesmo ponto, não satisfaz o critério de parada. Um exemplo desse acontecimento pode ser visto com o problema da interpretação geométrica do final do capítulo 2, tomando $\varepsilon = 0.1$. Desse modo, *Quacan* fornece pontos ruins para *Box*, e isso faz aumentar o número de iterações deste, o que obviamente aumenta o tempo de execução do algoritmo. Estes fatos podem ser observados nas tabelas 79, 80 e 81, por exemplo.

Mesmo nos casos onde não houve aumento do número de iterações de Box, Quacan-Contínuo foi menos eficiente que Quacan não modificado e Quacan-Modificado, veja as tabelas, de 92 a 96.

De um modo geral, o desempenho de *Quacan-Modificado* foi bom. Nos problemas de pequeno e médio porte, as tabelas 3.1 e 3.2 mostram que a modificação não só reduz o número de iterações de *Quacan*, como também reduz o número de produtos matriz×vetor e o tempo de execução.

O objetivo inicial, de reduzir o número de iterações de *Quacan* a cada iteração de *Box* foi atingido. No entanto, para problemas de grande porte, não se verificou a conjectura de que essa redução pudesse determinar melhora no desempenho global do

algoritmo.

Quando aplicado a problemas de grande porte, as tabelas 3.1, 3.2 e 3.3 mostram que à medida que a dimensão do problema aumenta, a eficiência de *Quacan-Modificado*, traduzida em tempo de execução, diminui. Quando a dimensão chega a 50.000, *Quacan-Modificado* começa a exigir um pouco mais de tempo; veja as tabelas 136, 137, 138, 139 e 140, por exemplo.

Desta forma, no conjunto de testes efetuados, *Quacan-Modificado* é aconselhável a problemas com dimensão até 50000. Por outro lado, na grande maioria dos problemas onde *Quacan-Modificado* exigiu maior tempo de execução, o número de iterações de *Box*, o número de avaliação de função, o número de iterações de *Quacan* e o número de produtos matriz×vetor foram iguais. Isto mostra que uma melhora significativa no desempenho de *Box-Quacan* não depende apenas de um bom desempenho do *solver* quadrático.

Como a teoria sobre a qual baseia-se *Box-Quacan* está bem consolidada, talvez seja interessante buscar melhora para este algoritmo em trabalhos futuros, visto que ele pode ser aplicado ao problema geral de minimização.

Referências Bibliográficas

- R. H. Bielschowsky, A.Friedlander, F. A. M. Gomes, J. M. Martínez e M. Raydan. An adaptive algorithm for bound constrained quadratic minimization. *Investigación Operativa* 7, pp. 67-102, 1997.
- [2] A.R. Conn, N.I. Gould e Ph.L. Toint. A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM Journal on Numerical Analysis 28, pp. 545-572, 1991.
- [3] A. Friedlander, J. M. Martínez e S. A. Santos. A new trust-region algorithm for bound constrained minimization. *Applied Mathematics and Optimization* 30, pp.235-266, 1994.
- [4] G.H. Golub e C.F.V. Loan, *Matrix Computations*. The Johns Hopkins University Press, Baltimore, London, 1989.
- [5] N. Krejić, J. M. Martínez, M.P. Mello e E.A. Pilotta. Validation of an augmented Lagrangian algorithm with a Gauss-Newton Hessian approximation using a set of hard-spheres problems. *Computational Optimization and Applications* 16, pp.247-263, 2000

- [6] E. Kreyszig. Introductory Functional Analysis with Applications. Jonh Wiley & Sons, New York, 1978.
- [7] J. M. Martínez. BOX-QUACAN and the implementation of Augmented Lagrangian algorithms for minimization with inequality constraints. Por aparecer em *Computational and Applied Mathematics.*
- [8] J. M. Martínez e S. A. Santos. A trust region strategy for minimization on arbitrary domains. *Mathematical Programming* 68, pp.267-302, 1995.
- [9] J.M. Martínez e S. A. Santos. Métodos Computacionais de Otimização. IMPA, CNPq, 1995.
- [10] J. J. Moré, B. S. Garbow e K. E. Hillstrom. Testing unconstrained optimization software. ACM Transactions on Mathematical Software 7, pp. 17-41, 1981.