Este exemplar corresponde a redação final da tese devidamente corrigida e defendida pelo Sr. MURILO FRANCISCO TOMÉ e aprovada pela Comissão Julgadora.

Campinas, 07 de agosto de 1987.

Prof. Dr. JOSÉ MÁRIO MARTÍNEZ

Prof. Dr. JOSÉ MÁRIO MARTÍNEZ Orientador

Dissertação apresentada ao Instituto de Matemática, Estatística e Ciência da Computação - UNICAMP, como requisito parcial para a obtenção do título de "Mestre em Matemática Aplicada".

UNICAMP BIBLIOTECA CENTRAL

Ao meu pai Noel

AGRADECIMENTOS

- Ao PROF. DR. JOSÉ MARIO MARTINEZ, por sua atenção, de dicação e eficiente orientação.
- Ao PROF. DR. WALDYR ALVES RODRIGUES JR., por seu apoio e incentivo.
- Ao PROF. DR. ORLANDO FRANCISCO LOPES, pela sua part<u>i</u> cipação e colaboração.
- Aos PROFESSORES do Departamento de Matemática Aplica da e Matemática, pelo excelente relacionamen to.
- Ao Centro de Computação do Instituto de Fisica da UNICAMP, pela colaboração recebida.
- A FAPESP e CNPq, pelo custeio de meus estudos.

INDICE

INTRO	opuç,	ÃO		0
CAP,	I		PARTICULAS ELEMENTARES COMO MICRO-UNIVERSOS OU MICRO-BURACOS NEGROS	1
CAP.	II	-	O ALGORITMO DE CHARON: LIMITAÇÕES E CRÍTICA 2.1. O Sistema L	ε
CAP.	III	-	DEDUÇÃO DE UM SISTEMA EQUIVALENTE COM 5 EQUA- ÇÕES E 6 INCÓGNITAS	11
			3.2.1. O Sistema L-Equivalente	13
CAP,	IV	-	1ª EVIDÊNCIA: DUAS EQUAÇÕES NÃO SÃO SATISFEI- TAS EM R _{CHARON} 4.1. Definição	2 2 2 2 2 2

CAP. V -	2ª EVIDENCIA: K _S >K _P EM R _{CHARON} SEM RESOLVER A	-
		53
	5.1. A Mudança de Variáveis	53
	5.2. Avaliação de F ₁ em 3000 Pontos Aleatórios	
	em R _{Charon}	54
CAP, VI -	3ª EVIDÊNCIA: K _S >K _P EM R _{CHARON} SEM RESOLVER E-	
	QUAÇÃO DIFERENCIAL - SEM USAR	
	SHOOTING	63
	6.1. Teorema do Lambda	63
	6.2. Lema do R _{Minimo}	65
	6.3. Teorema (Limitação do R _o)	65
	6.4. Teorema do R _{Māximo}	66
	6.5. Teorema do R _o	69
	6.6. Avaliação de F ₁ em 16649 Pontos em R _{Charon} .	70
CAP. VII-	4ª EVIDÊNCIA: K _S >K _P SEM RESOLVER EQUAÇÃO DIFE-	
	RENCIAL - SEM USAR SHOOTING -	
	SEM AVALIAR INTEGRAL	72
CAP, VIII~	conclusão	76
APÊNDICE 1		7 7
APÊNDICE 2		80
BIBLIOGRAF:	τΔ	82

INTRODUÇÃO

Esta tese tem como objetivo a resolução de um Sistema de Equações Não Lineares (SISTEMA L) obtido por Charon [1], proveniente da formulação de uma teoria que constroi um modelo matemático para as partículas elementares chamado "MODELO LEPTÔNICO". A primeira vista, tem-se a impressão de se tratar de um sistema de equações integro-diferenciaveis. Mas, examinado mais de perto, vemos que e um sistema não linear algêbrico com 20 equações acopladas.

No capītulo I, fizemos uma pequena nota do significado físico. O capītulo II contem uma analise do algoritmo utilizado por Charon na resolução do SISTEMA L e no capītulo III, a verificação da solução obtida por Charon, bem como a dedução de um sistema equivalente. Os resultados obtidos nos capītulo II e III foram inesperados porque, a princípio, pensando em refinar a solução obtida em [1], somos levados agora, a questionar sua suposta existência.

Com efeito, os capítulos IV e V mostram duas evidên cias numéricas da incompatibilidade do sistema de equações (SIS TEMA L). Além disso, após uma profunda análise do mesmo, são apresentadas nos capítulos VI e VII, mais duas fortes evidências de que o Sistema não admite solução.

CAPÍTULO I

PARTÍCULAS ELEMENTARES COMO MICRO-UNIVERSOS OU MICRO-BURACOS NEGROS

Apos o estudo do famoso trabalho "ON THE HIPOTHESIS WHICH LIES AT THE BASES OF GEOMETRY" de B. Riemann [2], W.K. Clifford [3] publicou um trabalho em 1876, no qual, ele propõe que algumas das especulações de Riemann poderiam ser aplicadas na investigação dos fenômenos físicos. Como e bem conhecido, Clifford não teve sucesso em construir uma "teoria geometrica da matéria" e sabemos hoje, que uma das principais razões era a falta de conhecimento referente as propriedades que ele escolheu para representar o mundo.

Em 1884, o matemático americano C.H. Hinton escreveu uma série de especulações sobre a quarta-dimensão [4]. Cla ramente, ele sugeriu que o mundo físico deve ser considerado, ao menos, como uma variedade quadri-dimensional e possivelmen te com uma métrica desconhecida (i.e. não euclidiana). Ele dis se, que uma evidência concreta viria do estudo da estrutura do universo como um todo e "certamente" do estudo das partículas elementares. Seu argumento (referente as partículas elementares) era que seres humanos não tem uma percepção direta da quarta-dimensão. Entretanto, quando se iniciar a investigação sistemática das partículas elementares a situação mudarã. Nas partículas elementares, as dimensões usuais que são muito pe-

quenas ($\approx 10^{-13}$ cm) podem ser da mesma ordem de grandeza na quar ta-dimensão, a qual então, se manifestarã em fenômenos envolvendo partículas elementares.

A ideia de construir uma teoria geométrica das partículas elementares segundo Clifford, chamou a atenção de Einstein em 1919 [5]. Ele tentou construir partículas como configurações especiais de um campo métrico numa variedade lorenziana quadrimensional. Neste trabalho, Einstein tentou modificar suas famosas equações da relatividade geral e seus resultados foram muito limitados. Entrementes, físicos "aderiram a moda quântica" (devido principalmente a derrota de Einstein por Bohr [6]) em relação a interpretação da mecânica quântica e esquecem por um longo tempo, que modelos puramente geométricos de partículas elementares poderiam ser construídos e que esses modelos seriam úteis na interpretação da realidade.

E sem duvida, que os desenvolvimentos da teoria relativista do campo quântico produziu muitos resultados importantes, mas produziu também muitos problemas insoluveis referentes às partículas elementares e alguns de nos pensamos que eles são realmente profundos e merecem uma nova abordagem.

Esta nova abordagem começou principalmente com o trabalho de Bohm e Barrut [7], Roman e Haavisto [8], Salan e Strathdee [9], Caldirola [10], Recami [11], Charon [1], Nowosad [12], entre outros.

De fato, estes autores mostraram que e razoavel interpretar particulas elementares como micro-universos ou micro-buracos negros. O que e importante aqui, e que em todas essas teorias, assim como a relatividade geral de Einstein, objetos parecendo universos ou buracos negros com dimensão característica $R \le 10^{-13}$ cm existem.

O esquema geral dessas teorias se assemelham as proposições de Clifford [3], mas existem algumas diferenças importantes. Com efeito, na teoria moderna, as particulas elementares são associadas com estruturas lorenzianas quadri-dimensionais em vez de estruturas Riemannianas tri-dimensionais (parece que Hinton estava certo). Esta diferença e tão fundamental que gera uma serie de problemas em aberto.

Gostariamos de frizar, que não existe, até então, uma teoria bem formulada que use as ideias acima, mas alguns dos resultados obtidos são de fato impressionantes.

E impossível, aqui, entrar em maiores detalhes e so licitamos aos leitores interessados, consultar a literatura mencionada.

Dentre as teorias citadas acima, a de Charon [1] se destaca, porque leva a um sistema de equações não lineares acopladas (SISTEMA L) envolvendo todas as constantes fundamentais da física, c, h, m, ..., etc. Estas constantes aparecem no SISTEMA L como incógnitas e podem portanto serem calculadas e comparadas com os valores experimentais.

O nosso trabalho tem como objetivo a resolução do SISTEMA L e a comparação com a solução obtida para o sistema por Charon.

CAPĪTULO II

O ALGORITMO DE CHARON: LIMITAÇÕES E CRÍTICA

2.1. O SISTEMA L

0 sistema L(*) compreende 20 equações que devem per mitir o cálculo das 19 quantidades seguintes: $R(\tau)$, c, h, m, μ , τ_2 , ℓ_0 , T, α , β , Λ , R_0 , R, K_s , K_p , W_{0m} , $W_{0\mu}$, $W_{0\tau_2}$ e K.

Todas estas quantidades são constantes, salvo o raio $R(\tau)$ que é uma função periodica do tempo τ . O que hã de nota vel no sistema L é que ele não depende de nenhum parâmetro, ja que todos aqueles que figuram nas equações são finalmente cal culados pela solução do sistema de equações. A solução do sistema L deve permitir o calculo de 5 das principais constantes físicas fundamentais, a saber: c, h, m, μ e τ_2 .

(*) SISTEMA L

$$n = 1, 2 \qquad h = 2\pi \overline{h} \qquad K = -1, 0 \text{ ou } +1 \qquad \ell_{\nu} = \frac{\pi R}{2}$$

$$\frac{dR}{d\tau} = R^{1} \qquad \xi = \frac{4}{3} \pi \ell_{0}^{3} \frac{c}{\overline{h}} \qquad \ell = 2R \text{ arc } tg(\frac{\eta}{2})$$

$$d\Omega \eta = 4\pi R^{3} (1 + \frac{\eta^{2}}{4})^{-3} \eta^{2} d\eta \qquad \frac{v_{\eta}^{2}}{c^{2}} = \frac{R^{12}}{c^{2}} \left[\frac{R^{2}}{(2R \text{ arc } tg(\frac{\eta}{2}))^{2}} + \frac{R^{12}}{c^{2}} \right]^{-1}$$

$$L_{1}: \frac{R^{2}}{C^{2}} = \frac{1}{6} \frac{\xi^{2}}{R^{2}} \left[\alpha^{2} \left(\frac{3}{R_{0}^{2}} - \frac{1}{R^{2}} \right) - \frac{2\beta^{2}}{R_{0}^{4}} \right] + \frac{1}{3} \Lambda R^{2} + K$$

$$L_2$$
: $R_{\tau=0} = R_0$

$$L_3: R_{\tau=0}^{\prime} = 0$$

$$L_4: R_{\tau=T/2} = \Re$$

$$L_5: R'_{\tau=T/2} = 0$$

$$L_6: c^2 \ge R^{1^2} \ge 0$$

L₇:
$$\int_0^T 2\pi^2 c^2 (\alpha - \frac{\beta}{R}) d\tau + h = mc^2 T$$

L₈:
$$\int_0^T 2\pi^2 c^2 (\alpha + \frac{\beta}{R}) d\tau + 2 (n + \frac{1}{2}) h = \tau \eta c^2 T$$
, $n = 1, 2$

$$L_{9}: \int_{0}^{T} \int_{0}^{\infty} c^{2} \left(\frac{\alpha}{R^{3}} - \frac{\beta}{R^{4}}\right) \left[\left(1 - \frac{V_{\eta}^{2}}{c^{2}}\right)^{-1/2} - 1 \right] d\Omega \eta d\tau + TK_{S} W_{om} = \frac{1}{2} h$$

$$L_{10}: \int_{0}^{T} \int_{0}^{\infty} c^{2} \left(\frac{\alpha}{R^{3}} + \frac{\beta}{R^{4}}\right) \left[\left(1 - \frac{V_{\eta}^{2}}{c^{2}}\right)^{-1/2} - 1 \right] d\Omega \eta d\tau + TK_{S}W_{0\tau_{\eta}} = (n + \frac{1}{2})h,$$

$$n = 1, 2$$

$$L_{11}: \int_{0}^{T} 2\pi^{2} c^{2} (\alpha - \frac{\beta}{R}) \left[(1 - \frac{R^{\frac{2}{3}}}{c^{2}})^{-\frac{1}{2}} - 1 \right] d\tau + TK_{p}W_{0m} = \frac{1}{2} h$$

$$L_{12}: \int_{0}^{T} 2\pi^{2} c^{2} \left(\alpha + \frac{\beta}{R}\right) \left[\left(1 - \frac{R^{1^{2}}}{c^{2}}\right)^{-1/2} - 1 \right] d\tau + TK_{p}W_{o\tau n} = \left(n + \frac{1}{2}\right)h,$$

$$n = 1,2$$

$$L_{13}$$
: $K_s = \frac{1}{T} \int_0^T (1 - \frac{V_{\ell \nu}^2}{c^2})^{-\frac{1}{2}} d\tau$

$$L_{14}$$
: $K_p = \frac{1}{T} \int_0^T (1 - \frac{R^{2}}{c^2})^{-1/2} d\tau$

$$L_{15}$$
: $K_s = K_p$

$$L_{16}: \int_{0}^{T} \frac{d\tau}{R} = \frac{2\pi}{c}$$

$$L_{17}$$
: $\int_{0}^{T} \frac{d\tau}{R^3} = \frac{T}{\ell_0^3} = \frac{4\pi cT}{3\hbar \xi}$

2.2. ALCHARON - O ALGORITMO DE CHARON

Charon em [1], apresentou um algoritmo que utilizou para resolução do Sistema L, o qual transcrevemos abaixo:

- I) Dado um conjunto de seis valores numéricos, num sistema de unidades físicas dadas (CGS por exemplo), correspondendo respectivamente aos valores de seis parâmetros: c, h, m, μ , τ_2 e ξ . Chamemos P_0 o conjunto desses seis parâmetros inicialmente escolhidos.
- II) Constata-se então que, sendo dado P_O, pode-se procurar a solução exata não do sistema L, mas de um sistema L' obtido suprimindo seis das equações de L, a saber:

$$L_{11}$$
, L_{12} (n=1,2), L_{14} , L_{15} e L_{17}

Esta solução $\tilde{\rm e}$ obtida facilmente através do computador. Começa-se por calcular α pela adição de L $_7$ $\tilde{\rm a}$ L $_8$, depois β pela subtração de L $_7$ e L $_8$, servindo-se de L $_16$. L $_8$ considerada com n=1 e n=2 fornece também:

$$T = \frac{2h}{c^2 (\tau_2 - \mu)}$$

Enfim, servindo-se das condições complementares L_2 a L_6 , obtem-se K=+1 assim como as expressões de Λ e \Re em função de \Re 0. Pode-se então resolver L_1 e calcular todas as expressões integrais do sistema L, ou seja, obter numericamente todos os parâmetros que ocorrem no sistema L.

III) Sejam F_i =0 (i=1,6) as equações que o sistema L' não leva em consideração com relação ao sistema L (equação L-L'). Pode-se calcular o desvio entre a solução L e a solução L' introduzindo uma função desvio χ definida como segue:

$$\chi^2 = \frac{1}{6} \sum_{i=1}^{6} \left(\frac{F_i}{\varepsilon_i}\right)^2$$
, onde $\frac{F_i}{\varepsilon_i}$ \bar{e} adimensional

Se a solução de L' fosse também solução de L, nos teriamos naturalmente: $\chi^2=0$ e, neste caso, o conjunto P_0 dos seis parâmetros escolhidos (mais ou menos arbitrariamente) em I) acima, corresponderia a solução numérica de L.

IV) Para a procura da solução L, começaremos por fazer confiança ao computador que representa a propria natureza, ou seja, escolhamos um conjunto Po numericamente identico aos valores numericos experimentais que se obtem atraves dos seis parâmetros.

Depois, escolhamos para variação desses parâmetros, val \underline{o} res compreendidos entre o dobro e a metade do valor nat \underline{u} ral de P_o . Enfim, discretizemos os câlculos escolhendo por exemplo, cinco valores regularmente espaçados entre

 P_0 e os dois extremos dos intervalos de variação. Assim, dispomos agora de 11^6 =1771561 conjuntos P_i de parâmetros, que pode entrar de cada vez como dados iniciais no câlculo (I, II e III) efetuado acima.

Se a solução do Sistema L existe e e por outro lado estã vel e unica, encontraremos para a função desvio χ_L correspondente a esta solução (ou sejá, a este jogo P_L de parametros) um profundo poço de minimização. χ_L mede a a proximação com aquela solução que se calculou para L. $(\chi_L = 0$ para a solução exata).

Seja $\chi_{\hat{i}}$ a função desvio correspondente a qualquer um dos parâmetros $P_{\hat{i}}$. A relação

$$\frac{\min \chi_i}{\chi_i}$$
 , $(i \neq L)$

serã uma medida de profundidade do poço no fundo do qual se encontra a solução calculada em L.

V) Notaremos, que uma vez obtido um primeiro conjunto P_L correspondendo a solução de L, pode-se recomeçar o cálculo afim de precisar os valores numéricos dos seis parâmetros que figuram em P_L, dando agora por exemplo, os intervalos de variação de apenas ±20% a cada um de seus parâmetros, e discretizando novamente ao menos cinco valores <u>i</u> gualmente espaçados entre os valores de L com a precisão desejada.

O calculo converge assim para a solução exata do Sistema L.

2.3. ANÁLISE DE ALCHARON

Pela análise do algoritmo de Charon, observamos o seguinte:

- 1) Conforme o item II) acima, Charon afirma que excluindo as equações L₁₁, L₁₂ (n=1,2), L₁₄, L₁₅ e L₁₇, pode-se obter todos os parâmetros que figuram no sistema L. Mas, perguntamos: Como foi avaliado o parâmetro K_p? A resposta é que se gundo II) não se pode obter K_p porque as equações do sistema L que constam K_p são justamente as equações L₁₁, L₁₂ (n=1, 2), L₁₄ e L₁₅ que são excluidas em II). Portanto, uma dessas equações deve ser incluida no sistema L' e a função X deverá então conter 5 equações conforme item III) do algoritmo de Charon.
- 2) Mostramos no Algomur (cap. III) que a equação L₁₅ é deduzida da das outras equações do sistema L, logo não deve constar em X. Portanto, temos agora para avaliar X quatro equações das seis propostas no item III) do ALCHARON.
- 3) Para avaliação do parâmetro β, Charon utilizou a equação L₁₆ e a deixou de lado. Na dedução do ALGOMUR (cap. III), vimos que a equação L₁₆ não é dedutivel das outras e portanto deve constar em χ.

Assim, de 1), 2) e 3) concluimos que:

$$\chi^{2} = \frac{1}{5} \sum_{i=1}^{5} \left(\frac{F_{i}}{\epsilon_{i}} \right)^{2}$$

e não como foi definida por Charon.

4) Nos itens IV) e V) de seu algoritmo, Charon descreve um método de otimização para encontrar uma solução do sistema L, mas não está claro que o processo conduza a uma solução do mesmo, o que se pode esperar é que tenhamos um mínimo local da função χ , ou seja, $\min \|F(\chi)\|$, onde F é constituida pelas F_i .

Portanto, pelas observações 1) à 4) acima, concluimos que o algoritmo de Charon é muito duvidoso no sentido de que o mesmo encontre uma solução do Sistema L.

CAPĪTULO III

DEDUÇÃO DE UM SISTEMA EQUIVALENTE COM 5 EQUAÇÕES E 6 INCÓGNITAS

3.1. A SOLUÇÃO DE CHARON NÃO É EXATAMENTE UMA SOLUÇÃO

Pelo processo descrito no capitulo anterior, Charon obtem em [1] a seguinte "solução":

SOLUÇÃO NUMERICA DO SISTEMA L

SIMBOLO	DEFINIÇÃO	ces	UNIDADES L
С	Velocidade da luz	3.1010	18,846
h	Constante de Planck	6,61.10 ⁻²⁷	3617
^m o	Massa "propria" do eletron	9,11.10-28	0,0062
μ _o	Massa "propria" do muon	1,884.]0 ⁻²⁵	1,28
τ _ο n=2	Massa "propria" do Lépton Tau	3,183.10 ⁻²⁴	21,62
Lo	Comprimento elementar	1,76.10-14	2,256
T	Periodo de Pulsação	4,9.70-24	1
α	Coeficiente de irradiação negra	-1,472.10 ⁻²⁵	-1
β	Coeficiente de radiação negra	-1,7.10 ⁻³⁹	-1,48
Λ	Constante Leptônica	-1,282.10 ²⁷	-0,078
Ro	Raio Minimo	7,8.10-15	7
R	Raio Māximo	4,8.10-14	6,154
Ks	Coeficiente Relativista do Spin	1,36	1,36

K _p	Coeficiente Relativista de Pulso	1,36	1,36
Woe	Energia "no repouso" do neutrino v _l	0.824,10-3	2209
Woh	Energia "no repouso" do neutrino v _µ	2,615.70-3	7010
Wot	Energia "no repouso" do neutrino $v_{_{ m T}}$	3,61.10-3	9677
К	Sinal de curvatura do espaço Leptônico	+1	+1
Ton n=3	Massa do "próximo" lepton pesado	6,184.10-24	42

Observamos que apenas as constantes fundamentais da física: c, h, m_0 , μ_0 e τ_0 tem significado fora da teoria de Charon. Segundo Charon, o fato de ter obtido valores para estas constantes proximos dos valores empíricos das mesmas, ava liza sua teoria.

No nosso trabalho tentamos verificar se a "solução" de Charon efetivamente satisfazia as equações L_1 à L_{17} e chegamos aos seguintes resultados:

$$L_3: \left(\frac{R'^2}{c^2}\right)_{\tau=0} = -0.975.10^{-2}$$

$$L_5: \left(\frac{R^{r^2}}{c^2}\right)_{\tau=T/2} = -0,1788.10^{-4}$$

Agora, as equações L_3 e L_5 são algébricas de mane<u>i</u> ra que o erro nas mesmas não pode ser atribuído aos processos numéricos de integração. Com efeito, a equação L_3 afirma que:

$$\frac{\xi^{2}}{3R_{0}^{2}} \left[\frac{\alpha^{2}}{R_{0}^{2}} - \frac{\beta^{2}}{R_{0}^{4}} \right] + \frac{1}{3} \Lambda R_{0}^{2} + K = 0 ,$$

no entanto:

$$-0.975.10^{-2} \neq 0$$

Enquanto para a L₅:

$$\frac{\xi^{2}}{6R^{2}}\left[\alpha^{2}\left(\frac{3}{R_{0}^{2}}-\frac{1}{R^{2}}\right)-\frac{2\beta^{2}}{R_{0}^{4}}\right]+\frac{1}{3}\Lambda R^{2}+K=0,$$

Mas,

$$-0,1788.10^{-4} \neq 0$$

Portanto, o título deste paragrafo esta justificado.

Isso não desqualifica a teoria de Charon. Com efeito, as equações L_3 e L_5 envolvem constantes "sem significado fora da teoria", como: α , β , Λ , ξ , R_0 e R. Seria possível, em principio, que o sistema de equações fosse satisfeito por outro conjunto de constantes, sempre que as constantes fundamen tais da física assumissem seus valores verdadeiros (empíricos). O resto do nosso trabalho se destina a examinar essa hipôtese.

3.2. O SISTEMA TEM 5 EQUAÇÕES E 6 INCÔGNITAS

No capítulo 2, vimos que, conforme Charon, o sistema se reduz a um sistema com 6 equações e 6 incognitas. Na nos sa crítica ao processo de otimização por ele utilizado vimos que uma equação e esquecida, de maneira que o sistema tem na realidade mais uma equação. Mas agora veremos que duas das equações do sistema se deduzem das outras, de maneira que, na realidade, o sistema tem 5 equações e 6 incognitas.

3.2.1. O SISTEMA L-EQUIVALENTE

Para resolução do sistema L, vamos trabalhar com um

sistema de equações obtido do mesmo, como segue:

$$LE_{1} = L_{1}: \frac{R^{\frac{2}{3}}}{c^{2}} = \frac{\xi^{2}}{6R^{2}} \left[\alpha^{2} \left(\frac{3}{R_{0}^{2}} - \frac{1}{R^{2}} \right) - \frac{2\beta^{2}}{R_{0}^{4}} \right] + \frac{1}{3} \Lambda R^{2} + K$$

$$LE_2 = L_2$$
: $R_{\tau=0} = R_0$

$$LE_3 = L_3$$
: $R_{\tau}' = 0 = 0$

$$LE_4 = L_4$$
: $R_{\tau} = T/2 = \Omega$

$$LE_5 = L_5$$
: $R_{\tau}^{\dagger} = T/2 = 0$

$$LE_6 = L_6$$
: $c^2 \ge R^{1/2} \ge 0$

A equação L_7 somada com a equação L_8 (n=1) nos fornece:

$$LE_7$$
: $4\pi^2 c^2 \alpha T + 4h = (m + \mu) c^2 T$, $\tau_1 = \mu$

A equação L_8 (n=2) somada com a equação - L_7 e util \underline{i} zando a equação L_{16} vem:

$$LE_8$$
: $8\pi^3 c\beta + 2h = (\mu - m) c^2 T$

Subtraindo L_8 (n=1 e n=2) temos:

LE₉:
$$c^2 7 (\tau_2 - \mu) = 2h$$
 ; $\tau_1 = \mu$, $\tau_2 = \tau_0$

Simplificando a equação L_{q} obtemos:

$$LE_{10}: \int_{0}^{T} \int_{0}^{\infty} 4\pi c^{2} \left(\alpha - \frac{\beta}{R}\right) \left[\left(1 - \frac{V_{\eta}^{2} - \frac{1}{2}}{c^{2}}\right)^{-1} \right] \left(1 + \frac{\eta^{2}}{4}\right]^{-3} \eta^{2} d_{\eta} d_{\tau} + TK_{s} W_{om} = \frac{1}{2} h$$

Analogamente, simplificando a equação L_{10} vem:

$$L_{10}: \int_{0}^{T} \int_{0}^{\infty} 4\pi c^{2} (\alpha + \frac{\beta}{R}) \left[(1 - \frac{V_{n}^{2}}{c^{2}})^{-1/2} - 1 \right] (1 + \frac{\eta^{2}}{4})^{-3} \eta^{2} d\eta d\tau + TK_{s} W_{otn} = (n + \frac{1}{2}) h$$

Fazendo n=1 na equação acima temos:

$$LE_{11}: \int_{0}^{T} \int_{0}^{\infty} 4\pi c^{2} \left(\alpha + \frac{\beta}{R}\right) \left[1 - \frac{V_{n}^{2} - \frac{1}{2}}{c^{2}}\right] - 1 \left[1 + \frac{\eta^{2}}{4}\right] \eta^{2} d\eta d\tau +$$

$$+ TK_{s} W_{0\mu} = \frac{3}{2} h \qquad ; \qquad W_{0\tau_{1}} = W_{0\mu}$$

Fazendo n=1 e n=2 na equação L_{10} e subtraindo obtemos:

$$LE_{12}$$
: $TK_s (W_{OT} - W_{OU}) = h$; $W_{OT2} = W_{OT}$

A equação L_{]]} nos dã:

$$LE_{13}: \int_{0}^{T} 2\pi^{2}c^{2}(\alpha - \frac{\beta}{R}) \left[\left(1 - \frac{R^{+2}}{c^{2}}\right)^{-1/2} - 1 \right] d\tau + TK_{p}W_{om} = \frac{1}{2}h$$

A equação L₁₂ com n=1 nos fornece:

$$LE_{14}: \int_{0}^{T} 2\pi^{2}c^{2}(\alpha + \frac{\beta}{R}) \left[(1 - \frac{R^{\frac{2}{2}}}{c^{2}})^{-\frac{1}{2}} - 1 \right] d\tau + TK_{p}W_{0\mu} = \frac{3}{2}h$$

Fazendo n=1 e n=2 na equação L_{12} e subtraindo, obtemos:

$$LE_{15}$$
: $TK_p(W_{o\tau} - W_{o\mu}) = h$

As equações L_{13} até L_{17} nos dão:

LE₁₆:
$$K_s = \frac{1}{T} \int_0^T (1 - \frac{V_{\ell v}^2}{c^2})^{-1/2} d\tau$$

LE₁₇:
$$K_p = \frac{1}{T} \int_0^T (1 - \frac{R^{\frac{1}{2}}}{c^2})^{-\frac{1}{2}} d\tau$$

$$LE_{18}$$
: $K_s = K_p$

LE₁₉:
$$\int_0^T \frac{d\tau}{R} = \frac{2\pi}{c}$$

$$LE_{20}: \int_{0}^{T} \frac{d\tau}{R^{3}} = \frac{T}{\ell_{0}^{3}} = \frac{4\pi cT}{3 \, \text{h} \, \xi} = \frac{8\pi^{2} \, cT}{3 \, \text{h} \, \xi}$$

Portanto, temos o sistema L-Equivalente que $\tilde{\mathrm{e}}$ descrito abaixo:

SISTEMA L-EQUIVALENTE

$$K=-1$$
, 0 ou +1; $\ell v = \pi \frac{R}{2}$

$$\frac{dR}{d\tau} = R^{T}; \qquad \xi = \frac{4}{3} \pi \ell_{0}^{3} \frac{c}{h} ; \qquad \overline{h} = \frac{h}{2\pi} ; \qquad V_{\eta}^{2} = R^{T^{2}} \left[\frac{1}{4 arc^{2} tg(\eta/2)} + \frac{R^{T^{2}}}{c^{2}} \right]^{-1}$$

$$LE_{1}: \frac{R^{1^{2}}}{c^{2}} = \frac{\xi^{2}}{6R^{2}} \left[\alpha^{2} \left(\frac{3}{R_{0}^{2}} - \frac{1}{R^{2}} \right) - \frac{2\beta^{2}}{R_{0}^{4}} \right] + \frac{1}{3} \Lambda R^{2} + K$$

$$LE_2$$
: $R_{\tau=0} = R_0$

$$LE_3: R_{\tau=0}^{1} = 0$$

LE₄:
$$R_{\tau=T/2} = R$$

$$LE_5: R_{\tau=T/2}' = 0$$

$$LE_{6}: c^{2} \ge R^{1/2} \ge 0$$

LE₇:
$$4\pi^2 c^2 \alpha T + 4h = (m+\mu) c^2 T$$

$$LE_8$$
: $8\pi^3 c\beta + 2h = (\mu - m) c^2 T$

LE₉:
$$T = \frac{2h}{c^2(\tau_2 - \mu)}$$

$$LE_{10}: \int_{0}^{T} \int_{0}^{\infty} 4\pi c^{2} (\alpha - \frac{\beta}{R}) \left[(1 - \frac{V_{n}^{2}}{c^{2}})^{-1/2} - 1 \right] (1 + \frac{\eta^{2}}{4})^{-3} \eta^{2} d\eta d\tau + TK_{s} W_{0m} = \frac{1}{2} h$$

$$LE_{11}: \int_{0}^{T} \int_{0}^{\infty} 4\pi c^{2} \left(\alpha + \frac{\beta}{R}\right) \left[\left(1 - \frac{v_{\eta}^{2}}{c^{2}}\right)^{-1} \right] \left(1 + \frac{\eta^{2}}{4}\right)^{-3} \eta^{2} d\eta d\tau + TK_{S} W_{0\mu} = \frac{3}{2} h$$

LE₁₂:
$$TK_s (W_{o\tau} - W_{ou}) = h$$

LE₁₃:
$$\int_{0}^{T} 2\pi^{2} c^{2} (\alpha - \frac{\beta}{R}) \left[(1 - \frac{R^{2}}{c^{2}})^{-1/2} - 1 \right] d\tau + TK_{p} W_{om} = \frac{1}{2} h$$

$$LE_{14}: \int_{0}^{T} 2\pi^{2}c^{2}(\alpha + \frac{\beta}{R}) \left[(1 - \frac{R^{\frac{2}{2}}}{c^{2}})^{-1/2} - 1 \right] d\tau + TK_{p}W_{0\mu} = \frac{3}{2}h$$

LE₁₅:
$$TK_p(W_{o\tau} \sim W_{o\mu}) = h$$

LE₁₆:
$$K_s = \frac{1}{T} \int_0^T (1 - \frac{v_{\ell v}^2}{c^2})^{-1/2} d\tau$$

LE₁₇:
$$K_p = \frac{1}{T} \int_0^T (1 - \frac{R^{\frac{2}{3}}}{c^2})^{-\frac{1}{2}} d\tau$$

$$LE_{18}$$
: $K_s = K_p$

LE₁₉:
$$\int_0^T \frac{d\tau}{R} = \frac{2\pi}{c}$$

LE₂₀:
$$\int_{0}^{T} \frac{d\tau}{R^{3}} = \frac{T}{\ell_{0}^{3}} = \frac{8\pi^{2} cT}{3h \xi}$$

3.2.2. ALGOMUR

Vamos construir agora, um algoritmo que avalia uma função $F\colon \mathbb{R}^6 \to \mathbb{R}^5$ e para isso ele calcula todas as constantes do sistema L, como segue:

Passo 1: Seja
$$x \in \mathbb{R}^6$$
. Coloquemos $x_1 = c$, $x_2 = h$, $x_3 = m$, $x_4 = \mu$, $x_5 = \tau_2$ e $x_6 = \xi$

Passo 2: Com a equação LE_q , calculamos T e obtemos:

$$T = \frac{2x_2}{x_1^2(x_5 - x_6)}$$

Passo 3: Atraves da equação LE $_7$ avaliamos α :

$$\alpha = (x_3 + x_4)_{/4\pi^2} - \frac{x_2}{\pi^2 x_1^2 T}$$

Passo 4: A equação LE_{8} nos dã:

$$\beta = \frac{x_1^2 T(x_4 - x_3) - 2x_2}{8 \pi^3 x_1}$$

Passo 5: A equação LE₆ nos fornece:

$$K = +1$$

Passo 6: Resolve-se o problema de equações diferenciais provenientes das equações LE_1 à LE_5 e obtem-se as constantes R_0 , Λ , R e também $R(\tau)$

Passo 7: Com a equação LE_{16} , calculamos K_s :

$$K_{s} = \frac{1}{T} \int_{0}^{T} (1 - \frac{v_{\ell v}^{2}}{x_{1}^{2}})^{-1/2} d\tau, \text{ onde } \frac{v_{\ell v}^{2}}{x_{1}^{2}} = \frac{R^{\frac{2}{3}}}{x_{1}^{2}} \left[\frac{1}{4 \text{arc}^{2} \text{tg}(\frac{\pi R}{4})} + \frac{R^{\frac{2}{3}}}{x_{1}^{2}} \right]^{-1}$$

Passo 8: A equação LE₁₀ nos dã:

$$W_{om} = \frac{x_2}{2TK_S} - \frac{1}{TK_S} \int_0^T \int_0^\infty 4\pi x_1^2 (\alpha - \frac{\beta}{R}) \left[(1 - \frac{V_1^2}{x_1^2})^{-1/2} - 1 \right] (1 + \frac{\eta^2}{4})^{-3} \eta^2 d\eta d\tau$$

Passo 9: Com a equação LE_{11} , calculamos W_{01} :

$$W_{0\mu} = \frac{3x_2}{2TK_S} - \frac{1}{TK_S} \int_0^T \int_0^\infty 4\pi x_1^2 (\alpha + \frac{\beta}{R}) \left[(1 - \frac{V_1^2}{x_1^2})^{-1/2} - 1 \right] (1 + \frac{\eta^2}{4})^{-3} \eta^2 d\eta d\tau$$

Passo 10: Avaliamos W_{OT} usando LE_{12} e obtemos:

$$W_{OT} = W_{O\mu} + \frac{x_2}{TK_s}$$

Passo 77: Com a equação LE_{15} , calculamos K_{p} :

$$K_{p} = \frac{x_{2}}{T(W_{o\tau} - W_{o\mu})}$$

Passo 12: Restam agora, seis equações para serem satisfeitas, a saber: LE_{13} , LE_{14} , LE_{17} , LE_{18} , LE_{19} e LE_{20} . Mas, como mostram os passos 7 à 11, \forall x \in \mathbb{R}^6 teremos K_s = K_p , logo, a equação LE_{18} também está satisfeita. Portanto, definimos $F: \mathbb{R}^6 \to \mathbb{R}^5$, cujas componentes são:

$$LE_{17} = 0 = F_1 = K_p - \frac{1}{T} \int_0^T (1 - \frac{R'^2}{x_1^2})^{-1/2} d\tau$$

$$LE_{19} = 0 = F_2 = \int_0^T \frac{d\tau}{R} - \frac{2\pi}{x_1} = LE_{19} = 0$$

$$LE_{20} = 0 = F_3 = \int_0^T \frac{d\tau}{R^3} - \frac{T}{\ell_0^3} = \int_0^T \frac{d\tau}{R^3} - \frac{8\pi^2 x_1 T}{3x_2 x_6}$$

$$LE_{13} = 0 = F_4 = \int_0^T 2\pi^2 x_1^2 (\alpha - \frac{\beta}{R}) \left[(1 - \frac{R^{\frac{2}{3}}}{x_1^2})^{-1/2} - 1 \right] d\tau + TK_p W_{0m} - \frac{x_2}{2}$$

$$LE_{14} = 0 = F_{5} = \int_{0}^{T} 2\pi^{2} x_{1}^{2} (\alpha + \frac{\beta}{R}) (1 - \frac{R^{\frac{1}{2}}}{x_{1}^{2}})^{-1} d\tau + TK_{p}W_{0\mu} - \frac{3x_{2}}{2}$$

Portanto, $x_0 \in \mathbb{R}^6$ \tilde{e} solução do sistema L-equivalente (logo do sistema L) se $F(x_0) = 0$

Conforme mostramos no ALGOMUR, incluindo a equação L_{16} que Charon omitiu em seu algoritmo de otimização, o sistema L pode ser representado por um sistema com 19 equações a saber: sem a equação L_{15} . Através desse sistema vamos tentar obter uma possível solução pois sua resolução reduz a um sistema não linear com 5 equações e 6 incognitas, onde teremos:

- i) Solução única, ou
- ii) Infinitas soluções, ou
- iii) Então, o sistema não admite solução.

CAPĪTULO IV

1ª EVIDÊNCIA: DUAS EQUAÇÕES NÃO SÃO SATISFEITAS EM R_{CHARON}

Neste capitulo, vamos procurar um ponto X* ∈ R_{Charon}, que esteja proximo de uma solução do Sistema L-equivalente, para que possamos aplicar um metodo numérico que convirja para uma solução do mesmo.

4.1. DEFINIÇÃO: $R_{CHARON} = \{X \in \mathbb{R}^6 / 0.9c \le x_1 \le 1.1c, 0.9h \le x_2 \le 1.1h, 0.9m_0 \le x_3 \le 1.1m_0, 0.9\mu_0 \le x_4 \le 1.1\mu_0, 0.9\tau_0 \le x_5 \le 1.1\tau_0$ e $0.9\xi_0 \le x_6 \le 1.1\xi_0\}$; onde $\xi_0 = \frac{8\pi^2 \ell_0^3 c}{3h}$ e c, h, m_0 , μ_0 , τ_0 e ξ_0 são os valores empíricos das constantes físicas nas unidades L.

4.2. AVALIAÇÃO EM 15000 PONTOS EM R_{CHARON}

Foram gerados 15000 pontos aleatórios em $R_{\rm Charon}$, onde a função F definida no ALGOMUR foi avaliada. As integrais, foram resolvidas numericamente usando o método de Simpson [18] e formulamos um método de SHOOTING [ver Apêndicel] para resolver o problema de equações diferenciais provenientes das equações LE_1 a LE_5.

Fizemos grāficos para estudar o comportamento das \underline{e} quações (F_i i=1,5) na região citada, conforme mostram as figuras 1 \bar{a} 29 a seguir.

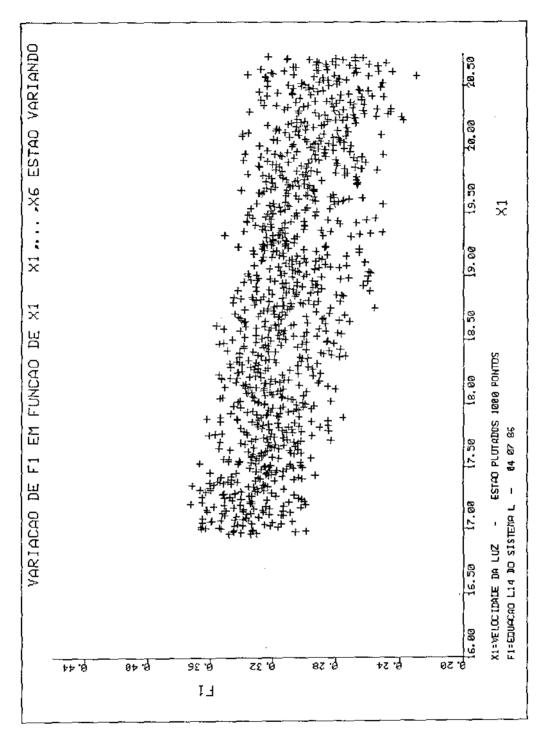


Fig. 1

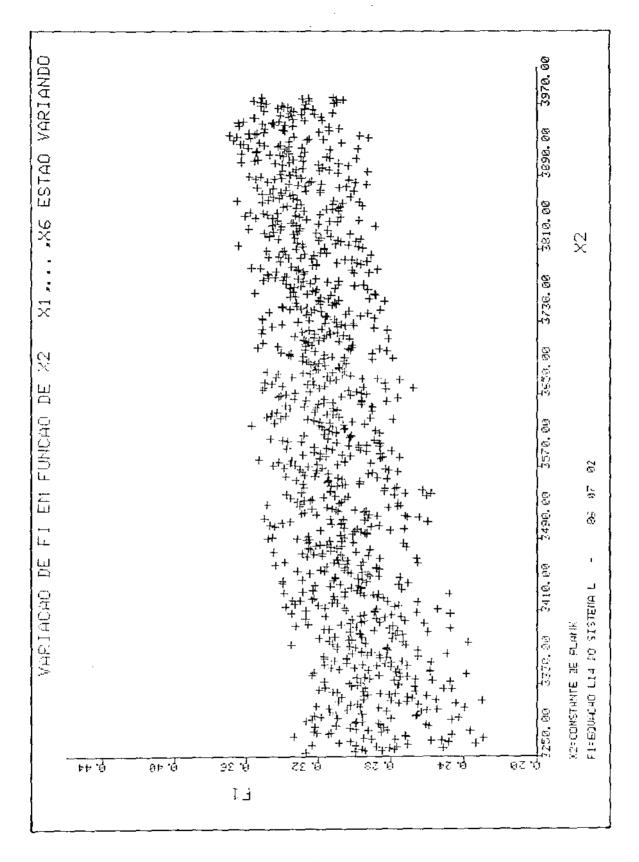


Fig. 2

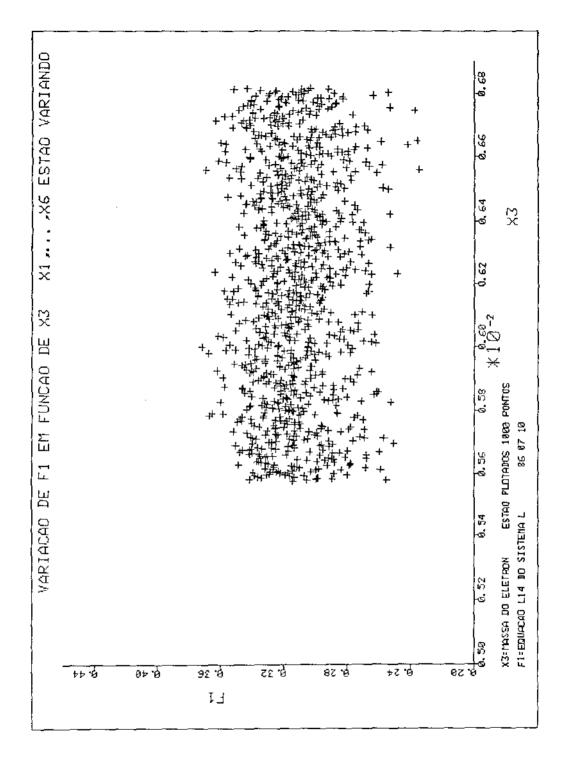


Fig. 3

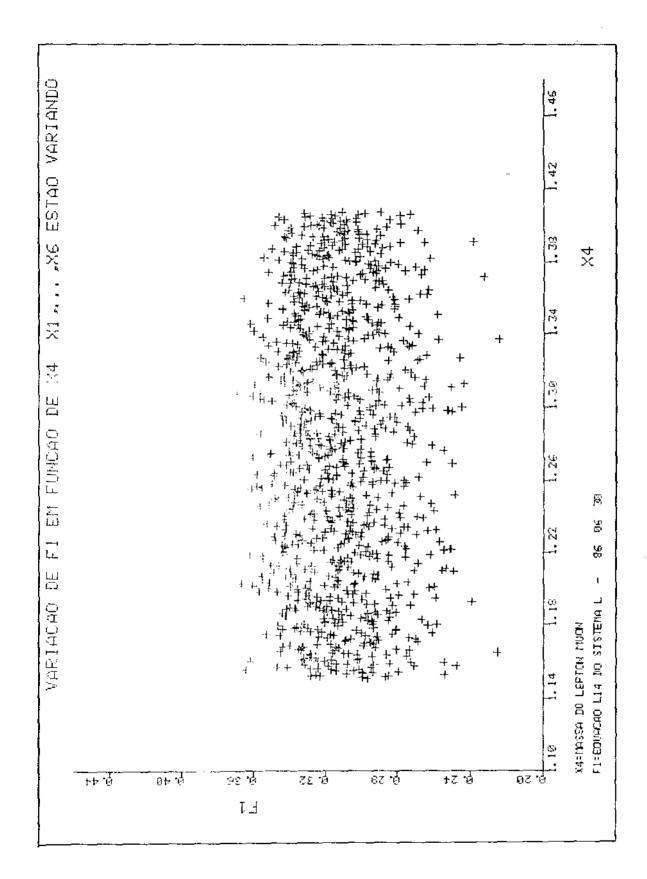


Fig. 4

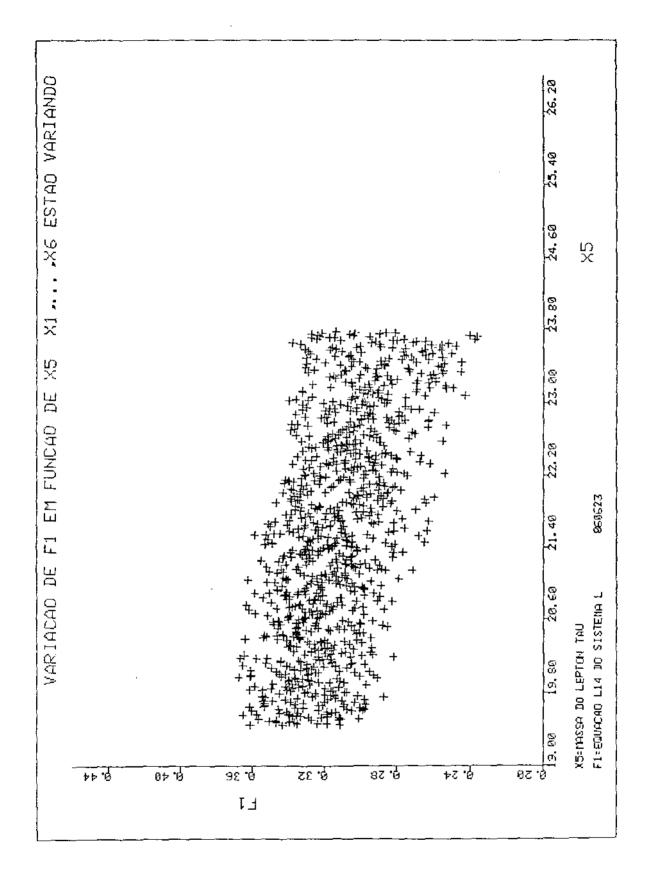


Fig. 5

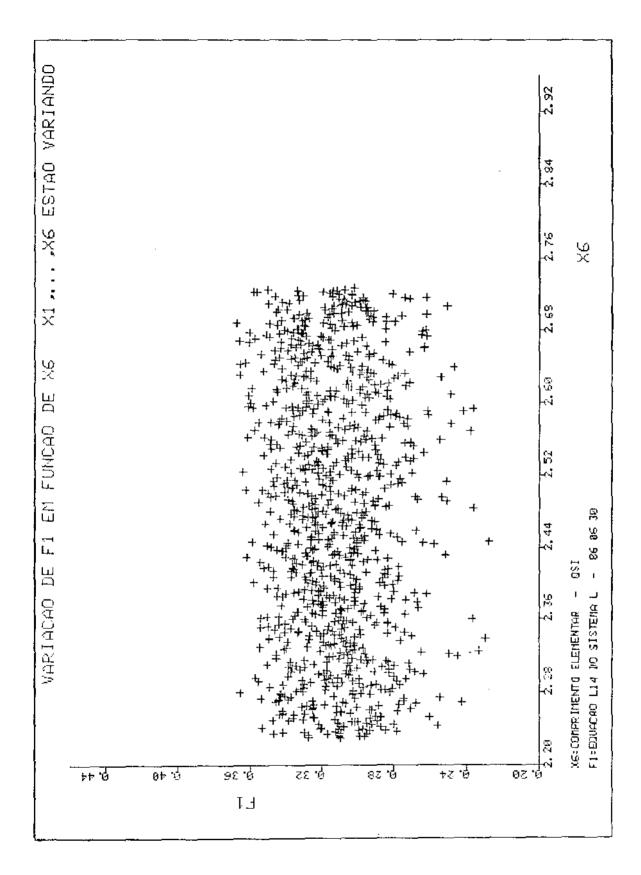


Fig. 6

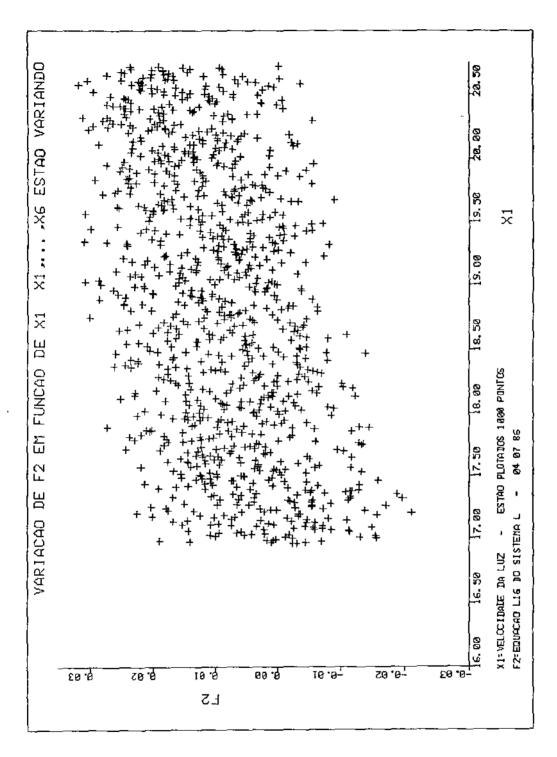
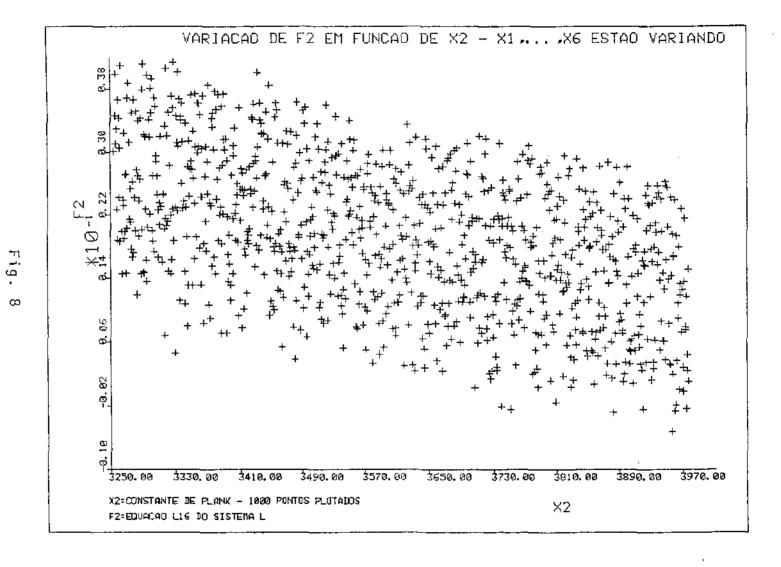


Fig. 7



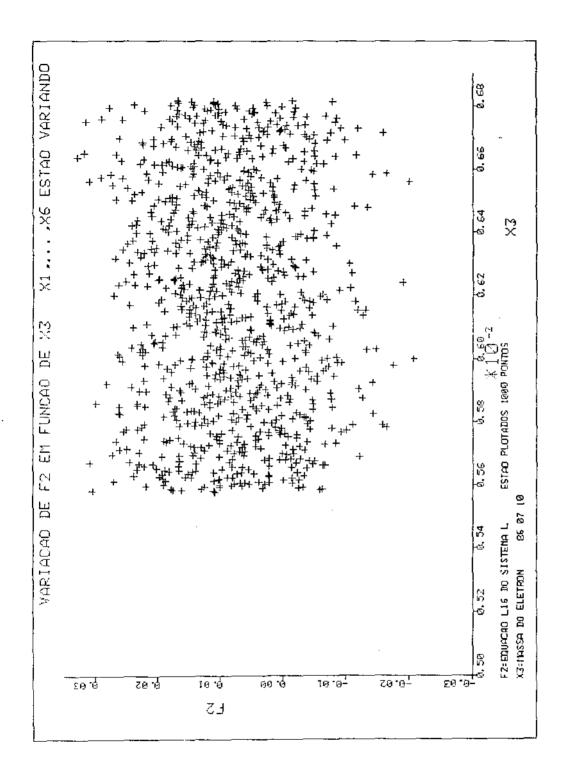


Fig. 9

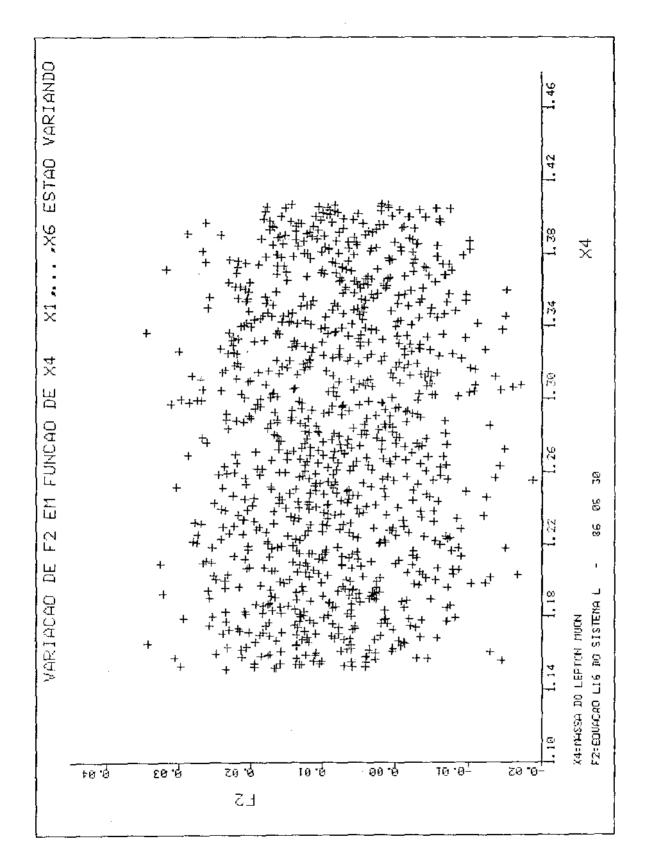


Fig. 10

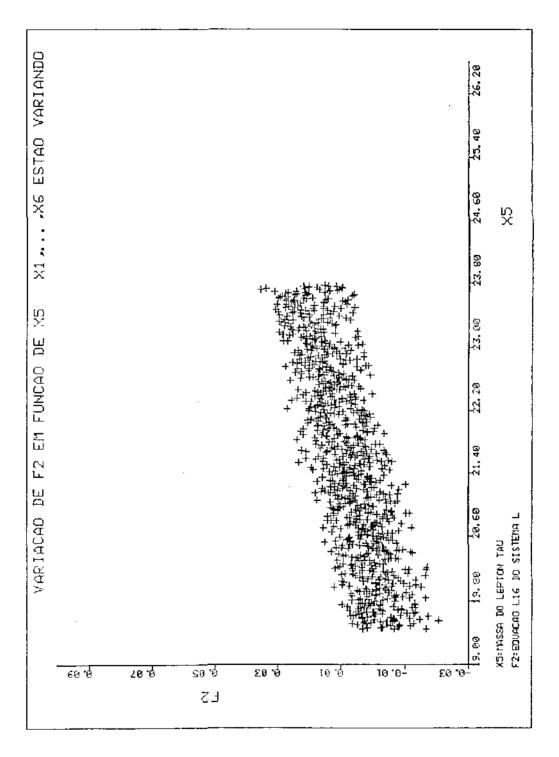


Fig. 11

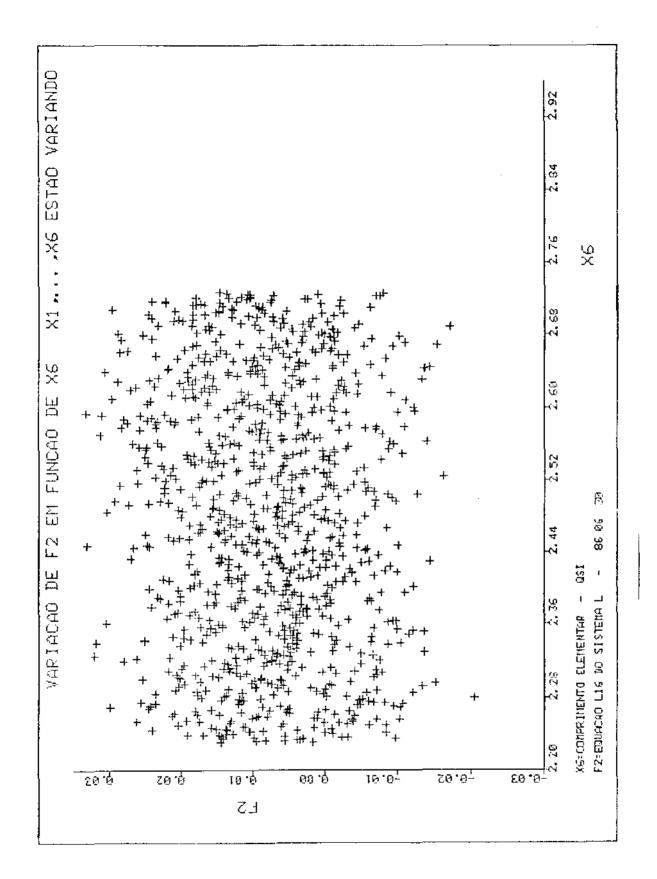


Fig. 12

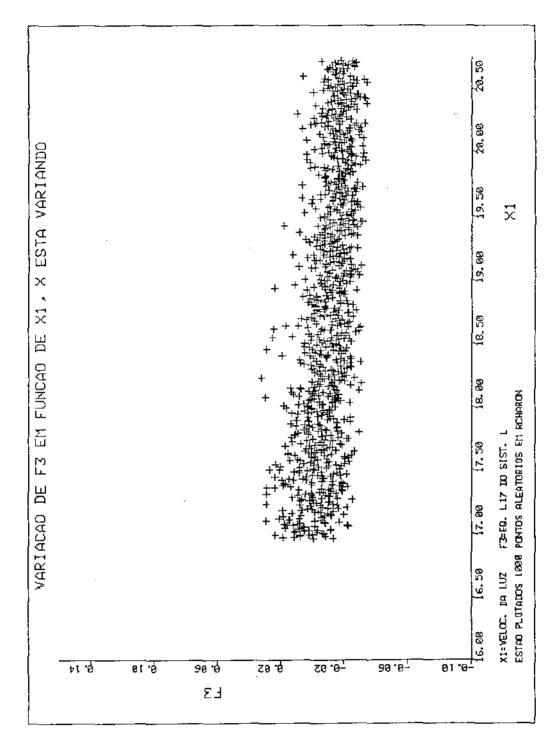


Fig. 13

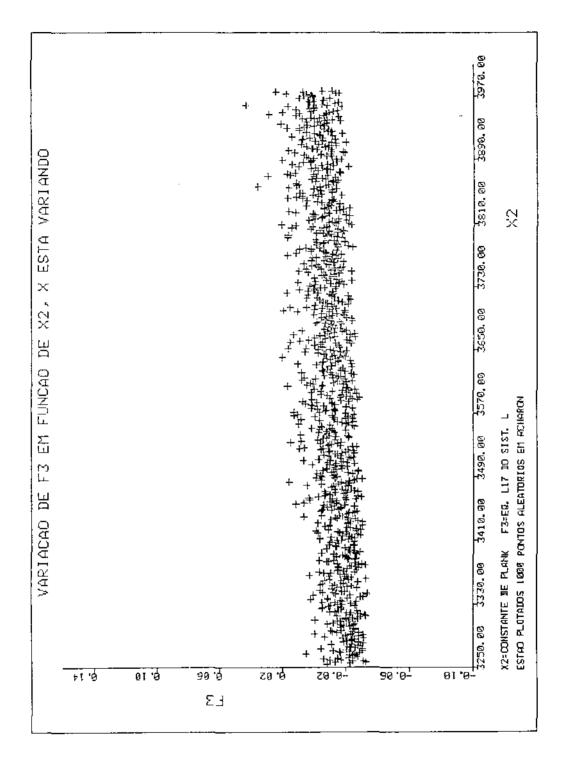
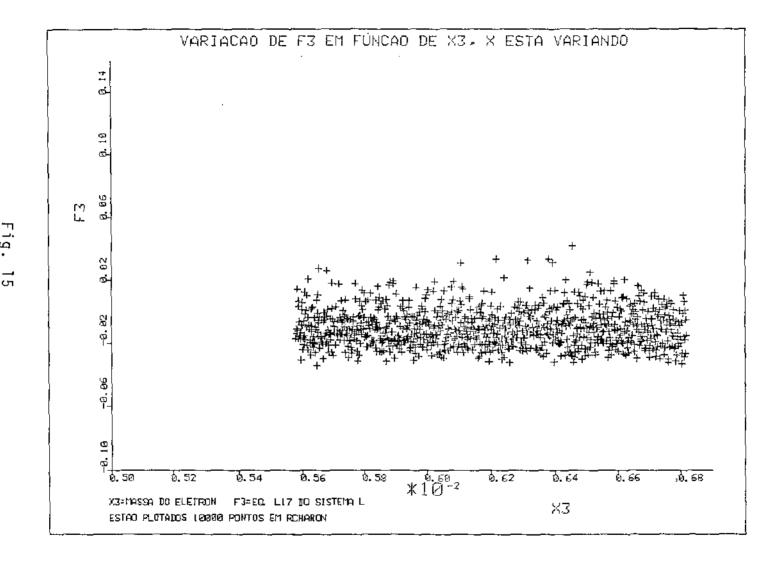
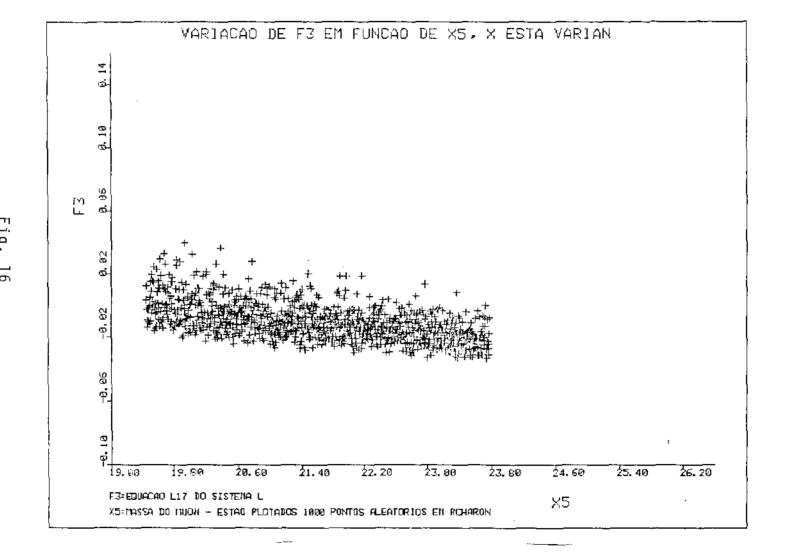


Fig. 14





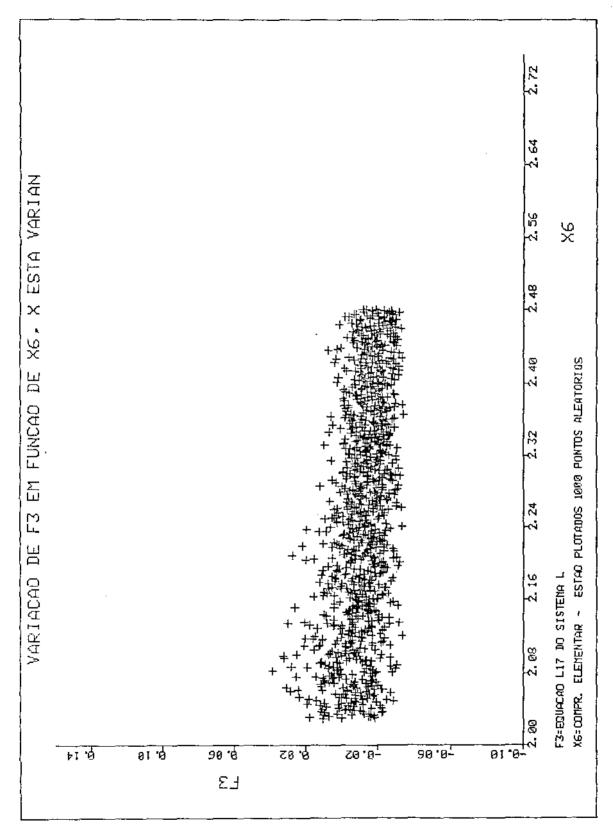


Fig. 17

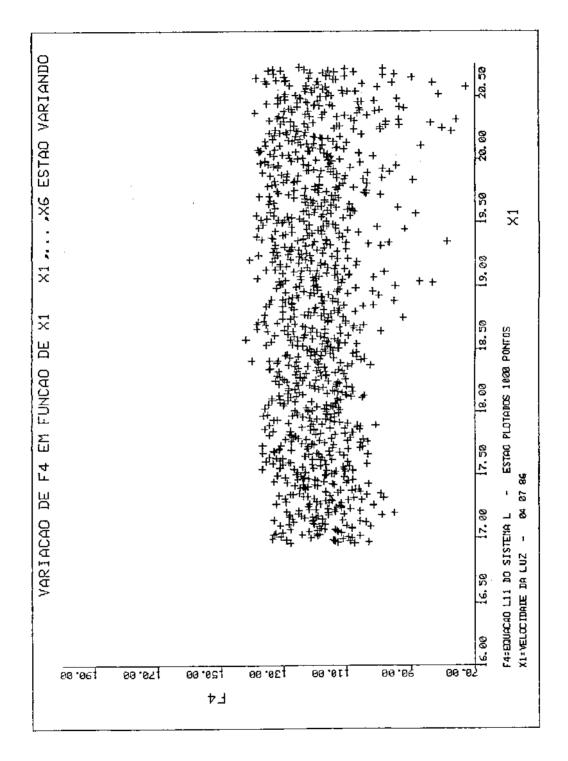


Fig. 18

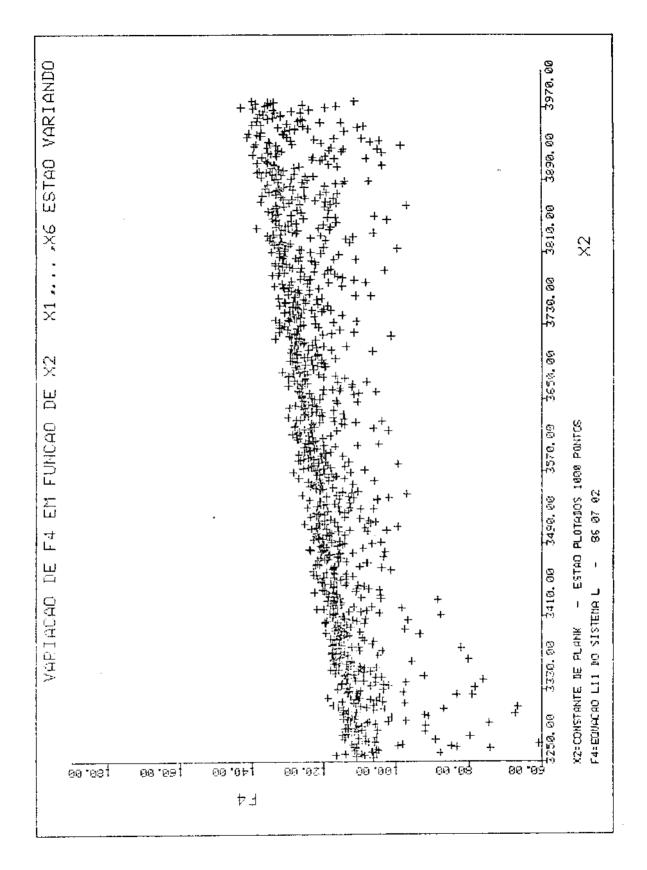


Fig. 19

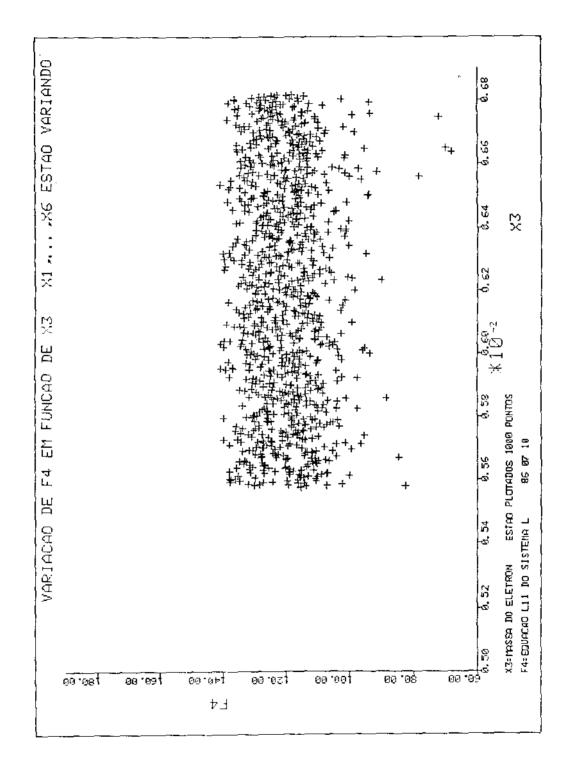
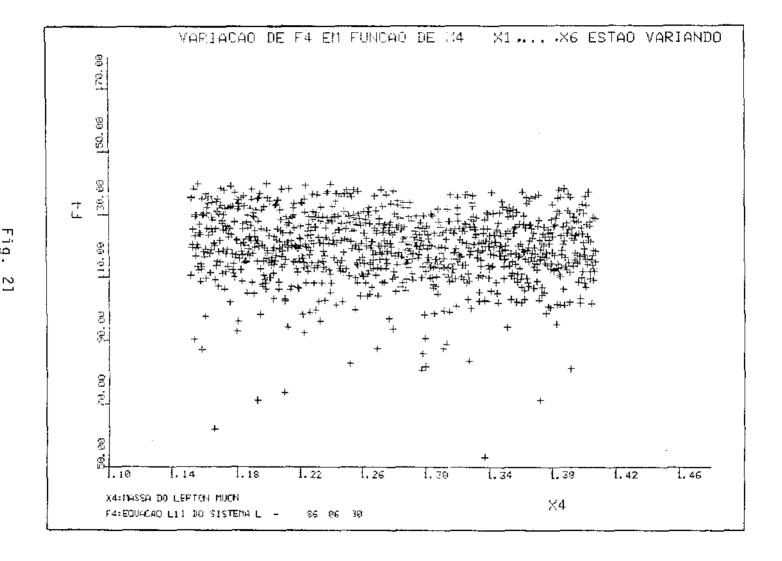


Fig. 20



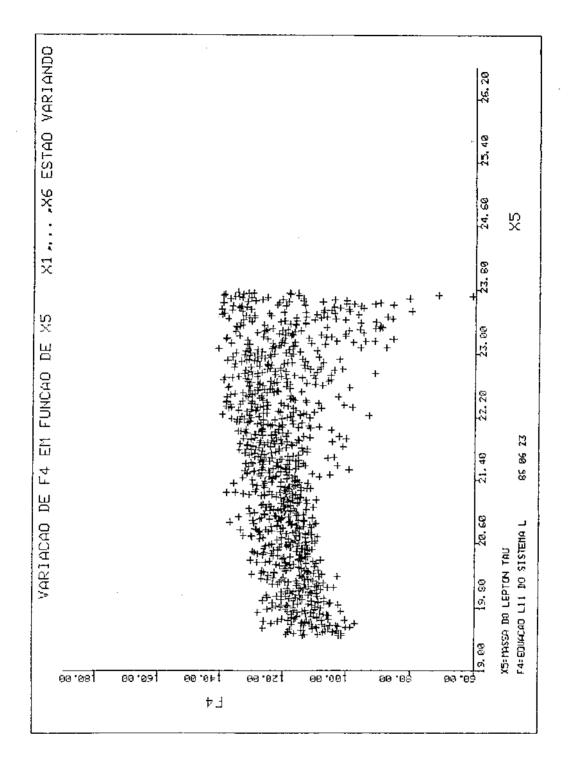


Fig. 22

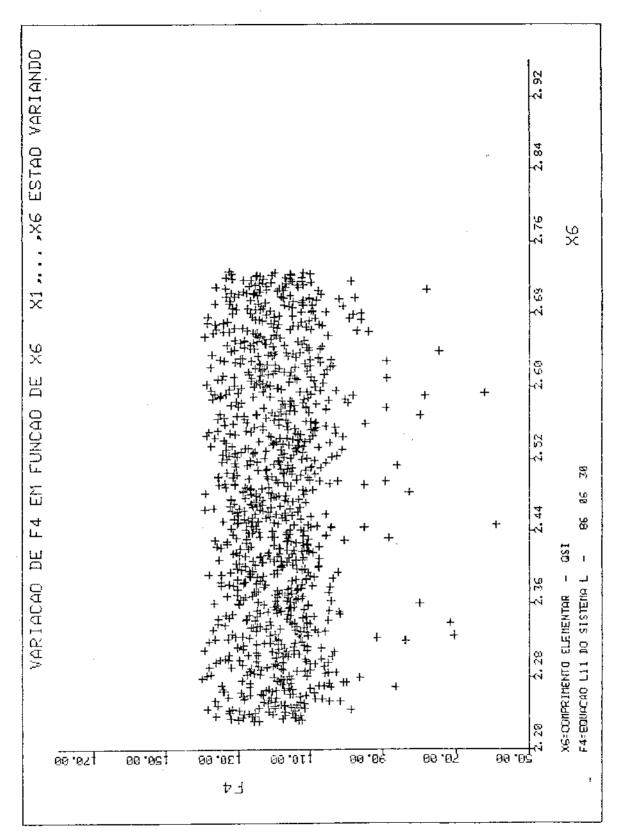
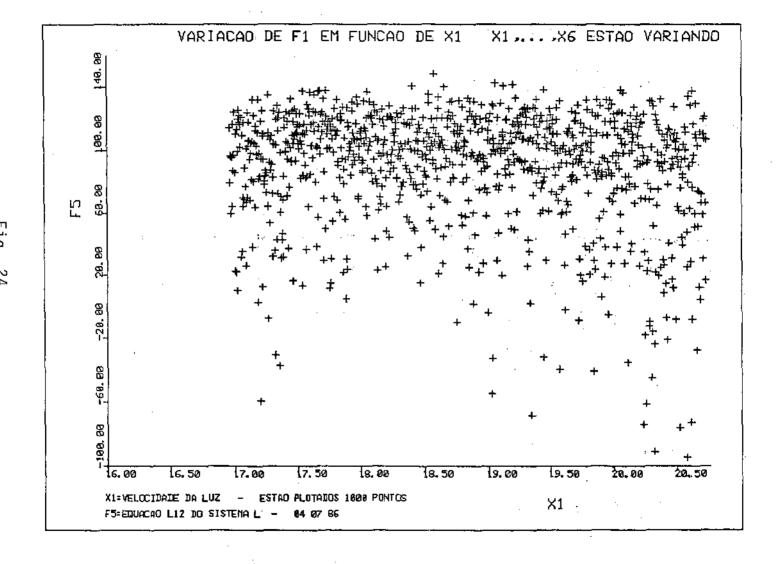


Fig. 23



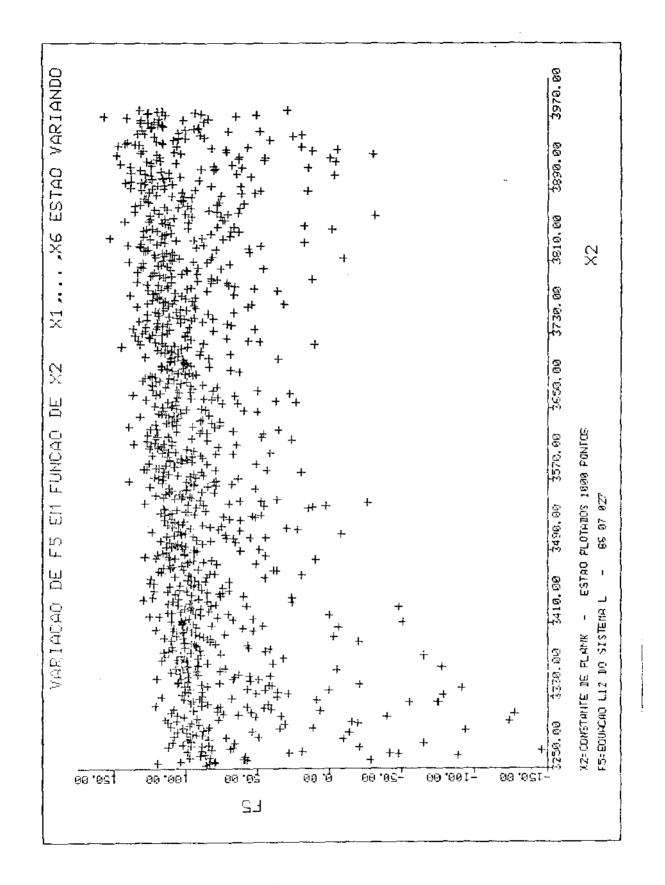
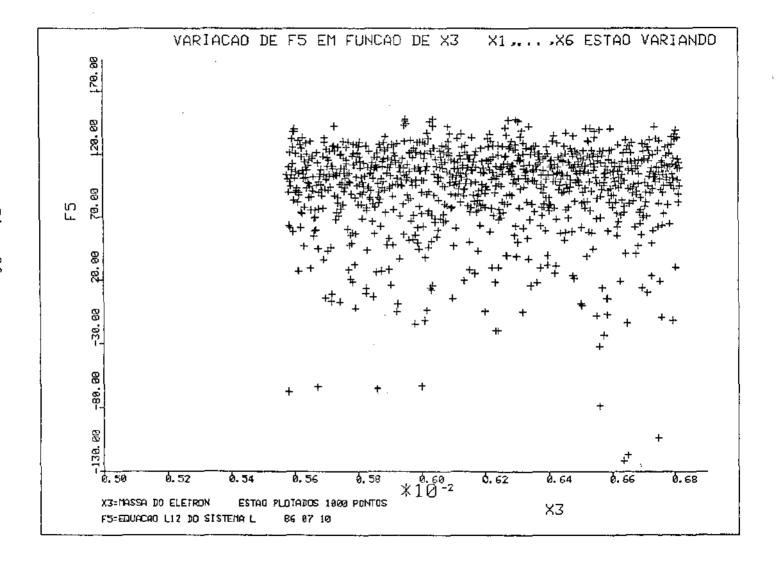


Fig. 25

- 47 -



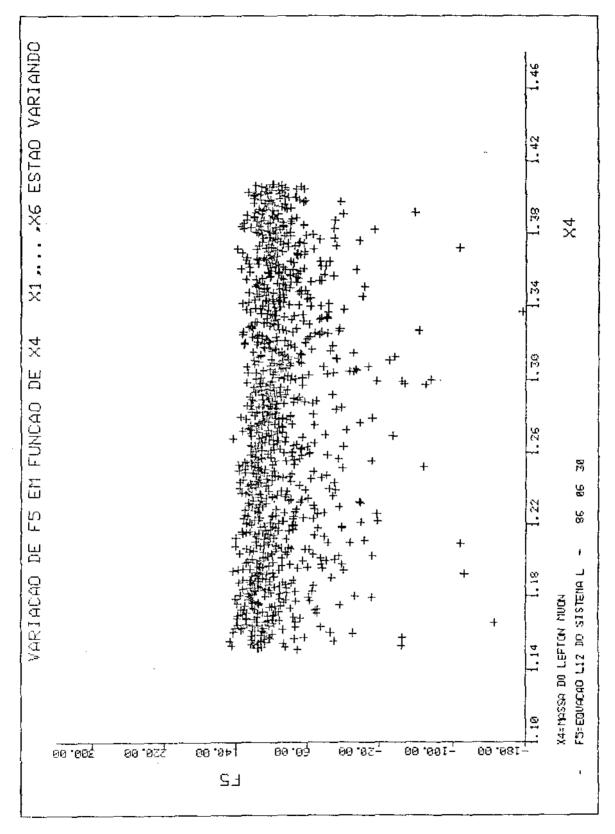


Fig. 27

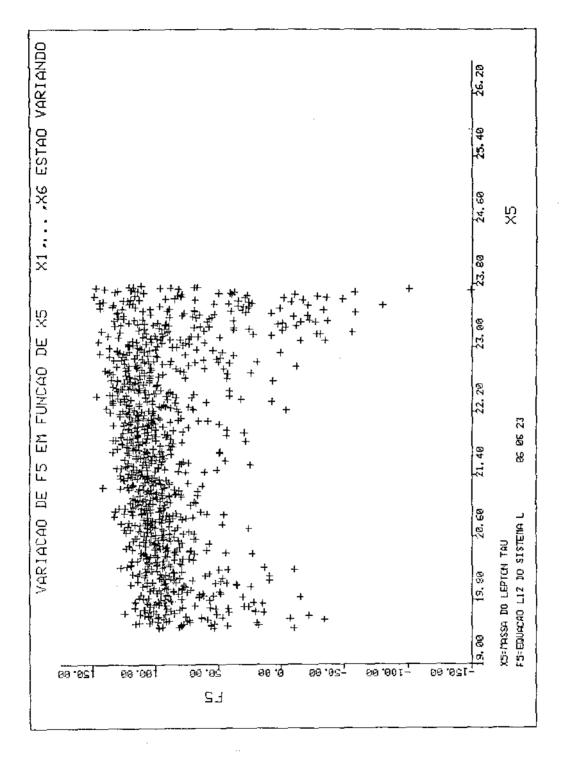


Fig. 28

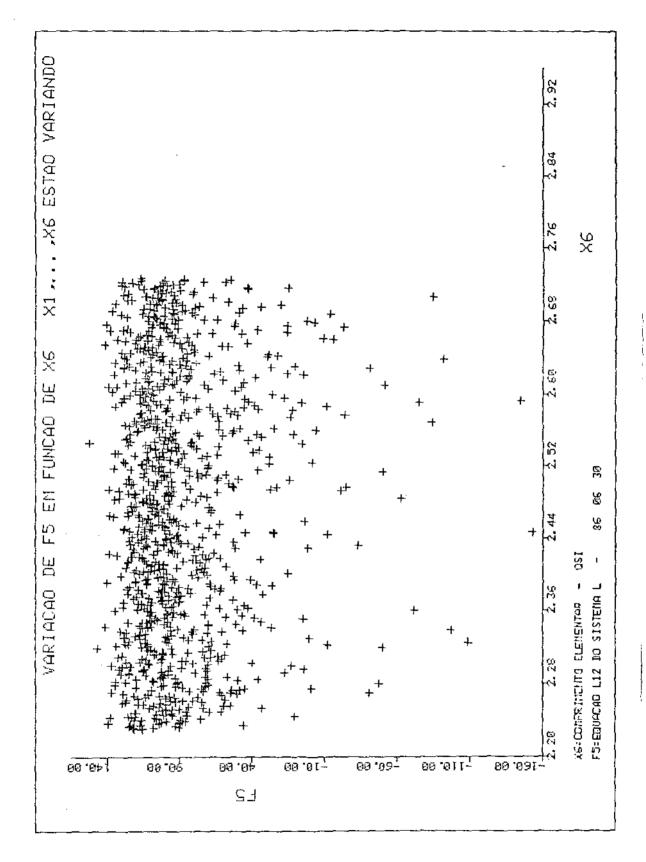


Fig. 29

Pela análise dos gráficos observamos:

- (*) A componente F_1 de F é sempre positiva, pois em nenhum ponto em que foi avaliada obtivemos $F_1 \leq 0$.
- (**) A componente de F_4 de F também manteve-se positiva nos pontos em que foi avaliada. Observemos que $F_4>>0$.

De (*) e (**), concluimos que \nexists X \in RCharon tal que $\digamma(x)=0$.

Desta maneira, o ponto X* citado no início deste ca pítulo não foi encontrado e o sistema L-equivalente não admite solução em R_{Charon} .

CAPITULO V

2ª EVIDÊNCIA: K_S>K_P EM R_{CHARON} SEM RESOLVER A EQUAÇÃO DIFERENCIAL

Aqui, vamos utilizar uma tecnica diferente da que foi usada no capitulo anterior e mostrar que F_1 = K_s - K_p e positiva em R_c Charon.

Para resolver o problema de equações diferenciais proveniente das equações LE_1 à LE_5 , formulamos um método de "SHOOTING BIDIMENSIONAL" (vide Apêndice 1) e determinamos assim:

$$R_0$$
 , δR $\in \Lambda$

5.1. A MUDANÇA DE VARIÂVEIS

Para avaliação de F_1 , fizemos uma mudança de vari $\overline{\underline{a}}$ veis nas integrais como segue:

$$\tau \rightarrow R$$
 $d\tau \rightarrow dR$

De fato, a equação LE₁ nos dã:

$$\frac{R^{1^{2}}}{c^{2}} = \frac{\xi^{2}}{6R^{2}} \left[\alpha^{2} \left(\frac{3}{R_{0}^{2}} - \frac{1}{R^{2}} \right) - \frac{2\beta^{2}}{R_{0}^{4}} \right] + \frac{1}{3} \Lambda R^{2} + K , \text{ em } [0, T/2]$$

$$R' = \sqrt{\frac{\xi^2}{6R^2} \left[\alpha^2 \left(\frac{3}{R_0^2} - \frac{1}{R^2} \right) - \frac{2\beta^2}{R_0^4} \right] + \frac{1}{3} \Lambda R^2 + K , \text{em } [0, T/2] }$$

$$d\tau = \frac{dR}{R'} = \frac{dR}{\sqrt{\frac{\xi^2}{6R^2} \left[\alpha^2 \left(\frac{3}{R_0^2} - \frac{1}{R^2} \right) - \frac{2\beta^2}{R_0^4} \right] + \frac{1}{3} \Lambda R^2 + K}},$$

$$em [0, T/2]$$

LE₂ e LE₄ nos dão:

$$\tau = 0 \rightarrow R = R_0$$

 $\tau = T/2 \rightarrow R = 6R$

5.2. AVALIAÇÃO DE F₁ EM 3000 PONTOS ALEATORIOS EM R_{CHARON}

Conforme o ALGOMUR, devemos ter $K_s = K_p - V X$, logo:

(*)
$$K_p = K_s = \frac{1}{T} \int_0^T (1 - \frac{V_{\ell v}^2}{c^2})^{-1/2} d\tau$$
,

onde $\frac{V_{\ell v}^2}{c^2} = \frac{R^{1/2}}{c^2} \left[\frac{1}{4arc^2 tg(\frac{\pi R}{c})} + \frac{R^{1/2}}{c^2} \right]^{-1}$

Substituindo (*) em F₁ vem:

$$F_{1} = \frac{1}{T} \int_{0}^{T} (1 - \frac{V^{2} v}{c^{2}})^{-1/2} d\tau - \frac{1}{T} \int_{0}^{T} (1 - \frac{R^{12}}{c^{2}})^{-1/2} d\tau$$

$$F_{1} = \frac{1}{T} \left[\int_{0}^{T} (1 - \frac{v_{\ell v}^{2} - \frac{1}{2}}{c^{2}})^{-1/2} d\tau - \int_{0}^{T} (1 - \frac{R^{12}}{c^{2}})^{-1/2} d\tau \right]$$

$$F_{1} = \frac{1}{T} \left\{ \int_{0}^{T/2} (1 - \frac{V_{\ell v}^{2}}{c^{2}})^{-1/2} d\tau + \int_{T/2}^{T} (1 - \frac{V_{\ell v}^{2}}{c^{2}})^{-1/2} d\tau - \left[\int_{0}^{T/2} (1 - \frac{R^{12}}{c^{2}})^{-1/2} d\tau + \int_{T/2}^{T} (1 - \frac{R^{12}}{c^{2}})^{-1/2} d\tau \right] \right\}$$

AFIRMAÇÃO:
$$\int_{0}^{T/2} (1 - \frac{R^{\frac{1}{2}}}{c^{2}})^{-\frac{1}{2}} d\tau = \int_{T/2}^{T} (1 - \frac{R^{\frac{1}{2}}}{c^{2}})^{-\frac{1}{2}} d\tau = \int_{T/2}^{T} (1 - \frac{R^{\frac{1}{2}}}{c^{2}})^{-\frac{1}{2}} d\tau = \int_{T/2}^{T} (1 - \frac{V_{\ell v}^{2}}{c^{2}})^{-\frac{1}{2}} d\tau$$

PROVA

De fato, por LE₁ temos:

$$\frac{R^{1^2}}{c^2} (T/2 + \tau) = \frac{R^{1^2}}{c^2} (T/2 - \tau) ; |\tau| \le T/2$$

Integrando a igualdade acima vem:

(I)
$$\int_{0}^{T/2} \left(1 - \frac{R^{2}}{c^{2}} \left(T/2 + \tau\right)\right)^{-1/2} d\tau = \int_{0}^{T/2} \left(1 - \frac{R^{2}}{c^{2}} \left(T/2 - \tau\right)\right)^{-1/2} d\tau$$

Fazendo $T/2 - \tau = t$, temos:

(II)
$$\begin{cases} d\tau = -dt \\ \tau=0 \rightarrow t = T/2 \\ \tau=T/2 \rightarrow t=0 \end{cases}$$

Substituindo (II) em (I) vem:

$$\int_{0}^{T/2} (1 - \frac{R^{\tau^{2}}}{c^{2}} (T/2 + \tau))^{-1/2} d\tau = -\int_{0}^{0} (1 - \frac{R^{\tau^{2}}}{c^{2}} (t)) dt =$$

$$= \int_{0}^{T/2} (1 - \frac{R^{\tau^{2}}}{c^{2}} (t))^{-1/2} dt$$

$$\int_0^{T/2} \left(1 - \frac{R^{\frac{1}{2}}}{c^2} \left(T/2 + \tau\right)\right)^{-\frac{1}{2}} d\tau = \int_0^{T/2} \left(1 - \frac{R^{\frac{1}{2}}}{c^2}\right) d\tau$$

como
$$\int_{T/2}^{T} \left(1 - \frac{R'^2}{c^2}\right)^{-1/2} d\tau = \int_{0}^{T/2} \left(1 - \frac{R'^2}{c^2} \left(T/2 + \tau\right)\right)^{-1/2} d\tau \text{, temos:}$$

(III)
$$\int_{T/2}^{T} (1 - \frac{R^{\frac{2}{2}}}{c^{2}})^{-\frac{1}{2}} = \int_{0}^{T/2} (1 - \frac{R^{\frac{2}{2}}}{c^{2}})^{-\frac{1}{2}} d\tau$$

Analogamente, obtemos:

(IV)
$$\int_{T/2}^{T} (1 - \frac{v_{\ell \nu}^2}{c^2})^{-1/2} d\tau = \int_{0}^{T/2} (1 - \frac{v_{\ell \nu}^2}{c^2})^{-1/2} d\tau$$

Substituindo (III) e (IV) em F₁ vem:

$$F_{1} = \frac{1}{T} \left\{ \int_{0}^{T/2} (1 - \frac{v_{\ell \nu}^{2}}{c^{2}})^{-1/2} + \int_{0}^{T/2} (1 - \frac{v_{\ell \nu}^{2}}{c^{2}})^{-1/2} d\tau - \left[\int_{0}^{T/2} (1 - \frac{R^{12}}{c^{2}})^{-1/2} d\tau + \int_{0}^{T/2} (1 - \frac{R^{12}}{c^{2}})^{-1/2} d\tau \right] \right\}$$

$$F_{1} = \frac{2}{T} \left[\int_{0}^{T/2} (1 - \frac{V_{\ell v}^{2}}{c^{2}})^{-1/2} d\tau - \int_{0}^{T/2} (1 - \frac{R^{12}}{c^{2}})^{-1/2} d\tau \right]$$

Fazendo a mudança de variaveis introduzida em 2.1

temos:

$$F_{1} = \frac{2}{T} \left[\int_{R_{0}}^{R} (1 - \frac{V_{\ell \nu}^{2}}{c^{2}})^{-\frac{1}{2}} \frac{dR}{R'} - \int_{R_{0}}^{R} (1 - \frac{R'^{2}}{c^{2}})^{-\frac{1}{2}} \frac{dR}{R'} \right]$$

Logo, utilizando a subrotina DO1AHF da NAG, versão dupla precisão, avaliamos F_1 em 3000 pontos aleatórios em $R_{\rm Charon}$ como mostram as figuras 1 $\bar{\rm a}$ 6 a seguir:

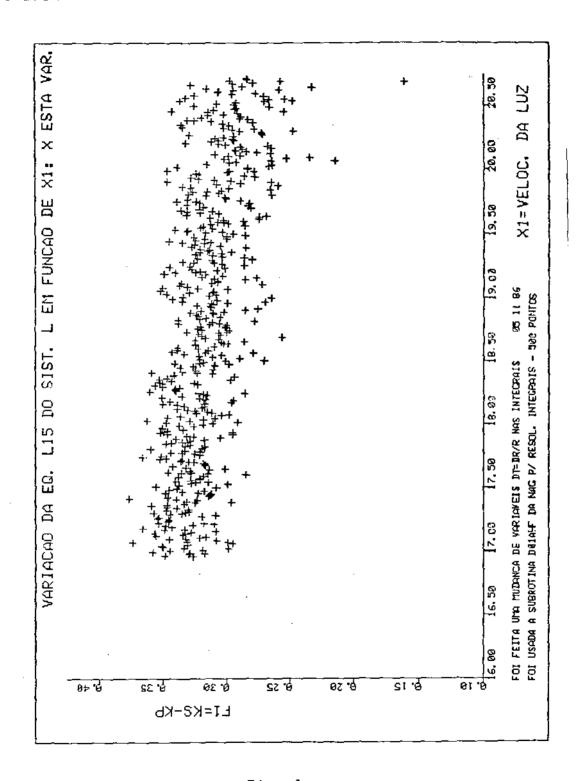
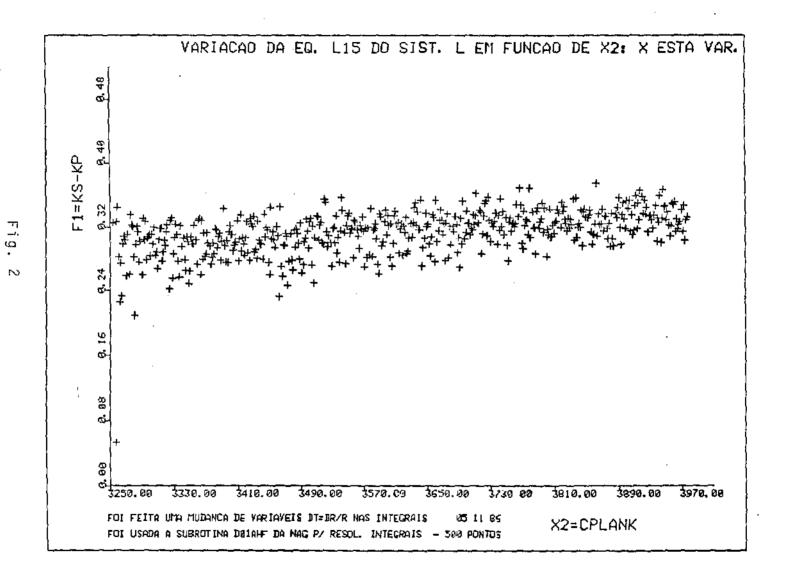
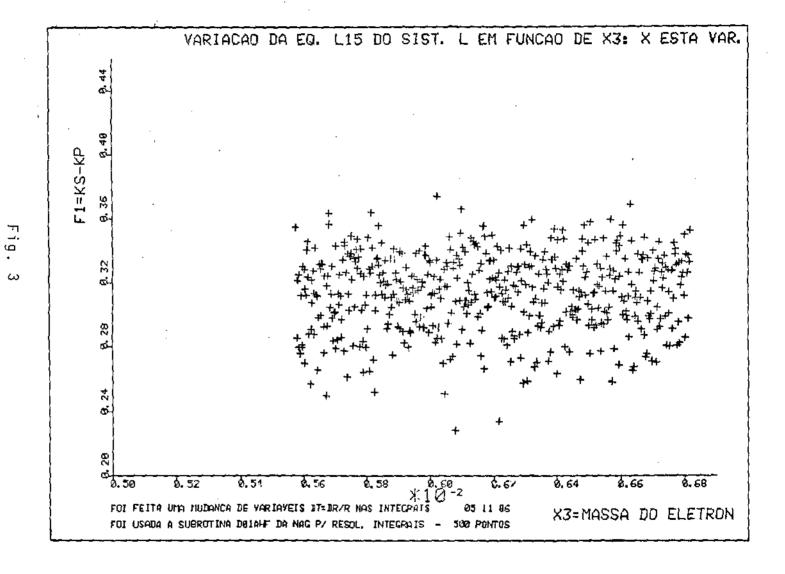
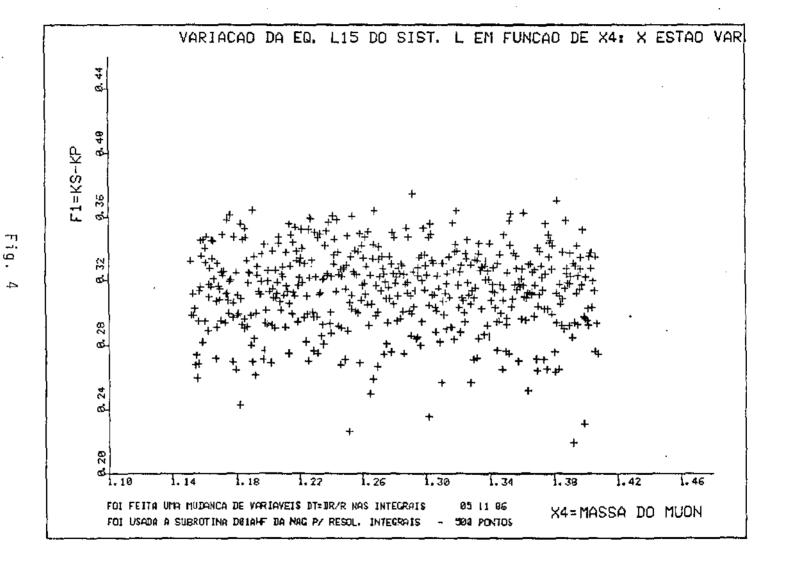
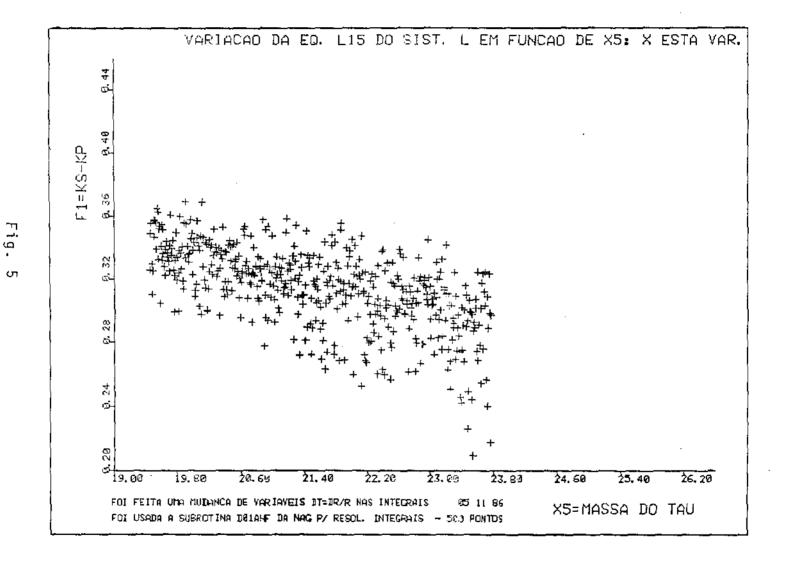


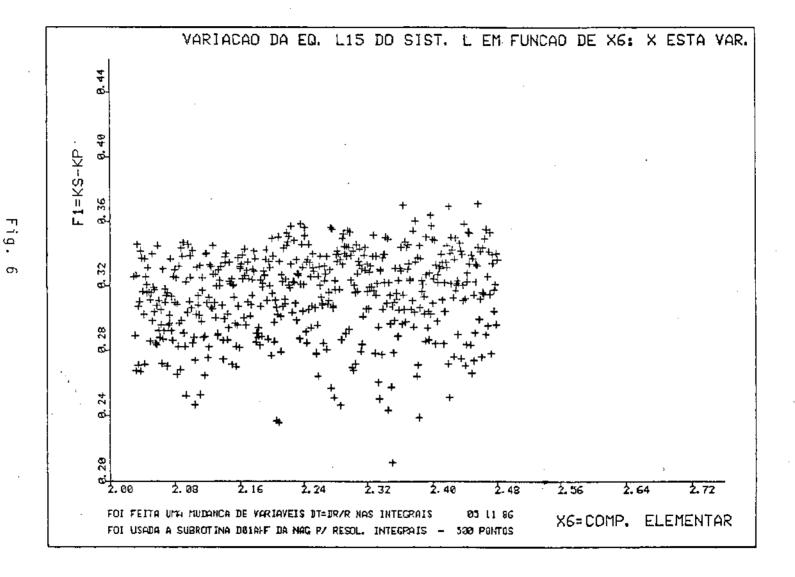
Fig. 1











CAPITULO VI

3ª EVIDÊNCIA: K_S>K_P EM R_{CHARON} SEM RESOLVER EQUAÇÃO DIFERENCIAL - SEM USAR SHOOTING

Conforme os resultados obtidos anteriormente (capítulos II \bar{a} V), estamos convencidos de que o Sistema L não admite solução em R_{Charon} .

Tendo isso em vista, procuramos então obter uma prova analítica de que F_1 = K_s - K_p >0 em R_{Charon} . Devido a complexidade das equações em questão, uma prova analítica não foi obtida até então. Portanto, vamos mostrar a seguir uma prova nu mérica que retrate o fato em questão.

6.1. TEOREMA DO LAMBDA: As equações L_1 à L_6 do Sistema L nos $d\tilde{a}o$:

$$\Lambda < \frac{-1}{R^2}$$

PROVA:

De fato, a equação L_1 nos dã:

$$\frac{R^{\frac{2}{3}}}{c^{2}} = \frac{\xi^{2}}{6R^{2}} \left[\alpha^{2} \left(\frac{3}{R_{0}^{2}} - \frac{1}{R^{2}} \right) - \frac{2\beta^{2}}{R_{0}^{4}} \right] + \frac{1}{3} \Lambda R^{2} + K =$$

$$= \frac{1}{R^{4}} \left[\frac{1}{3} \Lambda R^{6} + KR^{4} + \frac{\xi^{2}}{6} \left(\frac{3\alpha^{2}}{R_{0}^{2}} - \frac{2\beta^{2}}{R_{0}^{4}} \right) R^{2} - \frac{\xi^{2}\alpha^{2}}{6} \right]$$

$$\frac{R^{\frac{2}{r^2}}}{c^2} = \frac{P(R)}{R^4}, \quad \text{onde}$$

$$P(R) = \frac{1}{3} \Lambda R^{6} + KR^{4} + \frac{\xi^{2}}{6} \left(\frac{3\alpha^{2}}{R_{0}^{2}} - \frac{2\beta^{2}}{R_{0}^{4}} \right) R^{2} - \frac{\xi^{2}\alpha^{2}}{6}$$

Por L₃ e L₅ temos:

$$P(R_0) = P(R) = 0$$
 . R₀ e R são ratizes de P(R)

Como
$$\frac{R^{1^2}}{c^2} \ge 0$$
 \Longrightarrow $P(R) \ge 0$, $\forall R \in [R_0, R]$

Seja
$$P_1(S) = \frac{1}{3} \Lambda S^3 + KS^2 + \frac{\xi^2}{6} \left(\frac{3\alpha^2}{R_0^2} - \frac{2\beta^2}{R_0^4} \right) S - \frac{\xi^2 \alpha^2}{6}$$

E facil ver que:

(I)
$$\begin{cases} R_0^2 \in \mathbb{R}^2 \text{ são raīzes de } P_1(S) \\ P_1(S) \ge 0, \quad \forall S \in [R_0^2, \mathbb{R}^2] \end{cases}$$

Por (I), P $_{\tilde{l}}$ assume um māximo em S* $_{\varepsilon}$ [R_{o}^{2} , Ω^{2}] , logo temos:

$$P^{++}(S^*) = 2\Lambda S^* + 2K < 0$$

Por L₆ temos:

$$K = +1$$

Logo,
$$2\Lambda S^* + 2 < 0 \implies \Lambda S^* + 1 < 0 \implies \Lambda < 0$$
 (II)

Por (II) temos:

$$\forall S \in [S^*, \mathbb{R}^2] \implies \Lambda S + 1 < 0$$

Em particular, para $S = R^2$ vem:

$$\Lambda < \frac{-1}{\Re^2}$$

6.2. LEMA DO R_{min} : $\forall \alpha, \beta, \xi temos: R_o > R_{min}$, onde R_{min} ℓ tal que:

$$\Lambda (R_{\min}) = 0$$

PROVA:

De fato, por L₃ temos:

$$\Lambda(R_0) = \frac{1}{R_0^2} \left[\frac{\xi^2}{R_0^4} \left(\frac{\beta^2}{R_0^2} - \alpha^2 \right) - 3K \right];$$
 onde K=+1

Logo, \tilde{e} facil ver que \exists $R_{min} > 0$, tal que $\Lambda(R_{min}) = 0$ e para $R_o > R_{min} \Longrightarrow \Lambda(R_o) < 0$. Portanto, pelo teorema do Lambda vem:

$$R_o > R_{min}$$

6.3. TEOREMA (LIMITAÇÃO DO R_0): Seja $R_0 = R_{\tau=0}$. Então temos:

$$R_o \in (R_{\min}, \ell_o)$$

PROVA:

De fato, pela equação L₁₇ vem:

$$\frac{T}{\ell_0^3} = \int_0^T \frac{d\tau}{R^3} < \int_0^T \frac{d\tau}{R_0^3} = \frac{T}{R_0^3} \implies \frac{T}{\ell_0^3} < \frac{T}{R_0^3}$$

$$\implies \frac{1}{\ell_0^3} < \frac{1}{R_0^3} \implies R_0 < \ell_0$$

$$R_0 < \ell_0$$

Logo, utilizando o lema do R_{minimo} obtemos:

$$R_{min} < R_o < \ell_o$$

$$R_o \in (R_{min}, \ell_o)$$

6.4. TEOREMA DO R_{MÃXIMO}: Seja $\Re = \Re_{\tau=T/2}$. Então \forall c, h, m, μ , τ e ξ temos:

$$\frac{c^{\dagger}}{2\pi} \leq \Re \leq \frac{c^{\dagger}}{2} + \ell_0$$

PROVA:

De fato, pela equação L₁₆ temos:

$$\int_0^T \frac{d\tau}{R} \le \int_0^T \frac{d\tau}{R} = \frac{2\pi}{c}$$

$$\frac{T}{\Re} \leq \frac{2\pi}{c} \implies \Re \geq cT/2\pi$$

$$\Re \geq \frac{cT}{2\pi} \tag{I}$$

Agora, a equação L₆ nos fornece:

$$c^2 \ge R^{1^2} \implies R^1 \le c$$

Seja o problema de Cauchy [19] abaixo:

$$\begin{cases}
\overline{R}' = c \\
\overline{R}_{\tau=0} = R_0
\end{cases}$$
(II)

Resolvendo (II) vem:

$$\overline{R}(\tau) = c\tau + R_0$$

Como
$$\overline{R}' \ge R' \implies \overline{R}(\tau) \ge R(\tau)$$
, $\forall \tau \in [0,T]$

Em particular temos:

$$\overline{R}_{\tau=T/2} = c \frac{T}{2} + R_0 \ge R_{\tau=T/2} = R$$

$$\therefore \quad \mathcal{R} \leq c \frac{T}{2} + R_0 \tag{III}$$

Pelo Teorema da limitação do R $_{\Omega}$ temos:

$$R_0 \le \ell_0$$
 (IV)

Logo, substituindo (IV) em (III) vem:

$$\mathbf{G} \leq c \frac{T}{2} + \ell_0 \tag{V}$$

De (I) e (V) obtemos:

$$\frac{cT}{2\pi} \leq \Re \leq c \frac{T}{2} + \ell_0$$

6.5. TEOREMA DO R_o: Seja R_o=R_{t=0}. $Ent\tilde{ao}$ \forall α , β , ξ e K temos:

$$\int_{R_0}^{R(R_0)} \frac{dR}{R'(R_0, \Lambda(R_0), R)} = \frac{T}{2} \qquad (EQUAÇÃO DO R_0)$$

PROVA:

De fato, as equações L₁ a L₅ nos dão:

$$L_{1}: \frac{R^{\frac{2}{3}}}{c^{2}} = \frac{\xi^{2}}{6R^{2}} \left[\alpha^{2} \left(\frac{3}{R_{0}^{2}} - \frac{1}{R^{2}} \right) - \frac{2\beta^{2}}{R_{0}^{4}} \right] + \frac{1}{3} \Lambda R^{2} + K$$

$$L_2$$
: $R_{\tau=0} = R_0$

$$L_3: R_{\tau=0}^{\dagger} = 0$$

$$L_4$$
: $R_{\tau=T/2} = R$

$$L_5: R_{\tau=T/2}^{\dagger} = 0$$

Observemos que as equações acima definem um problema de equações diferenciais que supomos ter solução não constante.

Desta maneira, temos:

$$R' = \frac{dR}{d\tau} = c\sqrt{\frac{\xi^2}{6R^2} \left[\alpha^2 \left(\frac{3}{R_0^2} - \frac{1}{R^2}\right) - \frac{2\beta^2}{R_0^4}\right] + \frac{1}{3}\Lambda R^2 + K, \text{ em [0, T/2]}}$$

em [0,T/2]

Para $0 < \tau_0 < \tau_1 < T/2$ vem:

$$\int_{R_{1}}^{R_{2}} \frac{dR}{c\sqrt{\frac{\xi^{2}}{6R^{2}} \left[\alpha^{2} \left(\frac{3}{R_{0}^{2}} - \frac{1}{R^{2}}\right) - \frac{2\beta^{2}}{R_{0}^{4}}\right] + \frac{1}{3}\Lambda R^{2} + K}} = \tau_{1} - \tau_{0},$$

onde $R_0 < R_1 < R_2 < R$

Fazendo $\tau_0 \rightarrow 0$ e $\tau_1 \rightarrow T/2$ obtemos:

$$\int_{R_{0}}^{R} \frac{dR}{c\sqrt{\frac{\xi^{2}}{6R^{2}} \left[\alpha^{2} \left(\frac{3}{R_{0}^{2}} - \frac{1}{R^{2}}\right) - \frac{2\beta^{2}}{R_{0}^{4}}\right] + \frac{1}{3}\Lambda R^{2} + K}} = T/2$$

Utilizando L_3 e L_5 vem:

$$\int_{R_{0}}^{R} \frac{dR}{c \sqrt{\frac{\xi^{2}}{6R^{2}} \left[\alpha^{2} \left(\frac{3}{R_{0}^{2}} - \frac{1}{R^{2}} \right) - \frac{2\beta^{2}}{R_{0}^{4}} \right] + \frac{1}{3} \Lambda (R_{0}) R^{2} + K}} = T/2$$

Como observamos acima, esta integral tem que ser con vergente, caso contrário, o problema de equações diferenciais em questão não admitiria solução. Portanto temos:

$$\int_{R_0}^{\Re(R_0)} \frac{dR}{R'(R_0, \Lambda(R_0), R)} = T/2$$

onde R'(R_o,
$$\Lambda(R_o)$$
, R) = $c\sqrt{\frac{\xi^2}{6R^2}\left[\alpha^2(\frac{3}{R_o^2}-\frac{1}{R^2})-\frac{2\beta^2}{R_o^4}\right]+\frac{1}{3}\Lambda(R_o)R^2+K}$

6.6. AVALIAÇÃO DE F₁ EM 16649 PONTOS EM R_{CHARON}

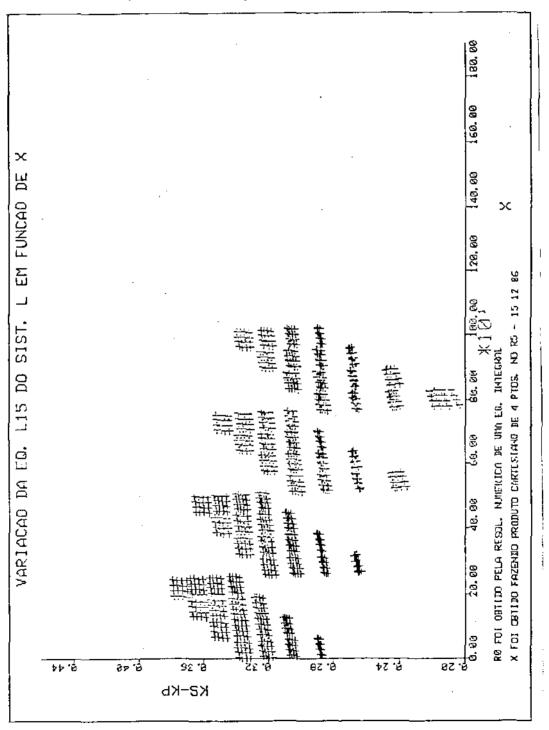
Aqui, utilizamos a EQUAÇÃO DO R $_{0}$ e aplicamos bisse \underline{c} ção (vide Apêndice 2) no intervalo (R $_{\min}$, ℓ_{0}) para determinar o parametro R $_{0}$ e consequentemente A e R.

A seguir, utilizando a subrotina DOIAHF da NAG, ver são dupla precisão, avaliamos F_1 (conforme definida no capít<u>u</u> lo anterior) em 16649 pontos em $R_{\rm Charon}$, como segue:

1) Escolhemos para variação das variaveis X_i , cinco pontos igualmente espaçados, incluindo os limites inferior e superior de cada X_i e fizemos o produto cartesiano desses pontos no \mathbb{R}^6 , obtendo assim, uma especie de "malha" no \mathbb{R}^6 com 15625 pontos e avaliamos F_1 nessa "malha". Obtivemos:

 $F_1 > 0$ nos pontos em que foi avaliada.

2) Agora, escolhemos para variação das variáveis X_i , quatro pontos igualmente espaçados, incluindo os extremos e mantivemos $x_3 = m_0 = \text{constante}$. Novamente, fizemos o produto cartesiano desses pontos, obtendo agora 1024 pontos e avaliamos F_1 nesses pontos. Os resultados são mos trados no gráfico a seguir.



CAPÍTULO VII

4ª EVIDÊNCIA: K_S>K_P SEM RESOLVER EQUAÇÃO DIFERENCIAL SEM USAR SHOOTING - SEM AVALIAR INTEGRAL

Novamente, devido a complexidade das equações envolvidas, não foi possível obter uma prova analítica de que o sistema L não admite solução em R_{Charon} . Contudo, vamos apresentar uma forte evidência, uma prova numérica, de que o Sistema L não admite solução em uma região $\Omega \subseteq R_{Charon}$, que definiremos adiante.

Tendo em vista que os valores obtidos experimentalmente para as constantes fundamentais da física (c = velocidade da Iuz, h = constante de Planck, μ_0 = massa do muon, m_0 = massa do elétron, τ_0 = massa do lepton tau) não podem ter uma variação maior que 2%, vamos mostrar de uma maneira bem convigente que F_1 = K_s - K_p >0 (sem avaliar F_1) com 2% de variação para as variaveis X_i , onde X_i estão nas unidades L, como segue:

De fato, conforme mostramos anteriormente (cap. V), temos:

$$F_{1} = \frac{2}{T} \left[\int_{R_{0}}^{R} (1 - \frac{V_{\ell v}^{2}}{c^{2}})^{-\frac{1}{2}} \frac{dR}{R'} - \int_{R_{0}}^{R} (1 - \frac{R'^{2}}{c^{2}})^{-\frac{1}{2}} \frac{dR}{R'} \right] ,$$

onde
$$\frac{V_{\ell v}^2}{c^2} = \frac{R^{\frac{2}{2}}}{c^2} \left[\frac{1}{4 \text{arc}^2 \text{tg}(\frac{\pi R}{4})} + \frac{R^{\frac{2}{2}}}{c^2} \right]^{-1}$$

Logo, para que tenhamos $F_{1}>0$ \tilde{e} suficiente que:

$$\frac{V_{\ell \nu}^{2}}{c^{2}} = \frac{R^{1^{2}}}{c^{2}} \left[\frac{1}{4 \operatorname{arc}^{2} \operatorname{tg}(\frac{\pi R}{4})} + \frac{R^{1^{2}}}{c^{2}} \right]^{-1} > \frac{R^{1^{2}}}{c^{2}}$$

$$\Rightarrow \left[\frac{1}{4 \operatorname{arc}^{2} \operatorname{tg}(\frac{\pi R}{4})} + \frac{R^{1^{2}}}{c^{2}} \right]^{-1} > 1$$

 $\frac{1}{4 \operatorname{arc}^2 \operatorname{tg}(\frac{\pi R}{c^2})} + \frac{R^{\frac{2}{2}}}{c^2} < 1$

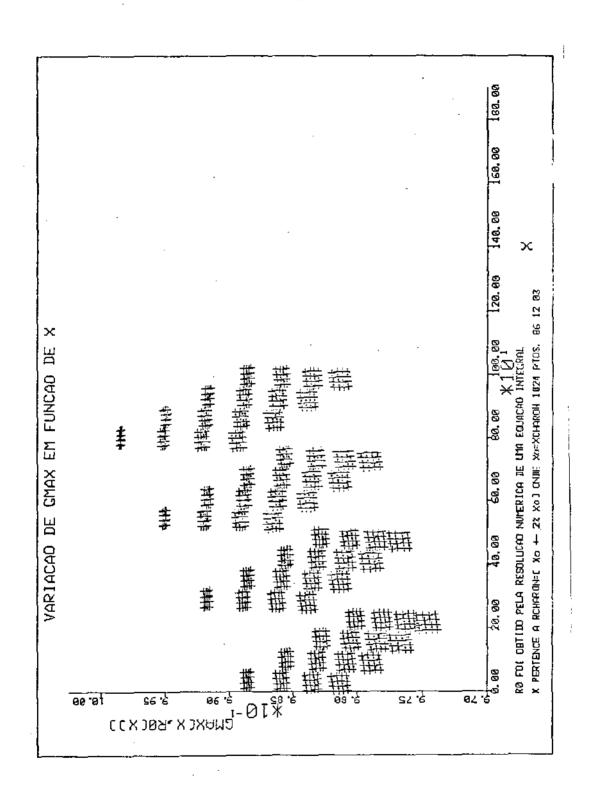
Portanto, definimos
$$g(R) = \frac{1}{4arc^2 tg(\frac{\pi R}{4})} + \frac{{R'}^2}{c^2}$$
 e mos

traremos que g(R)<1, \forall R \in [R $_0$, \in R], e para isso, vamos mostrar que g $_{\max}$ <1 com X variando 2% como segue:

- I) Dado X, calculamos o parametro R_0 utilizando a EQUA-ÇÃO DO R_0 definida anteriormente. (Vide $3^{\frac{a}{2}}$ evidência).
- II) Em seguida, fazendo Bissecção no intervalo [R_0 , R] calculamos R^* tal que $g'(R^*)=0$ e avaliamos $g_{max}=g(R^*)$.

Fizemos 16649 avaliações de g_{max} em pontos gerados como anteriormente (vide $3^{\frac{a}{2}}$ evidência), so que agora, os limites inferiores e superiores das variaveis $X_{\hat{1}}$ estão com 2% de variação dos valores obtidos experimentalmente.

Na primeira avaliação (15625), obtivemos g_{max}<l nos pontos em que foi avaliada. Na segunda avaliação (1024 pontos), também obtemos g_{max} <l como mostra o gráfico abaixo. Os resultados foram obtidos usando precisão dupla.



Logo, mostramos assim, que o Sistema L não admite solução num paralelepípedo $\Omega\subset\mathbb{R}^6$, em cujo centro estã o vetor X_0 que tem como componentes as constantes fundamentais da física: c = velocidade da luz, h = constante de Planck, $m_0=\max$ sa "propria" do eletron, $\mu_0=\max$ "propria" do muon, $\tau_0=\max$ sa "propria" do lepton pesado tau e ξ_0 .

Portanto, o Sistema L não admite solução em Ω .

CAPÍTULO VIII

CONCLUSÃO

Tendo em vista que:

- i) Analisamos o algoritmo utilizado por Charon [1] na resolução do Sistema L e vimos que o mesmo mostra uma certa ineficiência e provavelmente não conduz a uma solução do Sistema L;
- ii) Verificamos que a solução apresentada em [1] não é uma solução propriamente dita;
- iii) Deduzimos que o Sistema L se reduz a um sistema algébrico não linear com 5 equações e 6 incôgnitas, contrário ao que se obtêm em [1], e
 - iv) Mostramos em quatro evidências numéricas, distintas, que $uma\ equação\ não\ \tilde{e}\ satisfeita\ em\ R_{Charon}.$

Concluimos que o SISTEMA L não admite solução em R_{Charon} e supomos ser verdadeira a seguinte conjectura:

"O SISTEMA L admite solução em R_{Charon} , se e somente se, $R(\tau) = R_0 > 0$ ϵ \mathbb{R} , \forall τ ϵ [0,T/2]. E nesse caso serão infinitas".

APÊNDICE 1

Nos capitulos IV e V, resolvemos o problema de equações diferenciais proveniente das equações $\rm LE_1$ a $\rm LE_5$, utilizando os metodos de Shooting que são descritos abaixo:

1. SHOOTING UNIDIMENSIONAL

I) A equação LE₃ nos dã:

$$\Lambda = \Lambda(R_0) = \frac{1}{R_0^2} \left[\frac{\xi^2}{R_0^4} \left(\frac{\beta^2}{R_0^2} - \alpha^2 \right) - 3K \right]$$

- II) Substituimos $\Lambda = \Lambda(R_0)$ na equação LE_1 e resolvemos a <u>e</u> quação diferencial utilizando RKF45 [20], para um R_0 chutado, até obtermos R'(t_0) = 0.
 - i) Sem perda de generalidade, suponhamos $t_o < T/2$, fazemos então $t_o = T_1$ e $R_o = R_{o1}$.
 - ii) Tomamos $R_o > R_{o1}$ e novamente resolvemos a equação diferencial até obtermos $R'(t_1) = 0$. Se $t_1 > T/2$, fazemos $t_1 = T_2$ e $R_o = R_{o2}$. Caso contrário, desprezamos o R_o usado e tomemos sucessivamente $R_o < R_{o1}$ e resolvemos a equação diferencial até que tenhamos $R'(t_2) = 0$ e $t_2 > T/2$ e fazemos então $t_2 = T_2$ e $R_o = R_{o2}$.
- III) Supondo contínua a aplicação $\phi: \mathbb{R} \to \mathbb{R}$, tal que $\phi(R_0) = \overline{t}$ conforme especificado acima, aplicamos bissecção no

intervalo $[R_{01}, R_{02}]$ até que tenhamos $\phi(R_0) = T/2$, onde teremos então $R'_{\tau=T/2} = 0$ e $R'_{\tau=0} = 0$ e portanto, o R_0 obtido é o procurado na resolução do problema de equações diferenciais em questão.

Finalmente, resolvemos a equação diferencial de τ =0 até τ =T/2 e obtemos R(τ) em [0, T/2].

Uma análise da equação LE₁ nos dá:

$$R(T/2 + \Delta\tau) = R(T/2 - \Delta\tau); |\Delta\tau| \le T/2$$

Obtemos assim, $R(\tau)$ em [0,T].

2. O CHUTE BIDIMENSIONAL

- I) Por LE_3 , obtemos $A=A(R_0)$ e substituimos em LE_1 .
- II) Sejam $R_{\tau=0} = \overline{R}_0$ e $R_{\tau=\tau/4} = \overline{R}$, dados
- III) Resolvemos numericamente LE $_1$, utilizando RKF45 [20], com \overline{R}_0 e \overline{R} dados acima, de τ =T/4 até τ =0 e avaliamos:

$$\phi_1(\overline{R}_0, \overline{R}) = (\frac{R^{\tau^2}}{c^2})_{\tau=0}$$

IV) Como em III), de $\tau=T/4$ até $\tau=T/2$ e avaliamos:

$$\phi_2(\overline{R}_0, \overline{R}) = (\frac{R^{r^2}}{c^2})_{\tau=T/2}$$

Desta maneira, temos um sistema 2 x 2 não linear, c \underline{u}

ja solução é: R_0 e $R_{\tau=T/4}$ tal que $\phi_1(R_0,R_{\tau=T/4})$ = $\phi_2(R_0,R_{\tau=T/4})$ =0, obtendo assim R_0 , Λ e R. Para resolvê-lo, utilizamos a subrotina SNØ1A que resolve sistemas não lineares pelo método de Newton Raphson e foi elaborada pelo Prof. Dr. Martinez.

APÊNDICE 2

No capitulo VI, resolvemos o problema de equação di ferenciais como segue:

1. AVALIAÇÃO DE $R = R_{\tau = T/2} (R_{maximo})$

A equação L₅ nos dá:

$$\frac{\xi^{2}}{6R^{2}} \left[\alpha^{2} \left(\frac{3}{R_{0}^{2}} - \frac{1}{R^{2}} \right) - \frac{2\beta^{2}}{R_{0}^{4}} \right] + \frac{1}{3} \Lambda R^{2} + K = 0$$

$$\Rightarrow \frac{1}{R^{4}} \left[\frac{1}{3} \Lambda R^{6} + K R^{4} + \frac{\xi^{2}}{6} \left(\frac{3\alpha^{2}}{R_{0}^{2}} - \frac{2\beta^{2}}{R_{0}^{4}} \right) R^{2} - \frac{\xi^{2} \alpha^{2}}{6} \right] = 0$$

$$\Rightarrow \frac{1}{3} \Lambda R^{6} + K R^{4} + \frac{\xi^{2}}{6} \left(\frac{3\alpha^{2}}{R_{0}^{2}} - \frac{2\beta^{2}}{R_{0}^{4}} \right) R^{2} - \frac{\xi^{2} \alpha^{2}}{6} = 0$$

Fazendo $x = R^2$ vem:

$$P(x) = \frac{1}{3} \Lambda x^3 + Kx^2 + \frac{\xi^2}{6} \left(\frac{3\alpha^2}{R_0^2} - \frac{2\beta^2}{R_0^4} \right) x - \frac{\xi^2 \alpha^2}{6} = 0$$

Logo, dado R_0 , aplicamos bissecção no intervalo $\left[\left(\frac{cT}{2\pi} \right)^2 \right], \left(\frac{cT}{2} + \ell_0 \right)^2$ (Vide teorema do $R_{m\bar{a}ximo}$) e determinamos assim $R = \sqrt{x}$.

2. AVALIAÇÃO DO PARÂMETRO $R_0 = R_{\tau=0}$

Utilizando a equação do R_O abaixo

$$\int_{R_0}^{R(R_0)} \frac{dR}{R'(R_0, \Lambda(R_0), R)} = T/2 \qquad \text{(Vide Teorema do R_0),}$$

determinamos R_{\min} e fazemos bissecção no intervalo (R_{\min} , ℓ_{o}) (Vide Teorema da Limitação do R_{o}) até obtermos R_{o} que verifique a equação acima.

BIBLIOGRAFIA

- [1] J.E. CHARON, L'Esprit et la Relativité Complexe, Albin Michel, Paris (1983).
- [2] B. RIEMANN, Über die Hypothesen, welche der Geometrie zue Grunde liegen (Göttingen, 1854); cf. also Abhandl. Wiss. Ges. Göttingen, 13 (1868), 1-20 and Collected papers, pp. 272-87.
- [3] W.K. CLIFFORD, Proc. Camb. Phil. Soc. 2, 157 (1876).
- [4] C.H. HILTON, Selected Writings "Speculations on the Fourth Dimension", edited by R.V.B. Rucker, Dover Publ. Inc. (1980).
- [5] A. EINSTEIN, Sitzugsberichte der Preussischen Skad. d. Wissenschaften (1919).
- [6] MAX JAMMER, The Philosophy of Quantum Mechanics, John Wiley & Sons, (1974).
- [7] A.O. BARUT and A. Bohm, Phys. Rev. 139, B1107 (1965).
- [8] P. ROMAN and J. HAAVISTO, Int. Journal of Theor. Phys. 16, 915 (1977).
- [9] A. SALAN and J. STRATHDEE, Phys. Rev. D 18, 4596 (1978).
- [10] P. CALDIROLA, Revista del Nuovo Cimento, 2, 1 (1979).

- [11] P. CALDIROLA, M. PAVSIC and E. RECAMI, N. Cimento \underline{B} , 48, 205 (1978).
- [12] P. NOWOSAD, The Mathematical Structure of Elementary Particles, MRC Techbical Report # 2581 (1983).
- [13] R.K. SACHS and H. WU, General Relativity for Mathematicians, Springer-Verlag, (1977).
- [14] W. DRECHLER and M.E. MAYER, Fiber Bundle Techniques in Gauge Theories, Springer-Verlag (1977).
- [15] P. AMMIRAJU, E. RECAMI and W.A. RODRIGUES Jr., N. Cimen to A, 78, 172 (1983).
- [16] C.K. RAJU, Int. Journal Theor. Phys. 20, 681 (1981).
- [17] E. RECAMI & G.D. MACCARRONE: Lett. N. Cim. <u>37</u>, 345 (1983).
- [18] LEE W. JOHNSON and R. DEAN RIESS, Numerical Analysis, Copyright, 1977.
- [19] JORGE SOTOMAYOR, Lições de Equações Diferenciais Ordin $\underline{\tilde{a}}$ rias, Instituto de Matemática Pura e Aplicada, 1979.
- [20] G.E. FORSYTHE; M.A. MALCON and C.B. MOLER, Computer Methods for Mathematical Computations, Prentice-Hall, 1977.