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”All models are wrong,

but some are useful.”

George E. P. Box



Resumo

Modelos mistos são geralmente usados para representar dados longitudinais ou de me-

didas repetidas. Uma complicação adicional surge quando a resposta é censurada, por

exemplo, devido aos limites de quantificação do ensaio utilizado. Distribuições normais

para os efeitos aleatórios e os erros residuais são geralmente assumidas, mas tais pres-

supostos fazem as inferências vulneráveis, à presença de outliers. Motivados por uma

preocupação da sensibilidade para potenciais outliers ou dados com caudas mais pesadas

do que a normal, pretendemos desenvolver nessa dissertação, inferência para modelos

lineares e não lineares de efeito misto censurados (NLMEC / LMEC) com base na dis-

tribuição t- Student multivariada, sendo uma alternativa flex́ıvel ao uso da distribuição

normal correspondente. Propomos um algoritmo ECM para computar as estimativas

de máxima verossimilhança para os NLMEC / LMEC. Este algoritmo utiliza expressões

fechadas no passo-E, que se baseia em fórmulas para a média e a variância de uma dis-

tribuição t-multivariada truncada. O algoritmo proposto é implementado, pacote tlmec

do R. Também propomos aqui um algoritmo ECM exato para os modelos lineares e não

lineares de efeito misto censurados, com base na distribuição normal multivariada, que

nos permite desenvolver análise de influência local para modelos de efeito misto com

base na esperança condicional da função log-verossilhança dos dados completos. Os

procedimentos desenvolvidos são ilustrados com a análise longitudinal da carga viral do

HIV, apresentada em dois estudos recentes sobre a AIDS.
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Abstract

Mixed models are commonly used to represent longitudinal or repeated measures data.

An additional complication arises when the response is censored, for example, due to

limits of quantification of the assay used. Normal distributions for random effects and

residual errors are usually assumed, but such assumptions make inferences vulnerable

to the presence of outliers. Motivated by a concern of sensitivity to potential outliers

or data with tails longer-than-normal, we aim to develop in this dissertation inference

for linear and nonlinear mixed effects models with censored response (NLMEC/LMEC)

based on the multivariate Student-t distribution, being a flexible alternative to the use of

the corresponding normal distribution. We propose an ECM algorithm for computing

the maximum likelihood estimates for NLMEC/LMEC. This algorithm uses closed-

form expressions at the E-step, which relies on formulas for the mean and variance

of a truncated multivariate-t distribution. The proposed algorithm is implemented

in the R package tlmec. We also propose here an exact ECM algorithm for linear

and nonlinear mixed effects models with censored response based on the multivariate

normal distribution, which enable us to developed local influence analysis for mixed

effects models on the basis of the conditional expectation of the complete-data log-

likelihood function. The developed procedures are illustrated with two case studies,

involving the analysis of longitudinal HIV viral load in two recent AIDS studies.
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Caṕıtulo 1

Introdução

1.1 Motivação

Modelos lineares e não-lineares mistos (LME/NLME) são frequentemente usados

para análise de dados agrupados, pois oferecem uma flexibilidade em modelar a cor-

relação entre e intra unidades amostrais, usualmente presente nesses tipos de dados

(Pinheiro and Bates, 2000). Exemplos de dados agrupados incluem dados de medidas

repetidas, dados multińıveis e dados longitudinais (entre outros). Entretanto, em vários

estudos longitudinais, como estudos sobre a poluição ambiental e doenças infecciosas,

a medição de algumas variáveis pode ser sujeita a um limite de quantificação, isto é,

um certo limite abaixo ou acima em que a medição não é quantificada. Por exemplo,

a carga viral mede a quantidade de atividade de reprodução dos v́ırus e, dependendo

do ensaio do diagnóstico usado, essas medidas podem ser subjetivas a um limite de de-

tecção superior ou inferior (por isso, censurados à direita e à esquerda), valores acima

ou abaixo em que eles não são quantificados. A proporção de dados censurados nestes

estudos pode não ser trivial e, considerando métodos ad-hoc, isto é, substituindo o valor

limite ou algum ponto arbitrário como o ponto médio entre zero e o corte para detecção

(Vaida and Liu, 2009), pode conduzir a estimativas tendenciosas para os efeitos fixos e

para os componentes da variância (Wu, 2010). Como alternativa para métodos ad-hoc,

Hughes (1999) propôs uma verossimilhança baseada no algoritmo EM de Monte Carlo

1



1. Introdução 2

(MCEM) para LME com respostas censuradas (LMEC). Vaida et al. (2007) propôs um

algoritmo EM h́ıbrido (HEM) para modelos lineares e não-lineares mistos com respostas

censuradas (LMEC/NLMEC) usando uma implementação mais eficiente do algoritmo

de Hughes, baseado num eficiente esquema de amostragem em blocos. Vaida and Liu

(2009) propôs um algoritmo EM exato para LMEC/ NLMEC que usa expressões em

forma fechada no passo E, em oposição a simulação de Monte Carlo, levando a um

avanço na velocidade de compilação.

No contexto de LMEC/ NLMEC, os efeitos aleatórios e os erros entre unidades

amostrais, por conveniência matemática, são frequentemente considerados ter uma dis-

tribuição normal. Contudo, tais suposições de normalidade podem nem sempre ser

reaĺısticas porque são vulneráveis à presença de uma observação at́ıpica. Para lidar

com o problema de uma observação at́ıpica no LME com respostas completas, algumas

proposições foram feitas na literatura como substituindo a suposição de normalidade por

uma classe de distribuições mais flex́ıveis. Por exemplo, Pinheiro et al. (2001) propôs

um modelo linear com efeito misto considerando a distribuição t multivariada (t-LME)

e demonstrou a robustez contra outliers através de simulações e uma aplicação com da-

dos ortodônticos. Lin and Lee (2007) desenvolveu algumas ferramentas adicionais para

t-LME através de uma perspectiva Bayesiana. Rosa et al. (2003) defende o uso de sub-

classes de distribuições eĺıpticas, chamada distribuição normal/independente (NI) (Liu,

1996) e adotou o contexto Bayesiano para análises posteriores para LMEC/NLMEC de

cauda pesada. Mais elaborações no t-LME foram estudadas por Song et al. (2007) e

Wang and Fan (2011). Mais recentemente, no contexto de LMEC/NLMEC de cauda

pesada, Lachos et al. (2011) defende o uso de classe de distribuição NI e adotou o con-

texto Bayesiano para análises posteriores. Apesar de alguns trabalhos com distribuição

eĺıptica terem aparecido recentemente na literatura, não há estudos em LMEC/NLMEC

sob a distribuição t de Student na perspectiva frequentista.

Motivados por isso, neste trabalho, primeiramente propomos uma modificação no

algoritmo EM proposto por Vaida and Liu (2009), em que todos os parâmetros são

atualizados (passo M) considerando os efeitos aleatórios e as observações censuradas

como dados perdidos. Depois, propomos uma modelagem paramétrica robusta nos

LMEC/NLMEC baseada na distribuição t-multivariada para que a t-LMEC/t-NLMEC

seja definida e uma abordagem totalmente baseada na verossimilhança seja considerada,

incluindo a implementação de um algoritmo ECM exato para as estimativas de máxima



1.2. O algoritmo EM 3

verossimilhança (ML). Tendo ainda por base a obra de Vaida and Liu (2009), neste

trabalho também desenvolvemos e apresentamos uma análise de diagnóstico em modelos

lineares e não lineares mistos para resposta censuradas, usando a distribuição normal.

Baseados no que foi discutido aqui, mostramos uma breve descrição do algoritmo

EM, que será usado para encontrar as estimativas de máxima verossimilhança dos

parâmetros nos LMEC/NLMEC para as distribuições normal e t de Student. Também

apresentamos uma breve descrição de análise de influência aplicada nos LMEC/NLMEC

para distribuição normal e, finalmente, descrevemos os objetivos e a organização deste

trabalho.

1.2 O algoritmo EM

O algoritmo EM (Dempster et al., 1977) é um procedimento iterativo eficiente

para calcular as estimativas de máxima verossimilhança (ML) na presença de dados

faltantes. Na estimação pelo método de máxima verossimilhança, desejamos esti-

mar os parâmetros do modelo para o qual os dados observados sejam mais prováveis.

Esse algoritmo é aplicado em problemas de estimação para dados incompletos, au-

mentando o vetor de dados observados (yobs) com a inclusão de variáveis latentes

(ynobs), que não são diretamente observadas, obtendo-se, assim, o vetor de dados

completos yc = (yobs,ynobs). A função de log-verossimilhança é representada por

ℓc(θ|yc) = log(f(yc|θ)) e cada iteração do algoritmo EM consiste em dois passos:

• Passo E (Esperança):

Este passo consiste em calcular a esperança da log-verossimilhança completa,

denotada por Q(θ|θ̂
(i−1)

), condicionada no vetor de dados observados. Isto é,

para a i-ésima iteração temos que, dado θ̂ = θ̂
(i−1)

,

Q(θ|θ̂
(i−1)

) = E{ℓc(θ|yc)|yobs, θ̂
(i−1)
};



1. Introdução 4

• Passo M (Maximização):

Consiste em maximizar a log-verossimilhança completa em relação aos parâmetros

do modelo, substituindo os dados latentes por seus valores esperados condici-

onais obtidos no passo E. Para a i-ésima iteração, obtemos θ̂
(i)

que maximiza

Q(θ|θ̂
(i−1)

), tal que,

Q(θ̂
(i)
|θ̂

(i−1)
) > Q(θ|θ̂

(i−1)
), ∀θ ∈ Θ.

Esse procedimento é repetido até que uma certa margem envolvendo duas avaliações

sucessivas da log-verossimilhança ℓ(θ|y), como |ℓ(θ̂
(i)
)−ℓ(θ̂

(i−1)
)| ou |ℓ(θ̂

(i)
)/ℓ(θ̂

(i−1)
)−

1|, seja pequena o suficiente.

Quando o passo M do algoritmo é dif́ıcil de implementar, é comum substituir este

com uma sequência de passos de maximização restrita (CM), cada uma das quais maxi-

miza Q(θ|θ̂
(i−1)

) sob θ com alguma função de θ mantida fixa. Isto leva a uma simples

extensão do algoritmo EM, chamado de algoritmo ECM (Meng and Rubin, 1993).

1.3 Análise de diagnóstico

Os modelos estat́ısticos são ferramentas importantes para extrair e compreender

caracteŕısticas essenciais de um conjunto de dados. Uma etapa importante na análise

é a verificação de posśıveis afastamentos das suposições feitas no modelo, como, por

exemplo, a existência de observações extremas com alguma interferência nos resultados

do ajuste. Os elementos do conjunto de dados, que efetivamente controlam aspectos da

análise, são ditos influentes se eles produzem alterações no resultado da análise quando

exclúıdos ou submetidos a algum tipo de perturbação.

Existem duas abordagens principais para a detecção de observações influentes. A

primeira abordagem é o método de eliminação de casos (Cook (1977)), é um método

intuitivamente atraente (ver também Cook and Weisberg (1982)), onde o impacto de

se excluir uma observação na previsão é diretamente avaliada por medidas, tais como

afastamento pela verossimilhança e a distância de Cook. A segunda abordagem, que

é uma técnica geral estat́ıstica, utilizada para avaliar a estabilidade das estimativas

com relação ao modelo teórico, é a abordagem de influência local Cook (1986). Após o

trabalho pioneiro de Cook (1986), esse método tem, recentemente, recebido considerável
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atenção na literatura estat́ıstica de modelos de efeito misto (LME/NLME); veja, por

exemplo, Lesaffre and Verbeke (1998), Zhu and Lee (2001), Lee and Xu (2004), Osorio

et al. (2007), Russo et al. (2009), entre outros.

Embora vários estudos de diagnósticos em LME/NLME tenham aparecido na lite-

ratura, nenhum estudo foi feito para diagnóstico de influência em NLMEC/LMEC e

na análise de influência local. A principal dificuldade deve-se ao fato de que função

log-verossimilhança observada dos NLMEC/LMEC envolve integrais intratáveis (por

exemplo, a função de densidade de probabilidade da distribuição multinormal trun-

cada), tornando a aplicação direta da abordagem de Cook (Cook, 1986) para este

modelo muito dif́ıcil, já que as medidas envolvem as derivadas parciais de primeira e

segunda ordem dessa função. Zhu and Lee (2001) desenvolveu uma abordagem para a

realização da análise de influência local em modelos estat́ısticos gerais com dados au-

sentes. Este é baseado na função Q-afastamento, que está relacionada com a esperança

condicional da log-verossimilhança dos dados completos no passo E do algoritmo EM.

Essa abordagem produz resultados muito semelhantes aos obtidos a partir do método

de Cook. Além disso, o método de eliminação de casos pode ser estudado pela função

Q-afastamento seguindo a abordagem proposta por Zhu and Lee (2001).

1.4 Objetivos e organização da pesquisa

Neste trabalho, pretendemos fazer um estudo de inferência estat́ıstica em modelos

lineares e não lineares de efeito misto para dados censurados usando as distribuições

normal e t de Student. Além disso, temos a intenção de fazer diagnóstico de influência

em LMEC/NLMEC usando a distribuição normal. Para o processo de estimação de

máxima verossimilhança, usamos o algoritmo EM. Aproveitando-se da esperança con-

dicional da função de verossimilhança completa, derivamos medidas de diagnóstico.

Assim, os objetivos espećıficos deste trabalho podem ser resumidos como se segue:

1. Apresentar um estudo de estimação e diagnóstico, em modelos lineares e não

lineares de efeito misto para dados censurados, usando a distribuição normal.

2. Apresentar um estudo de estimação, em modelos lineares e não lineares de efeito

misto para dados censurados, usando a distribuição t de Student.
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O trabalho contido nesta dissertação é organizado em quatro caṕıtulos. No Caṕıtulo

2, apresentaremos os LMEC/NLMEC usando a distribuição normal. Depois, iremos

desenvolver o algoritmo EM para estimar os parâmetros do modelo e faremos uma

análise de diagnóstico de influência local e global, baseado na metodologia proposta

por (Cook, 1986) e Poon and Poon (1999). Concluiremos este caṕıtulo com a aplicação

de dois conjuntos de dados usados por Vaida and Liu (2009) e um estudo de simulação

para ilustrar a metodologia proposta.

No Caṕıtulo 3, faremos uma apresentação e uma descrição dos LMEC/NLMEC utili-

zando a distribuição t de Student propondo o algoritmo EM para estimar os parâmetros

nesse modelo. Vamos ilustrar a metodologia proposta com a aplicação de dois conjun-

tos de dados utilizados no caṕıtulo 2. Finalmente, apresentaremos um conjunto de

dados simulados para ilustrar como os procedimentos podem ser usados para avaliar

suposições do modelo, identificar outliers, e obter estimativas robustas dos parâmetros.

Por fim, o Caṕıtulo 4 é dedicado a comentários finais e direções para trabalhos

futuros.



Caṕıtulo 2

The normal linear and nonlinear

mixed-effect models with censored

data

2.1 Introduction

Studies of HIV viral dynamics, often considered to be the a key issue in AIDS

research, considers repeated/longitudinal measures over a period of treatment routinely

analyzed using linear and non-linear mixed effects models (LME/NLME) to assess rates

of changes in HIV-1 RNA level or viral load (Wu, 2005, 2010). Viral load measures the

amount of actively replicating virus and its reduction is frequently used as a primary

endpoint in clinical trials of anti-retroviral (ARV) therapy. However, depending on the

diagnostic assays used, its measurement may be subjected to some upper and lower

detection limits, below or above which they are not quantifiable (resulting in left or

right censoring). The proportion of censored data in these studies may not be small

(Hughes, 1999) and so the use of crude/adhoc methods viz., substituting threshold value

or some arbitrary point such as mid-point between zero and cut-off for detection (Vaida

and Liu, 2009) might lead to biased estimates of fixed effects and variance components

(Wu, 2010).

7
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Our motivating datasets in this study are on HIV-1 viral load, (i) after unstructured

treatment interruption, or UTI (Saitoh et al., 2008) and (ii) set point for acutely infected

subjects from the AIEDRP program (Vaida and Liu, 2009). The former has about 7%

observations below (left-censored) the detection-limits, whereas the later has about 22%

lying above (right-censored) the limits of assay quantifications. As an alternatives to

crude imputation methods, Hughes (1999) proposed a likelihood-based Monte Carlo

EM algorithm (MCEM) for LME with censored responses (LMEC). Vaida et al. (2007)

proposed a hybrid EM using a more efficient Hughes algorithm, extending it to NLME

with censored data (NLMEC). Recently, Vaida and Liu (2009) proposed an exact EM-

type algorithm for LMEC/NLMEC, which uses closed-form expressions at the E-step,

as opposed to Monte Carlo simulations. Strictly speaking, these algorithms are Space

Alternating Generalized EM (SAGE) algorithms (see Vaida et al., 2007).

In this chapter, in order to perform diagnostics analysis in LMEC/NLMEC models,

we first propose a slight modification to the EM-type algorithm proposed by Vaida and

Liu (2009), wherein all the parameters are updated (M-step) by considering the random

effects and the censoring observations as missing data. Then, the diagnostic measures

for assessing the local influence in LMEC/NLMEC are developed and presented. Finally,

the methodology has been illustrated with the analysis of two examples involving HIV

viral measure and an empirical study.

2.2 The multivariate normal and truncated normal-

distribution

A random variable Y is said to follow a p-variate Normal distribution with mean

vector µ and variance matrix Σ (positive definite), denoted by Np(µ,Σ), if the

probability density function (pdf) of Y, is given by

ϕp(y|µ,Σ) =
1

(2π)p/2
|Σ|−1/2 exp

{
−
1

2
(y − µ)⊤Σ−1(y − µ)

}
,

where Φp(u|a,A) and ϕp(u|a,A) are the cdf (left tail) and pdf, respectively, of Np(a,A)

computed at vector u. In order to introduce some notation, for a Normal random vector,

we establish the following proposition which is important for our subsequent research.
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Proposition 1 Let Y ∼ Np(µ,Σ) and Y is partitioned as Y = (Y⊤
1 ,Y

⊤
2 )

⊤, with

dim(Y1) = p1, dim(Y2) = p2, p1 + p2 = p, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
and µ =

(µ⊤
1 ,µ

⊤
2 )

⊤ be the corresponding partitions of Σ and µ. Then

i) Y1 ∼ Np1(µ1,Σ11),

ii) The conditional cdf of Y2|Y1 = y1 is given by

P (Y2 ≤ y2|Y1 = y1) = Φp2 (y2|µ2.1,Σ22.1) , (2.1)

i.e., Y2|Y1 = y1 ∼ Np2

(
µ2.1, Σ̃22.1

)
, where Σ22.1 = Σ22 − Σ21Σ

−1
11 Σ12, µ2.1 =

µ2 + Σ21Σ
−1
11 (y1 − µ1), and FY(.|µ,Σ) denotes the cdf of the p-variate Normal

distribution with parameters µ and Σ.

Now, let TNp(µ,Σ;A) represent a p-variate truncated Normal distribution forNp(µ,

Σ) lying within a right-truncated hyperplane

A = {x = (x1, . . . , xp)
⊤|x1 ≤ a1, . . . , xp ≤ ap}. (2.2)

Specifically, we say that the p-dimensional vector X ∼ TNp(µ,Σ;A), if its density

is given by:

f(x|µ,Σ, ν;A) =
ϕp(x|µ,Σ, ν)

Φp(a|µ,Σ, ν)
IA(x), (2.3)

where a = (a1, . . . , ap)
⊤ and IA(x) is the indicator function whose value equals one if

x ∈ A and zero otherwise.

2.3 Linear mixed effects with censored response

Ignoring censoring for the moment, the classical normal LME models is specified

as follows (Laird and H.Ware, 1982):

yi = Xiβ + Zibi + ϵi, (2.4)

where bi
iid
∼ Nq(0,D) is independent of ϵi

ind.
∼ Nni

(0, σ2Ini
), i = 1, . . . , n; the subscript

i is the subject index; Ip denotes the p × p identity matrix; yi = (yi1, . . . , yini
)⊤ is a
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ni × 1 vector of observed continuous responses for subject i; Xi is the ni × p design

matrix corresponding to the p×1 vector of fixed effects β; Zi is the ni×q design matrix

corresponding to the q × 1 vector of random effects bi; ϵi of dimension (ni × 1) is the

vector of random errors, and the dispersion matrix D = D(α) depends on unknown

and reduced parameters α. In the present formulation, we consider the case where the

response Yij is not fully observed for all i = 1, . . . , n and j = 1, . . . , ni. Let the observed

data for the i-th subject be (Vi,Ci), where Vi represents the vector of uncensored

reading or censoring level, and Ci the vector of censoring indicators, such that

yij ≤ Vij if Cij = 1,

yij = Vij if Cij = 0. (2.5)

For simplicity, we will assume that the data are left-censored and thus the LMEC is

defined. The extensions of theses results to arbitrary censoring can be easily presented.

2.3.1 The likelihood function

Following Vaida and Liu (2009), classical inference on the parameter vector θ =

(β⊤, σ2,α⊤)⊤ is based on the marginal distribution of yi. For complete data, we

have that marginally yi
ind.
∼ Nni

(Xiβ,Σi), where Σi = σ2Ini + ZiDZ⊤
i . For respon-

ses with censoring pattern as in (2.5), we have that yi ∼ TNni
(Xiβ,Σi;Ai), where

TNni
(.;Ai) denotes the truncated normal distribution on the interval Ai, where Ai =

Ai1× . . . ,×Aini, with Aij as the interval (−∞,∞), if Cij = 0 and (−∞, Vij], if Cij = 1.

For computing the likelihood function associated with model (2.4)–(2.5), the first step

is to treat separately the observed and censored components of yi. Let yo
i be the no

i -

vector of observed outcomes and yc
i be the n

c
i -vector of censored observations for subject

i with (ni = no
i + nc

i), such that, Cij = 0 for all elements in yo
i , and 1 for all elements

in yc
i . After reordering, yi, Vi, Xi, and Σi can be partitioned as follows:

yi = vec(yo
i ,y

c
i ), Vi = vec(Vo

i ,V
c
i ), X

⊤
i = (Xo

i ,X
c
i) and Σi =

(
Σoo

i Σoc
i

Σco
i Σcc

i

)
,

where vec(.) denote the function which stacks vectors or matrices of the same number

of columns. Then we have yo
i ∼ Nno

i
(Xo

iβ,Σ
oo
i ), yc

i |y
o
i ∼ Nnc

i
(µi,Si), where µi =
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Xc
iβ + Σco

i (Σ
oo
i )−1(yo

i − Xo
iβ) and Si = Σcc

i − Σco
i (Σ

oo
i )−1Σoc

i . From Vaida and Liu

(2009) and Jacqmin-Gadda et al. (2000), the likelihood function for cluster i (using

conditional probability arguments) is given by

Li(θ) = f(yi|θ) = f(yo
i |θ)f(y

c
i |y

o
i ,θ) = f(yo

i |θ)P (yc
i ≤ Vc

i |y
o
i ,θ)

= ϕno
i
(yo

i |X
o
iβ,Σ

oo
i )Φnc

i
(Vc

i |µi,Si) = Li, (2.6)

which can be evaluated without much computational burden through the routine mvt-

norm() available in R Genz et al. (2008); R Development Core Team (2009). The

log-likelihood function for the observed data is thus given by ℓ(θ|y) =
∑n

i=1{logLi}.

Thus the estimates obtained by maximizing the log-likelihood function ℓ(θ|y) are thus

the maximum likelihood estimates (MLEs).

2.3.2 The EM algorithm

As the observed log-likelihood function involves complex expressions, it is very

difficult to work directly with ℓ(θ|y), either for the ML estimation or to carry out the

influence analysis. For LMEC/NLMEC, an EM-type algorithm was developed by Vaida

and Liu (2009) for the ML estimation, in which β and σ2 are updated by integrating out

bi (marginal model), while D is updated with yi and bi as missing data. We proposed

here an expectation conditional maximization (ECM) algorithm by considering yi and

bi as missing data to update (M-step) all the parameters involved in the model.

Let y = (y⊤
1 , . . . ,y

⊤
n )

⊤, b = (b⊤
1 , . . . ,b

⊤
n )

⊤, V = vec(V1, . . . ,Vn) and C =

vec(C1, . . . ,Cn), and that we observe (Vi,Ci) for the ith subject. Treating b and

y as hypothetical missing data, and augmented with the observed data V,C, we set

yc = (C⊤,V⊤,y⊤,b⊤,u⊤)⊤. Hence, the EM-type algorithm is applied to the complete-

data log-likelihood function ℓc(θ|yc) =
∑n

i=1 ℓi(θ|yc), where

ℓi(θ|yc) = −
1

2

[
log σ2 +

1

σ2
(yi −Xiβ − Zibi)

⊤(yi −Xiβ − Zibi)

+ log |D|+ b⊤
i D

−1bi

]
+ C, (2.7)

and C is a constant that is independent of the parameter vector θ. Given the current

estimate θ = θ̂
(k)
, the E-step calculates the conditional expectation of the complete
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log-likelihood function given by (see appendix)

Q(θ|θ̂
(k)
) = E[ℓc(θ|yc)|V,C, θ̂

(k)
] =

n∑

i=1

Qi(θ|θ̂
(k)
)

=
n∑

i=1

Q1i(β, σ
2|θ̂

(k)
) +

n∑

i=1

Q2i(α|θ̂
(k)
), (2.8)

where

Q1i(β, σ
2|θ̂

(k)
) = −

ni

2
log σ2 −

1

2σ2

[
â
(k)
i − 2β⊤X⊤

i (ŷ
(k)
i − Zib̂

(k)
i ) + β⊤X⊤

i Xiβ
]

and

Q2i(α|θ̂
(k)
) = −

1

2
log |D| −

1

2
tr

(
b̂2
i

(k)
D−1

)
,

with â
(k)
i = tr

(
ŷ2
i

(k)
− 2ŷib⊤

i

(k)

Z⊤
i + b̂2

i

(k)
Z⊤

i Zi

)
, b̂i

(k)
= E{bi|Vi,Ci, θ̂

(k)
} =

φ̂
(k)
i (ŷi

(k)−Xiβ̂
(k)
), b̂2

i

(k)
= E{bib

⊤
i |Vi,Ci, θ̂

(k)
} = Λ̂

(k)

i +φ̂
(k)
i (ŷ2

i

(k)
−ŷi

(k)
β̂

(k)⊤
X⊤

i −

Xiβ̂
(k)
ŷi

(k)⊤+Xiβ̂
(k)
β̂

(k)⊤
X⊤

i )φ̂
⊤
i , ŷib⊤

i = E{yib
⊤
i |Vi,Ci, θ̂

(k)
} = (ŷ2

i

(k)
−

ŷi
(k)
β̂

(k)⊤
X⊤

i )φ̂
⊤
i , with Λ̂

(k)

i = (D̂−1(k) + Z⊤
i Zi/σ̂2

(k)
)−1 and φ̂

(k)
i = Λ̂

(k)

i Z⊤
i /σ̂

2
(k)
.

It is clear that the E-step reduces to the computation of ŷ2
i = E{yiy

⊤
i |Vi,Ci, θ̂} and

ŷi = E{yi|Vi,Ci, θ̂}, that is, the mean and second moment of a truncated multinor-

mal distribution. These can be determined in closed form, as a function of multinormal

probabilities, using a sequence of simple transformations. For more details on the com-

putation of these moments one may refer to Vaida and Liu (2009).

The conditional maximization (CM) steps then conditionally maximizes Q(θ|θ̂
(k)
)

with respect to θ and obtains a new estimate θ̂
(k+1)

, as follows:
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β̂
(k+1)

=

(
n∑

i=1

X⊤
i Xi

)−1 n∑

i=1

X⊤
i

(
ŷi

(k) − Zib̂i

(k)
)
, (2.9)

σ̂2
(k+1)

=
1

N

n∑

i=1

[
â
(k)
i − 2β̂

(k)⊤
X⊤

i (ŷi
(k) − Zib̂i

(k)
) + β̂

(k)⊤
X⊤

i Xiβ̂
(k)
]
, (2.10)

D̂(k+1) =
1

n

n∑

i=1

b̂2
i

(k)
, (2.11)

where N =
∑n

i=1 ni. This process is iterated until some distance between two

successive evaluations of the actual log-likelihood ℓ(θ|y) given in subsection 2.3.1, such

as |ℓ(θ̂
(k+1)

)− ℓ(θ̂
(k)
)| or |ℓ(θ̂

(k+1)
)/ℓ(θ̂

(k)
)− 1|, is small enough.

These expected values can be determined in closed form, using proposition 1, as

follows.

1. If yi = yc
i , i.e, the individual i has only censored components. we have:

ŷ2
i = E{yiy

⊤
i |Vi,Ci, θ̂},

ŷi = E{yi|Vi,Ci, θ̂},

where yi|Vi,Ci ∼ TNni
(µ̂i, Σ̂i;Ai), µ̂i = Xiβ̂, Σ̂i = σ̂2Ini + ZiD̂Z⊤

i and Ai =

{yi = (y1, . . . , yni
)⊤|y1 ≤ Vi1, . . . , yni

≤ Vini
}.

2. If yi = yo
i , i.e, the individual i has non censored components. Then,

ŷ2
i = yiy

⊤
i , ŷi = yi,

and finally

3. If yi = (yc⊤
i ,yo⊤

i )⊤, i.e., for individual i, we observed censored and uncensored

components. Then from Proposition 1 and by the fact that {yi|Vi,Ci},
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{yi|Vi,Ci,y
o
i } and {y

c
i |Vi,Ci,y

o
i } are equivalent processes, we have

ŷ2
i = E{yiy

⊤
i |y

o
i ,Vi,Ci, θ̂} =

(
yo
iy

o⊤
i yo

i ŷ
c⊤
i

ŷc
iy

o⊤
i ŷ2

c

i

)
,

ŷi = E{yi|y
o
i ,Vi,Ci, θ̂} = vec(yoi , ŷ

c
i ),

where ŷc
i = E{yc

i} and ŷ2
c

i = E{yc
iy

c⊤
i }, with yc

i ∼ TNnc
i
(µco

i ,Σ
cc.o
i ;Ac

i), Σ
cc.o
i =

Σcc
i −Σco

i (Σ
oo
i )−1Σoc

i and µco
i = Xc

iβ +Σco
i (Σ

oo
i )−1(yo

i −Xo
iβ).

The variance of the fixed effects in the LMEC is given by (Hughes, 1999)

V ar(β̂) =

(
n∑

i=1

X⊤
i Σ

−1
i Xi −X⊤

i Σ
−1
i V ar(yi|Vi,Ci)Σ

−1
i Xi

)−1

. (2.12)

2.4 Diagnostic analysis

Influence diagnostics techniques consist of evaluating the sensitivity of

the parameter estimates of a particular model when perturbation occurs either in the

data set or in the underlying assumptions of the model. There are primarily two

approaches for detecting influential observations. The first approach is the case-deletion

technique (Cook, 1977), in which is a common approach for analyzing one or more

fitted models after excluding some observations and then assessing by some metrics

such as the likelihood distance and the Cook’s distance. The second method is the

local influence approach (Cook, 1986), which evaluates the changes in the results of the

analysis by incorporating a minor perturbation to the model. By using the results of

Zhu and Lee (2001), we will introduce here the case-deletion measures and the local

influence measures to the censored data on the basis of the following Q-function Q(θ|θ̂).

We discuss first the case-deletion measures, then the local influence, and finally the

perturbation schemes used.

2.4.1 Case-deletion measures

Case-deletion is a common approach to study the effect of dropping the ith case

from the data set. In the following, a quantity with a subscript ”[i]”denotes the original
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quantity with the ith case deleted. The log-likelihood function of θ, based on the

data with the ith case deleted, is denoted by ℓ(θ|Yc[i]). Let θ̂[i] = (β̂
⊤

[i], σ̂
2
[i], α̂

⊤
[i])

⊤

be the maximizer of the function Q[i](θ|θ̂) = E{ℓ(θ|Yc[i])|V,C, θ̂}, where θ̂ is the

ML estimate of θ. To assess the influence of the ith case on the ML estimate θ̂, we

compare the difference between θ̂[i] and θ̂. If the deletion of a case seriously influences

the estimates, more attention need to be paid to that case. Hence, if θ̂[i] is far from θ̂

in some sense, then the ith case is regarded as influential. As θ̂[i] is needed for every

case, the required computational effort can be quite heavy, especially when a sample

is large. Hence, the following one-step pseudo approximation θ̂
1

[i] is used to reduce the

burden (see Cook and Weisberg, 1982; Zhu and Lee, 2001)

θ̂
1

[i] = θ̂ + {−Q̈(θ̂|θ̂)}−1Q̇[i](θ̂|θ̂), (2.13)

where Q̈(θ̂|θ̂) =
∂2Q(θ|θ̂)

∂θ∂θ⊤

∣∣
θ=

̂θ
is the Hessian matrix and Q̇[i](θ̂|θ̂) =

∂Q[i](θ|θ̂)

∂θ

∣∣
θ=

̂θ
,

i = 1, . . . , n, has its elements as follows

Q̇
[i]β(θ̂|θ̂) = ∂Q[i](θ̂|θ̂)/∂β =

1

σ2
E1[i], (2.14)

Q̇[i]σ2(θ̂|θ̂) = ∂Q[i](θ̂|θ̂)/∂σ
2 = −

1

2σ2
E2[i], (2.15)

Q̇[i]α(θ̂|θ̂) = ∂Q[i](θ̂|θ̂)/∂α, (2.16)

where E1[i] =
∑

j ̸=i X
⊤
j (ŷj − Zjb̂j − Xjβ̂) and E2[i] =

∑
j ̸=i(nj −

Aj

σ2 ), with Aj =

aj − 2β̂
⊤
X⊤

j (ŷj − Zjb̂j) + β̂
⊤
X⊤

j Xjβ̂. Finally, Q̇[i]α(θ̂|θ̂) has its elements as

Q̇[i]αr
(θ̂|θ̂) = −

1

2

∑

j ̸=i

tr[D−1Ḋ(r)−D−1Ḋ(r)D−1̂bjb
⊤
j ].

The Hessian matrix Q̈(θ̂|θ̂)

Following Zhu and Lee (2001), to obtain the diagnostic measures for case-deletion

diagnostic and for local influence of a particular perturbation scheme, it is necessary to

compute Q̈(θ|θ̂) =
∑n

i=1 ∂
2Qi(θ|θ̂)/∂θ∂θ

⊤, where θ = (β⊤, σ2,α⊤)⊤ is the parameter

vector. Hence, the Hessian matrix ∂2Qi(θ|θ̂)/∂θ∂θ
⊤ has its elements as follows:
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∂2Qi(θ|θ̂)

∂β∂β⊤
= −

1

σ2
X⊤

i Xi,
∂2Qi(θ|θ̂)

∂β∂σ2
= −

1

σ4
X⊤

i (Yi − Zibi −Xiβ),

∂2Qi(θ|θ̂)

∂β∂αr

= 0,
∂2Qi(θ|θ̂)

∂σ2∂σ2
=

1

2σ4
[ni −

2

σ2
Ai],

∂2Qi(θ|θ̂)

∂σ2∂αr

= 0,
∂2Qi(θ|θ̂)

∂αs∂αr

=
1

2
tr(A(sr))−

1

2
tr(B(sr)̂bib

⊤
i ),

where

A(sr) = D−1[Ḋ(s)D−1Ḋ(r)− D̈(s, r)] and

B(sr) = D−1[Ḋ(s)D−1Ḋ(r) + Ḋ(r)D−1Ḋ(s)− D̈(s, r)]D−1,

with Ḋ(r) = ∂D/∂αr, D̈(s, r) = ∂2D/∂αs∂αr, r, s = 1, . . . , p∗, p∗ = dim(α) and

i = 1, . . . , n. After some rearrangement and evaluating these derivatives at θ = θ̂

we obtain the Hessian matrix Q̈(θ̂|θ̂), which is a block-diagonal matrix of the form

Q̈(θ|θ̂) = diag(Q̈β(θ̂|θ̂), Q̈σ2(θ̂|θ̂), Q̈α(θ̂|θ̂)), where

Q̈β(θ̂|θ̂) = −
1

σ̂2
X⊤X, Q̈σ2(θ̂|θ̂) = −

b

2σ̂4
and Q̈α(θ̂|θ̂) =

n∑

i=1

(
∂2Qi(θ̂|θ̂)

∂αs∂αr

)
,

where X = (X⊤
1 , ...,X

⊤
n )

⊤, b = −
∑n

i=1(ni − 2Ai/σ̂
2).

Next, we will obtain the one-step approximation of θ̂[i] = (β̂
⊤

[i], σ̂
2
[i], α̂

⊤
[i])

⊤, i =

1, . . . , n, based on (2.13). Namely, the relationship between parameter estimates for

full data and the data with the ith case deleted.

Theorem 1 For the LMEC, the relationships between the parameter estimates for full

data and the data with the ith case deleted are as follows:

β̂
1

[i] = β̂ + (X⊤X)−1
E1[i],

σ̂2
1

[i] = σ̂2 −
1

b
E2[i],

α̂
1
[i] = α̂+ {−Q̈α(θ̂|θ̂)}

−1Q̇[i]α(θ̂|θ̂),

where E1[i], E2[i] and Q̇[i]α(θ̂|θ̂), i = 1, . . . , n, are as in (2.14), (2.15) and (2.16),

respectively.
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From Theorem 1, case-deletion measures can be developed for assessing influential

observations, such as the generalized Cook distance and the likelihood distance (Zhu

and Lee, 2001). To assess the influence of the ith case on the ML estimate θ̂, we need

to compare θ̂[i] and θ̂, and if θ̂[i] is far from θ̂ in some sense, then the ith case is

regarded as influential. Based on the metric for measuring the distance between θ̂[i]

and θ̂ proposed by Zhu and Lee (2001) based on the EM algorithm, we consider here

the following generalized Cook distance:

GDi = (θ̂[i] − θ̂)⊤{−Q̈(θ̂|θ̂)}(θ̂[i] − θ̂), i = 1, . . . , n. (2.17)

Upon substituting (2.13) into (2.17), we obtain the approximation:

GD1
i = Q̇[i](θ̂)

⊤{−Q̈(θ̂|θ̂)}−1Q̇[i](θ̂), i = 1, . . . , n.

Since Q̈(θ̂|θ̂) is a diagonal matrix, from Xie et al. (2007), GD1
i can be decomposed

into three parts that corresponds to the generalized Cook distance for parameter subset

β, σ2 and α, which are denoted, respectively, by GD1
i (β), GD1

i (σ
2) and GD1

i (α), as

follows:

GD1
i = GD1

i (β) +GD1
i (σ

2) +GD1
i (α), (2.18)

where

GD1
i (β) = Q̇[i]β(θ̂|θ̂)

⊤{−Q̈β(θ̂|θ̂)}
−1Q̇[i]β(θ̂|θ̂) =

1

σ̂2
E⊤

1[i](X
⊤X)−1E1[i],

GD1
i (σ

2) = Q̇[i]σ2(θ̂|θ̂)⊤{−Q̈σ2(θ̂|θ̂)}−1Q̇[i]σ2(θ̂|θ̂) =
1

2b
E2

2[i],

GD1
i (α) = Q̇[i]α(θ̂|θ̂)

⊤{−Q̈α(θ̂|θ̂)}
−1Q̇[i]α(θ̂|θ̂).

Another measure for the influence of the ith case is the followingQ-distance function,

similar to the likelihood distance LDi (Cook and Weisberg, 1982) is defined as

QDi = 2{Q(θ̂|θ̂)−Q(θ̂[i]|θ̂)}. (2.19)

We can calculate an approximation of the likelihood displacementQDi by substituting
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(2.13) into (2.19), resulting in the following approximation QD1
i of QDi:

QD1
i = 2{Q(θ̂|θ̂)−Q(θ̂

1

[i]|θ̂)}. (2.20)

2.4.2 Local influence

In this subsection we derive the normal curvature of local influence (Cook, 1986)

for some common perturbation schemes either in the model or in the data. We will

consider the case-weight, scale matrix perturbation schemes and response perturbation

schemes, for this purpose.

Consider a perturbation vector ω = (ω1, ..., ωg)
⊤ varying in an open region Ω ⊂ Rg.

Let ℓc(θ,ω|yc) be the complete-data log-likelihood to the perturbed model. We assume

that there is a ω0 in Ω such that ℓc(θ,ω0|yc) = ℓc(θ|yc) for all θ. Let θ̂(ω) denote

the maximum of the function Q(θ,ω|θ̂) = E[ℓc(θ,ω|yc)|V,C, θ̂]. The influence graph

is then defined as α(ω) = (ω⊤, fQ(ω))⊤, where fQ(ω) is the Q-displacement function

defined as follows:

fQ(ω) = 2
[
Q
(
θ̂|θ̂
)
−Q

(
θ̂(ω)|θ̂

)]
.

Following the approach of Cook (1986) and Zhu and Lee (2001), the normal curvature

CfQ,d of α(ω) at ω0 in the direction of some unit vector d can be used to summarize

the local behavior of the Q-displacement function. It can be shown that

CfQ,d = −2d⊤Q̈ωo
d and − Q̈ω0

= ∆⊤
ω0

{
−Q̈(θ̂|θ̂)

}−1

∆ω0
,

where Q̈(θ̂|θ̂) =
∂2Q(θ|θ̂)

∂θ∂θ⊤
|
θ=

̂θ
and ∆ω =

∂2Q(θ,ω|θ̂)

∂θ∂ω⊤
|
θ=

̂θ(ω)
.

Following the same procedure as in Cook (1986), the quantity −Q̈ω0
is quite useful

for detecting influential observations. From the spectral decomposition of a symmetric

matrix−2Q̈ω0
=
∑g

k=1 ζkεkε
⊤
k , where {(ζk, εk), k = 1, . . . , g} are eigenvalue–eigenvector

pairs of −2Q̈ω0
with ζ1 ≥ . . . ≥ ζr > ζr+1 = . . . = 0 and orthonormal eigenvectors

{εk, k = 1, . . . , g}, Zhu and Lee (2001) proposed to inspect all eigenvectors corresponding

to nonzero eigenvalues for capturing more information. Based on the work of Zhu and

Lee (2001), we consider the following aggregated contribution vector of all eigenvectors

that corresponding to nonzero eigenvalues. Let ζ̃k = ζk/(ζ1+. . .+ζr), ε
2
k = (ε2k1, . . . , ε

2
kg)

⊤
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and M(0) =
∑r

k=1 ζ̃kε
2
k. The lth component of M(0), M(0)l, is equal to

∑r
k=1 ζ̃kε

2
kl.

The assessment of influential cases is based on the visual inspection of the {M(0)l, l =

1, . . . , g} plotted against the index l. The lth case may be regarded as influential if

M(0)l is larger than the benchmark.

The inconvenience on the use of the normal curvature is in deciding about the

influence of the observations, since CfQ,d(θ) may assume any value and it is not invariant

under a uniform change of scale. Based on the work of Poon and Poon (1999) in using

a conformal normal curvature, Zhu and Lee (2001) considered the following conformal

normal curvature BfQ,d(θ) = CfQ,d(θ)/tr[−2Q̈ω0
], whose computation is quite simple

and also has the property that 0 ≤ BfQ,d(θ) ≤ 1. Let dl be a basic perturbation vector

with lth entry as 1 and all other entries as zero. Zhu and Lee (2001) showed that for

all l, M(0)l = BfQ,dl
. We can therefore obtain M(0)l via BfQ,ul

.

So far, there is not a general rule to judge the largeness of the influence of a specific

case in the data. Let M(0) and SM(0) denote, respectively, the mean and the standard

error of {M(0)l : l = 1, . . . , g}, where M(0) = 1/g. Poon and Poon (1999) proposed to

use 2M(0) as benchmarks for M(0). However, we may use different functions of M(0).

For instance, Zhu and Lee (2001) proposed to use M(0) + 2SM(0) as a benchmark to

take into account the variance of {M(0)l : l = 1, . . . , g}. According to Lee and Xu

(2004), the exact choice of the function of M(0) as the benchmark is subjective. More

recently, Lee and Xu (2004) proposed to use M(0) + c∗SM(0), where c∗ is a selected

constant, and depending on the application, c∗ may be taken to be any value. In this

work, we will consider c∗ = 3, 5.

2.4.3 Perturbation schemes

Now, in this subsection, we will evaluate the ∆ matrix under the following

perturbation schemes for LMEC models. Case-weight made for detecting observations

with outstanding contribution on the log-likelihood function and that may exercise high

influence on the maximum likelihood estimates. Scale perturbation made on the scale

matrix Σi = σ2Ini + ZiDZ⊤
i . It also can be made on either σ2 or D which may reveal

individuals that are most influential, in the sense, of the likelihood displacement on

the scale structure. Finally, perturbation of response variables made on the response

values, which may indicate observations with large influence on the MLE. In our case
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the response variables are V′s.

For each perturbation scheme, one has the partitioned form

∆ωo
= (∆⊤

β ,∆
⊤
σ2 ,∆⊤

α )
⊤,

where ∆β =
∂2Q(θ,ω|θ̂)

∂β∂ω⊤
|ωo
∈ Rp×g, ∆σ2 =

∂2Q(θ,ω|θ̂)

∂σ2∂ω⊤
|ωo
∈ R1×g and ∆α =

(∆⊤
α1, . . . ,∆

⊤
αp∗)

⊤, with ∆αr =
∂2Q(θ,ω|θ̂)

∂αr∂ω⊤
|ωo
∈ R1×g, r = 1, . . . , p∗ and g being the

dimensions of the perturbation vector ω.

Case weight perturbation

First, we consider an arbitrary attribution of weights for the expected value of

the complete-data log-likelihood function (perturbed Q–function), which may capture

departures in general directions, represented by writing

Q(θ,ω|θ̂) = E[ℓc(θ,ω|yc)|V,C, θ̂] =
n∑

i=1

ωiE[ℓi(θ|yc)|V,C, θ̂] =
n∑

i=1

ωiQi(θ|θ̂).

Here ω = (ω1, . . . , ωn)
⊤ is an n × 1 vector and ωo = (1, . . . , 1)⊤. In addition, it is

possible to show that the local influence for this perturbation scheme is equivalent to

the deletion method discussed in previous subsection. For this perturbation scheme,

we find

∆β =
1

σ2
X⊤D(ϵ1, . . . , ϵn),

∆σ2 = −
1

2σ2
n⊤ +

1

2σ4
m⊤,

∆αr
= [

∂Q1(θ|θ̂)

∂αr

, . . . ,
∂Q1(θ|θ̂)

∂αr

], r = 1, . . . , p∗,

where n = (n1, . . . , nn)
⊤, m = (A1, . . . , An)

⊤, D(ϵ1, . . . , ϵn) is a block-diagonal matrix,

with ϵi = ŷi − Zib̂i −Xiβ̂i and
∂Q1(θ|θ̂)

∂αr

= −
1

2
tr[D−1Ḋ(r)−D−1Ḋ(r)D−1b̂2

i ].

Scale matrix perturbation
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To study the effects of departures from the assumption regarding the scale matrix,

we consider the perturbationsD(ωi) = ω−1
i D or σ2(ωi) = ω−1

i σ2, for i = 1, . . . , n. Under

this perturbation scheme, the non-perturbed model is obtained when ωo = (1, . . . , 1)⊤.

Moreover, the perturbed Q-function is as in (2.8), switching D(ωi) and σ2(ωi) with D

and σ2, respectively. The matrix ∆ω0
has its elements as follows:

• Perturbation on D: ∆β = 0, ∆σ2 = 0 and ∆αr
= 1

2
[g1, . . . , gn], where gi =

D−1Ḋ(r)D−1b̂2
i , r = 1, . . . , p∗.

• Perturbation on σ2: ∆β = 1
σ2X

⊤D(ϵ1, . . . , ϵn), ∆σ2 =
1

2σ4
m⊤ and ∆α = 0.

Response perturbation

A perturbation of the response variables Vij, i = 1, . . . , n, j = 1, . . . , ni, can be

introduced by replacing Vij by Vij(ω) = Vij + ωisij, where sij is a scale factor. Now

substituting Vij(ω) into (2.5), we can write perturbed model as

yij(ω) ≤ Vij if Cij = 1,

yij(ω) = Vij if Cij = 0,

where yij(ω) = yij − ωisij. Hence, the perturbed Q-function Qi(θ|θ̂,ω) is as in

subsection 2.3.2, with ŷi, ŷ2
i and ŷib⊤

i replaced by with ŷiω = ŷi − ωisi, ŷ2
iω =

ŷ2
i − ωi(ŷis

⊤
i + siŷ⊤

i ) + ω2
i sis

⊤
i and ŷiωb⊤

iω = ŷib⊤
i − ωisib̂⊤

i , respectively, with si =

(si1, . . . , sini
)⊤. Under this perturbation scheme the vector ω0, representing no

perturbation, is given by ω0 = 0 and ∆ω0
has the following elements:

∆β = −
1

σ2
X⊤D(s1, . . . , sn),

∆σ2 = −
1

σ4
(Y − Zb−Xβ)⊤D(s1, . . . , sn),

∆α = 0,

where Y = (ŷ⊤
1 , . . . , ŷ

⊤
n )

⊤, b = (b̂1, . . . , b̂n)
⊤ and D(s1, . . . , sn) is a block-diagonal

matrix.
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2.5 The nonlinear case

The NLME (Pinheiro and Bates, 2000) is defined as:

yi = η(ϕi,Xi) + ϵi, ϕi = Aiβ +Bibi, i = 1, . . . , n, (2.21)

where bi ∼ Nq(0,D) and ϵi ∼ Nni
(0, σ2I) are independent; yi is a (ni × 1) vector of

observed continuous responses for subject i; η is a nonlinear function of the individual

random parameter ϕi; Ai and Bi are known design matrices of dimensions r × p and

r× q respectively, possibly depending on some covariable values; β is the (p× 1) vector

of fixed effects and bi is the (q × 1) vector of random effects.

As mentioned by Vaida and Liu (2009), the linearization (L) procedure to obtain

the approximate MLE of θ = (β⊤, σ2,α⊤)⊤ involves of taking the first-order Taylor

expansion of ηi around the current parameter estimate β̃ and the random effect estimates

b̃i (empirical predictors), which is equivalent to iteratively solving the following LME

model (L-step)

ỹi = W̃iβ + H̃ibi + ϵi, i = 1, . . . , n, (2.22)

where ỹi = yi − η̃(ϕ(β̃, b̃i),Xi), bi
ind
∼ Nq(0,D) and ϵi

ind.
∼ Nni

(0, σ2
eIni

), H̃i =
∂η(Aiβ +Bibi,Xi)

∂b⊤
i

|
bi=b̃i

and W̃i =
∂η(Aiβ +Bibi,Xi)

∂β⊤
i

|
β

i
=

˜β
i

, and η̃(ϕ(β̃, b̃i),Xi) =

η(ϕ(β̃, b̃i),Xi)−W̃iβ̃− H̃ib̃i. Thus, for censored response the linearized model (2.22)

is an LME with censored data, with same structure as (2.4), which is then solved as

detailed in the previous section. The model matrices in (2.22) depends on the current

parameter value, and need to be recalculated at each iteration. The algorithm iterates

to convergence between L-, E-, and CM-steps. Moreover, the influence diagnostic

procedures discussed earlier in Section 2.4 can be incorporated along with

the approximation in (2.22) to obtain approximate influence diagnostics measures for

NLMEC.

2.6 Application

We illustrate the performance of the proposed methods with the analysis of two HIV

datasets, previously analyzed by Vaida and Liu (2009), and the analysis of a simulated

example.
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2.6.1 UTI data

The first application is a study of 72 perinatally HIV-infected children (Saitoh et al.,

2008). The data set is available in the R package lmec. Primarily due to treatment

fatigue, unstructured treatment interruptions (UTI) is common in this population.

Suboptimal adherence can lead to antiretroviral (ARV) resistance and diminished

treatment options in the future. The subjects in the study had taken ARV

therapy for at least 6 months before UTI, and the medication was discontinued for

more than 3 months. Out of 362 observations, 26 (7%) observations were below the

detection limits (50 or 400 copies/mL) and considered left-censored at these values.

The individual profiles of viral load at different follow-up times after UTI is presented

in Figure 3.1 (right panel). We consider a profile LME model with random intercepts

bi as yij = bi + βj + ϵij, where yij is the log10 HIV RNA for subject i at time tj,

t1 = 0, t2 = 1, t3 = 3, t4 = 6, t5 = 9, t6 = 12, t7 = 18, t8 = 24. The log10 transformation

of HIV viral load is used to stabilized the variance of viral load and make the viral

load more normally distributed. A summary of these parameter estimates and their

respective p-values are presented in Table 2.1. These results are coherent with those

indicated in Vaida and Liu (2009). From Table 2.1, we note that all the regression

parameters are significant at 5% level.

Tabela 2.1: Parameter estimates of the LMEC model and p-values for the UTI data.
SE indicates the standard error.

Parameter Estimate SE p-value

β̂1 3.6038 0.1253 < 0.01

β̂2 4.1664 0.1285 < 0.01

β̂3 4.2413 0.1304 < 0.01

β̂4 4.3604 0.1307 < 0.01

β̂5 4.5662 0.1398 < 0.01

β̂6 4.5692 0.1485 < 0.01

β̂7 4.6773 0.1646 < 0.01

β̂8 4.7935 0.2018 < 0.01

σ̂2 0.3414
α̂ 0.76535
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Global influence

In order to identify outlying observations under the fitted model, the index plot of

the Mahalanobis distance di = (ŷi −Xiβ̂)
⊤Σ−1

i (ŷi −Xiβ̂), i = 1, . . . , 72, is displayed

in Figure 2.1(a). We can see from this figure that observations #42 appear as possible

outliers. To evaluate the effect on the ML estimates when some observation is eliminated,

we analyze the QD1
i and GD1

i index plots, which are shown in Figures 2.1(b) and 2.2(a),

respectively. We note from these figures that two cases (#20,#42) are potentially

influential on the parameter estimates. Figures 2.2(b)-(d) present the index plots of

GD1
i (γ), for γ = β, σ2, α, respectively. From these figures we see that observation

#42 is influential with regard to the parameters β and σ2, while observation #20 is

influential with regard to the parameter α.
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Figura 2.1: UTI data. (a) Mahalanobis distance and (b) Approximate likelihood displace-
ment QD1

i . The influential observations are numbered.

Local influence

Next, we conduct a local influence study on the UTI data, based on M(0) with

interest focussing on θ. Here we use the criterion M(0)i > M(0) + 3SM(0), i =

1, . . . , 72, to discriminate whether an observation is influential or not. Figure 2.3 pre-

sents the index plots of M(0) under the four perturbation schemes discussed in 2.4.3.
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From this figure it is noted that observation #42 appears as influential under case

weight and scale matrix σ2 perturbation, while observation #20 is more influential un-

der perturbation on the scale matrix D. However, no one observation appears to be

influential under response variable perturbation.
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Figura 2.2: UTI data. (a) Approximate generalized Cook distance GD1
i , (b) GD1

i for subset
β, (c)GD1

i for subset σ
2 and (d)GD1

i for subset α. The influential observations are numbered.

In order to assess the impact of the two observations that have been highlighted as

potentially influential on the ML estimates, we refitted the proposed LMEC model by
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Tabela 2.2: RC (in %) for the UTI data.

Dropped RCβ̂1
RCβ̂2

RCβ̂3
RCβ̂4

RCβ̂5
RCβ̂6

RCβ̂7
RCβ̂8

RC
σ̂2

RCα̂

{#20} 1.28 1.13 1.14 1.14 1.07 0.74 0.71 0.75 0.41 19.07
{#42} 0.49 0.44 0.72 1.10 0.29 0.26 0.59 1.04 10.40 0.93

{#20,#42} 0.93 1.69 1.97 2.36 0.89 0.62 0.24 0.16 10.05 18.48

dropping each one of these cases. Let I1 = {20}, I2 = {42} and I3 = {20, 42} denotes

the sets of observations identified as influential. Table 2.2 presents the relative changes

(RC) in percentage of these estimates defined by

RCγ̂ =

∣∣∣∣
γ̂ − γ̂[i]

γ̂

∣∣∣∣ ,

where γ = β1, . . . , β8, σ
2, α and γ̂[i] denotes the ML estimate of γ̂ after the set Ii, (i =

1, 2, 3) has been removed. Even though some RC are large, significants changes in

β are not observed. It is of interesting to notice from Table 2.2 the coherence with

the diagnostic graphics shown in Figure 2.2 (as we would expect). For instance,

the elimination of the observation #20 leads to a large change in the RC of α and

elimination of the observation #42 leads to a large change in the RC of σ2. Moreover,

the elimination of the set of observations #20,#42 leads to a large change in the RC

of α and σ2.

2.6.2 AIEDRP study

The second AIDS case study is from the AIEDRP program, a large multicenter

observational study of subjects with acute and early HIV infection. We consider 320

untreated individuals with acute HIV infection; for more details on this dataset see

Vaida and Liu (2009). Of the 830 recorded observations, 185 (22%) were above the

limit of assay quantification, hence they were considered as right-censored. Following

Vaida and Liu (2009), we choose a five-parameter NLME model (inverted S-shaped

curve) as follows:

yij = α1i +
α2

(1 + exp((tij − α3)/α4))
+ α5i(tij − 50) + ϵij, (2.23)
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Figura 2.3: UTI data. Index plot of M(0) for assessing local influence on θ under (a) Case
weight perturbation, (b) Perturbation on D, (c) Perturbation on σ2 and (d) Perturbation on
the response variable for the UTI data. The influential observations are numbered.

where yij is the log10 HIV RNA for subject i at time tij. The parameters α1i and α2

are the setpoint value and the decrease from the maximum HIV RNA. In the absence

of treatment (following acute infection), the HIV RNA varies around a set-point which

may differ among individuals, hence the set point is chosen to be subject-specific. The

location parameter α3 indicates the time point at which half of the change in HIV RNA
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is attained, α4 is a scale parameter modeling the rate of decline and α5i allows for

increasing HIV RNA trajectory after day 50. To force the parameters to be positive,

we re-parameterize as follows: β1i = log(α1i) = β1 + b1i; βk = log(αk), k = 2, 3, 4 and

α5i = β5 + b2i.Table 2.3 lists the ML estimates for the parameters, together with their

corresponding standard errors, calculated via Equation (2.12). From Table 2.3, we note

that all the regression parameters are significant at 5% level, except the parameter β2.

Tabela 2.3: Parameter estimates of the NLMEC model and p-values for the AIEDRP
data. SE indicates the standard error.

Parameter Estimate SE p-value

β̂1 1.6096 0.0137 <0.01

β̂2 0.1422 0.0949 0.1340

β̂3 3.5262 0.0237 <0.01

β̂4 1.0559 0.2677 0.01

β̂5 -0.0035 0.0014 0.01

σ̂2 0.2652
α̂11 0.0177
α̂12 0.0002
α̂22 0.00004
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Figura 2.5: AIEDRP data. (a) Approximate generalized Cook distance GD1
i , (b) GD1

i for
subset β, (c) GD1

i for subset σ2 and (d) GD1
i for subset α. The influential observations are

numbered.

Global influence

In order to identify outlying observations under the fitted model, the index plot of

the Mahalanobis distance is displayed in Figure 2.4(a). We can see from this figure

that observations #9, #166, #230 and #259 appear as possible outliers. As

in the previous application, to evaluate the effect on the ML estimates when some
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Figura 2.6: AIEDRP data. Index plot of M(0) for assessing local influence on θ under (a)
Case weight perturbation, (b) Perturbation onD, (c) Perturbation on σ2 and (d) Perturbation
on the response variable. The influential observations are numbered.

observation is eliminated, we analyze the case deletion measures QD1
i and GD1

i , which

are shown in Figures 2.4(b) and 2.5(a), respectively. We note from these figures that

cases #9,#166,#195,#230 and #259 are all potentially influential with regard to the

full parameter estimate θ. On the other hand, from figures 2.5(b)-(d), where we present

the index plots of GD1
i (γ), for γ = β, σ2, α, respectively, we can see that observations
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#166,#195 and #230 are influential with regard to the regression parameters β, while

only observation #259 is influential with regard to the parameter α.

Local influence

Next, we conduct a local influence study for the AIEDRP data, based on M(0)

with interest focussing on θ. Figure 2.6 presents the index plots of M(0) under the

four perturbation schemes discussed in 2.4.3. From this figure it is noted that observa-

tions #9,#166,#195,#230 and #259 all appear as influential under case weight and

scale- σ2 perturbation, while only observations #198 and #259 are more influential

under perturbation on the scale matrix D. It is noted also that different observations

#174,#175,#176 and #259 appear out as influential under response variable

perturbation. It is important to emphasize that, as in the uncensored case, the influence

measure GD1
i considered here is closely related to the local influence measure based on

the case weight perturbation.

2.6.3 Simulation Study

Results from analysis of a simulated example are presented here to illustrate the

performance of the proposed diagnostic measures. We consider a logistic model similar

to the one in 2.23, with random set points α1i and random decline rates α4i, as follows

yij = α1i +
α2

(1 + exp((tij − α3)/α4i))
+ ϵij,

where i = 1, . . . , 100, j = 1, . . . , 10, α1i = exp(β1 + b1i), βk = log(αk), k = 2, 3 and

α4i = exp(β4 + b2i), (b1i, b2i)
ind.
∼ N2 (0,D) and ϵij

ind.
∼ Nni

(0, σ2
eIni

).

We set β = (1.6094, 0.6931, 3.8067, 2.3026)⊤, σ2 = 0.55, and D with elements D11 =

0.0025, D12 = −0.001 and D22 = 0.0100. In addition, and twenty percent (20%) of all

observations were censored.

After generating yij, i = 1, . . . , 100, j = 1, . . . , 10, we perturbed the response

variable of the individual #85 as follows: y85j ← y85j + 1.5. By using the approach

describe in previous sections, we compute for global influence the case deletion measure

QD1
i and local influence based on M(0) for the response and case weight perturbations.
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As expected, we observe from Figure 2.7 the influence of the observation #85, This

reveals that the influence measures have detected what they are supposed to detect,

but at the same time suggest and give no false influential cases.
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Figura 2.7: Simulated data sets. (a)Approximate likelihood displacement, (b) Case weight
perturbation, (c) Perturbation on the response variable. The influential observations are
numbered.

2.7 Conclusions

This chapter provides a new insight into classical diagnostics methods for censored

linear and nonlinear mixed effects models, typically used for analyzing censored HIV

viral load outcomes, and also presents an useful expectation conditional maximization

(EMC) algorithm, which enable the development of diagnostics influence measures.

Explicit expressions are obtained for the Hessian matrix Q̈ and for matrix the ∆ un-

der different perturbation schemes. For NLMEC, the analysis is mathematically (and

computationally) feasible through a linearization procedure. The proposed methodology

has been applied to two recent (left and right-censoring) AIDS studies, which is fre-

ely downloadable from R. Our findings about the influential observations for these two

datasets agree with those presented in Lachos et al. (2011) from a Bayesian perspective.

The proposed methods can be extended to interval-censored longitudinal data,

following the work of Sinha et al. (1999). On the other hand, the models developed

here do not consider skewness in the responses because typically in HIV-AIDS studies,

the responses (censored viral load) is log-transformed to achieve a ‘close to normality’

shape. However, features of non-normality, such as skewness and thick-tails, need to be

incorporated into the proposed methodology to come up with a more general framework



2.7. Conclusions 33

for censored mixed models. So in the next chapter we will propose a robust parametric

modeling of LMEC/NLMEC based on the multivariate-t distribution.
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Caṕıtulo 3

The Student-t linear and nonlinear

mixed-effect models with censored

data

3.1 Introduction

In this chapter we propose a robust parametric modeling of LMEC/NLMEC based

on the multivatiate-t distribution, so that the t-LMEC/t-NLMEC is defined and a fully

likelihood based approach is considered, including the implementation of an exact ECM

algorithm for maximum likelihood (ML) estimation. As in Vaida and Liu (2009), we

show that the E-step reduces to computing the first two moments of certain truncated

multivariate-t distributions. The general formulas for these moments were derived by

Lin et al. (2011) (eq. 12 and 13). They require the multivariate-t cumulative density

function (cdf), for which we use the mvtnorm() package (Genz et al., 2008) in R (R

Development Core Team, 2009). The likelihood function is easily computed as a by-

product of the E-step and is used for monitoring convergence and for model selection,

such as, the Akaike information criterion (AIC), the Bayesian information criterion

(BIC) and the likelihood ratio test (LR). The methodology has been illustrated with

the analysis of two examples involving HIV viral measure and an empirical study.

35
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3.2 The multivariate t and truncated t-distribution

A random variable Y is said to follow a p-variate t distribution with location vector

µ, scale matrix Σ (positive definite) and degrees of freedom ν (ν > 0), denoted by

tp(µ,Σ, ν), if it can be represented by

Y = µ+ U−1/2Z, Z ∼ Np(0,Σ), U ∼ Gamma(ν/2, ν/2), (3.1)

where Z and U are independent and Gamma(α, β) stands for a gamma distribution

with mean α/β, and density denoted by G(.|α, β). We then obtain the probability

density function (pdf) of Y, given by

tp(y|µ,Σ, ν) =
Γ(p+ν

2
)

Γ(ν
2
)πp/2

ν−p/2|Σ|−1/2

(
1 +

δ

ν

)−(p+ν)/2

,

where Γ(.) is the standard gamma function and δ = (y − µ)⊤Σ−1(y − µ) is the

Mahalanobis distance. The cdf will be denoted by Tp(.|µ,Σ, ν). If ν > 1, µ is the

mean of Y, and if ν > 2, ν(ν − 2)−1Σ is its covariance matrix. As ν tends to infinity,

U converges to one with probability one, and so Y becomes marginally multivariate

normal with mean µ and covariance matrix Σ. The family of t-distributions thus

provides a heavy-tailed alternative to the normal family with mean µ and covariance

matrix that is equal to a scalar multiple of Σ (if ν > 2). In order to introduce some

notation, for a Student-t random vector, we establish the following proposition which

is important for our subsequent research.

Proposition 2 Let Y ∼ tp(µ,Σ, ν) and Y is partitioned as Y = (Y⊤
1 ,Y

⊤
2 )

⊤, with

dim(Y1) = p1, dim(Y2) = p2, p1 + p2 = p, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
and µ =

(µ⊤
1 ,µ

⊤
2 )

⊤ be the corresponding partitions of Σ and µ. Then

i) Y1 ∼ tp1(µ1,Σ11, ν),

ii) The conditional cdf of Y2|Y1 = y1 is given by

P (Y2 ≤ y2|Y1 = y1) = Tp2

(
y2|µ2.1, Σ̃22.1, ν + p1

)
, (3.2)

i.e., Y2|Y1 = y1 ∼ tp2

(
µ2.1, Σ̃22.1, ν + p1

)
, where Σ̃22.1 =

(
ν + δ1
ν + p1

)
Σ22.1, δ1 =
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(y1 − µ1)
⊤Σ−1

11 (y1 − µ1), Σ22.1 = Σ22 − Σ21Σ
−1
11 Σ12, µ2.1 = µ2 + Σ21Σ

−1
11 (y1 −

µ1), and Tp(.|µ,Σ, ν) denotes the cdf of the p-variate Student-t distribution with

parameters µ, Σ and ν.

Proof 1 The proof of i) is straightforward from (3.1). The proof of (ii), follows from

Proposition 4 given in Arellano-Valle and Genton (2010) by setting λ = τ = 0.

Now, let Ttp(µ,Σ, ν;A) represent a p-variate truncated t distribution for tp(µ,Σ, ν)

lying within a right-truncated hyperplane

A = {x = (x1, . . . , xp)
⊤|x1 ≤ a1, . . . , xp ≤ ap}. (3.3)

Specifically, we say that the p-dimensional vector X ∼ Ttp(µ,Σ, ν;A), if its density

is given by:

f(x|µ,Σ, ν;A) =
tp(x|µ,Σ, ν)

Tp(a|µ,Σ, ν)
IA(x), (3.4)

where a = (a1, . . . , ap)
⊤ and IA(x) is the indicator function whose value equals one if

x ∈ A and zero elsewhere. The following propositions are crucial for evaluating some

conditional expectations of the proposed ECM algorithm for censored mixed effects

models.

Proposition 3 If X ∼ Ttp(µ,Σ, ν;A), with A as defined in (3.3), then

E

{(
ν + p

ν + δ

)r

X(k)

}
= cp(ν, r)

Tp(a|µ,Σ
∗, ν + 2r)

Tp(a|µ,Σ, ν)
EW{W

(k)}, k = 0, 1, 2,

where cp(ν, r) =

(
ν + p

ν

)r (
Γ((p+ ν)/2)Γ((ν + 2r)/2)

Γ(ν/2)Γ((p+ ν + 2r)/2)

)
, W ∼ Ttp(µ,Σ

∗, ν + 2r;A),

δ = (X − µ)⊤Σ−1(X − µ), a = (a1, . . . , ap)
⊤, Σ∗ =

ν

ν + 2r
Σ, W(0) = 1, W(1) = W,

W(2) = WW⊤ and ν + 2r > 0.

Proof 2 First note that if X ∼ tp(µ,Σ, ν), then we can write

(
ν + p

ν + δ

)r

tp(x|µ,Σ, ν) = cp(ν, r)tp(x|µ,Σ
∗, ν + 2r). (3.5)

It follows that

E

{(
ν + p

ν + δ

)r

X(k)

}
= cp(ν, r)

Tp(a|µ,Σ
∗, ν + 2r)

Tp(a|µ,Σ, ν)
E
{
X(k)|X ≤ a

}
,
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which concludes the proof.

Proposition 4 Let X ∼ Ttp(µ,Σ, ν;A), with A as defined in (3.3). Consider the

partition X⊤ = (X⊤
1 ,X

⊤
2 ) with dim(X1) = p1, dim(X2) = p2, p1 + p2 = p, and the

corresponding partition of the parameters µ, Σ, a = (ax1 , ax2) and A = (Ax1 ,Ax2).

Then under the notation given in Proposition 2 we have

E

{(
ν + p

ν + δ

)r

X
(k)
2 |X1

}
=

dp(p1, ν, r)

(ν + δ1)r
Tp2(a

x2 |µ2.1, Σ̃
∗

22.1, ν + p1 + 2r)

Tp2(a
x2 |µ2.1, Σ̃22.1, ν + p1)

EW{W
(k)},

where dp(p1, ν, r) = (ν + p)r
(
Γ((p+ ν)/2)Γ((p1 + ν + 2r)/2)

Γ((p1 + ν)/2)Γ((p+ ν + 2r)/2)

)
, W ∼ Ttp2(µ2.1, Σ̃

∗

22.1,

ν + p1 + 2r;Ax2), δ = (X − µ)⊤Σ−1(X − µ), δ1 = (X1 − µ1)
⊤Σ−1

11 (X1 − µ1), a
x2 =

(a1, . . . , ap2)
⊤, Σ̃

∗

22.1 =

(
ν + δ1

ν + 2r + p1

)
Σ22.1 , W(0) = 1, W(1) = W W(2) = WW⊤,

ν + p1 + 2r > 0 and k = 0, 1, 2.

Proof 3 First note that if X ∼ tp(µ,Σ, ν), then using the result given in Proposition

2-(ii), we have

(
ν + p

ν + δ

)r

tp2

(
x2|µ2.1, Σ̃22.1, ν + p1

)
=

dp(p1, ν, r)

(ν + δ1)r
tp2(x2|µ2.1, Σ̃

∗

22.1, ν + p1 + 2r)

(3.6)

and the proof concludes by noting that

E

{(
ν + p

ν + δ

)r

X
(k)
2 |X1

}
=

dp(p1, ν, r)

(ν + δ1)r
Tp2(a

x2 |µ2.1, Σ̃
∗

22.1, ν + p1 + 2r)

Tp2(a
x2 |µ2.1, Σ̃22.1, ν + p1)

E
{
X

(k)
2 |X2 ≤ ax2

}
,

where X
(k)
2 ∼ tp2

(
µ2.1, Σ̃

∗

22.1, ν + p1 + 2r
)
.

Formulas for E{W} and E{WW⊤}, whereW ∼ Ttp(µ,Σ, ν;A), have been recently

developed in closed form by Lin et al. (2011) (eq. 12 and 13), which depend on

the multivariate-t cdf. The computation uses existing functions for the multivariate-t

cumulative distribution, for which the pmvt() of the mvtnorm library (Genz et al.,

2008) from R can be used.
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3.3 Linear mixed effects with censored response

For robust estimation of the parameters, we proceed as in Pinheiro et al. (2001) by

considering a generalization of the classical N–LME as follows:

yi = Xiβ + Zibi + ϵi, (3.7)

with the assumption that

(
bi

ϵi

)
ind.
∼ tni+q

((
0

0

)
,

(
D 0

0 σ2Ini

)
, ν

)
, i = 1, . . . , n, (3.8)

where the subscript i is the subject index; Ip denotes the p × p identity matrix;

yi = (Yi1, . . . , Yini
)⊤ is a ni × 1 vector of observed continuous responses for sample

unit i, Xi is the ni × p design matrix corresponding to the fixed effects, β is a p × 1

vector of population-averaged regression coefficients called fixed effects, Zi is the ni× q

design matrix corresponding to the q × 1 vector of random effects bi, ϵi is the ni × 1

vector of random errors, and the dispersion matrix D = D(α) depends on unknown

and reduced parameters α.

From (3.8), it is clear that marginally

bi
iid
∼ tq(0,D, ν) and ϵi

iid
∼ tni

(0, σ2Ini
, ν), i = 1, . . . , n. (3.9)

Note that bi and ϵi are uncorrelated, once Cov(bi, ϵi) = E{biϵ
⊤
i } = E{E{biϵ

⊤
i |Ui}} =

0, where Ui is defined in 3.1. Classical inference on the parameter vector θ =

(β⊤, σ2,α⊤, ν)⊤ is based on the marginal distribution for yi, which are marginally

distributed as

yi
ind.
∼ tni

(Xiβ,Σi, ν), (3.10)

for i = 1, . . . , n, where Σi = σ2Ini+ZiDZ⊤
i . The estimates from the multivariate t-LME

are more robust against outliers than those based on the standard LME. In a simulation

study, Pinheiro et al. (2001) showed that the t-LME substantially outperforms the

normal or standard LME when outliers are present in the data. The gains in efficiency

in estimating the parameter is particularly high for the variance - covariance parameters.
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This problem has been also discussed by Wu (2010) in the context of censored mixed

effects models.

Following Vaida and Liu (2009), we consider the case in which the response Yij

is not fully observed for all i, j. Thus, let the observed data for the i-th subject be

(Vi,Ci), where Vi represents the vector of uncensored reading or censoring level, and

Ci the vector of censoring indicators:

yij ≤ Vij if Cij = 1,

yij = Vij if Cij = 0, (3.11)

so that, the t-LMEC is defined. For simplicity we will assume that the data are left-

censored. The extensions to arbitrary censoring are immediate. It follows that for

responses with censoring pattern as in (3.11), we have that marginally

yi ∼ Ttni
(Xiβ,Σi, ν;Ai),

where Ai = Ai1 × . . . ,×Aini, with Aij as the interval (−∞,∞) if Cij = 0 and the

interval (−∞, Vij] if Cij = 1.

3.3.1 The likelihood function

The likelihood function, can be easily computed by using a sequence of simple

steps. The first step is to treat separately the observed and censored components of yi.

Partition yi into the observed and censored parts: yi = vec(yo
i ,y

c
i ), that is, Cij = 0 for

all elements in yo
i , and 1 for all elements in yc

i ; write accordingly Vi = vec(Vo
i ,V

c
i ),

where vec(.) denote the function which stacks vectors or matrices of the same number

of columns. Then, from Proposition 2, we have that yo
i ∼ tno

i
(Xo

iβ,Σ
oo
i , ν), yc

i |y
o
i ,∼

tnc
i
(µco

i ,S
co
i , ν + no

i ), where

µco
i = Xc

iβ +Σco
i Σ

oo−1
i (yo

i −Xo
iβ), (3.12)

Sco
i =

(
ν + δ(yo

i )

ν + no
i

)
Σcc.o

i , (3.13)
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with Σcc.o
i = Σcc

i −Σco
i Σ

oo−1
i Σoc

i and δ(yo
i ) = (yo

i −Xo
iβ)

⊤Σoo−1
i (yo

i −Xo
iβ). Thus, the

likelihood for cluster i is given by

Li(θ) = f(yi|θ) = f(yo
i |θ)f(y

c
i |y

o
i ,θ) = f(yo

i |θ)P (yc
i ≤ Vc

i |y
o
i ,θ)

= tno
i
(Vo

i |X
o
iβ,Σ

oo
i , ν)Tnc

i
(Vc

i |µ
co
i ,S

co
i , ν + no

i ) = Li. (3.14)

Therefore, the log-likelihood function for the observed data is given by ℓ(θ|y) =∑n
i=1{logLi}. This can be computed at each step of the EM-type algorithm without

additional computational burden, because Li’s are computed at the E-step (see subsection

3.3.2). In addition, the log-likelihood can be used to monitor the convergence of the algorithm

and for model selection (AIC, BIC, LR).

Lucas (1997) developed an interesting study on the robust aspects of the Student-t M-

estimator in the univariate case using influence functions. He showed that the protection

against outliers is preserved only if the degrees of freedom parameter is fixed. Otherwise, if

the degrees of freedom is also estimated by maximum likelihood, the influence functions for ν

and the change of variance function of the location parameter are not bounded. In this work

we will maintain fixed the degrees of freedom and the shape parameters for Student-t, and we

will use a model selection procedure based on the AIC or BIC to choose the most appropriate

values of ν (see Lange et al., 1989; Meza and Osorio, 2011). Thus, hereafter we consider that

the parameter vector is θ = (β⊤, σ2,α⊤)⊤.

3.3.2 The EM algorithm

The EM algorithm originally proposed by Dempster, Laird and Rubin (1977) has several

appealing features such as stability of monotone convergence with each iteration increasing

the likelihood and simplicity of implementation. However, ML estimation in model (3.7), (3.8)

and (3.11) is complicated such that the EM algorithm is less advisable due to a computational

difficulty in the M-step. To cope with this problem, we apply an extension of EM algorithm,

called the ECM (Meng and Rubin, 1993) algorithm, which shares the appealing features of the

EM and has a typically faster convergence rate than the EM in the sense of a small amount

of iterations or actual computer time.

Let y = (y⊤
1 , . . . ,y

⊤
n )

⊤, b = (b⊤
1 , . . . ,b

⊤
n )

⊤, u = (u1, . . . , un)
⊤, V = vec(V1, . . . ,Vn)

and C = vec(C1, . . . ,Cn), such that we observe (Vi,Ci) for the i-th subject. Treating b,

u and y as hypothetical missing data, and augmented with the observed data V,C, we set

yc = (C⊤,V⊤,y⊤,b⊤,u⊤)⊤. Hence, the ECM algorithm is applied to the complete-data
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log-likelihood function ℓc(θ|yc) =
∑n

i=1 ℓi(θ|yc), given by

ℓi(θ|yc) = −
1

2

[
ni log σ

2 +
ui
σ2

(yi −Xiβ − Zibi)
⊤(yi −Xiβ − Zibi)

+ log |D|+ uib
⊤
i D

−1bi

]
+ h(ui|ν) + C, (3.15)

where C is a constant that is independent of the parameter vector θ and h(ui|ν) is a density of a

Gamma(ν/2, ν/2). Given the current estimate θ = θ̂
(k)

, the E-step calculates the conditional

expectation of the complete log-likelihood function given by (see appendix)

Q(θ|θ̂
(k)

) = E[ℓc(θ|yc)|V,C, θ̂
(k)

] =

n∑

i=1

Qi(θ|θ̂
(k)

)

=

n∑

i=1

Q1i(β, σ
2|θ̂

(k)
) +

n∑

i=1

Q2i(α|θ̂
(k)

), (3.16)

where

Q1i(β, σ
2|θ̂

(k)
) = −

ni

2
log σ2 −

1

2σ2

[
â
(k)
i − 2β̂

(k)⊤
X⊤

i (ûy
(k)
i − Ziûb

(k)

i )

+û
(k)
i β̂

(k)⊤
X⊤

i Xiβ̂
(k)
]

and

Q2i(α|θ̂
(k)

) = −
1

2
log |D| −

1

2
tr

(
ûb2

i

(k)
D−1

)
,

with â
(k)
i = tr

(
ûy2

i

(k)
− 2ûybi

(k)
Z⊤
i + ûb2

i

(k)
Z⊤
i Zi

)
; ûb2

i

(k)
= E{uibib

⊤
i |Vi,Ci, θ̂

(k)
} =

σ̂2
(k)

Λ̂
(k)

i +φ̂
(k)
i (ûy2

i

(k)
−ûy

(k)
i β̂

(k)⊤
X⊤

i −Xiβ̂
(k)

ûy
(k)⊤
i +û

(k)
i Xiβ̂

(k)
β̂
(k)⊤

X⊤
i )φ̂

⊤
i ; ûb

(k)

i =

E{uibi|Vi,Ci, θ̂
(k)
} = φ̂

(k)
i (ûy

(k)
i −û

(k)
i Xiβ̂

(k)
); ûybi

(k)
= E{uiyib

⊤
i |Vi,Ci, θ̂

(k)
} = (ûy2

i

(k)
−

ûy
(k)
i β̂

(k)⊤
X⊤

i )φ̂
⊤
i , where Λ̂

(k)

i = (σ̂2
(k)

D̂−1(k) + Z⊤
i Zi)

−1 and φ̂
(k)
i = Λ̂

(k)

i Z⊤
i .

Note that in this case we do not consider the computation of E[h(ui|ν)|V,C, θ̂
(k)

], be-

cause ν is fixed.

The conditional maximization (CM) steps then conditionally maximizes Q(θ|θ̂
(k)

) with

respect to θ and obtains a new estimate θ̂
(k+1)

, as described below:
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β̂
(k+1)

=

(
n∑

i=1

û
(k)
i X⊤

i Xi

)−1 n∑

i=1

X⊤
i

(
ûy

(k)
i − Ziûb

(k)

i

)
, (3.17)

σ̂2
(k+1)

=
1

N

n∑

i=1

[
â
(k)
i − 2β̂

(k)⊤
X⊤

i (ûy
(k)
i − Ziûb

(k)

i ) + û
(k)
i β̂

(k)⊤
X⊤

i Xiβ̂
(k)
]
, (3.18)

D̂(k+1) =
1

n

n∑

i=1

ûb2
i

(k)
, (3.19)

where N =
∑n

i=1 ni. This process is iterated until some distance involving two successive

evaluations of the log-likelihood ℓ(θ|y) described in subsection 3.3.1, like |ℓ(θ̂
(k+1)

)−ℓ(θ̂
(k)

)| or

|ℓ(θ̂
(k+1)

)/ℓ(θ̂
(k)

)−1|, is small enough. That is, convergence is declared when the improvement

in log-likelihood falls below a certain preset limit. In practice, pmvt() shows small random

variability, which leads to non-increasing log-likelihood beyond a certain level. The variability

due to pmvt() can be controlled using the algorithm = GenzBretz(value) argument.

From (3.17)-(3.19) it is clear that the E-step reduces only to the computation of ûy2
i , ûyi

and ûi. These expected values can be determined in closed form, using propositions 2-4, as

follows.

1. If yi = yc
i , i.e, the individual i has only censored components. Then from Proposition

3, we have:

ûy2
i = E{uiyiy

⊤
i |Vi,Ci, θ̂} =

Tni
(Vi|µi,Σ

∗
i , ν + 2)

Tni
(Vi|µi,Σi, ν)

E{WiW
⊤
i },

ûyi = E{uiyi|Vi,Ci, θ̂} =
Tni

(Vi|µi,Σ
∗
i , ν + 2)

Tni
(Vi|µi,Σi, ν)

E{Wi},

ûi = E{ui|Vi,Ci, θ̂} =
Tni

(Vi|µi,Σ
∗
i , ν + 2)

Tni
(Vi|µi,Σi, ν)

,

where Wi ∼ Ttni
(µi,Σ

∗
i , ν + 2;Ai), µi = Xiβ, Σ

∗
i =

ν

ν + 2
Σi, Σi = σ2Ini + ZiDZ⊤

i

and Ai = {Wi = (w1, . . . , wni
)⊤|w1 ≤ Vi1, . . . , wni

≤ Vini
}.

2. If yi = yo
i , i.e, the individual i has non censored components. Then,

ûy2
i =

ν + ni

ν + δ(yi)
yiy

⊤
i , ûyi =

ν + ni

ν + δ(yi)
yi, ûi =

ν + ni

ν + δ(yi)
,

where δ(yi) = (yi −Xiβ)
⊤Σ−1

i (yi −Xiβ), and finally

3. If yi = (yc⊤
i ,yo⊤

i )⊤, i.e., for individual i, we observed censored and uncensored
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components. Then from Proposition 4 and by the fact that {yi|Vi,Ci},

{yi|Vi,Ci,y
o
i } and {y

c
i |Vi,Ci,y

o
i } are equivalent processes, we have

ûy2
i = E{uiyiy

⊤
i |y

o
i ,Vi,Ci, θ̂} =

(
yo
iy

o⊤
i ûi ûiy

o
i ŵ

c⊤
i

ûiŵ
c
iy

o⊤
i ûiŵ2

c

i

)
,

ûyi = E{uiyi|y
o
i ,Vi,Ci, θ̂} = vec(yoi ûi, ŵ

c
i ),

ûi = E{ui|y
o
i ,Vi,Ci, θ̂} =

(
no
i + ν

ν + δ(yo
i )

)
Tp(Vi|µ

co
i , S̃co, ν + no

i + 2)

Tp(Vi|µco
i ,Sco, ν + no

i )
,

where S̃co =

(
ν + δ(yo

i )

ν + 2 + no
i

)
Σcc.o

i , ŵc
i = E{Wi} and ŵ2

c

i = E{WiW
⊤
i }, with Wi ∼

Ttnc
i
(µco

i , S̃co, ν + no
i + 2;Ac

i ) and Σcc.o
i , µco

i and Sco are as in (3.12)-(3.13).

3.3.3 Estimation of random effects and the expected

information matrix

In this subsection we consider an empirical Bayes inference for the random effects, that is,

the minimum mean squared error (MSE) predictor of bi, that is useful for evaluating subject-

specific quantities such as individual intercepts and slopes. Thus, if values of parameter vector

θ = (β⊤, σ2,α⊤)⊤ and ν were known, the conditional mean of bi given Ci, Vi is

b̂i(θ) = E{bi|Vi,Ci} = E{E{E{bi|ui}|yi, ui}|Vi,Ci}

= E{ΛiZ
⊤
i (yi −Xiβ)|Vi,Ci} = ΛiZ

⊤
i (ŷi −Xiβ), (3.20)

where Λi is defined in subsection 3.3.2 and ŷi = E{yi|Vi,Ci} is the first moment of the

truncated multivariate-t distribution (Ttni
(Xiβ,Σi, ν;Ai)). In practice, the empirical Bayes

estimators of bi, b̂i, can be obtained by substituting the ML estimate θ̂ into (3.20), which

leads to b̂i = b̂i(θ̂). The conditional covariance matrix of bi given Ci, Vi is

V ar{bi|Vi,Ci} = E{bib
⊤
i |Vi,Ci} − b̂i(θ)b̂i(θ)

⊤

=
ν + ni

ν + ni − 2
E

{
(

ν + ni

ν + δ(yi)
)−1|Vi,Ci

}
Λiσ

2 +ΛiZ
⊤
i (ŷ

2
i − ŷiŷ

⊤
i )ZiΛi,

where ŷ2
i = E{yiy

⊤
i |Vi,Ci} is the second moment of the truncated multivariate-t distribution

(Ttni
(Xiβ,Σi, ν;Ai)) These expected values can be easily accomplished from steps [1]-[3]

given above as a by-product of our proposed ECM algorithm (E-step).
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Louis (1982) derives a result that can be used to adjust the variances of the estimated

fixed effects for the information lost due to censoring. Using this method, from the results

given in Appendix B in Lange et al. (1989), an asymptotic approximation for the variances

of the fixed effects is given by (see Appendix A.2):

Jββ = V ar(β̂) =

(
n∑

i=1

ν + ni

ν + ni + 2
X⊤

i Σ
−1
i Xi −

n∑

i=1

X⊤
i Σ

−1
i BiΣ

−1
i Xi

)−1

, (3.21)

where Bi = V ar

{
ν + ni

ν + δ(yi)
(yi −Xiβ)|Vi,Ci

}
, with yi ∼ Ttni

(Xiβ,Σi, ν;Ai). Asymptotic

confidence intervals and hypothesis tests for the fixed effects are obtained assuming that the

MLE β has approximately a Np(β,J
−1

ββ
) distribution. In practice, Jββ is usually unknown

and has to be replaced by its MLE Ĵββ .

3.4 The nonlinear case

Extending the notation of the previous section and ignoring censoring, we first propose

the following general mixed-effects model in which the random terms are assumed to follow a

multivariate-t distribution (t-NLME).

Let yi = (yi1, . . . , yini
)⊤ denote the (continuous) response vector for subject i and η =

(η(Xi1,ϕi), . . . , η(Xini
,ϕi))

⊤ be a nonlinear vector valued differentiable function of the

individuals random parameter ϕi and a vector of covariates Xi. The t-NLME can then be

expressed as:

yi = η(ϕi,Xi) + ϵi, ϕi = Aiβ +Bibi, (3.22)

where the joint distribution of (bi, ϵi) is as in (3.8), Ai and Bi are known design matrices of

dimensions r×p and r×q respectively, possibly depending on some covariable values, β is the

(p×1) vector of fixed effects, bi is the (q×1) vector of random effects. Thus, from the properties

of the multivariate-t distribution, we have that marginally, ϕi
ind
∼ tr(Aiβ,BiDB⊤

i , ν) and

ϵi
ind.
∼ tni

(0, σ2Ini
, ν), and as in the linear case, they are uncorrelated because Cov(ϕi, ϵi) = 0.

For NI-NLME with non censoring responses, the marginal distribution is given by

f(y|θ) =

n∏

i=1

∫ ∞

0

∫

Rq

ϕni
(yi; η(ϕi,Xi), u

−1
i σ2Ini

)ϕq(ϕi;Aiβ, u
−1
i BiDB⊤

i )

×G(ui|ν/2, ν/2)dϕidui, (3.23)

which generally does not have a closed form expression because the model function is not
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linear in the random effect. In the normal case, various approximations (viz. first-order

Taylor series expansion of the model function around the conditional mode of bi, says b̃i)

have been proposed to achieve tractable numerical optimizations (Wu, 2010). Most algorithms

for computing the approximate MLE θ̂ and empirical Bayes estimators (predictors) for the

random effects b̂i considers iterative maximization of the approximate log-likelihood functions

ℓ(θ, b̃) =
∑n

i=1 log f(yi|θ, b̃i). Following Taylor series expansions, we have the following

theorems. The first uses a point in a neighborhood of the conditional mode b̃i as the expansion

point and it has been proven useful for implementation of model selection, in a Bayesian

context (Lachos et al., 2011). The second, useful for the implementation of the EM algorithm,

uses simultaneously neighborhood of bi and β as expansions points, with the advantage that

the likelihood is completely linearized (in bi and β). We call these LME approximations

and can be considered as extensions of the result given in Lindstrom and Bates (1990) and

Pinheiro and Bates (2000) for the Student-t case.

Theorem 2 Let b̃i be an expansion point in a neighborhood of bi, then under the t–NLME

model as in (3.22), the marginal distribution of yi, can be approximated as yi
.
∼ tni(η(Aiβ +

Bib̃i,Xi)− H̃ib̃i, Ṽi, ν), where Ṽi = H̃iDH̃⊤
i + σ2Ini

,

H̃i =
∂η(Aiβ +Bibi,Xi)

∂b⊤
i

|
bi=b̃i

and
.
∼ denotes approximated in distribution.

Proof 4 See Lachos et al. (2011).

The next theorem allows the implementation of the EM algorithm.

Theorem 3 Let b̃i and β̃ be expansion points in a neighborhood of bi and β, respectively,

then under the t-NLME model as (3.22)–(3.8), we have the following linearized model

ỹi = W̃iβ + H̃ibi + ϵi, i = 1, . . . , n, (3.24)

where ỹi = yi − η̃(Aiβ̃ + Bib̃i,Xi), bi
ind
∼ tq(0,D, ν) and ϵi

ind.
∼ tni

(0, σ2Ini
, ν), H̃i =

∂η(Aiβ +Bibi,Xi)

∂b⊤
i

|
bi=b̃i

and W̃i =
∂η(Aiβ +Bibi,Xi)

∂β⊤
i

|
βi=

˜βi

and η̃(β̃, b̃i) = η(Aiβ̃ +

Bib̃i,Xi)− H̃ib̃i − W̃iβ̃,

Proof 5 Based on first-order Taylor expansion of the function η around b̃i and β̃, we have

that

η(Aiβ +Bibi,Xi) ≈ [η(Aiβ̃ +Bib̃i,Xi) + H̃ibi − H̃ib̃i + W̃iβ − W̃iβ̃]
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with H̃i =
∂η(Aiβ +Bibi,Xi)

∂b⊤
i

|
bi=b̃i

and W̃i =
∂η(Aiβ +Bibi,Xi)

∂β⊤
i

|
βi=

˜βi

. It follows that

ϵi = yi − η(Aiβ +Bibi,Xi) ≈ yi − [η(Aiβ̃ +Bib̃i,Xi) + H̃ibi − H̃ib̃i + W̃iβ − W̃iβ̃]

= yi − [η̃(β̃, b̃i) + W̃iβ + H̃ibi] = ỹi − [W̃iβ + H̃ibi],

which concludes the proof.

The empirical Bayes estimates of the random effects b̃, given in (3.20), can be used

iteratively in the linearization procedure from Theorem 2. Note that the distribution of bi|yi

is approximately symmetric (Student-t), and thus b̃i is the mode of the distribution at each

step. As commented by Vaida and Liu (2009), the linearization (L) procedure to obtain the

approximate MLE of θ = (β⊤, σ2,α⊤)⊤ consists to iteratively solving the LME model (L-

step) in (3.24). For censored response the linearized model (3.24) is an LME with censored

data, with same structure as (3.7)-(3.8), which is then solved as indicated in the previous

section. The model matrices in (3.24) depends on the current parameter value, and needs to

be recalculated at each iteration. The algorithm iterates to convergence between L-, E-, and

CM-steps.

3.5 Model choice

A variety of information criteria exist to properly determine the best choice among a set

of competing models. To identify the best selected model support by the data, we adopt the

AIC and the BIC, which are the two most commonly used model selection tools. Both criteria

can be applied to non-nested and to nested models, but not always lead to the same choice.

Basically, there is no clear consensus regarding which criterion is better to use. A combined

use of AIC and BIC would be of help to screening reasonable candidate models.

A formal test concerning the appropriateness of using the normal model H0 : ν−1 = 0

versus t model H1 : ν−1 > 0 is nontrivial since the null hypothesis is on the boundary of

the parameter space. For testing parameters under non-standard settings, Self and Liang

(1987) have shown the limiting distribution of the likelihood ratio test (LR) statistic will

follow a mixture of chi-square distributions. Referring to Case 5 of Self and Liang (1987), the

LR statistic under H0 : ν−1 = 0 is an equally weighted mixture of χ2
0 and χ2

1 distributions,

where χ2
0 denotes a degenerate distribution with all of its mass or probability at zero. In this

case, the critical values are 1.65, 2.71 and 5.41 at the 10%, 5% and 1% significance levels,

respectively.
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3.6 Application

We illustrate the performance of the proposed methods with the analysis of two HIV datasets,

previously analyzed in chapter 2, and the analysis of a simulated example.

3.6.1 UTI data

The first application is the same study used in 2.6.1, a study of 72 perinatally HIV-infected

children (Saitoh et al., 2008).

Vaida and Liu (2009) and we analyzed the same dataset by fitting a similar N-LMEC

via EM algorithm, but from Figure 1 given in Lachos et al. (2011) it is clear that inference

based on normality assumptions are questionable (presence of thick tails). We revisit the UTI

data with the aim of providing robust inferences, from a frequentist perspective, by using the

Student-t distribution. The ML estimates were obtained using the ECM algorithm described

in subsection 3.3.2. Starting values were obtained by using the library lmec.
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Figura 3.1: UTI data. (Left panel) Plot of the profile log-likelihood of the degrees of
freedom ν. (Right panel) Individual profiles and overall mean (in log10 scale) using
the Normal and t distributions for HIV viral load at different follow-up times. The
trajectories for the influential individuals are numbered.

For the Student-t model, we assumed that the degree of freedom ν is know and by using

the AIC criterion we found ν = 10 (see left panel in Figure 1). It is a first indication that the

normal model is inadequate. Table 3.1 presents the ML estimate of θ and the corresponding
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Tabela 3.1: ML estimates under normal and Student-t models fitted to the UTI data.
SE are the corresponding standard errors.

N-LMEC T-LMEC
Parameter estimate SE estimate SE

β1 3.6038 0.1253 3.6182 0.1238
β2 4.1664 0.1285 4.2532 0.1311
β3 4.2413 0.1304 4.3137 0.1332
β4 4.3604 0.1307 4.4580 0.1338
β5 4.5662 0.1398 4.6229 0.1435
β6 4.5692 0.1485 4.6112 0.1532
β7 4.6773 0.1646 4.6978 0.1709
β8 4.7935 0.2018 4.7874 0.2111
σ2 0.3414 0.3503
α 0.7653 0.6662
ν - - 10 -

AIC 844.1172 759.0148
BIC 883.0337 797.9312

standard errors of the fixed effects. Comparing these values we notice a similarity between the

estimates under normal and Student-t models. Additionally, the inferences for the variance

components are similar for the two models, but are not comparable since they are on different

scales. According to the AIC or BIC values, given at the bottom of Table 3.1, we notice

also that the t-LMEC model perform better than the N-LMEC model. For the LR statistics

described in Subsection 3.5, we have that the maximum log-likelihood for the N-LMEC model

is −412.059 and for the t-LMEC model is −369.507, corresponding to a likelihood ratio

statistics of LR = 42.552. Here the LR statistic follows a equally weighted mixture of χ2
0 and

χ2
1 distributions. Therefore, the resulting p-value 3.441×10−11 guarantees the appropriateness

of the use of the multivariate-t distribution.

With missing-at-random assumption as in Vaida and Liu (2009), our dropout (censored)

model does not bias the inference regarding the mean of βj . For both models the mean viral

load E(yij) = βj increases gradually throughout 24 months for the two models. For the best

model (t-LMEC), the mean viral load increases from 3.62 at the time of UTI to 4.79 at 24

months. The estimates of the between-subject (α) and within-subject (σ2) scale parameters

(in log10 scale) are 0.6662 and 0.3503, respectively.

To determine possible influential observations, we use the Mahalanobis distance d2i (θ) =

(ŷi−Xiβ̂)
⊤Σ−1

i (ŷi−Xiβ̂), i = 1, . . . , 72. As in Pinheiro et al. (2001), replacing θ and bi with
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Figura 3.2: UTI data. (a) Mahalanobis distance, (b) Estimated d2ei (error) and (c) Estimated
d2bi

(R.E.), for the N-LMEC model.

their current estimates, we obtain the following decomposition for the Mahalanobis distance:

d2i (θ̂) = (ŷi −Xiβ̂)
⊤(σ̂2Ini + Z⊤

i D̂Zi)
−1(ŷi −Xiβ̂)

= −
1

σ̂2
êi

⊤êi + b̂i
⊤
D̂b̂i,= d̂2ei + d̂2bi

where êi = ŷi − Xiβ̂ − Zib̂i where b̂i is as in (3.20). The estimated distances d2ei (Error)

and d2bi
(Random Effect-R.E.) provide a useful diagnostic statistics for identifying subjects

with outlying observations (see, for example, Meza and Osorio, 2011). Figure 3.2 presents

these diagnostic statistics for N-LMEC model. Subjects #42 present large values of d2i and

d2ei , suggesting an outlying observation at the within-subject level (e-outlier). Moreover,

observations #20, #35 and #41 presents large value of d2bi
, suggesting outlying observations

at the between-subject level (b-outlier). Under a Bayesian paradigm, these observations were

also detected as influential in the work by Lachos et al. (2011).

It is well known that outlying observations may affect the estimation of the parameters

under assumptions of normality. However, when we use the Student-t distribution, the EM

algorithm allows to accommodate these discrepant observations attributing to them small

weights in the estimation procedure. The estimated weights (ûi, i = 1, . . . , 72) for the t-

LMEC model are presented in Figure 3.3. We observe from Figure that observations #20,

#35, #41 and #42, indicated as outliers under the normal model, take smaller weights,

confirming the robust aspects of the MLE against outlying observations under the t-LMEC

model. The robustness of the t-LMEC is also observed in Figure 3.1 (right panel), where

the presence of these outliers might have underestimated the predicted mean curve for the

N-LMEC model as compared to the t-LMEC model. In summary, we can see from this
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Figura 3.3: UTI data. Estimated weight ûi for the t-LMEC fit. The influential
observations for the N-LMEC are numbered.

example that the robust aspects of the t-LME models (Pinheiro et al., 2001) against outlying

observations are also extended to the case in which censoring components are present.

3.6.2 AIEDRP study

The second AIDS case study is from the AIEDRP program, and is the same study in

2.6.2.

Within a classical framework, we use the Student-t (t-NLMEC) with the ECM algorithm as

described in subsection 3.3.2. As in the previous application, the estimation of the parameters

ν was chosen following the strategy proposed by Lange et al. (1989), which selects a small

value for ν = 10 (see left panel in Figure 3.4). This parameter act as tuning constant in robust

estimation methods and in our case we see that this choice provide adequate protection against

outliers. For the sake of model comparison, we also fit the N-NLMEC counterparts, which

can be treated as the reduced t-NLMEC as ν tends to infinity.

Table 3.2 lists the ML estimates parameters for the N-LMEC model and the t-LMEC

model, together with the corresponding standard errors of the fixed effects and the associated

AIC and BIC values. From this table, we observe that the standard errors of the t-NLMEC are

smaller, indicating that the Student-t model to produce more precise estimates. According to

the AIC or BIC values, the t-NLMEC provided much improved model fits over the N-NLMEC.
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Tabela 3.2: ML estimates under normal and Student-t models fitted to the AIEDRP
data. SE are the corresponding standard errors.

N-LMEC T-LMEC
Parameter estimate SE estimate SE

β1 1.60964 0.0147 1.61148 0.0133
β2 0.14217 0.0949 0.16122 0.0849
β3 3.52617 0.0237 3.52370 0.0208
β4 1.05585 0.2677 0.98713 0.2458
β5 -0.0035 0.0014 -0.0031 0.0013
σ2 0.26521 0.20726
α11 0.01769 0.01611
α12 0.00016 0.00013
α22 0.00004 0.00004
ν - - 10 -

AIC 1610.814 1581.416
BIC 1700.521 1623.908
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Figura 3.5: AIEDRP data. (a) Mahalanobis distance, (b) Estimated d2ei (error) and (c)
Estimated d2bi

(R.E.). The influential observations are numbered.

In fact, the maximum log-likelihood for the N-LMEC is -781.708 and for the t-LMEC model

is -775.951, corresponding to the likelihood ratio statistics of 11.508 (p-value = 0.00035), this

also reinforce the conclusion that the t-LMEC model fits the data significantly better than

N-LMEC model.

To identify outlying observations, we compute the Mahalanobis distance d2i (θ̂), i =

1, . . . , 320, the estimated distances d2ei (Error) and d2bi
(Random Effect), were also computed

for the normal case. Figure 3.5 presents these diagnostic statistics for the N-LMEC model.

We can see from this figures that observations #9, #166, #230 and #259 appear as possible

outliers. The observations #9, #166 and #230 presents large value of d2ei , suggesting an

e-outlier. Moreover, observation #259 presents large value of d2bi
, suggesting an b-outlier.

From figure 3.4 (right panel), the fitted viral load curve appears to be underestimated as

compared to the t-NLMEC due to the presence of these outliers. This suggests that t-NLMEC,

which down-weights the influence of outliers, provides an appropriate way for achieving robust

inference.

The robustness of the t-LMEC model can be assessed by considering the influence of a

single outlying observation on the ML estimate of θ. In particular, we can assess how much

the ML estimates of θ influences by a change of δ units in a single observation yik. We

replace a single observation yik by yik(δ) = yik + δ, and record the relative change in the

estimates ((θ̂(δ)− θ̂)/θ̂), where θ̂ denotes the original estimate and θ̂(δ) the estimate for the

contaminated data. In this application we contaminated the first observation on subject 198

and varied δ between -10 and 10. In Figure 3.6 we present the results of the relatives changes of

the estimates β and σ2 for different values of δ, under the N-NLMEC and t-NLMEC models.

As expected, the estimates from the t-NLMEC is less affected by variations of δ than the
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Figura 3.6: AIEDRP data. Relative changes on the ML estimates of θ from the N-
NLMEC (solid line) and the t-NLMEC (dashed line) for different contaminations δ.

3.6.3 Simulation studies

To study the performance of our proposed methodology we conduct a simulation study

to illustrate the linear and nonlinear cases. The goal of this simulation study is to investigate

the consequences on parameter inference when the normality assumption is inappropriate as

well as to investigate whether the model comparison measures, AIC and BIC determines the

best-fitting model to the simulated data.

The linear case

To study the linear regression, we consider the following linear mixed model:

yij = β0 + β1tij + b0i + b1itij + ϵij , i = 1, . . . , 100, j = 1, . . . , 6, (3.25)
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where (b0i, b1i)
iid.
∼ t2(0,D, ν), ϵij ∼ t(0, σ2, ν). We set tij = (2, 4, 6, 8, 10, 24), β⊤ = (β0, β1) =

(−2.83,−0.18), D =

[
0.049 0.001

0.001 0.002

]
, σ2 = 0.15 and ν = 4.

We choose various settings of censoring proportions, 5%, 10%, 20% and 50%, to study the

effect of the level of censoring in the estimation. This way, we have 4 different simulation

settings with 100 simulated datasets for each setting. Once the simulated data is generated, we

fit the LMEC model assuming normal and Student-t distributions. For each of the simulations,

we fit the model given in (3.25) assuming normal and Student-t distributions. For each

simulation, the parameters estimation as well as AIC and BIC were recorded. Table 3.3

presents the summary statistics for β (the fixed-effects parameters) assuming normal and

Student-t distributions for the 4 censoring patterns. In the Table, MC Mean denotes the

arithmetic average of the 100 estimates given by
∑100

j=1 γ̂j/100 and MC Sd is the arithmetic

average of the 100 posterior standard deviations given by
∑100

j=1 sd(γ̂j)/100, where γ = β1, β2

or σ2. In addition, we also estimate the MC coverage of β1 and β2, i.e. the proportion of

times the 95% confidence interval includes the true value of the fixed effects.
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Figura 3.7: Simulation studies. (a) Represents the bias of β1 in comparison with the
true value for the normal and Student-t models for the 4 censoring patterns (5%, 10%,
20%, 50%)in the LMEC setup. (b) Presents the Mean Square Error (MSE) for β1 for
the normal and Student-t models.

From Table 3.3, we observe that the Student-t distribution over perform the normal

distribution at all levels of censoring. Figure 3.7 shows that for the normal distribution there
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Tabela 3.3: Monte Carlo results based on 100 simulated Student-t samples. MC
mean and MC Sd (in parenthesis) and MC Coverage are the respective mean estimates,
standard deviations and coverage proportion average from fitting LMEC with Student-t
and normal assumptions with different settings of censoring proportions. IM Sd are the
average values of the approximate standard errors obtained through the information-
based method. MC AIC and MC BIC are the arithmetic average of the respective
model comparison measures.

Simulated Student-t data

Censoring Fit β1 β2 σ2 MC AIC MC BIC
5% Normal MC Mean -2.839 -0.179 0.285 604.261 626.484

IM Sd 0.068 0.010
MC Sd 0.065 (0.006) (0.072)
MC Coverage 98% 99%

Student-t MC Mean -2.831 -0.180 0.154 554.302 576.525
IM Sd 0.055 0.008
MC Sd (0.052) (0.005) (0.023)
MC Coverage 95% 100%

10% Normal MC Mean -2.822 -0.180 0.281 569.744 591.966
IM Sd 0.070 0.010
MC Sd (0.061) (0.006) (0.078)
MC Coverage 99% 99%

Student-t MC Mean -2.830 -0.179 0.150 526.334 548.557
IM Sd 0.057 0.008
MC Sd (0.059) (0.006) (0.024)
MC Coverage 97% 100%

20% Normal MC Mean -2.824 -0.180 0.270 505.704 527.927
IM Sd 0.079 0.013
MC Sd (0.076) (0.009) (0.073)
MC Coverage 97% 99%

Student-t MC Mean -2.832 -0.180 0.151 474.053 496.276
IM Sd 0.068 0.011
MC Sd (0.063) (0.007) (0.031)
MC Coverage 100% 99%

50% Normal MC Mean -2.810 -0.183 0.285 407.693 429.916
IM Sd 0.090 0.016
MC Sd (0.088) (0.012) (0.072)
MC Coverage 98% 99%

Student-t MC Mean -2.840 -0.178 0.154 387.582 409.805
IM Sd 0.081 0.015
MC Sd (0.066) (0.007) (0.023)
MC Coverage 98% 100%

is a strong increase of the bias (the deviations of the parameter estimates from the true

value) as well as the mean square error (MSE). Clearly, the Student-t model shows much less

bias and thus more precise estimations. Therefore, models with heavier tails than normal

produce more accurate estimates in the context of censored data; the degree and direction

of the bias in fixed effects depends both on the relative proportions of censoring as well as



3.6. Application 57

model assumption. Observe that from Table 3.3 σ̂2 for the normal distribution is almost

twice the true σ2. This is due to the fact that in the normal scenario σ2 represents the

variance and therefore should be compared with ν
ν−2σ

2, which is 0.30. Notice also that, the

Student-t model has a smaller confidence interval due to the smaller standard deviation but

its coverage is slightly better than the normal method. This fact provides (once again) that

the estimation of the Student-t method is more robust when dealing with censored data.

Table 3.3 also provides the average values of the approximate standard deviations of the

ML estimates obtained through the information-based method described in Subsection 3.3.3

(IM Sd) and the Monte Carlo standard deviation (Mc Sd) for the parameters. As we can

see, the estimation method of the standard deviation provides relatively close results for the

normal and Student-t methods, showing that the proposed asymptotic approximation for the

variances of the fixed effects is reliable.

We also present the arithmetic average (MC AIC and MC BIC) of the model comparison

criterions mentioned earlier. All the measures strongly favored the Student-t model,

demonstrating the ability of these measures to detect an obvious departure from normality.

The percentage of samples when these criteria chooses the t-LMEC also remains high.

The nonlinear case

As in the linear case we fix the censoring proportion as presented in Section 3.6.3 and also

generated 100 simulated data sets. Following Vaida and Liu (2009), to study the nonlinear

regression, we consider the following nonlinear mixed model:

yij = α1i +
α2

(1 + exp((tij − α3)/α4i))
+ ϵij , i = 1, . . . , 100, j = 1, . . . , 10, (3.26)

where (b1i, b2i)
iid.
∼ t2(0,D, ν) and ϵij ∼ t(0, σ2, ν). We reparametrize β1i = log(α1i) = β1 +

b1i; βk = log(αk), k = 2, 3, α4i = β4 + b2i and in addition, we set ν = 4, σ2 = 0.55,

D =

[
0.0025 −0.0010

−0.0010 0.0100

]
, β⊤ = (β1, β2, β3, β4) = (1.6094, 0.6931, 3.8067, 2.3026) and tij =

(1, 10, 20, 30, 40, 50, 60, 70, 80, 90).

We fit the NLMEC model (3.26) assuming normal and Student-t distributions. For each

of the simulations, we fit the re-parameterized model given in (3.26) assuming normal and

Student-t distributions. The model selection criterion AIC and BIC as well as the parameters

estimation were recorded for each simulation. For the 4 censoring patterns, the summary

statistics for β (the fixed-effects parameters) are presented in Table 3.4 assuming normal and

Student-t distributions.
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Tabela 3.4: Monte Carlo results based on 100 simulated Student-t samples. MC mean,
MC Sd (in parenthesis) and MC Coverage are the respective mean estimates, standard
deviations and coverage proportion average from fitting NLMEC with Student-t and normal
assumptions with different settings of censoring proportions. IM Sd are the average values of
the approximate standard error obtained through the information-based method. MC AIC
and MC BIC are the arithmetic average of the respective model comparison measures.

Simulated Student-t data

Censoring Fit β1 β2 β3 β4 σ2 MC AIC MC BIC
5% Normal MC Mean 1.627 0.642 3.796 2.205 0.967 2865.279 2904.541

IM Sd 0.017 0.068 0.041 0.191
MC Sd (0.016) (0.073) (0.043) (0.192) (0.146)
MC coverage 81% 87% 96% 95%

Student-t MC Mean 1.615 0.667 3.805 2.230 0.642 2654.928 2694.190
IM Sd 0.015 0.058 0.035 0.161
MC Sd (0.012) (0.056) (0.031) (0.150) (0.060)
MC coverage 96% 93% 99% 95%

10% Normal MC Mean 1.623 0.657 3.801 2.235 0.970 2815.475 2854.737
IM Sd 0.018 0.070 0.042 0.191
MC Sd (0.017) (0.069) (0.046) (0.178) (0.141)
MC coverage 86% 88% 92% 95%

Student-t MC Mean 1.613 0.676 3.803 2.253 0.629 2608.471 2647.733
IM Sd 0.015 0.059 0.035 0.160
MC Sd (0.014) (0.057) (0.036) (0.150) (0.057)
MC coverage 94% 94% 95% 97%

20% Normal MC Mean 1.616 0.683 3.806 2.240 0.975 2705.762 2494.963
IM Sd 0.019 0.070 0.042 0.190
MC Sd (0.016) (0.069) (0.042) (0.183) (0.145)
MC coverage 95% 95% 98% 96%

Student-t MC Mean 1.616 0.678 3.797 2.259 0.579 2494.963 2534.225
IM Sd 0.015 0.059 0.035 0.157
MC Sd (0.015) (0.060) (0.032) (0.162) (0.044)
MC coverage 89% 92% 99% 95%

50% Normal MC Mean 1.614 0.684 3.781 2.131 0.978 1982.382 2021.644
IM Sd 0.022 0.073 0.043 0.208
MC Sd (0.023) (0.069) (0.045) (0.160) (0.186)
MC coverage 94% 95% 90% 93%

Student-t MC Mean 1.624 0.650 3.789 2.226 0.546 1879.266 1918.528
IM Sd 0.022 0.075 0.041 0.187
MC Sd (0.016) (0.066) (0.040) (0.151) (0.038)
MC coverage 90% 93% 95% 95%

From Table 3.4, we observe that for all levels of censoring the Student-t distribution

performs better than the normal distribution and have a small standard deviation in the

estimates providing more accurate estimation. The arithmetic average (MC AIC and MC

BIC) of the model comparison criteria are also presented and strongly favors the Student-t

model in comparison to the normal model. This, reinforce that these measures are capable
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of detecting departures from normality. Like in the linear case, we have that the estimates

σ̂2 of σ2 for the normal distribution must be compared with ν
ν−2σ

2, which now is 1.10. As

in the linear setup we can see that the Student-t model continues to have smaller confidence

interval with a usually bigger coverage of the parameters. This is a strong evidence of the

robustness in estimation of the Student-t method. Again, as observed in the linear case the

IM Sd and MC Sd for the nonlinear regression provides close results for both models (normal

and Student-t). This emphasize that the estimation of the standard error provided by the

proposed asymptotic approximation of the fixed effects (Equation 3.21) is reliable.

In Figure 3.8 we represent the bias and MSE for the parameter estimates of β4 for the

normal and Student-t distributions. It is clear that the normal model has a much bigger

bias and MSE than the Student-t model. Therefore, for censored data the Student-t model

is more robust, providing more accurate estimations when the data has departures from the

normality assumption. Although Figure 3.8 only presents the results for the estimates of β4

a similar pattern was observed for all the other parameters.
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Figura 3.8: Simulation studies. (a) Represents the bias of β1 in comparison with the
true value for the normal and Student-t models for the 4 censoring patterns (5%, 10%,
20%, 50%) in the NLMEC setup. (b) Presents the Mean Square Error (MSE) for β1

for the normal and Student-t models.
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3.7 Conclusions

We have proposed in this chapter a robust approach to linear and nonlinear mixed

effects models with censored observation based on the multivariate-t distribution, called the

t-LMEC/t-NLMEC. It offers a great deal of flexibility in dealing with longitudinal data in the

presence of outliers. A novel ECM algorithm to obtain approximated MLEs is developed by

exploring the statistical properties of the multivariate truncated Student-t distribution. Our

proposed algorithm has a closed-form expression for the E-step, based on formulas for the

mean and variance of the truncated Student-t distribution. Thus, the proposed methodologies

allow the practitioner to fit longitudinal data in a broad variety of considerations. For NL-

MEC, the analysis is computationally feasible through approximating the t-NLMEC for a

multivariate t distribution with specified parameters. We apply our methodology to two re-

cent AIDS studies as well as simulated data to illustrate how the procedures can be used to

evaluate model assumptions, identify outliers, and obtain robust parameter estimates. From

these results it is encouraging that the use of t-LMEC/t-NLMEC models offer better fitting,

protection against outliers and more precise inferences than the usual normal counterpart.

We conjecture that the methodology presented in this chapter should yield satisfactory

results in other areas where multivariate data appears frequently, for instance, survival models,

dynamics linear models, spatially censored data, etc., at expense of moderate complexity of

implementation. Finally, the proposed EM algorithm has been coded and implemented in the

R package t-lmec(R Development Core Team, 2009).



Caṕıtulo 4

Considerações finais

Neste trabalho discutimos vários aspectos envolvendo modelos lineares e não lineares

com efeito misto para resposta censuradas. Desenvolvemos métodos de diagnósticos clássicos

para modelos lineares e não lineares com efeito misto para resposta censuradas, usando a

distribuição normal multivariada.

Propusemos uma abordagem robusta para modelos lineares e não lineares com efeito misto

de resposta censuradas com base na distribuição t-multivariada , denominado t-LMEC/t-

NLMEC, oferecendo uma grande flexibilidade em lidar com dados longitudinais na presença

de outliers.

Os resultados foram aplicados a dois conjuntos de dados de HIV considerados por Vaida

and Liu (2009). Os estudos de simulação foram realizados utilizando programas estat́ısticos

tais como R.

4.1 Trabalhos futuros

Vários trabalhos de pesquisa poderão ser obtidos a partir dos resultados desta dissertação,

entre eles podemos sugerir os seguintes:

• Realizar um estudo de diagnóstico em modelos lineares e não lineares de efeito misto

para resposta censuradas, com base na distribuição t-multivariada.

• Realizar um estudo de inferência e de diagnóstico em modelos lineares e não lineares

de efeito misto para respostas censuradas, com base na famı́lia de distribuições normal

e t assimétrica (Lachos et al., 2010).

61
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• Realizar um estudo de inferência e diagnósticos em modelos com erros nas variáveis

para respostas censuradas.
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Apêndice A

Additional results of Chapter 2 and

Chapter 3

A.1 The EM algorithm

A.1.1 Normal distribution

We include here the derivation of the EM equations (2.9) - (2.11).

Recall that the vector of parameters to be estimated is θ = (β⊤, σ2,α) and that y =

(y⊤
1 , . . . ,y

⊤
n )

⊤, b = (b⊤
1 , . . . ,b

⊤
n )

⊤, u = (u1, . . . , un)
⊤, V = vec(V1, . . . ,Vn) and C =

vec(C1, . . . ,Cn), such that we observe (Vi,Ci) for the ith subject. In their estimation proce-

dure, b, V and C are treated as hypothetical missing data, and augmented with the observed

data set yc = (C⊤,V⊤,y⊤,b⊤)⊤,

L(yc|θ) =

n∏

i=1

f(yi,bi) =

n∏

i=1

f(yi|Vi,Ci,bi)f(bi).

The complete log-likelihood is given by

ℓc(θ|yc) = log(L(yc|θ)) = C −
1

2

n∑

i=1

[
ni log σ

2 + log |D|+ b⊤
i D

−1bi

+
1

σ2
(yi −Xiβ − Zibi)

⊤(yi −Xiβ − Zibi)

]
,

67



A. Additional results of Chapter 2 and Chapter 3 68

where C is a constant that is independent of the parameter vector θ. The EM function is

given by

Q(θ|θ∗) = E[ℓc(θ|yc)|V,C,θ∗].

So we have that,

Q(θ|θ∗) = C∗ −
1

2

n∑

i=1

{
ni log σ

2 + log |D|+ tr
(
E[bib

⊤
i |Vi,Ci,θ

∗]D−1
)

+E

[
1

σ2
(yi −Xiβ − Zibi)

⊤(yi −Xiβ − Zibi)|Vi,Ci,θ
∗

]}
,

where C∗ is a constant that is independent of the parameter vector θ.

In order to introduce some important results, we establish the following lemma,

Lemma 1 Let Y
ind.
∼ Np(µ,Σ) and X

ind.
∼ Nq(η,Ω). So,

ϕp(y|µ+Ax,Σ)ϕq(x,Ω) = ϕp(y|µ+Aη,Σ+AΩA⊤)

×ϕq(x|η +ΛA⊤Σ−1(y − µ−Aη),Σ),

where Λ = (Ω−1 +A⊤Σ−1A)−1.

Then to compute the expectation term above, note first that,

yi|Vi,Ci
ind.
∼ TNni

(Xiβ,Σi),

and using the Lemma 1,

bi|yi
ind.
∼ Nq

((
D−1 +

1

σ2
Z⊤
i Zi

)−1 1

σ2
Z⊤
i (yi −Xiβ),

(
D−1 +

1

σ2
Z⊤
i Zi

)−1
)
,

bi|yi
ind.
∼ Nq (φi(yi −Xiβ),Λi) ,

with Λi =
(
D−1 + 1

σ2Z
⊤
i Zi

)−1
and φi =

1
σ2ΛiZ

⊤
i .

Now using the proposition (1) we compute this expectation term:

ŷi = E{yi|Vi,Ci,θ
∗} = Eyi|Vi,Ci

[Ebi|yi
(yi)] = Eyi|Vi,Ci

[yi] ,
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ŷ2
i = E{yiy

⊤
i |Vi,Ci,θ

∗} = Eyi|Vi,Ci
[Ebi|yi

(yiy
⊤
i )] = Eyi|Vi,Ci

[
yiy

⊤
i

]
,

b̂i = E{bi|Vi,Ci,θ
∗} = Eyi|Vi,Ci

[Ebi|yi
(bi)] = Eyi|Vi,Ci

[φi(yi −Xiβ)]

= φi

[
Eyi|Vi,Ci

(yi)−Xiβ
]
= φi (ŷi −Xiβ) ,

b̂2
i = E{bib

⊤
i |Vi,Ci,θ

∗} = Eyi|Vi,Ci
[Ebi|yi

(bib
⊤
i )]

= Eyi|Vi,Ci

[(
Λi +φi(yi −Xiβ)(yi −Xiβ)

⊤φ⊤
i

)]

= Λi +φiEyi|Vi,Ci

[
(yi −Xiβ)(yi −Xiβ)

⊤
]
φ⊤

i

= Λi +φi

{
Eyi|Vi,Ci

(
yiy

⊤
i

)
− Eyi|Vi,Ci

(yi)β
⊤X⊤

i

−Xiβ
[
Eyi|Vi,Ci

(yi)
]⊤

+Xiββ
⊤X⊤

i

}
φ⊤

i

= Λi +φi

[
ŷ2
i − ŷiβ

⊤X⊤
i −Xiβŷi

⊤ +Xiββ
⊤X⊤

i

]
φ⊤

i ,

ŷbi = E{yib
⊤
i |Vi,Ci,θ

∗} = Eyi|Vi,Ci
[Ebi|yi

(yib
⊤
i )] = Eyi|Vi,Ci

[yiEbi|yi
(b⊤

i )]

= Eyi|Vi,Ci

[
yi(yi −Xiβ)

⊤φ⊤
i

]
=
[
Eyi|Vi,Ci

(yiy
⊤
i )− Eyi|Vi,Ci

(yi)β
⊤X⊤

i

]
φ⊤

i

=
(
ŷ2
i − ŷiβ

⊤X⊤
i

)
φ⊤

i .

Replacing the expectation in Q(θ|θ∗)

Q(θ|θ∗) = C∗ −
1

2

n∑

i=1

[
ni log σ

2 + log |D|+ tr
(
b̂2
iD

−1
)
+

Ai

σ2

]
,

where

Ai = tr(ŷ2
i )− ŷ⊤

i Xiβ − tr(ŷbi
⊤
Zi)− β⊤X⊤

i ŷi + β⊤X⊤
i Xiβ

+β⊤X⊤
i Zib̂i − tr(ŷbiZ

⊤
i ) + b̂i

⊤
Z⊤
i Xiβ + tr(b̂2

iZ
⊤
i Zi).

The differential with respect to β, σ2 and D are

∂Q(θ|θ∗)

∂β
= −

1

σ2

n∑

i=1

−X⊤
i (ŷi −Xiβ − Zib̂i),
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∂Q(θ|θ∗)

∂σ2
= −

1

2

n∑

i=1

[
ni

σ2
−

Ai

(σ2)2

]
,

∂Q(θ|θ∗)

∂D−1
= −

n

σ2
(−2D+ diag(D))−

1

2

n∑

i=1

(
ŷi + ŷi

⊤ − diag(b̂2
i )
)
.

The solution of
∂Q(θ|θ∗)

∂β
= 0 is

β̂ =

(
n∑

i=1

X⊤
i Xi

)−1 [ n∑

i=1

Xi(ŷi − Zib̂i)

]
.

The solution of
∂Q(θ|θ∗)

∂σ2
= 0 is

σ̂2 =

∑n
i=1Ai∑n
i=1 ni

.

For unstructured D, the solution of
∂Q(θ|θ∗)

∂D−1
= 0, for all D, is

D̂ =

∑n
i=1 b̂

2
i

n
.

A.1.2 Student-t distribution

We include here the derivation of the EM equations (3.17) - (3.19).

Recall that the vector of parameters to be estimated is θ = (β⊤, σ2,α) and that y =

(y⊤
1 , . . . ,y

⊤
n )

⊤, b = (b⊤
1 , . . . ,b

⊤
n )

⊤, u = (u1, . . . , un)
⊤, V = vec(V1, . . . ,Vn) and C =

vec(C1, . . . ,Cn), such that we observe (Vi,Ci) for the ith subject. In their estimation proce-

dure, b, V and C are treated as hypothetical missing data, and augmented with the observed

data set yc = (C⊤,V⊤,y⊤,b⊤,u⊤)⊤,

L(yc|θ) =
n∏

i=1

f(yi,bi, ui) =
n∏

i=1

f(yi|Vi,Ci,bi, ui)f(bi|ui)f(ui).
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The complete log-likelihood is given by

ℓc(θ|yc) = log(L(yc|θ)) = C +

n∑

i=1

{
h(ui|ν)−

1

2

[
ni log σ

2 + log |D|+ uib
⊤
i D

−1bi

+
ui
σ2

(yi −Xiβ − Zibi)
⊤(yi −Xiβ − Zibi)

]}
,

where C is a constant that is independent of the parameter vector θ and h(ui|ν) is a density

of a Gamma(ν/2, ν/2). The EM function is given by

Q(θ|θ∗) = E[ℓc(θ|yc)|V,C,θ∗].

So we have that,

Q(θ|θ∗) = C∗ −
1

2

n∑

i=1

{
ni log σ

2 + log |D|+ tr
(
E[uibib

⊤
i |Vi,Ci,θ

∗]D−1
)

+E
[ ui
σ2

(yi −Xiβ − Zibi)
⊤(yi −Xiβ − Zibi)|Vi,Ci,θ

∗
]}

,

where C∗ is a constant that is independent of the parameter vector θ.

Then to compute the expectation term above, note first that,

yi|Vi,Ci
ind.
∼ Ttni

(Xiβ,Σi, ν),

E(ui|yi) =
ν + ni

ν + δ
,

where δ = (yi −Xiβ)
⊤Σ−1

i (yi −Xiβ), and using the Lemma 1

bi|yi, ui
ind.
∼ Nq

(
ui
σ2

(
uiD

−1 +
ui
σ2

Z⊤
i Zi

)−1
Z⊤
i (yi −Xiβ),

(
uiD

−1 +
ui
σ2

Z⊤
i Zi

)−1
)
,

bi|yi, ui
ind.
∼ Nq

(
φi(yi −Xiβ),

σ2

ui
Λi

)
,

with Λi = (σ2D−1 + Z⊤
i Zi)

−1 and φi = ΛiZ
⊤
i . Using the propositions (2)-(4) we compute
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this expectation term:

ûyi = E{uiyi|Vi,Ci,θ
∗} = Eyi|Vi,Ci

{Eui|yi
[Ebi|yi,ui

(uyi)]}

= Eyi|Vi,Ci

[
Eui|yi

(uiyi)
]
= Eyi|Vi,Ci

(
(ν + ni)

(ν + δ)
yi

)

=
Tni

(a|µ,Σ∗, ν + 2)

Tni
(a|µ,Σ, ν)

E{Wi},

ûy2
i = E{uiyiy

⊤
i |Vi,Ci,θ

∗} = Eyi|Vi,Ci
{Eui|yi

[Ebi|yi,ui
(uyiy

⊤
i )]}

= Eyi|Vi,Ci

[
Eui|yi

(uiyiy
⊤
i )
]
= Eyi|Vi,Ci

(
(ν + ni)

(ν + δ)
yiy

⊤
i

)

=
Tni

(a|µ,Σ∗, ν + 2)

Tni
(a|µ,Σ, ν)

E{WiW
⊤
i },

ûi = E{ui|Vi,Ci,θ
∗} = Eyi|Vi,Ci

{Eui|yi
[Ebi|yi,ui

(ui)]}

= Eyi|Vi,Ci

[
Eui|yi

(ui)
]
= Eyi|Vi,Ci

(
(ν + ni)

(ν + δ)

)

=
Tni

(a|µ,Σ∗, ν + 2)

Tni
(a|µ,Σ, ν)

E{W0
i } =

Tni
(a|µ,Σ∗, ν + 2)

Tni
(a|µ,Σ, ν)

,

ûbi = E{uibi|Vi,Ci,θ
∗} = Eyi|Vi,Ci

{Eui|yi
[Ebi|yi,ui

(uibi)]}

= Eyi|Vi,Ci
{Eui|yi

[uiEbi|yi,ui
(bi)]}

= Eyi|Vi,Ci
{Eui|yi

[uiφi(yi −Xiβ)]}

= Eyi|Vi,Ci

[
φi(yi −Xiβ)Eui|yi

(ui)
]

= Eyi|Vi,Ci

{
φi

[(
(ν + ni)

(ν + δ)
yi

)
−Xiβ

(
(ν + ni)

(ν + δ)

)]}

= φi

[
Eyi|Vi,Ci

(
(ν + ni)

(ν + δ)
yi

)
−XiβEyi|Vi,Ci

(
(ν + ni)

(ν + δ)

)]

= φi

[
Tni

(a|µ,Σ∗, ν + 2)

Tni
(a|µ,Σ, ν)

E{Wi} −Xiβ
Tni

(a|µ,Σ∗, ν + 2)

Tni
(a|µ,Σ, ν)

]

= φi (ûyi −Xiβûi) ,
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ûb2
i = E{uibib

⊤
i |Vi,Ci,θ

∗} = Eyi|Vi,Ci
{Eui|yi

[Ebi|yi,ui
(uibib

⊤
i )]}

= Eyi|Vi,Ci
{Eui|yi

[uiEbi|yi,ui
(bib

⊤
i )]}

= Eyi|Vi,Ci

{
Eui|yi

[
ui

(
Λi(u

−1
i σ2 + Z⊤

i (yi −Xiβ)(yi −Xiβ)
⊤)φ⊤

i

)]}

= Λiσ
2 + Eyi|Vi,Ci

[
Eui|yi

(ui)
(
φi(yi −Xiβ)(yi −Xiβ)

⊤φ⊤
i

)]

= Λiσ
2 +φi

{
Eyi|Vi,Ci

(
(ν + ni)

(ν + δ)
yiy

⊤
i

)
− Eyi|Vi,Ci

(
(ν + ni)

(ν + δ)
yi

)
β⊤X⊤

i

−Xiβ

[
Eyi|Vi,Ci

(
(ν + ni)

(ν + δ)
yi

)]⊤
+ Eyi|Vi,Ci

(
(ν + ni)

(ν + δ)

)
Xiββ

⊤X⊤
i

}
φ⊤

i

= Λiσ
2 +φi

{
Tni

(a|µ,Σ∗, ν + 2)

Tni
(a|µ,Σ, ν)

E{WiW
⊤
i } −

Tni
(a|µ,Σ∗, ν + 2)

Tni
(a|µ,Σ, ν)

E{Wi}β
⊤X⊤

i

−Xiβ

[
Tni

(a|µ,Σ∗, ν + 2)

Tni
(a|µ,Σ, ν)

E{Wi}

]⊤
+

Tni
(a|µ,Σ∗, ν + 2)

Tni
(a|µ,Σ, ν)

Xiββ
⊤X⊤

i

}
φ⊤

i

= Λiσ
2 +φi

(
ûy2

i − ûyiβ
⊤X⊤

i −Xiβûyi
⊤ + ûiXiββ

⊤X⊤
i

)
φ⊤

i ,

ûybi = E{uiyib
⊤
i |Vi,Ci,θ

∗} = Eyi|Vi,Ci
{Eui|yi

[Ebi|yi,ui
(uiyib

⊤
i )]}

= Eyi|Vi,Ci
{yiEui|yi

[uiEbi|yi,ui
(b⊤

i )]}

= Eyi|Vi,Ci

{
yiEui|yi

[
ui(yi −Xiβ)

⊤φ⊤
i

]}

= Eyi|Vi,Ci

[
yiEui|yi

(ui)(yi −Xiβ)
⊤φ⊤

i

]

= Eyi|Vi,Ci

{[(
(ν + ni)

(ν + δ)
yiy

⊤
i

)
−

(
(ν + ni)

(ν + δ)
yi

)
β⊤X⊤

i

]
φ⊤

i

}

=

[
Eyi|Vi,Ci

(
(ν + ni)

(ν + δ)
yiy

⊤
i

)
− Eyi|Vi,Ci

(
(ν + ni)

(ν + δ)
yi

)
β⊤X⊤

i

]
φ⊤

i

=

[
Tni

(a|µ,Σ∗, ν + 2)

Tni
(a|µ,Σ, ν)

E{Wi} −
Tni

(a|µ,Σ∗, ν + 2)

Tni
(a|µ,Σ, ν)

E{WiW
⊤
i }β

⊤X⊤
i

]
φ⊤

i

=
(
ûy2

i − ûyiβ
⊤X⊤

i

)
φ⊤

i .

Replacing the expectation in Q(θ|θ∗)

Q(θ|θ∗) = C∗ −
1

2

n∑

i=1

[
ni log σ

2 + log |D|+ tr
(
ûb2

iD
−1
)
+

Ai

σ2

]
,

where

Ai = tr(ûy2
i )− ûy⊤

i Xiβ − tr(ûybi

⊤
Zi)− β⊤X⊤

i ûyi + β⊤X⊤
i ûiXiβ

+β⊤X⊤
i Ziûbi − tr(ûybiZ

⊤
i ) + ûbi

⊤
Z⊤
i Xiβ + tr(ûb2

iZ
⊤
i Zi).
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The differential with respect to β, σ2 and D are

∂Q(θ|θ∗)

∂β
= −

1

σ2

n∑

i=1

−X⊤
i (ûyi − ûiXiβ − Ziûbi),

∂Q(θ|θ∗)

∂σ2
= −

1

2

n∑

i=1

[
ni

σ2
−

Ai

(σ2)2

]
,

∂Q(θ|θ∗)

∂D−1
= −

n

σ2
(−2D+ diag(D))−

1

2

n∑

i=1

(
ûyi + ûyi

⊤ − diag(ûb2
i )
)
.

The solution of
∂Q(θ|θ∗)

∂β
= 0 is

β̂ =

(
n∑

i=1

X⊤
i ûiXi

)−1 [ n∑

i=1

Xi(ûyi − Ziûbi)

]
.

The solution of
∂Q(θ|θ∗)

∂σ2
= 0 is

σ̂2 =

∑n
i=1Ai∑n
i=1 ni

.

For unstructured D, the solution of
∂Q(θ|θ∗)

∂D−1
= 0, for all D, is

D̂ =

∑n
i=1 ûb

2
i

n
.

A.2 The expected information matrix of the fixed

effects

We developed the derivation of the expected information matrix of the fixed effects. Using

the method given from McLachlan and Krishnan (1996) we have

I(β;y) = Ic(β;y) + Im(β;y),
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where I(β;y) is the information matrix about β in the observed data y, Ic(β;y) is the

conditional expectation of the complete-data information matrix, and Im(β;y) is the missing

information matrix.

The missing data information Im(β;y) can be expressed as

Im(β;y) =
n∑

i=1

V ar {Sc(y;β)|Vi,Ci} ,

where Sc(y;β) =
∂logL(yc)

∂β
is the gradient vector of the complete-data log likelihood function.

So we have that

Im(β;y) =
n∑

i=1

V ar

((
ν + ni

ν + δ

)
X⊤

i Σ
−1
i (yi −Xiβ)|Vi,Ci

)

= X⊤
i Σ

−1
i

{
V ar

((
ν + ni

ν + δ

)
(yi −Xiβ)|Vi,Ci

)}
Σ−1

i Xi.

Now using Lange et al. (1989), the expected (complete-data) information matrix is given

then by

Ic(β;y) =

n∑

i=1

ν + ni

ν + ni + 2
X⊤

i Σ
−1
i Xi.

Thus the observed information matrix is given by

I(β;y) =
n∑

i=1

ν + ni

ν + ni + 2
X⊤

i Σ
−1
i Xi −

n∑

i=1

X⊤
i Σ

−1
i BiΣ

−1
i Xi,

where Bi = V ar

{
ν + ni

ν + δ(yi)
(yi −Xiβ)|Vi,Ci

}
, with yi ∼ Ttni

(Xiβ,Σi, ν;Ai).

A.3 Matrix algebra and vector differential calculus

We present some useful results, which may be helpful in understanding some of the results

and derivations presented in this work.

Let f(X) be a scalar function of a vector variable x = (x1, . . . ,xp)
⊤. Let

∂f(x)

∂x
=

(
∂f(x)

∂x
, . . . ,

∂f(x1)

∂xp

)⊤

,
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and let

∂2f(x)

∂x2
=

∂2f(x)

∂x∂x⊤
=

(
∂2f(x)

∂xi∂xj

)

p×p

be the p× p matrix with (i, j)-th element being ∂2f(x)
∂xi∂xj

.

Let A and B are matrices. We first present the following rules for matrix algebra, which

are often useful,

det(AB) = det(A) det(B),

det(A−1) = det(A)−1,

det(I+AB⊤) = det(I+B⊤A),

tr(AB) = tr(BA),

where det(A) is the determinant of matrix A, tr(A) is the trace of A, and I denote the

identity matrix.

Let x and y are vector functions and X and Y be matrix functions. Let A and B be

constant matrices. The following are some useful differentials results

d(tr(X)) = tr(d(X)),

d(XY) = (dX)Y +X(dY),

dX−1 = −X−1(dX)X−1,

d det(A) = det(A)tr(A−1dA),

and

∂(A⊤x)

∂x
= A,

∂(x⊤Ay)

∂x
= Ay,

∂(x⊤x)

∂x
= 2x,

∂(x⊤Ax)

∂x
= 2Ax,

∂ log(det(A(x)))

∂x
= tr

(
A−1(x)

∂A(x)

∂x

)
,

where A(x), means that matrix A is a function of variable x.

Let f(A) be a scalar function of a matrix A = (aij)p×p, and let ∂f(A)
∂A be the matrix with
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(i, j)-th element being ∂f(A)
∂aij

. We have

∂(x⊤Ay)

∂A
= xy⊤,

∂(tr(A))

∂A
= I,

∂(x⊤Ax)

∂A
= 2xx⊤ − diag(xx⊤), if A is symmetric,

∂|A|

∂A
= |A|(2A−1 − diag(A−1)), if A is symmetric,

∂tr(AB)

∂A
= B+B⊤ − diag(B), if A is symmetric,

∂ log(|A|)

∂A−1
= −2A+ diag(A), if A is symmetric,

where diag(A) is the diagonal matrix of A.
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