## Universidade Estadual de Campinas



Instituto de Matemática, Estatística e

Computação Científica - IMECC Departamento de Estatística



# MODELOS MULTINOMIAIS MULTIVARIADOS APLICADOS EM SEQÜÊNCIAS DE DNA

Dissertação de Mestrado

Beatriz Castro Dias Cuyabano

Orientadora: Profa. Dra. Hildete Prisco Pinheiro

CAMPINAS

Fevereiro/2011

 $<sup>\</sup>dagger$ Este trabalho contou com apoio financeiro da CAPES

### Modelos Multinomiais Multivariados Aplicados em Seqüências de DNA

Este exemplar corresponde à redação final da dissertação devidamente corrigida e defendida por Beatriz Castro Dias Cuyabano, aprovada pela Comissão Julgadora.

Campinas 25 de fevereiro de 2011

Haildete Pinheiro

Prof. Dra.Hildete Prisco Pinheiro Orientadora

Banca Examinadora:

- Profa. Dra. Hildete Prisco Pinheiro (IMECC Unicamp) Orientadora
- Prof. Dr. Víctor Hugo Lachos Dávila (IMECC Unicamp)
- Prof. Dr. Juvêncio Santos Nobre (DEMA UFC)

Dissertação apresentada ao Instituto de Matemática, Estatística e Computação Científica da UNICAMP, como requisito parcial para obtenção do Título de Mestre em Estatística.

#### FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DO IMECC DA UNICAMP

Bibliotecária: Maria Fabiana Bezerra Müller - CRB8 / 6162

| C99m | Modelos multinomiais multivariados aplicados em seqüências de              |  |  |  |  |
|------|----------------------------------------------------------------------------|--|--|--|--|
|      | DNA/Beatriz Castro Dias Cuyabano Campinas, [S.P.: s.n.], 2011.             |  |  |  |  |
|      | Orientador : Hildete Prisco Pinheiro                                       |  |  |  |  |
|      | Dissertação (mestrado) - Universidade Estadual de Campinas,                |  |  |  |  |
|      | Instituto de Matemática, Estatística e Computação Científica.              |  |  |  |  |
|      | 1.Bahadur, Representação de. 2.DNA. 3.Modelos de regressão.                |  |  |  |  |
|      | I. Pinheiro, Hildete Prisco. II. Universidade Estadual de Campinas.        |  |  |  |  |
|      | Instituto de Matemática, Estatística e Computação Científica. III. Título. |  |  |  |  |

Título em inglês: Multivariate multinomial models applied to DNA sequences

Palavras-chave em inglês (Keywords): 1. Bahadur representation. 2.DNA. 3.Regression models.

Área de concentração: Estatística

Titulação: Mestre em Estatística

Banca examinadora: Profa. Dra. Hildete Prisco Pinheiro (IMECC – UNICAMP) Prof. Dr. Víctor Hugo Lachos Dávila (IMECC - UNICAMP) Prof. Dr. Juvêncio Santos Nobre (UFC)

Data da defesa: 25/02/2011

Programa de Pós-Graduação: Mestrado em Estatística

Dissertação de Mestrado defendida em 25 de fevereiro de 2011 e aprovada

Pela Banca Examinadora composta pelos Profs. Drs.

Prof(a). Dr(a). HILDETE PRISCO PINHEIRO VÍCTOR HUGO LACHOS DÁVILA Prof(a). Dr(a). Prof(a). Dr(a). JUVÊNCIO SANTOS NOBRE

Para Amanda Lucas Gimeno (in memorian), cuja amizade foi de grande influência e motivação para a realização do mestrado.

# Agradecimentos

Agradeço a meus pais Tuca e Sérgio, e meu irmão Thiago que sempre me apoiaram e incentivaram para que o mestrado, e muitos outros objetivos, se tornassem possíveis. A minha mãe em particular por todas as revisões de texto durante este projeto.

A minha orientadora, Professora Hildete Pinheiro, por toda a atenção, amizade e dedicação, não somente no desenvolvimento do trabalho do mestrado, como também no desenvolvimento de projetos futuros, e ao Professor Aluísio Pinheiro, pela grande contribuição nas soluções dos problemas computacionais, e novas propostas para análises dos dados.

Aos amigos da pós-gradução, e do IMECC, que estiveram juntos nas aulas, nas horas de estudos, nos cafés ou sucos e nos momentos de lazer e distração, fazendo do mestrado e dos dias na UNICAMP sempre melhores.

Aos Professores Victor Hugo Lachos e Juvêncio dos Santos Nobre pela participação na banca de defesa do mestrado.

A Lori Cristina Grandin, cuja dissertação de mestrado serviu de base inicial para este trabalho, e que gentilmente forneceu o banco de dados utilizado.

À CAPES, pelo suporte financeiro fundamental, sem o qual a realização deste projeto não seria possível.

## Resumo

Modelos Multivariados são propostos para descrever a freqüência de códons em seqüências de DNA, bem como a ordem e freqüência em que as bases nitrogenadas se apresentam em cada códon, considerando a dependência entre as bases dentro do códon. Modelos logísticos regressivos são utilizados com diferentes estruturas de dependência entre as posições do códon. Também, modelos baseados em uma extensão da representação de Bahadur para o caso multinomial são propostos para explicar dados multinomiais correlacionados. Uma aplicação desses modelos para o gene NADH4 do genoma mitocondrial humano é apresentada, e comparações desses modelos são feitas a partir de diferentes critérios como AIC, BIC e validação cruzada. Por fim, uma breve análise de diagnósticos é realizada para os modelos logísticos regressivos.

### Abstract

Multivariate models are proposed to describe the codons frequencies in DNA sequences, as well as the order and frequency that nucleotide bases have in each codon, considering the dependence among the bases inside a codon. Logistic regressive models are used with different structures of dependence among the three positions in a codon. Also, models based on a multinomial extension of the Bahadur's representation are proposed to explain correlated multinomial data. An application of these models to the NADH4 gene from human mitochondrial genome is presented, and model comparisons among them are done by different criteria such as AIC, BIC and cross validation. At last, a brief diagnostic analysis is done upon the logistic regressive models.

# Sumário

|   | List             | a de F    | Figuras                                        | xvii |  |  |
|---|------------------|-----------|------------------------------------------------|------|--|--|
|   | Lista de Tabelas |           |                                                |      |  |  |
| 1 | Inti             | ntrodução |                                                |      |  |  |
|   | 1.1              | Biolog    | gia Molecular                                  | 3    |  |  |
|   | 1.2              | Banco     | de Dados                                       | 7    |  |  |
|   | 1.3              | Anális    | se Exploratória                                | 9    |  |  |
| 2 | Mo               | delos l   | Binomiais Multivariados                        | 13   |  |  |
|   | 2.1              | Mode      | los Lineares Generalizados                     | 14   |  |  |
|   |                  | 2.1.1     | Distribuição de Bernoulli e Binomial           | 16   |  |  |
|   | 2.2              | Funçõ     | es de Ligação mais Comuns em Modelos Binomiais | 16   |  |  |
|   |                  | 2.2.1     | Logito                                         | 17   |  |  |
|   |                  | 2.2.2     | Probito                                        | 17   |  |  |
|   |                  | 2.2.3     | Log-Log Complementar                           | 17   |  |  |
|   | 2.3              | Mode      | los Logísticos Regressivos                     | 18   |  |  |
|   |                  | 2.3.1     | Modelo Independente                            | 19   |  |  |
|   |                  | 2.3.2     | Modelo Igualmente Preditivo                    | 20   |  |  |
|   |                  | 2.3.3     | Estrutura Markoviana de Primeira Ordem         | 21   |  |  |
|   |                  | 2.3.4     | Modelo Aditivo                                 | 21   |  |  |
|   |                  | 2.3.5     | Gradiente e Informação de Fisher               | 22   |  |  |

|   | 2.4 | Model   | o Baseado na Representação de Bahadur             | 25 |
|---|-----|---------|---------------------------------------------------|----|
|   |     | 2.4.1   | Gradiente e Informação de Fisher                  | 29 |
| 3 | Mo  | delos I | Multinomiais Multivariados                        | 31 |
|   | 3.1 | Model   | os Logísticos Regressivos                         | 32 |
|   |     | 3.1.1   | Modelo Independente                               | 34 |
|   |     | 3.1.2   | Modelo Igualmente Preditivo                       | 35 |
|   |     | 3.1.3   | Estrutura Markoviana de Primeira Ordem            | 36 |
|   |     | 3.1.4   | Modelo Aditivo                                    | 36 |
|   |     | 3.1.5   | Gradiente e Informação de Fisher                  | 37 |
|   | 3.2 | Model   | o Baseado na Representação de Bahadur             | 41 |
|   |     | 3.2.1   | Modelo de Dependência de Locação                  | 43 |
|   |     | 3.2.2   | Modelo de Dependência de Transição                | 44 |
|   |     | 3.2.3   | Modelo de Dependência de Semi-Locação e Transição | 44 |
|   |     | 3.2.4   | Modelo de Dependência de Locação e Transição      | 45 |
|   |     | 3.2.5   | Método de Estimação dos Parâmetros                | 45 |
|   |     | 3.2.6   | Gradiente e Informação de Fisher                  | 46 |
| 4 | Med | didas o | le Ajuste dos Modelos                             | 49 |
|   | 4.1 | Soma    | de Quadrado dos Erros (SQE)                       | 49 |
|   | 4.2 | Critér  | io de Informação de Akaike (AIC)                  | 49 |
|   | 4.3 | Critér  | io de Informação Bayesiano (BIC)                  | 50 |
|   | 4.4 | Funçã   | o Desvio                                          | 50 |
|   | 4.5 | Valida  | ção Cruzada                                       | 50 |
|   |     | 4.5.1   | K-dobras                                          | 51 |
|   |     | 4.5.2   | Hold-out                                          | 51 |
|   |     | 4.5.3   | Leave-one-out                                     | 51 |
|   |     | 4.5.4   | K-dobras repetido                                 | 52 |
|   | 4.6 | Teste   | da Razão de Verossimilhança                       | 52 |
|   | 4.7 | Teste   | de Wald                                           | 52 |

|                  | 4.8           | Teste    | de Escore                              | 53  |  |  |
|------------------|---------------|----------|----------------------------------------|-----|--|--|
| 5                | Apl           | icação   | e Resultados                           | 55  |  |  |
|                  | 5.1           | Imple    | mentação Computacional                 | 55  |  |  |
|                  | 5.2           | Mode     | los Binomiais                          | 56  |  |  |
|                  | 5.3           | Mode     | los Multinomiais                       | 57  |  |  |
| 6                | Ana           | álise de | e Diagnóstico dos Modelos              | 67  |  |  |
|                  | 6.1           | Mode     | los Logísticos Regressivos             | 68  |  |  |
|                  |               | 6.1.1    | Modelo Independente                    | 71  |  |  |
|                  |               | 6.1.2    | Modelo Igualmente Preditivo            | 71  |  |  |
|                  |               | 6.1.3    | Estrutura Markoviana de Primeira Ordem | 72  |  |  |
|                  |               | 6.1.4    | Modelo Aditivo                         | 73  |  |  |
|                  | 6.2           | Result   | ados                                   | 73  |  |  |
| 7                | Cor           | nsidera  | ções Finais                            | 83  |  |  |
| R                | e <b>ferê</b> | ncias l  | Bibliográficas                         | 87  |  |  |
| A                | pênd          | ice 1    |                                        | 91  |  |  |
| A                | pênd          | ice 2    |                                        | 97  |  |  |
| $\mathbf{A}_{]}$ | Apêndice 3 10 |          |                                        |     |  |  |
| $\mathbf{A}$     | pênd          | ice 4    |                                        | 107 |  |  |

# Lista de Figuras

| 1.1 | Estrutura do DNA (Imagem: Wikipedia, Autor: Michael Ströck)                  | 6  |
|-----|------------------------------------------------------------------------------|----|
| 1.2 | Estrutura Química do DNA (Imagem: Wikipedia)                                 | 6  |
| 1.3 | Proporção das Bases Nitrogenadas em Cada Posição dos Códons                  | 9  |
| 5.1 | Valores observados versus estimados para os códons do modelo logístico       |    |
|     | regressivo aditivo com ligação logito                                        | 58 |
| 5.2 | Valores observados $versus$ estimados para os códons do modelo baseado       |    |
|     | na representação de Bahadur com ligação logito                               | 58 |
| 5.3 | Valores observados $versus$ estimados do modelo logístico regressivo aditivo | 60 |
| 5.4 | Valores observados $versus$ estimados do modelo baseado na representação     |    |
|     | de Bahadur com dependência de semi-locação e transição                       | 60 |
| 5.5 | Validação Cruzada dos Modelos Logísticos Regressivos                         | 64 |
| 5.6 | Validação Cruzada dos Modelos Baseados na Representação de Bahadur           | 65 |
| 6.1 | Diagnóstico do Modelo Independente                                           | 74 |
| 6.2 | Diagnóstico do Modelo Igualmente Preditivo                                   | 75 |
| 6.3 | Diagnóstico da Estrutura Markoviana de Primeira Ordem                        | 76 |
| 6.4 | Diagnóstico do Modelo Aditivo                                                | 77 |

# Lista de Tabelas

| 1.1 | Bases Nitrogenadas                                                                                  | 4  |
|-----|-----------------------------------------------------------------------------------------------------|----|
| 1.2 | Código Genético Mitocondrial para Mamíferos - Aminoácidos                                           | 5  |
| 1.3 | Total das Bases nas Posições 1 e 2 do Códon                                                         | 9  |
| 1.4 | Total das Bases nas Posições 1 e 3 do Códon                                                         | 10 |
| 1.5 | Total das Bases nas Posições 2 e 3 do Códon                                                         | 10 |
| 1.6 | Testes Chi-Quadrado de Independência entre as Posições                                              | 11 |
| 3.1 | Codificação das Bases Nitrogenadas                                                                  | 32 |
| 5.1 | Medidas dos Modelos Binomiais                                                                       | 57 |
| 5.2 | Medidas dos Modelos Multinomiais Regressivos                                                        | 59 |
| 5.3 | Medidas dos Modelos Multinomiais Baseados na Representação de Bahadur                               | 59 |
| 5.4 | Estimativas dos Parâmetros do Modelo Logístico Regressivo Aditivo                                   | 61 |
| 5.5 | Estimativas dos Parâmetros do Modelo Baseado na Representação de                                    |    |
|     | Bahadur de Dependência de Semi-Locação e Transição                                                  | 62 |
| 5.6 | Resultados da Validação Cruzada dos Modelos Logísticos Regressivos $% \mathcal{L}_{\mathrm{reg}}$ . | 63 |
| 5.7 | Resultados da Validação Cruzada dos Modelos Baseados na Representação                               |    |
|     | de Bahadur                                                                                          | 63 |
| 5.8 | Testes dos Parâmetros do Modelo Aditivo e do Modelo de Semi-Locação                                 |    |
|     | & Transição                                                                                         | 64 |
| 6.1 | Estimativas dos Parâmetros Retirando Observações Discrepantes do Mo-                                |    |
|     | delo Independente                                                                                   | 78 |

| Estimativas dos Parâmetros Retirando Observações Discrepantes do Mo-        |                                                                                                   |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| delo Igualmente Preditivo                                                   | 7                                                                                                 |
| Estimativas dos Parâmetros Retirando Observações Discrepantes da Es-        |                                                                                                   |
| trutura Markoviana                                                          | 8                                                                                                 |
| Estimativas dos Parâmetros Retirando Observações Discrepantes do Mo-        |                                                                                                   |
| delo Aditivo                                                                | 8                                                                                                 |
| Número de Parâmetros dos Modelos Multinomiais Multivariados para ${\cal K}$ |                                                                                                   |
| Posições Dependentes                                                        | 8                                                                                                 |
| Total de Parâmetros de Dependência dos Modelos Multinomiais Multi-          |                                                                                                   |
| variados Conforme o Número $K$ de Posições Dependentes Aumenta $\ .$ .      | 8                                                                                                 |
| Probabilidades Estimadas dos Modelos Binomiais Multivariados com            |                                                                                                   |
| Função de Ligação Logito                                                    | 9                                                                                                 |
| Probabilidades Estimadas dos Modelos Binomiais Multivariados com            |                                                                                                   |
| Função de Ligação Probito                                                   | 9                                                                                                 |
| Probabilidades Estimadas dos Modelos Binomiais Multivariados com            |                                                                                                   |
| Função de Ligação Log-Log Complementar                                      | 10                                                                                                |
| Probabilidades Estimadas dos Modelos Multinomiais Multivariados Logísti     | $\cos$                                                                                            |
| Regressivos                                                                 | 10                                                                                                |
| Probabilidades Estimadas dos Modelos Multinomiais Multivariados Basea-      |                                                                                                   |
| dos na Representação de Bahadur                                             | 10                                                                                                |
| Parâmetros Estimados dos Modelos Logístico Regressivos Independentes        |                                                                                                   |
| Binomiais Multivariados                                                     | 10                                                                                                |
| Parâmetros Estimados dos Modelos Logístico Regressivos Igualmente           |                                                                                                   |
| Preditivos Binomiais Multivariados                                          | 10                                                                                                |
| Parâmetros Estimados dos Modelos Logístico Regressivos com Estrutura        |                                                                                                   |
| Markoviana de Primeira Ordem Binomiais Multivariados                        | 10                                                                                                |
| Parâmetros Estimados dos Modelos Logístico Regressivos Aditivos Bino-       |                                                                                                   |
| miais Multivariados                                                         | 10                                                                                                |
|                                                                             | Estimativas dos Parâmetros Retirando Observações Discrepantes do Mo-<br>delo Igualmente Preditivo |

| 7.12 | Parâmetros Estimados dos Modelos Baseados na Representação de Ba-      |     |
|------|------------------------------------------------------------------------|-----|
|      | hadur Binomiais Multivariados                                          | 104 |
| 7.13 | Parâmetros Estimados do Modelo Logístico Regressivo Multinomial In-    |     |
|      | dependente                                                             | 105 |
| 7.14 | Parâmetros Estimados do Modelo Logístico Regressivo Multinomial Igual- |     |
|      | mente Preditivo                                                        | 105 |
| 7.15 | Parâmetros Estimados do Modelo Logístico Regressivo Multinomial Es-    |     |
|      | trutura Markoviana de Primeira Ordem                                   | 105 |
| 7.16 | Parâmetros Estimados do Modelo Baseado na Representação de Bahadur     |     |
|      | de Dependência de Locação                                              | 105 |
| 7.17 | Parâmetros Estimados do Modelo Baseado na Representação de Bahadur     |     |
|      | de Dependência de Transição                                            | 106 |
| 7.18 | Parâmetros Estimados do Modelo Baseado na Representação de Bahadur     |     |
|      | de Dependência de Locação e Transição                                  | 106 |

## Capítulo 1

## Introdução

O seqüenciamento genético tem cada vez mais atraído a atenção e sido tema freqüente de pesquisas científicas por todo o mundo. Esse fato é facilmente compreensível, uma vez que a quantidade de informações que podem ser obtidas a partir de um único gene<sup>1</sup> é capaz de responder inúmeras perguntas da ciência. Além disso, avanços computacionais, o fácil acesso aos dados e o crescente número de pesquisas envolvendo esse assunto favorecem o estudo e aperfeiçoamento de técnicas voltadas para essas análises.

Neste trabalho, o foco principal é a análise da freqüência dos códons<sup>2</sup> presentes no gene NADH4 (dehidrogenase) do genoma mitocondrial humano, e também a seqüência de nucleotídeos - Timina (T), Citosina (C), Adenina (A) e Guanina (G) - que formam esses códons, bem como suas classificações proteicas, em *piramidina* (T,C) ou *purina* (A,G). A base para esse estudo é a *seqüência de referência de Cambridge* (SRC), primeiramente publicada em 1981 (Anderson et al., 1981) e revisada em 1999 (Andrews et al., 1999), aceita mundialmente como referência de seqüência de DNA mitocondrial humano (DNAmit).

Modelos de respostas binomiais e multinomiais são propostos, gerados, analisados e comparados, através de métodos estatísticos, para 30 seqüências do gene NADH4, dentre elas a SRC, obtidas no site do *National Center for Biotechnology Information* 

<sup>&</sup>lt;sup>1</sup>Segmento de DNA que contém informações para a síntese de uma ou mais proteínas.

<sup>&</sup>lt;sup>2</sup>Tripla de nucleotídeos adjacentes.

(NCBI, 2010), a fim de se obter um modelo mais parcimonioso para tal següenciamento.

A importância de estudos estatísticos sobre esse tema se deve principalmente ao interesse de pesquisadores em compreender e predizer estruturas genéticas. A complexidade do DNA exige modelos com altos níveis de detalhamento, como os modelos logísticos regressivos (Bonney et al., 1994), que analisam a dependência entre as três posições em um códon fazendo uso das posições anteriores como covariáveis para os modelos logísticos das seguintes.

Após vasto estudo sobre os modelos logísticos regressivos, pesquisas levaram à representação de Bahadur (Bahadur, 1961), que define uma função de probabilidade conjunta para dados binários correlacionados. Há também uma discussão sobre a representação de Bahadur como alternativa aos modelos logísticos (Cox, 1972) para se escrever a probabilidade conjunta de dados binários multivariados diretamente em termos das probabilidades ao invés de log-probabilidades, e Zhao e Prentice (1990) fazem uso da representação de Bahadur como uma caso particular do modelo quadrático exponencial para dados binários correlacionados.

Tal representação também é encontrada na literatura em estudos de respostas dicotômicas permutáveis para indivíduos classificados em grupos (Stefanescu e Turnbull, 2003), e para estudos longitudinais, em que uma mesma variável resposta é obtida para tempos diferentes em uma mesma unidade (Fitzmaurice et al., 1993; Fitzmaurice, 1995).

Além disso há o uso da representação de Bahadur na modelagem de dados longitudinais (Parzen et al., 2009) com abordagem de autocorrelação, devido à característica de série temporal dos dados e utilizando métodos de estimação que envolvem modelos autorregressivos.

A representação de Bahadur também já foi utilizada para analisar mutações em estruturas genéticas (Pinheiro et al., 1999), portanto o uso dessa representação, e de sua expansão para dados multinomiais correlacionados, é pertinente para a modelagem da estrutura de dependência em um códon.

Em sua primeira publicação (Bonney, 1986), os modelos logísticos regressivos foram

aplicados a dados de família, e mais tarde aplicados em apenas uma seqüência de DNA (Bonney et al., 1994). Grandin (2006) aborda a aplicação em diversas seqüências. A representação de Bahadur para o caso de respostas multinomiais, apesar de sugerida e brevemente descrita por Bahadur, não consta em trabalhos como utilizada para modelar dados genéticos.

Ainda na introdução há uma descrição do banco de dados utilizado, bem como alguns detalhes genéticos relacionados a esse banco de dados e possíveis covariáveis, também sugeridas por Bonney para os modelos. Os Capítulos 2 e 3 apresentam respectivamente os modelos teóricos para dados binomiais e multinomiais multivariados, bem como problemas e soluções da estimação dos parâmetros por máxima verossimilhança (EMV).

Algumas medidas de ajuste e técnicas de comparação de modelos são introduzidas no Capítulo 4, e o Capítulo 5 traz a aplicação dos modelos propostos no banco de dados apresentado. Em seguida, o Capítulo 6 aborda uma breve análise de diagnóstico dos modelos logísticos regressivos multinomiais. Por fim, o Capítulo 7 apresenta uma discussão, a partir dos resultados obtidos, sobre as vantagens e desvantagens dos modelos logísticos regressivos e dos modelos baseados na representação de Bahadur.

### 1.1 Biologia Molecular

O ácido desoxirribonucleico (DNA, do inglês *desoxyribonucleic acid*) é um ácido encontrado dentro do núcleo das células de todos os seres vivos, com a excessão de alguns vírus, com a função de armazenar as informações necessárias para o funcionamento e características destes seres vivos, como uma "instrução" de como as células e proteínas, por exemplo, devem ser sintetizadas. Sua primeira publicação, feita por Watson e Crick (1953), define o DNA como uma dupla hélice, diferente da idéia que havia até então sobre os ácidos nucleicos, de que estes eram compostos por uma estrutura de três tiras.

O DNA pode ser subdividido em cromossomos, e cada cromossomo em genes, que são as unidades de hereditariedade passadas nas gerações e contém as informações que influenciam em características particulares de cada organismo. O código genético de cada gene é determinado por uma seqüência de nucleotídeos (ou bases nitrogenadas), sendo eles Timina (T), Citosina (C), Adenina (A) e Guanina (G), cujas breves descrições químicas se encontram na Tabela 1.1. O DNA humano é composto por um total de 23 pares de cromossomos, e o número de genes contidos nesses cromossomos ainda não é conhecido, mas estima-se que seja entre 20 e 25 mil.

| Tabela 1.1: Bases Nitrogenadas |                 |                                 |  |  |  |  |  |
|--------------------------------|-----------------|---------------------------------|--|--|--|--|--|
| Nucleotídeo                    | Fórmula Química | Molécula                        |  |  |  |  |  |
| Timina                         | $C_5H_6N_2O_2$  |                                 |  |  |  |  |  |
| Citosina                       | $C_4H_5N_3O$    | NH <sub>2</sub><br>NH<br>H      |  |  |  |  |  |
| Adenina                        | $C_5H_5N_5$     | H <sub>2</sub> N<br>N<br>N<br>H |  |  |  |  |  |
| Guanina                        | $C_5H_5N_5O$    | NH<br>NH<br>NH2                 |  |  |  |  |  |

Cada grupo de três nucleotídeos adjacentes configuram um códon, e como há quatro nucleotídeos possíveis, existem 64 diferentes códons. Os cdons, por sua vez, determinam algum dentre os 20 aminoácidos existentes na cadeia proteica. Mais de um códon pode determinar o mesmo aminoácido e aqueles que determinam um mesmo aminoácido são chamados de códons sinônimos. Há também códons que não sintetizam aminoácidos, mas indicam o término da síntese proteica (fim de um gene), ou seja, são códons de parada e considerados não-efetivos. Além disso, o aminoácido Metionina indica o início da síntese proteica (início de um gene). A Tabela 1.2 mostra a relação entre códons e aminoácidos.

| Aminoácidos      | Sigla                     | Códons Sinônimos             |
|------------------|---------------------------|------------------------------|
| Alanina          | Ala/A                     | GCT, GCC, GCA, GCG           |
| Arginina         | $\mathrm{Arg/R}$          | CGT, CGC, CGA, CGG           |
| Asparagina       | $\mathrm{Asn/N}$          | AAT, AAC                     |
| Ácido Aspártico  | $\mathrm{Asp}/\mathrm{D}$ | GAT, GAC                     |
| Cisteina         | $\mathrm{Cys/C}$          | TGT, TGC                     |
| Ácido Glutâmico  | $\mathrm{Glu}/\mathrm{E}$ | GAA, GAG                     |
| Glutamina        | $\mathrm{Gln}/\mathrm{Q}$ | CAA, CAG                     |
| Glicina          | $\mathrm{Gly}/\mathrm{G}$ | GGT, GGC, GGA, GGG           |
| Histidina        | $\mathrm{His}/\mathrm{H}$ | TAT, CAC                     |
| Isoleucina       | Ile/I                     | ATT, ATC                     |
| Leucina          | $\mathrm{Leu/L}$          | TTA, TTG, CTT, CTC, CTA, CTG |
| Lisina           | $\mathrm{Lys/K}$          | AAA, AAG                     |
| Metionina        | $\mathrm{Met}/\mathrm{M}$ | ATA, ATG                     |
| Fenilalanina     | Phe/F                     | TTT, TTC                     |
| Prolina          | $\mathrm{Pro}/\mathrm{P}$ | CCT, CCC, CCA, CCG           |
| Serina           | $\mathrm{Ser/S}$          | TCT, TCC, TCA, TCG, AGT, AGC |
| Treonina         | $\mathrm{Thr}/\mathrm{T}$ | ACT, ACA, ACG, ACC           |
| Triptofano       | $\mathrm{Trp}/\mathrm{W}$ | TAG, TGG                     |
| Tirosina         | Tyr/Y                     | TAT, TAC                     |
| Valina           | $\mathrm{Val/V}$          | GTT, GTC, GTA, GTG           |
| Códons de Parada | Ter                       | TAA, TAG, AGA, AGG           |

Tabela 1.2: Código Genético Mitocondrial para Mamíferos - Aminoácidos

O DNA não é composto por uma única molécula, mas sim por um par de moléculas, como duas fitas, fortemente ligadas, no formato de uma dupla hélice. Cada uma dessas

fitas é composta por uma seqüência de bases nitrogenadas, unidas por um esqueleto de fosfato e resíduos de açuar (fosfato-desoxirribose), e a dupla hélice é unida por pontes de hidrogênio, respeitando a complementariedade das bases, em que uma *piramidina* (T ou C) faz uma ligação única sempre a uma *purina* (A ou G), assim, T se une somente a A com duas pontes de hidrogênio, e C se une somente a G com três pontes de hidrogênio.



Figura 1.1: Estrutura do DNA (Imagem: Wikipedia, Autor: Michael Ströck)



Figura 1.2: Estrutura Química do DNA (Imagem: Wikipedia)

A informação genética contida no DNA é copiada pelo ácido ribonucleico (RNA) mensageiro, em um processo denominado transcrição. Neste processo, o RNA cria uma réplica com uma única fita complementar àquela copiada do DNA, e diferente da replicação do DNA, o RNA possui a base Uracila (U) ao invés da Timina, com a Adenina como complementar. Por fim, essa cópia de RNA é decodificada por um ribossomo em um processo denominado tradução, e o RNA mensageiro é emparelhado a um RNA de transferência, que é responsvel pela transmissão do código genético.

Alguma leituras são recomendadas para mais detalhes e aprofundamento a respeito de genética e biologia molecular, como por exemplo Alberts et al. (2002), e para aplicações estatísticas em genética humana e biologia molecular, Reilly (2009).

### **1.2** Banco de Dados

O banco de dados utilizado para as análises consiste de 30 seqüências de DNA obtidas no site do NCBI, com as seguintes características:

 $\bullet$  1 é a SRC

- 7 têm a doença de Leber
- 4 têm o Mal de Alzheimer
- 1 tem Diabetes
- 8 têm o Mal de Parkinson
- 1 é obeso
- 8 são normais

Todas essas seqüências se apresentam codificadas pelos nucleotídeos, ou seja, são seqüências na forma (...)*atgctaaaac*(...). Além das bases nitrogenadas do gene NADH4, foram consideradas também três covariáveis, introduzidas por Bonney et al. (1994): AARISK como uma medida do risco de mutação em um aminoácido, AVDIST como uma medida para o quão típico é um aminoácido e TSCORE que mede o número de mudanças únicas em um único nucleotídeo que podem transformar o códon em um códon de parada (por exemplo, o códon TTA tem TSCORE 1, pois ao mudar o segundo T para A obtém-se o códon de parada TAA, já o códon TGA tem TSCORE 2, pois ao mudar G para A, obtém-se o códon de parada TAA, ou ao mudar o primeiro T para A, obtém-se o códon de parada AGA). Em geral AARISK e TSCORE assumem valores diferentes para códons sinônimos.

As covariáveis AARISK e AVDIST são obtidas a partir das seguintes propriedades químicas dos aminoácidos: composição (c), polaridade (p) e volume molecular (v); também por  $\alpha$ ,  $\beta$  e  $\gamma$  que são os quadrados do inverso das médias, respectivamente da composição, polaridade e volume molecular de todos os 20 aminoácidos (Granthan, 1974). AARISK é a média ponderada das distâncias entre um aminoácido e os demais, e AVDIST é a média das distâncias entre um aminoácido e os demais, sem ponderação, sendo que, quanto menor AVDIST, mais típico é o aminoácido. As distâncias são dadas pela equação,

$$D_{ij} = \sqrt{\left[\alpha \left(c_i - c_j\right)^2 + \beta \left(p_i - p_j\right)^2 + \gamma \left(v_i - v_j\right)^2\right]}.$$
 (1.1)

Outro fato importante é que as covariáveis não têm valores atribuídos aos códons de parada, uma vez que TSCORE mede o número de mudanças únicas em um único nucleotídeo que podem transformar o códon em um códon de parada. Não há sentido em aplicar tal medida em um códon que originalmente configura parada. Portanto, os modelos que incluem covariáveis contam com apenas 60 freqüências, e não 64, após excluídos os quatro códons de parada.

Todas as 30 seqüências do gene NADH4 que compõem a amostra são consideradas independentes e cada uma possui um total de 460 códons quando considerado o último códon que é de parada; há então 459 códons efetivos, também considerados independentes entre si, totalizando uma amostra com N = 13770 códons efetivos a serem analisados.

### 1.3 Análise Exploratória

Uma breve análise exploratória foi realizada sobre o banco de dados, analisando a distribuição das bases nitrogenadas para cada posição dos códons, conforme mostra a Figura 1.3. É visvel, nos gráficos de barra, a diferença na proporção dos nucleotídeos em cada posição.



Figura 1.3: Proporção das Bases Nitrogenadas em Cada Posição dos Códons

Outra análise feita sobre os dados, foi a respeito da transição (mudança) de uma base para outra na posição seguinte, ou seja, quais as bases das posições 1 e 2 do códon, e para quais bases mudam nas posições 2 e 3. As Tabelas 1.3, 1.4 e 1.5 mostram o distribuição do total de bases nas três posições, comparando-as entre si.

|           |              |      | Posição 2 |      |      |       |
|-----------|--------------|------|-----------|------|------|-------|
|           |              | Т    | С         | А    | G    | Total |
|           | Т            | 868  | 990       | 390  | 480  | 2728  |
| Decisão 1 | $\mathbf{C}$ | 2612 | 690       | 696  | 264  | 4262  |
| Posição 1 | А            | 1980 | 1440      | 1021 | 300  | 4741  |
|           | G            | 390  | 780       | 359  | 510  | 2039  |
|           | Total        | 5850 | 3900      | 2466 | 1554 | 13770 |

Tabela 1.3: Total das Bases nas Posições 1 e 2 do Códon

|           |       | Posição 3 |              |      |     |       |
|-----------|-------|-----------|--------------|------|-----|-------|
|           |       | Т         | $\mathbf{C}$ | А    | G   | Total |
|           | Т     | 512       | 1228         | 898  | 90  | 2728  |
| Dogioão 1 | С     | 407       | 1873         | 1834 | 148 | 4262  |
| Posição 1 | А     | 816       | 2094         | 1682 | 149 | 4741  |
|           | G     | 211       | 839          | 895  | 94  | 2039  |
|           | Total | 1946      | 6034         | 5309 | 481 | 13770 |

Tabela 1.4: Total das Bases nas Posições 1 e 3 do Códon

Tabela 1.5: Total das Bases nas Posições 2 e 3 do Códon

|           |              | Т    | $\mathbf{C}$ | А    | G   | Total |
|-----------|--------------|------|--------------|------|-----|-------|
| Posição 2 | Т            | 1052 | 2068         | 2462 | 268 | 5850  |
|           | $\mathbf{C}$ | 645  | 1815         | 1381 | 59  | 3900  |
|           | А            | 129  | 1437         | 839  | 61  | 2466  |
|           | G            | 120  | 714          | 627  | 93  | 1554  |
|           | Total        | 1946 | 6034         | 5309 | 481 | 13770 |

Em seguida, testes chi-quadrado de Pearson foram aplicados aos dados para verificar independência das posições. Como todas as tabelas são  $4 \times 4$ , as estatísticas Q dos testes possuem distribuição assintótica  $\chi_9^2$  sob a hipótese nula. Portanto, com nível de significância  $\alpha = 0,05$ , se Q > 16,92, rejeita-se a hipótese de independência entre as posições. Os resultados dos testes encontram-se na Tabela 1.6, e percebe-se que as posições não são independentes com nível de significância de 5%.

Tabela 1.6: Testes Chi-Quadrado de Independência entre as Posições

| Posições | Q           | g.l. | p-valor              | Resultado         |
|----------|-------------|------|----------------------|-------------------|
| 1 e 2    | 1749,385    | 9    | $<2,2\times10^{-16}$ | não independentes |
| 1 e 3    | $242,\!257$ | 9    | $<2,2\times10^{-16}$ | não independentes |
| 2 e 3    | $624,\!197$ | 9    | $<2,2\times10^{-16}$ | não independentes |

### Capítulo 2

### Modelos Binomiais Multivariados

Seja o *i*-ésimo códon representado pelo vetor  $\mathbf{Y}_i = (Y_{1i}, Y_{2i}, Y_{3i})$ , em que  $Y_{ki}$  (tal que k = 1, 2, 3 é a posição no códon) assume uma dentre as bases nitrogenadas T, C, A ou G. Considerando apenas os 60 códons efetivos, conforme explicado anteriormente na introdução na seção sobre o banco de dados, a distribuição deles nas seqüências de NADH4 é multinomial, ou seja,  $(\mathbf{Y}_1, ..., \mathbf{Y}_{60}) \sim M(N, p_1, ..., p_{60})$ , tal que  $p_i = P(\text{observar o códon } \mathbf{Y}_i)$  é a probabilidade de que um códon selecionado dentro de uma amostra seja igual ao códon representado pelo vetor  $\mathbf{Y}_i$ , para todo i = 1, ..., 60.

Olhando para uma amostra composta por N códons, a probabilidade de que cada códon  $\mathbf{Y}_i$  seja observado  $n_i$  vezes dentro dessa amostra ( $\#\mathbf{Y}_i = n_i$ ), tal que  $\sum_{i=1}^{60} n_i = N$  é dada por,

$$P\left(\left[\#\mathbf{Y}_{i}=n_{i}\right]_{i=1}^{60}\right) = \frac{N!}{\left(\prod_{i=1}^{60}n_{i}!\right)} \prod_{i=1}^{60} p_{i}^{n_{i}}.$$
(2.1)

As proporções observadas dessa amostra serão então os estimadores de máxima verossimilhança da multinomial, dados por,

$$\hat{p}_i = \frac{n_i}{N}, \quad \forall \ i = 1, ..., 60.$$
 (2.2)

Sabe-se que as posições dentro de cada códon possuem uma dependência entre si, e essa dependência será inserida nos modelos propostos. Para isso, as três posições do códon serão codificadas inicialmente nesse capítulo pela classificação das bases nitrogenadas como purina (A e G) ou piramidina (T ou C). Assim, cada  $Y_{ki}$ , para todo k = 1, 2, 3 e i = 1, ..., 60 é definido,

$$Y_{ki} = \begin{cases} 1, \text{ purina (A,G);} \\ 0, \text{ piramidina (T,C).} \end{cases}$$
(2.3)

Seja também o vetor  $\mathbf{X}_i = (X_{1i}, X_{2i}, X_{3i})$  das covariáveis (AARISK, AVDIST, TSCORE) do *i*-ésimo códon, descritas anteriormente, a probabilidade desse códon é condicionada a elas e denotada por,

$$P(\text{observar o códon } \mathbf{Y}_i) = P(\mathbf{Y}_i | \mathbf{X}_i).$$
(2.4)

É importante lembrar que  $\sum_{i=1}^{60} P(\mathbf{Y}_i | \mathbf{X}_i) = 1$ , portanto, dividir a probabilidade de observar um códon  $\mathbf{Y}_i$  pela soma das probabilidades dos 60 códons efetivos equivale a dividir a probabilidade desse códon por 1, assim,

$$P(\text{observar o códon } \mathbf{Y}_i) = \frac{P(\mathbf{Y}_i | \mathbf{X}_i)}{\sum_{i=1}^{60} P(\mathbf{Y}_i | \mathbf{X}_i)} = WP(\mathbf{Y}_i | \mathbf{X}_i).$$
(2.5)

Essa probabilidade  $WP(\mathbf{Y}_i|\mathbf{X}_i)$ , ponderada com respeito aos 60 códons efetivos é de extrema importância para realizar as estimativas das probabilidades dos códons, pois garante que a soma delas seja sempre 1. A equação (2.1) é reescrita fazendo uso dessa normalização e considerando as covariáveis,

$$P\left(\left[\#\mathbf{Y}_{i}=n_{i}\right]_{i=1}^{60}\right) = \frac{N!}{\left(\prod_{i=1}^{60}n_{i}!\right)} \prod_{i=1}^{60} \left[WP(\mathbf{Y}_{i}|\mathbf{X}_{i})\right]^{n_{i}} \\ = \frac{N!}{\left(\prod_{i=1}^{60}n_{i}!\right)} \prod_{i=1}^{60} \left[\frac{P(\mathbf{Y}_{i}|\mathbf{X}_{i})}{\sum_{i=1}^{60}P(\mathbf{Y}_{i}|\mathbf{X}_{i})}\right]^{n_{i}}.$$
 (2.6)

### 2.1 Modelos Lineares Generalizados

Os modelos lineares generalizados (MLGen) (Nelder e Wedderburn, 1972) são uma extensão dos modelos lineares, cujas respostas seguem uma distribuição normal, para variáveis respostas com outras distribuições, pertencentes à família exponencial. Há três componentes que especificam um modelo linear generalizado: uma componente aleatória, que identifica a variável resposta Y e sua distribuição de probabilidade; uma componente sistemática, associada às covariáveis de um preditor linear; uma função de ligação especificando uma função de E(Y), que pelo modelo será igualada à componente sistemática.

Para que um conjunto de observações independentes  $(y_1, ..., y_n)$  possa ser modelado através de um MLGen, é necessário que a distribuição de cada  $y_i$  pertença à família exponencial.

Seja  $Y_1, ..., Y_n$  uma amostra aleatória de uma função de distribuição  $f(y_i|\boldsymbol{\theta})$ , tal que  $\boldsymbol{\theta}$  é um vetor de k parâmetros desconhecidos;  $f(y_i|\boldsymbol{\theta})$  pertence à família exponencial se é possível escrevê-la na seguinte forma (Casella e Berger, 2002):

$$f(y_i|\boldsymbol{\theta}) = h(y_i)c(\boldsymbol{\theta}) \exp\left[\sum_{j=1}^k w_j(\boldsymbol{\theta})t_j(y_i)\right],$$
(2.7)

ou através de uma parametrização diferente para o caso uniparamétrico (Agresti, 2002),

$$f(y_i|\theta) = a(\theta)b(y_i)\exp\left[y_iQ(\theta)\right].$$
(2.8)

Nessa parametrização dada pela equação (2.8),  $Q(\theta)$  é chamado de parâmetro natural. A componente sistemática de um MLGen relaciona um vetor  $(\eta_1, ..., \eta_n)$  às covariáveis, denotadas por  $(x_{i1}, ..., x_{ip})$ , da seguinte forma:

$$\eta_i = \sum_{l=1}^p \beta_l x_{il}, \quad i = 1, ..., n.$$
(2.9)

Essa combinação linear das covariáveis é chamada de preditor linear. A terceira componente de um MLGen é a função de ligação, que conecta as componentes aleatória e sistemática. Seja  $\mu_i = E(Y_i), i = 1, ..., n$ , o MLGen conecta  $\mu_i$  à  $\eta_i$  através da função de ligação g, suposta duplamente diferenciável na seguinte forma,

$$g(\mu_i) = \eta_i \sum_{l=1}^p \beta_l x_{il}, \quad i = 1, ..., n.$$
 (2.10)

Quando a função de ligação é identidade, ou seja,  $g(\mu_i) = \mu_i$ , ela especifica um modelo linear para a média, como é feito em modelos de regressão lineares, com respostas normais. Quando a função de ligação transforma a média no parâmetro natural, ou seja,  $g(\mu_i) = Q(\theta)$ , ela é chamada de função de ligação natural ou canônica.

#### 2.1.1 Distribuição de Bernoulli e Binomial

É simples de verificar que tanto a distribuição de bernoulli quanto binomial pertencem à família exponencial. Seja uma amostra  $(y_1, ..., y_n) \stackrel{iid}{\sim} ber(\pi)$ ,

$$f(y_i|\pi) = \pi^{y_i}(1-\pi)^{1-y_i} \mathbb{I}_{\{0,1\}}(y_i)$$
  
=  $(1-\pi) \left[\frac{\pi}{(1-\pi)}\right]^{y_i} \mathbb{I}_{\{0,1\}}(y_i)$   
=  $(1-\pi) \exp\left\{y_i \log\left[\frac{\pi}{(1-\pi)}\right]\right\} \mathbb{I}_{\{0,1\}}(y_i),$  (2.11)

e seja  $w = \sum_{i=1}^{n} y_i \sim B(n, \pi),$ 

$$f(w|\pi) = \binom{n}{w} \pi^{w} (1-\pi)^{n-w} \mathbb{I}_{\{0,1,\dots,n\}}(w)$$
  
=  $\binom{n}{w} (1-\pi)^{n} \left[\frac{\pi}{(1-\pi)}\right]^{w} \mathbb{I}_{\{0,1,\dots,n\}}(w)$   
=  $\binom{n}{w} (1-\pi)^{n} \exp\left\{w \log\left[\frac{\pi}{(1-\pi)}\right]\right\} \mathbb{I}_{\{0,1,\dots,n\}}(w).$  (2.12)

Para ambas as distribuições, o parâmetro natural é dado por log  $\left[\frac{\pi}{(1-\pi)}\right]$ .

## 2.2 Funções de Ligação mais Comuns em Modelos Binomiais

Retomando as variáveis de interesse deste trabalho, cada posição  $Y_{ki}$  do códon está associada a uma probabilidade  $\pi_{ki} = \pi_k(\mathbf{x}_i)$ , função das covariáveis. Por isso, são definidas as funções de ligação  $\theta_{ki} = g(\pi_{ki})$ . Dessa forma, uma vez estimado  $\theta_{ki}$ , obtémse  $\hat{\pi}_{ki} = g^{-1}(\hat{\theta}_{ki})$ . As três funções de ligação muito usadas para variáveis binárias são o logito, probito e log-log complementar.

#### 2.2.1 Logito

A função logito é a ligação natural dos modelos binomiais, e é definida pela equação:

$$\theta_{ki} = \log\left(\frac{\pi_{ki}}{1 - \pi_{ki}}\right), \qquad (2.13)$$

portanto,

$$\pi_{ki} = \frac{e^{\theta_{ki}}}{(1+e^{\theta_{ki}})}.$$
 (2.14)

#### 2.2.2 Probito

A função de ligação probito é definida pela equação:

$$\theta_{ki} = \Phi^{-1}(\pi_{ki}), \qquad (2.15)$$

em que  $\Phi(\cdot)$  é a função de probabilidade acumulada de uma N(0, 1), portanto,

$$\pi_{ki} = \Phi(\theta_{ki}). \tag{2.16}$$

#### 2.2.3 Log-Log Complementar

A função de ligação log-log complementar é definida pela equação:

$$\theta_{ki} = \log\left[-\log\left(1 - \pi_{ki}\right)\right], \qquad (2.17)$$

portanto,

$$\pi_{ki} = 1 - \exp\left(-e^{\theta_{ki}}\right). \tag{2.18}$$

É interessante mencionar que as ligações logito e probito assumem que a curva de probabilidade é simétrica com relação às covariáveis, já o log-log complementar assume assimetria dessa curva. Também é importante lembrar, para interpretações dos parâmetros mais adiante, que para as três funções de ligação, as probabilidades  $\pi_{ki}$  são crescentes em  $\theta_{ki}$ .

### 2.3 Modelos Logísticos Regressivos

Os modelos logísticos regressivos (Bonney, 1986, 1987; Bonney et al., 1989; Bonney et al., 1994) introduzem a dependência entre as posições do modelo fazendo uso das posições anteriores como covariáveis para estimar as funções de ligação. Esses modelos serão apresentados em ordem de complexidade (número de parâmetros).

Fazendo uso do teorema da multiplicação, a probabilidade dos códons é fatorada da seguinte maneira,

$$P(\mathbf{Y}_{i}|\mathbf{X}_{i}) = P(Y_{1i}, Y_{2i}, Y_{3i}|\mathbf{X}_{i})$$
  
=  $P(Y_{1i}|\mathbf{X}_{i})P(Y_{2i}|Y_{1i}, \mathbf{X}_{i})P(Y_{3i}|Y_{1i}, Y_{2i}, \mathbf{X}_{i}).$  (2.19)

Considerando que a probabilidade de cada posição do códon, condicionada às posições anteriores e às covariáveis é dada pela distribuição de *Bernoulli*,

$$(Y_{1i}|\mathbf{X}_i) \sim ber(\pi_{1i}); \qquad (2.20)$$

$$(Y_{2i}|Y_{1i}, \mathbf{X}_i) \sim ber(\pi_{2i}); \qquad (2.21)$$

$$(Y_{3i}|Y_{1i}, Y_{2i}, \mathbf{X}_i) \sim ber(\pi_{3i}).$$
 (2.22)

A probabilidade de cada códon na equação (2.19) é então dada por,

$$P(\mathbf{Y}_i|\mathbf{X}_i) = \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1 - \pi_{ki})^{1 - y_{ki}}, \qquad (2.23)$$

assim, a equação (2.6) é reescrita como,

$$P\left(\left[\#\mathbf{Y}_{i}=n_{i}\right]_{i=1}^{60}\right) = \frac{N!}{\left(\prod_{i=1}^{60}n_{i}!\right)} \prod_{i=1}^{60} \left[\frac{\prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1-\pi_{ki})^{1-y_{ki}}}{\sum_{i=1}^{60} \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1-\pi_{ki})^{1-y_{ki}}}\right]^{n_{i}}.$$
 (2.24)

A verossimilhança dos modelos, para uma amostra de tamanho N (tal que  $\sum_{i=1}^{60} n_i = N$ ) é dada por,

$$L(\boldsymbol{\theta}) \propto \prod_{i=1}^{60} \left[ \frac{\prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1-\pi_{ki})^{1-y_{ki}}}{\sum_{i=1}^{60} \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1-\pi_{ki})^{1-y_{ki}}} \right]^{n_{i}}, \qquad (2.25)$$

e a log-verossimilhança,

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{60} n_i \sum_{k=1}^{3} \left[ y_{ki} \log(\pi_{ki}) + (1 - y_{ki}) \log(1 - \pi_{ki}) \right] - \sum_{i=1}^{60} n_i \log \left[ \sum_{i=1}^{60} \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1 - \pi_{ki})^{1 - y_{ki}} \right].$$
(2.26)

Os modelos regressivos são quatro, e a diferença entre eles é a forma com que as posições são consideradas na função de ligação.

#### 2.3.1 Modelo Independente

O modelo independente assume que não há estrutura de dependência entre as posições do códon.

$$\theta_{1i} = \alpha_1 + \sum_{p=1}^{3} \beta_p X_{pi}; 
\theta_{2i} = \alpha_2 + \sum_{p=1}^{3} \beta_p X_{pi}; 
\theta_{3i} = \alpha_3 + \sum_{p=1}^{3} \beta_p X_{pi}.$$
(2.27)

Esse modelo possui um total de 6 parâmetros,  $(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3)$ , e para obter as estimativas de máxima verossimilhança, basta resolver o sistema de equações a seguir:

$$\begin{cases} \frac{\partial}{\partial \alpha_k} \ell(\boldsymbol{\theta}) = 0, \quad \forall \ k = 1, 2, 3; \\ \frac{\partial}{\partial \beta_p} \ell(\boldsymbol{\theta}) = 0, \quad \forall \ p = 1, 2, 3. \end{cases}$$
(2.28)

Neste modelo, os parâmetros  $\beta_p$ , para todo p = 1, 2, 3 representam a influência das covariáveis (AARISK, AVDIST e TSCORE) nas probabilidades de cada posição do códon. Quando  $\beta_p$  é positivo, como as três covariáveis assumem valores não negativos, então a covariável tem influência crescente nas probabilidades estimadas. Da mesma maneira, quando  $\beta_p$  é negativo, a covariável tem influência decrescente nas probabilidades de cada posição do dades estimadas.

### 2.3.2 Modelo Igualmente Preditivo

O modelo igualmente preditivo assume que a influência das posições anteriores na seguinte é a mesma.

$$\theta_{1i} = \alpha_1 + \sum_{p=1}^{3} \beta_p X_{pi};$$
  

$$\theta_{2i} = \alpha_2 + \gamma Y_{1i} + \sum_{p=1}^{3} \beta_p X_{pi};$$
  

$$\theta_{3i} = \alpha_3 + \gamma (Y_{1i} + Y_{2i}) + \sum_{p=1}^{3} \beta_p X_{pi}.$$
(2.29)

Esse modelo possui um total de 7 parâmetros,  $(\alpha_1, \alpha_2, \alpha_3, \gamma, \beta_1, \beta_2, \beta_3)$ , e para obter as estimativas de máxima verossimilhança, basta resolver o sistema de equações a seguir:

$$\begin{cases} \frac{\partial}{\partial \alpha_k} \ell(\boldsymbol{\theta}) = 0, \quad \forall \ k = 1, 2, 3; \\ \frac{\partial}{\partial \beta_p} \ell(\boldsymbol{\theta}) = 0, \quad \forall \ p = 1, 2, 3; \\ \frac{\partial}{\partial \gamma} \ell(\boldsymbol{\theta}) = 0. \end{cases}$$
(2.30)

Neste modelo, além da influência das covariáveis, já explicada anteriormente, há a influência das posições anteriores nas probabilidades, representada pelo parâmetro  $\gamma$ . Como as posições do códon  $Y_{ki}$  são indicadoras, ou seja, assumem 1 ou 0, valores positivos para  $\gamma$  indicam influência crescente das posições anteriores nas probabilidades estimadas, e valores negativos de  $\gamma$  indicam influência decrescente das posições anteriores.

#### 2.3.3 Estrutura Markoviana de Primeira Ordem

A estrutura markoviana de primeira ordem assume que a dependência entre as posições é apenas sobre a posição imediatamente anterior.

$$\theta_{1i} = \alpha_1 + \sum_{p=1}^{3} \beta_p X_{pi};$$
  

$$\theta_{2i} = \alpha_2 + \gamma_1 Y_{1i} + \sum_{p=1}^{3} \beta_p X_{pi};$$
  

$$\theta_{3i} = \alpha_3 + \gamma_2 Y_{2i} + \sum_{p=1}^{3} \beta_p X_{pi}.$$
(2.31)

Esse modelo possui um total de 8 parâmetros,  $(\alpha_1, \alpha_2, \alpha_3, \gamma_1, \gamma_2, \beta_1, \beta_2, \beta_3)$ , e para obter as estimativas de máxima verossimilhança, basta resolver o sistema de equações a seguir:

$$\begin{cases} \frac{\partial}{\partial \alpha_k} \ell(\boldsymbol{\theta}) = 0, \quad \forall \ k = 1, 2, 3; \\ \frac{\partial}{\partial \beta_p} \ell(\boldsymbol{\theta}) = 0, \quad \forall \ p = 1, 2, 3; \\ \frac{\partial}{\partial \gamma_s} \ell(\boldsymbol{\theta}) = 0, \quad \forall \ s = 1, 2. \end{cases}$$
(2.32)

Neste modelo, a interpretação dos parâmetros  $\gamma_1$  e  $\gamma_2$  é igual à feita no modelo igualmente preditivo. A diferença é que aqui os parâmetros levam em consideração apenas a posição imediatamente anterior àquela que está sendo modelada.

#### 2.3.4 Modelo Aditivo

O modelo aditivo assume que cada posição do códon depende de todas as posições anteriores.

$$\theta_{1i} = \alpha_1 + \sum_{p=1}^{3} \beta_p X_{pi};$$
  

$$\theta_{2i} = \alpha_2 + \gamma_1 Y_{1i} + \sum_{p=1}^{3} \beta_p X_{pi};$$
  

$$\theta_{3i} = \alpha_3 + \gamma_2 Y_{1i} + \gamma_3 Y_{2i} + \sum_{p=1}^{3} \beta_p X_{pi}.$$
(2.33)

Esse modelo possui um total de 9 parâmetros,  $(\alpha_1, \alpha_2, \alpha_3, \gamma_1, \gamma_2, \gamma_3, \beta_1, \beta_2, \beta_3)$ , e para obter as estimativas de máxima verossimilhança, basta resolver o sistema de equações a seguir:

$$\begin{cases} \frac{\partial}{\partial \alpha_k} \ell(\boldsymbol{\theta}) = 0, & \forall \ k = 1, 2, 3; \\ \frac{\partial}{\partial \beta_p} \ell(\boldsymbol{\theta}) = 0, & \forall \ p = 1, 2, 3; \\ \frac{\partial}{\partial \gamma_s} \ell(\boldsymbol{\theta}) = 0, & \forall \ s = 1, 2, 3. \end{cases}$$
(2.34)

Neste modelo, a interpretação dos parâmetros  $\gamma_1$ ,  $\gamma_2$  e  $\gamma_3$  é igual à feita no modelo igualmente preditivo e na estrutura markoviana de primeira ordem, porém agora levando em consideração todas as posições anteriores àquela modelada.

### 2.3.5 Gradiente e Informação de Fisher

Seja  $\nu_r$  um dentre os parâmetros do vetor  $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma})$  de parâmetros, cada elemento do vetor gradiente para cada modelo é dado por,

$$\frac{\partial}{\partial \nu_r} \ell(\boldsymbol{\theta}) = \frac{\partial}{\partial \nu_r} \sum_{i=1}^{60} n_i \sum_{k=1}^{3} \left[ y_{ki} \log(\pi_{ki}) + (1 - y_{ki}) \log(1 - \pi_{ki}) \right] \\ - \frac{\partial}{\partial \nu_r} \sum_{i=1}^{60} n_i \log \left[ \sum_{i=1}^{60} \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1 - \pi_{ki})^{1 - y_{ki}} \right].$$
(2.35)
Como apenas as probabilidades  $\pi_{ki}$  são funções dos parâmetros  $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma})$ ,

$$\frac{\partial}{\partial \nu_{r}} \ell(\boldsymbol{\theta}) = \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \left[ y_{ki} \frac{\partial}{\partial \nu_{r}} \log(\pi_{ki}) + (1 - y_{ki}) \frac{\partial}{\partial \nu_{r}} \log(1 - \pi_{ki}) \right] 
- \sum_{i=1}^{60} n_{i} \frac{\partial}{\partial \nu_{r}} \log \left[ \sum_{i=1}^{60} \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1 - \pi_{ki})^{1 - y_{ki}} \right] 
= \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \left[ \frac{y_{ki}}{\pi_{ki}} \frac{\partial}{\partial \nu_{r}} \pi_{ki} - \frac{(1 - y_{ki})}{(1 - \pi_{ki})} \frac{\partial}{\partial \nu_{r}} \pi_{ki} \right] 
- \sum_{i=1}^{60} n_{i} \sum_{k=1}^{50} \frac{\partial}{(1 - \pi_{ki})} \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1 - \pi_{ki})^{1 - y_{ki}}}{\sum_{i=1}^{60} \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1 - \pi_{ki})^{1 - y_{ki}}} 
= \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \frac{[y_{ki}(1 - \pi_{ki}) - (1 - y_{ki})\pi_{ki}]}{\pi_{ki}(1 - \pi_{ki})} \frac{\partial}{\partial \nu_{r}} \pi_{ki} 
- \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \frac{[y_{ki}(1 - \pi_{ki}) - (1 - y_{ki})\pi_{ki}]}{\pi_{ki}(1 - \pi_{ki})} \frac{\partial}{\partial \nu_{r}} \pi_{ki} 
= \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \frac{[y_{ki}(1 - \pi_{ki}) - (1 - y_{ki})\pi_{ki}]}{\pi_{ki}(1 - \pi_{ki})^{1 - y_{ki}}} 
= \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \frac{[y_{ki}(1 - \pi_{ki}) - (1 - y_{ki})\pi_{ki}]}{\pi_{ki}(1 - \pi_{ki})^{1 - y_{ki}}}$$

$$(2.36)$$

em que

$$\frac{\partial}{\partial\nu_{r}}P(\mathbf{Y}_{i}|\mathbf{X}_{i}) = \sum_{k=1}^{3} \left[ \frac{\partial}{\partial\nu_{r}} \pi_{ki}^{y_{ki}} (1-\pi_{ki})^{1-y_{ki}} \right] \prod_{s\neq k} \pi_{si}^{y_{si}} (1-\pi_{si})^{1-y_{si}} 
= \sum_{k=1}^{3} \left[ \frac{y_{ki}}{\pi_{ki}} \pi_{ki}^{y_{ki}} (1-\pi_{ki})^{1-y_{ki}} \frac{\partial}{\partial\nu_{r}} \pi_{ki} - (1-y_{ki}) \pi_{ki}^{y_{ki}} (1-\pi_{ki})^{-y_{ki}} \frac{\partial}{\partial\nu_{r}} \pi_{ki} \right] 
\times \prod_{s\neq k} \pi_{si}^{y_{si}} (1-\pi_{si})^{1-y_{si}} 
= \sum_{k=1}^{3} \frac{[y_{ki}(1-\pi_{ki}) - (1-y_{ki})\pi_{ki}]}{\pi_{ki}(1-\pi_{ki})} \left( \frac{\partial}{\partial\nu_{r}} \pi_{ki} \right) \left[ \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1-\pi_{ki})^{1-y_{ki}} \right] 
= \left[ \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1-\pi_{ki})^{1-y_{ki}} \right] \sum_{k=1}^{3} \frac{(y_{ki} - \pi_{ki})}{\pi_{ki}(1-\pi_{ki})} \frac{\partial}{\partial\nu_{r}} \pi_{ki}.$$
(2.37)

Sejam  $\nu_r$  e  $\nu_l$  parâmetros do vetor  $(\alpha, \beta, \gamma)$  de parâmetros, a matriz de informação de Fisher é dada por,

$$I_F(\boldsymbol{\theta}) = -\mathbb{E}\left(\frac{\partial^2}{\partial \nu_r \partial \nu_l} \ell(\boldsymbol{\theta})\right), \qquad (2.38)$$

tal que

$$\frac{\partial^2}{\partial \nu_r \partial \nu_l} \ell(\boldsymbol{\theta}) = \frac{\partial}{\partial \nu_l} \sum_{i=1}^{60} n_i \sum_{k=1}^3 \frac{(y_{ki} - \pi_{ki})}{\pi_{ki} (1 - \pi_{ki})} \frac{\partial}{\partial \nu_r} \pi_{ki} 
- \frac{\partial}{\partial \nu_l} \sum_{i=1}^{60} n_i \frac{\sum_{i=1}^{60} \frac{\partial}{\partial \nu_r} P(\mathbf{Y}_i | \mathbf{X}_i)}{\sum_{i=1}^{60} \prod_{k=1}^3 \pi_{ki}^{y_{ki}} (1 - \pi_{ki})^{1 - y_{ki}}}.$$
(2.39)

Como apenas as probabilidades  $\pi_{ki}$  são funções dos parâmetros  $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma})$ ,

$$\frac{\partial^{2}}{\partial\nu_{r}\partial\nu_{l}}\ell(\boldsymbol{\theta}) = \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \left\{ \left[ \frac{\partial}{\partial\nu_{l}} \frac{(y_{ki} - \pi_{ki})}{\pi_{ki}(1 - \pi_{ki})} \right] \frac{\partial}{\partial\nu_{r}} \pi_{ki} + \frac{(y_{ki} - \pi_{ki})}{\pi_{ki}(1 - \pi_{ki})} \left[ \frac{\partial^{2}}{\partial\nu_{r}\partial\nu_{l}} \pi_{ki} \right] \right\}$$

$$- \sum_{i=1}^{60} n_{i} \frac{\partial}{\partial\nu_{l}} \left[ \frac{\sum_{i=1}^{60} \frac{\partial}{\partial\nu_{r}} P(\mathbf{Y}_{i} | \mathbf{X}_{i})}{\sum_{i=1}^{60} P(\mathbf{Y}_{i} | \mathbf{X}_{i})} \right]$$

$$= \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \frac{(y_{ki} - \pi_{ki})}{\pi_{ki}(1 - \pi_{ki})} \frac{\partial^{2}}{\partial\nu_{r}\partial\nu_{l}} \pi_{ki}$$

$$- \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \left\{ \frac{\pi_{ki}(1 - \pi_{ki}) + (y_{ki} - \pi_{ki})(1 - 2\pi_{ki})}{[\pi_{ki}(1 - \pi_{ki})]^{2}} \right\} \left( \frac{\partial}{\partial\nu_{l}} \pi_{ki} \right) \left( \frac{\partial}{\partial\nu_{r}} \pi_{ki} \right)$$

$$- \sum_{i=1}^{60} n_{i} \left\{ \frac{\sum_{i=1}^{60} \frac{\partial^{2}}{\partial\nu_{r}\partial\nu_{l}} P(\mathbf{Y}_{i} | \mathbf{X}_{i})]}{\sum_{i=1}^{60} \pi_{i} \pi_{ki}^{3}} \frac{\left\{ \frac{\sum_{i=1}^{60} \frac{\partial^{2}}{\partial\nu_{r}\partial\nu_{l}} P(\mathbf{Y}_{i} | \mathbf{X}_{i})\right\}}{\sum_{i=1}^{60} \frac{\partial}{\partial\nu_{l}} P(\mathbf{Y}_{i} | \mathbf{X}_{i})} \right\}$$

$$+ \sum_{i=1}^{60} n_{i} \left\{ \frac{\left[ \sum_{i=1}^{60} \frac{\partial}{\partial\nu_{r}} P(\mathbf{Y}_{i} | \mathbf{X}_{i})\right] \left[ \sum_{i=1}^{60} \frac{\partial}{\partial\nu_{l}} P(\mathbf{Y}_{i} | \mathbf{X}_{i}) \right]}{\left[ \sum_{i=1}^{60} \frac{\partial}{\partial\nu_{r}} \pi_{ki}^{3} (1 - \pi_{ki})^{1 - y_{ki}} \right]^{2}} \right\}, \qquad (2.40)$$

em que,

$$\frac{\partial^{2}}{\partial\nu_{r}\partial\nu_{l}}P(\mathbf{Y}_{i}|\mathbf{X}_{i}) = \frac{\partial}{\partial\nu_{l}} \left[ \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1-\pi_{ki})^{1-y_{ki}} \right] \sum_{k=1}^{3} \frac{(y_{ki}-\pi_{ki})}{\pi_{ki}(1-\pi_{ki})} \frac{\partial}{\partial\nu_{r}} \pi_{ki} \\
= \left[ \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1-\pi_{ki})^{1-y_{ki}} \right] \\
\times \left[ \sum_{k=1}^{3} \frac{(y_{ki}-\pi_{ki})}{\pi_{ki}(1-\pi_{ki})} \frac{\partial}{\partial\nu_{l}} \pi_{ki} \right] \left[ \sum_{k=1}^{3} \frac{(y_{ki}-\pi_{ki})}{\pi_{ki}(1-\pi_{ki})} \frac{\partial}{\partial\nu_{r}} \pi_{ki} \right] \\
- \left[ \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1-\pi_{ki})^{1-y_{ki}} \right] \\
\times \sum_{k=1}^{3} \left\{ \frac{\pi_{ki}(1-\pi_{ki}) + (y_{ki}-\pi_{ki})(1-2\pi_{ki})}{[\pi_{ki}(1-\pi_{ki})]^{2}} \right\} \left( \frac{\partial}{\partial\nu_{l}} \pi_{ki} \right) \left( \frac{\partial}{\partial\nu_{r}} \pi_{ki} \right) \\
+ \left[ \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1-\pi_{ki})^{1-y_{ki}} \right] \sum_{k=1}^{3} \frac{(y_{ki}-\pi_{ki})}{\pi_{ki}(1-\pi_{ki})} \frac{\partial^{2}}{\partial\nu_{r}\partial\nu_{l}} \pi_{ki}.$$
(2.41)

Portanto, como  $\mathbb{E}(y_{ki} - \pi_{ki}) = 0$ , os elementos da matriz de informação de Fisher são,

$$-\mathbb{E}\left(\frac{\partial^{2}}{\partial\nu_{r}\partial\nu_{l}}\ell(\boldsymbol{\theta})\right) = \sum_{i=1}^{60} n_{i}\sum_{k=1}^{3} \frac{\left(\frac{\partial}{\partial\nu_{r}}\pi_{ki}\right)\left(\frac{\partial}{\partial\nu_{l}}\pi_{ki}\right)}{\pi_{ki}(1-\pi_{ki})}$$

$$+ \sum_{i=1}^{60} n_{i}\mathbb{E}\left(\frac{\sum_{i=1}^{60}\frac{\partial^{2}}{\partial\nu_{r}\partial\nu_{l}}P(\mathbf{Y}_{i}|\mathbf{X}_{i})}{\sum_{i=1}^{60}\prod_{k=1}^{3}\pi_{ki}^{y_{ki}}(1-\pi_{ki})^{1-y_{ki}}}\right)$$

$$- \sum_{i=1}^{60} n_{i}\mathbb{E}\left(\frac{\left[\sum_{i=1}^{60}\frac{\partial}{\partial\nu_{r}}P(\mathbf{Y}_{i}|\mathbf{X}_{i})\right]\left[\sum_{i=1}^{60}\frac{\partial}{\partial\nu_{l}}P(\mathbf{Y}_{i}|\mathbf{X}_{i})\right]}{\left[\sum_{i=1}^{60}\prod_{k=1}^{3}\pi_{ki}^{y_{ki}}(1-\pi_{ki})^{1-y_{ki}}\right]^{2}}\right). (2.42)$$

As primeiras e segundas derivadas de  $\pi_{ki}$  com relação a  $\nu_r$  e  $\nu_l$  são diferentes para cada uma das funções de ligação explicadas na Seção 2.1. A seguir estão os resultados para cada uma das funções de ligação consideradas.

Logito:

$$\frac{\partial}{\partial \nu_r} \pi_{ki} = \pi_{ki} (1 - \pi_{ki}) \frac{\partial}{\partial \nu_r} \theta_{ki}; \qquad (2.43)$$

$$\frac{\partial^2}{\partial \nu_r \partial \nu_l} \pi_{ki} = \pi_{ki} (1 - \pi_{ki}) (1 - 2\pi_{ki}) \left(\frac{\partial}{\partial \nu_r} \theta_{ki}\right) \left(\frac{\partial}{\partial \nu_l} \theta_{ki}\right).$$
(2.44)

Probito:

$$\frac{\partial}{\partial \nu_r} \pi_{ki} = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-\theta_{ki}^2}{2}\right) \frac{\partial}{\partial \nu_r} \theta_{ki}; \qquad (2.45)$$

$$\frac{\partial^2}{\partial \nu_r \partial \nu_l} \pi_{ki} = \frac{-1}{\sqrt{2\pi}} \exp\left(\frac{-\theta_{ki}^2}{2}\right) \theta_{ki} \left(\frac{\partial}{\partial \nu_r} \theta_{ki}\right) \left(\frac{\partial}{\partial \nu_l} \theta_{ki}\right).$$
(2.46)

Log-Log Complementar:

$$\frac{\partial}{\partial \nu_r} \pi_{ki} = \exp\left(\theta_{ki} - e^{\theta_{ki}}\right) \frac{\partial}{\partial \nu_r} \theta_{ki}; \qquad (2.47)$$

$$\frac{\partial^2}{\partial \nu_r \partial \nu_l} \pi_{ki} = \left(1 - e^{\theta_{ki}}\right) \left(\frac{\partial}{\partial \nu_r} \theta_{ki}\right) \left(\frac{\partial}{\partial \nu_l} \theta_{ki}\right) \exp\left(\theta_{ki} - e^{\theta_{ki}}\right).$$
(2.48)

# 2.4 Modelo Baseado na Representação de Bahadur

O modelo baseado na representação de Bahadur (Bahadur, 1961) considera a dependência entre as posições dentro de um códon de maneira diferente dos modelos regressivos. Esse modelo não faz uso das posições anteriores como covariáveis para estimar a função de ligação, mas estima as probabilidades de ser uma *purina* ou *piramidina* em cada posição e as correlações entre as posições dentro do códon. É claro que não é possível calcular diretamente a correlação entre variáveis binárias como têm-se aqui, e para isso uma normalização é feita sobre essas variáveis, como será explicado a seguir.

Assumindo independência entre as posições do códon, a probabilidade pode ser escrita exatamente igual à equação (2.23), em que cada  $\pi_{ki} = g^{-1}(\theta_{ki})$  é obtido pelo modelo independente, descrito na equação (2.28), para qualquer uma das três funções de ligação, ou seja,  $\theta_{ki} = g(\pi_{ki}) = \alpha_k + \sum_{p=1}^3 \beta_p X_{pi}$ ,

$$P_I(\mathbf{Y}_i|\mathbf{X}_i) = \prod_{k=1}^3 \pi_{ki}^{y_{ki}} \left(1 - \pi_{ki}\right)^{1 - y_{ki}}.$$
(2.49)

Para utilizar a representação de Bahadur, define-se a seguinte variável de normalização:

$$U_{ki} = \frac{Y_{ki} - \pi_{ki}}{\sqrt{\pi_{ki} (1 - \pi_{ki})}},$$
(2.50)

de forma que  $\rho_{12} = E(U_{1i}U_{2i}), \ \rho_{13} = E(U_{1i}U_{3i}) \in \rho_{23} = E(U_{2i}U_{3i})$  são as correlações entre as posições dentro do códon, e  $\rho_{123} = E(U_{1i}U_{2i}U_{3i})$  uma medida de correlação que relaciona as três posições simultaneamente.

Finalmente, a representação de Bahadur introduz a estrutura de dependência no modelo da seguinte forma:

$$P_B(\mathbf{Y}_i|\mathbf{X}_i) = P_I(\mathbf{Y}_i|\mathbf{X}_i)f(\boldsymbol{\rho}, \mathbf{u}_i)$$
$$= \left[\prod_{k=1}^3 \pi_{ki}^{y_{ki}} (1 - \pi_{ki})^{1 - y_{ki}}\right]f(\boldsymbol{\rho}, \mathbf{u}_i), \qquad (2.51)$$

em que,

$$f(\boldsymbol{\rho}, \mathbf{u}_i) = 1 + \rho_{12}u_{1i}u_{2i} + \rho_{13}u_{1i}u_{3i} + \rho_{23}u_{2i}u_{3i} + \rho_{123}u_{1i}u_{2i}u_{3i}.$$
(2.52)

Para garantir que  $P_B(\mathbf{Y}_i|\mathbf{X}_i)$  defina uma medida de probabilidade, e sabendo-se que  $P_B(\mathbf{Y}_i|\mathbf{X}_i)$  é estritamente positiva, a restrição a seguir deve ser obedecida.

R1. 
$$f(\boldsymbol{\rho}, \mathbf{U}_i) > 0, \quad \forall \ i = 1, ..., 60.$$

Portanto, no modelo baseado na representação de Bahadur, o interesse é estimar o conjunto  $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\rho}) = (\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3, \rho_{12}, \rho_{13}, \rho_{23}, \rho_{123})$  de parâmetros, e uma segunda restrição deve ser obedecida, uma vez que  $\rho_{12}, \rho_{13}, \rho_{23} \in \rho_{123}$  definem correlações.

R2.  $\rho_{12}, \rho_{13}, \rho_{23}, \rho_{123} \in [-1, 1].$ 

Assim, utilizando  $P_B(\mathbf{Y}_i|\mathbf{X}_i)$  na equação (2.6),

$$P\left(\left[\#\mathbf{Y}_{i}=n_{i}|\mathbf{X}_{i}\right]_{i=1}^{60}\right) = \frac{N!}{\left(\prod_{i=1}^{60}n_{i}!\right)} \times \prod_{i=1}^{60} \left\{\frac{\left[\prod_{k=1}^{3}\pi_{ki}^{y_{ki}}\left(1-\pi_{ki}\right)^{1-y_{ki}}\right]f(\boldsymbol{\rho},\mathbf{u}_{i})}{\sum_{i=1}^{60}\left[\prod_{k=1}^{3}\pi_{ki}^{y_{ki}}\left(1-\pi_{ki}\right)^{1-y_{ki}}\right]f(\boldsymbol{\rho},\mathbf{u}_{i})}\right\}^{n_{i}} (2.53)$$

Portanto a verossimilhança será

$$L(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\rho}) \propto \prod_{i=1}^{60} \left\{ \frac{\left[\prod_{k=1}^{3} \pi_{ki}^{y_{ki}} \left(1 - \pi_{ki}\right)^{1 - y_{ki}}\right] f(\boldsymbol{\rho}, \mathbf{u}_{i})}{\sum_{i=1}^{60} \left[\prod_{k=1}^{3} \pi_{ki}^{y_{ki}} \left(1 - \pi_{ki}\right)^{1 - y_{ki}}\right] f(\boldsymbol{\rho}, \mathbf{u}_{i})} \right\}^{n_{i}}, \qquad (2.54)$$

e a log-verossimilhança,

$$\ell(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\rho}) = \sum_{i=1}^{60} n_i \sum_{k=1}^{3} \left[ y_{ki} \log \left( \pi_{ki} \right) + (1 - y_{ki}) \log \left( 1 - \pi_{ki} \right) \right] \\ + \sum_{i=1}^{60} n_i \log \left[ f(\boldsymbol{\rho}, \mathbf{u}_i) \right] \\ - \sum_{i=1}^{60} n_i \log \left\{ \sum_{i=1}^{60} \left[ \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} \left( 1 - \pi_{ki} \right)^{1 - y_{ki}} \right] f(\boldsymbol{\rho}, \mathbf{u}_i) \right\}.$$
(2.55)

Finalmente, ao maximizar  $\ell(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\rho})$  sob as restrições R1 e R2, obtém-se os estimadores de máxima verossimilhança para os parâmetros  $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\rho})$ .

Como a maximização da log-verossimilhança sob as duas restrições para estimar os parâmetros simultaneamente é um problema computacionalmente complexo, a estimação é feita em dois passos. No primeiro passo estima-se ( $\alpha, \beta$ ) através do modelo independente descrito na seção de modelos regressivos, para alguma das três funções de ligação.

Em seguida, utilizando  $(\hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}})$  estimados no passo 1, obtém-se  $\hat{\pi}_{ki}$  para todo k = 1, 2, 3 e i = 1, ..., 60. A partir dessas probabilidades, calculam-se as probabilidades dos códons assumindo independência entre as posições,  $\hat{P}_I(\mathbf{Y}_i|\mathbf{X}_i)$ .

As variáveis para a estrutura de dependência também são calculadas a partir das estimativas  $\hat{\pi}_{ki}$ , i.e.,

$$\hat{U}_{ki} = \frac{Y_{ki} - \hat{\pi}_{ki}}{\sqrt{\hat{\pi}_{ki}(1 - \hat{\pi}_{ki})}}.$$
(2.56)

Finalmente, no segundo passo estima-se  $\rho|(\hat{\alpha}, \hat{\beta})$ . Como  $\pi_{ki}$  já foram estimados, o primeiro termo da equação (2.55) é constante com relação a  $\rho$ , portanto a logverossimilhança a ser maximizada é a seguinte,

$$\ell(\boldsymbol{\rho}) = \sum_{i=1}^{60} n_i \left\{ \log \left[ f(\boldsymbol{\rho}, \hat{\mathbf{u}}_i) \right] - \log \left[ \sum_{i=1}^{60} \prod_{k=1}^{3} \hat{\pi}_{ki}^{y_{ki}} \left( 1 - \hat{\pi}_{ki} \right)^{1 - y_{ki}} f(\boldsymbol{\rho}, \hat{\mathbf{u}}_i) \right] \right\} . (2.57)$$

Assim, para obter as estimativas de máxima verossimilhança, basta resolver o sistema de equações a seguir, sob as restrições R1 e R2.

$$\begin{cases} \frac{\partial}{\partial \rho_{12}} \ell(\boldsymbol{\rho}) = 0; \\ \frac{\partial}{\partial \rho_{13}} \ell(\boldsymbol{\rho}) = 0; \\ \frac{\partial}{\partial \rho_{23}} \ell(\boldsymbol{\rho}) = 0; \\ \frac{\partial}{\partial \rho_{123}} \ell(\boldsymbol{\rho}) = 0. \end{cases}$$
(2.58)

# 2.4.1 Gradiente e Informação de Fisher

Os elementos do vetor gradiente de cada modelo são dados por,

$$\frac{\partial}{\partial \rho_{12}} \ell(\boldsymbol{\rho}) = \sum_{i=1}^{60} n_i \left[ \frac{\hat{u}_{1i} \hat{u}_{2i}}{f(\boldsymbol{\rho}, \hat{\mathbf{u}}_i)} - \frac{\sum_{i=1}^{60} \prod_{k=1}^3 \hat{\pi}_{ki}^{y_{ki}} (1 - \hat{\pi}_{ki})^{1 - y_{ki}} \hat{u}_{1i} \hat{u}_{2i}}{\sum_{i=1}^{60} \prod_{k=1}^3 \hat{\pi}_{ki}^{y_{ki}} (1 - \hat{\pi}_{ki})^{1 - y_{ki}} f(\boldsymbol{\rho}, \hat{\mathbf{u}}_i)} \right]; \quad (2.59)$$

$$\frac{\partial}{\partial \rho_{13}} \ell(\boldsymbol{\rho}) = \sum_{i=1}^{60} n_i \left[ \frac{\hat{u}_{1i} \hat{u}_{3i}}{f(\boldsymbol{\rho}, \hat{\mathbf{u}}_i)} - \frac{\sum_{i=1}^{60} \prod_{k=1}^3 \hat{\pi}_{ki}^{y_{ki}} (1 - \hat{\pi}_{ki})^{1 - y_{ki}} \hat{u}_{1i} \hat{u}_{3i}}{\sum_{i=1}^{60} \prod_{k=1}^3 \hat{\pi}_{ki}^{y_{ki}} (1 - \hat{\pi}_{ki})^{1 - y_{ki}} f(\boldsymbol{\rho}, \hat{\mathbf{u}}_i)} \right]; \quad (2.60)$$

$$\frac{\partial}{\partial \rho_{23}} \ell(\boldsymbol{\rho}) = \sum_{i=1}^{60} n_i \left[ \frac{\hat{u}_{2i} \hat{u}_{3i}}{f(\boldsymbol{\rho}, \hat{\mathbf{u}}_i)} - \frac{\sum_{i=1}^{60} \prod_{k=1}^3 \hat{\pi}_{ki}^{y_{ki}} (1 - \hat{\pi}_{ki})^{1 - y_{ki}} \hat{u}_{2i} \hat{u}_{3i}}{\sum_{i=1}^{60} \prod_{k=1}^3 \hat{\pi}_{ki}^{y_{ki}} (1 - \hat{\pi}_{ki})^{1 - y_{ki}} f(\boldsymbol{\rho}, \hat{\mathbf{u}}_i)} \right]; \quad (2.61)$$

$$\frac{\partial}{\partial \rho_{123}} \ell(\boldsymbol{\rho}) = \sum_{i=1}^{60} n_i \left[ \frac{\hat{u}_{1i} \hat{u}_{2i} \hat{u}_{3i}}{f(\boldsymbol{\rho}, \hat{\mathbf{u}}_i)} - \frac{\sum_{i=1}^{60} \prod_{k=1}^3 \hat{\pi}_{ki}^{y_{ki}} \left(1 - \hat{\pi}_{ki}\right)^{1 - y_{ki}} \hat{u}_{1i} \hat{u}_{2i} \hat{u}_{3i}}{\sum_{i=1}^{60} \prod_{k=1}^3 \hat{\pi}_{ki}^{y_{ki}} \left(1 - \hat{\pi}_{ki}\right)^{1 - y_{ki}} f(\boldsymbol{\rho}, \hat{\mathbf{u}}_i)} \right]. (2.62)$$

A matriz de informação de Fisher é dada por,

$$I_{F}(\boldsymbol{\rho}) = -\mathbb{E} \begin{bmatrix} \frac{\partial^{2}}{\partial\rho_{12}^{2}}\ell(\boldsymbol{\rho}) & \frac{\partial^{2}}{\partial\rho_{12}\partial\rho_{13}}\ell(\boldsymbol{\rho}) & \frac{\partial^{2}}{\partial\rho_{12}\partial\rho_{23}}\ell(\boldsymbol{\rho}) & \frac{\partial^{2}}{\partial\rho_{12}\partial\rho_{123}}\ell(\boldsymbol{\rho}) \\ \frac{\partial^{2}}{\partial\rho_{12}\partial\rho_{13}}\ell(\boldsymbol{\rho}) & \frac{\partial^{2}}{\partial\rho_{13}^{2}}\ell(\boldsymbol{\rho}) & \frac{\partial^{2}}{\partial\rho_{23}^{2}}\ell(\boldsymbol{\rho}) & \frac{\partial^{2}}{\partial\rho_{23}\partial\rho_{123}}\ell(\boldsymbol{\rho}) \\ \frac{\partial^{2}}{\partial\rho_{12}\partial\rho_{123}}\ell(\boldsymbol{\rho}) & \frac{\partial^{2}}{\partial\rho_{13}\partial\rho_{23}}\ell(\boldsymbol{\rho}) & \frac{\partial^{2}}{\partial\rho_{23}^{2}}\ell(\boldsymbol{\rho}) & \frac{\partial^{2}}{\partial\rho_{23}\partial\rho_{123}}\ell(\boldsymbol{\rho}) \\ \frac{\partial^{2}}{\partial\rho_{12}\partial\rho_{123}}\ell(\boldsymbol{\rho}) & \frac{\partial^{2}}{\partial\rho_{13}\partial\rho_{123}}\ell(\boldsymbol{\rho}) & \frac{\partial^{2}}{\partial\rho_{23}\partial\rho_{123}}\ell(\boldsymbol{\rho}) \end{bmatrix}, \quad (2.63)$$

em que, para  $\rho_{*_1}$  e  $\rho_{*_2}$  representando quaisquer um dentre os parâmetros de correlação do vetor  $\rho$ ,

$$\frac{\partial^{2}}{\partial \rho_{*_{1}} \partial \rho_{*_{2}}} \ell(\boldsymbol{\rho}) = -\sum_{i=1}^{60} n_{i} \frac{\left[\frac{\partial}{\partial \rho_{*_{1}}} f(\boldsymbol{\rho}, \hat{\mathbf{u}}_{i})\right] \left[\frac{\partial}{\partial \rho_{*_{2}}} f(\boldsymbol{\rho}, \hat{\mathbf{u}}_{i})\right]}{\left[f(\boldsymbol{\rho}, \hat{\mathbf{u}}_{i})\right]^{2}} \\
+ \sum_{i=1}^{60} n_{i} \frac{\sum_{i=1}^{60} \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1 - \pi_{ki})^{1 - y_{ki}} \frac{\partial}{\partial \rho_{*_{1}}} f(\boldsymbol{\rho}, \hat{\mathbf{u}}_{i})}{\sum_{i=1}^{60} \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1 - \pi_{ki})^{1 - y_{ki}} \frac{\partial}{\partial \rho_{*_{2}}} f(\boldsymbol{\rho}, \hat{\mathbf{u}}_{i})}{\sum_{i=1}^{60} \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1 - \pi_{ki})^{1 - y_{ki}} \frac{\partial}{\partial \rho_{*_{2}}} f(\boldsymbol{\rho}, \hat{\mathbf{u}}_{i})}{\sum_{i=1}^{60} \prod_{k=1}^{3} \pi_{ki}^{y_{ki}} (1 - \pi_{ki})^{1 - y_{ki}} f(\boldsymbol{\rho}, \hat{\mathbf{u}}_{i})}.$$
(2.64)

# Capítulo 3

# Modelos Multinomiais Multivariados

Assim como nos modelos binomiais multivariados discutidos no capítulo anterior, os modelos multinomiais multivariados também levam em consideração a estrutura de dependência entre as posições do códon. A diferença agora é que cada posição  $Y_{ki}$  (k = 1, 2, 3) do códon será considerada não mais como *purina* ou *piramidina*, mas como a base nitrogenada que assume, ou seja, T, C, A ou G.

Codificando cada base numericamente, a relação será T = 0, C = 1, A = 2 e G = 3,  $Y_{ki}$  assume portanto um dentre os valores 0, 1, 2 ou 3. Essa codificação numérica será utilizada somente para facilitar a notação ao longo da explicação e desenvolvimento dos modelos multinomiais, pois as bases nitrogenadas não são valores ordinais e não seria correto definir modelos que considerem as bases numericamente.

Para que as bases nitrogenadas assumidas por  $Y_{ki}$  sejam corretamente consideradas como categorias, as seguintes variáveis indicadoras são criadas:

$$Z_{kji} = \begin{cases} 1, \ Y_{ki} = j \\ 0, \ Y_{ki} \neq j \end{cases}; \quad \forall \ j = 1, 2, 3.$$
(3.1)

Assim, a relação de correspondência entre as variáveis  $Y_{ki}$  que assumem a base nitrogenada de cada posição do códon e o vetor  $\mathbf{Z}_{ki} = (Z_{k1i}, Z_{k2i}, Z_{k3i})$  de variáveis indicadoras é dada pela Tabela 3.1.

| Tabela 5.1. Counicação das Dases Mitrogenada |             |                                          |  |  |  |  |  |
|----------------------------------------------|-------------|------------------------------------------|--|--|--|--|--|
| Nucleotídeo                                  | Codificação | $\left(Z_{k1i}, Z_{k2i}, Z_{k3i}\right)$ |  |  |  |  |  |
| Т                                            | 0           | (0, 0, 0)                                |  |  |  |  |  |
| $\mathbf{C}$                                 | 1           | (1,0,0)                                  |  |  |  |  |  |
| А                                            | 2           | (0,1,0)                                  |  |  |  |  |  |
| G                                            | 3           | (0,0,1)                                  |  |  |  |  |  |

Tabela 3.1: Codificação das Bases Nitrogenadas

Os modelos multinomiais consideram as mesmas covariáveis  $\mathbf{X}_i$  já usadas nos modelos binomiais, e as probabilidades a serem estimadas também fazem uso da normalização  $WP(\mathbf{Y}_i|\mathbf{X}_i)$  previamente explicada, e descrita pela equação (2.6).

Outro ponto importante a ser ressaltado é que os modelos multinomiais fazem uso apenas da função de ligação logito, por essa função já ter uso comum em modelos com respostas múltiplas.

$$logito(\pi_{kji}) = log\left(\frac{\pi_{kji}}{\pi_{k0i}}\right) = \theta_{kji}.$$
(3.2)

Portanto,

$$\left(\frac{\pi_{kji}}{\pi_{k0i}}\right) = e^{\theta_{kji}} \implies \pi_{kji} = \pi_{k0i} e^{\theta_{kji}}.$$
(3.3)

Como 
$$\pi_{k0i} = 1 - \sum_{j=1}^{3} \pi_{kji},$$
  
 $\pi_{k0i} = 1 - \sum_{j=1}^{3} \pi_{k0i} e^{\theta_{kji}} \Rightarrow \pi_{k0i} + \pi_{k0i} \sum_{j=1}^{3} e^{\theta_{kji}} = 1 \Rightarrow \pi_{k0i} = \frac{1}{1 + \sum_{j=1}^{3} e^{\theta_{kji}}}.$  (3.4)

Finalmente,

$$\pi_{kji} = \frac{e^{\theta_{kji}}}{1 + \sum_{j=1}^{3} e^{\theta_{kji}}}.$$
(3.5)

# 3.1 Modelos Logísticos Regressivos

Fazendo novamente uso do teorema da multiplicação,

$$P(\mathbf{Y}_{i}|\mathbf{X}_{i}) = P(Y_{1i}|\mathbf{X}_{i})P(Y_{2i}|Y_{1i},\mathbf{X}_{i})P(Y_{3i}|Y_{1i},Y_{2i},\mathbf{X}_{i}).$$

Agora  $(Y_{ki}|Y_{1i}, ..., Y_{k-1,i}, \mathbf{X}_i) \sim Multinomial(1, \pi_{k0i}, \pi_{k1i}, \pi_{k2i}, \pi_{k3i})$ , e portanto, fazendo uso da relação entre  $Y_{ki}$  e  $\mathbf{Z}_{ki}$ , a probabilidade de cada códon é dada por,

$$P(\mathbf{Y}_{i}|\mathbf{X}_{i}) = \prod_{k=1}^{3} \pi_{k0i}^{1-\sum_{j=1}^{3} z_{kji}} \pi_{k1i}^{z_{k1i}} \pi_{k2i}^{z_{k2i}} \pi_{k3i}^{z_{k3i}}$$
$$= \prod_{k=1}^{3} \frac{e^{\sum_{j=1}^{3} z_{kji}\theta_{kji}}}{(1+\sum_{j=1}^{3} e^{\theta_{kji}})}, \qquad (3.6)$$

e a equação (2.6) pode ser reescrita como:

$$P\left(\left[\#\mathbf{Y}_{i}=n_{i}\right]_{i=1}^{60}\right) = \frac{N!}{\left(\prod_{i=1}^{60}n_{i}!\right)} \times \prod_{i=1}^{60} \left\{\frac{\prod_{i=1}^{3}\left[\left(e^{\sum_{j=1}^{3}z_{kji}\theta_{kji}}\right)/(1+\sum_{j=1}^{3}e^{\theta_{kji}})\right]}{\sum_{i=1}^{60}\prod_{k=1}^{3}\left[\left(e^{\sum_{j=1}^{3}z_{kji}\theta_{kji}}\right)/(1+\sum_{j=1}^{3}e^{\theta_{kji}})\right]}\right\}^{n_{i}}.$$
 (3.7)

Finalmente, a verossimilhança é dada por,

$$L(\boldsymbol{\theta}) \propto \prod_{i=1}^{60} \left\{ \frac{\prod_{k=1}^{3} \left[ (e^{\sum_{j=1}^{3} z_{kji} \theta_{kji}}) / (1 + \sum_{j=1}^{3} e^{\theta_{kji}}) \right]}{\sum_{i=1}^{60} \prod_{k=1}^{3} \left[ (e^{\sum_{j=1}^{3} z_{kji} \theta_{kji}}) / (1 + \sum_{j=1}^{3} e^{\theta_{kji}}) \right]} \right\}^{n_i}, \qquad (3.8)$$

e a log-verossimilhança,

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{60} n_i \sum_{k=1}^{3} \left[ \sum_{j=1}^{3} z_{kji} \theta_{kji} - \log(1 + \sum_{j=1}^{3} e^{\theta_{kji}}) \right] - \sum_{i=1}^{60} n_i \log \left[ \sum_{i=1}^{30} \prod_{k=1}^{3} \frac{e^{\sum_{j=1}^{3} z_{kji} \theta_{kji}}}{(1 + \sum_{j=1}^{3} e^{\theta_{kji}})} \right].$$
(3.9)

Os modelos propostos por Bonney et al. (1994) tratavam de fato das variáveis resposta  $Y_{ki}$  como multinomiais, e portanto, os quatro modelos anteriormente descritos para respostas binomiais serão explicados agora para os modelos multinomiais multivariados. Novamente, esses modelos utilizam as posições anteriores como covariáveis para estimar os logitos, e serão apresentados em ordem de complexidade (número de parâmetros).

#### 3.1.1 Modelo Independente

Como há quatro categorias de respostas, há portanto 3 logitos. O modelo independente assume que não há estrutura de dependência entre as posições do códon.

$$\theta_{1ji} = \alpha_{1j} + \sum_{p=1}^{3} \beta_p X_{pi}; 
\theta_{2ji} = \alpha_{2j} + \sum_{p=1}^{3} \beta_p X_{pi}; 
\theta_{3ji} = \alpha_{3j} + \sum_{p=1}^{3} \beta_p X_{pi},$$
(3.10)

para todo j = 1, 2, 3 e i = 1, ..., 60. Esse modelo possui um total de 12 parâmetros, e para obter as estimativas de máxima verossimilhança, basta resolver o sistema de equações a seguir:

$$\begin{cases} \frac{\partial}{\partial \alpha_{kj}} \ell(\boldsymbol{\theta}) = 0, \quad \forall \ k, j = 1, 2, 3; \\ \frac{\partial}{\partial \beta_p} \ell(\boldsymbol{\theta}) = 0, \quad \forall \ p = 1, 2, 3. \end{cases}$$
(3.11)

Neste modelo, os parâmetros  $\beta_p$ , para todo p = 1, 2, 3 representam a influência das covariáveis (AARISK, AVDIST e TSCORE) nas probabilidades de cada posição do códon. Quando  $\beta_p$  é positivo, como as três covariáveis assumem valores não negativos, então a covariável tem influência crescente nas probabilidades estimadas. Da mesma maneira, quando  $\beta_p$  é negativo, a covariável tem influência decrescente nas probabilidades de cada posição do dades estimadas.

#### 3.1.2 Modelo Igualmente Preditivo

O modelo igualmente preditivo assume que a influência das posições anteriores na seguinte é a mesma. Logo,

$$\theta_{1ji} = \alpha_{1j} + \sum_{p=1}^{3} \beta_p X_{pi};$$
  

$$\theta_{2ji} = \alpha_{2j} + \sum_{s=1}^{3} \gamma_s Z_{1si} + \sum_{p=1}^{3} \beta_p X_{pi};$$
  

$$\theta_{3ji} = \alpha_{3j} + \sum_{s=1}^{3} \gamma_s \sum_{k=1}^{2} Z_{ksi} + \sum_{p=1}^{3} \beta_p X_{pi},$$
(3.12)

para todo j = 1, 2, 3 e i = 1, ..., 60. Esse modelo possui um total de 15 parâmetros, e para obter as estimativas de máxima verossimilhança, basta resolver o sistema de equações a seguir:

$$\begin{cases} \frac{\partial}{\partial \alpha_{kj}} \ell(\boldsymbol{\theta}) = 0, & \forall k, j = 1, 2, 3; \\ \frac{\partial}{\partial \beta_p} \ell(\boldsymbol{\theta}) = 0, & \forall p = 1, 2, 3; \\ \frac{\partial}{\partial \gamma_s} \ell(\boldsymbol{\theta}) = 0, & \forall s = 1, 2, 3. \end{cases}$$
(3.13)

Neste modelo, além da influência das covariáveis, já explicada anteriormente, há a influência das posições anteriores nas probabilidades, representada pelos parâmetros  $\gamma_s$ , para todo s = 1, 2, 3. Como as posições do códon  $Z_{kji}$  são indicadoras, ou seja, assumem 1 ou 0, valores positivos para  $\gamma_s$  indicam influência crescente das posições anteriores nas probabilidades estimadas, e valores negativos de  $\gamma_s$  indicam influência decrescente das posições anteriores.

#### 3.1.3 Estrutura Markoviana de Primeira Ordem

A estrutura markoviana de primeira ordem assume que a dependência entre as posições é apenas sobre a posição imediatamente anterior.

$$\theta_{1ji} = \alpha_{1j} + \sum_{p=1}^{3} \beta_p X_{pi};$$
  

$$\theta_{2ji} = \alpha_{2j} + \sum_{s=1}^{3} \gamma_{1s} Z_{1si} + \sum_{p=1}^{3} \beta_p X_{pi};$$
  

$$\theta_{3ji} = \alpha_{3j} + \sum_{s=1}^{3} \gamma_{2s} Z_{2si} + \sum_{p=1}^{3} \beta_p X_{pi},$$
(3.14)

para todo j = 1, 2, 3 e i = 1, ..., 60. Esse modelo possui um total de 18 parâmetros, e para obter as estimativas de máxima verossimilhança, basta resolver o sistema de equações a seguir:

$$\frac{\partial}{\partial \alpha_{kj}} \ell(\boldsymbol{\theta}) = 0, \quad \forall \ k, j = 1, 2, 3;$$

$$\frac{\partial}{\partial \beta_p} \ell(\boldsymbol{\theta}) = 0, \quad \forall \ p = 1, 2, 3;$$

$$\frac{\partial}{\partial \gamma_{ks}} \ell(\boldsymbol{\theta}) = 0, \quad \forall \ k = 1, 2; \ s = 1, 2, 3.$$
(3.15)

Neste modelo, a interpretação dos parâmetros  $\gamma_{1s} \in \gamma_{2s}$ , para todo s = 1, 2, 3, é igual à feita no modelo igualmente preditivo. A diferença é que aqui os parâmetros levam em consideração apenas a posição imediatamente anterior àquela que está sendo modelada.

#### 3.1.4 Modelo Aditivo

O modelo aditivo assume que cada posição do códon depende de todas as posições anteriores.

$$\theta_{1ji} = \alpha_{1j} + \sum_{p=1}^{3} \beta_p X_{pi};$$
  

$$\theta_{2ji} = \alpha_{2j} + \sum_{s=1}^{3} \gamma_{1s} Z_{1si} + \sum_{p=1}^{3} \beta_p X_{pi};$$
  

$$\theta_{3ji} = \alpha_{3j} + \sum_{s=1}^{3} (\gamma_{2s} Z_{1si} + \gamma_{3s} Z_{2si}) + \sum_{p=1}^{3} \beta_p X_{pi},$$
(3.16)

para todo j = 1, 2, 3 e i = 1, ..., 60. Esse modelo possui um total de 21 parâmetros, e para obter as estimativas de máxima verossimilhança, basta resolver o sistema de equações a seguir:

$$\begin{cases} \frac{\partial}{\partial \alpha_{kj}} \ell(\boldsymbol{\theta}) = 0, & \forall \ k, j = 1, 2, 3; \\ \frac{\partial}{\partial \beta_p} \ell(\boldsymbol{\theta}) = 0, & \forall \ p = 1, 2, 3; \\ \frac{\partial}{\partial \gamma_{ks}} \ell(\boldsymbol{\theta}) = 0, & \forall \ k, s = 1, 2, 3. \end{cases}$$
(3.17)

Neste modelo, a interpretação dos parâmetros  $\gamma_{1s}$ ,  $\gamma_{2s}$  e  $\gamma_{3s}$ , para todo s = 1, 2, 3, é igual à feita no modelo igualmente preditivo e na estrutura markoviana de primeira ordem, porém agora levando em consideração todas as posições anteriores àquela modelada.

#### 3.1.5 Gradiente e Informação de Fisher

Seja  $\nu_r$  dentre os parâmetros do vetor  $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma})$  de parâmetros, cada elemento do vetor gradiente para cada modelo é dado por,

$$\frac{\partial}{\partial \nu_r} \ell(\boldsymbol{\theta}) = \frac{\partial}{\partial \nu_r} \sum_{i=1}^{60} n_i \sum_{k=1}^3 \left[ \sum_{j=1}^3 z_{kji} \theta_{kji} - \log(1 + \sum_{j=1}^3 e^{\theta_{kji}}) \right] 
- \frac{\partial}{\partial \nu_r} \sum_{i=1}^{60} n_i \log \left[ \sum_{i=1}^{30} \prod_{k=1}^3 \frac{e^{\sum_{j=1}^3 z_{kji} \theta_{kji}}}{(1 + \sum_{j=1}^3 e^{\theta_{kji}})} \right].$$
(3.18)

Como apenas os logitos  $\theta_{kji}$  são funções dos parâmetros  $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma})$ ,

$$\frac{\partial}{\partial\nu_{r}}\ell(\boldsymbol{\theta}) = \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \left[ \sum_{j=1}^{3} z_{kji} \frac{\partial}{\partial\nu_{r}} \theta_{kji} - \frac{\frac{\partial}{\partial\nu_{r}} (1 + \sum_{j=1}^{3} e^{\theta_{kji}})}{(1 + \sum_{j=1}^{3} e^{\theta_{kji}})} \right] \\
- \sum_{i=1}^{60} n_{i} \left\{ \frac{\frac{\partial}{\partial\nu_{r}} \sum_{i=1}^{60} \prod_{k=1}^{3} \left[ (e^{\sum_{j=1}^{3} z_{kji} \theta_{kji}}) / (1 + \sum_{j=1}^{3} e^{\theta_{kji}}) \right]}{\sum_{i=1}^{60} \prod_{k=1}^{3} \left[ (e^{\sum_{j=1}^{3} z_{kji} \theta_{kji}}) / (1 + \sum_{j=1}^{3} e^{\theta_{kji}}) \right]} \right\} \\
= \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \left[ \sum_{j=1}^{3} z_{kji} \frac{\partial}{\partial\nu_{r}} \theta_{kji} - \frac{\sum_{j=1}^{3} \frac{\partial}{\partial\nu_{r}} e^{\theta_{kji}}}{(1 + \sum_{j=1}^{3} e^{\theta_{kji}})} \right] \\
- \sum_{i=1}^{60} n_{i} \left\{ \frac{\frac{\partial}{\partial\nu_{i}} \sum_{i=1}^{60} P(\mathbf{Y}_{i} | \mathbf{X}_{i})}{\sum_{i=1}^{60} \prod_{k=1}^{3} \left[ (e^{\sum_{j=1}^{3} z_{kji} \theta_{kji}}) / (1 + \sum_{j=1}^{3} e^{\theta_{kji}}) \right]} \right\} \\
= \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \sum_{j=1}^{3} \left[ z_{kji} - \frac{e^{\theta_{kji}}}{(1 + \sum_{j=1}^{3} e^{\theta_{kji}})} \right] \frac{\partial}{\partial\nu_{r}} \theta_{kji} \\
- \sum_{i=1}^{60} n_{i} \left\{ \frac{\sum_{i=1}^{60} \prod_{k=1}^{3} \left[ (e^{\sum_{j=1}^{3} z_{kji} \theta_{kji}}) / (1 + \sum_{j=1}^{3} e^{\theta_{kji}}) \right]} \right\}, \quad (3.19)$$

em que

$$\frac{\partial}{\partial\nu_{r}}P(\mathbf{Y}_{i}|\mathbf{X}_{i}) = \sum_{k=1}^{3} \left[ \frac{\partial}{\partial\nu_{r}} \frac{e^{\sum_{j=1}^{3} z_{kji}\theta_{kji}}}{(1+\sum_{j=1}^{3} e^{\theta_{kji}})} \right] \prod_{s\neq k} \frac{e^{\sum_{j=1}^{3} z_{sji}\theta_{sji}}}{(1+\sum_{j=1}^{3} e^{\theta_{sji}})} \\
= \sum_{k=1}^{3} \left[ \frac{\left(\frac{\partial}{\partial\nu_{r}}e^{\sum_{j=1}^{3} z_{kji}\theta_{kji}}\right)(1+\sum_{j=1}^{3} e^{\theta_{kji}}) - e^{\sum_{j=1}^{3} z_{kji}\theta_{kji}}\sum_{j=1}^{3} \frac{\partial}{\partial\nu_{r}}e^{\theta_{kji}}}{(1+\sum_{j=1}^{3} e^{\theta_{kji}})^{2}} \right] \\
\times \prod_{s\neq k} \frac{e^{\sum_{j=1}^{3} z_{sji}\theta_{sji}}}{(1+\sum_{j=1}^{3} e^{\theta_{sji}})} \\
= \sum_{k=1}^{3} \left[ \sum_{j=1}^{3} z_{kji}\frac{\partial}{\partial\nu_{r}}\theta_{kji} - \sum_{j=1}^{3} \frac{e^{\theta_{kji}}}{(1+\sum_{j=1}^{3} e^{\theta_{kji}})}\frac{\partial}{\partial\nu_{r}}\theta_{kji} \right] \\
\times \prod_{k=1}^{3} \frac{e^{\sum_{j=1}^{3} z_{kji}\theta_{kji}}}{(1+\sum_{j=1}^{3} e^{\theta_{kji}})} \\
= \left[ \prod_{k=1}^{3} \frac{e^{\sum_{j=1}^{3} z_{kji}\theta_{kji}}}{(1+\sum_{j=1}^{3} e^{\theta_{kji}})} \right] \\
\times \sum_{k=1}^{3} \sum_{j=1}^{3} \left[ z_{kji} - \frac{e^{\theta_{kji}}}{(1+\sum_{j=1}^{3} e^{\theta_{kji}})} \right] \frac{\partial}{\partial\nu_{r}}\theta_{kji}. \quad (3.20)$$

Sejam  $\nu_r$  e  $\nu_l$  parâmetros do vetor  $(\alpha, \beta, \gamma)$  de parâmetros, a matriz de informação de Fisher é dada por,

$$I_F(\boldsymbol{\theta}) = -\mathbb{E}\left(\frac{\partial^2}{\partial \nu_r \partial \nu_l} \ell(\boldsymbol{\theta})\right), \qquad (3.21)$$

tal que

$$\frac{\partial^2}{\partial \nu_r \partial \nu_l} \ell(\boldsymbol{\theta}) = \frac{\partial}{\partial \nu_l} \sum_{i=1}^{60} n_i \sum_{k=1}^{3} \sum_{j=1}^{3} \left[ z_{kji} - \frac{e^{\theta_{kji}}}{(1 + \sum_{j=1}^{3} e^{\theta_{kji}})} \right] \frac{\partial}{\partial \nu_r} \theta_{kji}$$
$$- \frac{\partial}{\partial \nu_l} \sum_{i=1}^{60} n_i \left\{ \frac{\sum_{i=1}^{60} \frac{\partial}{\partial \nu_r} P(\mathbf{Y}_i | \mathbf{X}_i)}{\sum_{i=1}^{60} \prod_{k=1}^{3} \left[ (e^{\sum_{j=1}^{3} z_{kji} \theta_{kji}}) / (1 + \sum_{j=1}^{3} e^{\theta_{kji}}) \right]} \right\}. (3.22)$$

Como apenas os logitos  $\theta_{ki}$ são funções dos parâmetros  $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma})$ ,

$$\frac{\partial^{2}}{\partial\nu_{r}\partial\nu_{l}}\ell(\boldsymbol{\theta}) = \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \sum_{j=1}^{3} \left\{ \left[ -\frac{\partial}{\partial\nu_{l}} \frac{e^{\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})} \right] \frac{\partial}{\partial\nu_{r}}\theta_{kji} \right\} \\
+ \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \sum_{j=1}^{3} \left\{ \left[ z_{kji} - \frac{e^{\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})} \right] \frac{\partial^{2}}{\partial\nu_{r}\partial\nu_{l}}\theta_{kji} \right\} \\
- \sum_{i=1}^{60} n_{i} \frac{\partial}{\partial\nu_{l}} \left[ \frac{\sum_{i=1}^{60} \frac{\partial}{\partial\nu_{r}}P(\mathbf{Y}_{i}|\mathbf{X}_{i})}{\sum_{i=1}^{60}P(\mathbf{Y}_{i}|\mathbf{X}_{i})} \right] \\
= \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \sum_{j=1}^{3} \left[ z_{kji} - \frac{e^{\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})} \right] \frac{\partial^{2}}{\partial\nu_{r}\partial\nu_{l}}\theta_{kji} \\
- \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \sum_{j=1}^{3} \left[ \frac{\partial}{\partial\nu_{l}}\theta_{kji} - \frac{\sum_{j=1}^{3}e^{\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})} \right] \frac{e^{\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})} \\
- \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \sum_{j=1}^{3} \left[ \frac{\partial}{\partial\nu_{l}}\theta_{kji} - \frac{\sum_{i=1}^{3}e^{\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})} \right] \frac{e^{\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})} \\
- \sum_{i=1}^{60} n_{i} \frac{\sum_{i=1}^{60} \frac{\partial}{\partial\nu_{r}}P(\mathbf{Y}_{i}|\mathbf{X}_{i})}{\sum_{i=1}^{60} \frac{\partial}{\partial\nu_{r}}P(\mathbf{Y}_{i}|\mathbf{X}_{i})} \\
+ \sum_{i=1}^{60} n_{i} \frac{\left[ \sum_{i=1}^{60} \frac{\partial}{\partial\nu_{r}}P(\mathbf{Y}_{i}|\mathbf{X}_{i}) \right] \left[ \sum_{i=1}^{60} \frac{\partial}{\partial\theta_{i}}P(\mathbf{Y}_{i}|\mathbf{X}_{i}) \right]}{\left\{ \sum_{i=1}^{60} \prod_{k=1}^{3} \left[ (e^{\sum_{j=1}^{3}z_{kj}\theta_{kji})/(1+\sum_{j=1}^{3}e^{\theta_{kji}}) \right] \right\}^{2}}, \quad (3.23)$$

em que,

$$\frac{\partial^{2}}{\partial\nu_{r}\partial\nu_{l}}P(\mathbf{Y}_{i}|\mathbf{X}_{i}) = \left[\frac{\partial}{\partial\nu_{l}}\prod_{k=1}^{3}\frac{e^{\sum_{j=1}^{3}z_{kji}\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})}\right] \frac{\partial}{\partial\nu_{r}}\theta_{kji} \\
\times \sum_{k=1}^{3}\sum_{j=1}^{3}\left[z_{kji} - \frac{e^{\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})}\right] \frac{\partial}{\partial\nu_{r}}\theta_{kji} \\
+ \left[\prod_{k=1}^{3}\frac{e^{\sum_{j=1}^{3}z_{kji}\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})}\right] \\
\times \frac{\partial}{\partial\nu_{l}}\sum_{k=1}^{3}\sum_{j=1}^{3}\left[z_{kji} - \frac{e^{\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})}\right] \frac{\partial}{\partial\nu_{r}}\theta_{kji} \\
= \left[\prod_{k=1}^{3}\frac{e^{\sum_{j=1}^{3}z_{kji}\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})}\right] \\
\times \sum_{k=1}^{3}\sum_{j=1}^{3}\left[z_{kji} - \frac{e^{\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})}\right] \frac{\partial}{\partial\nu_{r}}\theta_{kji} \\
\times \sum_{k=1}^{3}\sum_{j=1}^{3}\left[z_{kji} - \frac{e^{\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})}\right] \frac{\partial}{\partial\nu_{r}}\theta_{kji} \\
+ \left[\prod_{k=1}^{3}\frac{e^{\sum_{j=1}^{3}z_{kji}\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})}\right] \frac{\partial}{\partial\nu_{r}}\theta_{kji} \\
+ \left[\prod_{k=1}^{3}\frac{e^{\sum_{j=1}^{3}z_{kji}\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})}\right] \frac{\partial}{\partial\nu_{r}}\theta_{kji} \\
+ \left[\prod_{k=1}^{3}\frac{e^{\sum_{j=1}^{3}z_{kj}\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})}\right] \frac{\partial}{\partial\nu_{r}}\theta_{kji} \\
+ \left[\prod_{k=1}^{3}\frac{e^{\sum_{j=1}^{3}z_{kj}\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})}\right] \frac{\partial^{2}}{\partial\nu_{r}\partial\nu_{l}}\theta_{kji} \\
+ \left[\sum_{k=1}^{3}\sum_{j=1}^{3}\left[z_{kji} - \frac{e^{\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})}\right] \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \\
+ \left[\sum_{k=1}^{3}\frac{e^{\sum_{j=1}^{3}z_{kj}\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})}\right] \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \right] \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji} \\
+ \left[\sum_{k=1}^{3}\frac{e^{\sum_{j=1}^{3}z_{kj}\theta_{kji}}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})}\right] \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{kji}} \frac{\partial^{2}}{\partial\nu_{r}}\theta_{$$

Portanto, como  $\mathbb{E}(z_{kji} - \pi_{kji}) = \mathbb{E}\left(z_{kji} - \frac{e^{\theta_{kji}}}{(1 + \sum_{j=1}^{3} e^{\theta_{kji}})}\right) = 0$ , os elementos da matriz

de informação de Fisher são,

$$-\mathbb{E}\left(\frac{\partial^{2}}{\partial\nu_{r}\partial\nu_{l}}\ell(\boldsymbol{\theta})\right) = \sum_{i=1}^{60} n_{i} \sum_{k=1}^{3} \sum_{j=1}^{3} \frac{e^{\theta_{kji}}\left(\frac{\partial}{\partial\nu_{r}}\theta_{kji}\right)}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})} \left[\frac{\partial}{\partial\nu_{l}}\theta_{kji} - \frac{\sum_{j=1}^{3}e^{\theta_{kji}}\frac{\partial}{\partial\nu_{l}}\theta_{kji}}{(1+\sum_{j=1}^{3}e^{\theta_{kji}})}\right] \\ - \sum_{i=1}^{60} n_{i}\mathbb{E}\left(\frac{\left[\sum_{i=1}^{60}\frac{\partial}{\partial\nu_{r}}P(\mathbf{Y}_{i}|\mathbf{X}_{i})\right]\left[\sum_{i=1}^{60}\frac{\partial}{\partial\nu_{l}}P(\mathbf{Y}_{i}|\mathbf{X}_{i})\right]}{\left\{\sum_{i=1}^{60}\prod_{k=1}^{3}\left[(e^{\sum_{j=1}^{3}z_{kji}\theta_{kji}})/(1+\sum_{j=1}^{3}e^{\theta_{kji}})\right]\right\}^{2}\right) \\ + \sum_{i=1}^{60} n_{i}\mathbb{E}\left(\frac{\sum_{i=1}^{60}\frac{\partial}{\partial\nu_{r}}P(\mathbf{Y}_{i}|\mathbf{X}_{i})}{\sum_{i=1}^{60}\prod_{k=1}^{3}\left[(e^{\sum_{j=1}^{3}z_{kji}\theta_{kji}})/(1+\sum_{j=1}^{3}e^{\theta_{kji}})\right]}\right)(3.25)$$

### 3.2 Modelo Baseado na Representação de Bahadur

A extensão do modelo baseado na representação de Bahadur para o caso multinomial descreve a probabilidade de cada posição do códon assumir uma dentre as bases T, C, A ou G e a correlação entre as posições e as bases assumidas. Quatro diferentes extensões são apresentadas em ordem de complexidade (número de parâmetros), levando em consideração diferentes maneiras de estudar as correlações no caso de respostas multinomiais.

De maneira análoga ao caso binário, assumindo independência entre as posições do códon, a probabilidade pode ser escrita exatamente igual à equação (3.6) em que cada  $\pi_{kji} = g^{-1}(\theta_{kji})$  é obtido pelo modelo independente descrito na equação (3.10), ou seja,  $\theta_{kji} = g(\pi_{kji}) = \alpha_{kj} + \sum_{p=1}^{3} \beta_p X_{pi}$ ,

$$P_{I}(\mathbf{Y}_{i}|\mathbf{X}_{i}) = \prod_{k=1}^{3} \frac{e^{\sum_{j=1}^{3} z_{kji}\theta_{kji}}}{(1 + \sum_{j=1}^{3} e^{\theta_{kji}})}.$$
(3.26)

A variável de normalização é definida para todas as posições e categorias,

$$U_{kji} = \frac{Z_{kji} - \pi_{kji}}{\sqrt{\pi_{kji} (1 - \pi_{kji})}}.$$
 (3.27)

Finalmente, a expansão para a representação de Bahadur no caso de respostas

politômicas será:

$$P_B(\mathbf{Y}_i|\mathbf{X}_i) = P_I(\mathbf{Y}_i|\mathbf{X}_i)f(\boldsymbol{\rho}, \mathbf{u}_i)$$
  
= 
$$\left[\prod_{k=1}^3 \frac{\prod_{j=1}^3 e^{z_{kji}\theta_{kji}}}{(1+\sum_{j=1}^3 e^{\theta_{kji}})}\right]f(\boldsymbol{\rho}, \mathbf{u}_i).$$
(3.28)

Como mencionado anteriormente, quatro extensões do modelo baseado na representação de Bahadur para o caso de respostas politômicas são propostas, e essas extensões são diferenciadas pela estrutura de dependência  $f(\boldsymbol{\rho}, \mathbf{u}_i)$ . Antes de discutir detalhadamente essas estruturas, algumas considerações a respeito do modelo serão feitas.

Assim como nos modelos para respostas binárias, por  $P_B(\mathbf{Y}_i|\mathbf{X}_i)$  definir uma medida de probabilidade, é necessário que esta seja estritamente positiva,

R1.  $f(\boldsymbol{\rho}, \mathbf{U}_i) > 0, \quad \forall \ i = 1, ..., 60.$ 

Portanto, no modelo baseado na representação de Bahadur, o interesse é estimar o conjunto  $(\alpha, \beta, \rho)$  de parâmetros, e uma segunda restrição deve ser obedecida, uma vez que  $\rho$  definem correlações,

R2. 
$$\rho_* \in [-1, 1], \quad \forall \ \rho_* \in \boldsymbol{\rho}.$$

Assim, utilizando  $P_B(\mathbf{Y}_i|\mathbf{X}_i)$  na equação (2.6), a verossimilhança é dada por,

$$L(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\rho}) \propto \prod_{i=1}^{60} \left\{ \frac{\prod_{k=1}^{3} \left[ (e^{\sum_{j=1}^{3} z_{kji} \theta_{kji}}) / (1 + \sum_{j=1}^{3} e^{\theta_{kji}}) \right] f(\boldsymbol{\rho}, \mathbf{u}_{i})}{\sum_{i=1}^{60} \prod_{k=1}^{3} \left[ (e^{\sum_{j=1}^{3} z_{kji} \theta_{kji}}) / (1 + \sum_{j=1}^{3} e^{\theta_{kji}}) \right] f(\boldsymbol{\rho}, \mathbf{u}_{i})} \right\}^{n_{i}} (3.29)$$

e a log-verossimilhança,

$$\ell(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\rho}) = \sum_{i=1}^{60} n_i \sum_{k=1}^{3} \left[ \sum_{j=1}^{3} z_{kji} \theta_{kji} - \log(1 + \sum_{j=1}^{3} e^{\theta_{kji}}) \right] \\ + \sum_{i=1}^{60} n_i \log \left[ f(\boldsymbol{\rho}, \mathbf{u}_i) \right] \\ - \sum_{i=1}^{60} n_i \log \left[ \sum_{i=1}^{30} \prod_{k=1}^{3} \frac{e^{\sum_{j=1}^{3} z_{kji} \theta_{kji}}}{(1 + \sum_{j=1}^{3} e^{\theta_{kji}})} f(\boldsymbol{\rho}, \mathbf{u}_i) \right].$$
(3.30)

Finalmente, ao maximizar  $\ell(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\rho})$  sob as restrições R1 e R2, obtém-se os estimadores de máxima verossimilhança para os parâmetros  $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\rho})$ .

#### 3.2.1 Modelo de Dependência de Locação

Os modelos baseados na representação de Bahadur para o caso multinomial consideram apenas as correlações dois a dois, diferente do modelo para o caso binomial que apresenta uma medida de correlação que relaciona as três posições do códon simultâneamente. Essa decisão foi baseada no número de parâmetros desses modelos, que como será visto nos modelos seguintes, já é muito grande apenas com as correlações dois a dois. Apesar de este primeiro modelo apresentado ter apenas três parâmetros de correlação dois a dois e portanto o número de parâmetros não ser um problema, para que todos os modelos sejam coerentes entre si, nenhum deles tem a correlação que relaciona as três posições.

O modelo de dependência de locação considera apenas a correlação entre a mudança de uma posição do códon para as seguintes, sem levar em conta qual a base nitrogenada das posições. Ou seja, a estrutura de dependência de se ter uma passagem de uma base A na posição 1 para uma base T na posição 2, por exemplo, é a mesma de uma passagem de uma base C na posição 1 para uma base G na posição 2. Assim, a estrutura de dependência  $f(\boldsymbol{\rho}, \mathbf{u}_i)$  é:

$$f(\boldsymbol{\rho}, \mathbf{u}_i) = 1 + \sum_{j=1}^{3} \sum_{s=1}^{3} (\rho_{12} u_{1ji} u_{2si} + \rho_{13} u_{1ji} u_{3si} + \rho_{23} u_{2ji} u_{3si}), \quad (3.31)$$

em que  $\rho_{12} = E(U_{1ji}U_{2si}), \ \rho_{13} = E(U_{1ji}U_{3si})$  e  $\rho_{23} = E(U_{2ji}U_{3si})$ . Somando os 3 parâmetros  $\rho$  de correlação aos 12 parâmetros ( $\alpha, \beta$ ) da parte independente, esse modelo tem um total de 15 parâmetros.

#### 3.2.2 Modelo de Dependência de Transição

Esse modelo considera apenas a correlação entre a mudança de uma base para outra, independente da posição dentro do códon, ou seja, a correlação de uma mudança de base A na posição 1 para a base T na base 2, por exemplo, é a mesma de uma mudança da base A na posição 1 para a base T na posição 3. Assim, a estrutura de dependência  $f(\boldsymbol{\rho}, \mathbf{u}_i)$  é:

$$f(\boldsymbol{\rho}, \mathbf{u}_i) = 1 + \sum_{j=1}^{3} \sum_{s=1}^{3} \rho_{js} (u_{1ji} u_{2si} + u_{1ji} u_{3si} + u_{2ji} u_{3si}), \qquad (3.32)$$

em que  $\rho_{js} = E(U_{kji}U_{lsi}), \forall k \neq l$ . Somando os 9 parâmetros  $\rho$  de correlação aos 12 parâmetros ( $\alpha, \beta$ ) da parte independente, esse modelo tem um total de 21 parâmetros.

#### 3.2.3 Modelo de Dependência de Semi-Locação e Transição

Esse modelo considera a correlação entre a mudança de uma determinada base para outra, assim como o modelo de dependência de transição. No entanto, leva em conta a distância da transição dentro do códon, ou seja, assume que a correlação de uma mudança da posição 1 para 2 e de uma mudança da posição 2 para 3 é a mesma, mas essa correlação é diferente daquela de uma mudança da posição 1 para 3. Esse modelo é chamado de dependência de semi-locação, pois ainda considera as correlações de mudanças da posição 1 para 2 e 2 para 3 iguais. Assim, a estrutura de dependência  $f(\boldsymbol{\rho}, \mathbf{u}_i)$  é:

$$f(\boldsymbol{\rho}, \mathbf{u}_i) = 1 + \sum_{j=1}^{3} \sum_{s=1}^{3} \left[ \rho_{1,js} (u_{1ji} u_{2si} + u_{2ji} u_{3si}) + \rho_{2,js} u_{1ji} u_{3si} \right], \quad (3.33)$$

em que  $\rho_{1,js} = E(U_{1ji}U_{2si}) = E(U_{2ji}U_{3si})$  e  $\rho_{2,js} = E(U_{1ji}U_{3si})$ . Somando os 18 parâmetros  $\rho$  de correlação aos 12 parâmetros ( $\alpha, \beta$ ) da parte independente, esse mo-

delo tem um total de 30 parâmetros.

#### 3.2.4 Modelo de Dependência de Locação e Transição

Esse modelo é considerado o modelo de dependência completa, pois leva em conta a correlação de mudança de cada uma das posições do códon para as demais, e de cada mudança de base separadamente. Ou seja, a correlação de uma mudança da base A na posição 1 para a base T na posição 2, por exemplo, é diferente da mesma mudança de bases da posição 2 para 3; a correlação de uma mudança da base A para a base T também será diferente, para todas as posições do códon. Assim, a estrutura de dependência  $f(\boldsymbol{\rho}, \mathbf{u}_i)$  é:

$$f(\boldsymbol{\rho}, \mathbf{u}_i) = 1 + \sum_{j=1}^{3} \sum_{s=1}^{3} (\rho_{1j,2s} u_{1ji} u_{2si} + \rho_{1j,3s} u_{1ji} u_{3si} + \rho_{2j,3s} u_{2ji} u_{3si}), \quad (3.34)$$

em que  $\rho_{1j,2s} = E(U_{1ji}U_{2si}), \ \rho_{1j,3s} = E(U_{1ji}U_{3si})$  e  $\rho_{2j,3s} = E(U_{2ji}U_{3si})$ . Somando os 27 parâmetros  $\rho$  de correlação aos 12 parâmetros ( $\alpha, \beta$ ) da parte independente, esse modelo tem um total de 39 parâmetros.

#### 3.2.5 Método de Estimação dos Parâmetros

Nos modelos baseados na representação de Bahadur, para o caso de respostas politômicas, a maximização da log-verossimilhança sob as duas restrições para estimar os parâmetros simultaneamente também é um problema computacionalmente complexo, a estimação é feita em dois passos, assim como no modelo de respostas binárias. O primeiro passo estima ( $\alpha, \beta$ ) através do modelo independente descrito na seção de modelos regressivos.

Em seguida, utilizando  $(\hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}})$  estimados, obtém-se  $\hat{\theta}_{kji}$  e  $\hat{\pi}_{kji}$  para todo k, j = 1, 2, 3e i = 1, ..., 60. A partir dessas probabilidades, calcula-se a probabilidade dos códons assumindo independência entre as posições,  $\hat{P}_I(\mathbf{Y}_i | \mathbf{X}_i)$ .

As variáveis para a estrutura de dependência também são calculadas a partir das estimativas  $\hat{\pi}_{kji}$ :

$$\hat{U}_{kji} = \frac{Z_{kji} - \hat{\pi}_{kji}}{\sqrt{\hat{\pi}_{kji}(1 - \hat{\pi}_{kji})}}.$$
(3.35)

Finalmente, no segundo passo estima-se  $\rho|(\hat{\alpha}, \hat{\beta})$ . Como  $\theta_{kji} \pi_{kji}$  já foram estimados, o primeiro termo da equação (3.30) é constante com relação a  $\rho$ , portanto a log-verossimilhança a ser maximizada é

$$\ell(\boldsymbol{\rho}) = \sum_{i=1}^{60} n_i \left\{ \log \left[ f(\boldsymbol{\rho}, \hat{\mathbf{u}}_i) \right] - \log \left[ \sum_{i=1}^{30} \prod_{k=1}^{3} \frac{e^{\sum_{j=1}^{3} z_{kji} \hat{\theta}_{kji}}}{(1 + \sum_{j=1}^{3} e^{\hat{\theta}_{kji}})} f(\boldsymbol{\rho}, \hat{\mathbf{u}}_i) \right] \right\}, \quad (3.36)$$

assim, para obter as estimativas de máxima verossimilhança, basta resolver o sistema de equações a seguir:

$$\left\{ \begin{array}{ll} \frac{\partial}{\partial \rho_*} \ell(\boldsymbol{\rho}) = 0, \quad \forall \ \rho_* \in \boldsymbol{\rho}. \end{array} \right.$$
(3.37)

#### 3.2.6 Gradiente e Informação de Fisher

Cada elemento do vetor gradiente é dado por,

$$\frac{\partial}{\partial \rho_*} \ell(\boldsymbol{\rho}) = \sum_{i=1}^{60} n_i \left[ \frac{1}{f(\boldsymbol{\rho}, \hat{\mathbf{u}}_i)} \frac{\partial}{\partial \rho_*} f(\boldsymbol{\rho}, \hat{\mathbf{u}}_i) - \frac{\sum_{i=1}^{60} \frac{\partial}{\partial \rho_*} P_B(\mathbf{Y}_i | \mathbf{X}_i)}{\sum_{i=1}^{30} P_B(\mathbf{Y}_i | \mathbf{X}_i)} \right], \quad (3.38)$$

para todo  $\rho_* \in \boldsymbol{\rho}$ .

Relembrando que pela equação (3.28), e considerando que tem-se os valores estimados dos parâmetros  $(\hat{\alpha}, \hat{\beta})$ , tem-se que,

$$P_B(\mathbf{Y}_i|\mathbf{X}_i) = \prod_{k=1}^3 \frac{e^{\sum_{j=1}^3 z_{kji}\hat{\theta}_{kji}}}{(1+\sum_{j=1}^3 e^{\hat{\theta}_{kji}})} f(\boldsymbol{\rho}, \hat{\mathbf{u}}_i), \qquad (3.39)$$

então,

$$\frac{\partial}{\partial \rho_*} P_B(\mathbf{Y}_i | \mathbf{X}_i) = \prod_{k=1}^3 \frac{e^{\sum_{j=1}^3 z_{kji} \hat{\theta}_{kji}}}{(1 + \sum_{j=1}^3 e^{\hat{\theta}_{kji}})} \frac{\partial}{\partial \rho_*} f(\boldsymbol{\rho}, \hat{\mathbf{u}}_i).$$
(3.40)

A matriz de informação de Fisher é dada por

$$I_F(\boldsymbol{\rho}) = -\mathbb{E}\left(\frac{\partial^2}{\partial \rho_{*_1} \partial \rho_{*_2}} \ell(\boldsymbol{\rho})\right), \qquad (3.41)$$

tal que, para todo  $\rho_{*_1}, \rho_{*_2} \in \boldsymbol{\rho}$ ,

$$\frac{\partial^{2}}{\partial \rho_{*_{1}} \partial \rho_{*_{2}}} \ell(\boldsymbol{\rho}) = -\sum_{i=1}^{60} n_{i} \frac{\left[\frac{\partial}{\partial \rho_{*_{1}}} f(\boldsymbol{\rho}, \hat{\mathbf{u}}_{i})\right] \left[\frac{\partial}{\partial \rho_{*_{2}}} f(\boldsymbol{\rho}, \hat{\mathbf{u}}_{i})\right]}{\left[f(\boldsymbol{\rho}, \hat{\mathbf{u}}_{i})\right]^{2}} \\
+ \sum_{i=1}^{60} n_{i} \frac{\left[\sum_{i=1}^{60} \frac{\partial}{\partial \rho_{*_{1}}} P_{B}(\mathbf{Y}_{i} | \mathbf{X}_{i})\right] \left[\sum_{i=1}^{60} \frac{\partial}{\partial \rho_{*_{2}}} P_{B}(\mathbf{Y}_{i} | \mathbf{X}_{i})\right]}{\left[\sum_{i=1}^{60} P_{B}(\mathbf{Y}_{i} | \mathbf{X}_{i})\right]^{2}}.$$
(3.42)

Portanto, os elementos da matriz de informação de Fisher são,

$$-\mathbb{E}\left(\frac{\partial^{2}}{\partial\rho_{*_{1}}\partial\rho_{*_{2}}}\ell(\boldsymbol{\rho})\right) = -\sum_{i=1}^{60} n_{i}\mathbb{E}\left(\frac{\left[\sum_{i=1}^{60}\frac{\partial}{\partial\rho_{*_{1}}}P_{B}(\mathbf{Y}_{i}|\mathbf{X}_{i})\right]\left[\sum_{i=1}^{60}\frac{\partial}{\partial\rho_{*_{2}}}P_{B}(\mathbf{Y}_{i}|\mathbf{X}_{i})\right]\right)}{\left[\sum_{i=1}^{60}P_{B}(\mathbf{Y}_{i}|\mathbf{X}_{i})\right]^{2}}\right) + \sum_{i=1}^{60} n_{i}\frac{\left[\frac{\partial}{\partial\rho_{*_{1}}}f(\boldsymbol{\rho},\hat{\mathbf{u}}_{i})\right]\left[\frac{\partial}{\partial\rho_{*_{2}}}f(\boldsymbol{\rho},\hat{\mathbf{u}}_{i})\right]}{\left[f(\boldsymbol{\rho},\hat{\mathbf{u}}_{i})\right]^{2}}.$$
(3.43)

\_

# Capítulo 4

# Medidas de Ajuste dos Modelos

Para que os modelos propostos e descritos, tanto para respostas binárias quanto para respostas politômicas, sejam avaliados com relação ao ajuste, é necessário que se aplique algumas técnicas que permitam essa avaliação, bem como comparação do resultados obtidos para cada modelo. Esse capítulo trata, portanto, de medidas de ajuste de modelos aplicáveis ao que é proposto neste trabalho, e também de métodos de validação dos modelos.

# 4.1 Soma de Quadrado dos Erros (SQE)

A SQE deve ser a menor possível, pois quanto mais baixo o valor obtido para essa medida, mais próximos os valores estimados estão dos verdadeiros, e é obtida através da expressão

$$SQE = \sum_{i=1}^{60} \left[ P(\mathbf{Y}_i | \mathbf{X}_i) - \hat{P}(\mathbf{Y}_i | \mathbf{X}_i) \right]^2.$$
(4.1)

# 4.2 Critério de Informação de Akaike (AIC)

O AIC (Akaike, 1973) leva em consideração a log-verossimilhança do modelo ajustado e o número de parâmetros desses modelos. Quanto menor o AIC, melhor o ajuste obtido,

pois esse critério prioriza modelos com maior verossimilhança, mas penaliza modelos que possuem parâmetros em excesso, ou seja, é uma medida que leva em consideração um balanceamento entre máxima verossimilhança e total de parâmetros estimados. Esse critério é dado pela seguinte expressão:

$$AIC = 2 \times [número de parâmetros - log(verossimilhança)].$$
 (4.2)

# 4.3 Critério de Informação Bayesiano (BIC)

O BIC (Raftery, 1986) também leva em consideração a log-verossimilhança do modelo ajustado e o número de parâmetros desse modelos. Assim como o AIC, quanto menor o BIC, melhor o ajuste obtido.

A diferença entre o AIC e o BIC, é que o segundo penaliza os modelos pelo número de parâmetros, ponderando essa penalização pelo logarítmo do tamanho da amostra. Esse critério é dado pela seguinte expressão:

$$BIC = \log(N) \times (número de parâmetros) - 2 \times \log(verossimilhança).$$
 (4.3)

### 4.4 Função Desvio

A função desvio é muito utilizada na análise de modelos lineares generalizados, e leva em consideração a diferença entre a log-verossimilhança do modelo saturado (calculada sobre os valores observados) e a log-verossimilhança do modelo estimado, sendo então dada pela seguinte expressão,

$$D(\mathbf{p}; \hat{\boldsymbol{\pi}}) = -2 \left[ \ell(\hat{\boldsymbol{\pi}}, \boldsymbol{\pi}) - \ell(\boldsymbol{\pi}, \boldsymbol{\pi}) \right].$$
(4.4)

### 4.5 Validação Cruzada

A validação cruzada é um método estatístico para avaliar ou comparar a performance de um ou mais modelos ou algoritmos aplicados em uma amostra, separando-a em dois grupos, um para ajuste (grupo de treino) e outro para validação (grupo de validação). Há diversas maneiras de fazer a validação cruzada em um banco de dados; a mais usual é a técnica K-dobras e as demais formas de validação cruzada são variações dela.

#### 4.5.1 K-dobras

Nessa técnica uma amostra é particionada em K grupos aleatórios de tamanhos iguais (ou quase iguais), e K iterações são realizadas da seguinte maneira: um grupo é separado para validação e o modelo é ajustado para os K-1 demais grupos. Em seguida o ajuste obtido é comparado com os valores do grupo de validação.

#### 4.5.2 Hold-out

A validação *hold-out* separa o conjunto de dados em dois grupos aleatórios de tamanhos iguais, um grupo de treino e o outro de validação. Em seguida, o modelo é ajustado para o grupo de treino e o resultado comparado com o grupo de validação. Esse tipo de validação produz resultados muito dependentes da escolha dos grupos de teste e validação, por isso esse grupos devem ser aleatorizados, para que não haja tanto efeito da separação dos dados. Outra questão importante, é que para amostras pequenas a validação *hold-out* não é indicada, pois não apenas o efeito da separação dos dados será maior, como também haverá poucas observações nos grupos de treino e de validação.

#### 4.5.3 Leave-one-out

A técnica *leave-one-out* é uma variação direta da K-dobras, em que o número K de grupos é igual ao tamanho da amostra, ou seja, para cada valor observado é feita uma validação. A vantagem dessa técnica é que a precisão das estimativas é praticamente não-viesada. A variância, entretanto, será maior do que a obtida se houver menos grupos. Outro problema dessa técnica é o custo, quanto maior a amostra, mais cara é a validação cruzada *leave-one-out*.

#### 4.5.4 K-dobras repetido

Essa validação realiza a técnica K-dobras repetidas vezes. Determina-se o número de repetições desejadas e para cada repetição, a técnica K-dobras é realizada completamente. Ao iniciar uma nova repetição, os grupos são realeatorizados.

# 4.6 Teste da Razão de Verossimilhança

O teste da razão de verossimilhança é feito para avaliar se a hipótese nula de que um parâmetro ou um conjunto de parâmetros sejam iguais a zero é verdadeira. Seja um modelo M cujos parâmetros são representados por  $\boldsymbol{\beta}$ ;  $M_0$  é este modelo sob  $H_0$ :  $\mathbf{C}\boldsymbol{\beta} = \mathbf{0} \in L_0$  a sua verossimilhança, e  $M_1$  é este modelo sob  $H_1 : \mathbf{C}\boldsymbol{\beta} \neq \mathbf{0} \in L_1$  a sua verossimilhança. Assintoticamente, têm-se que

$$G^2 = -2\log\left(\frac{L_0}{L_1}\right) \sim \chi^2_{p_1 - p_0},$$
(4.5)

em que  $p_0 \leq p_1$  denotam o número de parâmetros dos modelos  $M_0$  e  $M_1$ , respectivamente.

# 4.7 Teste de Wald

O teste de Wald pode ser usado para testar  $H_0$ :  $\mathbf{C\beta} = \mathbf{0}$ , para um conjunto de parâmetros  $\boldsymbol{\beta}$  de um determinado modelo. Assim, a estatística do teste é dada por,

$$W_C = \hat{\boldsymbol{\beta}}' \mathbf{C}' \left\{ \mathbf{C} \left[ \mathbf{Var}(\hat{\boldsymbol{\beta}}) \right]^{-1} \mathbf{C}' \right\}^{-1} \mathbf{C} \hat{\boldsymbol{\beta}} \sim \chi_c^2, \qquad (4.6)$$

em que c é o total de restrições determinadas por  $H_0$ .

Quando  $\hat{\boldsymbol{\beta}}$  são estimadores de máxima verossimilhança de  $\boldsymbol{\beta}$ , sabe-se que  $\operatorname{Var}(\hat{\boldsymbol{\beta}}) \xrightarrow{P} I_F^{-1}(\boldsymbol{\beta})$ , e nesse caso, a estatística do teste de Wald é dada por,

$$W_C = \hat{\boldsymbol{\beta}}' \mathbf{C}' \left[ \mathbf{C} I_F(\boldsymbol{\beta}) \mathbf{C}' \right]^{-1} \mathbf{C} \hat{\boldsymbol{\beta}} \sim \chi_c^2, \qquad (4.7)$$

em que c é o total de restrições determinadas por  $H_0$ .

# 4.8 Teste de Escore

Quando a matriz de informação de Fisher não pode ser calculada, muitas vezes devido à esperança de  $\frac{\partial^2}{\partial \beta_i \partial \beta_j} \ell(\boldsymbol{\beta})$  não ter valor fechado, o teste de escore é adequado, pois utiliza a informação de Fisher observada, e a estatística do teste para  $H_0$ :  $\mathbf{C}\boldsymbol{\beta} = \mathbf{0}$  é dada por,

$$S = \mathbf{U}' \hat{I}_F^{-1}(\boldsymbol{\beta}) \mathbf{U} \sim \chi_c^2, \tag{4.8}$$

em que c é o total de restrições determinadas por  $H_0$  e,

$$\mathbf{U} = \frac{\partial}{\beta_i} \ell(\boldsymbol{\beta}) \mid_{\boldsymbol{\beta} = \hat{\boldsymbol{\beta}}},\tag{4.9}$$

$$\hat{I}_F(\boldsymbol{\beta}) = \frac{\partial^2}{\partial \beta_i \partial \beta_j} \ell(\boldsymbol{\beta}) \mid_{\boldsymbol{\beta} = \hat{\boldsymbol{\beta}}} .$$
(4.10)

# Capítulo 5

# Aplicação e Resultados

# 5.1 Implementação Computacional

Todas as implementações dos modelos e métodos propostos foram realizadas utilizando o software R (R-project, 2010), através de rotinas já contidas em pacotes do software, e outras programadas para executar exatamente os modelos propostos e suas análises necessárias.

As log-verossimilhanças foram programadas como funções, e para se obter os estimadores de máxima verossimilhança dos parâmetros nos modelos regressivos utilizou-se a rotina de otimização *optim*, com o método numérico de Broyden-Fletcher-Goldfarb-Shanno (BFGS). Nos modelos baseados na representação de Bahadur, utilizou-se a rotina de otimização *constrOptim*, também com o método numérico de BFGS. A diferença entre essas duas rotinas é que a primeira estima livremente os parâmetros, e a segunda permite inserir restrições não-lineares sobre os parâmetros, permitindo que (R1) e (R2) dos modelos baseados na representação de Bahadur sejam respeitadas.

A implementação computacional dos modelos foi uma das etapas mais importantes desse trabalho, devido aos inúmeros problemas e soluções que surgiram envolvendo os modelos baseados na representação de Bahadur. O primeiro problema encontrado foi estimar simultaneamente todos os parâmetros ( $\alpha, \beta, \rho$ ) dos modelos baseados na representação de Bahadur. A restrição  $f(\boldsymbol{\rho}, \mathbf{U}_i) > 0$  tornou difícil a estimação simultânea dos parâmetros  $(\boldsymbol{\alpha}, \boldsymbol{\beta})$  relacionados ao logito (e às covariáveis) e dos parâmetros  $\boldsymbol{\rho}$  de correlação. Por isso foi tomada a decisão de estimá-los em duas etapas, primeiramente assumindo independência, obtendo  $(\hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}} | \boldsymbol{\rho} = \mathbf{0})$ , e em seguida estimando  $(\hat{\boldsymbol{\rho}} | \hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}})$ .

Em uma primeira tentativa, tentou-se uma solução para estimar  $(\hat{\rho}|\hat{\alpha},\hat{\beta})$  através de uma regressão linear. Após estimados os parâmetros  $(\hat{\alpha},\hat{\beta}|\rho = 0)$ , as probabilidades sob o modelo independente eram calculadas, bem como as variáveis  $\mathbf{u}_i$ , e a função  $f(\rho, \mathbf{U}_i)$  era calculada como um fator de correção necessário para que as probabilidades estimadas pelo modelo baseado na representação de Bahadur apresentassem erro mínimo quando comparadas com as probabilidades observadas. Assim, para se obter as correlações, bastava realizar uma regressão linear, com  $f(\rho, \mathbf{U}_i)$  (como fator de correção) sendo a variável resposta, os produtos das variáveis  $\mathbf{u}_i$  (de acordo como cada um dos modelos propostos) sendo as preditoras, e as correlações  $\rho$  sendo os parâmetros a serem estimados. No entanto, para a realização dessa regressão linear, era necessário suposições de normalidade, o que verificou-se não ser verdadeira, e esse método foi portanto descartado.

A estimação em dois passos no entanto continua sendo até o momento a melhor solução para os problemas computacionais, com o segundo passo da estimação através de máxima verossimilhança. Pesquisas sobre o software utilizado levaram à rotina *constrOptim*, que permite a estimação desse segundo passo, incluindo as restrições necessárias para que os modelos estimem as probabilidades corretamente, respeitando todas as leis probabilísticas.

### 5.2 Modelos Binomiais

A Tabela 5.1 apresenta os resultados obtidos para os modelos binomiais multivariados, valores de AIC, BIC, função desvio e SQE. A partir das medidas de ajuste obtidas, é possível constatar que dentre os modelos com respostas binárias, para qualquer uma das funções de ligação utilizada, o melhor modelo é o aditivo, e dentre as funções de

| Ligação | Modelo        | AIC          | BIC          | Função Desvio | SQE        | Par. |
|---------|---------------|--------------|--------------|---------------|------------|------|
| Logito  | Independente  | 110316, 6    | 110361, 7    | 12126,75      | 0,0168     | 6    |
|         | Ig. Preditivo | 110245, 7    | 110298, 4    | 12053, 90     | 0,0166     | 7    |
|         | Markov        | 110213, 1    | 110273, 4    | 12019, 30     | 0,0165     | 8    |
|         | Aditivo       | $110183,\!6$ | $110251,\!4$ | $11987,\!81$  | $0,\!0165$ | 9    |
|         | Bahadur       | 110264, 5    | 110339, 8    | 12066, 69     | 0,0167     | 10   |
| Probito | Independente  | 110374, 7    | 110419,9     | 12184, 92     | 0,0168     | 6    |
|         | Ig. Preditivo | 110375, 2    | 110427, 9    | 12183, 41     | 0,0168     | 7    |
|         | Markov        | $110317,\!6$ | $110377,\!8$ | 12123,77      | 0,0167     | 8    |
|         | Aditivo       | 110318, 6    | 110386, 3    | $12122,\!74$  | $0,\!0167$ | 9    |
|         | Bahadur       | 110353, 8    | 110429, 1    | 12156,01      | 0,0168     | 10   |
| Log-Log | Independente  | 110394, 5    | 110439, 7    | 12204, 66     | 0,0168     | 6    |
| Compl.  | Ig. Preditivo | 110331, 2    | 110383, 9    | 12139, 38     | 0,0167     | 7    |
|         | Markov        | 110301, 3    | 110361, 6    | 12107, 53     | 0,0167     | 8    |
|         | Aditivo       | $110273,\!5$ | $110341,\!3$ | $12077,\!72$  | 0,0166     | 9    |
|         | Bahadur       | 110353, 3    | 110428, 6    | 12155, 50     | 0,0168     | 10   |

ligação, a que tem melhor ajuste é o logito.

Tabela 5.1: Medidas dos Modelos Binomiais

As Figuras 5.1 e 5.2 mostram os ajustes das probabilidades para os modelos aditivo e de Bahadur, com função de ligação logito. Pode-se observar, a partir do gráfico, que o ajuste dos modelos binomiais não é tão bom quanto desejado. Note que há alguns códons com valores observados bem maiores que os estimados

# 5.3 Modelos Multinomiais

As Tabelas 5.2 e 5.3 apresentam os resultados obtidos para os modelos multinomiais multivariados, valores de AIC, BIC, função desvio e SQE. A partir das medidas de ajuste obtidas, é possível constatar que dentre os modelos regressivos com respostas



Figura 5.1: Valores observados *versus* estimados para os códons do modelo logístico regressivo aditivo com ligação logito



Figura 5.2: Valores observados *versus* estimados para os códons do modelo baseado na representação de Bahadur com ligação logito

politômicas, o melhor modelo é o aditivo, e dentre os modelos baseados na representação de Bahadur, o melhor é o modelo de semi-locação & transição.

| Modelo        | AIC        | BIC          | Função Desvio | SQE    | Par. |
|---------------|------------|--------------|---------------|--------|------|
| Independente  | 101723, 21 | 101813, 57   | 3521, 39      | 0,0052 | 12   |
| Ig. Preditivo | 100939,08  | 101052, 03   | 2731, 26      | 0,0037 | 15   |
| Markov        | 99766, 62  | 99902, 16    | 1552, 80      | 0,0019 | 18   |
| Aditivo       | 99596,07   | $99754,\!21$ | $1376,\!26$   | 0,0017 | 21   |

Tabela 5.2: Medidas dos Modelos Multinomiais Regressivos

Tabela 5.3: Medidas dos Modelos Multinomiais Baseados na Representação de Bahadur

| Modelo              | AIC           | BIC           | Função Desvio | SQE    | Par. |
|---------------------|---------------|---------------|---------------|--------|------|
| Locação             | 101588,80     | 101701,75     | 3380, 98      | 0,0048 | 15   |
| Transição           | 100740, 39    | 100898, 52    | 2520, 57      | 0,0034 | 21   |
| Semi-Loc. e Trans.  | $100030,\!35$ | $100256,\!26$ | $1792,\!53$   | 0,0024 | 30   |
| Locação e Transição | 100144,70     | 100438, 38    | 1888, 89      | 0,0027 | 39   |

As Figuras 5.3 e 5.4 mostram os ajustes das probabilidades para os modelos aditivo e semi-locação e transição. É visível, a partir dos gráficos dos modelos multinomiais aditivo e semi-locação e transição, que o ajuste deles é superior ao dos modelos binomiais. Isso se deve ao fato de que classificar as bases como *purinas* ou *piramidinas* resulta em uma perda da informação.

É interessante notar que não há apenas uma diferença gráfica entre os modelos binomiais e multinomiais, mas também nos valores obtidos para as medidas de ajuste desses modelos, principalmente na função desvio, que é muito menor nos modelos multinomiais, ou seja, a log-verossimilhança desses modelos é muito mais próxima da logverossimilhança do modelo saturado, do que a dos modelos binomiais.

Comparando os gráficos dos modelos aditivo e de semi-locação e transição, não é possível afirmar que há grandes diferenças entre os dois ajustes. Há inclusive códons



Figura 5.3: Valores observados versus estimados do modelo logístico regressivo aditivo



Figura 5.4: Valores observados *versus* estimados do modelo baseado na representação de Bahadur com dependência de semi-locação e transição

| $\alpha_{11}$ | = | 3,6827     | $\gamma_{11}$ | = | -1,6219    | $\beta_1$ | = | -0,0231 |
|---------------|---|------------|---------------|---|------------|-----------|---|---------|
| $\alpha_{12}$ | = | 4,0360     | $\gamma_{12}$ | = | -0,2981    | $\beta_2$ | = | -0,2183 |
| $\alpha_{13}$ | = | 3,1445     | $\gamma_{13}$ | = | $0,\!3719$ | $\beta_3$ | = | -0,4768 |
| $\alpha_{21}$ | = | 3,1393     | $\gamma_{21}$ | = | -0,0732    |           |   |         |
| $\alpha_{22}$ | = | $3,\!1667$ | $\gamma_{22}$ | = | -0,7823    |           |   |         |
| $\alpha_{23}$ | = | 3,1722     | $\gamma_{23}$ | = | -0,2868    |           |   |         |
| $\alpha_{31}$ | = | 4,2023     | $\gamma_{31}$ | = | 0,1442     |           |   |         |
| $\alpha_{32}$ | = | 4,2246     | $\gamma_{32}$ | = | 2,6228     |           |   |         |
| $\alpha_{33}$ | = | 1,8168     | $\gamma_{33}$ | = | 3,0027     |           |   |         |

Tabela 5.4: Estimativas dos Parâmetros do Modelo Logístico Regressivo Aditivo

melhor ajustados em cada um dos modelos, como por exemplo os códons CTT e ATT, que têm melhor ajuste no modelo aditivo, e os códons GTT e ACC, que têm melhor ajuste no modelo de semi-locação e transição. Nota-se também que há um melhor ajuste para as probabilidades de valores bem pequenos em ambos modelos.

As estimativas dos parâmetros para os modelos multinomiais aditivo e de dependência de semi-locação & transição encontram-se nas Tabelas 5.4 e 5.5, respectivamente.

No modelo aditivo, os parâmetros de dependência com maiores valores (em módulo) são  $\gamma_{11}$ ,  $\gamma_{32}$  e  $\gamma_{33}$ . Isso significa que a primeira posição do códon quando assume a base C, tem maior influência na *log-odds* da segunda posição do que quando assume as demais bases; também, a segunda posição do códon quando assume as bases A ou G, tem maior influência na *log-odds* da terceira posição do que quando assume a base C, e do que as bases da primeira posição.

No modelo de semi-locação e transição, as correlações com maiores valores (em módulo) são  $\rho_{1,11}$ ,  $\rho_{1,12}$ ,  $\rho_{1,13}$ ,  $\rho_{2,11}$ ,  $\rho_{2,12}$ ,  $\rho_{2,31}$  e  $\rho_{2,32}$ . Isso significa que há uma maior correlação entre as mudanças de uma base C para as demais, da posição 1 para 2 ou da posição 2 para 3, e para as mudanças de uma base C para C ou A, ou de uma base G para C ou A, da posição 1 para 3.

A validação cruzada foi aplicada para os modelos multinomiais, considerando como
| $\alpha_{11}$ | = | -1,0156     | $\rho_{1,11}$   | = | -0,1001    | $\rho_{2,11}$   | = | 0,1313     | $\beta_1$ | = | -0,0062 |
|---------------|---|-------------|-----------------|---|------------|-----------------|---|------------|-----------|---|---------|
| $\alpha_{12}$ | = | -0,8952     | $ ho_{1,12}$    | = | -0,1178    | $ ho_{2,12}$    | = | 0,1125     | $\beta_2$ | = | 0,1801  |
| $\alpha_{13}$ | = | -1,8673     | $\rho_{1,13}$   | = | -0,1280    | $ \rho_{2,13} $ | = | 0,0256     | $\beta_3$ | = | 0,0836  |
| $\alpha_{21}$ | = | -1,7101     | $ \rho_{1,21} $ | = | 0,0953     | $ \rho_{2,21} $ | = | 0,0213     |           |   |         |
| $\alpha_{22}$ | = | -2,1042     | $\rho_{1,22}$   | = | 0,0122     | $\rho_{2,22}$   | = | 0,0142     |           |   |         |
| $\alpha_{23}$ | = | -2,4727     | $\rho_{1,23}$   | = | -0,0341    | $\rho_{2,23}$   | = | -0,0133    |           |   |         |
| $\alpha_{31}$ | = | -0,1736     | $ \rho_{1,31} $ | = | 0,0960     | $ \rho_{2,31} $ | = | 0,1480     |           |   |         |
| $\alpha_{32}$ | = | -0,2122     | $ \rho_{1,32} $ | = | 0,0520     | $ \rho_{2,32} $ | = | 0,1895     |           |   |         |
| $\alpha_{33}$ | = | $-2,\!6073$ | $ ho_{1,33}$    | = | $0,\!0897$ | $ \rho_{2,33} $ | = | $0,\!0191$ |           |   |         |

Tabela 5.5: Estimativas dos Parâmetros do Modelo Baseado na Representação de Bahadur de Dependência de Semi-Locação e Transição

unidade amostral cada uma das 30 seqüências do gene NADH4. Devido a quantidade de seqüências, optou-se por usar a validação cruzada *leave-one-out*, assim, 30 iterações foram realizadas.

Para avaliar os resultados da validação cruzada, foi calculado o quadrado médio dos erros (QME) e a variância da SQE (Tabelas 5.6 e 5.7). Assim, como foi verificado pelas demais medidas de análise de ajuste (AIC, BIC e SQE), a validação cruzada também indica que, quando observa-se o QME das validações cruzadas, dentre os modelo regressivos o melhor deles é o modelo aditivo, e dentre os modelos baseados na representação de Bahadur o melhor deles é o modelo de semi-locação e transição. É interessante notar que as variâncias da SQE desses dois modelos não são as menores obtidas, quando comparadas com os demais modelos.

As Figuras 5.5 e 5.6 apresentam os gráficos da SQE das validações cruzadas para os modelos logísticos regressivos e para os modelos baseados na representação de Bahadur, respectivamente, em que as linhas tracejadas representam o QME da validação cruzada de cada modelo. É possível verificar visualmente que o modelo aditivo e o modelo de semi-locação e transição têm as menores médias dentre os modelos logísticos regressivos e os modelos baseados na representação de Bahadur, respectivamente. É visível também

| Modelo               | QME    | Var(SQE)                    |
|----------------------|--------|-----------------------------|
| Independente         | 0,0052 | $3,\!88	imes10^{	ext{-}13}$ |
| Igualmente Preditivo | 0,0036 | $7,20\times 10^{-13}$       |
| Markov               | 0,0019 | $1,04\times 10^{-12}$       |
| Aditivo              | 0,0017 | $1,45\times10^{-12}$        |

Tabela 5.6: Resultados da Validação Cruzada dos Modelos Logísticos Regressivos

 Tabela 5.7: Resultados da Validação Cruzada dos Modelos Baseados na Representação

 de Bahadur

| Modelo                   | QME    | Var(SQE)              |
|--------------------------|--------|-----------------------|
| Locação                  | 0,0048 | $2,\!80	imes10^{-13}$ |
| Transição                | 0,0034 | $1,32\times 10^{-12}$ |
| Semi-Locação e Transição | 0,0024 | $1,35\times10^{-9}$   |
| Locação e Transição      | 0,0027 | $7,95\times10^{-9}$   |

a maior variância da SQE no modelo de semi-locação e transição e no de locação e transição; apesar disso, os pontos aparentam estar homogeneamente dispersos entre si.

A Tabela 5.8 apresenta os resultados para os testes dos parâmetros de dependência e das covariáveis para o modelo aditivo de semi-locação e transição. Foi escolhido o teste da razão de verossimilhança para a realização dos testes de interesse. Em todos os testes, constatou-se que as covariáveis são significantes nos dois modelos, assim como os parâmetros de dependência também o são.



Figura 5.5: Validação Cruzada dos Modelos Logísticos Regressivos

Tabela 5.8: Testes dos Parâmetros do Modelo Aditivo e do Modelo de Semi-Locação & Transição

| Modelo       | Teste                                   | $\mathbf{G}^2$ | g.l. | p-valor  |
|--------------|-----------------------------------------|----------------|------|----------|
| A ditima     | $H_0: oldsymbol{\gamma} = oldsymbol{0}$ | 2145,1385      | 9    | < 0,0001 |
| Adhivo       | $H_0: \boldsymbol{\beta} = 0$           | 239,9281       | 3    | < 0,0001 |
| Semi-Locação | $H_0: oldsymbol{ ho} = oldsymbol{0}$    | 1728,8617      | 18   | < 0,0001 |
| & Transição  | $H_0: \boldsymbol{\beta} = 0$           | 110,7713       | 3    | < 0,0001 |



Figura 5.6: Validação Cruzada dos Modelos Baseados na Representação de Bahadur

### Capítulo 6

## Análise de Diagnóstico dos Modelos

Uma breve análise de diagnóstico dos modelos é feita nesse capítulo, com o intuito de fundamentar e validar os modelos propostos, indo além da análise de medidas e métodos de seleção de modelos, mas também verificando pontos de influência. Essas análises são feitas somente sobre os modelos multinomiais, por serem os modelos de melhor ajuste dos dados, quando comparados com os binomiais. Além disso, os diagnósticos foram realizados apenas para os modelos logísticos regressivos.

Os métodos de análise de pontos discrepantes, de influência e de alavanca foram primeiramente generalizados para modelos de regressão logística para dados binários (Pregibon, 1981) e extendidos para respostas múltiplas (Lesafrre e Albert, 1989) como um modelo linear generalizado multivariado. Seber e Nyangoma (2000) e Nyangoma et al. (2006) também abordam a análise de resíduos e diagnósticos de pontos influentes para dados com respostas multinomiais.

Os modelos baseados na representação de Bahadur, devido à complexidade da estrutura do modelo e da estimação em dois passos não têm essa análise, sendo isso uma proposta para trabalhos futuros.

### 6.1 Modelos Logísticos Regressivos

Nesses modelos, foram ajustados logitos que determinam a estrutura de dependência entre as três posições dos códons, considerando também três covariáveis. Os conjuntos de equações (3.10), (3.12), (3.14) e (3.16) dos modelos logísticos regressivos podem ser escritos matricialmente como,

$$\boldsymbol{\theta} = \mathbf{C}\log(\boldsymbol{\pi}) = \mathbf{X}\boldsymbol{\xi},\tag{6.1}$$

tal que,

$$\mathbf{C} = \begin{bmatrix} \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix} \otimes \mathbf{I}_{60} \end{bmatrix} \otimes \mathbf{I}_{3}, \tag{6.2}$$

o vetor de probabilidades,

$$\pi = (\pi_1, \pi_2, \pi_3)',$$
 (6.3)

em que  $\pi_k = (\pi_{k,1}, ..., \pi_{k,60})'$  e  $\pi_{k,i} = (\pi_{k0i}, \pi_{k1i}, \pi_{k2i}, \pi_{k3i})'$  para todo k = 1, 2, 3 e i = 1, ..., 60, e o vetor dos logitos,

$$\boldsymbol{\theta} = (\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{\theta}_3)', \tag{6.4}$$

em que  $\boldsymbol{\theta}_{k} = (\boldsymbol{\theta}_{k,1}, ..., \boldsymbol{\theta}_{k,60})' \in \boldsymbol{\theta}_{k,i} = (\theta_{k1i}, \theta_{k2i}, \theta_{k31})'$  para todo  $k = 1, 2, 3 \in i = 1, ..., 60.$ 

Cada um dos quatro modelos descritos possui sua própria matriz  $\mathbf{X}$  de especificação e seu próprio conjunto de parâmetros  $\boldsymbol{\xi}$ , e por isso os diagnósticos são feitos separados para cada um deles, mas simultaneamente para as três posições dos códons.

Uma primeira medida de diagnóstico dos modelos, para verificar possíveis *outliers* é dada por

$$\chi_{k,i}^2 = \sum_{j=0}^3 \frac{n_i \left( z_{kji} - \hat{\pi}_{kji} \right)^2}{\hat{\pi}_{kji}}, \quad \forall \ k = 1, 2, 3 \ e \ i = 1, ..., 60.$$
(6.5)

Valores altos de  $\chi^2_{k,i}$  sugerem um ajuste fraco. Assim, a estatística de "qualidade de ajuste" para cada posição do códon,  $\chi^2_k$  é definida,

$$\chi_k^2 = \sum_{i=1}^{60} \chi_{k,i}^2, \quad \forall \ k = 1, 2, 3.$$
(6.6)

A função desvio dada, quando se deseja analisar as probabilidades de cada posição do códon, pela estatística,

$$D_k = -2[\ell(\hat{\boldsymbol{\pi}}_k, \boldsymbol{\pi}_k) - \ell(\boldsymbol{\pi}_k, \boldsymbol{\pi}_k)], \qquad (6.7)$$

e pode ser reescrita como  $D_k = \sum_{i=1}^{60} d_{k,i}^2$ , tal que cada  $d_{k,i}^2$  representa essa medida de concordância entre as log-verossimilhanças observadas e estimadas para cada ítem da amostra, no caso, cada códon.

O modelo linear generalizado para estimar os logitos de respostas múltiplas das três posições do códon tem a matriz de projeção dada por,

$$\mathbf{H} = \hat{\boldsymbol{\Sigma}}^{1/2} \mathbf{X} (\mathbf{X}' \hat{\boldsymbol{\Sigma}} \mathbf{X})^{-1} \mathbf{X}' \hat{\boldsymbol{\Sigma}}^{1/2}, \qquad (6.8)$$

tal que,

$$\hat{\Sigma} = \operatorname{diag}(\hat{\Sigma}_1, \hat{\Sigma}_2, \hat{\Sigma}_3) = \begin{pmatrix} \hat{\Sigma}_1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \hat{\Sigma}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \hat{\Sigma}_3 \end{pmatrix}, \qquad (6.9)$$

$$\hat{\boldsymbol{\Sigma}}_{k} = \operatorname{diag}(\hat{\boldsymbol{\Sigma}}_{k,1}, \dots, \hat{\boldsymbol{\Sigma}}_{k,60}) = \begin{pmatrix} \hat{\boldsymbol{\Sigma}}_{k,1} & \boldsymbol{0} \\ & \ddots & \\ \boldsymbol{0} & & \hat{\boldsymbol{\Sigma}}_{k,60} \end{pmatrix}, \quad (6.10)$$

$$\hat{\Sigma}_{k,i} = \operatorname{diag}(\pi_{k,i}) - \pi_{k,i}\pi'_{k,i} \\
= \begin{pmatrix} \pi_{k1i}(1 - \pi_{k1i}) & -\pi_{k1i}\pi_{k2i} & -\pi_{k1i}\pi_{k3i} \\ -\pi_{k1i}\pi_{k2i} & \pi_{k2i}(1 - \pi_{k2i}) & -\pi_{k2i}\pi_{k3i} \\ -\pi_{k1i}\pi_{k3i} & -\pi_{k2i}\pi_{k3i} & \pi_{k3i}(1 - \pi_{k3i}) \end{pmatrix}.$$
(6.11)

É importante ressaltar que a matriz de variância  $\hat{\Sigma}$  possui zeros onde estariam as covariâncias entre as posições do códon, pois a estrutura de dependência entre elas está inserida na matriz de especificação **X**, como covariáveis do modelo. Também na matriz  $\hat{\Sigma}_k$ , as covariâncias entre os códons é zero, pois neste trabalho os códons são considerados independentes entre si. A variabilidade dos parâmetros estimados  $\hat{\boldsymbol{\xi}}$  é dada pelo volume do elipsóide de confiança assintótico para  $\boldsymbol{\xi}$ , dado por  $|(\mathbf{X}'\hat{\boldsymbol{\Sigma}}\mathbf{X})^{-1}|^{1/2}$ . Quando a *i*-ésima observação é retirada, o volume do elipsóide é dado por  $|(\mathbf{X}'_{(i)}\hat{\boldsymbol{\Sigma}}_{(i)}\mathbf{X}_{(i)})^{-1}|^{1/2}$ , em que o índice (*i*) indica as matrizes de desenho e variância correspondentes, sem a *i*-ésima observação.

Seja também a matriz  $\mathbf{M} = \mathbf{I} - \mathbf{H}$ , uma matriz de blocos assim como a matriz  $\mathbf{H}$ , tal que cada bloco  $\mathbf{M}_{ij}$  ou  $\mathbf{H}_{ij}$  seja uma matriz  $3 \times 3$ , para todo i, j = 1, ..., 60. É possvel avaliar a influência da *i*-ésima observação através da medida,

$$\frac{\mathbf{X}_{(i)}'\hat{\boldsymbol{\Sigma}}_{(i)}\mathbf{X}_{(i)}|}{|\mathbf{X}'\hat{\boldsymbol{\Sigma}}\mathbf{X}|} \approx |\mathbf{M}_{ii}|,\tag{6.12}$$

satizfazendo  $0 \leq |\mathbf{M}_{ii}| < 1$ , de forma que quando  $|\mathbf{M}_{ii}|$  tem valor próximo de zero, indica um possível impacto da *i*-ésima observação nos estimadores de máxima verossimilhança.

Como forma de estabilizar a variância de  $\chi_{k,i}$ , o "diagnóstico studentizado" de *outliers* para modelos lineares generalizados multinomiais é apresentado da seguinte forma,

$$\chi_{k,i}^* = [\mathbf{M}_{ii}]_{JJ}^{-1/2} \chi_{k,i}, \tag{6.13}$$

que possui matriz de variância-covariância aproximadamente igual à identidade, tal que  $J = \sum_{j=1}^{3} j z_{kji}$  e  $[\mathbf{M}_{ii}]_{JJ}$  o J-ésimo (J=1,2,3) elemento da diagonal da matriz  $3 \times 3$ ,  $\mathbf{M}_{ii}$ . É possvel demonstrar que a distribuição assintótica de  $\chi_{k,i}^{*2}$  não é  $\chi^2$  (Lesafrre e Albert, 1989).

Como medida geral de discrepância entre  $\hat{\boldsymbol{\xi}}$ , as estimativas dos parâmetros com todas as observações, e  $\hat{\boldsymbol{\xi}}_{(i)}$ , as estimativas dos parâmetros sem a *i*-ésima observação, pode-se utilizar a distância generalizada de Cook,

$$d_{kc(i)} = \chi_{k,i}^2 [\mathbf{M}_{ii}]_{JJ}^{-1} [\mathbf{H}_{ii}]_{JJ} [\mathbf{M}_{ii}]_{JJ}^{-1}, \qquad (6.14)$$

que expressa o deslocamento no limite de confiança conjunto, para os parâmetros  $\boldsymbol{\xi}$ .

Por fim, a variação percentual da estimativa de cada parâmetro  $\xi_j \in \boldsymbol{\xi}$ , quando retirada a *i*-ésima observação da amostra, é dada por,

$$RC(\hat{\xi}_j) = \left| \frac{\hat{\xi}_{j(i)} - \hat{\xi}_j}{\hat{\xi}_j} \right| \times 100, \tag{6.15}$$

em que  $\hat{\xi}_{j(i)}$  é a estimativa de  $\xi_j \in \boldsymbol{\xi}$  sem a *i*-ésima observação, e essa medida é calculada para as observações acusadas como discrepantes pelos gráficos de diagnóstico das medidas anteriormente explicadas.

#### 6.1.1 Modelo Independente

Seja a matriz,

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_{60} \end{pmatrix} \otimes \mathbf{I}_3, \tag{6.16}$$

em que  $\mathbf{A}_1 = \dots = \mathbf{A}_{60} = \mathbf{I}_3$ .

O modelo independente possui a seguinte matriz de especificação,

$$\mathbf{X} = \begin{pmatrix} & | & \mathbf{X}_1 & \mathbf{X}_2 & \mathbf{X}_3 \\ \mathbf{A} & | & \mathbf{X}_1 & \mathbf{X}_2 & \mathbf{X}_3 \\ & | & \mathbf{X}_1 & \mathbf{X}_2 & \mathbf{X}_3 \end{pmatrix},$$
(6.17)

em que  $\mathbf{X}_p = (X_{p,1}, X_{p,1}, X_{p,1}, ..., X_{p,60}, X_{p,60}, X_{p,60})'$  representa cada covariável, para todo p = 1, 2, 3. As covariáveis se repetem no vetor, para permitir a modelagem de cada um dos três logitos, para cada um dos códons.

O conjunto de parâmetros do modelo é dado por,

$$\boldsymbol{\xi} = \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{pmatrix}, \tag{6.18}$$

tal que,  $\boldsymbol{\alpha} = (\alpha_{11}, \alpha_{12}, \alpha_{13}, \alpha_{21}, \alpha_{22}, \alpha_{23}, \alpha_{31}, \alpha_{32}, \alpha_{33})' \in \boldsymbol{\beta} = (\beta_1, \beta_2, \beta_3)'.$ 

#### 6.1.2 Modelo Igualmente Preditivo

O modelo igualmente preditivo possui a seguinte matriz de especificação,

$$\mathbf{X} = \begin{pmatrix} & | & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{X}_{1} & \mathbf{X}_{2} & \mathbf{X}_{3} \\ & \mathbf{A} & | & \mathbf{Z}_{11} & \mathbf{Z}_{12} & \mathbf{Z}_{13} & \mathbf{X}_{1} & \mathbf{X}_{2} & \mathbf{X}_{3} \\ & | & \mathbf{Z}_{11} + \mathbf{Z}_{21} & \mathbf{Z}_{12} + \mathbf{Z}_{22} & \mathbf{Z}_{13} + \mathbf{Z}_{23} & \mathbf{X}_{1} & \mathbf{X}_{2} & \mathbf{X}_{3} \end{pmatrix},$$
(6.19)

em que  $\mathbf{X}_p = (X_{p,1}, X_{p,1}, X_{p,1}, ..., X_{p,60}, X_{p,60})'$ , para todo p = 1, 2, 3,  $\mathbf{Z}_{kj} = (Z_{kj,1}, Z_{kj,1}, Z_{kj,1}, ..., Z_{kj,60}, Z_{kj,60}, Z_{kj,60})'$  para todo k, j = 1, 2, 3 e **A** é conforme definida no modelo independente. Assim como no modelo independente, as variáveis  $Z_{kj,i}$  se repetem no vetor, para permitir a modelagem de cada um dos três logitos, para cada um dos códons.

O conjunto de parâmetros do modelo é dado por,

$$\boldsymbol{\xi} = \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\gamma} \\ \boldsymbol{\beta} \end{pmatrix}, \tag{6.20}$$

tal que,  $\boldsymbol{\alpha} = (\alpha_{11}, \alpha_{12}, \alpha_{13}, \alpha_{21}, \alpha_{22}, \alpha_{23}, \alpha_{31}, \alpha_{32}, \alpha_{33})', \boldsymbol{\gamma} = (\gamma_1, \gamma_2, \gamma_3)' \in \boldsymbol{\beta} = (\beta_1, \beta_2, \beta_3)'.$ 

#### 6.1.3 Estrutura Markoviana de Primeira Ordem

A estrutura markoviana de primeira ordem possui a seguinte matriz de especificação,

$$\mathbf{X} = \begin{pmatrix} | & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{X}_{1} & \mathbf{X}_{2} & \mathbf{X}_{3} \\ \mathbf{A} & | & \mathbf{Z}_{11} & \mathbf{Z}_{12} & \mathbf{Z}_{13} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{X}_{1} & \mathbf{X}_{2} & \mathbf{X}_{3} \\ | & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{Z}_{21} & \mathbf{Z}_{22} & \mathbf{Z}_{23} & \mathbf{X}_{1} & \mathbf{X}_{2} & \mathbf{X}_{3} \end{pmatrix},$$
(6.21)

em que  $\mathbf{X}_p = (X_{p,1}, X_{p,1}, X_{p,1}, ..., X_{p,60}, X_{p,60}, X_{p,60})'$ , para todo p = 1, 2, 3,  $\mathbf{Z}_{kj} = (Z_{kj,1}, Z_{kj,1}, Z_{kj,1}, ..., Z_{kj,60}, Z_{kj,60}, Z_{kj,60})'$  para todo k, j = 1, 2, 3 e **A** é conforme definida no modelo independente.

O conjunto de parâmetros do modelo é dado por,

$$\boldsymbol{\xi} = \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\gamma} \\ \boldsymbol{\beta} \end{pmatrix}, \tag{6.22}$$

tal que,  $\boldsymbol{\alpha} = (\alpha_{11}, \alpha_{12}, \alpha_{13}, \alpha_{21}, \alpha_{22}, \alpha_{23}, \alpha_{31}, \alpha_{32}, \alpha_{33})', \boldsymbol{\gamma} = (\gamma_{11}, \gamma_{12}, \gamma_{13}, \gamma_{21}, \gamma_{22}, \gamma_{23})'$  e  $\boldsymbol{\beta} = (\beta_1, \beta_2, \beta_3)'.$ 

#### 6.1.4 Modelo Aditivo

O modelo aditivo possui a seguinte matriz de especificação,

$$\mathbf{X} = \begin{pmatrix} & | & \mathbf{0} & \mathbf{X}_{1} & \mathbf{X}_{2} & \mathbf{X}_{3} \\ & \mathbf{A} & | & \mathbf{Z}_{11} & \mathbf{Z}_{12} & \mathbf{Z}_{13} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{X}_{1} & \mathbf{X}_{2} & \mathbf{X}_{3} \\ & | & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{Z}_{11} & \mathbf{Z}_{12} & \mathbf{Z}_{13} & \mathbf{Z}_{21} & \mathbf{Z}_{22} & \mathbf{Z}_{23} & \mathbf{X}_{1} & \mathbf{X}_{2} & \mathbf{X}_{3} \end{pmatrix}, (6.23)$$

em que  $\mathbf{X}_p = (X_{p,1}, X_{p,1}, X_{p,1}, ..., X_{p,60}, X_{p,60}, X_{p,60})'$ , para todo  $p = 1, 2, 3, \mathbf{Z}_{kj} = (Z_{kj,1}, Z_{kj,1}, Z_{kj,1}, ..., Z_{kj,60}, Z_{kj,60}, Z_{kj,60})'$  para todo k, j = 1, 2, 3 e **A** é conforme definida no modelo independente.

O conjunto de parâmetros do modelo é dado por,

$$\boldsymbol{\xi} = \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\gamma} \\ \boldsymbol{\beta} \end{pmatrix}, \tag{6.24}$$

tal que,  $\boldsymbol{\alpha} = (\alpha_{11}, \alpha_{12}, \alpha_{13}, \alpha_{21}, \alpha_{22}, \alpha_{23}, \alpha_{31}, \alpha_{32}, \alpha_{33})', \boldsymbol{\gamma} = (\gamma_{11}, \gamma_{12}, \gamma_{13}, \gamma_{21}, \gamma_{22}, \gamma_{23}, \gamma_{31}, \gamma_{32}, \gamma_{32}, \gamma_{33})'$  e  $\boldsymbol{\beta} = (\beta_1, \beta_2, \beta_3)'.$ 

#### 6.2 Resultados

As Figuras 6.1, 6.2, 6.3 e 6.4 apresentam os gráficos de diagnóstico obtidos para os quatro modelos logísticos regressivos, para cada uma das três posições dos códons. Em geral os códons detectados como pontos de influência são comuns aos quatro modelos. A estrutura markoviana de primeira ordem e o modelo aditivo apresentam menos pontos de influência do que o modelo independente e igualmente preditivo. Além disso a segunda posição do códon é a que mais apresenta pontos de influência, quando levada em consideração a distância de Cook.

As Tabelas 6.1, 6.2, 6.3 e 6.4 apresentam as estimativas dos parâmetros quando removido cada códon apontado pelos gráficos de diagnóstico. Também são apresentadas as variações percentuais das estimativas dos parâmetros quando cada códon é retirado



Figura 6.1: Diagnóstico do Modelo Independente

da amostra. Vale ressaltar que os códons nunca são retirados simultaneamente para essas análises, mas sempre individualmente.

No modelo independente, os códons 25 (TAC) e 26 (CAC) s£o os que possuem mais impacto nas estimativas dos parâmetros, quando retirados da amostra, pois as estimativas de quase todos os parâmetros sofrem grandes alterações. Além disso, os parâmetros  $\alpha_{31}$ ,  $\alpha_{32}$ ,  $\beta_1$  e  $\beta_3$  são os que sofrem mais alterações com as retiradas de



Figura 6.2: Diagnóstico do Modelo Igualmente Preditivo

códons da amostra.

Já no modelo igualmente preditivo, a maior impacto nas estimativas dos parâmetros  $\tilde{A}$  © dos códons 3 (ATT), 26 (CAC) e 27 (AAC). Os parâmetros que sofrem mais alterações com as retiradas de códons da amostra são  $\alpha_{11}$ ,  $\alpha_{12}$ ,  $\alpha_{13}$ ,  $\alpha_{31}$  e  $\alpha_{32}$ .

A estrutura Markoviana de primeira ordem não sofre tanta influência com a retirada de códons da amostra. Apenas o códon 13 (TGT) têm mais impacto na estimativa de



Figura 6.3: Diagnóstico da Estrutura Markoviana de Primeira Ordem

quase todos os parâmetros, e apenas os parâmetros  $\alpha_{33}$  e  $\beta_2$  sofrem mais alterações com as retiradas de códons da amostra.

Por fim no modelo aditivo quase todos os parâmetros sofrem alterações com a retirada dos códons 13 (TGT), 25 (TAC), 29 (TGC) e 44 (TGA).



Figura 6.4: Diagnóstico do Modelo Aditivo

|                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                                        | ,                                                                                                                                                                                                              | 1                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                                            | -                                                                                                                                                                                          |                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Obs. Retirada                                                                                                                                                                                                                                                             | $\hat{\alpha}_{11(i)}$                                                                                                                                                                                           | $RC(\hat{\alpha}_{11(i)})$                                                                                                                                                                            | $\hat{\alpha}_{12(i)}$                                                                                                                                                                                       | $RC(\hat{\alpha}_{12(i)})$                                                                                                                                                                        | $\hat{\alpha}_{13(i)}$                                                                                                                                                                                  | $RC(\hat{\alpha}_{13(i)})$                                                                                                                                                             | $\hat{\alpha}_{21(i)}$                                                                                                                                                                                         | $RC(\hat{\alpha}_{21(i)})$                                                                                                                                                                        | $\hat{\alpha}_{22(i)}$                                                                                                                                                                       | $RC(\hat{\alpha}_{22(i)})$                                                                                                                                                                 | $\hat{\alpha}_{23(i)}$                                                                                                                                                                     | $RC(\hat{\alpha}_{23(i)})$                                                                                                                                                                                 |
| 13 (TGT)                                                                                                                                                                                                                                                                  | -1,4208                                                                                                                                                                                                          | 39,90                                                                                                                                                                                                 | -1,3044                                                                                                                                                                                                      | 45,72                                                                                                                                                                                             | -2,2100                                                                                                                                                                                                 | 23,17                                                                                                                                                                                  | -2,0807                                                                                                                                                                                                        | $21,\!67$                                                                                                                                                                                         | -2,4934                                                                                                                                                                                      | 18,50                                                                                                                                                                                      | -2,8658                                                                                                                                                                                    | 15.90                                                                                                                                                                                                      |
| 25 (TAC)                                                                                                                                                                                                                                                                  | -0,3324                                                                                                                                                                                                          | 67,27                                                                                                                                                                                                 | -0,1937                                                                                                                                                                                                      | 78,37                                                                                                                                                                                             | -1,1248                                                                                                                                                                                                 | 39,77                                                                                                                                                                                  | -1,1398                                                                                                                                                                                                        | $^{33,35}$                                                                                                                                                                                        | -1,6963                                                                                                                                                                                      | 19,38                                                                                                                                                                                      | -1,9209                                                                                                                                                                                    | 22.31                                                                                                                                                                                                      |
| 26 (CAC)                                                                                                                                                                                                                                                                  | -2,2205                                                                                                                                                                                                          | $118,\!64$                                                                                                                                                                                            | -2,0459                                                                                                                                                                                                      | 128,55                                                                                                                                                                                            | -3,0790                                                                                                                                                                                                 | 64,89                                                                                                                                                                                  | -2,7915                                                                                                                                                                                                        | 63,24                                                                                                                                                                                             | -3,3704                                                                                                                                                                                      | 60,18                                                                                                                                                                                      | -3,5595                                                                                                                                                                                    | 43.95                                                                                                                                                                                                      |
| 27 (AAC)                                                                                                                                                                                                                                                                  | -0,8542                                                                                                                                                                                                          | 15,89                                                                                                                                                                                                 | -0,9194                                                                                                                                                                                                      | 2,70                                                                                                                                                                                              | -1,7200                                                                                                                                                                                                 | 7,89                                                                                                                                                                                   | -1,6650                                                                                                                                                                                                        | 2,64                                                                                                                                                                                              | -2,3281                                                                                                                                                                                      | 10,65                                                                                                                                                                                      | -2,4415                                                                                                                                                                                    | 1.26                                                                                                                                                                                                       |
| 29 (TGC)                                                                                                                                                                                                                                                                  | -1,2594                                                                                                                                                                                                          | 24,00                                                                                                                                                                                                 | -1,1409                                                                                                                                                                                                      | 27,45                                                                                                                                                                                             | -2,1273                                                                                                                                                                                                 | 13,92                                                                                                                                                                                  | -1,9432                                                                                                                                                                                                        | $13,\!63$                                                                                                                                                                                         | -2,3511                                                                                                                                                                                      | 11,74                                                                                                                                                                                      | -2,7464                                                                                                                                                                                    | 11.07                                                                                                                                                                                                      |
| 30 (CGC)                                                                                                                                                                                                                                                                  | -1,2617                                                                                                                                                                                                          | 24,24                                                                                                                                                                                                 | -1,1259                                                                                                                                                                                                      | 25,78                                                                                                                                                                                             | -2,1029                                                                                                                                                                                                 | 12,62                                                                                                                                                                                  | -1,9378                                                                                                                                                                                                        | 13,31                                                                                                                                                                                             | -2,3273                                                                                                                                                                                      | 10,61                                                                                                                                                                                      | -2,7969                                                                                                                                                                                    | 13.11                                                                                                                                                                                                      |
| 31 (AGC)                                                                                                                                                                                                                                                                  | -0,4319                                                                                                                                                                                                          | 57,47                                                                                                                                                                                                 | -0,3417                                                                                                                                                                                                      | 61,83                                                                                                                                                                                             | -1,2369                                                                                                                                                                                                 | 33,76                                                                                                                                                                                  | -1,1715                                                                                                                                                                                                        | 31,50                                                                                                                                                                                             | -1,5366                                                                                                                                                                                      | 26,98                                                                                                                                                                                      | -2,0831                                                                                                                                                                                    | 15.75                                                                                                                                                                                                      |
| 44 (TGA)                                                                                                                                                                                                                                                                  | -0,8966                                                                                                                                                                                                          | 11,72                                                                                                                                                                                                 | -0,7934                                                                                                                                                                                                      | 11,37                                                                                                                                                                                             | -1,7231                                                                                                                                                                                                 | 7,72                                                                                                                                                                                   | -1,6313                                                                                                                                                                                                        | $^{4,61}$                                                                                                                                                                                         | -2,0877                                                                                                                                                                                      | 0,78                                                                                                                                                                                       | -2,7231                                                                                                                                                                                    | 10.13                                                                                                                                                                                                      |
| 48 (CTG)                                                                                                                                                                                                                                                                  | -0,9817                                                                                                                                                                                                          | 3,33                                                                                                                                                                                                  | -0,8303                                                                                                                                                                                                      | 7,25                                                                                                                                                                                              | -1,7990                                                                                                                                                                                                 | $^{3,66}$                                                                                                                                                                              | -1,6260                                                                                                                                                                                                        | 4,92                                                                                                                                                                                              | -2,0221                                                                                                                                                                                      | 3,90                                                                                                                                                                                       | -2,3900                                                                                                                                                                                    | 3.35                                                                                                                                                                                                       |
| 55 (CAG)                                                                                                                                                                                                                                                                  | -1,0844                                                                                                                                                                                                          | 6,77                                                                                                                                                                                                  | -0,9570                                                                                                                                                                                                      | 6,90                                                                                                                                                                                              | -1,9340                                                                                                                                                                                                 | $^{3,57}$                                                                                                                                                                              | -1,7697                                                                                                                                                                                                        | $^{3,48}$                                                                                                                                                                                         | -2,1774                                                                                                                                                                                      | $^{3,48}$                                                                                                                                                                                  | -2,5312                                                                                                                                                                                    | 2.37                                                                                                                                                                                                       |
| 57 (GAG)                                                                                                                                                                                                                                                                  | -1,0160                                                                                                                                                                                                          | 0,04                                                                                                                                                                                                  | -0,8955                                                                                                                                                                                                      | 0,04                                                                                                                                                                                              | -1,8682                                                                                                                                                                                                 | 0,05                                                                                                                                                                                   | -1,7106                                                                                                                                                                                                        | 0,03                                                                                                                                                                                              | -2,1050                                                                                                                                                                                      | 0,04                                                                                                                                                                                       | -2,4731                                                                                                                                                                                    | 0.02                                                                                                                                                                                                       |
| 58 (TGG)                                                                                                                                                                                                                                                                  | -0,9889                                                                                                                                                                                                          | 2,63                                                                                                                                                                                                  | -0,8694                                                                                                                                                                                                      | 2,88                                                                                                                                                                                              | -1,8375                                                                                                                                                                                                 | 1,60                                                                                                                                                                                   | -1,6891                                                                                                                                                                                                        | 1,23                                                                                                                                                                                              | -2,0869                                                                                                                                                                                      | 0,82                                                                                                                                                                                       | -2,4753                                                                                                                                                                                    | 0.11                                                                                                                                                                                                       |
| 60 (GGG)                                                                                                                                                                                                                                                                  | -0.9282                                                                                                                                                                                                          | 8 61                                                                                                                                                                                                  | -0.8069                                                                                                                                                                                                      | 9.86                                                                                                                                                                                              | -1.8044                                                                                                                                                                                                 | 3 37                                                                                                                                                                                   | -1.6303                                                                                                                                                                                                        | 4.67                                                                                                                                                                                              | -2.0216                                                                                                                                                                                      | 3 92                                                                                                                                                                                       | -24335                                                                                                                                                                                     | 1.58                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                           | 0,0202                                                                                                                                                                                                           | 0,01                                                                                                                                                                                                  | -0,0005                                                                                                                                                                                                      | 0,00                                                                                                                                                                                              | -1,0044                                                                                                                                                                                                 | 0,01                                                                                                                                                                                   | -1,0000                                                                                                                                                                                                        | 4,01                                                                                                                                                                                              | -2,0210                                                                                                                                                                                      | 0,02                                                                                                                                                                                       | 2,1000                                                                                                                                                                                     | 1.00                                                                                                                                                                                                       |
| Obs. Retirada                                                                                                                                                                                                                                                             | $\hat{\alpha}_{31(i)}$                                                                                                                                                                                           | $\frac{0,01}{RC(\hat{\alpha}_{31(i)})}$                                                                                                                                                               | $\hat{\alpha}_{32(i)}$                                                                                                                                                                                       | $\frac{1}{RC(\hat{\alpha}_{32(i)})}$                                                                                                                                                              | â <sub>33(i)</sub>                                                                                                                                                                                      | $\frac{3,31}{RC(\hat{\alpha}_{33(i)})}$                                                                                                                                                | $\hat{\beta}_{1(i)}$                                                                                                                                                                                           | $\frac{4,01}{RC(\hat{\beta}_{1(i)})}$                                                                                                                                                             | $\hat{\beta}_{2(i)}$                                                                                                                                                                         | $RC(\hat{\beta}_{2(i)})$                                                                                                                                                                   | $\hat{\beta}_{3(i)}$                                                                                                                                                                       | $RC(\hat{\beta}_{3(i)})$                                                                                                                                                                                   |
| Obs. Retirada           13 (TGT)                                                                                                                                                                                                                                          | $\hat{\alpha}_{31(i)}$<br>-0,5523                                                                                                                                                                                | $\frac{RC(\hat{\alpha}_{31(i)})}{218,20}$                                                                                                                                                             | $\hat{\alpha}_{32(i)}$<br>-0,5918                                                                                                                                                                            | $RC(\hat{\alpha}_{32(i)})$<br>178,91                                                                                                                                                              | $\hat{\alpha}_{33(i)}$<br>-2,9856                                                                                                                                                                       | $RC(\hat{\alpha}_{33(i)})$<br>14,51                                                                                                                                                    | $\hat{\beta}_{1(i)}$ -0,0057                                                                                                                                                                                   | $\frac{RC(\hat{\beta}_{1(i)})}{7,60}$                                                                                                                                                             | $\hat{\beta}_{2(i)}$<br>0,2210                                                                                                                                                               | $\frac{RC(\hat{\beta}_{2(i)})}{22,71}$                                                                                                                                                     | $\hat{\beta}_{3(i)}$ 0,0873                                                                                                                                                                | $\frac{RC(\hat{\beta}_{3(i)})}{4,39}$                                                                                                                                                                      |
| Obs. Retirada           13 (TGT)           25 (TAC)                                                                                                                                                                                                                       | $\hat{\alpha}_{31(i)}$<br>-0,5523<br>0,3226                                                                                                                                                                      | $\frac{RC(\hat{\alpha}_{31(i)})}{218,20}$ 285,86                                                                                                                                                      | $\hat{\alpha}_{32(i)}$<br>-0,5918<br>0,3271                                                                                                                                                                  | $\frac{RC(\hat{\alpha}_{32(i)})}{178,91}$ 254,16                                                                                                                                                  | $\hat{\alpha}_{33(i)}$<br>-2,9856<br>-2,0717                                                                                                                                                            | $\frac{RC(\hat{\alpha}_{33(i)})}{14,51}$ 20,54                                                                                                                                         | $\hat{\beta}_{1(i)}$<br>-0,0057<br>-0,0012                                                                                                                                                                     | $     \frac{1,01}{RC(\hat{\beta}_{1(i)})}     7,60     80,89   $                                                                                                                                  | $\begin{array}{r} \hat{\beta}_{2(i)} \\ \hline 0,2210 \\ 0,0879 \end{array}$                                                                                                                 | $ \frac{RC(\hat{\beta}_{2(i)})}{22,71} \\ 51,21 $                                                                                                                                          | $\frac{\hat{\beta}_{3(i)}}{0,0873} \\ 0,1267$                                                                                                                                              | $ \frac{RC(\hat{\beta}_{3(i)})}{4,39} \\ 51,63 $                                                                                                                                                           |
| Obs. Retirada           13 (TGT)           25 (TAC)           26 (CAC)                                                                                                                                                                                                    | $\begin{array}{r} \hat{\alpha}_{31(i)} \\ \hline \\ -0,5523 \\ 0,3226 \\ -1,3084 \end{array}$                                                                                                                    | $\frac{RC(\hat{\alpha}_{31(i)})}{218,20}$ 285,86<br>653,75                                                                                                                                            | $\begin{array}{r} \hat{\alpha}_{32(i)} \\ \hline 0,5918 \\ 0,3271 \\ -1,2816 \end{array}$                                                                                                                    | $\frac{RC(\hat{\alpha}_{32(i)})}{178,91}$ 254,16 504,06                                                                                                                                           | $\begin{array}{r} \hat{\alpha}_{33(i)} \\ \hline 2,9856 \\ -2,0717 \\ -3,6731 \end{array}$                                                                                                              | $ \frac{RC(\hat{\alpha}_{33(i)})}{14,51} \\ 20,54 \\ 40,88 $                                                                                                                           | $\hat{\beta}_{1(i)}$<br>-0,0057<br>-0,0012<br>-0,0132                                                                                                                                                          | $ \frac{RC(\hat{\beta}_{1(i)})}{7,60} \\ 80,89 \\ 113,15 $                                                                                                                                        | $\frac{\hat{\beta}_{2(i)}}{0,2210}$ 0,2210 0,0879 0,3383                                                                                                                                     | $\frac{RC(\hat{\beta}_{2(i)})}{22,71}$ 51,21 87,85                                                                                                                                         | $\frac{\hat{\beta}_{3(i)}}{0,0873}$ 0,1267 0,1687                                                                                                                                          | $ \frac{RC(\hat{\beta}_{3(i)})}{4,39} \\ 51,63 \\ 101,82 $                                                                                                                                                 |
| Obs. Retirada           13 (TGT)           25 (TAC)           26 (CAC)           27 (AAC)                                                                                                                                                                                 | $\begin{array}{r} \hat{\alpha}_{31(i)} \\ \hline & -0,5523 \\ 0,3226 \\ -1,3084 \\ -0,1293 \end{array}$                                                                                                          | $\begin{array}{r} \hline & & \\ \hline & & \\ \hline RC(\hat{\alpha}_{31(i)}) \\ \hline & & \\ 218,20 \\ & & \\ 285,86 \\ & & \\ 653,75 \\ & & \\ 25,54 \end{array}$                                  | $\begin{array}{r} \hat{\alpha}_{32(i)} \\ \hline 0,5918 \\ 0,3271 \\ -1,2816 \\ -0,0613 \end{array}$                                                                                                         | $\begin{array}{r} \hline & & \\ \hline RC(\hat{\alpha}_{32(i)}) \\ \hline & 178,91 \\ 254,16 \\ 504,06 \\ 71,11 \end{array}$                                                                      | $\begin{array}{r} \hat{\alpha}_{33(i)} \\ \hline -2,9856 \\ -2,0717 \\ -3,6731 \\ -2,4560 \end{array}$                                                                                                  | $     \begin{array}{r} \hline & 5,31 \\ \hline RC(\hat{\alpha}_{33(i)}) \\ \hline & 14,51 \\ 20,54 \\ 40,88 \\ 5,81 \\ \end{array} $                                                   | $\begin{array}{r} \hat{\beta}_{1(i)} \\ \hline & -0,0057 \\ -0,0012 \\ -0,0132 \\ -0,0159 \end{array}$                                                                                                         | $     \frac{RC(\hat{\beta}_{1(i)})}{RC(\hat{\beta}_{1(i)})}     7,60     80,89     113,15     157,42     $                                                                                        | $\begin{array}{r} \hat{\beta}_{2(i)} \\ \hline 0,2210 \\ 0,0879 \\ 0,3383 \\ 0,2186 \end{array}$                                                                                             | $\frac{3,32}{RC(\hat{\beta}_{2(i)})}$ 22,71 51,21 87,85 21,37                                                                                                                              | $\begin{array}{r} \hat{\beta}_{3(i)} \\ \hline 0,0873 \\ 0,1267 \\ 0,1687 \\ 0,2242 \end{array}$                                                                                           | $\frac{RC(\hat{\beta}_{3(i)})}{4,39}$ 51,63 101,82 168,22                                                                                                                                                  |
| Obs. Retirada           13 (TGT)           25 (TAC)           26 (CAC)           27 (AAC)           29 (TGC)                                                                                                                                                              | $\begin{array}{r} \hat{\alpha}_{31(i)} \\ \hline \\ -0,5523 \\ 0,3226 \\ -1,3084 \\ -0,1293 \\ -0,4346 \end{array}$                                                                                              | $\begin{array}{r} \hline & & & \\ \hline & RC(\hat{\alpha}_{31(i)}) \\ \hline & & & \\ 218,20 \\ & & & \\ 285,86 \\ & & & \\ 653,75 \\ & & & \\ 25,54 \\ & & & \\ 150,34 \end{array}$                 | $\begin{array}{r} \hat{\alpha}_{32(i)} \\ \hline \\ -0,5918 \\ 0,3271 \\ -1,2816 \\ -0,0613 \\ -0,4652 \end{array}$                                                                                          | $\begin{array}{r} \hline & \hline & \hline & \hline & \hline & RC(\hat{\alpha}_{32(i)}) \\ \hline & 178,91 \\ & 254,16 \\ & 504,06 \\ & 71,11 \\ & 119,27 \end{array}$                            | $\begin{array}{r} \hat{\alpha}_{33(i)} \\ \hline \\ -2,9856 \\ -2,0717 \\ -3,6731 \\ -2,4560 \\ -2,8597 \end{array}$                                                                                    | $\frac{RC(\hat{\alpha}_{33(i)})}{RC(\hat{\alpha}_{33(i)})}$ 14,51 20,54 40,88 5,81 9,68                                                                                                | $\begin{array}{r} \hat{\beta}_{1(i)} \\ \hline 0.0057 \\ -0.0012 \\ -0.0132 \\ -0.0159 \\ -0.0056 \end{array}$                                                                                                 | $\begin{array}{r} \begin{array}{c} 4,01\\ \hline RC(\hat{\beta}_{1(i)})\\ \hline 7,60\\ 80,89\\ 113,15\\ 157,42\\ 9,31 \end{array}$                                                               | $\begin{array}{r} \hat{\beta}_{2(i)} \\ \hline 0,2210 \\ 0,0879 \\ 0,3383 \\ 0,2186 \\ 0,2047 \end{array}$                                                                                   | $\begin{array}{r} \hline & 0,02 \\ \hline & RC(\hat{\beta}_{2(i)}) \\ \hline & 22,71 \\ & 51,21 \\ & 87,85 \\ & 21,37 \\ & 13,65 \end{array}$                                              | $\begin{array}{r} \hat{\beta}_{3(i)} \\ \hline 0,0873 \\ 0,1267 \\ 0,1687 \\ 0,2242 \\ 0,0833 \end{array}$                                                                                 |                                                                                                                                                                                                            |
| Obs. Retirada           0bs. Retirada           13 (TGT)           25 (TAC)           26 (CAC)           27 (AAC)           29 (TGC)           30 (CGC)                                                                                                                   | $\begin{array}{r} \hat{\alpha}_{31(i)} \\ \hline \\ -0,5523 \\ 0,3226 \\ -1,3084 \\ -0,1293 \\ -0,4346 \\ -0,3975 \end{array}$                                                                                   | $\begin{array}{r} \hline & 0,01 \\ \hline & RC(\hat{\alpha}_{31(i)}) \\ \hline & 218,20 \\ 285,86 \\ 653,75 \\ 25,54 \\ 150,34 \\ 129,01 \\ \end{array}$                                              | $\begin{array}{r} \hat{\alpha}_{32(i)} \\ \hline \\ 0,5918 \\ 0,3271 \\ -1,2816 \\ -0,0613 \\ -0,4652 \\ -0,4147 \end{array}$                                                                                | $\begin{array}{r} 8,86\\\hline RC(\hat{\alpha}_{32(i)})\\\hline 178,91\\254,16\\504,06\\71,11\\119,27\\95,46\end{array}$                                                                          | $\begin{array}{r} \hat{\alpha}_{33(i)} \\ \hline \\ -2,9856 \\ -2,0717 \\ -3,6731 \\ -2,4560 \\ -2,8597 \\ -2,8083 \end{array}$                                                                         | $\begin{array}{r} 8,51\\\hline RC(\hat{\alpha}_{33(i)})\\\hline 14,51\\20,54\\40,88\\5,81\\9,68\\7,71\end{array}$                                                                      | $\begin{array}{r} \hat{\beta}_{1(i)} \\ \hline \hat{\beta}_{1(i)} \\ \hline -0,0057 \\ -0,0012 \\ -0,0132 \\ -0,0159 \\ -0,0056 \\ -0,0096 \end{array}$                                                        | $\begin{array}{r} 4,01\\ \hline RC(\hat{\beta}_{1(i)})\\ \hline 7,60\\ 80,89\\ 113,15\\ 157,42\\ 9,31\\ 55,49\\ \end{array}$                                                                      | $\begin{array}{r} \hat{\beta}_{2(i)} \\ \hline \hat{\beta}_{2(i)} \\ 0,2210 \\ 0,0879 \\ 0,3383 \\ 0,2186 \\ 0,2047 \\ 0,2226 \end{array}$                                                   | $\begin{array}{r} & & & \\ \hline & & & \\ RC(\hat{\beta}_{2(i)}) \\ & & & \\ 22,71 \\ & & & \\ 51,21 \\ & & & \\ 87,85 \\ & & & \\ 21,37 \\ & & & \\ 13,65 \\ & & & \\ 23,58 \end{array}$ | $\begin{array}{r} \hat{\beta}_{3(i)} \\ \hline 0,0873 \\ 0,1267 \\ 0,1687 \\ 0,2242 \\ 0,0833 \\ 0,1142 \end{array}$                                                                       | $\begin{array}{r} 1.00\\ \hline RC(\hat{\beta}_{3(i)})\\ \hline 4,39\\ 51,63\\ 101,82\\ 168,22\\ 0,28\\ 36,58 \end{array}$                                                                                 |
| Obs. Retirada           13 (TGT)           25 (TAC)           26 (CAC)           27 (AAC)           29 (TGC)           30 (CGC)           31 (AGC)                                                                                                                        | $\begin{array}{r} \hat{\alpha}_{31(i)} \\ \hline \\ -0,5523 \\ 0,3226 \\ -1,3084 \\ -0,1293 \\ -0,4346 \\ -0,3975 \\ 0,3257 \end{array}$                                                                         | $\begin{array}{r} \hline & 0,01 \\ \hline & RC(\hat{\alpha}_{31(i)}) \\ \hline & 218,20 \\ 285,86 \\ 653,75 \\ 25,54 \\ 150,34 \\ 129,01 \\ 287,65 \end{array}$                                       | $\begin{array}{r} \hat{\alpha}_{32(i)} \\ \hline \hat{\alpha}_{32(i)} \\ \hline -0,5918 \\ 0,3271 \\ -1,2816 \\ -0,0613 \\ -0,4652 \\ -0,4147 \\ 0,3261 \end{array}$                                         | $\begin{array}{r} 8,86\\\hline RC(\hat{\alpha}_{32(i)})\\\hline 178,91\\254,16\\504,06\\71,11\\119,27\\95,46\\253,70\\\end{array}$                                                                | $\begin{array}{r} \hat{\alpha}_{33(i)}\\ \hline\\ -2,9856\\ -2,0717\\ -3,6731\\ -2,4560\\ -2,8597\\ -2,8083\\ -2,0714 \end{array}$                                                                      | $\begin{array}{r} 8,51\\\hline RC(\hat{\alpha}_{33(i)})\\\hline 14,51\\20,54\\40,88\\5,81\\9,68\\7,71\\20,56\end{array}$                                                               | $\begin{array}{r} \hat{\beta}_{1(i)} \\ \hline \hat{\beta}_{1(i)} \\ \hline -0,0057 \\ -0,0012 \\ -0,0132 \\ -0,0159 \\ -0,0056 \\ -0,0096 \\ -0,0039 \end{array}$                                             | $\begin{array}{r} \begin{array}{c} \begin{array}{c} 2,31\\ \hline RC(\hat{\beta}_{1(i)}) \end{array} \\ \hline 7,60\\ 80,89\\ 113,15\\ 157,42\\ 9,31\\ 55,49\\ 37,36 \end{array}$                 | $\begin{array}{r} \hat{\beta}_{2(i)} \\ \hline \hat{\beta}_{2(i)} \\ 0,2210 \\ 0,0879 \\ 0,3383 \\ 0,2186 \\ 0,2047 \\ 0,2226 \\ 0,1084 \end{array}$                                         | $\begin{array}{r} 8,62\\\hline RC(\hat{\beta}_{2(i)})\\\hline 22,71\\51,21\\87,85\\21,37\\13,65\\23,58\\39,83\\\end{array}$                                                                | $\begin{array}{r} \hat{\beta}_{3(i)} \\ \hline \hat{\beta}_{3(i)} \\ 0.0873 \\ 0.1267 \\ 0.1687 \\ 0.2242 \\ 0.0833 \\ 0.1142 \\ -0.0083 \end{array}$                                      | $\begin{array}{r} 1.00\\ \hline RC(\hat{\beta}_{3(i)})\\ \hline 4,39\\ 51,63\\ 101,82\\ 168,22\\ 0,28\\ 36,58\\ 109,92 \end{array}$                                                                        |
| Obs. Retirada           13 (TGT)           25 (TAC)           26 (CAC)           27 (AAC)           29 (TGC)           30 (CGC)           31 (AGC)           44 (TGA)                                                                                                     | $\begin{array}{r} \hat{\alpha}_{31(i)} \\ \hline \\ 0,5523 \\ 0,3226 \\ -1,3084 \\ -0,1293 \\ -0,4346 \\ -0,3975 \\ 0,3257 \\ -0,1346 \end{array}$                                                               | $\begin{array}{r} & \\ \hline RC(\hat{\alpha}_{31}(i)) \\ \hline 218,20 \\ 285,86 \\ 653,75 \\ 25,54 \\ 150,34 \\ 129,01 \\ 287,65 \\ 22,49 \end{array}$                                              | $\begin{array}{r} \hat{\alpha}_{32(i)} \\ \hline \hat{\alpha}_{32(i)} \\ \hline \\ -0,5918 \\ 0,3271 \\ -1,2816 \\ -0,0613 \\ -0,4652 \\ -0,4147 \\ 0,3261 \\ -0,2752 \end{array}$                           | $\begin{array}{c} RC(\hat{\alpha}_{32(i)}) \\ \hline RC(\hat{\alpha}_{32(i)}) \\ 254,16 \\ 504,06 \\ 71,11 \\ 119,27 \\ 95,46 \\ 253,70 \\ 29,70 \end{array}$                                     | $\begin{array}{r} \hat{\alpha}_{33(i)} \\ \hline \\ -2,9856 \\ -2,0717 \\ -3,6731 \\ -2,4560 \\ -2,8597 \\ -2,8083 \\ -2,0714 \\ -2,6016 \end{array}$                                                   | $\begin{array}{c} \hline & & \\ RC(\hat{\alpha}_{33}(i)) \\ \hline & 14,51 \\ 20,54 \\ 40,88 \\ 5,81 \\ 9,68 \\ 7,71 \\ 20,56 \\ 0,22 \end{array}$                                     | $\begin{array}{r} \hat{\beta}_{1(i)} \\ \hline \hat{\beta}_{1(i)} \\ \hline -0,0057 \\ -0,0012 \\ -0,0132 \\ -0,0159 \\ -0,0056 \\ -0,0096 \\ -0,0039 \\ -0,0003 \end{array}$                                  | $\begin{array}{r} \frac{1}{RC(\hat{\beta}_{1}(i))} \\ \hline RC(\hat{\beta}_{1}(i)) \\ 80,89 \\ 113,15 \\ 157,42 \\ 9,31 \\ 55,49 \\ 37,36 \\ 95,95 \end{array}$                                  | $\begin{array}{r} \hat{\beta}_{2(i)}\\ \hline \hat{\beta}_{2(i)}\\ 0,2210\\ 0,0879\\ 0,3383\\ 0,2186\\ 0,2047\\ 0,2226\\ 0,1084\\ 0,1385\end{array}$                                         | $\begin{array}{c} RC(\hat{\beta}_{2(i)}) \\ \hline RC(\hat{\beta}_{2(i)}) \\ \hline 22,71 \\ 51,21 \\ 87,85 \\ 21,37 \\ 13,65 \\ 23,58 \\ 39,83 \\ 23,12 \end{array}$                      | $\begin{array}{c} \hat{\beta}_{3(i)}\\ \hline \hat{\beta}_{3(i)}\\ 0,0873\\ 0,1267\\ 0,1687\\ 0,2242\\ 0,0833\\ 0,1142\\ -0,0083\\ 0,2254\\ \end{array}$                                   | $\begin{array}{c} 1.55\\ \hline RC(\hat{\beta}_{3(i)})\\ \hline 4,39\\ 51,63\\ 101,82\\ 168,22\\ 0,28\\ 36,58\\ 109,92\\ 169,69\\ \end{array}$                                                             |
| Obs. Retirada           0bs. Retirada           13 (TGT)           25 (TAC)           26 (CAC)           27 (AAC)           29 (TGC)           30 (CGC)           31 (AGC)           44 (TGA)           48 (CTG)                                                          | $\begin{array}{c} \hat{\alpha}_{31(i)} \\ \hline \\ 0,5523 \\ 0,3226 \\ -1,3084 \\ -0,1293 \\ -0,4346 \\ -0,3975 \\ 0,3257 \\ -0,1346 \\ -0,1147 \end{array}$                                                    | $\begin{array}{c} 8.641\\ \hline RC(\hat{\alpha}_{31(i)})\\ \hline 218,20\\ 285,86\\ 653,75\\ 25,54\\ 150,34\\ 129,01\\ 287,65\\ 22,49\\ 33,95 \end{array}$                                           | $\begin{array}{r} \hat{\alpha}_{32(i)}\\ \hline\\ \hat{\alpha}_{32(i)}\\ \hline\\ -0,5918\\ 0,3271\\ -1,2816\\ -0,0613\\ -0,4652\\ -0,4147\\ 0,3261\\ -0,2752\\ -0,1520\\ \end{array}$                       | $\frac{RC(\hat{\alpha}_{32(i)})}{RC(\hat{\alpha}_{32(i)})}$ 178,91 254,16 504,06 71,11 119,27 95,46 253,70 29,70 28,36                                                                            | $\begin{array}{r} \hat{\alpha}_{33(i)} \\ \hline \\ -2,9856 \\ -2,0717 \\ -3,6731 \\ -2,4560 \\ -2,8597 \\ -2,8083 \\ -2,0714 \\ -2,6016 \\ -2,8291 \end{array}$                                        | $\begin{array}{c} \hline & & \\ RC(\hat{\alpha}_{33}(i)) \\ \hline & 14,51 \\ 20,54 \\ 40,88 \\ 5,81 \\ 9,68 \\ 7,71 \\ 20,56 \\ 0,22 \\ 8,51 \\ \end{array}$                          | $\begin{array}{c} \hat{\beta}_{1(i)} \\ \hline \hat{\beta}_{1(i)} \\ -0,0057 \\ -0,0012 \\ -0,0132 \\ -0,0159 \\ -0,0056 \\ -0,0096 \\ -0,0039 \\ -0,0003 \\ -0,0003 \\ -0,0055 \end{array}$                   | $\begin{array}{r} \frac{4,61}{RC(\hat{\beta}_{1(i)})}\\ \hline RC(\hat{\beta}_{1(i)})\\ \hline 80,89\\ 113,15\\ 157,42\\ 9,31\\ 55,49\\ 37,36\\ 95,95\\ 11,32\end{array}$                         | $\begin{array}{c} 2,3210\\ \hline \beta_2(i)\\ 0,2210\\ 0,0879\\ 0,3383\\ 0,2186\\ 0,2047\\ 0,2226\\ 0,1084\\ 0,1385\\ 0,1693\\ \end{array}$                                                 | $\begin{array}{c} RC(\hat{\beta}_{2(i)}) \\ \hline RC(\hat{\beta}_{2(i)}) \\ 22,71 \\ 51,21 \\ 87,85 \\ 21,37 \\ 13,65 \\ 23,58 \\ 39,83 \\ 23,12 \\ 5,98 \end{array}$                     | $\begin{array}{c} \hat{\beta}_{3(i)}\\ \hat{\beta}_{3(i)}\\ 0,0873\\ 0,1267\\ 0,1687\\ 0,2242\\ 0,0833\\ 0,1142\\ -0,0083\\ 0,2254\\ 0,0807\\ \end{array}$                                 | $\begin{array}{c} RC(\hat{\beta}_{3(i)}) \\ \hline RC(\hat{\beta}_{3(i)}) \\ 4,39 \\ 51,63 \\ 101,82 \\ 168,22 \\ 0,28 \\ 36,58 \\ 109,92 \\ 169,69 \\ 3,46 \end{array}$                                   |
| Obs. Retirada           Obs. Retirada           13 (TGT)           25 (TAC)           26 (CAC)           27 (AAC)           29 (TGC)           30 (CGC)           31 (AGC)           44 (TGA)           48 (CTG)           55 (CAG)                                       | $\begin{array}{c} \hat{\alpha}_{31(i)} \\ \hline \hat{\alpha}_{31(i)} \\ -0.5523 \\ 0.3226 \\ -1.3084 \\ -0.1293 \\ -0.4346 \\ -0.3975 \\ 0.3257 \\ -0.1346 \\ -0.1147 \\ -0.2355 \end{array}$                   | $\begin{array}{r} \hline & \\ \hline RC(\hat{\alpha}_{31(i)}) \\ \hline \\ 218,20 \\ 285,86 \\ 653,75 \\ 25,54 \\ 150,34 \\ 129,01 \\ 287,65 \\ 22,49 \\ 33,95 \\ 35,69 \\ \end{array}$               | $\begin{array}{c} \dot{\alpha}_{32(i)} \\ \dot{\alpha}_{32(i)} \\ 0.5918 \\ 0.3271 \\ -1.2816 \\ -0.0613 \\ -0.4652 \\ -0.4147 \\ 0.3261 \\ -0.2752 \\ -0.1520 \\ -0.2736 \end{array}$                       | $\begin{array}{c} RC(\hat{\alpha}_{32(i)}) \\ \hline RC(\hat{\alpha}_{32(i)}) \\ 254,16 \\ 504,06 \\ 71,11 \\ 119,27 \\ 95,46 \\ 253,70 \\ 29,70 \\ 28,36 \\ 28,96 \end{array}$                   | $\begin{array}{r} \begin{array}{c} \hat{\alpha}_{33(i)} \\ \hline \\ -2,9856 \\ -2,0717 \\ -3,6731 \\ -2,4560 \\ -2,8597 \\ -2,8083 \\ -2,0714 \\ -2,6016 \\ -2,8291 \\ -2,7330 \end{array}$            | $\begin{array}{c} \hline & \\ \hline RC(\hat{\alpha}_{33}(i)) \\ \hline 14,51 \\ 20,54 \\ 40,88 \\ 5,81 \\ 9,68 \\ 7,71 \\ 20,56 \\ 0,22 \\ 8,51 \\ 4,82 \\ \end{array}$               | $\begin{array}{c} \hat{\beta}_{1(i)} \\ \hline \\ \hat{\beta}_{1(i)} \\ -0,0057 \\ -0,0012 \\ -0,0132 \\ -0,0159 \\ -0,0056 \\ -0,0096 \\ -0,0003 \\ -0,0003 \\ -0,0055 \\ -0,0063 \end{array}$                | $\begin{array}{r} & 1,3,7\\ \hline RC(\hat{\beta}_1(i)) \\ \hline 7,60\\ 80,89\\ 113,15\\ 157,42\\ 9,31\\ 55,49\\ 37,36\\ 95,95\\ 11,32\\ 2,32 \end{array}$                                       | $\begin{array}{c} \hat{\beta}_{2(i)} \\ \hat{\beta}_{2(i)} \\ 0,2210 \\ 0,0879 \\ 0,3383 \\ 0,2186 \\ 0,2047 \\ 0,2226 \\ 0,1084 \\ 0,1385 \\ 0,1693 \\ 0,1879 \end{array}$                  | $\begin{array}{c} RC(\hat{\beta}_{2(i)}) \\ \hline RC(\hat{\beta}_{2(i)}) \\ 22,71 \\ 51,21 \\ 87,85 \\ 21,37 \\ 13,65 \\ 23,58 \\ 39,83 \\ 23,12 \\ 5,98 \\ 4,31 \\ \end{array}$          | $\begin{array}{c} \hat{\beta}_{3(i)}\\ \hat{\beta}_{3(i)}\\ 0,0873\\ 0,1267\\ 0,1687\\ 0,2242\\ 0,0833\\ 0,1142\\ -0,0083\\ 0,2254\\ 0,0807\\ 0,0789 \end{array}$                          | $\begin{array}{c} RC(\hat{\beta}_{3(i)}) \\ \hline RC(\hat{\beta}_{3(i)}) \\ 4,39 \\ 51,63 \\ 101,82 \\ 168,22 \\ 0,28 \\ 36,58 \\ 109,92 \\ 169,69 \\ 3,46 \\ 5,62 \end{array}$                           |
| Obs.         Retirada           13 (TGT)         25 (TAC)           26 (CAC)         27 (AAC)           29 (TGC)         30 (CGC)           31 (AGC)         44 (TGA)           48 (CTG)         55 (CAG)           57 (GAG)         57 (GAG)                             | $\begin{array}{c} \hat{\alpha}_{31(i)} \\ \hline \hat{\alpha}_{31(i)} \\ \hline -0.5523 \\ 0.3226 \\ -1.3084 \\ -0.1293 \\ -0.4346 \\ -0.3975 \\ 0.3257 \\ -0.1346 \\ -0.1147 \\ -0.2355 \\ -0.1740 \end{array}$ | $\begin{array}{c} \hline & \\ \hline RC(\hat{\alpha}_{31(i)}) \\ \hline \\ 218,20 \\ 285,86 \\ 653,75 \\ 25,54 \\ 150,34 \\ 129,01 \\ 287,65 \\ 22,49 \\ 33,95 \\ 35,69 \\ 0,26 \\ \end{array}$       | $\begin{array}{c} \hat{\alpha}_{32(i)} \\ \hat{\alpha}_{32(i)} \\ -0.5918 \\ 0.3271 \\ -1.2816 \\ -0.0613 \\ -0.4652 \\ -0.4147 \\ 0.3261 \\ -0.2752 \\ -0.1520 \\ -0.2736 \\ -0.2126 \end{array}$           | $\begin{array}{c} \hline RC(\hat{\alpha}_{32(i)}) \\ \hline RC(\hat{\alpha}_{32(i)}) \\ 254,16 \\ 504,06 \\ 71,11 \\ 119,27 \\ 95,46 \\ 253,70 \\ 29,70 \\ 28,36 \\ 28,96 \\ 0,21 \\ \end{array}$ | $\begin{array}{r} \begin{array}{c} \hat{\alpha}_{33(i)} \\ \hline \\ -2,9856 \\ -2,0717 \\ -3,6731 \\ -2,4560 \\ -2,8597 \\ -2,8083 \\ -2,0714 \\ -2,6016 \\ -2,8291 \\ -2,7330 \\ -2,6099 \end{array}$ | $\begin{array}{c} \hline & & \\ \hline RC(\hat{\alpha}_{33}(i)) \\ \hline 14,51 \\ 20,54 \\ 40,88 \\ 5,81 \\ 9,68 \\ 7,71 \\ 20,56 \\ 0,22 \\ 8,51 \\ 4,82 \\ 0,10 \\ \end{array}$     | $\begin{array}{c} \hat{\beta}_{1(i)} \\ \hline \hat{\beta}_{1(i)} \\ \hline -0,0057 \\ -0,0012 \\ -0,0132 \\ -0,0159 \\ -0,0056 \\ -0,0096 \\ -0,0003 \\ -0,0003 \\ -0,0003 \\ -0,0063 \\ -0,0062 \end{array}$ | $\begin{array}{r} \frac{2,37}{RC(\hat{\beta}_{1}(i))}\\ \hline 7,60\\ 80,89\\ 113,15\\ 157,42\\ 9,31\\ 55,49\\ 37,36\\ 95,95\\ 11,32\\ 2,32\\ 0,04\\ \end{array}$                                 | $\begin{array}{c} \hat{\beta}_{2(i)} \\ \hline \hat{\beta}_{2(i)} \\ 0,2210 \\ 0,0879 \\ 0,3383 \\ 0,2186 \\ 0,2047 \\ 0,2226 \\ 0,1084 \\ 0,1385 \\ 0,1693 \\ 0,1879 \\ 0,1802 \end{array}$ | $\begin{array}{c} RC(\hat{\beta}_{2(i)}) \\ \hline RC(\hat{\beta}_{2(i)}) \\ 22,71 \\ 51,21 \\ 87,85 \\ 21,37 \\ 13,65 \\ 23,58 \\ 39,83 \\ 23,12 \\ 5,98 \\ 4,31 \\ 0,04 \\ \end{array}$  | $\begin{array}{c}\hat{\beta}_{3(i)}\\ \hat{\beta}_{3(i)}\\ 0,0873\\ 0,1267\\ 0,1687\\ 0,2242\\ 0,0833\\ 0,1142\\ -0,0083\\ 0,2254\\ 0,0833\\ 0,2254\\ 0,0807\\ 0,0789\\ 0,0834\end{array}$ | $\begin{array}{c} RC(\hat{\beta}_{3(i)}) \\ \hline RC(\hat{\beta}_{3(i)}) \\ 4,39 \\ 51,63 \\ 101,82 \\ 168,22 \\ 0,28 \\ 36,58 \\ 109,92 \\ 169,69 \\ 3,46 \\ 5,62 \\ 0,18 \end{array}$                   |
| Obs. Retirada           Obs. Retirada           13 (TGT)           25 (TAC)           26 (CAC)           27 (AAC)           29 (TGC)           30 (CGC)           31 (AGC)           44 (TGA)           48 (CTG)           55 (CAG)           57 (GAG)           58 (TGG) | $\begin{array}{c} \hat{\alpha}_{31(i)} \\ \hat{\alpha}_{31(i)} \\ 0.5523 \\ 0.3226 \\ -1.3084 \\ -0.1293 \\ -0.4346 \\ -0.3975 \\ 0.3257 \\ -0.1346 \\ -0.1147 \\ -0.2355 \\ -0.1740 \\ -0.1553 \end{array}$     | $\begin{array}{r} \hline & \\ \hline RC(\hat{\alpha}_{31}(i)) \\ \hline 218,20 \\ 285,86 \\ 653,75 \\ 25,54 \\ 150,34 \\ 129,01 \\ 287,65 \\ 22,49 \\ 33,95 \\ 35,69 \\ 0,26 \\ 10,53 \\ \end{array}$ | $\begin{array}{c} \dot{\alpha}_{32(i)} \\ \dot{\alpha}_{32(i)} \\ 0,5918 \\ 0,3271 \\ -1,2816 \\ -0,0613 \\ -0,4652 \\ -0,4147 \\ 0,3261 \\ -0,2752 \\ -0,1520 \\ -0,2736 \\ -0,2126 \\ -0,1960 \end{array}$ | $\begin{array}{c} RC(\hat{\alpha}_{32(i)}) \\ \hline RC(\hat{\alpha}_{32(i)}) \\ 254,16 \\ 504,06 \\ 71,11 \\ 119,27 \\ 95,46 \\ 253,70 \\ 29,70 \\ 28,36 \\ 28,96 \\ 0,21 \\ 7,60 \end{array}$   | $\begin{array}{r} 1,8044\\ \hat{\alpha}_{33}(i)\\ -2,9856\\ -2,0717\\ -3,6731\\ -2,4560\\ -2,8597\\ -2,8083\\ -2,0714\\ -2,6016\\ -2,8291\\ -2,7330\\ -2,6099\\ -2,6558\end{array}$                     | $\begin{array}{c} \hline & & \\ RC(\hat{\alpha}_{33}(i)) \\ \hline \\ 14,51 \\ 20,54 \\ 40,88 \\ 5,81 \\ 9,68 \\ 7,71 \\ 20,56 \\ 0,22 \\ 8,51 \\ 4,82 \\ 0,10 \\ 1,86 \\ \end{array}$ | $\begin{array}{c} \hat{\beta}_{1(i)} \\ \hat{\beta}_{1(i)} \\ -0,0057 \\ -0,0012 \\ -0,0132 \\ -0,0159 \\ -0,0056 \\ -0,0039 \\ -0,0003 \\ -0,0003 \\ -0,0003 \\ -0,00055 \\ -0,0062 \\ -0,0058 \end{array}$   | $\begin{array}{r} \frac{1}{RC(\hat{\beta}_1(i))}\\ \hline RC(\hat{\beta}_1(i))\\ \hline 7,60\\ 80,89\\ 113,15\\ 157,42\\ 9,31\\ 55,49\\ 37,36\\ 95,95\\ 11,32\\ 2,32\\ 0,04\\ 6,69\\ \end{array}$ | $\begin{array}{c} \hat{\beta}_{2(i)} \\ \hat{\beta}_{2(i)} \\ 0.0879 \\ 0.3383 \\ 0.2186 \\ 0.2047 \\ 0.2226 \\ 0.1084 \\ 0.1385 \\ 0.1693 \\ 0.1879 \\ 0.1802 \\ 0.1754 \end{array}$        | $\begin{array}{c} 8.62\\\hline RC(\hat{\beta}_{2(i)})\\ \hline 22,71\\ 51,21\\ 87,85\\ 21,37\\ 13,65\\ 23,58\\ 39,83\\ 23,12\\ 5,98\\ 4,31\\ 0,04\\ 2,60\\ \end{array}$                    | $\begin{array}{c} \hat{\beta}_{3(i)} \\ \hat{\beta}_{3(i)} \\ 0,0873 \\ 0,1267 \\ 0,2242 \\ 0,0833 \\ 0,1142 \\ -0,0083 \\ 0,2254 \\ 0,0807 \\ 0,0789 \\ 0,0834 \\ 0,0918 \end{array}$     | $\begin{array}{c} RC(\hat{\beta}_{3(i)}) \\ \hline RC(\hat{\beta}_{3(i)}) \\ \hline 4,39 \\ 51,63 \\ 101,82 \\ 168,22 \\ 0,28 \\ 36,58 \\ 109,92 \\ 169,69 \\ 3,46 \\ 5,62 \\ 0,18 \\ 9,85 \\ \end{array}$ |

Tabela 6.1: Estimativas dos Parâmetros Retirando Observações Discrepantes do Modelo Independente

| Obs. Retirada | $\hat{\alpha}_{11(i)}$ | $RC(\hat{\alpha}_{11(i)})$ | $\hat{\alpha}_{12(i)}$ | $RC(\hat{\alpha}_{12(i)})$ | $\hat{\alpha}_{13(i)}$ | $RC(\hat{\alpha}_{13(i)})$ | $\hat{\alpha}_{21(i)}$ | $RC(\hat{\alpha}_{21(i)})$ | $\hat{\alpha}_{22(i)}$ | $RC(\hat{\alpha}_{22(i)})$ | $\hat{\alpha}_{23(i)}$ | $RC(\hat{\alpha}_{23(i)})$ |
|---------------|------------------------|----------------------------|------------------------|----------------------------|------------------------|----------------------------|------------------------|----------------------------|------------------------|----------------------------|------------------------|----------------------------|
| 3 (ATT)       | 3,0419                 | 4243,97                    | 3,2057                 | 3736,57                    | 2,4712                 | 384,09                     | 2,3275                 | 343,33                     | 2,1811                 | 270,64                     | 2,0067                 | 222,77                     |
| 13 (TGT)      | -0,8746                | 1091,51                    | -0,7260                | 968,84                     | -1,7255                | 98,36                      | -1,7296                | 80,83                      | -2,0849                | 63,11                      | -2,4359                | 49,02                      |
| 25 (TAC)      | 0,6308                 | 959,36                     | 0,8003                 | 857,86                     | -0,1230                | 85,87                      | -0,4958                | 48,17                      | -0,9616                | 24,77                      | -1,1515                | 29,56                      |
| 26 (CAC)      | -1,9097                | 2501,66                    | -1,6945                | 2127,97                    | -2,7565                | 216,89                     | -2,6799                | 180,18                     | -3,1905                | $149,\!61$                 | -3,3531                | 105, 13                    |
| 27 (AAC)      | 3,1872                 | 4441,93                    | 3,1688                 | 3692,44                    | 2,6232                 | 401,56                     | 2,5612                 | 367,77                     | 2,0446                 | 259,96                     | 2,0785                 | 227,15                     |
| 29 (TGC)      | -0,5590                | 661,47                     | -0,4079                | 588,22                     | -1,3897                | 59,76                      | -1,4534                | 51,95                      | -1,7966                | 40,56                      | -2,1743                | 33,02                      |
| 30 (CGC)      | -0,3393                | 362,21                     | -0,1646                | 297,02                     | -1,1263                | 29,49                      | -1,2034                | 25,82                      | -1,5091                | 18,07                      | -1,9657                | 20,26                      |
| 44 (TGA)      | -0,0336                | 54,25                      | 0,0984                 | 17,80                      | -0,8175                | 6,02                       | -1,0405                | 8,79                       | -1,4241                | 11,41                      | -2,0437                | 25,02                      |
| 55 (CAG)      | -0,2740                | 273,26                     | -0,1109                | 232,71                     | -1,0782                | 23,95                      | -1,1482                | 20,05                      | -1,4863                | 16,28                      | -1,8246                | 11,62                      |
| 57 (GAG)      | -0,0763                | 3,98                       | 0,0806                 | 3,51                       | -0,8735                | 0,42                       | -0,9593                | 0,30                       | -1,2815                | 0,26                       | -1,6374                | 0,17                       |
| 60 (GGG)      | 0,0166                 | 122,55                     | 0,1728                 | 106,79                     | -0,8037                | 7,61                       | -0,8567                | 10,43                      | -1,1760                | 8,00                       | -1,5763                | $^{3,57}$                  |
| Obs. Retirada | $\hat{\alpha}_{31(i)}$ | $RC(\hat{\alpha}_{31(i)})$ | $\hat{\alpha}_{32(i)}$ | $RC(\hat{\alpha}_{32(i)})$ | $\hat{\alpha}_{33(i)}$ | $RC(\hat{\alpha}_{33(i)})$ | $\hat{\gamma}_{1(i)}$  | $RC(\hat{\gamma}_{1(i)})$  | $\hat{\gamma}_{2(i)}$  | $RC(\hat{\gamma}_{2(i)})$  | $\hat{\gamma}_{3(i)}$  | $RC(\hat{\gamma}_{3(i)})$  |
| 3 (ATT)       | 4,7307                 | 577,95                     | 4,7121                 | 592,47                     | 2,3045                 | 234,19                     | -1,0937                | 163,61                     | 0,1553                 | 16,03                      | 0,5902                 | 28,63                      |
| 13 (TGT)      | -0,1346                | 119,29                     | -0,1525                | 122,42                     | -2,5477                | 48,35                      | -0,3613                | 12,91                      | 0,2405                 | 30,08                      | 0,8523                 | 3,08                       |
| 25 (TAC)      | 1,0651                 | 52,63                      | 1,0921                 | 60,50                      | -1,3081                | 23,83                      | -0,3064                | 26,15                      | 0,2503                 | 35,38                      | 0,9792                 | 18,42                      |
| 26 (CAC)      | -1,1162                | 259,97                     | -1,0615                | 256,00                     | -3,4539                | 101, 12                    | -0,4373                | 5,41                       | 0,3228                 | 74,59                      | 0,8326                 | 0,69                       |
| 27 (AAC)      | 4,6402                 | 564,98                     | 4,6614                 | 585,03                     | 2,2539                 | 231,24                     | -0,7979                | 92,31                      | -0,6856                | 470,83                     | 0,7921                 | 4,20                       |
| 29 (TGC)      | 0,1330                 | 80,94                      | 0,1241                 | 81,76                      | -2,2721                | 32,30                      | -0,3587                | 13,54                      | 0,2396                 | 29,57                      | 0,8252                 | 0,20                       |
| 30 (CGC)      | 0,4794                 | 31,30                      | 0,4865                 | 28,51                      | -1,9097                | 11,20                      | -0,4564                | 10,00                      | 0,2129                 | 15,14                      | 0,8077                 | 2,32                       |
| 44 (TGA)      | 0,5416                 | 22,39                      | 0,4220                 | 37,99                      | -1,9063                | 11,00                      | -0,2792                | 32,70                      | 0,2193                 | 18,63                      | 0,8676                 | 4,93                       |
| 55 (CAG)      | 0,4920                 | 29,50                      | 0,4763                 | 30,00                      | -1,9852                | 15,60                      | -0,4097                | 1,25                       | 0,2043                 | 10,49                      | 0,8254                 | 0,18                       |
| 57 (GAG)      | 0,6947                 | 0,45                       | 0,6774                 | 0,46                       | -1,7225                | 0,30                       | -0,4146                | 0,07                       | 0,1852                 | 0,16                       | 0,8264                 | 0,06                       |
| 60 (GGG)      | 0,8073                 | 15,69                      | 0,7882                 | 15,83                      | -1,7503                | 1,92                       | -0,4223                | 1,79                       | 0,1725                 | 6,73                       | 0,7944                 | 3,93                       |
| Obs. Retirada | $\hat{\beta}_{1(i)}$   | $RC(\hat{\beta}_{1(i)})$   | $\hat{\beta}_{2(i)}$   | $RC(\hat{\beta}_{2(i)})$   | $\hat{\beta}_{3(i)}$   | $RC(\hat{\beta}_{3(i)})$   |                        |                            |                        |                            |                        |                            |
| 3 (ATT)       | -0,0141                | 39,77                      | -0,2054                | 284,03                     | -0,2183                | 429,58                     |                        |                            |                        |                            |                        |                            |
| 13 (TGT)      | -0,0098                | 2,62                       | 0,1969                 | 76,44                      | -0,0406                | 1,61                       |                        |                            |                        |                            |                        |                            |
| 25 (TAC)      | -0,0082                | 18,32                      | 0,0384                 | 65,55                      | -0,0362                | 12,08                      |                        |                            |                        |                            |                        |                            |
| 26 (CAC)      | -0,0192                | 90,49                      | 0,3526                 | 215,96                     | 0,0121                 | 129,28                     |                        |                            |                        |                            |                        |                            |
| 27 (AAC)      | -0,0158                | 56,03                      | -0,2326                | 308,44                     | 0,2421                 | 687, 34                    |                        |                            |                        |                            |                        |                            |
| 29 (TGC)      | -0,0099                | 1,62                       | 0,1652                 | 48,01                      | -0,0437                | 6,14                       |                        |                            |                        |                            |                        |                            |
| 30 (CGC)      | -0,0145                | 43,72                      | 0,1621                 | 45,26                      | -0,0236                | 42,70                      |                        |                            |                        |                            |                        |                            |
| 44 (TGA)      | -0,0052                | 49,00                      | 0,0861                 | 22,83                      | 0,0743                 | 280,16                     |                        |                            |                        |                            |                        |                            |
| 55 (CAG)      | -0,0105                | 3,54                       | 0,1352                 | 21,13                      | -0,0508                | 23,33                      |                        |                            |                        |                            |                        |                            |
| 57 (GAG)      | -0,0101                | 0,03                       | 0,1119                 | 0,31                       | -0,0413                | 0,28                       |                        |                            |                        |                            |                        |                            |
| 60 (GGG)      | -0,0098                | 3,01                       | 0,0999                 | 10,48                      | -0,0409                | 0,66                       |                        |                            |                        |                            |                        |                            |

Tabela 6.2: Estimativas dos Parâmetros Retirando Observações Discrepantes do Modelo Igualmente Preditivo

79

| Obs. Retirada | $\hat{\alpha}_{11(i)}$ | $RC(\hat{\alpha}_{11(i)})$ | $\hat{\alpha}_{12(i)}$ | $RC(\hat{\alpha}_{12(i)})$ | $\hat{\alpha}_{13(i)}$ | $RC(\hat{\alpha}_{13(i)})$ | $\hat{\alpha}_{21(i)}$ | $RC(\hat{\alpha}_{21(i)})$ | $\hat{\alpha}_{22(i)}$ | $RC(\hat{\alpha}_{22(i)})$ | $\hat{\alpha}_{23(i)}$ | $RC(\hat{\alpha}_{23(i)})$ |
|---------------|------------------------|----------------------------|------------------------|----------------------------|------------------------|----------------------------|------------------------|----------------------------|------------------------|----------------------------|------------------------|----------------------------|
| 13 (TGT)      | -0,6146                | 120,47                     | -0,4192                | 112,62                     | -1,4498                | 160,33                     | -1,1048                | 146,25                     | -1,3881                | 157,79                     | -1,7478                | 174,58                     |
| 25 (TAC)      | 2,0702                 | 31,06                      | 2,3894                 | 28,06                      | 1,3398                 | 44,25                      | 1,0882                 | 54, 45                     | 1,1017                 | 54,13                      | 1,2409                 | 47,05                      |
| 29 (TGC)      | 4,1628                 | 38,63                      | 4,5088                 | 35,75                      | 3,6639                 | 52,47                      | 3,6275                 | 51,85                      | 3,6300                 | 51,12                      | 3,6256                 | 54,71                      |
| 44 (TGA)      | 2,5912                 | 13,71                      | 2,9370                 | 11,58                      | 1,9198                 | 20,11                      | 1,7423                 | 27,07                      | 2,0213                 | 15,85                      | 1,8658                 | 20,38                      |
| 48 (CTG)      | 3,0533                 | 1,68                       | 3,3941                 | 2,18                       | 2,4894                 | 3,59                       | 2,4766                 | $^{3,67}$                  | 2,4705                 | 2,85                       | 2,3986                 | 2,35                       |
| 49 (ATG)      | 3,0278                 | 0,83                       | 3,3247                 | 0,10                       | 2,4310                 | 1,16                       | 2,4213                 | 1,36                       | 2,4203                 | 0,76                       | 2,3552                 | 0,50                       |
| 55 (CAG)      | 2,9559                 | 1,57                       | 3,2821                 | 1,19                       | 2,3596                 | 1,81                       | 2,3471                 | 1,75                       | 2,3514                 | $^{2,11}$                  | 2,3039                 | 1,69                       |
| 57 (GAG)      | 3,0024                 | 0,01                       | 3,3211                 | 0,01                       | 2,4021                 | 0,04                       | 2,3885                 | 0,02                       | 2,4014                 | 0,03                       | 2,3434                 | 0,00                       |
| Obs. Retirada | $\hat{\alpha}_{31(i)}$ | $RC(\hat{\alpha}_{31(i)})$ | $\hat{\alpha}_{32(i)}$ | $RC(\hat{\alpha}_{32(i)})$ | $\hat{\alpha}_{33(i)}$ | $RC(\hat{\alpha}_{33(i)})$ | $\hat{\gamma}_{11(i)}$ | $RC(\hat{\gamma}_{11(i)})$ | $\hat{\gamma}_{12(i)}$ | $RC(\hat{\gamma}_{12(i)})$ | $\hat{\gamma}_{13(i)}$ | $RC(\hat{\gamma}_{13(i)})$ |
| 13 (TGT)      | -0,3949                | 112,53                     | -0,3766                | 111,86                     | -2,7728                | 460,03                     | -1,1367                | 23,68                      | -0,1552                | 27,43                      | 0,6627                 | 43,36                      |
| 25 (TAC)      | 1,9810                 | 37,15                      | 2,0959                 | 34,00                      | -0,3035                | 139,40                     | -1,1886                | 20,20                      | 0,1763                 | 182,44                     | 0,6569                 | 42,10                      |
| 29 (TGC)      | 4,3515                 | 38,07                      | 4,3620                 | 37,37                      | 1,9525                 | 153, 51                    | -1,6631                | $11,\!66$                  | -0,3509                | 64,08                      | 0,3745                 | 18,99                      |
| 44 (TGA)      | 2,5834                 | 18,03                      | 2,5791                 | 18,78                      | 0,2493                 | 67,63                      | -1,3958                | 6,29                       | 0,0492                 | 123,01                     | 0,5100                 | 10,32                      |
| 48 (CTG)      | 3,2282                 | 2,43                       | 3,2473                 | 2,26                       | 0,5601                 | 27,28                      | -1,4529                | 2,45                       | -0,2352                | 9,96                       | 0,4672                 | 1,06                       |
| 49 (ATG)      | 3,1723                 | 0,65                       | 3,1927                 | 0,54                       | 0,5800                 | 24,69                      | -1,4908                | 0,09                       | -0,1848                | 13,62                      | 0,4670                 | 1,03                       |
| 55 (CAG)      | 3,1094                 | 1,34                       | 3,1347                 | 1,28                       | 0,6652                 | 13,63                      | -1,4994                | 0,67                       | -0,2055                | $^{3,90}$                  | 0,4656                 | 0,72                       |
| 57 (GAG)      | 3,1512                 | 0,02                       | 3,1750                 | 0,01                       | 0,7677                 | 0,33                       | -1,4894                | 0,00                       | -0,2137                | 0,08                       | 0,4617                 | 0,14                       |
| Obs. Retirada | $\hat{\gamma}_{21(i)}$ | $RC(\hat{\gamma}_{21(i)})$ | $\hat{\gamma}_{22(i)}$ | $RC(\hat{\gamma}_{22(i)})$ | $\hat{\gamma}_{23(i)}$ | $RC(\hat{\gamma}_{23(i)})$ | $\hat{\beta}_{1(i)}$   | $RC(\hat{\beta}_{1(i)})$   | $\hat{\beta}_{2(i)}$   | $RC(\hat{\beta}_{2(i)})$   | $\hat{\beta}_{3(i)}$   | $RC(\hat{\beta}_{3(i)})$   |
| 13 (TGT)      | 0,2664                 | 26,70                      | 2,0657                 | 22,52                      | 1,6948                 | 42,96                      | -0,0115                | 53,94                      | 0,1871                 | 241,70                     | -0,2354                | 49,39                      |
| 25 (TAC)      | 0,3469                 | 65,00                      | 2,7526                 | $^{3,24}$                  | 3,4400                 | 15,78                      | -0,0384                | $54,\!64$                  | 0,0639                 | 148,41                     | -0,6543                | 40,69                      |
| 29 (TGC)      | 0,1569                 | 25,35                      | 2,5000                 | $^{6,24}$                  | 2,6346                 | 11,33                      | -0,0209                | 15,89                      | -0,2839                | 115,06                     | -0,4135                | 11,08                      |
| 44 (TGA)      | 0,3821                 | 81,74                      | 3,4865                 | 30,76                      | 2,8126                 | 5,34                       | -0,0438                | 76,28                      | 0,0329                 | 124,94                     | -0,7488                | 61,02                      |
| 48 (CTG)      | 0,2175                 | 3,47                       | 2,6063                 | $^{2,25}$                  | 2,9273                 | 1,48                       | -0,0232                | 6,88                       | -0,1505                | 13,99                      | -0,4404                | 5,30                       |
| 49 (ATG)      | 0,2232                 | 6,15                       | 2,6408                 | 0,96                       | 2,9537                 | 0,59                       | -0,0243                | 2,34                       | -0,1384                | 4,81                       | -0,4463                | 4,03                       |
| 55 (CAG)      | 0,2139                 | 1,75                       | 2,6725                 | 0,23                       | 2,9779                 | 0,23                       | -0,0251                | 0,78                       | -0,1262                | 4,39                       | -0,4714                | 1,35                       |
| 57 (GAG)      | 0,2103                 | 0,05                       | 2,6664                 | 0,01                       | 2,9716                 | 0,02                       | -0,0248                | 0,03                       | -0,1319                | 0,08                       | -0,4653                | 0,05                       |

Tabela 6.3: Estimativas dos Parâmetros Retirando Observações Discrepantes da Estrutura Markoviana

|                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                                                                               |                                                                                                                                        | -                                                                                                                                                        |                                                                                                                                         |                                                                                                                                               |                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Obs. Retirada                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\hat{\alpha}_{11(i)}$                                                                                                                                                                                                                                                     | $RC(\hat{\alpha}_{11(i)})$                                                                                                                                                                                                                                   | $\hat{\alpha}_{12(i)}$                                                                                                                                                                                                                                                                                                         | $RC(\hat{\alpha}_{12(i)})$                                                                                                                                                                                                                  | $\hat{\alpha}_{13(i)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $RC(\hat{\alpha}_{13(i)})$                                                                                                                                                                                                                                                                                    | $\hat{\alpha}_{21(i)}$                                                                                                                        | $RC(\hat{\alpha}_{21(i)})$                                                                                                             | $\hat{\alpha}_{22(i)}$                                                                                                                                   | $RC(\hat{\alpha}_{22(i)})$                                                                                                              | $\hat{\alpha}_{23(i)}$                                                                                                                        | $RC(\hat{\alpha}_{23(i)})$                                                                                                          |
| 10 (CAT)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,7623                                                                                                                                                                                                                                                                     | 2,16                                                                                                                                                                                                                                                         | 4,1422                                                                                                                                                                                                                                                                                                                         | 2,63                                                                                                                                                                                                                                        | 3,2386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,99                                                                                                                                                                                                                                                                                                          | 3,2452                                                                                                                                        | 3,37                                                                                                                                   | 3,2895                                                                                                                                                   | 3,88                                                                                                                                    | 3,3405                                                                                                                                        | 5,31                                                                                                                                |
| 13 (TGT)                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0,2958                                                                                                                                                                                                                                                                    | 108,03                                                                                                                                                                                                                                                       | -0,0740                                                                                                                                                                                                                                                                                                                        | 101,83                                                                                                                                                                                                                                      | -1,0702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 134,03                                                                                                                                                                                                                                                                                                        | -0,4626                                                                                                                                       | 114,73                                                                                                                                 | -0,8067                                                                                                                                                  | $125,\!48$                                                                                                                              | -1,1420                                                                                                                                       | 136,00                                                                                                                              |
| 25 (TAC)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,0821                                                                                                                                                                                                                                                                     | 70,62                                                                                                                                                                                                                                                        | 1,3061                                                                                                                                                                                                                                                                                                                         | 67,64                                                                                                                                                                                                                                       | 0,4143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86,83                                                                                                                                                                                                                                                                                                         | 0,9067                                                                                                                                        | 71,12                                                                                                                                  | 0,4016                                                                                                                                                   | 87,32                                                                                                                                   | 0,1900                                                                                                                                        | 94,01                                                                                                                               |
| 29 (TGC)                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0,2264                                                                                                                                                                                                                                                                    | 106, 15                                                                                                                                                                                                                                                      | -0,0065                                                                                                                                                                                                                                                                                                                        | 100, 16                                                                                                                                                                                                                                     | -0,9943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 131,62                                                                                                                                                                                                                                                                                                        | -0,3829                                                                                                                                       | 112,20                                                                                                                                 | -0,7289                                                                                                                                                  | 123,02                                                                                                                                  | -1,0860                                                                                                                                       | 134,23                                                                                                                              |
| 44 (TGA)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,1195                                                                                                                                                                                                                                                                     | 96,76                                                                                                                                                                                                                                                        | 0,2803                                                                                                                                                                                                                                                                                                                         | 93,06                                                                                                                                                                                                                                       | -0,6133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119,50                                                                                                                                                                                                                                                                                                        | -0,0087                                                                                                                                       | 100,28                                                                                                                                 | -0,4126                                                                                                                                                  | 113,03                                                                                                                                  | -1,0299                                                                                                                                       | 132,47                                                                                                                              |
| 48 (CTG)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,7620                                                                                                                                                                                                                                                                     | 2,15                                                                                                                                                                                                                                                         | 4,1330                                                                                                                                                                                                                                                                                                                         | 2,40                                                                                                                                                                                                                                        | 3,2630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,77                                                                                                                                                                                                                                                                                                          | 3,2608                                                                                                                                        | 3,87                                                                                                                                   | 3,2600                                                                                                                                                   | 2,95                                                                                                                                    | 3,2395                                                                                                                                        | 2,12                                                                                                                                |
| 49 (ATG)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,8025                                                                                                                                                                                                                                                                     | $^{3,25}$                                                                                                                                                                                                                                                    | 4,1317                                                                                                                                                                                                                                                                                                                         | 2,37                                                                                                                                                                                                                                        | 3,2768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,21                                                                                                                                                                                                                                                                                                          | 3,2782                                                                                                                                        | $^{4,42}$                                                                                                                              | 3,2767                                                                                                                                                   | $^{3,47}$                                                                                                                               | 3,2632                                                                                                                                        | 2,87                                                                                                                                |
| 55 (CAG)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,6296                                                                                                                                                                                                                                                                     | 1,44                                                                                                                                                                                                                                                         | 3,9913                                                                                                                                                                                                                                                                                                                         | 1,11                                                                                                                                                                                                                                        | 3,0940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,61                                                                                                                                                                                                                                                                                                          | 3,0908                                                                                                                                        | 1,54                                                                                                                                   | 3,1119                                                                                                                                                   | 1,73                                                                                                                                    | 3,1319                                                                                                                                        | 1,27                                                                                                                                |
| 57 (GAG)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,6812                                                                                                                                                                                                                                                                     | 0,04                                                                                                                                                                                                                                                         | 4,0346                                                                                                                                                                                                                                                                                                                         | 0,03                                                                                                                                                                                                                                        | 3,1424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,07                                                                                                                                                                                                                                                                                                          | 3,1378                                                                                                                                        | 0,05                                                                                                                                   | 3,1651                                                                                                                                                   | 0,05                                                                                                                                    | 3,1714                                                                                                                                        | 0,02                                                                                                                                |
| Obs. Retirada                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\hat{\alpha}_{31(i)}$                                                                                                                                                                                                                                                     | $RC(\hat{\alpha}_{31(i)})$                                                                                                                                                                                                                                   | $\hat{\alpha}_{32(i)}$                                                                                                                                                                                                                                                                                                         | $RC(\hat{\alpha}_{32(i)})$                                                                                                                                                                                                                  | $\hat{\alpha}_{33(i)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $RC(\hat{\alpha}_{33(i)})$                                                                                                                                                                                                                                                                                    | $\hat{\gamma}_{11(i)}$                                                                                                                        | $RC(\hat{\gamma}_{11(i)})$                                                                                                             | $\hat{\gamma}_{12(i)}$                                                                                                                                   | $RC(\hat{\gamma}_{12(i)})$                                                                                                              | $\hat{\gamma}_{13(i)}$                                                                                                                        | $RC(\hat{\gamma}_{13(i)})$                                                                                                          |
| 10 (CAT)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,2533                                                                                                                                                                                                                                                                     | 1,21                                                                                                                                                                                                                                                         | 4,2848                                                                                                                                                                                                                                                                                                                         | 1,42                                                                                                                                                                                                                                        | 1,8771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,32                                                                                                                                                                                                                                                                                                          | -1,6748                                                                                                                                       | 3,26                                                                                                                                   | -0,2999                                                                                                                                                  | 0,61                                                                                                                                    | 0,3340                                                                                                                                        | 10,19                                                                                                                               |
| 13 (TGT)                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0,5301                                                                                                                                                                                                                                                                    | 112,61                                                                                                                                                                                                                                                       | -0,5175                                                                                                                                                                                                                                                                                                                        | 112,25                                                                                                                                                                                                                                      | -2,9172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 260,57                                                                                                                                                                                                                                                                                                        | -1,3667                                                                                                                                       | 15,73                                                                                                                                  | -0,3998                                                                                                                                                  | 34,12                                                                                                                                   | 0,4845                                                                                                                                        | 30,30                                                                                                                               |
| 25 (TAC)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,6879                                                                                                                                                                                                                                                                     | 83,63                                                                                                                                                                                                                                                        | 0,7241                                                                                                                                                                                                                                                                                                                         | 82,86                                                                                                                                                                                                                                       | -1,6808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 192,51                                                                                                                                                                                                                                                                                                        | -1,4755                                                                                                                                       | 9,03                                                                                                                                   | -0,5203                                                                                                                                                  | 74,56                                                                                                                                   | 0,4964                                                                                                                                        | 33,51                                                                                                                               |
| 29 (TGC)                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0,5329                                                                                                                                                                                                                                                                    | $112,\!68$                                                                                                                                                                                                                                                   | -0,5115                                                                                                                                                                                                                                                                                                                        | 112,11                                                                                                                                                                                                                                      | -2,9117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 260, 26                                                                                                                                                                                                                                                                                                       | -1,3788                                                                                                                                       | 14,99                                                                                                                                  | -0,4173                                                                                                                                                  | 39,99                                                                                                                                   | 0,4792                                                                                                                                        | 28,86                                                                                                                               |
| 44 (TGA)                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0,1333                                                                                                                                                                                                                                                                    | 103, 17                                                                                                                                                                                                                                                      | -0,2442                                                                                                                                                                                                                                                                                                                        | 105,78                                                                                                                                                                                                                                      | -2,5763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 241,81                                                                                                                                                                                                                                                                                                        | -1,3807                                                                                                                                       | 14,87                                                                                                                                  | -0,5207                                                                                                                                                  | 74,70                                                                                                                                   | 0,5393                                                                                                                                        | 45,03                                                                                                                               |
| 48 (CTG)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,2976                                                                                                                                                                                                                                                                     | $^{2,27}$                                                                                                                                                                                                                                                    | 4,3109                                                                                                                                                                                                                                                                                                                         | 2,04                                                                                                                                                                                                                                        | 1,6213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,76                                                                                                                                                                                                                                                                                                         | -1,5868                                                                                                                                       | 2,16                                                                                                                                   | -0,3305                                                                                                                                                  | 10,87                                                                                                                                   | 0,3795                                                                                                                                        | 2,07                                                                                                                                |
| 49 (ATG)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,3030                                                                                                                                                                                                                                                                     | 2,40                                                                                                                                                                                                                                                         | 4,3167                                                                                                                                                                                                                                                                                                                         | 2,18                                                                                                                                                                                                                                        | 1,7013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6,36                                                                                                                                                                                                                                                                                                          | -1,6353                                                                                                                                       | 0,83                                                                                                                                   | -0,2888                                                                                                                                                  | $^{3,10}$                                                                                                                               | 0,3757                                                                                                                                        | 1,03                                                                                                                                |
| 55 (CAG)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,1533                                                                                                                                                                                                                                                                     | 1,17                                                                                                                                                                                                                                                         | 4,1778                                                                                                                                                                                                                                                                                                                         | 1,11                                                                                                                                                                                                                                        | 1,7059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6,11                                                                                                                                                                                                                                                                                                          | -1,6320                                                                                                                                       | 0,63                                                                                                                                   | -0,2883                                                                                                                                                  | 3,29                                                                                                                                    | 0,3733                                                                                                                                        | 0,40                                                                                                                                |
| 57 (GAG)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,2010                                                                                                                                                                                                                                                                     | 0,03                                                                                                                                                                                                                                                         | 4,2234                                                                                                                                                                                                                                                                                                                         | 0,03                                                                                                                                                                                                                                        | 1,8136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,18                                                                                                                                                                                                                                                                                                          | -1,6218                                                                                                                                       | 0,01                                                                                                                                   | -0,2977                                                                                                                                                  | 0,13                                                                                                                                    | 0,3712                                                                                                                                        | 0,19                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                                                                               |                                                                                                                                        |                                                                                                                                                          |                                                                                                                                         |                                                                                                                                               |                                                                                                                                     |
| Obs. Retirada                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\hat{\gamma}_{21(i)}$                                                                                                                                                                                                                                                     | $RC(\hat{\gamma}_{21(i)})$                                                                                                                                                                                                                                   | $\hat{\gamma}_{22(i)}$                                                                                                                                                                                                                                                                                                         | $RC(\hat{\gamma}_{22(i)})$                                                                                                                                                                                                                  | $\hat{\gamma}_{23(i)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $RC(\hat{\gamma}_{23(i)})$                                                                                                                                                                                                                                                                                    | $\hat{\gamma}_{31(i)}$                                                                                                                        | $RC(\hat{\gamma}_{31(i)})$                                                                                                             | $\hat{\gamma}_{32(i)}$                                                                                                                                   | $RC(\hat{\gamma}_{32(i)})$                                                                                                              | $\hat{\gamma}_{33(i)}$                                                                                                                        | $RC(\hat{\gamma}_{33(i)})$                                                                                                          |
| Obs. Retirada<br>10 (CAT)                                                                                                                                                                                                                                                                                                                                                                                                                            | $\hat{\gamma}_{21(i)}$<br>0,0176                                                                                                                                                                                                                                           | $\frac{RC(\hat{\gamma}_{21(i)})}{124,02}$                                                                                                                                                                                                                    | $\hat{\gamma}_{22(i)}$ -0,7930                                                                                                                                                                                                                                                                                                 | $\frac{RC(\hat{\gamma}_{22(i)})}{1,37}$                                                                                                                                                                                                     | $\hat{\gamma}_{23(i)}$ -0,3048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{RC(\hat{\gamma}_{23(i)})}{6,25}$                                                                                                                                                                                                                                                                       | $\hat{\gamma}_{31(i)}$<br>0,1738                                                                                                              | $RC(\hat{\gamma}_{31(i)})$<br>20,48                                                                                                    | $\hat{\gamma}_{32(i)}$<br>3,0132                                                                                                                         | $RC(\hat{\gamma}_{32(i)})$<br>14,88                                                                                                     | $\hat{\gamma}_{33(i)}$<br>3,1389                                                                                                              | $\frac{RC(\hat{\gamma}_{33(i)})}{4,53}$                                                                                             |
| Obs. Retirada           10 (CAT)           13 (TGT)                                                                                                                                                                                                                                                                                                                                                                                                  | $\hat{\gamma}_{21(i)}$<br>0,0176<br>1,0963                                                                                                                                                                                                                                 | $\frac{RC(\hat{\gamma}_{21(i)})}{124,02}$ 1597,98                                                                                                                                                                                                            | $\hat{\gamma}_{22(i)}$<br>-0,7930<br>0,3569                                                                                                                                                                                                                                                                                    | $\frac{RC(\hat{\gamma}_{22(i)})}{1,37}$ 145,62                                                                                                                                                                                              | $\hat{\gamma}_{23(i)}$<br>-0,3048<br>0,5851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{RC(\hat{\gamma}_{23(i)})}{6,25}$ 304,01                                                                                                                                                                                                                                                                | $\hat{\gamma}_{31(i)}$<br>0,1738<br>0,3879                                                                                                    | $\frac{RC(\hat{\gamma}_{31(i)})}{20,48}\\168,97$                                                                                       | $\hat{\gamma}_{32(i)}$<br>3,0132<br>1,9437                                                                                                               | $\frac{RC(\hat{\gamma}_{32(i)})}{14,88}\\25,89$                                                                                         | $\hat{\gamma}_{33(i)}$<br>3,1389<br>1,6657                                                                                                    | $\frac{RC(\hat{\gamma}_{33(i)})}{4,53}$ 44,53                                                                                       |
| Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{r} \hat{\gamma}_{21(i)} \\ 0,0176 \\ 1,0963 \\ 1,3643 \end{array}$                                                                                                                                                                                          | $\frac{RC(\hat{\gamma}_{21(i)})}{124,02}$ 1597,98<br>1964,24                                                                                                                                                                                                 | $\hat{\gamma}_{22(i)}$<br>-0,7930<br>0,3569<br>0,4394                                                                                                                                                                                                                                                                          | $\frac{RC(\hat{\gamma}_{22(i)})}{1,37}$ 145,62<br>156,17                                                                                                                                                                                    | $\hat{\gamma}_{23(i)}$<br>-0,3048<br>0,5851<br>0,8744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{RC(\hat{\gamma}_{23(i)})}{6,25}$ $\frac{6,25}{304,01}$ $404,88$                                                                                                                                                                                                                                        | $\begin{array}{r} \hat{\gamma}_{31(i)} \\ 0,1738 \\ 0,3879 \\ 0,2859 \end{array}$                                                             | $\frac{RC(\hat{\gamma}_{31(i)})}{20,48}$ 168,97 98,20                                                                                  | $\begin{array}{r} \hat{\gamma}_{32(i)} \\ \hline 3,0132 \\ 1,9437 \\ 1,2704 \end{array}$                                                                 | $\frac{RC(\hat{\gamma}_{32(i)})}{14,88}$ 25,89 51,57                                                                                    | $\frac{\hat{\gamma}_{33(i)}}{3,1389}\\1,6657\\1,3839$                                                                                         | $\frac{RC(\hat{\gamma}_{33(i)})}{4,53}$ 44,53 53,91                                                                                 |
| Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{r} \hat{\gamma}_{21(i)} \\ 0,0176 \\ 1,0963 \\ 1,3643 \\ 1,1794 \end{array}$                                                                                                                                                                                | $\frac{RC(\hat{\gamma}_{21(i)})}{124,02}$ 1597,98<br>1964,24<br>1711,59                                                                                                                                                                                      | $\begin{array}{r} \hat{\gamma}_{22(i)} \\ \hline 0,7930 \\ 0,3569 \\ 0,4394 \\ 0,4387 \end{array}$                                                                                                                                                                                                                             | $\frac{RC(\hat{\gamma}_{22(i)})}{1,37}$ 145,62<br>156,17<br>156,08                                                                                                                                                                          | $\begin{array}{r} \hat{\gamma}_{23(i)} \\ \hline & -0,3048 \\ & 0,5851 \\ & 0,8744 \\ & 0,6958 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{RC(\hat{\gamma}_{23(i)})}{6,25}$ $\frac{304,01}{404,88}$ $\frac{342,60}{342,60}$                                                                                                                                                                                                                       | $\begin{array}{r} \hat{\gamma}_{31(i)} \\ \hline 0,1738 \\ 0,3879 \\ 0,2859 \\ 0,3867 \end{array}$                                            | $\frac{RC(\hat{\gamma}_{31(i)})}{20,48}$ 168,97 98,20 168,11                                                                           | $\begin{array}{r} \hat{\gamma}_{32(i)} \\ \hline 3,0132 \\ 1,9437 \\ 1,2704 \\ 1,9328 \end{array}$                                                       | $\frac{RC(\hat{\gamma}_{32(i)})}{14,88}$ 25,89 51,57 26,31                                                                              | $\begin{array}{r} \hat{\gamma}_{33(i)} \\ \hline 3,1389 \\ 1,6657 \\ 1,3839 \\ 1,3346 \end{array}$                                            | $\frac{RC(\hat{\gamma}_{33(i)})}{4,53}$ $44,53$ $53,91$ $55,56$                                                                     |
| Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{r} \hat{\gamma}_{21(i)} \\ 0,0176 \\ 1,0963 \\ 1,3643 \\ 1,1794 \\ 1,3408 \end{array}$                                                                                                                                                                      | $\frac{RC(\hat{\gamma}_{21(i)})}{124,02}$ 1597,98<br>1964,24<br>1711,59<br>1931,99                                                                                                                                                                           | $\begin{array}{c} \hat{\gamma}_{22(i)} \\ \hline 0,7930 \\ 0,3569 \\ 0,4394 \\ 0,4387 \\ 0,4929 \end{array}$                                                                                                                                                                                                                   | $\frac{RC(\hat{\gamma}_{22(i)})}{1,37}$ 145,62<br>156,17<br>156,08<br>163,00                                                                                                                                                                | $\begin{array}{r} \hat{\gamma}_{23(i)} \\ \hline 0,3048 \\ 0,5851 \\ 0,8744 \\ 0,6958 \\ 0,9279 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{RC(\hat{\gamma}_{23(i)})}{6,25}$ $\frac{6,25}{304,01}$ $\frac{404,88}{342,60}$ $\frac{342,60}{423,52}$                                                                                                                                                                                                 | $\begin{array}{r} \hat{\gamma}_{31(i)} \\ 0,1738 \\ 0,3879 \\ 0,2859 \\ 0,3867 \\ 0,2854 \end{array}$                                         | $\frac{RC(\hat{\gamma}_{31(i)})}{20,48}$ 168,97 98,20 168,11 97,84                                                                     | $\begin{array}{r} \hat{\gamma}_{32(i)} \\ \hline 3,0132 \\ 1,9437 \\ 1,2704 \\ 1,9328 \\ 1,4196 \end{array}$                                             | $\frac{RC(\hat{\gamma}_{32(i)})}{14,88}$ 25,89 51,57 26,31 45,88                                                                        | $\begin{array}{r} \hat{\gamma}_{33(i)} \\ \hline 3,1389 \\ 1,6657 \\ 1,3839 \\ 1,3346 \\ 0,6827 \end{array}$                                  | $\frac{RC(\hat{\gamma}_{33(i)})}{4,53}$ $44,53$ $53,91$ $55,56$ $77,27$                                                             |
| Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)           48 (CTG)                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} \hat{\gamma}_{21(i)} \\ 0,0176 \\ 1,0963 \\ 1,3643 \\ 1,1794 \\ 1,3408 \\ -0,0586 \end{array}$                                                                                                                                                           | $\begin{array}{c} RC(\hat{\gamma}_{21(i)}) \\ 124,02 \\ 1597,98 \\ 1964,24 \\ 1711,59 \\ 1931,99 \\ 19,99 \end{array}$                                                                                                                                       | $\begin{array}{c} \hat{\gamma}_{22(i)} \\ \hline 0,7930 \\ 0,3569 \\ 0,4394 \\ 0,4387 \\ 0,4929 \\ -0,7588 \end{array}$                                                                                                                                                                                                        | $\begin{array}{c} RC(\hat{\gamma}_{22(i)}) \\ 1,37 \\ 145,62 \\ 156,17 \\ 156,08 \\ 163,00 \\ 3,01 \end{array}$                                                                                                                             | $\begin{array}{c} \hat{\gamma}_{23(i)} \\ \hline 0,3048 \\ 0,5851 \\ 0,8744 \\ 0,6958 \\ 0,9279 \\ -0,2399 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} RC(\hat{\gamma}_{23(i)}) \\ \hline 6,25 \\ 304,01 \\ 404,88 \\ 342,60 \\ 423,52 \\ 16,35 \end{array}$                                                                                                                                                                                       | $\frac{\hat{\gamma}_{31(i)}}{0,1738}\\0,3879\\0,2859\\0,3867\\0,2854\\0,1399$                                                                 | $\begin{array}{c} RC(\hat{\gamma}_{31(i)}) \\ 20,48 \\ 168,97 \\ 98,20 \\ 168,11 \\ 97,84 \\ 3,00 \end{array}$                         | $\frac{\hat{\gamma}_{32(i)}}{3,0132}\\1,9437\\1,2704\\1,9328\\1,4196\\2,5320$                                                                            | $\begin{array}{c} RC(\hat{\gamma}_{32(i)}) \\ \hline 14,88 \\ 25,89 \\ 51,57 \\ 26,31 \\ 45,88 \\ 3,46 \end{array}$                     | $\frac{\hat{\gamma}_{33(i)}}{3,1389}$ 1,6657 1,3839 1,3346 0,6827 2,9262                                                                      | $\begin{array}{c} RC(\hat{\gamma}_{33(i)}) \\ 4,53 \\ 44,53 \\ 53,91 \\ 55,56 \\ 77,27 \\ 2,55 \end{array}$                         |
| Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)           48 (CTG)           49 (ATG)                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} \hat{\gamma}_{21(i)} \\ 0,0176 \\ 1,0963 \\ 1,3643 \\ 1,1794 \\ 1,3408 \\ -0,0586 \\ -0,0195 \end{array}$                                                                                                                                                | $\begin{array}{c} RC(\hat{\gamma}_{21(i)}) \\ 124,02 \\ 1597,98 \\ 1964,24 \\ 1711,59 \\ 1931,99 \\ 19,99 \\ 73,37 \end{array}$                                                                                                                              | $\begin{array}{c} \hat{\gamma}_{22(i)} \\ \hline 0,7930 \\ 0,3569 \\ 0,4394 \\ 0,4387 \\ 0,4929 \\ -0,7588 \\ -0,7997 \end{array}$                                                                                                                                                                                             | $\begin{array}{c} RC(\hat{\gamma}_{22(i)}) \\ 1,37 \\ 145,62 \\ 156,17 \\ 156,08 \\ 163,00 \\ 3,01 \\ 2,22 \end{array}$                                                                                                                     | $\begin{array}{r} \hat{\gamma}_{23(i)} \\ \hline 0,3048 \\ 0,5851 \\ 0,8744 \\ 0,6958 \\ 0,9279 \\ -0,2399 \\ -0,2497 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} RC(\hat{\gamma}_{23(i)}) \\ \hline 6,25 \\ 304,01 \\ 404,88 \\ 342,60 \\ 423,52 \\ 16,35 \\ 12,96 \end{array}$                                                                                                                                                                              | $\begin{array}{r} \hat{\gamma}_{31(i)} \\ 0,1738 \\ 0,3879 \\ 0,2859 \\ 0,3867 \\ 0,2854 \\ 0,1399 \\ 0,1578 \end{array}$                     | $\begin{array}{c} RC(\hat{\gamma}_{31(i)}) \\ 20,48 \\ 168,97 \\ 98,20 \\ 168,11 \\ 97,84 \\ 3,00 \\ 9,38 \end{array}$                 | $\frac{\hat{\gamma}_{32(i)}}{3,0132}\\1,9437\\1,2704\\1,9328\\1,4196\\2,5320\\2,5673$                                                                    | $\begin{array}{c} RC(\hat{\gamma}_{32(i)}) \\ 14,88 \\ 25,89 \\ 51,57 \\ 26,31 \\ 45,88 \\ 3,46 \\ 2,12 \end{array}$                    | $\frac{\hat{\gamma}_{33(i)}}{3,1389}$ 1,6657 1,3839 1,3346 0,6827 2,9262 2,9639                                                               | $\begin{array}{c} RC(\hat{\gamma}_{33(i)}) \\ 4,53 \\ 44,53 \\ 53,91 \\ 55,56 \\ 77,27 \\ 2,55 \\ 1,29 \end{array}$                 |
| Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)           48 (CTG)           49 (ATG)           55 (CAG)                                                                                                                                                                                                                                                                                | $\begin{array}{c} \hat{\gamma}_{21(i)} \\ \hline 0,0176 \\ 1,0963 \\ 1,3643 \\ 1,1794 \\ 1,3408 \\ -0,0586 \\ -0,0195 \\ -0,0769 \end{array}$                                                                                                                              | $\begin{array}{c} RC(\hat{\gamma}_{21(i)}) \\ 124,02 \\ 1597,98 \\ 1964,24 \\ 1711,59 \\ 1931,99 \\ 19,99 \\ 73,37 \\ 5,04 \end{array}$                                                                                                                      | $\begin{array}{c} \hat{\gamma}_{22(i)} \\ \hline \\ -0.7930 \\ 0.3569 \\ 0.4394 \\ 0.4387 \\ 0.4929 \\ -0.7588 \\ -0.7997 \\ -0.7782 \end{array}$                                                                                                                                                                              | $\begin{array}{c} RC(\hat{\gamma}_{22(i)}) \\ 1,37 \\ 145,62 \\ 156,17 \\ 156,08 \\ 163,00 \\ 3,01 \\ 2,22 \\ 0,52 \end{array}$                                                                                                             | $\begin{array}{c} \hat{\gamma}_{23(i)} \\ \hline \gamma_{23(i)} \\ 0,3048 \\ 0,5851 \\ 0,8744 \\ 0,6958 \\ 0,9279 \\ -0,2399 \\ -0,2497 \\ -0,2913 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} RC(\hat{\gamma}_{23(i)}) \\ 6.25 \\ 304,01 \\ 404,88 \\ 342,60 \\ 423,52 \\ 16.35 \\ 12,96 \\ 1,58 \end{array}$                                                                                                                                                                             | $\begin{array}{c} \hat{\gamma}_{31(i)} \\ 0,1738 \\ 0,3879 \\ 0,2859 \\ 0,3867 \\ 0,2854 \\ 0,1399 \\ 0,1578 \\ 0,1499 \end{array}$           | $\begin{array}{c} RC(\hat{\gamma}_{31(i)}) \\ 20,48 \\ 168,97 \\ 98,20 \\ 168,11 \\ 97,84 \\ 3,00 \\ 9,38 \\ 3,95 \end{array}$         | $\begin{array}{r} \hat{\gamma}_{32(i)} \\ \hline \hat{\gamma}_{30132} \\ 1,9437 \\ 1,2704 \\ 1,9328 \\ 1,4196 \\ 2,5320 \\ 2,5673 \\ 2,6369 \end{array}$ | $\begin{array}{c} RC(\hat{\gamma}_{32(i)}) \\ 14,88 \\ 25,89 \\ 51,57 \\ 26,31 \\ 45,88 \\ 3,46 \\ 2,12 \\ 0,54 \end{array}$            | $\begin{array}{c} \hat{\gamma}_{33(i)} \\ \hline 3,1389 \\ 1,6657 \\ 1,3839 \\ 1,3346 \\ 0,6827 \\ 2,9262 \\ 2,9639 \\ 3,0169 \end{array}$    | $\begin{array}{c} RC(\hat{\gamma}_{33(i)}) \\ 4,53 \\ 44,53 \\ 53,91 \\ 55,56 \\ 77,27 \\ 2,55 \\ 1,29 \\ 0,47 \end{array}$         |
| Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)           48 (CTG)           49 (ATG)           55 (CAG)           57 (GAG)                                                                                                                                                                                                                                                             | $\begin{array}{c} \hat{\gamma}_{21(i)} \\ 0,0176 \\ 1,0963 \\ 1,3643 \\ 1,1794 \\ 1,3408 \\ -0,0586 \\ -0,0195 \\ -0,0769 \\ -0,0737 \end{array}$                                                                                                                          | $\begin{array}{c} RC(\hat{\gamma}_{21(i)}) \\ 124,02 \\ 1597,98 \\ 1964,24 \\ 1711,59 \\ 1931,99 \\ 19,99 \\ 73,37 \\ 5,04 \\ 0,70 \end{array}$                                                                                                              | $\begin{array}{c} \hat{\gamma}_{22(i)} \\ \hline\\ -0,7930 \\ 0,3569 \\ 0,4394 \\ 0,4387 \\ 0,4929 \\ -0,7588 \\ -0,7997 \\ -0,7782 \\ -0,7824 \end{array}$                                                                                                                                                                    | $\begin{array}{c} RC(\hat{\gamma}_{22(i)}) \\ 1,37 \\ 145,62 \\ 156,17 \\ 156,08 \\ 163,00 \\ 3,01 \\ 2,22 \\ 0,52 \\ 0,02 \end{array}$                                                                                                     | $\begin{array}{c} \hat{\gamma}_{23}(i) \\ \hline \gamma_{23}(i) \\ 0,3048 \\ 0,5851 \\ 0,8744 \\ 0,6958 \\ 0,9279 \\ -0,2399 \\ -0,2399 \\ -0,2497 \\ -0,2913 \\ -0,2875 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} RC(\hat{\gamma}_{23(i)}) \\ 6,25 \\ 304,01 \\ 404,88 \\ 342,60 \\ 423,52 \\ 16,35 \\ 12,96 \\ 1,58 \\ 0,23 \end{array}$                                                                                                                                                                     | $\begin{array}{c} \hat{\gamma}_{31(i)} \\ 0,1738 \\ 0,3879 \\ 0,2859 \\ 0,3867 \\ 0,2854 \\ 0,1399 \\ 0,1578 \\ 0,1499 \\ 0,1445 \end{array}$ | $\begin{array}{c} RC(\hat{\gamma}_{31(i)}) \\ 20,48 \\ 168,97 \\ 98,20 \\ 168,11 \\ 97,84 \\ 3,00 \\ 9,38 \\ 3,95 \\ 0,17 \end{array}$ | $\begin{array}{r} \hat{\gamma}_{32(i)} \\ 3,0132 \\ 1,9437 \\ 1,2704 \\ 1,9328 \\ 1,4196 \\ 2,5320 \\ 2,5673 \\ 2,6369 \\ 2,6237 \end{array}$            | $\begin{array}{c} RC(\hat{\gamma}_{32(i)}) \\ 14,88 \\ 25,89 \\ 51,57 \\ 26,31 \\ 45,88 \\ 3,46 \\ 2,12 \\ 0,54 \\ 0,03 \end{array}$    | $\begin{array}{r} \hat{\gamma}_{33(i)} \\ 3,1389 \\ 1,6657 \\ 1,3839 \\ 1,3346 \\ 0,6827 \\ 2,9262 \\ 2,9639 \\ 3,0169 \\ 3,0038 \end{array}$ | $\begin{array}{c} RC(\hat{\gamma}_{33(i)}) \\ 4,53 \\ 44,53 \\ 53,91 \\ 55,56 \\ 77,27 \\ 2,55 \\ 1,29 \\ 0,47 \\ 0,04 \end{array}$ |
| Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)           48 (CTG)           49 (ATG)           55 (CAG)           57 (GAG)           Obs. Retirada                                                                                                                                                                                                                                     | $\begin{array}{c} \hat{\gamma}_{21(i)} \\ 0,0176 \\ 1,0963 \\ 1,3643 \\ 1,1794 \\ 1,3408 \\ -0,0586 \\ -0,0195 \\ -0,0769 \\ -0,0737 \\ \hline \hat{\beta}_{1(i)} \end{array}$                                                                                             | $\begin{array}{c} RC(\hat{\gamma}_{21(i)}) \\ 124,02 \\ 1597,98 \\ 1964,24 \\ 1711,59 \\ 1931,99 \\ 19,99 \\ 73,37 \\ 5,04 \\ 0,70 \\ \hline RC(\hat{\beta}_{1(i)}) \end{array}$                                                                             | $\begin{array}{c} \hat{\gamma}_{22(i)} \\ \hline \gamma_{22(i)} \\ 0,3569 \\ 0,4394 \\ 0,4387 \\ 0,4929 \\ -0,7588 \\ -0,7997 \\ -0,7782 \\ -0,7824 \\ \hline \hat{\beta}_{2(i)} \end{array}$                                                                                                                                  | $\begin{array}{c} RC(\hat{\gamma}_{22(i)}) \\ 1,37 \\ 145,62 \\ 156,17 \\ 156,08 \\ 163,00 \\ 3,01 \\ 2,22 \\ 0,52 \\ 0,02 \\ \hline RC(\hat{\beta}_{2(i)}) \end{array}$                                                                    | $\begin{array}{c} \hat{\gamma}_{23(i)} \\ \hline \gamma_{23(i)} \\ 0,3048 \\ 0,5851 \\ 0,8744 \\ 0,6958 \\ 0,9279 \\ -0,2399 \\ -0,2497 \\ -0,2913 \\ -0,2875 \\ \hline \hat{\beta}_{3(i)} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} RC(\hat{\gamma}_{23(i)}) \\ 6.25 \\ 304,01 \\ 404,88 \\ 342,60 \\ 423,52 \\ 16.35 \\ 12,96 \\ 1,58 \\ 0.23 \\ \hline RC(\hat{\beta}_{3(i)}) \end{array}$                                                                                                                                    | $\begin{array}{c} \hat{\gamma}_{31(i)} \\ 0,1738 \\ 0,3879 \\ 0,2859 \\ 0,3867 \\ 0,2854 \\ 0,1399 \\ 0,1578 \\ 0,1499 \\ 0,1445 \end{array}$ | $\begin{array}{c} RC(\hat{\gamma}_{31(i)}) \\ 20,48 \\ 168,97 \\ 98,20 \\ 168,11 \\ 97,84 \\ 3,00 \\ 9,38 \\ 3,95 \\ 0,17 \end{array}$ | $\begin{array}{c} \hat{\gamma}_{32(i)}\\ 3,0132\\ 1,9437\\ 1,2704\\ 1,9328\\ 1,4196\\ 2,5320\\ 2,5673\\ 2,6369\\ 2,6237\end{array}$                      | $\begin{array}{c} RC(\hat{\gamma}_{32(i)}) \\ 14,88 \\ 25,89 \\ 51,57 \\ 26,31 \\ 45,88 \\ 3,46 \\ 2,12 \\ 0,54 \\ 0,03 \end{array}$    | $\begin{array}{c} \hat{\gamma}_{33(i)}\\ 3,1389\\ 1,6657\\ 1,3839\\ 1,3346\\ 0,6827\\ 2,9262\\ 2,9639\\ 3,0169\\ 3,0038 \end{array}$          | $\begin{array}{c} RC(\hat{\gamma}_{33(i)}) \\ 4,53 \\ 44,53 \\ 53,91 \\ 55,56 \\ 77,27 \\ 2,55 \\ 1,29 \\ 0,47 \\ 0,04 \end{array}$ |
| Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)           48 (CTG)           49 (ATG)           55 (CAG)           57 (GAG)           Obs. Retirada           10 (CAT)                                                                                                                                                                                                                  | $\begin{array}{c} \hat{\gamma}_{21(i)} \\ 0,0176 \\ 1,0963 \\ 1,3643 \\ 1,1794 \\ 1,3408 \\ -0,0586 \\ -0,0195 \\ -0,0769 \\ -0,0737 \\ \hline \hat{\beta}_{1(i)} \\ -0,0243 \end{array}$                                                                                  | $\begin{array}{c} RC(\hat{\gamma}_{21(i)}) \\ 124,02 \\ 1597,98 \\ 1964,24 \\ 1711,59 \\ 1931,99 \\ 19,99 \\ 73,37 \\ 5,04 \\ 0,70 \\ \hline RC(\hat{\beta}_{1(i)}) \\ 5,15 \\ \end{array}$                                                                  | $\begin{array}{c} \hat{\gamma}_{22(i)} \\ \hline \gamma_{22(i)} \\ 0.7930 \\ 0.3569 \\ 0.4394 \\ 0.4387 \\ 0.4929 \\ -0.7588 \\ -0.7997 \\ -0.7782 \\ -0.7824 \\ \hline \hat{\beta}_{2(i)} \\ \hline \hat{\beta}_{2(i)} \\ \hline -0.2210 \end{array}$                                                                         | $\begin{array}{c} RC(\hat{\gamma}_{22(i)}) \\ 1,37 \\ 145,62 \\ 156,17 \\ 156,08 \\ 163,00 \\ 3,01 \\ 2,22 \\ 0,52 \\ 0,02 \\ 0,52 \\ 0,02 \\ RC(\hat{\beta}_{2(i)}) \\ 1,24 \end{array}$                                                   | $\begin{array}{c} \hat{\gamma}_{23(i)} \\ \hline \gamma_{23(i)} \\ 0,3048 \\ 0,5851 \\ 0,8744 \\ 0,6958 \\ 0,9279 \\ -0,2399 \\ -0,2497 \\ -0,2913 \\ -0,2875 \\ \hline \hat{\beta}_{3(i)} \\ \hline \hat{\beta}_{3(i)} \\ \hline -0,5189 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} RC(\hat{\gamma}_{23(i)}) \\ 6.25 \\ 304,01 \\ 404,88 \\ 342,60 \\ 423,52 \\ 16,35 \\ 12,96 \\ 1,58 \\ 0,23 \\ \hline RC(\hat{\beta}_{3(i)}) \\ 8,83 \end{array}$                                                                                                                            | $\begin{array}{c} \hat{\gamma}_{31(i)} \\ 0,1738 \\ 0,3879 \\ 0,2859 \\ 0,3867 \\ 0,2854 \\ 0,1399 \\ 0,1578 \\ 0,1499 \\ 0,1445 \end{array}$ | $\begin{array}{c} RC(\hat{\gamma}_{31(i)}) \\ 20,48 \\ 168,97 \\ 98,20 \\ 168,11 \\ 97,84 \\ 3,00 \\ 9,38 \\ 3,95 \\ 0,17 \end{array}$ | $\frac{\hat{\gamma}_{32(i)}}{3,0132}\\ 1,9437\\ 1,2704\\ 1,9328\\ 1,4196\\ 2,5320\\ 2,5673\\ 2,6369\\ 2,6237\\ \end{array}$                              | $\begin{array}{c} RC(\hat{\gamma}_{32(i)}) \\ 14,88 \\ 25,89 \\ 51,57 \\ 26,31 \\ 45,88 \\ 3,46 \\ 2,12 \\ 0,54 \\ 0,03 \end{array}$    | $\frac{\hat{\gamma}_{33(i)}}{3,1389}\\ 1,6657\\ 1,3839\\ 1,3346\\ 0,6827\\ 2,9262\\ 2,9639\\ 3,0169\\ 3,0038\\$                               | $\begin{array}{c} RC(\hat{\gamma}_{33(i)}) \\ 4,53 \\ 44,53 \\ 53,91 \\ 55,56 \\ 77,27 \\ 2,55 \\ 1,29 \\ 0,47 \\ 0,04 \end{array}$ |
| Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)           48 (CTG)           49 (ATG)           55 (CAG)           57 (GAG)           Obs. Retirada           10 (CAT)           13 (TGT)                                                                                                                                                                                               | $\begin{array}{c} \hat{\gamma}_{21(i)} \\ 0,0176 \\ 1,0963 \\ 1,3643 \\ 1,1794 \\ 1,3408 \\ -0,0586 \\ -0,0195 \\ -0,0769 \\ -0,0737 \\ \hat{\beta}_{1(i)} \\ -0,0243 \\ 0,0017 \end{array}$                                                                               | $\begin{array}{c} RC(\hat{\gamma}_{21(i)}) \\ 124,02 \\ 1597,98 \\ 1964,24 \\ 1711,59 \\ 1931,99 \\ 19,337 \\ 5,04 \\ 0,70 \\ \hline RC(\hat{\beta}_{1(i)}) \\ 5,15 \\ 107,48 \\ \end{array}$                                                                | $\begin{array}{c} \hat{\gamma}_{22(i)} \\ \hline 0.7930 \\ 0.3569 \\ 0.4394 \\ 0.4387 \\ 0.4929 \\ -0.7588 \\ -0.7997 \\ -0.7782 \\ \hline 0.7824 \\ \hline \hat{\beta}_{2(i)} \\ -0.2210 \\ 0.0639 \end{array}$                                                                                                               | $\begin{array}{c} RC(\hat{\gamma}_{22(i)}) \\ 1,37 \\ 145,62 \\ 156,17 \\ 156,08 \\ 163,00 \\ 3,01 \\ 2,22 \\ 0,52 \\ 0,02 \\ \hline RC(\hat{\beta}_{2(i)}) \\ 1,24 \\ 129,29 \\ \end{array}$                                               | $\begin{array}{c} \hat{\gamma}_{23(i)} \\ \hline 0,3048 \\ 0,5851 \\ 0,8744 \\ 0,6958 \\ 0,9279 \\ -0,2399 \\ -0,2497 \\ -0,2913 \\ -0,2875 \\ \hline \hat{\beta}_{3(i)} \\ -0,5189 \\ -0,1901 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} RC(\hat{\gamma}_{23(i)}) \\ 6.25 \\ 304,01 \\ 404,88 \\ 342,60 \\ 423,52 \\ 16,35 \\ 12,96 \\ 1,58 \\ 0.23 \\ \hline RC(\hat{\beta}_{3(i)}) \\ 8.83 \\ 60,12 \\ \end{array}$                                                                                                                | $\begin{array}{c} \hat{7}31(i) \\ 0,1738 \\ 0,3879 \\ 0,2859 \\ 0,3867 \\ 0,2854 \\ 0,1399 \\ 0,1578 \\ 0,1499 \\ 0,1445 \end{array}$         | $\begin{array}{c} RC(\hat{\gamma}_{31(i)}) \\ 20,48 \\ 168,97 \\ 98,20 \\ 168,11 \\ 97,84 \\ 3,00 \\ 9,38 \\ 3,95 \\ 0,17 \end{array}$ | $\begin{array}{c} \hat{\gamma}_{32(i)} \\ 3,0132 \\ 1,9437 \\ 1,2704 \\ 1,9328 \\ 1,4196 \\ 2,5320 \\ 2,5673 \\ 2,6369 \\ 2,6237 \end{array}$            | $\begin{array}{c} RC(\hat{\gamma}_{32(i)}) \\ 14,88 \\ 25,89 \\ 51,57 \\ 26,31 \\ 45,88 \\ 3,46 \\ 2,12 \\ 0,54 \\ 0,03 \end{array}$    | $\begin{array}{c} \hat{\gamma}_{33(i)} \\ 3,1389 \\ 1,6657 \\ 1,3839 \\ 1,3346 \\ 0,6827 \\ 2,9262 \\ 2,9639 \\ 3,0169 \\ 3,0038 \end{array}$ | $\begin{array}{c} RC(\hat{\gamma}_{33(i)}) \\ 4,53 \\ 44,53 \\ 53,91 \\ 55,56 \\ 77,27 \\ 2,55 \\ 1,29 \\ 0,47 \\ 0,04 \end{array}$ |
| Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)           48 (CTG)           49 (ATG)           55 (CAG)           57 (GAG)           Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)                                                                                                                                                                            | $\begin{array}{c} \hat{\gamma}_{21(i)} \\ 0,0176 \\ 1,0963 \\ 1,3643 \\ 1,1794 \\ 1,3408 \\ -0,0586 \\ -0,0195 \\ -0,0769 \\ -0,0769 \\ -0,0737 \\ \hline \hat{\beta}_{1(i)} \\ -0,0243 \\ 0,0017 \\ 0,0145 \end{array}$                                                   | $\begin{array}{c} RC(\hat{\gamma}_{21(i)}) \\ 124,02 \\ 1597,98 \\ 1964,24 \\ 1711,59 \\ 1931,99 \\ 19,33,7 \\ 5,04 \\ 0,70 \\ RC(\hat{\beta}_{1(i)}) \\ 5,15 \\ 107,48 \\ 162,92 \\ \end{array}$                                                            | $\begin{array}{c} \hat{7}22(i)\\ \hline{7}22(i)\\ 0,3569\\ 0,4394\\ 0,4387\\ 0,4929\\ -0,7588\\ -0,7997\\ -0,7782\\ -0,7824\\ \hline{\hat{\beta}}_{2(i)}\\ \hline{\hat{\beta}}_{2(i)}\\ -0,2210\\ 0,0639\\ -0,1580\\ \end{array}$                                                                                              | $\begin{array}{c} RC(\hat{\gamma}_{22(i)}) \\ 1,37 \\ 145,62 \\ 156,17 \\ 156,00 \\ 3,01 \\ 2,22 \\ 0,52 \\ 0,02 \\ \hline RC(\hat{\beta}_{2(i)}) \\ 1,24 \\ 129,29 \\ 27,64 \\ \end{array}$                                                | $\begin{array}{c} \hat{\gamma}_{23(i)} \\ \hline{\gamma}_{23(i)} \\ 0,3048 \\ 0,5851 \\ 0,8744 \\ 0,6958 \\ 0,9279 \\ -0,2399 \\ -0,2497 \\ -0,2913 \\ -0,2875 \\ \hline{\beta}_{3(i)} \\ \hline{\beta}_{3(i)} \\ -0,5189 \\ -0,5189 \\ -0,1901 \\ -0,0714 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} RC(\hat{\gamma}_{23(i)}) \\ \hline & 6.25 \\ 304,01 \\ 404,88 \\ 342,60 \\ 423,52 \\ 16,35 \\ 12,96 \\ 1,58 \\ 0,23 \\ \hline & RC(\hat{\beta}_{3(i)}) \\ 8,83 \\ 60,12 \\ 85,03 \\ \end{array}$                                                                                            | $\begin{array}{c} \hat{7}31(i)\\ 0,1738\\ 0,3879\\ 0,2859\\ 0,3867\\ 0,2854\\ 0,1399\\ 0,1578\\ 0,1499\\ 0,1445\\ \end{array}$                | $\begin{array}{c} RC(\hat{\gamma}_{31(i)}) \\ 20,48 \\ 168,97 \\ 98,20 \\ 168,11 \\ 97,84 \\ 3,00 \\ 9,38 \\ 3,95 \\ 0,17 \end{array}$ | $\begin{array}{c} \hat{\gamma}_{32(i)}\\ 3,0132\\ 1,9437\\ 1,2704\\ 1,9328\\ 1,4196\\ 2,5320\\ 2,5673\\ 2,6369\\ 2,6237\\ \end{array}$                   | $\begin{array}{c} RC(\hat{\gamma}_{32(i)}) \\ 14,88 \\ 25,89 \\ 51,57 \\ 26,31 \\ 45,88 \\ 3,46 \\ 2,12 \\ 0,54 \\ 0,03 \end{array}$    | $\begin{array}{c} \hat{\gamma}_{33(i)}\\ 3,1389\\ 1,6657\\ 1,3839\\ 1,3346\\ 0,6827\\ 2,9262\\ 2,9639\\ 3,0169\\ 3,0038\\ \end{array}$        | $\begin{array}{c} RC(\hat{\gamma}_{33(i)}) \\ 4,53 \\ 44,53 \\ 53,91 \\ 55,56 \\ 77,27 \\ 2,55 \\ 1,29 \\ 0,47 \\ 0,04 \end{array}$ |
| Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)           48 (CTG)           49 (ATG)           55 (CAG)           57 (GAG)           Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)                                                                                                                                                         | $\begin{array}{c} \hat{\gamma}_{21(i)} \\ 0,0176 \\ 1,0963 \\ 1,3643 \\ 1,1794 \\ 1,3408 \\ -0,0586 \\ -0,0195 \\ -0,0769 \\ -0,0737 \\ \hat{\beta}_{1(i)} \\ -0,0243 \\ 0,0017 \\ 0,0145 \\ 0,0027 \end{array}$                                                           | $\begin{array}{c} RC(\hat{\gamma}_{21(i)}) \\ 124,02 \\ 1597,98 \\ 1964,24 \\ 1711,59 \\ 1931,99 \\ 19,99 \\ 73,37 \\ 5,04 \\ 0,70 \\ \hline RC(\hat{\beta}_{1(i)}) \\ 5,15 \\ 107,48 \\ 162,92 \\ 111,60 \\ \end{array}$                                    | $\begin{array}{c} \hat{\gamma}_{22(i)} \\ \hline{\gamma}_{22(i)} \\ 0,3569 \\ 0,4394 \\ 0,4387 \\ 0,4929 \\ -0,7588 \\ -0,7997 \\ -0,7782 \\ -0,7824 \\ \hline{\beta}_{2(i)} \\ \hline{\gamma}_{2(i)} \\ -0,2210 \\ 0,0639 \\ -0,1580 \\ 0,0509 \end{array}$                                                                   | $\begin{array}{c} RC(\hat{\gamma}_{22(i)}) \\ 1,37 \\ 145,62 \\ 156,17 \\ 156,08 \\ 163,00 \\ 3,01 \\ 2,22 \\ 0,52 \\ 0,02 \\ \hline RC(\hat{\beta}_{2(i)}) \\ 1,24 \\ 129,29 \\ 27,64 \\ 123,31 \\ \end{array}$                            | $\begin{array}{c} \hat{\gamma}_{23(i)} \\ \hline \gamma_{23(i)} \\ -0,3048 \\ 0,5851 \\ 0,8744 \\ 0,6958 \\ 0,9279 \\ -0,2399 \\ -0,2497 \\ -0,2913 \\ -0,2875 \\ \hat{\beta}_{3(i)} \\ \hline \hat{\beta}_{3(i)} \\ -0,5189 \\ -0,1901 \\ -0,0714 \\ -0,1847 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} RC(\hat{\gamma}_{23(i)}) \\ \hline 6.25 \\ 304,01 \\ 404,88 \\ 342,60 \\ 423,52 \\ 16,35 \\ 12,96 \\ 1.58 \\ 0.23 \\ \hline RC(\hat{\beta}_{3(i)}) \\ \hline 8.83 \\ 60,12 \\ 85,03 \\ 61,25 \\ \end{array}$                                                                                | $\begin{array}{c} \hat{\gamma}_{31(i)} \\ 0,1738 \\ 0,3879 \\ 0,2859 \\ 0,3867 \\ 0,2854 \\ 0,1399 \\ 0,1578 \\ 0,1499 \\ 0,1445 \end{array}$ | $\begin{array}{c} RC(\hat{\gamma}_{31(i)}) \\ 20,48 \\ 168,97 \\ 98,20 \\ 168,11 \\ 97,84 \\ 3,00 \\ 9,38 \\ 3,95 \\ 0,17 \end{array}$ | $\begin{array}{r} \hat{\gamma}_{32(i)}\\ 3,0132\\ 1,9437\\ 1,2704\\ 1,9328\\ 1,4196\\ 2,5320\\ 2,5673\\ 2,6369\\ 2,6237\end{array}$                      | $\begin{array}{c} RC(\hat{\gamma}_{32(i)}) \\ 14,88 \\ 25,89 \\ 51,57 \\ 26,31 \\ 45,88 \\ 3,46 \\ 2,12 \\ 0,54 \\ 0,03 \end{array}$    | $\frac{\hat{\gamma}_{33}(i)}{3,1389}$ 1,6657 1,3839 1,3346 0,6827 2,9262 2,9639 3,0169 3,0038                                                 | $\begin{array}{c} RC(\hat{\gamma}_{33(i)}) \\ 4,53 \\ 44,53 \\ 53,91 \\ 55,56 \\ 77,27 \\ 2,55 \\ 1,29 \\ 0,47 \\ 0,04 \end{array}$ |
| Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)           48 (CTG)           49 (ATG)           55 (CAG)           57 (GAG)           Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)                                                                                                                                      | $\begin{array}{c} \hat{\gamma}_{21(i)} \\ 0,0176 \\ 1,0963 \\ 1,3643 \\ 1,1794 \\ 1,3408 \\ -0,0586 \\ -0,0195 \\ -0,0769 \\ -0,0737 \\ \hline \hat{\beta}_{1(i)} \\ -0,0243 \\ 0,0017 \\ 0,0145 \\ 0,0027 \\ 0,0108 \\ \end{array}$                                       | $\begin{array}{c} RC(\hat{\gamma}_{21(i)}) \\ 124,02 \\ 1597,98 \\ 1964,24 \\ 1711,59 \\ 1931,99 \\ 19,99 \\ 73,37 \\ 5,04 \\ 0,70 \\ \hline RC(\hat{\beta}_{1(i)}) \\ \hline 5,15 \\ 107,48 \\ 162,92 \\ 111,60 \\ 146,68 \\ \end{array}$                   | $\begin{array}{c} \hat{\gamma}_{22(i)} \\ \hline \gamma_{22(i)} \\ 0.3569 \\ 0.4394 \\ 0.4387 \\ 0.4929 \\ -0.7588 \\ -0.7997 \\ -0.7782 \\ -0.7824 \\ \hline \hat{\beta}_{2(i)} \\ \hline -0.2210 \\ 0.0639 \\ -0.1580 \\ 0.0509 \\ -0.0371 \\ \end{array}$                                                                   | $\begin{array}{c} RC(\hat{\gamma}_{22(i)}) \\ 1,37 \\ 145,62 \\ 156,17 \\ 156,08 \\ 163,00 \\ 3,01 \\ 2,22 \\ 0,52 \\ 0,02 \\ \hline RC(\hat{\beta}_{2(i)}) \\ 1,24 \\ 129,29 \\ 27,64 \\ 123,31 \\ 83,01 \\ \end{array}$                   | $\begin{array}{c} \hat{\gamma}_{23(i)} \\ \hline & \hat{\gamma}_{23(i)} \\ 0,3048 \\ 0,5851 \\ 0,8744 \\ 0,6958 \\ 0,9279 \\ -0,2399 \\ -0,2497 \\ -0,2913 \\ -0,2875 \\ \hline & \hat{\beta}_{3(i)} \\ \hline & 0,5189 \\ -0,1901 \\ -0,0714 \\ -0,1847 \\ 0,0394 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} RC(\hat{\gamma}_{23(i)}) \\ 6.25 \\ 304,01 \\ 404,88 \\ 342,60 \\ 423,52 \\ 16,35 \\ 12,96 \\ 1,58 \\ 0,23 \\ \hline RC(\hat{\beta}_{3(i)}) \\ 8,83 \\ 60,12 \\ 85,03 \\ 61,25 \\ 108,26 \\ \end{array}$                                                                                    | $\begin{array}{c} \hat{\gamma}_{31(i)} \\ 0,1738 \\ 0,3879 \\ 0,2859 \\ 0,3867 \\ 0,2854 \\ 0,1399 \\ 0,1578 \\ 0,1499 \\ 0,1445 \end{array}$ | $\begin{array}{c} RC(\hat{\gamma}_{31(i)}) \\ 20,48 \\ 168,97 \\ 98,20 \\ 168,11 \\ 97,84 \\ 3,00 \\ 9,38 \\ 3,95 \\ 0,17 \end{array}$ | $\begin{array}{c} \hat{\gamma}_{32(i)} \\ 3,0132 \\ 1,9437 \\ 1,2704 \\ 1,9328 \\ 1,4196 \\ 2,5320 \\ 2,5673 \\ 2,6369 \\ 2,6237 \end{array}$            | $\begin{array}{c} RC(\hat{\gamma}_{32(i)}) \\ 14,88 \\ 25,89 \\ 51,57 \\ 26,31 \\ 45,88 \\ 3,46 \\ 2,12 \\ 0,54 \\ 0,03 \\ \end{array}$ | $\begin{array}{c} \hat{\gamma}_{33(i)} \\ 3,1389 \\ 1,6657 \\ 1,3839 \\ 1,3346 \\ 0,6827 \\ 2,9262 \\ 2,9639 \\ 3,0169 \\ 3,0038 \end{array}$ | $\begin{array}{c} RC(\hat{\gamma}_{33(i)}) \\ 4,53 \\ 44,53 \\ 53,91 \\ 55,56 \\ 77,27 \\ 2,55 \\ 1,29 \\ 0,47 \\ 0,04 \end{array}$ |
| Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)           48 (CTG)           49 (ATG)           55 (CAG)           57 (GAG)           Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)           48 (CTG)                                                                                                                   | $\begin{array}{c} \hat{\gamma}_{21(i)} \\ 0,0176 \\ 1,0963 \\ 1,3643 \\ 1,1794 \\ 1,3408 \\ -0,0586 \\ -0,0195 \\ -0,0769 \\ -0,0737 \\ \hat{\beta}_1(i) \\ \hline 0,0243 \\ 0,0017 \\ 0,0145 \\ 0,0027 \\ 0,0108 \\ -0,0205 \\ \end{array}$                               | $\begin{array}{c} RC(\hat{\gamma}_{21(i)}) \\ 124,02 \\ 1597,98 \\ 1964,24 \\ 1711,59 \\ 1931,99 \\ 19,99 \\ 73,37 \\ 5,04 \\ 0,70 \\ \hline RC(\hat{\beta}_{1(i)}) \\ \hline 5,15 \\ 107,48 \\ 162,92 \\ 111,60 \\ 146,68 \\ 11,44 \\ \end{array}$          | $\begin{array}{c} \hat{\gamma}_{22(i)} \\ \hline & 0.7930 \\ 0.3569 \\ 0.4394 \\ 0.4387 \\ 0.4929 \\ -0.7588 \\ -0.7997 \\ -0.7782 \\ -0.7824 \\ \hline & \hat{\beta}_{2(i)} \\ \hline & 0.2210 \\ 0.0639 \\ -0.1580 \\ 0.0509 \\ -0.0371 \\ -0.2453 \\ \end{array}$                                                           | $\begin{array}{c} RC(\hat{\gamma}_{22(i)}) \\ 1,37 \\ 145,62 \\ 156,17 \\ 156,08 \\ 163,00 \\ 3,01 \\ 2,22 \\ 0,52 \\ 0,02 \\ \hline RC(\hat{\beta}_{2(i)}) \\ 1,24 \\ 129,29 \\ 27,64 \\ 123,31 \\ 83,01 \\ 12,38 \\ \end{array}$          | $\begin{array}{c} \hat{\gamma}_{23(i)} \\ \hline & 0,3048 \\ 0,5851 \\ 0,8744 \\ 0,6958 \\ 0,9279 \\ -0,2399 \\ -0,2497 \\ -0,2913 \\ -0,2875 \\ \hline & \hat{\beta}_{3(i)} \\ \hline & 0,5189 \\ -0,1901 \\ -0,0714 \\ -0,1847 \\ 0,0394 \\ -0,4378 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} RC(\hat{\gamma}_{23(i)}) \\ 6.25 \\ 304,01 \\ 404,88 \\ 342,60 \\ 423,52 \\ 16,35 \\ 12,96 \\ 1,58 \\ 0.23 \\ \hline RC(\hat{\beta}_{3(i)}) \\ 8.83 \\ 60,12 \\ 85,03 \\ 61,25 \\ 108,26 \\ 8,17 \\ \end{array}$                                                                            | $\begin{array}{c} \hat{\gamma}_{31(i)} \\ 0,1738 \\ 0,3879 \\ 0,2859 \\ 0,3867 \\ 0,2854 \\ 0,1399 \\ 0,1578 \\ 0,1499 \\ 0,1445 \end{array}$ | $\begin{array}{c} RC(\hat{\gamma}_{31(i)}) \\ 20,48 \\ 168,97 \\ 98,20 \\ 168,11 \\ 97,84 \\ 3,00 \\ 9,38 \\ 3,95 \\ 0,17 \end{array}$ | $\begin{array}{c} \hat{\gamma}_{32(i)} \\ 3,0132 \\ 1,9437 \\ 1,2704 \\ 1,9328 \\ 1,4196 \\ 2,5320 \\ 2,5673 \\ 2,6369 \\ 2,6237 \end{array}$            | $\begin{array}{c} RC(\hat{\gamma}_{32(i)}) \\ 14,88 \\ 25,89 \\ 51,57 \\ 26,31 \\ 45,88 \\ 3,46 \\ 2,12 \\ 0,54 \\ 0,03 \end{array}$    | $\begin{array}{c} \hat{\gamma}_{33(i)} \\ 3,1389 \\ 1,6657 \\ 1,3839 \\ 1,3346 \\ 0,6827 \\ 2,9262 \\ 2,9639 \\ 3,0169 \\ 3,0038 \end{array}$ | $\begin{array}{c} RC(\hat{\gamma}_{33(i)}) \\ 4,53 \\ 44,53 \\ 53,91 \\ 55,56 \\ 77,27 \\ 2,55 \\ 1,29 \\ 0,47 \\ 0,04 \end{array}$ |
| Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)           48 (CTG)           49 (ATG)           55 (CAG)           57 (GAG)           Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)           48 (CTG)           99 (TGC)           44 (TGA)           48 (CTG)           49 (ATG)           49 (ATG)           49 (ATG) | $\begin{array}{r} \hat{\gamma}_{21(i)} \\ 0,0176 \\ 1,0963 \\ 1,3643 \\ 1,1794 \\ 1,3408 \\ -0,0586 \\ -0,0195 \\ -0,0769 \\ -0,0737 \\ \hline{\beta}_{1(i)} \\ -0,0243 \\ 0,0017 \\ 0,0145 \\ 0,0027 \\ 0,0108 \\ -0,0205 \\ -0,0209 \\ \end{array}$                      | $\begin{array}{c} RC(\hat{\gamma}_{21(i)}) \\ 124,02 \\ 1597,98 \\ 1964,24 \\ 1711,59 \\ 1931,99 \\ 19,33,7 \\ 5,04 \\ 0,70 \\ \hline RC(\hat{\beta}_{1(i)}) \\ \hline 5,15 \\ 107,48 \\ 162,92 \\ 111,60 \\ 146,68 \\ 11,44 \\ 9,79 \\ \end{array}$         | $\begin{array}{c} \hat{\gamma}_{22(i)} \\ \hline 0.7930 \\ 0.3569 \\ 0.4394 \\ 0.4387 \\ 0.4929 \\ -0.7588 \\ -0.7997 \\ -0.7782 \\ \hline \beta_{2(i)} \\ \hline 0.0639 \\ -0.1580 \\ 0.0509 \\ -0.0371 \\ -0.2443 \\ -0.2443 \\ -0.2447 \\ \end{array}$                                                                      | $\begin{array}{c} RC(\hat{\gamma}_{22(i)}) \\ 1,37 \\ 145,62 \\ 156,17 \\ 156,08 \\ 163,00 \\ 3,01 \\ 2,22 \\ 0,52 \\ 0,02 \\ \hline RC(\hat{\beta}_{2(i)}) \\ 1,24 \\ 129,29 \\ 27,64 \\ 123,31 \\ 83,01 \\ 12,38 \\ 12,10 \\ \end{array}$ | $\begin{array}{r} \hat{\gamma}_{23(i)} \\ \hline{\gamma}_{23(i)} \\ 0,3048 \\ 0,5851 \\ 0,8744 \\ 0,6958 \\ 0,9279 \\ -0,2399 \\ -0,2497 \\ -0,2913 \\ -0,2875 \\ \hline{\beta}_{3(i)} \\ \hline{\rho}_{3(i)} \\ -0,5189 \\ -0,1901 \\ -0,0714 \\ -0,1847 \\ 0,0394 \\ -0,4378 \\ -0,4409 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} RC(\hat{\gamma}_{23(i)}) \\ \hline RC(\hat{\gamma}_{23(i)}) \\ 6,25 \\ 304,01 \\ 404,88 \\ 342,60 \\ 423,52 \\ 16,35 \\ 12,96 \\ 1,58 \\ 0,23 \\ \hline RC(\hat{\beta}_{3(i)}) \\ \hline 8,83 \\ 60,12 \\ 85,03 \\ 61,25 \\ 108,26 \\ 8,17 \\ 7,51 \\ \hline \end{array}$                   | $\begin{array}{c}\hat{7}31(i)\\0,1738\\0,3879\\0,2859\\0,2859\\0,2854\\0,1399\\0,1578\\0,1499\\0,1445\end{array}$                             | $\begin{array}{c} RC(\hat{\gamma}_{31(i)}) \\ 20,48 \\ 168,97 \\ 98,20 \\ 168,11 \\ 97,84 \\ 3,00 \\ 9,38 \\ 3,95 \\ 0,17 \end{array}$ | $\begin{array}{r} \hat{\gamma}_{32(i)}\\ 3,0132\\ 1,9437\\ 1,2704\\ 1,9328\\ 1,4196\\ 2,5320\\ 2,5673\\ 2,6369\\ 2,6237\\ \end{array}$                   | $\begin{array}{c} RC(\hat{\gamma}_{32(i)}) \\ 14,88 \\ 25,89 \\ 51,57 \\ 26,31 \\ 45,88 \\ 3,46 \\ 2,12 \\ 0,54 \\ 0,03 \end{array}$    | $\begin{array}{c} \hat{\gamma}_{33(i)} \\ 3,1389 \\ 1,6657 \\ 1,3839 \\ 1,3346 \\ 0,6827 \\ 2,9262 \\ 2,9639 \\ 3,0169 \\ 3,0038 \end{array}$ | $\begin{array}{c} RC(\hat{\gamma}_{33(i)}) \\ 4,53 \\ 44,53 \\ 53,91 \\ 55,56 \\ 77,27 \\ 2,55 \\ 1,29 \\ 0,47 \\ 0,04 \end{array}$ |
| Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)           48 (CTG)           49 (ATG)           55 (CAG)           57 (GAG)           Obs. Retirada           10 (CAT)           13 (TGT)           25 (TAC)           29 (TGC)           44 (TGA)           48 (CTG)           49 (ATG)           55 (CAG)                                                                             | $\begin{array}{r} \hat{\gamma}_{21(i)} \\ 0,0176 \\ 1,0963 \\ 1,3643 \\ 1,1794 \\ 1,3408 \\ -0,0586 \\ -0,0195 \\ -0,0769 \\ -0,0737 \\ \hat{\beta}_{1(i)} \\ \hline \beta_{1(i)} \\ 0,0017 \\ 0,0145 \\ 0,0027 \\ 0,0108 \\ -0,0205 \\ -0,0209 \\ -0,0235 \\ \end{array}$ | $\begin{array}{c} RC(\hat{\gamma}_{21(i)}) \\ 124,02 \\ 1597,98 \\ 1964,24 \\ 1711,59 \\ 1931,99 \\ 19,99 \\ 73,37 \\ 5,04 \\ 0,70 \\ \hline RC(\hat{\beta}_{1(i)}) \\ 5,15 \\ 107,48 \\ 162,92 \\ 111,60 \\ 146,68 \\ 11,44 \\ 9,79 \\ 1,85 \\ \end{array}$ | $\begin{array}{c} \hat{\gamma}_{22(i)} \\ \hline{\gamma}_{22(i)} \\ 0.7930 \\ 0.3569 \\ 0.4394 \\ 0.4387 \\ 0.4929 \\ -0.7588 \\ -0.7997 \\ -0.7782 \\ -0.7824 \\ \hline{\beta}_{2(i)} \\ \hline{\beta}_{2(i)} \\ 0.0639 \\ -0.1580 \\ 0.0639 \\ -0.1580 \\ 0.0509 \\ -0.0371 \\ -0.2453 \\ -0.2447 \\ -0.2105 \\ \end{array}$ | $\begin{array}{c} RC(\hat{\gamma}_{22(i)}) \\ 1,37 \\ 145,62 \\ 156,17 \\ 156,00 \\ 3,01 \\ 2,22 \\ 0,52 \\ 0,02 \\ \hline RC(\hat{\beta}_{2(i)}) \\ 1,24 \\ 129,29 \\ 27,64 \\ 123,31 \\ 83,01 \\ 12,38 \\ 12,10 \\ 3,57 \\ \end{array}$   | $\begin{array}{c} \hat{\gamma}_{23(i)} \\ \hline{\gamma}_{23(i)} \\ \hline{\gamma}_{23(i)} \\ 0,8744 \\ 0,6958 \\ 0,9279 \\ -0,2399 \\ -0,2497 \\ -0,2913 \\ -0,2875 \\ \hline{\beta}_{3(i)} \\ \hline{\beta}_{3(i)} \\ \hline{\gamma}_{3(i)} \\ \hline{\gamma}_{3(i)} \\ -0,5189 \\ -0,1901 \\ -0,0714 \\ -0,1847 \\ 0,0394 \\ -0,4378 \\ -0,4409 \\ -0,4859 \\ \hline{\gamma}_{3(i)} \\ \hline \hline \hline \hline \gamma_{3(i)} \\ \hline $ | $\begin{array}{c} RC(\hat{\gamma}_{23(i)}) \\ \hline RC(\hat{\gamma}_{23(i)}) \\ 6.25 \\ 304,01 \\ 404,88 \\ 342,60 \\ 423,52 \\ 16,35 \\ 12,96 \\ 1.58 \\ 0.23 \\ \hline RC(\hat{\beta}_{3(i)}) \\ \hline 8.83 \\ 60,12 \\ 8.63 \\ 60,12 \\ 85,03 \\ 61,25 \\ 108,26 \\ 8,17 \\ 7,51 \\ 1,93 \\ \end{array}$ | $\begin{array}{c} \hat{7}31(i)\\ 0,1738\\ 0,3879\\ 0,2859\\ 0,3867\\ 0,2854\\ 0,1399\\ 0,1578\\ 0,1499\\ 0,1445\\ \end{array}$                | $\begin{array}{c} RC(\hat{\gamma}_{31(i)}) \\ 20,48 \\ 168,97 \\ 98,20 \\ 168,11 \\ 97,84 \\ 3,00 \\ 9,38 \\ 3,95 \\ 0,17 \end{array}$ | $\frac{\hat{\gamma}_{32}(i)}{3,0132}$ 1,9437 1,2704 1,9328 1,4196 2,5320 2,5673 2,6369 2,6237                                                            | $\begin{array}{c} RC(\hat{\gamma}_{32(i)}) \\ 14,88 \\ 25,89 \\ 51,57 \\ 26,31 \\ 45,88 \\ 3,46 \\ 2,12 \\ 0,54 \\ 0,03 \end{array}$    | $\frac{\hat{\gamma}_{33}(i)}{3,1389}$ 1,6657 1,3839 1,3346 0,6827 2,9262 2,9639 3,0169 3,0038                                                 | $\begin{array}{c} RC(\hat{\gamma}_{33(i)}) \\ 4,53 \\ 44,53 \\ 53,91 \\ 55,56 \\ 77,27 \\ 2,55 \\ 1,29 \\ 0,47 \\ 0,04 \end{array}$ |

Tabela 6.4: Estimativas dos Parâmetros Retirando Observações Discrepantes do Modelo Aditivo

## Capítulo 7

## **Considerações Finais**

A partir da aplicação dos modelos propostos, uma primeira constatação feita é de que ao modelarmos as bases nitrogenadas como dados binários, classificando-as como *purinas* ou *piramidinas*, há uma grande perda de informação, quando comparados aos modelos com respostas multinomiais, em que as bases são modeladas como Timina, Citosina, Adenina e Guanina. As Figuras 5.1, 5.2, 5.3 e 5.4, evidenciam essa perda de informação, uma vez que é visível nos gráficos um melhor ajuste pelos modelos multinomiais.

Em uma primeira análise dos resultados obtidos nos modelos multinomiais, não apenas os valores do AIC, BIC e SQE indicam que o modelo aditivo é mais adequado para os dados de DNA, como também a validação cruzada é consistente com esses resultados, apresentando menor QME e menor variação da SQE.

Há no entanto, alguns pontos interessantes a serem notados sobre esses modelos. O primeiro é que os valores do AIC e BIC do modelo de semi-locação e transição equivalem a 1,0044 e 1,0050 vezes os valores do modelo aditivo, respectivamente. Portanto, proporcionalmente, os valores dessas medidas, obtidos para o melhor modelo dentre os baseados na representação de Bahadur não são muito maiores do que os obtidos para o melhor modelo regressivo.

Outro ponto importante no estudo de modelos para seqüências de DNA, é o de que a suposição de independência entre as três bases que compõem um códon não é verdadeira, como mostraram as medidas de ajuste para os modelos sob essa suposição. Os modelos independentes sempre obtiveram piores ajustes tanto quando modelados os dados com respostas binárias, quanto com respostas multinomiais. Quando consideramos K posições dependentes, o número de parâmetros de dependência de cada modelo aumenta diferentemente, como mostra a Tabela 7.1. O total de interceptos será sempre 3K para todos os modelos, assim como o total de parâmetros para as covariáveis será sempre 3, nesse caso.

Tabela 7.1: Número de Parâmetros dos Modelos Multinomiais Multivariados para K Posições Dependentes

| Modelo                   | Total de Parâmetros de Dependência |
|--------------------------|------------------------------------|
| Independente             | 0                                  |
| Ig. Preditivo            | 0 para $K=1;3$ para $K>1$          |
| Markov $1^a$ Ordem       | 3(K-1)                             |
| Aditivo                  | $3 \times K(K-1)/2$                |
| Locação                  | K(K - 1)/2                         |
| Transição                | 0 para $K=1;9$ para $K>1$          |
| Semi-Locação e Transição | 9(K-1)                             |
| Locação e Transição      | $9 \times K(K-1)/2$                |

A Tabela 7.2 apresenta o total de parâmetros de dependência para todos os modelos, conforme aumenta-se o número de posições dependentes, lembrando que cada seqüência do gene NADH4 possui 459 códons efetivos, há portanto 1377 posições a serem modeladas em cada seqüência.

Pela Tabela 7.2, vê-se que o modelo aditivo terá 2842128 parâmetros de dependência quando toda a seqüência for modelada, 229,5 vezes mais parâmetros do que o modelo de semi-locação e transição, que terá 12384. Se levado em consideração que é muito provável que em modelos para toda a seqüência, os valores das log-verossimilhanças dos modelos sejam muito próximos, a penalização do número de parâmetros para o cálculo

| Madala              |   |   |    | Т  | otal o | de Pos | sições | Dep | endentes | 5 |         |
|---------------------|---|---|----|----|--------|--------|--------|-----|----------|---|---------|
|                     | 1 | 2 | 3  | 4  | 5      | 6      | 7      |     | 100      |   | 1377    |
| Independente        | 0 | 0 | 0  | 0  | 0      | 0      | 0      |     | 0        |   | 0       |
| Ig. Preditivo       | 0 | 3 | 3  | 3  | 3      | 3      | 3      |     | 3        |   | 3       |
| Markov $1^a$ Ordem  | 0 | 3 | 6  | 9  | 12     | 15     | 18     |     | 297      |   | 4128    |
| Aditivo             | 0 | 3 | 9  | 18 | 30     | 45     | 63     |     | 14850    |   | 2842128 |
| Locação             | 0 | 1 | 3  | 6  | 10     | 15     | 21     |     | 4950     |   | 947376  |
| Transição           | 0 | 9 | 9  | 9  | 9      | 9      | 9      |     | 9        |   | 9       |
| Semi-Loc. e Trans.  | 0 | 9 | 18 | 27 | 36     | 45     | 54     |     | 891      |   | 12384   |
| Locação e Transição | 0 | 9 | 27 | 54 | 90     | 135    | 189    |     | 44550    |   | 8526384 |

Tabela 7.2: Total de Parâmetros de Dependência dos Modelos Multinomiais Multivariados Conforme o Número K de Posições Dependentes Aumenta

de medidas como o AIC e BIC no modelo aditivo será muito maior do que no modelo de semi-locação e transio.

E interessante discutir também o porquê de não se fazer o uso da estrutura markoviana de primeira ordem, uma vez que este modelo também possui menor AIC, BIC e SQE que o modelo de semi-locação e transição. Para 1377 posições dependentes o modelo markoviano de primeira ordem possui 4128 parâmetros de dependência. A diferença desse modelo é exatamente o fato de ser uma estrutura markoviana de primeira ordem, ou seja, não inclui a informação referente a toda seqüência anterior à posição que estiver sendo modelada, como fazem os modelos aditivo e de semi-locação e transição, mas apenas a posição imediatamente anterior.

Assim, para a modelagem da probabilidade dos códons, o modelo aditivo possui melhor ajuste. No entanto, ao aumentar a estrutura de dependência para além dos códons, por exemplo para todo o gene, conforme é mostrado na Tabela 7.2, o número de parâmetros do modelo aditivo cresce muito mais que no modelo de semi-locação e transição, e devido ao fato do AIC e BIC do modelo baseado na representação de Bahadur não serem proporcionalmente muito maiores do que os do modelo regressivo, talvez o modelo de semi-locação e transição seja mais adequado e apresente melhor ajuste, uma vez que seu número de parâmetros será muito menor.

É importante ressaltar que neste trabalho os códons foram considerados independentes entre si, assim como em Bonney et al. (1994), o que provavelmente não seja uma verdade. A modelagem dos códons sob a suposição de independência facilitou o desenvolvimento e aplicação de todos os modelos aqui propostos e estudados. No entanto, é fundamental que em trabalhos futuros, esses modelos sejam expandidos não mais para a modelagem de freqüências de códons em um gene, mas sim para a freqüência das bases nitrogenadas em cada posição do gene. É justamente neste caso que o modelo baseado na representação de Bahadur de semi-locação e transição se destaca. Quando tratando apenas de códons, o modelo aditivo possui um menor número de parâmetros, porém quando expandidos os modelos para toda a seqüência de um gene, o número de parâmetros do modelo de semi-locação e transição é deveras inferior, como mostrado na Tabela 7.2.

Outra questão a ser explorada em trabalhos futuros é a questão das técnicas computacionais para estimação dos parâmetros dos modelos. Neste trabalho, por serem estudados apenas os códons, considerados independentes entre si, o banco de dados com 30 seqüências do gene NADH4 possui um total de 13770 códons, sendo portanto, o tamanho da amostra maior do que o número de parâmetros de todos os modelos propostos. Quando expandidos para toda a seqüência, os modelos apresentarão um número muito grande de parâmetros, o que possivelmente causará dificuldades computacionais. É necessário também em modelos envolvendo a estrutura de dependência de todo um gene, a busca de novas covariáveis, uma vez que as aqui apresentadas são intrinsicamente relacionadas aos códons e não ao gene como um todo.

### **Referências Bibliográficas**

- Akaike, H. (1973). Information Theory and an Extension of the Maximum Likelihood Principle Second International Symposium of Information Theory B.N. Petrov and F. Csaki (eds) Budapest, Akademia Kiado 267–281
- Alberts, B.; Johnson, A.; Lewis J.; Raff, M.; Roberts, K. and Walter, P. (2002). Molecular Biology of the Cell. Garland Science, Second Edition
- Anderson, S.; Bankier, A. and Barrell, B. (1981). Sequence and Organization of the Human Mitochondrial Genome. *Nature* 290 457–465
- Andrews, R.; Kubacka, I.; Chinnery, P.; Lightowlers, R.; Turnbull, D. and Howell, N. (1999). Reanalysis and Revision of the Cambridge Reference Sequence for Human Mitochondrial DNA. *Nature Genet.* 23 147
- Agresti, A. (2002). Categorical Data Analysis. Wiley Series in Probability and Mathematical Statistics, Second Edition. Applied Probability and Statistics, Hardcover
- Bahadur, R.R. (1961). A Representation of the Joint Distribution of Responses to n Dichotomous Items. In studies in Item Analysis and Prediction 158–176
- Bonney, G.E. (1986). Regressive Logistic Models for Familial Disease and Other Binary Traits. *Biometrics* 42 611–625
- Bonney, G.E. (1987). Logistic Regression for Dependent Binary Observations. *Biomet*rics **43** 951–973

- Bonney, G.E.; Dunston, G. and Wilson, J. (1989). The Use of Regressive Logistic Models for Ordered and Unordered Polytomous Traits: Application to Affective Disorders. *Genetics Epidemiology* 6 211–215
- Bonney, G.E.; Amfoh, K. and Shaw, R. (1994). The Use of Logistic Models for the Analysis of Codon Frequencies of DNA Sequences in Terms of Explanatory Variables. *Biometrics* 50 1054–1063
- Casella, R. and Berger, G.L. (2002). Statistical Inference. Duxbury Advanced Series
- Cox, D.R. (1972). The Analysis of Multivariate Binary Data. Journal of the Royal Statistical Society. Series C (Applied Statistics) Vol. 21, No. 2 113–120
- Fitzmaurice, G.M.; Laird, N.M. and Rotnitzky, A.G. (1993). Regression Models for Discrete Longitudinal Responses. *Statistical Science* Vol. 8, No. 3 284–299
- Fitzmaurice, G.M. (1995). A Caveat Concerning Independence Estimating Equations with Multivariate Binary Data. *Biometrics* Vol. 51, No. 1 309–317
- Grandin, L.C. (2006). Aplicações de Modelos Logísticos Regressivos em Biologia Molecular. Dissertação de Mestrado Apresentada junto ao Departamento de Estatística, da Universidade Estadual de Campinas
- Granthan, R. (1974). Amino Acid Difference Formula to Help Explain Protein Evolution. Science 185 862–864
- Hoffman, K.M. and Kunze, R. (1971). Linear Algebra. Prentice Hall, Second Edition
- Hosmer, D.W. and Lemeshow, S. (2000). Applied Logistic Regression. Wiley Series in Probability and Statistics
- Lesaffre, E. and Albert, A. (1989). Multiple-group Logistic Regression Diagnostics. Applied Statistics Vol. 38, No. 3 425–440

- National Center for Biotechnology Information NCBI (2010), http://www.ncbi.nlm. nih.gov/
- Nelder, J.A. and Wedderburn, R.W.M. (1972). Generalized Linear Models. Journal of the Royal Statistical Society Series A (General) Vol. 135, No. 3 370–384
- Nyangoma, S.O; Fung, W-K. and Jansen, R.C. (2006). Identifying Influential Multinomial Observations by Perturbation. *Computational Statistics & Data Analysis* bf 50 2799–2821
- Parzen, M.; Ghosh, S.; Lipsitz, S.R.; Sinha, D.; Fitzmaurice, G.M.; Ibrahim, J.G. and Mallick, B.K. (2009). A Generalized Linear Mixed Model for Longitudinal Binary Data with a Marginal Logit Link Function. *Conditionally accepted for publication in* the Journal of the Royal Statistical Society, Series B
- Paula, G. (2004). Modelos de Regressão com Apoio Computacional. Notas de aula, Universidade de São Paulo http://www.ime.usp.br/~giapaula
- Pinheiro, H.P.; Seillier-Moiseiwitsch, F. and Sen, P.K. (1999). Modeling the Mutation Process in the HIV Genome. Research Report #13/1999. University of Campinas, Brazil
- Pregibon, D. (1981). Logistic Regression Diagnostics. The Annals of Statistics bf Vol. 9, No. 4 705–724
- Raftery, A.E. (1986). Choosing Models for Cross-Classification. American Sociological Review Vol. 51, No. 1 145–146
- Reilly, C. (2009). Statistics in Human Genetic and Molecular Biology. Chapman & Hall/CRC Texts in Statistical Science Series
- The R Project for Statistical Computing (2010), http://www.r-project.org/
- Seber, G.A.F. and Nyangoma, S.O. (2000). Residuals for Multinomial Models. Biometrika Vol. 87, No. 1 183–191

- Stefanescu, C. and Turnbull, B.W. (2003). Likelihood Inference for Exchangeable Binary Data with Varying Cluster Sizes. *Biometrics* Vol. 59, No. 1 18–24
- Watson, J.D. and Crick, F (1953). Molecular Structure of Nucleic Acids. *Nature* **171** 737–738
- Zhao, L.P. and Prentice, R.L (1990). Correlated Binary Regression Using a Quadratic Exponential Model. *Biometrika* Vol. 77, No. 3 642–648

## Apêndice 1

#### Código para o Software R

O código apresentado a seguir é referente à log-verossimilhança dos modelos multinomiais regressivos independente e aditivo, e do segundo passo do modelo baseado na representação de Bahadur de semi-locação & transição. Os demais códigos e o banco de dados utilizados nas implementações e análises dos modelos, por serem muito extensos, não estão incluídos nesta dissertação, devido ao espaço que ocupariam. No entanto, podem ser solicitados às autoras através dos emails bia.cdc@gmail.com ou hildete@ime.unicamp.br.

```
## REGRESSIVE - INDEPENDENT ##
loglike1 <- function(u)</pre>
ſ
a11 <- u[1]
a12 <- u[2]
a13 <- u[3]
a21 <- u[4]
a22 <- u[5]
a23 <- u[6]
a31 <- u[7]
a32 <- u[8]
a33 <- u[9]
b1 <- u[10]
b2 <- u[11]
b3 <- u[12]
t11 <- a11 + b1*aarisk + b2*avdist + b3*tscore
t12 <- a12 + b1*aarisk + b2*avdist + b3*tscore
t13 <- a13 + b1*aarisk + b2*avdist + b3*tscore
t21 <- a21 + b1*aarisk + b2*avdist + b3*tscore
t22 <- a22 + b1*aarisk + b2*avdist + b3*tscore
t23 <- a23 + b1*aarisk + b2*avdist + b3*tscore
t31 <- a31 + b1*aarisk + b2*avdist + b3*tscore
t32 <- a32 + b1*aarisk + b2*avdist + b3*tscore
t33 <- a33 + b1*aarisk + b2*avdist + b3*tscore
p1 <- exp(z11*t11 + z12*t12 + z13*t13)/(1 + exp(t11) + exp(t12) + exp(t13))
```

```
p2 <- exp(z21*t21 + z22*t22 + z23*t23)/(1 + exp(t21) + exp(t22) + exp(t23))
p3 <- exp(z31*t31 + z32*t32 + z33*t33)/(1 + exp(t31) + exp(t32) + exp(t33))
pc <- p1*p2*p3
1 <- n*(log(pc) - log(sum(pc)))</pre>
loglike <- sum(1)
return(-loglike) # R's optim() routines minimizes objective functions
}
grad1 <- function(u)</pre>
ſ
a11 <- u[1]
a12 <- u[2]
a13 <- u[3]
a21 <- u[4]
a22 <- u[5]
a23 <- u[6]
a31 <- u[7]
a32 <- u[8]
a33 <- u[9]
b1 <- u[10]
b2 <- u[11]
b3 <- u[12]
t11 <- a11 + b1*aarisk + b2*avdist + b3*tscore
t12 <- a12 + b1*aarisk + b2*avdist + b3*tscore
t13 <- a13 + b1*aarisk + b2*avdist + b3*tscore
t21 <- a21 + b1*aarisk + b2*avdist + b3*tscore
t22 <- a22 + b1*aarisk + b2*avdist + b3*tscore
t23 <- a23 + b1*aarisk + b2*avdist + b3*tscore
t31 <- a31 + b1*aarisk + b2*avdist + b3*tscore
t32 <- a32 + b1*aarisk + b2*avdist + b3*tscore
t33 <- a33 + b1*aarisk + b2*avdist + b3*tscore
p1 <- exp(z11*t11 + z12*t12 + z13*t13)/(1 + exp(t11) + exp(t12) + exp(t13))
p2 <- exp(z21*t21 + z22*t22 + z23*t23)/(1 + exp(t21) + exp(t22) + exp(t23))
p3 <- exp(z31*t31 + z32*t32 + z33*t33)/(1 + exp(t31) + exp(t32) + exp(t33))
pc <- p1*p2*p3
dlp_a11 <- z11 - exp(t11)/(1 + exp(t11) + exp(t12) + exp(t13))
dlp_a12 <- z12 - exp(t12)/(1 + exp(t11) + exp(t12) + exp(t13))
dlp_a13 <- z13 - exp(t13)/(1 + exp(t11) + exp(t12) + exp(t13))
dlp_a21 <- z21 - exp(t21)/(1 + exp(t21) + exp(t22) + exp(t23))
dlp_a22 <- z22 - exp(t22)/(1 + exp(t21) + exp(t22) + exp(t23))
dlp_a23 <- z23 - exp(t23)/(1 + exp(t21) + exp(t22) + exp(t23))
dlp_a31 <- z31 - exp(t31)/(1 + exp(t31) + exp(t32) + exp(t33))
dlp_a32 <- z32 - exp(t32)/(1 + exp(t31) + exp(t32) + exp(t33))
dlp_a33 <- z33 - exp(t33)/(1 + exp(t31) + exp(t32) + exp(t33))
dlp_b1 <- (dlp_a11 + dlp_a12 + dlp_a13 + dlp_a21 + dlp_a22 + dlp_a23 + dlp_a31 + dlp_a32 + dlp_a33)*aarisk
dlp_b2 <- (dlp_a11 + dlp_a12 + dlp_a13 + dlp_a21 + dlp_a22 + dlp_a23 + dlp_a31 + dlp_a32 + dlp_a33)*avdist
dlp_b3 <- (dlp_a11 + dlp_a12 + dlp_a13 + dlp_a21 + dlp_a22 + dlp_a23 + dlp_a31 + dlp_a32 + dlp_a33)*tscore
dlsum_a11 <- (1/sum(pc))*sum(pc*dlp_a11)</pre>
dlsum_a12 <- (1/sum(pc))*sum(pc*dlp_a12)</pre>
dlsum_a13 <- (1/sum(pc))*sum(pc*dlp_a13)
dlsum_a21 <- (1/sum(pc))*sum(pc*dlp_a21)</pre>
dlsum_a22 <- (1/sum(pc))*sum(pc*dlp_a22)</pre>
dlsum_a23 <- (1/sum(pc))*sum(pc*dlp_a23)
dlsum_a31 <- (1/sum(pc))*sum(pc*dlp_a31)
dlsum_a32 <- (1/sum(pc))*sum(pc*dlp_a32)
dlsum_a33 <- (1/sum(pc))*sum(pc*dlp_a33)</pre>
dlsum_b1 <- (1/sum(pc))*sum(pc*dlp_b1)
dlsum_b2 <- (1/sum(pc))*sum(pc*dlp_b2)</pre>
dlsum_b3 <- (1/sum(pc))*sum(pc*dlp_b3)</pre>
da11 <- n*(dlp_a11 - dlsum_a11)
```

```
da12 <- n*(dlp_a12 - dlsum_a12)
da13 <- n*(dlp_a13 - dlsum_a13)
da21 <- n*(dlp_a21 - dlsum_a21)
da22 <- n*(dlp_a22 - dlsum_a22)
da23 <- n*(dlp_a23 - dlsum_a23)
da31 <- n*(dlp_a31 - dlsum_a31)
da32 <- n*(dlp_a32 - dlsum_a32)
da33 <- n*(dlp_a33 - dlsum_a33)
db1 <- n*(dlp_b1 - dlsum_b1)
db2 <- n*(dlp_b2 - dlsum_b2)
db3 <- n*(dlp_b3 - dlsum_b3)
grad <- c(sum(da11),sum(da12),sum(da13),sum(da21),sum(da22),sum(da23),sum(da33),sum(da33),sum(da33),sum(db1),sum(db2),sum(db2),sum(db3))
return(-grad)
}
## REGRESSIVE - ADDITIVE ##
loglike4 <- function(u)</pre>
{
a11 <- u[1]
a12 <- u[2]
a13 <- u[3]
a21 <- u[4]
a22 <- u[5]
a23 <- u[6]
a31 <- u[7]
a32 <- u[8]
a33 <- u[9]
g11 <- u[10]
g12 <- u[11]
g13 <- u[12]
g21 <- u[13]
g22 <- u[14]
g23 <- u[15]
g31 <- u[16]
g32 <- u[17]
g33 <- u[18]
b1 <- u[19]
b2 <- u[20]
b3 <- u[21]
t11 <- a11 + b1*aarisk + b2*avdist + b3*tscore
t12 <- a12 + b1*aarisk + b2*avdist + b3*tscore
t13 <- a13 + b1*aarisk + b2*avdist + b3*tscore
t21 <- a21 + g11*z11 + g12*z12 + g13*z13 + b1*aarisk + b2*avdist + b3*tscore
t22 <- a22 + g11*z11 + g12*z12 + g13*z13 + b1*aarisk + b2*avdist + b3*tscore
t23 <- a23 + g11*z11 + g12*z12 + g13*z13 + b1*aarisk + b2*avdist + b3*tscore
t31 <- a31 + g21*z11 + g22*z12 + g23*z13 + g31*z21 + g32*z22 + g33*z23 + b1*aarisk + b2*avdist + b3*tscore
\texttt{t32} \leftarrow \texttt{a32} + \texttt{g21*z11} + \texttt{g22*z12} + \texttt{g23*z13} + \texttt{g31*z21} + \texttt{g32*z22} + \texttt{g33*z23} + \texttt{b1*aarisk} + \texttt{b2*avdist} + \texttt{b3*tscore}
\texttt{t33} <-\texttt{ a33} + \texttt{g21*z11} + \texttt{g22*z12} + \texttt{g23*z13} + \texttt{g31*z21} + \texttt{g32*z22} + \texttt{g33*z23} + \texttt{b1*aarisk} + \texttt{b2*avdist} + \texttt{b3*tscore}
p1 <- exp(z11*t11 + z12*t12 + z13*t13)/(1 + exp(t11) + exp(t12) + exp(t13))
p2 <- exp(z21*t21 + z22*t22 + z23*t23)/(1 + exp(t21) + exp(t22) + exp(t23))
p3 <- exp(z31*t31 + z32*t32 + z33*t33)/(1 + exp(t31) + exp(t32) + exp(t33))
pc <- p1*p2*p3
1 <- n*(log(pc) - log(sum(pc)))</pre>
loglike <- sum(1)
return(-loglike) # R's optim() routines minimizes objective functions
}
grad4 <- function(u)
{
a11 <- u[1]
a12 <- u[2]
```

```
a13 <- u[3]
a21 <- u[4]
a22 <- u[5]
a23 <- u[6]
a31 <- u[7]
a32 <- u[8]
a33 <- u[9]
g11 <- u[10]
g12 <- u[11]
g13 <- u[12]
g21 <- u[13]
g22 <- u[14]
g23 <- u[15]
g31 <- u[16]
g32 <- u[17]
g33 <- u[18]
b1 <- u[19]
b2 <- u[20]
b3 <- u[21]
t11 <- a11 + b1*aarisk + b2*avdist + b3*tscore
t12 <- a12 + b1*aarisk + b2*avdist + b3*tscore
t13 <- a13 + b1*aarisk + b2*avdist + b3*tscore
t21 <- a21 + g11*z11 + g12*z12 + g13*z13 + b1*aarisk + b2*avdist + b3*tscore
t22 <- a22 + g11*z11 + g12*z12 + g13*z13 + b1*aarisk + b2*avdist + b3*tscore
t23 <- a23 + g11*z11 + g12*z12 + g13*z13 + b1*aarisk + b2*avdist + b3*tscore
t31 <- a31 + g21*z11 + g22*z12 + g23*z13 + g31*z21 + g32*z22 + g33*z23 + b1*aarisk + b2*avdist + b3*tscore
t32 <- a32 + g21*z11 + g22*z12 + g23*z13 + g31*z21 + g32*z22 + g33*z23 + b1*aarisk + b2*avdist + b3*tscore
t33 <- a33 + g21*z11 + g22*z12 + g23*z13 + g31*z21 + g32*z22 + g33*z23 + b1*aarisk + b2*avdist + b3*tscore
p1 <- exp(z11*t11 + z12*t12 + z13*t13)/(1 + exp(t11) + exp(t12) + exp(t13))
p2 <- exp(z21*t21 + z22*t22 + z23*t23)/(1 + exp(t21) + exp(t22) + exp(t23))
p3 <- exp(z31*t31 + z32*t32 + z33*t33)/(1 + exp(t31) + exp(t32) + exp(t33))
pc <- p1*p2*p3
dlp_a11 <- z11 - exp(t11)/(1 + exp(t11) + exp(t12) + exp(t13))
dlp_a12 <- z12 - exp(t12)/(1 + exp(t11) + exp(t12) + exp(t13))
dlp_a13 <- z13 - exp(t13)/(1 + exp(t11) + exp(t12) + exp(t13))
dlp_a21 <- z21 - exp(t21)/(1 + exp(t21) + exp(t22) + exp(t23))
dlp_a22 <- z22 - exp(t22)/(1 + exp(t21) + exp(t22) + exp(t23))
dlp_a23 <- z23 - exp(t23)/(1 + exp(t21) + exp(t22) + exp(t23))
dlp_a31 <- z31 - exp(t31)/(1 + exp(t31) + exp(t32) + exp(t33))
dlp_a32 <- z32 - exp(t32)/(1 + exp(t31) + exp(t32) + exp(t33))
dlp_a33 <- z33 - exp(t33)/(1 + exp(t31) + exp(t32) + exp(t33))
dlp_g11 <- (dlp_a21 + dlp_a22 + dlp_a23)*z11
dlp_g12 <- (dlp_a21 + dlp_a22 + dlp_a23)*z12
dlp_g13 <- (dlp_a21 + dlp_a22 + dlp_a23)*z13
dlp_g21 <- (dlp_a31 + dlp_a32 + dlp_a33)*z11
dlp_g22 <- (dlp_a31 + dlp_a32 + dlp_a33)*z12
dlp_g23 <- (dlp_a31 + dlp_a32 + dlp_a33)*z13
dlp_g31 <- (dlp_a31 + dlp_a32 + dlp_a33)*z21
dlp_g32 <- (dlp_a31 + dlp_a32 + dlp_a33)*z22
dlp_g33 <- (dlp_a31 + dlp_a32 + dlp_a33)*z23
dlp_b1 <- (dlp_a11 + dlp_a12 + dlp_a13 + dlp_a21 + dlp_a22 + dlp_a23 + dlp_a31 + dlp_a32 + dlp_a33)*aarisk
dlp_b2 <- (dlp_a11 + dlp_a12 + dlp_a13 + dlp_a21 + dlp_a22 + dlp_a23 + dlp_a31 + dlp_a32 + dlp_a33)*avdist
dlp_b3 <- (dlp_a11 + dlp_a12 + dlp_a13 + dlp_a21 + dlp_a22 + dlp_a23 + dlp_a31 + dlp_a32 + dlp_a33)*tscore
dlsum_a11 <- (1/sum(pc))*sum(pc*dlp_a11)</pre>
dlsum_a12 <- (1/sum(pc))*sum(pc*dlp_a12)
dlsum_a13 <- (1/sum(pc))*sum(pc*dlp_a13)
dlsum_a21 <- (1/sum(pc))*sum(pc*dlp_a21)
dlsum_a22 <- (1/sum(pc))*sum(pc*dlp_a22)
dlsum_a23 <- (1/sum(pc))*sum(pc*dlp_a23)</pre>
```

dlsum\_a31 <- (1/sum(pc))\*sum(pc\*dlp\_a31)</pre> dlsum\_a32 <- (1/sum(pc))\*sum(pc\*dlp\_a32) dlsum\_a33 <- (1/sum(pc))\*sum(pc\*dlp\_a33) dlsum\_g11 <- (1/sum(pc))\*sum(pc\*dlp\_g11)</pre> dlsum\_g12 <- (1/sum(pc))\*sum(pc\*dlp\_g12)</pre> dlsum\_g13 <- (1/sum(pc))\*sum(pc\*dlp\_g13)</pre> dlsum\_g21 <- (1/sum(pc))\*sum(pc\*dlp\_g21)</pre> dlsum\_g22 <- (1/sum(pc))\*sum(pc\*dlp\_g22)</pre> dlsum\_g23 <- (1/sum(pc))\*sum(pc\*dlp\_g23)</pre> dlsum\_g31 <- (1/sum(pc))\*sum(pc\*dlp\_g31)</pre> dlsum\_g32 <- (1/sum(pc))\*sum(pc\*dlp\_g32)</pre> dlsum\_g33 <- (1/sum(pc))\*sum(pc\*dlp\_g33)</pre> dlsum\_b1 <- (1/sum(pc))\*sum(pc\*dlp\_b1) dlsum\_b2 <- (1/sum(pc))\*sum(pc\*dlp\_b2)</pre> dlsum\_b3 <- (1/sum(pc))\*sum(pc\*dlp\_b3)</pre> da11 <- n\*(dlp\_a11 - dlsum\_a11) da12 <-  $n*(dlp_a12 - dlsum_a12)$ da13 <- n\*(dlp\_a13 - dlsum\_a13) da21 <- n\*(dlp\_a21 - dlsum\_a21) da22 <-  $n*(dlp_a22 - dlsum_a22)$ da23 <- n\*(dlp\_a23 - dlsum\_a23) da31 <- n\*(dlp\_a31 - dlsum\_a31) da32 <- n\*(dlp\_a32 - dlsum\_a32) da33 <- n\*(dlp\_a33 - dlsum\_a33) dg11 <- n\*(dlp\_g11 - dlsum\_g11) dg12 <- n\*(dlp\_g12 - dlsum\_g12) dg13 <- n\*(dlp\_g13 - dlsum\_g13) dg21 <- n\*(dlp\_g21 - dlsum\_g21) dg22 <- n\*(dlp\_g22 - dlsum\_g22) dg23 <- n\*(dlp\_g23 - dlsum\_g23) dg31 <- n\*(dlp\_g31 - dlsum\_g31) dg32 <- n\*(dlp\_g32 - dlsum\_g32) dg33 <- n\*(dlp\_g33 - dlsum\_g33) db1 <- n\*(dlp\_b1 - dlsum\_b1) db2 <- n\*(dlp\_b2 - dlsum\_b2) db3 <- n\*(dlp\_b3 - dlsum\_b3) grad <- c(sum(da11), sum(da12), sum(da13), sum(da21), sum(da22), sum(da23), sum(da31), sum(da32), sum(da33), sum(dg11), sum(dg12), sum(dg13), sum(dg21), sum(dg22), sum(dg23), sum(dg31), sum(dg32), sum(dg33), sum(db1), sum(db2), sum(db3)) return(-grad) ## BAHADUR - SEMI LOCATION & TRANSITION ## loglike7 <- function(u)</pre> r1.11 <- u[1] r1.12 <- u[2] r1.13 <- u[3] r1.21 <- u[4] r1.22 <- u[5] r1.23 <- u[6] r1.31 <- u[7] r1.32 <- u[8] r1.33 <- u[9] r2.11 <- u[10] r2.12 <- u[11] r2.13 <- u[12] r2.21 <- u[13] r2.22 <- u[14] r2.23 <- u[15] r2.31 <- u[16]

```
r2.32 <- u[17]
r2.33 <- u[18]
f <-1 + r1.11*(u11*u21+u21*u31) + r1.12*(u11*u22+u21*u32) + r1.13*(u11*u23+u21*u33) + r1.21*(u12*u21+u22*u31) + r1.21*(u12*u21+u22*u31) + r1.21*(u12*u21+u22*u31) + r1.21*(u12*u21*u32) + r1.21*(u12*u32) + r1
                   r2.11*(u11*u31) + r2.12*(u11*u32) + r2.13*(u11*u33) + r2.21*(u12*u31) + r2.22*(u12*u32) + r2.23*(u12*u33) + r2.31*(u13*u31) + r2.31*(u13
                  r2.32*(u13*u32) + r2.33*(u13*u33)
l <- n*(log(f) - log(sum(p_ind*f)))</pre>
loglike <- sum(1)</pre>
return(-loglike) # R's constrOptim() routines minimizes objective functions
}
grad7 <- function(u)
{
r1.11 <- u[1]
r1.12 <- u[2]
r1.13 <- u[3]
r1.21 <- u[4]
r1.22 <- u[5]
r1.23 <- u[6]
r1.31 <- u[7]
r1.32 <- u[8]
r1.33 <- u[9]
r2.11 <- u[10]
r2.12 <- u[11]
r2.13 <- u[12]
r2.21 <- u[13]
r2.22 <- u[14]
r2.23 <- u[15]
r2.31 <- u[16]
r2.32 <- u[17]
r2.33 <- u[18]
\texttt{f} \ <- \ 1 \ + \ \texttt{r1.11*}(\texttt{u11*u21+u21*u31}) \ + \ \texttt{r1.12*}(\texttt{u11*u22+u21*u32}) \ + \ \texttt{r1.13*}(\texttt{u11*u23+u21*u33}) \ + \ \texttt{r1.21*}(\texttt{u12*u21+u22*u31}) \ + \ \texttt{r1.21*}(\texttt{u12*u31}) \ + \ \texttt{r1.21*}(\texttt{r1}) \ +
                    r2.11*(u11*u31) + r2.12*(u11*u32) + r2.13*(u11*u33) + r2.21*(u12*u31) + r2.22*(u12*u32) + r2.23*(u12*u33) + r2.31*(u13*u31) + r2.23*(u12*u33) + r2.31*(u13*u31) + r2.23*(u12*u33) + r2.31*(u13*u31) + r2.23*(u12*u33) + r2.31*(u13*u31) + r2.31*(u13
                    r2.32*(u13*u32) + r2.33*(u13*u33)
dr1.11 <- n*(((u11*u21+u21*u31)/f) - (sum(p_ind*(u11*u21+u21*u31))/sum(p_ind*f)))
dr1.12 <- n*(((u11*u22+u21*u32)/f) - (sum(p_ind*(u11*u22+u21*u32))/sum(p_ind*f)))
dr1.13 <- n*(((u11*u23+u21*u33)/f) - (sum(p_ind*(u11*u23+u21*u33))/sum(p_ind*f)))
dr1.21 <- n*(((u12*u21+u22*u31)/f) - (sum(p_ind*(u12*u21+u22*u31))/sum(p_ind*f)))
dr1.22 <- n*(((u12*u22+u22*u32)/f) - (sum(p_ind*(u12*u22+u22*u32))/sum(p_ind*f)))
dr1.23 <- n*(((u12*u23+u22*u33)/f) - (sum(p_ind*(u12*u23+u22*u33))/sum(p_ind*f)))
dr1.31 <- n*(((u13*u21+u23*u31)/f) - (sum(p_ind*(u13*u21+u23*u31))/sum(p_ind*f)))
dr1.32 <- n*(((u13*u22+u23*u32)/f) - (sum(p_ind*(u13*u22+u23*u32))/sum(p_ind*f)))
dr1.33 <- n*(((u13*u23+u23*u33)/f) - (sum(p_ind*(u13*u23+u23*u33))/sum(p_ind*f)))
dr2.11 <- n*(((u11*u31)/f) - (sum(p_ind*(u11*u31))/sum(p_ind*f)))
dr2.12 <- n*(((u11*u32)/f) - (sum(p_ind*(u11*u32))/sum(p_ind*f)))
dr2.13 <- n*(((u11*u33)/f) - (sum(p_ind*(u11*u33))/sum(p_ind*f)))
dr2.21 <- n*(((u12*u31)/f) - (sum(p_ind*(u12*u31))/sum(p_ind*f)))
dr2.22 <- n*(((u12*u32)/f) - (sum(p_ind*(u12*u32))/sum(p_ind*f)))
dr2.23 <- n*(((u12*u33)/f) - (sum(p_ind*(u12*u33))/sum(p_ind*f)))
dr2.31 <- n*(((u13*u31)/f) - (sum(p_ind*(u13*u31))/sum(p_ind*f)))
dr2.32 <- n*(((u13*u32)/f) - (sum(p_ind*(u13*u32))/sum(p_ind*f)))
dr2.33 <- n*(((u13*u33)/f) - (sum(p_ind*(u13*u33))/sum(p_ind*f)))
grad <- c(sum(dr1.11), sum(dr1.12), sum(dr1.13), sum(dr1.21), sum(dr1.22), sum(dr1.23), sum(dr1.31), sum(dr1.32), sum(dr1.33), sum(dr2.11),
                                       sum(dr2,12), sum(dr2,13), sum(dr2,21), sum(dr2,22), sum(dr2,23), sum(dr2,31), sum(dr2,32), sum(dr2,33))
```

return(-grad)

}

# Apêndice 2

### Probabilidades Estimadas pelos Modelos

As tabelas a seguir apresentam as probabildiades estimadas para todos os códons efetivos nas seqüências do gene NADH4, para todos os modelos propostos, binomiais e multinomiais logísticos regressivos e baseados na representação de Bahadur.

Tabela 7.3: Probabilidades Estimadas dos Modelos Binomiais Multivariados com Função de Ligação Logito

| Cádan       | Oha    | Modelo       | Modelo        | Estrutura  | Modelo  | Modelo  |
|-------------|--------|--------------|---------------|------------|---------|---------|
| Codon       | Obs.   | Independente | Ig. Preditivo | Markoviana | Aditivo | Bahadur |
| TTT         | 0.0196 | 0.0308       | 0.0292        | 0.0303     | 0.0293  | 0.0293  |
| CTT         | 0.0219 | 0.0350       | 0.0332        | 0.0357     | 0.0340  | 0.0335  |
| ATT         | 0.0349 | 0.0250       | 0.0265        | 0.0237     | 0.0248  | 0.0254  |
| GTT         | 0.0000 | 0.0236       | 0.0251        | 0.0223     | 0.0234  | 0.0240  |
| TCT         | 0.0109 | 0.0281       | 0.0266        | 0.0267     | 0.0263  | 0.0266  |
| CCT         | 0.0055 | 0.0225       | 0.0198        | 0.0215     | 0.0204  | 0.0210  |
| ACT         | 0.0174 | 0.0192       | 0.0198        | 0.0175     | 0.0185  | 0.0194  |
| GCT         | 0.0131 | 0.0266       | 0.0277        | 0.0253     | 0.0262  | 0.0271  |
| TAT         | 0.0045 | 0.0080       | 0.0074        | 0.0077     | 0.0073  | 0.0090  |
| CAT         | 0.0022 | 0.0088       | 0.0094        | 0.0104     | 0.0102  | 0.0098  |
| AAT         | 0.0027 | 0.0148       | 0.0157        | 0.0167     | 0.0170  | 0.0147  |
| GAT         | 0.0000 | 0.0095       | 0.0086        | 0.0095     | 0.0093  | 0.0093  |
| TGT         | 0.0022 | 0.0084       | 0.0077        | 0.0082     | 0.0075  | 0.0090  |
| CGT         | 0.0000 | 0.0096       | 0.0107        | 0.0113     | 0.0113  | 0.0107  |
| AGT         | 0.0044 | 0.0119       | 0.0137        | 0.0146     | 0.0158  | 0.0118  |
| GGT         | 0.0022 | 0.0097       | 0.0090        | 0.0096     | 0.0095  | 0.0095  |
| TTC         | 0.0240 | 0.0308       | 0.0292        | 0.0303     | 0.0293  | 0.0293  |
| CTC         | 0.0674 | 0.0350       | 0.0332        | 0.0357     | 0.0340  | 0.0335  |
| ATC         | 0.0501 | 0.0250       | 0.0265        | 0.0237     | 0.0248  | 0.0254  |
| GTC         | 0.0087 | 0.0236       | 0.0251        | 0.0223     | 0.0234  | 0.0240  |
| TCC         | 0.0370 | 0.0281       | 0.0266        | 0.0267     | 0.0263  | 0.0266  |
| CCC         | 0.0316 | 0.0225       | 0.0198        | 0.0215     | 0.0204  | 0.0210  |
| ACC         | 0.0371 | 0.0192       | 0.0198        | 0.0175     | 0.0185  | 0.0194  |
| GCC         | 0.0261 | 0.0266       | 0.0277        | 0.0253     | 0.0262  | 0.0271  |
| TAC         | 0.0238 | 0.0080       | 0.0074        | 0.0077     | 0.0073  | 0.0090  |
| CAC         | 0.0266 | 0.0088       | 0.0094        | 0.0104     | 0.0102  | 0.0098  |
| AAC         | 0.0474 | 0.0148       | 0.0157        | 0.0167     | 0.0170  | 0.0147  |
| GAC         | 0.0065 | 0.0095       | 0.0086        | 0.0095     | 0.0093  | 0.0093  |
| TGC         | 0.0044 | 0.0084       | 0.0077        | 0.0082     | 0.0075  | 0.0090  |
| CGC         | 0.0105 | 0.0096       | 0.0107        | 0.0113     | 0.0113  | 0.0107  |
| AGC         | 0.0174 | 0.0119       | 0.0137        | 0.0146     | 0.0158  | 0.0118  |
| GGC         | 0.0196 | 0.0097       | 0.0090        | 0.0096     | 0.0095  | 0.0095  |
| TTA         | 0.0173 | 0.0180       | 0.0189        | 0.0190     | 0.0200  | 0.0196  |
| CTA         | 0.0918 | 0.0179       | 0.0190        | 0.0190     | 0.0201  | 0.0196  |
| ATA         | 0.0523 | 0.0184       | 0.0186        | 0.0201     | 0.0193  | 0.0177  |
| GTA         | 0.0174 | 0.0187       | 0.0180        | 0.0194     | 0.0182  | 0.0181  |
| TCA         | 0.0218 | 0.0178       | 0.0185        | 0.0185     | 0.0195  | 0.0195  |
| CCA         | 0.0131 | 0.0168       | 0.0172        | 0.0176     | 0.0184  | 0.0185  |
| ACA         | 0.0480 | 0.0238       | 0.0245        | 0.0258     | 0.0248  | 0.0234  |
| GCA         | 0.0174 | 0.0134       | 0.0119        | 0.0133     | 0.0123  | 0.0128  |
| CAA         | 0.0196 | 0.0120       | 0.0131        | 0.0102     | 0.0108  | 0.0106  |
| AAA         | 0.0219 | 0.0132       | 0.0130        | 0.0131     | 0.0129  | 0.0135  |
| GAA         | 0.0195 | 0.0115       | 0.0098        | 0.0098     | 0.0091  | 0.0119  |
| TGA         | 0.0261 | 0.0092       | 0.0103        | 0.0084     | 0.0088  | 0.0078  |
| CGA         | 0.0087 | 0.0123       | 0.0133        | 0.0106     | 0.0111  | 0.0110  |
| GGA         | 0.0107 | 0.0050       | 0.0036        | 0.0037     | 0.0034  | 0.0054  |
| TTG         | 0.0022 | 0.0180       | 0.0189        | 0.0190     | 0.0200  | 0.0196  |
| CTG<br>ATTG | 0.0086 | 0.0179       | 0.0190        | 0.0190     | 0.0201  | 0.0196  |
| AIG         | 0.0065 | 0.0184       | 0.0186        | 0.0201     | 0.0193  | 0.0177  |
| GTG         | 0.0022 | 0.0187       | 0.0180        | 0.0194     | 0.0182  | 0.0181  |
| CCC         | 0.0022 | 0.0169       | 0.0179        | 0.0180     | 0.0195  | 0.0195  |
| ACC         | 0.0000 | 0.0108       | 0.0172        | 0.01/0     | 0.0184  | 0.0185  |
| ACG         | 0.0021 | 0.0238       | 0.0245        | 0.0208     | 0.0248  | 0.0234  |
| CAC         | 0.0000 | 0.0134       | 0.0119        | 0.0133     | 0.0123  | 0.0120  |
| AG          | 0.0022 | 0.0131       | 0.0130        | 0.0113     | 0.0117  | 0.0119  |
| AAG         | 0.0022 | 0.0132       | 0.0130        | 0.0131     | 0.0129  | 0.0135  |
| TCC         | 0.0000 | 0.0115       | 0.0098        | 0.0098     | 0.0091  | 0.0119  |
| CCC         | 0.0022 | 0.0092       | 0.0103        | 0.0084     | 0.0000  | 0.0078  |
| GGG         | 0.0000 | 0.0125       | 0.0133        | 0.0100     | 0.0034  | 0.0054  |
| 9999        | 0.0040 | 0.0000       | 0.0030        | 0.0037     | 0.0034  | 0.0004  |

Tabela 7.4: Probabilidades Estimadas dos Modelos Binomiais Multivariados com Função de Ligação Probito

| $\begin{array}{c ccccc} \hline \mathbf{Codon} & \mathbf{Obs.} & \mathbf{Ig.} \ \mathbf{Preditivo} & \mathbf{Markovians} & \mathbf{Aditivo} & \mathbf{Bahadur} \\ \hline \mathbf{TT} & 0.0196 & 0.0258 & 0.0324 & 0.0347 & 0.0248 & 0.0255 \\ \mathbf{TT} & 0.0309 & 0.0224 & 0.0255 & 0.0339 & 0.0237 & 0.0234 \\ \mathbf{ATT} & 0.000 & 0.0244 & 0.0255 & 0.0238 & 0.0236 & 0.0237 \\ \mathbf{TCT} & 0.000 & 0.0245 & 0.0266 & 0.0181 & 0.0197 \\ \mathbf{CCT} & 0.0055 & 0.0276 & 0.0266 & 0.0071 & 0.0271 & 0.0273 \\ \mathbf{ACT} & 0.0174 & 0.0243 & 0.0255 & 0.0238 & 0.0236 & 0.0232 \\ \mathbf{GCT} & 0.0131 & 0.0252 & 0.0259 & 0.0238 & 0.0243 & 0.0241 \\ \mathbf{AAT} & 0.0022 & 0.0102 & 0.0112 & 0.0121 & 0.0121 & 0.0123 \\ \mathbf{CAT} & 0.0022 & 0.0102 & 0.0112 & 0.0121 & 0.0123 & 0.0133 \\ \mathbf{GAT} & 0.0000 & 0.0122 & 0.0106 & 0.0077 & 0.0076 & 0.0075 \\ \mathbf{CAT} & 0.0022 & 0.0079 & 0.0079 & 0.0076 & 0.0075 & 0.0086 \\ \mathbf{CGT} & 0.0000 & 0.0122 & 0.0119 & 0.0125 & 0.0126 & 0.0123 \\ \mathbf{GGT} & 0.0022 & 0.0108 & 0.0103 & 0.0106 & 0.0104 & 0.0111 \\ \mathbf{CTC} & 0.0501 & 0.0256 & 0.0226 & 0.0239 & 0.0237 & 0.0235 \\ \mathbf{CTC} & 0.0607 & 0.0256 & 0.0226 & 0.0238 & 0.0237 & 0.0235 \\ \mathbf{CTC} & 0.0674 & 0.0348 & 0.0225 & 0.0238 & 0.0237 & 0.0235 \\ \mathbf{GTC} & 0.0877 & 0.0244 & 0.0255 & 0.0238 & 0.0236 & 0.0237 \\ \mathbf{CCC} & 0.0371 & 0.0244 & 0.0255 & 0.0238 & 0.0236 & 0.0232 \\ \mathbf{GCC} & 0.0371 & 0.0244 & 0.0255 & 0.0238 & 0.0236 & 0.0232 \\ \mathbf{GCC} & 0.0371 & 0.0244 & 0.0255 & 0.0238 & 0.0236 & 0.0232 \\ \mathbf{GCC} & 0.0371 & 0.0243 & 0.0276 & 0.0238 & 0.0236 & 0.0232 \\ \mathbf{GCC} & 0.0371 & 0.0243 & 0.0276 & 0.0278 & 0.0238 & 0.0236 & 0.0232 \\ \mathbf{GCC} & 0.0371 & 0.0243 & 0.0276 & 0.0238 & 0.0238 & 0.0236 & 0.0232 \\ \mathbf{GCC} & 0.0371 & 0.0243 & 0.0276 & 0.0286 & 0.0277 & 0.0279 & 0.0273 \\ \mathbf{GCC} & 0.0360 & 0.0112 & 0.0112 & 0.0112 & 0.0113 & 0.0133 \\ \mathbf{GCC} & 0.0065 & 0.0122 & 0.0106 & 0.0108 & 0.0133 & 0.0133 \\ \mathbf{GCC} & 0.0044 & 0.0171 & 0.0176 & 0.0188 & 0.0184 \\ \mathbf{GTA} & 0.0174 & 0.0189 & 0.0107 & 0.0076 & 0.0075 & 0.0086 \\ \mathbf{CCC} & 0.0016 & 0.0108 & 0.0077 & 0.0086 \\ \mathbf{CCC} & 0.0021 & 0.0124 & 0.0204 & 0.0204 & 0.0204 \\ \mathbf{CCC} & 0.0022 & 0.0116 & 0.0118 & 0.0118 \\ \mathbf{CCA} & 0.0131 & 0.0116 & 0.$ |            | ~ ~ ~  | Modelo       | Modelo        | Estrutura  | Modelo  | Modelo  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|--------------|---------------|------------|---------|---------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Códon      | Obs.   | Independente | Ig. Preditivo | Markoviana | Aditivo | Bahadur |
| 111         0.0219         0.0249         0.0245         0.0245         0.0245         0.0245           ATT         0.0349         0.0245         0.0255         0.0239         0.0255         0.0238           CTT         0.0109         0.0240         0.0187         0.0182         0.0279         0.0277           ACT         0.0174         0.0243         0.0255         0.0238         0.0241         0.0242           CCT         0.0165         0.0266         0.0277         0.0279         0.0212         0.0121           ACT         0.0131         0.0225         0.0243         0.0241         0.0242           TAT         0.0045         0.0072         0.0066         0.0071         0.0012         0.0121           AAT         0.0022         0.0119         0.0125         0.0125         0.0125         0.0126           CAT         0.0000         0.0122         0.0111         0.0111         0.0111         0.0111           AAT         0.0022         0.0079         0.0076         0.0076         0.0076           CT         0.0044         0.0133         0.0136         0.0144         0.0125           CT         0.0074         0.0244         0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TTT        | 0.0106 | 0.0258       | 0.0242        | 0.0247     | 0.0248  | 0.0255  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.0190 | 0.0258       | 0.0242        | 0.0247     | 0.0248  | 0.0255  |
| All         0.0349         0.0249         0.0239         0.0239         0.0234         0.0234           CTT         0.0109         0.0200         0.0187         0.0182         0.0181         0.0197           ACT         0.0174         0.0243         0.0255         0.0238         0.0236         0.0242           TAT         0.0045         0.0072         0.0066         0.0071         0.0071         0.0072           CAT         0.0022         0.0112         0.0112         0.0122         0.0110         0.0125         0.0126           CAT         0.0000         0.0122         0.0119         0.0125         0.0126         0.0126           GAT         0.0022         0.0079         0.0076         0.0076         0.0076         0.0025           GAT         0.0022         0.0199         0.0104         0.0111         0.0111         0.0101           AGT         0.0022         0.0199         0.0137         0.0136         0.0148         0.0125           CTC         0.0061         0.0244         0.0255         0.0238         0.0236         0.0234           CTC         0.0370         0.0240         0.0255         0.0238         0.0236         0.0234 </td <td>ATT</td> <td>0.0219</td> <td>0.0348</td> <td>0.0328</td> <td>0.0331</td> <td>0.0333</td> <td>0.0344</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATT        | 0.0219 | 0.0348       | 0.0328        | 0.0331     | 0.0333  | 0.0344  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CTT        | 0.0349 | 0.0245       | 0.0250        | 0.0239     | 0.0237  | 0.0233  |
| $\begin{array}{cccccc} 0.0055 & 0.0276 & 0.0276 & 0.0273 & 0.0273 \\ ACT & 0.0174 & 0.0243 & 0.0255 & 0.0238 & 0.0236 & 0.0232 \\ GCT & 0.0131 & 0.0252 & 0.0259 & 0.0243 & 0.0241 & 0.0242 \\ TAT & 0.0045 & 0.0072 & 0.0066 & 0.0071 & 0.0071 & 0.0078 \\ CAT & 0.0022 & 0.0102 & 0.0112 & 0.0121 & 0.0122 & 0.0110 \\ AAT & 0.0027 & 0.0131 & 0.0126 & 0.0133 & 0.0133 & 0.0135 \\ GAT & 0.0020 & 0.0079 & 0.0076 & 0.0076 & 0.0076 & 0.0076 \\ CGT & 0.0022 & 0.0109 & 0.0104 & 0.0111 & 0.0111 & 0.0101 \\ AGT & 0.0044 & 0.0119 & 0.0137 & 0.0136 & 0.0144 & 0.0123 \\ GGT & 0.0022 & 0.0079 & 0.0076 & 0.0076 & 0.0076 & 0.0075 & 0.0086 \\ CGT & 0.0022 & 0.0079 & 0.0076 & 0.0036 & 0.0134 & 0.0123 \\ GGT & 0.0044 & 0.0119 & 0.0137 & 0.0136 & 0.0134 & 0.0123 \\ TCC & 0.0501 & 0.0245 & 0.0226 & 0.0239 & 0.0237 & 0.0236 \\ GTC & 0.0087 & 0.0244 & 0.0255 & 0.0238 & 0.0236 & 0.0234 \\ TCC & 0.0370 & 0.0200 & 0.0187 & 0.0182 & 0.0181 & 0.0197 \\ CCC & 0.0370 & 0.0200 & 0.0187 & 0.0182 & 0.0181 & 0.0197 \\ CCC & 0.0371 & 0.0243 & 0.0255 & 0.0238 & 0.0236 & 0.0233 \\ GCC & 0.0266 & 0.0102 & 0.0162 & 0.0133 & 0.0133 & 0.0133 \\ GAC & 0.0266 & 0.0102 & 0.0162 & 0.0238 & 0.0236 & 0.0232 \\ GCC & 0.0371 & 0.0243 & 0.0255 & 0.0238 & 0.0236 & 0.0232 \\ GCC & 0.0366 & 0.0102 & 0.0162 & 0.0133 & 0.0133 & 0.0133 \\ GAC & 0.0266 & 0.0102 & 0.0112 & 0.0121 & 0.0121 & 0.0122 \\ GCC & 0.0371 & 0.0243 & 0.0255 & 0.0238 & 0.0236 & 0.0234 \\ TGC & 0.0266 & 0.0102 & 0.0112 & 0.0121 & 0.0122 & 0.0110 \\ AAC & 0.0238 & 0.0072 & 0.0066 & 0.0071 & 0.0075 & 0.0086 \\ CGC & 0.0105 & 0.0093 & 0.0104 & 0.0111 & 0.0011 & 0.0071 \\ TAA & 0.0173 & 0.0108 & 0.0103 & 0.0106 & 0.0103 \\ CAC & 0.0266 & 0.0102 & 0.0112 & 0.0123 & 0.0133 \\ GCC & 0.0145 & 0.0188 & 0.0188 & 0.0184 \\ CAA & 0.0196 & 0.0193 & 0.0104 & 0.0111 & 0.0111 \\ CAA & 0.0174 & 0.0169 & 0.0103 & 0.0106 & 0.0104 \\ CAA & 0.0219 & 0.0164 & 0.0191 & 0.0204 & 0.0205 & 0.0203 \\ GCA & 0.0174 & 0.0157 & 0.0145 & 0.0159 & 0.0168 & 0.0174 \\ CCG & 0.0022 & 0.0187 & 0.0188 & 0.0184 & 0.0186 \\ CAA & 0.0191 & 0.0191 & 0.0204 & 0.0205 & 0.0203 \\ GCG & 0.0005$                                                                                                                                                                                                                                                  | TCT        | 0.0000 | 0.0244       | 0.0255        | 0.0238     | 0.0230  | 0.0234  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCT        | 0.0109 | 0.0200       | 0.0167        | 0.0182     | 0.0181  | 0.0197  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ACT        | 0.0055 | 0.0276       | 0.0200        | 0.0277     | 0.0279  | 0.0273  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACT        | 0.0174 | 0.0245       | 0.0255        | 0.0238     | 0.0230  | 0.0232  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCI        | 0.0131 | 0.0252       | 0.0259        | 0.0245     | 0.0241  | 0.0242  |
| $\begin{array}{ccccccc} CA1 & 0.0022 & 0.0102 & 0.0112 & 0.0121 & 0.0122 & 0.0113 \\ CAT & 0.0000 & 0.0122 & 0.0119 & 0.0125 & 0.0123 & 0.0126 \\ CGT & 0.0000 & 0.0093 & 0.0104 & 0.0111 & 0.0111 & 0.0101 \\ AGT & 0.0044 & 0.0119 & 0.0137 & 0.0136 & 0.0134 & 0.0123 \\ CGT & 0.0022 & 0.0108 & 0.0103 & 0.0106 & 0.0106 & 0.0112 \\ TTC & 0.0240 & 0.0258 & 0.0242 & 0.0247 & 0.0248 & 0.0255 \\ CTC & 0.0674 & 0.0348 & 0.0328 & 0.0351 & 0.0355 & 0.0344 \\ ATC & 0.0501 & 0.0244 & 0.0255 & 0.0228 & 0.0236 & 0.0236 \\ CCC & 0.0316 & 0.0276 & 0.0266 & 0.0277 & 0.0236 & 0.0234 \\ TCC & 0.0371 & 0.0243 & 0.0255 & 0.0238 & 0.0236 & 0.0237 \\ ACC & 0.0316 & 0.0276 & 0.0266 & 0.0277 & 0.0236 & 0.0232 \\ GCC & 0.0316 & 0.0276 & 0.0266 & 0.0277 & 0.0236 & 0.0237 \\ ACC & 0.0316 & 0.0276 & 0.0266 & 0.0277 & 0.0236 & 0.0232 \\ GCC & 0.0261 & 0.0252 & 0.0255 & 0.0238 & 0.0236 & 0.0232 \\ GCC & 0.0261 & 0.0252 & 0.0255 & 0.0238 & 0.0236 & 0.0232 \\ GCC & 0.0261 & 0.0252 & 0.0255 & 0.0238 & 0.0241 & 0.0242 \\ TAC & 0.0288 & 0.0072 & 0.0066 & 0.0071 & 0.0071 & 0.0078 \\ CAC & 0.0474 & 0.0131 & 0.0126 & 0.0133 & 0.0133 & 0.0135 \\ GCC & 0.0105 & 0.0112 & 0.0112 & 0.0122 & 0.0119 \\ AAC & 0.0474 & 0.0131 & 0.0126 & 0.0133 & 0.0134 & 0.0123 \\ GCC & 0.0117 & 0.0079 & 0.0076 & 0.0075 & 0.0086 \\ CCC & 0.0105 & 0.0103 & 0.0106 & 0.0107 & 0.0123 \\ GCC & 0.0144 & 0.0119 & 0.0137 & 0.0136 & 0.0134 & 0.0123 \\ GCC & 0.0144 & 0.0119 & 0.0137 & 0.0136 & 0.0184 \\ GTA & 0.0174 & 0.0119 & 0.0137 & 0.0136 & 0.0184 \\ GTA & 0.0174 & 0.0119 & 0.0137 & 0.0186 & 0.0171 & 0.0186 \\ CCA & 0.0181 & 0.0187 & 0.0188 & 0.0184 \\ GTA & 0.0218 & 0.0187 & 0.0188 & 0.0184 \\ GTA & 0.0174 & 0.0119 & 0.0137 & 0.0136 & 0.0184 \\ GTA & 0.0218 & 0.0187 & 0.0186 & 0.0171 & 0.0186 \\ CCA & 0.0181 & 0.0187 & 0.0186 & 0.0171 & 0.0186 \\ CCA & 0.0181 & 0.0196 & 0.0209 & 0.2006 & 0.2000 \\ CTA & 0.0218 & 0.0187 & 0.0188 & 0.0184 \\ GTA & 0.0218 & 0.0187 & 0.0188 & 0.0184 \\ GTA & 0.0218 & 0.0187 & 0.0188 & 0.0184 \\ GTA & 0.0218 & 0.0187 & 0.0188 & 0.0184 \\ GTA & 0.0218 & 0.0187 & 0.0186 & 0.0077 & 0.0088 \\ CCG & 0.000$                                                                                                                                                                                                                                                | CAT        | 0.0045 | 0.0072       | 0.0000        | 0.0071     | 0.0071  | 0.0078  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CA1        | 0.0022 | 0.0102       | 0.0112        | 0.0121     | 0.0122  | 0.0110  |
| $ \begin{array}{c} {\rm Grat} & 0.0000 & 0.0122 & 0.0119 & 0.0125 & 0.0125 & 0.0125 \\ {\rm GrT} & 0.0000 & 0.093 & 0.0104 & 0.0111 & 0.0111 & 0.0101 \\ {\rm AGT} & 0.0044 & 0.0119 & 0.0137 & 0.0136 & 0.0134 & 0.0123 \\ {\rm GGT} & 0.0022 & 0.0108 & 0.0103 & 0.0106 & 0.0106 & 0.0112 \\ {\rm TTC} & 0.0240 & 0.0258 & 0.0242 & 0.0247 & 0.0248 & 0.0255 \\ {\rm CTC} & 0.0674 & 0.0348 & 0.0255 & 0.0238 & 0.0237 & 0.0355 \\ {\rm GTC} & 0.0087 & 0.0244 & 0.0255 & 0.0238 & 0.0236 & 0.0237 \\ {\rm CCC} & 0.0370 & 0.0200 & 0.0187 & 0.0182 & 0.0181 & 0.0197 \\ {\rm CCC} & 0.0371 & 0.0243 & 0.0255 & 0.0238 & 0.0236 & 0.0234 \\ {\rm TCC} & 0.0371 & 0.0243 & 0.0255 & 0.0238 & 0.0236 & 0.0237 \\ {\rm GCC} & 0.0261 & 0.0252 & 0.0255 & 0.0238 & 0.0236 & 0.0232 \\ {\rm GCC} & 0.0371 & 0.0243 & 0.0255 & 0.0238 & 0.0236 & 0.0232 \\ {\rm TAC} & 0.0238 & 0.072 & 0.0066 & 0.0071 & 0.0071 & 0.0078 \\ {\rm CAC} & 0.0238 & 0.0072 & 0.0066 & 0.0071 & 0.0071 & 0.0078 \\ {\rm CAC} & 0.0266 & 0.0102 & 0.0112 & 0.0122 & 0.0110 \\ {\rm AAC} & 0.0474 & 0.0131 & 0.0126 & 0.0133 & 0.0133 & 0.0135 \\ {\rm GAC} & 0.0065 & 0.0122 & 0.0119 & 0.0125 & 0.0125 & 0.0126 \\ {\rm CGC} & 0.0105 & 0.0093 & 0.0104 & 0.0111 & 0.0111 & 0.0101 \\ {\rm AGC} & 0.0174 & 0.0119 & 0.0137 & 0.0136 & 0.0134 & 0.0123 \\ {\rm GGC} & 0.0196 & 0.0108 & 0.0103 & 0.0106 & 0.0106 & 0.0102 \\ {\rm CTA} & 0.0918 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ {\rm CTA} & 0.0918 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ {\rm CTA} & 0.0174 & 0.0169 & 0.0153 & 0.0188 & 0.0184 \\ {\rm GTA} & 0.0174 & 0.0157 & 0.0188 & 0.0188 & 0.0184 \\ {\rm GTA} & 0.0174 & 0.0169 & 0.0153 & 0.0168 & 0.0184 \\ {\rm CCA} & 0.0194 & 0.0177 & 0.0120 & 0.0206 & 0.0200 \\ {\rm CTA} & 0.0918 & 0.0187 & 0.0188 & 0.0184 & 0.0186 \\ {\rm CCA} & 0.0194 & 0.0191 & 0.0204 & 0.0202 & 0.0195 \\ {\rm ACA} & 0.0480 & 0.0191 & 0.0191 & 0.0204 & 0.0202 & 0.0195 \\ {\rm ACA} & 0.0196 & 0.0105 & 0.0086 & 0.0087 & 0.0086 & 0.0087 \\ {\rm CGA} & 0.0195 & 0.0163 & 0.0086 & 0.0087 & 0.0086 & 0.0086 \\ {\rm CCA} & 0.0021 & 0.0126 & 0.0116 & 0.0116 & 0.0118 \\ {\rm CCA} & 0.0022 & 0.0195 & 0.0086 & 0.0087 & 0.0088 & 0.0088 \\$                                                                                                                                                                                  | CAT        | 0.0027 | 0.0131       | 0.0126        | 0.0133     | 0.0133  | 0.0135  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GAI        | 0.0000 | 0.0122       | 0.0119        | 0.0125     | 0.0125  | 0.0120  |
| $\begin{array}{c} {\rm CG1} & 0.0000 & 0.093 & 0.0104 & 0.0111 & 0.0111 & 0.0101 \\ {\rm AGT} & 0.0044 & 0.0119 & 0.0137 & 0.0136 & 0.0134 & 0.0123 \\ {\rm GC} & 0.0022 & 0.0108 & 0.0103 & 0.0106 & 0.0106 & 0.0112 \\ {\rm TTC} & 0.0240 & 0.0258 & 0.0242 & 0.0247 & 0.0248 & 0.0255 \\ {\rm CTC} & 0.0674 & 0.0348 & 0.0328 & 0.0351 & 0.0355 & 0.0344 \\ {\rm ACC} & 0.0501 & 0.0244 & 0.0255 & 0.0238 & 0.0361 & 0.0197 \\ {\rm CCC} & 0.0370 & 0.0200 & 0.0187 & 0.0182 & 0.0181 & 0.0197 \\ {\rm CCC} & 0.0371 & 0.0243 & 0.0255 & 0.0238 & 0.0236 & 0.0237 \\ {\rm ACC} & 0.0371 & 0.0243 & 0.0255 & 0.0238 & 0.0236 & 0.0232 \\ {\rm GCC} & 0.0261 & 0.0252 & 0.0259 & 0.0243 & 0.0241 & 0.0242 \\ {\rm TAC} & 0.0238 & 0.072 & 0.0066 & 0.0071 & 0.0071 & 0.0078 \\ {\rm CAC} & 0.0231 & 0.0252 & 0.0269 & 0.0243 & 0.0241 & 0.0242 \\ {\rm TAC} & 0.0238 & 0.072 & 0.0066 & 0.0071 & 0.0121 & 0.0122 \\ {\rm CAC} & 0.0474 & 0.0131 & 0.0126 & 0.0133 & 0.0133 & 0.0136 \\ {\rm GCC} & 0.0044 & 0.0079 & 0.0078 & 0.0076 & 0.0075 & 0.0086 \\ {\rm CGC} & 0.0105 & 0.0093 & 0.0104 & 0.0111 & 0.0111 & 0.0101 \\ {\rm AGC} & 0.0174 & 0.0119 & 0.0137 & 0.0136 & 0.0134 & 0.0123 \\ {\rm GGC} & 0.0196 & 0.0108 & 0.0103 & 0.0106 & 0.0160 \\ {\rm CTA} & 0.0918 & 0.0200 & 0.0211 & 0.0208 & 0.0206 & 0.0200 \\ {\rm CTA} & 0.0918 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ {\rm CTA} & 0.0918 & 0.0108 & 0.0103 & 0.0106 & 0.0118 \\ {\rm CCA} & 0.0174 & 0.0169 & 0.0153 & 0.0168 & 0.0184 \\ {\rm GTA} & 0.0174 & 0.0157 & 0.0188 & 0.0188 & 0.0184 \\ {\rm GTA} & 0.0174 & 0.0157 & 0.0186 & 0.0087 & 0.0077 & 0.0082 \\ {\rm AAA} & 0.0296 & 0.0200 & 0.0214 & 0.0200 & 0.0206 & 0.0200 \\ {\rm CTA} & 0.0918 & 0.0196 & 0.0105 & 0.0188 & 0.0188 & 0.0184 \\ {\rm CCA} & 0.0131 & 0.0196 & 0.0120 & 0.0204 & 0.0202 & 0.0195 \\ {\rm ACA} & 0.0196 & 0.0157 & 0.0186 & 0.0087 & 0.0088 & 0.0096 \\ {\rm CAA} & 0.0196 & 0.0197 & 0.0107 & 0.0116 & 0.0116 & 0.0118 \\ {\rm CAA} & 0.0296 & 0.0200 & 0.0214 & 0.0204 & 0.0202 & 0.0205 \\ {\rm CTG} & 0.0086 & 0.0007 & 0.0084 & 0.0085 & 0.0086 \\ {\rm CAA} & 0.0195 & 0.0167 & 0.0188 & 0.0188 \\ {\rm CCA} & 0.0000 & 0.0167 & 0.0118 & 0.0188 & 0.0184 \\ {\rm $                                                                                                                                                                                | IGI<br>CCT | 0.0022 | 0.0079       | 0.0079        | 0.0076     | 0.0075  | 0.0086  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LGI        | 0.0000 | 0.0093       | 0.0104        | 0.0111     | 0.0111  | 0.0101  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AGI        | 0.0044 | 0.0119       | 0.0137        | 0.0136     | 0.0134  | 0.0123  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GGT        | 0.0022 | 0.0108       | 0.0103        | 0.0106     | 0.0106  | 0.0112  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TTC        | 0.0240 | 0.0258       | 0.0242        | 0.0247     | 0.0248  | 0.0255  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CTC        | 0.0674 | 0.0348       | 0.0328        | 0.0351     | 0.0355  | 0.0344  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATC        | 0.0501 | 0.0245       | 0.0256        | 0.0239     | 0.0237  | 0.0235  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GTC        | 0.0087 | 0.0244       | 0.0255        | 0.0238     | 0.0236  | 0.0234  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TCC        | 0.0370 | 0.0200       | 0.0187        | 0.0182     | 0.0181  | 0.0197  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CCC        | 0.0316 | 0.0276       | 0.0266        | 0.0277     | 0.0279  | 0.0273  |
| $ \begin{array}{cccccc} GCC & 0.0261 & 0.0252 & 0.0259 & 0.0243 & 0.0241 & 0.0242 \\ TAC & 0.0238 & 0.0072 & 0.0066 & 0.0071 & 0.0078 \\ CAC & 0.0266 & 0.0102 & 0.0112 & 0.0121 & 0.0122 & 0.0110 \\ AAC & 0.0474 & 0.0131 & 0.0126 & 0.0133 & 0.0133 & 0.0135 \\ GAC & 0.0065 & 0.0122 & 0.0119 & 0.0125 & 0.0125 & 0.0126 \\ TGC & 0.0044 & 0.0079 & 0.0078 & 0.0076 & 0.0075 & 0.0086 \\ CGC & 0.0105 & 0.0093 & 0.0104 & 0.0111 & 0.0111 & 0.0101 \\ AGC & 0.0174 & 0.0119 & 0.0137 & 0.0136 & 0.0134 & 0.0123 \\ GGC & 0.0196 & 0.0108 & 0.0103 & 0.0106 & 0.0106 & 0.0102 \\ TTA & 0.0173 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ CTA & 0.0918 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ ATA & 0.0523 & 0.0172 & 0.0176 & 0.0188 & 0.0184 & 0.0184 \\ GTA & 0.0174 & 0.0169 & 0.0153 & 0.0168 & 0.0171 & 0.0180 \\ TCA & 0.0218 & 0.0187 & 0.0188 & 0.0185 & 0.0184 & 0.0186 \\ CCA & 0.0131 & 0.0196 & 0.0209 & 0.0204 & 0.0202 & 0.0195 \\ ACA & 0.0480 & 0.0191 & 0.0191 & 0.0204 & 0.0205 & 0.0203 \\ GCA & 0.0174 & 0.0157 & 0.0145 & 0.0159 & 0.0161 & 0.0168 \\ CAA & 0.0196 & 0.0088 & 0.0091 & 0.0078 & 0.0077 & 0.0082 \\ AAA & 0.0219 & 0.0116 & 0.0126 & 0.0116 & 0.0115 & 0.0108 \\ GAA & 0.0195 & 0.0103 & 0.0086 & 0.0087 & 0.0088 & 0.0096 \\ GGA & 0.0174 & 0.0157 & 0.0116 & 0.0116 & 0.0116 & 0.0118 \\ GAA & 0.0195 & 0.0103 & 0.0086 & 0.0087 & 0.0088 & 0.0096 \\ GGA & 0.0195 & 0.0103 & 0.0086 & 0.0087 & 0.0088 & 0.0096 \\ GGA & 0.0174 & 0.0126 & 0.0116 & 0.0116 & 0.0118 \\ GTG & 0.0025 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ CTG & 0.0086 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ CTG & 0.0086 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ CTG & 0.0086 & 0.0201 & 0.0176 & 0.0188 & 0.0184 \\ GTG & 0.0022 & 0.0177 & 0.0176 & 0.0185 & 0.0184 & 0.0186 \\ CCG & 0.0000 & 0.0177 & 0.0188 & 0.0185 & 0.0184 & 0.0186 \\ CCG & 0.0000 & 0.0177 & 0.0188 & 0.0185 & 0.0184 & 0.0186 \\ CCG & 0.0000 & 0.0177 & 0.0186 & 0.0085 & 0.0086 & 0.0088 \\ CGG & 0.0000 & 0.0167 & 0.0186 & 0.0087 & 0.0088 & 0.0090 \\ AAG & 0.0022 & 0.0116 & 0.0126 & 0.0116 & 0.0116 & 0.0119 \\ CGG & 0.0002 & 0.013$                                                                                                                                                                                                                                                   | ACC        | 0.0371 | 0.0243       | 0.0255        | 0.0238     | 0.0236  | 0.0232  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCC        | 0.0261 | 0.0252       | 0.0259        | 0.0243     | 0.0241  | 0.0242  |
| $\begin{array}{cccccc} {\rm CAC} & 0.0266 & 0.0102 & 0.0112 & 0.0121 & 0.0122 & 0.0110 \\ {\rm AAC} & 0.0474 & 0.0131 & 0.0126 & 0.0133 & 0.0133 & 0.0135 \\ {\rm GAC} & 0.0065 & 0.0122 & 0.0119 & 0.0125 & 0.0125 & 0.0126 \\ {\rm TGC} & 0.0044 & 0.0079 & 0.0078 & 0.0076 & 0.0075 & 0.0086 \\ {\rm CGC} & 0.0105 & 0.0093 & 0.0104 & 0.0111 & 0.0111 & 0.0101 \\ {\rm AGC} & 0.0174 & 0.0119 & 0.0137 & 0.0136 & 0.0134 & 0.0123 \\ {\rm GGC} & 0.0196 & 0.0108 & 0.0103 & 0.0106 & 0.0106 & 0.0102 \\ {\rm TTA} & 0.0173 & 0.0200 & 0.0211 & 0.0208 & 0.0206 & 0.0200 \\ {\rm CTA} & 0.0918 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ {\rm ATA} & 0.0523 & 0.0172 & 0.0176 & 0.0188 & 0.0188 & 0.0188 \\ {\rm GTA} & 0.0174 & 0.0169 & 0.0153 & 0.0168 & 0.0171 & 0.0186 \\ {\rm CCA} & 0.0218 & 0.0187 & 0.0188 & 0.0185 & 0.0184 & 0.0186 \\ {\rm CCA} & 0.0131 & 0.0196 & 0.0209 & 0.0204 & 0.0202 & 0.0195 \\ {\rm ACA} & 0.0480 & 0.0191 & 0.0191 & 0.0204 & 0.0205 & 0.0203 \\ {\rm GCA} & 0.0174 & 0.0157 & 0.0145 & 0.0159 & 0.0161 & 0.0168 \\ {\rm CAA} & 0.0196 & 0.0088 & 0.0091 & 0.0078 & 0.0077 & 0.0082 \\ {\rm AAA} & 0.0219 & 0.0116 & 0.0115 & 0.0115 & 0.0108 \\ {\rm GAA} & 0.0195 & 0.0103 & 0.0086 & 0.0087 & 0.0088 & 0.0096 \\ {\rm TGA} & 0.0261 & 0.0124 & 0.0126 & 0.0116 & 0.0116 & 0.0119 \\ {\rm CGA} & 0.0087 & 0.0107 & 0.0110 & 0.0099 & 0.0099 & 0.0096 \\ {\rm TGA} & 0.0221 & 0.0200 & 0.0211 & 0.0208 & 0.0206 & 0.0200 \\ {\rm CTG} & 0.0086 & 0.0200 & 0.0211 & 0.0208 & 0.0206 & 0.0200 \\ {\rm CTG} & 0.0086 & 0.0200 & 0.0211 & 0.0208 & 0.0086 & 0.0088 \\ {\rm TTG} & 0.0022 & 0.0169 & 0.0153 & 0.0168 & 0.0184 & 0.0188 \\ {\rm CTG} & 0.0022 & 0.0169 & 0.0153 & 0.0168 & 0.0171 & 0.0180 \\ {\rm TCG} & 0.0022 & 0.0187 & 0.0188 & 0.0188 & 0.0188 & 0.0184 \\ {\rm GTG} & 0.0022 & 0.0187 & 0.0110 & 0.0099 & 0.0020 & 0.0200 \\ {\rm CTG} & 0.0002 & 0.0172 & 0.0176 & 0.0188 & 0.0184 & 0.0186 \\ {\rm CCG} & 0.0002 & 0.0169 & 0.0103 & 0.0084 & 0.0083 & 0.0090 \\ {\rm AAG} & 0.0022 & 0.0116 & 0.0116 & 0.0116 & 0.0118 \\ {\rm CGG} & 0.0000 & 0.0107 & 0.01010 & 0.0099 & 0.0008 \\ {\rm AGG} & 0.0000 & 0.0107 & 0.0110 & 0.0099 & 0.0008 \\ {\rm AGG} & 0.0000 & 0.$                                                                                                                                                                                   | TAC        | 0.0238 | 0.0072       | 0.0066        | 0.0071     | 0.0071  | 0.0078  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CAC        | 0.0266 | 0.0102       | 0.0112        | 0.0121     | 0.0122  | 0.0110  |
| $\begin{array}{ccccccc} GAC & 0.0065 & 0.0122 & 0.0119 & 0.0125 & 0.0126 \\ TGC & 0.0044 & 0.0079 & 0.0078 & 0.0076 & 0.0075 & 0.0086 \\ CGC & 0.0105 & 0.0093 & 0.0104 & 0.0111 & 0.0111 & 0.0101 \\ AGC & 0.0174 & 0.0119 & 0.0137 & 0.0136 & 0.0134 & 0.0123 \\ GGC & 0.0196 & 0.0108 & 0.0103 & 0.0106 & 0.0106 & 0.0106 \\ CTA & 0.0173 & 0.0200 & 0.0211 & 0.0208 & 0.0206 & 0.0200 \\ ATA & 0.0523 & 0.0172 & 0.0176 & 0.0188 & 0.0188 & 0.0184 \\ GTA & 0.0174 & 0.0169 & 0.0153 & 0.0168 & 0.0171 & 0.0180 \\ TCA & 0.0218 & 0.0187 & 0.0188 & 0.0185 & 0.0184 & 0.0186 \\ CCA & 0.0131 & 0.0196 & 0.0209 & 0.0204 & 0.0202 & 0.0195 \\ ACA & 0.0480 & 0.0191 & 0.0191 & 0.0204 & 0.0205 & 0.0203 \\ GCA & 0.0174 & 0.0157 & 0.0145 & 0.0159 & 0.0161 & 0.0168 \\ CAA & 0.0196 & 0.0091 & 0.0078 & 0.0077 & 0.0082 \\ AAA & 0.0219 & 0.0116 & 0.0120 & 0.0116 & 0.0115 & 0.0188 \\ GAA & 0.0195 & 0.0103 & 0.0086 & 0.0087 & 0.0088 & 0.0096 \\ TGA & 0.0261 & 0.0124 & 0.0126 & 0.0116 & 0.0116 & 0.0119 \\ CGA & 0.0087 & 0.0107 & 0.0110 & 0.0099 & 0.0096 \\ TGA & 0.0087 & 0.0107 & 0.0110 & 0.0099 & 0.0096 \\ TGA & 0.0261 & 0.0124 & 0.0126 & 0.0116 & 0.0116 & 0.0119 \\ CGA & 0.0087 & 0.0107 & 0.0110 & 0.0099 & 0.0098 \\ TGG & 0.0022 & 0.0200 & 0.0211 & 0.0208 & 0.0086 & 0.0088 \\ TTG & 0.0022 & 0.0200 & 0.0211 & 0.0208 & 0.0206 & 0.0200 \\ ATG & 0.0086 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ ATG & 0.0086 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ ATG & 0.0022 & 0.0169 & 0.0153 & 0.0168 & 0.0184 \\ GTG & 0.0022 & 0.0169 & 0.0153 & 0.0168 & 0.0184 \\ GTG & 0.0022 & 0.0169 & 0.0153 & 0.0168 & 0.0184 \\ OTG & 0.0022 & 0.0187 & 0.0188 & 0.0185 & 0.0184 \\ OTG & 0.0022 & 0.0187 & 0.0188 & 0.0185 & 0.0184 \\ OTG & 0.0022 & 0.0187 & 0.0188 & 0.0185 & 0.0184 \\ OTG & 0.0022 & 0.0187 & 0.0145 & 0.0188 & 0.0184 \\ OTG & 0.0022 & 0.0187 & 0.0145 & 0.0188 & 0.0184 \\ CTG & 0.0022 & 0.0186 & 0.0299 & 0.0204 & 0.0202 & 0.0195 \\ ACG & 0.0000 & 0.0157 & 0.0145 & 0.0159 & 0.0161 & 0.0168 \\ CAG & 0.0000 & 0.0157 & 0.0145 & 0.0116 & 0.0118 & 0.0188 \\ CAG & 0.0000 & 0.0107 & 0.0100 & 0.0099 & 0.0099 \\$                                                                                                                                                                                                                                                 | AAC        | 0.0474 | 0.0131       | 0.0126        | 0.0133     | 0.0133  | 0.0135  |
| $\begin{array}{cccccc} {\rm TGC} & 0.0044 & 0.0079 & 0.0078 & 0.0076 & 0.0075 & 0.0086 \\ {\rm CGC} & 0.0105 & 0.0093 & 0.0104 & 0.0111 & 0.0111 & 0.0101 \\ {\rm AGC} & 0.0174 & 0.0119 & 0.0137 & 0.0136 & 0.0136 & 0.0134 & 0.0123 \\ {\rm GGC} & 0.0196 & 0.0108 & 0.0103 & 0.0106 & 0.0106 & 0.0200 \\ {\rm CTA} & 0.0918 & 0.0200 & 0.0211 & 0.0209 & 0.0206 & 0.0200 \\ {\rm ATA} & 0.0523 & 0.0172 & 0.0176 & 0.0188 & 0.0188 & 0.0184 \\ {\rm GTA} & 0.0174 & 0.0169 & 0.0153 & 0.0168 & 0.0171 & 0.0186 \\ {\rm CCA} & 0.0218 & 0.0187 & 0.0188 & 0.0185 & 0.0184 & 0.0186 \\ {\rm CCA} & 0.0218 & 0.0196 & 0.0209 & 0.0204 & 0.0205 & 0.0203 \\ {\rm ACA} & 0.0480 & 0.0191 & 0.0191 & 0.0204 & 0.0205 & 0.0203 \\ {\rm GCA} & 0.0174 & 0.0157 & 0.0145 & 0.0159 & 0.0161 & 0.0168 \\ {\rm CAA} & 0.0196 & 0.0088 & 0.0091 & 0.0078 & 0.0077 & 0.0082 \\ {\rm AAA} & 0.0219 & 0.0116 & 0.0120 & 0.0116 & 0.0115 & 0.0108 \\ {\rm GAA} & 0.0195 & 0.0103 & 0.0086 & 0.0087 & 0.0088 & 0.0096 \\ {\rm TGA} & 0.0261 & 0.0124 & 0.0126 & 0.0116 & 0.0116 & 0.0119 \\ {\rm CGA} & 0.0027 & 0.0095 & 0.0084 & 0.0085 & 0.0086 & 0.0088 \\ {\rm TTG} & 0.0022 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ {\rm CTG} & 0.0086 & 0.0200 & 0.0214 & 0.0208 & 0.0086 & 0.0088 \\ {\rm TTG} & 0.0022 & 0.0195 & 0.0084 & 0.0088 & 0.0096 \\ {\rm TGG} & 0.0022 & 0.0195 & 0.0084 & 0.0085 & 0.0086 & 0.0088 \\ {\rm TTG} & 0.0022 & 0.0169 & 0.0153 & 0.0168 & 0.0171 & 0.0180 \\ {\rm TCG} & 0.0022 & 0.0187 & 0.0188 & 0.0188 & 0.0184 & 0.0186 \\ {\rm CCG} & 0.0000 & 0.0196 & 0.0209 & 0.0204 & 0.0200 \\ {\rm CTG} & 0.0086 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ {\rm CTG} & 0.0022 & 0.0187 & 0.0188 & 0.0185 & 0.0086 & 0.0088 \\ {\rm TCG} & 0.0022 & 0.0195 & 0.0084 & 0.0085 & 0.0086 & 0.0080 \\ {\rm TCG} & 0.0022 & 0.0196 & 0.0209 & 0.0204 & 0.0202 & 0.0195 \\ {\rm ACG} & 0.0001 & 0.0191 & 0.0191 & 0.0204 & 0.0202 & 0.0195 \\ {\rm ACG} & 0.0000 & 0.0157 & 0.0145 & 0.0159 & 0.0161 & 0.0118 \\ {\rm CCG} & 0.0000 & 0.0157 & 0.0145 & 0.0159 & 0.0161 & 0.0168 \\ {\rm CAG} & 0.0002 & 0.0103 & 0.0086 & 0.0087 & 0.0088 & 0.0096 \\ {\rm TGG} & 0.0002 & 0.0103 & 0.0085 & 0.0086 & 0.0088 \\ {\rm C$                                                                                                                                                                                   | GAC        | 0.0065 | 0.0122       | 0.0119        | 0.0125     | 0.0125  | 0.0126  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TGC        | 0.0044 | 0.0079       | 0.0078        | 0.0076     | 0.0075  | 0.0086  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CGC        | 0.0105 | 0.0093       | 0.0104        | 0.0111     | 0.0111  | 0.0101  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AGC        | 0.0174 | 0.0119       | 0.0137        | 0.0136     | 0.0134  | 0.0123  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GGC        | 0.0196 | 0.0108       | 0.0103        | 0.0106     | 0.0106  | 0.0112  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TTA        | 0.0173 | 0.0200       | 0.0211        | 0.0208     | 0.0206  | 0.0200  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CTA        | 0.0918 | 0.0200       | 0.0214        | 0.0209     | 0.0206  | 0.0200  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATA        | 0.0523 | 0.0172       | 0.0176        | 0.0188     | 0.0188  | 0.0184  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GTA        | 0.0174 | 0.0169       | 0.0153        | 0.0168     | 0.0171  | 0.0180  |
| $\begin{array}{ccccccc} {\rm CCA} & 0.0131 & 0.0196 & 0.0209 & 0.0204 & 0.0202 & 0.0195 \\ {\rm ACA} & 0.0480 & 0.0191 & 0.0191 & 0.0204 & 0.0205 & 0.0203 \\ {\rm GCA} & 0.0174 & 0.0157 & 0.0145 & 0.0159 & 0.0161 & 0.0168 \\ {\rm CAA} & 0.0196 & 0.0088 & 0.0091 & 0.0078 & 0.0077 & 0.0082 \\ {\rm AAA} & 0.0219 & 0.0116 & 0.0120 & 0.0116 & 0.0115 & 0.0108 \\ {\rm GAA} & 0.0195 & 0.0103 & 0.0086 & 0.0087 & 0.0088 & 0.0096 \\ {\rm TGA} & 0.0261 & 0.0124 & 0.0126 & 0.0116 & 0.0116 & 0.0119 \\ {\rm CGA} & 0.0087 & 0.0107 & 0.0110 & 0.0099 & 0.0099 & 0.0098 \\ {\rm TGG} & 0.0022 & 0.0200 & 0.0211 & 0.0208 & 0.0206 & 0.0200 \\ {\rm CTG} & 0.0086 & 0.0200 & 0.0214 & 0.0208 & 0.0206 & 0.0200 \\ {\rm CTG} & 0.0086 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ {\rm ATG} & 0.0022 & 0.0187 & 0.0188 & 0.0188 & 0.0188 & 0.0184 \\ {\rm GTG} & 0.0022 & 0.0187 & 0.0188 & 0.0185 & 0.0184 & 0.0186 \\ {\rm CCG} & 0.0000 & 0.0196 & 0.0209 & 0.0204 & 0.0202 & 0.0195 \\ {\rm ACG} & 0.0021 & 0.0191 & 0.0191 & 0.0204 & 0.0202 & 0.0195 \\ {\rm ACG} & 0.0021 & 0.0196 & 0.0209 & 0.0204 & 0.0202 & 0.0195 \\ {\rm ACG} & 0.0021 & 0.0196 & 0.0209 & 0.0204 & 0.0202 & 0.0195 \\ {\rm ACG} & 0.0022 & 0.0167 & 0.0145 & 0.0159 & 0.0161 & 0.0186 \\ {\rm CCG} & 0.0000 & 0.0157 & 0.0145 & 0.0159 & 0.0161 & 0.0186 \\ {\rm CAG} & 0.0022 & 0.0116 & 0.0191 & 0.0204 & 0.0205 & 0.0203 \\ {\rm GCG} & 0.0000 & 0.0157 & 0.0145 & 0.0159 & 0.0161 & 0.0168 \\ {\rm CAG} & 0.0022 & 0.0116 & 0.0120 & 0.0116 & 0.0115 & 0.0108 \\ {\rm CAG} & 0.0022 & 0.0116 & 0.0120 & 0.0116 & 0.0115 & 0.0108 \\ {\rm CAG} & 0.0002 & 0.0103 & 0.0086 & 0.0087 & 0.0088 & 0.0096 \\ {\rm TGG} & 0.0002 & 0.0103 & 0.0086 & 0.0087 & 0.0088 & 0.0096 \\ {\rm TGG} & 0.0000 & 0.0107 & 0.0110 & 0.0099 & 0.0099 & 0.0102 \\ {\rm GGG} & 0.0046 & 0.0095 & 0.0097 & 0.0084 & 0.0088 & 0.0096 \\ {\rm TGG} & 0.0002 & 0.0107 & 0.0110 & 0.0085 & 0.0086 & 0.0088 \\ {\rm CAG} & 0.0000 & 0.0107 & 0.0110 & 0.0088 & 0.0096 \\ {\rm TGG} & 0.0046 & 0.0085 & 0.0085 & 0.0086 & 0.0088 \\ {\rm CAG} & 0.0046 & 0.0085 & 0.0088 & 0.0086 \\ {\rm CAG} & 0.0046 & 0.0085 & 0.0088 & 0.0086 \\ {\rm CAG} & 0.0046 & 0.0085 & 0.0088 \\ {\rm$                                                                                                                                                                                | TCA        | 0.0218 | 0.0187       | 0.0188        | 0.0185     | 0.0184  | 0.0186  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCA        | 0.0131 | 0.0196       | 0.0209        | 0.0204     | 0.0202  | 0.0195  |
| $ \begin{array}{ccccccc} {\rm GCA} & 0.0174 & 0.0157 & 0.0145 & 0.0159 & 0.0161 & 0.0168 \\ {\rm CAA} & 0.0196 & 0.0088 & 0.0091 & 0.0078 & 0.0077 & 0.0082 \\ {\rm AAA} & 0.0219 & 0.0116 & 0.0120 & 0.0116 & 0.0115 & 0.0108 \\ {\rm GAA} & 0.0219 & 0.0103 & 0.0086 & 0.0087 & 0.0088 & 0.0096 \\ {\rm TGA} & 0.0261 & 0.0124 & 0.0126 & 0.0116 & 0.0116 & 0.0119 \\ {\rm CGA} & 0.0087 & 0.0107 & 0.0110 & 0.0099 & 0.0099 & 0.0102 \\ {\rm GGA} & 0.0087 & 0.0085 & 0.0084 & 0.0085 & 0.00866 & 0.0088 \\ {\rm TTG} & 0.0022 & 0.0200 & 0.0211 & 0.0208 & 0.0206 & 0.0200 \\ {\rm CTG} & 0.0086 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ {\rm CTG} & 0.0086 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ {\rm ATG} & 0.0065 & 0.0172 & 0.0176 & 0.0188 & 0.0188 & 0.0184 \\ {\rm GTG} & 0.0022 & 0.0169 & 0.0153 & 0.0168 & 0.0171 & 0.0180 \\ {\rm TCG} & 0.0022 & 0.0196 & 0.0209 & 0.0204 & 0.0202 & 0.0195 \\ {\rm ACG} & 0.0001 & 0.0196 & 0.0209 & 0.0204 & 0.0202 & 0.0195 \\ {\rm ACG} & 0.0021 & 0.0196 & 0.0209 & 0.0204 & 0.0205 & 0.0203 \\ {\rm GCG} & 0.0000 & 0.0196 & 0.0209 & 0.0204 & 0.0205 & 0.0203 \\ {\rm GCG} & 0.0002 & 0.0157 & 0.0145 & 0.0159 & 0.0161 & 0.0168 \\ {\rm CAG} & 0.0022 & 0.0161 & 0.0145 & 0.0159 & 0.0161 & 0.0168 \\ {\rm CAG} & 0.0022 & 0.0195 & 0.0097 & 0.0084 & 0.0083 & 0.0090 \\ {\rm AAG} & 0.0022 & 0.0116 & 0.0120 & 0.0116 & 0.0115 & 0.0108 \\ {\rm GAG} & 0.0000 & 0.0103 & 0.0086 & 0.0087 & 0.0088 & 0.0096 \\ {\rm TGG} & 0.0022 & 0.0124 & 0.0126 & 0.0116 & 0.0116 & 0.0119 \\ {\rm CGG} & 0.0000 & 0.0107 & 0.0110 & 0.0099 & 0.0099 & 0.0096 \\ {\rm TGG} & 0.0046 & 0.0095 & 0.0084 & 0.0085 & 0.0088 & 0.0088 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACA        | 0.0480 | 0.0191       | 0.0191        | 0.0204     | 0.0205  | 0.0203  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GCA        | 0.0174 | 0.0157       | 0.0145        | 0.0159     | 0.0161  | 0.0168  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CAA        | 0.0196 | 0.0088       | 0.0091        | 0.0078     | 0.0077  | 0.0082  |
| $ \begin{array}{ccccccc} {\rm GAA} & 0.0195 & 0.0103 & 0.0086 & 0.0087 & 0.0088 & 0.0096 \\ {\rm TGA} & 0.0261 & 0.0124 & 0.0126 & 0.0116 & 0.0116 & 0.0119 \\ {\rm CGA} & 0.0087 & 0.0107 & 0.0110 & 0.0099 & 0.0099 & 0.0102 \\ {\rm GGA} & 0.0087 & 0.0200 & 0.0211 & 0.0208 & 0.0206 & 0.0200 \\ {\rm CTG} & 0.0086 & 0.0200 & 0.0211 & 0.0209 & 0.0206 & 0.0200 \\ {\rm CTG} & 0.0086 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ {\rm ATG} & 0.0065 & 0.0172 & 0.0176 & 0.0188 & 0.0188 & 0.0184 \\ {\rm GTG} & 0.0022 & 0.0169 & 0.0153 & 0.0188 & 0.0188 & 0.0184 \\ {\rm GTG} & 0.0022 & 0.0187 & 0.0188 & 0.0185 & 0.0184 & 0.0186 \\ {\rm CCG} & 0.0000 & 0.0196 & 0.0209 & 0.0204 & 0.0202 & 0.0195 \\ {\rm ACG} & 0.0021 & 0.0196 & 0.0209 & 0.0204 & 0.0202 & 0.0195 \\ {\rm ACG} & 0.0021 & 0.0196 & 0.0209 & 0.0204 & 0.0205 & 0.0203 \\ {\rm GCG} & 0.0000 & 0.0157 & 0.0145 & 0.0159 & 0.0161 & 0.0168 \\ {\rm CAG} & 0.0022 & 0.0095 & 0.0097 & 0.0084 & 0.0083 & 0.0090 \\ {\rm AAG} & 0.0022 & 0.0116 & 0.0120 & 0.0116 & 0.0115 & 0.0108 \\ {\rm GAG} & 0.0000 & 0.0103 & 0.0086 & 0.0087 & 0.0088 & 0.0096 \\ {\rm TGG} & 0.0022 & 0.0124 & 0.0126 & 0.0116 & 0.0116 & 0.0119 \\ {\rm CGG} & 0.0000 & 0.0107 & 0.0110 & 0.0099 & 0.0099 & 0.0096 \\ {\rm TGG} & 0.0000 & 0.0107 & 0.0110 & 0.0085 & 0.0088 & 0.0088 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AAA        | 0.0219 | 0.0116       | 0.0120        | 0.0116     | 0.0115  | 0.0108  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GAA        | 0.0195 | 0.0103       | 0.0086        | 0.0087     | 0.0088  | 0.0096  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TGA        | 0.0261 | 0.0124       | 0.0126        | 0.0116     | 0.0116  | 0.0119  |
| $ \begin{array}{ccccccc} {\rm GGA} & 0.0107 & 0.0095 & 0.0084 & 0.0085 & 0.0086 & 0.0088 \\ {\rm TTG} & 0.0022 & 0.0200 & 0.0211 & 0.0208 & 0.0206 & 0.0200 \\ {\rm CTG} & 0.0086 & 0.0200 & 0.0214 & 0.0209 & 0.0206 & 0.0200 \\ {\rm ATG} & 0.0065 & 0.0172 & 0.0176 & 0.0188 & 0.0188 & 0.0184 \\ {\rm GTG} & 0.0022 & 0.0169 & 0.0153 & 0.0168 & 0.0171 & 0.0180 \\ {\rm TCG} & 0.0022 & 0.0187 & 0.0188 & 0.0185 & 0.0184 & 0.0186 \\ {\rm CCG} & 0.0000 & 0.0196 & 0.0209 & 0.0204 & 0.0202 & 0.0195 \\ {\rm ACG} & 0.0021 & 0.0191 & 0.0191 & 0.0204 & 0.0205 & 0.0203 \\ {\rm GCG} & 0.0000 & 0.0157 & 0.0145 & 0.0159 & 0.0161 & 0.0168 \\ {\rm CAG} & 0.0022 & 0.0095 & 0.0097 & 0.0084 & 0.0083 & 0.0090 \\ {\rm AAG} & 0.0022 & 0.0116 & 0.0120 & 0.0116 & 0.0115 & 0.0108 \\ {\rm GAG} & 0.0000 & 0.0103 & 0.0086 & 0.0087 & 0.0088 & 0.0096 \\ {\rm TGG} & 0.0022 & 0.0124 & 0.0126 & 0.0116 & 0.0116 & 0.0119 \\ {\rm CGG} & 0.0000 & 0.0107 & 0.0110 & 0.0099 & 0.0099 & 0.0092 \\ {\rm GGG} & 0.0000 & 0.0107 & 0.0184 & 0.0085 & 0.0088 \\ {\rm 0.0088} & 0.0088 & 0.0088 & 0.0088 \\ {\rm 0.0088} & 0.0088 \\ {\rm 0.0$                                                                                            | CGA        | 0.0087 | 0.0107       | 0.0110        | 0.0099     | 0.0099  | 0.0102  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GGA        | 0.0107 | 0.0095       | 0.0084        | 0.0085     | 0.0086  | 0.0088  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TTG        | 0.0022 | 0.0200       | 0.0211        | 0.0208     | 0.0206  | 0.0200  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CTG        | 0.0086 | 0.0200       | 0.0214        | 0.0209     | 0.0206  | 0.0200  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATG        | 0.0065 | 0.0172       | 0.0176        | 0.0188     | 0.0188  | 0.0184  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GTG        | 0.0022 | 0.0169       | 0.0153        | 0.0168     | 0.0171  | 0.0180  |
| $\begin{array}{ccccccc} {\rm CCG} & 0.0000 & 0.0196 & 0.0209 & 0.0204 & 0.0202 & 0.0195 \\ {\rm ACG} & 0.0021 & 0.0191 & 0.0191 & 0.0204 & 0.0205 & 0.0203 \\ {\rm GCG} & 0.0000 & 0.0157 & 0.0145 & 0.0159 & 0.0161 & 0.0168 \\ {\rm CAG} & 0.0022 & 0.0095 & 0.0097 & 0.0084 & 0.0083 & 0.0090 \\ {\rm AAG} & 0.0022 & 0.0116 & 0.0120 & 0.0116 & 0.0115 & 0.0108 \\ {\rm GAG} & 0.0000 & 0.0103 & 0.0086 & 0.0087 & 0.0088 & 0.0096 \\ {\rm TGG} & 0.0022 & 0.0124 & 0.0126 & 0.0116 & 0.0116 & 0.0119 \\ {\rm CGG} & 0.0000 & 0.0107 & 0.0110 & 0.0099 & 0.0099 & 0.0028 \\ {\rm GGG} & 0.0046 & 0.0095 & 0.0084 & 0.0085 & 0.0088 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TCG        | 0.0022 | 0.0187       | 0.0188        | 0.0185     | 0.0184  | 0.0186  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCG        | 0.0000 | 0.0196       | 0.0209        | 0.0204     | 0.0202  | 0.0195  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ACG        | 0.0021 | 0.0191       | 0.0191        | 0.0204     | 0.0205  | 0.0203  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GCG        | 0.0000 | 0.0157       | 0.0145        | 0.0159     | 0.0161  | 0.0168  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CAG        | 0.0022 | 0.0095       | 0.0097        | 0.0084     | 0.0083  | 0.0090  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AAG        | 0.0022 | 0.0116       | 0.0120        | 0.0116     | 0.0115  | 0.0108  |
| TGG         0.0022         0.0124         0.0126         0.0116         0.0116         0.0119           CGG         0.0000         0.0107         0.0110         0.0099         0.0099         0.0102           GGG         0.0046         0.095         0.0084         0.0085         0.0086         0.0088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GAG        | 0.0000 | 0.0103       | 0.0086        | 0.0087     | 0.0088  | 0.0096  |
| CGG         0.0000         0.0107         0.0110         0.0099         0.0099         0.0102           GGG         0.0046         0.0095         0.0084         0.0085         0.0086         0.0088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TGG        | 0.0022 | 0.0124       | 0.0126        | 0.0116     | 0.0116  | 0.0119  |
| GGG 0.0046 0.0095 0.0084 0.0085 0.0086 0.0088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CGG        | 0.0000 | 0.0107       | 0.0110        | 0.0099     | 0.0099  | 0.0102  |
| 0.0000 0.0000 0.0000 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GGG        | 0.0046 | 0.0095       | 0.0084        | 0.0085     | 0.0086  | 0.0088  |
Tabela 7.5: Probabilidades Estimadas dos Modelos Binomiais Multivariados com Função de Ligação Log-Log Complementar

|       |        | Modelo       | Modelo        | Estrutura  | Modelo  | Modelo  |
|-------|--------|--------------|---------------|------------|---------|---------|
| Codon | Obs.   | Independente | Ig. Preditivo | Markoviana | Aditivo | Bahadur |
| TTT   | 0.0196 | 0.0309       | 0.0295        | 0.0306     | 0.0298  | 0.0297  |
| CTT   | 0.0219 | 0.0338       | 0.0320        | 0.0346     | 0.0329  | 0.0326  |
| ATT   | 0.0349 | 0.0250       | 0.0266        | 0.0238     | 0.0249  | 0.0255  |
| GTT   | 0.0000 | 0.0240       | 0.0254        | 0.0226     | 0.0237  | 0.0244  |
| TCT   | 0.0109 | 0.0290       | 0.0280        | 0.0280     | 0.0278  | 0.0278  |
| CCT   | 0.0055 | 0.0227       | 0.0196        | 0.0216     | 0.0202  | 0.0214  |
| ACT   | 0.0174 | 0.0199       | 0.0203        | 0.0178     | 0.0187  | 0.0202  |
| GCT   | 0.0131 | 0.0261       | 0.0273        | 0.0250     | 0.0258  | 0.0266  |
| TAT   | 0.0045 | 0.0080       | 0.0075        | 0.0079     | 0.0075  | 0.0088  |
| CAT   | 0.0022 | 0.0086       | 0.0091        | 0.0101     | 0.0099  | 0.0094  |
| CAT   | 0.0027 | 0.0148       | 0.0157        | 0.0167     | 0.0171  | 0.0145  |
| GAI   | 0.0000 | 0.0097       | 0.0089        | 0.0098     | 0.0090  | 0.0095  |
| CCT   | 0.0022 | 0.0103       | 0.0094        | 0.0100     | 0.0092  | 0.0107  |
| AGT   | 0.0000 | 0.0098       | 0.0111        | 0.0115     | 0.0117  | 0.0107  |
| CCT   | 0.0044 | 0.0122       | 0.0135        | 0.0143     | 0.0104  | 0.0120  |
| TTC   | 0.022  | 0.0309       | 0.0095        | 0.0306     | 0.0298  | 0.0098  |
| CTC   | 0.0674 | 0.0338       | 0.0320        | 0.0346     | 0.0329  | 0.0326  |
| ATC   | 0.0501 | 0.0250       | 0.0266        | 0.0238     | 0.0249  | 0.0255  |
| GTC   | 0.0087 | 0.0240       | 0.0254        | 0.0226     | 0.0237  | 0.0244  |
| TCC   | 0.0370 | 0.0290       | 0.0280        | 0.0280     | 0.0278  | 0.0278  |
| CCC   | 0.0316 | 0.0227       | 0.0196        | 0.0216     | 0.0202  | 0.0214  |
| ACC   | 0.0371 | 0.0199       | 0.0203        | 0.0178     | 0.0187  | 0.0202  |
| GCC   | 0.0261 | 0.0261       | 0.0273        | 0.0250     | 0.0258  | 0.0266  |
| TAC   | 0.0238 | 0.0080       | 0.0075        | 0.0078     | 0.0075  | 0.0088  |
| CAC   | 0.0266 | 0.0086       | 0.0091        | 0.0101     | 0.0099  | 0.0094  |
| AAC   | 0.0474 | 0.0148       | 0.0157        | 0.0167     | 0.0171  | 0.0145  |
| GAC   | 0.0065 | 0.0097       | 0.0089        | 0.0098     | 0.0096  | 0.0095  |
| TGC   | 0.0044 | 0.0103       | 0.0094        | 0.0100     | 0.0092  | 0.0107  |
| CGC   | 0.0105 | 0.0098       | 0.0111        | 0.0115     | 0.0117  | 0.0107  |
| AGC   | 0.0174 | 0.0122       | 0.0138        | 0.0143     | 0.0154  | 0.0120  |
| GGC   | 0.0196 | 0.0101       | 0.0095        | 0.0101     | 0.0101  | 0.0098  |
| TTA   | 0.0173 | 0.0178       | 0.0186        | 0.0186     | 0.0196  | 0.0193  |
| CTA   | 0.0918 | 0.0178       | 0.0187        | 0.0187     | 0.0198  | 0.0192  |
| ATA   | 0.0523 | 0.0181       | 0.0183        | 0.0195     | 0.0189  | 0.0174  |
| GTA   | 0.0174 | 0.0184       | 0.0178        | 0.0191     | 0.0181  | 0.0177  |
| TCA   | 0.0218 | 0.0176       | 0.0184        | 0.0183     | 0.0193  | 0.0191  |
| ACA   | 0.0131 | 0.0100       | 0.0169        | 0.0172     | 0.0180  | 0.0181  |
| CCA   | 0.0480 | 0.0240       | 0.0251        | 0.0203     | 0.0200  | 0.0235  |
| GCA   | 0.0174 | 0.0134       | 0.0120        | 0.0132     | 0.0123  | 0.0127  |
|       | 0.0190 | 0.0110       | 0.0128        | 0.0101     | 0.0107  | 0.0104  |
| GAA   | 0.0195 | 0.0120       | 0.0095        | 0.0097     | 0.0090  | 0.0117  |
| TGA   | 0.0261 | 0.0089       | 0.0096        | 0.0081     | 0.0083  | 0.0076  |
| CGA   | 0.0087 | 0.0118       | 0.0128        | 0.0103     | 0.0108  | 0.0106  |
| GGA   | 0.0107 | 0.0051       | 0.0036        | 0.0039     | 0.0035  | 0.0056  |
| TTG   | 0.0022 | 0.0178       | 0.0186        | 0.0186     | 0.0196  | 0.0193  |
| CTG   | 0.0086 | 0.0178       | 0.0187        | 0.0187     | 0.0198  | 0.0192  |
| ATG   | 0.0065 | 0.0181       | 0.0183        | 0.0195     | 0.0189  | 0.0174  |
| GTG   | 0.0022 | 0.0184       | 0.0178        | 0.0191     | 0.0181  | 0.0177  |
| TCG   | 0.0022 | 0.0176       | 0.0184        | 0.0183     | 0.0193  | 0.0191  |
| CCG   | 0.0000 | 0.0165       | 0.0169        | 0.0172     | 0.0180  | 0.0181  |
| ACG   | 0.0021 | 0.0240       | 0.0251        | 0.0263     | 0.0253  | 0.0235  |
| GCG   | 0.0000 | 0.0134       | 0.0120        | 0.0132     | 0.0123  | 0.0127  |
| CAG   | 0.0022 | 0.0122       | 0.0126        | 0.0104     | 0.0108  | 0.0112  |
| AAG   | 0.0022 | 0.0128       | 0.0124        | 0.0124     | 0.0122  | 0.0132  |
| GAG   | 0.0000 | 0.0112       | 0.0095        | 0.0097     | 0.0090  | 0.0117  |
| TGG   | 0.0022 | 0.0089       | 0.0096        | 0.0081     | 0.0083  | 0.0076  |
| CGG   | 0.0000 | 0.0118       | 0.0128        | 0.0103     | 0.0108  | 0.0106  |
| GGG   | 0.0046 | 0.0051       | 0.0036        | 0.0039     | 0.0035  | 0.0056  |

Tabela 7.6: Probabilidades Estimadas dos Modelos Multinomiais Multivariados Logísticos Regressivos

| - C(1) | 01     | Modelo       | Modelo        | Estrutura  | Modelo  |
|--------|--------|--------------|---------------|------------|---------|
| Códon  | Obs.   | Independente | Ig. Preditivo | Markoviana | Aditivo |
| TTT    | 0.0106 | 0.0118       | 0.0115        | 0.0171     | 0.0120  |
|        | 0.0190 | 0.0118       | 0.0115        | 0.0171     | 0.0130  |
|        | 0.0219 | 0.0164       | 0.0209        | 0.0291     | 0.0233  |
| AII    | 0.0349 | 0.0215       | 0.0159        | 0.0255     | 0.0349  |
| GTT    | 0.0000 | 0.0087       | 0.0023        | 0.0052     | 0.0047  |
| TCT    | 0.0109 | 0.0085       | 0.0115        | 0.0168     | 0.0141  |
| CCT    | 0.0055 | 0.0123       | 0.0177        | 0.0068     | 0.0052  |
| ACT    | 0.0174 | 0.0143       | 0.0172        | 0.0136     | 0.0190  |
| GCT    | 0.0131 | 0.0051       | 0.0043        | 0.0080     | 0.0081  |
| TAT    | 0.0045 | 0.0065       | 0.0072        | 0.0058     | 0.0043  |
| CAT    | 0.0022 | 0.0086       | 0.0081        | 0.0007     | 0.0005  |
| AAT    | 0.0027 | 0.0093       | 0.0076        | 0.0023     | 0.0035  |
| GAT    | 0.0000 | 0.0034       | 0.0019        | 0.0013     | 0.0013  |
| TGT    | 0.0022 | 0.0015       | 0.0022        | 0.0071     | 0.0058  |
| CGT    | 0.0000 | 0.0059       | 0.0033        | 0.0005     | 0.0004  |
| AGT    | 0.0044 | 0.0059       | 0.0028        | 0.0017     | 0.0025  |
| GGT    | 0.0022 | 0.0023       | 0.0007        | 0.0008     | 0.0008  |
| TTC    | 0.0240 | 0.0391       | 0.0378        | 0.0268     | 0.0282  |
| CTC    | 0.0674 | 0.0555       | 0.0660        | 0.0760     | 0.0791  |
| ATC    | 0.0501 | 0.0645       | 0.0616        | 0.0531     | 0.0486  |
| GTC    | 0.0087 | 0.0247       | 0.0010        | 0.0120     | 0.0400  |
| TCC    | 0.0370 | 0.0280       | 0.0226        | 0.0220     | 0.0236  |
| CCC    | 0.0316 | 0.0266       | 0.0254        | 0.0220     | 0.0230  |
| 100    | 0.0310 | 0.0300       | 0.0234        | 0.0199     | 0.0194  |
| ACC    | 0.0371 | 0.0348       | 0.0410        | 0.0343     | 0.0552  |
| GUU    | 0.0261 | 0.0173       | 0.0230        | 0.0200     | 0.0198  |
| TAC    | 0.0238 | 0.0193       | 0.0188        | 0.0300     | 0.0322  |
| CAC    | 0.0266 | 0.0200       | 0.0173        | 0.0223     | 0.0233  |
| AAC    | 0.0474 | 0.0282       | 0.0302        | 0.0319     | 0.0310  |
| GAC    | 0.0065 | 0.0124       | 0.0161        | 0.0135     | 0.0127  |
| TGC    | 0.0044 | 0.0097       | 0.0136        | 0.0075     | 0.0055  |
| CGC    | 0.0105 | 0.0147       | 0.0124        | 0.0128     | 0.0139  |
| AGC    | 0.0174 | 0.0246       | 0.0243        | 0.0186     | 0.0177  |
| GGC    | 0.0196 | 0.0084       | 0.0120        | 0.0170     | 0.0177  |
| TTA    | 0.0173 | 0.0311       | 0.0305        | 0.0208     | 0.0219  |
| CTA    | 0.0918 | 0.0535       | 0.0648        | 0.0779     | 0.0810  |
| ATA    | 0.0523 | 0.0605       | 0.0596        | 0.0564     | 0.0513  |
| GTA    | 0.0174 | 0.0236       | 0.0155        | 0.0113     | 0.0116  |
| TCA    | 0.0218 | 0.0258       | 0.0220        | 0.0225     | 0.0244  |
| CCA    | 0.0131 | 0.0352       | 0.0250        | 0.0204     | 0.0199  |
| ACA    | 0.0480 | 0.0372       | 0.0409        | 0.0476     | 0.0459  |
| GCA    | 0.0174 | 0.0168       | 0.0228        | 0.0210     | 0.0208  |
| CAA    | 0.0196 | 0.0230       | 0.0190        | 0.0203     | 0.0204  |
| AAA    | 0.0219 | 0.0312       | 0.0314        | 0.0263     | 0.0253  |
| GAA    | 0.0195 | 0.0111       | 0.0158        | 0.0182     | 0.0186  |
| TGA    | 0.0261 | 0.0116       | 0.0138        | 0.0189     | 0.0202  |
| CGA    | 0.0087 | 0.0159       | 0.0128        | 0.0102     | 0.0109  |
| GGA    | 0.0107 | 0.0087       | 0.0117        | 0.0135     | 0.0136  |
| TTG    | 0.0022 | 0.0028       | 0.0028        | 0.0019     | 0.0100  |
| CTC    | 0.0086 | 0.0049       | 0.0020        | 0.0070     | 0.0020  |
| ATC    | 0.0065 | 0.0045       | 0.0054        | 0.0051     | 0.0075  |
| GTG    | 0.0000 | 0.0000       | 0.0034        | 0.0031     | 0.0040  |
| TCC    | 0.0022 | 0.0022       | 0.0014        | 0.0010     | 0.0010  |
| CCC    | 0.0022 | 0.0024       | 0.0020        | 0.0020     | 0.0022  |
| ACC    | 0.0000 | 0.0034       | 0.0025        | 0.0018     | 0.0018  |
| ACG    | 0.0021 | 0.0034       | 0.0037        | 0.0043     | 0.0041  |
| GUG    | 0.0000 | 0.0015       | 0.0021        | 0.0019     | 0.0019  |
| CAG    | 0.0022 | 0.0019       | 0.0016        | 0.0020     | 0.0021  |
| AAG    | 0.0022 | 0.0028       | 0.0029        | 0.0024     | 0.0023  |
| GAG    | 0.0000 | 0.0010       | 0.0014        | 0.0017     | 0.0017  |
| TGG    | 0.0022 | 0.0011       | 0.0013        | 0.0017     | 0.0018  |
| CGG    | 0.0000 | 0.0015       | 0.0012        | 0.0009     | 0.0010  |
| GGG    | 0.0046 | 0.0008       | 0.0011        | 0.0012     | 0.0012  |

Tabela 7.7: Probabilidades Estimadas dos Modelos Multinomiais Multivariados Baseados na Representação de Bahadur

| Cádon   | Obe     | Locação | Transição | Semi-Locação | Locação     |
|---------|---------|---------|-----------|--------------|-------------|
| Codon   | Obs.    | Locação | Transição | e Transição  | e Transição |
| TTT     | 0.0196  | 0.0135  | 0.0120    | 0.0143       | 0.0138      |
| CTT     | 0.0219  | 0.0188  | 0.0242    | 0.0184       | 0.0224      |
| ATT     | 0.0349  | 0.0244  | 0.0202    | 0.0224       | 0.0254      |
| GTT     | 0.0000  | 0.0099  | 0.0008    | 0.0000       | 0.0049      |
| TCT     | 0.0109  | 0.0097  | 0.0101    | 0.0136       | 0.0106      |
| CCT     | 0.0055  | 0.0108  | 0.0169    | 0.0123       | 0.0067      |
| ACT     | 0.0174  | 0.0123  | 0.0198    | 0.0120       | 0.0174      |
| GCT     | 0.0131  | 0.0041  | 0.0045    | 0.0051       | 0.0052      |
| TAT     | 0.0045  | 0.0073  | 0.0067    | 0.0073       | 0.0050      |
| CAT     | 0.0040  | 0.0069  | 0.0001    | 0.0024       | 0.0029      |
| AAT     | 0.0022  | 0.0079  | 0.0076    | 0.0095       | 0.0049      |
| GAT     | 0.00021 | 0.0075  | 0.0076    | 0.0010       | 0.0034      |
| TGT     | 0.0000  | 0.0017  | 0.0020    | 0.0015       | 0.0014      |
| CGT     | 0.00022 | 0.0015  | 0.0000    | 0.0000       | 0.00014     |
| AGT     | 0.0000  | 0.0045  | 0.0031    | 0.0000       | 0.0054      |
| CCT     | 0.0044  | 0.0016  | 0.0024    | 0.0013       | 0.0019      |
| TTC     | 0.0022  | 0.0010  | 0.0007    | 0.0013       | 0.0015      |
| CTC     | 0.0240  | 0.0567  | 0.0650    | 0.0738       | 0.0763      |
| ATC     | 0.0501  | 0.0556  | 0.0050    | 0.0497       | 0.0703      |
| GTC     | 0.0301  | 0.0050  | 0.0303    | 0.0497       | 0.0495      |
| TCC     | 0.0007  | 0.0203  | 0.0134    | 0.0215       | 0.0070      |
| CCC     | 0.0370  | 0.0297  | 0.0244    | 0.0213       | 0.0209      |
| 100     | 0.0310  | 0.0303  | 0.0300    | 0.0211       | 0.0207      |
| ACC     | 0.0371  | 0.0340  | 0.0372    | 0.0404       | 0.0342      |
| TAC     | 0.0201  | 0.0107  | 0.0200    | 0.0185       | 0.0157      |
| CAC     | 0.0238  | 0.0212  | 0.0243    | 0.0242       | 0.0200      |
| AAC     | 0.0200  | 0.0190  | 0.0210    | 0.0211       | 0.0230      |
| CAC     | 0.0474  | 0.0279  | 0.0291    | 0.0351       | 0.0233      |
| GAC     | 0.0005  | 0.0118  | 0.0190    | 0.0158       | 0.0179      |
| CCC     | 0.0044  | 0.0100  | 0.0101    | 0.0114       | 0.0108      |
| ACC     | 0.0105  | 0.0144  | 0.0124    | 0.0125       | 0.0130      |
| AGC     | 0.0174  | 0.0244  | 0.0221    | 0.0224       | 0.0282      |
| TTA GGC | 0.0190  | 0.0079  | 0.0110    | 0.0138       | 0.0104      |
| CTA     | 0.0173  | 0.0202  | 0.0322    | 0.0308       | 0.0203      |
| ATA     | 0.0918  | 0.0545  | 0.0054    | 0.0744       | 0.0007      |
| CTA     | 0.0525  | 0.0014  | 0.0051    | 0.0001       | 0.0382      |
| GIA     | 0.0174  | 0.0256  | 0.0162    | 0.0221       | 0.0182      |
| CCA     | 0.0218  | 0.0272  | 0.0230    | 0.0217       | 0.0237      |
| ACA     | 0.0131  | 0.0350  | 0.0268    | 0.0257       | 0.0148      |
| ACA     | 0.0480  | 0.0370  | 0.0444    | 0.0436       | 0.0374      |
| GCA     | 0.0174  | 0.0163  | 0.0194    | 0.0232       | 0.0201      |
| CAA     | 0.0196  | 0.0227  | 0.0149    | 0.0157       | 0.0194      |
| CAA     | 0.0219  | 0.0310  | 0.0200    | 0.0284       | 0.0203      |
| GAA     | 0.0195  | 0.0106  | 0.0139    | 0.0141       | 0.0198      |
| TGA     | 0.0261  | 0.0130  | 0.0133    | 0.0128       | 0.0120      |
| CGA     | 0.0087  | 0.0156  | 0.0136    | 0.0104       | 0.0077      |
| GGA     | 0.0107  | 0.0082  | 0.0122    | 0.0151       | 0.0121      |
| and     | 0.0022  | 0.0010  | 0.0036    | 0.0042       | 0.0041      |
| ATTG    | 0.0086  | 0.0040  | 0.0046    | 0.0081       | 0.0078      |
| ATG     | 0.0065  | 0.0045  | 0.0056    | 0.0063       | 0.0076      |
| GTG     | 0.0022  | 0.0022  | 0.0033    | 0.0012       | 0.0009      |
| TCG     | 0.0022  | 0.0022  | 0.0015    | 0.0009       | 0.0019      |
| CCG     | 0.0000  | 0.0038  | 0.0000    | 0.0000       | 0.0000      |
| ACG     | 0.0021  | 0.0040  | 0.0021    | 0.0014       | 0.0021      |
| GCG     | 0.0000  | 0.0019  | 0.0023    | 0.0000       | 0.0002      |
| CAG     | 0.0022  | 0.0024  | 0.0005    | 0.0007       | 0.0016      |
| AAG     | 0.0022  | 0.0034  | 0.0020    | 0.0019       | 0.0028      |
| GAG     | 0.0000  | 0.0013  | 0.0021    | 0.0004       | 0.0012      |
| TGG     | 0.0022  | 0.0012  | 0.0021    | 0.0028       | 0.0012      |
| CGG     | 0.0000  | 0.0019  | 0.0018    | 0.0030       | 0.0004      |
| GGG     | 0.0046  | 0.0010  | 0.0023    | 0.0019       | 0.0005      |

## Apêndice 3

## Parâmetros Estimados dos Modelos

Tabela 7.8: Parâmetros Estimados dos Modelos Logístico Regressivos Independentes Binomiais Multivariados

|            | Fı      | ınção de I | Ligação    |
|------------|---------|------------|------------|
|            | Logito  | Probito    | Log-Log C. |
| $\alpha_1$ | 3.3377  | 0.2374     | 2.0525     |
| $\alpha_2$ | 2.6802  | -0.2594    | 1.5797     |
| $\alpha_3$ | 2.9428  | 0.0899     | 1.7494     |
| $\beta_1$  | 0.0200  | 0.0120     | 0.0133     |
| $\beta_2$  | -0.4839 | -0.1000    | -0.3450    |
| $\beta_3$  | 0.1044  | 0.0742     | 0.0725     |
|            |         |            |            |

Tabela 7.9: Parâmetros Estimados dos Modelos Logístico Regressivos Igualmente Preditivos Binomiais Multivariados

|            | Fı      | Função de Ligação |            |  |  |  |  |  |  |  |  |
|------------|---------|-------------------|------------|--|--|--|--|--|--|--|--|
|            | Logito  | Probito           | Log-Log C. |  |  |  |  |  |  |  |  |
| $\alpha_1$ | 3.8215  | 0.0493            | 2.5199     |  |  |  |  |  |  |  |  |
| $\alpha_2$ | 3.3575  | -0.3863           | 2.2098     |  |  |  |  |  |  |  |  |
| $\alpha_3$ | 3.6007  | 0.0185            | 2.3471     |  |  |  |  |  |  |  |  |
| $\gamma$   | -0.2573 | -0.1425           | -0.2026    |  |  |  |  |  |  |  |  |
| $\beta_1$  | 0.0218  | 0.0114            | 0.0145     |  |  |  |  |  |  |  |  |
| $\beta_2$  | -0.5523 | -0.0812           | -0.4069    |  |  |  |  |  |  |  |  |
| $\beta_3$  | 0.1928  | 0.1529            | 0.1314     |  |  |  |  |  |  |  |  |

|            | Fı      | Função de Ligação |            |  |  |  |  |  |  |  |  |
|------------|---------|-------------------|------------|--|--|--|--|--|--|--|--|
|            | Logito  | Probito           | Log-Log C. |  |  |  |  |  |  |  |  |
| $\alpha_1$ | 3.6622  | 0.0472            | 2.3608     |  |  |  |  |  |  |  |  |
| $\alpha_2$ | 3.0506  | -0.3989           | 1.9432     |  |  |  |  |  |  |  |  |
| $\alpha_3$ | 3.3967  | -0.0202           | 2.1459     |  |  |  |  |  |  |  |  |
| $\gamma_1$ | -0.0815 | -0.1275           | -0.0621    |  |  |  |  |  |  |  |  |
| $\gamma_2$ | -0.5309 | -0.2456           | -0.3663    |  |  |  |  |  |  |  |  |
| $\beta_1$  | 0.0239  | 0.0134            | 0.0160     |  |  |  |  |  |  |  |  |
| $\beta_2$  | -0.5470 | -0.0919           | -0.3982    |  |  |  |  |  |  |  |  |
| $\beta_3$  | 0.2060  | 0.1426            | 0.1289     |  |  |  |  |  |  |  |  |

Tabela 7.10: Parâmetros Estimados dos Modelos Logístico Regressivos com Estrutura Markoviana de Primeira Ordem Binomiais Multivariados

Tabela 7.11: Parâmetros Estimados dos Modelos Logístico Regressivos Aditivos Binomiais Multivariados

|            | Fı      | Função de Ligação |            |  |  |  |  |  |  |  |  |
|------------|---------|-------------------|------------|--|--|--|--|--|--|--|--|
|            | Logito  | Probito           | Log-Log C. |  |  |  |  |  |  |  |  |
| $\alpha_1$ | 3.7223  | 0.0538            | 2.4734     |  |  |  |  |  |  |  |  |
| $\alpha_2$ | 3.1335  | -0.3909           | 2.0830     |  |  |  |  |  |  |  |  |
| $\alpha_3$ | 3.5624  | -0.0266           | 2.3418     |  |  |  |  |  |  |  |  |
| $\gamma_1$ | -0.1020 | -0.1271           | -0.0830    |  |  |  |  |  |  |  |  |
| $\gamma_2$ | -0.2153 | 0.0259            | -0.1630    |  |  |  |  |  |  |  |  |
| $\gamma_3$ | -0.5650 | -0.2423           | -0.4104    |  |  |  |  |  |  |  |  |
| $\beta_1$  | 0.0228  | 0.0137            | 0.0153     |  |  |  |  |  |  |  |  |
| $\beta_2$  | -0.5484 | -0.0940           | -0.4072    |  |  |  |  |  |  |  |  |
| $\beta_3$  | 0.2367  | 0.1363            | 0.1503     |  |  |  |  |  |  |  |  |

Tabela 7.12: Parâmetros Estimados dos Modelos Baseados na Representação de Bahadur Binomiais Mult<u>ivariados</u>

|              | Função de Ligação |         |            |  |  |  |  |  |  |
|--------------|-------------------|---------|------------|--|--|--|--|--|--|
|              | Logito            | Probito | Log-Log C. |  |  |  |  |  |  |
| $\alpha_1$   | 3.3377            | 0.2374  | 2.0525     |  |  |  |  |  |  |
| $\alpha_2$   | 2.6802            | -0.2594 | 1.5797     |  |  |  |  |  |  |
| $\alpha_3$   | 2.9428            | 0.0899  | 1.7494     |  |  |  |  |  |  |
| $\beta_1$    | 0.0200            | 0.0120  | 0.0133     |  |  |  |  |  |  |
| $\beta_2$    | -0.4839           | -0.1000 | -0.3450    |  |  |  |  |  |  |
| $\beta_3$    | 0.1044            | 0.0742  | 0.0725     |  |  |  |  |  |  |
| $\rho_{12}$  | 0.0064            | -0.0099 | 0.0077     |  |  |  |  |  |  |
| $\rho_{13}$  | -0.0088           | 0.0199  | -0.0080    |  |  |  |  |  |  |
| $\rho_{23}$  | -0.0356           | -0.0436 | -0.0265    |  |  |  |  |  |  |
| $\rho_{123}$ | 0.0611            | -0.0072 | 0.0562     |  |  |  |  |  |  |

Tabela 7.13: Parâmetros Estimados do Modelo Logístico Regressivo Multinomial Independente

| $\alpha_{11}$ | = | -1.0156 | $\alpha_{21}$ | = | -1.7101 | $\alpha_{31}$ | = | -0.1736 | $\beta_1$ | = | -0.0062 |
|---------------|---|---------|---------------|---|---------|---------------|---|---------|-----------|---|---------|
| $\alpha_{12}$ | = | -0.8952 | $\alpha_{22}$ | = | -2.1042 | $\alpha_{32}$ | = | -0.2122 | $\beta_2$ | = | 0.1801  |
| $\alpha_{13}$ | = | -1.8673 | $\alpha_{23}$ | = | -2.4727 | $\alpha_{33}$ | = | -2.6073 | $\beta_3$ | = | 0.0836  |

Tabela 7.14: Parâmetros Estimados do Modelo Logístico Regressivo Multinomial Igualmente Preditivo

| $\alpha_{11}$ | = | -0.0734 | $\alpha_{31}$ | = | 0.6978  | $\beta_1$ | = | -0.0101 |
|---------------|---|---------|---------------|---|---------|-----------|---|---------|
| $\alpha_{12}$ | = | 0.0836  | $\alpha_{32}$ | = | 0.6805  | $\beta_2$ | = | 0.1116  |
| $\alpha_{13}$ | = | -0.8699 | $\alpha_{33}$ | = | -1.7174 | $\beta_3$ | = | -0.0412 |
| $\alpha_{21}$ | = | -0.9565 | $\gamma_1$    | = | -0.4149 |           |   |         |
| $\alpha_{22}$ | = | -1.2782 | $\gamma_2$    | = | 0.1849  |           |   |         |
| $\alpha_{23}$ | = | -1.6346 | $\gamma_3$    | = | 0.8269  |           |   |         |

Tabela 7.15: Parâmetros Estimados do Modelo Logístico Regressivo Multinomial Estrutura Markoviana de Primeira Ordem

| $\alpha_{11}$ | = | 3.0029 | $\alpha_{31}$ | = | 3.1517  | $\gamma_{21}$ | = | 0.2102  |
|---------------|---|--------|---------------|---|---------|---------------|---|---------|
| $\alpha_{12}$ | = | 3.3215 | $\alpha_{32}$ | = | 3.1754  | $\gamma_{22}$ | = | 2.6663  |
| $\alpha_{13}$ | = | 2.4031 | $\alpha_{33}$ | = | 0.7702  | $\gamma_{23}$ | = | 2.9711  |
| $\alpha_{21}$ | = | 2.3889 | $\gamma_{11}$ | = | -1.4894 | $\beta_1$     | = | -0.0249 |
| $\alpha_{22}$ | = | 2.4021 | $\gamma_{12}$ | = | -0.2139 | $\beta_2$     | = | -0.1320 |
| $\alpha_{23}$ | = | 2.3435 | $\gamma_{13}$ | = | 0.4623  | $\beta_3$     | = | -0.4651 |

Tabela 7.16: Parâmetros Estimados do Modelo Baseado na Representação de Bahadur de Dependência de Locação

| $\alpha_{11}$ | = | -1.0156 | $\alpha_{31}$ | = | -0.1736 | $\beta_1$ | = | -0.0062 |
|---------------|---|---------|---------------|---|---------|-----------|---|---------|
| $\alpha_{12}$ | = | -0.8952 | $\alpha_{32}$ | = | -0.2122 | $\beta_2$ | = | 0.1801  |
| $\alpha_{13}$ | = | -1.8673 | $\alpha_{33}$ | = | -2.6073 | $\beta_3$ | = | 0.0836  |
| $\alpha_{21}$ | = | -1.7101 | $ ho_{12}$    | = | -0.0500 |           |   |         |
| $\alpha_{22}$ | = | -2.1042 | $\rho_{13}$   | = | 0.0395  |           |   |         |
| $\alpha_{23}$ | = | -2.4727 | $\rho_{23}$   | = | 0.0499  |           |   |         |

| $\alpha_{11}$ | = | -1.0156 | $\rho_{11}$ | = | -0.0534 | $\beta_1$ | = | -0.0062 |
|---------------|---|---------|-------------|---|---------|-----------|---|---------|
| $\alpha_{12}$ | = | -0.8952 | $\rho_{12}$ | = | -0.0688 | $\beta_2$ | = | 0.1801  |
| $\alpha_{13}$ | = | -1.8673 | $ ho_{13}$  | = | -0.0682 | $\beta_3$ | = | 0.0836  |
| $\alpha_{21}$ | = | -1.7101 | $\rho_{21}$ | = | 0.0555  |           |   |         |
| $\alpha_{22}$ | = | -2.1042 | $\rho_{22}$ | = | -0.0272 |           |   |         |
| $\alpha_{23}$ | = | -2.4727 | $\rho_{23}$ | = | -0.0148 |           |   |         |
| $\alpha_{31}$ | = | -0.1736 | $ ho_{31}$  | = | 0.0975  |           |   |         |
| $\alpha_{32}$ | = | -0.2122 | $\rho_{32}$ | = | 0.0947  |           |   |         |
| $\alpha_{33}$ | = | -2.6073 | $ ho_{33}$  | = | 0.0767  |           |   |         |

Tabela 7.17: Parâmetros Estimados do Modelo Baseado na Representação de Bahadur de Dependência de Transição

Tabela 7.18: Parâmetros Estimados do Modelo Baseado na Representação de Bahadur de Dependência de Locação e Transição

| $\alpha_{11}$ | = | -1.0156 | $ \rho_{11,21} $ | = | -0.1769 | $\rho_{11,31}$   | = | 0.1029  | $ \rho_{21,31} $ | = | 0.0346  |
|---------------|---|---------|------------------|---|---------|------------------|---|---------|------------------|---|---------|
| $\alpha_{12}$ | = | -0.8952 | $ \rho_{11,22} $ | = | -0.0974 | $ \rho_{11,32} $ | = | 0.0456  | $ ho_{21,32}$    | = | -0.0041 |
| $\alpha_{13}$ | = | -1.8673 | $ \rho_{11,23} $ | = | -0.1449 | $ \rho_{11,33} $ | = | -0.0025 | $ ho_{21,33}$    | = | -0.0644 |
| $\alpha_{21}$ | = | -1.7101 | $ ho_{12,21}$    | = | -0.0487 | $ ho_{12,31}$    | = | 0.0024  | $ ho_{22,31}$    | = | 0.1380  |
| $\alpha_{22}$ | = | -2.1042 | $ ho_{12,22}$    | = | -0.0494 | $ \rho_{12,32} $ | = | 0.0205  | $ ho_{22,32}$    | = | 0.1038  |
| $\alpha_{23}$ | = | -2.4727 | $ ho_{12,23}$    | = | -0.0092 | $ ho_{12,33}$    | = | -0.0066 | $ ho_{22,33}$    | = | 0.0174  |
| $\alpha_{31}$ | = | -0.1736 | $ ho_{13,21}$    | = | 0.0592  | $ ho_{13,31}$    | = | 0.0292  | $ ho_{23,31}$    | = | 0.1184  |
| $\alpha_{32}$ | = | -0.2122 | $ ho_{13,22}$    | = | 0.1166  | $ \rho_{13,32} $ | = | 0.0863  | $ ho_{23,32}$    | = | 0.0717  |
| $\alpha_{33}$ | = | -2.6073 | $ ho_{13,23}$    | = | 0.0571  | $ \rho_{13,33} $ | = | -0.0244 | $\rho_{23,33}$   | = | -0.0041 |
| $\beta_1$     | = | -0.0062 |                  |   |         |                  |   |         |                  |   |         |
| $\beta_2$     | = | 0.1801  |                  |   |         |                  |   |         |                  |   |         |
| $\beta_3$     | = | 0.0836  |                  |   |         |                  |   |         |                  |   |         |

## Apêndice 4

## Forma de Jordan

A teoria apresentada a seguir pode ser encontrada em Hoffman e Kunze (1971), e foi utilizada no cálculo das matrizes para análises de diagnósticos.

Seja uma matrix  $\mathbf{A}$   $n \times n$ , com n autovalores distintos. Essa matriz é dita diagonalizável se existe uma matriz  $\mathbf{S}$ , cujas colunas são formadas pelos autovetores da matriz  $\mathbf{A}$ , tal que,

$$\mathbf{D} = \mathbf{S}^{-1} \mathbf{A} \mathbf{S},\tag{7.1}$$

em que D é uma matriz diagonal com os autovalores da matriz A.

Assim,

$$\mathbf{A} = \mathbf{S}\mathbf{D}\mathbf{S}^{-1} \Rightarrow \mathbf{A}^{1/2} = \mathbf{S}\mathbf{D}^{1/2}\mathbf{S}^{-1}, \tag{7.2}$$

de forma que  $\mathbf{D}^{1/2}$  é uma matriz diagonal cujos elementos são a raiz quadrada dos elementos da diagonal de  $\mathbf{D}$ .

Quando uma matriz A não é diagonalizável, ou seja, se tem p < n autovalores, uma solução é usar a forma de Jordan. Nesse caso, seja J uma matriz bloco-diagonal, na forma,

$$\mathbf{J} = \begin{bmatrix} \mathbf{J}_1 & & \\ & \ddots & \\ & & \mathbf{J}_p \end{bmatrix} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}, \tag{7.3}$$

em que cada bloco  $\mathbf{J}_i$  é uma matriz quadrada formada pelos autovalores de  $\mathbf{A}$ , com

dimensão igual ao número de vezes que o autovalor se repete, da seguinte maneira,

$$\mathbf{J}_{i} = \begin{bmatrix} \lambda_{i} & 1 & & \\ & \lambda_{i} & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_{i} \end{bmatrix}.$$
 (7.4)

A matriz  ${\bf P}$  é obtida solucionando o sistema  ${\bf AP}={\bf PJ}.$  Finalmente,

$$\mathbf{A}^{1/2} = \mathbf{P} \mathbf{J}^{1/2} \mathbf{P}^{-1}.$$
 (7.5)