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Resumo

Neste trabalho apresentamos resultades de existéncia de sclugbes para al-
guns modelos matematicos do tipo campo de fase para a solidificacdo de
ligas bindrias. Inicialmente, consideramos um modelo composto por um sis-
tema de equacdes diferenciais parcials altamente nfo lineares degenerado s
parabdlico, com trés varidveis independentes: o campo de fase, a tempera-
tura e a concentracdo. Depois incluimos termos convectivos para levar em
consideragdo o fluxo nas regides néo sdlidas. Estudamos alguns modelos
desse tipo. A caracteristica comum nesses modelos € que na eguacéo da ve-
locidade ¢ utilizado um termo de penalizacdo do tipo Carman-Kozeny para
modelar o efeito mushy. Utilizamos técnicas de aproximacao que envolvem
regularizacao, o método de Faedo-Galerkin e o Teorema de Ponto Fixo de
Leray-Schauder.

Abstract

In this work we present results of existence of solutions for some mathema-
tical models of phase-field tvpe for solidification of binary alloys. Firstly, we
consider a model based on a highly non-linear degenerate parabolic system of
partial differential equations, with three independent variables: phase-field,
solute concentration and temperature. After that, we include convective
terms in order to consider the flow in the non-solid regions. We study some
models of this sort. All of them have the characteristic of modeling the
mushyv effect with a Carman-Kozeny penalization term added to the velocity
equation. The proofs are based on an approximation technigue which inclu-
des regularization, Faedo-Galerkin method and Leray-Schauder Fixed Point
Theorem.
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Capitulo 1

Introducao ’

Uma liga bindria é um sistema composto de dois materiais A e B, no qual as
moléculas de A e B formam uma unido fisica criando um nove composto. O
composto A é chamado solvente e o B soluto. Porém a liga nao é uma nova
substancia quimica. Ligas podem ser metdlicas ou misturas intermetalicas;
por exemplo, Aluminio-Silicio, Cobre-Niguel. As ligas sao uma fonte prin-
cipal de materiais novos e raros e por isso sdo muito importantes do ponto
de vista tecnologico. A forma cristalina das ligas é, em geral. preparada por
moldagem da substancia derretida, i.e., por solidificacdo. Assim. 0s processos
de solidificagfo/fusdo tém muita relevincia em metalurgia e na ciéncia dos
materials.

O fendémeno envolvido na solidificacdo de uma liga ocorre em duas escalas
diferentes. O enfoque macroscdpico. i.e., na escala do observador, envolve
mudanga de fase. transferencia de massa e de calor e efeitos convectivos. Na
escala microscépica séo de interesse a estrutura cristalina e a morfologia da
interface, a qual pode ter diversas formas, podendo ser pianares, colunares,
dendriticas ou simplesmente amorfas. A solidificacéo de ligas € um assunto
de interesse tanto do ponto de vista tedrico quanto da utilidade na pratica.

Uma das caracteristicas fundamentais dos problemas de mudanca de fase
é que as regides correspondentes as diversas fases ndo séo conhecidas a pri-
ori por 18s¢ tals problemas sao chamados “problemas de fronteira mdével”ou
“problemas de fronteira livre”.

Os problemas de mudanga de fase tém sido extensivamente estudados
desde que J. Stefan, no século XIX, formulou o problema de encontrar a
distribugdo de temperatura durante a solidificagdo da dgua. A formulacéo
classica do problema de Stefan constitul a base para outros modelos mais



complexos que levam ¢ nome de problemas de tipo Stefan. Em tais modelos
a hipdtese fundamental é a de gue as regides de transicdo entre as fases sdo
muito finas de tal modo que pode ser descrita por uma superficie regular.
chamada de interface; a sua localizacio, inclusive, faz parte do problema.
Estes modelos nédo incorporam de forma natural alguns efeitos tais como os
causados pela tensao superficial, superresfriamento e nucleacdo. Mais deta-
Thes sobre os problemas do tipo Stefan podem ser encontrados em Alexiades-
Solomon [1] e Rubinstein [35].

Uma outra formulacdo para os problemas de mudanca de fase € o método
da entalpia. o qual pode ser interpretado como uma formulacgae fraca do pro-
blema de Stefan que incorpora a condigdo da interface. Nesta formulacio ndo
existe suposicBo sobre a interface. Assim, a regido de transicdo sélido/liguido
pode ser uma superficie regular ou pode ser interpretada microscopicamente
como uma regiae intermedidria entre a fase puramente liguida e puramente
sélida, onde a fase lquida e sélida co-existern em certa proporcéo e sao cha-
madas de regides mushy. Porém, o método da entalpia tem a desvantagem
de nic incorporar também de forma natural alguns efeitos tals como super-
resfriamento.

Uma formulacac alternativa para os problemas de mudanga de fase sao
os modelos do tipo campo de fase (phase-field models). Estes sdo modelos
continuos que permitem que a interface tenha espessura e estrutura interna.
Este postula a existéncia de uma fungdo, chamada campo de fase, de tal forma
que as interfaces sao dadas por superficies de nivel adequadas desta funcéo.
Como referéncia histérica. lembramos que o primeiro modelo de campo de
fase para transicéo sélido/liguido fol proposto por Langer [22] (veja também
Caginalp [5)). Este método é particularmente adequado para a computacio
de situactes realistas de interfaces de estrutura complicada, tais como os
chamados crescimentos dendriticos (veja Caginalp-Socolovsky [71).

A metodologia de campo de fase tem atingido nos dltimos anos consi-
deravel importincia na modelagem e simula¢do numérica dos processos de
solidificacao. Isto tem motivado varios artigos usando esta metodologia e pro-
pondo diferentes modelos matematicos consistindo de sistemas de equagdes
diferenciais parciais altamente nao lineares. A analise matemadtica rigorosa
torna-se em geral dificil, mas no caso de materiais puros alguns autores tém
empreendido a tarefa. Por exemplo, veja 5, 18, 23, 29] onde tanto a existéncia
como a unicidade de solugdes foram estudadas para varios tipos de ndo line-
aridades. Para o caso de ligas bindrias, varios modelos foram desenvolvidos.
Um dos primeiros trabalhos nessa direcio fol proposto por Wheeler et al
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modelo e Rappaz-Scheid [34] fizeram uma andlise matemética sob hipdteses
adequadas sobre as ndo linearidades. Caginalp et al. |5, 6 estenderam ainda
mais 0 modelo incluindo as mudangas de temperatura. As equacoes do campo
de fase e da concentracio para este Gltimo modelo sdo derivadas de um funci-
onal de energia livre; uma apropriada equacéo do calor € acrescentada, a qual
para tomar conta da liberacio do calor latente, fol modificada por um termo
proporcional & derivada temporal do campo de fase. A analise matematica
para ¢ modelo descrito acima é o primeiro problema a ser estudado neste
trabalho.

Cutro aspecto importante é o de que, em diversas situacgdes, 0 Processo
de solidificacdo se dé nédo apenas por conducido de calor no meio fisico, mas
também pelo transporte convective, ou em outras palavras, deve-se gue con-
siderar a influéncia do movimento da parte fluida, o qual por sua vez € in-
fluenciado pelas variagbes de temperatura ou da concentragdo. Em muitos
casos os fluxos ocorrem e tém importantes efeitos no processo de solidificacgéo.
Do ponto de vista matematico, a inclusio de tais termos convectivos torna
o processo bastante mais nao linear, trazendo maiores dificuldades, indepen-
dentemente do tipo de formulacgéo utilizada para modelar a mudanca de fase.
Exemplos destes estudos sdo os artigos [9. 10, 13, 14] que consideraram pro-
blemas do tipo Stefan para materiais puros. Os trabalhos [30. 37! abordaram
o problema pelo método da entalpia. Voller et at. [39, 40], propuseram mo-
delos usando a técnica da entalpia para os processos de mudanca de fase
com convecgao/difusdo incluindo no modelo as equagtes de Navier-Stokes
modificadas por um certo termo que modela o fluxo na regido mushy. Para
obter expressoes para este termo, a regido mushy é modelada como um meio
poroso. Um outro modelo fol proposto por Voss-Tsai [41]. No artigo de
Blanc et al. [2] é feita uma anélise matematica de um modelo estaciondrio
para a solidificac@o de uma liga bindria, usando o método da entalpia e um
termo de penalizacdo do tipo Carman-Kozeny, também sugerido por Voller,
foi adicionado as equagdes de Navier-Stokes para modelar o efeito mushy.
Outros autores tém proposto modelos usando a metodologia de campo de
fase para 0s processos de solidificacdo de ligas bindrias. Por exemplo, veja
3. 15]. onde séo propostos modelos usando argumentos da teoria da mistura.
Eles também apresentam simulacbes numéricas para validar seus modelos.

Estamos interessados em modelos do tipo campo de fase para a solidi-
ficacao de uma liga bindria com conveccio na fase nao-sélida. Diferentemente
dos modelos [3. 151, os modelos a serem considerados combinam as idéias de

[43], considerando o caso Isctérmico. Warren-Boettinger [42] estenderam o

3



Voller [39, 40] e Blanc et al. [2] para modelar & possibilidade do fluxo com
as idéias de Caginalp et al [8! para o campo de fase e incluem as proprieda-
des térmicas da liga binaria. Assim, o segundo problema a ser considerado
serd uma formulacdo baseada nas idéias anteriores. O sistema de eguactes
diferenciais parcials ndo lineares consistird da equacdo do campo de fase, a
equacdo do calor, a equacio da concentracdo e as equagbes de Navier-Stokes
modificadas por um termo de penalizacdo do tipo Carman-Kozeny para to-
mar conta do efeito mushy, além de um termo do tipo Boussinesq para levar
em consideragdo os efeitos de variacdes de temperatura e concentracdo no
fluxo.

() terceiro problema a ser analizado serd uma generalizacéo em certos as-
pectos do problema anterior. Os termos convectivos serdo incluidos em todas
a3 equaches, mas a dimensao espacial estard restrita a dois. Esta restricéo
surge pois a regularidade do campo de fase {continuidade), que é necesséria
para garantir que as regites estejam bem definidas, depende da regularidade
da velocidade. No caso bidimensional, tal regularidade é suficlente para obter
a continuidade do campo de fase. No caso tridimensional, isto nédo parece
possivel. Portanto, para tratar o caso tridimensional, consideraremos uma
variante das equacoes Navier-Stokes, sugerida por Ladyzenskaja ({21] p.193)
e Lions ({24] p.207) para a descri¢ao do movimento do fluido. Este serd o
quarto problema a ser estudado.

Para tratarmos os modelos, utilizamos técnicas de aproximacao que en-
volvem uma regularizacio adequada do problema original. Analizamos estes
problemas regularizados aplicando argumentos de ponto fixo, em particular,
o Teorema de Ponto Fixo de Leray-Schauder (veja [16] p.189) e também o
método de Faedo-Galerkin. Depols, por um processc de passagem ao limite
nas equagoes regularizadas, obtemos solugdes fracas dos problemas originais
via argumentos de compacidade.

Este trabalho estd organizado da seguinte forma: cada um dos guatro
capitulos seguintes contém um artigo em inglés, cada um destes ja foi aceito
para publicacdo ou estd sendo submetido a alguma revista internacional,
precedido pelo correspondente resumo em lingua portuguesa. O Capitulo 2
estéd baseado no artigo “Weak Solutions of & Phase-Field Model for Phase
Change of an Alloy with Thermal Properties”, que j& fol aceito e serd pu-
blicado em Mathematical Methods in the Applied Sciences. O Capitulo 3
estd baseado no artigo “Weak Solutions of a Phase-Field Model with Con-
vection for Solidification of an Allov”, publicado como Relatdrio de Pesquisa
do IMECC-UNICAMP (RP45/01) e esta sendo submetido para publicacdo.
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O Capitulo 4 esta baseado no artige “A Bidimensional Phase-Field Model
with Convection for Change Phase of an Allov™ que em breve serd submetido
para publicaggo . O Capltulo 5 estd baseado no trabalho “A Tridimensio-
nal Phase-Field Model with Convection for Change Phase of an Alloy”, o
qual serd submetido para publicagfo brevemente. No Capitulo 6 apresen-
tamos algumas conclusdes gerais deste trabalho e por dltimo as referéncias
bibliograficas.



Capitulo 2

Solucoes fracas de um modelo
do tipo campo de fase para a
mudanca de fase de uma liga
binaria com propriedades
térmicas

Resumo

A metodologia de campo de fase fornece uma descri¢ao matemética para os
problemas de fronteira livre associados a processos fisicos de mudanca de fase.
Esta postula a existéncia de uma func¢do, chamada campo de fase {phase-
field), cujos valores identificam a fase num ponto particular no espago e no
tempo. O método é particularmente adequado para os casos onde ocorrem
estruturas complexas de crescimento na mudanca da fase.

O modelo matematico estudado neste trabalho descreve o processo de
solidificagéo de uma liga bindria com propriedades térmicas. O modelo é
composto por um sistema de equagdes diferencials parciais altamente néo-
linear, degenerado e parabdlico com irés variaveis independentes: o campo
de fase, a concentracéo e a temperatura.

A existéncia de solugces fracas para o sistema é obtida introduzindo um
problema regularizado, logo derivando estimativas a prior: e aplicando argu-
mentos de compacidade.
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Weak bolutions of a Phase-Field Model for
Phase Change of an Alloy with Thermal
Properties

MOS subject classification: 35K65, 80A22, 35K55, 82826, 82C26

Abstract

The phase-field method provides a mathematical description for free-
boundary problems associated to phyvsical processes with phase transitions.
It postulates the existence of a function, called the phase-field, whose value
identifies the phase at a particular point in space and time. The method
is particularly suitable for cases with complex growth structures cccurring
during phase transitions.

The mathematical model studied in this work describes the solidification
process cccurring in a binary alloy with temperature dependent properties.
It is based on a highly nonlinear degenerate parabolic system of partial dif-
ferential equations with three independent variables: phase-field, solute con-
centration and temperature.

Existence of weak solutions for this system is obtained via the introduc-
tion of a regularized problem. followed by the derivation of suitable estimates
and the application of compactness arguments.



1  Imtroduction

We are interested in the rigorous mathemartical analysis of a model for phase
cnange processes occurring in binary allovs with thermal properties. Such a
model. using a phase-fleld methodology, was proposed by Caginalp and Xie
13}, and a detailed derivation of a family of models which includes the partic-
ular system of equations we will consider here was presented by Caginalp and
Jones in [2). This model can be expressed as the following coupled svstem of
nonlinear partial differential equations:

2. 2 . 1 : : N .
ac’ty — Ao = (¢~ 0" + B0~ s~ (1-c)p) inQx(0,00),(1)
vy =+ 56 = V- [K:{9)V6  inQx (0,00} (2)
o = Kol(Ae+ MV - [e(l —)Ve ) inl) x (0,0c), (3)
O of de .
#(0) = ¢g. G(0) = by, c(0) = ¢p in Q. (5)

Here {2 is an open bounded domain of JRY, N = 2,3, with smooth boundary
082, The order parameter (phase-field) ¢ is the state variable characterizing
the different phases; the function 8 represents the temperature; the concen-
tration ¢ € [0,1] denotes the fraction of one of the two materials in the
mixture. The parameter o > 0 is the relaxation scaling; the parameter 3
is given by 3 = €{s /30, where ¢ > 0 is a measure of the interface width,
o the surface tension and [s] the entropy density difference between phases;
Cy > 0 is the specific heat; the constant [ > 0 the latent heat; &4 , fg,
are the respective melting temperatures of each of the two materials in the
alloy: Ky > 0 is the solute diffusivity; A is a constant related to the slopes
of solidus and liquidus lines; K; > 0 denotes the thermal conductivity. Con-
cerning this last physical parameter, throughout this paper we assume the
conditions used by Laurencot in [11}:

{A) K, depends only on the order parameter ¢, and it is a Lipschitz
continuous function. Moreover, there exists b > 0 such that

0< Ki(r)<b for all r € IR.



We observe that one technical difficulty with the previous svstem is that,
when K, wvanishes, the equation (2) degenerates, losing its parabolic charac-
ter.

We also remark that in (3], the concentration equation is written as

i

o= KoV fc(i )V (Mcém%» In T ¢ (,N in Q.

which forces ¢ € (0,1). Equation (3) is more general, allowing ¢ to assume
the values 0 and 1. Moreover, note that for the pure materials, that is, when
¢ = (or ¢ = 1, the equations reduce to a standard phase field model for pure
materials.

We should remark that in recent vears the phase-field methodology has
achieved considerable importance in the modelling and numerical simnulation
of a range of phase transitions and complex growth structures occurring
during solidification. Phase-field models have been used to describe phase
transitions of pure material due to thermal effects; as examples of papers
where mathematical analyses of such models are performed, we single out
[1, 8, 11, 16], where existence of solutions is investigated for various types of
nonlinearities, We also remark that the phase-field equation has been derived
in a thermodynamically consistent way by Penrose and Fife [17]. Several
papers have been devoted to the mathematical analvsis of the Penrose-Fife
model; see for instance {4, 5} and references therein. We also remark that
by linearization of the heat flux with respect to the temperature, from the
model derived by Penrose and Fife it is possible to recover the phase-field
equation emploved by Caginalp [1].

Several phase-field models have also been developed for binary alloys.
One of the first works in this direction was due to Wheeler et o/ [21] and
was concerned with isothermal solidification. Warren and Boettinger [20]
extended this model, while recently Rappaz and Scheid [18] investigated its
well-posedness under suitable assumptions on the non-linearities. In such
models, the phase-fleld and the concentration equations are derived from a
free energy functional, and an appropriate balance equation for the tempera-
ture is then added to complete the model. As we stated, the model for binary
alloys studied in this paper was developed by Caginalp and Xie [3], and it is
similar to the previous ones, but includes thermal effects.

Standard notation will be used. We remark that (-, -) denotes the duality
pairing between H(Q) and H*())'. Also, for a given fixed T > 0, we denote
0 =0x(0,T).
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The main result of this paper is the following.

Theorem 1 Let be given functions satisfying: do € H* V() with1/2 < v <

Lo . s .
1 and B = a.e. on 90 Og € LAHQ); o € HY{Q) such that 0 < ¢p < 1
7

a-e. in Q. Then, under the assumption (A}, there exist functions (6,6, ¢, J)
satisfying, for any fized T > 0,

) 6 € L0, T: H3(Q) N I2(0.T; YD), 6c€ L2(Q).  (0) = éo.

i) 6 L>(0, T, L340, 6, e L0, T; HHQY), 6(0) = 6,

i) ¢ g LY0, T HY () n L=(0, T LA Q). e € L0, T, HH{),
0y =1cq, 0<e<l ae in()

ivy Je LHQ. R, J=V(K|(é)Ff) —0VK(d).
and such that
. 1 . o
el — €2Ap = 5{@ — )+ B0+ (8 —84)c—6g) a.e in), (6

@ =0 a.e. on 08 x (0,71, (7)

c/ @, n\dmmf f@mdmmj /J Vydedt =0, (8)

T
/ (cz:w)dt-ﬂf{gf /vc-vndxdtufg_fw/ /c(l——c)V@-Vﬁd:cdt:O:
0 o Jo o Jo
{9)
for any n € L*(0,T; H*()).
If, in addition, K1 > by for some by > 0, then @ LA0.T; HY Q) for
each T > 0, and J = K{(¢}VF.

We remark that because the possibility of degeneracy of the parabolic
character of the model, we were able neither to prove uniqueness nor to
improve the global regularity of the constructed solution.

Finally, the outline of this paper is as follows. In Section 2, we study
a family of regularized problems depending on a small accessory positive
parameter; this study will be auxiliary in proving the main existence result
by avoiding the above mentioned possibility of degeneracy of parabolicity in
equation (3). Section 3 is devoted to proof of Theorem 1; it will be done with
the help of suitable estimates derived for the regularized problem, together
with compactness arguments.



2 A regularized problem

In this section we introduce a regularized problem related to {1)-(5}; for it,
we will prove a result of existence of solutions by using Lerav-Schauder fixed
point theorem in a form stated in ([6] p. 189).

Theorem {Leray-Schauder): Consider g transformationy = To(z) where
z. y belong to o Banach space B and & is ¢ real parameter which varies in a
bounded interval, say 0 < A < 1. Assume:

fa) Tolz) is defined for allz € B, 0 < A <1,

(b) for any fivred A, To(x) is continuous in B,

{c) for = in bounded sets of B, T,{(x)} is uniformly continuous in X,

{d} for any fired A, T,(z) is a compact transformation,

(e there exisis a (finite) constant M such that every possible solution x
of Tilz) = z satisfies: |z g < M,

’f) the equation To(x) = x has a unigue solution in B.

Under assumptions (a)-(f), there exists a solution of the equation z—T;(z) =
0.

Now, we recall certain results that will be helpful in the introduction of
such regularized problem.

Recall that there is an extension operator Ext(-) taking any function w
in the space

WEHQ) = {w e LA(Q) / Dyw. D2 € LXQ) w, € LA(Q)}

and extending it to a function Ext(w) € W' (JRY") with compact support
satisfying
I\Eﬂ(w}ljwjlmh’ﬂ) <C |fu;w§l(cg)

with C independent of w (see [13] pp.137).

For 6 € (0,1), let ps € CE(IRM ) be a family of symmetric positive
mollifier functions with compact support converging to the Dirac delta func-
tion, and denote by * the convolution operation. Then, given a function
w e ﬁ-—"'q?‘-l{QL we define a regularization ps(w) € CP(RN*1) of w by

ps(w) = ps » Ext{w).
Now, we define K? for each 6 € (0,1) by

Kf(?") =Ky(r)+4

13



for all r € IR, We infer from (A) that,

(B) K7 is a Lipschitz continuous function and
0<d<Kiry<hb+1 forallT € R

Now, we are in position to define the following familv of regularized prob-
lems. For 4 € (0,1}, we consider the system

. o s 1 .
ac’d] - A8 = (6" (¢)°) + 8 (6° + (65 — 64)c° — 65) in Q,(10)

Cvdl + 30? = V- “L:f\ﬁ75‘gé>‘vgj in . (L)

§ ALE . nm oagvy A1 A N Y : [19Y

¢, - Kol = KoMV - {1 -V \os(o )) in @, (12}
elod H9° ac

— =0, — =0, = 9% = (0,7, 13

n ’ on 0 an 0 o8 < (0.1 (13)

SOy =of  OO)=0, Jo=d mQ (14)

We then have the following existence result.

Proposition 1 For each § € (0,1), let (85,65, ¢)) € H*™(Q) x HI™(Q) x

- o L. 005 _ 99
CHEY, 1/2 < v < 1, satisfying the compatibility conditions —= = o=
T
acd T .
—é@ =0 ae ondQ and 0 < c < 1 in . Under the assumption (B), there
n -

exist functions (¢°,8°, %) satisfying, for any fixred T > 0,
1) ¢ € LM0. T H¥ Q). ¢] € LHQ),

i) 0% € L20.T; HHQ)), & < L[¥Q),

Hi) € CHHQ), 0<d <,

iv) (8°,6°,¢%) satisfies (10)-(14) almost everywhere.

14



Proof: To ease the notation, in this proof we will omit the superscript & of

the variables ¢°, 8%, &%
First of all, we consider the following family of operators, indexed by the
parameter 0 < A < 1,
B — B,

where B is the Banach space
B = LXQ) x LY(Q) x LY(Q),

and defined as follows: given ((?57 g, é) € B, let 7}\(5 5‘5} &) = {@, 8. c), where
(¢, 6. c} is obtained by solving the problem

2 3 . 1 ¢ ;2 by P Yy A

ace, ~ AG — (6~ ¢°) =3 {0+ (05— 64)e—65) n Q, (1)
! .
Cvbi+ 56 = V- K {ps(o))VH in Q, (16)
e — Koo = KoMV -¢(l - )V {ps(0)) in Q, (17)
do a6 e

5. =0 5 =0 5. =0 on 8% x (0,7, (18)
o0y =05  6(0)=6, cDi=¢ mQ (19)

Before we prove that 7, is well defined, we observe that clearly (9,8, ¢)
is a solution of (10)-(14} if and only if it is a fixed point of the operator 7;.
in the following, we prove that 7; has at least one fixed point by using the
Leray-Schauder fixed point thecrem stated at the beginning of this section
([6] p. 189).

To verify that 7y is well defined, observe that since 4, ¢ € L*(Q), we infer
from Theorem 2.1 of {8] that there is a unique solution ¢ of equation (15)
with ¢ € W3{Q) satisfving the first of the boundary conditions (18).

Now, since K{ is a bounded Lipschitz continuous function and ps{¢) €
C(IRYFY), we have that K%(ps(¢)) € WH(Q) for 1 < 7 < oc. Thus, since
&, € LHQ), we infer from LP-theory of parabolic equations (see [10], Thm.
9.1 in Chapter IV, p. 341, and the remark at the end of Section 9 of the
same c?lapter, p. 351) that there is a unique solution ¢ of equation (16) with
8 e Wy (@)

s
3]



We observe that equation (17} is a semilinear parabolic equation with
smooth coefficients.  Moreover, by looking at the right-hand side of this
equation, written in form

Cp == K;g;':\c e Kgﬁ‘f(i — QCXTC N+ f‘i—gﬁfC{E - C}i\@

we can see that 1t has the properties and growth conditions in oréer that
the semigroup results about global existence, as stated in Henry [7], p.75, be
applicable. Thus, we conclude that there is a unique global classmai solution
c.

In addition, note that eguation {17) does not admit constant solutions,

except ¢ = 0 and ¢ = 1. Thus, by using Maximum Principles together with
6

L. 5 4 c . .
conditions 0 < ¢f < 1 and T = 0. we can deduce that
m

0 <elz.t) <1, iz, t) e . (20)

Therefore, for each A € [0, 1]. the mapping 7, is well defined from B into B.

To prove continuity of 75, let (@n,én,én) € B strongly converging to
(é?é,&) € B. for each n, let (¢, 0, ¢,) the corresponding solution of the
problem:

2 2 : }- : piy - .

0G0y — PG, — =(n — &8) = A3 (B, + (65 — 84)én — 05) in Q(21)
I
Cvbni+ 5bne = V- Ki(ps(6n))V0,  in Q. (22)
Cre ™ Kgﬂcn = Kg.\,fv . Cn(ji — cn)V {,05(6)”)) in @, (23)
Jo, of,, de, .

- F= g N — = {}. I M LA 24
a0 0, o 0, o 0 on 99 x (0,717, (24)
6, (0) = oo, 0,00 = 0y, cal0) =g in L (25)

Next we show that the sequence {¢,. &y, ¢, ) converges strongly to (¢, 8. ¢) =
’f}{é 4, ¢) in B. For that purpose, we will obtain estimates, uniformly with
respect to n, for {én, 6., ¢,). We denote by C; any positive constant inde-
pendent of n.

16



We multiply (21) successively by ¢, ¢,, and —Ag,, and integrate over
3 » (0.%). After integration by parts and the use the Holder’s and Young's
inegualities, we obtaln the following three estimates:

ae” [, < tj[ gg‘:”‘z 1,
P ! dx F e |7 4+ — it
5 ]Qf@”\ J/S Q<7 G| 4@)553&

< a]/ B2 + 1207 + 04 f?) dudt, (26)
alt P ! ! __9:»
: J{;,fsﬁ@”” drdt + ]b\—@m + 4>d3:
< Cox Gy [ [ (18P (6 P) et (27)
0 Jo s

oe*

62 ¢ ' .‘2 -
-2 f A, | %drdt
2 Jo Ja '

t
: 12 A 12 a2 e
< cl-_cgfg [ﬁ(,v@n] {6+ 124) dade(28)

By multiplying (27) by a¢’ and adding the result to (26), we find
L6+ IV + o) do
0

< Cl+02f/ 8?4 1nl® + 160 dadit. (29)

Since [|..]] 12y and [|éallz2¢) are bounded independent of n, we infer from
(29) and Gronwall’s Lemma that

1onllLecorianiay € C1 (30)
Then, thanks to (26)-{28) we have
&nll20rm2(0)) + 8ndl220g) < CL. (31)

Now, by multiplying (22) by €, one obtains in a similar way as above
that

/‘9 x+/ / V6,2 d:z:dt<C‘;—1—Co/] (16 + 10.7) dode. (32) |
Thus, with the help of (31) and Gronwall’s Lemma, we infer that
|OnilLes o200 < Cr- (33)

17



Hence, it follows from (32} that

Now, we take scalar product in LQ{Q} of (22} with 7 € HY(Q)). By
integrating bv parts and using Hdlder’s and Young’s inequalities, we obtain

/
i

16nell ey < Cr (Vo) + [ 0nel 2ty ) -
Thus, we infer from (31) and (34) that
0ntlizeormi o < Cr (35)

Next, by multiplying {23} by ¢,, with the help of (20}, as above we con-
clude that

4 H
ficnizdz—&/[ /chézdxd;f5&+6’2f / T, 2ddi.
¢ G JO g J9

Hence, from (31) we have,
lenll 2oy + lenllpeo 20y < Ch. (36)

In order to get an estimate for ¢,, in L2(0. T; HY{Q)), we use arguments
similar to the previous ones with equation (23) to obtain

lienillzo o < Cr (37)
We now infer from (30) and (31) that the sequence (9,,) is bounded in
Wy = {v e L0, T; HY{Q)), v. € L*(0,T; L))}

and in
Wy = {@ e L=(0,T:H (), v € LQ{O, 1 Lg(ﬂj).},

We also infer from {33)-(36) that the sequences (4,) and (¢, ) are bounded in
= {ve L0, T; H\(Q)), v € L*(0, T HH ()}

and in
Wy = {ve L*(0.T: L), v € (0. Ts HH(Q)) .

18



Since W is compactly embedded in L0, T; H'(0)), W i
W in L2(0, T L*(£2)) and W, in C([0, TT; Hl{ﬂ ({19 Co
there exist

C (0,77 L)),
4} it follows that

o & L0 T HQ) " L=(0,T: HHQ)) with 6 € LHQ),
6 e ILX0.T,HY Q)N I=(0,T, 2.9)} with 8, € L2(0,T; HYOY),
¢ o€ LA0,T; HNQ)) N L*(0,T; L)) with ¢, € L0, T: HH (X)),

and a subsequence of (@n, 8. ¢, ) (which we still denote by (¢,.8,, ¢, ) ). such
that, as n — +o0.

Gn —+ ¢ in LAOTHYQ)NC0. T LAQ)) strongly.

O — & in  LHO0.T;H*(O) *ﬁ,ea}{h

6, — 0 in L@y C0,T): HYS )“ strongly, 38)

8, - & i L*C,T:HY O \wa}\h R

e, — ¢ in LHQ)NC{0,THHYO )\ strongly,

¢n — ¢ in  LP0,T;HYQ)) weakly,
It now remains to pass to the limit as n tends to oo in {21)-(25). Since
the embedding of W3 (Q) into LQ(Q) is compact (i125 pP. 13) and {¢,) is
bounded in W3 1(@), we infer that ¢ converges to ¢° in L*(Q). We then
pass to the Imit in (21) and get

ac’d, — €2A¢ — %(@ - ¢ =28 (@ + (6 — 04)¢ — 93) a.e. in Q.

=

Since K¢ is bounded Lipschitz continuous function and ps(¢, ) converges
to ps(@) in L (@), we have that K%{p;(@,)) converges to K¢(ps(¢)) in LP(Q)
for any p € [l.oc). This fact and {38) vield the weak convergence of
K {(ps(0.))V8, to Ki{ps:(9))VE in L3/2(Q§ Now, by multiplying (22) by
n € L*0,T: H'(9)) and integrating over {2 x ((}_.T)r after integration by
parts, we obtain

T | /T T
Cy f f Oy dzdt+— ] j O dadt+ / J/ K3 (05(¢)) V-V dzdi = 0.
o Jo 2Jo Ja o Jo -

Then, we may pass to the limit and find that

Lonmdt = 2 7 [ omazai+ [ [ K(ps(6))V0 - Vndzdt = 0
CV/(; \t:??> t—;"'_*j./a /Q@t?'} xz 1:“"?"“/(; ]Q 1(05(@)) Vndzdt =
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holds for any n € L*(0,T; HY{()}. This implies that
Cvbe+ 50, = V- E{(ps{d))V0 in (@) (39)

Now, by noting that ¢, € L*(Q)) and using the LF-theory of parabolic equa-
tions. it is easy to conclude that {39) holds almost everywhere in @,

It remains to pass to the limit in ""73) We infer from (38) that Vos{d,)
converges to Vp;s(0) in L*(Q) and since ||, |7 (g is bounded, it follows that
tn{l — ¢,) converges to ¢(1 —¢) in LPfO) for any p € {1,00). Similarly, we
may pass to the limit in (23} to obtain

— Koo = KoMV - {1l — o)V (ps(e)) n Q.

Therefore 75 15 continuous for all 0 < A < 1. At the same time, 7, is
bounded in Wy x Wy x Ws, and the embedding of this space in B is compact.
We conclude that 7, Is a compact operator for each A € [0, 1].

To prove that for (6,0, ¢) in a bounded set of B, Ty is uniformly contin-
uous with respect to A, let 0 < A, A < 1 and (¢, 8.0 (i = 1,2) be the
corresponding solutions of (15)-(19). We observe that ¢ = &1 — ¢, § = 8, —6;
and ¢ = ¢; — ¢p satisfy the following problem:

ac’g, — Do = Zo(1~ (6] + d1gn + ¢5))

PPy (6+(0p~064)c—85) InQ, (40

\3}--‘

Cyl, + —¢, = V-K{{ps(6:))V8
+ Vo K pe(on)) — Ki(ps(02) V82 10 @, (41)

3

- KQAC = Kg.v‘\ifv . [Cl(l — Cl) (\“7,05(@1) - V,O(j(@g)n
+ KoMV - ie(l — (¢ + ¢2))Vps(d2)] in @, (42)

b a0 Je
— = o — = Q LT, 4
o 0. 5 0, o 0 on 00 x (0,7, (43)

o(0) =0,  6(0)=0, <0)=0 inQ (44)

We remark that d = ¢% + 9100 + 02 > 0. Now, multiply equation (40)
by ¢ and integrate over (J; after integration by parts and the use of Holder’s

20



and Young's inequalifies we, obtain
]/ oltdz+ | f Voltdzdt < C /[ 612 dzds
o 0 Jo o /o'l
+ Cah -l jf (161% + 16%) dadt.
0 J0 ' 4
By applving Gronwall’s Lemuma, we arrive at
12 i 2 =
(6l e oorz2i00) + |19]i72 oraiay S Criar— A" (43)

Now, multiply (40) by ¢ and use Hjlder’s inequality to obtain

‘)

2 lf’ I s 2 . ,- ,}‘) .
(€ /Q jig‘c}f‘ dzdt - ,} il “:9 ax

< C//[@\d:m’z+w—f/o 2drdt

e ( f I mf‘*d:z:dt) ( f | 1ar d:z:dt)
+ Chlh — %Fff ) dxdt.

Since WH{Q) — L%(Q), the following interpolation inequality holds
2%‘@]5%10,/3{@) < n IjQH%Vg-l(Q) + é & lLQ(Q) for all 0> 0.

Moreover, since {|d|izs(gy < C, with C depending on {|¢1]|r010) and [[delir(g),
by rearranging the terms in the last inequality, we obtain

¢ %
[ [1opdaa + [ [voPaz
o JO <
+
< G /ﬂ //O o dedt + Com 6l21 0, (46)
2 t LA -~
+ Cab\z-w\zl”[g /_Q<§5|2+lcl2) ddt.

By multiplying (40) by —A¢, we infer in a similar way that

1
/ Vol2dr + ] ] |A¢2dzdt
0 o JO

i
caff %ét?+!\7@;2)da:dwcznéicfnn‘é,,;.@ (47)
+ Cih m,xo!”ff ) dzdt.
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By taking n > 0 small enough and considering (45} we conciude from (46)
and (47) that

3 C
i “f*‘!f@!zroc:gryifq <C l)ﬂ —“/\3‘2 {“18}

4‘
2l 21

Q)

‘\3 o)

By multiplying (41) bv #, integrating over {1 and using Hélder’s inequality
and (B), we have

fff-/ }9}253:5—5-5/ Vo dedt <
dt Jo 0

IA

44

Therefore, integration with respect to ¢ and the use of Gronwall’s Lemma
and (48) lead to the estimate

19 iLOCfOTL {Q\\ < C ‘Al - :’\ i (49}

Now, we multiply {42) by ¢ and integrate over {1x (0,¢). By integration by
parts, using Holder’s and Young’s inequalities, (20) and the known estimates
for ¢; and ¢o, we obtain

1
i j{2|Vc§2d$c§t < C;/f JV,O& (61) — Vps(02)]?
19 05(02) [0 €] )dmf

_’-

The last term in this inequality can be estimated as follows:

[ Vpsloa)llieg) = [Vips x Ext{dn))] 1) = llps = NV Ext(d2))l 10
!

< ;?ﬁé“L%Qu%vE@t(@z Hrzg < CliVee|r2g),

where we used the definition of ps and Young's inequality, as well as properties
of the convolution and of the extension operator Fxt and the fact that 6 > 0
is fixed.

From the last two results, we obtain

j{fcﬁdx«?»// IVcl|* dxdt<(71// [V@ 0‘2) dxdt.

By applving Gronwall’s Lemma and using (48), we arrive at

a2 a 2 .
ez ey S Crid — Al {50)

22



Therefore, it follows from (48)-{50) that 7, is uniformly continuous with
respect to A on bounded sets of B.

Now we have 1o estimate the set of all fixed points of 7, let (¢,0.c) € B
be such a fixed point, i.e. it is a solution of the problem

ae’p,— Ao — (o~ =0+ (Bp—bajc~8s) 0 Q, (51)
Cvli+ 50 = V- (K7 (ps(8))V8) in &, (52)
o — Kele = KoMV - [e(l=)V(ps(e))]  inQ. (53)
8¢ a6 de ) o
= 0, = 0, o 0 on g x {0, T}, {54)
p0y=¢f,  6(0)=6, c0)=c InQ (55)

For this. we multiply the first equation {51) successively by ¢. ¢, and
—Ag@, and integrate over §1. After integration by parts, using Hoélder’s and
Young’s inequalities, we obtain, respectively

e d o A 5
gdﬂgg@]dx ; /(}( Vol+4¢>>dz

< C;+C’2/Q(f§[2+|c\2+§©[2)d:€, (56)
ae® [, d 52 5 1 1.
. P - Py .
5 Jo G dE cﬁtf( of + 36" —lof | d
< clw;»«cgfg(;@g%icﬁ) dz, (57)
el d 2 .
Volldr -+ /__, 12
5% o o dx 02 Agltdz

< cwcqf (167 + 1ef* + Vo) dz. (58)

Bv multiplying (52) by € and (53) by ¢, arguments similar to the previous -
ones lead to the following estimates

d C-Va 2 7002
52]95—391 dg:+5/;§ve\ dz

& §2dx—:-(71/ 612dz, (59)
Q 1



d
2 [ (efpdr + ] 3] Veldr < C /’ IV el?dz, (60)
dt Jo
where (20} was used to d‘sﬁaiﬂ the last inequality.
Now, multiply (57) by ae? and add the result to (56), (58)- (60), to obtain

[ac o (o€ o cve® o
&/ — o e VO 4 | 14 de
da:/ ,+<2 5 7ol 8@+ J9+yc)

2 4

p 1 (s a g
V|7 + ot + | R 12 ; 2
~E~j{2 (6 [Vol - 9t |:* + 5 AGP + 8|VOF + K4|Ve| )dx

< Co+Co [ (160 +1cf + 182 + (Vo) da. (61)

Hence, the integration of (1) with respect ¢ and the use of Gronwall’s
Lemma give us

| @l e oy + |0l 2o 0. L2000 + ||l zooo 2200y < Cr,

where (7 is independent of A and &,
Therefore, all fixed points of 7, in B are bounded independently of A &
0, 1].

Finally, to verify the last assumption, observe that the equation z —
To(x) = 0 is equivalent to say that problem (15}-(19) for A = 0 has a unique
solution. This is concluded reasoning exactly as in the beginning of this
proof, when we proved that 7, was well defined.

Therefore, we can apply Leray-Schauder’s fixed point theorem, and so
there is at least one fixed point (6,6, ¢) € BNWEHQ) x WiHQ) x C*HQ)
of the operator 7:, i.e.. (¢.8.¢) = 7}(@ 8,c¢). This corresponds to a solution
of problem (10) (14) and the proof of Proposition 1 is thus complete. ]

3 Proof of Theorem 1

To prove Theorem 1, we start by taking the initial condition in the previous
regularized problem as follows.

For a sequence § —» 0+, we choose ¢§ = ¢p and pick two corresponding
sequences A3 € H'7(Q), v as in Proposition 1, and ¢, € CY(Q) such that



o498 GCO
@n an
e — ¢y in HY{Q)

From Pmposition 1, we know that there exist a sequence (¢°,8°, %) of
corresponding solutions of problem (10)-(14). For such solutions, we will
derive bounds, uniform with respect to ¢: then, we will use compactness
arguments to pass to the limit and establish the desired result.

0<c) < 1, = 0 a.e. on 8, and moreover 85 — fy in L2(Q),

Lemma 1 There exists o constant O such that, for any 4 € (0, 1)

YY) RIPI
&% Lo mHi @m0 a2y + 19820y £ Cy (62)
T
et RE . 5y Foh 5:9 .
10°) poeto iz + ﬂﬁf(%é@é}}ivgoé“dﬁz < O (63)
’ Pit 0
Il ieorronoramy < Ch (64)

Proof: From inequality (61}, it follows estimates (62), (64) and also
16°|{ o< (02200 < Ch. (85)

By multiplying (11) by #° and integrating over @, we obtain

f{95| az:cT/ fff‘* (6°)) Ve 2dxdt<01/ f (1621 + 16°7) dadt.

In view, of (62) and (65), this gives estimate (63). B

Lemma 2 There exists a constant Cy such that, for any 6 € (0,1)

W0l ey < Gy (66)
I eormmy < Ch (67)

Proof: We take the scalar product in L*{Q2) of (11} with n € H'({1). By
using Holder’s inequality and (B), we find

5 ] 2 12 l I
Col Bl < ((0+1) [ KlpasIV8Paz) + Sliédlaee,

Then, (66) follows from (62}-(63). Estimate (67) can be similarly obtained
by using (62) and (64). i

[
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From Lemma 1 and Lemma 2, by using Aubin-Lions Lemma (see for
instance Simon {19]) and the fact that H*7(Q)) is compactly immersed in
H? () for 0 <% € 1/2, we conclude that there exist

¢ € L0, T:H* (M) nL=(0,T; HH{Q)) with ¢: € L*(Q),

5 € L=(0,T: L)) with 6, € L¥0, T; HY{QY),

¢ & L0 T HYO) N L®0.T, LX) with ¢, € L0, T, H{(QY),
J € LYQ)

and a subsequence, that to ease the notation we still denote (¢°,6°, %), sat-
isfving as ¢ - 0+ that

¢° — ¢ strongly in L*(0,7T; H*7{(Q)) N C(10. T L2,
0w < 1 '2,
o — gy meanix in LHQ),
£ — § strongly in C(f HYOY),
& — f§  weakly in L Q)
t — ¢ strongly in ( O C[0. T HH G,
c — ¢ weakly in L2(0.T; H'(Q)),
Ki(ps(¢°))V8 -» J weakly in LE{Q).

(68)

It now remains to identify J in terms of ¢ and € and pass to the limit as
6 approaches zero in {10)-{14).

It follows from {68) that we may pass to the limit in {10) and find that
{6) holds almost everywhere.

We proceed similarly as in Laurencot [11]. Since K is a Lipschitz con-
tinuous function, the Nemitsky operator associated to K is continuous and
bounded from H*(Q) in itself (see the statement of these results for instance
in Kavian [9] Thm 16.7; the corresponding proofs can be found in Marcus
and Mizel [14], Thm 1, and [13], Thm. 1). This and the fact that ps(¢°)
converges to ¢ in L*(0,T; HY(Q)) imply that

K. (ps{¢°)) — K1(0) strongly in L2(0,T; H(Q)). (69)
From (68)-(69), we conclude that

BVK (%)) — OVEK,(¢) weakly in L}(Q)
Ki(ps(6°)8° — K1(¢)9° weaklyin LNQ

70)
) ( !
Also, since K(ps(¢°)) € L>=(0,T; HY{Q)) and &° € L*(0.T; H'()), we have

N
Ki{ps(¢°))6° € L*(0, T; W'¥(Q)) for p = min {2 < 1}
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and . |
V (Ki(ps(67))8°) = Ki(ps(¢°)) V6" + VK1 {ps(0)).

It then follows from (70) that
Kilps(®)) V8 — V(K. (0)8) — 0V E1() in D'(Q). (71)

Since K, is nonnegative, the definition of K¢ and (63) vield that
16798%|| 120 < €, with C independent of §. Thus,

§VE° — 0in L*(Q). (72)

From (68), (71} and (72), we conclude that

J =V (K{0)f) - VK ().

Moreover, we may pass to the limit in & weak sense in (11) and obtain (8).
In order to pass to the limit in (12), we take scalar product in L*{Q) of
it with n € L2(0,T; H*(2)), to obtain

T . T -
/ / Sndedt ~ Ko ] / Ve Vo dadt
a JO 0 JQ

i . -
+ KQM/ / A1~ E\Vps(6%)) - Vi dadt = 0.
4] Q
Then, from {68), we have that
T T T |
f <ct,n>dzdﬁ+f(2j/ /QVC‘Vndzzdt—é-KgM/ /;c(l—c)V@-Vndxdt:O
4 0 { 0 {

holds for any n € L*(0,7; H*({)).
Moreover, since 0 < ¢ < 1 and ¢ converges to ¢ in L*{Q), we have that
0<c<1lae inQ.

Finally, it follows from (68) tha = 0, ¢(0) = ¢, #{0) = f and

L “’é";’; —
C(O) = Cqh.
The proof of Theorem 1 is then complete. B
Remarks
1. From the LP-theory of parabolic equations, it is easy to conclude that
2.1

cE WE/ZQ(Q), and therefore the equation for ¢ holds almost everywhere.

)
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2. The result stated in Theorem 1 still holds, exactly with the same
proof, for an initial condition ¢q in any functional space including H*({2) and

8(9{3
= 0 a.e. on 98, Moreover, a

for which it makes sense to require that
weaker version of the same theorem holds. with a natural weaker formulation
of (6}-{7). for initial conditions ¢ just in HH{{2). For the proof, it is enough
to adapt that of Section 3 by taking a sequence ¢f € H'™7(Q)), such that

a4 | | .
an“ =0 a.e. on 90 and & converges 1o & in H(Q) as & — 0+
References

1, Caginalp, G.. ‘An analysis of a phase field model of a free boundary’,
Arch. Hational Mech. Anal, 92, 205-245 (1986).

[2} Caginalp, G. and Jones, J., ‘A derivation and analysis of phase-fleld
models of thermal alloys’, Annals of Phy., 237, 66-107 {1995},

13] Caginalp, G. and Xie, W., ‘Phase-field and sharp-interfase alloys mod-
els’, Phys. Rev. E, 48(3). 1897-1909 (1993).

4] Colli, P., Laurencot, Ph., ‘Weak solution to the Penrose-Fife phase field
mode! for a class of admissible heat flux laws’, Physica D 111, 311-334
(1998).

3] Colli, P., Sprekels, J.."Weak solution to some Penrose-Fife phase-field
systems with temperature-dependent memory’, J. Diff. Eqg. 142(1), 54-
77 (1998).

[6] Friedman, A., Partial Differential Equations of Parabolic Type, Prentice-
Hall, 1964.

[7] Henry, D., Geometric Theory of Semilinear Parabolic Eguations, Lecture
Notes in Math, Vol 840, Springer-Verlag, 1981.

8] Hoffman, K-H. and Jiang, L., ‘Optimal control of a phase field model
for solidification’, Numer. Funct. Anal. and Optim., 13, 11-27 (1992).

9] Kavian, O., Introduction & lo Théorie des Points Critiques,
Mathématiques et Applications 13, Springer-Verlag, 1993.

[
[®e]



10]

11

Ladyzenskaja, O.A., Solonnikov, V.A and Ural'ceva. N.N., Linear and
Cuasilinear Equotions of Parabolic Type, American Mathematical Soci-
ety, Providence, 1968.

Laurencot, Ph., “Weak solutions to a phase-fleld model with non-
constant thermal conductivity’, Quart. Appl. Math., 15(4), T38-760
(1997).

Lions, J.L., Control of Distribuied Singular Systems, Gauther-Villars,
1985.

Marcus, M. and Mizel, V.J., ‘Complete Characterization of Functions
which act. via Superposition. on Sobolev Spaces’, Trans. American
Math. Soc., 251(July), 187-218 (1979).

| Marcus, M. and Mizel, V.J., ‘Every Superposition Operator Mapping

One Sobolev Space into Another Is Continuous’, J. Func. Anal, 33(2),
217-229 (1979).

| Mikhailov, V.P., Partial Differential Fguations, Mir, 1978.

Morosanu, C. and Motreanu. D., ‘A generalized phase-field system’, J.
Meath. Anal Appl., 237, 515-540 (1999

| Penrose,O., Fife, P.C., “Thermodynamically consistent model of phase-

field tyvpe for the kinetics of phase transitions’, Physica D 43, 44-62
(1980).

Rappaz. J. and Scheid, J.F., ‘Existence of solutions to a Phase-field
model for the isothermal solidification process of a binary allov’, Math.
Meth. Appl. Sci., 23, 491-512 (2000).

Simon, J., ‘Compacts sets in the space LP(0, T, B), Ann. Mat. Pura
Appl., 146, 65-96 (1987).

Warren, J.A. and Boettinger., W.J., ‘Prediction of dendritic growth
and microsegregazion patierns in a binary allov using the phase-field
method’, Acta Metall. Mater., 43(2), 689-703 (1995).

Wheeler, A.A., Boettinger, W.J. and McFadden, G.B., ‘Phase-field
model for isothermal phase transitions in binary alloys’, Phys. Rev. A,
45, 7424-7439 (1992).

29



Capitulo 3

Solucoes fracas de um modelo
do tipo campo de fase com
conveccgao para a solidificacao
de uma liga binaria

Resumo

A metodologia de campo de fase tem atingido nos tiltimos anos consideravel
importancia na modelagem e simulacio numérica dos processos de mudanga
de fase e de estruturas complexas de crescimento gue OCOITen: nO Processo
de solidificacdo. Na tentativa de compreender os aspectos matemdticos de
tal metodologia, considera-se neste trabalho um modelo de evolucéo para
um processo de solidificacio/fusfo de uma lige bindria com propriedades
térmicas. O modelo inclul a possibilidade da ocorréncia natural de convecgéo
nas regioes ndo solidificadas e, assim, nos conduz a um sistema de equacdes
diferenciais parciais altamente néo linear. consistindo da equacio do campo
de fase, a equacéo do calor, a equacdo da concentracdo e as equagdes de
Navier-Stokes modificadas por um termo de penalizacdo do tipo Carman-
Kozeny, o qual toma conta do efeito mushy.

E provada a existéncia de solucdes fracas para o sistema. Primeiro o
problema € aproximado e uma sequéncia de solugdes aproximadas € obtida
usando o Teorema de Ponto Fixo de Lerav-Schauder. Entao é mostrado que
o limite desta sequéncia é uma solucédo fraca do problema usando argumentos
de compacidade.
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Abstract

In recent vears, the phase-field methodology has achieved considerable im-
portance in modeling and numerically simulating a range of phase transitions
and complex growth structures that occur during solidification processes. In
atternpt to understand the mathematical aspects of such methodology, in
this article we consider a simplified model of this sort for a nonstationary
process of solidification/melting of a binary alloy with thermal properties.
The model includes the possibility of occurrence of natural convection in
non-solidified regions and, therefore, leads to a free-boundary value prob-
lem for a highly non-linear system of partial differential equations consisting
of a phase-fleld equation, a heat equation, a concentration equation and a
modified Navier-Stokes equations by a penalization term of Carman-Kozeny
type, which accounts for the mushy effects, and Boussinesq terms to take in
consideration the effects of variations of temperature and concentration in
the flow.

A proof of existence of weak solutions for the system is given. The prob-
lem is firstly approximated and a sequence of approximate solutions is ob-
tained by Leray-Schauder’s fixed point theorem. A solution of the original
problem is then found by using compactness arguments.
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1  Introduction

In recent vears, the phase-field methodology, which is an alternative formu-
lation both to the sharp-interface methodology (Stefan type approach) or to
the enthalpy methodology, has achieved considerable importance in modeling
and numerically simulating a range of phase transitions and complex growth
structures that occur during solidification. This has spurred many articles
using this approach and proposing several mathematical models consisting
of highly nonlinear syvstems of partial differential equations.

Rigorous mathematical analysis is in general difficult, but for pure ma-
terials undergoing phase change. several authors have undertaking the task.
Examples of this sort of analysis are [4, 14, 16, 20|, where existence and
unigqueness results are investigated for various tvpes of non-linearities.

Several phase-field models have also been developed for binary alloys.
One of the first works in this direction was due to Wheeler et al. {30] and
was concerned with isothermal solidification. Warren and Bosttinger [29]
extended this model, while recently Rappaz and Scheid [22] investigated the
well-posedness under suitable assumptions for the non-linearities. Caginalp
et al. [6, 5] extended this kind of model by including temperatures changes.
For such model, the governing equations for the phase-field and the concen-
tration are derived from a free energy functional; then an appropriate balance
equation for the temperature, accounting for the liberation of latent heat by
addition of a term proportional to the time derivative of the phase-field, is
added to complete the model. The existence of weak solutions for this model
was recently studied in [3].

The previously mentioned phase-field models do not consider the possi-
bility of flow of the non-solidified material. However, there are many cases
where such flows do occur and are significant, having important effects on the
outcome of the solidification process. From the mathematical point of view,
the inclusion of such effects in the model brings another order of difficulty
to the analysis, whatever the approach used for modeling phase change. For
instance [7, 8 9, 10, 21, 24, consider several mathematical aspects of the
interplay between fluid motion and phase change for pure material; the first
four of these papers used the Stefan approach, while the last two used the
enthalpy approach.

Voller et al. [26, 27| proposed models using the enthalpy technigue for
a convection/diffusion phase change process by including in the model a
modification of the Navier-Stokes equations by the inclusion of a certain term
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that takes in consideration the fiow in mushy regions. Particular expressions
for this term may be obtained bv modeling the mushy region as porous
medium. Another model of this type was proposed by Voss and Tsai [28]. In
Blanc et al. [1] performed a rigorous mathematical analysis of a stationary
model for the solidification process with convection of a binary alloy. The
model in [1] used an enthalpy approach and, as suggested in Voller et al.
127,. & Carman-Kozeny penalization term was added to the Navier-Stokes
equations to model the flow in mushy regions. Other authors have proposed
models using the phase-field method for solidification process of binary alloys
in presence of convection. For instance, Beckermann et al. [2] and Diepers
et al. [11] proposed models of this sort using arguments of mixture theory.
Thev also presented numerical simulations to validate their models.

In this paper we are interested in the rigorous mathematical analysis of a
phase-field tvpe model for a non-stationary solidification process of a binary
alloy, with the possibility of flow of the non-solid phase. Differently of models
in (2] and [11], the model we consider here combines ideas of Voller et al. [27]
and of Blanc et al. [1] to model the possibility of flow with those of Caginalp
et al. [6] for the phase-field and the thermal properties of the alloy. Our
system of equations will described in detail in the next section; here we just
observe that our system includes the Navier-Stokes equations with a Carman-
Kozeny type term as described above, and also a Boussinesg type term to take
in consideration buoyancy forces due to thermal and concentration effects.
Since these equations for the flow only hold in an a priori unknown non-solid
region, the model corresponds to a free boundary value problem. Moreover,
since the Carman-Kozeny term is dependent on the local solid fraction, this
is assumed to be functionally related to the the phase-field.

Qur objective is to present a result on existence of weak solutions for this
mathematical model. The proof will be based on a regularization technique
that combines ideas already used in [1] and {3]: an auxiliary positive param-
eter will be introduced in the equations in such way that the original free
boundary value problem will be transformed in a more standard (penalized)
problem. We say that this transformed problem is the regularized problem.
By solving it, one hopes to recover a solution of the original problem as
the parameter approaches zero. To accomplish such program, we will firstly
solve the regularized problem by using the Faedo-Galerkin method, just in
the modified Navier-Stokes equations. and the Leray-Schauder fixed point
theorem. Then, by taking a sequence of values of the parameter approach-
ing zero, we will have a sequence of approximate solutions. By obtaining
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suitable estimates for this sequence, we will then be able to take the limit
along a subsequence and, by compactness arguments, to show that we have
a solution of the original problem.

The paper is organized as follows. In Section 2 we describe the mathemat-
ical model and its variables; we fix the notation and describe the functional
spaces to be used; we also state our technical hypotheses and main result.
In Section 3 we introduce and analyvze the regularized problem. Section 4 is
dedicated to the proof of the existence of weak solutions of the original free
boundary value problem.

2 The model and main result

Let 0 < 7 < 400 and { be an open bounded domain in RY, N = 2or3,
with smooth boundary 80 (of class C* will be enough for our purposes).
Being ¢ = £ = (1,7}, we will consider the following system of equations:

. a0 . 1. - .
aelty, — 2 AP = 5(@ - )+ 80 —chy— {1 ~c)fp) inQ, (1)
v —vAv+Vp+v-Ve+E(fo)jv=Flc, ) inQm (2)
dive=0 inQmu, (3)
v=0 inQ,, (4)
Cob +Cov -V =V [K(6)VE + éfs(,@)t in @, (5)
¢ +v.Ve= Ky (Ae+ MV - el —c)V3]) n@, (6)

do G  Oc

e T —— e — 0 \. J = y 7
3 = an = on 0 ondx (0,73, v=0 on dm, {(7)

(D(Q) = @Q, 9(0) == 9{}, C(G) = g in Q, L(O) = Up in ng((}) (8)

Here, ¢ is the phase-field variable {(sometimes called order parameter), which
is the state variable characterizing the different phases; v is the velocity fleld;
p is the associated hydrostatic pressure; fs € [0,1] is the solid fraction; # is
the temperature; ¢ € [0, 1] is the concentration of the solute (i.e., the fraction
of one of the two materials in the mixture).

We recall that the phase-field methodology in its simplest approach as-
sumes the existence of two real numbers ¢, < ¢ and a order parameter
{phase-field} o(x,1), depending on the spatial variable z and time {, such
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that if ¢(z.1) < ¢, then the material at point z at time ¢ is in solid
state; if @ < o(z,¢) the material at point z at time ¢ is in lguid state;
if ¢ < &{z,t) < ¢ then, at time ¢ the point = is in the mushy region {a
region of microscopic mixture of solid and liguid). This setting must be
physically coherent with the concept of solid fraction, which we assume to be
functionally dependent on the phase-field. This requires that f.(z) be & func-
tion such that fi(z) =1for 2 < &, fu(z)=0for 2 > ¢, and 0 < fo(z) < 1
for ¢s < z < @ The required regularity assumptions on f, will be described
later on.

In the first of the previcus equations (the phase-field equation), « >
0 is the relaxation scaling; 3 = €[s]/30 where ¢ > 0 is a measure of the
interface width; o the surface tension, and [s] is the entropy density difference
between phases. 64 and fg are the melting temperatures of the two materials
composing the binary alloy.

In the second of the previous equations, v > { is the viscosity, assumed to
be constant. The penalization term k(f,} accounts for the mushy effect in the
flow. The original Carman-Kozeny expression for it is k(z) = Coz?/ (1 — 2)%;
however, we will consider more general expressions for this term. The term
F(c,8) is the buoyancy force, which by using Boussinesq approximation can
be expressed as Flc¢, 8) = pglci(f —8,) + co(c —¢;)) + F, where p is the
mean value of the density (which for simplicity we will assume to be a positive
constant); g is the acceleration of gravity (for simplicity also assumed to be
constant); ¢; and ¢y are two constants; 6., ¢ are respectively the reference
temperature and concentration {again for simplicity of exposition, both will
be assumed to be zero), and F is an external force fleld.

In the equation for the temperature, C, > 0 is the specific heat {constant);
! is a positive constant associated to the latent heat. We also observe that

this equation comes from the balance of the internal energy that in this case

[
has the form e = C.8 + 5(1 — fs), where 1 — f, is the liquid fraction. The

thermal conductivity X7 > 0 is assumed to depend on the phase-field.

In the last equation, K5 > 0 is the solute diffusivity and M is a constant
related to the slopes of solidus and liquidus lines.

The domain @ is composed of three regions, @,. @, and @;. The first
one corresponds to the fully solid region; the second one corresponds to the



(: =1}

i 2 i

(z.8) € @ : 0 < fo(o(z.t)) <1}, (9)
(z.ty e @ @ flolz.t) = 0}.

&8

mushy region, while the third is fully liguid region. Thev are defined by

e e felolz i)
Qm =
Q

R

ii

gty g gt

) will refer to the non-solid region, ie.,

We also define the subsets of {I associated respectively to the solid and non-
solid regions at time £ € (0.7

0
-_dsa\ { Y
alt } (11)
Observe that as we said above, all these previously described regions are a
priori unknown, the model corresponds to a free boundary value problem.
Throughout this paper we will assume the following assumptions:

(H1) % is nondecreasing function of class C*[0, 1) satisfying £(0) = 0 and

(H2) f; depends only on the phase field and is a Lipschitz continuous
function defined on IR and satisfving 0 < f(r) < 1 for r € IR with f]
measurable,

(H3) K, depends only on the phase-field and is a Lipschitz continuous
function defined on [R: moreover, there exist a > 0 and & > 0 such that

O<a<Ki{r)<? for all 7 € IR,

(H4) F is a given function in L?(Q).

We remark that the concentration equation as it is written in [6] (up to
addition of a proper convection term) is the following:

& +uNVe= K,V [c(l — )V (M’cj)—k In 3 < )J in Q.
-
This form of the equation forces ¢ € (0, 1) and is equivalent to equation (6)

in this case. Thus, (6) is more general than this last form since it allows ¢ to
assume the values 0 and 1, which are associated to regions of pure materials.
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We use standard notation in this paper. We just briefly recall the follow-
ing functional spaces associated to the Navier-Stokes equations. Let G C RY
be a non-void bounded open set; for T > O, consider also Qg = G x (0,7)
Then,

V(G = {we(CFG)Y, dvw= 0}
H{G) = closure of V(G) in (Lj{G:}\}.\
V(G = closure of V(G) n (HiGH"
H™2(Qg) = Hslder continuous functions of exponent 7 in z
and exponent 7/2 in ¢,
W2(Qa) = {w € LYQc)/ Dow. D2w € L9(Qg), wi € L9(Qg)}-

When & = {1, we denote H = H{Q1), V = V{£). Properties of these func-
tional spaces can be found for instance in (15, 23], We denote by (-,-) the
duality pairing between H'(Q) and H'(Q). We also put (-.-} = {-, ) the
inner product of (L2(1)"

The main result of this paper is the following.

Theorem 1 Let be given T > 0, O < RY, N = 2, or 3, a bounded open
domain of class C°, and assume that (H1)-(H4) hold. Let also be given
(N +2)/2 < g < 2(N+2)/N, ¢go € WEa9(Q) 0 H7(Q), 1/2 < v < 1,

satisfying the compatibility condition %D—~ =0 0on 90, vo € H{{1,u(0)), 6 €

L*Q), and co € L2(QY) satisfying 0 < ¢o < 1 a.e. in . Then, there exist
functions (¢, v,8,¢) satisfying:

(i) 6 € W2HQ), $(0) = d.

(ii) v e L*O0, T VYN L=(0,T; H), v = 0 a.e in é}s, v{0) = vo in Oy (0),
where Q is defined by (9) and ,,{(0) by (11},

fiii) 6 € L2(0,T: H(Q)) N L=(0,T; LX), 6(0) = 6,
(i) ce L0, T HH{O) N L0, T L)), ¢(0) =¢o, 0< ¢ <1 ae in@
Moregver, they satisfy
aeld, — 2 AG = é(@ — )+ 38+ (0 —8s)c—0p) ae inQ, (12)

ao .
5 =0 ae om8Qx(07T) (13)
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(1o = [, (0o ds = v [ (V0. Vaon
-+ \’L VU, nla, s SW/ (k(fs(@))v.n)as)ds (14)
:/{f (. 8). M)eisds + (V0. n0) ), 0.

fort € (0.7} a Jndany?’;el (0.7 V{Qu
in Oy U ;{{})u QT and m, € LY
by (10) and $1y,(t) by (11),

Lot 0))) with compact support contained
(0. 'f V(O (1)) where Quy is defined

~C, J[ Qgg((})dch / / b, drdt — Co f / w0 - V& drdt
/K (6196 - VE dudt = §}/ J/Ofs\_,;fgdxdt

o
fosend
e

E—

or any £ € LYO, T HY D)) with & € LA(Q) and £(T) =0 in 0,
Ay . B hY )

T
/ /c@dzdt / /tc TCda:dt+K/ /VC'V{;dxdt 16
16
LK, w/ jfal—ca‘i'@ V(drdt = chg(G)d:c
191

forany ¢ € L¥0.T: HYQ)) with ¢, € L*{Q) and {(T) =0 in (L

Remarks:

1. The restriction ¢ > N + 2/2 ensures the continuity of phase-field;
in fact, in this case W2H(Q) € H™/2(Q), for 7 = 2 — (N + 2)/q ([15] p
803. ’Zherefore, the set (Jmi 18 open, and we have a suitable interpretation
for the equations of velocity field. The restriction ¢ < 2{N + 2)/N is con-
sequence of the obtained regularity of the temperature. (m) implies that
§ e LPNFI/N(Q), and then, from the existence theorem for the phase-field
equation given in ([14] Thm 2.1), we know that ¢ € Vi—ff('lfwg} (@)

2. We cobserve that the phase-field models without convection studied in
[3] or [16] allow the thermal conductivity K to vanish. In the presence of
convection, we were not able to prove the existence of global weak solutions in
this degenerate case; thus, we had 1o assume the more restrictive assumption
(H3). It is possible, however, to prove the existence of a slightly different
local weak solution of (1)-(8) in the degenerate case. This will be done
elsewhere.
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3 A regularized problem

In this section we introduce an auxiliary regularized problem by performing
suitable modifications of the original eguations. The first objective of these
modifications is to introduce coefficients ensuring enough regularity for the
arguments to be used. The second objective, as in Blanc [1], is to change
the modified Navier-Stokes equations in such way that it holds in the whole
domain instead of holding just in an a priori unknown region.

The proof of existence of solutions for such regularized problem will be
done by using Faedo-Galerkin method, with the help of the Leray-Schauder
Fixed Point Theorem as stated in {[12], p. 189):

Theorem {Leray-Schauder}: Consider o transformationy = T.(x) where
x, y belong to a Banach space B and X is a real parameter which varies in a
bounded interval, say 0 < A < 1. Assume:

la) Tyix) is defined for allz € B, 0 < A <1,

’h) for any fized A, Ty(z) is continuous in B,

(c) for = in bounded sets of B, T.(x) is uniformly continuous in A,

/d) for any fized X, Ta{x} ts a compact transformation,

(e there exists a (finite) constant M such that every possible solution z
of Th(z) = x satisfies: lizl|lp < M,

(f) the equation To(x) = & has o unique solution in B.

Under assumptions (a)-(f), there exists a solution of the equation z—"T;(z) =
0.

Now, we recall certain results that will be helpful in the introduction of
such regularized problem.

Recall that there is an extension operator Ext(-) taking any function w
in the space W5 (Q) and extending it to a function Ezt{w) € W' (IRN*)

with compact support satisfyving
%.EEIt(wH‘W"QZ'l{R:’\’-H) < C Hwﬁwgi(@a

with C independent of w {see [19] p. 157).

For § € (0,1), let ps € CF{IRN™1) be a family of symmetric positive mol-
lifier functions with compact support converging to the Dirac delta function
(we can take the support of ps contained in the ball of radius 8}, and denote
by % the convolution operation. Then, given a function w € Wi (Q), we

v
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define a regularization ps(w) € C(RY+) of w by

ps(w) = pg  Ext{w).

This sort of regularization will be used with the phase-field variable. We
will alsc need a regularization for the velocity, and for it we proceed as follows.

Given v &€ L¥0, T 1), first we extend it as zero in JRY*1\Q. Then, a5 in
(19! p. 157, by using reflection and cutting-ofl, we extend the resulting func-
tion to another one defined on JRY™! and with compact support. Without
the danger of confusion, we again denote such extension operator by Fxt{v).
Then, being & > 0. p; and * as above, operating on each component, we can
again define a regularization ps{v) € CFF(IRY1) of v by

ps(v) = ps = Ext(v).

Besides having properties of control of Sobolev norms in terms of the corre-
sponding norms of the original function {exactly as above), such extension
has the property described below.

For 0 < & < 1, define firstly the following family of uniformly bounded

open sets i )
 ={ze R dz.Q) <) (17)

We also define the associated space-time cylinder
Q° =0 % (0,T). (18)

Obviously, for any 0 < §; < &y, we have Q@ ¢ Q% < 0%, Q C Q% C @Q%.
Also, by using properties of convolution, we conclude that ps(v)iss = 0.
In particular, for v € L>(0,T; H) N L*(0,T:V), we conclude that ps(v) €
L(0.T; H{Q%) N L0, T; V(Q%)).

Moreover, since £ is of class C?%, there exists §(Q2) > 0 such that for
0 < § < 8(). we conclude that £ is of class C? and such that the C? norms
of the maps defining 80° are uniformly estimated with respect to § in terms
of the C% norms of the maps defining 59.

Since we will be working with the sets 0, the main objective of this last
remark is to ensure that the constants associated to Sobolev immersions and
interpolations inequalities, involving just up to second order derivatives and
used with Q7. are uniformly bounded for 0 < § < §(€2). This will be very
important to guarantee that certain estimates will be independent of ¢,

Finally. let f0 be any regularization of fi.
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Now, we are in position to define the regularized problem. Let §({2) be
as described after (17); for each & € (0,4(2)], we consider the system

ac’e] — A8’ ;;(@5 ~ (%)) =3 {87+ (65— 0a)c" — 65) n Q°, (19)
d. : o -
=’ u) + (TP, V) + (00 T )+ (R(f1(6%) — 6 w)
= (f(cé. ), uy forallueV, te (0.7,
3 ! 3 . 5
Cobf + Cups(v”) - VO =V - (Ki(os(¢"))VE) + 2 f2(6%), Q% (21)

&8 — Ko + ps(0?) - V& = KoMV - (541 - c5>vp5(@5)) in Q°, (22)

b¢* 96? B! :
2 =0, Z-=0, L =000 x(0,T), (23)
5 = 0. 5 . o on < (0,T), (23)
A0 =l inQ F0)=¢] 60)=6 O =nd  (24)

Concerning this svstem we will prove the following existence result.

Proposition 1 Let T > 0, §(82) > 0 be as described following (17), and

1/2 < ~ < 1. For each § € (0,8(Q)], consider ¢5 € H@™¥7(Q%), v) e H,

o (OB o e (TR st R >

85 e HIT7(Q%) and & € C*{Q?) satisfying the compatibility conditions 73‘?;9 =
n

s 5 —
%9—0 m‘%% =0 0on 80 and 0 < c§ < 1 in OF. Assume also that (H1)-(FH4)

n )
hold. Then, there exist a solution (¢°,v°,8° %) of (19)-(24) satisfying
1) ¢° € L*0,T; HH{Q)), ¢f € L@,
i) ©? € LAH0, T V)N L=(0, T, H), v? € L*(0, T V"),
i) 6° e L0, T; H*(Q%)), & e LX),
iv) e CPHQ%, 0<cf <1

The proof of this proposition will depend on an another existence result

for other approximate problem, obtained from (19)-(24) by discretizing just
the modified Navier-Stokes equations using Faedo-Galekin method. By solv-

ing this approximate problem, we will recover the solution of the regularized
problem as the discretization dimension m increases to +oc.
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For this purpose, first we introduce the spaces V,,
V, = the closure of VI0) in (H5(O)Y, 5> 1,

endowed with the usual Hilbert scalar product

N

({wv))s =3 (w vi)ms o

i==]

We also consider the spectral problem:
((w,2))s = AMu.z) forallveViand s = —7~

which admits a sequence of solutions w; corresponding to the seguence of
eigenvalues A; > 0.

With the help of these ei@eﬁumctienq we define the following approximate
problem of order m: find (¢° w5 .8° 8, with

m ™t '4'T‘
m -
= go(tlw; € Vi = span{wi, ... wn},

such that
| . G
ae’eh, — A, — =(6h, — (&5 =3 (6, + (65 — 64)ch, — 0) in Q°, (25)

d : o
— (v, wy) 4+ vV, V) + (v, - Vb, ) + (k(f2(dr,) — S, w;

di )
= (F(Ci,@f?),'wj) 1<i<m, t<(0,T), (26)

[ ‘ .
Cubin, + Copslun,) - VO, = V - (Ku(ps(63)) V6L ) + 5 £2(6n), 10 Q% (27)

8 = Ko, +ps(vl) - Ve, = KoMV - (c),(1 =)V ps(eh,))  in QF, (28)
e, o8, 0 del,

5 =0 n O on
Ve (0) = vl in Q, ¢5(0) = ¢, 05.(0) =85, <, (0)=cl, inQ° (30)

We then have the following existence result.

=0 ondQ® x{0.7), (29)




Proposition 2 Lei T > 0, 8(8) be as described after (17), and 1/2 < v < 1.
Fiz 6 € {0,6(0)] and m & IN: let ¢f, € HYYQ, of, € V., 6, €

HYY 0 and &, € CHEW) satisfying the compatibility conditions 50”” =
n

56, _ 0ch, 5 o |
=m0 = (oon 00 and O < &, < 1 in Q9. Assume also that (FH1)-

on  On .
(H4) hold. Then, there ezist a solution (¢f 22, 8° ¢t ) satisfying (25)-(50)

and
i) @f, € L2(0,T: HAQ)). ¢, € LA(QP),
i) 2 € CHI0, T Vin),
i) 92, € L0, T HHQY), 68, € L*Q°),
iv) & € CHHQY), 0< & < 1.

Proof: For simplicity of notation, in this proof we shall omit the index
§usedin &5, 05, 65, 8.

We consider the family of operators, for 0 < A < 1,

T.:B— B,
where B is the Banach space
B = LX(QF) x LX0.T: H) x LQ%) x LA(QP),

which maps (g%m._i‘m, B Cm) € B into (dm. Um, Om. Cm ), With

U (t) = Z Gim(t)w; € Vi, obtained by solving the problem

. 1 N

€ Gy — e* Ay — S(Qm — @) = \3 (6‘m + (g — B4)ém — 9;3) in Q° (31)
d , ,
gg(?}m,wj‘) + U(VUm, V) + (U Vi, wi) + (E(F(Gm) ~ 8)0m, w;)

= MF(embm)owy) 1<) <m, t€(0,7), 32)

[ s, .
cvgmz -+ Cvloé(vm} : vgm =V - (Kl(pé(@m))vem) -+ “J)“fg{(ﬁm)t 1 Qéa (33)
s — Ko+ ps(vm) Ve = KoMV - (el — ) Vps(6m))  in Q°, (34)
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8¢,  OF dc :
e = e T = ) n 0% x (0,77,
on o @n ’ on 98 x 0. T),

A

35

R

em(0) =& in 0°. (36)

Clearly (Gm, Ui, O, Cm} is a solution of (2:>w\3€}} if and only if it is a fixed
point of the operator 7;. In the following, we prove that 77 has at least one
fixed point using the Leray-Schauder Fixed Point Theorem.

To begin with, observe that since 8,., &, € L2Q%) we infer from The-
orem 2.1 [14] that there is a unique solution ¢, of equation (31) with
O € WEHQY).

Now, (32} is a nonlinear system of ordinary differential equations for the
functions Gim, .. .. . Gmm- 1 1is problem has an unigue maximal solution de-
fined on same interval [0.%,,) and vm € CH{0,4,): Vin). The a priori estimates
we shall prove later will show in particular that ¢, = T .

Observe that since A is a bounded Lipschitz continuous function and
05{0m) € CF(RNTY), we have that K, (p@‘éw)) e WHY(Q%),1<r <o, and
since ps5(vn) € LVFHQY) and £ om), = 2 (0m)om: € LHQP), we infer from
LP-theoryv of parabolic equations ([103, Thm. 9.1 in Chapter IV, p. 341 and
the remark at the end of Section 9 of the same chapter, p. 351) that there is
a unique solution @, of equation (33) with 6, € W5 (Q°).

We observe that equation (34) is a semi-linear parabolic equation with
smooth coefficients and growth conditions on the nonlinear forcing terms as
the ones required for a semigroup result on global existence result given in
[13], p., 75. Thus, there is a unique classical global solution ¢,,. In addition,
note that equation {34) does not admit constant solutions, except ¢ = 0
and ¢ = 1. Thus, by using Maximum Principle together with the conditions
0<cf, <1and g—% = 0 on 80°, we can deduce that

0 < enlet) <1, ¥z, t) e Q. (37)

\ s . ‘ 5

mf

Therefore, the mapping 7, is well deﬁned from B into B.
To prove the conmtinuity of 7x, let (¢%,05,0% . 88), k € IV be a se-

quence m B stroncflv converging to (@m U, Om, Cm) € B and for each k,
let (%, vF, 8% &), the solution of the problem:

mmm

1 - :
ook, —EAGE 9( —(85)%) = A8 (05, + (B — 0a)ek, — 05) n Q°, (38)



i) = Sogh (€ Vi
F==l
d . \ i ok
— o ws) + w(Von, V) + (g, Vo ) + (R(£2(6h) — 8,
= MF(E.65)w,), 1<j<m, te(0.7),
Cobl, + Cups(uly) - VOE, = V- (Ki(ps{@h)) VL ) + ~fﬂe;hn19i

ek, — Kal\ch, + ps(vh) - Ve, = KoMV - (c,(1— ¢£)Vps(6h,)) in QF,

ek _ a9k B bk
on ~ On  On

vE(0) =], in Q) ok (0l =¢l,, 5”* f@) =85 .

=0 ondQ® x(0,7T),

ek (0) = ¢, in O°

We show that the sequence (¢f,. v 05,
{@ms Urns Bons O ) =
mates to (o5, v5, 65 ¢
with a proper indexes 4, positixe constants independent of k.

We multiply (38) by ¢F,, ¢&, and —AdF,, we integrate over )
and by parts, and we use the Holder’s and Young’s
following three estimaftes:

5 fhaes [ (49

scl+czf L. %9;{2+{ém[2+§@§lg)dxdt,

1
Z(@W) dxdi

ae ‘ ok 2y On)t (Gn)
7]/ tmtlgda:dt%-/( W’f‘”(s - )d:}:

<G G [ [ (B2 + 17 et
0 Jos
IS
ﬂ_j[";v@;gﬁdwu 6_] /V}Acéj;lgdxdt
Jos 2 Jo Jos
t -
<C+ G [ [ (VoL +185F + (&%) dadt.

o JO9

Multiplying (43) by ae® and adding the result to (44), we find

[ ER+ITeEE + (eh)ida

[y
T

(39)
(40)
(41)
(42)
(43)

¢k ) converges strongly in B to
TG Dol € cm,. Por ‘ihafa purpose. we will obtain esti-
%V independent of k. As usual, we will denote by C;,

x (0,1}
inequalities to obtain the

(44)



Since ||6 || 12, sy and [|¢5 [tz o6, are boaqaed independent of k, we infer from
(47) and Gronwall’s mequ&ht} tha

W&o lipos(o.mmicasy < Ch. (48)
Then. thanks to (44)-{46) we have
7' 22 (. @mtw sy < O (49)

We multiply (39) by g]m(z‘\ and add these equations for j = 1....,m. Using
that (- Ve,v) =0, u eV, v € (HHO)Y we get

"*}»

d [ 22 ‘ k \2 df A SR 2
7 m?’ Fdr - f u\_i + k{ f: O,l?;mg)dx
I Ak B, k2N
< O [ (1P 18R+ ;t~+\zf‘f\’)
: Foema o k2 . Ak 12 1ak12)
< Czjé ([F + b Py dz + Gy ]Q (16517 + 125, 1) dx.
By using Gronwall’s inequality, we obtain

iz rmoraorv) < Cu (50)

Let now F,, be the projector of H on the space V,,. Note that F, is a
V-orthogonal projector on V., and thus ||FPnl|zov. vy < 1. Therefore, from
equation (39), we infer that

s 7
[k 1E, ok s o R R 1o
el < Ci U;?Jmh'v -k mil g - + | Fllz2(o
+ 65 ey + k] ]LE{QO}) :
Then, by using (50) and interpolation {[17] p.73), we obtain

i ’k I -
vl ey < Cr (51)

Now, by multiplying (40) by 6%, one obtains similarly that

[ zd;c_/f ek | d$d¢<cwcsz (165, + 165 2) dadt, (52)

and we infer from (49) and Gronwall’s inequality that

s
(@]
[

e

ok
Oz ories)y < Cr
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Hence, it follows from (52) that

E o .
ﬂgmizﬁgoz;zﬂ(aé;) < G (54)

Now we take the scalar product of (40} with 7 € HY(°) and integrate by
parts using Holder's and Young’s inequalities to obtain
nak | {1 ak Lok ok ko
Hgmﬁkﬂsﬁﬂé}-’ <y l\ir‘?gmiﬁm(ﬂéz + ié?»fnﬁﬁ(ﬂ}e[ﬁm?mé(m + Ls@fmhLE(m))
and we infer from (49),(50) and (54) that

55)

——

kE oy
HthiiL‘”B{G,T:H’i(Qé)’} <.

Next, multiplying (41} by ¢,
we conclude that

- i 5 4 . L )
f“ ek *dx »%w/ J/f |VeE |Pdadt < O + Cg/ / Vo, dzdt.
s a0 Jos 0 Jos

Hence, from {49}, we cbtain

and reasoning as before with the help of (37),

”Cfn‘ELE(O,T;Hl(Qéj}ﬂLw{O.T;Lz(m)) < (. (56)

In order to get an estimate for {cf,) in L0, T; HYQ%)), we go back to
equation {41) and proceed similarly as before to obtain

1 Lk it . i d
§!Cmt§§L3(D.,T;H3(QG}’} < Ch. (57)

We now infer from (48)-(57) that the sequence (¢%) is uniformly bounded
with respect to k in

Wy = {w € L¥0,T; HA(Q)), w, € L0, T; L}(Q%)}
and in
Wy = {w e L¥(0. T H{QY), w, € L*(0,T; LX) }

the sequence (v*

e

Wi = {w e L0, T5V), wi € LX0,T: V)

) is bounded in

and in
Wi = {we L%(0.T; H). w, € L0, T:V))}:
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the sequence (6%} is bounded in

Ws = {w € L0, T: H{Q)), w; € LY3(0, T HH{QP))}
and in

We = {w € L®(0,T: LH(Q)), w, € L*(0, T HHQ)
and the sequence (c* ) is bounded in

Wy = {we L0, T HYQ)), w, € L20,T; HH(QF)))

and in

Ws = {we L=(0,T; L2(Q%), w, € LHO.T: HHOY) )

Now we observe that Wi is compactly embedded into L2(0, T HY (%)), and
the same holds for W into C([0,T7; L*(0?)); for Wi into L*(Q); W; and Wy
into L3(Q°); with W, into C([0,T); 1% 7y, and with Wy and W into
C(10, T HHQY) ([23] Cor 4).

It follows that there exist (¢,,. Um, G, Cm) satisfving:

Om € L0, T:H*Q%) M L>®(0,T: HYQ%), with ¢, € L*(Q°),
v € L0, V)N L0, T; H), with v, € L0, T; V),

O € L0, T; HYONY) N L0, T L3(%)), with 8, € L¥3(0,T; HH{Q%)),
e € L0, T HH{ON N L=, T; L*Q), with eme € L0, T; HHQF)),
and a subsequence of (¢f 5 6% &) which for simplicity of notation we

keep denoting (¢~ ,vF, 6% ), such that as k — +o0 we have

L
m e Y Ym/

ok  — ¢, strongly in Lq({) T: HH{Q ) N ([0, T]; LAH(Q%)),

@&, — ¢, weakly in L° (G Hz(ﬂé))ﬁ

vE =, strongly in L2(Q) nC([0.T): V),

vk — ., weakly in L0, T V), (53
0 — @, strongly in L*(Q%) nCY{ [0 %y, (58)
pr @, weakly in L*(0,T; HY(Q ))

c®  — ¢, strongly in szOé) nC{io, T Hl((ﬁ) ),

= ¢, weakly in L*(0,T; H}(Q ‘5))

It now remains to pass to the limit as & tends to +oc in (38)-(43).
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Since the embeddm@ of Wy (Q°) into L%(QY) is compact {[18] p. ib) and
{¢F ) is bounded in Wy 2HQ?), we infer that \@}” 3 converges to &0 in LHQ%).
We then pass to the limit as & tends to +oc in (38) and get

. 1, , 2 R N .
G Oy — € DO ~ 5(Om — 1) = AT {9m + (0 — 64)8n — 05) ae in Q.
Now we observe that for fixed § > 0, k{f%(-) ~ §) is a bounded Lipschitz
continuous function from IR in IR; therefore, k(f°(¢%) — &) converges to
K(f{dm) — o) in LP(Q) for any 1 < p < +0oc. Since the passing to the limit
of the other terms of {39) can be done in standard ways, we get

d,

dzi‘lm wy) + V{ Vg, V) (v - Vug, w,) + \i»‘\j“r:}m ) = 6 U, W)

Also, since Vi, is a closed subspace, we have that v,(f) = > gm(t)w; €V

Since K1(ps) and f¢ are bounded Lipschitz contifmous functions and ¢
converges to ¢, in L*(@%), we have that K, {ps(0* )} converges to K (ps(¢m))
and ff (¢ ) converges to f9(é) in LP(Q°) for any p € [1,00). These facts
and (58) vield the weak convergence of K;{ps(05,) VO to Ki(ps(cm)) Vb
and f5(g5)05,, 10 £ (Gm)0m, in L32(QF). Also, since vf, converges to vm, in
L2(Q) we have that ps{v¥) converges to ps(v,,) in L2(Q?). Now, multiplying
(40) by 7 € D{Q°), integrating over 2° x {0, T) and by parts, we obtain

] |G (8 +0s0h) - VEE) 0+ Kalps(0)) VL, - Vn dadt
[ [ 55860k dwat.
Then, we may pass to the limit and find that

Cobims + Cops(tm) - VO = V - (K1 (p5(m)) Vi) + = fé’(om)@m in D'(Q°).

Now, by using the LP-theory of parabolic equations, we conclude that
holds almost ev erywhere in Q°.

It remains to pass to the limit in (41). We infer from (58) that Vps(oF,)
converges to Vps(dy,) in L2{Q%). Also, since ||k, || (s, is bounded, it follows
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that ¢f (1 —cF ) converges 10 ¢ (1 — Cpy) in LP(Q°) for any p € [1, 00). Thus,
we may pass to the limit in {41) to obtain

Cons = Kot + 05(Um) - Vem = KoMV - (Cnl] = 0 )V os{0m)) in Q°.

Therefore, 7, i continuous for each 0 < A < 1.

At the same time, 7 18 bounded in W, Wy x Wy x We, and the embedding
of this space in B is compact. We conclude that 7, is a compact operator.

To prove that for (ém T, a,, .G ) in 2 bounded set of B, T, is uniformly
continuous with respect to A, let 0 < A Ao < 1 and {Gm;. Umis Omis Cmi )y 12 =
1,2} the corresponding solutions Of (31) {36). We observe that ¢, = ¢my —

C}?RQ‘? Vin = Umyp ™ Uma '\,'g):m.'\t vg ( )?ij & 2;?} (97,,. = §7ﬂ1 o sz and
a=1
Cm ¥ Gy = Cmo Satisfy the following problem:

e Dy — € AO, = -?jOm {1 - (@m%‘?“ Om1@ma T Om%)) (60)
+{(A — A} (§m +{Bg ~ B4)Cm — 6‘8) in Q°,

d \ .
gg{@m, wi) + (Vo V) + (U - Vi, wy) — (Uma - Vv,r ')

+ kP2 (Gm) = 8yvmwy) + ([R(F G = 6) = B(F2(Oma) = 8)] vz )
= (A1 = A (Flm, bm)owy). 1 <G <m
(1)
Cellms = V- (K1 (05(00m1)) V) = V - [K1(05(6m1)) = K1 (05(013))] Vi

-+ C‘»’pé(@m} . veml -+ Cxprf{t'mQ) ' vgm

Z f Z T i, 5, N , . 5 P
= S (On)bme 5 1 (Gm) = £ (0m1)] S, 0 Q% (62)
Cmy — Kol = KoMV - (Coi (1 — 1) [V05(0my) ~ Vo5(Gma)])

+ ﬁé(?}m) ! vle + pé{vaJ . vcm

b KoMV ({1 = (em1 + Cmo) )V 0s(Gma)) in Q°, (63)

@@,m agm aCm & 7 N b
= = — Ay RN . 4
B o o 0 on 3% x (0.7, (64)

() =010 Q. (00 =0, 6,00)=0. cn(0)=0in Q° (65)
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T T . . a0 . 2 ..-.u
We remaﬁrk that d = Om] + Om Omo T Oms = (Prms/ 2 A G 2/ 2+
: 2z f : 2 e T 1 T T Tt ) .
Omi/2 + @m3/2 = 0. Now, by multiplying equation [(60) by ¢,,. integrating
by parts and using Holder’s and Young's inequalities, we obtain

‘ Loy - ) ot
1’"; wtdr /j) »'@mi“d.;z:(z:?SC;'l / 1O 7 (1 — d)dxdt

foé‘ 5 Jaf

i ~ P P if 1.
e {/3;\1 **}\7 [ j f}’ T+ iCmiz} drdr.
Jo Jos N ‘ /

Applving Gronwall’s inequality, we get
l‘)

: 92 -
1 Om | zoe0.7:120008)) + gom”izge.r;ﬁi(m;) <l = A0l (66)

Now, by multiplying (60) bv ¢,,, and using Hdélder's inequality, we con-
clude

(o)

. i - £ 7 ,
(}E')/ / O, Pdzdt + = f Vo, Pdr
JooJos ?:

Ci / m,1d df / i FOmfzaIdf
/ %.«-.5/ (: .
+ G // ool V3 drdt (//
{3 38 Jo Jo
£ ChlA — Ao? /] 2 e T

Since W5 Q%) — L%(Q%). the following interpolation inequality holds

A

| @m| 2oy < 7 | Om-;? 2 1(05 + C‘l@miti%(g‘\ for all n > O,

and since ‘d‘}_)@& < (', depending on [@p |l p1oigry and (Gmpll 100, TEAT-
ranging the different terms. we obtain

E .
/ /ﬂ%;omégﬁdm + jjwm;?da:
Ju Jns ol '

< CE/fA (6l ddt + Co Dl 0

© CylAg - f]o (16l + Enl?) dadt.

Multiplving (60} by —Ag,,,, and proceeding similarly as before, we infer that

£
[, iVonlPds = [ | |50 dzdt

< cl/ / (6 + IV o Pdzdt + Con[[6ml1 220 06 (68)

+ cg)\l_,w/ﬂ/m (16l + 12 ?) dexd.

N :\3
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> 0 small enough and considering (66). we conclude from (67) and

®

i 2 v 373 s
s T HOm i~y S CHid — Al 6

Multiplving (61) by gy, (¢

Pand adding these equations for j = 1.--- . we

obialu

14 r .
:.557:( i(” (Jf—r/ MT"’M. ‘*fi‘\;fiji@m

Voo | | d

}’" o B v di

By integrating this last ineguality with respect to # and using our previous
estitmates and Gronwall's meguality. we obtain

o, 2 v 2 —r
W e SO L0V < C'l ‘}“ - }‘2‘ . {‘r(})

Multiplving (627 by 4, luregrating over £2° using Hélder’s inequality and
- N A N . .. . . -
that A and f7 are §}€'ml}('§€"d Lipschitz continuous functions, we have

< ¢ / Ip{ysomm\”ﬁr o V80l + 105 (0 ) 18,110l

m; -+ E.Orrzglomgf! ‘Hm’df
2 e 12 L@ n 12
J.xs;a.T;Lfa;Q\f;)i?vgmzlﬁgf;m) Ty / VO, dx

_"‘C - }|?. .\_9 I‘z .
FCo |t 1 L= o Y Pl 2000

200y -+ Cl% / <®1*lt§2 -t ?gmi ) dz.

: ] 12
‘704;19an\1,\~,@1 T

Integration with respect to ¢ and the use of Gronwall’'s Lemmma and (69)-{70)
lead to the estimate

o
o |
-

e

Il s ; 2
llgm%\g-x(o_T;Li(Qﬁ}; < A1 — /\2‘|
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We multiply (63) by ¢, integrate over O° x (0,1} and by parts, and we use
Hélder’s and Young's inequalities and {37) to obtain

t
J{rcmigdx—a— [ [ {Vsmfgdxdz‘
o Jo Jos

2
<C [ [ (190s(0m1) = Vos(Gmall? + pslum)l + lenf?) drds

JG

<G [ [ (1Voml = ienf?) dadt + Gy [ [ omldzat
o Jas A 0 Ja
Applying Gronwall’s inequality and using (69)-(70} we arrive at
[icm|Zec ooy < Cridr— Aol (72)

Therefore, it follows from (69)-(72) that is uniformly continuous with
respect 10 A on bounded sets of B.
To estimate the set of all fixed points of 7, let (@m. Um, Om, ) € B be

such anv given fixed point, lL.e., it is a solution of the problem

o
A

. . 1 . _
afzémz - EzA@m - 5(®m - @in) = A3 (b + (8 —b4)cn — Op) In Q°, (73)

Um(t) = D Gmltiw; € Vi, = span{wi, ... . wn},

d
7 Wmows) (VU V) + (U Vom, wy) + (R(f{m) = 8)vm, w;)
= MFlembn)wy) 1<j<m, te(0.7), (74)

o N AT -
Cvgmt T Cvpé(’vm) ) vg’m = v ) (Kl(pé<@m))vgm) + §f§(®m)t i Q5: (70)

ot — Ko NCo 4 05(Um) - Ve = KoMV - (el — )V (05(0))) in Q°, (76)
B6m  O0m B

= = (ks = \Qé . . 7
o £ 5 ¢ on a0 x (0,717, (77)

U (0) = U 10 Q. Br(0) = & 0(0) = 65, Cl0) =, in Q0. (78)
Multiplying the ﬁrst equation (73) by Gm, Oms and — Ao, respectively, in-

tegrating over Q° and by parts, using Hélder’'s and Young’s inequalities, we
obtain

: . e 1
—— | |omlidr + J/ (ezl'\?’@m{‘z + —@i) dx
0f Qd 4
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< O+ 0, o {é)mlz‘!r {Cm|” EGm‘2> dx (79)
ae? d 7 fé 2, 1 ! \
[ H i< e — e e (B M: 2
2 /g;ﬁ (Omel AT d /n (2 Vom|"+ g0m — gloml” | dx

< G+ 0y L {§9mi2 + %CmP} dz, (80)

< Cys—{?zfm (!@m§9+ gcmlgu&}vamﬁ) dz. (81)

Now, for each 7 == 1,...,m, we multiply (74} by g, (¢} and add the resulting
equations to obtain
L N [ (U Voml® + E(f2(6m) = 8)lv]?) dr
Qdf,jﬁm ' T ! & LY Sm,/
< jQ€F~ + |0+ leml? + |vm| dz (82)

< CHA[F; + fml2dz + Oy /:2 16,2 + e Pz

By multiplying (75) bv 4, and (76) by ¢ and proceeding similarly as above
lead us to the following inequalities

d

d,t o 2 IQ IdJE a_/ ‘;79 ld < mf |@szizd-??“f“c1 [5J9m§2d$ (83)

d
%/ e Pdz + Ko / Ve 2dr < cg/ o |2de, (84)
where we used (37) to obtain the last inequality.

Now, by multiplving (80) by ae® and adding the result to (79),(81)-(84),

we obtain

2 2 4 a4
i/(ﬁwﬁ+@iﬁﬁywﬁ+%w+%%ﬁﬂ%ﬂw

dt Jos \ 4 22 8§
d 2 : [ S . oy 2 e e |2
w2 [ glemldr+ [ 2Vonl + k(£ 0m) = DemPde+ [ (@Ven)

4 2
|G|+ €—|A<§Jm%2 +alVé,,|? + Kqum|2> dix

k}g
W | ped
o

e
4
scl»evc] (18l + leml? + [6ral® + [V 6] )d:rwf—clfltw[ dz,
(85)
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where C is independent of A, m and &.
Hence, integrating (835) with respect ¢ and using Gronwall's inequality,
we Obtalin
(G| Loc o1 (28)) + ?;z;m“m{o ToH)
1l oo 012208y T | Cmllze oz < Ch
where € is independent of A. Theremra, we have a gou:&d for all fixed points
of 7, in F independent of A
Finally, proceeding exactly as we did to prove that 75 is well defined, we
conclude that for A = 0, problem (31)-{36) has a unique solution.
Thus, we can apply Leray-Schauder theorem and conclude *that there ig
a fixed POINt (G, U, B G ) € B OWEHQF) x cl([o T): Vip) x W3H(Q%) x

2H@%) of the operator 77, that is, (G, Ums O, Gn) = T1{Gm. Vrns By Con -
This is a solution of problem (25)-(30), and the proof of Proposition 2 is
compilete. ]

We now proceed with the

Proof of Proposition 1: We choose ¢f,, = of. 65,, = 6, ¢}, 6 CHQ)
with 0 < ¢ < 1, and v}, € V}, such that ¢} — ¢} and %m — 28 in the
norm of H as m — +oc. We then infer from ?ropositio& 2 that, for each

£ (0,6(Q)] and m € IV, there exist functions (¢°,,v5,. 8% . ¢} satisfying the
system (25)-(30). We will derive bounds, independent of m, for this solution
and then pass to the limit in the approximate problem as m tends to +oc
by using compactness arguments.

Lemma 1 There exists a constant Cy independent of m € IN such that

&\ oo {05))“122{01‘}1“’{00 + 168, lzi0n < O, (86)

lon e ormnzoryy < Ci, (87)

H@iEL-*’C(o,T;Lzmé))nL?m,T,—Hi(Qﬁ}) < Ch, (88)

ez o r2eynreormiosy < Cr (89)

Proof: It follows from the inequality (85). E

Lemma 2 There exists a constant C windependent of m € IN such that

vau“;LQ(D.T:lf;’} < Ch (90
,%;égfntgéﬁ‘l/B(O,T;Hi(Qé)’) < O (91)
ey < Cr (92)

|
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Proof: From the equation {26}, we infer that

\‘ G
Ve

i ; & 12
v = Cﬁ(a zu,wmmﬂ o
4}

o

; Y
- F|£4f() - ”Qm L?. e‘ - ”C:n;; 2{_(36)}} .

Then, by using (87)-(89) and inferpeia‘tioq q"?ﬂ p.73), we obtain {80). By
takmg the scalar product of (27) with n € HY{{}) and using Hélder’s inequal-
ity, we find

; ARAIT eyt Load 6 3 i i
162 reasy < &1 VOl + ionllz2@ey + llvmlizae 101l zeas) ) -

Then, (91) foliows from (86)-(88). (92) can be obtained similarly by using
Lemma 1. E

We infer from Lemma 1 and 2 using the compact embedding (23] Cor.4)
that there exist

¢ € L0, T: HYQH) N L=(0. T HY(Q) with &f € LHQ),

¢ e LA0.T:;V)NL®0,T; H) with o8 € L2(0,T; V)

6° € LX0.T;HY Q%) N L0, T: L2(QF)) with 6] & L¥2(0, T; H' (%)),

¢ & LMO,T; HHO)) NL®(0.T; LH(Q)) with ¢ € L*(0, T2 H'(Q2°)),
and a subsequence of (¢¢ .22 .62 ¢ ), which we keep calling (2,02, 83, ¢2,)

to ease the notation, such that, as m — —+oc,

QO
|
9

5 strongly in L0, T; H*>7(Q8)y n €0, TT; L3 (0%,
0<y<1/2

¢°, — & weakly in L*Q°%),

v — ® stronly in L*(Q) N C([0,T1; V),

13, — v weakly in L2(0,T: V), (93)
' — 9 swongly in L2(QF) 1 C(0.T} (S,

60— 9 weakly in L2(0,T; HM(Q

0.7
)
0,
o)

¢, — ¢ stronglyin L® (Qé) C([0, T, HH{O),
& = 8 weakly in LY0,T; HYO)).

Thus, letting m — ~+oc in (25), we get

aeggbf — NG~ é(cj‘)‘s - (& =23 (@5 + {fg — 9_4)05 — 95> a.e. in Q%

4
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Since k{ fé (-} — &) is a bounded Lipschitz continuous function we have
that A{ff @° ‘s~ 8} converges to k(f3{¢%) —4) in Lpi@) for p € {1, 0¢); then
R(f3(8) — 6108, converges to k(£3{¢°) — 8)0? in L¥2(Q) as m tends to ~oc.
As usuaE (117 p 76) we may pass to the hmlt in the other terms in {26) and
get

5 (0% ) (V0 V) (e Ve wy) + (R(£1(6°) = 60, wy)
= (F(c,6%),w;) forall j e IV.

We conclude that

008 )+ (T, V) + (0 T )+ (R(f(6%) — O ) = (L 69) ),
for all w € V,, and then for all u & V.

Since K1{ps) and f are bounded Lipschitz continuous functions we have
that K:1(ps{¢%)) converges to Ki{ps(¢®)) and f¥ (o8 to 7%y in (%)
for any p € [1,20) as m tends to +oo. Also, since v2 converges to ¢ in
(@) we have that ps(vl,) converges to ps(v?) in LQ(Qé). Using these facts
and (93) we pass to the limit in {27) and obtain

Uoosty 60 06 e v
Cub + Cops(v”) - VO =V - (K:(pa("))VE°) + 517(6%)6f in D'(Q°).

Applyving LP-theory of parabolic equations, we have that €° ¢ W’;}z'l(Q‘s ).
Similarly we pass to the limit in (28) and obtain

¢} — Koe® + 05(0°) - VE = KoMV - {cé(l - sé}Vp5(®5)> in Q°.

Observe that ¢’ is a classical solution and satisfies 0 < ¢ < 1. Finally, it

5

follows from (93) that %% = a@a = ‘Zi 0, #°(0) = ¢, v°(0) = vg,
T

§3(0) = 85 and c*(0) = 5. Therefore, the proof of Proposition 1 is complete.

4 Proof of Theorem 1

In this section we prove the existence Theorem 1. For 0 < ¢ < 6(£2) as in the
statement of Theorem 1, we choose ¢§ € W 2/94(Q%) 1 H*(Q%), v§ € H,
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; . , > L =
85 € H™V(Q), 1/2 < v < 1, ¢f € CHOY), satisfying — = —2 = —2 = {)
' on gn  In

on 805, |82 l2(0r) < C.and 0 < ¢ < 1in Q9 of — vy in the norm of
H ngf 0}), and such that the restrictions of these functions to O (recall
that 0 C 0°) satisfy as § — 04 the following: &) — ‘g in the norm of
W2-2/92(Q) 1 H7(Q), 85 — 8, in the norm of LH0), ¢§ — ¢y in the norm
of L2(0).

We then infer from Proposition 1 that there exists (¢, v, 8%, ¢°) solution
the regularized problem (19)-(24). We will derive bounds, independent of
o, for this solution and then use compactness arguments and passage to the
limit procedure for § tends to 0 to establish the desired existence result. They
are stated in foilemn@ in a sequence of lemmas; however, most of them are
emse consequence of the previous estimates (those that are independent of )
and the fact that £ < O°. We begin with the following:

Lemma 3 There exists a constant Cy such that, for any § € (0,6(Q))

¢ iJLocfo:rH @rrzormy + 162

< |j¢° [l 0.1 (08 L2 0 T a2 (05 + H@t“z}“@é\ <, (94)

||v HL’WGTH ALO0TV) / f )EL Pdrdt < C, (95}

16%|| poe o 2tnnreto rmt () < .W‘S“Lwo?xz”( nrzoTai ) = Cr, o (96)
éfcé”L“{GT;L?(Q})ﬁLz(O.T:Hi(ﬂ)) = |§C EiLmqo,T;LE(Qé))mL” 0,7 H1(05) = <y (97)
Proof: It follows from the inequality (85). ]

Lemma 4 There exists ¢ constant Cy such that, for any & € (0,6(2))

leflize orE, < O (983
HQSIEL‘““OTH%QV) < O, (99)
e wiigy = Ci forany2<g<2(N + 2)/N. {100)

Proof: Using that 0 < ¢® <1 in @, we infer from (22) that,
I mcay < €L (1Y ]2 + [0l + 198 2oy ) -
Then, {98} follows from Lemma 3.
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Now, we take the scalar product of (21) with n € H2(), using Holder’s
inequality and {H3) we find

Colll ey < i (v’ oy + 18 e 10 Lo + H@f%zﬂ{ﬂ}\) :

Then, {99) follows from Lemma 3.
Now, from a result of Hoffman and Jiang ([14] Thm 2.1), we conclude
that ¢° satisfies the following inequality, for any 2 < ¢ < o0,

li@ HW Qé) <G (tlgdgglL@{Qé) + ngéELQ(Qﬁ) + ?;@gﬁwz_m,q(m) . Cl>~ (1@1)

Then, {100} holds due to {[¢°] 1o gsy and by interpclation {|6° LRNH2/N ()
are bounded independent of 4. E

Lemma 5 There exist a constant C; and dp € (0,8(2)) such that, for any
§ < &y,
&
[we fizars g anvivyy < G (102)

where 0 < &y < to < T, U C Q1) and such that [, 1] x U < Qo U
Qi (0) U Qe {T7).

Proof: Let 0 < t), < to < T.U C Qu(t1) be such that [t;.#:] x U C
@ U (YU (T). It is verified by means of (20) that for a.e. ¢ € ({1, 13),

(08, ) = —z/f[; V' . Vudr — /2 v* - Uvdudr — ji E(f(e%) — dnludx
ij/(;f(céﬁé)ud:ﬁ foru € V{U).

In order to estimate ||vf{jv1y, we observe that the sequence {¢°) is bounded
in W2HQ), for 2 < g < 2(\7 + 2}/N, in particular, for ¢ > (N + 2)/2
we have that W2'(Q) C H™™2(Q) where 7 = 2 — (N + 2)/q ([15] p.
80). Due to theorem of Arzela-Ascoli, there exist ¢ and a subsequence of
(6%) (which we still denote by ¢° ), such that ¢° converges uniformly to &
in Q. Recall that Q. = {(z.t) € Q : 0 < f.(c "( ) < 1} and Q. u(t) =
fr e 0< f{oé(z.t)) < 1}. Note that there is 7 € (0, 1) such that for any
(z.t) € [tl ts] x U, we have '

foldlm, 1)) <1 ~7,
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Due to the uniform convergence of f° towards f, on any compsact subset,
there is an &g such that for all 6 € (0, dg) and for all (z, 1) € [t1. 6] x U,

fild (e t)) < 1-7/2.
By assumption (H1) we infer that
E(fS () = 6) < k(1 —=/2) for (z,8) € [t1,12) x U and § < &.

Thus,

Hence, {102) foliows from Lemma 3. E

From (95), we conclude that the sequence (v°) is also uniformly bounded
in L%{t,t9: HY(U)). Then, by the compact embedding ([23] Cor. 4) , there
exist v and a subsequence of (%) (which we still denote by v?), such that

v? — v strongly in L*((t,,t) x U).

Observe that (J,.; is an open set and can be covered by & countable number
of open sets (£, #;01) x U} such that U; < Q,,;/{#), then by means of a diagonal
argument, we obtain

v — v strongly 0 Lipo(Qmu U Qmi(0) U L (7)) (103)

Moreover, from (95) and the fact that v® € L?(0,7T;V) we have that v €
L0, T VYN L=(0,T; H) and

U“S e 'W'ea,kj.y in LQ (01 T HI(Q))

v® = v weakly star in L=(0, T; L2(Q). (104)

Now, from Lemma 3 and Lemma 4, by using compact embedding ({23] Cor.4),
we infer that there exist

o € W2HHQ) for 2 < g<2(N+2)/N,
8 ¢ L0, T:HY D)) NL=0,T; L*Q)),
¢ € LYHO.T.HY Q)N L>=0,T,L*),



and 2 subsequence of (¢%,8°,¢%) (which we still denote by (6%,6%,¢%) ) such
that as & — 0.

¢° — o uniformly in Q,

¢ — ¢ stronmgly in L9(0, T; W5 54(0), 0 < 5 < 1/2,

&7 — & weakly in L¥(Q),

# — @ strongly in LHQ) N C{0, T, HHO)", (108)
§° — 6 weakly in L*(0,T; HYQ) )

¢® — ¢ strongly in LYQ)nC([0, T} HLQ),

¢ = ¢ weakly in L2(0, T; HY{Q)). ‘

It now remains to pass to the limit as ¢ decreases to zero in (19)-{24).

It follows from (105) that we may pass to the lmit in (19), and find that
{12} holds almost everywhere.

Now, we take u = 1(¢) in (20) where n € L*(0, T V”ng(t))\ with compact
support contained in @y U 2m(0) U (T and 1 € L0, 75 V(O ()
after integration over (0, ¢}, we find

/;((@-f.n)chzﬁ,vmmé.vl n) + (k(f2(6°) = 6)2%,m) ) ds
:[G{f(cé,ﬁé);ﬁ)ds-

Since supp 7 C G U Lo {0) U, (T") we have that supp n(t) C Qm(t) a.e.
t € [0,T]. Moreover, we observe that

(106}

¢ t ‘
[3 (v?, n)ds = —j{) (V. o ds + (00 8), (o — 8, 7(0)) .0

Because of uniform convergence of f¢ to f, on compact subsets, as well
as the assumption (H1), it follows that k{f(¢°) ~ &) converges to k(f.(9))
uniformly on compact subsets of QU0 {(0)UQ{T). These facts, together
with (103)-{105), ensure that we may pass to the limit in (106) and get (14).

To check that v = 0 a.e. in Q take a compact set K CO . Then there
is an 8x € (0, 1) such that

Fi(z.t)) =1 in K ford < dg,

hence, k(f{¢%(z,t) —3) = k(1 — &) in K for § < &x. From (95) we infer
that
(1= 8 [[fag, < C1 for 6 < dg
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k1-4¢
Oae i
K. Since K is an arbitrary subset, we conclude that v = 0 a.e. in COQE .

In order to pass to the limit in (21), we notice that given £ € L*{0, T HH{O)
with & € L*{0,T; L*(0)) satisfving £(T) = 0, we can consider an extension
of € such that £ € L¥0.T: HY{O%) with £ € L2(0.T: L)) satisfying
£9(T) = 0. Now, we take the scalar product of (21) with £°,

e

where (' is independent of 4. %f% & tends to 0. by assumption (H }
blows up and consequently [v°|l 2. converges to 0. Therefore v =

=

—c, / Bie(0)de — C. ] f B€sdedt — C. j / s(0°)6° - Ve dadt

m/ / Ky (ps(¢?) V0 - Vedadt = [ / fé 59608 gt

(107)
Observe that, since K is a bounded Lipschitz continuous function, K ug}g" )
converges to hlf@) in EPKO\ for p € 11, 00). We notice that since pgs(2° ) con-
verges weakly to v in L2(0, 7 H'(£)) and 9 i strongly in C([0, T}; HA ()
we have that ps(v°)8° converges to v6 in D'(Q). Observe also thaz f‘i — fl
in LI(IR) for 2 < g < oo, then from (105) we infer that f¥(¢%)¢f converges
weakly to fi(o)¢; in LY Q(Q) Moreover, from Lemma 3 the integrals over
19\ are bounded independent of § and since |Q2°\Q] — 0 as § — 0, we have
that these integrals tend to zero as § — (. Therefore, we may pass to the
limit in (107) and obtain

—C, /505 0)dz — C. / /e%tdxdim(? f fz,e VE drdt
+ / / K\(6)V6 - VE dudt = / j’ FO)6:E ddt
for all £ € L0, T; HYQ)) with £ € L*0.T; L*(Q)) and £(T) = 0.
It remains to pass to the limit in (22). For that purpose, we proceed in

similar ways as before, taking the scalar product of it with ¢ € L2(0, T; H1(Q°))
with (¢ € L0, T; L*(0%)) and ¢°(T) = 0,

//c fdﬂifw/ / o5(1v°)c - VO dazdt«—Kz/ / Ve - V(i drdt

+K21/./’/ // (1 — YV ps(6) - VP dudt = fmcgg (0)dz

Then, from (104),(105), and using the fact that sequence {¢°) is bounded in
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L={(}}, we may pass to the limit as § — 0 to obtain

_ j f oCodrdt f ve- V( dadt + Ko | / Ve . V¢ dedt
’&Ef f&( — Vo V( d:sdf: J/ cp(0)dx,
4] 94 9]

which holds for anv ¢ € L3(0, T HY(Q)) with C € L*(0, T L (1)) satisfying
C(T) = 0. Observe that since 0 < ¢ < 1 and ¢® converges to c in L*{Q) we
have that 0 < ¢ <1 ae in &

Finally, it follows from (103} that g—z = 0, ¢(0) = &, 6{0) = 8 and

¢(0) = ¢p. Furthermore, 2(0) = vy in Q,4(0) because v*(0) - »(0) in V()
for any I/ such that 7 C 0,,(0). The proof of Theorem 1 is then complete,
E
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Capitulo 4

Um modelo bidimensional do
tipo campo de fase com
conveccao para a mudanca de
fase de uma liga binaria

Resumo

Neste trabalho analisamos um modelo bidimensional para um processo de
evolugao para a solidificacdio de uma liga bindria com propriedades térmicas.
O modelo inclui a possibilidade de fluxo nas regides nao-sélidas, as quais
s&o desconhecidas a priori, e consiste de um sistema de equacoes diferencials
parciais altamente ndo-linear associado a um problema de fronteira livre.
O sistema € composto pela equacao do campo de fase. a equaecio do calor,
a equacao da concentracdo e as equactes de Navier-Stokes modificadas por
um termo de penalizacao do tipo Carman-Kozeny, o gual toma conta do
efeito mushy, e um termo do tipo Boussinesq o qual considera os efeitos
das variages de temperatura e de concentracio. E provada a existéncia de
solugées fracas para o sistema. O problema é aproximado e uma sequéncia
de solugoes aproximadas é obtida usando ¢ Teorema de Ponto Fixo de Leray-
Schauder. Uma solucao é obtida usando argumentos de compacidade.
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A Bidimensional Phase-Field Model with
Convection for Change Phase of an Alloy

Abstract

The article analvzes a two-dimensional phase-field model for & non-stationary
process of solidification of a binary allov with thermal properties. The model
allows the occurrence of fluid flow in non-solid regions, whicn are a prior
unknown, and is thus associated to a free boundary value problem for a highly
non-linear system of partial differential equations. These equations are the
phase-field equation, the heat equation, the concentration equation and a
modified Navier-Stokes equations obtained by the addition of a penalization
term of Carman-Kozeny type, which accounts for the mushy effects, and also
of 2 Boussinesq term to take in care of the effects of variations of temperature
and concentration in the flow. A proof of existence of weak solutions for
such system is given. The problem is firstly approximated and a sequence
of approximate solutions is obtained by Leray-Schauder fixed point theorem.
A solution is then found by using compactness argument.
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1 Introduction

Through the introduction of an extra variable to distinguish among physi-
cal phases, the phase-field methodology provides a continuum description of
phase change processes. This method has proved itself to be a powerful tool
for the study of situations with complex growth structures like dendrites,
and recently phase-field models for solidification have been extended to in-
clude melt convection, bringing interesting new mathematical aspects to the
methodology.

In an attempt to understand such mathematical aspects, we consider here
a two-dimensional phase-field model for a non-stationary process of solidifica-
tion with convection of a binary allov with thermal properties. Qur objective
is to prove the existence of solutions of a mathematical model that combines
ideas of Voller et al. {12, 13] and of Blanc et al. [1] for taking in consideration
the possibility of flow, with those of Caginalp et al. [2] for the phase-fleld and
the thermal properties of the alloy. The resulting system will be described
in detail in the next section. Here, we just observe that, besides having a
phase-field equation, a heat equation and a concentration equation, it also
includes the Navier-Stokes equations modified by the addition of a Carman-
Kozeny type term to take care of the fow in mushy regions and also by the
addition a Boussinesq type term to take in consideration buoyancy forces due
to thermal and concentration differences. Since these equations for the flow
only hold in an a prieri unknown non-solid region, the model corresponds to
& free-boundary value problem. Moreover, since the Carman-Kozeny term
is dependent on the local solid fraction, this is assumed to be functionally
related to the phase-field.

The phase-fleld model with convection considered here includes advection
terms in each of its equations. In a recent paper, [9], a simplified version
of this meodel, which did not include the advection term in the phase-field
equation, was analvzed. We should say that the inclusion of this term brings
several new technical difficulties to an already hard problem. To overcome
these difficulties is the purpose of this paper; for this, we had to adapt to our
case the results presented in Hoffman and Jiang [5] concerning the phase-
field equation. We also had to restrict the analysis to the two-dimensional
situation. We will comment more about this point in the next section; here
we just remark that this restriction in the dimension of the space is clearly
of technical nature. We hope to remove it in the future.

Existence of solutions will be obtained by using a regularization technigue



simnilar to the one already used in [1] and (8 with the help of an auxiliary
parameter, we will transform the criginal free-boundary value problem inte a
more standard penalized one. This regularized problem will then be studied
bv using fixed point arguments, and then we pass to the limit to obtain a
solution of the original problem.

The outline of this paper is as follows. In Section 2 we detail the model
we consider; we also fix the notation and state our main result. In Section 3
we study an auxiliary phase-field problem. The description and the analvsis
of the regularized problem is done in Section 4. Section 5 is devoted to proof
the main existence theorem.

2 The model and the main result

Consider 0 < T < +oc, a bounded open domain Q C JR? with smooth
boundary 942, and denote @ = I x (0,T). Then, consider the following
problem:

ve— A +Vp + v-Ve+k(f{d))v=Flc.b) in Qum, (1)
div v = 0 in ng, (2)
vo= 0 in Qs, (3)

cel ey + ey - Vo - NG — %(qb — é?’)
= G0 —chs—(1—c)fg) inQ, {4)

{

Coby+Cov-VH = V- -Ki(@)Vi+ ?;*fs(@}t in Q. {5)
c+v-Ve = Ko(Ac+MV-c(l~c)Ve) in @, (8)
do a6 dc s o ;
5;;—07 %—G, %-—GOQ&QXQG,TL v="0on G (7

o(0) = ¢o, 0(0) =0, ¢c0)=coin €, v{0) =1 in 2my(0), (8

In the previous equations, the order parameter (phase-field) ¢ is the state
variable characterizing the different phases; v is the velocity fleld, and p is -
the associated hydrostatic pressure; f; € [0, 1] is the solid fraction: 8 is the
temperature; ¢ € {0, 1] is the concentration (the fraction of one of the two
materials in the mixture.) The Carman-Kozeny type term k(f,) accounts for



the mushy effect on the flow, and its usual form is &(f,) = Cofs” /{1 — £)°

We do not restrict to this form and allow more general expressions. F(c,8)
denotes the buovancy forces, which by using Boussinesq approximation, we
assume to be of form Flc, 8) = pg(c1(6 — 6,) + cx{c— ¢.)) + F. Here, p> 0
is the mean value of the density {constant); g is the acceleration of gravity;
c1 and ¢o are two real constants; 6, and c. are respectively the reference
temperature and concentration, which for simplicity of exposition will be
assumed to be zero, and F is a given external force field. Also, o > ( is the
relaxation scaling: 5 = ¢[s]/30, where ¢ > 0 is a measure of the interface
width; ¢ is the surface tension, and [s] is the entropy density difference
between phases: v > 0 Is the viscosity: Oy > 0 is the specific heat; [ > 0 the
latent heat (constant); 64, fp are the melting temperatures of two materials
composing the alloy: Ky > 0 is the solute diffusivity, and M is a constant
related to the slopes of solidus and liquidus lines. Finally, A, > 0 denotes
the thermal conductivity which is assumed to depend on the phase-fleld.

The domain ¢ is composed of three regions. @, @ and ¢;. The first
region is fully solid. the second is mushy and the third is fully liquid . They
are defined by

Q. = {(zt)eQ [/ flolzt))=1},
Qm = {{(ztyeQ / 0<[flofzt)) <1} (9)
Q = {({zt)eQ / [flolz.) =0}

and (J, will refer to the not-solid region, i.e.,
Qui=QnUQ ={{zt)eQ / 02 fild(z) <1} (10)
At each time ¢ € [0, T}, Q,u(t) is defined by
Quit)={zeQ [/ 0 filolz.t)) <1} (11)

In view of these regions are a priori unknown, the model is a free boundary
problem.

Throughout this paper we assume the conditions,

(H1) k is a non decreasing function of class C*[0, 1) satisfying {0} =0
and lim k(z} = +oc,

1"

(H2) f: is a Lipschitz continuous function defined on IR and satisfying
0< folry < 1forr e IR: fl is measurable,

1
[N



(F13) K is a Lipschitz continuous funciion defined on /R such that there
exist a > 0 and & > O for which

b<a<Ki(r)<b forall r € IR,

{(H4) F 15 a given function in L*{@).

Our purpose in this work is to show that problem {1)-(8) admits at least
one solution in a sense to be made precise below.

Before that, we comment on the restriction on the spatial dimension.
Since the modified Navier-Stokes equations only hold in the non-solid region
Omis this set must be open for these equations to be understood at least in
the sense of distributions. This information is in particular implied by the
continuity of phase-field ¢ which in turn depends on the smoothness of v It
turns cut that only for the bidimensional case we are able to show enough
regularity of v to vield the continuity of @. As we wrote in the Introduction,
such limitations are guite clearly of technical nature, and it is our hope to
remove them in the future.

We use standard notation in this paper. We just briefly recall the follow-
ing functional spaces associated to the Navier-Stokes equations. Let G C IR?
be a non-void bounded open set; for T > (0, consider also Q¢ = G x {0,T)
Then,

V(G) {we (CF(G)) . divw=0},
H(G) = closure of V(G) in (LG,
V(G) = closure of V(G) in (HHG))®.
H™"*(Q.) = Hslder continuous functions of exponent 7 in z

and exponent 7/2 in ¢,
W2HQe) = {we LYQg)/ Dyw, Diw € LI(Qg), ws € LU Qe)} .

When G = £, we denote H = H(Q), V = V(Q). Properties of these func-
tional spaces can be found for instance in [6. 111. We denote by (-,-) the
duality pairing between H*(Q2} and H(Q)". We also put (-,-) = (-, ) the
inner product of (L2(0))°.

The main result of this paper is the following.

Theorem 1 Let be T > 0, Q@ C IR? & bounded open domain of class C°.
Suppose that vo € H{Q2,,(0)), ¢ € W ¥ee(Q)N A (Q), 2<g< 4, 1/2 <
%o

A .
~ < 1. satisfying the compatibility condition Mé;- =0 on 99, 6 € L*(Q)

|
WA



and cg € L2Q) satisfying 0 < ¢p < 1 ae in Q. Under the assumptions
(H1)-(H4), there exist functions (v, 0.8, c) such that

) ve LHO, T VINL®0, T H), v=0ace in O, v(0)=uvyin Dm(0),
where (s 15 defined by (9) and ©,,(0) by (11,

i) ¢ € WHHQ), o(0) = ¢,
i) 6 € L0, 7; HH{Q) N L0, T LAQ)), 8(0) = 6,
W) e LHO, T HY Q) NL=O0, T L), ¢0) =¢p, 0< ¢ <1 ae inQ,
and such that
B . t N t N
(withnlt)a,e — J/ (2, % )0 ads + v f (Vu, Vina,.is
0 : 40
= [ Ve namds v [ (B onds(12)

t
= /0 (Fle.8),m)a.sds + (vo, 10}, 0

€ (0.7), for any n € L*(0,T; V(¢ Jml( 1) with compact support conteined
i Qi U Qg (0) UL(T) and m, € L0, T V{(Qu(t))) where Q. is defined
by (10) and Q(t) by (11),

: 1
Qﬁg@g%—{kﬁzt"VQ*W(??&@—“;)-(@*@?’\+5 (64 (8g —84)c— 8} ae in
o (13)
g—i = { a.e. on Q% (0,T), (14)

—C\,.]{}Tjgé’gdxdt - C‘,./QTAT;Q-ngxdt+/;l}f{1{¢>)i79-ngzcit

_ .é / ! [ #toncasd + ¢ [ #oc(0)dz (15)
[ [ cdmdt— [ [ ve-vearat + Ky [ [ Ve vCda
+K2M/6Tj;c(1 — Vo V(dzdt = fc@g((})dx (16)

for any ( € L2(0,7; HY() with € L0, T L*Q)) and {(T) =0 in Q.
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Remark. The restriction ¢ > 2 ensure the continuity of phase-field
5721 i : } - £y

because W (Q) € H™HQ) where 7 = 2 — 4/g if ¢ > 2 ([6] p. 80,

Therefore the set (J,,; is open giving a meaningful interpretation to equation

of velocity field. The restriction ¢ < 4 comes from the regularity of velocity

feld. Tt will be clear in the next section.

3 An auxiliary problem

‘We consider the initial boundary value problem,

. 5 J 1,0 . -
ety + oty - Vo — 2 A = 5(@ - +g inQ, {17}
%—f; = 0 ondQx(0,7T) (18)

¢0) = ¢ infl (19)

and prove the following result using a technigue similar to the one already
used in [3] to treat a phase-field equation without convective term.

Theorem 2 Suppose that g € LI(Q) with 2 < g < 4, v € L*0,T;V) N
L@0, T H) and ¢ € W 2/29(Q) satisfying the compatibility conditions

9% _ = 0 on Q. Then there exist o unique ¢ € W2(Q) solution of problem

an
(17)-(19) for any T > 0, which satisfies the estimate

IW;"(Q\ <C (55@9 Wa-2/9.a(0) T ligl PLAQ) T L@OHLW 2/9.q( HQ g Q)
(20)

where C depends on |lvlrag), on & and T.

Proof: In order to apply Leray-Schauder fixed point theorem ([3] p.
189} we cousider the operator T,.0 < XA <1, on the Banach space B =
L8(Q), which maps ¢ € B into ¢ by solving the problem

A

a€’d, + ae’v Vo — eAd = 5—(@5 —¢ ) +Ag inQ, (21}
g% = 0 onodQx (07T, (22)
?0) = ¢ in (23)



We define Gy = -ié(jg?s — &%) + Ag and we observe that G, € L2(Q). Since
v € LYQ), we infer from LP-theory of parabolic equations ([6], Thm. 9.1
in Chapter IV, p. 341 and the remark at the end of Section & of the same
chapter. p. 351} that there is a unique solution ¢ of problem (21)-(23) with
& € WiH{Q). Due to the embedding of W7 Q) into LP(Q), for any p € {1, 50)
(7] p-15), the operator T, is well defined from B into 5.

To prove continuity of T, let ¢, € B strongly converging to @ B; for

each 7, let ¢, = Ta(,). We have that ¢, satisfies the following estimate ( 6

p. 341) :

@n .H“E’G < C \x @ﬁi 2oy T f @’r“%ﬁ(@‘ -+ }EQ’? gy + ‘ @GHH ’ﬁ‘)
for some constant C independent of n. Since W7 5" YO is compacﬂs embed-
ded in L0, T: WLP(0)) ([10] Cor.4) and in Lﬁ(Q)ﬂ € [1. 2c), it follows that

there exist a subsequence of ¢, (which we still denote b} @n j strongly con-
verging t0 ¢ = Th{¢) in B. Therefore T is continuous for all 0 < A < 1. At
the same time, T, is bounded in Vif’?:z‘l(Q)g and the embedding of this space
in B is compact. Thus, we conclude that T is a compact operator for each
A€ 0,1

To prove that for ¢ in a bounded set of B. T, is uniformly continuous
with respect to A, let 0 < Ay, Ay <1 and ¢; (7 = 1,2) be the corresponding
solutions of {21)-(23). For ¢ = ¢; — ¢ the following estimate holds

1wz 0y < CIA = ol (18] 2y + 16112000 + llgllz2@) )

where C is independent of A;. Therefore, T is uniformly continuous in A
Now we have to estimate the set of all fixed points of T, let ¢ € B be

such a fixed point, i.e., it is a solution of the problem

ey + ety - Vo — A = %(g’) ~ o+ Ag  inQ, (24)
g-g = 0 ondQx(0,T), (25)

We multiply (24) successively by @, ¢, and —Ad¢, and integrate over O x (0, 1).
After integration by parts and the use the Holder's, Young’s and interpolation
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inequalities. we obtain in the usual manner the following estimate

f”=2,;,rzn.\ L2 o 12 ht
JIQ f\,@ + gv@ggj dz + igﬁglu: < o (i El%’z@) + E!@Diéjqug}}!

t
+C/ (1+ fvjide
, AT

where (' is independent of A. By applying Gronwall’s Lemma we get

L e 20
Olz20) + ?W@?%L?{Q}) at

i§ ELS(Q} < C H/‘“‘lfQ < 7

where  and €’ are constants independent of A. Therefore, all fixed points
of T in B are bounded independently of A € {0, 1].

Finally, for A = 0, it is clear that problem (21)-(23) has a unique solu-
tion. Therefore, we can apply Lerav-Schauder’s fixed point theorem, and so
there is at least one fixed point ¢ € BN Vv’f'l{Q) of the operator 71, Le.,
¢ = T1(¢). This corresponds to a solution of problem (17)-(19). Observe
that W (Q) is embedded into LF(Q) for anv p € [1, 50). this implies that

1
G= r){@ 9°) + g € LY(Q) and further ¢ € W2{Q).

To prove estimate (20}, observe that from LP-theory of parabolic equa-

tions we have
| C ([(Gllzsie) + ligolwa-2reaiey)
C (HQHL‘?\Q l @ lL?(Q @HLS«;(Q} + 1 @Oliyyz 2/q, qu})

e
[2llwzhe)

IA A

[A

C <HQEIL‘5’(Q) - “@“W ) -+ ‘ G)‘iw‘z ey -+ H@OHWQWW‘L‘?(Q} -

Using estimate (27) we deduce {20).

It remains to show uniqueness of the solution. Let us assume that ¢, and
& are two solutions of problem (17)-{19). Then the difference ¢ = ¢ — oo
satisfies the following initial boundary value problem

ac’o, + ae’v - Vo — € Ad = %é (1- (sl + 61 +¢}) inQ, (28
N
5—2 = 0 ondQx(0,T). (29)
6(0) = 0 in, (30) |

We remark that d 1= &% + @109+ 63 > 0. Multiplying (28) by ¢ and using the
usual method of Gronwall’'s Lemma give us ¢ = (. Therefore, the solution of
problem (17)-{19) is unique and the proof of Theorem 2 is then complete. #
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4 A regularized problem

In this section we introduce a regularized version of the original problem.
As in [1] and (9], the idea is to modify the problem in such way that the
Navier-Stokes equations will hold in the whole domain {7 instead of only in
a aprior: unknown tegion. For technical reason, we also introduce a suit-
able regularization of the coefficients of the equations. For this regularized
problem, we prove an existence result by using Leray-Schauder Fixed Point
Theorem ([3] p. 189).

For this, we need to recall certain results. We start by recalling that there
is an extension operator FEzt(-) taking anv function w in the space W3(Q)
and extending it to a function Ext{w) € Wi (IR®) with compact support
satisfving

i%Ezé{u‘}§§14,3<z(R;3:} <C I‘ul“;{fl@,

with € independent of w (see [8] p.157).

For ¢ € {0.1), let ps € C3°(IR®) be a family of symmetric positive mol-
lifier functions converging to the Dirac delta function, and denote by # the
convolution operation. Then, given a function w £ I»’ng ‘E(Q); we define a
regularization ps(w) € C5°(IR?) of w by

pslw) = ps = Ext(w).

This sort of regularization will be used with the phase-field variable. We
will also need a regularization for the velocity, and for it we proceed as follows.

Given v € L*(0,T:V), first we extend it as zero in IR*\Q. Then, as
in 18] p. 137, by using reflection and cutting-off, we extend the resulting
function to another one defined on IJR® and with compact support. Without
the danger of confusion, we again denote such extension operator by Ext(v).
Then, being § > 0, p; and = as above, operating on each component, we can

again define a regularization ps{v) € C°(IR®) of v by
ps(v) = ps x Ext{v).

Besides having properties of control of Sobolev norms in terms of the corre-
sponding norms of the original function (exactly as above), such extension
has the property described below.

For 0 < ¢ < 1, define firstly the foliowing family of uniformly bounded

open sets
O ={relR? d(z,Q) <d}. (31)
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We also define the associated space-time cylinder Q% = Q% x (0, 7).

Obviously, for any 0 < §; < 8y, we have §2 ¢ 0% ¢ Q%, Q ¢ QF « Q.
Also, by using properties of convolution, we conclude that ps(v)iaqs = 0.
In particular, for v € L™(0,T: H) N L*(0, T V), we conclude that ps(v) €
L0, 7 H) L3O, T, V(Q%).

E‘v’ioreoaer\, since 1 is of class C® there exists 8({2) > 0 such that for
0 < § < 8(Q), we conclude that (¢ is of class C? and such that the C7 norms
of the maps defining 9Q° are uniformiv estimated with respect to & in terms
of the C® norms of the maps defining J¢.

Since we will be working with the sets %, the main objective of this last
remark is to ensure that the constants associated to Sobolev immersions and
interpolations inegualities, involving just up to second order derivatives and
used with Q°, are uniformly b{}m’zded for 0 < § < 6(C2). This will be very
important to guarantee that certain estimates will be mdepemﬁenﬁ of 4.

Finally, let f° be any regularization of fi.

Now. we are in position to define the regularized problemn. For & €
(0,5(9)], we consider the system

%('cd, w) o+ (Ve V) + (00 Tt ) = (B(fe%) — 8)v, u)
= (F(,8°),u) forallueV, t€{0,7T), (32)
| | U
0ete? + actps(v0) - Vol — 2Ag — 5(6° — (6°)%)

= B(60 + (85— 04)c° —85) nQ°, (33)

Cu} + Cops(v®) - V8 = V- (K (ps(6*)VE) -+ 5 f S, mQ% (34
— KA 4 ps(0°) -V = KoMV - (c5(1~—c)vpé(c;> )) i@’ (35)

da? /6% et

B N — = |}, — Qé N ’ . : 6

i a, o 0, 5 0 on 90Q° x {0, T, (36)
0= inQ, &0 =¢5 0)=60, L0)=d4in (37

We then have the following existence result.

Proposition 1 For each ¢ € (0,6(Q)], let v € H ¢§ € H(Q%), 8 €

8¢
H0%, 1/2 < v < 1, and &§ € CH{P), 0 < & < 1 in QF satisfying the
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. o8, 885 ad ]
compatibility conditions —2 = —2 = —% = on 507, Assume that (H1)-
] dn on  On \
(H4) hold. Then there exist functions (v°,¢°,8°. &%) which satisfy (32)-197)

for any T > 0 and

v e O T, V)N L0, T Hy, o € LA0.T: V'),
i) ¢° € L0, T; H*(Q%)., & e LY,
i) 9% € [P0, T, H2(Q%), €0 e L*(Q%),
iv) ¢ e CPHQY, 0<f <L

Proof: For simplicity we shall omit the superscript & at o0, &°. 8%, &
First of all, we consider the following family of operators, indexed by the

parameter << 4 < 1,
7. B — B,

where B is the Banach space
B=L*0,T: H) x L}(Q°) x L}Q’) x L*(Q°)

and defined as follows: given (¢,0.0,¢8) € B, let Ta(2.6,8,8) = (v,¢,8,¢),
where (v, ¢,8, ¢} is obtained by solving the problem

d -
—&%(?;,u.} + (Ve Vu)+ (v - Vo, u) = AF(E8),u)
— ME(fi) - &b, w) forallu e V, t € (0,T), (38)
2 . 2 ‘ Ta . do '3
ac o +acps(v) - Vo — €00 - 5(6—¢%)

= A3(6+(fp—04)e—65) mQ°, (39)
L s,
Coy+ Cups(v) - VO = V- (Ki{ps(6))V6) + 5£2(¢), in @°, (40)

— KoAe+ ps(v) - Ve = KoMV - {c(l~c)Vps(d)) in Q°, (41)

96 o8 de ]
Pl - = = ) VA 42
=0 z-=0 —=0 on o8 x (0,77, (42)

20y =05 in O, 0= H0)=6, =& im0’ (43)
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We observe that clearly (v, ¢. 8, ¢} is a solution of (32)-(37) if and only if
it is a fixed point of the operator T. In the following, we prove that 77 has
at least one fixed point by using the Leray-Schauder fixed point theorem ([3]
p.189].

To verify that 7, is well defined, observe that equation (38) is the classical
Navier-Stokes equation and since k{7 (¢ } 5 Vo € L), there exist a unique
sotution v € L*(0, T V)N L>=(0, T H) ([11 p 198).

Since 6, ¢ € ¥ Q‘S) and ps(v) € LHQ°) we infer from Theorem 2 that
there is a unigue solution ¢ of equation (39) with ¢ € W’Q’E{Qﬁ)

Since K is a bounded Lipschitz continuous function and p;(¢) € C™(Q°),
we have that K]_(ﬁg( ) € WHHQ%). 1 < r < oo, and since ps(v) € L*Q%)
and (), = fO (¢}, € L¥Q%). we infer from LP-theory of parabalic equa-
tions (I6], Thm. 9.1 in Chapter IV, p. 341 and the remark at the end of
Section 9 of the same chapter, p. 351} that there is a unique solution § of
equation (40) with § € W2HQ%).

We observe that equation {41) is a semilinear parabolic equation with
smooth coefficients and growth conditions on the non-linear forcing terms to
apply semigroup results of Henry [4], p.75. Thus, there is a unique global
classical solution ¢. In addition, note that equation {41} does not admit

constant solutions, except ¢ = 0 and ¢ = 1. Thus, by using Maximum
§

Principles together with conditions 0 < ¢§ < 1 and — = 0, we can deduce

on
that
O<elz,t) <1, Vit e@® (44)

Therefore, the mapping 7, is well defined from B into B.

To prove continuity of Ty let (i%, %, &%, Ak) k € IN be a sequence in B
such that converges strongly in B to (v,@, 6, and let (vF,¢F, 6%, ") the
solution of the problem:

jt{zk w) + vV, Vau) + (08 ok u) = MFEF 05),w)
 AME(F -8 w) forallw €V, e (0,T),  (45)
ae’sl + afps(vh) - Ve~ €A - %(cff“ — (65)%)
= A3(0F+ (05— 04)¢" — ) in Q°, (46)
Cub =+ Cups(v%) - V8" = V- (Ki(os(6)V8") + 5 £5(6"), in @, (47)
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of = KoA + ps(v*) - VeF = KoMV - {H(1 ~ #)Vp5(6%)) in @, (48)

7
do* oG dck 5 : .
C o0, =0, =0 ondx(0.T) (49)
on an on
R0y =205 in Q. @50 =0f, 70 =065 0 =cin (50)

We show that the sequence {v*, ¢% 6°.c") converges strongly in B to

(v, 8.¢) = ﬁ{é\é, 6. ¢). For that purpose, we will obtain estimates to
(vF, 0. 6%, c*) independent of k. We dencte by C; any positive constant in-
dependent of k.

We take u = v in equation (45). Using Hélder’s and Young's inequalities
we obtaln

a

fi . T F: fn i< ' . | PR, g Pondes P AR Y
»flf [ * | dr - v/ IVt e < Ci/ (JFI? 4 |0°F 10712 4 |85 + [0F)7) do.
dt Jo Qo > '

Then. by the usual method of Gronwall’s inequality. we get
ok .
e rmnnzoryy £ Cr- (51)
From the equation.(45) we infer that

vl < G (H@’kiév + [ 3 ey + 1P liz2eey
8% g2y + 1871 2200 + lgiak!zfﬁ(m}) :
then, using {51} we obtain
ol 2wy < Ch (52)
From estimate (20) we have that
lellwzr s < C <!§¢OF§H1(QS) + 6% zeigey + 1165 2210y
IR sk L 1akn3 ;
+1190ll 3 sy + 161 200s) + 116 72000y + 1)
where C depends on [|ps(v*)|| 1gs). Therefore, using (51) we conclude that

!%ffijjl(Qé) < Ch (53)

Now, multiplying (47) by 6* one obtains
£ o, ~t
gk 2 Iyt A B2 1pki2 =
[ 18" dz+]@ |V Pdzdt < o+ Cy | /95 (16412 + 16%12) dadt (54)
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and we infer from (53) and Gronwall's Lemma that

165 1 o220y, < Ch, (35
hence, it follows from (54} that

Hak : =

16%) Leorirrine) < Ca. (56)

We take scalar product of (47) with n € H' (%), integrating by parts and
using Holder’s and Young's inequalities, we obtain

gk ) s ok . NI ki i ki
Wiy £ G (|§V9 22y + v oo 107 Lagas) + 119) ii.azmé))
and we infer from (51),(53) and (56) that
10 2 0mmr asyy < Ch. (57)

Next. multiplying (48) by ¢® we conclude by analogous reasoning and using
(44) that

J/f6|ck§2d$—rj[/ IV 2dzdt < C) + Cj/ 2dzdt,

hence, from (53} we have,

gk . -
I 2o a mspnr=@r.ees < Cr (58)

In order to get an estimate for (cf) in L*(0,T; H*(0%Y). we return to the
equation (48} and use similar techniques, then

Hcfgfzzﬁ{o.r;ffl(my; < (. (59)

We now infer from {51)-(59) that the sequence (¢v*} is bounded {uniformly
with respect to k) in

Wy = {w e L(0,T; V). we € L*(0,T;V)}

and in
Wy = {we L0, T: H), w, € L*(0.T;V"} .

the sequence {¢*) is bounded in W2 (Q%) and the sequences (%) and (c¥)
are bounded in

Wy = {w e L2(0.T: HNQ"), we € L*0, T H'(Q°))}
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and in

Wa = {w e L®(0,T; LXQ%), w. € L*(0, T: HY(QY))}.

Since W is compactly embedde{i in L2(Q), Wy in (0,71 V), WiHQ%) in
LA, T W), p € [1.oc), Wi in L3HQ?%) and W, in C([0,T]; HYQP
{110] Cor 4), it follows that there exist

L0, T: V)N L*®0,T; H) with ve € L*(0,T; V"),
L0, T; H* Q%) with ¢, € L*(Q%),

L”(s T HY Q)Y N L0, T, L2 Q%) with 4, € L?
L0 T HHOON A L0, T; L)) with e € L

¢y S o
m oMo m
o

<::>’c:3
'”“%’“%
o

and & subsequence of (v%, ¢F. 6%, c*) (which we still denote by (v%, &%, 8%, c*)
J, such that, as & — —+o0,

vF — v im LAHQ)n {0, T V') strongly,

v - v in L0, T:V) weakly,

& — ¢ in LQ(O T, WhP(Q%) ﬁC(EO T L3 (0°)), p € [1, 00) strongly.
& = o in L0, T; H* (%)) weakly,

g8 — 6 in L*Q%) ﬂC({O,T] HYO%Y) strongly,

g8 — 6 in L30T, H'Y(O%)) weakly,

& ¢ in LQ(Q y N C{[0, T); HY(Q®Y) strongly,

& = ¢ in L*0.T, Hlfﬂé}} weakly.

(60)
It now remains to pass to the limit as &k tends to +oc in (45)-(50).

We observe that k{ f‘5( ) — 4} is bounded Lipschitz continuous function
from IR in IR then k(f2(¢") — &) converges to k{f2{o) — &) in L*(Q), for any
p € [1,00). We then pass to the lmit in standard ways as k£ tends to +co in
(45) and get

d

—(v.u) (Vo V) + (v Vo, u) = AF(2,8).u)

“AME(F @) = 8o u) forallu e V, t € (0, 7).
Since the embedding of W5 (QF) into LP(Q°) for any p € [1 o0) is com-

pact ([7) p.15), and (@) is bounded in W2HQ%), we infer that (¢*)® converges
to ¢* in LP3(Q?). Also, since v* converges to v in L*(Q} we have that ps{v*)
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converges to ps{v) in L Q). We then pass to the limit as k tends to +00 in

(46) and get

0e’é; +aeps(v)- Vo - A9~ S(6— 6") = A8 (§ + (95 — 0.4)¢ = 65) in Q°
Since A(ps) and f*"f are bounded Lipschitz continuous functions and &°

converges to ¢ in LF Qd) p € [1,00) we have that K,(p;{¢")) converges to

Ki(ps(0)) and £9'(¢F) converges to f9'(¢)in LP(QF) forany p € i1, 00}. These

facts and (60) vield the weak convergence of Ky (ps{o “)Vt‘?“ to Ki{ps(0))VE8

and f&(6")6f to fO(¢)b: in L¥ 2(@‘5)- Now, multiplying (47) by 1 € D(Q°),
integrating over Q° x (0.T) and by parts, we obtain

T
j j;a = {gt + ps() - v@;;\ n Kl(ﬁé(@kﬁ)‘?g’a - V7 dxdt

[ /m 5 (¢ @t:rydxdt

then we may pass to the limit and find that,
. , Z foon . ! 2
Cub+ Cupslv) - V8 = V- (Kulps(6))98) + 5 £ (@0, in D(Q°). (61

and using LP-theory of parabolic equations we conclude that (61} holds al-
most evervwhere in Q°.

It remains to pass to the limit in (48). We infer from (60) that Vp;(¢")
converges to Vpo\é) in L*(Q°) and since ||c*!|1q¢y is bounded. it follows
that ¢®(1 ~ ¢*) converges to ¢(1 — ¢) in LP(Q?) for any p € [1, o). Thus, we
may pass to the limit in (48) to obtain

. — Ko+ ps(v) - Ve = KoMV - ({1 -~ ¢)Vps(9)) in Q°.

Therefore 7, is continuous for all 0 < A < 1.

At the same time, 7, is bounded in W) x Wﬁf‘l(Qé } x Wi x W3 but, the
embedding of this space in B is compact, then we conclude that 7, is a
compact operator.

To prove that for (2, é., 5, ¢) in a bounded set of B, 7, is uniformly con-
tinuous in A, let 0 < A A <1 and (v, ¢, 6:,¢) (i = 1,2) the corresponding
solutions of (38)-(43). We observe that v = v — s, @ = &) — ¢y, 0 =6 —



and ¢ = ¢; — ¢9, satisfy the following problem:

d \ — . .
Eg{?;:u} + Vo, Vu) + (v - Vo, u) — (v Vg, u)
= (A — A (FLE8),u) + (g — ANEFE) — 60, w), (62)

forallue V, t € (0,7,

wetd — N+ e ,0_,}(@1, Vo - o(iw(gé%-i-@@z-i-@g))

= aetps(v) - Vo + (A — Ag 3(\@-.- 93——94)cm95) in Q°(63)

o

Cobly = V- (Kips(01))V8) ~ V- [Kilpalen)) — Kilps(d2)}] Voo

+ Cypsloy) - V6 = C,ps(v) - Vi,
- L0+ 5 [£700) - £00)] 60 1m QF, (64)

¢ = Kalbe+ps(vr) - Vo= KoMV - ({1 — e} [Vps(é1) = Vps(62)])

| pg(?ﬁ} Ve + KoMV - (C{l — (61 ~+ Cg))V,Oo )) in Q {65)
B o9 I 5
— == (), e— =), — = ¢ T
5 S 0, £ 0 on Q" x{0,71), (66)
v(0)=0inQ, ¢0)=0 60 =0, c0) =0inQ% (67)

Taking v = v in equation (62), using Haélder’s, Young's and interpclation
g q ; g ; g p
inequalities we obtain

22 | far vVl
< /Qéellwwadw
+ D=l [ (1F@ D)l + k(£(E) — 6)lolv]) d
e L e Ll e ]~hidf
+ cgh_~%*(ﬁan 1#¢w+f WP+¢2@J

Then, integration with respect ¢ and Gronwall's Lemma give us

el =ormnrzoryy < C1id— Aof®. (68)
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Applying LP-theory of parabolic equations {{6] p. 341} to equation (63},
the following estimate holds

It I — J . | A 5o
l@llwzrgn = Crllles(v) - Vol pags) + (A — Ao (160 22c0sy + NElizage + 1))

where C depends on {lps{vi)lizaqgsy and |[6f + ¢163 + &3]l z2enigsy. 7 > 0,
which are independent of A;. Therefore, using {68} we arrive at

il

I:)
2.1
VL’(, ’{

o SCA - Aol (69)

;

Multiplying (64) by 0. integrating over 2° using Hélder’s inequality and
57 . . . .
that Ky and fJ are bounded Lipschitz continuous functions, we have

d . .
i g e xral?
dt jgg' ‘19; ax 5 &j 5 Y‘Q dzx

< G [ o5}Vl + los(e) 1V el 61

+ o [ l6l6l+ follon I0ldz

< Ciflollieoriz@ey | Vol sz

= Collolimioran VOl Seesy + Cs [ (162 +1817) dz
+ Cillolmiorsian |0uluan + 5 [ 1701z,

Integration with respect to t and the use of Gronwall’s Lemma and (68)-{69)
lead to the estimate

1811 oe 0.7 220057y < Cr1Ag — ol (70)

We multiply (65) by ¢, integrate over (2% x (0,t) and by parts, and we use
Hélder’s and Young’s inequalities and (44) to obtain

/Qﬁ clPdr + /; /%5 |V c|*dadt
< leo [QE ([Vpa(éi) — Vos(d2) 2 + |os(v)]? + !c]z) dzdt

< o [ [ (VP + 1) dudt+ Oy [ [ ot

Applving Gronwall’s Lemma and using (68)-(69) we arrive at

leliZeeorrzasy < Crld — X, (71)
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Therefore, it follows from (68)-(71} that 7, is uniformly continuous in A.
To estimate the set of all fixed points of 7, let (v, ¢.6,¢) € B be such a
fixed point, Le., it is a solution of the problem

A
Z(ww) + (Vo Vu) + (o Ve,u) = AMFle 6).u)
— ME(fi(@) = 8o, u) forallue V. t € (0,7, (72)
2 2 ;. 2 : 1 ; 3
acor +acpsl{v) Vo — €AS— (¢ 07

= MO+ (6 ~bi)c—8g) in Q°, (73
)
Cobly + Cops(v) -V =V - (K. (ps(0))V8) + f“@;t in Q. (74)

e — Kale + ps(v) - Ve = KoMV - (c(1— &)V (p5(¢))) in QF,  (75)

%, o6 a . ,
9 o L0 Lo onad x(0.7), (76)
on on an

e =50 Q. 0 =2¢), 60 =46. c(0)=d n Q. (77)

We take 1 = v in equation (72). Then

}_E !Li ‘dr —}-/ I/[V'U] k(f;(@) %é)glig} dr

2dt
< cjf| F2 0P + [el? + jvdx (78)
2
<C [ |FP+ Pz +Cy [ 181+ |clda.
Q Qo

Multiplying equation (73) by &. integrating over 2% and by parts, using
Hélder's and Young's inequalities we obtain,

ae? d 5 20602 4 ERRP
"?E//_ |62 dz+ / (e Ve + 56 ) dz < cg+cl/ (182 + |c? + |]2) da.
(79)
[
By multiplying (74) by ¢ = (6 — 3 F2(é) and (75) by ¢, arguments sim-
ilar to the previous ones lead to the following estimates

1d |12 i C’va ; 2 . 19 12

34t Ja 183 T+ —/Qa (V6|rde < Oy fﬂé Voidr + C.ljé lv|%dz.(80)
1d [ o Koo . \
JE— “ - — ¢ < . ! . ’
9 dt Jos ICI dx 4 5 fqo Veldde < Oy j{).j |V@}. dx. (81’
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where (44) was used to obtain the last inequality.
Now, multiplying (79) by A and adding the result to (78),(80)-(81), gives
us

d 1 . d fAce® L1 o100
e el dy g L2 o Zia|® L Zai2
/92'7” " r\i oF + el +gld ) de

+ (y:‘if 12 2k ) - *WB>

o
= Ci"i"cl / !v\zdx+61/_ (!o‘ A1+ [ )dm (82)
2 a2

where (; is independent of A and ¢, being A € /R an arbitrary parameter.
Taking A large encugh and using Gronwall's Lemma we obtain

lelizee oy + [0l =er2ny + el i=@rreey + iciz=nrr2@ < Ch

1 [ - -
where C; is independent of A. Since § = ol (e - 5f§{c,f>}) and f2{¢) is bounded

in L>*(@Q%). we also have that 100l Lo 20y € Cy. Therefore, all fixed
points of 7y in B are bounded independently of A € [0, 11.

Finally, for A = 0, we can reason as in the proof that 7, is well defined
to conclude that the problem (38}-(43) has a unique solution. Therefore, we
can apply Leray-Schauder’s Theorem and so there is at }east one fixed point
(v.6.8.¢) € BN{L¥0,T; VIinL={0,T; H)}x W QS x Wi Q%) x C2H{Q°)
of the operator 7y, le. {v.¢.0.¢) = Ti(v,9.6.¢). ?hese functions are a
solution of problem (32)-(37) and the proof of Proposition 1 is complete. =

5 Proof of Theorem 1

To prove Theorem 1, let 0 < ¢ < 6(€2) be as in the statement of Theorem 1
and take ¢f € W2 2/99(Q) n HF¥(Q%), vd € H, 65 ¢ H'™(Q), 1/2 < v < 1,

— ... 88y 88 &:@ ..
& € CHOP), satisfying a; = % =5 = 0 on 9, 68208 < C.

0<c<1lin P, 1) — v in the norm of H{Q(0), and such that the
restrictions of these functions to {1 {recall that {2 C Q%) satisfy as & — O+
the following: ¢4 — @p in the norm of W2 %% 9’(9) N HY(Q), 6] — 8 in
the norm of L?(Q), ¢} — ¢y in the norm of L*(Q).
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We then infer from Proposition 1 that therﬂ exists (¢°, 0%, 6%, &%) solution
the regularized problem (32)-(37). We will derive bounds, independent of
¢, for this solution and then use campaotnes- arguments and passage to the
limit procedure for § tends to 0 to establish the desired existence result. They
are stated in following in a seguence of lemmas; however, most of them are
ease consequence of the previous estimates (those that are independent of §)
and the fact that & C Y. We begin with ahe following:

Lemma 1 There erists a constant Cy such that, for any § € (0,6{Q)]

E?’fégiLma&T:H foz”‘q““/ /V F(¢%) — 8)|°Pdxdt < O, (83)

6% 2= tor2nzzerai@) € 1167 =20 nzora o) < Cr, (84)
181 e toms 22 mL2 o m i (< 5595§| Leeo, T2 @0 a ey < O (85)
l?CéHLoc(o,T:LE{m)mLB(e,T;Hlqsz_:v; < ot ran e mi sy < Ol (86)
Proof: Observe that it follows from inequality {82). B

A

Lemma 2 There exists a constant Cy such that, for any § € (0.6(Q)]

rleéjfﬁfgi(Q} g Cl: for’w any 2 S g < 4*, (8?)
1671 20rmayy < O, (88)
1l rzorman < Ch, (89)

Proof: Note that (87) follows from estimate (20) of Theorem 2 and
Lemma 1.
Next, we take the scalar product of (34) with n € H1{(Q?), using Holder’s
inequality and (H3) we find
Cull€ sy < Cr (V820 + 10 naey 10° | 1) + Il IlL?fQ))

Then, (88) follows from Lemma 1 and (87).
Using that 0 < ¢ < 1in Q. we infer from (35) that,

QECgHHgm)f < ( V2 + 072y + [V HLE’Q;) :
Then, (89) follows from Lemma 1. 5
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Lemma 3 There exist a constant Cy and 6o € (0,8{Q)] such that, for any
& < &y,
5
vt |20 vy £ Ch (90)

o < T U © Qulty) and such that [ty 05 x U C G

-

where ty

< <
Q,nf{@‘l O {f

Proof: Let 0 < ¢y <ty < T, U C ,,(¢1) be such that [f1, %] X U c
Qi U (0) U (T}, Tt is verified by means of (32) that for a.e. £ € (£, 1),

(v u) = wz/j Vvl - Tudr — f v Toluds — / E(f2(e%) — &)v'uds
U v U
I
T] Flef 8udz foruw e V(D).
-
In order to estimate |00 [lv(ry, we observe that the sequence (¢°) is bounded
in W2HQ), for 2 < g < 4, in particular, for g > 2 we have that W (@) €
H™ Q) where 7 = 2 — 4/¢ ([6] p.80). Consequently, because of Arzela-
Ascoli's theorem, there exist ¢ and a subsequence of (@5) {which we still

denote by ¢° ), such that ¢° converges uniformh to ¢ in Q. Recall that @, =

{{z,t) € @ /0 < fo(o{z,t)) < 1} and Q) = {z € Q/0 < fi(o(z, 1)) < 1}.
Note that for a certain v € (0,1) and for (r,t € [t, 1] x U,

fslolz. ) <1—17

Due to the uniform convergence of f° towards f, on any compact subset,
there is an &y such that for all § € (0, 4y) and for all (x,2) € [£;,42] x U,

f@' (@ 1) <1—-~/2.
By assumption (H1) we infer that

E(FS (% (e, i) = 8) < k(1 —~/2)  for (z,t) € [t1, %] x [ and & < &.

Thus,
lfllvey < Cl(llvéﬂv“_%*H’véﬁf‘:ﬁ(sz)+§§ﬂim o + 1z + 18]
+ [R(f2(8° (2,8)) = )| o 0] 22y ).
Hence, (90) follows from Lemma 1. B
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From (83) we conclude that the sequence (v%) is bounded in L2(#,, £ HHU)).
Then, by the compact embedding ([10] Cor. 4), there exist v and a subse-
quence of (v°) (which we still denote by v9), such that

w0 — v in L%(4;, ) x U) strongly.
Observe that (J,; 1s an open set and can be covered by a countable number
of open sets (¢, t;01) x U, such that ; € (%), then by means of a diagonal
argument, we obtain

= v L2 (O U Qs(0) U (1)) strongly. (o1)

Moreover, from (83) we have that v € L0, 7: V) L>=(0.T; H) and

v¥ o~ v in  L¥H0.T.V) weakly,

Y

,g G - [T : N 1 <92>
v’ — v in  L™(0,T;H) weakly star.

We now infer from Lemma 1 and Lemma 2 using the compact embedding
{[10} Cor.4) that there exist

6 € WIHQ)for2<g< 4,
6 € L0, T; HY Q) N L®0,T; L),
¢ € L*0,T:H' ()N L=(0,T: L*Q)),

and a subsequence of (&%, 6%, ¢®) {which we still denote by (% 8. ¢°} ) such
that, as § — 0,

¥

o' — @ uniformly in @,

& — ¢ in L0, T;WhQ)) strongly,

o — ¢, i  LQ) weakly,

#° — 4 in  LAHQ)NC(0,T]; HX(Q)) strongly, (93)
g — 6 in L*0,T; H(Q)) weakly,

¢ — ¢ in LHQ)nC(0,T); HI(Q)) strongly,

@ — ¢ in L*0,T;HYQ)) weakly.

It now remains pass to the lmit as § decreases to zero in (32)-(37).

Now, we take u = n(¢) in (32) where n € L*{0, 7; V{Q,.,(#))) with compact
support contained in Qm U Qmi(0) U Qi (T) and 7, € L0, T3 V{(Qu()));
after integration over (0,¢}, we find

[ (twhom) + (V6 V) + (90, 0) + (k(F3(67) - )0, m)) ds

o (94)
(F{c®.8°),n)ds.

t
a
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Since supp 7 S G U 8000(0) U Q0 (T) we have that supp n(f) € (,,,(1) ae.
t € [0, T]. Moreover, we obseme that

t o -
[ mas == [0 m)omds + (20) m(8) e — (3,10t

Because of uniform convergence of f¢ to f, on compact subsets, as well as
the assumption (H1), it follows that 5(f3(¢°) — &) converges to k(f.(¢))
uniformly on compact subsets of QU0 (0) U (1), These facts together
with (91)-(93) ensure that we may pass to the limit in {94) and get (12).

To check that v = (0 a.e. in Q take a compact set K CQ Then there
isan dyx € (0,1} such that

9%z, t)) =1 in K for § < bg.

hence. k(fo{e%(z,t) —8) = k(1 —4) in K for 6 < éx. From (83) we infer
that
B(1= 0w’ fe gy S C1 for 6 < dg

where (; is independent of 4. As § tends to 0, by assumption (H1), k(1 4)
blows up and consequently 2% 2 k) converges to 0. Thereforev =0 a.e. in

K. Since K is an arbitrary subset, we conclude that v = 0 a.e. in CD)

It follows from (92)-(93) that we may pass to the limit in (33), and find
that {13} holds almost everywhere.

In order to pass to the limit in (34), we note that given { € L%(0,T; H*(Q))
with ¢ € L*(0.T; L*(Q)) satisfying {(T) = 0, we can consider an extension
of ¢ such that ¢ € L*(0,7; HY(Q%)) with & € L*(0,T; L*(%)) satisfying
¢3{T) = 0. Now, we take the scalar product of (34) with (?,

T T
- o T — e _ Y IR v T
O [ o de—C. [ [ ecasar — ¢, [ [ pstoh)6t - V¢ dud
. r 16y 06 5 . PN _
+j([} _/Qa Kl(pé(@ j)VG VC dzdt = f / f (@ J@tg dlﬂdt‘(ga)

Observe that since p;(v®) converges weakly to v in L0, T; H}(Q)) and 4° —

8 strongly in C([0, T': H(Q1)) we have that p(v°)8° converges to v in D'(Q).
Observe also that &' — fiin L9(IR) for 2 < ¢ < oo, then from (93) we
infer that f9(¢%)@! converges weakly to f/(¢)¢: in L¥2(Q). Moreover, from
Lemma 1 the integrals over Q°\Q are bounded independernt of § and since
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|00\ 2] — 0 as § — 0. we have that these integrals tend to zero as § — 0.
Therefore. we may pass to the limit in (95) and obtain

“”C/ /9 dzdt - Cj /13 V{dzdt + / fK (8)V8 - V( dzdt
/ /fs @) dzdt + C. /903 (0)dz

for { € L*(0,T; H*{Q)) with { € L*(0,T: L*(Q)) and {(T) = 0.

It remains to pass to the limit in {35). We proceed in similar ways as
before, taking the scalar product of it with ¢° € L¥(0,T; H*{(Q®%)) with (¢ €
L0, T, L% and (T = 0,

_J/Q Loggaxd* f /wch Vi Cgﬁdth‘?/ ‘755»‘5’{559:@5
_z_Kq’%]"j[ jm A1~ YV ps(e%) - wi° drd = chg@@)d%

then from {92),(93) and using that the sequence {¢°) is bounded in L*(Q)
we may pass to the limit as ¢ — {) and obtain

f /cgdzdx / /tc V¢ dzdt + Kng/Vc-VCdzdt

KM f f (1 - )V V( drdt = ]; coC(0)dzz

holds for any ¢ € L*(0,T: H'(Q)) mth ¢ e L*0,T: LQ(O)) and C(T) = 0.
Observe that since 0 < ¢® < 1 and ¢ converges to ¢ in L*(Q) we have that
0<c¢c<lae inQ.

Finally, it follows from (93) that gg = 0, &(0) = ¢y, 0(0) = Fy and ¢(0) =

co. Furthermore, v(0) = vp in £2,4(0) because 23 (0) — 2(0) in V/(IV) for any
U such that 7 € Q,,;(0). The proof of Theorem 1 is then complete. B
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Capitulo 5

Um modelo tridimensional do
tipo campo de fase com
conveccao para a mudanca de
fase de uma liga binaria

Resumo

Neste trabalho consideramos um modelo tridimensional do tipo campo de
fase que incorpora propriedades fisicas e térmicas de uma liga binéria e a mo-
vimentagao do flulde nas regioes nao-solidificadas o gual ocorre no processo
de solidificacao. O modelo consiste de um sistema de equacdes diferenciais
parciais altamente nao linear. composto pela equacao do campo de fase, a
equagiao do calor, a equacéo da concentracdo e uma variante das equagdes
de Navier-Stokes modificadas por um termo de penalizagao do tipo Carman-
Kozeny, para levar em consideragao o efeito mushy. E provada a existéncia,
de solugdes fracas para o sistema. O problema é aproximado e uma sequéncia
de solugdes aproximadas é obtida usando o Teorema de Ponto Fixo de Leray-
Schauder. Uma solugdo é obtida usando argumentos de compacidade.
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A Tridimensional Phase-Field Model with
Convection for Change Phase of an Alloy

Abstract

We consider a tridimensional phase-field model for a solidification/melting
non-stationary process, which incorporates the physics of binarv allovs, ther-
mal properties and fluid motion of non-solidified material. The model is a
free-boundary value problem consisting of a non-linear parabolic system in-
cluding a phase-field equation, a heat equation, a concentration equation and
a variant of the Navier-Stokes equations modified by a penalization term of
Carman-Kozeny type to model the flow in mushy regions and a Boussinesg
type term to take in account the effects of the differences in temperature
and concentration in the flow. A proof of existence of generalized solutions
for the system is given. For this, the problem is firstly approximated and
a sequence of approximate solutions is obtained by Leray-Schauder’s fixed
point thecrem. A solution of the original problem is then found by using
compactiess arguments.

MSC Mathematics Subject Classification: 35K65, 76D053, 30A22, 35K55,
82B26, 35Q10, T6R99
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1 Introduction

This paper is concerned with a non-isothermal phase-field model that ac-
counts for both solidification/melting of a binary allov and fluid motion.
The present approach is based on ideas of Blanc et al[l] and Voller et al.
115! to model the possibility of flow and those of Caginalp et al. [2] for
the phase-field and the thermal properties of the alloy, and simpler versions

were also considered in [11] and [12]. It is described as the following coupled
systerm,

el + et - Vo — CAG = ;1;{@ ~ )+ B(6—chs— (1 =c)fg) in@, (1)
. L., _ ]

C\;fgt +Cow- V8 = V. E{}go}?“f? -+ f’:}f,;{@}t n Q, {2\;

Gtv-Ve = Ky(Ac+ MV ¢l —-c¢)Vg¢) in@Q, (3)

v —vAv + v Av+ v - Vo + Vp+ E(f(@) v = Fle, 8) in Q. (4)

dive=0in Qm, (5)
v=20 in Q. (6)
d¢ o8 de
— _— — 9 6.7 po= '
5 0, o 0. 5 Don 80 x (0.7, v=00ndQ., (7

&(0) = 0. 0} =8, ¢(0)=cinQ, 2(0)=w in 2w (0), (8)

where @ = Q x (0,7), 6 < T < oo and {I is an open bounded domain of
IR® with smooth boundary ). Here, ¢ is the phase-field which is the state
variable characterizing the different phases:; ¢ denotes the temperature, and
¢ € [0.1] denotes the concentration, which is the fraction of one of the two
materials in the mixture; v is the velocity field; p is the associated hydro-
static pressure; v and vy are positive constants corresponding to viscosities
associated to the fluid material; f; € [0.1] is the solid fraction.
The operator A is defined by

Av = —div (;Vu|p‘“2Vu) . P> 3,

The penalization term k(f,} is the Carman-Kozeny type term and ac-
counts for mushy effects in the flow; its usual expression is k( f3) = Cofs* /(1 —
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F.3%, but more general expressions will be allowed in this paper. Flc &) is
the buovancy force, which by using Boussinesq approximation is given by
Fle,8) = pglci(f —8.) + calec—¢.)) + F. where p is the mean value of the
density: g is the acceleration of gravity: ¢ and ¢ are two real constants; 6,
¢, are respectively the reference temperature and concentration, which for
simplicity of exposition are assumed te be zero; F is an external force. The
following physical parameter are assumed to be constant: o > 0 the relax-
ation scaling; 8 = ¢[s]/30, where € > 0 is & measure of the interface width;
o is the surface fension, and [s] is the entropy density difference between
phases. C, > 0 is the specific heat; [ > 0 is associated to the latent heat; 64
and fg are the respective melting temperatures of two materials composing
the allov: Ky > 0 is the solute diffusivity, and M a constant related to the
slopes of solidus and liguidus lines. Finally, K5 > 0 denotes the thermal
conductivity, which we will assume to depend on the phase-field.

We observe that eguation (4) is associated to a modified form of the
classical form of the Navier-Stokes equations as proposed by Ladyvzenskaja
in [6], in which the effective fluid viscosity depends on the gradient of the
velocity.

The domain ¢ is composed of three regions: J,, @m and ;. The first
region is fully solid; the second is mushy, and the third is fully liquid. They
are defined by

Q. = {(@HeQ | flolzi)=1}
Qn = {(z.t)e@Q /[ 0<flelz.t)) <1} (9)
O = {(&HeQ | flolzt)=0)

and Oy will refer to the not fully solid region, i.e.,
Qu=0Cni={{z.t)eQ | 0< flolz,t)) <1} (10)
At each time ¢ € [0, 7], Quu{t) is defined by
Quit) ={z€Q [ 0< flolz,t) <1}, (1)

In view of these regions are a priori unknown. the model is a free boundary
problem.

Throughout this paper we assume the conditions,

(H1) f, is a Lipschitz continuous function defined on IR and satisfying
0 < folr) <1 for all » € IR: moreover f, is measurable,
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(H2) k is a non decreasing function of class C1[0, 1), satisfying £(0) = 0,

lim k(z) = +oc,

]

{H3) K, is a Lipschitz continuous function defined on [R: there exist
O<aoa<bsuchthat 0 <a < Ki(r) <b for all r € IR,

(H4) F is a given function in L*(Q).

We use standard notation in this paper. We just briefly recall the follow-
ing functional spaces associated to the Navier-Stokes equations. Let 7 C IR®
be a non-void bounded open set; for 7 > 0, consider also Q¢ = G x (0. 7)
Then,

V(G) = {we (CE(@)°, dvw=0},
H(G) = closure of V(G) in (LHG)Y
VA(G) = closure of V(G in (‘i@"é‘p(G}}g,
VIG) closure of V(G) in (HHG),
H™7%(Q4) = Halder continuous functions of exponent 7 in =

and exponent 7/2 in ¢,
W2HQe) = {we L9Qg)/ Dyw, D2w € LYQc). w: € LYQs)} -

When G = €}, we denote H = H{(2), V = V(Q), V? = VP(Q). Properties of
these functional spaces can be found for instance in [7, 9, 14]. We denote by
{-,-) the duality pairing between H*(2) and H*(Q2). We also put (-,-) = {-, )
the inner product of {L2(Q))*

Qur purpose in this work is to show that problem (1}-(8) is solvable in a
generalized sense to be made precise below.

The main result of this paper is the following.

Theorem 1 Letbe T'> 0, p > 3, 5/2 < ¢ < 10/3, Q C IR® an open bounded
domain de class C°. Suppose that vy € H{Qm(0)), ¢ € W He9(0) N
H& (), 1/2 < v < 1, 8 € L¥Q) and eg € L), 0 € ¢ < 1 ae

in 0, satisfying the compatibility conditions é}% = (0 on J§). Under the
assumptions (H1)-(H4), there exist functions (¢, 0, ¢, v, x) satisfying

(1) o€ W7HQ), ¢(0) = o,

(i) 0 & L2(0,7: HH Q) N L=(0.T: L)), 6(0) = bo.

7

(i) c€ LA(0, T HX()) N L0, 75 L3 ), ¢(0) = cp, 0< ¢ <1 ae inQ,
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(ivive L0 T VP NL=0.T:H),v=0a¢c in 5}57 v{0) = vy in O,,.(0),
where (Js is defined by (8) and (1,,,(0) by (11),

(v) x € LF (0,75 (V7))

and such that for any ¢ € L0, 7 HYQ)) with ¢, € L*(0.T;L*Q)) and

Ty =0 in Q, we have

a2 N P . ) .
e, + ot - Vo — 2A0 = _:)“{@ — Y+ B0+ (8g — O4)c—0g) a.e inQ,
i (12)
o
— =0 age on 00 x(0,7T), (13}

o Qo
=3

T 7 T
~C. [ [ 6¢dzdt - G, f [ 0 - V(dadt + ] f K (G)V0- V¢ dedt
Jo Ja o Jo o Ja ’

T |
= J{) ﬁz fu(6)C dadt + C, JQ ByC(0)dr, (14)

T T T
—/ ]cgd:cdtw] /vc-VCdzdt—é—Kgf /Vc-ngxdt
0o Jo o /o o Ja (15)
KoM /O fp (1 — &)V -V dedt = [2 coC(0)dx.

Also, for any t € (0,.T) and nn € LP{0G. T, VP) with compact support contained
i Qi U0} U QT and such that n, € LP(0, T {(VP)), where (Qmy is
defined by (10) and Quui(t) by (11), there hold

't

? 1
(0(),n(®) = [ (ondds +v [ (Fo, Vn)ds +v, [ (xn)ds
0, o, o
) . v ', & - cl T s ; ' 16\‘
# Jy (o Femds + [[(k(f(o)e.n)ds (16)
= [(Fle.8),mds + (w0, n(0)),
Moreover, (6,6, ¢,v.x) 15 a generalized solution of (1)-(8), in the sense that

under the following additional regularity and integrability assumptions:

e for a.e. t € (0,7T), the boundary 0.t} of Oy tn Q2 has zero Lebesgue
TREASUTe

e Suppose that either k(f(o)) € L0, T: L™/ Q. (), when p = 3,
or k{f(0)) € L*(0,T; LY (Qmi(t))), with s = p/{p — 2). when p > 3,
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then x = Av in the sense of distribution in Q..

Remark: Interpreting the modified Navier-Stokes equations requires some
topological information about the set occupled by the fluid. In fact, one
should know that such a set is open to interpret the modified Navier-Stokes
equations at least in the sense of distributions. This information is in partic-
ular implied by the continuity of phase-field, which in turn depends on the
degree of smoothness of the other variables. In the two dimensional case,
that is 2 € /R®, and when v, = 0, an existence theorem for system {1)-(8)
was obtained in [12]. The main feature of [12] is that the smoothness of v,
g and ¢ suffice to vield the continuity of ¢. In the three dimensional case,
this does not appear possible. To stress this point, consider weak solutions
of the classical Navier-Stokes equations with external force in L2(Q). It is
well known that such solution satisfies v € L*{0. T V)N L=(0, T, H) (see e.g.
[14]). IfQ C [R?, this regularity implies that {v] € L*(@Q). This fact together
with (12)-(13) suffices to prove that ¢ is continuous, and therefore the set
O is open. In the three dimensional case, we just have that v € L93(Q).
This modest degree of integrability of velocity prevents us from proving that
¢ is continuous. When v, > 0 and p is large enough, as it is the case of
the present paper, it is possible to get more regularity of v and then the
required continuity of ¢. In fact, if v € LP{0, T, VP) N L*=(0,T; H), by in-
terpolation ([8] p. 207), we conclude that v € LP3*(Q). Taking p > 3 is
then enough to yield the continuity of ¢ {see Thm 2). In fact, the additional
restriction ¢ > 5/2 ensure the continuity of phase-field because in this case
W2HQ) € H7/?(Q), with 7 = 2 — 5/¢ ([7] p. 80). Therefore the set Qpm
1s open, giving a meaningful interpretation to the velocity equation. The re-
striction ¢ < 10/3 is consequence of the obtained regularity of temperature.
This will be clear in the next section.

The previous existence result will be obtained by using a regularization
technique similar to the one already used in [1] and [11, 12]. The idea is to use
a auxiliary parameter to transform the original free-boundary value problem
in a penalized but more standard problem. This will be called the regularized
problem and will be studied by using fixed point arguments. Then, by using
compactness arguments as the auxiliary parameter goes to zero, we obtain a |
generalized solution of the original problem.

The outline of this paper is as follows. In Section 2, we study an auxiliary
problem. Then, in Section 3, we study a regularized problem. Section 4 is
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devoted to the proof of the main existence theorem.

2 An auxiliary problem

We consider the initial boundary value problem,

22 4 2., 7 2 1 3 ; 17

aetd; + oty Vo —e Ao = 5(@-—@]«%@ in ), (17)
[l

5, = 0 ond0x(0,T), (18)

and prove the following result using a technique similar to the one already
used in [5] to treat a phase-field equation without convective term or in [12]
to treat the two dimensional problem.

Theorem 2 Let be T > 0,¢ = 2. p
LP(G, T V) OLOC(G, T H) and ¢y € W?

condition __o =0 on 09, Then

on

i) If2 < g < 5, there exist a unique ¢ € W2'(Q) solution of problem (17)-
(19) , which satisfies the estimate

2 3. Suppese that g € LYUQ), v &
—2/99(()) satisfying the compatibility

g 21y = <0 ( | Gollwz-2/0.000 + gl ey + 12@0%?@’2”3/9‘@{9) + llglZe Q;)
(20)
where C depends on [vl|rs(g), on Q and T,

it} If g > 5 aond p > 3, there ezist o unique ¢ € W2H(Q), r = min{q, p5/3}
solution of problem (17)-{18), which satisfies the estimate (20) where
C depends on |[vl| posraigy, on Q and T.

Proof: In order to apply Leray-Schauder fixed point theorem ([3] p
189) we consider the operator T), 0 < A < 1, on the Banach space B =
L8(@), which maps ¢ € B into ¢ by solving the problem

g, + et - Vo — €€ Ad = -5(@5 — &%) +Ag  inQ, (21)
b9 = 0 ondQx{0,T), (22)
on

50) = @ inQ. (23)



A
We define Gy = mf@~@ )+ Ag and we observe that G € L*(@). Since

AR T

voe LG, we mfer from LP-theory of parabolic equations {[7] Thm. 6.1
in Chapter IV, p. 341 and the remark at the end of Section 9 of the same
chapter, p. 351) that there is a unique solution ¢ of problem (21)-(23) with
¢ e W ”1’@} Due to the embedding of W2 (@) into L'%(Q) ([9] p.15), the
operator 1 is well defined from B into B.

To prove continuity of Ty, let c}r B strongly converging to @ € B, for
each n, let @, = T(¢&,). We have that ¢, satisfies the {ollowing estimate (]7]
p. 341) ’

| | ;] : ! \
‘!@?"LH ~1{Q) S ' U|©n L2 -+ xEGn FETle) QIUJZ(Q) 4= E@gigfg(Q})

for some constant C' independent of n. Since W3 (Q) is compactly embedded
in L20,T; HY(Q)) ([13] Cor.4) and in L¥(Q), it follows that there exist a
subsequence of ¢, (which we still denote by ¢,) strongly converging tc ¢ =
Ty\(¢) in B. Hence T, is continuous for all 0 < A < 1. At the same time, T}
iz bounded in %"f ‘1(:@), and the embedding of this space in B ig compact.
Thus, we conclude that T is a compact operator for each A € [0, 1],

To prove that for ¢ in a bounded set of B, T, is uniformly continuous
with respect to A, let 0 < A; X < 1 and ¢ (i = 1,2) be the corresponding
solutions of (21)-(23). For ¢ = ¢; — & the following estimate holds

L]l w2HQ) S CAL =~ Ag (!i@ L2y -+ ]i@] sy T g §L2 (o) )

where (' is independent of A;. Therefore, T, is uniformly continuous in A
Now we have to estimate the set of all fixed points of T3, let ¢ € B be
such a fixed point, i.e., it is a solution of the problem

2 oA AL .
aelg, + ac’u - Vo — 2 A = ?}7(@ —~ @)+ Ag  in Q, (24}
—gg = 0 ondQx{0,7), (25)
&0) = ¢ in L (26)

We muleiply (24) successively by ¢, ¢; and —A¢, and integrate over Q2 x (0, 7).
After integration by parts and the use the Hélder’s, Young's and Gagliardo-

Nirenberg’s inequalities, we obtain in the usual manner the following estimate
L2 e 2 L2 Falle ! ;

[ (67 +1V6) do + ol210) < C (I913a0) + 6010 -

- ? . 21

”i"'c/g (1 + I0llisiey) (181720 + [Vli2)) af
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where (' is independent of A. By applving Gronwall’s Lemma we get
Hofllﬁl@w .<_. {: G’( W 2. {Q) < C’.

where C and 7 are constants independent of A T‘heref@re? all fixed points
of Ty in B are bounded independently of A € 0.1

Finally, for A == 0, it is clear that problem (‘?1) ’?3\ has a unique solution.
Therefore, we can apply Leray-Schauder’s fixed point theorem, and so there
is at least one fixed point ¢ € BPW‘ H ) of the operator T3, Le., ¢ = T1(a).
This corresponds to a solution of probiem (17)-(19). Now we have to examine
the regularity of &. To prove i) we discussthe cases 2< ¢ <3and3 < g< 5
separately.

2 < g < 3, since |

2.1 -
Vi (@) is embedded into L¥(Q), we have that

1, ! -
G o= ——a@— ¢%) + g € LUQ) and this implies ¢ € W2H{Q). If 3 < ¢ < 5,
LA@Q)

we have that G & and as a consequence ¢ € W; HQ). According to
embedding {[9] p.15) we can conclude that ¢ € L*(Q) and consequently
¢ € W2HQ). To prove estimate (20} we restrict to the case 2 < ¢ < 3. The
proof for 3 < ¢ < 5 is similar. Observe that from IP-theory of parabolic
equations we have

C {HGﬁIﬂ(Q) + H@{)%lwﬁwﬁfe‘q(m)

Héuwﬁ-l(@ =
< C(llgllze + 18l + 18y + o0l wa-rraaey)
<

i | . ;i '3 i
C (HQ;EL‘?(@ + oz g + 101 Wi ooliw- wm\)

Using estimate {27} we deduce {20).

Ifg > 5and p> 3, we have that G € L9(Q) and since v € [F53((Q), from
IP-theory of parabolic equations we can conclude that ¢ € W2 ((Q) where
r = min{q, p5/3}. The estimative (20) is proved by analogous reasoning.

It remains to show uniqueness of the solution. Let us assume that ¢, and
¢o are two solutions of problem {17)-(19). Then the difference ¢ = @1 — @9
satisfies the following initial boundary value problem

Q€"®t+ﬁl€2ﬁ‘v¢)w€2,ﬂ@ = \1 - (@14»(916%4“@0)) mn Q} (28}
gg = 0 ond0x{0,7T) (29)
o0) = 0 i (30)
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We remark that d := ¢7 + @19, + &% > 0. Multiplying {28) by ¢ and using the
usual method of Gronwall's Lemma give us ¢ = 0. Therefore, the solution of
problem (17)-(19) is unique and the proof of Theorem 2 is then complete. &

3 A regularized problem

In this section we turn to the full problem and introduce a regularized prob-
lem to lead with the modified Navier-Stokes equations in the whole domain
instead of unknown regions, as well as with suitable regularity to the co-
efficients. We prove an existence result using Leray-Schauder Fixed Point
Theorem ([3] p. 189).

Before doing so, we recall certain results that will be helpful in the intro-
duction of such regularized problem.

Recall that there is an extension operator Ext(-) taking any function w in
the space W, (Q) and extending it to a function Ext(w) € Wil (IRY) with
compact support satisfving

Bzt (w)lwesre < Cllwlwzs gy

with C independent of w {see [10] p.157).

For ¢ € (0.1). let p; € CZ(IR®) be a family of symmetric positive mol-
lifier functions converging to the Dirac delta function, and denote by * the
convolution operation. Then, given a function w &€ W 'I(Q), we define a
regularization ps{w) € CF(IR*) of w by

os(w) = ps * Ext(w).

This sort of regularization will be used with the phase-field variable. We
will also need a regularization for the velocity, and for it we proceed as follows.

Given v € L?(0,T:V), first we extend it as zero in IR"\Q. Then, as
in [10] p. 157, by using reflection and cutting-off, we extend the resulting
function to another one defined on IR* and with compact support. Without
the danger of confusion, we again denote such extension operator by Fzt(v).
Then, being § > 0, p; and * as above, operating on each component, we can
again define a regularization ps(v) € CF{R*) of v by

ps(v) = ps = Ext(v).



Besides having properties of control of Sobolev norms in terms of the corre-
sponding norms of the original function (exactly as above), such extension
has the property described below.
For 0 < ¢ < 1, define firstly the following family of uniformly bounded
open sets
P ={re R dx0) <d} (31)

We also define the associated space-time cylinder
Q° = % (0,T). (32)

Obviously, for any 0 < &, < 8o, we have O < Q% C Q% Q C Q% C Q%.
Also, bv using properties of convolution, we conclude that ps{v)jsas = O.
In particular, for v € L®(0,T; H) N L¥(0, T, V), we conclude that ps(v) €
Le(0,T: HIQO) N LA0, T V{Q%),

Moreover, since () is of class €2, there exists 4{{2) > 0 such that for
0 < & < &(f2), we conclude that £2° is of class C? and such that the C* norms
of the maps defining A0 are uniformly estimated with respect to ¢ in terms
of the C*® norms of the maps defining 992,

Since we will be working with the sets (2°, the main objective of this last
remark is to ensure that the constants associated to Sobolev immersions and
interpolations inequalities, involving just up to second order derivatives and
used with 0%, are uniformly bounded for 0 < § < §(Q2). This will be very
important to guarantee that certain estimates will be independent of 4.

Finally, let f° be anyv regularization of f..

Now, we are in position to define the regularized problem. Yor ¢ €
(0,8(Q0)), we consider the system

(00, u) + v(Vl, V) + 1, (A0’ ) + (- Vol u) + (R(F (%) — 618, w)

= (F(,8°),u) Yue VP ae tec(0,T), (33)
aezc;')f + e’ ps (’u‘5) Ve — At

1 34

= 5(& — (&) + 3 (95 +(8g —84)¢° — 93) in Q°, (34)

. s ! . .
C08 + Cups(vf) - VO =V - (Ky(ps(¢°))V0°) + §f§ (6°),in Q°,  (35)

f — Ko + ps(0%) - Ve = KoMV - (c‘s(l — Cé)Vpg;({éé)) inQ°,  (36)
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aat . 854° aet

=0, =0, =—=0 ond x(0.7), (37)
dn ’ {‘}n Hn o W Sy
OO =m0 SO =¢h, PO)=6 FO)=dn® (38

We then have the following existence resuit.

Proposition 1 Letbe T > 0, p > 3. Foreach d € [0,6(0)), let ¢ € H, =

HAF(Q0), 8 e HY (09 1/2 < v < 1 aﬂdc € Clmo O < <1in0?,

dg 86? acs
% =20 = Z9 0 on 90P. Assume
on  on n . )

that (H1)-(H4) hold. Then there exist functions (v°, 8°,8°, ¢®) which satisfy

(85)-(38) and

satisfying the compatibility condztzons

i) v e LP(0,T;VPYn L0, T H), 0 € LP0.T, (VFY)
i) ¢° € LX0.T, H*QY)), o € LHQ),
i) 6° € L30T HA(Q%), 67 € LHQ?),
iv) & e CPHQ%), o< <L
Remark: It is possible to obtain more regularity for ¢° when the initial data
are more regular. This will be done in the last section.
Proof: For simplicity we shall omit the superscript § at «°, ¢°, 8°, ¢
First of all, we consider the following family of operators, indexed by the

parameter 0 < A < 1,
T B— B,

where B is the Banach space

B =IP(0.T: H) x LHQ% = L*(Q°) x L}

L

and defined as follows: given (7, ®,8, &) € B, let 75(0. @, 6, ¢) = (v, 0,6, ¢c),
where (v, .6, ¢) is obtained by solving the problem

(v, u} + v(Vu, Vu) + vl Av,u) + (v - Vo, u)

= MF(@.6),u) ~ NK(f3(3) - 0),u) Yu € VP, € (0.T), )

i
ae?d, + aelps(v) - Vo — € A@~—K@ &)

(40)
=23 (0 + (85 — 64)¢ — 93) in Q°,
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CL0: 4+ Cops(v) V8 =N (Ki{ps(9))VE) + f (&), in Q°, (41)

— Ko+ pslv) - Ve= KoMV - (c 1-—8)"7;?5(&’3;} in Q°, (42)

36 26 Be :
— o T - 0‘1 fj ™ (}\.
7 = {, o 0, . Oon 00" x (0,7, (43)
v(0) = v@ in Q, o(0) =), 80) =8, 0 =cinQ% (44}

Clearly (v, 9,6, ¢) is a solution of (33)-(38) if and only if it is a fixed point
of the operator 7. In the following, we prove that 7; has at least one fixed
point by using the Leray-Schauder fixed polnt thecrem ({3] p. 189).

To verify that 7, is well defined, observe that equation (39) is a variant of
Navier-Stokes equation and since k{f%(0)—8)0 € LHQ), there exist a unique
solution v € LP(0, T; VF) 1 L>(0, T} H‘, M LFRRQ) (18] p. 207).

Since 4, ¢ &€ L2(Q%) and ps(v) € L3O, we mfe* from Thecrem 2 that
there is & unique solution ¢ of equation (40) with & € W5 (Q%).

Since K is a bounded Lipschitz continuous function and pslo) € O (%),
we have that Ki(ps(e)) € WHHQ%), 1 < r < oc, and since ps{v) € L¥{Q%)
and f(e), = f'{¢)or € LHQP), we infer from LP-theory of parabolic equa-
tions {[7] Thm. 9.1 in Chapter IV, p. 341 and the remark at the end of
Section @ of the same chapter, p. 331) that there is a unique solution € of
equation {41) with 6 € WHH(Q%).

We observe that equation (42) is a semilinear parabolic equation with
smooth coefficients and growth conditions on the non-linear forcing terms to
apply semigroup results of Henry [4] p.75. Thus, there is a unique global
classical solution c.

In addition, note that equation (42) does not admit constant solutions,
except ¢ = 0 and ¢ = 1. Thus, by using Maximum Principles together with

o}
conditions 0 < ¢f < 1 and —é% = (J, we can deduce that
0<clz,ty<l,  Vizt)eQ’ (45)

Therefore, the mapping 7, is well defined from B into B.

To prove continuity of 7y let (9%, &*, 9* é®). k € IN be a sequence in B
such that converges strongly in B to (£, ¢, 9, &) and let (V% 9% 0% ) be the
solution of the problem:

(vF u) + vV, Vu) + v, (A", u) + (25 - V25, u)

: U 46
= MF(E 65, 0) = ME(F2(65) — 8k w) Yu e VP, £ (0,T), (46)
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'@-O:E 5%% } T@ w\i f_\u
1 in PN g - . N ok AY s ('
S(6F - (")) + A8 (8" + (65 - 84)¢* —65) @,
CLlF - Cups(0") VO = ¥ (Kl\pgl@ @k\ —j‘ (%), in @, (48)

— Ko A" 4 ps(v%) - Ved = KMV - {ckii ~c")vp5<¢')} in Q% (49)

D" og* ac*

- =0 e Q° % (0,7, 50)

5o =0 5o =0 —=00md?x (0, 7). (50)
O =i in O, S0 =05 A0 =65 FO0=EmO  (51)

We show that the sequence (v*, 0F, 6%, ¢*) converges strongly in Bto (v, ¢.6, ¢
= T, {5, &, 0 . ¢}, For that purpose, we w i1l obtain estimates to (2%, @5 85 ¢ ;‘
indepeﬁdem of k. We denote by ; any positive constant mdepenéenﬁ of A..

We take u = v* in equation (46). Using Holder’s and Young's inequalities
we obtain

d ! .
~——[ w* Pz +1/oj[ |\7-2;k§pd:z:+u/ VFlder
dt Jo o
ga/ (IFP + 652 4 1842 4+ [ - [o}1?) da.
iy
Then, by the usual method of Gronwall’s inequality, we get
12"l oo 0.0 Tivey < Cr (52)

Observe that operator A satisfies | Avfl < Cllv||{7'. Now, from the equation
(48) we infer that

lory £ G (%El’k Pl ekl + (of) 2 Loy T ] ey
ik
+#¥ ] r2() + 165 r2cas) + [|€F ;[ngm))

\

then, using (52} and since 2p" < p5/3, we obtain

15 oy S O (33)
From estimate (20) we have that
lollwzrgsy < C (;E@OHHI(Q‘*) + 1105 Lz ggey + 1185 2005, + 1ol 3 a9
1Ok i : ok |
0% F2igsy + 18172008 + 1)
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where ' depends on ||ps (v )| zs(0s). Therefore, using (52) we conclude that

< Oy (54

S

o
L@wE (8
Now, multiplying (48) by #* one obtains
O Pdes [ [ V8 Pazar < Coo 0y [ [ (107 + 105 dudt (5)
o ' o Jad ‘ ' )
and we infer from (54) and Gronwall's Lemma that
okl ; N
107 Lo 0. m22(00y) < Cs (56)
hence. it follows from (55) that
120 0y < Ca (57)

We take scalar product of (48) with n € H'(Q®), integrating by parts and
using Holder's and Young's inequalities, we ¢gbtain

ook f ok Lo 1Ak
1651y < Co (V6] 20y + 108l (o 0¥ 2 10 2 28y + 11611210
and we infer from (32},{54) and (57) that

H@?%L?{QT;H‘L(WW <. (58)

Next, multiplying {49) by ¢* we conclude by analogous reasoning and using
(45) that

f P2 d:s‘f/c “dmmcwcgf/ V6" i2drd,

hence, from (54) we have,
Pt -
EIC HL2(0, T HM Q8 )nL>=(0,T;L2Q%) < Ch (09)

In order to get an estimate for (cf) in L*(0,T; HY(Q%)), we return to the
equation (49) and use similar technigues, then

“Ct ;LLZ;'D,T-.HE(Qé)f) < (. (60)

We now infer from (52)-(60) that the sequence {(v*) is uniformly bounded
with respect to £ in

Wy = {w € L7(0,T;V¥), w, € L7 (0, T: (V7)) }
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and in
Wy = {w e L¥(0.T: H), w; € L7 (0.T: (V")) }

the sequence (¢F) is bounded in Wi (Q%) and the sequences (6%) and {c¥)
are bounded in

Wy = {w € 0T HY (@), we € 10.T BHOY))
and in
Wa = {w & L®(0,T; LXQY), we € LX0.T: HHQY)}

Since W) is compactly embedded in L#(0, 75 H), Wo i C([0. T): (V#)), W5 (Q%)
in L*(0. 7 HY(O)), W in L*(Q%) and W in C([0.T); H”Qﬂ) (1131 Cor.4),

it follows that there exist

LFO,T; VP L0, T H) with v, € I7(0, T, (V?Y),

0. T: (Ve

L0, T H2(0%)) with ¢, € L3HQ°).

L0, T HY Q) Lo=(0, T LHQ%Y) with 8, € L*(0, T, HY (O,
L2(0,T: HY(Q%)) 1 L%°(0, T, LHQ%)) with ¢, € L0, T; HY{Q9)"),

M

S i = N

MM mom

and a subsequence of (v*, ¢, 8% ¢*) (which we still denote by (v*, 6%, 9%, ¢*)),
such that, as &k — +oc,

v — w o in LP(O, T, HYynC{[0, T (VPY) strongly,

v o in LP(0,7.V?) weakly,

AvF =y in LP(0,T;{VPY) weakly,

o - ¢ in L*0,T: Hi(Q")) N C([0, T): L*{Q%)) strongly,

¢F = 6 in L0, T HD )) weakly, (61)
8 — 6 in LHQ)NC(0.7);H (05 ) strongly,

g5 — & in L*0.T,HY® )) weakh

& — ¢ In LHQY)NC(0, T HY(Q®)) strongly,

& — ¢ in L0, T; HH{QY)) weakly.

It now remains to pass to the limit as & tends to +oo in (46)-(51).

We observe that k( f‘s( -} — &) is bounded Lipschitz continuous function
from IR in IR then k(f2(¢F) — &) converges to k(f3(o) — &) in LP(Q), for any
p € [1, o). We then pass to the limit in the usual form as k tends to +o0 in
(46] and get

d ) R
() u) (Ve V)= (0 To,0) = MF(E D), 0= Ak £2(8)=6)6.u)
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for all w € VP ¢ € (0.7). Using that the operator A is monotone we can
conclude that y = Av.

Since the embedding of W5 (Q?) into L*{Q?) is compact ([9] p.15), and
(¢*) is bounded in W' (Q%), we infer that (¢*)? converges to ¢° in L2(Q7).
Also, since v* converges to v in LP(0,7: H) we have that ps(v*) converges to
ps(v) in LP(0, T; H(QP)). We then pass to the limit as & tends to +oc in (47)
and get

ae’g, + aeps(v) Vo—EAp— %;(cf%— ¢*) = A8 (6 + (95 — 64)¢ — 05) in Q°.
Since K1(p;) and f¢ are bounded Lipschitz continuous functions and ¢*
converges to ¢ in L*(Q%) we have that K;(ps{9")) converges to K {ps(¢)) and
(") converges to f2 (@) in LP{Q%) for any p € [1, 0¢). These facts and {61)
vield the weak convergence of K(ps(6*))VE* 10 K1(ps(¢)) V8 and f5' (6" ok
to Fe)o: in L32(Q%). Now, multiplying (48) by n € D(Q?), integrating

over Q° x (0,T) and by parts, we obtain
T
j{} /h Oy (BF + pslv¥) - VO ) + K (ps(69))V6* - Vi dads
“ T
= [ [, 57 (eh et dadt

then we may pass to the limit and find that,
, ot o s
Coe + Cops(v) - VO =V - (Kilps(6))VE) + 5 f1 (0)o  in DI(Q°), (62)

and using LP-theory of parabolic equations we have that (62} holds almost
everywhere in Q°. :

It remains to pass to the limit in (49). We infer from (61) that Vps(¢")
converges to Vps(¢) in L2(Q°) and since {[¢*]| = (gs is bounded, it follows
that ¢*/1 — ¢*) converges to ¢(1 — ¢} in LP{Q°%) for any p € {1, o0). Similarly,
we may pass to the limit in (49) to obtain

o, — Kole+ ps(v) - Ve= KoMV - {c(1 — )V ps(@)) in Q°.

Therefore 7, is continuous for all 0 < A < 1. At the same time, 7, is
bounded in Wy x Wf‘l(Qé) x Wy x Wy and the embedding of this space in’
B is compact; then we conclude that 7, is a compact operator.

To prove that for (¢, &, 4. &) in a bounded set of B, 7, is uniformly contin-
uous in A, let 0 < Ay, Ap < 1 and (v, ¢, 8:,¢;) (i = 1, 2) be the corresponding
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solutions of (39)-(44). We observe that v = v, — U5, ¢ = &1 — . 8§ = 1 — &
and ¢ = ¢y — ¢y satisiy the following problem:

(v u) + v (Ve V) + v, (Avy — Avg. ) + (o) - Vo, u) — (v Vg, )
= (A — M) {(F(&0),u) + (e — h){é{fﬁ{é) — 8), ), (63)
forallue VP, 1€ (0,7,

ae’d, — NG+ actps(vy) - Vo — mca (1 (6% + @102 + @;)/} (64)

= ae®ps(v) - Voo + (A = Ag)5 (6 + (65 — .4)2 ~ F5) in Q°,
Cube = V- Ki{06(6:))V8 = V - [Ki(ps(1)) = Kilps(e2))] V6,

+Cops(v1) - V6 = Cops(v) - Ty (65
g z I s W . i ) ’
+ 7,,.? (1) + 5 [ f9' (1) = £ ()] €2, 10 Q°
— Koo+ ps(v) - Ve = KoMV - ({1 — ¢} [Vps(on) — Vps(d)])
+ps(v) - Ve + KoMV - {e{1 — {e1 + ¢3))Vps{@2)) in Q°,
(66)
3¢ 98 d
e =0, S =0on a0 x(0,7T). (67)

an O dn on

v(0)=0in 2, &(0)=0. 8(0)=0, ¢0)=20inQ° (68)

Taking v = v in equation {63), using Holder’s, Young’s and interpolation
inequalities and the monotonicity of operator A we obtain

5= | ldz + j{zylvﬂ di’"</ ¥V valivlde

2 dt Jo
+ A= Aol / (IF2.0)llel + k(£(3) — H)lelle]) de
V.o
< Chllvalifr iy 1wl F2goy + ;f"UE|%f
£ ColA = Aol /|F| 0% 4 182 + |8 Ed:z:#cgfm dz.

where 2/s+3/r == 1 and r > 3. Observe that due to assumption p > 3 we have
that v € L0, T3 L7(2)). Then, integration with respect ¢ and Gronwall’s
Lemma give us
2 2
HU“LOO{G THINLE(0.T:V) = Cy A = Aol (69)

Applying LP-theory of parabolic equations {[7] p. 341} to equation (64),
the following estimate holds

EI@I ”hQé < Cl ( [,Oﬁ(’b} \T@Q i L2(Q%) i}q o }\25 (\ﬁéi%[},\@a) + j;éiﬁ?(@o) + 1))
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where O depends on |[ps(v1) 1508 and |7 + &30 + @%E]Ls;z@a% which are

independent of A;. Therefore, using (69) we arrive at
o2 205 < CyIAL = Agl? (70)
LY ;\EL{,-’;M(QG} — 1§ i 2 L J

Multiplying (65} by 8. integrating over Q° using Hélder’s inequality and
FAl N 3o - N . .
that K, and f are bounded Lipschitz continuous functions, we have

d

— 1912 7912
di/ﬂéﬁi dx—{—aj/;aV{;?l dz

<y /05 s (O)IV GV + [os(v)|VO|16] + 10:16] + [@]l¢2,] |6]d
< Ciliol s om ooy VB2l 2s) + Collvl i m rn | V2| 72000
i

o
W o2 ymiZ \ g a2 ; T
+C Lo ou|” 160 dr + Cale e o mao | P2liz) + 5 J/; |Vl dr.

Integration with respect to t and the uge of Gronwall’'s Lemma and (69)-(70)
lead to the estimate

181w oriramsy < Crldi — X%, (71

We multiply (66) by ¢, integrate over (° x {0.¢) and by parts, and we use
Holder’s and Young's inequalities and (45) to obtain

-1
/ lcPdr + /f Veldzdt
0f Jo _Qta
< G [ [ (190s(0) — Voslon) + losto)? + o) dad
tr ¢
< ¢ | [ (Vo +ef)dudt [ [ oPdod
o v o Ja

Applying Gronwall’s Lemma and using (69)-(70) we arrive at

3o 022000y < Ot lA — Aol™. (72)

Therefore, it follows from (69)-(72) that 7, is uniformly continuous in A.
To estimate the set of all fixed points of 7), let (v, ¢,8.¢) € B be such a
fixed point, i.e., it is a solution of the problem

(ve, u) + v(Vo, Vu) + vo(Av, u) + (v - Vo, u) (73)
= MFle, 0),u) — ME(f2o) — Sv,u) Yu eV, t € (0,T),
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5. s e 1o
ety + aps(v) - Vo — €A¢ — (o~ 5%
= A3 {6+ {85 —O4)c—0g) in O,

\ I : .
Col, + Cops(v) -Vl =V - (Ki(ps(d)VE) + —ff(@x in Q°, (75
{ / & L)

\

— Kolc+ ps{v) - Ve= KoMV - (6{l - o)V (ps(@)) in Q. (76)
do a4 de
— = G« _— gi}‘ — 00 i1 ) \JA Niderd
o - - 3 =0 on 00° x (0.7, (77}

w{0) =2 inQ, ¢0)=¢ 8(0)=6, 0)=d 0’ (78

We take u = v in equation {73). Then

dﬂ:

-

jfa 'L a.?? —_— / (!/ 'T"!/T? ““}\i?*f-{fj( (}
< c’ijf?! | +g9;w;c|~+gz;gﬁdz 79
<G j FI®+ Evlzdx+61/7 0 + lePda.
el Qs

&1&

1
2

|
i

Multiplying equation (74) by ¢. integrating over £2° and by parts, using
Hélder’s and Young's inequalities we obtain,

ae? d 1

| 2y (2 o & o4 d
5 d*/ plPdr + /m (e Vol + 2@) z (30)
< C} R Cl/ (i@lz 2 -+ ;@F) dz.

F
By multiplying (75} by e = C,.6 — 5 —f%{$) and (76) by ¢, arguments sim-
ilar to the previous ones lead to the following estimates

1d Cya 2 02 7 12
igt-/ é 2 Jos [V@; d:CSCgJ;é [V@[ d;ﬁ:wCl/QQﬂd:ZE, (81)

1d ! K2 | 2 '.f!Q 3
?;j;ggf ez T-Tz-];zé,vcr d:z:gcgj/{z{s Vol2dz, (82)

where {45) was used to obtain the last inequality.
Now, multiplying (80} bv A and adding the result to (79),(81)-(82), gives
us
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fni_/ 123:53_!__6{/ Aag?i@ig_:__jlé %Qm;,,.l_\ 1“1 de
df Q?;x E d’j O 4 IR d 236; 2(:| AL

where € is independent of X and §, being A € IR an arbitrary parameter.
Taking A large enough and using Gronwall’s Lemma to obtain

N o Lol el R [ ?
(vl Lo F 9 Loy T el e orrziaeyy F el Loz £ Ch,

: A 1 [ s, Sooy s
where C) 1s independent of . Since 6 = Zolet 3f§<@)> and f(¢) is bounded

in L*{Q°). we also have that [16]|z=/ 72000y < Cy. Therefore, all fixed
points of 7 in B are bounded independently of A € [0, 1].

Finally, for A = 0, we can reason as in the proof that 7, is well defined
to conclude that the problem (39)-(44) has a unique solution. Therefore, we
can apply Leray-Schauder’'s Theorem and so there is at least one fixed point
(v,6.6.c) € BA{LP(0, T, VF)NL=(0, T: H)} x W3 Q) x W3 Q%) x C21(Q%)
of the operator 73, ie. {(v,6,0.¢) = Ti(v,é,0,¢). These functions are a
solution of problem (33)-(38) and the proof of Proposition 1 is complete. &

4 The proof of Theorem 1

To prove Theorem 1, we start by taking the initial condition in the previous
regularized problem as follows. For 0 < § < 6{Q) as in the statement of
Theorem 1, we choose ¢§ € W?*=/2¢(Q8) N HY(Q%), «f € H, 85 € H*7(Q),

— B 88 oS .
/2 < ~v < 1, ¢§ € CHOP), satisfying —2 = —2 = =2 = { on 952 and
o . on on, an
0 < ¢ < 1in 0% vf — vy in the norm of H{,,(0)}, and such that the
restrictions of these functions to Q (recall that O € 0°) satisfy as § — 0+

the following: @9 — ¢g in the norm of W2-%2¢(Q) N HI*Y(Q), 65 — 6 in
the norm of L*(Q), ¢} — cq in the norm of L2(€2).
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‘We then infer from Proposition 1 that there exists (¢°,¢%, %, %) solution
the regularized problem (33)-{38).

In the following, we will derive bounds, independent of 4, for such solu-
tions and then use compactness arguments to pass to the limit as ¢ approach
0 to establish the desired existence result. Such estimates will stated in fol-
lowing in a sequence of lemmas; however, most of them are ease consequence
of the estimates obtained in the last section (those that are independent of
5) and the fact that O ¢ Q°. We begin with the following:

Lemma 1 There exists a constant C such that, for any é € (0, 6{1))

&

vl = Tﬁwr»(oﬂmrjf J/%ﬂ’\“ B — "izdzdwé<a (84)

10 s o r2inmrzio iy < | ¢ Lo o rrzeoeymrzomra ooy < 1 (85)
(8% e tozzzienrrziois o) < 18 ez iz ey < Cr. (86)
[l o rine@pniz ooy < 1 lzeorinsnizoraies < Cro (87)
Proof: The result follows from inequality {83). ]

Lemma 2 There exists a constant C; such that, for any ¢ € (0,5(Q))

(& lyzig S G forany2<q<10/3, (88)
19 2oy < Cu, (89)
Il eormmy < Cr (50}

Proof: Note that (88) follows from estimate (20) of Thecrem 2 and
Lemma 1.

Next, we take the scalar product of (35) with n € H1(Q), using Holder’s
inequality and (H3) we find

C\’ng!]f{g(ﬂ)’ <O (J%vgéﬁﬂ{@) - Wé“ﬁﬂf@m)H@'égELs(ﬂ) -+ Hd’fFIL?(Q}) :

Then, (89) follows from Lemma 1 and (88).
Using that 0 < ¢ < 1 in @, we infer from (36) that,

o8 i &1 T NT R Y B
I¢f lzzziay < Cy (Ve + [ lz2e + V@ 2o -

o

Then, (90) follows from Lemma 1. #



Lemma 3 There emst ¢ constant O and §p € {0,3(Q)) such that, for any
& < (59,

I (010
jlzﬁ L2 €':,1 toi?{(,) ; S C Kgif

where Q < ﬁz < to < T, U C Quu{th) and such that [t1, 4y x U< QU

Proof: Let 0 <) <t < T, U7 C Q,u(#;) be such that [,y x U C

Gt It (0} Uy (T}, Tt 15 verified by means of (33) that for a.e. t € (1,10

(vf,u) = m—z/O/ Av® udy — z// Vet - Vudx wj[ V¥ Votude
U U U

- J[ k(56 — 8\efude + / F(& 8 udz, we VP,
5 15 -

In order to estimate |[vf lv»(re, we observe that the sequence (¢°) is bounded
in W2HQ). for 2 < g < 5, in perticular, for ¢ > 5/2 we have that W>H(Q) C
H™/2(Q) where 7 = 2 ~ 5/g ([7] p.80). Consequently, because of Arzela-
Ascoli’s theorem there exist ¢ and a subsequence of (¢ ¢} {which we still
denote by ¢° }, such that @ converges uniformly to ¢ in (). Recall that i =

{{z,t) & Q/O < fololz.t)) < 1tand Qu(t) = {z € Q/O < folo(z. t)) < 1}.
Note that for a certain ¥ € (0,1) and for (z.t) € [t1, 9] x U,

Due to the uniform convergence of f° towards f. on any compact subset,
there is an dp such that for all § € (0,8;) and for all (z,¢) € 1,12 x U,

F(z0) < 1-7/2
By assumption (H2) we infer that

KPS (2,1) — 6) < k(1 —7/2)  for (z,£) € [t1.ts] x T and § < 6.

Thus,
lflvswy < GV + 100y + 1071 3oy + IF N2 + 1€ llzae)
+10% ey + 1E(F2(6%(2. 1)) = ) e 10 220y )
where 2/s + 1/p = 1. Hence, (91) follows from Lemma 1. ]
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From (84), the'sequence {v7) is also bounded in LP{¢;. to: WHP(17)): then,
by compact embedding {{13] Cor. 4). there exist v and a subsequence of (v}
(which we still denote v%), such that
v — v strongly in LP({t).45) x U).
Observe that (J,y i an open set and can be covered by a countable number
of open sets (¢, £, ) x U; such that U; C £2,,{¢;). then by means of a diagonal
argument, we obtain

v® — v strongly in L2 _{(Qm U Qi (0) U Q0 (T). (92)
Moreover, from {84} we have that v € 20, T V)N L=(0. T, H) and

v = ¢ weakly in  LA(0.7: V),

¢ I o weakly *in  L¥®(0,T; H). (93)

Since Av® is bounded in [P (0, T (V7)) there exists x € L7 (0,T; (VPV} such
that )

Av® — x e LF(0,T; (VPY) weakly. (94)
We now infer from Lemma 1 and Lemma 2, using compact embedding ([13]
Cor.4), that there exist

& & Hf (@) for 2 < g <10/3,
¢ € L0, 7; HYQ)) N L={0, T L2(0)),
c € L0, T HHO)) N L={(0,T; L*(Q)),

and 2 subsequence of (¢°, 8%, ¢®) (which we still denote by (¢°.6°. ¢?) ) such
that, as § — 0,

@° — ¢ uniformly in @,

& - ¢ strongly in L¢(0,T; WH4({2)),

& — &, weakly in L9(Q),

£ — § strongly in L*(Q) N C([0, T} HX{O)), (95)
0° — 8§ weakly in L2(0,7 H'Q)),

¢ — ¢ strongly in L2(Q) N C{0.T); HX(Q)),

¢ — ¢ weaklvin L?(0,T: HY{Q)).

It now remains pass to the limit as ¢ decreases to zero in (33)-(38). We
start with the velocity equation.

fonond
]
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We take u = n(f) in (33) where n € L7(0, 7, VP) with compact support
contained in Qo U Q{0 U QT and 7, € LP (0, T VH{Qu(t))): after
integration over (0.}, we find

N SRy N 7 T IR S
(et m) + (VO V) + v (A ) + (7 - Vo ) ,
0 [96)

JE t P
+ (R(F(E) — 83 m)) ds = fo (F(E.6%), n)ds.

Moreover, we observe that

i 1
[ @hmds = = [ m)ds + (52 n(8)) - (o6, m(0).

Also, because of uniform convergence of f2 to f, on compact subsets, as well
as the assumption (H2), it follows that E{f3(4°) — &) converges to k(f.(¢))
uniformly on compact subsets of ¢, U2 (0) U0, (7). These facts, together
with (92)-(95), ensure that we can pass to the limit in (96) and ges

t

) t t
(0().n(®) = [ (vn)ds +v [ (Vv,Fn)ds+v, | (cn)ds (97)
i 4 i
+ [ (o Vemds+ [ (k(@)enids = [ (Fle.0).m)ds + (vo.n(0))
] 0 0

Since #9(0) — v(0) in (VP(L)Y, for any U such that U C Q,,,{0), by using
(97) it is easy to see that v(0) = vy in (my(0).

’\ov» we check that v = 0 a.e. in Q For this, take a compact set K CO
Then there is an 0 € (0,86(02)) such that

Fif(zt)) =1 in K for § < 6x.

Hence, k{f2{¢%(z,t) —8) = k(1 — ) in K for § < k. From (84) we infer
that
k(1= 80z < G for § < Og,

where () is independent of §. Thus, as ¢ tends to 0, by assumption (H2),
k(1 — &) blows up and, consequently, [[v°]iz2(x) converges to 0. Therefore
v = 0ae in K, and since K is an arbitrary compact subset, we conclude
that

o

v=0 ae in ¢

8

Now, we proceed with the other equations.
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It follows from [93)-(95) that we may pass to the Hmit in (34), and find
that {12} holds almost everywhere.

In order to pass to the limit in {35}, we note that given { € L*(0, T H*(Q2))
with ¢ € L0, T: L*{Q)) satisfying ((T) = {3 we can consider an extension
of ¢ such that (° € L*(0,T: HY(Q%)) with ¢ € L%0.T, L3Q?)) satisfying
¢o{T) = 0. Now, we take the scalar product of (35) with (9,

T T - -
—C, j/ B5c8(0)dz — C, / /; @Gdrdt — C. /9 JQ ps(v))87 - V(Pdudt
B |
*/ / Ki(ps(65))V8° -V Pddt = 5/@ /mff (6°)68 ¢ ddt.(98)

Observe that since ps(v?) converges weakly to v in L¥(0,T; H*(Q)) and £° —

8 strongly in C(] G T Hi 02)') we have that p;(v%)8° converges to vé in D/(Q).
Observe that f& — f; in LQIEE’%) for 2 < ¢ < oo, then from (95) we infer that
765189 converges weakly to F(d)o, in L9%(Q). Moreover, from Lemma 1
the integrals over Q°\() are bounded independent of § and since |Q2°\Q2] — 0
as & — 0, we have that these integrals tend to zero as ¢ — (. Therefore, we
may pass to the limit in (98) and obtain

-C, / / 8¢,dzdt — Cy / f V8 - V(dzdt + / / K1(6)V - V¢ drd
2/ /f (6)64C dadt + Cy fegg

for all ¢ € L0, T; HY(Q)) with ¢ € L*(0,T; L*())) and {(T) = 0.

t remains to pass to the limit in (36). We proceed in similar ways as
before, taking the scalar product of it with (¢ € L2(0,T; H'(Q%)) with {{ €
L*(0,T; L*{Q%)) and §5(T} =0,

i -
w/ / c Qda:dt—~f / psluv 'vgéd$df+K2f J/"vc“-vgédmr
0 Qe
TKQM/ / (1— )\ Vps(o )-vqédxdtmj;cggé(e)dx

then from (93).(95) and using that the sequence (¢®) is bounded in L=(Q)
we may pass to the limit as § — 0 and obtain

-/OT/Qcctdxdtw/GT%/QwvcdmdtTKQf;]QVc-Wdo:dt

M [ [ el - o)V V¢ drdt = ] o C(0)dz
J0 0 J0D K
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holds for any ¢ € L*(0. T3 HY)) with ¢, € L*(0, T3 L*(Q)) and {(T) = 0.
Observe that since 0 < ¢® < 1 and ¢” converges to ¢ in L*(Q) we have that
0<e<lae in@.

&
”2-—*9 G\Q;MO@ g)wﬁgandf( \) [N
and the first part of the proof of Theorem 1 is complete.

. . o
Now, it follows from (95) that —

Under the additional regularity and integrability hypotheses stated in the
second part of the statement of Theorem 1, in the following we will show that

x = Av. We will use the monotonicity and the hemicontinuity of operator

A (19], Chap. 2.) by adapting an argument that is usual in the theory of

monotone operators. For this, we take any v € LP{0,7; VP) such that supp ¢
is contained in the closure of 0, (0) U @ U, {T) and define

X = f{%? - Ay v ““L)dS“?"‘“lE(f)?{li

v [V Bagds+ [ | KON - 5)1? Pduds. (99)

Since A is monotone and ,.,;(t) C (2,

A U to
Xz *?}%‘O(ﬂl?%m@ fa;)"rb’/ 5\"77/’0322(9 (syds
e (100)

+ [ IR = B oo ds.

Observe that v°(#) — v(t) weakly in H, 2% — v weakly in LP((J); thus, thanks
to (92). v — v ae. in Q. Note also that £V2(f2(%) — 8) — kY2 {f.(o))
a.e. in (my: hence

BP0 — 0 — B2 (f @)y ae in Qm
t i 5 N
From (84) we have that /é IKY2(£2(6) — 6) e oy ds is bounded.
Therefore ([8] Lemal.3),
EV2(£2(67) — 60’ = B (f(e))v weakly in LH{(Qmi)-

Thus, we conclude from {100) that

s t 1 : 2 ’ 12
%{{%mf Xz 551”“)[&?(%@) + V/G 1Vl z2a,.0 98

g,. : H A
+[@ 2 Fs Dol Tai e s

(101)
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On the other hand, by using (33) with u = %, after integrating in [0, 7], we

pit - .
obtain an expression for v / (Av®,2°)ds that substituted into (99), gives
0

LB / 5

i SJL‘QIQ\"‘T“\/ '/JTECG 9 Y )dQ—-—i/O/ (41 L)as JQ/ f%@/ v "“L}{gq‘}
0

By letting ¢ — { in this last expression, we conclude that

X;__}Xtﬁgggmli O)-—] \_7-“@ g}, v )dsmuo/ {x, ¥ )ds— yof (A, v—)ds

Now, from the fact that v = 0 a.e. in ¢, and our additional hypothesis that
the measure of 9{),y; is zero for a.e. £ € (0.7}, we can write X* as

1 i i
1 : { LAY Ay ‘ N
“X = _‘E?”G L Gmg (G} _‘/ﬁ \f{.C?{?}?%)Qﬁg(S)dSm yﬂf(} {X b)ds
2 ¢
—v, / (A, v — 1)ds.
g

This and (101) imply that

+

t ¢
F%B(me o)) +/ ("F & 9 ) mz(s)ds - G/O (X w)ds - UO/G (’ﬁb B U)ds
v (ﬁs‘@g(gmi(f}? + / V"Li Lzl\D {8 ds ”L’/ ”;‘/1 O(fﬁ( )”LE“L"’(Omzls))d‘9

Now, we recall that (97) holds for a.e. t € (0,7) and any n € L?{0,T;V7?)
with compact support contained in Q. U Q{01 U0 (T) and such that n; €
LP(0,T: (VPY). Thus, our previous estimates and our additional hypothesis
on the integrability of k{f,(¢)) allow us to use density arguments to conclude
that (97) holds for any n € LP(0, T; V¥) with support contained in the closure
of Qi U Ui (0) U Qi (T) and such that n, € LP (0, T; (V®)). In particular,
v has this properties, and we can take n = v in (97) and integrate in time on
the interval [0,¢] to find an energy identity that used with the last inequality
furnishes

v

1
2
Z

E\JI -t c__;

t
Uof (x —AY.v—¥)ds 20 ae t
0

Therefore, by standard arguments using the hemicontinuity of operator A
(I8] Chp.2). we can conclude that x = Av, and the proof of Theorem 1 is
complete. B
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Capitulo 6

Conclusoes Gerais '

Neste trabalho apresentamos resultados de existéncia de solugdes para alguns
modelos matematicos do tipo campo de fase que tratam de problemas de
solidificacao de ligas bindrias.

Observemos que no primeiro modelo (que née inclui convecgdo) a condu-
tividade térmica, que depende do campo de fase, podia se anular. Ao intro-
duzir os termos convectivos tivemos que fortalecer essa hipdtese para obter
um resultado de exiténcia global no tempo. Em particular, no segundo mo-
delo, a dificuldade técnica surge quando precisamos obter mais regularidade
do campo de fase para que as regides estejam bem definidas. Tal regularidade
depende do termo fonte da equagdo. que por sua vez depende da regulari-
dade da temperatura e da concentragdo. Como a concentracio pertence a
L>{(Q)). a temperatura € a que controla a regularidade do campo de fase. A
informacdo que se consegue obter sobre a temperatura (L=(0,7"; L*(£2))) ndo
¢ suficiente para garantir a continuidade do campo de fase. Torna-se entio
necessdrio aumentar tal regularidade para LP(@Q) com p > N + 2/2. Uma al-
ternativa possivel seria a de tentar melhorar a regularidade da temperatura,
tal vez apenas num intervalo de tempo pequeno, obtendo assim uma solugio
local. Esta andlise estd na fase inicial. Também poderia ser analizado a
possibilidade de existéncia de solugtes locais nos outros modelos estudados.

Uma outra proposta interessante seria a de fazer a andlise matemaética
de um modelo de solidificacao para ligas que usa a metodologia de campo
de fase, inclui conveccdo, diferente dos modelos estudados e que fol proposto
por Beckermann et al. [3] e Diepers [15]. Eles propoém uma equacéo para a
velocidade vdlida no dominio todo; o fate da velocidade ter que ser zero na
regido solida estd embutido na propria equacgéo.
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