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Abstract

In this thesis we consider two main problems. The first problem concerns extensions between
simple modules for current algebras associated to complex, simple, finite-dimensional Lie algebras.
To begin, we compute 1-extensions between finite-dimensional simple modules, partially recovering
a result due to Kodera. Then we develop a technique aimed to compute higher extensions, and
which we use to compute 2-extensions between certain simple modules. Finally we prove that
cohomology groups of current algebras are isomorphic to the cohomology groups of its underlying
simple Lie algebra, a result stated by Feigin. This part of the thesis arises from collaboration with
B. Boe, C. Drupieski and D. Nakano.

The second problem is concerned with the study of certain classes of modules for hyper algebras
of current algebras. In the case that the underlying Lie algebra is simply laced, we show that local
Weyl modules are isomorphic to certain Demazure modules, extending to positive characteristic
a result due to Fourier-Littelmann. More generally, we extend a result of Naoi by proving that
local Weyl modules admit a Demazure flag, i.e., a filtration with factors isomorphic to Demazure
modules. Using this, we prove a conjecture of Jakeli¢-Moura stating that the character of local
Weyl modules for hyper loop algebras are independent of the (algebraically closed) ground field.

Keywords: Lie algebras, Homological Algebra, Representation Theory
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Resumo

Nesta tese nds estudamos dois problemas principais. O primeiro problema aborda extensoes
de moédulos para dlgebras de corrente associadas a algebras de Lie simples, complexa e de dimen-
sao finita. Primeiro nés calculamos l-extensodes entre médulos simples de dimensao finita dessas
algebras, recuperando parcialmente um resultado de Kodera. A seguir nés desenvolvemos uma
técnica para calcular extensoes mais altas entre médulos simples, com a qual nds calculamos certas
2-extensoes. Por fim nds mostramos que os grupos de cohomologia da algebra de corrente sao iso-
morfos aos da algebra de Lie simples associada a ela, confirmando uma afirmacao de Feigin. Essa
parte da tese foi desenvolvida em colaboracdo com B. Boe, C. Drupieski e D. Nakano.

O segundo problema aborda uma certa classe de modulos para hiperalgebras de algebras de
corrente. Quando a &dlgebra de Lie a qual a algebra de corrente é associada é de tipo ADE, nds
mostramos que moédulos de Weyl locais sdo isomorfos a certos médulos de Demazure, estendendo
para caracteristica positiva um resultado de Fourier-Littelmann. Em geral, nés estendemos um
resultado de Naoi, provando que moédulos de Weyl locais admitem uma bandeira de Demazure,
i.e., uma filtragdo cujos fatores sdo isomorfos a médulos de Demazure. Usando esse resultado, nos
provamos uma conjectura de Jakeli¢-Moura que afirma que o caracter dos moédulos de Weyl locais
para hiperédlgebras de lagos sdo independentes do corpo base, desde que este seja algebricamente
fechado.

Palavras-chave: Algebras de Lie, Teoria de Representacdes, Algebra Homoldgica
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Introduction

The main theme of this thesis is representation theory of infinite-dimensional Lie algebras. This
topic is related to research areas in geometry and algebra which have been attracting a great deal of
attention lately, such as quantum groups, crystal basis, character theory, Kazhdan-Lusztig theory,
categorification, flag varieties and quiver varieties.

This thesis is composed by two main projects. On the first one we study extensions between
simple modules for current algebras. We develop a general machinery to approach this and similar
problems, and compute Extg[t] (L1, Lo) for simple g[t]-modules Lq, Lo depending on n and on g.
This topic is closely related to recent works of Kodera [Kod10] and Neher-Savage [NS11].

On the second one we study a relationship between local Weyl modules and Demazure modules
for hyper algebras of current algebras. We prove a conjecture of Jakelié-Moura [JMO7] stating that
the character of local Weyl modules for hyper loop algebras are independent of the (algebraically
closed) ground field. This is closely related to a conjecture posed by Chari-Pressley [CP01].

In the following paragraphs each of these topics will be explained in more detail.

Background

Given a Lie algebra it is interesting to describe its simple and indecomposable modules, their
characters, and extensions between them. If g is a finite-dimensional semisimple Lie algebra over C,
then the category of finite-dimensional g-modules is semisimple. It means that all of its modules are
completely reducible, or that any extension between its modules is isomorphic to their direct sum.
In particular, finite-dimensional indecomposable g-modules are simple and they are parametrized
by the infinite set of dominant weights associated to g. There is a description of these finite-
dimensional simple g-modules via generators and relations, and their characters can be computed
using Weyl’s character formula.

Given an algebraically closed field F of characteristic p > 0 and a connected, simply connected,
semisimple algebraic group G over I of the same Lie type as g, the category of finite-dimensional
Gp-modules is equivalent to that of the hyper algebra Up(g). A hyper algebra Ug(a) is a Hopf
algebra associated to a Lie algebra a, similar to its universal enveloping algebra, and obtained from
it by first choosing a certain Z-form and then changing scalars from Z to . Thus, in particular,
they provide a way to pass from a category of modules for a Lie algebra over C to its analog
over F. This process is known as reduction modulo p. The category of finite-dimensional Gp-
modules (or equivalently, of finite-dimensional Ur(g)-modules) is not semisimple, and the modules
obtained by reduction modulo p of simple g-modules - called Weyl modules - provide examples of
indecomposable, reducible modules. Finite-dimensional simple Gp-modules are also parametrized
by the set of dominant weights, but their characters are not known in general. Weyl modules, on
the other hand, not only have a description via generators and relations, but their characters can
also be computed using Weyl’s character formula.

Associated to every finite-dimensional semisimple Lie algebra g over C there is an untwisted
affine Kac-Moody Lie algebra §. It can be realized as the semi-direct product of a central extension

1



BACKGROUND 2

§ @ Cc of the loop algebra § = g ® C[t,t"!] and a derivation d of g ® Cc (cf. [KumO02, 13.1]).
Its importance is more noticeable in mathematical physics due to its relation to conformal field
theory. A well studied category of g-modules, category O, is not semisimple, and the study of
extensions of modules in O has been a very interesting topic of research. Similar to the case
of finite-dimensional g-modules, simple modules in O are also parametrized by an infinite set, of
dominant weights associated to §, they can also be described by generators and relations, and their
characters are given by Weyl-Kac’s character formula. However, nontrivial simple modules in O
are infinite-dimensional (cf. [Kum02, Chapter 2]).

In [GL76], Garland-Lepowsky computed the cohomology of the subalgebra g ® tC[t] C §, with
coefficients in certain simple g-modules. Their result for g ® tCJt] is similar to Kostant’s Theorem
on the cohomology of the nilpotent radical of a finite-dimensional semisimple Lie algebra.

In [Kod10], Kodera described 1-extensions between finite-dimensional simple modules for gen-
eralized current algebras, that is Lie algebras of the form (g ® A) with A being a finitely generated
commutative C-algebra. Higher cohomology and higher extensions of these algebras have not been
studied in general. However, they are of interest - they describe invariants of these algebras, such
as deformations and outer automorphisms, besides parametrizing extensions. In [FGTO08], Fishel-
Grojnowski-Teleman calculated H" (g ® CJt]/(¢°), C) and proved, in particular, that as a C-module
it is isomorphic to H" (g, C)®*. More recently, Chari-Khare-Ridenour [CKR12] calculated higher
extensions between certain finite-dimensional graded simple modules for truncated current algebras
of the form g ® (C[t]/(¢?)) in terms of homomorphisms of g-modules. The calculation of higher
extensions of generalized current algebras is the subject of our first chapter.

As we pointed out above, nontrivial simple g-modules are not finite-dimensional. This brings us
to consider the loop algebra g, which admits nontrivial finite-dimensional modules. The category
of finite-dimensional g-modules is not semisimple, and Chari-Pressley described its simple modules
as tensor products of evaluation modules in [CP86]. They also introduced [CP01] global and
local Weyl modules for affine Kac-Moody Lie algebras and loop algebras, in addition to defining
Weyl modules for the quantum loop algebra U,(g) as integrable modules given via generators and
relations. Moreover, in this latter paper, they conjectured that local Weyl modules were isomorphic
to the limit ¢ — 1 of irreducible quantum Weyl modules, and proved it in the case g = sls.

Chari-Pressley’s conjecture boils down to the calculation of characters of local Weyl modules
for loop algebras. After the works of Chari-Loktev on sl,, [CLO06], Feigin-Loktev on generalized
current algebras [FL04] and Fourier-Littelmann on the relation between Demazure and local Weyl
modules for current algebras g® C[t] [FLO7], Naoi completed a proof of Chari-Pressley’s conjecture
in [Naol12]. Using a certain decomposition of tensor products of Demazure crystals proved by
Joseph [Jos03], Naoi extended the work of Fourier-Littelmann, showing that any local Weyl module
for the current algebra g ® C[t] admits a filtration whose factors are Demazure modules.

It was pointed out by Nakajima that Chari-Pressley’s conjecture could be deduced from global
basis theory. His proposed proof remains unpublished, and a brief sketch is given in the introduction
of [FLO7]|. In the particular case when g is non simply laced, the relation between local Weyl
modules and Demazure modules given by [Naol2] also depends on the theory of global basis,
although in a different manner than Nakajima’s proposed proof.

In analogy with finite-dimensional simple Lie algebras, one can consider hyper algebras of
certain generalized current algebras over F (cf. [Gar78, Mit85, Chal3|). Jakeli¢-Moura studied
the category of finite-dimensional modules for hyper algebras of loop algebras Ur(g), and they
defined local Weyl modules for these algebras [JMO7]. They also conjectured that the character
of these Weyl modules is the same as their characteristic zero counterparts, a conjecture which is
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similar to that of Chari-Pressley (cf. [JMO07, Conjecture 4.7.(a)]). The study of finite-dimensional
Ur(g)-modules and the proof of Jakeli¢-Moura’s conjecture is the subject of our second chapter.

Results of the first project

The main goal of the first chapter of this thesis is to develop techniques to compute extensions
of modules for current algebras. In the first section, we set up the necessary notation and state
some basic facts used throughout the chapter. In Subsection 1.2.1 we compute 1-extensions between
any finite-dimensional simple modules for current and loop algebras. It partially recovers in a very
neat way results obtained by Kodera [Kod10]. Afterwards, we start working on higher extensions
and obtaining previously unknown results. In Subsection 1.2.2 we compute n-extensions between
two finite-dimensional simple modules for the current algebra g[t] = g ® C[t] which are supported
at the same point. In Subsection 1.2.3 we compute 2-extensions between non-isomorphic, finite-
dimensional, simple modules for the current algebra supported at the same points.

The third section is devoted to fill in the gap left in Subsection 1.2.3, namely we want to
compute Extg[t](V, V) where V is a finite-dimensional simple g[t]-module supported at a pair of

points a,b € C. In fact we first reduce the computation of Extg[t](V, V) to the explicit description

of H*(g ® I,C), with I = (t — a)(t — b) C C[t], as a module for g x g. In Subsection 1.3.2 we set
up a spectral sequence to compute higher cohomologies of a truncation of g ® I. The reason why
we truncate g ® I is explained in Subsection 1.3.3 by the non-convergence of a different spectral
sequence. In Subsection 1.3.4 we relate the cohomology of a truncation of g ® I to that of a
truncation of g ® tC[t], and in Subsection 1.3.5 we compute the second cohomology of the latter
one. In Subsection 1.3.6 we recall some notation used in [GL76], and some of its results. We also
compute particular examples of Garland-Lepowsky’s results which will be useful for our calculations.
In Subsection 1.3.7 we prove that the cohomology of the current algebra is isomorphic to that of
the underlying semisimple Lie algebra, a claim which was made (but not proved) by Feigin [Fei80].
These results come together in Subsection 1.3.8 where we explicitly compute the second cohomology
of a truncation of g® 1. The consequences of this description to the cohomology of g& I are drawn in
Subsection 1.3.9, where certain composition factors of H?(g ® I, C) are described. This description
gives us an explicit reason for the non-convergence of the spectral sequence of Subsection 1.3.3. In
Subsection 1.3.10, we state a conjecture related to the second cohomology of sl ® I, then partially
fill in the gap left in Subsection 1.2.3, and explain how far we are from the actual proof.

Results of the second project

The goal of the second chapter is to extend the results of [FL07,Nao12] to positive characteris-
tic and prove the conjecture of [JMO7]. Due to extra technical difficulties which arise when dealing
with hyperalgebras in positive characteristic, there are several differences between our proofs and
those of Chari-Presley’s conjecture. For instance, in proving the existence of Demazure flags, some
of the tricks used in [Nao12] do not admit a hyperalgebra analogue. Our approach to overcoming
these issues actually makes use of the characteristic zero version of the same statements which
were proved in [FLO7,Naol2]. We also need to use the fact proved in [Mat88, Mat89], which is
that the characters of Demazure modules do not depend on the ground field. Our proofs require
different presentations of these modules in terms of generators and relations. Technical issues for
proving one of these presentations in the hyperalgebra context when g is of type G5 imposed that
we restrict ourselves to characteristic at least 5 in that case. Outside type (Go, there is no restriction
in the characteristic of the ground field.
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The second chapter is organized as follows. We start Subsection 0.1 by fixing the notation
regarding finite and affine Kac-Moody algebras and reviewing the construction of certain hyper-
algebras. Next, using generators and relations, we define Weyl modules for hyper loop algebras,
their graded analogues for hyper current algebras, and we delineate a useful subclass of the class of
Demazure modules. We then state our main result, Theorem 2.1.2, and recall the precise statement
(2.1.4) of the conjecture in [JMO7]. Theorem 2.1.2 is stated in three parts. Part (a) extends to
positive characteristic the isomorphism between local graded Weyl modules and Demazure modules
for current algebras g[t] with simply laced g. Part (b) extends to positive characteristic the exis-
tence of Demazure flags for local graded Weyl modules for the current algebra. Part (c) establishes
an isomorphism between local graded Weyl modules for current algebras and a twist of certain
local graded Weyl modules for hyper loop algebras by regarding the latter as modules for the hyper
current algebra.

In Section 2.2 we fix some further notation and establish a few technical results needed in
the proofs. Subsection 2.3.1 brings a review of the finite-dimensional representation theory of the
finite type hyperalgebras which we will need, while Subsection 2.3.2 gives a very brief account of
the relevant results from [JMO7]|. The local graded Weyl modules for hyper current algebras are
introduced in Subsection 2.3.3. The main results of this subsection are Corollary 2.3.12, which
proves that the local graded Weyl modules for g[t] admit integral forms, and Theorem 2.3.13,
which establishes the basic properties of the category of finite-dimensional graded modules for
hyper current algebras. Assuming Theorem 2.1.2 (b), we prove (2.1.4) in Subsection 2.3.4. The
proof makes use of the version of Theorem 2.1.2 in characteristic zero as well as [Nao12, Corollary
A] (Proposition 2.3.15). In Subsection 2.3.5 we prove a second presentation of Demazure modules
in terms of generators and relations, essentially by replacing a highest-weight generator by a lowest-
weight one. This is the presentation which allows us to use results of [Mat88, Mat89] about the
independence of the characters of Demazure modules from the ground field.

In the first three subsections of Section 2.4 we collect the results of [Jos03,Jos06] on crystal
and global basis which we need to prove Theorem 2.4.5 which is an integral analogue of [Naol2,
Corollary 4.16]. That shows the existence of higher level Demazure flags for Demazure modules
when the underlying simple Lie algebra g is simply laced. We remark that the proof of Theorem
2.4.5 is the only one in which the theory of global basis is used. We further remark that, in order
to prove Theorem 2.1.2 (b), we only need the statement of Theorem 2.4.5 for g of type A. It is
interesting to observe that the only other proof relying on quantum groups is that of Theorem 2.1.2
(c) in characteristic zero (see [FLO7, Lemma 1, Lemma 3, Equation (15)]).

Theorem 2.1.2 is proved in Section 2.5. In particular, in Subsection 2.5.2 we prove a positive
characteristic analogue of [Naol2, Proposition 4.1], which provides a third presentation of De-
mazure modules in terms of generator and relations in the case that g is not simply laced. This is
where the restriction on the characteristic of the field in the case of Gy appears. Parts (b) and (c)
of Theorem 2.1.2 are proved in Subsections 2.5.3 and 2.5.4, respectively. They also hold for g of
type G» if we assume that we can extend the results in Subsection 2.5.2 to this case.



CHAPTER 0

Notation

In this chapter we fix some notation to be used throughout the entire thesis.

0.1. Finite type data

Let g be a finite-dimensional simple Lie algebra over C with a fixed Cartan subalgebra h C g.
The associated root system will be denoted by R C h*. We fix a simple system A = {o; :i € [} C R
and denote the corresponding set of positive roots by R*. The Borel subalgebra associated to R™
will be denoted by b* C g and the opposite Borel subalgebra will be denoted by b~ C g. We fix
a Chevalley basis of the Lie algebra g consisting of 2 € g, for each a € R*, and h; € b, for
each i € I. We also define h, € h,a € RY, by hy = [z, 2] (in particular, h; = h,,,i € I) and
set RV ={hy €h:a € R}. Let (, ) denote the invariant symmetric bilinear form on g such that
(hg, hg) = 2, where 6 is the highest root of g. Let v : h — h* be the linear isomorphism induced by

(, ) and keep denoting by (, ) the non degenerate bilinear form induced by v on h*. Notice that

(0.1.1) (xh,2,)) = for all a€RT

and

2, if « is long,
0.1.2 T
( ) (a, @) {2/ij if v is short,

where rV € {1,2, 3} is the lacing number of g. For notational convenience, set

0.1.3 =
( ) " rY, if a is short.

v 2 _ {17 if « is long,

We shall need the following fact [Car72, Section 4.2]. Given a € R, let z, = 2T, according to
whether a € £R". For a, 8 € R let m = max{n : 8 — na € R}. Then, there exists ¢ € {—1,1}
such that

(0.1.4) [Ta,xg] = e(m + 1)Taqgs-

The weight lattice is defined as P = {\ € h* : AM(hy) € Z,V a € R}, the dominant weights are
Pt ={XeP:\hy) €N,VYacR"}, the coweight lattice is P¥ = {h € h: a(h) € Z,Y a € R},
and the dominant coweights are P¥" = {h € PV : a(h) € N,V a € R*}. The fundamental weights
will be denoted by wj, i € I. The root lattice of g will be denoted by Q and we let QT = Z>oR™.
We consider the usual partial order on h*: p < X if and only if A — 4 € Q. The Weyl group of
g, denoted W, is the subgroup of Autc(h*) generated by the simple reflections s;,4 € I, defined by
si(p) = p— p(h;)ay for all p € h*. As usual, wy will denote the longest element in W.

5



0.2. AFFINE TYPE DATA 6
0.2. Affine type data

Consider the loop algebra g = g®@CJt,t~!], with Lie bracket given by [x®t", y®t*] = [z, y|@t"+*,
forany x,y € g, r, s € Z. We identify g with the subalgebra g®1 of g. The subalgebra g[t]| = g C|[t]
is the current algebra of g. If a is a subalgebra of g, let @ = a ® C[t,¢+!] and a[t] = a ® C[t]. Let
also aft]+ := a ® (+*1C[t*']). In particular, as vector spaces,

g=n"@®beat and gl =n [ ®hl] Bntt].

The affine Kac-Moody algebra § is the 2-dimensional extension § := g ® Cc @ Cd of g with Lie
bracket given by

[ttt y@t] =[r,y] @t +r Or—s (x,y) ¢, [c,8) =40}, and [dzt]=razet

for any z,y € g,7,s € Z. Observe that the derived subalgebra §' = [, 3] = § ® Cc, and we have a
non split short exact sequence of Lie algebras 0 — Cc — g’ — g — 0.

Set 6/ = h @ Ce. Notice that g, g[t], and g[t]+ remain subalgebras of §. Set

h=haCea Cd, At = nt @ glt], and b =7t @b

The root system, positive root system, and set of simple roots associated to the triangular de-
composition § = A~ ® h ® A" will be denoted by R, BT and A respectively. Let [ = I U {0}
and hg = ¢ — hy, so that {h; : i € f} U {d} is a basis of h. Identify h* with the subspace
{IAe b M) = A(d) = 0}. Let also § € h be such that 6(d) = 1 and &(h;) = 0 for all i € [
and define ag = 6 — 0. Then, A = {o; :i € I}, Rt = Rt U{a+7r6:a e RU{0},r € Zso},
Gairs = 0, @1, ifa € Ryr € Z, and g, = h@t", if r € Z\ {0}. Observe that a(c) = 0 for
all @ € R. A root v € R is called real if v = (a + 7rd) with @« € R,r € Z, and imaginary if
v =rd with r € Z\ {0}. Set xir = 25 @t hayr = hoa @17, € RY,7 € Z, and observe that
{aZ, . hir € RT,i € I,r € Z} is a basis of g. Given o € R" and r € Zsg, set 21,5 = 22,
T3 arrs = Ty a0 higirs = (20405 Tairs) = Tha + 1700

Define also A; € 6*,z’ € I, by the requirement Ai(d) = 0,Ai(h;) = 0;; for all i,j € I. Set
P N pt — NP = . pI+ _ pl A pt i
P=7® (&, ; ZN:), PT =Zi & (,_; NA;), P’ = ®,_; ZA;, and P'" = P'N PT. Notice that

Ao(h) =0 iff hehapCd and A —w; = wi(hg)Ao for all i € I.
Hence, P = ZAg® P®Z5. Given A € P, the number A(c) is called the level of A. Since a(c) = 0 for
all o € R the level of A depends only on its class modulo the root lattice Q Set also Q+ = Z>0R+
and let W denote the affine Weyl group, which is generated by the simple reflections s;,i € I.

Denote by W/} the subset of w consisting of minimal length left coset representatlves of elements
in the quotient W\W Finally, observe that {Ag,d} U A is a basis of f) .



CHAPTER 1

Extensions for current algebras

1.1. Preliminaries

1.1.1. Notation. Let A be a finitely-generated commutative C-algebra, and let gR A be the Lie
algebra with underlying vector space g® A and with Lie bracket defined by [z®a,y®b] = [z, y]|®ab.
Let MaxSpec A be the set of maximal ideals in A. Given m € MaxSpec A, let evy, : g® A — g be
the Lie algebra homomorphism induced by the natural map A — A/m = C. Given a g-module V,
let evy, V' be the g ® A-module obtained by pulling back the g-module structure map for V' along
evp. For all m,m’ € MaxSpec A, one has ev}, V(0) = ev}, V(0) as g ® A-modules.

1.1.2. Irreducible modules. Let P be the set of finitely-supported functions from MaxSpec A
to PT, that is, the set of functions 7 : MaxSpec A — PT such that m(m) = 0 for all but finitely
many m € MaxSpec A. Then there exists a bijection between P and the set of isomorphism classes
of finite-dimensional irreducible g ® A-modules, which associates to m € P the isomorphism class
of the g ® A-module V(1) := QmeMaxspec 4 ©Vm V (7(m)), where the factors in the tensor product
are taken with respect to some arbitrary fixed ordering on MaxSpec A. Note that there are only
finitely-many nontrivial factors in the tensor product because 7w(m) = 0 for all but finitely many
m € MaxSpec A, and that different orderings of the factors in the tensor product yield isomorphic
modules.

Recall the involution X + A\* on P defined by \* = —wg), where wy is the longest element
in the Weyl group W. Given 7 € P, define 7* € P by 7*(m) = 7(m)*. Then the dual module
V(m)* = Homc(V(7), C) is isomorphic as a g ® A-module to V(7*).

1.2. Extensions between simple modules

1.2.1. Extl. Let m,7’ € P. Our goal is to compute the space EXté@)A(V(ﬂ'),V(T(‘/)). First,

since m and 7’ are finitely-supported, there exist distinct maximal ideals my,...,m, € MaxSpec A
such that 7(m) = 0 = 7'(m) if m ¢ {my,...,m,}. Then we can write V(7)) = ®;; evy. V(m(m;))
and V(') = Qi evy,. V(n'(m;)). For brevity, set m; = m(m;) and 7} = 7' (m;).

Set I =mymg---m,. Then g® I is an ideal in g ® A that annihilates both V(7)) and V(7). By
the Chinese Remainder Theorem, there exists a ring isomorphism

(1.2.1) AT = A/my x A/mg X -+ X A/m,,.

Then (g® A)/(g® 1) = g® (A/I) is isomorphic as a Lie algebra to @;-; g, where g; = g® (4/m;).
Observe that g; = g as a Lie algebra because A/m; = C. Under this identification, @;-; g; acts on
V(1) = Qj=q evy, V(m;) component-wise, that is, if 21,...,2, € g and v1 ® --- ® v, € V(7), then
(@1, @) (@ Q) =L 01 @ @ TV @+ ® vy

Now consider the Lyndon—-Hochschild—Serre (LHS) spectral sequence for the Lie algebra g ® A
and the ideal g ® I:

(1.2.2) By = Extly 40 (V(r), BExt! o (C, V() = Ext, 9, (V(r), V().

7
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Observe that
(1.2.3) By’ = HY (g®" V(") @ V(') =0, and
(1.2.4) By’ = H (g%, V(r*) @ V(') = 0,

which follows from the Kiinneth formula and from the first and second Whitehead Lemmas. Then
the 5-term exact sequence of low degree terms in (1.2.2) yields the isomorphism

(1.2.5) Extloa(V(m), V(7)) = Homgg 4 /ger(V(m), H (g @ I,C) @ V(7).

For an arbitrary Lie algebra a over C, the cohomology space Hl(a, C) is naturally isomorphic
to Homc (a/[a, a],C). Since g is semisimple, we have [g,g] = g, and hence [g@ I,g® I] = g ® I
Then H!(g® I, C) is isomorphic as a (g ® A)/(g ® I)-module to Home(g ® (I/I?),C). Considering
I as a module over A, we get by the Chinese Remainder Theorem for Modules the isomorphism

I/I2 2= I/(my0) x I/(mol) X --- x I/(m,I),

which is compatible with (1.2.1). Set d; = dimgm, I/(m;I). Then g ® (I/I%) = @i 1gl
a @I, gi-module, i.e., g® (I/I?) is a direct sum of copies of the adjoint representations for the
summands in ;- g;. Then

(1.2.6) H'(g® I,C) = (@), g7™)" = P, (g))®%,

a direct sum of copies of the coadjoint representations for the summands in @;; g;- Now applying
the Kiinneth formula, we get

Extge 4 (V(m) @Hom@" o (V(m), (g% @ V()
= @ Homgy(V (), (g" )@dz @V(r ® Homgy(V (7;), V(7 ;))
i=1 1<j<n
J#i

Homg (g @ V(m), V(r))*" © (&) Homg(V (m)), V (x}))
1<j<n
JF
Recall that Homg(V (7r;), V(7)) = C if 7; = 7, and is zero otherwise. Then the above calculation
shows that EXté®A(V(7T),V( ’)) is zero unless # {1<i<n:m#mn} <L

|

@
Il
—_

Suppose that Extg® A (V( ), V(7)) # 0. Without loss of generality, we may assume that m; =
for 1 <i<n-—1. If m, # «,, then only one summand in the decomposmon of Extg®A(V( ), V("))
is nonzero, and we get Extg®A(V( ™), V(7)) = Homgy(g ® V (), V(7},))®%. On the other hand, if
T = 1, then Extye ,(V(m), V(1)) = @iy Homg(g @ V (), V (i) =%

In the special cases of current and loop algebras, d; = 1 for all 1 < ¢ < n. So we have just
proved the following result.

Theorem 1.2.1. Let m,7" € P, V(1) = Qi vy, V(mi(my)), V(') = Qiz; evy, V(7'(m;)) and,
for each i = 1,...,n, let m; = w(m;), 7, = 7’(m;) and A = C[t] or C[t,t™1].

(i) U#{1<i<n:m#m} > 2, then
Extge4(V(m), V(")) = 0.
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(4) If there exists 4 such that m; # 7} and 7; = 7 for all 1 < j <n, j # i, then
Extgea (V(m), V(")) = Homg(g @ V(m;), V(7).
(19i) If m =7/, then

Exté@)A(V(W), V() = @ Homgy(g ® V (m;), V(7).
i=1

0

The previous theorem recovers a result of Kodera (cf. [Kod10, Theorem 1.2]) in a more concise
way. This result was also obtained by Neher-Savage in the setting of equivariant map algebras
(cf. [NS11, Theorem 3.7, Theorem 3.9]).

1.2.2. Higher extensions between modules evaluated at zero. Assume now that A =
Cl[t], so that g® A = g[t] is the current algebra. By [KumO02, Theorem E.13], there exists a spectral
sequence
(1.2.7) Ey’ = H(g[t], g: C) @ B (g, C) = H'*(g[t], C).
The edge map H(g[t],C) — Eg’i = H(g,C) of the spectral sequence is just the restriction map
induced by the inclusion g < g[t]. Since this inclusion splits via the evaluation map evyq : g[t] — g,
the restriction map in cohomology H'(g[t],C) — Hi(g,C) is a split surjection. It follows that
d%® = 0,7 > 2 and that the space Eg" of (1.2.7) consists of permanent cycles, i.e. E8’° = BV,
Hence, using the fact that Ey’ =~ EX° @ ES7 and dy’(ab) = d5°(a)b + (—1)%ady? (b) in (1.2.7),
and that d;’o = 0, it follows that the spectral sequence collapses at the Fs-page, yielding the
isomorphism

H"( ~ P Hs ) ® B/ (g,C).
i+j=n
Let M be a g[t]-module that is finitely semisimple for g, that is, as a g-module M decomposes as

a possibly-infinite direct sum of finite-dimensional irreducible modules. Then by [Kum02, Theorem
E.13], there exists a spectral sequence

(1.2.8) EY = H(g[t],g; M) @ H (g, C) = H (g[t], M).

Moreover, (1.2.8) is a module over (1.2.7), and By’ = By @ EJ ‘¢, Where Ej ¢ denotes the space Ey*
n (1.2.7), which consists of permanent cycles. Using the derivation property of the differential on
(1.2.8), namely, dy’ (mr) = d5°(m)r + (—1)! me’J ¢(r), it follows that the spectral sequence (1.2.8)
also collapses at the Fs-page, and hence that

H"(glt], M) = P H'(glt], 3: M) @ B (g, C).
i+j=n
The space H'(g[t], g; M) can be rewritten by [Lep79, Proposition 4.11] as H*(g[t], M)9 (as can also
be seen by applying an LHS spectral sequence for relative Lie algebra cohomology), so we obtain

(1.2.9) H"(g[t], M) = P H'(glt]+, M)* @ H (g, C).
i+j=n

Now let A\, u € P*. By abuse of notation, in this section we will denote ev; V/(\) and ev{ V(i)
simply by V(\) and V(u). Taking M = V(A\)*® V(u) in (1.2.9), and using the fact that g[t]; acts
trivially on V(\) and V(u ) we get

Extgy (V(A) @ Homg (V (), H'(g[t]+,C) @ V(1)) ® H (g, C).
i+j=n
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Using the explicit description of H®(g[t];+,C), described below in Theorem 1.3.7, this provides
an explicit description for Extg[t](V(/\), V(w)). This description was essentially known already to
Fialowski and Malikov [FM94, Proposition 2].

1.2.3. Higher extensions between tensor products of evaluation modules. Consider
ai,...,an € Cwith a; # a;j if i # 3, Ai,..., An, i1, ..., i € PT, and set V = @} ev; V()\;) and
V' = @ ev V(). Let I C C[t] be the ideal generated by (t —ay)---(t — an). Then (1.2.2)
becomes

By’ = Extyyper (VB (g @ I,C) @ V') = Ext ] (V, V).

We consider the terms contributing to Extg[t](v, V'). First, E3° = 0 by (1.2.4). Next, H'(g ®

I,C) is a finite-dimensional g[t]/(g®I) = g®*-module by (1.2.6), so Ey"" = 0 by the first Whitehead
Lemma. Then we are left to consider the space ES? = Homyy/g0:(V,H*(g ® I,C) ® V') and its
contribution to Extgm (v, V7).

Using the second Whitehead Lemma we have E22 =0 by a similar line of reasoning as for E21 1
Then the differential ds : ES’Q — E22 g zero, so we have

Extoy (V, V') & ker(ds : E3* — E3°).

Observe that Eg’o = ES Y because Eé’l = 0. Now by the Kiinneth formula and the first and second
Whitehead Lemmas,

Ey" = @ Homg(V(A1),V(im)) ® - © Extg(V(M), V(i) © - @ Homg (V(Aa), V (s1n)).
i=1
Since V(—) are simple g-modules, Homy(C, V/(A)* @ V(1)) = Homg(V (X), V(1)) = 0 unless A = p.
Similarly, since H*(g, M) = H®(g, M?) for any finite-dimensional g-module M by the assumption
that g is a simple complex Lie algebra (cf. [CE48, Section 24]), and since dim H3(g,C) = 1 also
by the same assumption on g, we conclude that EXtS(V()\), V(p)) = 0 unless A = p. Thus we have
shown:

Theorem 1.2.2. If \; # p; for some i =1,...,n, then
ExtZ(V, V') = Homgpy g0 (V,H* (g @ I,C) @ V7).
O

The only case which is not covered by Theorem 1.2.2 is that when V = V’. In this case we
can rewrite Extgm(V, V) = H%(g[t],V* ® V) and decompose V* @ V = D eva, V) ® - ®
evy V(X,), where the direct sum runs through all A} € P* such that V()\]) appears as a g-
composition factor of V(Af) ® V(u;). Then the computation of Extg[t](V, V) boils down to the
computation of H*(g[t],evi V() ® -~ ® evi V(X,)). So, in order to compute Ext?*(V,V’), we

must study the g®"-composition factors of H*(g ® I, C).

1.3. Homology and cohomology of annihilating ideals

1.3.1. Composition factors of H"(g ® I,C). For any Lie algebra a over C and a trivial
a-module M, it follows from the Universal Coefficient Theorem (cf. [Wei94, Theorem 3.6.5]) that
there are isomorphisms of C-modules H" (a, M) = Hom¢ (H,, (a,C), M). In particular, H" (a,C) =
H,, (a,C)*. Thus H" (a,C) is finite-dimensional if and only if H,, (a,C) is finite-dimensional.

Recall that H,(g® I, C) is a g[t]-module by definition. Hence H,,(g® I, C) becomes a g-module
by restriction.
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Lemma 1.3.1. Let f = (t —a1)--- (t — a,) € C[t] with a; # a; if i # j, and let I = (f) C C[t]. If
L is a g-composition factor of H,, (g ® I,C), then L = V(a) for some a € QT such that o < né.

PRrROOF. First observe that H,(g ® I,C) is a g-subquotient of A"(g ® I), since the Koszul
differential is a g[t]- (hence g-) module homomorphism. Also observe that A™(g ® I) is a quotient

of T"(g ® I) as a g-module. Then observe that g ® I = (@z‘zo g (C(tif)) as a g-module. Denote
g®@C(t' f) by g; and observe that g, is isomorphic to the adjoint representation of g. Thus 7" (g®I)
is isomorphic to (G}OSZ-“M% (9;,® - ® gin)> as a g-module, with (g;, ® ---®g; ) = T"g. Since
T"(g ® I) is semisimple, it follows that A™(g ® I) is semisimple, H, (g ® I, C) is semisimple, and
every g-composition factor of H, (g® I, C) is a composition factor of T"(g®I). Since g is isomorphic
to V(0), it follows that T™g is isomorphic to (@A€P+ V()\)E(/\)), where £(A\) > 0 and e(\) # 0 only
if A€ Q" and X < nb. O

It follows from Lemma 1.3.1 that H, (g ® I,C) is a semisimple g-module, has finitely many
distinct g-composition factors and that they are all finite-dimensional.

Remark 1.3.2. In Lemma 1.3.1 we showed that the highest weights of its composition factors as
a g-module are bounded above by nf. Suppose I = (¢t —a)(t —b). As usual, H"(g ® I,C) is a
g X g = g[t]/g ® I-module, with g being mapped into g x g via the diagonal map. It follows that,
if one decomposes H" (g ® I, C) as a g x g-module, namely @) ,cp+V(A) ¥V (1), then A + p must
be bounded from above by n#.

1.3.2. A spectral sequence. From now on, let a,b € C,a # b, f = (t—a)(t—b) and I C CJ¢]
be the nontrivial ideal generated by f. The decreasing multiplicative filtration C[t] D I D I? D I* D
- on CJ[t] induces a corresponding decreasing Lie algebra filtration g[t] D g®1 D g® 12 D g®I® D
- on g[t], which induces a Lie algebra filtration on g ® I/I°® for any s > 1. Then the associated
graded algebras grg[t] := @,,>0(g® I")/(g® [""") and gr(g @ I/I°) := By (9@ ") /(g I"H)
satisfy grglt] = g[t] @ g[t] and gr(g ® I/I°) = (g (tC[t]/t°Clt])) & (g ® (¢tC[t]/t*C[t])). Denote
g ® (tC[t]/t*C[t]) by glt]7-
The filtration on g ® I/I° defines a decreasing filtration on the exterior algebra A®*(g ® I/I°)
via
131)  FAGel/f)= Y (@) A(ge /1) A (g DI,

J<i1+Hia++in
0<gjsns In<s

By definition, this filtration is bounded above since FIA*(g ® I/I°) = A*(g ® I/I°) if j < n, and
bounded below since FIA™ (g ® I/I°) =0 if j > n(s — 1).
Define an increasing filtration on the cochain complex C* = Hom¢(A*(g ® I/I%),C) by
FIC™ = Home (A" (g ® I/I°)/FIT A" (g @ 1/1°),C).

This filtration is compatible with the Koszul differential on C'* because the filtration on A®(g®1/1°)
is compatible with the Koszul differential. The grading on gr(g® I/I®) induces an internal grading
on A*(gr(g®I/I°)). Denote the j-th graded piece of A®(gr(g®1/I°)) by A*(gr(g®I/1°%));). Then

FIC™/FI1C™ = Home (A" (gr(g ® 1/1%))(;), C).

Write § for the Koszul differential on C*. Then (C*®, ) is a cochain complex with differential of
degree +1 and an increasing filtration. Set C,, := C™", and set F;C,, = F/C~". Then (C,,4) is a
chain complex with differential of degree —1 and an increasing filtration. This is the typical setup for
a homology spectral sequence associated to a filtered differential module. By Classical Convergence
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Theorem (cf. [Wei94, 5.5.1]) there exists a homology spectral sequence Ey , = H- P+ (goI/I5,C),
with

Equ = FyCpiq/Fp-1Cpiq
_ FpC*(erq)/FP*lC*(erq)
= Homg (A~ (gr(g @ I/1*)) ), C),

and E) = H- P+ (gr(g @ 1/1°), C)(p)- Here H®*(gr(g ® I/I°),C) inherits an internal grading from
the grading on gr(g®1/I°), and H*(gr(g® I/I°), C)(,) denotes its p-th graded component. Observe
that Equ = E;q =0unlessp+¢q<0,2p+¢q>0and p>0.

1.3.3. A similar, non-convergent spectral sequence. We could have considered a similar
homology spectral sequence, replacing g®1/I° by g®1. In that case, the terms of its E%-page would
be given by Eg’q >~ Homg (A~ P+ (gr(g @ I ))p)> C) and its E'-page would be globally isomorphic
to H*(gr(g ® I),C). However, we have not said anything about whether this spectral sequence
converges, or, if it does, how the limit might be related to H*(g ® I,C).

Lemma 1.3.3. E” = E! for all » > 1, so the spectral sequence converges to H*(gr(g ® I), C).

PROOF. First observe that the action of g[t] commutes with the Koszul differential on the
cochain complex C’* = Hom¢(A®*(g @ I),C). Consider

FifgeI= Y (@@P)A(@eI?) A A(ge D),
J<jitje++in

F7C"™ = Homg(A™ (g ® I)/F" T A™(g ® I), C),
F;C', = Fic™".

It then follows from the construction of the spectral sequence associated to a filtered differential
module (cf. [Wei94, The construction 5.4.6]) that the action of g[t] passes to an action on the
spectral sequence. Then notice that (g® I) - F';C",, C F';_1C";,. The construction of the spectral
sequence then shows that the action of g[t] factors through the quotient g[t]/(g ® I) = g x g. Now
the E'-page is globally isomorphic to

H*(gr(g ® I),C) = H*(g[t]+ x g[t]+,C)
= H*(g[t]+,C) ® H*(g[t]+, C),

and this identification is compatible with the action of g[t]/(g ® I) = g x g. But H*(g[t]+,C) is
completely reducible and multiplicity free as a g-module (cf. Subsection 1.3.7). Since the differential
d' on E'is a g[t]/(g® I) = g x g-module homomorphism, this implies that d' = 0, so E? = E'.
Now the same reasoning implies that d> = 0, and then d® = 0, and so on, so that E? = Et! for all
1>1, and E;,q =E}S. ]

Recall that the adjoint action of a Lie algebra a on itself induces the trivial action on the
Lie algebra cohomology H*(a,C) (cf. [KumO02, p.71]). So the action of g[t] on H*(g ® I,C) will
automatically factor through the quotient g[t]/(g®I). We can say at this point that H*(g® I, C) is
not isomorphic as a g[t]/(g® ) = g x g-module to H*(gr(g® I), C). Indeed, suppose this were true.
Then, by Kiinneth formula (cf. [Wei94, Theorem 3.6.3]), we would have an isomorphism of g x g-
modules H*(g ® I,C) = H*(g[t]+,C) K H*(g[t]+,C). Now consider the Lyndon-Hochschild-Serre
spectral sequence

Ey =H'(glt]/(g @ 1), (g © 1,C)) = H(g[t], C).



1.3. HOMOLOGY AND COHOMOLOGY OF ANNIHILATING IDEALS 13

We could then rewrite the Es-page of the spectral sequence as

Ey = @ H(gx g.H(g[t]+, C) ®H(g[t]+, C))
ct+d=j

~ P P H(g,H(glt]+,C)) ® H'(g, HY(g[t] 1, T))

a+b=i c+d=j

= @ @ (Ha(gvc) ® Hc(g[t]-i-u (C)g) ® (Hb(ga C) ® Hd(g[t]-H (C)g)
a+b=i c+d=j
By Theorem 1.3.11, H*(g[t];,C)® = H(g[t];,C) = C. So now Ey7 = 0 for all j > 0, and the
spectral sequence collapses to yield the isomorphism

H*(g[1],C) = E5° = H*(gt] /g © I,C) = H*(g x g,C) = H"(g,C) ® H*(g, C).

This is absurd, because by Corollary 1.3.12, H*(g[t], C) = H*(g,C), and H*(g,C) has dimension
2rank(s) > 1. So we cannot have H*(g ® I, C) = H*(gr(g ® I),C) as a g[t]/(g ® I)-module.

It turns out that we have constructed a homology spectral sequence with E;,q = H~(ta) (grg®
I,C)(p) by considering an increasing filtration F " on the chain complex C’,, which does not converge
to H*(g ® I,C). One explanation why it doesn’t converge is that the filtration on C’4 is not
ezhaustive, that is, that C’4 is not equal to U; F';C"y. Indeed, if f € U;F";C",, then f(F7A™(gR1I)) =
0 for some j > 0, but there exist f € '), with f(F7A"(g® I)) # 0 for all j > 0.

We will explicitly see, in Example 1.3.17, a composition factor of HQ(g ® I,C) which does not
appear as a composition factor of H? (grg I,C).

1.3.4. Back to the convergent spectral sequence. Since the filtration FoC, is bounded
below and bounded above (cf. (1.3.1)), the spectral sequence constructed in Subsection 1.3.2
converges to H*(g® I /1°,C). Since g® I/I? is finite-dimensional and since every finite-dimensional
g x g-module is semisimple, it follows that H™"(g ® I/1°,C) is isomorphic to (@, ,—n Epy) as
a g x g-module. Using again the fact that g ® I/I° is ﬁnite—dimensional, it follows that E;,q is
finite-dimensional. Then EJ¢, which is a subquotient of E p o 18 also finite-dimensional. And using
again the fact that every finite-dimensional g x g-module is semisimple, it follows that E) can be

identified with a g x g-submodule of E;q. Thus

H"(g® I/1°,C) = (@p1q=nB) € (SpramnBhy) = (Gprgmn H " (@r(a @ 1/1°),C) )
(1.3.2) =H "(gr(g® 1/1°),C).

Now recall that gr(g ® I/I°) is isomorphic to g[t]; @ g[t] as a g x g-module. Then, by Kiinneth
formula (cf. [Wei94, Theorem 3.6.3]), there is an isomorphism of g x g-modules

(1.3.3) H"(gr(g® I/I%),C ( P HP(glt]F,C) R H(g []j,C)).

pt+g=n

Thus it follows from (1.3.2) that, for each n > 0, H"(g® /¢, C) is isomorphic to a g x g-submodule
of @p—‘,—q:TL Hp(g[t];r’ (C) X Hq(g[t]jv C)

1.3.5. Low degree cohomology and homology of g[t]7. We already know that H°(g[t]+, C)
is isomorphic to C and that

R A R R AR e RS
el 0= ([g[t];,g[t]:]> - (w tzc[t]/tsc[t])

*

|

©



1.3. HOMOLOGY AND COHOMOLOGY OF ANNIHILATING IDEALS 14

In order to compute H%(g[t]f,C), consider the following Lyndon-Hochschild-Serre spectral se-
quence EPY = HP(g[t]f, H(g ® (t°C[t]),C)) = HP*(g[t];,C). Since E;° =~ H(g[t]H,C) = g
H'(g[t]4, C) and H(g[t]3, H' (g ® (¢°C[t]), C)) = H (g[t]}, (9 @ (¢°C[t])/(+**C[t]))*) = g*, its associ-
ated 5-term exact sequence of low degree terms yields the following exact sequence

(1.3.4) 0 — g" — H*(g[t]{,C) — H2(g[t]+, C).

We want to prove that the map on the right of (1.3.4) is surjective. By comparing dimensions and
using the Universal Coefficient Theorem, this is equivalent to proving that

(1.3.5) 0 — Ha(g[t]s,C) — Ha(g[t]F,C) - g —0

is an exact sequence of g-modules. The exactness of Ha(g[t]+,C) — Ha(g[t];,C) — g — 0 is
guaranteed by the 5-term exact sequence of low degree terms associated to the Lyndon—-Hochschild-
Serre spectral sequence E = Hy(g[t]F, Hy(g @ (t°Clt]),C)) = Hpyq(gt]+, C). In order to prove
the injectivity of the edge homomorphism Hy(g[t]+, C) — Ha(g[t]T, C), first observe that that is an
inflation map induced by the quotient map of Lie algebras = : g[t]+ — g[t]!.

Now denote the Chevalley complex of g[t]+ by (A®g[t]+,ds), the Chevalley complex of g[t]+
by (A'g[t]j,g.), and the morphism of complexes induced by 7 by A*m : A®g[t]l. — A®g[t]L.
Then consider the gradings on g[t|+ and g[t]7 induced by the grading on C[t] by powers of t.
That is g[t]s = @a>o0(a[t]l+) @), with (g[tl+)@ = g @ (Ct?) and g[t]f = Do<a<s(8[t]T)(a), with
(8[t]F) (@) = 9® (Ct?). This grading on glt]+ also induces a decreasing Lie algebra filtration gt]+ D
(g@t2C[t]) D -+ D (g@t™C[t]) D --- on g[t]+, and a decreasing filtration on its Chevalley complex

FA" = Y (get™CH) A A (g® ™ Cl]) C A(gld)).

mi+...4+mnp>p
MY seees mnp>1

Observe that the isomorphism of C-modules (g[t]+) = (g ® t°C[t]) @ (g[t]) induces an isomor-
phism of C-modules AP(g[t]+) = (@a+b:p A (g® t°Clt])) ® Ab(g[t]j)). Via this latter isomorphism,

(AP7) decomposes as (APT) (g ps1-p A (g @ °Clt)) ® AY(g[t])) = 0 and (AP7)|y, gy, = id,
implying that

(1.3.6) ker(APm) C Fyyp1AP C F AP,

Now observe that A®g[t]+, im (D), ker(ds) and He(g[t]+,C) induce a grading from g[t]4. Since
H,(g[t]+,C) is finite-dimensional (cf. [GL76, Theorem 8.6]), it follows that there is s > 1, such
that Hy(g[t]+,C)@qy = 0 for all d > s. Thus, for each p > 0, there is s(p) > 1, such that, for all
s > s(p), im(Op+1) N (AP(g[t]+))(s) = ker(dp) N (AP(g[t]+))(s). Since the decreasing filtration on
A®(g[t]+) is induced from its grading, it follows that

(1.3.7) (FLAP) N (im(Bps1)) = (FAP) O (ker(8,)),V s > s(p).

Proposition 1.3.4. For each p > 0, there exists s(p) > 1, such that the morphism of g-modules
7t Hp(g[t]+, C) — Hy(g[t]S, C) is injective for all s > s(p).

PRrOOF. Choose s > 1 such that (FsAP) N (im(0p41)) = (
suppose kerm, # {0}. This means that there is h, € Hy(g[t]+,C) \ {0}, such that m.(h,) = 0.
That is h, = k, + im(0p4+1), for some k, € kerd, \zm(8 +1), such that (APm)(ky,) € im(dp+1).
Observe that Ap7r is surjective for each p > 0. Thus im(9pt+1) = (APm)(im(Dp+1)). It follows that
ker m, # {0} is equivalent to having A,+1 € (APT1(g[t]+)) such that (k, — 9pi1(Apt1)) € ker(APr).
Since (kp — Op+1(Apt1)) € ker(0p), ker(APm) C FyAP (cf. (1.3.6)) and (FsAP) N (im(Opt1)) =
(FsAP) N (ker(0p)) (cf. (1.3.7)), it follows that (k, — Opr1(Ap+1)) € (FsAP) N (im(9p41)). But this
contradicts the fact that k, ¢ im(9p+1). O

ITAP) (ker(9p)) (cf. (1.3.7)). Now
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Using Proposition 1.3.4 and the fact that the edge homomorphism Hy(g[t]+, C) — Ha(g[t]+, C)
is given by m,, it follows that (1.3.5) is an exact sequence for all s > s(2). Hence we proved the
following result.

Theorem 1.3.5. There is s(2) > 0 such that 0 — g* — H?(g[t]7,C) — H?(g[t]s,C) — 0 is an
exact sequence of g-modules for all s > s(2). O

Thus if s is sufficiently large, H?(g[t], C) is isomorphic to H?(g[t]+, C) @ g* as a g-module. An
explicit computation of H?(g[t]4,C) is given in [GL76, Theorem 8.6], as we explain in 1.3.6.

In [FGTO08], Fishel-Grojnowski-Teleman prove that H"(g ® C[t]/g @ t°C[t],C) = H"(g,C)®*
Our previous computation can be related to theirs via an LHS spectral sequence.

1.3.6. Cohomology of g[t|+. Recall the standard realization for g (cf. Section 0.2). In
[GL76, §2] Garland-Lepowsky define the affine Lie algebra as g @ Cc, so what we denote by g they
denote by g° (cf. [GL76, p.48]). In [GL76, §3], the subalgebra gg of g is our g, their ¢ is our g®Ce,
and their t¢ is our g Cc® Cd. Also recall that the fundamental dominant weights Ag, ..., A, € E*
are defined by A;(h;) = d;; (Kronecker delta) and A;(d) = 0. Set Ps = {\ € h* : A(h;) e NV i=

ny=Co+ CAo+ X i NA,;.

Proposition 1.3.6. [GL76, Proposition 3.1] There is a natural bijection, denoted A — M (}\),
between Pg and the set of (isomorphism classes of) finite-dimensional irreducible t®-modules which
are irreducible as g-modules. The correspondence is described as follows: The highest weight space
(relative to ) of the g-module M () is h-stable, and X is the resulting weight for the action of b.

Let V be a finite-dimensional irreducible g-module. Then V is made an irreducible t®-module by
having ¢ and d act as zero. Conversely, every finite-dimensional irreducible t®~-module that restricts
to V as a g-module can be obtained as the tensor product of V and certain one-dimensional
representations for Cc and Cd.

Recall that W} is the set of minimal length left coset representatives for W in W. Let p =
A+A1+---+ Ay, and for, w e W, set w-0=wp — p. If wy,ws € W and wy -0 = wy -0, then
w1 = we [GL76, Corollary 2.6]. If w € W}, then w -0 € Ps [GL76, Theorem 8.5]. In particular,
the M (w - 0) for w € W} are mutually non-isomorphic as t®-modules.

Garland-Lepowsky compute the cohomology ring H*(g[t]+, C) by studying the standard Koszul
complex for g[t]. = g®t~'C[t!], computing the cohomology ring H*(g[t]_, C), and then using an
involution that maps g[t]— isomorphicaly to g[t];. The action of t¢ on H®(g[t]+, C) is then induced
by the action of t¢ on the Koszul complex.

Theorem 1.3.7. [Lep79, Theorem 5.7] For each j > 0, there exists an isomorphism of t®-modules

Wil O = @ Mw-0).

weWl L(w)=j

Since c¢ is central in g, it acts trivially on the Koszul complex, and hence also acts trivially on
H*(g[t]+,C). By Theorem 1.3.7, ¢ acts trivially on M (w - 0) for all w € W}. For each w € W}, let
w-0= M\, —dy,é € Pg, with \, € P*,d,, > 0. Using Theorem 1.3.7 and the Cartan involution on
g (cf. [Lep79, p.185,190]), it follows that, for each j > 0, there exists an isomorphism of g-modules
(

3.8) HY (g = P vix

w€W1
f(w):j

with V(\y)* concentrated on t-degree d,, for each w € W
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Affine Lie type «;(a) #0

Ay 1=1
{In, n>2 1=1n
En, n>2 =2
Qn, n>3 1=1
Dy, p>a 1 =2
Eg i=2
E; i=1
Fy i=8
Fy i=1
Go i=2
TABLE 1.

Example 1.3.8. In order to compute H%(g[t].,C), one must consider w € W} C W such that
¢(w) = 0. Hence w must be 1 and H°(g[t]s,C) = M(1-0) = C, concentrated on t-degree 0.

Example 1.3.9. In order to compute H!(g[t],,C), one must consider w € W} C W such that
¢/(w) = 1. Hence w = s; for some i = 0,1,...,n. If i = 1,...,n, then s; is in the same coset as
1. Thus the only element in W, of length 1 must be so, and H'(g[t]y,C) e M(rg - 0). Since
500 =—ag = (0 —6), it follows that H'(g[t]+,C) =, g*, concentrated on t-degree 1.

In order to compute H?(g[t];,C), one must consider w € W} C W such that ¢(w) = 2. Thus
w must have a reduced expression of the form s;s;, with 0 < 4,7 <n. Ifi =1,...,nori =0
and s;jsp = s0s;, then w is in the same coset as an element of length smaller than 2. Thus w must
have the form sps; with j = 1,...,n satisfying a;(ag) # 0. Table 1 contains the roots satisfying
a;(ay) # 0 in each Lie type, according to [Bou68, Plates I-IX].

For any s; € W, s0-8;-0 =50 (—a;) = (1 —a;(a))0 — ;) — (1 — a(a))d. From the Dynking
diagrams, it follows that a;(ay) = —1 if § % slo, and a;(a) = —2 if § = sly (cf. [Bou68, Plates
1-1X)).

Proposition 1.3.10. If g = sly, then H?(g[t];+,C) =, V(4), concentrated in degree 3. If § is of
type A, with n > 1, then H?(g[t]1,C) =, V(20 — a1)* ® V(20 — ,)*, concentrated in degree 2. In
any other type, H(g[t]1,C) =, V(20 — a;)*, concentrated in degree 2, with i as in Table 1. O

1.3.7. Restriction map. According to Feigin [Fei80], the restriction map
H*(g[t], C) — H*(g,C)

induced by the evaluation homomorphism evg : g[t] — g is a ring isomorphism. He states that
this result can be deduced from the calculations of [GL76], though he provides no details or
explanation. It seems likely that Feigin’s strategy would have been to take M = C in (1.2.9). Then
the isomorphism H®(g[t], C) = H*(g, C) follows from showing for all j > 1 that H7(g[t],C)? =

Recall that, by Theorem 1.3.7, ¢ acts trivially on M (w - 0) for all w € W}, so if wy,wy € W}
and M (w; - 0) = M(ws - 0) as g-modules, then also M(w; - 0) =2 M(ws - 0) as g ® Ce-modules. It
now follows from the proof of [Lep79, Lemma 6.8] that the M(w - 0) for w € W} are mutually
non-isomorphic as g-modules.

Theorem 1.3.11. H/(g[t],,C)® = 0if j > 1.
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PROOF. By the discussion of the previous paragraph, the M (w - 0) for w € W} are mutually
non-isomorphic as g-modules. Thus, the trivial g-module occurs as a g-summand of H’(g[t]+,C)
only for j = 0, where it corresponds to the identity element in W_}. ]

Corollary 1.3.12. There exists an isomorphism H*(g[t],C) = H*(g, C).
1.3.8. Second cohomology of g ® I/I°. Recall that I = (t — a)(t — b). By (1.3.2) we know
that H*(g® I/I°,C) is a g x g-submodule of H?(gr(g® I/I*),C). Since H?(g[t]+, C) was calculated

in Proposition 1.3.10, it gives us an explicit upper bound for the g x g-composition factors of
H%(g® I/I%,C).

In Subsection 1.3.2 we constructed a fourth-quadrant spectral sequence

By = (Banm e B, O RHYGIF,©) = 04w 1/17,0).

1 . . . . . 1 .
Recall that E; , is nonzero only if 2p + g > 0, which gives us the following picture of the E"-page:

q

0—0—0—0—0—7P
N O S Y
T
I I
Rt
|
79 ° |

By Example 1.3.8, H(g[t]+,C) = C is concentrated in degree 0. Thus E;_p =0 for all p > 0,
and Ej, = C. By Example 1.3.9, H(g[t]T,C) = g* is concentrated in degree 1. Thus E; —p1) =0
for all p > 1, and E11’_2 =g" @ g*. It follows that E%,_4 = E5° , and E§’_5 = E37 5, since

T dr r dar r

0= Elo ) r—5) — Es—a = Efpy2) (r43) = 0 and
s dr r dT T

0=E o) — B35 = Elrys)_(rra) = 0,

for r > 1. Hence Ej 4 = H2(gr(g® I/1°), C)(2) and B3 _5 = H?(gr(g ®1/1°),C) 3y must appear as
g x g-composition factors of H*(g ® I/I*,C). In particular, H!(g[t]T,C) R H!(g[t]T, C), which is in
degree 2, and H?(g[t], C) X C and C X H?(g[t], C), which are in either degree 2 or 3, are composition
factors of H(g ® I/I°,C).

Now consider the LHS spectral sequence E5? = HP (g1 /g®1°, Hi(ge 1%, C)) = HPT(ga I, C).
Since E,” = HY(goI/I%,C) = (gdg)* = H' (go1,C), and Eal = g*dg*, its 5-term exact sequence
of low degree terms yields the following exact sequence of g x g-modules

(1.3.9) 0= g og-—H(geI/I,C) —» H*(g® I,C).

It follows from this exact sequence that (g* & C) @ (C X g*) is also a composition factor of H?(g ®
I/1%,C).

The discussion above shows that every composition factor of H?(gr(g®1/I°),C) is a composition
factor of H?(g ® I/I°,C), proving the following result.

Theorem 1.3.13. If s > 5(2), then H?(gr(g ® I/I°),C) 2 H?(g ® I/I°,C) as g x g-modules. [
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1.3.9. Second cohomology of g ® I. Our goal now is to give a more precise description of
H?(g®I,C). We already know from (1.3.9) that 0 — (g x g)* 2, H(goI/I%,C) = in 5 H2(ge I,0C)
is an exact sequence of g x g-modules. Even though the inflation map may not be surjective, its
image is a g x g-submodule of H2(g® I, C). By the first isomorphism theorem of U (g x g)-modules,
im(inf) = H?(g ® I/I°,C)/ ker(inf), with ker(inf) = im(ds) = (g x g)*. Thus, by Theorem 1.3.13,
(1.3.3) and Proposition 1.3.10, g* X g*, V(w - 0)* X C and C XV (w - 0)*, with w € W}, {(w) = 2,
are g X g-composition factors of H?(g ® I, C).

Lemma 1.3.14. If A,y € P* and A # 0, then

Homgy(V/(A) B V (), B(g @ I, C))  Homy(V (), H(glt].ov2 V(1)")), with ¢ £ 0.

Proor. Consider the following Lyndon—Hochschild—Serre spectral sequence
EP* =W (g[t]/g® [,H (g @ L ev, V(N) @ evy V(n))) = H T (gt], evy V(A) @ evy V().

First observe that EY? = HP(g @ ¢,C) @ H(g x g,HY(g ® I,C) ® (V(\) ® V(1))). Since A # 0,
the g x g-module V(A\) X V(u) is nontrivial and Eg’o = 0 for all p > 0. Since g is simple, first and
second Whitehead Lemmas imply that Ey? = Ey? = 0 for all ¢ > 0. Thus

H(g[t], evy V(N) @ evi V() = Ey* 2 H(g x g, H} (g @ I,C) ® (V(N) B V()
(1.3.10) = Homgyu g (V(AN)* RV (p)*, H (g ® I, C)).

Now we consider the following Lyndon—Hochschild—Serre spectral sequence
EP? = HP(glt]/g @ (t —a), Hi(g® (t — a),evy V(N) @ evy V(1)) = HT(g[t], evy V(A) @ evy V(u)).
First observe that F5?¢ 2 HP(g, C) @ H%(g, H(g[t]+, evi_, V(1)) @V (\)). Since A # 0, the g-module

V' (A) is nontrivial and Eg’o = 0 for all p > 0. Since g is simple, first and second Whitehead Lemmas
imply that E22’q = E%’q =0 for all ¢ > 0. Thus, if we denote ¢ = b — a, we have ¢ # 0 and

H(g[t), evy V(N) @ evi V(u)) 2 By® 2 H(g, H(gt]4, evy V(1) © V(X))
(1.3.11) > Homg(V(\)", H2(glf] v’ V(1)
The result follows by comparing (1.3.10) and (1.3.11). O

Corollary 1.3.15. Let A € P™ and A # 0. The g x g-modules V(\)* X C and CX V()\)* are
composition factors of H?(g ® I, C) if, and only if, A\ = w - 0 for some w € W} with {(w) = 2.
Moreover their multiplicities are 1.

PROOF. By Lemma 1.3.14, Homgy,(V(\)* K C,H?(g® I, C)) = Homy(V (\)*, H?(g[t]+,C)). B
(1.3.8), we have Homgy(V (\)*,H?(g[t]+,C)) = D wews Homg(V(A)*,V(w - 0)*). Since V()\) and
£(w)=2
V(w - 0) are simple g-modules, we have dim Homg(V(A)*, V(w - 0)*) = { L ifA=w-0 O
’ 9 ’ 0 , otherwise.

Lemma 1.3.16. The multiplicity of C X C as g x g-composition factor of H?(g ® I, C) is 1.

PrOOF. Consider the LHS spectral sequence EY'? = HP(g[t]/g® 1, HY (g1, C)) = HPT(g[t], C).
Observe that EY? = HP(g @ g,C) ® H(g @ g, H(g ® I,C)), and that H"(g[t],C) = H"(g,C) by
Corollary 1.3.12.

Since g is simple, first and second Whitehead Lemmas imply that Ey? = Ey? = 0 for all ¢ > 0,
H?(g,C) = 0, and Eg”o = H3(g x g,C) = C?. Since E3° = coker dg’Q : ES’Q — ES’O is a quotient of
Ey° and E30 C H3(g,C) = C, it follows that d3” : Ey® — E3° cannot be zero. This proves that
dim Homgy4(C X C,H* (g ® I,C)) > 1.
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In order to prove the other inequality consider the following LHS spectral sequence
Ey'=HP(g@ (t—a)/g® [,HI(g® I,C)) = H"(g® (t — a),C).

Observe that EY? = HP(g,C) ® H(g, HY(g ® I,C)) and that H"(g ® (t — a),C) = H"(g[t]4,C).
Recall from (1.3.8) that H"(g[t]+,C) = @ ,eny V(w-0)*.
L(w)=n
Since g is simple, Eg”o >~ H3(g,C) = C, and first and second Whitehead Lemmas imply that
Ey" = Ey? =0 for all ¢ > 0. Thus H?(g[t];,C) = E2° = kerdy? : Ey? — E3°, implying that
dim E3* = dim ker dg’2+dim im(dg’2) <Y wewp dimV(w-0)*+1. From Corollary 1.3.15, we know

L(w)=2
that CX V(w - 0)* are composition factors of H?(g ® I,C), so dim ES’Q > 3 wewy dim V(w - 0)*.
L(w)=2
This proves that dim Homgy,(C X C,H?*(g® I,C)) < 1. O

Example 1.3.17. Recall that H?(grg® I,C) = (H?*(g[t],+,C)RC) @ (s X g)* @ (CRH3(g[t]4,C)).
Thus, by Proposition 1.3.10, H? (grg®1,C) does not contain any trivial g x g-composition factor. By
Lemma 1.3.16, (CXC) is a composition factor of H?(g® I, C). This explicitly shows the difference
between H?(grg ® I,C) and H?(g ® I, C) predicted in Subsection 1.3.3.

1.3.10. Second cohomology in rank one. From Lemma 1.3.1, it follows that the only pos-
sible composition factors of Ha(slo® I, C) are of the form V (A)XV (u) with (A+u) € {0,2,4}. From
Lemma 1.3.16, it follows that H?(sl; ® I,C) has (CX C) as a composition factor with multiplicity
1. From Corollary 1.3.15, it follows that C X V(2) and V(2) K C are not composition factors of
H?(sly® I, C). Form Corollary 1.3.15 and Proposition 1.3.10, it follows that CRV (4) and V (4) K C
are composition factors of H?(sly ® I, C) with multiplicity 1.

Throughout this subsection, denote sly by g and fix a Chevalley basis {y, h,z} with y € g_,,
x €g,and h=[z,y] €h.

Lemma 1.3.18. Homg, (V(3), Ha(sle[t] T, evi V(1)) = (0) for any a # 0.

PROOF. Fix a basis of weight vectors {v_j1,v1} C ev’ V(1) where v_; has weight —1 and v; has
weight 1. As a g-module, we have the following isomorphisms

(A%ft]y @ evi V(1) = (A (@19 © C) @ V(1))
=~ (A2(geC @ V(1) & (@ix(g®Ct @ (g0 Ct) @ V(1))
o (A2(@i22g ®Ct) ® V(1))
(1.3.12) = (910X (g@ CF) @ V(1)) @ (G126, (9 © Ct) @ (g2 CH) @ V(1))
Thus the weight-3 subspace, (A?g[t]; ® evi V(1)),, is generated by
{otYA(zot)@u_1, @ t)YA(h@t™) Qv :1<i<j;1<{m}

The elements of weight 3 in the kernel of 92 : (A%g[t]+ ® evi V(1)) — (g[t]+ ® evi V(1)) are scalar
multiples of k; j = (z@t)A (2@t )@v_1 — (2@t )A(h@t)) @1 +(h@t ) A(x@t)@v,). Since z-k; ; # 0,
it follows that k; ; do not represent highest-weight vectors of weight 3 in Hy(g[t]+,ev V(1)). Hence
Homy(V/(3), Ha(g[t] ™, ev; V(1)) = (0). 0

Corollary 1.3.19. Homgp, s, (V (1) XV (3), H?(sly ® 1,C)) = 0.
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PROOF. By Lemma 1.3.14, there is an isomorphism Homgyg(V (1) X V/(3),H?(g ® I,C)) =
Homg (V' (1), H(g[t]*, evi V(3)*)). By [Kum02, Lemma 3.1.13.(3)] and the fact that finite-dimen-
sional slp-modules are self-dual, H?(g[t]*,ev: V(3)*) = Hay(g[t]*,evi V(3)) as sly-modules. By
Lemma 1.3.18, Homg(V (1), Ha(g[t] ", ev} V(3))) = 0, finishing the proof. O

The proof of next lemma is similar to that of Lemma 1.3.18.

Lemma 1.3.20. Homg, (V (1), Ha(sle[t]*,evi V(1)) = (0) for any a # 0.

PROOF. Fix a basis of weight vectors {v_y1,v1} C ev’ V(1) where v_; has weight —1 and v; has
weight 1. Using isomorphism (1.3.12), the weight-1 subspace, (A?g[t]+ ® ev} V/(1)),, is generated
by {(z@t) A (h@t) @v_1,(@t)A (y@t) @vy, hQtYA(h@t™)@v 1 1<i<j;1 <0< m).
The elements of weight 1 in the kernel of 95 : (A%g[t]+ ® evi V(1)) — (g[t]l+ ® evi V(1)) are scalar
multiples of

kij =@t Ahet)@v_i+hot)A(zet) @v_y
+ @A Yo) v+ YRt)A(ret) v — (het)A(het)®@v.
Since x - k; ; # 0, it follows that k; ; do not represent highest-weight vectors in Ha(g[t]+,ev}; V(1)).
Hence Homg(V/ (1), Ha(g[t] ™, evi V(1)) = (0). O

Corollary 1.3.21. Homg, 1, (V(1) K V(1), H2(5[2 ®I,C)) = 0.

PROOF. By Lemma 1.3.14, there is an isomorphism Homgye(V (1) X V(1),H?*(g ® I,C)) =
Homg (V/(1), H(g[t]*,evi V(1)*)). By [KumO02, Lemma 3.1.13.(3)] and the fact that finite-dimen-
sional slp-modules are self-dual, H?(g[t]*,ev: V(1)*) = Ha(g[t]*,evi V(1)) as sly-modules. By
Lemma 1.3.20, Homg(V (1), Ha(g[t] ", ev’ V(1))) = 0, finishing the proof. O

The only possible composition factor of H*(sly ® I,C) that we haven’t yet taken care of is
5(2 X 5[2.

Conjecture 1.3.22. Homg, e, (V(2) X V(2), H*(sly ® I,C)) = C.

Assuming the conjecture, we can prove the following result.

Theorem 1.3.23. Let a,b € C, \,u € PT and V = evi V(A) ® evi V(u). Suppose A, i # 0 and
a#b If \=p=1, then Extg[2 (V> V) is 2-dimensional, otherwise Extg[2 (V> V) is 4-dimensional.

PROOF. First rewrite Extf[2 n(V.V) = H?(sly[t], V*®V). Then decompose V*®@V as the sly[t]-

module @y s evi V(N) @ evi V(i'), where the direct sum runs through all X',/ € P* such that
A= N, u— ' €27. By Lemma 2.3.1,

H2(sho[t], vy VY) © evi V(1)) 2 Homaaper (e VIY)* ® v V(i)' H(sly  I,C)
From the results above Homgy, 4 /si,07(evy V(N)* @evy V (i), H%(sly ® I,C)) = C for (X, /) in the
set {(0,0),(2,2),(4,0),(0,4)}.

If A\=pu =1, then (0,0) and (2,2) occur with multiplicity one. Otherwise each of this pairs in
{(0,0),(2,2),(4,0),(0,4)} occur with multiplicity one. O



CHAPTER 2

On Demazure and local Weyl modules for hyper current algebras

2.1. The main results

2.1.1. Integral forms. We use the following notation. Given a Q-algebra U with unity, an
element x € U, and k € N, set

1 x 1
® _ Lk _ D) (g —
o = and (k) = k!x(:n 1) (z—k+1).

In the case U = U(g), we also introduce elements A, +, € U(g),z € g,r € N, by the following
identity of power series in the variable u:

+s
AE(u) == Z Agru” = exp (— Z rot us> .

r>0 s>0 s

Most of the time we will work with & = h, for some o € RT. We then simplify notation and
write AL (u) = Ai (u) and, if @ = a; for some i € I, we simply write A (u) = Ai_ (u). To shorten
notation, we also set Ay (u) = Af(u).

Consider the Z-subalgebra Uz(g') C U(§') generated by {(:cir)(k) :a € RYyr € Z,k € N},
By [Gar78, Theorem 5.8], Uz(§') is a free Z-submodule of U(g') and satisfies C @7 Uz(§') = U(g').
In other words, Uz(g’) is an integral form of U(g'). Moreover, the image of Uz(g') in U(g) is an
integral form of U(g) denoted by Uz(g). For any Lie subalgebra a C g, set

Uz(a) = U(a) N Uz(8), Uz(a) =U(a)NUz(g) and  Ugz(a[t]) = U(alt]) N Uz(g).

Notice that Uz(a) can be naturally identified with U(a) N Uz(g). The subalgebra Uz(g) coin-
cides with the Z-subalgebra of U(§) generated by {(zX)*) : @ € R k € N}. The subalgebra
Uz(nT) of Uz(g) is generated as Z-subalgebra by the set {(z1)*) : o € Rt k € N} and, sim-
ilarly, Uz(n~) is generated by {(z;)*) : o € R* k € N}. The subalgebra Uz(h) is generated
as a Z-subalgebra by {(};;) el ke N}. The subalgebra Uz(n") of Uz(g) is generated as Z-
subalgebra by the set {(z},)® : o € R*,k € N,r € Z} and, similarly, Uz(f") is generated by
{(z5,)® : a € RTk € N,r € Z}, while Uz(h) is generated by {(],?),Ai’r ciel,keNre Z}.

Observe that Uz(h) is a commutative Z-algebra. We also consider the subalgebras Uz(b™) =

Uz(n7)Us(h), Uz (b") = Uz(h)Uz(n*), Uz(b") = Uz(i)Us(H), and Uz(b') = Uz(h)Uz("). Set

6" = 0 @a* and Uz(a%) = Uz(8) N UGT), Uz(b) = Uz(5) N U®H), Uz(6™) = Un(3) nU(H™).

Recall that h[t]+ = h @ tF1C[t*!]. Tt follows from the above that Uz(h[t]+) := U(h[t]+) N Uz(h)
is an integral form of U(h[t]+) and is generated, as a Z-algebra with 1, by {A; +, : i € I,r > 0}.
In fact, it is known to be the free commutative algebra with 1 over this set. The PBW Theorem

21
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implies that multiplication establishes isomorphisms of Z-modules

Moreover, restricted to UZ(G) this gives rise to an isomorphism of Z-algebras

Uz(h) = Uz(b[t]-) ® Uz(h) @ Uz(b[t]4).

2.1.2. Hyperalgebras. Given a field F, define the F-hyperalgebra of a by Ur(a) = FRzUz(a),
where a is any of the Lie algebras with Z-forms defined above. Clearly, if the characteristic of I is
zero, the algebra Up(g) is naturally isomorphic to U(gy) where gp = F ®z g5 and gy is the Z-span
of the Chevalley basis of g, and similarly for all algebras a we have considered. For fields of positive
characteristic we just have an algebra homomorphism U (ar) — Ug(a) which is neither injective nor
surjective. We will keep denoting by = the image of an element = € Uz(a) in Ugr(a). Notice that
we have Up(g) = Urp(n™)Ur(h)Ur(n™).

Given an algebraically closed field F, let A be a Henselian discrete valuation ring of characteristic
zero having F as its residue field. Set Up(a) = A ®z Uz(a) whenever Uz(a) has been defined.
Clearly Ur(a) 2 F @4 Up(a). We shall also fix an algebraic closure K of the field of fractions of A.
For an explanation why we shall need to move from integral forms to A-forms, see Remark 2.1.5
(and [JMO7, Section 4C]). As mentioned in the introduction, we assume the characteristic of F is
at least 5 if g is of type Gs.

Notice that the Hopf algebra structure of the universal enveloping algebras induce such structure
on the hyperalgebras. For any Hopf algebra H, denote by H? its augmentation ideal.

2.1.3. (-weight lattice. Consider the set Pj consisting of |I|-tuples w = (w;)ics, Where
w; € Flu] and w;(0) = 1 for all i € I. Endowed with coordinate-wise polynomial multiplication,
bef is a monoid. We denote by Pp the multiplicative abelian group associated to 73]; which will
be referred to as the ¢-weight lattice associated to g. One can describe Py in another way. Given
€ P and a € F*, let w, q be the element of Py defined as

(Wpa)i(u) = (1 - au)”(hi) forall ¢¢el.

If 4 = w; is a fundamental weight, we simplify notation and write w,,, o = w; .. We refer to w; , as
a fundamental f-weight, for all 7 € I and a € F*. Notice that Py is the free abelian group on the
set of fundamental /-weights.

Let wt : Pr — P be the unique group homomorphism such that wt(w;,) = w; for alli € I, a €
. Let also w — w™ be the unique group automorphism of Pr mapping w;, to w;,1 for all
i € I,a € F*. For notational convenience we set w™ = w.

The abelian group P can be identified with a subgroup of the monoid of |I|-tuples of for-
mal power series with coefficients in F by identifying the rational function (1 — au)~! with the
corresponding geometric formal power series 3°,,>q(au)". This allows us to define an inclusion

Pr — UF(G)*. Indeed, for each w* = Zrzo wi+ru” € Pr, we set
w ((’;)) - (W““Q(hi)), w(hiy) =wi,, forall icl,rkeZk>0,
and w(zy) =w(z)w(y), forall z,ye Up(h).
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2.1.4. Demazure and local Weyl modules. Given w € Py, the local Weyl module Wr(w)
is the quotient of Ur(g) by the left ideal generated by

Up(a™)°, h—w(h), (z;)® forall heUg(h), a € R", k> wtw)(ha).
It is known that the local Weyl modules are finite-dimensional (cf. Theorem 2.3.8 (c)).

For A\ € PT, the graded local Weyl module W()) is the quotient of Ug(g[t]) by the left ideal
I (X\) generated by

(2.1.1) Up(n™[1])°, Ur(b[t]+)°, h—Ah), (23)®, forall heUs(h), € R, k> A(hy).

Also, given ¢ > 0, let Dp(¢,\) denote the quotient of Ur(g[t]) by the left ideal Ir(¢, A) generated
by I§()) together with

(2.1.2) (IE;S)(k) forall o€ R", s,k € Z>g, k> max{0, \(hy) — slr}.
In particular, Dg(¢, \) is a quotient of W(N).

Remark 2.1.1. The algebra Up(g[t]) inherits a Z-grading from the grading on the polynomial
algebra C[t]. The ideals I§(\) and Ig(¢, \) are clearly graded and, hence, the modules Wi£(\) and
Dr(¢4,\) are graded. In [CPO01], local Weyl modules were simply called Weyl modules, and certain
infinite-dimensional modules, which were called mazimal integrable modules and are now called
global Weyl modules, were also defined. The modern names, local and global Weyl modules were
coined by Feigin and Loktev in [FLO4], where they introduced these modules in the context of
generalized current algebras. We will not consider the global Weyl modules in this thesis.

We are ready to state the main theorem of this chapter.
Theorem 2.1.2. Let A € PT.

(a) If g is simply laced, then Dp(1,\) and W§(A) are isomorphic Ur(g[t])-modules.

(b) There exist £ > 1 and A\; € PT,j = 1,...,k, (independent of F) such that the Up(glt])-
module W§(X) admits a filtration (0) = Wo € Wy C -+ C W1 C Wy, = WE(A), with
Wj/Wj-1 = Dg(1, Aj).

(c) For any a € F*, there exists an automorphism ¢, of Ur(g[t]) such that the pull-back of W (wy 4)
by ¢, is isomorphic to W§g(A).

Assume the characteristic of F is zero. Then, part (a) of this theorem was proved in [CP01]
for g = sly, in [CLO6] for type A, and in [FLO7] for types ADE. Both [CL06] and [FLO7] use the
slp-case (and the former exhibits an explicit basis for Wi()A)). Part (b) was proved in [Naol2].
Part (c) for simply laced g was proved in [FLO7] using part (a) (see [FLO7, Lemma 1, Lemma 3,
equation (15)]). The same proof works in the non simply laced case once part (b) is established.
We will make use of Theorem 2.1.2 in the characteristic zero setting for extending it to the positive
characteristic context.

We will see in Subsection 2.3.5 that the class of modules Dy (¢, \) form a subclass of the class of
Demazure modules for Ur(g[t]). In particular, it follows from [Mat88, Lemme 8| that dim(Dg (¢, \))
depends only on £ and A, but not on F (see also the Remark on page 56 of [Mat89] and references
therein). Together with Theorem 2.1.2(b), this implies the following corollary.

Corollary 2.1.3. For all A € P, we have dim W§(X\) = dim W§E(N). O
As an application of this corollary, we will prove a conjecture of [JMO07]. The following theorem
was proved in [JMOT].

Theorem 2.1.4. Suppose w € P and let A = wt(w), v the image of 1 in Wk (w), and Ly (w)
Ua(8)v. Then, Ly(w) is a free A-module such that K ®y Ly (w) = Wk (w).

oo
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We now recall the conjecture of [JMO7]. Let @ be the image of w in Pg. It easily follows that
F®p La(w) is a quotient of Wr(w) and, hence,

(2.1.3) dim Wk (w) < dim Wg(@).
It was conjectured in [JMO7] that
(2.1.4) F®a LA(w) gVV]F(W).

We will prove (2.1.4) in Subsection 2.3.4. In particular, it follows that
(2.1.5) dim Wy(w) = dim WE(A).

Remark 2.1.5. Recall that for all @w € Pﬁr , there exists w € P; such that @ is the image of w
in Pr. This is the main reason why we consider A-forms instead of Z-forms. The study of finite-
dimensional representations of twisted hyper loop algebras was initiated in [BM12]. The proof
of one part of [BM12, Theorem 4.1] relies on (2.1.4) and, therefore, it will be completed once we
finish the proof of (2.1.4).

It was also conjectured in [JMO7] that, if @ = [[] w4 for some m > 0,\; € P*,a; €
F*,7=1,...,m, with a; # a; for i # j, then

(2.1.6) WF(w) = é WF(w)\jﬂj).
j=1

In characteristic zero this was proved in [CPO1]. It was then proved in [Bial2, Secao 2.4.3] that
the characteristic zero case of (2.1.6) together with (2.1.4) implies (2.1.6) in general.

2.2. Further notation and technical lemmas

2.2.1. Some commutation relations. We begin recalling the following well-known relation
in Uz(g)

(2.2.1)
min{k,l} he —k —142m
@DV ® =3 <xa>(’“m)< ) ><wz><’m> for all € R, 1k € Zzo.
- >
m=0

Since for all & € R™,s € Z, the span of xai’is, hq is a subalgebra isomorphic to sly, we get the
following relation in Uz(g)

min{k,l} o
222) (@l )0 )P = Y <x;,_s>““m)<ha k lﬂm)(w;s)“—m%

m
m=0
Next, we consider the case when the grades of the elements in the left-hand side is not symmetric.

Given m > 0, consider the Lie algebra endomorphism 7, of g induced by the ring endomorphism
of C[t,t71],t > t™. Notice that the restriction of 7, to g[t] gives rise to an endomorphism of g[t].
Moreover, denoting by 7, its extension to an algebra endomorphism of U(g), notice that Uz(a)
is invariant under 7, for a = g, n*, b, 7%, b, n*[t], b[t], h[t]. In fact 7, ((2L,) ) = (2F,,,)*) and

a,r a,mr

T (Aa,r) satisfies 3°;50 Tm(Aa,r)u” = exp (— doe>1 ha;ms us) for all r,m € Z and o € RT.

Given oo € R, m, s € Z,m > 0, consider the following power series:

o
Xom.s(u) = Z oy m(r—1)+s u” and Aim(u) = 7 (AZ (u)).

r=1
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The next lemma is crucial in the proof that the rings Uz(a) are integral forms and will also be
needed in Subsection 2.3.3.

Lemma 2.2.1. Let « € R, k,1 > 0,m > 0,s € Z. Then

(8m-s)" (220) " = (D (X @) AL (), mod Un(@Ua(i")°,

where the subindex k denotes the coefficient of u* of the above power series. Moreover, if 0 < s < m,
the same holds modulo Uz(g[t])Uz(n™[t])Y.

PROOF. The case m = 1,s = 0 was proved in [Gar78, Lemma 7.5] (cf. [JMO07, Equation

(1-11)]). Consider the Lie algebra endomorphism o, : sl, — sl, given by Tk, :ci@S. The first
statement of the lemma is obtained from the case m = 1, s = 0 by applying (o5 o 7). The second
statement is then clear. 0

Sometimes it will be convenient to work with smaller set of generators for the hyperalgebras.

Proposition 2.2.2. [Mit85, Corollary 4.4.12] The ring Uz(@') is generated by (z)®) i € I,k >0
and Uz(g) is generated by (z£)®) i€ I,k > 0. O

An adaptation of the proof of Proposition 2.2.2 gives:

Lemma 2.2.3. The algebra Uz(n[t]) is generated by (:Uf,,)(k),i € I, k,r > 0. In particular, Uz(g)
is generated by (fnfr)(k),i el,r,keZ,k>0. d

Combining Lemma 2.2.1 (withm = 1,s =0, and k = > 1) with Lemma 2.2.3, it is not difficult
to see that Uz(g[t]) is generated by (mfr)(k),i el,r,k>0.

Given B € R" and r,k € Z,k > 0, define the hyperdegree of (xgcyr)(k) to be k. For a monomial
of the form (xgcwl)(kl) e (:c;f Yk1) (choice of + fixed) define its hyperdegree to be ki + - - - + k.

1,71
Lemma 2.2.4. [Mit85, Lemma 4.2.13] Let r, s, k,l € Z,k,l > 0,a,3 € RT. Then (:Uir)(k)(xécs)(l)

is in the Z-span of (xéc S)(l)(mir)(k) together with monomials of hyperdegree strictly smaller than
k+1. O

2.2.2. On certain automorphisms of hyper current algebras. Let a,b be such that
Uz(a) have been defined. Then, given a homomorphism of A-algebras f : Us(a) — Ux(b), we
have an induced homomorphism Up(a) — Ur(b). We will now use this procedure to define certain
homomorphism between hyperalgebras. As a rule, we shall use the same symbol to denote the
induced homomorphism in the hyperalgebra level.

Recall that there exists a unique involutive Lie algebra automorphism v of g such that xli o
and h; — —h; for all ¢ € I. It admits a unique extension to an automorphism of g[t] such that
Y@@ f(t) = Y(r) @ f(t) for all x € g,f € C[t]. Keep denoting by ¢ its extension to an
automorphism of U(g[t]). In particular, it easily follows that
(2.2.3) ¥ ((@E )W) = (~)MHODEE B forall a e R, vk >0,

a,r

Since Uz(g[t]) is generated by the elements (xir)(k), it follows that the restriction of ¢ to Uz(a)

induces an automorphism of Uz(a), for a = g, b, g[t], b[¢], b[t]+. Notice that we have an inclusion
P — Homyz(Uz(h),Z) determined by

224)  p((%))=("1)) and p(ey) = p@)p(y) forall i€l k >0,y € Usb).
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Therefore,
(2.2.5) [ (q/} ((f,;))) - (*ﬂ,ghﬂ) forall i€1l,k>0,ucP.

Suppose now that v is a Dynkin dlagram automorphism of g and keep denoting by = the g-
automorphism determined by xli — xw(z), hi = hy),t € I. It admits a unique extension to an
automorphism of g[t] such that v(z ® f(t)) = v(x) ® f(t) for all z € g, f € C[t]. Keep denoting by
7 its extension to an automorphism of U(g[t]). Let v also denote the associated automorphism of
P determined by y(w;) = wy), i E I. In particular, y(a;) = ay;),i € I. It then follows that, for
each o € Rt k > 0, there exist = ok € {—1,1} (depending on how the Chevalley basis was chosen)

such that
(2.2.6) v (@E)®) =k (a2, )B forall r>o0.

a,T

This implies that the restriction of v to Uz(a) induces an automorphism of Uz(a), for any a in the
set {g,nT, b, g[t],n*[t], b[t], b[t]+}. Tt is also easy to see that

(2.2.7) [ (7 ((’,;))) - (W*l(f;))(hi)) forall i€1l,k>0,ucP.

We end this subsection constructing the automorphism mentioned in Theorem 2.1.2(c). Thus,
let @ € F,a € A such that the image of @ in F is a, and ¢; the Lie algebra automorphism of g[t]x
given by x ® t — x ® (t — a). Keep denoting by ¢z the induced automorphism of Uk(g[t]) and
observe that ¢z is the identity on Ug(g). One easily checks that

e (@E)D) = X TR aE,) ) € Uyl

ko+--+k-=k s=0

Hence, ¢; induces an automorphism of U (g[t]). Notice that, in the hyperalgebra level, we have

(22:8) ERLETD Y | (BEEIe IR )

ko+--+kr=k s=0

This justifies a change of notation from ¢z to @,.

2.2.3. Subalgebras of rank 1 and 2. For any a € R", consider the Lie subalgebra of
g generated by 2t which is isomorphic to sly. Denote this subalgebra by sl,. Consider also

= Czt, b, = Chy and bE = Ch, ® Czt. Notice that Uz(g) N U(sl,) coincides with the
Z—subalgebra Uz(sly) of U(g) generated by (z)*) k > 0. Indeed, since (z£)*) belong to a Z-
basis of Uz(g), we must have that Uz(n®) N U(sl,) = Uz(nE) where the latter is the Z-subalgebra
generated by (z2)*) &k > 0. Tt then suffices to show that, given k& > 0, an element of the form
c (%) € Uz(g) NU(sly) only if ¢ € Z. Write hg = Y ;c; mih; with m; € Z>o,4 € I, and recall that
the m; are relatively prime. It follows from Vandermonde’s convolution formula that

BEACHE ()

where the second sum is over k = (k;)ie; € ZL >o such that > ;. k; =k and k; < k for alli € I. On
the other hand, for all [ > 0,7 € I, there exist ¢; € Z such that (m} ) =ml (l) + 31 g ( ).

m
Hence, ("¢) = S;c; m¥ (%) +n, where n is a Z-linear combination of elements of the form [;¢; (ZZ

with k; < k for all ¢ € I. Since this is an expression for (th> in terms of a Z-basis of Uz(bh), it

follows that c (th> € Uz(g) NU(sly) only if em¥ € Z for all i € I. Since the m; are relatively

prime, we must have ¢ € Z as claimed.
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This implies that Uz(g)NU (sly) is naturally isomorphic to Uz (slz) and, hence, the corresponding
subalgebra Up(sl,) of Up(g) is naturally isomorphic to Up(sly). Similarly, for any o € R*,r € Z,
the Lie subalgebra sl, , of § generated by xiﬂ is isomorphic to sly and Uz(g) N U(sl,,) coincides
with the Z-subalgebra of U(g) generated by (:riir)(k), k > 0. We shall denote the corresponding
subalgebra of U (§) by Ug(sla,). We also consider the subalgebra s, of § generated by xX ., € Z

a,r
+
a,r’

and Up(sl,[t]) of Up(g) are naturally isomorphic to Ur(sly) and Ug(sly[t]).

and the subalgebra sl,[t] of g[t] generated by z£ 7 > 0. The corresponding subalgebras Up(sl,)

We will also need to work with root subsystems of rank 2. Suppose «, 3 € RT form a simple
system of a root subsystem R’ of rank 2 and let t denote a simple Lie algebra of type R’. Denote by
9., the subalgebra of g generated by rF and xéc, which is isomorphic to t. Notice that, for r, s € Z,
the subalgebra g;’fﬁ of g generated by xiir and :céc ., is also isomorphic to t. Let Uy(g,, 3) be the
subalgebra of Uz(g) generated by (z2)®*), (a:éc)(k), k >0, and Ui(gg’sﬁ) the subalgebra of Uz(g)
generated by (27 1,)®, (:c;iis)(k), k > 0. Proposition 2.2.2 implies that Uz(g,,5) and Uz (g, ;) are
naturally isomorphic to Uz(t). Recall that if a is a subalgebra of U(g), then Uz(a) = U(a) N Uz(g).
As in the rank 1 case, we have:

(2.2.9) Uz(80.5) = Uz(80.5) and  Ug(g,%) = Uz(9,%s)-

Indeed, by definition, Uz(g,,4) € Uz(8) N U(84,8) = Uz(84,5) and Uz(9,%) € Uz(8) NU(g,5) =
Uz(g;’sﬂ). In order to prove the other inclusion, let ni 3 be defined by ni 5= ntn 0q,5 and observe

that Uz(ny, 5) = U(ga,5) N Uz(n®). Let also b, 5 = b N g, 5 and Uz(b, 5) = U(ba 5) NUz(ga 5)- To
prove the first statement in (2.2.9) it remains to show that Uz(h) N U(g,,5) € Uz(h, g)- It suffices

to show that, given kq, kg > 0, an element of the form ¢ (Zz) (Zg) is in Uz(h) NU(g,,p) only if ¢ € Z.

Notice that, if R’ is of type Go, then R is of type G, Ba,3 = b and there is nothing to prove. Hence,
suppose 7V < 3 and write hy = > iermihi and hg = ;- n;h; with m;, n; € Z>¢,1 € I. Recalling
that there exists in,ig € I such that m;, = n;, =1, the argument is completed similarly to what
we have done in the rank 1 case. It follows from (2.2.9) that Ur(g, 3) = F ®z Uz(g45) € Ur(g)
and UF(g;”Sﬁ) =F®z UZ(g;’fﬁ) C Up(g) are isomorphic to Up(t).

2.2.4. The algebra gg,. Another important subalgebra used in the proof of Theorem 2.1.2 is
the subalgebra g, generated by the root vectors associated to short simple roots.

Let Ay, = {a € A : (o,«) < 2} denote the set of simple short roots. In particular, if g is
simply laced, Ag, = (). Let R;i = ZAgq, N RT and Ry, = ZAg, N R (and notice that, if g is not
simply laced, Rgy # {a € R: (o, ) < 2}). Set Igp = {i € [ : a; € Agp} and define Py, = @jer,, Zw;
and Ps'fl = Py N Pt. Consider also the subalgebras by, = D Ish(Chi,bsi = by, nsih, where
ngi = ®ae Rt Yas and gg, = ng, ® by, . Then, if Ag, # 0, gg, is a simply laced Lie subalgebra
of g with Cartan subalgebra by, and Ag, can be identified with the choice of simple roots associated
to the given triangular decomposition. The subsets Qqp, Q:h, and the Weyl group Wsy, are defined
in the obvious way. The restriction of ( , ) to gy, is an invariant symmetric and non degenerate
bilinear form on gy,, but the normalization is not the same as the one we fixed for g. Indeed,
(o, @) =2/rY for all @ € Ry,. The set {z£,h; 1 a € RE i € Iy} is a Chevalley basis for gg,.

Observe that Uz(g) NU(gy,) coincides with the Z-subalgebra of U(g) generated by (z)*), o €
Agp, and, hence, Proposition 2.2.2 implies that Ur(gg,) can be naturally identified with a subalgebra
of Ug(g). Similar observation apply to Uz(a) for a = nZ, hg,.

Consider the linear map h* — b, A\ — A, given by restriction and let ig, : b, — h* be the
linear map such that ig, (@) = « for all @ € Ag,. In particular, ig, () = p for all g € h%,. Given
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A € P, consider the function 7y : Ps, — P given by

(2.2.10) Ma(p) = isn(p) + X — isn(A).
Lemma 2.2.5. If \ € PT, € P}, and pu < A, then ny(u) € PT. O

PROOF. For each i € Iy, let m; € Z>q such that g = X — >ier, Mid;. In particular, n\(u) =
A= ier, mic;. Then, for j € Iy, we have ny(u)(hj) = p(h;) > 0 while, for j € I'\ Iy, we have
() (h;) = Ahj) = Yier, mici(h;) = A(h;) = 0. O

The affine Kac-Moody algebra associated to g, is naturally isomorphic to the subalgebra
Gen = 0en ® C[t,t '] ® Ced Cd

of § and, under this isomorphism, by, is identified with b, & Ce @ Cd. The subalgebras gg,[t] and
A%, as well as Py, Qqn, ctc, are defined in the obvious way. Moreover, Uy (gy,) and Up(gg,[t]) can
be naturally identified with a subalgebra of Ur(g).

2.3. Finite-dimensional modules

2.3.1. Modules for hyperalgebras. We now review the finite-dimensional representation
theory of Ur(g). If the characteristic of F is zero, then Ur(g) = U(gy) and the results stated here
can be found in [Hum?78]|. The literature for the positive characteristic setting is more often found
in the context of algebraic groups, in which case Ug(g) is known as the hyperalgebra or algebra of
distributions of an algebraic group of the same Lie type as g (cf. [Jan03, Part II]). A more detailed
review in the present context can be found in [JMO7, Section 2].

Let V' be a Up(g)-module. A nonzero vector v € V is called a weight vector if there exists
w € Ur(h)* such that hv = u(h)v for all h € Ugr(h). The subspace consisting of weight vectors
of weight p is called weight space of weight p and it will be denoted by V. It V' = & ,ctr(p)< Vi,
then V is said to be a weight module. If V}, # 0, 1 is said to be a weight of V and wt(V) = {u €
Ur(h)* : V, # 0} is said to be the set of weights of V. Notice that the inclusion (2.2.4) induces an
inclusion P — Ur(h)*. In particular, we can consider the partial order < on Ur(h)* given by pu < A
if A\ — pu € Q' and we have

(2.3.1) (z5) Py, C Vitka forall a€ R k>0,u€ Us(h)*

If V is a weight-module with finite-dimensional weight spaces, its character is the function ch(V) :
Ur(h)* — Z given by ch(V)(p) = dim V},. As usual, if V' is finite-dimensional, ch(V") can be regarded
as an element of the group ring Z[Ur(h)*| where we denote the element corresponding to p € Ur(h)*
by e#. By the inclusion (2.2.4) the group ring Z[P] can be regarded as a subring of Z[Ur(h)*] and,
moreover, the action of W on P induces an action of W on Z[P] by ring automorphisms where
w- et = eV,

If v € V is weight vector such that (z})®v = 0 for all @ € R,k > 0, then v is said to
be a highest-weight vector. If V is generated by a highest-weight vector, then it is said to be a
highest-weight module. Similarly, one defines the notions of lowest-weight vectors and modules by
replacing (z1)®) by (z)®).

Theorem 2.3.1. Let V be a Ug(g)-module.

(a) If V is finite-dimensional, then V' is a weight-module, wt(V') C P, and dimV,, = dimV,,, for
all 0 € W, € Ur(h)*. In particular, ch(V) € Z[P]"V.

(b) If V is a highest-weight module of highest weight A, then dim(V)) = 1 and V,, # 0 only
if u < A. Moreover, V' has a unique maximal proper submodule and, hence, also a unique
irreducible quotient. In particular, V' is indecomposable.
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(c) For each A € P*, the Ug(g)-module Wr(\) given by the quotient of Ur(g) by the left ideal
Ir(\) generated by

Us(nt)?, h—Xh) and (z5)®, forall he Up(h),ac R k> A(ha),

is nonzero and finite-dimensional. Moreover, every finite-dimensional highest-weight module of
highest weight A is a quotient of Wg(\).

(d) If V is finite-dimensional and irreducible, then there exists a unique A € PT such that V is
isomorphic to the irreducible quotient V() of Wg(\). If the characteristic of F is zero, then
Wr(A) is irreducible.

(e) For each A € PT, ch(Wg()\)) is given by the Weyl character formula. In particular, u €
wt(Wr(A)) if, and only if, o < X for all & € W. Moreover, Wr()\) is a lowest-weight module
with lowest weight wgA. O

Remark 2.3.2. The module Wy () defined in Theorem 2.3.1 (c) is called Weyl module (or costan-
dard module) of highest weight A\. The known proofs of Theorem 2.3.1 (e) make use of geometric
results such as Kempf’s Vanishing Theorem.

We shall need the following lemma in the proof of Lemma 2.5.5 below.

Lemma 2.3.3. Let V be a finite-dimensional Ug(g)-module, € P, and o € RT. If v € V,, \ {0}
is such that (z7)®v = 0 for all k > 0, then u(ha) € Z<g and (z})#"a))y £ 0. O

Remark 2.3.4. In characteristic zero, it is well-known that the following stronger statement holds:
if v € V, \ {0} is such that u(hs) € Z<o, then (xf)(7#(ha))y 2£ 0. In positive characteristic this
stronger statement is not true for all finite-dimensional representations.

We will need to consider the integral version of Weyl modules. Notice that the formulas
in the definition of the inclusion P — Ug(h)* also give rise to an inclusion P — Uz(h)* =
Homgz(Uz(h),Z). Then, given a Uz(g)-module V' and p € P, the weight space V,, can be defined
as before and (2.3.1) remains valid. In particular, if V' = @®,ecpV), and V,, is a finitely generated
Z-module for all y € P, we can define the character of V' by setting ch(V')(x) as the rank of V), as
a Z-module. Notice that F ®z V is then a Up(g)-module with finite-dimensional weight spaces and
ch(F ®z V) () > ch(V)(p) for all u € P. Moreover, equality holds if, an only if, pT" = 0 where p is
the characteristic of F and T is the torsion subgroup of V.

A Uyz(g)-module V is said to be integrable if, for all v € V, there exists m > 0 such that
(:ci)(k)v =0 for all &« € R,k > m. Proposition 2.2.2 implies that this equivalent to saying that

«

there exists m’ > 0 such that (z)®v =0 for all i € I,k > m/.
Proposition 2.3.5. Let V' be an integrable Uz(g)-module. Then, for all 0 € W, u € P, there

exists an isomorphism of Z-modules V,, — V5.

PROOF. It suffices to prove the statement with ¢ = s; for some ¢ € I. Consider the map
T:V, — Vi, given by

Tw)= Y (D)Y@ @) .
a,b,c>0
b—a—c=p(h;)

Proceeding as in [Lus93, 5.2], one shows that 7" is an isomorphism. O

Given A € PT, let Iz(\) C Uz(g) be the left ideal generated by
Uz, h—=XAh), (z;)®, forall heUz®b), a € RT, k> Aha),
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and set
(2.3.2) Wz(\) = Uz(g[t])/Iz(N).

Theorem 2.3.6. For all A\ € Pt Wy()\) is finitely generated and free as a Z-module. Moreover,
Wz(X) = @< Wz(A), and ch(Wz(A)) is given by the Weyl character formula.

PROOF. Quite clearly Wz()\) = @,<\Wz(X), and Wyz(N), is finitely generated for all € P.
Moreover, standard arguments show that Wz(\) is integrable. In particular, Proposition 2.3.5
implies that Wz(\), # 0 only if o < X for all o € W. Since the set {op : p,opn < X for all 0 € W}
is finite, it follows that Wy(\) is finitely generated. An application of Lemma 2.3.9 gives an
isomorphism of Up(g)-module Wg () = FRyzWz(A). Since Theorem 2.3.1 (e) implies that ch(Wg (X))
does not depend on the characteristic of F, it follows that W7(\) is free and have the same character
as ch(Wg(X)). O

The next lemma can be proved exactly as [Naol2, Lemma 4.5].

Lemma 2.3.7. Let m; € Z>o,i € I,V a finite-dimensional Uy(n~)-module and suppose v € V
satisfies (2;)®v = 0 for all i € I,k > m;. Then, given a € RT, we have (z)*v = 0 for all
k >3 ;crnim; where n; are such that he = > ;o7 nih;. O

2.3.2. Modules for hyper loop algebras. We now recall some basic results about the
category of finite-dimensional Up(g)-modules in the same spirit as Subsection 2.3.1. The results of
this subsection can be found in [JMO07, Section 3] and references therein.

Given a Up(g)-module V and & € Ur(h)*, let
Ve ={v e V: forall x € Up(h), there exists k > 0 such that (z — &(z))*v = 0}.

We say that V' is an f-weight module if V=@ V,,. In this case, regarding V as a Ur(g)-module,
w € Pr
we have
V, = @ Vo forall peP and V= @ V.

wEPF: ecP
wt(w)=p H

A nonzero element of V,, is said to be an f-weight vector of f-weight w. An f-weight vector v is
said to be a highest-f-weight vector if Up(h)v = Fv and (:U;r)(k)v = 0 for all @« € R* and all
rk € Z,k > 0. If V is generated by a highest-¢-weight vector of f-weight w, V is said to be a
highest-¢-weight module of highest ¢-weight w.

Theorem 2.3.8. Let V be a Ug(g)-module.

(a) If V is finite-dimensional, then V is an ¢-weight module. Moreover, if V' is finite-dimensional
and irreducible, then V is a highest-¢-weight module whose highest ¢-weight lies in PE .

(b) If V is a highest-¢-weight module of highest ¢-weight w € Py, then dim V,, = 1 and V}, # 0 only
if 4 < wt(w). Moreover, V' has a unique maximal proper submodule and, hence, also a unique
irreducible quotient. In particular, V' is indecomposable.

(¢) For each w € P, the local Weyl module Wi (w) is nonzero and finite-dimensional. Moreover,
every finite-dimensional highest-/-weight-module of highest /-weight w is a quotient of Wg(w).

(d) If V is finite-dimensional and irreducible, then there exists a unique w € P# such that V is
isomorphic to the irreducible quotient Vg (w) of Wr(w).

(e) For p € P and w € Pj, we have u € wt(Wr(w)) if and only if p € wt(Wg(wt(w))), i.e.
wp < wt(w), for all w € W. O



2.3. FINITE-DIMENSIONAL MODULES 31

2.3.3. Graded modules for hyper current algebras. Recall the following elementary fact.

Lemma 2.3.9. Let A be aring, I C A a left ideal, B =F ®z A an F-algebra, and J the image of
I'in B, ie. J is the F-span of {(1®a) € B:a € I}. Then F®yz (A/I) is a left B-module, J is a
left ideal of B, and we have an isomorphism of left B-modules B/J = F @z (A/I). O

PROOF. First observe that (F ®yz (A/I)) is a left B-module, with left action linear extending
(p@b)(A®a) = (u\) ® ba, for any (n®b) € B and (A®a) € (F ®z (A/I)). Also observe that, for
any (A®a) € B, p € Fand i€ I, we have (A ® a)(pp ® i) = (Au) ® (ai). It follows from linearity
on both factors and the fact that I C A is a left ideal that J C B is a left ideal.

Suppose I C A is a left ideal and M is a cyclic left A-module given by the following short
exact sequence of left A-modules 0 — I - A — M — 0. Now consider the exact sequence
obtained from this short exact sequence by applying the right-exact functor (F ®z —), we get

(FozI) L (Foz A) 2 (Foz M) — 0.
By hypothesis, there is an isomorphism of left B-modules (F ®7 A) = B. Moreover the image

of j is the F-submodule of B generated by {(1 ® i) € B : i € I}, which is, by hypothesis, J. Since
the latter sequence is exact, there is an isomorphism of left B-modules (F @z M) = B/J. O

We shall use Lemma 2.3.9 with A being one of the integral forms so that B is the corresponding
hyperalgebra.

Given A € PT, let I5(\) C Uz(g[t]) be the left ideal generated by

Uzt Uz(0[t]+)° h—AR), (23)®, forall heUz(p), o € R, k> Aha),
and set

WE(A) = Uz(glt]) /17(N).
Similarly, if £ > 0 is also given, let I7(¢, \) be the left ideal of Uz(g[t]) generated by
Uz(n[t])°,  Uz(b[t]4)°, h—Ah), (xa,)®, forall heUz), a€RT,
s,k € Z>o, k> max{0, A\(hq) — . ls}.
Then set
Dz (€, X) = Ugr(glt])/1z(¢, ).

Notice that W7(A) and Dz (¢, ) are weight modules.

Since the ideals defining W§(A) and Dp(¢, A) (cf. Subsection 2.1.4) are the images of I5(\)

and Iz(¢, \) in Ur(g(t]), respectively, an application of Lemma 2.3.9 gives isomorphisms of Ur(g[t])-
modules

WEA) 2 F Rz W5(N) and Dp(f,\) 2 F @z Dy (0, \).

As before, Dz(¢,)) is a quotient of W5(A) for all A\ € Pt and all £ > 0. We shall see next
(Proposition 2.3.11) that the latter is a finitely generated Z-module and, hence, so is the former.
Together with Corollary 2.1.3, this implies that

(2.3.3) Dz (¢, \) is a free Z-module.

We record the following elementary lemma to be used in the proof of Proposition 2.3.11.

Lemma 2.3.10. Let n be a non negative integer and, for [ <k, let [[,k]={m e Z:1 <m < k}.
Then,
L2 C U [mn, m(n + 1)].
m>1

The proof of the next proposition is an adaptation of that of [JMO7, Theorem 3.11].
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Proposition 2.3.11. For every A € P, the Uz(g[t])-module W5()) is a finitely generated Z-
module.

PRrOOF. First, we prove that W7 (\) is an integrable Uz(g)-module. Let ¢ be the image of 1
in W7 (X) and observe that W5 (A) = Uz(n™[t])v. In particular, the weights of W (\) are bounded
above by \, which implies that (z)*)Wg()\) = 0 for k sufficiently large.

Let T = R* X Z x Z>¢, E be the set of functions ¢ : Zso — T, ¢(j) = (B}, rj, k;), such that
k;j = 0 for all j sufficiently large. Observed that any w € W7 (A) has the form

(2.3.4) w="Yce(y )" (g, ),
e
So without loss of generality, we assume w = (x/gl’m)(kl) (g, n)(k")ﬂ for some (Bj,7j,k;) =

¢(j) and ¢ € Z. Given ¢ € Z and n > 0 such that k; = 0 for all j > n, denote vy =
(asglyrl)(kl) e (xgmrn)(k")ﬂ € Wg(X), and define the hyperdegree of ¢ (or hyperdegree of v4) to be

d(¢) = >"j~0 kj. We will use induction on the hyperdegree of ¢ in order to prove that (:L“;)(k)% =0,
for all k > kg, for some kg > 0.

If the hyperdegree of ¢ is 0, then w = v. In this case, the defining relations for W5(\) and
Wyz(\) show that Uz(g)v is a quotient of Wz (). Since Wz(A) is a finitely generated Z-module, it
follows that Uz(g)v is finitely generated, and that there exists ky > 0, such that (z;)*)y = 0 for
all k > ky.

Now suppose the hyperdegree of ¢ is d > 0. By induction hypothesis, there exists mg > 0
such that (a:;)(m)((a:/g )k2) (x5 )kn)y) = 0, for all m > mg. Consider the left ideal I, C

2,72 nT'n

Uz(g[t]) generated by {(z;)® : k > mg}. Since the adjoint representation of g is integrable, it
follows that there exists £y > 0, such that ad’ (za)(z5,) =0, for all £ > £y. This implies that there

exists ko > 0 such that (a:;)(k)(x/gl Tl)(kl) € Iy m, for all k; > 0 and k > ko. Thus

(22)® (25, )" (g )0 = 37 ()™ (2, )5 (g, ) F),

m>mg

for some u,, € Uz(g[t]). Since (:U;)(m)((xg yk2) (25, Tn)(k")ﬂ) = 0 for all m > my, it follows

2,72 ),
that (z;)®vg = 0 for k sufficiently large. Thus proving that Wg()) is an integrable Uz(g)-module.
Proposition 2.3.5 then implies that the set of weights of W7 () is invariant under W. Since the
weights are bounded by A, it follows the set of weights is contained in that of W7 (\) and, hence, is
finite.

Since any element w € W7 () has the form (2.3.4), the subgroup of W () consisting of elements
of hyperdegree d and weight A € P must be finitely generated. And since wt(W5(\)) is a finite set,
the subgroup of W (\) consisting of elements of hyperdegree d must be finitely generated. So, in
order to show that W (\) is finitely generated, we only have to show that it lives in finitely many
distinct hyperdegrees.

Define the exponent of ¢ € = as e(¢) = max{k; : j > 0}, observe that 0 < e(¢) < d(¢), and set
Eae={0€E:d(¢)=de(¢p) =€}, Eg= |J Ede

0<e<d

E = {(b SRS ¢(.7) - (5]‘,7"]‘,]{]‘),0 =7; < )‘(hﬁj)27vj € Z>0}7

W =>" Zoy CWEA) and Wy= > Zig C W'
pe=! PEZ,
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We will show next that W’ = Wg(X). Observe that = = Ug>0Zq,.. We will show that, for any
d,e >0, 05 € W for all ¢ € Z4, by induction on d and e. If d(¢) = 0, then 95 = 0 € W’. Assume
that d(¢) > 0 and that the statement holds for all ¢’ € (Ujcq(g)Za) U (Uece()Zd(e),e)- The proof
splits into two cases, according to whether e(¢) = d(¢) or not.

Suppose e(¢) < d(¢), in which case n > 1. By induction hypothesis (xg%m)(k?) e (xg (kn)y €

n:Tn)

W’. So without loss of generality, we can assume that 0 < r; < )\(hgj)2 if j > 1. Using Lemma 2.2.4

to commute (:U[;Lm)(kl) with (m/;%m)(l”) (g, 7nn)(k"), and induction hypothesis on the terms of
hyperdegree strictly smaller than d, we obtain vg+W’' = (xng)(k?) e (a:gmrn)(k") (zg, 7T1)(k1)19+W’.

By induction hypothesis (3351 rl)(kl)ﬁ € W', and the result follows.

Suppose e(¢) = d(¢), in which case vy = (acgvr)(e)ﬁ, and suppose r > A(hg)?. If e = 1, Lemma
2.2.1 with I = A(hg) and k = A(hg) + 1 yields

() OO (7 JOBD Ty — (1M (X (AT, (0)r G52

Since Uz (h[t]+)% = 0 and (:B[ES)(k)ﬁ =0 for all k > A(hg),s > 0, we have (_1)/\(hﬁ)x§,(mA(h6)+s)ﬁ =
0. If e > 1, from Lemma 2.2.1 with [ = eA(hg) and k = e(A(hg) + 1), we obtain
0= ($E )(e/\(hﬂ))(% ) (e ha)+1))y

m—s )8

= (=) (X, (W) AL (W) ering) 17

_ (_1\ex(hp) -
= (DT We + 25 (i) +5)?)-

Thus (mg,mx(hﬁ)ﬁ)(e)ﬁ € Y yez, Loy = Wy. Observe that 0 < s < m is equivalent to mA(hg) <

mA(hg) +s < m(A(hg)+1). Using Lemma 2.3.10 and varying s and m, we obtain that (x/;m)(e)ﬁ €
W’ for all r > A(hg)?, finishing the proof. O

We now prove an analogue of Theorem 2.1.4 for graded local Weyl modules.

Corollary 2.3.12. Let A € P and v be the image of 1 in W§(X). Then Uz(g[t])v is a free
Z-module of rank dim(W§g(X)). Moreover, Uz(g[t])v = @uep(Uz(g[t])v N WE(A),). In particular,
Uz(g[t])v is an integral form for W§E(N).

ProOF. To simplify notation, set L = Uz(n~)v. Let also ¥ be as in the proof of Proposition
2.3.11. Since v satisfies the relations satisfied by v, it follows that there exists an epimorphism
of Uz(g[t])-modules Wz(A) — L,v — v. Since Wz(A) is finitely generated, it follows that so is
L. On the other hand, since L C W§(A), it is also torsion free and, hence, a free Z-module of
finite-rank. Since Uz(n™) spans U(n™) and WE(A) = U(n™)v, it follows that L contains a basis of
WE(A). This implies that the rank of L is at least dim(W§E(X)). On the other hand, C ®z L is a
g[t]-module generated by the vector 1 ® v which satisfies the relations (2.1.1). Therefore, it is a
quotient of WE(A). Since dim(C ®z L) = rank(L), the first and the last statements follow. The
second statement is clear since L is a weight module. (|

Consider the category Gr of Z-graded finite-dimensional representations of Ug(g[t]). If V is
such a module, let V[r] be its r-th graded piece. Given s € Z, let 75(V') be the Ur(g[t])-module
such that 74(V)[r] = V[r — s] for all r € Z. For each Up(g)-module V, let evy(V') be the module in
Gr obtained by extending the action of Ur(g) to one of Ur(g[t]) on V by setting Ur(g[t]+)V = 0.
For A € Pt r € Z, set Vg(\, 1) = ev,.(Vr()\)) where ev, = 7, 0 evq.

Theorem 2.3.13. Let A € PT

(a) If V in Gy is simple, then it is isomorphic to Vg(\,r) for a unique (\,r) € PT x Z.
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(b) Wg(A) is finite-dimensional.
(c) If V is a graded finite-dimensional Ug(g[t])-module generated by a weight vector v of weight A
satisfying Up(n™[t])%v = Ug(h[t]4+)% = 0, then V is a quotient of W§(N).

PrOOF. To prove part (a), suppose V € Gp is simple. If V[r],V[s] # 0 for s < r € Z,
(®r>rV[k]) would be a proper submodule of V, contradicting the fact that it is simple. Thus there
must exist a unique r € Z such that V[r| # 0. Since Up(g[t]+) changes degrees, V = V[r| must be
a simple Up(g)-module. This shows that V = Vr(\,r) for some A € PT r € Z.

To prove part (b), observe that Wg(\) = F ®z W5 (A) (cf. Lemma 2.3.9). Thus the dimension
of W§(A) must be at most the number of generators of W5 (\), which is proved to be finite in
Proposition 2.3.11.

To prove part (c¢), observe that the Up(g)-submodule V' = Ur(g)v C V is a finite-dimensional
highest-weight module of highest weight A\. Thus, by Theorem 2.3.1 (¢), V' is a quotient of Wg(\).
The statement follows by comparing the defining relations of V' and W§(\). O

Remark 2.3.14. Denote by v the image of 1 in Wig(\). From the defining relations (2.1.1) it follows
that F ®z Uz(g[t])v is a quotient of WE(N). It follows from Theorem 2.1.2(b) that F ®z Uz (g[t])v =
WE(A) for all X € P (cf. Section 2.3.4 below). Moreover, since F @z Wz(A) = WE(X), Theorem
2.1.2 (b) also implies that Wy()) is free.

2.3.4. Proof of the Jakeli¢-Moura conjecture. We now prove (2.1.4). The argument
will use Corollary 2.1.3, the characteristic zero versions of Theorem 2.1.2 (c¢) and (2.1.6) and the
following proposition [Nao12, Corollary A].

Proposition 2.3.15. Let A € P*. Then, dim Wg&(\) = [[;;(dim Wg(w;)) ). O

We shall also need the following general construction. Given a Zg>o-filtered Up(g[t])-module
W, we can consider the associated graded Up(g[t])-module gr(W) = &4>0W,/Ws_1 which has the
same dimension as W. Suppose now that W is any cyclic Up(g[t])-module and fix a generator w.
Then, the Z-grading on Ur(g[t]) induces a filtration on W. Namely, set w to have degree zero and
define the s-th filtered piece of W by W, = F*Ur(g[t])w where F*Ur(g[t]) = ®r<sUr(g[t])[r]. Then,
gr(W) is cyclic since it is generated by the image of w in gr(W).

Recall the notation fixed for (2.1.4): w € P;, A = wt(w), @ is the image of w in Pp. Also recall
that, using (2.1.3), (2.1.4) will be proved if we show that

dim WF(W) < dim WK(w).

Fix w € Wy(w)\ {0}. Not only w generates Wg(w) as a Ur(g)-module, but it also follows from
the proof of [JMO07, Theorem 3.11] (with a correction incorporated in the proof of [JM10, Theorem
3.7]) that Up(n~[t])w = Wr(w). Hence, we can apply the general construction reviewed above to
Wr(w). Set V. = gr(Wp(w)) and denote the image of w in V' by v. The module V is finite-
dimensional and v is a highest-weight vector of weight A satisfying Ur(h[t];)% = 0 (the latter
follows since dim(Vy) = 1, V is graded, and Up(h[t]) is commutative). Hence, v satisfies the
defining relations (2.1.1) of W§g(X). In particular, we get that dim Wyr(w) < dim Wg(A).

Since dim Wg(A) = dim Wg(X) by Corollary 2.1.3, it now suffices to show that dim Wg(X) =
dim Wk(w). For proving this, consider the decomposition w = [[i;w), +;, where m > 0,a; €
K*,\; € P*, such that a; # a; if i # j, and A = Y7L, A;. By (2.1.6) (in characteristic zero)

Wk(w) = @7 Wk(w);,q;). Theorem 2.1.2(c) (in characteristic zero) implies that dim Wk (w3 4;) =
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dim Wg(A;). Hence,

dim Wi (w H dim Wig (A H TT dim Wi (wi) ) =TT Wig (wi) ) = dim Wig ().
j=1 j=1liel icl
Here, the second and last equality follow from Proposition 2.3.15 and the others are clear. This
completes the proof of (2.1.4).

Notice that all equalities of dimensions proved here actually imply the corresponding equalities
of characters. In particular, it follows that

(2.3.5) ch(Wr(@)) = [[(ch(We(w:)))* @) for all w e Pj.
el

2.3.5. Joseph-Mathieu-Polo relations for Demazure modules. We now explain the rea-
son why we call Dg(¢, \) Demazure modules. We begin with the following lemma. Let v be the
Dynkin diagram automorphism of g induced by wp and recall from Subsection 2.2.2 that it induces
an automorphism of Up(g[t]) which is also denoted by .

Lemma 2.3.16. Let A € PT,/ > 0, and set A* = —wp\. Let W be the pull-back of Dg(¢, \*) by
7. Then, Dp(¢,\) = W.

PROOF. Let v € Dy(¢, \*)x« \ {0}. By (2.1.1) and (2.1.2) we have
Up(n* 1)’ = Us(b[t] )0 =0,  hv=X(h), (a5, Pv=0,

for all h € Up(h),« € RT, s,k € Z>0,k > max{0,\*(ha) — sfry}. Denote by w the vector v
regarded as an element of W. Evidently, W = Up(g[t])w. Since v restricts to automorphisms of
Urp(nt[t]) and of Ugp(h[t],), it follows that Up(nt[t])°w = Ur(h[t]s)°w = 0, while (2.2.7) implies
that w € W). Finally, (2.2.6) and (2.2.7) together imply that

(:B&S)(k)v =0 for all a € R, 8,k € Z>o,k > max{0, \(ha) — sbr2}.

This shows that w satisfies the defining relations of Dr(¢, \) and, hence, there exists an epimorphism
Dg(¢,\). Since (A\*)* = A, reversing the roles of A and \* we get an epimorphism on the other
direction. Since these are finite-dimensional modules, we are done. ]

In order to continue, we need the concepts of weight vectors, weight spaces, weight modules
and integrable modules for Up(g’) which are similar to those for Ug(g) (cf. Subsection 2.3.1) by
replacing I with [ and P with P’. Also, using the obvious analogue of (2.2.4), we obtain an
inclusion P’ < UF(GI)*. Let V' be a Z-graded Ur(g ) module whose weights lie in P’. As before,
let V[r] denote the r-th graded piece of V. For p € P, say p =y’ + md with p/ € P',m € Z, set

V,={veV[m]:hv=yp'(h)vforall h € Uy(b )}
If V,, # 0 we shall say that p is a weight of V and let wt(V) = {u € P Vi # 0}.

We record the following partial affine analogue of Theorem 2.3.1.

Theorem 2.3.17. Let V be a graded Ug(g')-module.

A

(a) If V is integrable, then V' is a weight-module and wt(V') C P. Moreover, dim V,, = dim V, for
all o € VAV, we P.

(b) If V is a highest-weight module of highest weight A, then dim(V)) = 1 and V,, # 0 only
if uw < A. Moreover, V' has a unique maximal proper submodule and, hence, also a unique
irreducible quotient. In particular, V is indecomposable.
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(¢) Let A € P* and m = A(d). Then, the Ur(§')-module Wr(A) generated by a vector v of degree
m satisfying the defining relations
Up(a™) % =0, hw=A(h)v and (z;)®v=0, forall he U]F(Gl),z' el k> Ah),
is nonzero and integrable. Moreover, for every positive real root «, we have

(2.3.6) (z)®u=0  forall k> A(ha).

Furthermore, every integrable highest-weight module of highest weight A is a quotient of W]F(A).
O

Traditionally (cf. [FLO7,Mat89,Nao12]), given A € P*, o € W, the Demazure module VE (A)
is defined as the UF(6/+)—submodule generated by Wi(A)ya. In particular, ViZ(A) = V&' (A) if
oA = o'A for some o/ € W. Our focus is on the Demazure modules which are stable under the

A

action of Ur(g). Since V¥ (A) is defined as a U]F(b,+)—module, it is stable under the action of Ug(g)
if, and only if,

(2.3.7) Ur(n7)'Wr(A)ga = 0.

In particular, since VjZ(A) is an integrable Ug(sl,)-module for any o € R*, we have (0A)(hq) <0
for all @« € RT. Conversely, using the exchange condition (see [Hum90, Section 5.8]), it follows
that, for all i € I, we have (25)®)Wg(A)yp = 0 for all k > 0, where ¢ = + if oA(h;) > 0 and e = —
if oA(h;) < 0. This implies that, if cA(h;) < 0 for all ¢ € I, then ViZ(A) is Ur(g)-stable. Thus,
henceforth, assume (cA)(h;) <0 for all 4 € I and observe that this implies that oA must have the
form

(2.3.8) oA = VAo + wo +md for some A€ PT meZ, and £ = A(c).

Conversely, given £ € Z>g, A € P*, and m € Z, since W acts simply transitively on the set of alcoves
of §” (cf. [Hum90, Theorem 4.5.(c)]), there exists a unique A € P+ such that £Ag+woA+md € WA.
Thus, if ¢ € W and A € PT are such that

(2.3.9) oA = Ay + woX + mo,

then ViZ(A) is Ug(g)-stable. Henceforth, we fix o, A, wp, A, and m as in (2.3.9). Notice that, if
v =+a+sd € R with a € R, then oA(h,) = +woA(ha) + str).

The following lemma is a rewriting of [Mat89, Lemme 26] using the above fixed notation.

Al

Lemma 2.3.18. The UF([§,+)—module VFZ (A) is isomorphic to the Up(b )-module generated by a
vector v of degree m satisfying the following defining relations

ho = oA(h)v, heUs(h), Us(h[]s) v = Us(n [t]z)°v =0 and
(2.3.10) (x;tvs)(k)v =0 forall acR", s>0, k>max{0, —woA(ha) — sfr’}.
(]

Remark 2.3.19. In [Mat89], Mathieu attributes Lemma 2.3.18 to Joseph and Polo. This is the
reason for the title of this subsection.

Recall the functor 7, defined in the paragraph preceding Theorem 2.3.13 and set
DF(& )‘7 m) = Tm(DF(‘€7 )‘))
Proposition 2.3.20. The graded Ur(g[t])-modules Vi (A) and Dg(¢, X\, m) are isomorphic.
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PRrROOF. It suffices to prove the statement for m = 0 and, thus, for simplicity, we assume that
this is the case. Recall the automorphism of Ur(g[t]) defined in Subsection 2.2.2. We begin showing
that, if W is the pull-back of V7 (A) by v, then W is a quotient of Dg(¢, \*), where \* = —wpA.
Indeed, let v be as in Lemma 2.3.18 and denote by w the vector v when regarded as an element
of W. Since (2.3.7) and Lemma 2.3.18 imply that Up(n~[t])° = 0 and ¢(Ur(n~[t])) = Up(n*[t]),
it follows that Up(n*[t])%w = 0. Also, v restricts to an automorphism of Ugr(h[t];) and, hence,
Ur(h[t]«)%w = 0. Since hv = woA(h)v for all h € Ur(h), (2.2.5) implies that hw = \*(h)w for all
h € Up(h). Finally, Lemma 2.3.18 and (2.2.3) imply

(x&s)(k)w =0 forall acR", s>0, k>max{0,\*(ha) — slry}.

Comparing with the defining relations of Dg(¢, A*), this completes the proof that W is a quotient
of Dr(¢, X\*). By pulling back by 1 again and using Lemma 2.3.16, we get that V7 (A) is a quotient
of Dr(¢, X). It now suffices to show that dim(Dgr(¢, X)) < dim(ViZ(A)).

Conversely, let this time v € Dp(¢,A\*)x~ \ {0}, let W be the pull-back of Dp(¢,\*) by 1, and
w denote v when regarded as element of W. Proceeding as above, we get that w satisfies all
the defining relations of V¥ (A) given in Lemma 2.3.18. Hence, W is a quotient of Vi (A) and,
therefore, dim(W) < dim(V§ (A)). Since Lemma 2.3.16 implies that dim(W) = dim(Dg (¢, \)), we
are done. O

The next corollary is now immediate.

Corollary 2.3.21. Dp(¢, \) is isomorphic to the quotient of Ug(g[t]) by the left ideal Iy (¢, \)
generated by h — woA(h), h € Up(h), Up(b[t]+)°, Ur(n~[t])°, and

(wi,s)(’“)v =0 forall o€ R", s>0, k>max{0, —woA(hy) — slry}.
O

Remark 2.3.22. Observe that this proposition says that the difference between our first definition
of Dr(¢,\) and the one given by Lemma 2.3.18, lies on exchanging a “highest-weight generator”
by a “lowest-weight” one. More precisely, let v be as in Lemma 2.3.18. Then, the isomorphism
of Proposition 2.3.20 must send v to a nonzero element in Dg(¢, A)y,x. In particular, if w €
Drg (€, Ny, it satisfies the relations listed in Lemma 2.3.18. Our proof of Proposition 2.3.20 differs
from the one given in [FLO7, Corollary 1] in characteristic zero. There, the authors show that Vi (A)
is a quotient of Dg(¢,\) by using that v is an extremal weight vector in Wg(A). For the converse,
they simply claim that the a vector in Dp(¢, X),,,» must satisfy several relations, including (2.3.10).
As we have just observed, this is true, but we do not see how to deduce it before Proposition 2.3.20
is established.

Corollary 2.3.23. Let g = sl and the subalgebra a = n~[t] @ h[t] ® nT[t]+ C g[t]. For £,\ € Z>o,
let Iz(¢,\) be the left ideal of Ur(a) generated by the generators of Iy(¢, ) which lie in Ug(a).
Then, given k,l, s € Z>o with £ > max{0, A\ — s¢}, we have

(2.3.11) (a) (@7 )* € Up(a)Up(nh)” @ Tp(6,A)
where i is the unique element of I.

PROOF. The statement is a hyperalgebraic version of that of [Naol2, Lemma 4.10] and the
proof is essentially the same. Namely, by using the automorphism of g[t| determined by xiﬁn —

wfr,z’ € I,r € Z>o, one observes that proving (2.3.11) is equivalent to proving

(2.3.12) (2;)D(2f)®) € Up(a")Us(n")° + I§(6,\) forall k1, s € Zzo, k > max{0,\ — st},
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where a= = n"[t]4 ® h[t] & nT[t] and I (¢, \) is the left ideal of Up(a™) generated by the generators
of Iz (¢, ) given in Corollary 2.3.21 which lie in Ur(a™). Since g[t] = a~ @ n~, the PBW Theorem
implies that

Ur(g[t]) = Ur(a™)Ur(n")" © Ur(a”)

and, hence, (xi_)(l)(:n;fs)(k) = u+ v with u € Up(a™)Up(n™)? and v’ € Up(a™). Consider the

Demazure module Dy (¢, \) and let w € Dr(¢, \)_» \ {0}. It follows from the proof of Proposition

2.3.20 that, if £ > max{0, A — s¢}, then
uw = ((1‘7

)

O (it )®) — u) w = 0.

%,8

Since b = a~ ® Cc and a~ is an ideal of E/+7 it follows from Lemma 2.3.18 that Ij/(¢, \) is the
annihilating ideal of w inside Ur(a) and, hence, v’ € If/(¢, \). O

2.4. Joseph’s Demazure flags

2.4.1. Quantum groups. Let C(q) be the field of rational functions on an indeterminate q.

Let also C' = (c45), jei be the Cartan matrix of § and d;, i € I, non negative relatively prime integers

such that the matrix DC, with D = diag(d;);er, is symmetric. Set ¢; = ¢% and, for m,n € Z,n > 0,
m_g=m m mjg|m —1lg ... [m —n+1],

set [m]q, = %, [nlg! = [nlg[n — g, - .- [Lg;, = ol l | l . The
4i—q; noJ,. [n]g,!

g

quantum group U,(g') is a C(g)-associative algebra (with 1) with generators 7", k', i € I subject

to the following defining relations for all ¢, j € I:

_ L1 e e
kiki 1= 1 /{?ikj = kjk‘i kzxsz 1 q; JJZ;t [37?_,:(}]-] = (Sij —1
qi — q;
1=cij 1— ¢
S o[ L] e et =0, iz
m=0 qi

Let Uq(ﬁi) be the subalgebra generated by xii,i € I and Uq([;i) be the subalgebra generated by
U, (7F) together with k' i e T.

We shall need an integral form of U(§'). Let Zq = Z[q,q" '], denote by Ug, (8F) the Z,-

:t m A
subalgebra of Uq(ﬁi) generated by %,z € I,m > 0, and by Uz, (§') the Zg-subalgebra of
Uq(§') generated by Ug, (8%) and k;,i € I. Let also UZq(Bi) = Uq([;i) N Uz, (§). Then, Uz, (a),

a =g, 0t Gi, is a free Zs,-module such that the natural map C(q) ®z, Uz,(a) — Uy(a) is C(q)-

algebra isomorphism, i.e., Uz (a) is a Z4-form of U,(a). Moreover, letting Z be a Z;,-module where ¢
acts as 1, there exists an epimorphism of Z-algebras Z®z, Uz, (a) — Uz(a), which is an isomorphism

if @ = A7 and whose kernel is the ideal generated by k; — 1,7 € I, fora= g, [A)i.

Civen A € P*, let V,(A) be the simple (type 1) U,(§')-module of highest weight A. Given a
highest-weight vector v € V4(A), set Vz,(A) = Uz, (8 )v, which is a Z,-form of V;(A). Given o € W
and a nonzero vector v € Vg(A) of weight oA, set V7 (A) = Uy, (A")v, which is a free Z,-module as

A~

well as a Uzq(b+)—module and C ®z, V7 (A) = VE(A). In particular,
(2.4.1) VZ (A) :=Z @z, V7, (A)

is an integral form of VZ(A).
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2.4.2. Crystals. A normal crystal associated to the root data of g defined as a set B equipped
with maps €&, f; : B — BU{0},&;,¢; : B — Z, for each i € I, and wt : B — P satisfying

(1) €i(b) = max{n : &b # 0}, p;(b) = max{n : f;b # 0}, for alli € I,b € B;
(2) i(b) — i(b) = wt(b)(h;), for all i € I,b € B;

(3) for b,V € B, b = &b if and only if f;t/ = b;

(4) if b € B,i € I are such that &b # 0, then wt(&b) = wt(b) + ;.

For convenience, we extend é;, f;, , i, vi, wt to BLU{0} by setting them to map 0 to 0. Denote by £
the submonoid of the monoid of maps B LI {0} — B U {0} generated by {¢; : i € I}, and similarly
define F. A normal crystal is said to be of highest weight A € P if there exists by € B satisfying

wt(by) = A, Eby = {0}, and Fby =B

Given B’ C B and u € P, define B, = {b € B": wt(b) = u} and define the character of B’ as
ch(B') =3 cp #B,e" € Z[P].

Given crystals By, By, a morphism from Bj to Bs is a map 1 : By — By U {0} satisfying:

(1) if 9(b) # 0, then wt(y(b)) = wt(b), i (1 (b)) = &i(b), @i(1(b)) = i (b), for all i € [;

(2) if &b # 0, then ¥(€;b) = €1 (b);

(3) if fib # 0, then ¢(fib) = fith(b).

The set By x By admits a structure of crystal denoted by B; ® Bs (cf. [Jos03, Section 2.4]). There
is, up to isomorphism, exactly one family {B(A) : A € ]5+} of normal highest weight crystals such
that, for all A, u € P, the crystal structure of B (A) ® B(u) induces a crystal structure on its subset
F(bx ®by,), the inclusion is a homomorphism of crystals, and F(by ® b,) = B(A + ).

Given a crystal B and o € W with a fixed reduced expression o = s;, ...s;,, define

={&"...&":m;eN}C& and F'={f.. f" :m;eN}CF.

zn %

If B=B(A),A € PTando € W, define the Demazure subset B?(A) = F%bpy C B(A). Then B7(A)
is E-stable, i.e., EB7(A) C B7(A) U {0}. It was proved in [Jos03, Section 4.6] that ch(VZ(A)) =
ch(B?(A)). This fact and the following theorem are the main results of [Jos03] that we shall need.

T\heorem 2.4.1. Let A, € P+, For any o € VAV, there exist a finite set J and elements o; €
W, b; € B?(A) for each j € J, satisfying:

(1) b, ® B (A) = UjesB; where Bj := F7 (bM ® bj);

(2) E(by ©bj) = {0};

(3) ch(B;) = ch(B%(v;)), where v; = u + wt(b;) € PT.

Remark 2.4.2. The proof of Theorem 2.4.1 establishes an algorithm to find the set J and the
elements o0, b;.

2.4.3. Globalizing. The theory of global basis of Kashiwara shows, in particular, that, for
each A € P, there is a map G : B(A) — V,(A) such that

(2.4.2) Vz,(A) = P Z,Gb)
be B(A)
the weight of G(b) is wt(b) and G(by) is a highest-weight vector of V;(A).

Fix A,p € Pt o € W and let J,bj,05,v;,j € J, be as in Theorem 2.4.1. Let b € B(A), and
set V7 (A) = Uz, (2 )G (D). Similarly, let b; be the unique element of B; such that wt(b}) =
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Choose a linear order on J such that wt(b;) < wt(bg) only if j > k. For j € J, let Y} be the
Zq-submodule of V() ® V;7(A) spanned by G(b,) ® G(b) with b € By, k < j, and set

(2.4.3) y; = G(by) ® G(b)).

Let also Z; = >74<; Uz, (n7) (G(bu) ® G(bg)). Since J is linearly ordered and finite, say #J = n,
identify it with {1,...,n}. For convenience, set Yy = {0}. Observe that 0 =Yy C Y; C --- C Y}
is a filtration of the Uzq(6+)—module G(br,) ® V7 (A). The following result was proved in [Jos06,
Corollary 5.10].

Theorem 2.4.3. Suppose g is simply laced and u(h;) <1 for all i € I. Then:

(a) The Zg-module Y; is Uz, (i™")-stable for all j € J.
(b) For all j € J, Y;/Y;_1 is isomorphic to VZqu(l/j). In particular, Y;/Y;_1 is a free Zg,-module.
c) For all j € J, the image of {G(b,) ® G(b) : b€ B;} in Y;/Y;_1 is a Z,-basis of Y;/Y,_1.
1 J il ¥j q il ¥j
(d) For each j € J, Z; is U, (§/)-stable and Y; = Z; N (G(b) @ Vg, ().

Remark 2.4.4. The above theorem was proved in [Jos06] for any simply-laced symmetric Kac-
Moody Lie algebra. However, as pointed out in [Naol2, Remark 4.15], the proof also holds for

5(2.

It follows from Theorem 2.4.3 and the fact that G(b,) is a highest-weight vector of V;(A) (2.4.2)
that

(2.4.4) Y= Uz(i")y;
k<j

2.4.4. Simply laced Demazure flags. Given ¢ > 0,\ € PT.m € Z, let Dp({,\,m) =
Tm(Dr(€,\)) and Dz (¢, \,m) = T (Dz (¢, \)).

Theorem 2.4.5. Suppose g is simply laced, let 4 € P+ and ¢/ > ¢ > 0. Then, there exist
k> 0,u1,...,ux € PT,my,...,my € Z>o, and a filtration of Uz(g[t])-modules 0 = Dy C Dy C

- € Dy = Dgz(¢, ) such that Dj and D;/D;_, are free Z-modules for all j = 1,...,k, and
D;/D;_1 = Dy(¥', u;, mj). Moreover, for all j € J, there exists v; € D; whose image in D;/D;j_4
satisfies the defining relations of Dz (¢, uj, m;) and Dj = 3, ; Uz(n™[t]) 0%

PROOF. The proof follows closely that of [Nao12, Corollary 4.16]. First notice that it is enough
to prove the theorem for ¢/ = ¢ 4+ 1. Then let A € P* and w € W be such that wA = ¢Ag + wopu,
and let V" (A) = Uy, (8")G(b) where b € B(A)y

From Subsection 2.4.3, we know that the Uz, (6+)—submodule G(ba,) @ V7 (A) C Vg(Ao) @Vy(A)
admits a filtration 0 =Yy C Yy C --- C Y. For each j =1,... k, let D; = Z ®z, Y;, and observe
that

Dy, = Z®z, (Gba,) ©z, VE(N)) = (Z 0z, G(by,)) @z (Z @z, VEI(N)) = L, @2 Da(l, p),

where Zy, is a UZ(E+)—module on which Uz(#%)? and Uz(g)? act trivially and Uz(h) acts by Ao.
Moreover, as a Z-module it is free of rank 1. Thus Dy, is isomorphic to Dz (¢, ) as a Uz(g[t])-module.
It follows from Theorem 2.4.3 (d) that D; is a Uz(g[t])-module for all j = 1,...,k and, hence, so
is D;j/D;_1. So we have a filtration of UZ( [t])-modules 0 = Dy C Dy C --- C Dy, = Dy(4, ).

By Theorem 2.4.3 (b), Y;/Y;_1 7. 77 (vj) for some o € W, vj € PT. By (2.4.1) Dj/Dj_; =
V' (vj). Thus D;/D;_q is 1som0rphlc to Dz (4}, uj, mj) for some pj € PT,m; € Z and {; = vj(c)
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(cf. (2.3.8)). Since all the weights of V;(Ag) ® V;(A) are of the form A + Ag — n for some n € Qr,
and a;(c) = 0 for all i € I, it follows that l; =0+1 for all j.

Keep denoting the image of y; in D; by y; (cf. (2.4.3)). It follows from (2.4.4) that D; =
>k<; Uz (7")y;. Asin Remark 2.3.22, we now replace the “lowest-weight” generators y; by “highest-
weight generators”. Thus, let b7 be the unique element of Bj; such that wt(b}) = woojv; = (£ +
1)Ao + pj +m;6 and let v; be defined similarly to y; by replacing b; by b. O

The next corollary is now immediate.

Corollary 2.4.6. Let g,p, 0, ¢, k,pj,j = 1,...,k, be as in Theorem 2.4.5. Then, there exists a
filtration of Ur(g[t])-modules 0 = Dy C D; C --- C Dy, = Dg(¢, ), such that D;/D;_1 = Dg(¥, p15)
forallj=1,... k. O

PRrROOF. Tensor the filtration of Theorem 2.4.5 with F over Z and use the fact that the characters
of Demazure modules are independent of the ground ring. O

2.5. Proof of the main theorem

2.5.1. Isomorphism between Demazure and graded local Weyl modules. We now
prove Theorem 2.1.2(a). As observed in Remark 2.1.1, D(1,\) is a quotient of Wg(X). To prove
the converse, suppose first that we have proved Theorem 2.1.2(a) with g = sl and let w be the
image of 1 in W§(A). Recall that we are assuming that g is simply laced. Thus, in order to show
that W§(A) is a quotient of Dp(1, ), it remains to prove that

(2.5.1) (x&s)(k)w =0 forall ac R", s>0, k>max{0,\(hy) — s}.

Given o € R™, consider the Up(sl,[t])-submodule (cf. Subsection 2.1.2) W, C Wg(\) generated by
w which is a quotient of the graded local Weyl module for Ug(sl,[t]) with highest weight A(hq)w,
where w is the unique fundamental weight of sly. Since we are assuming that the theorem holds for
slo, it follows that w must satisfy the same relations as the generator of the corresponding Demazure
module for Ug(sly[t]), i.e., we have (x;w)(k)w =0, for all » > 0 and k& > max{0, A(hy) — 7}.

For g = sly, it follows from the Demazure character formula (see also the main result of [FLO6))
that dim(Dg(1,))) = 2*, where we have identified P with Z as usual. On the other hand, it is
shown in [JM12] that dim(Wg()\)) < 2*, which completes the proof.

2.5.2. A smaller set of relations for non simply laced Demazure modules. In this
subsection we assume g is not simply laced and prove the following analogue of [Nao12, Proposition
4.1].

Proposition 2.5.1. For all A € P, Dg(1, ) is isomorphic to the quotient of Ur(g[t]) by the left
ideal Ir(\) generated by

(2'5'2> U]F(nJr[t])ov UF(h[t]-i-)O? h— )‘<h)7 (x_)(k)v (x(;,s>(£)

2

for all h € Up(h),i € I\ Isn,a € RY, 5> 0,k > A(h;), £ > max{0, A\(ha) — sV}

Let w € Dp(1,\)x\ {0} and let V' be the Ur(g[t])-module generated by a vector v with defining
relations given by (2.5.2). In particular, there exists a unique epimorphism V' — Dg(1, \) mapping
v to w. To prove the converse, observe first that, since (m;)(k)v =0forallie I,k > \h;), Lemma
2.3.7 implies that (z;)*)v = 0 for all @ € R,k > A(hy). In particular, V is a quotient of Wig(\)
and, hence, it is finite-dimensional. It remains to show that

(x;s)(k)v =0 forall a€RT\RL, s>0, k>max{0,\(hq) — sry}.
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These relations will follow from the next few lemmas.

Lemma 2.5.2. Let V be a finite-dimensional Ur(g[t])-module, let A € P*, and suppose v € V)
satisfies Up(n*[t])% = Up(h[t]4)% = 0. If @ € R* is long, then (x;’s)(k)v =0 forals>0k>
max{0, A(hqa) — s}.

ProOOF. Consider the subalgebra Ug(sl,[t]) (see Subsection 2.2.3). By Theorem 2.3.13 (c), the
submodule W = Ug(sl,[t])v is a quotient of the local graded Weyl module for Ug(sl,[t]) with
highest weight A(hqo). Theorem 2.1.2 (a) implies that W = Dg(1, A(ha)) where the latter is the
corresponding Demazure module for Ug(sl,[t]). In particular, v satisfies the relations (2.1.2). O

Lemma 2.5.3. Assume g is not of type Ga. Let V be a finite-dimensional Ur(g[t])-module, A € P,
and suppose v € V), satisfies Up(n™[t])%v = Up(h[t]4 )% = 0 and (:x;ys)(k)v =0 for all « € R}, k >
max{0, A(hq) — 2s}. Then, for every short root 7, we have (33;73)(’“)11 =0 for all s > 0,k >
max{0, A(hy) — 2s}.

PROOF. The proof will proceed by induction on ht(y). If ht(y) = 1, then ~ is simple and,
hence, v € RJ;. Thus, suppose ht(y) > 1 and that v ¢ R} . By [Naol2, Lemma 4.6], there exist
a, 3 € RT such that v = a + 8 with « long and 3 short. Notice that {a, 3} form a simple system
of a rank-two root subsystem. In particular, h, = 2h, + hg and, hence A(hy) = 2A(hqa) + A(hg).

Fix s > 0 and suppose first that A(hy) —2s > 0. In this case, we can choose a,b € Z>q such
that
a+b=s, Aha) —a >0, and A(hg) —2b > 0.
Indeed, b = max{0,s — A(hqa)} and a = s — b satisfy these conditions. Then, Lemma 2.5.2 implies
that (:c;}a)(k)v = 0 for all £ > A(hq) — @, while the induction hypothesis implies that (:x/g’b)(k)v =0
for all & > A(hg) — 2b. Applying Lemma 2.3.7 to the subalgebra UF(gZ’%) (cf. Subsection 2.2.3), it
follows that (2 ,)F)v =0 for all k > 2(A(ha) — a) + (A(hg) — 2b) = A(hy) — 2s.

Now suppose A(h,) —2s < 0 and notice that this implies s — A(ha) = s — 5 (A(hy) — A(hg)) >
) a

@ > 0. We need to show that (z7 )( Jy =0 for all k > 0. Letting a = A(hy) and b = s — A(hy),
we have

a+b=s, Aha) —a <0, and A(hg) —2b<0.
Then, Lemma 2.5.2 implies that (z, )(k)v = 0 for all ¥ > 0, while the induction hypothesis

implies that (z ﬁyb)(k)v =0 for all £ > 0. The result follows from an application of Lemma 2.3.7 as
before. O

It remains to prove an analogue of Lemma 2.5.3 for g of type G5. This is much more technically
complicated and will require that we assume that characteristic I is at least 5. For the remainder
of this subsection we assume g is of type G2 and set I = {1,2} so that «; is short. Given
v =saq + lag € RT, set s, = s. Set also

sy —1
il = @ Pl vlle= @ @ Crl. a=n[feblentll,
vy ERT 5258y y€RT s=0

and observe that n*[t]~ and n [t are subalgebras of nt[t] such that n*[t] = n™[t]s ®nT[t]<. The
hyperalgebras Up(n'[t]s), Ur(n™[t|<), and Ur(a) are then defined in the usual way (see Subsection
2.1.1) and the PBW theorem implies that

(2.5.3) Ur(n"[t]) = Ur(n™[t]>) @ Ur(n™ [t]) Us (n*[t] <)°.

We now prove a version of [Naol12, Lemma 4.11] for hyperalgebras.
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Lemma 2.5.4. Given A € P, let If()\) be the left ideal of Ugr(a) generated by the generators of
Ir(X\) described in (2.5.2) which lie in Up(a). Then,

Ir(A) C Ig(N) @ Up(a)Us (W*[t]<)°.

PROOF. Recall that Ir()) is the left ideal of Ur(g[t]) generated by the set Z whose elements
are the elements in Up(n™[t])°, Ur(h[t]4)?, together with the elements

(’?) _ ()\(;Li))7 (mg)(m)’ (l‘is)(k)
for i€l, k,l,m,s € Z>o, m > A(h2), k> max{0,A(h1) — 3s}.
To simplify notation, set U« = Up(n™[t]l<) and J = I;(\) & Up(a)Ur(nt[t]<)?. Observe that

Ur(a)J C J. Therefore, since Ur(g[t]) = Ur(a)U< by (2.5.3) and we clearly have Z C J, it suffices
to show that

UvlzcCu

We will decompose the set Z into parts, and prove the inclusion for each part. Namely, we first
decompose Z into (Z N Up(n*[t])Ur(h[t])) U (Z N Ur(n~[t])), and then we further decompose Z N
Ur(n~[t]) into {(z5)™ :m > A(hg)} U {(xis)(k) 18 € Lo, k > max{0, \(h1) — 3s}}.

Since h[t|@nt[t] is a subalgebra of g[t],Ur(n"[t])Ur(h[t]) = Ur(h[t])Ur(n™[t]) by PBW Theorem,
and, therefore,

U2 (T Us(wt[E)Ur(b[t])) € Ur(b[t]))Ue(n*[1)).
Now, by (2.5.3), Up(h[t])Ur(nT[t]) C J, showing that U (Z N Up(n*[t])Ur(h[t])) C J. In particular,
we have shown that

(2.5.4) Ur(glthUr(n*[t])" € J.

It remains to show that
U (ZNUp(n~[t])) C J.

We begin by proving that Ug Ur(ny ) C J, where n;, is the subalgebra spanned by z, . Consider
the natural Q-grading on Ur(g[t]) and, for n € Q, let Ur(g[t]), denote the corresponding graded
piece. Observe that my :=n™[t] @ ny is a subalgebra of g[t] and that

U2Ur(ny) € @Ur(ma)y,
n

where the sum runs over Z~ga1 ® Zas. Together with the PBW Theorem, this implies that
U2Up(ny) C Up(ny )US C Up(a)UL C J.

Finally, we show that U2 Z; C J, where Z; = (I NUr(ny [t])) and n; is the subalgebra spanned
by z . Consider

sy —1

il = P @ Cat,

ve€R"\{ar} s=0

which is a subalgebra of n*[t] such that n*[t] = nj © n*[t]L, where nj = Czi. Moreover,
my = nt[t]L @ ny[t] is a subalgebra of g[t] such that U(my), # 0 ouly if n € Zay & Z>oas and
U(my)p = C. This implies that

Us(w*[t)2) Us (ny [t]) = U (ny [t]) Us(n " [t]2)°.
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Since UY = Up(n])Up(n*[t]L)° @ Ur(n])?, we get

U2 7y € (Us(n))Us(w*[(2)° + Us(n])°) 4
C Us(n})Us(ny [f))Us (0 [112)° + Us(n )2y
C Ur(glt)) Us (0 [£))° + Us (n)°Z.

The first summand in the last line is in J by (2.5.4) while the second one is in J by Corollary 2.3.23
(with A = A(h1) and £ = 3) together with (2.5.4). O

Set h; = Ch;,i € I, and b = n~[t] D h[t]; ®hydnt[t]s. Observe that b is an ideal of a such that
a =b®bh;. One easily checks that there exists a unique Lie algebra homomorphism ¢ : b — g[t]
such that
qﬁ(ajﬂiw) = xirﬂFsv for all v € RY.
Moreover, ¢ is the identity on h[t]+ +5la,. Also, ¢ can be extended to a Lie algebra map a — U(glt])
by setting ¢(h1) = h; — 3 (cf. [Naol2, Section 4.2]). Proceeding as in Section 2.2.2, one sees that
¢ induces an algebra homomorphism Up(a) — Ur(g[t]) also denoted by ¢.

We are ready to prove the analogue of Lemma 2.5.3 for type Gb.
Lemma 2.5.5. Let V be a finite-dimensional Ug(g[t])-module, A € P*, and suppose v € V), satisfies
Ur(nt[t])% = Up(h[t]+)%v = 0 and (wis)(k)v = 0 for all & > max{0,A(h;) — 3s}. Then, for every
short root v, we have (x;s)(k)v =0 for all s > 0,k > max{0, A\(hy) — 3s}.

PROOF. Notice that the conclusion of the lemma is equivalent to

(25,)®) € Ig(\) forall s>0, k>max{0,A(h,)—3s}

for every short root 7. Recall that the short roots in R are aq, o := a1 + ao and ¥ := 201 + s
while the long roots are g, 8 := 3a1 + a2 and 0 := 31 + 2a2. For v = o, we have hy = hy + 3ha
and the proof is similar to that of Lemma 2.5.3. Namely, fix s > 0 and recall that hy = hy + 3hg.
Suppose first that p(hy) —3s > 0. In this case, we can choose a,b € Z>( such that

a+b=s, w(he) —3a >0, and p(hg) —b > 0.
Indeed take a = max{0,s—u(hg)}. Since a € R}, it follows that (x;ﬂ)(k)v =0 for all & > pu(hy) —
3a. By Lemma 2. 5 2, we have (asﬁ b)( )y = 0 for all k > p(hg) —b. Applying Lemma 2.3.7 to the

subalgebra U (g ) it follows that (z7, )(k)v =0forall k > (u(ha)—3a)+3(n(hg)—b) = p(hy)—3s.

Now, suppose ,u(h )—3s<0in Wthh case we have to show that (7 )(k)v = 0 for all £ > 0. Notice
that we can choose a,b € Z>q such that

a+b=s, w(he) —3a <0, and p(hg) —b < 0.
Indeed take a = s — u(hg). Since o € R}, it follows that (z;ﬂ)(k)v =0 for all £ > 0. By Lemma
2.5.2, we have (x/;b)(k)v =0 for all £ > 0. A new application of Lemma 2.3.7 completes the proof.

We shall use that the lemma holds for v = « in the remainder of the proof. It remains to show
that the lemma holds with v = 4. Notice that hy = 2hy + 3hy and, thus, we want to prove that

(2.5.5) (25)® € Ig()) forall s>0, k>max{0,2)\(h1)+3A(hs) — 3s}.

We prove (2.5.5) by induction on A(h1). Following [Naol2], we prove the cases A\(h1) € {0, 1,2}
and then we show that (2.5.5) for A — 3w in place of A implies it for A. To shorten notation, set
a = )\(hl), b= )\(hg)
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1) Assume a = 0. Since a; € R}, it follows that (z7)*v = 0 for all k > 0. By Lemma 2.5.2, we
have (33278)(’“)1) = 0 for all £ > max{0,b — s}. Applying Lemma 2.3.7 to the subalgebra Uﬂr(gg’iaQ),
it follows that (xgvs)(k)v =0 for all £ > 3max{0,b— s} = max{0,2a + 3b — 3s} as desired.

2) Assume a = 1. This time we have (z7)*)v = 0 for all & > 1. We split in 3 subcases.

2.1) Suppose b > s — 1 and notice 2a + 3b — 3s > 0. Lemma 2.5.2 implies (xis)(k)v = 0 for all
k > max{0,b — s} = b—s. Applying Lemma 2.3.7 to the subalgebra Ur (g2 ,,), it follows that
(m;}s)(k)v =0 forall kK >2+3(b—s)=2a+ 3b— 3s.

2.2) Suppose b = s — 1 in which case 2a + 3b — 3s < 0. Notice that hg = hy + ho and, hence,
Ahg) = a+b = s. Lemma 2.5.2 then implies that (acgs)(k)v = 0 for all £ > 0. Notice that
{—a1, B} form a basis for R. Since, (z])®v = 0 for all & > 0, Lemma 2.3.7 applied to the
subalgebra UF(Q%ZLB) implies that (m;}s)(k)v =0 for all £ > 0.

2.3) Suppose b < s — 1 in which case 2a + 3b — 3s < 0. This time we apply Lemma 2.3.7 to the
subalgebra Ur (g7 ,>). Indeed, we have (mil)(k)v = 0 for all £ > max{0,a — 3} = 0 and Lemma
2.5.2 implies that (x215_2)(k)v = 0 for all £ > max{0,b — (s —2)} = 0. Thus, since3(b —s) < —3
and a = 1, we have max{0,2a + 3b — 3s} = 0 and Lemma 2.3.7 implies that (w;vs)(k)v = 0 for all
k> 0.

3) Assume a = 2. We split in subcases as before.

3.1) If b > s — 1 the proof is similar to that of step 2.1.

3.2) Suppose b = s — 1 and notice that 2a + 3b — 3s = 1. Hence, we want to show that (2.5.5)
holds for k > 1. For k > 3 we apply Lemma 2.3.7 to the subalgebra Up(gl?,2) in a similar fashion

901,02
as we did in step 2.3 (the same can be conclude using the argument from step 2.2). For k € {2,3}
we need our hypothesis on the characteristic of F. Assume we have chosen the Chevalley basis so
that x, = [xf,a:/g] and observe that (0.1.4) implies that [z, 23] = +2z,. Using this, one easily
checks that

_ _ 1 _ 1 _ _
(:c%)(?) = ()@ (xﬂ,s)@) — 556?(1,‘[873)(2)1‘1"_ — §xﬂ,sxﬁ,s$f F Ly Lo

Using the case v = a and Lemma 2.5.2 we see that x, ;v = (l‘ﬁ )@ v = 0. Hence, since 2 € F*,
(2.5.5) holds for k = 2. For k = 3, we have (z, )®) = 1z Ty s(Ty 5..)@ and, since 3 € F*, (2.5.5) also
holds for k = 3.

3.3) If b < s — 1 the proof is similar to that of step 2.3.
4) Assume a > 3 and that (2.5.5) holds for A — 3w.

4.1) Suppose s > 2 and recall the definition of the map ¢ : Ur(a) — Up(g[t]). The induction
hypothesis together with Lemma 2.5.4 implies that

(331;,3—2)(“ € If(A—3wy) for all k > max{0,2a+ 3b— 3s}
and, therefore
(5.)® = 6 ((25,,5) ") € G(It(A = Bw1)) forall k> max{0,2a + 3b — 3s}.

One easily checks that ¢ sends the generators of I(A — 3w;) to generators of Ir(\), completing the
proof of (2.5.5) for s > 2.

4.2) For s = 0, notice that Ur(g)v is a quotient of Wgr(\), and (2.5.5) follows. Equivalently, apply
Lemma 2.3.7 to Ur(g2°,,) = Ur(g) and the proof is similar to that of step 2.1.
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4.3) If s =1 and b > 1, we have 2a + 3b — 3s > 0 and the usual application of Lemma 2.3.7 to
Ur (g% o,) completes the proof of (2.5.5). If s = 1 and b = 0, we need to show that (25 ) Fv =0
for k > 2a — 3.

Consider the subalgebra Up(sly[t]) = Up(slz[t]) defined in Section 2.2.3. Since A(hy) = 2a, it
follows that W := Ug(sly[t])v is a quotient of Up(slz[t])-module W§(2a), where we identified the
weight lattice of sly with Z as usual. Since W§(2a) = Dg(1,2a) by Theorem 2.1.2(a), the defining
relations of Dy(1,2a) imply (xal)(k)v = 0 for £ > 2a — 1. It remains to check that (3:571)(";)2; =0
for k € {2a —2,2a — 1}.

Suppose by contradiction that (a:;l)@“*l)v # 0 and notice that

(2.5.6) (25) " (25 ) D=0 forall k> 0.
Indeed,
(xq;)(k) ($5,1>(2a_1)v € Wg(2a) _2a—2(k—1)

is a vector of degree 2a — 1 > 1 for all £ > 0. By the Weyl group invariance of the character
of W§(2a), we know that Wg(2a)_gq_op—1) = 0 if & > 1, and that W§(2a)_a,_gk—1) is one-
dimensional concentrated in degree zero if kK = 1. This proves (2.5.6). Then, Lemma 2.3.3 implies
that

(xg)(2a—2)(xg’l)(2a—1)v ?é 0.
On the other hand, it follows from Lemma 2.2.1 that
($§)(2a_2) (555,1)(2@_1)1’ =Ty9a_10-
Since 2a —1 > 2 and 2a — 3(2a — 1) = —4a + 3 < 0, it follows from step 4.1 that =3 ,, ;v =0
yielding a contradiction as desired.

Similarly, assume by contradiction that (mal)@a_?)v = 0 and notice that
(x;)(k) (:1:51)(2“_2)1) =0 forall k>1.
Suppose first that we also have x (x51>(2a72)1) = 0. It then follows from Lemma 2.3.3 that
(xl-;—)(2a74) (mg’l)(2a72)v 75 0.
On the other hand, Lemma 2.2.1 implies that

2a—2
("L‘i’r)@a_él) ($,L; 1)(2a—2)v = (x;,a—l)(Q)v + Z :E':;,Za—2—rx1§,rv'

)
r=a

Since a — 2 > 2, step 4.1 implies that (x;r)(k)fu =0 for all » > a — 1,k > 0, implying that
the right-hand side is zero, which is a contradiction. It remains to check the possibility that
Ty ($571)(2“_2)v # 0. In this case it follows that z, (ac;’l)@“_mv is a lowest-weight vector for the
algebra Up(sly) and, hence, Lemma 2.3.3 implies that

(:I:g)@“_mxg (x571)(2“_2)v #0.
Using (2.2.1) we get
(25) 2Dy (25 ) 2 Do = (25 ()22 + (@)@ (25, @D,

Lemma 2.2.1 together with step 4.1 will again imply that the right-hand side is zero. This completes
the proof. 0
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2.5.3. Existence of Demazure flag. If g is simply laced, Theorem 2.1.2 (b) follows imme-
diately from part (a) with & = 1. Thus, assume from now on that g is not simply laced and recall
the notation introduced in Subsection 2.2.4.

Given A € Pt let u = X € P and v be the image of 1 in WE()). Consider W := U(gg,[t])v
and W5l := Uz(gg[t])v. By [Naol2, Lemma 4.17], there is an isomorphism of U (gg[t])-modules
Wgh = De(1, ). By Corollary 2.3.12, W5h is an integral form of WE(u) = Dc(1, ). Hence, we
have an isomorphism of Uz(gy, [t])-modules WP = Dy (1, ).

Since ggy, is of type A, Theorem 2.4.5 implies that there are k > 0, g, ..., ux € PST), my,...,mg €
Z>o, and a filtration of Uz (ggp[t])-modules 0 = Dy € Dy C --- C Dy, = W5h, such that D; and
Dj/Dj_; are free Z-modules, and D;j/D;_1 = Dz(r¥, uj,m;) for all j =1,..., k. In particular,

(2.5.7) WiP/D; s a free Z-module for all j = 0,..., k.

Set \j = n(y1;) € PT where 7, is defined in (2.2.10), W = Uz(g[t])D; and W = F @z W5. We
have 0 = W2 C Wi C --- C W, and A\, = X since g = p. Hence, we are left to show that

W2 /Wi = Dp(1,Mj,m;) forall j=1,....k and WE=WgN).

Notice that W% = Uyz(g[t])v. Then, Corollary 2.3.12 implies that W2 is an integral form of
WE(A). Since Z is a PID and Wk is a finitely generated, free Z-module, it follows that W% is a
free Z-module of finite-rank for all j = 1,..., k. Set Wl = U (g[t])D;. It follows from [Naol2,
Proposition 4.18] or Theorem 2.1.2 (b) (in characterlstlc zero) that Wé/Wj '~ pe(a, Aj,my) for
all j =1,..., k. Moreover, since Wé >~ C @y Wi, it follows that C®y (W]/Wj 1) (W] /WJ 1) o~
Dc(1, A, m]) Therefore, W%/W] ! is a finitely generated Z-module of rank dim(Dg(1, Aj,m;))
forall j =1,...,k. Since Wl/WL ™' = F @y (Wi/W5 ™), it follows that

dim(WZ/W2™") > dim(Dc(1, Aj, m;)) = dim(Dg(1, A, m;)).

Now, let v; € D; be as in Theorem 2.4.5, w be the image of v in W, u; € Uz(ng,[t]) be such
that v; = u;v, and w; = ujw. It follows that

Wi = Us(glt)vn and Wi="> Us(g[t])wn

n<j n<j

We will show that the image w; of w 1n WEZ / WJ satisfies the relations described in Proposi-

tion 2.5.1, which implies that Wﬁ- / WJ is a quotient of Dg(1,\;,m;) and, hence, WEZ / W] =
Dg(1, )\],m]) forall j=1,... k.

By construction, v; is a weight vector of weight A\; and degree m;, and so is w;. Since D;j/D;_1 =
Dy (rY, uj,m;), it follows that

Us ()"0 = Vel [t14)°0; =0 and ()P, = 0
for all € R}, s > 0,k > max{0, A\(hq) — srV},j = 1,..., k. Thus, it remains to show that
(af )M = Ai iy = (27)Fw; =0
forall o € RT\ RL,i € I\ I, s> 0,7,m >0,k > X\;j(h;),j =1,...,k. Since,
(2.5.8) Nj+magA—QT  forall aeRT\RL,m>0,

we get (xis)(m)wj = 0 for all m > 0,s > 0. In particular, it follows that w; is a highest-weight
vector of weight \; and, hence, (z; )w; = 0 for all i € I,k > A(h;). Finally, we show that

(2.5.9) Am«?f)j =0 forall 7€1 \ Igh, 7 >0,5=1,... k.
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Observe that
Aiuj € Uz(ng)Uz(b[t]+).

In particular, A;,v; € Wgh N W%. We will show that A;,v; € D;_; which implies (2.5.9). Let
y; € Uz(ng,) be such that A, ,u; = y; modulo Uz(ng,)Uz(h[t]+)". Thus, we want to show that

(2510) Y;jv € Djfl.

We prove this recursively on 7 = 1,...,k. Notice that, since C ®z (W%/W%_l) = Dc(1, Aj,my),
there exists n; € Z~o such that n;y;v € W%_l,j =1,...,k. In particular, since Wg =0 and Wzl is
a torsion-free Z-module, (2.5.10) follows for j = 1. Next, we show that (2.5.10) implies

(2.5.11) WinWwsh = D;.
Indeed, it follows from (2.5.8) and (2.5.10) that
WY, = Us(n™ [E)Un(ganft]) e + W2

Since Uz (hg, [t]+)°Uz(n} )Pv; € Dj_q and, by induction hypothesis, W%fl NWh = D;_q, (2.5.11)
follows by observing that

(Uz(n~[t)v;) N W5" € D;

which is easily verified by weight considerations). Finally, observe that, since n;11y;11v € Wi n

J+195+ Z
Wsh = Dj;, (2.5.7) implies that yj11v € D;. Thus, (2.5.11) for j implies (2.5.10) for j + 1 and the
recursive step is proved.

Remark 2.5.6. It follows from the above that WEJ-‘/W]EZA = Dr(1,Aj,m; ) for any field F. Hence,
W%/Wéfl must be isomorphic to Dz(1,Aj,m;) for all j =1,... k.

It remains to show that WiF = Wg()\). Since we have a projection WE(X) — WE of Ug(gl[t])-
modules by the universal property of Wg()), it suffices to show that dim(Wg(\)) < dim(W§¥). This
follows if we show that there exists a filtration 0 = WEQ C WE} Cc ... C Wﬂff = W§g(A) such that
ng/ng_l is a quotient of Dp(1,A;,m;) for all j = 1,...,k. Let v’ be the image of 1 in W§(N),
wh = ujw’ € WgE(N), Wi = >on<; Ur(a[t))w;, € WE(N), and @ be the image of w’ in Wi /Wit
Observe that Wi = WiE(\). We need to show that w’; satisfies the defining relations of Dp(1, \;)
listed in Proposition 2.5.1. Let D; = F ®z D; and D = 3,<; Ur(ga[t))wy,. Notice that Dj is
a quotient of W§(u) = Dy, and let m : Dy, — D) be a Up(gg,[t])-module epimorphism such that
vg +> wj, (we keep denoting the image of v; in D; by v;). In particular, w; = m(v;) and 7 induces
an epimorphism D; — D; forall j =1,...,k. In particular,

awi € Dj_y forall x € Uz(gglt]) such that zv; e Dj .
This immediately implies that

Us(n,[t])°w) = Us(b[t]+) @) = 0 and (ag

] a78

Y =0

for all @ € R%,s > 0,k > max{0, A\(ho) — srV}, j = 1,...,k. Note that (2.5.10) has been used
here. The relations

()@ = (a7) D} = 0

forall« € R\ R} ,i € I\ I, s >0,m >0,k > X\;(h;),5 =1,...,k follow from (2.5.8) as before.
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2.5.4. Isomorphism between local Weyl modules and graded local Weyl modules.
We now prove Theorem 2.1.2 (c). Recall the definition of the automorphism ¢, of Ur(g[t]) from
Subsection 2.2.2. In particular, let @ € A* be such that its image in F is a. Denote by ¢ (Wr(wxq))
the pull-back of Wg(w) 4) (regarded as a Up(g[t])-module) by ¢q.

Notice that dim Wg(wy,) = dimWg(wyg) = dimWg(A) = dimWg(A). In fact, the first
equality follows from (2.1.4), the second from Proposition 2.3.15 and (2.3.5) (with F = K), and
the third from Corollary 2.1.3. Since dim ¢} (Wr(w» ) = dim Wr(wy q), Theorem 2.1.2 (c) will be
proved if we show that ¢} (Wr(wyq)) is a quotient of Wi(A).

Let w € Wr(wxq)a \ {0} and denote by w, the vector w when regarded as an element of
or(Wr(wxq)). Since Wr(wy o) = Ur(g[t])w and ¢, is an automorphism of Ur(g[t]), it follows that
©rWr(wx o) = Ur(g[t])w,. Thus, we need to show that w, satisfies the defining relations (2.1.1)
of WE()). Since ¢, fixes every element of Ur(g), w, is a vector of weight A annihilated by (2 )®*)
for all @« € R,k > A(hy). Equation (2.2.8) implies that ¢, maps Up(n™[t]) to itself and, hence,
Up(nt[t])°w, = 0. Therefore, it remains to show that Ug(h[t])°w, = 0.

For showing this, let v € Wi (wx a)x\ {0} and L = Uy(g[t])v. By (2.1.4), F®a L = Wr(wy,). In
particular, the action of Up(h[t]+)® on ¢ (Wr(wx4)) is obtained from the restriction of the action
of Ug(h[t]+)° on @i (Wk(wxa)) to Ua(h[t]+)?. Since Uk (h[t]+) is generated by h;,,i € I,7 > 0, we
are left to show that h;,v, = 0, where v, is the vector v regarded as an element of ¢%(Wk(wxz)).

The irreducible quotient of Wk (w» z) is the evaluation module with evaluation parameter a
(cf. [JMO7, Section 3B]). Hence, h; sv = @*A(h;)v for all i € I,s € Z. Using this, it follows that,
for all i € I, > 0, we have

r s

higva = (hi ® (t — @)")v = Z ($)(=@)°hig—sv = A(hi)a" Z (5)(=1)*v =0,

s=0 s=0
completing the proof of Theorem 2.1.2 (c).
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