TOPOLOGIAS MISTAS DE ESPAÇOS VETORIAIS TOPOLÓGICOS E ÁLGEBRAS TOPOLÓGICAS

Maria Lúcia Bontorim de Queiroz

Orientador: Prof. Dr. João Bosco Prolla

Tese apresentada no Instituto de Matemática, Estatística e Ciência da Computação da Universidade Estadual de Campinas como requisito parcial para a obtenção do título de Doutor em Matemática.

ERRATA

Dag	Linha	Onde se Lê:	Leia:
<u>Pag.</u> 2	<u>-8</u>	F-convexo fechado	F-convexo, equilibrado e fechado
2	-4	EVT não arquimediano	EVT
3	4	B também é	B ₁ também é
3	8	EVT normado não arquimediano	I EVT normado
6	3	Se g∈B,	Se $g \in V$,
7	6	ε/K+1	ε/k+1
9	9	i = 1,,n	i = 1,, n-1
9	10	Tomemos $f_{n+1} = g_{k_{n+1}}$	Consideremos
:		sobre K e consideremos	
15	-6	ξ ∈ ઉ	ξ∈G ₁
18	1	(ver Prolla [17])	(ver Prolla [16])
19	3	(ver Prolla [17])	(ver Prolla [16])
27	7	$\mathbf{L}(\tau) \subseteq \mathbf{L}(\gamma[\eta,\tau])$	$L(\tau) \subseteq L(\gamma[\eta,\tau])$ (ver Prop. 1.22)
41	4	μ∈ S _{sc}	σ∈ G _{sc}
43	3	$\mathbf{x} \in \mathbf{T}^{-1}(\mathbf{x}) \in \mathbf{T}^{-1}(\lambda \mathbf{V}) = \mathbf{T}^{-1}(\mathbf{V})$	$\mathbf{x} \in \mathbf{T}^{-1}(\lambda \mathbf{V}) = \lambda \mathbf{T}^{-1}(\mathbf{V})$
47	-5	localmente F-convexo	normado não arquimediano
49	-7	$\gamma(U) = \bigcup_{n=1}^{\infty} \sum_{m=1}^{\infty} (U_{k} \cap B_{k})$	$\gamma(l) = \bigcup_{n=1}^{\infty} \sum_{k=1}^{\infty} (U_k \cap B_k)$
51	-6	$\mathbf{x} \in \begin{array}{c} \mathbf{p} & \mathbf{m} \\ \mathbf{\Sigma} & (\mathbf{V}_{k} \cap \mathbf{B}_{k}) + \mathbf{\Sigma} \\ \mathbf{k} = 1 & \mathbf{k} + 1 \end{array}$	$x \in \sum_{k=1}^{p} (v_k \cap B_k) + \sum_{k=1}^{m} \dots$
63	- 5	Seja (Ε,τ) um espaço nor- mado. Se existir	Se existir
64	6	$u = \{u_n; n \in 0, 1,\}$	$U = \{U_n; n = 0,1,\}$
64	9	pāgina 46	pagina 48
69	3	$v_n + v_n \subseteq v_{n+2} + (v_n \cap B_n) + \dots + (v_{n+2} \cap B_{n+2})$	$v_n + v_n \subset v_{n+2} \cap v_{n-1}$
70	8	$+(U_{n_0} \cap B_{n_0})+\ldots+(U_{n_0+2} \cap B_{n_0+2})$	$\dots + (\mathbf{v}_{n_o+2} \cap \mathbf{v}_{n_o+2})$
74	9	Portanto, se • for n.a.,	Portanto $(E;\eta,\tau)$
		então (Ε;η,τ)	
76		2.5(iii)	2.4(iii) p̃(x)
77	3	p̄ _n (x) k=1	$\tilde{p}(x)$
80	6	k=1	k=0

٠.	·		
			•
<u>Pag</u> .	<u>Linha</u>	Onde se Lê:	Leia:
96	2	B _n B _{n+1}	B _k B _{n+1}
96	5	$(\mathbf{v}_{\mathbf{k}} \cap \mathbf{B}_{\mathbf{k}}) \cap (\mathbf{v}_{\mathbf{n}+1} \cap \mathbf{B}_{\mathbf{n}+1})$	$(v_k \cap B_k) \cdot (v_{n+1} \cap B_{n+1})$
96	→7	$ \begin{array}{cccc} & n & m \\ & \cup & \Sigma & (V & \cap B) \\ & j=1 & j=1 \end{array} $	$ \begin{array}{cccc} & \infty & n \\ & \cup & \Sigma & (V_j \cap B_j) \\ & n=1 & j=1 & j \end{array} $
98	-2	a n	$\lambda_{\rm n}$
98	3	a n	λ _n
99	2	$p_{n}(x,y) \leq p_{j_{n}}(x)p_{n}(y)$	$p_{n}(x y) \leq p_{j_{n}}(x)p_{j_{n}}(y)$
101	9	$p(xy) \leq p(x)q(x)$	$p(xy) \leq p(x)q(y)$
101	-4	b∈ L(τ)	$B \in L(\tau)$
101	-7	Definição 4.8	Definição 4.3
102	10	U n	V _n
103	-2	$x \in E$	x ∈ U
104	5	localmente m-bornívora	topológica
104	6	4.18	4.18; e portanto é localmente m-
			bornívora
110	-7	ys∪sy.	US U SU onde S é a bola unitária
	_		de (E,n)
112	-1	p(g ₁ ,g ₂) Se x ₁ ≠ x ₂	p(g ₁ • g ₂)
122	1	Se $x_1 \neq x_2$	Se $x_1 = x_2$
			I

Para Gilberto

AGRADECIMENTOS

Meus agradecimentos ao Prof. Dr. João Bosco Prolla, pela orientação e incentivo recebidos.

Agradeço também a todos aqueles que direta ou indiretamente colaboraram para a realização deste trabalho.

TOPOLOGIAS MISTAS DE ESPAÇOS VETORIAIS TOPOLÓGICOS E ÁLGEBRAS TOPOLÓGICAS

INTRODUÇÃO	i
0 - Preliminares	1
l - A Topologia Mista γ[η,τ]	12
2 - Bases de Vizinhanças de γ [η , τ]	47
3 - Espaços de Saks	73
4 - Topologias Mistas de Álgebras	90
5 - O Espectro de ($C_b(X;E)$, $\gamma[\kappa,\sigma]$)	117
REFERÊNCIAS	131

INTRODUÇÃO

Se E é um espaço vetorial munido de duas topologias de espaço vetorial topológico, digamos η e τ , a noção de γ -convergência é introduzida da seguinte maneira: diz-se que a rede $\{x_{\alpha}\}$ γ -converge para $x\in E$, e escreve-se $x_{\alpha}\xrightarrow{\gamma}x$, se $\{x_{\alpha}\}$ é τ -limitado e $x_{\alpha}\xrightarrow{\gamma}x$ na topologia η . Surge então o problema de caracterizar a γ -convergência por meio de uma topologia de EVT sobre E, isto é, obter uma topologia de EVT sobre E de tal maneira que $x_{\alpha}\xrightarrow{\gamma}x$ se e somente se $x_{\alpha}\xrightarrow{\gamma}x$ nessa topologia.

A noção de γ -convergência no caso real ou complexo foi introduzida e estudada por Fichtenholz, Alexiewicz e Semadeni no caso em que as topologias η e τ provém de normas $\|\cdot\|$ e $\|\cdot\|^*$, respectivamente (Ver [1], [2], [3], e [8]). A solução do problema acima citado foi obtida por Wiweger [20] e [21] e Persson [15], que batizaram a mais fina das topologias de EVT que fornece a γ -convergência de "topologia mista". Tanto Wiweger como Persson con sideraram topologias η e τ localmente convexas (E real ou complexo). O caso real ou complexo não localmente convexo foi estuda do por Iyahen [10].

A utilização de uma noção de "limite-indutivo" foi introduzida por Garling [9].

Nesta tese estendemos o estudo das topologias mistas para o contexto dos espaços vetoriais topológicos sobre um anel de divisão não trivialmente valorizado (F, |.|).

No § 1 caracterizamos a topologia mista $\gamma[\eta,\tau]$ como um exemplo de limite indutivo generalizado e estudamos alguns casos particulares, como por exemplo aquele em que (E,η) e (E,τ) são espaços localmente F-convexos no sentido de Monna [11], Van Tiel [19].

No § 2 caracterizamos sistemas fundamentais de vizinhanças da origem para a topologia mista $\gamma\left[\eta,\tau\right]$.

Os espaços de Saks reais ou complexos foram originariamente estudados por Orlicz [12] e [13] e Orlicz e Pták [14]. Neste caso τ é induzida por uma pseudo-norma ou F-norma (isto é, a condi ção de homogeneidade é substituída por outra mais fraca mas garante continuidade da multiplicação por escalares), e portanto a topologia mista associada não é localmente convexa. Em sua mono grafia [7], Cooper adota em sua definição de espaços de ponto de vista localmente convexo: um espaço de Saks é uma terna (E;η, | . |) onde E é um espaço vetorial (real ou complexo), η uma topologia localmente convexa em E, e | . | é uma verdadeira norma sobre E tal que a bola unitária {x ∈ E; |x| < 1} é fecha da e limitada na topologia η. No § 3 fazemos um breve estudo no presente contexto, e caracterizamos um sistema fundamental de seminormas que define a sua topologia mista $\gamma[\eta, \|.\|]$. Um dos prin cipais exemplos \tilde{e} o de $C_{h}(X;E)$, espaço de todas as funções cont $\underline{1}$ nuas e limitadas, definidas num espaço localmente compacto e dimensional X e com valores num espaço normado E, η é a topologia compacto-aberta e | . | é a norma do supremo. Mostramos que nestas circunstâncias γ[η, [.]] coincide com a topologia estrita β definida em Soares [18] por meio de pesos induzidos por funções nulas no infinito.

Uma questão que naturalmente se põe é a seguinte: se E é uma álgebra sobre (F,|.|) e η e τ são topologias de álgebras topológicas, em que circunstâncias a topologia mista $\gamma[\eta,\tau]$ é uma topologia de álgebra topológica. Esta questão e outras correlatas são estudadas no § 4.

Finalmente no § 5 estudamos o espectro da topologia mista de $C_{\rm b}({\rm X;E})$ mencionada acima, quando E é uma álgebra normada sobre $({\rm F,|.|})$. O caso real ou complexo foi estudado por Prolla [17] no contexto das álgebras de Nachbin.

§0 - PRELIMINARES

Em todo este trabalho, consideraremos espaços vetoriais sobre um anel de divisão não trivialmente valorizado $(F, |\cdot|)$.

DEFINIÇÃO 0.1: Um subconjunto A de um espaço vetorial E é dito F-convexo se para quaisquer x, y e z em A e para quaisquer α , β e γ em F com α + β + γ = 1, $|\alpha| \le 1$, $|\beta| \le 1$ e $|\gamma| \le 1$, occorrer α x + β y + γ z \in A. Se (E, τ) é um EVT que possui uma base de vizinhanças F-convexas de origem, então (E, τ) é chamado um EVT β 0 convexo.

DEFINIÇÃO 0.2: Um subconjunto A de um espaço vetorial E é dito semiconvexo se existir um escalar $\lambda \in F^*$ tal que A + A $\subseteq \lambda A$. Se (E,τ) é um EVT que possui um sistema fundamental de vizinhanças semiconvexas da origem, dizemos que (E,τ) é um EVT localmente semiconvexo.

PROPOSIÇÃO 0.3: Se (E,τ) \bar{e} um EVT localmente F-convexo, então (E,τ) \bar{e} localmente semiconvexo.

DEMONSTRAÇÃO: Seja U uma base de vizinhanças F-convexas da origem em E e seja U \in U. Vamos mostrar que U é semiconvexa. Como $0 \in U$, se x e y então em U, temos $x + y = 1 \cdot x + 1 \cdot y - 1 \cdot 0 \in U$. Logo $U + U \subseteq U$ e portanto (E, τ) é localmente semiconvexo.

DEFINIÇÃO 0.4: Dizemos que um EVT (E,τ) é quase-convexo se existir um conjunto F de partes equilibradas, semiconvexas e τ -limitadas de E formando um sistema fundamental de subconjuntos τ -limitados de E.

Observamos que existindo F como acima, é possível ser encontrada uma família F' cujos elementos são também τ -fechados.

PROPOSIÇÃO 0.5: Se (E,τ) \bar{e} um EVT localmente F-convexo, ent \bar{a} o (E,τ) \bar{e} quase-convexo.

DEMONSTRAÇÃO: Seja $B \in \mathbb{H}$ (τ) e seja $B_1 \subseteq E$ sua envoltória F-convexa e equilibrada. Seja V uma vizinhança fechada e F-convexa da origem em (E,τ) .

Então existe $\delta > 0$ tal que $B \subseteq \lambda V$ sempre que $\lambda \in F^*$ com $|\lambda| \ge \delta$.

Como λV é F-convexo, fechado e contém B, temos B λV . Portanto B λV λV .

Além disso, como B_1 é F-convexo, é também semiconvexo. Concluimos então que (E,τ) é quase convexo.

PROPOSIÇÃO 0.6: Se (E,τ) \bar{e} um EVT não arquimediano localmente $\ell \underline{i}$ mitado, então (E,τ) \bar{e} quase convexo.

DEMONSTRAÇÃO: Sejam $B \in IL(\tau)$ e V uma vizinhança limitada, fechada e equilibrada da origem em (E,τ) . Então existe $\delta > 0$ tal

que $B \subseteq \lambda V$ sempre que $|\lambda| \ge \delta$, $\lambda \in F^*$. Seja $\lambda_0 \in F^*$ com essa propriedade e seja $B_1 = \lambda_0 V$. Temos $B \subseteq B_1$, $B_1 \subseteq IL(\tau)$, pois $V \in \tau$ -limitada, e $B_1 \in f$ fechado e equilibrado.

Como V é uma vizinhança da origem em (E, τ), B também é, e $B_1 + B_1 \in \mathbb{L}(\tau)$. Logo existe $\delta_1 > 0$ tal que para qualquer $\mu \in F^*$ com $|\mu| \geq \delta_1$, $B_1 + B_1 \subseteq \mu B_1$. Portanto B_1 é semiconve xo. Assim, (E, τ) é um EVT quase-convexo.

COROLÁRIO 0.7: Se (E,τ) \bar{e} um EVT normado não arquimediano então (E,τ) \bar{e} quase-convexo.

DEFINIÇÃO 0.8: Uma sequência $u=(u_n)_{n\in\mathbb{N}}$ de subconjuntos não vazios de um espaço vetorial E é uma corda em E se:

- a) para cada $n \in \mathbb{N}$, \mathbf{U}_n $\tilde{\mathbf{e}}$ equilibrado;
- b) para cada $n \in \mathbb{N}$, $U_n \in absorvente$;
- c) $U_{n+1}+U_{n+1} \subseteq U_n$, para todo $n \in \mathbb{N}$;
- d) para algum $\lambda \in F$, com $0 < |\lambda| < 1$ (e portanto para todo $\lambda \in F^*$), dado $U_n \in \mathcal{U}$, existe $U_m \in \mathcal{U}$, m > n, tal que $U_m \subseteq \lambda U_n$.

Un é chamado o n-csimo no de U.

DEFINIÇÃO 0.9: Uma corda $u = (u_n)_{n \in \mathbb{N}}$ em um EVT (E,τ) é dita τ -topológica se para cada $n \in \mathbb{N}$, u_n é uma τ -vizinhança da origem em E.

DEFINIÇÃO 0.10: Uma corda $U = (U_n)_{n \in \mathbb{I}N}$ em um EVT (E,τ) é dita τ -bornívora se, para cada $n \in \mathbb{I}N$, U_n é um subconjunto τ -bornívoro de E.

DEFINIÇÃO 0.11: Seja E um espaço vetorial e sejam τ e μ duas topologias de EVT sobre E. Dizemos que a topologia μ é τ -sechada se μ admite um sistema fundamental de vizinhanças τ -fechadas da origem.

DEFINIÇÃO 0.12: Um espaço topológico (X,τ) é chamado 0-dimensional se cada ponto de X possui uma base de τ -vizinhanças abertas e fechadas.

DEFINIÇÃO 0.13: Seja X um espaço localmente compacto e 0-dimensional. Denotaremos por $C_{\rm b}({\rm X};{\rm F})$ o espaço das funções contínuas e limitadas definidas em X com valores em F. Definiremos sobre $C_{\rm b}({\rm X};{\rm F})$ as seguintes topologias, que serão eventualmente abordadas no decorrer deste trabalho:

- 1) a topología da convergência uniforme sobre. X, definida pela norma $\|f\|_{\infty} = \sup_{\mathbf{x} \in \mathbf{X}} |f(\mathbf{x})| \text{ e denotada por } \sigma;$
- 2) a topología da convergência uniforme sobre as partes compactas de X, definida pelas seminormas $\|f\|_{K,\infty}$ ou seja, $p_K(f) = \sup_{x \in K} |f(x)|$ onde K percere a família de todos os subconjuntos compactos de X, denotada por κ ;
- 3) a topología estrita, denotada por β , definida pelas seminormas $p_{\varphi}(f) = \sup_{x \in X} |\varphi(x)f(x)|, \text{ onde } \varphi \text{ percorre o espaço } \mathcal{C}_{O}(X;F) \quad \text{das funções de } \mathcal{C}_{D}(X;F) \quad \text{nulas no infinito.}$

As topologias κ , β e σ satisfazem: (a) $\kappa \subset \beta \subset \sigma$.

Para mostrarmos que $\kappa \subset \beta$, consideremos a κ -vizinhança da origem. $W = \{f \in \mathcal{C}_b(X;F); \sup_{x \in K} |f(x)| < \epsilon\}. \text{ Mas dado o compacto } K \text{ de } X,$

existe um compacto-aberto V tal que K \subset V. A função caracteristica φ de V pertence a $C_{_{\mbox{O}}}(X;F)$ e $\tilde{\mbox{e}}$ tal que $\varphi(x)=1$, se $x\in K$ e $\varphi(x)=0$ se $x\not\in V$. Seja $\Phi=\{\varphi\}$. Considerando a β -vizinhança da origem dada por

$$U_{\Phi,\varepsilon} = \{f \in C_b(X;F) : p_{\varphi}(f) < \varepsilon\},$$

temos que se $g \in U_{\Phi,\epsilon}$, então

$$\sup_{\mathbf{x} \in K} |\varphi(\mathbf{x}) g(\mathbf{x})| < \varepsilon.$$

Portanto, se $x \in K$,

$$|g(x)| = |\varphi(x)g(x)| < \varepsilon,$$

do que segue que $g \in W$.

Vamos mostrar agora que $\beta \subseteq \sigma$. Seja

$$\Phi \ = \ \{\varphi_1, \dots, \varphi_n\} \ \subset \ \mathcal{C}_{\mathcal{O}}(\mathsf{X}; \mathsf{F}) \ .$$

Consideremos a β-vizinhança da origem dada por

$$\mathbf{U}_{\Phi,\varepsilon} = \{ \mathbf{f} \in \mathcal{C}_{\mathbf{b}}(\mathbf{X}; \mathbf{F}) : \max_{1 \le i \le n} \sup_{\mathbf{x} \in \mathbf{X}} |\varphi_{i}(\mathbf{x}) \mathbf{f}(\mathbf{x})| < \varepsilon \}$$

e consideremos a σ-vizinhança da origem dada por

$$V = \{f \in C_b(X;F) : \|f\|_{\infty} < \frac{\varepsilon}{M} \},$$

onde

$$M = \max \{ \| \varphi_1 \|_{\infty}, \dots, \| \varphi_n \|_{\infty} \}.$$

Se $g \in B$, temos, para todo $x \in x$,

$$|\varphi_{i}(x)g(x)| \leq M \cdot \frac{\varepsilon}{M} = \varepsilon.$$

Logo $g \in U_{\Phi, \epsilon}$

(b) B e k coincidem sobre os conjuntos o-limitados.

Com efeito, seja

$$\mathbf{B} \; = \; \{ \, \mathbf{f} \in \, \mathbf{C}_{\mathbf{b}} \, (\mathbf{X}; \mathbf{F}) \; : \; \| \, \mathbf{f} \, \|_{\infty} \; \leq \; \mathbf{M} \} \; \in \; \mathrm{IL} \, (\sigma) \; .$$

Por (a), temos $\kappa \subseteq \beta$ sobre B. Falta mostrar que sobre B, $\beta \subseteq \kappa$. Seja $A \subseteq B$ um conjunto $\hat{\beta}$ -aberto não vazio e seja $f \in A$. Então existe uma β -vizinhança $U_{\Phi,\varepsilon}$ da origem tal que

$$(f + U_{\Phi, \epsilon}) \cap B \subset A \subset B,$$

onde

$$\Phi = \{\varphi , \ldots, \varphi_n\} \subset C_O(X; F).$$

Seja $k \ge 1$ tal que $\|\varphi_i\| \le k$, i = 1,...,n.

Para cada i = 1, ..., n, consideremos o conjunto compacto

$$K_i = \{x \in X : |\varphi_i(x)| \ge \frac{\varepsilon}{2M+k} \}.$$

Seja K = K₁ \cap ... \cap K_n , que é um conjunto compacto, onde temos, para todo x \in K, $|\varphi_{\bf i}({\bf x})| \geq \frac{\epsilon}{2M+k}$, para todo i = 1,...,n. Seja

$$V = \{f \in C_b(X;F) : \sup_{x \in K} |f(x)| < \frac{\varepsilon}{K+1} \}.$$

Se $h \in (f + V) \cap B$, temos

$$g = h - f \in V$$
 $e \|g\|_{\infty} = \|h - f\|_{\infty} \le 2M$,

pois h e f pertencem a B.

Vamos mostrar que $\mbox{ g }\in\mbox{ U}_{\tilde{\Phi}_{\star}\epsilon}$. Seja $\mbox{ x }\in\mbox{ X. Para todo }i$ =1,...,n, temos

$$|\varphi_{i}(x)g(x)| \leq k \cdot \frac{\varepsilon}{k+1} < \varepsilon$$
, se $x \in K$;

е

$$|\varphi_{\underline{i}}(x)g(x)| < \frac{\varepsilon}{2M+k}$$
 · 2M < ε , se $x \notin K$.

Logo, $h \in (f + U_{\Phi, \epsilon}) \cap B$, o que completa a prova.

DEFINIÇÃO 0.14: Se um corpo não arquimediano não trivialmente valorizado (F, |·|) for um espaço topológico localmente compacto de Hausdorff, então será chamado um corpo local.

TEOREMA 0.15: Seja (F, $|\cdot|$) um anel de divisão não trivialmente valorizado não arquimediano. Seja (E, $\|\cdot\|$) um espaço de Banach sobre (F, $|\cdot|$). Sejam X um espaço T_1 0-dimensional e K um subconjunto compacto de X. Então, para toda função continua $f: K \to E$, existe uma função $\tilde{f} \in C_b(X; E)$ tal que $\tilde{f}/K = f$ e $\|f\|_{\infty} = \|f\|_{K,\infty}$.

Para uma demonstração deste teorema, precisaremos dos seguintes lemas:

LEMA 0.16: Sejam F, E, X e K como no Teorema 0.15. Então $C_{\rm b}({\rm X;E})/{\rm K}$ é fechado em $C({\rm K;E})$.

DEMONSTRAÇÃO: Seja g uma função de C_b (K;E) pertencente ao fecho uniforme de C_b (X;E)/K e seja $\{g_n : n \in IN\}$ uma sequência de funções em C_b (X;E)/K que converge uniformemente para g sobre K. Para cada $n \in IN$, consideremos a função $\tilde{g}_n \in C_b$ (X;E) tal que $\tilde{g}_n/K = g_n$. Queremos mostrar que existe $f \in C_b$ (X;E) tal que f/K = g.

Consideremos uma subsequência de funções g_{k_n} de $\{g_n; n \in \mathbb{N}\}$ tais que $\|g_{k_{n+1}} - g_{k_n}\| < \|\mu_n\|$, onde $\{\mu_n\}$ é uma sequência em E convergente a zero. Afirmamos que existe sequência $\{f_n : n \in \mathbb{N}\}$ em $C_b(X;E)$ satisfazendo:

(1)
$$f_n/K = g_{k_n}$$

(2)
$$\|\mathbf{f}_{n+1} - \mathbf{f}_n\|_{\infty} \le \|\mathbf{u}_n\|$$
, para cada $n \in \mathbb{N}$.

Vamos supor encontradas $f_1, ..., f_n$ em $C_b(X; E)$ satisfazendo (1) e (2), isto \tilde{e} , $f_i/K = g_{k_i}$, i = 1, ..., n e

$$\|\mathbf{f}_{\mathbf{i}+1} - \mathbf{f}_{\mathbf{i}}\|_{\infty} \leq \|\mathbf{\mu}_{\mathbf{i}}\|, \quad \mathbf{i} = 1, \dots, n.$$

Tomemos $f_{n+1} = g_{k-1}$ sobre K e consideremos o conjunto aberto e fechado

$$G_n = (\tilde{g}_{k_{n+1}} - f_n)^{-1} (B(0, \|\mu_n\|))$$

em X.

É claro que $K \subseteq G_n$, pois, sobre K,

$$\|\tilde{g}_{k_{n+1}} - f_n\| = \|g_{k_{n+1}} - g_{k_n}\| \le \|\mu_n\|$$

Vamos definir então a função f_{n+1} de X em E por

$$f_{n+1}(x) = \tilde{g}_{k_{n+1}}(x), \text{ se } x \in G_n;$$

$$f_{n+1}(x) = f_n(x) + \mu_n$$
, se $x \in X \setminus G_n$,

que é continua, porque G_{n} é aberto e fechado, e é limitada.

 $Em G_n$, temos

$$\|\mathbf{f}_{n+1} - \mathbf{f}_n\| \le \|\mu_n\|$$

pela definição.

Em $X \setminus G_n$, temos

$$\|f_{n+1} - f_n\|_{\infty} = \sup_{x \in X} \|f_n(x) + \mu_n - f_n(x)\| = \|\mu_n\|.$$

Disto e da construção de f_{n+1} decorre que f_{n+1} satisfaz as condições (1) e (2). Como $C_{\rm b}({\rm X};{\rm E})$ é completo, a série

$$f_1 + \sum_{n=1}^{\infty} (f_{n+1} - f_n) ,$$

converge uniformemente a uma função $f \in C_h(X;E)$.

Para cada $x \in K$, temos:

$$f(x) = \lim_{x \to +\infty} f_{n+1}(x) = \lim_{x \to +\infty} g_{n+1}(x) = g(x)$$
.

Logo f/K = g/K, o que mostra que f é a função procurada.

LEMA 0.17: Sejam F, E, X e K como no Teorema: 0.1/5. Então $C_{\rm b}({\rm X;E})/{\rm K}$ ē denso em $C({\rm K,E})$.

DEMONSTRAÇÃO: Chamando $W = C_h(X;E)/K$, temos que W(x) = E, pa

ra todo $x \in K$, pois W contém as constantes. Além disso, o fato de X ser T_1 e 0-dimensional, implica que a subálgebra W de C(K;E) separa pontos em K. Estamos pois nas condições do Teorema 3.5 [18] de onde segue o resultado.

DEMONSTRAÇÃO DO TEOREMA 0.15: Consideremos uma função $f: K \to E$ continua. Dos Lemas 0.16 e 0.17 segue que existe uma função $h \in \mathcal{C}_b(X;E)$ tal que h/K = f.

O conjunto $Y = h^{-1}(B(0, \|f\|_{\infty}))$ é aberto e fechado, por ser h continua e $(E, \|\cdot\|)$ não arquimediano e temos claramente $K \subseteq Y$.

Tomando então

$$\tilde{f}(x) = \begin{cases} h(x), & \text{se } x \in Y & \text{e} \\ 0, & \text{se } x \in X \setminus Y, \end{cases}$$

temos $\tilde{\mathbf{f}} \in \mathcal{C}_{\mathbf{b}}(\mathbf{X};\mathbf{E})$, $\tilde{\mathbf{f}}/\mathbf{K} = \mathbf{f}$ e $\|\tilde{\mathbf{f}}\|_{\infty} = \|\mathbf{f}\|_{\mathbf{K},\infty}$, como queríamos.

DEFINIÇÃO 0.18: Seja E um espaço vetorial e sejam η e τ duas topologias de EVT sobre E. A terna (E; η , τ) é um espaço vetorial bitopológico (EVBT) se $\mathrm{IL}(\tau) \subset \mathrm{IL}(\eta)$.

OBSERVAÇÃO: Esta nomenclatura foi introduzida por Iyahen [10].

EXEMPLO 0.19: Se $\eta \in \tau$ então (E; η , τ) é um EVBT. Em particular, ($\mathcal{C}_b(X;F)$; κ , σ) é um EVBT. Outros exemplos serão vistos nos parágrafos le 2.

§1 - A TOPOLOGIA MISTA $\gamma[\eta,\tau]$

Seja $\{(E_{\lambda}, \tau_{\lambda}); \lambda \in \Lambda\}$ uma família de espaços vetoriais topológicos sobre o mesmo anel de divisão não trivialmente valorizado $(F, |\cdot|)$. Seja E um espaço vetorial sobre $(F, |\cdot|)$. Para cada $\lambda \in \Lambda$, seja $i_{\lambda}: E_{\lambda} \to E$ uma transformação linear. A topologia limite indutivo τ sobre E com respeito \tilde{a} família $\{(E_{\lambda}, \tau_{\lambda}, i_{\lambda}); \lambda \in \Lambda\}$, (ver Balbi [4]) \tilde{e} a mais fina topologia de EVT sobre E tal que cada transformação i_{λ} \tilde{e} contínua. O limite indutivo desta família será denotado por $\lim_{\lambda \to 0} \{(E_{\lambda}, \tau_{\lambda}, i_{\lambda}); \lambda \in \Lambda\}$. Como em Garling [9], generalizando esta definição, temos:

DEFINIÇÃO l.l: Para cada $\lambda \in \Lambda$, seja M_{λ} um subconjunto de E_{λ} . Seja j $_{\lambda}$ a restrição de i $_{\lambda}$ a M_{λ} . A topología limite indutivo generalizado induzida sobre E pela família

$$\{(E_{\lambda}, \tau_{\lambda}, i_{\lambda}, M_{\lambda}); \lambda \in \Lambda\}$$

é a mais fina dastopologias de EVT sobre E para a qual cada uma das transformações j_λ , de $(M_\lambda,\hat{\tau}_\lambda)$ em E, é contínua, onde $\hat{\tau}_\lambda$ denota a topologia induzida sobre M_λ por τ_λ .

Para construir essa topologia, consideremos o conjunto

$$\mathfrak{S} = \{\tau_{\alpha} : \alpha \in \mathfrak{I}\}$$

de todas as topologias de EVT sobre E para as quais cada

transformação j $_{\lambda}$ é contínua. Se (E, τ) é o limite indutivo

$$(E,\tau) = \lim_{\lambda \to 0} \{(E_{\lambda}, \tau_{\lambda}, i_{\lambda}); \lambda \in \Lambda\},$$

então para cada $\lambda \in \Lambda$, i_{λ} é contínua e portanto $j_{\lambda} = i_{\lambda}/M_{\lambda}$ é contínua também, isto é, $\tau \in \mathfrak{S}$ e portanto $\mathfrak{S} \neq \phi$.

Seja $\xi=\sup\{\tau_{\alpha}:\alpha\in I\}$. Por Bourbaki [5] ξ é uma topologia de EVT sobre E, já que todas as τ_{α} o são. Afirmamos que $\xi\in \widetilde{\mathbb{S}}$. Com efeito, seja V um aberto básico em ξ , isto é,

$$V = \cap \{V_{\alpha}; \alpha \in J\},\$$

onde J é um subconjunto finito de I e para cada $\alpha\in J$, V_{α} é um τ_{α} -aberto. Para cada $\lambda\in\Lambda$ temos

$$j_{\lambda}^{-1}(V) = \bigcap_{\alpha \in J} j_{\lambda}^{-1}(V_{\alpha}).$$

Agora, cada conjunto $j_{\lambda}^{-1}(V_{\alpha})$ é $\hat{\tau}_{\lambda}$ -aberto, pois $\tau_{\alpha}\in\mathfrak{S}$. Então, para cada $\lambda\in\Lambda$, $j_{\lambda}^{-1}(V)$ é aberto em M_{λ} na topologia $\hat{\tau}_{\lambda}$ e portanto j_{λ} é continua. Logo $\xi\in\mathfrak{S}$.

OBSERVAÇÃO 1.2: Como já observamos acima, a topología limite indutivo τ está em $\mathfrak S$. Isto mostra que

OBSERVAÇÃO 1.3: Consideremos (G,μ) um EVT e E um espaço vetorial

sobre o mesmo anel de divisão $(F,|\cdot|)$. Consideremos a aplicação $f:E \to (G,\mu)$. A topologia imagem inversa de μ pela função f em E, denotada por $f^{-1}(\mu)$ é aquela cujos abertos são os subconjuntos $f^{-1}(A)$, $A \in \mu$. É claro que a topologia $f^{-1}(\mu)$ torna f contínua e é a menos fina das topologias em E para as quais isso acontece.

Considerando agora a transformação

$$j_{\lambda} : M_{\lambda} \rightarrow (E, \xi),$$

temos, pelo precedente, que

$$j_{\lambda} : (M_{\lambda}, j_{\lambda}^{-1}(\xi)) \rightarrow (E, \xi)$$

é continua e portanto

$$j_{\lambda}^{-1}(\xi) \subset \hat{\tau}_{\lambda}.$$

EXEMPLO 1.4: Seja (E,\eta) um espaço vetorial topológico. Para cada $\lambda \in \Lambda$ seja M_{λ} um subconjunto de E e seja $\tau_{\lambda} = \eta$. Consideremos a transformação identidade i_{λ} em E e j_{λ} a inclusão de $(M_{\lambda},\hat{\eta})$ em E. Neste caso, se ξ é a topologia limite indutivo generalizado sobre E com respeito à família

$$\{(E,\eta,i_{\lambda},M_{\lambda}); \lambda \in \Lambda\}$$

temos as seguintes propriedades:

(1)
$$\eta \subseteq \xi$$

DEMONSTRAÇÃO: Esta propriedade é claramente satisfeita, pois ξ é o supremo de G e $\eta \in G$.

(2)
$$(M_{\lambda}, \hat{\xi}) = (M_{\lambda}, \hat{\eta})$$
 para cada $\lambda \in \Lambda$.

DEMONSTRAÇÃO: Por (1), temos $\hat{\eta} \subset \hat{\xi}$.

Reciprocamente, se A é $\hat{\xi}$ -aberto em $M_{\hat{\lambda}}$, então $A = V \cap M_{\hat{\lambda}}$, onde V é um ξ -aberto em E. Então $\hat{\xi} \subseteq j_{\hat{\lambda}}^{-1}(\xi)$ para cada $\lambda \in \Lambda$. De (B), vem que $\hat{\xi} \subseteq \hat{\eta}$.

(3) ξ \bar{e} a mais fina topologia de EVT sobre E tal que (2) \bar{e} verdadeira.

DEMONSTRAÇÃO: Seja \mathfrak{S}_1 o conjunto de todas as topologias $\,$ $\,$ t de EVT sobre E tais que

$$(M_{\lambda}, \hat{\tau}) = (M_{\lambda}, \hat{\eta}), \text{ para todo } \lambda \in \Lambda \quad (*).$$

Por (2), $\xi \in \mathcal{G}$. Logo $\mathcal{G}_1 \neq \phi$.

Seja $\xi' = \sup G_1$. É claro que $\xi \subset \xi'$.

Suponhamos agora que $\tau \in \mathfrak{S}_1$. Então

$$(M_{\lambda}, \hat{\tau}) = (M_{\lambda}, \hat{\eta}),$$

para cada $\lambda \in \Lambda$, donde

$$j_{\lambda} : (M_{\lambda}, \hat{n}) \rightarrow (E, \tau)$$

ẽ contínua para cada $\lambda \in \Lambda$. De fato, seja A um subconjunto τ -aberto de E. Para cada $\lambda \in \Lambda$, $j_{\lambda}^{-1}(A) = A \cap M_{\lambda}$ é um subconjunto to $\hat{\tau}$ -aberto em M_{λ} e por (*), $j_{\lambda}^{-1}(A)$ é $\hat{\eta}$ -aberto em M_{λ} . Assim, $\tau \in \mathfrak{S}$ e portanto $\tau \subseteq \xi$.

Logo,
$$\xi' \subset \xi$$
.

DEFINIÇÃO 1.5: Seja E um espaço vetorial sobre $(F, |\cdot|)$. Sejam η e τ duas topologias de EVT sobre E. A topología mista definida em E por η e τ , indicada por $\gamma[\eta, \tau]$, \tilde{e} a topologia limite indutivo generalizado induzida sobre E pela família

$$\{\,(\mathbf{E}_{_{\mathbf{B}}},\boldsymbol{\tau}_{_{\mathbf{B}}},\mathbf{i}_{_{\mathbf{B}}},\mathbf{M}_{_{\mathbf{B}}})\,;\,\,\mathbf{B}\,\in\,\,\mathbf{I\!L}\,(\boldsymbol{\tau})\,\}$$

onde, para cada $B \in \mathbb{L}(\tau)$, $E_B = E$, $\tau_B = \eta$, i_B é a identidade em $E = M_B = B$.

OBSERVAÇÃO 1.6: Da Definição 1.5 e do Exemplo 1.4 segue-se que a topologia mista $\gamma[\eta,\tau]$ satisfaz as seguintes propriedades:

- (a) $\eta \subseteq \gamma [\eta, \tau]$
- (b) $\gamma [\eta, \tau] = \eta$ coincidem nos conjuntos τ -limitados de E.
- (c) γ [η,τ] é a mais fina das topologias de EVT sobre E que gozam da propriedade (b), isto é, se μ é uma topologia de EVT sobre E que coincide com η nos conjuntos τ-limitados, então μ ⊆ γ [η,τ].

Seja E um espaço vetorial sobre $(F, |\cdot|)$. Sejam η e τ duas topologias de EVT sobre E e $\mathcal{B} = \{B_{\lambda}; \lambda \in \Lambda\} \subset \mathbb{L}(\tau)$. Para cada $\lambda \in \Lambda$, sejam $E_{\lambda} = E$ e $\tau_{\lambda} = \eta$. Seja ainda $i_{\lambda} : E_{\lambda} \to E$ a aplicação identidade e j_{λ} a restrição de i_{λ} a B_{λ} . Indicaremos por γ [$\eta, \tau; \mathcal{B}$] a topologia limite indutivo generalizado induzida em E pela família $\{(E_{\lambda}, \tau_{\lambda}, i_{\lambda}, B_{\lambda}); \lambda \in \Lambda\}$. Claramente, temos

$$\gamma \left[\eta, \tau; \mathbf{L} \left(\tau \right) \right] = \gamma \left[\eta, \tau \right].$$

PROPOSIÇÃO 1.7: Nas notações acima, se $F=\{L_\delta;\ \delta\in\Delta\}$ é um sistema fundamental de subconjuntos τ -limitados de E, então

$$\gamma [\eta, \tau; F] \subseteq \gamma [\eta, \tau; B]$$
.

DEMONSTRAÇÃO: Pela definição de $\gamma[\eta,\tau;B]$, basta mostrar que $j_{\lambda}:(B_{\lambda},\hat{\eta}) \to (E,\gamma[\eta,\tau;F])$ é contínua para cada $B_{\lambda} \in B$. Como F é um sistema fundamental de τ -limitados, dado $B_{\lambda} \in B$, existe $L_{\delta} \in F$ tal que $B_{\lambda} \subset L_{\delta}$. Pela definição de $\gamma[\eta,\tau;F]$, a transformação $j_{\delta}:(L_{\delta};\hat{\eta}) \to (E,\gamma[\eta,\tau;F])$ é contínua e portanto $j_{\lambda}=j_{\delta}/B$ também é.

Logo $\gamma [\eta, \tau; F] \subset \gamma [\eta, \tau; B]$.

COROLÁRIO 1.8: Se F e F' são dois sistemas fundamentais de subconjuntos T-limítados de E, então

$$\gamma \left[\, \eta \,, \tau \,; F \, \right] \; = \; \gamma \left[\, \eta \,, \tau \,; F \,' \, \right] \; = \; \gamma \left[\, \eta \,, \tau \, \right] \,.$$

Em particular, $\gamma [\eta, \tau; F] = \gamma [\eta, \tau]$ para todo sistema fundamental F de τ -limitados.

OBSERVAÇÃO 1.9: Mostramos acima que a topologia mista γ [η , τ] está determinada por qualquer sistema fundamental F de subconjuntos τ -limitados de E, no sentido de que γ [η , τ ;F] = γ [η , τ].

PROPOSIÇÃO 1.10: Seja E um espaço vetorial sobre $(F, |\cdot|)$. Sejam η , τ e ξ topologias de EVT sobre E. Se $\mathrm{IL}(\tau) \subseteq \mathrm{IL}(\xi)$ então γ $[\eta, \xi] \subseteq \gamma$ $[\eta, \tau]$.

DEMONSTRAÇÃO: Por definição, a topologia γ [η , ξ] coincide com η nos elementos de \mathbb{L} (ξ) e portanto nos elementos de \mathbb{L} (τ). Mas γ [η , τ] é a mais fina das topologias de EVT sobre E que coincidem com η nos elementos de \mathbb{L} (τ). Logo γ [η , ξ] $\subset \gamma$ [η , τ].

COROLÁRIO 1.11: Se $\text{IL}(\tau) = \text{IL}(\xi)$ então $\gamma[\eta,\tau] = \gamma[\eta,\xi]$.

COROLÁRIO 1.12: Se $\xi \subset \tau$, então $\gamma[\eta,\xi] \subset \gamma[\eta,\tau]$.

DEMONSTRAÇÃO: Do fato de $\xi \subset \tau$ segue que $\mathrm{I\!L}(\tau) \subset \mathrm{I\!L}(\xi)$, e o resultado segue da Proposição 1.10.

COROLARIO 1.13: Se τ^t denota a topològia tonelada associada a τ em E (ver Prolla [17]) então $\gamma[\eta,\tau] \subset \gamma[\eta,\tau^t]$.

DEMONSTRAÇÃO: O resultado é verdadeiro, pois $\tau \in \tau^{t}$.

COROLÁRIO 1.14: Seja τ^{β} a topologia bornológica associada a τ (ver Prolla [17]). Se σ \tilde{e} uma topologia de EVT sobre E tal que $\tau \subset \sigma \subset \tau^{\beta}$, então γ $[\eta,\sigma] = \gamma$ $[\eta,\tau]$.

DEMONSTRAÇÃO: Se $\tau \subseteq \sigma \subseteq \tau^{\beta}$, então $\mathbb{L}(\tau^{\beta}) \subseteq \mathbb{L}(\sigma) \subseteq \mathbb{L}(\tau)$. Mas da construção de τ^{β} (ver Prolla [16]), $\mathbb{L}(\tau) = \mathbb{L}(\tau^{\beta})$. Logo $\mathbb{L}(\sigma) = \mathbb{L}(\tau)$, e portanto $\gamma[\eta,\sigma] = \gamma[\eta,\tau]$.

COROLÁRIO 1.15: Se τ^q^t ē a topologia quase-tonelada associada a τ em E (ver Balbi [4]), então $\gamma[\eta, \tau^q] = \gamma[\eta, \tau]$.

DEMONSTRAÇÃO: Da Proposição 6.6 Balbi [4], segue que $\tau \in \tau^{q^t} \in \tau^{\beta}$. O resultado segue então do Corolário 1.14.

PROPOSIÇÃO 1.16: Nas notações da Definição 1.1, seja E a topologia límite indutivo generalizado induzida em E pela familia

$$\{\,(E_{\lambda}^{},\tau_{\lambda}^{},i_{\lambda}^{},M_{\lambda}^{})\,;\,\,\lambda\,\in\,\Lambda\}\,.$$

Seja (G, V) um EVT sobre o mesmo anel de divisão (F, $|\cdot|$). Uma transformação linear $T:E\to G$ pertence ao espaço l((E, E), (G, V)) se, e somente se, para cada $\lambda\in\Lambda$, a aplicação

$$\text{Toj}_{\lambda}:(M_{\lambda},\hat{\tau}_{\lambda})\rightarrow(G,v)$$

ē continua. Mais ainda, entre todas as topologias de EVT sobre E, Ę ē a ūnica com essa propriedade.

DEMONSTRAÇÃO: Consideremos a transformação $T \in \ell$ ((E, ξ); (G, ν)). Para cada $\lambda \in \Lambda$, temos $(M_{\lambda}, \hat{\tau}_{\lambda}) = (M_{\lambda}, \hat{\xi})$, o que torna a aplicação $j_{\lambda} : (M_{\lambda}, \hat{\tau}_{\lambda}) \rightarrow (E, \xi)$ contínua. Disto e da continuidade de T, decorre que a aplicação T o $j_{\lambda} : (M_{\lambda}, \hat{\tau}_{\lambda}) \rightarrow (G, \nu)$ é contínua.

Seja agora $T: E \to G$ uma transformação linear tal que para cada $\lambda \in \Lambda$, a aplicação T oj $_{\lambda}$ é contínua. Como T leva (E,ξ) em (G,ν) , T é contínua se,e somente se,tivemos $\mu \subseteq \xi$, onde $\mu = T^{-1}(\nu)$. Logo basta provarmos que $\mu \in \mathfrak{S}$ isto é, que

$$j_{\lambda} : (M_{\lambda}, \hat{\tau}_{\lambda}) \rightarrow (E, \mu)$$

é continua. Isto segue do fato que todo subconjunto μ -aberto de E é do tipo T $^{-1}(A)$, onde A é ν -aberto em G.

Vamos mostrar a segunda parte. Para isso consideremos o conjunto G de todas as topologias τ de EVT sobre E tais que para cada $\lambda \in \Lambda$, a aplicação $j_{\lambda}: (M_{\lambda}, \hat{\tau}_{\lambda}) \to (E, \tau)$ é contínua. Seja G' o conjunto de todas as topologias τ' de EVT sobre E tais que para todo EVT (G, ν) e para toda aplicação linear $T: E \to G$, $T \in \mathcal{L}((E, \tau'), (G, \nu))$ se, e somente se, a aplicação

$$T \circ j_{\lambda} : (M_{\lambda}, \hat{\tau}_{\lambda}) \rightarrow (G, \nu)$$

é continua.

Observemos incialmente que $\mathfrak{S}'\subset\mathfrak{S}$. Com efeito, seja $\tau'\in\mathfrak{S}'$. Tomando G=E, $\nu=\tau'$ e considerando T a identidade sobre E, T pertence então a $\mathcal{L}((E,\tau'),(G,\nu))$. Resulta que

$$T \circ j_{\lambda} = j_{\lambda} : (M_{\lambda}, \hat{\tau}_{\lambda}) \rightarrow (E, \tau^{\dagger})$$

ē contínua, para todo λ ∈ Λ. Logo τ' ∈ Θ.

Como $\xi = \sup \mathfrak{S}$, resulta então que

(1) $\tau' \subset \xi$, para todo $\tau' \in \mathfrak{S}'$.

Afirmamos agora que para qualquer $\tau' \in \mathfrak{S}'$ e qualquer $\tau \in \mathfrak{S}'$, temos $\tau \in \tau'$, ou seja Id : $(E,\tau') \to (E,\tau)$ é contínua. Com efeito, seja $\tau' \in \mathfrak{S}'$ e $\tau \in \mathfrak{S}$. Como $\tau \in \mathfrak{S}$, temos que

Id
$$oj_{\lambda} = j_{\lambda} : (M_{\lambda}, \hat{\tau}_{\lambda}) \rightarrow (E, \tau)$$

é continua. Mas $\tau' \in \mathfrak{S}'$, logo decorre daí que Id:(E, τ') \rightarrow (E, τ) é continua e portanto $\tau \subseteq \tau'$.

Aplicando a observação anterior \tilde{a} topologia $\xi = \sup \tilde{\mathfrak{S}}$, temos

(2) $\xi \subset \tau'$, para todo $\tau' \in \mathfrak{S}'$.

De (1) e (2) vem que $\mathfrak{G}' = \{\xi\}$, como queríamos.

COROLÁRIO 1.17: Seja E um espaço vetorial sobre $(F,|\cdot|)$. Sejam η e τ duas topologias de EVT sobre E e (G,v) um EVT sobre

 $(F, |\cdot|)$. Uma transformação linear $T: E \to G$ pertence ao espaço $\mathcal{L}((E, \gamma[\eta, \tau]), (G, v))$ se, e somente se, sua restrição a cada elemento de $\mathbb{H}(\tau)$ \tilde{e} continua. Ainda mais, entre todas as topologias de EVT sobre $E, \gamma[\eta, \tau]$ \tilde{e} a \tilde{u} nica com essa propriedade.

Observamos que, na verdade, o resultado acima continua verdadeiro se tomarmos apenas um sistema fundamental $\mathcal{B} \subset \mathbb{H}(\tau)$.

COROLÁRIO 1.18: Sejam (E, τ) e (G, ν) como no Corolário 1.17. Se \mathbb{H} (τ) possue um sistema fundamental de conjuntos η -metrizáveis, então T é γ [η , τ]-continua se, e somente se, T é γ [η , τ]-sequencialmente continua.

DEMONSTRAÇÃO: Se T é $\gamma[\eta,\tau]$ -contínua, claramente T é $\gamma[\eta,\tau]$ -sequencialmente contínua.

Reciprocamente, suponhamos que T é γ [η , τ]-sequencialmente continua. Por hipótese existe sistema fundamental $\mathcal B$ de subconjuntos τ -limitados que são η -metrizáveis. Se $\mathcal B \in \mathcal B$, seque qu $\mathcal T/\mathcal B$ é $\hat \eta$ -sequencialmente continua. Como $\mathcal B$ é $\hat \eta$ -metrizável, $\mathcal T/\mathcal B$ é $\hat \eta$ -continua, o que implica, pelo Corolário 1.17 que $\mathcal T$ é γ [η , τ]-continua.

PROPOSIÇÃO 1.19: Seja E um espaço vetorial sobre $(F, |\cdot|)$. Sejam η e τ duas topologías de EVT sobre E. Então

 $\gamma [\eta,\tau] = \gamma [\gamma [\eta,\tau],\tau].$

DEMONSTRAÇÃO: Por definição, γ [η , τ] é a mais fina topologia de EVT sobre E tal que, para cada $\mathcal{B} \in \mathbb{H}(\tau)$, $(B, \hat{\gamma}[\eta,\tau]) = (B, \hat{\eta})$. Por outro lado, γ [γ [η , τ], τ] é a mais fina topologia de EVT sobre E tal que para cada $B \in \mathbb{H}(\tau)$, $(B, \hat{\gamma}[\gamma[\eta,\tau],\tau]) = (B, \hat{\gamma}[\eta,\tau])$. Então $(B, \hat{\gamma}[\gamma[\eta,\tau],\tau]) = (B, \hat{\eta})$ para cada $B \in \mathbb{H}(\tau)$. Portanto γ [γ [η , τ], τ] $\subseteq \gamma$ [η , τ].

Consideremos agora a aplicação identidade

I : (E,
$$\gamma$$
 [γ [η , τ], τ]) \rightarrow (E, γ [η , τ]).

Para cada $B \in \mathbb{L}(\tau)$, a restrição

I/B :
$$(B, \hat{\gamma} [\eta, \tau]) \rightarrow (E, \gamma [\eta, \tau])$$

é claramente contínua. Logo, pelo Corolário 1.17, I é contínua, donde γ [η , τ] \subset γ [γ [η , τ], τ].

EMA 1.20: Sejam E e G dois espaços vetoriais topológicos sobre $(F, |\cdot|)$ e $T: E \rightarrow G$ uma transformação linear. Seja M um subconjunto equilibrado e semiconvexo de E. A transformação S = T/M é uniformemente continua em M se, e somente se, é continua na origem em M.

DEMONSTRAÇÃO: Vamos supor inicialmente S contínua na origem. Como M é semiconvexo, existe $\lambda \in F^*$ tal que M + M $\subseteq \lambda M$.

Seja V uma vizinhança equilibrada da origem em G. Da

continuidade da aplicação $x \to \lambda x$, segue que existe uma vizinhança equilibrada W da origem em G tal que $\lambda W \subseteq V$.

Como S é continua na origem, existe uma vizinhança U da origem em E tal que $S(U\cap M)\subseteq W$. Consideremos a vizinhança U' da origem em E dada por U' = λU e seja $a\in M$.

Se $x \in (a + U') \cap M$, então

$$(x - a) \in U' \cap (M - M) \subset \lambda U \cap \lambda M \subset \lambda (U \cap M)$$
,

desde que M é semiconvexo e equilibrado. Então

$$S(x - a) \in S[\lambda(U \cap M)] \subset \lambda W \subset V.$$

Assim $S(x) \in S(a) + V$ e portanto S é uniformemente contínua em M. Claramente temos a recíproca.

PROPOSIÇÃO 1.21: Seja E um espaço vetorial sobre $(F,|\cdot|)$ e sejam n e τ duas topologias de EVT sobre E. Seja B um sistema fundamental de subconjuntos τ -limitados de E que são semiconvexos e equilibrados e seja F o conjunto de todas as cordas $U = (U_n)_{n \in IN}$ em E tais que para cada $B \in B$ e para cada $n \in IN$, $U_n \cap B$ \tilde{e} uma \hat{n} -vizinhança da origem em B. Então o conjunto A de todos os nos de todas as cordas de F \tilde{e} um sistema fundamental de vizinhanças da origem para a topologia γ $[n,\tau]$ em E.

DEMONSTRAÇÃO: F é um conjunto dirigido. De fato, sejam $U = (U_n)_{n \in \mathbb{N}}$

e $V = (V_n)_{n \in \mathbb{IN}}$ duas cordas de F. Seja $W = (W_n)_{n \in \mathbb{IN}}$ corda em E tal que para cada $n \in \mathbb{IN}$, $W_n = U_n \cap V_n$. Seja $B \in \mathcal{B}$. Como $U_n \cap B$ e $V_n \cap B$ são $\hat{\eta}$ -vizinhanças da origem em B segue que

$$W_n \cap B = (U_n \cap V_n) \cap B = (U_n \cap B) \cap (V_n \cap B)$$

é uma $\hat{\eta}$ -vizinhança da origem em B. Logo $W \in F$. O conjunto A é então um sistema fundamental de vizinhanças da origem para uma topologia τ_F de EVT sobre E.

Afirmamos que $\gamma_F = \gamma [\eta, \tau]$.

Conforme Observação 1.9, a topologia γ [η,τ] está determinada pelo sistema fundamental de τ -limitados β , isto $\hat{\epsilon}$,

$$Y[\eta,\tau] = Y[\eta,\tau;B].$$

1) Vamos provar inicialmente que $\tau_F \subset \gamma[n,\tau]$.

Conforme a definição de γ [$\eta,\tau;B$], basta provarmos que para cada $B \in \mathcal{B}$, a inclusão $i_B : (B,\hat{\eta}) \to (E,\tau_F)$ é contínua. Seja $\mathcal{U} \in F$. Então para cada $n \in IN$, $U_n \cap B = i_B^{-1}(U_n)$ é uma $\hat{\eta}$ -vizinhança da origem em B. Assim i_B é contínua na origem. Como B é se miconvexo e equilibrado, segue do Lema 1.20 que i_B é contínua.

2) Para provarmos que γ [$\eta,\tau;B$] $\subset \tau_F$, consideremos a aplicação identidade I de (E,τ_F) em (E,γ [$\eta,\tau;B$]). Seja V uma γ [$\eta,\tau;B$]-vizinhança da origem.

Seja $W=(W_n)_{n\in\mathbb{N}}$ uma corda $\gamma[\eta,\tau;\mathcal{B}]$ -topológica em E com W_1 C V. Então para cada $n\in\mathbb{N}$, W_n é uma $\gamma[\eta,\tau;\mathcal{B}]$ - vizinhança da origem.

Agora pela definição de γ [$\eta,\tau;B$], para cada $B\in B$ a inclusão $I_B:(B,\hat{\eta})\to (E,\gamma$ [$\eta,\tau;B$]) é contínua. Assim,

$$I_{B}^{-1}(W_{n}) = W_{n} \cap B$$

é uma $\hat{\eta}$ -vizinhança da origem em B e portanto $W \in F$, ou seja, W é τ_F -topológica. Mas então W_1 é τ_F -vizinhança da origem e portanto, o mesmo é verdadeiro para V. Logo I é contínua.

COROLÁRIO 1.22: Sejam E, η , τ , β e F como na Proposição 1.21. Se $(E;\eta,\tau)$ for um EVT bitopológico e m o conjunto formado pelas cordas pertencentes a F que são τ -bornivoras, então $\tau_m = \gamma \left[\eta, \tau \right]$.

DEMONSTRAÇÃO: m é um conjunto dirigido, pois se as cordas $U = (U_n)_{n \in \mathbb{N}} \quad \text{e} \quad V = (V_n)_{n \in \mathbb{N}} \quad \text{estão em } m \text{ então a corda}$

$$W = (W_n)_{n \in \mathbb{I}N} = (U_n \cap V_n)_{n \in \mathbb{I}N}$$

é também $\tau\text{-bornívora};$ além disso, se para cada $~n\in IN,~U_{\prod}\cap B~e$ e $V_{\prod}\cap B~s$ ão $\hat{\eta}\text{-vizinhanças}$ da origem em B, então

$$W_n \cap B = (U_n \cap B) \cap (V_n \cap B)$$

também o é. Logo W ∈ m.

Vamos mostrar agora que a topologia τ_m gerada por m é a topologia mista γ [η,τ] = γ [η,τ ;B]. Pela Proposição 1.21, basta demonstrar que $\tau_m = \tau_F$.

A inclusão $\tau_m \subseteq \tau_F$ é evidente, pois $m \subseteq F$.

Reciprocamente, seja $\mathcal{U} \in F$. Pela Proposição 1.21, $\mathcal{U} \in \gamma$ $[\eta,\tau]$ -topológica e portanto γ $[\eta,\tau]$ -bornívora. Como $(E;\eta,\tau)$ é um EVT bitopológico, temos $\mathbb{E}(\tau) \subseteq \mathbb{E}(\gamma[\eta,\tau])$. Assim sendo, $\mathcal{U} \in \tau$ -bornívora, logo $\mathcal{U} \in m$.

PROPOSIÇÃO 1.23: Seja E um espaço vetorial sobre $(F, |\cdot|)$. Então $(E; \eta, \tau)$ \tilde{e} um EVBT se, e somente se, $\eta \in \tau^{\beta}$.

DEMONSTRAÇÃO: Seja (E; η , τ) um EVBT. Então $\mathbb{L}(\tau^{\beta}) = \mathbb{L}(\tau) \subseteq \mathbb{L}(\eta)$. Decorre disto que a aplicação identidade I: $(E, \tau^{\beta}) \to (E, \eta)$ é limitada. Como (E, τ^{β}) é bornológico, I é contínua. Portanto $\eta \subseteq \tau^{\beta}$.

Reciprocamente, seja $\eta \subseteq \tau^{\beta}$. Então $\mathbb{L}(\tau) = \mathbb{L}(\tau^{\beta}) \subseteq \mathbb{L}(\eta)$ o que mostra que $(E;\eta,\tau)$ é um EVBT.

PROPOSIÇÃO 1.24: Seja E um espaço vetorial sobre $(F, |\cdot|)$. Sejam η e τ duas topologias de EVT sobre E. Então $(E; \eta, \tau)$ \bar{e} um EVBT se, e somente se, Π $(\tau) \subset \Pi$ $(\gamma [\eta \ \tau])$.

DEMONSTRAÇÃO: Suponhamos inicialmente que $(E;\eta,\tau)$ é um EVBT. Seja $B\in IL(\tau)$ e consideremos as sequências $\{x_n; n\in IN\}$ de

elementos de B e $\{\lambda_n; n \in \mathbb{N}\}$ de elementos de F* tal que $|\lambda_n| \to 0$. Como B $\in \mathrm{IL}(\tau)$, a sequência $\{\lambda_n x_n; n \in \mathbb{N}\}$ é τ -convergente a zero. Seque-se daí que o conjunto

$$L = \{\lambda_n x_n ; n \in \mathbb{N}\} \cup \{0\}$$

 $\tilde{\text{e}}$ $\tau\text{--limitado.}$ Portanto, pela definição de $~\gamma$ [\$\eta\$,\$\tau\$], temos

$$(L, \hat{\gamma} [\eta, \tau]) = (L, \hat{\eta})$$
 (1).

Agora, como B \in IL(η) por ser (E; η , τ) um EVBT, a sequência $\{\lambda_n x_n \; ; \; n \in IN\}$ converge a zero também na topologia η . De (1), a sequência $\{\lambda_n x_n \; ; \; n \in IN\}$ converge a zero na topologia $\gamma[\eta,\tau]$. Logo B \subset IL($\gamma[\eta,\tau]$).

Consideremos agora $\mathbb{H}(\tau) \subseteq \mathbb{H}(\gamma[\eta,\tau])$. Como da definição de $\gamma[\eta,\tau]$ temos $\eta \subseteq \gamma[\eta,\tau]$, segue que $\mathbb{H}(\gamma[\eta,\tau]) \subseteq \mathbb{H}(\eta)$.

Logo $\mathbb{L}(\tau) \subseteq \mathbb{L}(\eta)$ e portanto $(E;\eta,\tau)$ é um EVBT.

COROLÁRIO 1.25: Se $(E;\eta,\tau)$ \bar{e} um EVBT, então $(E;\gamma[\eta,\tau],\tau)$ também o \bar{e} .

COROLÁRIO 1.26: Se (E; η , τ) \tilde{e} um EVBT, então temos γ [η , τ] $\subset \tau^{\beta}$.

DEMONSTRAÇÃO: Pela Proposição 1.24, temos $\mathbb{L}(\tau^{\beta}) = \mathbb{L}(\tau) \subseteq \mathbb{L}(\gamma[\eta,\tau])$. Logo a aplicação identidade $\mathbb{I}: (\mathbb{E},\tau^{\beta}) \to (\mathbb{E},\gamma[\eta,\tau])$ é limitada. Como $(\mathbb{E},\tau^{\beta})$ é bornológico, \mathbb{I} é contínua. Portanto $\gamma[\eta,\tau] \subseteq \tau^{\beta}$.

COROLÁRIO 1.27: Se (E; n, t) ē um EVBT, então temos

 $\gamma [\eta, \gamma [\eta, \tau]] \subseteq \gamma [\eta, \tau].$

DEMONSTRAÇÃO: Como (E; η , τ) é EVBT, temos $\mathbb{L}(\tau) \subseteq \mathbb{L}(\gamma [\eta, \tau])$. Então, pela Proposição 1.10, temos $\gamma [\eta, \gamma [\eta, \gamma]] \subseteq \gamma [\eta, \tau]$, como queríamos.

A proposição 1.24 nos mostra que em todo espaço vetorial bitopológico (E; η,τ) se tem IL(τ) \subset IL(γ [η,τ]). Gostaríamos de saber sob que condições sobre E, η e τ é válida a igualdade.

Vale o seguinte resultado:

TEOREMA 1.28: Seja (E; η , τ) um EVBT. Se (E, τ) \tilde{e} um EVT quase convexo cuja topologia \tilde{e} η -{echada, ent \tilde{a} 0 $\mathbb{L}(\tau) = \mathbb{L}(\gamma [\eta, \tau])$.

Para uma demonstração deste teorema precisaremos do seguinte lema:

LEMA 1.29: Sejam E, η e τ como no Teorema 1.28. Se uma sequência $\{x_n:n\in\mathbb{N}\}$ de elementos de E converge a zero na topologia γ $[\eta,\tau]$, então o conjunto $\{x_n:n\in\mathbb{N}\}$ é τ -limitado.

DEMONSTRAÇÃO: Seja $\{x_n:n\in IN\}$ sequência $\gamma[\eta,\tau]$ - convergente a zero em E e seja V uma τ -vizinhança η -fechada da origem em E.

Se o conjunto $\{x_n:n\in\mathbb{N}\}$ não é τ -limitado, então existe uma subsequência $\{x_{k(n)}:n\in\mathbb{N}\}$ de $\{x_n\}$ tal que para todo

 $n \in \mathbb{N}$, existe $\lambda_n \in F^*$ com $|\lambda_n| \ge n$, mas $x_{k(n)} \notin \lambda_n V$.

Para cada $n\in IN$, $\lambda_n V$ \tilde{e} η -fechada, logo existe uma sequência $\{U^n;\ n\in I\!N\}$ de η -vizinhanças da origem tal que

$$x_{k(n)} \notin \lambda_n V + U^n$$
. (A).

Seja $\lambda \in F^*$ fixado com $0 < |\lambda| < 1$. Seja $V = (V_m)_{m \in IN}$ uma corda τ -topológica tal que $V_1 \subseteq V \in V_{m+1} \subseteq \lambda V_m$ para todo $m \ge 1$. Consideremos também uma corda η -topológica $U^n = (U_m^n)_{m \in IN}$ satisfazendo $U_1^n \subseteq U^n$ e $U_{m+1}^n \subseteq \lambda U_m^n$ para todo $m \ge 1$. Vamos definir, para cada $m \in IN$, o conjunto

$$W_{\mathbf{m}} = \bigcap_{\mathbf{n} \in T\mathbf{N}} (\lambda_{\mathbf{n}} V_{\mathbf{m}} + U_{\mathbf{m}}^{\mathbf{n}}).$$

Afirmamos que $W = (W_m)_{m \in \mathbf{IN}}$ é uma corda γ [η, τ] – topológica em E. Para verificarmos, vamos mostrar incialmente que W é uma corda:

(1) a) Para cada $m \in IN$, W_m \tilde{e} equilibrado.

Com efeito, seja $\lambda \in F^*$ com $0 < \left| \lambda \right| < 1$ e seja $m \in IN$. Então

$$\lambda W_{m} \subset \bigcap_{n \in \mathbb{I} N} \lambda (\lambda_{n} V_{m} + U_{m}^{n}) \subset \bigcap_{n \in \mathbb{I} N} (\lambda_{n} V_{m} + U_{m}^{n}) = W_{m},$$

porque para todo n, m \in IN, $\lambda_n V_m$ e U_m^n são equilibradas. Assim,

W_m é equilibrado.

(1) b) Para cada $m \in IN$, W_m \bar{e} absorvente.

Basta observarmos que, para cada m ∈ IN, temos

$$W_{m} \supset \bigcap_{n \in TN} \lambda_{n} V_{m} \supset V_{m}$$
,

- e V_m é absorvente.
 - (2) Para cada $m \in IN$, $W_{m+1} + W_{m+1} \subset W_m$.

De fato, se $x \in W_{m+1} + W_{m+1}$, então

$$\mathbf{x} \in \underset{n \in \mathrm{IN}}{\cap} \ (\lambda_{n} \mathbf{v}_{m+1} + \mathbf{u}_{m+1}^{n}) + \underset{n \in \mathrm{IN}}{\cap} (\lambda_{n} \mathbf{v}_{m+1} + \mathbf{u}_{m+1}^{n}) \in$$

$$\subset \bigcap_{\mathbf{n} \in \mathbf{IN}} \left[\lambda_{\mathbf{n}} (\mathbf{v}_{\mathbf{m}+1} + \mathbf{v}_{\mathbf{m}+1}) + (\mathbf{u}_{\mathbf{m}+1}^{\mathbf{n}} + \mathbf{u}_{\mathbf{m}+1}^{\mathbf{n}}) \right] \subset$$

$$\subset \bigcap_{n \in IN} (\lambda_n V_m + U_m^n),$$

porque Un e V são cordas.

Portanto $x \in W_m$.

(3) Para algum $\lambda \in F$, $0 < |\lambda| < 1$ (e dai para todo $\lambda \in F^*$), dado $m \in IN$, existe p > m tal que $W_p \subseteq \lambda W_m$.

Isto é claro, pois, da construção de u_{m}^{n} e de V_{m} , dado $m \in \mathbb{N}$,

temos $\textbf{U}^n_{m+1} \subseteq \lambda \textbf{U}^n_m$ e $\textbf{V}_{m+1} \subseteq \lambda \textbf{V}_m$. Assim, temos

$$W_{m+1} = \bigcap_{n \in \mathbb{I}N} (\lambda_n V_{m+1} + U_{m+1}^n) \subset$$

$$\subset \bigcap_{n \in \mathbb{I}N} (\lambda \lambda_n V_m + \lambda U_m^n) = \lambda W_m.$$

Portanto W é uma corda em E.

Consideremos agora um sistema fundamental $\mathcal{B} \subset \mathbb{H}$ (τ) cujos elementos são semiconvexos e equilibrados. Sejam $B \in \mathcal{B}$ e $m \in \mathbb{N}$. Como $B \in \tau$ -limitado, existe $n_O \in \mathbb{N}$ tal que $B \subset \lambda V_m$ sempre que $|\lambda| \geq n_O$. Assim,

$$W_{m} \cap B = \bigcap_{n=1}^{n} [(\lambda_{n}V_{m} + U_{m}^{n}) \cap B]$$

é uma $\hat{\eta}$ -vizinhança da origem, pois para cada $m\in IN$, $(\lambda_{I^{\prime}M}^{N}+U_{I\!M}^{N})\cap B$ contém o conjunto $U_{m}^{n}\cap B$, que é uma $\hat{\eta}$ -vizinhança da origem.

Logo, pela Proposição 1.21, a corda $W \in \gamma [\eta, \tau]$ -topológica.

Agora, para qualquer $n \in \mathbb{N}$, o conjunto $\lambda_n V + U^n$ contém W_1 e de (A) vem que $x_{k(n)} \not\in \lambda_n V + U^n$, para todo $n \in \mathbb{N}$. Portanto $x_{k(n)} \not\in W_1$ para todo $n \in \mathbb{N}$. Como W_1 é γ [η , τ]-vizinhança da origem, isto contradiz o fato de $\{x_n : n \in \mathbb{N}\}$ convergir a zero na topologia γ [η , τ].

Logo $\{x_n ; n \in \mathbb{N}\} \in \mathbb{L}(\tau)$.

DEMONSTRAÇÃO DO TEOREMA 1.28: Da Proposição 1.24, temos

$$\mathbb{L}(\tau) \subseteq \mathbb{L}(\gamma[\eta,\tau]).$$

Vamos mostrar a segunda inclusão. Para isso consideremos um subconjunto γ [η , τ]-limitado B de E, uma sequência { x_n ; $n \in IN$ } de elementos de B e uma sequência { λ_n ; $n \in IN$ } em F* com $|\lambda_n| \to 0$.

Seja $\mu\in F^*$ tal que $|\mu|<1.$ Vamos construir uma sequência $\{\mu_n:n\in\mathbb{N}\}$ em F^* da seguinte maneira: para cada $n\in\mathbb{N}$, existe um único $k_n\in\mathbb{N}$ tal que

$$|\mu^{2k_n-2}| < |\lambda_n| \le |\mu^{2k_n}|;$$

tomemos então $\mu_n = \mu^{2k} n$ e vamos provar que $|\mu_n| \to 0$. Com efeito, seja $\varepsilon > 0$ dado. Como $|\lambda_n| \to 0$, existe $n_0 \in \mathbb{N}$ tal que para todo $n \ge n_0$, temos $|\lambda_n| < \varepsilon$. Seja $n \ge n_0$. Como

$$|\mu^{2k_n-2}| < |\lambda_n|,$$

temos

$$|\mu^{2k}| \cdot |\mu^{-2}| < \varepsilon$$
.

Ou seja,

$$|\mu_n| < \varepsilon |\mu|^2 < \varepsilon$$
,

para todo $n \ge n_o$.

Mostramos então que $|\mu_n| \rightarrow 0$.

Além disso, para cada $n\in IN$, existe $v_n\in F$ tal que $\sqrt{\mu_n}=v_n$ e a sequência $\{|v_n|:n\in IN\}$ converge a zero.

Como $\mathbb{B} \in \mathbb{H} \left(\gamma \left[\eta, \tau \right] \right)$ e $\left\{ x_n \; ; \; n \in \mathbb{N} \right\}$ é sequência em \mathbb{B} , $\left\{ \nu_n x_n \; ; \; n \in \mathbb{N} \right\}$ converge a zero na topologia $\gamma \left[\eta, \tau \right]$. Pelo Lema 1.29, o conjunto $\left\{ \nu_n x_n \; ; \; n \in \mathbb{N} \right\}$ é τ -limitado. Logo, $\left\{ \mu_n x_n \; ; \; n \in \mathbb{N} \right\}$ converge a zero na topologia τ e portanto, dada uma τ -vizinhança equilibrada V da origem em \mathbb{E} , existe $n_1 \in \mathbb{N}$ tal que para todo $n \geq n_1$, temos $\mu_n x_n \in V$. Da construção da sequência $\left\{ \mu_n \; ; \; n \in \mathbb{N} \right\}$ vem que para cada $n \in \mathbb{N}$, $\left| \lambda_n \right| \leq \left| \mu_n \right|$, ou seja, $\left| \lambda_n \mu_n^{-1} \right| \leq 1$. Logo $\left| \lambda_n x_n \right| = \left(\lambda_n \mu_n^{-1} \right) \mu_n x_n \in V$ para todo $n \geq n_1$, o que implica que $\left\{ \lambda_n x_n \; ; \; n \in \mathbb{N} \right\}$ converge a zero na topologia τ .

Isto mostra que Β é τ-limitado.

TEOREMA 1.30: Sejam E, η e τ como no Teorema 1.28. Uma sequência em E \tilde{e} γ $[\eta,\tau]$ -convergente a zero se, e somente se, \tilde{e} τ -limitada e η -convergente a zero.

DEMONSTRAÇÃO: Seja $\{x_n:n\in\mathbb{N}\}$ uma sequência γ $[\eta,\tau]$ -convergente a zero em E. Pelo Lema 1.29, ela é τ -limitada. Ainda mais, como $\eta\subset\gamma$ $[\eta,\tau]$, segue que $\{x_n:n\in\mathbb{N}\}$ converge a zero na topologia η .

A recíproca segue imediatamente do fato de η e γ [η,τ] coincidirem nos subconjuntos τ -limitados de E.

EXEMPLO 1.31: Seja (F, $|\cdot|$) um anel de divisão não trivialmente

valorizado não arquimediano. Um exemplo de uma terna que satisfaz as hipóteses do Teorema 1.28 pode ser dado por $(\mathcal{C}_{b}(X;F);\kappa,\sigma)$ onde X é um espaço topológico localmente compacto, κ denota a topologia da convergência uniforme sobre as partes compactas de X e σ a topologia da norma sup- $\|\cdot\|_{m}$, onde

$$\|f\|_{\infty} = \sup_{x \in X} |f(x)|,$$

para toda função f pertencente ao espaço $C_{b}(X;F)$ das funções contínuas e limitadas de X em F.

Com efeito, sabemos que κ \in σ , o que torna a terna

um EVBT. Como $({}^{\mathcal{C}}_{\mathbf{b}}(\mathbf{X};\mathbf{F}),\sigma)$ é normado, segue do Corolário 0.7 que é um EVT quase convexo.

Além disso, se S denota a família de seminormas $\{p_K : K \subseteq X \in \mathbb{R} : K \subseteq X \in \mathbb{R} \}$ compacto) que define a topologia K, vale $\|\cdot\|_{\infty} = \sup S$. Logo a bola unitária B de $(C_b(X;F), \|\cdot\|_{\infty})$ é K-fechada do que segue que a topologia definida pela norma $\|\cdot\|_{\infty}$ em $(C_b(X;F))$ é K-fechada.

Do Teorema 1.28 concluimos que σ e $\gamma[\kappa,\sigma]$ possuem os mesmos limitados.

Vamos dar agora uma caracterização de uma topologia relacionada com γ [η,τ] no caso em que (E, η) é localmente semiconvexa.

Seja B um sistema fundamental de subconjuntos τ -limitados de

E que são equilibrados. Consideremos a coleção \mathcal{W} de todos os subconjuntos não vazios, equilibrados, absorventes e semiconvexos \mathcal{W} de E tais que para todo $\mathcal{B} \in \mathcal{B}$, o conjunto $\mathcal{W} \cap \mathcal{B}$ é uma $\hat{\eta}$ -vizinhança da origem em \mathcal{B} . Vamos mostrar que \mathcal{W} constitue um sistema fundamental de vizinhanças da origem para alguma topologia de EVT sobre E que é localmente semiconvexa. Para isso, temos:

- (0) $\mathbb{W} \neq \emptyset$, pois $E \cap B = B$ é uma $\hat{\eta}$ -vizinhança da origem em B e E é semiconvexo, equilibrado e absorvente. Além disso, $\emptyset \not\in \mathbb{W}$, pois $\emptyset \not\in \emptyset$.
- (1) Pados W_1 e W_2 em W, existe $W \subseteq W$ tal que $W \subseteq W_1 \cap W_2 .$

O conjunto $W=W_1\cap W_2$ é claramente equilibrado, absorvente e não vazio. Vamos mostrar que é também semiconvexo. Como W_1 e W_2 são semiconvexos, existem $\alpha_1\in F^*$ e $\alpha_2\in F^*$ tais que

$$W_1 + W_1 \subseteq \alpha_1 W_1$$

е

$$W_2 + W_2 \subseteq \alpha_2 W_2$$
.

Sejam x e y elementos de W. Então $x + y \in \alpha_1 W_1$ porque x e y estão em W_1 e $x + y \in \alpha_2 W_2$ porque x e y estão em W_2 . Seja $\alpha_0 \in F$ tal que $|\alpha_0| = \max{\{|\alpha_1|, |\alpha_2|\}}$. Assim,

$$x + y \in \alpha_0 W_1 \cap \alpha_0 W_2 = \alpha_0 (W_1 \cap W_2) = \alpha_0 W,$$

o que mostra que W é semiconvexo.

Além disso, para todo B ∈ B, temos que

$$(W_1 \cap W_2) \cap B = (W_1 \cap B) \cap (W_2 \cap B)$$

- é uma $\hat{\eta}$ -vizinhança da origem em B como intersecção de duas delas. Logo W \subset W.
 - (2) a) Todo elemento W ∈ W e equilibrado e absorvente.
 Isto vem da definição de W.
 - (2) b) $Vado W \in W$, existe $V \in W$ tal que $V + V \subseteq W$.

Com efeito, como W é semiconvexo, existe $\alpha \in F^*$ tal que $W+W\subseteq \alpha W$. Tomando $V=\alpha^{-1}W$, temos claramente $V+V\subseteq W$ e V é equilibrado e absorvente. De $W+W\subseteq \alpha W$ vem que

$$\alpha^{-1}W + \alpha^{-1}W \subset \alpha^{-1}(\alpha W) = \alpha(\alpha^{-1}W),$$

porque W $\acute{\text{e}}$ equilibrado. Logo temos V + V \subset αV e portanto V $\acute{\text{e}}$ semiconvexo.

Resta-nos mostrar que para todo $B \in \mathcal{B}$, o conjunto $V \cap B$ é uma $\hat{\eta}$ -vizinhança da origem em B. Com efeito, se $B \in \mathcal{B}$, então $W \cap \alpha B$ é uma $\hat{\eta}$ -vizinhança da origem em αB . Logo existe uma η -vizinhança U da origem em E tal que $U \cap (\alpha B) \subseteq W \cap (\alpha B)$, ou seja,

 $(\alpha^{-1}U) \cap B \subset (\alpha^{-1}W) \cap B$, isto \tilde{e} , $V \cap B = (\alpha^{-1}W) \cap B$ \tilde{e} uma $\hat{\eta}$ -vizinhança da origem em B.

Logo $V \in W$.

(2) c) Para algum $\lambda \in F$, com $0 < |\lambda| < 1$, dado $W \in W$, existe $V \in W$ tal que $V \subseteq \lambda W$.

Consideremos $\lambda_0 \in F$ com $0 < |\lambda_0| < 1$ fixo e tomemos $V = \lambda_0 W$. É claro que V é equilibrado, absorvente e não vazio. Além disso, existe $\alpha \in F^*$ tal que $W + W \subseteq \alpha W$. Logo

$$V + V = \lambda_{O}W + \lambda_{O}W = \lambda_{O}(W + W) \subset \lambda_{O}(\alpha W) = \alpha(\lambda_{O}W) = \alpha V$$

porque $|\lambda_{0}\alpha| = |\alpha\lambda_{0}|$ e W é equilibrado. Logo V é semiconvexo.

Vamos mostrar que para todo $B \in \mathcal{B}$, $V \cap B$ é uma $\hat{\eta}$ -vizinhança da origem em B. De fato, se $B \in \mathcal{B}$, $W \cap (\lambda_O^{-1}B)$ é uma $\hat{\eta}$ -vizinhança ça da origem em $\lambda_O^{-1}B \in \mathcal{B}$. Logo existe uma η -vizinhança U da origem em E tal que $U \cap (\lambda_O^{-1}B) \subseteq W \cap (\lambda_O^{-1}B)$, ou seja,

$$(\lambda_{O}^{U}) \cap B \subset (\lambda_{O}^{W}) \cap B = V \cap B.$$

Com isso mostramos que $V \cap B$ é uma $\hat{\eta}-v$ izinhança da origem em B. Logo $V \in W$.

De (0), (1) e (2) e usando o Teorema 2.15, Prolla [17], concluimos que a família W forma um sistema fundamental de vizinhan ças da origem para uma topologia de EVT localmente semiconvexa

sobre E, a qual denotaremos por γ' [η,τ].

PROPOSIÇÃO 1.32: Se B ∈ B for semiconvexo, então a inclusão

$$j_B : (B, \hat{\eta}) \rightarrow (E, \gamma' [\eta, \tau])$$

ē continua.

DEMONSTRAÇÃO: O resultado segue claramente da definição de $\, \mathbb{W} \,$ e do Lema 1.20.

Observamos que se (E,τ) for um EVT quase convexo, da Proposição 1.32 e da definição de \mathfrak{S} , obtemos $\gamma'[\eta,\tau] \in \mathfrak{S}$, isto \tilde{e} , $\gamma'[\eta,\tau] \subseteq \gamma[\eta,\tau]$.

Denotemos por \mathfrak{S}_{SC} a família de todas as topologias de EVT localmente semiconvexas μ sobre E tais que para cada $B \in \mathfrak{F}$ a inclusão $j_{B}: (E,\hat{\eta}) \to (E,\mu)$ é contínua.

PROPOSIÇÃO 1.33: Se (E, t) for um EVT quase-convexo então

$$\gamma'[n,\tau] = \sup \mathfrak{S}_{sc}$$

DEMONSTRAÇÃO: Suponhamos que os elementos de 8 sejam semiconvexos. Da Proposição 1.32 segue que $\gamma'[\eta,\tau] \in \mathfrak{S}_{sc}$. Consideremos agora $\mu \in \mathfrak{S}_{sc}$. Se V é uma μ -vizinhança equilibrada e semi convexa de origem em E, da definição de \mathfrak{S}_{sc} segue que para todo $B \in \mathfrak{B}$, o conjunto $V \cap B = j_B^{-1}(V)$ é uma $\hat{\eta}$ -vizinhança da origem

em B. Logo, da definição de W segue que $V\in W$ e portanto V é uma γ' $[\eta,\tau]$ -vizinhança da origem em E. Portanto $\mu\subset\gamma'$ $[\eta,\tau]$. Isto completa a demonstração.

COROLÁRIO 1.34: Suponhamos que os elementos de B são semiconvexos e que (E,τ) \bar{e} um EVT localmente semiconvexo. Então:

- (a) $\eta \subseteq \gamma' [\eta, \tau]$
- (b) $\eta \in \gamma'[\eta,\tau]$ coincidem sobre os conjuntos τ -limitados de E
- (c) $\gamma'[\eta,\tau]$ é a mais fina das topologías de EVT localmente semiconvexas que coincidem com η sobre os conjuntos τ -límitados de E.

DEMONSTRAÇÃO: (a) Segue imediatamente da Proposição 1.32 e da Proposição 1.33.

(b) Seja $B \in IL(\tau)$. Então existe $B_1 \in \mathcal{B}$ tal que $B \subseteq B_1$. De (a), temos $\hat{\eta} \subseteq \hat{\gamma}'[\eta,\tau]$ em B_1 , portanto em B.

Para mostrarmos a segunda inclusão, consideremos uma $\gamma'[\eta,\tau]$ vizinhança da origem em $B_1 \in \mathcal{B}$, que é do tipo $V \cap B_1$, onde V é uma $\gamma'[\eta,\tau]$ vizinhança da origem em E. Mas então existe $W \in W$ tal que $W \subseteq V$. Logo, $V \cap B_1 \supseteq W \cap B_1$ e portanto $V \cap B_1$ é uma $\hat{\eta}$ -vizinhança da origem em B_1 . Logo $(\gamma'[\eta,\tau])^{\hat{}} \subseteq \hat{\eta}$ em B.

(c) Se σ é outra topologia de EVT localmente semiconvexa sobre E que coincide com η nos elementos de $~\mathrm{IL}~(\tau)$, temos

$$j_{B}: (B, \hat{\eta}) \rightarrow (E, \sigma)$$

continua para cada B \in B. Logo $\mu\in\mbox{\ensuremath{\mathfrak{G}}}_{sc}$, o que implica que $\sigma\in\gamma^*\left[\eta,\tau\right]$.

Se B é um sistema fundamental de subconjuntos τ -limitados se miconvexos equilibrados de E da construção de γ' $[\eta,\tau]$, indicaremos tal topologia por γ' $[\eta,\tau;B]$ e vamos mostrar que γ' $[\eta,\tau]$ independe do sistema fundamental de τ -limitados equilibrados B.

PROPOSIÇÃO 1.35: Se B_1 e B_2 são dois sistemas fundamentais de subconjuntos semiconvexos equilibrados e τ -limitados de E, então $\gamma'[\eta,\tau;B_1] = \gamma'[\eta,\tau;B_2] = \gamma'[\eta,\tau]$.

DEMONSTRAÇÃO: Seja $B_1 \in B_1$ e consideremos a inclusão

$$j_{B_1}:(B_1,\hat{\eta})\to (E,\gamma^*[\eta,\tau;B_2]).$$

Dado $B_1 \in \mathcal{B}_1$ existe $B_2 \in \mathcal{B}_2$ tal que $B_1 \subseteq B_2$. Da definição de $\gamma'[\eta,\tau;\mathcal{B}_2]$, a inclusão $j_{B_2}:(B_2,\hat{\eta}) \to (E,\gamma'[\eta,\tau;\mathcal{B}_2])$ é continua. Logo $j_{B_1}=j_{B_2}/B_1$ é continua, o que implica que

$$\gamma' \; [\; \eta, \tau; \boldsymbol{\mathcal{B}}_2 \;] \; \subset \; \gamma' \; [\; \eta, \tau; \boldsymbol{\mathcal{B}}_1 \;] \;.$$

Analogamente mostramos que

$$\gamma'[\eta,\tau;\beta_1] \subset \gamma'[\eta,\tau;\beta_2].$$

PROPOSIÇÃO 1.36: Suponhamos que todo elemento de B ē semiconvexo, que (E,η) ē um EVT localmente semiconvexo e seja (G,v) outro EVT localmente semiconvexo sobre $(F,|\cdot|)$. Uma transformação linear $T:E\to G$ ē γ' $[\eta,\tau]$ -continua se e somente se T|B ē $\hat{\eta}$ -continua para todo $B\in B$.

DEMONSTRAÇÃO: Seja B \in B. Se T é uma transformação linear γ' [η,τ]-continua, como $\hat{\eta}=\hat{\gamma}'$ [η,τ] sobre B, segue que T/B é $\hat{\eta}$ -continua.

Suponhamos agora que para cada $B \in \mathcal{B}$, T/B é $\hat{\eta}$ -contínua. Seja V uma v-vizinhança equilibrada e semiconvexa da origem em G. Por hipótese existe uma η -vizinhança U da origem em E tal que $U \cap B \subseteq (T/B)^{-1}(V) = T^{-1}(V) \cap B$, isto é, $T^{-1}(V) \cap B$ é uma $\hat{\eta}$ -vizinhança da origem em B. Pela definição de W, para que $T^{-1}(V)$ seja uma γ' $[\eta,\tau]$ -vizinhança da origem em E falta mostrar que $T^{-1}(V)$ é equilibrado, absorvente e semiconvexo.

Se $\lambda \in F$ é tal que 0 < $|\lambda|$ < 1, como V é equilibrada, segue que

$$\lambda T^{-1}(V) = T^{-1}(\lambda V) \subset T^{-1}(V)$$

o que implica que $T^{-1}(V)$ é equilibrado.

Seja $x \in E$. Como V é absorvente, existe $\delta > 0$ tal que para todo $\lambda \in F$ com $|\lambda| > \delta$, $T(x) \in \lambda V$. Logo

$$x \in T^{-1}(x) \subset T^{-1}(\lambda V) = T^{-1}(V)$$
.

Portanto $T^{-1}(V)$ é absorvente.

Como V é semiconvexa, existe $\delta > 0$ tal que para todo $\alpha \in F$ com $|\alpha| \geq \delta$, temos V + V $\subseteq \alpha V$. Seja $x + y \in T^{-1}(V) + T^{-1}(V)$. Fixando um tal $\alpha = \alpha_O$, temos $T(x) + T(y) \in V + V \subseteq \alpha_O V$ donde $T(x + y) = \alpha_O z$ com $z \in V$, isto $e + x + y = T^{-1}(\alpha_O z) = \alpha_O T^{-1}(z)$. Logo, $x + y \in \alpha_O T^{-1}(V)$, o que implica que

$$T^{-1}(V) + T^{-1}(V) \subseteq \beta T^{-1}(V)$$

para todo $\beta \in F$ com $|\beta| \ge |\alpha_0|$, por ser $T^{-1}(V)$ equilibrado. Por tanto $T^{-1}(V)$ é semiconvexo.

Assim, $T^{-1}(V)$ é uma $\gamma'[\eta,\tau]$ -vizinhança da origem em E e portanto T é $\gamma'[\eta,\tau]$ -contínua.

Suponhamos agora que $(F, |\cdot|)$ é não arquimediano e (E, η) é um EVT localmente F-convexo. Uma análise da construção da topologia γ' $[\eta, \tau]$ mostra que, tomando a coleção W_{0} de todos os subconjuntos não vazios, equilibrados, absorventes e F-convexos W de E tais que para todo $B \in \mathcal{B}$, $W \cap B$ é uma $\hat{\eta}$ -vizinhança da origem em B, W_{0} é um sistema fundamental de vizinhanças da origem para uma topologia de EVT sobre E que naturalmente é localmente F-convexa.

Denotaremos esta topología por $\gamma_{\mathfrak{p}}$ [η , τ].

Claramente temos $\eta \subseteq \gamma_F [\eta, \tau]$ e ambas coincidem nos elementos de $\mathrm{IL}(\tau)$. Mais ainda, $\gamma_F [\eta, \tau]$ é a mais fina das topologias localmente F-convexas sobre E com essa propriedade.

TEOREMA 1.37: Seja $(E;\eta,\tau)$ um EVBT tal que (E,η) e (E,τ) são EVT's localmente F-convexos e τ ē η -fechada. Então

$$\mathbb{L}\left(\tau\right) = \mathbb{L}\left(\gamma_{\mathbb{F}}\left[\eta,\tau\right]\right).$$

DEMONSTRAÇÃO: A demonstração deste teorema é análoga à do Teorema 1.28, onde é usado o seguinte resultado:

LEMA 1.38: Sob as hipoteses do Teorema 1.37 se $\{x_n:n\in\mathbb{N}\}$ ē uma sequência em E que converge a zero na topologia $\gamma_F[\eta,\tau]$, então $\{x_n:n\in\mathbb{N}\}$ ē τ -limitada.

DEMONSTRAÇÃO: Seja $\{x_n:n\in\mathbb{N}\}$ sequência $\gamma_F[\eta,\tau]$ -convergente a zero. Vamos mostrar que ela é τ -limitada. Para isso, consideremos uma τ -vizinhança equilibrada, F-convexa e η -fechada V da origem em E. Se $\{x_n:n\in\mathbb{N}\}$ não fosse τ -limitado, existiria uma subsequência $\{x_k(n):n\in\mathbb{N}\}$ tal que para todo $n\in\mathbb{N}$, existiria $\lambda_n\in F^*$ com $|\lambda_n|\geq n$, mas $x_k(n)\not\in\lambda_n V$ para todo $n\in\mathbb{N}$.

Seja $\{U_n:n\in\mathbb{N}\}$ uma sequência de η -vizinhanças equilibradas e F-convexas da origem tal que $x_{k(n)}\not\in\lambda_nV+U_n$, para cada $n\in\mathbb{N}$.

Seja

$$M = \bigcup_{u \in IN} (y^u \wedge + u^u)$$

e seja ß um sistema fundamental de conjuntos τ -limitados de E. Se B \in B, então B \subset $\lambda_{n_{_{O}}}$ V para algum $n_{_{O}}$ \in IN. Logo

$$W \cap B = \bigcap_{n=1}^{n} (U_n \cap B),$$

do que segue que W \cap B $\stackrel{\frown}{\text{e}}$ uma $\stackrel{\frown}{\text{n}}$ -vizinhança da origem em B.

Como $|\lambda_n| \ge n$, segue que

$$\mathsf{W}\supset \bigcap_{\mathsf{n}\in \mathsf{IN}}(\lambda_{\mathsf{n}}\mathsf{V})\supset \mathsf{V}$$

que é absorvente. Logo W é absorvente.

Vamos mostrar que W é equilibrado. Para isso consideremos $\lambda \in F \text{ com } 0 < \left|\lambda\right| < 1 \text{ e temos:}$

$$\lambda W = \mathop{\cap}_{n \in \mathbb{I} N} (\lambda \lambda_n V + \lambda U_n) \subset \mathop{\cap}_{n \in \mathbb{I} N} (\lambda_n V + U_n),$$

porque, para cada $n \in IN$, $\lambda_n^{\ \ V}$ e $U_n^{\ \ \ s\~{ao}}$ equilibrados.

Observamos também que W é F-convexo. De fato, se

$$x + y \in W + W$$
, então $x \in \lambda_n V + U_n$ e $y \in \lambda_n V + U_n$,

para todo n ∈ IN. Logo

$$x + y \in \lambda_n (V + V) + (U_n + U_n) \subset \lambda_n V + U_n$$
,

para todo $n \in IN$, porque V e U são F-convexas para cada $n \in IN$. Logo $x + y \in W$, o que mostra que W é F-convexo.

Da construção de γ_F [n, τ] seque que W é uma γ_F [n, τ] vizinhança da origem em E. Mas por hipótese, $x_{k(n)} \not\in \lambda_n V + U_n$ para todo n \in IN, o que implica que $x_{k(n)} \not\in W$ para todo n \in IN. Isto contradiz o fato de $\{x_n : n \in$ IN} convergir a zero na topologia γ_F [n, τ].

TEOREMA 1.39: Se jam E, η e τ como no Teorema 1.37. Uma se quên cía em E \tilde{e} γ_F $[\eta,\tau]$ -convergente a zero, se e somente se \tilde{e} τ -limitada e η -convergente a zero.

DEMONSTRAÇÃO: Este resultado segue do Lema 1.38 e sua demonstração é análoga à do Teorema 1.30.

$\S 2$ - BASES DE VIZINHANÇAS DE $\gamma [\eta, \tau]$

Sejam (E,τ) um EVT sobre $(F,|\cdot|)$ e $IL(\tau)$ a família de todos os subconjuntos τ -limitados de E. Se η é outra topologia de EVT sobre E, vimos no §l que a topologia mista $\gamma[\eta,\tau]$ tem as seguintes propriedades:

- (1) $\gamma [\eta, \tau]$ coincide com η nos elementos de $\mathrm{IL}(\tau)$;
- (2) $\gamma [\eta, \tau]$ é a mais fina de todas as topologias que gozam da propriedade (1).

Vimos também que a topologia γ [η , τ] pode ser determinada por um sistema fundamental de subconjuntos τ -limitados de E. Ainda mais, γ [η , τ] independe do sistema fundamental de τ -limitados escolhido para sua construção, [ver Obs. 1.9].

Estamos interessados agora em encontrar um sistema fundamental de vizinhanças da origem para γ [η , τ]. Se η for localmente F-convexo e IL (τ) possuir um sistema fundamental de conjuntos que são F-convexos (e isto ocorre, em particular, sempre que (E, τ) for localmente F-convexo), gostaríamos que γ [η , τ] também fosse localmente F-convexa.

Vamos caracterizar então um sistema fundamental de vizinhanças da origem para γ [η , τ] no caso em que IL(τ) possue um sistema fundamental enumerável B. Sem perda de generalidade, podemos

escolher $B = \{B_n : n \in IN\}$ e $\lambda_0 \in F$ com $0 < |\lambda_0| < 1$, tais que, para todo $n \in IN$, sejam satisfeitas:

(a)
$$B_n + B_n \subseteq B_{n+1}$$

(b)
$$B_n \subset \lambda_0 B_{n+1}$$

(c) $B_n \in \text{equilibrado}$.

Para isso, seja $C = \{C_n : n \in \mathbb{N}\}$ um sistema fundamental de τ -limitados equilibrados de E. Vamos construir o sistema fundamental enumerável $\mathcal{B} = \{B_n : n \in \mathbb{N}\}$ da seguinte maneira: tomemos $B_1 = C_1$ e suponhamos escolhidos B_1, \ldots, B_k tais que (a) e (b) estejam satisfeitas para $k = 1, 2, \ldots, n-1$.

Como o conjunto $B_n + B_n + \lambda_0^{-1}B_n + C_{n+1}$ é τ -limitado, existe $p \in TN$ tal que C_p contém tal conjunto. Pondo $B_{n+1} = C_p$ temos (a) e (b) verificadas para k = n.

Com o sistema fundamental $\mathcal{B} \subset \mathbb{TL}(\tau)$ assim definido, vamos construir uma base de vizinhanças da origem para uma nova topologia a qual denotaremos por $\gamma^* [\eta, \gamma]$ e mostraremos, no Corolário 2.6 que ela coincide com a topologia mista $\gamma [\eta, \tau]$ definida inicialmente, no caso em que $\mathbb{TL}(\tau)$ possui um sistema fundamental enumerável. Em seguida mostraremos algumas propriedades que são satisfeitas pela topologia $\gamma^* [\eta, \tau]$.

Para obtermos γ^* [η, τ], consideremos a família A de todos os conjuntos da forma

$$\gamma(u) = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{n} (U_k \cap B_k),$$

onde $U=\{U_n\;;\;n\in IN\}$ é uma sequência arbitrária de η -vizinhan ças de origem em E e $\mathcal{B}=\{B_n\;;\;n\in IN\}$ é uma seguência fundamental crescente de τ -limitados não vazios satisfazendo (a),(b) e (c).

Vamos mostrar que a família Λ determina um sistema fundamental de vizinhanças da origem para uma topologia de EVT que será indicada por γ^* [η,τ]. Temos:

- (0) A origem pertence a $\gamma(U)$, logo $\gamma(U) \neq \phi$; $\phi \notin \gamma(U)$.
- (1) Dados

$$\gamma\left(\mathcal{U}\right) \ = \ \begin{matrix} \infty & n \\ \cup & \Sigma \\ n=1 & n=1 \end{matrix} \begin{pmatrix} \mathbb{U}_k & \cap \mathbb{B}_k \end{pmatrix} \quad e \quad \gamma\left(\mathcal{V}\right) \ = \ \begin{matrix} \infty & n \\ \cup & \Sigma \\ n=1 & k=1 \end{matrix} \begin{pmatrix} \mathbb{V}_k & \cap \mathbb{B}_k \end{pmatrix}$$

existe um conjunto $\gamma(\emptyset) \in \Lambda$ tal que

$$\gamma(\emptyset) \subseteq \gamma(\emptyset) \cap \gamma(V)$$
.

Com efeito, tomemos a sequência $\{W_n:n\in IN\}$ de n-vizi-nhanças da origem com $W_n=U_n\cap V_n$ para cada $n\in IN$. Assim,

$$\gamma \left(\mathcal{W} \right) \; = \; \begin{array}{c} \overset{\infty}{\cup} \quad \overset{n}{\Sigma} \\ & \overset{n}{\sum} \left(\mathcal{W}_{k} \cap \mathcal{B}_{k} \right) \subset \\ & \overset{\infty}{\cup} \quad \overset{n}{\sum} \left(\left(\mathcal{U}_{k} \cap \mathcal{B}_{k} \right) \cap \left(\mathcal{V}_{k} \cap \mathcal{B}_{k} \right) \right) \\ & \overset{\infty}{\cup} \quad \overset{n}{\sum} \left(\mathcal{U}_{k} \cap \mathcal{B}_{k} \right) \cap \overset{\infty}{\cup} \quad \overset{n}{\sum} \left(\mathcal{V}_{k} \cap \mathcal{B}_{k} \right) = \gamma \left(\mathcal{U} \right) \cap \gamma \left(\mathcal{V} \right). \\ & \overset{n=1}{\sum} \; k=1 \end{array}$$

(2) a) Cada conjunto $\gamma(U)$ \tilde{e} equilibrado.

Para verificarmos, consideremos $\lambda \in F$ com 0 < $\left|\lambda\right|$ < 1. Temos:

$$\lambda \gamma (u) = \begin{array}{c} \infty & n \\ \cup & \Sigma \\ n=1 & k=1 \end{array} (\lambda U_k \cap \lambda B_k) \subset$$

$$\subset \begin{array}{c} \infty & n \\ \cup & \Sigma \\ n=1 & k=1 \end{array} (U_k \cap B_k) = \gamma (u) ,$$

pois, para cada $n \in IN$, U_n e B_n são equilibrados.

Cada $\gamma(U)$ é absorvente.

De fato, seja $x \in E$. Seja $k_0 \in IN$ tal que $x \in B_{k_0}$. Como U_{k_0} é absorvente, existe $\delta_0 > 0$ tal que para qualquer $\lambda \in F^*$ com $|\lambda| \geq \delta_0$, $x \in \lambda U_{k_0}$. Seja um tal λ com $|\lambda| > 1$ e tomemos $\delta = |\lambda|$. Então para qualquer $\mu \in F^*$, $|\mu| \geq \delta$,

$$x \in \mu(U_{k_{O}} \cap B_{k_{O}})$$
,

pois B_k ē equilibrado. Assim,

$$x \in \mu$$
 $\bigcup_{n=1}^{\infty} \sum_{k=1}^{n} (U_k \cap B_k) = \mu \gamma (U).$

(2) b) Se $\gamma(U) \in \Lambda$, então existe $\gamma(V) \in \Lambda$ com

$$\gamma(V) + \gamma(V) \subseteq \gamma(U)$$
.

Seja

$$\gamma\left(\mathsf{U}\right) \ = \ \begin{matrix} \overset{\infty}{\cup} & \overset{n}{\Sigma} \\ & \overset{}{\cup} & \overset{}{\Sigma} \end{matrix} \quad \left(\overset{}{\cup}_{k} \ \cap \ \overset{}{\mathsf{B}}_{k} \right) \, .$$

Para cada $\,k\,\in\, {\rm I\! N}\,,\,$ seja $\,V_{k}^{}\,$ uma $\eta\text{-vizinhança}$ da origem tal $\,$ que $\,V_{k}^{}\,+\,V_{k}^{}\,\subset\, U_{k+1}^{}$. Consideremos

$$\gamma(V) = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{n} (V_k \cap B_k).$$

Assim, se $x \in \gamma(V) + \gamma(V)$,

$$x \in \sum_{k=1}^{p} (v_k \cap B_k) + \sum_{k=1}^{m} (v_k \cap B_k)$$

para algum p e para algum m em IN. Logo x = y + z onde

$$y = y_1 + \dots + y_p$$
 com $y_k \in V_k$ e $y_k \in B_k$

е

$$\mathbf{z} = \mathbf{z}_1 + \ldots + \mathbf{z}_m \quad \text{com} \quad \mathbf{z}_k \in \mathbf{V}_k \quad \mathbf{e} \quad \mathbf{z}_k \in \mathbf{B}_k$$
 .

Suponhamos $m \le p$. Temos:

$$x = (x_1 + y_1) + ... + (x_m + y_m) + y_{m+1} + ... + y_p \in$$

$$\in (V_1 + V_1) \cap (B_1 + B_1) + \dots + (V_m + V_m) \cap (B_m + B_m)$$

$$+ V_{m+1} \cap B_{m+1} + \ldots + V_{p} \cap B_{p}$$

$$\subset \mathtt{U}_2 \cap \mathtt{B}_2 + \ldots + \mathtt{U}_{\mathsf{m}+1} \cap \mathtt{B}_{\mathsf{m}+1} \subset \mathtt{U}_{\mathsf{m}+2} \cap \mathtt{B}_{\mathsf{m}+2} + \ldots + \mathtt{V}_{\mathsf{p}+1} \cap \mathtt{B}_{\mathsf{p}+1}$$

$$\subset \bigcup_{n=1}^{\infty} \sum_{k=1}^{n} (U_k \cap B_k) = \gamma(U).$$

(2) c) Para algum $\lambda \in F^*$ com $0 < \lfloor \lambda \rfloor < 1$, dado $\gamma(\mathcal{U}) \in \Lambda$, existe $\gamma(\mathcal{V}) \in \Lambda$ com $\gamma(\mathcal{V}) \subset \lambda \gamma(\mathcal{U})$.

Seja $\gamma(U)$ dado e escolhamos $\lambda_O \in F^*$ como na definição de \mathcal{B} . Para cada $k \in IN$, existe uma η -vizinhança V_k da origem tal que $V_k \cap \lambda_O U_{k+1}$.

Se $x \in \gamma(V)$, então $x \in \sum_{k=1}^{n} (V_k \cap B_k)$, para algum $n \in \mathbb{N}$. Então

$$\mathbf{x} \in \sum_{k=1}^{n} (\lambda_{o} \mathbf{U}_{k+1} \cap \lambda_{o} \mathbf{B}_{k+1}) = \lambda_{o} \sum_{k=2}^{n} (\mathbf{U}_{k} \cap \mathbf{B}_{k}).$$

Portanto, $\lambda_0^{-1} x \in \sum_{k=2}^{n} (U_k \cap B_k) \subset \gamma(U)$, e então $x \in \lambda_0 \gamma(U)$.

De (0), (1) e (2), e usando o Teorema 2.15 Prolla [17], concluímos que a família Λ de todos os conjuntos $\gamma(U)$ definidos como acima forma um sistema fundamental de vizinhanças da origem para

uma topologia de EVT sobre E.

DEFINIÇÃO 2.1: Como já observamos, a topología acima obtida será então denotada por $\gamma^* [\eta, \tau]$.

EXEMPLO 2.2: No caso particular em que τ é proveniente de uma norma $\|\cdot\|$ em E, podemos tomar $\mathcal{B}=\{B_n:n\in\mathbb{N}\}$ da seguinte maneira: escolhamos $\lambda_0\in F$ com $0<|\lambda_0|<\frac{1}{2}$ e chamemos $\rho=|\lambda_0|$. Tomando, para cada $n\in\mathbb{N}$, $\beta_n=\{x\in E:\|x\|\leq \rho^{-n}\}$, β satisfaz, para todo $n\in\mathbb{N}$ as condições:

- (a) $B_n + B_n \subset B_{n+1}$
- (b) $B_n \subseteq \lambda_0 B_{n+1}$
- (c) B_n é equilibrado
- (d) $B_n = \lambda_0^{-n} B$, onde $B = \{x \in E : ||x|| \le 1\}$.

DEMONSTRAÇÃO: (a) Se $x \in B_n + B_n$, então x = y + z com y e z em B_n e

$$\|x\| \le \|y\| + \|z\| \le 2\rho^{-n} < \rho^{-1}\rho^{-n} = \rho^{-(n+1)},$$

e portanto $x \in B_{n+1}$. Logo $B_n + B_n \subseteq B_{n+1}$.

(b) Se $x \in B_n$, então $||x|| \le \rho^{-n}$, donde

$$\|\lambda_{o}^{-1}\mathbf{x}\| = \bar{\rho}^{1} \|\mathbf{x}\| \leq \rho^{-1}\rho^{-n} = \rho^{-(n+1)}.$$

Assim, $\lambda_0^{-1} x \in B_{n+1}$, e portanto $x \in \lambda_0 B_{n+1}$. Logo $B_n \subseteq \lambda_0 B_{n+1}$.

- (c) £ evidente .
- (d) Se $x \in \lambda_O^{-n}B$, então $\lambda_O^n x \in B$, donde $\rho^n \|x\| = \|\lambda_O^n x\| \le 1$. Portanto, $\|x\| \le \rho^{-n}$. Logo $x \in B_n$.

Se, por outro lado, $x \in B_n$, façamos $x = \lambda_0^{-n} \lambda_0^n x = \lambda_0^{-n} v$ com $v = \lambda_0^n x$ e obtemos

$$\|v\| = \rho^n \|x\| \le \rho^n \rho^{-n} = 1.$$

Assim, $v \in B$ e portanto $x \in \lambda_0^{-n} B$.

Isso mostra que $B_n = \lambda_0^{-n} B$.

EXEMPLO 2.3: Se (E,T) possui uma vizinhança τ -limitada U da origem, então a sequência fundamental $\mathcal B$ pode ser escolhida tomando-se $B_n = a_n U$, onde $\{a_n : n \in IN\}$ é uma sequência de elementos de F^* satisfazendo $|a_n| \to +\infty$.

Para isso, escolhamos $\lambda_0 \in F$ com $0 < |\lambda_0| < 1$ e dada uma sequência $\{b_k : k \in IN\}$ em F^* com $|b_k| \to +\infty$, escolhamos a sequência $\{a_n\}_{n \in IN}$ da seguinte maneira. Seja $a_1 = b_1$.

Seja $B_1 = a_1 U$. O conjunto $A_1 = B_1 + B_1 + \lambda_0^{-1} B_1$ é τ -limitado. Decorre daí que existe $\delta > 0$ tal que para todo $\lambda \in F$ com

 $|\lambda| \ge \delta$, $A_1 \subseteq \lambda U$. Como $|b_k| \to +\infty$ existe $k_2 > k_1 = 1$ tal que $|b_k| \ge \delta_1$ e portanto $A_1 \subseteq b_k|U$. Chamando $a_2 = b_k|U$ e $B_2 = a_2U$, temos:

(a)
$$B_1 + B_1 \subseteq B_2$$
 e

(b)
$$B_1 \subseteq \lambda_0 B_2$$
.

Suponhamos escolhidos $k_1 < k_2 < \dots < k_p$ tais que

$$B_{n-1} + B_{n-1} \subseteq B_n$$
 e $B_{n-1} \subseteq \lambda_0 B_n$

para todo n = 1, ..., p.

O conjunto $A_p = B_p + B_p + \lambda_o^{-1}B_p$ é τ -limitado e pelo mesmo raciocínio anterior, existe $k_{p+1} > k_p$ tal que $A_p \subset b_k$ U. Cha mando analogamente $a_{p+1} = b_k$ e $B_{p+1} = a_{p+1}U$, temos:

(a)
$$B_{p} + B_{p} \subset B_{p+1}$$
 e

(b)
$$B_p \subset \lambda_o B_{p+1}$$
.

Uma vez escolhido $\{a_n:n\in\mathbb{N}\}$ como a subsequência $\{b_k\}_{n\in\mathbb{N}}$ de $\{b_k\}_{k\in\mathbb{N}}$, temos que $|a_n|\to +\infty$ e claramente a família $\mathcal{B}=\{B_n:n\in\mathbb{N}\}$ é um sistema fundamental de subconjuntos τ -limitados de E.

Desde que tenhamos escolhido U como uma vizinhança t-limitada

PROPOSIÇÃO 2.4:

- (i) η é menos fina que γ* [n,τ].
- (ii) $\gamma^* [\eta, \tau]$ e η coincidem nos subconjuntos τ -limitados de E.
- (iii) γ^* [n, τ] \tilde{e} a mais fina topologia de EVT que coincide com η nos subconjuntos τ -límitados de E.

DEMONSTRAÇÃO: (i) Seja U uma η -vizinhança da origem em E. Existe sequência $U_1, U_2, \ldots, U_n, \ldots$ de η -vizinhanças da origem tais que $U_1 + U_2 + \ldots + U_n \subseteq U$. Tomemos

$$\gamma(u) = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{n} (u_k \cap B_k).$$

Se $x \in \gamma(U)$, então

$$x \in \sum_{k=1}^{n} (U_k \cap B_k)$$

para algum n ∈ IN. Logo

$$x \in \sum_{k=1}^{n} U_k \subset U.$$

(ii) Como $\,\eta\,\subseteq\,\gamma^{\,\star}\,\,[\,\eta\,,\tau\,]\,\,,$ basta mostrarmos que $\,\gamma^{\,\star}\,\,[\,\eta\,,\tau\,]\,\subseteq\,\eta\,$

nos τ -limitados não vazios de E. Sejam B \in IL (τ) e $\overset{\times}{\circ}$ \in B. Seja

$$\gamma\left(\mathit{U}\right) \;=\; \begin{matrix} \overset{\infty}{\cup} & \overset{n}{\Sigma} \\ & \overset{\infty}{\cup} & \overset{\infty}{\Sigma} \end{matrix} \; \left(\overset{U}{U}_{k} \; \cap \; \overset{B}{B}_{k} \right) \; .$$

Escolhamos $k_0 \in IN$ tal que $B-B \subset B_{k_0}$. Consideremos $W=U_{k_0}$, que é $\eta\text{-vizinhança}$ da origem. Vamos mostrar que

$$(x_O + W) \cap B \subseteq (x_O + \gamma(U)) \cap B.$$

Se $x \in (x_0 + W) \cap B$, então $x \in B$ donde $x - x_0 \in B - B \cap B \cap B_{k_0}$ e $x \in x_0 + W$ donde $x - x_0 \in W = U_{k_0}$. Assim,

$$x \in x_o + (W \cap B_{k_o}) \subset x_o + (U_{k_o} \cap B_{k_o}) \subset x_o + \gamma(U)$$
.

Portanto,

$$x \in (x_O + \gamma(U)) \cap B.$$

(iii) Seja ν uma topologia de EVT sobre E que satisfaz (ii) e seja ν uma ν -vizinhança da origem em E. Consideremos uma sequência ν ; ν de ν -vizinhanças da origem em E tal que

$$v_1 + v_2 + \ldots + v_n \subset v$$
,

para todo n ∈ IN.

Como η ⊂ ν nos elementos de β, escolhamos uma sequência de

 $\eta\text{-vizinhanças}\quad \textbf{U}_1,\dots,\textbf{U}_n,\dots\quad da \text{ origem tais que}$

$$U_k \cap B_k \subset V_k \cap B_k$$

para todo $k = 1, 2, \dots$.

Assim sendo, temos

$$U_1 \cap B_1 + \ldots + U_n \cap B_n \subset V_1 + \ldots + V_n \subset V_n$$

Então γ(U) ⊂ V, o que completa a demonstração.

COROLÁRIO 2.5: Se existir sequência fundamental enumerável $B \subseteq \mathbb{L}(\tau)$, satisfazendo as propriedades (a), (b) e (c). da página 48 temos:

- (1) $\gamma^*[\eta,\tau]$ independe da escolha de B.
- (2) Se η_1 e η_2 são duas topologias de EVT sobre E, então $\gamma^*[\eta_1,\tau]=\gamma^*[\eta_2,\tau]$ se e somente se η_1 e η_2 coincidirem nos conjuntos τ -limitados de E.
- (3) $\gamma^* [\eta, \tau]$ coincide com a topologia mista $\gamma [\eta, \tau]$.

TEOREMA 2.6: Se existir sequência fundamental $B \subseteq IL(\tau)$ em E formada por conjuntos η -fechados, então temos $IL(\gamma[\eta,\tau]) \subseteq IL(\tau)$.

Para uma demonstração deste teorema precisaremos do seguinte

lema.

LEMA 2.7: Sob a hipótese do Teorema 2.6, uma sequência $\{x_n; n \in \mathbb{N}\}$ converge a zero em $\{E,\gamma[\eta,\tau]\}$ se e somente se $\{x_n; n \in \mathbb{N}\} \in \mathbb{H}(\tau)$ e converge a zero em $\{E,\eta\}$.

DEMONSTRAÇÃO: Se $\{x_n:n\in\mathbb{N}\}$ converge a zero na topologia γ $[\eta,\tau]$, então converge a zero também na topologia η , por ser η menos fina que γ $[\eta,\tau]$.

Suponhamos agora que $\{x_n : n \in IN\} \not\in IL(\tau)$. Então existe subsequência $\{x_{n_k} : n \in IN\}$ tal que $x_{n_k} \not\in B_k$ para todo $k \in IN$. Como por hipótese B_k é η -fechado, existe uma sequência

$$\{U_k : k = 1, ..., n\}$$

de n-vizinhanças da origem em E tal que para cada $k\in {\rm I\! N}$, ${}^{x}{}_{n_{k}} \overset{\not\in B}{}_{k} \overset{+\ U}{}_{k} \; .$

Consideremos uma sequência $\{V_k \; ; \; k \in IN \}$ de $\eta\text{-vizinhanças}$ da origem tal que:

$$V_1 = U_1$$

$$V_k + V_k \subset U_k \cap V_{k-1}$$
, $k > 1$.

Então para cada k > 1,

$$\begin{array}{l} \gamma \left(V \right) \; = \; \displaystyle \bigcup_{p=1}^{\infty} \; \left(V_{1} \; \cap \; B_{1} \; + \; \ldots \; + \; V_{k+p} \; \cap \; B_{k+p} \right) \\ \\ = \; \displaystyle \bigcup_{p=1}^{\infty} \; \left(V_{1} \; \cap \; B_{1} \; + \; \ldots \; + \; V_{k-1} \; \cap \; B_{k-1} \; + \; V_{k} \; \cap \; B_{k} \; + \; \ldots \; + V_{k+p} \; \cap \; V_{k+p} \right) \\ \\ = \; \displaystyle \bigcup_{p=1}^{\infty} \; \left(B_{1} \; + \; \ldots \; + \; B_{k-1} \; + \; V_{k} \; + \; \ldots \; + \; V_{k+p} \right) \\ \\ \subset \; \displaystyle \bigcup_{p=1}^{\infty} \; \left(B_{k} \; + \; V_{k} \; + \; V_{k} \right) \; \subseteq \; B_{k} \; + \; V_{k} \; + \; V_{k} \; \subseteq \; B_{k} \; + \; U_{k} \; . \end{array}$$

Assim, x $\notin \gamma(V)$ para cada $k \in IN$, o que contradiz a hipótese de $\{x_n \; ; \; n \in IN\}$ ser convergente a zero na topologia $\gamma[\eta,\tau]$.

Reciprocamente, seja $\{x_n:n\in\mathbb{I} \in \mathbb{I} \setminus \{\tau\}\}$. Por Proposição 2.4.(ii), $\eta\in \gamma[\eta,\tau]$ coincidem neste conjunto. Assim, do fato de $\{x_n:n\in\mathbb{I} \}$ convergir a zero na topologia η , segue o resultado.

DEMONSTRAÇÃO DO TEOREMA 2.6: Seja $\mathcal{B} = \{B_n \; ; \; n \in \mathbb{N}\} \subset \mathbb{L}(\tau)$ tal que para todo $n \in \mathbb{N}$, B_n é n-fechado. Consideremos um conjunto $B \in \mathbb{L}(\gamma[\eta,\tau])$ em E. Se $B \not\in \mathbb{L}(\tau)$, então existe uma sequência $\{x_n \; ; \; n \in \mathbb{N}\}$ em B tal que $x_n \not\in \lambda_n B_n$ para todo $n \in \mathbb{N}$, onde $\{\lambda_n \; ; \; n \in \mathbb{N}\}$ é uma sequência em F^* , com $|\lambda_n| \to +\infty$. Mas então $|\lambda_n^{-1}| \to 0$ e como $B \in \mathbb{L}(\gamma[n,\tau])$, a sequência $\{\lambda_n^{-1}x_n \; ; \; n \in \mathbb{N}\}$ é $\gamma[\eta,\tau]$ -convergente a zero. Pelo Lema 2.7, o conjunto $\{\lambda_n^{-1}x_n \; ; \; n \in \mathbb{N}\}$ é τ -limitado, logo existe $k_0 \in \mathbb{N}$ tal que

para qualquer $n \in \mathbb{N}$, $\lambda_n^{-1} x_n \in B_k$. Mas então $x_k \in \lambda_k B_k$, o que é uma contradição.

TEOREMA 2.8: Se existir uma sequência fundamental $B \subseteq IL(T)$ formada por conjuntos Π -limitados e Π -fechados, então

$$\mathbb{L}(\gamma[\eta,\tau]) = \mathbb{L}(\tau).$$

DEMONSTRAÇÃO: Pelo Teorema 2.6 temos que $\mathbb{L}(\gamma [\eta, \tau]) \subseteq \mathbb{L}(\tau)$.

Por outro lado, segue da hipótese feita que $\mathbb{L}(\tau) \subseteq \mathbb{L}(\eta)$. Pela Proposição 1.24, temos $\mathbb{L}(\tau) \subseteq \mathbb{L}(\gamma[\eta,\tau])$, como queríamos.

Se A for um subconjunto η -compacto e τ -limitado de E, como η e γ [η , τ] coincidem nos τ -limitados, temos que A é γ [η , τ] - compacto. Vamos ver agora que sob as hipóteses do Teorema 2.7 a recíproca é verdadeira.

PROPOSIÇÃO 2.9:. Se existir em E una sequência fundamental $B \subset \mathbb{L}(\tau)$ formada por conjuntos η -fechados, então todo subconjunto $\gamma[\eta,\tau]$ -compacto de E é η -compacto e τ -limitado.

DEMONSTRAÇÃO: Se $A \subseteq E$ é $\gamma[\eta,\tau]$ -compacto, então é $\gamma[\eta,\tau]$ -limitado. Pelo Teorema 2.6, A é também τ -limitado. Pela Proposição 2.4.(ii), η e $\gamma[\eta,\tau]$ coincidem em A. Logo A é também η -compacto.

DEFINIÇÃO 2.10: Um espaço vetorial topológico (E,τ) é chamado semí-Montel se seus limitados são relativamente compactos.

PROPOSIÇÃO 2.11: Se $(E;\eta,\tau)$ \bar{e} EVBT e $(E,\gamma[\eta,\tau])$ \bar{e} semi-Montel, então todo subconjunto τ -límitado η -fechado de E \bar{e} η -compacto.

DEMONSTRAÇÃO: Seja B \in IL (τ) um subconjunto η -fechado de E. Pela Proposição 1.24, B \in γ [η , τ]-limitado e como $\eta \subseteq \gamma$ [η , τ], B \in também γ [η , τ]-fechado. Como por hipótese (E, γ [η , τ]) \in semi-Montel, segue que B \in γ [η , τ]-compacto. Logo B \in η -compacto.

PROPOSIÇÃO 2.12: Se existir sequência fundamental $B \subseteq IL(\tau)$ em E formada por conjuntos η -compactos então $(E,\gamma[\eta,\tau])$ é semi-Montel.

DEMONSTRAÇÃO: Seja $\mathcal{B} = \{B_n \; ; \; n \in IN\}$ sequência fundamental de τ -limitados que são η -compactos. Seja $B \in IL(\gamma[\eta,\tau])$ e seja \overline{B} seu fecho em $(E,\gamma[\eta,\tau])$. Pelo Teorema 2.6, \overline{B} é τ -limitado. Logo existe $n \in IN$ tal que $\overline{B} \subseteq B_n$, onde B_n é compacto. Pela Proposição 2.4.(ii), B_n é $\gamma[\eta,\tau]$ -compacto. Assim sendo, \overline{B} é $\gamma[\eta,\tau]$ -compacto, o que completa a demonstração.

COROLÁRIO 2.13: Se existir sequência fundamental $B \subseteq IL(\tau)$ formada por conjuntos η -limitados e η -fechados e se (E,η) for semi-Montel, então $(E,\gamma[\eta,\tau])$ é semi-Montel.

DEMONSTRAÇÃO: Seja $B = \{B_n ; n \in \mathbb{N}\}$ sequência fundamental de τ -limitados tal que para cada $n \in \mathbb{N}$, B_n é η -fechado e η -limitado. Como (E,η) é semi-Montel, B_n é η -compacto para cada $n \in \mathbb{N}$. Estamos, pois, nas condições da Proposição 2.12, de onde segue que $(E,\gamma\{\eta,\tau\})$ é semi-Montel.

COROLÁRIO 2.14: Se (E; η , τ) for EVBT e se existir sequência fundamental $B \subseteq IL(\tau)$ formada por subconjuntos η -compactos de E, então (E, γ [η , τ]) é semi-Montel se e somente se todo subconjunto τ -limitado η -fechado de E é η -compacto.

LEMA 2.15: Se $(E;\eta,\tau)$ e EVBT e se (E,τ) e bornológico (em particular se (E,τ) e normado) então $\gamma[\eta,\tau] \subset \tau$.

DEMONSTRAÇÃO: Consideremos a identidade $T:(E,\tau) \to (E,\gamma[\eta,\tau])$ e B C E um subconjunto τ -limitado. Como $(E;\eta,\tau)$ é EVBT segue, pela Proposição 1.24, que B é $\gamma[\eta,\tau]$ -limitado e como (E,τ) é bornológico, I é contínua, do que segue o resultado.

PROPOSIÇÃO 2.16: Seja (E, τ) um espaço normado. Se existir wha sequência fundamental $B \subset \mathbb{H}(\tau)$ formada por conjuntos que são η -fechados e se (E, γ [η , τ]) ē bornológico (em particular metrizavel), então $\tau \subset \gamma$ [η , τ].

DEMONSTRAÇÃO: Pelo Teorema 2.6, $\mathbb{L}(\gamma \{\eta,\tau\}) \subseteq \mathbb{L}(\tau)$. Logo, a

identidade I : $(E, \gamma [\eta, \tau]) \rightarrow (E, \tau)$ é contínua pelo fato de $(E, \gamma [\eta, \tau])$ ser bornológico. Decorre daí que $\tau \subseteq \gamma [\eta, \tau]$.

Vamos apresentar uma nova descrição das vizinhanças da origem para γ [$\eta_{\ell}\tau$] no caso em que IL(τ) possui um sistema fundamental enumerável.

Para isso, consideremos uma sequência $U=\{U_n\;;\;n\in 0,1,\ldots\}$ de η -vizinhanças equilibradas da origem em E e $\mathcal{B}=\{B_n\;;\;n\in\mathbb{N}\}$ uma sequência fundamental crescente de subconjuntos τ -limitados de E, satisfazendo (a), (b) e (c) da página 46. A família Λ'' de todos os conjuntos do tipo

$$\gamma'''(B) = U_O \cap \bigcap_{n=1}^{\infty} (U_n + B_n)$$

constitue um sistema fundamental de vizinhanças da origem para uma topologia γ " $[\eta,\tau]$ de EVT sobre E, pois

(0) $\phi \not\in \Lambda$ " $e \Lambda$ " $\neq \phi$, pois B \tilde{e} crescente.

$$\begin{array}{lll} \text{(1)} & \textit{Dados} & \gamma''(\textit{U}) &= \textit{U}_{0} \, \cap \, \bigcap_{n=1}^{\infty} (\textit{U}_{n} \, + \, \textit{B}_{n}) \, e \\ \\ & \qquad \qquad \gamma''(\textit{V}) \, = \, \textit{V}_{0} \, \cap \, \bigcap_{n=1}^{\infty} (\textit{V}_{n} \, + \, \textit{B}_{n}) \, , \\ \\ & \qquad \qquad \text{existe } \gamma''(\textit{W}) \, \in \, \Lambda'' \quad \textit{tal que} \quad \gamma''(\textit{W}) \, \subset \, \gamma''(\textit{U}) \, \subset \, \gamma''(\textit{V}) \, . \end{array}$$

Com efeito, se tomarmos a sequência $\{W_n : n = 0, 1, ...\}$ de

 η -vizinhanças da origem tal que $W_n = U_n \cap V_n$, temos

$$\gamma''(w) = w_{O} \cap \bigcap_{n=1}^{\infty} (w_{n} + B_{n}) = (U_{O} \cap V_{O}) \cap \bigcap_{n=1}^{\infty} (U_{n} \cap V_{n} + B_{n}) \in$$

$$\subset (U_{O} \cap V_{O}) \cap \bigcap_{n=1}^{\infty} [(U_{n} + B_{n}) \cap (V_{n} + B_{n})]$$

$$\subset \left[U_{O} \cap \bigcap_{n=1}^{\infty} (U_{n} + B_{n}) \right] \cap \left[V_{O} \cap \bigcap_{n=1}^{\infty} (V_{n} + B_{n}) \right] =$$

$$= \gamma"(U) \cap \gamma"(V).$$

(2) a) Cada γ"(II) ē equilibrado e absorvente.

Seja $\lambda \in F$ com $0 < |\lambda| < 1$. Então

$$\lambda \gamma^{*}(u) = \lambda U_{0} \cap \bigcap_{n=1}^{\infty} (\lambda U_{n} + \lambda B_{n})$$

$$\subset U_{0} \cap \bigcap_{n=1}^{\infty} (U_{n} + B_{n}),$$

pois, para cada $n = 0, 1, \ldots, U_n$ e B_n são equilibrados.

Logo $\lambda \gamma''(U) \subseteq \gamma''(U)$ e portanto $\gamma''(U)$ é equilibrado.

Consideremos agora $x \in E$. Seja $n_0 \in IN$ tal que $x \in B_{n_0}$. Como a sequência B é crescente, para todo $n \ge n_0$, temos

$$x \in B_n \subset U_n + B_n$$
.

Como cada U_n é absorvente, para cada $i=0,1,\ldots,n_o-1$, existe $\delta_i>0$ tal que para todo $\lambda\in F$ com $|\lambda_i|\geq \delta_i$,

$$x \in \lambda_i U_i \subset \lambda_i (U_i + B_i)$$
.

Tomemos

$$\delta = \max\{\delta_0, \ldots, \delta_{n-1}, 1\}.$$

Assim, para todo $\lambda \in F$ com $|\lambda| \ge \delta$, ocorre que $x \in \lambda U_{\dot{1}}$ para todo $\dot{1} = 0, 1, \ldots$ Segue-se então que

$$x \in \lambda U_0 \cap \bigcap_{n=1}^{\infty} \lambda (U_n + B_n) = \lambda \gamma''(U).$$

(2) b) Se $\gamma''(U) \in \Lambda''$, então existe $\gamma''(V) \in \Lambda''$ com

$$\gamma"(V) + \gamma"(V) \subset \gamma"(U)$$
.

Se

$$\gamma''(U) = U_0 \cap \bigcap_{n=1}^{\infty} (U_n + B_n),$$

escolhamos uma sequência $\{V_n \; ; \; n=0,1,\ldots \}$ de η -vizinhanças da origem tal que

$$v_o + v_o \subset v_o \cap v_1$$

e

$$v_n + v_n \subset v_{n+1}$$
,

para todo n ∈ IN, e seja

$$\gamma^{*}(V) = V_{0} \cap \bigcap_{n=1}^{\infty} (V_{n} + B_{n}).$$

Se $x \in \gamma''(V) + \gamma''(V)$, então x = y + z com $y \in z$ em V_O e $y \in z$ em $V_n + B_n$ para todo $n \in IN$. Assim

$$x = y + z \in V_O + V_O \subset U_O \cap U_1 \subset U_O \cap (U_1 + B_1)$$

e para todo $n \in IN$,

$$\mathbf{x} = \mathbf{y} + \mathbf{z} \in \mathbf{V}_{\mathbf{n}} + \mathbf{B}_{\mathbf{n}} + \mathbf{V}_{\mathbf{n}} + \mathbf{B}_{\mathbf{n}} \subset \mathbf{U}_{\mathbf{n}+1} + \mathbf{B}_{\mathbf{n}+1} \ .$$

Logo

$$x \in U_{O} \cap \bigcap_{n \in IN} (U_{n} + B_{n}) = \gamma^{n}(U).$$

(2) c) Para algum $\lambda \in F$ com $0 < |\lambda| < 1$ (e daĩ para todo $\lambda \in F^*$), dado $\gamma''(U) \in \Lambda''$, existe $\gamma''(V) \in \Lambda''$ talque $\gamma''(V) \subset \lambda \gamma''(U)$.

Seja

$$\gamma''(u) = u_0 \cap \bigcap_{n=1}^{\infty} (u_n + B_n)$$

dado e seja $\lambda \in F$ com $0 < |\lambda| < 1$ escolhido da definição de B. Por hipótese, para cada $n=0,1,\ldots$, existe uma η -vizinhança

V da origem tal que $V_n \subseteq \lambda U_{n+1}$ e existe uma η -vizinhança V_o da origem tal que

$$V_{o} \subset \lambda (U_{o} \cap U_{1}) \subset \lambda [U_{o} \cap (U_{1} + B_{1})].$$

Assim, como para cada $n \in IN$, $B_n \subset \lambda B_{n+1}$, obtemos

$$\gamma''(V) = V_0 \cap (V_1 + B_1) \cap (V_2 + B_2) \cap ... \subset$$

$$\subset \lambda U_0 \cap \lambda (U_1 + B_1) \cap \lambda (U_2 + B_2) \cap ... =$$

$$= \lambda \gamma''(U).$$

PROPOSIÇÃO 2.17: Sob as condições acima, $\gamma''[\eta,\tau] = \gamma^*[\eta,\tau]$.

DEMONSTRAÇÃO: Vamos mostrar inicialmente que γ "[η , τ] $\subseteq \gamma$ * [η , τ], em cada conjunto $B_k \subseteq B$. Para cada $k \in IN$, temos

$$\gamma''(U) \cap B_{k} = \left[U_{0} \cap \bigcap_{n=1}^{\infty} (B_{n} + U_{n})\right] \cap B_{k} =$$

$$= U_{0} \cap \bigcap_{n=1}^{k} (B_{n} + U_{n}) \cap B_{k},$$

que é uma $\hat{\eta}$ -vizinhança da origem em B_k . Segue então da Proposição 2.4.(iii) que γ " $[\eta,\tau] \subset \gamma^* [\eta,\tau]$.

Consideremos agora uma γ* [η,τ]-vizinhança da origem dada por

$$\gamma(\mathcal{U}) = \bigcup_{n=1}^{\infty} \sum_{i=1}^{n} (U_{i} \cap B_{i}).$$

Para cada $n=2,3,\ldots$, consideremos uma η -vizinhança V_n da origem tal que $V_n+V_n\subseteq U_{n+2}$. Se $x\in \gamma$ "(V) então

$$x \in \bigcap_{n=1}^{\infty} (V_n + B_n)$$

o que implica que para cada $~n\geq 1,~x~$ possúi uma decomposição $x=y_n^{}+z_n^{} ~com~ y_n^{}\in v_n^{} ~e~ z_n^{}\in {\tt B}_n^{}~.$

Vamos definir $x_1 = z_1$, $x_2 = z_2 - z_1$, ..., $x_n = z_n - z_{n-1}$... e temos:

$$x_1 + x_2 + \dots + x_n + y_n = z_1 + z_2 - z_1 + \dots + z_n - z_{n-1} + y_n = z_n + y_n = x$$

e portanto $y_{n-1} - y_n = x_n$.

Logo,

$$x_{n} = y_{n-1} - y_{n} \in V_{n} + V_{n-1} \subset V_{n-1} + V_{n-1} \subset U_{n+1}$$

е

$$x_n = z_n - z_{n-1} \in B_n + B_{n-1} \subset B_n + B_n \subset B_{n+1}$$
.

Assim temos $x_n \in U_{n+1} \cap B_{n+1}$. (1)

Seja agora n_{o} escolhido tal que $x \in B_{n_{o}}$. Então

$$y_{n_0} = x - z_{n_0} \in B_{n_0} + B_{n_0} \subset B_{n_0+1} \subset B_{n_0+2}$$

е

$$y_{n_o} \in V_{n_o} \subset U_{n_o+2}$$
.

Logo,

$$y_{n_0} \in U_{n_0+2} \cap B_{n_0+2}.$$
 (2)

De (1) e (2), temos

$$x = x_1 + \dots + x_{n_0} + y_{n_0} \in (U_2 \cap B_2) + \dots + (U_{n_0} \cap B_{n_0}) + \dots + (U_{n_0+2} \cap B_{n_0+2}) \subset \gamma(U).$$

Isto mostra que $\gamma^* [\eta, \tau] \subseteq \gamma^* [\eta, \tau]$.

TEOREMA 2.18: Se $\mathbf{IL}(\tau)$ possuí uma sequência fundamental formada por conjuntos η -fechados, então a topología γ [η , τ] \tilde{e} η -fechada.

DEMONSTRAÇÃO: Vamos tomar um sistema fundamental de vizinhanças da origem para γ " $[\eta,\tau]$ formado por conjuntos do tipo

$$\gamma''(U) = U_0 \cap \bigcap_{n=1}^{\infty} (U_n + B_n)$$

onde $B \subseteq IL(\tau)$ é formado por conjuntos η -fechados, e

$$U = \{U_n ; n = 0, 1, ...\}$$

é uma sequência de η-vizinhanças η-fechadas da origem.

Como cada conjunto $\gamma''(U)$ desse tipo é claramente η -fechado, segue que $\gamma''[\eta,\tau]$ é η -fechada e consequentemente, $\gamma[\eta,\tau]$ é η -fechada.

PROPOSIÇÃO 2.19: Se η for localmente F-convexa e a sequência fundamental $B=\{B_n:n\in I\!\!N\}$ puder ser escolhida tal que para todo $n\in I\!\!N$, B_n \tilde{e} F-convexo, então γ $[\eta,\tau]$ \tilde{e} localmente F-convexa.

DEMONSTRAÇÃO: Consideremos uma γ [η,τ]-vizinhança da origem

$$\gamma(\mathcal{U}) = \bigcup_{n=1}^{\infty} \sum_{k=1}^{n} (\mathbf{U}_k \cap \mathbf{B}_k),$$

onde, para cada $n \in \mathbb{N}$, B_n é F-convexo. Como \mathfrak{n} é localmente F-convexa, existe uma sequência $u^* = \{u_k^* : k \in \mathbb{N}\}$ de \mathfrak{n} -vizinhanças F-convexas da origem tal que $u_k^* \subseteq u_k$ para cada $k \in \mathbb{N}$. A vizinhança $\gamma(u^*)$ da origem é F-convexa visto que para cada $n \in \mathbb{N}$ o conjunto $u_n^* \cap B_n$ é F-convexo. Ainda mais, temos $\gamma(u^*) \subseteq \gamma(u)$ do que segue que $\gamma[\mathfrak{n},\tau]$ é localmente F-convexa.

PROPOSIÇÃO 2.20: Sejam Ε, η e τ como na Proposição 2.19. Então

 $\gamma [\eta, \tau] = \gamma_F [\eta \tau].$

DEMONSTRAÇÃO: Vamos mostrar incialmente que γ_F $[\eta,\tau] \subseteq \gamma$ $[\eta,\tau]$. Mas γ_F $[\eta,\tau] = \eta$ nos subconjuntos γ -limitados. Então pela Observação 1.6, temos γ_F $[\eta,\tau] \subseteq \gamma$ $[\eta,\tau]$.

Para mostrarmos a segunda inclusão, lembramos que, γ_F [η,τ] é a mais fina topologia de EVT localmente F-convexa que coincide com η nos subconjuntos τ -limitados de E. Além disso, γ [η,τ] coincide com η nos subconjuntos τ -limitados e pela Proposição 2.19, é localmente F-convexa. Logo γ [η,τ] $\subseteq \gamma_F$ [η,τ].

§3 - ESPAÇOS DE SAKS

Seja E um espaço vetorial sobre F e sejam η e τ duas topologias de EVT sobre E. Se η é determinada por uma família de seminormas, gostaríamos de encontrar uma família de seminormas que define a topologia γ [η , τ]. Para isso vamos pedir que E, η e τ satisfaçam a propriedade:

(*) A topologia τ é definida por uma norma ||•||; a topologia η é determinada por uma família S de seminormas p tais que

$$\|f\| = \sup \{p(f); p \in S\},$$

para todo $f \in E$.

Quando a norma $\|\cdot\|$ é não-arquimediana suporemos que a família S acima pode ser encontrada de modo que cada seminorma $p \in S$ é não-arquimediana. Diremos então que vale a propriedade (*) n.a.

Observamos que numa terna $(E;\eta,\tau)$ como acima são verdadeiras as seguintes propriedades:

(1) Para todo número real r>0, a bola fechada \overline{B}_r de raío r em (E,τ) \overline{e} η -limitada.

Isto é verificado imediatamente, pois para qualquer $x \in \overline{B}_r$,

com r > 0 fixado, temos $p(x) \le ||x|| \le r$, do que segue que $\eta \subseteq \tau$.

(2) As bolas $\overline{B_r}$ são n-fechadas.

Com efeito, consideremos o net $\{x_{\delta}: \delta \in \Delta\}$ em $\overline{B_r}$, η -convergente a um elemento x de E. Como para qualquer $\delta \in \Delta$, $x_{\delta} \in \overline{B_r}$, temos, para todo $p \in S$, $p(x_{\delta}) \leq \|x_{\delta}\| \leq r$ e portanto $p(x) \leq r$. Logo,

$$||x|| = \sup \{p(x) : p \in S\} < r$$

e portanto $x \in \overline{B}_r$.

Segue da propriedade (l) que $(E;\eta,\tau)$ é um EVBT, e da propriedade (2) que a topologia τ , dada pela norma $\|\cdot\|$, é η -fechada. Portanto, se $\|\cdot\|$ for não arquimediana, então $(E;\eta,\tau)$ satisfaz as condições do Teorema 1.28, e portanto $\mathbb{L}(\tau) = \mathbb{L}(\gamma[\eta,\tau])$.

DEFINIÇÃO 3.1: Se $(E;\eta,\tau)$ satisfaz a propriedade (*) (respectivamente (*) não arquimediana) diremos que $(E;\eta,\tau)$ é um espaço de Saks (respectivamente espaço de Saks não arquimediano).

Se a topologia τ for proveniente da norma $\|\cdot\|$, poderemos denotar a terna $(E;\eta,\tau)$ por $(E;\eta,\|\cdot\|)$.

EXEMPLO 3.2: Seja (E, $\|\cdot\|$) um espaço normado sobre (F, $|\cdot|$). Seja Φ um conjunto de funcionais lineares contínuos sobre E tais que

$$\|\mathbf{x}\| = \sup_{\varphi \in \Phi} |\varphi(\mathbf{x})|.$$

Seja n a topologia definida em E pela família S de seminormas $x \to |\varphi(x)|$ quando φ percorre Φ . Então $(E;n,\|\cdot\|)$ é um espaço de Saks. Como exemplo, seja $E = \ell_\infty$ o espaço de todas as sequências $\{x_n \; ; \; n \in I\! N\}$ com $x_n \in F$ tais que

$$\|\mathbf{x}\|_{\infty} = \sup_{n} |\mathbf{x}_{n}| < \infty.$$

Neste caso, Φ será o conjunto de todos os funcionais lineares contínuos x = $(x_m)_{m\in {\rm I\! N}} \to x_n$, para cada n \in IN.

EXEMPLO 3.3: Consideremos a terna (E; η , $\|\cdot\|$), onde E é o espaço vetorial de todas as sequências $\{x_n : n \in IN\}$ com $x_n \in F$ tais que

$$\|\mathbf{x}\|_{1} = \sum_{n=1}^{\infty} |\mathbf{x}_{n}| < \infty,$$

η é a topologia definida pela família S de seminormas

$$p_n(x) = \sum_{i=1}^{n} |x_i|, e ||x|| = ||x||.$$

Temos:

$$\|\mathbf{x}\| = \sum_{n=1}^{\infty} |\mathbf{x}_n| = \sup_{n} \sum_{i=1}^{n} |\mathbf{x}_i| = \sup_{n} p_n(\mathbf{x}),$$

o que implica que a terna (E;η,∥·∥) é um espaço de Saks.

Consideremos agora um espaço de Saks $(E;\eta,\|\cdot\|)$ e S uma família de seminormas η -contínuas que definem a topologia η , fecha da por supremo finito e tal que $\|\cdot\| = \sup S$. Observamos aqui que S é um conjunto dirigido.

Para cada par de sequências $\{p_n:n\in\mathbb{N}\}$ e $\{\lambda_n:n\in\mathbb{N}\}$, on de para cada $n\in\mathbb{N}$, $p_n\in\mathbb{S}$ e $\lambda_n\in\mathbb{F}^*$ com $|\lambda_n|\to+\infty$, a aplicação

$$\tilde{p} : x \rightarrow \sup \{ |\lambda_n|^{-1} p_n(x) ; n \in \mathbb{N} \}$$

é uma seminorma sobre E.

Seja $\tilde{\gamma}$ [η , $\|\cdot\|$] a topologia definida sobre E pela família \tilde{S} de todas as seminormas \tilde{p} assim definidas.

Observamos que a família S é um conjunto dirigido.

PROPOSIÇÃO 3.4: Se $(E;\eta,\|\cdot\|)$ é um espaço de Saks e $\tilde{\gamma}$ $[\eta,\|\cdot\|]$ é a topología definida pela familia \tilde{S} acima, então

$$\tilde{\gamma}$$
 $[\eta, \|\cdot\|] \subseteq \gamma [\eta, \|\cdot\|].$

DEMONSTRAÇÃO: Seja $B = \{B_n : n \in IN\}$ uma sequência fundamental de subconjuntos $\|\cdot\|$ -limitados de E satisfazendo (a), (b) e (c) da definição de B.

Usando a Proposição 2.5.(iii), basta mostrarmos que

 $\tilde{\gamma}$ $[\eta,\|\cdot\|] \subseteq \eta$ em cada elemento B' \in B. Seja \tilde{V} uma $\tilde{\gamma}$ $[\eta,\|\cdot\|]$ - vizinhança da origem em B' dada por

$$\tilde{V} = B' \cap \{x \in E : \tilde{p}_n(x) \le 1\} =$$

$$= B' \cap \bigcap_{n=1}^{\infty} \{x \in E : p_n(x) \le |\lambda_n|\},$$

onde, para cada $n \in IN$, $p_n \in S$ e $\{\lambda_n : n \in IN\}$ é sequência em $F^* \quad com \quad |\lambda_n| \to +\infty.$

Como B \in H.($\|\cdot\|$), existe $\delta > 0$ tal que para qualquer $\lambda \in F^*$, com $|\lambda| \geq \delta$, temos B' $\subseteq \lambda B$, onde por B denotaremos a bola unitaria fechada de (E, $\|\cdot\|$). Logo existe $n_O \in IN$, tal que, para todo $n \geq n_O$,

$$B^{\dagger} \subseteq \lambda_{n}^{B} \subseteq \{x : p_{n}(x) \leq |\lambda_{n}|\},$$

visto que $\|\cdot\| = \sup S$ e $p_n \in S$.

Assim,

$$B' \subset \bigcap_{n=n_0}^{\infty} \{x : p_n(x) \le |\lambda_n|\}$$

e portanto

$$B' \cap \bigcap_{n=1}^{\infty} \{x : p_n(x) \le |\lambda_n|\} = B' \cap \bigcap_{n=1}^{n_0} \{x : p_n(x) \le |\lambda_n|\},$$

que é uma $\hat{\eta}$ -vizinhança da origem em B'.

Logo,
$$\tilde{\gamma}[\eta, \|\cdot\|] \subseteq \gamma[\eta, \tau]$$
.

PROPOSIÇÃO 3.5: Seja ($E;\eta$, $\|\cdot\|$) um espaço de Saks. Consideremos as seguintes condições:

(a) para cada $x \in E$, para cada $\epsilon > 0$ e para cada $p \in S$ existem elementos y e z em E taís que

$$x = y + z$$
, $p(z) = 0$ e $||y|| \le p(x) + \varepsilon$.

(b) a bola unitaria B de (E, ∥·∥) ē n-compacta.

Se (a) ou (b) estiver verificada, então

$$\gamma \left[\eta, \|\cdot\| \right] \subseteq \tilde{\gamma} \left[\eta, \|\cdot\| \right].$$

DEMONSTRAÇÃO: (a) Vamos supor inicialmente que está satisfeita a condição (a) e vamos provar que

$$\gamma'' [\eta, \|\cdot\|] \subseteq \widetilde{\gamma} [\eta, \|\cdot\|], \text{ onde } \gamma'' [\eta, \|\cdot\|]$$

é a topologia definida em 2.17, supondo-se que η é dada por uma família S de seminormas e $\mathcal{B}=\{B_n\;;\;n\in\mathbb{N}\},\;com\;\;B_n=\mu_nB,\;sendo\;\;\mu_n=\lambda^{-n},\;para algum\;\;\lambda\in F^*,\;com\;\;0<|\lambda|<\frac{1}{2}$.

Consideremos então a γ " [η , $\|\cdot\|$] -vizinhança da origem dada por

$$\gamma''(U) = U_0 \cap \bigcap_{n=1}^{\infty} (U_n + \mu_n B),$$

onde para cada $n=0,1,\ldots,$ $U_n=\{x\in E: p_n(x)\leq \epsilon_n\},$ $\epsilon_n>0$ e $p_n\in S.$

Seja $\lambda_0\in F^*$ tal que $|\lambda_0|\leq \varepsilon_0$ e para cada $n\in IN$, seja $\lambda_n\in F^*$ tal que $\varepsilon_n^-+|\lambda_n^-|\leq |\mu_n^-|$. Seja $x\in E$ tal que

$$\tilde{p}(x) = \sup\{|\lambda_n|^{-1}p_n(x); n = 0,1,...\} \le 1.$$

Por hipótese, para cada $n \in \mathbb{N}$, existem y_n e z_n em E tais que $x = y_n + z_n , \quad p_n(z_n) = 0 \quad e$

$$\| \mathbf{y}_n \| \leq \mathbf{p}_n(\mathbf{x}) + |\lambda_n| \leq \varepsilon_n + |\lambda_n| \leq |\mu_n|.$$

Assim, para todo n = 1,2,..., temos $z_n \in \textbf{U}_n$ e $\text{ y}_n \in \textbf{\mu}_n \textbf{B}$, o que implica que $\text{ x} \in \textbf{U}_n$ + $\textbf{\mu}_n \textbf{B}$.

Para n = 0, se

$$\tilde{p}(x) = \sup \{ |\lambda_n|^{-1} p_n(x); n = 0,1,... \} \le 1,$$

então $p_{O}(x) \leq |\lambda_{O}|$, do que segue que $x \in U_{O}$.

Logo, $x \in \gamma''(u)$ e portanto $\{x; \ \widetilde{p}(x) \leq 1\} \subseteq \gamma''(u)$ o que implica que $\gamma''(u)$ é uma $\widetilde{\gamma}[\eta, \|\cdot\|]$ -vizinhança da origem em E.

Logo, $\gamma [\eta, \tau] \subset \tilde{\gamma} [\eta, \tau]$.

(b) Suponhamos agora que Β e η-compacta.

Seja U uma γ [η , $\|\cdot\|$]-vizinhança aberta da origem em E. Como γ [η , τ] e η coincidem sobre os $\|\cdot\|$ -limitados de E, existem $p_0 \in S$ e $\epsilon > 0$ tais que $\{x : p_0(x) < \epsilon\} \cap B \subseteq U \cap B$.

Suponhamos encontradas $p_1, \dots, p_n \in S$ tais que

$$\bigcap_{k=1}^{n} \{x : p_k(x) \leq |\lambda_k|\} \cap \mu_n B \subset U \cap \mu_n B,$$

onde $\lambda_n \in F^*$ com $|\lambda_0| < \epsilon \ e \ |\lambda_k| \ge k - 1, k = 2, ..., n \ e \ \mu_n \in F^*$ com

$$k \le |\mu_k| \le |\mu_{k+1}|, \quad k = 1, ..., n - 1.$$

Queremos provar que existe $p_{n+1} \in S$ tal que

Vamos supor, por absurdo, que não existe uma seminorma nestas condições. Então para qualquer $q \in S$, o conjunto

$$C_{\mathbf{q}} = \bigcap_{k=1}^{n} \{\mathbf{x} : \mathbf{p}_{k}(\mathbf{x}) \leq |\lambda_{k}|\} \cap \{\mathbf{x} : \mathbf{q}(\mathbf{x}) \leq \mathbf{n}\} \cap (\mu_{n+1}^{B} \setminus \mathbf{0})$$

é não vazio. Como o conjunto $\mu_{n+1}B\setminus U$ é γ [n, $\|\cdot\|$] - compacto e portanto η -compacto, pela propriedade da intersecção finita existe um ponto \mathbf{x}_0 em $(\mu_{n+1}B\setminus U)\cap \bigcap_{\mathbf{q}\in S} \mathbf{q}$ e portanto $\mathbf{q}\in S$

$$x_0 \in \bigcap_{k=1}^n \{x : p_k(x) \le |\lambda_n|\}.$$

Temos então $~q(x_{_O})~\leq~n~\leq~|\mu_n^{}|~$ para cada $~q\in S,$ o que implica $\|\,x_{_O}^{}\|~\leq~|\mu_n^{}|\,.$

Logo $x \in U \cap \mu_n^B$ e portanto $x \in U \cap \mu_{n+1}^B$, o que é uma contradição.

Assim foi construida, por indução, uma sequência $\{p_n:n\in\mathbb{N}\}$ de seminormas de S tal que

$$\bigcap_{k=1}^{n} \{x : p_k(x) \le |\lambda_k|\} \subset U$$

para todo n ∈ IN.

Logo, para todo n ∈ IN, temos

$$\{x : |\lambda_n|^{-1} p_n(x) \le 1\} \subset U,$$

Portanto existe uma $\tilde{\gamma}$ [η , $\|\cdot\|$] -vizinhança \tilde{U} da origem dada por \tilde{U} = {x : $\tilde{p}(x)$ \leq 1} que está contida em U.

Logo $\gamma [\eta, \| \cdot \|] \subseteq \widetilde{\gamma} [\eta, \| \cdot \|]$, como queríamos.

OBSERVAÇÃO 3.6: Por este resultado e por 3.4 vimos que se $(E; \eta, \|\cdot\|)$ é um espaço de Saks onde uma das condições (a) ou (b) da Proposição 3.5 é satisfeita, então uma base de vizinhanças da origem para a topologia γ $[\eta, \|\cdot\|]$ pode ser dada por conjuntos do tipo

$$\bigcap_{n=1}^{\infty} \{x \in E : p_n(x) \le |\lambda_n|\},$$

onde $\{\lambda_n:n\in\mathbb{N}\}$ é uma sequência em F* com $|\lambda_n|\to +\infty$ e $\{p_n:n\in\mathbb{N}\}$ é uma sequência de seminormas η -continuas pertencentes a S.

EXEMPLO 3.7: Vamos dar um exemplo de um espaço de Saks não arquimediano onde está satisfeita a condição (a) da Proposição 3.5. É fácil ver que a terna $(\ell_\infty;\eta,\|\cdot\|_\infty)$ do Exemplo 3.2 onde η é a topologia localmente F-convexa definida pela família de seminormas não arquimedianas $\{p_i \; ; \; i \in IN\}$, onde $p_i(x) = |x_i|$ é um espaço de Saks não arquimediano.

Sejam $\varepsilon > 0$, $x \in E$ e $i \in IN$ fixados. Se tormarmos

$$y = (x_1, ..., x_i, 0, ...)$$
 e $z = (0, ..., 0, x_{i+1}, x_{i+2}, ...)$

em l temos:

$$x = y + z$$
, $p_{i}(z) = |z_{i}| = 0$

е

$$\|\,y\,\,\| \ = \ \sup_{i} \ |\,y_{\,i}\,| \ = \ \max_{1 \le j \le i} \ |\,x_{\,i}\,| \ \le \ \|\,x\,\,\| \ \le \ \|\,x\,\,\| \ + \ \epsilon\,.$$

Logo $(\ell_\infty; \eta, \|\cdot\|_\infty)$ satisfaz a condição (a) da Proposição 3.5 e portanto uma base de vizinhanças da origem para a topologia mista γ $[\eta, \|\cdot\|_\infty]$ pode ser dada por conjuntos do tipo

$$\bigcap_{i=1}^{\infty} \{x : |x_i| \leq |\lambda_i|\},$$

onde $\{\lambda_n : n \in \mathbb{N}\}$ é uma sequência em F* com $|\lambda_n| \to +\infty$.

EXEMPLO 3.8: Já vimos que a terna $(\ell_1;\eta,\|\cdot\|_1)$ do Exemplo 3.3 é um espaço de Saks. Vamos mostrar que aqui também a condição (a) da Proposição 3.5 está satisfeita e vamos apresentar uma base de vizinhanças da origem para $\gamma [\eta,\|\cdot\|_1]$ em ℓ_1 . Da mesma forma, fazendo, para cada $x \in \ell_1$, $\varepsilon > 0$ e $i \in \mathbb{N}$,

$$y = (x_1, ..., x_i, 0, 0, ...)$$
 e $z = (0, 0, ..., 0, x_{i+1}, x_{i+2}, ...)$

obtemos
$$x = y + z$$
, $p_i(z) = \sum_{k=1}^{i} |x_k| = 0$ e

$$\|y\| = \sup_{i} \sum_{k=1}^{i} |y_{k}| = \sum_{k=1}^{i} |x_{k}| \le \|x\| \le \|x\| + \epsilon.$$

Assim, $(l_1; \eta, \| \cdot \|_1)$ satisfaz a condição (a) da Proposição 3.5 e portanto uma base de vizinhanças da origem para $\gamma [\eta, \| \cdot \|_1]$ é dada por conjuntos do tipo

$$\underset{\mathtt{i}=1}{\overset{\infty}{\cap}} \ \{ \mathtt{x} \in \mathbb{A}_1 : \underset{k=1}{\overset{\mathtt{i}}{\Sigma}} \ |\mathtt{x}_k| \leq |\lambda_{\mathtt{i}}| \},$$

onde $\{\lambda_n : n \in IN\}$ é sequência em F* com $|\lambda_n| \to +\infty$.

EXEMPLO 3.9: Daremos agora um exemplo de um espaço de Saks no qual

é satisfeita a condição (b) da Proposição 3.5. Seja (E, $\|\cdot\|$) um espaço normado sobre um corpo local não trivialmente valorizado (F, $|\cdot|$) tal que $\|E\| \subseteq |F|$ e seja E* seu dual.

Para cada $\varphi \in E^*$, definamos a norma

$$\|\varphi\| = \inf \{r > 0; |\varphi(x)| < r \|x\| \}.$$

Seja η a topologia fraca ω^* que é definida em E* pela família de seminormas $p_x:\varphi\to |\varphi(x)|$, $x\in E$.

Vamos mostrar que

$$\parallel \varphi \parallel \ = \quad \sup \quad |\varphi \left(\mathbf{x} \right)|.$$

$$\parallel \mathbf{x} \parallel \leq 1$$

Se $\|x\| \le 1$, temos $|\varphi(x)| \le r$, do que segue que

$$\sup \ \{ \ \big| \varphi \left(\mathbf{x} \right) \ \big| \ = \ \| \ \mathbf{x} \ \| \ \leq \ \mathbf{1} \} \ \leq \ \mathbf{r}$$

para todo número real positivo r. Logo,

$$\sup \{ |\varphi(\mathbf{x})|; \quad ||\mathbf{x}|| \leq 1 \} \leq ||\varphi||. \quad (1)$$

Tomemos agora $r = \sup \{ |\varphi(x)|; \|x\| \le 1 \}$ e $x \in E$ arbitrário. Seja $\lambda \in F$ tal que $|\lambda| = \|x\|$. Então

$$\|\lambda^{-1} \times \| = |\lambda|^{-1} \| \times \| = 1$$

e portanto $|\varphi(\lambda^{-1}x)| \le r$, ou seja $|\lambda|^{-1} |\varphi(x)| \le r$, o que implica

$$\|\varphi(\mathbf{x})\| \leq r \|\mathbf{x}\|$$
.

Da definição, segue que

$$\|\varphi\| \le r = \sup\{|\varphi(x)| : \|x\| \le 1\}.$$
 (2)

De (1) e (2) temos

$$\|\varphi\| = \sup_{\|\mathbf{x}\| \le 1} |\varphi(\mathbf{x})|.$$

Isto mostra que a terna $(E^*; \omega^*, \|\cdot\|)$ é um espaço de Saks.

Como $(F, |\cdot|)$ é localmente compacto, pelo Teorema de Alaoglu, para todo r > 0 a bola fechada de raio r em $(E^*, \|\cdot\|)$ é ω^* -compacta. Logo $(E^*; \omega^*, \|\cdot\|)$ satisfaz a condição (b) da Proposição 3.5.

Assim uma base de vizinhanças da origem para a topologia mista $\gamma \ [\omega^*; \| \cdot \| \] \quad \text{em} \quad \text{E pode ser dada por conjuntos do tipo}$

$$\bigcap_{i=1}^{\infty} \{ \varphi \in E^* : |\varphi(x_i)| \leq |\lambda_i| \},$$

onde $\{\lambda_n: n \in \mathbb{N}\}$ é uma sequência em F* com $|\lambda_n| \to + \infty$ e $\mathbf{x}_i \in \mathbf{E}$ com $\|\mathbf{x}_i\| \le 1$.

EXEMPLO 3.10: Vamos dar outro exemplo de espaço de Saks onde a condição (a) da Proposição 3.5 é satisfeita. Consideremos o espaço $\mathcal{C}_{\mathrm{b}}(\mathrm{X};\mathrm{F})$ das funções contínuas e limitadas definidas sobre um espaço topológico localmente compacto e 0-dimensional X e consideremos sobre $\mathcal{C}_{\mathrm{b}}(\mathrm{X};\mathrm{F})$ a topologia compacto-aberta κ e a topologia o da convergência uniforme sobre X, proveniente da norma $\|\cdot\|_{\infty}$.

Para cada $f \in C_b(X;F)$, temos $\|f\|_{\infty} = \sup_k p_k(f)$, onde K percorre a família de todos os subconjuntos compacto de X. Assim,

$$\|f\|_{\infty} = \sup \{p_K(f); p_K \in S\},\$$

onde S é uma família de seminormas que define a topologia κ sobre $\mathcal{C}_{b}^{}(X;F)$. Isto mostra que $(\mathcal{C}_{b}^{}(X;F),\kappa,\|\cdot\|_{\infty}^{\cdot})$ é um espaço de Saks.

Para mostrarmos que esta terna satisfaz a condição (a) da Proposição 3.5, consideremos dados $f \in \mathcal{C}_b(X;F)$, $\epsilon > 0$ e $K \subseteq X$ compacto. Seja A um subconjunto compacto-aberto de X tal que $K \subseteq A$ e

$$\sup_{x \in A} |f(x)| \le p_K(f) + \epsilon.$$

Seja $\varphi \in C_b(X;F)$ a função característica de A. Então $\varphi(x) = 1$ para todo $x \in K$ e $\varphi(x) = 0$ para todo $x \notin A$.

Definindo as funções $h(x) = [1 - \varphi(x)]f(x) e g(x) = \varphi(x)f(x)$, temos: f = g + h; $p_K(h) = 0$ e

$$\|g\|_{\infty} = \sup_{x \in X} |g(x)| = \sup_{x \in A} |f(x)| \le p_K(f) + \varepsilon.$$

Assim a condição (a) está satisfeita e portanto uma base de vizinhanças da origem para γ [κ , σ] pode ser dada por conjuntos do tipo

$$u = \bigcap_{n \in IN} \{f \in C_b(X; F); p_{K_n}(f) \le |\lambda_n|\}$$

onde $\{\lambda_n : n \in \mathbb{N}\}$ é uma sequência em F com $|\lambda_n| \to +\infty$ e $\{K_n : n \in \mathbb{N}\}$ é uma sequência estritamente crescente de compacto-abertos de X.

TEOREMA 3.11: Se κ e σ são topologias definidas sobre $C_b(X;F)$ como no Exemplo 3.10, então $\beta = \gamma[\kappa,\sigma]$.

DEMONSTRAÇÃO: Vimos em 0.13 que β e κ coincidem sobre os σ -limi-tados. Logo $\beta \subseteq \gamma$ [κ, σ].

Vamos mostrar que γ [κ , σ] \subset β . Seja U uma γ [κ , σ]-vizinhança da origem. Pelo Exemplo 3.10, existe uma γ [κ , σ]-vizinhança da origem U, ζ U do tipo

$$U_1 = \bigcap_{n \in \mathbb{I}N} \{ f \in C_b(X; F) ; p_{K_n}(f) \leq |\lambda_n| \}$$

e as sequências $\{K_n : n \in IN\}$ e $\{\lambda_n : n \in IN\}$ satisfazem as propriedades lá enunciadas.

Vamos definir uma função limitada φ : X → F pondo

$$\phi(x) = \begin{cases} \lambda_1^{-1}, & \text{se} & x \in K_1 \\ \lambda_n^{-1}, & \text{se} & x \in K_n - K_{n-1} \\ \\ 0, & \text{se} & x \in X \setminus \bigcup_{n \in IN} K_n, \end{cases}$$

que é continua. Com efeito, seja $x_0 \in X$. Se $x_0 \in \bigcup_{n \in \mathbb{N}} K_n$, então $x_0 \in \bigcup_{n \in \mathbb{N}} H_n$, onde $H_1 = K_1$ e $H_n = K_n - K_{n-1}$, para n > 1. Logo, para algum $j \in \mathbb{N}$, temos $\phi(x_0) = \lambda_j^{-1}$. Dada uma vizinhança W do ponto λ_j^{-1} em $(F, |\cdot|)$, podemos escolher uma vizinhança W de λ_j^{-1} tal que $W' \subseteq W$ e $\lambda_n^{-1} \not\in W'$, para todo $n \neq j$. Assim sendo, $\phi^{-1}(W') = H_j$, que é um subconjunto aberto e fechado de X e contém o ponto x_0 . Portanto $\phi(H_j) \subseteq W$.

Se $x_0 \in X \setminus \bigcup_{n \in IN} K_n$, então $\phi(x_0) = 0$. Seja então V uma vizinhança do zero em $(F, |\cdot|)$. Como $\lambda_n^{-1} \to 0$, existe $n_0 \in IN$ tal que para todo $n \ge n_0$, $\lambda_n^{-1} \in V$. Seja

$$A = X \setminus \bigcup_{n=1}^{n} K_n,$$

que é um conjunto aberto e fechado e contém x_0 . Se $x \in A$ e $x \neq x_0$, temos $\phi(x) = \lambda_n^{-1}$ para algum $n \geq n_0$. Portanto $\phi(x) \in V$, ou seja, $\phi(A) \subset V$.

Logo ¢ é continua.

Da construção de ϕ decorre imediatamente que $\phi \in \mathcal{C}_{O}(X;F)$. Assim a aplicação

$$f \rightarrow p_{\phi}(f) = \sup_{x \in X} |\phi(x) f(x)|$$

ē uma seminorma para a topologia $\beta.$ Considerando então a $\beta\text{-vi-zinhança}$ da origem $\mathcal{U}_\varphi=\{f\in\mathcal{C}_b(X;F):p_\varphi(f)\leq l\},$ temos que se $g\in\mathcal{U}_\varphi$, então

$$p_{\phi}(g) = \sup_{x \in X} |\phi(x)g(x)| \leq 1.$$

Portanto, para cada n ∈ IN, temos

$$\begin{aligned} p_{K_n}(f) &= \sup_{\mathbf{x} \in K_n} |g(\mathbf{x})| = \sup_{\mathbf{x} \in K_n} |\lambda_n \lambda_n^{-1} g(\mathbf{x})| = \\ &= |\lambda_n| \sup_{\mathbf{x} \in K_n} |\lambda_n|^{-1} |g(\mathbf{x})| \le \\ &\le |\lambda_n| \sup_{\mathbf{x} \in K_n} |\phi(\mathbf{x}) g(\mathbf{x})| \le |\lambda_n|. \end{aligned}$$

Logo $g \in U$.

Mostramos assim que a topologia estrita definida no $\S 0$ é a topologia mista γ $[\kappa,\sigma]$.

Na verdade este resultado continua verdadeiro mesmo quando β estiver definida sobre o espaço das funções contínuas e limitadas definidas em X e com valores em um espaço normado $(E, \|\cdot\|)$, em lugar do anel de divisão $(F, |\cdot|)$.

§ 4- TOPOLOGIAS MISTAS DE ÁLGEBRAS

DEFINIÇÃO 4.1: Seja F uma anel de divisão. Uma $\tilde{a}lgeb\pi a$ E sobre F é um conjunto que possui uma estrutura de espaço vetorial sobre F, no qual está definida uma aplicação $(x,y) \rightarrow x \cdot y$ de $E \times E \rightarrow E$ satisfazendo, para quaisquer elementos x, y e z em E e α em E, as propriedades:

(1)
$$(x + y)z = xz + yz e x(y + z) = xy + xz$$

(2)
$$\alpha(xy) = (\alpha x)y = x(\alpha y)$$
.

Uma algebra E é dita associativa se a multiplicação satisfizer também a propriedade:

- (3) x(yz) = (xy)z para quaisquer elementos x,y e z em E.

 Dizemos que E \tilde{e} comutativa se for satisfeita:
- (4) xy = yx para quaisquer elementos x = y = x

E é uma algebra com identidade se existir um elemento não nulo e em E chamado elemento identidade de E tal que ex = xe = xe para todo $x \in E$.

DEFINIÇÃO 4.2: Uma algebra topológica sobre $(F, |\cdot|)$ é um par (E, τ) onde E é uma algebra sobre F e τ é uma topologia de EVT sobre E tal que a aplicação $(x,y) \rightarrow x \cdot y$ de E \times E em E é contínua.

DEFINIÇÃO 4.3: Uma álgebra E é dita uma álgebra normada se E é um espaço normado cuja norma $\|\cdot\|$ satisfaz, para quaisquer elementos x e y em E, $\|xy\| \le \|x\| \cdot \|y\|$.

Se E for uma algebra com identidade, suporemos que ||e || = 1.

Claramente, toda älgebra normada é uma älgebra topológica. Mais geralmente, (E,τ) é uma älgebra topológica se E for uma álgebra e τ for uma topologia de EVT sobre E dada por uma família de seminormas Γ tal que dada $p \in \Gamma$ existe $q \in \Gamma$ satisfazendo

$$p(x y) \leq q(x)q(y)$$
,

para todo par x e y em E.

Com efeito, se U é uma vizinhança arbitrária da origem, existe $\epsilon>0$ e $p_1,\ldots,p_n\in\Gamma$ tais que

$$U \supset \{x \in E; p_i(x) < \epsilon, i = 1,...,n\}.$$

Para cada i = 1,...,n, seja $q_i \in \Gamma$ satisfazendo a propriedade acima. Então

$$V = \{x \in E : q_i(x) < \sqrt{\varepsilon} \}$$

é tal que V ° V ⊂ U.

Seja E uma álgebra sobre F e sejam η e τ duas topologias de EVT sobre E com η \subset τ . Como vimos no §1, as topologias η e τ dão origem a uma nova topologia γ [η , τ] de EVT sobre E, a qual foi chamada topologia mista determinada em E por η e τ .

Veremos a seguir algumas condições sobre E, η e τ que tornam (E; γ [η , τ]) uma álgebra topológica.

LEMA 4.4: Seja E uma ālgebra sobre $(F, |\cdot|)$. Se τ ē uma topologia de EVT tal que a multiplicação $(x,y) \rightarrow xy$ ē continua na origem, então (E,τ) ē uma ālgebra topológica.

DEMONSTRAÇÃO: Sejam $(x_0, y_0) \in E \times E$ e U uma τ -vizinhança da origem em E. Seja V outra vizinhança da origem tal que

$$V + V + V \subset U$$

e consideremos uma τ -vizinhança equilibrada W da origem satisfazendo WW \subseteq V.

Como W é absorvente, existe $\delta > 0$ tal que se $\lambda \in F$ com $|\lambda| \ge \delta$, temos $\{x_O, y_O\} \subset \lambda W$. Escolhido e fixado $\lambda \in F$ com $|\lambda| \ge \delta$ e $|\lambda| \ge 1$, temos que $\lambda^{-1} x_O \in W$ e $\lambda^{-1} y_O \in W$. Consideremos $x \in x_O + \lambda^{-1} W$ e $y \in y_O + \lambda^{-1} W$. Então existem w e w' em W tais que $x = x_O + \lambda^{-1} W$ e $y = y_O + \lambda^{-1} W'$.

Logo,

$$xy = x_0 y_0 + \lambda^{-1} w y_0 + x_0 \lambda^{-1} w' + \lambda' w \lambda^{-1} w'.$$

Mas
$$\lambda^{-1} w y_O = w (\lambda^{-1} y_O) \in WW \subset V;$$

$$\mathbf{x}_{\Omega} \lambda^{-1} \mathbf{w}^{\dagger} = (\lambda^{-1} \mathbf{x}_{\Omega}) \mathbf{w}^{\dagger} \in WW \subset V;$$

7

е

$$\lambda^{-1} w \lambda^{-1} w' \in \lambda^{-1} w \lambda^{-1} w \subset ww \subset V,$$

pois W é equilibrada e $|\lambda^{-1}| < 1$.

Concluimos que $xy \in x_0 y_0 + U$, e portanto $(x,y) \rightarrow xy$ é continua no ponto (x_0,y_0) .

LEMA 4.5: Seja (E,τ) uma ālgebra topologica. Se U \tilde{e} uma τ -vizinhança da origem e B \tilde{e} τ -limitado, então existe uma τ -vizinhança V da origem tal que $VB \subseteq U$ e $BV \subseteq U$.

DEMONSTRAÇÃO: Como $(x,y) \rightarrow xy$ é contínua, existe uma τ -vizinhança W da origem tal que WW \subset U. Como B é τ -limitado, existe $\delta > 0$ tal que para qualquer $\lambda \in F$ com $|\lambda| \geq \delta$, temos B $\subset \lambda$ W. Seja λ_O um deles fixado e seja $V = \lambda_O^{-1} W$. Então

$$VB \subset (\lambda_0^{-1}W)(\lambda_0W) = WW \subset U$$

е

$$BV \subset (\lambda_{O}W) (\lambda_{O}^{-1}W) = WW \subset U,$$

como queríamos.

TEOREMA 4.6: Seja E uma ālgebra sobre $(F,|\cdot|)$ e n e τ duas topologias de EVT sobre E. Suponhamos que τ é definida por uma norma submultiplicativa $\|\cdot\|$ e que $B=\{B_n\;;\;n\in {\rm I\!N}\}$ é um sistema

fundamental de subconjuntos τ -limitados de E satisfazendo as propriedades (a)-(d) do Exemplo 2.2. Suponhamos que para cada η -vizinhança U da origem e para cada $n\in IN$ exista uma η -vizinhança V da origem satisfazendo ($V\cap B_n$) $B_n\subset U$. Então (E; γ [η , τ]) \bar{e} uma \bar{a} lgebra topológica.

DEMONSTRAÇÃO: Pelo Lema 4.4, basta provarmos a continuidade da multiplicação na origem.

Seja

$$U = \bigcup_{n=1}^{\infty} \bigcup_{i=1}^{n} (U_{i} \cap B_{i})$$

uma γ [n, τ]-vizinhança da origem (ver 2.1). Lembramos que da propriedade (d), $B_i = \lambda_o^{-i}B$, onde $\lambda_o \in F$ com $0 < |\lambda_o| < \frac{1}{2}$ e $B = \{x \in E : \|x\| \le 1\}$. Consideremos a aplicação injetora $v : IN \times IN \to IN$ definida por

$$v(i,j) = \frac{(i+j)(i+j+1)}{2} + j,$$

para cada par (i,j) ∈ IN × IN.

Queremos encontrar η -vizinhanças V_1,\ldots,V_n da origem tais que

$$(V_i \cap B_i)(V_j \cap B_j) \subset U_{V(i,j)} \cap B_{V(i,j)}.$$
 (A)

Usando o Lema 4.5 para B_1 e $U_{v(1,1)}$, obtemos uma η -vizinhança

V₁ da origem tal que

$$(V_1 \cap B_1)(V_1 \cap B_1) \subseteq (V_1 \cap B_1)B_1 \subseteq U_{V(1,1)}$$
.

Além disso, como | | • | é submultiplicativa, temos

$$B_1B_1 = \lambda_0^{-1}B\lambda_0^{-1}B = \lambda_0^{-2}BB \subset \lambda_0^{-2}B = B_2 \subset B_{v(1,1)}$$

pois B é equilibrado e v(1,1) = 4 > 2.

Logo,

$$(v_1 \cap B_1)(v_1 \cap B_1) \subset v_{v(1,1)} \cap B_{v(1,1)}$$
.

Suponhamos escolhidos V_1, \dots, V_n satisfazendo (A), para cada par i,j $\leq n$. Seja

$$\tilde{\mathbf{U}} = \bigcap_{i=1}^{n+1} \mathbf{U}_{\mathbf{V}(i,n+1)}$$

uma η -vizinhança da origem. Pelo Lema 4.5, existe uma η -vizinhança V_{n+1} da origem tal que $(V_{n+1} \cap B_{n+1})B_{n+1} \subset \tilde{U}$.

Assim, para cada k, $1 \le k \le n + 1$, temos:

$$(\mathbb{V}_{\mathtt{k}} \ \cap \ \mathbb{B}_{\mathtt{k}}) \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ \cap \ \mathbb{B}_{\mathtt{n}+1}) \ \subseteq \ \mathbb{B}_{\mathtt{k}} \ (\mathbb{V}_{\mathtt{n}+1} \ (\mathbb{B}_{\mathtt{n}+1}) \ (\mathbb{B}_{\mathtt{n}+1} \ (\mathbb{B}_{\mathtt{n}+1}) \ (\mathbb{B}_{\mathtt{n}+1}) \ (\mathbb{B}_{\mathtt{n}+1} \ (\mathbb{B}_{\mathtt{n}+1}) \ (\mathbb{B}_\mathtt{n}+1) \ (\mathbb{B}_\mathtt{n}+1)$$

$$\subseteq B_{n+1}(v_{n+1} \cap B_{n+1}) \subseteq \tilde{v} \subseteq v_{v(i,n+1)},$$

para todo i, $1 \le i \le n + 1$.

Além disso,

$$(v_k \cap B_k) (v_{n+1} \cap B_{n+1}) \subset B_n B_{n+1} \subset B_{k+(n+1)} \subset B_{k+(n+1)}$$

Logo,

$$(v_k \cap B_k) \cap (v_{n+1} \cap B_{n+1}) \subseteq v_{v(k,n+1)} \cap B_{v(k,n+1)}$$
.

Tomando.

$$V = \bigcup_{n=1}^{\infty} \sum_{i=1}^{n} (V_i \cap B_i),$$

temos:

$$VV = \bigcup_{n=1}^{\infty} \sum_{i=1}^{n} (V_{i} \cap B_{i}) \cdot \bigcup_{j=1}^{n} \sum_{j=1}^{n} (V_{j} \cap B_{j}) \subset \bigcup_{n=1}^{\infty} \sum_{i,j=1}^{n} (V_{i} \cap B_{i}) (V_{j} \cap B_{j}) \subset \bigcup_{n=1}^{\infty} \sum_{i,j=1}^{n} (U_{v(i,j)} \cap B_{v(i,j)}),$$

por (A).

Logo, VV ⊂ U.

EXEMPLO 4.7: Seja X um espaço topológico localmente compacto e $\beta = \gamma \left[\kappa, \sigma \right] \quad \text{a topologia estrita sobre} \quad \mathcal{C}_b^{}(X; F) \text{. Por exemplo,}$

quando X é 0-dimensional, vide Exemplo 1.31. Vamos mostrar que $(C_b(X;F),\beta)$ satisfaz as hipóteses do Teorema 4.6.

Se f,g
$$\in C_b(X;F)$$
, temos

$$\|\mathrm{fg}\|_{\infty} = \sup_{\mathbf{x} \in \mathbf{X}} \left| \mathrm{f}(\mathbf{x}) \, \mathrm{g}(\mathbf{x}) \, \right| \, \leq \, \sup_{\mathbf{x} \in \mathbf{X}} \left| \mathrm{f}(\mathbf{x}) \, \right| \, \sup_{\mathbf{x} \in \mathbf{X}} \left| \mathrm{g}(\mathbf{x}) \, \right| \, = \, \|\mathrm{f}\|_{\infty} \cdot \, \|\mathrm{g}\|_{\infty} \cdot \, \|\mathrm{g}\|_{$$

Portanto $\|\cdot\|_{\infty}$ é submultiplicativa.

Agora, seja $B_n = \{f \in C_b(X;F) : \|f\|_{\infty} \le \rho^{-n}\}$, onde $\rho = |\lambda_o|$ e $\lambda_o \in F$ tal $0 < |\lambda_o| < \frac{1}{2}$ é escolhido para a definição do sistema fundamental $\mathcal{B} = \{B_n \; ; \; n \in IN\}$ de σ -limitados de $C_b(X;F)$. Consideremos a κ -vizinhança da origem dada por

$$U = \{f \in C_b(X;F) : p_K(f) \le \epsilon\},\$$

onde K é um subconjunto compacto de X e $\epsilon > 0$ dado. Escolhamos $\delta > 0$ tal que $\delta \rho^{-n} < \epsilon$ e V = {f $\in C_b(X;F): p_K(f) \leq \delta$ }.

Se
$$f \in V \cap B_n$$
 e $g \in B_n$, então

$$\sup_{x \in K} |f(x)| < \delta$$

е

$$\sup_{\mathbf{x} \in K} |g(\mathbf{x})| \leq \sup_{\mathbf{x} \in X} |g(\mathbf{x})| < \rho^{-n},$$

o que implica que para todo $x \in K$, $|f(x)g(x)| \le \delta \rho^{-n}$, e portanto $fg \in U$.

Pelo Teorema 4.5 ($C_b(X;F)$, β), \acute{e} então, uma álgebra topológica.

DEFINIÇÃO 4.8: Seja (E, $\|\cdot\|$) uma álgebra normada sobre (F, $|\cdot|$) e seja η uma topologia de álgebra topológica sobre E tais que existe um conjunto S de seminormas η -continuas que define a topologia η satisfazendo $\|\cdot\| = \sup S$. Sob essas condições, o espaço de Saks (E; η , $\|\cdot\|$) será chamada uma álgebra de Saks.

TEOREMA 4.9: Seja (E; n, ||·||) uma ālgebra de Saks tal que n estā definida por um conjunto $S = \{p_i : i \in I\}$ de seminormas tais que para todo $i \in I$, existe $j \in I$ satisfazendo $p_i(xy) \leq p_j(x) p_j(y)$ para todo par x e y de elementos de E. Se uma das condições (a) ou (b) da Proposição 3.5 estiver satisfeita, então existe um sistema fundamental de seminormas Γ que define a topologia $\gamma[n,||\cdot||]$ tal que dada $p \in \Gamma$, existe $q \in \Gamma$ satisfazendo $p(xy) \leq q(x)q(y)$, para todo par $x, y \in E$.

DEMONSTRAÇÃO: Pela Proposição 3.5, uma família de seminormas que define γ [η , $\|\cdot\|$] pode ser dada pelas aplicações $x \to \tilde{p}(x)$ onde $\tilde{p}(x) = \sup_{n} \left|\lambda_{n}\right|^{-1} p_{n}(x)$ onde $\{\lambda_{n} \; ; \; n \in \mathbb{N}\}$ é uma sequência em F com $|\lambda_{n}| \to +\infty$ e $\{p_{n} \; ; \; n \in \mathbb{N}\} \subset S$.

Seja $\mu \in F$ tal que $|\mu| > 1$. Vamos definir uma sequência $\{\mu_n \; ; \; n \in {\rm I\!N}\}$ em F pondo $\mu_n = \mu^{2n}$ e tal que para cada $n \in {\rm I\!N}$, $|\mu|^{2n} \leq |\lambda_n| < |\mu|^{2n+2}$. Como $|\mu_n| = |\mu|^{2n} \geq |a_n| \cdot |\mu|^{-2}$ e como $|a_n| \cdot |\mu|^{-2} \to +\infty$ seque que $|\mu_n| \to +\infty$.

Além disso, para cada $n \in \mathbb{N}$, $\mu^n = \sqrt{\mu_n}$ e $|\mu^n| \to + \infty$.

Consideremos, para cada $n \in IN$, $j_n \in I$ tal que

$$p_n(xy) \le p_{j_n}(x)p_n(y)$$
.

Assim, dada

$$\tilde{p}(x) = \sup_{n} |\lambda_{n}|^{-1} p_{n}(x),$$

temos, para quaisquer x e y em E,

$$\tilde{p}(xy) = \sup_{n} |\lambda_{n}|^{-1} p_{n}(xy) \le \sup_{n} |\lambda_{n}|^{-1} p_{j_{n}}(x) p_{j_{n}}(y) \le$$

$$\le \sup_{n} |\mu^{n}|^{-1} p_{j_{n}}(x) \cdot \sup_{n} |\mu^{n}|^{-1} p_{j_{n}}(x) =$$

$$= \tilde{q}(x) \tilde{q}(y).$$

COROLARIO 4.10: Sob as hipoteses do Teorema 4.9, $(E; Y [n, || \cdot ||])$ e uma ālgebra topologica.

Sejam dadas agora E uma álgebra sobre F, τ uma topologia de EVT sobre E e m : E × E \rightarrow E a aplicação dada por m(x,y) = xy, para todo (x,y) \in E × E.

Consideremos as seguintes propriedades:

- (1) m ē separadamente continua.
- (2) m ē hipocontinua, isto e, para cada τ-vizinhança U da origem e para cada subconjunto τ-limitado B de E, existe

uma t-vizinhança V da origem em E tal que VB∪BV C U.

(3) m é continua.

Claramente $(3) \Rightarrow (2) \Rightarrow (1)$.

Numa álgebra topológica, a condição (3) está satisfeita por definição. Vamos introduzir, seguindo [6], uma classe de álgebras para as quais (2) está automaticamente verificada e que contém propriamente a subclasse das álgebras topológicas constituída pelas álgebras normadas.

Se $(E, \|\cdot\|)$ é uma álgebra normada e η é uma topologia de EVT sobre E passaremos a estudar algumas propriedades da topologia γ $[\eta, \|\cdot\|]$ que são herdadas da topologia η .

Inicialmente veremos algumas definições:

DEFINIÇÃO 4.11: Chamamos de algebra s-topologica a uma algebra E munida de uma topologia de EVT que torna a multiplicação em E, separadamente contínua.

Claramente, toda álgebra topológica é s-topológica.

DEFINIÇÃO 4.12: Um subconjunto A de uma álgebra \dot{s} -topológica (E,τ) é m-bornívoro \bar{a} esquerda se para todo subconjunto limitado B de E existir $\delta > 0$ tal que para todo $\lambda \in F$ com $|\lambda| \geq \delta$, tivermos BA $\subseteq \lambda$ A. Analogamente define-se conjunto m-bornívoro \bar{a} direita.

DEFINIÇÃO 4.13: Uma álgebra s-topológica (E,T) é chamada localmente m-bornívora à esquerda (respectivamente à direita) se possuir um sistema fundamental de vizinhanças da origem consistindo de conjuntos m-bornívoros à esquerda (respectivamente à direita). Diremos que (E,T) é localmente m-bornívora se possui um sistema fundamental de vizinhanças da origem consistinto de conjuntos m-bornívoros à esquerda e á direita.

OBSERVAÇÃO 4.14: Seja (E,τ) uma álgebra topológica cuja topologia é dada por uma família Γ de seminormas tal que dada $p \in \Gamma$ existe $q \in \Gamma$ satisfazendo, para todo x, y em E, $p(xy) \leq p(x)q(x)$. Então (E,τ) é localmente m-bornívora. Com efeito sejam $B \in \mathbb{H}$ (τ) e U uma vizinhança da origem. Então existe $p_1, \ldots, p_n \in \Gamma$ e $\varepsilon > 0$ tal que $U \supset \{x \in E : p_i(x) < \varepsilon\}$, $i = 1, \ldots, n$. Para cada $i = 1, \ldots, n$, existe $q_i \in \Gamma$ tal que $p_i(xy) \leq p_i(x)q_i(y)$. Mas dados $0 < \delta < 1$ e $V = \{x \in E : q_i(x) \leq \delta\}$, existe $\mu > 0$ tal que $B \subseteq \lambda V$ sempre que $|\lambda| \geq \mu$. Disto temos $BU \subseteq \lambda U$ para todo $\lambda \in F$ com $|\lambda| \geq \mu$. Logo U é m-bornívoro à equerda. Analogamente mos tra-se que U é m-bornívoro a direita, do que segue o resultado.

OBSERVAÇÃO 4.15: Se (E, || · ||) é uma álgebra normada então e localmente m-bornívora. Isto segue claramente de 4.14 e da Definição 4.8.

OBSERVAÇÃO 4.16: Em uma álgebra localmente m-bornívora (E, τ) a multiplicação é hipocontínua.

De fato, sejam $b \in IL(\tau)$ e U uma τ -vizinhança da origem em E. Por hipótese existe $\delta > 0$ tal que para todo $\lambda \in F$ com $|\lambda| \ge \delta$, tem-se $BU \subseteq \lambda U$. Fixando um tal λ e tomando a τ -vizinhança da origem dada por $V = \lambda^{-1} U$, temos $BV = B(\lambda^{-1} U) \subseteq U$ o que implica que a multiplicação \tilde{e}

hipocontínua à esquerda. Analogamente provamos que a multiplicação é hipocontínua à direita.

PROPOSIÇÃO 4.17: Sejam (E,n) e (E, τ) duas ālgebras s-topológicas tal que $\mathbf{L}(\tau)$ possue um sistema fundamental enumerável. Então (E, γ [η , τ]) ē uma ālgebra s-topológica.

DEMONSTRAÇÃO: Seja

$$U = \bigcup_{n=1}^{\infty} \sum_{i=1}^{n} (U_{i} \cap B_{i})$$

uma γ [η , τ]-vizinhança da origem dada como em 2.1, e seja $x_0 \in E$. Para cada $n \in IN$, seja $j_n \in IN$ tal que $x_0 B_n \subset B_j$. Como (E,η) é s-topológica, dada U_j existe uma η -vizinhança U_n da origem tal que $x_0 U_n \subset U_j$. Considerando a γ [η , τ]-vizinhança da origem dada por

$$V = \bigcup_{n=1}^{\infty} \bigcup_{i=1}^{n} (V_i \cap B_i),$$

temos

onde $m = \max \{j_1, \ldots, j_n\}.$

$$Logo x_{O}V \subseteq U. (1)$$

Analogamente mostra-se que dado $y_0 \in E$ e U, existe uma $\gamma \; [\eta,\tau] \; \text{-vizinhança} \; \; W \; \text{da origem tal que} \; \; Wy_0 \; \subseteq U. \quad (2)$

De (1) e (2) decorre que (Ε, γ [η,τ]) é s-topológica.

TEOREMA 4.18: Se $(E;\eta,\tau)$ \bar{e} uma \bar{a} lgebra de Saks tal que as semínormas de S são submultiplicativas e se uma das condições (a) ou (b) da Proposição 3.5 estiver satisfeita, então $(E,\gamma,[\eta,\tau])$ \bar{e} uma \bar{a} lgebra localmente m-bornivora.

DEMONSTRAÇÃO: Pela Proposição 4.17, (E, γ [η , τ]) é uma álgebra stopológica. Pela Proposição 3.5, uma base de vizinhanças da origem para γ [η , τ] pode ser dada por conjuntos do tipo

$$U = \bigcap_{n=1}^{\infty} \{x \in E : p_n(x) \le |a_n|\}$$

onde para cada $n \in \mathbb{N}$, $a_n \in \mathbb{F}^*$, $|a_n| \to +\infty$ e $p_n \in S$.

Seja U uma γ [η , τ]-vizinhança da origem deste tipo e seja $L \in \mathbb{H}_{-}(\gamma [\eta,\tau])$. Como $(E;\eta,\tau)$ é um espaço de Saks, $\mathbb{H}_{-}(\tau)$ possui uma sequência fundamental de conjuntos η -fechados. Portanto, pelo Teorema 2.6, $L \in \mathbb{H}_{-}(\tau)$. Seja B a bola unitária de (E,τ) . Então existe $\delta > 0$ tal que para todo $\lambda \in F$ com $|\lambda| \geq \delta$, temos $L \subseteq \lambda B$.

Se $x \in E$ e $b \in L$, temos para cada $n \in \mathbb{N}$,

$$p_n(xb) \le p_n(x)p_n(b) \le p_n(x)||b|| \le |a_n| - |\lambda|,$$

isto \tilde{e} , $xb \in \lambda U$. Logo U \tilde{e} m-bornívoro \tilde{a} esquerda. Analogamente mostra-se que U \tilde{e} m-bornívoro \tilde{a} direita, de onde segue o resultado.

Já vimos no Exemplo 4.7 que $(C_{\rm b}({\rm X;F}),\beta)$ com X localmente compacto é uma álgebra localmente m-bornívora. Observamos aqui que $(C_{\rm b}({\rm X;F});\kappa,\|\cdot\|_{\infty})$ satisfaz também as hipótese do Teoreoma 4.18.

TEOREMA 4.19: Seja (E; η , $\|\cdot\|$) uma ālgebra de Saks para a qual estā satisfeita uma das condições (a) ou (b) da Proposição 3.5 e suponhamos que a família S de seminormas η -continuas com $\|\cdot\| = \sup S$ satisfaz a seguinte propriedade: (*) existe $q \in S$ tal que para toda $p \in S$, e para todo par x e y em E, $p(xy) \leq p(x)q(y)$. Seja Γ a correspondente família de seminormas que define $\tilde{\gamma}$ $[\eta, \|\cdot\|]$. Então existe uma seminorma γ $[\eta, \|\cdot\|]$ -continua \tilde{q} tal que $\tilde{p}(xy) \leq \tilde{p}(x)\tilde{q}(y)$ para todo $\tilde{p} \in \Gamma$ e para todo par x e y em E.

DEMONSTRAÇÃO: Pela Proposição 3.5, as seminormas de Γ são do tipo

$$x \rightarrow \tilde{p}(x) = \sup_{n} |\lambda_{n}|^{-1} p_{n}(x)$$

onde $\{p_n: n \in \mathbb{N}\}$ é uma sequência em $S \in \lambda_n \to +\infty$ em F. Seja S' a família das seminormas η -contínuas dada pelos múltiplos escalares positivos dos elementos de S. É claro que cada seminorma

de S' é η-contínua e S' satisfaz a propriedade (*).

Consideremos a seminorma

$$x \rightarrow \tilde{q}(x) = \sup_{n} |\lambda_{n}|^{-1} (|\lambda_{n}|q(x)),$$

onde q é dada por hipótese. É claro que \tilde{q} é $\gamma [\eta, \|\cdot\|]$ -contínua por ser η -contínua e tem-se, para toda $\tilde{p} \in \Gamma$ e para quaisquer x e y em E,

$$\tilde{p}(xy) = \sup_{n} |\lambda_{n}|^{-1} p_{n}(xy) \leq \tilde{p}(x) \tilde{q}(y).$$

Isto completa a prova do teorema.

COROLÁRIO 4.20: Sob as hipóteses do Teorema 4.19, (E,Y [n, ||·||)) ē uma ālgebra localmente m-bornīvora.

TEOREMA 4.21: Seja (E, τ) uma ālgebra normada e seja (E, η) uma ālgebra s-topologica tal que a bola unitāria B de (E, τ) ē η -fechada e satisfaz, para todo conjunto U de uma base U de η -vizinhanças da origem, a condição UB \cup BU \subseteq U. Então (E, γ [η , τ]) ē uma ālgebra localmente m-bornīvora.

DEMONSTRAÇÃO: Pela Proposição 4.17, $(E, \gamma \{\eta, \tau\})$ é uma álgebra s-topológica. Por Proposição 2.17, uma base de vizinhanças da origem para a topologia $\gamma \{\eta, \tau\}$ pode ser dada por conjuntos do tipo

$$U = U_0 \cap \bigcap_{n=1}^{\infty} (U_n \cap a_n B),$$

onde $\{U_n \; ; \; n=0,1,\ldots\}$ é uma sequência de η -vizinhanças da origem e $\{a_n \; ; \; n=0,1,\ldots\}$ é uma sequência em F^* com $|a_n| \to +\infty$.

Seja U uma vizinhança da origem desse tipo e seja L um subconjunto γ [η , τ]-limitado de E. Como B é η -fechada, pelo Teorema 2.6, L é τ -limitado. Então, para algum λ \in F*, temos L \subseteq λ B. Assim sendo,

$$\texttt{LU} = \texttt{LU}_{\texttt{O}} \cap \bigcap_{n=1}^{\infty} (\texttt{LU}_{n} \cap \texttt{La}_{n}^{\texttt{B}}) \subset \texttt{\lambda} \texttt{BU}_{\texttt{O}} \cap \bigcap_{n=1}^{\infty} (\texttt{\lambda} \texttt{BU}_{n} \cap \texttt{\lambda} \texttt{a}_{n}^{\texttt{B}} \texttt{B}) \subset$$

$$\subseteq \lambda [U_{o} \cap \bigcap_{n=1}^{\infty} (U_{n} \cap a_{n}B)] \subseteq \lambda U,$$

pois para todo $n = 0, 1, \ldots, BU_n \subset U_n$.

Analogamente mostra-se que UL ⊂ U.

Segue-se então que $(E,\gamma$ $[\eta,\tau])$ é uma álgebra localmente m-bornivora.

EXEMPLO 4.22: Vamos dar exemplo de uma álgebra E e duas topologías η e τ definidas sobre E, satisfazendo as condições do Teorema 4.21, tornando portanto (E, γ [η , τ]) uma álgebra localmente m-bornívora.

Seja (E, $\|\cdot\|$) uma álgebra normada e (E, η) uma álgebra s-topológica definida por uma família Γ de seminormas satisfazendo

- (1) existe $p \in \Gamma$ tal que $||x|| \le p(x)$ para todo $x \in E$.
- (2) q(xy) < ||x||q(y) para todo x, y em E e $q \in \Gamma$.

De (1) segue imediatamente que a bola unitária B de (E, $\|\cdot\|$) é η -fechada e de (2), que UB \cup BU \subseteq U para todo conjunto U de um sistema fundamental U de η -vizinhanças da origem. Logo as hi-póteses do Teorema 4.21 estão verificadas e portanto (E, γ [η , $\|\cdot\|$]) é uma álgebra localmente m-bornívora.

EXEMPLO 4.23: Um exemplo concreto da situação anterior \tilde{e} o sequinte: tomemos $E = C_{\tilde{b}}(X;F)$, onde

$$X = \{t \in F : |t| \le 1\};$$

 τ a topologia em E dada pela norma $\|\cdot\|_{_{\infty}}$ o que torna (E, τ) uma âlgebra normada; e η a topologia em E dada pela família de seminormas

$$\Gamma = \{p_n : p_n(f) = \sup_{x \in X} |f(x)| \cdot |x|^n\}, n \in \mathbb{N} \cup \{0\}.$$

Observamos que

$$\|f\|_{\infty} = \sup_{\mathbf{x} \in \mathbf{X}} |f(\mathbf{x})| \cdot |\mathbf{x}|^{O} = p_{\infty}(f).$$

Assim, τ C η, do que segue que a bola unitária τ-fechada de (Ε,τ) é η-fechada. Afirmamos agora que para cada U pertencente a um sistema fundamental de η -vizinhanças da origem em E, se B denota a bola unitária de (E, τ), então BU U UB \subset U. Com efeito, seja

$$U = U_n = \{f \in E : \sup_{x \in X} |f(x)| \cdot |x|^n < \epsilon\}.$$

Se $f \in B$ e $g \in U$, temos

$$\begin{split} & p_n(fg) = \sup_{\mathbf{x} \in X} |f(\mathbf{x})g(\mathbf{x})| \cdot |\mathbf{x}|^n & \leq \\ & \leq \sup_{\mathbf{x} \in X} |f(\mathbf{x})| \sup_{\mathbf{x} \in X} |g(\mathbf{x})| \cdot |\mathbf{x}|^n & \leq \\ & \leq \|f\|_{\infty} p_n(\mathbf{x}) < 1 \cdot \varepsilon = \varepsilon. \end{split}$$

Além disso, (E,η) é uma álgebrà s-topológica, ou seja fixado $f_0 \in E$, a aplicação $(f_0,g) \rightarrow f_0 g$ é contínua na origem. De fato, dada

$$U = \{h \in E : \sup_{x \in X} |h(x)| \cdot |x|^n \le \epsilon\},$$

seja

$$V = \{h \in E : \sup_{x \in X} |h(x)| \cdot |x|^n \leq \frac{\varepsilon}{\|f_0\|_{\infty}} \}$$

Se $g \in V$, temos

$$\sup_{\mathbf{x} \in \mathbf{X}} \left| \left(\mathbf{f}_{\mathbf{Q}} \mathbf{g} \right) \left(\mathbf{x} \right) \right| \cdot \left| \mathbf{x} \right|^{n} \leq \sup_{\mathbf{x} \in \mathbf{X}} \left| \left| \mathbf{f}_{\mathbf{Q}} \left(\mathbf{x} \right) \right| \cdot \sup_{\mathbf{x} \in \mathbf{X}} \left| \mathbf{g} \left(\mathbf{x} \right) \right| \cdot \left| \mathbf{x} \right|^{n} \leq$$

$$\leq \|f_0\|_{\infty} \cdot \frac{\varepsilon}{\|f_0\|_{\infty}} = \varepsilon.$$

Pelo Teorema 4.21, (E, γ [η , τ]) é então uma álgebra localmente m-bornívora.

DEFINIÇÃO 4.24: Seja E um espaço vetorial sobre F e sejam η e τ duas topologias de EVT sobre E. Consideremos a família N de todos os conjuntos da forma

$$W = \begin{array}{ccc} \infty & n \\ \cup & \Sigma \\ n=1 & i=1 \end{array} (U_{i} \cap a_{i}U),$$

onde $\{U_n \; ; \; n \in IN\}$ é uma sequência arbitrária de n-vizinhanças da origem e $\{a_n \; ; \; n \in IN\}$ é uma sequência em F com $|a_n| \to +\infty$. É fácil ver que N constitue um sistema fundamental de vizinhanças da origem para uma topologia de EVT sobre E. Vamos denotar essa topologia por ω .

PROPOSIÇÃO 4.25: Sejam E, η e τ como na Definição 4.24. Então $\eta \subseteq \omega$.

DEMONSTRAÇÃO: Dada uma η -vizinhança V da origem, existe uma η vizinhança U_1 da origem tal que U_1 + U_1 \subset V. Da mesma forma, existe uma η -vizinhança U_2 da origem tal que U_2 + U_2 \subset U_1 , Assim,

para cada $n \in \mathbb{N}$ existe uma n-vizinhança U_n da origem tal que $U_n + U_n \subset U_{n-1}$. Concluimos, então que existe uma sequência $\{U_n : n \in \mathbb{N}\}$ de n-vizinhanças da origem tal que, para cada $n \in \mathbb{N}$, temos

$$(U_n \cap a_n U) + (U_{n-1} \cap a_{n-1} U) + \dots + (U_1 \cap a_1 U) \subseteq V.$$

Logo

$$W = \bigcup_{n=1}^{\infty} \sum_{i=1}^{n} (U_{i} \cap a_{i}U) \subset V$$

e portanto $\eta \subset \omega$.

TEOREMA 4.26: Seja (E,η) uma ālgebra normada e (E,τ) uma ālgebra s-topologica para a qual existe uma base $U(\tau)$ de vizinhanças da origem consistindo de conjuntos U que absorvem os conjuntos $US \cup SU$. Então (E,ω) \bar{e} uma ālgebra localmente m-bornívora.

DEMONSTRAÇÃO: Seja

$$W = \begin{array}{ccc} \infty & n \\ \cup & \Sigma \\ n=1 & i=1 \end{array} (U_{i} \cap a_{i}U)$$

uma w-vizinhança da origem onde para cada $n\in \mathbb{N}$, $U_n=\alpha_n S$ para algum $\alpha_n\in F^*$ sendo S a bola unitária de (E,η) .

Seja L um subconjunto ω -limitado de E. Como $\eta \subseteq \omega$, L é também η -limitado e portanto existe $\delta_{\eta}>0$ tal que para todo $\lambda \in F$

com $|\lambda| \geq \delta_1$, L $\subseteq \lambda S$. Assim, para cada $n \in IN$,

$$\mathtt{L} \mathtt{U}_n \ \subseteq \ \lambda \mathtt{S} \alpha_n^{} \mathtt{S} \ \subseteq \ \lambda \alpha_n^{} \mathtt{S} \ = \ \lambda \mathtt{U}_n^{} \ .$$

Por hipótese existe $\delta_2>0$ tal que para todo $\mu\in F$ com $|\mu|\geq\delta_2$, US \cup SU \subset μ U. Assim, LU \subset λ SU \subset $\lambda\mu$ U para todo λ e para todo μ em μ com $|\lambda|\geq\delta_1$ e $|\mu\nu|\geq\delta_1\delta_2$.

Se $\delta = \max \{ \delta_1, \delta_1 \delta_2 \}$, temos

$$L[U_{n} \cap a_{n} U] = LU_{n} \cap La_{n} U \subset U_{n} \cap a_{n} U = U_{n}$$

para todo $v \in F$ com $|v| \ge \delta$.

Logo,

Analogamente mostramos que WL C vW para todo $v\in F$ com $|v|\geq \delta$.

Logo W é um conjunto m-bornívoro e portanto (Ε,ω) é uma álgebra localmente m-bornívora. COROLÁRIO 4.27: Sejam E, η e τ como no Teoreoma 4.26. Então a multiplicação em (E,ω) \bar{e} hipocontinua.

DEMONSTRAÇÃO: Segue do Teorema 4.26 e da Observação 4.16.

EXEMPLO 4.28: Vamos dar um exemplo da situação do Teorema 4.26. Consideremos a álgebra $C_{\rm b}({\rm F})$ das funções contínuas e limitadas definidas em F e com valores em F. Seja f \in $C_{\rm b}({\rm F})$ tal que $f({\rm x})={\rm x}$ para todo ${\rm x}\in {\rm F}$. Consideremos também a subálgebra

$$E = \{g \in C_b(F); g = fh, h \in C_b(F)\}$$

de $C_b(F)$.

Seja n uma topologia em E induzida pela norma

$$\|g\| = \sup_{\mathbf{x} \in F} |g(\mathbf{x})|.$$

É claro que (E,n) é uma álgebra normada.

Seja ^T a topologia definida sobre E pela seminorma

$$p(g) = \sup_{x \in F} |h(x)|.$$

Se
$$g_1 = fh_1$$
 e $g_2 = fh_2$, temos

$$p(g_1,g_2) = \sup_{x \in F} |h_1(x)g_2(x)| \le ||g_2|| p(g_1).$$

Analogamente obtemos $p(g_1,g_2) \leq \|g_1\|p(g_2)$. Com isto acabamos de provar que (E,τ) é uma álgebra s-topológica.

Observamos ainda que dada uma τ -vizinhança U da origem e considerando a bola unitária S de (E, η), se $g_1 \in U$ e $g_2 \in S$, temos $p(g_1,g_2) \leq \|g_2\|p(g_1) \leq p(g_1)$, o que implica US $\subseteq U$.

Analogamente temos SU ⊂ U.

Então, pelo Teorema 4.26 se ω é a topologia correspondente a η e τ como na Definição 4.24, (E, ω) e uma álgebra localmente m-bornívora.

EXEMPLO 4.29: Seja (F, $|\cdot|$) um anel de divisão não trivialmente valorizado não arquimediano. Já mostramos, no Exemplo 4.28, que (E, τ) é uma álgebra s-topológica. Vamos mostrar que a multiplicação em (E, τ) não é hipocontínua. Para isso vamos definir uma sequência $\{g_n \; ; \; n \in IN\}$ de funções dadas por

$$g_{n} = \begin{cases} a_{n}^{-1}x, & \text{se } x \in B(0, |a_{n}|^{2}) \\ a_{n}, & \text{se } x \notin B(0, |a_{n}|^{2}) \end{cases}$$

onde $\{a_n:n\in\mathbb{N}\}$ é uma sequência em F com $1<|a_n|\to +\infty$.

Claramente temos $g_n \in C_b(F)$, para cada $n \in \mathbb{N}$ e $p(g_n) = |a_n|^{-1}.$

Assim, $\{g_n : n \in IN\}$ converge a zero na topologia τ . Mas

 $\{g_n^2; n \in \mathbb{N}\}$ não ế t-convergente a zero, pois para todo $n \in \mathbb{N}$, $p(g_n^2) = 1$.

Consideremos uma τ -vizinhança U da origem dada por

$$U = \{g \in E : p(g) < 1\}$$

e o conjunto

$$B = \{g_n \; ; \; n \in \mathbb{N}\} \in \mathbb{L}(\tau).$$

Para qualquer τ -vizinhança V da origem, existe $n_0 \in IN$ tal que para todo $n \ge n_0$, $g_n \in V$, mas $g_n g_n \notin U$, pois $p(g_n^2) = 1$.

Isto contradiz o fato da multiplicação ser hipocontínua em (E,τ) .

Este é um exemplo de uma álgebra s-topológica que não é topológica.

TEOREMA 4.30: Seja (E, η) uma ālgebra s-topologica cuja multiplicação \bar{e} hipocontinua e seja (E, τ) uma ālgebra normada cuja bola unitāria \bar{e} η -fechada. Então a multiplicação em (E, γ [η , τ]) \bar{e} hipocontinua.

DEMONSTRAÇÃO: Seja

$$\gamma(U) = \bigcup_{n=1}^{\infty} \sum_{i=1}^{n} (U_{i} \cap a_{i}U)$$

uma γ [η , τ]-vizinhança da origem em E onde U é uma τ -vizinhança limitada da origem em E e seja B um subconjunto γ [η , τ] -limitado de E.

Como $\eta \subseteq \gamma$ [η,τ], B é também η -limitado e como (E, η) tem multiplicação hipocontínua, para cada $n \in IN$, existe uma η -vizinhança V_n da origem tal que $BV_n \cup V_n$ $B \subseteq U_n$.

Agora, dada a τ -vizinhança U da origem em E, como (E, τ) é uma álgebra normada, existe uma τ -vizinhança W da origem em E tal que WW \subset U. Ainda do fato de (E, τ) ser normada e de possuir a bola unitária η -fechada, segue do Teorema 2.6 que B é também τ -limitado. Logo para algum $\lambda \in F$, temos $B \subset \lambda W$. Escolhendo uma τ -vizinhança da origem $V = \lambda^{-1} W$, temos

$$BV \subset \lambda W \lambda^{-1} W = WW \subset U$$

е

$$VB \subset \lambda^{-1}W\lambda W = WW \subset U$$
.

Logo, tomando,

$$\gamma \, (\, V\,) \ = \ \begin{array}{c} \overset{\infty}{\cup} & \overset{n}{\Sigma} \\ \overset{}{\cup} & \overset{}{\Sigma} \\ \overset{}{n=1} & \overset{}{\underline{i}=1} \end{array} \, (\, V_{\,\overset{\overset{}{\underline{i}}}{\underline{i}}} \, \cap \, a_{\,\overset{\overset{}{\underline{i}}}{\underline{i}}} \, V\,) \, \, ,$$

temos:

$$B\gamma(V) = \bigcup_{n=1}^{\infty} \bigcup_{i=1}^{n} (BV_{i} \cap a_{i}BV) \subset$$

$$\subset \bigcup_{n=1}^{\infty} \sum_{i=1}^{n} (U_{i} \cap a_{i}U) = \gamma(U)$$

e, analogamente, $\gamma(V)B \subseteq \gamma(U)$.

Assim sendo, a multiplicação em $(E,\gamma[\eta,\tau])$ é hipocontínua.

§5 - O ESPECTRO DE $(C_b(X;E), \gamma[\kappa,\sigma])$

DEFINIÇÃO 5.1: Seja $(F, |\cdot|)$ um anel de divisão não trivialmente valorizado. Um espaço topológico (X,τ) é dito F-ultra-regular se dados um ponto x em X e um subconjunto τ -fechado M em X não contendo x, existir uma função $f \in C_b(X;F)$ tal que f(x) = 0 e $f(M) = \{1\}$.

PROPOSIÇÃO 5.2: Seja X um espaço topológico. São equivalentes:

- (a) X é 0-dimensional;
- (b) $X \in F$ -ultra-regular, qualquer que seja o anel de divisão valorizado $(F, |\cdot|)$.
- (c) X \tilde{e} F-ultra-regular, para algum anel de dívisão valorizado e não-arquimediano (F, $|\cdot|$).

DEMONSTRAÇÃO: (a) ⇒ (b):

Suponhamos que o espaço topológico (X,τ) seja 0-dimensional. Seja $x \in X$ e seja M um subconjunto fechado de X que não contém o ponto x. Seja M' o complementar de M. Por hipótese, existe um conjunto aberto e fechado $U \subseteq M'$ tal que $x \in U$. Seja $(F, |\cdot|)$ um anel de divisão não trivialmente valorizado e seja f a função F-característica do complementar U' de U. Então $f \in \mathcal{C}_b(X;F)$ pois U' é aberto e fechado, $f(M) = \{1\}$, porque $M \subseteq U'$, e f(x)=0,

pois x ∉ U'. Logo (X,τ) é ultra~regular.

- (b) ⇒ (c): É óbvio
- (c) \Rightarrow (a): Consideremos um ponto $x_0 \in X$ e uma τ -vizinhança aberta U de x_0 em X. Como (X,τ) é F-últra-regular e o complementar U' de U é τ -fechado, existe uma função $f \in C_b(X;F)$ tal que $f(x_0) = 0$ e f(U') = 1.

Consideremos a bola unitária aberta V = B(0,1) de $(F,|\cdot|)$. Como $(F,|\cdot|)$ é não arquimediano, V é uma vizinhança aberta e fechada do zero. O conjunto $W = f^{-1}(V)$ é aberto e fechado em (X,τ) e $W \subseteq U$, o que prova que (X,τ) possue um sistema fundamental de vizinhanças da origem abertas e fechadas.

OBSERVAÇÃO: Em vista da Proposição 5.2, diremos que um espaço topológico é ultra-regular se ele for O-dimensional.

PROPOSIÇÃO 5.3: Se (E, τ) \bar{e} um espaço topológico ultra-regular, então τ \bar{e} a topologia fraca gerada por $C_b(X;F)$, para todo anel de divisão (F, $|\cdot|$) não trivialmente valorizado.

DEMONSTRAÇÃO: Seja η a topologia fraca sobre X gerada por $\mathcal{C}_{b}(X;F)$. Pela própria definição, temos $\eta \in \tau$.

Vamos provar agora que $\tau \subseteq \eta$. Para isso, consideremos um sub-conjunto τ -fechado M de X, M \neq X e x um ponto do complementar

M' de M. Por (X,τ) ser 0-dimensional, existe uma vizinhança τ -aberta e τ -fechada U de x contida em M'. Seja f a função característica de U, que é τ -contínua e portanto η -contínua pela definição de η . Logo $U=f^{-1}(\{1\})$ é η -fechado e, sendo também U a imagem inversa do complementar do conjunto $\{0\}$, segue que U é η -aberto. Assim M' é aberto e portanto M é fechado.

De agora em diante, neste parágrafo, (X,τ) será um espaço topológico T_1 e 0-dimensional e $(E,\|\cdot\|)$ uma álgebra associativa normada não arquimediana sobre um anel de divisão não trivialmente valorizado $(F,|\cdot|)$.

Observamos que do fato de (X, τ) ser T $_1$ e 0-dimensional segue que $\mathcal{C}_b^{}(X;E)$ separa pontos em X.

DEFINIÇÃO 5.4: Seja A uma álgebra sobre $(E, |\cdot|)$. Um ideal à esquerda I de A é dito regular se A possuir uma identidade à direita módulo I, isto é, se existir um elemento $u \in A$ tal que para qualquer $x \in A$, $xu - x \in I$.

Analogamente definimos quando um ideal à direita em A é regular.

LEMA 5.5: Todo ideal (ā direita ou ā esquerda) regular de $C_{\rm b}({\rm X};{\rm E})$ ē um $C_{\rm b}({\rm X};{\rm F})$ -mōdulo.

DEMONSTRAÇÃO: É análoga à do Lema 3.1 de Prolla [17].

LEMA 5.6: Seja $W \subseteq C_b(X;E)$ um $C_b(X;F)$ -modulo. Então para toda função $f \in C_b(X;E)$, f pertence \tilde{a} $\gamma[\kappa,\sigma]$ -aderência de W se e somente se, para cada $x \in X$, f(x) pertence \tilde{a} aderência de W(x) em $(E,\|\cdot\|)$.

DEMONSTRAÇÃO: Sejam $x \in X$ e $\varepsilon > 0$. Se f está na γ [κ,σ] aderência de W, segue-se que f está na κ -aderência de W, pois $\kappa \subset \gamma$ [κ,σ]. Portanto, dados o compacto $K = \{x\}$ e $\varepsilon > 0$, existe $g \in W$ tal que $\|g(x) - f(x)\| < \varepsilon$. Assim f(x) pertence à aderência de W(x) em $(E, \|\cdot\|)$.

Consideremos agora uma função $f \in C_b(X;F)$ tal que para cada $x \in X$, f(x) está na aderência de W(x) em $(E, \|\cdot\|)$.

Consideremos também o subconjunto σ -limitado $B = B(0,1 + \|f\|)$ de $C_b(X;E)$. É claro que $f \in B$. Sejam K um subconjunto compacto de X e $0 < \varepsilon < 1$ dado. Pelo Teorema 3.5 [18], f/K está na κ -aderência de W/K. Então existe $\tilde{g} \in W$ tal que $p_K(\tilde{g}-f) < \varepsilon$. Temos claramente $p_K(\tilde{g}) \leq \|f\| + \varepsilon < \|f\| + 1$.

Seja

$$A = (\tilde{g} - f)^{-1} (B(0,1))$$

que é um conjunto aberto e fechado e contém K. Tomando $g \in \mathcal{C}_b(X;E)$ dada por $g = X_A \cdot \tilde{g}$, temos $g \in W$, $g(x) = \tilde{g}(x)$, se $x \in A$ e g(x) = 0 se $x \notin A$.

Logo $\|g\| \le 1 + \|f\|$, ou seja, $g \in B$.

Como as topologias κ e γ [κ , σ] coincidem sobre B, segue que f está na γ [κ , σ]-aderência de W \cap B e portanto está na γ [κ , σ]-aderência de W.

DEFINIÇÃO 5.7: Seja (A,τ) uma álgebra topológica sobre um anel de divisão $(F,|\cdot|)$. O espectro de A \bar{e} , por definição, o conjunto $\Delta(A,\tau)$ de todos os homomorfismos de álgebra definidos em A e sobre F, contínuos e não nulos, equipado com a topologia $\sigma(A^*,A)$.

TEOREMA 5.8: Seja X um espaço localmente compacto e 0-dimensional. Existe um homeomorfismo: entre os espaços $X \times \Delta(E, \|\cdot\|)$ e

$$\Delta(C_{b}(X;E), \gamma[\kappa,\sigma]).$$

DEMONSTRAÇÃO: Consideremos a aplicação

$$\texttt{G} \;:\; \texttt{X} \;\times\; \Delta\left(\texttt{E},\; \|\cdot\|\right) \;\rightarrow\; \Delta\left(\mathcal{C}_{\mathbf{b}}^{}\left(\texttt{X};\texttt{E}\right),\;\; \gamma\; \left[\; \kappa\,,\sigma\; \right]\right)$$

definida por $G(x,h) = h \circ \delta_x$, para cada par $(x,h) \in X \times \Delta(E)$.

(a) G é injetora.

Com efeito, consideremos os pares $(x_1, h_1) \neq (x_2, h_2)$ em $X \times \Delta(E)$.

Se $x_1 \neq x_2$, então $h_1(v) \neq h_2(v)$ para algum $v \in E$. Escolhamos $f \in C_b(X;E)$ tal que $f(x_1) = v$. Temos, então

$$(h_1 \circ \delta_{x_1})(f) = h_1(f(x_1)) = h_1(v) \neq h_2(v) = (h_2 \circ \delta_{x_2})(f)$$

Se $x_1 \neq x_2$, como X é ultra-regular, escolhamos $\varphi \in C_b(X;E)$ com $\varphi(x_1) = 0$ e $\varphi(x_2) = 1$. Seja $u \in E$ tal que $u \notin Kern(h_2)$ e seja $f \in C_b(X;E)$ tal que $f(x_2) = u$. Tomando

$$g = \varphi f \in C_b(X; E)$$
,

temos

$$(h_1 \circ \delta_{x_1})(g) = h_1(g(x_1)) = h_1(0) = 0$$

e,

$$(h_2 \circ \delta_{x_2})(g) = h_2(g(x_2)) = h_2(f(x_2)) = h_2(u) \neq 0.$$

Assim sendo, G é injetora.

(b) G é sobrejetora.

Seja $H \in \Delta(C_b(X;E), \gamma[\kappa,\sigma])$. Por ser $H \not\equiv 0$ um homomorfismo contínuo, o conjunto $M = \operatorname{Kern} H \subset C_b(X;E)$, que é um ideal maximal regular, é próprio e fechado. Pelo Lema 5.6 existe $x \in X$ tal que $\overline{M(x)} \neq E$, ou seja, $\overline{M(x)} \subset E$ é próprio.

Seja $f \in C_b(X;E)$ uma função tal que H(f) = 1. Então f é

uma identidade módulo M, pois, para todo $g \in C_{b}(X;E)$, temos

$$H(fg - g) = H(f)H(g) - H(g) = 1 \cdot H(g) - H(g) = 0$$

e portanto fg - $g \in M$.

Para cada $u \in E$, seja $u^* = uf \in C_b(X;E)$ e vamos definir uma função $h:E \to F$ como $h(u) = H(u^*)$, para todo $u \in E$.

Se u₁ e u₂ são elementos de E, temos:

$$h(u_1u_2) = H(u_1u_2f) = H(f)H(u_1u_2f) =$$

$$= H(fu_1u_2f) = H(fu_1)h(u_2) =$$

$$= H(fu_1f)h(u_2) = h(u_1)h(u_2),$$

o que mostra que h é multiplicativa.

Seja I = Kern h.

Se $u \in I$, então $H(u^*) = h(u) = 0$, o que implica que $u^* \in M$. Escolhamos $g \in \mathcal{C}_{\dot{D}}(X;E)$ tal que g(x) = u. É claro que $gf \sim g \in M$ e então $uf(x) - u \in M(x)$.

Agora, (uf)(x) = $u^*(x) \in M(x)$. Segue-se então que

$$u = u^*(x) - [uf(x) - u] \in M(x) \subset \overline{M(x)}$$
.

Como $\overline{M(x)} \subseteq E$ é próprio, temos que $h \not\equiv 0$. Disto, e do fato de $h \subseteq E$ ' ser multiplicativa, segue que $h \in \Delta(E, \|\cdot\|)$.

Consideremos agora $W = \ker n \ (h \circ \delta_X)$. Queremos mostrar que $M \subseteq W$. Se $g \in C_b(X;E)$ é tal que $g \notin W$, então $h(g(x)) \neq 0$, donde $g(x) \notin I$. Além disso, temos $I \subseteq M(x) \subseteq \overline{M(x)}$, $\overline{M(x)}$ é próprio e I é maximal. Decorre daí que $I = \overline{M(x)}$. Mas então $g(x) \notin \overline{M(x)}$ e pelo lema 5.6 $g \notin M$. Logo, $M \subseteq W$. Como M é maximal e W é um ideal próprio fechado, segue que M = W. Logo $H = h \circ \delta_X$, ou seja, G(x,h) = H.

(c) G é continua.

Para provarmos, consideremos um par (x_0,h_0) em $X\times\Delta(E,\|\cdot\|)$. Dados $\varepsilon>0$ e uma função $g\in\mathcal{C}_b(X;E)$, escolhamos uma vizinhança V de h_0 em $\Delta(E,\|\cdot\|)$ tal que para qualquer $h\in V$,

$$|(h - h_0)(g(x_0))| < \epsilon.$$

Seja W uma vizinhança de $g(x_0)$ em E tal que

$$|h(w - g(x_0))| < \varepsilon$$
,

para todo $w \in W$ e $h \in V$.

Consideremos também uma vizinhança U de x_0 em X tal que $g(x) \in W$ para todo $x \in U$. Então, se $(x,h) \in U \times V$, temos que $g(x) \in W$ e $h \in V$, donde

$$|h(g(x) - g(x_0))| < \varepsilon.$$

Assim sendo, para todo par $(x,h) \in U \times V$, temos:

$$|G(x,h)(g) - G(x_{o},h_{o})(g)| = |h(g(x)) - h_{o}(g(x_{o}))| \le$$

 $\le |h(g(x) - g(x_{o})) + (h - h_{o})g(x_{o})| < \varepsilon.$

(d) G^{-1} é continua.

Com efeito, consideremos o net [H_{α}] de funções de

$$\Delta(C_{\mathbf{b}}(X; \mathbf{E}), \gamma[\kappa, \sigma])$$

que é convergente a $H \in \Delta(C_b(X;E), \gamma[\kappa \sigma])$.

Como G é sobrejetora, existe um net $\{x_{\alpha}\}$ em X e um net $[h_{\alpha}]$ em $\Delta(E)$ tais que $H_{\alpha} = G(x_{\alpha}, h_{\alpha})$ e existe um par (x,h) em

$$X \times \Delta(E, \| \cdot \|)$$

tal que H = G(x,h).

Seja f \in $C_b(X;E)$ tal que H(f) = 1 e seja $\alpha_o \in \Lambda$ tal que, para todo $\alpha > \alpha_o$, $|H_\alpha(f)| \neq 0$.

Se φ é uma função em $\mathcal{C}_{b}^{}(X;F)$, temos

$$\varphi f \in C_b(X; E)$$

e, para todo $\alpha > \alpha_0$,

$$\begin{split} \varphi\left(\mathbf{x}_{\alpha}\right) &= \varphi\left(\mathbf{x}_{\alpha}\right) \mathbf{h}_{\alpha}\left(\mathbf{f}\left(\mathbf{x}_{\alpha}\right)\right) \left[\mathbf{h}_{\alpha}\left(\mathbf{f}\left(\mathbf{x}_{\alpha}\right)\right)\right]^{-1} = \\ &= \mathbf{h}_{\alpha}\left(\varphi\left(\mathbf{x}_{\alpha}\right)\mathbf{f}\left(\mathbf{x}_{\alpha}\right)\right) \left[\mathbf{h}_{\alpha}\left(\mathbf{f}\right)\right]^{-1} = \mathbf{h}_{\alpha}\left(\varphi\mathbf{f}\right) \left[\mathbf{h}_{\alpha}\left(\mathbf{f}\right)\right]^{-1}. \end{split}$$

Portanto.

$$\varphi(\mathbf{x}_{\alpha}) = \mathbf{H}_{\alpha}(\varphi \mathbf{f})[\mathbf{H}_{\alpha}(\mathbf{f})]^{-1}$$

converge a

$$H(\varphi f)[H(f)]^{-1} = H(\varphi f) = h(\varphi(x) f(x)) = \varphi(x) h(f(x)) =$$

$$= \varphi(x) H(f) = \varphi(x).$$

Como X é ultra-regular e $\varphi\in\mathcal{C}_{b}^{-}(X;F)$ é arbitrária, pela Proposição 5.3 segue que $\mathbf{x}_{\alpha}^{-}\to\mathbf{x}.$

Consideremos agora $u \in E$. É claro que $uf \in C_b^-(X;E)$, e, para todo $\alpha > \alpha_0^-$, temos

$$\begin{split} h_{\alpha}(u) &= h_{\alpha}(u) h_{\alpha}(f(x_{\alpha})) [h_{\alpha}(f(x_{\alpha}))]^{-1} = \\ &= h_{\alpha}(uf(x_{\alpha})) [H_{\alpha}(f)]^{-1} = H_{\alpha}(uf) [H_{\alpha}(f)]^{-1}, \end{split}$$

o que implica que $h_{\alpha}(u) \rightarrow H(uf) \cdot 1 = h(u)$.

Logo $(x_{\alpha}, h_{\alpha}) \rightarrow (x, h)$ e portanto G^{-1} é uma função continua do espectro de $(\mathcal{C}_b(X; E), \gamma [\kappa, \sigma])$, sobre o produto cartesiano

 $X \times \Lambda(\mathbb{E}, \|\cdot\|)$.

COROLÁRIO 5.9: Seja X um espaço localmente compacto e 0-dimensional. Existe um homeomorfismo, entre X e o espaço

$$\Delta(C_{b}(X;F), \gamma[\kappa,\sigma]),$$

dado pela transformação $h(x) = \delta_x$.

Aqui (X,τ) será um espaço topológico localmente compacto e 0-dimensional e (F,|.|) um anel de divisão não trivialmente valorizado não arquimediano completo.

TEOREMA 5.10: Seja I um ideal de $C_b(X;F)$ e seja Z(I) o conjunto de todos os elementos x de X para os quais g(x)=0 para toda função g de I. Então uma função f de $C_b(X;F)$ estã na Y[K,O]-aderência de I se, e somente se, f(x)=0 para todo $x\in Z(I)$.

Para uma demonstração deste teorema veremos inicialmente o se guinte lema:

LEMA 5.11: Sejam I e Z(I) como no Teorema 5.10, mas consideremos X um espaço compacto. Se uma função $f\in C(X;F)$ é tal que f(x)=0 para todo $x\in Z(I)$, então f estã na aderência de I.

DEMONSTRAÇÃO: Seja $f \in C(X;F)$ tal que f(x) = 0 para todo $x \in Z(I)$ e seja $0 < \epsilon < 1$. Consideremos o subconjunto compacto

 $A = \{x \in X : |f(x)| \ge \epsilon\}$ de X. É claro que $A \cap Z(I) = \phi$.

Para cada $x \in A$, escolhamos $h_x \in I$ tal que $h_x(x) = 1$. A família $\{V_x\}_{x \in X}$ formada pelos conjuntos abertos e fechados $V_x = \{x \in A : |h_x(x)-1| < \epsilon\}$ é uma cobertura para A. Como A é compacto, existem x_1, \ldots, x_n em A tais que $A \subset V_1 \cup \ldots \cup V_n$, on de V_i denota o conjunto V_{x_i} , $i = 1, \ldots, n$.

Consideremos a família $\{W_i, i = 1,...,n\}$ de conjuntos abertos e fechados dada por $W_1 = V_1$,

$$W_2 = V_2 \setminus W_1'$$
 $W_k = V_k \setminus \bigcup_{i=1}^k W_{i-1}, \quad k = 1, ..., n,$

que é disjunta e ainda cobre A. Consideremos também a função $h'(x) = x_{W_1}h_1(x) + \ldots + x_{W_n}h_n(x), \text{ para todo } x \in X, \text{ onde por } h_i \text{ estamos denotando a função } h_{X_i}, i = 1, \ldots, n.$

Obtivemos assim uma função h' em I, pois para cada $i=1,\ldots,n$, $h_i\in I$ e $x_{W_i}\in \mathcal{C}_b(X;F)$. Além disso, $h'(x)\neq 0$ para todo $x\in A$. Pelo Teorema 0.15, existe $k'\in \mathcal{C}(X,F)$, com $k'(x)=[h'(x)]^{-1}$ para todo $x\in A$ e $0<|k'(x)|\leq |h'(x)|^{-1}$ para todo $x\in X$.

Se h = h'k', temos que $h \in I$, h(x) = 1 para todo $x \in A$ e $\|h\| \le 1$.

Tomando a função g = fh em I, temos

$$|f(x)-g(x)| = |f(x)| \cdot |1-h(x)| = 0$$
,

se $x \in A$ e $|f(x)-g(x)| < \epsilon.1 = \epsilon$, se $x \notin A$, ou seja, $|f-g| < \epsilon$, do que segue que f pertence à aderência de I.

DEMONSTRAÇÃO DO TEOREMA 5.10: Seja $f \in C_b(X;F)$ uma função pertencente à $\gamma[\kappa,\sigma]$ -aderência de I. Do fato de $\kappa \subseteq \gamma[\kappa,\sigma]$, segue que f está na κ -aderência de I. Para cada elemento a do conjunto τ -fechado

$$Z(I) = \bigcap_{\alpha \in I} g^{-1}(0) ,$$

consideremos a função $\delta_a:\mathcal{C}_b^-(X;F)\to F$ definida por $\delta_a^-(f)=f(a)$.

Seja $V_{\epsilon}=\{\lambda\in F: |\lambda|<\epsilon\}$ e consideremos uma κ -vizinhança W da origem em $C_{b}(X;F)$ dada por

$$W = \{f \in C_b(X; F) : P_{\{a\}}(f) = |f(a)| < \epsilon\}.$$

Suponhamos agora que f(x) = 0 para todo $x \in Z(I)$ e vamos provar que f está na $\gamma[\kappa,\sigma]$ -aderência de I.

Seja B = B(0, $\|f\|_{\infty}$) e seja κ um subconjunto compacto de X . Como I é um ideal de $C_{\mathbf{b}}(X;F)$, o conjunto I/K é um ideal de

 $\mathcal{C}(K;F)$. Com efeito, sejam $f\in I/K$ e $g\in \mathcal{C}(K,F)$. Da definição, existe $\tilde{f}\in \mathcal{C}_b(X;F)$ tal que $\tilde{f}/K=f$ e pelo Teorema 0.15, existe uma função $\tilde{g}\in \mathcal{C}_b(X;F)$ que \tilde{e} a extensão de g a X. Mas I \tilde{e} ideal de $\mathcal{C}_b(X;F)$, logo $\tilde{g}\tilde{f}\in I$, do que segue que

gf =
$$\tilde{g}/K \cdot \tilde{f}/K \in I/K$$
.

Como f/K = 0 para todo $x \in Z(I/K)$, vem, pelo Lema 5.11, que f/K pertence à aderência de I/K. Então existe $\tilde{h} \in I$ tal que $P_K(\tilde{h}-f) < \epsilon$. Além disso, temos claramente $P_K(\tilde{h}) \leq \|f\|+1$.

Seja $H = (\tilde{h}-f)^{-1}(B(0,1))$, que é um conjunto aberto e fechado e contém K. Tomando $h \in C_b(X;F)$ dada por $h = \chi_H \cdot \tilde{h}$, temos $h \in I$, $h(x) = \tilde{h}(x)$, se $x \in H$ e h(x) = 0 se $x \notin H$.

Logo $\|h\| \le 1 + \|f\|$ isto \tilde{e} , $h \in B$.

Concluimos daí que $h\in I\cap B$ e $p_K(h\text{-}f)<\epsilon$ o que implica que f está na $\kappa\text{-}aderência$ de I \cap B.

Como κ e $\gamma[\kappa,\sigma]$ coincidem sobre B, concluímos que f está na $\gamma[\kappa,\sigma]$ -aderência de I \cap B e portanto está na $\gamma[\kappa,\sigma]$ -aderência de I.

REFERÊNCIAS

- [1] A. ALEXIEWICZ, On sequences of operations (II); Studia Math. 11, (1950), 200-236.
- [2] A. ALEXIEWICZ, On the two-norm convergence; Studia Math. 14, (1954), 49-56.
- [3] A. ALEXIEWICZ and Z. SEMADENI, A generalization of two-norm spaces; Bull. Pol. Acad. Sci. 6, (1958), 135-139.
- [4] M.T. BALBI, Espaços Vetoriais Topológicos sobre Corpos não Comutativos, Tese de Doutorado, UNICAMP, 1982.
- [5] N. BOURBAKI, Élêments de Mathématiques, Livre V: Espaces Vectoriels Topologíques; Hermann, Paris, 1973.
- [6] A.K. CHILANA and S. SHARMA, The locally boundedly multiplicatively convex algebras; Math. Nacht. 77 (1977), 139-161.
- [7] J.B. COOPER, Saks Spaces and Applications to Functional Analysis; North-Holland Mathematics Studies, vol.28, Amsterdam, 1977.
- [8] G. FICHTENHOLZ, Sur les fonctionnelles linéaires, continues au sens généralisé; Mat. Sbonník 4, (1938), 193-214.
- [9] D.J.H. GARLING, A generalized form of inductive-limit topology for vector spaces; Proc. London Math. Soc., 14, (1964), 1-28.
- [10] S.O. IYHAEN, On certain classes of linear topological spaces; Proc. London Math. Soc. 18, (1968), 285-307.
- [11] A.F. MONNA, Analyse non-archimedienne; Ergebnisse der Mathematik und iher Grenzgebiete, Band 56, Springer Verlag,

Berlin, 1970.

[12] W. ORLICZ, Linear operations in Saks spaces (I); Studia Math. 11, (1950), 237-272.

1. 14 13 an

- [13] W. ORLICZ, Linear operations in Saks spaces (II); Studia

 Math. 15, (1956), 1-25.
- [14] W. ORLICZ and V. PTÄK, Some remarks on Saks spaces; Studia Math. 16, (1957), 56-58.
- [15] A. PERSSON, A generalization of two-norm spaces; Atk. Mat. 5, (1963), 27-36.
- [16] J.B. PROLLA, Topics in Functional Analysis over Valued Division Rings; North-Holland Mathematics Studies vol.77, Amsterdam (1982).
- [17] J.B. PROLLA, Topological algebras of vector-valued continuous functions, Advances in Math. Suppl. Studies 7, Academic Press, N.Y., 1981.
- [18] M.Z.M.C. SOARES, Topicos em Teoria da Aproximação sobre Aneis Valorizados, Tese de Doutorado, UNICAMP, 1982.
- [19] J. VAN TIEL, Espaces localement K-convexes; Indagationes Mathematicae, vol. XXVII, (1965), 250-289.
- [20] A. WIWEGER, A topologization of Saks spaces; Bull. Pol. Acad. Sci. 5 (1957), 773-777.
- [21] A. WIWEGER, Linear spaces with mixed topology, Studia Math. 20 (1961), 47-68.