Reconstrução dos Torneios de Moon

Valdomiro Plácido dos Santos

11 de dezembro de 2001

U N I C A M P
BIBLIOTECA CENTRAL
SEÇÃO CIRCULANTF

Reconstrução dos Torneios de Moon

Este exemplar corresponde à redação final da dissertação devidamente corrigida e defendida por Valdomiro Placido dos Santos e aprovada pela comissão julgadora.

Campinas, 11 de dezembro de 2001.

Profa. Dra. Claudina Izepe Rodrigues Orientadora

Banca Examinadora:

- 1. Profa. Dra. Claudina Izepe Rodrigues
- 2. Prof. Dr. José Carlos de Souza Kiihl
- 3. Prof. Dr. Paulo Ferreira Leite

Dissertação apresentada ao Instituto De Matemática, Estatística e Computação Científica, UNICAMP, como requisito parcial para obtenção do Título de MESTRE em Matemática.

50.592
William Straight Company And Company of the Company
118760
PROC. 16-837/02
PROC. 12: 807/25-
PRECORS 1100
DATA
Mr CbD

CMQ0166482-2

18 ID 237848

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DO IMECC DA UNICAMP

Santos, Valdomiro Placido dos

Sa59r Reconstrução dos torneios de Moon / Valdomiro Placido dos Santos -- Campinas, [S.P. :s.n.], 2001.

Orientador: Claudina Izepe Rodrigues

Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica.

Torneios. 2. Reconstrução. 3. Teoria dos grafos hamiltonianos. I.
 Rodrigues, Claudina Izepe. II. Universidade Estadual de Campinas.
 Instituto de Matemática, Estatística e Computação Científica. III. Título.

Dissertação de Mestrado defendida em 11 de dezembro de 2001 e aprovada pela Banca Examinadora composta pelos Profs. Drs.

Clauding Lepe Roduques
Prof (a). Dr (a). CLAUDINA IZEPE RODRIGUES
Louis Lake
Prof (a). JOSÉ CARLOS DE SOUZA KIIHL
Paulo Ferreira Leite
Prof (a). Dr (a). PAULO FERREIRA LEITE

Dedico este trabalho aos meus pais, Claudino Plácido dos Santos e Maria Antulina Guerreiro dos Santos, Que souberam me incentivar e fortalecer.

AGRADECIMENTOS

- Agradeço especialmente à Professora Claudina I. Rodrigues, minha orientadora, pela constante vigilância na realização deste trabalho e pela paciência nas situações adversas.
- Ao Professor José Carlos de Souza Kiihl por ter sugerido este estudo e pelas incontáveis contribuições.
- Ao Professor Paulo Ferreira Leite pelas sugestões e pelo reconhecimento.
- À Unicamp que me acolheu e ofereceu condições para que todo este trabalho fosse realizado
- À FAPESP pela contribuição financeira decisiva neste projeto.
- Aos meus familiares que sempre acreditaram no sucesso dessa tarefa.
- Aos amigos Rodolfo e Luciane, Glycério e Valéria, Kauê e Claudinha, Andrea, Wilton,
 Ricardo, Daniel, Humberto, Gilson, Sandro, Luciana Uchoa, Mara Glauce e Lin, cujas
 amizades fizeram minha permanência em Campinas ser muito prazerosa.

RESUMO

O problema da reconstrução de torneios permanece sem uma conclusão definitiva por aproximadamente quatro décadas. Este trabalho apresenta a evolução das pesquisas sobre este problema e traz também um estudo sobre os torneios de Moon, que constituem uma classe de torneios reconstrutíveis.

Em 1966, Frank Harary propôs a seguinte conjectura: todo torneio de ordem n é reconstrutível a partir de suas cartas se n é suficientemente grande. A falsidade desta conjectura (conhecida como conjectura da reconstrução para torneios) foi demonstrada por Stockmeyer, em 1977. Mas, muitas classes de torneios reconstrutíveis foram caracterizadas até o momento. Nosso objetivo neste trabalho é estudar algumas destas classes. Verificamos, na secção 2, que a classe dos torneios não-hamiltonianos constitui uma classe de torneios reconstrutíveis, o que foi provado por Harary e Palmer, em 1967. Centramos nossos estudos, no entanto, na classe dos torneios de Moon, ou seja, os torneios cujos subtorneios ou são hamiltonianos ou são transitivos. Na secção 5, caracterizamos os torneios de Moon por subtorneios transitivos maximais. A partir desta caracterização é possível representar os torneios de Moon pelo seu name. Finalmente, na secção 6, usando o name verificamos que os torneios de Moon são reconstrutíveis a partir de suas cartas.

ABSTRACT

The reconstruction problem for tournaments remains without a global solution since 1966. This paper shows the evolution of searches on this problem and presents a study about Moon tournaments, which constitute a class of reconstrutible tournaments.

In 1966, Frank Harary posed the reconstruction problem for tournaments by asking: is it possible to reconstruct any tournament T_n from its cards provided n is sufficiently large? The falsity of the reconstruction conjecture for tournaments was stated by Stockmeyer, in 1977. Several classes of reconstructible tournaments were characterized since the conjecture was posed. The porpose of this paper is to show some of this classes. We verify, in section 2, that the non-hamiltonian tournaments constitute a class of reconstructible tournaments. This result was proved by Harary and Palmer, in 1967. Our main purpose in this paper is to characterize the structure of Moon tournaments, i. e., the tournaments whose subtournaments are either hamiltonian or transitive. In section 5, we characterize the Moon tournaments by using their maximal transitive subtournaments. With this new characterization is possible to represent Moon tournaments by using its name. Finely, in section 6, using the name, we prove that Moon tournaments are reconstructible from its cards.

ÍNDICE

Introdução	2
Secção-1.	7
Preliminares	. 7
Secção-2.	12
Reconstrução de um Grafo a Partir de seus Subgrafos	13
Reconstrução de um Torneio a Partir de seus Subtorneios	14
Secção-3.	21
Caracterização de Torneios por 3-ciclos Conados	21
Secção-4.	27
Caracterização de Torneios Hamiltonianos do Tipo-Moon	27
Secção-5.	31
Estrutura dos Torneios de Moon	33
Secção-6.	40
Reconstrução dos Torneios de Moon	40
Ordenação Lexicográfica das Cartas de \mathcal{P}	44
Bibliografia	50

INTRODUÇÃO

Desde que F. Harary formulou o problema da reconstrução de torneios, em 1966, muitos artigos foram publicados sobre o assunto na tentativa de se caracterizar classes cada vez maiores de torneios reconstrutíveis. Mas os resultados não são tão expressivos, ou tão abrangentes, como se pretendia.

O primeiro grande resultado foi obtido pelo próprio Harary em parceria com E. Palmer, no artigo On the Problem of Reconstructing a Tournament from Subtournaments, publicado em 1967. Neste artigo, Harary e Palmer provaram que todo torneio não hamiltoniano, com ordem superior ou igual a cinco, é reconstrutível a partir de suas cartas. Harary foi o primeiro a usar a palavra carta para designar um subtorneio obtido pela eliminação de um vértice de um torneio T_n , ou seja, os subtorneios de ordem n-1.

Uma década mais tarde, Stockmeyer construiu um par de torneios não reconstrutíveis em cada uma das ordens $2^n + 1$ e $2^n + 2$, n = 1, 2, 3, ...Provando, portanto, a falsidade da conjectura da reconstrução para torneios.

As classes dos torneios transitivos, dos altamente regulares e dos torneios bineutrais constituem 3 classes de torneios reconstrutíveis. Cada uma delas tem exatamente um torneio em cada ordem n. Outra grande classe de torneios reconstrutíveis foi caracterizada por Moon, em 1979, a classe dos torneios cujos subtorneios ou são hamiltonianos ou são transitivos (chamada de Classe dos Torneios do tipo-Moon).

Na década de 80, surge um novo olhar sobre o problema da reconstrução de torneios, pois o matemático Davide Carlo Demaria formulara a Teoria da Homotopia Regular. Com essa nova ferramenta, outros artigos são publicados apontando novas classes de torneios reconstrutíveis, classes bem maiores que as anteriores (em geral, contendo classes já caracterizadas no passado).

Um exemplo desse progresso é a classe dos torneios normais caracterizada por Demaria e Guido, em 1990. Logo depois, em 1992, Paolo Vitolo caracteriza a classe dos torneios simplesmente desconexos, que contém a classe dos torneios de Moon. Ainda na mesma linha de exemplos, em 1994, C. Guido desenvolve uma nova representação dos torneios de Moon usando subtorneios transitivos maximais. Em 1996, C. Guido considera a classe dos torneios com um quociente simples normal, esta classe contém os torneios normais, dando mais um importante passo em busca de se caracterizar a classe dos torneios reconstrutíveis.

Nesta dissertação, mostramos em detalhes algumas classes de torneios reconstrutíveis. Nosso objetivo foi alcançado nos seguintes passos:

- Secção 1. Neste primeiro estágio do trabalho, apresentamos os conceitos mais elementares para a compreensão dos passos seguintes, dos quais destacamos o conceito de torneio reconstrutível.
- Secção 2. Nesta secção, verificamos que se T é um torneio não hamiltoniano com pelo menos 5 vértices, então T pode ser reconstruído a partir dos seus subtorneios T_i .
- Secção 3. A demonstração de que o quociente simples relacionado a um torneio T é altamente regular se, e somente se, existe em T um 3-ciclo não-conado e todo 3-ciclo conado é contraível, feita nesta secção, viabiliza algumas ferramentas necessárias ao desenvolvimento da secção 5.
- Secção 4. Nesta passagem, começamos nosso estudo dos torneios do tipo-Moon, onde constatamos que a classe dos torneios hamiltonianos com pelo menos 5 vértices cujos 5-subtorneios hamiltonianos são do tipo-

Moon é equivalente à classe dos torneios hamiltonianos do tipo-Moon com pelo menos 5 vértices.

- Secção 5. Usando os resultados obtidos nas secções precedentes chegamos a uma nova caracterização dos torneios de Moon. Com base nesta caracterização, mostramos que todo torneio de Moon T_n pode ser representado por $T_n = (T_p, T_q)$, onde $T_p = Tr_p$ e $T_q = Tr_{p-1}(X_1, ..., X_{p-1})$.
- Secção 6. Nesta secção atingimos nosso objetivo final que é mostrar que todo torneio de Moon $T_n, n \geq 4$, excluindo-se as composições $C_3(T_1, T_2, Tr_3)$ e $C_3(T_1, Tr_3, T_2)$ é reconstrutível a partir de suas cartas.

A seguir, elaboramos um histograma a fim de dar uma melhor visualização da evolução das pesquisas sobre o problema da reconstrução de torneios. O artigo Structure and Reconstruction of Moon Tournaments, de Cosimo Guido, publicado em 1994, localizado no histórico abaixo, será o centro da nossa atenção para esta dissertação.

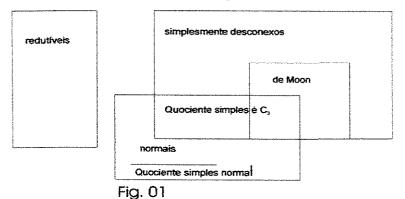
HISTÓRICO

- 1960. Publicada a Conjectura de Ulam, ou Conjectura da Reconstrução para Grafos (Dois grafos H_n e G_n $(n \ge 3)$ são isomorfos sempre que são hipomorfos entre si);
- 1966. F. Harary pergunta: É possível reconstruir um torneio T_n a partir de suas cartas se n é suficientemente grande? (Conjectura da Reconstrução para Torneios);
- 1967. Harary e Palmer concluem que os torneios T_n redutíveis, i.e., não hamiltonianos (classe \mathcal{R} , $n \geq 5$) podem ser reconstruídos a partir de suas cartas;
- 1970. Beineke e Parker exibem torneios não reconstrutíveis de ordens 5 e 6;
- 1977. Stockmeyer demonstra a Falsidade da Conjectura da Reconstrução para Torneios construindo um par de torneios não reconstrutíveis em cada uma das ordens: 2^{n+1} e 2^{n+2} , n=1,2,3,...;
- 1979. Moon verifica que os torneios cujos subtorneios ou são hamiltonianos ou são transitivos constituem uma classe M de torneios reconstrutíveis (chamada Classe dos Torneios de Moon);
- **Década de 80.** Na segunda metade da década de 80, Demaria desenvolve a Teoria da Homotopia Regular;
- 1990. Demaria e Guido caracterizam uma nova classe de torneios reconstrutíveis- A Classe $\mathcal N$ dos Torneios Normais com pelo menos 4 vértices;
- 1992. Paolo Vitolo amplia a classe dos torneios de Moon considerando a Classe S dos Torneios Simplesmente Desconexos (esta classe contém a classe dos torneios de Moon);

- 1994. C. Guido desenvolve uma nova representação dos torneios de Moon usando Subtorneios Transitivos Maximais. Esta técnica norteará os estudos da presente dissertação.
- 1996. C. Guido amplia a classe dos torneios normais considerando a Classe Q dos Torneios H_n , $n \geq 4$, com um Quociente Simples Normal (os torneios desta classe são reconstrutíveis, excluindo-se um de ordem 5 e dois de ordem 6). Esta classe contém a classe dos torneios normais.

DIAGRAMA

A relação entre as classes de torneios reconstrutíveis citadas acima pode ser melhor visualizada pelo diagrama abaixo.



 $C_3(S^{(1)},S^{(2)},S^{(3)})$ é a classe dos torneios cujo quociente simples é C_3 . Vale observar que os retângulos utilizados acima não têm qualquer relação com os tamanhos das classes que representam.

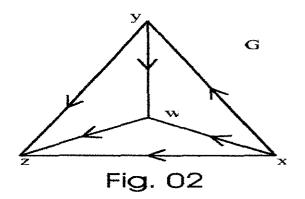
SECÇÃO 1

PRELIMINARES

Nesta seçcão, apresentaremos as principais definições e os resultados delas decorrentes. Para estudar as diferentes classes de torneios reconstrutíveis, começamos com as definições elementares presentes em [1] e [2].

Definição 1.1 Um grafo orientado é dito um *torneio* se cada par de vértices distintos do mesmo forma um e somente um arco. O grafo G da figura 02 é um torneio.

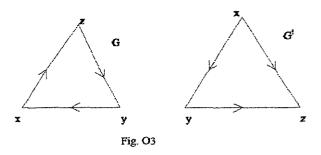
Denotaremos por T_n um torneio de ordem n, onde a ordem \acute{e} o número de vértices do torneio. Escreveremos $x \longrightarrow y$ quando o vértice x for um predecessor do vértice y (i.e., o arco está orientado de x para y), neste caso, o vértice y é dito um successor de x. Na figura 02, o torneio G tem ordem 4 e x é predecessor de y, w e de z.



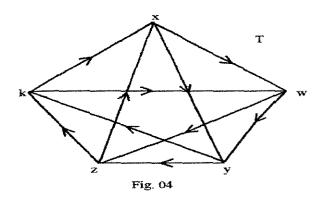
Definição 1.2 Um torneio T é chamado transitivo se para todo $x, y, z \in T$ tal que $x \longrightarrow y$ e $y \longrightarrow z$ tem-se $x \longrightarrow z$. Um torneio é dito transition se existe um ciclo passante (uma única volta) passando por todos os vértices deste torneio.

De acordo com [3], existe apenas um torneio transitivo de ordem n, para cada número natural n. Sejam $v_1, ..., v_n$ seus vértices. Denotaremos por Tr_n o torneio transitivo de ordem n tal que h < k implica $v_h \longrightarrow v_k$ e por Tr_n^* o torneio transitivo de ordem n tal que h < k implica $v_k \longrightarrow v_h$.

Na figura 03 abaixo, G' é transitivo, mas G não é transitivo. Por outro lado, G é hamiltoniano e G' não é hamiltoniano.



Definição 1.3 Um torneio T é dito regular se para todo $x \in T$ o número de predecessores de x é igual ao número de sucessores. Uma consequência imediata deste fato é que quando T for regular o número de vértices de T será ímpar. Assim, o torneio G da figura 02 não pode ser regular.



T é chamado altamente regular se existe uma ordenação cíclica $v_1, v_2, \dots, v_{2m+1}, v_1$ dos vértices de T tal que $v_i \longrightarrow v_j$ se, e somente se, v_j é um dos

primeiros m sucessores de v_i na ordenação cíclica dos vértices de T, neste caso o torneio será denotado por R_{2m+1} .

O torneio T da figura 04 é altamente regular e hamiltoniano. Para verficar que T é altamente regular, basta tomar a ordenação $(v_1 = x; v_2 = w; v_3 = y; v_4 = z; v_5 = k)$. Observe que, neste caso, 2m+1=5, portanto m=2. Com a ordenação acima, podemos verificar que $v_i \longrightarrow v_j$ se, e somente se, v_j é um dos primeiros 2 sucessores de v_i .

Se A e B são dois subtorneios de T, escrevemos $A \longrightarrow B$ quando cada vértice de A é um predecessor de todos os vértices de B. Dizemos que um vértice v cona um subtorneio S em T (ou, equivalentemente, que S é conado por v) se $v \longrightarrow S$ ou $S \longrightarrow v$. Uma aplicação $f: T \longrightarrow T'$ do torneio T no torneio T' é um homomorfismo se para todo $x, y \in T$ tal que $x \longrightarrow y$ tem-se $f(x) \longrightarrow f(y)$ ou f(x) = f(y). No torneio G' da figura 03, o vértice x cona o subtorneio S formado por y e z ($x \longrightarrow S$).

Definição 1.4 Dizemos que um subtorneio S de T é uma e-componente de T, e seus vértices são chamados equivalentes, se S é conado por cada um dos vértices de T-S. Vale notar que, de acordo com esta definição, cada vértice de T é, ele próprio, uma e-componente trivial de T. Se T_n é um torneio de ordem n, podemos particioná-lo (não de maneira única) em e-componentes disjuntas $S^{(1)}$, $S^{(2)}$, ..., $S^{(m)}$. Neste caso as e-componentes $S^{(1)}$, $S^{(2)}$, ..., $S^{(m)}$ podem ser consideradas como vértices $v_1, v_2, ..., v_m$ de um torneio Q_m obtido da seguinte maneira: $v_i \longrightarrow v_j$ se, e somente se, $S^{(i)} \longrightarrow S^{(j)}$. Q_m é dito torneio quociente. Veja que T_n pode ser obtido da composição $Q_m(S^{(1)}, ..., S^{(m)})$ das e-componentes $S^{(1)}$, $S^{(2)}$, ..., $S^{(m)}$ com o quociente Q_m .

Um torneio T_n é dito simples se a única composição possível de T_n se

obtém para m=1 ou para m=n, isto é, quando o torneio quociente é o torneio trivial T_1 ou é isomorfo a T_n (neste último caso, cada componente é trivial).

Definição 1.5 Seja T_n , $(n \ge 2)$, um torneio não-hamiltoniano. Chamamos de *condensa*ção de T_n seu quociente transitivo Tr_j^* , $(j \ge 2)$, quando todas as suas componentes $S^{(i)}$ são hamiltonianas (ou triviais). Neste caso, $T_n = Tr_j^*$ ($S^{(1)}, ..., S^{(j)}$).

A partir das definições acima, podemos obter alguns resultados bastante úteis para as seçções subseqüentes.

Proposição 1.6 Sejam T um torneio e T' um torneio quociente de T. Então existe um subtorneio T'' de T isomorfo a T'.

Demonstração. Para obter T'' basta escolher um vértice em cada uma das e-componentes de T e considerar o subtorneio formado por estes vértices.

Proposição 1.7 Sejam R e S duas e-componentes de um torneio T. Se $R \cap S \neq \emptyset$ e $R \cup S \neq T$, então $R \cup S$ é um subtorneio de vértices equivalentes de T.

Demonstração. Sejam x um vértice em $R\cap S$ e y um vértice em T - (RUS). Então para todo $z\in R\cup S$ tem-se :

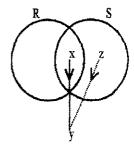
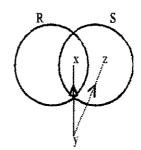
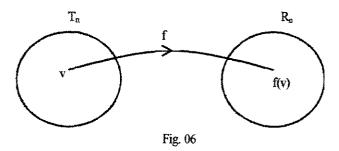


Fig. 05



 $z\longrightarrow y\Longleftrightarrow x\longrightarrow y$ e $y\longrightarrow z\Longleftrightarrow y\longrightarrow x$. Ou seja, em qualquer um dos dois casos y cona $R\cup S$, o que demonstra a proposição.

Definição 1.8 As cartas de um torneio T_n são os (n-1)-subtorneios de T_n . A carta relativa ao vértice v de T_n é o subtorneio T_n - v. Um hipomor fismo entre dois torneios T_n e R_n é uma bijeção $f:T_n \longrightarrow R_n$ tal que para cada vértice $v \in T_n$ a carta de T_n relativa ao vértice v é isomorfa á carta de T_n relativa ao vértice f(v).



Dois torneios são *hipomorfos* se existe um hipomorfismo entre eles, isto é, se eles possuem as mesmas cartas.

Definição 1.9 Um torneio T_n é reconstrutível a partir de suas cartas se $R_n\cong T_n$ (isomorfo) sempre que R_n e T_n são hipomorfos.

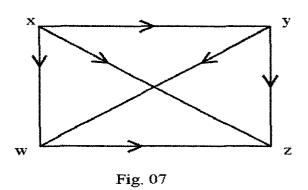
Definição 1.10 Um torneio cujos subtorneios ou são hamiltonianos ou são transitivos é chamado $torneio\ de\ Moon\ ($ ou do $tipo-Moon\).$ O torneio G da fig.02 é do tipo-Moon.

SECÇÃO 2

O PROBLEMA DA RECONSTRUÇÃO DE UM TORNEIO A PARTIR DE SEUS SUBTORNEIOS

A pergunta que queremos responder é: se o conjunto T_i de subtorneios (cartas) de T é dado, é possível reconstruir T? (se possível, como?). Nesta secção, constatamos que se T é um torneio não hamiltoniano com pelo menos 5 vértices, então T pode ser reconstruído a partir dos seus subtorneios T_i . Usaremos T_n para representar um torneio de ordem n.

Definição 2.1 O outdegree de um vértice v_i (denotado por $od(v_i)$) é o número de arestas que partem de v_i .O indegree do vértice v_i (denotado por $id(v_i)$) é o número de arestas que incidem em v_i . O grau de v_i (denotado por $d(v_i)$) é dado pela soma das arestas adjacentes a v_i . O placar s_i de um vértice v_i é o outdegree de v_i . Um vértice $v \in T_n$ é dito um receptor de T_n se od(v) = 0 (id(v) = n-1) e um transmissor de T_n se id(v) = 0 (od(v) = n-1).



Na figura 07, od(x) = 3; od(y) = 2; od(z) = 0; od(w) = 1 e id(x) = 0; id(y) = 1; id(z) = 3; id(w) = 2. Note que x é transmissor, pois id(x) = 0 e z é receptor, pois od(z) = 0.

Geralmente, os vértices de T_n são ordenados de tal forma que $s_1 \leq s_2 \leq ... \leq s_n$.

O PROBLEMA DA RECONSTRUÇÃO DE UM GRAFO A PARTIR DE SEUS SUBGRAFOS

Nesta seçção, serão considerados apenas torneios (e grafos) de ordem superior ou igual a 3.

Lema 2.2 Seja T um torneio com n vértices, cujas arestas são $x_1, x_2, ..., x_q$. Sejam T - x_i (i=1,2,...,q) os subgrafos obtidos de T pela eliminação da aresta x_i . Então T tem um receptor se, e somente se, algum T - x_i tem um vértice v com id(v) = n-1.

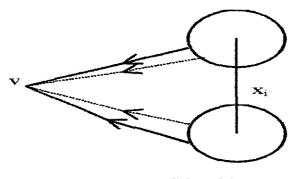


Fig. 08

Demonstração. Se T tem um receptor, assuma que v é o receptor de T. Veja figura 08. Tome x_i uma aresta não adjacente a v. Assim T - x_i contém v e id(v) = n-1. Reciprocamente, se T- x_i contém v tal que id(v) = n-1, então x_i não é adjacente a v, logo T contém v com id(v) = n-1 e o lema está demonstrado.

Teorema 2.3 T pode ser reconstruído a partir de seus subgrafos T- x_i . Demonstração. Há dois casos a considerar:

- 1º Caso. T não tem um receptor. Então $s_1 \geq 1$ e podemos escolher um subgrafo T- x_i com um vértice u tal que $od(u) = s_1$ -1. Seja v o outro vértice de T- x_i com grau igual a n-2. Então T é obtido pela adição da aresta (u,v) a T- x_i .
- 2^{o} Caso. T tem um receptor. Escolha T- x_{i} sem vértices w tal que id(w) = n-1. Então T- x_{i} foi obtido de T pela eliminação de uma aresta adjacente ao receptor. Seja v um vértice de T- x_{i} com id(v) = n-2 e od(v) = 0. Seja u o outro vértice de T- x_{i} com grau igual a n-2. Sem perdas, podemos assumir que v é o receptor de T, assim T é obtido pela adição da aresta (u, v) a T- x_{i} .

O PROBLEMA DA RECONSTRUCÇÃO DE UM TORNEIO A PARTIR DE SEUS SUBTORNEIOS

Seja T_n um torneio com vértices v_1, v_2, \ldots, v_n . Sejam $T_i = T \cdot v_i$ ($i = 1, \ldots, n$) os subtorneios obtidos de T pela eliminação do vértice v_i e das arestas adjacentes a ele. Observamos que um $digrafo\ D$ (i.é. um grafo orientado D) é um torneio se, e somente se, D - v é um torneio para cada $v \in D$. Iremos, a partir de agora, estudar o seguinte problema: se o conjunto T_i de subtorneios é dado, é possível reconstruir T? (se possível, como?).

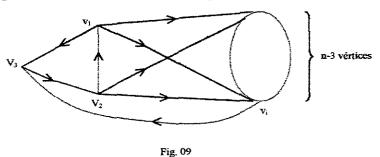
Percebe-se que para n=3 isto não é possível, pois T é um 3-ciclo ou é transitivo e o conjunto T_i é o mesmo em ambos os casos. Portanto T não é determinado pelos T_i .

Teorema 2.4 Um torneio T_n ($n \ge 4$) é hamiltoniano se, e somente se, T_n não tem receptor nem transmissor e para algum $v \in T_n$, T_n -v é hamiltoniano.

Demonstração. Suponhamos T_n hamiltoniano. Para facilitar, escreveremos apenas T para representar T_n . Evidentemente, T não tem receptor nem transmissor. Por [4], teorema 2, T tem um ciclo de comprimento n-1, digamos $C=v_1,\,v_2,\,...v_{n-1},\,v_1$. Portanto $T_n=T-v_n$ contém C e é, então, hamiltoniano, pois contém um ciclo de comprimento n-1. Reciprocamente, suponhamos que $T_n=T-v_n$ é hamiltoniano. Seja C um ciclo $v_1,v_2,...,v_{n-1},v_1$. Como v_n não é receptor nem transmissor, existe aresta com origem em C e incidente a v_n como também existe aresta com origem em v_n e incidente em C. Por [4], teorema 2, T tem um ciclo de ordem n e é, portanto, hamiltoniano.

Teorema 2.5 Se T_n , $n \geq 4$, é hamiltoniano, então no máximo dois subtorneios T_i têm transmissores.

Demonstração. Seja T hamiltoniano com ordem superior ou igual a quatro. Suponha que v_1 seja um transmissor em $T_2 = T - v_2$. Então o placar de v_1 em T é pelo menos n-2 (pois é n-2 em T_2). Como T é hamiltoniano, o placar de v_1 é exatamente n-2. Se T tem dois subtorneios T_i com transmissores, então existem dois vértices v_1 e v_2 com placar n-2 e podemos assumir que v_2 é predecessor de v_1 . Veja figura 09.



Dado que v_2 tem placar n-2, há um outro vértice v_3 que é predecessor de v_2 e sucessor de v_1 . Os outros n-3 vértices v_i , com $i \geq 4$, são todos sucessores de v_1 e de v_2 . Portanto, para $i \geq 4$, o placar de v_i é menor que n-2 e, consequentemente, nenhum destes v_i pode ser um transmissor em qualquer subtorneio T-v. Logo, nenhum T_i , $i \geq 4$, pode ter um transmissor. Assim,

 T_2 e T_3 têm transmissores v_1 e v_2 , respectivamente. A outra possibilidade é de que v_3 seja um transmissor de T_1 . Mas, sendo T hamiltoniano, v_3 é sucessor de algum vértice $v_i, i \geq 4$. Portanto, o placar de v_3 é menor que n-2 e T_1 não tem um transmissor.

Este teorema não vale para n=3 porque, neste caso, cada um dos 3 subtorneios T_i tem um transmissor.

Teorema 2.6 Um torneio T com pelo menos 5 vértices tem um transmissor se, e somente se, pelo menos quatro subtorneios T_i têm transmissores.

Demonstração. Suponhamos que T tenha um transmissor, digamos v. Então, para $i \geq 2, v$ é um transmissor de T_i . Como T tem pelo menos 5 vértices, há pelo menos 4 destes subtorneios. Suponha agora que pelo menos quatro subtorneios T_1, T_2, T_3 e T_4 tenham um transmissor. Suponha ainda, por absurdo, que T não tem um transmissor. Considere S como sendo a componente hamiltoniana de T que é o transmissor de Tr_j^* , a condensação de T. Portanto, S contém pelo menos 3 elementos. Além disso, se v é um vértice de T-S, então T-v não pode ter um transmissor. Logo, os transmissores dos T_i acima estão todos em S, de onde conclui-se que S tem pelo menos quatro vértices. Assim, $S-v_i$ tem um transmissor para cada $i \leq 4$. Como S é um torneio hamiltoniano, isto contradiz o teorema 2.5.

Uma consequência imediata deste teorema é o

Corolário 2.7 Quando $n \geq 5$, T_n tem um transmissor se, e somente se, pelo menos n-1 subtorneios T_i têm um transmissor.

Quando G e H são dois grafos sem vértices em comum, o grafo G+H é obtido pela ligação de cada vértice de G com cada vértice de H por uma aresta. Quando estas arestas são todas orientadas de G para H, escrevemos $G+\to H$.

Teorema 2.8 Se T é um torneio com pelo menos 5 vértices tal que um dos subtorneios T_i , digamos $T_1 = T - v_1$, não tem um transmissor e pelo menos 4 subtorneios T_i têm um transmissor, então $T = v_1 + \rightarrow T_1$.

Demonstração. Pelo teorema 2.6, T tem um transmissor, digamos v. Então T-u tem um transmissor para todo $u \neq v$. Logo, $v=v_1$ e $T=v_1+ \rightarrow T_1$.

Teorema 2.9 Se T_n é um torneio com pelo menos 5 vértices e cada T_i tem um transmissor, então T_n pode ser reconstruído a partir dos subtorneios T_i .

Demonstração. Precisamos provar que existe um inteiro m, com $2 \le m \le n$, tal que, para uma conveniente escolha dos T_i , as seguintes condições são satisfeitas:

- 1. Cada T_i tem vértices com placar n-2,...,n-m;
- 2. $T_1,...,T_m$ não têm vértices com placar n-(m+1), mas $T_{m+1},...,T_n$ têm;
- 3. $T_1,...,T_m$ são todos isomorfos e $T_n=v_1+\to T_1.$

Pelo teorema 2.6, T_n tem um transmissor, digamos v_1 . Como cada T_i tem um transmissor, T_n tem um vértice, digamos v_2 , de placar n-2.

Há dois casos para serem considerados:

Primeiro caso. Nenhum dos vértices v_i , $i \geq 3$, tem placar n-3;

Segundo caso. Algum vértice, digamos v_3 , tem placar n-3.

Vamos estudar, separadamente, cada um dos casos:

Primeiro caso:

- 1. Cada T_i tem um vértice de placar n-2;
- 2. T_1 e T_2 não têm vértices de placar n-3, mas para cada $i, i \geq 3, T_i$ tem vértice de placar n-3 (v_2 , neste caso);
- 3. T_1 e T_2 são evidentemente isomorfos e $T_n = v_1 + \rightarrow T_1, (m = 2)$.

Segundo caso:

 $m \geq 3$ e, novamente, há duas possibilidades. Se nenhum dos vértices $v_i, i \geq 4$, tem placar n-4, então T_1, T_2 e T_3 não têm vértices de placar n-4, mas para $i \geq 4$, cada T_i tem tal vértice (v_3) . Cada T_i tem vértices de placar n-2 e n-3. Novamente, T_1, T_2 e T_3 são isomorfos e $T_n = v_1 + \rightarrow T_1, (m=3)$. Se algum vértice, digamos v_4 , tem placar n-4 e $m \geq 4$, continuamos este processo e obtemos (1.), (2.) e (3.). Logo, T_n pode ser reconstruído.

Observação. Cada um dos teoremas (2.6, 2.7, 2.8 e 2.9) tem um teorema dual que se obtém substituindo a palavra transmissor pela palavra receptor.

Teorema 2.10 Se T é um torneio não hamiltoniano com pelo menos 5 vértices, então T pode ser reconstruído a partir dos seus subtorneios T_i .

Demonstração. Pelo teorema 2.7 (e seu dual), podemos descobrir, através dos T_i , quando T tem um transmissor ou receptor. Em seguida, pelo teorema 2.4, é possível determinar se T é ou não hamiltoniano. Se T não é hamiltoniano e tem um transmissor (ou receptor), T pode ser reconstruído pelos teoremas 2.8 e 2.9. Assumimos, então, que T não é hamiltoniano e não tem transmissor nem receptor. Logo, T tem pelo menos seis vértices. Sejam

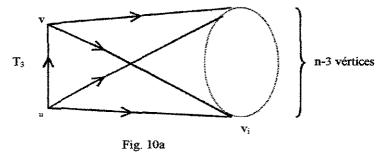
 $S_1,...,S_m$ as componentes de T com S_1 o transmissor e S_2 o receptor em Tr_m^* (que denotaremos simplesmente por T^*) Seja $|S_i|$ = número de vértices de S_i . Como T não tem transmissor, temos $|S_1| \geq 3$. Como T não tem receptor, $|S_2| \geq 3$. Para cada i=1,2,...,n, sejam $S_1^i,...S_k^i$ as componentes de $T_i = T - v_i$ com S_1^i e S_2^i o transmissor e o receptor, respectivamente, de T_i^* .

Escolha a notação de tal maneira que $|S_1^1| \ge |S_1^i|$ e $|S_2^2| \ge |S_2^i|$ para todo i. Desta maneira, S_1 e S_1^1 são isomorfos, bem como S_2 e S_2^2 .

Se $|S_1^1| + |S_2^2| = n$. Então $T = S_1^1 + \to S_2^2$. Caso contrário, o número de componentes de T é maior do que 2.

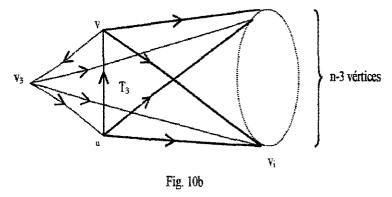
Se $|S_1| \geq 4$, então, há um ciclo de comprimento $|S_1| - 1$ em S_1 (pois S_1 é hamiltoniano). Portanto, existe um vértice v em S_1 tal que $S_1 - v$ é um subtorneio hamiltoniano. Podemos, assim, escolher $T_3 = T - v_3$ com $|S_1^3| = |S_1| - 1$. Agora, elimine todos os vértices de S_1^3 para obter $T - S_1^3$ (subtorneio de T), de onde $T = S_1 + \to (T3 - S_1^3)$. De maneira análoga, podemos reconstruir T se $|S_2| \geq 4$.

Se $|S_1| = |S_2| = 3$, então S_1 e S_2 são 3-ciclos. Portanto, se v é um vértice de $S_1, T - v$ tem um transmissor. Escolha $T_3 = T - v_3$ tal que T_3 tem um transmissor.



Seja u o transmissor de T_3 e seja v um vértice de T_3 que é predecessor de

todos os vértices de T_3 , exceto u.



Então, observando a figura 10b, T é obtido pela adição do vértice v_3 que é sucessor de v e predecessor de todos os outros vértices de T_3 .

SECÇÃO 3

CARACTERIZAÇÃO DE TORNEIOS POR 3-CICLOS CONADOS

Esta secção é desenvolvida como ferramenta para a secção 5 e o objetivo principal é provar que o quociente simples relacionado a um torneio T é altamente regular se, e somente se, existe um 3-ciclo não-conado e todo 3-ciclo conado é contraível.

Definição 3.1 Um subtorneio T' de um torneio T é dito contraível se existe um subconjunto próprio de vértices equivalentes de T que inclui os vértices de T'. Caso contrário, T' é dito $n\tilde{a}o$ contraível.

É importante observar que todo conjunto de vértices equivalentes está contido num conjunto maximal de vértices equivalentes. Portanto, T' é contraível se, e somente se, está contido numa componente maximal de T. É evidente que cada subtorneio contraível é também conado. Restringindo-nos aos 3-ciclos, observamos que estes se dividem em 3 classes: não conados, conados contraíveis e conados não contraíveis.

Proposição 3.2 Sejam R um quociente não trivial de um torneio T e p a projeção canônica de T em R. Um 3-ciclo C é não-conado em T se, e somente se, sua projeção p(C) é não-conada em R.

Demonstração. Suponha p(C) conado em R por v_j . Sem perda de generalidade, suponhamos $p(C) \longrightarrow v_j$. Assim, em T, os vértices de C pertencem a componentes que precedem a componente S_j . Seja s um vértice de S_j . Então, para todo u em C, tem-se $u \longrightarrow s$. Logo, $C \longrightarrow s$, sendo, portanto, conado em T. Então, se C não é conado em T, tem-se p(C) não conado

em R. Suponha agora que p(C) é não conado em R. Seja v_j um vértice em R - p(C). Então existem vértices u' e v' em p(C) tais que $u' \longrightarrow v_j$ e $v_j \longrightarrow v'$. Sejam u e v dois vértices de C que foram projetados por p em u' e v', respectivamente. Assim $u \longrightarrow S_j$ e $S_j \longrightarrow v$, portanto, nenhum vértice de S_j cona C. Como v_j é um vértice qualquer de R, temos que C não é conado por nenhum vértice de T - C.

Proposição 3.3 Um torneio T é transitivo se, e somente se, não há 3-ciclos em T.

Demonstração. Segue imediatamente das definições.

Proposição 3.4 Um torneio T é hamiltoniano se, e somente se, existe um 3-ciclo não contraível em T.

Demonstração. Considere C_i o *i*-ciclo em T. Seja n a ordem de T. Como T é hamiltoniano existe, pelo teorema 2.4, $C_n \supset C_{n-1} \supset ... \supset C_3$. Suponha que C_3 é contraível. Assim, existe S componente de T tal que $C_3 \subset S$. S Não contém todos os C_i porque é um subconjunto próprio de T. Seja C_k o maior ciclo em S. Seja v o vértice de C_{k+1} que não pertence a S. Então $S \longrightarrow v$ ou $v \longrightarrow S$, logo C_{k+1} não é hamiltoniano. Contradição. Portanto, C_3 não é contraível. Reciprocamente, suponhamos que um 3-ciclo C de T não é contraível, logo, pelo teorema 2.4, existe v_1 em T-C tal que $S_1=C\cup \{v_1\}$ é hamiltoniano. Se para todo v em $T-S_1$ tem-se $S_1 \longrightarrow v$ ou $v \longrightarrow S_1$, então C está contido numa componente de vértices equivalentes de T, sendo portanto contraível. Então existe v_2 em $T-S_1$ tal que $T_2=S_1\cup \{v_2\}$ é hamiltoniano. Repetindo este processo, concluímos que T é hamiltoniano.

Proposição 3.5 Cada 3-ciclo de um torneio simples é não contraível.

Demonstração. Seja T um torneio de ordem n. Se C é contraível, existe $S \subset T$ (S subconjunto próprio de vértices equivalentes) tal que $C \subset S$, isto

é, S tem mais de dois e menos que n vértices, contradizendo o fato de que T é simples.

É importante observar que os torneios cujos 3-ciclos são não contraíveis são composições de componentes transitivas com um quociente simples.

Proposição 3.6 Cada 3-ciclo de um torneio altamente regular é não conado.

Demonstração. Seja T_{2m+1} o torneio e C=< x,y,z> um 3-ciclo de T_{2m+1} . Ordene os vértices de T_{2m+1} de tal maneira que $x=v_1$. Assim $v_h=y$ e $v_k=z$, onde $h< k\leq 2m+1$. Como T_{2m+1} é altamente regular, concluímos que:

como $h \leq m+1$, então $v_1 \longrightarrow v_i \longrightarrow v_h$, para todo v_i tal que 1 < i < h; como $k-h \leq m$, então $v_h \longrightarrow v_i \longrightarrow v_k$, para todo v_i tal que h < i < k; como $k \geq m+2$, então $v_k \longrightarrow v_i \longrightarrow v_1$, para todo v_i tal que $k < i \leq 2m+1$.

Portanto, nenhum vértice de T_{2m+1} cona C.

Observação. O quociente simples relacionado a T é o torneio simples unicamente determinado na classe dos quocientes de um torneio T. Se T é hamiltoniano as componentes também são unicamente determinadas e são conjuntos maximais de vértices equivalentes de T (veja [5]).

Lema 3.7 Seja T um torneio cujos 3-ciclos conados são todos contraíveis. Seja w um vértice de T. Então um 3-ciclo não conado de T'=T-w é também não conado em T.

Demonstração. Sejam R_k o quociente simples relacionado a $T \in S^{(1)},...,S^{(k)}$ as componentes. Sejam R_k' o quociente simples relacionado a $T' \in S'^{(1)},...,S^{(k)}$ as respectivas componentes. Suponha que C é um 3-ciclo não conado em

T' e conado por w em T. então C é contraível em T e está, portanto, contido numa componente. Suponha $C \subset S^{(1)}$. Veja que C é não contraível em T', pois não é conado. Pela proposição 3.4, T' é hamiltoniano, então a partição $\{S^{(1)}-w,...,S^{(k)}-w\}$ deve ser uma cobertura de T' formada por conjuntos maximais de vértices equivalentes de T e mais fina que $\{S^{'(1)},...,S^{'(k)}\}$. Mas isso é impossível porque $C \subset S^{(1)}-w$ e $S^{(1)}-w$ está contido numa das componentes $S^{'(1)},...,S^{'(k)}$ e, por outro lado, os vértices de C devem estar em 3 componentes diferentes $S^{'(p)},S^{'(q)},S^{'(r)}$.

Observamos que, sob as condições do lema acima, se T^{\prime} é hamiltoniano, então T é hamiltoniano.

Teorema 3.8 O quociente simples relacionado a um torneio é altamente regular se, e somente se :

- a) Existe um 3-ciclo não-conado.
- b) Todo 3-ciclo conado é contraível.

Demonstração. Seja $T_n = R_{2m+1}(S^{(1)},...,S^{(2m+1)})$, onde R_{2m+1} é um torneio altamente regular não trivial. Se um 3-ciclo C é não-contraível, seus vértices devem pertencer a 3 componentes diferentes. Como R_{2m+1} é altamente regular, concluímos, pela demonstração da proposição 3.6, que C é não-conado. Além disso, pelas proposições 3.4, 3.6 e 3.2, existe pelo menos um 3-ciclo não-conado em T_n .

Vamos provar a reciproca por indução sobre a ordem n de T_n . Para n=3 existe apenas o 3-ciclo satisfazendo a) e b) e é altamente regular. Suponhamos então que para cada T_k de ordem k que satisfaz a) e b) o quociente simples é altamente regular. Consideremos o torneio T_{k+1} que satisfaz a) e b) e o 3-ciclo não-conado $C = \langle x, y, z \rangle$ de T_{k+1} . Escolha um vértice $w \in T_{k+1} - C$

e faça $T_k = T_{k+1} - w$. Assim C é também não-conado em T_k , e cada 3-ciclo C' conado em T_k é conado em T_{k+1} . Então, se C' é um 3-ciclo conado em T_k , C' é contraível em T_{k+1} por b), isto é, está incluído numa componente própria A de T_{k+1} . Portanto C' é também contraível em T_k , pois $C' \in (A-w)$. Logo a) e b) são verdadeiras para T_k , e pela hipótese de indução, $T_k = R_{2h+1}(S^{(1)}, ..., S^{(2h+1)})$, onde o quociente simples não-trivial R_{2h+1} é altamente regular.

Consideremos agora para cada i=1,2,...,2h+1 os subconjuntos complementares em $S^{(i)}$:

$$S^{\rightarrow (i)} = \{v \in S^{(i)}/v \longrightarrow w\} \text{ e } S^{\leftarrow (i)} = \{v \in S^{(i)}/w \longrightarrow v\}.$$

Afirmamos que, para no máximo um índice i=1,2,...,2h+1, a partição $\{S^{\to (i)},S^{\leftarrow (i)}\}$ é não-trivial. Caso contrário, se $p\neq q$ e $S^{\to (p)}\neq\emptyset\neq S^{\leftarrow (p)}$ e $S^{\to (q)}\neq\emptyset\neq S^{\leftarrow (q)}$, seja $S^{(p)}\longrightarrow S^{(q)}$. Como R_{2h+1} é um torneio altamente regular não-trivial, existe r=1,2,...,2h+1 tal que $S^{(r)}\longrightarrow S^{(p)}\longrightarrow S^{(q)}\longrightarrow S^{(q)}\longrightarrow S^{(r)}$. Escolha $v_r\in S^{(r)}$ e suponha que $w\longrightarrow v_r$ (o caso oposto é análogo). Podemos encontrar elementos convenientes v_p em $S^{(p)}$ (resp. v_q em $S^{(q)}$) tais que $w\longrightarrow < v_r, v_p, v_q>$. Mas isso é uma contradição ao lema 3.7.

Então, dois casos podem ocorrer:

- 1. Para cada i = 1, 2, ..., 2h + 1, tem-se $S^{(i)} = \emptyset$ ou $S^{(i)} = \emptyset$;
- 2. Há exatamente um índice i tal que $S^{\rightarrow (i)} \neq \emptyset \neq S^{\leftarrow (i)}$.

Vamos analisar cada um dos casos:

1. Se ocorre 1), então T_{k+1} é hamiltoniano e w não cona T_k , pela observação do lema 3.7 e prop. 3.4. Fazendo uma rotação de índices se necessário em R_{2k+1} , podemos supor $w \longrightarrow S^{(k+1)}$ e $S^{(k+2)} \longrightarrow w$.

Considerando 3-ciclos em R_{2h+1} e aplicando o lema 3.7 em ambos os casos $w \longrightarrow S^{(1)}$ e $S^{(1)} \longrightarrow w$ obtemos que w é um sucessor de $S^{(h+3)}, S^{(h+4)}, ..., S^{(2h+1)}$ e um predecessor de $S^{(2)}, S^{(3)}, ..., S^{(h)}$. Finalmente, $T_{k+1} = R_{2h+1}(S^{(1)} \cup \{w\}, S^{(2)}, ..., S^{(2h+1)})$.

2. Se ocorre 2), fazemos novamente uma rotação nos índices de R_{2h+1} para supor $S^{\to (1)} \neq \emptyset \neq S^{\to (1)}$. Se $w \longrightarrow S^{(h+1)}$, aplicando o raciocinio anterior, obtemos, como antes, $T_{k+1} = R_{2h+1}(S^{(1)} \cup \{w\}, S^{(2)}, ..., S^{(2h+1)}).$ Se $S^{(h+1)} \longrightarrow w$, novamente w é um predecessor de $S^{(h+2)}, ..., S^{(2h+1)}$ e um sucessor de $S^{(2)},...,S^{(h)}$. Além disso, temos que $S^{\leftarrow (1)} \longrightarrow S^{\rightarrow (1)}$. De fato, sejam $v_1 \in S^{\to (1)}$ e $v_1' \in S^{\leftarrow (1)}$ tais que $v_1 \longrightarrow v_1'$. Escolha um vértice v_{2h+1} em $S^{(2h+1)}$. Então o 3-ciclo $\langle v_1, w, v_{2h+1} \rangle$ é conado por v_1' e é, então, contraível em T_{k+1} , por b). Seja T_t' o quociente simples relacionado a T_{k+1} , onde as componentes são denotadas por $S'^{(1)},...,S'^{(t)}$. Assim, v_1 e v_{2h+1} estão incluídos na mesma componente, digamos $S'^{(1)}$. Aplicando o mesmo raciocínio da demonstração do lema 3.7, a partição $\{S'^{(1)}-w,...,S'^{(t)}-w\}$ deve ser uma cobertura te T_k mais fina que $\{S^{(1)}, ..., S^{(2h+1)}\}$. Mas isso é impossível porque v_1 e v_{2h+1} pertencem a $S'^{(1)}$, e, por outro lado, $v_1 \in S^{(1)}$ e $v_{2h+1} \in S^{(2h+1)}$. Portanto $T_{k+1} = R_{2h+3}(S^{\rightarrow (1)}, S^{(2)}, ..., S^{(h+1)}, \{w\}, S^{(h+2)}, S^{(h+3)}, ..., S^{(2h+1)}, S^{\leftarrow (1)}),$ onde R_{2h+3} é altamente regular, o que demonstra o teorema.

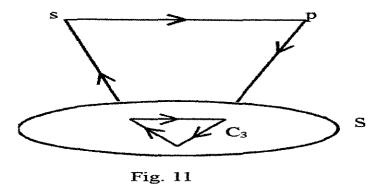
SECÇÃ0 4

CARACTERIZAÇÃO DE TORNEIOS HAMILTONIANOS DO TIPO-MOON

Seguindo a notação de [6], vamos denotar por AH a classe dos torneios hamiltonianos com pelo menos 5 vértices cujos 5-subtorneios hamiltonianos são do tipo-Moon. Por outro lado, denotaremos por MH a classe dos torneios hamiltonianos do tipo-Moon com pelo menos 5 vértices. Nosso objetivo nesta seçção será provar que AH = MH. Para demonstrar esta equivalência começamos buscando uma caracterização dos torneios hamiltonianos do tipo-Moon.

Observação. Denotaremos por T_n^\star o torneio dual de T_n que se obtém revertendo todos os arcos de T_n . É evidente que se T_n é do tipo-Moon, então T_n^\star também é do tipo-Moon. Em particular, se $H_n \in AH$, então o seu dual $H_n^\star \in AH$.

Proposição 4.1 Se $H_n \in AH$ e S é uma componente não-trivial de vértices equivalentes de H_n , então S é subtorneio transitivo de H_n .



Demonstração. Como H_n é hamiltoniano, existe um sucessor s de S e um predecessor p de S tal que $s \longrightarrow p$. Suponha agora que exista um 3-ciclo C_3

em S. Então H_n contém o subtorneio hamiltoniano $N_5^1 = C_3(s, p, C_3)$, o que contradiz a hipótese, pois N_5^1 não é do tipo-Moon.

Definição 4.2 Dizemos que um ciclo C_r em um torneio T_n pode ser estendido a um ciclo C_s , s > r, em T_n se existem ciclos C_{r+1} , ..., C_{s-1} tais que C_{i+1} pode ser obtido de C_i acrescentando-se um vértice entre dois vértices consecutivos de C_i , para todo $r \le i \le s-1$ (ou de modo equivalente: se C_i pode ser obtido de C_{i+1} pela eliminação de um vértice de C_{i+1} para todo $r \le i \le s-1$).

Proposição 4.3 Seja C_m um ciclo de T_n , m < n. C_m pode ser estendido a um ciclo passante em T_n se, e somente se, C_m é não contraível.

Demonstração. A demonstração desta proposição segue imediatamente da demonstração da proposição 3.4.

Uma consequência imediata da proposição 4.3 é o corolário abaixo que generaliza a proposição 3.4.

Corolário 4.4 Um torneio é hamiltoniano se, e somente se, contém um ciclo não contraível.

Proposição 4.5 AH = MH (i.é.: um torneio hamiltoniano de ordem maior ou igual a 5 é do tipo-Moon se, e somente se, cada subtorneio hamiltoniano de ordem 5 também é do tipo-Moon).

Demonstração. A inclusão $MH \subseteq AH$ é evidente porque todo subtorneio de um torneio do tipo-Moon é do tipo-Moon (Proposição 4.1).

Para provar a inclusão contrária, consideremos $H_n \in AH$ e suponhamos que H_n não é do tipo-Moon. Se C_3 é um 3-ciclo conado em H_n , então, pela proposição 4.1, nenhuma e-componente não-trivial de H_n pode conter C_3 , e

assim, pela proposição 4.3, podemos estender C_3 a um ciclo passante C_n em T_n .

Se C_3 é conado por v em H_n , denotamos por $C(C_3,v)$ o conjunto de todos os ciclos minimais (comprimento mínimo) que podem ser obtidos estendendose C_3 e contendo v. Seja C a união da família $\{C(C_3,v): C_3 \subseteq H_n, C_3 \text{ conado por } v,v \in H_n\}$.

Consideremos o torneio hamiltoniano $C_r \in C$ tendo comprimento mínimo em C, e seja C_r uma extensão de um 3-ciclo C_3 conado por $v \in C_r$. É evidente que $r \geq 5$. Em virtude da observação feita no início desta seção, podemos assumir que $c \longrightarrow C_3$.

Se $C_r = (...(C_3 \cup v_4) \cup ... \cup v_r)$, devemos ter $v_r = v$. Caso contrário, se $v_j = v$ para algum 3 < j < r, $C_j = (...(C_3 \cup v_4) \cup ... \cup v_j)$ seria um ciclo menor que C_r estendendo C_3 e contendo v, e teríamos $C_r \notin C(C_3, v)$. Portanto, $C_r - v$ é um ciclo que estende C_3 e, como seu comprimento é menor que o mínimo r, $C_r - v$ não pode conter vértice que cona C_3 . Considere x um predecessor de v em $< C_r >$. Se x precede exatamente 2 vértices de C_3 , então $< x, v, C_3 >$ é isomorfo a N_5^2 . Se x precede exatamente 1 vértice de C_3 , então $< x, v, C_3 >$ é isomorfo a N_5^3 . Em qualquer um dos casos, H_n não pertence a AH, o que é absurdo.

Uma consequência da proposição acima é o

Corolário 4.6 Seja H_n um torneio hamiltoniano. Se todo 5-subtorneio hamiltoniano de H_n é isomorfo a M_5^i para algum i=1,2,3, então todo subtorneio não-hamiltoniano de H_n é transitivo.

Uma observação muito importante encontrada em [6] que relembramos aqui é de que existem torneios com pelo menos 6 vértices que não são do

tipo-Moon, embora seus 5-subtorne
ios hamiltonianos sejam do tipo-Moon. Exemplos podem ser obtidos de
 $T_6=T_2(v,M_5^1).$

SECÇÃO 5

ESTRUTURA DOS TORNEIOS DE MOON

Os resultados obtidos nas secções precedentes permitem uma nova caracterização dos torneios de Moon que, lembramos, é o principal objetivo desta dissertação. Nosso objetivo nesta secção será mostrar que todo torneio de Moon T_n pode ser representado por $T_n = (T_p, T_q)$, onde $T_p = Tr_p$ e $T_q = Tr_{p-1}(X_1, ..., X_{p-1})$.

Começamos vendo que Burzio e Demaria chegaram a uma importante conclusão (prop. 5.1) que aqui será demonstrada a partir dos resultados obtidos na secção 3.

Proposição 5.1 Para qualquer torneio T_n as seguintes condições são equivalentes:

- a) T_n é do tipo-Moon.
- b) Todo subtorneio de T_n é do tipo-Moon.
- c) Todo 4-subtorne
io de T_n é do tipo-Moon (i.e.: não há 3-ciclo conado e
m T_n).
- d) $T_n = R_{2m+1}(S^{(1)}, ..., S^{(2m+1)})$ é a composição de 2m+1 e-componentes transitivas com um quociente simples altamente regular.

Demonstração:

- $a)\Longrightarrow b).$ Decorre imediatamente da definição de torneio do tipo-Moon.
- b) \Longrightarrow c). Se C=<x,y,z> é um 3-ciclo conado por um vértice v,< x,y,z,v> não é hamiltoniano e nem transitivo e tem ordem 4. Portanto, todo subtorneio de ordem 4 é do tipo-Moon.

 $c) \Longrightarrow d$). Se não há 3-ciclo em T_n , T_n é transitivo (Prop. 3.3). Assim $T_n = R_1(T_n)$, onde R_1 é o torneio trivial (altamente regular). Se C é um 3-ciclo de T_n , C não é conado. Assim são satisfeitas as condições a) e b) do teorema 3.8 e, portanto, $T_n = R_{2m+1}(S^{(1)},...,S^{(2m+1)}),$ onde R_{2m+1} é altamente regular (e não-trivial). Além disso, para cada $i=1,...,2m+1, S^{(i)}$ é transitiva, pois não há 3-ciclos em $S^{(i)}$ (se existissem, seriam conados). $d) \longrightarrow a$). Se $R_{2m+1} = R_1$, T_n é transitivo e a) está verificada. Se R_{2m+1} não é trivial, considere um vértice w em T_n e faça $T_{n-1} = T_n - w$. w está contido em uma componente, digamos, $S^{(2m+1)}$. Dois casos são possíveis: 1) $S^{(2m+1)} - w \neq \emptyset$. Então, $T_{n-1} = R_{2m+1}(S^{(1)}, S^{(2)}, ..., S^{(2m+1)} - w)$. Portanto, T_{n-1} é hamiltoniano (Prop. 3.4) e, além disso, $S^{(2m+1)}$ é transitiva (não há 3-ciclos contidos em $S^{(2m+1)}$). 2) $S^{(2m+1)}-w=\emptyset$. Se m= $1, T_{n-1} = R_2(S^{(1)}, S^{(2)})$ e é transitivo, pois $S^{(1)}$ e $S^{(2)}$ são transitivos e $S^{(1)} \longrightarrow S^{(2)}$, isto , não há 3-ciclos contidos em $S^{(1)} \cup S^{(2)}$. Se m > 1 $1, T_{n-1} = R_{2m-1}(S^{(1)}, S^{(2)}, ..., S^{(m-1)}, S^{(m)} \cup S^{(m+1)}, S^{(m+2)}, ..., S^{(2m)}),$ onde R_{2m-1} é altamente regular e a componente $S^{(m)} \cup S^{(m+1)}$ é transitiva, pois $S^{(m)}$ e $S^{(m+1)}$ são transitivas com $S^{(m)} \longrightarrow S^{(m+1)}$. Desta forma, todos os subtorneios de T_n de ordem n-1 são hamiltonianos ou transitivos e satisfazem d). Aplicando o mesmo raciocinio, obtemos os mesmos resultados para os subtorneios de T_n de ordem n-2, n-3,, 4.

Uma consequência imediata da proposição acima é o

Corolário 5.2 Para todo torneio T_n e para todo inteiro m, com $4 \le m \le n$, tem-se: T_n é do tipo-Moon se, e somente se, todo m-subtorneio de T_n é do tipo-Moon.

Demonstração. Basta utilizar a equivalência entre a) e b) da proposição acima e lembrar que todo torneio com no máximo 3 vértices é do tipo-Moon.

Um resultado importante que obtemos neste momento é o fato de que ser um torneio de Moon é uma propriedade hipomorfa, a qual obtemos no

Corolário 5.3 Se T_n é um torneio de Moon e T_n' é hipomorfo a T_n , então T_n' é do tipo-Moon.

Demonstração. Note que se $n \geq 4$ e T_n é do tipo-Moon, então cada carta de T_n é do tipo-Moon. Como as cartas de T_n' são isomorfas às cartas de T_n , temos que todas as cartas de T_n' são do tipo-Moon. Assim, todo subtorneio de T_n' é do tipo-Moon (pois estão contidos numa carta de T_n'), portanto, pelo corolário anterior, T_n' é do tipo-Moon. Se n < 4, não há o que demonstrar, pois todo torneio com no máximo 3 vértices é do tipo-Moon.

ESTRUTURA DOS TORNEIOS DE MOON

Seja T_n um torneio de Moon, $n \geq 3$, e seja Tr_p um subtorneio transitivo de ordem maximal, $Tr_p = \{a_1, ..., a_p\}, 2 \leq p \leq n, a_i \longrightarrow a_j \iff i \leq j$. Seja $T_q, p+q=n$, o subtorneio obtido com os vértices de T_n que não pertencem a Tr_p .

A primeira consequência é a que segue:

Proposição 5.4
$$T_q \cong Tr_q$$
 se $p < n$ e $T_q = \emptyset$ se $p = n$.

Demonstração. Seja $x \in T_q$. O subtorneio $\langle Tr_p \cup \{x\} \rangle$ é hamiltoniano, portanto $a_p \longrightarrow x \longrightarrow a_1$. Se existisse um ciclo C_3 em T_q , T_n iria conter o subtorneio $H_5 = C_3(a_1, a_p, C_3)$, o que contradiz a Prop. 4.5 uma vez que T_n

seria hamiltoniano. Observe que H_5 não é do tipo-Moon, pois C_3 fornece um 3-ciclo conado em T_n .

Proposição 5.5 Para todo $x \in T_q$ existe $1 \le i \le p-1$ tal que $a_j \longrightarrow x \longrightarrow a_k$ sempre que $1 \le k \le i$ e $i < j \le p$.

Demonstração. Se existissem inteiros $1 \le k < j \le p$ tais que $a_k \longrightarrow x \longrightarrow a_j$, então a_k iria conar o 3-ciclo $< a_j, a_p, x >$ o que seria uma contradição à proposição 5.1.

Definição 5.6 Seja $1 \le i \le p-1$. Dizemos que um vértice $x \in T_q$ é do tipo i (com relação a Tr_p) se para todo $1 \le k \le i$ e para todo $i < j \le p$ tem-se $a_j \longrightarrow x \longrightarrow a_k$.

Denotaremos por X_i , $1 \le i \le p-1$, o subtorneio formado pelos vértices do tipo i (com relação a Tr_p). Também denotaremos por x_i um vértice do tipo i. X_i poderá ser vazia para algum i.

Observação: segue da proposição 5.4 que X_i , $1 \le i \le p-1$, é transitivo sempre que não é vazio, pois é subtorneio de um torneio transitivo.

Proposição 5.7 Sejam x_i e x_j vértices de diferentes tipos i e j, respectivamente. Então $x_i \longrightarrow x_j \iff i < j$.

Demonstração. Suponhamos que $x_j \longrightarrow x_i, i < j$. Então x_j cona o ciclo $\{x_i, a_i, a_j\}$, o que é impossível, uma vez que T_n é do tipo-Moon.

Uma consequência desta proposição é o

Corolário 5.8 $T_q = Tr_{p-1}(X_1, ..., X_{p-1})$, onde as componentes $X_i, 1 \le i \le p-1$, são transitivas ou vazias.

A partir dos resultados anteriores, é possível obter informações sobre a ordem das componentes X_i .

Proposição 5.9 Para todo inteiro $1 \le i \le p-1$ temos: $|X_1| + + |X_i| \le i, |X_{p-1}| + ... + |X_i| \le p-i.$

Demonstração. Sejam $1 \le i \le p-1$ e $|X_1|+...+|X_i|>i$. Considere $T^i=< X_1 \cup X_2 \cup ... \cup X_i>$, então é possível encontrar em T_n o subtorneio transitivo $Tr_2(< a_{i+1},...,a_p>,T_i)$ de ordem maior do que p, o que contradiz a maximalidade de Tr_p .

De maneira análoga, se $|X_{p-1}|+...+|X_i|>p-i$, considere $R^i=< X_i\cup...\cup X_{p-1}>$. Então $Tr_2(R^i,< a_1,...,a_i>)\cong Tr_p,h>p$, que é uma contradição.

Um resultado que decorre imediatamente da proposição 5.9 é o

Corolário 5.10
$$q \le p - 1$$
. $|X_i| \le p/2, \forall 1 \le i \le p - 1$.

Demonstração. Basta considerar os 2 casos: $i \le p/2$ ou i > p/2 e aplicar a proposição 5.9.

A figura abaixo é chamada de t-representação de um torneio de Moon.

t-representação

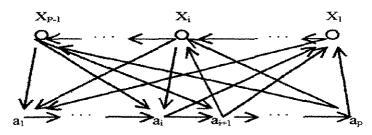


Fig. 12

Podemos escrever $T_n = (T_p, T_q)$, onde $T_p = Tr_p e T_q = Tr_{p-1}(X_1, ..., X_{p-1})$. De agora em diante, usaremos sempre esta notação para indicar um torneio de Moon. Oportunamente, as e-componentes do torneio $Tr_{p-1}(X_1, ..., X_{p-1})$ serão denotadas por $X_i(T_n)$. **Proposição 5.11** Suponha que para algum $1 \le i \le p-1$ tem-se: $|X_1| + \dots + |X_i| = i$ e $|X_1| + \dots + |X_j| < j$ para todo $1 \le j < i$. Então existe uma t-representação $T_n = (T'_p, T'_q), T'_q = Tr_{p-1}(X'_1, \dots, X'_{p-1})$ que verifica as condições $|X'_{p-1}| + \dots + |X'_{p-i}| = i, |X'_{p-1}| + \dots + |X'_{p-j}| < j$ e $X'_k \cong X_{k+i}$ sempre que $1 \le k \le p-i-1$ e $1 \le j < i$.

Demonstração. Vamos considerar o subtorneio transitivo $T_p' = \{a_1',...,a_p'\}$ que é o subtorneio composto $T_p' = Tr_{i+1}(< a_{i+1},...,a_p >, X_1,...,X_i)$, e seja $T_q' = Tr_{p-1}(X_1',...,X_{p-1}')$ o subtorneio dos vértices restantes.

Como $a'_{k} = a_{i+k}, 1 \leq k \leq p-i$, é imediato que $X'_{k} = X_{i+k}, 1 \leq k \leq p-i-1$. Logo $X'_{p-1} \cup ... \cup X'_{p-i} = \{a_{1},...,a_{i}\}$ e $|X'_{p-1}| + ... + |X'_{p-i}| = i$. Assim a afirmação é verdadeira para i=1.

Se $i \geq 2$ e $1 \leq j < i$, temos $|X_i| + ... + |X_{i-j+1}| \geq j+1$ (caso contrário, se $|X_i| + ... + |X_{i-j+1}| \leq j$, implicaria $|X_1| + ... + |X_{i-j}| \geq i-j$, uma contradição). Consequentemente $a'_{p-j} \in X_i \cup ... \cup X_{i-j+1}$, e portanto $a'_{p-j} \longrightarrow a_{i-j+1}$. Assim, podemos concluir que $a_{i-j+1} \notin X'_{p-j}$, portanto, $|X'_{p-1}| + ... + |X'_{p-j}| < j$.

Observamos que um resultado dual da proposição 5.11 vale se $|X_{p-1}|$ + ... + $|X_{p-i}|$ = i e $|X_{p-1}|$ + ... + $|X_{p-j}|$ < j, para todo $1 \le j < i$.

Corolário 5.12 Duas t-representaçães quaisquer de um torneio de Moon podem ser obtidas uma a partir da outra pela aplicação da proposição 5.11.

Demonstração. Sejam (T_p, T_q) e (T_p', T_q') duas t-representações distintas de T_n . Usando a mesma notação da proposição 5.11 temos $T_p \cap T_p' \neq \emptyset$ e segue que $a_1 \in T_p'$ implica $a_p \notin T_p'$. Se $a_i \in T_p'$, então ou $a_j \in T_p'$, para todo $1 \leq j \leq i$ ou $a_k \in T_p'$, para todo $i \leq k \leq p$. A afirmação é imediata se $i \in \{1, p\}$. Caso contrário, como $a_j, a_k \notin T_p'$ para algum $1 \leq j < i < k \leq p$, conclui-se que em $T_n - \{a_j, a_k\}$ a_i tem placar menor ou igual a p-2 e nenhum

vértice que domina a_i tem placar p-1. Assim, nenhum vértice de T_p' tem placar p-1, o que é uma contradição.

Assumiremos, então, que $T_p \cap T_p' = \{a_i, ..., a_p\}$ para algum $2 \leq i \leq p-1$. Como nenhum vértice $x_k \in X_k$ pertence a T_p' se $i \leq k \leq p-1$ (pois $a_p \longrightarrow x_k \longrightarrow a_i$), temos $T_p' = \{a_i, ..., a_p\} \cup X_1 \cup ... \cup X_{i-1}$ e, portanto, $|X_1| + ... + |X_{i-1}| = i-1$. Desta forma, podemos aplicar a proposição 5.11 e obter por indução a t-representação (T_p', T_q') a partir de (T_p, T_q) , como pretendíamos demonstrar.

Definição 5.13 Dizemos que a t-representação $T_n = (T_p, T_q)$, com $T_q = Tr_{p-1}(X_1, ..., X_{p-1})$ é uma representação regular se existe um inteiro $1 \le r \le p$ que satisfaz:

- 1. $|X_r| + ... + |X_{p-1}| = p r$ e $|X_{p-1}| + ... + |X_s| para todo <math>1 \le s < r$;
- 2. As outras t-representações $(T_p',T_q'),\ T_q'=Tr_{p-1}(X_1',...,X_{p-1}')$ de T_n verificam a condição $|X_{p-1}'|+...+|X_s'|< p-s,$ para $1\leq s< r.$

Observações:

- 1. Todo torneio de Moon tem pelo menos uma representação regular.
- Todas as representações regulares de um torneio de Moon determinam o mesmo inteiro r da definição 5.13.

Lema 5.14 Toda representação regular verifica as condições $|X_1| + ... + |X_j| < j$, para todo $1 \le j < r$, assim como para todo $p - r < j \le p - 1$ se r > 1, e $|X_i| = 1$ para todo $1 \le i \le p - 1$ se r = 1 (onde a notação é a mesma da definição 5.13).

Demonstração. Segue diretamente da definição 5.13.

Lema 5.15 Uma t-representação (T_p, T_q) de T_n é a única representação regular de T_n se $|X_1| + ... + |X_t| < t$ para todo $1 \le t \le p-1$.

Demonstração. Toda t-representação (T_p',T_q') de T_n pode ser obtida de (T_p,T_q) pela aplicação da versão dual da proposição 5.11 e, portanto, verifica a condição $|X_{p-1}'|+\ldots+|X_j'|< p-j$, para todo $1\leq j\leq r$, se r é determinado como na definição 5.13.

Proposição 5.16 Dois torneios de Moon T_n e T'_n são isomorfos se, e somente se, qualquer t-representação de T_n pode ser obtida de qualquer t-representação de T'_n como na proposição 5.11.

Demonstração. É verdade que T_n e T'_n são isomorfos se, e somente se, existe uma t-representação de T_n que é também uma t-representação de T'_n . Portanto, a demonstração da proposição segue do corolário 5.12.

Observamos que a estrutura de um torneio de Moon pode ser determinada a partir da composição transitiva $T_q = Tr_{p-1}(X_1,...,X_{p-1})$ de qualquer trepresentação $T_n = (T_p, T_q)$. Mais do que isso. Como toda e-componente não-vazia X_i é transitiva e contém apenas vértices do tipo i, a estrutura de T_n pode ser determinada por inteiros $n_i = |X_i|, 1 \le i \le p-1$.

Assim, podemos denotar uma t-representação de um torneio de Moon T_n por $T_n = [n_{p-1}...n_1]$, onde $n_i = |X_i|, 1 \le i \le p-1$. $[n_{p-1}...n_1]$ será chamada de name de T_n cujas letras são $n_{p-1},...,n_1$ e poderão ser denotadas, oportunamente, por $n_i(T_n)$.

Proposição 5.17 Toda t-representação de um torneio de Moon determina uma representação $T_n=R_{2m+1}(S^1,...,S^{2m+1})$ e vice-versa.

Demonstração: Seja $T_n = [n_{p-1}...n_1]$ um name de T_n e sejam $n_{i_1},...,n_{i_m}$ suas letras não-nulas, $i_1 < ... < i_m$. Então $T_n = R_{2m+1}(S^1,...,S^{2m+1})$ é a composição de 2m+1 e-componentes com um quociente simples altamente regular, onde $|S^j| = n_{i_j}$, $1 \le j \le m$, e, assumindo $i_0 = 0$ e $i_{m+1} = p$, $|S^{m+j}| = i_j - i_{j-1}$, $1 \le j \le m+1$.

No sentido contrário, seja $T_n=R_{2m+1}(S^1,...S^{2m+1})$. Assuma que a composição $Tr_{m+1}(S^{m+1},...,S^{2m+1})$ é o subtorneio transitivo de ordem maximal p (com rotação de índices das componentes, se necessário). Então podemos obter uma t-representação $T_n=[n_{p-1}...n_1]$ tomando

$$n_{i_r} = |S^r| \text{ se } i_r = |S^{m+1}| + \dots + |S^{2+r}|, 1 \le r \le m.$$

 $n_i = 0$ se $i \neq i_r$ para todo $1 \leq r \leq m$.

SECÇÃO 6

RECONSTRUÇÃO DOS TORNEIOS DE MOON

De agora em diante, nesta secção, usaremos sempre a letra p para denotar a ordem de um subtorneio transitivo maximal T_p de um torneio T_n (onde n é maior ou igual a 4). T_n sempre denotará um torneio de Moon. Nosso objetivo final é mostrar que todo torneio de Moon T_n , $n \geq 4$, excluindo-se as composições $C_3(T_1, T_2, Tr_3)$ e $C_3(T_1, Tr_3, T_2)$ é reconstrutível a partir de suas cartas.

Começamos verificando que o inteiro p definido na secção precedente pode ser determinado a partir das cartas de T_n , isto é, p é uma invariante hipomorfa.

Proposição 6.1 São válidas as seguintes equivalências:

- i) p = n se, e somente se, cada carta de T_n é transitiva.
- ii) p = n 1 se, e somente se, T_n tem simultaneamente cartas transitivas e cartas hamiltonianas.
- iii) $p \leq n-2$ se, e somente se, toda carta de T_n é hamiltoniana.

Demonstração:

Se $p = n, T_n$ é transitivo e todas as suas cartas são transitivas, e viceversa.

Se p = n - 1, Tr_p é uma carta transitiva de T_n e ainda, como T_n é hamiltoniano, existe carta hamiltoniana.

No sentido oposto, se T_n tem carta hamiltoniana, então não é transitivo. Como existe carta transitiva, p = n - 1. Se $p \leq n-2$, toda carta de T_n é hamiltoniana, pois Tr_p é maximal. A volta é imediata.

Vamos considerar a classe das cartas de T_n que contêm um subtorneio transitivo maximal de ordem p e denotá-la por \mathcal{P} . O número das cartas restantes de T_n será denotado por $d = n - |\mathcal{P}|$.

Proposição 6.2 $q \leq |\mathcal{P}| \leq n$, $0 \leq d \leq p$ e $d \neq 1$.

Demonstração: Observamos que para cada $x \in T_q$ a carta T_n-x contém T_p . Logo, a primeira afirmação é verdadeira. Sendo $|\mathcal{P}| \geq q$, segue diretamente que $0 \leq d \leq p$. Sejam d > 0 e $T_n-v \notin \mathcal{P}$. Assim, se (T_p, T_q) é uma t-representação de T_n , temos que $v \in T_p$ e q < p-1, pois $T_q \cup a_1$ é transitivo, assim como $T_q \cup a_p$. Se $T_p = Tr_p(a_1, ..., a_p)$ e $v = a_i$, então, para cada $x \in T_q$ temos que $(T_p-v)\cup x$ é um ciclo de ordem p, pois não há torneio transitivo de ordem p em p0. Desta forma, existe pelo menos um p1, $1 \leq j \leq p, |i-j|=1$, tal que $(T_n-a_j) \notin \mathcal{P}$. Logo, p2. Logo, p3.

Proposição 6.3 As propriedades a seguir são equivalentes:

- 1. d = p;
- 2. T_n tem somente um subtorneio transitivo de ordem p;
- 3. T_n tem um único (portanto regular) name $[n_{p-1}...n_1]$, o qual verifica as condições $n_1 + ... + n_t < t$, $n_{p-1} + ... + n_t , para todo <math>1 \le t \le p 1$.

Demonstração:

1) \Longrightarrow 2). Suponhamos que T_n tenha dois subtorneios diferentes T_p e T_p' . Assim, T_n teria $n - |T_p \cap T_p'| > n - p$ cartas em \mathcal{P} .

- 2) \Longrightarrow 3). Obviamente, T_n tem um único name relativo ao único subtorneio transitivo T_p . Se a condição $n_1 + ... + n_t = t$ fosse verificada para algum $1 \le t \le p-1$, então T_n iria conter o subtorneio transitivo $Tr_{t+1}(< a_{t+1}, ..., a_p >, X_1, ..., X_t)$ que é diferente do torneio T_p . Usando a propriedade dual, a segunda condição fica verificada.
- 3) \Longrightarrow 1). Consideremos $T_p = Tr_p(a_1,...,a_p)$ o subtorneio de T_n relativo ao name dado. Então, a_1 é o único vértice de T_n com placar $s(a_1) \ge p-1$. Logo, cada carta T_{n-1} em $\mathcal P$ deve conter a_1 , e consequentemente a_2 , ..., a_p , pois a_1 não precede nenhum vértice $x \in T_q$.

Proposição 6.4 $2 \le d \le p-1$ se, e somente se, T_n tem apenas um name regular e este name verifica a condição $n_1 + n_2 + ... + n_t \le t, \forall 1 \le t \le p-1$ e determina um inteiro $2 \le r \le p-1$.

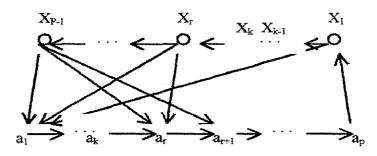


Fig. 13

Demonstração: (⇐=)

- 1. T_n-v contém o subtorne
io transitivo $Tr_{p-r+1}(X_r,...,X_{p-1},< a_1,...,a_r>$) de ordem $p \ \forall \ v \in a_{r+1},...,a_p;$
- 2. $T_n x$ contém $T_p, \forall x \in T_q$;

3. Além disso, $\forall 1 \leq i \leq r, T_n - a_i$ não possui vértice com placar maior ou igual a p-1.

(1), (2) e (3)
$$\Longrightarrow$$
 $|\mathcal{P}| = n - r \Longrightarrow 2 \le d \le p - 1$.

 $(\Longrightarrow)~d>0 \implies d\geq 2 \implies r\geq 2$ e $n_1+\ldots+n_t< t, \forall 1\leq t\leq p-1 (\text{observação da Def. 5.13}).$ Pelo lema 5.15, o name regular é único.

Corolário 6.5 Toda carta de T_n em \mathcal{P} tem um único name regular. Demonstração.

- 1. Para toda carta $T_n \in \mathcal{P}$ existe uma t-representação de T_n tal que $T_{n-1} \cong T_n x_i$ para algum $x_i \in T_q$;
- 2. O name induzido $[m_{p-1},...,m_1]$ de T_n satisfaz:
 - (a) $m_{p-1} + ... + m_h e <math>m_1 + ... + m_k < k, \forall 1 \le h \le i \le k \le p 1$, pois, em ambos os casos, foi retirado um vértice de (x_i) e $|x_1| + ... + |x_j| \le j, \forall 1 \le j \le p 1$.
 - (b) Assim, usando a Prop. 5.11 para "trocar" de t-representação se for necessário, obtemos um name regular que satisfaz $|x_1|+...+|x_t| < t, \forall 1 \leq t \leq p-1$, portanto único (Lema 5.15).

ORDENAÇÃO LEXICOGRÁFICA DAS CARTAS DE ${\cal P}$

Definição 6.6 A carta T com name regular $[m_{p-1}...m_1]$ precede a carta T' com name regular $[m'_{p-1}...m'_1]$ se, e somente se, $m_{p-1} \geq m'_{p-1}$ e para qualquer $j, 2 \leq j \leq p-1$, tal que $m_i = m'_i, \forall j \leq i \leq p-1 \Longrightarrow m_{j-1} \geq m'_{j-1}$.

Pelo corolário anterior, toda carta de \mathcal{P} tem um name regular. Vamos ver como obter este name regular em cada caso:

- Quando d = p: Neste caso, \mathcal{P} tem q cartas; T_n tem um único name regular (Prop. 6.3). Assim, cada vez que excluímos um vértice de uma letra não nula, obtemos o name regular de uma carta de T_n .
- Quando $2 \le d \le p-1$:
 - De q cartas em \mathcal{P} obtemos o name regular como no caso acima;
 - Nas cartas restantes, os names regulares podem ser obtidos dos names não regulares de T_n pela eliminação de uma unidade de uma letra não nula n_i tal que $1 \le j < i \Longrightarrow n_1 + ... + n_j < j$ (pois isso implicará $n_1 + ... + n_t < t, \forall 1 \le t \le p-1$, de onde se conclui que o name é único, portanto, regular).
- Quando d = 0: Neste caso, os names regulares de todas as cartas de

 \$\mathcal{P}\$ podem ser obtidos de todos os names de \$T_n\$ pela eliminação de uma unidade numa letra não nula \$n_i\$ tal que 1 ≤ j < i ⇒ n₁ + ... + nj < j\$.

Lema 6.7 Um torneio $T_n, n \ge 4$, é reconstrutivel a partir de suas cartas sempre que $q \ge 2$.

Demonstração: O inteiro $d = n - |\mathcal{P}|$ pode ser obtido a partir das cartas de T_n . Existem três casos a serem considerados:

Primeiro caso. d = p. Seja $[n_{p-1}...n_1]$ o único name regular de T_n . Observe que só obtemos cartas não isomorfas em \mathcal{P} quando eliminamos vértices de componentes diferentes X_i e X_j (isto é, $i \neq j$).

- Se P contém cartas não isomorfas, então n_i = max{n_i(T_{n-1})/T_{n-1} ∈ P}, 1 ≤ i ≤ p − 1. De onde se obtém [n_{p-1}...n₁] reconstruindo-se T_n a partir de suas cartas.
- 2. Se duas quaisquer cartas de \mathcal{P} são sempre isomorfas, podemos reconstruir T_n adicionando-se uma unidade à única letra não nula de um name qualquer de uma carta de $\mathcal{P}(\text{pois }[n_{p-1}...n_1]$ também tem uma única letra não nula). Foram eliminados vértices de uma mesma componente.

Segundo caso. $2 \le d \le p-1$. Seja $[n_{p-1}...n_1]$ o name regular de T_n que devemos determinar. Já sabemos que $n_{p-1}+...+n_d=p-d$.

Se $q \ge p-d+2$. Pelo menos duas cartas de T_n têm names regulares cujas p-d primeiras letras são iguais a $n_{p-1},...,n_d$, respectivamente(são as cartas com name regular induzido de T_n).

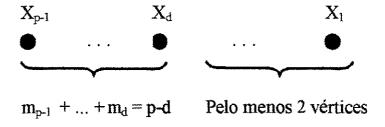


Fig. 14

Denotaremos por \mathcal{P}_{\lceil} a classe destas cartas. Portanto, $n_i = \max m_i [m_{p-1}...m_1]$ é o name regular de uma carta de \mathcal{P}_{\lceil} .

- Se q = p d + 1. Apenas uma carta tem name regular $[m_{p-1}...m_1]$ com $m_{p-1} + ... + m_d = p d$. Neste caso, utilizamos a ordem lexicográfica para escolher a última carta (nesta ordenação) cujo name regular tem letras iniciais $m_{p-1}, ..., m_{d-1}, m_d 1$. Finalmente, T_n é reconstruído substituindo-se $m_d 1$ por m_d .
- Se q=p-d. Considere o subconjunto $\mathcal{P}'\subseteq\mathcal{P}$ das cartas cujo name regular $[m_{p-1}...m1]$ satisfaz $m_{p-1}+...+m_d=p-d-1$. Seja $[m'_{p-1}...m'_1]$ o primeiro name regular na ordem lexicográfica de \mathcal{P}' . Assim, o name regular de T_n é determinado por $n_i=m'_i+\delta_{id}$, pois: $m'_1=...=m'_{d-1}=0$ e podemos excluir os casos $n_1=1$ ou $n_i>m'_i,d+1\leq i\leq p-1$, (caso contrário, $[m'_{p-1}...m'_1]$ não seria o primeiro), assim como $n_j=1$, para algum $2\leq j\leq d-1$ (caso contrário, implicaria $d\neq r$ em T_n).
- **Terceiro caso.** d = 0. Neste caso, \mathcal{P} contém todas as cartas de T_n . Vamos considerar o *name* regular de cada uma:
 - Se q = p 1. Temos $T_n \cong R_{2q+1}$ (pois cada X_i tem exatamente um vértice). Portanto, T_n é reconstrutível.
 - Se q < p-1. Seja T' a carta cujo name regular $[m'_{p-1}...m'_1]$ é o primeiro na ordem lexicográfica em \mathcal{P} . Seja t o menor inteiro tal que $m'_t \neq 0$. Concluímos que $t \geq 2$ e existe $1 < \alpha \leq t$ tal que $n_i = m'_i + \delta_{i\alpha}, 1 \leq i \leq p-1$, são letras de um name regular de T_n . Obs.: $\alpha \neq 1$, caso contrário, a aplicação da prop. 5.11 no name regular de T_n fornecido por α permitiria obter uma carta que precede T'. Considere m o número de letras não nulas de um name qualquer de T_n (são todos iguais, e m pode ser determinado pelas cartas de T_n : Cf. [1]). Se o name regular de T' tem

mletras não nulas, então \mathcal{T}_n pode ser reconstruído tomando-se $\alpha = t$ (única posição possível, por causa da ordem, pois $m_t' \neq 0$). Assumiremos, para excluir o caso direto, que o name regular de T^{\prime} tem m-1 letras não nulas. Lembramos que é possível contar o número de componentes maximais de qualquer ordem de T_n a partir de suas cartas (Cf. [1]). Afirmamos que podemos obter um inteiro $1 \le t_1 \le t/2$ tal que T_n pode ser reconstruído a partir de T' fazendo-se $\alpha=t_1$ ou $\alpha=t-t_1$. Excluindo o caso trivial $t_1=1,$ quando $\alpha=t-1,$ podemos assumir $t\geq 4.$ Seja $s\geq t$ um inteiro tal que $m_{s}^{'} > 1$ e $m_{i}^{'} \leq 1, \forall 1 \leq i < s.$ Seja $0 \leq j \leq s-t$ o número de letras não nulas $m_i', 1 \leq i < s$. Consideremos a classe Q das cartas de T_n cujo name regular tem letras iniciais $m_{p-1}^{'},...,m_{s+1}^{'},m_{s}^{'}-1$ e as outras letras não excedem 1. Assim, j+1 letras iguais a 1 seguem m'_s-1 e a última letra é nula no name regular de toda carta em \mathcal{Q} . Sejam $T^{''} = [m_{p-1}^{''}...m_1^{''}]$ a primeira carta em Q e h o último inteiro tal que $m_h''=1$. Novamente, afirmamos que T_n pode ser reconstruído a partir de T'' pondo-se $\alpha = s$ ou $\alpha = h$. O caso $\alpha = s$ ocorre somente se pelo menos m'_s cartas de Q têm o mesmo name que T''. O caso $\alpha = h$ ocorre se no máximo 2 cartas de \mathcal{Q} têm o mesmo name que T''. Assim, se $m_s' \geq 3$, podemos determinar α e, portanto, reconstruir T_n . Consideremos, então, $m_s^{'}=2$: Agora, os torneios reconstruídos a partir de T'' pondo-se $\alpha = s$ ou $\alpha = h$ têm a mesma lista placar somente se j = s - h - 1. Logo, se $m_i^{"} = 0$ para algum h < i < s, as cartas de \mathcal{P} permitem-nos escolher o valor $\alpha = s$ ou $\alpha = h$. Se $m_i'' = 1, \forall h \leq i \leq s, T_n$ é reconstrutivel pondo-se $\alpha = h$.

Lema 6.8 O torneio $T_n, n \geq 4$, é reconstrutível se q = 1, excluindo-se os torneios compostos $C_3(T_1, T_2, Tr_3)$ e $C_3(T_1, Tr_3, T_2)$.

Demonstração: Seja x o único vértice de T_q . Pela Prop. 6.1, T_n tem duas cartas transitivas se, e somente se, x é do tipo 1 ou do tipo p-1. Caso contrário, T_n tem apenas uma carta transitiva.

Primeiro caso. Os dois torneios que podem ser construídos são isomorfos. Em particular, ocorre sempre que p=3. Diante disso, podemos assumir que T_n tem apenas uma carta transitiva e que $p \geq 4$.

Segundo caso. Se p=4, então x é do tipo 2 e o caso é trivial. Sejam $p\geq 5$ e \mathcal{C} a classe da cartas hamiltonianas de T_n . Estas cartas certamente têm um subtorneio transitivo de ordem p-1. As cartas têm apenas um name se, e somente se, x é do tipo $i, 3 \leq i \leq p-3$.

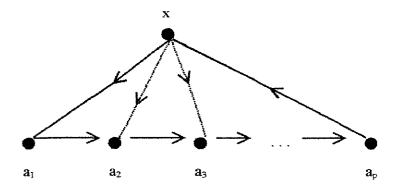


Fig. 15

Neste caso, i cartas (respec. p-i cartas) em \mathcal{C} têm um vértice do tipo i-1 (respec. i). Assim, podemos determinar i, a partir das cartas de \mathcal{C} , e reconstruir T_n . Se alguma carta em \mathcal{C} tem pelo menos 2 names, então i=2 ou i=p-2. Os torneios cujo $x\in T_q$ é do tipo 2 ou p-2 não são isomorfos e têm as mesmas cartas se, e somente se, p=5. Por

esta razão, excluímos $C_3(T_1, T_2, Tr_3)$, se x é do tipo 2 e $C_3(T_1, Tr_3, T_2)$, se x é do tipo p-2.

Teorema 6.9 Todo torneio de Moon $T_n, n \geq 4$, excluindo-se as composições $C_3(T_1, T_2, Tr_3)$ e $C_3(T_1, Tr_3, T_2)$ é reconstrutível a partir de suas cartas.

Demonstração: Pela Prop. 6.1, p (e portanto q) é determinado pelas cartas de T_n . Temos, assim, 3 casos possíveis:

Quando q = 0. Neste caso, $T_n \cong Tr_n$, sendo, portanto, reconstrutível.

Quando q = 1. Pelo Lema 6.8, T_n é reconstrutível.

Quando $q \ge 2$. Pelo Lema 6.7, T_n é reconstrutível, o que demonstra o teorema.

BIBLIOGRAFIA

- [1] Guido, C., Structure and Reconstruction of Moon Tournaments Departament of Mathematics, Universety of Lecce, 73100 Lecce, Italy.
- [2] Demaria, D. C. and Guido, C., On the Reconstruction of Normal Tournaments, Proceedings of Second Catania, 1989.
 J. Combin. Inform. System Sci. 15 (1990) 301-323.
- [3] Demaria, D. C. and Gianella, G. M., On Normal Tournaments Conf, Semin, Matem. Univ. Bari, Vol. 232, 1989, 1-29.
- [4] Harary, F. and Palmer, E., On the Problem of Reconstructing a Tournament from Subtournaments, Monatsh. Math. 71, 1967, 14-23.
- [5] Burzio, M. and Demaria, D. C., Caracterization of Tournaments by Coned 3-cyclos, Acta Univ. Carol. Math. Phys., Prague, Vol. 28, n° 2, 1988.
- [6] De Mitri, C. and Guido, C., A Local Property of Hamiltonian Moon Tournaments.
- [7] Barros, T. E., Homotopia Regular de Grafos, Dissertação de Mestrado, Dpto. de Mat., IMECC/Unicamp, 1990.
- [8] Moon, J. W., Topics on Tournaments, Holt, Rinehart and Winston, New York, 1968.