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Abstract

Continuous data in the unit interval (0, 1) represent, generally, proportions, rates or
indices. However, zeros and/or ones values can be observed, representing absence or total
presence of a carachteristic of interest. In that case, regression models that analyze the
effect of covariates such as beta, beta rectangular or simplex are not appropiate. In order to
deal with this type of situations, an alternative is to add the zero and/or one values to the
support of these models. In this thesis and based on these models, we propose the mixed
regression models for proportional data augmented by zero and one, which allow analyze
the effect of covariates into the probabilities of observing absence or total presence of the
interest characteristic, besides of being possivel to deal with correlated responses. Estimation
of parameters can follow via maximum likelihood or through MCMC algorithms. We follow
the Bayesian approach, which presents some advantages when it is compared with classical
inference because it allows to estimate the parameters even in small size sample. In addition,
in this approach, the implementation is straightforward and can be done using software as
openBUGS or winBUGS. Based on the marginal likelihood it is possible to calculate selection
model criteria as well as q-divergence measures used to detect outlier observations.

Keywords: Bayesian inference, mixed models, proportional data, clustered data, peri-
odontal disease.

Resumo

Dados no intervalo (0,1) geralmente representam proporções, taxas ou índices. Porém, é
possível observar situações práticas onde as proporções sejam zero e/ou um, representando
ausência ou presença total da característica de interesse. Nesses casos, os modelos que ana-
lisam o efeito de covariáveis, tais como a regressão beta, beta retangular e simplex não são
convenientes. Com o intuito de abordar este tipo de situações, considera-se como alternativa
aumentar os valores zero e/ou um ao suporte das distribuições previamente mencionadas.
Nesta tese, são propostos modelos de regressão de efeitos mistos para dados de propor-
ções aumentados de zeros e uns, os quais permitem analisar o efeito de covariáveis sobre a
probabilidade de observar ausência ou presença total da característica de interesse, assim
como avaliar modelos com respostas correlacionadas. A estimação dos parâmetros de inte-
resse pode ser via máxima verossimilhança ou métodos Monte Carlo via Cadeias de Markov
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(MCMC). Nesta tese, será adotado o enfoque Bayesiano, o qual apresenta algumas vantagens
em relação à inferência clássica, pois não depende da teoria assintótica e os códigos são de
fácil implementação, através de softwares como openBUGS e winBUGS. Baseados na distri-
buição marginal, é possível calcular critérios de seleção de modelos e medidas Bayesianas de
divergência q, utilizadas para detectar observações discrepantes.

Palavras-chave: Inferência Bayesiana, modelos mistos, dados de proporções, dados
agrupados, doença periodontal.
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Chapter 1

Introduction

Clinical studies often generate proportion data where the response of interest is continu-
ous and confined in the interval (0, 1), such as percentages, proportions, fractions and rates
(Kieschnick and McCullough, 2003). Examples include proportion of nucleotides that differ
for a given sequence or gene in foot-and-mouth disease (Branscum et al., 2007), the percent
decrease in glomerular filtration rate at various follow-up times since baseline (Song and Tan,
2000). Some of the strategies pointed out in the statistical literature to analyze this type of
data are based on regression models combined with a particular data transformation such
as the logit transformation. However, the use of nonlinear transformations may hinder the
interpretation of the regression parameters. This situation can be overcome by considering
probability distributions with double-bounded support, such as the beta, simplex (Barndorff-
Nielsen and Jørgensen, 1991), and beta rectangular distributions (Hahn, 2008), which can
be parameterized in terms of their mean. Based on these models, regression models were
proposed.

The beta regression (BR) reparameterizes the associated beta parameters, connecting
the response to the data covariates through suitable link functions (Ferrari and Cribari-
Neto, 2004). Yet, the beta density does not accommodate tail-area events, or flexibility in
variance specifications (Bayes et al., 2012). To accommodate this, the BRe density Hahn
(2008), and associated regression modelsBayes et al. (2012) were considered under a Bayesian
framework. Note, the BRe regression includes the (constant dispersion) BRFerrari and
Cribari-Neto (2004), and the variable dispersion BRSmithson and Verkuilen (2006) as special
cases. The simplex regressionSong and Tan (2000) is based on the simplex distribution from
the dispersion family (Jørgensen, 1997), assumes constant dispersion, and uses extended
generalized estimating equations for inference connecting the mean to the covariates via the
logit link. Subsequently, frameworks with heterogenous dispersion (Song et al., 2004), and
for mixed-effects models (Qiu et al., 2008) were explored. Yet, their potential were limited
to proportion responses with support in (0, 1).

The methodology developed in this thesis is motivated from a study conducted at the
Medical University of South Carolina (MUSC) via a detailed questionnaire focusing on de-
mographics, social, medical and dental history. In this study, was assessed the status and
progression of periodontal disease (PrD) among Gullah-speaking African-Americans with
Type-2 diabetes (Fernandes et al., 2006). The dataset contain measurements from Clinical
Attachment Level (CAL), obtained as the distance between the soft tissue in relation to
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the cemento-enamel junction (see Figure 1.1), on six different sites of each one of 28 teeth
(considered full dentition, excluding the 4 third-molars). In this study were observed 290
subjects, recording proportion of diseased tooth-sites. The proportion is calculated as the
number of sites with the disease divided by the number of sites. This number depends on
the type of tooth, for example, there are 48 sites for molar, premolar and incisive, but 24
sites for canine. A site is said to be diseased if the value of CAL is ⊙ 3mm. Hence, this
clustered data framework has 4 observations (corresponding to the 4 tooth-types) for each
subject. If a tooth is missing, it was considered ‘missing due to PrD’, where all sites for
that tooth contributed to the diseased category. Note that in this case, the response lies in
the closed interval [0,1]; where 0 and 1 represent completely disease free and highly diseased
cases, respectively.

Subject-level covariables in the dataset include gender (0=male, 1= female), age of sub-
ject at examination (in years, ranging from 26 to 87 years), glycosylated hemoglobin (HbA1c)
status indicator (0=controlled,< 7%; 1=uncontrolled,⊙ 7%) and smoking status (0=non-
smoker,1=smoker). We also considered a tooth-level variable representing each of the four
tooth types, with ‘canine’ as the baseline.

Figure 1.1: Clinical attachment level.

The underlying statistical question here is to estimate the functions that model the depen-
dence of the ‘proportion of diseased sites corresponding to a specific tooth-type (represented
by incisors, canines, premolars and molars)’ with the covariables.

In this thesis are presented mixed regression models for proportional data in the presence
of zeros and ones as an alternative when the response is a vector with correlated compo-
nents in [0, 1]. In this case, the estimation of the parameters, model selection and influence
diagnostics follows a Bayesian approach.
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1.1 Preliminaries

1.1.1 Bayesian model selection and influence diagnostics

Model selection and assessments

There is a variety of methods for selecting the model that best fit a dataset. In this
thesis will be used the log pseudo-marginal likelihood (LPML), the observed information
criterion DIC3, the expected Akaike information criterion (EAIC) and the expected Bayesian
information criterion EBIC.

The LPML (Geisser and Eddy, 1979) is a summary statistic of the conditional pre-

dictive ordinate (CPO) statistic and is defined by LPML =
n
√︁

i=1
log(𝐶𝑃𝑂i), where 𝐶𝑃𝑂i

can be obtained using a harmonic-mean approximation Dey et al. (1997) as 𝐶𝑃𝑂i =
∮︁

1
Q

Q
√︁

q=1

1
f(yi♣θ(q))

⨀︀⊗1

and θ(1), . . . ,θ(Q) is a post burn-in sample of size 𝑄 from the posterior

distribution of θ and 𝑓(yi♣θ(q)) is the marginal distribution of 𝑌 . Larger values of LPML
indicates better fit.

Some other measures, like the DIC, EAIC and EBIC Carlin and Louis (2008) can also
be used. Because of the mixture framework in our models, we use the DIC3 Celeux et al.
(2006) measure, which is an alternative to DIC Spiegelhalter et al. (2002). This is defined as
DIC3 = 𝐷(θ) + áD, 𝐷(θ) = ⊗2E¶log[𝑓(y♣θ)]♣y♢, 𝑓(y♣θ) = √︂n

i=1 𝑓(yi♣θ), E¶log[𝑓(y♣θ)]♣y♢
is the posterior expectation of log[𝑓(y♣θ)] and áD is a measure of the effective number of
parameters in the model, given by áD = 𝐷(θ) + 2 log(E[𝑓(y♣θ)♣y]). Thus, we have DIC3 =
⊗4E¶log[𝑓(y♣θ)]♣y♢ + 2 log(E[𝑓(y♣θ)♣y]). The first expectation in this expression can be

approximated by 𝐷 = 1
Q

√︁Q
q=1

√︁n
i=1 log

[︁

𝑓(yi♣θ(q))
]︁

, as recommended by Celeux et al. (2006),

the second term in the expression can be approximated by
√︁n
i=1 2 log 𝑓(yi♣θ) with 𝑓(yi♣θ) =

1
Q

√︁Q
q=1 𝑓(yi♣θ(q)). The EAIC and EBIC can be estimated as ÊAIC = ⊗2𝐷+2Ü and ÊBIC =

⊗2𝐷 + Ü log 𝑛, where Ü is the number of parameters in the model, 𝑛 is the number of
observations and 𝐷 defined above. Model selection follows the ‘lower is better’ law, i.e., the
model with the lowest value for these criteria gets selected.

Bayesian case influence diagnostics

In this section, we develop some influence diagnostics measures to study the impact of
outliers on fixed effects parameter estimates motivated by data perturbation schemes based
on case-deletion statistics of Cook and Weisberg (1982). A common way of quantifying
influence with and without a given subset of data is to use the q-divergence measures Csisz
et al. (1967); Weiss (1996) between posterior distributions. Consider a subset 𝐼 with 𝑘
elements from the whole dataset with 𝑛 elements. When the subset 𝐼 is deleted from the
data y, we denote the eliminated data as yI and the remaining data as y(⊗I). Then, the

perturbation function for deletion cases can be written as 𝑝(θ) = Þ
(︁

θ♣y(⊗I)

⎡

/Þ (θ♣y). The q-
divergence measure between two arbitrary densities Þ1 and Þ2 for θ is defined as 𝑑q(Þ1, Þ2) =
√︃

q
⎤

π1(θ)

π2(θ)

⎣

Þ2(θ)𝑑θ, where q is a convex function such that q(1) = 0. The q-influence of
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the data yI on the posterior distribution of θ, 𝑑q(𝐼) = 𝑑q(Þ1, Þ2), is obtained by considering
Þ1(θ) = Þ1(θ♣y(⊗I)) and Þ2(θ) = Þ(θ♣y), and can be written as 𝑑q(𝐼) = Eθ♣y

¶q(𝑝(θ))♢, where
the expectation is taken with respect to the unperturbed posterior distribution. For various
choices of the q(≤) function, we have, for example, the Kullback-Leibler (KL) divergence
when q(𝑧) = ⊗ log(𝑧), the 𝐽-distance (symmetric version of the KL divergence) when q(𝑧) =
(𝑧 ⊗ 1) log(𝑧), and the 𝐿1-distance when q(𝑧) = ♣𝑧 ⊗ 1♣.

Note that, 𝑑q (𝐼) defined above precludes itself from quantifying a cut-off point beyond
which an observation can be considered influential. Hence, we use the calibration method
Peng and Dey (1995), in that work, the q-divergence is given by 𝑑q(𝑝) =

q(2p)+q(2(1⊗p))
2

, where
𝑑q(𝑝) increases as 𝑝 moves away from 0.5, and is symmetric and reaches its minimum value
at 0.5. It is possible consider 𝑝 ⊙ 0.90 (or 𝑝 ⊘ 0.10), however, in this thesis will be used
𝑝 = 0.95. Thus, we can detect an influential observation (using the 𝐿1 distance) when
𝑑L1(𝑖) ⊙ 0.90, 𝑖 = 1, . . . , 𝑛, for the KL divergence, we have 𝑑KL(0.95) = 0.83, and for the
𝐽-distance 𝑑J(0.95) = 1.32.

1.2 Organization of Thesis

This thesis is divided into five chapters and four appendices. The second chapter is an
already published paper and the fourth chapter is a paper that has been recently accepted
for publication. In the fifth chapter are presented the conclusions and the plan for future
research. Next, I describe the results of chapters second to fourth.

• Chapter 2: Augmented mixed beta regression models for periodontal proportion data,
published paper in Statistics in Medicine (2014).

– Description: In this chapter was proposed the Bayesian analysis of the zero and
one augmented mixed beta regression (ZOAB-RE) model for clustered responses
in [0, 1], and applied it to an interesting PrD dataset. Through this model it
was possible to identifying covariates that are significant to explain disease-free,
progressing with disease, and completely diseased tooth types. We also developed
tools for outlier detection using q-divergence measures, and quantified their effect
on the posterior estimates of the model parameters. Both simulation studies
and real data application justify seeking an appropriate theoretical model over
utilizing ad hoc data transformations for proportion data

• Chapter 3: Augmented mixed models for clustered proportion data using the simplex
distribution.

– Description: In this chapter was proposed a Bayesian random effect model based
on the simplex distribution for modeling data in the interval [0, 1] called zero and
one mixed simplex regression (ZOAS-RE) model. The versatility of this class
to model correlated data in the interval [0, 1] has not been explored elsewhere,
and this is our major contribution. Simulation studies reveal good consistency
properties of the Bayesian estimates when compared with the ZOAS-RE regression
counterpart, as well as, high performance of the model selection techniques to pick
the appropriately fitted model
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• Chapter 4: Augmented mixed models for clustered proportion data. Accepted paper
in Statistical Methods in Medical Research (2014).

– Description: In this chapter, it was proposed a class of (parametric) augmented
proportion distribution models. Particular cases of this family are the beta, beta
rectangular and simplex distributions. Based on this distributions were proposed
the regression models under a Bayesian framework, and demonstrate its applica-
tion to the PrD dataset. Also, these regression models were compared using the
PrD dataset and simulation studies. The results allow conclude that the ZOAS-
RE model fits better to the PrD than the ZOAB-RE and zero and one augmented
beta rectangular (ZOABr-RE) models. It was also concluded via simulation stud-
ies.
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Chapter 2

Augmented mixed beta regression

models for periodontal proportion

data

Abstract

Continuous (clustered) proportion data often arise in various domains of medicine and pub-
lic health where the response variable of interest is a proportion (or percentage) quantifying
disease status for the cluster units, ranging between zero and one. However, due to the pres-
ence of relatively disease-free as well as heavily diseased subjects in any study, the proportion
values can lie in the interval [0, 1]. While Beta regression can be adapted to assess covariate
effects in these situations, its versatility is often challenged due to the presence/excess of zeros
and ones because the Beta support lies in the interval (0, 1). To circumvent this, we augment
the probabilities of zero and one with the Beta density, controlling for the clustering effect.
Our approach is Bayesian with the ability to borrow information across various stages of the
complex model hierarchy, and produces a computationally convenient framework amenable
to available freeware. The marginal likelihood is tractable, and can be used to develop
Bayesian case-deletion influence diagnostics based on q-divergence measures. Both simula-
tion studies and application to a real dataset from a clinical periodontology study quantify
the gain in model fit and parameter estimation over other ad hoc alternatives and provide
quantitative insight into assessing the true covariate effects on the proportion responses.

2.1 Introduction

Clinical studies often generate proportion data where the response of interest is continu-
ous and confined in the interval (0, 1), such as percentages, proportions, fractions and rates
(Kieschnick and McCullough, 2003). Examples include proportion of nucleotides that differ
for a given sequence or gene in foot-and-mouth disease (Branscum et al., 2007), the percent
decrease in glomerular filtration rate at various follow-up times since baseline (Song and Tan,
2000). With fidelity to the usual Gaussian assumptions for model errors, one might here be
tempted to fit a linear regression model to assess the response-covariate relationship (Qiu
et al., 2008). However, this leads to misleading conclusions by ignoring the range constraints
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in the responses. The logistic-normal model of Aitchison (1986), which assumes normal
distribution for logit-transformed proportion responses, can provide a computationally con-
venient framework, but it suffers from an interpretation problem given that the expected
value of response is not a simple logit function of the covariates. In this context, the beta
regression (BR) proposed by Ferrari and Cribari-Neto (2004) can accomplish direct mod-
eling of covariates under a generalized linear model (GLM) specification, leading to easy
interpretation. The beta density (Johnson et al., 1994) is extremely flexible, and can take
on a variety of shapes to account for non-normality and skewness in proportion data. The
BR model considers a specific re-parameterization of the associated beta density parameters,
and connects the covariates with the mean and precision of the density through appropriate
link functions. Despite its versatility, its potential is limited for proportion responses with
support in (0, 1).

The motivating data example for this paper comes from a clinical study (Fernandes et al.,
2006), where the clinical attachment level (or, CAL), a clinical marker of periodontal disease
(PrD), is measured at each of the 6 sites of a subject’s tooth. The underlying statistical
question here is to estimate the functions that model the dependence of the ‘proportion
of diseased sites corresponding to a specific tooth-type (represented by incisors, canines,
premolars and molars)’ with the covariables. Figure 1 (left panel) plots the raw (unadjusted)
density histogram of the proportion responses aggregated over subjects and tooth types. The
responses lie in the closed interval [0, 1] where 0 and 1 represent ‘completely disease free’,
and ‘highly diseased’ cases, respectively. Although BR might be applicable here post (ad
hoc) re-scaling (Smithson and Verkuilen, 2006) of the data from [0, 1] to the interval (0, 1),
various limitations are observed working on a transformed scale (Lachos et al., 2011). These
re-scalings might provide a nice working solution for small proportions of 0’s and 1’s, but
sensitivity towards parameter estimation can be considerable with higher proportions. This
inefficiency is only aggravated due to the presence of additional clustering (tooth within
mouth/subject) in the data, as in our case. Hence, from a practical perspective, there
is a need to seek an appropriate theoretical model that avoids data transformations, yet
is capable of handling the challenges the data present. To circumvent this, we propose an
efficient generalized linear mixed model (GLMM) framework by augmenting the probabilities
of occurrence of zeros and ones to the BR model via a zero-and-one-augmented beta (ZOAB)
random effects (ZOAB-RE) model, which can accommodate the subject-level clustering.

There have been various specifications of the BR model. The BR model of Ferrari and
Cribari-Neto (2004) re-parameterizes the beta density parameters and connects the data
covariates to the response mean via a logit link, assuming that the data precision is con-
stant (nuisance) across all observations. This was subsequently modified by linking the
covariates to the dispersion parameter via the variable dispersion BR model by Smithson
and Verkuilen (2006). Very recently, Verkuilen and Smithson (2012) used Gauss-Hermite
quadrature to calculate ML estimates and a Gibbs sampler for Bayesian estimation in the
context of BR models for correlated proportion data. Also, Figueroa-Zúniga et al. (2013)
presents a Bayesian approach to the correlated BR model through Gibbs samplers, and uses
the deviance information criterion (DIC) (Spiegelhalter et al., 2002), expected-AIC (EAIC)
and expected-BIC (EBIC) for model selection. However, to the best of our knowledge, there
are no studies that utilize a Bayesian paradigm to model clustered (correlated) proportion
data where the proportions lie in the interval [0,1]. Our proposition ‘augments’ point masses
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Figure 2.1: The left panel plots the (raw) density histogram, aggregated over subjects and
tooth-types for the PrD data. The ‘pins’ at the extremes represent the proportion of zeros
(9.8%) and ones (8.1%). The right panel presents the empirical cumulative distribution
function of the real data, and that obtained after fitting the ZOAB-RE (Model 1) and the
LS model (Model 3).

at zero and one to a continuous (beta) density that does not include zero and one in its
support, similar in spirit to Hatfield et al. (2012). In addition, following the pioneering work
of Cook (1986), we develop case-deletion and local influence diagnostics to assess the effect
of outliers on the parameter estimates. Our approach is Bayesian, with the ability to borrow
information across various stages of the complex model hierarchy, and produces a computa-
tionally convenient framework amenable to available freeware like OpenBUGS (Thomas et al.,
2006).

The rest of the article proceeds as follows. After a brief introduction to the BR model,
Section 2 introduces the ZOAB-RE model, and develops the Bayesian estimation scheme.
Section 3 applies the proposed ZOAB-RE model to the motivating data and uses Bayesian
model selection to select the best model. It also summarizes and discusses the estimation
of the fixed effects, other model parameters and outlier detections. Section 4 presents sim-
ulation studies to assess finite sample performance of our model with another competing
transformation-based model under model misspecification, and also to study the efficiency
of the influence diagnostic measures to detect outliers. Conclusions and future developments
appear in Section 6.
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2.2 Statistical Model and Bayesian Inference

2.2.1 Beta regression model

The beta distribution is often the model of choice for fitting continuous data restricted
in the interval (0,1) due to the flexibility it provides in terms of the variety of shapes it can
accommodate. The probability density function of a beta distributed random variable 𝑌
parameterized in terms of its mean Û and a precision parameter ã is given by

𝑓(𝑦♣Û, ã) = Γ(ã)

Γ(Ûã)Γ((1 ⊗ Û)ã)
𝑦µφ⊗1(1 ⊗ 𝑦)(1⊗µ)φ⊗1, 0 < 𝑦 < 1, 0 < Û < 1, ã > 0, (2.2.1)

where Γ(≤) denotes the gamma function, 𝐸(𝑌 ) = Û, and Var(𝑌 ) =
Û(1 ⊗ Û)

1 + ã
. Therefore, for

a fixed value of the mean Û, higher values of ã leads to a reduction of Var(𝑌 ), and conversely.
If 𝑌 has pdf as in (2.2.1), we write 𝑌 ≍ beta(Ûã; (1 ⊗ Û)ã). Next, to connect the covariate
vector xi to the random sample 𝑌1, . . . , 𝑌n of 𝑌 , we use a suitable link function 𝑔1 that maps
the mean interval (0,1) onto the real line. This is given as 𝑔1(Ûi) = x⊤

i β, where β is the
vector of regression parameters, and the first element of xi is 1 to accommodate the intercept.
The precision parameter ãi is either assumed constant (Ferrari and Cribari-Neto, 2004), or
regressed onto the covariates (Smithson and Verkuilen, 2006) via another link function ℎ1,
such that ℎ1(ãi) = zTi α, where zi is a covariate vector (not necessarily similar to xi), and
α is the corresponding vector of regression parameters. Similar to xi, zi also accommodates
an intercept. Both 𝑔1 and ℎ1 are strictly monotonic and twice differentiable. Choices of
𝑔1 includes the logit specification 𝑔1(Ûi) = log¶Ûi/(1 ⊗ Ûi)♢, the probit function 𝑔1(Ûi) =
Φ⊗1(Ûi) where Φ(≤) is the standard normal density, the complementary log-log function
𝑔1(Ûi) = log¶⊗log(1 ⊗ Ûi)♢ among others, and for ℎ1, the log function ℎ1(ãi) = log(ã),
the square-root function ℎ1(ãi) =

√
ãi, and the identity function ℎ1(ãi) = ãi (with special

attention to the positivity of the estimates) (Simas et al., 2010). Estimation follows via either
the (classical) maximum likelihood (ML) route (Ferrari and Cribari-Neto, 2004) or through
Gauss-Hermite quadratures (Smithson and Verkuilen, 2006) available in the betareg library
in R (Zeileis et al., 2010), or Bayesian (Branscum et al., 2007) through Gibbs sampling.

2.2.2 Zero-and-one augmented beta random effects model

The BR model described above only applies to observations that are independent, and
moreover it is suitable only for responses lying in (0, 1). However, for our PrD dataset,
the responses pertaining to a particular subject are clustered in nature, and lie bounded
in [0, 1]. We now develop a ZOAB model to address both the bounded support problem
and the data clustering. Our proposition comprises a three-part mixture distribution, with
degenerate point masses at 0 and 1, and a beta density to have the support of 𝑌i ∈ [0, 1].
Thus, 𝑌 ≍ ZOAB(𝑝0i, 𝑝1i, Ûi, ã), if the density of 𝑌i, 𝑖 = 1, . . . , 𝑛, follows

𝑓(𝑦i♣𝑝0i, 𝑝1i, Ûi, ã) =

⎧

⋁︁

⨄︁

⋁︁

⋃︁

𝑝0i if 𝑦i = 0,
𝑝1i if 𝑦i = 1,

(1 ⊗ 𝑝0i ⊗ 𝑝1i)𝑓(𝑦i♣Ûi, ã) if 𝑦i ∈ (0, 1),
(2.2.2)
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where 𝑝0i ⊙ 0 denotes 𝑃 (𝑌i = 0), 𝑝1i ⊙ 0 denotes 𝑃 (𝑌i = 1), 0 ⊘ 𝑝0i+𝑝1i ⊘ 1 and 𝑓(𝑦i♣Ûi, ã)
is given in (2.2.1). The mean and variance of 𝑌i are given by

𝐸[𝑌i] = (1 ⊗ 𝑝0i ⊗ 𝑝1i)Ûi + 𝑝1i

and

Var(𝑌i) = 𝑝1i(1 ⊗ 𝑝1i) + (1 ⊗ 𝑝0i ⊗ 𝑝1i)

⎟

Ûi(1 ⊗ Ûi)

1 + ã
+ (𝑝0i + 𝑝1i)Û

2
i ⊗ 2Ûi𝑝1i

⟨

.

For clustered data, the ZOAB-RE model is defined as follows. Let Y1, . . . ,Yn be 𝑛
independent continuous random vectors, where Yi = (𝑦i1, . . . , 𝑦ini

) is the vector of length 𝑛i
for the sample unit 𝑖, with the components 𝑦ij ∈ [0, 1]. Next, the covariates can be regressed
onto a suitably transformed Ûij, 𝑝0ij and 𝑝1ij, such that

𝑔1(𝐸[Yi♣bi]) = 𝑔1(µi) = X⊤
i β + Z⊤

i bi, (2.2.3)

𝑔2(p0i) =W0
⊤
i ψ, (2.2.4)

𝑔3(p1i) =W1
⊤
i ρ, (2.2.5)

where µi = (Ûi1, . . . , Ûini
), p0i = (𝑝0i1, . . . , 𝑝0ini

), p1i = (𝑝1i1, . . . , 𝑝1ini
); Xi, W0i and W1i

are design matrices of dimension 𝑝×𝑛i, 𝑟×𝑛i and 𝑠×𝑛i, corresponding to the vectors of fixed
effects β = (Ñ1, . . . , Ñp)

⊤, ψ = (å1, . . . , år)
⊤, ρ = (𝜌1, . . . , 𝜌s)

⊤, respectively, and Zi is the
design matrix of dimension q × 𝑛i corresponding to REs vector bi = (𝑏i1, . . . , 𝑏iq)

⊤. Choice
of link functions for 𝑔1, 𝑔2 and 𝑔3 here remain the same as for 𝑔1 in Subsection 2.2.1. For the
sake of interpretation, we prefer to use the logit link. Note that in our model development,
the dispersion parameter ã is chosen as constant and the regressions onto p0i and p1i are
free of REs to avoid over-parameterization. However, it is certainly possible to regress ã
onto covariates through an appropriate link function (say, log). Also, 𝑝0ij and 𝑝1ij can be
treated as constants across all sample units. To this end, we define our ZOAB-RE model as
𝑌ij ≍ ZOAB-RE(𝑝0ij, 𝑝1ij, Ûij, ã) 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛i.

2.2.3 Likelihood function

Let Ω = (β,ψ,ρ, ã) denote the parameter vector in this ZOAB-RE model. The primary
goal here is to estimate Ω, and to derive inference on β adjusting for the effects of clustering.
Our observed sample for 𝑛 subjects is (y1,X1,Z1,W01,W11), . . . , (yn,Xn,Zn,W0n,W1n),
with yi as the response vector for subject 𝑖. The joint data likelihood (without integrating
out the random-effects bi) is given as:

𝐿(Ω♣b,y,X,Z,W0,W1) =
n
∏︁

i=1

𝐿i(Ω♣bi,yi,Xi,Zi,W0i,W1i), (2.2.6)

where

Li(Ω♣bi, yi, Xi, Zi,W0i,W1i) = *
[︁

p0
⊤
i D0i + p1

⊤
i D1i + (1 ⊗ p0i ⊗ p1i)

⊤(Ini
⊗ D0i ⊗ D1i)Bi

]︁⊤
,

*Ai indicates the product of the elements of Ai, p0i = (𝑝0i1, . . . , 𝑝0ini
)⊤ with 𝑝0ij =

exp(W0
⊤
ijψ)

1 + exp(W0
⊤
ijψ)

, p1i = (𝑝1i1, . . . , 𝑝1ini
)⊤, with 𝑝1ij =

exp(W1
⊤
ijρ)

1 + exp(W1
⊤
ijρ)

, Dki is a diagonal
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matrix of dimension 𝑛i × 𝑛i whose 𝑗-th element of the diagonal is the indicator func-
tion 𝐼¶yij=k♢, 𝑘 = 0, 1, 𝑗 = 1, . . . , 𝑛i, Ini

is the identity matrix with dimension 𝑛i × 𝑛i
and Bi is a diagonal matrix of dimension 𝑛i × 𝑛i whose 𝑗-th element of the diagonal is

Γ(φ)
Γ(µijφ)Γ((1⊗µij)φ)

𝑦
µijφ⊗1
ij (1 ⊗ 𝑦ij)

(1⊗µij)φ⊗1 and Ûij =
exp(X⊤

ijβ + Z⊤
ijbi)

1 + exp(X⊤
ijβ + Z⊤

ijbi)
, Xij and Zij cor-

respond to the 𝑗-th column of the matrices Xi and Zi, respectively.
Although one can certainly pursue a classical estimation route using maximum likeli-

hood methods following Ospina and Ferrari (2010), a Bayesian treatment of our model has
not been considered earlier in the literature. Recent developments in Markov chain Monte
Carlo (MCMC) methods facilitate easy and straightforward implementation of the Bayesian
paradigm through conventional software such as OpenBUGS. Hence, we consider a Bayesian
estimation framework which can accommodate full parameter uncertainty through appropri-
ate prior choices supported by proper sensitivity investigations. This framework can provide
a direct probability statement about a parameter through credible intervals (C.I.) (Dun-
son, 2001). Next, we investigate the choice of priors for our model parameters to conduct
Bayesian inference.

2.2.4 Prior and posterior distributions

We specify practical weakly informative prior opinion on the fixed effects regression pa-
rameters β, ψ, ρ, ã (dispersion parameter) and the random effects bi. Specifically, we
assign i.i.d Normal(0, precision = 0.01) priors on the elements of β, ψ and ρ, which cen-
ters the ‘odds-ratio’ type inference at 1 with a sufficiently wide 95% interval. Priors for
ã ≍ Gamma(0.1, 0.01), and bi are Normal with zero mean and precision = 1/à2

b ), where
àb ≍ Unif(0, 100) (Gelman, 2006). Although multivariate specifications (multivariate zero
mean vector with inverted-Wishart covariance) are certainly possible, we stick to simple (and
independent) choices. For cases where 𝑝0 and 𝑝1 are considered constants across all subjects,
we allocate the Dirichlet prior with hyperparameter α = (Ð1, Ð2, Ð3) for the probability
vector (𝑝0, 𝑝1, 1 ⊗ 𝑝0 ⊗ 𝑝1), where Ðs ≍ Gamma(1, 0.001), 𝑠 = 1, 2, 3.

The posterior conclusions are based on the joint posterior distribution of all the model
parameters (conditional on the data), and obtained by combining the likelihood given in
(2.2.6), and the joint prior densities using the Bayes’ Theorem:

p(θ, b♣y, X, Z,W0,W1) ∝ L(Ω♣b, y, X, Z,W0,W1)×π0(β)×π1(ψ)×π2(ρ)×π3(φ)×π4(b♣σb)×π5(σb),
(2.2.7)

where θ = (Ω, à2
b )

⊤, Þj(.), 𝑗 = 0, . . . , 5 denote the prior/hyperprior distributions on the
model parameters as described above. The relevant MCMC steps (combination of Gibbs and
Metropolis-within-Gibbs sampling) was implemented using the BRugs package (Ligges et al.,
2009) which connects the R language with the OpenBUGS software. After discarding 50000
burn-in samples, we used 50000 more samples (with spacing of 10) from two independent
chains with widely dispersed starting values for posterior summaries. Convergence was
monitored via MCMC chain histories, autocorrelation and crosscorrelation, density plots,
and the Brooks-Gelman-Rubin potential scale reduction factor R̂, all available in the R coda

library (Cowles and Carlin, 1996). Associated BRugs code is available on request from the
corresponding author.
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2.2.5 Bayesian model selection and influence diagnostics

We use the conditional predictive ordinate (CPO) statistic (Carlin and Louis, 2008) for
our model selection derived from the posterior predictive distribution (ppd). A summary
statistic obtained from the CPO is the log pseudo-marginal likelihood (LPML) (Carlin and
Louis, 2008). Larger values of LPML indicate better fit. Because the harmonic-mean iden-
tity used in the CPO computation can be unstable (Raftery et al., 2007), we consider a
more pragmatic route and compute the CPO (and associated LPML) statistics using 500
non-overlapping blocks of the Markov chain, each of size 2000 post-convergence (i.e., after
discarding the initial burn-in samples), and report the expected LPML computed over the
500 blocks. Some other measures, like the deviance information criteria (DIC), expected
AIC (EAIC) and expected BIC (EBIC) (Carlin and Louis, 2008) can also be used. Because
of the mixture framework in our ZOAB-RE model, we use the DIC3 (Celeux et al., 2006)
measure as an alternative to the DIC (Spiegelhalter et al., 2002). Model selection follows
the ‘lower is better’ law, i.e., the model with the lowest value for these criteria gets selected.

To determine model adequacy after selecting the best model, we apply the Bayesian 𝑝-
value (Gelman et al., 2004) which utilizes some discrepancy measures based on ppd. Samples
from the ppd (denoted by ypr) are replicates of the observed model generated data y, hence
there is some signal of model inadequacy if the observed value is extreme relative to the
reference ppd. Because of the clustered nature of our data, we consider the sum statistic
𝑇 (y,θ) = sum(y) as our discrepancy measure. Then, the Bayesian 𝑝-value 𝑝B is calculated
as the number of times 𝑇 (ypr,θ) exceeds 𝑇 (y,θ) out of 𝐿 simulated draws, i.e., 𝑝B =
Pr(𝑇 (ypr,θ) ⊙ 𝑇 (y,θ)♣y). A very large 𝑝-value (> 0.95), or a very small one (< 0.05)
signals model misspecification.

In addition, some influence diagnostic measures are developed to study the impact of
outliers on fixed effects parameter estimates caused by data perturbation schemes based on
case-deletion statistics (Cook and Weisberg, 1982), and the q-divergence measures (Csisz
et al., 1967; Weiss, 1996; Lachos et al., 2013) between posterior distributions. We use three
choices of these divergences, namely, the Kullback-Leibler (KL) divergence, the 𝐽-distance
(symmetric version of the KL divergence), and the 𝐿1-distance. We use the calibration
method (Peng and Dey, 1995) to obtain the cut-off values as 0.90, 0.83 and 1.32 for the 𝐿1,
KL and 𝐽-distances, respectively.

2.3 Data analysis and findings

In this section, we apply our proposed ZOAB-RE model to the PrD data. We start with
a short description of the dataset. A study assessing the status and progression of PrD
among Gullah-speaking African-Americans with Type-2 diabetes (Fernandes et al., 2006)
was conducted at the Medical University of South Carolina (MUSC) via a detailed ques-
tionnaire focusing on demographics, social, medical and dental history. CAL was recorded
at each of the 6 tooth-sites per tooth for 28 teeth (considered full dentition, excluding the
4 third-molars). With 290 subjects, we focus on quantifying the extent and severity of PrD
for the tooth-types (4 canines and 8 each of incisors, pre-molars and molars). Our response
variable is: ‘Proportion of diseased tooth-sites (with CAL value ⊙ 3mm) for each of the four
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tooth types’. This gives rise to a clustered data framework where each subject records 4
observations corresponding to the 4 tooth-types. Missing teeth were considered ‘missing due
to PrD’, where all sites for that tooth contributed to the diseased category. Subject-level
covariables in this dataset include gender (0=male,1= female), age of subject at examination
(in years, ranging from 26 to 87 years), glycosylated hemoglobin (HbA1c) status indicator
(0=controlled,< 7%; 1=uncontrolled,⊙ 7%) and smoking status (0=non-smoker,1=smoker).
The smoker category is comprised of both the current and past smokers. We also considered
a tooth-level variable representing each of the four tooth types, with ‘canine’ as the baseline.
As observed in the density histogram in Figure 2.1 (Panel left), the data are continuous in the
range [0,1]. Due to the presence of a substantial number of 0’s (114, 9.8%) and 1’s (94, 8.1%),
BR might be inappropriate here. Hence, we resort to the ZOAB-RE model, controlling for
subject-level clustering. From Equation (2.2.3), we now have ηi = 𝑔1(µi) = X⊤

i β + bi, with

Model
Criterion 1 2
DIC3 993.0 1243.5
LPML ⊗500.5 -623.7
EAIC 992.7 1231.0
EBIC 1124.2 1286.6

Table 2.1: Model comparison using DIC3, LPML, EAIC and EBIC criteria.

𝑔1 the logit link, β
⊤ = (Ñ0, . . . , Ñ7), with Ñ0 the intercept and Ñ1, . . . , Ñ7 the regression pa-

rameters, X⊤
i = (1,Genderi,Agei,HbA1ci, Smokeri, Incisori,Premolari,Molari), and 𝑏i is the

subject-level random effect term. To improve convergence of the sampler, we standardized
‘Age’ by subtracting its mean and dividing by its standard deviation. Note that, here the
model covariates are regressed onto Ûij, 𝑝0ij and 𝑝1ij, but it is also possible to consider 𝑝0

and 𝑝1 constants across all subjects. This leads to our choice of two competing models:

Model 1: logit(µi) = ηi, logit(p0i) = W0
⊤
i ψ and logit(p1i) = W0

⊤
i ρ, with W0

⊤
i =

W1
⊤
i = X⊤

i .
Model 2: logit(µi) = ηi p0i = 𝑝0 and p1i = 𝑝1.

We also fit a non-augmented BR model by transforming the data points 𝑦 to 𝑦′ via
the lemon-squeezer (LS) transformation given by 𝑦′ = [𝑦(𝑁 ⊗ 1) + 1/2]/𝑁 (Smithson and
Verkuilen, 2006), where 𝑁 is the total number of observations, and fit the above regressions
to µi with the logit link. This is our Model 3, or the LS model. Although other link
functions (such as probit, cloglog, etc) are available, we currently restrict ourselves to the
symmetric logit link whose adequacy is assessed later. Note that Models 1 and 2 which fit the
same dataset can be compared using the model choice criteria described in Subsection 2.2.5,
but not Model 3 since it considers a transformed dataset. Hence, Model 3 is assessed using
plots of empirical cumulative distribution functions (ecdfs) of the fitted values to determine
how closely the fits resemble the true data.
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Figure 2.2: Posterior mean and 95% CIs of pa-
rameter estimates from Models 1-3. CIs that
include zero are gray, those that does not in-
clude zero are black.

Table 2.2: The values are the number of times
higher/lower the ratio of the conditional ‘ex-
pected proportion of diseased sites’ (denoted
by Ûij) is, to the ‘expected remaining propor-
tion to complete disease’ (denoted by 1 - Ûij),
conditional on this proportion not being zero
or one, with one unit increase in the covari-
ates.

Parameter Model 1 Model 2 Model 3
Intercept 0.5 0.5 0.4
Gender 0.6 0.6 0.5
Age 1.4 1.4 1.6

HbA1c 1.1 1.1 1.3
Smoker 1.1 1.1 1.0
Incisor 1.2 1.2 1.4
Premolar 2.3 2.3 3.1
Molar 8.5 8.5 15.3

In the absence of historical data/experiment, our prior choices follow the specifications
described in Section 2.2.4. Table 2.1 presents the DIC3, LPML, EAIC and EBIC values
calculated for Models 1 and 2. Notice that Model 1 (our ZOAB-RE model with regression
on Ûij, 𝑝0ij and 𝑝1ij) outperforms Model 2 for all criteria. From Figure 2.1 (right panel),
it is also clear that the ecdf from the fitted values using Model 1 represent the true data
more closely than Model 3. Considering these, we select Model 1 as our best model. With
respect to goodness-of-fit assessment, 𝑝B = 0.798, which indicates no overall lack of fit.
Figure 2.2 plots the posterior parameter means and the 95% credible intervals (CIs) for the
regression onto µ for Models 1-3. The gray intervals in Figure 2.2 contain zero (the non-
significant covariates), while the black intervals do not include zero (the significant ones at
5% level). The covariates gender, age, and the tooth types (incisor, premolar and molar)
significantly explain the proportion responses. Conditional on the set of other covariates
and REs, parameter interpretation can be expressed in terms of the corresponding covariate
effect directly on Ûij, specifically the ratio µij

1⊗µij
. Here, Ûij is the ‘expected proportion of

diseased sites’, and 1 ⊗ Ûij is the complement, i.e., the ‘expected remaining proportion to
being completely diseased’, both conditional on 𝑌ij not being zero or one. Hence, the results
in Table 2.2 can be expressed as the number of times the ratio is higher/lower with every
unit increase (for a continuous covariate, such as age), or a change in category say from 0 to
1 (for a discrete covariate, say gender). For example, this ratio for age (a strong predictor
of PrD) is (1.4, 95%CI = [1.2, 1.6]). For gender, we conclude that this ratio is 40% lower for
males as compared to females. Although study recruitment design was gender blind, females
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Figure 2.3: Posterior mean and 95% CI of parameter estimates
for 𝑝0ij (left panel) and 𝑝1ij (right panel) from Model 1. CIs
that include zero are gray, those that does not include zero are
black.

Table 2.3: The values correspond-
ing to p0ij represent odds of having
a ‘disease free’ versus ‘diseased’ tooth-
type, while those for p1ij denote odds
of ‘completely diseased’ versus ‘diseased
and disease-free’ tooth types.

Parameter 𝑝0ij 𝑝1ij

Intercept 0.2 0.03
Gender 2.9 0.5
Age 0.6 2.5

HbA1c 0.7 1.4
Smoker 0.7 0.7
Incisor 0.5 1.4
Premolar 0.08 1.3
Molar 0.005 13.3

participated at a higher rate than the males, not unusual for studies on this population
(Johnson-Spruill et al., 2009; Bandyopadhyay et al., 2009), and further patient navigator
techniques are being developed to achieve better gender balance. The other significant
covariates can be interpreted similarly. For example, this ratio is 8.5 times higher for the
posteriorly located molars as compared to anteriorly placed canines (the baseline).

The mean estimates (standard deviations) of ã for the Models 1, 2 and 3 are 7.6 (0.42),
7.6 (0.43) and 4.6 (0.26), and those of à2

b are 1.2 (0.13), 1.2 (0.13) and 1.8 (0.18), respectively.
Based on these and from Table 2.2, we conclude there is little difference between the Models
1 and 2 with respect to the estimates of β, ã and à2

b . The main advantage of Model 1
is that it identifies significant covariates related to free PrD and completely diseased tooth
types, which is not available in Model 2. However, the estimates of premolar, molar, ã and
à2
b obtained from Model 3 are greater than those obtained from Models 1 and 2, with the
highest difference being for molar. Interestingly, the estimates of ã (à2

b ) from Model 3 are
smaller (greater) than those from Models 1 and 2, implying that augmenting leads to a lower
(estimated) variance of 𝑌 than the transformation-based Model 3.

Figure 2.3 plots the posterior parameter means and the 95% CIs of the parameters
used to model p0 (left panel) and p1 (right panel) for Model 1. Gender, age and type of
tooth significantly explain free of PrD, while gender, age and molar significantly explain the
completely diseased category. Table 2.3 presents the number of times higher/lower of the
odds for free of PrD (second column) and completely diseased (third column). For example,
the odds of a tooth type free of PrD are 2.9 times greater for men than for women, while
the odds of a completely diseased molar are about 13 times that that of a (baseline) Canine.
Interestingly, the odds of a completely diseased tooth type are 2.5 times higher for a unit

15



−1.6 −1.3 −0.9 −0.6 −0.2 0.1 0.5 0.9 1.4 3.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Linear predictor (deciles)

E
[Y

| 
Y

≠
0

,1
]

−1.6 −1.3 −0.9 −0.6 −0.2 0.1 0.5 0.9 1.4 3.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 2.4: Observed and fitted relationship between the linear predictor Öij and the (con-
ditional) non-zero-one mean Ûij. Modeled logit relationships are represented by black box-
plots, while the empirical proportions by gray box-plots.

increase in age. Interpretation for the other parameters is similar.
To investigate the adequacy of the logit link for our regression, we consider an empirical

approach via plots of the linear predictor versus the predicted probability (Hatfield et al.,
2012), as depicted in Figure 2.4. We consider Öij from Model 1, and divide it into 10 intervals
containing roughly an equal number of observations. We plot the distribution of the inverse-
logit transformed linear predictors (denoted by the black box-plots) representing the fitted
mean Ûij of the non-zero-one responses. Next, we overlay the empirical distributions of
the observed non-zero-one responses represented by the gray box-plots. From Figure 2.4,
we observe no evidence of link misspecification, i.e., the shapes of the fitted and observed
trends are similar. As mentioned earlier, one can definitely fit other link functions, but the
convenient interpretations in terms of Ûij are no longer valid for these fits.

We also conducted a sensitivity analysis on the prior assumptions for the random ef-
fects precision (1/à2

b ) and the fixed effects precision parameter. In particular, we allowed
àb ≍ Uniform(0, 𝑘), where 𝑘 ∈ ¶10, 50♢ and also the typical Inverse-gamma choice for the
precision 1/à2

b ≍ Gamma(𝑘, 𝑘), where 𝑘 ∈ ¶0.001, 0.1♢. We also chose the normal precision
on the fixed effects to be 0.1, 0.25 (which reflects an odds-ratio in between 𝑒⊗4 to 𝑒4) and
0.001. We checked the sensitivity in the posterior estimates of β by changing one parameter
at a time, and refitting Model 1. Although slight changes were observed in parameter esti-
mates and model comparison values, the results appeared to be robust, and did not change
our conclusions regarding the best model, inference (and sign) of the fixed-effects, and the
influential observations.

Finally, to determine the effect of possible influential observations, we computed the q-
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divergence measures for Model 1. In particular, the subjects with id # 135, 159, 174 and
285 were considered influential because the values of the 𝐿1, KL and 𝐽-distances exceeded
the specified thresholds. The subjects 135, 159 and 285 have higher proportion responses
for all tooth types (with 𝑌ij ⊙ 0.75) for than the corresponding mean proportions across all
subjects. On the contrary, subject 174 is free of PrD (𝑌ij = 0) across all tooth types. To
quantify the impact of these observations on the covariate effects, we refit the model by first
removing these subjects successively, and then as a whole. Compared to other covariates, the
estimate of molar for the regression onto 𝑝0ij was impacted substantially. A minor impact
on smoker for regression onto 𝑝0ij was also observed when all influential observations were
removed. Overall, parameter significance and signs of the coefficients remained the same.
Henceforth, we assert to use the estimates obtained from fitting Model 1 to the full data
without removing these subjects.

2.4 Simulation studies

In this section, we conduct two simulation studies. For the first, we plan to investigate
the consequences on the (regression) parameter estimation under model misspecification via
mean squared error (MSE), relative bias (RB), and coverage probability for the (a) ZOAB-
RE model (Model 1), and (b) the LS model (Model 3) for varying sample sizes. In the second,
we evaluate the efficiency of the q-divergence measures to detect atypical observations in the
ZOAB-RE model.

Simulation 1: We generate 𝑇ij ≍ Normal(Ûij, 1), where 𝑖 = 1, . . . , 𝑛 (the number of
subjects), 𝑗 = 1, . . . , 5 (indicating cluster of size 5 for each subject), with location parameter

Ûij modeled as Ûij = Ñ0 + Ñ1𝑥ij + 𝑏i, and 𝑏i ≍ 𝑁(0, à2). Then, 𝑦ij =
exp(Tij)

1+exp(Tij)
. We choose

various sample sizes 𝑛 = 50, 100, 150, 200. The explanatory variables 𝑥ij are generated as
independent draws from a Uniform(0, 1), and regression parameters and variance components
are fixed at Ñ0 = ⊗0.5, Ñ1 = 0.5, and à2 = 2. This generates data from a logit-normal model
with 𝑦ij ∈ (0, 1). Next, we can have two sets of 𝑝0 and 𝑝1; namely, Case (a): 𝑝0 = 0.01, 𝑝1 =
0.01 and Case (b): 𝑝0 = 0.1, 𝑝1 = 0.08 (representative of the real data). The final step is to
allocate the 0’s, 1’s, and the 𝑦ij ∈ (0, 1) with probabilities 𝑝0, 𝑝1 and 1 ⊗ 𝑝0 ⊗ 𝑝1, which is
achieved via multinomial sampling. To keep the simulation design simple, we do not consider
the regressions onto 𝑝0 and 𝑝1.

In the first simulation study, we simulated 500 such data sets and fitted the ZOAB-
RE and the LS models with similar prior choices as in the data analysis. With our pa-
rameter vector θ = (Ñ0, Ñ1, à

2
b , 𝑝0, 𝑝1), and 𝜃s an element of θ, we calculate the MSE as

MSE(𝜃s) =
1

500

√︁500
i=1(𝜃is ⊗ 𝜃s)

2, the relative bias as Relative Bias(𝜃s) =
1

500

√︁500
i=1

(︁

θ̂is

θs
⊗ 1

⎡

,

and the 95% coverage probability (CP) as CP(𝜃s) =
1

500

√︁500
i=1 𝐼(𝜃s ∈ [𝜃s,LCL, 𝜃s,UCL]), where

𝐼 is the indicator function such that 𝜃s lies in the interval [𝜃s,LCL, 𝜃s,UCL], with 𝜃s,LCL and

𝜃s,UCL as the estimated lower and upper 95% limitis of the CIs, respectively. Figure 2.5
presents a visual comparison of the parameters Ñ0 and Ñ1 for varying sample sizes and pro-
portions 𝑝0 and 𝑝1, where the black and gray lines represent the ZOAB-RE model and the
LS model, respectively.

As expected, both panels of Figure 2.5 reveal that the absolute values of RB for both Ñ0
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Figure 2.5: Relative Bias, MSE and CP of Ñ0 and Ñ1 after fitting the ZOAB-RE (black line)
and LS (gray line) models, with 𝑝0 = 𝑝1 = 1% (upper panel) and 𝑝0 = 10%,𝑝1 = 8% (lower
panel).

and Ñ1 are much larger for the LS model than the ZOAB-RE model, with the RB increasing
with increasing 𝑝0 and 𝑝1 (Case b). We observe similar behavior for MSE and CP, i.e., both
the parameters from the ZOAB-RE model are estimated with lower MSE and higher CP
when compared to the corresponding ones from the LS model, with the performance of the
LS model getting worse with increasing proportions of extreme values. Clearly, when data
are generated from a misspecified (augmented logit-normal) model, the LS model seems to
produce a considerable impact on the regression parameter estimates as compared to the
more robust ZOAB-RE model. For the sake of brevity, the MSE, RB and CP for the other
parameters (𝑝0, 𝑝1, à

2
b ) are not presented here, but we discuss the results. The proportions

𝑝0 and 𝑝1 are estimated with positive RB. Interestingly, for à
2
b , the RB remains negative for

all cases, with the absolute value of the RB increasing with increasing sample size mainly
for the LS model. This might occur because the LS transformation induces lower variability
in the data leading to an underestimated à2

b and RB. With this increase in RB, the 95% CI
does not include the true value of à2

b , and hence the CP is mostly 0 for higher 𝑛 (150 and
200) for both models in Case (a), and also for all sample sizes for the LS model in Case (b).
We conclude that under model misspecification, applying the LS transformation may not
be adequate even for a moderate number of 0’s and 1’s, with the performance deteriorating
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further as the proportion of extremes increases.
Simulation 2: Here, we simulated one data set with 100 subjects using the same data

generation scheme as in Simulation 1. We perturb the response vector for ID #20 via
y20 = y20 + 2sd(y20), where sd stands for standard deviation. If an element of the per-
turbed vector was greater than 1, we assigned 1 there. Figure 2.6 presents the q-divergence
measures, both without perturbation (upper panel) and with perturbation (lower panel).
We conclude from here that the divergence measures can correctly detect the influential
(perturbed) observations.
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Figure 2.6: The q-divergence measures (K-L, J and L1 distance) without perturbation (upper
panel), and after perturbing subject ID #20 (lower panel) for the simulated data.

2.5 Conclusions

Motivated by the classical development of (Ospina and Ferrari, 2010), we developed a
model for clustered responses in [0, 1], and applied it to an interesting PrD dataset. Our
model allows the parameters 𝑝0ij, 𝑝1ij and Ûij to depend on covariates, leading to identi-
fying covariates that are significant to explain disease-free, progressing with disease, and
completely diseased tooth types. We also developed tools for outlier detection using q-
divergence measures, and quantified their effect on the posterior estimates of the model
parameters. Both simulation studies and real data application justify seeking an appropri-
ate theoretical model over utilizing ad hoc data transformations for proportion data. Note
that the proposition in Ospina and Ferrari (2010) (without any random effects) is termed
‘Inflated beta distributions’. Typically, for cases of value-inflation, such as the zero-inflated
counts of Lachenbruch (2002), or the zero-inflated (longitudinal) continuous data as in Ghosh
and Albert (2009), inflation occurs when the probability mass of a value exceeds what is al-
lowed by the proposed (underlying) distribution. This is certainly not the case here, and
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following Hatfield et al. (2012), we prefer to call it an ‘augmented’ model over an ‘inflated’
model. Our model can be fitted using standard available software packages, such as R and
OpenBUGS, with easy access to practitioners in the field.

It is of interest to investigate the presence of thick/heavy tails in the underlying ZOAB-
RE proposition, and to model the random effect term 𝑏i using robust alternatives (say, the
𝑡-density) over the normal density as in Figueroa-Zúniga et al. (2013). For our dataset, the
results were very similar using a 𝑡-density, and hence we did not consider it any further.

Our current analysis considers clustered cross-sectional periodontal proportion data. Of-
ten, these study subjects can be randomized to dental treatments and subsequent longitudi-
nal follow-ups, leading to a clustered-longitudinal framework, where one might be interested
in estimating the profiles (both overall, and subject-level) in the proportion of diseased sur-
faces for the four tooth types with time. Our ZOAB-RE can certainly be extended to such
situations with proper consideration to the GLMM REs specification. Other propositions
available in the literature on modeling clustered (or longitudinal) proportion responses in-
clude simplex mixed-effects models (Qiu et al., 2008), robust transformation models (Song
and Tan, 2000; Zhang et al., 2009), etc. How these models compare with ours, and ways to
adapt these to proportion responses in [0, 1] are components of future research, and will be
considered elsewhere.
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Chapter 3

Augmented mixed models for

clustered proportion data using the

simplex distribution

Abstract

Proportional continuous data can be found in areas such as biological sciences, health, engi-
neering, etc. This type of data, doubly bounded, assumes values in the interval (0, 1) and for
analysis, distributions such as logistic-normal, beta, beta-rectangular and simplex, among
others, have been used. However, because in practical situations it is possible to observe,
proportions, rates or percentages that are zero and/or one, these distributions cannot be
used. To deal with this, we propose a regression model based on the simplex distribution
that allows modelling the values zero and one simultaneously. For our analysis, we adopt a
Bayesian framework and develop a Markov chain Monte Carlo algorithm to carry out the
posterior analyses for longitudinal proportional data. Bayesian case deletion influence diag-
nostics based on the q-divergence measure and model selection criteria are also developed.
We illustrated the proposed methodology through both simulation studies and real data to
demonstrate the performance of our proposal.

Keywords Augmented distributions; Bayesian inference; MCMC; simplex distribution;
q-divergence measures.

3.1 Introduction

Double-bounded data can be found in different areas such as biology, health sciences and
engineering, among many others. Some of the strategies pointed out in the statistical litera-
ture to analyze this type of data are based on regression models combined with a particular
data transformation such as the logit transformation. However, the use of nonlinear trans-
formations may hinder the interpretation of the regression parameters. This situation can
be overcome by considering probability distributions with double-bounded support, such as
the beta, simplex (Barndorff-Nielsen and Jørgensen, 1991), and beta rectangular distribu-
tions (Hahn, 2008), which can be parameterized in terms of their mean. Other distributions,
such as the logistic normal (Atchison and Shen, 1980) and the Kumaraswamy distribution
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(Kumaraswamy, 1980) also have support in the unit interval. Nevertheless, the probability
density function (pdf) of these distributions cannot be parameterized in terms of the means,
limiting their use in regression analysis.

In this work, we focus on the simplex distribution to model proportions, rates or frac-
tional data because its pdf presents a wide range of shapes including skewed, bimodal and
multimodal ones. Based on this distribution, Song and Tan (2000) proposed a regression
model relating the covariates with the mean via the logit link and assuming a fixed dispersion
parameter. In that case, the the parameters are estimated through an extended version of the
generalized estimating equations (GEE). Subsequently, Song et al. (2004) relaxed the con-
dition over the dispersion parameter considering it to be heterogeneous as a function of the
covariates through the logarithm link function. On the other hand, Qiu et al. (2008) derived
the penalized quasi-likelihood (PQL) and restricted maximum likelihood (REML) (Breslow
and Clayton, 1993), using the high-order multivariate Laplace approximation, which gives
satisfactory maximum likelihood (ML) estimation of the model parameters in the simplex
mixed-effects model. More recently, López (2013) presented a Bayesian approach for estimat-
ing the parameters in the simplex regression model where the response variable is confined
in the interval (0, 1).

In practical situations, proportions zero and/or one can be observed. Alternatives for the
analysis of this type of data (in the interval [0, 1]) consider some transformations such as that
proposed by Smithson and Verkuilen (2006). In this case, data values in the interval [0, 1] are
transformed to values in the interval (0, 1). Once the transformation is applied, distributions
like the beta or simplex, among others can be used. However, these transformations induce
estimates with poor statistical properties even when small quantities of zeros and ones are
observed (Galvis et al., 2014). For that reason and motivated by our data application, which
includes zeros and ones, we propose a zero and one augmented simplex model (ZOAS), which
allows us to deal with data in the interval [0, 1] without the need for transformations.

After fitting the model, it is important to conduct sensitivity analysis to detect possible
influential observations. An important approach to identify these influential cases is the
case-deletion method introduced by Cook (1977). In the Bayesian context, Xie et al. (2014)
investigated the Bayesian estimation and case influence diagnostics for the zero-inflated
generalized Poisson regression model and Galvis et al. (2014) studied the Bayesian case-
deletion diagnostics for the zero-and-one augmented beta random effects model. To the
best of our knowledge, the Bayesian approach for drawing influence diagnostics in ZOAS
random effects (ZOAS-RE) models has not been investigated in the literature. Therefore,
an additional purpose of this work is to discuss and to develop some Bayesian influence
diagnostic measures, based on the q-divergence, as proposed by Peng and Dey (1995), for
the ZOAS-RE model. These Bayesian measures can be easily implemented with standard
Bayesian software packages such as OpenBUGS (Thomas et al., 2006).

The paper is organized as follows. Section 3.2 presents some characteristics of the family
of dispersion models and introduces the simplex distribution as an element of this family.
In addition, the ZOAS regression model and the ZOAS-RE model are presented. Section
3.3 deals with the Bayesian inference, Bayesian model selection tools and case influence
diagnostics for our proposed models. The application of the ZOAS-RE model is presented
in Section 3.4 and simulation studies are presented in Section 3.5. Finally, some concluding
remarks and avenues for further research are presented in Section 3.6.
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3.2 Statistical model

3.2.1 Preliminaries

Dispersion models (DM) (Jørgensen, 1997) are a bi-parametric class of distributions
whose elements have a pdf given by

𝑓(𝑦♣Û, à2) = 𝑎(𝑦, à2) exp
{︂

⊗ 1

2à2
𝑑(𝑦, Û)

}︂

, (3.2.1)

where 𝐸[𝑌 ] = Û, à2 > 0 is a dispersion parameter, 𝑎(𝑦, à2) > 0 does not depend on Û and
the function 𝑑(≤, ≤) measures the discrepancy between the observed 𝑦 and the expected Û.
Through this function it is possible to identify each element belonging to the DM family
of distributions. This function is called unit deviance if it satisfies 𝑑(𝑦, 𝑦) = 0 when 𝑦 = Û
and 𝑑(𝑦, Û) ⊙ 0 when 𝑦 ̸= Û. Moreover, the unit deviance is said to be regular if it is twice

continuously differentiable with respect to (𝑦, Û), satisfying ∂2

∂µ2𝑑(𝑦, Û) =
∂2

∂µ2𝑑(𝑦, 𝑦)
⧹︃

⧹︃

⧹︃

y=µ
> 0.

In this case (regular unit deviance), the variance function is defined as

𝑉 (Û) = 2

∮︁

𝜕2

𝜕Û2
𝑑(𝑦, Û)

⧹︃

⧹︃

⧹︃

y=µ

⨀︀⊗1

.

Some well known distributions such as the normal, gamma, inverse normal, binomial
and Poisson, among others, are particular cases of the DM models and, additionally, belong
to a subclass of the DM family called exponential dispersion models (EDM), as previously
proposed by Jørgensen (1987). Note that our work is focused on the simplex distribution
introduced by Barndorff-Nielsen and Jørgensen (1991), which also belongs to the DM class
of distributions. The simplex distribution is flexible and presents a wide variety of shapes,
including some multimodal ones, which cannot be obtained by its counterpart, the beta
distribution (see Figure 3.1). The pdf of a random variable 𝑌 following a simplex distribution,
with mean Û and dispersion parameter à2, denoted by 𝑆(Û, à2), is given by

𝑓(𝑦♣Û, à2) = ¶2Þà2[𝑦(1 ⊗ 𝑦)]3♢⊗1/2 exp

∮︁

⊗ (𝑦 ⊗ Û)2

2à2𝑦(1 ⊗ 𝑦)Û2(1 ⊗ Û)2

⨀︀

, (3.2.2)

where 0 < 𝑦 < 1, 0 < Û < 1, à2 > 0.
From the pdf (3.2.1), we have that 𝑎(𝑦, à) = ¶2Þà2[𝑦(1 ⊗ 𝑦)]3♢⊗1/2 and

𝑑(𝑦, Û) = ⊗ (𝑦 ⊗ Û)2

2à2𝑦(1 ⊗ 𝑦)Û2(1 ⊗ Û)2
. It can be shown that 𝑑(𝑦, Û) is a regular unit deviance

and therefore the variance function for the simplex distribution is given by 𝑉 (Û) = Û3(1⊗Û)3.
Figure 3.1 shows several shapes of the simplex distribution for some values of Û and

à2. Note that, when Û is close to zero (one) and the value of à2 is large, the mass of the
simplex model is in the left (right) tail of the distribution. Moreover, when Û is close to 0.5
and the value of à2 is large, the pdf of the simplex distribution is bimodal, unlike the beta
distribution, which has a unique mode.
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Figure 3.1: (Upper panel) pdf of the simplex distribution and (lower panel) pdf of the beta
distribution with mean Û and precision parameter ã.

3.2.2 Simplex regression model

In order to define the simplex regression model, we consider the random variables 𝑦1, . . . , 𝑦n
following the distribution given in (3.2.2). To relate the mean of the distribution with the
covariate vector xi, 𝑖 = 1 . . . , 𝑛, we used a link function 𝑔1 with domain in the interval (0,1)
and range on the real line. This function is given by 𝑔1(Ûi) = x⊤

i β, where β is a vector
of regression parameters of dimension 𝑝 where the first element of xi is equal to one to ac-
commodate the intercept. The dispersion parameter à2 can be considered invariant for all
subjects as was adopted by Song and Tan (2000) and Qiu et al. (2008) or it can be regressed
onto the covariates by using link functions such as the log, square root, etc, as was proposed
by Song et al. (2004). The parameter estimation is conducted via ML in the classical context
or using a Markov chain Monte Carlo (MCMC) scheme in the case of the Bayesian approach.

3.2.3 Zero-and-one augmented simplex random effects model

To deal with longitudinal data with observations in the [0, 1] interval, the ZOAS-RE
model is defined. Let Y1, . . . ,Yn be 𝑛 random vectors, where Yi = (𝑌i1, . . . , 𝑌ini

)⊤ is a
response vector of length 𝑛i corresponding to the 𝑖-th subject. In order to define the ZOAS-
RE model, it is assumed that conditional on the random effects bi = (𝑏i1, . . . , 𝑏iq)

⊤, the
components 𝑌ij of Yi are independent and distributed according to the ZOAS model whose
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pdf is given by

𝑓(𝑦ij♣𝑝0ij, 𝑝1ij, Ûij, à
2) =

⎧

⋁︁

⨄︁

⋁︁

⋃︁

𝑝0ij, if 𝑦ij = 0,
𝑝1ij, if 𝑦ij = 1,

(1 ⊗ 𝑝0ij ⊗ 𝑝1ij)𝑓(𝑌ij = 𝑦ij♣Ûij, à2), if 𝑦ij ∈ (0, 1),
(3.2.3)

where 𝑓(𝑦ij♣Ûij, à2) is as in (3.2.2), 𝑗 = 1, . . . , 𝑛i, 𝑝0ij > 0, 𝑝1ij > 0 and 𝑝0ij + 𝑝1ij < 1. We
denote by Yij♣bi ≍ 𝑍𝑂𝐴𝑆(Ûij, à

2, 𝑝0ij, 𝑝1ij) if the pdf of 𝑌ij is given as in (3.2.3). Note that,
in this case, the model parameters can be regressed onto some covariates using appropriate
link functions, as follows:

𝑔1(µi) = X⊤
i β + Z⊤

i bi,

𝑔2(p0i) = W0
⊤
i ψ

and

𝑔3(p1i) = W1
⊤
i ρ,

where µi = (Ûi1, . . . , Ûini
)⊤, bi = (𝑏i1, . . . , 𝑏iq)

⊤ with 𝑏i≤ ≍ 𝑁(0, à2
b ), p0i = (𝑝0i1, . . . , 𝑝0ini

)⊤,
p1i = (𝑝1i1, . . . , 𝑝1ini

)⊤; Xi, W0i and W1i are design matrices of dimension 𝑝 × 𝑛i, 𝑟 × 𝑛i
and 𝑠 × 𝑛i related to the fixed effects β, ψ and ρ respectively, and Zi is the design matrix
of dimension q × 𝑛i related to the random effects vector bi. Link functions as the logit,
probit or complementary log-log can be considered for 𝑔1, 𝑔2 and 𝑔3. However, for the sake
of interpretation, here we choose the logit function. As was mentioned previously, à2 (as well
as the other parameters) can be regressed onto some covariates or considered invariant. In
this work, we consider it invariant for all subjects. Finally, we define our ZOAS-RE model
as 𝑌ij♣bi ≍ 𝑍𝑂𝐴𝑆(Ûij, à

2, 𝑝0ij, 𝑝1ij), 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑛i.

3.3 Bayesian Inference

3.3.1 Priors and posterior distributions

In order to complete the Bayesian specification, it is necessary to consider prior dis-
tributions for all the unknown model parameters. In this case, we use Normal multi-
variate distributions for the parameters β, ψ and ρ. That is, β ≍ Normalp(0,Σ

⊗1
β ),

ψ ≍ Normalr(0,Σ
⊗1
ψ ), ρ ≍ Normals(0,Σ

⊗1
ρ ). For the dispersion parameter, we consid-

ered a uniform distribution, which is à ≍ Unif(0, 𝑎1) with a large value for 𝑎1. When the
vector of probabilities (𝑝0, 𝑝1, 1⊗ 𝑝0 ⊗ 𝑝1)

⊤ is considered invariant, we use the Dirichlet prior
with hyperparameter α⊤ = (Ð1, Ð2, Ð3) and Ðs ≍ Gamma(1, 0.001), 𝑠 = 1, 2, 3. The prior
for the variance of RE is àb ≍ Unif(0, 𝑏1), with a large positive value for 𝑏1. Although multi-
variate specifications (multivariate zero mean vector with inverted-Wishart covariance) are
certainly possible, we stick to simple (and independent) choices.

Posterior conclusions are based on the joint posterior distribution of all the model pa-
rameters (conditional on the data), and are obtained by combining the likelihood
𝐿(Ω♣b,X,Z,W0,W1,y) given by

n
∏︁

i=1

ni
∏︁

j=1

(︁

𝑝0ij

⎡Iyij =0
(︁

𝑝1ij

⎡Iyij =1
[︁

(1 ⊗ 𝑝0ij ⊗ 𝑝1ij)𝑓(𝑦ij;Ûij, à
2)
]︁Iyij ∈(0,1)

,
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and the joint prior densities using the Bayes’ rule. Thus, assuming a priori independence of
the elements of the parameter vector, we can write

𝑝(Ω,b, àb♣X,Z,W0,W1,y) ∝ 𝐿(Ω♣b,X,Z,W0,W1,y) × Þ(Ω,b, àb),

where Þ(Ω,b, àb) = Þ0(β)Þ1(ψ)Þ2(ρ)Þ3(à
2)Þ4(b♣àb)Þ5(àb) and Þj(.), 𝑗 = 0, . . . , 5 denotes

the prior/hyperprior distributions for the model parameters as was described above.
The full conditional distributions necessary for the MCMC algorithm (a Metropolis-

within-Gibbs algorithm) of the ZOAS-RE regression model are obtained as follows:

• Þ(β♣y,b, àb,Ω(⊗β)
), is proportional to

exp

⎧

⨄︁

⋃︁

⊗1

2
(β ⊗ β0)

⊤Σ⊗1
β (β ⊗ β0) ⊗

n
∑︁

i=1

ni
∑︁

j=1

[𝑦ij ⊗ (1 ⊗ 𝑦ij)𝐴ij]
2 (1 + 𝐴ij)

2

2à2𝑦ij(1 ⊗ 𝑦ij)𝐴2
ij

𝐼¶yij∈(0,1)♢

∫︁

⋀︁

⋂︁

,

where 𝐴ij = exp(X⊤
ijβ + Z⊤

ijbi).

• Þ(à2♣y,b, àb,Ω(⊗σ2)) is a right truncated inverse gamma with truncation point 𝑎
2. That

is à2♣y,b, àb,Ω(⊗σ2) ≍ 𝐼𝐺𝑎𝑚𝑚𝑎+(𝑎2, 𝑁 ⊗ 2,
√︁n
i=1

√︁ni
j=1 𝐵ij), where 𝑁 =

√︁n
i=1 𝑛i and

𝐵ij =
(𝑦ij ⊗ Ûij)

2

2𝑦ij(1 ⊗ 𝑦ij)Û2
ij(1 ⊗ Ûij)2

, Ûij =
𝐴ij

1 + 𝐴ij
and 𝑦ij ∈ (0, 1).

• Þ(bi♣y, àb,Ω) is proportional to

exp

⎧

⨄︁

⋃︁

⊗1
2à2

b

q
∑︁

k=1

𝑏2
ik ⊗

ni
∑︁

j=1

[𝑦ij ⊗ (1 ⊗ 𝑦ij)𝐴ij]
2 (1 + 𝐴ij)

2

2à2𝑦ij(1 ⊗ 𝑦ij)𝐴2
ij

𝐼¶yij∈(0,1)♢

∫︁

⋀︁

⋂︁

𝐼¶bik∈R♢.

• When the probabilities 𝑝0 and 𝑝1 are regressed through some covariates,
Þ(ψ♣y,b, àb,Ω(⊗ψ)

) is proportional to

exp
{︂

⊗1

2
(ψ ⊗ψ0)

⊤Σ⊗1
ψ (ψ ⊗ψ0)

}︂ n
∏︁

i=1

ni
∏︁

j=1

𝐶
I{yij =0}

ij (1 ⊗ 𝐶ij ⊗𝐷ij)
I{yij ∈(0,1)} ,

where 𝐶ij = logit⊗1(W0
⊤
ijψ) and 𝐷ij = logit⊗1(W1

⊤
ijρ); and Þ(ρ♣y,b, àb,Ω(⊗ρ)), is

proportional to

exp
{︂

⊗1

2
(ρ⊗ ρ0)

⊤Σ⊗1
ρ (ρ⊗ ρ0)

}︂ n
∏︁

i=1

ni
∏︁

j=1

𝐷
I{yij =1}

ij (1 ⊗ 𝐶ij ⊗𝐷ij)
I{yij ∈(0,1)} .

• If 𝑝0 and 𝑝1 are considered invariant for all subjects, we have that Þ(p♣y,b,β, àb)
is a Dirichlet distribution with parameters (Ü0, Ü1, Ü2), where Ül = Ðl

√︁n
i=1

√︁ni
j=1 𝐼yij=l,

𝑙 = 0, 1 and Ü2 = Ð2
√︁n
i=1

√︁ni
j=1 𝐼yij∈(0,1).
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The relevant MCMC steps were implemented using the BRugs package (Ligges et al., 2009),
which connects the R with the OpenBUGS software. After discarding 50000 burn-in samples,
we used 50000 more samples (with a spacing of 50) from two independent chains with widely
dispersed starting values for posterior summaries. Convergence was monitored via MCMC
chain histories, autocorrelation and crosscorrelation, density plots, and the Brooks-Gelman-
Rubin potential scale reduction factor R̂, all of which are available in the R coda library
(Cowles and Carlin, 1996). The associated BRugs code is available on request from the
corresponding author.

3.3.2 Bayesian model selection and influence diagnostics

We use the conditional predictive ordinate (CPO) for our model selection derived from
the posterior predictive distribution (ppd), and summarize these CPOs via the log pseudo-
marginal likelihood (LPML) statistic (Carlin and Louis, 2008). Larger values of LPML
indicate better fit. Owing to the instability of the harmonic-mean identity used for CPO
computations (Raftery et al., 2007), we consider a more pragmatic route and compute the
CPO (and LPML) statistics using 500 non-overlapping blocks of the Markov chain, each of
size 2000, post-convergence (i.e., after discarding the initial burn-in samples), and report
the expected LPML computed over the 500 blocks. In addition, we also apply the expected
AIC (EAIC), expected BIC (EBIC) (Carlin and Louis, 2008) and the DIC3 (Celeux et al.,
2006) criteria. The DIC3 was used as an alternative to the usual DIC (Spiegelhalter et al.,
2002) because of the ease of computation directly from the MCMC output, and also due to
the mixture modeling framework. All these criteria abide by the ‘lower is better’ law, i.e.,
the model producing the lowest value gets selected.

In addition, as a direct by product of the MCMC output, some influence diagnostic
measures are developed to study the impact of outliers on mainly the fixed effects parameters
due to data perturbation schemes based on case-deletion statistics (Cook and Weisberg,
1982), and the q-divergence measures (Csisz et al., 1967; Weiss, 1996) between posterior
distributions. We consider three choices of these divergences, namely, the Kullback-Leibler
(KL) divergence, the 𝐽-distance (symmetric version of the KL divergence), and the 𝐿1-
distance. We use the calibration method of Peng and Dey (1995) to obtain the cut-off values
as 0.90, 0.83 and 1.32 for the 𝐿1, KL and 𝐽-distances, respectively.

3.4 Application to periodontal disease proportions

We start this section with a brief description of the dataset. The Medical University
of South Carolina (MUSC) performed a study in order to know the status and progression
of clinical attachment level (CAL), a clinical marker of periodontal disease (PrD) among
Gullah-speaking African-Americans with Type-2 diabetes. The main goal in that study
is to identify covariates related with absence, limited presence and total presence of the
disease. The dataset contain records on 28 teeth (considered full dentition, excluding the
4 third-molars) from 290 subjects, where the attention is focused on quantifying the extent
and severity of PrD with respect to tooth-types. The observed response is: ‘the proportion
of diseased tooth-sites (with Cal value ⊙ 3mm), for each of the four tooth types, i.e.,
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incisors, canines, pre-molars and molars, within a subject’, and therefore, a clustered data
framework is generated, where each subject records four observations corresponding to the
four tooth-types. Note that in this case, the response lies in the closed interval [0,1]; where
0 and 1 represent completely disease free and highly diseased cases, respectively. Missing
teeth were considered ‘missing due to PrD’ where all sites for that tooth contributed to
the diseased category. Subject-level covariates include Gender (0=male,1= female), Age
of subject at examination (in years), Glycosylated Hemoglobin (HbA1c) status indicator
(0=controlled,< 7%; 1=uncontrolled,⊙ 7%) and smoking status (0=non-smoker,1=smoker).
The smokers category includes current and past smokers. We also considered a tooth-level
variable, representing each of the four tooth-types, with ‘canine’ as the baseline.

Due to the presence of a substantial number of 0’s (114, 9.83%) and 1’s (94, 8.10%),
the use of a simplex regression might be inappropriate in this context. Consequently, we
consider our proposed ZOAS-RE model in two different setups:

Model 1 𝑌ij ≍ 𝑍𝑂𝐴𝑆 ⊗𝑅𝐸(Ûij, à
2, 𝑝0ij, 𝑝1ij),

Model 2 𝑌ij ≍ 𝑍𝑂𝐴𝑆 ⊗𝑅𝐸(Ûij, à
2, 𝑝0, 𝑝1),

where Ûij = logit⊗1(X⊤
ijβ + 𝑏i), Xij = (1,Genderi,Agei,HbA1ci, Smokeri,

Incisorij,Premolarij,Molarij)
⊤, Ñ0 is the intercept, Ñ1, . . . , Ñ7 are the regression parameters,

and 𝑏i is the subject-level random effect term. For the parameters 𝑝0 and 𝑝1 we also use
logit link functions, that is, 𝑝0ij = logit⊗1(W0

⊤
ijψ) and 𝑝1ij = logit⊗1(W1

⊤
ijψ) with W0ij =

W1ij = Xij.
We also consider in the analysis the zero and one augmented beta model with random

effects (ZOAB-RE) proposed by Galvis et al. (2014). This model uses the beta distribution
parameterized as in Ferrari and Cribari-Neto (2004) to model data in (0, 1). In this model, as
in the ZOAS-RE model, the parameters 𝑝0 and 𝑝1 can be considered constants or regressed
onto covariates. Therefore, as in the case of the ZOAS-RE model, we consider two natural
competing models:

Model 3 𝑌ij ≍ 𝑍𝑂𝐴𝐵 ⊗𝑅𝐸(Ûij, ã, 𝑝0ij, 𝑝1ij),
Model 4 𝑌ij ≍ 𝑍𝑂𝐴𝐵 ⊗𝑅𝐸(Ûij, ã, 𝑝0, 𝑝1).

In these models, we consider the same systematic part and link function used in models 1
and 2.

Although other link functions (such as probit, cloglog, etc) are available, here we restrict
ourselves to the symmetric logit link. Those models can be compared using the model choice
criteria described in Subsection 3.3.2. In the absence of historical data/experiments, our prior
choices follow the specifications described in Subsection 3.3.1. In the case of the parameter
ã in the ZOAB-RE model, we consider a Gamma prior, that is, ã ≍ Gamma(0.1, 0.01).

Table 3.1 presents the DIC3, LPML, EAIC and EBIC values calculated for models 1-4.
Notice that, Model 1 (ZOAS-RE model with covariates in 𝑝0 and 𝑝1) outperforms the other
models for all criteria. Therefore, we select Model 1 as our best model. Figure 3.2 plots the
posterior parameter means and the 95% credible intervals (CIs) for regression onto Û (left
panel), 𝑝0 (middle panel) and 𝑝1 (right panel) from the models 1 and 3. The gray intervals
in this figure contain the zero value (the non-significant covariates), while the black intervals
do not include the zero value (the significant ones at 5% level). In this figure, it can be noted
that the significance of the covariates is similar in both models. However, this significance
changes for the incisor covariate used to model Û, which is not significant under the Model
1.
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Figure 3.2 (left panel) shows that for Model 1 the covariates Gender, Age and Premolar
and Molar tooth type are related with the proportion of sites with PrD. Also, from Figure
3.2 (middle panel) it can be seen that the covariates Gender, Age and type of tooth are
significant to explain the absence of PrD. Finally, the covariates Gender, Age and Molar are
significant to explain disease completely (Figure 3.2, right panel). It is important to note the
opposite form in which the covariates Gender, Age and Molar act on the parameters 𝑝0 and
𝑝1. That is, while the sign of the parameters related to Age, and tooth type are negatives
to analyze absence of PrD (middle panel), they are positive to analyze complete presence of
disease (right panel), indicating that older people has an odds less (greater) than younger
people of be free (completely) of disease. Similar interpretation can be done for the covariate
Molar.

Figure 3.3 presents the influence measures described in Subsection 3.3.2 for the ZOAS-
RE model (upper panel) and for the ZOAB-RE model (lower panel). The ZOAS-RE model
detected the subject with ID #174 as an influential observation, while the ZOAB-RE model
detected four such subjects, #135, #159, #174 and #285. Hence, we conclude that the
ZOAS-RE model is more robust than the ZOAB-RE model to accommodate outliers. In
order to study the impact of subject #174 on the regression parameters, the ZOAS-RE
model was adjusted by removing this subject from the dataset. The results did not show
changes at the significance of the covariates. However, the coefficient associated with the
molar covariate in the 𝑝0 regression was strongly affected. This situation might be related
to the absence of PrD for all tooth types of this subject.

Molar

Premolar

Incisor

Smoker

HbA1c

Age

Gender

Intercept

−2 0 2 4 −8 −6 −4 −2 0 2

Model 1
Model 3

−10 −5 0 5 10

Figure 3.2: Posterior mean and 95% credible intervals (CI) of parameter estimates for mean
not being zero or one (left panel), for 𝑝0 (middle panel) and for 𝑝1 (right panel) from Models
1 and 3. CIs that include zero are gray, those that do not include zero are black.

3.5 Simulation Studies

In this section, we conduct two simulation studies. In the first study, we analyze the
performance of the ZOAS-RE and ZOAB-RE models and in the second one, we analyze the
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Model 1 Model 2 Model 3 Model 4
DIC3 915.3 1165.3 993.0 1243.5
LPML -461.1 -584.1 -500.5 -623.7
EAIC 917.8 1154.9 992.7 1231.0
EBIC 1047.2 1210.5 1124.2 1286.6

Parameter mean SD mean SD mean SD mean SD
Intercept ⊗0.72s 0.20 ⊗0.71s 0.21 ⊗0.67s 0.18 ⊗0.67s 0.18
Gender ⊗0.51s 0.18 ⊗0.51s 0.17 ⊗0.55s 0.16 ⊗0.54s 0.17
Age 0.36s 0.08 0.37s 0.07 0.35s 0.07 0.34s 0.07

HbA1c 0.05 0.15 0.04 0.15 0.08 0.14 0.07 0.15
Smoker 0.11 0.16 0.10 0.17 0.11 0.16 0.12 0.15
Incisor 0.14 0.09 0.15 0.09 0.20s 0.07 0.19s 0.07
Premolar 0.89s 0.09 0.89s 0.09 0.85s 0.07 0.85s 0.07
Molar 2.17s 0.09 2.17s 0.09 2.15s 0.08 2.14s 0.08
à2 7.25 0.40 7.26 0.41 - - - -
ã - - - - 7.60 0.43 7.63 0.42
𝑝0 - - 0.098 0.009 - - 0.098 0.009
𝑝1 - - 0.081 0.008 - - 0.081 0.008
à2
b 1.33 0.14 1.30 0.13 1.22 0.11 1.22 0.13

Table 3.1: Posterior parameter (mean) estimates and standard deviations (SD) obtained
after fitting Models 1-4 to the periodontal data. s denotes a significant parameter.

effect of transforming the observed zero and one values on the Bayesian estimates of the
regression parameters.

In both studies, the data was generated from a logistic normal distribution (Atchison and
Shen, 1980), as follows. The location parameter Ûij was generated as: Ûij = Ñ0 + Ñ1𝑥ij + 𝑏i,
with, 𝑏i ≍ 𝑁(0, à2

b ), 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 5, indicating a cluster of size 5. Then, we
generated a random variable 𝑇ij following a normal distribution with mean Ûij and variance
1. Next, we obtained the random variable 𝑌ij by applying the inverse logit of 𝑇ij, that is,
𝑌ij = logit⊗1(𝑇ij). This strategy generates values for 𝑦ij in the interval (0, 1). The final step
is to allocate the 0’s, 1’s in the random sample 𝑦ij ∈ (0, 1). It is done by generating random
samples from a multinomial distribution with probabilities vector (𝑝0ij, 𝑝1ij, 1⊗ 𝑝0ij ⊗ 𝑝1ij)

⊤

in simulation scheme 1 and (𝑝0, 𝑝1, 1 ⊗ 𝑝0 ⊗ 𝑝1)
⊤ in simulation scheme 2. The main

goal in both studies is to compare the mean squared error (MSE), relative bias, and coverage
probability for the regression parameter β = (Ñ0, Ñ1)

⊤.

Simulation scheme 1

In this case, the parameters 𝑝0ij and 𝑝1ij are modeled through covariates as logit(𝑝0ij) =
å0 + å1𝑊0ij and logit(𝑝1ij) = 𝜌0 + 𝜌1𝑊1ij, respectively. The explanatory variables 𝑥ij and
𝑊1ij are generated as an independent draws from a Unif(0, 1) and 𝑊0ij = 𝑊0i is generated
as independent sample from a Bernoulli(0.8). The regression parameters and variance com-
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Figure 3.3: The q-divergence measures (K-L, J and L1 distances) for the application data
using the ZOAS-RE model (upper panel) and the ZOAB-RE model (lower panel).

ponents are fixed at Ñ0 = ⊗0.5, Ñ1 = 0.5, å0 = ⊗1, å1 = ⊗1, 𝜌0 = ⊗1, 𝜌1 = ⊗1.5 and
à2
b = 2, respectively.
We simulated 200 data sets with different sample sizes and fitted the ZOAS-RE and

the ZOAB-RE model with both, 𝑝0 and 𝑝1 modeled as explained above. In all cases sim-
ilar priors were chosen as those used in Section 3.4. Using the parameter vector θ =
(Ñ0, Ñ1, å0, å1, 𝜌0, 𝜌1, à

2
b ), with 𝜃s being an element of θ, we calculate the MSE as MSE(𝜃s) =

1
200

√︁200
i=1(𝜃is ⊗ 𝜃s)

2, the relative bias as Relative Bias(𝜃s) =
1

200

√︁200
i=1

(︁

θ̂is

θs
⊗ 1

⎡

, and the 95%

coverage probability (CP) as CP(𝜃s) =
1

200

√︁200
i=1 𝐼(𝜃s ∈ [𝜃s,LCL, 𝜃s,UCL]), where 𝐼 is the indi-

cator function such that 𝜃s lies in the interval [𝜃s,LCL, 𝜃s,UCL], with 𝜃s,LCL and 𝜃s,UCL as the
estimated lower and upper 95% CIs, respectively.

Figure 3.4 presents the results obtained for the parameters Ñ0 and Ñ1. It can be observed
that the ZOAS-RE model outperforms the ZOAB-RE model when the relative bias and
CP are analyzed. However, both models exhibit similar MSE. The results related to the
parameters å0, å1, 𝜌0 and 𝜌1 shown equal performance for both models, although this does
not occur with the variance of the random effect, where the ZOAS-RE model outperforms
the ZOAB-RE model. In the ZOAS-RE model, the absolute relative bias is close to 20%
for all sample sizes, while in the ZOAB-RE model the relative bias is close to 40%. Also,
the MSE for the ZOAS-RE model decreases when the sample size increases. This is 0.31 for
𝑛 = 50 and 0.21 for 𝑛 = 200. In the case of the ZOAB-RE model, the MSE remains around
0.60. Finally, the CP is greater for the ZOAS-RE model.
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Further we fit the ZOAS-RE and ZOAB-RE models without covariates on 𝑝0 and 𝑝1. It is
possible to note that the performance of the relative bias, MSE and CP of the parameters Ñ0,
Ñ1 and à

2
b of these models are very close to those obtained considering covariates on 𝑝0 and

𝑝1. Thus, we can conclude that considering 𝑝0 and 𝑝1 as constants, the Bayesian estimates
of the regression coefficients Ñ0 and Ñ1 are not affected.
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Figure 3.4: Relative bias, MSE and CP of Ñ0 and Ñ1 after fitting the ZOAS-RE (black line)
and ZOAB-RE (gray line) models for the simulated data.

Simulation scheme 2

In this study, the parameters 𝑝0 and 𝑝1 are considered constants across all subjects by
assuming the probability values 𝑝0 = 1%, 𝑝1 = 1% in case a and 𝑝0 = 10%, 𝑝1 = 8% in case

b. Furthermore, the regression parameters and variance components are fixed at Ñ0 = ⊗0.5,
Ñ1 = 0.5 and àb2 = 0.8. Using these values, we generated 200 datasets following the scheme
above and we fit our ZOAS-RE model and the simplex regression model (S-RE model) after
transformation. The transformation used was that proposed by Smithson and Verkuilen
(2006), where 0’s and 1’s are approximated by 1/2𝑁 and (2𝑁 ⊗ 1)/2𝑁 , respectively, and 𝑁
is the total number of observations. The main goal of this study is to analyze the effect of
this transformation on the estimates of the regression parameters β.

Figure 3.5 displays the results of Relative Bias, MSE and CP for the estimates of Ñ0 and
Ñ1 in case a (upper panel) and case b (lower panel). As can be seen from this figure, even
though the transformation of 0’s and 1’s is not prominent, there is a strong impact in the
statistical properties of the regression estimates. The results obtained in the variances of
RE are described next (figure not shown). In the ZOAS-RE model, the Relative Bias of àb2
is around of 20% for all sample sizes, while in the simplex counterpart, it starts at 0.34 for
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𝑛 = 50 and greaches 1.34 for 𝑛 = 200, indicating an increasing of the Relative Bias when the
sample size increases. The MSE for this parameter is close to 5% in the ZOAS-RE model,
but in the simplex model (transformed) it increases from 0.15 for 𝑛 = 50 to 0.85 for 𝑛 = 200.
Also, when analyzing the CP, the ZOAS-RE model outperforms the (transformed) simplex
model.
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Figure 3.5: Relative Bias, MSE and CP of Ñ0 and Ñ1 after fitting the ZOAS-RE (black line)
and S-RE (gray line) models using (𝑝0, 𝑝1)

⊤ = (1%, 1%) (upper panel) and (10%, 8%) (lower
panel).

3.6 Conclusions

This article proposes a Bayesian random effect model based on the simplex distribution
for modeling data in the interval [0, 1]. The versatility of this class to model correlated data
in the interval [0, 1] has not been explored elsewhere, and this is our major contribution. Sim-
ulation studies reveal good consistency properties of the Bayesian estimates when compared
with the beta regression counterpart, as well as, high performance of the model selection
techniques to pick the appropriately fitted model. We also apply our method to a data set
from periodontal disease conducted at the Medical University of South Carolina (MUSC) to
illustrate how the procedures can be used to evaluate model assumptions, identify outliers
and obtain unbiased parameter estimates. Although our modeling is primarily motivated
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from periodontal disease data, it can be easily applied to other datasets, since the models
considered in this article have been fitted using standard available software packages, like R
and OpenBUGS. This makes our approach easily accessible to practitioners of many fields
of research. This paper complements the recently published work of Galvis et al. (2014),
which also considers Bayesian estimation and inference of this kind of data by using the beta
distribution (Ferrari and Cribari-Neto, 2004).

The models developed here do not consider skewness in the random effects and their
robustness can be seriously affected by the presence of skewness and heavy tails in the
random effects. Recently, Lachos et al. (2009) adopted a Markov chain Monte Carlo approach
to draw Bayesian inferences in linear mixed models with multivariate skew-normal (SNI)
distributions in the random effects. Therefore, it would be a worthwhile task to investigate
the applicability of a Bayesian treatment in the context of ZOAS-RE models with SNI
distributions. Incorporating measurement error in covariates (Carrasco et al., 2014) within
our robust framework is also part of our future research.
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Chapter 4

Augmented mixed models for

clustered proportion data

Abstract

Often in biomedical research, we deal with continuous (clustered) proportion responses rang-
ing between zero and one quantifying the disease status of the cluster units. Interestingly,
the study population might also consist of relatively disease-free as well as highly diseased
subjects, contributing to proportion values in the interval [0, 1]. Regression on a variety of
parametric densities with support lying in (0, 1), such as beta regression, can assess impor-
tant covariate effects. However, they are deemed inappropriate due the presence of zeros
and/or ones. To evade this, we introduce a class of general proportion density (GPD), and
further augment the probabilities of zero and one to this GPD, controlling for the clustering.
Our approach is Bayesian, and presents a computationally convenient framework amenable
to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence
measures are automatic from the MCMC output. The methodology is illustrated using both
simulation studies and application to a real dataset from a clinical periodontology study.
Keywords: Augment; Bayesian; Dispersion models; Kullback-Leibler divergence; Propor-
tion data; Periodontal disease.

4.1 Introduction

Continuous proportion data (expressed as percentages, proportions, and rates), such as
the percent decrease in glomerular filtration rate at various follow-up times since baseline
Song and Tan (2000); Kieschnick and McCullough (2003) are routinely analyzed in medicine
and public health. Because the responses are confined in the open interval (0, 1), one might
be tempted to use the logistic-normal model (Aitchison, 1986) with Gaussian assumptions
for logit-transformed proportion responses. However, covariate effects interpretation are
not straightforward because the logit link is no longer preserved for the expected value of
the response. Alternatively, to tackle this, the beta (Cepeda-Cuervo, 2001; Ferrari and
Cribari-Neto, 2004), beta rectangular (BRe) (Hahn, 2008) and simplex (Barndorff-Nielsen
and Jørgensen, 1991) distributions (all with common support within the open unit interval),
and their corresponding regressions were proposed under a generalized linear model (GLM)
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framework.
The flexible beta density (Johnson et al., 1994) can represent a variety of shapes, ac-

counting for uncorrectable non-normality and skewness (Smithson and Verkuilen, 2006) in
the context of bounded proportion data. The beta regression (BR) reparameterizes the as-
sociated beta parameters, connecting the response to the data covariates through suitable
link functions (Ferrari and Cribari-Neto, 2004). Yet, the beta density does not accommodate
tail-area events, or flexibility in variance specifications (Bayes et al., 2012). To accommodate
this, the BRe density Hahn (2008), and associated regression modelsBayes et al. (2012) were
considered under a Bayesian framework. Note, the BRe regression includes the (constant
dispersion) BRFerrari and Cribari-Neto (2004), and the variable dispersion BR Smithson
and Verkuilen (2006) as special cases. The simplex regressionSong and Tan (2000) is based
on the simplex distribution from the dispersion family (Jørgensen, 1997), assumes constant
dispersion, and uses extended generalized estimating equations for inference connecting the
mean to the covariates via the logit link. Subsequently, frameworks with heterogenous dis-
persion (Song et al., 2004), and for mixed-effects models (Qiu et al., 2008) were explored.
Yet, their potential were limited to proportion responses with support in (0, 1).

A clinical study on periodontal disease (PrD) conducted at the Medical University of
South Carolina (MUSC)(Fernandes et al., 2006) motivates our work. The clinical attachment
level (CAL), a clinical marker of PrD was measured at each of the 6 sites of a subject’s tooth,
and we were interested to assess covariate-response relationships on ‘tooth-type specific (such
as incisors, canines, pre-molars and molars) proportion of diseased sites’ to determine the
status of PrD. Figure 4.1 (left panel) plots the raw (unadjusted) density histogram of the
proportion responses, packed over all subjects and tooth-types. The responses are in the
closed interval [0, 1] where 0 and 1 represent ‘completely disease free’, and ‘highly diseased’
cases, respectively. For a simple parametric treatment to this data, one might be tempted to
use one of the three distributions mentioned above after possible transformation Smithson
and Verkuilen (2006) of the response from [0, 1] to the interval (0, 1). These ad hoc re-
scalings might work out for small proportions of 0’s and 1’s, but the sensitivity on parameter
estimates can be considerable as the proportions increase. Transformations, in general,
are not universal. In addition, presence of clustering (tooth-sites within mouth) brings in an
extra level of heterogeneity, and these transformations which are usually applied component-
wise may not guarantee a tractable (multivariate) joint distribution Jara et al. (2008). At this
stage, we desire an appropriate theoretical model capable of handling all these challenges,
yet avoiding data transformations.

Note that the beta, BRe and simplex densities (and their regressions) present a notice-
able analytic difference in their probability density function (pdf) specification. Motivated
by these differences and the flexibility they provide, we seek to combine them into a new
(parametric) class of density called the general proportion density (GPD), where these three
popular models appear as particular cases. In this context, our paper generalizes the recent
augmented beta proposition Galvis et al. (2014). Next, we extend this GPD to a regression
setup for independent responses in (0, 1). Finally, for a unified (regression) framework for
clustered responses in [0, 1], we propose a generalized linear mixed model (GLMM) frame-
work by augmenting the probabilities of occurrence of zeros, ones or both to the standard
GPD regression model via an augmented GPD random effects (AugGPD-RE) model. Our
inferential framework is Bayesian, and can be easily handled using freeware like OpenBUGS.
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Proportion CAL data
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Figure 4.1: Periodontal proportion data. The (raw) density histogram combining subjects
and tooth-types are presented in the left panel. The empirical cumulative distribution func-
tion of the real data, and that obtained after fitting the ZOAS-RE and the LS-simplex models
appear in the right panel.

Furthermore, case-deletion and local influence diagnostics (Peng and Dey, 1995) to assess
outlier effects are immediate from the Markov chain Monte Carlo (MCMC) output.

The rest of the article is organized as follows. Section 2 formulates the GPD and the
augmented GPD class of density as well as some useful statistical properties. Section 3 de-
velops the Bayesian estimation framework for the AugGPD-RE regression model and related
diagnostics. Application to the motivating PD data appear in Section 4. Section 5 presents
simulation studies to compare finite-sample performance of parameter estimates among the
GPD class members, and also under model misspecification. Finally, some concluding state-
ments appear in Section 6.

4.2 General proportion density

We start with the definition of proportion density (PD) models, and then proceed to
establish the GPD density class.

Definition 1. A random variable (rv) Ý with support in the unit interval (0, 1) belongs to
the class of PD with parameters Ú and ã if it can be expressed as

𝑔1(Ý;Ú, ã) = 𝑎1(Ú, ã)𝑎2(Ý, ã) exp¶⊗ã𝑎3(Ý, Ú)♢, ã > 0, Ú ∈ (0, 1), (4.2.1)

where 𝐸[Ý] = Ú, and 𝑎s(≤, ≤), 𝑠 = 1, 2, 3 are real-valued functions with 𝑎1, 𝑎2 ⊙ 0, and 𝑎3 taking
value on the real line. We use the notation Ý ≍ PD(Ú, ã) to represent Ý a member of the PD
class defined in (4.2.1). Following Jørgensen (1997), if 𝑎3(Ý, Ú) in (4.2.1) is continuous and
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twice differentiable function with respect to Ý and Ú and is non-zero, the variance function

is 𝑉 (Ú) = ⊗
(︃

𝜕2𝑎3(Ý, Ú)

𝜕Ú𝜕Ý

⎜⊗1 ⧹︃
⧹︃

⧹︃

⧹︃

⧹︃

ξ=λ

.

Next, consider the density of the rv 𝑋 following the 2-component mixture 𝑋 = Ö𝑈+(1⊗Ö)Ý,
where Ö ∈ [0, 1] is a mixture parameter and 𝑈 a Uniform(0, 1) rv distributed independently
of Ý with pdf in (4.2.1). Then, 𝑋 follows the general proportion density (GPD), i.e., 𝑋 ≍
GPD(Ö, Ú, ã) with the pdf given by

𝑔(𝑋; Ö, Ú, ã) = Ö + (1 ⊗ Ö)𝑔1(𝑋;Ú, ã), (4.2.2)

where 𝑔1 is as defined in (4.2.1). Note that for Ö = 1, the GPD reduces to the uniform
distribution, and for Ö = 0 we retrieve the PD class of distributions. The mean and variance
of 𝑋 are Û = 𝐸[𝑋] = Ö/2 + (1 ⊗ Ö)𝐸[Ý], à2 = Var(𝑋) = η

12
+ (1 ⊗ Ö)2Var(Ý), respectively.

4.2.1 Densities in the GPD class

The GPD class includes the beta, simplex, and the BRe densities with support in the
interval (0,1), and can be used to model proportion data. These are described in the propo-
sitions below with their respective pdf’s presented in Appendix A.

Proposition 1. The beta density (Ferrari and Cribari-Neto, 2004) reparametrized in terms
of Û (the mean) and of ã (the precision parameter) belongs to the GPD class of distributions
with its variance function given by 𝑉 (Û) = Û(1 ⊗ Û).

Proof. In (4.2.2), consider Ö = 0, Ú = Û and 𝑔1(𝑥;Û, ã) =
Γ(ã)

Γ(Ûã)Γ((1 ⊗ Û)ã)
𝑥µφ⊗1(1 ⊗

𝑥)(1⊗µ)φ⊗1, such that 𝑎1(Û, ã) =
Γ(ã)

Γ(Ûã)Γ((1 ⊗ Û)ã)
, 𝑎2(𝑥, ã) =

(︁

𝑥(1 ⊗ 𝑥)1⊗φ
⎡⊗1

and 𝑎3(𝑥, Û) =

Û log 1⊗x
x

. Then, the variance functionFerrari and Cribari-Neto (2004) (from Definition 1)
is

𝑉 (Û) = ⊗
(︃

𝜕2𝑎3(𝑥, Û)

𝜕Û𝜕𝑥

⎜⊗1 ⧹︃
⧹︃

⧹︃

⧹︃

⧹︃

x=µ

= ⊗
(︃

⊗1
𝑥(1 ⊗ 𝑥)

⎜⊗1 ⧹︃
⧹︃

⧹︃

⧹︃

⧹︃

x=µ

= Û(1 ⊗ Û)

.

Proposition 2. The simplex distribution (Barndorff-Nielsen and Jørgensen, 1991) with pa-
rameters Û and ã belongs to the GPD class with the variance function given by 𝑉 (Û) =
Û3(1 ⊗ Û)3.

Proof. In (4.2.2), consider Ö = 0, Ú = Û and 𝑔1(𝑥;Û, ã) =

√
ã√

2Þ (𝑥(1 ⊗ 𝑥))3/2

× exp

∮︁

⊗ã (𝑥⊗ Û)2

2𝑥(1 ⊗ 𝑥)Û2(1 ⊗ Û)2

⨀︀

, such that 𝑎1(Û, ã) = 1, 𝑎2(𝑥, ã) =
ã√

2Þ (𝑥(1 ⊗ 𝑥))3/2

and 𝑎3(𝑥, Û) =
(𝑥⊗ Û)2

2𝑥(1 ⊗ 𝑥)Û2(1 ⊗ Û)2
. Then, the variance functionJørgensen (1997) is

given by

𝑉 (Û) = ⊗
(︁

∂2a3(x,µ)
∂µ∂x

⎡⊗1
⧹︃

⧹︃

⧹︃

⧹︃

⧹︃

x=µ

= ⊗
(︁

⊗1
x3(1⊗x)3

⎡⊗1
⧹︃

⧹︃

⧹︃

⧹︃

⧹︃

x=µ

= Û3(1 ⊗ Û)3.
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Proposition 3. The BRe density (Hahn, 2008) with parameters Ö, Ú and ã belongs to the
GPD class of distributions.

Proof. The proof follows from (4.2.2), considering Ö > 0 and 𝑔1(𝑥;Ú, ã) as in Proposition
1, replacing Û by Ú. However, the BRe density is a mixture of a uniform and a beta density
(see Appendix A in the supplementary material) and a closed form expression of the variance
function is not available.
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Figure 4.2: Plots of the simplex, beta and the beta rectangular densities for various choices
of Ú and ã. For the beta rectangular density, we choose Ö = 0.3.

For a more appealing pictorial comparison, Figure 4.2 plots the simplex, beta and the
BRe densities for various choices of Ú and ã. Note that Ú close to zero (one) leads to a large
mass in the left (right) tails for all cases. The simplex density is relatively smooth for ã = 1,
and becomes more spiked for ã = 4. The beta and the BRe shapes are very similar for
all panels when Ö is moderate (= 0.3), as in our case. However, one observes tail behavior
for the BRe compared to the beta when Ö gets closer to 1 (plots not shown here). From
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the plots, it is clear that the simplex density is more flexible than the two competitors. It
is capable of capturing various shapes of the underlying proportion data density in (0, 1),
even in situations (say, small ã) where the popular beta density may be far from the ground
truth. However, a major shortcoming of these densities is that they are not appropriate for
modeling datasets containing proportion responses at the extremes (i.e., 0, or 1, or both).
We seek to address this via an augmented GPD framework defined as follows:

Definition 2. The pdf of a rv 𝑌 with support in the interval [0, 1] belongs to the augmented
GPD class if it has the form

𝑓(𝑦; Ö, Ú, ã, 𝑝0, 𝑝1) = 𝑝0𝐼¶y=0♢ + 𝑝1𝐼¶y=1♢ + (1 ⊗ 𝑝0 ⊗ 𝑝1)𝑔(𝑦; Ö, Ú, ã)𝐼¶y∈(0,1)♢, (4.2.3)

where 𝐼¶A♢ is the indicator function of the set 𝐴; 𝑔(≤) is as defined in Equation (4.2.2) and
𝑝0, 𝑝1 ⊙ 0, with 𝑝0 + 𝑝1 < 1.

From (4.2.3), the expectation and variance of 𝑌 are, respectively, 𝐸[𝑌 ] = 𝑝1 + (1⊗ 𝑝0 ⊗
𝑝1)Û = Ó and Var(𝑌 ) = 𝑝1(1⊗𝑝1)+(1⊗𝑝0 ⊗𝑝1)[à

2 ⊗2𝑝1Û+(𝑝0+𝑝1)Û
2], where Û and à2 are

as in Definition 1. Note, the augmented GPD class defined in (2) reduces to the GPD class
when 𝑝0 and 𝑝1 are simultaneously equals to zero. When 𝑝0 > 0 and 𝑝1 = 0 we have the zero
augmented GPD class, and for 𝑝0 = 0 and 𝑝1 > 0 we have the one augmented GPD class.
Finally, when 𝑝0 > 0 and 𝑝1 > 0, we have the more general zero-one augmented GPD class.
Motivated by the PrD data, we are particularly interested in the following three subfamilies
of the augmented GPD class, corresponding to the densities specified in Subsection 2.1

- Zero-one augmented beta (ZOAB) density, if Ö = 0 and 𝑔1(≤) the beta density

- Zero-one augmented simplex (ZOAS) density, if Ö = 0 and 𝑔1(≤) the simplex density

- Zero-one augmented beta rectangular (ZOABRe) density, if Ö > 0 and 𝑔1(≤) the beta
density

4.3 Model development and Bayesian inference

4.3.1 GPD regression model

Let 𝑌1, . . . , 𝑌n be 𝑛 independent rv’s such that 𝑌i ≍ GPD(Öi, Úi, ãi). Consider that Ûi =
Öi/2+(1⊗Öi)Ú is directly modeled through covariates as 𝑔1(Ûi) = x⊤

i β where 𝑔1 is a adequate
link function with counterdomain the real line, β is the vector of regression parameters with
the first element of xi being 1. However, Ûi is a function of the mixture parameter Öi and
Ú, which leads to a restricted parametric space of Öi, defined as 0 < Öi < ♣2Ûi ⊗ 1♣ that is
dependent on Ûi. Hence, for a more appropriate regression framework that connects 𝑌 to
covariates, we work with the reparameterization proposed in Bayes et al. (2012), and define

Ði ∈ [0, 1] such that Ði =
Öi

1 ⊗ (1 ⊗ Öi)♣2Úi ⊗ 1♣ . Henceforth, the GPD class is parameterized

in terms of Ûi, Ði and ãi.
The parameters ãi and Ði can be assumed constants, or regressed onto covariates through

convenient link functions. For Ûi and Ði, link functions such as, logit, probit or complemen-
tary log-log can be used. Finally, for ãi, the log, square-root, or identity link functions can
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be considered. Parameter estimation can follow either the (classical) maximum likelihood
(ML), or the Bayesian route through MCMC methods.

4.3.2 Augmented GPD random effects model

The augmented GPD model described in (4.2.3) is only appropriate for independent
responses in (0, 1). To accommodate clustering (as in our case) or longitudinal subject-
specific profiles, we proceed with the augmented GPD random effects (henceforth, AugGPD-
RE) model. Let Y1, . . . ,Yn be 𝑛 independent continuous random vectors, where Yi =
(𝑦i1, . . . , 𝑦ini

)⊤ is the vector of length 𝑛i for the sample unit 𝑖, with the components 𝑦ij ∈ Õ,
where Õ is an element of the set ¶[0, 1), (0, 1], [0, 1]♢. Thus, under the AugGPD-RE model,
the parameters Ûij, 𝑝0ij and 𝑝1ij can be connected with covariates through suitable link
functions as

𝑔1(𝐸[Yi♣bi]) = 𝑔1(µi) = X⊤
i β + Z⊤

i bi, (4.3.1)

𝑔2(p0i) =W0
⊤
i ψ, (4.3.2)

𝑔3(p1i) =W1
⊤
i ρ, (4.3.3)

where Xij, W0ij and W1ij correspond to the 𝑗-th column from the design matrices Xi,
W0i and W1i of dimension 𝑝 × 𝑛i, 𝑟 × 𝑛i and 𝑠 × 𝑛i, related with the 𝑖-th unit sam-
ple, corresponding to the vectors of fixed effects β = (Ñ1, . . . , Ñp)

⊤, ψ = (å1, . . . , år)
⊤,

ρ = (𝜌1, . . . , 𝜌s)
⊤, respectively, and Zi is the design matrix of dimension q × 𝑛i correspond-

ing to REs vector bi = (𝑏i1, . . . , 𝑏iq)
⊤. Choice of link functions for 𝑔1, 𝑔2 and 𝑔3 remain

the same as for Ûi and Ði in Subsection 4.3.1. For purpose of interpretation, we focus
on the logit link. In this work, we consider ã and Ð as constants despite those parame-
ters can also be regressed onto covariates through suitable link functions. Also, to avoid
over-parameterization, the probabilities 𝑝0ij and 𝑝1ij are free of REs, however, both could
be considered constants across subjects. Finally, we denote our AugGPD-RE model as
𝑌ij ≍ AugGPD-RE(𝑝0ij, 𝑝1ij, Ûij, Ð, ã) 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛i.

Let D = (Xi,W0i,W1i,Zi,y)
⊤ be the full observed data and Ω = (β,ψ,ρ, ã, Ð)⊤ be

the parameter vector in the AugGPD-RE model. The joint data likelihood, conditional on
the random-effects bi, 𝐿(Ω;D,b) is given by

𝐿(Ω;b,D) =
n
∏︁

i=1

ni
∏︁

j=1

𝑝0

Iyij =0

ij 𝑝1

Iyij =1

ij

[︁

(1 ⊗ 𝑝0ij ⊗ 𝑝0ij)𝑔(𝑦ij;Ð, Ûij, ã)
]︁Iyij ∈(0,1)

, (4.3.4)

where 𝑝0ij = logit⊗1(W0
⊤
ijψ), 𝑝1ij = logit⊗1(W1

⊤
ijρ), 𝐼 is an indicator function, and 𝑔 is

given by

𝑔(𝑦ij;Ð, Ûij, ã) = Öij + (1 ⊗ Öij)𝑎1(Úij, ã)𝑎2(𝑦ij, ã) exp ¶⊗ã𝑎3(𝑦ij, Úij)♢ , (4.3.5)

with Öij = Ð(1 ⊗ 2♣Ûij ⊗ 1
2
♣), Úij =

Ûij ⊗ ηij

2

1 ⊗ Öij
and Ûij = logit⊗1

(︁

Xµ
⊤
ijβ + Zb

⊤
ijbi

⎡

.

Although ML estimation of Ω is certainly feasible using standard softwares such as (e.g.,
SAS, R, etc), we seek a Bayesian treatment here. The Bayesian approach accommodates
full parameter uncertainty through appropriate choice of priors choices, proper sensitivity
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investigations, and provides direct probability statement about a parameter through credible
intervals (C.I.) (Dunson, 2001). Next, we investigate the choice of priors on our model
parameters to conduct Bayesian inference.

4.3.3 Priors and posterior distributions

In order to complete the Bayesian specification, we need to consider prior distributions
for all the unknown model parameters. In particular, we specify practical weakly informative
prior opinion on the fixed effects regression parameters β, ψ, ρ, ã (dispersion parameter),
Ð, and the random effects bi. In general, for the regression components, we can assume
β ≍ Normalp(0,Σ

⊗1
β ), ψ ≍ Normalr(0,Σ

⊗1
ψ ), ρ ≍ Normals(0,Σ

⊗1
ρ ). A Uniform(0, 1) den-

sityBayes et al. (2012) was adopted as prior for Ð. Prior on each element of bi are 𝑁(0, à2
b ),

where àb ≍ Uniform(0, 𝑐1), the usual GelmanGelman (2006) specification. The prior on ã
for the specific models in Subsection 2.1 were chosen as follows:

(i) Beta and BRe models: ã ≍ Gamma(𝑎, 𝑐), with small positive values of a and c (𝑐 ⪯ 𝑎).

(ii) Simplex model: ã⊗1/2 ≍ Uniform(0, 𝑎1), with large positive value for 𝑎1.

Assuming the elements of the parameter vector to be independent, the posterior conclu-
sions are obtained combining the likelihood in (4.3.4), and the joint prior densities, given
by

𝑝(Ω,b, àb♣D) ∝ 𝐿(Ω;D) × Þ(Ω,b, àb),

where Þ(Ω,b, àb) = Þ0(β)Þ1(ψ)Þ2(ρ)Þ3(Ð)Þ4(ã)Þ5(b♣àb)Þ6(àb) and Þj(.), 𝑗 = 0, . . . , 6 denote
the prior/hyperprior distributions on the model parameters as described above. The full
conditional distributions necessary for the MCMC algorithm (combination of Gibbs sampling
and Metropolis-within-Gibbs) in the AugGPD-RE model are as follows:

• The full conditional density for ψ♣y,b, àb,Ω(⊗ψ)
, Þ

(︁

ψ♣y,b, àb,Ω(⊗ψ)

⎡

is proportional
to

exp
{︁

⊗1
2
ψ⊤Σ⊗1

ψ ψ
}︁

n
∏︁

i=1

ni
∏︁

j=1

𝑝0

Iyij =0

ij (1 ⊗ 𝑝0ij ⊗ 𝑝1ij)
Iyij ∈(0,1) .

• The full conditional density for ρ♣y,b, àb,Ω(⊗ρ), Þ
(︁

ρ♣y,b, àb,Ω(⊗ρ)

⎡

is proportional
to

exp
{︁

⊗1
2
ρ⊤Σ⊗1

ρ ρ
}︁

n
∏︁

i=1

ni
∏︁

j=1

𝑝1

Iyij =1

ij (1 ⊗ 𝑝0ij ⊗ 𝑝1ij)
Iyij ∈(0,1) .

• The full conditional density for β♣y,b, àb,Ω(⊗β)
, Þ

(︁

β♣y,b, àb,Ω(⊗β)

⎡

is proportional
to

exp
{︁

⊗1
2
β⊤Σ⊗1

β β
}︁

n
∏︁

i=1

ni
∏︁

j=1

𝑔(𝑦ij;Ð, Ûij, ã)
Iyij ∈(0,1) , with 𝑔(𝑦ij;Ð, Ûij, ã) given by (4.3.5).
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• The full conditional density for ã♣y,b, àb,Ω(⊗φ), Þ(ã♣y,b, àb,Ω(⊗φ)) is proportional to

Þ(ã)
n
∏︁

i=1

ni
∏︁

j=1

𝑔(𝑦ij;Ð, Ûij, ã)
Iyij ∈(0,1) .

• The full conditional density for Ð♣y,b, àb,Ω(⊗α), Þ(Ð♣y,b, àb,Ω(⊗α)) is proportional to
n
∏︁

i=1

ni
∏︁

j=1

𝑔(𝑦ij;Ð, Ûij, ã)
Iyij ∈(0,1)𝐼α∈[0,1].

• The full conditional density for bi♣y, àb,Ω, Þ(bi♣y, àb,Ω) is proportional to

exp

∮︁

⊗
q
∑︁

k=1

1

2à2
b

𝑏2
ik

⨀︀

ni
∏︁

j=1

𝑔(𝑦ij;Ð, Ûij, ã)
Iyij ∈(0,1) with 𝑏ik the 𝑘-th element of bi = (𝑏i1, . . . 𝑏iq)

⊤.

• The full conditional density for àb♣y,b,Ω, Þ(àb♣y,b,Ω) is proportional to

exp

⎧

⨄︁

⋃︁

⊗ 1
2σ2

b

n
∑︁

i=1

ni
∑︁

j=1

𝑏2
ij♢
∫︁

⋀︁

⋂︁

𝐼σb∈(0,c1).

For specific densities of the GPD class, the full conditionals for the beta, BRe and simplex
models are presented in Appendix B. For computational simplicity, we avoid the multivariate
prior specifications for β, ψ and ρ (multivariate zero mean vector with inverted-Wishart
covariance) and instead assign simple i.i.d Normal(0,Variance = 100) priors on the elements
of these vectors, which centers the ‘odds-ratio’ type inference at 1 with a sufficiently wide 95%
interval. When 𝑝0 and 𝑝1 represent constant proportions for the whole data, we allocate the
Dirichlet prior with hyperparameter α = (Ð1, Ð2, Ð3)

⊤ for the probability vector (𝑝0, 𝑝1, 1 ⊗
𝑝0 ⊗ 𝑝1)

⊤, with Ðs ≍ Gamma(1, 0.01), 𝑠 = 1, 2, 3. After discarding the first 50000 burn-in
samples, we used 50000 more samples (with a spacing of 10) from 2 independent chains
with widely dispersed starting values for posterior summaries. Convergence was monitored
via MCMC trace plots, autocorrelation plots and the Brooks-Gelman-Rubin R̂ statistics.
Associated R code is available on request from the corresponding author.

4.3.4 Bayesian model selection and influence diagnostics

For model selection, we use the conditional predictive ordinate (CPO) and the log pseudo-
marginal likelihood (LPML) statistic (Carlin and Louis, 2008), derived from the posterior
predictive distribution (ppd). Larger values of LPML indicate better fit. Computing CPO
via the harmonic mean identity can lead to instability(Raftery et al., 2007). Hence, we
consider a more pragmatic route and compute the CPO (and LPML) statistics using 500
non-overlapping blocks of the Markov chain, each of size 2000, post-convergence and report
the expected LPML computed over the 500 blocks. In addition, we also apply the expected
AIC (EAIC), expected BIC (EBIC) (Carlin and Louis, 2008) and the DIC3 (Celeux et al.,
2006) criteria. The DIC3 was used as an alternative to the usual DIC (Spiegelhalter et al.,
2002) because of the ease of computation directly from the MCMC output, and also due to
the mixture modeling framework. All these criteria abide by the ‘lower is better’ law.
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In addition, as a direct byproduct from the MCMC output, we develop some influence
diagnostic measures to assess outlier effects on the fixed effects parameters based on case-
deletion statistics (Cook and Weisberg, 1982), and the q-divergence measures (Csisz et al.,
1967; Weiss, 1996) between posterior distributions. We consider three choices of these di-
vergences, namely, the Kullback-Leibler (KL) divergence, the 𝐽-distance (symmetric version
of the KL divergence), and the 𝐿1-distance. We use the calibration methodPeng and Dey
(1995) to obtain the cut-off values as 0.90, 0.83 and 1.32 for the 𝐿1, KL and 𝐽-distances,
respectively.

4.4 Data analysis and findings

The motivating PrD dataset assessed the PrD status of Gullah-speaking African-Americans
with Type-2 diabetes via a detailed questionnaire focusing on demographics, social, medical
and dental history. The dataset contain measurements on 28 teeth (considered full dentition,
excluding the 4 third-molars) from 290 subjects, recording proportion of diseased tooth-sites
(with CAL value ⊙ 3mm) per tooth type as the response for each subject. Hence, this
clustered data framework has 4 observations (corresponding to the 4 tooth-types) for each
subject. If a tooth is missing, it was considered ‘missing due to PrD’ where all sites for
that tooth contributed to the diseased category. Subject-level covariables in the dataset
include gender (0=male,1= female), age of subject at examination (in years, ranging from
26 to 87 years), glycosylated hemoglobin (HbA1c) status indicator (0=controlled,< 7%;
1=uncontrolled,⊙ 7%) and smoking status (0=non-smoker,1=smoker). We also considered
a tooth-level variable representing each of the four tooth types, with ‘canine’ as the baseline.

From Figure 1 (left panel), the data are continuous on [0,1], with non-negligible pro-
portions of of 0’s (114, 9.8%) and 1’s (94, 8.1%). Avoiding transformation, modeling via
one of the members of the GPD class might not be feasible. Hence, we proceed using the
AugGPD-RE model, adjusted for subject-level clustering. From Equations (4.3.1), (4.3.2)
and (4.3.3), we have

logit(Ûij) = X⊤
ijβ + 𝑏i, (4.4.1)

logit(𝑝0ij) = W0
⊤
ijψ,

logit(𝑝1ij) = W1
⊤
ijρ,

where Xij = (1,Genderij,Ageij,HbA1cij, Smokerij, Incisorij,Premolarij,Molarij)
⊤, Xij =

W0ij =W1ij, β = (Ñ0, . . . , Ñ7)
⊤, ψ = (å0, . . . , å7)

⊤ and ρ = (𝜌0, . . . , 𝜌7)
⊤ are the vectors of

regression parameters, and 𝑏i is the subject-level random effect. The examination age was
standardized (subtracting the mean and dividing by its standard deviation) to achieve better
convergence. We have 6 competing models, varying with the densities in the GPD class and
the regression over 𝑝0 and 𝑝1, as follows:

Model 1 𝑌ij ≍ ZOAS-RE(Ûij, ã, 𝑝0ij, 𝑝1ij).
Model 1a 𝑌ij ≍ ZOAS-RE(Ûij, ã, 𝑝0, 𝑝1).
Model 2 𝑌ij ≍ ZOAB-RE(Ûij, ã, 𝑝0ij, 𝑝1ij).
Model 2a 𝑌ij ≍ ZOAB-RE(Ûij, ã, 𝑝0, 𝑝1).
Model 3 𝑌ij ≍ ZOABRe-RE(Ð, Ûij, ã, 𝑝0ij, 𝑝1ij).
Model 3a 𝑌ij ≍ ZOABRe-RE(Ð, Ûij, ã, 𝑝0, 𝑝1).
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Note that the parameter Ð is specific to the ZOABRe model only. In addition, we also
fit the LS-simplex model (or Model 4) by transforming the response from 𝑦 to 𝑦′ via the
Lemon-squeezer (LS) transformation(Smithson and Verkuilen, 2006) given by 𝑦′ = [𝑦(𝑁 ⊗
1)+1/2]/𝑁 , where 𝑁 is the number total of observations, with the regression on Û as (4.4.1).
Although models 1, 1a, 2, 2a, 3 and 3a can be compared using standard model choice criteria
described in Subsection 4.3.4 because they fit the same dataset, this is not the case for the
LS-simplex model which fits a transformed dataset. Thus, we assess its fit visually via the
empirical cumulative distribution functions (ecdfs) of the fitted values. Table 4.1 presents

Criterion Model
1 1a 2 2a 3 3a

DIC3 915.3 1165.3 993.0 1243.5 1001.3 1253.4
LPML -461.1 -584.1 -500.5 -623.7 -503.8 -627.8
EAIC 917.8 1154.9 992.7 1231.0 967.4 1210.4
EBIC 1047.2 1210.5 1124.2 1286.6 1103.9 1281.2

Table 4.1: Model comparison using DIC3, LPML, EAIC and EBIC criteria.

the DIC3, LPML, EAIC and EBIC values for the 6 competing models. Notice that Model 1
(ZOAS-RE model) provides the best fit uniformly across all criteria. Also, the fit for models
with constant 𝑝0 and 𝑝1 are worser than the corresponding ones with regression on 𝑝0 and 𝑝1.
The right panel of Figure 4.1 clear tells us that the ecdf from the fitted values using Model
1 represent the true data much closely as compared to Model 4. Hence, we select Model 1
as our best model and proceed with inference.

Molar

Premolar

Incisor

Smoker

HbA1c

Age

Gender

Intercept

−2 −1 0 1 2 3 4

Model 1
Model 2
Model 3
Model 4

−8 −6 −4 −2 0 2 −4 −2 0 2

Figure 4.3: Posterior mean and 95% credible intervals (CI) of parameter estimates from
Models 1-4 for Û (left pannel), for 𝑝0 (middle pannel) and for 𝑝1 (right pannel). CIs that
include zero are gray, those that does not include zero are black.
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Plots of the means of the posterior parameter estimates and their 95% CIs for the regres-
sion onto Û (left panel), 𝑝0 (middle panel) and 𝑝1 (right panel) for Models 1-4 are presented
in Figure 4.3. We do not report the estimates from the models that consider 𝑝0 and 𝑝1

as constants (i.e., Models 1a, 2a, and 3a). In this Figure, the gray intervals contain zero
(non-significant covariates), while the black intervals do not include zero and are considered
significant at 5% level. From the left panel (regression onto Ûij), the covariates gender, age
and tooth-types significantly explain the proportion responses mostly for Models 1-4, with
the exception of Incisor for Model 1 where it is non-significant. Parameter interpretation
can be expressed in terms of its effect directly on Ûij, specifically

µij

1⊗µij
, conditional on the

set of other covariates and REs Galvis et al. (2014). Here, Ûij is the ‘expected proportion
of diseased sites, and 1 ⊗ Ûij is the complement, i.e., the ‘expected remaining proportion to
being completely diseased’, both conditional on Ûij not being zero or one. These results are
interpreted in terms of the number of times the ratio is higher/lower with every unit increase
(for a continuous covariate, such as age), or a change in category say from 0 to 1 (for a dis-
crete covariate, say gender). For example, for age (a strong predictor of PrD), this ratio is
1.43 (exp(0.36) = 1.43, 95% CI=[1.23, 1.66]) times higher for every unit increase in Age. For
Gender, this ratio is 40% lower for males as compared to females, which might be influenced
by the lower participation of males common in this population (Johnson-Spruill et al., 2009).
Similarly, this ratio is 8.7 times higher for molars as compared to the canines (the baseline),
which confirms that the posteriorly placed molars typically experience a higher PrD status
than the anterior canines. From the plots in the middle and right panels of Figure 4.3, we
identify gender, age and tooth-types to be significant in explaining absence of PrD, while
gender, age and molar significantly explaining the completely diseased category. Once again,
we have similar odds-ratio explanation as earlier. For example, the odds of a tooth type free
of PrD are 3 times greater for men than for women, while the odds of a completely dis-
eased molar are about 13 times than of a (baseline) canine. Rest of the parameters can be
interpreted similarly.

The mean estimates (standard deviations) of ã from Models 1-4 are 0.14 (0.007), 7.6
(0.43), 10.6 (1.56) and 0.002 (< 0.0001), and of à2

b are 1.3 (0.13), 1.2 (0.13), 1.2 (0.13)
and 2.6 (0.34), respectively. Due to parametrization involved, these estimates of ã are not
comparable across Models 1-3. However, the effect of the LS transformation is evident while
comparing the estimates between Models 1 and 4. Additionally, the estimates of à2

b reveal
that the transformation in Model 4 leads to a higher (estimated) variance of the response 𝑌
than the Models 1-3.

The adequacy of the logit link is assessed via plots of the linear predictor versus the
predicted probability (Hatfield et al., 2012) as depicted in the Figure in Appendix C. Con-
sidering logit⊗1(Ûij) from Model 1, we divided it into 10 intervals containing roughly an
equal number of observations, and plot the distribution of the inverse-logit transformed lin-
ear predictors (denoted by the black box-plots) that represents the fitted mean Ûij of the
non-zero-one responses. Next, we overlay the empirical distributions of the observed non-
zero-one responses represented by the gray box-plots. There seem to be no evidence of model
misspecification, i.e., the shapes of the fitted and observed trends are similar, as revealed
from Figure C in the Appendix.

In addition, we conduct sensitivity analysis on the prior assumptions for the random
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effects precision (1/à2
b ) and the fixed effects precision parameters on β by changing one

parameter at a time and refitting Model 1, as in (Galvis et al., 2014). In particular, we
allowed àb ≍ Uniform(0, 𝑘), where 𝑘 ∈ ¶10, 50♢, and also the typical Inverse-gamma choice
on the precision 1/à2

b ≍ Gamma(𝑘, 𝑘), where 𝑘 ∈ ¶0.001, 0.1♢. We also chose the normal
precision on the fixed effects to be 0.1, 0.25 (which reflects an odds-ratio in between 𝑒⊗4

to 𝑒4) and 0.001. There were slight changes observed in parameter estimates and model
comparison values, however, that did not change our conclusions regarding the best model,
inference (and sign) of the fixed-effects, and the influential observations.
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Figure 4.4: K-L, J and L1 divergences from the ZOAS-RE (upper panel), ZOAB-RE (middle
panel) and ZOABRe-RE (lower panel) models for the PrD dataset.

Finally, we detect outlying observations via the q-divergence measures for the augmented
models using the cut-offs described in Subsection 4.3.4. These plots are presented in Fig-
ure 4.4, where the upper, middle and lower panels represent the ZOAS-RE, ZOAB-RE and
ZOABRe-RE models, respectively. Interestingly, we find that the ZOABRe-RE model pro-
duces several outlying observations exceeding the threshold, whereas the best-fitting model
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(ZOAS-RE) produces only one such observation (subject id # 174). To quantify the impact
of this observation, we refit the model by removing it. The covariate ‘Molar’ in the regression
onto 𝑝0ij is impacted by this observation, perhaps due to this subject is free of PrD for all
tooth types. However, the parameter significance and sign of the coefficients remained the
same. Henceforth, we stick to the estimates obtained from fitting Model 1 to the full data,
without removing this particular subject.

4.5 Simulation studies

In order to assess the finite sample performance of the class of AugGPD-RE mixed
regression models, we conduct two simulation studies. First (Scheme 1), we assess the impact
of model misspecification on the parameters for the ZOAS-RE, ZOAB-RE and ZOABRe-RE
models when the data in (0,1) are generated from a logistic normal model (Atchison and Shen,
1980). Next (Scheme 2), we analyze the impact of the LS transformation on the parameter
estimates in presence of various proportions of zeros and ones. In both studies, we generate
data with various sample sizes, and compare the mean squared error (MSE), absolute relative
bias (Abs.RelBias), and coverage probability (CP) of the regression parameters across the
various models.

Initially, we generate 𝑦ij for both schemes and sample sizes 𝑛 = 50, 100, 150, 200 as
𝑦ij = logit⊗1(𝑇ij), 𝑖 = 1, . . . , 𝑛 (the number of subjects), 𝑗 = 1, . . . , 5 (indicating cluster of
size 5 for each subject), with 𝑇ij ≍ Normal(Ûij, 1) and the location parameter Ûij modeled
as Ûij = Ñ0 + Ñ1𝑥ij + 𝑏i, with 𝑏i ≍ 𝑁(0, à2

b ). The explanatory variables 𝑥ij are generated as
independent draws from a Uniform(0, 1), with the regression parameters fixed at Ñ0 = ⊗0.5,
and Ñ1 = 0.5, variance component à2 = 2, and constant proportions 𝑝0 = 0.1 and 𝑝1 = 0.1.
Thus, 𝑦ij ∈ (0, 1) are draws from a logistic-normal model. Finally, via multinomial sampling,
we allocate the 0’s, 1’s, and the 𝑦ij ∈ (0, 1) with probabilities 𝑝0, 𝑝1 and 1⊗𝑝0⊗𝑝1 respectively.
No regression onto 𝑝0 and 𝑝1 are considered.

After simulating 200 such datasets, we fitted the ZOAS-RE, ZOAB-RE and ZOABRe-
RE models with similar prior choices as in the data analysis. With our parameter vector
θ = (Ñ0, Ñ1, 𝑝0, 𝑝1, à

2
b ), and 𝜃s being an element of θ, we calculate the MSE as MSE(𝜃s) =

1
200

√︁200
i=1(𝜃is ⊗ 𝜃s)

2, the absolute relative bias as Abs.RelBias (𝜃s) =
1

200

√︁200
i=1♣ θ̂is

θs
⊗ 1♣, and

the 95% coverage probability (CP) as CP(𝜃s) =
1

200

√︁200
i=1 𝐼(𝜃s ∈ [𝜃s,LCL, 𝜃s,UCL]), where 𝐼

is the indicator function such that 𝜃s lies in the interval [𝜃s,LCL, 𝜃s,UCL], with 𝜃s,LCL and

𝜃s,UCL as the estimated lower and upper bounds of the 95% limits of the CIs, respectively.
The results from this study for varying sample sizes are presented in Figure 4.5 and Table
1 (Appendix D). Figure 4.5 presents a visual comparison of the models (bold line for the
ZOAS-RE model, dashed line for the ZOAB-RE model and dotted line for the ZOABRe-RE
model) for Ñ0 (upper panel) and Ñ1 (lower panel). For the sake of brevity, we do not produce
plots for 𝑝0, 𝑝1 and à2

b . We observe that the Abs.RelBias of both Ñ0, Ñ1 and à2
b are much

smaller for the ZOAS-RE model as compared to the ZOAB-RE model and the ZOABRe-RE
models, while those for 𝑝0 and 𝑝1 are comparable. The MSEs of the parameters other than
à2
b are comparable. For à2

b , the ZOAS-RE performs better (MSE is lower) than the other
two. CP remains higher for the ZOAS-RE as compared to the other two models across all
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Figure 4.5: Absolute relative bias, MSE and coverage probability of Ñ0 and Ñ1 after fitting
ZOAS-RE (continuous), ZOAB-RE (dashed) and ZOABRe-RE (dotted) models.

parameters. Interestingly, for à2
b , the CP is estimated close to zero for higher 𝑛 (𝑛 = 150, 200)

In Scheme 2, we compare the performance of the ZOAS-RE and LS-simplex models for
three scenarios of 𝑝0 and 𝑝1, namely (a): 𝑝0 = 𝑝1 = 1%, (b) 𝑝0 = 3%, 𝑝1 = 5%, and (c)
𝑝0 = 10%, 𝑝1 = 8% (that represents the real data). Figure 4.6 present the plots for MSE,
Abs.RelBias and CP. The ZOAS-RE outperforms the LS-simplex model with lower MSE and
Abs.RelBias, and higher CP across all scenarios, with the performance of the simplex model
getting worser with increase in the proportion of 0’s and 1’s.

4.6 Conclusions

Motivated by the presence of extreme proportion responses, we develop a class of (para-
metric) augmented proportion density models under a Bayesian framework, and demonstrate
its application to a PrD dataset. As a byproduct of the MCMC output, we also develop
tools for outlier detection using results from q-divergence measures. Both simulation and
real data analysis reveal the importance of utilizing an appropriate theoretical model over
ad hoc data transformations.

Note that in our model development, we regress the covariates onto Ûij as in Definition
2. For a direct interpretation of the covariate effect on the response 𝑌 , one might consider
regressing onto Óij (the conditional expectation of the true AugGPD response) via some link
functions. However, on applying this to our dataset, we experienced problems with MCMC
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Figure 4.6: Absolute relative bias, MSE and coverage probability of Ñ0 and Ñ1 after fitting
ZOAS-RE (continuous)and LS-simplex (dashed) models, for 𝑝0 = 𝑝1 = 1% (upper panel),
𝑝0 = 5%, 𝑝1 = 3% (middle panel) and 𝑝0 = 10%, 𝑝1 = 8% (lower panel).

convergence. Hence, we did not pursue it any further, although it may be appropriate for
other datasets.

The current clustered setup can be extended to a longitudinal, or a clustered-longitudinal
framework (often found in dental clinical trials). In addition, the current development ex-
plores a simple parametric framework with ease in implementation. Certainly, the shape
of the proportion data can also be adequately captured via some (flexible) nonparametric
specification of the density. However, the Bayesian implementation may not be automatic,
and would require developing customized MCMC algorithms. All these remain viable com-
ponents of future research.

APPENDIX

APPENDIX A: Some densities in the GPD class

∙ The beta distribution
The density of a r.v 𝑌 following the beta distribution with mean Û and precision parameter
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ã is given by

𝑓(𝑦♣Û, ã) = Γ(ã)

Γ(Ûã)Γ((1 ⊗ Û)ã)
𝑦µφ⊗1(1 ⊗ 𝑦)(1⊗µ)φ⊗1, (A1)

with 0 < 𝐸[𝑌 ] = Û < 1, Var(𝑌 ) = µ(1⊗µ)
1+φ

and ã > 0.
∙ The simplex distribution
A r.v 𝑌 follows a simplex distribution with parameters Û and ã if its pdf is given by

𝑓(𝑦♣Û, ã) =
√
ã

(︁

Þ [𝑦(1 ⊗ 𝑦)]3
⎡1/2

exp

∮︁

⊗ã (𝑦 ⊗ Û)2

2𝑦(1 ⊗ 𝑦)Û2(1 ⊗ Û)2

⨀︀

, (A2)

with 0 < 𝐸[𝑌 ] = Û < 1 and ã > 0.
∙ The beta rectangular
A r.v 𝑌 is distribuited according to beta rectangular distribution with parameters Ö, Ú and
ã if its pdf is given by

𝑓(𝑦♣Ö, Ú, ã) = Ö + (1 ⊗ Ö)
Γ(ã)

Γ(Úã)Γ((1 ⊗ Ú)ã)
𝑦λφ⊗1(1 ⊗ 𝑦)(1⊗λ)φ⊗1, (A3)

with 0 ⊘ Ö ⊘ 1, 0 < Ú < 1, ã > 0, 𝐸[𝑌 ] = Ö/2 + (1 ⊗ Ö)Ú and Var(𝑌 ) = λ(1⊗λ)
1+φ

(1 ⊗ Ö)(1 +

Ö(1 + ã)) + η
12
(4 ⊗ 3Ö).

APPENDIX B: Full conditional distributions from models ZOAS-RE, ZOAB-RE and

ZOABRe-RE in the augmented GPD class

The full conditional distributions of the parameters ψ, ρ and àb necessary for the MCMC
algorithm in the three models above remain equal to presented for the augmented-GPD class.
For the other parameters, the full conditional distributions are obtained for every model as
follows.
ZOAS-RE model

• The full conditional density for β♣y,b, àb,Ω(⊗β)
, Þ

(︁

β♣y,b, àb,Ω(⊗β)

⎡

is proportional
to

exp

⎧

⨄︁

⋃︁

⊗1
2
(β ⊗ β0)

⊤Σ⊗1(β ⊗ β0) ⊗ ã
n
∑︁

i=1

ni
∑︁

j=1

[𝑦ij ⊗ (1 ⊗ 𝑦ij)𝐴ij]
2 (1 + 𝐴ij)

2

2𝑦ij(1 ⊗ 𝑦ij)𝐴2
ij

𝐼yij∈(0,1)

∫︁

⋀︁

⋂︁

,

where 𝐴ij = exp¶X⊤
ijβ + Z⊤

ijbi♢.

• The full conditional density for ã♣y,b, àb,Ω(⊗φ), Þ(ã♣y,b, àb,Ω(⊗φ)) is a left truncated
gamma with left truncation point 𝑎⊗2. That is ã♣y,b, àb,Ω(⊗φ) ≍ 𝑇𝐺𝑎𝑚𝑚𝑎⊗(𝑎⊗2, (𝑛⊗
1)/2,

√︁n
i=1

√︁ni
j=1 𝑎3(𝑦ij, Ûij)) where 𝑎3(𝑦ij, Ûij) =

(yij⊗µij)2

2yij(1⊗yij)µ2
ij

(1⊗µij)2 and Ûij =
Aij

1+Aij
.

• The full conditional density for bi♣y, àb,Ω, Þ(bi♣y, àb,Ω) is proportional to

exp
{︂

⊗1
2σ2

b

√︁q
k=1 𝑏

2
ik ⊗ ã

√︁ni
j=1

[yij⊗(1⊗yij)Aij ]2(1+Aij)2

2yij(1⊗yij)A2
ij

𝐼yij∈(0,1)

}︂

𝐼¶bik∈R♢.

ZOAB-RE model
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• The full conditional density for β♣y,b, àb,Ω(⊗β)
, Þ

(︁

β♣y,b, àb,Ω(⊗β)

⎡

is proportional
to

exp

⎧

⨄︁

⋃︁

⊗1

2
(β ⊗ β0)

⊤Σ⊗1(β ⊗ β0) ⊗
n
∑︁

i=1

ni
∑︁

j=1

(︃

Ûijã log
𝑦ij

1 ⊗ 𝑦ij
⊗𝐵ij

⎜

𝐼yij∈(0,1)

∫︁

⋀︁

⋂︁

,

where 𝐵ij = log Γ(Ûijã) + log[Γ(1 ⊗ Ûij)ã], Ûij =
Aij

1+Aij
.

• The full conditional density for ã♣y,b, à2
b ,Ω(⊗φ), Þ(ã♣y,b, à2

b ,Ω(⊗φ)) is proportional to

ãa⊗1 exp

⎧

⨄︁

⋃︁

⊗ã
⎛

∐︁𝑐⊗
n
∑︁

i=1

ni
∑︁

j=1

𝐶ij𝐼yij∈(0,1)

⎞

̂︀

∫︁

⋀︁

⋂︁

,

where 𝐶ij = Ûij log
yij

1⊗yij
+ (1 ⊗ Ûij) log(1 ⊗ 𝑦ij) + log(ã) ⊗𝐵ij and ã > 0.

• The full conditional density for bi♣y, à2
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,

with 𝑏ik ∈ R.

ZOABRe-RE model

• The full conditional density for β♣y,b, à2
b ,Ω(⊗β)

, Þ
(︁

β♣y,b, à2
b ,Ω(⊗β)

⎡

is proportional
to

exp
{︁

⊗1
2
(β ⊗ β0)

⊤Σ⊗1(β ⊗ β0) +
√︁n
i=1

√︁ni
j=1 𝐼¶yij∈(0,1)♢ log [Öij + (1 ⊗ Öij)𝑀ij]

}︁

,

where 𝑀ij =
Γ(φ)

Γ(λijφ)Γ((1⊗λij)φ)
𝑦
λijφ⊗1
ij (1 ⊗ 𝑦ij)

(1⊗λij)φ⊗1, Öij = Ð(1 ⊗ 2♣Ûij ⊗ 1
2
♣), Úij =

µij⊗
ηij

2

1⊗ηij
and Ûij =

Aij

1+Aij
.

• The full conditional density for ã♣y,b, à2
b ,Ω(⊗φ), Þ(ã♣y,b, à2

b ,Ω(⊗φ)) is proportional to

ãa⊗1 exp
{︁

⊗ã𝑐+√︁n
i=1

√︁ni

j=1 𝐼¶yij∈(0,1)♢ log [Öij + (1 ⊗ Öij)𝑀ij]
}︁

,
with ã > 0.

• The full conditional density for bi♣y, à2
b ,Ω, Þ(bi♣y, à2

b ,Ω) is proportional to

exp
{︂

⊗1
2σ2

b

√︁ni

k=1 𝑏
2
ik +

√︁n
i=1

√︁ni
j=1 𝐼¶yij∈(0,1)♢ log [Öij + (1 ⊗ Öij)𝑀ij]

}︂

,

with 𝑏ij ∈ R.

• The full conditional density for Ð♣y, à2
b ,Ω, Þ(Ð♣y, à2

b ,Ω) is proportional to

exp
{︁

√︁n
i=1

√︁ni
j=1 𝐼¶yij∈(0,1)♢ log [Öij + (1 ⊗ Öij)𝑀ij]

}︁

𝐼¶α∈[0,1]♢.
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APPENDIX C: Adequacy of the logit link
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Figure 4.7: Observed and fitted relationship between the linear predictor and the (conditional)
non-zero-one mean µij . Modeled logit relationships are represented by black box-plots, while the
empirical proportions by gray box-plots.
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APPENDIX D: Simulation Results from Scheme 1

ZOAS-RE model ZOAB-RE model ZOABRe-RE Model
Parameter n = 50 n = 100 n = 150 n = 200 n = 50 n = 100 n = 150 n = 200 n = 50 n = 100 n = 150 n = 200

Abs.RelBias
β0 0.13 0.08 0.09 0.10 0.23 0.19 0.20 0.20 0.25 0.21 0.21 0.20
β1 0.09 0.07 0.09 0.11 0.19 0.19 0.20 0.21 0.21 0.20 0.21 0.22
p0 0.02 0.02 0.00 0.0001 0.02 0.02 0.0003 0.00058 0.02 0.022 0.0009 0.0002
p1 0.05 0.005 0.01 0.01 0.05 0.005 0.01 0.01 0.05 0.005 0.011 0.01

σ2

b
0.19 0.20 0.22 0.226 0.37 0.38 0.40 0.40 0.38 0.38 0.40 0.40

MSE
β0 0.05 0.03 0.02 0.01 0.05 0.03 0.02 0.02 0.05 0.03 0.02 0.19
β1 0.06 0.04 0.03 0.02 0.06 0.04 0.03 0.02 0.06 0.04 0.03 0.02
p0 0.0004 0.0002 0.0001 8e-05 0.0004 0.0002 0.0001 8e-05 0.0004 0.0002 0.0001 8e-0
p1 0.0004 0.0001 0.0001 8e-05 0.0004 0.0001 0.0001 8e-05 0.0004 0.0001 0.0001 8e-0

σ2

b
0.28 0.23 0.24 0.24 0.63 0.62 0.66 0.66 0.65 0.63 0.66 0.66

CP
β0 0.92 0.93 0.94 0.91 0.91 0.88 0.90 0.83 0.90 0.89 0.87 0.81
β1 0.95 0.91 0.91 0.91 0.90 0.90 0.86 0.83 0.90 0.88 0.85 0.85
p0 0.94 0.92 0.93 0.96 0.94 0.93 0.93 0.97 0.94 0.91 0.92 0.95
p1 0.94 0.95 0.94 0.96 0.92 0.95 0.94 0.96 0.93 0.95 0.94 0.96

σ2

b
0.82 0.68 0.50 0.35 0.49 0.16 0.01 0.05 0.49 0.15 0.01 0.0

Table 4.2: Absolute Relative bias (Abs.RelBias), mean squared error (MSE), and coverage
probabilities (CP) of the the parameter estimates after fitting the ZOAS-RE, ZOAB-RE,
and ZOABRe-RE models to simulated data for various sample sizes.
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Chapter 5

Concluding remarks

5.1 Conclusions

Motivated by the presence of extreme proportion responses and the classical development
of (Ospina and Ferrari, 2010), it was developed a class of (parametric) augmented proportion
density models under a Bayesian perspective, and demonstrated its application to a Peri-
odontal dataset. In this model development, there were regressed covariates onto Ûij, 𝑝0ij,
𝑝1ij, leading to identifying covariates that are significant to explain disease-free, progressing
with disease, and completely diseased tooth types. An alternative method (Smithson and
Verkuilen, 2006) that transforms data was also studied and compared with the proposed
models. Both simulation and real data analysis reveal the importance of utilizing an appro-
priate theoretical model over ad hoc data transformations. There were also developed tools
for outlier detection using q-divergence measures, and quantified their effect on the posterior
estimates of the model parameters.

Within the GPD class, the simplex density is more flexible than both its competitors.
Hence, most likely the simplex regression (and its augmented counterpart) will outperform
the beta and the Bre regressions for relatively non-smooth proportion data, such as, data
with lots of spikes and structures, for support within (0, 1) (and [0, 1]). However, it is recom-
mended a pragmatic modeling approach by fitting these 3 parametric densities successively
to any dataset, and choosing the best one via popular model selection techniques.

5.2 Other publications

• AMixed-Effect Model for Positive Responses Augmented by Zeros. Mariana Rodrigues-
Motta, Diana Milena Galvis Soto, Victor H. Lachos et al. Provisionally accepted paper
in Statistics in Medicine. 2014.

• Bayesian semiparametric longitudinal data modeling using normal/independent densi-
ties. Luis M. Castro, Victor H. Lachos, Diana M. Galvis and Dipankar Bandyopadhyay.
Aceito para publicação em Chapman & Hall/CRC Press. Edited volume in “Current
Trends in Bayesian Methodology with Applications”. 2014.
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5.3 Future research

It is of interest to investigate the presence of thick/heavy tails in the underlying ZOAB-
RE, ZOAS-RE and ZOABr-RE models, and to model the random effect term 𝑏i using robust
alternatives (say, the 𝑡-density) over the normal density as in Figueroa-Zúniga et al. (2013).
For periodontal dataset, the results were very similar using a 𝑡-density, and hence we did not
consider it any further. The current analysis considers clustered cross-sectional periodontal
proportion data. Often, these study subjects can be randomized to dental treatments and
subsequent longitudinal follow-ups, leading to a clustered-longitudinal framework, where
one might be interested in estimating the profiles (both overall, and subject-level) in the
proportion of diseased surfaces for the four tooth types with time.

Certainly, the shape of the proportion data can also be adequately captured via some
(flexible) nonparametric specification of the density. However, the Bayesian implementation
may not be automatic, and would require developing customized MCMC algorithms. Also,
it is possible to include a effect that model the spatial relation that exist in the application
data as in Bandyopadhyay et al. (2011).

56



Bibliography

Aitchison, J. (1986). The Statistical Analysis of Compositional Data. London: Chapman &
Hall.

Atchison, J. and S. M. Shen (1980). Logistic-normal distributions: Some properties and
uses. Biometrika 67 (2), 261–272.

Bandyopadhyay, D., B. J. Reich, and E. H. Slate (2009). Bayesian modeling of multivariate
spatial binary data with applications to dental caries. Statistics in Medicine 28, 3492–3508.

Bandyopadhyay, D., B. J. Reich, and E. H. Slate (2011). A spatial beta-binomial model
for clustered count data on dental caries. Statistical Methods in Medical Research 20 (2),
85–102.

Barndorff-Nielsen, O. E. and B. Jørgensen (1991). Some parametric models on the simplex.
Journal of Multivariate Analysis 39 (1), 106–116.

Bayes, C. L., J. L. Bazán, and C. García (2012). A new robust regression model for propor-
tions. Bayesian Analysis 7 (4), 841–866.

Branscum, A. J., W. O. Johnson, and M. C. Thurmond (2007). Bayesian Beta Regression:
Applications to Household Expenditure Data and Genetic Distance Between Foot-and-
Mouth Disease Viruses. Australian & New Zealand Journal of Statistics 49 (3), 287–301.

Breslow, N. E. and D. G. Clayton (1993). Approximate inference in generalized linear mixed
models. Journal of the American Statistical Association 88 (421), 9–25.

Carlin, B. and T. Louis (2008). Bayesian Methods for Data Analysis (Texts in Statistical
Science). Chapman and Hall/CRC, New York.

Carrasco, J. M., S. L. Ferrari, and R. B. Arellano-Valle (2014). Errors-in-variables beta
regression models. Journal of Applied Statistics 41 (7), 1–18.

Celeux, G., F. Forbes, C. P. Robert, and D. M. Titterington (2006). Deviance information
criteria for missing data models. Bayesian Analysis 1 (4), 651–673.

Cepeda-Cuervo, E. (2001). Modeling variability in generalized linear models. Ph. D. thesis,
Mathematics Institute, Universidade Federal do Rio de Janeiro.

Cook, R. D. (1977). Detection of influential observation in linear regression. Technomet-
rics 19 (1), 15–18.

57



Cook, R. D. (1986). Assessment of local influence. Journal of the Royal Statistical Society,
Series B 48, 133–169.

Cook, R. D. and S. Weisberg (1982). Residuals and influence in regression. Boca Raton,
FL: Chapman & Hall/CRC.

Cowles, M. K. and B. P. Carlin (1996). Markov chain Monte Carlo convergence diagnostics:
a comparative review. Journal of the American Statistical Association 91 (434), 883–904.

Csisz, I. et al. (1967). Information-type measures of difference of probability distributions
and indirect observations. Studia Sci. Math. Hungar. 2, 299–318.

Dey, D. K., M.-H. Chen, and H. Chang (1997). Bayesian approach for nonlinear random
effects models. Biometrics, 1239–1252.

Dunson, D. (2001). Commentary: Practical advantages of Bayesian analysis of epidemiologic
data. American Journal of Epidemiology 153 (12), 1222.

Fernandes, J., C. Salinas, S. London, R. Wiegand, E. Hill, E. Slate, J. Grewal, P. Werner,
J. Sanders, and M. Lopes-Virella (2006). Prevalence of periodontal disease in gullah african
american diabetics. Journal of Dental Research 85 (Special Issue A), 0997.

Ferrari, S. and F. Cribari-Neto (2004). Beta Regression for Modelling Rates and Proportions.
Journal of Applied Statistics 31 (7), 799–815.

Figueroa-Zúniga, J. I., R. B. Arellano-Valle, and S. L. Ferrari (2013). Mixed beta regression:
A Bayesian perspective. Computational Statistics & Data Analysis 61, 137–147.

Galvis, D. M., D. Bandyopadhyay, and V. H. Lachos (2014). Augmented mixed beta regres-
sion models for periodontal proportion data. Statistics in Medicine 33 (21), 3759–3771.

Geisser, S. and W. F. Eddy (1979). A predictive approach to model selection. Journal of
the American Statistical Association 74 (365), 153–160.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models.
Bayesian analysis 1 (3), 515–534.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2004). Bayesian Data Analysis.
Chapman & Hall/CRC.

Ghosh, P. and P. S. Albert (2009). A Bayesian analysis for longitudinal semicontinuous data
with an application to an acupuncture clinical trial. Computational Statistics & Data
Analysis 53 (3), 699–706.

Hahn, E. D. (2008). Mixture densities for project management activity times: A robust
approach to PERT. European Journal of Operational Research 188 (2), 450–459.

Hatfield, L. A., M. E. Boye, M. D. Hackshaw, and B. P. Carlin (2012). Multilevel Bayesian
models for survival times and longitudinal patient-reported outcomes with many zeros. J.
Am. Stat. Assoc. 107, 875–885.

58



Jara, A., F. Quintana, and E. San Martín (2008). Linear mixed models with skew-elliptical
distributions: A bayesian approach. Computational Statistics & Data Analysis 52 (11),
5033–5045.

Johnson, N., S. Kotz, and N. Balakrishnan (1994). Continuous Univariate Distributions,
Vol. 2. New York: John Wiley & Sons.

Johnson-Spruill, I., P. Hammond, B. Davis, Z. McGee, and D. Louden (2009). Health
of Gullah Families in South Carolina With Type 2 Diabetes Diabetes Self-management
Analysis From Project SuGar. The Diabetes Educator 35 (1), 117–123.

Jørgensen, B. (1987). Exponential dispersion models. Journal of the Royal Statistical Society.
Series B (Methodological), 127–162.

Jørgensen, B. (1997). The Theory of Dispersion Models, Volume 76. CRC Press.

Kieschnick, R. and B. D. McCullough (2003). Regression analysis of variates observed on
(0, 1): percentages, proportions and fractions. Statistical Modelling 3 (3), 193–213.

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded
random processes. Journal of Hydrology 46 (1), 79–88.

Lachenbruch, P. A. (2002). Analysis of data with excess zeros. Statistical Methods in Medical
Research 11 (4), 297–302.

Lachos, V. H., D. Bandyopadhyay, and D. K. Dey (2011). Linear and nonlinear mixed-effects
models for censored HIV viral loads using normal/independent distributions. Biomet-
rics 67 (4), 1594–1604.

Lachos, V. H., L. M. Castro, and D. K. Dey (2013). Bayesian inference in nonlinear mixed–
effects models using normal independent distributions. Computational Statistics & Data
Analysis 64, 237–252.

Lachos, V. H., D. K. Dey, and V. G. Cancho (2009). Robust linear mixed models with
skew-normal independent distributions from a Bayesian perspective. Journal of Statistical
Planning and Inference 139, 4098–4110.

Ligges, U., A. Thomas, D. Spiegelhalter, N. Best, D. Lunn, K. Rice, and S. Sturtz (2009).
BRugs 0.5: OpenBUGS and its R/S-PLUS interface BRugs. http://www.stats.ox.ac.

uk/pub/RWin/src/contrib.

López, F. O. (2013). A Bayesian approach to parameter estimation in simplex regression
model: a comparison with beta regression. Revista Colombiana de Estadística 36 (1), 1–21.

Ospina, R. and S. Ferrari (2010). Inflated beta distributions. Statistical Papers 51 (1),
111–126.

Peng, F. and D. K. Dey (1995). Bayesian analysis of outlier problems using divergence
measures. The Canadian Journal of Statistics 23, 199–213.

59



Qiu, Z., P. X.-K. Song, and M. Tan (2008). Simplex Mixed-Effects Models for Longitudinal
Proportional Data. Scandinavian Journal of Statistics 35 (4), 577–596.

Raftery, A., M. Newton, J. Satagopan, and P. Krivitsky (2007). Estimating the integrated
likelihood via posterior simulation using the harmonic mean identity (with discussion). In
J. Berger, A. Dawid, D. Heckerman, A. Smith, and M. West (Eds.), Bayesian Statistics
8, Volume 8, pp. 1–45. Oxford University Press.

Simas, A., W. Barreto-Souza, and A. Rocha (2010). Improved estimators for a general class
of beta regression models. Computational Statistics and Data Analysis 54 (2), 348–366.

Smithson, M. and J. Verkuilen (2006). A better lemon squeezer? Maximum-likelihood
regression with beta-distributed dependent variables. Psychological Methods 11 (1), 54.

Song, P. X.-K., Z. Qi, and M. Tan (2004). Modelling heterogeneous dispersion in marginal
models for longitudinal proportional data. Biometrical Journal 46 (5), 540–553.

Song, P. X.-K. and M. Tan (2000). Marginal models for longitudinal continuous proportional
data. Biometrics 56 (2), 496–502.

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. van der Linde (2002). Bayesian measures
of model complexity and fit. Journal of the Royal Statistical Society-Series B 64 (4), 583–
639.

Thomas, A., B. O’Hara, U. Ligges, and S. Sturtz (2006). Making BUGS open. R News 6 (1),
12–17.

Verkuilen, J. and M. Smithson (2012). Mixed and mixture regression models for continuous
bounded responses using the beta distribution. Journal of Educational and Behavioral
Statistics 37 (1), 82–113.

Weiss, R. (1996). An approach to Bayesian sensitivity analysis. Journal of the Royal Statis-
tical Society. Series B 58 (4), 739–750.

Xie, F.-C., J.-G. Lin, and B.-C. Wei (2014). Bayesian zero-inflated generalized poisson regres-
sion model: estimation and case influence diagnostics. Journal of Applied Statistics 41 (6),
1383–1392.

Zeileis, A., F. Cribari-Neto, and B. Grün (2010). Beta regression in R. Journal of Statistical
Software 34 (2), 1–24.

Zhang, P., Z. Qiu, Y. Fu, and P. X.-K. Song (2009). Robust transformation mixed-
effects models for longitudinal continuous proportional data. Canadian Journal of Statis-
tics 37 (2), 266–281.

60



Appendix A

BUGS code to implement the

ZOAB-Re model with covariates in 𝑝0

and 𝑝1

model

{

Cte<-1000000

for(i in 1:n)

{

b[i]~dnorm(0,tau)

}

for(j in 1:N)

{

zeros[j] <- 0

zeros[j] ~ dpois(zeros.means[j])

zeros.means[j] <- -lBetaInf[j]+Cte

fdBeta[j] <- exp(loggam(a1[j]+a2[j])-loggam(a1[j])-loggam(a2[j])

+(a1[j]-1)*log(Y[j])+(a2[j]-1)*log(1-Y[j]))

a1[j] <- mu[j]*phi

a2[j] <- (1-mu[j])*phi

logit(mu1[j]) <- Beta[1] + Beta[2] * gender[j] + Beta[3] * age[j]

+ Beta[4] * hba1cd[j] + Beta[5] * smoker[j]

+ Beta[6] * incisor [j] + Beta[7] * premolar[j]

+ Beta[8] * molar[j] + b[cluster[j]]

mu[j] <- max(0.00001,min(0.9999,mu1[j]))

logit(p0[j]) <- gamma[1] + gamma[2] * gender[j] + gamma[3] * age[j]

+ gamma[4] * hba1cd[j] + gamma[5] * smoker[j]

+ gamma[6] * incisor [j] + gamma[7] * premolar[j]

+ gamma[8] * molar[j]

logit(p1[j]) <- rho[1] + rho[2] * gender[j] + rho[3] * age[j]
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+ rho[4] * hba1cd[j] + rho[5] * smoker[j]

+ rho[6] * incisor [j] + rho[7] * premolar[j]

+ rho[8] * molar[j]

e[j] <- equals(Y[j],0.0001) #zeros observados

d[j] <- equals(Y[j],0.9999) #uns observados

fdBetaInf1[j] <- (e[j]*p0[j]+d[j]*p1[j]

+(1-e[j])*(1-d[j])*fdBeta[j]*(1-p0[j]-p1[j]))

*step(1-p0[j]-p1[j])

fdBetaInf[j] <- max(0.00000001,fdBetaInf1[j])

lBetaInf[j] <- log(fdBetaInf[j])

}

#Prioris para os parâmetros do modelo

for (i in 1:8)

{

Beta[i] ~ dnorm(0,0.001)

gamma[i] ~ dnorm(0,0.001)

rho[i] ~ dnorm(0,0.001)

}

phi ~ dgamma(0.1,0.01)

tau <- pow(sigmabsd,-2)

sigmabsd ~ dunif(0,100)

sigma2b <- pow(sigmabsd,2)

}
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Appendix B

Simulation results obtained when the

sample is generated from ZOAB-RE

model

In this case, it was conducted a finite sample simulation study to investigate the conse-
quences on parameter estimates after applying the LS transformation to the data in [0, 1]. For
the data generation scheme, there were generated 100 samples of the ZOAB-RE model with
the location parameter Ûij is generated as: logit(Ûij) = Ñ0 + Ñ1𝑥ij + 𝑏i, with, 𝑏i ≍ 𝑁(0, à2),
𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 5 indicating a cluster of size 5, and various choices of sample sizes
𝑛 = 50, 100, 150, 200. The parameters ã, 𝑝0 and 𝑝1 are considered constants, with values
ã = 2, 𝑝0 = 0.1 and 𝑝1 = 0.1. The explanatory variables 𝑥ij = 𝑥i, are generated as indepen-
dent draws from a Bernoulli(0.8), and regression parameters and variance components are
fixed at: Ñ0 = 0.5, Ñ1 = ⊗0.5, and à2 = 4. This generates 𝑦ij’s in (0, 1). The final step is to
allocate the 0’s, 1’s, and the 𝑦ij ∈ (0, 1), with probabilities 𝑝0, 𝑝1 and 1⊗ 𝑝0 ⊗ 𝑝1, which is a
result of multinomial draws.
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ZOAB-RE model LS Beta
Parameter 𝑛 = 50 𝑛 = 100 𝑛 = 150 𝑛 = 200 𝑛 = 50 𝑛 = 100 𝑛 = 150 𝑛 = 200

Relative bias
Ñ0 -0.115 -0.260 -0.264 -0.192 -0.613 -0.669 -0.666 -0.642
Ñ1 -0.076 -0.307 -0.235 -0.189 -0.603 -0.722 -0.678 -0.656
ã 0.008 -0.008 -0.001 -0.010 -0.614 -0.648 -0.663 -0.675
𝑝0 0.052 0.004 0.001 0.011 - - - -
𝑝1 0.186 0.188 0.146 0.149 - - - -
à2 -0.193 -0.226 -0.235 -0.243 -0.893 -0.896 -0.898 -0.899

MSE
Ñ0 0,27 0,15 0,14 0,07 0,15 0,14 0,15 0,12
Ñ1 0,35 0,22 0,16 0,11 0,17 0,17 0,15 0,13
ã 0,09 0,03 0,02 0,01 1,52 1,69 1,76 1,82
𝑝0 0,001 0,0001 0,0001 0,00001 - - - -
𝑝1 0,001 0,0001 0,0003 0,0003 - - - -
à2
b 0,96 0,97 0,98 1,05 12,81 12,87 12,91 12,95

CP
Ñ0 0,98 0,93 0,97 0,98 0,82 0,51 0,53 0,28
Ñ1 0,97 0,94 0,95 0,96 0,87 0,59 0,61 0,38
ã 0,92 0,95 0,96 0,95 0,00 0,00 0,00 0,00
𝑝0 0,94 0,96 0,98 0,98 - - - -
𝑝1 0,81 0,76 0,72 0,67 - - - -
à2
b 0,90 0,60 0,49 0,31 0,00 0,00 0,00 0,00

Table B.1: Relative bias, MSE and CP for the parameters of ZOAB-RE and LS beta models
using different sample size .
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Appendix C

Sensibility analysis for the

hiperparameter of Dirichlet

distribution

In order to analyse the sensibility of the hiperparameter of Dirichlet distribution, It
was generated 50 sample of normal logistic distribution augmented by zeros and ones with
parameters values Ñ0 = ⊗0.5, Ñ1 = 0.5, 𝑝0 = 0.1, 𝑝1 = 0.08 and à2

b = 2. Tables C.1 and C.2
present the results about the relative bias and MSE when it is used the prior Gamma(1, 0.01)
and Gamma(0.1, 0.01), respectively, in the models ZOAS-RE and ZOAB-RE.

ZOAS-RE model
Rel. bias MSE

n=50 n=100 n=150 n=200 n=50 n=100 n=150 n=200
Ñ0 -0.10 -0.03 -0.08 -0.11 0.02 0.03 0.02 0.02
Ñ1 -0.09 -0.11 -0.10 -0.11 0.06 0.03 0.03 0.02
𝑝0 0.05 0.03 0.01 -0.0009 0.0003 0.0002 0.0001 0.00007
𝑝1 0.04 0.01 0.02 0.01 0.0002 0.0001 0.00009 0.00007
à2
b -0.17 -0.22 -0.23 -0.23 0.32 0.26 0.26 0.25

ZOAB-RE model
Rel. bias MSE

n=50 n=100 n=150 n=200 n=50 n=100 n=150 n=200
Ñ0 -0.23 -0.16 -0.20 -0.23 0.05 0.03 0.02 0.02
Ñ1 -0.20 -0.24 -0.22 -0.22 0.06 0.04 0.02 0.02
𝑝0 0.05 0.03 0.01 -0.0009 0.0003 0.0002 0.0001 0.00007
𝑝1 0.04 0.01 0.02 0.01 0.0002 0.0001 0.00009 0.00007
à2
b -0.36 -0.40 -0.41 -0.41 0.60 0.68 0.70 0.69

Table C.1: Relative bias and MSE of the parameters in the ZOAS-RE and ZOAB-RE models
obtained with the prior Ð ≍ 𝐺𝑎𝑚𝑚𝑎(1, 0.01) in the hiperparameter of Dirichlet distribution
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Modelo ZOAS-RE
Rel. bias MSE

n=50 n=100 n=150 n=200 n=50 n=100 n=150 n=200
Ñ0 -0.02 -0.06 -0.08 -0.10 0.05 0.02 0.02 0.02
Ñ1 -0.09 -0.06 -0.06 -0.16 0.05 0.03 0.02 0.03
𝑝0 0.03 -0.02 -0.01 -0.01 0.0003 0.0001 0.0001 0.00007
𝑝1 0.03 0.04 -0.03 -0.01 0.0002 0.0002 0.0001 0.00007
à2
b -0.18 -0.21 -0.22 -0.24 0.32 0.23 0.26 0.25

Modelo ZOAB-RE
Rel. bias MSE

n=50 n=100 n=150 n=200 n=50 n=100 n=150 n=200
Ñ0 -0.15 -0.19 -0.21 -0.22 0.04 0.03 0.02 0.02
Ñ1 -0.20 -0.20 -0.20 -0.26 0.04 0.03 0.02 0.03
𝑝0 0.03 -0.03 -0.01 -0.01 0.0003 0.0002 0.0001 0.00007
𝑝1 0.03 0.04 -0.03 -0.01 0.0002 0.0002 0.0001 0.00007
à2
b -0.37 -0.39 -0.41 -0.42 0.62 0.64 0.69 0.72

Table C.2: Relative bias and MSE of the parameters in the ZOAS-RE and ZOAB-RE models
obtained with the prior Ð ≍ 𝐺𝑎𝑚𝑚𝑎(0.1, 0.01) in the hiperparameter of Dirichlet distribu-
tion.
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Appendix D

Results about of simulation scheme 1

in the Chapter 3.

ZOAS-RE model modelling p0 e p1 with covariates
Rel. bias MSE CP

n=50 n=100 n=150 n=200 n=50 n=100 n=150 n=200 n=50 n=100 n=150 n=200
β0 -0.10 -0.10 -0.12 -0.10 0.06 0.03 0.02 0.02 0.94 0.94 0.92 0.95
β1 -0.10 -0.11 -0.13 -0.08 0.08 0.04 0.04 0.02 0.94 0.94 0.90 0.91
σ2

b
-0.18 -0.23 -0.22 -0.20 0.31 0.28 0.24 0.21 0.82 0.60 0.52 0.43

ZOAS-RE model with p0 and p1 constants across all observations
Rel. bias MSE CP

n=50 n=100 n=150 n=200 n=50 n=100 n=150 n=200 n=50 n=100 n=150 n=200
β0 -0.10 -0.11 -0.12 -0.11 0.06 0.03 0.02 0.02 0.96 0.94 0.92 0.94
β1 -0.10 -0.11 -0.13 -0.08 0.08 0.04 0.04 0.02 0.95 0.95 0.90 0.90
σ2

b
-0.18 -0.23 -0.22 -0.20 0.31 0.28 0.24 0.21 0.82 0.60 0.52 0.43

Table D.1: Results of the scheme of simulation 1 presented in the chapter 3 where the data
is analyzed of the ZOAS-RE model

ZOAB-RE model modelling p0 and p1 with covariates
Rel. bias MSE CP

n=50 n=100 n=150 n=200 n=50 n=100 n=150 n=200 n=50 n=100 n=150 n=200
β0 -0.23 -0.22 -0.23 -0.22 0.06 0.03 0.03 0.02 0.90 0.88 0.81 0.80
β1 -0.25 -0.23 -0.25 -0.19 0.07 0.04 0.04 0.02 0.92 0.90 0.86 0.85
σ2

b
-0.36 -0.40 -0.40 -0.37 0.61 0.68 0.68 0.60 0.52 0.12 0.02 0.12

ZOAB-RE model with p0 and p1 constants across all observations
Rel. bias EQM CP

n=50 n=100 n=150 n=200 n=50 n=100 n=150 n=200 n=50 n=100 n=150 n=200
β0 -0.23 -0.22 -0.24 -0.22 0.06 0.03 0.03 0.02 0.91 0.89 0.81 0.80
β1 -0.25 -0.23 -0.25 -0.19 0.07 0.04 0.04 0.02 0.93 0.89 0.86 0.84
σ2

b
-0.36 -0.40 -0.40 -0.37 0.61 0.68 0.68 0.60 0.50 0.12 0.02 0.12

Table D.2: Results of the scheme of simulation 1 presented in the chapter 3 where the data
analized by the ZOAS-RE model
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