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Abstract

The main theme in this thesis is the study of gradient flows associated to a vector field
—V f on closed manifolds, where f is either a Morse function, a circle-valued Morse function
or a Morse-Bott function. In order to obtain dynamical information, we make use of algebraic
and topological tools such as spectral sequences and connection matrices.

In the Morse context, consider a chain complex (C, A) generated by the critical points of
f, where A counts the number of flow lines between consecutive critical points with signs.
A spectral sequence (E", d") analysis is used to obtain results on global continuation of flows
on surfaces. A link is established between the differentials on the r-th page of (E",d") and
cancellation of critical points.

In the circle-valued Morse case f : M — S, a sweeping algorithm for the Novikov chain
complex (N, A) associated to f and generated by the critical points of f is defined over the
ring Z((t)). This algorithm produces at each stage Novikov matrices. We prove that the last
Novikov matrix has polynomial entries which is quite surprising since the matrices in the
intermediary stages may have infinite series entries. We also present results showing that
the modules and differentials of the spectral sequence associated to (N, A) can be retrieved
through the sweeping algorithm.

For gradient flows associated to Morse-Bott functions, the singularities form critical man-
ifolds. We use the Conley index theory for the critical manifolds in order to characterize the
set of connection matrices for Morse-Bott flows. Results are obtained on the effects on the set
of connection matrices caused by a change in the partial ordering and Morse decomposition

of isolated invariant sets.

Resumo

O tema principal desta tese é o estudo de fluxos gradientes associados a campos vetoriais
—V f em variedades fechadas, onde f é uma funcao do tipo Morse, Morse circular e Morse-
Bott. Para obter informacoes dinamicas em cada caso, utilizamos ferramentas algébricas e
topoldgicas, tais como sequéncias espectrais e matrizes de conexao.

No contexto de Morse, consideramos um complexo de cadeias (C, A) gerado pelos pontos

criticos de f onde A conta (com sinal) o nimero de linhas do fluxo entre dois pontos criticos
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consecutivos. Uma andlise via sequéncias espectrais (E",d") é feita para se obter resultados
de continuacao global em superficies. Nos relacionamos as diferenciais da r-ésima pagina de
(E",d") com cancelamentos dinamicos entre pontos criticos.

No caso de funcao de Morse circular f : M — S', o método da varredura para um
complexo de Novikov (N, A) associado f e gerado pelos pontos criticos de f é definido sobre
o anel Z((t)). Este método produz a cada etapa matrizes de Novikov. Provamos que a matriz
final produzida pelo método da varredura tem entradas polinomiais, o que é surpreendente,
ja que as matrizes intermediarias podem ter séries infinitas como entradas. Apresentamos
resultados que mostram que os médulos e diferenciais de uma sequéncia espectral associada
a (N, A) podem ser recuperados através do método da varredura.

Para fluxos gradientes associados a fungoes de Morse-Bott, as singularidades formam
variedades criticas. Usamos a teoria do indice de Conley para obter uma caracterizacao
do conjunto de matrizes de conexao para fluxos Morse-Bott. Obtemos resultados sobre o
efeito no conjunto de matrizes de conexao causado por mudancas na ordem parcial e na

decomposicao de Morse de um conjunto invariante isolado.
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Introduction

Algebraic-topological tools have been widely used in dynamical systems in order to deter-
mine structural properties which remain invariant under small perturbations, as in Conley
index theory [12, 38].

The basic idea of the Conley index theory is the notion of Morse decomposition which
provides a way to decompose an invariant set inside a flow into smaller components by using
appropriate attractor-repeller pairs. In this way, if one can understand the smallest invariant
sets of the flow then one can investigate some more complex invariant sets such as the ones
consisting of attractor-repeller pairs given by a pair of invariant sets of the first type together
with all the flow lines joining them. After that, one can repeat this procedure to study the

next class of complex invariant sets by taking into account “longer” and “longer” flow lines.

Given a Morse decomposition of an isolated invariant set, the Conley index provides
a topological description of the local dynamics around the Morse sets. The connection
matrices introduced by Franzosa [20, 21] are algebraic-topological tools which enable us to
study the connections between Morse sets. Roughly speaking, a connection matrix for a
Morse decomposition is a matrix which has, as entries, maps between the homology Conley
indices of Morse sets. Connection matrices encode some information about the structure
of the invariant set considered. In fact, non null entries in a connection matrix detects
existence of connections between Morse sets. The most important property of this tool is

the invariance under continuation, see [22].

In the case of negative gradient flows generated by a Morse function f on a finite dimen-
sional closed manifold, the critical points of f and connecting orbits between them determine
a Morse chain complex (C, A) [3, 39, 42] whose differential A is a special case of a connection
matrix and plays an important role in the study of the dynamics associated with this chain
complex. For instance, it was proved in [13, 30] that a spectral sequence of a filtered Morse

chain complex can be retrieved from its connection matrix. The main idea behind this result
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2 Introduction

is a sweeping algorithm which generates a collection of connection and transition matrices,
A" and T" respectively. The matrix A" contains the necessary information to recover the
module E" and differential d” of the spectral sequence.

The sweeping algorithm singles out important nonzero entries in A", which we refer to
as primary pivots and change-of-basis pivots, of the r-th diagonal of A" in order to define a
matrix A", At each step, A" is a change of basis of A”. Hence, all A" represent in some
sense the initial connection matrix, that is, they all represent the same linear transformation.
As r increases, the Z-modules E] of the spectral sequence change generators. In [13], these
algebraic changes of the generators of the Z-modules of the spectral sequence are connected

to a particular family of changes of basis over Q of the connection matrix A.

The Zig-Zag Theorem in [13] states that, whenever A,_,.; 41 corresponds to a non-zero
differential d, : E) — E;_,, there exists a path of connecting orbits joining the critical
points generating Eg and ES?T . Inspired by this particular case of algebraic-dynamical
correspondence, the next natural, albeit difficult, step is to find out how much of the algebraic
information in the spectral sequence can be interpreted dynamically. As one “turns the
pages” of the spectral sequence, i.e. considers progressively the modules E", one observes
algebraic cancellations within the E"’s. What are the dynamical meaning of these algebraic
cancellations? Does the sweeping algorithm provide a continuation of the flow?

The spirit of this thesis is to investigate the correspondence between the algebra coded in
the spectral sequence through the sweeping algorithm and the dynamics. In a first instance,
one considers a Morse function on two dimensional manifolds and the associated Morse chain
complex. We also apply this type of investigation to gradient flows generated by Morse-Bott
function, where critical manifolds are admissible; and to gradient flows generated by circle-
valued Morse functions f : M — S! and the corresponding Novikov chain complex. We also
present a connection matrix approach to Morse-Bott flows.

The work reported here is a compilation of several papers [4, 5, 25, 26, 27] where we
investigate the dynamical properties provided by the sweeping algorithm for Morse chain
complexes in [4, 5] and for Novikov complexes in [27]. In [25, 26], we apply the Conley index
theory for Morse-Bott flows on compact manifolds.

This thesis is organized in five chapters as follows. Chapter 1 is dedicated to the necessary
background material: Conley index theory, spectral sequences and Lyapunov graphs.

In Chapter 2, connection matrix theory and a spectral sequence analysis of a filtered

Morse chain complex (C, A) are used to study global continuation results for flows on sur-
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faces. The novelty herein is a global dynamical cancellation theorem inferred from the differ-
entials of the spectral sequence (E", d"). The local version of this theorem relates differentials
d" of the r-th page E” to Smale’s Theorem on cancellation of critical points.

In Chapter 3, a Spectral Sequence Sweeping Algorithm (SSSA) is established for a two
dimensional Novikov complex over Z((t)) associated to a circle-valued Morse function. We
prove that the SSSA is well defined and in the process we obtain a characterization result
for the family of Novikov matrices that it produces. We also prove that the final matrix
produced by the SSSA over Z((t)) has only polynomial entries which is quite surprising,
mainly because the intermediate matrices in the process may have infinite series entries. We
present results that retrieve the modules and differentials of the spectral sequence (E",d")
from the SSSA computed for a Novikov chain complex.

In Chapter 4, we introduce the generalized Morse-Bott inequalities for compact manifolds
with possibly non-empty boundary. It encompasses the classical Morse-Bott inequalities for
closed manifolds. We make use of these inequalities and the Conley index to establish a
continuation theorem for Morse-Bott graphs.

In Chapter 5, a connection matrix theory approach is presented for Morse-Bott flows
© on smooth closed n-manifolds by characterizing the set of connection matrices in terms
of Morse-Smale perturbations. Further results are obtained on the effect on the set of
connection matrices CM(S) caused by changes in the partial orderings and in the Morse

decompositions of an isolated invariant set S.






Chapter 1
Background

The aim of this first chapter is to present some background on topological dynamical
systems and algebraic topology tools which will be used throughout this thesis.

The basic ideas of Conley index theory are presented in the first section. In Section 1.2,
one gives a brief introduction to spectral sequences and to the Spectral Sequence Sweeping
Algorithm which recovers a spectral sequence associated to a chain complex. Section 1.3 is
dedicated to graphs, more specifically, abstract Lyapunov graphs. The background material
used in this chapter can be found in [6, 13, 21, 30, 41].

1.1 Conley Index Theory

In this section, the Conley index theory is addressed. This theory has several applica-
tions in the study of the dynamics of a system, including the existence of periodic orbits in
Hamiltonian systems, proof of chaotic behaviour in dynamical systems and bifurcation the-
ory. The connection matrix is a central concept in this theory and enables one to investigate
and prove the existence of heteroclinic connections between isolated invariant sets.

Conley index theory generalizes Morse theory, which in essence describes the dynamical
structure of a closed manifold through the non-degenerate critical points of a gradient vector
field. The Morse index is not well defined for more general invariant sets, while the Conley
index is well defined for any isolated invariant set.

We assume that the reader is familiar with the basic ideas in Conley index theory, hence
only a brief introduction to homotopy and homology Conley indices, Morse decompositions,

homology index braids and connection matrices will be presented. References on this section
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6 Section 1.1 e Conley Index Theory

are [12, 20, 21, 22, 39].

1.1.1 Conley Index of an Isolated Invariant Set

Let X be a Hausdorff topological space and ¢; a continuous flow on X, i.e., a continuous
map ¢ : X xR — X (z,t) — ¢y, which satisfies ¢9 = id and ¢s0¢; = ¢s1y. A subset S C X
is called an invariant set under ¢ if ¢;(S) = S for all ¢t € R. Given a subset N C X, let

Invy(N) ={z € N | ¢s(z) € N,Vt € R},

that is, Inv, (V) is the maximal invariant subset in N. A subset S C X is called an isolated
invariant set with respect to the flow ¢, if there exists a compact set N C X such that
S = Invg(N) C int(N). In this case, N is called an isolating neighbourhood for S. A
particular case of an isolating neighbourhood N is an isolating block, where the exiting set
of the flow N™ = {z € N | ¢joy(z) € N,Vt > 0} is closed.

Given an isolated invariant set S, an indexr pair for S in X is a pair of compact sets
(N, L) such that L C N and

(1) N\L is an isolating neighborhood of S in X, i.c., S = Invg(N\L) C int(N\L);

(2) L is positively invariant relative to N, ie., if z € L and ¢(x,[0,7]) C N then
¢(,[0,T]) C L;

(3) and L is the exit set of the flow in N, ie., if z € N and ¢(z, [0,00)) € N then there
exists 7' > 0 such that ¢(z,[0,7]) C N and ¢(z,T) € L.

Possible Not possible Not possible

Conley proved in [12] that, given an isolated invariant set, there exists an index pair. Of

course, the index pair is not uniquely determined. However, given two index pairs (N, L)

"We define N* = {z € N | #0,75) () € N,Vt > 0}, where ¢ is the reverse flow of ¢, as the entering set of
the flow ¢. We assume it to be closed as well.



Chapter 1 e Background 7

and (N, L) for S, the pointed spaces N/L and N /L, obtained by collapsing the exit sets L

and L, respectively, to a point, have the same homotopy type.

The homotopy Conley index I(S, ¢) of S is defined as the homotopy type of the pointed
space N/L and the homology Conley index CH(S) of S is defined as the reduced homology
of N/L, where (N, L) is an index pair for S. Denote h, the rank of the homology Conley
index CH(S).

Figure 1.1 represents a flow on R? containing a saddle-saddle connection. The set S
consisting of the two saddles and the connection between them is an isolated invariant set,
hence the Conley index is well defined for S. Considering the index pair (N, L) illustrated

in Figure 1.1, one has that the homotopy Conley index of S is the wedge sum of two pointed
one-spheres, i.e. 1(S) ="'V

- O-O-CC

v I(S)=xtvy?

Figure 1.1: Homotopy type of the space N/L.

An index pair (N, L) is called regular if the inclusion map L C N is a cofibration. In this
case, it follows that H(N, L) =2 H(N/L). An index pair can always be modified to a regular
index pair. Since for some algebraic techniques it is more convenient to work with the pair
(N, L) than with the pointed space N/L, we assume from now on that the index pairs are

regular.

As previously stated, the Conley index generalizes the Morse index, see Section 2.1 for
the definition. The Conley index is the homotopy type of a pointed space and is well defined
for all isolated invariant sets. In the case of non degenerate critical points, these two notions
are related as follows: if x is a singularity with Morse index k then the Conley index of x is
the homotopy type of the k-sphere, i.e. I(x) = Zk Figure 1.2 illustrates this relation for
singularities in R3.

For more details on Conley index theory see [12, 38].
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\ ¢
Atractor —t—_ et Tt o o X
— f
] |
|
v
Saddle e e e Q ol
of index 1 4
!
Saddle RN 52
of index 2 ‘ v
Repeller 23

Figure 1.2: Index pairs and Conley indices for singularities in R3.

1.1.2 Connection Matrix Theory

In this subsection, we present some definitions and results on connection matrices, Morse
decompositions and partial orders. Further details can be found in [20] and [21], for example.

Let P be a finite set. A partial order on P is a transitive relation < on the elements of P
for which = < 7 never holds, for all 7 € P. The pair (P, <) is called a partially ordered set.

An interval in (P, <) is a subset I C P, such that, if 7,7’ € [ and 7 < 7" < 7/, where
7" € P, then " € I. The set of all intervals in (P, <) is denoted by Z(P, <). Two elements
m, 7 of P are said to be adjacent if {m, 7'} € Z(P,<).

An ordered collection (Iy,--- ,1,) of intervals in (P, <) is called an adjacent n-tuple of
intervals if U7_I; € I(P,<) and if 7 € [ and 7' € Iy, with k& < j, implies 7 £ 7'. The
set of all adjacent n-tuple of intervals is denoted by Z,(P,<). If (I,J) € Zy(P,<) then
I'UJ is denoted by IJ. An n-tuple (Iy,...,1I,) is called a decomposition of an interval I if
(I, ..o 1) € T(P, <) and UT_, I; = I

Let I' be a Hausdorff topological space with a continuous flow and S an isolated invariant
set in I'. A <-ordered Morse decomposition of S is a collection D(S) = { M, }rep of mutually

disjoint compact invariant subsets of S for which the following property holds: if v € S does
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not belong to any M, with m € P, then there must exist w, 7’ € P such that 7’ < 7 and
v € C(My, M), where C(M,, M) is the set of orbits connecting M, to M, i.e.,

C(My,Mp)={x €S |w" C M; and w C My }.

Note that the partial order < on P induces a partial order on D(.S), which is also denoted
by < and called an admissible ordering of D(S). The flow defines an admissible ordering
<r of D(S), defined as follows: M, <p M, if and only if there exists a sequence m =
T0, M5 - - Tp—1, T = @' of elements of P such that C(My,, M,,_,) # 0, for all j =1,...n.
Every admissible ordering of D(.5) is an extension of <, in other words, all other admissible

orders are obtained by adding relations to <pg.

For each interval I of (P, <), one can associate the set

M, = (U Mﬂ>u< U C<Mﬂ/,Mﬂ>),
el el

which is called a Morse set of the admissible ordering <. Franzosa proves in [20] that if

(I,J) € Io(P, <) then (My, M) is an attractor-repeller pair in My, and that there is a long

exact sequence
o — CH(M;) -5 CH(Myy) 25 CH(M;) -2 CH(M;) — - - (1.1)

associated to the pair (M, M), where CH(M;) denotes de homology index of M;. The
collection of the homology index C'H(Mj), for all I € Z(P, <), and the maps i., ps, O, for
all pair (I,J) € Zy(P, <), is a graded module braid over <. This graded module braid is
denoted by H(<) and is called the homology index braid of the admissible ordering < of
D(S). Moreover, H(<) is chain complex generated. See [20] and [21] for more details.

Now, let C' = {CA(7)}rcp be a collection of free chain complexes with trivial boundary
operator, where CA(7) = CH(M,), for all 7 € P, the homology index of M, with coefficients
in G. A map A : CA(P) — CA(P) can be viewed as a matrix

A= A’ )

' €P
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where each entry A(7’, 7) is a map of degree —1 from C'H (M) to CH(M,). One says that
(a) A is strictly upper triangular if A(7',7) # 0 implies 7 < 7';
(b) A is a boundary map if each map A(7’,7) is of degree —1 and A o A = 0;

Let A be strictly upper triangular boundary map. Given (I,J) € Zy(P, <), let A(J,I)
be the map defined by the matrix

A(JI) = A’ )
nel, w'eld

and denote the map A(I, I) by A(I). For each I € Z(P, <), considering the module CA(I) =
@rerCH(My), (CA(I),A(l)) is a chain complex. For each pair of adjacent intervals (1, .J),

there is a short exact sequence associated to it:

i(I IJ) (IJ J)

0 — oA"Y ean ™ ea) — o.

Passing to homology, one has the long exact sequence

p«(IJ,J)

HA@LD ") gy 50

in(1,1.])
—

- — HA(I) HA(I) — -+

where HA(K) denotes the homology of the chain complex (CA(K),A(K)), the maps
i(I,1J), p«(IJ,J) are induced by the inclusion (I, I.J) and projection p(IJ,J) maps, re-
spectively. The map A, (J, I) is induced by A(J, I) as follows: A.(J, I)[a] = [A(J, )a]. The
collection of HA(I), for all I € Z(P, <), and the maps i.(I, IJ), p.(1J,J), A.(J, I), for each
(I,J) € Iy(P, <), is a graded module braid denoted by HA.

A strictly upper triangular boundary map A : CA(P) — CA(P) is called a connection
matriz of H(<) if and only if the graded module braid HA generated by A is isomorphic to
H(<), that is, if there is a collection of isomorphism {6(1): HA(I) — CH(Mj)|I € Z(P, <)},
such that, the following diagram commutes for all pair (1, J) € Zy(P, <):

2D A ) EE D gAY gac) 2 gaa) s

LW) le(m jem lem
o(J1 i . o1 ;
MYOH(M,) - CH(My) 2 CH(My) P CH (M) s -

(J.1)
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If < is the flow ordering, then A is said to be a connection matrix of the Morse decomposition
D(S).

The set CM (<) of connection matrices of H(<) is non empty, as Franzosa proved in [21].
Moreover, if <; and <5 are admissible orderings of D(.S) such that <, is an extension of <,
then CM (<) C CM(<s2). In particularly, CM(<p) C CM(<), for all admissible ordering
< of D(9).

The set CM (<) provides some dynamical information about the structure of an invariant
set S. A well known fact is that if A € CM(<p), 7 and 7’ are adjacent in the flow ordering
and A(7', ) # 0 then C (M, M) # 0.

Note that algebraic properties of A put restrictions on the maps d(w, 7'). A can be used
to prove the existence of connecting orbits between Morse sets. Moreover, this theory can
also be applied to the study of parameterized families of flows, according to the following
two approaches: first by studying the stability of connection matrices under perturbations,
whenever some stable connecting orbits are identified; and secondly by studying the changes

in connection matrices under perturbation, whenever bifurcations are detected, see [22] and
[24].

Example 1.1. Consider the flow illustrated in Figure 1.3, where the isolated invariant set
S consists of singularities a,b and ¢ and the connections between them. Let M; = {a},
My = {b} and M3 = {c}. D(S) = {M;, My, M3} is a <-ordered Morse decomposition of
S, where (P, <) is the ordered set P = {1,2,3} with 1 < 2 < 3. Note that the admissible

ordering coincides with the flow order.

Figure 1.3: S is an isolated invariant set.

The homotopy Conley index of the Morse sets M;, with I € Z(<) are I(M;) = X°,
I(My) = I(M3) = I(Mya3) = XY I(Myp) = 0, I(Mys) = ' v 2. Consider the module
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G =7Zs. Let A : CA(P) — CA(P) be a strictly upper triangular boundary map

0 A@2,1) A(3,1)
A=lo o A3B2 |,
0 0

where the homomorphisms A(2,1) : H(My) — H(M;), A(3,1) : H(Ms) — H(M,) and
A(3,2) : H(M;) — H(Ms) are of degree —1. Of course A(3,2) is the null map, since H(M3)
and H (M,) are non zero only in dimension 1.

Since the Conley indices are computed in this example over Zs, then A(2,1) is an iso-
morphism or2 the null map. Analogously for A(3,1).

In order for A to be a connection matrix for D(.S), the graded module braid HA generated
by A must be isomorphic to the homology index braid. From this fact, one can obtain
information about the maps A(2,1) and A(3,1). In this way, the homology of the complexes
(CA(I),A(l)), where I € Z and A([) is the restriction of A to the interval I, are:

H,A(i) = - ~ [ (M), fori=1,2,3,
(Z> im An+1<l) 0 ( ) or 1

H,A(12) = ker A,(2,1)  H,(M;) @ ker A,(2,1) i
n Cim Ai(2,1) 0 im A (2,1) 90 )

Cker A,(3,2)  Ho(M,) @ H, (M)
HuA(28) = f ot s = g ~ H,(M,) & H,(Ms).

Observe that the homology of (CA(I),A(I)) is isomorphic to the homology Conley index
of My, for all interval I, except when I = {1,3}. Hence, one needs to guarantees that
HA(12) = H(M2). Remember that A(2,1) can be a null map or an isomorphism; since
(1.2) must hold, then if A(2,1) =0 one has HA(12) = H(M;) & H(M,y) 2 H(M,). But, if
A(2,1) is an isomorphism, then HA(12) = H(M2).

Note that there are no restrictions on the map A(3,1) in order for A to be a connection
matrix for the Morse decomposition D(S). Therefore, the connections matrices for this

example are the maps

Q
Q
(@]
Q

A= and A=1| 0

o O
o O
o O
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1.2 Spectral Sequence Sweeping Algorithm

In this section, one presents the main algebraic tools that will be used throughout this
thesis. The first one is a spectral sequence associated to a chain complex and the basic
references are [15, 41]. The second one is the Spectral Sequence Sweeping algorithm which,
when applied to a filtered chain complex (C,,0,), recovers from it the spectral sequence
associated to (Cy,d,). This algorithm was introduced in [13] and in [30] for the case of a

chain complex over Z and [, respectively.

1.2.1 Spectral Sequence for a Chain Complex

Let R be a principal ideal domain. A k-spectral sequence E over R is a sequence {E", 0" },

for r > k, such that

1. E" is a bigraded module over R, i.e., an indexed collection of R-modules £ , for all

P,q € Z;

2. d" is a differential of bidegree (—r,r — 1) on E", i.e., an indexed collection of homo-
for all p,q € Z, and (d")? =0

] T . T r
morphisms d” : E = Ep i

3. for all 7 > k, there exists an isomorphism H(E") ~ E™, where

Kerd" : £ — ET
H. (E") — P, p—r,g+r—1 .
)= T — By,

ptrg—r+1

Observe that if £ =0 for a fixed pair of integers (p, ¢), then E;:;“ = 0, for all integers

a > 0. Moreover, defining £} = @, ,_ o Es» the differential d” induces a homomorphism

O : By — E7_ such that {E7,0"} is a chain complex with g-th homology module equal to

D= H(E)ss-

Let Z}, = Ker(di, : E¥, — Er ) and By = Im(d}, ., : EF ., — EF ), then

B* C ZF and E**' = ZF/B*. Now, define Z(E*"),, = Ker(di' : EFI' — E;;fiq)

and B(E¥), = Im(dit]  : BNl - — E¥i'). By the Noether Isomorphism Theorem, there

exist bigraded modules Z** and B**! of Z* containing B* such that Z(E**), , = Z¥1/BF

7q
and B(E*™), , = Byt /By . for all p,q € Z. Hence B¥ C B**' C ZF+! C Z*. By induction,

7q’
one obtains submodules

BFCBMlC...CcB'C...CZ C...CzZM'CZF
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such that ™! = Z"/B".

Consider the bigraded modules Z>* =N, Z", B> = U,B" and E*® = Z°°/B>. The latter
module is called the limit of the spectral sequence. A spectral sequence £ = {E",0"} is
convergent if given p, g there is r(p, ¢) > k such that for allr > r(p,q), d;, , - By, — By .
is trivial. A spectral sequence E = {E", 0"} is convergent in the strong sense if given p, q € Z
there is r(p,q) > k such that E] =~ E> for all 7 > r(p,q).

Let (C,0) be a chain complex. An increasing filtration F on (C,0) is a sequence of

submodules F,C' of C' such that:
1. F,C C F,1C, for all integer p;

2. the filtration is compatible with the gradation of C, i.e. F,,C' is a chain subcomplex of
C consisting of {F,C,}.

- : : : :

@]

2 ! ! ) !

<

;% e Fp—lcp+q+1 — chp+q+1 — Fp+1 C(p-&-q-&-l — Fp+2 Cp+q+1 —
& \J A ! 1

g Fp1Cpig — FpCpiqg = Fpp1 Cprg —> Fpp2 Gy — -+
g ! Lo ! !

% e Fyy — F, — Fpi — Fpio —
=

e ! ! ! !

Q : : : :

o : :

— Increasing filtration

A filtration F' on C' is called convergent if N,F,C' = 0 and U,F,C' = C. It is called finite
if there are p,p’ € Z such that F,C' = 0 and F,C = C. Also, it is said to be bounded below
if for any ¢ there is p(q) such that F,)Cy = 0.

Given a filtration on C, the associated bigraded module G(C') is defined as

FPCP-H]

G(O)IM] = Fp—lcp-&-q'

A filtration F' on C' induces a filtration ' on H,(C') defined by

F,H,(C) = Im [H,(E,C) — H.(C)].
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If the filtration F' on C'is convergent and bounded below then the same holds for the induced
filtration on H,(C).
The following theorem (see [41]) shows that one can associate a spectral sequence to a

filtered chain complex whenever the filtration is convergent and bounded below.

Theorem 1.1. Let F' be a convergent and bounded below filtration on a chain complex C'.

There is a convergent spectral sequence with

FPCP+Q

E0 = PPt
g
prlcerq

E.C
=G(C d E! ~H _~pptq
(C)pyg an g ptq ( Fy1Chio

and E* is isomorphic to the bigraded module GH,.(C') associated to the induced filtration on
H.(C).
The proof of this theorem provides algebraic formulas for the modules E", which are

.

ET = Zp,q
p.g Zr—l + aZr—l ’
p—1,g+1 p+r—1,q—r+2

where
Zya=1{c € FyCpiq| Oc € i Cprg1}.

Note that, £ does not determine H,(C') completely, but

FpHypiq(C)

E>* ~GH,(C = ="
Pl ( )p,q pralJrq(C)

However, it is a well known fact [15] that whenever GH,(C),, is free and the filtration

is bounded,

D GH.(C)yy = Hpio(C). (1.3)

ptg=k
1.2.2 Spectral Sequence Sweeping Algorithm

In [13], a sweeping algorithm was introduced from which a spectral sequence associated
to a finite chain complex over Z with a special filtration is recovered. More specifically, let
(C,0) be a finite chain complex such that each module C} is finite generated. Denote the
generators of the Cj, chain module by Ay, -- -, hi*. One can reorder the set of the generators
of C, as

1 lo 1.00+1 01 Lp_1+1 Ly
{hoj...7h0’h1 7'”7h17“.7hk ’...’hk’...}’



16 Section 1.2 e Spectral Sequence Sweeping Algorithm

where 0, = ¢y +--- + ¢ 2. Let F be a finest filtration on C' defined by

R, £<p+1

for p € N. The spectral sequence associated to (C., 0, ) with this finest filtration has a special
property: the only ¢ for which Ej , is non-zero is ¢ = k — p, where k is the index of the chain
in F,C'\ F,_1C. Hence, in this case, we omit reference to ¢. It is understood that EJ is in
fact £} ,_,. The sweeping algorithm presented below, provides an alternative way to obtain
such modules as well as the differentials d"’s.

For this purpose, we can view the differential boundary map 0 of the chain complex C'

as the matrix A:

Co -+ Crr Cp Cry1 Crya - C,
Co (O
Ci1 |0 AVARY 0
Cri1| 0 0 | Bkn
Coral 0 0 | Ario
0
c. | o 0

where Ay is the map J, and the order of the columns of A follows the order determined
on the generators of C,. From now on, the boundary operator 0 and the matrix A will be
used interchangeably. Note that the numbering on the columns of A is shifted by one with
respect to the subindex p of the filtration F},.

Remember that the term A} denotes an elementary k-chain of the module C} and this
k-chain is associated to the column [ of the matrix A. Moreover, Fj_; \ Fj_o = Z(h.).

We now present the algorithm which when computed on A recovers at each stage the
modules and differentials of the spectral sequence {E",d"}. For more details see Theorems
4.4 and 5.7 in [13].

Spectral Sequence Sweeping Algorithm - SSSA

2In order to simplify notation, we use the index f), to denote the first column of A associated to a k-chain.
Hence fi; = fx_1 + 1. Moreover, ¢; denotes the latter column associated to a k-chain.
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For a fixed diagonal r parallel and to the right of the main diagonal, the method described

below must be applied simultaneously for all £.

Initial Step.

(1)

Let & be the first diagonal of A that contains non-zero entries A;; in Ay, which will
be called index k primary pivots. Define At to be A with the k- index primary pivots
marked on the &;-th diagonal.

Consider the matrix A%, Let & be the first diagonal greater than & which contains
non-zero entries Aflj The construction of A% follows the procedure below. Given a

non-zero entry Aflj on the &-th diagonal of ASt:

If Aﬁjj contains an index k primary pivot for s > i, then the numerical value of the

given entry remains the same, Af? = A% and the entry is left unmarked.

Z?]’
If Aﬁ}j does not contain a primary pivot for s > i:
then if Aflt contains a primary pivot, for ¢ < 7,
then define Afi = Aflj and mark the entry Afz’] as a change-of-basis pivot.

Else, define AZ&J = Aflj and permanently mark Afi as an index k primary pivot.

Intermediate Step.

Suppose by induction that A¢ is defined for all £ < r with the primary and change-of-basis

pivots marked on the diagonals smaller or equal to £&. In what follows it will be shown

how A" is defined. Without loss of generality, one can assume that there is at least one

change-of-basis pivot on the r-th diagonal of A”. If it is not the case, define A™! = A" with

primary pivots and change-of-basis pivots marked as in step (2) below.

(1) Change of basis. Let A], be a change-of-basis pivot in Aj. Perform the change of

basis on A" by adding a linear combination over Q of all the hl columns of A" with
¢ < j to a positive integer multiple u # 0 of column j of A", in order to zero out
the entry A}, without introducing non-zero entries in Af ; for s > 4. Moreover, the
resulting linear combination should be of the form g/hs +- -4 37='hi =" 4 3717 where
fi is the first column of A" associated to a k-chain and #° € Z, for all j = &,--- , j.

The integer u is called the leading coefficient of the change of basis. If more than one
linear combination is possible, one must choose the one which minimizes u. One can

define a matrix 1" which performs all the change of basis on all of the r-th diagonal.
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Define A" = (T7)"'A™T" and mark the entries of the (r + 1)-th diagonal of A™! as

follows.

(2) Markup. Given a non-zero entry A7+ on the (r + 1)-th diagonal of A}*!:

If A;jl contains a primary pivot for s > i, then leave the entry A;}Ll unmarked.
If Ag;l does not contain a primary pivot for s > :

then if A7, contains a primary pivot, for ¢ < j,

then mark A7, as a change-of-basis pivot.

Else permanently mark A7, as a primary pivot.

Final Step.

Repeat the above procedure until all diagonals have been considered.

According to the algorithm, if A, is a change-of-basis pivot on the r-th diagonal of A,
then once the corresponding change of basis has been performed, one obtains a new k-chain

associated to column j of A", which will be denoted by o7"*". Observe that o™ is a

linear combination over Q of columns ¢ of A" with f;, < ¢ < j such that A;}“l =0, i.e., Ji’rﬂ
is a linear combination over Q of O',J:k’r, .-, ol Also, o}t is a linear combination over Z
of the columns fy,---,j of A", i.e., of hi’“, e ,hi. Hence,
ot = wy GTh gy g Ty +
= fr =fk
Ui,r o_jk'fl,r'
1 1 1
o aper el TR g TR (1.4)
N -~ 7 W
a£k+1!r UIJ:W

r+1y5 , g-lrl, -1 fior+1
= o h+q A R hgk
where cﬁ’rﬂ € Z, for £ = fy,---,j. If A" contains an index k primary pivot in the entry A’ ;
with s > ¢ and £ < j, then ¢; = 0. Of course, the first column of any A, cannot undergo
changes of basis, since there is no column to its left associated to a k-chain.

The family of matrices { A"} produced by the Spectral Sequence Sweeping Algorithm has

several properties, which are proven in [13, 30|, such as:

(a) A" is a strictly upper triangular boundary map, for each r.
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(b)

(f)

It is not possible to have more than one primary pivot in a fixed row or column.

If the entry A}_, . is a primary pivot or a change-of-basis pivot, then Af, = 0 for all

§>g—r.

If A”__ . is a primary or a change-of-basis pivot, then A

r . .
o7 ., 1s an 1nteger.

J=rJ

Let AL be the last matrix produced by the SSSA. Then, the primary pivots are non-null

and each non-null entry is located above a unique primary pivot.

If column j of A* is non-null, then row j is null. The matrix A” is integral.

Example 1.2. To illustrate the SSSA over Z, consider the graded group C, defined by

Co =

Zhg), Cy = Z(h3), C3 = Z{h3) ® Z{hs) @ Z(h3), Cy = Z{hG) @ Z(h]), Cs = Z{hg) and

Cr =0, for k € N\ {0,2,3,4,6}. Also, consider the differential 0y : C}, — Cy_1, defined on
the generators of Cy by 05(h3) = 5h2, 05(hi) = 3h3, 03(h}) = h3, 04(hS) = 2h3 — 4hj3 + 2R3,
O4(hl) = 1h3 — 5h3, and the other d are the null map. The pair (C,,d.) is a finite chain

complex.

Applying the SSSA to this complex, one obtains the sequence of matrices A" shown in

Figures 1.4 to 1.9. In these figures, the primary pivots entries are indicated by means of a red

background and darker edge, the change-of-basis pivots are indicated by blue background

and dashed edges, null entries are left blank and the diagonal being swept is indicated with

a gray line. <
1 2 3 4 ] 6 7 8 O'I'I U'z'l 0'3'1 0'-/” U's'l 0'(,)" 0',7'I U'S'I
hy hy h3 h3 h3 hy hy he 0 2 3 3 3 4 4 6
1.1 1
Y oy =hy
2 2.1 —/2
3 5 |3 |1 oy =h 513 |1
" 2 |1 o =h 2 |1
it -4 0 o3’ = -4| 0
n 2 | -5 o= 2 | =5
h§ oyt =
i =i
/12 0'2" = hg

Figure 1.4: Initial matrix A. Figure 1.5: A'; marking primary pivots.
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4 1,3 23 33 43 53 6.3 13 8.3
(ré‘z (7'%‘2 0_;.2 0_;,2 0_2,2 0_3.2 ‘77{2 0_2.2 (e o5 [ [ o3 oy Ty Ty
13 _
0_(]).2 - h(]) 0y = hll)
-
23 ' i
o‘%zzhg 5 3 1 oy’ =h S 0 ] ! i
2
33 3
o3?=n 2 |1 o3t =1 ik
a2 43 4 3 4
oy =h -4 0 03 =5h =3 —g -4
53 -
0_2,2 =1 2 _5 oy =hm 2 0
it = oit=n
3
o =h] o =5hS+2h,
8.3
ot =h og = hg
3 . 2. : : ! . . 3. . .
Figure 1.6: A%, marking pivots. Figure 1.7: A°; marking pivots.
1.4 24 3.4 4.4 5.4 6.4 74 8.4
9y 0y O3 Oy Oy Oy Oy O oy’ 0'%‘5 0'2‘5 oy o o ) o
4
oyt =g oS =h)
oyt=n sfo o o =i s1o|o
0_;4 =i 0 0 03'5 =1 0 0
oyt =51 -3 0 |-4 oS =sht -3 0| -4
oyt = -2+ 2 | o P =i -2+ b 2| o
ol =g 095 = hS
ot = 5K+ 2] oy =5K+ 20
ogt =g o5’ =
. . 4 . . . . . .
Figure 1.8: A*; sweep 4-th diagonal. Figure 1.9: Final matrix A®.

In [13] it is proved that the Spectral Sequence Sweeping Algorithm provides a system
that spans the modules E" in terms of the original basis of C, and identifies all differentials
d,: E, — EJ . with primary and change-of -basis pivots on the r-th diagonal. In fact, the
matrix A" obtained in the r-th step of the SSSA determines the bigraded Z-module E" and
the differential d". The primary and change-of-basis pivots in A" have important roles in

determining the generators of Z). A formula for the module Z7,  in terms of the chains

o’s is

g _ p+1,r pt+lr  pr—1_pr—1 Jier—p=1+fi fr.r—p—1+fk
Zp,k—p =7 K Oy y M O RN » ko-k; ) (]-5>
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where f; is the first column of A associated to a k-chain, and p/¢ = 0 whenever there is a
primary pivot on column j below row (p —r + 1) and p?* = 1 otherwise. In [13], it is proved
that the modules E] ,  are generated by certain 0}’s associated to the SSSA. Moreover, if £}
and £, are both non-zero, then the differential d" : Ej — EJ . is induced by multiplication
by A7 .1 ,+1, Whenever this entry is either a primary pivot, change-of-basis pivot or a zero

with a column of zero entries below it.

Example 1.3. Returning to Example 1.2, the spectral sequence associated to the chain
complex (C, 0,) is presented below. Since one works with a finest filtration on (Cj, 0,), the
only ¢ for which E]  is non-zero is ¢ = k—p, where k is the index of the chain in F},C \F,—1C.

Hence, we omit reference to ¢ and represent the E"-page of the spectral sequence as a line.

- -«
B Z[hg] Z[h3) Z[h3) 21h3) 2[h3] Z[hs) AuN 2[hg)
d3 =3 dZ = -5
-« P
E?: Z[h] Z5[h3) 0 Z1h3) Zo[h3)] 0 Z1hi) AUt
di=—4
A/’/\
E3: Z/[h(ﬂ 0 0 Z/[Shg,1 - hg] 0 0 Z[th—i—f)hﬁ] Z[h%}
E*:  Z[h] 0 0 Z[5h3 — h3) 0 0 0 Z[h8)

The differentials dj, dj and dj are induced by the primary pivots Aj s, Alg and A ;.
On the other hand, the differentials d3 and d2 are induced by the change-of-basis pivots A3,
and AZ ;. <

Remark 1.1. Let (C,, 0) be a finite chain complex such that each module C}, finite generated
by ¢ k-chains {h;}’s. In this section, the set of generators hl’s of C, is ordered respecting

the grading and increasing in j, i.e,
1 Lo 1.L0+1 L lp—1+1 L
{Rd, -+ hE RO Rl B R AR

where { = ¢o+ - - - 4 ¢;. This order was used to define the filtration F' considered in (C\, 9),
which is given by

FC.= @ z(h).

Y, (<p+1
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However, this assumption is not necessary, although it simplifies notation. One can freely
reorder the generators of C, by respecting the condition that if ahi | for a € Z \ {0} is a
component of ak(hi), then 7 < j. In this case, we also define the filtration as the one which
respects the order considered on the set of generators C,. In this case, the square matrix
which represents the boundary operator 0 will also have its columns ordered accordingly.
All the results still holds in this case.

Note the the Spectral Sequence Sweeping Algorithm previously defined is applicable to
the differential A of a chain complex C, over Z, with some additional structure, as stated
above. With a small adjustment, one can use the same algorithm for chain complexes over
a field F. This is accomplish by modifying the step “change of basis” as follows: if A is a
change-of-basis pivot, perform the change of basis on A" by adding column p multiplied by
—A;j(AZp)_l to column j of A", where A} is a primary pivot. This primary pivot exists,
otherwise A, would not be a change-of-basis pivot and the change of basis is well defined
since the operation is done over a field. The properties of the SSSA over Z also hold for the
SSSA over a field F. For more details on SSSA over a field, see [30].

In [24], the dynamical implications of the SSSA over Z, was investigated. Therein, the
SSSA over Zs can also be viewed as a schematic continuation that undergoes bifurcation,
through saddle-saddle connections which are coded in the off diagonal non-zero entries of

the transition matrices.

1.3 Lyapunov Graph Theory

In this section, the necessary background from Lyapunov Graph Theory is introduced.
The references for this section are [6, 7, 8].

A directed graph G is an ordered pair of disjoint sets (V, E') such that E is a subset of the
set of ordered pairs of V. The set V' is the set of vertices and F is the set of edges; an edge
e that join the vertices u and v is denoted by e = (u,v). In this thesis, only finite digraphs
are considered, that is, V and E are always finite sets.

A directed semi-graph G’ is a pair of disjoint sets (V', E'), with V' = V U {c0} and
E" C V' x V', As usual, the elements of V' are called vertices and the elements of £’ are
called edges. Furthermore the edges of the form (co,v) and (v, 00) are called semi-edges.

As the terminology suggests, we do not usually think of a directed graph as an ordered

pair of sets, but as a collection of vertices some of which are joined by edges. Unless it is
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explicitly stated otherwise, throughout the remainder of this thesis the term “graph” will be
used to mean a directed graph.

Let v be a vertex of a graph, then the number of incoming edges of v is called the indegree
of v and is denoted by e™(v), the number of outgoing edges of v is called outdegree of v and
is denoted by e~ (v), and the sum of the indegree and the outdegree of v is called the degree
of v and is denoted by e(v).

A path between two vertices vy and v, in a graph is an alternating sequence of vertices
and edges, v, €1, V1, ..., Un_1, €n, U, such that, for each ¢ = 1,... n, one has e¢; = (v;,v;_1)
or e; = (v;_1,v;). A graph is connected if there is a path between any two vertices in the
graph. A path is oriented if for each i, ¢; = (v;_1,v;). A path is a cycle if the edges are
distinct and vy = v,,.

Given a continuous flow ¢, : M — M on a closed n-manifold M, there exists a continuous
function f : M — R which decreases along the orbits outside the chain recurrent set R of
G, 1.e., if © € R then f(¢i(z)) < f(ps(x)) if t > s, and it is constant on the chain recurrent
components of R. See [12, 19].

Given a Lyapunov function f : M — R, consider the following equivalence relation on
M: z ~; yif and only if x and y belong to the same connected component of a level set of f.
Consider the quotient M/ ~¢. This space determine a graph L when a point of x € M/ ~¢
is identified as a vertex of L if and only if the level set € f~!(c) containing x also contains a
chain recurrent component; and all the other points of M/ ~ are identified as edges of L.

The graph L is called the Lyapunov graph of f. See Figure 1.10.

Figure 1.10: Lyapunov graph.

In addition, L can be oriented according to the gradient-like flow and hence it has no
oriented cycles. Moreover, since each vertex represent a component of R, it can be labelled
with dynamical invariants component as in [6]. On the other hand, since each edge represents

a level set times an interval, it can be labelled with topological invariants of the level sets.
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Since we consider only flows admitting a finite number of chain recurrent components,
we obtain a graph with a finite number of vertices. One can do the same process when the
underlying manifold has boundary. In this case, we obtain a Lyapunov semi-graph.

An n-abstract Lyapunov graph is a finite and connected directed graph I with no oriented
cycles such that each vertex v of I' is labelled with a list of non-negative integers, denoted
herein by {ho(v),--- , hn(v), Ky}, and each incoming (outgoing) edge of v is labelled with a
list {8 = 1,67, BaoBas =1} ({By = LB+, Boss By = 1}) of non-negative
integers satisfying Poincaré duality®. The number «(v) is called the cycle number of the
vertex v.

Let v be a vertex in an n-abstract Lyapunov graph with e (v) incoming edges denoted
by e/ and labelled with ( gj, . ,ﬁil), for ¢ =1,--- ,e"(v) and with e (v) outgoing edges

denoted by e, and labelled with (3;* ,...,62‘:1), for ¢ = 1,--- e~ (v) (see Figure 1.11).
Define

e (v) et (v)

e, ef

Bi (v) = E 8% and Bj(v)= E Bt
(=1 =1

Given an abstract Lyapunov graph I', the cycle number k of I' is defined as k = K1, + Ky,
where Ky is the sum of the cycle numbers of all vertices of I' and k, is the cycle rank of
[, i.e., the maximum number of edges that can be removed without disconnecting I'. We
will denote the Lyapunov graph I' by I'(ho, - - - , hn; k) where hy = > h;(vx) and the sum

is over all vertexes of T.

Figure 1.11: A vertex of a Lyapunov graph.

An n-abstract Lyapunov graph of Morse type is an n-abstract Lyapunov graph such that

(1) Each vertex v is labelled with h; = 1 for some j = 0,--- ,n and the cycle number of

each vertex is equal to zero.

3A list of non-negative integers {Bo=1,B1,, Bn_2,Bn_1 = 1} is said to satisfies Poincaré duality if
Bj = fBn-1—; forall j=0,--- ,n—1.
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(2) The number of incoming edges e™(v) and the number of outgoing edges e~ (v) of a

vertex v must satisfy:

(a) if h; =1for j #0,1,n—1,n then e"(v) =1 and e (v) = 1;

(b) if by = 1 then ef(v) = 1 and 0 < e= < 2; if h,_; = 1 then e (v) = 1 and
0<et(v) <2

(c) if ho = 1 then e~ (v) = 0 and et = 1; if h,, = 1 then e*(v) = 0 and e~ = 1.
The label in each edge incident to a vertex v label with Ay or h, = 1 must be
(1,0,---,0,1).

(3) Each vertex labelled with h; = 1 must be of type [-disconnecting or (I — 1)-connecting.
If the labels in which incoming and outgoing edges of v satisfy B, + 1 = B;" and
B; = B;f for j # [, then the vertex v is of type [-disconnecting. If the labels in which
incoming and outgoing edge of v satisfy B, = B" | — 1 and B; = B} for j #1 -1,
then the vertex v is of type (I — 1)-connecting. Furthermore, if n = 2i =0 (mod 4)
and h; = 1 then, v may be labelled with (;,, (-invariant) in the case B = B;r for all
j. See Figure 1.12.

Note that the cycle number of an abstract Lyapunov graph of Morse type is equal to its

cycle rank.

ho =1

Figure 1.12: Local conditions on an abstact Lyapunov graph of Morse type.

Similarly, one can define abstract Lyapunov semi-graph and abstract Lyapunov semi-
graph of Morse type.
In order to define continuation of abstract Lyapunov graphs, we will introduce the notion

of vertex explosion. A vertex v labelled with (ho(v), ..., h,(v); K,) in an n-abstract Lyapunov
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graph I' can be ezploded if v can be removed from I' and replaced by an n-abstract Lyapunov
semi-graph of Morse type 'y, with cycle rank greater than or equal to x, and with the labels
on incoming (outgoing) semi-edges of ['j; matching the labels on the outgoing (incoming)

semi-edges of I'\{v}. Moreover, for all 7,
V) =Yy (v)),
J

where the sum is over all vertices v; of I'y.

An abstract Lyapunov graph I" admits a continuation to an abstract Lyapunov graph of
Morse type I'y; if each vertex can be exploded such that I"y; has cycle rank greater or equal
to k.

In [6] and [7] the Poincaré-Hopf inequalites were introduced:

(
hj > _(B;'r—1_Bj 1) (Bj2 Bf—z)"‘"'i(B;_Bg)i(BfF_Bf)

—(hn—(i-1) = hj-1) + (hn-(i-2) = hj2) £+ £ (b1 — 1)
£[(hn = ho) + (¥ —€7)]

hnfj = _[_(B;'r—l ) (B;r 2 g_ 2) +--- £ (B; - BQ_) + (Bfr - B1_)

—(hn—(j—1) = hj—1) + (ha, hjfz)i"‘i(hnfl — hy)
+[(hn — ho) + ( - 67)]]

hy > —(Bf = B) = (hn—1 — ) + (hy — ho) + (et —€7)
hoa = —[=(B{ = By) = (hy—1 — h1) + (hy — ho) + (e" — 7]
hy > ho—1+e" + kK,
hno1 > hy—14et +k,
where 0 <j <n.
( 2i+1
Ifn=2i+1, then BT—-—B =e¢" —e++z it
, J=0 }
where l’:)”“—ﬂBJF:I:BJr +...— B B*—(_DZB_:I:B_ +...— By
- 9 % i—1 1> - 9 i i—1 1 -
<
If n =2i =2(mod 4), then
i—1 i—1
hi — Z(_l)jﬂ(B;L - BJ_) - <_1)j(h2i—j —hj)+ <€+ — e~ ) must be even.
\ Jj=1 j=0
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The main Theorem of [6, 7] establishes that: an abstract Lyapunov graph I'(hg, - -« , hy; )
admits a continuation to an abstract Lyapunov graph of Morse type with cycle rank greater
or equal to « if and only if it satisfies the Poincaré-Hopf inequalities at each vertex, where
k < min{hy — (ho — 1), hn_1 — (h, — 1)}. Of course, there exists an analogous result for

Lyapunov semi-graphs.

Example 1.4. Consider the 7-abstract Lyapunov graph I' in Figure 1.13. Recall that
the label on each edge is a list of seven non-negative integers satisfying Poincaré duality
(Bo, -+ ,B6), hence By = B = 1 and ; = fe—;. Therefore, in Figures 1.13 and 1.14, the
label on each edge is (1, B2, f3). Moreover, if the label of a vertex contains many zeros, e.g.
(0,1,0,0,0,0,0,0,x = 0), we adopt the alternative notation h; = 1. Figure 1.14 contains

two possible continuations for the Lyapunov graph T'.

Questions regarding the realization of abstract Lyapunov graphs were investigated in
9, 10].

}L7:1

(07 0? 0)
(0,2,1,2,1,1,3,0;1, = 1)

(0,0,0)

0-c h1
(0,0,0) (0,0,0)
6-d  hg=1
(07 07 0)
0-c hl
(0,0,0) (0,0,0)

ho=1

Figure 1.13: Abstract Lyapunov graph I'(2,4,1,2,1,1,4,1;k = 2).
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hr =1 h7 =1
(0,0,0) (0,0, 0)
5¢ hg =1 5¢ hg=1
(1,0,0) (1,0,0)
5c he =1 5d hs =1
(2,0,0) (0,0, 0)
5d hs =1 3¢ hs=1
(1,0,0) (0,0,2)
3¢ ha=1 3-d h3=1
(1,0,2) (0,0,0)
3d h3=1 3¢ hs3=1
(1,0,0) (0,1, 0)
2-c hz=1 2-d ho =1
(1,1,0) (0,0,0)
2-d ha=1 0-c h1 =1
(1,0,0) (0,0,0) (0,0,0)
1-d hi=1 6-d he =1
(0,0,0) (0,0, 0)
0c =1 0-c hi=1
(0,0,0) (0,0,0) (0,0, 0) (0,0,0)
6-d he=1 ©0.0.0) 6-d he=1 ©0.0.0)
0-c hi=1 0-c hi=1
(0,0, 0) (0,0,0) (0,0,0) (0,0,0)
6-d he =1 6-d he=1
(0,0,0) (0,0,0)
0c hi=1 0-c h1=1
(0,0,0) (0,0,0) (0,0, 0) (0,0,0)
h()Il hO:1 h():]. hO:1

Figure 1.14: Continuations of the graph I' in Figure 1.13,
'(2,4,1,2,1,1,4,1;k = 2) and ['5(2,4,1,2,1,1,4,1;k = 3),
respectively.



Chapter 2

Spectral Sequences for two

dimensional Morse Complexes

The computation of a spectral sequence of a filtered Morse chain complex (C, 9) developed
in [13] led to the question of how closely the dynamics follows the spectral sequence. More
specifically, the Spectral Sequence Sweeping Algorithm defined in [13] produces a sequence
of connection matrices starting with the matrix of the boundary operator 0, from which the
modules and differentials (E",d") of the spectral sequence may be retrieved. As one ”turns
the pages” of the spectral sequence, i.e. considers progressively modules E”, one observes
algebraic cancellation occurring within the E"’s.

In this chapter, we wish to understand the dynamical meaning of these algebraic can-
cellations. In other words, given the dynamics that has been converted to a filtered chain
complex description, what homological conclusions can be drawn from the spectral sequence?
On the other hand, how much dynamical information can be recovered or even gained from
the spectral sequence analysis? Herein, we answer these questions in the setting of flows on
smooth closed 2-dimensional orientable manifolds.

In Section 2.1, an extremely concise background on Morse Theory, designed for our goals,
is presented. See [3, 39, 42] for more details.

In Section 2.2, one finds the analysis of the relation between the Morse differentials
associated to a Morse function on a manifold M when the set of orientations of the unsta-
ble manifolds undergo changes. This analysis makes it possible to characterize the set of
connection matrices for a Morse flow on a surface.

In Section 2.3, one finds the investigation of the implications that the characterization of

29



30 Section 2.1 ¢ Morse Chain Complex

the connection matrices for orientable surfaces has on the SSSA. Several properties of this
algorithm are proved therein which have homological implications for the spectral sequence.
More specifically, one proves that all the differentials d” in the spectral sequence are isomor-
phisms and hence torsion does not appear in the modules E”. We also keep track of all the
algebraic cancellations.

A new algorithm, called Smale’s Cancellation Sweeping Algorithm (SCSA), is defined in
Section 2.4. Moreover, one proves that the primary pivots identified in the r-th step of the
SSSA coincide with the primary pivots identified in the r-th step of the SCSA.

In Section 2.5, the algebraic cancellations of the spectral sequence of the filtered Morse
chain complex are dynamically interpreted as the history of birth and death of connecting
orbits of s caused by the cancellation of consecutive critical points. Theorem 2.4 associates
the algebraic cancellation in the spectral sequence to the dynamical cancellation of critical
points in the flow via the Spectral Sequence Sweeping Algorithm. Theorem 2.3 constructs a
family of flows associated to the spectral sequence which also defines a continuation to the

minimal flow.

2.1 Morse Chain Complex

Let M be a smooth manifold of finite dimension n and f : M — R a smooth function.
A point p € M is a critical point of f if df, is the null map. In this case f(p) is a critical
value. The set of all critical points of f is denoted by Crit(f). A critical point p is said to
be nondegenerate if the matrix of second partial derivatives at p (the Hessian matrix Hg ) is
non-singular. Otherwise, p is a degenerate critical point. Nondegenerate critical points are
isolated.

A smooth function f : M — R is called a Morse function if each critical point of f
is nondegenerate. The Morse index of a critical point p is the dimension of the maximal
subspace where Hsz is negative definite, and it will be denoted by ind;(p). The set of Morse
functions on a manifold M is dense in C*(M,R). Moreover, if M is a closed manifold, then
the set of critical points of a Morse function is finite.

Let f : M — R be a smooth function on a smooth closed Riemannian manifold M of

dimension n. Fix a Riemannian metric g on M. The identity

9(V(f):-) = df (")
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uniquely determines a gradient vector field V(f) on M. Denote the flow associated to
—V(f) by ¢, which is called of negative gradient flow. To simplify notation, we write ¢ for
¢ whenever emphasis of f need not be given. The singularities of the vector field —V(f)
corresponds to the critical points of f.

The negative gradient flow ¢; has special properties when f is a Morse function such as:

(1) Given z € Crit(f), the Morse index of  corresponds to the dimension of the unstable

manifold of ¢, at x, W*(z).
(2) The function f decreases along nonsingular orbits of ¢y and possesses no closed orbits.

(3) Each regular orbit intersects a regular level set at most once and this intersection is

orthogonal to the level set with respect to the metric g.
(4) Given z € M such that « ¢ Crit(f), w(xz) and a(z) consist of one singularity of ¢;.

These properties are well known in Morse Theory. More details can be found in [3] and [31].

Given x,y € Crit(f), the connecting manifold of x and y is given by
My =W (z) N W(y).

The connecting manifold M, is the set containing all points p € M such that w(p) = y and
a(p) = z. The moduli space between x and y is defined by

Mz(a) = Mwy N f_l(a)a

where a is a regular value between f(z) and f(y). See Figure 2.1.

Figure 2.1: Connecting manifolds in a negative gradient flow on a sphere.
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The space Mj(a) is the set of all orbits running from x to y. For different choices of
regular values ay, ag there is a natural identification between M (a1) and M;(a;) given by
the flow. Hence, one use the notation My for the moduli space.

A Morse function f is called a Morse-Smale function if, for each z,y € Crit(f), the
unstable manifold of ¢ at x, W*"(x), and the stable manifold of ¢, at y, W*(y), intersect
transversally.

Whenever f is a Morse-Smale function, the connecting manifolds and the moduli spaces

are closed submanifolds of M. Moreover, one has that their dimensions are given by
dim(Myy) = indy(z) — inds(y), dim(My) = inds(z) —inds(y) — 1.

Hereafter, in this chapter, assume that f is a Morse-Smale function, unless stated other-
wise. In this case, the negative gradient flow ¢ is also called Morse flow.

Given z,y € Crit(f), the connecting manifold M,, and the moduli space Mj are ori-
entable manifolds. This follows since, once orientations are chosen for W*(z) and W*(y),
these induce an orientation on My, denoted by [My]ina. The procedure given by Weber in

[42] to obtain this orientation is:
(1) If inds(y) > 0, then

(a) Let Va,,W?*(y) be the normal bundle of W#(y) restricted to M,,. Consider the
fiber V,W*(y) with an orientation given by the isomorphism

T W y)® T,WV*(y) ~T,M ~V,W*(y) & T,WV*(y).

The orientation on the fiber at y determines an orientation on the normal bundle

V., W?(y) restricted to the submanifold M.,,,.

(b) The orientation on M,, is determined by the isomorphism

(2) If indys(y) = 0, then V,W*(y) = 0. Hence, T, W"(x) ~ TM,,.

Note that there are no restrictions about the orientability of the manifold M.
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Example 2.1. Consider the Morse flow on S? and the orientations on the unstable manifolds
illustrated in Figure 2.1. In Figure 2.2 we use a planar representation of the flow in order
to obtain the induced orientations on the connecting manifolds. We also represent these

orientations in Figure 2.3. <

z
N
/
x Yl |
2 2
rl' - 1 — <\11
1 1//
2/ \/ 2//
Figure 2.2: Planar representation of the Figure 2.3: Induced orientations on
flow in S2. the connecting manifolds.

Given x,y € Crit(f) with inds(z) — inds(y) = 1, let u € Mj. The characteristic sign
n,, of the orbit O(u) through u is defined via the identity [O(u)]ina = ny[t], where [4] and
[O(u)]ina denote the orientations on O(u) induced by the flow and by M,,, respectively.

The intersection number of x and y is defined by

n(z,y) = Z M.

uEMY

The intersection number between x and y counts the flow lines form x to y with sign. In
the literature there are other ways to count such flow lines with orientations, for example,
see [3].

Fix an arbitrary orientation for the unstable manifolds W*"(x), for each x € Crit(f), and
denote by Or the set of these choices. Denote by (z) the pair consisting of the critical point
x of f and the orientation chosen on W*(x).

The Morse graded group C = {Cy(f)} is defined as the free abelian groups generated by
the critical points of f and graded by their Morse index, i.e.

zeCrity(f)
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The Morse boundary operator Ox(z) : Cr(f) — Cr—1(f) is given on a generator = of
Ci(f) by

yeCrity_1(f)
and it is extended by linearity to general chains.
The pair (C.(f),d;) is a chain complex, that is, 0 is of degree —1 and 9 o 9 = 0. This
chain complex is called a Morse chain complex. Observe that (C.(f),ds) depends on the
function f on M, the metric g and the set Or of orientations. The Morse homology groups

with integer coefficients are defined by

Ker 0,
Im ak+1

HM(M, f,g,0r;Z) = ., VkeZ.

In [42], it was proved that, for two choice of Morse-Smale pairs (f!, g') and (f?, g*) and
orientations Or! and Or? of all unstable manifolds, the associated Morse homology groups
HM,(M, f', g',0rY;Z) and HM,;,(M, f*,g',Or';Z) are naturally isomorphic for all k € Z.
Hence, this homology will be denoted by HM,(M,Z). Moreover, one has that

HM,(M;Z) = H*"(M;Z),
i.e., the Morse homology of M is isomorphic to the singular homology of M.

Example 2.2. Returning to Example 2.1, the Morse chain groups are Cy(f) = Z(z) DZ{z'),
Ci(f) = Z{y), Ca(f) = Z(z) and Ci(f) = 0 for all k¥ # 0,1,2. From Figure 2.3, the
characteristic signs of orbits connecting consecutive critical points are: n,, = —1, n,, = —1,

n,, = +1 and n,, = —1; which implies that
n(a:,y) = Ny, = _1a n(m',y) = Ny :_17 TL(y,Z) =Ny + Nyy = 1-1=0.
The Morse operators 0y : Co — C4, 01 : C7 — Cy and 0y : Cy — 0 are defined on generators
by:
Hence, the integral Morse homology is given by:

HMy(M;Z) =7, HM;(M;Z) =0, HMyM;Z)~Z. <
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One can also consider the Morse chain complex over Z,. In this case, the Morse graded
group is defined in the same way. However, the intersection number n(z,y) between critical
points z,y with inds(x) — inds(y) = 1 is defined as the number of orbits of ¢ from z to y
modulo 2. In this case, HM,(M;Zy) = H*™(M;Z,).

2.2 Characterization of Surface Connection Matrices

To define the Morse chain complex (C,0), a set of orientations Or for the unstable
manifold W*(z) of all critical points x € Crit(f) is chosen. Given two different set of
such orientations, namely Or! and Or?, one has two Morse chain complexes (C},d!) and
(C2,0?) associated to the Morse function f and to the sets Or! and Or?, respectively. The
Morse groups C} and C? may differ on generators (x;) by the choices of orientations of
W¥(z). In fact, the Morse graded groups C! and C? have the same generators possibly
with different signs. However, the relation between the Morse boundary operators ' and 62
is not immediate to attain. The next proposition provides a relation between the intersection

numbers n'(z,y) and n?(z,y) obtained considering the sets Or!' and Or?, respectively.

Proposition 2.1. Let M be a smooth closed manifold and f : M — R a Morse-Smale
function. Consider two sets Or' and Or? of orientations for W*(x), Vo € Crit(f) with
indg(x) > 0. Suppose that these sets differ only by orientations of the critical points

ai,...,a;, then

n(z,y) = —n(x,y) ifx=a; forsomej,andy # a; Vi
n(z,y) —n(x,y) ify=a;, for some j,and x # a; Vi
n(xz,y) = n(x,y) otherwise.

where n(z,y) and n(z,y) denote the intersection number between x and y considering the

orientations of Or' and Or?, respectively.

Proof. As Crit(f) < oo, then Or! and Or? are finite. Hence, it is enough to prove the
case when Or! and Or? do not coincide by only one orientation. In this sense, let p be the
only critical point whose orientations & and & for W*%(p) given by the sets Or! and Or?
respectively, are opposite.

Let k be the index of the critical point p, i.e. inds(p) = k. The proof is divide in two

cases: when ind¢(p) > 1 and when p is a saddle of index 1.
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o inds(p) =1:

Let u € MP, where y € Crit,_1(f). Since, k = 1, the orientation induced on the orbit
O(u) is given directly by the pre-set orientation of W*"(x). By hypothesis, & and & are
opposite, hence they induce opposite orientations in O(u). Therefore, one of them coincides
with the orientation given by the flow and the other is opposite to this orientation, i.e,
n, =1 and n, = —1 or n, = —1 and n, = +1. Since u was taken arbitrarily, it follows that
n(p,y) = —n(p,y).

Now, let v € M2, where 2 € Critg1(f). The orientation induced by Or' and Or? on
the orbit O(v) is given by the isomorphism:

TowW"(x) = TO(v) @ Vou)W*(p). (2.3)

By hypothesis, the orientations of To,W*(z) given by Or' and Or? coincide. However,
these sets induce opposite orientations & and & on the unstable manifold W*(p). Con-
sequently, they induce opposite orientations on the normal bundle Vo, W?*(p), since the
orientation induced in this bundle is compatible with the orientation on W*(p). In this way,
the isomorphism given in (2.3) guarantees that the orientations induced on O(v) are also

opposite. Since v is arbitrary, n(x,p) = —n(z, p).

o inds(p) > 1:
Let u € M¥, where y € Crity_1(f). The orientation induced on the orbit O(u), is given

by the isomorphism:
TowW"(p) = TO(u) & VouW*(y). (2.4)

The orientations given by Or! and Or? on W*(y) are the same, hence these two sets
induce the same orientation on the bundle Vo(,)W?*(y). On the other hand, the orientations
&1 and & on ToyW*(p) given by Or' and Or? are opposite. From these observations and
the isomorphism (2.4) it follows that the induced orientations on the orbit O(u) by Or! and
Or? are opposites. Therefore, n(p,y) = —n(p, y), since u was chosen arbitrarily.

Given v € M7, where v € Crity,1(f), the proof that n(z,p) = —n(z,p) is analogous to

the previous case. [ ]

As immediate consequence of Proposition 2.1, one has that the Morse boundary operators

0! and 0? represent the same operator in different bases.

A result due to Salamon, see [39], establishes a relation between the boundary operator J,
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of a Morse chain complex with connection matrices. Considering M as an isolated invariant
set relative to the flow ¢y, then the set D(M) = {M, = {z} | x € Crit(f)} is a finest Morse
decomposition of M, i.e., each Morse set M, contains only one singularity of ¢;. Salamon
proved in [39] that the boundary operator d, of a Morse chain complex associated to f is a
connection matrix of the Morse decomposition D(M), by identifying the free abelian module
Z(z) with the homology index CH(M,) of M,. Therefore, the Morse boundary operator,
represented as a matrix, is called a connection matrix. For more details, see [3] and [39].
Denote by A(M, f, Or) the connection matrix for D(M) obtained considering the Morse
function f and the set Or of orientations chosen on the unstable manifolds of the singularities

of the gradient flow —V f. One has the following corollary of Proposition 2.1:

Corollary 2.1. Let (M, g) be a smooth closed Riemannian manifold and f : M — R a
Morse-Smale function. If two sets Or' and Or? of orientations for W*(z), Vo € Crit(f)
with ind;(z) > 0, differ only by the orientations of the critical points ay,...,a;, then the
connection matriz A(M, f,Or?) is obtained from A(M, f,Or') by multiplying by —1 the
rows and columns corresponding to the points ai,...,a;. In particular, A(M, f,Or') and

A(M, f,0r?) are similar matrices.

Moreover, an entry in the matrix A(M, f,Or!) is non-zero if and only if, it is non-zero
in A(M, f,0r?), ie., given a smooth closed manifold (M, g) and a Morse-Smale function
on M, the connection matrices are equal modulo 2. This result in the modulo 2 case is a
well known fact, see [28]. Therein, it is shown that for a Morse-Smale flow on a smooth
Riemannian closed n-manifold M, the entries of the connection matrix corresponding to
critical points z € Critg(f) and y € Crity_1(f) counts the number of connecting orbits from
x to y modulo 2. On the other hand, if we count orbits over Z considering orientations,
the difference between A(M, f,Or') and A(M, f,Or?) is the choice of the generators that
compose the basis where the matrices are represented and hence they represent the same
operator.

From now on, in this Chapter, the algebraic properties of the SSSA applied to a con-
nection matrix will be investigated, with the underling motivation of obtaining dynamical
information from this algorithm. As a first attempt, to obtain results in this direction, we
will restrict our attention to 2-dimensional manifolds. In this section, a characterization of
surface connection matrices is established and some algebraic implications of this character-

ization are proved.
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Let M be a two dimensional Riemannian manifold and f : M — R be a Morse-Smale
function. Given z,y € Crit(f), if x and y are consecutive critical points, i.e. inds(x) —
indg(y) = 1, then #M; < 2. In fact, there are at most two connecting orbits joining a
source to a saddle or a saddle to a sink. This fact implies that the non zero entries of a

connection matrix for an orientable surface are +1, as one proves in the next result.

Proposition 2.2. Let M be an orientable closed surface and ¢ a Morse-Smale flow on M
generated by a Morse-Smale function f. Then the entries of a connection matrixz for M
belong to the set {—1,0,1}.

Proof. We need to show that n(x,y) € {—1,0,1}, for all critical points of f with relative
index 1 and with 0 < indf(y) < inds(z) < 2.
Since dim(M) = 2, it follows that #Mj < 2. If # M7 = 1 then M = {u} and therefore
n(z,y) = n, = £1. Now if # M} = 2, say M7 = {u, v}, then there are two cases to consider:
Case 1: x is a saddle and y is a sink. Since the flow is a gradient flow, it induces the
same orientation on the orbits O(u;) and O(uy). However, the orientation that M., induces
on O(u) is opposite to the orientation induced by M,, on O(v), see Figure 2.4. Hence,

n, =1 and n, = —1 or n, = —1 and n, = 1. In both cases, n(z,y) = 0.

Figure 2.4: Determining characteristic signs for the saddle sink moduli spaces.

Case 2: x is a source and y is a saddle. Since M is an orientable surface, given an
orientation {& (p),&(p)} for W*(x), it follows that the ordered basis {& (u),&(u)} and
{&(v),&(v)} are either both equivalent or both non-equivalent to the standard basis of R2.
Once again by the orientability of M, it follows that the basis V,W*(y) and V,W*(y) are
either both equivalent or both non-equivalent to the standard basis of R. By the isomorphism

(2.1), the orientations on the orbits O(u) and O(v) are opposite. Hence, on only one of the
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orbits, the orientation induced by the flow coincides with the orientation induced by the

connecting manifold, see Figure 2.5. Hence, n(z,y) = 0. |

Figure 2.5: Determining characteristic sign for the source saddle moduli spaces.

The orientability hypothesis in the previous proposition is necessary. For instance, con-
sider the minimal flow in the projective plane R?, which is viewed as the unit disc in R? with
opposite boundary points identified as in Figure 2.6. The orbits connecting the source = to

the saddle y are represented in the connection matrix by the integer entry +2. See Figure
2.7.

1 i
2 z Yy T
z 0
1
Yy Z Y Y 0 2
T 0
T

Figure 2.6: Morse flow on RP2. Figure 2.7: Connection matrix for RP?.

The columns and rows of a connection matrix A for D(M) may be partitioned into three
groups, namely Sy, S; and Sy, the first Sy associated with sinks (hg’s), the second S; with
saddles (hy’s) and the third Sy with sources (hy’s). Block Ag,s, contains information on the
connections from saddles to sinks, while block Ag, g, contains information on the connections

from sources to saddles. Figure 2.8 illustrates a possible structure for a surface connection
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matrix with columns ordered with respect to the index. The columns of the matrix A need

not be ordered with respect to the index.

S() 51 SQ
0
So 0 Agys,
0
0
0
0
S1 0 Ag,s,
0
0
0
So 0
0

Figure 2.8:  Surface connection matrix with Sy = {1,2,3,4},
S1=45,6,7,8,9} and S, = {10, 11, 12}.

Note that, each column j € S7 in A has either two non-zero entries, namely +1 and —1,
or is a column of zeros. This follows easily since a saddle either connects to two sinks, in the
first case, or it connects to only one sink, in the latter case. Each row 7 € S} in A either has
two non-zero entries or is a row of zeros. The signs of these non-zeros entries are determined
by the set Or. If we choose for instance the orientation of all W*(hy) to be the same, it
follows that the non-zero entries in the row ¢ € S; of A have opposite signs. By Proposition
2.1, for any other choice of orientation, the new matrix A obtained is similar to A.

Corollary 2.2 below summarizes this observation and gives a characterization of the con-

nection matrices associated to orientable closed surfaces.

Corollary 2.2 (Characterization of connection matrices for orientable closed surfaces). The

connection matriz A for an orientable closed surface either has the following properties:

(2) each column in Ag,s, contains either two non-zero elements, namely 1 and —1, or

none;

(3) each row in Ag,s, contains either two non-zero elements, namely 1 and —1, or none;
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or is obtained from a matriz with the properties above by multiplying a subset of rows and/or

columns by —1.

Proof. Let M be an orientable surface. Fix an orientation on M. Let A be a surface
connection matrix for M when we consider the unstable manifold W*(z) of each source
endowed with orientation compatible with the orientation of M. Doing the same analysis
in the proof of Proposition 2.2, one obtains that the rows and columns of A satisfies item
1—3. Now, let A be a surface connection matrix considering an arbitrary set of orientations
Or for the unstable manifolds. By Proposition 2.1, A is obtained form A by multiplying a

subset of rows and/or columns by —1. |

Example 2.3. Let M be a 2-sphere as in Figure 2.9 and let f be a Morse-Smale function
on M such that the negative gradient flow associated to —V f is as shown in Figure 2.9.
The Morse chain complex (C.(f), 0.), determined by the function f and by considering the

orientation of W*(h]) as in the Figure 2.9, is presented below.

10
hs

Figure 2.9: Morse-Smale flow in the 2-sphere.
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Morse graded groups:

Co(f) = Z(hg) ® Z(hg) & Z{hi),
Ci(f) = Z{h1) ® Z(KY) & Z(hT) & Z(h]),
Ca(f) = Z(h3) & Z(hy) & Z(hy’)

and C, =0 for k£ > 2.

Morse boundary operators:

O1(h1) = h} — hd,

Oi(ht) = hi — hi,

01(h3) = h§ — h8,

01(h) = h§ — hg,

Os(h5) = hi — hi — h¥ + A,
82<hg) = h? + h?>

0a(h5’) = —hi — hi,

de(h]) = 0 for all k > 2

The connection matrix with respect to the flow ordering associated to the finest Morse
decomposition of M is as in Figure 2.10. Applying the SSSA over Z in A, one obtains the
sequence of matrices illustrated in Figures 2.11 to 2.15. In these figures, the primary pivot
entries are indicated by means of a light red background and darker edge, the change-of-basis

pivots are indicated by blue background and dashed edges, null entries are left blank and

the diagonal being swept is indicated with a gray line. <

hy W kg kR RS Rl B K R B S LR R P s

h 1 -1 oyt =h) 1 -1

} -1 1 oyt =} -1 1

g -1 1 |-1]1 oyt =n 1|1 |-1]1

hi 1 -1 ot = pt 1 -1

n -1 1 oyt =h -1 1

U -1 1 o =n§ -1 1

] 1 -1 ot =n] 1 -1

n rr§'] =hs

" o3 =13

h%O 0_;)‘1 = héo

Figure 2.10: A° Figure 2.11: Al
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1,2 2,2 3.2 42 5.2 6,2 7.2 8,2 9.2 10,2
() (4 () (4 [ [ (%] [P} 0, [0}

Figure 2.12: A2

1.4 2.4 3.4 4.4 54 6.4 74 8.4 9.4 10,4
oyt oyt oyt oyt ooyt oyt ot oyt oy oo

oyt =h) 1|1 |-1|-1

ot =13 -1} 1

oyt =n -1 1

ot =nt 1

ot =hi+ i -1 1 | -1

oS =i - nt 11—

ot =n] 1

84 _ 18
oy =hy

4
o2 =1

104 _ 110 , 78
o, " =hy +h

P =+ b+ 1S

Figure 2.14: A*

oy =hj 1)1 -1

o5t =h} -1] 1

ot =h -1 -14 1

o =nt 2 | -1|-1

o =ht+ 1 -1 1

o =h -1] 1

o’ =h 1 -1

83 _ 18
oy =hy

93 _ 19
oy =hy

10,3
0'2) =hy0

Figure 2.13: A3

15 25 35 45 55 65 75 85 95 105
0g 09 Op Oy Oy O O 0y 03 0y

oy’ =h} 1|1

25 _ 40 -
oy =hy 1

35 _ 13 -
oy =hy 1

4
ot =h

o) =k + by

oS =h+ -1] 1

o1 =hf+h 1

85 _ 18
a7 =hy

5
(Tg‘ =h

Figure 2.15: A®

2.3 SSSA applied to surface connection matrices

In this section, we investigate properties of the SSSA which can be extracted from the

characterization of surface connection matrices. Note that, in Example 2.3, the primary and

change-of-basis pivots identified during all steps of the SSSA are 1. However, in A® the

entry Ai’g has numerical value equal to 2. In this section, we prove that the primary pivots,

obtained by the applying the SSSA over Z to a surface connection matrix A, have values

+1.
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We prove the characterization of the primary pivots for orientable surfaces in Theorem
2.1. This is done by presenting some auxiliary algorithms over a field F that produce the
same primary pivots as the SSSA. The characterization of the primary pivots for orientable
surfaces will follow immediately from these results.

This section contains the technical details which make it possible to prove Theorem
2.1. The reader can skip this section in a first reading without any loss of the posterior

development of the results herein. Denote by A” the last connection matrix produced by
the SSSA.

Lemma 2.1. Given a connection matriz A over F, with column/row partition Jy, - - , Jy, the

update from AT to A" may be accomplished blockwise, according to the individual updates
T r—1 —1Ar—1 r—1
AJk_le = (TJk—le—l) AJk_leTJka, fork=1,...,b. (2.5)

Consequently, only columns containing change-of-basis pivots are subjected to elementary
column operations, and only rows with the same index as the column of the primary pivots

used for canceling out the change-of-basis pivots suffer elementary row operations.

Proof. Let A be a connection matrix with column/row partition given by Jo, -, J,. Al-
gebraically, the post-multiplication of A™ by T" consists of £, elementary column operations
on the change-of-basis columns of A”". Of the three possible elementary column operations
on a column j, only one is used in the SSSA over F: “add to column j a multiple of another
column”. In keeping with its counterpart, the pre-multiplication of A™T" by (T7)~! consists
of t, elementary row operations. Amongst the ones available, the only row operation on row
1 considered herein is of the type “add to row ¢ a multiple of another row”. Column opera-
tions are due to the post-multiplication, and by construction of T;k_]lk , affect only columns of
Ji that contain change-of-basis pivots. The pre-multiplication by (T}:l qu)_l affects only
rows with same index as the columns that contain the primary pivots used for cancelling out

the change-of-basis pivots. ]

Denote by J;, the subset of columns in .J, which contains primary pivot entries in A”.
Let Jp = Ju\J&, for all k. The markings on entries in columns belonging to J; and the
construction of 77 ; are completely determined by the values of the change-of-basis and
primary pivots in A%kil I In fact, suppose there is a change in entry in position (i,j) €
Jp—1 X Ji from A" to A" Lemma 2.1 implies this may be due to an elementary column
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operation on column j, due to a change-of-basis mark on entry (j — r,j) on this column,
and/or to an elementary row operation, due to a primary pivot in column i € Jy_; that
is being used to cancel out a change-of-basis pivot in position (¢ — r,¢) in some column
q € Jy_1, where ¢ > i. Moreover, since the rows of A’ in J, must be zero, thus they cannot
contain primary and change-of-basis pivots.

This discussion implies that, if we give up keeping track of the evolution of the rows in
UY_, Jk, then one must only do the post-multiplication of A™ by T". Moreover, one can do
this sequentially blockwise as follows. At step k , for &k = 1,--- b, let A(k) be the matrix
obtained from A by zeroing rows in J;_; and entries outside positions in Ji_; x Jg. The
diagonals of this matrix are swept as in the SSSA over I, and the same rules are used for
marking up the entries, as well as building the transition matrix 7'(k)", which will contain
nonzero off-diagonal entries only in positions J, x Ji, by virtue of the construction of the
connection matrix used as input. Applying the SSSA over F to A(k), one obtains sequences
(A(K)?, ..., A(k)E) and (T'(k)°, ..., T(k)E1), and the set J; of the column indices of A(k)F
containing primary pivots, for & = 1,--- ,b. This new formulation of the SSSA is called
Block Sequential Sweeping Algorithm over F. See the Appendix A for the algorithm, per se.

The difference between the SSSA and the Block Sequential Sweeping Algorithm described
above is that the latter does not keep track of the evolution of the rows in Jj, for k =1,--- | b.

Hence, one has the following lemma.

Lemma 2.2 (Uncoupling). A}~ = A(k); ;. for all k and the collection of change-of-
basis and primary pivots encountered in the application of the SSSA over F to A(k) coincides
with the change-of-basis and primary pivots found when it is applied to A.

The proof of the Uncoupling Lemma can be found in the Appendix A, Lemma A.1.

The Uncoupling Lemma implies that we may restrict our attention to connection matrices
containing at most one nonzero block when studying the SSSA over F, provided we lose
track of the evolution of rows in UY_, i, which will end up zero and will not contain neither
primary nor change-of-basis pivots. To ease the discussion that follows, we henceforth call
this special case the 1-Block Incremental Sweeping Algorithm over F.

Now, we propose a reengineered version of the 1-Block Incremental Sweeping Algorithm
therefor, in which, once a primary pivot is identified, all cancellations it is responsible for
in the 1-block Incremental Sweeping Algorithm over F are performed. To arrive at the

same final matrix as in the original algorithm, the primary pivots must also be identified
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in an upward order, from the bottom up. The second and last important aspect for the
identification of primary pivots, is the left-to-right order of the sweeping. The algorithm
which incorporates both of these conditions is called Revised 1-Block Incremental Sweeping
Algorithm over F. See the Appendix A for the algorithm per se.

The next Lemma establishes the equality between the final matrices produced by the
Revised 1-block Incremental Sweeping over F and by the 1-block Incremental Sweeping
Algorithm over F. There is of course no sense in looking for equality between other matrices
in the sequence produced by the algorithm, since the order of cancellation is in all likelihood

quite different in the two algorithms.

Lemma 2.3. Let A be a connection matriz with column/row partition Jo, J1. Let A+ and
AL be the matrices obtained by applying the Revised 1-block Incremental Sweeping Algorithm
over F and the 1-Block Incremental Sweeping Algorithm over F to A, respectively. Then

AU = AL and their primary pivots coincide.

The proof of Lemma 2.3 can be found in the Appendix A, Lemma A.2.

A matrix is totally unimodular (TU) if all its square submatrices have determinant 0, 1
or —1, see, for instance, [34]. This property is invariant under transposition, multiplying a
row or column by 0,41, adding or removing zero rows/columns or unit rows/columns. If
each column of a 0, &1 matrix has at most two nonzero entries of opposite signs, then it is
TU. It follows that the submatrices Ay, ;, and Ay, of a surface connection matrix A are
TU.

The set {0, %1} is not closed under addition, so the appropriate algorithm to apply to
surface connection matrices is the SSSA over Z. Nevertheless, using the Block Sequential
Sweeping Algorithm over F, the Revised 1-Block Incremental Sweeping Algorithm over F,
Lemma 2.2 and the total unimodularity property, we will show the sequence of matrices and
bases obtained when applying the SSSA over I to a surface connection matrix is compatible
with the corresponding ones produced by the application of SSSA over Z to A, in the fol-
lowing sense. The change from A™ to A™*! results from replacing basis element o}, of each
column j containing a change-of-basis entry, with an integral linear combination of elements
of h with same chain index and associated with columns of index less than or equal to j,
determined so as to zero out in A™*! the entry in the change-of-basis position, while main-
taining the pattern of trailing zeros below it. Amongst the integral linear combinations that

accomplish this, one must choose one with the smallest possible positive leading coefficient.
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Even with this condition, there may be more than one optimal integral linear combination.
The bases constructed by the SSSA over F trivially satisfy the conditions pertaining the
zero patterns. We show that, for every r and j, the leading coefficient in the integral linear
combination that is o7, produced by the application of the SSSA over F to A, is 1, so it
satisfies the optimality criterium, and the choice is thus compatible with the rules of the
SSSA over Z.

Lemma 2.4. Let A be a surface connection matriz with column/row partition Jy, J; and

Jo. If we apply the SSSA over F to A, then all primary pivots value are either 1 or —1.

Proof. Lemma 2.2 (Uncoupling) justifies the application of the Block Sequential Sweeping
Algorithm over F to A. Both Aj,;, and A}, ;, are TU and this property is maintained if one
adds zero rows and/or columns to a matrix. Thus each A(k), for k = 1, 2, in the application
of the Block Sequential Algorithm over F to A is TU. Then to prove the claim one can
consider matrices A which are totally unimodular with column/row partition Jy, J;.

First we analyze the application of the Revised 1-Block Sweeping Algorithm over F to A
with column/row partition Jy, Ji. Let (i1, 1), ..., (i, j) be the positions of the primary
pivots marked.

Let C* be the set of index columns of A which do not have a primary pivot. We affirm
that Aict is totally unimodular, for ¢ = 1,...,¢* + 1. This is trivially true for t = 1,
by hypothesis, and it can be proved by induction to hold for all ¢, see Lemma A.3 in the
Appendix A. This implies that the entries in Afct are —1, +1 or zero, for all £. Hence all
primary pivots marked in the application of the Revised 1-Block Sweeping Algorithm over
F to A value 1 or —1 when marked, since they are, by choice, nonzero. Finally, they do not
change once marked.

Lemma 2.3 implies A" *! = A%, the last matrix produced by the application of the SSSA

over IF to A. Moreover, their primary pivots coincide in position and value. |

Theorem 2.1 (Primary pivots for orientable surfaces). Given a surface connection matriz
A, let {AY, ..., AL} be the sequence of connection matrices produced by the SSSA applied to
A. The primary pivots identified in the r-th diagonal of A" are £1, for all v € {1,..., L}.

Proof. Let A be a surface connection matrix (over Z). By Lemma 2.4, if we apply the
SSSA over F to A, then all primary pivots value are either 1 or —1.
Let o” be the basis associated with the r-th matrix in the sequence produced by the

SSSA over F, A". We will prove, by induction in r, that each basis element o7, for all r and
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j, is an integral linear combination of the elements of h associated with columns to the left
of, and including, column 7, whose leading coefficient is 1.

First of all, from the definition of 7" in the SSSA over F and the hypotheses that A is
integral and the primary pivots value +1, we obtain that 7" and (7')~! are also integral.
Then A? is integral and, applying induction, we may conclude that A’ is integral, for all r.

Initially o' = h, so the property is true for r = 1. Suppose it is true for o”. If A7, does
not contain a change-of-basis pivot, then UJT-H = o0; and the result is true by the induction
hypothesis. Suppose it does contain a change-of-basis pivot. It is sufficient to consider it in
a generic fixed position, say (j —,j). Lemma 2.4 implies that the primary pivot to its left,

say in position (j — r,p), is 1. Then, by the rules of the algorithm,

A’

r+1 r__ TJ-ng
9% T % T Ar %
J—7p
. r r r
= o, x40,
_ J 1,7 T P17
= h,+ E cithy, £ A, E ;i hy
3'<j 5'<p

where the induction hypothesis is used in the last equality. This proves the result for r + 1,
since p < j, A}_,; and, by induction, all coefficients ¢]* are integer. Using induction, the
result if true for all r.

Therefore, the sequence produced by the application of the SSSA over F to a surface

connection matrix is compatible with the application of the SSSA over Z thereto. ]

Theorem 2.1 has an important dynamical consequence which will be addressed in Section
2.5. Moreover, an algebraic consequence of this result ensures that the spectral sequence
associated to a two-dimensional Morse chain complex converges to the corresponding Morse

homology.

Corollary 2.3. If M is a smooth closed orientable 2-dimensional manifold, f: M — R a
Morse function, (C,,A) a filtered Morse chain complex with the finest filtration, then the

modules E3 ~ GH,(C)p, of the associated spectral sequence are free for all p and q.

Proof. As presented in Section 1.2, it was proved in [13] that, if E] and E]_, are both non-

zero, the differential d" : E) — EJ . is induced by multiplication by A7 ., ., whenever

-
this entry is either a primary pivot, change-of-basis pivot or a zero with a column of zero

entries below it. On the other hand, all primary pivots are =1 by Theorem 2.1, implying that
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differentials d" induced by primary pivots are isomorphisms. Moreover, if d": E] — E] | is
an isomorphism then E7* = B/t = 0.
Note that, if the differential d : E} — E}

then there is a primary pivot in row p —r and thus £ , = 0. Consequently, the non-zero

_, corresponds to a change-of-basis pivots,
differentials are the ones induced by primary pivots, hence isomorphisms.
Since E;H = Ker dy/Im d;,_,., it follows that the modules E] are free for all 7 > 0 and

p>0. Then E5 = GH.(C),, = HM.(M, f), by equation (1.3). [ |

In the more general setting treated in [13], where one was interested in spectral sequences
computed over Z of a Morse chain complex associated to a gradient flow on an n-dimensional
manifold, the spectral sequence need not converge to the homology of the complex, i.e. (1.3)
need not be true. However, as a consequence of the Primary Pivots for Orientable Surfaces
Theorem (Theorem 2.1), in the 2-dimensional setting, GH,(C),, is free for all p and ¢ and
thus (1.3) holds.

2.4 Smale’s Cancellation Sweeping Algorithm

In Corollary 2.2, one characterizes the connection matrices associated to orientable closed
surfaces. The relevance of this results resides in the fact that it guarantees that the SSSA
does not determine a flow continuation of the initial flow, which has its dynamics coded in
A% to a flow having the dynamics coded in the last connection matrix A* produced by the
SSSA applied to A, In fact, not all last matrices produced by the SSSA is a connection
matrix associated to a Morse flow on a orientable closed surface. Returning to Example 2.3,
observe that the matrix Figure 2.15 does not satisfy condition (3) of Corollary 2.2, which
implies that one can not realise this matrix as a connection matrix associated to a Morse
flow on a surface.

In this section, we present an adaptation of the SSSA, called the Smale’s Cancellation
Sweeping Algorithm (SCSA). This algorithm is an attempt to modify the SSSA in order to
obtain an algorithm which provides a flow continuation where the dynamics is coded by the
matrices produced by the SCSA. More specifically, our approach herein is to interpret the
algebraic cancellation of the modules of the spectral sequence, which has been coded by the
Spectral Sequence Sweeping Algorithm, as dynamical cancellations. In fact, whenever we
mark a primary pivot A”_ . = 41 on the r-th diagonal of A", the next step of the spectral

J—T.J

sequence produces algebraic cancellations of the modules £ and E*) e Bt = Bt =



50 Section 2.4 e Smale’s Cancellation Sweeping Algorithm

0. We wish to interpret these algebraic cancellations dynamically as cancellation of a pair
of consecutive index singularities.

Note that the changes of basis caused by pivots in row j — r reflect all the changes in
connecting orbits caused by the cancellation of hZ3 and h{;’i. However, when we remove the
pair of critical points h{; and hi:rl, all the connecting orbits between index k critical points
and hf;q and also all the ones between h?c and index k — 1 critical points are immediately
removed and new ones take their place. Hence, in order to interpret dynamically the Spectral
Sequence Sweeping Algorithm, we have to perform the changes of basis that occur therein in a
different order to reflect the death and birth of connections. More specifically, if A7_ . = +1
is a primary pivot marked in step r of the Spectral Sequence Sweeping Algorithm, all changes
of basis caused by A}_, . must be performed in step 7+ 1. This new algorithm will be called
Smale’s Cancellation Sweeping Algorithm.

In the Smale’s Cancellation Sweeping Algorithm we keep the same order of sweeping
along the diagonals and the criteria for marking an entry as a primary pivot. But the upper
triangular unit-diagonal transition matrix is calculated so that in the next matrix all entries
to the right of the primary pivots are zeroed by means of elementary column operations

using exclusively columns to the left of the column in question.

Smale’s Cancellation Sweeping Algorithm - SCSA

For a fixed diagonal r parallel and to the right of the main diagonal, the method described

below must be applied simultaneously for all blocks Jg.

Initial Step.
(1) Let & be the first diagonal of A that contains non-zero entries A, ; € Ay, ., which

will be called index k primary pivots. Define A to be A with the k- index primary
pivots on the &;-th diagonal marked.

(2) Consider the matrix A%, Let & = & + 1. The construction of A% follows the proce-
dure below. Let 8” be a k-index primary pivot in the &;-th diagonal.
Given a non-zero entry Afll on row i of ASt and [ > 7, perform a change of basis on AS
as in SSSA in order to zero out this entry. Moreover, if there are more than one non
zero entry in row ¢, the procedure to zero out these entries is to zero out the entries in
increasing order with respect columns.

Given a non zero entry Zf? on the &-th diagonal of Al
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If A does not contain a primary pivot for s > i,

then permanently mark ﬁf? as a primary pivot.

Intermediated Step.
Suppose by induction that A¢ is defined for all ¢ < r with the primary pivots marked on
the diagonals smaller or equal to £. In what follows it will be shown how AT s defined.
Without loss of generality, one can assume that there is at least one primary pivot on the
r-th diagonal of A". If this is not the case, define AT+l = A" with primary pivots marked
as in step (2) below.

(1) Change of basis. Let ﬁfj be a primary pivot.

For each non-zero entry in row i, perform a change of basis on A" as in SSSA in order
to zero out this entry. Moreover, if there is more than one non zero entry in row i, the
procedure to zero them out these entries is to zero out in increasing order with respect

to the columns.

If there is more than one primary pivot in the r-th diagonal of 3”, perform this step

for each primary pivot in decreasing order with respect to the rows.

(2) Markup. Given a non-zero entry Afjl on the (r + 1)-th diagonal of AT
If &;ng does not contain a primary pivot for s > i,

then permanently mark A7, as a primary pivot.

Final Step.

Repeat the above procedure until all diagonals have been swept.

The above algorithm can be applied over F with the provision that in order to zero out a
change-of-basis pivot, one uses only the column of the corresponding primary pivot. In this

case, we refer to this algorithm over ' as the Row Cancellation Algorithm.

Example 2.4. Consider the Morse chain complex (C,A) presented in Example 2.3. Ap-
plying the SCSA for the connection matrix A presented in that example, one obtains the
matrices in Figures 2.16 to 2.19. In these figures, the primary pivot entries are indicated by
means of a light red background and darker edge, null entries are left blank and the diagonal

being swept is indicated with a gray line. <
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1 -1 1|1 |-1
-1 1 -1 1
-1|1|-1|1 _1
1 -1
-1| 1 -1 1 | -1
-1| 1 -1 1 |-1
1 -1 1
ot =hj forj e Jy = {1,2,3}; o2 =nt 4+ h8;  oD?=nS — hd
of'=hi for j€Ji = {4,5,6,7}; or?=hi+hi; 0" =hi® + h;
o)t =hi for je o = {8,9,10}. ai,’z = o' for all the remaining o’s.
Figure 2.16: A'; marking primary pivots. Figure 2.17: A2?; sweeping diagonal 2.
1 1 | -1 1 1
-1] 1 -1
-1 -1
-1 1 |-1
-1] 1 |-1 -1] 1
1 1
o® = o} for all the o’s. ot =h} + 0§ 0 =hi0 + hS + h3;
01’4 = o£’3 for all the remaining o’s.
Figure 2.18: A3; marking primary pivots. Figure 2.19: A*; sweeping diagonal 4.

Observe that the primary pivots identified by the SSSA in Example 2.3 coincide in values
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and positions with the primary pivots identified by the SCSA in Example 2.4. In fact, the
next theorem states that, given a surface connection matrix A, the primary pivots identified
by the SSSA applied to A coincides in position and value with the primary pivots identified
by the SCSA applied to A.

Theorem 2.2 (Equality of primary pivots). Let A be a surface connection matriz with
column/row partition Jo, J1, Jo. The primary pivots marked in the application of the SSSA
over Z to A coincide in value and position with the primary pivots marked in the application

of Smale’s Cancellation Sweeping Algorithm thereto.

Proof. As in the proof of Theorem 2.1, we will first investigate if this theorem holds over
F. Then we will show how to apply it over Z.

Let (A°=A,AY,...,A™ Y and (T° = I,T,...,T™2) be the sequences of connection
and transition matrices produced by the application of the Row Cancellation Algorithm over
F to the connection matrix A with column/row partition Jy, Ji, Jo. One has the following

properties:

1. The nonzero entries of A strictly below the r-th diagonal are either primary pivots

(always nonzero) or lie above a unique primary pivot.

2. If AT is marked as a primary pivot, then 3; =0,fors>r+1.

p—r.p
3. If ﬁgfm, is marked as a primary pivot, then ﬁ;%q =0, for s >r+1and ¢ =p+1..m.

4. Each row of Am~! may contain at most one primary pivot.

5. Let A™1 be the last connection matrix in the sequence produced by the application

of the Row Cancellation Algorithm over I to the connection matrix A . Then

Am—1Am—-1 _ .
ATTATT =0, for all j. (2.6)

The matrix updates in the application of the Row Cancellation Algorithm over F to the
connection matrix A with column/row partition Jy, Ji, J, can be done in a blockwise fashion
as follows.

NG Tr—1 —1Ar—1 TFr—1
hewge = (55 )AL ST, fork=1,2. (2.7)

We let jk be the set of columns in Ji that contain primary pivot entries in ﬁmfl, for

k =1,2. Additionally, J;, = Jk\jk, for k = 1,2. Suppose the Row Cancellation Algorithm
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over [F is applied to the connection matrix A with column/row partition Jy, Ji, Jo. Then
the markings during the sweeping of the r-th diagonal of A" on entries in columns belonging
to Ji and the construction of T 7., are completely determined by the values of the entries
in A~ .
Th1Jk

The validity of the block update established in equation (2.7) and the complementarity
relationship between a column with a primary pivot and the row of same index in equation
(2.6), give rise to a simplified version of the Row Cancellation Algorithm over F. The Block
Sequential Row Cancellation Algorithm over F is a straightforward adaptation of the Block
Sequential Sweeping Algorithm over F, where, at step k, instead of applying the SSSA over
F to A(k), one applies the Row Cancellation Algorithm over F thereto. The proof of the
corresponding Uncoupling Lemma is a straightforward adaptation of the original one and it
states that:

Row Cancellation Uncoupling Lemma: Let A be a connection matrix with row/column
partition Jy, Jy, Jo. Let A™ ! be the matrix produced by the application of the Row
Cancellation Algorithm over F to A, and let 3(/{:)’”_1, for k = 1,2, be the matrices obtained
in the Block Sequential Row Cancellation Algorithm over F applied to A. Then

Am—1 o N m—1
AJk—ljk - A(k)Jk—le7

for k£ = 1,2 and the collection of primary pivots encountered in the application of the Row
Cancellation Algorithm over F to A(k), for k = 1,2, coincides with the primary pivots found
when it is applied to A.

Row Cancellation Uncoupling Lemma significantly simplifies the next results, since it
allows us to consider connection matrices with only one block, which means only elementary
column operations need be performed in the matrix update step. This special instance of
the Row Cancellation Algorithm over F will be called 1-Block Row Cancellation Algorithm
over IF. Notice that, although the proposition guarantees the equalities of the primary pivots

up to » = m — 1, this is sufficient, since the primary pivots of A™ ! and of A™ are equal.

Let A be a connection matrix with row/column partition Jy, Jy, Jo. Let Al ... 0 A™
and TY, ..., T™ ! (resp., Al LA™l and TY, fm*Z) be the matrices produced in the
application of the SSSA over IF (resp., Row Cancellation Algorithm over F) to A. Then the

primary pivots of A" and A" coincide in position and value, for r =1,...,m — 1.

This fact, Theorem 2.1 and the specific change of basis done in the proof of this theorem
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imply that the primary pivots of ﬁm_l, the last matrix produced by the application of
the Row Cancellation Algorithm over F to the order m surface connection matrix A, are
either 1 or —1. This implies the transition matrices (and their inverses) produced by the
application of the Row Cancellation Algorithm over F to a surface connection matrix are all
integral. This justifies the application of the Row Cancellation Algorithm over F to surface
connection matrices. When the input to the Row Cancellation Algorithm over F is restricted
to the special class of surface connection matrices, we obtain Smale’s Cancellation Sweeping
Algorithm. |

2.5 Cancellation of Critical Points: Birth and Death

of Connections

In this section, the dynamical meaning of the Spectral Sequence Sweeping Algorithm is
described via Smale’s Cancellation Sweeping Algorithm. First, one shows in Theorem 2.3
that the SCSA determines a continuation of the initial flow by cancelling pair of consecutive
critical points. Then one establishes in Theorem 2.4 a correspondence between algebraic
cancellations in SSSA with these dynamical cancellations of critical points in SCSA. To
achieve our goal, from now on, we will consider Morse chain complexes (C,(f),0) where f
is a Morse function with one critical point per critical level set, which is a generic condition.
Moreover, the filtration F' on (C.(f),0) will be the one determined by the function f, i.e.,
if Crit(f) = {h',--- ,h™} and f(h?) = ¢;, then F = {F,}7",, where F, = f~!(—00,¢, + €)
and € > 0 is sufficiently small.

Before going into the proof of Theorem 2.3, an example is presented where one sees the

interplay between the dynamics and the algebra codified in the spectral sequence.

Example 2.5. Consider the Morse chain complex (C, A) previously considered in Example
2.3 and the family of matrices produced by the SCSA when applied to A in Example 2.4. One
can associate the primary pivots identified during the algorithm with dynamical cancellations
of critical points as follows: a primary pivot ﬁf] identified in the r-th step of the SCSA
indicates that the pair of critical points (hi_,, ) is cancelled in the (r 4+ 1)-th step. See
Figure 2.20, where the flows in the continuation are represented on the 2-spheres.
Moreover, the matrices produces by the SCSA contain the connection matrices of the

flows in the continuation. The matrix A! is a connection matrix of p1. The submatrix of
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A? obtained by eliminating columns and rows 3,4,7,8 is a connection matrix of the flow
9. The submatrix of A* obtained by eliminating columns and rows 2,3,4,5,6,7,8,9 is a
connection matrix of the flow 4. The birth and death of connections are registered in the

sequence of connection matrices produced by the SCSA.

¥1

P4
hi0

Fy Fy

Fg F8

F7 F7 h%o
FG Fﬁ V A
Fy Fy

F4 F4 \

hg

Fy By

P 11:: 2

Fi 1

jah Fo

Figure 2.20: Continuation via cancellation of critical points.

On the other hand, consider the spectral sequence associated to the Morse chain complex

(Cy, 0s) presented below.

EP: [hgl  [Rg] RG] [RA] [R3] (M) [RT) [RS] [B3] (R3]

E': E\ EI E} FE E E E Ef E E}

E?: E? E} 0 0 E} E? 0 0 E} E?
d? d?
R -—
E*. E} E} 0 0 E}  E3 0 0 E3  E}
E*: EY 0 0 0 0 0 0 0 0 E3

The primary pivots identified in the SSSA determine algebraic cancellations of modules in
the spectral sequence. More specifically, if A7 ., ., is a primary pivot marked in the 7-th
step, then the modules E;“ and E;ZL,% are null. In the example above, two entries, namely

AéA and A%vg, are marked in the first step of the SSSA as primary pivots. This pivots induce
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the differentials di and d}, respectively, of the first page of the spectral sequence (E",d").
Hence, in the second page of (E",d") the modules E3, F2, E? and EZ are null.

By Theorem 2.2, the primary pivots marked in the r-th step of the SSSA are identical
to those marked in the r-th step of the SCSA. Therefore, one can associate the algebraic

cancellations in (E",d") with the dynamical cancellations of critical points. <

For the remainder of this section, we formalize the ideas presented in Example 2.5 by
proving in Theorem 2.3 that the SCSA determines a continuation of the Morse flow in
question, and in Theorem 2.4 we establish the correspondence between algebraic cancellations
in the spectral sequence with dynamical cancellations of critical points.

The proof of Theorem 2.3 constructs a family of flows {¢"}, r = 1,...,w recursively,
where "1 is obtained from ¢" by removing the pairs of critical points corresponding to
the cancelled spaces of r-th page of the spectral sequence, i.e. the pairs associated to the
primary pivots on the r-th diagonal of A”. The main point is to prove that each algebraic
cancellation of the spectral sequence can in fact be associated to a dynamical cancellation. In
order to do this, we have to prove that whenever a primary pivot A}_, ; on the r-th diagonal
of A" is marked, it is actually an intersection number between two consecutive singularities
hi and h?;rl of a flow ¢". This intersection number must be £1 by Theorem 2.1 and hence
we can use Smale’s Cancellation Theorem to realise the dynamical cancellation. See [40] for
the classical Cancellation Theorem referred here as the Smale’s Cancellation Theorem.

The filtration length with respect to a filtration I of the orbit Oy, 5, , that connects hy
to hy—; is defined as being the natural number r whenever h;, € F,C and hy_; € F,_,C.

The number r is also called the gap between the singularities h;, and hy_;.

Theorem 2.3. Smale’s Cancellation Sweeping Algorithm for the connection matriz A(M, py)
produces a family of Morse-Smale flows {o* = ps,0*, ..., 9%} where ¢" continues to @™

by cancelling all pairs of critical points of gap r with respect to the filtration F.

Proof. The proof is divided in three steps. The first considers the local effect a cancellation
of a pair of critical points has on a connection matrix A(M, ¢') of the new flow ¢’. The second
step analyzes the global effect of this cancellation on A(M,¢’). The third step constructs
a family of Morse-Smale flows {p' = ¢y, ¢?, ..., ¢*} via the Smale’s Cancellation Sweeping
Algorithm.

Throughout the proof, we adopt the loose terminology that a critical point hi, connects

. " . ; . . hi,_1 .
with a critical point hj,_, if the moduli space M hf’l is non-zero.
k
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Step 1: Without loss of generality, the connection matrix A(M, f, Or) associated to f is
considered to be the one where all orientations of W*(hs) are chosen to be the same. With
this choice, the orbits in W#*(hy)\{h;} have opposite characteristic signs. On the other hand,
by definition, the orbits in W*(h;)\{h;} always have opposite characteristic signs.

Denote by n(hy, hx_1,¢) the intersection number of hy and hy_; with respect to the flow
©.

Let hf; and h{;ﬁ be consecutive critical points of a Morse-Smale function f. For a gra-
dient flow ¢ , if n(hi, h{;’i, @) = %£1 then by Smale’s Cancellation Theorem these critical
points can be cancelled, i.e. there is a gradient flow ¢" which coincides with ¢/ outside a
neighborhood of {h], hi_1} U O(u), where M:;’z:rl = {u}. Let h! be a saddle which connects
with the sinks 2} ™" and hj). If ki cancels with A} ", then each saddle h} which connects
with A} " in ¢ will connect with A} in ¢’. Since the old and new connections have the same
characteristic signs, then n(h?, hi, ') = n(h? b}, @) + n(h?, b}, ).

—
hy

Cancellation of h] and hj) ™"

o — -

7
hg

Figure 2.21: Birth and death of connections.

Let h} and h3 be sources which connect with a saddle h!™" and assume that h cancels
with AJ~". Then each saddle hi which connects with h} in ¢ will connect with A} in ¢'.
Since the old and new connections have the same characteristic signs, then n(hh, b}, ') =
n(hs, b7, @) + n(hb, by, o).

Step 2: Since the flow ¢’ coincides with the flow ¢ outside a neighborhood U of
{h,hi""} U O(u), then connections between hé and hf;l_l, where (1,05 ¢ {j,j — r}, which
do not intersect U are not changed. Also, their characteristic signs remain the same after
the cancellation in U occurs.

Therefore the intersection number of h? and hf;l , remain the same after cancellation,

whenever

1. k#¢q,thatis, k=1land¢g=2or k=2 and ¢ =1,
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j—r
2. /\/l:f; =0 when k=q =1,
q

j—r

3. ML = {u} and By # by, when k=g =1,

q

hit
4. /\/lh‘j’1 =0 when k=q=2,
k

8
5. Mhz "= {v} and h? # hY, when k = q = 2,

since these are the only cases where connecting orbits from hf;2 to hf;il are not born and

do not die during the cancellation. Hence, the only intersection numbers that are modified

. Jj—=r
after cancellation are those n(h¥, hj)), where h} is such that MZ% # () in the case of saddle-
1 .

sink cancellation, and those n(hb, ht), where h} is such that MZ%_T # (), in the case of
source-saddle cancellation.

In order to understand how A(M, f,) is obtained from A(M, f,) one must analyze the
effect that a cancellation of critical points in ¢ has on A(M, f):

1. If a saddle h] is cancelled with a sink A} ", then define the matrix A to be the matrix
obtained from A(M, f,) by replacing row ¢ by the sum of row (j — ) to row 7. Then
A(M, f) is the submatrix of A which does not contain rows j — r, 7 and neither

column j —r, j.

2. If a source hJ is cancelled with a saddle ™", then define the matrix A to be the matrix
obtained from A(M, ¢) by replacing column p by the sum of column (j —r) to column
p. Then A(M, f,) is the submatrix of A which does not contain rows j — r, j rows

and columns j —r, j.

This corresponds to the row operations in the Smale’s Cancellation Sweeping Algorithm.
Step 3: Let {&”} be the matrices produced by the Smale’s Cancellation Sweeping
Algorithm. Define ¢! = ¢ and define ¢" ™! to be a flow obtained from ¢" by cancelling all
pairs of critical points corresponding to primary pivots on the r-th diagonal of Ar. In order
to show that these flows are well defined, we have to prove that whenever a primary pivot

A’_,,; on the r-th diagonal of A" is marked, it is actually an intersection number between

two consecutive singularities h‘,i and hi:g of the flow " and hence they can be cancelled by

Smale’s Cancellation Theorem.
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Since ! = ¢, the connection matrix A(M, ') is A, Let Al

pivot on the first diagonal of Al By definition, this primary pivot represents the inter-

= +1 be a primary

section number between two singularities of the flow ¢!, namely hi and hf;ll, which are
consecutive since the gap between them is one. Using Smale’s Cancellation Theorem, we
can define a flow ¢? by cancelling all pairs of critical points corresponding to primary pivots
on the first diagonal of A'. Moreover, by step 2, the connection matrix A(M,¢?) is the
submatrix obtained from A2 which does not contain the columns and rows corresponding
to the cancelled singularities. Because of this and the fact that all non-zero entries of A2
belong to A(M, p?), each non-zero entry of A? represents an intersection number between

two singularities of p2. Observe that two singularities h] and h] 2 of ¢? with gap two in

the filtration I are consecutive in the flow ? since all the gap 1 singularities have been

cancelled in the previous stage.

—1
—(T—l),]

(r—1) of Ar-1 corresponds to the intersection number of consecutive singularities hf; and

Suppose that " is well defined, that is, each primary pivot A; on the diagonal
hi:(f*l) of "1 and the connection matrix A(M, ") is a submatrix of A" which does not
contain columns and rows of A" corresponding to all primary pivots marked until the diagonal
r — 1. These correspond to all singularities of ¢ of gap less than or equal to r — 1. Under
these hypothesis singularities ki and h ", of ¢" with gap 7 with respect to the filtration F
are consecutive in the flow ¢". Hence two singularities corresponding to a primary pivot on
the diagonal r of A" can be cancelled, by Smale’s Cancellation Theorem. Therefore, ¢" ! is
a well defined flow obtained from ¢" by cancelling all pairs of critical points corresponding
to primary pivots on the diagonal r of A, Moreover, the connection matrix A(M, ") is
a submatrix of A" which does not contain columns and rows of A7+ corresponding to all

primary pivots marked until step . The flow ¢ continues to ¢" for all r. |

Corollary 2.4. There is a continuation from s to the minimal flow Qpip.

Proof. By Theorem 2.3, following the cancellation of pairs of critical points determine
by the SSSA, one obtain a continuation of the initial flow ¢ to a flow ¢“, The connection
matrices associated to some flows of this continuation is produced by the Smale’s Cancellation
Sweeping Algorithm, as seen in the proof of Theorem 2.3.

Since, non zero entries in the last matrix AL produced by the SCSA must be above
primary pivots, then the submatrix of AL which is a connection matrix for the last flow Vot

is the null matrix. Therefore, ©* corresponds to the minimal flow. |
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The following theorem establishes a correspondence between the algebraic cancellations

of modules on the spectral sequence with dynamical cancellations of critical points.

Theorem 2.4 (Ordered Smale’s Cancellation Theorem via Spectral Sequence). Let (C,A)
be the Morse chain complex associated to a Morse-Smale function f. Let (E",d") be the
associated spectral sequence for the finest filtration F' = {F,C} defined by f. The algebraic
cancellation of the modules E™ of the spectral sequence are in one-to-one correspondence with
dynamical cancellations of critical points of f. Moreover, the order of cancellation occurs as

gap T Increases.

Proof. As it was proved in [13], the non zero differentials of the spectral sequence are
induced by the pivots. When working on surfaces, the connection matrices are under more
limiting conditions than the connection matrices for k-manifolds with k£ > 2. It follows from
the Primary Pivots for Orientable Surfaces Theorem (Theorem 2.1) that the primary pivots
are always equal to +1. Hence, the differentials d;, : Ej — E_, associated to primary pivots
are isomorphisms and the ones associated to change-of-basis pivots always correspond to
zero maps. In fact, if a differential d, : £ — EJ . corresponds to a change-of-basis pivot,
then there is a primary pivot in row p — r and thus EJ = 0. Consequently, the non-zero
differentials are isomorphisms and this implies that at the next stage of the spectral sequence
they produce algebraic cancellations, i.e. if a primary pivot A7 ., ., is marked in step r
then B/ = E7* ] = 0.

Note that the algebraic cancellations E;H = E;frl = 0 are associated to the primary
pivots A7 .y ,,; = £1 on the r-th diagonal of A" in the Spectral Sequence Sweeping
Algorithm, row p — r + 1 is associated to hﬁjﬂ € F, ,Cy_1\ Fp_r_1Cy—1 and column p + 1
is associated to hﬁ“ € F,Cy \ F,—1Cy in a gradient flow ¢ associated to f. By the Primary
Pivots Equality Theorem (Theorem 2.2), the primary pivot A} ., ., = +1 is also a primary
pivot A}y 11 = £1 of the Smale’s Cancellation Sweeping Algorithm. By Theorem 2.3 the
primary pivot Ag# 41,41 18 an intersection number of two consecutive singularities hZH and
hP" of the flow ¢”. By Smale’s Cancellation Theorem, there is a dynamical cancellation
of this pair of critical points.

Note that £ and £, correspond to a saddle and a sink or a source and a saddle, re-
spectively, with gap r with respect to the filtration F'. Hence, dynamically and algebraically,

the cancellations occur with increasing gap. [ |

In summary, the spectral sequence cancellation policy follows a proximity algorithm,
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where proximity is measured by closeness within the filtration determined by a Morse (height)
function, i.e in increasing order of filtration length. In other words, the spectral sequence
starts by cancelling all consecutive indices (i.e saddle-sink or source-saddle) within gap one.
This is done by considering the modules and differentials (E',d'). Next, the cancellation
occurs by considering the modules and differentials (E?, d?) and cancelling all consecutive
index critical points within gap 2. And so forth, cancellation occurs by considering the
modules and differentials (E",d") and consecutive index critical points within gap r.

A

F15

F14

[ 12

Fy

Fy
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Figure 2.22: Morse flow on a torus and the finest filtration.
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Example 2.6. Consider the flow on the torus as in Figure 2.22; which is associated to a
Morse-Smale function f. Observe that each critical level set of f contains only one critical
point of f. Consider the filtration on the Morse chain complex (C.(f),A) to be the one
determined by the function f, as illustrated in Figure 2.22. The connection matrix A
associated to this flow and filtration is given by the matrix presented in Figure 2.23.

Applying the SSSA to A, we obtain the matrices Al,... A given by Figures 2.24,...,
2.34, respectively. In these figures, the primary pivot entries are indicated by means of a light
red background and darker edge, the change-of-basis pivots are indicated by blue background
and dashed edges, null entries are left blank and the diagonal being swept is indicated with
a gray line.

Figure 2.35 illustrates the cancellations of pairs of critical points of f following the SSSA,
i.e., the cancellations occur in order by gap proximity, where the filtration is given by the
height function as in Figure 2.22. In Figure 2.35, we make use of Lyapunov graphs (Reeb
graphs with labels) I'" associated to the flows " to represent what happens dynamically

when critical points are cancelled. <

Jo = {1279}, Ji = {3456,10,11,12,13}, o) =hj forj € Jo;
Jo={8,14,15,16}; o3° =hj, for j € Jo; o1 =hi for ol =h] for je.Ji;

jeJi; o’ =hi for jeJo. o)t =h} for je Jo.

Figure 2.23: A, connection matrix. Figure 2.24: A!, marking primary pivots.
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-1|-1|-1]|-1 1 -1 -1 -1 1 1
1 1 1 1 1 1 1 1 1
1 -1 -1 1
-1 1 -1 1
1 -1 1 -1
-1 1 -1 1
-1 -1
11 -1 -1 -1
-1 1 -1 1
1|-1 1| -1
1 -1 1
24 . 2 ] , 43 11,3 15,3
o)"=h} forj €Jo; o°=h] for je Ji; oy"=hi—h3; 07 =hi" — hit; 0,77 =hit — hid.
o)?=hi for je Jo. o) = ¢]? for all the remaining o’s.
Figure 2.25: A% marking pivots. Figure 2.26: A3, marking pivots.
-1 -1 1 1 |-1 -1 1 1 |-1
1 1 1 1 1
1 -1 -1
-1 1 -1 1
1 -1 1 -1
-1 1 -1 1
-1 -1
-1 -1
1 -1 1
1 1
5,4 : 12,4 65_ 16 _ s 16,5 ’
oy =ht —h3; o7 =h12 - hi0 o’ =h8 —h3; 0y"" =hit 4+ hL® + RIS
o)* = a}® for all the remaining o’s. o)® = a}* for all the remaining o’s.

Figure 2.27: A* marking pivots. Figure 2.28: A%, sweeping 5-th diagonal.
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1 11 ]-1 -1 1|1 ]-1
1 1 1 1
-1 -1
-1 1 -1 1
1 -1 1 -1
-1 1 -1 1
-1 -1
-1 -1
1 1
1 1
J.6_ 7.5 e J,7_ 3,6 S
oy = oy for all o’s. oy’ =0y for all o’s.
Figure 2.29: A% sweeping 6-th diagonal. Figure 2.30: A7, sweeping 7-th diagonal.
-1 1 1 -1 -1 1 1 -1
1 1 1 1
-1 -1
-1 1 -1 1
1 -1 1 -1
-1 1 -1 1
-1 -1
-1 -1
1 1
1 1
O’i’gz O'ij for all o’s. 0%,’9: Ui’s for all o’s.

Figure 2.31: A8, sweeping 8-th diagonal. Figure 2.32: A%, sweeping 9-th diagonal.
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J,10 _ j,9 . 12,11 10, p12_p3. 16,11 714 | 315, 116, 1,8
oy =oy forall o’s. 017 =—hi"+hi*=hy; 037 =hs +h3*+h3°+hs.

. . .
o’ = 0'17{4 for all the remaining o’s.

Figure 2.33: A'?, marking pivots. Figure 2.34: A!!, sweeping 11-th diagonal.

ho =1 ha=1 ha =1 ha =1 ha=1
»

Fiy

Fy

1

ho =1 Fo

ho=1

Figure 2.35: Representation of the SCSA by means of Lyapunov graphs.
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Final Remarks

The field of computation topology has been interested in algorithms which solve problems
anywhere from reconstruction of surfaces in computer graphics to the treatment of noise
in data input. For example, to gather information about a surface using a computer, it is
necessary to make use of a combinatorial representation. This information can be provided by
making use of simplicial complexes. Data structures are then constructed with the purpose of
storing cell complex information. To retrieve topological connectivity information from this
data, homology is used. Persistent homology is an invariant that records the “homological
history of a space that is undergoing growth” (see [43]). Algorithms were developed initially
to compute the persistent homology of simplicial complexes but have been extended recently
to general classes of filtered cell complexes. Computational topology will only prove useful to
deal with massive data sets, if both theoretical results and practical algorithms are adequately
elaborated.

More specifically, the computational geometric topology has been interested in the study
of Morse-Smale complexes that arise from large data sets in order to extract significant
topological features which can be measured in some sense by using persistent homology
theory. In this theory there is a well known critical point cancellation rule referred to as the
Elder’s Rule [16], which cancels critical points with respect to the level sets determined by
a height function as one sweeps from bottom to top, i.e. from lower level sets to higher level
sets.

We approached this problem from a dynamical systems point of view. Our interest
resides in understanding the bifurcation behaviour, i.e. birth and death of critical points,
that parametrized families of flows on surfaces undergo. There are many techniques that may
be used to achieve such an endeavour. However, the underlying approach used here has been
to bridge the algebraic-topological and dynamical realms. As we have shown in this chapter,
the SSSA determines a collection of connection matrices {A”} which record the history of
the birth and death of connecting orbits of ¢ as one calculates the spectral sequence of the
filtered Morse chain complex (C(f), A). The major role in the birth of new connecting orbits
is played by the primary and change of basis pivots. As one traverses the diagonals of the
matrix via the Spectral Sequence Sweeping Algorithm, longer and longer connecting orbits
are produced (birth) while the connecting orbits corresponding to the change of basis pivots
are eliminated (death). In summary, longer orbits are born due to the death of shorter ones

caused by the cancellation of critical points.
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Chapter 3

Spectral Sequences for two

dimensional Novikov Complexes

Spectral sequence analysis has proven to be a useful algebraic tool in detecting bifurcation
phenomenon within a parametrized family of flows. This was initially explored in [13, 24, 30]
for a filtered Morse chain complex where the filtration is determined by a Morse function.
For instance, as presented in the Background Section 1.2, a spectral sequence of a filtered
Morse chain complex associated to a flow can be retrieved from its differential, which is a
connection matrix, via the SSSA.

In Chapter 2, we obtained strong results on the interconnection between algebraic and
dynamical information in this setting. Since the spectral sequence analysis in Chapter 2
was realised for a two dimensional filtered Morse chain complex over Z, we were able to
prove a global dynamical cancellation theorem (Theorem 2.3) as well as a continuation
result presented in Theorem 2.4 that keeps track of birth and death of connections between
singularities in a Morse flow.

With this motivation in mind, we undertake a new dynamical setup, namely Morse-
Novikov flows which arise within Novikov’s theory as gradients of circle-valued Morse func-
tions f : M — S on a surface M.

We consider, in this chapter, Novikov chain complexes (N, d) associated to circle-valued
Morse functions f on surfaces. The Novikov modules N, are the Z((t))-modules freely
generated by the critical points of f. The Novikov differential 0 “counts” over Z((t)) orbits
with signs connecting consecutive critical points. In this context, we will prove that the

SSSA is well defined and it also recovers the spectral sequence associated to the Novikov
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chain complex as in the Morse case.

The difficulty herein is that we lose the notion of how to minimize a leading coefficient
of a change of basis when we are working with the ring Z((¢)). Our first step in generalizing
the spectral sequence analysis for Novikov complexes will be done on orientable surfaces,
since in this case one can always zero out a change-of-basis by using only the column of the
corresponding primary pivot.

This chapter is organized as follows. The Novikov chain complex is introduced in Section
3.1, where we also characterize the Novikov incidence coefficients between consecutive critical
points.

In Section 3.2, we present the Spectral Sequence Sweeping Algorithm (SSSA) for a two
dimensional Novikov complex over Z((¢)). This algorithm produces a collection of Novikov
matrices generated from the Novikov differential.

In Section 3.3, we prove in Theorem 3.2 that the SSSA for a Novikov chain complex is well
defined. Also, the Novikov matrices which appear in SSSA are characterized in Theorems
3.3 and 3.4. In Theorem 3.5, we prove the surprising result that the last matrix produced
by the SSSA has polynomial entries in Z((t)), although the intermediate Novikov matrices
exhibit entries which are infinite series.

In Section 3.4, we prove in Theorems 3.6 and 3.7 that from the sequence of Novikov ma-
trices produced by the SSSA, the modules and differentials (E", d") of the spectral sequence
may be retrieved. More specifically, the SSSA provides a system which spans £ in terms of

the original basis of A" as well as identifies all differentials d; : £} — EJ .

3.1 Novikov Complex

In this section, some background material on circle-valued functions and on Novikov
complexes over Z((t)) are presented. Further details can be found in [35]. Moreover, a
characterization of the Novikov differential is proven in the case of orientable surfaces.

Denote by Z[t,t™!] the Laurent polynomial ring. Let Z((¢)) be the set consisting of all

A= Zaltz

1€Z

Laurent series

in one variable with coefficients a; € Z, such that the negative part of A is finite, i.e., there is

n = n(A) such that ay = 0 if £ < n(\). In fact, Z((t)) has a natural ring structure such that
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the inclusion Z[t,t7!] C Z((t)) is a homomorphism. Moreover, Z((t)) is a Euclidean ring.

Let M be a closed connected manifold and f : M — S! be a smooth map from M to
the one-dimensional sphere!. Given a point x € M and a neighbourhood V of f(z) in S*
diffeomorphic to an open interval of R, the map f|s-1(yy is identified to a smooth map from
f~YV) to R. Therefore, in this context one can define non-degenerate critical points and
Morse index as in the classical case of smooth real valued map. A smooth map f : M — S*
is called a circle-valued Morse function if its critical points are non-degenerate. The set of
critical points of f will be denoted by Crit(f) and, more specifically, Crity(f) is the set of
critical points of f of index k.

Considering the exponential function Fxp : R — S! given by t - 2™

and a covering
E : M — M such that E (7 (M)) C Kerf,, where E,; and f, are the induced maps in 7

by E and f respectively, there exists a map F : M — R which makes the following diagram

commutative: M F R
E Ezxp
M— g

Moreover, f is a circle-valued Morse function if and only if F' is a real valued Morse function.
Observe that if Crit(F) is non empty then it has infinite cardinality. If M is non compact,
one can not apply the classical Morse theory to study F, however, one can restrict F' to
a fundamental cobordism W of M, which is compact, and apply the techniques of Morse
theory. The fundamental cobordism W is defined as W = F~!(Ja— 1, a]), where a is a regular
value of F'. The cobordism W can be viewed as the manifold M obtained by cutting along
the submanifold V' = f~!(«a), where a = Fxp(a). Hence, W is a cobordism with both
boundary components diffeomorphic to V.

Given a circle-valued Morse function f, consider the vector field v = —V f. One says that
f satisfies the transversality condition if the lift of v to M satisfies the classical transversality
condition on the unstable and stable manifolds.

From now on, consider circle-valued Morse functions f such that v = —V f satisfies the
transversality condition. Denote by ¥ the lift of v to M and arbitrarily choose orientations
for all unstable manifolds W*"(p) of critical points of f.

Given p € Crity(f) and q € Crity_1(f), the Novikov incidence coefficient between p and

151 is viewed as the submanifold {(x,y) € R? | 22 + y? = 1} and is endowed with the corresponding
smooth structure.
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q is defined as the Laurent series
N(p,giv) =) nipt'q0)t,
ez
where n(p, tq; D) is the intersection number between the critical points p and t‘q of F, i.e.,
the number obtained by counting with signs the flow lines of ¥ from p to t'q, when one
considers the orientations on the unstable manifolds W*(p) and W*(t‘q) according to the
previous fixed orientations in W*(p) and W*(q). See [3] and [35].

Let Ny be the Z((t))-module freely generated by the critical points of f of index k.
Consider the k-th boundary operator 0 : N, — Njy_; which is defined on a generator
p € Crity(f) by

)= Y. Npgvyg

qECT‘itk,I(f)
and extended to all chains by linearity. In [35] it is proved that Oy o Op,1 = 0, hence (N, 0;)

is a chain complex which is called the Novikov complex associated to the pair (f,v).

Example 3.1. As a first example, consider the flow on a torus T" associated to a circle-valued

Morse function f, as in figure below, where a is a regular value of f.

h t2h3

h3 t*ht

The Novikov chain groups are Ny = Z((t)){hi}, Np =
Z{h3, h3} and Ny = Z{h3}. The figure on the right rep- 3
resents a covering space of T'. Choosing the orientations for B3
the unstable manifolds of the critical points of f as indicated
in the figure above, one can compute the intersection num-
ber between consecutive critical points with respect to the

Morse flow in the cobordism.
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In this case, the Novikov incidence coefficient is a polynomial N(p,q;v) = >, ait!,
where q; is the intersection number between p and t'q with respect to the Morse flow in the
cobordism, i.e., a; is the number of flows lines from p to ¢, counted with signs, intersecting
[ times the regular level set f~'(a). Therefore, the Novikov incidence coefficients for this

example are given by:

1. N(h? hi;v) = t — 1 indicating two flow lines from h? to hj, one of which intersects

f~(a) once and the other does not intersect;

2. N(h3,hi;v) = t* — 1, indicating two flow lines from h? to hj, one of which intersects

f~Y(a) twice and the other does not intersect;
3. Analogously, N(h3, h%;7) = > —1 and N(hj, h3;v) =t — 1.

The Novikov boundary operator is defined on the generators by: d;(h?) = (t — 1)h{,
O1(h3) = (t* — 1)h} and Oy(h3) = (t* — 1)h3 + (t — 1)h3. <

One can consider the Novikov differential 0 as a matrix A where each column corresponds
to generators p,q € Crit(f) and the entries are the coefficients N(p,q;v) of the Novikov
differential 0. Moreover, one assumes that the columns of A are ordered with respect to the
Morse indices of the critical points, e.g., in increasing order with respect to the Morse index.

See Figure 3.1.

No oo Mo Np N Nigo -+ A,
No (O

Nlc—l 0 Ak—l 0

Nisa| 0 0 | Arp

Nisa| 0 0 | Dpsz

; 0
N, o 0

Figure 3.1: Novikov differential viewed as a matrix,
where Ay is the matrix representation of 0.

In the case when M is a surface, the columns of A may be partitioned into subsets
Jo, J1, Jo such that Jg are the columns associated with critical points of index s, i.e., the
generators of NVy. Hence, the non-zero entries of the matrix A are in the block Jy x .J;, which

corresponds to connections from saddles to sinks, and in the block .J; x Jo, which corresponds
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to connections from sources to saddles. The block Jy x J; (respectively, J; x Jo) is referred
to as the first block (respectively, second block) of the matrix A. Figure 3.2 illustrates a

possible structure for a Novikov differential associated to a circle-valued Morse function on

a surface.
Jo Ji Ja
0
0
JO AJoJl
0
0
0
0
Jl 0 Ajl JQ
0
0
0
Jo 0
0

Figure 3.2: Novikov differential, with Jy = {1,2, 3,4},
Ji = {5,6,7,8,9} and J, = {10, 11, 12}.

Since we work with a matrix representation for the Novikov differential 0, we will switch
the notation, from this point on, to the matrix A, hereupon referred to as a Novikov matriz
associated to A.

The following theorem will describe special characteristics of the Novikov matrix asso-
ciated to A by describing the Novikov incidence coefficients. In order to do this, we must
define a fundamental domain. A cobordism W = F~!([a — 1;a]), where a is a regular value
of F and A € N, is said to be a fundamental domain for (M; f) if the following property is
satisfied: given p € Crity(f) and ¢ € Crity_i(f), W contains a lift of each orbit of the flow

v from p to q.

Theorem 3.1. Let M be an orientable surface and (N, A) be the Novikov complez associated
to a circle-valued Morse function f: M — S'. The Nowvikov incidence coefficient N(p,q;v)

is either zero, a monomial £t* or a binomial t© — t©2.

Proof. Given an orientable surface M, let Wy = F~!([a — 1,a + )\]) be a fundamental
domain for (M, f). Then W), is an orientable compact surface with boundary OW), possibly
empty. If OW, = (), define W, = W,. In the case that the boundary 0W) is non empty, it
is the disjoint union of oWy = F~'(a — 1) and OW) = F~'(a+ \). Let W, be the closed

surface obtained from W) by gluing 2-dimensional disk along its boundary to each connected
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component of OW,. Moreover, one can assume that each of its disks contains a singularity,
more specifically, a source if the disk is glued to W and a sink if the disk is glued to
OW, . This procedure extends the Morse function F': W) — R to a classical Morse function
o /I/I7,\ — R on a closed surface.

Given p € Crity(f) and ¢ € Crit,_1(f), the Novikov incidence coefficient N(p,q;v)
counts the number of flow lines from p to ¢ with signs. Since, each of these flow lines has
a lift in W), then N(p, q;v) can be obtained by analysing W,. On the other hand, the
intersection number n(p, t‘q; ¥) between critical points p and t‘q in W), is the same as when
considered in the surface W,\. Since W)\ is closed, n(p,t‘q;v) is zero, when there are two
flow lines from p to t‘q. It is —1 or +1, when there is one flow line from p to t‘q. See [4].

Therefore, the Novikov incidence coefficient N (p, ¢; v) is:

(a) 0, if there are two flow lines from p to ¢ in v which intersect the level set f~!(a) the

same number of times;

(b) 4t if there is only one flow line from p to ¢ which intersects ¢ times the level set

f(a);

(c) t" — t*, if there are two flow lines from p to ¢ in v, one intersecting ¢; times and the

other intersecting f, times the level set f~!(a). |

Corollary 3.1 (Characterization of the Novikov differential on orientable surfaces). Let M
be an orientable surface and (Ni, A) be the Novikov complex associated to a circle-valued
Morse function f : M — S' such that the chosen orientation on the unstable manifold of
each critical point of index 2 is the same. Then there are three possibilities for either a

column or a row j € J; of A:
(1) all entries are null;
(2) exactly one non zero entry which is a binomial t* — t2, for some (1,{y € Z;
(3) ezactly two non zero entries which are monomials t* and —t*2, for some (1, € 7.

Proof. If f does not have a critical point of index 1, then the Novikov matrix is null.
Suppose that f has at least one critical point of index 1, i.e., a saddle. In this case, it is

clear that, given a row (respectively, column) j € J; of A, there are at most two non zero
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entries in this row (respectively, column). In fact, there are exactly two flow lines whose w-
limit (respectively, a-limite) sets are the same saddle. By Corollary 2.2, choosing the same
orientation for each unstable manifold of critical points of index 2, the signs on flow lines
associated to the stable (respectively, unstable) manifold of a saddle are opposite. Therefore,
if there are two flow lines from a source (respectively, saddle) p to a saddle (respectively,
sink) ¢ intersecting a regular level set f~'(a) ¢ times, then N(p,q;v) =t —t* = 0. On
the other hand, if there is a flow line from a source (respectively, saddle) p to a saddle
(respectively, sink) ¢ intersecting ¢; times a regular level set f~!(a) and a flow line from a
source (respectively, saddle) p’ to the saddle (respectively, sink) ¢ intersecting ¢5 times the

same regular level set, then N(p, q;v) = £t and N(p/, ¢;v) = Ft. [ |
g

Example 3.2. Figure 3.3 illustrates a flow on the torus T2 associated to a circle-valued
Morse function f defined on T2, where a is a regular value of f. The Novikov chain groups
are Ny = Z((t)){hi, h3}, Nv = Z((t)){h3, ki, h3, K8} and Ny = Z((t)){hI, h5}. Choosing
the orientations for the unstable manifolds of the critical points of f as indicated in Figure
3.3, the Novikov matrix associated to O is presented in Figure 3.4. Hence, for example,
d(h?) = (t—1)h% meaning that there are two flow lines from h$ to h2 such that one intersects

f7Ya) once and the other does not intersects this level set. <

hy kg by Ry BB BB

hy 0| o]0 | 1| ¢ ]| 1]0]0
g 0 | 0 [r=1|-1|-1| =] 0] 0
hi ol oo oo | o0o|1]-1
ht 00| o0 |0 |0 |0 |21

" 0 0 0 0 0 0 t | -1
h 0 0 0 0 0 0 0 0
hs oo o] o|lo]|o| o] o

Figure 3.3: Circle-valued Morse function. Figure 3.4: Novikov matrix.
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3.2 Spectral Sequence Sweeping Algorithm for a Novikov

Complex

A square matrix will be called a Novikov matrix if it is a strictly upper triangular matrix
with square zero and entries in the ring Z((t)).

In this section, we define the Spectral Sequence Sweeping Algorithm (SSSA) for a Novikov
matrix associated to a Novikov complex (N, A) on an orientable surface. The SSSA con-
structs a family of Novikov matrices {A”,r > 0} recursively, where A° = A, by considering

at each stage the r-th diagonal.

Spectral Sequence Sweeping Algorithm - SSSA
For a fixed r-th diagonal the method described below must be applied for all A, for k = 0,1, 2

simultaneously.
A - Initial step

1. Without loss of generality, we assume that the first diagonal® of A contains non-
zero entries A; ; where j € Ji and ¢ € J,_1. Whenever the first diagonal contains
only zero entries, we define A' = A and we repeat this step until we reach a

diagonal of A which contains non-zero entries.
The non-zero entries A, ; of the first diagonal are called index k primary pivots.
It follows that the entries A, ; for s > ¢ are all zero.

We end this first step by defining A! as A with the index k& primary pivots on the

first diagonal marked.

2. Consider the matrix A" and let Aj; be the entries in A" where the i € J,_; and
j € J,. Analogously to step one, we assume without loss of generality that the
second diagonal contains non-zero entries Aj;. We now construct a matrix A

following the procedure:
Given a non-zero entry A} ; on the second diagonal of A*
(a) if there are no primary pivots in row i and column j, mark it as an index

k primary pivot and the numerical value of the entry remains the same, i.e.
A%y = Ay

2By r-th diagonal one means the collection of entries A;; of A such that j —i = r.
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(b) if this is not the case, consider the entries in column j and in a row s with
s> in Al

(b1) If there is an index k primary pivot in an entry in column j and in a row
s, with s > ¢, then the numerical value remains the same and the entry
is left unmarked, i.e. A7, = Aj .

(b2) If there are no primary pivots in column j below A}J then there is an
index k primary pivot in row i, say a column u of A!, with u < j. In
this case, we define A7; = A} ; and this entry marked as a change-of-basis
prvot.

Note that we have defined a matrix A? which is actually equal to A!
except that the second diagonal is marked with primary and change of

basis pivots.

B - Intermediate step

In this step we consider a matrix A" with the primary and change of basis pivots
marked on the ¢-th diagonal for all ¢ < r. We now describe how A™! is defined. If
there does not exist a change of basis pivot on the r-th diagonal we go directly to step
B.2, that is, we define A" = A" with the (r + 1)-th diagonal marked with primary

and change of basis pivots as in B.2.

B.1 - Change of basis

Suppose A} is a change of basis pivot on the r-th diagonal. Since we have a change
of basis pivot in row ¢, there is a column, namely u-th column, associated to a k-chain
such that A7, is a primary pivot. Then, perform a change of basis on A" in order to
zero out the entry A7, without introducing non-zero entries in Af ; for s > 4. We will
prove in Theorem 3.2 that all the entries in A" which are primary pivots are equal to
+th £ 2 and, since these entries are invertible in Z((t)), it is always possible choosing

a particular change of basis using just column j and u of A”.

Once this is done, we obtain a k-chain associated to column j of A", It is a linear
combination over Z((t)) of column u of A" and column j of A” such that A7*' = 0. It
is also a particular linear combination of the columns of A in J; on and to the left of

column j.
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Let k; be the column of A" which is associated to a k-chain. We denote by ai” to

indicate the Morse index k& and the column j of A". We have
J
oA =3
=k,

and the column j of A" is
AP ol = AL~ e G T (31)

where """ € Z((t)) and c;:’”“l =1

Therefore the matrix A" has entries determined by a change of basis over Z((t)) of

A". In particular, all the change-of-basis pivots on the r-th diagonal A" are zero in
AT

Once the above procedure is done for all change-of-basis pivots of the r-th diagonal of
A" we can define a change-of-basis matrix 7", and let A" = (T7)"1A"T".

B.2 - Marking the (r + 1)-th diagonal of A™"!
Consider the matrix A™"! defined in the previous step. We mark the (r+1)-th diagonal
with primary and change of basis pivots as follows:
Given a non-zero entry AZ}“I
1. If there are no primary pivots in row ¢ and column j, mark it as an index k
primary pivot.
2. If this is not the case, consider the entries in column j and in a row s with s > ¢
in A1,
(b1) If there is an index k primary pivot in the entries in column j below A;}“l

then leave the entry unmarked.

(b2) If there are no primary pivots in column j below Agjl then there is an index
k primary pivot in row i, say in the column u of A", with v < j. In this

case, mark it as a change of basis pivot.

C - Final step

We repeat the above procedure until all diagonals have been considered.
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Note that in the Spectral Sequence Sweeping Algorithm the columns of the matrix A
are not necessarily ordered with respect to k, or equivalently, that the singularities h; are
not ordered with respect to the filtration. In this chapter, without loss of generality, we
consider the singularities to be ordered with respect to the Morse index for the sole reason
of simplifying notation.

In order to perform the particular change of basis (3.1) in step B.1 of the Spectral
Sequence Sweeping Algorithm, the primary pivots must be invertible polynomials in the
ring Z((t)). Otherwise, the change of basis in (3.1) is not well defined. The example below
shows a Novikov differential for which the SSSA is well defined.

Example 3.3. Applying the SSSA to the Novikov matrix A in Figure 3.4, one obtains the
sequence of Novikov matrices Al,-.-  A® presented in Figures 3.5, ---, 3.10, respectively.
In these figures, the markup process at the r-th iteration is done as follows: primary pivots
are encircled and change-of-basis pivots are encased in boxes.

Note that, in this example, each marked primary pivot in A" is invertible in the ring
Z((t)), making it possible to apply the SSSA and obtain the next Novikov matrix A",

Ué’lzhé for j € Jo; a{’lzh{ for jeJy; Ué’thé forj € Jo; a{’2=h{ for jeJy;
oyt =hi for je Jo. a)? =hi for je Jo.

Figure 3.5: Al for Example 3.3. Figure 3.6: A? for Example 3.3.
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oy’ =hi + (t-1)""h;
7,3

8,3 _
o =h§ +t71hl.
O}

= 0%2 for all the remaining o’s.

Figure 3.7: A3 for Example 3.3.

oVt =h3 4 (t—1)"'h3.
0%"4 = 0%3 for all the remaining o’s.

Figure 3.8: A* for Example 3.3.

op?=hi —t b oy =h§ +t(t—1)"'hi; oy =h{ — ni;
3,5 j
Ok

4 ..
= o}" for all the remaining o’s.

Figure 3.9: A® for Example 3.3.

6 5 ..
o7 = o0} for all the remaining o’s.

Figure 3.10: A for Example 3.3.

3.3 Characterization of the Novikov Matrices

The primordial aim in this section is to show that the SSSA is well defined for all Novikov

differentials of a 2-dimensional Novikov complex. This is done by showing that, given a

Novikov differential A, all primary pivots determined by the SSSA are invertible polyno-

81
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mials in the ring Z((t)). In fact, they are monomials with coefficient £1 or binomials with
coefficients +1. Throughout this section, the term monomial (respectively, binomial) will be
used to refer to polynomials in Z((t)) of the form 4t¢ (respectively, t*t — t2), where ¢ € Z
(respectively, (1, 0y € Z).

Theorem 3.2. Given a Novikov differential A, the primary pivots and the change of basis
pivots in the Spectral Sequence Sweeping Algorithm are polynomials of the form t* or t —t%2,
where 0, 01,0y € 7.

The proof of Theorem 3.2 is an immediate consequence of Theorem 3.3, Lemma 3.2 and
Theorem 3.4.

Lemma 3.1 asserts that we cannot have more than one primary pivot in a fixed row or
column. Moreover, if there is a primary pivot in row ¢, then there is no primary pivot in

column <.

Lemma 3.1. Let A be a Novikov differential for which the SSSA is well defined up to step R.
Let A',--- AR be the family of Novikov matrices produced by the SSSA until step R. Given
two primary pivots, the ij- th entry A}, and the mi-th entry A7, then {i,j} N {m,l} = 0.

m,l’

We omit the proof of Lemma 3.1, since it is similar in nature to proof of Proposition 3.2
in [13], where the SSSA was defined for a Morse chain complex over Z. The next lemma
implies that, in order to know the pivots which will appear during the execution of the SSSA,

one can apply this algorithm separately in block Jy x J; and J; x Js.

Lemma 3.2. Let A be a Novikov differential for which the SSSA is well defined up to step
R. Then, the change of basis caused by change-of-basis pivots in block Jo x J; do not affect
the pivots in block Jy x Jo. In other words, multiplication by (T")~ does not change the

primary and change-of-basis pivots in block Jy x Jy .

Proof. Without loss of generality, suppose that there is only one change-of-basis pivot A7 ;
in A" with 5 € J;. The change of basis matrix 7" has unit diagonal and the only non zero
entry off the diagonal is T, ; = —A7 (A} ,)~'. Hence, (T")" has unit diagonal and the only
non zero entry off the diagonal is (17),} = =17 ; = A7 (A7,)~'. Therefore, multiplication
by (T")~! will only affect row u of A”. By Lemma 3.1, there are no primary pivots in row u

and hence there are no change-of-basis pivot in row u as well. |
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Before proving Theorem 3.2, we introduce the notation and terminology that will be used
in the proof. From now on, we consider the SSSA without realising the pre-multiplication
by (T7)~!, unless mention otherwise.

Let Aj; be a change-of-basis pivot caused by a primary pivot A . Suppose a change of
basis determined by A7 ; is performed by the SSSA in the matrix A", i.e., in the step (r+1),
one has

jr+l _ _gr r r \—1_ur
Oy =0 _Ai,j(Ai,u) O -

Hence, whenever this change-of-basis occurs, only column j of the matrix A” is modified, in

r
S,u)

fact, for each s = 0,...,4, the entry A{ ; is added to a multiple of the entry A, where u is
the column of the primary pivot in row ¢. In other words, Agjl = AL — A7(A],) AL,
See the matrix in Figure 3.11 (this figure shows part of the block associated with index k,

as the r-th diagonal is swept).
u J

T T
Al 0 A

Figure 3.11: A7~ ;; marking change-of-basis pivot.

Definition 3.1. In the situation described above and represented in Figure 3.11, we assert

r+‘1

oiin column § in AT, whenever

that the entry Al in column u generates the entry A

Az, #0. %

Note that if an entry in a column j generates another entry in a column ¢ then t > 7, i.e,

A7 ; generates an entry in a column on the right of the column j.

Example 3.4. It is helpful to keep in mind some configurations that allow an entry A7  # 0
to generate another entry Ag;l. Consider for instance that A7 = t* and A}, = —t. We

list some of the possibilities for the entries in positions (s, ) and (s, j) of A"

1. A;u = t! and Ag,j = 0. In this case, AZT = A;j _ Ag,j<A;,u)_1Ag7u _ tgt_ftl, see
Figure 3.12.

3If an entry Ag’u with £ < r does not change until step r, i.e. Ag’u = Ag"zl = .-+ = Ay, and AL,
r+1
LA

generates A we say that A§ , generates AL*.

U
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2. A, = —thand A} ; = t'. In this case, AR = AT — AT (AT )AL, = e
see Figure 3.13.

3. AL, =t —t and A7, = 0. In this case, ALt = AT — A7 (A7 )TTAL, =t (H — 1),
see Figure 3.14.

Figures 3.12, 3.13 and 3.14 show part of the block associated with index k, as the r-th

diagonal is swept.

t.l 0 SSSA s t'l t/?—.€+l
O I R N N G5

Figure 3.12: A7, and A7 | respectively.

| _'tz o SSSA D TR S A
i o il

Flgure 3.13: A7, and AT respectively.

s | o =t 0 SSSA o | ot eyl
N U 0

; . +1 :

Figure 3.14: A%~ ; and A" ;| respectively.

In fact, we will see as a consequence of Theorem 3.4, the cases shown in the previous
example are the only possibilities up to sign of generating entries under a change of basis in

block J; x Jy. Of course, in block Jy x J; there are more possibilities.
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Lemma 3.3. An entry which is or will be marked as a primary or a change-of-basis pivot

never generates entries.

Proof. Observe that, if an entry Af, generates an entry in A1 then there must be a
primary pivot in column u and row ¢ > s, which was marked in step { < r. Hence, A{ , can

not be marked as a pivot in any given step 7. |

Definition 3.2. Let A be a Novikov differential.

(a) When an entry A7, generates another one Af;;l, we say that Ag;l is an immediate

r+1

successor of ALTE.

,Agf}f} such that each entry is an immediate

successor of the previous one is called a generation sequence.

(b) A sequence of entries {AS, AP

$,J17 $,J27

(¢) Given an entry A;; of A, the A, ;-lineage is defined to be the set of all generation

sequences whose first element is A, ;.

We will say that all the elements in these sequences are in the same lineage or in AfJ-
lineage. Also an element of a generation sequence is said to be successor of every element of

this sequence which is to its left.

Lemma 3.4. Let A be a Novikov differential for which the SSSA is well defined up to step
R. If A has the property that at most one change-of-basis pivot is marked in a row during

the SSSA until step R, then every lineage is formed by a unique generation sequence.

Proof. By hypothesis, one has that in each row ¢ at most one change-of-basis pivot is marked
through out the algorithm and if so the mark up is done in step 2 < & < m — 1, where m is
the order of A. Then an entry Af’j in row 7 generates at most one entry Affjl through out
the algorithm, and this entry will necessarily be in a column j; > j and £ < & < m — 1.
In fact, if Af,j generates two entries, then either there would be two change-of-basis pivots
in row ¢, which contradicts our initial hypothesis, or two primary pivots in column 7, which
can not occur by the definition of primary pivots.

Now, if & < m — 1, then Af’ljl can generate at most a unique entry Afij where & <
& < m —1 and j, > j; and this can be done successively. More specifically, the entry Aij
is a generator, i.e. it is responsible for generating a unique immediate successor and this

successor can in turn generate a unique immediate successor and thus it determines a full
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&1 &2
lineage of entries represented in one finite sequence {AZ AT AT -}, where 2 < ¢ <

E<&EH<--<m—Land j <1 <Jo<---<m. -

Corollary 3.2. Let A be a matriz for which the SSSA is well defined up to step R. Suppose
that the second block of A has the property that at most one change-of-basis pivot is marked
in each row from the beginning until the end of the SSSA. Therefore, each A; j-lineage with

1 € Jp 1s formed by a unique generation sequence.

Proof. The SSSA applied to the first block Jy x J; of A does not interfere in the number
of change-of-basis pivots identified in block J; x Js. |

Consider a A, j-lineage which is formed by a unique generation sequence. If this gener-
ation sequence contains only monomials (binomials, resp.) then one says that A, j-lineage
is a monomial (binomial, resp.) lineage. However, if A;; is a monomial, then the A, ;-
lineage could eventually contain binomials. One way that this can occur is when row s is
of type 3 in A, A, and A, ; are monomials and the lineage determined by these entries

merge giving rise to a binomial. More specifically, suppose that the first binomial in row

s appears in A°™! then one has two monomial lineages {A,,, AS, AL, - Aifuf} and
¢ G ¢ . §r ¢
{As; AL Az A b where &, (p < 65 observe that Agly, = AS, and A, = Af .

The binomial will appear in As*! as a consequence of a change of basis caused by a change-
of-basis pivot A;jf and a primary pivot Agjuj in a row ¢ > s, as in Figure 3.15. In this case,
A3, 1s the generator of the binomial AZJ;; Hence, we say that the A, j-lineage ceases, i.e,

this lineage remains the same until A”™! and the A, ;-lineage is an eventual binomial lineage.

From this point on, this lineage contains only binomials.

uy Jf
s Aiuf A;jf

S
AJaJa,+l -

Figure 3.15: Generating a binomial from two monomial lineages.

Once an element of a lineage is marked as a pivot, this lineage ceases, since pivots do not

generate entries, by Lemma 3.3.
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The next theorem provides a characterization of columns in the first block Jy x J; of a

Novikov matrix as the r-th diagonal is swept.

Theorem 3.3 (First Block Characterization). Let A be a Novikov differential for which the
SSSA is well defined up to step R. Then we have the following possibilities for a column j,
with j € J1, of the matriz A" produced by the SSSA in the step r < R:

1. all the entries in column j are equal to zero, .i.e, Ay ;= 0.
2. there is only one non-zero entry in column j and it is a binomial t* —tg, where (,0 € 7.

3. there are exactly two non-zero entries in column j and they are monomials t* and —t[,
where (,0 € 7.

4. there is only one non-zero entry in column j and it is a monomial t*, where { € 7.

Proof. The proof is done by induction. Note that the result is trivial for A' and A%, In
fact, the first change-of-basis pivot can be only detected from the second diagonal of A, this
implies that the entries of A may change from r = 3 onwards. Because of that the base of
the induction is r = 3.
r=3:

To prove that the rows of A? are of type 1-4, we will analyze the effect a change-of-basis pivot
marked in A? has on A3. Suppose, without loss of generality, that there is a change-of-basis
pivot A7, , on the second diagonal. Consequently, A7, is a primary pivot marked in A'.
Recall that the columns in A? satisfy Proposition 3.1. A primary pivot or a change-of-basis

pivot can only occur in a column of A? if this column is of type 2 or 3. Hence, one has the

following possibilities:
1. column ¢ + 1 is of type 2:

(a) If the column i + 2 is of type 2, then the primary pivot Afz 41 and the change-of-
basis pivot A7;,, are binomials. In this case, A?; , = 0 and all the other entries

in column ¢+ 2 remain the same. Hence column 7+ 2 turns into a column of type
1.

(b) If the column i +2 is of type 3, then A?,,, is a monomial and A7, is a binomial.

In this case, A3

7ir2 = 0 and all the other entries remain the same. Hence column

© 4+ 2 turns into a column of type 4.
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2. column i+1is of type 3. Then A7, is a monomial and there is s < i such that A2,

is also a monomial.

(a) If the column 742 is of type 2, then the change-of-basis pivot A, , is a binomial.
In this case, A?;,, =0and A%, , = —AZ, (A}, ))7'A?,,,, which is a binomial.
Hence, the column 7 + 2 remains of type 2.

(b) If the column i + 2 is of type 3, then change-of-basis pivot A?l 4o 1s a monomial
and there is 5 < i such that A}, , is also a monomial. If s = 5, then A?, , =0
and A%, = A2, ) — A2, (A7) " A?,,,, which is either a binomial or zero.
Hence, column ¢ + 2 turns into a column of type 2 or 1, respectively. On the
other hand, if s # 5, then A, , =0, A3, , = —AZ, | (A?,,,)'A?,,, which is a
monomial, and the other entries of column 7 4+ 2 remain the same. Hence, column

7 + 2 remains of type 3.

Induction hypothesis: Suppose that the conclusion of the Theorem holds for 3 < r <
R. We will show, that it also holds for r + 1.
Suppose that A7 ; is a change-of-basis pivot in the r-th diagonal. Then there is a primary

pivot A7, in a column u < j.
L. if column w is of type 2 then Af is a binomial and we have one of the possibilities:

(a) If the column j is of type 2, then the change-of-basis pivot A]; is a binomial. In
this case, AZ}'I = 0 and all the other entries in column r + 1 remain the same.

Hence, column r + 1 turns into a column of type 1.

(b) If the column j is of type 3 (type 4, resp.), then A7 is a monomial. In this case,
A;ﬂjl = 0 and all the other entries remain the same. Hence column j turns into a

column of type 4 (type 1, resp.).

2. column w is of type 3. Then A}, is a monomial and there is s < i such that Al is

iU

also a monomial.

(a) If the column j is of type 2, then the change-of-basis pivot A}, is a binomial. In
this case, A7t = 0 and ALY = —A7 (A7,)'A]

i ;» which is a binomial. Hence,

the column j remains of type 2.

(b) If the column j is of type 3, then the change-of-basis pivot A} is a monomial

and there exists § <7 such that Af; is also a monomial. If s = s, then A;”jl =0
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and Agjl = AT — AL (AT ) TAT

7‘7j,
column j turns into a column of type 2 or 1, respectively. On the other hand, if

s # 8, then ATH =0, ATH = —A7 (A7 )7IAT

2,37

which is either a binomial or zero. Hence,

which is a monomial, and the

other entries of column j remain the same. Hence, column j remains of type 3.

If the column j is of type 4, then the change-of-basis pivot A}, is a monomial.
Hence, AJT! = 0 and ALM = —AT (A7 )7'AT

i ;» which is a monomial. Hence the

column 7 remains of type 4.

3. column wu is of type 4. The only non-zero entry in column w is the primary pivot A7,

which is a monomial. Hence, in column j all the entries remain the same besides the

change-of-basis A

r+1

;i =0.If j is a column of type 2 or 4 it turns into a column of type

1; if 7 is of type 3 it turns into a column of type 4.

Theorem 3.4 (Second Block Characterization). Let A be a Novikov differential for which
the SSSA is well defined up to step R. Then we have the following possibilities for a non-zero

row s, with s € Jy, of the matriz A" produced by the SSSA in step r < R without realising

the pre-multiplication by (T")7':

A) all non null entries are binomials of the form t* — tg, where 0,0 € 7.;
(

B) all non null entries are monomials of the form t*, where ¢ € Z;
(

(C) all non null entries are either monomials t* or binomials t* — ¢ Moreover, if a column

j € Jy contains a binomial, then there are no monomials in columns j' € Jo with

j > 7.

Proof. We will prove this theorem by induction in » < R. In the course of the proof, we

will also prove the following set of statements:

(i) If an entry t* is a primary pivot in row 7 then at most one entry will be marked as a

change-of-basis pivot in row 1.

(ii) An entry t‘ — #* is never marked as a change-of-basis pivot, i.e. all change-of-basis

pivots are monomials t‘, for some ¢ € Z.
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(112) If AL, =t — t, A} is a change-of-basis pivot in row ¢ > s and Af , is the primary

iU

pivot in row ¢ with u < j, then Af  is zero.

(7v) A primary pivot Agu and a change-of-basis pivot Af,j in row ¢ are always monomials

with opposite signs, i.e., A7 = £t and A} = +tf, for 0,0 € Z.

(Y]
(v) A monomial A, above a primary pivot A7, and a monomial Aij above a change-

of-basis pivot Al always have opposite signs, i.e., Af, = +t¢ and AL, = :th, for
INEVA

Observe that the matrices A! and A? differ from the initial matrix A only in the mark-ups
of primary and change-of-basis pivots, since the entries can only change as of 3-th diagonal.
Base case r=3: In order to prove that the rows of A? satisfies conditions (A), (B) and (C)
of the theorem, we must analyze the effect on a row of A? caused by a change-of-basis pivot
marked in the second step r = 2 of the SSSA.

t+1 142
S Ag,m Ag.,H-Q

Figure 3.16: Primary and change-of-basis pivots in the first and second diagonals of A2,
respectively.

2 —
AJl J2 T

Suppose, without loss of generality, that there is a change-of-basis pivot Afl 4o on the

second diagonal. Consequently, A?l 41 1s a primary pivot marked in the first step of the
SSSA, see Figure 3.16. Recall that the rows in A? satisfy Proposition 3.1. A change-of-basis
pivot only occurs in row ¢ and column ¢ + 1 if this row is of type 3. In what follows, we

analyze the effect of this change of basis on a row s with s < 4:
1. If row s is null (i.e., of type 1) then only row i is altered and becomes a row of type B.

2. Suppose that row s is of type 2. If the only non-zero entry in row s is in a column
different from ¢ 4 1, then row s remains unaltered and row ¢ turns into a row of type
B. On the other hand, if this non zero entry is in the column ¢ + 1, which is the same
column as that of the primary pivot, then row ¢ turns into a row of type B and row s

turns into a row of type A, as one can see in Figure 3.17.
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1+1 1+2 1+1 142

1_4l : P _in i
tt—t O SSSA s tl_tl t é@l_t 00l

Figure 3.17: A3 ; and A3 ;| respectively.

3. Suppose that row s is of type 3. If Ay, ; is zero, then row s remains unaltered. If

AQ

s,i+1
performing the change of basis, row s turns into a row of type B (see Figure 3.18), and

= t!, one has two possibilities for Aii 4o, Damely, 0 or #. In the first case, after

in the second case it turns into a row of type C' (see Figure 3.19).
i+1  i+2 1+1 1+2

.« .. 'l : “ e
5 =0 SSSA

1 Z;zz
s R A== A

Figure 3.18: A3 ; and A3 ;| respectively.
i+1 42 t+1 1+2

S

l I ... .z ] .zluz
+t* Ft SSSA s +tt Ft' Lt

Figure 3.19: A% ; and A3 ;| respectively.

In the base case, it is ease to see that (7) through (v) hold.

In order to prove (i) note that, the only case that needs to be analyzed is when A?l 4 isa
primary pivot and A7, is a change-of-basis pivot. Observe that A?;, 5 = 0, since rows of A
have at most two non zero entries. As pivots do not generate entries, by Lemma 3.3, the entry
A%l
and it is not a change-of-basis pivot.

5 is not altered by change-of-basis pivots marked in step 2. Hence, Afl 43 = A?Z +3=0

In order to prove (i), we must consider each row s where the entry A3 . =t — ¢! was

generated in A3, otherwise this entry would be in a row of type 2 and hence, could not
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be a change-of-basis pivot. There are exactly two ways that this entry can be generated:
when row s was of type 2 and of type 3 in A®. Suppose by contradiction that A? 5 is a
change-of-basis pivot. Since primary pivots do not generate entries and there exists at most
one change-of-basis pivots in a row then row s could not be of type 2 in A2, see Figure
3.13. If row s was of type 3 in A? then the primary pivot would generate Ai}s 43 which also
contradicts Lemma 3.3, see Figure 3.14. Consequently, Ag”s 43 is not a change-of-basis pivot.

In order to prove (iii), suppose by contradiction that A?,u # 0. Since rows of the
initial matrix A do not admit two non zero entries with one of them being a binomial, see
Proposition 3.1, then Ag’u = Aiu generates AEJH in A3. Therefore, by Definition 3.1, there
must exist a change-of-basis pivot in the second diagonal in a row ¢ > i and a primary pivot
in row ¢ and column u, which contradicts the fact that each column has at most one primary
pivot.

Items (iv) and (v) are trivially true.

We now prove Theorem 3.4 and item (¢) through (v) by induction.

Induction hypothesis: Suppose that Theorem 3.4 and item (i) through (v) hold for
¢ <r < R. We will show that they also hold for » + 1. First, note that by the induction
hypothesis, at most one entry in a fixed row in .J; is marked as change-of-basis pivot up to
step r. Hence, by Corollary 3.2, given an entry A,,,, the A, ,-lineage is formed by a unique
generation sequence until A" which is either a binomial lineage, if Ay, is a binomial; or a
monomial lineage or an eventual binomial lineage, if A, is a monomial®. More specifically,
if row s is of type 2 in A, where A;,, # 0 is a binomial, then the A, ,-lineage is a binomial
lineage. If row s is of type 3, where A,, and A,; are monomials, then each monomial
determines a lineage, which are either both monomial lineages or one monomial lineage which
ceases and merges with the other to create an eventual binomial lineage. It is important to
keep in mind that, if there is at most one change-of basis per row up to step r, then the
A, ,-lineage is formed by a unique generation sequence until A"*!. This follows since entries
in A" can only be generated by change of basis determined in step r.

By the induction hypothesis that characterizes the rows of A” as being of type (A), (B)
and (C) and item (77), it follows that if A, is a change-of-basis pivot on the r-th diagonal
and A7, is the primary pivot of row 4, then these entries must be monomials. Moreover, by
item (iv), A7; = £t“ and A}, = Tt!, for (,0 € Z.

4Note that in this proof, whenever we assume the induction hypothesis for r, the index r is shifted by
one, i.e., r + 1 when referring to the lineages.
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Now we will prove the statement of the Theorem 3.4 and item (i) through (v) hold for
r+ 1.

e We will first show that the non-zero rows in A™*! are of type A, B or C.

In order to prove this fact, we will perform all the possible change of basis that could
occur due to a change-of-basis pivot in the r-th diagonal. Let the monomial A}, be the
primary pivot in row 7 and the monomial A, be a change-of-basis pivot in diagonal r.
Observe that after the change of basis, row ¢ will remain of the same type. Each row s < 7 in
A" is of type A, B or ', and thus one has the following cases to analyze the effect a change

of basis causes in row s (bear in mind the configuration of the matrix in Figure 3.11):

L. If A7, = 0, then row s remains unaltered after performing the change of basis.

2. If A7, # 0 and AL ; =0, then ATH = —A7 (A7 )7'A7  which is a monomial if A7,

s,u)

is a monomial, or a binomial if A’  is a binomial. Hence, row s remains of the same

type.
3. If Af, # 0 and AL, # 0:

(a) If A7, = £t' and A7, = Ft|, then AIt = A7 — A7 (A7 )7'AL,. Ttem (v)
applied to A" ensures that A;’f;l is a zero entry or a binomial with coefficients

equal to 1. Hence, row s turns into a row of type B or C| respectively.

(b) The case A, = +t' and AL, = +# can not occur by the induction hypothesis
().
(c) The case where A7, # 0 and A}, = ¢' — t' can not occur, by the induction

hypothesis (ii7).

(d) Note that the case where A7, = ¢' —#' is a binomial and A ; = t* is a monomial

can not occur, by the induction hypothesis on rows of A".

Hence, every row s € J; of A" is also of type A, B or C.

e We will now show that item (i) holds for A",

Let Afjrl be a change-of-basis pivot marked in the (r 4+ 1)-th diagonal. Suppose by
contradiction that an entry Af}t, where ¢ < 7, was marked as a change-of-basis pivot in an
earlier step £ < r+ 1. Consequently, the primary pivot in row ¢, which is in a column u < ¢,

was marked in a previous step < £. Thus, by item (7i) of the induction hypothesis, this
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primary pivot is a monomial and it can not generate entries, which implies that Ait and
A7t are not in the lineage of this primary pivot. Therefore, AS, and AJt' must be in the
same lineage, since these entries were generated up to step r+1 by the change-of-basis pivots
up to step r, and by the induction hypothesis, there is only one change-of-basis pivots per
row up to step r. This is a contradiction, since by Lemma 3.3 the change-of-basis pivot Af’t
can not generate entries.

e We will prove item (i7) for r + 1:

Let Agjl be a binomial in the (r + 1)-th diagonal. Suppose by contradiction that this
entry is a change-of-basis pivot marked in step r + 1. Let u be the column of the primary
pivot in row ¢, hence u < j.

If row ¢ was originally of type 2 in A2, then we have seen that in row i there is only
one lineage until A™™! which is a binomial lineage. Hence, the primary pivot must generate
another entry since A;}’l is a successor of the primary pivot, contradicting Lemma 3.3.

If row ¢ was of type 3 in A?, then originally there were two lineages that merged in order
to create a binomial. Note that the primary pivot in row ¢ can not be a monomial, i.e., it can
not be marked before the two sequences have merged, since pivots do not generates entries.
Hence the primary pivot must be a binomial. As we have seen in the previous paragraph,
this contradicts Lemma 3.3.

e We will prove item (iii) for r + 1:

Let Agjl be a change-of-basis pivot marked in the (r+1)-th diagonal, Agjl be a binomial
r+1

and let u be the column of the primary pivot Aj /" in row ¢. Suppose by contradiction that

the entry A’t! is non-zero.

1. If row s is of type 2 in A?, then A7F! and A" are in the same lineage, i.e., A% must
s,u )

be a succesor of ATt!, which is a contradiction. In fact, A7*" is not an immediate

successor of A1 since in this case it would imply the existence of two primary pivots

s,u )

Ss,u )

in column w. Moreover, AZT is not an eventual successor of ATt1 since it would imply

the existence of two change-of-basis pivots in row ¢ marked up to step 7.

2. If row s is of type 3 in A* and if AL is a binomial then the argument is the same
as the one above. However, if A;Il is a monomial, one has two cases to consider:
Agj} and A;’j are in the same lineage or in different lineages. If they are in the same
lineage, which is an eventual binomial lineage, then A;;l is a successor of A;J;l, hence

Agu generated an entry in A$*! with £ < r + 1. Now, if they are in different lineages,
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let £ € N such that the first binomial in row s is generated in AS*! with ¢ < r + 1,
hence A§, generates the entry A&l By item (7), which was already proved to hold
for AT, AT“ generates a unique immediate successor in A"*2, which must then be

A;’ng and this is a contradiction in both cases.

e We will prove item for (iv) for r+1, i.e. that a primary pivot Aiu and a change-of-basis
pivot Af’j in row ¢ are always monomials with opposite signs.

As consequence of the induction hypothesis (iv) and (v) for 7, all elements in a monomial
lineage have the same sign, up to step & < r + 1. Moreover, if row ¢ was of type 3 in A,
then the two monomial lineages of this row have opposite signs. Now, suppose that there is
a change-of-basis pivot ATH in (r+ 1)-th diagonal and let A”’l be the primary pivot in row
¢ with u < j. Since pivots do not generate entries by Lemma 3.3, the entries AT’H and A’"J’l
are clearly in different lineages, therefore they have opposite signs.

e We will prove item (v) for r + 1, i.e, that a monomial A§, above a primary pivot A7,
and a monomial Agj above a change-of-basis pivot A ; always have opposite signs.

As a consequence of the induction hypothesis (iv) and (v), until A" all elements in a
monomial lineage have the same coefficient, which is either +1 or —1. Moreover, if row ¢ was
of type 2 in A, then the two monomial lineages of this row have opposite signs. Let A;”,J[Ll be
a monomial above a primary pivot AT+1 and ATH be a monomial above a change-of-basis
pivot AT“ Observe that, by the induction hypothesis, AT“ and AT’H are not in the same
lineage. Hence, they have opposite signs.

[ |

We now proceed with the proof Theorem 3.2.

Proof of Theorem 3.2: Let A be a Novikov differential. By the characterization of
the initial matrix, see Proposition 3.1, the entries of A are invertible in Z((t)); hence, one
can apply the SSSA in A. Since the first change of basis can only occur from step 2 to step
3, then the SSSA is well defined until step 2, and A! = A%, Now, using Lemma 3.2, one can
apply the SSSA to each block of A. Theorem 3.3 and 3.4 imply that the pivots in A3 are
invertible. Hence, the SSSA is also well defined for A®. By an induction argument, one can
suppose that the SSSA is well defined until step r. Theorems 3.3 and 3.4 also imply that
the SSSA is well defined for A", Therefore, Theorem 3.2 is proved. |

Observe that, if AL is the last matrix produced by the SSSA, then the non null columns

of AL are the columns containing primary pivots. The primary pivots are non-zero and are
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unalterable after being identified. Moreover, AX o AT = (.

Returning to Example 3.3, observe that the entry A?LJ is an infinite series. See Figure 3.7.
However, the last matrix produced by the SSSA in Exameple 3.3 does not contain entries
which are infinite serie.

In fact, the next two results imply that the last matrix A* produced by the SSSA never
contains an entry which is an infinite series.

The proof of Theorem 3.5 follows the same steps of the proof of its analogous version in
[30], where the SSSA is done over a field F.

Theorem 3.5. Given a Novikov complex (N.,A) on surfaces, let AL be the last matriz
produced by the SSSA over Z((t)). If column j of AL is non null then row j is null.

Proof. The statement of the lemma is equivalent to say that ALAL = 0 for all j. If
Afj = 0 then it is trivial that A]L.Afj = (0. Suppose that Afj # 0. Let s be an integer such

that 57 € J,. Labelling the primary pivots in block Js such that, if Afm-l, e ,Afmja are the
primary pivots in block Jg, then 1; < iy < .-+ < 44, one has that ji,--- ., j, are the non null

columns of J,. Moreover, Ai jo 18 the unique non zero entry in row i,. Row 7,1 has non
zero entry in column j,_; and may have another one non zero entry in column j,, and so
on. Since A* o AF =0, one has
_ AL AL _ AL AL
0 - Aia.A.j/ - AiajaAjaj/’
</ . L . . . L _ </ .
for all 5. Since Aj; is a primary pivot, hence non null, then A? ., = 0 for all j, ie.,
L _
Ay, = 0. Analogously, one has

0= AL AL, = AL

ta—1Ja—1""Ja

AL+ AL AT

ta—1Ja ]a,j/’

for all j'. Since AiLa # 0 and A]Laj, = 0, it follows that AJLQ_I-/ = 0 for all 7/, i.e.,

—1Ja—1 J

Afafl, = (. Proceeding in this way, one can show the nullity of rows j, o, -, j1. ]

Corollary 3.3. Given a Novikov complex (N,,A) on a surface, let AL be the last matriz
produced by the SSSA over Z((t)). Then, the entries of AL are monomials t* or binomials
tt— ¢,

Proof. By Theorems 3.3 and 3.4, without performing the pre-multiplication by (77)~!, the

entries of A" are monomials ¢/ or binomials t* — 2. Moreover, the pre-multiplication by
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(T™)~! only affects row j if column j contains a primary pivot. However, by Lemma 3.5,

these rows will be zeroed out by the time SSSA reaches the last matrix AL, |

3.4 Spectral Sequence (E",d") associated to SSSA

As presented in Section 1.2, given a filtered chain complex over a principal ideal domain
R, there is a spectral sequence over R associated to it whenever the filtration is convergent
and bounded below.

Given a circle-valued Morse function f, let (N, A) be the Novikov chain complex gen-
erated by f. Denote the generator of the N} chain module by hg,-- -, h*. One can reorder

the set of critical points of f as
(R, R Rt o pl ’hik*“,... R,
where ¢, = ¢o + - - - + ¢. Consider the filtration F' = {F,N'} on this complex defined by

ENe= € Z((t)(h)-

hé, £<p+1

Note that for each p € Z there is only one singularity in F,N \ F,_1, hence the filtration F
is called a finest filtration. The filtration F' is convergent, i.e. N,F,N =0 and UF,N = N
In fact, F is finite, that is, F,N' = 0 for some p and FyN = N for some p’. Moreover, the
filtration F' is bounded below. Therefore, there exists a convergent spectral sequence with

Eg,q = FP'/\[erq/prl prq — G(N)pvq ) El,q ~ H(p+q)(Fpr+q/prl p+q)

p

and E* is isomorphic to the module GH,(N). The algebraic formulas for the modules £ |

of the spectral sequence are shown in Section 1.2.

Whenever the filtration considered is a finest filtration ', the only ¢ such that E  is

non-zero is ¢ = k — p. Hence, we omit reference to ¢, i.e. E] is in fact £, .

Note that, E> does not completely determine the Novikov homology HN*(N') = H,.(N, 9)

of M, but
FyHyi(N)

E* ~GH,N),, = =21~
Pl ( )p7q Fp—al-i-q(N)
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However, it is a well known fact [15] that whenever GH.(N),, is free and the filtration

is bounded,
P GH.(N),g =~ HYZ(WN). (3.2)
pt+q=k

In Corollary 3.5, we prove that the isomorphism in (3.2) holds for Novikov Complexes
over orientable surfaces when we consider the filtration F' defined above.

In this section, we show that the SSSA provides a mechanism to recover the modules E”
and differentials d” of the spectral sequence (E",d"). More specifically, the SSSA provides
a system to detect the generators of E” in terms of the original basis of N, and to identify
the differentials d” with the primary pivots in the r-th diagonal. The results in this section
are similar in nature to the ones obtained in [13] for the SSSA computed for a Morse chain
complex over Z.

The next proposition establishes a formula for the modules Z7,  via the chains a,i’j’s
determined by the SSSA applied to A.

Proposition 3.1. Let r,p > 0 be integers and k be the first column in A associated to a
k-chain. Consider ¢ = 0 whenever the primary pivot of column j is below row (p —r + 1)

and /¢ = 1 otherwise. Then

Zr = Z((t)) [t ot g L e g TP
Proof. By definition, aﬁﬂ_“_f is associated to column (p + 1 — &) of the matrix A™¢,

for £ € {0,...,p+1— &}, and pPt1=5"=¢ = 1 if and only if the primary pivot on column
(p+1—¢&) is in or above row (p+1—¢) — (r—&) = p—r + 1 or if this column does

not have a primary pivot. If aiﬂ_g’r_f is such that pP*'=%"=¢ = 1, one can show that the
k-chain o™~ "¢ corresponds to a generator of Zr. In fact, of """ "% is in F,Nj for € > 0.

Furthermore, all nonzero entries of column (p+1—¢) of A”"¢ are in or above row (p—r+1),
since the (r — &)-th step of SSSA has zeroed out all entries below the (r — £)-th diagonal.

1—Er—€ . -
Hence, the boundary of Jff &8 49 in F,_,Nj_1. Hence,

+1,r _p+1r r—1 _pr—1 ke —p—ltr kr—p—1ltk .

Z((t))[up Jk 7Mp Jk 7"'71“ P Uk ] - Zp.

Below we prove by multiple induction in p and r that

r r 1r = ,r—1 k,r—p—14k _K,r—p—1+K
75 C B ol gl L ol g1 (33)
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Base case:

e Consider F,_1, where k is the first column of A associated to a k-chain. Let £ be such
that the boundary of A} is in Fj,_1_¢Nj but it is not in Fy,_;_¢_; ;. We will show that
Zr_ =Z((t))[p o], for all r > 0.

Since Z!_, is generated by k-chain in F,_ 1N} with boundaries in F,_;_,N;_; and
F,._1N}. is generated by only one chain hf, then:

(a) If & < r then Ohf ¢ F.1_ Ny_1. Thus, Z/_, = 0.
(b) If £ > r then Ohf € F,,_y_,Ny_1. Thus, ZI_, = Z((t))[h]].

On the other hand, since there is no change of basis caused by the SSSA that affects
the first column of Ay, 0" = hf, where o} is a k-chain associated to the column &
of A". Furthermore, p®" = 1 if and only if the boundary of hf = 0" is in or above

the r-th diagonal. Hence

(a) If £ < r then p™" = 0. Thus Z((t))[p* 0" =0
(b) If & > r then p™" = 1. Thus Z((t))[1""0y"| = Z((¢))oy"] = Z((t)) 7).

It follows that Z_, = Z((t))[x*"0,"] in both cases, for all r > 0.

e Let the &-th diagonal be the first diagonal in A that intersects Ay. All the columns
of A corresponding to the chains hiﬂ, ..., hf have nonzero entries above the ;-th

diagonal, thus, above the (p — & + 1)-st row of A. We will show that

28 = L) oI L e g P

Since Z§1 is generated by k-chains contained in F,N}, with boundary in F,_¢ N1 and
the columns of A associated to the chains hi“, ..., hi have nonzero entries above the

(p — & + 1)-st row, then the boundaries are in F, ¢ N1, i.e.,

Z8 = Z(() [T, . hg).

p

On the other hand, nonzero entries in the columns of A associated to the chains

hiﬂ, ..., hi are all above the &;-th diagonal, then Ji’& = hi, j =K,...p+ 1 and
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W =1, =r,...p+ 1. Hence,
BN+ EpHT L P e r ] (), b

Therefore, Z5+ = Z((t))[pr 4 gVt e G e

Induction Hypothesis:  Assume that the generators of Z;:ll correspond to k-chains

PG ¢ = 1,...,p+ 1 — K, whenever the primary pivot of the column

associated to o
(p+1—¢) is above the row (p —r +1). We will prove that (3.3) holds for Z;.

If the primary pivot of the column (p + 1) is below row (p —r + 1), then Z) = Z;:ll and
this is the case when pu®*+)" = 0. Suppose now that the primary pivot of the column (p+ 1)
is on and above the row (p —r + 1) and let by, = PR ... L bFRE € Z7 1 We know
that by is in F, and its boundary is on and above row (p—r+1). If ¥**! = 0 then b, € Z;:ll

and the result follows by the induction hypothesis. If b**1 = 0, we can rewrite b, as
bkz — bp-l—lai-&-l,r + (bp o bp-&—ld;-&-l,r)hz 44 (bm _ bp-&—ld;-i-l,r)hZ,

since by the definition of the SSSA
pt1

p+177‘_ ‘7,,’. Z
oy = E e by

l=K
Note that by, — BPTob ™" = (b — BPHIEFLNBE 4o 4 (% — BPHLETI) R € F,, . Moreover,

since b and O'Z—H’r have their boundaries on and above row (p —r + 1) then the boundary of

br—b"t1o? " is on and above row (p—7+1). Hence b, —bP+1o? ™" ¢ Z'~{. By the induction

1 1 _po—1 e —p-1
hypotheses, we have that by — WPHol ™" = quP " LoP" ™! 4 ... 4 qurPriFRgEr TP

Therefore,

— pptl ptlr r—1_pr—1 Kk, r—p—14+k _Kr—p—1+k
b =00, " o oy o™ o ,

as required. [

Lemma 3.5. Given integer r,p >0, if 02\ € Z)~|, then Z,{ +0Z, ) | =17,

Proof. Denote by « the first column associated to a k-chain. By hypothesis 62;;%_1 ¢ Zr

p—1s
which implies that Z;j + 821’;;}_1 is a submodule of

Z; = Z((t))[ﬂp+l’rai+l7r, Iup,T’—lo_i:?,T—l’ o ’Iun,r—p—l-i-no_z,?"—p—l—i-n]
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but it is not a submodule of

e N !

Then P =1 and Z)~ + 07}, contains a multiple of ot over Z((t)). We will show

ptr—
+1, -1 -1
that 0" € Z,7) +0Z,,,_,. Note that
r— r— r—1 —1r— —1,r—2 RR—p— RR—p—1
0Z .y = L((t) [Pt AT 7 o A R i oo il N G XY

where % is the first column associated to a (k + 1)-chain. For £ = 0,...,p 4+ r — K with

MerT*EJ’*l*f — 1 we have A;;i;ﬁg = O fOI‘ a]_l Z > p + 1 a,nd hence

prr—€r—1-§ _ Ar—1-¢ p+1,r—1-¢ r—1-¢ K,r—1-¢€
Lyt = A1 pir—eO +oet An,pwfgak '

In fact, the boundaries 80£i§_5’r_1_§ with A;.:;}r;fg # 0 for some i > p + 1 correspond

exactly to the columns which have the primary pivots below the (p+ 1)-st row and therefore
up+r_£=r_1_£ — 0.

Hence, for € =0,...,p+1r — &, when pP*"=$"~1=¢ = 1 we have

-1 +r—€&r—1-&7 -1 —1-¢ +1,r—1-¢€ —1-¢ r—1-¢
Z;fl + [8024-; ' ] - ngl + [A;-i-l,p-i—r—fo-i ' +o+ AZ,p-ﬁ-r—fo-llzr ] (35)

On the other hand, since Z)~} + [802’1?5’“1%] C Zy~1 + 07}, then

r— r—§r—1— 1,r 7 r—1 —1,r— —1,r—2 k,r—p—1+k _K,r—p—1+kK
A ] I L Y O T S/ i
(3.6)
The coefficient of h2™" on the set of generators of the Z((t))-module in (3.5) is A;ﬁ;jr%.

On the other hand, the coefficient of h¥™ on the set of the generators of the Z((t))-module

in (3.6) is f¢. Since for each £ =0,...,p+r—Fg, A;;}r;ff =0 for all i > p+1 then A;ﬁ;ir—g

is either a pivot or a zero entry. Note that the entries A;ﬁ;ir—g can not be all zeros, since

it would contradict the hipothesis of 82;;}_1 ¢ Z;:ll. It follows from Theorem 3.2 that if

A;;i;j—r—f is nonzero then it is invertible in Z((¢)). Then 02" € Zy~1+0Z) .\, and hence

Z; 0z =7 u

p+r—1 —
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Theorem 3.6. The matriz A" obtained from the sweeping method applied to A determines

A
E; = r—1 - r—1
Zi iy ozl

More specifically, E} is either zero or a finitely generated Z((t))-module whose generator

corresponds to a k-chain associated to column (p+ 1) of A'.

Proof. The entry A7 .., ., on the r-th diagonal plays a crucial role in determining the
generators of EJ. If the entry A7 ., ., is nonzero then it can be either a primary pivot,
a change-of-basis pivot or it is above a primary pivot. If the entry A7 ., ., is zero then
it can be in a column above a primary pivot or all entries below it are also zero. We will
analyze each possibility for the entry A7 ., ., and show how to determine EJ for each

case. The proof is a consequence of formulas obtained in Proposition 3.1 and Lemma 3.5.

1. Suppose that the entry A7 ., ., is identified by the SSSA as a primary pivot, a
change-of-basis pivot or a zero entry with column of zeros below it.

In these cases Ay, = 0 for all s > p —r + 1 and hence the generator aiﬂ’r corre-

sponding to the k-chain associated to column (p+ 1) in A" is a generator of Z7. Thus

we must analyze row (p + 1). We have the following possibilities:

(a) 8Z;:3_1 C Z;:ll, i.e, all the boundaries of the elements in Z;;Tl_l are above row

p- In this case, as before, by Proposition 3.1 £} = Z((t)[a?T].

(b) (9Zz’;rl_1 ¢ Z;:ll, i.e, there exist elements in ZI’;TI_I whose boundary has a nonzero

entry in row (p + 1). By Proposition 3.1 and Lemma 3.5 £} = 0.

Note that if Aj ;. has been identified by the SSSA as a primary pivot then
82;;}_1 - Z;:ll. In fact, the generators of Zg;ﬁ_l must correspond to (k + 1)-chains
associated to hgyi columns with the property that their boundaries are above row
(p + 1) and consequently all entries below row (p + 1) are zero. Hence the entries of
these hy41 columns on row (p+ 1) must, by SSSA, either be a primary pivot or a zero
entry. On the other hand, by Lemma 3.1, row (p + 1) cannot contain a primary pivot
since we have assumed that column (p+ 1) has a primary pivot. Therefore, the entries
in row (p+ 1) of the hyyy columns in Z;;%_l must be zeroes. It follows that 62;;%_1

L. 1 _ _
does not contain in its set of generators the generator o} . Hence, 07, +71,_1 C Z;_ll.
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2. Suppose that the entry A7 ., ., is an entry above a primary pivot, i.e. there exists
s > p—r+ 1 such that A} ,, is a primary pivot. In this case, the generator olthr
corresponding to the k-chain associated to column (p+ 1) is not a generator of Z and

hence Z;:ll = Z,. Tt follows that E] = 0.

3. Suppose that the entry A7, ., isnot in A}. This includes the case where p—r+1 <

. , . A
0,1i.e, A) 1,41 is not on the matrix A"

The analyzes of E is very similar to the previous one and we have two possibilities:

(a) There is a primary pivot in column (p + 1) in a diagonal 7 < r. In this case the
generator corresponding to the k-chain associated to column (p+ 1), Jiﬂ’r is not

a generator of Z7. Hence Z;:ll = Z, and E; = 0.

(b) All the entries in A" in column (p + 1) in diagonals lower than r are zero, i.e, the
generator corresponding to the k-chain associated to column (p+ 1), ai“’r in A"
is a generator of ZJ. Then we have to analyze row (p + 1).
i. If 0277}, C Z7~} then, by Proposition 3.1, E = Z((t))[o} "]
ii. If 8Z;;}_1 ¢ Z;:ll then, by Proposition 3.1 and Lemma 3.5, £} = 0.

We will describe how the SSSA applied to A induces the differentials dj, : B — EJ . of

the spectral sequence.

Theorem 3.7. If E) and Ej_, are both nonzero, then the map d;, : E) — Ej_ . is induced

p—r -r

by the multiplication by the entry A7 1 .

Proof. Suppose that E] and E]_, are both nonzero. Let §] : Z((t)) [Pt — Z((t))[o? T
be the multiplication by the entry A7 ., ., and 5; the induced map in EJ. We must show
that

KeI; (5; o~ ET+1 )
Im oy, b

Since we are considering EJ nonzero, it follows from Theorem 3.6, that we must consider
three cases for the entry A7 ., .,: primary pivot, change-of-basis pivot and zero with
a column of zeroes below it. However, if A7 ., ., is a change-of-basis pivot then there

exists a primary pivot in row (p — r + 1) on a diagonal below the r-th diagonal and hence
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s — T T s 3 T 3
E; . = 0. Hence, whenever £ and Ej_, are both nonzero, the entry A7 ., ., in A" is

either a primary pivot or a zero with a column of zero entries below it.
In this case ) = Z((t))[e?*""] and E_, = Z((t))[oP .

-1

1. Suppose A}, ;. is a primary pivot.

Since 0} : Z(())[o2]) — Z((1)[or=7TH"] is multiplication by AL i1p41, which is
< Ker o)

invertible in Z((t)), then Ker 67 = 0. Since 0] = d7, then — P = 0. On the
mop.,,

, : : . 1r+1 1
other hand, since A7 ., ., is a primary pivot, then ot = gL ¢ Zy+t. Thus

Zytt =75 and E;T = 0.

2. Suppose A7, .1 = 0 with a column of zeroes below it. In this case Ker §; = E] =

z 1 1r+1 .
Ker 0, and aiﬂr T = a£+ "1 There are three cases to consider:

(a) If A7, 4,11 is an entry above a primary pivot then we have E7, = 0 and hence

p+r
Im S;M = 0. Thus,
Kelz o, _
Im oy, b

On the other hand, since p#*"+" = 0 then E;*' = EJ.
(b) If A}, 41 is & primary pivot then £V, == Z((1))[o? "), Therefore Oy, 18
an isomorphism and hence

Ker 07 Z((t))[ol™""]

., Z(O)op ]

On the other hand, since A} ., .4 is zero with a column of zero entries be-

. 1 1 .
low it then o} ™" € Z7%! “and hence Z/_, G Z't1 . Moreover, since E! =

p,k—p pk—p*
Z((1))[o?""] then 0z}, C Z)~{. But the difference between 07, and
0Z,.,, is that the last one includes the boundary of column (p +r + 1). The

element in column (p +r+ 1) and row (p+1)is A}, . .. Since A7, . . is

a primary pivot then 0Z] ., ¢ Z} y and E;H =0.

(c) AV, ,ry1 = 0 with a column of zero entries below it then Im ¢y, = 0 and

Ker 5; _

= b
Im oy,

r
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Analogously to the previous case, o, """ € Z7*! “and hence ZJ , ¢ ZI*1.
Moreover, 82723,1 - Z;:ll and the only difference between E)Z;LLI and 07, is

that the last one includes the boundary of column (p + 7+ 1). Since the element
in column (p+7 +1) and row (p+1)is A7, . ., =0then 02, C Z | and
Byt =Z((t)]op ™).

Note that the case where A7, . ., is a change-of-basis pivot does not have to be con-
sidered, since in this case Ej = 0.

Therefore, in all cases

Ker d} e Keiég'
IH] d;prr P Irn 6]?—}—7‘

Corollary 3.4. Each non zero differential d;, of the spectral sequence (E”,d") is an isomor-

phism.

Proof. In fact, by the proof of Theorem 3.7, non zero differentials of (E",d") are induced
by primary pivots. Theorem 3.2 states that each primary pivot produced by the SSSA is an

invertible polynomial, hence each induced non zero differential is an isomorphism. |

By Corollary 3.4, if d" : ) — E;_, is a non zero differential, then algebraic cancellation

occurs in the (r 4 1)-th page of (E",d"), i.c., the modules Er™ and E;*} are zero.

The next corollary states that the spectral sequence (E",d") converges to the Novikov
homology of (N, A).

Corollary 3.5. If M is a smooth closed orientable 2-dimensional manifold, f : M — S* a
circle-valued Morse function, (N, A) a filtered Novikov chain complex with a finest filtration,

then the modules EJ5 of the associated spectral sequence are free for all p and q. Moreover,

FypHpi4(N)

E>* ~ GH, — PPV
P <N)p7q Fp—alJrq(N)

~ HN(M, f).

Proof. By Corollary 3.4, the non zero differentials d" : £ — E7_ of the spectral sequence

are isomorphisms. Since, Ey*" = Ker d7 /Im d],_,, it follows that the modules E’s are free

—r)

for all 7 > 0 and p > 0. Therefore, EJ%, = GH,(N),, = HN°(M, f), by equation (1.3). MW

pq —
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Example 3.5. Consider the Novikov complex (N, A) presented in Example 3.2. The ma-
trices produced by the SSSA are illustrated in Figures 3.5 to 3.10.
The Novikov homology of (N, A) is given by

Hy (M, f) =0, H{""(M,f)=0, Hy*(M,f)=0.

Consider the filtration F' on (N, A) defined by

ENe= @ Z(()(h).

R, €<p+1

The spectral sequence associated to (N, A) endowed with this filtration F is given by:

E°:  zw)hg)  z@nhgl  zw) ki Z@) [kl Z)[hS] Z)[hS] zw)hi]  Z@)[hi]
dl dg

E': o zin[hd]  zwhE] 2w [hd] zwy k] Zao)h3] 2 [hS]  Zw) [k Z(w) [hS)]

E%:  Z(w)[hi] 0 i 0 2R Z() [ 0 0 Z((t)) [h3]
d3 d3
/—\ /—\
E*: Zz()[h] 0 0 Z [ zww)hs) 0 0 Z((t)) [x+]
E* 0 0 0 0 0 0 0 0

where [] = [h] + (t — 1)7'A}] and [#+] = [h§ + t~'h]]. The primary pivots A}, and Af;
induce the differentials on the first page d} and d{, respectively. The primary pivots Ail)’A and
A} ¢ induce the differentials on the third page dj and d, respectively. On the other hand,
the change-of-basis pivots A%A and Ag,s: marked in the second step of the SSSA, determine
change of generators in E5 and E2. Observe that the spectral sequence (E",d") converges
to the Novikov homology of (N, A). <

Final Remarks

In this chapter, the computation of a spectral sequence of a filtered Novikov chain complex
leads to the question of how closely the dynamics follows the spectral sequence. Herein we
proved that the SSSA produces a sequence of Novikov matrices from which the modules
and differentials may be retrieved. Analogously to the Morse case seen in Chapter 2, as
one “turns the pages” of the spectral sequence, i.e. considers progressively modules E”, one

observes algebraic cancellations occurring within the £"’s, as proved in Corollary 3.4. Several
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open questions arise at this point: What is the dynamical significance of these algebraic
cancellations? How much dynamical information can be recovered or even gained from the
spectral sequence analysis? Do the Novikov matrices provide dynamical information on the
birth and death of connections due to cancellations of consecutive critical points? Does the
SSSA determine a continuation result to the minimal flow, as it does in the Morse setting?
Of course, the investigation of these questions in higher dimensions will, without a doubt,
constitute a challenging line of research.

The results obtained in this chapter provide a solid foundation on which we hope to

establish results which answer these questions.
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Chapter 4
Generalized Morse-Bott Inequalities

The study of the interplay between topology and dynamics dates back to Poincaré. Morse
related the topology of the closed n-manifold M to its dynamical data by establishing rela-
tions between the number of nondegenerate critical points ¢, of Morse index k of a smooth
real valued function f: M — M and the Betti numbers of M. See [33].

In [12], Conley generalized these results to a theory with a more topological flavor and
independent of the differentiable nature of the flow, allowing much richer dynamics than
only singularities. Moreover, Conley proves the existence of a Lyapunov function associated
to a flow on a manifold such that the flow maintains an underlying gradient-like behaviour
with respect to this function.

In the setting of continuous flows on manifolds, the Poincaré-Hopf inequalities are intro-
duced in [6, 8], which imposes constraints on the dynamics of a continuous flows without
reference to the Betti numbers of the manifold M. These inequalities generalize the classical
Morse inequalities.

The concept of abstract Lyapunov graphs was introduced in [6]. The realizability of an
abstract Lyapunov graphs I' is considered in [10], where the authors proved that, under
certain assumptions, I' is realizable as a flow on a manifold if and only if it satisfies the
Poincaré-Hopf inequalities. In Section 1.3, we summarized the results obtained on this topic
thus far.

In this chapter, we restrict out attention to gradient flows associated to Morse-Bott
functions and present the results of Lyapunov graphs and Poincaré-Hopf inequalities in this
setting.

The background material on Morse-Bott theory is presented in Section 4.1. In Section

109
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4.2, we characterize the rank of the Conley index of critical manifolds over Z,. In Section

4.3, we define the abstract Morse-Bott graphs and the generalized Morse-Bott inequalities.

4.1 Morse-Bott Functions

In this section, we present some definitions and results from Morse-Bott theory that will
be required subsequently in this chapter. The references for this section are [3], [2] and [17].
Let f: M — R be a smooth function on a smooth compact n-manifold with boundary,
possibly empty in which case it is defined as closed. Throughout this chapter, it will be
assumed that the set of critical points Crit(f) of f lies in the interior of M and that M is
smooth. Suppose that the set Crit(f) contains a closed k-submanifold S of M. Choosing a

Riemannian metric on M, the tangent space of M restricted to S splits as
T.M|s = T.S & v,.S,

where 7,5 and and 1,5 are the tangent and the normal bundles of S, respectively.
Let Hess,(f) be the Hessian of f at p € S C Crit(f). Given v € TS and w € T,M,
then
Hess,(f)(v,w) =V,- (W - f) =0,

since V, € T,,S and any extension of w to a vector field W satisfies df (W)|s = 0. Therefore,

the Hessian Hess,(f) induces a symmetric bilinear form on the normal space 1,5, denoted
by Hessy(f).

Definition 4.1. A smooth function f : M — R on a compact manifold with boundary M
is called a Morse-Bott function if the the set of critical points Crit(f) is a disjoint union
of connected closed submanifolds contained in the interior of M, which are called critical
manifolds of f, and for each critical manifold S, the bilinear form Hess}(f) is non-degenerate

forallpe S.

The second condition of Definition 4.1 means that, given p € S, for each v € 1,5 there
exists w € v,S such that Hessy(f)(v,w) # 0. One says that the Hessian is non-degenerate
in the normal direction to the critical manifolds.

Given p € Crit(f), where f is a Morse-Bott function, the Morse-Bott index of p is defined

to be the maximal dimension of a subspace of 14,5 on which Hess)(f) is negative definite.



Chapter 4 o Generalized Morse-Bott Inequalities 111

The Morse-Bott index of a critical point p will be denoted by A,.

For the following lemma see [2].

Lemma 4.1 (Morse-Bott Lemma). Let f : M — R be a Morse-Bott function on an n-
dimensional manifold M and S C Crit(f) a critical manifold. For each p € S, there exists a
local chart ¢ of M around p and a local splitting of the normal bundle of S, v,S = v S®v, S,

which identifies a point x in the domain of ¢ to (u,v,w), wherew € S, v € v, S andw € v}S,
such that fo ¢ u,v,w) = f(u) — [v|* + |w|>.

Note that, by the Morse-Bott Lemma, if S is a connected critical manifold then A, is
constant throughout S, that is, A, = A, for all p,¢q € S. Hence, one can refer to A\, as the
Morse-Bott index Ag of the connected critical manifold S. Moreover, Lemma 4.1 shows that,

at a critical point p € S, the tangent space splits in the following way
TLM=T,SaviSev, S,

where \, = dim (v, S). If k¥ = dim S and A} = dim (v;S), then one has the relation
n=k+ A+ A,

Given a closed n-manifold M, the Poincaré polynomial of M is defined to be
P(M) =" Bu(M)tF,
k=0

where 8;(M) is the k™ Betti number® of M.
Let f : M — R be a Morse-Bott function on a finite dimensional closed manifold M.

Assume that z

Crit(f) = H Siy

i=1
where each S; is a connected critical manifold of f with finite dimension k; and Morse-Bott

index \;, for ¢ = 1,--- )I. Under these assumptions, the Morse-Bott polynomial of f is
defined to be

MB,(f) = Z P,(S;)t™

where P;(.S;) is the Poincaré polynomial of S;.
For the following theorem see [3] and [2].

'Homology is computed using Zs coefficients in the non-orientable case.
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Theorem 4.1 (Polynomial form of the Morse-Bott inequalities). Let f : M — R be a
Morse-Bott function on a finite dimensional oriented closed manifold and assume that all

critical manifolds of f are orientable. Then there exists a polynomial R(t) with non-negative
integer coefficients such that M By(f) = P,(M) + (1 + t)R(t).

As in the Morse case, one has the following result.

Proposition 4.1. The polynomial form M B,(f) = P.(M) + (1 +t)R(t) of the Morse-Bott

inequalities are equivalent to the Morse-Bott inequalities

(4.1)

bm_bm—1++(_1)mb026m_6m—1++(_1)mﬁﬂ7 vm:Oa ,TL—l
bn_bnfl—i_—i_(_l)nbo :ﬂn_ﬂnfl—i__‘_(_l)nﬁo

where 3; represents the j'™ Betti number B;(M) of M, and by = 22:1 Bk (Si), where
s(i, k) =k — X and 3,(S;) = 0 when n & [0, k;].

Proof. In order to show that the polynomial form of the Morse-Bott inequalities imply
the inequalities in (4.1), observe that the Morse-Bott polynomial of f can be expanded as

follows:

n l

!
MB(f) = Z P(Si)th = Z Z 5s(i,k)(5i)tk
i—1 k=0 i—1
!

l ! !
= Z Bs(i,n)(si)tn + Z 68(i,n—1)<5i)tn_1 + - Z Bs(i,l)(si)tl + Z ﬁs(z‘,O)(Sz‘L
i=1 i=1 i=1 =1

where k = s(i, k) + \; and (3,(5;) = 0 when 1 ¢ [0, k;].
By the polynomial form of the Morse-Bott inequalities,

n

D (=1 Buim (S) = MBa(f) = Pa(M) = 3 (=1)By. (4.2)

k=0
!
Rewriting (4.2) with the notation by, = Z Bs(i ) (i),

> (=1 =D (—1)FB. (4.3)

Note that M B,(f) = P.(M)+(1+t)R(t), implies that by = Sy+ro. Hence, by = fB1+r1+70,
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i.e., by — by = 81 — By + r1. Thereby continuing in this manner, one obtains
b — b1+ + (=1)"by = Bin — B—1 + -+ (=1)"Bo + 1,

forallm=0,--- ,n—1. Since r,,, > 0, for all m =0,--- ,n — 1, the Morse-Bott inequalities
follow as in (4.1).
On the other hand, the equality in (4.1) implies

Therefore, the polynomial M B(f) — P,(M) is divisibly by (1 4 ¢) and hence, one has that
MBy(f) = P,(M)+(1+t)R(t), for some polynomial R(t) = 3.7~} rxt*. As both polynomials
MB;(f) and P,(M) have integer coefficients then the coefficients of R(t) are integer. It

remains to show that r,, > 0, for all m =0,--- ,n — 1. Note that
b — b1+ 4+ (=1)"by = B — B—1 + -+ (=1)"Bo + 1,

for all m =0,--- ,n — 1. Therefore, r,, > 0. |

4.2 Conley Index for Critical Manifolds

In the background we presented the definition of Conley index for an isolated invariant
set. In this section, we presented an equivalent definition of the Conley index for critical
manifolds via Thom spaces.

There is an interesting formulation of the Conley index in terms of a Thom space, TE,
of a vector bundle 7 : E — M. Choosing a bundle metric g on E, denote by D FE and Sy E
the unit ball bundle and the unit sphere bundle over M, respectively. The Thom space of E
is defined as the pointed topological space

TyE == DyE/SyE = ((ByE\SyE U [SyE]), [S,E])

obtained by collapsing S,E to a single point denoted by [S,E]. The pointed isomorphism
class of T, E is independent of the choice of the bundle metric g and is denoted by T'E.
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Given a Morse-Bott function f: M — R, let ¢, : M — M denote the flow associated to
—Vf, ie., pi(x) = v(t) where v/(t) = —=(V f)(7(t)) and v(0) = x. Note that S is an isolated
invariant set with respect to ¢; and to the reverse flow of ¢;, denoted by ¢;. The Conley

homotopical index of S, I(S, ¢;), with respect to ¢y, is the Thom space of v, (), i.e.,
I(S, ) = T (v, S). (4.4)

For more details see [18].

From now on, we will work with homology with Zs coefficients to avoid complications
arising from orientability.

The next two proposition provides some properties of the homological Conley index of a

critical manifold.

Proposition 4.2. Let f : M — R be a Morse-Bott function and S a connected critical
k-manifold of f. The ranks h, of the homological Conley indices C H,(S) with respect to the

flow ¢, are given by

hj=Bi-A(S), if A<j<A+k
h; =0, if 1< X orif j>A+k

where B;(S) is the i Betti number of S.

Proof. According to Thom’s Isomorphism Theorem (see reference [11]), the reduced ho-
mology of the Thom space T(v; S) is given by Hyy\(T(v;S)) = Hy(S), for i =0,--- , k and
is null otherwise. By (4.4), the homological Conley index of S coincides with the reduced
homology of T'(v;S). Then, h;y = 3;(S), where i = 0,--- k. Rewriting this,

h; = B;-x(S), if A<j<A+Ek
h; =0, if j <A\, orif j>A+k.

Proposition 4.3. Let S be a connected critical k-manifold of f with Morse-Bott index .

Then the ranks of the homological Conley indices with respect to the flow p; and its reverse

ﬂOU) (70:5 Satisfy hJ(Sv th) = hn—j(S, (,0;), fOT’j = O, S M.
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Proof. Firstly, by Lemma 4.1, n = k 4+ A + \*, where \ is the Morse-Bott index of S with

respect to the flow ¢ and \* is the Morse-Bott index of S with respect to the reverse flow

/

@'
Suppose that A > 0 and A + k£ < n. By Proposition 4.2,

hi (S, ¢i) =0, i =0, A—1
hj(SaSOt):Bj_A, if j=M\--,A+k
hi(S, i) = 0, if j=A+k+1,---,n.

Note that, if j € {0,--- , A =1} thenn—j € {N +Ek+1,--- nkifje{\ - A+k}
thenn—j¢€ {\ -~ N +k};andif je {A+k+1,--- ,n} thenn—7¢€ {0,--- A" —1}.

Therefore, once again by Proposition 4.2, it follows that

hn—j(&%@é)zo, 1f]:0”)\_1
hn*j(S7 ()0;) = ﬁnfjf/\*a if j = )\’ . 7)\_|_k
hn—](57()02,5):07 lf j:)\+/{}+17... ,n‘

It remains to check that 8;_y = B,—j_a when j = A,--- A+ k. Indeed, as n — A" = A+ k,
then /Bj—)\ = ﬁkf(jf)\) = /6n—/\*—j- Hence, hj(Sv SD) = hn—j (87 90/)
The proof is analogous if A =0 or A + k = n. |

4.3 Generalized Morse-Bott Inequalities

In this section, we introduce the generalized Morse-Bott inequalities for manifolds with
boundary. The novelty is that these inequalities depend solely on the Betti numbers of the

critical manifolds and of the codimension one closed submanifolds of the boundary.

4.3.1 Morse-Bott Graphs

Let f: M — R be a Morse-Bott function on a finite dimensional compact manifold with
boundary (possibly empty). Consider the following equivalence relation on M: z ~ y if and
only if y belongs to the same connected component of a level set of f. Denote by M/ ~
the quotient space of M under this equivalence relation. A point on M/ ~ is a vertex point

if under the equivalence relation ~ it corresponds to a connected component of a level set
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containing a critical set of f. All other points are edge points. In this way, M/ ~; is a
finite graph and each edge represents a codimension one submanifold () of M times an open
bounded interval I, @) x I. In order to retain some information of () x I, the edges can be
labeled with some topological invariant such as the Betti numbers of Q).

For simplicity, it will henceforth be assumed that the Morse-Bott function f : M — R
has at most one critical manifold on each level set, unless otherwise stated. With this
assumption, there is a one-to-one correspondence between the vertices of the graph M/ ~

and the critical manifolds of f.

Definition 4.2. Let f be a Morse-Bott function on a closed manifold M with critical man-
ifolds Sy,---,S;. Define the Morse-Bott graph I'; associated to f as the graph M/ ~; on
which each vertex S; is labelled with (By(S:), - .., B, (Si); \i), where B;(S;) is the j™ Betti
number of S; and \; is the Morse-Bott index of S;. Also, each edge is labelled with the Betti

numbers of the level sets associated with the given edge.

In the case of a manifold with boundary OM = N* LI N~ one can define a Morse-Bott
semi-graph similarly where the labels in the incoming (outgoing) semi-edges are the Betti

numbers of the entering set N* (exiting set N7) of the flow.

Example 4.1. Consider a Morse-Bott function f defined on the torus having four critical
manifolds, all homeomorphic to the 1-sphere, such that, considering the flow ¢ associated to
the vector field —V f, two critical manifolds are repellers and the other two critical manifolds
are attractors. In this way, the repellers have Morse-Bott indices equal to 1 and the attractors
have Morse-Bott indices equal to 0. In Figure 4.1, one can see a representation of the flow

¢s and the Morse-Bott graph associated to f.

(1,1;0) (1,1;0)

Figure 4.1: The Morse-Bott graph associated to f defined in Example 4.1.
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Example 4.2. Consider S? as the manifold obtained from gluing two solid tori together
by a homeomorphism of their boundaries which identifies a parallel of one torus 7T} to the
meridian of the other torus T5. Let f be a Morse-Bott function on S? such that the critical
manifolds of f are the torus T) as a repeller and two 1-spheres S; and Sy as attractors,
where S; is in the interior of T}, i = 1,2. Their Morse-Bott indices are Ay, =1, A\g, = 0 and

As, = 0. The Morse-Bott graph associated to f is shown in Figure 4.2.

Figure 4.2: The Morse-Bott graph associated to f defined in Example 4.2.

Definition 4.3. An n-abstract Morse-Bott graph is a finite, connected directed graph I with

no oriented cycles, such that

(1) each vertex v; is labelled with a list of non-negative integers (b, - - ,b};i; i, i), where
ki <n, Ny <n—k and {bf = 1,bi,--- b} _,,b, = 1} satisfies Poincaré duality in

dimension k;;

each incoming edge e, incident to a vertex v; is labelled with a list of non-negative
2 hoi ng edge ef incident t t s labelled with a list of ti
€+ . . . , . e+ 6+
"1 which satisfies Poincaré duality and S, = 5,57 = 1. Ifn =

€+
2p 41 is odd then B," must be even;

. €+
integers By, ...,

(3) each outgoing edge e, incident to a vertex v; is labelled with a list of non-negative integers
gé ,...,ﬂff_l which satisfies Poincaré duality and 685 = Bff_l =1. Ifn=2p+11s

odd then 5;‘_ must be even;

(4) the number of incoming edges et (v;) and the number of outgoing edges e~ (v;) of a vertex

v; satisfy the following conditions

(a) if Ny =0 then e (1;) =0 and et (v;) > 0;
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(b) if i =n —k; then et (v;) =0 and e~ (v;) > 0;

() if0< A\ <n—Fk; thene (v;) >0 and e*(v;) > 0.

The cycle number k of an abstract Morse-Bott graph I is defined as the cycle rank xj, of

I' plus the cycle number &, of all vertices of I'.

(b%, D 7b}€z7AZ7I{”L)

Figure 4.3: A typical vertex of an abstract Morse-Bott graph.

Definition 4.4. A vertex v; labelled with (b, ..., b} ; A\i, k) i an n-abstract Morse-Bott
graph I can be exploded if v; can be removed from I' and replaced by an n-abstract Lyapunov
semi-graph of Morse type Iy with cycle rank greater than or equal to k; and with the labels
on incoming (outgoing) semi-edges of I'yy matching the labels on the outgoing (incoming)

semi-edges of T'\{v;}. Moreover, for alln,
by(vi) = > hya, (v7),
J

where the sum is over all vertices vj of I'ys.

Definition 4.5. An abstract Morse-Bott graph T with cycle number k admits a continuation
to an abstract Lyapunov graph of Morse type I'y; if each vertex can be exploded such that Ty,

has cycle rank greater than or equal to k.

Example 4.3. An example of a 7-abstract Morse-Bott graph I with x = 1 is given in Figure
4.4. A possible continuation of I' is presented in Figure 4.5, in this picture h;-l (h$) denotes
a vertex labelled with a singularity h; = 1 of type j-disconnecting ((j — 1)-connecting).
The vertex S; in Figure 4.4 may represent a 5-dimensional critical manifold with Betti
numbers by = b5 = 1, by = b3 = 1, by = by = 0 of Morse-Bott index Ay = 1 in a 7-
dimensional basic block with an incoming (respectively, outgoing) boundary component with
Betti numbers (1,0,0,0,0,0,1) (respectively, (1,0,1,2,1,0,1)) and of Cornea genus greater

than or equal to one, see [14]. The subgraph indicated on the right represents a Morse
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(1;7,0) (1,1,1;5,0) ; 10.0.0.0.0.1)
he =1
(1,0,0,0,0,0,1) (1,0,0,0,0,0,1) — hi —1 (1,0,0,0,0,0,1)
1,0,0,0,0,0,1
(1;6,0) ( ) ) (1,0,0,0,0,0,1)
=1
hG (1,0,0,0,0,0,1)
(1,0,0,0,0,0,1) e )
4 p—
Si ¢ (1,0,1,1,0,1;1,1) e (1,0,0,2,0,0,1)
3=1
(1,0,1,2,1,0,1) L (1’0,1’2’1’0,”
he =1
1,1,1,2,1,1,1
(17670) hc 1 ( )
5 =
(1,1,1,2,1,1,1) (1,1,2,2,2,1,1)
hi=1
(1,1,1,2,1,1,1)
(1,1,1,1;2,0) B =1
(1,1,1,0,1,1,1)
(1,1,0,0,0,1,1)
hd=1
(1,1,0,0,0,1,1)
(1,1;0,0) hi — 1

Figure 4.4: Abstract Morse-Bott graph.  Figure 4.5: Explosion of graph in Figure 4.4.

flow on the same basic block with one index 1, one index 4, one index 3 and one index 6

singularities. <

4.3.2 Morse-Bott Graph Continuation

The Theorem 4.2 below describes sufficient and necessary conditions for an abstract
Morse-Bott semi-graph can be continued to an abstract Lyapunov semi-graph of Morse type.
These conditions are the generalized Morse-Bott inequalities presented in the statement of

the following theorem.

Theorem 4.2. Let ', be an n-abstract Morse-Bott semi-graph containing only one vertex
v labelled with (by,--- ,bx; \,ky,). Then T, admits a continuation to an n-abstract Lya-
punov semi-graph Uy of Morse type with cycle rank greater than or equal to k,, where
Ky < min{by_x — (b_x — 1),b,_1-x — (bu_x — 1)}, if and only if v satisfies the generalized

Morse-Bott inequalities:
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bj-x Z _(Bj+—1 - B;-l) + (B;'r—z - B;—z) +e (B = By) (B — By)
—(bp—(j—1)=r = bj—1-x) + (bn—(j—2y—r — bj—a—x) £ -~ E (by_1-x — b1_»)
£[(bp-r = b-x) + (€7 —€7)]

boj-rn = —[=(Bjy = B;_y) +(Bf, = Bj_y) + -+ £ (B — By) £ (B{ — By)
—(bn—(j—1)=x — bj—1-2) + (bu—(j—2)-x — bj_o—x) £+ £ (bp1-x — b1-»)
E[(bn-r —0-x) + (eF —e7)]]

—(Bf_ — Bl_) — (bn—l—)\ — bl_)\) + (bn_>\ — b_)\) + (6+ — 67)

ba—x >

bpo—n > —[—(Bf = By) = (bp_1-x—b1-x) + (bpx —b_x) + (" —€7)]
bi_y > boyx—1+e +r

bn—l—)\ Z bn—)\ -1+ €+ + Ry

where 0 < j <mn and b, =0 whenn ¢ [0, k].

r 2i+1
Ifn=2i+1, then Bt —DB"~ :e_—eJ“—i—Z(—l)jbj,A,
=0
where B*z%BﬁiBﬁ_li~-—Bf, B~ = ( 2) B + B +---— By.

If n = 2i =2(mod 4), then

i—1 i—1

bi_x — Z(—l)j“(B;-r —Bj) — Z(—l)j(b%_j_,\ —bj_x) + (e —e7) must be even.

\ Jj=1 j=0

Proof. The generalized Morse-Bott inequalities for the vertex v of I', are equivalent to
the Poincaré-Hopf inequalities for v labelled with the data (Bf, ..., Bi |); hyy; = b; if
j=0,---,kand h, =0 if n <X or n > A+k. Therefore, by Theorem 1.1 on [7], the semi-
graph I', admits a continuation to a n-abstract Lyapunov semi-graph of Morse type with
cycle rank greater than or equal to x, if and only if v satisfies the generalized Morse-Bott
inequalities, where , < min{b;_y — (b_x — 1),b,—1-x — (bp—x — 1)}. A explosion algorithm

for a vertex can be found in [7]. |

An abstract Morse-Bott graph I is said to satisfies the generalized Morse-Bott inequalities

if each vertex of I satisfies these inequalities.

Corollary 4.1. Let T" be an n-abstract Morse-Bott graph with cycle number k. Then T’

admits a continuation to an n-abstract Lyapunov graph I'yr of Morse type with cycle rank
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greater than or equal to k if and only if I satisfies the generalized Morse-Bott inequalities.

Example 4.4. The abstract Morse-Bott graph I' presented in Example 4.3 satisfies the
generalized Morse-Bott inequalities since each vertex of I' satisfies these inequalities. For
instance, one can look at the vertex S; in I' labelled with (1,0,1,1,0,1;\, = 1,k, = 1)
and verify that this vertex satisfies the generalized Morse-Bott inequalities, which have the

following form:

by > —(By —By)+ (B —By)— (ba—b1) + (bs —bo) — (b — 1) — (e* —¢7)

by > —[=(By = By)+(By = By)— (ba—1b1)+ (b5 = bo) — (b — b-1) — (e" —e7)]
by > —(Bf —B)—(bs—bo) + (b — b_1) + (e" —e7)

by > —[—(Bf —By)— (b5 —by) + (bg — b_1) + (et —e7)]

bp > bi—1+e +k,

bs > bg—1+et +k,

B B —c ot S

4.3.3 A New Layout for the Morse-Bott Inequalities

In this subsection we use the generalized Morse-Bott inequalities to obtain a new version

of the classical Morse-Bott inequalities in (4.1).

Theorem 4.3. A Morse-Bott function f on a compact manifold with boundary given by
OM = N* U N~ satisfies the generalized Morse-Bott inequalities with k = 0 and e* equal to
the zeroeth Betti number of N*.

Proof. Let I" be the Morse-Bott graph associated to f. According to the results in [7],
a Lyapunov graph associated to a continuous flow ¢; on a manifold such that h;(A, ¢;) =
hn—i(A, ¢}), for all isolated invariant set A, satisfies the Poincaré-Hopf inequalities. Now,
given a vertex S of the Morse-Bott graph I' labelled with (o, - -, Bx; A), by Proposition 4.2,
the rank of the homological Conley index of S is hyy; = §;(S), for j = 0,--- |k, and it is
null otherwise. In this way, I can be visualized as a Lyapunov graph of a continuous flow.
Since the flow ¢; generated by f satisfies h;(S, p1) = hn—i(S, ¢}), (see Proposition 4.3), then
I satisfies the Poincaré-Hopf inequalities for the data set (Bf,..., B |), k =0, e* = N*,
hyt; = B;(S) for j = 0,---,n and h, = 0 otherwise. As the generalized Morse-Bott
inequalities are equivalent to the Poincaré-Hopf inequalities for this data set, one concludes

that any Morse-Bott flow satisfies the generalized Morse-Bott inequalities. |
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Corollary 4.2. If an abstract Morse-Bott graph (semi-graph) T does not admit a continua-
tion to an abstract Lyapunov graph (semi-graph) of Morse type, then T is not realizable as a

flow of a Morse-Bott function on any closed n-manifold (compact manifold with boundary).

Proof. Indeed, if I were realizable as a flow of a Morse-Bott function on an closed n-
manifold (compact manifold with boundary), then it would admit continuation to an abstract
Lyapunov graph (semi-graph) of Morse type, since every Morse-Bott graph (semi-graph) can

be continued. [}

Theorem 4.4. Given an n-abstract Morse-Bott graph I' with cycle number x and with [
vertices vy, - - -, v labelled with (b, - -+, b}, ; i, ki), define b, = Zi:l bi(

s(i,m)?
Ai form=0,--- n. IfT" satisfies the generalized Morse-Bott inequalities then the set of data

wheren = s(i,n)+

{bg,- - ,b,} satisfies the following inequalities

( (
—bj < (bn(j-1) =bj1) = (bn—(j-2) = bj2) + -
+(b,—1 — by) £ (b, —bg) < b,,_;
L _b2 S (bn—l - bl) - (bn - bO) S bn—2
bl 2 bO - 1 + K (45)
bn—l 2 bn —1+k
2i+1
Ifn=2i+1,Y (~1)’b; =0.
=0
i—1
If n=2i =2 (mod 4), b; — Z(—l)j(bgi_j —bj) must be even.
\ 7=0

Proof. By Theorem 4.1, I' admits a continuation to an n-abstract Lyapunov graph of Morse
type I'ys. Each vertex v; of ' is exploded to a collection of vertices v¢, - - - ,v}{i and the labels

on each graph satisfy
K;
by = Z hn (V)
j=0

foralle =1,--- ,l. Moreover, I'y; has b,, vertices labels with h,, = 1 and with outgoing edges
labelled with (1,0,---,0,1). Also I'y; has by vertices labelled with hy = 1 with incoming
edges labelled with (1,0,---,0,1).
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Let I'; be the implosion of I', that is, ['; is an n-abstract graph with one vertex v, called
saddle vertex, labelled with (0, by, - ,b,_1,0;0, k); the vertex v has b, = e incoming edges
and by = e, outgoing edges; the incoming edges of v are outgoing edges of e vertices labelled
with (1;7) and the outgoing edges of v are incoming edges of e, vertices labelled with (1;0);
the labels of all edges are equal to (1,0,---,0,1). As

Z ZZW}'-%

the saddle vertex of I'; can be exploded to the semi-graph obtained from I'y; by disregarding
the vertices hys and hl s

Note that I'; is not a Morse-Bott graph since the saddle vertex v does not have the prop-
erty of duality. On the other hand, Theorem 4.1 does not require that the label on a vertex
of an abstract Morse-Bott graph satisfies the Poincaré duality, then one can use Theorem
4.1 and conclude that the vertex v satisfies the generalized Morse-Bott inequalities. There-
fore, {by, - - - , b, } satisfies the inequalities in (4.5) since these inequalities are the generalized
Morse-Bott inequalities for a saddle vertex (0,by, -+ ,b,_1,0;0, k). [ |

The next result shows that the inequalities in (4.5) are equivalent to the classical Morse-
Bott inequalities. More specifically, whenever the data (bg, - - - , b,,, ) satisfies the inequalities
n (4.5), there exits a collection of Betti numbers that satisfies the Morse-Bott inequalities
with this same data. Conversely, if (bg,---,b,) and (5o, -, 5,), where 81 > &, satisfies
the Morse-Bott inequalities then (bg,--- ,b,, k) satisfies the inequalities in (4.5). This re-
sult proves that the generalized Morse-Bott inequalities defined in Theorem 4.2 is in fact a
generalization of the Morse-Bott inequalities, since they are well defined for manifolds with
boundary.

A list (fBo,---,Bn) of non-negative integral numbers satisfying 5, r = i, for k =
0,---,n, Bo = B = 1 and f; is even if n = 2i = 2 (mod 4) is called a Betti number

vector.

Theorem 4.5. A set of non-negative numbers (by,--- ,b,, k) satisfies the inequalities in
(4.5) if and only if it satisfies the Morse-Bott inequalities in (4.1) for some Betti number
vector (Bo, -+, Bn) such that p; > k.

Proof. Suppose that the set of non-negative numbers (by, - - - , by, k) satisfies the inequalities

in (4.1) for a Betti number vector (S, - -, B,) with 51 > k. Then, by the first inequality in
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(4.1),
by > bo+p—pF = bg—1+k.
By the equality in (4.1) and the duality between (3,,_; and (3,

b1 = by — Bt Buct —[Baca + -+ (=1)"Bo]+by + -+ (=1)"by > b, — 1+ .

>0
Let n =2+ 1 if n is odd and n = 2i if n is even. For j = 2,--- /4, one has from the
equality in (4.1) that
(“1busy = =By b4 (1 b
+ Bu—Baa -+ (1) By

*1

W Bomy + (D By + -4 (1)

J/

~~
*2

= (=17 by + o+ (1) |

.

n'g
*3

There are two cases to consider: j 4+ 1 even and 7 + 1 odd.

Case 1. If j+1 is even, one has (—1)77*b; 1+ (—=1)7"2bj o+ -+by > (=1)771,_1 4 - -+ Py,
%9 — *3 < 0 and (—1)73,_; < 0. Then, using these fact and the duality of the Betti number

vector (Bo, -, 5,), one has

(=1)buj < = by = byy 4 (=1 oy [H(=1) T Hbj + (1) bz + - + by

Case 2. If j+1is odd, one has (—1)?'b;_1 4+ (—1)772bj_o+- - +by < (=1)77' 8,14 -+ Bo,
%9 — %3 > 0 and (—1)78,_1 > 0. Then

(=1)bnj = —|by = b1 + -+ (=17 Tby gy | +(=1) " Tbjos + (1) by + - + by
In both cases it follows that

br—j = (bn—(j—1) = bj-1) = (bn—(j—2) = bj—2) & - & (bp_1 — by) £ (br — bo).
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If n = 2i+1 then 7 ((=1)7b; = 377 ((=1)/8; = 0, the last equality follows from the

duality of the list (8o, - -, 8,) and the fact the n is odd. If n = 2i =2 (mod 4), then

i—1

bi =Y (=1)/(byj —b;) =

Jj=0

bi - |:bn - bnfl + = bn—(i—2) + bn—(i—l):| +b0 - b1 + = bi72 + bifl' (46)
Since b; = b,_;, from the equality in (4.1), it follows that
b, —bp 1+ +by iy —bi=0n =Bt =B+ 5 — [bifl_bi72+"'+b2_b1+b0}-

Substituting this expression in (4.6), one obtains

i—1

bi — Z(bn—j —b;) =

J=0

_|:ﬂn_671—1"'_"'_51+60}+2|:b0_b1+"'_bi—2+bi—l} =
—2[51‘—1—ﬁz‘—2+"'—/31+50]—5i+2[b0—b1+"'—bi—2+bi—1],

which is even. This concludes the proof that de Morse-Bott inequalities imply the inequalities
in (4.5).

Conversely, in order to prove that the inequalities in (4.5) imply the Morse-Bott inequali-
ties in (4.1), consider an Lyapunov graph I" with cycle number x, with one saddle vertex label
with (by, -+ ,b,_1;0, k), by vertices labels with (1;0) and b,, vertices labels with (1;7). Then
I' admits a continuation to an abstract Lyapunov graph of Morse type 'y, with cycle rank
greater than or equal to x and with h{ vertices labels with h; = 1 of type (I — 1)-connecting
and h¢ vertices labels with h; = 1 of type [-disconnecting, such that h{ + h{ = by, for all
l=1,--+,n. According to [6] and [7], the distributions of b; = h{ + h{ between the types c

and d must satisfy a network flow. We illustrate such a network in Example 4.5.
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Hence, defining 5y = 5, = 1 and

n=2i+1
(
hd — h if j=1
hi—he, i 2<j<i
h¢ if j=i
Bi=19 .. L
hi ., it j=i+1
—hg_,+h§ if i42<5<2i—1
_hgi—1+h§i if j=2

(4.7)
n =21
'h?—h; if j=1

h —hs,, if 2<j<i—1
8 = Bino if j=1i, 20=0 (mod 4)
’ 0 if j =4, 2i =2 (mod 4)

—ht 4+ he i i+1<j <202

_hgifQ_’_hgifl if j=2i—1,

\

the Proposition 6.1 in [7] guarantees that the data (bg,- - ,b,) and (S5, , ,) satisfy the
inequalities in (4.1). |

Example 4.5. Consider the abstract Morse-Bott graph presented in Example 4.3 which
satisfies the generalized Morse-Bott inequalities. Note that, for the graph in Figure 4.4, one
has bg = 1,b; = 2,by = 1,b3 = 2,by = 2,bs; = 2,bg = 4,b; = 2 and the inequalities in
(4.5) are —bs < (b5 — by) — (bg — b1) + (by — bg) < bs; —by < (bg — by) — (b7 — by) < bs;
by > by — 1+ k; bg > by — 1+ k. It is easy to see that these inequalities are verified for the
graph in consideration. Also, Y7 ((=1)7b; =1-2+1-2+2-2+4-2=0.

In order to construct a Betti number vector (fy,--- ,37) which, together with the list
(1,1,1,1,1,2,3,2), satisfies the Morse-Bott inequalities, one can make use of the network-
flow in Figure 4.6 and define (fy, - - - , 7) asin (4.7). There are some possibilities for this Betti
vector number corresponding to the possibilities of choice of the list {h$, h{, h§, hd, - - h¢, hd}

that satisfies the network flow in Figure 4.6. One option for this list is the one made in Figure

4.5 which provides the Betti vector number (1,1,0,1,1,0,1,1). <

Theorem 4.5 can be used to show that if (bg, - - , b,, k) does not satisfies the inequalities
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Figure 4.6: Network flow for the list (1,2,1,2,2,2,4,2).

in (4.5) then there is no closed n-manifold M with (M) > k which admits a Morse-Bott
function with the data (bg,---,b,). In fact, a necessary condition for the realizability of
an abstract Morse-Bott graph with the data (bg,---,b,, ) is that this same data must
satisfy the inequalities in (4.5). Of course, one may ask if an abstract data satisfying these

inequalities is sufficient to guarantee the existence of a Morse-Bott flow.

Final Remarks

Realization questions have been addressed in [9] and [10]. In these articles, abstract
Lyapunov graphs with vertices labelled either with singularities or periodic orbits have been
realized as Morse-Smale flows on n-manifolds. A natural question then arises in regard to

the realizability of an abstract Morse-Bott graph as a Morse-Bott flow.

The realization of Morse-Bott graphs on surfaces, i.e. when n = 2, is a consequence of the
results in [23]. Each basic set of a Morse-Bott flow is either a singularity or a critical manifold
isomorphic to the 1-sphere. Each singularity is either attracting, repelling or a saddle and
each critical manifold is either attracting or repelling. The next result characterizes the basic
blocks associated to these basic sets. As in Figure 4.7, the basic blocks for attracting and
repelling singularities are discs; and for saddles and S! critical manifold the basic blocks can
be orientable and non orientable. In this case, one says that the corresponding vertex in the

graph is orientable or non orientable.

The following theorem gives necessary and sufficient conditions for an abstract Morse-
Bott graph to be associated with a Morse-Bott flow on a closed manifold. In this theorem,
we consider the cycle number &, of a vertex v as being 0 and we omit reference to it on the

label of the vertex v.
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Theorem 4.6. Let M be a closed surface. An abstract Morse-Bott graph I is associated to a
Morse-Bott flow ¢, on M satisfying the transversality condition® if and only if the following

statements are satisfied:
(1) (Local conditions) If the vertex v is labelled with

(a) (1;2) (resp., (1;0)) the the number of exiting (entering) edges e, (resp., el) is

equal to one.

(b) (1;1) then 1 <ef <2,1<e, <2 andel +e, <3. The vertex is orientable if
and only if e} + e, = 3.

(c) (1,1;1) (resp., (1,1;0)) then e, < 2 (resp., e < 2). The vertex is orientable if
and only if e;, =2 (resp., e = 2).

(2) (Global conditions)

(a) If M is orientable, the cycle rank of T' must be equal to the genus of M.

(b) If M is non orientable, twice the cycle rank of T plus the number of non orientable

vertices must be equal to the genus of M.

(1,1;0) (1;1) (L, 1;1)
P v ; - =~
‘\ ( %\;\ 22 ) ( WL\ < )
z T~
‘m S u / y )
D R
(1,1;1)
C -l A=)
v // \‘
’ . I4 \
! \
(1,1;0)
(1;2)
! ¥
!
(1;0)
Attractors Saddles Repellers

Figure 4.7: Basic blocks for Morse-Bott flows on surfaces.

2In the two dimensional case, the transvesality condition means that there is no saddle-saddle connections.
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In order to prove the necessity of the local and global conditions, one must show that
given a Morse-Bott graph associated to a Morse-Bott flow on a surface, these conditions are
verified. All possible basic blocks in this context are illustrated in Figure 4.7. To prove that
a given abstract Morse-Bott graph I' is realizable on a surface, the basic blocks are glued
together appropriately to define a flow on M that realizes I'. The proof follows the same
steps of Theorem 1 in [23].
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Chapter 5

Connection Matrices for Morse-Bott
Flows on Closed Manifolds

In this chapter, our goal is to make use of Conley index theory, [12], to study Morse-
Bott flows on a smooth closed n-manifold M with the underlying motivation of obtaining
dynamical information from homotopical invariants. We wish to introduce a connection
matrix theory approach for Morse-Bott flows. The motivation for this resides in the fact
that connection matrices, as defined by Franzosa in [20], [21] and [22], were introduced to
study the behaviour of connecting orbits in a flow which undergoes perturbation. Eventual
bifurcations were captured by transition matrices, see also [24], [29] and [36]. On the other
hand, in the setting of Morse theory, connection matrices can be viewed as differentials of
Morse complexes (see [39]), making it possible to translate topological data into dynamical

data and vice versa.

Considering a Morse-Bott function f : M — R on a smooth closed n-manifold M,
a Morse-Bott complex associated to f is constructed in [2] by means of a Morse-Smale
perturbation h : M — R of f. A natural question to consider is whether the differential
of a Morse-Bott complex can be interpreted as a connection matrix. The answer to this
is affirmative. However, a necessary step to accomplish this endeavour is to explore more
deeply the connection matrix theory for Morse-Bott flows, which is our focus in this chapter.

The idea is to obtain a characterization of the set of connection matrices for a Morse-Bott
flow ¢ on M using the set of connection matrices for a Morse-Smale flow ¢}, on M, where h
is a Morse perturbation of f and ¢ (resp., ¢) is a flow associated to the vector field —V f

(resp., —Vh). As a result of this characterization, proved in Section 5.2, one can define a
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Morse-Bott complex with differential being a connection matrix which opens the possibility
to the use of spectral sequence techniques, such as in [13], [30] and [24], to obtain further
dynamical information, e.g., bifurcating orbits.

Our approach to study connection matrices for Morse-Bott flows and obtain the required
characterization is to initially consider connection matrices of Morse decompositions in a
general setting. Given an isolated invariant set S, we analyze what properties remain on
the sets of connection matrices when both Morse decompositions of S and partial orderings
undergo changes.

This chapter is organized as follows. In Section 5.1 we consider connection matrices in
a general framework. More specifically, given an isolated invariant set S and a <-ordered
Morse decomposition D(S), we measure the effect a change in the Morse decomposition
D(S), caused by a modification on the partial order <, has on the respective connection
matrices, as shown in Proposition 5.4 and Theorem 5.3.

In Section 5.2 we apply the results obtained in Section 5.1 to Morse-Bott flows ¢; on
a closed n-manifold M. For instance, in Theorem 5.4 we prove that the set of connection
matrices for Morse-Bott flows on M coincides with the set of connection matrices for per-
turbations that give rise to Morse-Smale flows on M. Theorem 5.5 is more constructive in
nature, since we show how a connection matrix of D(M, ¢p,), where ¢}, is a perturbation of
¢y, induces a connection matrix of the Morse-Bott flow ¢;.

In Section 5.2, we also answer a natural question that arises in this context, which
examines if for a given connection matrix A for a Morse-Bott flow ¢, there exists a Morse-
Smale perturbation ¢, of ¢, such that A is induced from a connection matrix of ¢,.

It is in due course to present the following well known result.

Proposition 5.1. Let f be a perfect Morse function on a closed manifold M. Consider a
flow ¢ associated to the vector field =V f and the finest Morse decomposition D(M) of M
with respect to this flow. Then, the set of connection matrices of D(M) contains only the

null map.

Proof. Fisrt, note that a connection matrix A for the finest Morse decomposition of M
encodes the weak Morse inequalities ¢ > [, where ¢, = #Crity(f) and [y is the k-th
Betti number of M, i.e., the rank of Hy(M;Z)'. Indeed, one has that HA(P) = CH(M) =
H.(M;Z), since A is a connection matrix; and CyA(P) = &CH(M,), where the sum is

'If the manifold is nonorientable, the homology is computed over Zs.
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over all critical points of f. Therefore,

Ker Ag(P)

= rank H;A(P) = rank
B = rank HyA(P) = ran Im Apor (P)

< rank [Ker Ak(P)} = Cg,

which is precisely the classic Morse inequalities. Furthermore, the equalities hold if and only
if A = 0. On the other hand, if the Morse function f is a perfect Morse function, then the
equality By = ¢, holds for all k =1,...,n = dim(M), implying that A = 0. |

This result will be used in Section 5.2. Moreover, it is interesting to note as a consequence
of this proposition that each connection matrix of the finest Morse decomposition of M,

D(M), encodes the weak Morse inequalities.

5.1 Connection Matrices for Coarser Morse Decompo-

sitions

The motivation for this section can be seen in the following hypothetical situation. Given
an isolated invariant set S and a Morse decomposition D(S), one can consider a coarser
Morse decomposition D(S) of S relative to D(S). An important question is if there exists
any relation between connection matrices of D(S) and connection matrices of D(S). Our
goal is to describe the relationship among connection matrices of D(S) and D(S). For
instance, let D(S) = {My,..., M;} and let D(S) be the Morse decomposition obtained
when one groups Ms, M, and M;5 as well as their connections in one Morse set M, i.e.,
25(5) = {M,, My, My, Mg, M7}. This grouping will be described in more detail subsequently.
Assume that there is an isomorphism Fj from CH (M) to CH(M3) & CH(M,) & CH(Ms)
and let

[0 A(2,1) A1) A(4,1) A(5,1) A(6,1) A(7,1) ]
0 0 A(32) A@42) A(G,2) A®6,2) A(7,2)
0 0 0 A4,3) A(5,3) A(6,3) A(7,3)
A=|0 o0 0 0 A(G,4) A(6,4) A(7,4)
0 0 0 0 0  A(6,5) A(7,5)
0 0 0 0 0 0 A(7,6)
0 0 0 0 0 0 0 |
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be a connection matrix of D(S). One can induce a connection matrix A of the coarser Morse

decomposition D(S) from A, as follows:

0 A(2,1) A(I,1) A(6, A(7,1)
0 0 A(,2) A(6,2) A(7,2)
A=|0 o0 A6,1) A(7,1) |,
0 0 A(7,6)
i 0 0 0 0 |
where the maps K(, -) are given by:
A(k,3
AL ) = | AB,j) Aj) ABG.j) |oF and Ak, 1) =Fro | Alk,4)
A(k,

for j=1,2 and k=6,7.

In what follows we intend to formalize this approach.

Consider a partially ordered set (P, <). Let I1,..., I} be a collection of mutually disjoint
intervals with respect to (P, <), such that, if ¢ < j then there are no elements 7 € I; and
7' € I, with 7 < 7. In what follows, a subset P of T (P, <) is defined to be P U ﬁg, where
Py={x|7=1,j=1,--,k}and P, = {7 | ® = {n} such that 7 € P\ ([, U--- U I},)}.
Hence, the set P = P, U P, is composed by intervals of (P, <). It is important to note that
7 is an element of P and is not an element of P, but an interval in (P, <). From now on,
an element of P will be denoted by . Although P is a subset of T (<) and the elements of
Z(<) are usually denoted by I, J, K, we will denote elements of P by 7 and intervals of P
by I , J. , K. We also adopt a loose notation m € 7 to indicate that the element m € P belongs
either to the interval [; for j = 1,--- , k or to the singleton interval in (P, <) composed by
itself.

Consider the transitive closure of the relation < in P given by:
m < o, if there are m € m; and w9 € Ty such that m < mo
where 71, 7o € P and 7 # To.

Proposition 5.2. The pair (P, <) is a partially ordered set.
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Proof. One needs to prove that 7 £ 7 for all 7 € Pp. Suppose by contradiction that m < 7.
Hence, by definition of the relation <, there exists 7 € Psuch that 7 < 7 < 7. If # is a
singleton, i.e. @ = {7} € ﬁl, then there must exist 7y, m € T such that m; < 7’ < 7. But
T € Z(P,<), then ' € 7, which contradicts the fact that 7" € P. Therefore, 7" is not a
singleton, that is, 7’ = I, € ]32, for some j =1,--- ,k. Hence, one has that 7 < 7' = I; <,

which contradicts the choices of the intervals Iy, ..., . [ |

The next proposition relates intervals in (P, <) with intervals in (P, <). Given an interval
J in (P, <), define J to be the subset of P such that = € J iff 7 € 7 for some 7 € J. The

set J is well defined since cach element 7 of J is an interval of (P, <).
Proposition 5.3. (a) If J € Z(P, <) then J € Z(P,<).

(b) If (J,K) € To(P, <) then (J,K) € T(P, <).

Proof.

a) Let J be an interval in N, <). Given my,m € J and m € P suc at m < m < my, one
Let J b t 1 P G J and P such that
must show that 7 € J. In fact, there must exist 7y, 7o, T € P such that m € T, Ty € T

and 7 € 7. Hence, m; < T < 7o, which implies that 7 € J. Therefore, w € J.

(b) As JUK is an interval in (P, <), by the previous item , J U K is an interval in (P, <).
Suppose by contradiction that 71 € J, my € K and 7wy < m;. By definition of J, K,
there exist m; € J and Ty € K such that m € m and my € Ty, Hence, Ty < 7, which

contradicts the fact that (j K ) is an adjacent pair of intervals. |

Indeed, one can show that if (Ji,...,.J,) € Z,(I, <) then (Ji,...,.J,) € Z,(I,<). The
proof follows the same ideas of the proof of Proposition 5.3, (b).

Let S be an isolated invariant set and D(S) = {M, : 7 € P} be a Morse decomposition
of S with admissible ordering <. The purpose of this section is to study connection matrices
with coarser Morse decompositions of .5, 25(5 ). This is done by considering as Morse sets of
D(S) the union of some M, of D(S) and their connections. More specifically, consider the
set D(S) = {]/\\4/% . 7 € P}, where

Mz = Mz = (U M,r)u< U C’(Mﬂ/,MW))

TET mw ET
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ZS(S ) is not just a collection of some Morse sets of P with respect to <, it is an <-ordered
Morse decomposition of S. See Proposition 5.4 below. Before proving this, we present a
characterization of the set of orbits connecting two Morse sets in the coarser Morse decom-
position 5(5) by means of the set of orbits connecting two isolated invariant set in the
original Morse decomposition D(S). Let 7, T € P, the set of orbits connecting M;Q to ]TJ/%I,
C’(]Tf;m ]Tf;rl), is given by

C(Mz, Mz)= | C(My, M,).

! €T, MET
This characterization is essentially the proof of the following two propositions.
Proposition 5.4. The set 5(5) 1s a Morse decomposition of S with admissible ordering <.

Proof. The sets ]/—\Zg are isolated, invariant, disjoint and compact, by definition. If v € .S and
v & U%eﬁﬂ% one must prove that v € C’(]f\\/[;, ]\7%/) with 7 < 7. Observe that v & U,cp M,
and, as D(S) is a Morse decomposition of S, there exist 7wy, m € P such that m < my and
~v € C(M,,, My,). Therefore, v € C(Mz, Mz), for 7,7 € P such that m; € 7 and 75 € 7.
|

Proposition 5.5. If < induces the flow ordering of the Morse decomposition D(S), then <

induces the flow ordering of the coarser Morse decomposition 5(5)

Proof. Given 7,7 € P with # < 7 , one needs to show that there exist a sequence in P
T = T, 1y, Tpn_1,Tn, = 7 such that C(Mgi,ﬁ%iil) # (). This proof is straightforward
and is done by analysing the possibilities of 7, 7" € P as elements of ﬁl or 132 and using the

characterization of the set of orbits connecting Mﬂf to ]T/[/Tr. [ |

Having defined the Morse decomposition 5(5 ) with admissible ordering <, one can now
define connection matrices in this setting.

Let H(<) = H(<;G) be the homology index braid of < with coefficients in G. Let
C = {CA(m)}zep be a collection of free chain complexes with trivial boundary operator,
where CA(m) = CH(M,) is the Conley homological index of M, with coefficients in G, for
all 1 € P. Therefore, the collection of connection matrices of H(<), CM(H(<)), is non
empty, since the graded module braid H (<) is a chain complex generated.

From a given connection matrix A : CA(P) — CA(P) of H(<), we will construct a
connection matrix A : C’E(]B) — CA(P) of the homological index braid of < with coefficients
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in G, H(=<) = H(=<;G). In order to do this, we will henceforth assume that, for each interval
I,..., Iy previously set in (P, <), A({;) = 0. Note that, for other intervals in (P, <) different

from I,..., Iy, this assumption is not required. Using this assumption, it follows that

_ Ker A(lj)  ®re,CH(M:)
HA(I}) = 1 - A7)~ ~ P CH(M,

wel;

forall j =1,...,k As A is a connection matrix of H(<) then CH(Mj;) = HA(I;), for all
j=1,...,k, and one has
)= P CH(M,)
WEIJ'

Now, let C' = {Cﬁ(%)}%eﬁ be a chain complex braid over <, where CA(F) = CH(Mz),
for each 7 € ]3, and the boundary operator is trivial. Observe that the chain complex braids
C = {CA(m)}rep and C = {Cﬁ(%)}%eﬁ are related to each other by:

o CA({r}) = CH(Mz) = CH(M;) = CA(m);

o CA(Ij) = CH(M;) = CH(M;) = P CH(M») = P CA(F) = CA(I)).

/GI 71'/61]'

In short, CA(%) = CA(R).
For each 7 € ]57 let
Fz: CA(F) — CA®R) (5.1)

be an isomorphism. If 7 € ﬁl, i.e. 7 is a singleton, we consider Fx as be the identity map.
The set of connection matrices of H (<, G) is non empty, since this graded module braid

is chain complex generated. Now, from A we will make explicit a connection matrix of

H(<,G). Let A : CA(P) — CA(P) be the map regarded as a matrix

A=| AF,7F :
7Fep

where each A(7',7) is the map from CA(F) to CA(F) defined as follows:

Awz=F o A(F,7) o Fy. (5.2)
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The goal in this section is to show that A = ﬁ(ﬁ) is a connection matrix of H(=<),
which will be proved in Theorem 5.3. The next result describes a relation between the maps
A(K,J) and A(K,J), for cach (J,K) adjacent pair of intervals in (P, <). This result is

essential to the proof of the main theorem.

Theorem 5.1. Given a pair of adjacent intervals (J,K) € Io(P, <), the map A(K,J)
is conjugated to A(K,J), that is, there exist isomorphisms Ry : CA(J) — CA(J) and
Ry : CA(K) = CA(K) such that

A(K,J)=R;' o A(K,J) o Ry.

In particular, for each J € I(ﬁ, <),

A(J)=R;' o A(J)o Ry.

Proof. Let J € Z(P,<) and {L;,,...,1;,} the elements in the intersection JN P To
simplify notation, renumber these elements as I3, ..., I, such that, if I; < I; then ¢ < j.

Define the following subsets of J:

By = {FeJ:7=<Ip}\(BoU---UB,), forl=0,---,p—1

B, = {7¢ J: I, <7mtu{re J : 7 and I; are noncomparable Vi=1,... p}.

Note that B; N B; = 0 if i # j and (U B;) U (U 1) = J. This collection of subsets of J

has the following properties:
(A) B; € Z(P, <), fori=0,...,p;
(B) (Bo, 1), (By, L), (I, By) € To(P, <), for all k =1,...,p;
(C) (Bo, 11, By, ..., I, By) € Typi1 (P, <).

Given (J,K) € I,(P, <), let I,... I} J and TENPIRIN P K be the only elements
in J N P, and K N P,, respectively. Renumber these elements as I, .. . IJand IfS, .. IF
such that, if I/ < IJJ then i < j, and if IX < ]jK then ¢ < j. Consider the decompositions
(Bo,I{,By,..., 17, B,) of J and (Ao, IX, Ay,... . IX A,) of K, as described above. Using

»Ipo ytq

2The superscript J (resp., K) is in order to clarify the relation of elements belonging to J (resp., K ).
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these decompositions, one can view A as a map given by the matrix

A(Ay, Bo)
E(A(% [i]>

E([lKaBO)
A(IE, 1})

A(A1, By)
A(Alv [i])

A(IX,By) A(Ay, By)
A(IF, T7) A

A(Ao, B)) A(IE B)) A(Ay,B)
A(A, L)
A(Ay, By)

A(Ao, I) A(IK I7)

1%p
A(AOaBp) A(IlKva)

For each J € (15, <), consider the isomorphism R; from

= P CAn)

TE By

yeCA(L) @& P CA(r) e CAL)

7I'€Bp 1

P cAn)

TEBy

to

a P oA P eam) @ cAr)

T€Bp_1 wely TEB)

= P cam) P oam)

TEBy el

given by

Ry = (id, Fy,,id, Fy,, ... id, Fy,, id), (5.3)

where Fj, is the isomorphisms defined in (5.1). Using this matrix notation, it is not difficult
to see that ﬁ([?, J) = R;' o A(K,J) o Rg.

If .J (resp.,K) contains no elements of Py, it is also true that A(K, J) = R;'oA(K, J)oRk,
where R; = id (R = id, respectively).

To see that A(J) = R;' o A(J) o Ry, for a given J € I(P, <), just consider the de-

composition (By, I1, By, ..., I, By) of J, as described above, and visualize the map E(J)

" [ A(By) A(I,,By) A(Bi,By) A(L,, By) A(B,,By) |
0 A(L)  A(By L) A(L, L) A(B, 1)
z(j) _ 0 0 A(Bl) A(ij Bl) A(Bz.nBl)
0 0 A(l,)  A(By, 1)

I 0 0 A(B,) |

If J contains none of the elements Iy, ..., I, € Py, then A(J) = A(J), by definition of the
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map A.
]

The first step to show that A is a connection matrix of H(<) is to check if A is a strictly

upper triangular boundary map, since all connection matrices have this property.

Theorem 5.2. (a) The map A is strictly upper triangular, i.e., Z(%’, 7) # 0 impliesT < 7';

(b) The map A is a boundary map, i.e., &(%’,%) is of degree —1 and AoA=0.

Proof.

(a) Suppose that A(F,%) # 0. By definition of A in (5.2), one has that A%, %) # 0.
Hence, there are m € 7, m € 7 such that A(m,m) # 0. Therefore, m; < w9, which
implies 7 < 7.

(b) By definition of A in (5.2), it follows that A(7, 7) is of degree —1, for all 7,7’ € P. By
Theorem 5.1, one has that for each interval J € (P, <):

A(J)* = (R;' o A(J) o Ry)(R;' 0 A(J) o Ry) = (Rj" 0 A(J)” o Ry),
which is zero, since A(J) is a boundary map. In particular, A(P)? = 0. |

We are now able to prove our main theorem.
Theorem 5.3. The map A : CP — CP is a connection matriz of H(=).

Proof. By Theorem 5.2, Ais a strictly upper triangular boundary map. To show that this
map is a connection matrix of H (<), one needs to guarantee that the graded module braid
HA is isomorphic to the homology index braid H(=).

As A is a connection matrix, then the graded module braid HA is isomorphic to the
homology index braid H(<). Moreover, CH(MJ) ~ C'H(Mj) for each J € T,(P, <). Hence,
to prove this theorem, it is sufficient to show that HA is isomorphic to HA, i.e., that there
exists a collection of isomorphisms W(J) : HA(J) — HA(J), J € Z(P, <), such that, for
cach (J, K) € T,(P, <) the following diagram commutes:

2R () - BA(TR) 2 HAR P ELHA () s
j\p(f) lqz(if() L\p(f() () (5.4)

2N s HATE) 2 HAK S A () s
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We will start by showing that, for each J € Z(P, <), HA(J) and HA(J) are isomorphic
by constructing an isomorphism W(J). Afterwards, we will use this collection of isomor-
phisms to prove that the diagram in (5.4) is commutative.

For each J € Z(P, <), let W(J) : HA(J) — HA(J) be the map induced from the collec-
tion {F;} .5 on the quotient modules H A(J) and HA(J). More specifically, considering a

decomposition of J as (Bo, I1, B, ..., I,, By) (as in the proof of Theorem 5.2), define
~ ~ ~  Ker A(J) Ker A(J)
) U= A(T) = T A()
[a] — [R,(a)]

where, R; : CA(J) — C'A(J) is the isomorphism defined in (5.3). Observe that, if J does
not contain elements of Py, then \I/(j ) is the identity map. The following two claims show

that W(J) is well defined and is an isomorphism of modules.

Claim 1. The map V(J) is well defined.

We need to show that if [a] € HA(J) then [Ry(a)] € HA(J), and that ¥(.J) does not

depend on the particular choice of representatives. Firstly, one has that

[a] € HA(J) = a € Ker A(J)
= Ry(a) € Ker A(J), since A(J) = R;' o A(J) o Ry,
= [Ry(a)] € HA(J).

This proves that if [a] € HA(J) then [R;(a)] € HA(J). On the other hand,

[a] = [b] € HA(J) = [a—b]=0
= a—belm A(J)
= Ry(a—0b) elm A(J), since A(J) = R;' o A(J)o R,
= Rjy(a) — R;(b) € Im A(J)
= [Rs(a)] = [R,(D)].
Hence, \If(j ) does not depend on the particular choice of representatives. N

Claim 2. The map V(J) is an isomorphism of modules.

It is not difficult to see that W(.J) is a homomorphism of modules. We will prove that it
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is bijective. Observe that W(J) is injective, since

U(S)al = ()] € HA(J)

[Ry(a—b)] =0, ie, Rj(a—0b) € Im A(J)
a—belm R;' o A(J)

a—belm A(J), since A(J) o R;'=R;' o A(J)
[a] = [0].

L

Now, given [b] € HA(J), let a = R;*(b). Observe that

A(D(a) = ATy o Ry (b) = R;* o A(J)(b) = 0,

which implies [a] € HA(J). Moreover, U(J)[a] = W(J)[R;'(b)] = [b], proving that ¥(.J) is
surjective.

<

Therefore, ¥(.J) is an isomorphism between HA(J) and HA(J), for all intervals J in
(P, ~<). Now, considering the family {¥(.J) : J € Z(P, <)}, we will show that the diagram
in (5.4) is commutative, for all pair of adjacent intervals (J, K) € (P, <). Indeed,

e U(J)oA(K,J)=A(K,J)o¥(K):
By Theorem 5.1, A(K,.J) = R;' o A(K, J) o Rg. Therefore, given [a] € HA(K), one has

U(J)o Ay(K, Na] = U(NAK, J)a] = [RyoA(K, J)d]
= [A(K,J)o Rga] = A(K,J)|Rka
= A(K,J)oU(K)a].

o U(JK)oi, =i, 0WU(J):

The isomorphism R, restricted to the first component of CA(JK) = CA(J) & CA(K)
behaves as the isomorphism Rj, i.e., RJK|CE(j) = R;. Thus, Rk 0i =io R;. Given
[a] € HA(J), one has

V(JK)oifd = V(JIK)[i(a)] = [Rk oi(a)
= [ioRy(a)] = i.[R,(a)]

= i, 0 U(J)[a].
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i \If(f?) O Px :p*o\ll<j]?(i):

Similarly, RJK|CE(I~<) = Ry and Rgop =po Ryk. Given [a] € Hﬁ(j[?), one has
V(K)op.la] = W(K)[p(a)] = [Rk o pla)]
= [PORJKN@] = p[Rsx(a)]
= psoO \I/(JK)[CL]

Hence, we have shown that the diagram in (5.4) is commutative and, by our initial
considerations, this suffice to prove that the graded module braid HA is isomorphic to
the homology index braid H(=<). This in turn, proves that the map A:CP— CPisa

connection matrix of H(<). |

5.2 Application to Morse-Bott Flows

In this section, our goal is to obtain an explicit connection matrix of the finest Morse
decomposition of a Morse-Bott flow in M. In order to do this, we will make use of the results
in the previous section as well as a specific perturbation of f described below.

Let f: M — R be a Morse-Bott function on a smooth closed manifold M of finite dimen-
sion n. In [2], a perturbation technique of Morse-Bott functions to Morse-Smale functions
is presented. The perturbation defined therein produces an explicit Morse-Smale function
h : M — R which is arbitrarily close to a given Morse-Bott function f, such that, h = f out-
side of a neighborhood of the critical set of f. More specifically, if f has [ disjoint connected

critical manifolds, namely S, ..., S, then h is given by the expression

!
h=f+e (Zijj) )
j=1

where f; is a Morse-Smale function on a tubular neighborhood 7} of the critical manifold S;
and p; is a bump function which is identically 1 near S; and identically zero outside 77, for
each j = 1,...,l. The critical points of h are exactly the union of the critical points of f;,
forall j =1,...,1. Moreover, if p is a critical point of f; of index )\g, then p is a critical point
of h of index )\Z =\ + )\%, where )\; denotes the Morse-Bott index of the critical manifold

S;. For more details see [2].
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Consider a flow ¢ in M generated by f, that is, a flow associated to the vector field =V f.
Throughout this chapter, flows generated by a Morse-Bott function f will be call Morse-Bott
flows. Let h be a Morse-Smale perturbation of f, as described above, and denote by @) a
Morse-Smale flow associated to the vector field —Vh.

The next result provides a relation between the connection matrices for a Morse-Bott flow
¢f and the connection matrices for a perturbed Morse-Smale flow ¢, of ;. More specifically,
we prove that the set of connection matrices of a Morse decomposition of M relative to ¢y
is equal to the set of connection matrices of the induced coarser Morse decomposition of M

relative to ¢y, .

Theorem 5.4. Let f be a Morse-Bott function on M and h a Morse-Smale perturbation of
f.- If D(M) is a <-ordered Morse decomposition of M relative to the flow py, then D(M) is
also a <-ordered Morse decomposition of M relative to the flow y and the sets of connection

matrices relative to the both flows are equal, i.e.,
CM(=;¢5) = CM(=; 0n).

Proof. Let {Si,...,S;} be the critical manifolds of f and NN, small isolating neighborhoods
of S, for each j =1,...,1. Without loss of generality, one can consider h as a perturbation
of f such that f = hin M \ N, where N = Ué-zl N;. Then ¢ and ¢, coincide in M \ N,
since Vf = Vhin M \ N.

Let D(M;py) be a (<-ordered) Morse decomposition of M relative to ;. Since ¢; and
@y, coincide outside IV, this set is also a Morse decomposition of M relative to the perturbed
flow ¢y, which will be denoted by 5(M ;on). Moreover, an admissible ordering of D(M; ¢y)
is also an admissible ordering of 15(M ;o) and conversely; flow orderings of both Morse
decompositions coincide. Therefore, for each interval J of <, the Conley index of M ; as Morse
set of D(M; py) is equal to the Conley index of M; as Morse set of D(M; ¢y,). Furthermore,
the homology index braid of the admissible ordering < of D(M; ) coincides with the
homology index braid of the admissible ordering < of D(M; ). Hence, the collection
CM(=;py) of connection matrices of the admissible ordering < of D(M; ;) is equal to the
collection CM(<; @) of connection matrices of the admissible ordering < of D(M: ¢y,). W

Note that the set {S1,...,S;} of all critical manifolds of f is a Morse decomposition of
M with respect to the flow . Denote this Morse decomposition, which is the finest one,
by D(M;¢y). On the other hand, if h is a Morse-Smale perturbation of f, denote the finest
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Morse decomposition of M relative to ¢, by D(M; pp,). The next theorem provides a relation
between the connections matrices of both Morse decompositions. More specifically, we prove
that each connection matrix of D(M; ¢,) induces a connection matrix of D(M; py).

For the next result, the homology is computed over Z or over a field.

Theorem 5.5. Let f be a Morse-Bott function on M and h be a Morse-Smale perturbation
of f such that h restricted to each critical manifold of f is a perfect Morse function. Then

a connection matriz of D(M;¢y) induces a connection matriz of D(M;¢y).

Proof. By Theorem 5.4, the Morse decomposition D(M; ¢s) = {S1,..., 5} is also a Morse
decomposition of M relative to ¢; and it will be denoted by 75(M ;o). Both Morse decom-
positions are <g-ordered, where < is the admissible flow ordering. Observe that D(M; ¢y)
is the finest Morse decomposition of M in ¢y, but it is not the case of 5(]\/[ ;on). Denote by
D(M; ¢p) the finest Morse decomposition of M relative to ¢y, that is, each critical point of
h corresponds to a Morse set of D(M; ¢p,).

Now, using the main result of Section 5.1, we will induce a connection matrix of 5(M ;on)
from D(M;pp). Since, by Theorem 5.4, CM(=<p;ps) = CM(=<p;¢r), we will obtain the
required connection matrix of D(M; py).

Observe that the finest Morse decomposition D(M; ¢y) = { M, }rep of M is <p-ordered,
where <y denotes the flow ordering. Considering the intervals Iy, ..., I;, where I; = {7 € P :
M, € S;}, then 15(M, ©p) is obtained from D(M; ;) by defining M{ﬂ} =M. fr&l,... I
and M[j = My, for j =1,...,1. Given a connection matrix A of D(M; ), observe that
each submatrix A(Z;), for j = 1,..., [, corresponds to a connection matrix of the finest Morse
decomposition of S; under the flow restricted to S;, since each non null map in A(;) is flow
defined. By hypothesis, h|s; is a perfect Morse function. Hence, by Proposition 5.1, one has
that A(Z;) = 0, for all j. Therefore, we are able to apply Theorem 5.3 which provides a
connection matrix A of D(M; ¢y). [ |

Example 5.1. Let f be a Morse-Bott function on S? having three isolated critical points of
indices 2, namely 1, zo and x5, one isolated critical point of index 1, namely, y and B = S*
as critical manifold of index 0, as depicted in Figure 5.1. Let h be a perturbation of f when
one considers a perfect Morse function on the critical manifold S*, as in Figure 5.2. Denote
by ¢y (resp., ¢n) a Morse-Bott flow (resp., Morse flow) on S? associated to the vector field
=V [ (resp., —=Vh).
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T X9 Ty T2

T3 x3

Figure 5.1: A Morse-Bott flow on S? Figure 5.2: A Morse-Smale perturbation
associated to the function f. of the Morse-Bott function f.

The objective herein is to obtain a connection matrix of the finest Morse decomposition
of 5 with respect to the Morse-Bott flow ¢ by means of a connection matrix of the finest
Morse decomposition of S? with respect to the Morse flow . Firstly, we will compute a
connection matrix of a Morse decomposition of S? with respect to ¢;,. Then, using the tools

proved in Section 5.1, we will obtain the required matrix.

Consider the set P = {1,2,3,4,5,6} with partial order < given by [1 < 2,3]; [2 < 4, 5];
and [1 < 4,6]. Let My = 2, My = g, My =y, My = x1, M5 = x5 and Mg = 3.
The set D(S?%¢n) = {M; : i € P} is the finest <-ordered Morse decomposition of S?
with respect to the flow ;. Moreover, < is the flow ordering. As proved by Salamon in
[39], the differential of a Morse-Witten complex of h is a connection matrix of the Morse
decomposition D(S?%; ;). In order to obtain a connection matrix of D(S?%; ¢y), we will
compute the Morse-Witten complex (C,(h),d,) of h, considering the orientations on the
unstable manifolds of the critical points as the ones illustrated in Figure 5.2. For this choice
of orientations, we have that the Morse chain groups are Cy(f) = Z(Z2), C1(f) = Z(g) & Z(y)
and Cy(f) = Z{x1) & Z{xq) & Z(x3), where (x) denotes both the critical point = as well as
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its orientation. The differential 0¢ is defined on the generators according to the matrix:

Z 0y Yy w T2 I3

fo 00 0 0o o]
glo 0o 0 +1 0o -1

0. = yl0o 0 0 -1 +1 0 |,
20 00 0 0 o0
0 00 0 0 0
[0 00 0 0 0

which is a connection matrix of D(S?, ) by identifying the number 41 with an isomorphism
between the Conley homology indices in question.

Now, note that I = {1,2} is an interval in (P, <) and, defining P = {I, {3}, {4}, {5}, {6}}
and the order [I < {3} < {4},{5}]; [I < {6}], then (P, <) is a partially ordered set,
by Proposition 5.2. Let D(S2;¢,) = {Mg . % € P}, where M, = §U C(My, M) U Z
and M{i} = M;, for i € {3,4,5,6}. By Proposition 5.4, this set is an <-ordered Morse
decomposition of S? with respect to the flow ;. Moreover, by Proposition 5.5, < is the flow
ordering. Finally, by Theorem 5.3, A induces a connection matrix A of 5(52, ©n), which is
given by the following map of degree —1 from CH(B)®CH (y)SCH (x,)®CH (z2) ®CH (x3)
to itself:

B y 1 xy x3

Blo o ~ 0 =~]
X_ v|[0 0 ~ 0 (55)

z7| 0 0 0 O O

{0 0 0 0 O

:1:3_0 0O 0 O 0_

Consider the <-ordered Morse decomposition 5(5’2; or) ={Mz 7€ ﬁ} relative to the
Morse-Bott flow ¢y, where M; = B, M3y =y, My = x1, M5y = 25 and Mgy = x3. The
partial order < is the flow ordering. By Theorem 5.5, the map in (5.5) is a connection matrix
of D(5% ;). |

In the previous example, one could have chosen a different perturbation A of f. For

instance, using the perturbation shown in Figure 5.3, one obtains the following map from
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CH(B)® CH(y) @ CH(x1) @ CH(x2) ® CH (x3) to itself:

B y x x w3
B[00 0 ~ =]
A yl 0 0 =~ = 0 7
z1 |0 0 0 0 O

x| 0O 0 0 0 O
z3[ 0 0 0 0 0|

which is a connection matrix of the finest Morse decomposition of S? relative to the flow ¢;.
Therefore, we do not have the uniqueness of connection matrices in Morse-Bott flows, even

if the homology were computed over a field.

Al To

w
@i

€3

Figure 5.3: A Morse perturbation of the Morse-Bott function f.

At this point, a natural question arises: are all connection matrices of the finest Morse
decomposition of a Morse-Bott flow ¢ obtained via Theorem 5.57 In other words, for
each connection matrix A of the finest Morse decomposition of a Morse-Bott flow is there a
Morse-Smale perturbation ¢, of ¢; such that A is induced from a connection matrix of ;7

In general, this is not the case as seen in Example 5.3. On the other hand, if some

additional structure is assumed it may hold true, as can be verified in Examples 5.1 and 5.2.

Example 5.2. Consider S® as the manifold obtained from gluing two solid tori 7; and 75
by a homeomorphism of their boundaries, the tori 7} and T3, which identifies a parallel of T}
to the meridian of T3. Let f be a Morse-Bott function on S? such that the critical manifolds
of f are the torus 77 as a repeller and two 1-spheres S; and S5 as attractors, where S; lies

in the interior of 7T;, ¢ = 1,2. Their Morse-Bott indices are Ay, = 1, Ag;, = 0 and Ag, = 0.
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Considering the finest Morse decomposition D(S%) = {Si, Sz, 71} of S® with the admissi-
ble flow ordering and a connection matrix A of D(S?), then the only possible non null maps
are K(T 1,51) and K(Tl, Ss), which are flow defined. Hence, there is a unique connection

matrix of D(S?), namely,

S, S, T

;1o 0 A
A= S, |0 0 A,
T./0 0 0

We will show that this map can be obtained from a connection matrix of a perturbation of
the function f, as discussed in Section 5.2. In this sense, let h be a Morse-Smale perturbation
of f, such that it is a perfect Morse function when restricted to the the critical manifolds,
S1, 59,11, of f. Denote the critical points of h by 21, y1 € S1, 22,92 € Ss and x, vy, va, y3 € 17,
where zs have indices zero, y's have indices one, v’'s have indices two and = has index three.
The differential of the Morse complex (Ci(f),0¢) over Zy associated to h is given by the

matrix:
21 22 Y1 Y2 Ys U1 V2 T

21 [ 0 1 |
29 0 1
Y1 0 1 1

adh =y 0 I 1
Y3 0
wq 0
Wo 0
x 0

Note that the Conley homological indices of the critical manifolds are as follows:

Za, n=13 7, n=0,1
CHn<T1) = ZQ ) ZQ, n=2 CHn(SZ) = { 07 7& 07 1 y
b n b
0, n#1,2,3

where ¢ = 1,2. Hence, there exist isomorphisms CH(S;) = CH(z;) @ CH (y;), for i = 1,2,
and CH(T)) = CH(y3) ® CH(v,) ® CH(ve) & CH (z), which will be denoted by F; and Fr,,
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respectively. Now, observe that the submatrix of 0¢

Ys U1 V2 T

10 0 0
A =
vl 0 1 1 0

induces a map A, : CH(Ty) — CH(S;), for i = 1,2, by composing A; with the isomorphisms
Fr, and F;'. Therefore, the induced connection matrix of the finest Morse decomposition

of S? relative to the Morse-Bott flow ¢ is

S, S, Ty

;1o o0 A
A= S |l0 0 A,
7./ 0 0 o0

<

The following is an adaptation to our context of Reineck’s example in [37] and illustrates

that there are connection matrices that do not arise from Morse-Smale perturbation.

Example 5.3. Consider a flow in R? as in Figure 5.4 having seven singularities and one
critical manifold diffeomorphic to S*. By taking the one point compactification R? U {oo}

of R? and letting co be an attractor point, one obtains a Morse-Bott flow on M = S2.

Figure 5.4: Morse-Bott flow on R

The critical manifold together with the eight isolated singularities form a Morse decom-

position D(S?) of M, with flow ordering [0 < 2,3,4]; [1 < 2,3,4,8]; [2 < 5,6]; [3 < 6,7] and
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[4<5,7],in P ={1,...,8}. Let A be a connection matrix of D(S5?%). All maps A(7’, 7) are
flow defined, except for A(5,1), A(6,1) and A(7,1). It is easy to compute the boundary flow
defined maps using index triples. In this example they are all isomorphism. The connection

matrix A is as follows:

0O 1 2 3 4 5 6 7 8

of 11 |

1 0 1 1 1 a b ¢ 1

2 0 1

3 0 1 1 0
A= 4 0 1 1

) 0

6 0

7 0

8| 0

The homology with Zs-coefficients was used in order to simplify computations, however one
could as well have used Z-coefficients.

The maps a, b and ¢ in A are not flow defined. As A is a connection matrix, then

Ker A(P)
Im A(P)

Zo, n=2,0

3
0, c.c

:HMm%CMMﬁJMMﬂg:{

which implies that:

Ker A
o —L 20 o Zs, which implies that the rank of A; must be 1;
Im Al
Ker A
o« Lo 0, which implies that the rank of Ay must be equal to 3;
Im AQ
Ker Ay C . .
* A = Zs, which implies that the rank of the kernel of Ay must be equal to 1.
m A3

By the last item, we must have a + b+ ¢ # 0 (mod 2). In other orders, either one of these
entries is one or all of these entries are one. Therefore, combining possibilities, one has
four connection matrices of D(M). Three of these connection matrices are obtained from
connection matrices of a Morse-Smale perturbation, namely the ones where only one of the

entries a, b, ¢ is one. On the other hand, the connection matrix where a = b = ¢ = 1 can not
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be obtained from a Morse flow by substituting the critical manifolds for two singularities,

since the saddle has only two orbits in its stable manifold. <

Therefore not all connection matrices for Morse-Bott flows arise from connection matrices

for Morse-Smale perturbations.

5.3 Spectral Sequences for Morse-Bott Complexes

Given a Morse-Bott function f : M — R on an orientable closed manifold, there are
many ways to define a Morse-Bott complex and prove that its homology coincides with the
singular homology of M with integers coefficients. We briefly describe three of these ap-
proaches below. The Austin-Braam approach in [1] uses differential forms to construct a
comulticomplex which computes the de Rham cohomology of the manifold with real coef-
ficients. The approach in [2] is to consider a Morse-Smale perturbation of f and use the
Morse chain complex of the perturbed function. Banyaga and Hurtubise developed in [3]
the Morse-Bott multicomplex by using singular cubical chains and fibered product construc-
tions. The Morse- Bott multicomplex is fundamentally different from other approaches to
Morse-Bott homology. It provides a common framework for singular cubical chains and
Morse chains, making it possible to interpolate singular cubical chain complexes and Morse
chain complexes.

For our purpose herein, we consider the simplest definition of Morse-Bott complex as
in [2]. Assume that the Morse-Bott function f satisfies the transversality condition and
let h : M — R be a Morse-Smale perturbation of f, as in Section 5.2. One can define
the Morse-Bott complex associated to f as the Morse complex (C,(h), ") generated by the
perturbation h.

Moreover, if one assumes that the critical manifolds of f admit a perfect Morse function
and that h restricted to each critical manifold of f is a perfect Morse function, then the
differential " is a special case of a connection matrix for the finest Morse decomposition of
M with respect to the flow ¢j,. By Theorem 5.5, the differential of the Morse-Bott complex
induces a connection matrix for a finest Morse decomposition® of M for the Morse-Bott flow
or-

Consider a Morse-Bott function f and its associated Morse-Bott flow ¢, with a finest

Morse decomposition. For a perturbation h of f, consider the Morse chain complex (C.(h), )

3Each Morse set of the Morse decomposition contains only one critical manifold.
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with a coarser filtration F compatible with the Morse decomposition for M with respect to
the Morse-Bott flow ¢;.

In what follows, we consider this Morse chain complex with coarser filtration and show
how to obtain from the SSSA the modules and differentials associated to this spectral se-
quence. Our motivation in studying dynamical spectral sequence for Morse chain complexes
with a coarser filtration resides in the fact that this coarser filtration provides the finest

filtration for more general flows, in particular, for Morse-Bott flows as discussed above.

Spectral sequence with coarser filtration

Consider a Morse chain complex (C, A) endowed with a finest filtration F, not necessarily
respecting the order of increasing Morse index. By Remark 1.1, one can apply the SSSA for
A. In what follows, the formulas for the change of basis in (1.4) and for the Z-modules Z]
in (1.5) are rewritten for arbitrary filtration which do not necessary respect the order given
by the Morse index.

Let k1, ko, ... be the columns of A" which are associated to k-chains. Denote by a,’;” the

k-chain represented in the k,-th column of A”. Hence, the k;-th column of A" are

J t
k]',’r'+1 _ kij ke ke,r ke
o = c,”” h;t £ E ¢, hy
/=1 /=1
NS A g
Vv Vv
O_:j»"‘ aﬁ”
_ kj,r+1 k1 kj,T+1 ko kj,r+1 k‘j,1 k‘]',’r'+1 kj
= o Ukt e T Ty (5.6)

where k" € 7Z.

In Section 1.2, it is shown how the Z-modules E] are determined by the connection
matrix A. In order to do this, a formula for the module Z,  was established in terms of
the UZ’j determined by the SSSA. Let k,, be the rightmost h;, column such that k,, < p+1,

i.e. the rightmost hj column in F,C. Then Z]

bk—p 18 glven by

o ke ,r—p—1+ky ] r—p— 1 _ke,~lr—p—1+ke,—1 —p— k1,r—p—1+k
Z[H,k[’?’r D 1+kgpo_kp p”ukgp 1,r—p—1+ky, 10k;p D ki,r—p 1+k10k177‘ p—1+ 1]

g M
where ;7¢ = 0 whenever the primary pivot of the j-th column is below the (p—r +1)-th row
and /¢ = 1 otherwise. Moreover, through the SSSA, A induces the differentials d,, in the
spectral sequence. In fact, whenever E and E_ are both non-zero, the map d;, : £ — E .
is multiplication by the entry A7 .., ., which is either a primary pivot or a zero with a

column of zero entries below it. Otherwise dj, is zero. In the case of Morse chain complexes
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on orientable surfaces, the primary pivots are always equal to -1 by Theorem 2.1, then the

nonzero d"’s are always isomorphisms induced by primary pivots.

Now, consider a coarser filtration F = {F,} in the Morse chain complex (C,,d) which

can always be obtained from a finest filtration by grouping some F},’s into only one F,,.

Let (EE, d%) be the spectral sequence for (C,(h),d) endowed with the filtration Fp. One
has that

ER=ZB)(Zf1 +0ZF ) where, Zf ={ce FpC| dc € Fp_rC}.

As in Section 1.2, the modules of the spectral sequence (E],d;) associated to the finest
filtration are determined by the SSSA. Using this fact, one can show that, more generally,
the modules £F of the spectral sequence associated to the filtration F can also be determined

by the SSSA.

In fact, note that the module ZE consists of chains in FpC with boundary in Fp_gC.
These chains are associated to all the columns of the connection matrix A to the left of
and including the column ¢p, where /p denote the rightmost column of A associated to a
chain in FpC'. Furthermore, since the boundary of the chains must be in Fp_zrC' we must
consider columns or their linear combinations that have the property that the entries in rows

i > {p_p are all zeroes. Hence, in terms of the finest filtration {F},}, one has
2R ={c€ FprC| Oc € Fyp_ 1O} = Z,717 . (5.7)

Analogously,
Zgzll = {C S ng_1_10| dc € FfP—R—lc} = ij::ll:fpiR

and
azg-‘y_-}%—l = a{c E FEP+R,1—IC| aC E FZP—IO} = aZ£P+R_1_ZP.

lpyr—1—1

Recall that {k;} are the columns of A associated to k-chains, let k;, be the rightmost
column of A associated to a k-chain in Fp, i.e. kg, is the rightmost hj; column such that

ke, < €p. Using the formula for Z7,  and (5.7), the module ZF, p can be described in

terms of the basis determined by the connection matrices in the SSSA as follows:

Z[Mkep 7kép_£P7Ro-:eP’keP_ZP_R’ ukﬂp—l7k£P—1_£P7RO-’]:€P_1’k£P_1_KP_R k1,k1—€P7RUZI:k1*ZP—R] )

N

Analogously, one can describe the modules Zﬁ:ll and 821@;}%_1 in terms of ¢’s, providing
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a way to recover from the SSSA the module €5, _p.

Denote by k¢, the leftmost hj, column such that {p_; < ks,. Now, consider the following

matrix
kfp—Lp—_r kep—tp—Rr
(k_l)fP_R7ka (k_l)fp_R’klP
kfp—tp_r kep—tp_gr
(kil)ep_Rzka (k*l)[P_RJCgP

Note that each column of this matrix is taken from a different A", and the columns correspond
to hy, starting with the k., column and ending with the k;, column.

Given a hy, column k; € {kf,, -, ke, } of AFi=tP=r there are two possibilities:

1. The non-zero entries of this column are below the row ¢p_pg, i.e. it has a primary

: kiki—lp_Rr . R :
pivot below the row ¢p_r and hence o, is not a generator of Zp, p (ie.
Iukivki_ngR — 0)

. : . kiki—lp_p -
2. The non-zero entries of this column are above the row (p_g, ie. 0,7 "% is a

generator of Zf,_p (i.e. prihitr-r = 1),

Let Akﬁ‘ be the submatrix of the above matrix composed only by the hi-columns k; such

that pfiki—fP-r =1 i.e. the columns which correspond to generators of Zﬁk_ P

Conjecture: Whenever the modules Sﬁk_P and Eﬁ_Rvk_l_(P_R) are non-zero, the differential

dllf;’kfp : 515;1@713 — 5§_R7k_1_(P_R) is induced by AR, In other words,

Ker AR

gR—i—l
— 7 -
Im AI<:—|—1P.~_R

Pk—P

I

We believe that this conjecture is true. An example which illustrate it follows.

Example 5.4. Let f be a Morse function on S? such that the flow associated to —V f is as
shown in Figure 5.5. The Morse chain complex (C.(f),0) determined by f was presented in
Example 2.3, where we considered a finest filtration in (C,(f),d). The collection of matrices
obtained applying the SSSA for A is the one illustrated in Figures 2.10 through 2.15.

Now we endow this chain complex with the following coarser filtration F:
FoCo = Z(hy) @ Z(h2) @ Z(h3), FoCr = 0 for k > 0;
FiCo = Z(hY) @ Z(h2) @ Z(h3), FiCy = Z(hY) @ Z(h?) and F,Cj =0 for k > 1;



156 Section 5.3 e Spectral Sequences for Morse-Bott Complexes

FoCo = Z(hY) ® Z(h2) ® Z(h3), FoCy = Z(hY) @ Z(h3) & Z(hS) @ Z(h]) FrCy = 0;
F3Co = F2Co, F3Cy = Z(h) ® Z(h3) © Z(hS) @ Z(hT)  FsCy = Z(h3) @ Z(h3) ® Z(hy);

10
ha

o TuW'(hd)

=12

Figure 5.5: Morse-Smale flow in S? with a coarser filtration.

The spectral sequence associated to (Ci(h),d) endowed with this filtration F is given by:

go : : :

E), =0 EY =0 B9, =0 E9, =0

dO

EQ o = [ho, hi, b EY o = [1,13] ES,=0 E3y=0

Eg_1=0 E{_1=0 B9 =[h$.h]]  ES_y = I[h3, N3, hi°]
81 : : :

Eé,l =0 E11,1 =0 E%’l =0 E§,1 =0

1
Eé,O = [h(lJa h%a hg} <d_lE‘ll,O = [hzllv h?] Egl’() =0 E%,O =0

dl
E(%,fl =0 E%,—l =0 E217—1 = [hgj, hZ]<_3E§,—1 = [hgvhgvhéo]
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£? : .

E§1=0 Ef;=0 E2, =0 E2, =0

E}o = [hi+h3+hy]  Eio=0 E3,=0 E3,=0

Ef_1=0 Ef =0 E} =0 B}y = [h§+h3+h}0] -

The differential d : B y — Ej, is induced by Ap—15=1 and the differential d3 : Ei | —E;_,
is induced by the matrix Akzgﬁié, where:

1 0
_ _ -1 1 0
Ak:lﬁ;i = 0 —1 and Ak=21@;;1; = < 1 0 -1 ) .
—1 1
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Final Remarks

The work reported in this thesis gives continuity to the systematic study of the dynamical

implications associated to the algebraic behavior of a spectral sequence in [13, 24, 30].

The SSSA provides a way to recover the modules and differentials (E",d") of a spectral
sequence associated to a Morse chain complex (C.(f),A). As we apply the SSSA to A
important entries in the r-th diagonal of A" are singled out in order to determine A"*!.
These entries are the primary and change-of-basis pivots which induce the differentials d”
of the spectral sequence. Moreover, as r increases, the Z-modules EJ undergo change of
generators. The SSSA relates this change in generators of £} to change of basis over Q of

the connection matrix A.

Considering Morse chain complexes on surfaces M, we have shown in Theorem 2.4 that
as 1 increases, the Z-modules E’s undergo algebraic cancellations which reflect dynamical
cancellations of pair of consecutive critical points of a given Morse flow on M. In Theorem
2.4, we have proven that the primary pivots marked through the SSSA determine a contin-
uation of the initial flow to the minimal flow on M. In higher dimensions, the integrality
of the last matrix in the SSSA over Z, raises the question of whether this procedure can
be related to a continuation as in [22] of a flow associated to the initial connection matrix.
Some examples indicate this might be true. The dynamical interpretation of the intermedi-
ary matrices produced by the SSSA over Z is yet not well understood, since many entries
are non integers.

We intend to investigate the appearance of torsion in a spectral sequence in higher di-
mensions. Our goal is to search for properties in the connection matrix which either make
this torsion disappear or permit it to remain in the stabilization of the unfolding of a spectral
sequence.

The same type of dynamical problems exposed above in the Morse setting can be reformu-

lated to the contexts of Morse-Novikov and Morse-Bott flows, which constitute a challenging

159
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line of research.

In the Novikov setting, we have given the first step in order to extend the spectral se-
quence analysis to Novikov complexes. In this work, we restricted our attention to orientable
surfaces, where we have proven that the SSSA is well defined and that the non zero differen-
tials of the spectral sequence are isomorphisms induced by primary pivots. The difficulty to
define a SSSA over Z((t)) in higher dimension is that we lose the notion of how to minimize
leading coefficients in a change of basis.

A natural question in this context is whether the Novikov differential is a connection
matrix. To answer the question, we intend to make a deeper study of Novikov complexes in
all their generality. Also, we propose to use the Conley index and connection matrix theories
for Novikov flows in order to obtain dynamical informations on the connections between the
isolated invariants sets in this type of flows.

We envision to generalize the spectral sequence analysis for more general Morse decom-
positions than ones that have only critical points. This is the central stimulus in studying
spectral sequences for Morse chain complexes with coarser filtration, since this provides a
finest filtration for a more general flows. It is natural that our first attempt be in the context

of Morse-Bott flows, where a finest Morse decomposition admits critical manifolds.
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Appendix A

Some Technical Results

This appendix is dedicated to prove some technical lemmas which are necessary for the
prove of the Primary Pivots for Orientable Surfaces Theorem 2.1 in Section 2.3.

Below we present the Block Sequential Sweeping Algorithm over F, which is a version of
the SSSA where there are no elementary row operations, only elementary column operations
in the execution of the SSSA over F, since we give up keeping track the evolution of the rows

in UZ:ljk‘
Block Sequential Sweeping Algorithm over F

Input: nilpotent L x L upper triangular matrix A with column/row partition Jy, - -, Jp.
Initialization Step: Jy = ()
Iterative Step:
For k=1,---,bdo
Let A(k) be the matrix obtained from A by zeroing rows in J;_; and entries
outside positions in Jy_1 X Jj.
Apply the SSSA over F to A(k), with column/row
partition Jy, - - - , J,, obtaining A(k)¥

Jr = indices of columns of A(k)L containing primary pivots

Output: (A(k)Y,...,A(k)) and (T(k)°, ..., T(k)*1), for k=1,--- 0.

Lemma A.1 (Uncoupling). Let A be a connection matriz with row/column partition Jo, - - - | Jy.
Let AL be the matriz produced by the SSSA over F applied to A, and let A(k)*, for all k,
be the matrices obtained in the Block Sequential Sweeping Algorithm over F applied to A.
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Then A, = A(K)T_ ., for all k and the collection of change-of-basis and primary piv-
ots encountered in the application of the SSSA over F to A(k), for all k, coincides with the

change-of-basis and primary pivots found when it is applied to /.

Proof. Let T'(k)°, T(k)', ...
the SSSA over F to A(k). Given that A(k) has at most one nonzero block, A(k),, ..,

Proposition 6 , Lemma 1 and induction imply that T'(k)7 ; is an identity matrix, for all

, T(k)* be the transition matrices constructed when applying

i # k. Now, using Lemma 2.1, the update of A(k) is reduced to the following update

AKY), g = (TR)5 5 ) AR S T(R) 5, = AR) 5 TR,

for all » > 1. Since the update of A(k) involves only the post-multiplication step, only
elementary column operations are performed.

Lemma 10 implies that A(1)% , = A% ; and the change-of-basis and primary pivots
marked during the application of the algorithm to A(1) coincide with the ones marked in
columns in J; when the algorithm is applied to A.

Assume by induction that A(k—1)5 , =A%,  and change-of-basis and primary
pivots of A(k —1) agree with the ones in columns in J;_; marked when A is swept. Observe
that rows of AL in J,_; are zero. By construction, rows of A(k) in J,_; are also zero, and,
since A(k) suffers only elementary column operations during the application of the SSSA
over I, these rows are not changed. So A%Z ;= A(k); ;.

By Lemma 2.1, entries in the rows of A in J;_; are not subjected to elementary row
operations during the application of the SSSA over F thereto. Furthermore, all change-of-
basis and primary pivots in columns in J;, occur in positions in Jj_; x Ji. Hence changes to
entries in these rows are only due to elementary column operations, as also happens when the
SSSA is applied to A(k). Since Ay, ;, = A(k)z,_; and the elementary column operations
on columns in J; are solely dependent on the entries in this submatrix, it follows that the
change-of-basis and primary pivots marked in columns in .J; during execution of the SSSA
over F to both A and A(k) coincide, and so A%_ = A(k)% |

19k Je—1Ji”

The Uncoupling Theorem implies that we may restrict our attention to connection matri-
ces containing at most one nonzero block when studying the Incremental Sweeping Algorithm
over F, if we accept to miss the evolution of rows in U%_,J;, which we know will end up
zero and will not contain neither primary nor change-of-basis pivots. To ease the discussion

that follows, we henceforth call this special case the 1-Block Incremental Sweeping Algorithm
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over IF.

The analysis of the 1-Block Incremental Sweeping Algorithm over F is significantly simpler
than that of its more general counterpart. If the columns of the connection matrix A € FExF
are partitioned into two subsets .Jy and .J;, only rows in .J; are altered in the pre-multiplication
by (T77')~!, in the matrix update step. But Aj, = 0 and this zero pattern is invariant
under elementary column operations. So the post-multiplication part of the update doesn’t
change the nullity of rows in J; and the elementary row operations performed during the
pre-multiplication part of the update step involve only the zero rows in J;. This implies
AT =0 for all r, and we may eliminate the pre-multiplication part of the update step, so

that only elementary column operations need be performed.

During the execution of the 1-Block Incremental Sweeping Algorithm over F, columns
of A" may be classified as active (resp., passive), if they contain (resp., do not contain)
a primary pivot mark. The active columns effect change upon the passive columns. The
passive columns suffer changes caused by active columns. At the beginning of the algorithm
all columns are passive and before changes are allowed to happen, at least one column must
become active. Once a column reaches the active state, it doesn’t leave it, since primary pivot
marks are permanent. Passive columns undergo a (possibly empty) sequence of elementary
column operations and either reach an active state or become zero, since columns without
primary pivots must be zero. If a column reaches an active state, it does so when the lowest
nonzero entry in the column is marked as a primary pivot. The order of sweeping implies
that the change-of-basis pivots that occur in a fixed column, say j, are marked in an upward
fashion. If the entry in position (j —r, j) is marked as a change-of-basis pivot, and the entry
in position (j—r, p) contains the primary pivot to its left, columns p and j exhibit a sequence
of trailing of zeros from row j —r+1 to the last row. The elementary column operation that
eliminates this change-of-basis pivot changes only the entries in rows 1 through 57 — r, the
actual operation being determined by the values of the two pivots. By construction, each

operation increases the number of trailing zeros by at least one.

In the 1-Block Incremental Sweeping Algorithm over I, the passive columns dictate the
cancellations, which are done only once a change-of-basis pivot is marked. We propose a
reengineered version therefor, in which this role is transferred to the active columns. Once an
primary pivot is identified, all cancellations it is responsible for in the 1-block Incremental
Sweeping Algorithm over F are performed. To arrive at the same final matrix as in the

original algorithm, the primary pivots must also be identified in a upward order, from the
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bottom up. The second and last important aspect for the identification of primary pivots, is
the left-to-right order of the sweeping. The algorithm below incorporates both of these. In
the algorithm we adopt the usual convention that if S is an empty set and A is a real matrix,
then Ag, = 0. Since we are considering connection matrices with at most one nonzero block,

we may assume, without loss of generality, that the row/column partition has two subsets.

Revised 1-Block Incremental Sweeping Algorithm over F
Input: nilpotent L x L upper triangular matrix A with column/row partition Jy, J;.
Initialization Step: C*' = {1,..., L}, A=A, t=1.
Iterative Step:
While Al #0 do
Let 4, = max{i | A, # 0}
Let j, = min{j € C* | Af ; # 0}

t

Permanently mark A; ; as a primary pivot

[ Update Matrix Construction
t

- AL
t 1] +
T «— T — E TUJJ

ject
J> gt

[ Simplified Matrix A update
AttL — AT

C* = C\{jie}
| L t+1

Output: (A°...) and (7°,...)

Let (i1,71), --., (i, ji=) be the positions of primary pivots marked in the application
of the Revised 1-block Incremental Sweeping Algorithm over F to the connection matrix
A € FE*E with row/column partition Jy, Ji, in the order in which they were marked. Then

the following are true:

(i) once a column receives a primary pivot mark, it remains invariant until the end of the

algorithm,
(ll) jt > ita fOI' t = 1, e 7t*7

(il) 43 >dg > -+ > ips,
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(iv) AEZT,,.,L}CM =0, fort=1,...,t,
(v) the number of consecutive zero entries at the bottom of each column never decreases.

Corollary A.1. Let AUt be the last matriz obtained by the application of the Revised 1-
block Incremental Sweeping Algorithm to the connection matriz A € FE*E with row/column
partition Jo, Ji. Then the primary pivot entries are nonzero and each nonzero entry of A" +1

lies above a primary pivot.

Proof. Let (i1,71), ..., (it=,ji) be the positions of primary pivots. A simple induction
shows that C*"™t! is the set of indices of columns of A**! without primary pivots. The
stopping criterium implies Af*(;l +1 = 0. Finally, primary pivots, when marked, are, by the
rules of the algorithm, the lowest nonzero entry of the column, and columns do not change

after receiving a primary pivot mark. [ |

The next lemma establishes the equality between the final matrices produced by the Re-
vised 1-block Incremental Sweeping over F and the 1-block Incremental Sweeping Algorithm
over [F. There is of course no sense in looking for equality between other matrices in the
sequence produced by the algorithm, since the order of cancellation is in all likelihood quite

different in the two algorithms.

Lemma A.2. Let A be a connection matriz with column/row partition Jy, Jy. Let A and
AL be the matrices obtained by applying the Revised 1-block Incremental Sweeping Algorithm
over F and the 1-Block Incremental Sweeping Algorithm over F to A, respectively. Then

A+ = AL and their primary pivots coincide.

Proof. If A"+! = AL then their primary pivots coincide in position and value, since the
primary pivots entries are nonzero and each nonzero entry is located above a unique primary
pivot in both algorithms.

In both algorithms columns may suffer elementary column operations until they either
reach zero or receive a primary pivot mark. Additionally, a column may suffer an elementary
column operation only from another column with a primary pivot mark on its left and
successive operations on a column may only increase the range of trailing zeros in that
column, that is, the set of successive rows, ending in row L, containing zero entries. The
order in which the primary pivots are identified probably differs between algorithms, but

the important thing is that when an entry is eligible for receiving a primary pivot in either
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algorithm, the column it belongs to will have been subjected to the same changes in both
of them. In order for these changes to be the same in both algorithms, the active columns
acting on them must be the same and the changes they provoke in a fixed column must occur

in the correct order, from bottom up.

The proof is by induction on the number of nonzero columns of A. If there is but one
nonzero column, the nonzero entry at the bottom of this column will be marked by both
algorithms as the unique primary pivot of A, so t* = 1, there will be no elementary column
operations and in fact AT = AL = A,

Admit by induction that the last matrix of both algorithms coincide, when the number
of nonzero columns is smaller than k. Suppose A has k nonzero columns. Let (i, j;) be the
first position to receive a primary pivot mark in the Revised 1-block Incremental Sweeping
Algorithm over F. Then the entry Aill]_l“ must also receive a primary pivot mark in the SSSA
over F. To see that, note that, by definition of (i1, 71), the entries in Ay, ryq,..5, -1y and
Agii41,..,0{1,...,0} are zero, and the number of trailing zeros can only increase. Consequently
no entries in these submatrices may have been marked as a primary pivot before the sweeping
of the j; —1; diagonal, so Afll]_l“ is nonzero, with no primary pivot marks on its left or below
it. So, in this case, ATF' = AL = A_; . Furthermore, notice that, entries in positions
(11,71 + 1), ... (i1, L) will be swept after this and be marked, if nonzero, as change-of-basis
entries in the Incremental Sweeping Algorithm over F, since rows i1 + 1, ..., L of A are
zero and the entry in position (i1, ;) has a primary pivot. The changes possibly effected
on columns due to these markings in the SSSA over F on the corresponding iterations are
precisely the changes done in the first iteration of the Revised 1-block Incremental Sweeping

Algorithm over F.
Let A’ be defined as follows:

Al _{ A?]J lf.]%jlu

0, otherwise.

The matrix A’ agrees with the matrix obtained from A after the first iteration of the Revised
1-block Incremental Sweeping Algorithm over F, except for column j;, which is zero. So A’
encompasses the changes to columns due to change-of-basis entries in row ¢;, and has the
ji1-th column equal to zero. Thus if we apply the Incremental Sweeping Algorithm over F
to A, the matrix A" obtained agrees with AL, except for column j;, which would remain

zero throughout the algorithm. Analogously, A’ encompasses changes made to A in the first
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iteration of the Revised 1-block Incremental Sweeping Algorithm over F, but differs from it in
column j;, which has been zeroed. Thus the application of the Revised 1-block Incremental
Sweeping Algorithm over F to A’ produces a matrix A" whose columns coincide with the
corresponding ones from A +1 except for the j;-th column. Since A’ has at most k — 1

nonzero columns, induction implies that A’ L— A" This implies
A.Lj = A/.Lj = Alt.j = Ai*jJrla for j # j1.

But since we already have that AL, = A" we conclude that A = A*+1, [ |
Lemma A.3. Let A € {0,+1}%L be a totally unimodular connection matriz with col-
umn/row partition Jo, Ji. Let C* be the set of index columns of At which do not have a

primary pivot. The submatrix Atoct 18 totally unimodular, fort=1,...,t*+ 1.

Proof. Let (i1, j1), ..., (i, ji~) be the positions of the primary pivots marked.
We claim that Af o 1s totally unimodular, for ¢ = 1,...,¢* + 1. This is trivially true for
t = 1, by hypothesis. Assume it is true for ¢. Since

A it j ¢ ¢,

Al if j € Ctand j < jy,

At~ #Afjt, if j € Ct and j > ji,

itjt

the marking of an entry in position (i, j;) of Afct as a primary pivot implies the cancellation,
in A, of entries on row i, in columns in C* other than j, (although the update matrix
construction provides the cancellation of entries to the right of column j;, entries to its left are
zero, since Af  is the leftmost nonzero entry in row i, of Al,). Thus A’} = (A'TY), 0 =
At.ctTétCt. Notice that the cancellations are achieved by adding to column j € C*, j # j;,
the appropriate multiple of column j;. But this is simply a transposed version of the variant
of the linear programming pivoting described above, with Aict = AT and Tl = BT.
Therefore, if Afct is totally unimodular, then A’”gl, is also totally unimodular. Since this
property is, by definition, inherited by submatrices, and C**' C C*, we conclude Atfg}m is

also totally unimodular. By induction, At o+ 1s totally unimodular for all . [
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