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Abstract

The main theme in this thesis is the study of gradient flows associated to a vector field

−∇f on closed manifolds, where f is either a Morse function, a circle-valued Morse function

or a Morse-Bott function. In order to obtain dynamical information, we make use of algebraic

and topological tools such as spectral sequences and connection matrices.

In the Morse context, consider a chain complex (C,∆) generated by the critical points of

f , where ∆ counts the number of flow lines between consecutive critical points with signs.

A spectral sequence (Er, dr) analysis is used to obtain results on global continuation of flows

on surfaces. A link is established between the differentials on the r-th page of (Er, dr) and

cancellation of critical points.

In the circle-valued Morse case f : M → S1, a sweeping algorithm for the Novikov chain

complex (N ,∆) associated to f and generated by the critical points of f is defined over the

ring Z((t)). This algorithm produces at each stage Novikov matrices. We prove that the last

Novikov matrix has polynomial entries which is quite surprising since the matrices in the

intermediary stages may have infinite series entries. We also present results showing that

the modules and differentials of the spectral sequence associated to (N ,∆) can be retrieved

through the sweeping algorithm.

For gradient flows associated to Morse-Bott functions, the singularities form critical man-

ifolds. We use the Conley index theory for the critical manifolds in order to characterize the

set of connection matrices for Morse-Bott flows. Results are obtained on the effects on the set

of connection matrices caused by a change in the partial ordering and Morse decomposition

of isolated invariant sets.

Resumo

O tema principal desta tese é o estudo de fluxos gradientes associados a campos vetoriais

−∇f em variedades fechadas, onde f é uma função do tipo Morse, Morse circular e Morse-

Bott. Para obter informações dinâmicas em cada caso, utilizamos ferramentas algébricas e

topológicas, tais como sequências espectrais e matrizes de conexão.

No contexto de Morse, consideramos um complexo de cadeias (C,∆) gerado pelos pontos

cŕıticos de f onde ∆ conta (com sinal) o número de linhas do fluxo entre dois pontos cŕıticos
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consecutivos. Uma análise via sequências espectrais (Er, dr) é feita para se obter resultados

de continuação global em superf́ıcies. Nós relacionamos as diferenciais da r-ésima página de

(Er, dr) com cancelamentos dinâmicos entre pontos cŕıticos.

No caso de função de Morse circular f : M → S1, o método da varredura para um

complexo de Novikov (N ,∆) associado f e gerado pelos pontos cŕıticos de f é definido sobre

o anel Z((t)). Este método produz a cada etapa matrizes de Novikov. Provamos que a matriz

final produzida pelo método da varredura tem entradas polinomiais, o que é surpreendente,

já que as matrizes intermediárias podem ter séries infinitas como entradas. Apresentamos

resultados que mostram que os módulos e diferenciais de uma sequência espectral associada

a (N ,∆) podem ser recuperados através do método da varredura.

Para fluxos gradientes associados a funções de Morse-Bott, as singularidades formam

variedades cŕıticas. Usamos a teoria do ı́ndice de Conley para obter uma caracterização

do conjunto de matrizes de conexão para fluxos Morse-Bott. Obtemos resultados sobre o

efeito no conjunto de matrizes de conexão causado por mudanças na ordem parcial e na

decomposição de Morse de um conjunto invariante isolado.
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Introduction

Algebraic-topological tools have been widely used in dynamical systems in order to deter-

mine structural properties which remain invariant under small perturbations, as in Conley

index theory [12, 38].

The basic idea of the Conley index theory is the notion of Morse decomposition which

provides a way to decompose an invariant set inside a flow into smaller components by using

appropriate attractor-repeller pairs. In this way, if one can understand the smallest invariant

sets of the flow then one can investigate some more complex invariant sets such as the ones

consisting of attractor-repeller pairs given by a pair of invariant sets of the first type together

with all the flow lines joining them. After that, one can repeat this procedure to study the

next class of complex invariant sets by taking into account “longer” and “longer” flow lines.

Given a Morse decomposition of an isolated invariant set, the Conley index provides

a topological description of the local dynamics around the Morse sets. The connection

matrices introduced by Franzosa [20, 21] are algebraic-topological tools which enable us to

study the connections between Morse sets. Roughly speaking, a connection matrix for a

Morse decomposition is a matrix which has, as entries, maps between the homology Conley

indices of Morse sets. Connection matrices encode some information about the structure

of the invariant set considered. In fact, non null entries in a connection matrix detects

existence of connections between Morse sets. The most important property of this tool is

the invariance under continuation, see [22].

In the case of negative gradient flows generated by a Morse function f on a finite dimen-

sional closed manifold, the critical points of f and connecting orbits between them determine

a Morse chain complex (C,∆) [3, 39, 42] whose differential ∆ is a special case of a connection

matrix and plays an important role in the study of the dynamics associated with this chain

complex. For instance, it was proved in [13, 30] that a spectral sequence of a filtered Morse

chain complex can be retrieved from its connection matrix. The main idea behind this result
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2 Introduction

is a sweeping algorithm which generates a collection of connection and transition matrices,

∆r and T r respectively. The matrix ∆r contains the necessary information to recover the

module Er and differential dr of the spectral sequence.

The sweeping algorithm singles out important nonzero entries in ∆r, which we refer to

as primary pivots and change-of-basis pivots, of the r-th diagonal of ∆r in order to define a

matrix ∆r+1. At each step, ∆r+1 is a change of basis of ∆r. Hence, all ∆r represent in some

sense the initial connection matrix, that is, they all represent the same linear transformation.

As r increases, the Z-modules Er
p of the spectral sequence change generators. In [13], these

algebraic changes of the generators of the Z-modules of the spectral sequence are connected

to a particular family of changes of basis over Q of the connection matrix ∆.

The Zig-Zag Theorem in [13] states that, whenever ∆p−r+1,p+1 corresponds to a non-zero

differential drp : Er
p → Er

p−r, there exists a path of connecting orbits joining the critical

points generating E0
p and E0

p−r . Inspired by this particular case of algebraic-dynamical

correspondence, the next natural, albeit difficult, step is to find out how much of the algebraic

information in the spectral sequence can be interpreted dynamically. As one “turns the

pages” of the spectral sequence, i.e. considers progressively the modules Er, one observes

algebraic cancellations within the Er’s. What are the dynamical meaning of these algebraic

cancellations? Does the sweeping algorithm provide a continuation of the flow?

The spirit of this thesis is to investigate the correspondence between the algebra coded in

the spectral sequence through the sweeping algorithm and the dynamics. In a first instance,

one considers a Morse function on two dimensional manifolds and the associated Morse chain

complex. We also apply this type of investigation to gradient flows generated by Morse-Bott

function, where critical manifolds are admissible; and to gradient flows generated by circle-

valued Morse functions f : M → S1 and the corresponding Novikov chain complex. We also

present a connection matrix approach to Morse-Bott flows.

The work reported here is a compilation of several papers [4, 5, 25, 26, 27] where we

investigate the dynamical properties provided by the sweeping algorithm for Morse chain

complexes in [4, 5] and for Novikov complexes in [27]. In [25, 26], we apply the Conley index

theory for Morse-Bott flows on compact manifolds.

This thesis is organized in five chapters as follows. Chapter 1 is dedicated to the necessary

background material: Conley index theory, spectral sequences and Lyapunov graphs.

In Chapter 2, connection matrix theory and a spectral sequence analysis of a filtered

Morse chain complex (C,∆) are used to study global continuation results for flows on sur-
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3

faces. The novelty herein is a global dynamical cancellation theorem inferred from the differ-

entials of the spectral sequence (Er, dr). The local version of this theorem relates differentials

dr of the r-th page Er to Smale’s Theorem on cancellation of critical points.

In Chapter 3, a Spectral Sequence Sweeping Algorithm (SSSA) is established for a two

dimensional Novikov complex over Z((t)) associated to a circle-valued Morse function. We

prove that the SSSA is well defined and in the process we obtain a characterization result

for the family of Novikov matrices that it produces. We also prove that the final matrix

produced by the SSSA over Z((t)) has only polynomial entries which is quite surprising,

mainly because the intermediate matrices in the process may have infinite series entries. We

present results that retrieve the modules and differentials of the spectral sequence (Er, dr)

from the SSSA computed for a Novikov chain complex.

In Chapter 4, we introduce the generalized Morse-Bott inequalities for compact manifolds

with possibly non-empty boundary. It encompasses the classical Morse-Bott inequalities for

closed manifolds. We make use of these inequalities and the Conley index to establish a

continuation theorem for Morse-Bott graphs.

In Chapter 5, a connection matrix theory approach is presented for Morse-Bott flows

ϕ on smooth closed n-manifolds by characterizing the set of connection matrices in terms

of Morse-Smale perturbations. Further results are obtained on the effect on the set of

connection matrices CM(S) caused by changes in the partial orderings and in the Morse

decompositions of an isolated invariant set S.
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Chapter 1

Background

The aim of this first chapter is to present some background on topological dynamical

systems and algebraic topology tools which will be used throughout this thesis.

The basic ideas of Conley index theory are presented in the first section. In Section 1.2,

one gives a brief introduction to spectral sequences and to the Spectral Sequence Sweeping

Algorithm which recovers a spectral sequence associated to a chain complex. Section 1.3 is

dedicated to graphs, more specifically, abstract Lyapunov graphs. The background material

used in this chapter can be found in [6, 13, 21, 30, 41].

1.1 Conley Index Theory

In this section, the Conley index theory is addressed. This theory has several applica-

tions in the study of the dynamics of a system, including the existence of periodic orbits in

Hamiltonian systems, proof of chaotic behaviour in dynamical systems and bifurcation the-

ory. The connection matrix is a central concept in this theory and enables one to investigate

and prove the existence of heteroclinic connections between isolated invariant sets.

Conley index theory generalizes Morse theory, which in essence describes the dynamical

structure of a closed manifold through the non-degenerate critical points of a gradient vector

field. The Morse index is not well defined for more general invariant sets, while the Conley

index is well defined for any isolated invariant set.

We assume that the reader is familiar with the basic ideas in Conley index theory, hence

only a brief introduction to homotopy and homology Conley indices, Morse decompositions,

homology index braids and connection matrices will be presented. References on this section

5



6 Section 1.1 • Conley Index Theory

are [12, 20, 21, 22, 39].

1.1.1 Conley Index of an Isolated Invariant Set

Let X be a Hausdorff topological space and φt a continuous flow on X, i.e., a continuous

map φ : X×R→ X, (x, t) 7→ φt, which satisfies φ0 = id and φs ◦φt = φs+t. A subset S ⊂ X

is called an invariant set under φ if φt(S) = S for all t ∈ R. Given a subset N ⊂ X, let

Invφ(N) = {x ∈ N | φt(x) ∈ N, ∀t ∈ R},

that is, Invφ(N) is the maximal invariant subset in N . A subset S ⊂ X is called an isolated

invariant set with respect to the flow φt if there exists a compact set N ⊂ X such that

S = Invφ(N) ⊂ int(N). In this case, N is called an isolating neighbourhood for S. A

particular case of an isolating neighbourhood N is an isolating block, where the exiting set

of the flow N− = {x ∈ N | φ[0,t)(x) * N, ∀t > 0} is closed1.

Given an isolated invariant set S, an index pair for S in X is a pair of compact sets

(N,L) such that L ⊂ N and

(1) N\L is an isolating neighborhood of S in X, i.e., S = Invφ(N\L) ⊂ int(N\L);

(2) L is positively invariant relative to N , i.e., if x ∈ L and φ(x, [0, T ]) ⊂ N then

φ(x, [0, T ]) ⊂ L;

(3) and L is the exit set of the flow in N , i.e., if x ∈ N and φ(x, [0,∞)) * N then there

exists T > 0 such that φ(x, [0, T ]) ⊂ N and φ(x, T ) ∈ L.

N

L

S
N

L

S
N

L

S

Not possible Not possiblePossible

Conley proved in [12] that, given an isolated invariant set, there exists an index pair. Of

course, the index pair is not uniquely determined. However, given two index pairs (N,L)

1We define N+ = {x ∈ N | φ′

[0,t)(x) * N, ∀t > 0}, where φ′ is the reverse flow of φ, as the entering set of
the flow φ. We assume it to be closed as well.



Chapter 1 • Background 7

and (N,L) for S, the pointed spaces N/L and N/L, obtained by collapsing the exit sets L

and L, respectively, to a point, have the same homotopy type.

The homotopy Conley index I(S, φ) of S is defined as the homotopy type of the pointed

space N/L and the homology Conley index CH(S) of S is defined as the reduced homology

of N/L, where (N,L) is an index pair for S. Denote h∗ the rank of the homology Conley

index CH(S).

Figure 1.1 represents a flow on R2 containing a saddle-saddle connection. The set S

consisting of the two saddles and the connection between them is an isolated invariant set,

hence the Conley index is well defined for S. Considering the index pair (N,L) illustrated

in Figure 1.1, one has that the homotopy Conley index of S is the wedge sum of two pointed

one-spheres, i.e. I(S) =
∑1 ∨

∑1.

N

L

S

I(S) = Σ1 ∨ Σ1

Figure 1.1: Homotopy type of the space N/L.

An index pair (N,L) is called regular if the inclusion map L ⊂ N is a cofibration. In this

case, it follows that H(N,L) ∼= H(N/L). An index pair can always be modified to a regular

index pair. Since for some algebraic techniques it is more convenient to work with the pair

(N,L) than with the pointed space N/L, we assume from now on that the index pairs are

regular.

As previously stated, the Conley index generalizes the Morse index, see Section 2.1 for

the definition. The Conley index is the homotopy type of a pointed space and is well defined

for all isolated invariant sets. In the case of non degenerate critical points, these two notions

are related as follows: if x is a singularity with Morse index k then the Conley index of x is

the homotopy type of the k-sphere, i.e. I(x) =
∑k. Figure 1.2 illustrates this relation for

singularities in R3.

For more details on Conley index theory see [12, 38].
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Σ1

Σ2

Σ3

Σ0
Atractor

Repeller

Saddle

Saddle

of index 1

of index 2

Figure 1.2: Index pairs and Conley indices for singularities in R3.

1.1.2 Connection Matrix Theory

In this subsection, we present some definitions and results on connection matrices, Morse

decompositions and partial orders. Further details can be found in [20] and [21], for example.

Let P be a finite set. A partial order on P is a transitive relation < on the elements of P

for which π < π never holds, for all π ∈ P . The pair (P,<) is called a partially ordered set.

An interval in (P,<) is a subset I ⊂ P , such that, if π, π′ ∈ I and π < π′′ < π′, where

π′′ ∈ P , then π′′ ∈ I. The set of all intervals in (P,<) is denoted by I(P,<). Two elements

π, π′ of P are said to be adjacent if {π, π′} ∈ I(P,<).

An ordered collection (I1, · · · , In) of intervals in (P,<) is called an adjacent n-tuple of

intervals if ∪nj=1Ij ∈ I(P,<) and if π ∈ Ij and π′ ∈ Ik, with k < j, implies π ≮ π′. The

set of all adjacent n-tuple of intervals is denoted by In(P,<). If (I, J) ∈ I2(P,<) then

I ∪ J is denoted by IJ . An n-tuple (I1, . . . , In) is called a decomposition of an interval I if

(I1, . . . , In) ∈ In(P,<) and ∪n
j=1Ij = I.

Let Γ be a Hausdorff topological space with a continuous flow and S an isolated invariant

set in Γ. A <-ordered Morse decomposition of S is a collection D(S) = {Mπ}π∈P of mutually

disjoint compact invariant subsets of S for which the following property holds: if γ ∈ S does
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not belong to any Mπ with π ∈ P , then there must exist π, π′ ∈ P such that π′ < π and

γ ∈ C(Mπ,Mπ′), where C(Mπ,Mπ′) is the set of orbits connecting Mπ to Mπ′ , i.e.,

C(Mπ,Mπ′) = {x ∈ S | ω∗ ⊂Mπ and ω ⊂Mπ′}.

Note that the partial order < on P induces a partial order on D(S), which is also denoted

by < and called an admissible ordering of D(S). The flow defines an admissible ordering

<F of D(S), defined as follows: Mπ <F Mπ′ if and only if there exists a sequence π =

π0, π1, . . . , πn−1, πn = π′ of elements of P such that C(Mπj
,Mπj−1

) 6= ∅, for all j = 1, . . . n.

Every admissible ordering of D(S) is an extension of <F , in other words, all other admissible

orders are obtained by adding relations to <F .

For each interval I of (P,<), one can associate the set

MI =

(
⋃

π∈I

Mπ

)
∪

(
⋃

π,π∈I

C(Mπ′ ,Mπ)

)
,

which is called a Morse set of the admissible ordering <. Franzosa proves in [20] that if

(I, J) ∈ I2(P,<) then (MI ,MJ) is an attractor-repeller pair in MIJ and that there is a long

exact sequence

· · · −→ CH(MI)
i∗−→ CH(MIJ)

p∗
−→ CH(MJ)

∂∗−→ CH(MI) −→ · · · (1.1)

associated to the pair (MI ,MJ), where CH(MI) denotes de homology index of MI . The

collection of the homology index CH(MI), for all I ∈ I(P,<), and the maps i∗, p∗, ∂∗, for

all pair (I, J) ∈ I2(P,<), is a graded module braid over <. This graded module braid is

denoted by H(<) and is called the homology index braid of the admissible ordering < of

D(S). Moreover, H(<) is chain complex generated. See [20] and [21] for more details.

Now, let C = {C∆(π)}π∈P be a collection of free chain complexes with trivial boundary

operator, where C∆(π) = CH(Mπ), for all π ∈ P , the homology index ofMπ with coefficients

in G. A map ∆ : C∆(P )→ C∆(P ) can be viewed as a matrix

∆ =


 ∆(π′, π)




π,π′∈P
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where each entry ∆(π′, π) is a map of degree −1 from CH(Mπ′) to CH(Mπ). One says that

(a) ∆ is strictly upper triangular if ∆(π′, π) 6= 0 implies π < π′;

(b) ∆ is a boundary map if each map ∆(π′, π) is of degree −1 and ∆ ◦∆ = 0;

Let ∆ be strictly upper triangular boundary map. Given (I, J) ∈ I2(P,<), let ∆(J, I)

be the map defined by the matrix

∆(J, I) =


 ∆(π′, π)




π∈I, π′∈J

and denote the map ∆(I, I) by ∆(I). For each I ∈ I(P,<), considering the module C∆(I) =

⊕π∈ICH(Mπ), (C∆(I),∆(I)) is a chain complex. For each pair of adjacent intervals (I, J),

there is a short exact sequence associated to it:

0 −→ C∆(I)
i(I,IJ)
−→ C∆(IJ)

p(IJ,J)
−→ C∆(J) −→ 0.

Passing to homology, one has the long exact sequence

· · · −→ H∆(I)
i∗(I,IJ)
−→ H∆(IJ)

p∗(IJ,J)
−→ H∆(J)

∆∗(J,I)
−→ H∆(I) −→ · · · ,

where H∆(K) denotes the homology of the chain complex (C∆(K),∆(K)), the maps

i∗(I, IJ), p∗(IJ, J) are induced by the inclusion i(I, IJ) and projection p(IJ, J) maps, re-

spectively. The map ∆∗(J, I) is induced by ∆(J, I) as follows: ∆∗(J, I)[a] = [∆(J, I)a]. The

collection of H∆(I), for all I ∈ I(P,<), and the maps i∗(I, IJ), p∗(IJ, J), ∆∗(J, I), for each

(I, J) ∈ I2(P,<), is a graded module braid denoted by H∆.

A strictly upper triangular boundary map ∆ : C∆(P ) → C∆(P ) is called a connection

matrix of H(<) if and only if the graded module braid H∆ generated by ∆ is isomorphic to

H(<), that is, if there is a collection of isomorphism {θ(I) :H∆(I)→ CH(MI)|I ∈ I(P,<)},

such that, the following diagram commutes for all pair (I, J) ∈ I2(P,<):

· · ·
∆∗(J,I)

// H∆(I)
i∗(I,IJ)

//

θ(I)
��

H∆(IJ)
p∗(IJ,J)

//

θ(IJ)
��

H∆(J)
∆∗(J,I)

//

θ(J)
��

H∆(I)
i∗

//

θ(I)
��

· · ·

· · ·
∂(J,I)

// CH(MI)
i∗

// CH(MIJ)
p∗

// CH(MJ)
∂(J,I)

// CH(MI)
i∗

// · · ·
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If < is the flow ordering, then ∆ is said to be a connection matrix of the Morse decomposition

D(S).

The set CM(<) of connection matrices of H(<) is non empty, as Franzosa proved in [21].

Moreover, if <1 and <2 are admissible orderings of D(S) such that <2 is an extension of <1,

then CM(<1) ⊂ CM(<2). In particularly, CM(<F ) ⊂ CM(<), for all admissible ordering

< of D(S).

The set CM(<) provides some dynamical information about the structure of an invariant

set S. A well known fact is that if ∆ ∈ CM(<F ), π and π′ are adjacent in the flow ordering

and ∆(π′, π) 6= 0 then C(Mπ′ ,Mπ) 6= ∅.

Note that algebraic properties of ∆ put restrictions on the maps ∂(π, π′). ∆ can be used

to prove the existence of connecting orbits between Morse sets. Moreover, this theory can

also be applied to the study of parameterized families of flows, according to the following

two approaches: first by studying the stability of connection matrices under perturbations,

whenever some stable connecting orbits are identified; and secondly by studying the changes

in connection matrices under perturbation, whenever bifurcations are detected, see [22] and

[24].

Example 1.1. Consider the flow illustrated in Figure 1.3, where the isolated invariant set

S consists of singularities a, b and c and the connections between them. Let M1 = {a},

M2 = {b} and M3 = {c}. D(S) = {M1,M2,M3} is a <-ordered Morse decomposition of

S, where (P,<) is the ordered set P = {1, 2, 3} with 1 < 2 < 3. Note that the admissible

ordering coincides with the flow order.

S

ab

c

M1M2

M3

Figure 1.3: S is an isolated invariant set.

The homotopy Conley index of the Morse sets MI , with I ∈ I(<) are I(M1) = Σ0,

I(M2) = I(M3) = I(M123) = Σ1, I(M12) = 0̄, I(M23) = Σ1 ∨ Σ1. Consider the module
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G = Z2. Let ∆ : C∆(P )→ C∆(P ) be a strictly upper triangular boundary map

∆ =




0 ∆(2, 1) ∆(3, 1)

0 0 ∆(3, 2)

0 0 0


 ,

where the homomorphisms ∆(2, 1) : H(M2) → H(M1), ∆(3, 1) : H(M3) → H(M1) and

∆(3, 2) : H(M3)→ H(M2) are of degree −1. Of course ∆(3, 2) is the null map, since H(M3)

and H(M2) are non zero only in dimension 1.

Since the Conley indices are computed in this example over Z2, then ∆(2, 1) is an iso-

morphism or2 the null map. Analogously for ∆(3, 1).

In order for ∆ to be a connection matrix forD(S), the graded module braidH∆ generated

by ∆ must be isomorphic to the homology index braid. From this fact, one can obtain

information about the maps ∆(2, 1) and ∆(3, 1). In this way, the homology of the complexes

(C∆(I),∆(I)), where I ∈ I and ∆(I) is the restriction of ∆ to the interval I, are:

Hn∆(i) =
ker ∆n(i)

im ∆n+1(i)
=

Hn(Mi)

0
∼= Hn(Mi), for i = 1, 2, 3,

Hn∆(12) =
ker ∆n(2, 1)

im ∆n+1(2, 1)
=

Hn(M1)⊕ ker ∆n(2, 1)

im ∆n+1(2, 1)⊕ 0
, (1.2)

Hn∆(23) =
ker ∆n(3, 2)

im ∆n+1(3, 2)
=

Hn(M2)⊕Hn(M3)

0
∼= Hn(M2)⊕Hn(M3).

Observe that the homology of (C∆(I),∆(I)) is isomorphic to the homology Conley index

of MI , for all interval I, except when I = {1, 3}. Hence, one needs to guarantees that

H∆(12) ∼= H(M12). Remember that ∆(2, 1) can be a null map or an isomorphism; since

(1.2) must hold, then if ∆(2, 1) = 0 one has H∆(12) ∼= H(M1)⊕H(M2) ≇ H(M12). But, if

∆(2, 1) is an isomorphism, then H∆(12) ∼= H(M12).

Note that there are no restrictions on the map ∆(3, 1) in order for ∆ to be a connection

matrix for the Morse decomposition D(S). Therefore, the connections matrices for this

example are the maps

∆ =




0 ≈ ≈

0 0 0

0 0 0


 and ∆ =




0 ≈ 0

0 0 0

0 0 0


 .

◭
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1.2 Spectral Sequence Sweeping Algorithm

In this section, one presents the main algebraic tools that will be used throughout this

thesis. The first one is a spectral sequence associated to a chain complex and the basic

references are [15, 41]. The second one is the Spectral Sequence Sweeping algorithm which,

when applied to a filtered chain complex (C∗, ∂∗), recovers from it the spectral sequence

associated to (C∗, ∂∗). This algorithm was introduced in [13] and in [30] for the case of a

chain complex over Z and F, respectively.

1.2.1 Spectral Sequence for a Chain Complex

Let R be a principal ideal domain. A k-spectral sequence E over R is a sequence {Er, ∂r},

for r ≥ k, such that

1. Er is a bigraded module over R, i.e., an indexed collection of R-modules Er
p,q, for all

p, q ∈ Z;

2. dr is a differential of bidegree (−r, r − 1) on Er, i.e., an indexed collection of homo-

morphisms dr : Er
p,q → Er

p−r,q+r−1, for all p, q ∈ Z, and (dr)2 = 0;

3. for all r ≥ k, there exists an isomorphism H(Er) ≈ Er+1, where

Hp,q(E
r) =

Kerdr : Er
p,q → Er

p−r,q+r−1

Imdr : Er
p+r,q−r+1 → Er

p,q

.

Observe that if Er
p,q = 0 for a fixed pair of integers (p, q), then Er+a

p,q = 0, for all integers

a ≥ 0. Moreover, defining Er
q =

⊕
s+t=q E

r
s,t, the differential dr induces a homomorphism

∂r : Er
q → Er

q−1 such that {Er, ∂r} is a chain complex with q-th homology module equal to
⊕

s+t=q H(E)s,t.

Let Zk
p,q = Ker(dkp,q : Ek

p,q → Ek
p,q−1) and Bk

p,q = Im(dkp,q+1 : Ek
p,q+1 → Ek

p,q), then

Bk ⊆ Zk and Ek+1 = Zk/Bk. Now, define Z(Ek+1)p,q = Ker(dk+1
p,q : Ek+1

p,q → Ek+1
p−1,q)

and B(Ek+1)p,q = Im(dk+1
p+1,q : E

k+1
p+1,q → Ek+1

p,q ). By the Noether Isomorphism Theorem, there

exist bigraded modules Zk+1 and Bk+1 of Zk containing Bk such that Z(Ek+1)p,q = Zk+1
p,q /Bk

p,q

and B(Ek+1)p,q = Bk+1
p,q /Bk

p,q, for all p, q ∈ Z. Hence B
k ⊆ Bk+1 ⊆ Zk+1 ⊆ Zk. By induction,

one obtains submodules

Bk ⊆ Bk+1 ⊆ . . . ⊆ Br ⊆ . . . ⊆ Zr ⊆ . . . ⊆ Zk+1 ⊆ Zk,
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such that Er+1 = Zr/Br.

Consider the bigraded modules Z∞ = ∩rZ
r, B∞ = ∪rB

r and E∞ = Z∞/B∞. The latter

module is called the limit of the spectral sequence. A spectral sequence E = {Er, ∂r} is

convergent if given p, q there is r(p, q) ≥ k such that for all r ≥ r(p, q), drp,q : E
r
p,q → Er

p−r,q+r−1

is trivial. A spectral sequence E = {Er, ∂r} is convergent in the strong sense if given p, q ∈ Z

there is r(p, q) ≥ k such that Er
p,q ≈ E∞

p,q, for all r ≥ r(p, q).

Let (C, ∂) be a chain complex. An increasing filtration F on (C, ∂) is a sequence of

submodules FpC of C such that:

1. FpC ⊂ Fp+1C, for all integer p;

2. the filtration is compatible with the gradation of C, i.e. FpC is a chain subcomplex of

C consisting of {FpCq}.

· · · −→ Fp−1Cp+q−1 −→ FpCp+q−1 −→ Fp+1 Cp+q−1 −→ Fp+2 Cp+q−1 −→ · · ·

· · · −→ Fp−1Cp+q −→ FpCp+q −→ Fp+1 Cp+q −→ Fp+2 Cp+q −→ · · ·

· · · −→ Fp−1Cp+q+1 −→ FpCp+q+1 −→ Fp+1 Cp+q+1 −→ Fp+2 Cp+q+1 −→ · · ·

↓

↓

↓

↓

↓↓

↓ ↓

↓ ↓↓ ↓

↓ ↓↓ ↓

...
...

...
...

...
...

...
...

Increasing filtration

C
om

p
at
ib
le

w
it
h
th
e
gr
ad

at
io
n

i

∂

A filtration F on C is called convergent if ∩pFpC = 0 and ∪pFpC = C. It is called finite

if there are p, p′ ∈ Z such that FpC = 0 and Fp′C = C. Also, it is said to be bounded below

if for any q there is p(q) such that Fp(q)Cq = 0.

Given a filtration on C, the associated bigraded module G(C) is defined as

G(C)p,q =
FpCp+q

Fp−1Cp+q

.

A filtration F on C induces a filtration F on H∗(C) defined by

FpH∗(C) = Im [H∗(FpC)→ H∗(C)].
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If the filtration F on C is convergent and bounded below then the same holds for the induced

filtration on H∗(C).

The following theorem (see [41]) shows that one can associate a spectral sequence to a

filtered chain complex whenever the filtration is convergent and bounded below.

Theorem 1.1. Let F be a convergent and bounded below filtration on a chain complex C.

There is a convergent spectral sequence with

E0
p,q =

FpCp+q

Fp−1Cp+q

= G(C)p,q and E1
p,q ≈ Hp+q

(
FpCp+q

Fp−1Cp+q

)

and E∞ is isomorphic to the bigraded module GH∗(C) associated to the induced filtration on

H∗(C).

The proof of this theorem provides algebraic formulas for the modules Er, which are

Er
p,q =

Zr
p,q

Zr−1
p−1,q+1 + ∂Zr−1

p+r−1,q−r+2

,

where

Zr
p,q = {c ∈ FpCp+q | ∂c ∈ Fp−rCp+q−1}.

Note that, E∞ does not determine H∗(C) completely, but

E∞
p,q ≈ GH∗(C)p,q =

FpHp+q(C)

Fp−1Hp+q(C)
.

However, it is a well known fact [15] that whenever GH∗(C)p,q is free and the filtration

is bounded, ⊕

p+q=k

GH∗(C)p,q ≈ Hp+q(C). (1.3)

1.2.2 Spectral Sequence Sweeping Algorithm

In [13], a sweeping algorithm was introduced from which a spectral sequence associated

to a finite chain complex over Z with a special filtration is recovered. More specifically, let

(C, ∂) be a finite chain complex such that each module Ck is finite generated. Denote the

generators of the Ck chain module by h1
k, · · · , h

ck
k . One can reorder the set of the generators

of C∗ as

{h1
0, · · · , h

ℓ0
0 , h

ℓ0+1
1 , · · · , hℓ1

1 , · · · , h
ℓk−1+1
k , · · · , hℓk

k , · · · },
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where ℓk = c0 + · · ·+ ck
2. Let F be a finest filtration on C defined by

FpCk =
⊕

hℓ
k
, ℓ≤p+1

Z〈hℓ
k〉,

for p ∈ N. The spectral sequence associated to (C∗, ∂∗) with this finest filtration has a special

property: the only q for which Er
p,q is non-zero is q = k−p, where k is the index of the chain

in FpC \ Fp−1C. Hence, in this case, we omit reference to q. It is understood that Er
p is in

fact Er
p,k−p. The sweeping algorithm presented below, provides an alternative way to obtain

such modules as well as the differentials dr’s.

For this purpose, we can view the differential boundary map ∂ of the chain complex C

as the matrix ∆:

∆k−1

∆k

∆k+1

∆k+2

CkCk−1 Ck+1 Ck+2 CnC0

0

Ck

Ck−1

Ck+1

Ck+2

Cn

C0

0

0

0

0

0 0

0

0

0

0

0

...

...

· · · · · ·

∆ =

where ∆k is the map ∂k and the order of the columns of ∆ follows the order determined

on the generators of C∗. From now on, the boundary operator ∂ and the matrix ∆ will be

used interchangeably. Note that the numbering on the columns of ∆ is shifted by one with

respect to the subindex p of the filtration Fp.

Remember that the term hl
k denotes an elementary k-chain of the module Ck and this

k-chain is associated to the column l of the matrix ∆. Moreover, Fl−1 \ Fl−2 = Z〈hl
k〉.

We now present the algorithm which when computed on ∆ recovers at each stage the

modules and differentials of the spectral sequence {Er, dr}. For more details see Theorems

4.4 and 5.7 in [13].

Spectral Sequence Sweeping Algorithm - SSSA

2In order to simplify notation, we use the index fk to denote the first column of ∆ associated to a k-chain.
Hence fk = ℓk−1 + 1. Moreover, ℓk denotes the latter column associated to a k-chain.
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For a fixed diagonal r parallel and to the right of the main diagonal, the method described

below must be applied simultaneously for all k.

Initial Step.

(1) Let ξ1 be the first diagonal of ∆ that contains non-zero entries ∆i,j in ∆k, which will

be called index k primary pivots. Define ∆ξ1 to be ∆ with the k- index primary pivots

marked on the ξ1-th diagonal.

(2) Consider the matrix ∆ξ1 . Let ξ2 be the first diagonal greater than ξ1 which contains

non-zero entries ∆ξ1
i,j. The construction of ∆ξ2 follows the procedure below. Given a

non-zero entry ∆ξ1
i,j on the ξ2-th diagonal of ∆ξ1 :

If ∆ξ1
s,j contains an index k primary pivot for s > i, then the numerical value of the

given entry remains the same, ∆ξ2
i,j = ∆ξ1

i,j, and the entry is left unmarked.

If ∆ξ1
s,j does not contain a primary pivot for s > i:

then if ∆ξ1
i,t contains a primary pivot, for t < j,

then define ∆ξ2
i,j = ∆ξ1

i,j and mark the entry ∆ξ2
i,j as a change-of-basis pivot.

Else, define ∆ξ2
i,j = ∆ξ1

i,j and permanently mark ∆ξ2
i,j as an index k primary pivot.

Intermediate Step.

Suppose by induction that ∆ξ is defined for all ξ ≤ r with the primary and change-of-basis

pivots marked on the diagonals smaller or equal to ξ. In what follows it will be shown

how ∆r+1 is defined. Without loss of generality, one can assume that there is at least one

change-of-basis pivot on the r-th diagonal of ∆r. If it is not the case, define ∆r+1 = ∆r with

primary pivots and change-of-basis pivots marked as in step (2) below.

(1) Change of basis. Let ∆r
i,j be a change-of-basis pivot in ∆r

k. Perform the change of

basis on ∆r by adding a linear combination over Q of all the hl
k columns of ∆r with

ℓ < j to a positive integer multiple u 6= 0 of column j of ∆r, in order to zero out

the entry ∆r
i,j without introducing non-zero entries in ∆r

s,j for s > i. Moreover, the

resulting linear combination should be of the form βfkhκ
k+ · · ·+βj−1hj−1

k +βjhj
k, where

fk is the first column of ∆r associated to a k-chain and βℓ ∈ Z, for all j = κ, · · · , j.

The integer u is called the leading coefficient of the change of basis. If more than one

linear combination is possible, one must choose the one which minimizes u. One can

define a matrix T r which performs all the change of basis on all of the r-th diagonal.
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Define ∆r+1 = (T r)−1∆rT r and mark the entries of the (r + 1)-th diagonal of ∆r+1 as

follows.

(2) Markup. Given a non-zero entry ∆r+1
i,j on the (r + 1)-th diagonal of ∆r+1

k :

If ∆r+1
s,j contains a primary pivot for s > i, then leave the entry ∆r+1

i,j unmarked.

If ∆r+1
s,j does not contain a primary pivot for s > i:

then if ∆r
i,t contains a primary pivot, for t < j,

then mark ∆r
i,j as a change-of-basis pivot.

Else permanently mark ∆r
i,j as a primary pivot.

Final Step.

Repeat the above procedure until all diagonals have been considered.

According to the algorithm, if ∆r
i,j is a change-of-basis pivot on the r-th diagonal of ∆r

k,

then once the corresponding change of basis has been performed, one obtains a new k-chain

associated to column j of ∆r+1, which will be denoted by σj,r+1
k . Observe that σj,r+1

k is a

linear combination over Q of columns ℓ of ∆r with fk ≤ ℓ ≤ j such that ∆r+1
i,j = 0, i.e., σj,r+1

k

is a linear combination over Q of σfk,r
k , · · · , σj,r

k . Also, σj,r+1
k is a linear combination over Z

of the columns fk, · · · , j of ∆r, i.e., of hfk
k , · · · , hj

k. Hence,

σj,r+1
k = u

j∑

ℓ=fk

cj,rℓ hℓ
k

︸ ︷︷ ︸
σ
j,r
k

+ qj−1

j−1∑

ℓ=fk

cj−1,r
ℓ hℓ

k

︸ ︷︷ ︸
σ
j−1,r
k

+ · · ·

+ qfk+1 c
fk+1,r
fk

hfk
k + cfk+1,r

fk+1 hfk+1
k︸ ︷︷ ︸

σ
fk+1,r

k

+ qfk c
fk,r
fk

hfk
k︸ ︷︷ ︸

σ
fk,r

k

(1.4)

= c
j,r+1
k hj

k + c
j−1,r+1
k hj−1

k + · · ·+ c
fk,r+1
k hfk

k

where cℓ,r+1
k ∈ Z, for ℓ = fk, · · · , j. If ∆

r contains an index k primary pivot in the entry ∆r
s,ℓ̄

with s > i and ℓ̄ < j, then qℓ̄ = 0. Of course, the first column of any ∆k cannot undergo

changes of basis, since there is no column to its left associated to a k-chain.

The family of matrices {∆r} produced by the Spectral Sequence Sweeping Algorithm has

several properties, which are proven in [13, 30], such as:

(a) ∆r is a strictly upper triangular boundary map, for each r.
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(b) It is not possible to have more than one primary pivot in a fixed row or column.

(c) If the entry ∆r
j−r,j is a primary pivot or a change-of-basis pivot, then ∆r

s,j = 0 for all

s > j − r.

(d) If ∆r
j−r,j is a primary or a change-of-basis pivot, then ∆r

j−r,j is an integer.

(e) Let ∆L be the last matrix produced by the SSSA. Then, the primary pivots are non-null

and each non-null entry is located above a unique primary pivot.

(f) If column j of ∆L is non-null, then row j is null. The matrix ∆L is integral.

Example 1.2. To illustrate the SSSA over Z, consider the graded group C∗ defined by

C0 = Z〈h1
0〉, C2 = Z〈h2

2〉, C3 = Z〈h3
3〉 ⊕ Z〈h

4
3〉 ⊕ Z〈h

5
3〉, C4 = Z〈h6

4〉 ⊕ Z〈h
7
4〉, C6 = Z〈h8

6〉 and

Ck = 0, for k ∈ N \ {0, 2, 3, 4, 6}. Also, consider the differential ∂k : Ck → Ck−1, defined on

the generators of Ck by ∂3(h
3
3) = 5h2

2, ∂3(h
4
3) = 3h2

2, ∂3(h
5
3) = h2

2, ∂4(h
6
4) = 2h3

3 − 4h4
3 + 2h5

3,

∂4(h
7
4) = 1h3

3 − 5h5
3, and the other ∂k are the null map. The pair (C∗, ∂∗) is a finite chain

complex.

Applying the SSSA to this complex, one obtains the sequence of matrices ∆r shown in

Figures 1.4 to 1.9. In these figures, the primary pivots entries are indicated by means of a red

background and darker edge, the change-of-basis pivots are indicated by blue background

and dashed edges, null entries are left blank and the diagonal being swept is indicated with

a gray line. ◭

h6
8

h0
1

h4
7

h2
2

h4
6

h3
3

h3
5

h3
4

h3
4

h3
5

h3
3

h4
6

h2
2

h4
7

h0
1

h6
8

5 3 1

2 1

-4 0

2 -5

Figure 1.4: Initial matrix ∆.
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6

8,1
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8

Σ
4

7,1
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7

Σ
4

6,1
= h4

6

Σ
3

5,1
= h3

5

Σ
3

4,1
= h3

4

Σ
3

3,1
= h3

3

Σ
2

2,1
= h2

2

Σ
0

1,1
= h0

1

Σ
0

1,1
Σ

2

2,1
Σ

3

3,1
Σ

3

4,1
Σ

3

5,1
Σ

4

6,1
Σ

4

7,1
Σ

6

8,1

5 3 1

2 1

-4 0

2 -5

Figure 1.5: ∆1; marking primary pivots.
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Σ
6

8,2
= h6

8

Σ
4

7,2
= h4

7

Σ
4

6,2
= h4

6

Σ
3

5,2
= h3

5

Σ
3

4,2
= h3

4

Σ
3

3,2
= h3

3

Σ
2

2,2
= h2

2

Σ
0

1,2
= h0

1

Σ
0

1,2
Σ

2

2,2
Σ

3

3,2
Σ

3

4,2
Σ

3

5,2
Σ

4

6,2
Σ

4

7,2
Σ

6

8,2

5 3 1

2 1

-4 0

2 -5

Figure 1.6: ∆2; marking pivots.
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Σ
4
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7

Σ
4
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6
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5
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2
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2
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0
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1
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0
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2
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3
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3
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3

5,3
Σ

4

6,3
Σ

4

7,3
Σ

6

8,3

5 0 1

-
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-

4

5
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2 0

Figure 1.7: ∆3; marking pivots.
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5
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3
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2
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1
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Σ
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Figure 1.8: ∆4; sweep 4-th diagonal.
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Figure 1.9: Final matrix ∆5.

In [13] it is proved that the Spectral Sequence Sweeping Algorithm provides a system

that spans the modules Er in terms of the original basis of C∗ and identifies all differentials

drp : E
r
p → Er

p−r with primary and change-of -basis pivots on the r-th diagonal. In fact, the

matrix ∆r obtained in the r-th step of the SSSA determines the bigraded Z-module Er and

the differential dr. The primary and change-of-basis pivots in ∆r have important roles in

determining the generators of Zr
p . A formula for the module Zr

p,k−p in terms of the chains

σk’s is

Zr
p,k−p = Z

[
µp+1,rσp+1,r

k , µp,r−1σp,r−1
k , · · · , µfk,r−p−1+fkσfk,r−p−1+fk

k

]
, (1.5)
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where fk is the first column of ∆ associated to a k-chain, and µj,ξ = 0 whenever there is a

primary pivot on column j below row (p− r+1) and µj,ξ = 1 otherwise. In [13], it is proved

that the modules Er
p,k−p are generated by certain σk’s associated to the SSSA. Moreover, if Er

p

and Er
p−r are both non-zero, then the differential dr : Er

p → Er
p−r is induced by multiplication

by ∆r
p−r+1,p+1, whenever this entry is either a primary pivot, change-of-basis pivot or a zero

with a column of zero entries below it.

Example 1.3. Returning to Example 1.2, the spectral sequence associated to the chain

complex (C∗, ∂∗) is presented below. Since one works with a finest filtration on (C∗, ∂∗), the

only q for which Er
p,q is non-zero is q = k−p, where k is the index of the chain in FpC\Fp−1C.

Hence, we omit reference to q and represent the Er-page of the spectral sequence as a line.

E1 : Z[h1
0] Z[h2

2] Z[h3
3] Z[h4

3] Z[h5
3] Z[h1

4] Z[h7
4] Z[h8

6]

E2 : Z[h1
0] Z5[h

2
2] 0 Z[h4

3] Z2[h
5
3] 0 Z[h7

4] Z[h8
6]

E3 : Z[h1
0] 0 0 Z[5h4

3 − h3
3] 0 0 Z[2h7

4+5h6
4] Z[h8

6]

E4 : Z[h1
0] 0 0 Z[5h4

3 − h3
3] 0 0 0 Z[h8

6]

d12 = 5 d15 = 2

d23 = 3 d26 = −5

d36 = −4

The differentials d12, d
1
5 and d36 are induced by the primary pivots ∆1

2,3, ∆
1
5,6 and ∆3

4,7.

On the other hand, the differentials d23 and d25 are induced by the change-of-basis pivots ∆2
2,4

and ∆2
5,7. ◭

Remark 1.1. Let (C∗, ∂) be a finite chain complex such that each module Ck finite generated

by ck k-chains {hk}’s. In this section, the set of generators hj
∗’s of C∗ is ordered respecting

the grading and increasing in j, i.e,

{h1
0, · · · , h

ℓ0
0 , h

ℓ0+1
1 , · · · , hℓ1

1 , · · · , h
ℓk−1+1
k , · · · , hℓk

k , · · · },

where ℓk = c0+ · · ·+ ck. This order was used to define the filtration F considered in (C∗, ∂),

which is given by

FpCk =
⊕

hℓ
k
, ℓ≤p+1

Z〈hℓ
k〉.
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However, this assumption is not necessary, although it simplifies notation. One can freely

reorder the generators of C∗ by respecting the condition that if ahi
k−1 for a ∈ Z \ {0} is a

component of ∂k(h
j
k), then i < j. In this case, we also define the filtration as the one which

respects the order considered on the set of generators C∗. In this case, the square matrix

which represents the boundary operator ∂ will also have its columns ordered accordingly.

All the results still holds in this case.

Note the the Spectral Sequence Sweeping Algorithm previously defined is applicable to

the differential ∆ of a chain complex C∗ over Z, with some additional structure, as stated

above. With a small adjustment, one can use the same algorithm for chain complexes over

a field F. This is accomplish by modifying the step “change of basis” as follows: if ∆r
i,j is a

change-of-basis pivot, perform the change of basis on ∆r by adding column p multiplied by

−∆r
i,j(∆

r
i,p)

−1 to column j of ∆r, where ∆r
i,p is a primary pivot. This primary pivot exists,

otherwise ∆r
i,j would not be a change-of-basis pivot and the change of basis is well defined

since the operation is done over a field. The properties of the SSSA over Z also hold for the

SSSA over a field F. For more details on SSSA over a field, see [30].

In [24], the dynamical implications of the SSSA over Z2 was investigated. Therein, the

SSSA over Z2 can also be viewed as a schematic continuation that undergoes bifurcation,

through saddle-saddle connections which are coded in the off diagonal non-zero entries of

the transition matrices.

1.3 Lyapunov Graph Theory

In this section, the necessary background from Lyapunov Graph Theory is introduced.

The references for this section are [6, 7, 8].

A directed graph G is an ordered pair of disjoint sets (V,E) such that E is a subset of the

set of ordered pairs of V . The set V is the set of vertices and E is the set of edges; an edge

e that join the vertices u and v is denoted by e = (u, v). In this thesis, only finite digraphs

are considered, that is, V and E are always finite sets.

A directed semi-graph G′ is a pair of disjoint sets (V ′, E ′), with V ′ = V ∪ {∞} and

E ′ ⊂ V ′ × V ′. As usual, the elements of V ′ are called vertices and the elements of E ′ are

called edges. Furthermore the edges of the form (∞, v) and (v,∞) are called semi-edges.

As the terminology suggests, we do not usually think of a directed graph as an ordered

pair of sets, but as a collection of vertices some of which are joined by edges. Unless it is
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explicitly stated otherwise, throughout the remainder of this thesis the term “graph” will be

used to mean a directed graph.

Let v be a vertex of a graph, then the number of incoming edges of v is called the indegree

of v and is denoted by e+(v), the number of outgoing edges of v is called outdegree of v and

is denoted by e−(v), and the sum of the indegree and the outdegree of v is called the degree

of v and is denoted by e(v).

A path between two vertices v0 and vn in a graph is an alternating sequence of vertices

and edges, v0, e1, v1, . . . , vn−1, en, vn such that, for each i = 1, . . . , n, one has ei = (vi, vi−1)

or ei = (vi−1, vi). A graph is connected if there is a path between any two vertices in the

graph. A path is oriented if for each i, ei = (vi−1, vi). A path is a cycle if the edges are

distinct and v0 = vn.

Given a continuous flow φt : M →M on a closed n-manifold M , there exists a continuous

function f : M → R which decreases along the orbits outside the chain recurrent set R of

φt, i.e., if x 6∈ R then f(φt(x)) < f(φs(x)) if t > s, and it is constant on the chain recurrent

components of R. See [12, 19].

Given a Lyapunov function f : M → R, consider the following equivalence relation on

M : x ∼f y if and only if x and y belong to the same connected component of a level set of f .

Consider the quotient M/ ∼f . This space determine a graph L when a point of x ∈M/ ∼f

is identified as a vertex of L if and only if the level set ∈ f−1(c) containing x also contains a

chain recurrent component; and all the other points of M/ ∼f are identified as edges of L.

The graph L is called the Lyapunov graph of f . See Figure 1.10.

∼f

L

M

Figure 1.10: Lyapunov graph.

In addition, L can be oriented according to the gradient-like flow and hence it has no

oriented cycles. Moreover, since each vertex represent a component of R, it can be labelled

with dynamical invariants component as in [6]. On the other hand, since each edge represents

a level set times an interval, it can be labelled with topological invariants of the level sets.
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Since we consider only flows admitting a finite number of chain recurrent components,

we obtain a graph with a finite number of vertices. One can do the same process when the

underlying manifold has boundary. In this case, we obtain a Lyapunov semi-graph.

An n-abstract Lyapunov graph is a finite and connected directed graph Γ with no oriented

cycles such that each vertex v of Γ is labelled with a list of non-negative integers, denoted

herein by {h0(v), · · · , hn(v), κv}, and each incoming (outgoing) edge of v is labelled with a

list {β+
0 = 1, β+

1 , · · · , β
+
n−2, β

+
n−1 = 1} ({β−

0 = 1, β−
1 , · · · , β

−
n−2, β

−
n−1 = 1}) of non-negative

integers satisfying Poincaré duality3. The number κ(v) is called the cycle number of the

vertex v.

Let ν be a vertex in an n-abstract Lyapunov graph with e+(ν) incoming edges denoted

by e+ℓ and labelled with (β
e+
ℓ

0 , . . . , β
e+
ℓ

n−1), for ℓ = 1, · · · , e+(ν) and with e−(ν) outgoing edges

denoted by e−ℓ and labelled with (β
e−
ℓ

0 , . . . , β
e−
ℓ

n−1), for ℓ = 1, · · · , e−(ν) (see Figure 1.11).

Define

B−
j (ν) =

e−(ν)∑

ℓ=1

β
e−
ℓ

j and B+
j (ν) =

e+(ν)∑

ℓ=1

β
e+
ℓ

j .

Given an abstract Lyapunov graph Γ, the cycle number κ of Γ is defined as κ = κL+κV ,

where κV is the sum of the cycle numbers of all vertices of Γ and κL is the cycle rank of

Γ, i.e., the maximum number of edges that can be removed without disconnecting Γ. We

will denote the Lyapunov graph Γ by Γ(h0, · · · , hn;κ) where hj =
∑

vk
hj(vk) and the sum

is over all vertexes of Γ.

v
(h0(v), . . . , hn(v), κv)

(B+
0 , . . . , B+

n−1)

(B−

0 , . . . , B−

n−1)

Figure 1.11: A vertex of a Lyapunov graph.

An n-abstract Lyapunov graph of Morse type is an n-abstract Lyapunov graph such that

(1) Each vertex v is labelled with hj = 1 for some j = 0, · · · , n and the cycle number of

each vertex is equal to zero.

3A list of non-negative integers {β0 = 1, β1, · · · , βn−2, βn−1 = 1} is said to satisfies Poincaré duality if
βj = βn−1−j for all j = 0, · · · , n− 1.
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(2) The number of incoming edges e+(v) and the number of outgoing edges e−(v) of a

vertex v must satisfy:

(a) if hj = 1 for j 6= 0, 1, n− 1, n then e+(v) = 1 and e−(v) = 1;

(b) if h1 = 1 then e+(v) = 1 and 0 < e− ≤ 2; if hn−1 = 1 then e−(v) = 1 and

0 < e+(v) ≤ 2;

(c) if h0 = 1 then e−(v) = 0 and e+ = 1; if hn = 1 then e+(v) = 0 and e− = 1.

The label in each edge incident to a vertex v label with h0 or hn = 1 must be

(1, 0, · · · , 0, 1).

(3) Each vertex labelled with hl = 1 must be of type l-disconnecting or (l− 1)-connecting.

If the labels in which incoming and outgoing edges of v satisfy B−
l + 1 = B+

l and

B−
j = B+

j for j 6= l, then the vertex v is of type l-disconnecting. If the labels in which

incoming and outgoing edge of v satisfy B−
l−1 = B+

l−1 − 1 and B−
j = B+

j for j 6= l − 1,

then the vertex v is of type (l − 1)-connecting. Furthermore, if n = 2i ≡ 0 (mod 4)

and hi = 1 then, v may be labelled with βinv (β-invariant) in the case B−
j = B+

j for all

j. See Figure 1.12.

Note that the cycle number of an abstract Lyapunov graph of Morse type is equal to its

cycle rank.

hn = 1

h0 = 1

h1 = 1
hn−1 = 1

(n−1)−d

hj = 1

β − i(j−1)−c

hj = 1

0− c

j − d

hj = 1

1− d

hj = 1

(n−2)−c

hn−1 = 1

j = 2, · · · , n− 2

Figure 1.12: Local conditions on an abstact Lyapunov graph of Morse type.

Similarly, one can define abstract Lyapunov semi-graph and abstract Lyapunov semi-

graph of Morse type.

In order to define continuation of abstract Lyapunov graphs, we will introduce the notion

of vertex explosion. A vertex v labelled with (h0(v), . . . , hn(v);κv) in an n-abstract Lyapunov
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graph Γ can be exploded if v can be removed from Γ and replaced by an n-abstract Lyapunov

semi-graph of Morse type ΓM with cycle rank greater than or equal to κv and with the labels

on incoming (outgoing) semi-edges of ΓM matching the labels on the outgoing (incoming)

semi-edges of Γ\{v}. Moreover, for all η,

hη(v) =
∑

j

hη+λi
(vj),

where the sum is over all vertices vj of ΓM .

An abstract Lyapunov graph Γ admits a continuation to an abstract Lyapunov graph of

Morse type ΓM if each vertex can be exploded such that ΓM has cycle rank greater or equal

to κ.

In [6] and [7] the Poincaré-Hopf inequalites were introduced:




hj ≥ −(B+
j−1 − B−

j−1) + (B+
j−2 − B−

j−2) + · · · ± (B+
2 − B−

2 )± (B+
1 − B−

1 )

−(hn−(j−1) − hj−1) + (hn−(j−2) − hj−2)± · · · ± (hn−1 − h1)

±[(hn − h0) + (e+ − e−)]

hn−j ≥ −[−(B+
j−1 − B−

j−1) + (B+
j−2 − B−

j−2) + · · · ± (B+
2 − B−

2 )± (B+
1 − B−

1 )

−(hn−(j−1) − hj−1) + (hn−(j−2) − hj−2)± · · · ± (hn−1 − h1)

±[(hn − h0) + (e+ − e−)]]

...{
h2 ≥ −(B+

1 − B−
1 )− (hn−1 − h1) + (hn − h0) + (e+ − e−)

hn−2 ≥ −[−(B+
1 − B−

1 )− (hn−1 − h1) + (hn − h0) + (e+ − e−)]

{
h1 ≥ h0 − 1 + e− + κv

hn−1 ≥ hn − 1 + e+ + κv

where 0 ≤ j ≤ n.




If n = 2i+ 1, then B+ − B− = e− − e+ +
2i+1∑

j=0

(−1)jhj,

where B+ =
(−1)i

2
B+

i ± B+
i−1 ± · · · −B+

1 , B− =
(−1)i

2
B−

i ± B−
i−1 ± · · · −B−

1 .

If n = 2i ≡ 2(mod 4), then

hi −
i−1∑

j=1

(−1)j+1(B+
j − B−

j )−
i−1∑

j=0

(−1)j(h2i−j − hj) + (e+ − e−) must be even.
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The main Theorem of [6, 7] establishes that: an abstract Lyapunov graph Γ(h0, · · · , hn;κ)

admits a continuation to an abstract Lyapunov graph of Morse type with cycle rank greater

or equal to κ if and only if it satisfies the Poincaré-Hopf inequalities at each vertex, where

κ ≤ min{h1 − (h0 − 1), hn−1 − (hn − 1)}. Of course, there exists an analogous result for

Lyapunov semi-graphs.

Example 1.4. Consider the 7-abstract Lyapunov graph Γ in Figure 1.13. Recall that

the label on each edge is a list of seven non-negative integers satisfying Poincaré duality

(β0, · · · , β6), hence β0 = β7 = 1 and βj = β6−j. Therefore, in Figures 1.13 and 1.14, the

label on each edge is (β1, β2, β3). Moreover, if the label of a vertex contains many zeros, e.g.

(0, 1, 0, 0, 0, 0, 0, 0, κ = 0), we adopt the alternative notation h1 = 1. Figure 1.14 contains

two possible continuations for the Lyapunov graph Γ.

Questions regarding the realization of abstract Lyapunov graphs were investigated in

[9, 10].

(0, 2, 1, 2, 1, 1, 3, 0;κv = 1)

h7 = 1

h1 = 1

h6 = 1

h1 = 1

h0 = 1 h0 = 1

(0, 2, 1, 2, 1, 1, 3, 0;κv = 1)v

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)(0, 0, 0)

(0, 0, 0)

(0, 0, 0)(0, 0, 0)

0-c

6-d

0-c

Figure 1.13: Abstract Lyapunov graph Γ(2, 4, 1, 2, 1, 1, 4, 1;κ = 2).
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h6 = 1

h0 = 1 h0 = 1

h7 = 1

h6 = 1

h6 = 1

h5 = 1

h4 = 1

h3 = 1

h3 = 1

h2 = 1

h1 = 1

h1 = 1

h6 = 1

h1 = 1

(0, 0, 0) (0, 0, 0)
h1 = 1

(0, 0, 0)

(0, 0, 0)(0, 0, 0)

(0, 0, 0)

(0, 0, 0)(0, 0, 0)

(0, 0, 0)

(1, 0, 0)

(1, 1, 0)

(1, 0, 0)

(1, 0, 2)

(1, 0, 0)

(2, 0, 0)

(1, 0, 0)

(0, 0, 0)

5-c

5-c

5-d

3-c

3-d

2-c

2-d

1-d

0-c

6-d

0-c

6-d

0-c

h6 = 1

h0 = 1 h0 = 1

h7 = 1

h6 = 1

h5 = 1

h4 = 1

h3 = 1

h3 = 1

h2 = 1

h1 = 1

h6 = 1

h1 = 1

(0, 0, 0) (0, 0, 0)
h1 = 1

(0, 0, 0)

(0, 0, 0)(0, 0, 0)

(0, 0, 0)

(0, 0, 0)(0, 0, 0)

(0, 0, 0)

(0, 1, 0)

(0, 0, 0)

(0, 0, 2)

(0, 0, 0)

(1, 0, 0)

(0, 0, 0)

5-c

5-d

3-c

3-d

3-c

2-d

0-c

6-d

0-c

6-d

0-c

h1 = 1
(0, 0, 0)

h6 = 16-d
(0, 0, 0)(0, 0, 0)

0-c

Figure 1.14: Continuations of the graph Γ in Figure 1.13,
Γ1(2, 4, 1, 2, 1, 1, 4, 1;κ = 2) and Γ2(2, 4, 1, 2, 1, 1, 4, 1;κ = 3),
respectively.



Chapter 2

Spectral Sequences for two

dimensional Morse Complexes

The computation of a spectral sequence of a filtered Morse chain complex (C, ∂) developed

in [13] led to the question of how closely the dynamics follows the spectral sequence. More

specifically, the Spectral Sequence Sweeping Algorithm defined in [13] produces a sequence

of connection matrices starting with the matrix of the boundary operator ∂, from which the

modules and differentials (Er, dr) of the spectral sequence may be retrieved. As one ”turns

the pages” of the spectral sequence, i.e. considers progressively modules Er, one observes

algebraic cancellation occurring within the Er’s.

In this chapter, we wish to understand the dynamical meaning of these algebraic can-

cellations. In other words, given the dynamics that has been converted to a filtered chain

complex description, what homological conclusions can be drawn from the spectral sequence?

On the other hand, how much dynamical information can be recovered or even gained from

the spectral sequence analysis? Herein, we answer these questions in the setting of flows on

smooth closed 2-dimensional orientable manifolds.

In Section 2.1, an extremely concise background on Morse Theory, designed for our goals,

is presented. See [3, 39, 42] for more details.

In Section 2.2, one finds the analysis of the relation between the Morse differentials

associated to a Morse function on a manifold M when the set of orientations of the unsta-

ble manifolds undergo changes. This analysis makes it possible to characterize the set of

connection matrices for a Morse flow on a surface.

In Section 2.3, one finds the investigation of the implications that the characterization of

29
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the connection matrices for orientable surfaces has on the SSSA. Several properties of this

algorithm are proved therein which have homological implications for the spectral sequence.

More specifically, one proves that all the differentials dr in the spectral sequence are isomor-

phisms and hence torsion does not appear in the modules Er. We also keep track of all the

algebraic cancellations.

A new algorithm, called Smale’s Cancellation Sweeping Algorithm (SCSA), is defined in

Section 2.4. Moreover, one proves that the primary pivots identified in the r-th step of the

SSSA coincide with the primary pivots identified in the r-th step of the SCSA.

In Section 2.5, the algebraic cancellations of the spectral sequence of the filtered Morse

chain complex are dynamically interpreted as the history of birth and death of connecting

orbits of ϕf caused by the cancellation of consecutive critical points. Theorem 2.4 associates

the algebraic cancellation in the spectral sequence to the dynamical cancellation of critical

points in the flow via the Spectral Sequence Sweeping Algorithm. Theorem 2.3 constructs a

family of flows associated to the spectral sequence which also defines a continuation to the

minimal flow.

2.1 Morse Chain Complex

Let M be a smooth manifold of finite dimension n and f : M → R a smooth function.

A point p ∈ M is a critical point of f if dfp is the null map. In this case f(p) is a critical

value. The set of all critical points of f is denoted by Crit(f). A critical point p is said to

be nondegenerate if the matrix of second partial derivatives at p (the Hessian matrix Hf
p ) is

non-singular. Otherwise, p is a degenerate critical point. Nondegenerate critical points are

isolated.

A smooth function f : M → R is called a Morse function if each critical point of f

is nondegenerate. The Morse index of a critical point p is the dimension of the maximal

subspace where Hf
p is negative definite, and it will be denoted by indf (p). The set of Morse

functions on a manifold M is dense in C1(M,R). Moreover, if M is a closed manifold, then

the set of critical points of a Morse function is finite.

Let f : M → R be a smooth function on a smooth closed Riemannian manifold M of

dimension n. Fix a Riemannian metric g on M . The identity

g(∇(f), ·) = df(·)



Chapter 2 • Spectral Sequences for two dimensional Morse Complexes 31

uniquely determines a gradient vector field ∇(f) on M . Denote the flow associated to

−∇(f) by ϕf , which is called of negative gradient flow. To simplify notation, we write ϕ for

ϕf whenever emphasis of f need not be given. The singularities of the vector field −∇(f)

corresponds to the critical points of f .

The negative gradient flow ϕf has special properties when f is a Morse function such as:

(1) Given x ∈ Crit(f), the Morse index of x corresponds to the dimension of the unstable

manifold of ϕf at x, W u(x).

(2) The function f decreases along nonsingular orbits of ϕf and possesses no closed orbits.

(3) Each regular orbit intersects a regular level set at most once and this intersection is

orthogonal to the level set with respect to the metric g.

(4) Given x ∈M such that x 6∈ Crit(f), ω(x) and α(x) consist of one singularity of ϕf .

These properties are well known in Morse Theory. More details can be found in [3] and [31].

Given x, y ∈ Crit(f), the connecting manifold of x and y is given by

Mxy := W u(x) ∩W s(y).

The connecting manifoldMxy is the set containing all points p ∈M such that ω(p) = y and

α(p) = x. The moduli space between x and y is defined by

Mx
y(a) :=Mxy ∩ f−1(a),

where a is a regular value between f(x) and f(y). See Figure 2.1.

12

1

1 2
x

x′

z

y

TxW
u(x)

Mx
y

Mx′
y

My
z

Mx′
z

Figure 2.1: Connecting manifolds in a negative gradient flow on a sphere.
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The space Mx
y(a) is the set of all orbits running from x to y. For different choices of

regular values a1, a2 there is a natural identification betweenMx
y(a1) andM

x
y(a1) given by

the flow. Hence, one use the notationMx
y for the moduli space.

A Morse function f is called a Morse-Smale function if, for each x, y ∈ Crit(f), the

unstable manifold of ϕf at x, W u(x), and the stable manifold of ϕf at y, W s(y), intersect

transversally.

Whenever f is a Morse-Smale function, the connecting manifolds and the moduli spaces

are closed submanifolds of M . Moreover, one has that their dimensions are given by

dim(Mxy) = indf (x)− indf (y), dim(Mx
y) = indf (x)− indf (y)− 1.

Hereafter, in this chapter, assume that f is a Morse-Smale function, unless stated other-

wise. In this case, the negative gradient flow ϕf is also called Morse flow.

Given x, y ∈ Crit(f), the connecting manifold Mxy and the moduli space Mx
y are ori-

entable manifolds. This follows since, once orientations are chosen for W u(x) and W u(y),

these induce an orientation onMxy denoted by [Mxy]ind. The procedure given by Weber in

[42] to obtain this orientation is:

(1) If indf (y) > 0 , then

(a) Let VMxy
W s(y) be the normal bundle of W s(y) restricted toMxy. Consider the

fiber VyW
s(y) with an orientation given by the isomorphism

TyW
u(y)⊕ TyW

s(y) ≃ TyM ≃ VyW
s(y)⊕ TyW

s(y).

The orientation on the fiber at y determines an orientation on the normal bundle

VMxy
W s(y) restricted to the submanifoldMxy.

(b) The orientation onMxy is determined by the isomorphism

TMxy
W u(x) ≃ TMxy ⊕ VMxy

W s(y). (2.1)

(2) If indf (y) = 0, then VyW
s(y) = 0. Hence, TMxy

W u(x) ≃ TMxy.

Note that there are no restrictions about the orientability of the manifold M .
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Example 2.1. Consider the Morse flow on S2 and the orientations on the unstable manifolds

illustrated in Figure 2.1. In Figure 2.2 we use a planar representation of the flow in order

to obtain the induced orientations on the connecting manifolds. We also represent these

orientations in Figure 2.3. ◭

y

z

2

1 1 1

2

x x′

2′
1′ 1′′

2′′

Figure 2.2: Planar representation of the
flow in S2.

y

z

x

x′

u1

u2

v2

v1

Figure 2.3: Induced orientations on
the connecting manifolds.

Given x, y ∈ Crit(f) with indf (x) − indf (y) = 1, let u ∈ Mx
y . The characteristic sign

nu of the orbit O(u) through u is defined via the identity [O(u)]ind = nu[u̇], where [u̇] and

[O(u)]ind denote the orientations on O(u) induced by the flow and by Mxy, respectively.

The intersection number of x and y is defined by

n(x, y) =
∑

u∈Mx
y

nu.

The intersection number between x and y counts the flow lines form x to y with sign. In

the literature there are other ways to count such flow lines with orientations, for example,

see [3].

Fix an arbitrary orientation for the unstable manifolds W u(x), for each x ∈ Crit(f), and

denote by Or the set of these choices. Denote by 〈x〉 the pair consisting of the critical point

x of f and the orientation chosen on W u(x).

The Morse graded group C = {Ck(f)} is defined as the free abelian groups generated by

the critical points of f and graded by their Morse index, i.e.

Ck(f) :=
⊕

x∈Critk(f)

Z〈x〉.



34 Section 2.1 • Morse Chain Complex

The Morse boundary operator ∂k(x) : Ck(f) −→ Ck−1(f) is given on a generator x of

Ck(f) by

∂k〈x〉 :=
∑

y∈Critk−1(f)

n(x, y)〈y〉, (2.2)

and it is extended by linearity to general chains.

The pair (C∗(f), ∂∗) is a chain complex, that is, ∂ is of degree −1 and ∂ ◦ ∂ = 0. This

chain complex is called a Morse chain complex. Observe that (C∗(f), ∂∗) depends on the

function f on M , the metric g and the set Or of orientations. The Morse homology groups

with integer coefficients are defined by

HMk(M, f, g, Or;Z) =
Ker ∂k
Im ∂k+1

, ∀k ∈ Z.

In [42], it was proved that, for two choice of Morse-Smale pairs (f 1, g1) and (f 2, g2) and

orientations Or1 and Or2 of all unstable manifolds, the associated Morse homology groups

HMk(M, f 1, g1, Or1;Z) and HMk(M, f 1, g1, Or1;Z) are naturally isomorphic for all k ∈ Z.

Hence, this homology will be denoted by HM∗(M,Z). Moreover, one has that

HM∗(M ;Z) ∼= Hsing(M ;Z),

i.e., the Morse homology of M is isomorphic to the singular homology of M .

Example 2.2. Returning to Example 2.1, the Morse chain groups are C2(f) = Z〈x〉⊕Z〈x′〉,

C1(f) = Z〈y〉, C2(f) = Z〈z〉 and Ck(f) = 0 for all k 6= 0, 1, 2. From Figure 2.3, the

characteristic signs of orbits connecting consecutive critical points are: nu1
= −1, nu2

= −1,

nv1 = +1 and nv2 = −1; which implies that

n(x, y) = nu1
= −1, n(x′, y) = nu2

= −1, n(y, z) = nv1 + nv2 = 1− 1 = 0.

The Morse operators ∂2 : C2 → C1, ∂1 : C1 → C0 and ∂0 : C0 → 0 are defined on generators

by:

∂2(x) = −〈y〉, ∂2(x
′) = −〈y〉, ∂1(y) = 〈z〉 − 〈z〉, ∂0(z) = 0.

Hence, the integral Morse homology is given by:

HM0(M ;Z) ∼= Z, HM1(M ;Z) ∼= 0, HM2(M ;Z) ∼= Z. ◭
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One can also consider the Morse chain complex over Z2. In this case, the Morse graded

group is defined in the same way. However, the intersection number n(x, y) between critical

points x, y with indf (x)− indf (y) = 1 is defined as the number of orbits of ϕf from x to y

modulo 2. In this case, HM∗(M ;Z2) ∼= Hsing(M ;Z2).

2.2 Characterization of Surface Connection Matrices

To define the Morse chain complex (C, ∂), a set of orientations Or for the unstable

manifold W u(x) of all critical points x ∈ Crit(f) is chosen. Given two different set of

such orientations, namely Or1 and Or2, one has two Morse chain complexes (C1
∗ , ∂

1
∗) and

(C2
∗ , ∂

2
∗) associated to the Morse function f and to the sets Or1 and Or2, respectively. The

Morse groups C1
k and C2

k may differ on generators 〈xk〉 by the choices of orientations of

W u(xk). In fact, the Morse graded groups C1
∗ and C2

∗ have the same generators possibly

with different signs. However, the relation between the Morse boundary operators ∂1 and ∂2

is not immediate to attain. The next proposition provides a relation between the intersection

numbers n1(x, y) and n2(x, y) obtained considering the sets Or1 and Or2, respectively.

Proposition 2.1. Let M be a smooth closed manifold and f : M → R a Morse-Smale

function. Consider two sets Or1 and Or2 of orientations for W u(x), ∀x ∈ Crit(f) with

indf (x) > 0. Suppose that these sets differ only by orientations of the critical points

a1, . . . , al, then





n(x, y) = −n̄(x, y) if x = aj, for some j, and y 6= ai ∀i;

n(x, y) = −n̄(x, y) if y = aj, for some j, and x 6= ai ∀i;

n(x, y) = n̄(x, y) otherwise.

where n(x, y) and n̄(x, y) denote the intersection number between x and y considering the

orientations of Or1 and Or2, respectively.

Proof. As Crit(f) < ∞, then Or1 and Or2 are finite. Hence, it is enough to prove the

case when Or1 and Or2 do not coincide by only one orientation. In this sense, let p be the

only critical point whose orientations ξ1 and ξ2 for W u(p) given by the sets Or1 and Or2,

respectively, are opposite.

Let k be the index of the critical point p, i.e. indf (p) = k. The proof is divide in two

cases: when indf (p) > 1 and when p is a saddle of index 1.
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• indf (p) = 1 :

Let u ∈ Mp
y, where y ∈ Critk−1(f). Since, k = 1, the orientation induced on the orbit

O(u) is given directly by the pre-set orientation of W u(x). By hypothesis, ξ1 and ξ2 are

opposite, hence they induce opposite orientations in O(u). Therefore, one of them coincides

with the orientation given by the flow and the other is opposite to this orientation, i.e,

nu = 1 and n̄u = −1 or nu = −1 and n̄u = +1. Since u was taken arbitrarily, it follows that

n(p, y) = −n̄(p, y).

Now, let v ∈ Mx
p , where x ∈ Critk+1(f). The orientation induced by Or1 and Or2 on

the orbit O(v) is given by the isomorphism:

TO(v)W
u(x) ≈ TO(v)⊕ VO(v)W

s(p). (2.3)

By hypothesis, the orientations of TO(v)W
u(x) given by Or1 and Or2 coincide. However,

these sets induce opposite orientations ξ1 and ξ2 on the unstable manifold W u(p). Con-

sequently, they induce opposite orientations on the normal bundle VO(v)W
s(p), since the

orientation induced in this bundle is compatible with the orientation on W u(p). In this way,

the isomorphism given in (2.3) guarantees that the orientations induced on O(v) are also

opposite. Since v is arbitrary, n(x, p) = −n̄(x, p).

• indf (p) > 1 :

Let u ∈Mp
y, where y ∈ Critk−1(f). The orientation induced on the orbit O(u), is given

by the isomorphism:

TO(u)W
u(p) ≈ TO(u)⊕ VO(u)W

s(y). (2.4)

The orientations given by Or1 and Or2 on W u(y) are the same, hence these two sets

induce the same orientation on the bundle VO(u)W
s(y). On the other hand, the orientations

ξ1 and ξ2 on TO(u)W
u(p) given by Or1 and Or2 are opposite. From these observations and

the isomorphism (2.4) it follows that the induced orientations on the orbit O(u) by Or1 and

Or2 are opposites. Therefore, n(p, y) = −n̄(p, y), since u was chosen arbitrarily.

Given v ∈ Mx
p , where v ∈ Critk+1(f), the proof that n(x, p) = −n̄(x, p) is analogous to

the previous case. �

As immediate consequence of Proposition 2.1, one has that the Morse boundary operators

∂1 and ∂2 represent the same operator in different bases.

A result due to Salamon, see [39], establishes a relation between the boundary operator ∂∗
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of a Morse chain complex with connection matrices. Considering M as an isolated invariant

set relative to the flow ϕf , then the set D(M) = {Mx = {x} | x ∈ Crit(f)} is a finest Morse

decomposition of M , i.e., each Morse set Mπ contains only one singularity of ϕf . Salamon

proved in [39] that the boundary operator ∂∗ of a Morse chain complex associated to f is a

connection matrix of the Morse decomposition D(M), by identifying the free abelian module

Z〈x〉 with the homology index CH(Mx) of Mx. Therefore, the Morse boundary operator,

represented as a matrix, is called a connection matrix. For more details, see [3] and [39].

Denote by ∆(M, f,Or) the connection matrix for D(M) obtained considering the Morse

function f and the set Or of orientations chosen on the unstable manifolds of the singularities

of the gradient flow −∇f . One has the following corollary of Proposition 2.1:

Corollary 2.1. Let (M, g) be a smooth closed Riemannian manifold and f : M → R a

Morse-Smale function. If two sets Or1 and Or2 of orientations for W u(x), ∀x ∈ Crit(f)

with indf (x) > 0, differ only by the orientations of the critical points a1, . . . , al, then the

connection matrix ∆(M, f,Or2) is obtained from ∆(M, f,Or1) by multiplying by −1 the

rows and columns corresponding to the points a1, . . . , al. In particular, ∆(M, f,Or1) and

∆(M, f,Or2) are similar matrices.

Moreover, an entry in the matrix ∆(M, f,Or1) is non-zero if and only if, it is non-zero

in ∆(M, f,Or2), i.e., given a smooth closed manifold (M, g) and a Morse-Smale function

on M , the connection matrices are equal modulo 2. This result in the modulo 2 case is a

well known fact, see [28]. Therein, it is shown that for a Morse-Smale flow on a smooth

Riemannian closed n-manifold M , the entries of the connection matrix corresponding to

critical points x ∈ Critk(f) and y ∈ Critk−1(f) counts the number of connecting orbits from

x to y modulo 2. On the other hand, if we count orbits over Z considering orientations,

the difference between ∆(M, f,Or1) and ∆(M, f,Or2) is the choice of the generators that

compose the basis where the matrices are represented and hence they represent the same

operator.

From now on, in this Chapter, the algebraic properties of the SSSA applied to a con-

nection matrix will be investigated, with the underling motivation of obtaining dynamical

information from this algorithm. As a first attempt, to obtain results in this direction, we

will restrict our attention to 2-dimensional manifolds. In this section, a characterization of

surface connection matrices is established and some algebraic implications of this character-

ization are proved.
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Let M be a two dimensional Riemannian manifold and f : M → R be a Morse-Smale

function. Given x, y ∈ Crit(f), if x and y are consecutive critical points, i.e. indf (x) −

indf (y) = 1, then #Mx
y ≤ 2. In fact, there are at most two connecting orbits joining a

source to a saddle or a saddle to a sink. This fact implies that the non zero entries of a

connection matrix for an orientable surface are ±1, as one proves in the next result.

Proposition 2.2. Let M be an orientable closed surface and ϕ a Morse-Smale flow on M

generated by a Morse-Smale function f . Then the entries of a connection matrix for M

belong to the set {−1, 0, 1}.

Proof. We need to show that n(x, y) ∈ {−1, 0, 1}, for all critical points of f with relative

index 1 and with 0 ≤ indf (y) < indf (x) ≤ 2.

Since dim(M) = 2, it follows that #Mx
y ≤ 2. If #Mx

y = 1 thenMx
y = {u} and therefore

n(x, y) = nu = ±1. Now if #Mx
y = 2, sayMx

y = {u, v}, then there are two cases to consider:

Case 1: x is a saddle and y is a sink. Since the flow is a gradient flow, it induces the

same orientation on the orbits O(u1) and O(u2). However, the orientation thatMxy induces

on O(u) is opposite to the orientation induced by Mxy on O(v), see Figure 2.4. Hence,

nu = 1 and nv = −1 or nu = −1 and nv = 1. In both cases, n(x, y) = 0.

x

y

nu = +1
nv = −1

u

v

Figure 2.4: Determining characteristic signs for the saddle sink moduli spaces.

Case 2: x is a source and y is a saddle. Since M is an orientable surface, given an

orientation {ξ1(p), ξ2(p)} for W u(x), it follows that the ordered basis {ξ1(u), ξ2(u)} and

{ξ1(v), ξ2(v)} are either both equivalent or both non-equivalent to the standard basis of R2.

Once again by the orientability of M , it follows that the basis VuW
s(y) and VvW

s(y) are

either both equivalent or both non-equivalent to the standard basis of R. By the isomorphism

(2.1), the orientations on the orbits O(u) and O(v) are opposite. Hence, on only one of the
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orbits, the orientation induced by the flow coincides with the orientation induced by the

connecting manifold, see Figure 2.5. Hence, n(x, y) = 0. �

nu = −1

nv = +1

x y

u

v

ξ2(v)

ξ1(v)

ξ2(u)

ξ1(u)

Figure 2.5: Determining characteristic sign for the source saddle moduli spaces.

The orientability hypothesis in the previous proposition is necessary. For instance, con-

sider the minimal flow in the projective plane R2, which is viewed as the unit disc in R2 with

opposite boundary points identified as in Figure 2.6. The orbits connecting the source x to

the saddle y are represented in the connection matrix by the integer entry +2. See Figure

2.7.

x

x

z yy

1

2

1

Figure 2.6: Morse flow on RP 2.

z y x

z

y

x

20

0

0

Figure 2.7: Connection matrix for RP 2.

The columns and rows of a connection matrix ∆ for D(M) may be partitioned into three

groups, namely S0, S1 and S2, the first S0 associated with sinks (h0’s), the second S1 with

saddles (h1’s) and the third S2 with sources (h2’s). Block ∆S0S1
contains information on the

connections from saddles to sinks, while block ∆S1S2
contains information on the connections

from sources to saddles. Figure 2.8 illustrates a possible structure for a surface connection
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matrix with columns ordered with respect to the index. The columns of the matrix ∆ need

not be ordered with respect to the index.

S0 S1 S2

S0

S1

S2

∆S0S1

∆S1S2

0

0

0

0

0

0

0

0

0

0

0

0

Figure 2.8: Surface connection matrix with S0 = {1, 2, 3, 4},
S1 = {5, 6, 7, 8, 9} and S2 = {10, 11, 12}.

Note that, each column j ∈ S1 in ∆ has either two non-zero entries, namely +1 and −1,

or is a column of zeros. This follows easily since a saddle either connects to two sinks, in the

first case, or it connects to only one sink, in the latter case. Each row i ∈ S1 in ∆ either has

two non-zero entries or is a row of zeros. The signs of these non-zeros entries are determined

by the set Or. If we choose for instance the orientation of all W u(h2) to be the same, it

follows that the non-zero entries in the row i ∈ S1 of ∆ have opposite signs. By Proposition

2.1, for any other choice of orientation, the new matrix ∆ obtained is similar to ∆.

Corollary 2.2 below summarizes this observation and gives a characterization of the con-

nection matrices associated to orientable closed surfaces.

Corollary 2.2 (Characterization of connection matrices for orientable closed surfaces). The

connection matrix ∆ for an orientable closed surface either has the following properties:

(1) ∆ij ∈ {0, 1,−1};

(2) each column in ∆S0S1
contains either two non-zero elements, namely 1 and −1, or

none;

(3) each row in ∆S1S2
contains either two non-zero elements, namely 1 and −1, or none;
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or is obtained from a matrix with the properties above by multiplying a subset of rows and/or

columns by −1.

Proof. Let M be an orientable surface. Fix an orientation on M . Let ∆ be a surface

connection matrix for M when we consider the unstable manifold W u(x) of each source

endowed with orientation compatible with the orientation of M . Doing the same analysis

in the proof of Proposition 2.2, one obtains that the rows and columns of ∆ satisfies item

1−3. Now, let ∆̃ be a surface connection matrix considering an arbitrary set of orientations

Or for the unstable manifolds. By Proposition 2.1, ∆̃ is obtained form ∆ by multiplying a

subset of rows and/or columns by −1. �

Example 2.3. Let M be a 2-sphere as in Figure 2.9 and let f be a Morse-Smale function

on M such that the negative gradient flow associated to −∇f is as shown in Figure 2.9.

The Morse chain complex (C∗(f), ∂∗), determined by the function f and by considering the

orientation of W u(hj
k) as in the Figure 2.9, is presented below.

h1
0

h2
0

h3
0

h4
1

h5
1

h6
1

h7
1

h8
2

h9
2

h10
2

Th9
2
Wu(h9

2)

Figure 2.9: Morse-Smale flow in the 2-sphere.
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Morse graded groups:

C0(f) = Z〈h1
0〉 ⊕ Z〈h

2
0〉 ⊕ Z〈h

3
0〉,

C1(f) = Z〈h4
1〉 ⊕ Z〈h

5
1〉 ⊕ Z〈h

6
1〉 ⊕ Z〈h

7
1〉,

C2(f) = Z〈h8
2〉 ⊕ Z〈h

9
2〉 ⊕ Z〈h

10
2 〉

and Ck = 0 for k > 2.

Morse boundary operators:

∂1(h
4
1) = h1

0 − h3
0,

∂1(h
5
1) = h3

0 − h2
0,

∂1(h
6
1) = h2

0 − h3
0,

∂1(h
7
1) = h3

0 − h1
0,

∂2(h
8
2) = h4

1 − h5
1 − h6

1 + h7
1,

∂2(h
9
2) = h5

1 + h6
1,

∂2(h
10
2 ) = −h4

1 − h7
1,

∂k(h
j
k) = 0 for all k > 2.

The connection matrix with respect to the flow ordering associated to the finest Morse

decomposition of M is as in Figure 2.10. Applying the SSSA over Z in ∆, one obtains the

sequence of matrices illustrated in Figures 2.11 to 2.15. In these figures, the primary pivot

entries are indicated by means of a light red background and darker edge, the change-of-basis

pivots are indicated by blue background and dashed edges, null entries are left blank and

the diagonal being swept is indicated with a gray line. ◭

h2
10

h0
1

h2
9

h0
2

h2
8

h0
3

h1
7

h1
4

h1
6

h1
5

h1
5

h1
6

h1
4

h1
7

h0
3

h2
8

h0
2

h2
9

h0
1

h2
10

1 -1

-1 1

-1 1 -1 1

1 -1

-1 1

-1 1

1 -1

Figure 2.10: ∆0
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6,1
Σ

1

7,1
Σ

2
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2

9,1
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Figure 2.11: ∆1
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Figure 2.13: ∆3
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2.3 SSSA applied to surface connection matrices

In this section, we investigate properties of the SSSA which can be extracted from the

characterization of surface connection matrices. Note that, in Example 2.3, the primary and

change-of-basis pivots identified during all steps of the SSSA are ±1. However, in ∆3 the

entry ∆3
4,8 has numerical value equal to 2. In this section, we prove that the primary pivots,

obtained by the applying the SSSA over Z to a surface connection matrix ∆, have values

±1.
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We prove the characterization of the primary pivots for orientable surfaces in Theorem

2.1. This is done by presenting some auxiliary algorithms over a field F that produce the

same primary pivots as the SSSA. The characterization of the primary pivots for orientable

surfaces will follow immediately from these results.

This section contains the technical details which make it possible to prove Theorem

2.1. The reader can skip this section in a first reading without any loss of the posterior

development of the results herein. Denote by ∆L the last connection matrix produced by

the SSSA.

Lemma 2.1. Given a connection matrix ∆ over F, with column/row partition J0, · · · , Jb, the

update from ∆r to ∆r+1 may be accomplished blockwise, according to the individual updates

∆r
Jk−1Jk

= (T r−1
Jk−1Jk−1

)−1∆r−1
Jk−1Jk

T r−1
JkJk

, for k = 1, . . . , b. (2.5)

Consequently, only columns containing change-of-basis pivots are subjected to elementary

column operations, and only rows with the same index as the column of the primary pivots

used for canceling out the change-of-basis pivots suffer elementary row operations.

Proof. Let ∆ be a connection matrix with column/row partition given by J0, · · · , Jb. Al-

gebraically, the post-multiplication of ∆r by T r consists of tr elementary column operations

on the change-of-basis columns of ∆r. Of the three possible elementary column operations

on a column j, only one is used in the SSSA over F: “add to column j a multiple of another

column”. In keeping with its counterpart, the pre-multiplication of ∆rT r by (T r)−1 consists

of tr elementary row operations. Amongst the ones available, the only row operation on row

i considered herein is of the type “add to row i a multiple of another row”. Column opera-

tions are due to the post-multiplication, and by construction of T r−1
JkJk

, affect only columns of

Jk that contain change-of-basis pivots. The pre-multiplication by (T r−1
Jk−1Jk−1

)−1 affects only

rows with same index as the columns that contain the primary pivots used for cancelling out

the change-of-basis pivots. �

Denote by Jk the subset of columns in Jk which contains primary pivot entries in ∆L.

Let Jk = Jk\Jk, for all k. The markings on entries in columns belonging to Jk and the

construction of T r
JkJk

are completely determined by the values of the change-of-basis and

primary pivots in ∆r
Jk−1Jk

. In fact, suppose there is a change in entry in position (i, j) ∈

Jk−1 × Jk from ∆r to ∆r+1. Lemma 2.1 implies this may be due to an elementary column
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operation on column j, due to a change-of-basis mark on entry (j − r, j) on this column,

and/or to an elementary row operation, due to a primary pivot in column i ∈ Jk−1 that

is being used to cancel out a change-of-basis pivot in position (q − r, q) in some column

q ∈ Jk−1, where q > i. Moreover, since the rows of ∆L in Jk must be zero, thus they cannot

contain primary and change-of-basis pivots.

This discussion implies that, if we give up keeping track of the evolution of the rows in

∪b
k=1Jk, then one must only do the post-multiplication of ∆r by T r. Moreover, one can do

this sequentially blockwise as follows. At step k , for k = 1, · · · , b, let ∆(k) be the matrix

obtained from ∆ by zeroing rows in Jk−1 and entries outside positions in Jk−1 × Jk. The

diagonals of this matrix are swept as in the SSSA over F, and the same rules are used for

marking up the entries, as well as building the transition matrix T (k)r, which will contain

nonzero off-diagonal entries only in positions Jk × Jk, by virtue of the construction of the

connection matrix used as input. Applying the SSSA over F to ∆(k), one obtains sequences

(∆(k)0, . . . ,∆(k)L) and (T (k)0, . . . , T (k)L−1), and the set Jk of the column indices of ∆(k)L

containing primary pivots, for k = 1, · · · , b. This new formulation of the SSSA is called

Block Sequential Sweeping Algorithm over F. See the Appendix A for the algorithm, per se.

The difference between the SSSA and the Block Sequential Sweeping Algorithm described

above is that the latter does not keep track of the evolution of the rows in Jk, for k = 1, · · · , b.

Hence, one has the following lemma.

Lemma 2.2 (Uncoupling). ∆L
Jk−1Jk

= ∆(k)LJk−1Jk
, for all k and the collection of change-of-

basis and primary pivots encountered in the application of the SSSA over F to ∆(k) coincides

with the change-of-basis and primary pivots found when it is applied to ∆.

The proof of the Uncoupling Lemma can be found in the Appendix A, Lemma A.1.

The Uncoupling Lemma implies that we may restrict our attention to connection matrices

containing at most one nonzero block when studying the SSSA over F, provided we lose

track of the evolution of rows in ∪bk=1Jk, which will end up zero and will not contain neither

primary nor change-of-basis pivots. To ease the discussion that follows, we henceforth call

this special case the 1-Block Incremental Sweeping Algorithm over F.

Now, we propose a reengineered version of the 1-Block Incremental Sweeping Algorithm

therefor, in which, once a primary pivot is identified, all cancellations it is responsible for

in the 1-block Incremental Sweeping Algorithm over F are performed. To arrive at the

same final matrix as in the original algorithm, the primary pivots must also be identified
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in an upward order, from the bottom up. The second and last important aspect for the

identification of primary pivots, is the left-to-right order of the sweeping. The algorithm

which incorporates both of these conditions is called Revised 1-Block Incremental Sweeping

Algorithm over F. See the Appendix A for the algorithm per se.

The next Lemma establishes the equality between the final matrices produced by the

Revised 1-block Incremental Sweeping over F and by the 1-block Incremental Sweeping

Algorithm over F. There is of course no sense in looking for equality between other matrices

in the sequence produced by the algorithm, since the order of cancellation is in all likelihood

quite different in the two algorithms.

Lemma 2.3. Let ∆ be a connection matrix with column/row partition J0, J1. Let ∆̃
t∗+1 and

∆L be the matrices obtained by applying the Revised 1-block Incremental Sweeping Algorithm

over F and the 1-Block Incremental Sweeping Algorithm over F to ∆, respectively. Then

∆̃t∗+1 = ∆L and their primary pivots coincide.

The proof of Lemma 2.3 can be found in the Appendix A, Lemma A.2.

A matrix is totally unimodular (TU) if all its square submatrices have determinant 0, 1

or −1, see, for instance, [34]. This property is invariant under transposition, multiplying a

row or column by 0,±1, adding or removing zero rows/columns or unit rows/columns. If

each column of a 0,±1 matrix has at most two nonzero entries of opposite signs, then it is

TU. It follows that the submatrices ∆J0J1 and ∆J1J2 of a surface connection matrix ∆ are

TU.

The set {0,±1} is not closed under addition, so the appropriate algorithm to apply to

surface connection matrices is the SSSA over Z. Nevertheless, using the Block Sequential

Sweeping Algorithm over F, the Revised 1-Block Incremental Sweeping Algorithm over F,

Lemma 2.2 and the total unimodularity property, we will show the sequence of matrices and

bases obtained when applying the SSSA over F to a surface connection matrix is compatible

with the corresponding ones produced by the application of SSSA over Z to ∆, in the fol-

lowing sense. The change from ∆r to ∆r+1 results from replacing basis element σr
j , of each

column j containing a change-of-basis entry, with an integral linear combination of elements

of h with same chain index and associated with columns of index less than or equal to j,

determined so as to zero out in ∆r+1 the entry in the change-of-basis position, while main-

taining the pattern of trailing zeros below it. Amongst the integral linear combinations that

accomplish this, one must choose one with the smallest possible positive leading coefficient.
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Even with this condition, there may be more than one optimal integral linear combination.

The bases constructed by the SSSA over F trivially satisfy the conditions pertaining the

zero patterns. We show that, for every r and j, the leading coefficient in the integral linear

combination that is σr
j , produced by the application of the SSSA over F to ∆, is 1, so it

satisfies the optimality criterium, and the choice is thus compatible with the rules of the

SSSA over Z.

Lemma 2.4. Let ∆ be a surface connection matrix with column/row partition J0, J1 and

J2. If we apply the SSSA over F to ∆, then all primary pivots value are either 1 or −1.

Proof. Lemma 2.2 (Uncoupling) justifies the application of the Block Sequential Sweeping

Algorithm over F to ∆. Both ∆J0J1 and ∆J1J2 are TU and this property is maintained if one

adds zero rows and/or columns to a matrix. Thus each ∆(k), for k = 1, 2, in the application

of the Block Sequential Algorithm over F to ∆ is TU. Then to prove the claim one can

consider matrices ∆ which are totally unimodular with column/row partition J0, J1.

First we analyze the application of the Revised 1-Block Sweeping Algorithm over F to ∆

with column/row partition J0, J1. Let (i1, j1), . . . , (it∗ , jt∗) be the positions of the primary

pivots marked.

Let Ct be the set of index columns of ∆t which do not have a primary pivot. We affirm

that ∆̃t
.Ct is totally unimodular, for t = 1, . . . , t∗ + 1. This is trivially true for t = 1,

by hypothesis, and it can be proved by induction to hold for all t, see Lemma A.3 in the

Appendix A. This implies that the entries in ∆̃t
.Ct are −1, +1 or zero, for all t. Hence all

primary pivots marked in the application of the Revised 1-Block Sweeping Algorithm over

F to ∆ value 1 or −1 when marked, since they are, by choice, nonzero. Finally, they do not

change once marked.

Lemma 2.3 implies ∆t∗+1 = ∆L, the last matrix produced by the application of the SSSA

over F to ∆. Moreover, their primary pivots coincide in position and value. �

Theorem 2.1 (Primary pivots for orientable surfaces). Given a surface connection matrix

∆, let {∆1, . . . ,∆L} be the sequence of connection matrices produced by the SSSA applied to

∆. The primary pivots identified in the r-th diagonal of ∆r are ±1, for all r ∈ {1, . . . , L}.

Proof. Let ∆ be a surface connection matrix (over Z). By Lemma 2.4, if we apply the

SSSA over F to ∆, then all primary pivots value are either 1 or −1.

Let σr be the basis associated with the r-th matrix in the sequence produced by the

SSSA over F, ∆r. We will prove, by induction in r, that each basis element σr
j , for all r and
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j, is an integral linear combination of the elements of h associated with columns to the left

of, and including, column j, whose leading coefficient is 1.

First of all, from the definition of T r in the SSSA over F and the hypotheses that ∆ is

integral and the primary pivots value ±1, we obtain that T 1 and (T 1)−1 are also integral.

Then ∆2 is integral and, applying induction, we may conclude that ∆r is integral, for all r.

Initially σ1 = h, so the property is true for r = 1. Suppose it is true for σr. If ∆r
.j does

not contain a change-of-basis pivot, then σr+1
j = σr

j and the result is true by the induction

hypothesis. Suppose it does contain a change-of-basis pivot. It is sufficient to consider it in

a generic fixed position, say (j − r, j). Lemma 2.4 implies that the primary pivot to its left,

say in position (j − r, p), is ±1. Then, by the rules of the algorithm,

σr+1
j = σr

j −
∆r

j−r,j

∆r
j−r,p

σr
p

= σr
j ±∆r

j−r,j σ
r
p

= hj
k +

∑

j′<j

cr,jj′ h
j′

k ±∆r
j−r,j

∑

j′<p

cr,pj′ h
j′

k ,

where the induction hypothesis is used in the last equality. This proves the result for r + 1,

since p < j, ∆r
j−r,j and, by induction, all coefficients cr.. are integer. Using induction, the

result if true for all r.

Therefore, the sequence produced by the application of the SSSA over F to a surface

connection matrix is compatible with the application of the SSSA over Z thereto. �

Theorem 2.1 has an important dynamical consequence which will be addressed in Section

2.5. Moreover, an algebraic consequence of this result ensures that the spectral sequence

associated to a two-dimensional Morse chain complex converges to the corresponding Morse

homology.

Corollary 2.3. If M is a smooth closed orientable 2-dimensional manifold, f : M → R a

Morse function, (C∗,∆) a filtered Morse chain complex with the finest filtration, then the

modules E∞
p,q ≈ GH∗(C)p,q of the associated spectral sequence are free for all p and q.

Proof. As presented in Section 1.2, it was proved in [13] that, if Er
p and Er

p−r are both non-

zero, the differential dr : Er
p → Er

p−r is induced by multiplication by ∆r
p−r+1,p+1, whenever

this entry is either a primary pivot, change-of-basis pivot or a zero with a column of zero

entries below it. On the other hand, all primary pivots are ±1 by Theorem 2.1, implying that
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differentials dr induced by primary pivots are isomorphisms. Moreover, if dr : Er
p → Er

p−1 is

an isomorphism then Er+1
p = Er+1

p−1 = 0.

Note that, if the differential drp : Er
p → Er

p−r corresponds to a change-of-basis pivots,

then there is a primary pivot in row p − r and thus Er
p−r = 0. Consequently, the non-zero

differentials are the ones induced by primary pivots, hence isomorphisms.

Since Er+1
p
∼= Ker drp/Im drp−r, it follows that the modules Er

p are free for all r ≥ 0 and

p ≥ 0. Then E∞
p,q
∼= GH∗(C)p,q ∼= HM∗(M, f), by equation (1.3). �

In the more general setting treated in [13], where one was interested in spectral sequences

computed over Z of a Morse chain complex associated to a gradient flow on an n-dimensional

manifold, the spectral sequence need not converge to the homology of the complex, i.e. (1.3)

need not be true. However, as a consequence of the Primary Pivots for Orientable Surfaces

Theorem (Theorem 2.1), in the 2-dimensional setting, GH∗(C)p,q is free for all p and q and

thus (1.3) holds.

2.4 Smale’s Cancellation Sweeping Algorithm

In Corollary 2.2, one characterizes the connection matrices associated to orientable closed

surfaces. The relevance of this results resides in the fact that it guarantees that the SSSA

does not determine a flow continuation of the initial flow, which has its dynamics coded in

∆0, to a flow having the dynamics coded in the last connection matrix ∆L produced by the

SSSA applied to ∆0. In fact, not all last matrices produced by the SSSA is a connection

matrix associated to a Morse flow on a orientable closed surface. Returning to Example 2.3,

observe that the matrix Figure 2.15 does not satisfy condition (3) of Corollary 2.2, which

implies that one can not realise this matrix as a connection matrix associated to a Morse

flow on a surface.

In this section, we present an adaptation of the SSSA, called the Smale’s Cancellation

Sweeping Algorithm (SCSA). This algorithm is an attempt to modify the SSSA in order to

obtain an algorithm which provides a flow continuation where the dynamics is coded by the

matrices produced by the SCSA. More specifically, our approach herein is to interpret the

algebraic cancellation of the modules of the spectral sequence, which has been coded by the

Spectral Sequence Sweeping Algorithm, as dynamical cancellations. In fact, whenever we

mark a primary pivot ∆r
j−r,j = ±1 on the r-th diagonal of ∆r, the next step of the spectral

sequence produces algebraic cancellations of the modules Er+1
p and Er+1

p−r , i.e. E
r+1
p = Er+1

p−r =
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0. We wish to interpret these algebraic cancellations dynamically as cancellation of a pair

of consecutive index singularities.

Note that the changes of basis caused by pivots in row j − r reflect all the changes in

connecting orbits caused by the cancellation of hj
k and hj−r

k−1. However, when we remove the

pair of critical points hj
k and hj−r

k−1, all the connecting orbits between index k critical points

and hj−r
k−1 and also all the ones between hj

k and index k − 1 critical points are immediately

removed and new ones take their place. Hence, in order to interpret dynamically the Spectral

Sequence Sweeping Algorithm, we have to perform the changes of basis that occur therein in a

different order to reflect the death and birth of connections. More specifically, if ∆r
j−r,j = ±1

is a primary pivot marked in step r of the Spectral Sequence Sweeping Algorithm, all changes

of basis caused by ∆r
j−r,j must be performed in step r+1. This new algorithm will be called

Smale’s Cancellation Sweeping Algorithm.

In the Smale’s Cancellation Sweeping Algorithm we keep the same order of sweeping

along the diagonals and the criteria for marking an entry as a primary pivot. But the upper

triangular unit-diagonal transition matrix is calculated so that in the next matrix all entries

to the right of the primary pivots are zeroed by means of elementary column operations

using exclusively columns to the left of the column in question.

Smale’s Cancellation Sweeping Algorithm - SCSA

For a fixed diagonal r parallel and to the right of the main diagonal, the method described

below must be applied simultaneously for all blocks Jk.

Initial Step.

(1) Let ξ1 be the first diagonal of ∆̃ that contains non-zero entries ∆̃i,j ∈ ∆Jk−1Jk , which

will be called index k primary pivots. Define ∆̃ξ1 to be ∆̃ with the k- index primary

pivots on the ξ1-th diagonal marked.

(2) Consider the matrix ∆̃ξ1 . Let ξ2 = ξ1 + 1. The construction of ∆̃ξ2 follows the proce-

dure below. Let ∆̃i,j be a k-index primary pivot in the ξ1-th diagonal.

Given a non-zero entry ∆̃ξ1
i,l on row i of ∆̃ξ1 and l > j, perform a change of basis on ∆̃ξ1

as in SSSA in order to zero out this entry. Moreover, if there are more than one non

zero entry in row i, the procedure to zero out these entries is to zero out the entries in

increasing order with respect columns.

Given a non zero entry ∆̃ξ2
i,j on the ξ2-th diagonal of ∆̃ξ2 :
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If ∆̃ξ2
s,j does not contain a primary pivot for s > i,

then permanently mark ∆̃ξ2
i,j as a primary pivot.

Intermediated Step.

Suppose by induction that ∆̃ξ is defined for all ξ ≤ r with the primary pivots marked on

the diagonals smaller or equal to ξ. In what follows it will be shown how ∆̃r+1 is defined.

Without loss of generality, one can assume that there is at least one primary pivot on the

r-th diagonal of ∆̃r. If this is not the case, define ∆̃r+1 = ∆̃r with primary pivots marked

as in step (2) below.

(1) Change of basis. Let ∆̃r
i,j be a primary pivot.

For each non-zero entry in row i, perform a change of basis on ∆̃r as in SSSA in order

to zero out this entry. Moreover, if there is more than one non zero entry in row i, the

procedure to zero them out these entries is to zero out in increasing order with respect

to the columns.

If there is more than one primary pivot in the r-th diagonal of ∆̃r, perform this step

for each primary pivot in decreasing order with respect to the rows.

(2) Markup. Given a non-zero entry ∆̃r+1
i,j on the (r + 1)-th diagonal of ∆̃r+1:

If ∆̃r+1
s,j does not contain a primary pivot for s > i,

then permanently mark ∆̃r
i,j as a primary pivot.

Final Step.

Repeat the above procedure until all diagonals have been swept.

The above algorithm can be applied over F with the provision that in order to zero out a

change-of-basis pivot, one uses only the column of the corresponding primary pivot. In this

case, we refer to this algorithm over F as the Row Cancellation Algorithm.

Example 2.4. Consider the Morse chain complex (C,∆) presented in Example 2.3. Ap-

plying the SCSA for the connection matrix ∆ presented in that example, one obtains the

matrices in Figures 2.16 to 2.19. In these figures, the primary pivot entries are indicated by

means of a light red background and darker edge, null entries are left blank and the diagonal

being swept is indicated with a gray line. ◭
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Figure 2.16: ∆̃1; marking primary pivots.
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Figure 2.17: ∆̃2; sweeping diagonal 2.
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Figure 2.18: ∆̃3; marking primary pivots.
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Figure 2.19: ∆̃4; sweeping diagonal 4.

Observe that the primary pivots identified by the SSSA in Example 2.3 coincide in values
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and positions with the primary pivots identified by the SCSA in Example 2.4. In fact, the

next theorem states that, given a surface connection matrix ∆, the primary pivots identified

by the SSSA applied to ∆ coincides in position and value with the primary pivots identified

by the SCSA applied to ∆.

Theorem 2.2 (Equality of primary pivots). Let ∆ be a surface connection matrix with

column/row partition J0, J1, J2. The primary pivots marked in the application of the SSSA

over Z to ∆ coincide in value and position with the primary pivots marked in the application

of Smale’s Cancellation Sweeping Algorithm thereto.

Proof. As in the proof of Theorem 2.1, we will first investigate if this theorem holds over

F. Then we will show how to apply it over Z.

Let (∆̂0 = ∆, ∆̂1, . . . , ∆̂m−1) and (T̂ 0 = I, T̂ 1, . . . , T̂m−2) be the sequences of connection

and transition matrices produced by the application of the Row Cancellation Algorithm over

F to the connection matrix ∆ with column/row partition J0, J1, J2. One has the following

properties:

1. The nonzero entries of ∆̂r strictly below the r-th diagonal are either primary pivots

(always nonzero) or lie above a unique primary pivot.

2. If ∆̂r
p−r,p is marked as a primary pivot, then ∆̂s

p. = 0, for s ≥ r + 1.

3. If ∆̂r
p−r,p is marked as a primary pivot, then ∆̂s

p−r,q = 0, for s ≥ r+1 and q = p+1..m.

4. Each row of ∆̂m−1 may contain at most one primary pivot.

5. Let ∆̂m−1 be the last connection matrix in the sequence produced by the application

of the Row Cancellation Algorithm over F to the connection matrix ∆ . Then

∆̂m−1
.j ∆̂m−1

j. = 0, for all j. (2.6)

The matrix updates in the application of the Row Cancellation Algorithm over F to the

connection matrix ∆ with column/row partition J0, J1, Jb can be done in a blockwise fashion

as follows.

∆̂r
Jk−1Jk

= (T̂ r−1
Jk−1Jk−1

)−1∆̂r−1
Jk−1Jk

T̂ r−1
JkJk

, for k = 1, 2. (2.7)

We let Ĵk be the set of columns in Jk that contain primary pivot entries in ∆̂m−1, for

k = 1, 2. Additionally, Ĵk = Jk\Ĵk, for k = 1, 2. Suppose the Row Cancellation Algorithm
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over F is applied to the connection matrix ∆ with column/row partition J0, J1, J2. Then

the markings during the sweeping of the r-th diagonal of ∆̂r on entries in columns belonging

to Jk and the construction of T̂ r
JkJk

are completely determined by the values of the entries

in ∆̂r
̂
Jk−1Jk

.

The validity of the block update established in equation (2.7) and the complementarity

relationship between a column with a primary pivot and the row of same index in equation

(2.6), give rise to a simplified version of the Row Cancellation Algorithm over F. The Block

Sequential Row Cancellation Algorithm over F is a straightforward adaptation of the Block

Sequential Sweeping Algorithm over F, where, at step k, instead of applying the SSSA over

F to ∆(k), one applies the Row Cancellation Algorithm over F thereto. The proof of the

corresponding Uncoupling Lemma is a straightforward adaptation of the original one and it

states that:

Row Cancellation Uncoupling Lemma: Let ∆ be a connection matrix with row/column

partition J0, J1, J2. Let ∆̂m−1 be the matrix produced by the application of the Row

Cancellation Algorithm over F to ∆, and let ∆̂(k)m−1, for k = 1, 2, be the matrices obtained

in the Block Sequential Row Cancellation Algorithm over F applied to ∆. Then

∆̂m−1
Jk−1Jk

= ∆̂(k)m−1
Jk−1Jk

,

for k = 1, 2 and the collection of primary pivots encountered in the application of the Row

Cancellation Algorithm over F to ∆(k), for k = 1, 2, coincides with the primary pivots found

when it is applied to ∆.

Row Cancellation Uncoupling Lemma significantly simplifies the next results, since it

allows us to consider connection matrices with only one block, which means only elementary

column operations need be performed in the matrix update step. This special instance of

the Row Cancellation Algorithm over F will be called 1-Block Row Cancellation Algorithm

over F. Notice that, although the proposition guarantees the equalities of the primary pivots

up to r = m− 1, this is sufficient, since the primary pivots of ∆m−1 and of ∆m are equal.

Let ∆ be a connection matrix with row/column partition J0, J1, J2. Let ∆1, . . . , ∆m

and T 1, . . . , Tm−1 (resp., ∆̂1, . . . , ∆̂m−1 and T̂ 1, . . . , T̂m−2) be the matrices produced in the

application of the SSSA over F (resp., Row Cancellation Algorithm over F) to ∆. Then the

primary pivots of ∆r and ∆̂r coincide in position and value, for r = 1, . . . ,m− 1.

This fact, Theorem 2.1 and the specific change of basis done in the proof of this theorem
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imply that the primary pivots of ∆̂m−1, the last matrix produced by the application of

the Row Cancellation Algorithm over F to the order m surface connection matrix ∆, are

either 1 or −1. This implies the transition matrices (and their inverses) produced by the

application of the Row Cancellation Algorithm over F to a surface connection matrix are all

integral. This justifies the application of the Row Cancellation Algorithm over F to surface

connection matrices. When the input to the Row Cancellation Algorithm over F is restricted

to the special class of surface connection matrices, we obtain Smale’s Cancellation Sweeping

Algorithm. �

2.5 Cancellation of Critical Points: Birth and Death

of Connections

In this section, the dynamical meaning of the Spectral Sequence Sweeping Algorithm is

described via Smale’s Cancellation Sweeping Algorithm. First, one shows in Theorem 2.3

that the SCSA determines a continuation of the initial flow by cancelling pair of consecutive

critical points. Then one establishes in Theorem 2.4 a correspondence between algebraic

cancellations in SSSA with these dynamical cancellations of critical points in SCSA. To

achieve our goal, from now on, we will consider Morse chain complexes (C∗(f), ∂) where f

is a Morse function with one critical point per critical level set, which is a generic condition.

Moreover, the filtration F on (C∗(f), ∂) will be the one determined by the function f , i.e.,

if Crit(f) = {h1, · · · , hm} and f(hj) = cj, then F = {Fp}
m
p=1, where Fp = f−1(−∞, cp + ǫ)

and ǫ > 0 is sufficiently small.

Before going into the proof of Theorem 2.3, an example is presented where one sees the

interplay between the dynamics and the algebra codified in the spectral sequence.

Example 2.5. Consider the Morse chain complex (C,∆) previously considered in Example

2.3 and the family of matrices produced by the SCSA when applied to ∆ in Example 2.4. One

can associate the primary pivots identified during the algorithm with dynamical cancellations

of critical points as follows: a primary pivot ∆̃r
i,j identified in the r-th step of the SCSA

indicates that the pair of critical points (hi
k−1, h

j
k) is cancelled in the (r + 1)-th step. See

Figure 2.20, where the flows in the continuation are represented on the 2-spheres.

Moreover, the matrices produces by the SCSA contain the connection matrices of the

flows in the continuation. The matrix ∆̃1 is a connection matrix of ϕ1. The submatrix of
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∆̃2 obtained by eliminating columns and rows 3, 4, 7, 8 is a connection matrix of the flow

ϕ2. The submatrix of ∆̃4 obtained by eliminating columns and rows 2, 3, 4, 5, 6, 7, 8, 9 is a

connection matrix of the flow ϕ4. The birth and death of connections are registered in the

sequence of connection matrices produced by the SCSA.
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Figure 2.20: Continuation via cancellation of critical points.

On the other hand, consider the spectral sequence associated to the Morse chain complex

(C∗, ∂∗) presented below.

E0 :

E1 :

E2 :

[h1
0] [h2

0] [h3
0] [h4

1] [h5
1] [h6

1]

E1
0

E1
1 E1

2 E1
3 E1

4 E1
5

[h7
1]

E1
6

[h8
2]

E1
7

[h9
2]

E1
8

[h10
2 ]

E1
9

E2
0

E2
1 0 0 E2

4 E2
5 0 0 E2

8 E2
9

d1 d1

E3 : E3
0

E3
1 0 0 E3

4 E3
5 0 0 E3

8 E3
9

d3 d3

E4 : E4
0 0 0 0 0 0 0 0 0 E3

9

The primary pivots identified in the SSSA determine algebraic cancellations of modules in

the spectral sequence. More specifically, if ∆r
p−r+1,p+1 is a primary pivot marked in the r-th

step, then the modules Er+1
p and Er+1

p−r are null. In the example above, two entries, namely

∆1
3,4 and ∆1

7,8, are marked in the first step of the SSSA as primary pivots. This pivots induce
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the differentials d13 and d17, respectively, of the first page of the spectral sequence (Er, dr).

Hence, in the second page of (Er, dr) the modules E2
3 , E

2
2 , E

2
7 and E2

6 are null.

By Theorem 2.2, the primary pivots marked in the r-th step of the SSSA are identical

to those marked in the r-th step of the SCSA. Therefore, one can associate the algebraic

cancellations in (Er, dr) with the dynamical cancellations of critical points. ◭

For the remainder of this section, we formalize the ideas presented in Example 2.5 by

proving in Theorem 2.3 that the SCSA determines a continuation of the Morse flow in

question, and in Theorem 2.4 we establish the correspondence between algebraic cancellations

in the spectral sequence with dynamical cancellations of critical points.

The proof of Theorem 2.3 constructs a family of flows {ϕr}, r = 1, . . . , ω recursively,

where ϕr+1 is obtained from ϕr by removing the pairs of critical points corresponding to

the cancelled spaces of r-th page of the spectral sequence, i.e. the pairs associated to the

primary pivots on the r-th diagonal of ∆r. The main point is to prove that each algebraic

cancellation of the spectral sequence can in fact be associated to a dynamical cancellation. In

order to do this, we have to prove that whenever a primary pivot ∆r
j−r,j on the r-th diagonal

of ∆r is marked, it is actually an intersection number between two consecutive singularities

hj
k and hj−r

k−1 of a flow ϕr. This intersection number must be ±1 by Theorem 2.1 and hence

we can use Smale’s Cancellation Theorem to realise the dynamical cancellation. See [40] for

the classical Cancellation Theorem referred here as the Smale’s Cancellation Theorem.

The filtration length with respect to a filtration F of the orbit Ohkhk−1
that connects hk

to hk−1 is defined as being the natural number r whenever hk ∈ FpC and hk−1 ∈ Fp−rC.

The number r is also called the gap between the singularities hk and hk−1.

Theorem 2.3. Smale’s Cancellation Sweeping Algorithm for the connection matrix ∆(M,ϕf )

produces a family of Morse-Smale flows {ϕ1 = ϕf , ϕ
2, . . . , ϕω} where ϕr continues to ϕr+1

by cancelling all pairs of critical points of gap r with respect to the filtration F .

Proof. The proof is divided in three steps. The first considers the local effect a cancellation

of a pair of critical points has on a connection matrix ∆(M,ϕ′) of the new flow ϕ′. The second

step analyzes the global effect of this cancellation on ∆(M,ϕ′). The third step constructs

a family of Morse-Smale flows {ϕ1 = ϕf , ϕ
2, . . . , ϕω} via the Smale’s Cancellation Sweeping

Algorithm.

Throughout the proof, we adopt the loose terminology that a critical point hj
k connects

with a critical point hi
k−1 if the moduli spaceM

hi
k−1

h
j
k

is non-zero.
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Step 1: Without loss of generality, the connection matrix ∆(M, f,Or) associated to f is

considered to be the one where all orientations of W u(h2) are chosen to be the same. With

this choice, the orbits in W s(h1)\{h1} have opposite characteristic signs. On the other hand,

by definition, the orbits in W u(h1)\{h1} always have opposite characteristic signs.

Denote by n(hk, hk−1, ϕ) the intersection number of hk and hk−1 with respect to the flow

ϕ.

Let hj
k and hj−r

k−1 be consecutive critical points of a Morse-Smale function f . For a gra-

dient flow ϕf , if n(hj
k, h

j−r
k−1, ϕf ) = ±1 then by Smale’s Cancellation Theorem these critical

points can be cancelled, i.e. there is a gradient flow ϕ′ which coincides with ϕf outside a

neighborhood of {hj
k, h

j−r
k−1} ∪O(u), whereM

h
j−r
k−1

h
j
k

= {u}. Let hj
1 be a saddle which connects

with the sinks hj−r
0 and hi

0. If hj
1 cancels with hj−r

0 , then each saddle hp
1 which connects

with hj−r
0 in ϕ will connect with hi

0 in ϕ′. Since the old and new connections have the same

characteristic signs, then n(hp
1, h

i
0, ϕ

′) = n(hp
1, h

j−r
0 , ϕ) + n(hp

1, h
i
0, ϕ).

hp′

1

hp
1
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1
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Figure 2.21: Birth and death of connections.

Let hj
2 and hp

2 be sources which connect with a saddle hj−r
1 and assume that hj

2 cancels

with hj−r
1 . Then each saddle hi

1 which connects with hj
2 in ϕ will connect with hp

2 in ϕ′.

Since the old and new connections have the same characteristic signs, then n(hp
2, h

i
1, ϕ

′) =

n(hp
2, h

j−r
1 , ϕ) + n(hp

2, h
i
1, ϕ).

Step 2: Since the flow ϕ′ coincides with the flow ϕ outside a neighborhood U of

{hj
k, h

j−r
k−1} ∪ O(u), then connections between hℓ2

q and hℓ1
q−1, where ℓ1, ℓ2 /∈ {j, j − r}, which

do not intersect U are not changed. Also, their characteristic signs remain the same after

the cancellation in U occurs.

Therefore the intersection number of hℓ2
q and hℓ1

q−1 remain the same after cancellation,

whenever

1. k 6= q, that is, k = 1 and q = 2 or k = 2 and q = 1,
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2. M
h
j−r
k−1

h
ℓ2
q

= ∅ when k = q = 1,

3. M
h
j−r
k−1

h
ℓ2
q

= {u} and hℓ1
q−1 6= hi

0, when k = q = 1,

4. M
h
ℓ1
q−1

h
j
k

= ∅ when k = q = 2,

5. M
h
ℓ1
q−1

h
j
k

= {v} and hℓ2
q 6= hp

2, when k = q = 2,

since these are the only cases where connecting orbits from hℓ2
q to hℓ1

q−1 are not born and

do not die during the cancellation. Hence, the only intersection numbers that are modified

after cancellation are those n(hp
1, h

i
0), where h

p
1 is such thatM

h
j−r
0

h
p
1

6= ∅ in the case of saddle-

sink cancellation, and those n(hp
2, h

i
1), where hp

2 is such that M
h
j−r
1

h
p
2

6= ∅, in the case of

source-saddle cancellation.

In order to understand how ∆(M, fϕ′) is obtained from ∆(M, fϕ) one must analyze the

effect that a cancellation of critical points in ϕ has on ∆(M, fϕ′):

1. If a saddle hj
1 is cancelled with a sink hj−r

0 , then define the matrix ∆̃ to be the matrix

obtained from ∆(M, fϕ) by replacing row i by the sum of row (j − r) to row i. Then

∆(M, fϕ′) is the submatrix of ∆̃ which does not contain rows j − r, j and neither

column j − r, j.

2. If a source hj
2 is cancelled with a saddle hj−r

1 , then define the matrix ∆̃ to be the matrix

obtained from ∆(M,ϕ) by replacing column p by the sum of column (j− r) to column

p. Then ∆(M, fϕ′) is the submatrix of ∆̃ which does not contain rows j − r, j rows

and columns j − r, j.

This corresponds to the row operations in the Smale’s Cancellation Sweeping Algorithm.

Step 3: Let {∆̃r} be the matrices produced by the Smale’s Cancellation Sweeping

Algorithm. Define ϕ1 = ϕ and define ϕr+1 to be a flow obtained from ϕr by cancelling all

pairs of critical points corresponding to primary pivots on the r-th diagonal of ∆̃r. In order

to show that these flows are well defined, we have to prove that whenever a primary pivot

∆r
j−r,j on the r-th diagonal of ∆̃r is marked, it is actually an intersection number between

two consecutive singularities hj
k and hj−r

k−1 of the flow ϕr and hence they can be cancelled by

Smale’s Cancellation Theorem.
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Since ϕ1 = ϕ, the connection matrix ∆(M,ϕ1) is ∆̃1. Let ∆1
j−1,j = ±1 be a primary

pivot on the first diagonal of ∆̃1. By definition, this primary pivot represents the inter-

section number between two singularities of the flow ϕ1, namely hj
k and hj−1

k−1, which are

consecutive since the gap between them is one. Using Smale’s Cancellation Theorem, we

can define a flow ϕ2 by cancelling all pairs of critical points corresponding to primary pivots

on the first diagonal of ∆̃1. Moreover, by step 2, the connection matrix ∆(M,ϕ2) is the

submatrix obtained from ∆̃2 which does not contain the columns and rows corresponding

to the cancelled singularities. Because of this and the fact that all non-zero entries of ∆̃2

belong to ∆(M,ϕ2), each non-zero entry of ∆̃2 represents an intersection number between

two singularities of ϕ2. Observe that two singularities hj
k and hj−2

k−1 of ϕ2 with gap two in

the filtration F are consecutive in the flow ϕ2 since all the gap 1 singularities have been

cancelled in the previous stage.

Suppose that ϕr is well defined, that is, each primary pivot ∆r−1
j−(r−1),j on the diagonal

(r − 1) of ∆̃r−1 corresponds to the intersection number of consecutive singularities hj
k and

h
j−(r−1)
k−1 of ϕr−1 and the connection matrix ∆(M,ϕr) is a submatrix of ∆̃r which does not

contain columns and rows of ∆̃r corresponding to all primary pivots marked until the diagonal

r − 1. These correspond to all singularities of ϕ of gap less than or equal to r − 1. Under

these hypothesis singularities hi
k and hi−r

k−1 of ϕr with gap r with respect to the filtration F

are consecutive in the flow ϕr. Hence two singularities corresponding to a primary pivot on

the diagonal r of ∆̃r can be cancelled, by Smale’s Cancellation Theorem. Therefore, ϕr+1 is

a well defined flow obtained from ϕr by cancelling all pairs of critical points corresponding

to primary pivots on the diagonal r of ∆̃r. Moreover, the connection matrix ∆(M,ϕr+1) is

a submatrix of ∆̃r+1 which does not contain columns and rows of ∆̃r+1 corresponding to all

primary pivots marked until step r. The flow ϕ continues to ϕr for all r. �

Corollary 2.4. There is a continuation from ϕf to the minimal flow ϕmin.

Proof. By Theorem 2.3, following the cancellation of pairs of critical points determine

by the SSSA, one obtain a continuation of the initial flow ϕ to a flow ϕω, The connection

matrices associated to some flows of this continuation is produced by the Smale’s Cancellation

Sweeping Algorithm, as seen in the proof of Theorem 2.3.

Since, non zero entries in the last matrix ∆̃L produced by the SCSA must be above

primary pivots, then the submatrix of ∆̃L which is a connection matrix for the last flow ϕω

is the null matrix. Therefore, ϕω corresponds to the minimal flow. �
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The following theorem establishes a correspondence between the algebraic cancellations

of modules on the spectral sequence with dynamical cancellations of critical points.

Theorem 2.4 (Ordered Smale’s Cancellation Theorem via Spectral Sequence). Let (C,∆)

be the Morse chain complex associated to a Morse-Smale function f . Let (Er, dr) be the

associated spectral sequence for the finest filtration F = {FpC} defined by f . The algebraic

cancellation of the modules Er of the spectral sequence are in one-to-one correspondence with

dynamical cancellations of critical points of f . Moreover, the order of cancellation occurs as

gap r increases.

Proof. As it was proved in [13], the non zero differentials of the spectral sequence are

induced by the pivots. When working on surfaces, the connection matrices are under more

limiting conditions than the connection matrices for k-manifolds with k > 2. It follows from

the Primary Pivots for Orientable Surfaces Theorem (Theorem 2.1) that the primary pivots

are always equal to ±1. Hence, the differentials drp : E
r
p → Er

p−r associated to primary pivots

are isomorphisms and the ones associated to change-of-basis pivots always correspond to

zero maps. In fact, if a differential drp : Er
p → Er

p−r corresponds to a change-of-basis pivot,

then there is a primary pivot in row p − r and thus Er
p−r = 0. Consequently, the non-zero

differentials are isomorphisms and this implies that at the next stage of the spectral sequence

they produce algebraic cancellations, i.e. if a primary pivot ∆r
p−r+1,p+1 is marked in step r

then Er+1
p = Er+1

p−r = 0.

Note that the algebraic cancellations Er+1
p = Er+1

p−r = 0 are associated to the primary

pivots ∆r
p−r+1,p+1 = ±1 on the r-th diagonal of ∆r in the Spectral Sequence Sweeping

Algorithm, row p− r+ 1 is associated to hp−r+1
k−1 ∈ Fp−rCk−1 \ Fp−r−1Ck−1 and column p+ 1

is associated to hp+1
k ∈ FpCk \ Fp−1Ck in a gradient flow ϕ associated to f . By the Primary

Pivots Equality Theorem (Theorem 2.2), the primary pivot ∆r
p−r+1,p+1 = ±1 is also a primary

pivot ∆̃r
p−r+1,p+1 = ±1 of the Smale’s Cancellation Sweeping Algorithm. By Theorem 2.3 the

primary pivot ∆̃r
p−r+1,p+1 is an intersection number of two consecutive singularities hp+1

k and

hp−r+1
k−1 of the flow ϕr. By Smale’s Cancellation Theorem, there is a dynamical cancellation

of this pair of critical points.

Note that Er
p and Er

p−r correspond to a saddle and a sink or a source and a saddle, re-

spectively, with gap r with respect to the filtration F . Hence, dynamically and algebraically,

the cancellations occur with increasing gap. �

In summary, the spectral sequence cancellation policy follows a proximity algorithm,
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where proximity is measured by closeness within the filtration determined by a Morse (height)

function, i.e in increasing order of filtration length. In other words, the spectral sequence

starts by cancelling all consecutive indices (i.e saddle-sink or source-saddle) within gap one.

This is done by considering the modules and differentials (E1, d1). Next, the cancellation

occurs by considering the modules and differentials (E2, d2) and cancelling all consecutive

index critical points within gap 2. And so forth, cancellation occurs by considering the

modules and differentials (Er, dr) and consecutive index critical points within gap r.
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Figure 2.22: Morse flow on a torus and the finest filtration.
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Example 2.6. Consider the flow on the torus as in Figure 2.22, which is associated to a

Morse-Smale function f . Observe that each critical level set of f contains only one critical

point of f . Consider the filtration on the Morse chain complex (C∗(f),∆) to be the one

determined by the function f , as illustrated in Figure 2.22. The connection matrix ∆

associated to this flow and filtration is given by the matrix presented in Figure 2.23.

Applying the SSSA to ∆, we obtain the matrices ∆1, . . . ,∆11 given by Figures 2.24,...,

2.34, respectively. In these figures, the primary pivot entries are indicated by means of a light

red background and darker edge, the change-of-basis pivots are indicated by blue background

and dashed edges, null entries are left blank and the diagonal being swept is indicated with

a gray line.

Figure 2.35 illustrates the cancellations of pairs of critical points of f following the SSSA,

i.e., the cancellations occur in order by gap proximity, where the filtration is given by the

height function as in Figure 2.22. In Figure 2.35, we make use of Lyapunov graphs (Reeb

graphs with labels) Γr associated to the flows ϕr to represent what happens dynamically

when critical points are cancelled. ◭
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Figure 2.24: ∆1, marking primary pivots.
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Figure 2.25: ∆2, marking pivots.
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Figure 2.26: ∆3, marking pivots.
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Figure 2.27: ∆4, marking pivots.
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Figure 2.28: ∆5, sweeping 5-th diagonal.
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Figure 2.29: ∆6, sweeping 6-th diagonal.
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Figure 2.30: ∆7, sweeping 7-th diagonal.
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Figure 2.31: ∆8, sweeping 8-th diagonal.
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Figure 2.32: ∆9, sweeping 9-th diagonal.
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Figure 2.33: ∆10, marking pivots.
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Figure 2.34: ∆11, sweeping 11-th diagonal.
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Figure 2.35: Representation of the SCSA by means of Lyapunov graphs.
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Final Remarks

The field of computation topology has been interested in algorithms which solve problems

anywhere from reconstruction of surfaces in computer graphics to the treatment of noise

in data input. For example, to gather information about a surface using a computer, it is

necessary to make use of a combinatorial representation. This information can be provided by

making use of simplicial complexes. Data structures are then constructed with the purpose of

storing cell complex information. To retrieve topological connectivity information from this

data, homology is used. Persistent homology is an invariant that records the “homological

history of a space that is undergoing growth” (see [43]). Algorithms were developed initially

to compute the persistent homology of simplicial complexes but have been extended recently

to general classes of filtered cell complexes. Computational topology will only prove useful to

deal with massive data sets, if both theoretical results and practical algorithms are adequately

elaborated.

More specifically, the computational geometric topology has been interested in the study

of Morse-Smale complexes that arise from large data sets in order to extract significant

topological features which can be measured in some sense by using persistent homology

theory. In this theory there is a well known critical point cancellation rule referred to as the

Elder’s Rule [16], which cancels critical points with respect to the level sets determined by

a height function as one sweeps from bottom to top, i.e. from lower level sets to higher level

sets.

We approached this problem from a dynamical systems point of view. Our interest

resides in understanding the bifurcation behaviour, i.e. birth and death of critical points,

that parametrized families of flows on surfaces undergo. There are many techniques that may

be used to achieve such an endeavour. However, the underlying approach used here has been

to bridge the algebraic-topological and dynamical realms. As we have shown in this chapter,

the SSSA determines a collection of connection matrices {∆r} which record the history of

the birth and death of connecting orbits of ϕf as one calculates the spectral sequence of the

filtered Morse chain complex (C(f),∆). The major role in the birth of new connecting orbits

is played by the primary and change of basis pivots. As one traverses the diagonals of the

matrix via the Spectral Sequence Sweeping Algorithm, longer and longer connecting orbits

are produced (birth) while the connecting orbits corresponding to the change of basis pivots

are eliminated (death). In summary, longer orbits are born due to the death of shorter ones

caused by the cancellation of critical points.
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Chapter 3

Spectral Sequences for two

dimensional Novikov Complexes

Spectral sequence analysis has proven to be a useful algebraic tool in detecting bifurcation

phenomenon within a parametrized family of flows. This was initially explored in [13, 24, 30]

for a filtered Morse chain complex where the filtration is determined by a Morse function.

For instance, as presented in the Background Section 1.2, a spectral sequence of a filtered

Morse chain complex associated to a flow can be retrieved from its differential, which is a

connection matrix, via the SSSA.

In Chapter 2, we obtained strong results on the interconnection between algebraic and

dynamical information in this setting. Since the spectral sequence analysis in Chapter 2

was realised for a two dimensional filtered Morse chain complex over Z, we were able to

prove a global dynamical cancellation theorem (Theorem 2.3) as well as a continuation

result presented in Theorem 2.4 that keeps track of birth and death of connections between

singularities in a Morse flow.

With this motivation in mind, we undertake a new dynamical setup, namely Morse-

Novikov flows which arise within Novikov’s theory as gradients of circle-valued Morse func-

tions f : M → S1 on a surface M .

We consider, in this chapter, Novikov chain complexes (N∗, ∂) associated to circle-valued

Morse functions f on surfaces. The Novikov modules N∗ are the Z((t))-modules freely

generated by the critical points of f . The Novikov differential ∂ “counts” over Z((t)) orbits

with signs connecting consecutive critical points. In this context, we will prove that the

SSSA is well defined and it also recovers the spectral sequence associated to the Novikov

69
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chain complex as in the Morse case.

The difficulty herein is that we lose the notion of how to minimize a leading coefficient

of a change of basis when we are working with the ring Z((t)). Our first step in generalizing

the spectral sequence analysis for Novikov complexes will be done on orientable surfaces,

since in this case one can always zero out a change-of-basis by using only the column of the

corresponding primary pivot.

This chapter is organized as follows. The Novikov chain complex is introduced in Section

3.1, where we also characterize the Novikov incidence coefficients between consecutive critical

points.

In Section 3.2, we present the Spectral Sequence Sweeping Algorithm (SSSA) for a two

dimensional Novikov complex over Z((t)). This algorithm produces a collection of Novikov

matrices generated from the Novikov differential.

In Section 3.3, we prove in Theorem 3.2 that the SSSA for a Novikov chain complex is well

defined. Also, the Novikov matrices which appear in SSSA are characterized in Theorems

3.3 and 3.4. In Theorem 3.5, we prove the surprising result that the last matrix produced

by the SSSA has polynomial entries in Z((t)), although the intermediate Novikov matrices

exhibit entries which are infinite series.

In Section 3.4, we prove in Theorems 3.6 and 3.7 that from the sequence of Novikov ma-

trices produced by the SSSA, the modules and differentials (Er, dr) of the spectral sequence

may be retrieved. More specifically, the SSSA provides a system which spans Er in terms of

the original basis of N as well as identifies all differentials drp : E
r
p → Er

p−r.

3.1 Novikov Complex

In this section, some background material on circle-valued functions and on Novikov

complexes over Z((t)) are presented. Further details can be found in [35]. Moreover, a

characterization of the Novikov differential is proven in the case of orientable surfaces.

Denote by Z[t, t−1] the Laurent polynomial ring. Let Z((t)) be the set consisting of all

Laurent series

λ =
∑

i∈Z

ait
i

in one variable with coefficients ai ∈ Z, such that the negative part of λ is finite, i.e., there is

n = n(λ) such that ak = 0 if k < n(λ). In fact, Z((t)) has a natural ring structure such that
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the inclusion Z[t, t−1] ⊂ Z((t)) is a homomorphism. Moreover, Z((t)) is a Euclidean ring.

Let M be a closed connected manifold and f : M → S1 be a smooth map from M to

the one-dimensional sphere1. Given a point x ∈ M and a neighbourhood V of f(x) in S1

diffeomorphic to an open interval of R, the map f |f−1(V ) is identified to a smooth map from

f−1(V ) to R. Therefore, in this context one can define non-degenerate critical points and

Morse index as in the classical case of smooth real valued map. A smooth map f : M → S1

is called a circle-valued Morse function if its critical points are non-degenerate. The set of

critical points of f will be denoted by Crit(f) and, more specifically, Critk(f) is the set of

critical points of f of index k.

Considering the exponential function Exp : R → S1 given by t 7→ e2πit and a covering

E : M → M such that Eπ(π1(M)) ⊂ Kerfπ, where Eπ and fπ are the induced maps in π1

by E and f respectively, there exists a map F : M → R which makes the following diagram

commutative: M
F

//

E

��

R

Exp

��

M
f

// S1

Moreover, f is a circle-valued Morse function if and only if F is a real valued Morse function.

Observe that if Crit(F ) is non empty then it has infinite cardinality. If M is non compact,

one can not apply the classical Morse theory to study F , however, one can restrict F to

a fundamental cobordism W of M , which is compact, and apply the techniques of Morse

theory. The fundamental cobordism W is defined as W = F−1([a−1, a]), where a is a regular

value of F . The cobordism W can be viewed as the manifold M obtained by cutting along

the submanifold V = f−1(α), where α = Exp(a). Hence, W is a cobordism with both

boundary components diffeomorphic to V .

Given a circle-valued Morse function f , consider the vector field v = −∇f . One says that

f satisfies the transversality condition if the lift of v to M satisfies the classical transversality

condition on the unstable and stable manifolds.

From now on, consider circle-valued Morse functions f such that v = −∇f satisfies the

transversality condition. Denote by v the lift of v to M and arbitrarily choose orientations

for all unstable manifolds W u(p) of critical points of f .

Given p ∈ Critk(f) and q ∈ Critk−1(f), the Novikov incidence coefficient between p and

1S1 is viewed as the submanifold {(x, y) ∈ R2 | x2 + y2 = 1} and is endowed with the corresponding
smooth structure.
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q is defined as the Laurent series

N(p, q; v) =
∑

ℓ∈Z

n(p, tℓq; v)tℓ,

where n(p, tℓq; v) is the intersection number between the critical points p and tℓq of F , i.e.,

the number obtained by counting with signs the flow lines of v from p to tlq, when one

considers the orientations on the unstable manifolds W u(p) and W u(tℓq) according to the

previous fixed orientations in W u(p) and W u(q). See [3] and [35].

Let Nk be the Z((t))-module freely generated by the critical points of f of index k.

Consider the k-th boundary operator ∂k : Nk → Nk−1 which is defined on a generator

p ∈ Critk(f) by

∂k(p) =
∑

q∈Critk−1(f)

N(p, q; v)q

and extended to all chains by linearity. In [35] it is proved that ∂k ◦ ∂k+1 = 0, hence (N∗, ∂∗)

is a chain complex which is called the Novikov complex associated to the pair (f, v).

Example 3.1. As a first example, consider the flow on a torus T associated to a circle-valued

Morse function f , as in figure below, where a is a regular value of f .

h4
2

h3
1

h2
1

h1
0

f−1(a) = V

The Novikov chain groups are N0 = Z((t)){h1
0}, N1 =

Z{h2
1, h

3
1} and N2 = Z{h4

2}. The figure on the right rep-

resents a covering space of T . Choosing the orientations for

the unstable manifolds of the critical points of f as indicated

in the figure above, one can compute the intersection num-

ber between consecutive critical points with respect to the

Morse flow in the cobordism.

h4
2

h3
1

h2
1

h1
0

th4
2

th3
1

th2
1

th1
0

t2h4
2

t2h3
1

t2h2
1

t2h1
0

...

...
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In this case, the Novikov incidence coefficient is a polynomial N(p, q; v) =
∑

l∈Z alt
l,

where al is the intersection number between p and tlq with respect to the Morse flow in the

cobordism, i.e., al is the number of flows lines from p to q, counted with signs, intersecting

l times the regular level set f−1(a). Therefore, the Novikov incidence coefficients for this

example are given by:

1. N(h2
1, h

1
0; v) = t − 1 indicating two flow lines from h2

1 to h1
0, one of which intersects

f−1(a) once and the other does not intersect;

2. N(h3
1, h

1
0; v) = t2 − 1, indicating two flow lines from h3

1 to h1
0, one of which intersects

f−1(a) twice and the other does not intersect;

3. Analogously, N(h4
2, h

2
1; v) = t2 − 1 and N(h4

2, h
3
1; v) = t− 1.

The Novikov boundary operator is defined on the generators by: ∂1(h
2
1) = (t − 1)h1

0,

∂1(h
3
1) = (t2 − 1)h1

0 and ∂2(h
4
2) = (t2 − 1)h2

1 + (t− 1)h3
1. ◭

One can consider the Novikov differential ∂ as a matrix ∆ where each column corresponds

to generators p, q ∈ Crit(f) and the entries are the coefficients N(p, q; v) of the Novikov

differential ∂. Moreover, one assumes that the columns of ∆ are ordered with respect to the

Morse indices of the critical points, e.g., in increasing order with respect to the Morse index.

See Figure 3.1.

∆k−1

∆k

∆k+1

∆k+2

NkNk−1 Nk+1 Nk+2 NnN0

0

Nk

Nk−1

Nk+1

Nk+2

Nn

N0

0

0

0

0

0 0

0

0

0

0

0

...

...

· · · · · ·

∆ =

Figure 3.1: Novikov differential viewed as a matrix,
where ∆k is the matrix representation of ∂k.

In the case when M is a surface, the columns of ∆ may be partitioned into subsets

J0, J1, J2 such that Js are the columns associated with critical points of index s, i.e., the

generators of Ns. Hence, the non-zero entries of the matrix ∆ are in the block J0×J1, which

corresponds to connections from saddles to sinks, and in the block J1×J2, which corresponds
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to connections from sources to saddles. The block J0 × J1 (respectively, J1 × J2) is referred

to as the first block (respectively, second block) of the matrix ∆. Figure 3.2 illustrates a

possible structure for a Novikov differential associated to a circle-valued Morse function on

a surface.

J0 J1 J2

J0

J1

J2

∆J0J1

∆J1J2

0

0

0

0

0

0

0

0

0

0

0

0

Figure 3.2: Novikov differential, with J0 = {1, 2, 3, 4},
J1 = {5, 6, 7, 8, 9} and J0 = {10, 11, 12}.

Since we work with a matrix representation for the Novikov differential ∂, we will switch

the notation, from this point on, to the matrix ∆, hereupon referred to as a Novikov matrix

associated to ∆.

The following theorem will describe special characteristics of the Novikov matrix asso-

ciated to ∆ by describing the Novikov incidence coefficients. In order to do this, we must

define a fundamental domain. A cobordism W = F−1([a− 1; a]), where a is a regular value

of F and λ ∈ N, is said to be a fundamental domain for (M ; f) if the following property is

satisfied: given p ∈ Critk(f) and q ∈ Critk−1(f), W contains a lift of each orbit of the flow

v from p to q.

Theorem 3.1. Let M be an orientable surface and (N∗,∆) be the Novikov complex associated

to a circle-valued Morse function f : M → S1. The Novikov incidence coefficient N(p, q; v)

is either zero, a monomial ±tℓ or a binomial tℓ1 − tℓ2.

Proof. Given an orientable surface M , let Wλ = F−1([a − 1, a + λ]) be a fundamental

domain for (M, f). Then Wλ is an orientable compact surface with boundary ∂Wλ, possibly

empty. If ∂Wλ = ∅, define W̃λ = Wλ. In the case that the boundary ∂Wλ is non empty, it

is the disjoint union of ∂W−
λ = F−1(a − 1) and ∂W+

λ = F−1(a + λ). Let W̃λ be the closed

surface obtained from Wλ by gluing 2-dimensional disk along its boundary to each connected
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component of ∂Wλ. Moreover, one can assume that each of its disks contains a singularity,

more specifically, a source if the disk is glued to ∂W+
λ and a sink if the disk is glued to

∂W−
λ . This procedure extends the Morse function F : Wλ → R to a classical Morse function

F̃ : W̃λ → R on a closed surface.

Given p ∈ Critk(f) and q ∈ Critk−1(f), the Novikov incidence coefficient N(p, q; v)

counts the number of flow lines from p to q with signs. Since, each of these flow lines has

a lift in Wλ, then N(p, q; v) can be obtained by analysing Wλ. On the other hand, the

intersection number n(p, tℓq; v) between critical points p and tℓq in Wλ is the same as when

considered in the surface W̃λ. Since W̃λ is closed, n(p, tℓq; v) is zero, when there are two

flow lines from p to tℓq. It is −1 or +1, when there is one flow line from p to tℓq. See [4].

Therefore, the Novikov incidence coefficient N(p, q; v) is:

(a) 0, if there are two flow lines from p to q in v which intersect the level set f−1(a) the

same number of times;

(b) ±tℓ, if there is only one flow line from p to q which intersects ℓ times the level set

f−1(a);

(c) tℓ1 − tℓ2 , if there are two flow lines from p to q in v, one intersecting ℓ1 times and the

other intersecting ℓ2 times the level set f−1(a). �

Corollary 3.1 (Characterization of the Novikov differential on orientable surfaces). Let M

be an orientable surface and (N∗,∆) be the Novikov complex associated to a circle-valued

Morse function f : M → S1 such that the chosen orientation on the unstable manifold of

each critical point of index 2 is the same. Then there are three possibilities for either a

column or a row j ∈ J1 of ∆:

(1) all entries are null;

(2) exactly one non zero entry which is a binomial tℓ1 − tℓ2, for some ℓ1, ℓ2 ∈ Z;

(3) exactly two non zero entries which are monomials tℓ1 and −tℓ2, for some ℓ1, ℓ2 ∈ Z.

Proof. If f does not have a critical point of index 1, then the Novikov matrix is null.

Suppose that f has at least one critical point of index 1, i.e., a saddle. In this case, it is

clear that, given a row (respectively, column) j ∈ J1 of ∆, there are at most two non zero
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entries in this row (respectively, column). In fact, there are exactly two flow lines whose ω-

limit (respectively, α-limite) sets are the same saddle. By Corollary 2.2, choosing the same

orientation for each unstable manifold of critical points of index 2, the signs on flow lines

associated to the stable (respectively, unstable) manifold of a saddle are opposite. Therefore,

if there are two flow lines from a source (respectively, saddle) p to a saddle (respectively,

sink) q intersecting a regular level set f−1(a) ℓ times, then N(p, q; v) = tℓ − tℓ = 0. On

the other hand, if there is a flow line from a source (respectively, saddle) p to a saddle

(respectively, sink) q intersecting ℓ1 times a regular level set f−1(a) and a flow line from a

source (respectively, saddle) p′ to the saddle (respectively, sink) q intersecting ℓ2 times the

same regular level set, then N(p, q; v) = ±tℓ1 and N(p′, q; v) = ∓tℓ2 . �

Example 3.2. Figure 3.3 illustrates a flow on the torus T 2 associated to a circle-valued

Morse function f defined on T 2, where a is a regular value of f . The Novikov chain groups

are N0 = Z((t)){h1
0, h

2
0}, N1 = Z((t)){h3

1, h
4
1, h

5
1, h

6
1} and N2 = Z((t)){h7

2, h
8
2}. Choosing

the orientations for the unstable manifolds of the critical points of f as indicated in Figure

3.3, the Novikov matrix associated to ∂ is presented in Figure 3.4. Hence, for example,

∂(h3
1) = (t−1)h2

0 meaning that there are two flow lines from h3
1 to h2

0 such that one intersects

f−1(a) once and the other does not intersects this level set. ◭

h2
0

h1
0

h3
1

h6
1

h4
1

h5
1

h7
2

h8
2

f−1(a)

Figure 3.3: Circle-valued Morse function.
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Figure 3.4: Novikov matrix.
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3.2 Spectral Sequence Sweeping Algorithm for a Novikov

Complex

A square matrix will be called a Novikov matrix if it is a strictly upper triangular matrix

with square zero and entries in the ring Z((t)).

In this section, we define the Spectral Sequence Sweeping Algorithm (SSSA) for a Novikov

matrix associated to a Novikov complex (N∗,∆) on an orientable surface. The SSSA con-

structs a family of Novikov matrices {∆r, r ≥ 0} recursively, where ∆0 = ∆, by considering

at each stage the r-th diagonal.

Spectral Sequence Sweeping Algorithm - SSSA

For a fixed r-th diagonal the method described below must be applied for all ∆k for k = 0, 1, 2

simultaneously.

A - Initial step

1. Without loss of generality, we assume that the first diagonal2 of ∆ contains non-

zero entries ∆i,j where j ∈ Jk and i ∈ Jk−1. Whenever the first diagonal contains

only zero entries, we define ∆1 = ∆ and we repeat this step until we reach a

diagonal of ∆ which contains non-zero entries.

The non-zero entries ∆i,j of the first diagonal are called index k primary pivots.

It follows that the entries ∆s,j for s > i are all zero.

We end this first step by defining ∆1 as ∆ with the index k primary pivots on the

first diagonal marked.

2. Consider the matrix ∆1 and let ∆1
i,j be the entries in ∆1 where the i ∈ Jk−1 and

j ∈ Jk. Analogously to step one, we assume without loss of generality that the

second diagonal contains non-zero entries ∆1
i,j. We now construct a matrix ∆2

following the procedure:

Given a non-zero entry ∆1
i,j on the second diagonal of ∆1

(a) if there are no primary pivots in row i and column j, mark it as an index

k primary pivot and the numerical value of the entry remains the same, i.e.

∆2
i,j = ∆1

i,j.

2By r-th diagonal one means the collection of entries ∆ij of ∆ such that j − i = r.
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(b) if this is not the case, consider the entries in column j and in a row s with

s > i in ∆1.

(b1) If there is an index k primary pivot in an entry in column j and in a row

s, with s > i, then the numerical value remains the same and the entry

is left unmarked, i.e. ∆2
i,j = ∆1

i,j.

(b2) If there are no primary pivots in column j below ∆1
i,j then there is an

index k primary pivot in row i, say a column u of ∆1, with u < j. In

this case, we define ∆2
i,j = ∆1

i,j and this entry marked as a change-of-basis

pivot.

Note that we have defined a matrix ∆2 which is actually equal to ∆1

except that the second diagonal is marked with primary and change of

basis pivots.

B - Intermediate step

In this step we consider a matrix ∆r with the primary and change of basis pivots

marked on the ξ-th diagonal for all ξ ≤ r. We now describe how ∆r+1 is defined. If

there does not exist a change of basis pivot on the r-th diagonal we go directly to step

B.2, that is, we define ∆r+1 = ∆r with the (r + 1)-th diagonal marked with primary

and change of basis pivots as in B.2.

B.1 - Change of basis

Suppose ∆r
i,j is a change of basis pivot on the r-th diagonal. Since we have a change

of basis pivot in row i, there is a column, namely u-th column, associated to a k-chain

such that ∆r
i,u is a primary pivot. Then, perform a change of basis on ∆r in order to

zero out the entry ∆r
i,j without introducing non-zero entries in ∆r

s,j for s > i. We will

prove in Theorem 3.2 that all the entries in ∆r which are primary pivots are equal to

±tl1 ± tl2 and, since these entries are invertible in Z((t)), it is always possible choosing

a particular change of basis using just column j and u of ∆r.

Once this is done, we obtain a k-chain associated to column j of ∆r+1. It is a linear

combination over Z((t)) of column u of ∆r and column j of ∆r such that ∆r+1
i,j = 0. It

is also a particular linear combination of the columns of ∆ in Jk on and to the left of

column j.
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Let k1 be the column of ∆r which is associated to a k-chain. We denote by σj,r
k to

indicate the Morse index k and the column j of ∆r. We have

σj,r
k =

j∑

ℓ=k1

cj,rℓ hℓ
k,

and the column j of ∆r+1 is

σj,r+1
k = σj,r

k −∆r
i,j(∆

r
i,u)

−1σu,r
k = cj,r+1

k1
hk1
k + · · ·+ cj,r+1

j−1 hj−1
k + cj,r+1

j hj
k (3.1)

where cj,r+1
ℓ ∈ Z((t)) and cj,r+1

j = 1.

Therefore the matrix ∆r+1 has entries determined by a change of basis over Z((t)) of

∆r. In particular, all the change-of-basis pivots on the r-th diagonal ∆r are zero in

∆r+1.

Once the above procedure is done for all change-of-basis pivots of the r-th diagonal of

∆r we can define a change-of-basis matrix T r, and let ∆r+1 = (T r)−1∆rT r.

B.2 - Marking the (r + 1)-th diagonal of ∆r+1

Consider the matrix ∆r+1 defined in the previous step. We mark the (r+1)-th diagonal

with primary and change of basis pivots as follows:

Given a non-zero entry ∆r+1
i,j

1. If there are no primary pivots in row i and column j, mark it as an index k

primary pivot.

2. If this is not the case, consider the entries in column j and in a row s with s > i

in ∆r+1.

(b1) If there is an index k primary pivot in the entries in column j below ∆r+1
i,j

then leave the entry unmarked.

(b2) If there are no primary pivots in column j below ∆r+1
i,j then there is an index

k primary pivot in row i, say in the column u of ∆r+1, with u < j. In this

case, mark it as a change of basis pivot.

C - Final step

We repeat the above procedure until all diagonals have been considered.
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Note that in the Spectral Sequence Sweeping Algorithm the columns of the matrix ∆

are not necessarily ordered with respect to k, or equivalently, that the singularities hk are

not ordered with respect to the filtration. In this chapter, without loss of generality, we

consider the singularities to be ordered with respect to the Morse index for the sole reason

of simplifying notation.

In order to perform the particular change of basis (3.1) in step B.1 of the Spectral

Sequence Sweeping Algorithm, the primary pivots must be invertible polynomials in the

ring Z((t)). Otherwise, the change of basis in (3.1) is not well defined. The example below

shows a Novikov differential for which the SSSA is well defined.

Example 3.3. Applying the SSSA to the Novikov matrix ∆ in Figure 3.4, one obtains the

sequence of Novikov matrices ∆1, · · · ,∆6 presented in Figures 3.5, · · · , 3.10, respectively.

In these figures, the markup process at the r-th iteration is done as follows: primary pivots

are encircled and change-of-basis pivots are encased in boxes.

Note that, in this example, each marked primary pivot in ∆r is invertible in the ring

Z((t)), making it possible to apply the SSSA and obtain the next Novikov matrix ∆r+1.

1 t 1

t - 1 -1 -1 - t

1 -1

- t
2 1

t - 1

t -1

σ
j,1
0 =h

j
0 for j ∈J0; σ

j,1
1 =h

j
1 for j∈J1;

σ
j,1
2 =h

j
2 for j∈J2.

Figure 3.5: ∆1 for Example 3.3.

1 t 1

t - 1 -1 -1 - t

1 -1

- t
2 1

t - 1

t -1

σ
j,2
0 =h

j
0 for j ∈J0; σ

j,2
1 =h

j
1 for j∈J1;

σ
j,2
2 =h

j
2 for j∈J2.

Figure 3.6: ∆2 for Example 3.3.
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1 t 1

t - 1 -1 - t

t
2

t - 1

+ 1

1

t

- t
2 1 - t

t - 1
t - 1

t

t

σ
4,3
1 =h4

1 + (t−1)−1h3
1; σ

8,3
1 =h8

2 + t−1h7
2.

σ
j,3
k = σ

j,2
k for all the remaining σ’s.

Figure 3.7: ∆3 for Example 3.3.

1 t 1

t - 1 - t

t
2

t - 1

- t
2 1 - t

t - 1
t - 1

t

t

σ
5,4
1 =h5

1 + (t−1)−1h3
1.

σ
j,4
k = σ

j,3
k for all the remaining σ’s.

Figure 3.8: ∆4 for Example 3.3.

1 1

t - 1

- t

t - 1
t - 1

t

t

σ
5,5
1 =h5

1 − t h4
1; σ

6,5
1 =h6

1 + t(t−1)−1h3
1;

σ
j,5
k = σ

j,4
k for all the remaining σ’s.

Figure 3.9: ∆5 for Example 3.3.

1

t - 1

t - 1
t - 1

t

t

σ
6,6
1 =h6

1 − h4
1;

σ
j,6
k = σ

j,5
k for all the remaining σ’s.

Figure 3.10: ∆6 for Example 3.3.

3.3 Characterization of the Novikov Matrices

The primordial aim in this section is to show that the SSSA is well defined for all Novikov

differentials of a 2-dimensional Novikov complex. This is done by showing that, given a

Novikov differential ∆, all primary pivots determined by the SSSA are invertible polyno-
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mials in the ring Z((t)). In fact, they are monomials with coefficient ±1 or binomials with

coefficients ±1. Throughout this section, the term monomial (respectively, binomial) will be

used to refer to polynomials in Z((t)) of the form ±tℓ (respectively, tℓ1 − tℓ2), where ℓ ∈ Z

(respectively, ℓ1, ℓ2 ∈ Z).

Theorem 3.2. Given a Novikov differential ∆, the primary pivots and the change of basis

pivots in the Spectral Sequence Sweeping Algorithm are polynomials of the form tℓ or tℓ1−tℓ2,

where ℓ, ℓ1, ℓ2 ∈ Z.

The proof of Theorem 3.2 is an immediate consequence of Theorem 3.3, Lemma 3.2 and

Theorem 3.4.

Lemma 3.1 asserts that we cannot have more than one primary pivot in a fixed row or

column. Moreover, if there is a primary pivot in row i, then there is no primary pivot in

column i.

Lemma 3.1. Let ∆ be a Novikov differential for which the SSSA is well defined up to step R.

Let ∆1, · · · ,∆R be the family of Novikov matrices produced by the SSSA until step R. Given

two primary pivots, the ij- th entry ∆r
i,j and the ml-th entry ∆r

m,l, then {i, j} ∩ {m, l} = ∅.

We omit the proof of Lemma 3.1, since it is similar in nature to proof of Proposition 3.2

in [13], where the SSSA was defined for a Morse chain complex over Z. The next lemma

implies that, in order to know the pivots which will appear during the execution of the SSSA,

one can apply this algorithm separately in block J0 × J1 and J1 × J2.

Lemma 3.2. Let ∆ be a Novikov differential for which the SSSA is well defined up to step

R. Then, the change of basis caused by change-of-basis pivots in block J0 × J1 do not affect

the pivots in block J1 × J2. In other words, multiplication by (T r)−1 does not change the

primary and change-of-basis pivots in block J1 × J2 .

Proof. Without loss of generality, suppose that there is only one change-of-basis pivot ∆r
i,j

in ∆r with j ∈ J1. The change of basis matrix T r has unit diagonal and the only non zero

entry off the diagonal is T r
u,j = −∆

r
i,j(∆

r
i,u)

−1. Hence, (T r)−1 has unit diagonal and the only

non zero entry off the diagonal is (T r)−1
u,j = −T

r
u,j = ∆r

i,j(∆
r
i,u)

−1. Therefore, multiplication

by (T r)−1 will only affect row u of ∆r. By Lemma 3.1, there are no primary pivots in row u

and hence there are no change-of-basis pivot in row u as well. �
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Before proving Theorem 3.2, we introduce the notation and terminology that will be used

in the proof. From now on, we consider the SSSA without realising the pre-multiplication

by (T r)−1, unless mention otherwise.

Let ∆r
i,j be a change-of-basis pivot caused by a primary pivot ∆r

i,u. Suppose a change of

basis determined by ∆r
i,j is performed by the SSSA in the matrix ∆r, i.e., in the step (r+1),

one has

σj,r+1
k = σj,r

k −∆r
i,j(∆

r
i,u)

−1σu,r
k .

Hence, whenever this change-of-basis occurs, only column j of the matrix ∆r is modified, in

fact, for each s = 0, . . . , i, the entry ∆r
s,j is added to a multiple of the entry ∆r

s,u, where u is

the column of the primary pivot in row i. In other words, ∆r+1
s,j = ∆r

s,j − ∆r
i,j(∆

r
i,u)

−1∆r
s,u.

See the matrix in Figure 3.11 (this figure shows part of the block associated with index k,

as the r-th diagonal is swept).

u j

s

i




...
...

· · · ∆r
s,u · · · ∆r

s,j · · ·
...

. . .
...

· · · ∆r
i,u · · · ∆r

i,j · · ·
...

...




Figure 3.11: ∆r
Jk−1Jk

; marking change-of-basis pivot.

Definition 3.1. In the situation described above and represented in Figure 3.11, we assert

that the entry ∆r
s,u in column u generates the entry ∆r+1

s,j in column j in ∆r+1, whenever

∆r
s,u 6= 0. 3

Note that if an entry in a column j generates another entry in a column t then t > j, i.e,

∆r
s,j generates an entry in a column on the right of the column j.

Example 3.4. It is helpful to keep in mind some configurations that allow an entry ∆r
s,u 6= 0

to generate another entry ∆r+1
s,j . Consider for instance that ∆r

i,u = tℓ and ∆r
i,j = −tℓ̃. We

list some of the possibilities for the entries in positions (s, u) and (s, j) of ∆r:

1. ∆r
s,u = tl and ∆r

s,j = 0. In this case, ∆r+1
s,j = ∆r

s,j − ∆r
i,j(∆

r
i,u)

−1∆r
s,u = tℓ̃t−ℓtl, see

Figure 3.12.

3If an entry ∆ξ
s,u with ξ < r does not change until step r, i.e. ∆ξ

s,u = ∆ξ+1
s,u = · · · = ∆r

s,u, and ∆r
s,u

generates ∆r+1
s,j , we say that ∆ξ

s,u generates ∆r+1
s,j .
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2. ∆r
s,u = −tl and ∆r

s,j = tl̃. In this case, ∆r+1
s,j = ∆r

s,j − ∆r
i,j(∆

r
i,u)

−1∆r
s,u = tl̃ − tℓ̃t−ℓtl,

see Figure 3.13.

3. ∆r
s,u = tl− tl̃ and ∆r

s,j = 0. In this case, ∆r+1
s,j = ∆r

s,j−∆r
i,j(∆

r
i,u)

−1∆r
s,u = tℓ̃t−ℓ(tl− tl̃),

see Figure 3.14.

Figures 3.12, 3.13 and 3.14 show part of the block associated with index k, as the r-th

diagonal is swept.

u j

s

i




...
...

· · · tl · · · 0 · · ·
...

. . .
...

· · · tℓ · · · −tℓ̃ · · ·
...

...




u j

s

i




...
...

· · · tl · · · tℓ̃−ℓ+l · · ·
...

. . .
...

· · · tℓ · · · 0 · · ·
...

...




SSSA

Figure 3.12: ∆r
Jk−1Jk

and ∆r+1
Jk−1Jk

, respectively.

u j

s

i




...
...

· · · −tl · · · tl̃ · · ·
...

. . .
...

· · · tℓ · · · −tℓ̃ · · ·
...

...




u j

s

i




...
...

· · · −tl · · · tl̃ − tℓ̃−ℓ+l · · ·
...

. . .
...

· · · tℓ · · · 0 · · ·
...

...




SSSA

Figure 3.13: ∆r
Jk−1Jk

and ∆r+1
Jk−1Jk

, respectively.

u j

s

i




...
...

· · · tl − tl̃ · · · 0 · · ·
...

. . .
...

· · · tℓ · · · −tℓ̃ · · ·
...

...




u j

s

i




...
...

· · · tl − tl̃ · · · tℓ̃−ℓ+l − tℓ̃−ℓ+l̃ · · ·
...

. . .
...

· · · tℓ · · · 0 · · ·
...

...




SSSA

Figure 3.14: ∆r
Jk−1Jk

and ∆r+1
Jk−1Jk

, respectively.

In fact, we will see as a consequence of Theorem 3.4, the cases shown in the previous

example are the only possibilities up to sign of generating entries under a change of basis in

block J1 × J2. Of course, in block J0 × J1 there are more possibilities.
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Lemma 3.3. An entry which is or will be marked as a primary or a change-of-basis pivot

never generates entries.

Proof. Observe that, if an entry ∆r
s,u generates an entry in ∆r+1, then there must be a

primary pivot in column u and row i > s, which was marked in step ξ < r. Hence, ∆r
s,u can

not be marked as a pivot in any given step r. �

Definition 3.2. Let ∆ be a Novikov differential.

(a) When an entry ∆r
s,u generates another one ∆r+1

s,j , we say that ∆r+1
s,j is an immediate

successor of ∆r+1
s,u .

(b) A sequence of entries {∆ξ1
s,j1

,∆ξ2
s,j2

, · · · ,∆
ξf
s,jf
} such that each entry is an immediate

successor of the previous one is called a generation sequence.

(c) Given an entry ∆i,j of ∆, the ∆i,j-lineage is defined to be the set of all generation

sequences whose first element is ∆i,j.

We will say that all the elements in these sequences are in the same lineage or in ∆ξ
i,j-

lineage. Also an element of a generation sequence is said to be successor of every element of

this sequence which is to its left.

Lemma 3.4. Let ∆ be a Novikov differential for which the SSSA is well defined up to step

R. If ∆ has the property that at most one change-of-basis pivot is marked in a row during

the SSSA until step R, then every lineage is formed by a unique generation sequence.

Proof. By hypothesis, one has that in each row i at most one change-of-basis pivot is marked

through out the algorithm and if so the mark up is done in step 2 ≤ ξ ≤ m− 1, where m is

the order of ∆. Then an entry ∆ξ
i,j in row i generates at most one entry ∆ξ1

i,j1
through out

the algorithm, and this entry will necessarily be in a column j1 > j and ξ < ξ1 ≤ m − 1.

In fact, if ∆ξ
i,j generates two entries, then either there would be two change-of-basis pivots

in row i, which contradicts our initial hypothesis, or two primary pivots in column j, which

can not occur by the definition of primary pivots.

Now, if ξ1 ≤ m − 1, then ∆ξ1
i,j1

can generate at most a unique entry ∆ξ2
i,j2

where ξ1 <

ξ2 ≤ m − 1 and j2 > j1 and this can be done successively. More specifically, the entry ∆ξ
i,j

is a generator, i.e. it is responsible for generating a unique immediate successor and this

successor can in turn generate a unique immediate successor and thus it determines a full
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lineage of entries represented in one finite sequence {∆ξ
i,j,∆

ξ1
i,j1

,∆ξ2
i,j2

, · · · }, where 2 ≤ ξ <

ξ1 < ξ2 < · · · ≤ m− 1, and j < j1 < j2 < · · · ≤ m. �

Corollary 3.2. Let ∆ be a matrix for which the SSSA is well defined up to step R. Suppose

that the second block of ∆ has the property that at most one change-of-basis pivot is marked

in each row from the beginning until the end of the SSSA. Therefore, each ∆i,j-lineage with

i ∈ J1 is formed by a unique generation sequence.

Proof. The SSSA applied to the first block J0 × J1 of ∆ does not interfere in the number

of change-of-basis pivots identified in block J1 × J2. �

Consider a ∆i,j-lineage which is formed by a unique generation sequence. If this gener-

ation sequence contains only monomials (binomials, resp.) then one says that ∆i,j-lineage

is a monomial (binomial, resp.) lineage. However, if ∆i,j is a monomial, then the ∆i,j-

lineage could eventually contain binomials. One way that this can occur is when row s is

of type 3 in ∆, ∆s,u and ∆s,j are monomials and the lineage determined by these entries

merge giving rise to a binomial. More specifically, suppose that the first binomial in row

s appears in ∆ς+1 then one has two monomial lineages {∆s,u,∆
ξ1
s,u1

,∆ξ2
s,u2

, · · · ,∆
ξf
s,uf} and

{∆s,j,∆
ζ1
s,j1

,∆ζ2
s,j2

, · · · ,∆
ζf
s,jf
}, where ξf , ζf ≤ ς; observe that ∆

ξf
s,uf = ∆ς

s,uf
and ∆

ζf
s,jf

= ∆ς
s,jf

.

The binomial will appear in ∆ς+1 as a consequence of a change of basis caused by a change-

of-basis pivot ∆ς
i,jf

and a primary pivot ∆ς
i,uj

in a row i > s, as in Figure 3.15. In this case,

∆ς
s,uf

is the generator of the binomial ∆ς+1
s,jf

. Hence, we say that the ∆s,j-lineage ceases, i.e,

this lineage remains the same until ∆r+1 and the ∆s,j-lineage is an eventual binomial lineage.

From this point on, this lineage contains only binomials.

uf jf

∆ς
JaJa+1

=
s

i




...
...

· · · ∆ς
s,uf

· · · ∆ς
s,jf

· · ·
...

. . .
...

· · · ∆ς
i,uf

· · · ∆ς
i,jf

· · ·
...

...




Figure 3.15: Generating a binomial from two monomial lineages.

Once an element of a lineage is marked as a pivot, this lineage ceases, since pivots do not

generate entries, by Lemma 3.3.
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The next theorem provides a characterization of columns in the first block J0 × J1 of a

Novikov matrix as the r-th diagonal is swept.

Theorem 3.3 (First Block Characterization). Let ∆ be a Novikov differential for which the

SSSA is well defined up to step R. Then we have the following possibilities for a column j,

with j ∈ J1, of the matrix ∆r produced by the SSSA in the step r ≤ R:

1. all the entries in column j are equal to zero, .i.e, ∆r
•,j = 0.

2. there is only one non-zero entry in column j and it is a binomial tℓ− tℓ̃, where ℓ, ℓ̃ ∈ Z.

3. there are exactly two non-zero entries in column j and they are monomials tℓ and −tℓ̃,

where ℓ, ℓ̃ ∈ Z.

4. there is only one non-zero entry in column j and it is a monomial tℓ, where ℓ ∈ Z.

Proof. The proof is done by induction. Note that the result is trivial for ∆1 and ∆2. In

fact, the first change-of-basis pivot can be only detected from the second diagonal of ∆, this

implies that the entries of ∆ may change from r = 3 onwards. Because of that the base of

the induction is r = 3.

r=3:

To prove that the rows of ∆3 are of type 1-4, we will analyze the effect a change-of-basis pivot

marked in ∆2 has on ∆3. Suppose, without loss of generality, that there is a change-of-basis

pivot ∆2
i,i+2 on the second diagonal. Consequently, ∆2

i,i+1 is a primary pivot marked in ∆1.

Recall that the columns in ∆2 satisfy Proposition 3.1. A primary pivot or a change-of-basis

pivot can only occur in a column of ∆2 if this column is of type 2 or 3. Hence, one has the

following possibilities:

1. column i+ 1 is of type 2:

(a) If the column i+ 2 is of type 2, then the primary pivot ∆2
i,i+1 and the change-of-

basis pivot ∆2
i,i+2 are binomials. In this case, ∆3

i,i+2 = 0 and all the other entries

in column i+2 remain the same. Hence column i+2 turns into a column of type

1.

(b) If the column i+2 is of type 3, then ∆2
i,i+2 is a monomial and ∆2

i,i+1 is a binomial.

In this case, ∆3
i,i+2 = 0 and all the other entries remain the same. Hence column

i+ 2 turns into a column of type 4.
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2. column i+1 is of type 3. Then ∆2
i,i+1 is a monomial and there is s < i such that ∆2

s,i+1

is also a monomial.

(a) If the column i+2 is of type 2, then the change-of-basis pivot ∆2
i,i+2 is a binomial.

In this case, ∆3
i,i+2 = 0 and ∆3

s,i+2 = −∆
2
s,i+1(∆

2
i,i+1)

−1∆2
i,i+2, which is a binomial.

Hence, the column i+ 2 remains of type 2.

(b) If the column i + 2 is of type 3, then change-of-basis pivot ∆2
i,i+2 is a monomial

and there is s̄ < i such that ∆2
s̄,i+2 is also a monomial. If s = s̄, then ∆3

i,i+2 = 0

and ∆3
s,i+2 = ∆2

s,i+2 − ∆2
s,i+1(∆

2
i,i+1)

−1∆2
i,i+2, which is either a binomial or zero.

Hence, column i + 2 turns into a column of type 2 or 1, respectively. On the

other hand, if s 6= s̄, then ∆3
i,i+2 = 0, ∆3

s,i+2 = −∆
2
s,i+1(∆

2
i,i+1)

−1∆2
i,i+2, which is a

monomial, and the other entries of column i+2 remain the same. Hence, column

i+ 2 remains of type 3.

Induction hypothesis: Suppose that the conclusion of the Theorem holds for 3 ≤ r <

R. We will show, that it also holds for r + 1.

Suppose that ∆r
i,j is a change-of-basis pivot in the r-th diagonal. Then there is a primary

pivot ∆r
i,u in a column u < j.

1. if column u is of type 2 then ∆r
i,u is a binomial and we have one of the possibilities:

(a) If the column j is of type 2, then the change-of-basis pivot ∆r
i,j is a binomial. In

this case, ∆r+1
i,j = 0 and all the other entries in column r + 1 remain the same.

Hence, column r + 1 turns into a column of type 1.

(b) If the column j is of type 3 (type 4, resp.), then ∆r
i,j is a monomial. In this case,

∆r+1
i,j = 0 and all the other entries remain the same. Hence column j turns into a

column of type 4 (type 1, resp.).

2. column u is of type 3. Then ∆r
i,u is a monomial and there is s < i such that ∆r

s,u is

also a monomial.

(a) If the column j is of type 2, then the change-of-basis pivot ∆r
i,j is a binomial. In

this case, ∆r+1
i,j = 0 and ∆r+1

s,j = −∆r
s,u(∆

r
i,u)

−1∆r
i,j, which is a binomial. Hence,

the column j remains of type 2.

(b) If the column j is of type 3, then the change-of-basis pivot ∆r
i,j is a monomial

and there exists s̄ < i such that ∆r
s̄,j is also a monomial. If s = s̄, then ∆r+1

i,j = 0
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and ∆r+1
s,j = ∆r

s,j − ∆r
s,u(∆

r
i,u)

−1∆r
i,j, which is either a binomial or zero. Hence,

column j turns into a column of type 2 or 1, respectively. On the other hand, if

s 6= s̄, then ∆r+1
i,j = 0, ∆r+1

s,j = −∆r
s,u(∆

r
i,u)

−1∆r
i,j, which is a monomial, and the

other entries of column j remain the same. Hence, column j remains of type 3.

(c) If the column j is of type 4, then the change-of-basis pivot ∆r
i,j is a monomial.

Hence, ∆r+1
i,j = 0 and ∆r+1

s,j = −∆r
s,u(∆

r
i,u)

−1∆r
i,j, which is a monomial. Hence the

column j remains of type 4.

3. column u is of type 4. The only non-zero entry in column u is the primary pivot ∆r
i,u

which is a monomial. Hence, in column j all the entries remain the same besides the

change-of-basis ∆r+1
i,j = 0. If j is a column of type 2 or 4 it turns into a column of type

1; if j is of type 3 it turns into a column of type 4.

�

Theorem 3.4 (Second Block Characterization). Let ∆ be a Novikov differential for which

the SSSA is well defined up to step R. Then we have the following possibilities for a non-zero

row s, with s ∈ J1, of the matrix ∆r produced by the SSSA in step r ≤ R without realising

the pre-multiplication by (T r)−1:

(A) all non null entries are binomials of the form tℓ − tℓ̃, where ℓ, ℓ̃ ∈ Z;

(B) all non null entries are monomials of the form tℓ, where ℓ ∈ Z;

(C) all non null entries are either monomials tℓ or binomials tℓ− tℓ̃. Moreover, if a column

j ∈ J2 contains a binomial, then there are no monomials in columns j′ ∈ J2 with

j′ > j.

Proof. We will prove this theorem by induction in r ≤ R. In the course of the proof, we

will also prove the following set of statements:

(i) If an entry tℓ is a primary pivot in row i then at most one entry will be marked as a

change-of-basis pivot in row i.

(ii) An entry tℓ − tℓ̃ is never marked as a change-of-basis pivot, i.e. all change-of-basis

pivots are monomials tℓ, for some ℓ ∈ Z.
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(iii) If ∆r
s,j = tℓ − tℓ̃, ∆r

i,j is a change-of-basis pivot in row i > s and ∆r
i,u is the primary

pivot in row i with u < j, then ∆r
s,u is zero.

(iv) A primary pivot ∆ξ
i,u and a change-of-basis pivot ∆ξ

i,j in row i are always monomials

with opposite signs, i.e., ∆r
i,j = ±t

ℓ and ∆r
i,u = ∓tℓ̃, for ℓ, ℓ̃ ∈ Z.

(v) A monomial ∆ξ
s,u above a primary pivot ∆r

i,u and a monomial ∆ξ
s,j above a change-

of-basis pivot ∆r
i,j always have opposite signs, i.e., ∆r

s,j = ±tℓ and ∆r
s,u = ∓tℓ̃, for

ℓ, ℓ̃ ∈ Z.

Observe that the matrices ∆1 and ∆2 differ from the initial matrix ∆ only in the mark-ups

of primary and change-of-basis pivots, since the entries can only change as of 3-th diagonal.

Base case r=3: In order to prove that the rows of ∆3 satisfies conditions (A), (B) and (C)

of the theorem, we must analyze the effect on a row of ∆3 caused by a change-of-basis pivot

marked in the second step r = 2 of the SSSA.

i+1 i+2

∆2
J1J2

=
s

i




...
...

· · · ∆2
s,i+1 ∆2

s,i+2 · · ·
...

...
· · · ∆2

i,i+1 ∆2
i,i+2 · · ·

...
...




Figure 3.16: Primary and change-of-basis pivots in the first and second diagonals of ∆2,
respectively.

Suppose, without loss of generality, that there is a change-of-basis pivot ∆2
i,i+2 on the

second diagonal. Consequently, ∆2
i,i+1 is a primary pivot marked in the first step of the

SSSA, see Figure 3.16. Recall that the rows in ∆2 satisfy Proposition 3.1. A change-of-basis

pivot only occurs in row i and column i + 1 if this row is of type 3. In what follows, we

analyze the effect of this change of basis on a row s with s < i:

1. If row s is null (i.e., of type 1) then only row i is altered and becomes a row of type B.

2. Suppose that row s is of type 2. If the only non-zero entry in row s is in a column

different from i + 1, then row s remains unaltered and row i turns into a row of type

B. On the other hand, if this non zero entry is in the column i+ 1, which is the same

column as that of the primary pivot, then row i turns into a row of type B and row s

turns into a row of type A, as one can see in Figure 3.17.
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i+1 i+2

s

i




...
...

· · · tl−tl̃ 0 · · ·
...

...

· · · ±tℓ ∓tℓ̃ · · ·
...

...




i+1 i+2

s

i




...
...

· · · tl−tl̃ t−ℓ̃ℓl−t−ℓ̃ℓl̃ · · ·
...

...
· · · ±tℓ 0 · · ·

...
...




SSSA

Figure 3.17: ∆2
J1J2

and ∆3
J1J2

, respectively.

3. Suppose that row s is of type 3. If ∆s,i+1 is zero, then row s remains unaltered. If

∆2
s,i+1 = tl, one has two possibilities for ∆2

s,i+2, namely, 0 or tl̃. In the first case, after

performing the change of basis, row s turns into a row of type B (see Figure 3.18), and

in the second case it turns into a row of type C (see Figure 3.19).

i+1 i+2

s

i




...
...

· · · ±tl 0 · · ·
...

...

· · · ±tℓ ∓tℓ̃ · · ·
...

...




i+1 i+2

s

i




...
...

· · · ±tl ±tℓ̃−ℓ+l · · ·
...

...
· · · ±tℓ 0 · · ·

...
...




SSSA

Figure 3.18: ∆2
J1J2

and ∆3
J1J2

, respectively.

i+1 i+2

s

i




...
...

· · · ±tl ∓tl̃ · · ·
...

...

· · · ±tℓ ∓tℓ̃ · · ·
...

...




i+1 i+2

s

i




...
...

· · · ±tl ∓tl̃ ± tℓ̃−ℓ+l · · ·
...

...
· · · ±tℓ 0 · · ·

...
...




SSSA

Figure 3.19: ∆2
J1J2

and ∆3
J1J2

, respectively.

In the base case, it is ease to see that (i) through (v) hold.

In order to prove (i) note that, the only case that needs to be analyzed is when ∆2
i,i+1 is a

primary pivot and ∆2
i,i+2 is a change-of-basis pivot. Observe that ∆2

i,i+3 = 0, since rows of ∆2

have at most two non zero entries. As pivots do not generate entries, by Lemma 3.3, the entry

∆2
i,i+3 is not altered by change-of-basis pivots marked in step 2. Hence, ∆3

i,i+3 = ∆2
i,i+3 = 0

and it is not a change-of-basis pivot.

In order to prove (ii), we must consider each row s where the entry ∆3
s,s+3 = tl − tl̃ was

generated in ∆3, otherwise this entry would be in a row of type 2 and hence, could not
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be a change-of-basis pivot. There are exactly two ways that this entry can be generated:

when row s was of type 2 and of type 3 in ∆2. Suppose by contradiction that ∆3
s,s+3 is a

change-of-basis pivot. Since primary pivots do not generate entries and there exists at most

one change-of-basis pivots in a row then row s could not be of type 2 in ∆2, see Figure

3.13. If row s was of type 3 in ∆2 then the primary pivot would generate ∆3
s,s+3 which also

contradicts Lemma 3.3, see Figure 3.14. Consequently, ∆3
s,s+3 is not a change-of-basis pivot.

In order to prove (iii), suppose by contradiction that ∆3
s,u 6= 0. Since rows of the

initial matrix ∆ do not admit two non zero entries with one of them being a binomial, see

Proposition 3.1, then ∆2
s,u = ∆3

s,u generates ∆3
s,i+3 in ∆3. Therefore, by Definition 3.1, there

must exist a change-of-basis pivot in the second diagonal in a row ĩ > i and a primary pivot

in row ĩ and column u, which contradicts the fact that each column has at most one primary

pivot.

Items (iv) and (v) are trivially true.

We now prove Theorem 3.4 and item (i) through (v) by induction.

Induction hypothesis: Suppose that Theorem 3.4 and item (i) through (v) hold for

ξ ≤ r < R. We will show that they also hold for r + 1. First, note that by the induction

hypothesis, at most one entry in a fixed row in J1 is marked as change-of-basis pivot up to

step r. Hence, by Corollary 3.2, given an entry ∆s,u, the ∆s,u-lineage is formed by a unique

generation sequence until ∆r+1, which is either a binomial lineage, if ∆s,u is a binomial; or a

monomial lineage or an eventual binomial lineage, if ∆s,u is a monomial4. More specifically,

if row s is of type 2 in ∆, where ∆s,u 6= 0 is a binomial, then the ∆s,u-lineage is a binomial

lineage. If row s is of type 3, where ∆s,u and ∆s,j are monomials, then each monomial

determines a lineage, which are either both monomial lineages or one monomial lineage which

ceases and merges with the other to create an eventual binomial lineage. It is important to

keep in mind that, if there is at most one change-of basis per row up to step r, then the

∆i,u-lineage is formed by a unique generation sequence until ∆r+1. This follows since entries

in ∆r+1 can only be generated by change of basis determined in step r.

By the induction hypothesis that characterizes the rows of ∆r as being of type (A), (B)

and (C) and item (ii), it follows that if ∆r
i,j is a change-of-basis pivot on the r-th diagonal

and ∆r
i,u is the primary pivot of row i, then these entries must be monomials. Moreover, by

item (iv), ∆r
i,j = ±t

ℓ and ∆r
i,u = ∓tℓ̃, for ℓ, ℓ̃ ∈ Z.

4Note that in this proof, whenever we assume the induction hypothesis for r, the index r is shifted by
one, i.e., r + 1 when referring to the lineages.
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Now we will prove the statement of the Theorem 3.4 and item (i) through (v) hold for

r + 1.

• We will first show that the non-zero rows in ∆r+1 are of type A,B or C.

In order to prove this fact, we will perform all the possible change of basis that could

occur due to a change-of-basis pivot in the r-th diagonal. Let the monomial ∆r
i,u be the

primary pivot in row i and the monomial ∆r
i,j be a change-of-basis pivot in diagonal r.

Observe that after the change of basis, row i will remain of the same type. Each row s < i in

∆r is of type A,B or C, and thus one has the following cases to analyze the effect a change

of basis causes in row s (bear in mind the configuration of the matrix in Figure 3.11):

1. If ∆r
s,u = 0, then row s remains unaltered after performing the change of basis.

2. If ∆r
s,u 6= 0 and ∆r

s,j = 0, then ∆r+1
s,j = −∆r

i,j(∆
r
i,u)

−1∆r
s,u, which is a monomial if ∆r

s,u

is a monomial, or a binomial if ∆r
s,u is a binomial. Hence, row s remains of the same

type.

3. If ∆r
s,u 6= 0 and ∆r

s,j 6= 0:

(a) If ∆r
s,u = ±tl and ∆r

s,j = ∓tl̃, then ∆r+1
s,j = ∆r

s,j − ∆r
i,j(∆

r
i,u)

−1∆r
s,u. Item (v)

applied to ∆r ensures that ∆r+1
s,j is a zero entry or a binomial with coefficients

equal to ±1. Hence, row s turns into a row of type B or C, respectively.

(b) The case ∆r
s,u = ±tl and ∆r

s,j = ±tl̃ can not occur by the induction hypothesis

(v).

(c) The case where ∆r
s,u 6= 0 and ∆r

s,j = tl − tl̃ can not occur, by the induction

hypothesis (iii).

(d) Note that the case where ∆r
s,u = tl − tl̃ is a binomial and ∆r

s,j = tℓ is a monomial

can not occur, by the induction hypothesis on rows of ∆r.

Hence, every row s ∈ J1 of ∆r+1 is also of type A, B or C.

• We will now show that item (i) holds for ∆r+1.

Let ∆r+1
i,j be a change-of-basis pivot marked in the (r + 1)-th diagonal. Suppose by

contradiction that an entry ∆ξ
i,t, where t < j, was marked as a change-of-basis pivot in an

earlier step ξ < r+1. Consequently, the primary pivot in row i, which is in a column u < t,

was marked in a previous step < ξ. Thus, by item (ii) of the induction hypothesis, this
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primary pivot is a monomial and it can not generate entries, which implies that ∆ξ
i,t and

∆r+1
i,j are not in the lineage of this primary pivot. Therefore, ∆ξ

i,t and ∆r+1
i,j must be in the

same lineage, since these entries were generated up to step r+1 by the change-of-basis pivots

up to step r, and by the induction hypothesis, there is only one change-of-basis pivots per

row up to step r. This is a contradiction, since by Lemma 3.3 the change-of-basis pivot ∆ξ
i,t

can not generate entries.

• We will prove item (ii) for r + 1:

Let ∆r+1
i,j be a binomial in the (r + 1)-th diagonal. Suppose by contradiction that this

entry is a change-of-basis pivot marked in step r + 1. Let u be the column of the primary

pivot in row i, hence u < j.

If row i was originally of type 2 in ∆2, then we have seen that in row i there is only

one lineage until ∆r+1, which is a binomial lineage. Hence, the primary pivot must generate

another entry since ∆r+1
i,j is a successor of the primary pivot, contradicting Lemma 3.3.

If row i was of type 3 in ∆2, then originally there were two lineages that merged in order

to create a binomial. Note that the primary pivot in row i can not be a monomial, i.e., it can

not be marked before the two sequences have merged, since pivots do not generates entries.

Hence the primary pivot must be a binomial. As we have seen in the previous paragraph,

this contradicts Lemma 3.3.

• We will prove item (iii) for r + 1:

Let ∆r+1
i,j be a change-of-basis pivot marked in the (r+1)-th diagonal, ∆r+1

s,j be a binomial

and let u be the column of the primary pivot ∆r+1
i,u in row i. Suppose by contradiction that

the entry ∆r+1
s,u is non-zero.

1. If row s is of type 2 in ∆2, then ∆r+1
s,u and ∆r+1

s,j are in the same lineage, i.e., ∆r+1
s,j must

be a succesor of ∆r+1
s,u , which is a contradiction. In fact, ∆r+1

s,j is not an immediate

successor of ∆r+1
s,u , since in this case it would imply the existence of two primary pivots

in column u. Moreover, ∆r+1
s,j is not an eventual successor of ∆r+1

s,u , since it would imply

the existence of two change-of-basis pivots in row i marked up to step r.

2. If row s is of type 3 in ∆2 and if ∆r+1
s,u is a binomial then the argument is the same

as the one above. However, if ∆r+1
s,u is a monomial, one has two cases to consider:

∆r+1
s,u and ∆r+1

s,j are in the same lineage or in different lineages. If they are in the same

lineage, which is an eventual binomial lineage, then ∆r+1
s,j is a successor of ∆r+1

s,u , hence

∆ξ
s,u generated an entry in ∆ξ+1 with ξ < r + 1. Now, if they are in different lineages,
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let ξ ∈ N such that the first binomial in row s is generated in ∆ξ+1 with ξ < r + 1,

hence ∆ξ
s,u generates the entry ∆ξ+1

s,j . By item (i), which was already proved to hold

for ∆r+1, ∆r+1
s,u generates a unique immediate successor in ∆r+2, which must then be

∆r+2
s,j and this is a contradiction in both cases.

•We will prove item for (iv) for r+1, i.e. that a primary pivot ∆ξ
i,u and a change-of-basis

pivot ∆ξ
i,j in row i are always monomials with opposite signs.

As consequence of the induction hypothesis (iv) and (v) for r, all elements in a monomial

lineage have the same sign, up to step ξ ≤ r + 1. Moreover, if row i was of type 3 in ∆,

then the two monomial lineages of this row have opposite signs. Now, suppose that there is

a change-of-basis pivot ∆r+1
i,j in (r+1)-th diagonal and let ∆r+1

i,u be the primary pivot in row

i with u < j. Since pivots do not generate entries by Lemma 3.3, the entries ∆r+1
i,j and ∆r+1

i,u

are clearly in different lineages, therefore they have opposite signs.

• We will prove item (v) for r + 1, i.e, that a monomial ∆ξ
s,u above a primary pivot ∆r

i,u

and a monomial ∆ξ
s,j above a change-of-basis pivot ∆r

i,j always have opposite signs.

As a consequence of the induction hypothesis (iv) and (v), until ∆r+1, all elements in a

monomial lineage have the same coefficient, which is either +1 or −1. Moreover, if row i was

of type 2 in ∆, then the two monomial lineages of this row have opposite signs. Let ∆r+1
s,u be

a monomial above a primary pivot ∆r+1
i,u and ∆r+1

s,j be a monomial above a change-of-basis

pivot ∆r+1
i,j . Observe that, by the induction hypothesis, ∆r+1

s,u and ∆r+1
s,j are not in the same

lineage. Hence, they have opposite signs.

�

We now proceed with the proof Theorem 3.2.

Proof of Theorem 3.2: Let ∆ be a Novikov differential. By the characterization of

the initial matrix, see Proposition 3.1, the entries of ∆ are invertible in Z((t)); hence, one

can apply the SSSA in ∆. Since the first change of basis can only occur from step 2 to step

3, then the SSSA is well defined until step 2, and ∆1 = ∆2. Now, using Lemma 3.2, one can

apply the SSSA to each block of ∆. Theorem 3.3 and 3.4 imply that the pivots in ∆3 are

invertible. Hence, the SSSA is also well defined for ∆3. By an induction argument, one can

suppose that the SSSA is well defined until step r. Theorems 3.3 and 3.4 also imply that

the SSSA is well defined for ∆r+1. Therefore, Theorem 3.2 is proved. �

Observe that, if ∆L is the last matrix produced by the SSSA, then the non null columns

of ∆L are the columns containing primary pivots. The primary pivots are non-zero and are
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unalterable after being identified. Moreover, ∆L ◦∆L = 0.

Returning to Example 3.3, observe that the entry ∆3
4,7 is an infinite series. See Figure 3.7.

However, the last matrix produced by the SSSA in Exameple 3.3 does not contain entries

which are infinite serie.

In fact, the next two results imply that the last matrix ∆L produced by the SSSA never

contains an entry which is an infinite series.

The proof of Theorem 3.5 follows the same steps of the proof of its analogous version in

[30], where the SSSA is done over a field F.

Theorem 3.5. Given a Novikov complex (N∗,∆) on surfaces, let ∆L be the last matrix

produced by the SSSA over Z((t)). If column j of ∆L is non null then row j is null.

Proof. The statement of the lemma is equivalent to say that ∆L
j•∆

L
•j = 0 for all j. If

∆L
•j = 0 then it is trivial that ∆L

j•∆
L
•j = 0. Suppose that ∆L

•j 6= 0. Let s be an integer such

that j ∈ Js. Labelling the primary pivots in block Js such that, if ∆L
i1,j1

, · · · ,∆L
ia,ja

are the

primary pivots in block Js, then i1 < i2 < · · · < ia, one has that j1, · · · , ja are the non null

columns of Js. Moreover, ∆L
ia,ja

is the unique non zero entry in row ia. Row ia−1 has non

zero entry in column ja−1 and may have another one non zero entry in column ja, and so

on. Since ∆L ◦∆L = 0, one has

0 = ∆L
ia•∆

L
•j′ = ∆L

iaja
∆L

jaj′
,

for all j′. Since ∆L
iaja

is a primary pivot, hence non null, then ∆L
jaj′

= 0 for all j′, i.e.,

∆L
ja• = 0. Analogously, one has

0 = ∆L
ia−1•

∆L
•j′ = ∆L

ia−1ja−1
∆L

ja−1j′
+∆L

ia−1ja
∆L

jaj′
,

for all j′. Since ∆L
ia−1ja−1

6= 0 and ∆L
jaj′

= 0, it follows that ∆L
ja−1j′

= 0 for all j′, i.e.,

∆L
ja−1•

= 0. Proceeding in this way, one can show the nullity of rows ja−2, · · · , j1. �

Corollary 3.3. Given a Novikov complex (N∗,∆) on a surface, let ∆L be the last matrix

produced by the SSSA over Z((t)). Then, the entries of ∆L are monomials tℓ or binomials

tℓ − tℓ̃.

Proof. By Theorems 3.3 and 3.4, without performing the pre-multiplication by (T r)−1, the

entries of ∆r are monomials tℓ or binomials tℓ1 − tℓ2 . Moreover, the pre-multiplication by
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(T r)−1 only affects row j if column j contains a primary pivot. However, by Lemma 3.5,

these rows will be zeroed out by the time SSSA reaches the last matrix ∆L. �

3.4 Spectral Sequence (Er, dr) associated to SSSA

As presented in Section 1.2, given a filtered chain complex over a principal ideal domain

R, there is a spectral sequence over R associated to it whenever the filtration is convergent

and bounded below.

Given a circle-valued Morse function f , let (N∗,∆) be the Novikov chain complex gen-

erated by f . Denote the generator of the Nk chain module by h1
k, · · · , h

ck
k . One can reorder

the set of critical points of f as

{h1
0, · · · , h

ℓ0
0 , h

ℓ0+1
1 , · · · , hℓ1

1 , · · · , h
ℓk−1+1
k , · · · , hℓk

k , · · · },

where ℓk = c0 + · · ·+ ck. Consider the filtration F = {FpN} on this complex defined by

FpNk =
⊕

hℓ
k
, ℓ≤p+1

Z((t))〈hℓ
k〉.

Note that for each p ∈ Z there is only one singularity in FpN \Fp−1N , hence the filtration F

is called a finest filtration. The filtration F is convergent, i.e. ∩pFpN = 0 and ∪FpN = N .

In fact, F is finite, that is, FpN = 0 for some p and Fp′N = N for some p′. Moreover, the

filtration F is bounded below. Therefore, there exists a convergent spectral sequence with

E0
p,q = FpNp+q/Fp−1Np+q = G(N )p,q , E1

p,q ≈ H(p+q)(FpNp+q/Fp−1Np+q)

and E∞ is isomorphic to the module GH∗(N ). The algebraic formulas for the modules Er
p,q

of the spectral sequence are shown in Section 1.2.

Whenever the filtration considered is a finest filtration F , the only q such that Er
p,q is

non-zero is q = k − p. Hence, we omit reference to q, i.e. Er
p is in fact Er

p,k−p.

Note that, E∞ does not completely determine the Novikov homologyHNov
∗ (N ) = H∗(N , ∂)

of M , but

E∞
p,q ≈ GH∗(N )p,q =

FpHp+q(N )

Fp−1Hp+q(N )
.
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However, it is a well known fact [15] that whenever GH∗(N )p,q is free and the filtration

is bounded, ⊕

p+q=k

GH∗(N )p,q ≈ HNov
p+q (N ). (3.2)

In Corollary 3.5, we prove that the isomorphism in (3.2) holds for Novikov Complexes

over orientable surfaces when we consider the filtration F defined above.

In this section, we show that the SSSA provides a mechanism to recover the modules Er

and differentials dr of the spectral sequence (Er, dr). More specifically, the SSSA provides

a system to detect the generators of Er in terms of the original basis of N∗ and to identify

the differentials dr with the primary pivots in the r-th diagonal. The results in this section

are similar in nature to the ones obtained in [13] for the SSSA computed for a Morse chain

complex over Z.

The next proposition establishes a formula for the modules Zr
p,k−p via the chains σi,j

k ’s

determined by the SSSA applied to ∆.

Proposition 3.1. Let r, p ≥ 0 be integers and κ be the first column in ∆ associated to a

k-chain. Consider µj,ζ = 0 whenever the primary pivot of column j is below row (p− r + 1)

and µj,ζ = 1 otherwise. Then

Zr
p = Z((t))[µp+1,rσp+1,r

k , µp,r−1σp,r−1
k , . . . , µκ,r−p−1+κσκ,r−p−1+κ

k ].

Proof. By definition, σp+1−ξ,r−ξ
k is associated to column (p + 1 − ξ) of the matrix ∆r−ξ,

for ξ ∈ {0, . . . , p + 1 − κ}, and µp+1−ξ,r−ξ = 1 if and only if the primary pivot on column

(p + 1 − ξ) is in or above row (p + 1 − ξ) − (r − ξ) = p − r + 1 or if this column does

not have a primary pivot. If σp+1−ξ,r−ξ
k is such that µp+1−ξ,r−ξ = 1, one can show that the

k-chain σp+1−ξ,r−ξ
k corresponds to a generator of Zr

p . In fact, σp+1−ξ,r−ξ
k is in FpNk for ξ ≥ 0.

Furthermore, all nonzero entries of column (p+1−ξ) of ∆r−ξ are in or above row (p−r+1),

since the (r − ξ)-th step of SSSA has zeroed out all entries below the (r − ξ)-th diagonal.

Hence, the boundary of σp+1−ξ,r−ξ
k is in Fp−rNk−1. Hence,

Z((t))[µp+1,rσp+1,r
k , µp,r−1σp,r−1

k , . . . , µκ,r−p−1+κσκ,r−p−1+κ
k ] ⊂ Zr

p .

Below we prove by multiple induction in p and r that

Zr
p ⊂ Z((t))[µ

p+1,rσp+1,r
k , µp,r−1σp,r−1

k , . . . , µκ,r−p−1+κσκ,r−p−1+κ
k ]. (3.3)
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Base case:

• Consider Fκ−1, where κ is the first column of ∆ associated to a k-chain. Let ξ be such

that the boundary of hκ
k is in Fκ−1−ξNk but it is not in Fκ−1−ξ−1Nk. We will show that

Zr
κ−1 = Z((t))[µ

κ,rσκ,r
k ], for all r ≥ 0.

Since Zr
κ−1 is generated by k-chain in Fκ−1Nk with boundaries in Fκ−1−rNk−1 and

Fκ−1Nk is generated by only one chain hκ
k, then:

(a) If ξ < r then ∂hκ
k /∈ Fκ−1−rNk−1. Thus, Z

r
κ−1 = 0.

(b) If ξ ≥ r then ∂hκ
k ∈ Fκ−1−rNk−1. Thus, Z

r
κ−1 = Z((t))[h

κ
k].

On the other hand, since there is no change of basis caused by the SSSA that affects

the first column of ∆k, σ
κ,r
k = hκ

k, where σκ,r
k is a k-chain associated to the column κ

of ∆r. Furthermore, µκ,r = 1 if and only if the boundary of hκ
k = σκ,r

k is in or above

the r-th diagonal. Hence

(a) If ξ < r then µκ,r = 0. Thus Z((t))[µκ,rσκ,r
k ] = 0

(b) If ξ ≥ r then µκ,r = 1. Thus Z((t))[µκ,rσκ,r
k ] = Z((t))[σκ,r

k ] = Z((t))[hκ
k].

It follows that Zr
κ−1 = Z((t))[µ

κ,rσκ,r
k ] in both cases, for all r ≥ 0.

• Let the ξ1-th diagonal be the first diagonal in ∆ that intersects ∆k. All the columns

of ∆ corresponding to the chains hp+1
k , . . . , hκ

k have nonzero entries above the ξ1-th

diagonal, thus, above the (p− ξ1 + 1)-st row of ∆. We will show that

Zξ1
p = Z((t))[µp+1,ξ1σp+1,r

k , . . . , µκ,κ−p+1+ξ1σκ,κ−p+1+ξ1
k ].

Since Zξ1
p is generated by k-chains contained in FpNk with boundary in Fp−ξ1Nk−1 and

the columns of ∆ associated to the chains hp+1
k , . . . , hκ

k have nonzero entries above the

(p− ξ1 + 1)-st row, then the boundaries are in Fp−ξ1Nk−1, i.e.,

Zξ1
p = Z((t))[hp+1

k , . . . , hκ
k].

On the other hand, nonzero entries in the columns of ∆ associated to the chains

hp+1
k , . . . , hκ

k are all above the ξ1-th diagonal, then σj,ξ1
k = hj

k, j = κ, . . . p + 1 and
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µj,ξ1 = 1, j = κ, . . . p+ 1. Hence,

Z((t))[µp+1,ξ1σp+1,r
k , . . . , µκ,κ−p+1+ξ1σκ,κ−p+1+ξ1

k ] = Z((t))[hp+1
k , . . . , hκ

k].

Therefore, Zξ1
p = Z((t))[µp+1,ξ1σp+1,r

k , . . . , µκ,κ−p+1+ξ1σκ,κ−p+1+ξ1
k ].

Induction Hypothesis: Assume that the generators of Zr−1
p−1 correspond to k-chains

associated to σp+1−ξ,r−ξ
k , ξ = 1, . . . , p + 1 − κ, whenever the primary pivot of the column

(p+ 1− ξ) is above the row (p− r + 1). We will prove that (3.3) holds for Zr
p .

If the primary pivot of the column (p+ 1) is below row (p− r + 1), then Zr
p = Zr−1

p−1 and

this is the case when µ(p+1),r = 0. Suppose now that the primary pivot of the column (p+1)

is on and above the row (p − r + 1) and let hk = bp+1hp+1
k + · · · + bκhκ

k ∈ Zr
p,k−p. We know

that hk is in Fp and its boundary is on and above row (p− r+1). If bp+1 = 0 then hk ∈ Zr−1
p−1

and the result follows by the induction hypothesis. If bp+1 6= 0, we can rewrite hk as

hk = bp+1σp+1,r
k + (bp − bp+1cp+1,r

p )hp
k + · · ·+ (bκ − bp+1cp+1,r

κ )hκ
k,

since by the definition of the SSSA

σp+1,r
k =

p+1∑

ℓ=κ

cj,rℓ hℓ
k.

Note that hk − bp+1σp+1,r
k = (bp − bp+1cp+1,r

p )hp
k + · · ·+ (bκ − bp+1cp+1,r

κ )hκ
k ∈ Fp−1. Moreover,

since hk and σp+1,r
k have their boundaries on and above row (p− r+1) then the boundary of

hk−b
p+1σp+1,r

k is on and above row (p−r+1). Hence hk−b
p+1σp+1,r

k ∈ Zr−1
p−1 . By the induction

hypotheses, we have that hk − bp+1σp+1,r
k = αpµ

p,r−1σp,r−1
k + · · · + ακµ

κ,r−p−1+κσκ,r−p−1+κ
k .

Therefore,

hk = bp+1σp+1,r
k + αpµ

p,r−1σp,r−1
k + · · ·+ ακµ

κ,r−p−1+κσκ,r−p−1+κ
k ,

as required. �

Lemma 3.5. Given integer r, p ≥ 0, if ∂Zr−1
p+r−1 * Zr−1

p−1 , then Zr−1
p−1 + ∂Zr−1

p+r−1 = Z
r
p.

Proof. Denote by κ the first column associated to a k-chain. By hypothesis ∂Zr−1
p+r−1 * Zr−1

p−1 ,

which implies that Zr−1
p−1 + ∂Zr−1

p+r−1 is a submodule of

Zr
p = Z((t))[µp+1,rσp+1,r

k , µp,r−1σp,r−1
k , . . . , µκ,r−p−1+κσκ,r−p−1+κ

k ]



Chapter 3 • Spectral Sequences for two dimensional Novikov Complexes 101

but it is not a submodule of

Zr−1
p−1 = Z((t))[µp,r−1σp,r−1

k , µp−1,r−2σp−1,r−2
k , . . . , µκ,r−p−1+κσκ,r−p−1+κ

k ].

Then µp+1,r = 1 and Zr−1
p−1 + ∂Zr−1

p+r−1 contains a multiple of σp+1,r
k over Z((t)). We will show

that σp+1,r
k ∈ Zr−1

p−1 + ∂Zr−1
p+r−1. Note that

∂Zr−1
p+r−1 = Z((t))[µ

p+r,r−1∂σp+r,r−1
k+1 , µp+r−1,r−2∂σp+r−1,r−2

k+1 , . . . , µκ,κ−p−1∂σκ,κ−p−1
k+1 ]. (3.4)

where κ is the first column associated to a (k + 1)-chain. For ξ = 0, . . . , p + r − κ with

µp+r−ξ,r−1−ξ = 1 we have ∆r−1−ξ
i,p+r−ξ = 0 for all i > p+ 1 and hence

∂σp+r−ξ,r−1−ξ
k+1 = ∆r−1−ξ

p+1,p+r−ξσ
p+1,r−1−ξ
k + · · ·+∆r−1−ξ

κ,p+r−ξσ
κ,r−1−ξ
k .

In fact, the boundaries ∂σp+r−ξ,r−1−ξ
k+1 with ∆r−1−ξ

i,p+r−ξ 6= 0 for some i > p + 1 correspond

exactly to the columns which have the primary pivots below the (p+1)-st row and therefore

µp+r−ξ,r−1−ξ = 0.

Hence, for ξ = 0, . . . , p+ r − κ, when µp+r−ξ,r−1−ξ = 1 we have

Zr−1
p−1 + [∂σp+r−ξ,r−1−ξ

k+1 ] = Zr−1
p−1 + [∆r−1−ξ

p+1,p+r−ξσ
p+1,r−1−ξ
k + · · ·+∆r−1−ξ

κ,p+r−ξσ
κ,r−1−ξ
k ]. (3.5)

On the other hand, since Zr−1
p−1 + [∂σp+r−ξ,r−1−ξ

k+1 ] ⊂ Zr−1
p−1 + ∂Zr−1

p+r−1 then

Zr−1
p−1 + [∂σp+r−ξ,r−1−ξ

k+1 ] = [ℓξσ
p+1,r
k , µp,r−1σp,r−1

k , µp−1,r−2σp−1,r−2
k , . . . , µκ,r−p−1+κσκ,r−p−1+κ

k ].

(3.6)

The coefficient of hp+1
k on the set of generators of the Z((t))-module in (3.5) is ∆r−1−ξ

p+1,p+r−ξ.

On the other hand, the coefficient of hp+1
k on the set of the generators of the Z((t))-module

in (3.6) is ℓξ. Since for each ξ = 0, . . . , p+r−κ, ∆r−1−ξ
i,p+r−ξ = 0 for all i > p+1 then ∆r−1−ξ

p+1,p+r−ξ

is either a pivot or a zero entry. Note that the entries ∆r−1−ξ
p+1,p+r−ξ can not be all zeros, since

it would contradict the hipothesis of ∂Zr−1
p+r−1 * Zr−1

p−1 . It follows from Theorem 3.2 that if

∆r−1−ξ
p+1,p+r−ξ is nonzero then it is invertible in Z((t)). Then σp+1,r

k ∈ Zr−1
p−1 +∂Zr−1

p+r−1 and hence

Zr−1
p−1 + ∂Zr−1

p+r−1 = Zr
p . �
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Theorem 3.6. The matrix ∆r obtained from the sweeping method applied to ∆ determines

Er
p =

Zr
p

Zr−1
p−1 + ∂Zr−1

p+r−1

.

More specifically, Er
p is either zero or a finitely generated Z((t))-module whose generator

corresponds to a k-chain associated to column (p+ 1) of ∆r.

Proof. The entry ∆r
p−r+1,p+1 on the r-th diagonal plays a crucial role in determining the

generators of Er
p . If the entry ∆r

p−r+1,p+1 is nonzero then it can be either a primary pivot,

a change-of-basis pivot or it is above a primary pivot. If the entry ∆r
p−r+1,p+1 is zero then

it can be in a column above a primary pivot or all entries below it are also zero. We will

analyze each possibility for the entry ∆r
p−r+1,p+1 and show how to determine Er

p for each

case. The proof is a consequence of formulas obtained in Proposition 3.1 and Lemma 3.5.

1. Suppose that the entry ∆r
p−r+1,p+1 is identified by the SSSA as a primary pivot, a

change-of-basis pivot or a zero entry with column of zeros below it.

In these cases ∆r
s,p+1 = 0 for all s > p − r + 1 and hence the generator σp+1,r

k corre-

sponding to the k-chain associated to column (p+ 1) in ∆r is a generator of Zr
p . Thus

we must analyze row (p+ 1). We have the following possibilities:

(a) ∂Zr−1
p+r−1 ⊆ Zr−1

p−1 , i.e, all the boundaries of the elements in Zr−1
p+r−1 are above row

p. In this case, as before, by Proposition 3.1 Er
p = Z((t))[σp+1,r

k ].

(b) ∂Zr−1
p+r−1 * Zr−1

p−1 , i.e, there exist elements in Zr−1
p+r−1 whose boundary has a nonzero

entry in row (p+ 1). By Proposition 3.1 and Lemma 3.5 Er
p = 0.

Note that if ∆r
p−r+1,p+1 has been identified by the SSSA as a primary pivot then

∂Zr−1
p+r−1 ⊆ Zr−1

p−1 . In fact, the generators of Zr−1
p+r−1 must correspond to (k + 1)-chains

associated to hk+1 columns with the property that their boundaries are above row

(p + 1) and consequently all entries below row (p + 1) are zero. Hence the entries of

these hk+1 columns on row (p+ 1) must, by SSSA, either be a primary pivot or a zero

entry. On the other hand, by Lemma 3.1, row (p+ 1) cannot contain a primary pivot

since we have assumed that column (p+1) has a primary pivot. Therefore, the entries

in row (p + 1) of the hk+1 columns in Zr−1
p+r−1 must be zeroes. It follows that ∂Zr−1

p+r−1

does not contain in its set of generators the generator σp+1,r
k . Hence, ∂Zr−1

p+r−1 ⊆ Zr−1
p−1 .
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2. Suppose that the entry ∆r
p−r+1,p+1 is an entry above a primary pivot, i.e. there exists

s > p − r + 1 such that ∆r
s,p+1 is a primary pivot. In this case, the generator σp+1,r

k

corresponding to the k-chain associated to column (p+1) is not a generator of Zr
p and

hence Zr−1
p−1 = Zr

p . It follows that E
r
p = 0.

3. Suppose that the entry ∆r
p−r+1,p+1 is not in ∆r

k. This includes the case where p−r+1 <

0, i.e, ∆r
p−r+1,p+1 is not on the matrix ∆r.

The analyzes of Er
p is very similar to the previous one and we have two possibilities:

(a) There is a primary pivot in column (p + 1) in a diagonal r < r. In this case the

generator corresponding to the k-chain associated to column (p+1), σp+1,r
k is not

a generator of Zr
p . Hence Zr−1

p−1 = Zr
p and Er

p = 0.

(b) All the entries in ∆r in column (p+1) in diagonals lower than r are zero, i.e, the

generator corresponding to the k-chain associated to column (p+1), σp+1,r
k in ∆r

is a generator of Zr
p . Then we have to analyze row (p+ 1).

i. If ∂Zr−1
p+r−1 ⊆ Zr−1

p−1 then, by Proposition 3.1, Er
p = Z((t))[σp+1,r

k ].

ii. If ∂Zr−1
p+r−1 * Zr−1

p−1 then, by Proposition 3.1 and Lemma 3.5, Er
p = 0.

�

We will describe how the SSSA applied to ∆ induces the differentials drp : E
r
p → Er

p−r of

the spectral sequence.

Theorem 3.7. If Er
p and Er

p−r are both nonzero, then the map drp : Er
p → Er

p−r is induced

by the multiplication by the entry ∆r
p−r+1,p+1.

Proof. Suppose that Er
p and Er

p−r are both nonzero. Let δrp : Z((t))[σ
p+1,r
k ]→ Z((t))[σp−r+1,r

k−1 ]

be the multiplication by the entry ∆r
p−r+1,p+1 and δ̃rp the induced map in Er

p . We must show

that
Ker δ̃rp

Im δ̃rp+r

∼= Er+1
p .

Since we are considering Er
p nonzero, it follows from Theorem 3.6, that we must consider

three cases for the entry ∆r
p−r+1,p+1: primary pivot, change-of-basis pivot and zero with

a column of zeroes below it. However, if ∆r
p−r+1,p+1 is a change-of-basis pivot then there

exists a primary pivot in row (p − r + 1) on a diagonal below the r-th diagonal and hence
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Er
p−r = 0. Hence, whenever Er

p and Er
p−r are both nonzero, the entry ∆r

p−r+1,p+1 in ∆r is

either a primary pivot or a zero with a column of zero entries below it.

In this case Er
p = Z((t))[σp+1,r

k ] and Er
p−r = Z((t))[σ

p−r+1,r
k−1 ].

1. Suppose ∆r
p−r+1,p+1 is a primary pivot.

Since δrp : Z((t))[σp+1,r
k ] → Z((t))[σp−r+1,r

k−1 ] is multiplication by ∆r
p−r+1,p+1, which is

invertible in Z((t)), then Ker δrp = 0. Since δ̃rp = δrp, then
Ker δ̃rp

Im δ̃rp+r

= 0. On the

other hand, since ∆r
p−r+1,p+1 is a primary pivot, then σp+1,r+1

k = σp+1,r
k /∈ Zr+1

p . Thus

Zr+1
p = Zr

p−1 and Er+1
p = 0.

2. Suppose ∆r
p−r+1,p+1 = 0 with a column of zeroes below it. In this case Ker δrp

∼= Er
p =

Ker δ̃rp and σp+1,r
k = σp+1,r+1

k . There are three cases to consider:

(a) If ∆r
p+1,p+r+1 is an entry above a primary pivot then we have Er

p+r = 0 and hence

Im δ̃rp+r = 0. Thus,

Ker δ̃rp

Im δ̃rp+r

= Er
p .

On the other hand, since µp+r+1,r = 0 then Er+1
p = Er

p .

(b) If ∆r
p+1,p+r+1 is a primary pivot then Er

p+r = Z((t))[σp+r+1,r
k ]. Therefore δrp+r is

an isomorphism and hence

Ker δ̃rp

Im δ̃rp+r

∼=
Z((t))[σp+1,r

k ]

Z((t))[σp+1,r
k ]

= 0.

On the other hand, since ∆r
p−r+1,p+1 is zero with a column of zero entries be-

low it then σp+1,r+1
k ∈ Zr+1

p,k−p and hence Zr
p−1  Zr+1

p,k−p. Moreover, since Er
p =

Z((t))[σp+1,r
k ] then ∂Zr−1

p+r−1 ⊆ Zr−1
p−1 . But the difference between ∂Zr−1

p+r−1 and

∂Zr
p+r is that the last one includes the boundary of column (p + r + 1). The

element in column (p + r + 1) and row (p + 1) is ∆r
p+1,p+r+1. Since ∆r

p+1,p+r+1 is

a primary pivot then ∂Zr
p+r * Zr

p−1 and Er+1
p = 0.

(c) If ∆r
p+1,p+r+1 = 0 with a column of zero entries below it then Im δrp+r = 0 and

Ker δ̃rp

Im δ̃rp+r

= Er
p .
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Analogously to the previous case, σp+1,r+1
k ∈ Zr+1

p,k−p and hence Zr
p−1  Zr+1

p .

Moreover, ∂Zr−1
p+r−1 ⊆ Zr−1

p−1 and the only difference between ∂Zr−1
p+r−1 and ∂Zr

p+r is

that the last one includes the boundary of column (p+ r + 1). Since the element

in column (p + r + 1) and row (p + 1) is ∆r
p+1,p+r+1 = 0 then ∂Zr

p+r ⊆ Zr
p−1 and

Er+1
p = Z((t))[σp+1,r

k ].

Note that the case where ∆r
p+1,p+r+1 is a change-of-basis pivot does not have to be con-

sidered, since in this case Er
p = 0.

Therefore, in all cases
Ker drp
Im drp+r

= Er+1
p =

Ker δ̃rp

Im δ̃rp+r

.

�

Corollary 3.4. Each non zero differential drp of the spectral sequence (Er, dr) is an isomor-

phism.

Proof. In fact, by the proof of Theorem 3.7, non zero differentials of (Er, dr) are induced

by primary pivots. Theorem 3.2 states that each primary pivot produced by the SSSA is an

invertible polynomial, hence each induced non zero differential is an isomorphism. �

By Corollary 3.4, if dr : Er
p → Er

p−r is a non zero differential, then algebraic cancellation

occurs in the (r + 1)-th page of (Er, dr), i.e., the modules Er+1
p and Er+1

p−r are zero.

The next corollary states that the spectral sequence (Er, dr) converges to the Novikov

homology of (N∗,∆).

Corollary 3.5. If M is a smooth closed orientable 2-dimensional manifold, f : M → S1 a

circle-valued Morse function, (N∗,∆) a filtered Novikov chain complex with a finest filtration,

then the modules E∞
p,q of the associated spectral sequence are free for all p and q. Moreover,

E∞
p,q ≈ GH∗(N )p,q =

FpHp+q(N )

Fp−1Hp+q(N )
≈ HNov

∗ (M, f).

Proof. By Corollary 3.4, the non zero differentials dr : Er
p → Er

p−r of the spectral sequence

are isomorphisms. Since, Er+1
p
∼= Ker drp/Im drp−r, it follows that the modules Er

p ’s are free

for all r ≥ 0 and p ≥ 0. Therefore, E∞
p,q
∼= GH∗(N )p,q ∼= HNov

∗ (M, f), by equation (1.3). �
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Example 3.5. Consider the Novikov complex (N∗,∆) presented in Example 3.2. The ma-

trices produced by the SSSA are illustrated in Figures 3.5 to 3.10.

The Novikov homology of (N∗,∆) is given by

HNov
0 (M, f) = 0, HNov

1 (M, f) = 0, HNov
2 (M, f) = 0.

Consider the filtration F on (N∗,∆) defined by

FpNk =
⊕

hℓ
k
, ℓ≤p+1

Z((t))〈hℓ
k〉.

The spectral sequence associated to (N∗,∆) endowed with this filtration F is given by:

[h1
0] [h4

1] [h5
1] [h8

2]

E0 :

E1 :

E2 :

[h1
0] [h2

0] [h3
1] [h4

1] [h5
1] [h6

1] [h7
2] [h8

2]

0 0

d12 d16

E3 : 0 0

d33

E4 :

0 0

0 [∗∗]0

0 0 0 0 0 0 0 0

0

d37

[h1
0] [h2

0] [h3
1] [h4

1] [h5
1] [h6

1] [h7
2] [h8

2]

[h1
0] [∗] [h5

1]

Z

Z

Z

Z ZZ Z

Z

Z

ZZ

Z

Z

Z

Z

Z

ZZ

Z

Z

Z Z

Z Z((t))

((t))

((t))

((t))

((t))

((t))

((t))

((t))

((t))

((t))

((t))

((t))

((t))

((t))

((t))

((t))

((t))

((t))

((t))

((t))

((t))

((t))

((t))

((t))

where [∗] = [h4
1 + (t − 1)−1h3

1] and [∗∗] = [h8
2 + t−1h7

2]. The primary pivots ∆1
2,3 and ∆1

6,7

induce the differentials on the first page d12 and d16, respectively. The primary pivots ∆3
1,4 and

∆3
5,8 induce the differentials on the third page d33 and d17, respectively. On the other hand,

the change-of-basis pivots ∆2
2,4 and ∆2

6,8, marked in the second step of the SSSA, determine

change of generators in E3
3 and E3

7 . Observe that the spectral sequence (Er, dr) converges

to the Novikov homology of (N∗,∆). ◭

Final Remarks

In this chapter, the computation of a spectral sequence of a filtered Novikov chain complex

leads to the question of how closely the dynamics follows the spectral sequence. Herein we

proved that the SSSA produces a sequence of Novikov matrices from which the modules

and differentials may be retrieved. Analogously to the Morse case seen in Chapter 2, as

one “turns the pages” of the spectral sequence, i.e. considers progressively modules Er, one

observes algebraic cancellations occurring within the Er’s, as proved in Corollary 3.4. Several
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open questions arise at this point: What is the dynamical significance of these algebraic

cancellations? How much dynamical information can be recovered or even gained from the

spectral sequence analysis? Do the Novikov matrices provide dynamical information on the

birth and death of connections due to cancellations of consecutive critical points? Does the

SSSA determine a continuation result to the minimal flow, as it does in the Morse setting?

Of course, the investigation of these questions in higher dimensions will, without a doubt,

constitute a challenging line of research.

The results obtained in this chapter provide a solid foundation on which we hope to

establish results which answer these questions.
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Chapter 4

Generalized Morse-Bott Inequalities

The study of the interplay between topology and dynamics dates back to Poincaré. Morse

related the topology of the closed n-manifold M to its dynamical data by establishing rela-

tions between the number of nondegenerate critical points ck of Morse index k of a smooth

real valued function f : M →M and the Betti numbers of M . See [33].

In [12], Conley generalized these results to a theory with a more topological flavor and

independent of the differentiable nature of the flow, allowing much richer dynamics than

only singularities. Moreover, Conley proves the existence of a Lyapunov function associated

to a flow on a manifold such that the flow maintains an underlying gradient-like behaviour

with respect to this function.

In the setting of continuous flows on manifolds, the Poincaré-Hopf inequalities are intro-

duced in [6, 8], which imposes constraints on the dynamics of a continuous flows without

reference to the Betti numbers of the manifold M . These inequalities generalize the classical

Morse inequalities.

The concept of abstract Lyapunov graphs was introduced in [6]. The realizability of an

abstract Lyapunov graphs Γ is considered in [10], where the authors proved that, under

certain assumptions, Γ is realizable as a flow on a manifold if and only if it satisfies the

Poincaré-Hopf inequalities. In Section 1.3, we summarized the results obtained on this topic

thus far.

In this chapter, we restrict out attention to gradient flows associated to Morse-Bott

functions and present the results of Lyapunov graphs and Poincaré-Hopf inequalities in this

setting.

The background material on Morse-Bott theory is presented in Section 4.1. In Section

109
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4.2, we characterize the rank of the Conley index of critical manifolds over Z2. In Section

4.3, we define the abstract Morse-Bott graphs and the generalized Morse-Bott inequalities.

4.1 Morse-Bott Functions

In this section, we present some definitions and results from Morse-Bott theory that will

be required subsequently in this chapter. The references for this section are [3], [2] and [17].

Let f : M → R be a smooth function on a smooth compact n-manifold with boundary,

possibly empty in which case it is defined as closed. Throughout this chapter, it will be

assumed that the set of critical points Crit(f) of f lies in the interior of M and that M is

smooth. Suppose that the set Crit(f) contains a closed k-submanifold S of M . Choosing a

Riemannian metric on M , the tangent space of M restricted to S splits as

T∗M |S = T∗S ⊕ ν∗S,

where T∗S and and ν∗S are the tangent and the normal bundles of S, respectively.

Let Hessp(f) be the Hessian of f at p ∈ S ⊂ Crit(f). Given v ∈ TpS and w ∈ TpM ,

then

Hessp(f)(v, w) = Vp · (W · f) = 0,

since Vp ∈ TpS and any extension of w to a vector field W satisfies df(W )|S = 0. Therefore,

the Hessian Hessp(f) induces a symmetric bilinear form on the normal space νpS, denoted

by Hessνp(f).

Definition 4.1. A smooth function f : M → R on a compact manifold with boundary M

is called a Morse-Bott function if the the set of critical points Crit(f) is a disjoint union

of connected closed submanifolds contained in the interior of M , which are called critical

manifolds of f , and for each critical manifold S, the bilinear form Hessνp(f) is non-degenerate

for all p ∈ S.

The second condition of Definition 4.1 means that, given p ∈ S, for each v ∈ νpS there

exists w ∈ νpS such that Hessνp(f)(v, w) 6= 0. One says that the Hessian is non-degenerate

in the normal direction to the critical manifolds.

Given p ∈ Crit(f), where f is a Morse-Bott function, the Morse-Bott index of p is defined

to be the maximal dimension of a subspace of νpS on which Hessνp(f) is negative definite.
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The Morse-Bott index of a critical point p will be denoted by λp.

For the following lemma see [2].

Lemma 4.1 (Morse-Bott Lemma). Let f : M → R be a Morse-Bott function on an n-

dimensional manifold M and S ⊂ Crit(f) a critical manifold. For each p ∈ S, there exists a

local chart φ of M around p and a local splitting of the normal bundle of S, ν∗S = ν+
∗ S⊕ν

−
∗ S,

which identifies a point x in the domain of φ to (u, v, w), where u ∈ S, v ∈ ν−
∗ S and w ∈ ν+

∗ S,

such that f ◦ φ−1(u, v, w) = f(u)− |v|2 + |w|2.

Note that, by the Morse-Bott Lemma, if S is a connected critical manifold then λp is

constant throughout S, that is, λp = λq, for all p, q ∈ S. Hence, one can refer to λp as the

Morse-Bott index λS of the connected critical manifold S. Moreover, Lemma 4.1 shows that,

at a critical point p ∈ S, the tangent space splits in the following way

TpM = TpS ⊕ ν+
∗ S ⊕ ν−

∗ S,

where λp = dim (ν−
p S). If k = dim S and λ∗

p = dim (ν+
p S), then one has the relation

n = k + λp + λ∗
p.

Given a closed n-manifold M , the Poincaré polynomial of M is defined to be

Pt(M) =
n∑

k=0

βk(M)tk,

where βk(M) is the kth Betti number1 of M .

Let f : M → R be a Morse-Bott function on a finite dimensional closed manifold M .

Assume that

Crit(f) =
l∐

i=1

Si,

where each Si is a connected critical manifold of f with finite dimension ki and Morse-Bott

index λi, for i = 1, · · · , l. Under these assumptions, the Morse-Bott polynomial of f is

defined to be

MBt(f) =
l∑

i=1

Pt(Si)t
λi

where Pt(Si) is the Poincaré polynomial of Si.

For the following theorem see [3] and [2].

1Homology is computed using Z2 coefficients in the non-orientable case.
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Theorem 4.1 (Polynomial form of the Morse-Bott inequalities). Let f : M → R be a

Morse-Bott function on a finite dimensional oriented closed manifold and assume that all

critical manifolds of f are orientable. Then there exists a polynomial R(t) with non-negative

integer coefficients such that MBt(f) = Pt(M) + (1 + t)R(t).

As in the Morse case, one has the following result.

Proposition 4.1. The polynomial form MBt(f) = Pt(M) + (1 + t)R(t) of the Morse-Bott

inequalities are equivalent to the Morse-Bott inequalities

{
bm − bm−1 + · · ·+ (−1)mb0 ≥ βm − βm−1 + · · ·+ (−1)mβ0, ∀m = 0, · · · , n− 1

bn − bn−1 + · · ·+ (−1)nb0 = βn − βn−1 + · · ·+ (−1)nβ0.
(4.1)

where βj represents the jth Betti number βj(M) of M , and bk =
∑l

i=1 βs(i,k)(Si), where

s(i, k) = k − λi and βη(Si) = 0 when η /∈ [0, ki].

Proof. In order to show that the polynomial form of the Morse-Bott inequalities imply

the inequalities in (4.1), observe that the Morse-Bott polynomial of f can be expanded as

follows:

MBt(f) =
l∑

i=1

Pt(Si)t
λi =

n∑

k=0

l∑

i=1

βs(i,k)(Si)t
k

=
l∑

i=1

βs(i,n)(Si)t
n +

l∑

i=1

βs(i,n−1)(Si)t
n−1 + · · ·+

l∑

i=1

βs(i,1)(Si)t
1 +

l∑

i=1

βs(i,0)(Si),

where k = s(i, k) + λi and βη(Si) = 0 when η /∈ [0, ki].

By the polynomial form of the Morse-Bott inequalities,

n∑

k=0

(−1)k
l∑

i=1

βs(i,k)(Si) = MB−1(f) = P−1(M) =
n∑

k=0

(−1)kβk. (4.2)

Rewriting (4.2) with the notation bk =
l∑

i=1

βs(i,k)(Si),

n∑

k=0

(−1)kbk =
n∑

k=0

(−1)kβk. (4.3)

Note thatMBt(f) = Pt(M)+(1+t)R(t), implies that b0 = β0+r0. Hence, b1 = β1+r1+r0,
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i.e., b1 − b0 = β1 − β0 + r1. Thereby continuing in this manner, one obtains

bm − bm−1 + · · ·+ (−1)mb0 = βm − βm−1 + · · ·+ (−1)mβ0 + rm,

for all m = 0, · · · , n− 1. Since rm ≥ 0, for all m = 0, · · · , n− 1, the Morse-Bott inequalities

follow as in (4.1).

On the other hand, the equality in (4.1) implies

MB−1(f) =
n∑

k=0

(−1)k
l∑

i=1

βs(i,k)(Si) =
n∑

k=0

(−1)kβk = P−1(M).

Therefore, the polynomial MBt(f) − Pt(M) is divisibly by (1 + t) and hence, one has that

MBt(f) = Pt(M)+(1+t)R(t), for some polynomial R(t) =
∑n−1

k=0 rkt
k. As both polynomials

MBt(f) and Pt(M) have integer coefficients then the coefficients of R(t) are integer. It

remains to show that rm ≥ 0, for all m = 0, · · · , n− 1. Note that

bm − bm−1 + · · ·+ (−1)mb0 = βm − βm−1 + · · ·+ (−1)mβ0 + rm,

for all m = 0, · · · , n− 1. Therefore, rm ≥ 0. �

4.2 Conley Index for Critical Manifolds

In the background we presented the definition of Conley index for an isolated invariant

set. In this section, we presented an equivalent definition of the Conley index for critical

manifolds via Thom spaces.

There is an interesting formulation of the Conley index in terms of a Thom space, TE,

of a vector bundle π : E → M . Choosing a bundle metric g on E, denote by DgE and SgE

the unit ball bundle and the unit sphere bundle over M , respectively. The Thom space of E

is defined as the pointed topological space

TgE := DgE/SgE := ((BgE\SgE ∪ [SgE]), [SgE])

obtained by collapsing SgE to a single point denoted by [SgE]. The pointed isomorphism

class of TgE is independent of the choice of the bundle metric g and is denoted by TE.
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Given a Morse-Bott function f : M → R, let ϕt : M →M denote the flow associated to

−∇f , i.e., ϕt(x) = γ(t) where γ′(t) = −(∇f)(γ(t)) and γ(0) = x. Note that S is an isolated

invariant set with respect to ϕt and to the reverse flow of ϕt, denoted by ϕ′
t. The Conley

homotopical index of S, I(S, ϕt), with respect to ϕt, is the Thom space of ν−
∗ (S), i.e.,

I(S, ϕt) = T (v−∗ S). (4.4)

For more details see [18].

From now on, we will work with homology with Z2 coefficients to avoid complications

arising from orientability.

The next two proposition provides some properties of the homological Conley index of a

critical manifold.

Proposition 4.2. Let f : M → R be a Morse-Bott function and S a connected critical

k-manifold of f . The ranks h∗ of the homological Conley indices CH∗(S) with respect to the

flow ϕt are given by

{
hj = βj−λ(S), if λ ≤ j ≤ λ+ k

hj = 0, if j < λ, or if j > λ+ k

where βi(S) is the ith Betti number of S.

Proof. According to Thom’s Isomorphism Theorem (see reference [11]), the reduced ho-

mology of the Thom space T (v−∗ S) is given by H̃i+λ(T (v
−
∗ S)) = Hi(S), for i = 0, · · · , k and

is null otherwise. By (4.4), the homological Conley index of S coincides with the reduced

homology of T (v−∗ S). Then, hi+λ = βi(S), where i = 0, · · · , k. Rewriting this,

{
hj = βj−λ(S), if λ ≤ j ≤ λ+ k

hj = 0, if j < λ, or if j > λ+ k.

�

Proposition 4.3. Let S be a connected critical k-manifold of f with Morse-Bott index λ.

Then the ranks of the homological Conley indices with respect to the flow ϕt and its reverse

flow ϕ′
t satisfy hj(S, ϕt) = hn−j(S, ϕ

′
t), for j = 0, · · · , n.
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Proof. Firstly, by Lemma 4.1, n = k + λ + λ∗, where λ is the Morse-Bott index of S with

respect to the flow ϕ and λ∗ is the Morse-Bott index of S with respect to the reverse flow

ϕ′.

Suppose that λ > 0 and λ+ k < n. By Proposition 4.2,





hj(S, ϕt) = 0, if j = 0, · · · , λ− 1

hj(S, ϕt) = βj−λ, if j = λ, · · · , λ+ k

hj(S, ϕt) = 0, if j = λ+ k + 1, · · · , n.

Note that, if j ∈ {0, · · · , λ − 1} then n − j ∈ {λ∗ + k + 1, · · · , n}; if j ∈ {λ, · · · , λ + k}

then n − j ∈ {λ∗, · · · , λ∗ + k}; and if j ∈ {λ + k + 1, · · · , n} then n − j ∈ {0, · · · , λ∗ − 1}.

Therefore, once again by Proposition 4.2, it follows that





hn−j(S, ϕ
′
t) = 0, if j = 0, · · · , λ− 1

hn−j(S, ϕ
′
t) = βn−j−λ∗ , if j = λ, · · · , λ+ k

hn−j(S, ϕ
′
t) = 0, if j = λ+ k + 1, · · · , n.

It remains to check that βj−λ = βn−j−λ∗ when j = λ, · · · , λ+ k. Indeed, as n− λ∗ = λ+ k,

then βj−λ = βk−(j−λ) = βn−λ∗−j. Hence, hj(S, ϕ) = hn−j(S, ϕ
′).

The proof is analogous if λ = 0 or λ+ k = n. �

4.3 Generalized Morse-Bott Inequalities

In this section, we introduce the generalized Morse-Bott inequalities for manifolds with

boundary. The novelty is that these inequalities depend solely on the Betti numbers of the

critical manifolds and of the codimension one closed submanifolds of the boundary.

4.3.1 Morse-Bott Graphs

Let f : M → R be a Morse-Bott function on a finite dimensional compact manifold with

boundary (possibly empty). Consider the following equivalence relation on M : x ∼f y if and

only if y belongs to the same connected component of a level set of f . Denote by M/ ∼f

the quotient space of M under this equivalence relation. A point on M/ ∼f is a vertex point

if under the equivalence relation ∼f it corresponds to a connected component of a level set
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containing a critical set of f . All other points are edge points. In this way, M/ ∼f is a

finite graph and each edge represents a codimension one submanifold Q of M times an open

bounded interval I, Q × I. In order to retain some information of Q × I, the edges can be

labeled with some topological invariant such as the Betti numbers of Q.

For simplicity, it will henceforth be assumed that the Morse-Bott function f : M → R

has at most one critical manifold on each level set, unless otherwise stated. With this

assumption, there is a one-to-one correspondence between the vertices of the graph M/ ∼f

and the critical manifolds of f .

Definition 4.2. Let f be a Morse-Bott function on a closed manifold M with critical man-

ifolds S1, · · · , Sl. Define the Morse-Bott graph Γf associated to f as the graph M/ ∼f on

which each vertex Si is labelled with (β0(Si), . . . , βki(Si);λi), where βj(Si) is the jth Betti

number of Si and λi is the Morse-Bott index of Si. Also, each edge is labelled with the Betti

numbers of the level sets associated with the given edge.

In the case of a manifold with boundary ∂M = N+ ⊔ N−, one can define a Morse-Bott

semi-graph similarly where the labels in the incoming (outgoing) semi-edges are the Betti

numbers of the entering set N+ (exiting set N−) of the flow.

Example 4.1. Consider a Morse-Bott function f defined on the torus having four critical

manifolds, all homeomorphic to the 1-sphere, such that, considering the flow ϕf associated to

the vector field −∇f , two critical manifolds are repellers and the other two critical manifolds

are attractors. In this way, the repellers have Morse-Bott indices equal to 1 and the attractors

have Morse-Bott indices equal to 0. In Figure 4.1, one can see a representation of the flow

ϕf and the Morse-Bott graph associated to f .

A2

R2

R1

(1, 1; 1)

(1, 1)

A1

(1, 1; 1)

(1, 1; 0)(1, 1; 0)

(1, 1)

(1, 1) (1, 1)

R2

R1

A1 A2

Figure 4.1: The Morse-Bott graph associated to f defined in Example 4.1.
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Example 4.2. Consider S3 as the manifold obtained from gluing two solid tori together

by a homeomorphism of their boundaries which identifies a parallel of one torus T1 to the

meridian of the other torus T2. Let f be a Morse-Bott function on S3 such that the critical

manifolds of f are the torus T1 as a repeller and two 1-spheres S1 and S2 as attractors,

where Si is in the interior of Ti, i = 1, 2. Their Morse-Bott indices are λT1
= 1, λS1

= 0 and

λS2
= 0. The Morse-Bott graph associated to f is shown in Figure 4.2.

T1 (1, 2, 1; 1)

S1 S2 (1, 1; 0)(1, 1; 0)

(1, 2, 1) (1, 2, 1)
T1

S2

S1

T2

Figure 4.2: The Morse-Bott graph associated to f defined in Example 4.2.

Definition 4.3. An n-abstract Morse-Bott graph is a finite, connected directed graph Γ with

no oriented cycles, such that

(1) each vertex νi is labelled with a list of non-negative integers (bi0, · · · , b
i
ki
;λi, κi), where

ki ≤ n, λi ≤ n − ki and {b
i
0 = 1, bi1, · · · , b

i
ki−1, b

i
ki

= 1} satisfies Poincaré duality in

dimension ki;

(2) each incoming edge e+ℓ incident to a vertex νi is labelled with a list of non-negative

integers β
e+
ℓ

0 , . . . , β
e+
ℓ

n−1 which satisfies Poincaré duality and β
e+
ℓ

0 = β
e+
ℓ

n−1 = 1. If n =

2p+ 1 is odd then β
e+
ℓ

p must be even;

(3) each outgoing edge e−ℓ incident to a vertex νi is labelled with a list of non-negative integers

β
e−
ℓ

0 , . . . , β
e−
ℓ

n−1 which satisfies Poincaré duality and β
e−
ℓ

0 = β
e−
ℓ

n−1 = 1. If n = 2p + 1 is

odd then β
e−
ℓ

p must be even;

(4) the number of incoming edges e+(νi) and the number of outgoing edges e−(νi) of a vertex

νi satisfy the following conditions

(a) if λi = 0 then e−(νi) = 0 and e+(νi) > 0;
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(b) if λi = n− ki then e+(νi) = 0 and e−(νi) > 0;

(c) if 0 < λi < n− ki then e−(νi) > 0 and e+(νi) > 0.

The cycle number κ of an abstract Morse-Bott graph Γ is defined as the cycle rank κL of

Γ plus the cycle number κν of all vertices of Γ.

νi (bi0, . . . , b
i
ki
;λi, κi)

(B+
0 , . . . , B+

n−1)

(B−

0 , . . . , B−

n−1)

Figure 4.3: A typical vertex of an abstract Morse-Bott graph.

Definition 4.4. A vertex νi labelled with (bi0, . . . , b
i
ki
;λi, κi) in an n-abstract Morse-Bott

graph Γ can be exploded if νi can be removed from Γ and replaced by an n-abstract Lyapunov

semi-graph of Morse type ΓM with cycle rank greater than or equal to κi and with the labels

on incoming (outgoing) semi-edges of ΓM matching the labels on the outgoing (incoming)

semi-edges of Γ\{vi}. Moreover, for all η,

bη(νi) =
∑

j

hη+λi
(vj),

where the sum is over all vertices vj of ΓM .

Definition 4.5. An abstract Morse-Bott graph Γ with cycle number κ admits a continuation

to an abstract Lyapunov graph of Morse type ΓM if each vertex can be exploded such that ΓM

has cycle rank greater than or equal to κ.

Example 4.3. An example of a 7-abstract Morse-Bott graph Γ with κ = 1 is given in Figure

4.4. A possible continuation of Γ is presented in Figure 4.5, in this picture hd
j (hc

j) denotes

a vertex labelled with a singularity hj = 1 of type j-disconnecting ((j − 1)-connecting).

The vertex Si in Figure 4.4 may represent a 5-dimensional critical manifold with Betti

numbers b0 = b5 = 1, b2 = b3 = 1, b1 = b4 = 0 of Morse-Bott index λ1 = 1 in a 7-

dimensional basic block with an incoming (respectively, outgoing) boundary component with

Betti numbers (1, 0, 0, 0, 0, 0, 1) (respectively, (1, 0, 1, 2, 1, 0, 1)) and of Cornea genus greater

than or equal to one, see [14]. The subgraph indicated on the right represents a Morse
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(1, 1; 0, 0)

(1; 6, 0)

(1, 1, 1; 5, 0)(1; 7, 0)

(1; 6, 0)

(1, 0, 1, 2, 1, 0, 1)

(1, 0, 0, 0, 0, 0, 1) (1, 0, 0, 0, 0, 0, 1)

(1, 0, 0, 0, 0, 0, 1)

(1, 1, 1, 1; 2, 0)

(1, 1, 1, 2, 1, 1, 1)

(1, 0, 1, 1, 0, 1; 1, 1)

(1, 1, 0, 0, 0, 1, 1)

Si

Figure 4.4: Abstract Morse-Bott graph.

h7 = 1

(1, 0, 0, 0, 0, 0, 1)

h7 = 1

hd
5 = 1 (1, 1, 0, 0, 0, 1, 1)

(1, 0, 0, 0, 0, 0, 1)

hd
4 = 1

hc
5 = 1

hc
6 = 1

hc
3 = 1

hc
4 = 1

hd
6 = 1

hc
1 = 1

hd
6 = 1

(1, 0, 0, 0, 0, 0, 1)

(1, 1, 0, 0, 0, 1, 1)

(1, 1, 1, 0, 1, 1, 1)

(1, 1, 1, 2, 1, 1, 1)

(1, 0, 1, 2, 1, 0, 1)

(1, 0, 0, 2, 0, 0, 1)

(1, 0, 0, 0, 0, 0, 1)

(1, 0, 0, 0, 0, 0, 1)hc
6 = 1

(1, 0, 0, 0, 0, 0, 1)

(1, 0, 0, 0, 0, 0, 1) (1, 0, 0, 0, 0, 0, 1)

hd
3 = 1

hd
2 = 1

hd
1 = 1

h0 = 1

(1, 1, 2, 2, 2, 1, 1)

(1, 1, 1, 2, 1, 1, 1)

Figure 4.5: Explosion of graph in Figure 4.4.

flow on the same basic block with one index 1, one index 4, one index 3 and one index 6

singularities. ◭

4.3.2 Morse-Bott Graph Continuation

The Theorem 4.2 below describes sufficient and necessary conditions for an abstract

Morse-Bott semi-graph can be continued to an abstract Lyapunov semi-graph of Morse type.

These conditions are the generalized Morse-Bott inequalities presented in the statement of

the following theorem.

Theorem 4.2. Let Γv be an n-abstract Morse-Bott semi-graph containing only one vertex

ν labelled with (b0, · · · , bk;λ, κν). Then Γν admits a continuation to an n-abstract Lya-

punov semi-graph ΓM of Morse type with cycle rank greater than or equal to κν, where

κν ≤ min{b1−λ − (b−λ − 1), bn−1−λ − (bn−λ − 1)}, if and only if ν satisfies the generalized

Morse-Bott inequalities:
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



bj−λ ≥ −(B+
j−1 − B−

j−1) + (B+
j−2 − B−

j−2) + · · · ± (B+
2 − B−

2 )± (B+
1 − B−

1 )

−(bn−(j−1)−λ − bj−1−λ) + (bn−(j−2)−λ − bj−2−λ)± · · · ± (bn−1−λ − b1−λ)

±[(bn−λ − b−λ) + (e+ − e−)]

bn−j−λ ≥ −[−(B+
j−1 − B−

j−1) + (B+
j−2 − B−

j−2) + · · · ± (B+
2 − B−

2 )± (B+
1 − B−

1 )

−(bn−(j−1)−λ − bj−1−λ) + (bn−(j−2)−λ − bj−2−λ)± · · · ± (bn−1−λ − b1−λ)

±[(bn−λ − b−λ) + (e+ − e−)]]
...{

b2−λ ≥ −(B+
1 − B−

1 )− (bn−1−λ − b1−λ) + (bn−λ − b−λ) + (e+ − e−)

bn−2−λ ≥ −[−(B+
1 − B−

1 )− (bn−1−λ − b1−λ) + (bn−λ − b−λ) + (e+ − e−)]

{
b1−λ ≥ b−λ − 1 + e− + κν

bn−1−λ ≥ bn−λ − 1 + e+ + κν

where 0 ≤ j ≤ n and bη = 0 when η /∈ [0, k].




If n = 2i+ 1, then B+ − B− = e− − e+ +
2i+1∑

j=0

(−1)jbj−λ,

where B+ =
(−1)i

2
B+

i ± B+
i−1 ± · · · −B+

1 , B− =
(−1)i

2
B−

i ± B−
i−1 ± · · · −B−

1 .

If n = 2i ≡ 2(mod 4), then

bi−λ −
i−1∑

j=1

(−1)j+1(B+
j − B−

j )−
i−1∑

j=0

(−1)j(b2i−j−λ − bj−λ) + (e+ − e−) must be even.

Proof. The generalized Morse-Bott inequalities for the vertex ν of Γν are equivalent to

the Poincaré-Hopf inequalities for ν labelled with the data (B±
0 , . . . , B

±
n−1); hλ+j = bj if

j = 0, · · · , k and hη = 0 if η < λ or η > λ+k. Therefore, by Theorem 1.1 on [7], the semi-

graph Γν admits a continuation to a n-abstract Lyapunov semi-graph of Morse type with

cycle rank greater than or equal to κν if and only if ν satisfies the generalized Morse-Bott

inequalities, where κν ≤ min{b1−λ − (b−λ − 1), bn−1−λ − (bn−λ − 1)}. A explosion algorithm

for a vertex can be found in [7]. �

An abstract Morse-Bott graph Γ is said to satisfies the generalized Morse-Bott inequalities

if each vertex of Γ satisfies these inequalities.

Corollary 4.1. Let Γ be an n-abstract Morse-Bott graph with cycle number κ. Then Γ

admits a continuation to an n-abstract Lyapunov graph ΓM of Morse type with cycle rank
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greater than or equal to κ if and only if Γ satisfies the generalized Morse-Bott inequalities.

Example 4.4. The abstract Morse-Bott graph Γ presented in Example 4.3 satisfies the

generalized Morse-Bott inequalities since each vertex of Γ satisfies these inequalities. For

instance, one can look at the vertex Si in Γ labelled with (1, 0, 1, 1, 0, 1;λv = 1, κv = 1)

and verify that this vertex satisfies the generalized Morse-Bott inequalities, which have the

following form:

b2 ≥ −(B+
2 − B−

2 ) + (B+
1 − B−

1 )− (b4 − b1) + (b5 − b0)− (b6 − b−1)− (e+ − e−)

b3 ≥ −[−(B+
2 − B−

2 ) + (B+
1 − B−

1 )− (b4 − b1) + (b5 − b0)− (b6 − b−1)− (e+ − e−)]

b1 ≥ −(B+
1 − B−

1 )− (b5 − b0) + (b6 − b−1) + (e+ − e−)

b4 ≥ −[−(B+
1 − B−

1 )− (b5 − b0) + (b6 − b−1) + (e+ − e−)]

b0 ≥ b−1 − 1 + e− + κν

b5 ≥ b6 − 1 + e+ + κν

B+ − B− = e− − e+ +
∑7

j=0(−1)
jbj−λ

◭

4.3.3 A New Layout for the Morse-Bott Inequalities

In this subsection we use the generalized Morse-Bott inequalities to obtain a new version

of the classical Morse-Bott inequalities in (4.1).

Theorem 4.3. A Morse-Bott function f on a compact manifold with boundary given by

∂M = N+ ⊔N− satisfies the generalized Morse-Bott inequalities with κ = 0 and e± equal to

the zeroeth Betti number of N±.

Proof. Let Γ be the Morse-Bott graph associated to f . According to the results in [7],

a Lyapunov graph associated to a continuous flow φt on a manifold such that hi(Λ, φt) =

hn−i(Λ, φ
′
t), for all isolated invariant set Λ, satisfies the Poincaré-Hopf inequalities. Now,

given a vertex S of the Morse-Bott graph Γ labelled with (β0, · · · , βk;λ), by Proposition 4.2,

the rank of the homological Conley index of S is hλ+j = βj(S), for j = 0, · · · , k, and it is

null otherwise. In this way, Γ can be visualized as a Lyapunov graph of a continuous flow.

Since the flow ϕt generated by f satisfies hi(S, ϕt) = hn−i(S, ϕ
′
t), (see Proposition 4.3), then

Γ satisfies the Poincaré-Hopf inequalities for the data set (B±
0 , . . . , B

±
n−1), κ = 0, e± = N±,

hλ+j = βj(S) for j = 0, · · · , n and hη = 0 otherwise. As the generalized Morse-Bott

inequalities are equivalent to the Poincaré-Hopf inequalities for this data set, one concludes

that any Morse-Bott flow satisfies the generalized Morse-Bott inequalities. �
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Corollary 4.2. If an abstract Morse-Bott graph (semi-graph) Γ does not admit a continua-

tion to an abstract Lyapunov graph (semi-graph) of Morse type, then Γ is not realizable as a

flow of a Morse-Bott function on any closed n-manifold (compact manifold with boundary).

Proof. Indeed, if Γ were realizable as a flow of a Morse-Bott function on an closed n-

manifold (compact manifold with boundary), then it would admit continuation to an abstract

Lyapunov graph (semi-graph) of Morse type, since every Morse-Bott graph (semi-graph) can

be continued. �

Theorem 4.4. Given an n-abstract Morse-Bott graph Γ with cycle number κ and with l

vertices ν1, · · · , νl labelled with (bi0, · · · , b
i
ki
;λi, κi), define bη =

∑l

i=1 b
i
s(i,η), where η = s(i, η)+

λi for η = 0, · · · , n. If Γ satisfies the generalized Morse-Bott inequalities then the set of data

{b0, · · · , bn} satisfies the following inequalities









−bj ≤ (bn−(j−1) − bj−1)− (bn−(j−2) − bj−2)± · · ·

±(bn−1 − b1)± (bn − b0) ≤ bn−j

...

−b2 ≤ (bn−1 − b1)− (bn − b0) ≤ bn−2

{
b1 ≥ b0 − 1 + κ

bn−1 ≥ bn − 1 + κ

If n = 2i+ 1,
2i+1∑

j=0

(−1)jbj = 0.

If n = 2i ≡ 2 (mod 4), bi −
i−1∑

j=0

(−1)j(b2i−j − bj) must be even.

(4.5)

Proof. By Theorem 4.1, Γ admits a continuation to an n-abstract Lyapunov graph of Morse

type ΓM . Each vertex νi of Γ is exploded to a collection of vertices vi1, · · · , v
i
Ki

and the labels

on each graph satisfy

biη−λi
=

Ki∑

j=0

hη(v
i
j),

for all i = 1, · · · , l. Moreover, ΓM has bn vertices labels with hn = 1 and with outgoing edges

labelled with (1, 0, · · · , 0, 1). Also ΓM has b0 vertices labelled with h0 = 1 with incoming

edges labelled with (1, 0, · · · , 0, 1).
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Let ΓI be the implosion of Γ, that is, ΓI is an n-abstract graph with one vertex ν, called

saddle vertex, labelled with (0, b1, · · · , bn−1, 0; 0, κ); the vertex ν has bn = e+ν incoming edges

and b0 = e−ν outgoing edges; the incoming edges of ν are outgoing edges of e+ν vertices labelled

with (1;n) and the outgoing edges of ν are incoming edges of e−ν vertices labelled with (1; 0);

the labels of all edges are equal to (1, 0, · · · , 0, 1). As

bη =
l∑

i=1

biη−λi
=

l∑

i=1

Ki∑

j=0

hη(v
i
j),

the saddle vertex of ΓI can be exploded to the semi-graph obtained from ΓM by disregarding

the vertices h′
0s and h′

ns.

Note that ΓI is not a Morse-Bott graph since the saddle vertex ν does not have the prop-

erty of duality. On the other hand, Theorem 4.1 does not require that the label on a vertex

of an abstract Morse-Bott graph satisfies the Poincaré duality, then one can use Theorem

4.1 and conclude that the vertex ν satisfies the generalized Morse-Bott inequalities. There-

fore, {b0, · · · , bn} satisfies the inequalities in (4.5) since these inequalities are the generalized

Morse-Bott inequalities for a saddle vertex (0, b1, · · · , bn−1, 0; 0, κ). �

The next result shows that the inequalities in (4.5) are equivalent to the classical Morse-

Bott inequalities. More specifically, whenever the data (b0, · · · , bn, κ) satisfies the inequalities

in (4.5), there exits a collection of Betti numbers that satisfies the Morse-Bott inequalities

with this same data. Conversely, if (b0, · · · , bn) and (β0, · · · , βn), where β1 ≥ κ, satisfies

the Morse-Bott inequalities then (b0, · · · , bn, κ) satisfies the inequalities in (4.5). This re-

sult proves that the generalized Morse-Bott inequalities defined in Theorem 4.2 is in fact a

generalization of the Morse-Bott inequalities, since they are well defined for manifolds with

boundary.

A list (β0, · · · , βn) of non-negative integral numbers satisfying βn−k = βk, for k =

0, · · · , n, β0 = βn = 1 and βi is even if n = 2i ≡ 2 (mod 4) is called a Betti number

vector.

Theorem 4.5. A set of non-negative numbers (b0, · · · , bn, κ) satisfies the inequalities in

(4.5) if and only if it satisfies the Morse-Bott inequalities in (4.1) for some Betti number

vector (β0, · · · , βn) such that β1 ≥ κ.

Proof. Suppose that the set of non-negative numbers (b0, · · · , bn, κ) satisfies the inequalities

in (4.1) for a Betti number vector (β0, · · · , βn) with β1 ≥ κ. Then, by the first inequality in
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(4.1),

b1 ≥ b0 + β1 − β0 ≥ b0 − 1 + κ.

By the equality in (4.1) and the duality between βn−1 and β1,

bn−1 = bn − βn + βn−1 −
[
βn−2 + · · ·+ (−1)nβ0

]
+b2 + · · ·+ (−1)nb0︸ ︷︷ ︸

≥0

≥ bn − 1 + κ.

Let n = 2i + 1 if n is odd and n = 2i if n is even. For j = 2, · · · , i, one has from the

equality in (4.1) that

(−1)jbn−j = −
[
bn − bn−1 + · · ·+ (−1)j−1

bn−(j−1)

]

+ βn − βn−1 + · · ·+ (−1)j−1βn−(j−1)︸ ︷︷ ︸
∗1

+(−1)jβn−j + (−1)j+1βn−(j+1) + · · ·+ (−1)nβ0︸ ︷︷ ︸
∗2

−
[
(−1)j+1

bn−(j+1) + · · ·+ (−1)nb0︸ ︷︷ ︸
∗3

]
.

There are two cases to consider: j + 1 even and j + 1 odd.

Case 1. If j+1 is even, one has (−1)j−1
bj−1+(−1)j−2

bj−2+ · · ·+b0 ≥ (−1)j−1βj−1+ · · ·+β0,

∗2 − ∗3 ≤ 0 and (−1)jβn−j ≤ 0. Then, using these fact and the duality of the Betti number

vector (β0, · · · , βn), one has

(−1)jbn−j ≤ −
[
bn − bn−1 + · · ·+ (−1)j−1

bn−(j−1)

]
+(−1)j−1

bj−1 + (−1)j−2
bj−2 + · · ·+ b0.

Case 2. If j+1 is odd, one has (−1)j−1
bj−1+(−1)j−2

bj−2+ · · ·+b0 ≤ (−1)j−1βj−1+ · · ·+β0,

∗2 − ∗3 ≥ 0 and (−1)jβn−1 ≥ 0. Then

(−1)jbn−j ≥ −
[
bn − bn−1 + · · ·+ (−1)j−1

bn−(j−1)

]
+(−1)j−1

bj−1 + (−1)j−2
bj−2 + · · ·+ b0.

In both cases it follows that

bn−j ≥ (bn−(j−1) − bj−1)− (bn−(j−2) − bj−2)± · · · ± (bn−1 − b1)± (bn − b0).
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If n = 2i + 1 then
∑n

j=0(−1)
j
bj =

∑n

j=0(−1)
jβj = 0, the last equality follows from the

duality of the list (β0, · · · , βn) and the fact the n is odd. If n = 2i ≡ 2 (mod 4), then

bi −
i−1∑

j=0

(−1)j(bn−j − bj) =

bi −
[
bn − bn−1 + · · · − bn−(i−2) + bn−(i−1)

]
+b0 − b1 + · · · − bi−2 + bi−1.duuuuudd(4.6)

Since bi = bn−i, from the equality in (4.1), it follows that

bn− bn−1+ · · ·+ bn−(i−1)− bi = βn− βn−1 + · · · − β1 + β0−
[
bi−1− bi−2 + · · ·+ b2− b1+ b0

]
.

Substituting this expression in (4.6), one obtains

bi −
i−1∑

j=0

(bn−j − bj) =

−
[
βn − βn−1 + · · · − β1 + β0

]
+2
[
b0 − b1 + · · · − bi−2 + bi−1

]
=

i−1∑

j=0

−2
[
βi−1 − βi−2 + · · · − β1 + β0

]
−βi + 2

[
b0 − b1 + · · · − bi−2 + bi−1

]
,

which is even. This concludes the proof that de Morse-Bott inequalities imply the inequalities

in (4.5).

Conversely, in order to prove that the inequalities in (4.5) imply the Morse-Bott inequali-

ties in (4.1), consider an Lyapunov graph Γ with cycle number κ, with one saddle vertex label

with (b1, · · · , bn−1; 0, κ), b0 vertices labels with (1; 0) and bn vertices labels with (1;n). Then

Γ admits a continuation to an abstract Lyapunov graph of Morse type ΓM with cycle rank

greater than or equal to κ and with hc
l vertices labels with hl = 1 of type (l− 1)-connecting

and hd
l vertices labels with hl = 1 of type l-disconnecting, such that hc

l + hd
l = bl, for all

l = 1, · · · , n. According to [6] and [7], the distributions of bl = hc
l + hd

l between the types c

and d must satisfy a network flow. We illustrate such a network in Example 4.5.
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Hence, defining β0 = βn = 1 and

n = 2i+ 1

βj =





hd
1 − hc

2 if j = 1

hd
j − hc

j+1 if 2 ≤ j < i

hd
i if j = i

hc
i+1 if j = i+ 1

−hd
j−1 + hc

j if i+ 2 ≤ j ≤ 2i− 1

−hd
2i−1 + hc

2i if j = 2i

n = 2i

βj =





hd
1 − hc

2 if j = 1

hd
j − hc

j+1 if 2 ≤ j < i− 1

βinv if j = i, 2i ≡ 0 (mod 4)

0 if j = i, 2i ≡ 2 (mod 4)

−hd
j−1 + hc

j if i+ 1 ≤ j ≤ 2i− 2

−hd
2i−2 + hc

2i−1 if j = 2i− 1,

(4.7)

the Proposition 6.1 in [7] guarantees that the data (b0, · · · , bn) and (β0, · · · , βn) satisfy the

inequalities in (4.1). �

Example 4.5. Consider the abstract Morse-Bott graph presented in Example 4.3 which

satisfies the generalized Morse-Bott inequalities. Note that, for the graph in Figure 4.4, one

has b0 = 1, b1 = 2, b2 = 1, b3 = 2, b4 = 2, b5 = 2, b6 = 4, b7 = 2 and the inequalities in

(4.5) are −b3 ≤ (b5 − b2) − (b6 − b1) + (b7 − b0) ≤ b4; −b2 ≤ (b6 − b1) − (b7 − b0) ≤ b5;

b1 ≥ b0 − 1 + κ; b6 ≥ b7 − 1 + κ. It is easy to see that these inequalities are verified for the

graph in consideration. Also,
∑7

j=0(−1)
j
bj = 1− 2 + 1− 2 + 2− 2 + 4− 2 = 0.

In order to construct a Betti number vector (β0, · · · , β7) which, together with the list

(1, 1, 1, 1, 1, 2, 3, 2), satisfies the Morse-Bott inequalities, one can make use of the network-

flow in Figure 4.6 and define (β0, · · · , β7) as in (4.7). There are some possibilities for this Betti

vector number corresponding to the possibilities of choice of the list {hc
1, h

d
1, h

c
2, h

d
2, · · · , h

c
6, h

d
6}

that satisfies the network flow in Figure 4.6. One option for this list is the one made in Figure

4.5 which provides the Betti vector number (1, 1, 0, 1, 1, 0, 1, 1). ◭

Theorem 4.5 can be used to show that if (b0, · · · , bn, κ) does not satisfies the inequalities
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Figure 4.6: Network flow for the list (1, 2, 1, 2, 2, 2, 4, 2).

in (4.5) then there is no closed n-manifold M with β1(M) ≥ κ which admits a Morse-Bott

function with the data (b0, · · · , bn). In fact, a necessary condition for the realizability of

an abstract Morse-Bott graph with the data (b0, · · · , bn, κ) is that this same data must

satisfy the inequalities in (4.5). Of course, one may ask if an abstract data satisfying these

inequalities is sufficient to guarantee the existence of a Morse-Bott flow.

Final Remarks

Realization questions have been addressed in [9] and [10]. In these articles, abstract

Lyapunov graphs with vertices labelled either with singularities or periodic orbits have been

realized as Morse-Smale flows on n-manifolds. A natural question then arises in regard to

the realizability of an abstract Morse-Bott graph as a Morse-Bott flow.

The realization of Morse-Bott graphs on surfaces, i.e. when n = 2, is a consequence of the

results in [23]. Each basic set of a Morse-Bott flow is either a singularity or a critical manifold

isomorphic to the 1-sphere. Each singularity is either attracting, repelling or a saddle and

each critical manifold is either attracting or repelling. The next result characterizes the basic

blocks associated to these basic sets. As in Figure 4.7, the basic blocks for attracting and

repelling singularities are discs; and for saddles and S1 critical manifold the basic blocks can

be orientable and non orientable. In this case, one says that the corresponding vertex in the

graph is orientable or non orientable.

The following theorem gives necessary and sufficient conditions for an abstract Morse-

Bott graph to be associated with a Morse-Bott flow on a closed manifold. In this theorem,

we consider the cycle number κv of a vertex v as being 0 and we omit reference to it on the

label of the vertex v.
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Theorem 4.6. Let M be a closed surface. An abstract Morse-Bott graph Γ is associated to a

Morse-Bott flow ϕt on M satisfying the transversality condition2 if and only if the following

statements are satisfied:

(1) (Local conditions) If the vertex v is labelled with

(a) (1; 2) (resp., (1; 0)) the the number of exiting (entering) edges e−v (resp., e+v ) is

equal to one.

(b) (1; 1) then 1 ≤ e+v ≤ 2, 1 ≤ e−v ≤ 2 and e+v + e−v ≤ 3. The vertex is orientable if

and only if e+v + e−v = 3.

(c) (1, 1; 1) (resp., (1, 1; 0)) then e−v ≤ 2 (resp., e+v ≤ 2). The vertex is orientable if

and only if e−v = 2 (resp., e+v = 2).

(2) (Global conditions)

(a) If M is orientable, the cycle rank of Γ must be equal to the genus of M .

(b) If M is non orientable, twice the cycle rank of Γ plus the number of non orientable

vertices must be equal to the genus of M .

(1; 1)

(1; 1)

(1; 0)

(1; 2)

(1, 1; 1)

(1, 1; 0)

SaddlesAttractors Repellers

(1, 1; 1)(1; 1)(1, 1; 0)

Figure 4.7: Basic blocks for Morse-Bott flows on surfaces.

2In the two dimensional case, the transvesality condition means that there is no saddle-saddle connections.
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In order to prove the necessity of the local and global conditions, one must show that

given a Morse-Bott graph associated to a Morse-Bott flow on a surface, these conditions are

verified. All possible basic blocks in this context are illustrated in Figure 4.7. To prove that

a given abstract Morse-Bott graph Γ is realizable on a surface, the basic blocks are glued

together appropriately to define a flow on M that realizes Γ. The proof follows the same

steps of Theorem 1 in [23].
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Chapter 5

Connection Matrices for Morse-Bott

Flows on Closed Manifolds

In this chapter, our goal is to make use of Conley index theory, [12], to study Morse-

Bott flows on a smooth closed n-manifold M with the underlying motivation of obtaining

dynamical information from homotopical invariants. We wish to introduce a connection

matrix theory approach for Morse-Bott flows. The motivation for this resides in the fact

that connection matrices, as defined by Franzosa in [20], [21] and [22], were introduced to

study the behaviour of connecting orbits in a flow which undergoes perturbation. Eventual

bifurcations were captured by transition matrices, see also [24], [29] and [36]. On the other

hand, in the setting of Morse theory, connection matrices can be viewed as differentials of

Morse complexes (see [39]), making it possible to translate topological data into dynamical

data and vice versa.

Considering a Morse-Bott function f : M → R on a smooth closed n-manifold M ,

a Morse-Bott complex associated to f is constructed in [2] by means of a Morse-Smale

perturbation h : M → R of f . A natural question to consider is whether the differential

of a Morse-Bott complex can be interpreted as a connection matrix. The answer to this

is affirmative. However, a necessary step to accomplish this endeavour is to explore more

deeply the connection matrix theory for Morse-Bott flows, which is our focus in this chapter.

The idea is to obtain a characterization of the set of connection matrices for a Morse-Bott

flow ϕf on M using the set of connection matrices for a Morse-Smale flow ϕh on M , where h

is a Morse perturbation of f and ϕf (resp., ϕh) is a flow associated to the vector field −∇f

(resp., −∇h). As a result of this characterization, proved in Section 5.2, one can define a
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Morse-Bott complex with differential being a connection matrix which opens the possibility

to the use of spectral sequence techniques, such as in [13], [30] and [24], to obtain further

dynamical information, e.g., bifurcating orbits.

Our approach to study connection matrices for Morse-Bott flows and obtain the required

characterization is to initially consider connection matrices of Morse decompositions in a

general setting. Given an isolated invariant set S, we analyze what properties remain on

the sets of connection matrices when both Morse decompositions of S and partial orderings

undergo changes.

This chapter is organized as follows. In Section 5.1 we consider connection matrices in

a general framework. More specifically, given an isolated invariant set S and a <-ordered

Morse decomposition D(S), we measure the effect a change in the Morse decomposition

D(S), caused by a modification on the partial order <, has on the respective connection

matrices, as shown in Proposition 5.4 and Theorem 5.3.

In Section 5.2 we apply the results obtained in Section 5.1 to Morse-Bott flows ϕf on

a closed n-manifold M . For instance, in Theorem 5.4 we prove that the set of connection

matrices for Morse-Bott flows on M coincides with the set of connection matrices for per-

turbations that give rise to Morse-Smale flows on M . Theorem 5.5 is more constructive in

nature, since we show how a connection matrix of D(M,ϕh), where ϕh is a perturbation of

ϕf , induces a connection matrix of the Morse-Bott flow ϕf .

In Section 5.2, we also answer a natural question that arises in this context, which

examines if for a given connection matrix ∆ for a Morse-Bott flow ϕf there exists a Morse-

Smale perturbation ϕh of ϕf such that ∆ is induced from a connection matrix of ϕh.

It is in due course to present the following well known result.

Proposition 5.1. Let f be a perfect Morse function on a closed manifold M . Consider a

flow ϕf associated to the vector field −∇f and the finest Morse decomposition D(M) of M

with respect to this flow. Then, the set of connection matrices of D(M) contains only the

null map.

Proof. Fisrt, note that a connection matrix ∆ for the finest Morse decomposition of M

encodes the weak Morse inequalities ck ≥ βk, where ck = #Critk(f) and βk is the k-th

Betti number of M , i.e., the rank of Hk(M ;Z)1. Indeed, one has that H∆(P ) ∼= CH(M) =

H∗(M ;Z), since ∆ is a connection matrix; and Ck∆(P ) = ⊕CHk(Mx), where the sum is

1If the manifold is nonorientable, the homology is computed over Z2.
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over all critical points of f . Therefore,

βk = rank Hk∆(P ) = rank
Ker ∆k(P )

Im ∆k+1(P )
≤ rank

[
Ker ∆k(P )

]
= ck,

which is precisely the classic Morse inequalities. Furthermore, the equalities hold if and only

if ∆ ≡ 0. On the other hand, if the Morse function f is a perfect Morse function, then the

equality βk = ck holds for all k = 1, . . . , n = dim(M), implying that ∆ ≡ 0. �

This result will be used in Section 5.2. Moreover, it is interesting to note as a consequence

of this proposition that each connection matrix of the finest Morse decomposition of M ,

D(M), encodes the weak Morse inequalities.

5.1 Connection Matrices for Coarser Morse Decompo-

sitions

The motivation for this section can be seen in the following hypothetical situation. Given

an isolated invariant set S and a Morse decomposition D(S), one can consider a coarser

Morse decomposition D̃(S) of S relative to D(S). An important question is if there exists

any relation between connection matrices of D(S) and connection matrices of D̃(S). Our

goal is to describe the relationship among connection matrices of D(S) and D̃(S). For

instance, let D(S) = {M1, . . . ,M7} and let D̃(S) be the Morse decomposition obtained

when one groups M3,M4 and M5 as well as their connections in one Morse set MI , i.e.,

D̃(S) = {M1,M2,MI ,M6,M7}. This grouping will be described in more detail subsequently.

Assume that there is an isomorphism FI from CH(MI) to CH(M3)⊕ CH(M4)⊕ CH(M5)

and let

∆ =




0 ∆(2, 1) ∆(3, 1) ∆(4, 1) ∆(5, 1) ∆(6, 1) ∆(7, 1)

0 0 ∆(3, 2) ∆(4, 2) ∆(5, 2) ∆(6, 2) ∆(7, 2)

0 0 0 ∆(4, 3) ∆(5, 3) ∆(6, 3) ∆(7, 3)

0 0 0 0 ∆(5, 4) ∆(6, 4) ∆(7, 4)

0 0 0 0 0 ∆(6, 5) ∆(7, 5)

0 0 0 0 0 0 ∆(7, 6)

0 0 0 0 0 0 0



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be a connection matrix of D(S). One can induce a connection matrix ∆̃ of the coarser Morse

decomposition D̃(S) from ∆, as follows:

∆̃ =




0 ∆(2, 1) ∆̃(I, 1) ∆(6, 1) ∆(7, 1)

0 0 ∆̃(I, 2) ∆(6, 2) ∆(7, 2)

0 0 0 ∆̃(6, I) ∆̃(7, I)

0 0 0 0 ∆̃(7, 6)

0 0 0 0 0




,

where the maps ∆̃(·, ·) are given by:

∆̃(I, j) =
[
∆(3, j) ∆(4, j) ∆(5, j)

]
◦ FI and ∆̃(k, I) = FI ◦




∆(k, 3)

∆(k, 4)

∆(k, 5)




for j = 1, 2 and k = 6, 7.

In what follows we intend to formalize this approach.

Consider a partially ordered set (P,<). Let I1, . . . , Ik be a collection of mutually disjoint

intervals with respect to (P,<), such that, if i < j then there are no elements π ∈ Ij and

π′ ∈ Ii with π < π′. In what follows, a subset P̃ of I(P,<) is defined to be P̃1 ∪ P̃2, where

P̃2 = {π̃ | π̃ = Ij, j = 1, · · · , k} and P̃1 = {π̃ | π̃ = {π} such that π ∈ P \ (I1 ∪ · · · ∪ Ik)}.

Hence, the set P̃ = P̃1 ∪ P̃2 is composed by intervals of (P,<). It is important to note that

π̃ is an element of P̃ and is not an element of P , but an interval in (P,<). From now on,

an element of P̃ will be denoted by π̃. Although P̃ is a subset of I(<) and the elements of

I(<) are usually denoted by I, J,K, we will denote elements of P̃ by π̃ and intervals of P̃

by Ĩ , J̃ , K̃. We also adopt a loose notation π ∈ π̃ to indicate that the element π ∈ P belongs

either to the interval Ij for j = 1, · · · , k or to the singleton interval in (P,<) composed by

itself.

Consider the transitive closure of the relation ≺ in P̃ given by:

π̃1 ≺ π̃2, if there are π1 ∈ π̃1 and π2 ∈ π̃2 such that π1 < π2

where π̃1, π̃2 ∈ P̃ and π̃1 6= π̃2.

Proposition 5.2. The pair (P̃ ,≺) is a partially ordered set.
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Proof. One needs to prove that π̃ 6≺ π̃ for all π̃ ∈ P̃ . Suppose by contradiction that π̃ ≺ π̃.

Hence, by definition of the relation ≺, there exists π̃′ ∈ P̃ such that π̃ ≺ π̃′ ≺ π̃. If π̃′ is a

singleton, i.e. π̃′ = {π′} ∈ P̃1, then there must exist π1, π2 ∈ π̃ such that π1 < π′ < π2. But

π̃ ∈ I(P,<), then π′ ∈ π̃, which contradicts the fact that π̃′ ∈ P̃1. Therefore, π̃′ is not a

singleton, that is, π̃′ = Ij ∈ P̃2, for some j = 1, · · · , k. Hence, one has that π̃ ≺ π̃′ = Ij ≺ π̃,

which contradicts the choices of the intervals I1, . . . , Ik. �

The next proposition relates intervals in (P̃ ,≺) with intervals in (P,<). Given an interval

J̃ in (P̃ ,≺), define J to be the subset of P such that π ∈ J iff π ∈ π̃ for some π̃ ∈ J̃ . The

set J is well defined since each element π̃ of J̃ is an interval of (P,<).

Proposition 5.3. (a) If J̃ ∈ I(P̃ ,≺) then J ∈ I(P,<).

(b) If (J̃ , K̃) ∈ I2(P̃ ,≺) then (J,K) ∈ I2(P,<).

Proof.

(a) Let J̃ be an interval in (P̃ ,≺). Given π1, π2 ∈ J and π ∈ P such that π1 < π < π2, one

must show that π ∈ J . In fact, there must exist π̃1, π̃2, π̃ ∈ P̃ such that π1 ∈ π̃1, π2 ∈ π̃2

and π ∈ π̃. Hence, π̃1 ≺ π̃ ≺ π̃2, which implies that π̃ ∈ J̃ . Therefore, π ∈ J .

(b) As J̃ ∪ K̃ is an interval in (P̃ ,≺), by the previous item , J ∪K is an interval in (P,<).

Suppose by contradiction that π1 ∈ J , π2 ∈ K and π2 < π1. By definition of J,K,

there exist π̃1 ∈ J̃ and π̃2 ∈ K̃ such that π1 ∈ π̃1 and π2 ∈ π̃2. Hence, π̃2 ≺ π̃1, which

contradicts the fact that (J̃ , K̃) is an adjacent pair of intervals. �

Indeed, one can show that if (J̃1, . . . , J̃n) ∈ In(Ĩ ,≺) then (J1, . . . , Jn) ∈ In(I,≺). The

proof follows the same ideas of the proof of Proposition 5.3, (b).

Let S be an isolated invariant set and D(S) = {Mπ : π ∈ P} be a Morse decomposition

of S with admissible ordering <. The purpose of this section is to study connection matrices

with coarser Morse decompositions of S, D̃(S). This is done by considering as Morse sets of

D̃(S) the union of some Mπ of D(S) and their connections. More specifically, consider the

set D̃(S) = {M̃π̃ : π̃ ∈ P̃}, where

M̃π̃ = Mπ̃ =

(
⋃

π∈π̃

Mπ

)
∪

(
⋃

π,π′ ∈ π̃

C(Mπ′ ,Mπ)

)
.
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D̃(S) is not just a collection of some Morse sets of P with respect to <, it is an ≺-ordered

Morse decomposition of S. See Proposition 5.4 below. Before proving this, we present a

characterization of the set of orbits connecting two Morse sets in the coarser Morse decom-

position D̃(S) by means of the set of orbits connecting two isolated invariant set in the

original Morse decomposition D(S). Let π̃1, π̃2 ∈ P̃ , the set of orbits connecting M̃π̃2
to M̃π̃1

,

C(M̃π̃2
, M̃π̃1

), is given by

C(M̃π̃2
, M̃π̃1

) =
⋃

π′∈π̃2,π∈π̃1

C(Mπ′ ,Mπ).

This characterization is essentially the proof of the following two propositions.

Proposition 5.4. The set D̃(S) is a Morse decomposition of S with admissible ordering ≺.

Proof. The sets M̃π̃ are isolated, invariant, disjoint and compact, by definition. If γ ∈ S and

γ 6∈ ∪π̃∈P̃M̃π̃ one must prove that γ ∈ C(M̃π̃, M̃π̃′) with π̃′ ≺ π̃. Observe that γ 6∈ ∪π∈PMπ

and, as D(S) is a Morse decomposition of S, there exist π1, π2 ∈ P such that π1 < π2 and

γ ∈ C(Mπ2
,Mπ1

). Therefore, γ ∈ C(M̃π̃, M̃π̃′), for π̃′, π̃ ∈ P̃ such that π1 ∈ π̃ and π2 ∈ π̃′.

�

Proposition 5.5. If < induces the flow ordering of the Morse decomposition D(S), then ≺

induces the flow ordering of the coarser Morse decomposition D̃(S).

Proof. Given π̃, π̃′ ∈ P̃ with π̃ ≺ π̃′, one needs to show that there exist a sequence in P̃

π̃ = π̃0, π̃1, . . . , π̃n−1, π̃n = π̃′ such that C(M̃π̃i
, M̃π̃i−1

) 6= ∅. This proof is straightforward

and is done by analysing the possibilities of π, π′ ∈ P̃ as elements of P̃1 or P̃2 and using the

characterization of the set of orbits connecting M̃π′ to M̃π. �

Having defined the Morse decomposition D̃(S) with admissible ordering ≺, one can now

define connection matrices in this setting.

Let H(<) = H(<;G) be the homology index braid of < with coefficients in G. Let

C = {C∆(π)}π∈P be a collection of free chain complexes with trivial boundary operator,

where C∆(π) = CH(Mπ) is the Conley homological index of Mπ with coefficients in G, for

all π ∈ P . Therefore, the collection of connection matrices of H(<), CM(H(<)), is non

empty, since the graded module braid H(<) is a chain complex generated.

From a given connection matrix ∆ : C∆(P ) → C∆(P ) of H(<), we will construct a

connection matrix ∆̃ : C∆̃(P̃ )→ C∆̃(P̃ ) of the homological index braid of≺ with coefficients
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in G, H(≺) = H(≺;G). In order to do this, we will henceforth assume that, for each interval

I1, . . . , Ik previously set in (P,<), ∆(Ij) = 0. Note that, for other intervals in (P,<) different

from I1, . . . , Ik, this assumption is not required. Using this assumption, it follows that

H∆(Ij) =
Ker ∆(Ij)

Im ∆(Ij)
=
⊕π∈IjCH(Mπ)

0
∼=
⊕

π∈Ij

CH(Mπ)

for all j = 1, . . . , k. As ∆ is a connection matrix of H(<) then CH(MIj)
∼= H∆(Ij), for all

j = 1, . . . , k, and one has

CH(MIj)
∼=
⊕

π∈Ij

CH(Mπ).

Now, let C̃ = {C∆̃(π̃)}π̃∈P̃ be a chain complex braid over ≺, where C∆̃(π̃) = CH(M̃π̃),

for each π̃ ∈ P̃ , and the boundary operator is trivial. Observe that the chain complex braids

C = {C∆(π)}π∈P and C̃ = {C∆̃(π̃)}π̃∈P̃ are related to each other by:

• C∆̃({π}) = CH(M̃{π}) = CH(Mπ) = C∆(π);

• C∆̃(Ij) = CH(M̃Ij) = CH(MIj)
∼=
⊕

π′∈Ij

CH(Mπ′) =
⊕

π′∈Ij

C∆(π′) = C∆(Ij).

In short, C∆̃(π̃) = C∆(π̃).

For each π̃ ∈ P̃ , let

Fπ̃ : C∆̃(π̃) −→ C∆(π̃) (5.1)

be an isomorphism. If π̃ ∈ P̃1, i.e. π̃ is a singleton, we consider Fπ̃ as be the identity map.

The set of connection matrices of H(≺, G) is non empty, since this graded module braid

is chain complex generated. Now, from ∆ we will make explicit a connection matrix of

H(≺, G). Let ∆̃ : C∆̃(P̃ )→ C∆̃(P̃ ) be the map regarded as a matrix

∆̃ =


 ∆̃(π̃′, π̃)




π̃,π̃′∈P̃

,

where each ∆̃(π̃′, π̃) is the map from C∆̃(π̃′) to C∆̃(π̃) defined as follows:

∆̃π̃′,π̃ = F−1
π̃ ◦∆(π̃′, π̃) ◦ Fπ̃′ . (5.2)
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The goal in this section is to show that ∆̃ = ∆̃(P̃ ) is a connection matrix of H(≺),

which will be proved in Theorem 5.3. The next result describes a relation between the maps

∆̃(K̃, J̃) and ∆(K, J), for each (J̃ , K̃) adjacent pair of intervals in (P̃ ,≺). This result is

essential to the proof of the main theorem.

Theorem 5.1. Given a pair of adjacent intervals (J̃ , K̃) ∈ I2(P̃ ,≺), the map ∆̃(K̃, J̃)

is conjugated to ∆(K, J), that is, there exist isomorphisms RJ : C∆̃(J̃) → C∆(J) and

RK : C∆̃(K̃)→ C∆(K) such that

∆̃(K̃, J̃) = R−1
J ◦∆(K, J) ◦RK .

In particular, for each J̃ ∈ I(P̃ ,≺),

∆̃(J̃) = R−1
J ◦∆(J) ◦RJ .

Proof. Let J̃ ∈ I(P̃ ,≺) and {Ij1 , . . . , Ijp} the elements in the intersection J̃ ∩ P̃2. To

simplify notation, renumber these elements as I1, . . . , Ip, such that, if Ii ≺ Ij then i < j.

Define the following subsets of J̃ :

Bℓ = {π̃ ∈ J̃ : π̃ ≺ Iℓ+1} \ (B0 ∪ · · · ∪Bℓ), for ℓ = 0, · · · , p− 1

Bp = {π̃ ∈ J̃ : Ip ≺ π̃} ∪ {π̃ ∈ J̃ : π̃ and Ii are noncomparable ∀i = 1, . . . , p}.

Note that Bi ∩ Bj = ∅ if i 6= j and (∪pi=0Bi) ∪ (∪p
i=1Ii) = J̃ . This collection of subsets of J̃

has the following properties:

(A) Bi ∈ I(P̃ ,≺), for i = 0, . . . , p;

(B) (B0, I1), (Bk, Ik+1), (Ik, Bk) ∈ I2(P̃ ,≺), for all k = 1, . . . , p;

(C) (B0, I1, B1, . . . , Ip, Bp) ∈ I2p+1(P̃ ,≺).

Given (J̃ , K̃) ∈ I2(P̃ ,≺), let IJi1 , . . . , I
J
ip
2∈ J̃ and IKi1 , . . . , I

K
iq
∈ K̃ be the only elements

in J̃ ∩ P̃2 and K̃ ∩ P̃2, respectively. Renumber these elements as IJ1 , . . . , I
J
p and IK1 , . . . , IKq

such that, if IJi ≺ IJj then i < j, and if IKi ≺ IKj then i < j. Consider the decompositions

(B0, I
J
1 , B1, . . . , I

J
p , Bp) of J̃ and (A0, I

K
1 , A1, . . . , I

K
q , Aq) of K̃, as described above. Using

2The superscript J (resp., K) is in order to clarify the relation of elements belonging to J̃ (resp., K̃).
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these decompositions, one can view ∆̃ as a map given by the matrix

∆̃(K̃, J̃) =




∆̃(A0, B0) ∆̃(IK1 , B0) ∆̃(A1, B0) · · · ∆̃(IKq , B0) ∆̃(Aq, B0)

∆̃(A0, I
J
1 ) ∆̃(IK1 , IJ1 ) ∆̃(A1, I

J
1 ) · · · ∆̃(IKq , IJ1 ) ∆̃(Aq, I

J
1 )

∆̃(A0, B1) ∆̃(IK1 , B1) ∆̃(A1, B1) · · · ∆̃(IKq , B1) ∆̃(Aq, B1)
...

...
...

. . .
...

...

∆̃(A0, I
J
p ) ∆̃(IK1 , IJp ) ∆̃(A1, I

J
p ) · · · ∆̃(IKq , IJp ) ∆̃(Aq, I

J
p )

∆̃(A0, Bp) ∆̃(IK1 , Bp) ∆̃(A1, Bp) · · · ∆̃(IKq , Bp) ∆̃(Aq, Bp)




.

For each J̃ ∈ I(P̃ ,≺), consider the isomorphism RJ from

C∆̃(J̃) =
⊕

π∈B0

C∆̃(π)⊕ C∆̃(I1)⊕ · · · ⊕
⊕

π∈Bp−1

C∆̃(π)⊕ C∆̃(Ip)
⊕

π∈Bp

C∆̃(π)

to

C∆(J) =
⊕

π∈B0

C∆(π)
⊕

π∈I1

C∆(π)⊕ · · · ⊕
⊕

π∈Bp−1

C∆(π)
⊕

π∈Ip

C∆(π)
⊕

π∈Bp

C∆(π),

given by

RJ = (id, FI1 , id, FI2 , . . . , id, FIp , id), (5.3)

where FIj is the isomorphisms defined in (5.1). Using this matrix notation, it is not difficult

to see that ∆̃(K̃, J̃) = R−1
J ◦∆(K, J) ◦RK .

If J̃ (resp.,K̃) contains no elements of P̃2, it is also true that ∆̃(K̃, J̃) = R−1
J ◦∆(K, J)◦RK ,

where RJ = id (RK = id, respectively).

To see that ∆̃(J̃) = R−1
J ◦ ∆(J) ◦ RJ , for a given J̃ ∈ I(P̃ ,≺), just consider the de-

composition (B0, I1, B1, . . . , Ip, Bp) of J̃ , as described above, and visualize the map ∆̃(J̃)

as

∆̃(J̃) =




∆̃(B0) ∆̃(I1, B0) ∆̃(B1, B0) · · · ∆̃(Ip, B0) ∆̃(Bp, B0)

0 ∆̃(I1) ∆̃(B1, I1) · · · ∆̃(Ip, I1) ∆̃(Bp, I1)

0 0 ∆̃(B1) · · · ∆̃(Ip, B1) ∆̃(Bp, B1)
...

...
...

. . .
...

...

0 0 0 · · · ∆̃(Ip) ∆̃(Bp, Ip)

0 0 0 · · · 0 ∆̃(Bp)




.

If J̃ contains none of the elements I1, . . . , Ik ∈ P̃2, then ∆̃(J̃) = ∆(J), by definition of the
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map ∆̃.

�

The first step to show that ∆̃ is a connection matrix of H(≺) is to check if ∆̃ is a strictly

upper triangular boundary map, since all connection matrices have this property.

Theorem 5.2. (a) The map ∆̃ is strictly upper triangular, i.e., ∆̃(π̃′, π̃) 6= 0 implies π̃ ≺ π̃′;

(b) The map ∆̃ is a boundary map, i.e., ∆̃(π̃′, π̃) is of degree −1 and ∆̃ ◦ ∆̃ = 0.

Proof.

(a) Suppose that ∆̃(π̃′, π̃) 6= 0. By definition of ∆̃ in (5.2), one has that ∆(π̃′, π̃) 6= 0.

Hence, there are π1 ∈ π̃, π2 ∈ π̃′ such that ∆(π2, π1) 6= 0. Therefore, π1 < π2, which

implies π̃ ≺ π̃′.

(b) By definition of ∆̃ in (5.2), it follows that ∆̃(π̃′, π̃) is of degree −1, for all π̃, π̃′ ∈ P̃ . By

Theorem 5.1, one has that for each interval J̃ ∈ (P̃ ,≺):

∆̃(J̃)2 = (R−1
J ◦∆(J) ◦RJ)(R

−1
J ◦∆(J) ◦RJ) = (R−1

J ◦∆(J)2 ◦RJ),

which is zero, since ∆(J) is a boundary map. In particular, ∆̃(P̃ )2 = 0. �

We are now able to prove our main theorem.

Theorem 5.3. The map ∆̃ : CP̃ → CP̃ is a connection matrix of H(≺).

Proof. By Theorem 5.2, ∆̃ is a strictly upper triangular boundary map. To show that this

map is a connection matrix of H(≺), one needs to guarantee that the graded module braid

H∆̃ is isomorphic to the homology index braid H(≺).

As ∆ is a connection matrix, then the graded module braid H∆ is isomorphic to the

homology index braid H(<). Moreover, CH(M̃J̃)
∼= CH(MJ) for each J̃ ∈ I2(P̃ ,≺). Hence,

to prove this theorem, it is sufficient to show that H∆̃ is isomorphic to H∆, i.e., that there

exists a collection of isomorphisms Ψ(J̃) : H∆̃(J̃) → H∆(J), J̃ ∈ I(P̃ ,≺), such that, for

each (J̃ , K̃) ∈ I2(P̃ ,≺) the following diagram commutes:

· · ·
∆̃∗(K̃,J̃)

// H∆̃(J̃)
ĩ∗

//

Ψ(J̃)
��

H∆̃(J̃K̃)
p̃∗

//

Ψ(J̃K̃)
��

H∆̃(K̃)
∆̃∗(K̃,J̃)

//

Ψ(K̃)
��

H∆̃(J̃)
ĩ∗

//

Ψ(J̃)
��

· · ·

· · ·
∆∗(K,J)

// H∆(J)
i∗

// H∆(JK)
p∗

// H∆(K)
∆∗(K,J)

// H∆(J)
i∗

// · · ·

(5.4)
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We will start by showing that, for each J̃ ∈ I(P̃ ,≺), H∆̃(J̃) and H∆(J) are isomorphic

by constructing an isomorphism Ψ(J̃). Afterwards, we will use this collection of isomor-

phisms to prove that the diagram in (5.4) is commutative.

For each J̃ ∈ I(P̃ ,≺), let Ψ(J̃) : H∆̃(J̃)→ H∆(J) be the map induced from the collec-

tion {Fπ}π∈P̃ on the quotient modules H∆̃(J̃) and H∆(J). More specifically, considering a

decomposition of J̃ as (B0, I1, B1, . . . , Ip, Bp) (as in the proof of Theorem 5.2), define

Ψ(J̃) : H∆̃(J̃) =
Ker ∆̃(J̃)

Im ∆̃(J̃)
−→ H∆(J) =

Ker ∆(J)

Im ∆(J)

[a] 7−→ [RJ(a)]

where, RJ : C∆̃(J̃) → C∆(J) is the isomorphism defined in (5.3). Observe that, if J̃ does

not contain elements of P̃2, then Ψ(J̃) is the identity map. The following two claims show

that Ψ(J̃) is well defined and is an isomorphism of modules.

Claim 1. The map Ψ(J̃) is well defined.

We need to show that if [a] ∈ H∆̃(J̃) then [RJ(a)] ∈ H∆(J), and that Ψ(J̃) does not

depend on the particular choice of representatives. Firstly, one has that

[a] ∈ H∆̃(J̃) ⇒ a ∈ Ker ∆̃(J̃)

⇒ RJ(a) ∈ Ker ∆(J), since ∆̃(J̃) = R−1
J ◦∆(J) ◦RJ

⇒ [RJ(a)] ∈ H∆(J).

This proves that if [a] ∈ H∆̃(J̃) then [RJ(a)] ∈ H∆(J). On the other hand,

[a] = [b] ∈ H∆̃(J̃) ⇒ [a− b] = 0

⇒ a− b ∈ Im ∆̃(J̃)

⇒ RJ(a− b) ∈ Im ∆(J), since ∆̃(J̃) = R−1
J ◦∆(J) ◦RJ

⇒ RJ(a)−RJ(b) ∈ Im ∆(J)

⇒ [RJ(a)] = [RJ(b)].

Hence, Ψ(J̃) does not depend on the particular choice of representatives. ⊳

Claim 2. The map Ψ(J̃) is an isomorphism of modules.

It is not difficult to see that Ψ(J̃) is a homomorphism of modules. We will prove that it
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is bijective. Observe that Ψ(J̃) is injective, since

Ψ(J̃)[a] = Ψ(J̃)[b] ∈ H∆(J)

⇒ [RJ(a− b)] = 0, i.e, RJ(a− b) ∈ Im ∆(J)

⇒ a− b ∈ Im R−1
J ◦∆(J)

⇒ a− b ∈ Im ∆̃(J̃), since ∆̃(J̃) ◦R−1
J = R−1

J ◦∆(J)

⇒ [a] = [b].

Now, given [b] ∈ H∆(J), let a = R−1
J (b). Observe that

∆̃(J̃)(a) = ∆̃(J̃) ◦R−1
J (b) = R−1

J ◦∆(J)(b) = 0,

which implies [a] ∈ H∆̃(J̃). Moreover, Ψ(J̃)[a] = Ψ(J̃)[R−1
J (b)] = [b], proving that Ψ(J̃) is

surjective.

⊳

Therefore, Ψ(J̃) is an isomorphism between H∆̃(J̃) and H∆(J), for all intervals J̃ in

(P̃ ,≺). Now, considering the family {Ψ(J̃) : J̃ ∈ I(P̃ ,≺)}, we will show that the diagram

in (5.4) is commutative, for all pair of adjacent intervals (J̃ , K̃) ∈ (P̃ ,≺). Indeed,

• Ψ(J̃) ◦ ∆̃∗(K̃, J̃) = ∆∗(K, J) ◦Ψ(K̃):

By Theorem 5.1, ∆̃(K̃, J̃) = R−1
J ◦∆(K, J) ◦RK . Therefore, given [a] ∈ H∆̃(K̃), one has

Ψ(J̃) ◦ ∆̃∗(K̃, J̃)[a] = Ψ(J̃)[∆̃(K̃, J̃)a] = [RJ ◦ ∆̃(K̃, J̃)a]

= [∆(K, J) ◦RKa] = ∆∗(K, J)[RKa]

= ∆∗(K, J) ◦Ψ(K̃)[a].

• Ψ(J̃K̃) ◦ ĩ∗ = i∗ ◦Ψ(J̃):

The isomorphism RJK restricted to the first component of C∆̃(J̃K̃) = C∆̃(J̃) ⊕ C∆̃(K̃)

behaves as the isomorphism RJ , i.e., RJK |C∆̃(J̃) = RJ . Thus, RJK ◦ ĩ = i ◦ RJ . Given

[a] ∈ H∆̃(J̃), one has

Ψ(J̃K̃) ◦ ĩ∗[a] = Ψ(J̃K̃)[̃i(a)] = [RJK ◦ ĩ(a)]

= [i ◦RJ(a)] = i∗[RJ(a)]

= i∗ ◦Ψ(J̃)[a].
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• Ψ(K̃) ◦ p̃∗ = p∗ ◦Ψ(J̃K̃):

Similarly, RJK |C∆̃(K̃) = RK and RK ◦ p̃ = p ◦RJK . Given [a] ∈ H∆̃(J̃K̃), one has

Ψ(K̃) ◦ p̃∗[a] = Ψ(K̃)[p̃(a)] = [RK ◦ p̃(a)]

= [p ◦RJK(a)] = p∗[RJK(a)]

= p∗ ◦Ψ(J̃K̃)[a].

Hence, we have shown that the diagram in (5.4) is commutative and, by our initial

considerations, this suffice to prove that the graded module braid H∆̃ is isomorphic to

the homology index braid H(≺). This in turn, proves that the map ∆̃ : CP̃ → CP̃ is a

connection matrix of H(≺). �

5.2 Application to Morse-Bott Flows

In this section, our goal is to obtain an explicit connection matrix of the finest Morse

decomposition of a Morse-Bott flow in M . In order to do this, we will make use of the results

in the previous section as well as a specific perturbation of f described below.

Let f : M → R be a Morse-Bott function on a smooth closed manifold M of finite dimen-

sion n. In [2], a perturbation technique of Morse-Bott functions to Morse-Smale functions

is presented. The perturbation defined therein produces an explicit Morse-Smale function

h : M → R which is arbitrarily close to a given Morse-Bott function f , such that, h = f out-

side of a neighborhood of the critical set of f . More specifically, if f has l disjoint connected

critical manifolds, namely S1, . . . , Sl, then h is given by the expression

h = f + ǫ

(
l∑

j=1

ρjfj

)
,

where fj is a Morse-Smale function on a tubular neighborhood Tj of the critical manifold Sj

and ρj is a bump function which is identically 1 near Sj and identically zero outside Tj, for

each j = 1, . . . , l. The critical points of h are exactly the union of the critical points of fj,

for all j = 1, . . . , l. Moreover, if p is a critical point of fj of index λj
p, then p is a critical point

of h of index λh
p = λj + λj

p, where λj denotes the Morse-Bott index of the critical manifold

Sj. For more details see [2].
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Consider a flow ϕf inM generated by f , that is, a flow associated to the vector field −∇f .

Throughout this chapter, flows generated by a Morse-Bott function f will be call Morse-Bott

flows. Let h be a Morse-Smale perturbation of f , as described above, and denote by ϕh a

Morse-Smale flow associated to the vector field −∇h.

The next result provides a relation between the connection matrices for a Morse-Bott flow

ϕf and the connection matrices for a perturbed Morse-Smale flow ϕh of ϕf . More specifically,

we prove that the set of connection matrices of a Morse decomposition of M relative to ϕf

is equal to the set of connection matrices of the induced coarser Morse decomposition of M

relative to ϕh .

Theorem 5.4. Let f be a Morse-Bott function on M and h a Morse-Smale perturbation of

f . If D(M) is a ≺-ordered Morse decomposition of M relative to the flow ϕf , then D(M) is

also a ≺-ordered Morse decomposition of M relative to the flow ϕh and the sets of connection

matrices relative to the both flows are equal, i.e.,

CM(≺;ϕf ) = CM(≺;ϕh).

Proof. Let {S1, . . . , Sl} be the critical manifolds of f and Nj small isolating neighborhoods

of Sj, for each j = 1, . . . , l. Without loss of generality, one can consider h as a perturbation

of f such that f = h in M \ N , where N = ∪lj=1 Nj. Then ϕf and ϕh coincide in M \ N ,

since ∇f = ∇h in M \N .

Let D(M ;ϕf ) be a (≺-ordered) Morse decomposition of M relative to ϕf . Since ϕf and

ϕh coincide outside N , this set is also a Morse decomposition of M relative to the perturbed

flow ϕh, which will be denoted by D̃(M ;ϕh). Moreover, an admissible ordering of D(M ;ϕf )

is also an admissible ordering of D̃(M ;ϕh) and conversely; flow orderings of both Morse

decompositions coincide. Therefore, for each interval J of≺, the Conley index ofMJ as Morse

set of D(M ;ϕf ) is equal to the Conley index of MJ as Morse set of D̃(M ;ϕh). Furthermore,

the homology index braid of the admissible ordering ≺ of D(M ;ϕf ) coincides with the

homology index braid of the admissible ordering ≺ of D̃(M ;ϕh). Hence, the collection

CM(≺;ϕf ) of connection matrices of the admissible ordering ≺ of D(M ;ϕf ) is equal to the

collection CM(≺;ϕh) of connection matrices of the admissible ordering ≺ of D̃(M ;ϕh). �

Note that the set {S1, . . . , Sl} of all critical manifolds of f is a Morse decomposition of

M with respect to the flow ϕf . Denote this Morse decomposition, which is the finest one,

by D(M ;ϕf ). On the other hand, if h is a Morse-Smale perturbation of f , denote the finest
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Morse decomposition of M relative to ϕh by D(M ;ϕh). The next theorem provides a relation

between the connections matrices of both Morse decompositions. More specifically, we prove

that each connection matrix of D(M ;ϕh) induces a connection matrix of D(M ;ϕf ).

For the next result, the homology is computed over Z or over a field.

Theorem 5.5. Let f be a Morse-Bott function on M and h be a Morse-Smale perturbation

of f such that h restricted to each critical manifold of f is a perfect Morse function. Then

a connection matrix of D(M ;ϕh) induces a connection matrix of D(M ;ϕf ).

Proof. By Theorem 5.4, the Morse decomposition D(M ;ϕf ) = {S1, . . . , Sl} is also a Morse

decomposition of M relative to ϕh and it will be denoted by D̃(M ;ϕh). Both Morse decom-

positions are ≺F -ordered, where ≺F is the admissible flow ordering. Observe that D(M ;ϕf )

is the finest Morse decomposition of M in ϕf , but it is not the case of D̃(M ;ϕh). Denote by

D(M ;ϕh) the finest Morse decomposition of M relative to ϕh, that is, each critical point of

h corresponds to a Morse set of D(M ;ϕh).

Now, using the main result of Section 5.1, we will induce a connection matrix of D̃(M ;ϕh)

from D(M ;ϕh). Since, by Theorem 5.4, CM(≺F ;ϕf ) = CM(≺F ;ϕh), we will obtain the

required connection matrix of D(M ;ϕf ).

Observe that the finest Morse decomposition D(M ;ϕh) = {Mπ}π∈P of M is <F -ordered,

where <F denotes the flow ordering. Considering the intervals I1, . . . , Il, where Ij = {π ∈ P :

Mπ ∈ Sj}, then D̃(M ;ϕh) is obtained from D(M ;ϕh) by defining M̃{π} = Mπ, if π 6∈ I1, . . . , Il

and M̃Ij = MIj , for j = 1, . . . , l. Given a connection matrix ∆ of D(M ;ϕh), observe that

each submatrix ∆(Ij), for j = 1, . . . , l, corresponds to a connection matrix of the finest Morse

decomposition of Sj under the flow restricted to Sj, since each non null map in ∆(Ij) is flow

defined. By hypothesis, h|Sj
is a perfect Morse function. Hence, by Proposition 5.1, one has

that ∆(Ij) = 0, for all j. Therefore, we are able to apply Theorem 5.3 which provides a

connection matrix ∆̃ of D̃(M ;ϕh). �

Example 5.1. Let f be a Morse-Bott function on S2 having three isolated critical points of

indices 2, namely x1, x2 and x3, one isolated critical point of index 1, namely, y and B = S1

as critical manifold of index 0, as depicted in Figure 5.1. Let h be a perturbation of f when

one considers a perfect Morse function on the critical manifold S1, as in Figure 5.2. Denote

by ϕf (resp., ϕh) a Morse-Bott flow (resp., Morse flow) on S2 associated to the vector field

−∇f (resp., −∇h).
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x1 x2

y

x3

B

Figure 5.1: A Morse-Bott flow on S2

associated to the function f .

x1 x2

y

x3

ỹ z̃

1 2 1 2

12

Figure 5.2: A Morse-Smale perturbation
of the Morse-Bott function f .

The objective herein is to obtain a connection matrix of the finest Morse decomposition

of S2 with respect to the Morse-Bott flow ϕf by means of a connection matrix of the finest

Morse decomposition of S2 with respect to the Morse flow ϕh. Firstly, we will compute a

connection matrix of a Morse decomposition of S2 with respect to ϕh. Then, using the tools

proved in Section 5.1, we will obtain the required matrix.

Consider the set P = {1, 2, 3, 4, 5, 6} with partial order < given by [1 < 2, 3]; [2 < 4, 5];

and [1 < 4, 6]. Let M1 = z̃, M2 = ỹ, M3 = y, M4 = x1, M5 = x2 and M6 = x3.

The set D(S2;ϕh) = {Mi : i ∈ P} is the finest <-ordered Morse decomposition of S2

with respect to the flow ϕh. Moreover, < is the flow ordering. As proved by Salamon in

[39], the differential of a Morse-Witten complex of h is a connection matrix of the Morse

decomposition D(S2;ϕh). In order to obtain a connection matrix of D(S2;ϕh), we will

compute the Morse-Witten complex (C∗(h), ∂∗) of h, considering the orientations on the

unstable manifolds of the critical points as the ones illustrated in Figure 5.2. For this choice

of orientations, we have that the Morse chain groups are C0(f) = Z〈z̃〉, C1(f) = Z〈ỹ〉⊕Z〈y〉

and C2(f) = Z〈x1〉 ⊕ Z〈x2〉 ⊕ Z〈x3〉, where 〈x〉 denotes both the critical point x as well as
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its orientation. The differential ∂c
∗ is defined on the generators according to the matrix:

∂∗ =

z̃ ỹ y x1 x2 x3

z̃

ỹ

y

x1

x2

x3




0 0 0 0 0 0

0 0 0 +1 0 −1

0 0 0 −1 +1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




,

which is a connection matrix of D(S2, ϕh) by identifying the number ±1 with an isomorphism

between the Conley homology indices in question.

Now, note that I = {1, 2} is an interval in (P,<) and, defining P̃ = {I, {3}, {4}, {5}, {6}}

and the order [I ≺ {3} ≺ {4}, {5}]; [I ≺ {6}], then (P̃ ,≺) is a partially ordered set,

by Proposition 5.2. Let D̃(S2;ϕh) = {M̃π̃ : π̃ ∈ P̃}, where M̃I = ỹ ∪ C(M2,M1) ∪ z̃

and M̃{i} = Mi, for i ∈ {3, 4, 5, 6}. By Proposition 5.4, this set is an ≺-ordered Morse

decomposition of S2 with respect to the flow ϕh. Moreover, by Proposition 5.5, ≺ is the flow

ordering. Finally, by Theorem 5.3, ∆ induces a connection matrix ∆̃ of D̃(S2, ϕh), which is

given by the following map of degree −1 from CH(B)⊕CH(y)⊕CH(x1)⊕CH(x2)⊕CH(x3)

to itself:

∆̃ =

B y x1 x2 x3

B

y

x1

x2

x3




0 0 ≈ 0 ≈

0 0 ≈ ≈ 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




. (5.5)

Consider the ≺-ordered Morse decomposition D̃(S2;ϕf ) = {Mπ̃ : π̃ ∈ P̃} relative to the

Morse-Bott flow ϕf , where MI = B, M{3} = y, M{4} = x1, M{5} = x2 and M{6} = x3. The

partial order ≺ is the flow ordering. By Theorem 5.5, the map in (5.5) is a connection matrix

of D(S2;ϕf ). ◭

In the previous example, one could have chosen a different perturbation h̃ of f . For

instance, using the perturbation shown in Figure 5.3, one obtains the following map from
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CH(B)⊕ CH(y)⊕ CH(x1)⊕ CH(x2)⊕ CH(x3) to itself:

∆ =

B y x1 x2 x3

B

y

x1

x2

x3




0 0 0 ≈ ≈

0 0 ≈ ≈ 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




,

which is a connection matrix of the finest Morse decomposition of S2 relative to the flow ϕf .

Therefore, we do not have the uniqueness of connection matrices in Morse-Bott flows, even

if the homology were computed over a field.

x1 x2

y

x3

˜̃y
˜̃z

Figure 5.3: A Morse perturbation of the Morse-Bott function f .

At this point, a natural question arises: are all connection matrices of the finest Morse

decomposition of a Morse-Bott flow ϕf obtained via Theorem 5.5? In other words, for

each connection matrix ∆ of the finest Morse decomposition of a Morse-Bott flow is there a

Morse-Smale perturbation ϕh of ϕf such that ∆ is induced from a connection matrix of ϕh?

In general, this is not the case as seen in Example 5.3. On the other hand, if some

additional structure is assumed it may hold true, as can be verified in Examples 5.1 and 5.2.

Example 5.2. Consider S3 as the manifold obtained from gluing two solid tori T1 and T2

by a homeomorphism of their boundaries, the tori T1 and T2, which identifies a parallel of T1

to the meridian of T2. Let f be a Morse-Bott function on S3 such that the critical manifolds

of f are the torus T1 as a repeller and two 1-spheres S1 and S2 as attractors, where Si lies

in the interior of Ti, i = 1, 2. Their Morse-Bott indices are λT1
= 1, λS1

= 0 and λS2
= 0.
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Considering the finest Morse decomposition D(S3) = {S1, S2, T1} of S
3 with the admissi-

ble flow ordering and a connection matrix ∆̃ of D(S3), then the only possible non null maps

are ∆̃(T1, S1) and ∆̃(T1, S2), which are flow defined. Hence, there is a unique connection

matrix of D(S3), namely,

S1 S2 T1

∆̃ =

S1

S2

T1




0 0 ∆̃1

0 0 ∆̃2

0 0 0




.

We will show that this map can be obtained from a connection matrix of a perturbation of

the function f , as discussed in Section 5.2. In this sense, let h be a Morse-Smale perturbation

of f , such that it is a perfect Morse function when restricted to the the critical manifolds,

S1, S2, T1, of f . Denote the critical points of h by z1, y1 ∈ S1, z2, y2 ∈ S2 and x, v1, v2, y3 ∈ T1,

where z′is have indices zero, y′s have indices one, v′s have indices two and x has index three.

The differential of the Morse complex (C∗(f), ∂
c
∗) over Z2 associated to h is given by the

matrix:

∂c
∗ =

z1 z2 y1 y2 y3 v1 v2 x

z1

z2

y1

y2

y3

w1

w2

x




0 1

0 1

0 1 1

0 1 1

0

0

0

0




.

Note that the Conley homological indices of the critical manifolds are as follows:

CHn(T1) =





Z2, n = 1, 3

Z2 ⊕ Z2, n = 2

0, n 6= 1, 2, 3

CHn(Si) =

{
Z, n = 0, 1

0, n 6= 0, 1
,

where i = 1, 2. Hence, there exist isomorphisms CH(Si) ∼= CH(zi) ⊕ CH(yi), for i = 1, 2,

and CH(T1) ∼= CH(y3)⊕CH(v1)⊕CH(v2)⊕CH(x), which will be denoted by Fi and FT1
,
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respectively. Now, observe that the submatrix of ∂c
∗

y3 v1 v2 x

∆i =
zi

yi

[
1 0 0 0

0 1 1 0

]

induces a map ∆̃i : CH(T1)→ CH(Si), for i = 1, 2, by composing ∆i with the isomorphisms

FT1
and F−1

i . Therefore, the induced connection matrix of the finest Morse decomposition

of S3 relative to the Morse-Bott flow ϕf is

S1 S2 T1

∆̃ =

S1

S2

T1




0 0 ∆̃1

0 0 ∆̃2

0 0 0




.

◭

The following is an adaptation to our context of Reineck’s example in [37] and illustrates

that there are connection matrices that do not arise from Morse-Smale perturbation.

Example 5.3. Consider a flow in R2 as in Figure 5.4 having seven singularities and one

critical manifold diffeomorphic to S1. By taking the one point compactification R2 ∪ {∞}

of R2 and letting ∞ be an attractor point, one obtains a Morse-Bott flow on M = S2.

M8

M6

M5

M7

M2M3

M4

M1

Figure 5.4: Morse-Bott flow on R2.

The critical manifold together with the eight isolated singularities form a Morse decom-

position D(S2) of M , with flow ordering [0 < 2, 3, 4]; [1 < 2, 3, 4, 8]; [2 < 5, 6]; [3 < 6, 7] and
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[4 < 5, 7], in P = {1, . . . , 8}. Let ∆ be a connection matrix of D(S2). All maps ∆(π′, π) are

flow defined, except for ∆(5, 1), ∆(6, 1) and ∆(7, 1). It is easy to compute the boundary flow

defined maps using index triples. In this example they are all isomorphism. The connection

matrix ∆ is as follows:

0 1 2 3 4 5 6 7 8

∆ =

0

1

2

3

4

5

6

7

8




0 1 1 1

0 1 1 1 a b c 1

0 1 1

0 1 1 0

0 1 1

0

0

0

0




.

The homology with Z2-coefficients was used in order to simplify computations, however one

could as well have used Z-coefficients.

The maps a, b and c in ∆ are not flow defined. As ∆ is a connection matrix, then

Ker ∆(P )

Im ∆(P )
= H∆(P ) ∼= CH(M) = H∗(M ;Z2) =

{
Z2, n = 2, 0

0, c.c.
,

which implies that:

•
Ker ∆0

Im ∆1

∼= Z2, which implies that the rank of ∆1 must be 1;

•
Ker ∆1

Im ∆2

∼= 0, which implies that the rank of ∆2 must be equal to 3;

•
Ker ∆2

Im ∆3

∼= Z2, which implies that the rank of the kernel of ∆2 must be equal to 1.

By the last item, we must have a + b + c 6= 0 (mod 2). In other orders, either one of these

entries is one or all of these entries are one. Therefore, combining possibilities, one has

four connection matrices of D(M). Three of these connection matrices are obtained from

connection matrices of a Morse-Smale perturbation, namely the ones where only one of the

entries a, b, c is one. On the other hand, the connection matrix where a = b = c = 1 can not
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be obtained from a Morse flow by substituting the critical manifolds for two singularities,

since the saddle has only two orbits in its stable manifold. ◭

Therefore not all connection matrices for Morse-Bott flows arise from connection matrices

for Morse-Smale perturbations.

5.3 Spectral Sequences for Morse-Bott Complexes

Given a Morse-Bott function f : M → R on an orientable closed manifold, there are

many ways to define a Morse-Bott complex and prove that its homology coincides with the

singular homology of M with integers coefficients. We briefly describe three of these ap-

proaches below. The Austin-Braam approach in [1] uses differential forms to construct a

comulticomplex which computes the de Rham cohomology of the manifold with real coef-

ficients. The approach in [2] is to consider a Morse-Smale perturbation of f and use the

Morse chain complex of the perturbed function. Banyaga and Hurtubise developed in [3]

the Morse-Bott multicomplex by using singular cubical chains and fibered product construc-

tions. The Morse- Bott multicomplex is fundamentally different from other approaches to

Morse-Bott homology. It provides a common framework for singular cubical chains and

Morse chains, making it possible to interpolate singular cubical chain complexes and Morse

chain complexes.

For our purpose herein, we consider the simplest definition of Morse-Bott complex as

in [2]. Assume that the Morse-Bott function f satisfies the transversality condition and

let h : M → R be a Morse-Smale perturbation of f , as in Section 5.2. One can define

the Morse-Bott complex associated to f as the Morse complex (C∗(h), ∂
h
∗ ) generated by the

perturbation h.

Moreover, if one assumes that the critical manifolds of f admit a perfect Morse function

and that h restricted to each critical manifold of f is a perfect Morse function, then the

differential ∂h is a special case of a connection matrix for the finest Morse decomposition of

M with respect to the flow ϕh. By Theorem 5.5, the differential of the Morse-Bott complex

induces a connection matrix for a finest Morse decomposition3 of M for the Morse-Bott flow

ϕf .

Consider a Morse-Bott function f and its associated Morse-Bott flow ϕf with a finest

Morse decomposition. For a perturbation h of f , consider the Morse chain complex (C∗(h), ∂)

3Each Morse set of the Morse decomposition contains only one critical manifold.
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with a coarser filtration F compatible with the Morse decomposition for M with respect to

the Morse-Bott flow ϕf .

In what follows, we consider this Morse chain complex with coarser filtration and show

how to obtain from the SSSA the modules and differentials associated to this spectral se-

quence. Our motivation in studying dynamical spectral sequence for Morse chain complexes

with a coarser filtration resides in the fact that this coarser filtration provides the finest

filtration for more general flows, in particular, for Morse-Bott flows as discussed above.

Spectral sequence with coarser filtration

Consider a Morse chain complex (C∗,∆) endowed with a finest filtration F , not necessarily

respecting the order of increasing Morse index. By Remark 1.1, one can apply the SSSA for

∆. In what follows, the formulas for the change of basis in (1.4) and for the Z-modules Zr
p

in (1.5) are rewritten for arbitrary filtration which do not necessary respect the order given

by the Morse index.

Let k1, k2, . . . be the columns of ∆r which are associated to k-chains. Denote by σkℓ,r
k the

k-chain represented in the kℓ-th column of ∆r. Hence, the kj-th column of ∆r+1 are

σ
kj ,r+1
k =

j∑

ℓ=1

c
kj ,r

ℓ hkℓ
k

︸ ︷︷ ︸
σ
kj,r

k

±
t∑

ℓ=1

ckt,rℓ hkℓ
k

︸ ︷︷ ︸
σ
kt,r

k

= c
kj ,r+1
1 hk1

k + c
kj ,r+1
2 hk2

k + · · ·+ c
kj ,r+1
j−1 h

kj−1

k + c
kj ,r+1
j h

kj
k (5.6)

where ckℓ,r ∈ Z.

In Section 1.2, it is shown how the Z-modules Er
p are determined by the connection

matrix ∆. In order to do this, a formula for the module Zr
p,k−p was established in terms of

the σr,j
k determined by the SSSA. Let kℓp be the rightmost hk column such that kℓp ≤ p+ 1,

i.e. the rightmost hk column in FpC. Then Zr
p,k−p is given by

Z[µkℓp ,r−p−1+kℓpσ
kℓp ,r−p−1+kℓp
k , µkℓp−1,r−p−1+kℓp−1σ

kℓp−1,r−p−1+kℓp−1

k , . . . , µk1,r−p−1+k1σk1,r−p−1+k1
k ]

where µj,ζ = 0 whenever the primary pivot of the j-th column is below the (p− r+1)-th row

and µj,ζ = 1 otherwise. Moreover, through the SSSA, ∆ induces the differentials drp in the

spectral sequence. In fact, whenever Er
p and Er

p−r are both non-zero, the map drp : E
r
p → Er

p−r

is multiplication by the entry ∆r
p−r+1,p+1 which is either a primary pivot or a zero with a

column of zero entries below it. Otherwise drp is zero. In the case of Morse chain complexes
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on orientable surfaces, the primary pivots are always equal to ±1 by Theorem 2.1, then the

nonzero dr’s are always isomorphisms induced by primary pivots.

Now, consider a coarser filtration F = {Fp} in the Morse chain complex (C∗, ∂) which

can always be obtained from a finest filtration by grouping some Fp’s into only one Fp.

Let (ERP , d
R
P ) be the spectral sequence for (C∗(h), ∂) endowed with the filtration FP . One

has that

ERP = ZR
P /(Z

R−1
P−1 + ∂ZR−1

P+R−1) where, ZR
P = {c ∈ FPC | ∂c ∈ FP−RC}.

As in Section 1.2, the modules of the spectral sequence (Er
p , d

r
p) associated to the finest

filtration are determined by the SSSA. Using this fact, one can show that, more generally,

the modules ERP of the spectral sequence associated to the filtration F can also be determined

by the SSSA.

In fact, note that the module ZR
P consists of chains in FPC with boundary in FP−RC.

These chains are associated to all the columns of the connection matrix ∆ to the left of

and including the column ℓP , where ℓP denote the rightmost column of ∆ associated to a

chain in FPC. Furthermore, since the boundary of the chains must be in FP−RC we must

consider columns or their linear combinations that have the property that the entries in rows

i > ℓP−R are all zeroes. Hence, in terms of the finest filtration {Fp}, one has

ZR
P = {c ∈ FℓP−1C | ∂c ∈ FℓP−R−1C} = Z

ℓP−ℓP−R

ℓP−1 . (5.7)

Analogously,

ZR−1
P−1 = {c ∈ FℓP−1−1C | ∂c ∈ FℓP−R−1C} = Z

ℓP−1−ℓP−R

ℓP−1−1

and

∂ZR−1
P+R−1 = ∂{c ∈ FℓP+R−1−1C | ∂c ∈ FℓP−1C} = ∂Z

ℓP+R−1−ℓP
ℓP+R−1−1 .

Recall that {ki} are the columns of ∆ associated to k-chains, let kℓP be the rightmost

column of ∆ associated to a k-chain in FP , i.e. kℓP is the rightmost hk column such that

kℓP ≤ ℓP . Using the formula for Zr
p,k−p and (5.7), the module ZR

P,k−P can be described in

terms of the basis determined by the connection matrices in the SSSA as follows:

Z[µkℓP ,kℓP−ℓP−Rσ
kℓP ,kℓP−ℓP−R

k , µkℓP−1,kℓP−1−ℓP−Rσ
kℓP−1,kℓP−1−ℓP−R

k , . . . , µk1,k1−ℓP−Rσ
k1,k1−ℓP−R

k ].

Analogously, one can describe the modules ZR−1
P−1 and ∂ZR−1

P+R−1 in terms of σ’s, providing



Chapter 5 • Connection Matrices for Morse-Bott Flows on Closed Manifolds 155

a way to recover from the SSSA the module ERP,k−P .

Denote by kfP the leftmost hh column such that ℓP−1 < kfP . Now, consider the following

matrix 


∆
kfP −ℓP−R

(k−1)fP−R
,kfP

· · · ∆
kℓP −ℓP−R

(k−1)fP−R
,kℓP

...
...

∆
kfP −ℓP−R

(k−1)ℓP−R
,kfP

· · · ∆
kℓP −ℓP−R

(k−1)ℓP−R
,kℓP


 .

Note that each column of this matrix is taken from a different ∆r, and the columns correspond

to hk starting with the kfP column and ending with the kℓP column.

Given a hk column ki ∈ {kfP , · · · , kℓP } of ∆
ki−ℓP−R , there are two possibilities:

1. The non-zero entries of this column are below the row ℓP−R, i.e. it has a primary

pivot below the row ℓP−R and hence σ
ki,ki−ℓP−R

k is not a generator of ZR
P,k−P (i.e.

µki,ki−ℓP−R = 0).

2. The non-zero entries of this column are above the row ℓP−R, i.e. σ
ki,ki−ℓP−R

k is a

generator of ZR
P,k−P (i.e. µki,ki−ℓP−R = 1).

Let ∆k
R
P be the submatrix of the above matrix composed only by the hk-columns ki such

that µki,ki−ℓP−R = 1, i.e. the columns which correspond to generators of ZR
P,k−P .

Conjecture: Whenever the modules ERP,k−P and ERP−R,k−1−(P−R) are non-zero, the differential

dRP,k−P : ERP,k−P → E
R
P−R,k−1−(P−R) is induced by ∆k

R
P . In other words,

ER+1
P,k−P

∼=
Ker ∆k

R
P

Im ∆k+1
R
P+R

.

We believe that this conjecture is true. An example which illustrate it follows.

Example 5.4. Let f be a Morse function on S2 such that the flow associated to −∇f is as

shown in Figure 5.5. The Morse chain complex (C∗(f), ∂) determined by f was presented in

Example 2.3, where we considered a finest filtration in (C∗(f), ∂). The collection of matrices

obtained applying the SSSA for ∆ is the one illustrated in Figures 2.10 through 2.15.

Now we endow this chain complex with the following coarser filtration F :

F0C0 = Z〈h1
0〉 ⊕ Z〈h

2
0〉 ⊕ Z〈h

3
0〉, F0Ck = 0 for k > 0;

F1C0 = Z〈h1
0〉 ⊕ Z〈h

2
0〉 ⊕ Z〈h

3
0〉, F1C1 = Z〈h4

1〉 ⊕ Z〈h
5
1〉 and F1Ck = 0 for k > 1;
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F2C0 = Z〈h1
0〉 ⊕ Z〈h

2
0〉 ⊕ Z〈h

3
0〉, F2C1 = Z〈h4

1〉 ⊕ Z〈h
5
1〉 ⊕ Z〈h

6
1〉 ⊕ Z〈h

7
1〉 F2C2 = 0;

F3C0 = F2C0, F3C1 = Z〈h4
1〉 ⊕ Z〈h

5
1〉 ⊕ Z〈h

6
1〉 ⊕ Z〈h

7
1〉 F3C2 = Z〈h8

2〉 ⊕ Z〈h
9
2〉 ⊕ Z〈h

10
2 〉;

h1
0

h2
0

h3
0

h4
1

h5
1

h6
1h7

1

h8
2

h9
2

h10
2

Th9
2
W u(h9

2)

F0

F1

F2

F3

Figure 5.5: Morse-Smale flow in S2 with a coarser filtration.

The spectral sequence associated to (C∗(h), ∂) endowed with this filtration F is given by:

E0
0,0 = [h1

0, h
2
0, h

3
0]

E0
0,1 = 0

...

E0
1,0 = [h4

1, h
5
1]

E0
1,1 = 0

...

E0
2,0 = 0

E0
2,1 = 0

...

E0
3,0 = 0

E0
3,1 = 0

...E0

d0

E0
0,−1 = 0 E0

1,−1 = 0 E0
2,−1 = [h6

1, h
7
1] E0

3,−1 = [h8
2, h

9
2, h

10
2 ] · · ·

· · ·

· · ·

...
...

...
...

E1
0,0 = [h1

0, h
2
0, h

3
0]

E1
0,1 = 0

...

E1
1,0 = [h4

1, h
5
1]

E1
1,1 = 0

...

E1
2,0 = 0

E1
2,1 = 0

...

E1
3,0 = 0

E1
3,1 = 0

...E1

d11

E1
0,−1 = 0 E1

1,−1 = 0 E1
2,−1 = [h6

1, h
7
1] E1

3,−1 = [h8
2, h

9
2, h

10
2 ] · · ·

· · ·

· · ·

...
...

...
...

d13
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E2
0,0 = [h1

0+h2
0+h3

0]

E2
0,1 = 0

...

E2
1,0 = 0

E2
1,1 = 0

...

E2
2,0 = 0

E2
2,1 = 0

...

E2
3,0 = 0

E2
3,1 = 0

...E2

E2
0,−1 = 0 E2

1,−1 = 0 E2
2,−1 = 0 E2

3,−1 = [h8
2+h9

2+h10
2 ] · · ·

· · ·

· · ·

...
...

...
...

The differential d11 : E
1
1,0 → E1

0,0 is induced by ∆k=1
R=1
P=1 and the differential d13 : E

1
3,−1 → E1

2,−1

is induced by the matrix ∆k=2
R=1
P=3, where:

∆k=1
R=1
P=1 =




1 0

0 −1

−1 1


 and ∆k=2

R=1
P=3 =

(
−1 1 0

1 0 −1

)
.

◭
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Final Remarks

The work reported in this thesis gives continuity to the systematic study of the dynamical

implications associated to the algebraic behavior of a spectral sequence in [13, 24, 30].

The SSSA provides a way to recover the modules and differentials (Er, dr) of a spectral

sequence associated to a Morse chain complex (C∗(f),∆). As we apply the SSSA to ∆

important entries in the r-th diagonal of ∆r are singled out in order to determine ∆r+1.

These entries are the primary and change-of-basis pivots which induce the differentials dr

of the spectral sequence. Moreover, as r increases, the Z-modules Er
p undergo change of

generators. The SSSA relates this change in generators of Er
p to change of basis over Q of

the connection matrix ∆.

Considering Morse chain complexes on surfaces M , we have shown in Theorem 2.4 that

as r increases, the Z-modules Er
p ’s undergo algebraic cancellations which reflect dynamical

cancellations of pair of consecutive critical points of a given Morse flow on M . In Theorem

2.4, we have proven that the primary pivots marked through the SSSA determine a contin-

uation of the initial flow to the minimal flow on M . In higher dimensions, the integrality

of the last matrix in the SSSA over Z, raises the question of whether this procedure can

be related to a continuation as in [22] of a flow associated to the initial connection matrix.

Some examples indicate this might be true. The dynamical interpretation of the intermedi-

ary matrices produced by the SSSA over Z is yet not well understood, since many entries

are non integers.

We intend to investigate the appearance of torsion in a spectral sequence in higher di-

mensions. Our goal is to search for properties in the connection matrix which either make

this torsion disappear or permit it to remain in the stabilization of the unfolding of a spectral

sequence.

The same type of dynamical problems exposed above in the Morse setting can be reformu-

lated to the contexts of Morse-Novikov and Morse-Bott flows, which constitute a challenging
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line of research.

In the Novikov setting, we have given the first step in order to extend the spectral se-

quence analysis to Novikov complexes. In this work, we restricted our attention to orientable

surfaces, where we have proven that the SSSA is well defined and that the non zero differen-

tials of the spectral sequence are isomorphisms induced by primary pivots. The difficulty to

define a SSSA over Z((t)) in higher dimension is that we lose the notion of how to minimize

leading coefficients in a change of basis.

A natural question in this context is whether the Novikov differential is a connection

matrix. To answer the question, we intend to make a deeper study of Novikov complexes in

all their generality. Also, we propose to use the Conley index and connection matrix theories

for Novikov flows in order to obtain dynamical informations on the connections between the

isolated invariants sets in this type of flows.

We envision to generalize the spectral sequence analysis for more general Morse decom-

positions than ones that have only critical points. This is the central stimulus in studying

spectral sequences for Morse chain complexes with coarser filtration, since this provides a

finest filtration for a more general flows. It is natural that our first attempt be in the context

of Morse-Bott flows, where a finest Morse decomposition admits critical manifolds.
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equalities for Lyapunov Graphs. Ergodic Theory and Dynamical Systems 25 (2005)

1–39.

[8] M. A. Bertolim, M. P. Mello and K. A. de Rezende, Poincaré-Hopf Inequalities.
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[40] S. Smale The Generalized Poincaré Conjecture in Higher Dimensions. Bull. AMer.

Math. Soc. 66 (1960), 373375.

[41] E. Spanier, Algebraic Topology. McGraw-Hill, New York - NY (1966).

[42] J. Weber, The Morse-Witten complex via dynamical systems, Expositiones Mathemat-

icae 24 (2006) 127–159.

[43] A. J. Zomorodian. Topology for computing, Cambridge Monographs on Applied and

Computational Mathematics, v. 16 . Cambridge University Press, Cambridge, 2005.



Appendix A

Some Technical Results

This appendix is dedicated to prove some technical lemmas which are necessary for the

prove of the Primary Pivots for Orientable Surfaces Theorem 2.1 in Section 2.3.

Below we present the Block Sequential Sweeping Algorithm over F, which is a version of

the SSSA where there are no elementary row operations, only elementary column operations

in the execution of the SSSA over F, since we give up keeping track the evolution of the rows

in ∪nk=1Jk.

Block Sequential Sweeping Algorithm over F

Input: nilpotent L× L upper triangular matrix ∆ with column/row partition J0, · · · , Jb.

Initialization Step: J0 = ∅

Iterative Step:

For k = 1, · · · , b do


Let ∆(k) be the matrix obtained from ∆ by zeroing rows in Jk−1 and entries

outside positions in Jk−1 × Jk.

Apply the SSSA over F to ∆(k), with column/row

partition J0, · · · , Jb, obtaining ∆(k)L

Jk = indices of columns of ∆(k)L containing primary pivots

Output: (∆(k)0, . . . ,∆(k)L) and (T (k)0, . . . , T (k)L−1), for k = 1, · · · , b.

Lemma A.1 (Uncoupling). Let ∆ be a connection matrix with row/column partition J0, · · · , Jb.

Let ∆L be the matrix produced by the SSSA over F applied to ∆, and let ∆(k)L, for all k,

be the matrices obtained in the Block Sequential Sweeping Algorithm over F applied to ∆.
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Then ∆m
Jk−1Jk

= ∆(k)mJk−1Jk
, for all k and the collection of change-of-basis and primary piv-

ots encountered in the application of the SSSA over F to ∆(k), for all k, coincides with the

change-of-basis and primary pivots found when it is applied to ∆.

Proof. Let T (k)0, T (k)1, . . . , T (k)L be the transition matrices constructed when applying

the SSSA over F to ∆(k). Given that ∆(k) has at most one nonzero block, ∆(k)Jk−1Jk ,

Proposition 6 , Lemma 1 and induction imply that T (k)rJiJi is an identity matrix, for all

i 6= k. Now, using Lemma 2.1, the update of ∆(k) is reduced to the following update

∆(k)rJk−1Jk
= (T (k)r−1

Jk−1Jk−1
)−1∆(k)r−1

Jk−1Jk
T (k)r−1

JkJk
= ∆(k)r−1

Jk−1Jk
T (k)r−1

JkJk
,

for all r ≥ 1. Since the update of ∆(k) involves only the post-multiplication step, only

elementary column operations are performed.

Lemma 10 implies that ∆(1)LJ0J1 = ∆L
J0J1

and the change-of-basis and primary pivots

marked during the application of the algorithm to ∆(1) coincide with the ones marked in

columns in J1 when the algorithm is applied to ∆.

Assume by induction that ∆(k− 1)LJk−2Jk−1
= ∆L

Jk−2Jk−1
and change-of-basis and primary

pivots of ∆(k− 1) agree with the ones in columns in Jk−1 marked when ∆ is swept. Observe

that rows of ∆L in Jk−1 are zero. By construction, rows of ∆(k) in Jk−1 are also zero, and,

since ∆(k) suffers only elementary column operations during the application of the SSSA

over F, these rows are not changed. So ∆L
Jk−1Jk

= ∆(k)LJk−1Jk
.

By Lemma 2.1, entries in the rows of ∆ in Jk−1 are not subjected to elementary row

operations during the application of the SSSA over F thereto. Furthermore, all change-of-

basis and primary pivots in columns in Jk occur in positions in Jk−1× Jk. Hence changes to

entries in these rows are only due to elementary column operations, as also happens when the

SSSA is applied to ∆(k). Since ∆Jk−1Jk
= ∆(k)Jk−1Jk

and the elementary column operations

on columns in Jk are solely dependent on the entries in this submatrix, it follows that the

change-of-basis and primary pivots marked in columns in Jk during execution of the SSSA

over F to both ∆ and ∆(k) coincide, and so ∆L
Jk−1Jk

= ∆(k)L
Jk−1Jk

. �

The Uncoupling Theorem implies that we may restrict our attention to connection matri-

ces containing at most one nonzero block when studying the Incremental Sweeping Algorithm

over F, if we accept to miss the evolution of rows in ∪bk=1Jk, which we know will end up

zero and will not contain neither primary nor change-of-basis pivots. To ease the discussion

that follows, we henceforth call this special case the 1-Block Incremental Sweeping Algorithm
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over F.

The analysis of the 1-Block Incremental Sweeping Algorithm over F is significantly simpler

than that of its more general counterpart. If the columns of the connection matrix ∆ ∈ FL×L

are partitioned into two subsets J0 and J1, only rows in J1 are altered in the pre-multiplication

by (T r−1)−1, in the matrix update step. But ∆J1 = 0 and this zero pattern is invariant

under elementary column operations. So the post-multiplication part of the update doesn’t

change the nullity of rows in J1 and the elementary row operations performed during the

pre-multiplication part of the update step involve only the zero rows in J1. This implies

∆r
J1

= 0 for all r, and we may eliminate the pre-multiplication part of the update step, so

that only elementary column operations need be performed.

During the execution of the 1-Block Incremental Sweeping Algorithm over F, columns

of ∆r may be classified as active (resp., passive), if they contain (resp., do not contain)

a primary pivot mark. The active columns effect change upon the passive columns. The

passive columns suffer changes caused by active columns. At the beginning of the algorithm

all columns are passive and before changes are allowed to happen, at least one column must

become active. Once a column reaches the active state, it doesn’t leave it, since primary pivot

marks are permanent. Passive columns undergo a (possibly empty) sequence of elementary

column operations and either reach an active state or become zero, since columns without

primary pivots must be zero. If a column reaches an active state, it does so when the lowest

nonzero entry in the column is marked as a primary pivot. The order of sweeping implies

that the change-of-basis pivots that occur in a fixed column, say j, are marked in an upward

fashion. If the entry in position (j− r, j) is marked as a change-of-basis pivot, and the entry

in position (j−r, p) contains the primary pivot to its left, columns p and j exhibit a sequence

of trailing of zeros from row j− r+1 to the last row. The elementary column operation that

eliminates this change-of-basis pivot changes only the entries in rows 1 through j − r, the

actual operation being determined by the values of the two pivots. By construction, each

operation increases the number of trailing zeros by at least one.

In the 1-Block Incremental Sweeping Algorithm over F, the passive columns dictate the

cancellations, which are done only once a change-of-basis pivot is marked. We propose a

reengineered version therefor, in which this role is transferred to the active columns. Once an

primary pivot is identified, all cancellations it is responsible for in the 1-block Incremental

Sweeping Algorithm over F are performed. To arrive at the same final matrix as in the

original algorithm, the primary pivots must also be identified in a upward order, from the
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bottom up. The second and last important aspect for the identification of primary pivots, is

the left-to-right order of the sweeping. The algorithm below incorporates both of these. In

the algorithm we adopt the usual convention that if S is an empty set and A is a real matrix,

then AS. = 0. Since we are considering connection matrices with at most one nonzero block,

we may assume, without loss of generality, that the row/column partition has two subsets.

Revised 1-Block Incremental Sweeping Algorithm over F

Input: nilpotent L× L upper triangular matrix ∆ with column/row partition J0, J1.

Initialization Step: C1 = {1, . . . , L}, ∆̃1 = ∆, t = 1.

Iterative Step:

While ∆̃t
.Ct 6= 0 do



Let it = max{i | ∆̃t
iCt 6= 0}

Let jt = min{j ∈ Ct | ∆̃t
itj
6= 0}

Permanently mark ∆t
itjt

as a primary pivot


Update Matrix Construction

T̃ t ← I −
∑

j ∈ Ct

j > jt

∆̃t
itj

∆̃t
itjt

U jtj

[
Simplified Matrix ∆ update

∆̃t+1 = ∆̃tT̃ t

Ct+1 ← Ct\{jt}

t← t+ 1

Output: (∆̃0, . . .) and (T̃ 0, . . .)

Let (i1, j1), . . . , (it∗ , jt∗) be the positions of primary pivots marked in the application

of the Revised 1-block Incremental Sweeping Algorithm over F to the connection matrix

∆ ∈ FL×L with row/column partition J0, J1, in the order in which they were marked. Then

the following are true:

(i) once a column receives a primary pivot mark, it remains invariant until the end of the

algorithm,

(ii) jt > it, for t = 1, . . . , t∗,

(iii) i1 > i2 > · · · > it∗ ,
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(iv) ∆̃t+1
{it,...,L}Ct+1 = 0, for t = 1, . . . , t∗,

(v) the number of consecutive zero entries at the bottom of each column never decreases.

Corollary A.1. Let ∆̃t∗+1 be the last matrix obtained by the application of the Revised 1-

block Incremental Sweeping Algorithm to the connection matrix ∆ ∈ FL×L with row/column

partition J0, J1. Then the primary pivot entries are nonzero and each nonzero entry of ∆̃t∗+1

lies above a primary pivot.

Proof. Let (i1, j1), . . . , (it∗ , jt∗) be the positions of primary pivots. A simple induction

shows that Ct∗+1 is the set of indices of columns of ∆̃t∗+1 without primary pivots. The

stopping criterium implies ∆̃t∗+1
.Ct∗+1 = 0. Finally, primary pivots, when marked, are, by the

rules of the algorithm, the lowest nonzero entry of the column, and columns do not change

after receiving a primary pivot mark. �

The next lemma establishes the equality between the final matrices produced by the Re-

vised 1-block Incremental Sweeping over F and the 1-block Incremental Sweeping Algorithm

over F. There is of course no sense in looking for equality between other matrices in the

sequence produced by the algorithm, since the order of cancellation is in all likelihood quite

different in the two algorithms.

Lemma A.2. Let ∆ be a connection matrix with column/row partition J0, J1. Let ∆̃
t∗+1 and

∆L be the matrices obtained by applying the Revised 1-block Incremental Sweeping Algorithm

over F and the 1-Block Incremental Sweeping Algorithm over F to ∆, respectively. Then

∆̃t∗+1 = ∆L and their primary pivots coincide.

Proof. If ∆̃t∗+1 = ∆L, then their primary pivots coincide in position and value, since the

primary pivots entries are nonzero and each nonzero entry is located above a unique primary

pivot in both algorithms.

In both algorithms columns may suffer elementary column operations until they either

reach zero or receive a primary pivot mark. Additionally, a column may suffer an elementary

column operation only from another column with a primary pivot mark on its left and

successive operations on a column may only increase the range of trailing zeros in that

column, that is, the set of successive rows, ending in row L, containing zero entries. The

order in which the primary pivots are identified probably differs between algorithms, but

the important thing is that when an entry is eligible for receiving a primary pivot in either
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algorithm, the column it belongs to will have been subjected to the same changes in both

of them. In order for these changes to be the same in both algorithms, the active columns

acting on them must be the same and the changes they provoke in a fixed column must occur

in the correct order, from bottom up.

The proof is by induction on the number of nonzero columns of ∆. If there is but one

nonzero column, the nonzero entry at the bottom of this column will be marked by both

algorithms as the unique primary pivot of ∆, so t∗ = 1, there will be no elementary column

operations and in fact ∆̃t∗+1 = ∆L = ∆.

Admit by induction that the last matrix of both algorithms coincide, when the number

of nonzero columns is smaller than k. Suppose ∆ has k nonzero columns. Let (i1, j1) be the

first position to receive a primary pivot mark in the Revised 1-block Incremental Sweeping

Algorithm over F. Then the entry ∆j1−i1
i1j1

must also receive a primary pivot mark in the SSSA

over F. To see that, note that, by definition of (i1, j1), the entries in ∆{i1,...,L}{1,...,j1−1} and

∆{i1+1,...,L}{1,...,L} are zero, and the number of trailing zeros can only increase. Consequently

no entries in these submatrices may have been marked as a primary pivot before the sweeping

of the j1− i1 diagonal, so ∆j1−i1
i1j1

is nonzero, with no primary pivot marks on its left or below

it. So, in this case, ∆t∗+1
.j1 = ∆L

.j1 = ∆.j1 . Furthermore, notice that, entries in positions

(i1, j1 + 1), . . . (i1, L) will be swept after this and be marked, if nonzero, as change-of-basis

entries in the Incremental Sweeping Algorithm over F, since rows i1 + 1, . . . , L of ∆ are

zero and the entry in position (i1, j1) has a primary pivot. The changes possibly effected

on columns due to these markings in the SSSA over F on the corresponding iterations are

precisely the changes done in the first iteration of the Revised 1-block Incremental Sweeping

Algorithm over F.

Let ∆′ be defined as follows:

∆′
.j =

{
∆̃2
.j, if j 6= j1,

0, otherwise.

The matrix ∆′ agrees with the matrix obtained from ∆ after the first iteration of the Revised

1-block Incremental Sweeping Algorithm over F, except for column j1, which is zero. So ∆′

encompasses the changes to columns due to change-of-basis entries in row i1, and has the

j1-th column equal to zero. Thus if we apply the Incremental Sweeping Algorithm over F

to ∆′, the matrix ∆′L obtained agrees with ∆L, except for column j1, which would remain

zero throughout the algorithm. Analogously, ∆′ encompasses changes made to ∆ in the first
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iteration of the Revised 1-block Incremental Sweeping Algorithm over F, but differs from it in

column j1, which has been zeroed. Thus the application of the Revised 1-block Incremental

Sweeping Algorithm over F to ∆′ produces a matrix ∆̃′
t∗

whose columns coincide with the

corresponding ones from ∆̃t∗+1, except for the j1-th column. Since ∆′ has at most k − 1

nonzero columns, induction implies that ∆′L = ∆̃′
t∗+1

. This implies

∆L
.j = ∆′L

.j = ∆̃′
t∗

.j = ∆̃t∗+1
.j , for j 6= j1.

But since we already have that ∆L
.j1 = ∆̃t∗+1

.j1 , we conclude that ∆L = ∆̃t∗+1. �

Lemma A.3. Let ∆ ∈ {0,±1}L×L be a totally unimodular connection matrix with col-

umn/row partition J0, J1. Let Ct be the set of index columns of ∆̃t which do not have a

primary pivot. The submatrix ∆̃t
.Ct is totally unimodular, for t = 1, . . . , t∗ + 1.

Proof. Let (i1, j1), . . . , (it∗ , jt∗) be the positions of the primary pivots marked.

We claim that ∆̃t
.Ct is totally unimodular, for t = 1, . . . , t∗ + 1. This is trivially true for

t = 1, by hypothesis. Assume it is true for t. Since

(∆̃tT t).j =





∆̃t
.j, if j /∈ Ct,

∆̃t
.j, if j ∈ Ct and j ≤ jt,

∆̃t
.j −

∆̃t
itj

∆̃t
itjt

∆̃t
.jt , if j ∈ Ct and j > jt,

the marking of an entry in position (it, jt) of ∆̃
t
.Ct as a primary pivot implies the cancellation,

in ∆̃t+1, of entries on row it, in columns in Ct other than jt (although the update matrix

construction provides the cancellation of entries to the right of column jt, entries to its left are

zero, since ∆̃t
itjt

is the leftmost nonzero entry in row it of ∆̃
t
.Ct). Thus ∆̃

t+1
.Ct = (∆̃tT t).Ct =

∆̃t
.CtT t

CtCt . Notice that the cancellations are achieved by adding to column j ∈ Ct, j 6= jt,

the appropriate multiple of column jt. But this is simply a transposed version of the variant

of the linear programming pivoting described above, with ∆̃t
.Ct = AT and T t

CtCt = B̂T .

Therefore, if ∆̃t
.Ct is totally unimodular, then ∆̃t+1

.Ct is also totally unimodular. Since this

property is, by definition, inherited by submatrices, and Ct+1 ⊂ Ct, we conclude ∆̃t+1
.Ct+1 is

also totally unimodular. By induction, ∆̃t
.Ct is totally unimodular for all t. �
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