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Abstract

The concept of minimal affinization, introduced by Chari and Pressley, arose from the impos-
sibility to extend, in general, a representation of the quantum group associated to a simple Lie
algebra for the quantum group associated to its loop algebra, which is always possible in the clas-
sical context. A special class of minimal affinizations is that of the Kirillov-Reshetikhin modules,
which are minimal affinizations of the irreducible modules with highest weight multiple of a funda-
mental weight. These modules are central objects in the study of integrable lattices in mechanical
statistics. In the past two decades it has been intense the scientific research in the direction of
understanding the minimal affinizations, not only by their potential applications in mathematical
physics, but also for being a very rich theory for itself, in addition to having strong interaction
with combinatorics. There exists an almost complete classification of the equivalence classes of the
minimal affinizations in terms of Drinfeld polynomials due to Chari and Pressley. The classification
is completed in the case where the support of the highest weight does not enclose a subdiagram of
type Dy, and in this case there is only one equivalence class. In the case where the support encloses
a subdiagram of type Dy the situation depends essentially if support contains the trivalent node of
the diagram or not. If it contains, the classification is also completed and there are three equivalence
classes. Otherwise the classification is not completed. In this work we present the classification
of the equivalence classes for algebras of type D. The main technique used was the combinatorial
manipulation of qcharacters through mainly its description via tableaux and sometimes using the
Frenkel-Mukhin algorithm.

Keywords: Minimal affinizations, qcharacters, quantum groups, representations of algebras.

Resumo

O conceito de afinizagdo minimal, introduzido por Chari e Pressley, surgiu a partir da impossibi-
lidade de se estender, em geral, uma representacao do grupo quantico associado a uma algebra de Lie
simples para o grupo quantico associado a sua algebra de lacos, o que sempre é possivel no contexto
cldssico. Uma classe especial de afinizagoes minimais é a dos mdédulos de Kirillov-Reshetikhin, que
sao afinizagoes minimais dos moédulos irredutiveis quando os pesos méaximos sao multiplos dos pesos
fundamentais. Esses mdédulos sao objetos centrais no estudo de reticulados integraveis em mecéanica
estatistica. Nas ultimas duas décadas, tem sido intensa a investigacao cientifica na direcao de se
entender as afinizacoes minimais, devido nao s as suas potenciais aplicacoes em fisica-matematica,
mas também por ser uma teoria muito rica por si s6, além de ter forte interagao com combinatéria.
Existe uma classificacao quase completa das classes de equivaléncias de afinizagOes minimais em
termos de polindmios de Drinfeld, devido a Chari e Pressley. A classificagao estd completa no caso
em que o suporte do peso maximo nao engloba um subdiagrama de tipo Dy, e neste caso existe
uma unica classe de equivaléncia. No caso em que o suporte engloba um subdiagrama de tipo
D, a situacao depende essencialmente se o suporte contém o vértice trivalente do diagrama ou

vii



viii ABSTRACT

nao. Se ele o contém, a classificagao também esta completa e existem trés classes de equivaléncias.
Caso contrario a classificagao nao estd completa. Neste trabalho apresentamos a classificagao das
classes de equivaléncias para algebras de tipo D. A principal técnica empregada foi a manipulagao
combinatéria de qcarateres através principalmente de sua descricao via tableaux e, algumas vezes,
utilizando-se o algoritmo de Frenkel-Mukhin.

Palavras-chave: Afiniza¢bes minimais, qcarateres, grupos quanticos, representagoes de dlgebras.
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Introduction

The theory of representations of Kac-Moody algebras and their quantizations is of great interest
in many areas of mathematics and physics. These algebras were proposed independently in the
1960’s by Kac and Moody (see [29] and [34]) as a generalization of the successful concept of
semisimple Lie algebra. Around 1985, influenced by the works in statistical-physics related to the
so-called Yang-Baxter equation, Drinfeld [14, 15] and Jimbo [27, 28] introduced deformations of
the universal enveloping algebras of Kac-Moody algebras, which are known as Quantum Groups.
The classical Kac-Moody algebras (or rather their universal enveloping algebras) are recovered by
taking the limit when the parameter of deformation (quantization) goes to 1. Later the theory of
quantum groups showed itself to be useful in many subareas of mathematics, establishing relations
among a priori seemingly highly unrelated works. Some important results on the classical Kac-
Moody algebras, such as the existence of “canonical” bases for certain important classes of their
representations, were only possible to obtain after the advent of quantum groups through the works
of Kashiwara [30] and Lusztig [33].

Almost three decades after quantum groups were introduced, many relevant problems, both
in classic and quantum contexts, remain open, maintaining a very intense research activity in its
various subareas. In particular, the theory of finite-dimensional representations of quantum groups
associated to affine Kac-Moody algebras (or simply quantum affine algebras) is a very relevant
research topic nowadays (see for example [1, 3, 5, 7, 13, 17, 18, 26, 35, 46]). The underlying
categories of modules are Jordan-Hd6lder abelian tensor categories. Despite the classification of the
simple objects being known since [8] and the great development of the theory since then, several
other basic questions about the structure of these categories remain essentially unanswered.

The central problem investigated in this work concerns the subclass of simple objects known as
minimal affinizations defined by Chari in [1]. These representations appear naturally in the study of
integrable lattices in statistical-mechanics. In the past two decades, there has been intense scientific
work in the direction of understanding the minimal affinizations, not only because of their potential
applications in mathematical-physics, but also for being a very rich theory by itself in addition to
having a strong interaction with combinatorics. Important examples of minimal affinizations are the
Kirillov-Reshetikhin modules initially studied in [31], where it was conjectured that the characters
of their tensor products satisfied certain fermionic formulas. This conjecture (whose proof was
finished in [23]) was motivated by an essential tool for the study of such integrable lattices, called
Bethe Ansatz. In fact, the fermionic formulas provide an algorithm to calculate the character of
any Kirillov-Reshetikhin module as a polynomial on the characters of the so-called fundamental
representations. Despite the characters of the fundamental representations being known, the task
of obtaining “closed” formulas from this algorithm does not seem feasible. However, also motivated
by the Bethe Ansatz, the authors of [19, 20] formulated conjectures for characters of Kirillov-
Reshetikhin modules directly, which are now proved as a byproduct of the results of [23] and
references therein.

Let g be a finite-dimensional Lie algebra over the complex numbers and g be the associated
(non twisted) affine Kac-Moody algebra. Denote by U,(g) and Uy(g) the corresponding quantum
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2 INTRODUCTION

groups at a generic value of the quantization parameter g. Recall that the simple finite-dimensional
U,(g)-modules are determined by their highest weight, which must be a dominant integral weight.
Given such a weight A, denote by V,(\) any element of the associated isomorphism class of simple
modules. Recall also that every finite-dimensional U,(g)-module is completely reducible. Given
such a module V' and a dominant weight x, we denote by m, (V) the multiplicity of V,(u) as a
simple factor of V. Hence, we can write

V@ V()
7

and the numbers m,, (V') determine the isomorphism class of V. Since Uy (g) is a subalgebra of Uy (g),
any Uj(g)-module can be regarded as a U,(g)-module. We shall say that two finite-dimensional
Uy(g)-modules are equivalent if they are isomorphic as U,(g)-modules. Following [1], a finite-
dimensional U,(g)-module V' is said to be an affinization of V() if

mx(V)=1 and mu(V)#0 onlyif pu<A,

where < denotes the usual partial order on the weight lattice of g. This partial order also induces
in a very natural way a partial order in the set of (equivalence classes of) affinizations of V,(\). The
corresponding minimal elements are called minimal affinizations. Evidently, a minimal affinization
is necessarily an irreducible U,(g)-module.

The simple objects of the category of finite-dimensional representation of U,(g) are classified
by Drinfeld polynomials. Denote by V,(w) any element of the isomorphism class of simple modules
associated the Drinfeld polynomial w. To each Drinfeld polynomial w it is associated a dominant
integral weight wt(w). It is immediate that V,(w) is an affinziation of V() with A = wt(w). It is
then natural to ask about the classification of minimal affinizations, i.e., the characterization of the
Drinfeld polynomials corresponding to minimal affinizations. This classification is complete only
when the support of A\ does not enclose a subdiagram of type Dy (see [10, 11]). Indeed, in that
case, there exists only one equivalence class of minimal affinizations. If the support of A encloses a
subdiagram of type Dy, the situation is more complicated and it depends essentially on whether the
support contains the trivalent node or not. In the first case the classification is also complete [10]
and there are three equivalence classes. If the trivalent node is not in the support of A, essentially
nothing is known except when g is of type Dy, in which case Chari and Pressley almost finished
the classification in [12].

The goal of the present work is to complete the classification for g of type D,. In particular,
it follows from our results that a conjecture left in [12] is false. Namely, three families of Drinfeld
polynomials were presented in [12] and it was proved that the Drinfeld polynomials corresponding
to minimal affinizations must lie in one those families. It was then conjectured that two of the
families parameterized the same equivalence classes and, hence, there should be only two families
of minimal affinizations. We prove here that the Drinfeld polynomials in one of the three families do
not actually correspond to minimal affinizations: the corresponding modules are actually smaller
than those that they were conjectured to be equivalent to. It is interesting to mention that the
number of non equivalent elements in one of the families is not uniformly bounded, i.e., the number
of equivalence classes of minimal affinizations of V,(\) grows as A “grows”. For n > 4 we have more
families: beside the two analogous families to those in the case n = 4, we have two extra families
in the case that the support of A\ intersects the “type A” part of the Dynkin diagram in a single
node and four extra families otherwise.

Beside the techniques developed by Chari and Pressley in [10, 11, 12], we used another tool, not
available when those papers were published, in a very crucial way in the proof of our classification
theorems: the notion of qcharacters introduced by Frenkel and Resehtikhin in [18] in their study of
W-algebras. The qcharacters are analogues of the usual concept of characters for U, (g)-modules in
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the sense that they describe the dimension of the so-called ¢-weight spaces. Despite all the progress
related to theory of qcharacters, there does not exist any general formula for computing them (see
however, [42, 43, 47] for formulas in terms of Jacobi-Trudi determinants for g of classical type). In
[44], Nakajima described the gqcharacters of fundamental representations in the case that g is of type
A and D in terms of tableaux. A similar description for the qcharacters of minimal affinizations
of type A in terms of semi-standard tableaux is known (see the paragraph preceding Proposition
3.2.1) and we use it to obtain partial information on the simple factors of certain tensor products
of simple modules. In particular, we characterize their irreducibility in some cases and compute
special simple factors in other cases. This study of tensor products is then applied to compare
certain affinizations. For type D, we obtain a similar characterization in terms of semi-standard
tableaux for studying tensor products of Kirillov-Reshetikhin modules associated to the spin nodes.
In some cases we also employed the Frenkel-Mukhin algorithm [17] and some lemmas obtained in
[22] for obtaining partial information on the gcharacters. These results are then brought together
in the proof of the classification theorems for showing that the Drinfeld polynomial of any minimal
affinization must belong to one of the presented families as well as for showing that the modules
corresponding to different elements of these families are not comparable affinizations and, hence,
must be minimal.

As we have seen in the previous paragraph, the proof of the classification theorems provides some
partial information about the structure of minimal affinizations, specially about their qcharacters.
However, most of their structure remains unveiled. In particular, it is natural to ask about the
structure of the minimal affinizations as Uj(g)-modules. More precisely, given a minimal affinization
V, how to compute the numbers m,(V)? In type A, it is well-known that m, (V) = 0 unless p
is the highest weight (this is a consequence of the fact that, in type A, there exist quantum
analogues of the evaluation maps g — g). In the case of Kirillov-Reshetikhin modules, most
of these numbers can computed from the formulas given in the aforementioned [19, 20] as well
as from the ones given in [5, 6, 16]. The methods of the latter references are quite different
from the former and consist of considering the so-called graded limits of the minimal affinizations.
Moreover, the results of [5, 6] also give generators and relations for these graded limits while [16]
was the first to explore the role of Demazure modules in the study of Kirillov-Reshetikhin and other
finite-dimensional Ug,(g)-modules. An extension of the methods of [5, 6] to more general minimal
affinizations was proposed in [35], where it was conjectured generators and relations for the graded
limits of minimal affinizations when the highest weight is regular. Here, by regular we mean that, if
its support encloses a subdiagram of type D, then the trivalent node must be in the support. Small
examples of the validity of this conjecture for the orthogonal types were given still in [35] while
[38] partially proved the conjecture for type Eg. In the last two years, the conjecture was proved
by Naoi in [39, 40] by further exploring the role of Demazure modules in the theory. In particular,
a character formula for minimal affinizations in terms of interactions of Demazure operators was
obtained. Thus, there are two natural problems to investigate after the present work: complete the
classification for type E and study the role of Demazure modules for understanding the structure
of the minimal affinizations we have classified here.

The text is divided in five chapters. In the first chapter we briefly review the affine classical
and quantum algebras and their finite-dimensional representations. We also present the formal
definition of minimal affinizations and state the Chari and Pressley classification of the minimal
affinizations with regular highest weight. The main theorems of the present work are presented
in Section 1.7. In the second chapter we present a few concepts and results that will be needed
throughout the text, such as the notion of qcharacters. In the third chapter we develop the theory
qcharacters for minimal affinizations of type A in terms of tableaux. In particular, we prove the
aforementioned results on tensor products and ordering of affinizations. In the fourth chapter we
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prove similar results to that of Chapter 3, but for Kirillov-Reshetikhin modules of type D related
to the spins nodes. In Section 4.6 we also prove a result (Proposition 4.6.4) comparing two affiniza-
tions having highest weight supported at the three extreme nodes of the Dynking diagram. This
proposition together with the results of [12] completes the classification in type Dy (in particular,
the proposition shows that the conjecture left in [12] is false). The proofs of the main theorems
are presented in Chapter 5.



CHAPTER 1

Definitions, notation, and the main result

Throughout the text, let C,R,Z, Z>,, denote the sets of complex numbers, reals, integers, and
integers bigger or equal m, respectively. Given a ring A, the underlying multiplicative group of
units is denoted by A*. The dual of a vector space V is denoted by V*. The symbol = means
“isomorphic to”.

1.1. Classical algebras

Let I = {1,...,n} be the set of vertices of a finite-type simply laced Dynkin diagram (labeled
as in [25]) and let g be the associated semisimple Lie algebra over C with a fixed Cartan subalgebra
h. Fix a set of positive roots R™ and let

nt = @ 0+ where gio,={x€g:h,z] =+xalh)z, VY he<bh}.
a€RT
The simple roots will be denoted by «; and the fundamental weights by w;, i € I. Q, P,Q™, PT will
denote the root and weight lattices with corresponding positive cones, respectively. Let also h; € b,
be the co-root associated to «;,7 € I. We equip h* with the partial order A < p iff p — X € Q™.
Let C = (c¢ij)i jer be the Cartan matrix of g, i.e., ¢;j = oj(h;). The Weyl group is denoted by W
and its longest element by wy.

The subalgebras g1o, @ € RT, are one-dimensional and [g4q, §+4] = g+axs for every a, 8 € RT.
We denote by & any generator of g, and, in case a = a; for some i € I, we may also use the

notation :c;t in place of a:i In particular, if a + 8 € RT, [z, x?;] is a nonzero generator of g+,+g

and we simply write [z, x?] = 5

The support of p € P is defined by

supp(u) = {i € I : p(hs) # 0}
Let also supp(u) be the minimal subset of I containing supp(u) such that the corresponding sub-
diagram of the Dynkin diagram of g is connected.

If a is a Lie algebra over C, define its loop algebra to be @ = a ®¢ C[t,t!] with bracket given
by [t @17, y@1t%] = [z,y] @t"15. Clearly a®1 is a subalgebra of a isomorphic to a and, by abuse of
notation, we will continue denoting its elements by z instead of @ 1. Then § =2~ ® h @ it and
f is an abelian subalgebra. The elements x- ® t", xzi ®t", and h; ® t" will be denoted by xir, mfr,
and h; ., respectively.

1.2. Quantum algebras

Let ¢ € C* not a root of unity. Set

m

q" —q

g mlt=lmlm -] 2L [P =

) =

5



6 1. DEFINITIONS, NOTATION, AND THE MAIN RESULT

for r,m € Z>g, m > r.

The quantum loop algebra U,(g) of g is the associative C-algebra with generators xfT (i €1,
reZ), k' (i€I), hiy (i €1, r € Z\{0}) and the following defining relations:

kik;y b=k k=1, kiky = kjki,
kiljr = hj ki,

1 +c;
kix Tk'Z =q ”:L'Jr,

1
iy hjs) = 0, [hig, a7 ,] = £=[reila;
T

1,7 %5 s J,r+s?

+ + teij, o * teij,+ E + +
xi,r—&-lxj s 4 K x] sTy r+1 =4q K T T‘x] s+1 j,s—l—lxi,r’
1/"++ ~ Virst
+ — i,r+Ss RS
1,77 7,8 2,J _ )
J q—q 1
m
+ +  + + _ e
Z L Ta(1) ’ xizra(k)xjvsxizra(k+l) o 'xivTo(m) =0, ifi#j,
0E€Sm k=0
for all sequences of integers r1,. .., 7y, where m = 1 —¢;;, Sy, is the symmetric group on m letters,

and the ¢ii7" are determined by equating powers of u in the formal power series

:izpfﬂu —kilexp< q—q thisu>.
r=0

Denote by U, (#%), U,(h) the subalgebras of U,(§) generated by {:L‘ 3 {kEY by s}, respectively.
Let Uy(g) be the subalgebra generated by xi = mio,k:zj[]L i €1, and deﬁne Uy(n*),U,(h) in the

obvious way. U,(g) is a subalgebra of U,(g) and multiplication establishes isomorphisms of C(g)-
vectors spaces:

Ug(g) 2 U,(n7) @ Uyg(h) ® Uq(n+) and Ug(8) 2 Uy(n7) @ Ug(h) ® Uq(ﬁ+)-

N

k
[kf! . Define also elements A;,,7 € I,7 € Z by

ZAzﬂu = exp ( Z hE Tsus> .

+1
ki

For i € I,1 € Z,k € Zq, define (z,)*) =

The elements A; +, together with ,i1 €1, r € Z, generate Uq(f)) as an algebra.

REMARK 1.2.1. The algebra Uy(g) can also be described by the Chevalley-Kac generators
£ k! i € IU{0}. We shall note use this presentation here.

z’z

1.3. The /-weight lattice

Consider the multiplicative group P of n-tuples of rational functions g = (pq(w),. .., @, (uw))
with values in C such that p;(0) = 1 for all ¢ € I, which is called the ¢-weight lattice of U,(g).
Given a € C* and i € I, let w; 4 € P be defined by

(wi7a)j(u) =1- 5i7jau.
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Clearly, P is the free abelian group generated by these elements which are called fundamental
l-weights. If

(1.3.1) w= H Wit

(i,a)€IxCX
we shall say that w;, (respectively, w;j) appears in p if p; , > 0 (respectively, p; o < 0).

Consider the group homomorphism (weight map) wt : P — P by setting wt(w;,) = w;. The
submonoid P of P consisting of n-tuples of polynomials is called the set of dominant /-weights
or Drinfeld polynomials of U,(§). Given w € Pt with w;(u) = [1;(1 — a;ju), where a;; € C, let
w™ € P be defined by A; (u) = [1;(1 - ai_Jlu). We will also use the notation w®™ = w. Given
€ P, say p=ww ! with w, o € P, define a C-algebra homomorphism ¥, : U,(h) — C by
setting W, (k') = q;tWt(“)(hi) and

+
> WA u” = ((:'i))((?)

r>0

One easily checks that the map ¥ : P — (Uq(f)))* given by p +— W, is injective. From now on we

will identify P with its image in (U,(h))* under W.
It will be convenient to introduce the following notation. Given i € I,a € C*,m € Z>¢, define

m—1

wi7a7m = H wi7aqm—1—2j.
J=0

1.4. Finite-dimensional representation of quantum simple Lie algebras

For the sake of fixing notation, we now review some basic facts about the representation theory
of Uy(g). For the details see [9] for instance.

Given a Uy(g)-module V and p € P, let
V,={veV:kv=g""yforallic I}

A nonzero vector v € V), is called a weight vector of weight p. If v is a weight vector such that
x;rv = 0 for all ¢ € I, then v is called a highest-weight vector. If V is generated by a highest-
weight vector of weight A, then V is said to be a highest-weight module of highest weight A. A
Uy(g)-module V is said to be a weight module if V' = @#GP V,.. Denote by C, be the category of
all finite-dimensional weight modules of U,(g). The following theorem summarizes the basic facts

about C,.
THEOREM 1.4.1. Let V' be an object of C,;. Then:

(a) dimV,, = dimV,,, for all w € W.
(b) V is completely reducible.
(c) For each A € P* the U,(g)-module V,()) generated by a vector v satisfying

a;jv =0, kiv = ¢y, (mi_))‘(hi)ﬂv =0, Viel,
is irreducible and finite-dimensional. If V' € C, is irreducible, then V' is isomorphic to V() for
some \ € PT. O
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1.5. Finite-dimensional representations of quantum loop algebras

Let V be a Uy(g)-module. We say that a nonzero vector v € V' is an ¢-weight vector if there

exists w € P and k € Zwg such that (7 — W, (n))*v = 0 for all € U,(h). In that case, w is said to
be the f-weight of v. V is said to be an f-weight module if every vector of V' is a linear combination
of /-weight vectors. In that case, let V,, denote the subspace spanned by all /-weight vectors of
l-weight w. An (-weight vector v is said to be a highest-¢-weight vector if nv = ¥, (n)v for every
n e Uq(f)) and a:;frv =0 for all ¢ € I and all r € Z. V is said to be a highest-/-weight module

if it is generated by a highest-/-weight vector. Denote by C, the category of all finite-dimensional
l-weight modules of Ugy(g). Quite clearly C, is an abelian category.

Observe that if V € 5q, then V' € C; and

(1.5.1) W= & V.

wiwt(w)=\
Moreover, if V' is a highest-¢-weight module of highest ¢-weight w, then
(1.5.2) dim(Vig(w)) = 1 and Ve #0=p < wi(w).

The next proposition is easily established using (1.5.2).

ProrosiTION 1.5.1. If V is a highest-f-weight module, then it has a unique proper submodule
and, hence, a unique irreducible quotient. O

Given w € PT, the Weyl module W, (w) is the U,(g)-module defined by the quotient of U,(g§) by
the left ideal generated by the elements x:fr, (x;T)Wt(“’)(hi)+1, and n — W, (n) for every i € I,r € Z,

and n € Uy(h). In particular, it is a highest-f-weight module. Denote by V(w) the irreducible
quotient of W,(w). The next theorem was proved in [13] and recovers the classification of the

simple objects of Eq obtained previously in [8].

THEOREM 1.5.2. For every w € P* the module W,(w) is nonzero and, moreover, it is the

universal finite-dimensional U,(g)-module with highest ¢-weight w. Every simple object of 5(1 is
highest-¢-weight. O

1.6. Minimal affinizations

We now review the notion of minimal affinizations of an irreducible U,(g)-module introduced
in [1].

Given A € P*, a Uy(g)-module V is said to be an affinization of V,()) if there exists an
isomorphism of U,(g)-module,

(L6.1) VeV e @ Vi)
<A

for some m,, (V') € Z>o. Two affinizations of V() are said to be equivalent if they are isomorphic as
U,(g)-modules. Notice that a highest-f-weight module of highest {-weight w € P is an affinization
of V4(A) if and only if wt(w) = A.

The partial order on PT induces a natural partial order on the set of (equivalence classes of)
affinizations of V(). Namely, if V and W are affinizations of V,(\), say that V' < W if one of the
following conditions hold:



1.7. THE MAIN THEOREMS 9

(i) mu(V) < my(W) for all p € PT;
(ii) for all u € PT such that m, (V) > m, (W) there exists v > p such that m, (V) < m, (W).

A minimal element of this partial order is said to be a minimal affinization. Clearly, a minimal
affinization of V,(A) must be irreducible as a U,(g)-module and, hence, is of the form V,(w) for
some w € PT such that wt(w) = \.

Given i,5 € I,i < j,and A € P, set

J
i =D ().
k=1

If i = 1, we simplify notation and write |\A|; instead of 1|\|; and similarly if j = n. For i > j we
set ;|A|; = 0. Set also
pijN) = i1+ iAj—r+g—d i i<
and p; j(A) = p;;(\) if j < i. Notice that, if i = j, then p; j(\) = 0 and
pij(A) = M) + Mhy) +2 1| A[jor +5—4  if i<

THEOREM 1.6.1. [10] Let g = sl,41(C) and let A € PT. Then, V,(\) has a unique class of
minimal affinization. Moreover, V;(w) is a minimal affinization of V() if and only if there exist
a; € C*,i eI, and € = %1 such that

(1.6.2) w= H""i,ai,A(hi) with g _ A for all i < j.
icl 4
In that case, V,(w) = V() as representations of Uy,(g). O

Notice that (1.6.2) is equivalent to saying that there exist a € C* and e = £1 such that

(1.6.3) w = Hwi,ai,/\(hi) with a; = aqPin®) for all iel.
el

Notice that if # supp(\) > 1, the pair (a,€) in (1.6.3) is unique. In that case, If w satisfies (1.6.2)
with e = 1, we say that V,(w) is a decreasing minimal affinization (because the powers of ¢ in (1.6.3)
decrease as i increases). Otherwise, we say V(w) is a increasing minimal affinization. However, if
# supp(A) = 1, w can be represented in the form (1.6.3) by two choices of pairs (a, €), one for each
value of e. We do not fix a preferred presentation in that case. The minimal affinizations (for g of
any type) satisfying # supp(\) < 1 are called Kirillov-Reshetikhin modules.

The classification of the elements w € P such that V,(w) is a minimal affinization is also
complete in types B,C, F, and G [11]. In particular, in these cases, for every A € P, there exists
exactly one equivalence class of minimal affinizations. For types D and E the classification is not
complete and we recall what is known about the classification in Theorem 2.6.5 below (see also
Remark 1.7.2). In the next section, we state our main results which complete the classification of
minimal affinizations for type D.

1.7. The main theorems

Assume g is of type D,, and recall that the labeling of the diagram is given by:

n—1
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We need to prepare some notation for stating our main results. Fix A € P* such that A(h,_2) =
0 and supp(\) contains the subdiagram of type D4. Fix also € = +1. To simplify notation, set

pl,](A) = pi,jviaj € I)
A={iel:i<n—-2}, idy=min{i € l:A(h;) #0}, and f\=max{iec A:A(h;)#0}.
Let a,an_1,a, € C* and
(1.7.1) w= H‘-"i,ai,k(hi) with a; = aq®Pin—3 forall i<n-—2.
i€l

We shall graphically denote the value of € in (1.7.1) by the pictures

n—3 n—2 n—3 n—2

according to whether € = —1 or € = 1, respectively. Notice that, if #(supp(\) N A) = 1, then the
same w can be represented by either choices of e (with different values of a if n — 3 ¢ supp(A)).

We now state the relevant conditions on a/a; for i = n,n — 1. The condition
(1.7.2) a = agt AR +HA(n—3)+4-2r) for some 1 <r <min{|\|—2,\(h;)}
will be indicated graphically by the following pictures

|
’V“
- -

-

n—3 n—2 n—3 n—2

where the first is for the — sign and the second for the + sign. The condition
(1.7.3) a; = aq:t()\(hi)Jr)\(h,hS)+2(n717i)\7r+ il Aln—4))
for some pair (r, j) such that
1<r—(j—ix+|Aj=1) < min{A(h;), A(h;)} and ix<j<n-2
will be indicated graphically by the following pictures

where the first is for the — sign and the second for the + sign. Notice that j is uniquely determined
from the value of r (and it is necessarily an element of supp())). Therefore, we shall denote by i,
the value of j determined by r in (1.7.3). Also, if iy =n — 3, (1.7.3) is equivalent to (1.7.2). More
generally, if #(supp(A\) N A) = 1 and the sign of € in (1.7.1) is the same one as on the right hand
side of (1.7.3), then (1.7.3) becomes

(1.7.4) a;, = a;gT iy FA()Fntl=ir=2r) for some 1 <7 <min{A(hi,), A(hi)}.

Similarly, if the sign of € is the same one as on the right hand side of (1.7.2), then (1.7.2) becomes
(1.7.4).
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We also consider the following condition on a,/a,—;:
(1.7.5) an = ap_1qEOn—1)TA(n)+451-252)
for some s1, s9 € Z such that
2<2s1<n—f—1 and 1 < so <min{A(hp—1),A(hpn)}.
Condition (1.7.5) will be indicated graphically by the following pictures

n—1 n—1
| 4
51,8 I'sy,s
L2 L2
n—3 n—2 n n—3 n—2 n

where the first is for the — sign and the second for the + sign. Notice that, if s; = 1 (which is
always the case if n = 4), then (1.7.5) is the analogue of (1.7.2) for the spin nodes. We shall often
omit s; from the above pictures in the case it is 1. If n = 4, we shall regard all three extreme
nodes as spin nodes and we use the picture associated to (1.7.5) to express the ration a;/a; for
i,j € {1,3,4}.

We are ready to state the main theorems of the thesis.

THEOREM 1.7.1. Let g be of type Dy. Then, w € P is such that V,(w) is a minimal affinization
of V() if and only if w is of the form (1.7.1) with the parameters a; related by one of the conditions.

(a); The parameters are related by either of the following pictures where {j, k,{} = {1,3,4}:

J J

or

(b); The parameters are related by either of the following pictures where {j, k,1} = {1, 3,4}
with j >k and s = A\(ly) +3 —7:

J J
bO PO
I I s ! 1
5y Ll -«-J Ll
or
l 2 k l 2 k
. ———————— e e >
s s

Moreover, these conditions parameterize the distinct equivalence classes of minimal affizations. In
particular, the two pictures listed for each condition give rise to equivalent affinizations.

REMARK 1.7.2. Theorem 1.7.1 was mostly proved in [12]. However, it was conjectured there
that an affinization satisfying condition (a); (denoted (a);, there) was equivalent to an affinization
corresponding to .

This is actually false and we prove that the affinizations satisfying the latter conditions are not
minimal (see Proposition 4.6.4).
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For the next two theorems we assume n > 4.

THEOREM 1.7.3. Suppose #(supp(\) N A) = 1. Then, w € P is such that V(w) is a minimal
affinization of V() if and only if w is of the form (1.7.1) with the parameters a; related by one of
the following conditions.

(a); The parameters are related by either of the following pictures where [ is a spin node:

< or

s >4j

(c); The parameters are related by either of the following pictures where [ is a spin node and
s=Ah)+3—r:

I 4 4 !
T s T s
-« - L—-— R L-
or >
n—3 n—2 n—3 n-—2
- ———————— s m s = == >

(d);"® The parameters are related by either of the following pictures:

< or >

where [ is a spin node and t = A(h;, )+n—iy+2—2s—r, and, if r < tand {I,I'} = {n—1,n},
then
A(hy) +3 —r > min{l, A(hy) }.

Moreover, these conditions parameterize the distinct equivalence classes of minimal affizations. In
particular, the two pictures listed for each condition give rise to equivalent affinizations.

REMARK 1.7.4. Notice that condition (a), of Theorem 1.7.3 degenerates to that of Theorem
1.7.1 when n = 4. Similarly, condition (b), degenerates to condition (a),, condition (c); degenerates

to condition (b)], and condition (d);”* degenerates to condition (b)} if I = n — 1 and to condition
(b)] if I =n.

THEOREM 1.7.5. Suppose #(supp(\) N A) > 1. Then, w € P is such that V,(w) is a minimal
affinization of V;(\) if and only if w is of the form (1.7.1) with the parameters a; related by either
one of the conditions (a);, (b);, (¢)] in Theorem 1.7.3 or by the following conditions.

(d);”® The parameters are related by either of the following pictures:
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< or >

where [ is a spin node and k = A(h;, ) —|A|p,—1+n—fr+2-2s—r, t = [A|p, 1+ r—i1+k
and, letting = {l,!'} = {n — 1,n}, the parameters satisfy the following conditions:

(i) If r <k, then A(hy) + 3 —r > min{l, \(hyr)}.

(ii) If p € supp(A\) N A\ {fa}, 0 <k <k and 1 <’ < s are such that

L<E":= p)Ap+n—p+2—r—2s—2¢ =k — Aly) <min{A(hp), \(hy)},

then r — ,|A|f, < K.
(e) The parameters are related by either of the following pictures:

n—1 n—1

|

| |
<,}J 1

or >
n—3 n—2 n n—3 n-—2 n
- ——————— e e e e >
1 1

(f);°"** The parameters are related by either of the following pictures

‘ <J !
t I s1,s t I s1,s
L71’2 L717 2

n—3 n-—2

or >
n—3 n-—2 -
- s -—
r r

where [ is a spin node, t = A(hy) + 2s1 + r — s2, and, letting {I,I'} = {n —1,n}, k =
t — (i —ix + |Ai,—1) and k =7 — (i —ix + |A]i,—1), the parameters satisfy:

(i) k=15 >1,s5 <2 k<2 with k = 1if s5 = 2. Besides, if i, < f\, given
i,i € supp(\) and max{0,k — \(h;)} < k' < max{k,so} such that i, <i <i < fy,
ig <iand 0 <i—i,+ 4 |N;_; —4+4 — 4,|N\i—1 + K is even, then

1- . S
s1 < 5(2 — 1 + ir’)"{—l — 1+ — it’)\’i—l + k/) + 1.
Moreover, if i < fx, given i,i € supp()\) and max{0,k — A(h;)} < ¥ < max{Fk, s2}
such that iy <i<¢ < fyand ¢ —i+ ;|\;_1 +2s1 —k+ k' +2 — A(hy) is even then

1 - 1 -
either §(i—i+i\)\\g_1+231—k—i—k'—i—Z—)\(hl/)) < s1 or 5(i—i+i\)\\g_1—|—2sl—k—i—k'—i—Q—)\(hl/)) > 2s7.

(i) k= sy =1, i, > i, and
kE<Xhyg)+ir—ir+n— fr—1

Besides, if 4, < fy, given 4,7 € supp(A) and max{0,k — A(h;)} < k" < k such that
i <i<i< fy;i.<iandi-—1,.+ ir|>\|g_1 <i—1+ ir|/\|i71 — k‘/, then

sp <i—ip+ i [Nict — K —i4ir — 5 |Al_ + 1.

Moreover, if i, < fy, given i,7 € supp(\) and max{0,k — A(h;)} <k < k such that
ir <1i <1< fy then

either A(hp) +1+k—k —i+i— M1 <1 or Ahp)+14+k—K —i+i— ;|A;_1 > so.
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(iii) & > 1, k = s3 = 1. Besides, if i, < f, given i,1 € supp(A) and 0 < s} < s; such
that 4, < <i < fy; 4, < with either I'>0o0ri, <i,and i — i, + ;,|N\i—1 +25] <
1 — 1y + €|)\|i'r_17 then
either k < i—i,+; | Alj_1—i+ir—i |ANic1—281+1 or k> i—ip+i | Aoy —i+ir—i, | Ai—1—281+A(h).
Moreover, if 4, < fy, given 4,i € supp(A\) and max{0,k — A(h;)} < k' < k such that
ir <i<i< fa,0>0 and —A(hy) +9 — i+ 4 |Aj_y — i+ i — 4. |Ai—1 + & is even,

then
. 1 = .
either s; > 5(7)\(1171) +i— i+ i Ay — i+ i — i N1 + )
1 _
or 5(—)\(hn) +i =i+ i Ay — i i — i N1 +E) > 281 — 1.

Moreover, these conditions parameterize the distinct equivalence classes of minimal affinizations.
In particular, the two pictures listed for each condition give rise to equivalent affinizations.

REMARK 1.7.6. The extra conditions (i) and (ii) listed within family (d) assure that the cor-
responding modules V,(w) are not larger (in the sense of affinizations) than any of the modules
corresponding to families (c¢) and (f), respectively. The three extra conditions listed within family
(f) assure that there is no other element in the same family which is smaller.



CHAPTER 2

Further notation and concepts

In this chapter we collect several previously proved results which will be used in the proofs of
our main results. In particular, we recall several results concerning the theory of qcharacters which
will be our main tool later on.

2.1. Hopf algebra structure and duality

The following assignments,

A )=z} @1+k oz, Alr;

7 7
S(al) =k twl, S@p)=—aiki, Sk =k,
e(m;t) =0, E(kiﬂ) =1,

for all i € I, define a structure of Hopf algebra in U,(g), where A is the co-multiplication, ¢ is
the co-unity and S is the antipode. The algebra U,(g) is also a Hopf algebra and the structure
maps can be described exactly as above using the Chevalley-Kac generators. However, a precise
expression for the comultiplication in terms of the generators xfr, Ry k:iil is not known (see [2]
and references therein).

=27 @k H1ea, AR =k @k,

7 )

Given a finite-dimensional U,(g)-module V', let V* denote the dual module defined using the
antipode as usual, and similarly for U,(g*). Given A € Pt and w € P;r, we have:

(2.11) VO V00 and  Vyw) = Vyw)
where

(2.1.2) AF = —woA and (@*)i(1) = Wagi(qg " ).

Here, w - ¢ = j iff wow; = —w; and kY is the dual Coxeter number of g. For a proof of the second

isomorphism in (2.1.1) see [17].

We will also need a different kind of duality established by using the Cartan involution: the
unique algebra automorphism w of U,(g) such that 23" + —aF, k' + kF! for all i € I. Given a
Uy(g)-module V, denote by V' the pull-back of V' by w. It is not difficult to see that a highest-weight
vector of V() is a lowest-weight vector of V,(A)“ and, hence, V;(X)¥ = V,(A)*. The situation is
more interesting in the affine case. The following proposition is easily established.

ProrosiTiON 2.1.1.

(a) There is a unique algebra automorphism & of U,(g) given by

() = —af Whig) = ~hiz,  @(67,) =07, Gk =kT".

ir —
Moreover, we have
(WRw)oA=A%ow,
where A°P is the opposite comultiplication of Uy(g).

15
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(b) For all a € C*, there exists a Hopf algebra automorphism 7, of U,(g) such that

Ta(l':»t ) = arm':'t Ta(hi,r) - arhiﬂ‘? Ta(k;‘:l) = kzj:l

2,77

O

Given a U,(g)-module V, denote by V* the pull-back of V by & and by V (a) the pull-back of
V by 7,. It is easy to see that, if V' is highest-/-weight module with highest /-weight w, then V' (a)
is also a highest-¢-weight module with the highest ¢-weight w® determined by

(2.1.3) wi = w;(au).

Moreover, a highest-f-weight vector of V,(w) is a lowest-f-weight vector of V,(w)® and

(2.1.4) O(AF(u)) = (AF(u))™' forall icl.

It follows from (2.1.1) and usual duality arguments for Hopf algebras that, the lowest ¢-weight of
Vy(w) is (w*)~! with a = ¢"". In particular,

(2.1.5) Vo(w)® = Vy('w)

where *w is defined by requiring that

(2.1.6) (w) = (W )).

The following proposition is well-known and is easily proved by considering pull-backs by the
morphisms given by Proposition 2.1.1.

PROPOSITION 2.1.2. Let w = [[;c; Wia;,m; and @ = [[;c; Wip,,mi» With a;,b; € C* and m; €
Zso. If
a; bj .o
— == for all 1,7 €1,
a; 7

then Vy(w) =y, () Vo(w@). O

2.2. The /-root lattice

Given i € I,a € C*,m € Z>g, following [4], define
i = wiag2 | [ @,
J#i
We shall refer to o 4 as a simple ¢-root. The subgroup of P generated by the simple ¢-roots is called

the ¢-root lattice of U,(§) and will be denoted by Q. Let also Q1 be the submonoid generated by
the simple /-roots. Quite clearly wt(o; q) = ;. Define a partial order on P by

p<w if wpteQf.

It is well-known that the elements o; , are multiplicatively independent, i.e., if (i;,a;),7 =1,...,m,
is a family of distinct elements of I x C*, then

m
(2.2.1) Haf]{aj =1 & kj=0forallj=1,...,m.
j=1
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2.3. Diagram subalgebras and sublattices

By abuse of language, we will refer to any subset J of I as a subdiagram of the Dynkin diagram
of g. Let gy be the Lie subalgebra of g generated by xgj, j € J, and define n:J]E, hs in the obvious
way. Let also @ be the subgroup of () generated by «;,j € J, and ij =RT™NQy. Given A € P,
AJ is the restriction of A to h% and let A’ € P be such that A7 (h;) = A(h;) if j € J and A/ (h;) =0
otherwise. Diagram subalgebras g; are defined in the obvious way.

Consider also the subalgebra U,(g.) generated by k]j-d, hj,r,x;%s forall j € Jyr,s € Z,r #0. If
J = {j}, the algebra U,(g;) := U,(§s) is isomorphic to U, (sly). Similarly we define the subalgebra
Uqy(97), etc.

For w € P, let w; be the associated J-tuple of rational functions and let P; = {w;: w € P}.
Similarly define PJJ“. Notice that w can be regarded as an element of the ¢-weight lattice of Uy (g.).
Let my : P — P denote the map w — wy. If J = {j} is a singleton, we write 7; instead of 7;. An
l-weight w € P is said to be J-dominant if wy € Pj. Let also Q5 C P be the subgroup generated
by mj(ejq),j € J,a € C*. When no confusion arises, we shall simply write o, for its image in
Py under 7y. Let

Ly Z[QJ] — Z[Q],
be the ring homomorphism such that ¢j(a;,) = a4 for all j € J,a € C*. We shall often abuse of
notation and identify Q; with its image under ¢;. In particular, given p € P, we set

pQy ={pa:ac ()}
It will also be useful to introduce the element w”’ € P defined by

(w’)j(u) =w;(u) if jeJ and (w’);(u) =1 otherwise.

2.4. Characters and qcharacters

Let Z[P] be the integral group ring over P and denote by e : P — Z[P], A ~ ¢, the inclusion
of P in Z[P] so that e*e# = e*T#. The character of an object V from C, is defined by

ch(V) = dim(V},)e".
HeP

For A € P, let m)(V) be the multiplicity of V,(\) as a simple factor of V. It is well-known that
the numbers m, (V') can be computed from ch(V') and vice-versa.

Similarly, for an object V from (~?q and w € P, let m,, (V) be the multiplicity of V(w) as
a simple factor of V. We now turn to the concept which plays a role analogous to character for
the category C,. It was introduced in [18] under the name of qcharacter. In particular, one can
compute the multiplicities m,, (V') from the qcharacter of V.

Let Z[P] be the integral group ring over P. Given x € Z[P], say
X=>_ x() p,
pneP

we identify it with the function P — Z, u — x(p). Conversely, any function P — Z with finite
support can be identified with an element of Z[P]. The qcharacter of V' € (~3q is the element qch(V)
corresponding to the function

p— dim(V,,).
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We shall denote by wt(x) the support of x € Z[P]. In particular, we set
wie(V) = wte(qeh(V)) = {p € P : V. # 0}.

Given an /-weight module V' and a vector subspace W of V', let W,, = W N'V,,. We shall say
that W is an ¢-weight subspace of V' if

W= @ WnV,.
nePpP
In that case, we set
qch(W) =) " dimW,,  and  wt(W) = wte(qch(W)).
pnepP

LEMMA 2.4.1. [22, Lemma 5.4] Let V be an object of C4, pt € wty(V) and v € V,,. Then, for

each j € I, Uy(gy)v is a sub-U,(h)-module of V and wt,(U,(g;)v) € pQy;j- O

The next theorem was conjectured in [18] and proved in [17].

THEOREM 2.4.2. Let V be a quotient of Wy (w) for some w € PT. If V,, # 0, then p < w. O
THEOREM 2.4.3. [18, Lemma 2] Let V,W € C,. Then qch(V @ W) = qch(V)qch(W). O

Frenkel and Mukhin proposed in [17] an algorithm that associates an element of Z[P] to each
w € P' and conjectured that this element should be qch(V,(w)). We shall refer to this algorithm
as the FM algorithm. It is now known that the conjecture is not true for any w € P*. However,
the following theorem proved in [17] has been shown to be very useful.

THEOREM 2.4.4. If w € PV is such that V,(w) is f-minuscule, then qch(V,(w)) can be computed
using the FM algorithm. O

REMARK 2.4.5. We refer the reader to [36, Section 4] for more details on the FM algorithm,
including a more detailed explanation of its definition, a connection with the theory of blocks and
elliptic characters, a proof of Theorem 2.4.4, and examples of its usage.

2.5. Right negative (-weights

The following proposition is well-known, but, to the best of our knowledge, there is no proper
proof in the literature other than the one given in what follows.

PROPOSITION 2.5.1. Let A € P* and suppose V,(w) is a minimal affinization of V;(\). Then,
there exist a; € C*,i € I, such that a;/a; € ¢ for all 4,5 € I and w = [Licr Wian(hs)- O

PRrROOF. After Theorems 1.6.1 and 2.6.5, it remains to consider the case that g is of type D or F,
supp(A) contains a subdiagram of type D, and the trivalent node i¢ is not in supp(A). Let Iy, I, I3
be the 3 connected components of I\ {ig} and set J, = I}, U {ip} U I3 for k = 1,2. It follows from
Proposition 2.6.4 and Theorem 1.6.1 that there exist a; € C*,7 € I, such that w = Hiel Wi a; A(hy)
and, moreover, a;/a; € g% if i,j € I, for some k. By contradiction, assume a;j/aj ¢ ¢  fori e I,
and j € I. It is known (from the main result of [2], for instance) that

Vi) 2 Vi) © Vi),
where
u {wh, if a;/a; ¢ ¢  foriel,jels;

w’t,  otherwise.
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and v is such that pr = w. In particular, V,(w) is not a prime representation. Let @ € PT be
such that wt(zo) = A and

Vy(wo,) is a minimal affinization for k& =1,2.

Such zo clearly exists and satisfies condition (ii) in Theorem 2 of [7] which, in combination with
[7, Theorem 1], implies that V,(zo) is prime. In particular,

Vy(mm) # Vy(1') @ Vo ('),
where

= 7

, wolt, ifa,-/ajgéqz fori e Iy,j € Is;
zo’l, otherwise.

and v is such that p'v’ = w. Since Vy(p') ® V4 (V') = Vy(w) as Uy(g)-modules, it clearly follows

that [V (w)] < [V4(w)], contradicting the minimality of Vg (w). O
Set
(2.5.1) Yis = wigs and Ais =g, 1€l,5s€.

We shall denote by Pz the subgroup of P generated by Y;,,% € I,s € Z, and we similarly define
the subgroup Qz of O and the monoids P'Z" and Q'Z".

COROLLARY 2.5.2. If w € P is such that V,(w) is a minimal affinization, there exists @ € Pj,
such that V(=) is an affinization equivalent to V,(w). O

REMARK 2.5.3. The reason for defining 4; s := oy

i,qo—1 instead of simply A;s := a4 is to
match with the notation of [18].

We also introduce the following notation. Given i,j € I,i < j,r € Z,m € Z>, define

m—1

Vi = T] Yirsok = wignirsm,
k=0

,jT HAk rik—it1 and A],z,r _HAJ+Z kor+k—it+1-
k=i k=i

DEFINITION 2.5.4. [17] Let w € Pz \ {1} . Define
(2.5.2) r(w) := max{s € Z: Yzjts1 appears in w for some i € I}.
w is said to be right negative if Y; ,(,,) does not appear in w for all i € I.

Observe that the product of right negative ¢-weights is a right negative ¢-weight and a dominant
{-weight is not right negative.

PROPOSITION 2.5.5. [45, Theorem 3.2] Given, i € I, r € Z, and k € Z>¢, all the elements of
wte(Vg(Yirk)) \ {Yiri} are right negative. Moreover, if p € th(V( Yirk)) \ {Yirk} is such that
r(p) < r+ 2k, then

YWSY;rJrz(sH H Yiriost1k—s for some s=0,...,k— 1.
.7 Czy—fl

In particular, 7(p) =7+ 2k >+ 2(k = 1) = (Y1) O
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2.6. Reduction to diagram subalgebras

If J C I we shall denote by V;(\;) the simple U,(gs)-module of highest weight A;. Since C, is
semisimple, it is easy to see that, if A € PT and v € V() is nonzero, then Uy(gs)v = Vy(Ay).

LEMMA 2.6.1. [10, Lemma 2.4] Suppose ) # J C I defines a connected subdiagram of the
Dynkin diagram of g, let V be a highest-/-weight module with highest-/-weight w € PT, \ = wt(w),

v € VA \ {0}, and Vj = Uy(§)v. Then, m, (V) =my,(Vy) for all p € A — Q7. O
Keeping the notation of Lemma 2.6.1, notice that if V is irreducible, then

(2.6.1) VJ = Vq(wj).

Hence,

(2.6.2) vewQ; = dim(V(w),) =dim(Vy(wy)u,)-

LEMMA 2.6.2. [10, Lemma 2.6] Let ig € I be such that
I=JyU{ip}UJo (disjoint union)

where J; is of type A, Jo U {ip} is connected and c;;, = 0 for all j € Jy, k € Jo. Let w € PT, A =
wt(w), and suppose V;(w ) is a minimal affinization of V,(A;,). Let also

w=X— Z sjo;  with s; € Z>o forall jeTI\ip.
jen{io}
If m,(Vy(w)) > 0, then s; =0 for all j € J;. O

DEFINITION 2.6.3. Suppose g is of type D or F and let ig € I be the trivalent node. A connected
subdiagram J C I is said to be admissible if .J is of type A and J\{io} is connected. If g is of type
A, then any connected subdiagram is admissible.

PROPOSITION 2.6.4. [10, Proposition 4.2] Let ) # J C I define an admissible subdiagram,
w € Pt and A = wt(A). If Vy(w) is a minimal affinization of V,()), then V (w,) is a minimal
affinization of V(\;). O

For information and comparison purposes, we recall the partial classification of the minimal
affinizations for g of types D or E proved in [10].

THEOREM 2.6.5. Let g be of type D or E, A € P*, and J = supp(\). Let also ig € I be the
trivalent node, and I;,j = 1, 2,3, be an enumeration of the 3 connected components of I \ {ip}.

(i) If J is of type A, then V,(w) is a minimal affinization of V,(\) iff V,(wy) is a minimal
affinization of V().

(ii) If J is not of type A and ig € supp(A), then V,(w) is a minimal affinization of V()
iff there exist distinct r,s € {1,2,3} such that Vy(wp ) and Vy(wp ;) are minimal
affinizations of Vy(Ap7,) and Vi(Ap 1,), respectively. O

REMARK 2.6.6. We can express part (ii) of this theorem in terms of the pictorial notation of
Section 1.7. Namely, the 3 equivalence classes of minimal affinizations correspond to the pictures
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or, equivalently, the ones with all directions inverted. Notice that such pictures do not show up in
Theorems 1.7.1 and 1.7.3 and that the second and third do not show up in Theorem 1.7.5 as well.

If w € P is J-dominant for some subdiagram .J, set
X7 (w) = w15 (wj ach(Vy(w.)))-
PROPOSITION 2.6.7. [22, Corollary 3.15] Let J C I, w € PT and suppose p € P satisfies:
(i) p € wty(Vo(w)),
(ii) p € Py,
(iii) there is no @ > p satisfying @ € wty(V;(w)) and p € wte(xs(=)).
Then wty(x.s(p)) C wte(Vy(w)). O
REMARK 2.6.8. Notice that taking g = w in Proposition 2.6.7, it follows that wty(ys(w)) C
Wt (Vg (w)).

Let ht denote the usual height function on the root lattice @, i.e., ht(>_, m;cy) :== >, m; and,
given a € Q, set

ht(a) = ht(wt(av)).
LEMMA 2.6.9. [22, Theorem 5.1] Let A € P,V =V (A), and p € P. Assume p < X and that

there exists ¢ € I such that the following conditions are satisfied:
(i) there exists a unique i-dominant ¢-weight v € (wty(V) N p Li(QE})) \{p} and dimV,, = 1;
(i) :UXTV,, =0 for all r € Z;

(iil) p & xqiy(V);

(iv) if v’ € wto(Uy(§:)Vo) is i-dominant, then ht(2’A™") < ht(vA™!);

(v) for all j # i, {v/ € wte(V) : ht(/ A7) > ht(puA™ ")} N p Qpyy = 0.

Then, p & wte(V). O

PROPOSITION 2.6.10. [41, Theorem 3.4] Let w € PT. Suppose that M C P is a finite set of
distinct f-weights such that:

(i) P* M= {w}
(ii) for all p € M and (i,a) € I x C*, if ua;al & M, then uaj7ba;; ¢ M unless (j,b) = (i,a);
(iii) for all u € M and i € I, there exists v € M, i-dominant, such that

ach(Vo(m(w)) = > mi(n).

nepQinnNM
Then,
ach(Vy(w)) = Y p.

pneM

2.7. Assorted results for type A

We now collect several known results for g of type A,, which will be relevant for us.
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Given w € PT, it is not difficult to see that there exist unique m; € Z>o, ajx € C* and

Tik € Z>1 such that
m;
w = H H wi7aikzrik

iel k=1
with

m;
LA and Y = wh(w) ()
! k=1

forallie I, j #1and 0 < p < min{r;;,r;}. This decomposition is called the g-factorization of w.

THEOREM 2.7.1. [8, Theorem 4.11] Let g = sl and w = H;nzl Wia;,r; be the g-factorization of

w € P, where i is the unique element of I. Then, Vy(w) = Vy(wiar) @ @ Vo(Wian rm). O
COROLLARY 2.7.2. Let g = sly and w, = € P*. If the set of ¢-factors of ww, counted with
multiplicities, is equal to the union of the sets of g-factors of w and zo, then
Vy(wm) = Vy(w) ® Vy(w).
O

For g = sly, the gcharacters of the Kirillov-Reshetikhin modules are known (see [18, formula

(4.3)]):

r j—1
(2.7.1) ach(Vy(wiar)) = @iar | 1+ Y [] (@iagr-1—2m) ™"

7=1m=0
Combined with Theorems 2.4.3 and 2.7.1, this describes the qcharacters of every finite-dimensional
simple Uy (slz)-module.
THEOREM 2.7.3. [21, Theorem 3.10] If V,(w) is a minimal affinization, then V,(w) is thin, i.e,
dim(Vy(w)y) =1 for all p € wt,(Vy(w)). O
PROPOSITION 2.7.4. [10, Proposition 3.3] Let w € P and A\ = wt(w). Suppose:

(i) V4(w) is not a minimal affinization of V,(\);
(ii) Vg(wn i) is a minimal affinization of Vi (Ap (;y) for i = 1 and 7 = n.

Then, my_y(Vy(w)) > 0 where 6 is the maximal root of R. O

PROPOSITION 2.7.5. [12, Proposition 3.4] Assume n > 2. Let myi, my, € Z>,a1,a, € C*, and
W = W11 ,m1 Wn,an,m,- Lhen, we have an isomorphism of Uy (g)-modules:

Vy(w) = @D Vy((m1 — thwr + (my — twn),
t=0
where
B {p, if ay/a, = ¢tmTmntn=1=2) for some 0 < p < min{my, my,},

min{my, my}, otherwise.



CHAPTER 3

On qgcharacters and tensor products for type A

In this chapter we study several results about the category Eq in the case that g is of type
A, which will be crucial in the proof of the theorems stated in Section 1.7. Thus, throughout the
chapter g is of type A,. The main results of this chapter are Propositions 3.5.1 and 3.6.1.

3.1. Tableaux and /-weights

In this section we review Nakajima’s description of {-weights in terms of tableaux [44]. Recall
that
Ai,s = Ijs— IY; s+1Y 1 3}/;11 s?

where we set Yy =1 =Y, 41, = 1 for convenience.

Consider the fundamental representation V(Y1 ). Its qcharacter is given by

n
(3.1.1) ach(Vy(Y10)) = Vi (14D A7), Z i YLt
j=1

Represent the element Y,~; S+1E7S+i_1,i =1,...,n+1, by the picture 8. Given such a box 57
we shall refer to ¢ as the content of the box and to s as its support. Thus, wte(V;(Y1s)) can be
described by the following graph

s 1,s+1 s 2,542 n,s+n 8

where the label (7, s+1) on the i-th arrow indicates that s is obtained from S by multiplication

by A, Sl_H and (3.1.1) becomes:

n+1

(3.1.2) ach(Vy (Y1) Z-

Let B ={1,...,n+1} equipped with the usual ordering < coming from Z. Given k, s € Z,k > 0,
a column tableau T of length k& with support starting in s is a map

T:{1,...,k} =BXxZ
such that, if we denote by T'(j)2 the Z-component of T'(j), then
(3.1.3) T()e=s+2k—75) forall j=1,...,k
We represent T' by the picture:

(3.1.4)

23
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and T'(j); denotes the B-component of 7(j). For notational convenience, we set 7'(0); = 0. Notice

that we can think of this picture as a vertical juxtaposition of the boxes 2(b—j) with explicit
s+2(k—j

mention of the support of the k-th box only since the others are recovered from it. Given such a
tableau, we associate to it an element w’ € P given by

k

o | (I
! s+2(k—j)
Jj=1

REMARK 3.1.1. Nakajima’s original definition regards T as a map Z — B U {0} such that
T(a) =0if and only if a ¢ {s,s+2,...,s+2(k—1)}. Thus, in our notation, 7'(j)2 corresponds to
the j-th element of the support of 7" in Nakajima’s notation while 7'(j); is the value it assumes at
that element.

A tableau T is a finite sequence of column tableaux T' = (13,7, ...,T,,). The shape of T is
the sequence of lengths and beginnings of the support of the elements of the sequence. Thus, if
Tj has length k; and support starting at s;, the shape of T is ((k1, s1), (k2,52), ..., (km, Sm)). We
represent 7' graphically by horizontal juxtaposition of the associated pictures (3.1.4) in such a way
that the edge of a given box of T} touches the edge of at most one box of T}, and such touching
occur if and only if the two boxes have the same support:

R
T2 Sm

T

In particular, if the picture is connected, the supports of all boxes have the same parity and can
be recovered from the support s,, of the last box of T;,. We associate to a tableau T" the element
w? € P given by

m
wl = H w7
j=1

Henceforth, we shall only consider tableaux whose associated picture is connected and will not
explicitly mention this again.

A tableau T is said to be column-increasing (or simply increasing) if the contents in each column
strictly increase from top to bottom. Note that a column tableau is increasing of length equal to
the content of its last box if and only if T'(j); = j for all j. In pictures, T" it is of the form

for some i € {1,2,...,n+ 1}, s € Z. Notice that if T is such a column tableau, then

(3.1.5) wT = Yis4+i—1-
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In particular, if T is an increasing column tableau of length n + 1, i.e., if T has the form

for some s € Z, w! = 1. Hence, adding increasing columns of length n + 1 to a tableau T does not

change w.

Two tableaux T and T” are said to be equivalent if, for all (i,a) € B x Z, we have
#{j: (i,a) e Im(T})} = #{j: (i,a) € Im(T]’)}

In terms of pictures, T” is obtained from T by permuting the contents of the boxes in the same row.
It is easy to see that w? = w?" if T and T” are equivalent. The converse is not true, but “almost”:

LEMMA 3.1.2. [44, Lemma 4.4] Let T and T” be tableaux. The elements w’ and w”" are equal
if and only if T"and T” become equivalent after adding several increasing column-tableaux of length
n+1toT and T". O

LEMMA 3.1.3. [44, Lemma 4.5] Let T be a tableau. Then, w” € P if and only if T is equivalent
to a tableau T whose every column is increasing of length equal to the content of the last box. [

LEMMA 3.1.4. Let T be a tableau and J = I\ {n}. Then, w’ is J-dominant if and only if,
after adding increasing columns of length n + 1 to T, it becomes equivalent to a tableau 7" whose
columns satisfy some of the following conditions:

(i) is increasing of length equal to the content of the last box;
(ii) is increasing, the content of the last box is n + 1 and the column tableau obtained by
removing the last box is increasing of length equal to the content of its box;
(iii) has length 1 and n + 1 is the content of its only box.

In pictures, each column of T” is of one of the following:

or : or S

for some i € {1,2,...,n} and s € Z.

PROOF. Suppose T is equivalent to a tableau T” as above after adding increasing columns of

length n + 1 and recall that
-1
5 = Yn,s+n+1'

This and (3.1.5) imply that w!?" = w7 is J-dominant. Conversely, suppose w’ is J-dominant and
observe that (3.1.5) implies that any J-dominant ¢-weight can be constructed from a tableau whose
columns satisfy the listed conditions. Thus, let 7" be a tableau whose columns satisfy the listed
conditions and w? = w?”. An application of Lemma 3.1.2 gives that T and T” are equivalent after
adding increasing columns of length n + 1. Let T be the tableau obtained from T after adding
these columns and notice that the columns of 7" also satisfy the listed conditions. U

REMARK 3.1.5. Notice that the above lemma remains valid if we do not list condition (ii).
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Let T be a tableaux of shape (k,s) and suppose j € {1,...,k} is such that i; = T'(j); € I.

Then, given m > 0 such that 2; = 14; +m < n, we have wTA;}i;’S+2(k_j)+ij_1

obtained from T by replacing the content of the j-th box by 13 + 1. In pictures:

’ .
= w!" where T’ is

(3.1.6)

Suppose T is an increasing column tableau. We say that T has a gap at the j-th row if
TGh TG —11>1

The number T'(j); —T(j —1); — 1 will be referred to as the size of the gap. In particular, for j =1,
T has a gap of size i — 1 at the first row iff T'(1); =i > 1.

LEMMA 3.1.6. Let T be a column increasing tableau of shape (k, s) with a gap. More precisely,

suppose T'(j)1 =1y and T(j + 1)1 = Iy with 1 <y <lp — 1 < n, for some j € {1,...,k —1}. Then

‘ - i wl
Y, s42(k—j)+—1 and YlQ—l,s+2(k—(j+1))+lz appear i w- .

PRroOF. By hypothesis, T' contains the boxes

—_y-1 .
s+2(k—j) - }/;171,s+2(k7j)+l1K175+2(k_3)+l1_1

and
_y—1
5+2(k—j)—2 - Ylg—l,s+2(k—j)+l2—2le,s+2(k*j)+l1*3'
Since [; < ls — 1, the negative power produced by s+2(k_j)_2 cannot be canceled with the

positive power produced by S+ 2(k—3) (the box immediately above it). Also, since T is increasing,
T(5')1 < 1y for all j/ < j and T'(j”); > Iy for all 57 > j+ 1. Thus, there is no other possibility

for canceling Yl;—11,3+2(k—j)+l2—2 implying that }/12__1175+2(k_j)+l2_2 appears in w!. The proof that

Y, s+2(k—j)+1,—1 appears in wT is similar. O

3.2. The gcharacters of minimal affinizations

We now study the gcharacters of minimal affinizations in terms of tableaux.

A tableau T with shape ((ki,s1), (k2,52),..., (km,Sm)) is said to be semi-standard if it is
column-increasing and satisfies:

(i) 51> 82> > sm;
(ii) (i,8) € Im(T}) and (7', s —2) € Im(Tj41) =1 > 1.

In terms of pictures, the sequences of diagonal contents from left to right and top to bottom are
decreasing (not necessarily strictly). Given a tableau 7', we will denote by STab(7T) the set of
semi-standard tableaux with the same shape as T

Recall the definition of increasing and decreasing minimal affinizations given after Theorem
1.6.1. Let A € Pt and w € PT be the highest-f-weight of a minimal affinization of V,()), say

(3.2.1) w = [[Yirntn:
el
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Then w = w?, where T = (T", 7", ..., Th) if V () is increasing and T = (T, T?,...,T™) if V4 (\)
is decreasing, with 7% omitted if A(h;) = 0 and, otherwise, T = (T%,... 7Tf\(hi)) with TjZ column-
increasing with length equal the content of its last box and support starting at r;+2(\(h;)—j)—i+1:

(3.2.2)

Notice that T" has |A| columns and

w9 = Yiro(A(hi)—)-

One easily checks using the formulas for p; j(A) that, if w corresponds to an increasing minimal
affinization, then, for every ¢ € supp(\), we have

(3.2.3) ri=ry +2Ahy) —1)+i—47+2  with ¢ =max{l,...,i — 1} Nsupp(N).

Moreover, if the support of the j-th column of 7' starts at s, then that of the (j + 1)-th column
starts at s — 2. Indeed, if they are both columns of 7", this is obvious. Otherwise, consider the last
column of T% and suppose the next column is the first one of T%. Then,

(ri—i+1)—(rg +2A(hg) = 1) —k+1) = (ri—(rp+2\hg) — 1)) —i+k
G239 kv itk
= 2.

In pictures, T" has the form

(3.2.4)

and, since the minimal affinization is increasing, the top of each column is in a row below the top
of the previous column. Similarly, if w € PT corresponds to a decreasing minimal affinization of
V4(N), for every i € supp(\), we have

(3.2.5) ri =1y +2A(hyr) — 1) +i — i +2 with i =min{i +1,...,n} Nsupp(N).
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This time, if the support of the first box j-th column of T is s, then the support of the first box of
the (j 4+ 1)-th column is s — 2. In pictures, T has the form

;

(3.2.6)

and the bottom of each column is in a row below the bottom of the previous column.

For the next theorem, see [41, Corollary 7.6 and Remark 7.4 (i)] and references therein (cf.
Theorem 2.7.3).

THEOREM 3.2.1. Let T be as in (3.2.2). Then, wty(V,(w)) = {w” : T" € STab(T)}. O

We shall need the following constructions associated to a semi-standard tableau T" as in (3.2.2).
Denote by [; the length of the ¢-th column of 7. Given 0 <t < || and 1 < p <[; + 1, consider the
tableau 7T}, which is the unique tableau having the shape of T" and such that

(1) if ¢ > ¢, the #’-th column of T}, does not have gaps;
(2) each of the first ¢ columns of T}, have exactly one gap:;
(3) all gaps have size 1 and occur at the the p-th row of the corresponding column.

In particular, T, = Tij,41 = 1. Also, given 1 < ¢ < f < |A and 0 < j < n + 1, consider the
tableau T, s ; which is the unique tableau having the shape of T" and such that

(1) each column has at most one gap;

(2) ift <cort> f, the t-th column of T¢ f ; does not have gaps;

(3) if ¢ <t < f, the t-th column has a gap at its last row whose size is j minus the length of the
column, if this number is positive, and there is no gap in the ¢t-th column if this number is
negative or zero.

For notational convenience, we set T,y ; = T |5 ; for f > [A\| and T¢. y; = T for f < c as well as for
c> |\ and j =0, and Tj , = T}y, for t > |A].

EXAMPLE 3.2.2. Suppose that T is the semi-standard tableau such that w? = Y, s.k- We now
describe the gcharacter of V' =V, (Y}, 5 x). Note that T' = (T, ...,T}) is the semi-standard tableau
where each column 7} has length n, the content of the last box is n, and the shape of 7" is

(nys+14+2(k—1)—n),...,(n,s+3—n),(n,s+1—n)).
By Theorem 3.2.1, the ¢-weights of V' are represented by semi-standard tableaux with shape of T

Thus, we have the highest /-weight w’ and all the f-weights in wt, (V) \ {Y,,sx} are obtained from
T by changing the contents of the boxes of T" without breaking condition of being semi-standard.
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Consider the case k = 1 first. Then, the corresponding semi-standard tableaux are 77 ;,1 < j < n:

1 1 1
— n,s+1 : . n n—1,s+2 : a1
n—2 - Yn,s n—2 =w " E—— 2 =w bn
n—1 n—1 n
n n4l ntl
L Is+1—n L_ls+1—n L_ls+1—n
1 2
3 3
n—2,5+3 2,5+n—1 | 1,s+n |
_— e - 4 — wT1,2 s 4 — le’l
7] s+1—n [ s+1—n

In other words
n+1

qch Zlep: n,s 1+ZA_,ps

For k > 1, we first notice that we can do the same sequence of changes on the first column.
Suppose we have done j changes on the first column. Then we can do the same type of changes
on the second column up to the j-th change and so on. In other words, the ¢-weights of V; (=) are
parameterized by the set of partitions J(n,k) = {7 = (j1,72,---,Jk) : 0 < jr < -+ < ja < j1 < n}
and the ¢-weight associated to j € J is

(327) Jj = nskH nn+1 —ji,s+2(k=0)"

Moreover, it is known that the multiplicities are all 1 and, hence,
qch(V) = Z ;.
JeJ(n.k)

In terms of fundamental E-Weights we have

-~ 1 5()’3'[
(328> Jj— tnsk H ( n,s+2(k—1) Y lerl s+2(k— l)+jl+1Y —jl,s+2(k—l)+jl) .

Notice that j; > 0 means that there exists a gap of size 1 at the (n—j;+1)-th row of the I-th column
of T'. Moreover, if w; # Y;, s, then j; > 0 which implies YnJrl1 jsta(k—1 )+j1+1Yn,j178+2(k,1)+j1
appears in w; and (see (2.5.2)):
(3.2.9) r(wj)=s+2(k—1)+j + 1
Indeed, since Iy < lg implies j;, > ji,, we have s + 2(k — I1) + ji, > s+ 2(k — l2) + Ji,-

The elements T} ;, will play an important role later on. Note that
p, ifi<t,

T;, corresponds to the partition j given by j; = o
' 0, ifz>t.

We also note that (3.1.6) implies

(3.2.10) wlittr = Ttr A-1

n,p,s+2(k—t) for all 0<t<k, 1<p<n.
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Iterating we get

¢
(3'2'11) wltr = Yn,s,k HA;L;J,S—W(IC—Z) for all l<t<k l=<p=n
I=1
We end this example by specializing it to the case n = 1. In that case, J(n, k) is in bijection
with {7} : 0 <t < k} and we have
k kK t

(3.2.12) ach(V) = w'™ =Y > [T A a0 p i
t=0 t=0 =1

We end this section with the following lemma on the combinatorics of semi-standard the tableau
which will be used systematically in the Section 3.4.

LEMMA 3.2.3. Let T be a semi-standard tableau with shape as in (3.2.4) and (i,s) € B x Z.
Suppose the box S is part of the the j-th column of 7. Then:

(a) The box S is not in any other column of 7'
(b) If S+2 is a box in T', it must be in the j-th column.
(c) if 5_2 is a box in 7', it must be in the j-th column.

PROOF. We write down the proof of (b) only since the other items are similar. Suppose S o

appears in the (j+m)-th column, m > 1. Since T” is as in (3.2.4), this column has a box supported
at s — 2m. Since T" is columns increasing, the content ¢ of the box supported at s — 2m is at
least i +m > i. This contradicts the assumption that 7" is semi-standard because the box S in

column j and the box 872m in column j + m are in the same diagonal from left to right and top

to bottom. Suppose now that S+2 is in the (j —m)-th column, m > 1. This time (3.2.4) implies
that this column has a box supported at s + 2m. Since all columns are increasing, the content ¢
of the box supported at s + 2m is at most ¢ — m < ¢. This contradicts the assumption that T is
semi-standard because the box s 4o 10 column j —m and the box S in column j are in the
same diagonal from left to right and top to bottom. O

3.3. J-dominant /-weights of certain minimal affinizations

For the remainder of Chapter 3, we fix A\ € PT and w € P* such that wt(w) = X as in (3.2.1),
with V,(w) an increasing minimal affinization. Set

ip = max(supp(\)).
It follows from (3.2.3) that
(3.3.1) ri =71iy —io+ 11— 2i|Ni—1 forall i€ supp(A).

For notational convenience, we define r; by (3.3.1) for all 1 < ¢ < 4. Then, for all 1 < i < j it
holds:

(3.3.2) Ty =7 —j+i—2i’)\’j_1.

Let S be the semi-standard tableau such that w® = w as given by (3.2.2) and recall Definition
2.5.4.

LEMMA 3.3.1. If v € wty(Vy(w)) is not right negative, then r(v) = r;, + 2(A(hi,) — 1) and
Tio (V) = Yig i Alhig) -
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PRrROOF. The statement is clear if ¥ = w. Suppose v # w and write v = w where 9 €
STab(S). Since S’ # S, there exists 1 < I < |\| such that the [-th column 5] of S’ has a gap.

Assume [ is the smallest such index. It follows from Lemma 3.1.6 that Y_i )
i,r(w”l

does not appear in w5\, where S\ S is the tableaux

appears in wi for
some 7 € I. By Lemma 3.2.3,Y o
i,r(w”l)

obtained from S’ by removing its I-th column. Hence, Y*E )
i,r(wl

appears in v. Since v is not right
negative, there must exist 1 < I’ < |A| such that S, is gap-free and r(wr) > r(wS). One easily
checks that, if I’ > [ and S}, has no gaps, then r(wSlI’) < r(wS1). Therefore, we must have 1 < I/ < [
and, since both S} and S, are gap-free, it follows that r(w®1) > r(wsl/’) which proves the first
statement of the lemma. Since S’ is semi-standard and the first column is gap-free, all columns of

length 79 must also be gap-fee which implies the second statement. O

Henceforth, assume
A(hy) = 0.
Recall the definition of the tableaux S, f; in the paragraph preceding Example 3.2.2.

PRrROPOSITION 3.3.2. Let J = I\ {n}. Then, the J-dominant elements of wty(V,(w)) are
Wit 0 < § < |

PROOF. It is clear from the definition of S ;1 that wILint1 is J-dominant for all 0 < j < |A].

For proving the converse, we start by showing that the J-dominant ¢-weights of V,(w) can be
represented by elements of STab(,S) whose columns are of the form listed in Lemma 3.1.4. Indeed,
by Theorem 3.2.1, any element of wt;(V;(w)) can be represented by an element of STab(S). Let
S" € STab(S) and suppose S’ has a column which is not of the form listed in Lemma 3.1.4. Look at
the first such column (say it is the j-th column) and consider the first box whose content i < n+1
is not equal to its position [ in the column. In other words, this column contains s for some

s and S +2 with [ < i. If w% were J-dominant, there would exist a column containing the box
s+2. By Lemma 3.2.3, this box would also be in the j-th column contradicting [ < i.

It now remains to check that, if S € STab(S) has columns as listed in Lemma 3.1.4 (which
implies w® is J-dominant), then S’ = S1,j;mt1 for some 0 < j < |A|. If there is no box having
n+1 as content, then S’ =S = S g ,4+1. Otherwise, we claim S = S1,j,n+1 Where j is the number
of the right-most column having n + 1 as the content of its last box. Indeed, since S’ is semi-
standard, it follows from (3.2.4) that the last box of all the previous columns must be n + 1. By
the choice of j and the fact that all columns of S’ are as listed in Lemma 3.1.4, all columns to the
right are increasing having length equal to the content of the last box and, hence, coincide with

corresponding columns of S. O

Given 1 < j <|A|, let I; be the length of the j-th column of S and d; := j — Zi>lj A(h;) (this
means that the j-th column is the d;-th one of length [;). It follows from (3.1.6) that

Sly',nJrl — Sl,'*l,n+1 -1
(3.3.3) W = WA 42\ )—d)

This implies that
-1 -1

51,541 — H
(W ) = Ynmj+2(A(th)—dj)+n—lj+2vdj Yot nem 2 ()
: m>lj

3. -1
(3.3.4) = Yn,% +2A(Rig)+n—io—2j+2,5 *
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We shall also need the following information. By definition of Si j,+1 and (3.1.6), we have

d;
S1in+1l — -1
(335) Wb = w H H znrl+2 hi)—m) H Alj,n,rl.+2()\(hl.)—m)
i=l;4+1 m=1 m=1 ’ ’
and
d]
S jn —
(336) W = w H H Azn 1,ri+2(A(hi)—m) Al],n Ly +2( (hlj)—m)
i=l;4+1 m=1 m=1
This, together with (3.3.1), imply that
10 dj
71'n(‘*‘JSl’j’n) = H H Y, 71+2(A(hy)—m)+n—I H Yn,rljJrQ()\(hlj)fm)Jrnflj
i=lj+1 m=1 m=1
(3.3.7) = Yo iy +20(hag ) +n—io—2j.5°
Notice also that
(3.3.8) wSe s+ = Safe A1

Lpsp=1,r1;+2(A(hi ) —dy)
foral0<c—1<f<|A,1<p<n. Iterating this, we get

p—1 A(h ds
T =w| ] H 11 45
(3.3.9) woeh? = w P Lirs4 2\ (he)—m) Al =11, 4200 -m)
i=ly+1 m=1 m=1

Observe that, by (2.2.1), there exists a unique = = Z. 7, C I x Z such that (3.3.9) can be written

in the form
Se fp — -1
welhr = w H Ag
e=
Notice also that, if Iy < p and r = min{r’ : (i,7") € = for some 7} (such minimum is reached by the
pair (Ig, 71, +2(A(hy) —dy) +1)), then 7 — Iy is the support of the last box of the f-th column of S,

(3.3.10) max{i : (¢,s) € E for some s} =p — 1, p—1Lr+p—1If—1)€E,

and (i,7+p—1y—1) ¢ Z for i # p—1. We shall need the following combinatorial lemma in Section
3.4.

LEMMA 3.3.3. Assume p € supp(}A), c =min{j : [; < p},c < f < ||, let Z and 7 be defined as
above and set & = (p— 1,7 +p—1; —1). If § € STab(S) is such that w¥ = w [eem Agl for some
= with & € Z/, then Z C Z'. In particular, if Z' C Z, we have S’ = S 1.

PRrROOF. Equation (3.1.6) implies that, for obtaining S’ by modifications in S, the element &y

corresponds to the modification
:
r—ly r—ly

Since the f-th column of S is the first column which has a box supported at r—I, if this modification
occurs in the I-th column, we must have [ > f. In particular, if j is the content of the last box
of the I-th column of S/, then j > p with equality holding only for [ = f. In particular, if [ > f,
since S’ is semi-standard of the form (3.2.4), it follows that all the columns to the left of the I-th
one have the last box with content bigger or equal to p + 1, contradicting the first statement in
(3.3.10). Thus, we must have [ = f and, using that S’ is semi-standard with the form (3.2.4) once
more, it follows that all the columns to the left of f-th one have the last box with content at least
p. One now easily checks using (3.1.6) that, even if Z’ would have only the elements corresponding
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to modifying the last boxes of the columns between the c-th and the f-th, we must have = C Z'.
Since the equality Z = Z' implies that w® = wr»_ the last statement follows from the fact that
Vy(w) is thin. O

3.4. Dominant /-weights on certain tensor products

Throughout this and the next sections, we also fix: @ =Y, . ; and let T" be the semi-standard
tableau such that w’ = = as in Example 3.2.2. Our present goal is to describe the elements of

D = wy(Vg(w) @ Vo()) NPT

explicitly in terms of tableaux. The next proposition will follow as a byproduct and will be crucial
for our next goal (Section 3.5).

ProrosiTIiON 3.4.1. The partial order on P induces a total order on D and
dim((Vy(w) @ Vg(@))u) =1 forall —peD.

We will consider separately the following two subcases

(3.4.1) Tio T 2)\(}%0) <r,+2k
and
(3.4.2) rn + 2k < iy + 2X(hiy ).

Assume first that (3.4.1) holds.

LEMMA 3.4.2. The elements of D are of the form v with v € wty(V(w)).

PROOF. Let v € wty(Vy(w)) and p € wty(V,(w)) be such that vy € PT. In particular, vp is
not right negative. Suppose by contradiction that g # zo. Then, by Proposition 2.5.5, p is right
negative and it follows from (3.2.9) that

r(p)=r+2(k—1)+j+1

for some 1 < j < n. Since the product of right negative elements is again right negative, v is not
right negative and Lemma 3.3.1 implies that

r(v) = riy + 2(A(hi) — 1).

Together with (3.4.1), this implies that r(v) < r(u). It then follows that v is right negative,
yielding the desired contradiction. O

Note that, together with Theorem 2.7.3, Lemma 3.4.2 implies the second statement of Propo-
sition 3.4.1 in the present case. We shall now prove that

(3.4.3) D = {wtint1yl 5 =0,1,... K}
where 0 < k' < k is either zero or given by the condition:
(3.4.4) Tig + 2(A(hig) — 1) +n —ig +2 =rp + 2(K' = 1).

Indeed, since the elements in D are of the form vw with v € wty(V;(w)), it follows that v must
be (I\ {n})-dominant and, hence, by Proposition 3.3.2, we must have v = w®sn+1 for some
0 < j <|A|. It now easily follows from (3.3.4) that wSLintier € P+ if and only if 0 < j < k.

Notice that the first statement of Proposition 3.4.1 follows easily from (3.4.3) and (3.3.8). Thus,
henceforth, assume (3.4.2) holds.

LEMMA 3.4.3. If v € wty(V,(w)) is such that veo € D, then v = w.
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PROOF. Obviously, if vzo € D, v must be J-dominant. Let s = r;,+2A(h;,)+n—ip. By (3.3.4),
Y, ! appears in all J-dominant ¢-weights of wt,(V,(w)) except w. We claim that, if v # w, then

n,s

Y,;} appears in vwo, which proves the lemma. By definition, Y, , appears in zo iff r = r, +2(j — 1)

for some j =1,...,k. Since

(3.4.2)
rm+2(k—1) < 71 +2(A(hiy) — 1) < s,

the claim follows. O

Suppose there exists p € supp(\) and k&’ € {1,...,\(hp)} satisfying
(3.4.5) rn+20k—1)+n—p+2=r,+20k —1).
Observe that the pair (p, k') is unique, if it exists. Indeed, assume (p, k') and (p/, k") satisfy (3.4.5).
If p = p’ we must obviously have k¥’ = k”. Otherwise, without loss of generality, assume that
p—7p <O.
To obtain a contradiction, observe that, since V;(w) is an increasing minimal affinization, we must
have

ry = (rp +2(A(hp) = 1)) > p' —p +2
(by (3.2.3), the equality holds if p’ = min{i € supp(\) : i > p}). It follows that,
p—p = rm+2k-D+n—-p+2—-(rp+2k—-1)+n—p+2)

34.
B 2K —1) — (rp + 2K — 1)) > 1y +2(1 — 1) — (rp + 2(A(hy) — 1))
> p-p+2 > 0.
If a pair (p, k') satisfying (3.4.5) does not exist, we set p =k’ = 0. Set also

n—1
=1+ Ahi)
i=p

and recall the definition of the tableaux T} ; at the end of Section 3.1. Consider the subset D' of
wty(Vy(w) ® V(o)) defined as follows.

w wTlte, for 0 <t <k

eD & u=
H H {wsa,fvaTtvP, for K/ <t <k, f<|N,f=c+t—Fk —ewithee{0,1}.

We now show that
(3.4.6) D=D.

Together with (3.2.10) and (3.3.8), (3.4.6) easily implies the first statement of Proposition 3.4.1.
Moreover, if r, +2(k—1)+n—i+2#r;+2(k'— 1) for all i € supp(\) and k¥’ = 1,...,A(h;), then
p =k =0 and, hence, D = {ww}. However, we will prove that this is true independently of the
proof of (3.4.6) (see Proposition 3.4.5).

We begin the proof of (3.4.6) by investigating the elements in D of the form wv with v €
wty(Vy(w)). Recall from Example 3.2.2 that the elements of wty(V;(zo)) are in bijection with the
set J(n, k) ={7 = (J1,J2,---,Jk) : 0 < jp < -+ < jo < j1 <n}. Let j and T’ be the tuple and
tableaux associated to v, respectively. In particular, if v # zo, we have j; > 0 and Lemma 3.1.6
implies that the first column of 7" contributes with the appearance of the factor Y;:,in+2(k—1)+n—i1+2
in v, where

(3.4.7) i1 :=n—j1 + 1
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Recall that

w:H IRTID HH 1,ri+2(k'—1)

el i€l k'=1

This implies that Yj, ;. io(—1)4n—i+2 must appear in w and it follows that there exists 1 < K <
A(hi,) such that

T+ 2(k—1)+n—i+2=r;, +2(k—1).
In other words, the pair (i1, k) satisfies (3.4.5) and, hence, i1 = p. In particular, we have shown

the following lemma.

LEMMA 3.4.4. Suppose 1, +2(k — 1) +n —i+2 # r, + 2(K' — 1) for all i € supp(\) and
K =1,..., (k). If v € wtg(Vy(wo)) is such that wv € D, then v = . O

PropPoOSITION 3.4.5. If r, +2(k — 1) +n —i+2 # r; + 2(k' — 1) for all i € supp(\) and
K =1,...,\(h;), then D = {ww}.

PRrROOF. By Lemma 3.4.3, there is no element in D of the form pzo with p € wty(Vg(w)) \ {w}.
Suppose pv € D with p € wty(Vy(w)) and v € wt,(Vy(w)) \ {=w}. By (3.2.8), the term

1
(3.4.8) Y 2k 1)tn—it2 YimLrn+2(k—1)+n—it+1;

where i = i; as defined in (3.4.7). In particular, it follows from (3.2.8) that
(3.4.9) If Y;, appearsin v, then j>i—1 and r<7r,+2(k—1)+n—i+1.

We show that the negative power in (3.4.8) cannot be canceled with a factor of p. Let S’ be a
semi-standard tableau with shape of S such that w¥ = p. To cancel the negative power in (3.4.8),

S” must have supported at 7, + 2(k — 1) +n — 2i + 3 and, if there exists a box immediately
below it, this box does not contain ¢ + 1. Suppose this occurs at the [-th column of S

Assume first that Tn+2 k—1)tn—2i+3 is the last box of the [-th column of S’. We have two
cases:

(i) the I-th column of S’ has length i;
(ii) the I-th column of S’ has length strictly smaller than i.

In both cases we will get a contradiction.

Case (i). Since S’ has the same shape of S, the columns of length ¢ have their last box supported
at r;+2(v—1)—i+1,v=1,...,\(h;). Thus, we have

m+2k—1)4+n—-2i+3=r+2v—-1)—i+1l=r+2k-1)+n—i+2=r+2v—1)
contradicting the hypothesis of the proposition.

Case (ii). Since the I-th column of S’ has the last box and length strictly smaller than 4,
it follows that this column has a gap. Suppose that r, j <1, is a box of the [-th column of S’

such that , is not a box of this column. Observe that r > r, +2(k —1) +n —2i + 3. By

Lemmas 3.1.6 and 3.2.3, Y_l1 r+j appears in w?'. Since pv € D, Y;_1,4+; must appear in v and,
hence, j =i by (3.4.9). This implies

r+j=r+i=rp,+2k—1)+n—i+3 > rp,+2(k—1)+n—i+2,

contradicting the second claim in (3.4.9).
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Finally, assume that T 42(h—1)tn—2i+3 is not the last box of the [-th column of S’. This

implies that there exists j > ¢ 4+ 1 such that is a box of this column. By

rn+2(k— 1)+n 2i4+1

Lemmas 3.1.6 and 3.2.3, Ygr1+2(k: )tn—2itj+1 appears in w° and, hence, Y., yo(k—1)+n—2i+j+1

must appear in v. Since j > i+ 1, we get
m+2k—-1)+n—-2i+j+1>r,+2(k—-1)+n—i+2

contradicting the second claim in (3.4.9) again. O

Now we suppose condition (3.4.5) is satisfied by (p,k’), for some p € supp()\) and k' €
{1,...,X(hp)}. Set
(3.4.10) b=c—k
and observe that (3.4.5) implies
rm+2k—-1)+n—-2p+14+2=r,+2(k—1)+n—-2p+3=r,+2(k —=1) —p+1.

This means that, writing

(3.4.11) s=r,+2k—-1)4+n—-2p+1,

then,

(3.4.12) s is the support of the p-th box of the first column of 7T,
and

(3.4.13) s+ 2 is the support of the the last box of the b-th column of S.

Since S has the form (3.2.4), it follows that, for all 1 < ¢ < k, if &’ is the support of a box in the
[-th column S, then

(3.4.14) §f<s—2t-1)+2 = I>b+t—1.

Observe that s —2(t — 1) is the support of the p-th box of the ¢-th column of T'. Observe also that,
the b-th column of S is its (1 + A(hp) — k)-th column of length p, or equivalently, the &’-th counted
from right to left. In particular,

if I > ¢, the l-th column of S has at most p — 1 boxes.
We also record that, for all 0 <t < k, we have

(3.4.15) wltr = (HY —1,s4p—2(1—1) Y;OSer 201-1)+ ) (H n,5—2(t+l p—n+1)

=1
_ -1
=Yt stp-20-1)t Ypstp-2043¢ Yns—20k—p)-nt1h—t-

LEMMA 3.4.6. Every element of D is of the form w® w» for some 0 < t < k and S’ € STab(S).

PRrROOF. We will prove that, if 77 € STab(T"), then
(3.4.16) T #Tip = w''w¥ ¢ P forall S’ € STab(S).

Thus, suppose T" # T}, for all 0 < ¢ < k and, by contradiction, suppose there exists S’ such that
wl'w% e P*. Since To,p, = T, we must have 7" # T and, hence, the first column of 7”7 must contain
a gap (necessarily of size 1). The hypothesis 7" # T}, implies that 7" has a column containing a
gap not located at its p-box. Suppose the to-th column of 7" is the first such column and assume the

gap occurs at the j-th box. Then, Lemmas 3.1.6 and 3.2.3 imply that Yj Tl +2(k to)-4n—j+2 Abpears

l
in nd, hence, Y; m r in w®’. This means th
w a d, hence, Jirm+2(k—to)+n—j+2 MUSt appea w s means that 2 (k—to)£n—2j+3
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must be a box in S’. Since this box does not appear at any other column of S’ by Lemma 3.2.3, it
follows that

} . . /
(3.4.17) Tn+2(k_t0)+n_2j+1 is not a box in S

(otherwise, it would cancel the Y rn+2(k—to)+n—j+2 coming from Tn+2(k7t0)+ni2j+3).

Suppose j > p and notice that this implies that,
(3.4.18) if S, is a box in T’ with s’ > s, then it is the i-th box of its column.

Indeed, the condition s’ > s implies that this box is among the first p — 1 boxes of its column. The
assumption on j implies that all gaps in T” occur in or after the p-th box of each column. Hence,
the content of the boxes of T" supported at s’ must be equal to its position in the column.

Say Tn+2(k7t0)+n72j+3 is in the I-th column of S’. Since
o+ 2k —tg)+n—2j+3<r,+2(k—t))+n—2p+3=s—2(tp — 1) + 2,

(3.4.14) implies that I > b+ tg — 1 > b. S” being semi-standard, its b-th column must have a box
whose content is at least j. Since the length of the b-th column is p, this implies that the b-th
column of S” has a gap. Suppose the j’-th box of the b-th column of S’ has a gap and let d be the
content of this box. In particular, since the columns are increasing, we have

(3.4.19) d>j

Thus, s Lo(pjr) 18 @ box in the b-th column of S” while s +a(pminyt2 18 not. This implies that

-1 . s’ . ’ . ’
Yd_175+2(p_j,)+d appears in w” and hence, 8+2(p7j’)+2 must be a box in 71", say, at its I’-th

column. Observe that, s +2(p—j') +2 =s+2(p— (j' — 1)) is the support of the (5' — 1)-th box of
the first column of 7" and, hence, it is also the support of the (j* — I')-th box of the I’-th column
of T'. Moreover, since s + 2(p — j') + 2 > s, (3.4.18) implies that d — 1 = j' — I’. Hence,

(3.4.20) d=j —(1'-1) <y

yielding the desired contradiction.

Suppose now that j < p. Since T” is semi-standard, this implies that tg = 1 and, hence,
rm+2k—t)+n—2j+3=rp+2(k—1)4+n—-2p+1+2(p—j)+2=s+2+2(p—j)

is the support of the j-th box of the b-th column of S’ whose content is at least j (because the
I . . . / . . . . . . M

columns of S are increasing). Since S’ is semi-standard, this implies that rn+2 (h—1)+n_2j13 5 8

box in the I-th column of S’ with [ > b. We have to analyze the cases [ = b and | > b separately.

_ : . . y : :
Ifl =b, rn+2(k—l)+n—2j+3 is a box in the b-th column of S’ and rn+2(k—l)+n—2j+l is not a

box in S’. Thus, the b-th column of S’ has Iz]rn+2(k_1)+n_2j+1 with d > j+ 1. This gap generates
the negative power Yd_—ll,rn+2(k—1)+n—2j+1+d’ forcing Tn+2(k—1)+n—2j+3 to be a box in 7. Observe
that 7, +2(k—1)4+n—2j+3=s+2(p— (j — 1)) is the support of the (j — 1)-th row of the first
column of 7" and recall that, since this column has a gap in the j-th box, all boxes above it have
have content equal to its position in the column. In particular, the content of the box supported
at rp, +2(k—1)4+n—-2j+3isj— 1 <d— 1. Since 7" is semi-standard, the content of the boxes
of the remaining columns supported at r, + 2(k — 1) + n — 2j + 3 must be at most j — 1 and we
have a contradiction.
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Suppose now [ > b. Using that S’ is semi-standard, this implies that the b-th column of S’
. - L
contains a box 7”n+2(k—1)+n—2j+3+2(l—b) with j° > j. Since
b2k —1)+n—2i+3+20—b=s+2+2p— (G —(1—b))
is the support of the (j — (I — b))-th box in the b-th column of S’ and j — (I — b) < j, it follows
that there exists a gap in the b-th column of S’ at the j”-th box for some j” < j — (I —b) <

j. Let d be the content of this box, in particular, d > j”. This generates the negative power

-1 . . .
Ydi17Tn+2(k71)+n72j,,+3+d. To be canceled, it is necessary a box rn+2(k_1)+n_2j,,+3 in T (this

box cannot exist in S’ by Lemma 3.2.3). Look at the first column of S’. Since
rn+2k=1)+n—2"+3=s+2+20p—j") =s+2(p - (5" - 1)),

rn + 2(k — 1) + n — 25" + 3 is the support of the (57 — 1)-th row of the first column of 7" (recall

j"” < j), and this column has a gap at the j-th row, thus the boxes above the j-th have their contents
. oy . / 1

equal to their position in the column. Hence 7" has rn+2 (k1) 4n—2j7"13

d—1 > j” — 1 which implies j” —1 # d — 1. At the other columns of 7" we also cannot have

Tn+2(k_1)+n_2j,,+3, because the contents of the boxes supported at r, +2(k — 1) +n — 25" + 3

are smaller or equal to j” — 2 (because T” is semi-standard). This completes the proof of part (i)
of the lemma. O

S,

in the first column, and

LEMMA 3.4.7. Every element of D is of the form w?/»w?tr for some t = 0,1, ...,k and some

F<IAL

PRrROOF. By the first part of Lemma 3.4.6, we need to show that, if w¥wltr € D for some
S’ € STab(S) and some t = 0,1,...,k, then 8" = S. s, for some f < |A. If, S = S, then
S" = Seyp forany f <c= Z?;pl A(hi) + 1 and there is nothing to do. Thus, assume S’ # S. It
follows from Lemma 3.4.3 that we must also have T, # T' or, equivalently, ¢ > 1. Observe that, if
p =1, then S. s, = S since, in this case, f < |\ < c.

We need to study the structure of the gaps in S’. Since each gap contributes with the appearance
of a term of the form YZ;} in ws/, it follows that Y; , must appear in wTltr, By (3.4.15), Y; , must
be among the following elements:

(3421) )/;7*1,T‘n+2(k7t/)+nfp+l7 1 < t/ < t, and Yn,rn+2t”7 0 < t// <k-—t.
Hence, we must have i € {p — 1,n}.

We start showing that we cannot have i = n (in particular, it follows that each column of S’
can have at most one gap). Indeed, suppose the m-th column of S’ contains such a gap which
necessarily occurs at the last box whose content is n + 1. Since S’ is semi-standard of the form
(3.2.4), this implies that the contents of all the last boxes of the columns to the left of the m-th
column are also equal to n + 1. In particular, if [ < min{m, b}, the content of the last box of the
l-th column of S” is n + 1. Moreover, (3.4.13) and (3.2.4) imply that the support of this box is
s+2(b—1+1). Using Lemma 3.1.6, this implies that

Y;,T’ = Inorp+2(k+b—l4n—p+1)
which contradicts (3.4.21) since k+ (b—10)+ (n—p)+1>k+1>k—t.

Since, as we have observed, we already know that each column of S’ has at most one gap, it
remains to show that there exists f < Z?;ll A(hy) such that the [-th column of S’ has a gap iff
c <1< f, the gap occurs at the last box and its size is p minus the length of that column.

Assume the [-th column of S’ has a gap and let r be the support of the box where the gap
occurs. In particular, since the support of the last box of this column is s + 2(b — [ + 1), we have
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r>s+2(b—1+1). Let us show, by contradiction, that [ > c¢. Assume first that [ < b. Lemmas

3.1.6 and 3.2.3 imply that Yp__117r+p appears in w*. But

3.4.11
r+p28+2(b—l+1)+p( = )Tn+2(k+b—l)+n—p—l—l >rp+2k—1)+n—p+1,
which contradicts (3.4.21). Next, suppose b < | < ¢ which implies that the I-th column of S’ has
p boxes (see comment preceding Lemma 3.4.6). Since, S’ is semi-standard, this implies the b-th
column also has a gap, which is a contradiction by the case [ < b.

Next, we show that if the [-th column has a gap, it must occur at its last box. Indeed, Lemma
3.1.6 and (3.4.21) imply that the content of this box of the gap must be p. Hence, if this were not
the last box, it would follow that the content of the last box is at least p + 1. Since S’ is semi-
standard of the form (3.2.4), this would imply that the last box of the b-th column is at least p+ 1
implying that the b-th column would have a gap (because it has p boxes), yielding a contradiction.
The same reasoning implies that, if ¢ < I’ <[, the last box of the I’-th column has content p and,
hence, has a gap (because its length is at most p — 1). Notice also that, since there is no other
gap in the [-th column, all the boxes but the last must have content equal to their position in the
column. In particular, if the /-th column has m boxes, the content of its (m — 1)-th box is m — 1
and, hence, the size of the gap is p — m. O

Recall (3.4.11) and the definitions of [; and d; in the paragraph preceding (3.3.3) and that, for
fe{c ..., A}, we have [y < p — 1. Then, using Lemma 3.1.6, we see that

f—c
Sefp — | | -1
wrelr = }/;)—1,5+p—2(k’—1+m) YI7,S+P—2(k/—1+m)—1 nc+m—173—2(k/—1+m)+ZC+m

m=0
(3.4.22)
n—1 -1
m> f: i=p i=1
lm=lf

The terms in the first line of the right-hand-side of (3.4.22) are the ones corresponding to the
columns of S, ¢, which are not equal to those of S, while the ones in the second line come from the
columns which were not modified. Observe that there is no cancelation in (3.4.22). Indeed, this is
clear if [y < p — 1 and can be easily checked if [; = p — 1 (it is also guaranteed by Lemma 3.2.3).
Now, a simple comparison of (3.4.22) with (3.4.15) completes the proof of (3.4.6).

It remains to prove the second statement of Proposition 3.4.1, which is clear in the case that
D = {ww}. Thus, we can assume (3.4.5) holds. Fix p € D, say

S,

M = W wa»Pth’P

with 0 < ¢t < min{k,zgzll Ahi) + K'} and f = ¢+t — k' — € for some € € {0,1}. Suppose
S’ € STab(S),T" € STab(T) are such that

! /
WwWwT = p.

Since Vy(w) and V,(zo) are thin, we are left to show that S’ = S, ¢, and T" = T} ,,. For doing that,
notice that (3.2.11) and (3.3.9) have the form

wSetr = H Agl and wltr = oo H Agl

£e=y 1S
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with 21,29 C I x Z satisfying

(3.4.23) (i,r)€Z; = i<p and r<s—2(K —1)+i
while
(3.4.24) (i,r) €2y = i>p and r<s+p,

where s is given by (3.4.11). Setting = = =1 U=y, it then follows from (2.2.1) that there must exist
a partition 2 = =] U Zf such that

w¥ = w H Al and W' =w H Agl.
ez gezl
We shall show that
(3.4.25) g2, CE; for j=1,2,
which clearly completes the proof of Proposition 3.4.1.

We first show (3.4.25) for j = 2. By contradiction, suppose there exists (i,7) € Z2 N Z}. By
(3.1.6), this implies that, for obtaining S” from S, a modification Tiz. — T_i was performed
in some column of S. Since r — i < s by (3.4.24), (3.4.13) implies that this modification can only
be performed in columns to the right of the b-th column of S. In particular, the content of the last
box of b-th column of S’ is equal to p. We claim that the above modification also implies that the
content of the last box of (b+ 1)-th column of S’ is at least p + 1, contradicting the fact that S’
is semi-standard. Indeed, since i > p by (3.4.24), the last box of the modified column has content
larger or equal to p+ 1. Since S’ is semi-standard, the same holds for the last box of the (b+ 1)-th
column of S’ as claimed.

Next, notice that, if either ¢t < k' or t = ¥ and f = ¢ — 1, then Z; = () and we are done. In
particular, we can assume t > k’. Notice also that (3.4.25) with j = 2 implies that 7" is obtained
from T3, by modifications corresponding to elements of =; N =f,. Again by contradiction, suppose
that there exists (i,7) € 21 NE,. By (3.4.23), we have i < p and r < s —2(k’ — 1) 4+ 4. This implies
that, for obtaining 7" from T} p, a modification of the form T, — r, was performed in some
column of T}, with ¢ < p and " < s —2(k’ — 1). Since ¢t > K/, this together with (3.4.12), implies
that the first p — 1 boxes of the first ¢ columns of 7" coincide with those of T}, and, hence, also
coincide with those of T'. In particular, if 1 <[ < k, then the {-th column of T” has a box supported
at s —2(l — 1) + 2 and, if j is its content, we must have

(3.4.26) j<p—1
with equality holding for [ < ¢.
As observed in the paragraph preceding Lemma 3.3.3, we have
&:=p@-1lmin{r:(p—1,r)e=})=pP-1,s-2(t—-1)+p—1) € E.

Since (3.4.25) for j = 2 implies that 2] C =4, it follows from Lemma 3.3.3 that, in order to show
(3.4.25) for j = 1, it suffices to show that we cannot have §, € Zf. Since &y corresponds to the

modification
s—2(t—1) - Iz‘s—m—l)’

if it were &y € =), the previous paragraph implies that such modification would be performed after
the ¢-th column of T;,. Say that the modification is in the [-th column with [ > ¢t. Then, the
content of the box of the I-th column of 7" supported at s —2(I — 1) + 2 is at least p, contradicting
(3.4.26). This completes the proof of Proposition 3.4.1.
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3.5. Simple factors of certain tensor products

We keep the notation fixed in the previous sections and set
A=ww and V=V, (w) ® Vy(w).
Our next goal is to prove the following proposition.

ProrosiTION 3.5.1. V is reducible if and only if either

(3.5.1) (3.4.4) holds with & < |)
or
(3.5.2) (3.4.5) holds with ¥ < k.
If (3.5.1) holds, the simple factors of V' are V4 () and V,(u) where
“ — wsl,k/ n+1wT_
If (3.5.2) holds, the simple factors of V' are V;(X) and V,(p) where
n= wiw .

REMARK 3.5.2. Let i1 = minsupp(A),m; = A(h;),i < n, and m, = k. Define also a; =
g"tmiml i € 1, so that A = [],.; Wi,a;,m,. One easily checks that condition (3.5.1) is equivalent to

ailql)\lio _ q—(|)\\io+mnwn+n—i1+2—2r)
an, ’
for some r € {1,...,min{|A|,m,}}. Indeed, this follows from (3.4.4) and (3.3.1) putting r = £’
Similarly, condition (3.5.2) is equivalent to

PP
agq ql lig _ q\)\|io+mnwn+n—i1+2—2r
G ’

with r — (|A|p—1 +p —i1) € {1,...,min{A(hp), m,}} for some p € {1,...,4p}. Indeed, this follows
from (3.4.5) and (3.3.2) (with (¢,7) = (i1,p)) letting r = [X[p—1 +p — i1 + K.

We prove Proposition 3.5.1 in the remainder of this section. Evidently, if neither (3.4.4) nor
(3.4.5) hold, then D is a singleton and V must be irreducible.

Assume first that (3.4.4) holds, in which case g is the minimum of D = {wwtin+1 : j =
0,1,...,k"}. Set
p; = TowStantt
and recall that Sy j 41 = Sy |z|,n41 for all j > [A]. Proposition 3.5.1 clearly follows from Proposition
3.4.1 together with the following lemma.
LEMMA 3.5.3. We have:

(a) p; € wtg(Vy(X)) for all 0 < j < min{|A|, &' —1}.
(b) e & wte(Vy(A)) if k' < A

PROOF. Since py = A, part (a) clearly holds for j = 0. For j > 0, consider

, .
K= WwSltingg,

We claim that
w € wte(Vg(X)) for all 5 > 0.
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Indeed, using Remark 2.6.8 with A in place of w and J = I'\ {n}, we have wty(xs(X)) C wt,(V4(A))
and, hence, we are left to show that

W € wte(xs(Vg(N)).

Note that A; = w and, therefore, V(A ;) is an increasing minimal affinization whose highest weight
is determined by S. Proposition 3.2.1 then implies that (w*19n); € wty(Vy(Ay)). One easily checks
that

ALy ((w_lwsl’j’") ) = )
completing the proof of the claim. In particular, it follows that u satisfies condition (i) of Propo-
sition 2.6.7 with A in place of w and J = {n}. Equation (3.3.7) nnphes that condition (ii) is also
satisfied. As for condition (iii), (3.3.6) implies that

dj

io
! —1
KBy = A H H Az n—1,r;+2(A(h;)—m) H Alj,n—l,rl,+2()\(hl )—m)
i=lj+1 m=1 m=1 ! !

Hence, there is no v € wty(V4()), v > p; such that p; € wty(xqny(v)), since the elements of

wte(Xn)(v)) are of the form v][].c, A7 with m, € Z>o (see (2.2.1)). It then follows from
Proposition 2.6.7 that

reZ

wto(xfn} (1)) S Wte(Vg(N)).
Part (a) of the lemma now follows if we show that

(3.5.3) pj € Wto(xgny(pe;)) forall 1< j <min{|A[,k" —1}.
Observe that (3.3.5), (3.3.6), (3.3.1) and (3.4.4) imply that
J
-1
(354) s = IL; <H An,rn+2(k’—1—l)+1> :
=1

Moreover, (3.3.7) and (3.4.4) imply that

S .
T (W7H9m) = Yn7rn+2(k/—l—j),j
and, hence,
!
Wn(“j) =Y, orn+2(k —1—35),j nrn,k

One easily checks that, if j < min{|A[,&" — 1}, the above is the g-factorization of m, (7). Thus,
Corollary 2.7.2 implies that

‘/;1(7%(/1;)) = V;](Yn rn+2(k"— 1—]),]) ® V( n,rn,k )

Applying (3.2.12) to the first factor of the above tensor product and comparing with (3.5.4) one
easily deduces (3.5.3).

To prove part (b), consider the tableau S’ formed by the first &' —1 columns of S and S” be the
one obtained by juxtaposing 7" and S\ S’. Note that the hypothesis k" < || implies that S\ S” # 0.
Then,

! iO
ws = l/lk/,'r'k/—‘y-Q()\(hlk/ )—dk/—‘rl),dk/—l H YL‘,T¢,)\(h¢)7
iZlk/-i-l

Ly —1

S“ o
w - H }/Z,TZ,)\(’IZ) Yi,c/,rl )‘(hlk/)_dk’+1 Y’Vl,T’yhk‘?

K’
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and w¥ w5 = A. In particular, V() is the simple quotient of the submodule of V, (w%") @V, (w®")
generated by the top weight space and part (b) follows if we show that

(3.5.5) pr & wie(Vy(w™) @ Vy(w™)).

It is clear from the construction of S’ that Vq(wsl) is an increasing minimal affinization. We
claim that V,(wS") is also an increasing minimal affinization, i.e., that

(3.5.6) Tn =T, =+ Q(A(hl;) — dk/) +n — lk/ + 2.
To prove this claim, set
(357) § =1 + Q(A(hlo) — 1) — 10+ 1.

Then, (3.2.3) implies that
s is the support of the last box of the first column of S,
and it follows from (3.2.3), together with condition (3.4.4), that
(3.5.8) s+ 2 is the support of the last box of the (k — k" + 1)-th column of T

(the (k — k" + 1)-th column of T" is the k’-th one counted from right to left). Therefore, the support
of the last box of the &’-th column of S is

(3.5.9) s— 2K — 1) =, +2(\hy,) — di) — s + 1.
Together with (3.4.4) this proves (3.5.6).
By (3.3.5),
dyy
(3.5.10) My = A ll_I+1 l_I1 o+ 2\ () —m) 1_[1 Al_k/l,n,rlk,—i-Q()\(hlk,)—m)
i=l+1 m= m—

This gives rise to an expression for A~} s as a product of distinct simple ¢-roots:
- -1
A 1[.14]{/./ = H A5
£e=
where 2 C I x Z. Equation (3.5.5) follows if we show that there is no partition Z = Z' UZ" such
that
W T Agt e whe(Vo(w™))  and %" J] A7 € wto(Vy(w®")).
cegr cegr

By contradiction, assume such a partition exists. It follows from (2.2.1) and (3.1.6), that each
element Agl, & € 2, corresponds to adding 1 to the content of a particular box of either S’ or S”.

More precisely, if £ = (i,7), then (3.1.6) implies that the modification associated to Agl is of the

form
T—i — r—i’

Inspecting (3.5.10), one checks that
max{r —i: (i,r) € Z} = s.

Let £ = (i,7) be such that r — i = s. This means that the boxes of S’ and S” supported above s
are not being modified. Together with (3.5.8), it follows that the first £k — k" 4+ 1 columns of S” are
left unmodified. In particular, the content of the last box of the first column of S” is n, since this
column comes from T'. Knowing that %(ws”) is a minimal affinization, this implies, together with
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Proposition 3.2.1, that all first & columns of S” are left unmodified. On the other hand, another
inspection of (3.5.10) (cf. (3.5.9)) shows that
(n,s —2(k' —1)+n) € E.

Since this corresponds to a modification of the form

572(1471) — s—2(k’—1)’

this box must be the last box of its column. Since both V,(w®") and V,(w®") are minimal affiniza-
tions, the modified tableau must be semi-standard and, hence, the last box of each column to the
left must also have n + 1 as content. Therefore, by the previous discussion, (n,s — 2(k' — 1) + n)

=1

cannot be in Z”. Observing that, by construction, the box of S’ having the lowest support is
supported at s — 2(k’ — 1) + 2, it follows that (n,s — 2(k’ — 1) +n) cannot be in Z" as well, yielding
the desired contradiction. (]

Henceforth, assume (3.4.5) holds. Then, by (3.4.6),

p—1
D= {wsc,c+t—k’—l,prim’ wieett—k pltr . <t < min {k‘, Z Ahy) + k/}} ,
=1

where ¢ = 1 + Ef‘):p A(hy) (recall that Sy, = S for f < c and for ¢ > ||, S rp = S,z for
f > |\, and T}, = T}, for t > k). One easily checks that, if either &’ > k or p = minsupp(\), then
p = wwlkr is the smallest element of D. Similarly to the previous case, Proposition 3.5.1 easily
follows from Proposition 3.4.1 and the following lemma.

LEMMA 3.5.4. We have

(a) {v e D:v > p} Cwt(Vy(N)).

(b) If k" > k, then p € wtg(V4(X)) or, equivalently, D C wty(V4(X)).

(c) If K <k, then p ¢ wts(V4(X)).

(d)
)

d) If p > minsupp(A), then {wSc,cH—k”Pth’P kK <t < min {k:, Zg’:_ll A(hy) + k"}} C wte(V4(N)).
(¢) Tf K < k, then {wsc,c+t_k/_1,prt,p .k <t <min {k S A () + k}} C who(Vy ().

PrROOF. Observe that
{veD:v>p}={p, :0<t<min{k k}}
where
e = wiwlte,
Since py = A, clearly py € wty(V4(A)). Define
u; = Wil ltett
We claim that
py € wtp(Vy(X)) forall ¢t=1,...,min{k' —1,k}.
Indeed, using Remark 2.6.8 with A in place of w and J = {p+ 1,...,n}, we have wty(xs(\)) C
wtg(V4(A)) and, hence, in order to prove the claim, we are left to show that
py € wte(xs(Vg(X))) forall t=1,...,min{k" —1,k}.
By definition of p, applying Proposition 3.4.5 to the algebra U,(gs) with w in place of w and =
in place of == in place of o, we get

Volwy) @ Vo(wy) = Vo(wymy).
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Therefore, by Theorem 3.2.1, (wlt»+1); € wty(V,(wo)). One easily checks that
Ay (@t w ) )) =
completing the proof of the claim.
Next, we use Proposition 2.6.7 with A in place of w and J = {p}. The previous paragraph
implies that p; satisfies condition (i) of that Proposition for ¢ < min{k’ — 1, k}. Equation (3.4.15),

with p + 1 in place of p, implies that condition (ii) is also satisfied. As for condition (iii), (3.2.11)

implies that
¢

=A- HAnp—i-lrn—i-Qk 0"

On the other hand, for any v € P{p}, the elements of wty(xqpy(v)) are of the form v [] .oz A, 7"

with m, € Z>¢. Since p < n, (2.2.1) implies that condition (iii) must also be satisfied. It then
follows from Proposition 2.6.7 that

wte (X (py (7)) € Wte(Vo(X)).

Parts (a) and (b) of the lemma now follows if we show that

(3.5.11) py € wo(xgpy () forall 1<j <min{k'—1,k}.
Observe that (3.2.11) implies that
¢
-1
(3.5.12) He = o (H Ap,rn+2(k_l)+n—p+1> :
=1
Moreover, (3.4.15) implies that
(3.4.5)
Wp(“f‘,) = va,rn—i—Q(k—t)—i-n—p,t YZD,TP,/\(hp) = Yp,rp+2(k/—l—t),t YZD,TP,/\(hp)-

One easily checks that, since ¢ < min{k’ — 1, k}, the above is the g-factorization of m,(p}). Thus,
Corollary 2.7.2 implies that

Va(mp(11)) = Vo(YVp o2t —1-00.8) @ Va¥pro ahy)) = VaYVprnt2ti—t)1n—pit) © Va¥pr A(hy))-
Applying (3.2.12) to the first factor of the above tensor product and comparing with (3.5.12) one
easily deduces (3.5.11).

Suppose now k' < k. To prove the first statement in (c), consider the tableau S’ formed by
the first Y10 2 p+1 Ahi) columns of S, the tableau S” formed by juxtaposing the first A(hp) — k' + 1
columns of length p of S and T, and finally the tableau S”’ formed by the remaining columns of S
(i.e., the tableau whose columns are those to the right of the b-th column of S where b is given by
(3.4.10)). Then,

10
w¥ = H Yiriam;) W = (Y w2001y M) k1) Yrn) 5
Jj=p+1

S/// S S// S///
H G p%k/ 1) and w” w = A

In particular, V,(A) is the simple quotient of the submodule of V,(w%) @ V,(w®") @ V(w5")
generated by the top weight space and part (c) follows if we show that

(3.5.13) w i wie (Vow™) @ Vy(w™) @ Vy(w™"))
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It is clear from the construction of S' and S” that V,(w¥) and V,(w®") are increasing minimal
affinizations. On the other hand, (3.4.5) implies that V,(w®") is a decreasing minimal affinization.
In any case, the f-weights of all three factors are represented by the corresponding set of semi-
standard tableaux.

By (3.2.11),

k’
(3.5.14) p=2A (H An,;,rn+2(k—l)> :

=1
This gives rise to an expression for A™'p as a product of distinct simple (-roots:
)\—1“ — H A£—1
{eE

where = C I x Z. Equation (3.5.13) follows if we show that there is no partition = =="UZ"UZ"
such that

ws’ H Ag_l c th(vq(wS’))’ wS” H Ag_l ewtg(Vq(wS”))’ wS/// H Ag_l c th(V(](wS”')),
EGE, £€E” 565”’

By contradiction, assume such a partition exists. As before, each element £ € =, say & = (i,r),
corresponds to a modification of the form

rfi - 'r’—i
in some of S’, S”, S”. Inspecting (3.5.14), one checks that
(3.5.15) max{r—i:iel, (i,r) €=Z}=s and min{i : (¢,r) € E for some r € Z} = p,

where s is given by (3.4.12). This means that the boxes of S’, S”, and S”” with support larger than
s are not modified. Together with (3.4.13), it follows that S” and the first A(h,) — &’ + 1 columns of
S" are left unmodified. In particular, the content of the last box of the first A(h,) — k' + 1 columns

of S” is p since these columns are the first A(h,) — k' + 1 columns of length p of S. Since VCI(ws//)
is a minimal affinization, this implies, together with Theorem 3.2.1, that the first p boxes of every
column of S” are left unmodified.

On the other hand, another inspection of (3.5.14), recalling that k¥ < k, shows that
& =(p,s—2(K-1)+p) €=

This corresponds to a modification of the form

(3516) @5—2(16’—1) — s—2(k’—1)'

Since all the tableaux are column increasing, if the box on which this modification is being performed
is the j-th box on its column, we must have j < p. Hence, it follows from the previous paragraph
that & € 2. We will show that this is a contradiction.

Indeed, by construction, the last box of the last column of length p of S” is supported at
s —2(k' — 1) + 2. If we had minsupp(\) = p, it would follow that S” had no box supported at
s —2(k' — 1), yielding a contradiction. Thus, we can assume that minsupp(A) < p and, hence, the
first column of S” which has a box supported at s — 2(k’ — 1) has length i < p. This implies that,
before the modification (3.5.16) can be performed, we need a modification of the form

s—2(k'—1) 7 o 1)

which implies that (i,s — 2(k" — 1) 4+ i) € Z, contradicting the second statement in (3.5.15).
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We now prove part (d). Fix v = wectrt-+wwTir k' <t < min{k, Zf;ll A(hy) + k'}. Define
V= wieert—k pyTtot
Similarly to part (a), one can prove that
(3.5.17) Ve wy(xs(Vo(N))) € whe(Vg(X)),
where J = I\ {p}.
Next, we use Proposition 2.6.7 with A in place of w and J = {p}. (3.5.17) implies that v/

satisfies condition (i) of that Proposition. Equation (3.4.15), with p + 1 in place of p, and (3.4.22)
imply that condition (ii) is also satisfied. As for condition (iii), (3.2.11) and (3.3.9) imply that

p—1 )\ df
! —1
V=X H H A’Lp Lri+2(A(hi)—m) H Alf,p—l,rlf—l—Q()\(hlf)—m) (HA DpHLrn+2(k— l))
i=ly+1 m=1 m=1

On the other hand, for any n € PE;}, the elements of wt;(x(,1(n)) are of the form 0[], A,
with m, € Z>¢. Since p < n and
io
t2K = f=ctt—K>c=1+Y M) =lp<l<p-1,
l=p

(2.2.1) implies that condition (iii) must also be satisfied. It then follows from Proposition 2.6.7
that

wte(x(p} (V') € wte(Vg(N)).
Part (d) of the lemma now follows if we show that

(3.5.18) v e wty(xgn (V).
Observe that (3.2.11) implies that
t
-1
(3.5.19) v=v <H Ap,rn+2(k—l)+n—p+1> :
=1

Moreover, (3.4.15) and (3.4.22) imply that

t—k

Trp(yl) = H Y, ,s+p72(k’fl+m)71Y rnt+2(k—t)+n—p,t Yp,rp,/\(hp)
=0
t—k
(3.4.5)

=" 1 Youstp—20—150m)=1Yoirp2t0—1-0t Yoy A(hy)
=0
_k/

H p,rp—2(141) p,rp+2(k:’ 1—¢),t prp,)\(hp)

Yp,rp—i-2(k’—1—t),t—k’+ly pr2(k—1—t),t YprpA(hy)
Yo rpt2(k/ —1—t) A(hp)+t—k'+1 Yp 4 2(k'—1—1) t-
One easily checks that the above is the g-factorization of m,(v’). Thus, Corollary 2.7.2 implies that
Va(mp(@) = Vo(Yprr20e—1-1).0) @ Va(Yprot2(k'—1—) A(hy)+—k'+1)
= VoY rmtotk—t)tn—pt) @ Va(Yp o —1-t) A(hp)+t—k'+1)-

Applying (3.2.12) to the first factor of the above tensor product and comparing with (3.5.19) one
easily deduces (3.5.18).
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We now prove (e). Fix v = wSctt-v-100Tr k' <t < min{k, Zf;ll Ahy) + K} If ¢ = K the
result follows from part (c). Suppose t > k’. Define
(3.5.20) V= wwltr  and V= wwlte,

Observe that

(3.5.21) v = “( [T 4. npLrn+2(k— l))

I=k'+1
Similarly to part (a), one can prove that

(3.5.22) v e wte(xs(Ve(p))) € wte(Vy(p)),

where J = {p+1 ,n}. Next, we use Proposition 2.6.7 with p in place of w and J = {p}. (3.5.22)
implies that v’ satlsﬁes condltlon (i) of that Proposition. Equation (3.4.15), with p+ 1 in place of
p, implies that condition (ii) is also satisfied. As for condition (iii), for any n € P{J;}, the elements

of wty(xqpy(n)) are of the form n ], A, 7" with m, € Z>o. By (3.5.21) and (2.2.1), condition
(iii) must also be satisfied. It then follows from Proposition 2.6.7 that

whe(x(py (V")) € Wt (Vg(p))-
Observe that

t
-1
") = () 7T{p}< H Ap,rn+2(kl)+np+l>
I=k/+1
t
= Yo rok A(hp) -k ( H Yp,rn+2(kl)+np>
I=k/+1

Yo rpt 2k A(hp)—k Yprn+2(k—t)+n—pt—k'

(3.4.5)
=" Yo rpt 2k Ahp)—k' Yprpt2(k —t—1)t—k'-

One easily checks that the above is the g-factorization of wp(u’ "). Thus, Corollary 2.7.2 implies that
Va(mp(") =2 Vo(YVprvow ath)—k) @ Va(Yp ok —1—1) 10— )
= VZ](Yp,rp—&-Qk’,)\(hp) ) ®V ( pyrn+2(k—t)+n—p,t— k’)
Thus, applying (3.2.12) to the first factor of the above tensor product one can see that

t
(3.5.23) v =" ( H A;in+2(kl)+np+1> € WtZ(X{p}(Vﬂ)) - Wte(VZI(N))-
I=K"+1

Next, we use Proposition 2.6.7 with p in place of w and J = {1,...,p — 1}. (3.5.23) implies
that v” satisfies condition (i) of that Proposition. Equation (3.4.15) implies that condition (ii) is
also satisfied. As for condition (iii), for any n € P}, the elements of wty(xs(n)) are of the form
N licsrez Ai,"" with m, € Z>o. Combining (3.5.21) and (3.5.23), it follows that

t
—1
V’ =u < H An,p,rn+2(k—l)> .

I=K'+1
Hence (2.2.1) implies that condition (iii) must also be satisfied. It then follows from Proposition
2.6.7 that
whe(X(1,....p-13 (1)) € Whe(Va(p)-
In particular,
wWe(X(1,...p-2y () © wte(xqu,.. p-13 (V) C wte(Vg(p))-
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Let f =c+t— k' — 1. Observe that (3.4.22) implies that

p—1 A(hi) dy
0 —1
(3.5.24) v=v'| II I 4 -ive0m-m | | 11 Al =11, 4200 -m)
i=ly+1 m=1 m=1
(3.4.15) implies that
p—2
7T{1’7p72}(1//) = H Yiyr’h)‘(hi)'
i=1

Let v := wsr-1wTtr, By (3.5.20) and (3.3.9), we have v/ = v’ if [ = p — 1 and

p—2 A(hi) dy
(3.5.25) v" =0/ H H p 27i42(A(hi)—m) H Al_f}p—Q,’f’zf—&-Q()\(hlf)—m) it lp <p—1
i=ly+1 m=1 m=1
Thus, it is not difficult to see that
(3.5.26) v e wto(xq,..p-23 (V') C wte(V(m)).

Next, we use Proposition 2.6.7 one more time with g in place of w and J = {p — 1}. By (3.5.26),
v satlsﬁes condition (i) of that Proposition. Equations (3.5.25) and (3.4.15) imply that

(3.5.27) Tp1 (V") = Yoty i Ay <H Yo 1t 2(k—m)+n—p— 1)
m=0
iflf =p—1, and
p—2 A(h;)
'/Tp—l(V”/) = Y;p—lmp_h/\(hp_l) H H Y —1,ri+2(A(h;)—m)+p—i—1
i=ly+1 m=1

df t
X H Y'pfl,mf +2()\(hlf)fm)+p7lf71 H Ypfl,rn+2(kfm)+nfp71 ’
m=1

m=0
otherwise. Hence condition (ii) is also satisfied. As for condition (iii), for any n € 7){4;71}’ the

elements of wty(x(,_1)(n)) are of the form n[[.., A", with m, € Z>¢. Combining (3.5.21),

(3.5.23) and (3.5.25), with (2.2.1), it follows that condition (iii) must also be satisfied. It then
follows from Proposition 2.6.7 that

wte (X p-13 (")) € whe(Vy ().
Part (e) of the lemma now follows if we show that

(3.5.28) 1S Wtf(X{p—l} (1////)).
Observe that

p—2 A(h;) ds
—m 1
v=2"{ T 114 500 -mes | | 11400 o000 -msmy, |
i=ly+1 m=1 m=1

where df =t — k' — Zl 41 A(h;i). Thus, using (3.3.2), one can see that

k-1
_ -1
(3.5.29) v=v" ( | I Ap—1,rp+2(k;'—t+m)> ;

m=0
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and that mp_1 (") is equal to

t—k'—1 t
(3.5.30) Yo 1 i A1) ( H Yp—1,rp+2(kf—t+m)—1> (H }/;[)—l,rn—‘rQ(k—m)—i-n—p—l) :

m=0 m=0
ifl; <p—1
Suppose first [y = p — 1, which implies dy =t — k¥’ < A(hp—1). Observe that from by (3.4.5)
and (3.5.27) that

t
n
-1 (V) = Yp—l,rpl,x(hpl)(ﬂ Y}a—l,rp+2<k—t+m>—1>
m=0
t t—k'—1
= Y1 A1) H Y 1 r2(k—t4m)—1 H Yo 1 r2(k—t4m)—1
m=t—k’ m=0
(532 k1
= Yp—l,rp,l,A(h,,,l)Jrkurl H Yp—l,rp+2(k—t+m)—1
m=0

= Y1 A )1 Y p 1yt 2(k—t)— 1tk -

One easily checks that the above is the g-factorization of m,_1(v'). Thus, Corollary 2.7.2 implies
that

~

Vq(ﬂp—l(’/m)) = %(%fl,rp_l,,\(hp_l)%'ﬂ) ® ‘/21(1/};71,rp+2(k7t)71,t7k/)-
Applying (3.2.12) to the second factor of the above tensor product and comparing with (3.5.29)
one easily deduces (3.5.28).

Suppose now [y < p — 1. Observe that from by (3.4.5) and (3.5.30) that

t—k'—1 t
ﬂ'p,l(l///) = Yp_1,rp1,>\(hp1)< H Yp—l,Tp—i-2(k’—t+m)—1> (H Y;)—l,rp+2(k—t+m)—1>

t t—k'—1
2
}/p_l:Tpfl)‘(hpfl) H }/1’_177‘?"'2(k_t+m)_1 H Yp_lﬂ"p‘f‘Q(k_H‘m)_l
m=t—k’ m=0
(33.2) t—k'—1
= Y 1 A1)tk 1 H Yo 1 pt2(k—t+m)—1
m=0

Yo 1y i Ay 1)k 1 Y p 1 r2(k—t)— Ltk -

One easily checks that the above is the g-factorization of mp_1(v’). Thus, Corollary 2.7.2 implies
that

Va(mpa (™) 2 Vo(YVp10, Aty 1) 4k +1) @ Va(Yp—1p)+2(k—t)—1,0—k')-
Applying (3.2.12) to the second factor of the above tensor product and comparing with (3.5.29)
one easily deduces (3.5.28). O

3.6. Ordering certain affinizations

We now use the results of the previous two sections to order certain affinizations of a given
arbitrary finite-dimensional simple U,(g)-module. We keep the data fixed in Section 3.3. More
precisely, let A € P* be such that A(h,) = 0, w = w® be such that V,(w) is an increasing minimal
affinization of V,(\) where S is given as in (3.2.2).
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Given k,ry,,7n € Z,k > 0, let T, T be the tableaux such that
wl = Yook and wl = Yo ok

as in Example 3.2.2. To shorten notation, set also

w=w’ and = =w!.

Our goal is to establish the ordering relation between the affinizations V() and V(X) of V(A +kwy,)
under certain conditions on r, and 7,, where

A=ww and A =ww.
We shall say that A satisfy (3.5.1) if there exists k' < [)| satisfying (3.4.4). Analogously, we say
that A satisfy (3.5.1) if there exists &' < |A| satisfying (3.4.4) with &’ in place of &’. Similarly, we
say that A (respectively A) satisfy (3.5.2) if there exists a pair (p, k") (respectively (p, k') satisfying
(3.4.5) with k' < k (respectively k' < k).

PropPoOSITION 3.6.1. Suppose one of the following conditions holds:

(i) Both X\ and X satisfy (3.5.1) and k' < k';

(i) Both X and X satisfy (3.5.2), k' < ¥/, and p = p;

(iii) Both A and X satisfy (3.5.2), k' < K, and p > p.

(iv) A satisfies (3.5.1) and X satisfies (3.5.2), p = dg, &' < k'

(v) #(supp(A\) N J) > 1 where J = I\ {n}, X satisfies (3.5.1) and X satisfies (3.5.2), p = 4o,
k/ — k/

Then, V4(A) < Vy(X).

PROOF. Set V = V,(w) ® Vy(w) and V = V,(w) @ V,(z@). Then V,(A) is the simple quotient
of the submodule of V' generated by the top weight space and similarly for V. Notice that we have
isomorphisms of U,(g)-modules:

VT2V k) B V()™ and Vy(A) 2 Vy(A+ k) © @V, (1) ™™
12 14

where the sums are over v € PT such that v < A + kw,, and m,,t, € Z>o. Letting p be as in
Proposition 3.5.1, it immediately follows that

(3.6.1) v£wt(p)=t, =m, and m
Writing

wi(p) = two() — 1

Va(A) = Vo(A + kwn) & BVy(v)™™

and letting & be given by Proposition 3.5.1 with zo in place of zo, we similarly conclude that

(3.6.2) v £ wt(m) = t, =m, and Myt(m) = twi(m) — 1-

We claim the above first four conditions imply that

(3.6.3) wt(fr) < wt(p).

Assuming this, we complete the proof as follows. Let v € PT be such that v < \ + kw,. If
v £ wt(p), then we also have v £ wt(z) and, hence, m, = t, = m,. Otherwise, if v < wt(p), we

wi(p) — 1 = Mhwi(p) —

In order to prove (3.6.3), assume first that condition (i) holds. It follows from (3.5.10) that

10
wt(p) = A+ kw, — Z Ah Zat fdk/Zozt

j:lk/-‘rl t= lk’

have mwt( y =t 1. We do case (v) separately.



52 3. ON QCHARACTERS AND TENSOR PRODUCTS FOR TYPE A

and similarly for wt(f) with &’ in place of k’. Since k' < k', we must have that
either [l > 1z or Il =1y with dy <dg.
Either way (3.6.3) follows. If condition (ii) holds, it follows from (3.5.14) that

wt(p) = A — k'Zaj and wt(@m) = X — k' Zaj

Jj=p Jj=p

and (3.6.3) follows since k' < k’. If (iii) holds, it follows from (3.5.14) that
wt () :)\—k"Zaj and wt(fr) = A—E'Zaj.

J=p J=p

The hypothesis ¥ < k" and p > p then clearly imply (3.6.3). Finally, if (iv) holds, since k&' <
K < X(hi,), it follows that Iy = ig and dpr = k’. Hence, it follows from (3.5.10) and (3.5.14),
respectively, that

wt(p) :)\—k'Zaj and wt(fr) = A—E’Zaj.

J=io J=to
The hypothesis &' < &’ then implies (3.6.3).

Suppose now that (v) holds. By Proposition 3.5.1, the simple factors of V are V;(A) and Vg (),
and the simple factors of V are V,(X) and V,(@). Since k' = k' < A(hy,), it follows that I = g
and dyr = k. Hence, by (3.5.10),

k/
. —1
(364) B = A (H Aio,n,rio—i-Q()\(hiO)—m)) :

m=1

Also, by (3.5.14), since k' = k" and p = iy,

k,/
— 3 —1
365) w3 i)
m=1
Let s = min{i € supp(\) : i < ig}. Observe that s is well defined, since #(supp(A) N J) > 1.
Consider v = wt(p) — X0 oy = wt(@) — 329" ;. We claim that

my (Vo()) = 0 < my (Vg(w)) and  my(Vg(X)) = my(Vg(X))
for all n € P* such that A+ kw, < n < v. In particular, m, (V,(&)) = m,(V4(p)). The second part

of the claim follows from (3.6.1) and (3.6.2) using that wt(u) = wt(gz). For the first part, we will
show that

(3.6.6) dim(Vy(11),) > dim(V (wt(p)), ).

and

(3.6.7) dim(V,(71),) = dim(V, (wt(7)),)

Assuming this, we complete the proof of the claim as follows. Let J' = {s,...,ip — 1} and observe
that

Wh(HE ) = wh(p) = M)y + Ko 1.
One easily sees that there is no n € Pt such that wt(m) = wt(p) > n > v. Thus, it follows from
(3.6.6) that V,(v) is a simple factor of V() when regarded as a U,(g)-module, while (3.6.7) implies
that V;(v) is not a simple factor of V,(f).



3.7. DECREASING MINIMAL AFFINIZATIONS 53

Let us prove (3.6.7). Observe from (3.6.5) that

WJ/(E) = srs,)\(h (H io—1,rn+2(k—m)+n— 10—1—1)

By (3.3.2) we have rs + 2A(hs) + ig — s = 14, or, equivalently,
(3.6.8) rs +2(AN(hs) — 1) =13y — (ig — s + 2).
Also, by (3.4.5),
T+ 2k —K)+n—ig+1=ry+2 1) -2k +1=r; — 1.
Therefore,
rs +2A(hs) = 1) +ig—s+1=r;y —1=r, +2(k — k') +n—ig+ 1.

Hence Vi(f;) is a minimal affinization. Thus, it is irreducible as U,(g, )-module, i.e.,
Vo(Bey) =u,G,0) Va(wt(gy)), which implies by (2.6.2) that (3.6.7) then follows.

We now turn to (3.6.6). Observe that (3.6.4) implies

7"-J’(p‘) - srs, (H Yzo Lrig+2(A(hig)—m)+1 ) .

By (3.4.4),
Tig + 2(A(hiy) — K') + 1 > 1y + 1.
Then,

(36.8)

T5+2()\(h5)—1)+i0—8+1 Tio — 1 <1y +1 §T10+2()\(hi0)—k,)+1.

An application of Proposition 2.7.4 to the subalgebra determined by J’' implies that
my, (Vo(By)) >0 =my, (Vo(p,y)). Thus

dim(Vy(pyr)w,i) > dim(Vy(myr),,) = dim(Vo(wt(pe))o,, )
and (3.6.6) follows from (2.6.2). O

3.7. Decreasing minimal affinizations

Suppose w’ = [[;c; Yir An;) 18 such that Vg(w') is a decreasing minimal affinization of Vi (X).
It follows from (3.2.5) that

(3.7.1) i =7ri, +i0 —i+2 ip1|Ai, for all i€ supp(X).
For notational convenience, we define r; by (3.7.1) for all 1 <4 < ¢y. In particular
T;:?”;-—‘rj—i—l—Qi_;_l’)\’j forall 1<i<j.
The following proposition allows us to obtain similar results for V,(w’zo) to those we obtained
for V;(wzo) in the previous sections.

PROPOSITION 3.7.1. If either of the following two conditions hold, we have V,(ww) =y (g
Vy(w'wo).
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(i) There exists 1 < k' < min{|A|, k} such that

(3.7.2) Tig + 2A(hiy) +n —ig + 2 = rp + 2K,
and
(3.7.3) T+ 2k +n—ig+2=r; +2k.
(ii) There exist p € supp(A\) and 1 < k" < min{A(h,), k} such that
(3.7.4) o+ 2k +n —ig+2=r,+ 2K,
and
(3.7.5) 4+ 2X(hp) + 1 —p+1 =1, + 2k

PROOF. Writing a; = ¢"iTA(")=1 and bj = ¢ ML for i < noand a, = by, = ¢ TF1 one
easily sees that condition (i) as well as condition (ii) imply that
b
(3.7.6) Y% forall i,jel,
(Ij bz
and we are done by Proposition 2.1.2. O



CHAPTER 4

On qcharacters and tensor products for type D

Throughout this chapter g is of type D,,. The main goal of this chapter is to prove similar results
to those of the previous chapter for tensor products of Kirillov-Reshetikhin modules associated to
the spin nodes. The main results are

We also compare certain affinizations involving the nodes 1,n — 1, n.

4.1. Tableaux and /-weights

Let B={1,2,...,n}U{1,2,...,7} equipped with the partial order
1<2<---<n—-l<nn<n—1<---<2<1.
Following [44], introduce the notation

1 . .
}/i_17r+i_1)/i,r+i72a if 1<i<n—2;

(4.1.1) Ll =9 Yihinea if i=n-—1;

Yo r4n—1, if i=mn;
and

1, if 1<i<n-—2
(4.1.2) i =0 Y Y s i i=n— 1

Ynfl,rJrnfl» it i=mn.

REMARK 4.1.1. The symbols were denoted by “half” boxes in [44] since they are related to
(-weights of the spin representations. The “full” boxes were reserved in [44] for ¢-weights of the
standard representation. Since we will only be concerned with the spin representations here, we
will use use “full’ boxes instead of “half” boxes.

Define column tableau, tableau, shape of a tableau, and the (-weight w’ associated to a tableau
T similarly to the type A case in Section 3.1. Let [ be one of the spin nodes and, given r € Z, let
B; be the set of all column tableaux of the form:

where the contents i; satisfy:

1) i1 < -0 <lip;

2) for all 1 < m < n, m is the content of a box of T"if and only if 7 is not;
3) if i; = n for some j, then [ and j have the same parity;

4) if i; = n for some j, then [ and j have opposite parities.

(
(
(
(

55
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Notice that

n, ifl=n-—1
(4.1.3) Y, =w! where T with m=14"" 1 nTh
’ n, ifl=n.
r—n+1
Moreover,
(4.1.4) TeB = wl' = HYZP; for some s;,p; € Z with |p;| < 1.

il

The definition of gaps in a column increasing tableau is similar to that of type A. Namely, we
say that a column increasing tableau 71" has a gap at its j-th row if the content of the j-th row is
not an immediate successor of the content of the (j — 1)-th row (in the partial order of B). A gap
in the first row means that the content of the first row is not 1.

The proof of the next lemma is similar to that of Lemma 3.1.6 and we omit the details.

LEMMA 4.1.2. Let T be a column increasing tableau. Suppose a given column of T" has a gap
at the j-th row. More precisely, that column has the box S at the j-th row and the content [y
of the previous row is not the immediate predecessor of Iy (set I} =0 if j = 1).

(a) If I <mn, then Y12_11 sil,_1 appears in wl. Moreover, if j > 1, then Y}, ¢4, appears in w?.

(b) If o = i, then Yn s+n—1 appears in w”. Moreover, if j > 1, then Y}, s+1, appears in wT.

(c) If Iy > 7, then the same column has a gap at a box whose content c is at most 7. (]

Given T € B}", suppose s and i are boxes of T for some 1 < ¢ < n — 1. Then,

TAz slﬂ = = wT", where T € B is obtalned from T by replacing the boxes s and [it1] , by

i+ and s,, respectively. In pictures:

i s i+1| s

(415) : Az_sl—l—z 1=

Notice that, if ¢ < n—3, then [i+1 - = 1 and the value of s’ is irrelevant. On the other hand,
if i = n — 2, conditions (1) and ( ) of the definition of B} imply that s’ = s —4 and, if i =n — 1,
then s’ = s — 2. Similarly, if 8+2 and s are boxes of T, then we have wTA Lo = wT/

n,s+n

where 77 € Bj is obtained from T by replacing the boxes S+2 and S by $+2 and [ s,

respectively. In pictures:

(4.1.6)
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LEMMA 4.1.3. Let T' € Bj,i € I, and m € Z. Then, wTAi_Tln = w!" for some T' € B; if and

only if the pair (T, 4; }) is as in the left-hand side of either (4.1.5) or (4.1.6) and 7" is the column
on the corresponding right-hand side.

PROOF. The “if” part is obvious. For the converse, let ,1 < j <mn, be the boxes of T. So
5j
sj=r+n+1-2j and

n
=110,
=1
Suppose i is the content of a box in 7" but ¢ + 1 is not. Hence, (7, Al_rln) is not as in the left-hand

side of (4.1.5) for any m € Z. Say i = i; and set s = s; to shorten notation. Conditions (1) and
(2) in the definition of B} imply that i;11 =i + 1. Observe that

Ll A =G )" =], vsez, ifi<n-3
A 12 ,S+n— 3 -3 4)_13—4:5872872’
el Ak o= ) T = e e

(4.1.7)

An <19+n 5+2 1- s+2- - s+2- (H - s+2(n— z))

Moreover, the last expression of each line of (4.1.7) is the minimal description as a product of
boxes. If i <mn — 3, it follows from (4.1.7) that

W A = e, T
3 #5541

Since i # i for all j’ # j, j+ 1, it follows that Y; slﬂ and Yl s+i—2 appear in wTASJ:Z 1 (cf. Lemma
4.1.2). This contradicts (4.1.4) and, hence, w” A7 1 cannot be represented by an element of B]. The

cases 1 =n — 2,n — 1 are similar and we omit the details. Now, suppose T has S and does not
have s o+ Then T must have 5—2 and (4.1.7) implies that wTAn ! 1, cannot be represented

by an element of Bj. If either ¢ and ¢ 4 1 are contents of boxes in 7" or ¢ is not the content of any
box in T, then the proof is similar. O

The following lemma is easily established.

LEMMA 4.1.4. Suppose T' € B} has a gap. Then, there exists (i,s) € I x Z and S € B] such
that w! = w9A; ] O
4.2. The qcharacters of spin KR modules

Fix r € Z, and a spin node [. It was proved in [44, Proposition 5.11] that

(4.2.1) qch(V, Z wl

TeBy
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The goal of this section is to prove a generalization of this formula for qch(V, (Y, x)), &k > 1. Thus,
fix such k and notice that Y}, can be represented by a tableau 7" made of the juxtaposition of k
column-tableaux as in (4.1.3). In particular, its shape is given by the picture:

(4.2.2)

We will say that a tableau of such shape is semi-standard if the j-th column is an element of

B;H(j Y for all 1 < j < k and the contents in diagonals decrease from left to right and top to

bottom. For any given semi-standard tableau 7', we let STab(7T) be the set of all semi-standard
tableau with the same shape as T'.

The proof of the next lemma is similar to that of Lemma 3.2.3 and we omit the details.

LEMMA 4.2.1. Let T be a semi-standard tableau with shape as in (4.2.2), 1 <i < n,s € Z.
Suppose the box s is part of the the j-th column of 7. Then:

(a) The box s is not in any other column of 7.

(b) If S+2 is a box in 7', it must be in the j-th column.

(c) If i < n and 5_2 is a box in 7', it must be in the j-th column.

(d) If i = n, then the box S is not in any column of 7.

(e) If the box 8 is part of the j-th column of 7', then the box 8 is not in any column of 7'.[J

It is not hard to see, using Lemmas 4.1.2 and 4.2.1, that there exists a unique semi-standard
tableau satisfying w! = Y, rx: that with all £ columns gap free. The following is the main result
of this section.

THEOREM 4.2.2. The module V, (Y, ) is ¢-minuscule, thin, and, if 7' is the unique semi-
standard tableau satisfying w’ = Y} rk, then

wh(V(Yi)) = S W
T'€STab(T)

We shall need a few more lemmas about the combinatorics of semi-standard tableau. Given
a tableau T', we shall denote by TV its j-th column. The following is a generalization of Lemmas
4.1.3 and 4.1.4.

LEMMA 4.2.3. Let T be a semi-standard tableau with k£ columns, ¢ € I, and m € Z.

(a) We have wTAZ-_Jln = w? for some S € STab(T) if and only if, there exists 1 < j < k, such that
the pair (77, A;}l) is as in the left-hand side of either (4.1.5) or (4.1.6) and S is obtained from
T by replacing 77 by the column on the corresponding right-hand side.
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(b) If T has a gap, there exists (j,5) € I x Z and S € STab(T) such that w? = wSAi_’Sl.

The next lemma is an easy consequence of Lemmas 4.1.2 and 4.2.1.

LEMMA 4.2.4. Let T be a semi-standard tableau, i € I, and s € Z.

T is i-dominant if and only if the following holds:

(a) w
(i) If i <n—2and i+ 1 is the content of a box in a column of 7', then i is the content of the
box on top of it;
(ii) If i =n — 1 and n — 1 is the content of a box in a column of 7', then n is the content of
the box on top of it;
(iii) If i = n and n — 1 is the content of a box in a column of T, then 7 is the content of the

box on top of it.
(b) Y; s appears in w’ if and only if the following holds:

(i) If i < n — 2, then s—i+2 is a box in S and i + 1 is not the content of any box in the
same column;

(ii) If : = n — 1, then s—n+1 is a box in S and n — 1 is not the content of any box in the
same column;

(iii) If ¢ = n, then sfn+1 is a box in .S and n — 1 is not the content of any box in the same

column. O

We shall also need:

LEMMA 4.2.5. Let S be a semi-standard tableau and suppose i € I and ' < r —i + 1 are such
that S has a column of the following form:

i r—i+1

Then, T—i—l—l is not a box in any column of S and r_i+3 and r,, with "/ < r —i+ 3 are
not boxes in any same column of S. In particular, there does not exist S’ € STab(S) such that

S pA-1 _ ., SN S A—1
WA 4 = w? and similarly for w” A7 .

If a column of S has the boxes s+2 and S, then s+4 and S are not boxes in any

!

same column of S. In particular, there does not exist S’ € STab(S) such that w? Ar_iz,s g =W

PROOF. Suppose T—i+1 were a box of the (j 4+ m)-th column, m > 1, this column has a box
supported at r —i + 1 — 2m. Since S is column increasing, the content ¢ of the box supported at
r—i+1—2m is at least ¢+m > i. This contradicts the assumption that S is semi-standard because
the box r7i+1 in column j and the box r_i+1_2m in column j + m are in the same diagonal

from left to right and top to bottom. Suppose now that r—i+1 is in the (j — m)-th column,
m > 1. This column has a box supported at » — i 4+ 1 + 2m. Since all columns are increasing, the
content ¢ of the box supported at » — i+ 1+ 2m is at most ¢ —m, which implies that the content of
the box supported at r —i+ 1+ 2m — 2 is at most ¢ —m + 1. Since the j-th column of S has the box
T, for some 1’ < r —i+1, the content of the box supported at r —i — 1 is bigger than i + 1. This
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contradicts the assumption that S is semi-standard because the box supported at r —¢+142m —2
in column 57 —m and the box supported at r —¢ — 1 in column j are in the same diagonal from left
to right and top to bottom. The absence of the other two kinds of boxes is proved similarly. O

Henceforth, let T be as in Theorem 4.2.2 and set w = w”. It easily follows from Lemma 4.2.3
(b) that, given 7" € STab(T'), there exist m € Zx, i; € I, r; € Z such that

25,75 °

(4.2.3) w' =w ][ A7}
j=1

Moreover, by (2.2.1), the pairs (i;,7;), counted with multiplicities, are unique up to re-ordering
and we can assume, by part (a) of Lemma 4.2.3, that the order is fixed in such a way that, for all
1 <p<m,

P
w H Ai_j}rj =w™  for some T, € STab(T)
j=1

and there exists 1 <t < k such that the pair (T}, At ) is either as in (4.1.5) or as in (4.1.6).

p+1,Tp+1

In light of Proposition 2.6.10, Theorem 4.2.2 follows from the following proposition.

PROPOSITION 4.2.6. The family M consisting of w”  with T” € STab(T) satisfies the hypothesis
and conditions (i)—(iii) of Proposition 2.6.10.

PROOF OF PROPOSITION 4.2.6. It is not difficult to see that, if 7/, 7" € STab(T') are such that
T' #T", then w! # wT".
Condition (i): We need to show that if 77 € STab(T) \ {T'}, then w” ¢ P*. Indeed, in this
case T" has a gap, which implies, since 71" is semi-standard, that T” has a gap at its first column.
Let j € {1,...,n} be minimal such that 7" has a gap at the j-th row of its first column. It means
that the j-th row of the first column contain a box s for some j' > j and s € Z, and, if j > 1,

the (j — 1)-th row contain a box S+2. If 7/ < n -1, by Lemma 4.1.2 ij_ll s+j/—1 appears in

the (-weight attached to this column. Supposing that w” € P*, this implies that s+2 must
be a box in some other column of 7”. But, by Lemma 4.2.1, this box can only appear in the first
column, yielding the desired contradiction. It remains the possibilities j* = n,n, which imply that
n — 1 is not the content of any box of the first column of 7" and, hence, s_2 is a box in the first
column. Observe that

=y ! and =y !

1 n—1,s+n—1 1 - Yn,s+n—1'
s—2 s—2

Supposing w? € PT, this implies that either s or s must be a box in T”, contradicting
Lemma 4.2.1 once more.

Condition (ii): Let u € M and T" € STab(T) such that w? = p. Suppose (i,a) € I x C*
is such that ua;j ¢ M. We need to show that ua;;aj,b ¢ M unless (j,b) = (i,a). Indeed, if
(7,b) # (i,a) is such that v := ua;;aj,b € M, then wr~! € 91 and (2.2.1) implies that

(4,b) = (ip,qr”_l) for some 1<p<m.

In other words, o, = A;,,. Evidently, we must have a; , = A; s for some 7 € I and s € Z. In
light of Lemma 4.2.3 (a), the condition MA;Sl ¢ M means that, if i < n, then 7" does not have a
column affording both the boxes

(4.2.4) sfiJrl and S, for any s <s—i+1,
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while, if ¢ = n, T” does not have a column with both the boxes

(425) s—n+2 and s—n'

On the other hand, the condition v € M implies that v has a decomposition as in (4.2.3), which

by (2.2.1), must be
-1 —1
v= wAZ'7S ii»rt
t#p
up to ordering.

From the way we chose the order of the factors in (4.2.3), we have

pGM.

P
w H A;lr, = wlr-1  and prflAi*lr
WM §23)

J=1

. . . /
Suppose i, < n. Then, T,_; has a column with the boxes rp—z‘p+1 and T/ for some 1’ <

rp — ip + 1. Hence, applying Lemma 4.2.5 with 7,,_1 in place of S, we get that
(4.2.6) rp—z‘,,+1 and fi,— vy € not a boxes in any column of 7),_;.

We claim that (4.2.6) together with the assumption that v € M implies that

(ip = Lirp+1) € {(ij,r5) ;g =p+1,....,m}
(4.2.7) and

(ip +1,mp +1) & {(ij,r5) s j=p+1L...,mj.

Indeed, if either of the above did not held, since v = Ai_’slw IL 4p Ai_t’lrt has an expression as in
(4.2.3) in such a way that the truncated products correspond to semi-standard tableaux, (4.2.6)
would imply that (i,s) = (ip,7p), i-e., (i,a) = (4,b), yielding the desired contradiction. Similarly, if
ip = n one shows that

(4.2.8) (n—=2,rp+1) & {(ij,r;):j=p+1,...,m}.

-1

We omit the details. In particular, w ][], 2p A, € M and, in fact, we can assume that the order

was chosen so that p = m. Let T” € STab(T) be the tableau such that
W' =w H Al

1,7t
t<m

Then,

V= wTNA;Sl and n= wT”Ai_ml’Tm.
Moreover, Lemma 4.2.3 (a) implies that 7" has a column either as in (4.1.5) or as in (4.1.6). We
will treat the case that (4.1.5) holds, i.e., we assume i < n. We omit the details for the case i =n

which can be dealt with similarly. In particular, 7" has columns of the form

T ls—it1 I |y —igm 1
(4.2.9) : and :
1| Tmt1] g7

and these two configurations may happen at the same column. We now proceed with a cases by
case argument according to wether 7" has boxes with content either 7 or 7 + 1.



62 4. ON QCHARACTERS AND TENSOR PRODUCTS FOR TYPE D

(1) A column of 7" has the box s—i+1' In this case, (4.2.4) implies that, for any s’ < s —i+ 1,
S, is not a box in the same column. Since 7" is semi-standard, this column must have the

box ... In other words, 7" has a column of the form
s—i1—1

(4.2.10)

The move from 7" to T” corresponds to using (4.1.5) applied to the pair (S, Ai_ml’rm) where
S is the column containing the second configuration listed in (4.2.9). In particular, i,, # i
and, hence, 7" must have a column containing the first configuration listed in (4.2.9) which
contradicts the configuration (4.2.10) since, by Lemma 4.2.1, s—z‘+1

column of 77 and i + 1 and ¢ + 1 cannot be the content of boxes in the same column.

is not a box in any other

oes not have the box | i | . .. This implies that the modification corresponding to mul-

2) T’ does not have the box [ ], .. This implies that the modificati ding to mul
tiply w?” by Ai_ml, changes the content of the box s—i+1 in 7. Thus (ip,rm) = (4,5),
contradiction.

m

Condition (iii): Let g = w” € M and i € I. We need to show that there exists i-dominant
v € M such that

(4.2.11) ah(Vy(m@) = S mm).

nepQ;yNM

We write down the proof for ¢ < n — 2 and omit the details for i = n — 1, n since they are similar.
We show by induction on the number C; = C;(T”) of columns of 7" having a box with content i+ 1
but none with content i that v satisfying (4.2.11) exists. Notice that Lemma 4.2.4 (a) implies that
u is i-dominant iff C; = 0.

Thus, assume C; = 0, in which case we show that (4.2.11) holds with v = u. We start
describing the left-hand side. If 7 + 1 is the content of a box in every column of 7" having a box
with content i, then part (b) of Lemma 4.2.4 implies that m;(v) = 1 and we need to show that v
is the unique element of v Q;; N M. Indeed, notice that for such 7' ', no change of the form (4.1.5)
can be applied. Therefore, there is no n € vQ;; N M such that n < v. On the other hand, if
T" € STab(T) were such that w”" A;! = v for some s, then (4.1.5) would imply that 7’ had a
column having a box with content ¢ and no box with content i -+ 1, contradicting our hypothesis
onT’.

Suppose now that there exists a column of 7" having ¢ as content of a box while 7 + 1 is not a
content of any box. In that case, it is not hard to see that there exist unique m, j;, s¢, 1t € Z with
m>0,1<j; <jo<- - <jm <k, satisfying

| . . / | . .
(1) St—Qp is a box in T}, and St72(p+1) is not for every 0 < p < 7y4;

. A . . 12 R . ! .
(2) Either St_2n is not a box in T} ., or HSt_Q(TH_l) is a box of T}, ;

: . : : / . : U .
(3) Either St+2 is not a box in T3, _, or HSt is a box of T}, _y;
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for every 1 <t < m. Using part (b) of Lemma 4.2.4, it is not hard to see that

m
v) = H Yisiti—2re,re
t=1

is the g-factorization of m;(r). Hence, using the comment following (2.7.1), we get

m re d—1
th(‘/q(Trl(V))) = Trl H (ZH zst—l-z 1— 2c> :

d=0 c=0

We now show that the right-hand side of (4.2.11) coincides with this. Notice that, for each ¢, the
summand corresponding to a given d is equal to w’t4 where T} q is the tableau obtained from 7"
by applying (4.1.5) to columns j; + p with 0 < p < d. We can rewrite the above as

mdtl

th(Vq( ZH H zsz—i-z 1-2¢

d t=1 c=0

where the sum runs over the set D = {(dy,...,dn) € Z>o : di < 1,1 <t < m}. Expanding the
previous comment, for each d € D, let Ty be the tableau obtained from T" by applying (4.1.5) to
columns j; +p with 1 <t < m,0 < p < d;. Then, we can further rewrite the above as

(4.2.12) qch(V, =Y W
deD

Hence, we are left to show that
(4.2.13) vQu;NM = {w'd :d € D}.

Evidently, wid S VQ{Z-} NM for alld € D. Let e;,1 <t < m be the standard basis of Z>y. We
will show

(4.2.14) wTdA;51 =W = T = Tq,e, forsome t determined by s satisfying d; <1y
and
(4.2.15) w'd = wT”A;Sl = T = Tq_e, forsome t determined by s satisfying d; > 0,

which clearly proves (4.2.13). For showing (4.2.14), observe that (4.1.5) implies that 7" is obtained
from Ty by modifying a column having a box with content ¢ and a box with content ¢ + 1. Thus,
such column must be the (j; + p)-th one for some 1 <t <m and d; < p < ry. In particular, d; < ry
and we are left to show that p = d;. One easily sees that applying (4.1.5) with p > d; would give
rise to a non-semi-standard tableau. Namely, Sii 41 is a box in the (j¢ + p)-th column of T
and, if p > d;, then 87”3 is a box in the (j; +p —1)-th column of Ty since this column coincides
with that of T7”. The change (4.1.5) would replace S_i 41 by S_i i1 and the diagonal condition
for T” be semi-standard would be violated.

For showing (4.2.15), observe that (4.1.5) implies that Ty is obtained from T by modifying a
column having a box with content ¢ and a box with content 7 + 1. Moreover, after the change such
column would have a box with content i + 1 and a box with content 7. One easily sees this column
must be one of those modified for obtaining Ty from T". Indeed, all other columns either have a
box with content i or a box with content ¢ + 1. Hence, the column must be the (j; + p)-th one for
some 1 <t <m and 0 < p < d; and we need to show that p = d; — 1. For seeing this, notice that
s—i—i—l is a box in the (j; + p)-th column of 7”. Since the (j; + p + 1)-th column of 7" coincides

with that of Ty, if p < d; — 1, it would follow that 37171 is a box of the (j: +p+ 1)-th column of
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T", violating the diagonal condition for T” be semi-standard once more. This completes the proof
for Cl =0.

If C; > 0, then T” has a column with a box having content i + 1 and no box with content .
Suppose the last such column is the j-th one and that s is the support of the box with content
1+ 1. We claim that

(4.2.16) w= wT"ATl 4 for some T" € STab(T).

Assuming this, the inductive step is proved as follows. It follows from (4.1.5) that C;(T") =
C;(T") — 1 and, hence, the induction hypothesis applies to p' = w!”. More precisely, there exists
i-dominant v € M such that

(4.2.17) ach(Vy(m@)) = Y mn).

nep’ QnNM
Let S € STab(T) be such that v = w®. Then, C;(S) = 0 and (4.2.12) implies that

ach(Vy(m(v) = Y w'd
deD

where D and Sy are defined as before with S in place of 7". Since ¢’ € p' Qg N M, this, together
with (4.2.17), implies that 7" = Sq for some d. Then, the same argument used for proving (4.2.14)
shows that (4.2.16) implies that

T = Sdie, forsome tsuch that d +e; € D.

This implies
NIQ{i} NM= HQ{i} nM
which clearly proves (4.2.11).

It remains to prove (4.2.16). In other words, we need to show that, if 7" is the tableau obtained
from T” by replacing its j-th column by the one on the left-hand side of (4.1.5), then 7" € STab(T').
It is clear that the j-th column of 7” remains an element of B;H(] ~U and we need to check the
diagonal condition for 7" be semi-standard. Let m € Z be such that 1 < j +m < k and let i,, be
the content of the box supported at s — 2m of the (j + m)-th column of 7”. In particular, iy = 1.

Since T” is semi-standard, we have

i > - -2 01 20+ 1 >0 > - gy

Hence, we are left to show that 47 < 4. If this was not the case, then 71 =7 + 1 and, by the choice
of j, the (j + 1)-th column of 7" must have a box with content ¢ whose support is necessarily s.
Then, the j-th column of T” has a box supported at s + 2 whose content is at most 7 — 1 since 7 is
not the content of any of its boxes. This violates the diagonal condition for 7" be semi-standard,
yielding the desired contradiction. O

Before ending this section, we infer some information on qch(V4(Y;,x)) which we shall need.

We introduce the following notation. Given i,j € I, let [i,j] = {i,7} be the minimal connected
subdiagram containing %, j and
afig = D o

teli,j]
LEMMA 4.2.7. Let p € wto(Vy(Yi,x)) be such that p < YM,;CAI’; for some s € Z and let
s1 =r+2k+n — 3. Then, wt(p) < kw; — a8 < s1, and p < Yl,nkA_l

181"
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PROOF. One easily deduces using the PBW theorem that, if j € [1,{], j # 1, then kw;— (o 1 —0)
is not an element of P(kw;) = {wv : w € W,v € P",v < kw;}. This easily implies the first
statement.

Observe that sy is the support of the first box of the first row of T, where T is as in Theorem
4.2.2. The hypothesis pu < Yl,nkAfé means that there exists 77,5 € STab(T) such that w® =
wT/Al_é and pu < w®. Thus, S is obtained from 7" by a modification of the type (4.1.5) with i = 1
performed in some column of T”. But, as one can easily see, such a modification is possible only
if all the columns to the left of this one have a gap at the first row. In particular, this is true
for the first column and, hence, ws < Yl,r,kAl_,;l- The remaining two statements are now easily

deduced. O

4.3. On certain partially dominant /-weights of spin KR modules

We shall need the following construction associated to a tableau T" with shape as in (4.2.2).
Given a partition £ = (£1, &2, ... ,&) with L"T_lj >& > > & >0, consider the unique tableau
Tél € STab(T') satisfying:

(1) for all 1 < j <k, the j-th column of 7" may have a gap only at the (n — 2¢;)-th row;
(2) the content of the (n — 2¢;)-th box is m, where m =n if l=n—-1land m=nifl =mn;

In pictures, the j-th column of Tgl is

(4.3.1)

i r42(k—7)—n+1

Notice that the j-th column has a gap iff {; > 0, i.e., if the j-th column is not of the form (4.1.3).
In particular,
le,r,k = wTé

where 0 denotes the partition with all §; = 0.

ProOPOSITION 4.3.1. Let J = {1,...,n — 2} U {l}. Then, the elements of the form W’ are
precisely the J-dominant elements of wt,(V, (Y] 1))

l
PROOF. Observe first that each column of w’ gives rise to a J-dominant ¢-weight. Indeed, we
have

Yn,s = s—n+1?

and
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Thus, if s is the support of the (n — 2;)-th box of the j-th column of Té and &; > 0, the {-weight
attached to this column is

Yn—2¢;-1,s+n—2¢;-1 Y:i-i-s—l with  {l,I'} = {n,n —1}.

As we have observed before the proposition, if §; = 0, then the /-weight attached to this column is
Yi,s+n71-

It remains to show that all J-dominant (-weights of V(Y] ) can be represented by tableaux of
the form Tgl. Fix such an ¢-weight, say . By Theorem 4.2.2, u = w’ where T is a semi-standard
tableaux with the given shape. We claim that it suffices to show that each column of T' is of the
form (4.3.1). Indeed, this determines §; < L%J for each 1 < j < k and, since T is semi-standard,
it follows that & > ;41 forall 1 < j < k.

Assume by contradiction that 7" has a column which is not of the form (4.3.1) and say that the
j-th column is the first such column. We split the analysis in two cases:

(i) the first box of this column is either s or s, for some s € Z;
(ii) the content of the first box of this column is smaller than n.

In case (i), it follows that, for all t = 2,...,n, the content of the ¢-th box of the column is
n —t+ 1. Assume the first box is 5 (the case s is similar and we omit the details). Then,
the (-weight attached to this column is Y} If ] =n — 1, then n must be odd which implies

n,s—n—1-

that this column is of the form (4.3.1) with &; = VLT_IJ? contradicting the choice of j. Therefore,

I =n, in which case Y, ., _, is not J-dominant. To obtain a contradiction, we have to show that

Y, s—n—1 does not appear in the /-weight attached to any other column of 7. Indeed, as seen above,
if Y}, s—n—1 appears, then 8 must be a box in another column of 7. Since T has the form (4.1.3),
only columns to the left of the j-th one have boxes supported at s. Suppose the (j —m)-th column
has this box, m > 1. Then (4.1.3) implies that this column has a box supported at s + 2m. Since
all columns are increasing, the content ¢ of the box supported at s + 2m is at most n — m < n.
This contradicts the assumption that 7" is semi-standard because the box s 4o 0 column j —m

and the box s in column j are in the same diagonal from left to right and top to bottom.

In case (ii), since the j-th column is not of the form (4.3.1), it follows that there exists 1 < i <
n — 2 such that the content of the ¢-th box is ¢ for some ¢ < ¢ < n. Let ¢ be the minimum with
this property. In other words, the i-th box of the j-th column of T is 8 for some s and, if there
is a box supported at s + 2 in this column, its content is ¢ — 1. Since all columns are increasing, it
follows that Y;;ll s+¢—1 appears in the (-weight attached to the j-th column. Since p is J-dominant,

Yi_1 s4+¢—1 must appear in the (-weight attached to some other column, i.e., =1 1o must be a box

in another column of 7', contradicting Lemma 4.2.1(b). (]

Let us describe w’¢ more explicitly. We start with the case I =n — 1. Assume first that k =1,
i.e., the tableaux have only one column and & = (&) with 0 < & < L”T_lj If & > 0, it follows
from (4.1.5) and (4.1.6) that

1P _ e 41 A-1 A1
w =w n—261+1,n—1,r+2(¢1—1) *'n—261 ,n—2,74+2& — 19 n,r44¢, —1°

Iterating this we get

&1
T -1 -1 -1
w¢ — In—1r H An72m+1,n71,r+2m72An72m,n72,r+2m7lAn,r+4mf1‘
m=1
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For k > 1, we apply this formula to each column replacing r by r + 2(k — j) when working with
n—1
the j-th column to get that wle s equal to
k&

-1 -1 -1
(432) Ynfl,r,k H H An72m+1,nfl,r+2(k7j)+2m72An72m,n72,r+2(kfj)+2mf1An,r+2(kfj)+4mfl'
j=1m=1

Setting
¢ = max{j : {; # 0}

and using the expressions for the elements A; ; in terms of the elements Y; 4, it follows that

€]
Tt —1
(4.3.3) w& =Y, k) H Yn72§j*1,T+2(k*j)+2§jYn,r+2(k—j)+4§j'
j=1
Notice that
(4.3.4) r+2(k—j)+4>r+2(k—0)+ 48 it <.

Similarly, for [ = n we get

k&
T -1 -1 -1
we =Yk H H An—2m+1,n—2,r+2(k—j)+2m—2An—2m,n—1,T+2(k—j)+2m—1A7’L,T+2(k—j)+4m—3'
j=1m=1

and
€l

T _ -1
W =Y ke HYn—2£j—17r+2(k—j)+2£jYnfl,r+2(k7j)+4§j'
j=1

Similarly to Proposition 4.3.1 one can prove the following proposition.

PROPOSITION 4.3.2. Let J = I\ {1}. Then the J-dominant ¢-weights of wt,(V;(Y; 1)) are the
semi-standard tableaux in STab(7") such that each column either has no gaps or has a gap at the
first row.

It follows from Proposition 4.3.2, that the (I \ {1})-dominant f-weights of V,(Y;,_1 %), other
than Y, 1,4, are

k
- -1 | —
V; = Yn—l,r,k H An—l,l,r+2(k—i)’ 1= 1, Ce ,k‘.
i=1

4.4. Tensor products of spin KR modules

Fixw=Y, 1y, 1k, , and w =Y, . ., for some r,_1,7, € Z, kpn_1,ky, € Z>o and let S and
T be semi-standard tableaux as in (4.2.2) such that

w'=w and w! =w.
Our first goal is to describe the set
D = wty (Vy(w) @ Vy(w)) NPT,

The analysis depends on whether

Tn-1 + 2kn—1 <7, + 2k, or Tn—1 + 2kn—1 > 1y + 2k,,.
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Since the the latter is obtained from the former by applying the Dynkin diagram automorphism
which switches the two spin nodes, we shall write down the details assuming that

(4.4.1) Poe1 4+ 2kn_1 < 7n + 2kn.
We begin showing that
(4.4.2) D C{vw v e wt(Vy(w))}.
Let v € wty(Vy(w)) and p € wty(V,(w)) be such that v € PT. In particular, v is not right
negative. Suppose that p # ©o. Then, by Proposition 2.5.5, p is right negative. Since the product
of right negative elements is again right negative, v is not right negative and Proposition 2.5.5
implies that v = w. Similarly, if v # w, we must have p = wo. It remains to see that (4.4.1)
implies that wp € P* only if u = w. Indeed, if p # ©, then, by Proposition 2.5.5,

r(p) >rn+2(kn —1) > 11 + 2(kp—1 — 1) = r(w),
showing that wp is right negative and, hence, cannot be in P™.

Evidently,
vw € D = v is J-dominant for J = {1,2,...,n— 1}.
Set X = {r, +2(m—1):m=1,...,k,} and recall the description of the J-dominant elements of
wte(Vy(w)) in Proposition 4.3.1. It then follows from (4.3.3), (4.3.4), and (4.4.2) that
(4.4.3) D={w% @ : vy + 2k —j)+4E € X forall j<|¢]}.

In particular, if

~1
(444) rp1+2kn1 — 1)+ 4l # 7, +2(m—1) for all me{1,...,kn},1§1§{”2 J

then D = {wwo} and, hence,
(4.4.5) Vi(w) @ Vy(w) = Vy(wwo).
Indeed, (4.4.4) implies that
Tn-1+2(kp—1—1)+4& ¢ X
for all nonzero partitions &.
In the next lemma, we collect some partial information about
D nwty(Vy(ww)).

LEMMA 4.4.1. Let pu € D and & be such that p = wsg_lw.

(a) If rp—1 + 2(kp—1 — j) +4¢ € X \ {rp} for all j < [¢], then V,(p) is not simple a factor of
Vo(w) @ Vy(w).

(b) If (] =1 and 7, = rp—1 + 2(kn—1 — 1) + 41, then p & wto(Vy(ww)).

(c) If |¢] =2 and 1y, = 11 + 2(kp—1 — 2) + 41, then p & wty(Vy(ww)).

(d) If & =1 for all j < [¢| and rp, = rp—1 + 2(kpn—1 — |£]) + 4, then p & wty(Vy(ww)).

Proor. (a) To simplify notation, let £ = |{| and V = V,(w) ® V().
By (4.4.3), p € D and there exists 1 < m < kj, such that
(4.4.6) Tn—1+ 2(kn—1 — k) + 4& = rp +2(m — 1).

Let v = HA;}% +2(m—2)11° We claim that it suffices to prove that:

(i) v e wto(Vy(p));
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(ii) v € wtge(V).
Then it follows that

wie(Vo(p) € wte(V),
which implies that V;(u) is not a simple factor of V.

Let us prove (i). By Remark 2.6.8, x{n) (1) € wte(Vy(p)) and, therefore, it suffices to prove
that v € xqny(p). It follows from (4.3.3) that

k
(447) H = Yn—l,rn,hkn,l—k H Yn72§j71,rn,1+2(kn,17j)+2§j Yn,?“n—hm—l <H Yn,r) 5

j=1 reB

where B = {r, +2(j —1) :m < j < kp} \ {rn—1+ 2(kn—1 — j) +4¢; : j < k}. In particular,

reB

Since min(B) > ry, + 2(m + 1), one easily sees that Y, .., m—1 is a factor of the gfactorization of
mn(p) and, hence, V(Y ., m—1) is a factor of the tensor product decomposition of Vg (m,(p)) as
in Theorem 2.7.1. Thus, applying (3.2.12) to this factor one easily deduces v € x(,) () as desired.

We now prove (ii). By (4.3.2), we have
U =ww H Agl and v =ww Aa)l H AEI
ce= ce=
where 2 C I X Z and (y = (n,r, + 2(m — 2) + 1). Therefore, setting Zg = ZU {(o}, we are left to
show that there is no partition Zy = Z' UZ" such that
w H AC_1 € wty(Vy(w)) and w H Agl € wty(Vy(w)).
ICE ez

By contradiction, assume such a partition exists. It follows from (2.2.1), (4.1.5), and (4.1.6), that
each element Agl, ¢ € Zp, corresponds to change the contents of two particular boxes in a column
of either S or T'. In what follows we show that the modifications corresponding to elements of =g

— =/

cannot be done in T, implying that Zg N =" = (). First we show that
(4.4.8) (n,r) € 2= (n,r) ¢ E".
By (4.1.6), the element (n,r) € = is associated to replacing the boxes T_n+2 and Tin of

a given column of either S or T' by T_n 4o and r_n, respectively. Moreover, the modified

tableau will be semi-standard after such modification only if all the previous columns have been
already modified. Therefore, it suffices to show that the first column of T" cannot be modified by
any (n,r) € E.

By hypothesis,
(4.4.9) Tt + 2(kp_1 — 1) +4& =1y +2(m’ — 1)
for some 1 < m’ < k. Moreover, (4.4.6) and (4.3.4) implies that m’ > m. Set
s =rp1+2(kn1—k) —n+ 14 4&,
which is the support of the (n — 2&)-th box of the k-th column of S, and
s =rp1+2kn1—1)—n+1+4&
which is the support of the (n — 2£;)-th box of the first column of S. By (4.4.6) and (4.4.9),
s=rp+2m—-1)—-n+1 and & =r,+2(m' —1)+n-1,



70 4. ON QCHARACTERS AND TENSOR PRODUCTS FOR TYPE D

showing that
(4.4.10) s is the support of the last box of the (k, —m + 1)-th column of T
(or the m-th one counted from right to left) and
(4.4.11) s’ is the support of the last box of the (k, — m' + 1)-th column of T'.
Inspecting (4.3.2), one checks that
ro :=max{r: (n,r) €E} =rp_1 +2(kp_1 — 1) +4& -1 =5 -2 +n.

Thus, it follows from (4.4.11), that the modification associated to (n,rg) cannot be done in the first
kn —m' 4+ 1 columns of T. Since T has the form (4.2.2), the same holds for any other (n,r) € =
and (4.4.8) is proved. Now observe that, if ( = (i,7) € Z with ¢ < n, then the corresponding
modification cannot be done in 7', since any column of 1" does not have the two specific contents
that would be changed. Therefore,

/

[1]

-

[1]

Thus, if we show that the modification associated to (y cannot be performed neither in 7" nor in
Sg_l, we obtain the desired contradiction completing the proof of (ii).

By definition of s and (4.4.6), the modification associated to (p is the

(4.4.12) replacement of S, 372 by S, 5_2,

in a fixed column of either T" or ngl. By (4.4.10), the first column of 7" which has a box supported
at s — 2 is the (k, —m + 2)-th one. Since k, —m+2 > 1, (4.4.12) cannot be done in 7" because the
columns to the left of the (k, —m + 2)-th one have not been modified. On the other hand, since s
is the support of the (n — 2&x)-th box of the k-th column of S, it follows from (4.3.1) that the k-th
column of S?_l has the boxes S and 5_2. Condition (2) in the definition of the sets B!
then implies that (4.4.12) cannot be done in the k-th column of S?_l. Since Sg_l is semi-standard,
the boxes supported at s and s — 2 in the columns to the left of the k-th one must have contents
strictly greater than i and m — 1, respectively. Hence, (4.4.12) cannot be done in the columns to
the left of the k-th one as well. By the definition of k, the columns of Sg_l to the right of the
k-th one coincide with those of S and, therefore, the boxes supported at s and s — 2 have contents
equal to at most n — 2§ — 1 and n — 2§, respectively. Therefore, since & > 0, (4.4.12) cannot be
performed in such columns. This completes the proof of part (a).

(b) By hypothesis
(4.4.13) Tn—1+ 2(kn—1 — 1) + 481 =7y

n—1

Thus, p € D by (4.4.3). Let A = wwo, p = w’e W, V= pAy (k1 —1)44g—1 and V= Vo ().
We show that these data satisfy the conditions (i)—(v) of Lemma 2.6.9 with ¢ = n, thus proving
that p & wte(V).
(i) By definition v € p Ln(Q{tl}) \ {p}. For showing that v is n-dominant, observe from (4.3.3) and
(4.4.13) that
(4.4.14) B=Yn 1 1k 1 —1Yn 26— 1 42(kno1—1)4261 Ynrn+2,kn—1-
Hence,
-1
Vo= Yol ikeo1-1 Yno2g—1r i 42(kno1- 142610 Yoo 1 420kn_1—1)+4€1—1 X

(4.4.15) XY 1 4+2(kn 1~ 1)+461 -2 Y, 1 42(kn1—1)+46 Yn,rat2,kn—1
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is n-dominant. Next, we show that v € wty(V'). We begin showing that v € wt,(V,(w) ® V,(=)).
Indeed, it is not difficult to see that

(4.4.16) v=1vw where vV =w € wie(Vg(w))

with S’ € STab(S) such that all the columns of S” but the first one have no gaps and its first column
has only gaps in the (n — 2£;)-th and (n — 2£; + 2)-th rows, the content of the (n — 2&;)-th row is
n — 1 and the content of the (n — 2&; + 2)-th row is n — 2. By contradiction, assume v & wty(V).
Since v is not dominant, there must exist { € D with A > ¢ > v such that V,(¢) is a simple
factor of Vy(w) ® Vy(w) and v € wty(V4(€)). In particular, ¢ > p. We claim that there is no

n—1
such ¢. Indeed, if A > ¢ > p, it follows from (4.3.2) that ¢ = w’¢ o with ¢ =(&,0,...,0) and
0 < & < & . Equation (4.4.13) then implies that r,—1 4+ 2(kn,—1 — 1) +4&] < 1, while (4.4.3) implies
that ¢ € D, which proves the claim.

To complete the verification of condition (i), it remains to prove the uniqueness of v and that
dim(V,) = 1. Let ¢ € p Ln(Q?n}) \ {p,v}. We will show that ¢ & wty(V'), which settles the

uniqueness. Observe from (4.3.2) that

po= A H An 2m4+1,n—1,rn—14+2(kn—1—1)+2m— 2A_

n—2mn—2,rn—142(kn_1—1)+2m—1 =

-1
(4.4.17) XA 2 1)+ Am—1"

Hence, ¢ = p [,z Ay with E C {(n, 701 +2(kn1 — 1) +4m —1) : m = 1,...,4} and E #
{(n,rn—1 4+ 2(kn—1 — 1) +4£ — 1)}. In particular, (n,r,—1 + 2(kp—1 — 1) + 4m — 1) € = for some
m =1,...,& — 1, which implies that either p Ln(Q?n}) \ {p,v} = 0 (and uniqueness follows) or
& > 1. Moreover, if =,, C I x Z is such that p = )\Hneg Ay 1 then ¢ = AT] \E A;l. Now,
we are left to show that there is no partition Z := =, \ E = :’ U =" such that

wHA € wty(Vg(w)) and wHA € wty(Vy(w)).

=

nes! neEES

NE€Eu

By contradiction, assume such a partition exists. It follows from (2.2.1), (4.1.5), and (4.1.6), that
each element A Lne Ep, corresponds to change the contents of two particular boxes in a column
of either S or T'. In what follows we show that the modifications corresponding to elements of =,
cannot be done in 7', implying that 2, N =" = (). Set

s=7rp-1+2(kp-1—1) —n+1+4¢&,
which is the support of the (n — 2£;)-th box of the first column of S. By (4.4.13),
s=rp—n+1,
showing that
(4.4.18) s is the support of the last box of the k,-th column of 7.
First we show that
(4.4.19) (n,r) €2 = (n,r) ¢ =".

By (4.1.6), the element (n,r) € = is associated to replacing the boxes T_n+2 and Tin of

a given column of either S or T' by T_n 4o and r_n, respectively. Moreover, the modified
tableau will be semi-standard after such modification only if all the previous columns have been
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already modified. Therefore, it suffices to show that the first column of 7" cannot be modified by
any (n,r) € Z,. Inspecting (4.4.17), one checks that

ro:=max{r:(n,r) € Eut =rn_1+2(kn-1—1)+4& —-1=5—-2+n.
Thus, it follows from (4.4.11), that the modification associated to (n,7p) cannot be done any column
of T'. Since T has the form (4.2.2), the same holds for any other (n,r) € E and (4.4.19) is proved.

Now observe that, if n = (i,7) € 2, with i < n, then the corresponding modification cannot be
done in T since no column of T has the two specific contents that would be changed. Therefore,

EgCE,CE

and one can check that the changes corresponding to elements of =, can only be done in the
first column of S. Thus, if we show that a modification associated to an element of =y cannot be
performed in S, we obtain the desired contradiction. Let m € {1,...,& — 1} be minimum such
that 7o := (n,7p—1 + 2(kn—1 — 1) +4m — 1) € =, which implies ny & Zy. Observe that, if i < n
and (i,7) € 2, then (i,7) € Z9. Let §” € STab(S) be such that ¢ = w>". Now we show that the
change corresponding to 1 := (n— 1,71 +2(kp—1 — 1) +4(m+ 1) — 3) € Zy cannot be performed
in S to obtain S”. Indeed, 1; corresponds to changing the boxes

(4.4.20) ], and [al,, by [a], and 1|,

where s = 7,_1 +2(kp—1 — 1) +4m+3—n. Since the modification of the boxes S,_2 and 3,74

by s,_2 and S,_ , corresponding to 7o was not performed, it follows that (4.4.20) also cannot
be performed, yielding the desired contradiction. This completes the proof of the uniqueness of v.

Finally, for proving that dim(V,,) = 1, it follows from the above argument that, if S” € STab(S)
and T" € STab(T) are such that w w” = v, then S” = §' (see (4.4.16)) and T’ = T. Thus, it
remains to show that dim(V,(w),-1) = 1. One can easily check this last statement by seeing,
using Lemma 4.2.1 and the definition of wS/, that there is no semi-standard tableau with the shape
of S other than S’ such that the corresponding /-weight is equal to v.

(ii) We show that

(4.4.21) Ve wt (V) NvQp,y = ht('v™!) <0,

which, together with Lemma 2.4.1, imply that condition (ii) holds. In part (i) we proved that
(4.4.22) ¢ € min(Qh)\ v} = ¢ ¢ whe(V).

In particular, since v = pA, . 1ok, ,—1)44¢,—1, it follows that if ¢ € v Ln(Q?n}) \ {v}, then
¢ & wt(V).

We claim that if vA, L € wto(V), then r € {r,—1 + 2(kn—1 — 1) +4& — 1,7y + 2(kp, — 1) + 1}.
To prove the claim, we show that for r # rpe1 + 2(kn—1 — 1) +4& — 1,ry + 2(ky, — 1) + 1,
VAL & wiy(Vy(w) ® V(). Recall from (4.4.16) that v = v/zo with v/ € wty(V(w)). It is not
hard to see that wA, ] € wt(Vy(w)) iff » = rp + 2(k, — 1) + 1. Thus, it suffices to prove that

r

if 7 # 71 + 2(kn—1 — 1) +4€; — 1, then v/ & wty(V,(w)). Multiplication by A; L corresponds to

n,r
replacing the boxes T_n+2 and Tin of a given column of S by r—n+2 and T_n. Since
s=rp-1+2(kp—1—1) —n+ 1+ 4& is the support of the (n — 2£;)-th box of the first column of
S’, we can multiply v/ by A;in_l (k1 —1)44E 17 which corresponds to modifications in the first
column of S". For r # ry—1+2(kp—1 —1)+4& — 1, to multiply by A;}T corresponds to modifications
in other columns of S’, which cannot be done since they do not have the two specific boxes, and
this completes the proof of the claim.



4.4. TENSOR PRODUCTS OF SPIN KR MODULES 73

To finish the verification of (ii), in light of (4.4.22), it suffices to observe that A ~ 1+2(k 1)+1An,7" €
wty(Vy(wo)) iff » = 7, + 2(ky, — 1) + 1 by seeing the corresponding modification in T, similarly to

what was done previously.
(iii) Observe from (4.4.15) and (4.4.13) that m,, (V) = Yo, 2k, +1. Thus, by (3.2.7),

—1 —1
Yor—2hnt 14y 1 o1 -1y 41 = Yra—2ka14An 1 & Whe(Vo(m(ny (1))).

Since p = vigny (A, ), condition (iii) follows.

1
n,rp—14+2(kn—1—1)+4&1 -1
(iv) If v" € wty(Uy(§n) Vi) is n-dominant, then

(4.4.21)
ht(/w ™) =ht(v lvw™) < ht(vw™).
(v) Let j € I\ {n} and n = p[[.cz Ac With 0 # = C {j} x Z. We will show that n ¢ wt,(V) from
where (v) follows. Indeed, we will show that n ¢ wt,(V,(w) ® V(w)).

By (4.4.17), if j < n — 2&, then = = (). Otherwise, inspecting (4.4.17), one can see that:

(n—1,7p1+2kp1—1)+1+4k) : k=0,....6 -1} if j=n—1;

)
c
{Gyrn—14+2(kn—1—1)+2(m+k)) :k=0,....5—(n—2&)} if n—j =2m, m € Z>q;
{(],rn_1—|—2(kn_1—1)+2(m+k)—1) k=0,....5—(n—26+1)}ifn—j =2m—1,

o o o
3 o

mlﬂlﬂl

Observe that, if £, C I x Z is such that p = )‘HCGE;L Agl, then n = AHCEE,L\E Ac_l. Thus, it
suffices to show that there is no partition Zg := 2, \ £ = &' UE" such that

wHA ewt(Vy(w)) and o J] A7' € wto(Vy(w)).

Ce’:‘//

Assume by contradiction that there exists such partition. In part (i) we showed that the modifi-
cations corresponding to elements of Z,, cannot be performed in T (unplymg that 2, N 2" = 0)
and can only be performed in the first column of S. Thus, since Z9 C =, if we show that some
modification associated to an element of =y cannot be performed in the first column of S, we obtain
the desired contradiction.

Suppose first that j =n — 1. Let k € {0,...,& — 1} be minimum such that
(o = (n —1Lrp_1+ 2(]{5”,1 — 1) + 4k + 1) ISCH

which implies (o ¢ Z¢. Observe that, for i # n — 1 with (i,r) € E,, we have (i,7) € Zy. Let
S” € STab(S) be such that ¢ = wS". Let us show that the change corresponding to ¢; :=
(n—2,rp—1 + 2(kn—1 — 1) + 4k + 2) € Ej cannot be performed in S to obtain S”. Indeed, (
corresponds to modifying the boxes

(4.4.23) wol , and [w3], , by [w1|, and [w2|,_,

where s’ = 7,1+ 2(kp—1 — 1) + 4k + 5 — n. Since the modification 5’—2 and 5/74 by 3'72
and S,_4, which corresponds to (p, has not been performed, (4.4.23) cannot be performed as
well, yielding a contradiction. The other cases are treated similarly by choosing:

o Co = (rnoa 2k 1 —1)12(m+K)) € Sand G = (41, r 1420k 1~ D4 2m+k)+1) €
Soifn—7=2m, meZ>,j<n-—2;

e (o=(n—2,rp_1+2(kp—1—1)+2(m+k)) € Zand (; = (n,rp—1+2(kp—1—1) +2(m+
k)+1)e=Zyifn—j=2m, meZ>1,j=n—2
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o (o= (j,rn-1+2(kn—1—1)+2(m+k)—1) e Zand ; = (j+1,rn—1+2(kn—1—1)+2(m+k)) €
Soifn—j7=2m -1, m € Z>s.
(¢) By hypothesis
Tne1+ 2(kp—1 —2)+4& =1, and Tn—1+2(kp—1—1)+4& =7 + 2.
Thus, by (4.4.3) p € D. By (4.3.2),

2 &
- AT 4 = x
K n—2m-+1mn—1,rn 1 4+2(kn1—7)+2m—2n—2m,n—2rn 1 +2(kn_1—7)+2m—1
j=1m=1
~1
(4.4.24) XAn,rn,1+2(kn,1—j)+4m—1'

n—1
Let A = wwo, p = W @, V= pAy ok —2)14e—1 and V =V, (X). As in part part (b), it
suffices to show that these data satisfy the conditions (i)-(v) of Lemma 2.6.9 with ¢ = n. We omit
the details since they are similar to those used for proving (b).

(d) By hypothesis
(4.4.25) rp—1+2(kn—1— &) +4=r, and rp_1+2(ky_1—7)+4€ X\ {r,} forall j<]|.
Thus, by (4.4.3), p € D and, by (4.3.2),

£
_ -1 -1 -1
(4-426) H = ww H An—l,rn,1+2(kn,1fj)+1Anf2,rn,1+2(kn71*j)+2An»7"n71+2(kn71*j)+3'
Jj=1

. r_ "n_
Consider W' =Y, 17 kn_1—l¢l+1 Yk, a0d W' =Y,y 0 o _jej41),¢)—1- Observe that

w'w"” = www and V,(w”) is a minimal affinization. By (4.4.25), V,(w') is also a minimal affinization.

We shall show that

i & (Vi) & Vy(")).
This implies part (d) since Vg(wzo) is the simple quotient of the submodule of V(w') ® Vg (w")
generated by the top weight space. For doing that, let = C I x Z be such that p = wwo HCEE Agl.
We have to show that there is no partition = = Z U Z" such that

W J] At e wte(Vy(w'))  and " J] A" € wto(Vy(w")).
CEE/ CEEN
By contradiction, assume such a partition exists. Let
E1 = E\{(n—1,rn-1+2(kn—1—[€]) +1), (n =2, 71 +2(kn—1—[£]) +2), (1, rn—1+2(kn—1—[&[) +3)}

and J = {n — 1,n — 2,n}. We identify the subdiagram corresponding to J with the diagram of
type As = J via the labeling correspondence

leon—1, 26 n—-2, 3¢ n,

so that V,(w')) is an increasing minimal affinization and w’; = w”", where 7" is the semi-standard
tableau which the first &, columns are of length 3 and the last k,—; — |{|] + 1 columns are of
length 1, the contents of each column is equal to their position in the column and 7”7 has the form
(3.2.4). Recall from (3.1.6) that each element Agl,f € £, corresponds to adding 1 to the content

of a particular box of T". More precisely, if & = (i,r), then (3.1.6) implies that the modification

associated to Agl is of the form
r—i — 'r‘fi'
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Since s := r,—1+2(kn—1—|£]) is the support of the box in the first column of length 1 of 7", s+2
is the support of the last box of the last column of length 3 of 77, and s,, = r,, + 2k, — 4 = s + 2k,
is the support of the last box of the first column of 77, it is not difficult to see that

CeE = AT g wi(Vywh) B c g =
Also, looking at the corresponding modifications in 7”7, one can see that
=G L e e T A e e € WEe(Va(w),
and
WHAZ mAZ, mAGH ¢ wie(Vy(wh) 2P g ¢ =,
where (o = (n,rn—1 + 2(kn—1 — |€]) + 3).

Since w” = w" where S’ is the semi-standard tableau formed by the first |€] — 1 columns of S
(w” =1if || = 1), it is not difficult to see by the corresponding modification in S’ that {, ¢ ="
yielding the desired contradiction. ([

We have seen that if (4.4.4) is satisfied, then D = {wwo}. Now we suppose that there exists a
pair (I,m) with 1 <1 < |27t and m € {1,...,k,} such that

(4.4.27) Tn—1 + 2kn_1 + 4l = r, + 2m.

The pair (I, m) is not unique in general. Henceforth we fix (I, m) satisfying (4.4.27) and having the
smallest possible value of m.

LEMMA 4.4.2. If m > 2, then [ = 1.
PROOF. Suppose, by contradiction, m > 2 and [ > 1. Thus:
(i) if 20 <m +1, then

Tne1+2(kn—1—1)+4dl=rp+2m—-1)=r, 1 +2k,1—1)+4=r, +2(m+2-20—-1)
and (1,m + 2 — 21) satisfies (4.4.27) with m +2 — 2] <m;

(ii) if 20 > m + 2 and m is odd, then
Pt 4 2t — 1) Al = 1+ 2(m — 1) = 1t + 2kt — 1)+ 4 <z - %(m - 1)) i
and (I — 3(m — 1),1) satisfies (4.4.27) with 1 < m;
(iii) if 20 > m + 2 and m is even, then
i1+ 2(kn1 = 1) + 4l =rp+2(m —1) = rpy + 2(kp1 — 1) +4 <l— ;m+1> =7y 42

and (I — 3m + 1,2) satisfies (4.4.27) with 2 < m;
contradicting the minimality of m. O

PROPOSITION 4.4.3. If m > 2 and k,—1 < m, then V,(w) ® V(=) is irreducible. Otherwise,
let £ = (&1,...,&k, ,) be the partition defined by

§ =0 for j>m and § =& =10 for j<m,

and set p = W% w. Then, V,(p) is a simple factor of V,(w) ® V,(wo) and, if V,(v) is a simple
factor of Vy(w) ® V4(wo) with v ¢ {wwo, u} then v < p.
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PrRooOF. If m > 2 and k,_1 < m, we have

(4.4.28) Tp—1+2(kp—1—1)+4l =r, +2
if m = 2, and
(4.4.29) rn—1+ 2kn—1+4 =1, +2m

if m > 2. We show that for all p € D\ {ww}, V() is not a simple factor of V(w) ® V, (o), from
n—1

where the first statement follows. To prove this, write p = w’ o for some nonzero partition &.
By (4.4.3),

Tne1+2(kn1—J)+4 e X ={rp+2(t—-1):t=1,...,k,} forall ;<.

If m = 2, then k,,_; = 1 implying £ = (£1). Thus r,—1 + 2(kn—1 — 1) + 4&1 > 7y, by the minimality
of m = 2 in (4.4.28). By Lemma 4.4.1(a) the result follows. Suppose now m > 2. Observe that,
for j < [¢],
. , 4.4.29
Pt + 2(kno1 — ) + 465 = 1y + 2kt — 5) +4 T
where the last inequality follows since || < k,—1 < m. An application of Lemma 4.4.1(a) again
completes the proof of this case.

rn+2(m—j) > 1y,

For the second statement we have m < k,,_1,
(4.4.30) Tn =Tn—1+ 2(kn—1 —m) + 4l

One easily verifies that, if m = 1, the hypothesis of Lemma 4.4.1(b) is satisfied, if m = 2, the
hypothesis of Lemma 4.4.1(c) is satisfied while, for m > 2, Lemma 4.4.2 implies that the hypothesis
of Lemma 4.4.1(d) is satisfied. In any case, it follows that pu ¢ wt,(V;(wzo)). Hence, in order to
prove that V;(p) is a simple factor of V;(w) ® V;(=), it suffices to show that

(4.4.31) if p< ¢ <ww, then V,(¢) is not a simple factor of V(w)® V, ().

To prove this, recall that, if V() were a simple factor of V,(w) ® V(zo), then ¢ € D is of the
n—1
form ¢ = w¢ by (4.4.3). Moreover, the hypothesis ¢ > p together with (4.3.2) implies that

(4.4.32) 1< [g], & <1 forall j, and > &< ¢
J J

Assuming (4.4.32), we complete the proof of (4.4.31) as follows. If m = 1, (4.4.30) implies
that 7,1 + 2(kp—1 — 1) + 4&] < ry, and, hence, 7,1 + 2(kp—1 — 1) + 4&] ¢ X, contradicting the
characterization of D given by (4.4.3). Assume next that m = 2. If either |[£'| = 2 or &] < [, the
argument is similar. Otherwise, i.e., if [¢/| =1 and & = [, an application of (4.4.30) together with
Lemma 4.4.1(a) completes the proof of (4.4.31). Finally, if m > 2, then [ = 1,|¢'| < |¢] = m, and
(4.4.30) implies that rp—1 +2(kp—1—Jj)+4 =rp,+2(m—j) for all j < [¢/|. Since 1l <m—j5 <m—1,
Lemma 4.4.1(a) implies that V() is not a simple factor of V,(w) ® V(=) completing the proof of
(4.4.31).

n—1

It remains to show that, if v = w " o € D is such that V4(v) is a simple factor of V,(w) ®
Vy(w) with v € {wwo, p} then v < p. By (4.4.3), rp1 + 2(kn—1 — J) +4€; € X for all j < [¢"].
Lemma 4.4.1(a) implies that

(4.4.33) Tn =Tn-1~+ 2(kn—1 —jo) + 4 ;,0

for some jo < |¢”|. Moreover, it follows from (4.3.4) that jo = |¢”|. As usual, assume first that
m = 1. If jo = 1, (4.4.30) and (4.4.33) imply that { = [, i.e., £’ = ¢, contradicting v # p.
Thus, we must have jo > 1. Combining (4.4.30) and (4.4.33) once more we see that § > I. It
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then follows from (4.3.2) that v < p. Assume next that m > 2. The minimality of m implies that
jo > m. If jo = m, it follows from (4.4.30) and (4.4.33) that {; = [. Since v # p, this forces &} > 1
and (4.3.2) implies that v < p. If jo > m, we see as before that £j > [ and (4.3.2) completes the
proof as usual. O

LEMMA 4.4.4. Assume either one of the following conditions hold:

(i) rn =2kn—1 4+ 2n — 4+ r,_1 + 2k for some k € Z~o;
(ii) rp—1 = 7.

Then, V,(w) ® V() is irreducible.

PROOF. In case (i), we show that (4.4.27) is not satisfied, from where the conclusion follows
since D = {ww}. Suppose, by contradiction, that there exist 1 <[ < L"T_IJ and m € {1,...,kn}
satisfying (4.4.27) and, as usual, that m is minimal with this property. If m € {1,2}, (4.4.27)
together with (i) implies that

1 1
I=5(n—2+m+k)> V2 J

yielding a contradiction. If m > 2, then [ = 1 by Lemma 4.4.2, and (4.4.27) together with (i)
implies that
m=4—-—n—k<0,
which is a contradiction once more.
In case (ii), if (4.4.4) is satisfied there is nothing to do. Thus, assume (4.4.27) is satisfied. We

claim that we must have m > 2 and k,_1 < m, from where the result follows from Proposition

4.4.3. Indeed, if m € {1,2}, we get a contradiction since (4.4.27) implies that
1
= §(m - kn_l) < 1.

On the other hand, if m > 2, then | = 1 by Lemma 4.4.2, and (4.4.27) together with (ii) implies
that
m = kn—l + 2 > kn—17

which proves the claim. O

REMARK 4.4.5. Let A = ww. Define also a; = ¢"t%"1 i = n — 1,n, so that
A= Wn_1a, 1k 1Wnank, One easily checks that condition (4.4.27) is equivalent to

Gn-1 _ q—(kn—1+kn+451—282)
(29

with 2 <2s; <n—1and 1 < sy <min{A(hp—1), A(hy)}, by putting [ = s1, m = sa.

4.5. Ordering affinizations supported at the spin nodes

Our next goal is to order certain affinizations of V,(\) with supp(\) = {n —1,n}. We keep the

notation fixed in Section 4.4: w =Y, _1,, |k, = wS = Yo rnken = wT'. We also fix 7, € Z and
let T be the tableaux such that w? =Y, 7, k.. Set
A =ww and A =w.

We assume that A and X satisfy (4.4.27), i.e., there exist 1 <1 < LHT_lJ and 1 < m < k, satisfying
(4.4.27) as well as 1 <1 < |27l ] and 1 < m < ky, satisfying (4.4.27) with [ and m in place of  and
m, respectively. As in Section 4.4, m and m are assumed to be minimal.
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LEMMA 4.5.1. Suppose one of the following conditions hold:

(i) m=m=1and < B
(i) m=m=2<lky and | <
(iii) m <m < kp—1 and | = [.

Then, V,(A) < V,(N).

PROOF. Set V = V,(w) ® Vy(w) and V = V,(w) @ V,(z@). Then V,(A) is the simple quotient
of the submodule of V' generated by the top weight space and similarly for V. Notice that we have
isomorphisms of U,(g)-modules:

V= V = ‘/;J(kn—lwn—l + kan) @ @‘/Q(V)Gatu and ‘/;J(A) = ‘/;J(kn_lwn_l + knwn) ® @‘/q(y)@mu
- 14

where the sums are over v € P+ such that v < k,,_1wp—1 + knpw, and m,, t, € Z>o. Letting p be
as in Proposition 4.4.3, it immediately follows that

v f Wt(u’) =t, =m, and Myt (p) < twt(p,) —1.
Writing
VZZ(X) = V;](kn—lwn—l + knwn) @ @V;](l/)@m”
v

and defining @ similarly (with Zo in place of zo), we conclude that
v £ wt() = t, =m, and Myt () < twim) — 1-
We claim the above three conditions imply that

(4.5.1) wt(fr) < wt(p).

Assuming this, we complete the proof as follows. Let v € P* be such that v < k,_1wp_1 + Eknwn.
If v £ wt(p), then we also have v £ wt(zz) and, hence, m, = t, = m,,. Otherwise, if v < wt(p),
we have Mot () < twt(u) —1= Meyt(p) — 1.

In order to prove (4.5.1), assume first that condition (i) holds. It follows from (4.4.17) that

20—1
(4.5.2) wt(p) = A — (Z koo 14k + lo—1 + lan>
k=1

and similarly for wt() with [ in place of I. Since I < I, (4.5.1) follows. If condition (ii) holds, it
follows from (4.4.24) that

20—1 B B
(4.5.3) wt() = A —2 Z kag, o 144 +lan—1 +lay

k=1

and similarly for wt(p) with [ in place of I. Equation (4.5.1) follows as before. Finally, suppose
(iii) holds. If m > 2, then [ =1 =1 by Lemma 4.4.2 and it follows from (4.4.26) that

wt(p) = A — Z(Oén—l + ap—o+ ay) and wt(fr) = A — Z(an_1 + ap—92 + ap).
k=1 =1

Since m < m, (4.5.1) follows. Otherwise, we must have m = 1 and m = 2 which imply that wt(pu)
is given by (4.5.2) and wt(g) is given by (4.5.3). Since [ =, (4.5.1) is proved. O
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4.6. Comparing certain affinizations supported at the extreme nodes

In this section we fix A\ = kjwi + kn_1wp_1 + kpwn € PV, ki, k,_1,k, > 0, and study the
ordering among certain affinizations of V(). Observe that

Ni=X— Qp_2 — Qp_1 — 0 = kywy + (kn—l - ]—)wn—l + (kn - 1) + Wn—3Wn
is also dominant.

LEMMA 4.6.1. If = XA — >, .; o, then dim V() = 3(n — 2) + 1 and dim V(\'), =n — 3.

PROOF. This can be proved in a variety of ways (see for instance [37] for a proof using standard
Lie theoretic techniques). Since we are using the theory of qcharacters in many of our proofs, we
will sketch a proof for this lemma using qcharacters as well. More precisely, we use a monomial
realization of Kashiwara’s crystal B(\) and B()\') studied in [32, 44] (see also [24, Section 2]).

Let w = YllféY:filnYi’;L 44+ According to [32, 44|, this (-weight gives rise to a monomial
realization M(w) of B(A). The lemma can be proved by applying the algorithm that generates
the monomials in this realization and then counting the number of /-weights in M (w) which have
classical weight p. We simply give the list of such /-weights without writing the proper justification
showing that this is the correct list:

%
1 -1 -1 -1 -1 S5-1
g = wAn,n+5Anf2,n+6Anfl,n+7Xl,i,o An—3,i+1,n+6’

<_
2 _ -1 —1 —1 -1 —1
i = wAn—l,n—l—lAn,n—i—BAn—Z,n—&—GXl,i,OAn73,i+1,n+67

%

3 _ -1 -1 -1 -1 -1
Ky = wAnfl,nJrlAan,n+2An,n+SZl7i,O A n—3,i+1,n+2

0o _ -1 -1 -1
n = wAl,an,(]Anfl,n+1An,n+57

%
. 1 41 g -1 _ -1 _ a1
fort=0,1,...,n—3, where lei,o = Al,i’0 if7 > 1 and 21,0,0 =1, and, An—3,i+1,n+6 = An—S,i+1,n+6

<_
if i <n-—4 and A;Lii’),nf2,n+6 = 1. One then checks that these ¢-weights are all distinct and,
evidently, add up to 3(n — 2) + 1.

o . Kn—1—1v kn— .
For X one can proceed similarly, by considering w’ = Ylk}lYn_g,gYnflb Yfg 1 The list of
relevant monomials in M (w’) is:

1
(4.6.1) py = AT A,

— —
-1 41 P -1 —
where A/ 75, 190 =A, 3, 110ifi<n—4and A 75, ,,=1 O

1=1,...,n—3,

LEMMA 4.6.2. Let w =Y, and @w =Y, _1,, , k, , for some ki, k,_1 € Z~( satisfying

n—1
(4.6.2) rN="rn_1+2k,_1+n—2,
and set A = wwo. Then:

(a) V4(A) is ¢-minuscule.

(b) If € wtg(V4(A)) is not right negative, then

n e )\Q;\{l} and r(p) =r1 +2(ki —1).

PROOF. Set

oy 41
Mo == )‘An71,1,rn,1+2(kn,171)'

We claim that
(4.6.3) wte (V(w) ® Vy()) NPT = {A, o}
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Assuming this, in order to prove part (a) of the lemma, it suffices to show that py & wte(V5(X)).
But this follows from Lemma 2.6.9 with p = pg, i« = 1 and v = poAy, 4ok, 1—1)4n-1 =

AA! For condition (i) of Lemma 2.6.9 use (2.6.2) and the description of the

n—1,2,rn_1+2(kn_1—1)'
C-weights of wty(Vy(A(1,.. n—1})) in terms of semi-standard tableaux (Proposition 3.2.1). For the

other conditions of Lemma 2.6.9 the verification is similar to that in the proof of Lemma 4.4.1(b).
We omit the details.

For proving (4.6.3), we start by checking that
(4.6.4) p e wt (Vy(w) @ Vy(w)) NPT = p=wv

for some v € wty(V,(w)). Indeed, let nv € wt;(Vy(w) ® V,(ww)) NPT and suppose 1 # w. Then,
by Proposition 2.5.5, 17 is right negative and

r(n) >r(w)=r +2(k; —1).

Since the product of right negative elements is again right negative, v is not right negative. Propo-
sition 2.5.5 then implies that v = zo. It follows, using (4.6.6), that

r(v) =rp_1+2(kp—1 — 1) <r <7r(n)
which, since 1 is right negative, implies that nv is right negative, contradicting it being dominant.
After (4.6.4), in order to complete the proof of (4.6.3), it remains to characterize the set
{v e wty(Vy(w)) : v is (I'\ {1})-dominant and wv € Pt}
As observed after Proposition 4.3.2, the (I \ {1})-dominant ¢-weights of V,(zo), other than =, are
kn—1

_ -1 .
VZ = H A?’L—l,l,?’n—l‘f'?(knfl_i)’ 1 = 17 ceey kn_]_.
=1

One easily checks that, for each ¢ =1,...,k,_1,

kn—l

{1y _ H -1
vy = Y 2k —i) 40
i=1

A straight forward computation using (4.6.2) shows that wr; € PT iff i = 1. This completes the
proof of (4.6.3).

We now turn to part (b). By Proposition 2.5.5, all the ¢-weights in wty(V,(w)) \ {w} and
wty(Vy(w)) \ {ww} are right negative. Since
p=nv, with newt(Vy(w)), v ewty(Vy(w)),
and the product of right negative ¢-weights is right negative, it follows that either n = w or v = .
If both n = w and v = ©o, then the lemma follows.

Suppose 1 # w, which implies ¥ = ©o. Then, by Proposition 2.5.5,

4.6.2
r(n) >ri+2(k —1) (182) Tne1+ 2kp—1+n—2+4+2(k1 — 1) >rp_1+2(kp—1— 1) =r(w).

Thus, since 7 is right negative, it follows that pp = o is right negative, contradicting the hypoth-
esis.

Finally, suppose 7 = w and v # w. Let T be the tableaux as in (4.2.2) such that w! = .
Ifv e wwAl_éQf for some s € Z, then v € wAl_éQf. We claim that v € wAl_ﬂlﬂl_le and
the multiplication by Al_;rl corresponds to a change in the first column of a semi-standard with

shape of T'. Assuming the claim, it follows that v = v/ Al_;rl H;Zl Ai_plsp for some (ip,rp) € I X Z,



4.6. COMPARING CERTAIN AFFINIZATIONS SUPPORTED AT THE EXTREME NODES 81

with v/ € le_\{l} Nwty(Vy(w@)), 1/’141_771,171 € wty(Vy(wo)) and if i, = 1 then s, < r; — 1. Let
T’ € STab(T) such that v/ = wT". Thus the first column of 7" has the boxes Tlil and T, for
some 7’ < r; — 1. Since the first column of 7”7 does not have a box with the content 2, it follows
from Lemma 4.2.1 that Y;,, o appears in w?T’. Observe that m (wa/) = Y1 -2k +1, then it is
not difficult to see that wv’ Al_;l_l & wty(V,(ww)) (using for instance the FM algorithm or Lemma
2.6.9), which implies p ¢ wty(V,(w)), contradiction. Therefore

(4.6.5) [TRS waI_\{l}.

Let us prove the claim. The only possible modification in a column of a semi-standard tableau
with shape of T":

T

corresponding to multiply by Al_; is to change the boxes 7, +2(n—1) and r (if this column has
such boxes), which implies s = r + 2(n — 1) (see (4.1.5)). But, if such modification is done is some
column, it follows that all the columns to the left of this one have the corresponding modification
(gap of size 1 in the first box), in particular the first column. Since the last box of the first column
of T is supported at r,—1+2(k,—1 —1) —n+1 and the first box of the first column of T" is supported
at rp—1 + 2(kp—1 — 1) +n — 1 =r; — 1, the claim follows.

It remains to show that r(p) = 1 +2(k1 —1). Indeed, if r(p) > r1+2(k1 —1), then r(p) = r(v),
since n = w and r(w) = r; + 2(k; — 1). But, v is right negative, hence it follows that p is right
negative, contradiction. Therefore r(p) < r1 4 2(k; — 1), which implies, together with (4.6.5), that
r(pn) =71+ 2(k —1). O

LEMMA 4.6.3. Let w € P be such that wt(w) = X\ and suppose it satisfies either of the
conditions (b); in Theorem 1.7.3 for some [. Then, V,(w) is {-minuscule.

PrRooOF. Write w = Y1 1, 5, Yn—1,r_ 1.k
is determined by the picture

Yo vk, and assume, without loss of generality, that w

n—1

In other words, w satisfies the first option of conditions given by (b),—; in Theorem 1.7.3 (recall
the comments preceding and following (1.7.4)). More precisely, we have

(4.6.6) N =7Tp_1+ 2kp_1+mn—2 and rn =171+ 2k1 +n — 2.
Then, part (a) of Lemma 4.6.2 implies that
(4.6.7) V,(w”) is f-minuscule for J = [1,n — 1].
We will show that
(4.6.8) D = wty(Vy(w”) @ Vy(w!™) N P* = {w, )
where
w=wA! —1

1,n—2,r1+2(k1—1) An,n +2(k1—1)+n—1"
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Hence, since wt;(Vy(w)) NPT C D, in order to complete the proof of the lemma, it remains to
check that © € wty(Vy(w)). This can be easily done using Lemma 2.6.9 with A=w, p=w,i=n

and v = ""Al n—2r1+2(k1—1) = @A 420k —1)+n—1-

It remains to prove (4.6.8). We start by showing that
weD=w=pw™ with pewt(V,(w)).

Indeed, let p € wto(Vy(w”)) and v € wty(Vy(w{™)) be such that ur € D, and suppose, by
contradiction, that v # wi?}. Then, by Proposition 2.5.5, v is right negative and

r(w) > r(w{™) =r, +2(k, — 1).
Since the product of right negative elements is again right negative, p is not right negative. By
Lemma 4.6.2
TS w‘]Q;\{l} and r(pn) =71 +2(k —1).
But then, using (4.6.6), we get
r(pw)=ri+2k —1) <rp <rp+2(k,—1) <rv)

which implies that pv is right negative, yielding the desired contradiction.

The previous paragraph implies that, in order to describe D, we are left to finding the J-
dominant elements g € wty(V,(w”’)) such that pw!™ € P*. By (4.6.7) and Theorem 2.4.4, this
can be done by applying the FM algorithm to w”, as follows (we use notation of [36, Section 4]).
We assume p # w”’, since otherwise there is noting to do. The FM algorithm implies that g can
be obtained from w” by a sequence of i-th expansions. Let’s say

€ wee(G) \ {v}

for some i € I with v either equal to w” or obtained by previous expansions. In particular, p is
not ¢-dominant, which implies, since we are assuming that p is J-dominant, that ¢ = n. This in
turn implies that v is n-dominant and v # w? since = w’. Also, since the (I\ {n —2,n})-part
of all elements in wt,((,) coincide, it follows that v must be (I \ {n — 2})-dominant.

Set J' = I\ {n — 2} and let’s study the J'-dominant f-weights in wty(V,(w”)) \ {w’} whose
n-th expansions give rise to J-dominant -weights p' such that p/'w{™ e P+,

In the first step of the FM algorithm, we can either calculate Ci(, or CZ}I and after expand

their /-weights. Looking at (Z;l and the j-th expansions of its -weights with j # 1, one can see
that the I\ {n — 2}-dominant ¢-weights which appear are:

vty t) =w (HAn Lirn1+2(kn—1—k)+ ) <HAn 271 42(kn1— k)+2>v Ity <t < koot

Observe that

t1 t2
-1
W{"*Z”}(V(tl’b)) - H Y”*277"n71+2(kn71*k)+1 (H Yn—2,7’n1+2(k‘n1—k)+3> "
k=to+1 k=1

to
(H Yn,rn1+2(kn1—k)+2> :

k=1
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Thus, if p € " , then

v(t1,t2)
p=v(t1,t2) HAnrn 21— k)13 for some t=0,1,..., 19,

but, if ¢t < to, then p is not (n — 2)-dominant. Since p is J-dominant, it follows that t = to > 1
and

to
-1
DR || RS
k=1
Since
o= 1142k -2

= Tp1+2kp14+n—-24+2k+n-2
= rp_1+2kp1—1)+2(k1+n—1)
> rpo1+2(kpo1—1)+4

and 1 +2(kp—1—k)+4 < rp_14+2(kp—1—1)+4 forall 1 <k < k,_1, it follows that p,w{"} is not
dominant. Now, observe that, the /-weights obtained by j-th expansions, j # 1, of the f-weights
of CZ}l which has 7 different to 1 are the following

J
) =w HAn 1,2 142(kn_1—Fk)

and j-th expansions of n(t) with j > 2. We have

(4.6.6)
(1) = Y1011 H Yl,rn,1+2(kn,1—k)+n—2 = Yl,rn,1+2(kn,1—t)+n—2,k1+t-
k=1

Thus, the 1-th expansions of the {-weights of CZ}l are the 1-th expansions of the /-weights of Cj} J-
Looking at Ci, ; and the j-th expansions of its ¢-weights, one can see that the I\ {n — 2}-dominant
(-weights which appear, different to w”’, are:

<t17t2 =w (HAln 27‘1+2(k1 k) <H ATL 1,27, — 1+2(k‘n 1— k))

with 0 <ty < kp_1,t1 > 1 and t; — k1 < to. Observe that

to
ﬂ-{n_Qvn}(V(tl’ t2)) = (H YTL_IQ,Tn_1+2(k‘n_1k)+3Yn77"n—1+2(k’n—1—k)+2> X
k=1
t1
-1
(H Yn2,r1+2(k1k)+n1Yn:T1+2(k1k)+n2> :
k=1
Thus, if pu € (V(t 12) , then

t

-1
p=v(t,b) HAnrn 142(kn1—k)+3 HAn,r1+2(k1—k)+n—1 ’
k=1



84 4. ON QCHARACTERS AND TENSOR PRODUCTS FOR TYPE D

for some 0 < t, <ty and 0 < ¢§ < t;. But, if either t) < t3 or t] < t1, then g is not (n—2)-dominant.
Since p is J-dominant, it follows that ¢}, = to and t) =¢; > 1 and

to t1
— -1 -1
7rn(/J’) - (H Yn,rn_1+2(kn_1k)+4> (H Yn,T1+2(k1k)+n> :

k=1 k=1
Observe from (4.6.6) that this factorization (set by the parenthesis) is the g-factorization of m, (p).
Since
Tn =11+ 2k +n—2,
it follows that pw!™ is dominant if and only if ¢, = 0 and ¢; = 1. (|

/
PROPOSITION 464 Let w = Yl,rl,klynfl,rn_l,kn_1Yn,rn,kn and w = Ylﬂ‘i:kl YTL*LT’ knflynf'r;z:kn

n—1’

for some r;, r, € Z. Suppose r; = rp_1+2k,—1+n—2 and that either one of the following conditions
holds:

(i) rpn=r1+2ki+n—2andr), =7, =r] +2k +n—2;

(i) ri=7r_1+2kn14+n—2,rp_1 =15+ 2k, +2,and v}, = 7], _| +2kp_1 + 2.
Then, Vy(w) < Vg(w'). Moreover, if v = X — 3", _; a;, then
(46.9) (Vi) = 0 < my (Vy().

PROOF. Notice that, in the sense of Section 1.7, the conditions in (i) mean that V;(w) and
V,4(w') correspond, respectively, to the following pictures:

n—1 n—1
A |
| 1 |
1y -
n—3 n—2 n and n—3 n-—2 n
- - - - -«----=--=--

Similarly, the ones in (ii) mean that V;(w) and Vg(w’) correspond, respectively, to the following
pictures:

and ni3 nl2 n

In particular (cf. Theorem 1.6.1), setting I; = I \ {j} for j =n —1,n, (i) implies that
(4.6.10) Vy(wr;) and V(](w}j) are minimal affinizations for j=n—1,n.
while (ii) implies that

Vowr,), Vo@n—in—2n})s Volwl,), Vzl(wginfl,nfln}) are minimal affinizations.
We write down the proof in case (i) is satisfied. The proof for (ii) is similar.

Thus, we have to show that for all p € P*, u < A, either m,(Vy(w)) < m,(V4(«')) or there
exists p/ > p such that m, (Vy(w)) < my (Ve(w')). If my,(Vy(w)) = 0, there is nothing to do. Thus,
assume my,(Vy(w)) > 0 and write

n = A — Z S;005.

el
If j € {n —1,n} is such that s; = 0, then, by Lemma 2.6.1,
mu(Valw)) = my, (Ve(wr,)) and mi(Vy(w) = m, (Vy(wr,))
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On the other hand, (4.6.10) implies that
My, (Vafeor,)) = my, (Va(e))) = 0.

In particular, it follows that m,(Vy(w)) = 0, contradicting the choice of pu. Hence, we must
have s; > 0 for j = n — 1,n. An application of Lemma 2.6.2 with J; = {n}, ip = n — 2,
Jy={1,...,n—3,n — 1}, shows that s,_2 > 0 as well. This proves that, for o = w,w’, we have

(4.6.11) my(Vg(w)) >0 = v<A—0 where ¥ =oay_2+ an_1+ an.

Another application of Lemma 2.6.2, this time with J; = {1,...,5 — 1}, ioc = j, Jo = {j +
1,...,n}, gives that

(4.6.12) if j <n —2 issuch that s; =0, then s; =0 for all 7 < j.
Suppose $,—3 = 0, from where it follows that sy = --- = 8,3 = 0, and let J = {n —2,n — 1,n}.
Since

QA
271 = q—kn*l_"‘?"_2161_2“‘*“L + qi(k"*1+k"+4_2t) forall 1<t <min{k,_1,kp},
n

and

!
a
2*1 - qknfl_kn £ qi(’“”*ﬁk”‘%_%) forall 1<t <min{k,_1,kp},

/
n
Proposition 2.7.5 and Lemma 2.6.1 implies that

m,(Vy(w)) =m,(Vy(woy)) for w=w,w'
Moreover, the latter can be computed using Proposition 2.7.5 and we get, for wo = w,w’, that

B 1, if p=X—td for some 1 <t <min{ky—1,kn};
(4.6.13) mu(Vo(@)) = { 0, otherwise.

Suppose next that there exists
j=max{i <n-—3:s =0} andthat sj;1 #0.

In particular, s; > 0 for all « > j and s; = 0 for all ¢ < j. Letting J = {j + 1,...,n} and using
Lemma 2.6.1 we get
mu(Vy(w)) = my,(Vy(wy)) for w=w,w.

On the other hand, condition (i) together with Lemma 4.4.4 applied to the subalgebra U, (g,s) imply
that

Vo) 2 V(@ N e V@) for w=w,w
Hence,
mu(Vg(w)) = myu(Vg(w')).
So far we have proved that
s;=0 forsome i€l = my,(Vy(w))=mu(V,(w)).

Thus, henceforth we suppose s; > 0 for all i € I. Recall that we have set v = A =3, ;05 € Pt
Since s; > 0 for all ¢ € I, we have u < v. Thus, the proposition will be proved once (4.6.9) is
proved.

For proving (4.6.9), we begin by checking that, if n € P is such that v < n < X and w €
{w,w’}, then

(4.6.14) my(Vy(w)) >0 & n=Ai—1.
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The implication < follows as a particular case of (4.6.13). For the converse, notice that (4.6.11),
(4.6.12), and the condition 7 > v imply that

n:A—Zai for some j e {2,...,n—2}.
i=j
One easily checks that n € PT iff j = n — 2, thus completing the proof of (4.6.14).
Notice that (4.6.14) implies that, for o = w, w/,

dim Vg (wo), > dim V4 (), + dim V(A — ), = 4(n — 2),

where we used Lemma 4.6.1 in the last equality. Since
my(Vy(w@)) =my_p(Vy(w)) =1 for w=w,w,

(4.6.9) follows if we show that
(4.6.15) dimVy(w), =4(n—2) and dimV,(w'), > 4(n —2).

For proving the second statement in (4.6.15), it suffices to show that
#{v € wty(Vy(w')) : wt(v) = v} > 4(n — 2).
This can be done by repeatedly using Proposition 2.6.7 to check that the following are elements of
wte(Vy(w)):
AL A

uil:w'A_l AL Al 1=0,1,...,n—3;

n,rn+14"n—2,rp+2*"n—1,r,+3 ,4,71 —3,1+1,rn+2
pui = w,A;iLrn,1+1A;}n+1AEE2,m+2Xi},mZii3,i+1,rn+2’ 0=0,1,...,m =3
wi = WIA;},LHAﬁi1,rn_1+1Aﬁizrn_ﬁzzf},mZ_i3,i+1,rn,1+27 i1=0,1,...,n=3;
T w/A;iLrn,lHA;iz,rn,lwA;}n,ﬁsziz{n Z;E3,i+1,rn,1+2’ i=0,1,...,n=3;

_ . J a1 —1 -1
“ =w A An_177'n71+114

n,rn+1 1,n—2r1"
— —
Here Zi,j,r = Ai,j,r lfj > i and Z@jﬂn =1 lf] < i, and, Ai,j,r = Ai,]}T ifj < i and Az‘,j,r =1if
J >
As for the first statement in (4.6.15), it follows from Lemma 4.6.3 and Theorem 2.4.4 that we

can use the FM algorithm for computing dim V;(w),. By using the algorithm, we see that following
are the elements of wt,(V,(w)):

i = WA;;L—Q,MZI%,H Z;ES,iJrl,rner i=0,1,...,n—=3;

p; = wA;ELrn,l—i-lA;,£n+1Ar:i2,rn+2 izl,rlz;i?),i—i-l,rn—i-% 1=0,1,...,n—=3;
pl = UJA,:}”_HA;ilﬁan_ﬁ_lA;iQ,rn_1+2ZI_,zl,r1 ir_LES,i—&-l,rn,l—i-Q’ i=1...,n—3
i = "‘)Ar_zil,'rn_l+1A7:i2,7’n_1+2A7;,}“n_1+321_,i1,r1 <Z:i:a,zurl,rn,yrz: i=1,...,n=3
HS = wArZ,in—f—lA;il,rn,l+1A1_,717,—2,r1;

Nﬁ = “"A;;*n—i—l 1_}1—1,7’1'

Hence,

#{v e wty(Vy(w)) : wt(v) = v} = 4(n —2),
Again by the FM algorithm, one can see that the corresponding ¢-weight spaces are one-dimensional,
which completes the proof. O

REMARK 4.6.5. Proposition 4.6.4 together with [12, Theorem 2.2] proves Theorem 1.7.1 (recall
also the comment on Remark 1.7.2).



4.6. COMPARING CERTAIN AFFINIZATIONS SUPPORTED AT THE EXTREME NODES 87

We also record the next lemma which is easily checked using Lemma 2.1.2.

LEMMA 4.6.6. Let w = Y1, 1, Yo—1r,_1.k
some 74, r; € Z and suppose either one of the following conditions hold:

Yn,rﬁl,kn for

n—1

A
Yn77'n7kn and w = Y177‘/1,k}1Yn—1,7’,/,1717kn,1

(i) 1 =rp_1+2kn_1+n—2,7 =1, +2k,+n—2,1, =11 +2k1+n—2,and r,,_; = r|+2k;+n—2;
(i) rnc1=m=r1t+ki+n—2,7 =7 _14+2ky1+n—2,and v, =7 _; + 2(kn—1 — kn);
(ili) r1 = rp_14+2kp_1+n—2,7,_ =11 +2k1+n—2,r_1 = r+2k,+2, and v, = 7/, +2k,_1+2;
(iv) 11 = rpe1 + 2kp—1 +n — 2,1 = 11 + 2ky1 + 2, 7y = 1), + 2(kp — k1 + 2) — n, and
/ /
Ty =Ty + 2kp + 2.

Then, V,(w) = Vi ().






CHAPTER 5

Minimal affinizations for D,,

We now prove the main theorems stated in Section 1.7. The reader should recall the notation
fixed there. In particular, we fix A € P such that A(h,—2) = 0 and supp()\) bounds a subdiagram
of type Dy. Recall also the definitions of iy and f) and that A={iel:i<n—2}.

5.1. Rephrasing the main theorem

Let a; € C*,i € I, and assume w = [[;c; W; q; A(h;) i such that V;(w 4) is a minimal affinization.
Assume also that r; € Z,i € I, are such

w = H YiriAhi)-
el
The conditions in the main theorems were described in terms the parameters a;. We now rephrase
them in terms of the parameters r; which will be more convenient for the proof.
Set
I,=1\{n}, IL,.1=I\{n—-1}, and Iy={fA+1,fA+2,...,n}.

The condition that V;(w4) is increasing or decreasing will be graphically denoted by the following
pictures, respectively:

If #(supp(A) N A) = 1, then the terminology increasing or decreasing for V;(w4) is vacuous and we
use either of the pictures.

Let {i,5} = {n—1,n}. Assume first that V(w,) is increasing. Then, condition (3.5.1) applied
to wy, means that there exists 1 < < min{|\|,—2, A(h;)} such that

(5.1.1) T+ 2Mhg) +n— fu+1=1r; +2r.

Similarly, if V(w4) is decreasing, condition (3.7.3) applied to w;; means that there exists 1 <7 <
min{|A|,—2, A(h;)} such that

(5.1.2) ri +2X(hi) +n—fi+1= T 21

Conditions (5.1.1) and (5.1.2) will be indicated graphically by the following pictures

i i

|
T“
- d R

A

n—3 n—2 n—3 n—2

Observe that, if r = 1, then Vy(wy,) is a minimal affinization. One easily checks using Remark
3.5.2 that (5.1.1) and (5.1.2) are equivalent to (1.7.2), justifying the use of the above pictures.

89
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We now turn to the rephrasing of (1.7.3). If V,(w4) is increasing, condition (3.5.2) restricted
to the subdiagram I; means that there exist p € supp(A) N A and 1 < k < min{A(hy), A(h;)} such
that

(5.1.3) ri+ 2A(hi) +n—p+1 =1, + 2k
If V,(w ) is decreasing, condition (3.7.5) restricted to the subdiagram I; is: there exist p € supp(A)N
A and 1 < k < min{A(hy), A(h;)} such that
(5.1.4) rp+2Xhp) +n—p+1=r;+2k.
Conditions (5.1.3) and (5.1.4) will be indicated graphically by the following pictures
(p,k) (p,k)

n—3 n-—2 n—3 n-—2

Observe that, if (p,k) = (f, 1), then Vy(wyy, . n—2,}) is a minimal affinization. Notice also that,
if #(supp(A)NJ) =1, then (5.1.1) is equivalent to (5.1.4) and (5.1.2) is equivalent to (5.1.3), with
p = fx and k = r. One easily checks using Remark 3.5.2 that (5.1.3) and (5.1.4) are equivalent to
(1.7.3) with r = [A[p—1 +p —ix + k.

We also consider condition (4.4.27) restricted to the subdiagram Iy. If r;+2X(h;) < rj+2A(h;),
it means that there exist 1 <[ < L%J and 1 < m < min{A(h;), A(h;)} such that

Recall that we consider such pair with m minimum. Thus, by Lemma 4.4.2, if m > 2 we have
[ = 1. Condition (5.1.5) will be indicated graphically by the following picture

(3

A

I'l,m
L

n—3 n-—2 J
Observe that, if (I,m) = (1,1), then V,(wy,) is a minimal affinization. We shall often omit [ from

the above pictures in the case it is 1. One easily checks using Remark 4.4.5 that (5.1.5) is equivalent
to (1.7.5) with [ = s; and m = ss.

For the reader’s convenience, we restate Theorem 1.7.5 using the above rephrasing of the con-
ditions. In fact, part of the theorem has already been proved. Namely, let w € PT be such that
Vy(w) is a minimal affinization of V;(A). Then, Proposition 2.6.4 implies that V;(wa) and V(wsy)
are minimal affinizations for all ¢ € I. Moreover, Corollary 2.5.2 implies that we can assume that

w = []Yirawm
1€l
for some r; € Z. The remainder of the statement of Theorem 1.7.5 can be phrased as follows.

THEOREM 5.1.1. Suppose n > 5 and #(supp(A)NA) > 1. Then, the parameters r;’s are related
by one of the following conditions.

(a) j The parameters are related by either of the following pictures, where j is a spin node:

or
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J J
(Fx>1) (FxD)
>
< n—3 n—2 or n—3 n-—2
- ———————— e e e e >
1 1

. The parameters are related by either of the following pictures, where j is a spin node and
m = Ah;)+3—r:

< or >

J
I A |
(fxk) Ll’l (fxk) Ll’l
- - >
< or > o—i—o
n—3 n—2

where j is a spin node and 7 = A(hy, ) +n— fa+2—k—2l and, setting {j, j'} = {n—1,n}
the parameters satisfy the following conditions:
(i) If r <k, then A(h;) +3 —r > min{l, \(hj)}.
(ii) If p € supp(N\) N A\ {fa}, 0 <Kk <k and 1 <! <1 are such that
1<Kk':= pNp +n—p+2—r—20—2I"— k' — X(h;) <min{\(hp), \(hj)},
then 7 — ,|A|f, < K.
The parameters are related by either of the following pictures, where j is a spin node:

< or >

|
(p,k) ',m (p,k) ',m
[ Lo
or >
< n—3 n—2 n—3 n-—2
- > =
(P,k) (P,k)

where j is a spin node, m = A(h;) + 21 + k — (5|Al,—1 +p — P + k) and, setting {j,j'} =
{n —1,n}, the parameters satisfy one of the following three conditions:
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() k=1,1>1m <2 k <2 with k =1if m = 2. Besides, if p < f\, given
1

1 -
L< =P+ M —it+p— pAlia +K) +1.
Moreover, if p < fy, given i,i € supp(A) and max{0,k — A(h;)} < k" < max{k,m}
such that p <i <@ < fyand ¢ —i+ 4|A[;_ + 2l — k+ k' + 2 — A(hj) is even then
1 - 1 -
either 5(z‘—z’ﬂ|/\|;,1+2l—k+k’+2—>\(hn)) <l or 5(z'—z'+,-|A|;,1+2l—/7<:+k’+2—/\(hj/)) > 2.
(i) k=1=1,p>pand
E<Xhgy)+p—p+n—fr—1
Besides, if p < f), given z’,g € supp(\) and max{0,k — A(h;)} < k' < k such that
p<i<i<fup<iandi—p+ p/A\;i_1 <i—p+ p|Aiz1 — K, then
m<i—p+ p|Aic1 =K —i+p— p|A\;_1 + 1.
Moreover, if p < fy, given i, € supp(A) and max{0,k — A(h;)} < k' < k such that
p <i<i< fythen
either A(hj)+1+k—K —i+i— A1 <1 or ANhj)+14+k—k —i+i— jA;_; >m.
(iii) £ > 1, k = m = 1. Besides, if p < f\, given 4,i € supp(A) and 0 < I’ < [ such that

p<i<i< frp<iwitheither !’ > 0orp <i,and i—p+,|\i—1+20' <i—p+;|A\|5—1,
then

either k <i—p+5A\j_1—i+p—p/Aic1—2U'+1 or k>i—p+sA_1—i+p—plAlic1 =20 +A(h;).
Moreover, if p < fy, given i,7 € supp(\) and max{0,k — A(h;)} < k¥’ < k such that
p<i<i< fri>pand —Ahy)+i—p+ plA;_1 —i+p— p|A\i—1 +& is even, then

1 _
either [ > 5(—/\(11]-/) +i—p+ p N1 =i+ p— plNic1 +E)
or o (=Alhy) +i=p+ plAiy =i+ p— pAict +#) > 20— 1.

Furthermore, these conditions parameterize the distinct equivalence classes of minimal affinizations.
In particular, the two pictures listed for each condition give rise to equivalent affinizations.

The very last statement of this theorem is an easy consequence of Proposition 2.1.2. We shall
organize the proof of the other statements as follows. Notice that each condition (a)—(f) defines a
family of affinizations. Henceforth, given w € P, we shall say that V,(w) is an affinization of type
(x), or simply that w is of type (x), if w satisfies the conditions (x){ for some choice of indices ?
and !. The proof of Theorem 5.1.1 will be split in the following steps.

Step 1. If V,(w) is a minimal affinization, then w must be of one of the types (a)—(f).

Step 2. Two affinizations of the same type are comparable iff they are associated to the same
indices.

Step 3. An affinization of type (x) is not comparable to an affinization of type (y) if x#y.

These steps will be carried out in Sections 5.3, 5.4, and 5.5, respectively.
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5.2. One more comparison of affinizations

We will need the following lemma.

LEMMA 5.2.1. Let w,w’ € P be such that wt(w) = wt(w’) = X and Vy(wa), Vy(w'y) are
increasing minimal affinizations. Fix j € {n — 1,n}.

(a) If w and w’ satisfy, respectively, the conditions determined by the pictures in either one of the
options (i)—(vi) below, then V,(w) < V().

() ;

1\ )
(p,k) ,m @ k") 1 m!
| |

n—3 n—2 n—3 n-—2
(B,k) @,k
with
k<K, p>p k<K, p>p; 1<, m<m

and at least one of these inequalities being strict.

n—3 n—2 n—3 n—2
4———;———— 4———;/————
with
k<K, pr/; r<r' I<l, m<m

and at least one of these inequalities being strict.

iii J
(iif) ey
r ! I'm (p,k) L om/
-4 _ -
< <
n—3 n—2 n—3 n—2
- - = _—
1 (B,k)
with

with
r<k and m<lI.
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with B
k<K, r—pulMn>k 1<
1 J J

(vi) A 4

v | ey | ] im
< <
n—3 n-—2 n—3 n—2
DA (,k)

with
r<k and m > 1.

(b) If w and w' satisfy, respectively, the conditions determined by the pictures in either one of the
options (i) or (ii) below, then V,(w) and V,(w’) are not comparable affinizations.

(i) oy

J
| J A ,
D L
<

< n—3 n—2 n—3 n-—2
D )
with k& <.
(if) ) ;

i A i A

(fAL/)T L1 (p,k) Lm
< <
n—3 n—2 n—3 n—2
D )

with k <7 and 7 < p11|A|y, -

Proor. Write
w = HYi,m,A(hi) and W' = HYML/\(M), with 7,7 € Z.
i€l icl
Without loss of generality, suppose j =n — 1 and r; = r} for all i € A.
Let us prove part (a). Assume condition (i) holds, consider the diagram subalgebra determined

by I,, and let A = w ;. Consider also the element g from Lemma 3.5.4 which is of the form An for
some n € Q. Set

B =w i ("7)
Define p, in the same manner by considering the diagram subalgebra determined by I,—;. Part
(c) of Lemma 3.5.4 implies that

(B, € wte(Vo(wr,))  and  (po)r, , & wte(Vo(wr, 1))

Similarly, we define 3 by considering the diagram subalgebra determined by I and letting p be
as in Proposition 4.4.3. In particular, (p3)r, & wte(V4(wr,)). Equation (2.6.2) implies that

w; & wiy(Vy(w)) for i=1,2,3.
Analogous constructions and conclusions apply to w’ and we denote the corresponding elements by
s My, .
Set V := V(wilHh) @ V(w1 @ V, (wi™). We will prove that
(5.2.1) pewt,(V)NPT and pP#p, for i=1,23 = pewt(Vy(w)).
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Fix such p and, for each i = 1,2,3, let =Z; C I X Z be such that
M =w H Ac_l.
CEE;
We claim that

(5.2.2) n=w H Agl for some
CeE

CzZ1UEUzZs.

[1]

Assuming (5.2.2), we prove (5.2.1) as follows. Let 24 = ZENZ;, E5 = = ﬂ Zo, and Zg = EN E3.
Observe that Z4 G =1, Z5 S Ep, and Z¢ G =3, since otherwise, if Z;43 = =; for some i = 1,2, 3 we
would have g > p,, contradicting the choice of p. Since p is dominant and wHCE: AC < M,

by (3.4.6) and (4.4.3),

V] = w H A T—w (HAH Lpyrm 1+2()\(hn_1)—t)> , with p1>p, Kk <Kk,
CEEY

and at least one of the inequalities above is strict,

_ 1_ 1 . R
vy =w H A =w HAn 20 t)+1An—2,z‘)1,rn+2()\(hn)—t)+1 , with pyp >p, k1 <k,
C€Es

and at least one of the inequalities above is strict, and

mi1 I
1 —1
v3=w H Ao = ""H H Al 25 LT yrm 1+ 2O\ 1)) 425— 225 =21+ 2(A (1) )+ 251 °
€S= t=1s=1

A—l
nyrp—1+2(A(hp—1)—t)+4s—1"

Suppose first m; > ki. By Lemma 4.4.1(a), vz € wte(x7, (Vy(w))) € wty(V4(w)). Let

with m; <m, 1 <L

k1

/. —1 —1
V2=V HAn,Tn-i-Q(/\(hn) D140 2 fy Lt 2 () 1)+ (H An 2l =1, fatLrn—142(A(hn—1)—t )+2l1+1> ’
t=1

Then, it is not difficult to see that
vh € wip(xr, (Vg(w))) € wte(Vo(w)),

and one can check that v/, satisfies conditions (ii) and (iii) of Proposition 2.6.7 with J = I\ I,.
Hence wt(x(Vy(v4))) C wty(Vy(w)). Observe that

k‘l kil
Ry ~1 —1
K=V ( Af)npla"‘n1+2()‘(hn1)_t)+n_f)\_l> AfAﬁi7Tn+2(>\(hn)—t)+n—f/\—1
t=1 t=1
To finish the proof of (5.2.1), it is not hard to see that p € wty(x7(Vy(v5))). If k1 > my the proof
is similar, the unique difference is to consider
k1
/o —1 -

vy i=v3 HAn,rn+2()\(h )—t )+1An 2,4 L+ 2(A(hn)—t)+1 | <

t=1

k1
-1
(HAn 201 —1, /4 1,rn—1+2(A (A1) — t)+211+1> ( H An1,f>\+1,rn_1+2()\(hn_1)t))'

t=m1+1
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Let us prove (5.2.2). We show that, if p = w[[;cz Agl ewtg(V)NPT and 2 =3 U=, UE3,
then pu > p; for some i = 1,2,3. Indeed, write u = vivovs where vy € wty(V(wil/ah)),
vy € wte(Vy(w{"™ 1)) and vs € wt(V,(w{™)). Since p is dominant, g is not right negative, and
since the product of right negative ¢-weights is again right negative, it follows that either of v; is
not right negative. If vy is right negative, then vo # w” 1. By (4.4.2), vov3 is not dominant and
the negative power that appears in 9 must be canceled with v1. Since = € =1 UZy U =3, it follows
that v > p,. If vy is not right negative, by Proposition 2.5.5, vy = w{"~1}. Since 2 ¢ Z; U=, UEs,
either v > pqy or v > p3, completing the proof of (5.2.2).

Similarly, setting V' := V, ()b HH @V, (W) eV, (W), if u’ € wty(V) is dominant
and p' # ) for all i = 1,2, 3, then p' € wty(Vy(w')).

To finish the proof, observe that V,(w) is the simple quotient of the submodule of V' generated
by the top weight space and similarly for V’. Notice that we have isomorphisms of U,(g)-modules:

VEVIEVNS@N()T, Vilw) = VNS@Y M) ad V() 2 V)o@Vl "

where the sums are over v € PT such that v < X and m,, ml,,t, € Z>¢. It follows from the claim
that

vgwt(p) = t, =m, and My < twpu) — 1
and similarly
v £ wt(p;) = t, =m, and m:Nt(H;) G T
Condition (i) implies that
(5.2.3) wt(pi) < wt(p;) forall i=1,2,3,
with at lest one of the inequalities above is strict. Let v € P be such that v < A. If v £ wt(p),
then we also have v £ wt(y') and, hence, m, = ¢, = m,. Otherwise, if v < wt(u), we have
Myt(p) < twt(p) — 1 = m;vt(“) — 1, which concludes the proof of part (a).
The proof of part (a) for the other conditions are similar and we omit the details.
We now prove (b). We do case (i), the other is similar. Write
w = HY;,M,A(M) and W' = H it A(hi)» with 7,7, € Z.
iel i€l

Without loss of generality suppose j =n —1 and r; =1} for all i € A. Let s € {1,..., fo} be such
that 11|y, <7 < 4|A|f,. Consider

o Alhe) r—st+1]Alg,
-1
p=w H H i,n— 1n+2(A i)—t) H AS,nfl,rs+2()\(hs)ft) )
i=s+1 t=1 t=1

k
I*l' =w (H An 1,p,r’ T 1+2 /\(hn—l)t)> :

Lot V = Vy(w(b5)) @ V(w1 @ Vy(wl™) and V= V(@) -0 @ V(@) @
V,((w")17}). Observe that V,(w) is the simple quotient of the submodule of V generated by the top
weight space and similarly for V’. Notice that we have isomorphisms of U,(g)-modules:

VEVEV0E@V()™, Vi) = VE@V0) T and Vi) = V)@@V,
v
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where the sums are over v € PT such that v < A and m,,m),,t, € Z>¢. By Proposition 3.5.1,
()1, & wte(Vy(wy,)), and (u')1, & wte(Vy(w] )). Thus, by definition of g and p' and (2.6.2), we
have p & wty(Vy(w)) and p’ & wte(Vy(w')). Thus, it follows that

vE£wt(p) =t, =my, and My < twee) — 1

and similarly

v ﬁ wt(p') = t, =m, and mi}vt(p’) <y — 1

If either s < p or s = p with p < fy and 7 — p41|A[f, <k, since k < r, it follows that

wi(p') £ wt(p) and  wt(p) £ wi(p).

Let v € PT be such that v < A\. If v £ wt(p), then we also have v € wt(u'), then m], = t, = m,.
Otherwise, if v < wt(u'), we have My < by — 1 = mévt(u,) —1 and if v < wt(p), we have

mi}vt(u) <) — 1 = Myg(u) — 1. Hence Vy(w) and Vg (w') cannot be related.

If either s > p or s = p = f), since k < r it follows

wt(p') > wt(p).

Let v € PT be such that v < A. If v £ wt(p'), then we also have v £ wt(p) and, hence,
m,, = t, = my. Otherwise, if v < wt(u'), we have My < typ) — 1 m;Vt(u,) — 1. Hence
Va(w) £ Vy(w'). The same occurs if s =p < fy and 7 — pp1|A[f, > k.

Letv =A=>" f)\ a;—ay,. By Proposition 2.7.4, m”(v‘l(w{[h,.“,n—Q,n})) >0 =m,(Vy(wis,..n—2.n}))-
Thus, by Lemma 2.6.1, my(Vq( W) > 0 = m,(Vy(w)). Now, it is not difficult to see, looking at
Vo(wisy,..n—2,ny) and V( Wip n_27n}), that if A > n > v, then m,(V4(w')) = m,(Vy(w)). Hence
Vy(w') £ Vy(w), completing the proof of part (b). O

5.3. Proof of Step 1

Without loss of generality, assume V,(w4) is an increasing minimal affinization. Given J C I,
denote Uy := U,(gs). The proof will be done by treating the following cases separately:

1. (5.1.5) is not satisfied for neither choices of the ordered pair (i, j);

2. (5.1.5) is satisfied for some choice of the ordered pair (7, ) and there exists i € {n — 1,n} such
that neither (5.1.1) nor (5.1.3) is satisfied;

3. (5.1.5) is satisfied for some choice of the ordered pair (i,7) and, given i € I, either (5.1.1) or
(5.1.3) is satisfied.

This is clearly a complete and non intersecting list of possibilities. We will show that w is of
type (b) or (e) in case 1, of type (a) in case 2, and of type (c), (d) or (f) in case 3.

5.3.1. Case 1. Given i € {n — 1,n}, let J; = {fu} U Iy \ {i}. These define subdiagrams of
type A and we regard f) as being the first node. Consider the following possibilities:

(i) There exists i € {n —1,n} such that V;(w,) is not a minimal affinization;
(ii) Vy(wy,) is a decreasing minimal affinization for ¢ = n — 1, n;
(ili) V4(w,,) is an increasing minimal affinization for i =n — 1, n;
(iv) There exists a choice of ordered pair (i, j) such that {7, j} = {n 1,n}, Vy(wy,) is an increasing
minimal affinization and V;(w,) is a decreasing minimal affinization.
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Notice that, since we assuming V,(w4) is an increasing minimal affinization, possibility (iii)
means w is of type (e) while (iv) means w is of type (b);. Moreover, if #(supp(A) N A) = 1,
Proposition 4.6.4 implies that (iii) does not determine a minimal affinization. It remains to check
that (i) and (ii) contradict the minimality of V,(w). For (i), without loss of generality we assume
that V4(wy,) is not a minimal affinization. Observe that for (ii), if #(supp(A) N A) > 1, then
Vy(wr,) is not a minimal affinization for ¢ = n — 1,n. Under this assumption, we treat case (ii)
together with (i) as follows. Comments for the case (ii) with #(supp(\) N A) = 1 will be made
afterwards.

Choose 7!, 1,7, € Z such that, letting @ be defined by

n—1°
WA =W/ and wo; = Y5 A(ha) for i=n—-1,n,
we have
(5.3.1) woy, , satisfies (5.1.3) with (p,k) = (fx,1) and <oy, satisfies (5.1.1) with r = 1.

Observe that V(=) is of type (b),. We will show that, both for (i) and (ii), Vy(w=) < Vi(w),
contradicting the minimality of V,(w).

We have to show that for all 4 € P*, p < X, we have either m,(V,(w)) < m,(V4(w)) or there
exists p’ > p such that my (Vy(w)) < mys(Vy(w)). Let

= I for (i);
vV=\— E «; where s= ) ] I
max{i € supp(A) : i < fr}, for (ii).

Let J={i€I:s<i<mn}. Then, Lemma 2.6.1 implies that
my (Vo(w)) = my,(Vo(w ) and  my, (Vo(w)) = mu (Ve(w))-

In case (i), V4(ws) is a minimal affinization and hence, m,,(V;(zos)) = 0. On the other hand, an
application of Proposition 2.7.4 to the subdiagram of type A determined by J gives

My (Vylws)) > 0.
Hence,
(5.3.2) o (Vy(m)) = 0 < my (Vy(w).
In particular, Vg () 2y, (g) Vo(w).

Clearly my(Vy(w)) = mx(Vg(w)) = 1. Let p < Xand set n = X — p = >,y si, 8; € L>q. If
my(Vg(@)) = 0 obviously m,(V,(=)) < m,(V,4(w)). Then, suppose u is such that m,(Vy(=)) > 0.
In the following, we show that it must occur s; # 0 for j =n —2,n. If 5, = 0, then p € X — Q};
and, since V;(zoy,) is a minimal affinization, by Lemma 2.6.1,

mu(Vy(w)) = my,, (Vg(w1,)) =0,

contradicting the choice of . Thus s, > 0. Applying Lemma 2.6.2 with J; = {n}, ip = n — 2,
Jy ={1,...,n —3,n — 1}, we obtain s,_9 > 0. Similarly, for j € {2,...,n — 3}, considering
Ji={1,...,5 =1}, g = j, Jo = {j + 1,...,n}, it follows that if s; = 0, then s; = 0 for
all i € {1,...,5 —1}. Consider j € {1,...,n — 3} the biggest index such that s; = 0. Thus
Sj41s---1Sn—2,8n, > 0. Suppose j < s. In this case take p/ = A — Z?:_sl a;, then p/ > p and
(Vi) < myu (Vi) by (5.3.2).

Observe that (5.3.1) implies that

v =1 =2\ h,) + Ahg)+n—fr—1).
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Since
Ahn) +Ahg) +n—fa—1=Ahp) +20—m & m=20—(n— fr—1) = Xhy,),
and
Ahn) +A(hy ) +n—fr—1=m =20 =X hp-1) & m = ANhp) + A hn-1) + A(hy, ) +n— fr—14+2I,
it follows that

(5.3.3) wor, does not satisfy (5.1.5).

A

Thus, if j > fy, by Lemma 2.6.1, m,(Vy(w@)) = my ;. (Vo(@j41,..n1)), and the same for
w. By assumption (1), (5.3.3) and (4.4.5), one has

..... n} ‘/;I(w{]'i'lvvn})
Then my,(Vg(w)) = myu(Vy(w)).

Suppose now that w satisfies (ii) and s < j < fa. If sp_1 > 0, take p/ = A =370 . «a;. By
Proposition 4.6.4 together with Lemma 2.6.1, m,y(V4(w)) = 0 < my(Vg(w)). If s,—1 = 0, then,

.....

.....

If #(supp(A) N A) = 1, then it follows from Proposition 2.1.2 that case (ii) is equivalent to case
(iii), which does not define a minimal affinization as aforementioned.

5.3.2. Case 2. Without loss of generality, assume that (5.1.1) and (5.1.3) are not satisfied
with ¢ = n. Consider the following subcases:

(i) rpy +2(A(hy) =) +n = fa+1# m;
(i) 7 +2(M(hyp,) =) +n—fu+1=rp—1 and 71 +2(AN(hp—1) — 1) +4 # rp;
(iii) 7, +2(A(hg) — 1) +n—fa+1=rp_1 and 71+ 2(A(hp—1) — 1) +4 =1y,
The conditions in (iii) imply that w is of type (a), ;. We will show that (i) and (ii) contradict the
minimality of Vy(w).
Choose r/_,,r! € Z such that, letting o be defined by

n—1"n
WA =W/ and wo; = Yi v A(ha) for i=n-—1,n,
we have
(5.3.5) oy, satisfies (5.1.1) with r =1 and woy, satisfies (5.1.5) with j =n, (I,m) = (1,1).

Observe that V(o) is of type (a),—1 and V(zoy,) is a minimal affinization. We will show that
Vy(w) < Vy(w) with similar ideas to those used in Case 1.

Suppose m,,(Vy(w)) > 0, where p = A —n with n € Y. si04, 8; € Z>p, and 1 # 0. We
begin showing that s, 2,5, > 0. If s, = 0, by Lemma 2.6.1, m,(V,(=)) = my, (Vy(=,,)) =0,
where the second equality, which contradicts the choice of y, follows from the minimality of V;(wr, ).
Applying the Lemma 2.6.2 with J; = {n}, ip = n—2,and Jo = {1,...,n—3,n—1}, we get s,_2 > 0.
Similarly, for j € {2,...,n — 3}, considering J; = {1,...,j — 1}, ig = j, Jo = {j + 1,...,n}, it
follows that

sj=0 = s;=0 forall i<j.

Next, we show that

sn1=0 = mu(Vo(w)) = mu(Ve(w)).
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For proving this, we begin observing that zo;, , does not satisfy neither (5.1.1) nor (5.1.3). Indeed,
(5.3.5) implies that r¢, + 2(A(hs,) —1) <), +2(A(hy) —1). Hence oy, , does not satisfy (5.1.3).
Also
=75y = 2(A(hn=1) + A(hy,)) +n— fr+ 1.
Since
2AM(hn—1) + A(hp ) +n— x+1=2A(hg,) —1)+n—fr+1er==Ah,—1) <O,

it follows that zo;,_, does not satisfy (5.1.1). Then, Proposition 3.5.1 applied to the subdiagram
of type A determined by I,,_1, implies that we have isomorphisms of Ugy(gy,_, )-modules:

(5.3.6) Vy(wr, 1) =V, ) e VM y = v(wr, ).

In—1
Therefore, m,(Vy(w)) = m,(Vy(w)), as claimed.

Henceforth we assume s,_; > 0. Observe that V,(w ) is a minimal affinization for J =
{n —2,n —1,n}. Then, by Lemma 2.6.1,
my (Vg(w)) =my (Vg(woy)) =0 for all dominant wWex—Qy, 1 #N\
Suppose first that V,(wy) is not a minimal affinization and let p/ = X — (a1 + a2 + o) > p.
Similarly, Lemma 2.6.1 implies that m,/ (V,(w)) = mMIJ(Vq(wJ)), but Proposition 2.7.4 applied to
the subalgebra U,(gs) implies that m, (Vy(w)) > 0. Thus, from now on we assume V,(w;) is a

minimal affinization, which implies

(5.3.7) Vy(wr,) is a minimal affinization.

Let
j=max{i €l :s =0},
if {it €eI:s =0} #0and 7 = 0 otherwise. If j > fy, (5.3.7) implies that there exists an
isomorphism of U,(gr, )-modules: V,(wr,) = V,(wr,). Thus, by Lemma 2.6.1 with I, in place of
S myu(Vo(wo)) = my(Vg(w)).

Next, assume #(A Nsupp(N)) > 1 and set s = max{i € supp(A\) N A :i < fo} # 0. Comments
for the case #(supp(A) N A) = 1 will be made afterwards. Suppose first that j < s. For subcase (i)
there are two possibilities:

(a) Vg(wyy,,...n—1}) is a minimal affinization (and Vi (wys, . n—13) is not);
(b) Vy(wyy,,..n—1}) is not a minimal affinization.

Set
n—1 n—1
V:)\—Zai for (a) and v =\— Zai for (b).
i=s i:f/\
Then, v > p and Lemma 2.6.1 together with Proposition 2.7.4 gives
(5:38) Mo (V(w)) = 0 < my (Vy(w)),

contradicting the minimality of V;(w). In subcase (ii), since Vy(wn—1,,—2y)) is @ minimal affiniza-
tion, we have

(5.3.9) o+ 2N (p) — 1) +4 = rp_q.

Set v as in case (b) above. This time (5.3.8) follows from Lemma 2.6.1 together with Proposition
4.6.4. In particular, V() 2y, (g) Vg(w), implying that subcases (i) and (ii) does not define minimal
affinizations.
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Finally, suppose s < j < fy. For subcase (i), we again consider the possibilities (a) and (b)
above. Possibility (b) is dealt with exactly as before. In possibility (a) we must have

Thn—1 + 2()\(hn71) — 1) +n— f)\ +1= Tfy -

If rpe1 4+ 2(A(hp—1) — 1) +4 = 7, set v as in (b) and observe that (5.3.8) follows from Lemma
2.6.1 together with Proposition 4.6.4. Otherwise, by the hypothesis of Case 2, (5.3.9) must hold.
It then follows from Proposition 4.6.4 that, setting J = {f\,...,n}, we have an isomorphism of
Uq(gs)-modules V,(w ) = Vy(wy). Thus, by Lemma 2.6.1, m,(Vy(w)) = m,(Vy(w)). In subcase
(ii) the result follows similarly.

If #(supp(A\) N A) = 1, then in the case (a) of subcase (i):
e is a minimal affinization of type (a),—1 (second diagram) if
T+ 2X(hyp) +4 = rp_1 + 2;
e by Proposition 2.1.2 is not a minimal affinization if
Tn—1+2X(hp—1) +4 =1+ 2;

e is not a minimal affinization otherwise (is bigger than class (a),—1).

5.3.3. Case 3. Fix the ordered pair (7, j) and assume (5.1.5) is satisfied with this choice. We
have the following possibilities:

(i) (5.1.3) is also satisfied for the same choice of (4, j) while (5.1.1) is satisfied with the opposite
choice;
(ii) (5.1.1) is satisfied for both choices;
(iii) (5.1.3) is satisfied for both choices;
(iv) (5.1.1) is also satisfied for the same choice of (4, j) while (5.1.3) is satisfied with the opposite
choice;

We begin showing that possibility (iv) cannot happen. Indeed, isolating r; in (5.1.1), r; in
(5.1.3) and plugging their values in (5.1.1) we get

(5.3.10) 2(A(hi) + A(hj) + Xhp )+ 1 =7 —m) +rp +n—fr+4+n—p=ry,+2k

Using (3.3.2) to compute 7, in in terms of r¢, and plugging this back in (5.3.10) gives
I
k+m4r=n—p+1+2+A(h)+Ahy)+ Y M),
t=p
which is a contradiction since n —p+1+20 > 0,1 <k < A(hp), 1 <r < A(hy;), and 1 <m < A(hy).

Performing similar computations for the other three possibilities we get the following conditions
on the parameters:

(i) k+r+2l—m=pAy+n—p+1

i
O—EA—O
wo| [ 1im

| I
< O .

n—3 n—2 J
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(ii)) r+m—7= A(h;) + 2I.

(iii) s|Ap-1+p—D+m+k—k=A\(h;)+ 2l

We will show that we must have:

(i) m =1 and p = f\, with the indices satisfying the conditions stated in Theorem 5.1.1 for type

()
(ii) 7 =1 =1, showing that w is of type (c);;
(iii) w is of type (f)ﬁ’k)’(p *) with the indices satisfying the conditions stated in Theorem 5.1.1.

Henceforth, we assume, without loss of generality, that i = n — 1 in (i), (ii), and (iii).

Possibility (i). We begin observing that the condition k& < A(hy) implies that r > 3. Indeed, if
r < 2, we would have

E>k—m=pApy+n—p+1—r—=202,|Ns +n—p—1-20> A(hy)
where the last inequality follows because 2 < n — fy — 1 implies that n —p—1 — 2 > 0.

Next, we show that m = 1. Suppose, by contradiction, that m > 1 and choose r/, € Z such
that, letting ©o be defined by

wi

n

=wj, and  w@pn =Yy, 1 A(hn)s
we have
(5.3.11) woy, satisfies (5.1.5) with i =n—1 and (I,1).
Hence, combining (5.1.3) with i =n — 1 and (5.3.11), one gets
rro+ 200y ) — D) A n— fat 1 =1+ 20l +n—p+1—k—20).
In other words, zo,_, satisfies (5.1.1) with
ri=p Ay +n—p+l—k—20+1

in place of r. Thus, if m > 1, we have

< Alp+n—p+l—k—-2l+m=r.
Lemma 5.2.1(a) then implies that V,(zo) < V,4(w), yielding a contradiction.

It remains to show that p = f\. Let p’ = min{i € supp(\) : ¢ > p}. Suppose, by contradiction,
that p < fy. Assume first that

(5.3.12) 1> —p+Ahy) —k+2)+1

N | =

and

(5.3.13) P —p+Ahy) —k+2 is odd.
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Let
r_1=rn_1—200 —p+Ahy) —k+1)
and let = be defined by

Wy =Wr,oy and @Wp1 =Y, 1,0 A(hy o)
Using (5.1.3) and (3.3.2) with p and p’, we have
Tne1 42X 1) +n—p+1=rp,+2k =71, |+ 2\ (1) +n—p' +1=1ry +2,

By (5.1.5),

1
T+ 2X(hy) + 4l =11 + 2 = 1y + 2X(hy) + 4 (l - 5(p’ —p+Ahy) —k+ 1)> =7 _1+2
Let ' = 3(p' — p+ A(hp) — k + 1). Observe that
@y, , satisfies (5.1.3) with (p/,1) and woj, satisfies (5.1.5) with i =n and (I -1, 1).

Since wy, , = wy, ,, p' >pand I -1 <, it follows from Lemma 5.2.1(a) that V,(w) < Vg(w),
contradicting the minimality of Vg(w). If 1 > 2(p' = p+A(hp) —k+2)+1 and p' — p+ A(hp) — k +2
is even, let © € PT be such that wt(w) = )\, @w; = w; for alli € A, and w,_1 = Yi 1 A(ny) for
1 =n — 1,n, where

r_=rn_1— 200 —p+Ahy) —k+1) and ro=1rp+ 2.
Hence, using (3.3.2) with p and p/,
Tne1 42X 1) +n—p+1=r,+2k =71, |+ 2\ hp_1)+n—p' +1=1ry +2.
Also

1
Tn 4 2A(hy) + 4l =11 + 2 = 7, + 2X\(hy,) + 4 (l — 5(p’ —p+Ahy) —k+ 2)) =7 _1+2,

and
re +2XM )+ n— fa+1l=rp+2r=rp +2Xhy)+n— fr+1=r,+2(r—1).
Let ' = 3(p' — p+ A(hp) — k +2). Since [ — 1’ > 1 and r > 1, it follows that
oy, , satisfies (5.1.1) with r — 1,
w, satisfies (5.1.3) with (p/, 1),
wy, satisfies (5.1.5) with i =n and (I — I, 1).
Since | —I' < I, p’ > pand r —1 < r, it follows from Lemma 5.2.1(a) that Vy(w) < Vy(w),

contradicting the minimality of V;(w). Finally, suppose I < 1(p' —p+ A(hp) — k +2) + 1. Observe
that

E+r+20=pANp+n—p+2=>n—p+Ahy) —k—=2l—r+2=—, 1|\ <O.
Hence,
(5.3.14) r>n—p+Ahy) —k—204+2>p —p+Ahy) —k—20+4.

Let © € PT be such that wt(w) = )\, @; = w; foralli € A, and w,_1 = YirAm) fori=n—1n,
where

rh1 =Tn-1—20 —p+Ahy) —k+1) and rn=1n+2(p  —p+ Ahp) — k— 20+ 3).
Hence, using (3.3.2) with p and p/,
Tn1 42X n-1) +n—p+1=rp+2k =1, 1 + 2 N hp_1) +n—p +1=1ry +2.
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Also
T+ 2M(hy) + 4l =11 + 2 =10, +2X(hy) +4 =11 + 2,
and condition (5.1.1) with ¢ = n — 1 and r implies that
rho+ 20 ) A n— i+ l=rh 4200 — (0 —p+ Ahy) — k — 20+ 3)).

Let ' =p' —p+ A(hp) — k — 20 + 3. By (5.3.14), r — v/ > 1. Thus it follows that

wy, , satisfies (5.1.1) with r — 1/,

w, satisfies (5.1.3) with (p/, 1),

oy, satisfies (5.1.5) with ¢ = n and (1,1).

Since r—r' < r,p’ > pand 1 <1, it follows from Lemma 5.2.1(a) that V(=) < V;(w), contradicting
the minimality of V,(w).

Moreover, we show that the following conditions hold:
(1) If r <k, then A(hp—1) +3 — 7 > min{l, A\(h,)}.
(2) If p e supp(A) NA\{fo}, 0 <k <kand 1 <!’ <[ are such that
1<k:= A +n—p+2—r—20—2I' =K — AN hp—1) < min{A(hy), A(hy)},
then r — ,|A[f, < E.
Suppose that (1) fails. Then r < k and A(hp—1) +3 —r < min{l, A\(h,,)}. Let @ € PT be such

that wt(ew) = A, @; = w; for all i € A, and for i =n —1,n, @w; =Y v \x,) Where
1 =rn—1+2Nhp_1)+20—1) and 71, =71, +2(r—1).
Hence,
rr, +2Mhp )+ n—fr+l=r,+2r=rp +2X ) +n—HL+1=7 +2,
ot + 22(ho1) 4 4l =1y + 2= 7|+ 27 (A1) + 4 =1, + 2(A(hp_1) + 3 — 1),
and
Tno1+2X(hn—1)+n—fat+1 = rp +2k = vy +2X(hy, )+n—fr+1 =7, +2(X(hy, ) +n—fr+2—k—21).
Let m = A(hp—1) +3 —r. Since r = A(hy,) +n — fu+2 —k — 2l and r < k, it follows that
oy, _, satisfies (5.1.1) with r,
wog, satisfies (5.1.1) with 1
wo, satisfies (5.1.5) with i =n — 1 and (1, m).

Since m < [ and r < k, it follows from Lemma 5.2.1(a) that V() < V,(w), contradicting the
minimality of V,(w).

Now suppose that (2) fails. Then there are p € supp(A) N A\ {fa}, 0 <k <kand1 <[ <
such that

1<K':=pAp+n—p+2—r—20-2" =k — ANhn-1) <min{A(hp), A\(hy)},

and r — p|A|, > k”. Let w € PT be such that wt(w) = )\, ; = w; for all i € A, and for
i=n—1,n, @; =Y, \x,) wWhere

T4 =Tn-1—2K and 7, =r, +2(2—20—20' — XN hp-1) — M hy) — k).
Hence,
Pne1+ 2 hn-1) +n— fa+1=rp +2k =71, + 2\ (hp-1) +n— fa+1=rp +2(k =K',
Tno1 + 2X\(hp—1) + 4l =1 + 2 = 1), + 2X(hy,) +4 =1, + 2,
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and
re 4+ 2XM g )+ n—fr+l=rp+2r =71, + 2\ ) +n—p+1=ry,+2k".
Thus it follows that
wy,_, satisfies (5.1.3) with (fy, k — k'),
o, satisfies (5.1.3) with (p, ")
oy, satisfies (5.1.5) with i =n and (I, 1).
Since k — k' <k, I" <l and r — p|A|, > k", it follows from Lemma 5.2.1(a) that V(ww) < Vg (w),
contradicting the minimality of V,(w).

Possibility (ii). Observe that r > 3 since, otherwise, m > m — 7 = A(hp—1) + 20 — 17 > A(hp—1).
Also, m > 3 since, otherwise, r > r — 7 = A(hp—1) + 2l — m > A(hp—1), implying by Lemma 4.4.2
that [ = 1. Similarly one easily verifies that m — 7 > 2, implying in particular that m > 7. Now we
show that ¥ = 1. Suppose, by contradiction, # > 1. Let © € PT be such that wt(ww) = \, w; = w;
for all i € I, @, =Y, 11 \(n,,) and

(5.3.15) wy, , satisfies (5.1.1) with ' = 1.
Hence, combining (5.1.5) with ¢ =n — 1 and (5.3.5), one gets
Tno1+2Mp_1) +4 =7l +2(m — 7+ 1).
In other words, o, satisfies (5.1.5) with i =n —1,1 =1 and
m i =m-7r+1<m,
since 7 > 1.

Observe that V(@) is of type (c);_;. We show that [V,(w)] < [V(w)], which gives a con-
tradiction. Evidently, m,(Vy(=)) = m,u(Vy(w)) = 1. Suppose m,(Vy(w)) > 0 where pp = X\ — 1,
n= Zlel nioy, N € Lo, n # 0. If n, =0, since @y, = wy,, it follows from Lemma 2.6.1 that
(=

)1.)) = My, (Vo(wi,)) = myu(Vy(w)).

Suppose ny, > 0. Applying Lemma 2.6.2 with J; = {n}, ip =n—2and Jo = {1,...,n—3,n—1},
it follows n,_o > 0. Similarly, for j € {2,...,n — 3}, considering J; = {1,...,7 — 1}, ig = J,
Jo = {j+1,...,n}, it follows that if n; = 0, then n; = 0 for all ¢ € {1,...,5 — 1}. Consider
j €{1,...,n—3} the biggest index such that n; = 0. Thus nj41,...,np—2,np—1,n, > 0. If j > f,
then it follows from Lemma 4.5.1(iii) that

Va(@ist,n)] < Vo(@ijgn,..ny)l-
Suppose j < fi. It follows from Proposition 3.5.1 that if

mu(Vo(@)) = my,, (Vg

_ -1 -1
®= WAfA,n—Q,Tf)\—G-Q()\(hf)\)—I)An;r‘f)\+2(A(hf)\)—1)+n—f)\7
then p; . & wte(Vy(wr,_,)) and p; | € th(V (wr, ,)). Also, it follows from the proof of
Proposition 3.5.1 that, if v = wt(p) = )\ ZZ £, @ — an, then my, (Vy(wor, ) < mu(Ve(wr, ).
Therefore, by Lemma 2.6.1,
my, (Vo(wo)) < my, (Vg(w))-

Since v > pu, the proof of case (ii) follows.

Possibility (iii). First observe, combining hypotheses (5.1.1) with i = n — 1, (5.1.3) with i = n
and (5.1.5) with ¢ = n, that

p=p.
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Now we show that either k or k is equal to 1. Suppose, by contradiction k,k > 1. Let @ € P*
be such that wt(w) = A, @; = w; for all i € A, @; =Y .1 \,) for i =n —1,n where

T‘;L_l =7rp_1—2 and 1

n = Tn— 2.

Thus,
Tne1 42X hp—1) +n—p+1=rp,+ 2k =71, 1+ 2\ hp—1) +n—p+1=r,+2(k—1),
and ~ _
o4+ 2Xhn) +n—p+1=rp+2k =71, + 2\ h,) +n—p+1=r;+2(k —1).
Since k, k > 1, it follows that

w;, and wy, , satisfy (5.1.3) with (p,k—1) and (p,k — 1), respectively.
Also, one can easily checks that
satisfies (5.1.5) with ¢ =n and (I,m).

wb\

Therefore, by Lemma 5.2.1(a), V(@) < V,;(w), contradicting the minimality of V,(w).

Suppose k = 1. If I > 1, which implies by Lemma 4.4.2 that m = 1,2, we show that the
following conditions hold.

(1) k < 2. Besides, if m =2, then k = 1. )
(2) Ifp < fa, given i, i € supp()) and max{0, k—A(h;)} < k' < max{k,m} such that p <i <i < fy;
p<iand 0 <i—p+ j|Al;_; —i+p— p|Ali=1 + k' is even, then
1. _ .
I < 5(z — P+ plAiy—i4+p— plMic1 +K) + 1.
(3) If p < fy, given 4,7 € supp(A\) and max{0, k—A(h;)} < k' < max{k,m} such that p <i <i < f)
and i — i+ ;|A\;_1 + 2l — k+ k' + 2 — X(h,) is even then

1 1
either 5(z’—i+i|>\|;_1+2l—k+k:’~|—2—)\(hn))<l or 5(z’—i+i|)\|;_1+2l—k:+k’+2—)\(hn))>2l.

Suppose that (1) fails. Thus k > 2. Let @ € PT be such that wt(w) = A, w; = w; for all
i €Iy, and w1 =Y, 1,0 A, ,) Where ), ; =1, 1 —4. Hence,

n—1>
Tne1 42X p—1) +n—p+1=rp+2k=71,_; + 2X\(hp—1) + n—p+ 1 =1, + 2(k — 2),
and
T+ 2X(hn) + 4l = 11 + 2m = 1y + 2X(hy) + 40— 1) = 7/,_; + 2m.
Since [ > 1 and k > 2, it follows that
woy,_, satisfies (5.1.3) with (p, k —2) and o, satisfies (5.1.5) with ¢ = n and (I — 1, m).

Since wy, , = wy, ,, it follows from Lemma 5.2.1(a) that V(=) < V,(w), contradicting the
minimality of V(w). Suppose now m = 2. If k > 1, letting @ € PT be such that wt(w) = A,
w; =w; forall i € I,,_1, and wo,_1 = Yn—l,r;,l,A(hnfl) where r/,_; = r,_1 — 2, one can similarly
checks that
w, , satisfies (5.1.3) with (p,k — 1) and woj, satisfies (5.1.5) with i =n and (I — 1, 1),

which implies V(@) < Vg(w).

Suppose now that (2) fails. Then, there exist i,i € supp()\) and max{0,k — A\(h;)} < k' <
max{k,m} such that p <1 <i< f\; p<i,0<i—p+ 5|A;_; —i+p— p|Ai—1 + & is even and

1>=(G—p+ plNii —i+p— plAic1 +K) + 1.

DN |
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First consider m = 1, which implies max{k,m} = k = 1,2. Let @ € P" be such that wt(w) = A,
w; = w; for all i € A, and w; = YZ-J;’,\(;“) for i =n — 1,n, where
(5.3.16) ro=rn+20—Dp+ p|\j_1) and r,_; =711 +2(G—p+ p|Ni1 — ).
Hence, using (3.3.2) with p and i,
(5.3.17) T+ 2X ) +n—p+1=rs+2=7r, +2X ;) +n—i+1=r; +2.
Also, (3.3.2) with p and 1,
(5.3.18) rp—1+ 2N 1)+ n—p+1l=rp+2k=1,_1 +2Xhp1) +n—i+1=r;+2(k — k).
Finally, condition r,, + 2A(hy,) + 4l = r,—1 + 2 implies that

1 -
4 2X(hy,) + 4 <z =50 =p+ gy =it p— pAlia + k’)) =Ty +2.

Let ! =1—3(i—p+ p|Ali_1 —i+p— p|Alic1 +&'). By the conditions on the parameters, it follows
that
w7y, _, satisfies (5.1.3) with (i, 1),
oy, satisfies (5.1.3) with (i, k — k'),
wy, satisfies (5.1.5) with i = n and (I', 1).

Since i > p, i > p, k—k < k and I’ < [, it follows from Lemma 5.2.1(a) that V,(w) < Vy(w),
contradicting the minimality of V,(w). Consider now m = 2, which implies £ = 1, max{0,k —
Ahi)} = 0 and max{k,m} = 2. If ¥’ = 0, letting ©o be defined as above one gets similarly a

contradiction. If k' = 1, let = € PT be such that wt(w) = \, w; = w; for all i € A, and
w@; = Y, \(n,;) for i = n —1,n, where

(5.3.19) ro=rn+20—p+ plA;_1) and 7, =rp_1+2(0—p+ pAic1).
Hence, using (3.3.2) with p and 1,

(5.3.20) T+ 2\ o) +n—p+1=rs+2=1r, +2\hy) +n—i+1=r;+2.
Also, (3.3.2) with p and 1,

(5.3.21) Tne1 42X p—1) +n—p+1=rp+2=7r)_1 + 2\ hp_1)+n—i+1=r +2.

Finally, condition r,, + 2A(hy,) + 4l = r,—1 + 4 implies that

1 -
v+ 2X(hy) + 4 (z - 5(1 =D+ A =i+ p— p|Aic1 + 1)> =7, +2.

Let ! =1—1(i—p+ 5|Ali_; —i+p— p|Ali=1 +1). By the conditions on the parameters, it follows
that
oy, , satisfies (5.1.3) with (4, 1),
wo, satisfies (5.1.3) with (4, 1),
oy, satisfies (5.1.5) with i = n and (I, 1).

Since ¢ > p, i > p, I’ <l and 1 < 2 = m, it follows from Lemma 5.2.1(a) that V(=) < V,(w),
contradicting the minimality of V,(w).

Suppose now that (3) fails. Then, there exist i,i € supp()\) and max{0,k — \(h;)} < k' <
max{k,m} such that p <i <i < fy, i —i+ |A;_; +20 —k+ k" +2 — A(hy,) is even and

1 -
0<—l+(i—i+ Ny + 20— k4K +2—Ahy)) <.
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First consider m = 1, which implies max{k,m} = k = 1,2. Let 0 € P be defined as in (5.3.16).
Then, (5.3.17) and (5.3.18) holds. Finally, condition ry, + 2A(hy,) + 4 = rp—1 + 2 implies that

1 -
o1+ 2M(hn—1) + 4 <—l + §(i =P+ plAior 2 =i+ p— p[Alict K = A1) — )‘(hn))>

= 7‘;1 + 2.
Let ! = —1+3(i—p+ p|Ali_y +2—i+p— p[Alic1 + & — AM(hn—1) — A(hy)). Observe that, condition
(5.3.22) s p 1 +p—p+m+k=Ahn1)+2l+1

implies that
I'=—l+ %(E— i+ iAoy + 20— k+ K +2 = Xhy)).
By the conditions on the parameters, it follows that
wy,_, satisfies (5.1.3) with (i, 1),
o, satisfies (5.1.3) with (i, k — k'),
wy, satisfies (5.1.5) with i =n — 1 and (I', 1).

Since i > p >p, i > p, ' <land k — k' <k, it follows from Lemma 5.2.1(a) that V(=) < V,(w),
contradicting the minimality of V;(w). If m = 2 similarly one can get a contradiction.

If [ = 1, we first show that the following condition holds.
(1) k< )\(hf)‘)-f-p—]?-i-n—f)\—l.

(2) If p < fx, given 4,7 € supp(A) and max{0,k — A(h;)} < k" < k such that p < i<i< fup<i
and i —p+ p|Al;_; <i—p+ p|Alic1 — K, then

m<i—p+ p|Ni-1 — K —i+p— 5A;_1 + 1.

(3) If p < fi, given 4,7 € supp(A\) and max{0,k — A(h;)} < k' < k such that p <i <7 < f) then

either A(hp) +14+k—k —i+i— iJM\;; <1 or Ahn)+1+k—K —i+i— ;|A;_4>m.

Suppose that (1) fails. Thus,
k= Mhg)+p—p+n—fi-1
Let @ € P be such that wt(ww) = \, ; = w; forall i € A, w; = Yi 1 A(ny) for @ =n —1,n where
Tho1 =1 F2(p A1+ o —p—1+m) and 1) =7y +2(5A| -1+ fa — D).
Hence, using (3.3.2) with p and f),
o+ 2X ) +n—p+1=r5+2=1, +2Xh,)+n—fr+1=rp +2.
Also, (3.3.2) with p and fy, condition r,—1 + 2X(hy—1) +n — p + 1 = r, + 2k implies that
iy 2Mhp) Fn = o+ L=+ 2(pA g + 0= o+ 24 Ahno1) — k= p[Al -1 —m).

Let 7 := p[Alg, + 1 — fa + 2+ AMhp—1) — k — p[A[s,—1 — m. Condition described in (iii) (with
=1 =1) implies that

-~

r=Afr)+n—fr—1L
Finally, condition 7, + 2A(hy,) + 4 = r,—1 + 2 implies that

42X (hp) +4 =1, + 2.
Since 1 < r < k, it follows that
wy, , satisfies (5.1.1) with r,
wo, satisfies (5.1.3) with (fy, 1),
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w, satisfies (5.1.5) with ¢ = n and (1,1).

Since fy > p, r < k and m > 1, it follows from Lemma 5.2.1(a) that V(=) < V,(w), contradicting
the minimality of V,(w).

Suppose that (2) fails. Thus, there exist i,4 € supp()\) and max{0,k — A(h;)} < k¥’ < k such
that B

m>i—p+ p|Aic1 — K —i+Dp— 5N + 1.
Let @ € P be defined as in (5.3.16). Thus, one can see that (5.3.17) and (5.3.18) hold. Condition
Tn + 2A(hy) + 4 = rp—1 + 2m implies that
T+ 2X ) +d =1, +2m— (i —p+ p|Mic1 — K —i+D— plA[_1))-
Let m' =m— (i —p+ p|Ai—1 —k —i+p— 5|A[;_1). By the conditions on the parameters, it follows
that
wy, , satisfies (5.1.3) with (i, 1),
wy, satisfies (5.1.3) with (i, k — k'),
w7y, satisfies (5.1.5) with i =n and (1, m’).

Since i > p, i > p, k — k' < k and m’ < m, it follows from Lemma 5.2.1(a) that V,(w) < V(w),
contradicting the minimality of V,(w). Now, suppose p = p. Thus, from the condition given in
(iii), we have
(5.3.23) k+m = A(hp—1) + 3.
Hence k > 3, since otherwise m = A(hy,—1) + 3 — k > A(hy—1). Similarly, m > 3. Let @ € PT be
such that wt(zo) = A\, wo; = w; for all i € A, and w; = Yi v A(ha) fori=n—1,n and

(5.3.24) o =1 +2MNhp)+n—fr+1—=2k and 7, =rp +2X(hy) +n— fr— 1
If follows from (5.3.24) that

(5.3.25) 2 (1) + 4 =1+ 2\ () — k+3) PV o,

Since 1 < k < min{A(hp), A(hpn—1)} < min{|A|p—2, A(hn—1)}, it follows from (5.3.24) and (5.3.25)
that
woy, , satisfies (5.1.1) with k,

wo g, satisfies (5.1.1) with 1,

oy, satisfies (5.1.5) with i =n — 1 and (1, m).

In other words = is of type (¢)f_,. By Lemma 5.2.1(a), V,(w) < V,(w), yielding a contradiction.
Suppose now that (3) fails. Thus, there exist i,7 € supp()\) and max{0,k — A(h;)} < k' < k

such that

L< M)+ 1+ k=K —i+i— i|\;_4 <m.
Let @ € P be defined as in (5.3.16). Thus, one can see that (5.3.17) and (5.3.18) hold. Condition
Tn 4 2A(hyp) + 4 = rp—1 + 2m implies that
Pt + 2A(hn-1) +4 = i 4+ 2(A(hn) + A(hn1) +4 —mti—pt p Aot = K = (0 =D+ plAli-1))-
Let m' = A(hy) + A hp—1) +4—m+i—p+ p|Ni—1 — k' — (i — p+ 5|Al;_1). It follows from (5.3.22)
that

m' = XNhyp) +1+k—k —i+i— ;|\

By the conditions on the parameters, it follows that

wy,_, satisfies (5.1.3) with (i, 1),
oy, satisfies (5.1.3) with (i, k — k'),
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wy, satisfies (5.1.5) with i =n — 1 and (1,m’).
Since i > p>,i>p>p, k—k <kand m’ <m, it follows from Lemma 5.2.1(a) that V(=) <
Vy4(w), contradicting the minimality of V,(w).

Suppose now k > 1, which implies k = 1. We show that m = 1. Indeed, suppose by contradic-
tion m > 1. Let @ € PT be such that wt(ww) = )\, @; = w; for all i € I, and w, = Yo rt A(hn)
where r/, = r, — 2. Thus,

"o+ 2XMhn) +n—p+1=r5+2k =1, +2\(hy) +n—p+ 1 =15+ 2(k - 1),
and
"o+ 2X(hp) + 4l = rp_1 +2m = 1), + 2\(hy) + 4l = 1 +2(m — 1).
Since m, k > 1, it follows that

woy, , satisfies (5.1.3) with (p, k — 1) and oy, satisfies (5.1.5) with ¢ = n and (I, m — 1).

Since wy, , = wy, ,, it follows from Lemma 5.2.1(a) that V(=) < V,(w), contradicting the
minimality of V,(w).

Besides, the following condition hold. If p < fy, given i,1 € supp(\) and 0 < 1" < [ such that
p<i<i<fy;p<iwitheither " >0o0rp<i, andi—p+ p|Ali—1 +2I' <i—p+ j|\|p—1, then

either &k <i—p+3|Apo1—i+p—p/Aic1—20'+1 or k>i—p+3|Ap_1—i+p—plAim1 =20+ (k).

Suppose, by contradiction, that this is not the case. Thus, there exist 4,4,!’, under the above
conditions such that

PP+ A1 =i+ p— pAlicr — 2+ 1< R < i =P+ 3\ p1 — i+ — pAlim1 — 20+ A(Bp).
Let w € P* be such that wt(w) = \, @; = w; for all i € A, and w; = Yir Ay for i =n—1,n,
where

(5.3.26) Ty =Tn-1+2(i—p+ p|Aic1) and 7, =71, +2( —p+ plAi—1 +20).
Hence, using (3.3.2) with p and 1,

(5.3.27) Tne1 42X 1) +n—p+1=rp,+2=7r) 4+ 2\ hp_1) +n—i+1=1r;+2.
Also,

T 42X ) + 4 =11 +2 = 1), + 2X(hy) + 41 =) =7],_, + 2.
Finally, using (3.3.2) with p and 7, condition (5.1.3) (with i = n and (p, k)) implies that
(5.3.28) 42X hp) +n—i+1=r;+2(k— (G —p+ plA;_1 —i+p— p|Ai—1 —20)).
Let ¥ = k—(i—p+ p|Al;_1 —i+p— p|Ali-1 —20). By the conditions on the parameters, it follows
that
wy, _, satisfies (5.1.3) with (i, k),

wo, satisfies (5.1.3) with (4, 1),
wy, satisfies (5.1.5) with i =n and (I — I, 1).

Since i > p, i > p, | —I' <l and k' < k, it follows from Lemma 5.2.1(a) that V(=) < V,(w),
contradicting the minimality of V,(w).

Moreover we show that the following condition holds. If p < f), given i,i € supp()\) and
max{0,k — A\(h;)} <k <k such that p<i <i< fy,i>pand —A(hy)+i—p+ 5|\ —i+p—
p|Ali=1 + k' is even, then

1 _
either 1> Z(=A(hn) +i =P+ s\ —i+p— p\imt +F)
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1 -
or 5(_>‘(hn) +i—p+ plAio1 =i+ p— pAlia +E) > 20— 1.

Suppose, by contradiction, that this is not the case. Thus, there exist i,4,k’, under the above
conditions such that

1 _
1<1—1+ 5(—A(hn) +i—p+ g A1 —i+p— plAic1 +K) <L

Let © € P be such that wt(w) = A\, ©; = w; for alli € A, and w; = Yir any) for i =n—1,n,
where
rn =T+ 20— p+ Aoy — k) and 1y =rp1 +2(0 = p+ plAlio1)
Hence, using (3.3.2) with p and i,
(5.3.29) T+ 2Mhp) +n—p+1=15+2= 1, + 2\ (hy) +n—i+1=1r;+2(k — k).
Also, (3.3.2) with p and 1,
(5.3.30) P14+ 2\ hp_1)+n—p+1=r,+2k=>7r,_1 +2 X p_1)+n—i+1=r; +2.
Finally, condition r,, + 2A(hy,) + 41 = r,—1 + 2 implies that

1 _
v+ 2XM(hy1) +4 <1 -1+ 5(—A(hn) +i—D+ A —i+p— pNio1 + k’)) =7 +2.

Let ! = 1—1+(=A(hp)+i—p—+p|Alj_; —i+p—p|Ali—1 +&'). By the conditions on the parameters,
it follows that
w; _, satisfies (5.1.3) with (i, k — k),
wo, satisfies (5.1.3) with (4, 1),
w7y, satisfies (5.1.5) with i =n — 1 and (I, 1).
Since i > p, i > p, I' <l and k — k' < k, it follows from Lemma 5.2.1(a) that V(=) < V,(w),
contradicting the minimality of V,(w).

5.4. Proof of Step 2

We show that a minimal affinization V(w) of type (a)-(f) cannot be related to any minimal
affinization V(=) of the same type and some different parameters. Let {7, j'} = {n —1,n}.

o Let w be of type (a); and @ be of type (a);. Then, it is not difficult to see that Vg(wr,) <
Vo(wi,) and Vo(wy;) > Vy(wmy,), implying that Vg(w) and Vg(zw) cannot be related.

o Let w be of type (b); and w be of type (b);. Then, it is not difficult to see that V,(wy;) <
Vo(wy;) and Vg(wr,) > Vg(wy,,), implying that Vg(w) and Vg(ww) cannot be related.

r

¢ Let w be of type (c)’; and w be of type (c)}”; In Case 3 we showed that r > 3 in type (c)j,
then, it is not difficult to see that Vy(wy,) < Vg(woy;) and Vg(wr,,) > Vg(woy, ), implying that Vg (w)

T

and V,(zo) cannot be related. If w be of type (c)’

" and @ be of type (c)gl, r # r', suppose r < r’.
Since

r+m=Ah;)+3=r"+m,
it follows that m > m'. Then, Vy(wr,) < Vy(or,) and Vy(wr,) > Vy(oor,), implying that Vy(w)
and V(=) also cannot be related.

o Let w be of type (d)?’l and = be of type (d)?,/’l/. By condition described in this type:
r+k+20=Ahp)+n—fr+2=r"+k+20
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Suppose, without loss of generality, 20" < 2I. Thus ' —k > r—k'. If r < k¥, by Proposition 3.6.1(iv)
Volwr,) < Vy(wy,). If 21" < 21, then Vy(wr,) > Vy(w1,), implying that Vi (w) and V,(zo) cannot
be related. If 21" = 2[, then »' < k, and, by Proposition 3.6.1(iv), %(wjj,) > Vq(wlj,), implying
that V;(w) and V(=) also cannot be related. Finally, suppose ¥ < r. Then ' —k >r — k" > 0.
Hence 7' > k and again by Proposition 3.6.1(iv), Vo(wr,) < Vg(w1,,), and studying cases 2 < 21

and 20’ = 2 one gets that V;(w) and V(o) cannot be related. If w be of type ()%

j
type (d);C " it is another application of Proposition 3.6.1(iv) to verify that Vy(w) and V(o) cannot
be related.

and == be of

(B.k),(p;k)

o Let w be of type (f) ] . One can see in the proof of Case 3 that the conditions described

in this type are exactly that ones for not to exist zo of type (f)@l’,’k/)’(p,’k/) or (f)§?/l’,k,)’(p/’kl) such

-]7
that V() < V,(w).

5.5. Proof of Step 3

We show that a minimal affinization V;(w) of type (a)-(f) cannot be related to any minimal
affinization V(=) of other type (a)-(f). Let {j,j'} = {n — 1,n}.

o Let w be of type (a); and = be of type (b);. Then, it is not difficult to see that V(wy,) <
Vy(wor,) and Vy(wy,) > Vy(wop;), implying that Vi (w) and V(wo) cannot be related.

r

o Let w be of type (a); and @ be of type (c)j. In Case 3 we showed that r > 3 in type (c)7,
then, it is not difficult to see that Vy(wy,) < Vg(wor,) and Vy(wi,) > Vg(woy;), implying that Vg (w)
and V(=) cannot be related.

o Let w be of type (a); and z be of type (d);CZ Then it is not difficult to see that Vg(wy,) <
Vo(wr,) and Vo(wy;) > Vo(wy,), implying that Vg(w) and Vg(ww) cannot be related.

o Let w be of type (a); and wo be of type (e). Then it is not difficult to see that V,(wr,) <
Vy(wor,) and Vy(wy;) > Vy(woy;), implying that V,(w) and V;(zo) cannot be related.

o Let w be of type (a); and =@ be of type (f)gﬁl’k)’(p’k). Then it is not difficult to see that

Volwr,) < Vg(wr,) and Vo(wr,) > Ve(w1,), implyiné that V,(w) and V;(zo) cannot be related.

r

o Let w be of type (b); and @ be of type (c)}. In Case 3 we showed that 7 > 3 in type (c)7,
then, it is not difficult to see that Vy(wyy, . n—21)) < Vo(@(y,,..n—203) and Vy(wr,) > Vy(w1,),
implying that V,(w) and V(=) cannot be related.

o Let w be of type (b); and = be of type (d)?l In Case 3 we showed that r > 3 in type (d)
then it is not difficult to see that V(wy,) < Vy(wy,) and Vy(wr,) > Vy(w1,), implying that V,(w)
and V(=) cannot be related.

k.l
J

I

o Let w be of type (b); and @ be of type (e). By Proposition 4.6.4(a), Vy(wyiy,,..n}) <
Va(@(s,...n}) and, since #(supp(A) N A) > 1, Vy(wy,) > Vo(wy, ), implying that Vg(w) and Vy(w)
cannot be related.

o Let w be of type (b); and = be of type (f)g.pl’k)’(p’k). Then it is not difficult to see that
Vo(wr,;) < Vy(wy;) and Vy(wr,) > Vy(w1,), implying that V;(w) and V, () cannot be related.

¢ Let w be of type (c)g and o be of type (d)fl In Case 3 we showed that » > 3 in type (d)j?’l,

then it is not difficult to see that Vj(wr;) < Vi (wr;). Now one can see that, if V,(w) < V (),
then condition (1) described in the possibility (i) of Case 3 is not satisfied.
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o Let w be of type (c)} and = be of type (e). Then, it is not difficult to see that Vy(wy,) <
Vq(w1,). In Case 3 we showed that r > 3 in type (c), then it is not difficult to see that Vg(wy,) >

Vq(w1,), implying that Vg (w) and V(@) cannot be related.

T

o Let w be of type (c)} and = be of type (f);ljl’lg)’(p’k). If = satisfies (i) or (ii) of (f)g.pl’ )’(p’k),

then k& < 2. In Case 3 we showed that r > 3 in type (c)g, thus k < r, and by Lemma 5.2.1(b), V,(w)

and V(=) are not related. Suppose now that zo satisfies (iii) of (f);ﬁ’k)’(p *) 1t is not difficult to
see that Vy(wy;) < Vy(wy,). Thus, either V (w) < V() or they are not related. Suppose, by
contradiction, V(w) < V(). Then Vy(wy) < Vy(woy) for all J C I connected. In particular, for
J = I we get

A(hy) +3 =1 < Ahyj) +3 =k = (p[Alp-1 +p = D).
Hence

r>k+ p’)\’p_l +p—p>k.

Then, by Lemma 5.2.1(b), V,(w) and V;(zo) are not related, yielding a contradiction.

k,

o Let w be of type (d); "and w be of type (e). Then, it is not difficult to see that V (wy,) <

Vy(wor,). In Case 3 we showed that r > 3 in type (d)?’l, then it is not difficult to see that
Vo(wr,) > Vy(wo1;), implying that V;(w) and V,(wo) cannot be related.

o Let w be of type (d)?l’l/ and o be of type (f)%’k)’(p’k) or with j" in place of j. One can see
that, if V,(w) > V; (=), then condition (2) described in the possibility (i) of Case 3 is not satisfied.
Now, if k,k < 2, since r > 3, either Vj(w) and V,(w) are not comparable affinizations (Lemma
5.2.1(b)) or Vy(w ;) < Vy(wy,), implying that V;(w) and V;(zo) are not related. If k > 3, then one
can see that if V,(w) < V,(=0), then condition (1) of the possibility (iii) of Case 3 is not satisfied.
If k> 3, then k = m = 1 and one can verify that V(w) £ V().

o Let w be of type (e) and =zo be of type (f)fl’k)’(p’k). Then, it is not difficult to see that
Vowr,) < Vy(wr,) and Vy(wr,) > V(w1 ), implying that V;(w) and V(o) cannot be related. [

REMARK 5.5.1. If #(supp(A) N A) = 1, then class (f) degenerates to a class of type (c) or (d).
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