












Abstract

The concept of minimal affinization, introduced by Chari and Pressley, arose from the impos-
sibility to extend, in general, a representation of the quantum group associated to a simple Lie
algebra for the quantum group associated to its loop algebra, which is always possible in the clas-
sical context. A special class of minimal affinizations is that of the Kirillov-Reshetikhin modules,
which are minimal affinizations of the irreducible modules with highest weight multiple of a funda-
mental weight. These modules are central objects in the study of integrable lattices in mechanical
statistics. In the past two decades it has been intense the scientific research in the direction of
understanding the minimal affinizations, not only by their potential applications in mathematical
physics, but also for being a very rich theory for itself, in addition to having strong interaction
with combinatorics. There exists an almost complete classification of the equivalence classes of the
minimal affinizations in terms of Drinfeld polynomials due to Chari and Pressley. The classification
is completed in the case where the support of the highest weight does not enclose a subdiagram of
type D4, and in this case there is only one equivalence class. In the case where the support encloses
a subdiagram of type D4 the situation depends essentially if support contains the trivalent node of
the diagram or not. If it contains, the classification is also completed and there are three equivalence
classes. Otherwise the classification is not completed. In this work we present the classification
of the equivalence classes for algebras of type D. The main technique used was the combinatorial
manipulation of qcharacters through mainly its description via tableaux and sometimes using the
Frenkel-Mukhin algorithm.

Keywords: Minimal affinizations, qcharacters, quantum groups, representations of algebras.

Resumo

O conceito de afinização minimal, introduzido por Chari e Pressley, surgiu a partir da impossibi-
lidade de se estender, em geral, uma representação do grupo quântico associado a uma álgebra de Lie
simples para o grupo quântico associado à sua álgebra de laços, o que sempre é posśıvel no contexto
clássico. Uma classe especial de afinizações minimais é a dos módulos de Kirillov-Reshetikhin, que
são afinizações minimais dos módulos irredut́ıveis quando os pesos máximos são múltiplos dos pesos
fundamentais. Esses módulos são objetos centrais no estudo de reticulados integráveis em mecânica
estat́ıstica. Nas últimas duas décadas, tem sido intensa a investigação cient́ıfica na direção de se
entender as afinizações minimais, devido não só às suas potenciais aplicações em f́ısica-matemática,
mas também por ser uma teoria muito rica por si só, além de ter forte interação com combinatória.
Existe uma classificação quase completa das classes de equivalências de afinizações minimais em
termos de polinômios de Drinfeld, devido a Chari e Pressley. A classificação está completa no caso
em que o suporte do peso máximo não engloba um subdiagrama de tipo D4, e neste caso existe
uma única classe de equivalência. No caso em que o suporte engloba um subdiagrama de tipo
D4 a situação depende essencialmente se o suporte contém o vértice trivalente do diagrama ou
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não. Se ele o contém, a classificação também está completa e existem três classes de equivalências.
Caso contrário a classificação não está completa. Neste trabalho apresentamos a classificação das
classes de equivalências para álgebras de tipo D. A principal técnica empregada foi a manipulação
combinatória de qcaráteres através principalmente de sua descrição via tableaux e, algumas vezes,
utilizando-se o algoritmo de Frenkel-Mukhin.

Palavras-chave: Afinizações minimais, qcaráteres, grupos quânticos, representações de álgebras.
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Introduction

The theory of representations of Kac-Moody algebras and their quantizations is of great interest
in many areas of mathematics and physics. These algebras were proposed independently in the
1960’s by Kac and Moody (see [29] and [34]) as a generalization of the successful concept of
semisimple Lie algebra. Around 1985, influenced by the works in statistical-physics related to the
so-called Yang-Baxter equation, Drinfeld [14, 15] and Jimbo [27, 28] introduced deformations of
the universal enveloping algebras of Kac-Moody algebras, which are known as Quantum Groups.
The classical Kac-Moody algebras (or rather their universal enveloping algebras) are recovered by
taking the limit when the parameter of deformation (quantization) goes to 1. Later the theory of
quantum groups showed itself to be useful in many subareas of mathematics, establishing relations
among a priori seemingly highly unrelated works. Some important results on the classical Kac-
Moody algebras, such as the existence of “canonical” bases for certain important classes of their
representations, were only possible to obtain after the advent of quantum groups through the works
of Kashiwara [30] and Lusztig [33].

Almost three decades after quantum groups were introduced, many relevant problems, both
in classic and quantum contexts, remain open, maintaining a very intense research activity in its
various subareas. In particular, the theory of finite-dimensional representations of quantum groups
associated to affine Kac-Moody algebras (or simply quantum affine algebras) is a very relevant
research topic nowadays (see for example [1, 3, 5, 7, 13, 17, 18, 26, 35, 46]). The underlying
categories of modules are Jordan-Hölder abelian tensor categories. Despite the classification of the
simple objects being known since [8] and the great development of the theory since then, several
other basic questions about the structure of these categories remain essentially unanswered.

The central problem investigated in this work concerns the subclass of simple objects known as
minimal affinizations defined by Chari in [1]. These representations appear naturally in the study of
integrable lattices in statistical-mechanics. In the past two decades, there has been intense scientific
work in the direction of understanding the minimal affinizations, not only because of their potential
applications in mathematical-physics, but also for being a very rich theory by itself in addition to
having a strong interaction with combinatorics. Important examples of minimal affinizations are the
Kirillov-Reshetikhin modules initially studied in [31], where it was conjectured that the characters
of their tensor products satisfied certain fermionic formulas. This conjecture (whose proof was
finished in [23]) was motivated by an essential tool for the study of such integrable lattices, called
Bethe Ansatz. In fact, the fermionic formulas provide an algorithm to calculate the character of
any Kirillov-Reshetikhin module as a polynomial on the characters of the so-called fundamental
representations. Despite the characters of the fundamental representations being known, the task
of obtaining “closed” formulas from this algorithm does not seem feasible. However, also motivated
by the Bethe Ansatz, the authors of [19, 20] formulated conjectures for characters of Kirillov-
Reshetikhin modules directly, which are now proved as a byproduct of the results of [23] and
references therein.

Let g be a finite-dimensional Lie algebra over the complex numbers and g̃ be the associated
(non twisted) affine Kac-Moody algebra. Denote by Uq(g) and Uq(g̃) the corresponding quantum
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2 INTRODUCTION

groups at a generic value of the quantization parameter q. Recall that the simple finite-dimensional
Uq(g)-modules are determined by their highest weight, which must be a dominant integral weight.
Given such a weight λ, denote by Vq(λ) any element of the associated isomorphism class of simple
modules. Recall also that every finite-dimensional Uq(g)-module is completely reducible. Given
such a module V and a dominant weight µ, we denote by mµ(V ) the multiplicity of Vq(µ) as a
simple factor of V . Hence, we can write

V ∼=
⊕

µ
Vq(µ)

⊕mµ(V )

and the numbersmµ(V ) determine the isomorphism class of V . Since Uq(g) is a subalgebra of Uq(g̃),
any Uq(g̃)-module can be regarded as a Uq(g)-module. We shall say that two finite-dimensional
Uq(g̃)-modules are equivalent if they are isomorphic as Uq(g)-modules. Following [1], a finite-
dimensional Uq(g̃)-module V is said to be an affinization of Vq(λ) if

mλ(V ) = 1 and mµ(V ) 6= 0 only if µ ≤ λ,

where ≤ denotes the usual partial order on the weight lattice of g. This partial order also induces
in a very natural way a partial order in the set of (equivalence classes of) affinizations of Vq(λ). The
corresponding minimal elements are called minimal affinizations. Evidently, a minimal affinization
is necessarily an irreducible Uq(g̃)-module.

The simple objects of the category of finite-dimensional representation of Uq(g̃) are classified
by Drinfeld polynomials. Denote by Vq(ω) any element of the isomorphism class of simple modules
associated the Drinfeld polynomial ω. To each Drinfeld polynomial ω it is associated a dominant
integral weight wt(ω). It is immediate that Vq(ω) is an affinziation of Vq(λ) with λ = wt(ω). It is
then natural to ask about the classification of minimal affinizations, i.e., the characterization of the
Drinfeld polynomials corresponding to minimal affinizations. This classification is complete only
when the support of λ does not enclose a subdiagram of type D4 (see [10, 11]). Indeed, in that
case, there exists only one equivalence class of minimal affinizations. If the support of λ encloses a
subdiagram of type D4, the situation is more complicated and it depends essentially on whether the
support contains the trivalent node or not. In the first case the classification is also complete [10]
and there are three equivalence classes. If the trivalent node is not in the support of λ, essentially
nothing is known except when g is of type D4, in which case Chari and Pressley almost finished
the classification in [12].

The goal of the present work is to complete the classification for g of type Dn. In particular,
it follows from our results that a conjecture left in [12] is false. Namely, three families of Drinfeld
polynomials were presented in [12] and it was proved that the Drinfeld polynomials corresponding
to minimal affinizations must lie in one those families. It was then conjectured that two of the
families parameterized the same equivalence classes and, hence, there should be only two families
of minimal affinizations. We prove here that the Drinfeld polynomials in one of the three families do
not actually correspond to minimal affinizations: the corresponding modules are actually smaller
than those that they were conjectured to be equivalent to. It is interesting to mention that the
number of non equivalent elements in one of the families is not uniformly bounded, i.e., the number
of equivalence classes of minimal affinizations of Vq(λ) grows as λ “grows”. For n > 4 we have more
families: beside the two analogous families to those in the case n = 4, we have two extra families
in the case that the support of λ intersects the “type A” part of the Dynkin diagram in a single
node and four extra families otherwise.

Beside the techniques developed by Chari and Pressley in [10, 11, 12], we used another tool, not
available when those papers were published, in a very crucial way in the proof of our classification
theorems: the notion of qcharacters introduced by Frenkel and Resehtikhin in [18] in their study of
W -algebras. The qcharacters are analogues of the usual concept of characters for Uq(g)-modules in
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the sense that they describe the dimension of the so-called ℓ-weight spaces. Despite all the progress
related to theory of qcharacters, there does not exist any general formula for computing them (see
however, [42, 43, 47] for formulas in terms of Jacobi-Trudi determinants for g of classical type). In
[44], Nakajima described the qcharacters of fundamental representations in the case that g is of type
A and D in terms of tableaux. A similar description for the qcharacters of minimal affinizations
of type A in terms of semi-standard tableaux is known (see the paragraph preceding Proposition
3.2.1) and we use it to obtain partial information on the simple factors of certain tensor products
of simple modules. In particular, we characterize their irreducibility in some cases and compute
special simple factors in other cases. This study of tensor products is then applied to compare
certain affinizations. For type D, we obtain a similar characterization in terms of semi-standard
tableaux for studying tensor products of Kirillov-Reshetikhin modules associated to the spin nodes.
In some cases we also employed the Frenkel-Mukhin algorithm [17] and some lemmas obtained in
[22] for obtaining partial information on the qcharacters. These results are then brought together
in the proof of the classification theorems for showing that the Drinfeld polynomial of any minimal
affinization must belong to one of the presented families as well as for showing that the modules
corresponding to different elements of these families are not comparable affinizations and, hence,
must be minimal.

As we have seen in the previous paragraph, the proof of the classification theorems provides some
partial information about the structure of minimal affinizations, specially about their qcharacters.
However, most of their structure remains unveiled. In particular, it is natural to ask about the
structure of the minimal affinizations as Uq(g)-modules. More precisely, given a minimal affinization
V , how to compute the numbers mµ(V )? In type A, it is well-known that mµ(V ) = 0 unless µ
is the highest weight (this is a consequence of the fact that, in type A, there exist quantum
analogues of the evaluation maps g̃ → g). In the case of Kirillov-Reshetikhin modules, most
of these numbers can computed from the formulas given in the aforementioned [19, 20] as well
as from the ones given in [5, 6, 16]. The methods of the latter references are quite different
from the former and consist of considering the so-called graded limits of the minimal affinizations.
Moreover, the results of [5, 6] also give generators and relations for these graded limits while [16]
was the first to explore the role of Demazure modules in the study of Kirillov-Reshetikhin and other
finite-dimensional Uq(g̃)-modules. An extension of the methods of [5, 6] to more general minimal
affinizations was proposed in [35], where it was conjectured generators and relations for the graded
limits of minimal affinizations when the highest weight is regular. Here, by regular we mean that, if
its support encloses a subdiagram of type D, then the trivalent node must be in the support. Small
examples of the validity of this conjecture for the orthogonal types were given still in [35] while
[38] partially proved the conjecture for type E6. In the last two years, the conjecture was proved
by Naoi in [39, 40] by further exploring the role of Demazure modules in the theory. In particular,
a character formula for minimal affinizations in terms of interactions of Demazure operators was
obtained. Thus, there are two natural problems to investigate after the present work: complete the
classification for type E and study the role of Demazure modules for understanding the structure
of the minimal affinizations we have classified here.

The text is divided in five chapters. In the first chapter we briefly review the affine classical
and quantum algebras and their finite-dimensional representations. We also present the formal
definition of minimal affinizations and state the Chari and Pressley classification of the minimal
affinizations with regular highest weight. The main theorems of the present work are presented
in Section 1.7. In the second chapter we present a few concepts and results that will be needed
throughout the text, such as the notion of qcharacters. In the third chapter we develop the theory
qcharacters for minimal affinizations of type A in terms of tableaux. In particular, we prove the
aforementioned results on tensor products and ordering of affinizations. In the fourth chapter we
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prove similar results to that of Chapter 3, but for Kirillov-Reshetikhin modules of type D related
to the spins nodes. In Section 4.6 we also prove a result (Proposition 4.6.4) comparing two affiniza-
tions having highest weight supported at the three extreme nodes of the Dynking diagram. This
proposition together with the results of [12] completes the classification in type D4 (in particular,
the proposition shows that the conjecture left in [12] is false). The proofs of the main theorems
are presented in Chapter 5.



CHAPTER 1

Definitions, notation, and the main result

Throughout the text, let C,R,Z,Z≥m denote the sets of complex numbers, reals, integers, and
integers bigger or equal m, respectively. Given a ring A, the underlying multiplicative group of
units is denoted by A×. The dual of a vector space V is denoted by V ∗. The symbol ∼= means
“isomorphic to”.

1.1. Classical algebras

Let I = {1, . . . , n} be the set of vertices of a finite-type simply laced Dynkin diagram (labeled
as in [25]) and let g be the associated semisimple Lie algebra over C with a fixed Cartan subalgebra
h. Fix a set of positive roots R+ and let

n± =
⊕

α∈R+

g±α where g±α = {x ∈ g : [h, x] = ±α(h)x, ∀ h ∈ h}.

The simple roots will be denoted by αi and the fundamental weights by ωi, i ∈ I. Q,P,Q
+, P+ will

denote the root and weight lattices with corresponding positive cones, respectively. Let also hi ∈ h,
be the co-root associated to αi, i ∈ I. We equip h∗ with the partial order λ ≤ µ iff µ − λ ∈ Q+.
Let C = (cij)i,j∈I be the Cartan matrix of g, i.e., cij = αj(hi). The Weyl group is denoted by W
and its longest element by w0.

The subalgebras g±α, α ∈ R
+, are one-dimensional and [g±α, g±β ] = g±α±β for every α, β ∈ R+.

We denote by x±α any generator of g±α and, in case α = αi for some i ∈ I, we may also use the
notation x±i in place of x±αi

. In particular, if α+ β ∈ R+, [x±α , x
±
β ] is a nonzero generator of g±α±β

and we simply write [x±α , x
±
β ] = x±α+β .

The support of µ ∈ P is defined by

supp(µ) = {i ∈ I : µ(hi) 6= 0}.

Let also supp(µ) be the minimal subset of I containing supp(µ) such that the corresponding sub-
diagram of the Dynkin diagram of g is connected.

If a is a Lie algebra over C, define its loop algebra to be ã = a⊗C C[t, t−1] with bracket given
by [x⊗ tr, y⊗ ts] = [x, y]⊗ tr+s. Clearly a⊗ 1 is a subalgebra of ã isomorphic to a and, by abuse of

notation, we will continue denoting its elements by x instead of x⊗ 1. Then g̃ = ñ− ⊕ h̃⊕ ñ+ and
h̃ is an abelian subalgebra. The elements x±α ⊗ t

r, x±i ⊗ t
r, and hi ⊗ t

r will be denoted by x±α,r, x
±
i,r,

and hi,r, respectively.

1.2. Quantum algebras

Let q ∈ C× not a root of unity. Set

[m] =
qm − q−m

q − q−1
, [m]! = [m][m− 1] . . . [2][1], [mr ] =

[m]!

[r]![m− r]!
,
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6 1. DEFINITIONS, NOTATION, AND THE MAIN RESULT

for r,m ∈ Z≥0, m ≥ r.

The quantum loop algebra Uq(g̃) of g is the associative C-algebra with generators x±i,r (i ∈ I,

r ∈ Z), k±1
i (i ∈ I), hi,r (i ∈ I, r ∈ Z\{0}) and the following defining relations:

kik
−1
i = k−1

i ki = 1, kikj = kjki,

kihj,r = hj,rki,

kix
±
j,rk

−1
i = q±cijx±j,r,

[hi,r, hj,s] = 0, [hi,r, x
±
j,s] = ±

1

r
[rcij ]x

±
j,r+s,

x±i,r+1x
±
j,s − q

±cijx±j,sx
±
i,r+1 = q±cijx±i,rx

±
j,s+1 − x

±
j,s+1x

±
i,r,

[x+i,r, x
−
j,s] = δi,j

ψ+
i,r+s − ψ

−
i,r+s

q − q−1
,

∑

σ∈Sm

m∑

k=0

(−1)k[mk ]x±i,rσ(1)
. . . x±i,rσ(k)

x±j,sx
±
i,rσ(k+1)

. . . x±i,rσ(m)
= 0, if i 6= j,

for all sequences of integers r1, . . . , rm, where m = 1− cij , Sm is the symmetric group on m letters,
and the ψ±

i,r are determined by equating powers of u in the formal power series

Ψ±
i (u) =

∞∑

r=0

ψ±
i,±ru

r = k±1
i exp

(
±(q − q−1)

∞∑

s=1

hi,±su
s

)
.

Denote by Uq(ñ
±), Uq(h̃) the subalgebras of Uq(g̃) generated by {x±i,r}, {k

±1
i , hi,s}, respectively.

Let Uq(g) be the subalgebra generated by x±i := x±i,0, k
±1
i , i ∈ I, and define Uq(n

±), Uq(h) in the

obvious way. Uq(g) is a subalgebra of Uq(g̃) and multiplication establishes isomorphisms of C(q)-
vectors spaces:

Uq(g) ∼= Uq(n
−)⊗ Uq(h)⊗ Uq(n

+) and Uq(g̃) ∼= Uq(ñ
−)⊗ Uq(h̃)⊗ Uq(ñ

+).

For i ∈ I, r ∈ Z, k ∈ Z≥0, define (x±i,r)
(k) =

(x±
i,r)

k

[k]! . Define also elements Λi,r, i ∈ I, r ∈ Z by

∞∑

r=0

Λi,±ru
r = exp

(
−

∞∑

s=1

hi,±s

[s]
us

)
.

The elements Λi,±r together with k±1
i , i ∈ I, r ∈ Z, generate Uq(h̃) as an algebra.

Remark 1.2.1. The algebra Uq(g̃) can also be described by the Chevalley-Kac generators

x±i , k
±1
i , i ∈ I ∪ {0}. We shall note use this presentation here.

1.3. The ℓ-weight lattice

Consider the multiplicative group P of n-tuples of rational functions µ = (µ1(u), . . . ,µn(u))
with values in C such that µi(0) = 1 for all i ∈ I, which is called the ℓ-weight lattice of Uq(g̃).
Given a ∈ C× and i ∈ I, let ωi,a ∈ P be defined by

(ωi,a)j(u) = 1− δi,jau.



1.4. FINITE-DIMENSIONAL REPRESENTATION OF QUANTUM SIMPLE LIE ALGEBRAS 7

Clearly, P is the free abelian group generated by these elements which are called fundamental
ℓ-weights. If

(1.3.1) µ =
∏

(i,a)∈I×C×

ω
pi,a
i,a

we shall say that ωi,a (respectively, ω−1
i,a ) appears in µ if pi,a > 0 (respectively, pi,a < 0).

Consider the group homomorphism (weight map) wt : P → P by setting wt(ωi,a) = ωi. The
submonoid P+ of P consisting of n-tuples of polynomials is called the set of dominant ℓ-weights
or Drinfeld polynomials of Uq(g̃). Given ω ∈ P+ with ωi(u) =

∏
j(1 − ai,ju), where ai,j ∈ C, let

ω− ∈ P+ be defined by λ−
i (u) =

∏
j(1 − a

−1
i,j u). We will also use the notation ω+ = ω. Given

µ ∈ P, say µ = ω̟−1 with ω,̟ ∈ P+, define a C-algebra homomorphism Ψµ : Uq(h̃) → C by

setting Ψµ(k
±1
i ) = q

±wt(µ)(hi)
i and

∑

r≥0

Ψµ(Λi,±r)u
r =

(ω±)i(u)

(̟±)i(u)
.

One easily checks that the map Ψ : P → (Uq(h̃))
∗ given by µ 7→ Ψµ is injective. From now on we

will identify P with its image in (Uq(h̃))
∗ under Ψ.

It will be convenient to introduce the following notation. Given i ∈ I, a ∈ C×,m ∈ Z≥0, define

ωi,a,m =

m−1∏

j=0

ωi,aqm−1−2j .

1.4. Finite-dimensional representation of quantum simple Lie algebras

For the sake of fixing notation, we now review some basic facts about the representation theory
of Uq(g). For the details see [9] for instance.

Given a Uq(g)-module V and µ ∈ P , let

Vµ = {v ∈ V : kiv = qµ(hi)v for all i ∈ I}.

A nonzero vector v ∈ Vµ is called a weight vector of weight µ. If v is a weight vector such that
x+i v = 0 for all i ∈ I, then v is called a highest-weight vector. If V is generated by a highest-
weight vector of weight λ, then V is said to be a highest-weight module of highest weight λ. A
Uq(g)-module V is said to be a weight module if V =

⊕
µ∈P Vµ. Denote by Cq be the category of

all finite-dimensional weight modules of Uq(g). The following theorem summarizes the basic facts
about Cq.

Theorem 1.4.1. Let V be an object of Cq. Then:

(a) dimVµ = dimVwµ for all w ∈ W.
(b) V is completely reducible.
(c) For each λ ∈ P+ the Uq(g)-module Vq(λ) generated by a vector v satisfying

x+i v = 0, kiv = qλ(hi)v, (x−i )
λ(hi)+1v = 0, ∀ i ∈ I,

is irreducible and finite-dimensional. If V ∈ Cq is irreducible, then V is isomorphic to Vq(λ) for
some λ ∈ P+. �
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1.5. Finite-dimensional representations of quantum loop algebras

Let V be a Uq(g̃)-module. We say that a nonzero vector v ∈ V is an ℓ-weight vector if there

exists ω ∈ P and k ∈ Z>0 such that (η−Ψω(η))
kv = 0 for all η ∈ Uq(h̃). In that case, ω is said to

be the ℓ-weight of v. V is said to be an ℓ-weight module if every vector of V is a linear combination
of ℓ-weight vectors. In that case, let Vω denote the subspace spanned by all ℓ-weight vectors of
ℓ-weight ω. An ℓ-weight vector v is said to be a highest-ℓ-weight vector if ηv = Ψω(η)v for every

η ∈ Uq(h̃) and x+i,rv = 0 for all i ∈ I and all r ∈ Z. V is said to be a highest-ℓ-weight module

if it is generated by a highest-ℓ-weight vector. Denote by C̃q the category of all finite-dimensional

ℓ-weight modules of Uq(g̃). Quite clearly C̃q is an abelian category.

Observe that if V ∈ C̃q, then V ∈ Cq and

(1.5.1) Vλ =
⊕

ω:wt(ω)=λ

Vω.

Moreover, if V is a highest-ℓ-weight module of highest ℓ-weight ω, then

(1.5.2) dim(Vwt(ω)) = 1 and Vµ 6= 0⇒ µ ≤ wt(ω).

The next proposition is easily established using (1.5.2).

Proposition 1.5.1. If V is a highest-ℓ-weight module, then it has a unique proper submodule
and, hence, a unique irreducible quotient. �

Given ω ∈ P+, the Weyl moduleWq(ω) is the Uq(g̃)-module defined by the quotient of Uq(g̃) by

the left ideal generated by the elements x+i,r, (x
−
i,r)

wt(ω)(hi)+1, and η −Ψω(η) for every i ∈ I, r ∈ Z,
and η ∈ Uq(h̃). In particular, it is a highest-ℓ-weight module. Denote by Vq(ω) the irreducible
quotient of Wq(ω). The next theorem was proved in [13] and recovers the classification of the

simple objects of C̃q obtained previously in [8].

Theorem 1.5.2. For every ω ∈ P+ the module Wq(ω) is nonzero and, moreover, it is the

universal finite-dimensional Uq(g̃)-module with highest ℓ-weight ω. Every simple object of C̃q is
highest-ℓ-weight. �

1.6. Minimal affinizations

We now review the notion of minimal affinizations of an irreducible Uq(g)-module introduced
in [1].

Given λ ∈ P+, a Uq(g̃)-module V is said to be an affinization of Vq(λ) if there exists an
isomorphism of Uq(g)-module,

(1.6.1) V ∼= Vq(λ)⊕
⊕

µ < λ
Vq(µ)

⊕mµ(V )

for somemµ(V ) ∈ Z≥0. Two affinizations of Vq(λ) are said to be equivalent if they are isomorphic as
Uq(g)-modules. Notice that a highest-ℓ-weight module of highest ℓ-weight ω ∈ P+ is an affinization
of Vq(λ) if and only if wt(ω) = λ.

The partial order on P+ induces a natural partial order on the set of (equivalence classes of)
affinizations of Vq(λ). Namely, if V and W are affinizations of Vq(λ), say that V ≤W if one of the
following conditions hold:
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(i) mµ(V ) ≤ mµ(W ) for all µ ∈ P+;
(ii) for all µ ∈ P+ such that mµ(V ) > mµ(W ) there exists ν > µ such that mν(V ) < mν(W ).

A minimal element of this partial order is said to be a minimal affinization. Clearly, a minimal
affinization of Vq(λ) must be irreducible as a Uq(g̃)-module and, hence, is of the form Vq(ω) for
some ω ∈ P+ such that wt(ω) = λ.

Given i, j ∈ I, i ≤ j, and λ ∈ P , set

i|λ|j =

j∑

k=i

λ(hk).

If i = 1, we simplify notation and write |λ|j instead of 1|λ|j and similarly if j = n. For i > j we
set i|λ|j = 0. Set also

pi,j(λ) = i+1|λ|j + i|λ|j−1 + j − i if i ≤ j

and pi,j(λ) = pj,i(λ) if j < i. Notice that, if i = j, then pi,j(λ) = 0 and

pi,j(λ) = λ(hi) + λ(hj) + 2 i+1|λ|j−1 + j − i if i < j.

Theorem 1.6.1. [10] Let g = sln+1(C) and let λ ∈ P+. Then, Vq(λ) has a unique class of
minimal affinization. Moreover, Vq(ω) is a minimal affinization of Vq(λ) if and only if there exist
ai ∈ C×, i ∈ I, and ǫ = ±1 such that

(1.6.2) ω =
∏

i∈I

ωi,ai,λ(hi) with
ai
aj

= qǫpi,j(λ) for all i < j.

In that case, Vq(ω) ∼= Vq(λ) as representations of Uq(g). �

Notice that (1.6.2) is equivalent to saying that there exist a ∈ C× and ǫ = ±1 such that

(1.6.3) ω =
∏

i∈I

ωi,ai,λ(hi) with ai = aqǫpi,n(λ) for all i ∈ I.

Notice that if # supp(λ) > 1, the pair (a, ǫ) in (1.6.3) is unique. In that case, If ω satisfies (1.6.2)
with ǫ = 1, we say that Vq(ω) is a decreasing minimal affinization (because the powers of q in (1.6.3)
decrease as i increases). Otherwise, we say Vq(ω) is a increasing minimal affinization. However, if
# supp(λ) = 1, ω can be represented in the form (1.6.3) by two choices of pairs (a, ǫ), one for each
value of ǫ. We do not fix a preferred presentation in that case. The minimal affinizations (for g of
any type) satisfying # supp(λ) ≤ 1 are called Kirillov-Reshetikhin modules.

The classification of the elements ω ∈ P+ such that Vq(ω) is a minimal affinization is also
complete in types B,C, F , and G [11]. In particular, in these cases, for every λ ∈ P+, there exists
exactly one equivalence class of minimal affinizations. For types D and E the classification is not
complete and we recall what is known about the classification in Theorem 2.6.5 below (see also
Remark 1.7.2). In the next section, we state our main results which complete the classification of
minimal affinizations for type D.

1.7. The main theorems

Assume g is of type Dn and recall that the labeling of the diagram is given by:

❡ ❡

1

. . . ❡

2 n−3

❡

n−2

❡

n

❡
n−1
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We need to prepare some notation for stating our main results. Fix λ ∈ P+ such that λ(hn−2) =
0 and supp(λ) contains the subdiagram of type D4. Fix also ǫ = ±1. To simplify notation, set
pi,j(λ) = pi,j , i, j ∈ I,

A = {i ∈ I : i < n− 2}, iλ = min{i ∈ I : λ(hi) 6= 0}, and fλ = max{i ∈ A : λ(hi) 6= 0}.

Let a, an−1, an ∈ C× and

(1.7.1) ω =
∏

i∈I

ωi,ai,λ(hi) with ai = aqǫpi,n−3 for all i ≤ n− 2.

We shall graphically denote the value of ǫ in (1.7.1) by the pictures

< ❡

n−3

❡

n−2

❡

❡

> ❡

n−3

❡

n−2

❡

❡

according to whether ǫ = −1 or ǫ = 1, respectively. Notice that, if #(supp(λ) ∩ A) = 1, then the
same ω can be represented by either choices of ǫ (with different values of a if n− 3 /∈ supp(λ)).

We now state the relevant conditions on a/ai for i = n, n− 1. The condition

(1.7.2) a = aiq
±(λ(hi)+λ(hn−3)+4−2r) for some 1 ≤ r ≤ min{|λ|n−2, λ(hi)}

will be indicated graphically by the following pictures

r✛
❡

n−3

❡

n−2

❡

❡
i

r
✻

❡

n−3

❡

n−2

❡

❡
i

where the first is for the − sign and the second for the + sign. The condition

(1.7.3) ai = aq±(λ(hi)+λ(hn−3)+2(n−1−iλ−r+ j |λ|n−4))

for some pair (r, j) such that

1 ≤ r − (j − iλ + |λ|j−1) ≤ min{λ(hj), λ(hi)} and iλ ≤ j < n− 2,

will be indicated graphically by the following pictures

r
✻

❡

n−3

❡

n−2

❡

❡
i

❡

n−3

r✛
❡

n−2

❡

❡
i

where the first is for the − sign and the second for the + sign. Notice that j is uniquely determined
from the value of r (and it is necessarily an element of supp(λ)). Therefore, we shall denote by ir
the value of j determined by r in (1.7.3). Also, if iλ = n− 3, (1.7.3) is equivalent to (1.7.2). More
generally, if #(supp(λ) ∩ A) = 1 and the sign of ǫ in (1.7.1) is the same one as on the right hand
side of (1.7.3), then (1.7.3) becomes

(1.7.4) aiλ = aiq
±(λ(hiλ

)+λ(hi)+n+1−iλ−2r) for some 1 ≤ r ≤ min{λ(hiλ), λ(hi)}.

Similarly, if the sign of ǫ is the same one as on the right hand side of (1.7.2), then (1.7.2) becomes
(1.7.4).
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We also consider the following condition on an/an−1:

(1.7.5) an = an−1q
±(λ(hn−1)+λ(hn)+4s1−2s2)

for some s1, s2 ∈ Z such that

2 ≤ 2s1 ≤ n− fλ − 1 and 1 ≤ s2 ≤ min{λ(hn−1), λ(hn)}.

Condition (1.7.5) will be indicated graphically by the following pictures

❡

n−3

s1,s2✲
❡

n−2

❡

n

❡
n−1

❡

n−3

s1,s2
✻

❡

n−2

❡

n

❡
n−1

where the first is for the − sign and the second for the + sign. Notice that, if s1 = 1 (which is
always the case if n = 4), then (1.7.5) is the analogue of (1.7.2) for the spin nodes. We shall often
omit s1 from the above pictures in the case it is 1. If n = 4, we shall regard all three extreme
nodes as spin nodes and we use the picture associated to (1.7.5) to express the ration ai/aj for
i, j ∈ {1, 3, 4}.

We are ready to state the main theorems of the thesis.

Theorem 1.7.1. Let g be of type D4. Then, ω ∈ P
+ is such that Vq(ω) is a minimal affinization

of Vq(λ) if and only if ω is of the form (1.7.1) with the parameters ai related by one of the conditions.

(a)l The parameters are related by either of the following pictures where {j, k, l} = {1, 3, 4}:

1

1

✻

✛
❡

l

❡

2

❡

k

❡
j

or

1

1

✛

✲
❡

l

❡

2

❡

❡

k

j

(b)rl The parameters are related by either of the following pictures where {j, k, l} = {1, 3, 4}
with j > k and s = λ(hl) + 3− r:

s

r

1
✻✻

✛
❡

l

❡

2

❡

k

❡
j

or
s

r

1✲✛

✲
❡

l

❡

2

❡

❡

k

j

Moreover, these conditions parameterize the distinct equivalence classes of minimal affizations. In
particular, the two pictures listed for each condition give rise to equivalent affinizations.

Remark 1.7.2. Theorem 1.7.1 was mostly proved in [12]. However, it was conjectured there
that an affinization satisfying condition (a)l (denoted (a)j,k there) was equivalent to an affinization
corresponding to

1

1

✛

✛
❡

l

❡

2

❡

k

❡
j

This is actually false and we prove that the affinizations satisfying the latter conditions are not
minimal (see Proposition 4.6.4).
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For the next two theorems we assume n > 4.

Theorem 1.7.3. Suppose #(supp(λ) ∩A) = 1. Then, ω ∈ P+ is such that Vq(ω) is a minimal
affinization of Vq(λ) if and only if ω is of the form (1.7.1) with the parameters ai related by one of
the following conditions.

(a)l The parameters are related by either of the following pictures where l is a spin node:

1
✻

1✛
< ❡

n−3

❡

n−2

❡

❡
l

or

1✲1
✻

> ❡

n−3

❡

n−2

❡

❡
l

(b)l The parameters are related by either of the following pictures where l is a spin node:

1

1

✻

✛
< ❡

n−3

❡

n−2

❡

❡
l

or

1

1

✛

✲
> ❡

n−3

❡

n−2

❡

❡
l

(c)rl The parameters are related by either of the following pictures where l is a spin node and
s = λ(hl) + 3− r:

1

s✻r✛

✛
< ❡

n−3

❡

n−2

❡

❡
l

or

1

s✲r ✻

✲
> ❡

n−3

❡

n−2

❡

❡
l

(d)r,sl The parameters are related by either of the following pictures:

t

r

s,1✻✻

✛
< ❡

n−3

❡

n−2

❡

❡
l

or

t

r

s,1✲✛

✲
> ❡

n−3

❡

n−2

❡

❡
l

where l is a spin node and t = λ(hiλ)+n−iλ+2−2s−r, and, if r ≤ t and {l, l′} = {n−1, n},
then

λ(hl) + 3− r > min{l, λ(hl′)}.

Moreover, these conditions parameterize the distinct equivalence classes of minimal affizations. In
particular, the two pictures listed for each condition give rise to equivalent affinizations.

Remark 1.7.4. Notice that condition (a)l of Theorem 1.7.3 degenerates to that of Theorem
1.7.1 when n = 4. Similarly, condition (b)l degenerates to condition (a)1, condition (c)rl degenerates

to condition (b)rl , and condition (d)r,sl degenerates to condition (b)t1 if l = n − 1 and to condition
(b)r1 if l = n.

Theorem 1.7.5. Suppose #(supp(λ) ∩A) > 1. Then, ω ∈ P+ is such that Vq(ω) is a minimal
affinization of Vq(λ) if and only if ω is of the form (1.7.1) with the parameters ai related by either
one of the conditions (a)l, (b)l, (c)

r
l in Theorem 1.7.3 or by the following conditions.

(d)r,sl The parameters are related by either of the following pictures:
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t

r

s,1✻✻

✛
< ❡

n−3

❡

n−2

❡

❡
l

or

t

r

s,1✲✛

✲
> ❡

n−3

❡

n−2

❡

❡
l

where l is a spin node and k = λ(hiλ)−|λ|fλ−1+n−fλ+2−2s−r, t = |λ|fλ−1+fλ−i1+k
and, letting = {l, l′} = {n− 1, n}, the parameters satisfy the following conditions:
(i) If r ≤ k, then λ(hl) + 3− r > min{l, λ(hl′)}.
(ii) If p ∈ supp(λ) ∩A \ {fλ}, 0 ≤ k

′ < k and 1 ≤ s′ ≤ s are such that

1 ≤ k′′ := p|λ|fλ + n− p+ 2− r − 2s− 2s′ − k′ − λ(hl) ≤ min{λ(hp), λ(hl′)},

then r − p|λ|fλ ≤ k
′′.

(e) The parameters are related by either of the following pictures:

1

1

✛

✛
< ❡

n−3

❡

n−2

❡

n

❡
n−1

or
1

1

✻

✲
> ❡

n−3

❡

n−2

❡

n

❡
n−1

(f)r,s1,s2l The parameters are related by either of the following pictures

r

s1,s2✲t ✻

✲
< ❡

n−3

❡

n−2

❡

❡
l

or

r

s1,s2
✻t✛

✛
> ❡

n−3

❡

n−2

❡

❡
l

where l is a spin node, t = λ(hl) + 2s1 + r − s2, and, letting {l, l
′} = {n − 1, n}, k =

t− (it − iλ + |λ|it−1) and k̄ = r − (ir − iλ + |λ|ir−1), the parameters satisfy:

(i) k̄ = 1, s1 > 1, s2 ≤ 2, k ≤ 2, with k = 1 if s2 = 2. Besides, if ir < fλ, given
i, ī ∈ supp(λ) and max{0, k − λ(hi)} ≤ k′ < max{k, s2} such that ir < ī ≤ i ≤ fλ,
it ≤ i and 0 ≤ ī− ir + ir |λ|̄i−1 − i+ it − it |λ|i−1 + k′ is even, then

s1 <
1

2
(̄i− ir + ir |λ|̄i−1 − i+ it − it |λ|i−1 + k′) + 1.

Moreover, if it < fλ, given i, ī ∈ supp(λ) and max{0, k − λ(hi)} ≤ k′ < max{k, s2}
such that it ≤ i < ī ≤ fλ and ī− i+ i|λ|̄i−1 + 2s1 − k + k′ + 2− λ(hl′) is even then

either
1

2
(̄i−i+i|λ|̄i−1+2s1−k+k

′+2−λ(hl′)) < s1 or
1

2
(̄i−i+i|λ|̄i−1+2s1−k+k

′+2−λ(hl′)) > 2s1.

(ii) k̄ = s1 = 1, ir > ir and

k < λ(hfλ) + ir − ir + n− fλ − 1.

Besides, if ir < fλ, given i, ī ∈ supp(λ) and max{0, k − λ(hi)} ≤ k′ < k such that
ir ≤ ī < i ≤ fλ; ir < i and ī− ir + ir |λ|̄i−1 ≤ i− ir + ir |λ|i−1 − k

′, then

s2 < i− ir + ir |λ|i−1 − k
′ − ī+ ir − ir |λ|̄i−1 + 1.

Moreover, if ir < fλ, given i, ī ∈ supp(λ) and max{0, k − λ(hi)} ≤ k′ < k such that
ir ≤ i < ī ≤ fλ then

either λ(hn) + 1 + k − k′ − ī+ i− i|λ|̄i−1 < 1 or λ(hn) + 1 + k − k′ − ī+ i− i|λ|̄i−1 > s2.
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(iii) k̄ > 1, k = s2 = 1. Besides, if ir < fλ, given i, ī ∈ supp(λ) and 0 ≤ s′1 < s1 such
that ir < ī ≤ i ≤ fλ; ir ≤ i with either l′ > 0 or ir < i, and i− ir + ir |λ|i−1 + 2s′1 ≤
ī− ir + ī|λ|ir−1, then

either k̄ < ī−ir+ir |λ|̄i−1−i+ir−ir |λ|i−1−2s
′
1+1 or k̄ > ī−ir+ir |λ|̄i−1−i+ir−ir |λ|i−1−2s

′
1+λ(hī).

Moreover, if ir < fλ, given i, ī ∈ supp(λ) and max{0, k̄ − λ(hī)} ≤ k̄′ < k̄ such that
ir ≤ i ≤ ī ≤ fλ, ī > ir and −λ(hn) + ī− ir + ir |λ|̄i−1 − i+ ir − ir |λ|i−1 + k′ is even,
then

either s1 >
1

2
(−λ(hn) + ī− ir + ir |λ|̄i−1 − i+ ir − ir |λ|i−1 + k′)

or
1

2
(−λ(hn) + ī− ir + ir |λ|̄i−1 − i+ ir − ir |λ|i−1 + k′) > 2s1 − 1.

Moreover, these conditions parameterize the distinct equivalence classes of minimal affinizations.
In particular, the two pictures listed for each condition give rise to equivalent affinizations.

Remark 1.7.6. The extra conditions (i) and (ii) listed within family (d) assure that the cor-
responding modules Vq(ω) are not larger (in the sense of affinizations) than any of the modules
corresponding to families (c) and (f), respectively. The three extra conditions listed within family
(f) assure that there is no other element in the same family which is smaller.



CHAPTER 2

Further notation and concepts

In this chapter we collect several previously proved results which will be used in the proofs of
our main results. In particular, we recall several results concerning the theory of qcharacters which
will be our main tool later on.

2.1. Hopf algebra structure and duality

The following assignments,

∆(x+i ) = x+i ⊗ 1 + ki ⊗ x
+
i , ∆(x−i ) = x−i ⊗ k

−1
i + 1⊗ x−i , ∆(k±1

i ) = k±1
i ⊗ k

±1
i ,

S(x+i ) = −k
−1
i x+i , S(x−i ) = −x

−
i ki, S(k±1

i ) = k∓1
i ,

ε(x±i ) = 0, ε(k±1
i ) = 1,

for all i ∈ I, define a structure of Hopf algebra in Uq(g), where ∆ is the co-multiplication, ε is
the co-unity and S is the antipode. The algebra Uq(g̃) is also a Hopf algebra and the structure
maps can be described exactly as above using the Chevalley-Kac generators. However, a precise
expression for the comultiplication in terms of the generators x±i,r, hi,r, k

±1
i is not known (see [2]

and references therein).

Given a finite-dimensional Uq(g)-module V , let V ∗ denote the dual module defined using the
antipode as usual, and similarly for Uq(g̃

∗). Given λ ∈ P+ and ω ∈ P+
q , we have:

(2.1.1) Vq(λ)
∗ ∼= Vq(λ

∗) and Vq(ω)∗ ∼= Vq(ω
∗)

where

(2.1.2) λ∗ = −w0λ and (ω∗)i(u) = ωw0·i(q
−h∨

u).

Here, w0 · i = j iff w0ωi = −ωj and h∨ is the dual Coxeter number of g. For a proof of the second
isomorphism in (2.1.1) see [17].

We will also need a different kind of duality established by using the Cartan involution: the
unique algebra automorphism ω of Uq(g) such that x±i 7→ −x

∓
i , k

±1
i 7→ k∓1

i for all i ∈ I. Given a
Uq(g)-module V , denote by V ω the pull-back of V by ω. It is not difficult to see that a highest-weight
vector of Vq(λ) is a lowest-weight vector of Vq(λ)

ω and, hence, Vq(λ)
ω ∼= Vq(λ)

∗. The situation is
more interesting in the affine case. The following proposition is easily established.

Proposition 2.1.1.

(a) There is a unique algebra automorphism ω̂ of Uq(g̃) given by

ω̂(x±i,r) = −x
∓
i,−r, ω̂(hi,r) = −hi,r, ω̂(φ±i,r) = φ∓i,−r, ω̂(k±1

i ) = k∓1
i .

Moreover, we have

(ω̂ ⊗ ω̂) ◦∆ = ∆op ◦ ω̂,

where ∆op is the opposite comultiplication of Uq(g̃).

15
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(b) For all a ∈ C×, there exists a Hopf algebra automorphism τa of Uq(g̃) such that

τa(x
±
i,r) = arx±i,r, τa(hi,r) = arhi,r, τa(k

±1
i ) = k±1

i .

�

Given a Uq(g̃)-module V , denote by V ω̂ the pull-back of V by ω̂ and by V (a) the pull-back of
V by τa. It is easy to see that, if V is highest-ℓ-weight module with highest ℓ-weight ω, then V (a)
is also a highest-ℓ-weight module with the highest ℓ-weight ωa determined by

(2.1.3) ωa
i = ωi(au).

Moreover, a highest-ℓ-weight vector of Vq(ω) is a lowest-ℓ-weight vector of Vq(ω)ω̂ and

(2.1.4) ω̂(Λ±
i (u)) = (Λ∓

i (u))
−1 for all i ∈ I.

It follows from (2.1.1) and usual duality arguments for Hopf algebras that, the lowest ℓ-weight of

Vq(ω) is (ωa)−1 with a = qh
∨
. In particular,

(2.1.5) Vq(ω)ω̂ ∼= Vq(
∗ω)

where ∗ω is defined by requiring that

(2.1.6) (∗ω)+ = ((ω∗)2h
∨
)−.

The following proposition is well-known and is easily proved by considering pull-backs by the
morphisms given by Proposition 2.1.1.

Proposition 2.1.2. Let ω =
∏

i∈I ωi,ai,mi
and ̟ =

∏
i∈I ωi,bi,mi

, with ai, bi ∈ C× and mi ∈
Z≥0. If

ai
aj

=
bj
bi

for all i, j ∈ I,

then Vq(ω) ∼=Uq(g) Vq(̟). �

2.2. The ℓ-root lattice

Given i ∈ I, a ∈ C×,m ∈ Z≥0, following [4], define

αi,a = ωi,aq,2

∏

j 6=i

ω−1
j,aq,−cj,i

.

We shall refer to αi,a as a simple ℓ-root. The subgroup of P generated by the simple ℓ-roots is called
the ℓ-root lattice of Uq(g̃) and will be denoted by Q. Let also Q+ be the submonoid generated by
the simple ℓ-roots. Quite clearly wt(αi,a) = αi. Define a partial order on P by

µ ≤ ω if ωµ−1 ∈ Q+.

It is well-known that the elements αi,a are multiplicatively independent, i.e., if (ij , aj), j = 1, . . . ,m,
is a family of distinct elements of I × C×, then

(2.2.1)

m∏

j=1

α
kj
ij ,aj

= 1 ⇔ kj = 0 for all j = 1, . . . ,m.
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2.3. Diagram subalgebras and sublattices

By abuse of language, we will refer to any subset J of I as a subdiagram of the Dynkin diagram
of g. Let gJ be the Lie subalgebra of g generated by x±αj

, j ∈ J , and define n±J , hJ in the obvious

way. Let also QJ be the subgroup of Q generated by αj , j ∈ J , and R
+
J = R+ ∩QJ . Given λ ∈ P ,

λJ is the restriction of λ to h∗J and let λJ ∈ P be such that λJ(hj) = λ(hj) if j ∈ J and λJ(hj) = 0
otherwise. Diagram subalgebras g̃J are defined in the obvious way.

Consider also the subalgebra Uq(g̃J) generated by k±1
j , hj,r, x

±
j,s for all j ∈ J, r, s ∈ Z, r 6= 0. If

J = {j}, the algebra Uq(g̃j) := Uq(g̃J) is isomorphic to Uq(s̃l2). Similarly we define the subalgebra
Uq(gJ), etc.

For ω ∈ P, let ωJ be the associated J-tuple of rational functions and let PJ = {ωJ : ω ∈ P}.
Similarly define P+

J . Notice that ωJ can be regarded as an element of the ℓ-weight lattice of Uq(g̃J).
Let πJ : P → PJ denote the map ω 7→ ωJ . If J = {j} is a singleton, we write πj instead of πJ . An
ℓ-weight ω ∈ P is said to be J-dominant if ωJ ∈ P

+
J . Let also QJ ⊂ PJ be the subgroup generated

by πJ(αj,a), j ∈ J, a ∈ C×. When no confusion arises, we shall simply write αj,a for its image in
PJ under πJ . Let

ιJ : Z[QJ ]→ Z[Q],

be the ring homomorphism such that ιJ(αj,a) = αj,a for all j ∈ J, a ∈ C×. We shall often abuse of
notation and identify QJ with its image under ιJ . In particular, given µ ∈ P, we set

µQJ = {µα : α ∈ ιJ(QJ)}.

It will also be useful to introduce the element ωJ ∈ P defined by

(ωJ)j(u) = ωj(u) if j ∈ J and (ωJ)j(u) = 1 otherwise.

2.4. Characters and qcharacters

Let Z[P ] be the integral group ring over P and denote by e : P → Z[P ], λ 7→ eλ, the inclusion
of P in Z[P ] so that eλeµ = eλ+µ. The character of an object V from Cq is defined by

ch(V ) =
∑

µ∈P

dim(Vµ)e
µ.

For λ ∈ P+, let mλ(V ) be the multiplicity of Vq(λ) as a simple factor of V . It is well-known that
the numbers mµ(V ) can be computed from ch(V ) and vice-versa.

Similarly, for an object V from C̃q and ω ∈ P+, let mω(V ) be the multiplicity of Vq(ω) as
a simple factor of V . We now turn to the concept which plays a role analogous to character for

the category C̃q. It was introduced in [18] under the name of qcharacter. In particular, one can
compute the multiplicities mω(V ) from the qcharacter of V .

Let Z[P] be the integral group ring over P. Given χ ∈ Z[P], say

χ =
∑

µ∈P

χ(µ) µ,

we identify it with the function P → Z,µ → χ(µ). Conversely, any function P → Z with finite

support can be identified with an element of Z[P]. The qcharacter of V ∈ C̃q is the element qch(V )
corresponding to the function

µ 7→ dim(Vµ).
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We shall denote by wtℓ(χ) the support of χ ∈ Z[P]. In particular, we set

wtℓ(V ) = wtℓ(qch(V )) = {µ ∈ P : Vµ 6= 0}.

Given an ℓ-weight module V and a vector subspace W of V , let Wµ = W ∩ Vµ. We shall say
that W is an ℓ-weight subspace of V if

W =
⊕

µ ∈ P
W ∩ Vµ.

In that case, we set

qch(W ) =
∑

µ∈P

dimWµ and wtℓ(W ) = wtℓ(qch(W )).

Lemma 2.4.1. [22, Lemma 5.4] Let V be an object of C̃q, µ ∈ wtℓ(V ) and v ∈ Vµ. Then, for

each j ∈ I, Uq(g̃j)v is a sub-Uq(h̃)-module of V and wtℓ(Uq(g̃j)v) ⊆ µQ{j}. �

The next theorem was conjectured in [18] and proved in [17].

Theorem 2.4.2. Let V be a quotient of Wq(ω) for some ω ∈ P+. If Vµ 6= 0, then µ ≤ ω. �

Theorem 2.4.3. [18, Lemma 2] Let V,W ∈ C̃q. Then qch(V ⊗W ) = qch(V )qch(W ). �

Frenkel and Mukhin proposed in [17] an algorithm that associates an element of Z[P] to each
ω ∈ P+ and conjectured that this element should be qch(Vq(ω)). We shall refer to this algorithm
as the FM algorithm. It is now known that the conjecture is not true for any ω ∈ P+. However,
the following theorem proved in [17] has been shown to be very useful.

Theorem 2.4.4. If ω ∈ P+ is such that Vq(ω) is ℓ-minuscule, then qch(Vq(ω)) can be computed
using the FM algorithm. �

Remark 2.4.5. We refer the reader to [36, Section 4] for more details on the FM algorithm,
including a more detailed explanation of its definition, a connection with the theory of blocks and
elliptic characters, a proof of Theorem 2.4.4, and examples of its usage.

2.5. Right negative ℓ-weights

The following proposition is well-known, but, to the best of our knowledge, there is no proper
proof in the literature other than the one given in what follows.

Proposition 2.5.1. Let λ ∈ P+ and suppose Vq(ω) is a minimal affinization of Vq(λ). Then,
there exist ai ∈ C×, i ∈ I, such that ai/aj ∈ q

Z for all i, j ∈ I and ω =
∏

i∈I ωi,ai,λ(hi). �

Proof. After Theorems 1.6.1 and 2.6.5, it remains to consider the case that g is of type D or E,
supp(λ) contains a subdiagram of type D, and the trivalent node i0 is not in supp(λ). Let I1, I2, I3
be the 3 connected components of I \ {i0} and set Jk = Ik ∪ {i0} ∪ I3 for k = 1, 2. It follows from
Proposition 2.6.4 and Theorem 1.6.1 that there exist ai ∈ C×, i ∈ I, such that ω =

∏
i∈I ωi,ai,λ(hi)

and, moreover, ai/aj ∈ q
Z if i, j ∈ Ik for some k. By contradiction, assume ai/aj /∈ q

Z for i ∈ I1
and j ∈ I2. It is known (from the main result of [2], for instance) that

Vq(ω) ∼= Vq(µ)⊗ Vq(ν),

where

µ =

{
ωI1 , if ai/aj /∈ q

Z for i ∈ I1, j ∈ I3;

ωJ1 , otherwise.
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and ν is such that µν = ω. In particular, Vq(ω) is not a prime representation. Let ̟ ∈ P+ be
such that wt(̟) = λ and

Vq(̟Jk) is a minimal affinization for k = 1, 2.

Such ̟ clearly exists and satisfies condition (ii) in Theorem 2 of [7] which, in combination with
[7, Theorem 1], implies that Vq(̟) is prime. In particular,

Vq(̟) 6∼= Vq(µ
′)⊗ Vq(ν

′),

where

µ′ =

{
̟I1 , if ai/aj /∈ q

Z for i ∈ I1, j ∈ I3;

̟J1 , otherwise.

and ν is such that µ′ν ′ = ̟. Since Vq(µ
′) ⊗ Vq(ν

′) ∼= Vq(ω) as Uq(g)-modules, it clearly follows
that [Vq(̟)] < [Vq(ω)], contradicting the minimality of Vq(ω). �

Set

(2.5.1) Yi,s := ωi,qs and Ai,s := αi,qs−1 , i ∈ I, s ∈ Z.

We shall denote by PZ the subgroup of P generated by Yi,s, i ∈ I, s ∈ Z, and we similarly define
the subgroup QZ of Q and the monoids P+

Z and Q+
Z .

Corollary 2.5.2. If ω ∈ P+ is such that Vq(ω) is a minimal affinization, there exists ̟ ∈ P+
Z

such that Vq(̟) is an affinization equivalent to Vq(ω). �

Remark 2.5.3. The reason for defining Ai,s := αi,qs−1 instead of simply Ai,s := αi,qs is to
match with the notation of [18].

We also introduce the following notation. Given i, j ∈ I, i ≤ j, r ∈ Z,m ∈ Z≥0, define

Yi,r,m =

m−1∏

k=0

Yi,r+2k = ωi,qm+r−1,m,

Ai,j,r =

j∏

k=i

Ak,r+k−i+1 and Aj,i,r =

j∏

k=i

Aj+i−k,r+k−i+1.

Definition 2.5.4. [17] Let ω ∈ PZ \ {1} . Define

(2.5.2) r(ω) := max{s ∈ Z : Y ±1
i,s appears in ω for some i ∈ I}.

ω is said to be right negative if Yi,r(ω) does not appear in ω for all i ∈ I.

Observe that the product of right negative ℓ-weights is a right negative ℓ-weight and a dominant
ℓ-weight is not right negative.

Proposition 2.5.5. [45, Theorem 3.2] Given, i ∈ I, r ∈ Z, and k ∈ Z≥0, all the elements of
wtℓ(Vq(Yi,r,k)) \ {Yi,r,k} are right negative. Moreover, if µ ∈ wtℓ(Vq(Yi,r,k)) \ {Yi,r,k} is such that
r(µ) ≤ r + 2k, then

µ = Yi,r,sY
−1
i,r+2(s+1),k−s

∏

j : cij=−1

Yj,r+2s+1,k−s for some s = 0, . . . , k − 1.

In particular, r(µ) = r + 2k > r + 2(k − 1) = r(Yi,r,k). �
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2.6. Reduction to diagram subalgebras

If J ⊆ I we shall denote by Vq(λJ) the simple Uq(gJ)-module of highest weight λJ . Since Cq is
semisimple, it is easy to see that, if λ ∈ P+ and v ∈ Vq(λ)λ is nonzero, then Uq(gJ)v ∼= Vq(λJ).

Lemma 2.6.1. [10, Lemma 2.4] Suppose ∅ 6= J ⊆ I defines a connected subdiagram of the
Dynkin diagram of g, let V be a highest-ℓ-weight module with highest-ℓ-weight ω ∈ P+, λ = wt(ω),
v ∈ Vλ \ {0}, and VJ = Uq(g̃J)v. Then, mµ(V ) = mµJ

(VJ) for all µ ∈ λ−Q
+
J . �

Keeping the notation of Lemma 2.6.1, notice that if V is irreducible, then

(2.6.1) VJ ∼= Vq(ωJ).

Hence,

(2.6.2) ν ∈ ωQJ ⇒ dim(Vq(ω)ν) = dim(Vq(ωJ)νJ
).

Lemma 2.6.2. [10, Lemma 2.6] Let i0 ∈ I be such that

I = J1 ⊔ {i0} ⊔ J2 (disjoint union)

where J1 is of type A, J2 ⊔ {i0} is connected and cjk = 0 for all j ∈ J1, k ∈ J2. Let ω ∈ P+, λ =
wt(ω), and suppose Vq(ωJ1) is a minimal affinization of Vq(λJ1). Let also

µ = λ−
∑

j∈I\{i0}

sjαj with sj ∈ Z≥0 for all j ∈ I \ i0.

If mµ(Vq(ω)) > 0, then sj = 0 for all j ∈ J1. �

Definition 2.6.3. Suppose g is of typeD or E and let i0 ∈ I be the trivalent node. A connected
subdiagram J ⊆ I is said to be admissible if J is of type A and J\{i0} is connected. If g is of type
A, then any connected subdiagram is admissible.

Proposition 2.6.4. [10, Proposition 4.2] Let ∅ 6= J ⊆ I define an admissible subdiagram,
ω ∈ P+, and λ = wt(λ). If Vq(ω) is a minimal affinization of Vq(λ), then Vq(ωJ) is a minimal
affinization of Vq(λJ). �

For information and comparison purposes, we recall the partial classification of the minimal
affinizations for g of types D or E proved in [10].

Theorem 2.6.5. Let g be of type D or E, λ ∈ P+, and J = supp(λ). Let also i0 ∈ I be the
trivalent node, and Ij , j = 1, 2, 3, be an enumeration of the 3 connected components of I \ {i0}.

(i) If J is of type A, then Vq(ω) is a minimal affinization of Vq(λ) iff Vq(ωJ) is a minimal
affinization of Vq(λJ).

(ii) If J is not of type A and i0 ∈ supp(λ), then Vq(ω) is a minimal affinization of Vq(λ)
iff there exist distinct r, s ∈ {1, 2, 3} such that Vq(ωI\Ir) and Vq(ωI\Is) are minimal
affinizations of Vq(λI\Ir) and Vq(λI\Is), respectively. �

Remark 2.6.6. We can express part (ii) of this theorem in terms of the pictorial notation of
Section 1.7. Namely, the 3 equivalence classes of minimal affinizations correspond to the pictures

1

1

✛

✛
< ❡

n−3

❡

n−2

❡

n

❡
n−1

>

1
✻

1✻

❡

n−3

❡

n−2

❡

n

❡
n−1

<

1

✛

1✻

❡

n−3

❡

n−2

❡

n

❡
n−1
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or, equivalently, the ones with all directions inverted. Notice that such pictures do not show up in
Theorems 1.7.1 and 1.7.3 and that the second and third do not show up in Theorem 1.7.5 as well.

If ω ∈ P is J-dominant for some subdiagram J , set

χJ(ω) = ω · ιJ(ω
−1
J qch(Vq(ωJ))).

Proposition 2.6.7. [22, Corollary 3.15] Let J ⊂ I, ω ∈ P+ and suppose µ ∈ P satisfies:

(i) µ ∈ wtℓ(Vq(ω)),
(ii) µ ∈ P+

J ,
(iii) there is no ̟ > µ satisfying ̟ ∈ wtℓ(Vq(ω)) and µ ∈ wtℓ(χJ(̟)).

Then wtℓ(χJ(µ)) ⊆ wtℓ(Vq(ω)). �

Remark 2.6.8. Notice that taking µ = ω in Proposition 2.6.7, it follows that wtℓ(χJ(ω)) ⊆
wtℓ(Vq(ω)).

Let ht denote the usual height function on the root lattice Q, i.e., ht(
∑

imiαi) :=
∑

imi and,
given α ∈ Q, set

ht(α) = ht(wt(α)).

Lemma 2.6.9. [22, Theorem 5.1] Let λ ∈ P+, V = Vq(λ), and µ ∈ P. Assume µ < λ and that
there exists i ∈ I such that the following conditions are satisfied:

(i) there exists a unique i-dominant ℓ-weight ν ∈ (wtℓ(V ) ∩ µ ιi(Q
+
{i})) \ {µ} and dimVν = 1;

(ii) x+i,rVν = 0 for all r ∈ Z;
(iii) µ 6∈ χ{i}(ν);

(iv) if ν ′ ∈ wtℓ(Uq(g̃i)Vν) is i-dominant, then ht(ν ′λ−1) ≤ ht(νλ−1);

(v) for all j 6= i, {ν ′ ∈ wtℓ(V ) : ht(ν ′λ−1) > ht(µλ−1)} ∩ µ Q{j} = ∅.

Then, µ 6∈ wtℓ(V ). �

Proposition 2.6.10. [41, Theorem 3.4] Let ω ∈ P+. Suppose that M ⊆ P is a finite set of
distinct ℓ-weights such that:

(i) P+ ∩M = {ω};
(ii) for all µ ∈M and (i, a) ∈ I × C×, if µα−1

i,a 6∈ M, then µαj,bα
−1
i,a 6∈ M unless (j, b) = (i, a);

(iii) for all µ ∈M and i ∈ I, there exists ν ∈M, i-dominant, such that

qch(Vq(πi(ν))) =
∑

η∈µQ{i}∩M

πi(η).

Then,

qch(Vq(ω)) =
∑

µ∈M

µ.

�

2.7. Assorted results for type A

We now collect several known results for g of type An which will be relevant for us.
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Given ω ∈ P+, it is not difficult to see that there exist unique mi ∈ Z≥0, aik ∈ C× and
rik ∈ Z≥1 such that

ω =
∏

i∈I

mi∏

k=1

ωi,aik,rik

with
aij
ail
6= q

±(rij+ril−2p)
i and

mi∑

k=1

rik = wt(ω)(hi)

for all i ∈ I, j 6= l and 0 ≤ p < min{rij , ril}. This decomposition is called the q-factorization of ω.

Theorem 2.7.1. [8, Theorem 4.11] Let g = sl2 and ω =
∏m

j=1ωi,aj ,rj be the q-factorization of

ω ∈ P+, where i is the unique element of I. Then, Vq(ω) ∼= Vq(ωi,a1,r1)⊗ · · · ⊗ Vq(ωi,am,rm). �

Corollary 2.7.2. Let g = sl2 and ω,̟ ∈ P+. If the set of q-factors of ω̟, counted with
multiplicities, is equal to the union of the sets of q-factors of ω and ̟, then

Vq(ω̟) ∼= Vq(ω)⊗ Vq(̟).

�

For g = sl2, the qcharacters of the Kirillov-Reshetikhin modules are known (see [18, formula
(4.3)]):

(2.7.1) qch(Vq(ωi,a,r)) = ωi,a,r


1 +

r∑

j=1

j−1∏

m=0

(αi,aqr−1−2m)−1


 .

Combined with Theorems 2.4.3 and 2.7.1, this describes the qcharacters of every finite-dimensional
simple Uq(s̃l2)-module.

Theorem 2.7.3. [21, Theorem 3.10] If Vq(ω) is a minimal affinization, then Vq(ω) is thin, i.e,
dim(Vq(ω)µ) = 1 for all µ ∈ wtℓ(Vq(ω)). �

Proposition 2.7.4. [10, Proposition 3.3] Let ω ∈ P+ and λ = wt(ω). Suppose:

(i) Vq(ω) is not a minimal affinization of Vq(λ);
(ii) Vq(ωI\{i}) is a minimal affinization of Vq(λI\{i}) for i = 1 and i = n.

Then, mλ−θ(Vq(ω)) > 0 where θ is the maximal root of R. �

Proposition 2.7.5. [12, Proposition 3.4] Assume n ≥ 2. Let m1,mn ∈ Z≥0, a1, an ∈ C×, and
ω = ω1,a1,m1ωn,an,mn . Then, we have an isomorphism of Uq(g)-modules:

Vq(ω) ∼=

s⊕

t=0

Vq((m1 − t)ω1 + (mn − t)ωn),

where

s =

{
p, if a1/an = q±(m1+mn+n−1−2p) for some 0 ≤ p < min{m1,mn},

min{m1,mn}, otherwise.
�



CHAPTER 3

On qcharacters and tensor products for type A

In this chapter we study several results about the category C̃q in the case that g is of type
An which will be crucial in the proof of the theorems stated in Section 1.7. Thus, throughout the
chapter g is of type An. The main results of this chapter are Propositions 3.5.1 and 3.6.1.

3.1. Tableaux and ℓ-weights

In this section we review Nakajima’s description of ℓ-weights in terms of tableaux [44]. Recall
that

Ai,s = Yi,s−1Yi,s+1Y
−1
i−1,sY

−1
i+1,s,

where we set Y0,s = 1 = Yn+1,r = 1 for convenience.

Consider the fundamental representation Vq(Y1,s). Its qcharacter is given by

(3.1.1) qch(Vq(Y1,s)) = Y1,s


1 +

n∑

j=1

A−1
1,j,s


 =

n∑

i=0

Y −1
i,s+i+1Yi+1,s+i.

Represent the element Y −1
i−1,s+iYi,s+i−1, i = 1, . . . , n+1, by the picture i

s
. Given such a box i

s
,

we shall refer to i as the content of the box and to s as its support. Thus, wtℓ(Vq(Y1,s)) can be
described by the following graph

1
s

1,s+1
−−−→ 2

s

2,s+2
−−−→ · · ·

n,s+n
−−−−→ n+1

s

where the label (i, s+i) on the i-th arrow indicates that i+1
s
is obtained from i

s
by multiplication

by A−1
i,s+i and (3.1.1) becomes:

(3.1.2) qch(Vq(Y1,s)) =
n+1∑

i=1

i
s
.

LetB = {1, . . . , n+1} equipped with the usual ordering< coming from Z. Given k, s ∈ Z, k > 0,
a column tableau T of length k with support starting in s is a map

T : {1, . . . , k} → B× Z

such that, if we denote by T (j)2 the Z-component of T (j), then

(3.1.3) T (j)2 = s+ 2(k − j) for all j = 1, . . . , k.

We represent T by the picture:

(3.1.4)

i1

...
ik s

where ij = T (j)1

23
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and T (j)1 denotes the B-component of T (j). For notational convenience, we set T (0)1 = 0. Notice

that we can think of this picture as a vertical juxtaposition of the boxes ij
s+2(k−j)

with explicit

mention of the support of the k-th box only since the others are recovered from it. Given such a
tableau, we associate to it an element ωT ∈ P given by

ωT =
k∏

j=1

ij
s+2(k−j)

.

Remark 3.1.1. Nakajima’s original definition regards T as a map Z → B ∪ {0} such that
T (a) = 0 if and only if a /∈ {s, s+2, . . . , s+2(k− 1)}. Thus, in our notation, T (j)2 corresponds to
the j-th element of the support of T in Nakajima’s notation while T (j)1 is the value it assumes at
that element.

A tableau T is a finite sequence of column tableaux T = (T1, T2, . . . , Tm). The shape of T is
the sequence of lengths and beginnings of the support of the elements of the sequence. Thus, if
Tj has length kj and support starting at sj , the shape of T is ((k1, s1), (k2, s2), . . . , (km, sm)). We
represent T graphically by horizontal juxtaposition of the associated pictures (3.1.4) in such a way
that the edge of a given box of Tj touches the edge of at most one box of Tj+1 and such touching
occur if and only if the two boxes have the same support:

. . . Tm
T2 sm

T1

In particular, if the picture is connected, the supports of all boxes have the same parity and can
be recovered from the support sm of the last box of Tm. We associate to a tableau T the element
ωT ∈ P given by

ωT =
m∏

j=1

ωTj .

Henceforth, we shall only consider tableaux whose associated picture is connected and will not
explicitly mention this again.

A tableau T is said to be column-increasing (or simply increasing) if the contents in each column
strictly increase from top to bottom. Note that a column tableau is increasing of length equal to
the content of its last box if and only if T (j)1 = j for all j. In pictures, T it is of the form

1

2

...
i

s

for some i ∈ {1, 2, . . . , n+ 1}, s ∈ Z. Notice that if T is such a column tableau, then

(3.1.5) ωT = Yi,s+i−1.
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In particular, if T is an increasing column tableau of length n+ 1, i.e., if T has the form

1

2

...
n+1

s

for some s ∈ Z, ωT = 1. Hence, adding increasing columns of length n+1 to a tableau T does not
change ωT .

Two tableaux T and T ′ are said to be equivalent if, for all (i, a) ∈ B× Z, we have

#{j : (i, a) ∈ Im(Tj)} = #{j : (i, a) ∈ Im(T ′
j)}.

In terms of pictures, T ′ is obtained from T by permuting the contents of the boxes in the same row.
It is easy to see that ωT = ωT ′

if T and T ′ are equivalent. The converse is not true, but “almost”:

Lemma 3.1.2. [44, Lemma 4.4] Let T and T ′ be tableaux. The elements ωT and ωT ′
are equal

if and only if T and T ′ become equivalent after adding several increasing column-tableaux of length
n+ 1 to T and T ′. �

Lemma 3.1.3. [44, Lemma 4.5] Let T be a tableau. Then, ωT ∈ P+ if and only if T is equivalent
to a tableau T ′ whose every column is increasing of length equal to the content of the last box. �

Lemma 3.1.4. Let T be a tableau and J = I \ {n}. Then, ωT is J-dominant if and only if,
after adding increasing columns of length n+ 1 to T , it becomes equivalent to a tableau T ′ whose
columns satisfy some of the following conditions:

(i) is increasing of length equal to the content of the last box;
(ii) is increasing, the content of the last box is n + 1 and the column tableau obtained by

removing the last box is increasing of length equal to the content of its box;
(iii) has length 1 and n+ 1 is the content of its only box.

In pictures, each column of T ′ is of one of the following:

1

2

...
i

s

or

1

2

...
i

n+1
s

or n+1
s

for some i ∈ {1, 2, . . . , n} and s ∈ Z.

Proof. Suppose T is equivalent to a tableau T ′ as above after adding increasing columns of
length n+ 1 and recall that

n+1
s
= Y −1

n,s+n+1.

This and (3.1.5) imply that ωT ′
= ωT is J-dominant. Conversely, suppose ωT is J-dominant and

observe that (3.1.5) implies that any J-dominant ℓ-weight can be constructed from a tableau whose
columns satisfy the listed conditions. Thus, let T ′′ be a tableau whose columns satisfy the listed
conditions and ωT = ωT ′′

. An application of Lemma 3.1.2 gives that T and T ′′ are equivalent after
adding increasing columns of length n + 1. Let T ′ be the tableau obtained from T ′′ after adding
these columns and notice that the columns of T ′ also satisfy the listed conditions. �

Remark 3.1.5. Notice that the above lemma remains valid if we do not list condition (ii).
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Let T be a tableaux of shape (k, s) and suppose j ∈ {1, . . . , k} is such that ij = T (j)1 ∈ I.

Then, given m ≥ 0 such that i′j := ij +m ≤ n, we have ωTA−1
ij ,i

′
j ,s+2(k−j)+ij−1

= ωT ′
where T ′ is

obtained from T by replacing the content of the j-th box by i′j + 1. In pictures:

(3.1.6)

...
ij

... s

A−1
ij ,i

′
j ,s+2(k−j)+ij−1

=

...
i′j+1

... s

Suppose T is an increasing column tableau. We say that T has a gap at the j-th row if

T (j)1 − T (j − 1)1 > 1.

The number T (j)1−T (j−1)1−1 will be referred to as the size of the gap. In particular, for j = 1,
T has a gap of size i− 1 at the first row iff T (1)1 = i > 1.

Lemma 3.1.6. Let T be a column increasing tableau of shape (k, s) with a gap. More precisely,
suppose T (j)1 = l1 and T (j + 1)1 = l2 with 1 ≤ l1 < l2 − 1 ≤ n, for some j ∈ {1, . . . , k − 1}. Then
Yl1,s+2(k−j)+l1−1 and Y −1

l2−1,s+2(k−(j+1))+l2
appear in ωT .

Proof. By hypothesis, T contains the boxes

l1
s+2(k−j)

= Y −1
l1−1,s+2(k−j)+l1

Yl1,s+2(k−j)+l1−1

and

l2
s+2(k−j)−2

= Y −1
l2−1,s+2(k−j)+l2−2Yl2,s+2(k−j)+l1−3.

Since l1 < l2 − 1, the negative power produced by l2
s+2(k−j)−2

cannot be canceled with the

positive power produced by l1
s+2(k−j)

(the box immediately above it). Also, since T is increasing,

T (j′)1 < l1 for all j′ < j and T (j′′)1 > l2 for all j′′ > j + 1. Thus, there is no other possibility
for canceling Y −1

l2−1,s+2(k−j)+l2−2 implying that Y −1
l2−1,s+2(k−j)+l2−2 appears in ωT . The proof that

Yl1,s+2(k−j)+l1−1 appears in ωT is similar. �

3.2. The qcharacters of minimal affinizations

We now study the qcharacters of minimal affinizations in terms of tableaux.

A tableau T with shape ((k1, s1), (k2, s2), . . . , (km, sm)) is said to be semi-standard if it is
column-increasing and satisfies:

(i) s1 ≥ s2 ≥ · · · ≥ sm;
(ii) (i, s) ∈ Im(Tj) and (i′, s− 2) ∈ Im(Tj+1)⇒ i ≥ i′.

In terms of pictures, the sequences of diagonal contents from left to right and top to bottom are
decreasing (not necessarily strictly). Given a tableau T , we will denote by STab(T ) the set of
semi-standard tableaux with the same shape as T .

Recall the definition of increasing and decreasing minimal affinizations given after Theorem
1.6.1. Let λ ∈ P+ and ω ∈ P+ be the highest-ℓ-weight of a minimal affinization of Vq(λ), say

(3.2.1) ω =
∏

i∈I

Yi,ri,λ(hi).
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Then ω = ωT , where T = (Tn, Tn−1, . . . , T 1) if Vq(λ) is increasing and T = (T 1, T 2, . . . , Tn) if Vq(λ)
is decreasing, with T i omitted if λ(hi) = 0 and, otherwise, T i = (T i

1, . . . , T
i
λ(hi)

) with T i
j column-

increasing with length equal the content of its last box and support starting at ri+2(λ(hi)−j)−i+1:

(3.2.2) T i
j =

1

...
i

ri+2(λ(hi)−j)−i+1

Notice that T has |λ| columns and

ωT i
j = Yi,ri+2(λ(hi)−j).

One easily checks using the formulas for pi,j(λ) that, if ω corresponds to an increasing minimal
affinization, then, for every i ∈ supp(λ), we have

(3.2.3) ri = ri′ + 2(λ(hi′)− 1) + i− i′ + 2 with i′ = max{1, . . . , i− 1} ∩ supp(λ).

Moreover, if the support of the j-th column of T starts at s, then that of the (j + 1)-th column
starts at s− 2. Indeed, if they are both columns of T i, this is obvious. Otherwise, consider the last
column of T i and suppose the next column is the first one of T k. Then,

(ri − i+ 1)− (rk + 2(λ(hk)− 1)− k + 1) = (ri − (rk + 2(λ(hk)− 1)))− i+ k

(3.2.3)
= (i− k + 2)− i+ k

= 2.

In pictures, T has the form

(3.2.4)

...
...

...
. . .

...
...

and, since the minimal affinization is increasing, the top of each column is in a row below the top
of the previous column. Similarly, if ω ∈ P+ corresponds to a decreasing minimal affinization of
Vq(λ), for every i ∈ supp(λ), we have

(3.2.5) ri = ri′ + 2(λ(hi′)− 1) + i− i′ + 2 with i′ = min{i+ 1, . . . , n} ∩ supp(λ).
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This time, if the support of the first box j-th column of T is s, then the support of the first box of
the (j + 1)-th column is s− 2. In pictures, T has the form

(3.2.6)

...
...

...
. . .

...
...

and the bottom of each column is in a row below the bottom of the previous column.

For the next theorem, see [41, Corollary 7.6 and Remark 7.4 (i)] and references therein (cf.
Theorem 2.7.3).

Theorem 3.2.1. Let T be as in (3.2.2). Then, wtℓ(Vq(ω)) = {ωT ′
: T ′ ∈ STab(T )}. �

We shall need the following constructions associated to a semi-standard tableau T as in (3.2.2).
Denote by lt the length of the t-th column of T . Given 0 ≤ t ≤ |λ| and 1 ≤ p ≤ lt +1, consider the
tableau Tt,p which is the unique tableau having the shape of T and such that

(1) if t′ > t, the t′-th column of Tt,p does not have gaps;
(2) each of the first t columns of Tt,p have exactly one gap;
(3) all gaps have size 1 and occur at the the p-th row of the corresponding column.

In particular, T0,p = Tt,lt+1 = T . Also, given 1 ≤ c ≤ f ≤ |λ| and 0 ≤ j ≤ n + 1, consider the
tableau Tc,f,j which is the unique tableau having the shape of T and such that

(1) each column has at most one gap;
(2) if t < c or t > f , the t-th column of Tc,f,j does not have gaps;
(3) if c ≤ t ≤ f , the t-th column has a gap at its last row whose size is j minus the length of the

column, if this number is positive, and there is no gap in the t-th column if this number is
negative or zero.

For notational convenience, we set Tc,f,j = Tc,|λ|,j for f > |λ| and Tc,f,j = T for f < c as well as for
c > |λ| and j = 0, and Tt,p = T|λ|,p for t > |λ|.

Example 3.2.2. Suppose that T is the semi-standard tableau such that ωT = Yn,s,k. We now
describe the qcharacter of V = Vq(Yn,s,k). Note that T = (T1, . . . , Tk) is the semi-standard tableau
where each column Tj has length n, the content of the last box is n, and the shape of T is

((n, s+ 1 + 2(k − 1)− n), . . . , (n, s+ 3− n), (n, s+ 1− n)).

By Theorem 3.2.1, the ℓ-weights of V are represented by semi-standard tableaux with shape of T .
Thus, we have the highest ℓ-weight ωT and all the ℓ-weights in wtℓ(V ) \ {Yn,s,k} are obtained from
T by changing the contents of the boxes of T without breaking condition of being semi-standard.
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Consider the case k = 1 first. Then, the corresponding semi-standard tableaux are T1,j , 1 ≤ j ≤ n:

1

...
n−2

n−1

n
s+1−n

= Yn,s
n,s+1
−−−→

1

...
n−2

n−1

n+1
s+1−n

= ωT1,n
n−1,s+2
−−−−−→

1

...
n−2

n

n+1
s+1−n

= ωT1,n−1

n−2,s+3
−−−−−→ · · ·

2,s+n−1
−−−−−→

1

3

4

...
n+1

s+1−n

= ωT1,2
1,s+n
−−−→

2

3

4

...
n+1

s+1−n

= ωT1,1 .

In other words

qch(V ) =
n+1∑

p=1

ωT1,p = Yn,s


1 +

n∑

p=1

A−1
n,p,s


 .

For k > 1, we first notice that we can do the same sequence of changes on the first column.
Suppose we have done j changes on the first column. Then we can do the same type of changes
on the second column up to the j-th change and so on. In other words, the ℓ-weights of Vq(̟) are
parameterized by the set of partitions J(n, k) = {j = (j1, j2, . . . , jk) : 0 ≤ jk ≤ · · · ≤ j2 ≤ j1 ≤ n}
and the ℓ-weight associated to j ∈ J is

(3.2.7) ̟j = Yn,s,k

k∏

l=1

A−1
n,n+1−jl,s+2(k−l).

Moreover, it is known that the multiplicities are all 1 and, hence,

qch(V ) =
∑

j∈J(n,k)

̟j .

In terms of fundamental ℓ-weights, we have

(3.2.8) ̟j = Yn,s,k

k∏

l=1

(
Y −1
n,s+2(k−l)Y

−1
n−jl+1,s+2(k−l)+jl+1Yn−jl,s+2(k−l)+jl

)1−δ0,jl
.

Notice that jl > 0 means that there exists a gap of size 1 at the (n−jl+1)-th row of the l-th column
of T . Moreover, if ̟j 6= Yn,s,k, then j1 > 0 which implies Y −1

n+1−j1,s+2(k−1)+j1+1Yn−j1,s+2(k−1)+j1

appears in ̟j and (see (2.5.2)):

(3.2.9) r(̟j) = s+ 2(k − 1) + j1 + 1.

Indeed, since l1 < l2 implies jl1 ≥ jl2 , we have s+ 2(k − l1) + jl1 > s+ 2(k − l2) + jl2 .

The elements Tt,p will play an important role later on. Note that

Tt,p corresponds to the partition j given by ji =

{
p, if i ≤ t,

0, if i > t.

We also note that (3.1.6) implies

(3.2.10) ωTt+1,p = ωTt,p A−1
n,p,s+2(k−t) for all 0 ≤ t < k, 1 ≤ p ≤ n.
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Iterating we get

(3.2.11) ωTt,p = Yn,s,k

t∏

l=1

A−1
n,p,s+2(k−l) for all 1 ≤ t ≤ k, 1 ≤ p ≤ n.

We end this example by specializing it to the case n = 1. In that case, J(n, k) is in bijection
with {Tt,1 : 0 ≤ t ≤ k} and we have

(3.2.12) qch(V ) =
k∑

t=0

ωTt,1 = Y1,s,k

k∑

t=0

t∏

l=1

A−1
1,s+2(k−l)+1.

We end this section with the following lemma on the combinatorics of semi-standard the tableau
which will be used systematically in the Section 3.4.

Lemma 3.2.3. Let T be a semi-standard tableau with shape as in (3.2.4) and (i, s) ∈ B × Z.
Suppose the box i

s
is part of the the j-th column of T . Then:

(a) The box i
s
is not in any other column of T .

(b) If i−1
s+2

is a box in T , it must be in the j-th column.

(c) if i+1
s−2

is a box in T , it must be in the j-th column.

Proof. We write down the proof of (b) only since the other items are similar. Suppose i−1
s+2

appears in the (j+m)-th column, m ≥ 1. Since T ′ is as in (3.2.4), this column has a box supported
at s − 2m. Since T ′ is columns increasing, the content c of the box supported at s − 2m is at
least i+m > i. This contradicts the assumption that T ′ is semi-standard because the box i

s
in

column j and the box c
s−2m in column j+m are in the same diagonal from left to right and top

to bottom. Suppose now that i−1
s+2

is in the (j−m)-th column, m ≥ 1. This time (3.2.4) implies

that this column has a box supported at s + 2m. Since all columns are increasing, the content c
of the box supported at s + 2m is at most i −m < i. This contradicts the assumption that T ′ is
semi-standard because the box c

s+2m in column j −m and the box i
s
in column j are in the

same diagonal from left to right and top to bottom. �

3.3. J-dominant ℓ-weights of certain minimal affinizations

For the remainder of Chapter 3, we fix λ ∈ P+ and ω ∈ P+ such that wt(ω) = λ as in (3.2.1),
with Vq(ω) an increasing minimal affinization. Set

i0 = max(supp(λ)).

It follows from (3.2.3) that

(3.3.1) ri = ri0 − i0 + i− 2 i|λ|i0−1 for all i ∈ supp(λ).

For notational convenience, we define ri by (3.3.1) for all 1 ≤ i ≤ i0. Then, for all 1 ≤ i ≤ j it
holds:

(3.3.2) ri = rj − j + i− 2 i|λ|j−1.

Let S be the semi-standard tableau such that ωS = ω as given by (3.2.2) and recall Definition
2.5.4.

Lemma 3.3.1. If ν ∈ wtℓ(Vq(ω)) is not right negative, then r(ν) = ri0 + 2(λ(hi0) − 1) and
πi0(ν) = Yi0,ri0 ,λ(hi0

).
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Proof. The statement is clear if ν = ω. Suppose ν 6= ω and write ν = ωS′
where S′ ∈

STab(S). Since S′ 6= S, there exists 1 ≤ l ≤ |λ| such that the l-th column S′
l of S′ has a gap.

Assume l is the smallest such index. It follows from Lemma 3.1.6 that Y −1

i,r(ω
S′
l )

appears in ωS′
l for

some i ∈ I. By Lemma 3.2.3, Y
i,r(ω

S′
l )

does not appear in ωS′\S′
l , where S′ \ S′

l is the tableaux

obtained from S′ by removing its l-th column. Hence, Y −1

i,r(ω
S′
l )

appears in ν. Since ν is not right

negative, there must exist 1 ≤ l′ ≤ |λ| such that S′
l′ is gap-free and r(ωS′

l′ ) > r(ωS′
l). One easily

checks that, if l′ > l and S′
l′ has no gaps, then r(ωS′

l′ ) < r(ωS′
l). Therefore, we must have 1 ≤ l′ < l

and, since both S′
1 and S′

l′ are gap-free, it follows that r(ωS′
1) > r(ωS′

l′ ) which proves the first
statement of the lemma. Since S′ is semi-standard and the first column is gap-free, all columns of
length i0 must also be gap-fee which implies the second statement. �

Henceforth, assume

λ(hn) = 0.

Recall the definition of the tableaux Sc,f,j in the paragraph preceding Example 3.2.2.

Proposition 3.3.2. Let J = I \ {n}. Then, the J-dominant elements of wtℓ(Vq(ω)) are
ωS1,j,n+1 , 0 ≤ j ≤ |λ|.

Proof. It is clear from the definition of S1,j,n+1 that ω
S1,j,n+1 is J-dominant for all 0 ≤ j ≤ |λ|.

For proving the converse, we start by showing that the J-dominant ℓ-weights of Vq(ω) can be
represented by elements of STab(S) whose columns are of the form listed in Lemma 3.1.4. Indeed,
by Theorem 3.2.1, any element of wtℓ(Vq(ω)) can be represented by an element of STab(S). Let
S′ ∈ STab(S) and suppose S′ has a column which is not of the form listed in Lemma 3.1.4. Look at
the first such column (say it is the j-th column) and consider the first box whose content i < n+1

is not equal to its position l in the column. In other words, this column contains i
s
for some

s and l−1
s+2

with l < i. If ωS′
were J-dominant, there would exist a column containing the box

i−1
s+2

. By Lemma 3.2.3, this box would also be in the j-th column contradicting l < i.

It now remains to check that, if S′ ∈ STab(S) has columns as listed in Lemma 3.1.4 (which

implies ωS′
is J-dominant), then S′ = S1,j,n+1 for some 0 ≤ j ≤ |λ|. If there is no box having

n+ 1 as content, then S′ = S = S1,0,n+1. Otherwise, we claim S′ = S1,j,n+1 where j is the number
of the right-most column having n + 1 as the content of its last box. Indeed, since S′ is semi-
standard, it follows from (3.2.4) that the last box of all the previous columns must be n + 1. By
the choice of j and the fact that all columns of S′ are as listed in Lemma 3.1.4, all columns to the
right are increasing having length equal to the content of the last box and, hence, coincide with
corresponding columns of S. �

Given 1 ≤ j ≤ |λ|, let lj be the length of the j-th column of S and dj := j −
∑

i>lj
λ(hi) (this

means that the j-th column is the dj-th one of length lj). It follows from (3.1.6) that

(3.3.3) ωS1,j,n+1 = ωS1,j−1,n+1A−1
lj ,n,rlj+2(λ(hlj

)−dj)
.

This implies that

πn(ω
S1,j,n+1) = Y −1

n,rlj+2(λ(hlj
)−dj)+n−lj+2,dj

∏

m>lj

Y −1
n,rm+n−m+2,λ(hm)

(3.3.1)
= Y −1

n,ri0+2λ(hi0
)+n−i0−2j+2,j .(3.3.4)
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We shall also need the following information. By definition of S1,j,n+1 and (3.1.6), we have

(3.3.5) ωS1,j,n+1 = ω




i0∏

i=lj+1

λ(hi)∏

m=1

A−1
i,n,ri+2(λ(hi)−m)






dj∏

m=1

A−1
lj ,n,rlj+2(λ(hlj

)−m)




and

(3.3.6) ωS1,j,n = ω




i0∏

i=lj+1

λ(hi)∏

m=1

A−1
i,n−1,ri+2(λ(hi)−m)






dj∏

m=1

A−1
lj ,n−1,rlj+2(λ(hlj

)−m)


 .

This, together with (3.3.1), imply that

πn(ω
S1,j,n) =




i0∏

i=lj+1

λ(hi)∏

m=1

Yn,rl+2(λ(hi)−m)+n−l






dj∏

m=1

Yn,rlj+2(λ(hlj
)−m)+n−lj




= Yn,ri0+2λ(hi0
)+n−i0−2j,j .(3.3.7)

Notice also that

(3.3.8) ωSc,f+1,p = ωSc,f,p A−1
lf ,p−1,rlf+2(λ(hlf

)−df )

for all 0 ≤ c− 1 ≤ f ≤ |λ|, 1 ≤ p < n. Iterating this, we get

(3.3.9) ωSc,f,p = ω




p−1∏

i=lf+1

λ(hi)∏

m=1

A−1
i,p−1,ri+2(λ(hi)−m)






df∏

m=1

A−1
lf ,p−1,rlf+2(λ(hlf

)−m)


 .

Observe that, by (2.2.1), there exists a unique Ξ = Ξc,f,p ⊆ I × Z such that (3.3.9) can be written
in the form

ωSc,f,p = ω
∏

ξ∈Ξ

A−1
ξ

Notice also that, if lf < p and r = min{r′ : (i, r′) ∈ Ξ for some i} (such minimum is reached by the
pair (lf , rlf +2(λ(hf )−df )+1)), then r− lf is the support of the last box of the f -th column of S,

(3.3.10) max{i : (i, s) ∈ Ξ for some s} = p− 1, (p− 1, r + p− lf − 1) ∈ Ξ,

and (i, r+p− lf −1) /∈ Ξ for i 6= p−1. We shall need the following combinatorial lemma in Section
3.4.

Lemma 3.3.3. Assume p ∈ supp(λ), c = min{j : lj < p}, c ≤ f ≤ |λ|, let Ξ and r be defined as

above and set ξ0 = (p− 1, r+ p− lf − 1). If S′ ∈ STab(S) is such that ωS′
= ω

∏
ξ∈Ξ′ A

−1
ξ for some

Ξ′ with ξ0 ∈ Ξ′, then Ξ ⊆ Ξ′. In particular, if Ξ′ ⊆ Ξ, we have S′ = Sc,f,p.

Proof. Equation (3.1.6) implies that, for obtaining S′ by modifications in S, the element ξ0
corresponds to the modification

p−1
r−lf
→ p

r−lf
.

Since the f -th column of S is the first column which has a box supported at r−lf , if this modification
occurs in the l-th column, we must have l ≥ f . In particular, if j is the content of the last box
of the l-th column of S′, then j ≥ p with equality holding only for l = f . In particular, if l > f ,
since S′ is semi-standard of the form (3.2.4), it follows that all the columns to the left of the l-th
one have the last box with content bigger or equal to p + 1, contradicting the first statement in
(3.3.10). Thus, we must have l = f and, using that S′ is semi-standard with the form (3.2.4) once
more, it follows that all the columns to the left of f -th one have the last box with content at least
p. One now easily checks using (3.1.6) that, even if Ξ′ would have only the elements corresponding
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to modifying the last boxes of the columns between the c-th and the f -th, we must have Ξ ⊆ Ξ′.
Since the equality Ξ = Ξ′ implies that ωS′

= ωSc,f,p , the last statement follows from the fact that
Vq(ω) is thin. �

3.4. Dominant ℓ-weights on certain tensor products

Throughout this and the next sections, we also fix: ̟ = Yn,rn,k and let T be the semi-standard

tableau such that ωT = ̟ as in Example 3.2.2. Our present goal is to describe the elements of

D := wtℓ(Vq(ω)⊗ Vq(̟)) ∩ P+

explicitly in terms of tableaux. The next proposition will follow as a byproduct and will be crucial
for our next goal (Section 3.5).

Proposition 3.4.1. The partial order on P induces a total order on D and

dim((Vq(ω)⊗ Vq(̟))µ) = 1 for all µ ∈ D.

We will consider separately the following two subcases

(3.4.1) ri0 + 2λ(hi0) ≤ rn + 2k

and

(3.4.2) rn + 2k ≤ ri0 + 2λ(hi0).

Assume first that (3.4.1) holds.

Lemma 3.4.2. The elements of D are of the form ν̟ with ν ∈ wtℓ(Vq(ω)).

Proof. Let ν ∈ wtℓ(Vq(ω)) and µ ∈ wtℓ(Vq(̟)) be such that νµ ∈ P+. In particular, νµ is
not right negative. Suppose by contradiction that µ 6= ̟. Then, by Proposition 2.5.5, µ is right
negative and it follows from (3.2.9) that

r(µ) = rn + 2(k − 1) + j + 1

for some 1 ≤ j ≤ n. Since the product of right negative elements is again right negative, ν is not
right negative and Lemma 3.3.1 implies that

r(ν) = ri0 + 2(λ(hi0)− 1).

Together with (3.4.1), this implies that r(ν) < r(µ). It then follows that νµ is right negative,
yielding the desired contradiction. �

Note that, together with Theorem 2.7.3, Lemma 3.4.2 implies the second statement of Propo-
sition 3.4.1 in the present case. We shall now prove that

(3.4.3) D = {ωS1,j,n+1ωT : j = 0, 1, . . . , k′}

where 0 ≤ k′ ≤ k is either zero or given by the condition:

(3.4.4) ri0 + 2(λ(hi0)− 1) + n− i0 + 2 = rn + 2(k′ − 1).

Indeed, since the elements in D are of the form ν̟ with ν ∈ wtℓ(Vq(ω)), it follows that ν must
be (I \ {n})-dominant and, hence, by Proposition 3.3.2, we must have ν = ωS1,j,n+1 for some
0 ≤ j ≤ |λ|. It now easily follows from (3.3.4) that ωS1,j,n+1̟ ∈ P+ if and only if 0 ≤ j ≤ k′.

Notice that the first statement of Proposition 3.4.1 follows easily from (3.4.3) and (3.3.8). Thus,
henceforth, assume (3.4.2) holds.

Lemma 3.4.3. If ν ∈ wtℓ(Vq(ω)) is such that ν̟ ∈ D, then ν = ω.
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Proof. Obviously, if ν̟ ∈ D, ν must be J-dominant. Let s = ri0+2λ(hi0)+n−i0. By (3.3.4),
Y −1
n,s appears in all J-dominant ℓ-weights of wtℓ(Vq(ω)) except ω. We claim that, if ν 6= ω, then

Y −1
n,s appears in ν̟, which proves the lemma. By definition, Yn,r appears in ̟ iff r = rn+2(j−1)

for some j = 1, . . . , k. Since

rn + 2(k − 1)
(3.4.2)

≤ ri0 + 2(λ(hi0)− 1) < s,

the claim follows. �

Suppose there exists p ∈ supp(λ) and k′ ∈ {1, . . . , λ(hp)} satisfying

(3.4.5) rn + 2(k − 1) + n− p+ 2 = rp + 2(k′ − 1).

Observe that the pair (p, k′) is unique, if it exists. Indeed, assume (p, k′) and (p′, k′′) satisfy (3.4.5).
If p = p′ we must obviously have k′ = k′′. Otherwise, without loss of generality, assume that

p− p′ < 0.

To obtain a contradiction, observe that, since Vq(ω) is an increasing minimal affinization, we must
have

rp′ − (rp + 2(λ(hp)− 1)) ≥ p′ − p+ 2

(by (3.2.3), the equality holds if p′ = min{i ∈ supp(λ) : i > p}). It follows that,

p− p′ = rn + 2(k − 1) + n− p′ + 2− (rn + 2(k − 1) + n− p+ 2)

(3.4.5)
= rp′ + 2(k′′ − 1)− (rp + 2(k′ − 1)) ≥ rp′ + 2(1− 1)− (rp + 2(λ(hp)− 1))

≥ p′ − p+ 2 > 0.

If a pair (p, k′) satisfying (3.4.5) does not exist, we set p = k′ = 0. Set also

c = 1 +

n−1∑

i=p

λ(hi)

and recall the definition of the tableaux Tt,j at the end of Section 3.1. Consider the subset D′ of
wtℓ(Vq(ω)⊗ Vq(̟)) defined as follows.

µ ∈ D′ ⇔ µ =

{
ω ωTt,p , for 0 ≤ t ≤ k′

ωSc,f,pωTt,p , for k′ ≤ t ≤ k, f ≤ |λ|, f = c+ t− k′ − ǫ with ǫ ∈ {0, 1}.

We now show that

(3.4.6) D = D′.

Together with (3.2.10) and (3.3.8), (3.4.6) easily implies the first statement of Proposition 3.4.1.
Moreover, if rn +2(k− 1)+n− i+2 6= ri +2(k′− 1) for all i ∈ supp(λ) and k′ = 1, . . . , λ(hi), then
p = k′ = 0 and, hence, D = {ω̟}. However, we will prove that this is true independently of the
proof of (3.4.6) (see Proposition 3.4.5).

We begin the proof of (3.4.6) by investigating the elements in D of the form ων with ν ∈
wtℓ(Vq(̟)). Recall from Example 3.2.2 that the elements of wtℓ(Vq(̟)) are in bijection with the
set J(n, k) = {j = (j1, j2, . . . , jk) : 0 ≤ jk ≤ · · · ≤ j2 ≤ j1 ≤ n}. Let j and T ′ be the tuple and
tableaux associated to ν, respectively. In particular, if ν 6= ̟, we have j1 > 0 and Lemma 3.1.6
implies that the first column of T ′ contributes with the appearance of the factor Y −1

i1,rn+2(k−1)+n−i1+2

in ν, where

(3.4.7) i1 := n− j1 + 1.
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Recall that

ω =
∏

i∈I

Yi,ri,λ(hi) =
∏

i∈I

λ(hi)∏

k′=1

Yi,ri+2(k′−1).

This implies that Yi1,rn+2(k−1)+n−i+2 must appear in ω and it follows that there exists 1 ≤ k′ ≤
λ(hi1) such that

rn + 2(k − 1) + n− i+ 2 = ri1 + 2(k′ − 1).

In other words, the pair (i1, k
′) satisfies (3.4.5) and, hence, i1 = p. In particular, we have shown

the following lemma.

Lemma 3.4.4. Suppose rn + 2(k − 1) + n − i + 2 6= ri + 2(k′ − 1) for all i ∈ supp(λ) and
k′ = 1, . . . , λ(hi). If ν ∈ wtℓ(Vq(̟)) is such that ων ∈ D, then ν = ̟. �

Proposition 3.4.5. If rn + 2(k − 1) + n − i + 2 6= ri + 2(k′ − 1) for all i ∈ supp(λ) and
k′ = 1, . . . , λ(hi), then D = {ω̟}.

Proof. By Lemma 3.4.3, there is no element in D of the form µ̟ with µ ∈ wtℓ(Vq(ω))\{ω}.
Suppose µν ∈ D with µ ∈ wtℓ(Vq(ω)) and ν ∈ wtℓ(Vq(̟)) \ {̟}. By (3.2.8), the term

(3.4.8) Y −1
i,rn+2(k−1)+n−i+2Yi−1,rn+2(k−1)+n−i+1,

where i = i1 as defined in (3.4.7). In particular, it follows from (3.2.8) that

(3.4.9) If Yj,r appears in ν, then j ≥ i− 1 and r ≤ rn + 2(k − 1) + n− i+ 1.

We show that the negative power in (3.4.8) cannot be canceled with a factor of µ. Let S′ be a

semi-standard tableau with shape of S such that ωS′
= µ. To cancel the negative power in (3.4.8),

S′ must have i supported at rn + 2(k − 1) + n − 2i + 3 and, if there exists a box immediately
below it, this box does not contain i+ 1. Suppose this occurs at the l-th column of S′.

Assume first that i
rn+2(k−1)+n−2i+3 is the last box of the l-th column of S′. We have two

cases:

(i) the l-th column of S′ has length i;
(ii) the l-th column of S′ has length strictly smaller than i.

In both cases we will get a contradiction.

Case (i). Since S′ has the same shape of S, the columns of length i have their last box supported
at ri + 2(v − 1)− i+ 1, v = 1, . . . , λ(hi). Thus, we have

rn + 2(k − 1) + n− 2i+ 3 = ri + 2(v − 1)− i+ 1⇒ rn + 2(k − 1) + n− i+ 2 = ri + 2(v − 1)

contradicting the hypothesis of the proposition.

Case (ii). Since the l-th column of S′ has the last box i and length strictly smaller than i,

it follows that this column has a gap. Suppose that j
r
, j ≤ i, is a box of the l-th column of S′

such that j−1
r+2

is not a box of this column. Observe that r ≥ rn + 2(k − 1) + n − 2i + 3. By

Lemmas 3.1.6 and 3.2.3, Y −1
j−1,r+j appears in ωS′

. Since µν ∈ D, Yj−1,r+j must appear in ν and,

hence, j = i by (3.4.9). This implies

r + j = r + i = rn + 2(k − 1) + n− i+ 3 > rn + 2(k − 1) + n− i+ 2,

contradicting the second claim in (3.4.9).
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Finally, assume that i
rn+2(k−1)+n−2i+3 is not the last box of the l-th column of S′. This

implies that there exists j > i + 1 such that j
rn+2(k−1)+n−2i+1

is a box of this column. By

Lemmas 3.1.6 and 3.2.3, Y −1
j,rn+2(k−1)+n−2i+j+1 appears in ωS′

and, hence, Yj,rn+2(k−1)+n−2i+j+1

must appear in ν. Since j > i+ 1, we get

rn + 2(k − 1) + n− 2i+ j + 1 > rn + 2(k − 1) + n− i+ 2

contradicting the second claim in (3.4.9) again. �

Now we suppose condition (3.4.5) is satisfied by (p, k′), for some p ∈ supp(λ) and k′ ∈
{1, . . . , λ(hp)}. Set

(3.4.10) b = c− k′

and observe that (3.4.5) implies

rn + 2(k − 1) + n− 2p+ 1 + 2 = rn + 2(k − 1) + n− 2p+ 3 = rp + 2(k′ − 1)− p+ 1.

This means that, writing

(3.4.11) s := rn + 2(k − 1) + n− 2p+ 1,

then,

(3.4.12) s is the support of the p-th box of the first column of T,

and

(3.4.13) s+ 2 is the support of the the last box of the b-th column of S.

Since S has the form (3.2.4), it follows that, for all 1 ≤ t ≤ k, if s′ is the support of a box in the
l-th column S, then

(3.4.14) s′ ≤ s− 2(t− 1) + 2 ⇒ l ≥ b+ t− 1.

Observe that s− 2(t− 1) is the support of the p-th box of the t-th column of T . Observe also that,
the b-th column of S is its (1+λ(hp)− k

′)-th column of length p, or equivalently, the k′-th counted
from right to left. In particular,

if l ≥ c, the l-th column of S has at most p− 1 boxes.

We also record that, for all 0 ≤ t ≤ k, we have

ωTt,p =

(
t∏

l=1

Yp−1,s+p−2(l−1) Y
−1
p,s+p−2(l−1)+1

)(
k−t∏

l=1

Yn,s−2(t+l−p)−n+1

)
(3.4.15)

= Yp−1,s+p−2(t−1),t Y
−1
p,s+p−2t+3,t Yn,s−2(k−p)−n+1,k−t.

Lemma 3.4.6. Every element of D is of the form ωS′
ωTt,p for some 0 ≤ t ≤ k and S′ ∈ STab(S).

Proof. We will prove that, if T ′ ∈ STab(T ), then

(3.4.16) T ′ 6= Tt,p ⇒ ωT ′
ωS′

/∈ P+ for all S′ ∈ STab(S).

Thus, suppose T ′ 6= Tt,p for all 0 ≤ t ≤ k and, by contradiction, suppose there exists S′ such that

ωT ′
ωS′
∈ P+. Since T0,p = T , we must have T ′ 6= T and, hence, the first column of T ′ must contain

a gap (necessarily of size 1). The hypothesis T ′ 6= Tt,p implies that T ′ has a column containing a
gap not located at its p-box. Suppose the t0-th column of T ′ is the first such column and assume the
gap occurs at the j-th box. Then, Lemmas 3.1.6 and 3.2.3 imply that Y −1

j,rn+2(k−t0)+n−j+2 appears

in ωT ′
and, hence, Yj,rn+2(k−t0)+n−j+2 must appear in ωS′

. This means that j
rn+2(k−t0)+n−2j+3
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must be a box in S′. Since this box does not appear at any other column of S′ by Lemma 3.2.3, it
follows that

(3.4.17) j+1
rn+2(k−t0)+n−2j+1

is not a box in S′

(otherwise, it would cancel the Yj,rn+2(k−t0)+n−j+2 coming from j
rn+2(k−t0)+n−2j+3

).

Suppose j > p and notice that this implies that,

(3.4.18) if i
s′

is a box in T ′ with s′ > s, then it is the i-th box of its column.

Indeed, the condition s′ > s implies that this box is among the first p− 1 boxes of its column. The
assumption on j implies that all gaps in T ′ occur in or after the p-th box of each column. Hence,
the content of the boxes of T ′ supported at s′ must be equal to its position in the column.

Say j
rn+2(k−t0)+n−2j+3

is in the l-th column of S′. Since

rn + 2(k − t0) + n− 2j + 3 < rn + 2(k − t0) + n− 2p+ 3 = s− 2(t0 − 1) + 2,

(3.4.14) implies that l ≥ b + t0 − 1 ≥ b. S′ being semi-standard, its b-th column must have a box
whose content is at least j. Since the length of the b-th column is p, this implies that the b-th
column of S′ has a gap. Suppose the j′-th box of the b-th column of S′ has a gap and let d be the
content of this box. In particular, since the columns are increasing, we have

(3.4.19) d > j′

Thus, d
s+2(p−j′) is a box in the b-th column of S′ while d−1

s+2(p−j′)+2
is not. This implies that

Y −1
d−1,s+2(p−j′)+d

appears in ωS′
and hence, d−1

s+2(p−j′)+2
must be a box in T ′, say, at its l′-th

column. Observe that, s+2(p− j′) + 2 = s+2(p− (j′− 1)) is the support of the (j′− 1)-th box of
the first column of T ′ and, hence, it is also the support of the (j′ − l′)-th box of the l′-th column
of T ′. Moreover, since s+ 2(p− j′) + 2 > s, (3.4.18) implies that d− 1 = j′ − l′. Hence,

(3.4.20) d = j′ − (l′ − 1) ≤ j′

yielding the desired contradiction.

Suppose now that j < p. Since T ′ is semi-standard, this implies that t0 = 1 and, hence,

rn + 2(k − t0) + n− 2j + 3 = rn + 2(k − 1) + n− 2p+ 1 + 2(p− j) + 2 = s+ 2 + 2(p− j)

is the support of the j-th box of the b-th column of S′ whose content is at least j (because the

columns of S′ are increasing). Since S′ is semi-standard, this implies that j
rn+2(k−1)+n−2j+3

is a

box in the l-th column of S′ with l ≥ b. We have to analyze the cases l = b and l > b separately.

If l = b, j
rn+2(k−1)+n−2j+3

is a box in the b-th column of S′ and j+1
rn+2(k−1)+n−2j+1

is not a

box in S′. Thus, the b-th column of S′ has d
rn+2(k−1)+n−2j+1 with d > j+1. This gap generates

the negative power Y −1
d−1,rn+2(k−1)+n−2j+1+d

, forcing d−1
rn+2(k−1)+n−2j+3

to be a box in T ′. Observe

that rn + 2(k − 1) + n− 2j + 3 = s+ 2(p− (j − 1)) is the support of the (j − 1)-th row of the first
column of T ′ and recall that, since this column has a gap in the j-th box, all boxes above it have
have content equal to its position in the column. In particular, the content of the box supported
at rn + 2(k − 1) + n− 2j + 3 is j − 1 < d− 1. Since T ′ is semi-standard, the content of the boxes
of the remaining columns supported at rn + 2(k − 1) + n − 2j + 3 must be at most j − 1 and we
have a contradiction.
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Suppose now l > b. Using that S′ is semi-standard, this implies that the b-th column of S′

contains a box j′
rn+2(k−1)+n−2j+3+2(l−b)

with j′ ≥ j. Since

rn + 2(k − 1) + n− 2j + 3 + 2(l − b) = s+ 2 + 2(p− (j − (l − b)))

is the support of the (j − (l − b))-th box in the b-th column of S′ and j − (l − b) < j, it follows
that there exists a gap in the b-th column of S′ at the j′′-th box for some j′′ ≤ j − (l − b) <
j. Let d be the content of this box, in particular, d > j′′. This generates the negative power
Y −1
d−1,rn+2(k−1)+n−2j′′+3+d

. To be canceled, it is necessary a box d−1
rn+2(k−1)+n−2j′′+3

in T (this

box cannot exist in S′ by Lemma 3.2.3). Look at the first column of S′. Since

rn + 2(k − 1) + n− 2j′′ + 3 = s+ 2 + 2(p− j′′) = s+ 2(p− (j′′ − 1)),

rn + 2(k − 1) + n − 2j′′ + 3 is the support of the (j′′ − 1)-th row of the first column of T ′ (recall
j′′ < j), and this column has a gap at the j-th row, thus the boxes above the j-th have their contents

equal to their position in the column. Hence T ′ has j′′−1
rn+2(k−1)+n−2j′′+3

in the first column, and

d − 1 > j′′ − 1 which implies j′′ − 1 6= d − 1. At the other columns of T ′ we also cannot have
d−1

rn+2(k−1)+n−2j′′+3
, because the contents of the boxes supported at rn + 2(k − 1) + n− 2j′′ + 3

are smaller or equal to j′′ − 2 (because T ′ is semi-standard). This completes the proof of part (i)
of the lemma. �

Lemma 3.4.7. Every element of D is of the form ωSc,f,pωTt,p for some t = 0, 1, . . . , k and some
f ≤ |λ|.

Proof. By the first part of Lemma 3.4.6, we need to show that, if ωS′
ωTt,p ∈ D for some

S′ ∈ STab(S) and some t = 0, 1, . . . , k, then S′ = Sc,f,p for some f ≤ |λ|. If, S′ = S, then

S′ = Sc,f,p for any f < c =
∑n−1

i=p λ(hi) + 1 and there is nothing to do. Thus, assume S′ 6= S. It
follows from Lemma 3.4.3 that we must also have Tt,p 6= T or, equivalently, t ≥ 1. Observe that, if
p = 1, then Sc,f,p = S since, in this case, f ≤ |λ| < c.

We need to study the structure of the gaps in S′. Since each gap contributes with the appearance
of a term of the form Y −1

i,r in ωS′
, it follows that Yi,r must appear in ωTt,p . By (3.4.15), Yi,r must

be among the following elements:

(3.4.21) Yp−1,rn+2(k−t′)+n−p+1, 1 ≤ t
′ ≤ t, and Yn,rn+2t′′ , 0 ≤ t

′′ < k − t.

Hence, we must have i ∈ {p− 1, n}.

We start showing that we cannot have i = n (in particular, it follows that each column of S′

can have at most one gap). Indeed, suppose the m-th column of S′ contains such a gap which
necessarily occurs at the last box whose content is n + 1. Since S′ is semi-standard of the form
(3.2.4), this implies that the contents of all the last boxes of the columns to the left of the m-th
column are also equal to n + 1. In particular, if l ≤ min{m, b}, the content of the last box of the
l-th column of S′ is n + 1. Moreover, (3.4.13) and (3.2.4) imply that the support of this box is
s+ 2(b− l + 1). Using Lemma 3.1.6, this implies that

Yi,r = Yn,rn+2(k+b−l+n−p+1)

which contradicts (3.4.21) since k + (b− l) + (n− p) + 1 ≥ k + 1 > k − t.

Since, as we have observed, we already know that each column of S′ has at most one gap, it
remains to show that there exists f ≤

∑n−1
l=1 λ(hl) such that the l-th column of S′ has a gap iff

c ≤ l ≤ f , the gap occurs at the last box and its size is p minus the length of that column.

Assume the l-th column of S′ has a gap and let r be the support of the box where the gap
occurs. In particular, since the support of the last box of this column is s + 2(b − l + 1), we have
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r ≥ s + 2(b − l + 1). Let us show, by contradiction, that l ≥ c. Assume first that l ≤ b. Lemmas

3.1.6 and 3.2.3 imply that Y −1
p−1,r+p appears in ωS′

. But

r + p ≥ s+ 2(b− l + 1) + p
(3.4.11)
= rn + 2(k + b− l) + n− p+ 1 > rn + 2(k − 1) + n− p+ 1,

which contradicts (3.4.21). Next, suppose b < l < c which implies that the l-th column of S′ has
p boxes (see comment preceding Lemma 3.4.6). Since, S′ is semi-standard, this implies the b-th
column also has a gap, which is a contradiction by the case l ≤ b.

Next, we show that if the l-th column has a gap, it must occur at its last box. Indeed, Lemma
3.1.6 and (3.4.21) imply that the content of this box of the gap must be p. Hence, if this were not
the last box, it would follow that the content of the last box is at least p + 1. Since S′ is semi-
standard of the form (3.2.4), this would imply that the last box of the b-th column is at least p+1
implying that the b-th column would have a gap (because it has p boxes), yielding a contradiction.
The same reasoning implies that, if c ≤ l′ ≤ l, the last box of the l′-th column has content p and,
hence, has a gap (because its length is at most p − 1). Notice also that, since there is no other
gap in the l-th column, all the boxes but the last must have content equal to their position in the
column. In particular, if the l-th column has m boxes, the content of its (m − 1)-th box is m − 1
and, hence, the size of the gap is p−m. �

Recall (3.4.11) and the definitions of lj and dj in the paragraph preceding (3.3.3) and that, for
f ∈ {c, . . . , |λ|}, we have lf ≤ p− 1. Then, using Lemma 3.1.6, we see that

ωSc,f,p =

(
f−c∏

m=0

Y −1
p−1,s+p−2(k′−1+m) Yp,s+p−2(k′−1+m)−1 Ylc+m−1,s−2(k′−1+m)+lc+m

)

(3.4.22)

×



∏

m>f :
lm=lf

Ylf ,rlf+2(m−(f+1))







n−1∏

i=p

Yi,ri,λ(hi)






lf−1∏

i=1

Yi,ri,λ(hi)


 .

The terms in the first line of the right-hand-side of (3.4.22) are the ones corresponding to the
columns of Sc,f,p which are not equal to those of S, while the ones in the second line come from the
columns which were not modified. Observe that there is no cancelation in (3.4.22). Indeed, this is
clear if lf < p − 1 and can be easily checked if lf = p − 1 (it is also guaranteed by Lemma 3.2.3).
Now, a simple comparison of (3.4.22) with (3.4.15) completes the proof of (3.4.6).

It remains to prove the second statement of Proposition 3.4.1, which is clear in the case that
D = {ω̟}. Thus, we can assume (3.4.5) holds. Fix µ ∈ D, say

µ = ωSc,f,pωTt,p

with 0 ≤ t ≤ min{k,
∑p−1

i=1 λ(hi) + k′} and f = c + t − k′ − ǫ for some ǫ ∈ {0, 1}. Suppose
S′ ∈ STab(S), T ′ ∈ STab(T ) are such that

ωS′
ωT ′

= µ.

Since Vq(ω) and Vq(̟) are thin, we are left to show that S′ = Sc,f,p and T ′ = Tt,p. For doing that,
notice that (3.2.11) and (3.3.9) have the form

ωSc,f,p = ω
∏

ξ∈Ξ1

A−1
ξ and ωTt,p = ̟

∏

ξ∈Ξ2

A−1
ξ
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with Ξ1,Ξ2 ⊆ I × Z satisfying

(3.4.23) (i, r) ∈ Ξ1 ⇒ i < p and r ≤ s− 2(k′ − 1) + i

while

(3.4.24) (i, r) ∈ Ξ2 ⇒ i ≥ p and r ≤ s+ p,

where s is given by (3.4.11). Setting Ξ = Ξ1 ∪Ξ2, it then follows from (2.2.1) that there must exist
a partition Ξ = Ξ′

1 ∪ Ξ′
2 such that

ωS′
= ω

∏

ξ∈Ξ′
1

A−1
ξ and ωT ′

= ̟
∏

ξ∈Ξ′
2

A−1
ξ .

We shall show that

(3.4.25) Ξj ⊆ Ξ′
j for j = 1, 2,

which clearly completes the proof of Proposition 3.4.1.

We first show (3.4.25) for j = 2. By contradiction, suppose there exists (i, r) ∈ Ξ2 ∩ Ξ′
1. By

(3.1.6), this implies that, for obtaining S′ from S, a modification i
r−i
→ i+1

r−i
was performed

in some column of S. Since r − i ≤ s by (3.4.24), (3.4.13) implies that this modification can only
be performed in columns to the right of the b-th column of S. In particular, the content of the last
box of b-th column of S′ is equal to p. We claim that the above modification also implies that the
content of the last box of (b + 1)-th column of S′ is at least p + 1, contradicting the fact that S′

is semi-standard. Indeed, since i ≥ p by (3.4.24), the last box of the modified column has content
larger or equal to p+1. Since S′ is semi-standard, the same holds for the last box of the (b+1)-th
column of S′ as claimed.

Next, notice that, if either t < k′ or t = k′ and f = c − 1, then Ξ1 = ∅ and we are done. In
particular, we can assume t ≥ k′. Notice also that (3.4.25) with j = 2 implies that T ′ is obtained
from Tt,p by modifications corresponding to elements of Ξ1 ∩ Ξ′

2. Again by contradiction, suppose
that there exists (i, r) ∈ Ξ1 ∩Ξ

′
2. By (3.4.23), we have i < p and r ≤ s− 2(k′− 1)+ i. This implies

that, for obtaining T ′ from Tt,p, a modification of the form i
r′
→ i+1

r′
was performed in some

column of Tt,p with i < p and r′ ≤ s − 2(k′ − 1). Since t ≥ k′, this together with (3.4.12), implies
that the first p − 1 boxes of the first t columns of T ′ coincide with those of Tt,p and, hence, also
coincide with those of T . In particular, if 1 ≤ l ≤ k, then the l-th column of T ′ has a box supported
at s− 2(l − 1) + 2 and, if j is its content, we must have

(3.4.26) j ≤ p− 1

with equality holding for l ≤ t.

As observed in the paragraph preceding Lemma 3.3.3, we have

ξ0 := (p− 1,min{r : (p− 1, r) ∈ Ξ1}) = (p− 1, s− 2(t− 1) + p− 1) ∈ Ξ1.

Since (3.4.25) for j = 2 implies that Ξ′
1 ⊆ Ξ1, it follows from Lemma 3.3.3 that, in order to show

(3.4.25) for j = 1, it suffices to show that we cannot have ξ0 ∈ Ξ′
2. Since ξ0 corresponds to the

modification

p−1
s−2(t−1)

→ p
s−2(t−1)

,

if it were ξ0 ∈ Ξ′
2, the previous paragraph implies that such modification would be performed after

the t-th column of Tt,p. Say that the modification is in the l-th column with l > t. Then, the
content of the box of the l-th column of T ′ supported at s− 2(l− 1)+ 2 is at least p, contradicting
(3.4.26). This completes the proof of Proposition 3.4.1.
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3.5. Simple factors of certain tensor products

We keep the notation fixed in the previous sections and set

λ = ω̟ and V = Vq(ω)⊗ Vq(̟).

Our next goal is to prove the following proposition.

Proposition 3.5.1. V is reducible if and only if either

(3.5.1) (3.4.4) holds with k′ ≤ |λ|

or

(3.5.2) (3.4.5) holds with k′ ≤ k.

If (3.5.1) holds, the simple factors of V are Vq(λ) and Vq(µ) where

µ = ωS1,k′,n+1ωT .

If (3.5.2) holds, the simple factors of V are Vq(λ) and Vq(µ) where

µ = ωSωTk′,p .

Remark 3.5.2. Let i1 = min supp(λ),mi = λ(hi), i < n, and mn = k. Define also ai =
qri+mi−1, i ∈ I, so that λ =

∏
i∈I ωi,ai,mi

. One easily checks that condition (3.5.1) is equivalent to

ai1q
|λ|i0

an
= q−(|λ|i0+mnωn+n−i1+2−2r),

for some r ∈ {1, . . . ,min{|λ|,mn}}. Indeed, this follows from (3.4.4) and (3.3.1) putting r = k′.
Similarly, condition (3.5.2) is equivalent to

ai1q
|λ|i0

an
= q|λ|i0+mnωn+n−i1+2−2r,

with r − (|λ|p−1 + p− i1) ∈ {1, . . . ,min{λ(hp),mn}} for some p ∈ {1, . . . , i0}. Indeed, this follows
from (3.4.5) and (3.3.2) (with (i, j) = (i1, p)) letting r = |λ|p−1 + p− i1 + k′.

We prove Proposition 3.5.1 in the remainder of this section. Evidently, if neither (3.4.4) nor
(3.4.5) hold, then D is a singleton and V must be irreducible.

Assume first that (3.4.4) holds, in which case µ is the minimum of D = {̟ωS1,j,n+1 : j =
0, 1, . . . , k′}. Set

µj = ̟ωS1,j,n+1

and recall that S1,j,n+1 = S1,|λ|,n+1 for all j ≥ |λ|. Proposition 3.5.1 clearly follows from Proposition
3.4.1 together with the following lemma.

Lemma 3.5.3. We have:

(a) µj ∈ wtℓ(Vq(λ)) for all 0 ≤ j ≤ min{|λ|, k′ − 1}.
(b) µk′ /∈ wtℓ(Vq(λ)) if k

′ ≤ |λ|.

Proof. Since µ0 = λ, part (a) clearly holds for j = 0. For j > 0, consider

µ′
j := ωS1,j,n̟.

We claim that

µ′
j ∈ wtℓ(Vq(λ)) for all j > 0.
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Indeed, using Remark 2.6.8 with λ in place of ω and J = I \{n}, we have wtℓ(χJ(λ)) ⊆ wtℓ(Vq(λ))
and, hence, we are left to show that

µ′
j ∈ wtℓ(χJ(Vq(λ))).

Note that λJ = ω and, therefore, Vq(λJ) is an increasing minimal affinization whose highest weight
is determined by S. Proposition 3.2.1 then implies that (ωS1,j,n)J ∈ wtℓ(Vq(λJ)). One easily checks
that

λ · ιJ
(
(ω−1ωS1,j,n)J

)
= µ′

j

completing the proof of the claim. In particular, it follows that µ′
j satisfies condition (i) of Propo-

sition 2.6.7 with λ in place of ω and J = {n}. Equation (3.3.7) implies that condition (ii) is also
satisfied. As for condition (iii), (3.3.6) implies that

µ′
j = λ




i0∏

i=lj+1

λ(hi)∏

m=1

A−1
i,n−1,ri+2(λ(hi)−m)






dj∏

m=1

A−1
lj ,n−1,rlj+2(λ(hlj

)−m)


 .

Hence, there is no ν ∈ wtℓ(Vq(λ)), ν > µ′
j such that µ′

j ∈ wtℓ(χ{n}(ν)), since the elements of

wtℓ(χ{n}(ν)) are of the form ν
∏

r∈ZA
−mr
n,r with mr ∈ Z≥0 (see (2.2.1)). It then follows from

Proposition 2.6.7 that

wtℓ(χ{n}(µ
′
j)) ⊆ wtℓ(Vq(λ)).

Part (a) of the lemma now follows if we show that

(3.5.3) µj ∈ wtℓ(χ{n}(µ
′
j)) for all 1 ≤ j ≤ min{|λ|, k′ − 1}.

Observe that (3.3.5), (3.3.6), (3.3.1) and (3.4.4) imply that

(3.5.4) µj = µ′
j

(
j∏

l=1

A−1
n,rn+2(k′−1−l)+1

)
.

Moreover, (3.3.7) and (3.4.4) imply that

πn(ω
S1,j,n) = Yn,rn+2(k′−1−j),j

and, hence,

πn(µ
′
j) = Yn,rn+2(k′−1−j),j Yn,rn,k.

One easily checks that, if j ≤ min{|λ|, k′ − 1}, the above is the q-factorization of πn(µ
′
j). Thus,

Corollary 2.7.2 implies that

Vq(πn(µ
′
j))
∼= Vq(Yn,rn+2(k′−1−j),j)⊗ Vq(Yn,rn,k).

Applying (3.2.12) to the first factor of the above tensor product and comparing with (3.5.4) one
easily deduces (3.5.3).

To prove part (b), consider the tableau S′ formed by the first k′−1 columns of S and S′′ be the
one obtained by juxtaposing T and S \S′. Note that the hypothesis k′ ≤ |λ| implies that S \S′ 6= ∅.
Then,

ωS′
= Ylk′ ,rk′+2(λ(hl

k′
)−dk′+1),dk′−1

i0∏

i=lk′+1

Yi,ri,λ(hi),

ωS′′
=




lk′−1∏

i=1

Yi,ri,λ(hi)


Ylk′ ,rlk′ ,λ(hl

k′
)−dk′+1 Yn,rn,k,
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and ωS′
ωS′′

= λ. In particular, Vq(λ) is the simple quotient of the submodule of Vq(ω
S′
)⊗Vq(ω

S′′
)

generated by the top weight space and part (b) follows if we show that

(3.5.5) µk′ /∈ wtℓ(Vq(ω
S′
)⊗ Vq(ω

S′′
)).

It is clear from the construction of S′ that Vq(ω
S′
) is an increasing minimal affinization. We

claim that Vq(ω
S′′

) is also an increasing minimal affinization, i.e., that

(3.5.6) rn = rlk′ + 2(λ(hl′
k
)− dk′) + n− lk′ + 2.

To prove this claim, set

(3.5.7) s := ri0 + 2(λ(hi0)− 1)− i0 + 1.

Then, (3.2.3) implies that

s is the support of the last box of the first column of S,

and it follows from (3.2.3), together with condition (3.4.4), that

(3.5.8) s+ 2 is the support of the last box of the (k − k′ + 1)-th column of T

(the (k−k′+1)-th column of T is the k′-th one counted from right to left). Therefore, the support
of the last box of the k′-th column of S is

(3.5.9) s− 2(k′ − 1) = rlk′ + 2(λ(hlk′ )− dk′)− lk′ + 1.

Together with (3.4.4) this proves (3.5.6).

By (3.3.5),

(3.5.10) µk′ = λ




i0∏

i=lk′+1

λ(hi)∏

m=1

A−1
i,n,ri+2(λ(hi)−m)






dk′∏

m=1

A−1
lk′ ,n,rlk′

+2(λ(hl
k′
)−m)


 .

This gives rise to an expression for λ−1µk′ as a product of distinct simple ℓ-roots:

λ−1µk′ =
∏

ξ∈Ξ

A−1
ξ

where Ξ ⊆ I × Z. Equation (3.5.5) follows if we show that there is no partition Ξ = Ξ′ ∪ Ξ′′ such
that

ωS′
∏

ξ∈Ξ′

A−1
ξ ∈ wtℓ(Vq(ω

S′
)) and ωS′′

∏

ξ∈Ξ′′

A−1
ξ ∈ wtℓ(Vq(ω

S′′
)).

By contradiction, assume such a partition exists. It follows from (2.2.1) and (3.1.6), that each
element A−1

ξ , ξ ∈ Ξ, corresponds to adding 1 to the content of a particular box of either S′ or S′′.

More precisely, if ξ = (i, r), then (3.1.6) implies that the modification associated to A−1
ξ is of the

form

i
r−i
−→ i+1

r−i
.

Inspecting (3.5.10), one checks that

max{r − i : (i, r) ∈ Ξ} = s.

Let ξ = (i, r) be such that r − i = s. This means that the boxes of S′ and S′′ supported above s
are not being modified. Together with (3.5.8), it follows that the first k− k′ +1 columns of S′′ are
left unmodified. In particular, the content of the last box of the first column of S′′ is n, since this
column comes from T . Knowing that Vq(ω

S′′
) is a minimal affinization, this implies, together with
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Proposition 3.2.1, that all first k columns of S′′ are left unmodified. On the other hand, another
inspection of (3.5.10) (cf. (3.5.9)) shows that

(n, s− 2(k′ − 1) + n) ∈ Ξ.

Since this corresponds to a modification of the form

n
s−2(k′−1) −→ n+1

s−2(k′−1)
,

this box must be the last box of its column. Since both Vq(ω
S′
) and Vq(ω

S′′
) are minimal affiniza-

tions, the modified tableau must be semi-standard and, hence, the last box of each column to the
left must also have n + 1 as content. Therefore, by the previous discussion, (n, s − 2(k′ − 1) + n)
cannot be in Ξ′′. Observing that, by construction, the box of S′ having the lowest support is
supported at s− 2(k′− 1)+ 2, it follows that (n, s− 2(k′− 1)+n) cannot be in Ξ′ as well, yielding
the desired contradiction. �

Henceforth, assume (3.4.5) holds. Then, by (3.4.6),

D =

{
ωSc,c+t−k′−1,pωTt,p , ωSc,c+t−k′,pωTt,p : 0 ≤ t ≤ min

{
k,

p−1∑

l=1

λ(hl) + k′

}}
,

where c = 1 +
∑i0

l=p λ(hl) (recall that Sc,f,p = S for f < c and for c > |λ|, Sc,f,p = Sc,|λ|,p for

f > |λ|, and Tt,p = Tk,p for t > k). One easily checks that, if either k′ > k or p = min supp(λ), then

µ = ωωTk,p is the smallest element of D. Similarly to the previous case, Proposition 3.5.1 easily
follows from Proposition 3.4.1 and the following lemma.

Lemma 3.5.4. We have

(a) {ν ∈ D : ν > µ} ⊆ wtℓ(Vq(λ)).
(b) If k′ > k, then µ ∈ wtℓ(Vq(λ)) or, equivalently, D ⊆ wtℓ(Vq(λ)).
(c) If k′ ≤ k, then µ /∈ wtℓ(Vq(λ)).

(d) If p > min supp(λ), then
{
ωSc,c+t−k′,pωTt,p : k′ ≤ t ≤ min

{
k,
∑p−1

l=1 λ(hl) + k′
}}
⊆ wtℓ(Vq(λ)).

(e) If k′ ≤ k, then
{
ωSc,c+t−k′−1,pωTt,p : k′ ≤ t ≤ min

{
k,
∑p−1

l=1 λ(hl) + k′
}}
⊆ wtℓ(Vq(µ)).

Proof. Observe that

{ν ∈ D : ν ≥ µ} = {µt : 0 ≤ t ≤ min{k′, k}}

where

µt := ωSωTt,p .

Since µ0 = λ, clearly µ0 ∈ wtℓ(Vq(λ)). Define

µ′
t := ωSωTt,p+1 .

We claim that

µ′
t ∈ wtℓ(Vq(λ)) for all t = 1, . . . ,min{k′ − 1, k}.

Indeed, using Remark 2.6.8 with λ in place of ω and J = {p + 1, . . . , n}, we have wtℓ(χJ(λ)) ⊆
wtℓ(Vq(λ)) and, hence, in order to prove the claim, we are left to show that

µ′
t ∈ wtℓ(χJ(Vq(λ))) for all t = 1, . . . ,min{k′ − 1, k}.

By definition of p, applying Proposition 3.4.5 to the algebra Uq(g̃J) with ωJ in place of ω and ̟J

in place of ̟ in place of ̟, we get

Vq(ωJ)⊗ Vq(̟J) ∼= Vq(ωJ̟J).



3.5. SIMPLE FACTORS OF CERTAIN TENSOR PRODUCTS 45

Therefore, by Theorem 3.2.1, (ωTt,p+1)J ∈ wtℓ(Vq(̟J)). One easily checks that

λ · ιJ
(
(ω−1̟−1ωTt,p+1)J

)
= µ′

t

completing the proof of the claim.

Next, we use Proposition 2.6.7 with λ in place of ω and J = {p}. The previous paragraph
implies that µ′

t satisfies condition (i) of that Proposition for t ≤ min{k′− 1, k}. Equation (3.4.15),
with p+ 1 in place of p, implies that condition (ii) is also satisfied. As for condition (iii), (3.2.11)
implies that

µ′
t = λ ·

t∏

l=1

A−1
n,p+1,rn+2(k−l).

On the other hand, for any ν ∈ P+
{p}, the elements of wtℓ(χ{p}(ν)) are of the form ν

∏
r∈ZA

−mr
p,r

with mr ∈ Z≥0. Since p < n, (2.2.1) implies that condition (iii) must also be satisfied. It then
follows from Proposition 2.6.7 that

wtℓ(χ{p}(µ
′
t)) ⊆ wtℓ(Vq(λ)).

Parts (a) and (b) of the lemma now follows if we show that

(3.5.11) µt ∈ wtℓ(χ{p}(µ
′
t)) for all 1 ≤ j ≤ min{k′ − 1, k}.

Observe that (3.2.11) implies that

(3.5.12) µt = µ′
t

(
t∏

l=1

A−1
p,rn+2(k−l)+n−p+1

)
.

Moreover, (3.4.15) implies that

πp(µ
′
t) = Yp,rn+2(k−t)+n−p,t Yp,rp,λ(hp)

(3.4.5)
= Yp,rp+2(k′−1−t),t Yp,rp,λ(hp).

One easily checks that, since t ≤ min{k′ − 1, k}, the above is the q-factorization of πp(µ
′
t). Thus,

Corollary 2.7.2 implies that

Vq(πp(µ
′
t))
∼= Vq(Yp,rp+2(k′−1−t),t)⊗ Vq(Yp,rp,λ(hp)) = Vq(Yp,rn+2(k−t)+n−p,t)⊗ Vq(Yp,rp,λ(hp)).

Applying (3.2.12) to the first factor of the above tensor product and comparing with (3.5.12) one
easily deduces (3.5.11).

Suppose now k′ ≤ k. To prove the first statement in (c), consider the tableau S′ formed by

the first
∑i0

i=p+1 λ(hi) columns of S, the tableau S′′ formed by juxtaposing the first λ(hp)− k
′ + 1

columns of length p of S and T , and finally the tableau S′′′ formed by the remaining columns of S
(i.e., the tableau whose columns are those to the right of the b-th column of S where b is given by
(3.4.10)). Then,

ωS′
=

i0∏

j=p+1

Yj,rjλ(hj), ωS′′
=
(
Yp,rp+2(k′−1),λ(hp)−k′+1

)
(Yn,rn,k) ,

ωS′′′
=




p−1∏

j=1

Yj,rj ,λ(hj)


(Yp,rp,k′−1

)
, and ωS′

ωS′′
ωS′′′

= λ.

In particular, Vq(λ) is the simple quotient of the submodule of Vq(ω
S′
) ⊗ Vq(ω

S′′
) ⊗ Vq(ω

S′′′
)

generated by the top weight space and part (c) follows if we show that

(3.5.13) µ /∈ wtℓ

(
Vq(ω

S′
)⊗ Vq(ω

S′′
)⊗ Vq(ω

S′′
)
)
.
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It is clear from the construction of S′ and S′′′ that Vq(ω
S′
) and Vq(ω

S′′′
) are increasing minimal

affinizations. On the other hand, (3.4.5) implies that Vq(ω
S′′

) is a decreasing minimal affinization.
In any case, the ℓ-weights of all three factors are represented by the corresponding set of semi-
standard tableaux.

By (3.2.11),

(3.5.14) µ = λ

(
k′∏

l=1

A−1
n,p,rn+2(k−l)

)
.

This gives rise to an expression for λ−1µ as a product of distinct simple ℓ-roots:

λ−1µ =
∏

ξ∈Ξ

A−1
ξ

where Ξ ⊆ I × Z. Equation (3.5.13) follows if we show that there is no partition Ξ = Ξ′ ∪ Ξ′′ ∪ Ξ′′′

such that

ωS′
∏

ξ∈Ξ′

A−1
ξ ∈ wtℓ(Vq(ω

S′
)), ωS′′

∏

ξ∈Ξ′′

A−1
ξ ∈ wtℓ(Vq(ω

S′′
)), ωS′′′

∏

ξ∈Ξ′′′

A−1
ξ ∈ wtℓ(Vq(ω

S′′′
)).

By contradiction, assume such a partition exists. As before, each element ξ ∈ Ξ, say ξ = (i, r),
corresponds to a modification of the form

i
r−i
−→ i+1

r−i

in some of S′, S′′, S′′′. Inspecting (3.5.14), one checks that

(3.5.15) max{r − i : i ∈ I, (i, r) ∈ Ξ} = s and min{i : (i, r) ∈ Ξ for some r ∈ Z} = p,

where s is given by (3.4.12). This means that the boxes of S′, S′′, and S′′′ with support larger than
s are not modified. Together with (3.4.13), it follows that S′ and the first λ(hp)−k

′+1 columns of
S′′ are left unmodified. In particular, the content of the last box of the first λ(hp)− k

′+1 columns

of S′′ is p since these columns are the first λ(hp)− k
′ + 1 columns of length p of S. Since Vq(ω

S′′
)

is a minimal affinization, this implies, together with Theorem 3.2.1, that the first p boxes of every
column of S′′ are left unmodified.

On the other hand, another inspection of (3.5.14), recalling that k′ ≤ k, shows that

ξ0 = (p, s− 2(k′ − 1) + p) ∈ Ξ.

This corresponds to a modification of the form

(3.5.16) p
s−2(k′−1)

−→ p+1
s−2(k′−1)

.

Since all the tableaux are column increasing, if the box on which this modification is being performed
is the j-th box on its column, we must have j ≤ p. Hence, it follows from the previous paragraph
that ξ0 ∈ Ξ′′′. We will show that this is a contradiction.

Indeed, by construction, the last box of the last column of length p of S′′′ is supported at
s − 2(k′ − 1) + 2. If we had min supp(λ) = p, it would follow that S′′′ had no box supported at
s− 2(k′ − 1), yielding a contradiction. Thus, we can assume that min supp(λ) < p and, hence, the
first column of S′′′ which has a box supported at s− 2(k′ − 1) has length i < p. This implies that,
before the modification (3.5.16) can be performed, we need a modification of the form

i
s−2(k′−1) −→ i+1

s−2(k′−1)

which implies that (i, s− 2(k′ − 1) + i) ∈ Ξ, contradicting the second statement in (3.5.15).
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We now prove part (d). Fix ν = ωSc,c+t−k′,pωTt,p , k′ ≤ t ≤ min{k,
∑p−1

l=1 λ(hl) + k′}. Define

ν ′ := ωSc,c+t−k′,pωTt,p+1 .

Similarly to part (a), one can prove that

(3.5.17) ν ′ ∈ wtℓ(χJ(Vq(λ))) ⊆ wtℓ(Vq(λ)),

where J = I \ {p}.

Next, we use Proposition 2.6.7 with λ in place of ω and J = {p}. (3.5.17) implies that ν ′

satisfies condition (i) of that Proposition. Equation (3.4.15), with p+ 1 in place of p, and (3.4.22)
imply that condition (ii) is also satisfied. As for condition (iii), (3.2.11) and (3.3.9) imply that

ν ′ = λ ·




p−1∏

i=lf+1

λ(hi)∏

m=1

A−1
i,p−1,ri+2(λ(hi)−m)






df∏

m=1

A−1
lf ,p−1,rlf+2(λ(hlf

)−m)



(

t∏

l=1

A−1
n,p+1,rn+2(k−l)

)
.

On the other hand, for any η ∈ P+
{p}, the elements of wtℓ(χ{p}(η)) are of the form η

∏
r∈ZA

−mr
p,r

with mr ∈ Z≥0. Since p < n and

t ≥ k′ ⇒ f = c+ t− k′ ≥ c = 1 +

i0∑

l=p

λ(hl)⇒ lf ≤ lc ≤ p− 1,

(2.2.1) implies that condition (iii) must also be satisfied. It then follows from Proposition 2.6.7
that

wtℓ(χ{p}(ν
′)) ⊆ wtℓ(Vq(λ)).

Part (d) of the lemma now follows if we show that

(3.5.18) ν ∈ wtℓ(χ{p}(ν
′)).

Observe that (3.2.11) implies that

(3.5.19) ν = ν ′

(
t∏

l=1

A−1
p,rn+2(k−l)+n−p+1

)
.

Moreover, (3.4.15) and (3.4.22) imply that

πp(ν
′) =

t−k′∏

l=0

Yp,s+p−2(k′−1+m)−1Yp,rn+2(k−t)+n−p,t Yp,rp,λ(hp)

(3.4.5)
=

t−k′∏

l=0

Yp,s+p−2(k′−1+m)−1Yp,rp+2(k′−1−t),t Yp,rp,λ(hp)

(3.4.11)
=

t−k′∏

l=0

Yp,rp−2(l+1)Yp,rp+2(k′−1−t),t Yp,rp,λ(hp)

= Yp,rp+2(k′−1−t),t−k′+1Yp,rp+2(k′−1−t),t Yp,rp,λ(hp)

= Yp,rp+2(k′−1−t),λ(hp)+t−k′+1 Yp,rp+2(k′−1−t),t.

One easily checks that the above is the q-factorization of πp(ν
′). Thus, Corollary 2.7.2 implies that

Vq(πp(ν
′)) ∼= Vq(Yp,rp+2(k′−1−t),t)⊗ Vq(Yp,rp+2(k′−1−t),λ(hp)+t−k′+1)

= Vq(Yp,rn+2(k−t)+n−p,t)⊗ Vq(Yp,rp+2(k′−1−t),λ(hp)+t−k′+1).

Applying (3.2.12) to the first factor of the above tensor product and comparing with (3.5.19) one
easily deduces (3.5.18).
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We now prove (e). Fix ν = ωSc,c+t−k′−1,pωTt,p , k′ ≤ t ≤ min{k,
∑p−1

l=1 λ(hl) + k′}. If t = k′ the
result follows from part (c). Suppose t > k′. Define

(3.5.20) ν ′ := ωωTt,p and ν ′′ := ωωTt,p+1 .

Observe that

(3.5.21) ν ′′ = µ

(
t∏

l=k′+1

A−1
n,p+1,rn+2(k−l)

)
.

Similarly to part (a), one can prove that

(3.5.22) ν ′′ ∈ wtℓ(χJ(Vq(µ))) ⊆ wtℓ(Vq(µ)),

where J = {p+1, . . . , n}. Next, we use Proposition 2.6.7 with µ in place of ω and J = {p}. (3.5.22)
implies that ν ′′ satisfies condition (i) of that Proposition. Equation (3.4.15), with p+1 in place of
p, implies that condition (ii) is also satisfied. As for condition (iii), for any η ∈ P+

{p}, the elements

of wtℓ(χ{p}(η)) are of the form η
∏

r∈ZA
−mr
p,r with mr ∈ Z≥0. By (3.5.21) and (2.2.1), condition

(iii) must also be satisfied. It then follows from Proposition 2.6.7 that

wtℓ(χ{p}(ν
′′)) ⊆ wtℓ(Vq(µ)).

Observe that

π{p}(ν
′′) = π{p}(µ) π{p}

(
t∏

l=k′+1

A−1
p,rn+2(k−l)+n−p+1

)

= Yp,rp+2k′,λ(hp)−k′

(
t∏

l=k′+1

Yp,rn+2(k−l)+n−p

)

= Yp,rp+2k′,λ(hp)−k′ Yp,rn+2(k−t)+n−p,t−k′

(3.4.5)
= Yp,rp+2k′,λ(hp)−k′ Yp,rp+2(k′−t−1),t−k′ .

One easily checks that the above is the q-factorization of πp(ν
′′). Thus, Corollary 2.7.2 implies that

Vq(πp(ν
′′)) ∼= Vq(Yp,rp+2k′,λ(hp)−k′)⊗ Vq(Yp,rp+2(k′−t−1),t−k′)

= Vq(Yp,rp+2k′,λ(hp)−k′)⊗ Vq(Yp,rn+2(k−t)+n−p,t−k′).

Thus, applying (3.2.12) to the first factor of the above tensor product one can see that

(3.5.23) ν ′ = ν ′′

(
t∏

l=k′+1

A−1
p,rn+2(k−l)+n−p+1

)
∈ wtℓ(χ{p}(ν

′′)) ⊆ wtℓ(Vq(µ)).

Next, we use Proposition 2.6.7 with µ in place of ω and J = {1, . . . , p − 1}. (3.5.23) implies
that ν ′′ satisfies condition (i) of that Proposition. Equation (3.4.15) implies that condition (ii) is
also satisfied. As for condition (iii), for any η ∈ P+

J , the elements of wtℓ(χJ(η)) are of the form

η
∏

i∈J,r∈ZA
−mr

i,r with mr ∈ Z≥0. Combining (3.5.21) and (3.5.23), it follows that

ν ′ = µ

(
t∏

l=k′+1

A−1
n,p,rn+2(k−l)

)
.

Hence (2.2.1) implies that condition (iii) must also be satisfied. It then follows from Proposition
2.6.7 that

wtℓ(χ{1,...,p−1}(ν
′)) ⊆ wtℓ(Vq(µ)).

In particular,
wtℓ(χ{1,...,p−2}(ν

′)) ⊆ wtℓ(χ{1,...,p−1}(ν
′)) ⊆ wtℓ(Vq(µ)).
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Let f = c+ t− k′ − 1. Observe that (3.4.22) implies that

(3.5.24) ν = ν ′




p−1∏

i=lf+1

λ(hi)∏

m=1

A−1
i,p−1,ri+2(λ(hi)−m)






df∏

m=1

A−1
lf ,p−1,rlf+2(λ(hlf

)−m)


 .

(3.4.15) implies that

π{1,...,p−2}(ν
′) =

p−2∏

i=1

Yi,ri,λ(hi).

Let ν ′′′ := ωSc,f,p−1ωTt,p . By (3.5.20) and (3.3.9), we have ν ′′′ = ν ′ if lf = p− 1 and

(3.5.25) ν ′′′ = ν ′




p−2∏

i=lf+1

λ(hi)∏

m=1

A−1
i,p−2,ri+2(λ(hi)−m)






df∏

m=1

A−1
lf ,p−2,rlf+2(λ(hlf

)−m)


 if lf < p− 1.

Thus, it is not difficult to see that

(3.5.26) ν ′′′ ∈ wtℓ(χ{1,...,p−2}(ν
′)) ⊆ wtℓ(Vq(µ)).

Next, we use Proposition 2.6.7 one more time with µ in place of ω and J = {p− 1}. By (3.5.26),
ν ′′′ satisfies condition (i) of that Proposition. Equations (3.5.25) and (3.4.15) imply that

(3.5.27) πp−1(ν
′′′) = Yp−1,rp−1,λ(hp−1)

(
t∏

m=0

Yp−1,rn+2(k−m)+n−p−1

)
,

if lf = p− 1, and

πp−1(ν
′′′) = Yp−1,rp−1,λ(hp−1)




p−2∏

i=lf+1

λ(hi)∏

m=1

Yp−1,ri+2(λ(hi)−m)+p−i−1




×




df∏

m=1

Yp−1,rlf+2(λ(hlf
)−m)+p−lf−1



(

t∏

m=0

Yp−1,rn+2(k−m)+n−p−1

)
,

otherwise. Hence condition (ii) is also satisfied. As for condition (iii), for any η ∈ P+
{p−1}, the

elements of wtℓ(χ{p−1}(η)) are of the form η
∏

r∈ZA
−mr

p−1,r with mr ∈ Z≥0. Combining (3.5.21),

(3.5.23) and (3.5.25), with (2.2.1), it follows that condition (iii) must also be satisfied. It then
follows from Proposition 2.6.7 that

wtℓ(χ{p−1}(ν
′′′)) ⊆ wtℓ(Vq(µ)).

Part (e) of the lemma now follows if we show that

(3.5.28) ν ∈ wtℓ(χ{p−1}(ν
′′′)).

Observe that

ν = ν ′′′




p−2∏

i=lf+1

λ(hi)∏

m=1

A−1
p−1,ri+2(λ(hi)−m)+p−i






df∏

m=1

A−1
p−1,rlf+2(λ(hlf

)−m)+p−lf


 ,

where df = t− k′ −
∑p−1

i=lf+1 λ(hi). Thus, using (3.3.2), one can see that

(3.5.29) ν = ν ′′′

(
t−k′−1∏

m=0

A−1
p−1,rp+2(k′−t+m)

)
,
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and that πp−1(ν
′′′) is equal to

(3.5.30) Yp−1,rp−1,λ(hp−1)

(
t−k′−1∏

m=0

Yp−1,rp+2(k′−t+m)−1

)(
t∏

m=0

Yp−1,rn+2(k−m)+n−p−1

)
,

if lf < p− 1.

Suppose first lf = p − 1, which implies df = t − k′ ≤ λ(hp−1). Observe that from by (3.4.5)
and (3.5.27) that

πp−1(ν
′′′) = Yp−1,rp−1,λ(hp−1)

(
t∏

m=0

Yp−1,rp+2(k−t+m)−1

)

= Yp−1,rp−1,λ(hp−1)

(
t∏

m=t−k′

Yp−1,rp+2(k−t+m)−1

)(
t−k′−1∏

m=0

Yp−1,rp+2(k−t+m)−1

)

(3.3.2)
= Yp−1,rp−1,λ(hp−1)+k′+1

(
t−k′−1∏

m=0

Yp−1,rp+2(k−t+m)−1

)

= Yp−1,rp−1,λ(hp−1)+k′+1Yp−1,rp+2(k−t)−1,t−k′ .

One easily checks that the above is the q-factorization of πp−1(ν
′). Thus, Corollary 2.7.2 implies

that

Vq(πp−1(ν
′′′)) ∼= Vq(Yp−1,rp−1,λ(hp−1)+k′+1)⊗ Vq(Yp−1,rp+2(k−t)−1,t−k′).

Applying (3.2.12) to the second factor of the above tensor product and comparing with (3.5.29)
one easily deduces (3.5.28).

Suppose now lf < p− 1. Observe that from by (3.4.5) and (3.5.30) that

πp−1(ν
′′′) = Yp−1,rp−1,λ(hp−1)

(
t−k′−1∏

m=0

Yp−1,rp+2(k′−t+m)−1

)(
t∏

m=0

Yp−1,rp+2(k−t+m)−1

)

= Yp−1,rp−1,λ(hp−1)

(
t∏

m=t−k′

Yp−1,rp+2(k−t+m)−1

)(
t−k′−1∏

m=0

Y 2
p−1,rp+2(k−t+m)−1

)

(3.3.2)
= Yp−1,rp−1,λ(hp−1)+k′+1

(
t−k′−1∏

m=0

Yp−1,rp+2(k−t+m)−1

)

= Yp−1,rp−1,λ(hp−1)+k′+1Yp−1,rp+2(k−t)−1,t−k′ .

One easily checks that the above is the q-factorization of πp−1(ν
′). Thus, Corollary 2.7.2 implies

that

Vq(πp−1(ν
′′′)) ∼= Vq(Yp−1,rp−1,λ(hp−1)+k′+1)⊗ Vq(Yp−1,rp+2(k−t)−1,t−k′).

Applying (3.2.12) to the second factor of the above tensor product and comparing with (3.5.29)
one easily deduces (3.5.28). �

3.6. Ordering certain affinizations

We now use the results of the previous two sections to order certain affinizations of a given
arbitrary finite-dimensional simple Uq(g)-module. We keep the data fixed in Section 3.3. More
precisely, let λ ∈ P+ be such that λ(hn) = 0, ω = ωS be such that Vq(ω) is an increasing minimal
affinization of Vq(λ) where S is given as in (3.2.2).



3.6. ORDERING CERTAIN AFFINIZATIONS 51

Given k, rn, r̄n ∈ Z, k > 0, let T, T be the tableaux such that

ωT = Yn,rn,k and ωT = Yn,r̄n,k

as in Example 3.2.2. To shorten notation, set also

̟ = ωT and ̟ = ωT .

Our goal is to establish the ordering relation between the affinizations Vq(λ) and Vq(λ) of Vq(λ+kωn)
under certain conditions on rn and r̄n, where

λ = ω̟ and λ = ω̟.

We shall say that λ satisfy (3.5.1) if there exists k′ ≤ |λ| satisfying (3.4.4). Analogously, we say
that λ satisfy (3.5.1) if there exists k̄′ ≤ |λ| satisfying (3.4.4) with k̄′ in place of k′. Similarly, we
say that λ (respectively λ) satisfy (3.5.2) if there exists a pair (p, k′) (respectively (p̄, k̄′)) satisfying
(3.4.5) with k′ ≤ k (respectively k̄′ ≤ k).

Proposition 3.6.1. Suppose one of the following conditions holds:

(i) Both λ and λ satisfy (3.5.1) and k′ < k̄′;
(ii) Both λ and λ satisfy (3.5.2), k′ < k̄′, and p = p̄;
(iii) Both λ and λ satisfy (3.5.2), k′ ≤ k̄′, and p > p̄.
(iv) λ satisfies (3.5.1) and λ satisfies (3.5.2), p̄ = i0, k

′ < k̄′.
(v) #(supp(λ) ∩ J) > 1 where J = I \ {n}, λ satisfies (3.5.1) and λ satisfies (3.5.2), p̄ = i0,

k′ = k̄′.

Then, Vq(λ) < Vq(λ).

Proof. Set V = Vq(ω) ⊗ Vq(̟) and V = Vq(ω) ⊗ Vq(̟). Then Vq(λ) is the simple quotient

of the submodule of V generated by the top weight space and similarly for V . Notice that we have
isomorphisms of Uq(g)-modules:

V ∼= V ∼= Vq(λ+ kωn)⊕
⊕

ν
Vq(ν)

⊕tν and Vq(λ) ∼= Vq(λ+ kωn)⊕
⊕

ν
Vq(ν)

⊕mν

where the sums are over ν ∈ P+ such that ν < λ + kωn and mν , tν ∈ Z≥0. Letting µ be as in
Proposition 3.5.1, it immediately follows that

(3.6.1) ν � wt(µ)⇒ tν = mν and mwt(µ) = twt(µ) − 1.

Writing

Vq(λ) ∼= Vq(λ+ kωn)⊕
⊕

ν
Vq(ν)

⊕mν

and letting µ be given by Proposition 3.5.1 with ̟ in place of ̟, we similarly conclude that

(3.6.2) ν � wt(µ)⇒ tν = mν and mwt(µ) = twt(µ) − 1.

We claim the above first four conditions imply that

(3.6.3) wt(µ) < wt(µ).

Assuming this, we complete the proof as follows. Let ν ∈ P+ be such that ν < λ + kωn. If
ν � wt(µ), then we also have ν � wt(µ) and, hence, mν = tν = mν . Otherwise, if ν ≤ wt(µ), we
have mwt(µ) = twt(µ) − 1 = mwt(µ) − 1. We do case (v) separately.

In order to prove (3.6.3), assume first that condition (i) holds. It follows from (3.5.10) that

wt(µ) = λ+ kωn −




i0∑

j=lk′+1

λ(hj)

n∑

t=j

αt


− dk′

n∑

t=lk′

αt
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and similarly for wt(µ) with k̄′ in place of k′. Since k′ < k̄′, we must have that

either lk′ > lk̄′ or lk̄′ = lk′ with dk′ < dk̄′ .

Either way (3.6.3) follows. If condition (ii) holds, it follows from (3.5.14) that

wt(µ) = λ− k′
n∑

j=p

αj and wt(µ) = λ− k̄′
n∑

j=p

αj

and (3.6.3) follows since k′ < k̄′. If (iii) holds, it follows from (3.5.14) that

wt(µ) = λ− k′
n∑

j=p

αj and wt(µ) = λ− k̄′
n∑

j=p̄

αj .

The hypothesis k′ ≤ k̄′ and p > p̄ then clearly imply (3.6.3). Finally, if (iv) holds, since k′ ≤
k̄′ ≤ λ(hi0), it follows that lk′ = i0 and dk′ = k′. Hence, it follows from (3.5.10) and (3.5.14),
respectively, that

wt(µ) = λ− k′
n∑

j=i0

αj and wt(µ) = λ− k̄′
n∑

j=i0

αj .

The hypothesis k′ < k̄′ then implies (3.6.3).

Suppose now that (v) holds. By Proposition 3.5.1, the simple factors of V are Vq(λ) and Vq(µ),

and the simple factors of V are Vq(λ) and Vq(µ). Since k′ = k̄′ ≤ λ(hi0), it follows that lk′ = i0
and dk′ = k′. Hence, by (3.5.10),

(3.6.4) µ = λ

(
k′∏

m=1

A−1
i0,n,ri0+2(λ(hi0

)−m)

)
.

Also, by (3.5.14), since k̄′ = k′ and p = i0,

(3.6.5) µ = λ

(
k′∏

m=1

A−1
n,i0,rn+2(k−m)

)
.

Let s = min{i ∈ supp(λ) : i < i0}. Observe that s is well defined, since #(supp(λ) ∩ J) > 1.

Consider ν = wt(µ)−
∑i0−1

i=s αi = wt(µ)−
∑i0−1

i=s αi. We claim that

mν(Vq(µ)) = 0 < mν(Vq(µ)) and mη(Vq(λ)) = mη(Vq(λ))

for all η ∈ P+ such that λ+kωn < η < ν. In particular, mη(Vq(µ)) = mη(Vq(µ)). The second part
of the claim follows from (3.6.1) and (3.6.2) using that wt(µ) = wt(µ). For the first part, we will
show that

(3.6.6) dim(Vq(µ)ν) > dim(Vq(wt(µ))ν).

and

(3.6.7) dim(Vq(µ)ν) = dim(Vq(wt(µ))ν)

Assuming this, we complete the proof of the claim as follows. Let J ′ = {s, . . . , i0 − 1} and observe
that

wt(µJ ′) = wt(µJ ′) = λ(hs)ωs + k′ωi0−1.

One easily sees that there is no η ∈ P+ such that wt(µ) = wt(µ) > η > ν. Thus, it follows from
(3.6.6) that Vq(ν) is a simple factor of Vq(µ) when regarded as a Uq(g)-module, while (3.6.7) implies
that Vq(ν) is not a simple factor of Vq(µ).
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Let us prove (3.6.7). Observe from (3.6.5) that

πJ ′(µ) = Ys,rs,λ(hs)

(
k′∏

m=1

Yi0−1,rn+2(k−m)+n−i0+1

)
.

By (3.3.2) we have rs + 2λ(hs) + i0 − s = ri0 or, equivalently,

(3.6.8) rs + 2(λ(hs)− 1) = ri0 − (i0 − s+ 2).

Also, by (3.4.5),

rn + 2(k − k′) + n− i0 + 1 = ri0 + 2(k′ − 1)− 2k′ + 1 = ri0 − 1.

Therefore,

rs + 2(λ(hs)− 1) + i0 − s+ 1 = ri0 − 1 = rn + 2(k − k′) + n− i0 + 1.

Hence Vq(µJ ′) is a minimal affinization. Thus, it is irreducible as Uq(g̃J ′)-module, i.e.,
Vq(µJ ′) ∼=Uq(g̃J′ ) Vq(wt(µJ ′)), which implies by (2.6.2) that (3.6.7) then follows.

We now turn to (3.6.6). Observe that (3.6.4) implies

πJ ′(µ) = Ys,rs,λ(hs)

(
k′∏

m=1

Yi0−1,ri0+2(λ(hi0
)−m)+1

)
.

By (3.4.4),

ri0 + 2(λ(hi0)− k
′) + 1 ≥ ri0 + 1.

Then,

rs + 2(λ(hs)− 1) + i0 − s+ 1
(3.6.8)
= ri0 − 1 < ri0 + 1 ≤ ri0 + 2(λ(hi0)− k

′) + 1.

An application of Proposition 2.7.4 to the subalgebra determined by J ′ implies that
mνJ′ (Vq(µJ ′)) > 0 = mνJ′ (Vq(µJ ′)). Thus

dim(Vq(µJ ′)νJ′ ) > dim(Vq(µJ ′)νJ′ ) = dim(Vq(wt(µJ ′))νJ′ )

and (3.6.6) follows from (2.6.2). �

3.7. Decreasing minimal affinizations

Suppose ω′ =
∏

i∈I Yi,r′i,λ(hi) is such that Vq(ω
′) is a decreasing minimal affinization of Vq(λ).

It follows from (3.2.5) that

(3.7.1) r′i = r′i0 + i0 − i+ 2 i+1|λ|i0 for all i ∈ supp(λ).

For notational convenience, we define r′i by (3.7.1) for all 1 ≤ i ≤ i0. In particular

r′i = r′j + j − i+ 2 i+1|λ|j for all 1 ≤ i ≤ j.

The following proposition allows us to obtain similar results for Vq(ω
′̟) to those we obtained

for Vq(ω̟) in the previous sections.

Proposition 3.7.1. If either of the following two conditions hold, we have Vq(ω̟) ∼=Uq(g)

Vq(ω
′̟).
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(i) There exists 1 ≤ k′ ≤ min{|λ|, k} such that

(3.7.2) ri0 + 2λ(hi0) + n− i0 + 2 = rn + 2k′,

and

(3.7.3) rn + 2k + n− i0 + 2 = r′i0 + 2k′.

(ii) There exist p ∈ supp(λ) and 1 ≤ k′ ≤ min{λ(hp), k} such that

(3.7.4) rn + 2k + n− i0 + 2 = rp + 2k′,

and

(3.7.5) r′p + 2λ(hp) + n− p+ 1 = rn + 2k′.

Proof. Writing ai = qri+λ(hi)−1 and bj = qr
′
i+λ(hi)−1 for i < n and an = bn = qrn+k−1, one

easily sees that condition (i) as well as condition (ii) imply that

(3.7.6)
ai
aj

=
bj
bi

for all i, j ∈ I,

and we are done by Proposition 2.1.2. �



CHAPTER 4

On qcharacters and tensor products for type D

Throughout this chapter g is of typeDn. The main goal of this chapter is to prove similar results
to those of the previous chapter for tensor products of Kirillov-Reshetikhin modules associated to
the spin nodes. The main results are

We also compare certain affinizations involving the nodes 1, n− 1, n.

4.1. Tableaux and ℓ-weights

Let B = {1, 2, . . . , n} ∪ {1̄, 2̄, . . . , n̄} equipped with the partial order

1 < 2 < · · · < n− 1 < n, n̄ < n− 1 < · · · < 2̄ < 1̄.

Following [44], introduce the notation

(4.1.1) i
r
=





Y −1
i−1,r+i−1Yi,r+i−2, if 1 ≤ i ≤ n− 2;

Y −1
n−2,r+n−2, if i = n− 1;

Yn,r+n−1, if i = n;

and

(4.1.2) i
r
=





1, if 1 ≤ i ≤ n− 2;

Y −1
n−1,r+n+1Y

−1
n,r+n+1, if i = n− 1;

Yn−1,r+n−1, if i = n.

Remark 4.1.1. The symbols were denoted by “half” boxes in [44] since they are related to
ℓ-weights of the spin representations. The “full” boxes were reserved in [44] for ℓ-weights of the
standard representation. Since we will only be concerned with the spin representations here, we
will use use “full’ boxes instead of “half” boxes.

Define column tableau, tableau, shape of a tableau, and the ℓ-weight ωT associated to a tableau
T similarly to the type A case in Section 3.1. Let l be one of the spin nodes and, given r ∈ Z, let
Brl be the set of all column tableaux of the form:

T =

i1

...
in

r−n+1

where the contents ij satisfy:

(1) i1 < · · · < in;
(2) for all 1 ≤ m ≤ n, m is the content of a box of T if and only if m is not;
(3) if ij = n for some j, then l and j have the same parity;
(4) if ij = n̄ for some j, then l and j have opposite parities.

55
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Notice that

(4.1.3) Yl,r = ωT where T =

1

2

...
n−1

m
r−n+1

with m =

{
n̄, if l = n− 1,

n, if l = n.

Moreover,

(4.1.4) T ∈ Brl ⇒ ωT =
∏

i∈I

Y pi
i,si

for some si, pi ∈ Z with |pi| ≤ 1.

The definition of gaps in a column increasing tableau is similar to that of type A. Namely, we
say that a column increasing tableau T has a gap at its j-th row if the content of the j-th row is
not an immediate successor of the content of the (j − 1)-th row (in the partial order of B). A gap
in the first row means that the content of the first row is not 1.

The proof of the next lemma is similar to that of Lemma 3.1.6 and we omit the details.

Lemma 4.1.2. Let T be a column increasing tableau. Suppose a given column of T has a gap
at the j-th row. More precisely, that column has the box l2

s
at the j-th row and the content l1

of the previous row is not the immediate predecessor of l2 (set l1 = 0 if j = 1).

(a) If l2 ≤ n, then Y
−1
l2−1,s+l2−1 appears in ωT . Moreover, if j > 1, then Yl1,s+l1 appears in ωT .

(b) If l2 = n̄, then Y −1
n,s+n−1 appears in ωT . Moreover, if j > 1, then Yl1,s+l1 appears in ωT .

(c) If l2 > n̄, then the same column has a gap at a box whose content c is at most n̄. �

Given T ∈ Brl , suppose i
s
and i+1

s′
are boxes of T for some 1 ≤ i ≤ n − 1. Then,

ωTA−1
i,s+i−1 = ωT ′

, where T ′ ∈ Brl is obtained from T by replacing the boxes i
s
and i+1

s′
by

i+1
s
and i

s′
, respectively. In pictures:

(4.1.5)

...
i s

...
i+1 s′

...

A−1
i,s+i−1 =

...
i+1 s

...
i s′

...

.

Notice that, if i ≤ n−3, then i+1
s′
= i

s′
= 1 and the value of s′ is irrelevant. On the other hand,

if i = n − 2, conditions (1) and (2) of the definition of Brl imply that s′ = s − 4 and, if i = n − 1,

then s′ = s − 2. Similarly, if n−1
s+2

and n
s
are boxes of T , then we have ωTA−1

n,s+n = ωT ′
,

where T ′ ∈ Brl is obtained from T by replacing the boxes n−1
s+2

and n
s
by n

s+2 and n−1
s
,

respectively. In pictures:

(4.1.6)

...
n−1 s+2

n s

...

A−1
n,s+n =

...
n s+2

n−1 s

...

.
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Lemma 4.1.3. Let T ∈ Brl , i ∈ I, and m ∈ Z. Then, ωTA−1
i,m = ωT ′

for some T ′ ∈ Brl if and

only if the pair (T,A−1
i,m) is as in the left-hand side of either (4.1.5) or (4.1.6) and T ′ is the column

on the corresponding right-hand side.

Proof. The “if” part is obvious. For the converse, let ij
sj
, 1 ≤ j ≤ n, be the boxes of T . So

sj = r + n+ 1− 2j and

ωT =

n∏

j=1

ij
sj
.

Suppose i is the content of a box in T but i+ 1 is not. Hence, (T,A−1
i,m) is not as in the left-hand

side of (4.1.5) for any m ∈ Z. Say i = ij and set s = sj to shorten notation. Conditions (1) and
(2) in the definition of Brl imply that ij+1 = i+ 1. Observe that

i
s
A−1

i,s+i−1 = i+1
s

ī
s′
( i+1

s′
)−1 = i+1

s
∀ s′ ∈ Z, if i ≤ n− 3,

n−2
s
A−1

n−2,s+n−3=n−1
s
(n−1

s−4
)−1

n−2
s−4

= n−1
s

n̄
s−2 n

s−2,

(4.1.7)

n−1
s
A−1

n−1,s+n−2=( n
s−2)

−1
n

s
n−1

s−2
= n

s
n−1

s−2
n

s
n−1

s−2
,

n
s
A−1

n,s+n =(n−1
s+2

)−1
n̄

s+2n−1 s
= n̄

s+2n−1 s

(
n−2∏

i=1

i
s+2(n−i)

)
.

Moreover, the last expression of each line of (4.1.7) is the minimal description as a product of
boxes. If i ≤ n− 3, it follows from (4.1.7) that

ωTA−1
i,m = i+1

s
i+1

s−2

∏

j′ 6=j,j+1

ij′
sj′
.

Since ij′ 6= i for all j′ 6= j, j +1, it follows that Y −1
i,s+i and Y

−1
i,s+i−2 appear in ωTA−1

s+i−1 (cf. Lemma

4.1.2). This contradicts (4.1.4) and, hence, ωTA−1
i,m cannot be represented by an element of Brl . The

cases i = n− 2, n− 1 are similar and we omit the details. Now, suppose T has n
s
and does not

have n−1
s+2

. Then T must have n−1
s−2

and (4.1.7) implies that ωTA−1
n,s+n cannot be represented

by an element of Brl . If either i and i+ 1 are contents of boxes in T or i is not the content of any
box in T , then the proof is similar. �

The following lemma is easily established.

Lemma 4.1.4. Suppose T ∈ Brl has a gap. Then, there exists (i, s) ∈ I × Z and S ∈ Brl such

that ωT = ωSA−1
i,s . �

4.2. The qcharacters of spin KR modules

Fix r ∈ Z, and a spin node l. It was proved in [44, Proposition 5.11] that

(4.2.1) qch(Vq(Yl,r)) =
∑

T∈Br
l

ωT .
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The goal of this section is to prove a generalization of this formula for qch(Vq(Yl,r,k)), k ≥ 1. Thus,
fix such k and notice that Yl,r,k can be represented by a tableau T made of the juxtaposition of k
column-tableaux as in (4.1.3). In particular, its shape is given by the picture:

(4.2.2)

...
...

. . .

...
...

We will say that a tableau of such shape is semi-standard if the j-th column is an element of

B
r+2(j−1)
l for all 1 ≤ j ≤ k and the contents in diagonals decrease from left to right and top to

bottom. For any given semi-standard tableau T , we let STab(T ) be the set of all semi-standard
tableau with the same shape as T .

The proof of the next lemma is similar to that of Lemma 3.2.3 and we omit the details.

Lemma 4.2.1. Let T be a semi-standard tableau with shape as in (4.2.2), 1 ≤ i ≤ n, s ∈ Z.
Suppose the box i

s
is part of the the j-th column of T . Then:

(a) The box i
s
is not in any other column of T .

(b) If i−1
s+2

is a box in T , it must be in the j-th column.

(c) If i < n and i+1
s−2

is a box in T , it must be in the j-th column.

(d) If i = n, then the box n̄
s
is not in any column of T .

(e) If the box n̄
s
is part of the j-th column of T , then the box n

s
is not in any column of T .�

It is not hard to see, using Lemmas 4.1.2 and 4.2.1, that there exists a unique semi-standard
tableau satisfying ωT = Yl,r,k: that with all k columns gap free. The following is the main result
of this section.

Theorem 4.2.2. The module Vq(Yl,r,k) is ℓ-minuscule, thin, and, if T is the unique semi-

standard tableau satisfying ωT = Yl,r,k, then

qch(Vq(Yl,r,k)) =
∑

T ′∈STab(T )

ωT ′
.

We shall need a few more lemmas about the combinatorics of semi-standard tableau. Given
a tableau T , we shall denote by T j its j-th column. The following is a generalization of Lemmas
4.1.3 and 4.1.4.

Lemma 4.2.3. Let T be a semi-standard tableau with k columns, i ∈ I, and m ∈ Z.

(a) We have ωTA−1
i,m = ωS for some S ∈ STab(T ) if and only if, there exists 1 ≤ j ≤ k, such that

the pair (T j , A−1
i,m) is as in the left-hand side of either (4.1.5) or (4.1.6) and S is obtained from

T by replacing T j by the column on the corresponding right-hand side.
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(b) If T has a gap, there exists (j, s) ∈ I × Z and S ∈ STab(T ) such that ωT = ωSA−1
i,s .

The next lemma is an easy consequence of Lemmas 4.1.2 and 4.2.1.

Lemma 4.2.4. Let T be a semi-standard tableau, i ∈ I, and s ∈ Z.

(a) ωT is i-dominant if and only if the following holds:

(i) If i ≤ n− 2 and i+1 is the content of a box in a column of T , then i is the content of the
box on top of it;

(ii) If i = n − 1 and n− 1 is the content of a box in a column of T , then n is the content of
the box on top of it;

(iii) If i = n and n− 1 is the content of a box in a column of T , then n̄ is the content of the
box on top of it.

(b) Yi,s appears in ωT if and only if the following holds:

(i) If i ≤ n − 2, then i
s−i+2 is a box in S and i + 1 is not the content of any box in the

same column;
(ii) If i = n − 1, then n̄

s−n+1 is a box in S and n− 1 is not the content of any box in the
same column;

(iii) If i = n, then n
s−n+1 is a box in S and n− 1 is not the content of any box in the same

column. �

We shall also need:

Lemma 4.2.5. Let S be a semi-standard tableau and suppose i ∈ I and r′ < r − i+ 1 are such
that S has a column of the following form:

...
i r−i+1

...
i+1 r′

...

Then, i+1
r−i+1

is not a box in any column of S and i−1
r−i+3

and i
r′′

with r′′ < r − i + 3 are

not boxes in any same column of S. In particular, there does not exist S′ ∈ STab(S) such that

ωSA−1
i+1,r+1 = ωS′

and similarly for ωSA−1
i−1,r+1.

If a column of S has the boxes n−1
s+2

and n
s
, then n−2

s+4
and n−1

s
are not boxes in any

same column of S. In particular, there does not exist S′ ∈ STab(S) such that ωSA−1
n−2,s+n+1 = ωS′

.

Proof. Suppose i+1
r−i+1

were a box of the (j+m)-th column, m ≥ 1, this column has a box

supported at r − i + 1 − 2m. Since S is column increasing, the content c of the box supported at
r− i+1−2m is at least i+m > i. This contradicts the assumption that S is semi-standard because
the box i+1

r−i+1
in column j and the box c

r−i+1−2m in column j +m are in the same diagonal

from left to right and top to bottom. Suppose now that i+1
r−i+1

is in the (j − m)-th column,

m ≥ 1. This column has a box supported at r − i+ 1 + 2m. Since all columns are increasing, the
content c of the box supported at r− i+1+2m is at most i−m, which implies that the content of
the box supported at r− i+1+2m−2 is at most i−m+1. Since the j-th column of S has the box
i+1

r′
for some r′ < r− i+1, the content of the box supported at r− i−1 is bigger than i+1. This
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contradicts the assumption that S is semi-standard because the box supported at r− i+1+2m−2
in column j −m and the box supported at r− i− 1 in column j are in the same diagonal from left
to right and top to bottom. The absence of the other two kinds of boxes is proved similarly. �

Henceforth, let T be as in Theorem 4.2.2 and set ω = ωT . It easily follows from Lemma 4.2.3
(b) that, given T ′ ∈ STab(T ), there exist m ∈ Z≥0, ij ∈ I, rj ∈ Z such that

(4.2.3) ωT ′
= ω

m∏

j=1

A−1
ij ,rj

.

Moreover, by (2.2.1), the pairs (ij , rj), counted with multiplicities, are unique up to re-ordering
and we can assume, by part (a) of Lemma 4.2.3, that the order is fixed in such a way that, for all
1 ≤ p ≤ m,

ω

p∏

j=1

A−1
ij ,rj

= ωTp for some Tp ∈ STab(T )

and there exists 1 ≤ t ≤ k such that the pair (T t
p, A

−1
ip+1,rp+1

) is either as in (4.1.5) or as in (4.1.6).

In light of Proposition 2.6.10, Theorem 4.2.2 follows from the following proposition.

Proposition 4.2.6. The familyM consisting of ωT ′
with T ′ ∈ STab(T ) satisfies the hypothesis

and conditions (i)–(iii) of Proposition 2.6.10.

Proof of Proposition 4.2.6. It is not difficult to see that, if T ′, T ′′ ∈ STab(T ) are such that

T ′ 6= T ′′, then ωT ′
6= ωT ′′

.

Condition (i): We need to show that if T ′ ∈ STab(T ) \ {T}, then ωT ′
6∈ P+. Indeed, in this

case T ′ has a gap, which implies, since T ′ is semi-standard, that T ′ has a gap at its first column.
Let j ∈ {1, . . . , n} be minimal such that T ′ has a gap at the j-th row of its first column. It means

that the j-th row of the first column contain a box j′
s
for some j′ > j and s ∈ Z, and, if j > 1,

the (j − 1)-th row contain a box j−1
s+2

. If j′ ≤ n − 1, by Lemma 4.1.2 Y −1
j′−1,s+j′−1 appears in

the ℓ-weight attached to this column. Supposing that ωT ′
∈ P+, this implies that j′−1

s+2
must

be a box in some other column of T ′. But, by Lemma 4.2.1, this box can only appear in the first
column, yielding the desired contradiction. It remains the possibilities j′ = n, n̄, which imply that
n− 1 is not the content of any box of the first column of T and, hence, n−1

s−2
is a box in the first

column. Observe that

n

n−1
s−2

= Y −1
n−1,s+n−1 and

n̄

n−1
s−2

= Y −1
n,s+n−1.

Supposing ωT ′
∈ P+, this implies that either n̄

s
or n

s
must be a box in T ′, contradicting

Lemma 4.2.1 once more.

Condition (ii): Let µ ∈ M and T ′ ∈ STab(T ) such that ωT ′
= µ. Suppose (i, a) ∈ I × C×

is such that µα−1
i,a 6∈ M. We need to show that µα−1

i,aαj,b 6∈ M unless (j, b) = (i, a). Indeed, if

(j, b) 6= (i, a) is such that ν := µα−1
i,aαj,b ∈M, then ων−1 ∈ Q+ and (2.2.1) implies that

(j, b) = (ip, q
rp−1) for some 1 ≤ p ≤ m.

In other words, αj,b = Aip,rp . Evidently, we must have αi,a = Ai,s for some i ∈ I and s ∈ Z. In

light of Lemma 4.2.3 (a), the condition µA−1
i,s 6∈ M means that, if i < n, then T ′ does not have a

column affording both the boxes

(4.2.4) i
s−i+1 and i+1

s′
for any s′ < s− i+ 1,
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while, if i = n, T ′ does not have a column with both the boxes

(4.2.5) n−1
s−n+2

and n
s−n

.

On the other hand, the condition ν ∈ M implies that ν has a decomposition as in (4.2.3), which
by (2.2.1), must be

ν = ωA−1
i,s

∏

t 6=p

A−1
it,rt

up to ordering.

From the way we chose the order of the factors in (4.2.3), we have

ω

p∏

j=1

A−1
ij ,rj

= ωTp−1 and ωTp−1A−1
ip,rp
∈M.

Suppose ip < n. Then, Tp−1 has a column with the boxes ip
rp−ip+1

and ip+1
r′

for some r′ <

rp − ip + 1. Hence, applying Lemma 4.2.5 with Tp−1 in place of S, we get that

(4.2.6) ip+1
rp−ip+1

and ip−1
rp−ip+3

are not a boxes in any column of Tp−1.

We claim that (4.2.6) together with the assumption that ν ∈M implies that

(ip − 1, rp + 1) /∈ {(ij , rj) : j = p+ 1, . . . ,m}

and(4.2.7)

(ip + 1, rp + 1) /∈ {(ij , rj) : j = p+ 1, . . . ,m}.

Indeed, if either of the above did not held, since ν = A−1
i,sω

∏
t 6=pA

−1
it,rt

has an expression as in

(4.2.3) in such a way that the truncated products correspond to semi-standard tableaux, (4.2.6)
would imply that (i, s) = (ip, rp), i.e., (i, a) = (j, b), yielding the desired contradiction. Similarly, if
ip = n one shows that

(4.2.8) (n− 2, rp + 1) /∈ {(ij , rj) : j = p+ 1, . . . ,m}.

We omit the details. In particular, ω
∏

t 6=pA
−1
it,rt
∈ M and, in fact, we can assume that the order

was chosen so that p = m. Let T ′′ ∈ STab(T ) be the tableau such that

ωT ′′
= ω

∏

t<m

A−1
it,rt

.

Then,

ν = ωT ′′
A−1

i,s and µ = ωT ′′
A−1

im,rm
.

Moreover, Lemma 4.2.3 (a) implies that T ′′ has a column either as in (4.1.5) or as in (4.1.6). We
will treat the case that (4.1.5) holds, i.e., we assume i < n. We omit the details for the case i = n
which can be dealt with similarly. In particular, T ′′ has columns of the form

(4.2.9)

...
i s−i+1

...
i+1 s′

...

and

...
im rm−im+1

...
im+1 s′′

...

and these two configurations may happen at the same column. We now proceed with a cases by
case argument according to wether T ′ has boxes with content either i or i+ 1.
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(1) A column of T ′ has the box i
s−i+1. In this case, (4.2.4) implies that, for any s′ < s− i+ 1,

i+1
s′

is not a box in the same column. Since T ′ is semi-standard, this column must have the

box i+1
s−i−1

. In other words, T ′ has a column of the form

(4.2.10)

...
i s−i+1

i+1 s−i−1

...

The move from T ′′ to T ′ corresponds to using (4.1.5) applied to the pair (S,A−1
im,rm

) where

S is the column containing the second configuration listed in (4.2.9). In particular, im 6= i
and, hence, T ′ must have a column containing the first configuration listed in (4.2.9) which

contradicts the configuration (4.2.10) since, by Lemma 4.2.1, i
s−i+1 is not a box in any other

column of T ′ and i+ 1 and i+ 1 cannot be the content of boxes in the same column.

(2) T ′ does not have the box i
s−i+1. This implies that the modification corresponding to mul-

tiply ωT ′′
by A−1

im,rm
changes the content of the box i

s−i+1 in T ′′. Thus (im, rm) = (i, s),
contradiction.

Condition (iii): Let µ = ωT ′
∈ M and i ∈ I. We need to show that there exists i-dominant

ν ∈M such that

(4.2.11) qch(Vq(πi(ν))) =
∑

η∈µQ{i}∩M

πi(η).

We write down the proof for i ≤ n− 2 and omit the details for i = n− 1, n since they are similar.
We show by induction on the number Ci = Ci(T

′) of columns of T ′ having a box with content i+1
but none with content i that ν satisfying (4.2.11) exists. Notice that Lemma 4.2.4 (a) implies that
µ is i-dominant iff Ci = 0.

Thus, assume Ci = 0, in which case we show that (4.2.11) holds with ν = µ. We start
describing the left-hand side. If i + 1 is the content of a box in every column of T ′ having a box
with content i, then part (b) of Lemma 4.2.4 implies that πi(ν) = 1 and we need to show that ν
is the unique element of νQ{i} ∩M. Indeed, notice that for such T ′, no change of the form (4.1.5)
can be applied. Therefore, there is no η ∈ νQ{i} ∩M such that η < ν. On the other hand, if

T ′′ ∈ STab(T ) were such that ωT ′′
A−1

i,s = ν for some s, then (4.1.5) would imply that T ′ had a
column having a box with content i and no box with content i + 1, contradicting our hypothesis
on T ′.

Suppose now that there exists a column of T ′ having i as content of a box while i+ 1 is not a
content of any box. In that case, it is not hard to see that there exist unique m, jt, st, rt ∈ Z with
m > 0, 1 ≤ j1 < j2 < · · · < jm ≤ k, satisfying

(1) i
st−2p is a box in T ′

jt+p and i+1
st−2(p+1)

is not for every 0 ≤ p < rt;

(2) Either i
st−2rt

is not a box in T ′
jt+rt

or i+1
st−2(rt+1)

is a box of T ′
jt+rt

;

(3) Either i
st+2 is not a box in T ′

jt−1 or i+1
st

is a box of T ′
jt−1;
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for every 1 ≤ t ≤ m. Using part (b) of Lemma 4.2.4, it is not hard to see that

πi(ν) =

m∏

t=1

Yi,st+i−2rt,rt

is the q-factorization of πi(ν). Hence, using the comment following (2.7.1), we get

qch(Vq(πi(ν))) = πi(ν)

m∏

t=1

(
rt∑

d=0

d−1∏

c=0

A−1
i,st+i−1−2c

)
.

We now show that the right-hand side of (4.2.11) coincides with this. Notice that, for each t, the
summand corresponding to a given d is equal to ωTt,d where Tt,d is the tableau obtained from T ′

by applying (4.1.5) to columns jt + p with 0 ≤ p < d. We can rewrite the above as

qch(Vq(πi(ν))) = πi(ν)
∑

d

m∏

t=1

dt−1∏

c=0

A−1
i,st+i−1−2c

where the sum runs over the set D = {(d1, . . . , dm) ∈ Z≥0 : dt ≤ rt, 1 ≤ t ≤ m}. Expanding the
previous comment, for each d ∈ D, let Td be the tableau obtained from T ′ by applying (4.1.5) to
columns jt + p with 1 ≤ t ≤ m, 0 ≤ p < dt. Then, we can further rewrite the above as

(4.2.12) qch(Vq(πi(ν))) =
∑

d∈D

ω
Td .

Hence, we are left to show that

(4.2.13) νQ{i} ∩M = {ω
Td : d ∈ D}.

Evidently, ω
Td ∈ νQ{i} ∩M for all d ∈ D. Let et, 1 ≤ t ≤ m be the standard basis of Z≥0. We

will show

(4.2.14) ω
TdA−1

i,s = ωT ′′
⇒ T ′′ = Td+et

for some t determined by s satisfying dt < rt

and

(4.2.15) ω
Td = ωT ′′

A−1
i,s ⇒ T ′′ = Td−et

for some t determined by s satisfying dt > 0,

which clearly proves (4.2.13). For showing (4.2.14), observe that (4.1.5) implies that T ′′ is obtained
from Td by modifying a column having a box with content i and a box with content i+ 1. Thus,
such column must be the (jt+ p)-th one for some 1 ≤ t ≤ m and dt ≤ p < rt. In particular, dt < rt
and we are left to show that p = dt. One easily sees that applying (4.1.5) with p > dt would give

rise to a non-semi-standard tableau. Namely, i
s−i+1 is a box in the (jt + p)-th column of Td

and, if p > dt, then i
s−i+3 is a box in the (jt+p−1)-th column of Td since this column coincides

with that of T ′. The change (4.1.5) would replace i
s−i+1 by i+1

s−i+1
and the diagonal condition

for T ′′ be semi-standard would be violated.

For showing (4.2.15), observe that (4.1.5) implies that Td is obtained from T ′′ by modifying a

column having a box with content i and a box with content i+ 1. Moreover, after the change such
column would have a box with content i+1 and a box with content i. One easily sees this column
must be one of those modified for obtaining Td from T ′. Indeed, all other columns either have a

box with content i or a box with content i+ 1. Hence, the column must be the (jt + p)-th one for
some 1 ≤ t ≤ m and 0 ≤ p < dt and we need to show that p = dt − 1. For seeing this, notice that
i

s−i+1 is a box in the (jt + p)-th column of T ′′. Since the (jt + p+ 1)-th column of T ′′ coincides

with that of Td, if p < dt−1, it would follow that i+1
s−i−1

is a box of the (jt+p+1)-th column of
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T ′′, violating the diagonal condition for T ′′ be semi-standard once more. This completes the proof
for Ci = 0.

If Ci > 0, then T ′ has a column with a box having content i + 1 and no box with content i.
Suppose the last such column is the j-th one and that s is the support of the box with content
i+ 1. We claim that

(4.2.16) µ = ωT ′′
A−1

i,s+i−1 for some T ′′ ∈ STab(T ).

Assuming this, the inductive step is proved as follows. It follows from (4.1.5) that Ci(T
′′) =

Ci(T
′) − 1 and, hence, the induction hypothesis applies to µ′ = ωT ′′

. More precisely, there exists
i-dominant ν ∈M such that

(4.2.17) qch(Vq(πi(ν))) =
∑

η∈µ′Q{i}∩M

πi(η).

Let S ∈ STab(T ) be such that ν = ωS . Then, Ci(S) = 0 and (4.2.12) implies that

qch(Vq(πi(ν))) =
∑

d∈D

ω
Sd

where D and Sd are defined as before with S in place of T ′. Since µ′ ∈ µ′Q{i} ∩M, this, together
with (4.2.17), implies that T ′′ = Sd for some d. Then, the same argument used for proving (4.2.14)
shows that (4.2.16) implies that

T ′ = Sd+et
for some t such that d+ et ∈ D.

This implies

µ′Q{i} ∩M = µQ{i} ∩M

which clearly proves (4.2.11).

It remains to prove (4.2.16). In other words, we need to show that, if T ′′ is the tableau obtained
from T ′ by replacing its j-th column by the one on the left-hand side of (4.1.5), then T ′′ ∈ STab(T ).

It is clear that the j-th column of T ′′ remains an element of B
r+2(j−1)
l and we need to check the

diagonal condition for T ′′ be semi-standard. Let m ∈ Z be such that 1 ≤ j +m ≤ k and let im be
the content of the box supported at s− 2m of the (j +m)-th column of T ′′. In particular, i0 = i.
Since T ′ is semi-standard, we have

i1−j ≥ · · · ≥ i−1 ≥ i+ 1 ≥ i1 ≥ · · · ik−j .

Hence, we are left to show that i1 ≤ i. If this was not the case, then i1 = i+ 1 and, by the choice
of j, the (j + 1)-th column of T ′ must have a box with content i whose support is necessarily s.
Then, the j-th column of T ′ has a box supported at s+ 2 whose content is at most i− 1 since i is
not the content of any of its boxes. This violates the diagonal condition for T ′ be semi-standard,
yielding the desired contradiction. �

Before ending this section, we infer some information on qch(Vq(Yl,r,k)) which we shall need.

We introduce the following notation. Given i, j ∈ I, let [i, j] = {i, j} be the minimal connected
subdiagram containing i, j and

α[i,j] =
∑

t∈[i,j]

αt.

Lemma 4.2.7. Let µ ∈ wtℓ(Vq(Yl,r,k)) be such that µ ≤ Yl,r,kA
−1
1,s for some s ∈ Z and let

s1 = r + 2k + n− 3. Then, wt(µ) ≤ kωl − α[1,l], s ≤ s1, and µ ≤ Yl,r,kA
−1
1,s1

.
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Proof. One easily deduces using the PBW theorem that, if j ∈ [1, l], j 6= 1, then kωl−(α1,l−αj)
is not an element of P (kωl) = {wν : w ∈ W, ν ∈ P+, ν ≤ kωl}. This easily implies the first
statement.

Observe that s1 is the support of the first box of the first row of T , where T is as in Theorem
4.2.2. The hypothesis µ < Yl,r,kA

−1
1,s means that there exists T ′, S ∈ STab(T ) such that ωS =

ωT ′
A−1

1,s and µ ≤ ωS . Thus, S is obtained from T ′ by a modification of the type (4.1.5) with i = 1

performed in some column of T ′. But, as one can easily see, such a modification is possible only
if all the columns to the left of this one have a gap at the first row. In particular, this is true
for the first column and, hence, ωS ≤ Yl,r,kA

−1
1,s1

. The remaining two statements are now easily
deduced. �

4.3. On certain partially dominant ℓ-weights of spin KR modules

We shall need the following construction associated to a tableau T with shape as in (4.2.2).
Given a partition ξ = (ξ1, ξ2, . . . , ξk) with

⌊
n−1
2

⌋
≥ ξ1 ≥ · · · ≥ ξk ≥ 0, consider the unique tableau

T l
ξ ∈ STab(T ) satisfying:

(1) for all 1 ≤ j ≤ k, the j-th column of T may have a gap only at the (n− 2ξj)-th row;
(2) the content of the (n− 2ξj)-th box is m, where m = n̄ if l = n− 1 and m = n if l = n;

In pictures, the j-th column of T l
ξ is

(4.3.1)

1

...
n−2ξj−1

m

n−1

n−2

...
n−2ξj r+2(k−j)−n+1

.

Notice that the j-th column has a gap iff ξj > 0, i.e., if the j-th column is not of the form (4.1.3).
In particular,

Yl,r,k = ωT l
0

where 0 denotes the partition with all ξj = 0.

Proposition 4.3.1. Let J = {1, . . . , n − 2} ∪ {l}. Then, the elements of the form ω
T l
ξ are

precisely the J-dominant elements of wtℓ(Vq(Yl,r,k)).

Proof. Observe first that each column of ωT l
ξ gives rise to a J-dominant ℓ-weight. Indeed, we

have

Yi,s =

1

...
i

s−i+2

, 1 ≤ i ≤ n− 2, Yn−1,s = n̄
s−n+1, Yn,s = n

s−n+1,

and

Y −1
n−1,s =

n

n−1
s−n−1

, Y −1
n,s =

n̄

n−1
s−n−1

.
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Thus, if s is the support of the (n− 2ξj)-th box of the j-th column of T l
ξ and ξj > 0, the ℓ-weight

attached to this column is

Yn−2ξj−1,s+n−2ξj−1 Y
−1
l′,n+s−1 with {l, l′} = {n, n− 1}.

As we have observed before the proposition, if ξj = 0, then the ℓ-weight attached to this column is
Yl,s+n−1.

It remains to show that all J-dominant ℓ-weights of Vq(Yl,r,k) can be represented by tableaux of

the form T l
ξ . Fix such an ℓ-weight, say µ. By Theorem 4.2.2, µ = ωT where T is a semi-standard

tableaux with the given shape. We claim that it suffices to show that each column of T is of the
form (4.3.1). Indeed, this determines ξj ≤

⌊
n−1
2

⌋
for each 1 ≤ j ≤ k and, since T is semi-standard,

it follows that ξj ≥ ξj+1 for all 1 ≤ j < k.

Assume by contradiction that T has a column which is not of the form (4.3.1) and say that the
j-th column is the first such column. We split the analysis in two cases:

(i) the first box of this column is either n
s
or n̄

s
, for some s ∈ Z;

(ii) the content of the first box of this column is smaller than n.

In case (i), it follows that, for all t = 2, . . . , n, the content of the t-th box of the column is

n− t+ 1. Assume the first box is n̄
s
(the case n

s
is similar and we omit the details). Then,

the ℓ-weight attached to this column is Y −1
n,s−n−1. If l = n − 1, then n must be odd which implies

that this column is of the form (4.3.1) with ξj =
⌊
n−1
2

⌋
, contradicting the choice of j. Therefore,

l = n, in which case Y −1
n,s−n−1 is not J-dominant. To obtain a contradiction, we have to show that

Yn,s−n−1 does not appear in the ℓ-weight attached to any other column of T . Indeed, as seen above,

if Yn,s−n−1 appears, then n
s
must be a box in another column of T . Since T has the form (4.1.3),

only columns to the left of the j-th one have boxes supported at s. Suppose the (j−m)-th column
has this box, m ≥ 1. Then (4.1.3) implies that this column has a box supported at s+ 2m. Since
all columns are increasing, the content c of the box supported at s + 2m is at most n −m < n̄.
This contradicts the assumption that T is semi-standard because the box c

s+2m in column j−m

and the box n̄
s
in column j are in the same diagonal from left to right and top to bottom.

In case (ii), since the j-th column is not of the form (4.3.1), it follows that there exists 1 ≤ i ≤
n − 2 such that the content of the i-th box is t for some i < t < n. Let i be the minimum with
this property. In other words, the i-th box of the j-th column of T is t

s
for some s and, if there

is a box supported at s+ 2 in this column, its content is i− 1. Since all columns are increasing, it
follows that Y −1

t−1,s+t−1 appears in the ℓ-weight attached to the j-th column. Since µ is J-dominant,

Yt−1,s+t−1 must appear in the ℓ-weight attached to some other column, i.e., t−1
s+2

must be a box

in another column of T , contradicting Lemma 4.2.1(b). �

Let us describe ω
T l
ξ more explicitly. We start with the case l = n− 1. Assume first that k = 1,

i.e., the tableaux have only one column and ξ = (ξ1) with 0 ≤ ξ1 ≤
⌊
n−1
2

⌋
. If ξ1 > 0, it follows

from (4.1.5) and (4.1.6) that

ω
Tn−1
ξ = ω

Tn−1
(ξ1−1)A−1

n−2ξ1+1,n−1,r+2(ξ1−1)A
−1
n−2ξ1,n−2,r+2ξ1−1A

−1
n,r+4ξ1−1.

Iterating this we get

ω
Tn−1
ξ = Yn−1,r

ξ1∏

m=1

A−1
n−2m+1,n−1,r+2m−2A

−1
n−2m,n−2,r+2m−1A

−1
n,r+4m−1.
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For k > 1, we apply this formula to each column replacing r by r + 2(k − j) when working with

the j-th column to get that ωTn−1
ξ is equal to

(4.3.2) Yn−1,r,k

k∏

j=1

ξj∏

m=1

A−1
n−2m+1,n−1,r+2(k−j)+2m−2A

−1
n−2m,n−2,r+2(k−j)+2m−1A

−1
n,r+2(k−j)+4m−1.

Setting

|ξ| = max{j : ξj 6= 0}

and using the expressions for the elements Ai,s in terms of the elements Yi,s, it follows that

(4.3.3) ω
Tn−1
ξ = Yn−1,r,k−|ξ|

|ξ|∏

j=1

Yn−2ξj−1,r+2(k−j)+2ξjY
−1
n,r+2(k−j)+4ξj

.

Notice that

(4.3.4) r + 2(k − j) + 4ξj > r + 2(k − i) + 4ξi if j < i.

Similarly, for l = n we get

ω
Tn
ξ = Yn,r,k

k∏

j=1

ξj∏

m=1

A−1
n−2m+1,n−2,r+2(k−j)+2m−2A

−1
n−2m,n−1,r+2(k−j)+2m−1A

−1
n,r+2(k−j)+4m−3.

and

ω
Tn
ξ = Yn,r,k−|ξ|

|ξ|∏

j=1

Yn−2ξj−1,r+2(k−j)+2ξjY
−1
n−1,r+2(k−j)+4ξj

.

Similarly to Proposition 4.3.1 one can prove the following proposition.

Proposition 4.3.2. Let J = I \ {1}. Then the J-dominant ℓ-weights of wtℓ(Vq(Yl,r,k)) are the
semi-standard tableaux in STab(T ) such that each column either has no gaps or has a gap at the
first row.

It follows from Proposition 4.3.2, that the (I \ {1})-dominant ℓ-weights of Vq(Yn−1,r,k), other
than Yn−1,r,k, are

νi = Yn−1,r,k

k∏

i=1

A−1
n−1,1,r+2(k−i), i = 1, . . . , k.

4.4. Tensor products of spin KR modules

Fix ω = Yn−1,rn−1,kn−1 and ̟ = Yn,rn,kn , for some rn−1, rn ∈ Z, kn−1, kn ∈ Z>0 and let S and
T be semi-standard tableaux as in (4.2.2) such that

ωS = ω and ωT = ̟.

Our first goal is to describe the set

D := wtℓ (Vq(ω)⊗ Vq(̟)) ∩ P+.

The analysis depends on whether

rn−1 + 2kn−1 ≤ rn + 2kn or rn−1 + 2kn−1 ≥ rn + 2kn.
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Since the the latter is obtained from the former by applying the Dynkin diagram automorphism
which switches the two spin nodes, we shall write down the details assuming that

(4.4.1) rn−1 + 2kn−1 ≤ rn + 2kn.

We begin showing that

(4.4.2) D ⊆ {ν̟ : ν ∈ wtℓ(Vq(ω))}.

Let ν ∈ wtℓ(Vq(ω)) and µ ∈ wtℓ(Vq(̟)) be such that νµ ∈ P+. In particular, νµ is not right
negative. Suppose that µ 6= ̟. Then, by Proposition 2.5.5, µ is right negative. Since the product
of right negative elements is again right negative, ν is not right negative and Proposition 2.5.5
implies that ν = ω. Similarly, if ν 6= ω, we must have µ = ̟. It remains to see that (4.4.1)
implies that ωµ ∈ P+ only if µ = ̟. Indeed, if µ 6= ̟, then, by Proposition 2.5.5,

r(µ) > rn + 2(kn − 1) ≥ rn−1 + 2(kn−1 − 1) = r(ω),

showing that ωµ is right negative and, hence, cannot be in P+.

Evidently,
ν̟ ∈ D ⇒ ν is J-dominant for J = {1, 2, . . . , n− 1}.

Set X = {rn + 2(m− 1) : m = 1, . . . , kn} and recall the description of the J-dominant elements of
wtℓ(Vq(ω)) in Proposition 4.3.1. It then follows from (4.3.3), (4.3.4), and (4.4.2) that

(4.4.3) D = {ωSn−1
ξ ̟ : rn−1 + 2(kn−1 − j) + 4ξj ∈ X for all j ≤ |ξ|}.

In particular, if

(4.4.4) rn−1 + 2(kn−1 − 1) + 4l 6= rn + 2(m− 1) for all m ∈ {1, . . . , kn}, 1 ≤ l ≤

⌊
n− 1

2

⌋
,

then D = {ω̟} and, hence,

(4.4.5) Vq(ω)⊗ Vq(̟) ∼= Vq(ω̟).

Indeed, (4.4.4) implies that
rn−1 + 2(kn−1 − 1) + 4ξ1 /∈ X

for all nonzero partitions ξ.

In the next lemma, we collect some partial information about

D ∩ wtℓ(Vq(ω̟)).

Lemma 4.4.1. Let µ ∈ D and ξ be such that µ = ω
Sn−1
ξ ̟.

(a) If rn−1 + 2(kn−1 − j) + 4ξj ∈ X \ {rn} for all j ≤ |ξ|, then Vq(µ) is not simple a factor of
Vq(ω)⊗ Vq(̟).

(b) If |ξ| = 1 and rn = rn−1 + 2(kn−1 − 1) + 4ξ1, then µ 6∈ wtℓ(Vq(ω̟)).

(c) If |ξ| = 2 and rn = rn−1 + 2(kn−1 − 2) + 4ξ1, then µ 6∈ wtℓ(Vq(ω̟)).

(d) If ξj = 1 for all j ≤ |ξ| and rn = rn−1 + 2(kn−1 − |ξ|) + 4, then µ 6∈ wtℓ(Vq(ω̟)).

Proof. (a) To simplify notation, let k = |ξ| and V = Vq(ω)⊗ Vq(̟).

By (4.4.3), µ ∈ D and there exists 1 < m ≤ kn such that

(4.4.6) rn−1 + 2(kn−1 − k) + 4ξk = rn + 2(m− 1).

Let ν = µA−1
n,rn+2(m−2)+1. We claim that it suffices to prove that:

(i) ν ∈ wtℓ(Vq(µ));
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(ii) ν 6∈ wtℓ(V ).

Then it follows that
wtℓ(Vq(µ)) 6⊆ wtℓ(V ),

which implies that Vq(µ) is not a simple factor of V .

Let us prove (i). By Remark 2.6.8, χ{n}(µ) ⊆ wtℓ(Vq(µ)) and, therefore, it suffices to prove
that ν ∈ χ{n}(µ). It follows from (4.3.3) that

(4.4.7) µ = Yn−1,rn−1,kn−1−k




k∏

j=1

Yn−2ξj−1,rn−1+2(kn−1−j)+2ξj


Yn,rn−1,m−1

(
∏

r∈B

Yn,r

)
,

where B = {rn + 2(j − 1) : m < j ≤ kn} \ {rn−1 + 2(kn−1 − j) + 4ξj : j < k}. In particular,

πn(µ) = Yn,rn−1,m−1

(
∏

r∈B

Yn,r

)
.

Since min(B) ≥ rn + 2(m+ 1), one easily sees that Yn,rn−1,m−1 is a factor of the qfactorization of
πn(µ) and, hence, Vq(Yn,rn−1,m−1) is a factor of the tensor product decomposition of Vq(πn(µ)) as
in Theorem 2.7.1. Thus, applying (3.2.12) to this factor one easily deduces ν ∈ χ{n}(µ) as desired.

We now prove (ii). By (4.3.2), we have

µ = ω̟
∏

ζ∈Ξ

A−1
ζ and ν = ω̟ A−1

ζ0

∏

ζ∈Ξ

A−1
ζ

where Ξ ⊆ I × Z and ζ0 = (n, rn + 2(m− 2) + 1). Therefore, setting Ξ0 = Ξ ∪ {ζ0}, we are left to
show that there is no partition Ξ0 = Ξ′ ∪ Ξ′′ such that

ω
∏

ζ∈Ξ′

A−1
ζ ∈ wtℓ(Vq(ω)) and ̟

∏

ζ∈Ξ′′

A−1
ζ ∈ wtℓ(Vq(̟)).

By contradiction, assume such a partition exists. It follows from (2.2.1), (4.1.5), and (4.1.6), that
each element A−1

ζ , ζ ∈ Ξ0, corresponds to change the contents of two particular boxes in a column

of either S or T . In what follows we show that the modifications corresponding to elements of Ξ0

cannot be done in T , implying that Ξ0 ∩ Ξ′′ = ∅. First we show that

(4.4.8) (n, r) ∈ Ξ⇒ (n, r) /∈ Ξ′′.

By (4.1.6), the element (n, r) ∈ Ξ is associated to replacing the boxes n−1
r−n+2

and n
r−n

of

a given column of either S or T by n̄
r−n+2 and n−1

r−n
, respectively. Moreover, the modified

tableau will be semi-standard after such modification only if all the previous columns have been
already modified. Therefore, it suffices to show that the first column of T cannot be modified by
any (n, r) ∈ Ξ.

By hypothesis,

(4.4.9) rn−1 + 2(kn−1 − 1) + 4ξ1 = rn + 2(m′ − 1)

for some 1 < m′ ≤ kn. Moreover, (4.4.6) and (4.3.4) implies that m′ ≥ m. Set

s = rn−1 + 2(kn−1 − k)− n+ 1 + 4ξk,

which is the support of the (n− 2ξk)-th box of the k-th column of S, and

s′ = rn−1 + 2(kn−1 − 1)− n+ 1 + 4ξ1

which is the support of the (n− 2ξ1)-th box of the first column of S. By (4.4.6) and (4.4.9),

s = rn + 2(m− 1)− n+ 1 and s′ = rn + 2(m′ − 1) + n− 1,
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showing that

(4.4.10) s is the support of the last box of the (kn −m+ 1)-th column of T

(or the m-th one counted from right to left) and

(4.4.11) s′ is the support of the last box of the (kn −m
′ + 1)-th column of T .

Inspecting (4.3.2), one checks that

r0 := max{r : (n, r) ∈ Ξ} = rn−1 + 2(kn−1 − 1) + 4ξ1 − 1 = s′ − 2 + n.

Thus, it follows from (4.4.11), that the modification associated to (n, r0) cannot be done in the first
kn −m

′ + 1 columns of T . Since T has the form (4.2.2), the same holds for any other (n, r) ∈ Ξ
and (4.4.8) is proved. Now observe that, if ζ = (i, r) ∈ Ξ with i < n, then the corresponding
modification cannot be done in T , since any column of T does not have the two specific contents
that would be changed. Therefore,

Ξ ⊆ Ξ′.

Thus, if we show that the modification associated to ζ0 cannot be performed neither in T nor in
Sn−1
ξ , we obtain the desired contradiction completing the proof of (ii).

By definition of s and (4.4.6), the modification associated to ζ0 is the

(4.4.12) replacement of n−1
s
, n

s−2 by n̄
s
, n−1

s−2
,

in a fixed column of either T or Sn−1
ξ . By (4.4.10), the first column of T which has a box supported

at s− 2 is the (kn−m+2)-th one. Since kn−m+2 > 1, (4.4.12) cannot be done in T because the
columns to the left of the (kn −m+ 2)-th one have not been modified. On the other hand, since s
is the support of the (n− 2ξk)-th box of the k-th column of S, it follows from (4.3.1) that the k-th

column of Sn−1
ξ has the boxes n̄

s
and n−1

s−2
. Condition (2) in the definition of the sets Bn−1

r

then implies that (4.4.12) cannot be done in the k-th column of Sn−1
ξ . Since Sn−1

ξ is semi-standard,

the boxes supported at s and s − 2 in the columns to the left of the k-th one must have contents
strictly greater than n̄ and n− 1, respectively. Hence, (4.4.12) cannot be done in the columns to
the left of the k-th one as well. By the definition of k, the columns of Sn−1

ξ to the right of the

k-th one coincide with those of S and, therefore, the boxes supported at s and s− 2 have contents
equal to at most n− 2ξk − 1 and n− 2ξk, respectively. Therefore, since ξk > 0, (4.4.12) cannot be
performed in such columns. This completes the proof of part (a).

(b) By hypothesis

(4.4.13) rn−1 + 2(kn−1 − 1) + 4ξ1 = rn.

Thus, µ ∈ D by (4.4.3). Let λ = ω̟, µ = ω
Sn−1
ξ ̟, ν = µAn,rn−1+2(kn−1−1)+4ξ1−1 and V = Vq(λ).

We show that these data satisfy the conditions (i)–(v) of Lemma 2.6.9 with i = n, thus proving
that µ 6∈ wtℓ(V ).

(i) By definition ν ∈ µ ιn(Q
+
{n}) \ {µ}. For showing that ν is n-dominant, observe from (4.3.3) and

(4.4.13) that

(4.4.14) µ = Yn−1,rn−1,kn−1−1Yn−2ξ1−1,rn−1+2(kn−1−1)+2ξ1Yn,rn+2,kn−1.

Hence,

ν = Yn−1,rn−1,kn−1−1 Yn−2ξ1−1,rn−1+2(kn−1−1)+2ξ1 Y
−1
n−2,rn−1+2(kn−1−1)+4ξ1−1 ×

×Yn,rn−1+2(kn−1−1)+4ξ1−2 Yn,rn−1+2(kn−1−1)+4ξ1 Yn,rn+2,kn−1(4.4.15)
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is n-dominant. Next, we show that ν ∈ wtℓ(V ). We begin showing that ν ∈ wtℓ(Vq(ω)⊗ Vq(̟)).
Indeed, it is not difficult to see that

(4.4.16) ν = ν ′̟ where ν ′ = ωS′
∈ wtℓ(Vq(ω))

with S′ ∈ STab(S) such that all the columns of S′ but the first one have no gaps and its first column
has only gaps in the (n− 2ξ1)-th and (n− 2ξ1 + 2)-th rows, the content of the (n− 2ξ1)-th row is
n− 1 and the content of the (n− 2ξ1 + 2)-th row is n− 2. By contradiction, assume ν 6∈ wtℓ(V ).
Since ν is not dominant, there must exist ζ ∈ D with λ > ζ > ν such that Vq(ζ) is a simple
factor of Vq(ω) ⊗ Vq(̟) and ν ∈ wtℓ(Vq(ζ)). In particular, ζ > µ. We claim that there is no

such ζ. Indeed, if λ > ζ > µ, it follows from (4.3.2) that ζ = ω
Sn−1
ξ′ ̟ with ξ′ = (ξ′1, 0, . . . , 0) and

0 < ξ′1 < ξ1. Equation (4.4.13) then implies that rn−1+2(kn−1−1)+4ξ′1 < rn while (4.4.3) implies
that ζ 6∈ D, which proves the claim.

To complete the verification of condition (i), it remains to prove the uniqueness of ν and that
dim(Vν) = 1. Let ζ ∈ µ ιn(Q

+
{n}) \ {µ,ν}. We will show that ζ 6∈ wtℓ(V ), which settles the

uniqueness. Observe from (4.3.2) that

µ = λ

ξ1∏

m=1

A−1
n−2m+1,n−1,rn−1+2(kn−1−1)+2m−2A

−1
n−2m,n−2,rn−1+2(kn−1−1)+2m−1 ×

×A−1
n,rn−1+2(kn−1−1)+4m−1.(4.4.17)

Hence, ζ = µ
∏

η∈ΞAη with Ξ ⊆ {(n, rn−1 + 2(kn−1 − 1) + 4m − 1) : m = 1, . . . , ξ1} and Ξ 6=

{(n, rn−1 + 2(kn−1 − 1) + 4ξ − 1)}. In particular, (n, rn−1 + 2(kn−1 − 1) + 4m − 1) ∈ Ξ for some
m = 1, . . . , ξ1 − 1, which implies that either µ ιn(Q

+
{n}) \ {µ,ν} = ∅ (and uniqueness follows) or

ξ1 > 1. Moreover, if Ξµ ⊆ I × Z is such that µ = λ
∏

η∈Ξµ
A−1

η , then ζ = λ
∏

η∈Ξµ\Ξ
A−1

η . Now,

we are left to show that there is no partition Ξ0 := Ξµ \ Ξ = Ξ′ ∪ Ξ′′ such that

ω
∏

η∈Ξ′

A−1
η ∈ wtℓ(Vq(ω)) and ̟

∏

η∈Ξ′′

A−1
η ∈ wtℓ(Vq(̟)).

By contradiction, assume such a partition exists. It follows from (2.2.1), (4.1.5), and (4.1.6), that
each element A−1

η , η ∈ Ξµ, corresponds to change the contents of two particular boxes in a column
of either S or T . In what follows we show that the modifications corresponding to elements of Ξµ

cannot be done in T , implying that Ξµ ∩ Ξ′′ = ∅. Set

s = rn−1 + 2(kn−1 − 1)− n+ 1 + 4ξ1,

which is the support of the (n− 2ξ1)-th box of the first column of S. By (4.4.13),

s = rn − n+ 1,

showing that

(4.4.18) s is the support of the last box of the kn-th column of T .

First we show that

(4.4.19) (n, r) ∈ Ξ⇒ (n, r) /∈ Ξ′′.

By (4.1.6), the element (n, r) ∈ Ξ is associated to replacing the boxes n−1
r−n+2

and n
r−n

of

a given column of either S or T by n̄
r−n+2 and n−1

r−n
, respectively. Moreover, the modified

tableau will be semi-standard after such modification only if all the previous columns have been
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already modified. Therefore, it suffices to show that the first column of T cannot be modified by
any (n, r) ∈ Ξµ. Inspecting (4.4.17), one checks that

r0 := max{r : (n, r) ∈ Ξµ} = rn−1 + 2(kn−1 − 1) + 4ξ1 − 1 = s− 2 + n.

Thus, it follows from (4.4.11), that the modification associated to (n, r0) cannot be done any column
of T . Since T has the form (4.2.2), the same holds for any other (n, r) ∈ Ξ and (4.4.19) is proved.
Now observe that, if η = (i, r) ∈ Ξµ with i < n, then the corresponding modification cannot be
done in T since no column of T has the two specific contents that would be changed. Therefore,

Ξ0 ⊆ Ξµ ⊆ Ξ′

and one can check that the changes corresponding to elements of Ξµ can only be done in the
first column of S. Thus, if we show that a modification associated to an element of Ξ0 cannot be
performed in S, we obtain the desired contradiction. Let m ∈ {1, . . . , ξ1 − 1} be minimum such
that η0 := (n, rn−1 + 2(kn−1 − 1) + 4m − 1) ∈ Ξ, which implies η0 6∈ Ξ0. Observe that, if i < n

and (i, r) ∈ Ξµ, then (i, r) ∈ Ξ0. Let S
′′ ∈ STab(S) be such that ζ = ωS′′

. Now we show that the
change corresponding to η1 := (n− 1, rn−1+2(kn−1− 1)+4(m+1)− 3) ∈ Ξ0 cannot be performed
in S to obtain S′′. Indeed, η1 corresponds to changing the boxes

(4.4.20) n−1
s′

and n̄
s′−2 by n

s′
and n−1

s′−2

where s′ = rn−1+2(kn−1−1)+4m+3−n. Since the modification of the boxes n−1
s′−2

and n
s′−4

by n̄
s′−2 and n−1

s′−4
corresponding to η0 was not performed, it follows that (4.4.20) also cannot

be performed, yielding the desired contradiction. This completes the proof of the uniqueness of ν.

Finally, for proving that dim(Vν) = 1, it follows from the above argument that, if S′′ ∈ STab(S)

and T ′ ∈ STab(T ) are such that ωS′′
ωT ′

= ν, then S′′ = S′ (see (4.4.16)) and T ′ = T . Thus, it
remains to show that dim(Vq(ω)ν̟−1) = 1. One can easily check this last statement by seeing,

using Lemma 4.2.1 and the definition of ωS′
, that there is no semi-standard tableau with the shape

of S other than S′ such that the corresponding ℓ-weight is equal to ν.

(ii) We show that

(4.4.21) ν ′ ∈ wtℓ(V ) ∩ νQ{n} ⇒ ht(ν ′ν−1) ≤ 0,

which, together with Lemma 2.4.1, imply that condition (ii) holds. In part (i) we proved that

(4.4.22) ζ ∈ µ ιn(Q
+
{n}) \ {µ,ν} ⇒ ζ 6∈ wtℓ(V ).

In particular, since ν = µAn,rn−1+2(kn−1−1)+4ξ1−1, it follows that if ζ ∈ ν ιn(Q
+
{n}) \ {ν}, then

ζ 6∈ wtℓ(V ).

We claim that if νA−1
n,r ∈ wtℓ(V ), then r ∈ {rn−1 + 2(kn−1 − 1) + 4ξ1 − 1, rn + 2(kn − 1) + 1}.

To prove the claim, we show that for r 6= rn−1 + 2(kn−1 − 1) + 4ξ1 − 1, rn + 2(kn − 1) + 1,
νA−1

n,r 6∈ wtℓ(Vq(ω) ⊗ Vq(̟)). Recall from (4.4.16) that ν = ν ′̟ with ν ′ ∈ wtℓ(Vq(ω)). It is not

hard to see that ̟A−1
n,r ∈ wtℓ(Vq(̟)) iff r = rn + 2(kn − 1) + 1. Thus, it suffices to prove that

if r 6= rn−1 + 2(kn−1 − 1) + 4ξ1 − 1, then ν ′ 6∈ wtℓ(Vq(ω)). Multiplication by A−1
n,r corresponds to

replacing the boxes n−1
r−n+2

and n
r−n

of a given column of S by n̄
r−n+2 and n−1

r−n
. Since

s = rn−1 + 2(kn−1 − 1) − n+ 1 + 4ξ1 is the support of the (n− 2ξ1)-th box of the first column of
S′, we can multiply ν ′ by A−1

n,rn−1+2(kn−1−1)+4ξ1−1, which corresponds to modifications in the first

column of S′. For r 6= rn−1+2(kn−1−1)+4ξ1−1, to multiply by A−1
n,r corresponds to modifications

in other columns of S′, which cannot be done since they do not have the two specific boxes, and
this completes the proof of the claim.
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To finish the verification of (ii), in light of (4.4.22), it suffices to observe that̟A−1
rn+2(kn−1)+1An,r ∈

wtℓ(Vq(̟)) iff r = rn + 2(kn − 1) + 1 by seeing the corresponding modification in T , similarly to
what was done previously.

(iii) Observe from (4.4.15) and (4.4.13) that π{n}(ν) = Yn,rn−2,kn+1. Thus, by (3.2.7),

Yn,rn−2,kn+1A
−1
n,rn−1+2(kn−1−1)+4ξ1−1 = Yn,rn−2,kn+1A

−1
n,rn−1 6∈ wtℓ(Vq(π{n}(ν))).

Since µ = νι{n}(A
−1
n,rn−1+2(kn−1−1)+4ξ1−1), condition (iii) follows.

(iv) If ν ′ ∈ wtℓ(Uq(g̃n)Vν) is n-dominant, then

ht(ν ′ω−1) = ht(ν ′ν−1νω−1)
(4.4.21)

≤ ht(νω−1).

(v) Let j ∈ I \ {n} and η = µ
∏

ζ∈ΞAζ with ∅ 6= Ξ ⊆ {j} ×Z. We will show that η /∈ wtℓ(V ) from

where (v) follows. Indeed, we will show that η /∈ wtℓ(Vq(ω)⊗ Vq(̟)).

By (4.4.17), if j < n− 2ξ1, then Ξ = ∅. Otherwise, inspecting (4.4.17), one can see that:

• Ξ ⊆ {(n− 1, rn−1 + 2(kn−1 − 1) + 1 + 4k) : k = 0, . . . , ξ1 − 1} if j = n− 1;
• Ξ ⊆ {(j, rn−1+2(kn−1−1)+2(m+k)) : k = 0, . . . , j− (n−2ξ1)} if n− j = 2m, m ∈ Z≥1;
• Ξ ⊆ {(j, rn−1+2(kn−1−1)+2(m+k)−1) : k = 0, . . . , j− (n−2ξ1+1)} if n−j = 2m−1,
m ∈ Z≥2.

Observe that, if Ξµ ⊆ I × Z is such that µ = λ
∏

ζ∈Ξµ
A−1

ζ , then η = λ
∏

ζ∈Ξµ\Ξ
A−1

ζ . Thus, it

suffices to show that there is no partition Ξ0 := Ξµ \ Ξ = Ξ′ ∪ Ξ′′ such that

ω
∏

ζ∈Ξ′

A−1
ζ ∈ wtℓ(Vq(ω)) and ̟

∏

ζ∈Ξ′′

A−1
ζ ∈ wtℓ(Vq(̟)).

Assume by contradiction that there exists such partition. In part (i) we showed that the modifi-
cations corresponding to elements of Ξµ cannot be performed in T (implying that Ξµ ∩ Ξ′′ = ∅)
and can only be performed in the first column of S. Thus, since Ξ0 ⊆ Ξµ, if we show that some
modification associated to an element of Ξ0 cannot be performed in the first column of S, we obtain
the desired contradiction.

Suppose first that j = n− 1. Let k ∈ {0, . . . , ξ1 − 1} be minimum such that

ζ0 := (n− 1, rn−1 + 2(kn−1 − 1) + 4k + 1) ∈ Ξ,

which implies ζ0 6∈ Ξ0. Observe that, for i 6= n − 1 with (i, r) ∈ Ξµ, we have (i, r) ∈ Ξ0. Let

S′′ ∈ STab(S) be such that ζ = ωS′′
. Let us show that the change corresponding to ζ1 :=

(n − 2, rn−1 + 2(kn−1 − 1) + 4k + 2) ∈ Ξ0 cannot be performed in S to obtain S′′. Indeed, ζ1
corresponds to modifying the boxes

(4.4.23) n−2
s′

and n−1
s′−4

by n−1
s′

and n−2
s′−4

where s′ = rn−1 +2(kn−1− 1)+ 4k+5−n. Since the modification n−1
s′−2

and n̄
s′−4 by n

s′−2

and n−1
s′−4

, which corresponds to ζ0, has not been performed, (4.4.23) cannot be performed as

well, yielding a contradiction. The other cases are treated similarly by choosing:

• ζ0 = (j, rn−1+2(kn−1−1)+2(m+k)) ∈ Ξ and ζ1 = (j+1, rn−1+2(kn−1−1)+2(m+k)+1) ∈
Ξ0 if n− j = 2m, m ∈ Z≥1, j < n− 2;
• ζ0 = (n− 2, rn−1 + 2(kn−1 − 1) + 2(m+ k)) ∈ Ξ and ζ1 = (n, rn−1 + 2(kn−1 − 1) + 2(m+
k) + 1) ∈ Ξ0 if n− j = 2m, m ∈ Z≥1, j = n− 2;
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• ζ0 = (j, rn−1+2(kn−1−1)+2(m+k)−1) ∈ Ξ and ζ1 = (j+1, rn−1+2(kn−1−1)+2(m+k)) ∈
Ξ0 if n− j = 2m− 1, m ∈ Z≥2.

(c) By hypothesis

rn−1 + 2(kn−1 − 2) + 4ξ1 = rn and rn−1 + 2(kn−1 − 1) + 4ξ1 = rn + 2.

Thus, by (4.4.3) µ ∈ D. By (4.3.2),

µ = λ

2∏

j=1

ξ1∏

m=1

A−1
n−2m+1,n−1,rn−1+2(kn−1−j)+2m−2A

−1
n−2m,n−2,rn−1+2(kn−1−j)+2m−1 ×

×A−1
n,rn−1+2(kn−1−j)+4m−1.(4.4.24)

Let λ = ω̟, µ = ω
Sn−1
ξ ̟, ν = µAn,rn−1+2(kn−1−2)+4ξ1−1 and V = Vq(λ). As in part part (b), it

suffices to show that these data satisfy the conditions (i)–(v) of Lemma 2.6.9 with i = n. We omit
the details since they are similar to those used for proving (b).

(d) By hypothesis

(4.4.25) rn−1 +2(kn−1− |ξ|) + 4 = rn and rn−1 +2(kn−1− j) + 4 ∈ X \ {rn} for all j < |ξ|.

Thus, by (4.4.3), µ ∈ D and, by (4.3.2),

(4.4.26) µ = ω̟

|ξ|∏

j=1

A−1
n−1,rn−1+2(kn−1−j)+1A

−1
n−2,rn−1+2(kn−1−j)+2A

−1
n,rn−1+2(kn−1−j)+3.

Consider ω′ = Yn−1,rn−1,kn−1−|ξ|+1Yn,rn,kn and ω′′ = Yn−1,rn−1+2(kn−1−|ξ|+1),|ξ|−1. Observe that
ω′ω′′ = ω̟ and Vq(ω

′′) is a minimal affinization. By (4.4.25), Vq(ω
′) is also a minimal affinization.

We shall show that

µ 6∈ wtℓ(Vq(ω
′)⊗ Vq(ω

′′)).

This implies part (d) since Vq(ω̟) is the simple quotient of the submodule of Vq(ω
′) ⊗ Vq(ω

′′)

generated by the top weight space. For doing that, let Ξ ⊆ I ×Z be such that µ = ω̟
∏

ζ∈ΞA
−1
ζ .

We have to show that there is no partition Ξ = Ξ′ ∪ Ξ′′ such that

ω′
∏

ζ∈Ξ′

A−1
ζ ∈ wtℓ(Vq(ω

′)) and ω′′
∏

ζ∈Ξ′′

A−1
ζ ∈ wtℓ(Vq(ω

′′)).

By contradiction, assume such a partition exists. Let

Ξ1 = Ξ\{(n−1, rn−1+2(kn−1−|ξ|)+1), (n−2, rn−1+2(kn−1−|ξ|)+2), (n, rn−1+2(kn−1−|ξ|)+3)}

and J = {n − 1, n − 2, n}. We identify the subdiagram corresponding to J with the diagram of
type A3 = J via the labeling correspondence

1↔ n− 1, 2↔ n− 2, 3↔ n,

so that Vq(ω
′
J) is an increasing minimal affinization and ω′

J = ωT ′
, where T ′ is the semi-standard

tableau which the first kn columns are of length 3 and the last kn−1 − |ξ| + 1 columns are of
length 1, the contents of each column is equal to their position in the column and T ′ has the form
(3.2.4). Recall from (3.1.6) that each element A−1

ξ , ξ ∈ Ξ, corresponds to adding 1 to the content

of a particular box of T ′. More precisely, if ξ = (i, r), then (3.1.6) implies that the modification
associated to A−1

ξ is of the form

i
r−i
−→ i+1

r−i
.
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Since s := rn−1+2(kn−1−|ξ|) is the support of the box in the first column of length 1 of T ′, s+2
is the support of the last box of the last column of length 3 of T ′, and sn = rn +2kn− 4 = s+2kn
is the support of the last box of the first column of T ′, it is not difficult to see that

ζ ∈ Ξ1 ⇒ ω′
JA

−1
ζ 6∈ wtℓ(Vq(ω

′
J))

(2.6.2)
⇒ ζ 6∈ Ξ′.

Also, looking at the corresponding modifications in T ′, one can see that

η := ω′
JA

−1
n−1,rn−1+2(kn−1−|ξ|)+1, η1 := ηA−1

n−2,rn−1+2(kn−1−|ξ|)+2 ∈ wtℓ(Vq(ω
′
J)),

and

ω′
JA

−1
ζ0
, ηA−1

ζ0
, η1A

−1
ζ0
6∈ wtℓ(Vq(ω

′
J))

(2.6.2)
⇒ ζ0 6∈ Ξ′,

where ζ0 = (n, rn−1 + 2(kn−1 − |ξ|) + 3).

Since ω′′ = ωS′
where S′ is the semi-standard tableau formed by the first |ξ| − 1 columns of S

(ω′′ = 1 if |ξ| = 1), it is not difficult to see by the corresponding modification in S′ that ζ0 6∈ Ξ′′

yielding the desired contradiction. �

We have seen that if (4.4.4) is satisfied, then D = {ω̟}. Now we suppose that there exists a
pair (l,m) with 1 ≤ l ≤

⌊
n−1
2

⌋
and m ∈ {1, . . . , kn} such that

(4.4.27) rn−1 + 2kn−1 + 4l = rn + 2m.

The pair (l,m) is not unique in general. Henceforth we fix (l,m) satisfying (4.4.27) and having the
smallest possible value of m.

Lemma 4.4.2. If m > 2, then l = 1.

Proof. Suppose, by contradiction, m > 2 and l > 1. Thus:

(i) if 2l ≤ m+ 1, then

rn−1 + 2(kn−1 − 1) + 4l = rn + 2(m− 1)⇒ rn−1 + 2(kn−1 − 1) + 4 = rn + 2(m+ 2− 2l − 1)

and (1,m+ 2− 2l) satisfies (4.4.27) with m+ 2− 2l < m;

(ii) if 2l ≥ m+ 2 and m is odd, then

rn−1 + 2(kn−1 − 1) + 4l = rn + 2(m− 1)⇒ rn−1 + 2(kn−1 − 1) + 4

(
l −

1

2
(m− 1)

)
= rn

and
(
l − 1

2(m− 1), 1
)
satisfies (4.4.27) with 1 < m;

(iii) if 2l ≥ m+ 2 and m is even, then

rn−1 + 2(kn−1 − 1) + 4l = rn + 2(m− 1)⇒ rn−1 + 2(kn−1 − 1) + 4

(
l −

1

2
m+ 1

)
= rn + 2

and
(
l − 1

2m+ 1, 2
)
satisfies (4.4.27) with 2 < m;

contradicting the minimality of m. �

Proposition 4.4.3. If m ≥ 2 and kn−1 < m, then Vq(ω) ⊗ Vq(̟) is irreducible. Otherwise,
let ξ = (ξ1, . . . , ξkn−1) be the partition defined by

ξj = 0 for j > m and ξj = ξ1 = l for j ≤ m,

and set µ = ω
Sn−1
ξ ̟. Then, Vq(µ) is a simple factor of Vq(ω) ⊗ Vq(̟) and, if Vq(ν) is a simple

factor of Vq(ω)⊗ Vq(̟) with ν 6∈ {ω̟,µ} then ν < µ.
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Proof. If m ≥ 2 and kn−1 < m, we have

(4.4.28) rn−1 + 2(kn−1 − 1) + 4l = rn + 2

if m = 2, and

(4.4.29) rn−1 + 2kn−1 + 4 = rn + 2m

if m > 2. We show that for all µ ∈ D \ {ω̟}, Vq(µ) is not a simple factor of Vq(ω)⊗Vq(̟), from

where the first statement follows. To prove this, write µ = ω
Sn−1
ξ ̟ for some nonzero partition ξ.

By (4.4.3),

rn−1 + 2(kn−1 − j) + 4ξj ∈ X = {rn + 2(t− 1) : t = 1, . . . , kn} for all j ≤ |ξ|.

If m = 2, then kn−1 = 1 implying ξ = (ξ1). Thus rn−1 + 2(kn−1 − 1) + 4ξ1 > rn by the minimality
of m = 2 in (4.4.28). By Lemma 4.4.1(a) the result follows. Suppose now m > 2. Observe that,
for j ≤ |ξ|,

rn−1 + 2(kn−1 − j) + 4ξj ≥ rn−1 + 2(kn−1 − j) + 4
(4.4.29)
= rn + 2(m− j) > rn,

where the last inequality follows since |ξ| ≤ kn−1 < m. An application of Lemma 4.4.1(a) again
completes the proof of this case.

For the second statement we have m ≤ kn−1,

(4.4.30) rn = rn−1 + 2(kn−1 −m) + 4l

One easily verifies that, if m = 1, the hypothesis of Lemma 4.4.1(b) is satisfied, if m = 2, the
hypothesis of Lemma 4.4.1(c) is satisfied while, for m > 2, Lemma 4.4.2 implies that the hypothesis
of Lemma 4.4.1(d) is satisfied. In any case, it follows that µ 6∈ wtℓ(Vq(ω̟)). Hence, in order to
prove that Vq(µ) is a simple factor of Vq(ω)⊗ Vq(̟), it suffices to show that

(4.4.31) if µ < ζ < ω̟, then Vq(ζ) is not a simple factor of Vq(ω)⊗ Vq(̟).

To prove this, recall that, if Vq(ζ) were a simple factor of Vq(ω)⊗ Vq(̟), then ζ ∈ D is of the

form ζ = ω
Sn−1
ξ′ ̟ by (4.4.3). Moreover, the hypothesis ζ > µ together with (4.3.2) implies that

(4.4.32) |ξ′| ≤ |ξ|, ξ′j ≤ l for all j, and
∑

j

ξ′j <
∑

j

ξj .

Assuming (4.4.32), we complete the proof of (4.4.31) as follows. If m = 1, (4.4.30) implies
that rn−1 + 2(kn−1 − 1) + 4ξ′1 < rn and, hence, rn−1 + 2(kn−1 − 1) + 4ξ′1 /∈ X, contradicting the
characterization of D given by (4.4.3). Assume next that m = 2. If either |ξ′| = 2 or ξ′1 < l, the
argument is similar. Otherwise, i.e., if |ξ′| = 1 and ξ′1 = l, an application of (4.4.30) together with
Lemma 4.4.1(a) completes the proof of (4.4.31). Finally, if m > 2, then l = 1, |ξ′| < |ξ| = m, and
(4.4.30) implies that rn−1+2(kn−1−j)+4 = rn+2(m−j) for all j ≤ |ξ′|. Since 1 < m−j ≤ m−1,
Lemma 4.4.1(a) implies that Vq(ζ) is not a simple factor of Vq(ω)⊗Vq(̟) completing the proof of
(4.4.31).

It remains to show that, if ν = ω
Sn−1
ξ′′ ̟ ∈ D is such that Vq(ν) is a simple factor of Vq(ω) ⊗

Vq(̟) with ν 6∈ {ω̟,µ} then ν < µ. By (4.4.3), rn−1 + 2(kn−1 − j) + 4ξ′′j ∈ X for all j ≤ |ξ′′|.
Lemma 4.4.1(a) implies that

(4.4.33) rn = rn−1 + 2(kn−1 − j0) + 4ξ′′j0

for some j0 ≤ |ξ
′′|. Moreover, it follows from (4.3.4) that j0 = |ξ′′|. As usual, assume first that

m = 1. If j0 = 1, (4.4.30) and (4.4.33) imply that ξ′′j0 = l, i.e., ξ′′ = ξ, contradicting ν 6= µ.

Thus, we must have j0 > 1. Combining (4.4.30) and (4.4.33) once more we see that ξ′′j0 > l. It
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then follows from (4.3.2) that ν < µ. Assume next that m ≥ 2. The minimality of m implies that
j0 ≥ m. If j0 = m, it follows from (4.4.30) and (4.4.33) that ξ′′j0 = l. Since ν 6= µ, this forces ξ′′1 > l

and (4.3.2) implies that ν < µ. If j0 > m, we see as before that ξ′′j0 > l and (4.3.2) completes the
proof as usual. �

Lemma 4.4.4. Assume either one of the following conditions hold:

(i) rn = 2kn−1 + 2n− 4 + rn−1 + 2k for some k ∈ Z>0;
(ii) rn−1 = rn.

Then, Vq(ω)⊗ Vq(̟) is irreducible.

Proof. In case (i), we show that (4.4.27) is not satisfied, from where the conclusion follows
since D = {ω̟}. Suppose, by contradiction, that there exist 1 ≤ l ≤

⌊
n−1
2

⌋
and m ∈ {1, . . . , kn}

satisfying (4.4.27) and, as usual, that m is minimal with this property. If m ∈ {1, 2}, (4.4.27)
together with (i) implies that

l =
1

2
(n− 2 +m+ k) >

⌊
n− 1

2

⌋
,

yielding a contradiction. If m > 2, then l = 1 by Lemma 4.4.2, and (4.4.27) together with (i)
implies that

m = 4− n− k < 0,

which is a contradiction once more.

In case (ii), if (4.4.4) is satisfied there is nothing to do. Thus, assume (4.4.27) is satisfied. We
claim that we must have m > 2 and kn−1 < m, from where the result follows from Proposition
4.4.3. Indeed, if m ∈ {1, 2}, we get a contradiction since (4.4.27) implies that

l =
1

2
(m− kn−1) < 1.

On the other hand, if m > 2, then l = 1 by Lemma 4.4.2, and (4.4.27) together with (ii) implies
that

m = kn−1 + 2 > kn−1,

which proves the claim. �

Remark 4.4.5. Let λ = ω̟. Define also ai = qri+ki−1, i = n − 1, n, so that
λ = ωn−1,an−1,kn−1ωn,an,kn . One easily checks that condition (4.4.27) is equivalent to

an−1

an
= q−(kn−1+kn+4s1−2s2)

with 2 ≤ 2s1 ≤ n− 1 and 1 ≤ s2 ≤ min{λ(hn−1), λ(hn)}, by putting l = s1, m = s2.

4.5. Ordering affinizations supported at the spin nodes

Our next goal is to order certain affinizations of Vq(λ) with supp(λ) = {n− 1, n}. We keep the
notation fixed in Section 4.4: ω = Yn−1,rn−1,kn−1 = ωS ,̟ = Yn,rn,kn = ωT . We also fix r̄n ∈ Z and

let T be the tableaux such that ωT = Yn,r̄n,kn . Set

λ = ω̟ and λ = ω̟.

We assume that λ and λ satisfy (4.4.27), i.e., there exist 1 ≤ l ≤
⌊
n−1
2

⌋
and 1 ≤ m ≤ kn satisfying

(4.4.27) as well as 1 ≤ l̄ ≤
⌊
n−1
2

⌋
and 1 ≤ m ≤ kn satisfying (4.4.27) with l̄ and m in place of l and

m, respectively. As in Section 4.4, m and m are assumed to be minimal.
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Lemma 4.5.1. Suppose one of the following conditions hold:

(i) m = m = 1 and l < l̄;
(ii) m = m = 2 ≤ kn−1 and l < l̄;
(iii) m < m ≤ kn−1 and l = l̄.

Then, Vq(λ) < Vq(λ).

Proof. Set V = Vq(ω) ⊗ Vq(̟) and V = Vq(ω) ⊗ Vq(̟). Then Vq(λ) is the simple quotient

of the submodule of V generated by the top weight space and similarly for V . Notice that we have
isomorphisms of Uq(g)-modules:

V ∼= V ∼= Vq(kn−1ωn−1 + knωn)⊕
⊕

ν
Vq(ν)

⊕tν and Vq(λ) ∼= Vq(kn−1ωn−1 + knωn)⊕
⊕

ν
Vq(ν)

⊕mν

where the sums are over ν ∈ P+ such that ν < kn−1ωn−1 + knωn and mν , tν ∈ Z≥0. Letting µ be
as in Proposition 4.4.3, it immediately follows that

ν � wt(µ)⇒ tν = mν and mwt(µ) ≤ twt(µ) − 1.

Writing

Vq(λ) ∼= Vq(kn−1ωn−1 + knωn)⊕
⊕

ν
Vq(ν)

⊕mν

and defining µ similarly (with ̟ in place of ̟), we conclude that

ν � wt(µ)⇒ tν = mν and mwt(µ) ≤ twt(µ) − 1.

We claim the above three conditions imply that

(4.5.1) wt(µ) < wt(µ).

Assuming this, we complete the proof as follows. Let ν ∈ P+ be such that ν < kn−1ωn−1 + knωn.
If ν � wt(µ), then we also have ν � wt(µ) and, hence, mν = tν = mν . Otherwise, if ν ≤ wt(µ),
we have mwt(µ) ≤ twt(µ) − 1 = mwt(µ) − 1.

In order to prove (4.5.1), assume first that condition (i) holds. It follows from (4.4.17) that

(4.5.2) wt(µ) = λ−

(
2l−1∑

k=1

kαn−2l−1+k + lαn−1 + lαn

)

and similarly for wt(µ) with l̄ in place of l. Since l < l̄, (4.5.1) follows. If condition (ii) holds, it
follows from (4.4.24) that

(4.5.3) wt(µ) = λ− 2




2l̄−1∑

k=1

kαn−2l̄−1+k + l̄αn−1 + l̄αn




and similarly for wt(µ) with l in place of l̄. Equation (4.5.1) follows as before. Finally, suppose
(iii) holds. If m > 2, then l = l̄ = 1 by Lemma 4.4.2 and it follows from (4.4.26) that

wt(µ) = λ−
m∑

k=1

(αn−1 + αn−2 + αn) and wt(µ) = λ−
m∑

k=1

(αn−1 + αn−2 + αn).

Since m < m, (4.5.1) follows. Otherwise, we must have m = 1 and m = 2 which imply that wt(µ)
is given by (4.5.2) and wt(µ) is given by (4.5.3). Since l = l̄, (4.5.1) is proved. �
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4.6. Comparing certain affinizations supported at the extreme nodes

In this section we fix λ = k1ω1 + kn−1ωn−1 + knωn ∈ P+, k1, kn−1, kn > 0, and study the
ordering among certain affinizations of Vq(λ). Observe that

λ′ := λ− αn−2 − αn−1 − αn = k1ω1 + (kn−1 − 1)ωn−1 + (kn − 1) + ωn−3ωn

is also dominant.

Lemma 4.6.1. If µ = λ−
∑

i∈I αi, then dimVq(λ)µ = 3(n− 2) + 1 and dimVq(λ
′)µ = n− 3.

Proof. This can be proved in a variety of ways (see for instance [37] for a proof using standard
Lie theoretic techniques). Since we are using the theory of qcharacters in many of our proofs, we
will sketch a proof for this lemma using qcharacters as well. More precisely, we use a monomial
realization of Kashiwara’s crystal B(λ) and B(λ′) studied in [32, 44] (see also [24, Section 2]).

Let ω = Y k1
1,0Y

kn−1

n−1,nY
kn
n,n+4. According to [32, 44], this ℓ-weight gives rise to a monomial

realization M(ω) of B(λ). The lemma can be proved by applying the algorithm that generates
the monomials in this realization and then counting the number of ℓ-weights inM(ω) which have
classical weight µ. We simply give the list of such ℓ-weights without writing the proper justification
showing that this is the correct list:

µ1
i = ωA−1

n,n+5A
−1
n−2,n+6A

−1
n−1,n+7

−→
A−1

1,i,0

←−
A−1

n−3,i+1,n+6,

µ2
i = ωA−1

n−1,n+1A
−1
n,n+5A

−1
n−2,n+6

−→
A−1

1,i,0

←−
A−1

n−3,i+1,n+6,

µ3
i = ωA−1

n−1,n+1A
−1
n−2,n+2A

−1
n,n+5

−→
A−1

1,i,0

←−
A−1

n−3,i+1,n+2,

µ0 = ωA−1
1,n−2,0A

−1
n−1,n+1A

−1
n,n+5,

for i = 0, 1, . . . , n−3, where
−→
A−1

1,i,0 = A−1
1,i,0 if i ≥ 1 and

−→
A−1

1,0,0 = 1, and,
←−
A−1

n−3,i+1,n+6 = A−1
n−3,i+1,n+6

if i ≤ n − 4 and
←−
A−1

n−3,n−2,n+6 = 1. One then checks that these ℓ-weights are all distinct and,

evidently, add up to 3(n− 2) + 1.

For λ′ one can proceed similarly, by considering ω′ = Y k1
1,nYn−3,2Y

kn−1−1
n−1,0 Y kn−1

n,0 . The list of

relevant monomials inM(ω′) is:

(4.6.1) µi = ω′A−1
1,i,n

←−
A−1

n−3,i+1,2, i = 1, . . . , n− 3,

where
←−
A−1

n−3,i+1,2 = A−1
n−3,i+1,2 if i ≤ n− 4 and

←−
A−1

n−3,n−2,2 = 1. �

Lemma 4.6.2. Let ω = Y1,r1,k1 and ̟ = Yn−1,rn−1,kn−1 for some k1, kn−1 ∈ Z>0 satisfying

(4.6.2) r1 = rn−1 + 2kn−1 + n− 2,

and set λ = ω̟. Then:

(a) Vq(λ) is ℓ-minuscule.
(b) If µ ∈ wtℓ(Vq(λ)) is not right negative, then

µ ∈ λQ−
I\{1} and r(µ) = r1 + 2(k1 − 1).

Proof. Set

µ0 := λA−1
n−1,1,rn−1+2(kn−1−1).

We claim that

(4.6.3) wtℓ (Vq(ω)⊗ Vq(̟)) ∩ P+ = {λ,µ0}.
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Assuming this, in order to prove part (a) of the lemma, it suffices to show that µ0 6∈ wtℓ(Vq(λ)).
But this follows from Lemma 2.6.9 with µ = µ0, i = 1 and ν = µ0A1,rn−1+2(kn−1−1)+n−1 =

λA−1
n−1,2,rn−1+2(kn−1−1). For condition (i) of Lemma 2.6.9 use (2.6.2) and the description of the

ℓ-weights of wtℓ(Vq(λ{1,...,n−1})) in terms of semi-standard tableaux (Proposition 3.2.1). For the
other conditions of Lemma 2.6.9 the verification is similar to that in the proof of Lemma 4.4.1(b).
We omit the details.

For proving (4.6.3), we start by checking that

(4.6.4) µ ∈ wtℓ (Vq(ω)⊗ Vq(̟)) ∩ P+ ⇒ µ = ων

for some ν ∈ wtℓ(Vq(̟)). Indeed, let ην ∈ wtℓ(Vq(ω)⊗ Vq(̟)) ∩ P+ and suppose η 6= ω. Then,
by Proposition 2.5.5, η is right negative and

r(η) > r(ω) = r1 + 2(k1 − 1).

Since the product of right negative elements is again right negative, ν is not right negative. Propo-
sition 2.5.5 then implies that ν = ̟. It follows, using (4.6.6), that

r(ν) = rn−1 + 2(kn−1 − 1) < r1 < r(η)

which, since η is right negative, implies that ην is right negative, contradicting it being dominant.

After (4.6.4), in order to complete the proof of (4.6.3), it remains to characterize the set

{ν ∈ wtℓ(Vq(̟)) : ν is (I \ {1})-dominant and ων ∈ P+}.

As observed after Proposition 4.3.2, the (I \ {1})-dominant ℓ-weights of Vq(̟), other than ̟, are

νi = ̟

kn−1∏

i=1

A−1
n−1,1,rn−1+2(kn−1−i), i = 1, . . . , kn−1.

One easily checks that, for each i = 1, . . . , kn−1,

ν
{1}
i =

kn−1∏

i=1

Y −1
1,rn−1+2(kn−1−i)+n

.

A straight forward computation using (4.6.2) shows that ωνi ∈ P
+ iff i = 1. This completes the

proof of (4.6.3).

We now turn to part (b). By Proposition 2.5.5, all the ℓ-weights in wtℓ(Vq(ω)) \ {ω} and
wtℓ(Vq(̟)) \ {̟} are right negative. Since

µ = ην, with η ∈ wtℓ(Vq(ω)), ν ∈ wtℓ(Vq(̟)),

and the product of right negative ℓ-weights is right negative, it follows that either η = ω or ν = ̟.

If both η = ω and ν = ̟, then the lemma follows.

Suppose η 6= ω, which implies ν = ̟. Then, by Proposition 2.5.5,

r(η) > r1 + 2(k1 − 1)
(4.6.2)
= rn−1 + 2kn−1 + n− 2 + 2(k1 − 1) > rn−1 + 2(kn−1 − 1) = r(̟).

Thus, since η is right negative, it follows that µ = η̟ is right negative, contradicting the hypoth-
esis.

Finally, suppose η = ω and ν 6= ̟. Let T be the tableaux as in (4.2.2) such that ωT = ̟.
If ν ∈ ω̟A−1

1,sQ
− for some s ∈ Z, then ν ∈ ̟A−1

1,sQ
−. We claim that ν ∈ ̟A−1

1,r1−1Q
− and

the multiplication by A−1
1,r1−1 corresponds to a change in the first column of a semi-standard with

shape of T . Assuming the claim, it follows that ν = ν ′A−1
1,r1−1

∏t
p=1A

−1
ip,sp

for some (ip, rp) ∈ I×Z,



4.6. COMPARING CERTAIN AFFINIZATIONS SUPPORTED AT THE EXTREME NODES 81

with ν ′ ∈ ̟Q−
I\{1} ∩ wtℓ(Vq(̟)), ν ′A−1

1,r1−1 ∈ wtℓ(Vq(̟)) and if ip = 1 then sp < r1 − 1. Let

T ′ ∈ STab(T ) such that ν ′ = ωT ′
. Thus the first column of T ′ has the boxes 1

r1−1 and 2̄
r′
for

some r′ < r1 − 1. Since the first column of T ′ does not have a box with the content 2, it follows
from Lemma 4.2.1 that Y1,r1−2 appears in ωT ′

. Observe that π1(ωωT ′
) = Y1,r1−2,k1+1, then it is

not difficult to see that ων ′A−1
1,r1−1 6∈ wtℓ(Vq(ω̟)) (using for instance the FM algorithm or Lemma

2.6.9), which implies µ 6∈ wtℓ(Vq(ω̟)), contradiction. Therefore

(4.6.5) µ ∈ ω̟Q−
I\{1}.

Let us prove the claim. The only possible modification in a column of a semi-standard tableau
with shape of T :

...

r

corresponding to multiply by A−1
1,s is to change the boxes 1

r+2(n−1) and 2̄
r
(if this column has

such boxes), which implies s = r+ 2(n− 1) (see (4.1.5)). But, if such modification is done is some
column, it follows that all the columns to the left of this one have the corresponding modification
(gap of size 1 in the first box), in particular the first column. Since the last box of the first column
of T is supported at rn−1+2(kn−1−1)−n+1 and the first box of the first column of T is supported
at rn−1 + 2(kn−1 − 1) + n− 1 = r1 − 1, the claim follows.

It remains to show that r(µ) = r1+2(k1−1). Indeed, if r(µ) > r1+2(k1−1), then r(µ) = r(ν),
since η = ω and r(ω) = r1 + 2(k1 − 1). But, ν is right negative, hence it follows that µ is right
negative, contradiction. Therefore r(µ) ≤ r1 +2(k1− 1), which implies, together with (4.6.5), that
r(µ) = r1 + 2(k1 − 1). �

Lemma 4.6.3. Let ω ∈ P+ be such that wt(ω) = λ and suppose it satisfies either of the
conditions (b)l in Theorem 1.7.3 for some l. Then, Vq(ω) is ℓ-minuscule.

Proof. Write ω = Y1,r1,k1Yn−1,rn−1,kn−1Yn,rn,kn and assume, without loss of generality, that ω
is determined by the picture

1

1

✻

✛
❡

n−3

❡

n−2

❡

n

❡
n−1

In other words, ω satisfies the first option of conditions given by (b)n−1 in Theorem 1.7.3 (recall
the comments preceding and following (1.7.4)). More precisely, we have

(4.6.6) r1 = rn−1 + 2kn−1 + n− 2 and rn = r1 + 2k1 + n− 2.

Then, part (a) of Lemma 4.6.2 implies that

(4.6.7) Vq(ω
J) is ℓ-minuscule for J = [1, n− 1].

We will show that

(4.6.8) D := wtℓ(Vq(ω
J)⊗ Vq(ω

{n})) ∩ P+ = {ω,̟}

where

̟ = ωA−1
1,n−2,r1+2(k1−1)A

−1
n,r1+2(k1−1)+n−1.
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Hence, since wtℓ(Vq(ω)) ∩ P+ ⊆ D, in order to complete the proof of the lemma, it remains to
check that ̟ 6∈ wtℓ(Vq(ω)). This can be easily done using Lemma 2.6.9 with λ = ω, µ = ̟, i = n

and ν = ωA−1
1,n−2,r1+2(k1−1) = ̟An,r1+2(k1−1)+n−1.

It remains to prove (4.6.8). We start by showing that

̟ ∈ D ⇒̟ = µω{n} with µ ∈ wtℓ(Vq(ω
J)).

Indeed, let µ ∈ wtℓ(Vq(ω
J)) and ν ∈ wtℓ(Vq(ω

{n})) be such that µν ∈ D, and suppose, by

contradiction, that ν 6= ω{n}. Then, by Proposition 2.5.5, ν is right negative and

r(ν) > r(ω{n}) = rn + 2(kn − 1).

Since the product of right negative elements is again right negative, µ is not right negative. By
Lemma 4.6.2

µ ∈ ωJQ−
I\{1} and r(µ) = r1 + 2(k1 − 1).

But then, using (4.6.6), we get

r(µ) = r1 + 2(k1 − 1) < rn ≤ rn + 2(kn − 1) < r(ν)

which implies that µν is right negative, yielding the desired contradiction.

The previous paragraph implies that, in order to describe D, we are left to finding the J-
dominant elements µ ∈ wtℓ(Vq(ω

J)) such that µω{n} ∈ P+. By (4.6.7) and Theorem 2.4.4, this
can be done by applying the FM algorithm to ωJ , as follows (we use notation of [36, Section 4]).
We assume µ 6= ωJ , since otherwise there is noting to do. The FM algorithm implies that µ can
be obtained from ωJ by a sequence of i-th expansions. Let’s say

µ ∈ wtℓ(ζ
i
ν) \ {ν}

for some i ∈ I with ν either equal to ωJ or obtained by previous expansions. In particular, µ is
not i-dominant, which implies, since we are assuming that µ is J-dominant, that i = n. This in
turn implies that ν is n-dominant and ν 6= ωJ since ζn

ωJ = ωJ . Also, since the (I \ {n− 2, n})-part

of all elements in wtℓ(ζ
i
ν) coincide, it follows that ν must be (I \ {n− 2})-dominant.

Set J ′ = I \ {n − 2} and let’s study the J ′-dominant ℓ-weights in wtℓ(Vq(ω
J)) \ {ωJ} whose

n-th expansions give rise to J-dominant ℓ-weights µ′ such that µ′ω{n} ∈ P+.

In the first step of the FM algorithm, we can either calculate ζ1
ωJ or ζn−1

ωJ and after expand

their ℓ-weights. Looking at ζn−1
ωJ and the j-th expansions of its ℓ-weights with j 6= 1, one can see

that the I \ {n− 2}-dominant ℓ-weights which appear are:

ν(t1, t2) = ωJ

(
t1∏

k=1

A−1
n−1,rn−1+2(kn−1−k)+1

)(
t2∏

k=1

A−1
n−2,rn−1+2(kn−1−k)+2

)
, 1 ≤ t2 ≤ t1 ≤ kn−1.

Observe that

π{n−2,n}(ν(t1, t2)) =




t1∏

k=t2+1

Yn−2,rn−1+2(kn−1−k)+1



(

t2∏

k=1

Y −1
n−2,rn−1+2(kn−1−k)+3

)
×

(
t2∏

k=1

Yn,rn−1+2(kn−1−k)+2

)
.
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Thus, if µ ∈ ζn
ν(t1,t2)

, then

µ = ν(t1, t2)

t∏

k=1

A−1
n,rn−1+2(kn−1−k)+3, for some t = 0, 1, . . . , t2,

but, if t < t2, then µ is not (n − 2)-dominant. Since µ is J-dominant, it follows that t = t2 > 1
and

πn(µ) =

t2∏

k=1

Y −1
n,rn−1+2(kn−1−k)+4.

Since

rn = r1 + 2k1 + n− 2

= rn−1 + 2kn−1 + n− 2 + 2k1 + n− 2

= rn−1 + 2(kn−1 − 1) + 2(k1 + n− 1)

> rn−1 + 2(kn−1 − 1) + 4

and rn−1+2(kn−1−k)+4 ≤ rn−1+2(kn−1−1)+4 for all 1 ≤ k ≤ kn−1, it follows that µω
{n} is not

dominant. Now, observe that, the ℓ-weights obtained by j-th expansions, j 6= 1, of the ℓ-weights
of ζn−1

ωJ which has π1 different to 1 are the following

η(t) = ωJ
t∏

k=1

A−1
n−1,2,rn−1+2(kn−1−k)

and j-th expansions of η(t) with j > 2. We have

π1(η(t)) = Y1,r1,k1

t∏

k=1

Y1,rn−1+2(kn−1−k)+n−2
(4.6.6)
= Y1,rn−1+2(kn−1−t)+n−2,k1+t.

Thus, the 1-th expansions of the ℓ-weights of ζn−1
ωJ are the 1-th expansions of the ℓ-weights of ζ1

ωJ .

Looking at ζ1
ωJ and the j-th expansions of its ℓ-weights, one can see that the I \ {n− 2}-dominant

ℓ-weights which appear, different to ωJ , are:

ν(t1, t2) = ωJ

(
t1∏

k=1

A−1
1,n−2,r1+2(k1−k)

)(
t2∏

k=1

A−1
n−1,2,rn−1+2(kn−1−k)

)
,

with 0 ≤ t2 ≤ kn−1, t1 ≥ 1 and t1 − k1 ≤ t2. Observe that

π{n−2,n}(ν(t1, t2)) =

(
t2∏

k=1

Y −1
n−2,rn−1+2(kn−1−k)+3Yn,rn−1+2(kn−1−k)+2

)
×

(
t1∏

k=1

Y −1
n−2,r1+2(k1−k)+n−1Yn,r1+2(k1−k)+n−2

)
.

Thus, if µ ∈ ζn
ν(t1,t2)

, then

µ = ν(t1, t2)




t′2∏

k=1

A−1
n,rn−1+2(kn−1−k)+3






t′1∏

k=1

A−1
n,r1+2(k1−k)+n−1


 ,
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for some 0 ≤ t′2 ≤ t2 and 0 ≤ t′1 ≤ t1. But, if either t
′
2 < t2 or t

′
1 < t1, then µ is not (n−2)-dominant.

Since µ is J-dominant, it follows that t′2 = t2 and t′1 = t1 > 1 and

πn(µ) =

(
t2∏

k=1

Y −1
n,rn−1+2(kn−1−k)+4

)(
t1∏

k=1

Y −1
n,r1+2(k1−k)+n

)
.

Observe from (4.6.6) that this factorization (set by the parenthesis) is the q-factorization of πn(µ).
Since

rn = r1 + 2k1 + n− 2,

it follows that µω{n} is dominant if and only if t2 = 0 and t1 = 1. �

Proposition 4.6.4. Let ω = Y1,r1,k1Yn−1,rn−1,kn−1Yn,rn,kn and ω′ = Y1,r′1,k1Yn−1,r′n−1,kn−1
Yn,r′n,kn

for some ri, r
′
i ∈ Z. Suppose r1 = rn−1+2kn−1+n−2 and that either one of the following conditions

holds:

(i) rn = r1 + 2k1 + n− 2 and r′n−1 = r′n = r′1 + 2k1 + n− 2;

(ii) r′1 = r′n−1 + 2kn−1 + n− 2, rn−1 = rn + 2kn + 2, and r′n = r′n−1 + 2kn−1 + 2.

Then, Vq(ω) < Vq(ω
′). Moreover, if ν = λ−

∑
i∈I αi, then

(4.6.9) mν(Vq(ω)) = 0 < mν(Vq(ω
′)).

Proof. Notice that, in the sense of Section 1.7, the conditions in (i) mean that Vq(ω) and
Vq(ω

′) correspond, respectively, to the following pictures:

1

1

✻

✛
❡

n−3

❡

n−2

❡

n

❡
n−1

and

1

1

✛

✛
❡

n−3

❡

n−2

❡

n

❡
n−1

Similarly, the ones in (ii) mean that Vq(ω) and Vq(ω
′) correspond, respectively, to the following

pictures:

1
✻

❡

n−3

❡

n−2

❡

n

❡
n−1

✲1

and

1✛
❡

n−3

❡

n−2

❡

n

❡
n−1

✲1

In particular (cf. Theorem 1.6.1), setting Ij = I \ {j} for j = n− 1, n, (i) implies that

(4.6.10) Vq(ωIj ) and Vq(ω
′
Ij
) are minimal affinizations for j = n− 1, n.

while (ii) implies that

Vq(ωIn), Vq(ω{n−1,n−2,n}), Vq(ω
′
In), Vq(ω

′
{n−1,n−2,n}) are minimal affinizations.

We write down the proof in case (i) is satisfied. The proof for (ii) is similar.

Thus, we have to show that for all µ ∈ P+, µ < λ, either mµ(Vq(ω)) ≤ mµ(Vq(ω
′)) or there

exists µ′ > µ such that mµ′(Vq(ω)) < mµ′(Vq(ω
′)). If mµ(Vq(ω)) = 0, there is nothing to do. Thus,

assume mµ(Vq(ω)) > 0 and write

µ = λ−
∑

i∈I

siαi.

If j ∈ {n− 1, n} is such that sj = 0, then, by Lemma 2.6.1,

mµ(Vq(ω)) = mµIj
(Vq(ωIj )) and mµ(Vq(ω)) = mµIj

(Vq(ωIj )).
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On the other hand, (4.6.10) implies that

mµIj
(Vq(ωIj )) = mµIj

(Vq(ω
′
Ij
)) = 0.

In particular, it follows that mµ(Vq(ω)) = 0, contradicting the choice of µ. Hence, we must
have sj > 0 for j = n − 1, n. An application of Lemma 2.6.2 with J1 = {n}, i0 = n − 2,
J2 = {1, . . . , n− 3, n− 1}, shows that sn−2 > 0 as well. This proves that, for ̟ = ω,ω′, we have

(4.6.11) mν(Vq(̟)) > 0 ⇒ ν ≤ λ− ϑ where ϑ = αn−2 + αn−1 + αn.

Another application of Lemma 2.6.2, this time with J1 = {1, . . . , j − 1}, i0 = j, J2 = {j +
1, . . . , n}, gives that

(4.6.12) if j < n− 2 is such that sj = 0, then si = 0 for all i ≤ j.

Suppose sn−3 = 0, from where it follows that s1 = · · · = sn−3 = 0, and let J = {n − 2, n − 1, n}.
Since

an−1

an
= q−kn−1−kn−2k1−2n+4 6= q±(kn−1+kn+4−2t) for all 1 ≤ t ≤ min{kn−1, kn},

and
a′n−1

a′n
= qkn−1−kn 6= q±(kn−1+kn+4−2t) for all 1 ≤ t ≤ min{kn−1, kn},

Proposition 2.7.5 and Lemma 2.6.1 implies that

mµ(Vq(̟)) = mµ(Vq(̟J)) for ̟ = ω,ω′.

Moreover, the latter can be computed using Proposition 2.7.5 and we get, for ̟ = ω,ω′, that

mµ(Vq(̟)) =

{
1, if µ = λ− tϑ for some 1 ≤ t ≤ min{kn−1, kn};
0, otherwise.

(4.6.13)

Suppose next that there exists

j = max{i < n− 3 : si = 0} and that sj+1 6= 0.

In particular, si > 0 for all i > j and si = 0 for all i ≤ j. Letting J = {j + 1, . . . , n} and using
Lemma 2.6.1 we get

mµ(Vq(̟)) = mµJ
(Vq(̟J)) for ̟ = ω,ω′.

On the other hand, condition (i) together with Lemma 4.4.4 applied to the subalgebra Uq(g̃J) imply
that

Vq(̟J) ∼= Vq(̟
{n−1}
J )⊗ Vq(̟

{n}
J ) for ̟ = ω,ω′.

Hence,

mµ(Vq(ω)) = mµ(Vq(ω
′)).

So far we have proved that

si = 0 for some i ∈ I ⇒ mµ(Vq(ω)) = mµ(Vq(ω
′)).

Thus, henceforth we suppose si > 0 for all i ∈ I. Recall that we have set ν = λ −
∑

i∈I αi ∈ P
+.

Since si > 0 for all i ∈ I, we have µ ≤ ν. Thus, the proposition will be proved once (4.6.9) is
proved.

For proving (4.6.9), we begin by checking that, if η ∈ P+ is such that ν < η < λ and ̟ ∈
{ω,ω′}, then

(4.6.14) mη(Vq(̟)) > 0 ⇔ η = λ− ϑ.
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The implication ⇐ follows as a particular case of (4.6.13). For the converse, notice that (4.6.11),
(4.6.12), and the condition η > ν imply that

η = λ−
n∑

i=j

αi for some j ∈ {2, . . . , n− 2}.

One easily checks that η ∈ P+ iff j = n− 2, thus completing the proof of (4.6.14).

Notice that (4.6.14) implies that, for ̟ = ω,ω′,

dimVq(̟)ν ≥ dimVq(λ)ν + dimVq(λ− ϑ)ν = 4(n− 2),

where we used Lemma 4.6.1 in the last equality. Since

mλ(Vq(̟)) = mλ−ϑ(Vq(̟)) = 1 for ̟ = ω,ω′,

(4.6.9) follows if we show that

(4.6.15) dimVq(ω)ν = 4(n− 2) and dimVq(ω
′)ν > 4(n− 2).

For proving the second statement in (4.6.15), it suffices to show that

#{ν ∈ wtℓ(Vq(ω
′)) : wt(ν) = ν} > 4(n− 2).

This can be done by repeatedly using Proposition 2.6.7 to check that the following are elements of
wtℓ(Vq(̟)):

µ1
i = ω′A−1

n,rn+1A
−1
n−2,rn+2A

−1
n−1,rn+3

−→
A−1

1,i,r1

←−
A−1

n−3,i+1,rn+2, i = 0, 1, . . . , n− 3;

µ2
i = ω′A−1

n−1,rn−1+1A
−1
n,rn+1A

−1
n−2,rn+2

−→
A−1

1,i,r1

←−
A−1

n−3,i+1,rn+2, i = 0, 1, . . . , n− 3;

µ3
i = ω′A−1

n,rn+1A
−1
n−1,rn−1+1A

−1
n−2,rn−1+2

−→
A−1

1,i,r1

←−
A−1

n−3,i+1,rn−1+2, i = 0, 1, . . . , n− 3;

µ4
i = ω′A−1

n−1,rn−1+1A
−1
n−2,rn−1+2A

−1
n,rn−1+3

−→
A−1

1,i,r1

←−
A−1

n−3,i+1,rn−1+2, i = 0, 1, . . . , n− 3;

µ = ω′A−1
n,rn+1A

−1
n−1,rn−1+1A

−1
1,n−2,r1

.

Here
−→
A i,j,r = Ai,j,r if j ≥ i and

−→
A i,j,r = 1 if j < i, and,

←−
A i,j,r = Ai,j,r if j ≤ i and

←−
A i,j,r = 1 if

j > i.

As for the first statement in (4.6.15), it follows from Lemma 4.6.3 and Theorem 2.4.4 that we
can use the FM algorithm for computing dimVq(ω)ν . By using the algorithm, we see that following
are the elements of wtℓ(Vq(̟)):

µ1
i = ωA−1

n,n−2,rn

−→
A−1

1,i,r1

←−
A−1

n−3,i+1,rn+2, i = 0, 1, . . . , n− 3;

µ2
i = ωA−1

n−1,rn−1+1A
−1
n,rn+1A

−1
n−2,rn+2

−→
A−1

1,i,r1

←−
A−1

n−3,i+1,rn+2, i = 0, 1, . . . , n− 3;

µ3
i = ωA−1

n,rn+1A
−1
n−1,rn−1+1A

−1
n−2,rn−1+2

−→
A−1

1,i,r1

←−
A−1

n−3,i+1,rn−1+2, i = 1, . . . , n− 3;

µ4
i = ωA−1

n−1,rn−1+1A
−1
n−2,rn−1+2A

−1
n,rn−1+3

−→
A−1

1,i,r1

←−
A−1

n−3,i+1,rn−1+2, i = 1, . . . , n− 3;

µ5 = ωA−1
n,rn+1A

−1
n−1,rn−1+1A

−1
1,n−2,r1

;

µ6 = ωA−1
n,rn+1A

−1
1,n−1,r1

.

Hence,
#{ν ∈ wtℓ(Vq(ω)) : wt(ν) = ν} = 4(n− 2),

Again by the FM algorithm, one can see that the corresponding ℓ-weight spaces are one-dimensional,
which completes the proof. �

Remark 4.6.5. Proposition 4.6.4 together with [12, Theorem 2.2] proves Theorem 1.7.1 (recall
also the comment on Remark 1.7.2).
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We also record the next lemma which is easily checked using Lemma 2.1.2.

Lemma 4.6.6. Let ω = Y1,r1,k1Yn−1,rn−1,kn−1Yn,rn,kn and ω′ = Y1,r′1,k1Yn−1,r′n−1,kn−1
Yn,r′n,kn for

some ri, r
′
i ∈ Z and suppose either one of the following conditions hold:

(i) r1 = rn−1+2kn−1+n−2, r
′
1 = r′n+2kn+n−2, rn = r1+2k1+n−2, and r

′
n−1 = r′1+2k1+n−2;

(ii) rn−1 = rn = r1 + k1 + n− 2, r′1 = r′n−1 + 2kn−1 + n− 2, and r′n = r′n−1 + 2(kn−1 − kn);
(iii) r1 = rn−1+2kn−1+n−2, r

′
n−1 = r′1+2k1+n−2, rn−1 = rn+2kn+2, and r′n = r′n−1+2kn−1+2;

(iv) r1 = rn−1 + 2kn−1 + n − 2, rn = rn−1 + 2kn−1 + 2, r′1 = r′n + 2(kn − k1 + 2) − n, and
r′n−1 = r′n + 2kn + 2.

Then, Vq(ω) ∼= Vq(ω
′).





CHAPTER 5

Minimal affinizations for Dn

We now prove the main theorems stated in Section 1.7. The reader should recall the notation
fixed there. In particular, we fix λ ∈ P+ such that λ(hn−2) = 0 and supp(λ) bounds a subdiagram
of type D4. Recall also the definitions of iλ and fλ and that A = {i ∈ I : i < n− 2}.

5.1. Rephrasing the main theorem

Let ai ∈ C×, i ∈ I, and assume ω =
∏

i∈I ωi,ai,λ(hi) is such that Vq(ωA) is a minimal affinization.
Assume also that ri ∈ Z, i ∈ I, are such

ω =
∏

i∈I

Yi,ri,λ(hi).

The conditions in the main theorems were described in terms the parameters ai. We now rephrase
them in terms of the parameters ri which will be more convenient for the proof.

Set

In = I \ {n}, In−1 = I \ {n− 1}, and Iλ = {fλ + 1, fλ + 2, . . . , n}.

The condition that Vq(ωA) is increasing or decreasing will be graphically denoted by the following
pictures, respectively:

< ❡

n−3

❡

n−2

❡

❡

> ❡

n−3

❡

n−2

❡

❡

If #(supp(λ)∩A) = 1, then the terminology increasing or decreasing for Vq(ωA) is vacuous and we
use either of the pictures.

Let {i, j} = {n− 1, n}. Assume first that Vq(ωA) is increasing. Then, condition (3.5.1) applied
to ωIj means that there exists 1 ≤ r ≤ min{|λ|n−2, λ(hi)} such that

(5.1.1) rfλ + 2λ(hfλ) + n− fλ + 1 = ri + 2r.

Similarly, if Vq(ωA) is decreasing, condition (3.7.3) applied to ωIj means that there exists 1 ≤ r ≤
min{|λ|n−2, λ(hi)} such that

(5.1.2) ri + 2λ(hi) + n− fλ + 1 = rfλ + 2r.

Conditions (5.1.1) and (5.1.2) will be indicated graphically by the following pictures

<

r✛
❡

n−3

❡

n−2

❡

❡
i

>

r
✻

❡

n−3

❡

n−2

❡

❡
i

Observe that, if r = 1, then Vq(ωIj ) is a minimal affinization. One easily checks using Remark
3.5.2 that (5.1.1) and (5.1.2) are equivalent to (1.7.2), justifying the use of the above pictures.

89
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We now turn to the rephrasing of (1.7.3). If Vq(ωA) is increasing, condition (3.5.2) restricted
to the subdiagram Ij means that there exist p ∈ supp(λ) ∩ A and 1 ≤ k ≤ min{λ(hp), λ(hi)} such
that

(5.1.3) ri + 2λ(hi) + n− p+ 1 = rp + 2k.

If Vq(ωA) is decreasing, condition (3.7.5) restricted to the subdiagram Ij is: there exist p ∈ supp(λ)∩
A and 1 ≤ k ≤ min{λ(hp), λ(hi)} such that

(5.1.4) rp + 2λ(hp) + n− p+ 1 = ri + 2k.

Conditions (5.1.3) and (5.1.4) will be indicated graphically by the following pictures

<

(p,k)✻

❡

n−3

❡

n−2

❡

❡
i

> ❡

n−3

(p,k)✛
❡

n−2

❡

❡
i

Observe that, if (p, k) = (fλ, 1), then Vq(ω{fλ,...,n−2,i}) is a minimal affinization. Notice also that,
if #(supp(λ)∩ J) = 1, then (5.1.1) is equivalent to (5.1.4) and (5.1.2) is equivalent to (5.1.3), with
p = fλ and k = r. One easily checks using Remark 3.5.2 that (5.1.3) and (5.1.4) are equivalent to
(1.7.3) with r = |λ|p−1 + p− iλ + k.

We also consider condition (4.4.27) restricted to the subdiagram Iλ. If ri+2λ(hi) ≤ rj+2λ(hj),

it means that there exist 1 ≤ l ≤
⌊
n−fλ−1

2

⌋
and 1 ≤ m ≤ min{λ(hi), λ(hj)} such that

(5.1.5) ri + 2λ(hi) + 4l = rj + 2m.

Recall that we consider such pair with m minimum. Thus, by Lemma 4.4.2, if m > 2 we have
l = 1. Condition (5.1.5) will be indicated graphically by the following picture

❡

n−3

l,m✻

❡

n−2

❡

j

❡
i

Observe that, if (l,m) = (1, 1), then Vq(ωIλ) is a minimal affinization. We shall often omit l from
the above pictures in the case it is 1. One easily checks using Remark 4.4.5 that (5.1.5) is equivalent
to (1.7.5) with l = s1 and m = s2.

For the reader’s convenience, we restate Theorem 1.7.5 using the above rephrasing of the con-
ditions. In fact, part of the theorem has already been proved. Namely, let ω ∈ P+ be such that
Vq(ω) is a minimal affinization of Vq(λ). Then, Proposition 2.6.4 implies that Vq(ωA) and Vq(ω{i})
are minimal affinizations for all i ∈ I. Moreover, Corollary 2.5.2 implies that we can assume that

ω =
∏

i∈I

Yi,ri,λ(hi)

for some ri ∈ Z. The remainder of the statement of Theorem 1.7.5 can be phrased as follows.

Theorem 5.1.1. Suppose n ≥ 5 and #(supp(λ)∩A) > 1. Then, the parameters ri’s are related
by one of the following conditions.

(a)j The parameters are related by either of the following pictures, where j is a spin node:

1✻1✛
< ❡

n−3

❡

n−2

❡

❡
j

or
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1✲1 ✻

> ❡

n−3

❡

n−2

❡

❡
j

(b)j The parameters are related by either of the following pictures, where j is a spin node:

(fλ,1)

1

✻

✛
< ❡

n−3

❡

n−2

❡

❡
j

or

(fλ,1)

1

✛

✲
> ❡

n−3

❡

n−2

❡

❡
j

(c)rj The parameters are related by either of the following pictures, where j is a spin node and

m = λ(hj) + 3− r:

r

1

m✻✛

✛
< ❡

n−3

❡

n−2

❡

❡
j

or
r

1

m✲
✻

✲
> ❡

n−3

❡

n−2

❡

❡
j

(d)k,lj The parameters are related by either of the following pictures

(fλ,k)

r

l,1✻✻

✛
< ❡

n−3

❡

n−2

❡

❡
j

or
(fλ,k)

r

l,1✲✛

✲
> ❡

n−3

❡

n−2

❡

❡
j

where j is a spin node and r = λ(hfλ)+n−fλ+2−k−2l and, setting {j, j′} = {n−1, n}
the parameters satisfy the following conditions:
(i) If r ≤ k, then λ(hj) + 3− r > min{l, λ(hj′)}.
(ii) If p ∈ supp(λ) ∩A \ {fλ}, 0 ≤ k

′ < k and 1 ≤ l′ ≤ l are such that

1 ≤ k′′ := p|λ|fλ + n− p+ 2− r − 2l − 2l′ − k′ − λ(hj) ≤ min{λ(hp), λ(hj′)},

then r − p|λ|fλ ≤ k
′′.

(e) The parameters are related by either of the following pictures, where j is a spin node:

1

1

✛

✛
< ❡

n−3

❡

n−2

❡

n

❡
n−1

or
1

1

✻

✲
> ❡

n−3

❡

n−2

❡

n

❡
n−1

(f)
(p̄,k̄),(p,k)
j,l The parameters are related by either of the following pictures

(p̄,k̄)

l,m✲(p,k)✻

✲
< ❡

n−3

❡

n−2

❡

❡
j

or

(p̄,k̄)

l,m✻(p,k)✛

✛
> ❡

n−3

❡

n−2

❡

❡
j

where j is a spin node, m = λ(hj) + 2l + k̄ − (p̄|λ|p−1 + p− p̄+ k) and, setting {j, j′} =
{n− 1, n}, the parameters satisfy one of the following three conditions:
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(i) k̄ = 1, l > 1, m ≤ 2, k ≤ 2, with k = 1 if m = 2. Besides, if p̄ < fλ, given
i, ī ∈ supp(λ) and max{0, k − λ(hi)} ≤ k′ < max{k,m} such that p̄ < ī ≤ i ≤ fλ,
p ≤ i and 0 ≤ ī− p̄+ p̄|λ|̄i−1 − i+ p− p|λ|i−1 + k′ is even, then

l <
1

2
(̄i− p̄+ p̄|λ|̄i−1 − i+ p− p|λ|i−1 + k′) + 1.

Moreover, if p < fλ, given i, ī ∈ supp(λ) and max{0, k − λ(hi)} ≤ k′ < max{k,m}
such that p ≤ i < ī ≤ fλ and ī− i+ i|λ|̄i−1 + 2l − k + k′ + 2− λ(hj′) is even then

either
1

2
(̄i−i+ i|λ|̄i−1+2l−k+k′+2−λ(hn)) < l or

1

2
(̄i−i+ i|λ|̄i−1+2l−k+k′+2−λ(hj′)) > 2l.

(ii) k̄ = l = 1, p > p̄ and

k < λ(hfλ) + p− p̄+ n− fλ − 1.

Besides, if p < fλ, given i, ī ∈ supp(λ) and max{0, k − λ(hi)} ≤ k′ < k such that
p̄ ≤ ī < i ≤ fλ; p < i and ī− p̄+ p̄|λ|̄i−1 ≤ i− p+ p|λ|i−1 − k

′, then

m < i− p+ p|λ|i−1 − k
′ − ī+ p̄− p̄|λ|̄i−1 + 1.

Moreover, if p < fλ, given i, ī ∈ supp(λ) and max{0, k − λ(hi)} ≤ k′ < k such that
p ≤ i < ī ≤ fλ then

either λ(hj′) + 1 + k − k′ − ī+ i− i|λ|̄i−1 < 1 or λ(hj′) + 1 + k − k′ − ī+ i− i|λ|̄i−1 > m.

(iii) k̄ > 1, k = m = 1. Besides, if p̄ < fλ, given i, ī ∈ supp(λ) and 0 ≤ l′ < l such that
p̄ < ī ≤ i ≤ fλ; p ≤ i with either l′ > 0 or p < i, and i−p+p|λ|i−1+2l′ ≤ ī−p̄+ī|λ|p̄−1,
then

either k̄ < ī−p̄+ p̄|λ|̄i−1−i+p−p|λ|i−1−2l
′+1 or k̄ > ī−p̄+ p̄|λ|̄i−1−i+p−p|λ|i−1−2l

′+λ(hī).

Moreover, if p̄ < fλ, given i, ī ∈ supp(λ) and max{0, k̄ − λ(hī)} ≤ k̄′ < k̄ such that
p ≤ i ≤ ī ≤ fλ, ī > p̄ and −λ(hj′)+ ī− p̄+ p̄|λ|̄i−1− i+ p− p|λ|i−1+ k′ is even, then

either l >
1

2
(−λ(hj′) + ī− p̄+ p̄|λ|̄i−1 − i+ p− p|λ|i−1 + k′)

or
1

2
(−λ(hj′) + ī− p̄+ p̄|λ|̄i−1 − i+ p− p|λ|i−1 + k′) > 2l − 1.

Furthermore, these conditions parameterize the distinct equivalence classes of minimal affinizations.
In particular, the two pictures listed for each condition give rise to equivalent affinizations.

The very last statement of this theorem is an easy consequence of Proposition 2.1.2. We shall
organize the proof of the other statements as follows. Notice that each condition (a)–(f) defines a
family of affinizations. Henceforth, given ω ∈ P+, we shall say that Vq(ω) is an affinization of type

(x), or simply that ω is of type (x), if ω satisfies the conditions (x)?! for some choice of indices ?
and !. The proof of Theorem 5.1.1 will be split in the following steps.

Step 1. If Vq(ω) is a minimal affinization, then ω must be of one of the types (a)–(f).

Step 2. Two affinizations of the same type are comparable iff they are associated to the same
indices.

Step 3. An affinization of type (x) is not comparable to an affinization of type (y) if x 6=y.

These steps will be carried out in Sections 5.3, 5.4, and 5.5, respectively.
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5.2. One more comparison of affinizations

We will need the following lemma.

Lemma 5.2.1. Let ω,ω′ ∈ P+ be such that wt(ω) = wt(ω′) = λ and Vq(ωA), Vq(ω
′
A) are

increasing minimal affinizations. Fix j ∈ {n− 1, n}.

(a) If ω and ω′ satisfy, respectively, the conditions determined by the pictures in either one of the
options (i)–(vi) below, then Vq(ω) < Vq(ω

′).

(i)

(p̄,k̄)

l,m✻(p,k)✻

✲
< ❡

n−3

❡

n−2

❡

❡
j

(p̄′,k̄′)

l′,m′✻(p′,k′)✻

✲
< ❡

n−3

❡

n−2

❡

❡
j

with

k ≤ k′, p ≥ p′; k̄ ≤ k̄′, p̄ ≥ p̄′; l ≤ l′, m ≤ m′;

and at least one of these inequalities being strict.

(ii)
(p,k)

r

l,m✻✻

✛
< ❡

n−3

❡

n−2

❡

❡
j

(p′,k′)

r′

l′,m′✻✻

✛
< ❡

n−3

❡

n−2

❡

❡
j

with

k ≤ k′, p ≥ p′; r ≤ r′; l ≤ l′, m ≤ m′;

and at least one of these inequalities being strict.

(iii)
r

1

m✻✛

✛
< ❡

n−3

❡

n−2

❡

❡
j

(p̄,k̄)

m′✻(p,k)✻

✲
< ❡

n−3

❡

n−2

❡

❡
j

with

r ≤ k and m ≤ m′.

(iv)
r

1

m✻✛

✛
< ❡

n−3

❡

n−2

❡

❡
j

(fλ,k)

r′

l,1✻✻

✛
< ❡

n−3

❡

n−2

❡

❡
j

with

r ≤ k and m ≤ l.

(v)

(p̄,k̄)

l,1✻(fλ,k) ✻

✲
< ❡

n−3

❡

n−2

❡

❡
j

(fλ,k′)

r

l′,1✻✻

✛
< ❡

n−3

❡

n−2

❡

❡
j
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with
k ≤ k′, r − p̄+1|λ|fλ > k̄, l ≤ l′.

(vi)
(fλ,1)

r

1✻✻

✛
< ❡

n−3

❡

n−2

❡

❡
j

(p̄,k̄)

m✻(p,1) ✻

✲
< ❡

n−3

❡

n−2

❡

❡
j

with
r ≤ k and m > 1.

(b) If ω and ω′ satisfy, respectively, the conditions determined by the pictures in either one of the
options (i) or (ii) below, then Vq(ω) and Vq(ω

′) are not comparable affinizations.

(i)
r

1

m✻✛

✛
< ❡

n−3

❡

n−2

❡

❡
j

(p̄,k̄)

m′✻(p,k)✻

✲
< ❡

n−3

❡

n−2

❡

❡
j

with k < r.

(ii)
(fλ,k′)

r

l,1✻✻

✛
< ❡

n−3

❡

n−2

❡

❡
j

(p̄,k̄)

m✻(p,k)✻

✲
< ❡

n−3

❡

n−2

❡

❡
j

with k̄ < r and r ≤ p̄+1|λ|fλ .

Proof. Write

ω =
∏

i∈I

Yi,ri,λ(hi) and ω′ =
∏

i∈I

Yi,r′i,λ(hi), with ri, r
′
i ∈ Z.

Without loss of generality, suppose j = n− 1 and ri = r′i for all i ∈ A.

Let us prove part (a). Assume condition (i) holds, consider the diagram subalgebra determined
by In, and let λ = ωJ . Consider also the element µ from Lemma 3.5.4 which is of the form λη for
some η ∈ QJ . Set

µ1 = ω ι
In
(η).

Define µ2 in the same manner by considering the diagram subalgebra determined by In−1. Part
(c) of Lemma 3.5.4 implies that

(µ1)In 6∈ wtℓ(Vq(ωIn)) and (µ2)In−1 6∈ wtℓ(Vq(ωIn−1)).

Similarly, we define µ3 by considering the diagram subalgebra determined by Iλ and letting µ be
as in Proposition 4.4.3. In particular, (µ3)Iλ 6∈ wtℓ(Vq(ωIλ)). Equation (2.6.2) implies that

µi 6∈ wtℓ(Vq(ω)) for i = 1, 2, 3.

Analogous constructions and conclusions apply to ω′ and we denote the corresponding elements by
µ′
1,µ

′
2,µ

′
3.

Set V := Vq(ω
{1,...,fλ})⊗ Vq(ω

{n−1})⊗ Vq(ω
{n}). We will prove that

(5.2.1) µ ∈ wtℓ(V ) ∩ P+ and µ � µi for i = 1, 2, 3 ⇒ µ ∈ wtℓ(Vq(ω)).
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Fix such µ and, for each i = 1, 2, 3, let Ξi ⊆ I × Z be such that

µi = ω
∏

ζ∈Ξi

A−1
ζ .

We claim that

(5.2.2) µ = ω
∏

ζ∈Ξ

A−1
ζ for some Ξ ⊆ Ξ1 ∪ Ξ2 ∪ Ξ3.

Assuming (5.2.2), we prove (5.2.1) as follows. Let Ξ4 = Ξ ∩ Ξ1, Ξ5 = Ξ ∩ Ξ2, and Ξ6 = Ξ ∩ Ξ3.
Observe that Ξ4 $ Ξ1, Ξ5 $ Ξ2, and Ξ6 $ Ξ3, since otherwise, if Ξi+3 = Ξi for some i = 1, 2, 3 we

would have µ ≥ µi, contradicting the choice of µ. Since µ is dominant and ω
∏

ζ∈Ξi+3
A−1

ζ < µi,

by (3.4.6) and (4.4.3),

ν1 := ω
∏

ζ∈Ξ4

A−1
ζ = ω

(
k1∏

t=1

A−1
n−1,p1,rn−1+2(λ(hn−1)−t)

)
, with p1 ≥ p, k1 ≤ k,

and at least one of the inequalities above is strict,

ν2 := ω
∏

ζ∈Ξ5

A−1
ζ = ω




k̄1∏

t=1

A−1
n,rn+2(λ(hn)−t)+1A

−1
n−2,p̄1,rn+2(λ(hn)−t)+1


 , with p̄1 ≥ p̄, k̄1 ≤ k̄,

and at least one of the inequalities above is strict, and

ν3 := ω
∏

ζ∈Ξ6

A−1
ζ = ω

m1∏

t=1

l1∏

s=1

A−1
n−2s+1,n−1,rn−1+2(λ(hn−1)−t)+2s−2A

−1
n−2s,n−2,rn−1+2(λ(hn−1)−t)+2s−1 ·

·A−1
n,rn−1+2(λ(hn−1)−t)+4s−1, with m1 ≤ m, l1 ≤ l.

Suppose first m1 ≥ k1. By Lemma 4.4.1(a), ν3 ∈ wtℓ(χIλ(Vq(ω))) ⊆ wtℓ(Vq(ω)). Let

ν ′
2 := ν3




k̄1∏

t=1

A−1
n,rn+2(λ(hn)−t)+1A

−1
n−2,fλ+1,rn+2(λ(hn)−t)+1



(

k1∏

t=1

A−1
n−2l1−1,fλ+1,rn−1+2(λ(hn−1)−t)+2l1+1

)
.

Then, it is not difficult to see that

ν ′
2 ∈ wtℓ(χIλ(Vq(ω))) ⊆ wtℓ(Vq(ω)),

and one can check that ν ′
2 satisfies conditions (ii) and (iii) of Proposition 2.6.7 with J = I \ Iλ.

Hence wtℓ(χJ(Vq(ν
′
2))) ⊆ wtℓ(Vq(ω)). Observe that

µ = ν ′
2

(
k1∏

t=1

A−1
fλ,p1,rn−1+2(λ(hn−1)−t)+n−fλ−1

)


k̄1∏

t=1

A−1
fλ,p̄1,rn+2(λ(hn)−t)+n−fλ−1




To finish the proof of (5.2.1), it is not hard to see that µ ∈ wtℓ(χJ(Vq(ν
′
2))). If k1 > m1 the proof

is similar, the unique difference is to consider

ν ′
2 := ν3




k̄1∏

t=1

A−1
n,rn+2(λ(hn)−t)+1A

−1
n−2,fλ+1,rn+2(λ(hn)−t)+1


×

×

(
m1∏

t=1

A−1
n−2l1−1,fλ+1,rn−1+2(λ(hn−1)−t)+2l1+1

)(
k1∏

t=m1+1

A−1
n−1,fλ+1,rn−1+2(λ(hn−1)−t)

)
.
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Let us prove (5.2.2). We show that, if µ = ω
∏

ζ∈ΞA
−1
ζ ∈ wtℓ(V ) ∩ P+ and Ξ 6⊆ Ξ1 ∪ Ξ2 ∪ Ξ3,

then µ > µi for some i = 1, 2, 3. Indeed, write µ = ν1ν2ν3 where ν1 ∈ wtℓ(Vq(ω
{1,...,fλ})),

ν2 ∈ wtℓ(Vq(ω
{n−1})) and ν3 ∈ wtℓ(Vq(ω

{n})). Since µ is dominant, µ is not right negative, and
since the product of right negative ℓ-weights is again right negative, it follows that either of νi is
not right negative. If ν2 is right negative, then ν2 6= ωn−1. By (4.4.2), ν2ν3 is not dominant and
the negative power that appears in ν2 must be canceled with ν1. Since Ξ 6⊆ Ξ1∪Ξ2∪Ξ3, it follows
that ν > µ1. If ν2 is not right negative, by Proposition 2.5.5, ν2 = ω{n−1}. Since Ξ 6⊆ Ξ1∪Ξ2∪Ξ3,
either ν > µ2 or ν > µ3, completing the proof of (5.2.2).

Similarly, setting V ′ := Vq((ω
′){1,...,fλ})⊗Vq((ω

′){n−1})⊗Vq((ω
′){n}), if µ′ ∈ wtℓ(V ) is dominant

and µ′ 6� µ′
i for all i = 1, 2, 3, then µ′ ∈ wtℓ(Vq(ω

′)).

To finish the proof, observe that Vq(ω) is the simple quotient of the submodule of V generated
by the top weight space and similarly for V ′. Notice that we have isomorphisms of Uq(g)-modules:

V ∼= V ′ ∼= Vq(λ)⊕
⊕

ν
Vq(ν)

⊕tν , Vq(ω) ∼= Vq(λ)⊕
⊕

ν
Vq(ν)

⊕mν and Vq(ω
′) ∼= Vq(λ)⊕

⊕

ν
Vq(ν)

⊕m′
ν

where the sums are over ν ∈ P+ such that ν < λ and mν ,m
′
ν , tν ∈ Z≥0. It follows from the claim

that

ν � wt(µi)⇒ tν = mν and mwt(µi)
≤ twt(µi)

− 1,

and similarly

ν � wt(µ′
i)⇒ tν = mν and m′

wt(µ′
i)
≤ twt(µ′

i)
− 1.

Condition (i) implies that

(5.2.3) wt(µ′
i) ≤ wt(µi) for all i = 1, 2, 3,

with at lest one of the inequalities above is strict. Let ν ∈ P+ be such that ν < λ. If ν � wt(µ),
then we also have ν � wt(µ′) and, hence, m′

ν = tν = mν . Otherwise, if ν ≤ wt(µ), we have
mwt(µ) ≤ twt(µ) − 1 = m′

wt(µ) − 1, which concludes the proof of part (a).

The proof of part (a) for the other conditions are similar and we omit the details.

We now prove (b). We do case (i), the other is similar. Write

ω =
∏

i∈I

Yi,ri,λ(hi) and ω′ =
∏

i∈I

Yi,r′i,λ(hi), with ri, r
′
i ∈ Z.

Without loss of generality suppose j = n− 1 and ri = r′i for all i ∈ A. Let s ∈ {1, . . . , fλ} be such
that s+1|λ|fλ < r ≤ s|λ|fλ . Consider

µ = ω




fλ∏

i=s+1

λ(hi)∏

t=1

A−1
i,n−1,ri+2(λ(hi)−t)






r− s+1|λ|fλ∏

t=1

A−1
s,n−1,rs+2(λ(hs)−t)


 ,

µ′ = ω

(
k∏

t=1

A−1
n−1,p,r′n−1+2(λ(hn−1)−t)

)
.

Let V := Vq(ω
{1,...,fλ}) ⊗ Vq(ω

{n−1}) ⊗ Vq(ω
{n}) and V ′ := Vq((ω

′){1,...,fλ}) ⊗ Vq((ω
′){n−1}) ⊗

Vq((ω
′){n}). Observe that Vq(ω) is the simple quotient of the submodule of V generated by the top

weight space and similarly for V ′. Notice that we have isomorphisms of Uq(g)-modules:

V ∼= V ′ ∼= Vq(λ)⊕
⊕

ν
Vq(ν)

⊕tν , Vq(ω) ∼= Vq(λ)⊕
⊕

ν
Vq(ν)

⊕mν and Vq(ω
′) ∼= Vq(λ)⊕

⊕

ν
Vq(ν)

⊕m′
ν
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where the sums are over ν ∈ P+ such that ν < λ and mν ,m
′
ν , tν ∈ Z≥0. By Proposition 3.5.1,

(µ)In 6∈ wtℓ(Vq(ωIn)), and (µ′)In 6∈ wtℓ(Vq(ω
′
In
)). Thus, by definition of µ and µ′ and (2.6.2), we

have µ 6∈ wtℓ(Vq(ω)) and µ′ 6∈ wtℓ(Vq(ω
′)). Thus, it follows that

ν � wt(µ)⇒ tν = mν and mwt(µ) ≤ twt(µ) − 1,

and similarly

ν � wt(µ′)⇒ tν = mν and m′
wt(µ′) ≤ twt(µ′) − 1.

If either s < p or s = p with p < fλ and r − p+1|λ|fλ < k, since k < r, it follows that

wt(µ′) 6≤ wt(µ) and wt(µ) 6≤ wt(µ′).

Let ν ∈ P+ be such that ν < λ. If ν � wt(µ), then we also have ν � wt(µ′), then m′
ν = tν = mν .

Otherwise, if ν ≤ wt(µ′), we have mwt(µ′) ≤ twt(µ′) − 1 = m′
wt(µ′) − 1 and if ν ≤ wt(µ), we have

m′
wt(µ) ≤ twt(µ) − 1 = mwt(µ) − 1. Hence Vq(ω) and Vq(ω

′) cannot be related.

If either s > p or s = p = fλ, since k < r it follows

wt(µ′) > wt(µ).

Let ν ∈ P+ be such that ν < λ. If ν � wt(µ′), then we also have ν � wt(µ) and, hence,
m′

ν = tν = mν . Otherwise, if ν ≤ wt(µ′), we have mwt(µ′) ≤ twt(µ′) − 1 = m′
wt(µ′) − 1. Hence

Vq(ω) 6≤ Vq(ω
′). The same occurs if s = p < fλ and r − p+1|λ|fλ ≥ k.

Let ν = λ−
∑n−2

i=fλ
αi−αn. By Proposition 2.7.4,mν(Vq(ω

′
{fλ,...,n−2,n})) > 0 = mν(Vq(ω{fλ,...,n−2,n})).

Thus, by Lemma 2.6.1, mν(Vq(ω
′)) > 0 = mν(Vq(ω)). Now, it is not difficult to see, looking at

Vq(ω{fλ,...,n−2,n}) and Vq(ω
′
{fλ,...,n−2,n}), that if λ ≥ η > ν, then mη(Vq(ω

′)) = mη(Vq(ω)). Hence

Vq(ω
′) 6≤ Vq(ω), completing the proof of part (b). �

5.3. Proof of Step 1

Without loss of generality, assume Vq(ωA) is an increasing minimal affinization. Given J ⊆ I,
denote UJ := Uq(gJ). The proof will be done by treating the following cases separately:

1. (5.1.5) is not satisfied for neither choices of the ordered pair (i, j);
2. (5.1.5) is satisfied for some choice of the ordered pair (i, j) and there exists i ∈ {n− 1, n} such

that neither (5.1.1) nor (5.1.3) is satisfied;
3. (5.1.5) is satisfied for some choice of the ordered pair (i, j) and, given i ∈ I, either (5.1.1) or

(5.1.3) is satisfied.

This is clearly a complete and non intersecting list of possibilities. We will show that ω is of
type (b) or (e) in case 1, of type (a) in case 2, and of type (c), (d) or (f) in case 3.

5.3.1. Case 1. Given i ∈ {n − 1, n}, let Ji = {fλ} ∪ Iλ \ {i}. These define subdiagrams of
type A and we regard fλ as being the first node. Consider the following possibilities:

(i) There exists i ∈ {n− 1, n} such that Vq(ωJi) is not a minimal affinization;
(ii) Vq(ωJi) is a decreasing minimal affinization for i = n− 1, n;
(iii) Vq(ωJi) is an increasing minimal affinization for i = n− 1, n;
(iv) There exists a choice of ordered pair (i, j) such that {i, j} = {n−1, n}, Vq(ωJi) is an increasing

minimal affinization and Vq(ωJj ) is a decreasing minimal affinization.
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Notice that, since we assuming Vq(ωA) is an increasing minimal affinization, possibility (iii)
means ω is of type (e) while (iv) means ω is of type (b)j . Moreover, if #(supp(λ) ∩ A) = 1,
Proposition 4.6.4 implies that (iii) does not determine a minimal affinization. It remains to check
that (i) and (ii) contradict the minimality of Vq(ω). For (i), without loss of generality we assume
that Vq(ωJn) is not a minimal affinization. Observe that for (ii), if #(supp(λ) ∩ A) > 1, then
Vq(ωIi) is not a minimal affinization for i = n − 1, n. Under this assumption, we treat case (ii)
together with (i) as follows. Comments for the case (ii) with #(supp(λ) ∩ A) = 1 will be made
afterwards.

Choose r′n−1, r
′
n ∈ Z such that, letting ̟ be defined by

̟A = ωA and ̟i = Yi,r′i,λ(hi) for i = n− 1, n,

we have

(5.3.1) ̟In−1 satisfies (5.1.3) with (p, k) = (fλ, 1) and ̟In satisfies (5.1.1) with r = 1.

Observe that Vq(̟) is of type (b)n. We will show that, both for (i) and (ii), Vq(̟) < Vq(ω),
contradicting the minimality of Vq(ω).

We have to show that for all µ ∈ P+, µ ≤ λ, we have either mµ(Vq(̟)) ≤ mµ(Vq(ω)) or there
exists µ′ > µ such that mµ′(Vq(̟)) < mµ′(Vq(ω)). Let

ν = λ−
n−1∑

i=s

αi where s =

{
fλ, for (i);

max{i ∈ supp(λ) : i < fλ}, for (ii).

Let J = {i ∈ I : s ≤ i < n}. Then, Lemma 2.6.1 implies that

mν(Vq(̟)) = mνJ (Vq(̟J)) and mνJ (Vq(ωJ)) = mν(Vq(ω)).

In case (i), Vq(̟J) is a minimal affinization and hence, mνJ (Vq(̟J)) = 0. On the other hand, an
application of Proposition 2.7.4 to the subdiagram of type A determined by J gives

mνJ (Vq(ωJ)) > 0.

Hence,

mν(Vq(̟)) = 0 < mν(Vq(ω)).(5.3.2)

In particular, Vq(̟) ≇Uq(g) Vq(ω).

Clearly mλ(Vq(ω)) = mλ(Vq(̟)) = 1. Let µ < λ and set η = λ − µ =
∑

i∈I siαi, si ∈ Z≥0. If
mµ(Vq(̟)) = 0 obviously mµ(Vq(̟)) ≤ mµ(Vq(ω)). Then, suppose µ is such that mµ(Vq(̟)) > 0.
In the following, we show that it must occur sj 6= 0 for j = n − 2, n. If sn = 0, then µ ∈ λ −Q+

In
and, since Vq(̟In) is a minimal affinization, by Lemma 2.6.1,

mµ(Vq(̟)) = mµIn
(Vq(̟In)) = 0,

contradicting the choice of µ. Thus sn > 0. Applying Lemma 2.6.2 with J1 = {n}, i0 = n − 2,
J2 = {1, . . . , n − 3, n − 1}, we obtain sn−2 > 0. Similarly, for j ∈ {2, . . . , n − 3}, considering
J1 = {1, . . . , j − 1}, i0 = j, J2 = {j + 1, . . . , n}, it follows that if sj = 0, then si = 0 for
all i ∈ {1, . . . , j − 1}. Consider j ∈ {1, . . . , n − 3} the biggest index such that sj = 0. Thus

sj+1, . . . , sn−2, sn > 0. Suppose j < s. In this case take µ′ = λ −
∑n−1

i=s αi, then µ′ ≥ µ and
mµ′(Vq(̟)) < mµ′(Vq(ω)) by (5.3.2).

Observe that (5.3.1) implies that

r′n−1 − r
′
n = 2(λ(hn) + λ(hfλ) + n− fλ − 1).
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Since

λ(hn) + λ(hfλ) + n− fλ − 1 = λ(hn) + 2l −m⇔ m = 2l − (n− fλ − 1)− λ(hfλ),

and

λ(hn)+λ(hfλ)+n− fλ− 1 = m− 2l−λ(hn−1)⇔ m = λ(hn)+λ(hn−1)+λ(hfλ)+n− fλ− 1+ 2l,

it follows that

(5.3.3) ̟Iλ does not satisfy (5.1.5).

Thus, if j ≥ fλ, by Lemma 2.6.1, mµ(Vq(̟)) = mµ{j+1,...,n}
(Vq(̟{j+1,...,n})), and the same for

ω. By assumption (1), (5.3.3) and (4.4.5), one has

(5.3.4) Vq((̟){j+1,...,n}) ∼=U{j+1,...,n}
Vq(λ(hn−1)ωn−1)⊗ Vq(λ(hn)ωn) ∼=U{j+1,...,n}

Vq(ω{j+1,...,n}).

Then mµ(Vq(̟)) = mµ(Vq(ω)).

Suppose now that ω satisfies (ii) and s ≤ j < fλ. If sn−1 > 0, take µ′ = λ −
∑n

i=fλ
αi. By

Proposition 4.6.4 together with Lemma 2.6.1, mµ′(Vq(̟)) = 0 < mµ′(Vq(ω)). If sn−1 = 0, then,
by Lemma 2.6.1, mµ(Vq(̟)) = mµ{j+1,...,n−1}

(Vq(̟{j+1,...,n−1})) = 0, contradicting the choice of µ.

If #(supp(λ)∩A) = 1, then it follows from Proposition 2.1.2 that case (ii) is equivalent to case
(iii), which does not define a minimal affinization as aforementioned.

5.3.2. Case 2. Without loss of generality, assume that (5.1.1) and (5.1.3) are not satisfied
with i = n. Consider the following subcases:

(i) rfλ + 2(λ(hfλ)− 1) + n− fλ + 1 6= rn−1;

(ii) rfλ + 2(λ(hfλ)− 1) + n− fλ + 1 = rn−1 and rn−1 + 2(λ(hn−1)− 1) + 4 6= rn;

(iii) rfλ + 2(λ(hfλ)− 1) + n− fλ + 1 = rn−1 and rn−1 + 2(λ(hn−1)− 1) + 4 = rn.

The conditions in (iii) imply that ω is of type (a)n−1. We will show that (i) and (ii) contradict the
minimality of Vq(ω).

Choose r′n−1, r
′
n ∈ Z such that, letting ̟ be defined by

̟A = ωA and ̟i = Yi,r′i,λ(hi) for i = n− 1, n,

we have

(5.3.5) ̟In satisfies (5.1.1) with r = 1 and ̟Iλ satisfies (5.1.5) with j = n, (l,m) = (1, 1).

Observe that Vq(̟) is of type (a)n−1 and Vq(̟In) is a minimal affinization. We will show that
Vq(̟) < Vq(ω) with similar ideas to those used in Case 1.

Suppose mµ(Vq(̟)) > 0, where µ = λ − η with η ∈
∑

i∈I siαi, si ∈ Z≥0, and η 6= 0. We
begin showing that sn−2, sn > 0. If sn = 0, by Lemma 2.6.1, mµ(Vq(̟)) = mµIn

(Vq(̟In)) = 0,
where the second equality, which contradicts the choice of µ, follows from the minimality of Vq(ωIn).
Applying the Lemma 2.6.2 with J1 = {n}, i0 = n−2, and J2 = {1, . . . , n−3, n−1}, we get sn−2 > 0.
Similarly, for j ∈ {2, . . . , n − 3}, considering J1 = {1, . . . , j − 1}, i0 = j, J2 = {j + 1, . . . , n}, it
follows that

sj = 0 ⇒ si = 0 for all i < j.

Next, we show that

sn−1 = 0 ⇒ mµ(Vq(̟)) = mµ(Vq(ω)).
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For proving this, we begin observing that ̟In−1 does not satisfy neither (5.1.1) nor (5.1.3). Indeed,
(5.3.5) implies that rfλ + 2(λ(hfλ)− 1) < r′n + 2(λ(hn)− 1). Hence ̟In−1 does not satisfy (5.1.3).
Also

r′n − rfλ = 2(λ(hn−1) + λ(hfλ)) + n− fλ + 1.

Since

2(λ(hn−1) + λ(hfλ)) + n− fλ + 1 = 2(λ(hfλ)− r) + n− fλ + 1⇔ r = −λ(hn−1) < 0,

it follows that ̟In−1 does not satisfy (5.1.1). Then, Proposition 3.5.1 applied to the subdiagram
of type A determined by In−1, implies that we have isomorphisms of Uq(gIn−1)-modules:

(5.3.6) Vq(̟In−1)
∼= Vq(λ

A
In−1

)⊗ Vq(λ
{n}
In−1

) ∼= Vq(ωIn−1).

Therefore, mµ(Vq(̟)) = mµ(Vq(ω)), as claimed.

Henceforth we assume sn−1 > 0. Observe that Vq(̟J) is a minimal affinization for J =
{n− 2, n− 1, n}. Then, by Lemma 2.6.1,

mµ′(Vq(̟)) = mµ′
J
(Vq(̟J)) = 0 for all dominant µ′ ∈ λ−QJ , µ

′ 6= λ.

Suppose first that Vq(ωJ) is not a minimal affinization and let µ′ = λ − (αn−1 + αn−2 + αn) > µ.
Similarly, Lemma 2.6.1 implies that mµ′(Vq(ω)) = mµ′

J
(Vq(ωJ)), but Proposition 2.7.4 applied to

the subalgebra Uq(g̃J) implies that mµ′(Vq(ω)) > 0. Thus, from now on we assume Vq(ωJ) is a
minimal affinization, which implies

(5.3.7) Vq(ωIλ) is a minimal affinization.

Let

j = max{i ∈ I : si = 0},

if {i ∈ I : si = 0} 6= ∅ and j = 0 otherwise. If j ≥ fλ, (5.3.7) implies that there exists an
isomorphism of Uq(gIλ)-modules: Vq(̟Iλ)

∼= Vq(ωIλ). Thus, by Lemma 2.6.1 with Iλ in place of
J , mµ(Vq(̟)) = mµ(Vq(ω)).

Next, assume #(A ∩ supp(λ)) > 1 and set s = max{i ∈ supp(λ) ∩ A : i < fλ} 6= ∅. Comments
for the case #(supp(λ)∩A) = 1 will be made afterwards. Suppose first that j < s. For subcase (i)
there are two possibilities:

(a) Vq(ω{fλ,...,n−1}) is a minimal affinization (and Vq(ω{s,...,n−1}) is not);
(b) Vq(ω{fλ,...,n−1}) is not a minimal affinization.

Set

ν = λ−
n−1∑

i=s

αi for (a) and ν = λ−
n−1∑

i=fλ

αi for (b).

Then, ν > µ and Lemma 2.6.1 together with Proposition 2.7.4 gives

(5.3.8) mν(Vq(̟)) = 0 < mν(Vq(ω)),

contradicting the minimality of Vq(ω). In subcase (ii), since Vq(ω{n−1,n−2,n}) is a minimal affiniza-
tion, we have

(5.3.9) rn + 2(λ(hn)− 1) + 4 = rn−1.

Set ν as in case (b) above. This time (5.3.8) follows from Lemma 2.6.1 together with Proposition
4.6.4. In particular, Vq(̟) ≇Uq(g) Vq(ω), implying that subcases (i) and (ii) does not define minimal
affinizations.
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Finally, suppose s ≤ j < fλ. For subcase (i), we again consider the possibilities (a) and (b)
above. Possibility (b) is dealt with exactly as before. In possibility (a) we must have

rn−1 + 2(λ(hn−1)− 1) + n− fλ + 1 = rfλ .

If rn−1 + 2(λ(hn−1) − 1) + 4 = rn, set ν as in (b) and observe that (5.3.8) follows from Lemma
2.6.1 together with Proposition 4.6.4. Otherwise, by the hypothesis of Case 2, (5.3.9) must hold.
It then follows from Proposition 4.6.4 that, setting J = {fλ, . . . , n}, we have an isomorphism of
Uq(gJ)-modules Vq(̟J) ∼= Vq(ωJ). Thus, by Lemma 2.6.1, mµ(Vq(̟)) = mµ(Vq(ω)). In subcase
(ii) the result follows similarly.

If #(supp(λ) ∩A) = 1, then in the case (a) of subcase (i):

• is a minimal affinization of type (a)n−1 (second diagram) if

rn + 2λ(hn) + 4 = rn−1 + 2;

• by Proposition 2.1.2 is not a minimal affinization if

rn−1 + 2λ(hn−1) + 4 = rn + 2;

• is not a minimal affinization otherwise (is bigger than class (a)n−1).

5.3.3. Case 3. Fix the ordered pair (i, j) and assume (5.1.5) is satisfied with this choice. We
have the following possibilities:

(i) (5.1.3) is also satisfied for the same choice of (i, j) while (5.1.1) is satisfied with the opposite
choice;

(ii) (5.1.1) is satisfied for both choices;
(iii) (5.1.3) is satisfied for both choices;
(iv) (5.1.1) is also satisfied for the same choice of (i, j) while (5.1.3) is satisfied with the opposite

choice;

We begin showing that possibility (iv) cannot happen. Indeed, isolating ri in (5.1.1), rj in
(5.1.3) and plugging their values in (5.1.1) we get

(5.3.10) 2(λ(hi) + λ(hj) + λ(hfλ) + 1− r −m) + rfλ + n− fλ + 4l + n− p = rp + 2k.

Using (3.3.2) to compute rp in in terms of rfλ and plugging this back in (5.3.10) gives

k +m+ r = n− p+ 1 + 2l + λ(hi) + λ(hj) +

fλ∑

t=p

λ(ht),

which is a contradiction since n− p+1+2l > 0, 1 ≤ k ≤ λ(hp), 1 ≤ r ≤ λ(hi), and 1 ≤ m ≤ λ(hj).

Performing similar computations for the other three possibilities we get the following conditions
on the parameters:

(i) k + r + 2l −m = p|λ|fλ + n− p+ 1

(p,k)

r

l,m✻✻

✛
< ❡

n−3

❡

n−2

❡

j

❡
i
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(ii) r +m− r̄ = λ(hi) + 2l.

r

r̄

l,m✻
✛

✛
< ❡

n−3

❡

n−2

❡

j

❡
i

(iii) p̄|λ|p−1 + p− p̄+m+ k − k̄ = λ(hi) + 2l.

(p̄,k̄)

l,m✻(p,k)✻

✲
< ❡

n−3

❡

n−2

❡

j

❡
i

We will show that we must have:

(i) m = 1 and p = fλ, with the indices satisfying the conditions stated in Theorem 5.1.1 for type

(d)k,li ;
(ii) r̄ = l = 1, showing that ω is of type (c)ri ;

(iii) ω is of type (f)
(p̄,k̄),(p,k)
i,l with the indices satisfying the conditions stated in Theorem 5.1.1.

Henceforth, we assume, without loss of generality, that i = n− 1 in (i), (ii), and (iii).

Possibility (i). We begin observing that the condition k ≤ λ(hp) implies that r ≥ 3. Indeed, if
r ≤ 2, we would have

k > k −m =p |λ|fλ + n− p+ 1− r − 2l ≥p |λ|fλ + n− p− 1− 2l ≥ λ(hp)

where the last inequality follows because 2l ≤ n− fλ − 1 implies that n− p− 1− 2l ≥ 0.

Next, we show that m = 1. Suppose, by contradiction, that m > 1 and choose r′n ∈ Z such
that, letting ̟ be defined by

̟In = ωIn and ̟n = Yn,r′n,λ(hn),

we have

(5.3.11) ̟Iλ satisfies (5.1.5) with i = n− 1 and (l, 1).

Hence, combining (5.1.3) with i = n− 1 and (5.3.11), one gets

rfλ + 2(λ(hfλ)− 1) + n− fλ + 1 = rn + 2(p|λ|fλ + n− p+ 1− k − 2l).

In other words, ̟In−1 satisfies (5.1.1) with

r′ := p|λ|fλ + n− p+ 1− k − 2l + 1

in place of r. Thus, if m > 1, we have

r′ < p|λ|fλ + n− p+ 1− k − 2l +m = r.

Lemma 5.2.1(a) then implies that Vq(̟) < Vq(ω), yielding a contradiction.

It remains to show that p = fλ. Let p
′ = min{i ∈ supp(λ) : i > p}. Suppose, by contradiction,

that p < fλ. Assume first that

(5.3.12) l ≥
1

2
(p′ − p+ λ(hp)− k + 2) + 1

and

(5.3.13) p′ − p+ λ(hp)− k + 2 is odd.
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Let

r′n−1 = rn−1 − 2(p′ − p+ λ(hp)− k + 1)

and let ̟ be defined by

̟In−1 = ωIn−1 and ̟n−1 = Yn−1,r′n−1,λ(hn−1).

Using (5.1.3) and (3.3.2) with p and p′, we have

rn−1 + 2λ(hn−1) + n− p+ 1 = rp + 2k ⇒ r′n−1 + 2λ(hn−1) + n− p′ + 1 = rp′ + 2,

By (5.1.5),

rn + 2λ(hn) + 4l = rn−1 + 2⇒ rn + 2λ(hn) + 4

(
l −

1

2
(p′ − p+ λ(hp)− k + 1)

)
= r′n−1 + 2

Let l′ = 1
2(p

′ − p+ λ(hp)− k + 1). Observe that

̟In−1 satisfies (5.1.3) with (p′, 1) and ̟Iλ satisfies (5.1.5) with i = n and (l − l′, 1).

Since ̟In−1 = ωIn−1 , p
′ > p and l − l′ < l, it follows from Lemma 5.2.1(a) that Vq(̟) < Vq(ω),

contradicting the minimality of Vq(ω). If l ≥ 1
2(p

′−p+λ(hp)−k+2)+1 and p′−p+λ(hp)−k+2

is even, let ̟ ∈ P+ be such that wt(̟) = λ, ̟i = ωi for all i ∈ A, and ̟n−1 = Yi,r′i,λ(hi) for
i = n− 1, n, where

r′n−1 = rn−1 − 2(p′ − p+ λ(hp)− k + 1) and r′n = rn + 2.

Hence, using (3.3.2) with p and p′,

rn−1 + 2λ(hn−1) + n− p+ 1 = rp + 2k ⇒ r′n−1 + 2λ(hn−1) + n− p′ + 1 = rp′ + 2.

Also

rn + 2λ(hn) + 4l = rn−1 + 2⇒ r′n + 2λ(hn) + 4

(
l −

1

2
(p′ − p+ λ(hp)− k + 2)

)
= r′n−1 + 2,

and

rfλ + 2λ(hfλ) + n− fλ + 1 = rn + 2r ⇒ rfλ + 2λ(hfλ) + n− fλ + 1 = r′n + 2(r − 1).

Let l′ = 1
2(p

′ − p+ λ(hp)− k + 2). Since l − l′ ≥ 1 and r > 1, it follows that

̟In−1 satisfies (5.1.1) with r − 1,

̟In satisfies (5.1.3) with (p′, 1),

̟Iλ satisfies (5.1.5) with i = n and (l − l′, 1).

Since l − l′ ≤ l, p′ > p and r − 1 < r, it follows from Lemma 5.2.1(a) that Vq(̟) < Vq(ω),
contradicting the minimality of Vq(ω). Finally, suppose l < 1

2(p
′ − p+ λ(hp)− k+ 2) + 1. Observe

that

k + r + 2l = p|λ|fλ + n− p+ 2⇒ n− p+ λ(hp)− k − 2l − r + 2 = −p+1|λ|fλ < 0.

Hence,

(5.3.14) r > n− p+ λ(hp)− k − 2l + 2 ≥ p′ − p+ λ(hp)− k − 2l + 4.

Let ̟ ∈ P+ be such that wt(̟) = λ, ̟i = ωi for all i ∈ A, and ̟n−1 = Yi,r′i,λ(hi) for i = n−1, n,
where

r′n−1 = rn−1 − 2(p′ − p+ λ(hp)− k + 1) and r′n = rn + 2(p′ − p+ λ(hp)− k − 2l + 3).

Hence, using (3.3.2) with p and p′,

rn−1 + 2λ(hn−1) + n− p+ 1 = rp + 2k ⇒ r′n−1 + 2λ(hn−1) + n− p′ + 1 = rp′ + 2.
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Also
rn + 2λ(hn) + 4l = rn−1 + 2⇒ r′n + 2λ(hn) + 4 = r′n−1 + 2,

and condition (5.1.1) with i = n− 1 and r implies that

rfλ + 2λ(hfλ) + n− fλ + 1 = r′n−1 + 2(r − (p′ − p+ λ(hp)− k − 2l + 3)).

Let r′ = p′ − p+ λ(hp)− k − 2l + 3. By (5.3.14), r − r′ ≥ 1. Thus it follows that

̟In−1 satisfies (5.1.1) with r − r′,

̟In satisfies (5.1.3) with (p′, 1),

̟Iλ satisfies (5.1.5) with i = n and (1, 1).

Since r−r′ < r, p′ > p and 1 ≤ l, it follows from Lemma 5.2.1(a) that Vq(̟) < Vq(ω), contradicting
the minimality of Vq(ω).

Moreover, we show that the following conditions hold:

(1) If r ≤ k, then λ(hn−1) + 3− r > min{l, λ(hn)}.
(2) If p ∈ supp(λ) ∩A \ {fλ}, 0 ≤ k

′ < k and 1 ≤ l′ ≤ l are such that

1 ≤ k := p|λ|fλ + n− p+ 2− r − 2l − 2l′ − k′ − λ(hn−1) ≤ min{λ(hp), λ(hn)},

then r − p|λ|fλ ≤ k.

Suppose that (1) fails. Then r ≤ k and λ(hn−1) + 3− r ≤ min{l, λ(hn)}. Let ̟ ∈ P
+ be such

that wt(̟) = λ, ̟i = ωi for all i ∈ A, and for i = n− 1, n, ̟i = Yi,r′i,λ(hi) where

r′n−1 = rn−1 + 2(λ(hn−1) + 2l − 1) and r′n = rn + 2(r − 1).

Hence,

rfλ + 2λ(hfλ) + n− fλ + 1 = rn + 2r ⇒ rfλ + 2λ(hfλ) + n− fλ + 1 = r′n + 2,

rn−1 + 2λ(hn−1) + 4l = rn + 2⇒ r′n−1 + 2λ(hn−1) + 4 = r′n + 2(λ(hn−1) + 3− r),

and

rn−1+2λ(hn−1)+n−fλ+1 = rfλ+2k ⇒ rfλ+2λ(hfλ)+n−fλ+1 = r′n−1+2(λ(hfλ)+n−fλ+2−k−2l).

Let m = λ(hn−1) + 3− r. Since r = λ(hfλ) + n− fλ + 2− k − 2l and r ≤ k, it follows that

̟In−1 satisfies (5.1.1) with r,

̟In satisfies (5.1.1) with 1

̟Iλ satisfies (5.1.5) with i = n− 1 and (1,m).

Since m ≤ l and r ≤ k, it follows from Lemma 5.2.1(a) that Vq(̟) < Vq(ω), contradicting the
minimality of Vq(ω).

Now suppose that (2) fails. Then there are p ∈ supp(λ) ∩ A \ {fλ}, 0 ≤ k′ < k and 1 ≤ l′ ≤ l
such that

1 ≤ k′′ := p|λ|fλ + n− p+ 2− r − 2l − 2l′ − k′ − λ(hn−1) ≤ min{λ(hp), λ(hn)},

and r − p|λ|fλ > k′′. Let ̟ ∈ P+ be such that wt(̟) = λ, ̟i = ωi for all i ∈ A, and for
i = n− 1, n, ̟i = Yi,r′i,λ(hi) where

r′n−1 = rn−1 − 2k′ and r′n = rn + 2(2− 2l − 2l′ − λ(hn−1)− λ(hn)− k
′).

Hence,

rn−1 + 2λ(hn−1) + n− fλ + 1 = rfλ + 2k ⇒ r′n−1 + 2λ(hn−1) + n− fλ + 1 = rfλ + 2(k − k′),

rn−1 + 2λ(hn−1) + 4l = rn + 2⇒ r′n + 2λ(hn) + 4 = r′n + 2,
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and

rfλ + 2λ(hfλ) + n− fλ + 1 = rn + 2r ⇒ r′n + 2λ(hn) + n− p+ 1 = rp + 2k′′.

Thus it follows that

̟In−1 satisfies (5.1.3) with (fλ, k − k
′),

̟In satisfies (5.1.3) with (p, k′′)

̟Iλ satisfies (5.1.5) with i = n and (l′, 1).

Since k − k′ ≤ k, l′ ≤ l and r − p|λ|fλ > k′′, it follows from Lemma 5.2.1(a) that Vq(̟) < Vq(ω),
contradicting the minimality of Vq(ω).

Possibility (ii). Observe that r ≥ 3 since, otherwise, m > m − r̄ = λ(hn−1) + 2l − r ≥ λ(hn−1).
Also, m ≥ 3 since, otherwise, r > r − r̄ = λ(hn−1) + 2l −m ≥ λ(hn−1), implying by Lemma 4.4.2
that l = 1. Similarly one easily verifies that m− r̄ ≥ 2, implying in particular that m > r̄. Now we
show that r̄ = 1. Suppose, by contradiction, r̄ > 1. Let ̟ ∈ P+ be such that wt(̟) = λ, ̟i = ωi

for all i ∈ In, ̟n = Yn,r′n,λ(hn) and

(5.3.15) ̟In−1 satisfies (5.1.1) with r′ = 1.

Hence, combining (5.1.5) with i = n− 1 and (5.3.5), one gets

rn−1 + 2λ(hn−1) + 4 = r′n + 2(m− r̄ + 1).

In other words, ̟Iλ satisfies (5.1.5) with i = n− 1, l = 1 and

m′ := m− r̄ + 1 < m,

since r̄ > 1.

Observe that Vq(̟) is of type (c)rn−1. We show that [Vq(̟)] < [Vq(ω)], which gives a con-
tradiction. Evidently, mµ(Vq(̟)) = mµ(Vq(ω)) = 1. Suppose mµ(Vq(̟)) > 0 where µ = λ − η,
η =

∑
i∈I niαi, ni ∈ Z≥0, η 6= 0. If nn = 0, since ̟In = ωIn , it follows from Lemma 2.6.1 that

mµ(Vq(̟)) = mµIn
(Vq((̟)In)) = mµIn

(Vq(ωIn)) = mµ(Vq(ω)).

Suppose nn > 0. Applying Lemma 2.6.2 with J1 = {n}, i0 = n−2 and J2 = {1, . . . , n−3, n−1},
it follows nn−2 > 0. Similarly, for j ∈ {2, . . . , n − 3}, considering J1 = {1, . . . , j − 1}, i0 = j,
J2 = {j + 1, . . . , n}, it follows that if nj = 0, then ni = 0 for all i ∈ {1, . . . , j − 1}. Consider
j ∈ {1, . . . , n−3} the biggest index such that nj = 0. Thus nj+1, . . . , nn−2, nn−1, nn > 0. If j ≥ fλ,
then it follows from Lemma 4.5.1(iii) that

[Vq(̟{j+1,...,n})] < [Vq(ω{j+1,...,n})].

Suppose j < fλ. It follows from Proposition 3.5.1 that if

µ = ̟A−1
fλ,n−2,rfλ+2(λ(hfλ

)−1)A
−1
n,rfλ+2(λ(hfλ

)−1)+n−fλ
,

then µIn−1
6∈ wtℓ(Vq(̟In−1)) and µIn−1

∈ wtℓ(Vq(ωIn−1)). Also, it follows from the proof of

Proposition 3.5.1 that, if ν = wt(µ) = λ −
∑n−2

i=fλ
αi − αn, then mν(Vq(̟In−1)) < mν(Vq(ωIn−1)).

Therefore, by Lemma 2.6.1,

mν(Vq(̟)) < mν(Vq(ω)).

Since ν ≥ µ, the proof of case (ii) follows.

Possibility (iii). First observe, combining hypotheses (5.1.1) with i = n − 1, (5.1.3) with i = n
and (5.1.5) with i = n, that

p ≥ p̄.
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Now we show that either k or k̄ is equal to 1. Suppose, by contradiction k, k̄ > 1. Let ̟ ∈ P+

be such that wt(̟) = λ, ̟i = ωi for all i ∈ A, ̟i = Yi,r′i,λ(hi) for i = n− 1, n where

r′n−1 = rn−1 − 2 and r′n = rn − 2.

Thus,

rn−1 + 2λ(hn−1) + n− p+ 1 = rp + 2k ⇒ r′n−1 + 2λ(hn−1) + n− p+ 1 = rp + 2(k − 1),

and
rn + 2λ(hn) + n− p̄+ 1 = rp + 2k̄ ⇒ r′n + 2λ(hn) + n− p̄+ 1 = rp̄ + 2(k̄ − 1).

Since k, k̄ > 1, it follows that

̟In and ̟In−1 satisfy (5.1.3) with (p, k − 1) and (p̄, k̄ − 1), respectively.

Also, one can easily checks that

̟Iλ satisfies (5.1.5) with i = n and (l,m).

Therefore, by Lemma 5.2.1(a), Vq(̟) < Vq(ω), contradicting the minimality of Vq(ω).

Suppose k̄ = 1. If l > 1, which implies by Lemma 4.4.2 that m = 1, 2, we show that the
following conditions hold.

(1) k ≤ 2. Besides, if m = 2, then k = 1.
(2) If p̄ < fλ, given i, ī ∈ supp(λ) and max{0, k−λ(hi)} ≤ k

′ < max{k,m} such that p̄ < ī ≤ i ≤ fλ;
p ≤ i and 0 ≤ ī− p̄+ p̄|λ|̄i−1 − i+ p− p|λ|i−1 + k′ is even, then

l <
1

2
(̄i− p̄+ p̄|λ|̄i−1 − i+ p− p|λ|i−1 + k′) + 1.

(3) If p < fλ, given i, ī ∈ supp(λ) and max{0, k−λ(hi)} ≤ k
′ < max{k,m} such that p ≤ i < ī ≤ fλ

and ī− i+ i|λ|̄i−1 + 2l − k + k′ + 2− λ(hn) is even then

either
1

2
(̄i−i+ i|λ|̄i−1+2l−k+k′+2−λ(hn)) < l or

1

2
(̄i−i+ i|λ|̄i−1+2l−k+k′+2−λ(hn)) > 2l.

Suppose that (1) fails. Thus k > 2. Let ̟ ∈ P+ be such that wt(̟) = λ, ̟i = ωi for all
i ∈ In−1, and ̟n−1 = Yn−1,r′n−1,λ(hn−1) where r

′
n−1 = rn−1 − 4. Hence,

rn−1 + 2λ(hn−1) + n− p+ 1 = rp + 2k ⇒ r′n−1 + 2λ(hn−1) + n− p+ 1 = rp + 2(k − 2),

and
rn + 2λ(hn) + 4l = rn−1 + 2m⇒ rn + 2λ(hn) + 4(l − 1) = r′n−1 + 2m.

Since l > 1 and k > 2, it follows that

̟In−1 satisfies (5.1.3) with (p, k − 2) and ̟Iλ satisfies (5.1.5) with i = n and (l − 1,m).

Since ̟In−1 = ωIn−1 , it follows from Lemma 5.2.1(a) that Vq(̟) < Vq(ω), contradicting the

minimality of Vq(ω). Suppose now m = 2. If k > 1, letting ̟ ∈ P+ be such that wt(̟) = λ,
̟i = ωi for all i ∈ In−1, and ̟n−1 = Yn−1,r′n−1,λ(hn−1) where r

′
n−1 = rn−1 − 2, one can similarly

checks that

̟In−1 satisfies (5.1.3) with (p, k̄ − 1) and ̟Iλ satisfies (5.1.5) with i = n and (l − 1, 1),

which implies Vq(̟) < Vq(ω).

Suppose now that (2) fails. Then, there exist i, ī ∈ supp(λ) and max{0, k − λ(hi)} ≤ k′ <
max{k,m} such that p̄ < ī ≤ i ≤ fλ; p ≤ i, 0 ≤ ī− p̄+ p̄|λ|̄i−1 − i+ p− p|λ|i−1 + k′ is even and

l ≥
1

2
(̄i− p̄+ p̄|λ|̄i−1 − i+ p− p|λ|i−1 + k′) + 1.
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First consider m = 1, which implies max{k,m} = k = 1, 2. Let ̟ ∈ P+ be such that wt(̟) = λ,
̟i = ωi for all i ∈ A, and ̟i = Yi,r′i,λ(hi) for i = n− 1, n, where

(5.3.16) r′n = rn + 2(̄i− p̄+ p̄|λ|̄i−1) and r′n−1 = rn−1 + 2(i− p+ p|λ|i−1 − k
′).

Hence, using (3.3.2) with p̄ and ī,

(5.3.17) rn + 2λ(hn) + n− p̄+ 1 = rp̄ + 2⇒ r′n + 2λ(hn) + n− ī+ 1 = rī + 2.

Also, (3.3.2) with p and i,

(5.3.18) rn−1 + 2λ(hn−1) + n− p+ 1 = rp + 2k ⇒ r′n−1 + 2λ(hn−1) + n− i+ 1 = ri + 2(k − k′).

Finally, condition rn + 2λ(hn) + 4l = rn−1 + 2 implies that

r′n + 2λ(hn) + 4

(
l −

1

2
(̄i− p̄+ p̄|λ|̄i−1 − i+ p− p|λ|i−1 + k′)

)
= r′n−1 + 2.

Let l′ = l− 1
2 (̄i− p̄+ p̄|λ|̄i−1− i+ p− p|λ|i−1+ k′). By the conditions on the parameters, it follows

that

̟In−1 satisfies (5.1.3) with (̄i, 1),

̟In satisfies (5.1.3) with (i, k − k′),

̟Iλ satisfies (5.1.5) with i = n and (l′, 1).

Since ī > p̄, i ≥ p, k − k′ ≤ k and l′ ≤ l, it follows from Lemma 5.2.1(a) that Vq(̟) < Vq(ω),
contradicting the minimality of Vq(ω). Consider now m = 2, which implies k = 1, max{0, k −
λ(hi)} = 0 and max{k,m} = 2. If k′ = 0, letting ̟ be defined as above one gets similarly a
contradiction. If k′ = 1, let ̟ ∈ P+ be such that wt(̟) = λ, ̟i = ωi for all i ∈ A, and
̟i = Yi,r′i,λ(hi) for i = n− 1, n, where

(5.3.19) r′n = rn + 2(̄i− p̄+ p̄|λ|̄i−1) and r′n−1 = rn−1 + 2(i− p+ p|λ|i−1).

Hence, using (3.3.2) with p̄ and ī,

(5.3.20) rn + 2λ(hn) + n− p̄+ 1 = rp̄ + 2⇒ r′n + 2λ(hn) + n− ī+ 1 = rī + 2.

Also, (3.3.2) with p and i,

(5.3.21) rn−1 + 2λ(hn−1) + n− p+ 1 = rp + 2⇒ r′n−1 + 2λ(hn−1) + n− i+ 1 = ri + 2.

Finally, condition rn + 2λ(hn) + 4l = rn−1 + 4 implies that

r′n + 2λ(hn) + 4

(
l −

1

2
(̄i− p̄+ p̄|λ|̄i−1 − i+ p− p|λ|i−1 + 1)

)
= r′n−1 + 2.

Let l′ = l− 1
2 (̄i− p̄+ p̄|λ|̄i−1− i+ p− p|λ|i−1 +1). By the conditions on the parameters, it follows

that

̟In−1 satisfies (5.1.3) with (̄i, 1),

̟In satisfies (5.1.3) with (i, 1),

̟Iλ satisfies (5.1.5) with i = n and (l′, 1).

Since ī > p̄, i ≥ p, l′ ≤ l and 1 < 2 = m, it follows from Lemma 5.2.1(a) that Vq(̟) < Vq(ω),
contradicting the minimality of Vq(ω).

Suppose now that (3) fails. Then, there exist i, ī ∈ supp(λ) and max{0, k − λ(hi)} ≤ k′ <
max{k,m} such that p ≤ i < ī ≤ fλ, ī− i+ i|λ|̄i−1 + 2l − k + k′ + 2− λ(hn) is even and

0 ≤ −l +
1

2
(̄i− i+ i|λ|̄i−1 + 2l − k + k′ + 2− λ(hn)) ≤ l.
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First consider m = 1, which implies max{k,m} = k = 1, 2. Let ̟ ∈ P+ be defined as in (5.3.16).
Then, (5.3.17) and (5.3.18) holds. Finally, condition rn + 2λ(hn) + 4l = rn−1 + 2 implies that

r′n−1 + 2λ(hn−1) + 4

(
−l +

1

2
(̄i− p̄+ p̄|λ|̄i−1 + 2− i+ p− p|λ|i−1 + k′ − λ(hn−1)− λ(hn))

)

= r′n + 2.

Let l′ = −l+ 1
2 (̄i− p̄+ p̄|λ|̄i−1+2− i+ p− p|λ|i−1+k

′−λ(hn−1)−λ(hn)). Observe that, condition

(5.3.22) p̄|λ|p−1 + p− p̄+m+ k = λ(hn−1) + 2l + 1

implies that

l′ = −l +
1

2
(̄i− i+ i|λ|̄i−1 + 2l − k + k′ + 2− λ(hn)).

By the conditions on the parameters, it follows that

̟In−1 satisfies (5.1.3) with (̄i, 1),

̟In satisfies (5.1.3) with (i, k − k′),

̟Iλ satisfies (5.1.5) with i = n− 1 and (l′, 1).

Since ī > p ≥ p̄, i ≥ p, l′ ≤ l and k − k′ ≤ k, it follows from Lemma 5.2.1(a) that Vq(̟) < Vq(ω),
contradicting the minimality of Vq(ω). If m = 2 similarly one can get a contradiction.

If l = 1, we first show that the following condition holds.

(1) k < λ(hfλ) + p− p̄+ n− fλ − 1.
(2) If p < fλ, given i, ī ∈ supp(λ) and max{0, k − λ(hi)} ≤ k′ < k such that p̄ ≤ ī ≤ i ≤ fλ; p < i

and ī− p̄+ p̄|λ|̄i−1 ≤ i− p+ p|λ|i−1 − k
′, then

m < i− p+ p|λ|i−1 − k
′ − ī+ p̄− p̄|λ|̄i−1 + 1.

(3) If p < fλ, given i, ī ∈ supp(λ) and max{0, k − λ(hi)} ≤ k
′ < k such that p ≤ i < ī ≤ fλ then

either λ(hn) + 1 + k − k′ − ī+ i− i|λ|̄i−1 < 1 or λ(hn) + 1 + k − k′ − ī+ i− i|λ|̄i−1 > m.

Suppose that (1) fails. Thus,

k ≥ λ(hfλ) + p− p̄+ n− fλ − 1.

Let ̟ ∈ P+ be such that wt(̟) = λ, ̟i = ωi for all i ∈ A, ̟i = Yi,r′i,λ(hi) for i = n− 1, n where

r′n−1 = rn−1 + 2( p̄|λ|fλ−1 + fλ − p− 1 +m) and r′n = rn + 2( p̄|λ|fλ−1 + fλ − p).

Hence, using (3.3.2) with p̄ and fλ,

rn + 2λ(hn) + n− p̄+ 1 = rp̄ + 2⇒ r′n + 2λ(hn) + n− fλ + 1 = rfλ + 2.

Also, (3.3.2) with p and fλ, condition rn−1 + 2λ(hn−1) + n− p+ 1 = rp + 2k implies that

rfλ + 2λ(hfλ) + n− fλ + 1 = r′n + 2( p|λ|fλ + n− fλ + 2 + λ(hn−1)− k − p̄|λ|fλ−1 −m).

Let r := p|λ|fλ + n − fλ + 2 + λ(hn−1) − k − p̄|λ|fλ−1 − m. Condition described in (iii) (with
k̄ = l = 1) implies that

r = λ(fλ) + n− fλ − 1.

Finally, condition rn + 2λ(hn) + 4 = rn−1 + 2 implies that

r′n + 2λ(hn) + 4 = r′n−1 + 2.

Since 1 ≤ r ≤ k, it follows that

̟In−1 satisfies (5.1.1) with r,

̟In satisfies (5.1.3) with (fλ, 1),
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̟Iλ satisfies (5.1.5) with i = n and (1, 1).

Since fλ > p̄, r ≤ k and m ≥ 1, it follows from Lemma 5.2.1(a) that Vq(̟) < Vq(ω), contradicting
the minimality of Vq(ω).

Suppose that (2) fails. Thus, there exist i, ī ∈ supp(λ) and max{0, k − λ(hi)} ≤ k′ < k such
that

m ≥ i− p+ p|λ|i−1 − k
′ − ī+ p̄− p̄|λ|̄i−1 + 1.

Let ̟ ∈ P+ be defined as in (5.3.16). Thus, one can see that (5.3.17) and (5.3.18) hold. Condition
rn + 2λ(hn) + 4 = rn−1 + 2m implies that

r′n + 2λ(hn) + 4 = r′n−1 + 2(m− (i− p+ p|λ|i−1 − k
′ − ī+ p̄− p̄|λ|̄i−1)).

Let m′ = m− (i−p+ p|λ|i−1−k
′− ī+ p̄− p̄|λ|̄i−1). By the conditions on the parameters, it follows

that
̟In−1 satisfies (5.1.3) with (̄i, 1),

̟In satisfies (5.1.3) with (i, k − k′),

̟Iλ satisfies (5.1.5) with i = n and (1,m′).

Since i > p, ī ≥ p̄, k − k′ ≤ k and m′ ≤ m, it follows from Lemma 5.2.1(a) that Vq(̟) < Vq(ω),
contradicting the minimality of Vq(ω). Now, suppose p = p̄. Thus, from the condition given in
(iii), we have

(5.3.23) k +m = λ(hn−1) + 3.

Hence k ≥ 3, since otherwise m = λ(hn−1) + 3 − k > λ(hn−1). Similarly, m ≥ 3. Let ̟ ∈ P+ be
such that wt(̟) = λ, ̟i = ωi for all i ∈ A, and ̟i = Yi,r′i,λ(hi) for i = n− 1, n and

(5.3.24) r′n−1 = rfλ + 2λ(hfλ) + n− fλ + 1− 2k and r′n = rfλ + 2λ(hfλ) + n− fλ − 1.

If follows from (5.3.24) that

(5.3.25) r′n−1 + 2λ(hn−1) + 4 = r′n + 2(λ(hn−1)− k + 3)
(5.3.23)
= r′n + 2m.

Since 1 ≤ k ≤ min{λ(hp), λ(hn−1)} ≤ min{|λ|n−2, λ(hn−1)}, it follows from (5.3.24) and (5.3.25)
that

̟In−1 satisfies (5.1.1) with k,

̟In satisfies (5.1.1) with 1,

̟Iλ satisfies (5.1.5) with i = n− 1 and (1,m).

In other words ̟ is of type (c)kn−1. By Lemma 5.2.1(a), Vq(̟) < Vq(ω), yielding a contradiction.

Suppose now that (3) fails. Thus, there exist i, ī ∈ supp(λ) and max{0, k − λ(hi)} ≤ k′ < k
such that

1 ≤ λ(hn) + 1 + k − k′ − ī+ i− i|λ|̄i−1 ≤ m.

Let ̟ ∈ P+ be defined as in (5.3.16). Thus, one can see that (5.3.17) and (5.3.18) hold. Condition
rn + 2λ(hn) + 4 = rn−1 + 2m implies that

r′n−1 + 2λ(hn−1) + 4 = r′n + 2(λ(hn) + λ(hn−1) + 4−m+ i− p+ p|λ|i−1 − k
′ − (̄i− p̄+ p̄|λ|̄i−1)).

Let m′ = λ(hn) +λ(hn−1) + 4−m+ i− p+ p|λ|i−1− k
′− (̄i− p̄+ p̄|λ|̄i−1). It follows from (5.3.22)

that
m′ = λ(hn) + 1 + k − k′ − ī+ i− i|λ|̄i−1.

By the conditions on the parameters, it follows that

̟In−1 satisfies (5.1.3) with (̄i, 1),

̟In satisfies (5.1.3) with (i, k − k′),
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̟Iλ satisfies (5.1.5) with i = n− 1 and (1,m′).

Since i ≥ p ≥, ī > p ≥ p̄, k − k′ ≤ k and m′ ≤ m, it follows from Lemma 5.2.1(a) that Vq(̟) <
Vq(ω), contradicting the minimality of Vq(ω).

Suppose now k̄ > 1, which implies k = 1. We show that m = 1. Indeed, suppose by contradic-
tion m > 1. Let ̟ ∈ P+ be such that wt(̟) = λ, ̟i = ωi for all i ∈ In, and ̟n = Yn,r′n,λ(hn)

where r′n = rn − 2. Thus,

rn + 2λ(hn) + n− p̄+ 1 = rp̄ + 2k̄ ⇒ r′n + 2λ(hn) + n− p̄+ 1 = rp̄ + 2(k̄ − 1),

and

rn + 2λ(hn) + 4l = rn−1 + 2m⇒ r′n + 2λ(hn) + 4l = rn−1 + 2(m− 1).

Since m, k̄ > 1, it follows that

̟In−1 satisfies (5.1.3) with (p̄, k̄ − 1) and ̟Iλ satisfies (5.1.5) with i = n and (l,m− 1).

Since ̟In−1 = ωIn−1 , it follows from Lemma 5.2.1(a) that Vq(̟) < Vq(ω), contradicting the
minimality of Vq(ω).

Besides, the following condition hold. If p̄ < fλ, given i, ī ∈ supp(λ) and 0 ≤ l′ < l such that
p̄ < ī ≤ i ≤ fλ; p ≤ i with either l′ > 0 or p < i, and i− p+ p|λ|i−1 + 2l′ ≤ ī− p̄+ ī|λ|p̄−1, then

either k̄ < ī−p̄+ ī|λ|p̄−1−i+p−p|λ|i−1−2l
′+1 or k̄ > ī−p̄+ ī|λ|p̄−1−i+p−p|λ|i−1−2l

′+λ(hī).

Suppose, by contradiction, that this is not the case. Thus, there exist i, ī, l′, under the above
conditions such that

ī− p̄+ ī|λ|p̄−1 − i+ p− p|λ|i−1 − 2l′ + 1 ≤ k̄ ≤ ī− p̄+ ī|λ|p̄−1 − i+ p− p|λ|i−1 − 2l′ + λ(hī).

Let ̟ ∈ P+ be such that wt(̟) = λ, ̟i = ωi for all i ∈ A, and ̟i = Yi,r′i,λ(hi) for i = n− 1, n,
where

(5.3.26) r′n−1 = rn−1 + 2(i− p+ p|λ|i−1) and r′n = rn + 2(i− p+ p|λ|i−1 + 2l′).

Hence, using (3.3.2) with p and i,

(5.3.27) rn−1 + 2λ(hn−1) + n− p+ 1 = rp + 2⇒ r′n−1 + 2λ(hn−1) + n− i+ 1 = ri + 2.

Also,

rn + 2λ(hn) + 4l = rn−1 + 2⇒ r′n + 2λ(hn) + 4(l − l′) = r′n−1 + 2.

Finally, using (3.3.2) with p̄ and ī, condition (5.1.3) (with i = n and (p̄, k̄)) implies that

(5.3.28) r′n + 2λ(hn) + n− ī+ 1 = rī + 2(k̄ − (̄i− p̄+ p̄|λ|̄i−1 − i+ p− p|λ|i−1 − 2l′)).

Let k̄′ = k̄− (̄i− p̄+ p̄|λ|̄i−1− i+ p− p|λ|i−1− 2l′). By the conditions on the parameters, it follows
that

̟In−1 satisfies (5.1.3) with (̄i, k̄′),

̟In satisfies (5.1.3) with (i, 1),

̟Iλ satisfies (5.1.5) with i = n and (l − l′, 1).

Since ī > p̄, i ≥ p, l − l′ ≤ l and k̄′ ≤ k̄, it follows from Lemma 5.2.1(a) that Vq(̟) < Vq(ω),
contradicting the minimality of Vq(ω).

Moreover we show that the following condition holds. If p̄ < fλ, given i, ī ∈ supp(λ) and
max{0, k̄ − λ(hī)} ≤ k̄

′ < k̄ such that p ≤ i ≤ ī ≤ fλ, ī > p̄ and −λ(hn) + ī− p̄+ p̄|λ|̄i−1 − i+ p−

p|λ|i−1 + k′ is even, then

either l >
1

2
(−λ(hn) + ī− p̄+ p̄|λ|̄i−1 − i+ p− p|λ|i−1 + k′)
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or
1

2
(−λ(hn) + ī− p̄+ p̄|λ|̄i−1 − i+ p− p|λ|i−1 + k′) > 2l − 1.

Suppose, by contradiction, that this is not the case. Thus, there exist i, ī, k̄′, under the above
conditions such that

1 ≤ 1− l +
1

2
(−λ(hn) + ī− p̄+ p̄|λ|̄i−1 − i+ p− p|λ|i−1 + k′) ≤ l.

Let ̟ ∈ P+ be such that wt(̟) = λ, ̟i = ωi for all i ∈ A, and ̟i = Yi,r′i,λ(hi) for i = n− 1, n,
where

r′n = rn + 2(̄i− p̄+ p̄|λ|̄i−1 − k̄
′) and r′n−1 = rn−1 + 2(i− p+ p|λ|i−1).

Hence, using (3.3.2) with p̄ and ī,

(5.3.29) rn + 2λ(hn) + n− p̄+ 1 = rp̄ + 2⇒ r′n + 2λ(hn) + n− ī+ 1 = rī + 2(k̄ − k̄′).

Also, (3.3.2) with p and i,

(5.3.30) rn−1 + 2λ(hn−1) + n− p+ 1 = rp + 2k ⇒ r′n−1 + 2λ(hn−1) + n− i+ 1 = ri + 2.

Finally, condition rn + 2λ(hn) + 4l = rn−1 + 2 implies that

r′n−1 + 2λ(hn−1) + 4

(
1− l +

1

2
(−λ(hn) + ī− p̄+ p̄|λ|̄i−1 − i+ p− p|λ|i−1 + k′)

)
= r′n + 2.

Let l′ = 1− l+ 1
2(−λ(hn)+ ī− p̄+ p̄|λ|̄i−1−i+p− p|λ|i−1+k

′). By the conditions on the parameters,
it follows that

̟In−1 satisfies (5.1.3) with (̄i, k̄ − k̄′),

̟In satisfies (5.1.3) with (i, 1),

̟Iλ satisfies (5.1.5) with i = n− 1 and (l′, 1).

Since ī > p̄, i ≥ p, l′ ≤ l and k̄ − k̄′ ≤ k̄, it follows from Lemma 5.2.1(a) that Vq(̟) < Vq(ω),
contradicting the minimality of Vq(ω).

5.4. Proof of Step 2

We show that a minimal affinization Vq(ω) of type (a)-(f) cannot be related to any minimal
affinization Vq(̟) of the same type and some different parameters. Let {j, j′} = {n− 1, n}.

⋄ Let ω be of type (a)j and ̟ be of type (a)j′ . Then, it is not difficult to see that Vq(ωIj′
) <

Vq(̟Ij′
) and Vq(ωIj ) > Vq(̟Ij ), implying that Vq(ω) and Vq(̟) cannot be related.

⋄ Let ω be of type (b)j and ̟ be of type (b)j′ . Then, it is not difficult to see that Vq(ωIj ) <
Vq(̟Ij ) and Vq(ωIj′

) > Vq(̟Ij′
), implying that Vq(ω) and Vq(̟) cannot be related.

⋄ Let ω be of type (c)rj and ̟ be of type (c)r
′

j′ . In Case 3 we showed that r ≥ 3 in type (c)rj ,

then, it is not difficult to see that Vq(ωIj ) < Vq(̟Ij ) and Vq(ωIj′
) > Vq(̟Ij′

), implying that Vq(ω)

and Vq(̟) cannot be related. If ω be of type (c)rj and ̟ be of type (c)r
′

j , r 6= r′, suppose r < r′.
Since

r +m = λ(hj) + 3 = r′ +m′,

it follows that m > m′. Then, Vq(ωIj′
) < Vq(̟Ij′

) and Vq(ωIλ) > Vq(̟Iλ), implying that Vq(ω)

and Vq(̟) also cannot be related.

⋄ Let ω be of type (d)k,lj and ̟ be of type (d)k
′,l′

j′ . By condition described in this type:

r + k + 2l = λ(hfλ) + n− fλ + 2 = r′ + k′ + 2l′.
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Suppose, without loss of generality, 2l′ ≤ 2l. Thus r′−k ≥ r−k′. If r ≤ k′, by Proposition 3.6.1(iv)
Vq(ωIj ) < Vq(̟Ij ). If 2l′ < 2l, then Vq(ωIλ) > Vq(̟Iλ), implying that Vq(ω) and Vq(̟) cannot
be related. If 2l′ = 2l, then r′ ≤ k, and, by Proposition 3.6.1(iv), Vq(ωIj′

) > Vq(̟Ij′
), implying

that Vq(ω) and Vq(̟) also cannot be related. Finally, suppose k′ < r. Then r′ − k ≥ r − k′ > 0.
Hence r′ > k and again by Proposition 3.6.1(iv), Vq(ωIj′

) < Vq(̟Ij′
), and studying cases 2l′ < 2l

and 2l′ = 2l one gets that Vq(ω) and Vq(̟) cannot be related. If ω be of type (d)k,lj and ̟ be of

type (d)k
′,l′

j it is another application of Proposition 3.6.1(iv) to verify that Vq(ω) and Vq(̟) cannot
be related.

⋄ Let ω be of type (f)
(p̄,k̄),(p,k)
j,l . One can see in the proof of Case 3 that the conditions described

in this type are exactly that ones for not to exist ̟ of type (f)
(p̄′,k̄′),(p′,k′)
j,l′ or (f)

(p̄′,k̄′),(p′,k′)
j′,l′ such

that Vq(̟) < Vq(ω).

5.5. Proof of Step 3

We show that a minimal affinization Vq(ω) of type (a)-(f) cannot be related to any minimal
affinization Vq(̟) of other type (a)-(f). Let {j, j′} = {n− 1, n}.

⋄ Let ω be of type (a)j and ̟ be of type (b)j . Then, it is not difficult to see that Vq(ωIλ) <
Vq(̟Iλ) and Vq(ωIj ) > Vq(̟Ij ), implying that Vq(ω) and Vq(̟) cannot be related.

⋄ Let ω be of type (a)j and ̟ be of type (c)rj . In Case 3 we showed that r ≥ 3 in type (c)rj ,

then, it is not difficult to see that Vq(ωIj′
) < Vq(̟Ij′

) and Vq(ωIj ) > Vq(̟Ij ), implying that Vq(ω)

and Vq(̟) cannot be related.

⋄ Let ω be of type (a)j and ̟ be of type (d)k,lj . Then it is not difficult to see that Vq(ωIj′
) <

Vq(̟Ij′
) and Vq(ωIj ) > Vq(̟Ij ), implying that Vq(ω) and Vq(̟) cannot be related.

⋄ Let ω be of type (a)j and ̟ be of type (e). Then it is not difficult to see that Vq(ωIλ) <
Vq(̟Iλ) and Vq(ωIj ) > Vq(̟Ij ), implying that Vq(ω) and Vq(̟) cannot be related.

⋄ Let ω be of type (a)j and ̟ be of type (f)
(p̄,k̄),(p,k)
j,l . Then it is not difficult to see that

Vq(ωIj′
) < Vq(̟Ij′

) and Vq(ωIj ) > Vq(̟Ij ), implying that Vq(ω) and Vq(̟) cannot be related.

⋄ Let ω be of type (b)j and ̟ be of type (c)rj . In Case 3 we showed that r ≥ 3 in type (c)rj ,

then, it is not difficult to see that Vq(ω{fλ,...,n−2,l}) < Vq(̟{fλ,...,n−2,l}) and Vq(ωIλ) > Vq(̟Iλ),
implying that Vq(ω) and Vq(̟) cannot be related.

⋄ Let ω be of type (b)j and ̟ be of type (d)k,lj . In Case 3 we showed that r ≥ 3 in type (d)k,lj ,

then it is not difficult to see that Vq(ωIj ) < Vq(̟Ij ) and Vq(ωIλ) > Vq(̟Iλ), implying that Vq(ω)
and Vq(̟) cannot be related.

⋄ Let ω be of type (b)j and ̟ be of type (e). By Proposition 4.6.4(a), Vq(ω{fλ,...,n}) <
Vq(̟{fλ,...,n}) and, since #(supp(λ)∩A) > 1, Vq(ωIj′

) > Vq(̟Ij′
), implying that Vq(ω) and Vq(̟)

cannot be related.

⋄ Let ω be of type (b)j and ̟ be of type (f)
(p̄,k̄),(p,k)
j,l . Then it is not difficult to see that

Vq(ωIj ) < Vq(̟Ij ) and Vq(ωIλ) > Vq(̟Iλ), implying that Vq(ω) and Vq(̟) cannot be related.

⋄ Let ω be of type (c)rj and ̟ be of type (d)k,lj . In Case 3 we showed that r ≥ 3 in type (d)k,lj ,

then it is not difficult to see that Vq(ωIj ) < Vq(̟Ij ). Now one can see that, if Vq(ω) < Vq(̟),
then condition (1) described in the possibility (i) of Case 3 is not satisfied.
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⋄ Let ω be of type (c)rj and ̟ be of type (e). Then, it is not difficult to see that Vq(ωIλ) <

Vq(̟Iλ). In Case 3 we showed that r ≥ 3 in type (c)rj , then it is not difficult to see that Vq(ωIj′
) >

Vq(̟Ij′
), implying that Vq(ω) and Vq(̟) cannot be related.

⋄ Let ω be of type (c)rj and ̟ be of type (f)
(p̄,k̄),(p,k)
j,l . If ̟ satisfies (i) or (ii) of (f)

(p̄,k̄),(p,k)
j,l ,

then k ≤ 2. In Case 3 we showed that r ≥ 3 in type (c)rj , thus k < r, and by Lemma 5.2.1(b), Vq(ω)

and Vq(̟) are not related. Suppose now that ̟ satisfies (iii) of (f)
(p̄,k̄),(p,k)
j,l . It is not difficult to

see that Vq(ωIj ) < Vq(̟Ij ). Thus, either Vq(ω) < Vq(̟) or they are not related. Suppose, by
contradiction, Vq(ω) < Vq(̟). Then Vq(ωJ) ≤ Vq(̟J) for all J ⊆ I connected. In particular, for
J = Iλ we get

λ(hj) + 3− r ≤ λ(hj) + 3− k − ( p̄|λ|p−1 + p− p̄).

Hence
r ≥ k + p̄|λ|p−1 + p− p̄ > k.

Then, by Lemma 5.2.1(b), Vq(ω) and Vq(̟) are not related, yielding a contradiction.

⋄ Let ω be of type (d)k,lj and ̟ be of type (e). Then, it is not difficult to see that Vq(ωIλ) <

Vq(̟Iλ). In Case 3 we showed that r ≥ 3 in type (d)k,lj , then it is not difficult to see that

Vq(ωIj ) > Vq(̟Ij ), implying that Vq(ω) and Vq(̟) cannot be related.

⋄ Let ω be of type (d)k
′,l′

j and ̟ be of type (f)
(p̄,k̄),(p,k)
j,l or with j′ in place of j. One can see

that, if Vq(ω) > Vq(̟), then condition (2) described in the possibility (i) of Case 3 is not satisfied.
Now, if k̄, k ≤ 2, since r ≥ 3, either Vq(ω) and Vq(̟) are not comparable affinizations (Lemma
5.2.1(b)) or Vq(̟Ij ) < Vq(ωIj ), implying that Vq(ω) and Vq(̟) are not related. If k ≥ 3, then one
can see that if Vq(ω) ≤ Vq(̟), then condition (1) of the possibility (iii) of Case 3 is not satisfied.
If k̄ > 3, then k = m = 1 and one can verify that Vq(ω) 6≤ Vq(̟).

⋄ Let ω be of type (e) and ̟ be of type (f)
(p̄,k̄),(p,k)
j,l . Then, it is not difficult to see that

Vq(ωIj ) < Vq(̟Ij ) and Vq(ωIλ) > Vq(̟Iλ), implying that Vq(ω) and Vq(̟) cannot be related. �

Remark 5.5.1. If #(supp(λ) ∩A) = 1, then class (f) degenerates to a class of type (c) or (d).
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34. R. Moody and A. Pianzola, Lie Algebras with Triangular Decompositions, Wiley-Interscience (1995).
35. A. Moura, Restricted limits of minimal affinizations, Pacific J. Math. 244 (2010), 359–397.
36. A. Moura, An introduction to finite-dimensional representations of classical and quantum affine algebras, Trabajos
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