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Abstract

Motivated by the presence of the finite number of determining parameters (degrees of free-
dom) such as modes, nodes and local spatial averages for dissipative dynamical systems, specially
Navier-Stokes equations, we present in this thesis a new continuous data assimilation algorithm
for the three-dimensional Navier-Stokes-alpha model, which consists of introducing a general type
of approximation interpolation operator, (that is constructed from observational measurements),
into the Navier-Stokes-alpha equations.

The main result provides conditions on the finite-dimensional spatial resolution of the collected
data, sufficient to guarantee that the approximating solution, that is obtained from these collected
data, converges to the unknown reference solution (physical reality) over time. These conditions
are given in terms of some physical parameters, such as kinematic viscosity, the size of the domain

and the forcing term.

Keywords: Determining Modes, Volume Elements, Nodes, Continuous Data Assimilation,

Three-dimensional Navier-Stokes-alpha Equations.

Resumo

Motivados pela existéncia de um ntimero finito de pardmetros determinantes (graus de liber-
dade), tais como modos, nés e médias espaciais locais para sistemas dindmicos dissipativos, princi-
palmente as equacoes de Navier-Stokes, apresentamos nesta tese um novo algoritmo de assimilagao
continua de dados para o modelo tridimensional das equac¢oes Navier-Stokes-alpha, o qual consiste
na introducao de um tipo geral de operador interpolante de aproximagao (construido a partir de
medigoes observacionais) dentro das equagoes de Navier-Stokes-alpha.

O principal resultado garante condicoes sob a resolugao espacial de dimensao finita dos dados
coletados, suficientes para que a solucao aproximada, construida a partir desses dados coletados,
convirja para a referente solugdo que nao conhecemos (realidade fisica) no tempo. Essas condigdes
sao dadas em termos de alguns parametros fisicos, tais como a viscosidade cinematica, o tamanho
do dominio e o termo de forga.

Palavras-chave: Modos determinantes, Elementos de Volume, Nos, Assimilacdo Continua de

Dados, Equacoes de Navier-Stokes-alpha Tridimensionais.
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Chapter 1

Introduction

In Section 1, we present and discuss the relevance of Navier-Stokes-a equations in fluid dynamics
theory. In the second section, we discuss data assimilation and its importance in approximation
of solutions of certain PDE. We also treat determining parameters in Section 3.

In Section 4, we present a method of data assimilation studied by A. Azouani, E. Olson and
E.S. Titi, in [1], in 2013, on which this thesis was based.

In Section 5, we present our new data assimilation model for Navier-Stokes-a equations.

1.1 The dynamical model: The Navier-Stokes-a Equations

Turbulent flows are conventionally visualized as a cascade of large eddies (large-scale compo-
nents of the flow) breaking up successively into ever smaller sized eddies (fine-scale components
of the flow). In this process, the energy cascades toward ever smaller scales until it reaches the
dissipation scale. This cascade is a characteristic feature of turbulence.

This phenomenon is also the main difficulty in simulating turbulence numerically, because all
the numerical simulations will have finite resolution and it will not be able to keep up with the
cascade all the way to the dissipation scale, specially for flows near walls.

From the physical point of view, the effects of subgrid-scale fluid motions (small eddies, swirls,
vortices) occurring below the grid resolution should be modeled. We present here a modeling

scheme - called Navier-Stokes-a (NS-a) model in three dimensions with periodic boundary con-



R\
ditions Q = [0, L]® = <LZ> = T3 (the three-dimensional torus), where L > 0 is the size of

periodic domain:

ov

— —vAv—u x (Vxv)=-Vp+ f,

ot ( ) Pty (1.1.1)
div u =div v =0,

where:
(i) w = (u,ug,us) is the velocity of the fluid (called filtered velocity);
1
(ii) p=p— §V(|u|2—i—a2|Vu|2) + v - u is the modified pressure;
(iii) p is the pressure;
(iv) v > 0 is the kinematic viscosity;
(v) The function f is a given body forcing;

(vi) o > 0 is taken as a constant with dimension of length and the filtering relation u = G, * v

for the advection velocity in the NS-a model is specified as
v=u—a’Au,

that is, the filtering kernel GG, for the NS-a model turns out to be the Green’s function for the
Helmholtz operator, (I — a?A). The velocity v is also known as unfiltered velocity.

The parameter a specifies the smallest scale that actively participates in the dynamics, scales
larger than « are resolved explicitly, while motion on scales below « is "swept" by the large scales,
a consequence of Taylor’s Hypothesis.

The notation V x u for some vector-value field u = (uq, ug, uz) represents the curl of u, which

is well known in three dimensions by

V% — (9U3 . 8uz 3u1 _ 8U3 8u2 . 8u1
“\oy 02z 0z Ox 0x Oy)

The non-linear term in (1.1.1) satisfies the following identity:

—ux(Vxuv)=— i(uﬁw —u;Vu;) = (u-V)v+ iuiVUi —V(v-u), (1.1.2)

=1 i=1



with u = (uy, uz, u3),v = (v1,v2,v3) provided (for instance) u,v € C1(Q) (see [9]). For u = v, we

have

—ux (V xv) = (v-w}—;v (fjm>

i=1
The Navier-Stokes-a model is also refered in the literature as the viscous Camassa-Holm

equations or Lagrangian-averaged Navier-Stokes-a (LANS-«) model. An equivalent alterna-

tive formulation is to rewrite (1.1.1) as

v

— —vAv+u-Vo+ (V)T -v=-VP+ 7,

ot (V) d (1.1.3)
div u =div v =0,

where P = p — 1V (|ul*+a?|Vul?).

The LANS-a motion equation satisfies the Kelvin circulation Theorem:

d Ov
il dr = 7{ - . T, -d
i frw v-dr ”» <8t +u-Vo+ (Vu) v) x

= ﬁ(u)(yAv + f) - dx.

For o = 0, the NS-ae model reduces to the exact 3D Navier-Stokes system:

ou

— —vAu+ (u-V)u=—-Vp+ f,

g ~vAut(u-Vu ptf (1.1.4)
div u =0,

and for v = a = 0, NS-a reduces to 3D Euler equations:

ou
X (- Vu=—-Vp+f,
gp TV ptf (1.1.5)

div v = 0.

It is known (see [19]) that the L?-energy (kinetic energy) is conserved quantity in Euler equa-
tions, in the absence of external forces. For Navier-Stokes equations, the kinetic energy E(T')

satisfies the differential equation

d
—_— = — / 2
Bt =—v | [Vul'dz,

where u is a smooth solution to the Navier-Stokes equations. In the case of NS-a equations, the

corresponding kinetic energy is given by
Ea(t) = [ u(e,t)+0?Vu(t,2)/dz,
Q

3



is globally bounded in time.

Numerical results for the NS-o model are given in [5], where the authors compare the structures
of velocity and vorticity fields in a direct numerical simulation (DNS) of the viscous NS-a model
with the corresponding results for the Navier-Stokes equations. For that, they computed the
Navier—Stokes alpha equations for several values of the o parameter, including the limiting case
a — 0, in which the Navier—Stokes equations are recovered.

The Navier-Stokes-a model can be seen as a regularized approximation of the 3D Navier-Stokes
system, depending on the small positive parameter « in some terms of which the unknown velocity
function v is replaced by a smoother vector-valued function u related to v by means of the elliptic

system v = u — o2 Au.

1.2 Data Assimilation Theory

For a mathematical model of some physical system, as weather forecasting or a flow (viscous or
not), it becomes necessary to combine the real-world observations in a physically consistent way
with this model, given by partial differential equations.

The process of establishing a connection between the theoretical models of physical conserva-
tions laws and these real-world measurements (such observational data sometimes are done on a
rough way), in order to extract a better information of the physical system is called Data Assimi-
lation.

Data assimilation arises in a vast array of different topics: traditionally in meteorological
and hydrology modelling, wind tunnel or water tunnel experiments and recently from biomedical
engineering.

A summary of the use of data assimilation in pratical weather forecasting is described in
[8], which succeded the idea of obtaining improved estimates of current atmospheric state using
the equations of the atmosphere themselves, proposed by Charney, Harlem and Jastrow in [4].
Ocean state estimation is another example of a physical system which essentially resorts to data
assimilation as the technique to integrate measurements into a dynamical model.

The measured data usually contains inaccuracies and is given with low spatial and /or temporal



resolution. In general, the prodution of an accurate information of the true state of the atmosphere
or a fluid in a given time is not possible, so alternatively the question is: how does one find a good
approximation of the true state? Or, in other words, is it possible to find a good asymptotic
approximation of the solution to some model of the physical reality at time ¢?

The most ordinary types of data assimilation are: Discrete Data Assimilation and Continuous
Data Assimilation. In Discrete Data Assimilation, the approximating solution is coupled to the
reference solution at a discrete sequence of points in time. One application of this to Lorenz and
2D Navier-Stokes equations can be found in [13].

The main focus of this thesis is on Continuos Data Assimilation. In this mode of assimilation,
a feasible state trajectory is found that best fits the observed data over a time interval, and the
estimated states at the end of the interval are used to produce the next forecasts.

In this work, data assimilation for time dependent fluid flow, specifically Navier-Stokes-a sys-
tem, is considered; that is, the flow is assumed to satisfy the given partial differential equation
(1.1.1), representing the mathematical model.

First, we discuss a manner of doing this model of assimilation, developed by Olson and Titi
(found in [20]), by introducing an observation-dependent forcing term in the 2D Navier-Stokes
equations: they have considered wu;(t) the real state at time ¢ of the dynamical system, i.e., the

exact solution of the system

(9u1

- —uA . [

81& VAAUuy + (U1 V)Ul V?Tl + f, (121>
div u; =0,

where 7, is the pressure, with initial conditions u;(0) = ug, on the L-periodic torus 2 = [0, L]?,
where 7 is the pressure and f is the forcing term. The observational measurements corresponding
to uy(t) at time t we represent by Pyus(t), where Py is defined using the Fourier space representation
for a such that || 2q)< oo:

P,\CL: Z akqf)k and Q)\:I—P)\,

[k[2<X

where ¢p(z) = 2™ Here A represents a parameter, namely the resolution of the measuring

equipment.



In this model of assimilation, the main difficulty is that it is not possible to obtain ug exactly
by measurement, because if we had uy exactly, that is, the detailed reality at time ¢t = 0, it would
be enough to integrate the Navier-Stokes equations and therefore get u;(t) exactly for any ¢ > 0.

To deal with this problem, the authors have considered uy(t) , an approximation to wui(t)
obtained from the observational measurements and then, they found conditions on A in terms of
other physical parameters of the system (as viscosity and forcing term) to ensure the convergence
of us(t) — uy(t) — 0 in L? and H'-norms.

The idea of the construction of wus(t) from the observational measurements Pyuy(t) was to
rewrite the Navier-Stokes equations (1.2.1) as a system of two coupled differential equations, where
uy = p1+q1 with p; = Pyuy (the observational measurements) and ¢; = @ u; (the unknown modes

of Fourier). Then, applying the orthogonal projectors Py and @, in (1.2.1), we get

0
% + P\(p1 +q) - V(o1 +q1)] —vApr = =VPm + P f,V-p1 =0,
(1.2.2)
0
aqtl + Q)\[(pl + Q1) . V(pl —+ Q1)] —vAq = —-VQ,m + QAf,v ~qp = 0.

Since ¢;(0) is not known, it is impossible to integrate the second equation. Then the authors

computed an approximation ¢s(t) of ¢;(¢) by integrating

0qa

o T Qx[(p1+ @) - V(1 + @)] —VAGp = —VOxma + Qrf, V-q =0, (1.2.3)

with 75 the new pressure and ¢(0) = 7, where n = Q,\n represents a guess of initial data of the
new high modes ¢o(t) of the exact solution. Therefore, from here on, we consider (1.2.3) instead of
the second equation of (1.2.2). Finally, adding (1.2.3) and the first equation of (1.2.2), we obtain

the approximating solution wus(t) of the solution u;(t) by the following system:

3u2

—— — VAuy + (ug - V)ug = —=Vmy + fo,

ot 2+ (uz - V)uz me 2 (1.2.4)
div us =0,

where uy(t) = p1(t) + g2(t) = Pyui(t) + ¢o(t), with initial conditions uy(0) = Pyu(0) + n where
Pyu(0) is the initial observational measurement and 7 = Q,n. Note that we have now a known

initial data us(0) to deal, since Pyu(0) and 7 are known. Moreover,
f2 — f + P)\[(UQ : V>U2 - (Ul : V)Ul],

6



since (ug - V)ug = Py[(ug - V)us] + Qx[(ug - V)us].

The global existence and uniqueness for the system (1.2.4) is found in Theorem 3.1 in [20], as
well as the convergence of uy to u; when time goes to infinity in Lemma 3.2 of [20].

A few years later, Peter Korn focused on the same technique of [20], but for 3D Navier-Stokes-«
equations, in [17]. The true evolution of NS-a equation was denoted in [17] by u;(t), as well as

v1 = u; — a®?Auy. Therefore, applying the projectors Py and @, we have

P
08);}1 — P)\[ul X (V X Ul)] — VAP)ﬂ)l = —Vp)ﬂﬁ + P)\f, V- P)\ul =0
(1.2.5)
aQXUI A _ —
or Qalur x (V xv1)] = vAQxvy = =VOum1 + Quf, V- Quus =0,

Denote Pyuy(t) := w;(t) the observational data on time ¢ (that are known by measurements)
and Q ui(t) = Uy(t), and since u; = Pyuy + Q uy, we write u; = uy + 4y, as well as v; = 77 + 0y,

with Pyvy (¢ 1(t) and Qv (t) = v1(t). With these notations, we get

ot

(1.2.6)
a~ _ ~

% — Qa[ur X (V x01)] —=vAD = =V + Quf, V-1 =0,

In the same way as [20], to solve the problem that the high-frequency component of initial data

)=T
[ %—P)\[ulX(VXU1>]—VA61:—VP)\7T1+PAJC7 val:o

Qau1(0) = 41(0) (and therefore v1(0) = u;(0) — a?Awu;(0)) are unkown, the second equation in
(1.2.6) is replaced by
Uy

5p ~ Q@ + ) x [V x (01 + %)} = vAT = =VOT2 + Quf, (1.2.7)

with a guess of the initial conditions 2(0) = 7 = Q1 and Uy = Uiy — @*Aty. Then (1.2.7) is added
to the first equation of (1.2.6) to obtain

ot (1.2.8)

div vy = div us = 0,

0
{ ﬂ_uQX(VXUQ)—VAUQZ—VW2+f27

i.e., va(t) =Ty (t) + Va(t) or equivalently, uq(t) =y (t) + uo(t), with initial data us(0) = @ (0) + 7
and

fo= [+ P\(u1 x (V xv1)] = PJug x (V X v3)].

7



The global well-posedness of the system (1.2.8) and the covergence of this approximation us
to the original solution u; in L? and H'-norms is found in Theorem 10 and Lemma 11 in [17],

respectively.

1.3 Determination of the Solutions by Determining Pa-
rameters

The standard theory of turbulence asserts that turbulent flows are determinated by a finite
number of degrees of freedom, that is, the number of independent “pieces" of data which are used
to make an exact calculation is finite.

The first mathematically rigorous indication that the large time behavior of the solutions to
the 2D Navier-Stokes equations has a finite number of degrees of freedom was given in [11]. After
that, there have been many studies to estimate the number of degrees of freedom of the solutions
for the Navier-Stokes equations in terms of the Grashoff number GG, a nondimensional quantity
proportional to the forcing term f.

The Grashoff number is defined in terms of f, the viscosity v and some other parameter with
the dimension of length, usually taken as the first eigenvalue of the Stokes operator (that will be
defined later) A;, which has the dimension of length [=2. For dimensional reasons, the definition

of G depends on the spatial dimension, so it is defined for two-dimensional case as

F
G=——
/\1 VZ ’
and for three dimensional case as
F
G=—~1——, 1.3.1
/\:1)’/ 42 ( )

where

F = limsup </Q|j"(t,x)|2dar:>é :

t—o00

Returning to degrees of freedom, a natural question is: if we know the behavior of the velocity

vectors u(x,t) of a fluid for all time (or for large times), on a set of finite points



E = {a' 22 ... 2"}, (1.3.2)

what information can we deduce for the large time behavior of the flow?

The answer given in [12] for 2D Navier-Stokes equations is: if the set of points E is sufficiently
dense (but still finite), then the large time behavior of the flow is uniquely determined by the
knowledge of u(x,t) for all z € E and for all time (or for all ¢ sufficiently large). For instance, if

for all x € E, u(z,t) tends to some time-periodic function u(x,t):
u(z,t) =u(z,t +17T)
as t — oo, then u(-,t) tends as well to a time-periodic solution @(z,t) = u(z,t + T') for all x and
u(x,t) = u(x,t), forall ze€kE.

We present next the notions of determining modes, determining nodes and determining volume
elements for the regular theory of turbulence. These notions are rigorous attempts to identifly those
parameters that determine turbulent flows. Most of the research on estimating these parameters
has been concentrated on 2D Navier-Stokes equations, since in the 3D case, the question of global
existence and uniqueness of strong solutions are still open.

We consider u and v two solutions of the 2D Navier-Stokes equations, respectively:

881; —vAu+ (u-V)u=—-Vp+ f, u(0) = up, (1.3.3)
ov .
i vAv + (v-V)v = =Vp+g, v(0) = v, (1.3.4)

where f, g are given forces in a suitable space. We denote P, the orthogonal projection onto the
liner space spanned by {wy,ws, ..., w,}, the first m eigenfunctions of the Stokes operator, with

periodic boundary conditions.

Definition 1.3.1. A set of modes {w;}}_, is called determining if we have

lim [[u(t) — v(t)| 2= 0.



for u and v solving (1.3.3) and (1.3.4) respectively, whenever

Hm [ f(t) = g(#)l|z2 (@)= 0,

and

Jim | Pa() = P (t) | 26 = 0.

In other words, the modes {wj}gnzl is called determining if they determine completely the
behavior of the solution in the limit ¢ — co.

A first estimate of the number of determining modes for 2D Navier-Stokes equations in a
bounded domain © C R?, provided boundary condition v = 0 was given in [11], where the authors

proved that the modes are determining if
2 )
Amt1 > —; lim sup/ |V x u(t, x)|*dx,
v Q

where ); is the i-th eigenvalue of the Stokes Operator (it will be defined in next chapter).
An improved estimate on the number of determining modes for the 2D Navier-Stokes equations
under the same conditions was obtained in [10], where the authors proved that if

A
7;7“ > ¢G(1 +1og G)Y2, (1.3.5)
1

where G is the Grashoff number and ¢ > 0 is a dimensionless constant coming from the properties
of the nonlinear term of 2D Navier-Stokes equations, then the number of determining modes is not

larger than m. However, it is argued heuristically in that paper that the number of determining

Am
modes should be of the order m, where m satisfies )\H > ¢(G. In 1993, the authors of [16] showed
1

how to eliminate the logarithmic term in (1.3.5) (for the case of periodic boundary conditions) and

consequently that if m satisfies

>‘r)r\z+1 > \/§CG,

1

then the number of determining modes is not larger than m.
Another way to characterize the degrees of freedom of a physical flow model is the determining
finite volume elements. It consists, for 2D Navier-Stokes equations with periodic boundary condi-

tions © = [0, L]?, to divide Q into N equal squares @; (with j=1,...,N) of side [ = L/vVN. We set

10



a volume element (also called local spatial average) as

N
(o, = 73 [, wla)dr
for every 1 < j < N. This leads us to following definition:

Definition 1.3.2. A set of volume elements is said to be determining if for two solutions v and v

solving (1.3.3) and (1.3.4), respectively, and satisfying lim;_,|| f(t) — g(t)||L2()= 0 and

lim ((u)q, — (v)q,;) =0,

t—o00

forall j =1,..., N, we have

lim [|u(t) — v(t)]|20)= 0.

t—o00

The existence of determining volume elements for the 2D Navier-Stokes equations was shown

in [14]: the authors proved that the volume elements are determining provided
N > 4(10 4 4v/2)%G?,

where N is the number of squares that the periodic domain is divided. One year later, the same
authors of [14] presented in [16] an improved upper bound on the number of determining volume
elements: N > cG, where (G is the Grashoff number and c is a constant coming from nonlinearity

properties of 2D Navier-Stokes equations.

Definition 1.3.3. Let E be a collection of points in the domain €2 (also called nodal values in
Finite Elements Method Theory), as in (1.3.2). This set is called a set of determining nodes if
for two solutions u and v solving equations (1.3.3) and (1.3.4), respectively, and satisfying for all
j=1,...,N,

lim (u(z?,t) — v(z?,t)) =0,

t—o00

and lim¢oo|[ f(t) — g(t)||r2(0)= 0, we have

lim [lut) — v() 2= 0.
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The existence of a set of determining nodes for 2D Navier-Stokes equations in an open bounded
set of R? (with sufficiently smooth boundary) and for periodic boundary conditions, it was first
proven in [12]. Later in [15], in 1992, an upper bound for the number of determining nodes for
periodic case was found to be proportional to G?(1 +log G). In 1993, the authors of [16] presented
an improved upper bound: if E = {xy, 2o, ...,2x} is a set of nodes, it is determining provided

N > 4/272%¢G.

1.4 The new algorithm to insert observational measure-
ments

In 2013, Titi and Azouani (see [2],[1]) introduced a finite-dimensional feedback control scheme
for stabilizing solutions of infinite-dimensional dissipative equations, such as the Navier-Stokes
equations, Kuramoto-Sivashinsky equation and reaction-diffusion equations.

This new idea was originated from the fact that such systems possess a finite number of de-
termining parameters (degrees of freedom), such as determining Fourier modes and determining
nodes, in accordance with that cited in the previous section.

The classical method of continuous data assimilation requires special care concerning how the
observations are inserted into a model in pratice. For example, as we saw earlier, it is necessary in
general to separate the slow Pyu parts and the fast Q) yu parts of a solution before inserting the
observations into the model. The method proposed in [1] does not require such a decomposition.
Rather than inserting the measurements directly into the model, i.e., into the nonlinear term, they
introduced a feedback control term that forces the model toward the reference solution that is
corresponding to the observations.

In [1], this sort of continuos data assimilation was considered in the 2D Navier-Stokes system for
Q) C R? an open, bounded and connected set with u |so= 0 (no-slip Dirichlet boundary conditions)
and also for periodic boundary conditions.

We present next the construction of this new continuous data assimilation, which was done in

1].
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Firstly, the authors have considered u(t) representing the real physical state at time ¢ of the
2D Navier-Stokes dynamical system and I (u(t)) representing the observations of the system at a
rough spatial resolution of size h.

With I (u(t)), the observational measurements in hand for all ¢t € [0,77], the next step is to
construct an increasingly accurrate initial condition from which predictions of u(t), for t > T' can
be made. And this is done by constructing an approximate solution v(t) that converges to u(t)
over time.

The algorithm developed by the authors for constructing v(t) from the observational measure-
ments I, (u(t)) for all ¢t € [0, 7] is given by

ov
5~ VAU (- V) Vp = f = u(l©) ~ I(w)), (1.4.1)

v(0) = vy, divv =0.
on the interval [0,7]. Here, vy is taken to be arbitrary, 4 > 0 is a parameter inverse-time di-
mensional and h is a parameter with dimension of length that should be related to u in terms of
v, f,G, A\ = (2rr/L)* (the first eigenvalue of Stokes operator, with periodic boundary conditions
Q = [0, L]*), and other constants, for instance, related to nonlinearity properties, in order to (1.4.1)
make sense and also to ensure the convergence of the approximating solution to the real solution.
The method of constructing v given by (1.4.1), allows the use of general interpolant observables,

given by linear interpolation operators
I, - H(Q) — L*(Q),

which is an approximate interpolant of order h of the inclusion map i : H'(2) — L*(Q) that

satisfies the following estimate, for some ¢y > 0,

[ — Inell 2@ < cohllella @ (1.4.2)

This inequality is a version of the well-known Bramble-Hilbert inequality, that appears in the
context of finite elements method (see [6]).

In addition, it was considered interpolant observables given by linear interpolants
I, - H*(Q) — L*(Q)

13



that satisfy the following approximation property:

e — IhSOH%%Q)S Clh2HSO’|12L11(Q)+C2h4HSOH12L12(Q)7 (1.4.3)

for every p € H?(Q). In [1], there are examples of such interpolant.

The great advantage of this approach is that it works for a general class of interpolant observ-
ables without modification, only respecting (1.4.2) or (1.4.3).

The expected results of this sort of continuos data assimilation is to yield conditions, on the
finite-dimensional spatial resolution of the collected data, sufficient to ensure that the approximat-
ing solution, which is obtained by this algorithm from the measurement data, converges to the
unkwown form solution u(t) over time.

Since g is not known, it would make sense to take vy = Ij,(u(0)), which is the initial observation
of the solution u. However, vy chosen this way might not be in the suitable space for solving the
equation. The main point of this new method given in (1.4.1) is to avoid the difficulties which come
from the direct insertion of observational measurements into the approximate solution, specially
initial observational measurements. The results obtained in [1] holds when vy is chosen to be any
element of the suitable space.

The proof that the data assimilation equations (1.4.1) are globally well-posed when I}, satisfies
(1.4.2), for both no-slip Dirichlet and periodic boundary conditions, is found in Theorem 5 (see
[1]), since pcoh? < v.

The existence and uniqueness of strong solutions for data assimilation equations which I},
satisfies (1.4.3) is found in Theorem 6 (see [1]) for periodic boundary conditions, since uyh? < v,
where 7 is a constant depending on ¢; and cs.

The main result of [1] can be stated as follows:

Theorem 1.4.1. Let € be an open, bounded and connected set in R? with C? boundary, and
let u be a solution to 2D Navier-Stokes equations with no-slip Dirichlet boundary conditions, i.e.,

u |ogo= 0. Assume that I}, satisfies (1.4.2), with h small enough such that

h? < (kA G2~
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where k; depends on ¢y and the nonlinearity properties, GG is the Grashoff number and \; is the
first eigenvalue of Stokes operator under boundary condition u |sgo= 0. Then there exists pu > 0

(given explicitly), such that [|[v — u|| 2(q)— 0 exponentially, as t — oco.

A similar result to Theorem 1.4.1 was proven also in [1], when the interpolant [, satisfies (1.4.3)

for periodic boundary conditions, and sharper estimates may be obtained:

Theorem 1.4.2. Let Q = [0,L]* and let u be a solution to 2D Navier-Stokes equations with
periodic boundary conditions. Let I}, satisfy either (1.4.2) or (1.4.3), with h small enough such
that

1/h* > esMG(1 +log(1 + @),

where c3 depends on ¢, ¢; and nonlinearity properties, G is the Grashoff number and \; = (27/L)?
is the first eigenvalue of Stokes operator under periodic boundary conditions 2 = [0, L]?. Then

there exists ¢ > 0 (given explicitly), such that ||[v — u||g1Q)— 0 exponentially, as ¢ — 0.

To finish this section, in [2], the authors used the Chafee-Infante reaction-diffusion equation:

ou 3
— — PUge —au +u’ =0,
ot g (1.4.4)
with a > 0, to consider the following general feedback system of the form
ou 5
— — BUyy —ou+u’ = —plpu,
T Hin (1.4.5)

ug(0) = us (L) =0,

where I, - H'([0, L]) — L*([0, L]) is an interpolant can be thought as a controller that is used to

stabilize the system. This interpolant must satisfy

o = Inell 2o, < cahllo|l aro,n)), (1.4.6)

for all ¢ € H'(]0, L]). Some examples of such approximate interpolant are: the finite volumes ele-
ments, the approximate interpolant based on nodal values and the interpolant given as projections

onto Fourier modes.
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The proof that such interpolants satisfies (1.4.6) is found in [2]. If v > uc?h?, then Theorem 4.1
(see [2]) guarantees the global existence and uniqueness for the system (1.4.5), with an arbitrary
initial condition ug € H'([0, L]).

The main result of [2] is:

Theorem 1.4.3. Let [, : H'([0,L]) — L?*([0,L]) be a linear map, which is an approximate
interpolant of order h of the inclusion map i : H' < L?, that satisfies the approximation inequality

(1.4.6). Moreover, assume that p is large enough that

,u>2a-|—L52

and h is small enough such that
uc’h? < B
Then, for every ug € H'([0, L]), the global unique solution of (1.4.5) decays exponentially to zero.

Next, we discuss the results of this thesis, that is, how this new technique can be applied in

Navier-Stokes-a equations.

1.5 The new continuous data assimilation model applied
to Navier-Stokes-a model

Consider u(t) representing the true evolution at time ¢ of the incompressible three-dimensional

Navier-Stokes-a equations in the periodic box Q = [0, L]?:

0 2 2
—(u—a”Au) —vA(u — a”Au) —u x (V xv) + Vp =,
8t(u a’Au) — vA(u — a”Au) —u x ( v) p=1Ff (15.1)

div u =div v =0,

where v = u — o®Au and the initial data, ug, is unknown. Consider also a linear interpolant
I, : H(Q) — L*(Q),
that satisfies, for all o € H'(Q), the following approximation property:

le = Inpllizio) < AP Vellia ) (1.5.2)
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In addition, we will also consider interpolant observables given by linear interpolants I :

H?(Q2) — L?(2), that satisfy the following approximation property:
lo — Inelliz < BRIVl i ol (1.5.3)

We now write the continuous data assimilation for the system (1.5.1). Let I; be the interpo-
lation operator satisfying (1.5.2) (or (1.5.3)). Suppose that u must be recovered from the obser-
vational measurements I, (u(t)), that have been continuously recorded for times ¢ in [0,7]. Then,
the approximaing solution w or, equivalently, z = w — o?Aw, with initial condition wy chosen

arbitrarily in an appropriate space (that will be stated in the next chapter) , shall be given by

gt(w — a*Aw) — vA(w — o?Aw) —w x (V x 2) + Vp (1.5.4)

= [ — p(lhw — ) + pe? A(Lyaw — Tyu),
on the interval [0, 7], and div w = div z = 0.

This thesis is divided as follow:

In Chapter 2, we present the functional setting of the 3D Navier-Stokes-a, and the spaces and
norms required to ensure the global existence and uniqueness of (1.5.4). We also present some
compactness theorems, as well as some properties of the nonlinear term of (1.5.1).

In Chapter 3, we show the global existence in time and uniqueness of the solution to the system
(1.5.4).

In Chapter 4, we show the conditions of u and h in terms of physical parameters to guarantee
the convergence, in time, of w (given in (1.5.4)), or equivalently, z, to real state u, or equivalently,
v, the solution of (1.5.1). To finish, we exhibit three examples of interpolants I, and prove
that two of them satisfies (1.5.2), and one satisfies (1.5.3), which are obtained from observable

measurements.
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Chapter 2

Preliminaries

Our purpose in this chapter is to review some of the standard facts and functional setting on
Navier-Stokes-a equations, to present some of the properties of the nonlinear term and the Stokes
operator. Additionally, we enunciate an important compacteness theorem, known as Aubin-Lion

theorem. We also fix notation and terminology.

2.1 Basic Concepts and the Stokes Operator

In this work, we are considering the autonomous Cauchy problem for the three-dimensional

Navier-Stokes-«, as already presented in Chapter 1:

0 2

- —a’Au) — VA —OzzA —u x (VX —()zzA +V =T,

t(u 0 ) v (u U) u ( (u U)) P (2‘1‘1>
div u = y

with u(z,0) = up(z) and f time-independent; we consider this system under periodic boundary
conditions, i.e., on the periodic domain Q = [0, L]>:

u(xlv T2, T3, t) = U(.Tl + L7 T2, T3, t)?

U(l’l, X2, T3, t) = U(Il, T2 + L? x3, t)?

u(wy, Ta, x3,t) = u(xy, 9, x3 + L, t).

Thanks to (2.1.1), using integration by parts we have:

: [ () = e?Au(@)dz = [ f()a.
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Furthermore, because of the spatial periodicity of the solution, we have / Au(x)dr =0. As a
Q
result, we have
d
— [ u(z)dz = / x)dx.
= | u@yde = [ f(@)
Note that if the average of the force vanishes, then the average velocity is conserved. In this
work, we will consider forcing terms and initial values with spatial averages are zero, i.e., we will

assume
/Quo(:v)dx :/Qf(x)dx =0,
and therefore /Qu(:v)d:v = 0.

Let us denote by V the set

V ={¢; ¢ is a vector valued trigonometric polynomial defined on €,

such that div ¢ = 0 and / o(x)dx = 0},
0

where Q = [0, L]? is the periodic domain. If Z C L*(Q), we will denote by
7 = {p € Z, such that / o(x)dr = 0}.
Q

Denote by H and V:
H = closure of Vin (L2,(2))3,

per

V = closure of Vin (H}, (Q))%.

per

(2.1.2)

For characterizing (2.1.2), we have the following proposition, whose proof can be found in [7]

or also in [22].

Proposition 2.1.1. Let Q = [0, L]*> C R? the periodic box. Then

HE = {u e (12, (D)% u=Vp, pe (HL,(@)) (21.3)
H=A{ue (Lf,e,,(Q))?’; div u =0 and /Qu(x)dx =0} (2.1.4)
V ={ue (H,,(Q)* div u=0and /Qu(x)dac =0}, (2.1.5)

The most useful for this work are (2.1.4) and (2.1.5) and, since the proof of (2.1.5) requires

more results that we are not interested, we prove only (2.1.4) for sake of completeness.
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Proof: Assume (2.1.3). To prove (2.1.4), denote H the space on the right-hand side of (2.1.4).
Cleary H C H by definition. To prove that HCH , suppose that H is not the whole space H
and let H* be the orthogonal complement of H in H. By (2.1.3), every u € H' is the gradient of
some p € (H! (Q))3. As a result of u = Vp, we have

per
Ap — div u = 0,

and since we have periodic boundary conditions, this implies that p is a constant and u = 0;

therefore #* = {0} and H = H. O

To simplify the notation, from here on we will denote (L2_,.(22))% and (H!,.(Q))? by L?(Q2) and

per per

H(Q), respectively; i.e., we will omit the index per of the periodic spaces. Additionally, we will

denote by |-| the L*norm:

1
z
uli= Nl o= ( [ Juto)lde )
and by (-, ) the inner product in L?(Q):
(u,v) = /Qu(x)v(x)dx

Taking into account the equality (2.1.3) of Proposition 2.1.1, we state the following theorem,

known as the Hodge decomposition Theorem, that can be found in Proposition 1.18 of [19]:

Proposition 2.1.2. Every vector field v € C*°(Q), with Q = [0, L]® the periodic box, has the

unique orthogonal decomposition
v=uv;+vs+Vgq, v = / v(x)dx, dives =0,
Q

where

E®k .
Va(z) = Y ?U(k?)
izo Kl
and k ® k = (k;k;). This decomposition has the following properties
(i) v, Vg € C>(9),

(i) v L Vg in L?(Q), i.e., /QUQ -Vqdz =0,
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(iti) v —v1ll72= lvallZ2@y+IVall72(q), and in general, for any multi-index of the derivative

DB

Y

I1D%0|122(0y= 11D a1 320y + I VD qll72(0n-

Note that, by arguments of density, we can extend the result above for any function v € L?(Q),
with the same periodic boundary condition = [0, L]*>. Therefore the projection operator P :
L*(Q) — H given by

Pv:vl

projects the vector field on the divergence-free space.

Definition 2.1.3. The decomposition of v € L*() into v = vy + +vy + V¢ is called the Hodge

Decomposition, and the projection operador P is called Leray Projector.

Actually, if v € H™(2), then we have the following lemma, which is found in Lemma 3.6 of
[19] for domain R™, and can be modified for the periodic box Q = [0, L]*:

Lemma 2.1.4. Every vector field v € H™(Q)), with m € N U {0} has the unique orthogonal
decomposition v = vy 4+ vy + Vg, such that the Leray projector Pv = vy € H™({)) commutes with

the distribution derivatives: for all v € H™(Q)) and |a|< m,
PD = D*Pu.
and also we have that P is symmetric, i.e.,

(Pu,v)um(y = (u, Pv) gm ().

Definition 2.1.5. The decomposition of v € L*(Q) into v = vy + +vy + V¢ is called the Hodge

Decomposition, and the projection operador P is called Leray Projector.

We introduce next the Stokes operator, with the standard notation in the literature of Navier-

Stokes equations (see [7] and [22]).

Definition 2.1.6. Consider the space D(A) = H?(Q)NV., where Q = [0, L]3. The Stokes Operator
A:D(A) C H— H is defined by A = —PA, with —A under periodic boundary conditions.
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The Stokes operator preserves the self-adjointness property of the operator —A:

Proposition 2.1.7. The Stokes operator is symmetric, i.e.,
(AU,’U)LQ(Q) = (U,AAU)L2(Q)7 (216)
for all u,v € D(A).

Notice that in the case of periodic boundary conditions, A = —A|p(4). Additionally, we state

one more result about the Stokes operator, that can be found in Proposition 4.2 of [7]:

Theorem 2.1.8. The Stokes operator is selfadjoint and positive operator, and its inverse, A}, is

a compact operator in H.

Since A is a self-adjoint positive operator with compact inverse, the space H has an orthonormal

basis {¢y}72, of eigenfunctions of A, i.e.,

Adr = \p@r,

1
:m

omikz

with ¢ (x) e“™ L with the eigenvalues of the form

2 2
<£T) |k|?, where k € Z*\{0}.
We denote these eigenvalues by

0<A=02r/L)*< X< A< ...

Consequently, we can express any element in H as a Fourier Series
2mikz
. eI
u(z) = Y Updr(z) = 23 Uk~ T3/ (2.1.7)
kEZ

kez3

where

~ 1 —orikz
Uy, = (u, op) = m/ﬂu@)@ L d,

with @y = 0, Uy, = t_;, and due to incompressibility of elements of H, k - @y, = 0.

In the next definition, we regard a generalization of the operator A.
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Definition 2.1.9. Let  be a real number. The fractional powers of the operator A are defined

by linearity from their action on eigenfunctions:
AP =N, for j=0,1,2,...

with domain

D(AP) = {u € H; i)\?ﬁ(u,gbj)Q < 00}

Jj=0

Hence
o0

Aﬂu = Z A]ﬁ(u7 ¢j)¢j, for u = Z(ua ¢j)¢j7 u € D(AB)
j=1 Jj=1
If 3 > 0, the definition above for A=# is equivalent to the dual space of A® i.e., A=% = (A4%)".

The spaces D(A?) are endowed with the norm

lullpam= L D7 k[l
keZ3

We can make D(A?) into a Hilbert space by using the inner product

((uv U))D(AB) = (A/Bua Aﬁv)’

ie.,
((u,v)) pasy = Y A} 1,0,
j=1
thus,
((u,0)) pasy = Y [k[* Ty,
kez?
o o0
where u = Z Uujp; and v = Z v;¢;. This inner product gives rise to a corresponding norm
J=1 j=1

HUHD(M): ‘A5U|-

According to [7] (see also [22]), in the case of B = 1, we have D(A"Y?) = V and, since

/ u(z)dx = 0, Poincaré’s Inequality guarantees the equivalence of norms:
Q

c|A%u|§ ]| gy < E|A%u] for every u e V.

23



We use the following notation for the norm in V/, which is equivalent to the H!'-norm:

HW—AW\(/Z&% P ) (ZAu@)

We also denote the inner product in V' by

N

((u,v)) = (AY?u, AY?%) = (Vu, Vv),

which is equivalent to the H'-inner product, when restricted to V.

The Poincaré inequality also ensures that there exist positive constants c, ¢ such that
el Aul < lull 2y < 2l Au,

hence we adopt, for future calculations, || - ||g2()= |A-|. The advantage of using this norm lies in
the fact that there exist many properties of the operator A to be used on calculations.
More generally, we can use the regularity theory to characterize the Sobolev spaces under
periodic boundary conditions = [0, L]?:
HY(Q)={uwyu= Y ™ T  k-c, =0, ey =c_p, > |k[*|ci|*< o0},
kez? kez?

for s € R, in terms of the fractional powers of the operator A so that

endowed with the norm

We shall need the following version of Poincaré’s inequality, whose proof can be found in [20]

and we include here the proof for the sake of completeness.

Proposition 2.1.10 (Poincaré’s Inequality). For all w € V and v € D(A),

\u|2§ Afl\\u\]2 and Hv\|2§ Af1|Av\2. (2.1.8)

24



Proof: Let u € V and write u in the form u(z) = ) u¢y(x). Consider the projections
kez3

Pyu(z) = ) tgdy(r) and Qy =1~ Py

[k[2<A
Note that, for o < 3, we have
IQul2= 2 3 kP aP< LN 3 [k 2= X | @yl (2.1.9)
[k|2>X [k|2>X

Since @y, u = u, where \; = (2w/L)?, then
lull2< AT fullf for o> 8. (2.1.10)

Taking o = 0, 8 = 1, we conclude the first inequality of (2.1.8). For the second inequality, it is
sufficient to take o = 1 and § = 2. O

The continuous extension of operator A is established in the next theorem.

Theorem 2.1.11. (i) The operator A can be extended continuously to be defined on V' =
D(AY?) with values in V' = D(A~Y/2) so that

(Au, v)yry = (AY?u, AY?y) = /Q(Vu : Vo)dz,

for every u,v € V, where (A : B) =YY a;;b;;, with A = (a;;) and B = (b, ;) matrices of
i=1 j=1
order m X n.

(ii) Similarly, the operator A% can be extended continuously to be defined on D(A) with values

in D(A)’, the dual space of the Hilbert space D(A), so that
<A2U, U>D(A)’,D(A) = (AU, AU),
for every u,v € D(A).

Proof: The proof of (i) can be found in [7] and also in [22]. The proof of (ii) is a straightforward

extension of that of (7).
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Since we have the following sequence of continuous and dense embeddings:
D(A) -V —< H=H — V' < D(A), (2.1.11)

and A is a self-adjoint, the operator A can also be extended continuously to be defined on H with

values in D(A)" such that

A:H — D(A)
v — Au: DA — R (2.1.12)

v = (Au,v)pay,pa) = (u, Av).

Next, we present a result that will be useful in the theorem of existence for the system (2.1.1),

to ensure the continuity of the solution. A proof of this fact can be found in Theorem 7.2 of [21]:

d
Theorem 2.1.12. Suppose that u € L*([0,7]; V) and d—? € L*([0,T);V"). Then u € C([0,T]; H),

with

SB%]lu(tﬂg C(T)(||ull 22 o7+ || du/ dt || L2 o 101 ) (2.1.13)
telo,

As a generalization of the previous lemma, for the operators A? we have the following lemma,

which is due to Lions-Magenes:
Lemma 2.1.13. For some k > 0, suppose that

d
u € L2([0,T];D(A(k+1)/2)) and di: c LQ([O,T];D(A(’“_I)/2))7
Then w is continuous from [0, T] into D( A%)' Furthermore,
d >D(Ak/2)’,D(Ak/2) ‘

Proof: It can be justified in Theorem 7.2 and Corollary 7.3 of [21].
O

Since we have periodic boundary conditions and therefore A = —A, which is a maximal mono-

tone operator, we have the following result of Functional Analysis:

Proposition 2.1.14. If A is a maximal monotone operator, then
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(i) A is closed;
(ii) For every n >0, (I +nA) is a bijection from D(A) to H.

(iii) (I +nA)~" is a bounded operator and ||(I +nA) | zeam< 1.

Proof: It can be found in Proposition 5.95 of [3]. O

2.2 The NS-a nonlinearity properties

In this section we present some of the relevant properties of the non-linear term of NS-a:
x (V x v). We start regarding the nonlinear term of Navier-Stokes equations, and following the
notation of classical Navier-Stokes equations theory, we denote the Leray projector of the nonlinear

term as

3
0
B(u,v) =P[(u-V)v]|=P Zuj—v.
j=1 8xj
If div w = 0, then
—P
Z 6%

Using the Leray projector into the autonomous Navier-Stokes system with periodic boundary

conditions, we have the non-linear functional differential equation

a——I—I/AanPZUZ v

5 > vigy = PJ. (2.2.1)

with div v = 0 and v(0) = vy in a suitable space. If we consider Pf = f, we get

?;; + vAv + B(v,v) = f(x),

div v =0, v(0) = v.

(2.2.2)

We set B(v)u = B(u,v) for every u,v € V. For every fixed v € V, B(v) is a linear operator

acting on u. Notice that

(B(u,v),w) = —(B(u,w),v) for every u,v,€ V.
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Furthermore, for all w € D(A) and w,v € V we have the estimate (see [7]):
[(B(u, v), w)pay.p| < clul V]l lwll e @< Ay * ful o] |Awl,

and therefore

_1
1B, v)l[peay < ey *ful [Jv]] (2.2.3)

Now we are ready to consider the Navier-Stokes-a nonlinearity. In order to deal with that

term, let us denote for every u,v € V,

B(u,v) = =P(u x (V x v)). (2.2.4)

Since V is dense in V, (2.2.4) holds for every u,v € V.
Furthermore, using (1.1.2), we have for every u,v,w € V,

(B(u,v),w) = (B(u,v),w) — (B(w,v),u) = (B(v)u — B*(v)u,w), (2.2.5)

where B*(v) denotes the adjoint operator of the linear operator B(v). As a result, we have

B(u,v) = (B(v) — B*(v))u for every u,v € V.
As presented in Chapter 1, the nonlinear term in (2.1.1) satisfies the following identity:

3 3
ux (Vxv)=> (wov—uVy) = (u-V)v—> u;Vu, (2.2.6)
i=1 i=1
and for u = v we have

1 3
vx (Vxv)=(v-V)v— §V2uivi. (2.2.7)
i=1

Since P projects any gradient function onto zero, i.e.,
3
PV (Z uivz-> = 0,
i=1
we conclude by (2.2.7) that

B(v,v) = B(v,v). (2.2.8)

In the next lemma we state some properties and estimates about the bilinear operator B, that
are similar to properties of the operator B. The proof can be found in [9] and we will reproduce

here with more details.
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Lemma 2.2.1. The operator B can be extended continuously from V' x V with values in V’, and

in particular it satisfies for all u,v,w € V
~ 1 ok
[(B(u, v), wyy,v|< clul2[Jul[2[|v] [Jw]],

and

~ 1 1
[(B(u, v), wyv,v|< cllull Jo]| |w]2[Jw]]z.

Furthermore, for every u,v,w € V,

<B(u7 U), w)V’,V = _<B(w7 U), u>V’,V
and in particular, for every u,v € V,
<§(’U,, U), U>V’,V =0.
Moreover, we have for every u € H,v € V and w € D(A),
and by symmetry we have for every v € D(A),v € V and w € H,

~ 1 1
[(B(u, v), w)|< [Jul|2[Aulz|[v] [w].

Also, for every u € V,v € H and w € D(A),

= 1 1 1 1
|[(B(u,v), w) pay.pw| < e(ul?|[ul| 2 [o] |Awl|+ o] lu] lw]| ] Aw]?).

In addition, for every u € D(A),v € H and w € V,

= 1 1 1 1
[(B(u,v), wyvrv|< e[l 2 [Aul= o] [w][+|Au o] [w]?[Jw]?).

1 1
[(B(u,v), w) peay.pwy| < clul [[v]] [[w]]z| Aw]2,

(2.2.9)

(2.2.10)

(2.2.11)

(2.2.12)

(2.2.13)

(2.2.14)

(2.2.15)

(2.2.16)

Proof: To prove (2.2.9), let us first consider the case when u,v,w € V. Using (2.2.5) and the

fact that

(B(u, ), w) = i /Q ” (g?) w;dz,

ij=1
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by generalized Holder’s inequality,

ov; ov;
|/Qui£wjdx < fJuill 2o 62 [[w;ll s @),
1 1 1
since 3 + 3 + 6= 1. Therefore
[(B(u, ), w)yv|< cllufl sy Vol wl]| o), (2.2.17)

Recall the following Sobolev inequalities in three dimensions:

1 1
lellzs@ < ellllZ2) el Er o) (2.2.18)
el zs@ < cllellm@ for all ¢ € H'(Q). (2.2.19)

Using (2.2.18) and (2.2.19) into (2.2.17), we get (2.2.9) for u,v,w € V. Since V is dense in V, the
result follows.

The estimate (2.2.10) follows the same steps of (2.2.9), but considering ||u||rs() and ||w||Ls()
instead of ||u||rsq) and [|w||Ls(q)-

The identity (2.2.11) follows from the vector calculus formula:
(a x b) - c=detla,b,c] = —detlc,b,a] = —(c x b) - a

for all a,b,c € R?. Taking a = u,b = V x v and ¢ = w, we get (2.2.11). The result (2.2.12) is a
particular case of (2.2.11) with w = u.

Let us now prove (2.2.13). Again consider firstly the case where u,v,w € V. Then

[(B(u,v), w)pay,payl =

/Q[ux(va)]~wdx

< |ul [Vol[[w]| Lo (- (2.2.20)
Using the three-dimensional Agmon’s inequality:

1 1
lellze@ =< cllell ool fr2 ) (2.2.21)

by (2.2.20) and (2.2.21), we conclude (2.2.13):

1 1
[(B(u, v), w) peay.py| < clul [[o]] [[w]|?| Aw]>. (2.2.22)
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And again by arguments of density, we have (2.2.22) for every u € H,v € V and w € D(A).
The proof of (2.2.14) is analogue to (2.2.13), provided that we have symetry by (2.2.11). There-
fore

~ 1 1
[(B(u, v), w)|< [[ul|2[Aulz ||v]| |w],

for every u € D(A),v € V and w € H.
Let us prove (2.2.15). Consider again u,v,w € V. Using (2.2.5), we get

[(Blu,v)w)payow| < | [ (- V)o)-wda| + | [ ((w- V)u) - vda
< | (- V- v)da| + o] [Vu] 1] 2o
< cllullzsi [Vl o fol+elel ul ]l

Applying (2.2.18) in ||ul|z3), (2.2.19) in ||Vw||rs) and (2.2.21) in ||w||1=(q), we have

1 1 1 1
|[(B(u, v), w) pay,pw| < e(ul?|[ul|2 o] |Aw|+ o] lu] lw]| 2] Aw]?).

Finally, the proof for (2.2.16) is similar (2.2.15). Note that

|<B(’U/,U),’LU>V/7V| < +

/Q((u -V)v) - wdz
/Q((u -Vw - v)dz

clfull ooy l[w]] o] +eljw]] Loy Vel oo 0]

/Q((w -V)u) - vdz

+ [w| s @) IVl Loy ||

IN

IA

1 1 1 1
< [Jullz[Aul>[lwl| [ol+c[Aul [o] fw]2 |[w]]2,

which completes the proof.

Note that from (2.2.15) follows

|[(B(u, v), w) pay,pay| < Jlul o] [Aw]
for all u,v € V, and w € D(A). this means that B maps V x H into D(A)" and
1B (u, 0) | pgay < ellull o]-
cf. (2.2.3), the estimate of B(u,v).
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2.3 The equivalent form of NS-a system

To obtain an equivalent form of the system of equations (2.1.1), we apply the operator P to

(2.1.1) and use the definition of the operators A and B. So we get:

dt (2.3.1)
div u =0, u(0) = uy,

d -
{ —(u+ o®Au) + vA(u + o*Au) + B(u,u + o*Au) = P,
where again we assume periodic boundary conditions € = [0, L]*> and f time-independent forcing
term. For convenience, we will assume that Pf = f; otherwise, we add the gradient part of f to
the modified pressure and rename Pf by f, provided that f = Pf 4+ V¢ (see Proposition 2.1.2).

Alternatively, if we denote

v =u+ a’Au,

the system (2.3.1) can be write in the short form

dt (2.3.2)

dv + vAv + é(u,v) = f,
u(0) = up,

with dive = divu = 0.

The solution to the system (2.3.1) is defined as follows, and can be found in Definition 2 of [9]:

d
Definition 2.3.1. Let f € H. A function u € C([0,00); V) N L?([0,00); D(A)) with ditb €

L*([0,00); H) is a regular solution to (2.3.1) in the interval [0,7T), for any 7' > 0, if it satisfies, for
every g € D(A):

d
<dt(u +a®Au), 9> + v{A(u+ &®Au), 9) p(ay .p(a)
D(A)",D(A)

+<§(Ua u+ o’ Au), 9)pay,py = (f, 9)

for almost every ¢ € [0,7), and u(0) = up € V. The above equation assumes the following sense:

For every to,t € [0,T),

(u(t) + a2 Au(t), ) — (ulte) + a® u (to), ) + v /tz(u(s) + a2Au(s), Ag)ds

+ | (B(u(s),v(s)); 9) pay,piayds = (f, 9)(t —to)

to
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The well posedness of the system (2.3.1) according to definition 2.3.1 was proved by E.S. Titi,
C. Foias and D.D. Holm in Theorem 3 of[9]:

Theorem 2.3.2 (Global existence and uniqueness). Let f € H and ug € V. Then for any 7" > 0,

the system (2.3.1) has a unique regular solution u on [0,7). Moreover, this solution satisfies:
(1> u € Lloc((07 T]7 H3<Q))

(ii) There are constants Ry, for k = 0, 1,2, 3, which depend only on v,a and f, but not on wuy,
such that
. ko2, 2 g kH 9 2
limsup(|A2ul*+a”|A 2 u|”) = Ry.
t—o0

In particular, we have

A2 f2 AP PSP
<
g = Alm { v va? = AP vAAja? |’

ie.,
2,2 2,2
9 Ve 1 B G-v
Ry < A1/2”11“{17 a%} RSYEE
where G = 3 7 is the Grashoff number, and L = min{l, S s} Furthermore, for all ¢ > 0,

G2u\?

limsupT/ (Jlu(s)|*+a?|Au(s)|*)ds < vA R <

T—o00

Since in chapter 4, we will analyze the behavior of w(t) —u(t) when time goes to infinity, where
w(t) is the solution of the system (1.5.4), it is necessary to know the behavior of the solutions
of NS-a equations when ¢ — oo. In other words, we need to know the global attractor of the
semigroup S(t) of the solution operator to system (2.3.1), i.e., u(t) = S(t)uy, in terms of physical

parameters of the equation (2.1.1).

Proposition 2.3.3. Fix T' > 0. Let G the Grashoff number G = /] and suppose that wu is
v

2\3/4
the solution given by Theorem 2.3.2. Then there exists a time ty, which depends on ug, such that
for t > ty > 0 we have
2G21?
)\}/ a2

lu(®)*< (2.3.3)
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Moreover,

vG?
1/2

Al

t+T
[ lu(s)lP+a? Au(s) ds < 2+ vAiT)
t

(2.3.4)

Proof: The proofs of (2.3.3) and (2.3.4) follows from some of the estimates obtained in Theorem

3 of [9]. For completeness of the thesis, we reproduce here: taking the L%inner product of (2.3.1)

with u and using (2.2.12), we have

1d
§£(\UI2+042HUHQ) + v([lul?+o?|Auf?) = (f, u)
Note that
_1 1 _1 P | 9
(fu)l=1(A72f, A2u)] < AT fl lull< S+ 1R
v 1
< Y 20 02 Aul? 2
< Sl +aiAu) + 5 17|
Therefore

d 2, 2 2 2, 2 2 |f|2
< =,
dt(|u| +a’|[ul|?) + v(||Jul]P+a”|Aul?) < ”e

Using Poincaré’s Inequality, we obtain

d 1
ol +a?l[ull®) + vAa (jul*+a?ul) < VTllJ‘IQ,

and by Gronwall’s Inequality,
— 1
[u(t)]*+a?[[u(t)||P< (Juol*+a®[|ug||*)e™™" + VTA%IfIQ-

Thus, there exists ¢ty > 0 depending on |ug| and ||ug|| such that, if ¢ > ¢,

21> 2G*?
P+ |u(t) IP< =
O+l w0l < T35 = =
and consequently,

2 f|? B 2G21?

lu(®)]*<

(ha)  a2al?

To obtain (2.3.4), we integrate (2.3.6) over the interval (¢t,t+ T):

e+ )P+ (e + TP~ () P+ u()2) + v [ ) 0% Aus) Pds <
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(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)

(2.3.9)

2
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Using (2.3.9), it follows that, for all ¢ > ¢,

1 |f|2 2|f|2
2+oc2 A 2ds < T+
V/t ||u(s)|| | u(s)| s < Y VZ/\%

1 1
= G\ T + 2G%% )\ 2
and we conclude that
=T 2, 2 2 -3 2
/t u(s)|[2+a2|Au(s)Pds < (2 + v\ T)vA; 2G2,
O

The next three theorems are essential to prove the results of existence for the system (1.5.4).

The first one is the well-known Picard Theorem for ODE’s:

Theorem 2.3.4 (Picard). Let O C B be an open subset of a Banach space B, and let F'(X) a

nonlinear operator satisfying the following criteria:

(i) F maps O to B.

(ii) F(X) is locally Lipschitz continuous, i.e., for any X € O, there exists L > 0 and an open
neighborhood Ux C O do X such that

||F(X1) — F(XQ)”BS L”X1 — X2||B for all X1, X0 €eUx

Then for any Xy € O, there exists a time T such that the ODE
dX
has a unique local solution X € C'([0,T]; O).

The other two theorems are compacteness theorems. The next one is the well-known Banach-

Alaoglu Theorem:

Theorem 2.3.5 (Weak Compactness). Let X be a reflexive Banach space and suppose the se-
quence {u}p2; C X is bounded. Then there exists a subsequence {uy;}32; C {ux}2, and u € X

such that ug;, — u.

The third theorem is the Aubin-Lion Theorem, whose proof can be found in [18], but for

completeness of the thesis, we will prove it. Before, we prove an auxiliary lemma:
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Lemma 2.3.6. Let By, B and B; be three Banach spaces such that By — B — B;. and the

embedding By — B is compact. Then for every n > 0, there exists ¢, > 0 such that
[olls< nllvll gy teyllvll s, (2.3.10)

Proof: Suppose that the statement is false. So for some n > 0, there exists v,,, € By and ¢,,, — 00
such that

[vm [ 5> Nllvml| By +Cm|vml| 5, -
Considering wy,, = v,/||vmll B, We have
[wmll B> 0+ e llwmll B,> 0, (2.3.11)
and ||wp,||s< ki1, [|wm|| g,= 1. From (2.3.11), we obtain
[wmll5,— 0

. But ||w,||g,= 1 and since By < B is compact, one can extract a subsequence w,,, that converges

strongly in B and necessarily it converges to 0; i.e., ||wy,, ||z— 0, which contradicts (2.3.11).

O

Theorem 2.3.7 (Aubin-Lion). Let By, B and B; be three Banach spaces such that
By — B — B;

where the embedding are continuous, By and B; are reflexive and the embedding By — B is
compact.

Let T' > 0 be a fixed finite number, and let 1 < pgy, p; < oo and regard the space

W = {u e LP([0,T); By), u' = Cf;: € L™ ([0,77; B1)}

which is provided with the norm

[ellw= Nl o to.77:0) + 14/l o 0.7: 1)
Then the embedding W — LP°([0,T]; B) is compact.
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Proof: Let {v,}>°_; be a bounded sequence in W, and we will denote for simplicity v,, € W.
The aim is to prove that there exists a subsequence {v,,, }7°, of vy, such that v,,, — v strongly in
LP([0,T]; B). Since LP°([0,T1]; By) is reflexive, one can extract a subsequence v,,, — v weakly in
W, ie.,

Up,, — U — 0 weakly in W.

Changing the notations, the problem turns into as follows: let v,, a sequence in W such that

U — 0 weakly in W. Then
U, — 0 strongly in LP°([0,T7; B). (2.3.12)
Indeed, for all > 0, there exists ¢, by Lemma 2.3.6 such that

[om|[ < nllvml| 5o +collvmll s,

and therefore, for all 7 > 0, there exists d,, such that

V]| zro (0,7:8) < 1l[Vm || Lro (0,7:80) + oy ||V || 70 (0,71 ) - (2.3.13)

Let € > 0. Since
vaHLPo(o,T;B)S c, (2.3.14)
we can choose > 0 such that 7 < 23 Hence from (2.3.13) and (2.3.14),
c
€
||Um||LPo(o,T;B)§ 2 + dnH'UmHLPO(O,T;Bl)~

Consequently, to prove (2.3.12) is sufficient to show that

U, — 0 strongly in LP°([0,T7; By). (2.3.15)

Indeed, we have

[om ()5, < C, (2.3.16)

provided W C C([0,T]; B1). According to Lebesgue Dominated Convergence Theorem, we have
(2.3.15) if we prove that, for all s € [0, T,

Um(s) — 0 strongly in B (2.3.17)
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Without loss of generality, one can suppose s = 0; i.e., prove that
Um(0) — 0 strongly in B;. (2.3.18)
We define
Wi (1) = v (ML), A > 0 fixed.
Then v,,(0) = w,,(0) and

T T
lnlBogoriay = ) lwm(s)Eds = [ llom(As)2,ds

T po L 1
= [ o)l 50t < 5o

and therefore

1
Wi || 7o ([0,17;B5) < €A 7o (2.3.19)

Similarly, we get

[wh [l 2o 0,7:0) < EX' 7L (2.3.20)

Moreover, if ¢ is a function in [0, 7] with ©(0) = —1 and ¢(T") = 0, then

wal0) = [ le(@un(e)'dt = [

: @' (t)win (t)dt + /OT o(t)w! (t)dt.

T
Denoting f3,, = / e(t)w,, (t)dt and ~,, = / ¢’ (t)wp, (t)dt, we have from (2.3.20):
0 0

1—L
[om (O) 1 < [ Bl [l < A 70+ [y 5y

If e > 0, we choose A > 0 such that

and prove (2.3.18) is therefore to prove that
Ym — 0 strongly in Bj.

Provided that we can assume A < 1 and w,(t) = v,,(At), we have w,, — 0 weakly in L (0,T’; By)
and thus v, — 0 weakly in By. By assumption, By < Bj is compact and as a result v,, — 0
strongly in B;, which completes de proof.

O
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Chapter 3

Global well-posedness and Uniqueness

In section 1, we present the definition of a regular solution to the problem (1.5.4) and prove
the existence of a solution for two cases of I; (see (3.1.2) and (3.1.3) below.)

In section 2, we prove the uniqueness of the solutions for both cases.

3.1 Existence

Consider the continuous data assimilation equations for the incompressible Navier-Stokes-«

equations, as presented in Chapter 1, Q = [0, L]?, under periodic boundary conditions:

é?t(w — OﬂAw) — VA(w —QQAw) —w X (V X z) +Vp
= f — p(lhw — ) + paA(lw — ), (3.1.1)
div w =0,

on the interval [0,7], 2 = w — o*Aw with initial condition w(0) = wy € V chosen arbitrarily
and I (u(t)) representing our observations of the Navier-Stokes-a system. We will deal with this

problem in two cases: when the interpolant I, : H'(Q) — L2(f) satisfies
lo — Io|?< 2| V|? for every ¢ € H(Q), (3.1.2)
and when the interpolant I, : H2(Q) — L2(Q) satisfies
lo — Ino)*< c§h2]V¢|2+c§h4Hgonp(Q) for every o € HQ(Q) (3.1.3)
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Applying the Leray Projector and using the functional setting presented in Chapter 2, the above

system is equivalent to
jt(w + a?Aw) + vA(w + o?Aw)+ B(w,w + o Aw)

= = P = a®A)(In(w) — In(w)), (3.1.4)
div w =0,

In order to rewrite the system (3.1.4) in a simpler way, we have the following lemma:
Lemma 3.1.1. Suppose ¢ € H2(Q). Then Py € H2(Q) and —PAp = —PAPp = APo.

Proof. 1f ¢ € H 2(Q2), by the Helmholtz decomposition, there exists a unique ¥ € V and
p € Hl(Q) such that ¢ = ¢ + Vp, with div ¢y = 0 and Py = 1. Moreover, we also have
Ap = dive € HY(Q), and it follows that p € H3(Q). Since ¢ € H2(R), we conclude that
¥ € H*(Q). On the other hand,

—Ap = —Ap = V(Ap),

and consequently,

—PAp = —AYp = —APep. (3.1.5)

This also implies that

Ap = —P(Ap) = =P*(Ap) = —PA(Py) = APe.

Using Lemma 3.1.5, the system (3.1.4) is equivalent to

d -
g(w + ?Aw) 4+ vA(w + o?Aw) + B(w, w + o®Aw)
= [ = (I + a*AYP(In(w) = In(w)), (3.1.6)
div w =0,
on the interval [0, 7], with w(0) = wy € V,z = w + a?Aw. Furthermore, inequalities (3.1.2) and

(3.1.3) become
P(o = D) P< R ll?, for every p €V, (3.17)
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and
|P(p — Inp)|P< c3h?||o||*+csht | Apl?, for every o € D(A). (3.1.8)

We present next the definition of a regular solution to the system (3.1.6).

Definition 3.1.2. Let f € H and T > 0. A function w € C([0,7);V) N L*([0,T); D(A)) with

d
di; € L*([0,T); H) is a regular solution to (3.1.6) on the interval [0,7) if it satisfies, for every
g € D(A):
d 2 2
a(w +a”Aw), g + v{A(w + a”Aw), g) p(ay,p(a)
D(A)',D(A)

+(B(w,w + o*Aw), g) pay,p(ay = (f, 9)
— (P (Iyw — Inw), 9) peay,pay — po (AP (Iyw — Iyu), g) peay,p(a)
(3.1.9)

for almost every t € [0,7), and w(0) = wy € V. The above equation assumes the following sense:
for every to,t € [0,T),

(w(t) + a2 Aw(t), g) — (w(to) + w(toy), g) + Z//t(w(s) + a*Aw(s), Ag)ds

t
. 0

+ | {B(w(s), 2(5)), 9) pay,payds = (f, 9)(t —to) (3.1.10)

to
t

—u [ (P(Iyw(s) — Ihu(s)), g)ds — pa® /t(]hw(s) — Tyu(s), Ag)ds

to to

Theorem 3.1.3. Let f € H,wy € V and p > 0 given. Suppose that [, satisfies (3.1.2) (and hence
(3.1.7)) and ucih? < g, where ¢; > 0 is the constant given in (3.1.7). Let u be the solution of
NS-a equations with initial data u(0) = ug € V, ensured by Theorem 2.3.2. Then the continuous
data assimilation equations (3.1.6) have a regular solution w on [0,T") for any 7" > 0 in the sense

of definition 3.1.2.

Proof: Firstly, we apply the bounded operator (I + o?A)~' € L(H, H) in the equation (3.1.6)
and using that

dw

(I+ 042A)_1i(] +a?A)w = i([ +a?A) NI + a*A)w = =

dt dt
and

(I+a?A) AT + o A)w = AL+ *A) NI + o*A)w = Aw,
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we obtain

dw

prans vAw + (I + oA 'B(w, 2) = (I + 2A) 7 f — P (Iyw — Tu) (3.1.11)

Note that to prove the existence of the solution to the equation (3.1.11) is equivalent to prove

the existence of solution to (3.1.6). Define

f(s) = (I +a®A)7 f + puPIyu(s).
Note that for all s € [0, 7],

P Ivu(s)|< [P(u(s) = Inu(s))|+|u(s)|< crhfu(s)][+|u(s)]- (3.1.12)

Since the Navier-Stokes-a solution u satisfies u € C([0,T; V'), we conclude that I,u € C([0,T]; H).

Moreover, we have

I < |+ a?A) 7 fl+p| Pl
< | f|HpPlyul
< | flHperh|lul|+plul,

and therefore f € C([0,T]; H), i.e., there exists a constant M such that |f|< M for every t € [0, T].

The purpose now is to stabilish the global existence of solutions to (3.1.6). For that, we use
the Faedo-Galerkin method. Let H,, = spam{¢i,..., ¢}, where Ap; = A;¢;. We denote by
P,, the orthogonal projection from H onto H,,. Let w,, € H,, satisfy the finite-dimensional

Faedo-Galerkin system of ordinary differential equations:

dw ~ —
J_’_VAwm_|_Pm]+a2A -1B Wiy Zm) = P f — u PPl w,,

v (I + a2 A) 7 B 2n) = Puf — #PuPl -
Um(0) = Ppuo,

Since system (3.1.13) has a quadratic non-linearity, therefore it is locally Lipschitz and as a
result by theorem 2.3.4, it has a unique short time solution. The next step is to prove that the
solution is uniformly bounded in time and m; and thereby we shall ensure the global existence in

time of w,, for all m.
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Denote by [0,7%*) the maximal interval of existence for (3.1.13). Our goal is to show that

Tmax — T, Focusing on [0, 7/2%%), we take the dual spaces action D(A)’, D(A) on w,, in (3.1.13),

we have
1d 2 2 2 N\-175 -
iﬁ‘wm‘ —|—I/me“ +<Pm(I + « A) B(wm7 Zm), wm)D(A)’,D(A) = (meawm) - M(Pjhwma wm)a
(3.1.14)
where (‘iﬁj—t’”,wmbm)/ﬂm) = %%|wm|2 is due to Lemma 2.1.13.

Taking L?-inner product of (3.1.13) with Aw,, and then multiplying the equation by a?, we

obtain

1 ~
26;1042||wm”2+7/052|14wm|2+ (P (I + a2A>_lB(wm,2m),a2Awm) (3.1.15)

= (P.f,o*Awy,) — u(PIywn,, o Aw,y,).
Adding (3.1.14) and (3.1.15), we get

1d
5 7 (wm*+a[wn]*)+ v(llwn|*+a’| Aw,, )
+ (Pon(I 4 a?A) ' B(wn, 2m), Wi + o2 Aw,y,) (3.1.16)

= (Puf,wm + & Awy,) — (P Ly, wy, + o Aw,y,).
Taking into account that A is self-adjoint, we have that (I + «A) is self-adjoint and therefore

(I + a2A)_1§(wm, Zm), (I +?ADw,y,) = ((I+a?A)(I + a2A)_1§(wm, Zm)s Wiy

= (B<wm7 Zm), wm> = 0.
(3.1.17)

Using (3.1.17) and the symmetry of P, we have from (3.1.16),

1d

5 g7 [oml F e wnl?) + v([wnlP+ o’ Awnl*) = (Puf, wn) + (P f, Awn)

— Iy, W) — p? (Iyw,, Awy,).
By Young’s inequality we get
_ _ W 1 -
(me7wm> S |f| ‘wm|§ Z|wm|2+;|f|2’
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2
0 (P Aw,) < 0[] [ Awn|< J0?| Awy, P+ TP,
14

and we obtain

1d
5 7 [oml e [wn?) +v([[wn]*+0’ | Aw, %)

Lo 1 0, 0% 2o V 2
- o m T ”n A m
TP+l P4 502 A
— (I W, W) — e (Iwy,, Awy,).

Including 4 (wy,, wy,) and £pa?(w,,, Aw,,) on the right-hand side of the inequality above,

L a4 (oo Awal?) < (£ + 2 (7P
%\wm\Q—FZaZ]Awm\z

(W, — Ty Wy, W) — :u|wm|2

+ o+ o+

pe (W, — Tpwy,, Awy,) — pod®||wp, ||,
Note that, using Cauchy-Schwarz inequality and the condition (3.1.7), we have
(W — TpWp, Wiy) = (W — Tpwiy, Pwpy) < [P(wy, — Tnwi)| |wm| < erhl|wp|| [wm,
and
(W — TpWiy Awy,) = (Wi — Tywe,, PAw,,) < |P(wp — Inwg)| [Awg|< crh||wn]] |Awn,],

and therefore

1 d 2 9 9 9 9 9 1 a2 s
_a (1,
5 77w+ )+ v (llwn|*+0?| Adw,[?) < PR 7l

+ %|wm|2+2a2|Awm|2 (3.1.18)

+ Mcthme |wm|_ﬂ|wm|2

+ paterh][wn || [Awn|—po? w1 *.
Note that by Young’s inequality,
1 1 I
perhlfwnl] |wnl= g2 fwm|p? erhlfwn]| < Zlwm*+peth? o] (3.1.19)
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and

pcrh?
2

pocrh||wp, || | Aw,|= M%oz||wm||u%clha|Awm|§ gagﬂwm“?—l— o?| Aw,, |2 (3.1.20)

Replacing (3.1.19) and (3.1.20) into (3.1.18), we have

1d

5 77 o+ @ [[wnl®) + v([lwnl*+a®| Awn[*)

1 a?\ — v
< ( ¥ ) TP P+ 02 A
wov 4 4

1
+ Jlonl+pedt® o]’ —pulwn]’
212
I peih
b B P B 02| A P
Under the hyphotesis that h is sufficiently small so that uc?h? < g, it follows that

1d
5 g7 [0ml + @ lwnl?) + v([[wn|*+0’|Aw, )

1 a?\ — v
S O [l R e I
W 4 4

A Lt 1 e

e
2

14

4

+ 50w+ o | Aw [ —pa® w1

Therefore

1d
5 7 (wm[*+ @ lwn|*) + %(meHQJraQ\Awm!Q)

2dt
1 2\ -
S L R T} (3.1.21)
Using the Poincaré’s inequality,
d 2, 2 2 2, 2 2 1 a®\ 2,
5wl e [wall") + WA + p) (jwm "+ wn|%) < 2 PR Tk (3.1.22)

for all t € [0, T**). By Gronwall’s inequality we conclude that for all ¢ € [0, T2*¥),

[ () P02l ()2 (ol +a2 e 2)e= M9 2 (L4 o) M
LoV v+

1 — e—(vA1+u)t)_

Since e~ WMFME < 1 and 1 — e~ WMFWE < 1 for all t € [0, T*), we reach
1 a? M

Wi () P42 || (O IP< (Jwo|?+a?||wol|?) +2 | = + — :

|wm ()"0 [[w () [*< (Jwo|*+a”[[wol[7) . o

5 = M. (3.1.23)
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Since the right-hand side of (3.1.23) is bounded, then T/2** = T'| otherwise we can extend the
solution beyond 7"**, which contradicts the definition of 77**.
The estimate (3.1.23) is uniform in m and ¢, and therefore we have the global existence of w,,
in time and also
2 M, 2
[[wml|Zoe (o115 < o2 and ||z ||z 0,170 < M- (3.1.24)

Additionally, we shall find H?-estimates for w,,. From (3.1.21) we get

e OP ) + lln PP <2 (1 + S )00 @129

With (3.1.25) in hand, we integrate over the interval (0,¢):
¢
[ (O +a? | B[P+ [ ()| +a2 Aw (5) s
a

1 2
< [wm (0)[*+0?[|wn (0)[*+2 (u * y> Mt,

and it follows that

[ N P+ Au (5) s < - (wolP+0? o) + 2 (; " Oj) UL =), 3120)
Hence,

o BagomyoonS 20 and [zmlagomm< Ma(T). (3.127)

Note that from (3.1.26) we also obtain
[wimll72 0,70y S Ma(T). (3.1.28)
Now we establish uniform estimates in m for derivates dw;j(t) and dz;t(t)' Returning to

equation
Az, () ~

FTa VAZpy (t) + P B(Wi, 2m) = P f + PIp(u(t)) + P APIL(u(s)) (3.1.29)

— 1P P Iy (Wi (1)) — p10” Py AP I (win (1)),

we shall estimate in L2([0,T]; D(A)"). Note that by (2.2.15),

Az (1)
dt
|Bwn(t), 2 (D] < Falwm (O] [wam(0)1 2 (AT |2 () om (D]])

2k A 2 ()| w0 (1)

N
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Consequently, and thanks to (3.1.24) and (3.1.27), we have

1B (wns 2m) 720,73 / | B(win(s), zm(s))[*ds

4k3
< 2 [ ()P o (s) s

4k§M1 /T ,
< — m d
< S bl

4k2 M, 4k3 M,
)\1/2 ”ZmHL2 [OT]H)< /\1/2 My(T).

To estimate the right-hand side of (3.1.29), we use the fact that I(u) € C(]0,T]; H) and so
API,(u) € C(]0,T]; D(A)). Moreover, we have the two following estimates:

[ I () | < [T (W) = win |+ | < exhl[wp|+wp],

1AL (win) | Deay = [AT AL (W) |< | Inwm — W+ |wim| < exhl|wpn]|+wm|

Therefore, we conclude that

‘ L3([0,T];H)

for some M; and Mj.

2

Lem |

dt

< Mg(V )\l,f a, T and H

< M4(V7 )\17 ?7 «, T>7
L2([0,T];D(A))

The next step is to extract subsequences which are convergent in some related spaces. For that,
we will make use of the Compactness Theorems 2.3.5 and 2.3.7 .

First, consider the space

Y = (2 € (0.7 H), Z € 12(0,7); D(AY)).

Since D(A) C V' C H and the injection V' C H is compact, we have
H=H cV'c D(A),

with H C V' a compact injection. Thus by Theorem 2.3.7, the injection Y C L*([0,T]; V') is
compact, i.e., there exists a subsequence {z,,;}32, of {zy}pr—;, which from this point, we denote

with the same label {z,,}°_; such that
Zm — 2z strongly in  L*([0, T]; V'), (3.1.30)
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or equivalently,

w,, — w strongly in - L*([0, T]; V). (3.1.31)

Second, by (3.1.27), we have that {w,,} is bounded in L*([0,7]; D(A)), which is a Hilbert
space and in particular, a reflexive space. Using Theorem 2.3.5 we conclude that there exists a

subsequence of {w,,} such that
w,, — w weakly in L*([0,7T]; D(A)), (3.1.32)

or equivalently,

Zm — 2 weakly in  L*([0,T); H). (3.1.33)

With these convergences in hand, we need to pass the limit when m goes to infinity in the

following equation, coming from (3.1.13):

(on(0):9) = Gnl10):9) + [ Gn(s), Ag)ds + [ (Blam(s),2m(5)), Pughoiar.oads
= (f, Png)(t —to) — ,u/t:(lhwm(s) — Iyu(s), g)ds — pa? /t(lhwm(s) — Ihu(s), Ag)ds,

to

for every g € D(A) and for all ¢y,t € [0,7]. We shall analyze each one of these terms in details.
1. Terms (z,(t),g) and (z,(t0), 9) :

Since z,, — z weakly in L*([0,T]; H), we have that z,,(s) — z(s) weakly in H for all t €
[0, T]\G, where med(G)=0. Then F(z,(s)) — F(z(s)) as m — oo strongly for all ' € H' = H.
For g € D(A) fixed, but arbitrary, regard F' the mapping F' = (-,g) : h € H + (h,g). Then

F € H' and we conclude, as m — oo,

(2m(1),9) = (2(t), 9) and (zm(to),9) — (2(t0), 9)-

(2) Term [ (zn(s), Ag)ds :

to
Using that z,, — z weakly in L*([0, T|; H), we construct a linear functional F' € [L*([0,T]; H)]' =
L*([0,T); H) and then we apply the property F(z,,) — F(z) as m — oo.

F:L*0,T;H) — R
t
Z f—> (z(s), Ag)ds.

to
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F is well-defined and continuous:

FOI < [ 1), Ag)lds < [ 12(5) | Aglas

(o)’ ([asvas)

73| Ag||| 2 c2(po.27:80)-

IA

IA

Therefore as m — oo,
t

/t(zm(s), Ag)ds — | (2(s), Ag)ds.

to to
[

(3) Term [ (B(wm(s), 2m(s)), Pmg)peay,p(ayds :

to

We have to prove that, as m — oo,

[ (Bwn(s),20(5)), Pug) = (Blu(s), (), 6)piay.piads = 0.

Note that

[ (Blwn(s), 2 (5): Pag) = (Bluls),2(5)),6)piay.piads
[ (Blwn(s):2n(5)), Pag) = (Blwn(s), 20(5)). ) iay s

[ B (s). 2 (5): 904y 00 — (Blw(s)s2m(): Ghoiay oinds

<

+

+

/tot(é(W(S), 2m(8)), 9)pay. oy — (B(w(s), 2(s)), 9) piay,payds| -

The first term on the right-hand side of the inequality can be estimated as follows:
| Bwn(s). 20 (5): Pug ~ 9)oiay.oeads
< [ Sllumlen(l1Padg — Aglds
= lPnds A /t§||wm<s>|||zm<s>|ds

= sralPads = ol ot ) ([ smtors)

WIPmAg = Agllwmllz2 o) l2m 220,71:80)
1

IN

IN

c
WleAg — Ag|My(T),
1
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where we used Holder’s Inequality, (3.1.27),(3.1.28) and the following inequality for every u €
Viv € H and w € D(A) (see Lemma 2.2.1, item (2.2.15)):

[(B(u,v), ) pay,pay| < elful?|full 2 ol [ Awl+o]Jull|w] 2| Aw|?). (3.1.34)

Since |P,Ag — Ag|— 0 as m — oo, it follows that

/t:<é(w(5)v 2(5)), Pmg — 9) p(ay,payds| — 0. (3.1.35)

Similarly, the second term,

| (B wn(s) = (). 20(5)).9) piay.oads|
< sralon®) — wllan (6149l

= —alAg) [ Twn(s) — w (o)l [2m(s)lds
= g1}, llwm m

— sl [ (o o) () T|zm<s>r%z$)é

c
= W|A9‘me o w||L2([07T];V)HzmHLQ([O,T};H)
1
c
< W|A9|M2<T)l/2||wm — w|| 20 11v)-
1
Furthermore, from (3.1.31),

— 0. (3.1.36)

/t:<§(wm(8) —w(s), 2m(8)), 9) p(ay.p(ayds

To estimate the third term

[ 1B, 20(5) — 2(5), 9oy piads

Y

we note that, since z, — z weakly in L*([0,7T]; H), we have for any F € [L*([0,T];H)] =
L*([0,T]; H) the convergence F(z,) — F(z), as m — oco. For w € L*([0,T];V) and g € D(A)
fixed, but arbitrary, consider the linear function

F:L*0,T;H) — R

(2

: [ {Blw(s). 2(5)). 9)pay.piads.

to
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F is well-defined and continuous:
t
|F(2)]= | ) (B(w(s), 2(s) ), 9) p(ay,payds|
0
IS t
< ‘4 / d
< Ai/‘l’ gl t0||w(8)||\2(8)| s

< )\;4|Ag|</OT||w(S)||2>2 (/OTIZ(S)|2als>2

C
= sl Adllilellzzmy izl
1

Then F € [L*([0,T); H)]' and F(z,,) — F(z) as m — oo, which implies

/OT@(%U(S)’ zm(8)), 9) D(ay,p(ayds — /OT@(UJ(S), z(5)), 9) p(ay,p(a)ds,

ie.,

/t:@(w(a‘), 2m(8) = 2(5)), 9) Day.p(a)ds

From (3.1.35), (3.1.36) and (3.1.37) we conclude that

— 0. (3.1.37)

Zﬁj(é(wm(s%zm(s))»}jmg) — t<é(w(3)aZ(S))79>D(A)’,D(A)d3;
as m — oQ.
(4) Term (f, Png)(t — to):

Note that

as m — 0o, since |P,g — g|— 0. Hence

(f, Png)(t —to) = (f,9)(t —to), as m — oo.

t
(5) Term | (Tpwp(s) — Iyu(s), g)ds:
to

t t
To prove that | (Ipwy,(s)—Ihu(s),g)ds = | (Iyw(s)— Iyu(s), g)ds, as m — oo, it is sufficient

to to

to prove that
t

/t(fhwm(s),g)ds — [ (Iyw(s), g)ds.

to to

o1



First of all, note that I;|p(a): H 2(Q2) — L2(Q) can be seen as a continuous linear operator. Indeed,

if w e D(A),

ah 1

Now, provided that w,, — w weakly in L*([0, T'; D(A)), we have that F'(w,,) — F(w) for every
F e [L*([0,T]; D(A))] = L*([0,T); D(A)’). For g € D(A), consider the linear function:

F:L*0,T;D(4) — R
t

w f—> (Inw(s), g)ds.
to

F is well-defined and continuous: If w € L?([0,T]; D(A)), from Hélder’s Inequality and (3.1.38),

w)|= |/ (Inw(s), g)ds|

< /ﬁhw@mmwzwm/ﬂaw@wm

(4 52 ) Dot o
o (7 + 32) 74 (Tl )

ch 1 1
— |g|< 17 + )\1> T2 ||w||L2([o,T};D(A))

IN

IN

Therefore F' € L*([0,T]; D(A)) and F(w,,) — F(w), as m — oo, i.e.,

t

/t([hwm(s),g)ds — [ (Ipw(s), g)ds,

to to

which implies
t

[ () ~ au(s).g)ds = [ (Bo(s) ~ Lu(s), g)ds.

to to
t
(6) Term | (Ipwm(s) — Ihu(s), Ag)ds:

to

For this term, we proceed as the preceding term, only changing the funcional F'. If g € D(A),

define F as
F:L*0,T;D(A) — R

t
w b— (Ihw(s), Ag)ds.

to
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Likewise F' € L*([0,T]; D(A)') and equally, F(w,,) — F(w) as m — oo, i.e.,

/t([hwm(s), Ag)ds — /t:(lhw(s), Ag)ds,

to

then
¢

/t(Ihwm(s) — Iyu(s), Ag)ds — | (Iyw(s) — Iyu(s), Ag)ds,

to to

and therefore we have completed the estimates. Finally, passing the limit in (3.1.34) as m — oo,

we have

(2(8).9) = (lt0).9) + v [ (2(5), Ag)ds + [ (Bluw(s). (). Pohoiay.oinds =

to

(f, Pg)(t —ty) — u/t:([hw(s) — Iyu(s), g)ds — pc? /t([hw(s) — Tyu(s), Ag)ds,

to

(3.1.39)

for every g € D(A) and ty,t € [0, T]\G.
To conclude the theorem and ensure the solution in the sense of definition 3.1.2, we claim
that w € C([0,T],V) (and equivalently, v € C([0,T];V")). Indeed, from (??), we can extract a

subsequence such
dwk . . 2
o — w weakly in L°([0,T]; H),

and we have written w because it is not immediately obvious that in fact w = dw/dt. However, if
we use the definiton of weak convergence of dwy/dt to w we have

[ S~ [ i,

for all ¢» € L*([0,T]; H). Now, if ¥» € C>°([0,T]; H) then we can integrate the left-hand side by

parts to give

[ S i =~ [ w0

T di
- — ; wk(t)a(t)dt,

using the weak convergence of wy, to w, since dip/dt € C°([0,T]; H) C L*([0,T); H). Therefore we

have

/OTw(tw(t)dt __ /()Tw(t)cf;f(t)dt for all ¢ € C=([0,T]; H),
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and so w = dw/dt as required.
Thus we have that w € L?([0,T]; D(A)) and dw/dt € L*([0,T]; H), and we conclude by Lemma

2.1.13 (taking k = 1) that u € C([0,T]; V). Hence
jt(w + a?Aw) + vA(w + o2 Aw) + B(w, w 4 a*Aw) (3.1.40)
= [ = iP(T(w) — Tu(w)) — p0?AP(Ty(w) — T(w),

and we have the existence of a regular solution for (4.1.3).

OJ
Consider now the same system (3.1.6), but now with the interpolant I, satisfying
P(e — Inp) "< cah?|| o] *+c2h™ | Al (3.1.41)
instead of (3.1.7). So we have the following result of existence:

Theorem 3.1.4. Let f € H,w, € Vand p > 0 given. Suppose that [, satisfies (3.1.41) (and hence

(3.1.8)) and the two conditions below are valid:

pcsh? < % (3.1.42)
and
2
ucht < % (3.1.43)

where ¢ > 0 is the constant given in (3.1.41) and & = max{cy, c3}. Let u be the solution of NS-«
equations with initial data u(0) = uy € V, ensured by Theorem 2.3.2. Then the continuous data
assimilation equations (4.1.3) for Navier-Stokes-a have a regular solution w on [0,7") for any 7" > 0

in the sense of definition (3.1.2).

Proof: The proof is similar to that of Theorem 3.1.3; so we will exhibit here only the main steps.

Firstly, the proof follows the same method as up to inequality (3.1.18):

1d 1 2%\ -
hﬁmmﬂﬁw%ﬁ+vaWﬂﬂmwﬁé<u+S)UF
+ %]wm]2+ga2]/lwm\2

+ (W = InWe, Win) — //J|wm|2

+ e (W — I, Awp,) — pa || w,, ||
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Using Cauchy-Schwarz and Young’s inequality,

lLd 2, 2 2 2, 2 2 <1 20 ) 2

——(|wp "+ |wn||F)+ v(||wy,||*+a”|Aw,, ) < | — f

5 g Wl [wm|*)+ v([Jwnl] | %) . | f]
+ %|wm|2—|—ga2|Awm|2

EIP (= Twn) P45 =l

2.2
PO D — Tnw) P+ 2 02| Awy, |2 — 10?1 ||

* 4

Applying (3.1.41), we proceed in a similar way as Theorem 3.1.3:

1d

1 20/
(w0 )+ v(llwml+a? Awf?) < (M ) 7

3
+ ﬁ]wm]2+la2]Awm|2

8
uch pch
O 2 B B,
2h2 2h4
02w P4 2 02| A [P 0?0,
By assumption, h satisfies
5 UV R
pcah” < -, and pucyh™ < ——
2 2
Therefore
pcah? < pcoh? <§
and

pAcEh* = pcoh? - peah? < pesh? - pcah? < g . % 1

so we obtain

1d 1 2%\ -
57 (Wl [wnlP)+ (llwn|*+a?| Aw, ) < (M +f) 7P
3
+ ﬁ|wm|2~l—§ya2|Awmy2
I/Oé
P+ A= E e
goﬂuwmu | Aw[P—pa®w, |
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Hence
1 2, 2 2 2, 2 2
5 =7 ([wm|” + a[wn ") + v([[wm[|"+a”[Aw %)
1 202\ - 7
< (5 20 T4 P T P P~
which implies

1d
5 g7 [wml e [wnl?) + g(llwm|l2+042lz4wm|2)
1

202\ =, W
< (142 2_E w1240 | w,, ||
< (2 2 =L oo )
and using the Poincaré Inequality,

d 2, 2 2 po A 2, 2 2 2 | 4a® 712
- 247 <2+ =) [F>~ 1.
el ?) + (5 + 47 QP aaonl®) < (24 22) 7 (3144

By Gronwall’s Inequality, it follows that

[ ()0 [ ()2 < (Jwo|?+02|[wo|?)e B+

2 4a?\ (p v\ ! by Arv
2 407\ (o A\ e
+<M+V><2+4> dmemh

where M > 0 is the same constant of Theorem 3.1.3. Taking into account that e_(%Jr%)t <1 and

(1-— e_(%J“%)t) < 1, we have

2 4a? UM, —~
| (8)* 0 [ (8) |2 < (Jwo|*+a[lwol|?) + (; + 7)(% + Tl) "M = M. (3.1.45)

Thus

. —
[ |70 (0,773 < 2 [ |70 o771y < M.
For H?-estimates, we have from (3.1.44):

d 2 40
(w40 [wn ) + 7 (w02 Aw, ) < (M + O‘) M, (3.1.46)

and integrating (3.1.46) from 0 to t, we reach

t 2, 2 2 4 2, 9 2 4 (2 4o o
[ T 5) P+ A () 2ds < (2 2)+ (= + 2 ) MT 2= N (D).
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Therefore it follows that .
Ms(T)

2 )

[wm |72 (0.17:0(4)) < o

2172 (j0,7, 04y < Ma(T)
and

[wm |72 0,177 < Ma(T).

d d
To estimate Z;m in L2([0,T); H) and % in L([0,T); D(A)Y), we use the same technique

presented in Theorem 3.1.3, only substituing (??) for the following estimate:

|Pm73]hwm| < |P(Ihwm - wm>|+|wm| < 02h||w7R||+62h2|Awm|+|wm|

< (ehAT? + eoh® + AT | Awn,
where we used that va+b < \/a+ Vb for a,b > 0. Therefore

T
1P PIvwnllz2qorym = (cshA 7+ e + )\1_1)2/0 |[Awn(s) P ds
M,(T)

< (b AP+ b + A1) %

dzpy, . :
The estimate % in L?([0, T); D(A)’) follows as estimate (7).
Following the proof steps of Theorem 3.1.3, we can extract all subsequences desired with no
changes, using the compacteness theorems cited in that theorem.
Now, we are interested in passing the limit, when ¢ — oo, in
t to
(n(t),9) = (am(0),9) + v [ (o), Ag)ds + [ (B (), 2m(5)). Pug) piay iards
0 0
t

= (f, Png)(t —to) — pu | (Inwp(s) — Iyu(s), g)ds — pa? /t(Ihwm(s) — Thu(s), Ag)ds.

to to
We are concerned only with proving that
¢

/t(Ihwm(s) — Lyu(s),g)ds — | (Ipw(s) — Iyu(s), g)ds. (3.1.47)

to to
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Indeed, note that Iy|pcay: H*(2) — L*(Q) is a continuous linear operator: the proof is similar

to inequality (3.1.38):

[ Iywl?

IA

(| Hhw — w|+|w])? < 2| hw — w|*4+2|w|?

A\

2
2c§h2\|wH2+203h4\Awl2+P\Aw|2
1

2c2h? 2
< © + 260" + = | |[Aw]®.
Al )\1

We continue in the same way as in Theorem 3.1.3 to obtain (3.1.47), and we conclude the proof.

O

3.2 Uniqueness of solutions

The strategy for showing the uniqueness to (3.1.6) is via continuous dependence of regular
solutions on the initial data.

We divide in two cases:
(i) the interpolant I, satisfying (3.1.7);
(i) the interpolant I, satisfying (3.1.8).
Theorem 3.2.1. The solution to the problem (3.1.6) given by Theorem 3.1.3 is unique.

Proof: Let w and w be two solutions of (4.1.3) on the interval [0, T, with initial data w(0) = wy
and w(0) = Wy, respectively. Denote z = w+a?Aw and z = W+ a?Aw. Then taking the difference

of

d 2 2
(w 8} w> 1% (w (8% U/) (w w (8} w) (321>

= f = P In(w) = In(u)) — po? A(Ip(w) — I (u)),
and
d, __ 2 Arr o 2 Ars B(75 775 2 A7
a(w—f—a Aw) + vA(W + o*Aw) + B(w,w + o* Aw) (3.2.2)
= f = WP In(@) — In(u)) — po? A(Ly(W) — I(u)),

o8



and denoting § = w — w, we have

d _ ~
a(G +a?Af) + VA0 + o®Af) + B(w, z) — B(w,2) = —uPI,0 — pa’Ad. (3.2.3)

Notice that
B(w,z) — B(w,z) = B(w,z)— B(w,z) + B(w,z) — B(w, z)
= B(w-—w,%)+ B(w,z — 2) (3.2.4)
— B(6,%) + B(w,0 + a*Af).
Replacing (3.2.4) into (3.2.3) and taking the dual action D(A)’, D(A) on 6,

d
<dt(9 + 062A9)7 €> + V<A(‘9+042A8)7 0>D(A)’,D(A) + (B(w 0 + CYQAQ) Q> D(A)',D(A)
D(A)',D(A)

= _H([h‘9> 9) — /LOé2<AIh(9, 9>D(A)’,D(A)-
Consequently, since (B(60,%),0) p(ay pa) = 0, using (2.1.12) and Lemma 2.1.13 , we have
01+ (1611%) + v ([10]*+a®| A6]*)+(B(w, § + a*AB), ) pay,pia)
= —u(I0,0) — pa(1,0, A9).

2dt(

In the same way done in Theorem 3.1.3, we estimate the following terms using Young’s in-

equality:

—1u(In0,0) = (0 — I1n0,0) — plf]*

IN

PO — 1n0)] 10]—pl0]*

IN

M01h||9|| 0] —pel6]” (3.2.5)

,uc
1 H9H+ L0~ ulo?

IN

IN

iy 2_7 92
4H 2~ 0P,
and similarly,

—pa® (1,0, A9) pa (0 — 1,0, A9) — pa||6]?

IN

pe [P (0 — 1n0)| |AD)] — o (|6

IA

pa®hll6] | A9] - ua2||9||2 (3.2.6)

IN

o2 pcth?| AD2+ ||9||2 po[|6]?

IN

72[492_7 2
" a?|46 2|e|,
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provided that ucih? < % Moreover, using that —%|9|2 —2a?||0]]*< 0, it follows that

1d ~ v
5 O+ 101%) + v((I6]°+a?|A6])* + (B(w, 0 + a*A6),6) < 2 (I0]*+a’| ADP).
Thus
ld 24 2110]2 3V 2, 2 2 7 2
5 (P 01%) + 2L (167 +0?|A6))? < [{B(w,0 + a*A0), )] (327)
To estimate the right-hand side above, we use the property
~ 1 1 1, 41
[(B(u,v), 2)vv|< c(|[ull 2 [Aul > [v]][ 2]+ Aul|v]|z] > ]| 2]|7) (3.2.8)

for every u € D(A),v € H,z € V, as well as Young’s inequality:

(B(w,0 + a?A),0)]

IN

c(llwl'*Aw| 20 + o AQ] |0]|+| Aw] 0 + a®A6| |]'/2]10]]/?)

IN

cllwl[?|Aw|"2[6] [|0]]+ca®||w] 2| Aw[' 2] A0 0]

c|Aw| [0]10]"2[10]12+ca®| Aw] |A9] 16]/2|10]]*/2

IN -+

02 14 02 14
—llwll [Aw[ 0P+ 101P+—a®[wl [Aw] 6]+ a”| A6

2 )\1/2
— [ Aw P02 ] o]+ 042|Aw| OT11011+7 —0?|Af]*.
)\1/21/

+

Using Young and Poincaré’s inequality again, it follows that

2

(B(w,0 + a?A6),0)| < /\1/2 | Aw|?|02+ )\1/2 o | Aw|?||0]|
+ 1/2 | Aw[?|0*+ 1/2 a? Aw|?(0]”
/\1 Al
+ 2 (l0>+a? A0P),
so we conclude the following estimate to non-linear term:

- 2
[(B(w, 0 + a*A8),0)|< g(llell +a’|A9]*) + NG [ Awl*(0*+a[10]]*). (3.2.9)

1 ]/

From (3.2.7) and (3.2.9) we obtain

1d v
*£(|9|2+a2||9||2)+ Z(Il9||2+0é2|f19|2)

22
< N, | Aw[* (|0 +a?]16]]%),
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which implies
i(l9(t)l2+a2!l9( %) < 1/2 \Aw( )P0 *+a?[[0(0)]1%).

By Gronwall’s Inequality on the interval [0, ¢],

4%t
N1/2 |Aw(8)|2ds
6P+ 0®IP< (1000) P+a26(0) )N /

and since w € L?([0,T]; D(A)), we have the continuous dependence of the regular solution on the
initial data and in particular the uniqueness of regular solution.

g

We prove next the uniqueness of the solution for the case (i7), i.e., when I, satisfies (3.1.8).

Theorem 3.2.2. The solution to the problem (3.1.6) given by Theorem 3.1.4 is unique.

Proof: Following the same notation as in first case, the proof is the same up to estimates (3.2.5)

and (3.2.6), which (3.2.5) will be replaced by

—u(1n0.0) = (0 — 10,60) — 0’
< pP(O — 1,6)]16]—pl6)?
< ﬁ|73<9—fhe>|2+ﬁ|9|2—u|9|2 (3.2.10)
<

KT g g o

2
v va
Since pcsh? < peyh? < 3 and pcah?t < 5 we have

— u(140,0) < Z(0]2+ 202 A0 -E1612= Z (|6 +0? 1 46)%) — £1). (3.2.11)
4 4 2 4 2
The estimate (3.2.6) must be replaced by

—pa? (1,0, A0) = pua®(0 — 1,0, A9) — ua(|0)|?

< a0 — 1,0)| | A9|—pua?||6)?
2.2
< PO - 16) P+ 0% AG]—pua? 6]
2 212 2 21.4
wracih p2acih
< B O+ A0 a2 A6 —pa? o),
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v
and using that ucih? < o0 we have

prch® = p- pegh? < %
and also
2
p2csh* = peah® - peah® < pesh® - pesh® < % ' g - Vz-
Therefore
210, 40) < Y010 a0 4 Y 02| AP o)
—Ha —o e
HAAY, = oy Ay 1 H
L v
= S0P+ A0 —pa? 0] (3.2.12)
= Za2agP-Laje)?,
2 2
and thus

1d _
5 OP+e?1017) + v([81P+a’[A8]) < [(B(w, 6 + *A6), )]

v 2, 2 2y M2, YV oo 2 M aya2
" (011>+0% 40P) — 210+ a2 46122 a2 )
From the above inequality, we obtain
d ~
(0P +”[16]%) + %(I|9||2+042|A9|2) < 2|(B(w,0 + a®A0),0)], (3.2.13)

and the rest of the proof is exactly the same as for the first case (Theorem 3.2.1), following the same
steps from inequality (3.2.7), with (3.2.13) in the place of (3.2.7)and the continuous dependence
of initial data is reached and consequently, we have the desired uniqueness.

4
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Chapter 4

The Convergence Theorem and

Examples of Interpolants

4.1 Stabilization using [; as a feedback control

Let I, : H(Q) — L2(Q), where Q is the periodic domain [0, L]?, a linear map which satisfies
for all ¢ € HY(Q),
IP(p — Inp)*< G2l (4.1.1)

where ¢; > 0 is a constant. This bounded linear operator, when restricted to V', can be seen as an
approximate interpolant of order h of the inclusion V' into LQ(Q)
We shall suppose that an evolution w is governed by the incompressible three-dimensional

Navier-Stokes-a system, under periodic boundary conditions Q = [0, L]3:

d 2 =~
—(u+ o?Au) + vA(u + o?Au) + B(u,u + o?Au) =

{j.t( O )+ vA( )+ B( )=t i
iv u=0,

From this point forward we denote v := u + o Au.
Suppose now that u(-) (and consequently, v(-)) has to be recovered as t — oo from the ob-
servational measurements I, (u), that have been continuously recorded for times ¢ € [0,7]. Then,

the approximating solution w with initial data wg € V' (which we can choose arbitrarily), shall be
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given by

d 2 2 >
w+ ot Aw) + vA(w + o Aw) + B(w,w + o?Aw
o )+ vA( ) + B ) s
= f—p(l + 2A)YP(I(w) — I,(u)),
with div w = 0 and z = w + o?Aw.

Before proving the Convergence Theorem, we enunciate the generalized Gronwall inequality,

proved in Lemma 4 of [14].

Lemma 4.1.1 (Uniform Gronwall’s Inequality). Let T > 0 be fixed, 8 be locally integrable real

valued function on (0, c0), satisfying the following conditions:

t+T t+T

lim inf B(s)ds =~ >0 and limsup B (s)ds =T < oo,
t—oo  Jt t—oo  Jt
where 5~ = max{—/,0}. Furthermore, let ¢ be a real valued locally integrable function defined
on (0, 00) such that
. t+T n
tlggo t YT (s)ds =0,

where ¥+ = max{¢,0}. Suppose that & is an absolutely continuous non-negative function on

(0, 00) such that
dg(t)
dt
almost everywhere on (0,00). Then £(¢) — 0 exponentially as t — oo,

+B)E() < (1),

We state and prove next the main result.

Theorem 4.1.2. Let u be a solution of the incompressible three-dimensional Navier-Stokes-«
equations (4.1.2) and let I, : H(Q) — L2(Q) a linear map satisfying (3.1.7). Assume that p > 0
is large enough satisfying

15c2vG?

w> 24\ G? + 5
!

, (4.1.4)

where ¢ is the constant deriving of the non-linearity property (2.2.16), A; is the first eigenvalue

/]
)\?/4V2

Grashoff number (in our case, for time-independent forcing term) defined in (1.3.1). Moreover,

of Stokes operator under periodic boundary conditions, i.e., \; = (2n/L)* and G = is the

assume that h small enough such that
v

h? < (4.1.5)

2pc?
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where ¢, is the constant given on (4.1.1). Then, the global unique solution w € L*([0, c0); D(A)) N
C([0,00); V) of (4.1.3), given by Theorem 3.1.3 satisfies (w(t) — u(t)) — 0, as ¢ — oo, in |-| and

||-||-norms.
Proof: Considering u the solution of the Navier-Stokes-a equations, we have

jt(u + a’Au) + vA(u + o?Au) + B(u,v) = f. (4.1.6)

Let § = w — u, where w(-) satisfies (4.1.3). Taking the difference of (4.1.3) and (4.1.6) we have

jt(é + a2 A8) + vA(S + a%Ad) + B(w, 2) — B(u,v) = —pPIy0 — o AILLS. (4.1.7)

Note that

B(w,z) — B(u,v) = B(w,z)+ B(w,v) — B(w,v) — B(u,z —v) + B(u, z — v) — B(u,v)

Il
Sy

w, z —v) + B(w — u,v) — B(u, z — v) + B(u, z — v)

(
(
= B(w—u,z—v)+ B(w—u,v) + B(u,d + z — v)
— B(6,0 + a?A8) + B(6,v) + B(u,d + a?Af).

Replacing (4.1.8) into (4.1.7), we have

i(a +a?A8) + VA(§ + o?Ad) + B(0,0 + aAd) + B(6,v) + B(u,§ + a*Ad) = —puPI1,0 — paAlJ.

Taking the dual spaces action on ¢ and using the fact that we have from (2.2.12):

(B(5,6 + a?A8),8) piay.pay = (B(6,v),8) peay pea) = 0,

we obtain

d d
<(5,5> + 062 <A5,(5> + V<A(5, 5>D(A)’,D(A) -+ V042<A2(5, 6>D(A)’,D(A)
dt D(A)',D(A) dt D(A)",D(A)
+(B(u,0 + a”A8), 6) pay.p(ay = —1{PInd, 8) p(ay,pa) — 1o (AInd, 8) piay,pa).
From Theorem 2.1.11 and Lemma 2.1.13,

1d -
——(|612+?(|6|1?) + v(||6]]P+a2|Ad)?) + (B(u,d + a?Ad),d ,
9P +a2317) + 191 +a% 45%) + (B ) 8)ptar.on s

= —1i(In0,0) — po®(AIn6, 6) pay,p(a)-
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Also, we have (A0, 0)pcay,pay = (In6, Ad) by (2.1.12). Estimating the right-hand side terms
of (4.1.8) using Young’s inequality,

—1u(1x6,0) = (0 — 1y0,8) — pld*

IN

P& — 1n0)| 18] —pldf*

IN

pcih||6]] |6]—pl8)? (4.1.9)
2712

W oo peih 2 2

— O|F—pld

o2+ 5 o,

IN

and similarly,

—pa® (1,0, A)) pa (8 — 1,0, AS) — pa®||d ]2

IN

po[P(8 — 1n0)] | Ad|—pa® o]

IN

poerh|8]| [Ad]—pa?|8]* (4.1.10)
pcah?
2

v
ot sl e 8
Therefore using (4.1.9) and (4.1.10), we obtain
d -
57 8P +e’61%) + V(H5H2+042|A5\2)+(B(ua5+042A5),5>D<A)',D(A)

pcih
!5!+ : H5H2 plof? (4.1.11)

IN

uclh
2

+ §a2\|6u2+ o8]

The next step is to estimate the non-linear term. Using (2.2.16), we have

[(B(u, 6 +a?A8),8)| < c(||ul|z]Au|2|5 + o> Ad| ||6]|+] Au| |8 + aAd] [5]2(|5]|2)

IN

1 1 1 1
cllull>|Aul2 o] [|8]|+co®||u]| 2| Aul2 | Ad] ||3]]

IN

+  clAul[6]16]2]6]|2 +-ca®| Aul |Ad] 6]]|6]|>.

For the terms above, we use the Young inequality again, and it is necessary to be careful with

the dimensional analysis of each term of right-hand side below, because these terms need to have
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the same units, in order to add them:

~ 2 v
[(B(u,d 4+ a?Ad),8)| < ;CZHUH | Aul !5\2+*H5H2
2
+ ¢ 2o ||ull [Aul [|6]P 4% a2|A5l2
9 p )\1/2
+ Aul?|o|7+——19] |0
V/\}/Q | Aul?|6? 6] [|4]]
v
+ 2042]Au]2\5] H(SH—l—g\A(S\Q.
Using that
2, 2 2)\1 c? 2
¢ [Jull [Aul [0]"< [Jul|5] + 2!AU| |6]%,
2 20 ull | Au] [8]°< 2"Wa2||6||2||u||2+ C ol AP
v 2V/\}/2 ’
and
202)\2 c?
o[ Aul?|o] 0] ———a?| Au’ 6]+ —— 50| Auf*||5]1%,
v 2U\}
we obtain
~ 2 202)‘1 2, 2
[(B(u,0 + a®Ad),6)| < (lull®6]* 402 Aul?|6]?)
202)\
+ = =261 Jul P+~ (||5|| 2+a®| A6J%)
5¢?
+ ——|Au2 (|62 +?||5]]?),
s AT o)
which implies
>, 2 262>\1 2 2, 2 2
|(B(u,6 +a”Ad),6)| < (llull*+e?| Aul?)(|6]*+a>[16]|)
202/\2
+ = ([l P+ | Aul?) (|60 6]1%) (4.1.12)
5 2

Aul2 (1812402115112 v 21 0 2[A512).
+ 21])&/2! ul*(JoF*+a|0]]%) + - (ll6]]"+a7|Ad]%)
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Thus from (4.1.11) and (4.1.12),

1d
57 1S +a101°) + w([l6]°+a*|Ad])
402)\%
< —([lull*+a?|Aul*)(|6]*+a?]15]1%)
502A252 2| 512 552 2| 452
+ 2V/\1/2| ul*(I6]"+a[|6]|") + 4 ([|6]]"+a~|Ad[%)
pucih pcih?
+ *|5| +— 1 ||5||2 plo|*+ 042||5|| + ; (|81 —pa?|8]|*.
Since by assumption uc?h? < g, we have
L pratal®) + L(I6l2a? AsP)
4 2)\
< "2 (lul ol AuP) (1812+0? | 8]1%) (4.1.13)

Aul?(1512 252_ﬁ52 20|5/12).
+ QU)&/Q‘ ul(|1"+a”([0]%) = S (18] +a78]%)

Therefore we conclude by (4.1.13) that

$<|5<t>|2+a2||5<t>ll2> + B8 +a8()]) <0, (4.1.14)
where )
B() = 1= " (Jule) P+ Au0)) - Sl Au(h

To make use of Lemma 4.1.1, note that for 7" > 0,

8cA\?

t+T 5¢c2 1 4T
/ |u(s)||*+a?|Au(s) > ds — — 177 —2/ o?|Au(s)|*ds. (4.1.15)
t y)\1 o Jt

t+T
| Bls)ds = T —

1
Taking T' = W in Proposition 2.3.3, we have for t > tg,
VA1

t+T 9 9 9
L ets)P+o? Au(s)Pds < =7

thus )
8cA\?
v

t+T
/ lu(s)|2+a2|Au(s)2ds > —242G2 (4.1.16)
t
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and

2 1 t+T
. / o?|Au(s)|*ds > — (4.1.17)
¢

- 12 2
1//\1/ a

t+T
Therefore, if we want lim inf / B(s)ds = v > 0 (using T = (vA;)™1), it is sufficient from
oo Jt
(4.1.15),(4.1.16) and (4.1.17) to have

15¢2G2
F e - 26T o,
l/>\1 1042
ie.,
1520 G?

p > 24cv\ G + (4.1.18)

)
Oé2

which is given by assumption (4.1.4). Finally, taking ) = 0 in Lemma 4.1.1, we conclude that
16(t)[*+a?|6(t)]|*— 0, as t — oo,

i.e., (w(t) —u(t)) = 0 in L? and H'-norm, exponentially in time, and the proof is complete.

O

Now, we consider the second case of interpolant observables I, : H2(2) — L2(f2), with Q =

[0, L]? the periodic domain, that satisfies for some constant ¢, > 0 and all ¢ € D(A),
[P(p = Inp) < 12|l *+c3h* | Apl. (4.1.19)

Theorem 4.1.3. Let u be the solution of Navier-Stokes-a equations (4.1.2) I, : H*(Q) — L?*(2)
a linear map satisfying (4.1.19). Suppose that p > 0 is large enough satisfying

1520 G?

2 2
> 24 v\ G + >

, (4.1.20)

where ¢ is the constant deriving of the non-linearity property (2.2.16), A; is the first eigenvalue

|/
)‘?/47/2

Grashoff number (in our case, for time-independent forcing term) defined in (1.3.1). Suppose also

is the

of Stokes operator under periodic boundary conditions, i.e., \; = (2n/L)? and G =

that h small enough such that

2
,uégh2 < g and ,ucgh4 < %, (4.1.21)

where @ = max{cy, c3}. Then, the global unique solution w € L?([0,00); D(A)) N C([0,0); V) of
(4.1.3), ensured by Theorem 3.1.4, satisfies (w(t) — u(t)) — 0, as t — oo, in L? and H'-norms.
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Proof: The idea of proof is the same as Theorem 4.1.2, except from the fact that we need to

estimate —u(11,0,0) and —pua?(I;6, Ad) as follows:

—u(Ip6,0) = p(d — In0,8) — plof*

IA

1| P(0 — I1,6)]|6]—pl 6]
ﬁ|73(5 - 1rh5)|2+ﬁ|5|2—u|5|2 (4.1.22)

IN

IA

KT - it s

2
v va
Since by assumption pcih? < pesh? < 3 and pcsht < 5 We have

— u(16.6) < 18P+ 0’| 4GP~ TloP= T (I8 +a? A5 — Tl (4.0.23)

as well as

—pa® (1,0, A)) pa (8 — 1,0, AS) — pa®||d]?

< ua2!7’(5—Th5)HA5!—ua2H5H2
Oé
< B Lo)pst —a?| A —pa?|g]
212 2 4
uach ura?cch
< B o P A0+ a2 AS P -9

Using that pcah? < 5 we have

prcsh® = p - pcsh? < %
and also

2,4 2 vv g

prcah® = peoh? - peah? < peoh? - pesh? < — - — = —

2 9 4

Therefore
2o
—pa (16, Ad) < ||5|| + |A5| +— a2|A5l2 paf|o||?
= ||5|| +5 042|A5|2 /~L<>é2||5||2 (4.1.24)

2
v o 2 N 210 5112
—a’|AS]"—=a”|6]]”.
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The estimate for the non-linear term is the same estimate (4.1.12) (from Theorem 4.1.2). Thus

using (4.1.23) and (4.1.24) we obtain

1d
S (0P +a?[81%) + v(l8]P+a?|A5])
402)\%
< 200 (Jlul P+  Aul?) (1624021 5]1?)
O AuP(5Pa2lld) + L(612+a2|Ad?)
21/)\}/2 4

v 2, 2 2y Hic2 Vo9 2 M 2y¢2
£ 2 I81+0?146) — L1512+ £ 02| A5 -],
and it follows that

(full*+o [ Auf*)([6]*+a[14]%)

d B2\
hal 52 252 < 1
9 (loP+arlaf?) < 2
5¢? 201612 1 21512 2., 2q¢2
+ 2 AP0 1) — (5P+a? 31P)
1

In the same way as Theorem 4.1.2, we have
d
ZBOF+16OI) + BE () F+a6()]*) < 0, (4.1.25)

where )
8cA\? 5c?

y)\1/2

pt) = p— (lu@)l*+a®|Au)) -

and with exactly the same calculus of Theorem 4.1.2, we make use of Lemma 4.1.1 to conclude

| Au(t)]”.

that if
1520 G?

2 2
> 24c v \G* + 2

: (4.1.26)
and (4.1.21) holds, then
16(t)[*+a?|6(t)]|*— 0, as t — oo,
exponentially in time, which is the desired conclusion.
O

Actually, from Theorems 4.1.2 and 4.1.3, we estabilish that the algorithm used for constructing
w(t) from the observational measures I,u(t) given by
i(w +a?Aw) + vA(w+ o®Aw) + B(w, w 4 o Aw)

dt
= f—puPIn(w) — In(u)) — po? AP(In(w) — In(u)),
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yields a good aproximation for u(t) in the sense that
w(t) — u(t)]+a’|lw(t) — u(®)|*— 0

exponentially, as time goes to infinity, provided that these observational data have fine enough
spatial resolution (and it is imposed in hyphotesis (4.1.5) and (4.1.21)).

These results assert that if we want to accurately predict the physical reality u for a time ¢ into
the future, it is sufficient to obtain the observational data [,u(t) accumulated over an interval of
time proportional to ¢ in the immediate past.

To exemplify, suppose that we want to predict u(t) with accuracy € > 0 on the interval [t1, t;+%],
where t; is the present time and ¢ > 0 is how far into the future we want to predict. Consider then
h small enough and p large enough such that Theorem 4.1.2 (or Theorem 4.1.3, depending on if
I, satisfies (3.1.2) or (3.1.3)) is satisfied. Thus, there exists v > 0 and C' > 0 such that

lw(t) — u(t)|*+a?||w(t) — u(t)]|*< Ce™, for all t > 0.

All we need to do now is to use w(t;) as initial condition to make a future prediction: let @ the
solution of (2.3.1), with initial data @(¢;) = w(t;). The existence and uniqueness Theorem found in
[9] gives us a result about continuous dependence on initial conditions, which implies there exists

¢ > 0 such that
[a(t) — u(t)*+o?a(t) — w(t)|*< ([u(ty) — u(ty)*+o®[@(t) — u(ty)[*)es=)
for all t > t;. Therefore for ¢ € [t1,t; + t],

() — u(t)P+a?|ult) — u(@®)|]?< Ce "M+ < &2,

provided that vt; > €+ 1In(C'/e?). Thus u(t) (that is known) predicts u(t) with accuracy € on the
interval [t1,t) + .
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4.2 Examples of interpolant [

In this section, we present three examples of linear interpolant observables: the first two ex-

amples satisfying for all ¢ € HY(Q),
lp — Inp|*< W3 V|?, (4.2.1)
and the third one satisfying for all ¢ € H?(2),

o — Inp?< h? [Vl *+ch? ol 7q)-

4.2.1 Projection Fourier Modes

Initially, consider the L*-orthonormal and H'-orthogonal basis ¢, = 757 e | e 73\{0}, as
presented in Chapter 2, given by the eigenfunctions of the operator A = —PA. Remember that
¢ € D(A) can be written as

o) = > udu(x),

keZ3\{0}
with
3 1 —2mikE g
P = (0.00) = Tz [ pla)e ™ P dr,

Remembering the Fourier L2-orthogonal projection as the truncated series defined as

|k|<N

we can construct an interpolant observable [, considering N = % Define I, as

Inp = Prp = > Putr,

|k|<+
what represents the low Fourier modes with wave numbers &k such that |k|< 1/h.

Next we prove that this interpolant I, given as Fourier projection satisfies (4.2.1).

Lemma 4.2.1. For all ¢ € D(A),

lo — Inpl= ¢ — Pno|< Rl

1
here N = —.
where N
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1
Proof: Using the representation of high modes QQn = I; — Py, we have for N = 7

lo—Lipl” = |p—Prnol’=1>" Gro(a))?

|k|>N

= Y Ial< S EPIEPR

|k|>N |k|>N

< BT |GRPIEP= Rl
keZA\ {0}

1
because if we have |k|> N = 7 then |k|?h? > 1. Therefore

o — Inp|*< B2l

4

Note that h and N are dependent parameters and we use them interchangeably with the

understanding that as h — 0, N — co and conversely.

4.2.2 Volume Elements - Local Averages
First of all, for N € N, consider the periodic domain Q = [0, L]* divided in Q, k = 1,..., N,

L L3

: Q= —
3/N | k‘

As cited in Chapter 1, the local average of u in ) is defined as

N

1 N
(u)q, = ] Jou u(z)dr = 3 /Qk u(z)dz.

We will denote the characteristic function on €2 by xq,:

1if.CEEQk,

To construct the linear operator I, we suppose that the average values of ¢ on each of the

Qs is known. Then, consider I, : L*(2) — L*(2) defined as

N
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L
VN’

To prove that (4.2.2) satisfies (4.2.1), we will prove next a Poincaré’s Inequality version for

where h =

periodic boundary condition in three-dimensions: Q = [0, L]3.
Lemma 4.2.2. Let u € V and denote Q = [0, L]* the three-dimensional torus. For N a positive

L
VN

integer, divide this domain into N cubes of edge [ =

|Q|=1%, j=1,..,N. Then

and denote 2; the j-th cube, with

l2
ez, < Plw)a, + [ Vullzz

for all j =1,..., N and in particular,

l2
lelza@< Py () + F lull,

where y(u) = max [{u)g,|

Proof: It was showed in [14], for the one-dimensional case, the following inequality:
2 s U 2
Jull 20, < Hu)z, + §||VU||L2(IJ-)-

for every uw € H'([0, L]), for all j = 1,..., N, where I; is the interval [(]_TI)L, L1 C [0, L] of length

l:L

N-

In the case of two dimensions, it was proved in the same work that
lullZa ;) < Pu), IIVUI|L2

for all uw € H'([0, L]?), where the domain [0, L]? has been divided into N squares K; with side
=k, j=1,..,N, with |K;|= L.
To obtain the three-dimensional version, let initially u € C$°(R?). We fix the first coordinate

z1 and apply the two-dimensional version to v(zy) = v(z1)(wa, 23) = (w1, T2, v3) € C°(R?):

l2
[o(z) |72 < Plo(e))k, + V@) 22k,
3

ie.,

Lol 1 gl 2
/0 /O\u(xl,xg,x3)|2dq:2dx3 < 2 (F/ / u(xl,:cg,xg)d:cgdxg,)
[ e |2
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Integrating over 1, we obtain

Lol
/ / / \u(z1, 29, 13)|Pdrodrsdr,
0 Jo Jo

IN

& /l (;2 /l /lu(xl,:vg,x3)d:p2dx3>2dx1
C Sl
ETNA

The next step is to apply the one dimensional case to

2
d.ﬂ?gdl’gdl’l

-751 T2,T3
83:2 ’ ’ )

2
d.Tle‘gdSL’l.

961 X2, T3
8x3 ’ ’ )

Lol
z(ml):/o /0 u(zy, re, x3)dxodrs,

and so
2

l
2@ Z2 oy < U@y + SNV 2@0) 2oy

ie.,

L[ gl 2 1/ ¢ gl 2
/(//u(ml,x2,$3)dx2dx3> dr; < <///u(xl,xg,xg)d:vgdxgda:1>
o \Jo Jo
12
8x1// $1,$27$3)d$2d$3

1
Multiplying (4.2.3) by — B and using Holder’s Inequality, we have

1 [1 gl

+ dxl.

1 7Ll 9 U pl
+ gA 61‘1/0 /0 U(Jfl,l'g,l‘g)dl'gdﬁ(]g d[El
[ 3 2 3 ?
1 ! l l 2 ou
< U>[20 13 + */ / / 1d$2 ($1,.T2,333) d.ﬁlﬁg dxg d.ﬁEl
’ 3Jo |Jo \Jo O
_ 1 42
Ay ou 2\
= (u)oype +§/0 / / B — (21,29, 23)| dxg | dxs| dxy.
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By Holder’s Inequality again,

i (;2 [ /Olu@l,@,xg)d@dm)gdm
< Pl [( [ | ( [
= bt [ [ e

Finally, replacing (4.2.3) into (4.2.3) we conclude that

///|u T1, 79, 3)|?drodrsdr, < 1P {u [Ol]3+ ///
/// d:vgdasgdxl—i— ///

Therefore for all u € C§°(R?),

ou
8331

(x17 T, :Cg)

2
dﬂ?g) dl’g] dl’l

2
dele’gdl’l.

951 T2,T3
axl ) J )

2
dIle’gde’l

$1 X2,T3
81131 ’ ’ )

331, X9, T3)| drodrsdr.

351 X2,T3
81:2 ’ ’ )

ullZ2 ;) < Pu), HVuHLz

for all j =1,..., N and in particular,

l2
ez < 9% (u) + Sl
where v(u) = max, [(u)q,|. Provided that C§°(R?)|g, is dense in H?(€);), the inequality follows for
)

all w € H*(Q;).

We present next the proof that (4.2.2) satisfies (4.2.1).

Lemma 4.2.3. For all ¢ € D(A),

N
1
1Ine — o’= o = D (o xa. | < §h2HsoH27

k=1

where h =

=S

7



Proof: If p € D(A),

N N

[ = Ylelnona = et )= X Plaxa @)
-, ’9"<$)§3ka<1’>—i(wmmk(m I
= /ﬂLpr )Xo, (2 k:<<p X0 (% ”i:j é )a,Xo, ( ]dx
-/, L%l«o(x) - <@>Qk>m<x>] Lé«a(x) ~ {eha)xn, m] Lo
- [Ex 0)8(x) ~ (9o, o, (1), (1)
- Z/ Pha) xon (@ dw—Z/ lp(2) — (@)a, [*da,

since xq, (7)xq, (z) = 0k % (z). For every 1 <k < N, we have from Lemma 4.2.2,

(LT )= ade) + 2 (=) 196 = @ao e,
(L) 2
) (W [, o= |, (@/m“"(y)dy> d‘“)

2
) Vel 2y

1 > 1L\ ,
7) (i e gy o) 5 () 190,

2
\/N> ||V<P||L2 Q)™ h2||v§0||L2 (Qe)?

lo - (Danlloay < (

/\

5
b

where h = -=. As a result of summing over k =1,..., N,

YN-
a 1Y 2 2 1,9 2
Yo le(@) — (p)e, [de < *Z 2IVellizn= *h [Vp|*= h (1%l
k=172 3=
Therefore

1
lp — Inpl*< thHSOHQ-
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4.2.3 Nodal Values

The most physically interesting example of an interpolant I, which satisfies
[0 — Inpl’< h?||ol*+eah*| Apl?, (4.2.3)

can be constructed using measurements at a discrete set of nodal points in Q = [0, L]>.
Indeed, similarly as previous example of volume elements, to construct such interpolant using
L L3
——, for N € N and thus [Q;|= ,]—
VN’
1,...,N, where §2; denote the j—th cube and 2 = Uévlej. Then we consider arbitraty pomts

nodal values, we divide the domain €2 in NV cubes of edge ——

x; € ); that represent the points where observational measurements of the velocity of the flow are
done.

Define this interpolant as

N
Inp(x) =) wlar)xa, (2 (4.2.4)

k=1

To prove that the interpolant (4.2.4) satisfies (4.2.3), it is necessary to make use of the following

two lemmas:

Lemma 4.2.4. Let Q = [0,A] x [0,d] and v € H'(Q). Then

A 2 oul)?
w(z,0)|?de < =||ul? +d‘ , 4.2.5
[y w00 < Gt 3| (4:2.5)
and simmetrically,
[0y < 2ul+a |22 (426)
u JE— u —_— . .
0 SR S ) O L2(Q)

Proof: This can be found in Lemma 6.1 of [16]. In this thesis, we prove the following lemma,

that will be also useful for prove the interpolant (4.2.4) satisfies (4.2.3):

Lemma 4.2.5. Let Q = [0,1] x [0,{] x [0,{] and = and z be two points of Q, where the third
coordinates of x and z are the same, i.e., © = (x1,91,21) and z = (x2,¥2,21). Then for every
¢ € H*(Q)), we have

1

2 ) . (4.2.7)

2@

0%

0y

2
lp(2) = (D)< 31 (‘H\W)HLQ +0°
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Simmetrically, if ¥ and z are two points in Q such that the second coordinate of y and z are

o | )é
, (4.2.8)
0xdz 12@)

the same, i.e., y = (2, Yo, 22) and z = (z3, Y2, 23), then

2
(W) — ()< 51 <4IIW)I|22<Q)+Z2
for every ¢ € H?(Q).

Proof: We will show only the first estimate, and the second one is analogue. We begin by
considering the square @ = [0,1] x [0,{]. For any two points in Q of the form (z1,y,2) and

(x2,y, 21), with y € [0,1], we have
2

To 8
|¢(Il7y721) - ¢<I27y721)|2: / ﬁ(sa%zl)ds

. Oz

" da <l || (-, v, 21)

92 4.2
8$ » Y, 1

L2([o,) ™1 L2([0,1])

Since the third coordinate z; is fixed and the points (z1,y, z1) and p(za,y, 21) are in a plane

0
8—80(-, Y, z1), with d replaced with the maximal
x

distance of the y-coordinate of the points (z1,y, 21), (22, y, 21) from the horizontal walls; i.e.,

parallel to xy plan, we can apply Lemma 4.2.4 for

[>d=max{y,l -y} >

and therefore

Lo 0%*u
/ £($’y721 d[lf < || H 3
0 | Oz £2(Q) 0yox 12(0)
1 2
since p < 7 Then we have
0 2 o
l H@(-, Y, 21) <4 H 2| 2f . (4.2.9)
O L2([0,1]) L2(Q) Oydz |, @)
Replacing (4.2.9) into (4.2.9), we have that
O 2 0%
— 2< 4 12 . 4.2.10
|¢<w1ay7zl) 80($2ay>2’1)| Haﬂf - + 8y8$ 12(0) ( )

By symmetry, we have the similar inequality for points of the form (z,y;,21) and (z,ys, 21),
where = € (0,1):
0

+ 17
0zdy ||

L*(Q)

lo(@, 51, 21) = (92, 21)[P< 4 H (4.2.11)
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Thus

2 = |80(1'17y1,2’1)—90($2,y2,21)|2

lp(x) — p(2)]
< (le(@,y1, 21) — (@2, 91, 20)|[+H|@(z2, 41, 21) — (22, 42, 21)|)?

< 2lp(zr,y1, 21) — (2, 41, 20) P +2|@(2, Y1, 21) — (22, Y2, 21)]?

2 5 12 2 5 112
< 2(4”‘3@ + 12 8850 )+2(4||g¢ 2 aag )
Tl Yo%l 2@ Yl LY 2@
and it follows that
2 2 2 8290 2
_ <44 2| == . 4.2.12
lp(x) — p(2)°< IVellz20)+ 8503 | 2 o) ( )

Our aim is to obtain estimates in L?(Q), where Q = [0,1] x [0,1] x [0,{] instead of L?(Q). For

this, we integrate (4.2.12) from 0 to [ in z-coordinate:

l l o > N\
[let@ryz) = olea g z0ldz < 2 [ (4||w<-,-,z>||iz@)+l2 Sy ) d

! 9 , || 9% 2 : 1
< 2 4\ Vol-. - + - 3.
— /0 H 90< ) 7Z)HL2(Q) ! ayax( ) 7'2) 20 dz [z

L
Therefore,

N 1

lp(z z1) — o(z 2)|< 202 | 4)|V|2, 5+ O 2

P L1, Y1, 21 P\T2, Y2, 21)|> ¥ L2(Q) Gzl:ay @) )

i.e.,
4 o |
2 2 2

[p(w1, 1, 21) — 022, Y2, 21) "< 7 (4||V<P||L2(Q)+l 0xdy LQ(Q)) ' (4.2.13)

and we have the desired conclusion.

We are ready to prove that the interpolant Ij, constructed using measurements at nodal points

satisfies (4.2.3):
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Lemma 4.2.6. For all ¢ € D(A), the interpolant I, defined in (4.2.4) satisfies

|0 — Inp|?< 320%||p||*+4h*| A|? (4.2.14)
where h = L/\?’/N
Proof: Note that
o — 290 Tr) Xy —/!(,0 () xa, (7)]*dx

=

/|<P ZXQk Z $kXQk |dI

- L[5 s o] [0 - o]

k=1 J=1

Since xq, (%)xq,(*) = Xaq,(z)dk;, we have

o — zm)xﬂmg /Q

>_(p(z) — olar))xa, (-’L‘)] {Z(@(I) — pler))xa (a:)] dz

k=1 j=1

= /Q = plw))(ple) — pla))xa, (@)xo, (2)dz (4:2.15)

=Z/ 2))xa, (x)d.

Next, we find an estimate for

o(z) — ()|

Consider €y, for k fixed, but arbitrary. Choose z € {2, such that z is in the line of the intersection
of two plans: the plane which contains the point x and is parallel to zy-plane and the plane which
contais the point x; and is parallel to the xz-plane in three-dimensions.

In other words, if x and xy are such that x = (£, &, &3) and x, = (1,12, 113), then z = (71,12, &3).

Therefore

IN

|o(x) = p(2)[+]e(2) = p(ap)]

[0(&1, 82, €3) — (1, M2, §3) | +]0(T1, M2, §3) — (01,112, 13) |-

lp(z) — ()]

VAN
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Now me make use of Lemma 4.2.5, applying (4.2.7) for the difference |p(&1,&2,&3) — @(71, 12, &3)|
and (4.2.8) for the difference |p(11,m2,&3) — @ (01, m2,M3)|:

() = p(ee)? < (o€, €2, &) — (1, m2, &) [H-| (71,12, €3) — (11, M2, 13)])?

< 2|Q0(£1,£2,£3) - 90<7—177]2753)|2+2‘90<7—177727£3) - ()0(77177]27773)‘2

4 &y | 4 2y |
< - 4IVeliaq,)th’ + - [ 4IVelliaq,)+h° :
h ( (€2) 0xdy L2(9) h (S2) 0x0z L2(9)
where h is the edge of de cubes ), i.e., h = L/W Then we conclude that
4 0% & |I°
() — el P< + | 8IVellie @) th® | 55 : (4.2.16)
h ®) 0xdy |, ) 0x0z||, )
Therefore from (4.2.15) and (4.2.16), it follows that
N N
o = S exal’< Y [ (o) = plan) o, (@)ds
k=1 k=1
N 4 Rl 9% 2
< /fsv% ph? |22 + 12 Xadx
kz—: ah ( IVellr () dx:dy 00 Oz ) Q,
N 8290
= 2Vl 2, dz + 4h / dz + 4h / dz | .
Since |Qx|= A3 for all k = 1,..., N, we obtain
0% PP
o= > (zr)xqul*< 3207 Ve Loy +H4h" | o= +4nt ,
kzl i LA 0x0y @ 0x0z 2@
and thus
N
0 = > wlzn)xeul< 3207 ol +8h* | Ap . (4.2.17)
k=1
O
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