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Abstract

In this work Lyapunov graphs are used as a combinatorial tool in order to obtain a complete
classification of Smale flows on S2 × S1 and Morse-Novikov flows on orientable and non-orientable
surfaces. This classification consists in determining necessary and sufficient conditions that must
be satisfied by an abstract Lyapunov graph so that it is associated to a Smale flow on S2 × S1 or
to a Morse-Novikov flow on a surface respectively.
In summary in this doctoral thesis we obtain the following results:

1. The local conditions that must be satisfied by each vertex on a Lyapunov graph is determi-
nated as well as the global conditions on the graph in order for it to be associated to a Smale
flow on S2 × S1 or a Morse-Novikov flow on a surface.

2. The realization of these graphs subject to the conditions found above as Smale flows on
S2 × S1 or as Morse-Novikov flows on surfaces respectively is obtained.

Keywords: Circle-valued Morse functions, Conley index theory, Lyapunov graphs, Smale
flows.

Resumo

Neste trabalho, usamos os grafos de Lyapunov como uma ferramenta combinatória para obter
classificações completas de fluxos Smale sobre S2 × S1 e fluxos Morse-Novikov sobre superfícies
orientáveis e não orientáveis. Esta classificação consiste em obter condições necessárias e suficientes
que devem ser satisfeitas por um grafo de Lyapunov abstrato de forma a ser associado a um fluxo
Smale sobre S2 × S1 ou um fluxo Morse-Novikov sobre uma superfície respectivamente. Assim
nesta tese de doutorado obtemos os seguintes resultados:

1. As condições locais que devem ser satisfeitas por cada vértice do grafo de Lyapunov, assim
como as condições globais que devem ser satisfeitas pelos grafos para estarem associados
a um fluxo Smale sobre S2 × S1 ou a um fluxo Morse-Novikov sobre uma superfície são
determinadas.

vi



2. A realização destes grafos abstratos sujeita às condições determinadas acima, como fluxos
Smale sobre S2× S1 ou fluxos Morse-Novikov sobre superfícies respectivamente, são obtidas.

Palavras-chave: Funções de Morse circulares, teoria do índice de Conley, grafos de Lyapunov,
fluxos de Smale.
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Introduction

The qualitative study of a class of dynamical systems consists first in describing geometrically
the behavior of the flow on an invariant set (basic set) where the dynamics of the system is
concentrated. Second, in describing the disposition of the basic sets within the manifold.

In this direction, in 1980, Franks [15],[16] worked with non-singular Smale flows. A non-singular
Smale flow is a structurally stable flow with one dimensional basic sets and without singularities.
In a Smale flow the saddle set may contain infinitely many closed orbits, while attractors and
repellers must still be a collection of finitely many orbits. A theorem of Bowen [6] asserts that a
one dimensional hyperbolic basic set (saddle set) must be equivalent to a suspension of a subshift
of finite type.

In 1985, Franks introduced the concept of Lyapunov graphs to give an affirmative answer
to a question raised by himself, Pugh and Shub, years earlier "Given any subshift of finite type

àA : ΣA ⊃ ΣA is there a non-singular Smale flow on S3 with the suspension of àA as a basic set?".
Moreover, Franks [16] gives an abstract classification for non-singular Smale flows on S3. This is
an algorithm which is used to decide if a given Lyapunov graph can be realized by a non-singular
Smale flow on S3.

In this thesis, we investigate the relationship between the topology and dynamics of Smale
flows on S2 × S1 and Morse-Novikov flows on surfaces. Our approach will be qualitative in nature
and make extensive use of the methods introduced by Franks in [16] and further developed by
de Rezende in [13] and by Bin Yu in [20]. A strategy that has been very successful in analyzing
smooth flows on manifolds is to consider first the local dynamics described by the chain recurrent
behavior on the basic sets and secondly to examine how these basic sets fit together.

The latter issue is in fact an embedding problem, which analyzes how the collection of basic sets
form S2×S1. In this work, as in [13] and [20] we make use of a Lyapunov graph as a combinatorial
tool which gives a global picture of the disposition of the basic sets within the manifold.

The main results, Propositions 4.1.1, 4.2.1, 4.2.2 and Lemma 4.2.2 are existence theorems which
determine under what conditions an abstract Lyapunov graph is associated to a Smale flow on
S2 × S1. It is also shown in Theorems 4.1.1, 4.2.1 and 4.2.2 that these conditions are necessary in
order for a Smale flow to exist on S2 × S1.

Similar results were obtained by Franks [16] for non-singular Smale flows on S3. In [20] Bin
Yu obtains results for non-singular Smale flows on S2 × S1. Our work completes this analysis by
considering Smale flows on S2×S1 which admit singularities. The difficulty in working with S2×S1

is precisely the embedding problem of the basic sets, due to the complexity of its topology as can
be verified in Proposition 4.2.4.
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Finally, this thesis considers, in the Conley index theory context, flows arising from circle
valued Lyapunov functions both on orientable and non-orientable surfaces. In order to achieve
this, our methods led us to consider circular Morse functions as a starting point and to build
from there, the theory in the general case. In Section 1.4 an extension of Franks’ definition of
Lyapunov graph [16] is presented for circle valued Morse functions and referred to as circular

Morse digraphs. This turns out to be an extremely useful combinatorial tool to explore the local
topology of basic blocks containing singularities as well as the global topology of the surface. In
Chapter 5, Theorem 5.2.1 characterizes the Morse circular digraphs associated with gradients of
circle valued Morse functions. This is achieved by establishing local conditions on the degree of
the vertices in relation to the type of singularity, as well as, the global condition on the cycle
rank of the graph in relation to the genus of the underlying surface. Furthermore, this result
is exploited in three different directions. Lastly, Theorem 5.2.1 sets the foundation to establish
Theorem 5.3.1 which characterizes Lyapunov circular digraphs emerging from more general smooth
flows connected to circle valued Lyapunov functions on surfaces. We direct a final word with a
view towards further development of the methods and tools presented herein which can be adapted
for the higher dimensional case. These methods, in conjunction with the theory of continuation
and realizability of Lyapunov graphs (see [2], [3] and references therein) should produce extremely
interesting results on the interplay between dynamics and topology.

This thesis is divided as follows: In Chapter 1 we introduce the necessary background material.
In Chapter 2 we provide some topological properties of embedded surfaces in S2×S1. We introduce
the notion of manifolds of handlebody type. In Chapter 3 we study the relationship between the
Lyapunov graph and manifolds of handlebody type. In Chapter 4 we state and prove the main
results. In Chater 5 we extend the definition of Lyapunov graph and give a characterization of
Morse digraph associated with Morse-Novikov flows. Throughout this thesis, we consider homology
with 𝐹2 = Z2 coefficients.
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Chapter 1

Background

The chain-recurrent set is a relevant object in Dynamical Systems and other areas of mathemat-
ics. In this chapter, we introduce Smale flows, which are structurally stable flows with invariant
sets that are hyperbolic chain-recurrent sets with dimension less than or equal to one. Also, we
give the definition of abstract Lyapunov graphs and this definition in the context of Morse-Novikov
flows. Moreover, the definition of the genus of 3-manifolds and some results that relate the genus
and the cycle rank of a Lyapunov graph are given. Finally, a result that shows the relationship be-
tween smooth flows and homology of the manifolds is given. The background material used in this
chapter can be found in Bowen [6], Bowen and Franks [7], Conley [8], Cruz and de Rezende [10],
Franks [15], [16] and Pajitnov [18].

1.1 Chain-recurrent set

We restrict our attention to smooth flows on compact 𝑛-manifolds.

Definition 1.1.1. If ãt : 𝑀 ⊃ 𝑀 is a flow and 𝜖 > 0, we say there is an 𝜖-chain from 𝑥 to 𝑦
provided that there exist points 𝑥1 = 𝑥, 𝑥2, . . . , 𝑥n = 𝑦 and real numbers 𝑡(𝑖) > 1 such that

𝑑(ãt(i)(𝑥i), 𝑥i+1) < 𝜖

for all 1 ⊘ 𝑖 < 𝑛. A point 𝑥 is called chain-recurrent if for any 𝜖 > 0 there is an 𝜖-chain from 𝑥
to 𝑥. The set of chain recurrent points R is called the chain recurrent set.

If 𝑀 is a compact, it is easy to see that the chain recurrent set is compact and invariant under
the flow.

Definition 1.1.2. If ãt : 𝑀 ⊃ 𝑀 is a smooth flow, then a smooth function 𝑓 : 𝑀 ⊃ R will be
called a Lyapunov function provided

1. d
dt

(𝑓(ãt𝑥)) < 0 if it is not in the chain recurrent set R.

2. If 𝑥, 𝑦 ∈ R then 𝑓(𝑥) = 𝑓(𝑦) if and only if for each 𝜖 > 0 there are 𝜖-chains from 𝑥 to 𝑦 and
from 𝑦 to 𝑥.
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Figure 1.1: 𝑥 is a chain recurrent point.

A compact invariant set Λ for a smooth flow ãt : 𝑀 ⊃ 𝑀 is said to have a hyperbolic

structure provided that the tangent bundle of 𝑀 restricted to Λ can be written as the Whitney
sum of three sub-bundles 𝐸u +𝐸s +𝐸c, each being invariant under 𝐷ãt for all 𝑡, in such a way that
𝐸c is spanned by the vector field tangent to the flow and there are constants 𝐶, Ð > 0 satisfying

‖𝐷ãt(𝑣)‖ ⊘ 𝐶𝑒⊗αt ‖𝑣‖ for 𝑣 ∈ 𝐸s, 𝑡 ⊙ 0

and
‖𝐷ãt(𝑣)‖ ⊙ 𝐶⊗1𝑒αt ‖𝑣‖ for 𝑣 ∈ 𝐸u, 𝑡 ⊙ 0.

An important consequence of the hyperbolicity is that R is decomposed into finitely many irre-
ducible pieces [19].

Theorem 1.1.1. Suppose that the chain recurrent set R of a flow on a compact manifold ãt :
𝑀 ⊃ 𝑀 has a hyperbolic structure. Then R is a finite disjoint union of compact invariant sets
Λ1, . . . ,Λn and each Λi contains a point whose forward orbit is dense in Λi.

The sets Λi are called basic sets of the flow and are precisely the chain transitive pieces of R,
which are not separated by Lyapunov function.

If Λ is a compact invariant hyperbolic set for a flow then each orbit in Λ has a stable and
unstable manifold. These are defined as follows for 𝑥 ∈ Λ,

𝑊 s(𝑥) = ¶𝑦 ∈𝑀 ♣ for some 𝑟 ∈ R, 𝑑(ãt(𝑦), ãt+r(𝑥))⊃ 0 as 𝑡⊃∞♢

and
𝑊 u(𝑥) = ¶𝑦 ∈𝑀 ♣ for some 𝑟 ∈ R, 𝑑(ãt(𝑦), ãt+r(𝑥))⊃ 0 as 𝑡⊃ ⊗∞♢

Definition 1.1.3. A flow ãt : 𝑀 ⊃ 𝑀 with hyperbolic chain recurrent set R is said to satisfy
the transversality condition provided that for each 𝑥, 𝑦 ∈ R, the manifolds 𝑊 s(𝑥) and 𝑊 u(𝑦)
intersect transversally.
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1.2 Smale flow

Definition 1.2.1. A smooth flow ãt : 𝑀 ⊃ 𝑀 on a compact manifold is called a Smale flow

provided:

1. its chain recurrent set R has a hyperbolic structure and dimR ⊘ 1;

2. it satisfies the transversality condition.

Bowen [6] gives a complete dynamical description of the basic sets of Smale flows.

Theorem 1.2.1. Let ãt be a flow with hyperbolic chain recurrent set and Λ a basic set of dimension
1, then ãt restricted to Λ is topologically conjugate to the suspension of a subshift of finite type
associated to an irreducible matrix.

Hence, the chain recurrent set of a Smale flow is made up of singularities, periodic orbits and
suspensions of subshifts of finite type.

Definition 1.2.2. If 𝐴 and 𝐵 are non-negative integer matrices they are flow equivalent provided
the suspension of the subshifts of finite type à(𝐴) and à(𝐵) are topologically equivalent.

1.3 Lyapunov graph

Given a Lyapunov function 𝑓 : 𝑀 ⊃ R define the following equivalence relation on 𝑀 : 𝑥 ≍f 𝑦
if and only if 𝑥 and 𝑦 belong to the same connected component of a level set of 𝑓 . We call 𝑀/ ≍f

a Lyapunov graph and denote it by 𝐿. The cycle rank of the graph is the maximum number
of edges that can be removed without disconnecting the graph. We will denote it by Ñ(𝐿). The
indegree of a vertex 𝑢 in 𝐿 is the number of incoming edges of 𝑢 and the outdegree of 𝑢 is the
number of outgoing edges of 𝑢. See Figure 4.21.

hf

c

b

a

LM

Figure 1.2: 𝐿 is a Lyapunov graph.
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Definition 1.3.1. An abstract Lapunov graph is a finite connected oriented graph 𝐿 which
possesses no oriented cycles and with each vertex labelled with a chain recurrent flow on a compact
space. Each edge will be labelled with a non-negative integer 𝑔, which we refer to as the weight
on the edge.

1.4 Circular Morse functions

In this section we try to extend the definition of real Morse functions. A nice reference for this
topic is Pajinov [18].
Let 𝑓 : 𝑀 ⊃ S1 be a circle-valued function. Let Exp : R ⊃ S1 denote the exponential function
𝑥⊃ 𝑒2πix. Finally, let 𝐸 : 𝑀 ⊃𝑀 be the covering1 of 𝑀 induced by 𝑓 and Exp. By definition of
the induced covering, we have a map 𝐹 : 𝑀 ⊃ R, which makes the following diagram commute:

𝑀 F //

E

��

R

Exp

��
𝑀

f // S1

(1.4.1)

Note that if 𝑓 is homotopic to a constant map, then 𝑀 consists of infinitely many disjoint copies
of 𝑀 . In particular, this situation occurs when the first Betti number of the original manifold 𝑀 ,
computed with respect to Z, is null. For example, this is the case of S2 and RP2.

Definition 1.4.1. With the above notation, 𝑓 is said to be a circular Morse function on 𝑀 if
only if 𝐹 is a (classical) Morse function on 𝑀 .

A value 𝑥 of S1 is said to be critical for 𝑓 if it is of the form Exp(𝑐), where 𝑐 is a critical value
of 𝐹 . The singularities of 𝑓 on 𝑀 are naturally induced by the singularities of 𝐹 on 𝑀 via 𝐸.

The facts that 𝐸 is a local homeomorphism and that the diagram commutes make the definitions
of singularity and critical value consistent with the corresponding definitions in the differential
setting, since these definitions are local.

Definition 1.4.2. Let 𝑎 ∈ R be a regular value of 𝐹 . The set 𝑊 = 𝐹⊗1([𝑎 ⊗ 1, 𝑎]) is a compact
cobordism 𝑊 with

𝜕1𝑊 = 𝐹⊗1(𝑎) and 𝜕0𝑊 = 𝐹⊗1(𝑎⊗ 1)

which is called a fundamental cobordism.

Example 1.4.1. In Figure 4.6, 𝑏 is a regular value of a circular value Morse function 𝑓 . Then
𝑊 = 𝐹⊗1([𝑏⊗ 1, 𝑏]) is a fundamental cobordism, see Figure 4.6, right side.

1Let us underline that we choose here to deal with any induced covering 𝐸 of 𝑀 and not only with the infinite
cyclic covering for two reasons. On the one hand we wish to emphasize the interplay between the classical and
the new situation. On the other hand, this choice allows us to include in our further discussion the cases of the
sphere S2 and of the projective plane RP2.
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Collapse
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Γ̄

M

f : M → S1Γ

Collapse

Γ

Figure 1.3: 𝑊 is a fundamental cobordism

1.4.1 Morse circular digraphs

Let us recall that a classical Morse function 𝑓 : 𝑀 ⊃ R, induces a Lyapunov graph Γ, whose
points are the connected components of the level hypersurfaces 𝑓⊗1(𝑐), for any real 𝑐. One makes
it into a graph Γ by considering that vertices exactly correspond to the connected components
containing a singularity. Moreover, the orientation of the flow associated with the Lyapunov
function 𝑓 induces an orientation on the edges of Γ, so that it can be considered also as a directed
graph (or, shortly, digraph). See Figure 4.6.

Note that such a graph is finite for compact manifolds. This is not the case when we consider
a (classical) Morse function 𝐹 on 𝑀 as in the diagram above. For our purpose we need to
consider not only infinite graphs (with infinitely many vertices of finite degree) but also the “graph”
homeomorphic to R, with empty vertex set and edge set made of this copy of R constituting the
graph itself. This last graph is associated with the trivial vertical flow on an infinite cylinder.
Apart from this exception, the graph Γ associated with 𝐹 on 𝑀 is infinite because the covering
(and hence the singularities) are infinite.

In the same way, in order to state the following theorem, we shall need to extend a little more

7



the definition of a graph by considering as a “graph” also a homeomorphic copy of S1. In this case,
the vertex set is the empty set while the edge set contains this copy of S1, which is the graph itself.
Such a graph will be associated with a trivial flow on the torus T2 possessing no singularities,
induced by the circular Morse function equal to the projection of S1 × S1 on the first factor.

Proposition 1.4.1. With the above notation, let Γ be the Morse digraph associated with 𝐹 via
the collapsing procedure defined above. Let Ú denote the map induced on Γ by the covering 𝐸.
Then Ú is a projection of Γ onto a digraph Γ, preserving vertices, which is a local isomorphism
of digraphs, as well as a local homeomorphism of complexes. Moreover, the digraph Γ can also
be obtained from 𝑀 and 𝑓 by the same collapsing procedure as above, and the following diagram
commutes:

Γ
collapse
⊂⊗ 𝑀

F
⊗⊃ R

≫ Ú ≫ 𝐸 ≫ Exp

Γ
collapse
⊂⊗ 𝑀

f
⊗⊃ R

Figure 4.6 illustrates Proposition 1.4.1.

Proof. Straightforward from the constructions and definitions.

1.5 Genus of three-manifolds

Definition 1.5.1. Let 𝑀 be a smooth, compact, connected 3-manifold with boundary. The genus

of manifold 𝑀 , 𝑔(𝑀) is the maximal number of mutually disjoint, smooth, compact, connected,
two-side codimension one submanifolds that do not disconnect 𝑀 .

The following result gives the relation between the cycle rank of the Lyapunov graph 𝐿 asso-
ciated with a smooth flow on 𝑀 and the genus of the fundamental group of 𝑀 .

Proposition 1.5.1. Let 𝑀 be a connected, closed smooth 3-manifold. Let ãt be a smooth flow
on 𝑀 with associated Lyapunov function 𝑓 . Let 𝐿 be a Lyapunov graph associated to 𝑓 . Then

Ñ(𝐿) ⊘ 𝑔(𝑀)

See [10] for the proof.
In particular, let ãt be a smooth flow on S2 × S1 with 𝐿 its associated Lyapunov graph. Since,

𝑔(S2 × S1) = 1 by Proposition 1.5.1, one has

Ñ(𝐿) ⊘ 1

Thus, Lyapunov graphs associated with smooth flows, in particular Smale flows, on S2 × S1 have
at most one cycle.

8



1.6 Morse-Smale flows

A flow ãt on a compact manifold 𝑀 is Morse-Smale if the chain recurrent set R consists of
hyperbolic singularity or closed orbits and the unstable manifold of any singularity or closed orbit
has transverse intersection with the stable manifold of any singularity or closed orbit. Let 𝐿 be
the Lyapunov graph associated to this flow. Each vertex will be labelled with (ℎ0, ℎ1, ℎ2) ∈ N3

which means that for 𝑗 = 0, 1, 2, the rank of the 𝑗-th Conley homology index of the isolating block
associated with the vertex is equal to ℎj. Then one has the following result due to de Rezende [12].

Proposition 1.6.1. Let ãt be a Morse-Smale flow on a closed orientable 3-manifold with Lyapunov
function 𝑓 . Let 𝐿 be a Lyapunov graph with respect to 𝑓 . The bounds on the degree of a vertex
𝑣 of 𝐿 and the weights on the incident edges of 𝑣 are as follows:

1. If 𝑣 is a vertex labelled with a source, ℎ3 = 1 (sink, ℎ0 = 1), then 𝑒⊗ = 1 and 𝐺⊗ = 0 (𝑒+ = 1
and 𝐺+ = 0).

2. If 𝑣 is a vertex labelled with a repelling periodic orbit, ℎ2 = ℎ3 = 1, (attracting periodic
orbit, ℎ0 = ℎ1 = 1) then 𝑒⊗ = 1 and 𝐺⊗ = 1 (𝑒+ = 1 and 𝐺+ = 1).

3. If 𝑣 is a vertex labelled with a saddle of index 2, ℎ2 = 1 (saddle of index 1, ℎ1 = 1) then
𝑒⊗ = 1 and 𝑒+ ⊘ 2 (𝑒+ = 1 and 𝑒⊗ ⊘ 2). Furthermore, the weights on the incoming and
outgoing edges of 𝑣 must satisfy:

p + q

p q
p

p + 1 p q

p + q p + 1

p

h2 = 1 h2 = 1 h1 = 1 h1 = 1

4. If 𝑣 is a vertex labelled with a saddle type periodic orbit, ℎ1 = ℎ2 = 1, then 𝑒+ ⊘ 2 and
𝑒⊗ ⊘ 2 and the weights on the incoming and outgoing edges of 𝑣 must satisfy:

p + q − 1

p q
p

p p q

p + q − 1
p

q

r s

p + q = r + s

h1 = h2 = 1 h1 = h2 = 1 h1 = h2 = 1 h1 = h2 = 1

9



1.7 Filtration and homology

The existence of a smooth Lyapunov function for a flow ãt implies the existence of a filtration
associated to it.

Definition 1.7.1. If ãt : 𝑀 ⊃ 𝑀 is a flow with hyperbolic chain recurrent set with basic sets
¶Λi♢ (𝑖 = 1, . . . , 𝑛), a filtration associated with ãt is a collection of submanifolds 𝑀0 ⊆ 𝑀1 ⊆
≤ ≤ ≤ ⊆𝑀n = 𝑀 such that

1. ãt(𝑀i) ⊆ int𝑀i, for each 𝑡 > 0;

2. Λi =
⎸

∞
t=⊗∞ ãt(𝑀i ⊗𝑀i⊗1).

The following is a result due to Bowen and Franks [7].

Theorem 1.7.1. Let ãt be a Smale flow and let 𝑀i, 𝑖 = 1, . . . , 𝑛 be a filtration associated to ãt.
Suppose that Λi =

⎸
∞
t=⊗∞ ãt(𝑀i ⊗𝑀i⊗1) is a basic set of index 𝑘 labelled with a structure matrix

𝐴n×n. Then
𝐻s(𝑀i,𝑀i⊗1, 𝐹2) ≍= 0, se 𝑠 ̸= 𝑘, 𝑘 + 1;

𝐻k(𝑀i,𝑀i⊗1, 𝐹2) ≍= 𝐹 n
2 /(𝐼 ⊗𝐵)𝐹 n

2 ;

𝐻k+1(𝑀i,𝑀i⊗1, 𝐹2) ≍= ker ((𝐼 ⊗𝐵) on 𝐹 n
2 ).

where 𝐵 = 𝐴mod 2 and 𝐹2 = Z2

See [15] for the proof.
The following theorem in [13] for Smale flows on 𝑆3 completely classifies Lyapunov graphs for

flows on 𝑆3.

Theorem 1.7.2. Let 𝐿 be an abstract Lyapunov graph. 𝐿 is associated with a Smale flow ãt on
S3 if only if the following conditions hold:

1. The underlying graph 𝐿 is a tree with exactly one edge attached to each sink or source vertex.
Moreover, the sink (source) vertex are each labelled with an index 0 (index 3) singularity or
an attracting (repelling) periodic orbit.

2. If a vertex is labelled with a singularity of index 2 (index 1) then 1 ⊘ 𝑒+ ⊘ 2 and 𝑒⊗ = 1
(𝑒+ = 1 and 1 ⊘ 𝑒⊗ ⊘ 2). If a vertex is labelled with a suspension of a subshift of finite type
and 𝐴n×n is the non-negative integer matrix representing this subshift, then

𝑒+, 𝑒⊗ > 0,
𝑘 + 1⊗𝐺⊗ ⊘ 𝑒+ ⊘ 𝑘 + 1, with 𝐺⊗ =

√︁e⊗

i=1 𝑔
⊗
i and

𝑘 + 1⊗𝐺+ ⊘ 𝑒⊗ ⊘ 𝑘 + 1 with 𝐺+ =
√︁e+

j=1 𝑔
+
j

where 𝑘 = dim ker ((𝐼 ⊗ 𝐵) : 𝐹m
2 ⊃ 𝐹m

2 ), 𝐹2 = Z2 and 𝑏ij = 𝑎ij mod 2, 𝑒+(𝑒⊗) is the
number of incoming (outgoing) edges of the vertex and 𝑔+

j (𝑔⊗
i ) is the weight on an incoming

(outgoing) edge of the vertex.
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3. All vertices satisfy the Poincaré Hopf condition, i.e., for a vertex labelled with a singularity
of index 𝑟, the condition is

(⊗1)r = 𝑒+ ⊗ 𝑒⊗ ⊗
∑︁

𝑔+
j +

∑︁
𝑔⊗

i ,

and for a vertex labelled with a suspension of a subshift of finite type or a periodic orbit,
the condition is

0 = 𝑒+ ⊗ 𝑒⊗ ⊗
∑︁

𝑔+
j +

∑︁
𝑔⊗

i .
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Chapter 2

Surfaces Embedded in S2 × S1

In this chapter we establish a topological result on embedding of surfaces in S2 × S1 which is
important in this work. Due to the topology of S2 × S1 these surfaces can be separable or non-
separable and thus determine interesting results on the embedding. Also, we introduce the concept
of manifolds of handlebody type and a result which establishes a relationship between embedded
separable surfaces and manifolds of handlebody type.

2.1 Some topological facts in S2 × S1

For our work it is important to have a characterization of the generators of the two dimensional
homology of S2 × S1.

Lemma 2.1.1. Let 𝑆 be an orientable closed connected surface in S2 × S1 such that 𝑆 is non-
separable and 𝑖 : 𝑆 ⊃ S2 × S1 is the inclusion map. Then the induced homomorphism

𝑖* : 𝐻2(𝑆)⊃ 𝐻2(S
2 × S1)

is an isomorphism.

Proof. Since 𝑆 is non-separable, there are two points 𝐴 and 𝐵 on a tubular neighborhood of 𝑆
which can be connected by a path that intersects 𝑆 in one single point 𝐶. This path can be
extended to a loop which intersects 𝑆 in 𝐶. It follows that the one dimensional homology class [Ò]
and the two dimensional homology class [𝑆] have a non-zero intersection number. Therefore, both
[Ò] and [𝑆] are non-trivial elements in the homology of S2 × S1. Since, 𝐻2(S

2 × S1, 𝐹2) ≍= 𝐹2, one
has that 𝑖* is an isomorphism.

Definition 2.1.1. Let 𝑆 be a closed surface in S2 × S1 and let 𝑖 : 𝑆 ⊃ S2 × S1 be the inclusion
embedding. Let

𝑖* : Þ1(𝑆)⊃ Þ1(S
2 × S1)

be the homomorphism induced by 𝑖. We say that 𝑆 is Þ1-trivial in S2 × S1 if 𝑖* is trivial and
Þ1-non-trivial otherwise.
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The study of embedded surfaces in S2× S1 is essential to our work. Some of these embeddings
have been previously studied, such as, the embedding of the sphere S2 [1] and the embedding of
the torus in [20]. In this section, we present other embeddings that are relevant for our work. The
following result of the embedding of S2 in S2 × S1 is a well known result with a nice proof in [1].

Proposition 2.1.1. Let 𝑆 be a differential embedding of the 2-sphere in S2 × S1, then

1. either 𝑆 bounds a 3-ball,

2. or 𝑆 is homotopic to a fiber 𝑆2 × ¶𝑡♢, with 𝑡 ∈ 𝑆1.

Now let ãt be a Smale flow on S2 × S1 with Lyapunov function 𝑓 : S2 × S1 ⊃ R and let 𝐿
be the Lyapunov graph associated to 𝑓 . Let 𝑐 ∈ R be a regular value, then 𝑓⊗1(𝑐) is the disjoint
collection of orientable and closed surfaces. Let 𝒯g ⊆ 𝑓⊗1(𝑐) be a connected and closed surface
of genus 𝑔, then by the topology of S2 × S1, 𝒯g can be a separable or a non-separable surface in
S2 × S1.

If 𝒯g is non-separable, there exists another connected component of the regular level set 𝒯̂︀g
non-parallel to 𝒯g, such that S2× S1⊗ (𝒯g ⊔ 𝒯̂︀g) has two components. We denote their closures by
𝑀1 and 𝑀2. Therefore, 𝑀1 and 𝑀2 satisfy

𝑀1 ∪𝑀2 = S2 × S1 and 𝑀1 ∩𝑀2 = 𝒯g ⊔ 𝒯̂︀g
Also, 𝜕𝑀1 = 𝜕𝑀2 = 𝒯g ⊔ 𝒯̂︀g. The following lemma gives us homological information on 𝑀1 and
𝑀2.

Lemma 2.1.2. 𝑀1 and 𝑀2 as defined above satisfy:

1. 𝐻2(𝑀i) ≍= 𝐹2,

2. dim𝐻1(𝑀i) = ̂︀𝑔 + 𝑔.

Proof. We consider the Mayer-Vietoris exact sequence of the pair (𝑀1,𝑀2),

0⊃ 𝐻3(𝑀1)⊕𝐻3(𝑀2)⊃ 𝐻3(S
2 × S1)⊃ 𝐻2(𝑀1 ∩𝑀2)⊃ 𝐻2(𝑀1)⊕𝐻2(𝑀2)

α
⊃ 𝐻2(S

2 × S1).
(2.1.1)

Since, 𝑀1 and 𝑀2 are compact manifolds with boundary, then 𝐻3(𝑀1) ≍= 𝐻3(𝑀2) ≍= 0. On
the other hand, 𝐻3(S

2 × S1) ≍= 𝐻2(S
2 × S1) ≍= 𝐹2 and as 𝑀1 ∩ 𝑀2 has two components, then

𝐻2(𝑀1 ∩𝑀2) ≍= 𝐹 2
2 . Therefore, one has

dim𝐻2(𝑀1) + dim𝐻2(𝑀2) ⊘ 2. (2.1.2)

On the other hand, we consider the exact sequence of the pair (𝑀i, 𝜕𝑀i),

0⊃ 𝐻3(𝑀i, 𝜕𝑀i)⊃ 𝐻2(𝜕𝑀i)⊃ 𝐻2(𝑀i)⊃ 𝐻2(𝑀i, 𝜕𝑀i). (2.1.3)

Since, 𝑀i is a 3-manifold with boundary, then 𝐻3(𝑀i, 𝜕𝑀i) ≍= 𝐹2. Also 𝜕𝑀i has two components,
and hence 𝐻2(𝜕𝑀i) ≍= 𝐹 2

2 . Therefore,

dim𝐻2(𝑀i) ⊙ 1. (2.1.4)

By (2.1.2) and (2.1.4), one concludes that
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𝐻2(𝑀i) ≍= 𝐹2.

So, one writes the exact sequence (2.1.3) as

0⊃ 𝐻2(𝑀i, 𝜕𝑀i)⊃ 𝐻1(𝜕𝑀i)⊃ 𝐻1(𝑀i)⊃ 𝐻1(𝑀i, 𝜕𝑀i)⊃ ̃︁𝐻0(𝜕𝑀i)⊃ 0.

Therefore,

dim𝐻1(𝑀i) = dim𝐻1(𝜕𝑀i)⊗ dim𝐻2(𝑀i, 𝜕𝑀i) + dim𝐻1(𝑀i, 𝜕𝑀i)⊗ dim ̃︁𝐻0(𝜕𝑀i). (2.1.5)

At this point, one needs to consider the following proposition.

Proposition 2.1.2. Let (𝑋,𝐴) be a pair of topological spaces, and let 𝐹2 be a field. There is a
natural isomorphism

Ñ : 𝐻n(𝑋,𝐴;𝐹2)⊃ 𝐻𝑜𝑚F2(𝐻n(𝑋,𝐴;𝐹 ), 𝐹2) ≍= 𝐻n(𝑋,𝐴;𝐹2)
*

Since, 𝜕𝑀i
≍= 𝒯g ⊔𝒯̂︀g, then dim𝐻1(𝜕𝑀i) = 2𝑔+ 2𝑔 and ̃︁𝐻0(𝜕𝑀i) ≍= 𝐹2. On the other hand, by

Proposition 2.1.2 and by Poincaré duality, one has that

𝐻1(𝑀i, 𝜕𝑀i) ≍= (𝐻2(𝑀i))
* and 𝐻2(𝑀i, 𝜕𝑀i) ≍= (𝐻1(𝑀i))

*.

In (2.1.5) one has
dim𝐻1(𝑀i) = 𝑔 + 𝑔. (2.1.6)

If 𝒯g is separable, this embedding splits S2 × S1 in two submanifolds 𝑀1 and 𝑀2 such that:

S2 × S1 = 𝑀1 ∪𝑀2 and 𝑀1 ∩𝑀2 = 𝒯g.

Lemma 2.1.3. Let 𝑀1 and 𝑀2 be defined as above. Then

1. dim𝐻2(𝑀1) + dim𝐻2(𝑀2) ⊘ 1,

2. If 𝐻2(𝑀1) ≍= 0, then dim𝐻1(𝑀1) = 𝑔,

3. If 𝐻2(𝑀1) ≍= 𝐹2, then dim𝐻1(𝑀1) = 𝑔 + 1.

Analogously for 𝑀2.

Proof. Consider the Mayer-Vietoris exact sequence of the pair (𝑀1,𝑀2).

⊃ 𝐻3(𝑀1)⊕𝐻3(𝑀2)⊃ 𝐻3(S
2 × S1)⊃ 𝐻2(𝒯g)⊃ 𝐻2(𝑀1)⊕𝐻2(𝑀2)⊃ 𝐻2(S

2 × S1). (2.1.7)

Since, 𝑀1 and 𝑀2 are compact manifolds with boundary, then 𝐻3(𝑀1) ≍= 𝐻3(𝑀2) ≍= 0. Also,
𝑀1 ∩𝑀2 has one component, hence 𝐻2(𝑀1 ∩𝑀2) ≍= 𝐹2. Therefore, by the sequence (2.1.7) one
has

dim𝐻2(𝑀1) + dim𝐻2(𝑀2) ⊘ 1. (2.1.8)

Hence, there are the following possibilities:
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(a) 𝐻2(𝑀1) ≍= 0 and 𝐻2(𝑀2) ≍= 0

(b) 𝐻2(𝑀1) ≍= 𝐹2 and 𝐻2(𝑀2) ≍= 0

(c) 𝐻2(𝑀1) ≍= 0 and 𝐻2(𝑀2) ≍= 𝐹2.

Now consider the exact sequence of the pair (𝑀i, 𝜕𝑀i),

0⊃ 𝐻3(𝑀i, 𝜕𝑀i)⊃ 𝐻2(𝜕𝑀i)⊃ 𝐻2(𝑀i)⊃ 𝐻2(𝑀i, 𝜕𝑀i). (2.1.9)

Since, 𝑀i is a 3-manifold with boundary 𝐻3(𝑀i, 𝜕𝑀i) ≍= 𝐹2. Also, 𝜕𝑀i has one component, hence
𝐻2(𝜕𝑀i) ≍= 𝐹2. Therefore, 𝐻3(𝑀i, 𝜕𝑀i) is isomorphic to 𝐻2(𝜕𝑀i). Thus, we can write the exact
sequence (2.1.9) as

0⊃ 𝐻2(𝑀i)⊃ 𝐻2(𝑀i, 𝜕𝑀i)⊃ 𝐻1(𝜕𝑀i)⊃ 𝐻1(𝑀i)⊃ 𝐻1(𝑀i, 𝜕𝑀i)⊃ 0

which implies that

2𝑔 = dim𝐻2(𝑀i, 𝜕𝑀i)⊗ dim𝐻2(𝑀i) + dim𝐻1(𝑀i)⊗ dim𝐻1(𝑀i, 𝜕𝑀i). (2.1.10)

By Proposition 2.1.2 and by Poincaré duality, one has that

𝐻1(𝑀i, 𝜕𝑀i) ≍= 𝐹2 and 𝐻2(𝑀i, 𝜕𝑀i) ≍= (𝐻1(𝑀i))
* .

Hence, equation (2.1.10) can be written as

𝑔 = dim𝐻1(𝑀i)⊗ dim𝐻2(𝑀i). (2.1.11)

Now one concludes the proof with a case analysis.
Case (𝑎): Consider 𝐻2(𝑀1) ≍= 0 and 𝐻2(𝑀2) ≍= 0.
Hence, by equation (2.1.11) one has

𝑔 = dim𝐻1(𝑀i).

Case (𝑏): Consider 𝐻2(𝑀1) ≍= 𝐹2 and 𝐻2(𝑀2) ≍= 0.
By the prior case, if 𝐻2(𝑀2) ≍= 0 then 𝐻1(𝑀2) ≍= 𝐹 g

2 . In the case 𝐻2(𝑀1) ≍= 𝐹2, equation
(2.1.11) is written as

𝑔 = dim𝐻1(𝑀1)⊗ 1,

which implies that dim𝐻1(𝑀1) = 𝑔 + 1.
Case (𝑐): Consider 𝐻2(𝑀1) ≍= 0 and 𝐻2(𝑀2) ≍= 𝐹2.
In a similar fashion to the previous case one has that

(i) if 𝐻2(𝑀1) ≍= 0, then dim𝐻1(𝑀1) = 𝑔,

(ii) if 𝐻2(𝑀2) ≍= 𝐹2, then dim𝐻1(𝑀2) = 𝑔 + 1.
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2.2 Manifolds of handlebody type

Definition 2.2.1. A connected manifold 𝑀3 is of handlebody type whenever 𝜕𝑀3 is homeo-
morphic to a closed and orientable surface of genus 𝑔, for some 𝑔 ⊙ 0 and verifies

𝐻2(𝑀
3) ≍= 0 and dim𝐻1(𝑀

3) = 𝑔.

The positive number 𝑔 is defined as the genus of the manifold of handlebody type.

Remark 2.2.1. By Lemma 2.1.3, at least one of 𝑀1 or 𝑀2 is of handlebody type.

Lemma 2.2.1. With the above notation, 𝑀2 is not a manifold of handlebody type if and only if

𝐻2(𝑀2) ≍= 𝐹2.

Proof. Necessity. By inequality (2.1.8) one has that dim𝐻2(𝑀2) ⊘ 1, hence we have two possi-
bilities. If 𝐻2(𝑀1) ≍= 0, by equality (2.1.11), it follows that dim𝐻1(𝑀2) = 𝑔. Hence, 𝑀2 is of
handlebody type contradicting the hypothesis. Therefore, 𝐻2(𝑀1) ≍= 𝐹2.

Sufficiency. It follows from equality (2.1.11), in the proof of Lemma 2.1.3.

Lemma 2.2.2. Let 𝑁 be a 3-submanifold of S2 × S1, such that 𝑁 is of handlebody type and 𝜕𝑁
is a Þ1-trivial surface in S2 × S1. Then the inclusions 𝑗 : 𝑁 ⊃ S2 × S1 and 𝑖 : 𝜕𝑁 ⊃ 𝑁 induces
homomorphisms

𝑗* : 𝐻1(𝑁)⊃ 𝐻1(S
2 × S1) and 𝑖* : 𝐻1(𝜕𝑁)⊃ 𝐻1(𝑁)

which 𝑗* is trivial and 𝑖* is surjective.

Proof. Consider the following diagram

𝜕𝑁

k

##

i

��
𝑁

j // S2 × S1

where 𝑖, 𝑗 and 𝑘 are inclusions. These functions induce the following diagram.

𝐻1(𝜕𝑁)

k*

%%

i*

��
𝐻1(𝑁)

j* // 𝐻1(S
2 × S1)

Since, 𝜕𝑁 is Þ1-trivial, then 𝑘* is trivial. Thus, in order to prove that 𝑗* is trivial, it is only
necessary to prove that 𝑖* is surjective. Now, consider the exact homology sequence of the pair
(𝑁, 𝜕𝑁),

0⊃ 𝐻2(𝑁, 𝜕𝑁)⊃ 𝐻1(𝜕𝑁)
i*⊃ 𝐻1(𝑁)⊃ 𝐻1(𝑁, 𝜕𝑁).
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By Proposition 2.1.2 and the Poincaré duality, one has

𝐻1(𝑁, 𝜕𝑁) ≍= (𝐻2(𝑁))*.

On the other hand, one has that 𝐻2(𝑁) ≍= 0. Hence the lemma follows.

Lemma 2.2.3. Let 𝑌 and 𝑍 be two disjoint 3-submanifolds of handlebody type in S2 × S1, such
that 𝜕𝑌 and 𝜕𝑍 are Þ1-trivial in S2×S1. Let 𝑋 be the closure of the complement of 𝑌 in S2×S1.
Then the inclusion 𝑗 : 𝑍 ⊃ 𝑋 induces a homomorphism

𝑗* : 𝐻1(𝑍)⊃ 𝐻1(𝑋)

which is trivial.

Proof. Consider the following diagram

𝜕𝑍

i

  

k

��
𝑍

j // 𝑋

where 𝑖, 𝑗 and 𝑘 are inclusions. These functions induce the following diagram

𝐻1(𝜕𝑍)

i*

##

k*

��
𝐻1(𝑍)

j* // 𝐻1(𝑋)

(2.2.1)

Since, 𝑌 and 𝑍 are disjoint, one has that 𝜕𝑍 is Þ1-trivial in 𝑋. This follows by considering the
Mayer-Vietoris exact homology sequence.

⊃ 𝐻1(𝑋 ∩ 𝑌 )⊃ 𝐻1(𝑌 )⊕𝐻1(𝑋)
β
⊃ 𝐻1(S

2 × S1)⊃ ̃︁𝐻0(𝑋 ∩ 𝑌 ).

Since, ̃︁𝐻0(𝑋 ∩ 𝑌 ) ≍= 0, one has that Ñ is surjective. On the other hand, since 𝑌 is Þ1-trivial, then
the restricted homomorphism

𝐻1(𝑋)⊃ 𝐻1(S
2 × S1) (2.2.2)

is surjective. Now consider the following diagram.

Þ1(𝜕𝑍) α //

γ

%%

Þ1(S
2 × S1)

Þ1(𝑋)

β1

OO
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By (2.2.2), one has that Ñ1 is surjective and by the hypothesis, Ð is trivial and hence Ò is trivial.
Therefore, 𝜕𝑍 is Þ1-trivial in 𝑋. Hence, by (2.2.1), one has 𝑖* is trivial. Thus, by Lemma 2.2.2
one concludes that 𝑘* is surjective. Therefore, 𝑗* is trivial.

Lemma 2.2.4. Let 𝒯g be a separable connected component of a regular level set associated to
some Smale flow ãt on S2 × S1. Let 𝑀1 and 𝑀2 be the closure of the two connected components
of S2 × S1 ⊗ 𝒯g. Hence,

1. if 𝒯g is Þ1-trivial in S2 × S1, then either 𝑀1 or 𝑀2 is of handlebody type;

2. if 𝒯g is Þ1-non-trivial in S2 × S1, then 𝑀1 and 𝑀2 are of handlebody type.

Proof. 1. It follows by Remark 2.2.1, that at least one of the submanifolds 𝑀1 or 𝑀2 is of
handlebody type. Suppose that, 𝑀1 is a manifold of handlebody type. By Lefschetz Duality,
one has that

𝐻1(S
2 × S1,𝑀1) ≍= 𝐻2(𝑀2). (2.2.3)

Now, consider the homology exact sequence of the pair (S2 × S1,𝑀1),

⊃ 𝐻2(S
2 × S1,𝑀1)⊃ 𝐻1(𝑀1)

η
⊃ 𝐻1(S

2 × S1)⊃ 𝐻1(S
2 × S1,𝑀1)⊃ 0. (2.2.4)

Since, 𝒯g is Þ1-trivial in S2× S1, by Lemma 2.2.2, one has that Ö is equal to zero. Therefore,
𝐻1(S

2 × S1) ≍= 𝐻1(S
2 × S1,𝑀1) and by (2.2.3) one has that

𝐻2(𝑀2) ≍= 𝐹2.

The result now follows by Lemma 2.2.1.

2. If 𝒯g is Þ1-non-trivial in S2 × S1 there exists a simple closed curve Ñ in 𝒯g such that [Ñ] ∈
Þ1(S

2 × S1) is non-trivial. Furthermore, Ñ intersects every non-separable orientable surface
𝑆 in S2 × S1. Since 𝑀1 ∩𝑀2 = 𝒯g it is possible to find two simple closed curves Ñ1 and Ñ2

homotopic to Ñ and such that Ñ1 ⊆ 𝑖𝑛𝑡(𝑀1) and Ñ2 ⊆ 𝑖𝑛𝑡(𝑀2). Suppose that 𝑀1 is not of
handlebody type hence, 𝐻2(𝑀1) ≍= 𝐹2. Therefore, there exists a non-separable surface 𝑆 in
the interior of 𝑀1. However, since Ñ2 is homotopic to Ñ one has that [Ñ1] ∈ Þ1(S

2 × S1) is
non-trivial and hence must intersect every non-separable orientable surface in S2 × S1. In
particular, Ñ1 intersects 𝑆 which is a contradiction.
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Chapter 3

Manifolds of Handlebody Type and

Lyapunov Graphs

In the previous chapter we obtained a relationship between an embedded separable surface 𝑆
in S2 × S1 and a manifold of handlebody type. More specifically, if 𝑆 is Þ1-non-trivial in S2 × S1,
then 𝑆 bounds a manifold of handlebody type on both sides. If 𝑆 is Þ1-trivial in S2 × S1, then 𝑆
bounds a manifold of handlebody type only on one side. In this chapter we study the relationship
between manifolds of handlebody type and Lyapunov graph 𝐿 with Ñ(𝐿) = 0 associated with a
Smale flow on S2 × S1.

3.1 Manifolds of handlebody type and Lyapunov graphs

In this section, we study the relation between Lyapunov graphs and manifolds of handlebody
type. Let ãt be a Smale flow on S2 × S1 with Lyapunov function 𝑓 and let 𝐿 be the associated
Lyapunov graph. Suppose 𝐿 is a tree. Choose a regular level set which is a separable surface 𝒯g

which divides S2 × S1 in two 3-submanifolds,ℳ⊗

𝒯g
andℳ+

𝒯g
, and such that the flow is transversal

and outward going on ℳ⊗

𝒯g
and inward going on ℳ+

𝒯g
. See Figure 3.1.

Remark 3.1.1. By Lemma 2.2.4 one has that:

∙ if 𝒯g is Þ1-trivial, then either ℳ+
𝒯g

or ℳ⊗

𝒯g
is of handlebody type;

∙ if 𝒯g is Þ1-non-trivial, then ℳ+
𝒯g

and ℳ⊗

𝒯g
are of handlebody type;

∙ if we cut S2 × S1 along a separable regular level set, the graph 𝐿 is disconnected into two
subgraphs with dangling edges that represent each one of the manifolds ℳ+

𝒯g
and ℳ⊗

𝒯g
.

Proposition 3.1.1. Let 𝑢 be a vertex in 𝐿 and let 𝑒 be an incoming edge of 𝑢 with weight 𝑔.
Suppose that there exists a vertex 𝑣 labelled with a basic set Λ such that Λ is contained in ℳ⊗

𝒯g
.

Then there exists an incoming (outgoing) edge with weight ̂︀𝑔 of 𝑣 such thatℳ+
𝒯̂︀g (ℳ⊗

𝒯̂︀g) is contained

in ℳ⊗

𝒯g
.
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Figure 3.1: 𝑔 is the genus of the regular level set.

Proof. Since 𝐿 is a tree, there exists an incoming or outcoming edge 𝑒1 (with weight ̂︀𝑔) of 𝑣 such
that cutting along this edge separates 𝑢 and 𝑣 in distinct subgraphs. First suppose that 𝑒1 is an
incoming edge of 𝑣. Hence, if we cut S2× S1 along 𝒯̂︀g one hasℳ+

𝒯̂︀g ⊆ℳ
⊗

𝒯g
. On the other hand, if

𝑒1 is an outgoing edge of 𝑣, ℳ⊗

𝒯̂︀g ⊆ℳ
⊗

𝒯g
.

We have a similar result if the edge 𝑒 is outgoing of 𝑢. In what follows other interesting
properties of 𝐿 are determined. Given a vertex 𝑣 of the graph 𝐿 labelled with a basic set Λv, each
edge point represents a regular level set which is a surface of genus 𝑔+

i (𝑔⊗
j ) embedded in S2 × S1

denoted by 𝒯g+
i

(𝒯g⊗

j
). The incoming (outgoing) edges are labelled with weights corresponding to

𝑔+
i ’s(𝑔⊗

j ’s).

Corollary 3.1.1. Let 𝑣 be a vertex on 𝐿 and with the above notation.

1. For Ð ∈ ¶1, . . . , 𝑒⊗
v ♢ fixed, one has

ℳ⊗

𝒯
g

+
k

⊆ℳ⊗

𝒯
g

⊗

α

and ℳ+
𝒯

g
⊗

j

⊆ℳ⊗

𝒯
g

⊗

α

with 𝑘 ∈ ¶1, . . . , 𝑒+♢ and 𝑗 ∈ ¶1, . . . , 𝑒⊗♢ ⊗ ¶Ð♢ .

2. For Ñ ∈ ¶1, . . . , 𝑒+♢ fixed, one has

ℳ⊗

𝒯
g

+
k

⊆ℳ+
𝒯

g
+
β

and ℳ+
𝒯

g
⊗

j

⊆ℳ+
𝒯

g
+
β

with 𝑘 ∈ ¶1, . . . , 𝑒+♢ ⊗ ¶Ñ♢ and 𝑗 ∈ ¶1, . . . , 𝑒⊗♢ .

Proof. 1. Since 𝒯g⊗

α
corresponds to an outgoing edge of 𝑣, let 𝑢 be the vertex on which the

edge is incoming. Note that each 𝒯g+
k

corresponds to an outgoing edge of vertices 𝑣k that are

incoming of 𝑣. Hence, by the Lemma 2.2.4 it follows that
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ℳ⊗

𝒯
g

+
k

⊆ℳ⊗

𝒯
g

⊗

α

.

Analogously, each 𝒯g⊗

j
corresponds to an outgoing edge of vertices 𝑣j and by Lemma 2.2.4 it

follows that

ℳ+
𝒯

g
⊗

j

⊆ℳ⊗

𝒯
g

⊗

α

.

2. To prove 2, it suffices to reverse the orientation on the graph.

Corollary 3.1.2. Let 𝑣 be a vertex on 𝐿 and with the notation above, one has

1. if ℳ⊗

𝒯
g

⊗

α

is of handlebody type for Ð ∈ ¶1, . . . , 𝑒⊗♢, then

ℳ⊗

𝒯
g

+
k

and ℳ+
𝒯

g
⊗

j

are of handlebody type for 𝑘 ∈ ¶1, . . . , 𝑒+♢ and 𝑗 ∈ ¶1, . . . , 𝑒⊗♢ ⊗ ¶Ð♢;

2. if ℳ+
𝒯

g
+
β

is of handlebody type for Ñ ∈ ¶1, . . . , 𝑒+♢, then

ℳ⊗

𝒯
g

+
k

and ℳ+
𝒯

g
⊗

j

are of handlebody type for 𝑘 ∈ ¶1, . . . , 𝑒+♢ ⊗ ¶Ñ♢ and 𝑗 ∈ ¶1, . . . , 𝑒⊗♢.

Proof. This follows directly from Remark 3.1.1, of Corollary 3.1.1 and from the fact that a sub-
manifold with a surface boundary of a manifold of handlebody type is of handlebody type.
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Chapter 4

Smale Flows on S2 × S1

In this chapter we used all the theory developed in the previous chapters to obtain the main
result on Lyapunov graphs associated with Smale flows on S2 × S1. This is done as follows: first,
Lyapunov graphs with cycle rank equal to one are characterized. Secondly, Lyapunov graphs
without cycles are characterized.

Let ãt be a Smale flow on S2 × S1 with Lyapunov function 𝑓 : S2 × S1 ⊃ R. Let Λ be a basic
set of ãt and 𝑓(Λ) = 𝑐. Choose 𝜖 > 0 sufficiently small so that 𝑐 is the only critical value in
[𝑐⊗ 𝜖, 𝑐+ 𝜖]. Let 𝑋0 = 𝑓⊗1(⊗∞, 𝑐+ 𝜖] and 𝑍0 = 𝑓⊗1(⊗∞, 𝑐⊗ 𝜖].

4.1 Lyapunov graph with a cycle

Let 𝑈 be the closure of the component of 𝑋0⊗𝑍0 which contains Λ. Then 𝑈 is a neighborhood
of Λ whose boundary consists of closed and orientable surfaces to which the flow is transverse. The
flow enters on 𝑒+ of these surfaces and exits on the remaining 𝑒⊗.

Proposition 4.1.1. Suppose ãt is a Smale flow on S2 × S1, with Lyapunov graph 𝐿, such that
Ñ(𝐿) = 1. Let 𝑣 be a vertex of 𝐿 on the cycle, labelled with a suspension of a subshift of finite type
and 𝐴n×n is the non-negative integer matrix representing this subshift. Let 𝑘 = dim ker 𝐼 ⊗ 𝐴 :
𝐹 n

2 ⊃ 𝐹 n
2 where 𝐹2 = Z2 and 𝐼 ⊗ 𝐴 is the mod 2 reduction of 𝐼 ⊗ 𝐴. Then, if 𝑒+ and 𝑒⊗ are

respectively the indegree and outdegree of 𝑣, one has:

𝑒+, 𝑒⊗ > 0,
𝑒+ ⊘ 𝑘 + 1,
𝑒⊗ ⊘ 𝑘 + 1,

𝑘 + 1⊗𝐺⊗ ⊘ 𝑒+, with 𝐺⊗ =
√︁e⊗

i=1 𝑔
⊗
i and

𝑘 + 1⊗𝐺+ ⊘ 𝑒⊗, with 𝐺+ =
√︁e+

j=1 𝑔
+
j .

Where 𝑔+
i ’s (𝑔⊗

j )’s are the weights on the incoming (outgoing) edges of the vertex 𝑣.

Proof. Suppose Λ is the basic set of ãt corresponding to 𝑣. First of all, suppose that both edges
of the cycle are incoming edges of the vertex 𝑣, as shown in Figure 4.1. Let 𝑍 be the union of the
components of S2 × S1 ⊗ (𝜕𝑈 ∩ 𝑍0) which do not contain Λ. By Lemma 2.2.4, each component
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Figure 4.1: 𝑣 is a vertex on the cycle.

of 𝑍 is a manifold of handlebody type. Now we call 𝑋 = 𝑍 ∪ 𝑈 and 𝑌 = S2 × S1 ⊗𝑋. Suppose
𝑌1 is a component of 𝑌 such that it corresponds to the cycle on the graph. Therefore, by the
Lemma 2.1.2 one has

dim𝐻1(𝑌1) = 𝑔+
1 + 𝑔+

2 and dim𝐻2(𝑌1) = 1. (4.1.1)

and any other component of 𝑌 is of handlebody type.

Assertion 4.1.1. Let 𝑋0, 𝑍0, 𝑋 and 𝑍 be defined as above, then

𝐻2(𝑋0, 𝑍0) ≍= 𝐻2(𝑋,𝑍).

This Assertion follows by excising 𝑈 = 𝑋 ∩ 𝑋c
0, where 𝑋c

0 is the complement of 𝑋0, one has
that,

𝐻2(𝑋,𝑍) ≍= 𝐻2(𝑋 ⊗ 𝑈,𝑍 ⊗ 𝑈) ≍= 𝐻2(𝑋0, 𝑍 ⊗ 𝑈).

Since 𝑍0 is a strong deformation retract of 𝑍 ⊗ 𝑈 this implies that

𝐻2(𝑋,𝑍) ≍= 𝐻2(𝑋0, 𝑍0).

This conclude to proof of this assertion. By Assertion 4.1.1 and Theorem 1.7.1, we conclude that
dim𝐻2(𝑋,𝑍) = dim𝐻2(𝑋0, 𝑍0) = 𝑘. We consider the exact homology sequence of the pair (𝑋,𝑍),

𝐻3(𝑋,𝑍)⊃ 𝐻2(𝑍)⊃ 𝐻2(𝑋)⊃ 𝐻2(𝑋,𝑍)⊃ 𝐻1(𝑍)
α
⊃ 𝐻1(𝑋). (4.1.2)

Since, 𝐻3(𝑋,𝑍) ≍= 0 and 𝐻2(𝑍) ≍= 0, this implies

dim𝐻2(𝑋) ⊘ dim𝐻2(𝑋,𝑍) = 𝑘. (4.1.3)

On other hand, we consider the Mayer-Vietoris exact homology sequence,

𝐻3(𝑋)⊕𝐻3(𝑌 )⊃ 𝐻3(S
2 × S1)⊃ 𝐻2(𝑋 ∩ 𝑌 )⊃ 𝐻2(𝑋)⊕𝐻2(𝑌 )

β
⊃ 𝐻2(S

2 × S1)⊃ (4.1.4)

Both 𝑋 and 𝑌 are compact 3⊗manifolds with boundary, so 𝐻3(𝑋) ≍= 𝐻3(𝑌 ) ≍= 0. Also, 𝑋 ∩ 𝑌 is
composed of 𝑒+ closed orientable surfaces, so 𝐻2(𝑋 ∩𝑌 ) ≍= 𝐹 e+

2 . On the other hand, we know that
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𝐻3(S
2 × S1) ≍= 𝐻2(S

2 × S1) ≍= 𝐹2. Since, 𝐻2(𝑌 ) ≍= 𝐹2, this submanifold contains a non-separable
regular level set. By Lemma 2.1.1, it follows that Ñ is surjective. Therefore,

dim𝐻2(𝑋) = 𝑒+ ⊗ 1

By inequality (4.1.3), one has
𝑒+ ⊘ 𝑘 + 1.

If 𝑎 = dim ImÐ, from the exact sequence (4.1.2), one has

𝑘 = 𝑒+ ⊗ 1 +𝐺⊗ ⊗ 𝑎.

Hence,
𝑘 + 1⊗𝐺⊗ ⊘ 𝑒+. (4.1.5)

On the other hand, 𝑈 satisfies the Poincaré equality,

𝑒+ +𝐺⊗ = 𝑒⊗ +𝐺+.

By inequality (4.1.5), one has
𝑘 + 1⊗𝐺+ ⊘ 𝑒⊗.

Now for the last inequality, we need to consider the reverse flow which switches the roles of 𝑒+ and
𝑒⊗ and transform 𝐴 to 𝐴t so 𝑘 is unchanged.

We call 𝑊 = 𝑈 ∪ 𝑌 and in this case the flow enters in 𝑈 through 𝑌 . We consider the exact
homology sequence of the pair (𝑊,𝑌 ),

𝐻3(𝑊,𝑌 )⊃ 𝐻2(𝑌 )⊃ 𝐻2(𝑊 )⊃ 𝐻2(𝑊,𝑌 ). (4.1.6)

By Theorem 1.7.1, one has 𝐻3(𝑊,𝑌 ) ≍= 0 and 𝐻2(𝑌 ) ≍= 𝐹2. Therefore, by sequence (4.1.6)

dim𝐻2(𝑊 ) ⊘ 𝑘 + 1. (4.1.7)

Now, consider the Mayer-Vietoris exact homology sequence,

𝐻3(𝑊 )⊕𝐻3(𝑍)⊃ 𝐻3(S
2 × S1)⊃ 𝐻2(𝑊 ∩ 𝑍)⊃ 𝐻2(𝑊 )⊕𝐻2(𝑍)

γ
⊃ 𝐻2(S

2 × S1). (4.1.8)

Both 𝑊 and 𝑍 are compact 3-manifolds with boundary, so 𝐻3(𝑊 ) ≍= 𝐻3(𝑍) ≍= 0. 𝑊 ∩ 𝑍 is
composed of 𝑒⊗ closed orientable surfaces, hence 𝐻2(𝑋 ∩ 𝑌 ) ≍= 𝐹 e⊗

2 . Since the submanifold 𝑊
contains a non-separable regular level set by Lemma 2.1.1, Ò is surjective. Therefore, dim𝐻2(𝑊 ) =
𝑒⊗ and by inequality (4.1.7) one has,

𝑒⊗ ⊘ 𝑘 + 1.

The proof is complete in this case.
Now, suppose that one edge enters 𝑣 and the other exists 𝑣, as shown in Figure 4.2. Note

that, 𝑋0 ∩ 𝑌0 and 𝑊0 ∩ 𝑍0 are composed by 𝑒+ + 1 and 𝑒⊗ + 1 components respectively. One
can suppose the component 𝑌1 of 𝑌0 and the component 𝑍1 of 𝑍0 correspond to an incoming
and outgoing edge of the cycle respectively. Let 𝑍 be the union of 𝑍1 with the components of
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Figure 4.2: 𝑣 is a vertex in the cycle.

S2×S1⊗ (𝜕𝑈 ∩ (𝑍0 ⊗ 𝑍1)) which do not contain Λ. By Lemma 2.2.4, each component of 𝑍⊗𝑍1 is
a manifold of handlebody type. Now we define 𝑋 = 𝑍 ∪𝑈 and 𝑌 = S2×S1⊗𝑋. By Lemma 2.2.4
one has that each component of (𝑌 ⊗ 𝑌1) is a manifold of handlebody type. Note that, 𝑍 ∩ 𝑌 is
a closed and orientable surface of genus 𝑔. Moreover, by Lemma 2.1.1 one has 𝐻2(𝑍) ≍= 𝐹2 and
dim𝐻1(𝑍) =

√︁
𝑔⊗

i + 𝑔. Now let 𝐺⊗ = dim𝐻1(𝑍). With this notation, one has the following
assertion:

Assertion 4.1.2. Let 𝑋0, 𝑍0, 𝑋 and 𝑍 be as defined above, then

𝐻2(𝑋0, 𝑍0) ≍= 𝐻2(𝑋,𝑍).

Assertion 4.1.2 follows in the same way as Assertion 4.1.1. By Assertion 4.1.2 and Theo-
rem 1.7.1, we conclude that dim𝐻2(𝑋,𝑍) = dim𝐻2(𝑋0, 𝑍0) = 𝑘. Now, consider the exact
homology sequence of the pair (𝑋,𝑍),

𝐻3(𝑋,𝑍)⊃ 𝐻2(𝑍)⊃ 𝐻2(𝑋)⊃ 𝐻2(𝑋,𝑍)⊃ 𝐻1(𝑍)
α
⊃ 𝐻1(𝑋). (4.1.9)

Since, 𝐻3(𝑋, 𝑌 ) ≍= 0 and 𝐻2(𝑍) ≍= 0, this implies

dim𝐻2(𝑋) ⊘ dim𝐻2(𝑋,𝑍) = 𝑘 + 1. (4.1.10)

Consider the Mayer-Vietoris exact homology sequence,

0⊃ 𝐻3(S
2 × S1)⊃ 𝐻2(𝑋 ∩ 𝑌 )⊃ 𝐻2(𝑋)⊕𝐻2(𝑌 )

β
⊃ 𝐻2(S

2 × S1). (4.1.11)

Since, 𝑋 ∩𝑌 is composed of 𝑒+ closed orientable surfaces, hence 𝐻2(𝑋 ∩𝑌 ) ≍= 𝐹 e++1
2 . In addition,

we know that 𝐻3(S
2 × S1) ≍= 𝐻2(S

2 × S1) ≍= 𝐹2. Furthermore, there exists a non-separable regular
level set contained in 𝑌 . By Lemma 2.1.1, it implies that Ñ is surjective. Therefore,

dim𝐻2(𝑋) = 𝑒+.

By inequality (4.1.3), one has
𝑒+ ⊘ 𝑘 + 1.
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Also, if 𝑎 = dim ImÐ, from the exact sequence (4.1.2), one has

𝑘 = 𝑒+ ⊗ 1 +
∑︁

𝑔⊗

i + 𝑔 ⊗ 𝑎.

Hence,
𝑘 + 1⊗𝐺⊗ ⊘ 𝑒+. (4.1.12)

Moreover, 𝑈 satisfies the Poincaré equality,

𝑒+ +𝐺⊗ = 𝑒⊗ +𝐺+.

By inequality (4.1.12), one has
𝑘 + 1⊗𝐺+ ⊘ 𝑒⊗.

Now for the last inequality, we need to consider the reverse flow which switches the roles of 𝑒+ and
𝑒⊗ and transform 𝐴 to 𝐴t so that 𝑘 remains unchanged.

Theorem 4.1.1. Let 𝐿 be an abstract Lyapunov graph. 𝐿 is associated with a Smale flow ãt on
S2×S1 such that there exists a non-separable regular level set if and only if the following conditions
hold:

1. The underlying graph 𝐿 is an oriented graph and Ñ(𝐿) = 1 with exactly one edge attached
to each sink or source vertex. Moreover, the sink (source) vertex are each labelled with an
index 0 (index 3) singularity or an attracting (repelling) periodic orbit.

2. If a vertex is labelled with a singularity of index 2 (index 1), then 1 ⊘ 𝑒+ ⊘ 2 and 𝑒⊗ = 1
(1 ⊘ 𝑒⊗ ⊘ 2 and 𝑒+ = 1).

3. If a vertex 𝑣 is labelled with a suspension of a subshift of finite type and 𝐴m×m is the
non-negative integer matrix that is associated to this subshift, then

𝑒⊗, 𝑒 + > 0,
𝑘 + 1⊗𝐺⊗ ⊘ 𝑒+ ⊘ 𝑘 + 1, with 𝐺⊗ =

√︁e⊗

i=1 𝑔
⊗
i and

𝑘 + 1⊗𝐺+ ⊘ 𝑒⊗ ⊘ 𝑘 + 1, with 𝐺+ =
√︁e+

i=1 𝑔
+
i ,

where 𝑘 = dim ker ((𝐼 ⊗𝐵) : 𝐹m
2 ⊃ 𝐹m

2 ), 𝐹2 = Z/2, 𝑏ij = 𝑎ij mod 2 and 𝑔+
i (𝑔⊗

j ) are the
weights on the incoming (outgoing) edges of the vertex 𝑣.

4. All vertices must satisfy the Poincaré-Hopf condition, i.e., for a vertex labelled with a singu-
larity of index 𝑟, the condition is

(⊗1)r = 𝑒+ ⊗ 𝑒⊗ ⊗
√︁
𝑔+

j +
√︁
𝑔⊗

i

and for a vertex labelled with a suspension of a subshift of finite type or a periodic orbit,
the condition is

0 = 𝑒+ ⊗ 𝑒⊗ ⊗
√︁
𝑔+

j +
√︁
𝑔⊗

i
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Proof. Necessity. By Proposition 4.2.2 one has that Ñ(𝐿) ⊘ 1. On the other hand, since 𝐿 has
a non-separable regular level set, then the cycle rank of 𝐿 verifies Ñ(𝐿) ⊙ 1. Therefore, Ñ(𝐿) =
1. Items (1) and (2) follow from Proposition 1.6.1 and item (3) follows from Proposition 4.1.1.
Sufficiency. Let 𝐿 be a Lyapunov graph that satisfies conditions (1), (2) and (3) of this theorem.
Suppose 𝑎 is an edge in the cycle of 𝐿 with weight 𝑔 and consider the graphs 𝐿1 and 𝐿2 each with
a dangling edge. Now cut 𝐿 along 𝑎 and glue the graphs 𝐿1 and 𝐿2 by the dangling edges, as
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Figure 4.3: The graphs 𝐿1 and 𝐿2 have dangling edge.

shown in Figure 4.3. Then a new Lyapunov graph 𝐿′ is obtained such that, 𝐿′ is a tree and each
vertex satisfies the conditions in Theorem 1.7.2. Therefore, there exists a Smale flow åt on 𝑆3

with Lyapunov graph 𝐿′ and such that 𝐿1 and 𝐿2 are associated to two handlebodies 𝐻g
1 and 𝐻g

2 ,
whose boundaries are unlinked in S3, as shown in Figure 4.4. Now we cut the two neighborhoods
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g
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H
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(Hg
1 )

c

H
g
2

Figure 4.4: 𝐿′ corresponds with a Smale flow on S3

.

𝑁(𝐻g
1 ) and 𝑁(𝐻g

2 ) of 𝐻g
1 and 𝐻g

2 respectively. Then gluing 𝑆3⊗ (𝑁(𝐻g
1 ) ⊔𝑁(𝐻g

2 )) along 𝜕𝑁(𝐻g
1 )

and 𝜕𝑁(𝐻g
2 ) suitably, we obtain a Smale flow 𝜙t on S2 × S1 with Lyapunov graph 𝐿.

27



4.2 Lyapunov graph without cycles

We continue to use the notation established in the beginning of this section. Let 𝑈 be the
closure of the component of 𝑋0 ⊗ 𝑍0 which contains Λ. Then 𝑈 is a neighborhood of Λ whose
boundary consists of closed and orientable surfaces. Also, the flow is transverse to the boundary
of 𝑈 . The flow enters on 𝑒+ of these surfaces and exits on the remaining 𝑒⊗ surfaces. Let 𝑍 be the
union of the components of S2 × S1 ⊗ (𝜕𝑈 ∩ 𝑍0) which do not contain Λ. Now define 𝑋 = 𝑍 ∪ 𝑈
and 𝑌 = S2 × S1 ⊗𝑋.

Lemma 4.2.1. Let 𝑋0, 𝑍0, 𝑋 and 𝑍 be defined as above, then

𝐻2(𝑋0, 𝑍0) ≍= 𝐻2(𝑋,𝑍).

Proof. By excising 𝑈 = 𝑋 ∩𝑋c
0, where 𝑋c

0 is the complement of 𝑋0, we have that

𝐻2(𝑋,𝑍) ≍= 𝐻2(𝑋 ⊗ 𝑈,𝑍 ⊗ 𝑈) ≍= 𝐻2(𝑋0, 𝑍 ⊗ 𝑈).

Since, 𝑌0 is a strong deformation retract of 𝑌 ⊗ 𝑈 this implies that

𝐻2(𝑋, 𝑌 ) ≍= 𝐻2(𝑋0, 𝑌0).

First of all, suppose that some component of 𝜕𝑈⊗ is a Þ1-non-trivial regular level set. Fur-
thermore, we can suppose that 𝜕𝑍1 is also Þ1-non-trivial regular level set. By Lemma 2.2.4 and
Corollary 3.1.2, one has that each component of 𝑍 and each component of 𝑌 are manifolds of
handlebody type. As shown in Figure 4.5.

v (A) c

c− ǫ

c + ǫ
U

Z1 Z2 Ze−

g−1 g−2 g−e−

Z

X

Y

Figure 4.5: 𝜕𝑍1 is Þ1-non-trivial
.
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Proposition 4.2.1. Suppose ãt is a Smale flow on S2 × S1, with Lyapunov graph 𝐿, such that 𝐿
is a tree. Furthermore, suppose there exists a Þ1-non-trivial regular level set. Let 𝑣 be a vertex
of 𝐿 labelled with a suspension of a subshift of finite type and 𝐴n×n is the non-negative integer
matrix representing this subshift. Let 𝑘 = dim ker 𝐼 ⊗ 𝐴 : 𝐹 n

2 ⊃ 𝐹 n
2 where 𝐹2 = Z2 and 𝐼 ⊗ 𝐴 is

the mod 2 reduction of 𝐼 ⊗ 𝐴. Then, if 𝑒+ and 𝑒⊗ are respectively the indegree and outdegree of
𝑣, one has:

𝑒+, 𝑒⊗ > 0,
𝑒+ ⊘ 𝑘 + 1,
𝑒⊗ ⊘ 𝑘 + 1,

𝑘 + 1⊗𝐺⊗ ⊘ 𝑒+, with 𝐺⊗ =
√︁e⊗

i=1 𝑔
⊗
i and

𝑘 + 1⊗𝐺+ ⊘ 𝑒⊗, with 𝐺+ =
√︁e+

j=1 𝑔
+
j ,

where 𝑔+
i ’s (𝑔⊗

j )’s are the weights on the incoming (outgoing) edges of the vertex 𝑣.

Proof. Suppose Λ is the basic set of ãt corresponding to 𝑣. By Lemma 4.2.1 and Theorem 1.7.1,
we conclude that dim𝐻2(𝑋,𝑍) = dim𝐻2(𝑋0, 𝑍0) = 𝑘. We consider the exact homology sequence
of the pair (𝑋,𝑍),

𝐻3(𝑋,𝑍)⊃ 𝐻2(𝑍)⊃ 𝐻2(𝑋)⊃ 𝐻2(𝑋,𝑍)⊃ 𝐻1(𝑍)
α
⊃ 𝐻1(𝑋). (4.2.1)

Since, 𝐻3(𝑋, 𝑌 ) ≍= 0 and 𝐻2(𝑍) ≍= 0, this implies that

dim𝐻2(𝑋) ⊘ dim𝐻2(𝑋,𝑍) = 𝑘. (4.2.2)

Now consider the exact homology reduced sequence of the pair (𝑀,𝑌 ),

̃︁𝐻1(𝑌 )⊃ ̃︁𝐻1(S
2 × S1)⊃ ̃︁𝐻1(S

2 × S1, 𝑌 )⊃ ̃︁𝐻0(𝑌 )⊃ ̃︁𝐻0(S
2 × S1). (4.2.3)

Since, ̃︁𝐻0(S
2 × S1) ≍= 0 and dim(̃︁𝐻0(𝑌 )) = 𝑒+ ⊗ 1, we conclude that

dim ̃︁𝐻1(S
2 × S1, 𝑌 ) ⊙ 𝑒+ ⊗ 1.

Moreover, by Lefschetz duality 𝐻1(S
2 × S1, 𝑌 ) ≍= 𝐻2(S

2 × S1 ⊗ 𝑌, S2 × S1 ⊗ S2 × S1) ≍= 𝐻2(𝑋).
Therefore, dim𝐻2(𝑋) ⊙ 𝑒+ ⊗ 1 and from inequality (4.2.2), one has

𝑒+ ⊘ 𝑘 + 1

Also, from sequence (4.2.3), we have that

dim𝐻2(𝑋) ⊘ 𝑒+ ⊗ 1 + dim𝐻1(S
2 × S1) = 𝑒+. (4.2.4)

If 𝑎 = dim ImÐ, from the exact sequence (4.2.1), one has

𝑘 = dim𝐻2(𝑋) +𝐺⊗ ⊗ 𝑎. (4.2.5)

The hypothesis that there exits a Þ1-non-trivial regular level set in 𝑍, implies that ImÐ ̸= 0.
Therefore, from inequality (4.2.5) we can conclude that

dim𝐻2(𝑋,𝑍) < dim𝐻2(𝑋) +𝐺⊗. (4.2.6)
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Now by inequality (4.2.4), one has that

𝑘 + 1⊗𝐺⊗ ⊘ 𝑒+.

On the other hand, 𝑈 satisfies the Poincaré equality,

𝑒+ +𝐺⊗ = 𝑒⊗ +𝐺+.

Hence, one has
𝑘 + 1⊗𝐺+ ⊘ 𝑒⊗.

Now for the last inequality, we need to consider the reverse flow which switches the roles of 𝑒+ and
𝑒⊗ and transform 𝐴 to 𝐴t so that 𝑘 is unchanged.

For the general case, we can suppose that a Þ1-non-trivial regular level set is contained in some
component of 𝑍. Then it suffices to repeat the arguments in the above proof.

Remark 4.2.1. By Proposition 2.1.1 any sphere in S2 × S1, separable or non-separable, is Þ1-
trivial. For this reason, if there exists a Þ1-non-trivial surface in S2 × S1, then its genus must be
greater than zero.

Theorem 4.2.1. Let 𝐿 be an abstract Lyapunov graph, with Ñ(𝐿) = 0. 𝐿 is associated with a
Smale flow ãt on S2 × S1 such that there exists a Þ1-non-trivial separable regular level set if and
only if the following conditions hold:

1. The underlying graph 𝐿 is an oriented graph and Ñ(𝐿) = 0 with exactly one edge attached
to each vertex labelled with a sink or a source. Moreover, the sink (source) vertex are each
labelled with an index 0 (index 3) singularity or an attracting (repelling) periodic orbit.

2. If a vertex is labelled with a singularity of index 2 (index 1), then 1 ⊘ 𝑒+ ⊘ 2 and 𝑒⊗ = 1
(1 ⊘ 𝑒⊗ ⊘ 2 and 𝑒+ = 1).

3. If a vertex 𝑣 is labelled with a suspension of a subshift of finite type and 𝐴m×m is the
non-negative integer matrix that is associated to this subshift, then

𝑒⊗, 𝑒 + > 0,
𝑘 + 1⊗𝐺⊗ ⊘ 𝑒+ ⊘ 𝑘 + 1, with 𝐺⊗ =

√︁e⊗

i=1 𝑔
⊗
i and

𝑘 + 1⊗𝐺+ ⊘ 𝑒⊗ ⊘ 𝑘 + 1, with 𝐺+ =
√︁e+

i=1 𝑔
+
i ,

where 𝑘 = dim ker ((𝐼 ⊗𝐵) : 𝐹m
2 ⊃ 𝐹m

2 ), 𝐹2 = Z/2, 𝑏ij = 𝑎ij mod 2 and 𝑔+
i (𝑔⊗

j ) are the
weights on the incoming (outgoing) edges of the vertex 𝑣.

4. All vertices must satisfy the Poincaré-Hopf condition, i.e., for a vertex labelled with a singu-
larity of index 𝑟, the condition is

(⊗1)r = 𝑒+ ⊗ 𝑒⊗ ⊗
√︁
𝑔+

j +
√︁
𝑔⊗

i

and for a vertex labelled with a suspension of a subshift of finite type or a periodic orbit,
the condition is
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0 = 𝑒+ ⊗ 𝑒⊗ ⊗
√︁
𝑔+

j +
√︁
𝑔⊗

i

Proof. Necessity. It follows by Proposition 1.6.1 and Proposition 4.2.1.
Sufficiency. Let 𝐿 be a Lyapunov graph that satisfies conditions (1), (2) and (3) of this theorem.
By Remark 4.2.1, there exists an edge 𝑎 of 𝐿, such that the weight of 𝑎 is 𝑔 > 0. Now we cut
𝐿 along 𝑎 and glue the graphs 𝐿1 and 𝐿2 by dangling edges, as shown Figure 4.6. Then new
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Figure 4.6: The graphs 𝐿1 and 𝐿2 have dangling edge.

Lyapunov graphs 𝐿′
1 and 𝐿′

2 is obtained. Since, 𝐿′
1 and 𝐿′

2 satisfy the conditions of Theorem 1.7.2,
there exist Smale flows åt and 𝜙t on S3, such that the graph 𝐿1 corresponds to a handlebody
manifold 𝐻g

1 and the graph 𝐿2 corresponds to a handlebody manifold 𝐻g
2 , as shown in Figure 4.7.
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Figure 4.7: The graphs 𝐿′
1 and 𝐿′

2 correspond with Smale flows on S3.

Then we glue ((𝐻g
1 )c, åt♣(Hg

1 )c) and ((𝐻g
2 )c, åt♣(Hg

2 )c) suitably along their boundaries. We obtain

a Smale flow ãt on S2 × S1 with Lyapunov graph 𝐿.
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Now we suppose that each connected component of a regular level set 𝒯g be Þ1-trivial in S2×S1.

Proposition 4.2.2. Suppose ãt is a Smale flow on S2 × S1, with Lyapunov graph 𝐿. Let 𝑣 be
a vertex of 𝐿 labelled with a suspension of a subshift of finite type and 𝐴n×n is the non-negative
integer matrix representing this subshift and 𝑘 = dim ker 𝐼 ⊗ 𝐴 : 𝐹 n

2 ⊃ 𝐹 n
2 where 𝐹2 = Z2 and

𝐼 ⊗ 𝐴 is the mod 2 reduction of 𝐼 ⊗𝐴. Let 𝑒+ and 𝑒⊗ be respectively the indegree and outdegree
of 𝑣. If 𝑣 represents a basic set, which is contained in some manifold of handlebody type 𝑀 in
S2 × S1, one has:

𝑒+, 𝑒⊗ > 0,
𝑒+ ⊘ 𝑘 + 1,
𝑒⊗ ⊘ 𝑘 + 1,

𝑘 + 1⊗𝐺⊗ ⊘ 𝑒+, with 𝐺⊗ =
√︁e⊗

i=1 𝑔
⊗
i and

𝑘 + 1⊗𝐺+ ⊘ 𝑒⊗, with 𝐺+ =
√︁e+

j=1 𝑔
+
j ,

where 𝑔+
i ’s (𝑔⊗

j )’s are the weights on the incoming (outgoing) edges of the vertex 𝑣.

Proof. By Remark 2.2.1, we can suppose that the component 𝑌1 is not a manifold of handlebody
type. Then by Corollary 3.1.2 the other components of 𝑌 and all components of 𝑍 are manifolds
of handlebody type. In other words 𝐻2(𝑌 ) ≍= 𝐹2, 𝐻2(𝑍) ≍= 0 and dim𝐻1(𝑍) = 𝐺⊗.

Consider the exact homology sequence of the pair (𝑋,𝑍),

𝐻3(𝑋,𝑍)⊃ 𝐻2(𝑍)⊃ 𝐻2(𝑋)⊃ 𝐻2(𝑋,𝑍)⊃ 𝐻1(𝑍)
α
⊃ 𝐻1(𝑋). (4.2.7)

Now we can use similar arguments as in the proof of Proposition 4.2.1 to prove:

𝑒+ ⊘ 𝑘 + 1 and dim𝐻2(𝑋) ⊙ 𝑒+ ⊗ 1. (4.2.8)

Now we consider the Mayer-Vietoris exact homology sequence,

0⊃ 𝐻3(S
2 × S1)⊃ 𝐻2(𝑋 ∩ 𝑌 )⊃ 𝐻2(𝑋)⊕𝐻2(𝑌 )

β
⊃ 𝐻2(S

2 × S1). (4.2.9)

Since, 𝑋∩𝑌 is composed of 𝑒+ closed orientable surfaces, one has that𝐻2(𝑋∩𝑌 ) ≍= 𝐹 e+

2 . Moreover,
we know that 𝐻3(S

2 × S1) ≍= 𝐻2(S
2 × S1) ≍= 𝐹2. Therefore,

dim𝐻2(𝑋) ⊘ 𝑒+ ⊗ 1. (4.2.10)

By inequalities (4.2.8) and (4.2.10), one concludes that

dim𝐻2(𝑋) = 𝑒+ ⊗ 1.

If 𝑎 = dim ImÐ, from exact sequence (4.2.7), one has that

𝑘 = dim𝐻2(𝑋) +𝐺⊗ ⊗ 𝑎.

Hence,
𝑘 + 1⊗𝐺⊗ ⊘ 𝑒+. (4.2.11)
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On the other hand, 𝑈 satisfies the Poincaré equality,

𝑒+ +𝐺⊗ = 𝑒⊗ +𝐺+.

Thus,
𝑘 + 1⊗𝐺+ ⊘ 𝑒⊗.

Now for the last inequality, we need to consider the reverse flow which switches the roles of 𝑒+ and
𝑒⊗ and transform 𝐴 to 𝐴t so that 𝑘 is unchanged. In this case, the flow enters 𝑈 through 𝑍 and
exits through 𝑌 . We call 𝑊 = 𝑌 ∪ 𝑈 and we consider the exact homology sequence of the pair
(𝑊,𝑌 ),

⊃ 𝐻3(𝑊,𝑌 )⊃ 𝐻2(𝑌 )⊃ 𝐻2(𝑊 )⊃ 𝐻2(𝑊,𝑌 ). (4.2.12)

By Theorem 1.7.1, one has 𝐻3(𝑊,𝑌 ) ≍= 0 and 𝐻2(𝑌 ) ≍= 𝐹2. Therefore, by sequence (4.2.12)

dim𝐻2(𝑊 ) ⊘ 𝑘 + 1 and dim𝐻2(𝑊 ) ⊙ 1. (4.2.13)

Now consider the Mayer-Vietoris exact homology sequence,

0⊃ 𝐻3(S
2 × S1)⊃ 𝐻2(𝑊 ∩ 𝑍)⊃ 𝐻2(𝑊 )⊕𝐻2(𝑍)

γ
⊃ 𝐻2(S

2 × S1). (4.2.14)

As long as, 𝑊 ∩ 𝑍 is composed of 𝑒⊗ closed orientable surfaces, one has that 𝐻2(𝑋 ∩ 𝑌 ) ≍= 𝐹 e⊗

2 .
Since, 𝐻2(𝑊 ) ≍= 𝐹2, this submanifold contains a non-separable surface, then by Lemma 2.1.1, this
implies that Ò is surjective. Therefore, dim𝐻2(𝑊 ) = 𝑒⊗ and by inequality (4.2.13) one has,

𝑒⊗ ⊘ 𝑘 + 1.

Let 𝑘 = dim ker 𝐼 ⊗ 𝐴 : 𝐹m
2 ⊃ 𝐹m

2 where 𝐹2 = Z2 and 𝐼 ⊗ 𝐴 is the mod 2 reduction of 𝐼 ⊗𝐴.
If 𝑒+ and 𝑒⊗ are respectively the indegree and outdegree of 𝑣. With the definition of 𝑋, 𝑌 and 𝑍
in Proposition 4.2.2 one has the following lemma.

Lemma 4.2.2. Let 𝑣 be a vertex of 𝐿 labelled with a suspension of a subshift of finite type and
𝐴n×n is the non-negative integer matrix representing this subshift. Suppose each component of 𝑌
and 𝑍 are manifolds of handlebody type, one has:

𝑒+, 𝑒⊗ > 0,
𝑒+ ⊘ 𝑘 + 1,
𝑒⊗ ⊘ 𝑘 + 1,

𝑘 ⊗𝐺⊗ = 𝑒+, with 𝐺⊗ =
√︁e⊗

i=1 𝑔
⊗
i and

𝑘 ⊗𝐺+ = 𝑒⊗, with 𝐺+ =
√︁e+

j=1 𝑔
+
, .

where 𝑔+
i ’s (𝑔⊗

j )’s are the weights on the incoming (outgoing) edges at 𝑣.
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Proof. Since, 𝑍 and 𝑌 are composed by manifolds of handlebody type, one has that 𝐻2(𝑍) ≍=
𝐻2(𝑌 ) ≍= 0, dim𝐻1(𝑍) = 𝐺⊗ and dim𝐻2(𝑌 ) = 𝐺+. Now consider the exact homology sequence
of the pair (𝑋,𝑍),

𝐻3(𝑋,𝑍)⊃ 𝐻2(𝑍)⊃ 𝐻2(𝑋)⊃ 𝐻2(𝑋,𝑍)⊃ 𝐻1(𝑍)
α
⊃ 𝐻1(𝑋). (4.2.15)

Now by a similar argument as in the proof of Proposition 4.2.1 to prove,

𝑒+ ⊘ 𝑘 + 1 and 𝑒⊗ ⊘ 𝑘 + 1. (4.2.16)

By hypothesis, each component of 𝜕𝑍 is Þ1-trivial in S2 × S1 and 𝑍 ∩ 𝑌 = ∅ by Lemma 2.2.3,
which implies that Ð = 0. Now from the exact sequence (4.2.15), one has that

𝑘 = dim𝐻2(𝑋) +𝐺⊗. (4.2.17)

Consider the reduced exact homology sequence for the pair (𝑀,𝑌 ),

̃︁𝐻1(𝑌 )
β
⊃ ̃︁𝐻1(S

2 × S1)⊃ ̃︁𝐻1(S
2 × S1, 𝑌 )⊃ ̃︁𝐻0(𝑌 )⊃ 0. (4.2.18)

Since, each component of 𝜕𝑌 is Þ1-trivial in S2 × S1, by Lemma 2.2.2, one concludes that Ñ = 0.
Now by sequence (4.2.18), one has

dim ̃︁𝐻1(S
2 × S1, 𝑌 ) = 𝑒+.

On the other hand, by the Lefschetz duality 𝐻1(S
2×S1, 𝑌 ) ≍= 𝐻2(S

2×S1⊗𝑌, S2×S1⊗S2×S1) ≍=
𝐻2(𝑋). Therefore, dim𝐻1(𝑋) = 𝑒+ and from equality (4.2.17), one has

𝑘 ⊗𝐺⊗ = 𝑒+.

Furthermore, 𝑈 satisfies Poincare’s equality,

𝑒+ +𝐺⊗ = 𝑒⊗ +𝐺+.

Hence, one has
𝑘 ⊗𝐺+ = 𝑒⊗.

4.2.1 Construction of the basic blocks

In this section the construction of basic block for singularities, periodic orbits and subshifts of
finite type that verify the conditions in Theorem 1.7.2 are presented. In what follows we present
a construction of a basic block for some vertex 𝑣 that satisfies the condition of Lemma 4.2.2. For
that, we need some definitions.

Definition 4.2.1. Let 𝐶1 and 𝐶2 be solid concentric cylinders with 𝐶2 ⊆ 𝐶1. A round handle

𝑅 is a 3⊗manifold homeomorphic to 𝐶1 ⊗ 𝐶2 containing a saddle type periodic orbit of period
equal to one and with a flow defined on 𝑅 as follows: the flow enters on two disjoint boundary
components of 𝑅 homeomorphic to annuli and exits on two other disjoint boundary components
also homeomorphic to annuli. See Figure 4.8
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Figure 4.8: Round handle.

Definition 4.2.2. A one-handle 𝐻i is a strip 𝐷1×𝐷1. A one-handle 𝐻s in a round handle 𝑅s will
be chosen so that 𝐻s × S1 = 𝑅s and 𝐻s is transversal to the flow. A one-handle 𝐻t in a nilpotent
handle 𝑁t will be chosen so that 𝐻t ×𝐷

1 = 𝑁t.

Definition 4.2.3. A basic block for a one-dimensional set Λ of a Smale flow ãt on S2 × S1 and
Lyapunov function 𝑓 : S2×S1 ⊃ R with 𝑓(Λ) = 𝑐 is the component of 𝑓⊗1([𝑐⊗ 𝜖, 𝑐⊗ 𝜖]), 𝑋, which
contain Λ, where 𝜖 > 0 is chosen so that 𝑋 contains no other basic set and

1. there exist ( not necessarily connected ) codimension one submanifolds with boundary 𝑈 and
𝑉 in 𝑋 with 𝑈 ⊆ 𝑉 is everywhere transversal to the flow.

2. The first return map Û : 𝑈 ⊃ int𝑉 is a well defined smooth map and there is a hyperbolic
handle set 𝐻 ⊆ 𝑈 with every orbit of Λ intersecting 𝐻 and every ℎi ⊆ 𝐻 intersecting Λ.

3. if 𝑥 ∈ 𝐻 but Û(𝑥) /∈ 𝐻 then ãt(𝑥) ∩ 𝐻 = ∅ ∀𝑡 > 0 and 𝑓(ãt0(𝑥)) = 𝑐 ⊗ 𝜖 for some 𝑡0 > 0.
Likewise, if 𝑥 ∈ 𝐻 but Û⊗1(𝑥) /∈ 𝐻 then ãt(𝑥)∩𝐻 = ∅ ∀𝑡 < 0 and 𝑓(ãt0(𝑥)) = 𝑐+ 𝜖 for some
𝑡0 < 0.

4.2.2 A special Smale flow on handlebodies

In this subsection, we build specific Smale flows on handlebodies which are transverse to its
boundary. This construction will be very important for this subsection. There exists a Smale flow
on a handlebody 𝐻g of genus 𝑔, with 𝑔 attracting periodic orbits Úai

, 𝑔 ⊗ 1 saddle periodic orbits
Úsi

and 𝑔⊗ 1 repelling singularities 𝑝i. 𝐻g is obtained by gluing 𝑔⊗ 1 round handles to 𝑔 solid tori
as shown in Figure 4.9. The flow on 𝐻g is induced by the periodic orbits and singularities and will
be denoted by 𝜌t. Since the flow is transversal and points inward on 𝜕𝐻g, one has

𝜖 = 𝑑(𝜕𝐻g, 𝜌1(𝜕𝐻g)) > 0.

Proposition 4.2.3. Let 𝑆 be a surface homeomorphic to 𝐷1 × 𝐷1 embedded in a tubular 𝜖/2-
neighborhood of the boundary of handlebody, such that the flow described above is transversal to
𝑆. Then there exists a neighborhood 𝑉 of 𝑆 such that the first return map, Û : 𝑆 ⊃ 𝑉 , is smooth.
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Figure 4.9: 𝐻3 is a handlebody of genus 3.

Proof. Suppose that 𝑆 is embedded in some round handle 𝑅j with periodic orbit Úsj
. Hence, one

can extend 𝑆 to a surface 𝑉S, which is homeomorphic to 𝐷1×𝐷1 and has transversal intersection
with Úsj

, as shown in Figure 4.10.

ǫ
S

µS(S)

VS
V

∂Hg

∂ρ1(Hg)

λsj

Figure 4.10: It is the interior of 𝐻j.

Therefore, 𝑉S is a cross section of Úsj
, so the first return map ÛS is defined for 𝑉S and is smooth.

Now if it is necessary one can extend 𝑉S, such that 𝑉S contains ÛS(𝑆). On the other hand, since
Úsj

has an index 1 periodic orbit, one has that ÛS(𝑆) does not intersect Úsj
. Hence, one can

find a surface 𝑉 ⊆ 𝑉S such that 𝑉 contains 𝑆 and ÛS(𝑆) and does not intersect with Úsj
. See

Figure 4.10. Now, suppose that 𝑆 is contained in some neighborhood of a attracting periodic orbit
Úai

, one proceeds in a similar way. For the general case, one can choose a smaller neighborhood
contained in 𝑆 and argue as above.

Given a handlebody 𝑀 , we consider a flow on 𝑀 as described above, and the restriction of
this flow to the tubular neighborhood of 𝜕𝑀 . Note that, the tubular neighborhood of 𝜕𝑀 is
homeomorphic to 𝜕𝑀 × 𝐼, the collaring of the boundary. For this reason we refer to the tubular
neighborhood of 𝜕𝑀 as the collaring of 𝜕𝑀 .
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In [13] three types of gluing of round handles, to a collaring of 𝜕𝑀 are presented. See Fig-
ure 4.11.

M1 −M1
M2 −M2M1 −M1
M2 −M2

R

M1 −M1M1 −M1 M2 −M2
M−M

R

(a) Connecting decreasing handle (b) Invanriant handle

(c) Connecting invanriant handle

Figure 4.11: Distinct gluings of round handles.

Due to the topology of S2 × S1 there is another case to consider. In order to describe it, we
build a round handle 𝑅1 in S2× S1. Start with a non-separable sphere S2 and remove two disjoint
disk 𝐷1 and 𝐷2. Now consider a product of S2 ⊗ (𝐷1 ⊔𝐷2) with an interval 𝐼. This manifold is
a 3-manifold, 𝑅1, such that the boundary 𝜕𝑅1 is composed by four annuli. One can put a saddle
periodic orbit inside of 𝑅1, as shown in Figure 4.12.

A

R1

B

Figure 4.12: Special type of round handle in S2 × S1.
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Let 𝑁 be a compact, connected 3-manifold with nonempty and connected boundary which is
inside a 3-ball in S2×S1. In the boundary of𝑁 , 𝜕𝑁 consider two disjoint disks𝐷1 and𝐷2 and inside

each one of them other smaller disks 𝐷1 ⊆ 𝐷1 and 𝐷2 ⊆ 𝐷2 such that the annuli 𝐴1 = 𝐷1 ⊗𝐷1

and 𝐵1 = 𝐷2 ⊗𝐷2 have boundaries Ð′
1 = 𝜕𝐷1, Ð

′
2 = 𝜕𝐷1, Ñ

′
1 = 𝐷2 and Ñ′

2 = 𝜕𝐷2. A round
handle 𝑅 is homeomorphic to S1× [𝑎, 𝑏]× [𝑐, 𝑑]. Consider the following circles Ñ1 = S1×¶𝑎♢×¶𝑐♢,
Ñ2 = S1 × ¶𝑏♢ × ¶𝑐♢, Ð1 = S1 × ¶𝑎♢ × ¶𝑑♢ and Ð2 = S1 × ¶𝑏♢ × ¶𝑑♢. Also consider the annuli
𝐴 = S1 × [𝑎, 𝑏]× ¶𝑑♢, 𝐵 = S1 × [𝑎, 𝑏]× ¶𝑐♢, 𝐸 = S1 × ¶𝑎♢ × [𝑐, 𝑑] and 𝐹 = S1 × ¶𝑏♢ × [𝑐, 𝑑]. With
this decomposition we now describe the special gluing of 𝑅1 to the 3-manifold 𝑁 . The annulus 𝐴
will be glued to 𝐴1 and 𝐵 to 𝐵1 in such a way that Ð1 is identified to Ð′

2 and Ð2 is identified to
Ð′

1. Also, Ñ1 is identified to Ñ′
1 and Ñ2 is identified to Ñ′

2. See Figure 4.13.

β1β2
β′
1

β′
2

α1
α2

α′
1

α′
2

B

B′

A
A′

∂N

R1

Figure 4.13: Special gluing of a round handle in S2 × S1.

Lemma 4.2.3. With the notation above, 𝜕(𝑁 ∪𝑅1) is homeomorphic to 𝜕𝑁 .

Proof. We have that
𝜕𝑁 = 𝐷2 ∪β′

2
𝐵1 ∪β′

1
𝐶 ∪α′

1
𝐴1 ∪α′

2
𝐷1

where 𝐶 = 𝜕𝑁 ⊗ (𝐷1 ∪𝐷2). On the other hand, one has

𝜕(𝑁 ∪𝑅1) = 𝐷1 ∪α1=α′

1
𝐸 ∪β1=β′

1
𝐶 ∪α2=α′

2
𝐹 ∪β2=β′

2
𝐷2

Note that both 𝐷1 ∪ 𝐸 and 𝐹 ∪𝐷2 are disks. Hence, 𝜕𝑁 is homeomorphic to 𝜕(𝑁 ∪𝑅1).

Corollary 4.2.1. Let 𝑁 be a handlebody of genus 𝑔 embedded in a 3-ball in S2 × S1. Let

𝑋 = 𝑁 ∪𝑅1
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as described above, then S2 × S1 ⊗𝑋 is homeomorphic to a handlebody of genus 𝑔.

Proof. Recalling the construction of 𝑅1, we have that

𝑅1 = S2 ⊗ (𝐷2
1 ∪𝐷

2
2)× 𝐼

where S2 is a non-separable sphere. The annuli 𝜕𝐷2
1 × 𝐼 and 𝜕𝐷2

2 × 𝐼 are the gluing regions. For
the case of a genus zero handlebody, a 3-disk should be glued to the above annuli using two 2-disks
on the boundary of the 3-disk, as shown in the Figure 4.14. Note that the final manifold is isotopic

R1

B3

Figure 4.14: 𝑅1 is glued to 𝐵3.

to a tubular neighborhood of S2
a ∨ S1

b , where S2
a is a fiber of S2 × S1 ⊃ S1 and S1

b is a fiber of
S2 × S1 ⊃ S2. Thus, the complement in S2 × S1 is homeomorphic to 𝐵3.
In the general case of a handlebody of any genus, it is enough to observe that when we glue a
handle in 𝐵3, we increase the genus of the complement. This completes the proof.

Given 𝐴m×m, a non-negative irreducible integer matrix which is not a permutation matrix,
our aim is to construct a block for the suspension of à(𝐴) so that it verifies the conditions in
Lemma 4.2.2.

Now suppose that 𝐴m×m is a matrix with 𝑘 ones on the diagonal and all other entries equal to
zero. Then one has the following proposition.

Proposition 4.2.4. Let 𝑣 be a vertex of 𝐿 labelled with the suspension of a subshift of finite type
à(𝐴), where 𝐴m×m is a matrix with 𝑘 ones on the diagonal and other entries equal to zero. Let 𝑒+

and 𝑒⊗ be the indegree and outdegree of 𝑣 and
{︁
𝑔+

i

}︁
and

{︁
𝑔⊗

j

}︁
are the weights on the incoming

and outgoing edges of 𝑣 respectively. Suppose that

𝑘 ⊗
√︁
𝑔⊗

i = 𝑒+ and
𝑘 ⊗

√︁
𝑔+

i = 𝑒⊗
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Then, there exists a basic block 𝑋 in S2 × S1 for the suspension of à(𝐴) with 𝑒+ (𝑒⊗) entering
(exiting) boundary components each being a 2-manifold of genus 𝑔+

i (𝑔⊗
j ). Furthermore, S2×S1⊗𝑋

is homeomorphic to 𝐻
g+

1
1 ⊔ ≤ ≤ ≤ ⊔𝐻

g+

e+

e+ ⊔𝐻
g⊗

1
1 ⊔ ≤ ≤ ≤ ⊔𝐻

g⊗

e⊗

e⊗ .

Proof. The dynamics associated to the suspension of à(𝐴) is simple. It consists of a basic set with
𝑘 periodic orbits. One can rewrite the hypothesis

(𝑘 ⊗ 1) + 1⊗
√︁
𝑔⊗

i = 𝑒+,
(𝑘 ⊗ 1) + 1⊗

√︁
𝑔+

i = 𝑒⊗.

By Proposition 8.2 in there exists a way of gluing 𝑘 ⊗ 1 round handles to 𝑒⊗ collarings of
𝜕𝑀1 . . . , 𝜕𝑀e⊗ , where each handlebody 𝑀i has genus 𝑔⊗

i , such that the resulting 3⊗manifold 𝑋1

is a basic block which contains 𝑘 ⊗ 1 periodic orbits. Also, 𝜕𝑋+
1 (𝜕𝑋⊗

1 ) is composed by 𝑒+(𝑒⊗)

closed surfaces of genus 𝑔+
i (𝑔⊗

j ) respectively and the complement in 𝑆3 is homeomorphic to 𝐻
g+

1
1 ⊔

≤ ≤ ≤ ⊔ 𝐻
g+

e+

e+ ⊔ 𝐻
g⊗

1
1 ⊔ ≤ ≤ ≤ ⊔ 𝐻

g⊗

e⊗

e⊗ . Recall that, since 𝑋1 is a compact 3-manifold in S3, then one
can embed 𝑋1 in S2 × S1. For simplicity we continue to denote this embedding by 𝑋1. Now,
glue 𝑋1 to 𝑅1 in order to construct a new basic block 𝑋2 = 𝑋1 ∪ 𝑅1 with 𝑘 periodic orbits. By
Lemma 4.2.3 and Corollary 4.2.1, 𝑋2 verifies 𝜕𝑋2 ≡ 𝜕𝑋+

1 ∪𝜕𝑋
⊗
1 and S2×S1⊗𝑋2 is homeomorphic

to 𝐻
g+

1
1 ⊔≤ ≤ ≤⊔𝐻

g+

e+

e+ ⊔𝐻
g⊗

1
1 ⊔≤ ≤ ≤⊔𝐻

g⊗

e⊗

e⊗ . At this point, a basic set with 𝑘 periodic orbits corresponding
to the 𝑘 ones on the diagonal of 𝐴 has been constructed. Also, 𝑚⊗ 𝑘 nilpotent handles must be
glued to 𝑋2. Recall that these handles are homeomorphic to 𝐷1×𝐷1×𝐷1 and contain no recurrent
points. These handles will correspond to the 𝑚⊗ 𝑘 zeros on the diagonal of 𝐴. Finally, denote 𝑋
as 𝑋2 glued with 𝑚⊗𝑘 nilpotent handles. Recall that these nilpotent handles do not modify 𝜕𝑋2.

For the general case, we can construct a basic block for the suspension of à(𝑁) where 𝑁 is a
matrix that is flow equivalent to 𝐴. By definition, this implies that the suspensions of à(𝐴) and
à(𝑁) are topologically equivalent. An essential proposition at this point is due to Franks [16].

Proposition 4.2.5. If 𝐴 is a non-negative irreducible integer matrix which is not a permutation
matrix then given an integer 𝑀 > 0 there is a matrix which is flow equivalent to 𝑁 and which has
every entry greater than 𝑀 and non-diagonal entries even. The size of 𝑁 depends only on 𝐴 and
not on 𝑀 .

By Proposition 4.2.5, the matrix 𝐴m×m is flow equivalent to some matrix 𝑁n×n which has all
non-diagonal entries even,

dim ker
(︁
(𝐼 ⊗𝑁 : 𝐹 n

2 ⊃ 𝐹 n
2 )

⎡
= dim ker

(︁
(𝐼 ⊗ 𝐴 : 𝐹 n

2 ⊃ 𝐹 n
2 )

⎡
= 𝑘,

where 𝑁 denotes the mod 2 reduction of 𝑁 . By Proposition 4.2.4 we are able to construct a basic
block 𝑋 for the suspension of à(𝑁). Our goal is to construct a basic block for the suspension of
à(𝑁). In order to achieve this, we wish to maintain the block 𝑋 while modifying the flow within
it. We will use the notion of one-handles 𝐻i within round handles 𝑅i and nilpotent handles 𝑁t.

Let 𝑥 be a point of 𝐷1× 𝑝 ⊆ 𝐻i where 𝑝 ∈ 𝐷1. The interval 𝐷1× 𝑝 will be denoted by 𝑊 u
i (𝑥).

Similarly, let 𝑥 be a point of 𝑞×𝐷1. The interval 𝑞×𝐷1 will be denoted by 𝑊 s
i (𝑥). The reason for
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introducing one-handles is that if 𝐻i intersects 𝑚 times Û(𝐻j) then the 𝑖𝑗th entry of 𝑁 increases
by 𝑚, where Û(𝑥) is the first return map for the one-handle of the round handle.

This is precisely what we want to do, namely, increase the entries of 𝑁 to obtain 𝑁 . For this
reason we will construct a connected surface 𝑈 , such that, 𝑈 contains all one handles and the flow
is transversal to 𝑈 .

For each one handle 𝐻i, we consider two disjoint subsets 𝐸i
1 and 𝐸i

2 contained in 𝐻i as shown
in Figure 4.15, homeomorphic to 𝐷1 ×𝐷1 such that

Û(𝐸i
1 ⊔ 𝐸

i
2) ∩𝐻i = ∅,

we will call 𝐸i
1 and 𝐸i

2 the set of ends of 𝐻i. See Figure 4.15.

Hi

µ(Hi)
pi

Ei
1 Ei

2

Figure 4.15: 𝑝i is the center of the one handle 𝐻i

Thus, our aim is the construction of a surface 𝑈 ⊆ 𝑋 such that 𝑈 contains all one handles 𝐻i

and all nilpotent handles 𝑁j.
On the other hand, in order to connect the one handles we consider disjoint rectangles embedded

in the union of collaring of 𝜕𝑀i for 𝑖 ∈ ¶1, . . . , 𝑒⊗♢ and consider the flow transversal to the collaring
as described in Proposition 4.2.3. We will use these rectangles to connect the ends of the one
handles associated to the collaring.

First fix a collaring of a handlebody 𝜕𝑀i × 𝐼 for 𝑖 ∈ ¶1, . . . , 𝑒⊗♢. Now consider the round
handles 𝑅j1 , . . . , 𝑅jl

, . . . , 𝑅jn(i)
which glue to 𝜕𝑀i × 𝐼. Without loss of generality, we can suppose

that 𝑅j1 , . . . , 𝑅jl
are round handles, that have only one annulus which glues to 𝜕𝑀i × 𝐼 and the

remaining ones are invariant round handles with two annuli which glue to 𝜕𝑀i × 𝐼. The special
round handle 𝑅1 shall be considered as if 𝑅1 has one annulus glued to 𝜕𝑀1×𝐼. Now, we connect the
ends of ones handles 𝐻j1 , . . . , 𝐻jl

with a rectangle embedded in the collaring of 𝜕𝑀i as described
above. Thus, we can find a connected surface 𝑈 i

1 such that, 𝑈 i
1 contains all one handles 𝐻j1 , . . . , 𝐻jl

of the round handles 𝑅j1 , . . . , 𝑅jl
glued to 𝜕𝑀i × 𝐼. For the invariant round handles, we glue a

rectangle to 𝐸
jl+1

1 and another rectangle to 𝐸
jn(i)

2 . Now, we connect 𝐻jl+1
with 𝐻jl+2

by gluing

a rectangle joining 𝐸
jl+1

2 and 𝐸
jl+2

1 . We do this successively until the last pair 𝐻jn(i)⊗1
and 𝐻jn(i)

have been joined. Thus, we can find a connected surface 𝑈 i
2, such that 𝑈 i

2 contains all one handles
𝐻jl+1

, . . . , 𝐻jn(i)
. Now we connect 𝑈 i

1 and 𝑈 i
2 with a rectangle to obtain a connected surface 𝑈 i.

Note that the flow is transversal to 𝑈 i.
In this fashion, we construct a collection of 𝒰 = ¶𝑈i ♣ 1 ⊘ 𝑖 ⊘ 𝑒⊗♢. Note that, 𝑈 i ∩ 𝑈 j is

composed by the one handles that connect the collaring of 𝜕𝑀i with the collaring of 𝜕𝑀j. Define

𝑈1 =
e⊗⋃︁

i=1

𝑈 i.
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This surface 𝑈1 contains all one handles associated to 𝑅1, . . . , 𝑅k. Extend 𝑈1 by a rectangle 𝑅̂,
which contains all nilpotent one handles. See Figure 4.16.

R̂

Nk+1
Nn

U1

Figure 4.16: 𝑅̂ contains all nilpotent one handles.

Thus, by Proposition 4.2.3 one can find a surface 𝑈 that contains 𝑈1 and 𝑅̂. Actually, one finds
a surface 𝑉 , such that 𝑈 ⊆ 𝑉 and the first return map Û : 𝑈 ⊃ 𝑉 is smooth. By construction,
one has that

𝑈 = (𝑈 ⊗ Û(𝑈)) ∪
e⊗⋃︁

i=1

Û(𝐸i
1 ⊔ 𝐸

i
2)

is connected.

Lemma 4.2.4. Let 𝑈0 be a small neighborhood of 𝑈 in 𝑉 as defined above. There exists an isotopy
Ψt : 𝑉 ⊃ 𝑉 supported on the interior of 𝑈0 such that Ψ0 is the identity. Also, Û1 = Ψ1◇Û : 𝑈 ⊃ 𝑉
satisfies that its suspension flow with induced flow 𝜙t has a chain recurrent set which is topologically
equivalent to the suspension of a subshift of finite type with matrix 𝐴n×n.

Proof. We have that 𝑈 is connected. Hence, for 𝑝 ∈ int (Û(𝑊 u
i (𝑝i) ∩ (Mi ⊗𝑀i)) and 𝑞 ∈ int𝐻j

such that 𝑊 u
j (𝑞) and Û(𝐻α) are disjoint ∀Ð ∈ ¶1, . . . , 𝑒⊗♢, there exists a curve Ò : [0, 3] ⊃ int𝑈

such that Ò(1) = 𝑝 and Ò(2) = 𝑞. Also, the intersection of Û(𝐻i) and Ò([0, 3]) is connected
and equal to Û(𝑊 s

i (Û⊗1(𝑝))) and its intersection with 𝐻j lies in 𝑊 u
j (𝑞). For the other 𝐻l’s with

𝑙 ∈ ¶1, . . . , 𝑛♢ ⊗ ¶𝑖, 𝑗♢ and Ò([0, 3]) ∩𝐻l ̸= ∅, Ò is transversal to 𝑊 u
l (𝑝l).

Hi Hj

Hl

U
γ

Mr −Mr Ms −Ms

Figure 4.17: 𝐻l is a connecting handle.

Thus, there is an isotopy supported in a tubular neighborhood of Ò([0, 1]) which pushes a small
interval of Û(𝑊 u

i (𝑝i)) along the curve Ò until it intersects 𝑊 s
j (𝑝j) in two points. It is possible

that this process causes intersection with other 𝑊 s
l (𝑝l) but always an even number of them. See

Figure 4.18.
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Hl

Hj

µ(Hl)

φ1(Hj)

Figure 4.18: Deformation of ã1(𝐻i).

Note that this isotopy preserves the hyperbolicity of the one handles with respect to the first
return map ã1. In others words, if Û(𝑊 u

i (𝑥)) ∩𝑊 u
j (𝑦) ̸= ∅ then 𝑊 u

j (𝑦) ⊆ Û(𝑊 u
i (𝑥)) and similarly

if Û(𝑊 s
i (𝑥)) ∩𝑊 s

j (𝑦) ̸= ∅ then Û(𝑊 s
i (𝑥)) ⊆ 𝑊 s

j (𝑦) ∀𝑥 ∈ 𝐻i and 𝑦 ∈ 𝐻j.
Hence, to achieve the geometric intersection matrix 𝑁 , which is flow equivalent to 𝐴, we argue
as in [16]. First one needs to find a pairwise disjoint family of embedded curves Òij : [0, 3] ⊃ 𝑈
with the properties described above for 𝑖, 𝑗 ∈ ¶1, . . . , 𝑛♢. The existence of this family ¶Òij♢ with
these properties is easy to see except for the fact that they are disjoint. Now, by using an isotopy
supported on a neighborhood of Ò11 we push off all other curves. We do this for Ò′

12 and in the
same way for all the remaining curves.
By Proposition 4.2.5 we can, if necessary, replace the matrix 𝑁 for another matrix which is flow
equivalent to it, congruent mod 2 and has every entry as large as we want. In particular larger than
the corresponding entry of 𝐴. We can suppose this has been done and for simplicity of notation
continue to call this matrix 𝑁 . Now for each Òij we can increase the intersection points of 𝑊 s

j (𝑝j)
with the image of 𝑊 u

i (𝑝i) if we push back the curve through 𝐻j again. See Figure 4.19.

Hj

ij-wiggle operation

µ(Hj)

Figure 4.19: 𝑖𝑗⊗wiggle operation.

This is referred to as the 𝑖𝑗⊗wiggle operation. If this operation is repeated 𝑟 times, 2𝑟 + 1
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intersection points are added. Do this with 𝑟 = 1
2
[(𝐴)ij ⊗ (𝑁)ij)] so that the 𝑖𝑗 entry of the matrix

𝑁 agrees with (𝑁)ij. Repeat this process in order to get to the matrix 𝑁 . Now isotope Û so that
the final map has the desired property.

Proposition 4.2.6. Let 𝐴n×n be a non-negative integer matrix with 𝑘 = dim ker : ((𝐼 ⊗ 𝐴)𝐹m
2 ⊃

𝐹m
2 , where 𝐹2 = Z2 and 𝐴 is the mod 2 reduction of 𝐴. Suppose also that 𝑒+, 𝑒⊗, 𝑔+

j , 𝑔
⊗
i ∈ N, with

𝑖 = 1, . . . , 𝑒+ and 𝑗 = 1 . . . , 𝑒⊗, are positive integers satisfying

1. 𝑒⊗ ⊗ 𝑒+ =
√︁
𝑔⊗

i ⊗
√︁
𝑔+

j ,

2. 𝑘 ⊗
√︁
𝑔⊗

i = 𝑒+ ⊘ 𝑘 + 1 and

3. 𝑘 ⊗
√︁
𝑔⊗

i = 𝑒+ ⊘ 𝑘 + 1.

Then there exists a Smale flow ãt on S2 × S1 with a basic block 𝑋 such that

1. The flow ãt restricted to the basic set Λ ⊆ 𝑋 is topologically equivalent to the suspension
of à(𝐴), and

2. 𝜕𝑋+(𝜕𝑋⊗) has 𝑒+(𝑒⊗) components composed by surfaces of genus 𝑔+
i (𝑔⊗

j ).

3. (S2 × S1)⊗𝑋 is homoemorphic to 𝐻
g+

1
1 ⊔ ≤ ≤ ≤ ⊔𝐻

g+

e+

e+ ⊔𝐻
g⊗

1
1 ⊔ ≤ ≤ ≤ ⊔𝐻

g⊗

e⊗

e⊗

Proof. By Proposition 4.2.5, one knows that 𝐴n×n is flow equivalent to 𝑁m×m. By Proposi-
tion 4.2.4, we can build a basic block 𝑋1 for 𝑁 , which satisfies assertions 2 and 3 of this proposition.
For the first assertion, by Lemma 4.2.4, one has that, for 𝑈0 chosen sufficiently small, Û : 𝑈0 ⊃ 𝑉
is smooth and á : 𝑈0 ⊃ R is the smallest 𝑡 > 0 such that ãt(𝑥) = Û(𝑥). Then the partial flow on

𝑍 = ¶ãt(𝑥)♣𝑥 ∈ 𝑈0, 0 ⊘ 𝑡 ⊘ á(𝑥)♢ .

is the suspension flow for Û. Now by the construction, the suspension flow for Û1 is the same as
for Û since Û and Û1 are isotopic. On the other hand, since the isotopy is supported on the interior
of 𝑈0, one has that Û and Û1 agree near the boundary of 𝑈0. Then near the boundary of 𝑍 the
suspension flow of Û1, 𝜙t and the suspension flow of Û, ãt agree. Now, let Öt be a flow on S2 × S1

which is generated by the vector field which is tangent to the suspension flow of Û1 on 𝑍 and
tangent to ãt elsewhere. Hence Öt is a Smale flow which satisfies this lemma.

Theorem 4.2.2. Let 𝐿 be an abstract Lyapunov graph with Ñ(𝐿) = 0. 𝐿 is associated with a
Smale flow ãt on S2 × S1 such that each separable regular level set is Þ1-trivial in S2 × S1 if and
only if the following conditions hold:

1. The underlying graph 𝐿 is an oriented graph and Ñ(𝐿) = 0 with exactly one edge attached
to each vertex labelled with a sink or a source. Moreover, the sink (source) vertex is labelled
with an index 0 (index 3) singularity or an attracting (repelling) periodic orbit.

2. If a vertex is labelled with a singularity of index 2 (index 1), then 1 ⊘ 𝑒+ ⊘ 2 and 𝑒⊗ = 1
(1 ⊘ 𝑒⊗ ⊘ 2 and 𝑒+ = 1).
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3. There exists a unique vertex 𝑣 labelled with a suspension of a subshift of finite type and
𝐴m×m is the non-negative integer matrix that is associated to this subshift, such that,

𝑒⊗, 𝑒 + > 0,
𝑘 ⊗𝐺⊗ = 𝑒+ ⊘ 𝑘 + 1, with 𝐺⊗ =

√︁e⊗

i=1 𝑔
⊗
i and

𝑘 ⊗𝐺+ = 𝑒⊗ ⊘ 𝑘 + 1, with 𝐺+ =
√︁e+

i=1 𝑔
+
i ,

where 𝑘 = dim ker ((𝐼 ⊗𝐵) : 𝐹m
2 ⊃ 𝐹m

2 ), 𝐹2 = Z/2, 𝑏ij = 𝑎ij mod 2 and 𝑔+
i ’s (𝑔⊗

j ’s) are the
weights on an incoming (outgoing) edges of 𝑣.

4. Any other vertex labelled with a suspension of a subshift of finite type, where 𝐶l×l is the
non-negative integer matrix that is associated to this subshift, must satisfy

𝑒⊗, 𝑒 + > 0,
𝑘 + 1⊗𝐺⊗ ⊘ 𝑒+ ⊘ 𝑘 + 1, with 𝐺⊗ =

√︁e⊗

i=1 𝑔
⊗
i and

𝑘 + 1⊗𝐺+ ⊘ 𝑒⊗ ⊘ 𝑘 + 1, with 𝐺+ =
√︁e+

i=1 𝑔
+
i ,

where 𝑘 = dim ker ((𝐼 ⊗ 𝐿) : 𝐹m
2 ⊃ 𝐹m

2 ), 𝐹2 = Z/2, 𝑙ij = 𝑐ij mod 2 and 𝑔+
i ’s (𝑔⊗

j ’s) are the
weights on the incoming (outgoing) edges of this vertex.

5. All vertices must satisfy the Poincaré-Hopf condition, i.e., for a vertex labelled with a singu-
larity of index 𝑟, the condition is

(⊗1)r = 𝑒+ ⊗ 𝑒⊗ ⊗
√︁
𝑔+

j +
√︁
𝑔⊗

i

and for a vertex labelled with a suspension of a subshift of finite type or a periodic orbit,
the condition is

0 = 𝑒+ ⊗ 𝑒⊗ ⊗
√︁
𝑔+

j +
√︁
𝑔⊗

i

Proof. Necessity: It follows by Proposition 1.6.1, Proposition 4.2.2 and Lemma 4.2.2.
Sufficiency. Let 𝐿 be a Lyapunov graph which satisfies (1), (2), (3) and (4). Let 𝑣 be a vertex

that verifies condition (2). By Proposition 4.2.6, there exists a Smale flow ãt in S2×S1 and a basic
block 𝑋 embedded in S2 × S1, associated to the vertex 𝑣. Also, S2 × S1 ⊗ 𝑋 is homeomorphic

to 𝐻
g+

1
1 ⊔ ≤ ≤ ≤ ⊔ 𝐻

g+

e+

e+ ⊔ 𝐻
g⊗

1
1 ⊔ ≤ ≤ ≤ ⊔ 𝐻

g⊗

e⊗

e⊗ . Now, if we cut 𝐿 along all incoming or outgoing edges
of 𝑣, we obtain 𝑒+ + 𝑒⊗ subgraphs with dangling edges which can be denoted by 𝐿+

1 , . . . , 𝐿
+
e+ and

𝐿⊗
1 . . . , 𝐿

⊗

e⊗ , as shown in Figure 4.20. We use the graphs 𝐿′
i and 𝐿′

j with dangling edges to create

the new graphs 𝐿̂1, . . . , 𝐿̂e+ and ̃︀𝐿1 . . . , ̃︀𝐿e⊗ . Then by Proposition 4.2.2, there exists Smale flows ãi
t

and 𝜙j
t for 𝐿̂i and ̃︀𝐿j such that 𝐿+

i and 𝐿⊗
j correspond to handlebodies 𝐻+

i and 𝐻⊗
j respectively, as

shown in Figure 4.21. Thus we have flows defined on (𝑋,ãt♣X), (𝐻+
i , ã

i
t♣H+

i
) and (𝐻⊗

j , 𝜙
i
t♣H⊗

j
) for

𝑖 ∈ ¶1, . . . , 𝑒+♢ and 𝑗 ∈ ¶1, . . . , 𝑒⊗♢. Finally we glue these manifolds suitably, in order to obtain a
Smale flow on S2 × S1 with Lyapunov graph 𝐿.
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Figure 4.20: The graphs 𝐿′
i and 𝐿′

j have dangling edge.
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Figure 4.21: The graphs 𝐿̂i and ̃︀𝐿j correspond with Smale flows on S3.
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Chapter 5

Morse-Novikov Flows

This chapter is in the spirit of the ideas developed in [14] which characterized Lyapunov graphs
for smooth flows on surfaces. In this sense we obtain a characterization of the Morse digraph
associated with Morse-Novikov flows that arise from Morse circular functions on orientable and
non-orientable surfaces. Also, we generalize the concept of Lyapunov function in the context of
Novikov theory in order to obtain the characterization of the Lypunov digraphs associated with
smooth flows on surfaces.

5.1 Gradient-like flows on surfaces

We focus on surfaces, both orientable and nonorientable, endowed with circular Morse functions.

5.1.1 Relations with the classical Morse setting

Before classifying the global and local combinatorics of the circular Morse digraphs, let us
discuss some operations one can perform in the circular Morse case in order to be able to refer to
the classical results.

Let 𝑁 be a fundamental cobordism, that is,

𝑁 = closure(𝑀 ⊗ 𝑓⊗1(Exp(𝑎))) = 𝑀 ∖ (𝐹⊗1(]⊗∞, 𝑎⊗ 1[) ∪ 𝐹⊗1(]𝑎,∞[)

where 𝑎 is a regular value of 𝐹 and, by definition, Exp(𝑎) is a regular value of 𝑓 .
If 𝑓 is onto, the surface 𝑁 has nonempty boundary 𝜕𝑁 = 𝜕⊗𝑁 ⊔ 𝜕+𝑁 with the same number

♣ 𝜕⊗𝑁 ♣ of entering and exiting components.
The surface 𝑁 is not necessarily connected, and we shall denote by 𝑐 the number of its connected

components. Up to reindexing, for 𝑖 from 1 to ♣ 𝜕⊗𝑁 ♣, let us denote by 𝐶+
i ⊖ 𝜕+𝑁 and 𝐶⊗

i ⊖ 𝜕⊗𝑁
the components such that 𝐸(𝐶+

i ) = 𝐸(𝐶⊗
i ). In particular, the original surface 𝑀 is obtained

from 𝑁 by identifying 𝐶+
i and 𝐶⊗

i via 𝐸.
Now, let 𝑁̂ denote the closed surface obtained from 𝑁 by gluing to 𝐶+

i (𝐶⊗
i ) a disk 𝐷+

i (𝐷⊗
i )

along its boundary. If moreover each 𝐷+
i (𝐷⊗

i ) contains a source (a sink), we can assume that
the gluing extends the classical Morse function 𝐹 restricted to 𝑁 to a classical Morse function
𝐹 : 𝑁̂ ⊃ R,
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Note that, by construction, 𝑀 is obtained from 𝑁̂ by removing from it the interiors of the
disks 𝐷+

i and 𝐷⊗
i and by identifying 𝜕𝐷+

i = 𝐶+
i with 𝜕𝐷⊗

i = 𝐶⊗
i .

5.1.2 Comparison between the surfaces 𝑀 and 𝑁̂

Let us recall that the genus of the orientable surface 𝑀 = 𝑛T2 corresponding to the connected
sum of 𝑛 tori (and by convention to the sphere S2 if 𝑛 = 0)) is equal to 𝑛. If the surface is
nonorientable, then 𝑀 = 𝑛RP2 is the connected sum of 𝑛 projective planes and its genus is 𝑛.

Lemma 5.1.1. With the above notation, for all 𝑖 from 1 to 𝑐 ⊙ 1, let 𝑁̂i denote a compact
connected surface such that 𝑁̂ = ⊔c

i=1𝑁̂i. If 𝑀 is orientable, then we have

𝑀 =
(︁
𝑁̂1#𝑁̂2# . . .#𝑁̂c

⎡
#(♣ 𝜕⊗𝑁 ♣ ⊗𝑐+ 1)T2

and

genus(𝑀) =
c∑︁

i=1

genus(𝑁̂i)+ ♣ 𝜕⊗𝑁 ♣ ⊗𝑐+ 1

Proof. Since 𝑀 is orientable, so is each component 𝑁̂i of 𝑁̂ .
Let us first assume 𝑁̂ connected, that is, 𝑐 = 1. Each time one removes from 𝑁̂ the interiors of

two disks 𝐷+
i and 𝐷⊗

i and performs the identification of the corresponding boundaries, this results
in the connected sum of 𝑁̂ with a torus. Therefore

𝑀 = 𝑁̂# ♣ 𝜕⊗𝑁 ♣ T
2 =

(︁
genus(𝑁̂)+ ♣ 𝜕⊗𝑁 ♣

⎡
T2

and we are done, as for the connected case.
Let us now assume 𝑐 
 1. Since 𝑀 is connected, there must be 𝑐⊗ 1 indices 𝑗1, . . . , 𝑗c⊗1 such

that the removal of the interiors of the 2(𝑐⊗ 1) disks 𝐷+
j and 𝐷⊗

j , 𝑗 ∈ ¶𝑗1, . . . , 𝑗c⊗1♢, followed by

the identification of the associated boundaries, transforms 𝑁̂ into a connected compact manifold
given, by construction, by the connected sum of the 𝑐 components 𝑁̂i of 𝑁̂ . The remaining
♣ 𝜕⊗𝑁 ♣ ⊗𝑐+1 identifications to be performed are of the same type as those made in the connected
case. Combining these procedures yields

𝑀 =
(︁
𝑁̂1#𝑁̂2# . . .#𝑁̂c

⎡
#(♣ 𝜕⊗𝑁 ♣ ⊗𝑐+ 1)T2

and we can conclude by observing that each 𝑁̂i is the connected sum of genus(𝑁̂i) tori.

Lemma 5.1.2. With the above notation, for all 𝑖 from 1 to 𝑐 ⊙ 1, let 𝑁̂i denote a compact
connected surface such that 𝑁̂ = ⊔c

i=1𝑁̂i. Moreover, let 𝑏 ∈ N, 0 ⊘ 𝑏 ⊘ 𝑐, such that for all 𝑖 from 1
to 𝑏, the surface 𝑁̂i is orientable, while for all 𝑖 from 𝑏+ 1 to 𝑐, the surface 𝑁̂i is nonorientable. If
𝑀 is nonorientable, then we have

𝑀 =

∏︀
̂︁∐︁𝑁̂1#𝑁̂2# . . .#𝑁̂b⏟  ⏞  

orientable

# 𝑁̂b+1# . . .#𝑁̂c⏟  ⏞  
nonorientable

∫︀
̂︂⎠ #2(♣ 𝜕⊗𝑁 ♣ ⊗𝑐+ 1)RP2

and

genus(𝑀) = 2
b∑︁

i=1

genus(𝑁̂i) +
c∑︁

i=b+1

genus(𝑁̂i) + 2(♣ 𝜕⊗𝑁 ♣ ⊗𝑐+ 1)
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Proof. We follow the line of the proof of Lemma 5.1.2. First, let 𝑁̂ be connected, that is, 𝑐 = 1. If
𝑁̂ is also nonorientable, then 𝑏 = 0. In this case, the removal from 𝑁̂ of the interiors of two disks
𝐷+

i and 𝐷⊗
i followed by the identification of the corresponding boundaries can be interpreted both

as making the connected sum of 𝑁̂ with a torus and equivalently, because of the non-orientability
of 𝑁̂ , as making the connected sum of 𝑁̂ with a Klein bottle K = 2RP2. After repeating this
procedure for each couple of self-associated components, we have

𝑀 = 𝑁̂#2 ♣ 𝜕⊗𝑁 ♣ RP
2

and, since 𝑁̂ is made of genus(𝑁̂) connected copies of RP2, we also have

genus(𝑀) = genus(𝑁̂) + 2 ♣ 𝜕⊗𝑁 ♣

If 𝑁̂ is (still connected) but orientable, then 𝑏 = 𝑐 = 1. Since 𝑀 is nonorientable, there must exist
a couple of disks 𝐷+

i and 𝐷⊗
i whose boundaries are identified by reversing the orientation. Let us

assume this identification is the first we perform. Then this identification corresponds to making
the connected sum of 𝑁̂ with a Klein bottle. The following identifications will then be made on a
nonorientable manifold and, as in the previous case, we can conclude

𝑀 = 𝑁̂#2 ♣ 𝜕⊗𝑁 ♣ RP
2

Moreover, since in this situation we must have ♣ 𝜕⊗𝑁 ♣⊙ 1 we can deduce

𝑀 = genus(𝑁̂)T2#2 ♣ 𝜕⊗𝑁 ♣ RP
2 = 2 genus(𝑁̂)RP2#2 ♣ 𝜕⊗𝑁 ♣ RP

2

and therefore
genus(𝑀) = 2 genus(𝑁̂) + 2 ♣ 𝜕⊗𝑁 ♣

which ends the proof in the case 𝑁̂ connected.
Let us now assume 𝑁̂ not connected, that is, 𝑐 
 1. The connectivity of 𝑀 implies that

there must be 2(𝑐 ⊗ 1) components of 𝜕𝑁 whose identification yields a connected surface. This
corresponds on 𝑁̂ to removing 2(𝑐⊗ 1) disks 𝐷+

i and 𝐷⊗
i so that, after the corresponding (𝑐⊗ 1)

identifications of their boundaries, we obtain a manifold which is the connected sum of all of the
surfaces 𝑁̂i.
Now, the same arguments of the connected case, applied to 𝑁̂1#𝑁̂2# . . .#𝑁̂c, insure us that

𝑀 =

∏︀
̂︁∐︁𝑁̂1#𝑁̂2# . . .#𝑁̂b⏟  ⏞  

orientable

# 𝑁̂b+1# . . .#𝑁̂c⏟  ⏞  
nonorientable

∫︀
̂︂⎠ #2(♣ 𝜕⊗𝑁 ♣ ⊗𝑐+ 1)RP2

Moreover, since at least one of the factors of the above connected sum is nonorientable, the formula
for the resulting genus is straightforward.
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5.1.3 Comparison between the Morse digraphs of (𝑀, 𝑓), (𝑁,𝐹 ) and

(𝑁̂ , 𝐹 )

Finally, let us compare the (classical) Morse digraph Γ̂(𝑁̂ , 𝐹 ) underlying 𝑁̂ and 𝐹 , with the
circular Morse digraph Γ(𝑀, 𝑓) associated with 𝑀 and 𝑓 .

Let Γ(𝑁,𝐹 ) denote the Morse digraph defined for 𝑁 and 𝐹 by the usual collapsing procedure.
Properly speaking, Γ(𝑁,𝐹 ) is a generalized digraph since whenever 𝜕𝑁 is nonempty, dangling
edges1 appear. When oriented by the flow, we shall denote by (≤, 𝑣) and by (𝑤, ≤) the dangling
edge entering 𝑣 and exiting 𝑤, respectively. We say that the two dangling edges (≤, 𝑣) and (𝑤, ≤)
are merged whenever they are both removed and replaced by the oriented edge (𝑤, 𝑣). (Note that
the merging of degenerate dangling edges can also be defined, but produces no effect).

Let us recall that the cycle rank (or cyclomatic number) of a connected graph Γ is its first
Betti number. Denoted by Ñ(Γ), it corresponds to the number of edges that can be removed from Γ
without disconnecting it. It is given by the formula Ñ = 1⊗ number of vertices + number of edges.

Lemma 5.1.3. Following the above notation, for all 𝑖 from 1 to 𝑐 ⊙ 1, let 𝑁̂i denote a compact
connected surface such that 𝑁̂ = ⊔c

i=1𝑁̂i. Let Γ̂i(𝑁̂i, 𝐹 ) denote the Morse digraphs associated with
𝑁̂i and 𝐹 ♣N̂i

. Then the cycle rank of Γ(𝑀, 𝑓) is given by

Ñ(Γ(𝑀, 𝑓)) =
c∑︁

i=1

Ñ(Γ̂i(𝑁̂i, 𝐹 ))+ ♣ 𝜕⊗𝑁 ♣ ⊗𝑐+ 1

Proof. Let 𝑎i and 𝑟i respectively denote the sink and source contained in 𝐷⊗
i and 𝐷+

i used in
the construction of 𝑁̂ from 𝑁 . Let 𝑢ai

and 𝑢ri
denote the vertices of Γ̂(𝑁̂ , 𝐹 ) associated with 𝑎i

and 𝑟i. Removing 𝐷⊗
i (𝐷+

i ) from 𝑁̂ corresponds to replacing the oriented edge (𝑤i, 𝑢ai
) ((𝑢ri

, 𝑣i))
by the dangling edge (𝑤i, ≤) ((≤, 𝑣i)). Note that the obtained graph is nothing but the Morse

digraph Γ(𝑁,𝐹 ). Moreover this operation leaves the cycle rank of each component of Γ̂(𝑁̂ , 𝐹 )
unchanged.
Now, the graph Γ(𝑀, 𝑓) is obtained from Γ̂(𝑁̂ , 𝐹 ) = ⊔c

i=1Γ̂i(𝑁̂i, 𝐹 ) by merging two by two all the
dangling edges. First, by the connectivity of 𝑀 , the graph Γ(𝑀, 𝑓) is also connected, therefore

there are (𝑐⊗ 1) mergings of dangling edges whose role is to connect the 𝑐 graphs Γ̂i(𝑁̂i, 𝐹 ). The
resulting graph is thus connected and, by construction, its cycle rank is equal to the sum of the
cycles ranks of the Γ̂i(𝑁̂i, 𝐹 )’s. Since we are left with ♣ 𝜕⊗𝑁 ♣ ⊗𝑐 + 1 mergings to perform, each
of which increases the cycle rank by 1 (by the connectivity of the underlying graph), the desired
formula follows.

5.2 General description of a circular Morse digraph

In Therorem 5.2.1 we classify the Morse digraphs associated with circular Morse functions both
from the local and from the global point of view, and we prove their realizability.

1A nondegenerate dangling edge is an edge with only one extremal vertex. It is therefore homeomorphic to a
half-open interval ]𝑥, 𝑦], where 𝑦 corresponds to the unique extremal vertex. A degenerate dangling edge is an edge
with only no extremal vertices, homeomorphic to an open interval.
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Theorem 5.2.1. Let 𝑀 be a closed connected surface. The connected digraph Γ is the circular
Morse digraph associated with a circular Morse function on𝑀 if and only if the following conditions
are satisfied.

1. (Local conditions)

(a) The vertex 𝑣 corresponds to a source (sink), and the number of exiting (entering) edges
𝑒⊗

v (𝑒+
v ) is equal to 1.

(b) The vertex 𝑣 corresponds to a saddle inside an orientable surface with boundary, and
we have that either 𝑒⊗

v = 2 and 𝑒+
v = 1, or 𝑒⊗

v = 1 and 𝑒+
v = 2.

(c) The vertex 𝑣 corresponds to a saddle inside a nonorientable surface with boundary, and
𝑒⊗

v = 𝑒+
v = 1.

2. (Global conditions)

(a) if 𝑀 is orientable, the cycle rank Ñ(Γ) of Γ must be equal to the genus of 𝑀 .

(b) If 𝑀 is nonorientable, twice the cycle rank of Γ plus the number of nonorientable vertices
must be equal to the genus of 𝑀 .

Proof. Let us prove the necessity of the local conditions (Item 1) by using the construction and
results of Sec. 5.1.1. Each vertex of a circular Morse digraph Γ(𝑀, 𝑓) has the same incoming and

outgoing edges of the corresponding vertex of the classical Morse digraph Γ̂(𝑁̂ , 𝐹 ). Hence we are

done by applying Theorem 1-(1) of [14] to Γ̂(𝑁̂ , 𝐹 ).
The necessity of the global conditions for the orientable case (Item 2-(𝑎)) can be obtained by

combining the formulae of Lemmas 5.1.1 and 5.1.3, together with Theorem 1-(2)-(𝑎) of [14] applied

to the Γ̂i(𝑁̂i, 𝐹 )’s. As for the nonorientable case, the global conditions of Item 2-(𝑏) follow from
the formulae of Lemmas 5.1.1, 5.1.2 and 5.1.3, together with Theorem 1-(2) ((𝑎) and (𝑏)) of [14]

applied to the Γ̂i(𝑁̂i, 𝐹 )’s.
We show the sufficiency of the conditions of our theorem, that is, digraphs Γ satisfying them

can be seen as the Morse digraphs associated with a surface 𝑀 and a circular Morse function on it.
If Γ contains no oriented cycles, we are in the classical case, and by Theorem 1 of [14] there is
nothing to prove.
If Γ contains an oriented cycle, by suitably cutting as many edges as needed, say, 𝑘, one gets
a connected graph Γ̃ with 2𝑘 dangling edges (𝑘 entering and 𝑘 exiting), possessing no oriented
cycles. Following the procedure given in [14], Γ̃ can be realized as the (classical) Morse digraph of
a connected surface 𝑁̃ whose entering and exiting boundary both consist of 𝑘 components.
If Γ contains no nonorientable vertices, then so does Γ̃, and we can assume by construction that
the realizing surface 𝑁̃ is orientable. In order to realize Γ, we just need to identify the boundary
components of 𝑁̃ , whenever they correspond to the same initial edge of Γ that has been cut. Up
to a perturbation, we can assume that the gluing is compatible with the flow and that no saddle
connections occur. In this case, the orientability of the resulting surface depends only on whether
all the gluings of the boundary components of 𝑁̃ preserve the orientation or not.
In the case Γ contains a nonorientable vertex, then so does Γ̃, and 𝑁̃ is necessarily nonorientable.
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After gluing the associated boundary components of 𝑁̃ , the resulting surface is nonorientable and,
as before, together with the induced flow, it gives a realization of Γ.

5.3 Smooth flows on surfaces

In this last section, we briefly adress the combinatorics of Lyapunov digraphs, which generalize
Morse digraphs in the same way as Lyapunov functions generalize Morse functions, and the Conley
index theory generalizes Morse theory.

Let 𝑓 : 𝑀 ⊃ S1 be a circle-valued function. Let Exp : R⊃ S1 denote the exponential function
𝑥⊃ 𝑒2πix. Finally, let 𝐸 : 𝑀 ⊃ 𝑀 be the covering of 𝑀 induced by 𝑓 and Exp. By definition of
the induced covering, we have a map 𝐹 : 𝑀 ⊃ R, which makes the following diagram commute:

𝑀 F //

E

��

R

Exp

��
𝑀

f // S1

(5.3.1)

Definition 5.3.1. The function 𝑓 is said to be a circular Lyapunov function on 𝑀 if only if 𝐹
is a (classical) Lyapunov function on 𝑀 .

Let 𝑀 be a smooth manifold and let Φt : 𝑀 ⊃ 𝑀 be a smooth flow. A (classical) Lyapunov
function 𝐹 : 𝑀 ⊃ R for Φt is a function which strictly decreases along orbits of Φt outside its
chain recurrent set and is constant on components of the chain recurrent set. The values of 𝐹 on
the chain recurrent set are called the critical values of 𝐹 , while the complementary ones are called
regular.

A relevant difference of this new setting concerns the labels of the vertices of a Lyapunov
digraph, now related to the dimension of the homology Conley indices. In the case of Lyapunov
functions on surfaces, a vertex label (ℎ0, ℎ1, ℎ2) ∈ N3 means that for 𝑗 = 0, 1, 2, the rank of the 𝑗-th
Conley homology index of the isolating block associated with the vertex is equal to ℎj. Moreover,
the genus of a vertex 𝑣 of a Lyapunov digraph associated with (𝑀, 𝑓) and labelled with (ℎ0, ℎ1, ℎ2),
is denoted by 𝑔v and is given by

𝑔v =

∏︁
⨄︁
⎩

(⊗ℎ2 + ℎ1 ⊗ ℎ0 ⊗ 𝑒v + 2)

2
if 𝑀 is orientable

(⊗ℎ2 + ℎ1 ⊗ ℎ0 ⊗ 𝑒v + 2) if 𝑀 is nonorientable

An example of a smooth flow of this type is discussed at the end of this section, Example 5.3.1.
Here is a complete characterization of labelled realizable digraphs as circular Lyapunov di-

graphs.

Theorem 5.3.1. Let 𝑀 be a compact connected surface and Λ be a connected digraph whose
vertices are labelled with (ℎ0, ℎ1, ℎ2) ∈ N3. Then Λ is the circular Lyapunov graph associated
with a smooth flow on 𝑀 with a finite-component chain recurrent set and a circular Lyapunov
function 𝑓 if and only if the following conditions are satisfied.
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1. (Local conditions) The labels of all vertices 𝑣 satisfy the Poincaré-Hopf inequalities:

𝑒+
v ⊘ ℎ1 + 1, 𝑒⊗

v ⊘ ℎ1 + 1, 𝑒+
v + 𝑒⊗

v ⊘ ℎ1 ⊗ ℎ2 ⊗ ℎ0 + 2

where the latter inequality is strict if 𝑣 corresponds to a chain recurrent component inside a
nonorientable surface with boundary. Furthermore, if 𝑒+

v = 0 (𝑒⊗
v = 0), then ℎ2 = 1 (ℎ0 = 1),

otherwise ℎ2 = 0 (ℎ0 = 0).

2. (Global condition) The genus of 𝑀 is given by

genus(𝑀) =

∮︁
Ñ(Λ) +

√︁V
i=1 𝑔vi

if 𝑀 is orientable
2Ñ(Λ) +

√︁V
i=1 𝑔vi

if 𝑀 is nonorientable

where the sums are taken over all of the 𝑉 vertices of Λ.

Proof. A digraph Λ is realizable on a surface if and only if it is locally realizable (that is, each
vertex 𝑣 is realizable by a surface with boundary, of genus 𝑔v, with 𝑒+

v entering components and
𝑒⊗

v exiting components which are copies of S1). The local conditions in our context are the same
as the ones in the classical Lyapunov situation, because circular Lyapunov functions are locally
classical. Hence the inequalities of Item (1) are necessary and sufficient for the local realizability,
by Theorem 2-(1) of [14].

The absence of dangling edges for Λ are equivalent to the fact that the boundary components
of the isolating blocks realizing the vertices can all be glued two by two, respecting the flow
orientation. The same arguments as in Lemmas 5.1.1, 5.1.2 and 5.1.3, lead us to the formulae of
Item (2) for the genus of any surface 𝑀 ′ resulting from a gluing.

Example 5.3.1. In Figure 5.1, we have a smooth flow defined on 2T2. It has two singularities,
a monkey saddle, for which and (ℎ0, ℎ1, ℎ2) = (0, 2, 0), and a repelling periodic orbit, for which
(ℎ0, ℎ1, ℎ2) = (0, 1, 1). Therefore the Lyapunov digraph Λ associated with the given circular
Lyapunov function has two vertices 𝑣1 and 𝑣2, corresponding to the monkey saddle and the repelling
periodic orbit, respectively, and labelled by the corresponding triple (ℎ0, ℎ1, ℎ2). Both 𝑣1 and 𝑣2

have genus 0. The graph Λ has cycle rank Ñ(Λ) = 2 = genus(𝑀).
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Figure 5.1: Smooth flow, circular Lyapunov function, fundamental cobordism and associated di-
graphs
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Conclusion

This thesis has as an underlying theme the study of Smale and Morse-Novikov flows in the
spirit of [15], [13] e [20].

Lyapunov graphs are used in order to understand the local topology of the basic blocks that
contain each invariant set and how they fit together to constitute the manifold. This is an extremely
useful tool for this purpose, however, an even deeper dynamical question remains unanswered. In
rough terms what is the dynamics of the stable and unstable manifolds of the invariant sets? How
much knowledge can be obtained by the use of topological methods to gain further insight on
intersection properties?

In this thesis, Lyapunov graph theory provides us with a global vision of the distribution of basic
blocks within the manifold and information on their topology by establishing a characterization
of these graphs for Smale flows on S2 × S1 and Morse-Novikov flows on both orientable and non-
orientable surfaces. As a by-product some obvious intersection properties of stable and unstable
manifolds are obtained in such a classification. However, a deeper study will probably involve the
use of connection matrices as in Cornea [9] and Franzosa [17].

In Chapter 2 and 3 the study of embeddings of surfaces in S2×S1 as done in Lemmas 2.1.2 and
2.1.3 give homological information on the manifolds bounded by these surfaces. This is shown in
Lemma 2.2.4, using manifolds of handlebody type. In Corollary 3.1.2 this is established by relating
properties of the Lyapunov graphs and manifolds of handlebody type.

In Chapter 4, Section 4.1, Lyapunov graphs associated to Smale flows on S2×S1 which possess
a non-separable surface as a level set are considered. So, in Proposition 4.1.1 the necessary local
conditions on the degree of the vertices labelled with suspensions of subshifts of finite type when
this vertex is on a cycle are determined and in Theorem 4.1.1 are shown to be sufficient.

In Section 4.2 Lyapunov graphs with cycle rank equal to zero, associated to Smale flows, are
studied. Firstly, one supposes that there exists a Þ1-non-trivial surface as a level set, hence in
Proposition 4.2.1 local necessary conditions on the degree of the vertices labelled with suspensions
of subshifts of finite type are determined and shown to be sufficient in Theorem 4.2.1. Secondly,
one supposes that all level sets are Þ1-trivial surfaces, thus in Proposition 4.2.2 local necessary
conditions on the degree of the vertices labelled with suspensions of subshifts of finite type are
determined and later proven to be sufficient. This case brings about a novelty not found previously
in [13]. More specifically we show in Lemma 4.2.2 the necessary conditions the degree of vertices
associated to a subshift of finite type must satisfy are enlarged in comparison to the 𝑆3 case. Hence
in Section 4.2.1 and 4.2.2 the construction of the special type of basic blocks that respects these
special degree conditions are realized, thus proving in Theorem 4.2.2 that these special bounds on
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the degree of such vertices are sufficient.
This same type of problem can be formulated for connected sums of S2 × S1’s and constitutes

a probable line of future research.
In Chapter 5 we extend Lyapunov graph theory to circular Morse functions and to circular

Lyapunov functions on orientable and non-orientable surfaces. Hence in Theorems 5.2.1 and 5.3.1
these graphs are characterized determining necessary and sufficient conditions in order to be asso-
ciated to Morse-Novikov flows. This extension of Lyapunov graph theory for Morse-Novikov flows
opens a wide range of new questions in Novikov theory. Recall that circular Lyapunov graphs in
conjunction with Conley index theory are a useful combinatorial tools used to explore the local
topology of basic blocks containing singularities, periodic orbits, subshifts of finite type or more
generally invariant sets which possess an isolating neighborhood as well as the global topology of
the manifold.

Of course, the question of obtaining Lyapunov graph characterizations for circular Morse func-
tions on generalized 𝑛-tori is fascinating. The choice of these manifolds stems from the fact that
this classification was obtained in [11] and subsequently continuation properties studied in [3], [4]
and [5]. Finally in [2], basic blocks were constructed realizing these graphs on generalized 𝑛-tori.
Hence, relying on this foundation, one can explore the case for Morse-Novikov flows.
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