

UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Matemática, Estatística e Ciência da Computação - IMECC

· .

PROCEDIMENTOS ACELERADOS PARA A DETECÇÃO DE PERTURBAÇÕES NA VARIÂNCIA DE UM PROCESSO .

HERMÍNIA DE J. MARTINS DIAS BRUNO

Prof. Dr. SEBASTIÃO de AMORIM O^{V} .

Dissertação apresentada ao Departamento de Estatistica da Universidade Estadual de Campinas para Obtenção do Título de Mestre em Estatistica.

CAMPINAS

Estado de São Paulo - S. P.

Julho - 1993

"PROCEDIMENTOS ACELERADOS PARA A DETECÇÃO DE PERTURBAÇÕES NA VARIÂNCIA DE UM PROCESSO "

Este exemplar corresponde à redação final da tese devidamente corrigida e defendida pela Sra. Hermínia de J. Martins Dias e aprovada pela Comissão Julgadora.

Ca Prof. Dr.	mpinas, 09 de Julho de 1993
	Sebastião de Amorim

Dissertação apresentada ao Instituto de Matemática , Estatística e Ciência da Computação , UNICAMP, como requisito parcial para obtenção do Título de Mestre em Estatística.

AGRADECIMENTOS

Ao Amorim, o meu agradecimento pela orientação, amizade e apoio dedicados durante a realização deste trabalho.

Aos meus colegas de Mestrado, pela amizade e companheirismo.

Aos meus amigos, Eduardo e Gustavo, pelo carinho e amizade recebidos.

À Maria Lúcia, o meu agradecimento pela ajuda e amizade sempre presentes.

À minha família, pelo carinho e incentivo dedicados.

À minha mãe, presença fundamental, pela força, amizade, compreensão e carinho em todos os momentos.

Ao meu marido, sempre presente com muito carinho, amor e dedicação.

ÍNDICE

RESUMO

Capitulo 1

GRÁFICOS DE CONTROLE : UMA FERRAMENTA SIMPLES E EFICIENTE

1.1. Introdução	pg 01
1.2 . Algumas Características do Controle de Processos	pg 02
1.3 . Controle de Processos	pg 03
1.4 . Gráficos de Controle	pg 04
1.5 . Gráficos de Controle \overline{X} e S^2 com Limites de Tamanhos Amostrais Variados	Alerta e
1.5.1. Gráficos de Controle \overline{X}	pg 08
1.5.2. Gráficos de Controle S^2	pg 14
1.6. Revisão Bibliográfica	pg 17

Capítulo 2

GRÁFICOS DE CONTROLE COM DIVERSOS TAMANHOS AMOSTRAIS , BASEADOS NAS m ÚLTIMAS OBSERVAÇÕES

pg 20

pg 47

Capítulo 3

SIMULAÇÕES OBTIDAS SEGUNDO O ESQUEMA ALTERNATIVO PROPOSTO

CONCLUSÕES	pg 66
REFERÊNCIAS BIBLIOGRÁFICAS	pg 68
APÊNDICE A	pg 70
APÊNDICE B	pg 75

Neste trabalho apresentamos um esquema alternativo ao gráfico de controle proposto por Shewhart, que acelera a detecção de perturbações na variância de um processo, sem alterar a taxa de alarmes falsos.

No Capítulo 1 é feita uma revisão bibliográfica, onde algumas alternativas ao gráfico de controle \overline{X} são apresentadas motivando a elaboração deste trabalho.

No Capítulo 2 é apresentado o esquema alternativo proposto que baseia - se na escolha do tamanho amostral para inspeção do processo segundo o último valor obtido pela estatística de controle considerada. Os altos ganhos de eficiência alcançados e a simplicidade do esquema o tornam uma ferramenta de grande potencial.

No Capítulo 3 são apresentados os resultados obtidos via Simulações Monte Carlo, para os delineamentos amostrais propostos.

Capítulo 1

Gráficos de Controle : uma ferramenta simples e eficiente

1.1. Introdução

Controle de processos não é um assunto novo. Sua origem vem da convicção de Walter Shewhart que " sistemas que existem na natureza estão sujeitos a variações aleatórias " e que " variações provocadas por causas especiais (identificáveis) podem ser encontradas e eliminadas ". Isto significa que , controle de processos existe para detectar as causas de perturbações em tais processos. A técnica mais utilizada é o gráfico de controle , cuja contribuição é a representação física do sistema considerado.

De modo simples e claro, pode - se pensar que, o controle de processos é um contínuo esforço para manter os processos centrados em seus valores objetivos. Isto é o que Taguchi denomina de controle de qualidade " On line ". Mas, controle de processos é mais do que isso. Para alcançar produtos de alta qualidade, todos os membros de uma organização devem participar do processo. Todas as fases do processo, desde a concepção do produto até a sua finalização, devem ser bem planejadas e controladas. Os problemas devem ser detectados antes de

causarem maiores dificuldades. Ações devem ser tomadas para identificar as causas dos problemas e eliminá - las. E, finalmente, o controle deve ser implementado de modo que os problemas não ocorram novamente.

1.2. Algumas Características do Controle de Processos

O controle de processos pode ser classificado segundo três aspectos distintos: controle, capacidade e mudança do processo.

Esses três aspectos trabalham conjuntamente num programa de controle de qualidade no qual o controle estatístico é necessário para qualificar a habilidade do processo.

É necessário mais do que controle estatístico para controlar a qualidade de um processo .Mas, mesmo assim, a estatística atua como um fator importante ao longo do processo. A metodologia estatística envolve a resolução de problemas e o planejamento de experimentos que são essenciais para a tomada de decisões . Na presença de variações comuns aos processos industriais , a dificuldade de interpretar os dados seria grande sem os métodos estatísticos que amplificam e filtram os resultados observados de modo a mostrar padrões , tendências e valores não-típicos de um processo de controle

Uma maneira de analisar o processo é fazer uma observação contínua do mesmo de modo a verificar, quando e como, a mudança de uma variável de qualidade afeta o processo. Uma outra alternativa é provocar mudanças nas variáveis envolvidas no processo e observar como essas mudanças afetaram a continuidade do mesmo. Nestes dois casos, a análise estatística é necessária porque atua como um canal de comunicação entre o processo e o operador.

1.3. Controle de Processos

Existem várias maneiras de controlar um processo. Uma delas é peta experiência, mas esta leva muito tempo. A outra é pela intuição, mas é muito arriscada. A terceira, e mais comum, é considerar que o processo está sob controle e não tomar nenhuma atitude enquanto o mesmo permanecer sem alterações. Mas, todas essas maneiras são importantes para alcançar e/ou manter o controle estatístico através dos gráficos de controle.

Por isso, é que a filosofia dos gráficos de controle é tão importante. O propósito do controle está em identificar e corrigir causas assinaláveis quando elas ocorrem e assim manter a variação do processo dentro dos limites " naturais ".

Deste modo, o gráfico de controle é utilizado para testar se os dados representam variações aleatórias referentes a fontes estáveis e, se não, ajudam a inferir a natureza da fonte responsável pelo aparecimento de causas especiais.

Existem muitos tipos e utilizações para os gráficos de controle. O gráfico pode se referir a " padrões conhecidos ", ou seja, mantém o controle quando a média e o desvio padrão associados ao processo são conhecidos e/ou pode ser utilizado para investigar e estabelecer o controle, baseado em dados colhidos no passado e no presente, sem que a média e o desvio padrão sejam conhecidos. Os limites de controle e os fatores apropriados devem , então, ser calculados.

1.4. Gráficos de Controle

Existem diversas finções para os gráficos de controle. Eles podem ser usados como base para inferência de algumas características sobre o processo, tal como estabelecer se o processo está sob controle num dado instante de tempo. Isto é importante para determinar a capacidade do processo. Novamente, eles podem ser usados num esforço para manter o processo centrado em seu valor objetivo ou seja, manter o processo sob controle. Os gráficos também são usados para detectar as causas que provocaram mudanças no processo.

Existem vários tipos de gráficos de controle. Neste trabalho são destacados os gráficos de controle para a média e para a variância de um processo, os quais são denominados como "Gráficos de Controle para Variáveis ".

O gráfico de controle \overline{X} mostra as variações das médias amostrais .É constituído de uma linha central denominada μ , um limite de controle superior (LSC) e um limite de controle inferior (LIC). Segundo o Esquema Clássico de Shewhart (E.C.S), esse gráfico é construído usando - se três parâmetros : o intervalo entre amostras h, o tamanho da amostra n e o fator que determina os limites de controle k. O E.C.S. determina então que uma amostra de tamanho n seja retirada a cada intervalo de h unidades de tempo.Os valores da variável de interesse X são medidos para cada item amostrado, fornecendo - se assim valores de \overline{X} . Se \overline{X} cai entre os limites de controle, nenhuma ação é tomada. Se \overline{X} cai fora dos limites de controle , assume - se que o processo está fora de controle e tomam -se as ações apropriadas.

No E.C.S., os parâmetros $n, h \in k$ são constantes,

sendo que Shewhart recomenda para k valor igual a 3 desvios padrões da média. Esta escolha visa conferir alta proteção contra intervenções indevidas no processo (Tampering). Acontece que esta alta proteção tem como contrapartida uma pouca rapidez na detecção de perturbações no estado de controle quando esta ocorre.

Diversas alternativas engenhosas têm sido propostas visando acelerar a detecção de perturbações quando estas ocorrem, sem contudo comprometer a proteção contra alarmes falsos quando o processo se encontra sob controle. Entre estas encontram - se os esquemas de somas acumuladas e o das médias móveis ponderadas exponencialmente.

Na Figura 1.1 apresentada a seguir, temos a representação de um gráfico de controle como o descrito anteriormente :

Figura 1.1 : Gráfico de controle \overline{X} .

Até agora descrevemos o gráfico de controle \overline{X} . Mas,

quando estamos interessados em controlar o desvio padrão de um processo, um gráfico de fácil manuseio é o gráfico de controle para a amplitude (R) do processo, onde R é definido como R = X(máx) - X(min). Uma outra alternativa para o gráfico de controle R é o gráfico de controle para a variância amostral do processo S², definida em (1.4.1) e, facilmente calculado através de operações computacionais.

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$
(1.4.1)

O gráfico de controle S² é também constituído de três partes : uma linha central \overline{S}^2 e os respectivos limites de controle , LSC e LIC , definidos como :

$$LSC = \frac{\overline{S}^{2}}{(n-1)} \chi^{2}_{(\alpha 2, n-1)}$$
(1.4.2)

$$LIC = \frac{\overline{S}^2}{(n-1)} \chi^2_{(1-\alpha/2,n-1)}$$
(1.4.3)

1.5. Gráficos de Controle \overline{X} e S² com Limites de Alerta e Tamanhos Amostrais Variados

1.5.1. Gráficos de controle \overline{X}

Considerando um processo que esteja sob controle, a probabilidade de ocorrência de um alarme falso, ou seja, $\overline{X} \notin$ (LIC, LSC), é de 1 a cada 370 inspeções, para k = 3. Havendo uma perturbação na média de 0.1 desvio padrão, isto é, a média se desloca de μ para μ +0.1 σ ou para μ --0.1 σ , a probabilidade para a ocorrência de um alarme cai para 1 a cada 308 inspeções para um delineamento amostral onde n = 4.

Suponha que após N_1 inspeções ocorra uma perturbação no processo de tal forma que a média μ mude para $\mu + \delta \sigma$. Seja N_2 o número de inspeções até a detecção da perturbação após esta ter ocorrido.

Então , após a ocorrência da perturbação $X \approx N(\mu + \sigma \delta, \sigma^2)$, a probabilidade de se obter uma observação fora dos limites de controle irá depender do tamanho amostral e do desvio δ ocorrido.

Pela Tabela 1.1 pode - se observar a variação que há no tempo médio esperado para a detecção da perturbação em função de δ para n = 1.

δ	$E(N_2)$
0.00	370.03
0.50	161.05
1.00	44.12
1.50	15.00
2.00	6.30
2.50	3.21
3.00	2.00

Tabela 1.1. $E(N_2)$ para gráficos de controle \overline{X} para n=1 e k=3.

A detecção rápida de uma perturbação no processo é importante para que se mantenha este operando dentro das especificações. Assim, Lemos (1991) propõe a introdução dos limites de alerta onde são mantidos fixos os intervalos entre as observações e varia - se o tamanho da amostra como o seguinte esquema : se a iésima observação situar - se entre os limites de alerta, então a (i+1)-ésima observação será obtida segundo uma amostra de tamanho n_p , com $n_p < n_o$, e no caso da i-ésima observação situar - se fora dos limites de alerta, mas ainda entre os limites de controle, a (i+1) - ésima observação será obtida segundo uma amostra de tamanho n_g , com $n_g > n_o$. Sob a hipótese de controle, o esquema descrito acima é apresentado na Figura 1.2.:

Figura 1.2 : Gráfico de Controle com Limites de Alerta.

onde

$$\overline{X} \approx N(\mu, \sigma_{\overline{x}}^2) e Z_i = \frac{\overline{X} - \mu}{\sigma_{\overline{x}}} \approx N(0, 1) \ i = 1, 2, 3...$$

A notação usada no gráfico anterior representa :

- (1) k : fator de determinação dos limites de controle;
- (2) k_{α} : fator de determinação dos limites de alerta;

(3) μ : média do processo;

(4) LSC : limite superior de controle;

(5) LIC : limite inferior de controle;

(6) LSA : limite superior de alerta;

(7) LIA : limite inferior de alerta;

A variação amostral no delineamento utilizado deve ser tal que a frequência de paradas desnecessárias seja a mesma e, na média, o tamanho amostral seja igual a n_o , isto é,

$$E[n/Z_i \in (LIC, LSC)] = n_o, \quad i = 1, 2, 3.....$$
(1.5.1.1)

Mas,

$$\begin{split} E[n/Z_i \in (LIC, LSC)] = &n_p x P(Z_i \in (LIA, LSA)/Z_i \in (LIC, LSC)) + \\ &n_p x P(Z_i \notin (LIA, LSA)/Z_i \in (LIC, LSC)). \end{split}$$

(1.5.1.2)

Simplificando, tem - se que :

$$E[n/Z_i \in (LIC, LSC) = n_p x P(n=n_p) + n_g x P(n=n_g) = n_o$$

(1.5.1.3)

De (1.5.1.3) são obtidos os resultados da Tabela 1.2.

(Silva, 1992) segundo um delineamento amostral ($n_p = 1, n_g = 10, n_o = 4$) e k = 3e $k_g = 0.963827$, onde a eficiência relativa (ER) é definida como :

$$ER = E_s(N_2) / E_1(N_2)$$
(1.5.1.4)

onde $E_s(N_2)$: é o número médio esperado de inspeções desde a ocorrência da perturbação até a sua detecção segundo o E.C.S.

 $E_1(N_2): {\rm \acute{e}}~{\rm o}~{\rm número}~{\rm médio}~{\rm esperado}~{\rm de}~{\rm inspeções}~{\rm desde}~{\rm a}$ ocorrência da perturbação até a sua detecção segundo Silva (1992).

S.n.	δ_n	$\delta \sqrt{n_a}$	$E(N_2)$	
	N P	V S		<i>E.R</i> .
0.2	0.1	0.316228	305.944512	1.01
0.4	0.2	0.632456	183.994788	1.09
0.6	0.3	0.948683	92.137709	1.30
0.8	0.4	1.264911	43.303798	1.65
1.0	0.5	1.581139	20.864605	2.10
1.2	0.6	1.897367	10.998480	2.53
1.4	0.7	2.235940	6.393302	2.85
1.6	0.8	2.529822	4.482381	2.76
1.8	0.9	2.846050	3.380485	2.57
2.0	1.0	3.162278	2.749439	2.29

Tabela 1.2. - $E(N_2)$ e Eficiência Relativa para o processo de controle onde ($n_y = 1, n_g = 10, n_o = 4$) e k = 3 e $k_a = 0.963827$,

A introdução dos limites de alerta no gráfico de controle e a variação do tamanho amostral resultaram em ganhos significativos na eficiência dos processos em detectar perturbações que por ventura ocorram. As situações nas quais os maiores ganhos foram obtidos ocorreram quando houve desvios efetivos na média entre 1.2 e 1.8.

1.5.2. Gráficos de controle S^2

De maneira análoga aos gráficos de controle \overline{X} , desenvolvemos a teoria para os gráficos de controle S^2 , com tamanhos amostrais variados e limites de alerta.

Suponha que após N_1 inspeções ocorra uma perturbação no processo de tal forma que o desvio padrão σ mude para $\sigma + \delta \sigma$. Suponha ainda que sejam necessárias N_2 inspeções para que se detecte a perturbação após esta ter ocorrido. Então, após a ocorrência da perturbação $X \approx N(\mu, (1+\delta)^2 \sigma^2)$, a probabilidade de se obter um valor fora dos limites de controle cresce, e irá depender do tamanho amostral e do desvio δ que o processo sofier. Pela Tabela 1.3 apresentada a seguir, observam - se alguns valores para $E(N_2)$ para os correspondentes valores de δ , para n=4, tomando - se a estatística de controle $\frac{nS^2}{\sigma^2}$.

8	F(N)
0.00	370.57
0.00	107.25
0.20	42.59
0.30	21.13
0.40	12.29
0.50	8.04
0.60	5.73
0.70	4.37
0.80	3.50
0.90	2.92
1.00	2.52

Tabela 1.3. $E(N_2)$ para gráficos de controle $\frac{nS^2}{\sigma^2}$

Neste caso, a carta de controle é construída com base

na estatística $\frac{nS^2}{\sigma^2}$, que sob a hipótese de normalidade e de controle do processo,

tem distribuição $\chi^2_{(n_o)}$.

Neste trabalho apresentamos uma abordagem alternativa ao delineamento clássico, fazendo variar cada par de amostras de acordo com as m últimas observações. Contudo, a variação amostral no delineamento utilizado deve ser tal que, a frequência de paradas desnecessárias seja a mesma e, na média o tamanho amostral seja igual a n_o , isto é,

$$E[n/\sigma = \sigma_o] = n_o, \quad i = 1, 2, 3..... \quad (1.5.2.1)$$

ou,

$$n_{p} \times P(n = n_{p} / \sigma = \sigma_{o}) + n_{g} \times P(n = n_{g} / \sigma = \sigma_{o}) = n_{o}$$
(1.5.2.2)

ou seja,

$$n_{p} \times P(n = n_{p} / \sigma = \sigma_{o}) + n_{g} \times [1 - P(n = n_{p} / \sigma = \sigma_{o})] = n_{o}$$
(1.5.2.3)

Mas, após a ocorrência de uma perturbação no desvio padrão do processo, temos que

$$E(n/\sigma = (1+\delta)\sigma_o) > n_o \tag{1.5.2.4}$$

isto é,

$$n_{p} \times P(n = n_{p} / \sigma = (1 + \delta)\sigma_{o}) + n_{g} \times [1 - P(n = n_{p} / \sigma = (1 + \delta)\sigma_{o})] > n_{o}$$
(1.5.2.5)

1.6. Revisão Bibiográfica

O artigo proposto por Reynolds, Amin, Arnold e Nachlas (1988) considera as propriedades do gráfico de controle baseadas em \overline{X} onde o intervalo entre cada par de amostras varia de acordo com o valor observado na primeira das amostras. O método consiste em utilizar um intervalo h_o variável entre as amostras para o gráfico \overline{X} , de modo que, se o i-ésimo valor de \overline{X} , estiver próximo ao valor objetivo μ , será utilizado um intervalo longo h_l , com $h_l > h_o$, para a inspeção da (i+1)-ésima amostra. Caso o valor da i-ésima amostra estiver longe o suficiente do alvo a ser atingido, isto é, próximo a um dos limites de controle, será utilizado um intervalo curto h_c , com $h_c < h_o$, para a próxima inspeção.

Estabeleceu - se uma região interna aos limites de controle, chamada região de alerta, definida pelo parâmetro k_a . Os valores de k_a , $h_c e h_l$ são calculados de modo que :

$$E[h/Z_i \in (LIC, LSC)] = h_o, \quad i = 1, 2, 3... \quad (1.6.1)$$

Uma alternativa proposta por Silva (1992) diz que ao

invés de variar o intervalo entre amostras, varia -se o tamanho amostral. Caso ocorra uma observação entre os limites de alerta e os limites de controle, a inspeção seguinte será baseada numa amostra de tamanho grande. Já, quando ocorre uma

observação próxima à média objetivo, ou seja, entre os limites de alerta, a próxima inspeção será baseada numa amostra pequena. Seguindo o mesmo raciocínio, Silva generalizou o processo, passando a considerar as m últimas observações de modo que o tamanho amostral seria definido de acordo com a posição do vetor resultante numa esfera em R^m . Os ganhos de eficiência obtidos foram bastante significativos.

Neste trabalho desenvolvemos um esquema alternativo que detecta de maneira acelerada perturbações na variância do processo.

Com tamanhos amostrais variando de acordo com o último valor obtido pela estatística de controle, eficiências superiores a 3.5 foram conseguidas, com relação aos esquemas clássicos de Shewhart.

Para isto consideramos a estatística de controle Y definida em (1.6.2) a seguir

$$Y = \sum_{i=1}^{m} \sum_{j=1}^{n_i} \frac{(X_{ij} - \mu)^2}{\sigma^2} \quad m = 2, 3, 4, 5, 6.$$
(1.6.2)

onde μ é a média objetivo e σ é o desvio padrão associado à capacidade do processo, X_{ij} é o j - ésimo valor observado na i - ésima intervenção amostral passada, *m* é o número de intervenções amostrais passadas consideradas na

composição de Y e n_i é o tamanho amostral utilizado na i - ésima intervenção e, pode assumir os seguintes valores : (n_o, n_p, n_g) , $c/n_p < n_o < n_g$, onde n_o é o tamnho amostral de referência, $n_p \in n_g$ são as amostras de tamanho pequeno e grande, respectivamente.

Os resultados são elaborados formalmente e abundantemente ilustrados através de simulações.

Os altos ganhos de eficiência alcançados e a simplicidade operacional do esquema o tornam uma ferramenta de grande potencial prático.

Capítulo 2

Gráficos de controle com diversos tamanhos amostrais , baseados nas *m* últimas observações .

Seguindo a proposta feita pela introdução dos limites

de alerta, pode - se monitorar processos de produção pela inspeção das m últimas observações, tomando - se o valor obtido pela estatística do teste

$$Y = \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} \frac{(X_{ij} - \mu)^{2}}{\sigma^{2}} \quad m = 2, 3, 4, 5, 6.$$
(2.1.1)
onde $Y \approx \chi^{2}_{n_{x}}$,

tem distribuição Qui - quadrado com n_x graus de liberdade e função densidade de probabilidade dada pela expressão abaixo :

$$f_{Y}(y) = \frac{1}{\Gamma(n_{x}/2)} \left(\frac{1}{2}\right)^{n_{x}/2} y^{\left(\frac{n_{x}}{2}-1\right)} e^{-\frac{1}{2}y} \mathbf{1}_{(0,\infty)}(y)$$

onde
$$E(Y) = n_x e Var(Y) = 2n_x$$
.

Inicialmente, toma - se uma sequência de m amostras

de tamanho n_0 . Com base nestas m amostras, contrói - se a estatística Y definida por

$$Y = \sum_{j=1}^{m} \sum_{j=1}^{n_o} \frac{(X_{ij} - \mu)^2}{\sigma^2} \qquad m = 2, 3, 4, 5, 6.$$

O valor de Y assim obtido é o primeiro a ser colocado no gráfico. Este é composto de 3 linhas horizontais representando o eixo X, o limite de alerta e, mais acima, o limite de controle.

O tamanho da (i + 1) - ésima amostra dependerá da

posição de Y no gráfico. Se Y cair abaixo do límite de alerta, a próxima amostra será menor do que n_o . Se Y cair na região da alerta, isto é, entre o límite de alerta e o límite de controle, a próxima amostra será maior do que n_o .

Os limites de alerta e de controle são estabelecidos de

forma que enquanto o processo estiver sob controle, a probabilidade de se ter um alarme falso será a mesma que no esquema de referência (em geral, esta probabilidade é igual a 0.0027). Além disto, ainda sob a hipótese de controle, o tamanho amostral médio esperado será n_o .

Após a obtenção dos primeiros valores de Y baseados

em amostras de tamanho n_o , a composição da estatística de controle Y e o respectivo número de graus de liberdade, vão depender dos tamanhos amostrais escolhidos em inspeções passadas. Assim, para cada estatística Y obtida, teremos diferentes valores $k e k_a$ associados. Neste caso, os limites de controle e de alerta para a carta de controle são variáveis.

É importante destacar também que , $Y_1, Y_2, Y_3, \ldots, Y_i, \ldots$, não são independentes . A auto - correlação serial existente neste processo de controle complica extraordinariamente a análise formal de suas propriedades estatísticas . Contudo os ganhos verificados na eficiência relativa são indiscutíveis.

A correlação entre duas realizações consecutivas $Y_i \ e \ Y_{i+1}$, da estatística Y, é facilmente determinada, dados a sequência de tamanhos amostrais em que se baseiam. Neste caso ela é dada pela razão entre o número de observações em comum na composição de $Y_i \ e \ Y_{i+1}$, e a raiz quadrada do produto dos números de graus de liberdade de $Y_i \ e \ Y_{i+1}$. Por exemplo, considerando m = 2, $n_p = 1 \ e \ n_g = 25$, a correlação entre $Y_i \ e \ Y_{i+1}$ é dada por $\frac{25}{\sqrt{26 \times 50}} = 0.6934$, se a sequência de tamanhos amostrais geradores destes dois valores for (1, 25, 25) ou (25, 25, 1). Dá - se a seguir, os valores de $Corr \ (Y_i, Y_{i+1})$ para todos os casos possíveis de (n_{i-1}, n_i, n_{i+1}) , para i = 1, 2...

n _{i-1}	n _i	n_{i+1}	Corr (Y_i, Y_{i+1})
1	1	1	0.5
1	1	25	0.1387
1	25	1	0.9615
1	25	25	0.6934
25	1	1	0.1387
25	1	25	0.0385
25	25	1	0.6934
25	25	25	0.5

Tabela 2.1 : Auto - Correlação Serial para m = 2

 $\label{eq:Genericamente} Genericamente , vamos supor que , Y_{i-1} tem n_{i-1}$ grans de liberdade , Y_i tem n_i e , Y_{i+1} tem n_{i+1} .

Então, tomando a sequência $\{Y_i, i = 1, 2, ...\}$, e considerando m = 2, temos que as estatísticas de controle $Y_i \in Y_{i+1}$, i = 1, 2, ..., são correlacionadas. Se n_i é o tamanho amostral na i - ésima inspeção, então $Y_i \in Y_{i+1}$ possuem n_i parcelas comuns, e a correlação entre elas é dada por :

,

$$Corr(Y_{i}, Y_{i+1}) = \frac{E[(Y_{i} - E(Y_{i})(Y_{i+1} - E(Y_{i+1}))]}{\sqrt{Var(Y_{i})}\sqrt{Var(Y_{i+1})}}$$

que leva a :

$$Corr(Y_i, Y_{i+1}) = \frac{n_i}{\sqrt{(n_{i-1} + n_i)(n_i + n_{i+1})}}$$

Logo, a determinação de k de tal forma que a taxa de alarmes falsos seja de 1 a cada 370 inspeções, fica dificultada devido à estrutura de correlação existente, conforme já discutido por Silva (1992, pg 23). Observe que a probabilidade de um alarme falso na primeira inspeção é igual a 0,0027. A segunda inspeção só ocorrerá caso não ocorra um alarme falso na primeira e, devido à correlação positiva existente entre $Y_1 e Y_2$, pode - se concluir que $P(Y_2 \ge k/|Y_1 \le k) < 0.0027$. Seguindo este raciocínio, deveriam ser determinadas probabilidades que demandariam árduo cálculo numérico, visto que, a função de densidade conjunta de Y_i, Y_{i+1} apresenta dificuldades de tratamento numérico nas caudas (vide Silva, 1992, pg 23).

Neste trabalho não serão calculados os valores exatos de k, mas boas aproximações para processos que possuam a frequência de alarmes falsos desejada, serão obtidas por simulações.

O método proposto detecta de modo acelerado perturbações que ocorrem na variância do processo, mantendo o tamanho amostral efetivo igual a n_0 , sem contudo alterar a taxa de alarmes falsos de 1 a cada 370, sob a hipótese de controle, isto é,

$$E(n/\sigma = \sigma_o) = n_o \tag{2.1.2}$$

Daí , segue que , para $\sigma = \sigma_o$:

$$E(n/(Y \le k)) =$$

$$n_p \times P(Y \le k_a / Y \le k) + n_g \times P(Y > k_a / Y \le k) = n_o$$
(2.1.3)

$$P(Y \le k_a / Y \le k) = \frac{P(Y \le k_a)}{P(Y \le k)}$$

$$P(Y \leq k_a / Y \leq k) = 1 - P(Y > k_a / Y \leq k)$$

$$P(Y \le k_a) = \frac{n_g - n_o}{n_g - n_p} P(Y \le k)$$
(2.1.4)

Pela definição do delineamento amostral (n_o, n_p, n_g)

e do limite de controle (k), pode - se determinar o limite de alerta para o processo de controle por (2.1.4).

Para facilitar o desenvolvimento apresentado a seguir

definimos :

$$\alpha_{v}(\delta) = P(Y > v; \sigma = \sigma_{o})$$

Assim,

$$\alpha_{k}(0) = P(Y > k; \sigma = \sigma_{o})$$

$$\alpha_{k}(\delta) = P(Y > k; \sigma = (1 + \delta)\sigma_{o})$$

Como $\sigma = \sigma_o$ temos que a probabilidade para a ocorrência de um alarme falso é dada por :

$$P_{AF} = P[(Y > k); (\sigma = \sigma_o)] = \alpha_k(0)$$
(2.1.5)

e, para $\sigma = \sigma_o$, a probabilidade de uma observação cair na região de alerta dado que não ocorreu alarme falso é :

$$P_{AL} = P \left[\left(Y > k_a / Y \le k \right) \right]$$

$$=\frac{\alpha_{k_a}(0) - \alpha_k(0)}{1 - \alpha_k(0)}$$
(2.1.6)

A eficiência relativa deste processo pode ser avaliada

a partir do momento em que ocorrer uma perturbação na variância. Suponha que uma perturbação igual a $\delta\sigma$ ocorra entre a N_1 - ésima e a (N_1 + 1) - ésima observações, de modo que σ^2 passe a $(1+\delta)^2 \sigma^2$ e, que sejam necessárias N_2 inspeções para detectar a perturbação ocorrida no processo. Então , $Z_i \approx N(0,1)$ $\forall i = 1, 2, ...$ após a perturbação torna - se :

$$Z_i \approx N(\mathbf{0}, (1+\delta)^2 \sigma^2)$$
 $i = N_1 + 1, N_1 + 2, \dots, N_1 + N_2$

Após a ocorrência da perturbação a estatística Y passa por uma fase de transição que dura *m*-1 observações. Durante esta fase, os valores de X que compõem a estatística Y vão gradualmente assumindo a forma perturbada, com variância $(1 + \delta)^2 \sigma^2$.

Assim, após a perturbação e, considerando - se

passada a fase de transição, temos que a probabilidade de um alarme passa a ser

$$P_{A_{\delta}} = P[(Y > k); (\sigma = (1 + \delta)\sigma_{o})] = \alpha_{k}(\delta)$$

ou,

$$P(Y > k) = P(\frac{Y}{(1+\delta)^2} > \frac{k}{(1+\delta)^2}) onde \frac{Y}{(1+\delta)^2} \approx \chi^2_{(n_x)}$$
(2.1.7)

porque Y passa a ter distribuição $\chi^2_{(n_x)}$ com fator de escala $(1 \neq \delta)^2$.

E, a probabilidade de Y cair na região de alerta dado que não ocorreu alarme fica:

$$P_{AL_{\delta}} = P \left[(Y > k_{a} / Y \le k); (\sigma = (1 + \delta)\sigma_{o}) \right]$$

=
$$\frac{P(\frac{Y}{(1 + \delta)^{2}} \le \frac{k}{(1 + \delta)^{2}}) - P(\frac{Y}{(1 + \delta)^{2}} \le \frac{k_{a}}{(1 + \delta)^{2}})}{P(\frac{Y}{(1 + \delta)^{2}} \le \frac{k}{(1 + \delta)^{2}})}$$

$$=\frac{\alpha_{k_a}(\delta) - \alpha_k(\delta)}{1 - \alpha_k(\delta)}$$
(2.1.8)

Após a ocorrência de uma perturbação, naturalmente a probabilidade de alarme cresce, tanto no esquema proposto como no de Shewhart. A nova probabilidade no Esquema de Shewhart pode ser calculada diretamente como função de \mathcal{N}_{o} e de δ . Já no nosso caso, devido à transição não instantânea das observações componentes da estatística Y, a nova situação definida por $\sigma = (1 + \delta)\sigma_{o}$, e aos tamanhos amostrais variáveis, este cálculo não é simples.

O esquema amostral proposto baseia - se na expectativa de que o tamanho amostral efetivo - o valor médio esperado de n - cresça com a ocorrência de uma perturbação . Este crescimento realmente se verifica para valores de pequenos a moderados de δ . Para valores grandes , contudo , pode -se verificar o oposto , conforme ilustrado na Tabela 2.2 (os resultados foram obtidos através de simulações via programa apresentado no Apêndice B). Este efeito estará associado a quedas de eficiência relativa a valores abaixo de 1.

	(np, ng) = (01, 10)	(np, ng) = (01, 25)
δ	$E(n/\sigma)$	$E(n/\sigma)$
0.0	4.02	3.99
0.1	5.32	6.74
0.15	5.82	7.90
0.175	6.04	8.18
0.2	6.13	8.46
0.3	6.21	7.58
0.4	5.74	6.46
0.5	5.18	6.21
0.6	4.66	5.86
0.7	4.28	5.78
0.8	3.92	5.90
0.9	3.75	5.93
1.0	3.48	5.92

Tabela 2.2: $E(n/\sigma) \times Desvio \delta$; para m=2

Figura 2.1 : Tamanho Amostral Efetivo para m = 2, Obtido após a Ocorrência do Desvio, tomando - se o Delineamento Amostral (np, ng) = (01,10).

Figura 2.2 : Tamanho Amostral Efetivo para m = 2, Obtido após a Ocorrência do Desvio, tomando - se o Delineamento Amostral (np, ng) = (01,25).

Agora, temos que

$$E(N_2) = \sum_{i=1}^{\infty} i \times P(N_2 = i)$$

onde N_2 corresponde ao número de inspeções após a ocorrência da perturbação no processo , até a sua detecção .

Para determinar uma expressão para $E(N_2)$, devemos calcular $P(N_2 = i)$, i = 1, 2, 3..., ou seja, a sua função de distribuição de probabilidade. Este problema é complicado pela existência do período de transição, imediatamente após a ocorrência da perturbação, quando o impacto desta sobre a estatística Y vai se dando gradualmente. Para m > 2 esta transição dura m-1 observações.

Um fato a ser observado é o comportamento não geométrico da função de distribuição de probabilidade de N_2 , ao contrário do verificado no Esquema de Shewhart. Isto se deve à transição gradual na estatística de controle a partir da ocorrência da perturbação no processo. Esta transição faz com que no esquema proposto a probabilidade de detecção cresça gradualmente , após a ocorrência da perturbação , até um valor limite , enquanto no esquema de Shewhart , o salto se dá instantaneamente - sem inércia- para o seu valor limite.

♥

.

· .

.

. . .

Como consequência, para $m \in \delta$ grandes, a eficiência relativa é inferior

a 1. Isto é natural , já que temos o caso de uma corrida em que um dos competidores tem aceleração baixa , mas velocidade limite alta, enquanto o outro tem velocidade limite baixa, mas uma aceleração elevada. Se a corrida for muito curta (δ alto), o segundo competidor (Shewhart) tenderá a vencer.

São apresentadas a seguir, as Tabelas 2.3, 2.4, 2.5, 2.6, 2.7 e 2.8, as curvas de frequência relativa para N_2 observadas para 5000 repetições de uma simulação com m = 2,3,4,5,6 e Shewhart, $\delta = 0.9$ e (np, ng) = (01, 25). Em cada caso a perturbação foi colocada entre a 50° e a 51° observações.

N ₂	Frequência	Frequência
- · · 2	Absoluta	Relativa
1	1357	0.2714
2	1724	0.3448
3	1021	0.2042
4	477	0.0954
5	239	0.0478
6	91	0.0182
7	50	0.0100
8	19	0.0038
9	7	0.0014
10	6	0.0012
11	7	0.0014
12	1	0.0002
13	1	0.0002

Tabela 2.3 : Distribuição de Frequência de N_2 para m=2

Figura 2.3 : Curva de Frequência Relativa para N_2 e m=2

N ₂	Frequência	Frequência
	Absoluta	Relativa
1	909	0.1818
2	1261	0.2522
3	982	0.1964
4	732	0.1464
5	390	0.0780
6	267	0.0534
7	182	0.0364
8	106	0.0212
9	66	0,0132
10	33	0.0066
11	23	0.0046
12	20	0.0040
13	15	0.0030
14	6	0.0012
15	2	0.0004
16	2	0.0004
17	1	0.0002
18	3	0.0006

Tabela 2.4 : Distribuição de Frequência de N_2 para *m*=3

Figura 2.4 : Curva de Frequência Relativa para N_2 e m=3

.

· · · ·		
N_{2}	Frequência	Frequência
	Absoluta	Relativa
1	815	0.1630
2	1166	0.2332
3	1028	0.2056
4	702	0.1404
5	490	0.0980
6	293	0.0586
7	185	0.0370
8	108	0.0216
9	85	0.0170
10	37	0.0074
11	36	0.0072
12	19	0.0038
13	11	0.0022
14	10	0.0020
15	8	0.0016
16	1	0.0002
17	2	0.0004
18	1	0.0002
19	1	0.0002
20	0	0
21	1	0.0002
22	0	0
23	0	0
24	1	0.0002

Tabela 2.5 : Distribuição de Frequência de N_2 para m=4

Figura 2.5 : Curva de Frequência Relativa para N_2 e m=4

N_{2}	Frequência	Frequência
£	Absoluta	Relativa
1	818	0.1636
2	1112	0.2224
3	949	0.1898
4	708	0.1416
5	542	0.1084
6	349	0.0698
7	197	0.0394
8	112	0.0224
9	64	0.0128
10	44	0.0088
11	39	0.0078
12	18	0.0036
13	20	0.0040
14	6	0.0032
15	5	0.0010
16	6	0.0012
17	5	0.0010
18	1	0.0002
19	2	0.0004
20	1	0.0002
21	1	0.0002
22	1	0.0002

.

Tabela 2.6: Distribuição de Frequência de N_2 para m=5

Figura 2.6 : Curva de Frequência Relativa para N_2 e m=5

Γ Α <i>Ι</i>		T
N_2	Frequencia	Frequencia
	Absoluta	Kelativa
1	792	0.1584
2	1073	0.2146
3	897	0.1794
4	686	0.1372
5	536	0.1072
6	389	0.0778
7	243	0.0468
8	134	0.0268
9	84	0.0168
10	65	0.0130
11	34	0.0068
12	31	0.0062
13	20	0.0040
14	16	0.0032
15	9	0.0018
16	6	0.0012
17	8	0.0016
18	2	0.0004
19	2	0,0004
20	0	0
21	2	0.0004
22	0	0
23	0	0
24	1	0.0002
25	1	0.0002

Tabela 2.7 : Distribuição de Frequência de N_2 para m=6

Figura 2.7 : Curva de Frequência Relativa para N_2 e m=6

Al I	Encouência
/V 2	Trequencia D 1 - time
	Relativa
1	0.34210
2	0.22510
3	0.14810
4	0.09740
5	0.06410
6	0.04220
7	0.02770
8	0.01830
9	0.01200
10	0.00790
11	0.00520
12	0.00340
13	0.00220
14	0.00150
15	0.00140
16	0.00060
17	0.00040
18	0.00030
19	0.00020
20	0.00010
21	0.00007
22	0.00005
23	0.00003
24	0.00002
25	0,00001

Tabela 2.8 : Distribuição de Frequência de Shewhart para (np , ng) = (01 , 25) , δ = 0.9 e p = 0.342088

Graficamente, tem - se que :

Figura 2.8: Curva de Frequência Relativa para N_2 e Esquema Clássico de Shewhart (Geométrica (p), onde p é a probabilidade de detecção de uma perturbação $\delta = 0.9$).

Comparando os resultados obtidos anteriormente, verificamos que à medida que *m* aumenta, a probabilidade de detecção de uma perturbação pelo esquema proposto cresce, considerando - se passada a fase de transição. E, para $\delta = 0.9$ a eficiência relativa obtida é inferior a 1 para m = 3,4,5,6.

Capítulo 3

Simulações Obtidas Segundo o Esquema Alternativo Proposto

Após ter sido calculada uma expressão para $E(N_2)$, foram realizadas as comparações entre os processos de controle referentes aos diversos delineamentos amostrais propostos, para que conclusões pudessem ser tiradas segundo as eficiências obtidas. Devido à dificuldade de calcular um valor para $E(N_2)$, repetições sucessivas de Monte Carlo foram feitas, de modo a garantir a taxa de alarmes falsos igual a 1 a cada 370 e o tamanho amostral efetivo $n_o = 4.00$, sob a hipótese de controle.

Para que fosse possível comparar os resultados obtidos pelo esquema proposto e o E. C. S, os valores de k e k_{α} foram ajustados segundo 5000 repetições de Monte Carlo, de tal forma que o intervalo de confiança ao nível de 0.95 contivesse o valor 370.

Baseado nesses dados , foram calculados os tamanhos amostrais efetivos n_o sob a hipótese de controle , referentes a cada um dos delineamentos propostos, para m=2,3,4,5,6. A Tabela 3.1 a seguir, mostra os resultados obtidos .

	n _o Efetivo	·····
m	(no,np,ng) = (04,01,10)	(no,np,ng) = (04,01,25)
2	4.02	3.99
3	3.99	3.98
4	3.98	3.97
5	4.00	3.97
6	3.99	4.02

Tabela 3.1 : Tamanhos Amostrais Efetivos

No Apêndice A , são apresentadas as tabelas com os respectivos valores de $k \ e \ k_{\alpha}$, para m = 2,3,4,5,6.

A seguir são apresentados os resultados observados e, a notação utilizada segue abaixo :

L.I.I.C. : Limite Inferior do Intervalo de Confiança ao nível de 95 %

L.S.I.C. : Limite Superior do Intervalo de Confiança ao nível de 95 %

G. L : Graus de Liberadade

E. C. S. : Esquema Clássico de Shewhart

M. P.: Método Proposto

δ	E.C.S.	L.I.I.C.	$\overline{E(N_2)}$	L.S.I.C.	E(n)
0	370.57	350.70	363.90	377.00	4.02
0.1	107.25	62.3	64.5	66.7	5.32
0.15	65.34	31.7	32.8	33.9	5.82
0.175	52.38	23.5	24.3	25.1	6.04
0.2	42.59	18.4	19.0	19.6	6.13
0.3	21.13	8.7	9.0	9.2	6.21
0.4	12.29	5.4	5.6	5.7	5.74
0.5	8.04	4.1	4.1	4.2	5.18
0.6	5.73	3.4	3.5	3.5	4.66
0.7	4.37	2.9	3.0	3.0	4.28
0.8	3.50	2.6	2.7	2.7	3.92
0.9	2.92	2.5	2.5	2.6	3.75
1.0	2.52	2.3	2.4	2.4	3.48

Tabela 3.2: $E(N_2)$ para delineamentos amostrais com m = 2 e (np , ng) = (1 , 10).

Tabela 3.3; $E(N_2)$ para delineamentos amostrais com m = 2 e (np , ng) = (1 , 25).

δ	E.C.S.	L.I.I.C.	$E(N_2)$	L.S.LC.	E(n)
0	370.57	353.50	366.50	379.70	3.99
0.1	107.25	51.7	52.5	53.3	6.74
0.15	65.34	22.2	23.0	23.7	7.90
0.175	52.38	16.8	17.4	17.9	8.18
0.2	42.59	13.0	13.4	13.8	8.46
0.3	21.13	6.9	7.1	7.3	7.58
0.4	12.29	5.3	5.5	5.6	6.46
0.5	8.04	4.3	4.4	4.5	6.21
0.6	5.73	3.9	4.0	4.1	5.86
0.7	4.37	3.6	3.6	3.7	5.78
0.8	3.50	3.2	3.3	3.4	5.90
0.9	2.92	3.0	3.1	3.2	5.93
1.0	2.52	2.9	2.9	3.0	5.92

(n_p, n_g)				
δ	(1,10)	(1,25)		
0.1	1.663	2.043		
0.15	1.992	2.841		
0.175	2.155	3.010		
0.2	2.242	3.178		
0.3	2.347	2.976		
0.4	2.195	2.234		
0.5	1.961	1.827		
0.6	1.637	1.432		
0.7	1.456	1.214		
0.8	1.296	1.061		
0.9	1.168	0.942		
1.0	1.050	0.869		

Tabela 3.4: Eficiência Relativa para delineamentos amostrais com m = 2

Figura 3.1. : Eficiência Relativa para delineamentos amostrais com m = 2.

δ	E.C.S.	L.I.I.C.	$E(N_2)$	L.S.I.C.	E(n)
0	370.57	346.40	359.70	372.90	3.99
0.1	107.25	51.1	53.0	54.9	5.53
0.15	65.34	25.7	26.6	27.5	6.15
0.175	52.38	19.4	20.0	20.6	6.25
0.2	42.59	15.3	15.8	16.3	6.18
0.3	21.13	7.6	7.8	8.0	5.92
0.4	12.29	5.2	5.3	5.5	5.32
0.5	8.04	4.1	4.2	4.3	4.78
0.6	5.73	3.5	3.6	3.7	4.34
0.7	4.37	3.1	3.2	3.2	4.07
0.8	3.50	2.8	2.9	2.9	3.76
0.9	2.92	2.6	2.7	2.7	3.56
1.0	2.52	2.4	2.5	2.5	3.38

Tabela 3.5: $E(N_2)$ para delineamentos amostrais com m=3 e(np, ng)=(1, 10)

Tabela 3.6 $E(N_2)$ para delineamentos amostrais com m = 3 e (np , ng) = (1, 25).

δ	E.C.S.	L.I.I.C.	$E(N_{\rm e})$	L.S.I.C.	E(n)
0	370.57	354.30	367.60	381.00	3.98
0.1	107.25	35.6	36.9	38.1	6.99
0.15	65.34	17.2	17.7	18.3	7.68
0.175	52.38	13.6	14.0	14.4	7.71
0.2	42.59	11.4	11.7	12.1	7.37
0.3	21.13	6.9	7.1	7.3	6.75
0.4	12.29	5.6	5.7	5.9	5.94
0.5	8.04	4.7	4.8	4.9	5.75
0.6	5.73	4.2	4.3	4.4	5.52
0.7	4.37	3.8	3.9	4.0	5.60
0.8	3.50	3.5	3.6	3.7	5.63
0.9	2.92	3.3	3.4	3.5	5.61
1.0	2.52	3.1	3.2	3.2	5.70

(n_p, n_g)				
δ	(1,10)	(1,25)		
0.1	2.036	2.907		
0.15	2.456	3.696		
0.175	2.619	3.742		
0.2	2.695	3.640		
0,3	2.701	2.976		
0.4	2.318	2.156		
0.5	1.914	1.675		
0.6	1.592	1.333		
0.7	1.366	1.121		
0.8	1.207	0.972		
0.9	1.082	0.858		
1.0	1.008	0.787		

Tabela 3.7 : Eficiência Relativa para delineamentos amostrais com m = 3

Figura 3.2 : Eficiência Relativa para delineamentos com m = 3.

		the state of the s			
δ	E.C.S.	L.I.I.C.	$\overline{E(N_2)}$	L.S.I.C.	E(n)
0	370.57	356.00	367.20	378.40	3.98
0.1	107.25	45.8	47.4	49.0	5.73
0.15	65.34	22.1	22.9	23.6	6.21
0.175	52.38	16.9	17.4	18.0	6.22
0.2	42.59	13.6	14.1	14.5	6.28
0.3	21.13	7.5	7.7	7.9	5.74
0.4	12.29	5.3	5.5	5.6	5.03
0.5	8.04	4.2	4.3	4.4	4.68
0.6	5.73	3.6	3.7	3.8	4.19
0.7	4,37	3.2	3.3	3.3	3.97
0.8	3.50	3.0	3.0	3.1	3.72
0.9	2.92	2.8	2.8	2.9	3.53
1.0	2.52	2.6	2.6	2.7	3.34

Tabela 3.8: $E(N_2)$ para delineamentos amostrais com m = 4 e (np, ng)=(1, 10)

Tabela 3.9: $E(N_2)$ para delineamentos amostrais com m = 4 e (np, ng) = (1, 25)

δ	E.C.S.	LILC.	$E(N_2)$	L.S.I.C.	E(n)
0	370.57	350.70	363.90	377.10	3.97
0.1	107.25	30.1	31.1	32.1	7.20
0.15	65.34	16.6	17.1	17.7	7.49
0.175	52,38	13.4	13.8	14.2	7.37
0.2	42.59	11.0	11.4	11.7	7.05
0.3	21.13	7.6	7.8	8.0	6.11
0.4	12.29	5.8	6.0	6.1	5.83
0.5	8.04	5.0	5.1	5,3	5.56
0.6	5.73	4.5	4.6	4.7	5.33
0.7	4.37	4.0	4.1	4.2	5.43
0.8	3.50	3.7	3.8	3.9	5.62
0.9	2.92	3.4	3.5	3.6	5.56
1.0	2.52	3.2	3.3	3.4	5.73

(n_p, n_g)			
δ	(1,10)	(1,25)	
0.1	2.263	3.448	
0.15	2.853	3.755	
0.175	3.010	3.796	
0.2	3.021	3.736	
0.3	2.744	2.709	
0.4	2.235	2.048	
0.5	1.869	1.576	
0.6	1.549	1.246	
0.7	1.324	1.066	
0.8	1.166	0.921	
0.9	1.043	0.834	
1.0	0.969	0.764	

Tabela 3.10: Eficiência Relativa para delineamentos amostrais com m=4

Figura 3.3. : Eficiência Relativa para delineamentos com m = 4.

	The second se				
δ	E.C.S.	L.I.I.C.	$E(N_2)$	L.S.I.C.	E(n)
0	370.57	354.40	368.80	381.80	4.00
0.1	107.25	40.7	42.0	43.2	5.94
0.15	65.34	20.4	21.1	21.7	6.32
0.175	52.38	16.3	16.8	17.3	6.23
0.2	42.59	12.9	13.3	13.7	6.21
0.3	21.13	7.6	7.8	8.0	5.56
0.4	12.29	5.4	5.5	5.7	5.01
0.5	8.04	4.4	4.5	4.6	4.58
0.6	5.73	3.8	3.8	3.9	4.13
0.7	4.37	3.4	3.4	3.5	3.95
0.8	3.50	3.0	3.1	3.1	3.68
0.9	2.92	2.8	2.9	3.0	3.48
1.0	2.52	2.7	2.7	2.8	3.35

Tabela 3.11 : $E(N_2)$ para delineamentos amostrais com m = 5 e (np , ng) = (1, 10)

Tabela 3.12 : $E(N_2)$ para delineamentos amostrais com m = 5 e (np , ng) = (1, 25)

δ	E.C.S.	L.I.I.C.	$E(N_2)$	L.S.I.C.	E(n)
0	370.57	349.40	362.80	376.10	3.97
0.1	107.25	28.7	29.7	30.7	7.25
0.15	65.34	16.4	16.9	17.4	6.94
0.175	52.38	13.9	14.3	14.7	6.92
0.2	42.59	11.5	11.9	12.2	6.83
0.3	21.13	7.8	8.1	8.3	5.92
0.4	12.29	6.2	6.4	6.6	5.48
0.5	8.04	5.1	5.3	5.4	5.32
0.6	5.73	4.6	4.7	4.7	5.25
0.7	4.37	4.1	4.2	4.3	5.32
0.8	3.50	3.7	3.8	3.9	5.41
0.9	2.92	3.5	3.6	3.7	5.40
1.0	2.52	3.3	3.4	3.5	5.59

Tabela 3.13: Eficiência Relativa (E.R.) para delineamentos amostrais com m = 5

Figura 3.4 : Eficiência Relativa para delineamentos com m = 5.

8	ECS	LIIC	$\overline{E(N)}$	LSIC	F(n)
	1.0.0.		$E(N_2)$	1.0.1.0.	
0	370.57	365.00	378.20	392.00	3.99
0.1	107.25	38.9	40.2	41.6	6.02
0.15	65.34	19.9	20.5	21.1	6.33
0.175	52.38	15.5	15.9	16.4	6.27
0.2	42.59	12.9	13.3	13.7	6.17
0.3	21.13	7.4	7.6	7.8	5.50
0.4	12.29	5.7	5.9	6.0	4.91
0.5	8.04	4.5	4.6	4.7	4.63
0.6	5.73	4.0	4.1	4.2	4.16
0.7	4.37	3.5	3.6	3.7	3.89
0.8	3.50	3.2	3.3	3.4	3.72
0.9	2.92	2.9	3.0	3.1	3.47
1.0	2.52	2.8	2.9	2.9	3.34

Tabela 3.14: $E(N_2)$ para delineamentos amostrais com m = 6 e (np , ng) = (1, 10)

Tabela 3.15: $E(N_2)$ para delineamentos amostrais com m = 6 e (mp , ng) = (1, 25)

δ	E.C.S.	LILC.	$\overline{E(N_2)}$	L.S.I.C.	E(n)
0	370.57	353.70	366.00	378.30	4.02
0.1	107.25	28.8	29.7	30.7	7.33
0.15	65.34	16.2	16.7	17.3	6.90
0.175	52.38	13.8	14.3	14.7	6.73
0.2	42.59	12.0	12.4	12.8	6.54
0.3	21.13	8.2	8.4	8.7	5.79
0.4	12.29	6.4	6.6	6.8	5.33
0.5	8.04	5.3	5.5	5.7	5.36
0.6	5.73	4.7	4.9	5.0	5.19
0.7	4.37	4.2	4.4	4.5	5.16
0.8	3.50	4.0	4.1	4.2	5.32
0.9	2.92	3.8	3.9	4.0	5.31
1.0	2.52	3.6	3.7	3.8	5.39

$E.R.(n_p,n_g)$				
δ	(1,10)	(1,25)		
0.1	2.668	3.611		
0.15	3.187	3.913		
0.175	3.294	3.663		
0.2	3.202	3.435		
0.3	2.780	2.515		
0,4	2.083	1.862		
0.5	1.748	1.462		
0.6	1.398	1.169		
0.7	1.214	0.993		
0.8	1.061	0.854		
0.9	0.973	0.748		
1.0	0.869	0.681		

Tabela 3.16 : Eficiência Relativa (E.R.) para delineamentos amostrais com m = 6.

Figura 3.5 : Eficiência Relativa (E. R.) para delineamentos amostrais com m = 6.

Comparando , os delineamentos para m = 2, 3, 4, 5, 6 observa -

se que à medida que *m* aumenta, a eficiência relativa referente a perturbações pequenas cresce, ou seja, a probabilidade de detecção do desvio aumenta. Assim, graficamente tem - se que :

Figura 3.6 : Eficiência Relativa (E. R.) para delineamentos amostrais propostos com (np, ng) = (1, 10).

Figura 3.7 : Eficiência Relativa (E. R.) para delineamentos amostrais propostos com (np, ng) = (1, 25).

Conclusões :

O esquema proposto para a detecção de perturbações na variância de um processo apresentou um desempenho excelente, comparado com o Esquema Clássico de Shewhart, para valores pequenos de δ , até 0.5. Para valores muito grandes de δ , acima de 0.9 o desempenho cai atingindo eficiências abaixo de 1.0.

Para a detecção de perturbações muito pequenas em σ^2 , o desempenho melhora com o aumento de m.

Os valores mais altos de eficiência são obtidos com tamanhos de amostras maiores, com picos ocorrendo para valores intermediários de δ , entre 0.1 e 0.4.

A detecção de grandes perturbações em σ pode ser feita muito rapidamente mesmo sem a aplicação de ferramental estatístico formal . Pequenas perturbações, contudo, são frequentemente mais nocivas por serem de dificil detecção.

O esquema que proposto é então muito útil nestes caos, por reduzir em até 4 vezes o tempo médio esperado entre a ocorrência e a detecção da perturbação.

Vale lembrar que tais níveis de eficiência foram obtidas mantendo se a taxa de alarmes falsos bem como os custos associados à operação rotineira do programa de controle.

Referências Bibliográficas

[1]. DUNCAN, A. J. (1986), Quality Control and Industrial Statistics, Homewood,
 Illinois: Irwin, p. 417 - 556.

[2]. JOHNSON, N. L. e KOTZ, S (1972), Continuous Univariate Distributions - 1,
Boston : Houghton Mifflin Company, p. 167, p. 261.

[3]. LEMOS, I. G. (1991), Gráficos de Controle para a Média de um Processo com Limites de Advertência e Tamanhos Amostrais Variáveis, Tese de Mestrado,
Departamento de Estatística, IMECC, UNICAMP, Campinas, SP.

[4]. MONTGOMERY, D. C. (1985), Introduction to Statistical Quality Control, John
 Willey & Sons, Inc., p. 99 - 343.

[5]. REYNOLDS, M. R., Jr, AMIN, R. W., ARNOLD, J. C. e NACHLAS, J. A. (1988), \overline{X} Charts with Variable Sampling Intervals, Technometrics, Vol. 30, No. 2, p. 181 - 192.

[6]. SILVA, G. L. (1992), Gráficos de Controle com Tamanhos Amostrais Variados
Baseados nas "m" Últimas Observações, Tese de Mestrado, Departamento de Estatística,
IMECC, UNICAMP, Campinas, SP.

 [7]. VERDI, L. A. (1991), Gráficos de Controle com Amostragem a Tempos Variáveis
 Comandados pelas "m" Últimas Observações, Tese de Mestrado, Departamento de Estatística, IMECC, UNICAMP, Campinas, SP.

Apêndice A :

Utilizando o pacote estatístico STATGRAPHICS, os valores de $k e k_a$ foram calculados segundo a distribuição $\chi^2_{(n)}$, para n = 2, 3... 150. Em seguida, foram ajustados via simulações Monte Carlo de modo que o processo o processo apresentasse em média 1 alarme falso a cada 370 inspecões e tamanho amostral efetivo n_{ρ} , sob a hipótese de controle.

Tabela A.1: Valores de $k \ e \ k_{\alpha}$ para os delineamentos amostrais propostos , tomando - se as duas últimas observações (m = 2):

(no,np,ng) :	(4,1,10)	(4,1,25)				
G. L.	k	k_a	k	k_{a}		
(no , no)	22.5771	8.3588	22.0664	11.5683		
(no, np)	17.4829	5.2562	17.0875	7.8870		
(no, ng)	32.8872	14.3989	51.3391	34.7554		
(np, np)	11.3629	2.0116	11.1059	3.7917		
(ng, ng)	40.4220	20.3315	79.7786	56.5994		
(np, ng)	27.3895	11.3979	47.4667	31.5664		

Tabela A.2 : Valores de $k \ e \ k_{\alpha}$ para os delineamentos amostrais propostos , tomando - se as três últimas observações (m = 3) :

(no,np,ng) :	(4,1,10)		(4,1,25)	
G.L.	k	k _a	k	k_a
(no, no, no)	27.0452	12.2999	28.1602	15.9181
(np, np, np)	12.7334	3.0944	13.2598	5.1428
(ng, ng, ng)	50.3500	29.8490	106.2057	80.4336
(no, no, np)	22.7065	9.3001	23.6451	12.5142
(np, np, ng)	27.0452	12.2999	48.5686	32.0238
(np, np, no)	18.0316	6.2485	18.7769	8.9709
(ng, ng, np)	39.0804	21.1388	78.1710	56.5451
(ng, ng, no)	42.8968	24.0530	81.7465	59.5566
(np , ng , no)	31.1746	15.2671	52.4314	35.1456
(no, no, ng)	35.1831	18.2116	56.1990	38.2469

İ

Tabela A.3 : Valores de $k \ e \ k_a$ para os delineamentos amostraispropostos, tomando - se as 4 últimas observações (m = 4).

(no,np, ng)		(4,1,10)		(4,1,25)
G.L.	k	k_a	k	k _a
(no,no,no,no)	34.2597	16.2299	33.7611	20.2061
(np,np,np,np)	15.3755	4.1579	15.1517	6.4317
(ng,ng,ng,ng)	65.6325	<u>39.39</u> 16	134.1165	104.3333
(no,no,no,np)	29.9522	13.2745	29.5163	16.9310
(no,no,no,ng)	42.5145	22.0823	60.9867	42.1034
(np,np,np,ng)	29.9522	13.2745	49.6955	32.8710
(np,np,np,no)	20.6711	7.2638	20.3702	10.1128
(ng,ng,ng,np)	54.2970	30.7709	107.0090	80,9380
(ng,ng,ng,no)	58.1183	33.6508	110.4351	83.8778
(no,no,np,np)	25.4495	10.2909	25.0791	13.5799
(no,no,ng,ng)	50.4294	27.8843	86.1867	63.1823
(np,np,ng,ng)	42.5145	22.0823	79.1088	57.2089
(no,no,np,ng)	38.4363	19.1636	57.2726	39.0438
(np,np,no,ng)	34.2597	16.2299	53.5069	35.9670
(ng,ng,no,np)	46.5015	24.9881	82.6623	60.1996

Tabela A.4 : Valores de $k \ e \ k_a$ para os delineamentos amostrais

propostos , tomando - se as 5 últimas observações (m = 5).

(no,np,ng)		(4,1,10)		(4,1,25)
G.L.	k	k _a	k	k_a
(no,no,no,no)	39.6950	20.1326	39.1948	24.4770
(np,np,np,np,np)	17.1685	5.2048	16.9521	7.6988
(ng,ng,ng,ng, ng)	77.6551	48.9031	161.6241	128.4109
(no,no,no,no,np)	35.5742	17.2048	35.1260	21.2732
(no,no,no,no,ng)	47.6914	25.9478	65.8417	46.1348
(np,np,np,np,no)	22.1709	8.2762	21.8916	11.2791
(np,np,np,np,ng)	31.3135	14.2581	50.9323	33.8865
(ng,ng,ng,ng,no)	70.3709	43.1955	138.4660	108.1503
(ng,ng,ng,ng,np)	66.6819	40.3354	135.1341	105.2445
(no,no,no,np,np)	31.3135	14.2581	30.9190	18.0197
(no,no,no,np,ng)	43.7404	23.0460	62.1798	43.0961
(no,no,no,ng,ng)	55.4257	31.7231	90.7971	67.1101
(np,np,np,no,no)	26.8969	11.2864	26.5580	14.6990
(np,np,np,no,ng)	35.5742	17.2048	54.7274	36.9741
(np,np,np,ng,ng)	43.7404	23.0460	80.2417	58,1743
(ng,ng,ng,np,np)	55.4257	31.7231	108.0719	81.8728
(ng,ng,ng,no,np)	59.2131	34.5996	111.4905	84.8094
(ng,ng,ng,no,no)	62.9732	37.4702	113.9606	87.7414
(np,np,ng,ng,no)	47.6914	25.9478	83.7737	61.1607
(np,np,no,no,ng)	39.6950	20.1326	58.4672	40.0432
(ng,ng,no,no,np)	51.5822	28.8395	87.2959	64.1390

(no,np,ng)		(4,1,10)		(4,1,5)
G.L.	Į-		k	k_a
10,no,no,no,no,no)	45.1314	24.0675	44.5407	28.6906
ip,np,np,np,np,np)	18.9708	6.2522	18.7225	8.9128
ng,ng,ng,ng,ng,ng)	89.7342	58.5150	189.0135	152.3816
ю,по,по,по,по,пр)	41.1161	21.1516	40.5779	25,5361
no,no,no,no,no,ng)	52.9729	29.8670	70.7620	50.1667
p,np,np,np,np,no)	23.8865	9.3057	23.5767	12.4331
np,np,np,np,np,ng)	32.7985	15.2763	52.2796	34.9179
ng,ng,ng,ng,ng,no)	82.5908	52.8164	166.1698	132.2560
ng,ng,ng,ng,ng,np)	78.9783	49.9628	162.8906	129.3726
10,n0,n0,n0,np,np)	37.0158	18.2226	36.5314	22.3460
no,no,no,no,np,ng)	49.0702	26.9716	67.1308	47.1446
no,no,no,no,ng,ng)	60.5645	35.6348	95.5382	71.0111
ip,np,np,np,no,no)	28.4540	12.3073	28.0816	15.8150
np,np,np,np,no,ng)	37.0158	18.2226	56.0363	37.9991
np,np,np,np,ng,ng)	45.1313	24.0675	81.5098	59.1707
ng,ng,ng,ng,np,np)	68.0210	41.3794	136.3880	106.2134
ng,ng,ng,ng,no,np)	71.7005	44.2450	139.7245	108.4498
ng,ng,ng,ng,no,no)	75.3548	47.1058	143.0555	112.0199
ng,ng,ng,no,no,no)	68.0210	41.3794	119.5357	91.67553
ng,ng,ng,np,np,np)	56.7795	32.7544	109.3253	82.2680
ng,ng,ng,no,no,np)	64.3095	38.5098	116.1428	88.7177
ng,ng,ng,np,np,no)	60.5645	35.6348	112.7405	85.7934
no,no,no,np,np,np)	32.7985	15.2763	32.3692	19.1106
no,no,no,np,np,ng)	45.1313	24.0675	63.4678	44.1104
no,no,no,ng,ng,np)	56.7795	32.7544	92.0561	68.0989
np,np,np,ng,ng,no)	49.0702	26.9716	85.0419	62.1543
np,np,np,no,no,ng)	41.1161	21.1516	59.7719	41.0624
no,no,np,np,ng,ng)	52.9729	29.8670	88.5597	65.1302

Tabela A.5 : Valores de $k \ e \ k_a$ para os delineamentos amostrais

propostos, tomando - se as 6 últimas observações (m = 6).

Apêndice B

As simulações via Monte Carlo foram feitas em computador

486 DX-33 com co-processador aritmético e SUN-WORKSTATION. As linguagens de programação foram Turbo Basic e Pascal, respectivamente.

O programa apresentado a seguir, simula um processo de

controle no computador 486 DX-33 ,onde os delineamentos amostrais considerados são :

1	m=2	$(n_p, n_g) = (01, 25)$	(4	$(n_p, n_g) = (01, 1)$	10)

IM FREQN2 (200) p = 1 : No = 04 [= 0.0 ; Sigma = 1

```
VPUT "ENTRE COM O VALOR DA PERTURBAÇÃO \Rightarrow "; DELTA VPUT "ENTRE COM O VALOR DA AMOSTRA GRANDE \Rightarrow "; Ng
```

```
ATORDELTA= (1 + DELTA)^2
```

```
^{7}Ng = 25 THEN
 DIM K(50), Ka(50)
                  : K(2) = 11.0158
 Ka(2) = 4.10336
 Ka(5) = 8.53732 : K(5) = 16.9519
 Ka(8) = 12.5198 : K(8) = 21.8913
 Ka(26) = 34.1712
                 : K(26) = 47.0900
 Ka(29) = 37.6222 :
                     K(29) = 50.9316
 Ka(50) = 61.4242 :
                     K(50) = 79.1419
OR I=1 TO 50
K(I) = 1.0008 * K(I)
Ka(I) = 0.92 * Ka(I)
EXT I
```


LSEIF Ng = 10 THEN		
DIM K (20), Ka (20)	
Ka (2) = 2.0116	:	K(2) = 11.3629
Ka (5) = 5.2562	:	K(5) = 17.4829
Ka(8) = 8.3588	:	K(8) = 22.5771
Ka (11) = 11.3979	;	K(11) = 27.3895
Ka (14) = 14.3989	:	K (14) = 32.8872
Ka (20) = 20.3315	:	K(20) = 40.4220

ND IF

\$ = " ##### N1 = ##### [####.# #####.#] Nmed = ##.## "

ANDOMIZE

RINT 1INICIA = 50

'Número de inspeções antes de ocorrer a perturbação

' COMEÇA A RODAR O PROCESSO

'Rodadas de inicialização do processo, com delta = 0

-) $\mathbf{IMC} = \mathbf{IMC} + 1$
 - D2 = 1 'Fator delta

	' Gera a primeira amostra do ciclo
9 N1 = 0	'Número de amostragens já realizadas
N = No	' Tamanho da amostra igual ao tamanho de referência
GOSUB 1000	'Gera uma amostra de tamanho N, gerando Y1
N1 = N1 + 1	
Y0 = Y1	
N0 = N	' Tamanho da amostra anterior : a primeira do ciclo
00 : GOSUB 1000)
N1 = N1 + 1	
Y = Y0 + Y1	
NGL = N0 + 1	N 'Número de graus de liberdade da estatística de controle Y
Y0 = Y1	' Desloca a janela uma
N0 = N	posição adiante
	···· · · · · · · · · · · · · · · · · ·
$FY \leq Ka(NGL)$	THEN
N = Np	
LSEIF $Y \leq K$ (NO	乱) THEN

N = Ng LSE GOTO 80 ND IF

³N1 < N1INICIA THEN GOTO 100

N2MED = SOMAN2 / IMC NMED = SOMAN / SOMAN2

'Encerrada a etapa de inicialização ' Passa para a etapa seguinte : Y0, N0, N 'Nota : soman = acumulador dos tamanhos amostrais após a perturbação 2 = FATORDELTA' Ocorre a perturbação 'Número de amostragens já realizadas após a perturbação 2 = 000 GOSUB 1000 Y = Y0 + Y1NGL = N0 + NY0 = Y1' Desloca a janela uma para a direita N0 = N⁹ Y < Ka (NGL) THEN N = NpLSEIF Y < K (NGL) THEN N = NgLSE **GOTO 300** ND IF OMAN = SOMAN + N**ЮТО 200** 'Encerra uma rodada Monte Carlo : imprime N2 e N2med e decide se pára ou não 00 FREQN2 (N2) = FREQN2 (N2) + 1 IF N2 > N2MAX THEN N2MAX = N2 SOMAN2 = SOMAN2 + N2SOMAN22 = SOMAN22 + N2 * N2

' Tamanho médio da amostra

'IMC = 1 THEN 240
PNMED = SQR ((SOMAN2 - IMC * N2MED * N2MED) / (IMC * (IMC - 1)))
2I = N2MED - 2 * DPNMED ' Limite inferior para o intervalo de confiança de 95 % para E (N2)
2S = N2MED + 2 * DPNMED ' Limite superior para o intervalo de confiança de 95 % para E (N2)

- 10 PRINT USING F\$; IMC, N2, N2I, N2MED, N2S, NMED
- 50 A\$ = INKEY\$ IF LEN (A\$) = 0 AND IMC < 5000 THEN 50 FOR I = 1 TO N2MAX PROB = FREQN2 (I) / IMC PRINT USING " ### ###### #.##### "; I, FREQN2(I), PROB NEXT I
- 30 END