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Resumo

Neste trabalho estudamos teorias de calibre em variedades de dimensão alta, com ênfase em varieda-
des Calabi-Yau, G2 e Spin(7). Começamos desenvolvendo a teoria de conexões em fibrados e seus grupos
de holonomia, culminando com o teorema de Berger que classifica as possíveis holonomias de variedades
Riemannianas e o teorema de Wang relacionando a holonomia à existência de espinores paralelos. A
seguir, descrevemos em mais detalhes as estruturas geométricas resultantes da redução da holonomia,
incluindo aspectos topológicos (homologia e grupo fundamental) e geométricos (curvatura). No último
capítulo desenvolvemos o formalismo de teoria de calibre em dimensão quatro: introduzimos o espaço de
moduli de instantons e realizamos as reduções dimensionais das equações de anti-autodualidade. Com
esta motivação procedemos a estudar teorias de calibre em variedades de holonomia especial e também
algumas de suas reduções dimensionais.

Palavras-chave: Grupos de Holonomia, Teoria de Calibre, Variedades Calabi-Yau, Variedades G2,
Variedades Spin(7).
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Abstract

In this work we study gauge theory on high dimensional manifolds with emphasis on Calabi-Yau,
G2 and Spin(7) manifolds. We start by developing the theory of connections on fiber bundles and their
associated holonomy groups, culminating with Berger’s theorem classifying the holonomies of RIeman-
nian manifolds and Wang’s theorem relating the holonomy groups to the existence of parallel spinors.
We proceed to describe in more detail the geometric structures resulting from holonomy reduction, in-
cluding topological (homology and fundamental group) and geometric (curvature) aspects. In the last
chapter we develop the formalism of gauge theory in dimension four: we introduce the moduli space
of instantons and the dimensional reductions of the anti-selfduality equations. With this motivation
in mind, we proceed to study gauge theories on manifolds of special holonomy and also some of their
dimensional reductions.

Keywords: Holonomy Groups, Gauge Theory, Calabi-Yau manifolds, G2-manifolds, Spin(7)-manifolds.
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Introdução

Teoria de calibre é o estudo de conexões em fibrados principais. O seu sucesso na descrição de
invariantes refinados de variedades de dimenão baixa - por exemplo, os polinômios de Donaldson de 4-
variedades, e os grupos de homologia de Floer de 3-variedades - levou os matemáticos a inquirir que tipo
de estrutura é necessária em dimensões mais altas para que uma teoria similar seja viável. O trabalho de
diversos matemáticos como Donaldson, Thomas, Tian, Atiyah, Hitchin e Witten levou a uma resposta
satisfatória - as variedades precisam possuir holonomia especial, no sentido da classificação de Berger
de grupos de holonomia. O caso de variedades Calabi-Yau é particularmente bem comportado, e o
trabalho de Donaldson e Thomas mostra que praticamente todas as ideias e construções da teoria em
baixas dimensões podem ser transportadas para o contexto de variedades Calabi-Yau.

O objetivo deste trabalho é descrever os fundamentos das teorias de calibre em altas dimensões, e
mostrar a interrelação entre as teorias definidas em variedades de holonomia especial através de reduções
dimensionais das equações de anti-autodualidade generalizadas.

No capítulo 1 descrevemos em detalhes a teoria de conexões em fibrados (principais e vetorias) e dos
seus grupos de holonomia. O objetivo é enunciar o teorema de Berger sobre a classificação dos grupos
de holonomia da conexão de Levi-Civita de uma variedade Riemanniana e o teorema de Wang sobre as
geometrias que admitem espinores paralelos. No caminho demonstramos diversos teoremas que eluci-
dam a natureza geométrica dos grupos de holonomia: o teorema de Ambrose-Singer e outros resultados
relacionados, que estabelecem que a holonomia de uma conexão é completamente determinada pela
curvatura e que a curvatura é uma medida infinitesimal da holonomia; o teorema da redução, que deter-
mina a equivalência entre o problema de classificação de holonomias e a classificação de G-estruturas;
provamos também a correspondência entre tensores fixos pela holonomia e campos tensoriais paralelos;
e finalmente mostramos que a classificação de holonomias de espaços simétricos pode ser determinada
através da teoria de representação de álgebras de Lie reais. Ao fim do capítulo mostramos como os grupos
de holonomia podem fornecer informação topológica a respeito de variedades Riemannianas compactas,
em particular no caso em que a métrica é Ricci-plana.

No capítulo 2 descrevemos em maiores detalhes algumas das geometrias descritas pelo teorema de
Berger. Nossa intenção final é focar nas variedades de holonomia especial - Calabi-Yau (holonomia
SU(n)), G2 e Spin(7). Para isso, começamos descrevendo a geometria de variedades complexas, com
ênfase no estudo de variedades Kähler. Mostramos como a estrutura complexa determina uma de-
composição do espaço tangente complexificado, e consequentemente das álgebras tensorial e exterior.
Descrevemos brevemente algumas propriedades do tensor de curvatura de variedades Kähler, e num
apêndice desenvolvemos a teoria de Hodge para estas variedades. A seguir, explicamos o teorema de
Calabi-Yau que garante a existência de variedades Kähler compactas com métricas Ricci-planas. Em
seguida explicamos brevemente a teoria de subvariedades lagrangianas especiais e o teorema de McLean
sobre deformações destas estruturas, e mencionamos algumas propriedades das superfícies K3, que
constituem a família mais simples de variedades Calabi-Yau não-triviais (compactas e com holonomia
SU(2)). Terminamos o capítulo explicando um pouco sobre a geometria de variedades G2 e Spin(7),
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em particular como certos “operadores de Hodge generalizados” definidos pelas respectivas formas de
calibração fornecem uma decomposição específica da álgebra exterior.

Começamos o capítulo 3 descrevendo teorias de calibre em dimensão 4. Apresentamos a equação
de anti-autodualidade e mostramos que o espaço de moduli de instantons admite uma descrição local
em termos da cohomologia de um certo complexo. Esta é a base para a teoria de Donaldson, que
define invariantes da estrutura suave da 4-variedade em termos de invariantes topológicos do espaço de
moduli. A seguir, efetuamos as reduções dimensionais das equações de anti-autodualidade para dimensão
3 (equações de Bogomol’nyi), dimensão 2 (equações de Hitchin) e dimensão 1 (equações de Nahm). A
discussão de teorias de calibre em baixa dimensão motiva a questão de qual tipo de estrutura deve-se
exigir de uma variedade de dimensão complexa 4. Essa questão foi abordada e resolvida por Donaldson
e Thomas [7], e a resposta é que a variedade deve ser Calabi-Yau (i.e., ter holonomia contida em SU(4)).
Isso nos motiva a introduzir uma teoria de calibre em variedades Calabi-Yau como sendo a generalização
correta das ideias previamente discutidas para o contexto complexo. Em geral, pode-se definir uma
equação de anti-autodualidade para cada uma das três geometrias especiais usando suas respectivas
formas de calibração, e neste sentido pode-se estudar teorias de calibre em variedades de holonomia
especial. Por fim, realizamos algumas reduções dimensionais destas equações de instantons generalizadas,
e mostramos que os resultados por vezes se conectam com outros aspectos de teorias de calibre, como
o estudo de fibrados holomorfos estáveis sobre variedades Kähler [2] (através da correspondência de
Hitchin-Kobayashi [33]) e uma certa versão não-abeliana das equações de Seiberg-Witten [34].

Deve-se mencionar que, até onde sabemos, este é o primeiro trabalho a derivar as equações de Kähler-
instantons perturbadas (3.5.11) a partir da redução dimensional de um G2-instanton. Este resultado
mostra claramente a conexão existente entre holonomia excepcional e geometria complexa no contexto de
teorias de calibre em dimensões altas, um fato que é muitas vezes mencionado mas não explicitamente
mostrado na literatura. As reduções dimensionais de um Spin(7)-instanton a um G2-instanton e de
um Spin(7)-instanton a uma variedade K3 foram primeiramente apresentadas no trabalho de B. Jurke
[18], e a redução dimensional de um Calabi-Yau instanton em dimensão complexa 4 a um Calabi-Yau
instanton em dimensão complexa 3 apareceu originalmente no artigo de Singer et al. [2]. Deve-se notar,
contudo, que vários destes resultados já eram conhecidos na literatura ao menos na forma de “folclore”,
como pode ser visto por exemplo no artigo de Donaldson e Thomas [7].
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Chapter 1

Differential Geometry

1.1 Principal Bundles and Connections

In what follows, M will denote a n-dimensional smooth manifold.

Definition 1.1.1. A (smooth) principal G-bundle is a triple (P,M,G) where P and M are smooth
manifolds and G a Lie group, satisfying the following:

1. There is a smooth, free (right) action of G on P.

2. There is a smooth projection map π : P →M satisfying ∀p ∈ P , g ∈ G, π(pg) = π(p). Therefore, π
is a fibration whose fibers π−1(m) are the orbits of the action, so that each of them is diffeomorphic
to G.

3. There is an open covering {Uα} of M that trivializes P ; this means that we have diffeomorphisms
φα : π−1(Uα) → Uα × G such that p1 ◦ φα = π, where p1 is projection in the first factor. The
functions φα are called local trivializations.

It follows from 2. that M ∼= P/G as smooth manifolds. Also, we can write φα = (π, gα) and
for each pair of neighborhoods Uα, Uβ with non-trivial intersection we can define transition functions
gαβ = gα ◦ g−1

β : Uα ∩ Uβ → G. They satisfy the cocycle condition:

gαβ(x)gβγ(x)gγα(x) = e (1.1.1)

These functions measure how the bundle “twists” between neighborhoods; this can be seen from the
fact that, if gαβ(x) = e ∀x ∈ Uα ∩ Uβ, then gα = gβ in Uα ∩ Uβ and in fact Uα ∪ Uβ also trivializes the
bundle. Thus, the transition functions “glue together” the twists of the bundle.

From this intuitive picture, it should come as no surprise that, given a set of neighborhoods Uα of
M and functions gαβ : Uα ∩ Uβ → G, there is a unique (up to isomorphism) G-bundle P → M with
these functions as transition functions. This is constructed in the obvious way: one takes the union of
all Uα ×G and quotient by a relation which identifies (x, g) ∼ (x, gαβ(x)g) whenever x ∈ Uα ∩ Uβ. The
fact that this is an equivalence relation follows from the cocycle condition. Also, the projection is the
obvious one, and one also gets a free right action from right multiplication in the G factors.

We should also mention that if g̃αβ is a new set of transition functions related to the old ones by

g̃αβ = hαgαβh
−1
β (1.1.2)
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(for functions hα : Uα → G, hβ : Uβ → G), then they give rise to a principal bundle isomorphic to P . In
this case, we say the transition functions differ by a coboundary.

The reason for this terminology is that, as we explain in appendix A.1, the space of cocycles modulo
coboundaries gives rise to the first Čech cohomology group1 of M associated to the covering {Uα}, with
coefficients in G. What we have shown is that isomorphism classes of principal G-bundles over M with
the given trivializing neighborhoods are in bijection with this group. For an illustration on how Čech
cohomology can give information on the geometry of principal bundles, see appendix A.1.

Definition 1.1.2. A (rank k) vector bundle over M is a manifold E together with a projection π : E →
M such that:

1. For every x ∈M , π−1(x) ∼= R
k

2. There is a covering {Uα} by open sets and isomorphisms φα : π−1(Uα) → Uα × R
k. The functions

φα are called local trivializations.

In this definition, M is called the base of the bundle, Ex = π−1(x) the fiber over x and E the total
space of the bundle. We also usually identify Ex

∼= V for a k-dimensional vector space V , usually called
the typical fiber.

As a trivial example, given a vector space V we can form the trivial vector bundle M × V . The
projection in this case is just the usual projection on M . Non-trivial examples are given by the tangent
and cotangent bundle of M , as well as all the other tensor bundles and bundles of differential k-forms;
we denote this last one by Ωk(M).

Another important example is the following: Let f : M → N be a smooth map between smooth
manifolds M and N , and let E π

→ N be a vector bundle. The pullback bundle f ∗E over M is defined
to be the set {(m, e) ∈M × E; π(e) = f(m)}. One endows this with the induced smooth structure, and
with the projection π′(m, e) = m it has a natural vector bundle structure: if the local trivialzations of
E with respect to a covering Uα of N are given by φα : π−1(Uα) → Uα × R

k, then with respect to the
covering f−1(Uα) of M the local trivializations of f ∗E are defined by:

φ′
α(m, e) = (m, π2(φα(e)))

where π2 : Uα × R
k → R

k is the projection onto the second factor. Notice that the typical fiber of f ∗E
is R

k, the same as E. Also, we have an induced map f̃ : f ∗E → E given by π ◦ f̃ = f ◦ π′.
Given a rank k vector bundle, one can form the frame bundle which is a principal bundle with

structure group GL(V ): the fiber over a point x is simply the set of all basis of the vector space Vx at
that point, or equivalently, the set of isomorphisms between Vx and R

k. Conversely, given a principal
G-bundle P π

→ M and a representation ρ : G → GL(k) we can form a vector bundle ρ(P ) with typical
fiber V isomorphic to R

k by the following procedure: let G act on P × V in the following manner:
(p, v).g = (pg, ρ(g−1)v). This action is clearly free since (pg, ρ(g)−1v) = (p, v) ⇒ pg = p ⇒ g = e, since
the action of G on P is free. The quotient manifold ρ(P ) := P × V/G inherits a natural vector bundle
structure: the projection map defined by π̄([p, v]) = π(p) is well-defined, because π̄([pg, ρ(g)−1v]) =
π(pg) = π(p) = π̄([p, v]). Also, if we fix a p ∈ Px, the map v 7→ [p, v] defines an isomorphism between
V and the fiber ρ(P )x. An example that will appear often in this work is the adjoint bundle (often
denoted by Ad(P ) or simply by g) associated to the adjoint representation Ad : G→ GL(g) of G on its
Lie algebra g.

Given a vector bundle E → M with typical fiber V , we can also form other vector bundles over
the same base by performing standard operations on V : E∗ is the bundle with typical fiber V ∗, and

1Actually, this space is not really a group, but only a pointed set.
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End(E) the bundle with fiber End(V ). Given another vector bundle F → M we can also form E ⊕ F
and E ⊗ F . In particular, if E = Ωk(M), then we will denote its tensor product with a trivial bundle
with fiber V by Ωk(M,V ).

Definition 1.1.3. A connection on a principal G-bundle P → M is a smooth distribution H ⊂ TP of
"‘horizontal spaces"’ such that:

1. ∀p ∈ P , TpP = Hp ⊕ Vp, where Vp = Ker(dπp) is the "‘vertical space"’ at p.

2. The distribution is equivariant with respect to the G-action: Hpg = R∗
gHp.

In fact, the connection H is a vector subbundle of TP , and it is often useful to think of it that way.
Also, the the differential of the projection dπp induces an isomorphism Hp

∼= Tπ(p)M , which justifies the
terminology “horizontal space” for Hp.

An important observation is that Vp ∼= g as vector spaces (g is the Lie algebra of G). The isomorphism
is given by taking the differential of the map p : G→ P , p(g) = pg at the identity of G, and restricting
the codomain:

dpe|Vp
: g → Vp (1.1.3)

Notice that Vp = Im(dpe), since the action sends fibers to fibers.
Let us show that this is indeed an isomorphism. First of all, it is clearly a linear mapping. Now

suppose that dpe(A) = 0. This is the same as d
dt
p.exp(tA) = 0, which implies p.exp(tA) = p, and since

the action is free, we have that exp(tA) = e ⇒ A = 0. This proves injectivity, and surjectivity follows
from the fact that the dimensions coincide (recall the typical fiber is isomorphic to G). It remains to
show that dpe commutes with the bracket. We write xt = exp(tX), and we will use the following formula
for the bracket of vector fields X and Y :

[X, Y ] = lim
t→0

1

t
(Y −Rxt

Y ) (1.1.4)

Now it is easy to see that (Rxt
dpeB)p = Rxt

d(p(xt)
−1)e(Ye) = dpe(ad(x

−1
t )Ye). Thus:

[dpeA, dpeB] = lim
t→0

1

t
(dpeBe − dpe(ad(x

−1
t )Be)

= dpe([A,B]e) = (dp[A,B])p

(1.1.5)

Therefore, we can define the connection 1-form ω : TP → g to be the element of Ω1(P, g) that
restricts fiberwise to ωp = dp−1

e : TpP → g. Notice that ω(v) = 0 if v is horizontal (i.e., lies in H).
Now, define the Maurer-Cartan form to be the element ωMC ∈ Ω1(G, g) obtained from the identity

map in TeG ∼= g by left translation.
The connection 1-form ω has the following properties:

1. p∗ω = ωMC

2. g∗ωpg = Ad(g−1)ωp
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Proof. The first formula follows directly from from the definitions: (p∗ω)e(X) = ωp(dpe(X)) = X =
ωMC
e (X). In general:

(p∗ω)g(X) = ωpg(dpgX)

= ωpg(d(p ◦ Lg ◦ L
−1
g )gX)

= ((p ◦ Lg)
∗ω)e(dL

−1
g X)

= (L−1
g )∗((pg)∗ω)e(X)

= (L−1
g )∗ωMC

e (X)

= ωMC
g (X)

In the second formula, both sides vanish when applied to horizontal vectors. So it suffices to check
on vertical vectors; any such vector in Vp is of the form dpe(X) for some X ∈ g. The left hand side is
then

ωpg(dgp ◦ dpe(X)) = d(pg)−1
e (dgp ◦ dpe(X))

= d(p ◦ Lg)
−1
e (dgp ◦ dpe(X))

= dLg−1 ◦ dp−1
e ◦ dgp ◦ dpe(X)

= Ad(g−1)(X)

since Lg−1 ◦ p−1 ◦ g ◦ p(h) = Cg−1(h). On the other hand:

Ad(g−1ωp(dpe(X)) = Ad(g−1)(dp)−1
e dpe(X) = Ad(g−1)(X)

Conversely, every form satisfying these two properties defines a connection in P (one simply defines
Hp = Ker(ωp), where we see ωp as a map from TpP to g). So we will use both definitions of a connection
interchangeably.

A fact that is often important is that we can also see the connection as a 1-form on M with values
in the adjoint bundle Ad(P ). This is due to the fact that the connection 1-form is Ad-invariant, so that
it descends to the adjoint bundle via the general construction of an associated principal bundle.

Every principal bundle can be given a connection. We sketch a proof of this fact. The first thing to
notice is that a trivial bundle has a natural connection - namely, the distribution given by the tangent
spaces of the base. Then we can define connections in each trivializing chart of a general bundle. Now,
given two connections ω1 and ω2 in P , their difference ω1 − ω2 = φ is also an Ad-equivariant element
of Ω1(P, g); also, φ vanishes on the vertical spaces (which are of course the same for both ω1 and ω2).
The space of forms with this property can be identified with Ω1(M) ⊗ Ad(P ) via π∗. The space of
connections is then an affine space modelled in Ω1(M)⊗ Ad(P ).

So, in each trivializing chart Uα one can define a connection Aα, and by gluing these together using a
partition of unity {ξα} subordinate to the trivializing cover, one gets a connection A =

∑
ξαAα defined

in the whole bundle.
If P → M is a principal bundle and f : N → M is a continuous map, we can define the pull-back

bundle f ∗P over N in the same way we did for vector bundles: it is just the subbundle of N ×P defined
by f ∗P = {(n, p) ∈ N × P ; f(n) = π(p)}. The projection is the obvious one, and the action is given by
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(n, p)g = (n, pg), ∀g ∈ G. We also get an induced mapping f̃ : f ∗P → P in the same way as for vector
bundles, which allows us to identify the fibers of f ∗P with the fibers of P .

A connection ω in P induces a connection f ∗ω in the pull-back bundle f ∗P . This implies, of course,
that a horizontal distribution on P pulls-back to a horizontal distribution on f ∗P .

We have mentioned before that the connection induces an isomorphism between the horizontal sub-
space Hp and Tπ(p)M . In fact, we have an isomorphism of bundles H ∼= π∗(TM) over P .

A useful consequence of these facts is that we can lift paths on M to horizontal paths on P :

Proposition 1.1.4. Given a principal bundle P →M with a connection H, a point x ∈M and a curve
γ : [0, 1] → M with γ(0) = x, then for every p ∈ π−1(x), there is a unique curve γ̃ : [0, 1] → P with
γ̃(0) = p and γ̃′(t) ∈ Hγ̃(t).

Proof. The pullback of P by γ is a principal bundle γ∗P over [0, 1]. The connection determines a unique
horizontal vector field on γ∗P that projects to d/dt on [0, 1]. This field integrates to a unique horizontal
curve on γ∗P with the given initial condition, and upon identification between the fibers of P and γ∗P ,
we obtain the required curve on P . on γ∗P .

This gives a geometric interpretation of the connection: first, notice that the lifting of paths is
equivariant with respect to the action: the lift of γ.g is just γ̃.g. Therefore, given a smooth curve γ in
M between x and y the connection determines a G-equivariant isomorphism between the fibers π−1(x)
and π−1(y).

Let us now turn to connections on vector bundles:

Definition 1.1.5. A connection (or a covariant derivative) on a vector bundle E → M is a R-linear
map ∇ : Γ(E) → Γ(E)⊗ Ω1(M) satisfying ∇(fs) = df ⊗ s+ f∇s for every f ∈ C∞(M) and s ∈ Γ(E).

We can see the connection also as a map ∇ : Γ(TM)×Γ(E) → Γ(E) that is R-linear in sections and
C∞(M)-linear in the vector entry. So the connection is a generalization of the usual covariant derivative
in Riemannian geometry to arbitrary vector bundles, not just the tangent bundle.

The same argument used in Riemannian geometry to show that the Christoffel symbols are anti-
symmetric shows that locally a connection can be written as ∇ = d+A, where A ∈ Ω1(M ; g). This can
also be seen from a fact we have mentioned before - that the space of connections is an a affine space
modelled on Ω1(M ;Ad(E)), and we are considering d to be (locally) a flat connection.

The relation between connections in principal and vector bundles goes as follows: given a connection
one-form ω in a principal bundle P and a representation ρ : G → GL(V ), we can form the associated
bundle P ×G V whose sections are of the form σ(x) = [p(x), v(x)]. Given a vector field T ∈ TM we
define:

(∇σ)x(Tx) = [p(x), dρe(ωx(T̃x))(v(x)) + dvx(Tx)] (1.1.6)

where T̃x is the horizontal lift of Tx.
Intuitively, this means that a horizontal distribution on a principal bundleH ⊂ TP induces horizontal

distributions in every associated vector bundle in a natural way. On the other hand, a covariant derivative
in a vector bundle E gives rise to a natural notion of horizontal distribution on its frame bundle F (E),
namely, the distribution generated by parallel sections.
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1.1.1 Curvature

We will start by giving a geometric definition of the curvature of a connection. Let H ⊂ TP be a
connection on the principal bundle P →M . Now, we have seen that we can always lift a smooth curve
in M to a (unique) horizontal curve in P . The curvature of the connection will measure the obstruction
to such a lift for higher-dimensional submanifolds.

To see how this goes, choose a point x ∈ M and vectors v, w in TxM , and consider a coordinate
system (x1, . . . , xn) around x such that ∂

∂xi
|x = vi. We take a rectangle [0, ǫ]× [0, ǫ] in the (x1, x2)-space

and lift its image to P in a counterclockwise fashion, in such a way that the final point of one segment
is the initial point for the lifting of the next. If p is the initial point of the first segment lifted, it is clear
that the endpoint is in the same fiber, but is not necessarily equal to p. Thus, it is of the form pg(ǫ) for
some g(ǫ) ∈ G. It is also clear that, if ǫ is sufficiently small, then g(ǫ) is close enough to the identity
so that it is inside the neighborhood of e where exp : g → G is a diffeomorphism. Therefore, it makes
sense to define:

Fp(v, w) = −limǫ→0
log(g(ǫ))

ǫ2
(1.1.7)

Theorem 1.1.6. The element [p, Fp(v, w)] in Ad(P ) is linear and skew-symmetric with respect to v and
w. We can then identify F as an element of Ω2(M)⊗Ad(P ), called the curvature of the connection H.

So we can understand F as an infinitesimal measure of the holonomy of the connection (see section
1.2).

Another way of understanding this is by means of the Lie bracket of vector fields; in fact, one can
prove that F is the obstruction for the horizontal distribution H to be integrable. Let us sketch how this
definition works, as it is more useful in practice2 and connects well with the theory for vector bundles.

Start with a vector field X on TM . From the isomorphism π∗(TM) ∼= D we find that there is a
unique section h(X) ∈ Γ(H) that projects down to X (this is, of course, just the horizontal lift of X).
It is easy to see that the quantity

F̃ (X, Y ) = [h(X), h(Y )]− h([X, Y ]) (1.1.8)

defined for vector fields X and Y , is linear and anti-symmetric in X and Y . Also, since Γ(TM) and
H are isomorphic as Lie algebras (remember that H is involutive), we have that dπ([h(X), h(Y )]) =
[X, Y ] = dπ(h([X, Y ])), so that F̃ (X, Y ) ∈ ker(dπ) ∼= g. So we can see F̃ (X, Y ) as a (G-invariant)
section of P × g → P , which of course corresponds to a section F of Λ2T ∗M ⊗ Ad(P ), i.e., an element
of Ω2(M ;Ad(P )). This is the curvature of the connection H. It satisfies:

π̄∗(F (X, Y )) = F̃ (X, Y ) (1.1.9)

where π̄ : P × g → Ad(P ) is the projection into the orbits of the G-action.
For vector bundles, it is more useful to work with the curvature in terms of the covariant derivative

∇ : Γ(E) → Γ(E) ⊗ Ω1(M). Locally we can write ∇ = d + A for A a g-valued 1-form. We define a
g-valued 2-form by F (v, w) = [∇v,∇w]−∇[v,w]. Notice that this agrees with the statement above that
the curvature should measure the non-integrability of the horizontal distribution. In local coordinates

2for the proof of equivalence between the definitions, see [9].
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on M , we can write Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. Indeed, choosing a coordinate basis {∂µ} for TM
and a local frame {ei} of E, we have:

Fµνei = (∇µ∇ν −∇ν∇µ)ei

= ∇µ(A
j
νiej)−∇ν(A

j
µiej)

= ∂µA
j
νiej + Ak

µjA
j
νiek − ∂µA

j
νiej − Ak

νjA
j
µiek

= (∂µA
j
νi − Aj

νkA
k
µi + Aj

µkA
k
νi − ∂µA

j
νi)ej

(1.1.10)

which is the previous formula in matrix notation.
The covariant exterior differential is defined to be the extension dnabla of ∇ to all E-valued forms

using linearity and the Leibniz rule (i.e., d∇(ω ∧ η) = (dω) ∧ η + (−1)pω ∧ d∇η, where ω ∈ Ωp(M) and
η ∈ Ω(M ;E)).

This operator is especially useful in the case when E = Ad(P ) since it allows us to express the global
2-form F in terms of the covariant derivative: just notice that unlike the ordinary exterior differential,
in general d2∇ 6= 0. In fact, we have the following:

Proposition 1.1.7. If η ∈ Γ(E ⊗ ΛkT ∗M), then d2∇η = F ∧ η.

Proof. We work in local coordinates {xµ} on M . Write η = sI ⊗ dxI for I an index set, and sI section
on E. Then:

d2∇η = d∇(∇µsI⊗dx
µ ∧ dxI)

= ∇ν∇µsI ⊗ dxν ∧ dxµ ∧ dxI

=
1

2
[∇ν ,∇µ]sI ⊗ dxν ∧ dxµ ∧ dxI

= F ∧ η

(1.1.11)

where we used the fact that, since {∂µ} is a coordinate basis for the tangent spaces, [∂µ, ∂ν ] = 0.

In differential forms notation, we can write F = dA+A∧A, where the wedge acts as the commutator
in the Lie algebra part and as the usual wedge product in the 1-form part. This is just a compressed
version of (1.1.10), but it can also be proved directly from the local formula d∇ = d+ A:

d2∇η = d∇(dη + A ∧ η)

= A ∧ dη + dA ∧ η − A ∧ dη + A ∧ A ∧ η

= (dA+ A ∧ A) ∧ η

for every E-valued form η.
To finish this section, we prove the Bianchi identity :

d∇F = 0 (1.1.12)

Proof. Let η be any E-valued form. Then d3∇η = d∇(d
2
∇η) = d∇(F ∧ η) = d∇F ∧ η + F ∧ d∇η. On the

other hand, d3∇η = d2∇(d∇η) = F ∧ d∇η. Because this is true for any η, we must have d∇F = 0.
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1.2 Holonomy Groups

Let E →M be a rank k vector bundle endowed with a connection ∇, and fix points x, y ∈M . For
each curve γ such that γ(0) = x, γ(1) = y, and each v ∈ ExM we can consider the parallel transport
equation:

(γ∗∇)γ′(t)s ◦ γ(t) = 0 (1.2.1)

with s : U → E a section of E defined in an open set U containing Im(γ), with s(0) = v. What this
equation means is that at each point γ(t), s(γ(t)) is the element of Eγ(t) obtained from v by requiring
the entire section to be constant with respect to ∇ over γ. More precisely, we need to work with the
pullback connection γ∗∇ over the pullback bundle γ∗E, and we are requiring the resulting section over
[0, 1] to be parallel. This is an O.D.E. for the section s◦γ, and so there is a unique solution; the element
s(γ(1)) ∈ Ey is called the parallel transport of v along γ. Now, the parallel transport of a basis of Ex

defines a linear map Px,γ : Ex → Ey.

Definition 1.2.1. The holonomy group of ∇ at x is:

Holx(∇) = {Px,γ ∈ GL(k); γ loop based at x}

This is in fact a group: P−1
x,γ = Px,γ−1 , where γ−1(t) = γ(1 − t) is just the loop with the orientation

reversed; also, if α and β are loops based at x, then Px,α ◦ Px,β = Px,α∗β, where α∗β is just the loop
defined by going first around β and then around α. Both of these equalities follow from the uniqueness
of solutions to the parallel transport equation.

Now, fix attention to the null-homotopic loops based at x. A homotopy between two such loops
γ1 and γ2 that preserves the base point can be seen as a path in loop space, and therefore defines a
path in Hx := Holx(∇) between Px,γ1 and Px,γ2 . This means that the component H0

x := Hol0x(∇) of Hx

consisting of parallel transport operators through null-homotopic loops is path-connected, and therefore
it is a (connected) Lie subgroup of GL(k), the connected component of the identity in GL(k). By this
argument, one can see that in general there is a map between π1(M,x) and connected components of Hx.
In fact, since H0

x is normal in Hx
3 it is in fact a Lie subgroup of GL(k), and we can define the monodromy

group Monx(∇) := Holx(∇)/Hol0x(∇); what we get then is an epimorphism π1(M,x) → Monx(∇)
given by [α] 7→ PαH

0
x. Also, since π1(M) is enumerable, Hx has at most countably many connected

components. Of course, it follows that Hx is connected if M is simply-connected.
Furthermore, assuming M is path-connected, the groups Hol0x(∇) and Hol0y(∇) are conjugate to each

other: indeed, if γ is a path joining x and y, then we get a parallel transport operator Pγ : TxM → TyM .
If we fix an element h ∈ Hol0y(∇), there must be a loop α at y such that h = Pα. Then γ−1 ◦ α ◦ γ is a
loop at x, so it defines an element Pγ−1PαPγ of Hol0x(∇). That every element of Hol0x(∇) is of this form
follows from the same argument applied to y instead of x.

We can see the holonomy groups H0
x as Lie subgroups of GL(k), and since they are all conjugate to

each other it follows that they are isomorphic as Lie groups. Therefore, it doesn’t matter which base
point we choose, and from now on we will simply refer to the holonomy group H0 := Hol0(M).

Definition 1.2.2. The holonomy algebra h := hol(∇) is the Lie algebra of H0(∇).

Of course, since H0
x is only defined up to conjugation, h is also only defined up to the adjoint action

of GL(k). Whenever needed, we will refer to the holonomy algebra at a point x by holx(∇).

3This follows from the fact that if α is null-homotopic, then for any loop β, β ∗ α ∗ β−1 is also null-homotopic
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We can also define the holonomy group of connections on principal bundles. Given a principal G-
bundle P →M and a connection H ⊂ TP , then given a loop γ based at x ∈M and an element p ∈ Px,
there is a unique lift of γ to a horizontal cuve γ̃ in P such that γ̃(0) = p. Since q := γ̃(1) ∈ Px, there is
an element g ∈ G such that q = pg. We will write p ∼ q to mean that there exists a horizontal curve
connecting p to q. This can be easily seen to define an equivalence relation among the points in the
fiber Pp.

Definition 1.2.3. The holonomy group of H at p is

Hp := Holp(H) = {g ∈ G; p ∼ pg}

We can also define the holonomy algebra of a connection on a principal bundle holp(H) as the Lie
algebra of Holp(H). Notice that for principal bundles we have a copy of the holonomy group and algebra
attached to each point of P , and not only of M as in the case of vector bundles.

All the properties of holonomy groups of vector bundles also hold for principal bundles. In fact,
there is a close relationship between the two: the holonomies of a connection in a vector bundle and the
induced connection in the frame bundle are the same, and given a principal G-bundle P with connection
H and an associated vector bundle given by a representation ρ : G→ GL(k), then the holonomy of the
associated bundle is just ρ(Hol(H)).

Theorem 1.2.4. Let E be a vector bundle with a connection ∇, and S0 ∈ T k(Ex) a k-tensor over Ex

that is fixed by the holonomy action, T (S0) = S0, ∀T ∈ Hol(∇). We will also denote by ∇ the induced
connection on T k(E). Then there is a unique section S of T k(E) such that S(x) = S0 and ∇S = 0.
Conversely, given a parallel section S of T k(E), then at every fiber S is fixed by the holonomy action.

Proof. Suppose first that S0 is fixed by the holonomy action ρ : H → GL(Ex). The required section
is defined as follows. For every point y we choose a path α connecting x to y, and define Sy to be the
parallel transport PαS0 of S0 along α with respect to ∇. If β is another such path, then α−1 ◦ β is a
loop at x, so that Pα−1◦β = Pα−1Pβ = ρ(h) for some h ∈ H. But ρ(h)S0 = S0, so that PαS0 = PβS0,
which means that Sy doesn’t depend on the choice of curve. This gives a well-defined tensor S which
satisfies ∇S = 0 by construction.

Conversely, if we start with a parallel section S, then for every loop γ at x we have PγSγ(0) = Sγ(1),
i.e., PγSx = Sx. This shows that S is fixed at every fiber by the holonomy action.

An easy corollary of this result is the following: if G ⊂ GL(TxM) is a subgroup fixing all parallel
tensors Sx, then Hol(∇) ⊂ G. This result is very important, because it establishes a relation between
geometric structures (i.e., reductions of the holonomy) and parallel tensors. We show now that, in
fact, a principal bundle P with a connection admits a principal subbundle whose structure group is the
holonomy group of P . This result is known as the reduction theorem:

Theorem 1.2.5 (Reduction theorem). Let P π
→M be a principal bundle with structure group G, and

H a connection on P . Assume that H := Holp(H) is a Lie subgroup of G. Fix a point p ∈ P and
consider the subset P (p) = {q ∈ P ; p ∼ q} of all points that can be reached from p by a horizontal
curve. Then P (p) is a subbundle of P with structure group Holp(H), and the connection D reduces to
a connection D′ in P (p).

Proof. It is not difficult to see that P (p) is a principal subbundle with fiber H: suppose that p
γ
∼ q, i.e.,

γ is a horizontal curve connecting p to q. If h ∈ H, then of course p ∼ ph. But ph
γh
∼ qh, so that p ∼ qh.

Thus, qh ∈ P (p) and therefore H acts on P (p). This actios is free because it is te restriction of the
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G-action on P . Also, the fibers of π|P (p) : P (p) → M are clearly the orbis of H, so that M ∼= P (p)/H,
and a local trivialization can be constructed by parallel translation of coordinate curves.

The fact that the connection reduces to a connection on P (p) follows from the horizontal subspaces
being tangent to P (p); then we simply define the horizontal subspaces of the new connection to be the
projection of the former horizontal spaces onto TP (p).

There is also a similar result which is really important since it establishes a relation between the
holonomy of a connection on the tangent bundle and the existence of certain subbundles of the frame
bundle. For that, we need a definition: a connection ∇ on the tangent bundle is said to be torsion-free
if the torsion tensor T∇ defined by:

T∇(v, w) = ∇vw −∇wv − [v, w]

vanishes. The most important example of such a connection is the Levi-Civita connection on a (semi)Riemannian
manifold (M, g), that is, the unique connection ∇ on TM such that T∇ = 0 and ∇g = 0.

The result we refered to is the following:

Theorem 1.2.6. Let F → Mn be the frame bundle of M and G ⊂ GL(n) a Lie subgroup. Then
M admits a torsion-free connection with holonomy H ⊂ G if and only if it admits a reduction to a
torsion-free principal G-bundle over M .

Proof. The proof is similar to the proof of the reduction theorem, so we will skip it.

Definition 1.2.7. Let F → M be the frame bundle of M , and G ⊂ GL(n) a Lie subgroup. We call a
principal G-subbundle of F a G-structure on M .

Intuitively, a G-structure on M should be regarded as a special class of frames on F determined by
the group G. Given a G-structure, one says that the structure group has been reduced to G, since the
transition functions take values in G. Also, a connection that reduces to a G-structure is said to be
compatible with it, and we say the G-structure is torsion-free whenever the connection is. We will see
that there is an intimate relationship between G-structures and additional geometric structures on M .

Example 1.2.8. A O(n)-structure O →M is equivalent to a Riemannian metric on M . In fact, given
the standard inner product 〈 , 〉 on R

n, for each x ∈ M , any choice of p ∈ Ox determines a metric g
in M given by g(X, Y ) = 〈p−1(X), p−1(Y )〉. Conversely, a choice of metric on M determines a special
class of elements in Fx, namely the isometries between TxM and R

n, and this clearly defines a principal
O(n)-subbundle of F .

Example 1.2.9. A pseudo-symplectic structure on M is defined to be a Sp(n)-structure, which is in
turn the same as a non-degenerate 2-form ω on M . If ω is also closed M is called a symplectic manifold.
These manifolds are always even-dimensional, and the condition dω = 0 is an integrability condition
that makes the structure locally trivial, a result known as Darboux’s theorem.

Example 1.2.10. A GL+(n)-structure on M is equivalent to a choice of orientation, since the associated
transition functions have positive determinant. Combining with the previous example, we see that a
SO(n)-structure is equivalent to a choice of oriented orthonormal frames on M .

The last example shows that it might not be possible to find a G-structure on M , since there are
topological obstructions. For example, we need the first and second Stiefel-Whitney classes of TM to
vanish for M to admit an orientation or a spin structure, respectively4.

4More on this on the appendix - including the definition of a spin structure.
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Many of the results already proved can be interpreted in the language of G-structures; for instance,
what theorem 1.2.6 means in this language is that a torsion-free G-structure on M is equivalent to a
torsion-free connection with holonomy H ⊂ G. This will be useful after we give the classification of
holonomy groups at the end of this section.

The holonomy group of a principal bundle P → M with connection H is a global invariant that
contains information about the curvature F of H, as we will now explain.

First of all, we define the holonomy subbundle of Ad(P ). Consider the projection π̄ : P×g → Ad(P ).
For x ∈M , we define holx(H) = π̄(x, holp(H)), where π(p) = x. Since holpg(H) = Ad(g−1)holp(H), this
definition doesn’t depend on the choice of p. We define hol(H) to be the subbundle of Ad(P ) with fiber
holm(H) over m. Then we have the following:

Proposition 1.2.11. The curvature Fm of (P,H) at m ∈M is an element of Ω2(holm(H)).

Proof. This is a simple consequence of the definition of F̃ as a section of P × g (equation (1.1.8)) and
the fact that the restriction of Vp = Ker(dπ)p to P (p) is exactly holp(H). Thus, if X and Y are vector
fields on M , F̃ (X, Y ) = π̄∗F (X, Y ) ∈ holp(H), so that F (X, Y ) ∈ holm(H).

This agrees well with formula 1.1.7 defining the curvature as an infinitesimal measure of the holonomy:
the holonomy around an infinitesimal square of side ǫ is of the form Id− ǫ2Fµν +O(ǫ3). Also, compare
with theorem 1.1.6 - what we have just shown is that the holonomy group restricts the curvature of the
connection.

There is an important kind of converse to this result - this is the celebrated Ambrose-Singer theorem:

Theorem 1.2.12 (Ambrose-Singer). holp(H) = span {π̄∗(Fq(X, Y ));X, Y ∈ Γ(TM), q ∈ P (p)}.

Proof. Since we are dealing with the holonomy algebra, we may assume that P is the holonomy bundle
P (p), i.e., that G = Hol(H). Let h′p be the subspace generated by elements of the form π∗Fq(X, Y ) for
q ∈ P (p) and X, Y horizontal vectors at q. We have to show that this generates hp = holp(H).

First of all, h′p is an ideal of hp; indeed, from R∗
gF = Ad(g−1)F , it follows that h′p is Ad-invariant

and thus also ad-invariant, since this is the infinitesimal representation associated to Ad. Therefore, it
is invariant by ad(G).

We will show that h′p = hp by proving the dimensions are the same. Consider the distribution
Dp = Hp + h′p, where we are seeing the last space through the identification hp ∼= Ker(dπp). One can
prove this distribution is smooth and involutive, and if dim(M) = n and dim(h′p) = r then clearly
dimD = n+ r.

Let P0 be the maximal integral manifold associated to D. Since we are working in the holonomy
bundle, any point q ∈ P can be joined to p by a horizontal curve, so that all tangent vectors of such
curves are contained in D. Therefore, the whole curve is contained in P0, and thus P ⊂ P0 i.e., P0 = P .

Thus, dim(hp) = dim(P )− n = dim(P0)− n = r = dim(h′p).

From this result one can prove the converse to the reduction theorem:

Corollary 1.2.13. Let H be a connected Lie subgroup of G. If P restricts to a subbundle with structure
group H, then there is a connection H on P such that Hol(H) = H.

Therefore, the problem of constructing connections with prescribed holonomies is equivalent to the
problem of constructingG-structures, and is highly dependent on the topological features of the bundle in
question. However, the classification of Riemannian holonomy groups is tractable with purely geometric
methods, as we will explain next.
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1.2.1 Tangent Bundle and Riemannian Holonomy

We recall that we have proved earlier some results specific to tangent bundles and their tensor powers,
theorems 1.2.4 and 1.2.6. From now on, we will restrict attention to connections on the tangent bundle,
especially the Levi-Civita connection of a Riemannian manifold (M, g). From a connection ∇ on TM
we get a connection on the frame bundle FM , which in turn induces connections on all tensor bundles
on M through the various representations of GL(n). In the case of the Levi-Civita connection this grup
is reduced to O(n), since the metric is a parallel tensor for this connection.

The curvature tensor of the Levi-Civita connection on a Riemannian manifold is often denoted by
Ra

bcd, so we will stick to this index notation5. Here the last two indices correspond to the 2-form part of
the curvature, and the first two to the Lie algebra so(n). We make no distinction between them since
so(n) has a natural action on tangent spaces by anti-symmetric traceless matrices. We can also define
Rabcd = gaeR

e
bcd. From this one can prove the formulas:

Rabcd = −Rbacd = −Rabdc = Rcdab (1.2.2)

and also the Bianchi identities:

Rabcd +Radbc +Racdb = 0 (1.2.3)

∇aRbcde +∇dRbcea +∇eRbcad = 0 (1.2.4)

This last one is just the usual Bianchi identity in different notation.
The Ricci curvature of (M, g) is defined by Rab = Rc

acb, and the scalar curvature is r = gabRab. We
notice that the Ricci curvature is a symmetric tensor, Rµν = Rνµ. We say that (M, g) is Ricci-flat if
Rab = 0, and it is Einstein if there is a constant α such that Rab = αgab.

Theorem 1.2.14. Rabcd ∈ Sym2hol(g) ⊂ Λ2T ∗M ⊗ Λ2T ∗M , the second symmetric power of hol(g).

Proof. This is a simple consequence of 1.2.11 and 1.2.2.

1.2.2 Holonomy of Symmetric Spaces

There is a special class of Riemannian manifolds which are constructed from Lie groups, and the
classification of the possible holonomy groups for these manifolds follows from the classification of
(representations of) Lie groups. These are the so-called symmetric spaces, which we now briefly introduce
(for a complete survey, see [14]).

Definition 1.2.15. A Riemannian manifold (M, g) is called a symmetric space if for each x ∈M there
is an involutive isometry sx :M →M such that x is an isolated fixed point for sx. The map sx is called
the symmetry at x.

It is easy to see that the symmetry reflects geodesics: sx(exp(v)) = expx(−v). Indeed, since s2x = Id,
it follows that (dsx)

2
x = Id, and thus (dsx)x = −Id.

Every symmetric space is also complete as a Riemannian manifold: if exp is only defined on (0, ǫ)
in a geodesic α, then by choosing a point in ( ǫ

2
, ǫ) and using the reflection symmetry we can extend the

geodesic beyond ǫ.

5We use greek indices to refer to components of tensors, and latin indices when we want to refer to the tensor itself.
Also, whenever we use the old notation, we will use the letter R for the curvature of a Riemannian manifold, instead of F .
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Furthermore, symmetric spaces are always homogeneous spaces. This is a consequence of the fact
that the group generated by composition of symmetries6 acts transitively on M , so that if we fix a point
p ∈M , we have M = G/Gp, where Gp is the isotropy subgroup at p.

Theorem 1.2.16. Suppose (M, g) is a symmetric space of the form G/Gp with p ∈ M . Then ∇R = 0
and Hol0p(g) = Gp.

Note: Intuitively, this means that in a symmetric space the curvature does not vary.

Proof. If we fix p ∈ M , the isometry sp preserves R (and therefore preserves ∇R) and is such that dsp
acts as −Id in TpM . Therefore, ∇R|p = 0, ∀p ∈M , and then ∇R = 0.

The second part follows from two basic facts concerning symmetric spaces (see [14]):

• (Cartan decomposition): We can decompose the Lie algebra of G as g = h⊕m, with h the Lie
algebra of Gp and m ∼= TpM , and such that [m,m] = h.

• R acts in tangent vectors through the Lie bracket: R(u, v, w) = [u, [v, w]].

We can then identify R := span {R(v, w);w,w ∈ TpM} with ad(h). By the Ambrose-Singer theorem,
R = holp(g). The groupsGp andHol0p(g) are both connected, soHolp(g) = Ad(Gp), and since the adjoint
representation is faithful, Hol0p(g) ∼= Gp

7.

Symmetric spaces can be classified using the Cartan decomposition of the Lie algebra of G and
the representation theory of real Lie algebras, which is well-understood. Therefore, we can classify all
isotropy representations, and thus the holonomy groups and representations themselves.

1.2.3 The Berger Classification

Now we would like to classify the holonomy groups of manifolds that are not symmetric spaces. A
first fact to notice is that, if (M, g) is a reducible manifold (i.e., if it is isometric to a product manifold of
the form (M1 ×M2, g1 × g2)), then Hol(M, g) ∼= Hol(M1, g1)×Hol(M2, g2). This means that reducible
manifolds are such that the holonomy representation is reducible. There is a kind of converse to this
result, known as de Rham’s decomposition theorem:

Theorem 1.2.17 (de Rham). Suppose (M, g) is a complete simply connected Riemannian manifold,
and that the holonomy representation is reducible. Then there are manifolds (Mi, gi), i = 1 . . . k which
are also complete and simply connected, such that Hol(gi) acts irreducibly on the tangent spaces, and
Hol(M, g) = Hol(M1, g1) × . . . × Hol(Mk, gk). Moreover, (M, g) is isometric to (M1 × . . . ×Mk, g1 ×
. . .× gk).

Proof. We will prove the statement about the holonomy group, but we will not prove that (M, g) is
reducible - rather, we will argue why the metric should be locally reducible. For a complete proof, the
reader is refered to section 6 of chapter IV in [20].

Suppose then that the holonomy representation is reducible, fix p ∈ M and let Vp ⊂ TpM be a
non-trivial subspace invariant by Holp(g). We define a distribution on TM by parallel transport of Vp:
for q ∈ M , define Vq = Pγ(Vp), where γ is a curve from p to q. This clearly doesn’t depend on the

6This is a Lie group, since it is a path-connected subgroup of the group of isometries of M , which is itself a Lie group
due to the Myers-Steenrod theorem.

7Here it is understood that the adjoint action of Gp is the restriction of the adjoint action of G to m, since it comes
from the identification R ∼= holp(g) and R(v, w) acts in elements of TpM ∼= m.
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choice of curve (if α is another such curve, then Pγ−1∗α(Vp) = Vp ⇒ Pα(Vp) = Pγ(Vp)). Thus, we get a
distribution V ⊂ TM .

Actually, we get two distributions, since the orthogonal complement V ⊥
p is also invariant by Holp(g);

indeed, since parallel translation is an isometry, for v ∈ Vp and w ∈ V ⊥
p we have 0 = gp(v, w) =

gp(Pα(v), Pα(w)) for every loop α at p. Since Vp is invariant, Pα(v) ∈ Vp and thus Pα(w) ∈ V ⊥
p .

Therefore, we get two distributions V and V ⊥ such that TM = V ⊕ V ⊥.
The important fact is that these distributions are integrable; in fact, if X, Y ∈ ΓV , then ∇XY ∈

Γ(V ); this follows from the pointwise formula:

∇XY (x0) = limt→0(Px(t)Y (x(t))− Y (x0)) (1.2.5)

for ∇XY in terms of parallel translation of Y along the integral curve x(t) of X passing through x0.
Since at each time t the term Px(t)Y (x(t)) − Y (x0) defines a field in Vx0

(rememeber that Vx0
is closed

by parallel translation) it follows that in the limit we also get an element of Γ(Vx0
), since Vx0

, being a
vector space, is closed.

The same is true of course for ∇XY . It follows that [X, Y ] = ∇XY −∇YX ∈ Γ(V ) and hence V is
integrable. The same argument with the obvious changes shows that V ⊥ is also integrable.

The crucial point now is that the maximal integral manifolds of these distributions define a local
product structure on M : if p ∈M , there is a neighborhood of p of the form U×U ′ such that T (U×U ′) ∼=
TU × TU ′ and TU = V |U×U ′ , TU ′ = V ⊥|U×U ′ . This fact can be proved by using an appropriate
coordinate system. One can also show that g|U×U ′

∼= gU × gU ′ ; the idea is to use the fact that the Levi-
Civita connection is torsion-free and ∇g = 0 to show that gV |U×U ′ is independent of the U ′ coordinates,
and therefore is the pullback to U × U ′ of a metric gU in U (and the same for gV ⊥). For more details,
see [20].

This argument shows that reducibility of the holonomy action implies local reducibility of the metric.
We want to show now that Hol0p(g) = HV ×HV ⊥ , with HV ⊂ SO(Vp) acting trivially in V ⊥

p , and HV ⊥

acting trivially in Vp.
We will only sketch the argument: the idea is to use the symmetries of the Riemann tensor to give

a decomposition of the holonomy algebra. In fact, one uses the Bianchi identities to see that Rabcd

is a section of the bundle Sym2(Λ2V ∗) ⊕ Sym2(Λ2(v⊥)∗) ⊂ Sym2(Λ2T ∗M), from which one can show
that span {Rq(u, v); u, v ∈ TqM} breaks as Aq ⊕ Bq with Aq ⊂ Vq ⊗ V ∗

q and Bq ⊂ V ⊥
q ⊗ (V ⊥

q )∗. These
subspaces are closed by parallel transport, since Vq and its duals/complements are. Thus:

holp(g) = span {Pγ−1Rq(u, v)Pγ; u, v ∈ TqM, q ∈M, γ curve from p to q}
= hV ⊗ hV ⊥

with hV ⊂ Vp ⊗ V ∗
p and hV ⊥ ⊂ V ⊥

p ⊗ (V ⊥
p )∗.

Therefore, we conclude that there are Lie groups HV and HV ⊥ with Lie(HV ) = hV and Lie(HV ⊥) =
hV ⊥ such that Hol0p(g) = HV ×HV ⊥ . In general, Hol(gU) ⊂ HV and Hol(gU ′) ⊂ HV ⊥ , HV acts trivially
on V ⊥ and HV ⊥ acts trivially on V .

In this way, by decomposing TpM into irreducible pieces, we finally obtain Hol0p(g) = H1× . . .×Hk,
with each Hi being a connected Lie subgroup acting irreducibly.

Corollary 1.2.18. If (M, g) is an irreducible Riemannian manifold with dim(M) = n, then the holon-
omy representations on R

n are irreducible.

These results can be used, for instance, to show that if M is simply connected, then Hol(g) is a
closed connected Lie subgroup of SO(n), and therefore compact (see [16]).
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An important point is that the Hi’s in the proof are not necessarily holonomy groups of smaller
manifolds. In fact, they are constructed as groups generated by parallel transport along small laces, and
the topological space constructed by gluing together the neighborhoods in which they are defined is not
necessarily Hausdorff. Nevertheless, this is not a big problem for the purposes of classification, since the
next theorem (the Berger classification) also works for the Hi’s.

Theorem 1.2.19 (Berger Classification). Suppose (Mn, g) is an irreducible simply connected Rie-
mannian manifold which is not a symmetric space. Then Hol(g) must be one of the following:

• SO(n)

• U(m) with n = 2m (Kähler manifolds)

• SU(m) with n = 2m (Calabi-Yau manifolds)

• Sp(k) with n = 4k (Hyperkähler manifolds)

• Sp(1)Sp(k) with n = 4k (Quaternionic-Kähler manifolds)

• G2 with n = 7 (G2-manifolds)

• Spin(7) with n = 8 (Spin(7)-manifolds)

Each of these geometries has its own special features, many of which will be addressed in the next
chapter - although we will not have much to say about Hyperkähler and Quaternionic-Kähler manifolds
in this work.

The Berger classification was proved by Berger through a case by case analysis. Roughly speaking,
what happens is that the Ambrose-Singer theorem places a strong restriction on the holonomy group
(the holonomy algebra must be big enough to accommodate the whole image of the curvature map) and
at the same time, the space of such tensors are required to satisfy the Bianchi identities, so it shouldn’t
be too big. The groups on Berger’s list are exactly the intermediate cases that can accommodate both
requirements. Later, Simons proved that a holonomy group satisfying Berger’s hypothesis must act
transitively in Sn−1, explaining Berger’s list - the list of Lie groups acting transitively on spheres was
known at the time, and it contains Berger’s list. A geometric proof of this result was recently given
by Olmos [29] - his idea was to show that the normal bundle to an orbit of the holonomy action is
mapped by the exponential map to a locally symmetric manifold. Then, if the action is not transitive
on a sphere, he shows that one can generate a sufficient number of these exponentiated manifolds so
that M itself is a locally symmetric space.

Suppose (M, g) is a spin manifold, as explained in appendix A.1. One of the many applications of
Berger’s theorem is to describe the space of parallel spinors of M . Indeed, as explained in the appendix,
the Levi-Civita connection induces a natural connection ∇S on the spinor bundle, and using theorem
1.2.4 one can use Hol(∇S) to study the space of parallel spinors, and in this way classify all possible
holonomies of spin manifolds admitting parallel spinors. This is the content of Wang’s theorem:

Theorem 1.2.20 (Wang). Suppose (Mn, g) is an orientable and irreducible simply-connected spin
manifold, and let D denote the number of linearly independent parallel spinor fields on M . If n is even,
we write D = D++D− with D± being the dimension of the space of parallel spinors in Γ(S±). If D ≥ 1,
then one of the following holds8:

8Notice that this depends on a choice of orientation; reverting it would exchange the values of D+ and D−.
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1. Hol(g) = SU(2m) with n = 4m, and D+ = 2, D− = 0

2. Hol(g) = SU(2m+ 1) with n = 4m+ 2, and D+ = 1, D− = 1

3. Hol(g) = Sp(m) with n = 4m and D+ = m+ 1, D− = 0

4. Hol(g) = G2 with D = 1

5. Hol(g) = Spin(7) with D+ = 1, D− = 0

It is interesting to notice that the allowed geometries are exactly those with Ricci-flat metrics.
Although we won’t prove Wang’s theorem, we give a simple argument why a spin Riemannian manifold
admitting a constant spinor should be Ricci-flat with holonomy strictly contained in SO(n). Suppose
ψ ∈ Γ(S) is a parallel spinor, that is ∇Sψ = 0, and let the spin representation of the Clifford algebra
Cl(n) be given by the gamma matrices γa (these satisfy γaγb+γbγa = −2Id for Riemannian manifolds).
Ricci-flatness follows from the way the Riemann tensor acts on spinors:

γa[∇S
a ,∇

S
b ]ψ = γaRabψ (1.2.6)

Since the first term vanishes and ψ is non-zero, Rab = 0.9

Also, the holonomy representation on TM induces a representation on spin space, and a parallel
spinor is invariant under this action (its isotropy is the entire holonomy group), so it defines a one-
dimensional (trivial) representation. But the spin representation is not trivial, and it is irreducible if
the holonomy is SO(n). Thus, Hol(g) ⊂ SO(n).

In Wang’s theorem we assumed (M, g) to be spin and to possess at least one non-zero parallel spinor.
The following result is a converse to Wang’s theorem:

Theorem 1.2.21. Assume n > 2 and that the holonomy group H of (M, g) is simply connected (in
particular, H can be any of the Ricci-flat holonomy groups). Then M is spin and the space of parallel
spinors is non-empty.

Proof. Since H is a subgroup of SO(n) (we are assuming M oriented), the immersion i : H →֒ SO(n)
extends to a homomorphism ĩ : H̃ → Spin(n) between the universal covers. SinceH is simply-connected,
H̃ = H, and thus p ◦ ĩ = i, where p : Spin(n) → SO(n) is the two-fold covering map.

Now, the holonomy bundle H(M) is a H-structure on M , in fact a reduction of the SO(n)-structure
on the frame bundle F (M). We can define another SO(n)-structure P on M by acting with SO(n) on
H(M), P = SO(n)H(M) (i.e., P is the restriction of F (M) to H(M)). But this SO(n)-structure has a
natural lift to a Spin(n)-structure P̃ , given by the associated bundle construction P̃ = P ×H Spin(n),
where we are using the immersion ĩ : H → Spin(n) to define an action of H on Spin(n).

1.2.4 The Holonomy action on Cohomology

This section depends on material from appendix A.3.
Suppose (M, g) is a Riemannian manifold and G a Lie group acting on the tangent spaces. This

action induces a representation of G on the tensor algebra of M . In particular, we get representations

9Friedrich [10] (pag. 67) proves this in a different way: he first shows that a spin structure is equivalent to a trivialization
of the U(1) part of the associated Spinc structure, and then shows that in the presence of a parallel spinor the norm of
the Ricci tensor squared equals the norm of the curvature of the U(1) part of the Spinc bundle.
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ρk of G in Ωk(M). We can then break these representations into irreducible pieces to get Ωk =
⊕

ik

Ωk
ik

.

More generally, if we have a G-structure P on M we get subbundles ρ(P ) of the frame bundle FM for
every representation ρ of G. We are mostly interested in representations in the exterior algebra; now, it
may happen that even if the representation of G on the tangent spaces is irreducible, the representations
ρk might not be. Then there are irreducible representations ρki , i ∈ Ik, for Ik an index set, such that:

Ωk(M) =
⊕

i∈Ik

ρki (P )

In this way, the bundle of k-forms breaks up as a direct sum of irreducible subbundles Ωk
i := ρki (P ).

Of course, this is not a feature particular to differential forms - the same arguent makes it true for all
the tensor bundles and for the spin bundles when M is spin.

Example 1.2.22. An example of this is the Hodge star operator, defined in appendix A.3. This is
an isomorphism of vector bundles ∗ : Ωk(M) → Ωn−k(M) for M a n-dimensional oriented Riemannian
manifold. As is explained in the appendix, in the case n = 4 and k = 2, ∗ is an automorphism of
Ω2(M) that squares to −Id, so that its eigenvalues are ±1. Therefore, the bundle of 2-forms splits as a
direct sum of two eigenspaces which are in fact irreducible representations of SO(n), each of which has
dimension 6.

Now, the important point is the following:

Proposition 1.2.23. Let (M, g) be a compact Riemannian manifold, P a G-structure on M with
Hol(g) ⊂ G, and ∆ : Ωk(M) → Ωk(M) the Laplace-Beltrami operator, as defined in A.3. Suppose that
ξ ∈ Ωk

i . Then we also have ∆ξ ∈ Ωk
i .

Proof. The proof is based on the following Weitzenböck formula for ∆:

∆ξ = ∇∗∇ξ − 2S(ξ) (1.2.7)

which is proved in proposition 4.10 of [30]. Here ∇∗ is the adjoint of ∇ with respect to g and S is
a certain tensor constructed solely with the curvature tensor Ra

bcd and the metric. From the fact that
Rabcd ∈ Sym2(hol(g)) (theorem 1.2.14) one can show that S actually preserves the splitting Ωk(M) =
⊕

Ωk
i , since G itself does and Hol(g) ⊂ G. From this last fact it also follows that ∇ is compatible with

P , so that it preserves the splitting. Thus, ∇∗∇ξ ∈ Ωk
i . Therefore, ∆ξ ∈ Ωk

i , i.e., ∆ also preserves the
splitting.

The reason this is important is that as a consequence, the spaces of harmonic forms Hk also breaks
into irreducible representations of G, Hk =

⊕
Hk

i . By the hodge theorem A.3.3, it follows that the de
Rham cohomology groups break as:

Hk(M) =
⊕

i∈Ik

Hk
i

i.e., into irreducible representations of G. In particular, when G = Hol(g), we have the result that the
de Rham cohomology of M breaks into irreducible representations of the holonomy group. We then get
refined Betti numbers :

bki = dim(Hk
i )
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for i ∈ Ik and k = 1, . . . , n, which can carry information about the topology of M and the geometry
of the holonomy bundle. This link with topology is important since one can then study the geometry
of G-structures with the aid of algebraic topology, more specifically, by studying the cohomology of the
manifold. For example, a reduction of the frame bundle for a group G might impose conditions on the
refined Betti numbers; if these conditions are not met, then one knows that the manifold cannot admit
such a G-structure.

We have proved in theorem 1.2.4 that there is a bijection between parallel tensor fields and tensors
invariant by the holonomy action. Now, an invariant tensor is the same as a trivial representation.
Therefore, the number of factors of trivial representations in the decomposition of the exterior algebra
determines the number of independent parallel forms. Since ∇ξ = 0 implies dξ = d∗ξ = 0, it follows
that such a parallel form is also harmonic. Therefore, to each trivial representation Ωk

i the associated
Hk

i is a space of parallel forms, and each parallel form ξ ∈ Hk
i defines a cohomology class [ξ] ∈ Hk

i (M).
Thus, each G-structure comes equipped with cohomology classes corresponding to the parallel tensors
associated to the reduction to G.

The importance of this is that one often is interested in studying the moduli space MG of G-
structures on M , defined as the space of G-structures quotiented by the diffeomorphisms of M isotopic
to the identity. For example, one might be interested in studying the moduli space of G2 structures
on a 7-manifold; then the cohomology classes of parallel tensors furnish maps MG → Hk

i (M) that can
be interpreted as coordinate systems for submanifolds of MG, which can be used to exploit the local
geometry of the moduli space.

1.2.5 Topology of compact Ricci-flat manifolds

We will show now how Ricci-flatness combined with reduced holonomy places strong restrictions on
the topology of a compact Riemannian manifold M . Specifically, we aim to prove the following:

Theorem 1.2.24. If (M, g) is a compact Riemannian manifold with holonomy either SU(n), Sp(n), G2

or Spin(7), then H1(M) = {0} and π1(M) is finite.

For this, we will need the following Weitzenböck formula for a 1-form ω (which is a particular case
of formula (1.2.7)):

∆ω = ∇∗∇ω +Rabg
bcωc (1.2.8)

Proof. We will only prove that H1(M) = {0}, and will comment about the fundamental group at the
end of this section. First of all, from the Weitzenbock formula for 1-forms 1.2.8 we have that if ω is
harmonic, then:

∇∗∇ωa +Rabg
bcωc = 0 (1.2.9)

We can then take the inner product with ω and integrate on M with respect to the Riemannian
volume element to get:

||∇ω||2L2 +

∫

Rabg
bcgadωcωd = 0 (1.2.10)

It follows that, if the metric is Ricci-flat, then ∇ω = 0, i.e., harmonic 1-forms are constant. However,
the constant forms are exactly those fixed by the holonomy group, by theorem 1.2.4. Since SU(m), Sp(k),
G2 or Spin(7) do not fix any point in R

n \ {0} (where n is either 2m, 4k, 7 or 8, respectively), it follows
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that they also cannot fix 1-forms. Thus, there are no constant 1-forms, and therefore H1 = {0}, i.e.,
there are no harmonic 1-forms.

Now, the Hodge theorem asserts that Hk(M) ∼= Hk, and thus H1(M) = {0}.

Notice that the result doesn‘t hold for k-forms in general, due to the fact that the Weitzenbock
formula for these forms has more terms involving the Ricci tensor.

Also, if we drop the assumption on the holonomy, we can only conclude that if dimH1 = l, then
we have l independent constant 1-forms, so that the holonomy representation on Λ1T ∗M is reducible
and splits as R

k ⊕ R
(n−k), acting trivially on the first factor. Now, compactness of M assures that its

universal cover M̃ carries a complete metric, and by theorem 1.2.17 it follows that M̃ is isometric to
R

l ×N . This result is known as the Bochner theorem.
The proof that π1(M) is finite relies on the following theorem of Riemannian goemetry (which we

won’t prove):

Theorem 1.2.25. If (M, g) is compact and Ricci-flat, then it admits a finite cover of the form T
k ×N ,

where T
k is the flat torus and N is compact and simply-connected. If the Ricci tensor of M is positive

definite, then π1(M) is finite.

1.3 Calibrated Geometry

In this section we develop the theory of calibrated submanifolds of Riemannian manifolds [13], which
will be important in later chapters.

Let (M, g) be a Riemannian manifold and α a closed k-form on M . We will call α a calibration on
M if ∀x ∈ M and for every oriented k-plane W ⊂ TxM we have αx|V = c.dVW for some c ≤ 1. An
immersed k-dimensional oriented submanifold N of M is said to be calibrated by α if α|TxN = dVTxN

for every x ∈ N . We emphasize that the notion of a calibrated submanifold depends on a choice of
orientation for the submanifold.

The main result about calibrated submanifolds is the following:

Proposition 1.3.1. If (M, g) is a Riemannian manifold and N is a compact submanifold calibrated by
a k-form α, then N minimizes volume in its homology class.

Proof. The proof is quite simple. First of all, since α is closed, it defines a cohomology class [α] ∈ Hk(M).
Also, N defines an element [N ] ∈ Hk(M). Then:

vol(N) =

∫

N

α|N = [α].[N ] (1.3.1)

If Ñ is another k-dimensional compact submanifold in the same homology class, [Ñ ] = [N ], then:

vol(Ñ) ≥

∫

Ñ

α|Ñ = [α].[Ñ ] = vol(N) (1.3.2)

where the inequality follows from the fact that α is a calibration.

We are mainly interested in calibrated submanifolds due to the following: we showed in theorem 1.2.4
that a reduction in the holonomy of a Riemannian manifold is essentially given by a parallel tensor. In
some of the geometries in the Berger classification these tensors are closed k-forms, which are in fact
calibrations. The reason is that these k-forms are defined in a very specific way: one takes an alternate
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k-tensor φ0 that is fixed by the standard action of the holonomy group on tangent spaces, and then
extended it to a parallel, and hence closed k-form φ using theorem 1.2.4. However, the φ0 can be rescaled
if necessary so that for every oriented k-plane V ⊂ R

n, φ0|V ≤ volV and so that there is at least one
k-plane U such that φU = volU . Therefore, the associated k-form φ will be a calibration on the manifold.

In what follows we will come across some important examples of calibrations; these include the real
and imaginary parts of the holomorphic volume form of a Calabi-Yau manifold, the G2-structure and
its Hodge dual on a G2-manifold and the Spin(7)-structure on a Spin(7)-manifold (c.f. sections 2.3.1,
2.4 and 2.5).

20



Chapter 2

Special Geometries

2.1 Complex Geometry

Definition 2.1.1. Let M be a 2n-dimensional smooth manifold with coordinate maps φα :M → R
2n ∼=

C
n. We say that M is a complex manifold if the transition maps φα ◦ φ−1

β : Cn → C
n are holomorphic.

Definition 2.1.2. Let M be an even dimensional real manifold. An almost complex structure on M is
a smooth tensor field Ja

b such that J2 = −Id (acting on vector fields)

Now, define the Nijenhuis tensor associated to J by:

NJ(v, w) = [v, w] + J([Jv, w] + [v, Jw])− [Jv, Jw] (2.1.1)

(one can easily verify this is indeed a tensor by checking it is C∞-linear).
We call J a complex structure if NJ = 0, and in this case (M,J) is called a complex manifold. The

reason for this terminology is the following theorem:

Theorem 2.1.3 (Newlander-Nirenberg). A necessary and sufficient condition for a real manifold M
with an almost complex structure J to admit a holomorphic atlas is that NJ = 0

This theorem is very difficult to prove. We refer the reader to page 14 of [28] for an exposition of a
proof due to Malgrange.

One can also formulate an equivalent definition of a complex manifold in terms of G-structures: a
2k-dimensional manifold M is a complex manifold if it admits a torsion-free GL(k,C)-structure.

Example 2.1.4. The n-dimensional complex projective space CP
n is defined as the set of all lines

through the origin of C
n+1. We write [z0, . . . , zn] for the line passing through the point (z0, . . . , zn).

This space is a complex manifold; indeed, we can define charts Uj = {[z0, . . . , zn]; zj 6= 0} (these
are clearly open in the quotient topology). Now, every element in CP

n can be written in the form
[z0, . . . , zj−1, 1, . . . , zn]. For every j = 0, . . . , n we define maps:

ψj([z0, . . . , zj−1, 1, . . . , zn]) = (z0, . . . , zj−1, zj+1, . . . , zn) (2.1.2)

These maps are diffeomorphisms and the transition maps are holomorphic. Thus, CPn is complex.

We say that a map f : M → N between complex manifolds is holomorphic if JN(dpf(v)) =
dpf(JM(v)) holds for every p ∈ M and v ∈ TpM . The map is called a biholomorphism if it is in-
vertible and the inverse map is also holomorphic. Also, a submanifold L ⊂M is a complex submanifold
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if JM(TpL) = TpL for every p ∈ L. It is clear that the restriction of a complex structure to a complex
submanifold endows it with a complex structure.

Now, a complex structure J gives a way of decomposing tensors into irreducible representations
of GL(n,C). Let us describe how this works: for every p ∈ M the map Jp : TpM → TpM satisfies
J2
p = −IdTpM . We can extend this map to the complexified tangent space TpM⊗RC by requiring linearity

in the C factor. The eigenvalues of this maps are ±i, and we define T (1,0)
p M to be the eigenspace with

eigenvalue i, and T (0,1)
p M to be the eigenspace with eigenvalue −i. Then TpM⊗RC = T

(1,0)
p M⊕T

(0,1)
p M .

The same trick holds for all the tensor bundles on M , by taking the induced actions of J in the
relevant spaces. In this way, any tensor can be written in the form T = T1 + T2 with T1 in the
i-eigenspace and T2 in the −i-eigenspace.

We can also write the k-forms as

ΛkT ∗M =
k⊕

j=0

ΛjT ∗(1,0)M ⊗ Λk−jT ∗(0,1)M

Elements of ΛpT ∗(1,0)M ⊗ ΛqT ∗(0,1)M are called (p, q)-forms. Of particular interest to us are the (p, 0)-
forms: these are p-forms living in the eigenspace ΛqT ∗(1,0)M associated to the eigenvalue i of J .

A nice consequence of this decomposition is that it allows us to write the exterior derivative as
d = ∂ + ∂, where ∂ maps (p, q)-forms to (p + 1, q)-forms, and ∂ maps (p, q)-forms to (p, q + 1)-forms.
These operators satisfy ∂2 = 0 and ∂

2
= 0, so that we can define cohomology groups for them; in

particular, the groups H(p,q)

∂
(M) are known as the Dolbeault cohomology groups of M ; they depend on

the complex structure J on M .
Given a vector bundle E → M , we will usually write Ω(p,q)(M ;E) as short-hand notation for the

space of sections of the bundle Λ(p,q)T ∗M ⊗ E.
We now proceed to study vector bundles on complex manifolds.

Definition 2.1.5. Let (M,J) be a complex manifold. We say that E π
→ M is a holomorphic vector

bundle of rank k if the following conditions are satisfied:

1. E is a complex manifold, and π is a holomorphic map.

2. There is an open covering {Uα} of M and biholomorphic maps φα : π−1(Uα) → Uα ×C
k such that

for each p ∈ Uα, π−1(p,Ck) is isomorphic to C
k. This space is called the fiber over p.

Example 2.1.6. There is an important example of a holomorphic vector bundle over complex projective
space CP

n, the tautological line bundle, denoted by O(−1) and defined as follows: it is the subset of
CP

n × C
n+1 given by

O(−1) =
{
([w], z) ∈ CP

n × C
n+1; z ∈ [w]

}

The projection π : O(−1) → CP
n is simply projection into the first factor. The trivializing cover for

this bundle is taken to be the standard open cover of CPn given by the sets Uj = {[z0, . . . , zn]; zj 6= 0}.
The local trvializations ψj : π−1(Uj) → Uj × C are defined by ψj([w], z) = ([w], zj), where z =
(z0, . . . , zn). Their inverses are given by ψ−1

j ([w], z) = ([w], z
wi
w), where wi is the unique complex

number such that w satisfies [w] = [w0

wi
, . . . , wi−1

wi
, 1, . . . , wn

wi
]. These maps are both holomorphic, so they

define a structure of holomorphic vector bundle on O(−1).
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Let E π
→ M be a holomorphic vector bundle. A section s : M → E is called holomorphic if it is

holomorphic as a map between complex manifolds.
In the same spirit as for real manifolds, one can define many operations on holomorphic vector

bundles: if E and E ′ are holomorphic, the vector bundles E∗ and E ⊗ E ′ have natural holomorphic
structures. For a complex manifoldM , the tangent and cotangent bundles also have natural holomorphic
structures, and it follows that the tensor bundles are all holomorphic. However, the bundle of forms
Ω(p,q)(M) is not holomorphic in general (although it is complex, i.e., the fibers are complex manifolds);
in fact, only the bundle of (p, 0)-forms Ω(p,0)(M) is holomorphic. Holomorphic sections of Ω(p,0)(M)
are called holomorphic p-forms. The Dolbeault differential ∂̄ : Ω(p,q)(M ;E) → Ω(p,q+1)(M ;E) can
be considered a natural exterior derivative operator in this context, since one can prove that a section
s ∈ Ω(p,0)(M ;E) is holomorphic if and only if ∂̄s = 0. Also, since ∂̄2 = 0, clearly the space of holomorphic
(p, 0)-forms is the same as the Dolbeault cohomology group H(p,0)

∂̄
(M).

Every complex vector bundle is oriented as a real vector bundle. In particular, every complex
manifold is oriented. This is a consequence of the fact that the group GL(n,C) is connected; indeed, a
complex basis {v1 = u1 + iw1, ..., vn = un + iwn} for a complex vector space determines a ordered real
basis {u1, iw1, ..., un, iwn} for the underlying real vector space. Once a complex basis is chosen, one
can pass to any other basis by a continuous deformation, which can’t change the orientation. So the
orientation does not depend on the choice of complex basis, and this generalizes to any complex bundle
since every fiber has a canonical orientation.

2.2 Kähler Geometry

Definition 2.2.1. Let (X, J) be a complex manifold. A Riemannian metric g on X is called Hermitian
if it satisfies g(Jv, Jw) = g(v, w) for all vector fields v, w in M . A complex Riemannian manifold whose
metric is Hermitian is called a Hermitian manifold.

The Hermitian 2-form is defined by ω(v, w) = g(Jv, w) for vector fields v, w. We will say that a
Hermitian manifold (X, J, g) is a Kähler manifold if dω = 0, and we call ω the Kähler form.

Any complex manifold admits a Hermitian structure, by the usual partition of unity argument for
constructing Riemannian metrics on real manifolds. However, the same result is not true for Kähler
structures.

Notice that ω ∈ Ω(1,1)(X); indeed, for v, w ∈ Γ(TX)

ω(Jv, Jw) = g(−v, Jw) = −g(Jw, v)

= −ω(w, v) = ω(v, w)

But ωabJ
a
c J

b
d = −ωcd for forms of type (0, 2) and (2, 0); thus, ω is a (1, 1)-form.

From a Hermitian metric on a complex manifold one can define the adjoint operators ∂∗, ∂̄∗ and the
Laplacians ∆∂ and ∆∂̄. These operators satisfy (∂∗)2 = 0 and (∂̄∗)2 = 0 since the same identities hold
for their adjoints. There are also analogues of Hodge’s theorems for complex forms in the context of
Kähler geometry. The reader is referred to appendix A.3.2 for more on these issues.

The following fundamental result establishes when a given almost complex manifold equipped with
a Hermitian metric is actually Kähler:

Proposition 2.2.2. Let (X, J, g) be an almost complex manifold of dimension 2m with Hermitian
metric. Let ω be the associated Hermitian form, and let ∇ be the Levi-Civita connection. The following
conditions are equivalent:
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1. ∇J = 0

2. ∇ω = 0

3. Hol(g) ⊂ U(m)

4. (X, J) is complex and dω = 0

Proof. The implication (1) ⇔ (2) follows from the formula ωab = gcbJ
c
a. Also, (1) ⇔ (3) by theorem 1.2.4.

We have that (1) ⇒ (4) because if ∇J = 0 then NJ = 0, and since (1) ⇒ (2), we have that ∇ω = 0 and
hence dω = 0. Finally, to prove (4) ⇒ (1) first notice that 0 = ∇X(−Id) = ∇XJ

2 = J∇XJ + (∇XJ)J
for X ∈ Γ(TX). Now define a tensor T by:

T (X, Y, Z) = g((∇XJ)Y, Z)

Thus, T (X, Y, JZ) = T (X, JY, Z). A computation shows that the condition NJ = 0 is equivalent to:

(∇JXJ)Y = J(∇XJ)Y

for allX, Y ∈ Γ(TX). From this we get that T (X, Y, JZ)+T (JX, Y, Z) = 0, and therefore T (X, JY, Z)+
T (JX, Y, Z) = 0.

Now, from the condition dω = 0 applies to (X, JY, Z) and then to (X, Y, JZ) we get the identities:

T (X, JY, Z) + T (JY, Z,X) + T (Z,X, JY ) = 0

T (X, Y, JZ) + T (Y, JZ,X) + T (JZ,X, Y ) = 0

By summing these two formulas and using the previously proved properties one concludes that
T (X, Y, JZ) = 0, which implies that ∇J = 0.

Example 2.2.3. Complex projective space CP
n can be given a Kähler structure as follows: we view

CP
n ∼= S2n−1/S1, and endow S2n−1 with the round metric. This is invariant by the action of S1 through

rotations, so that we get a metric in the quotient, called the Fubini-Study metric. It is in fact a Kähler
metric, as can be proven by a computation in local coordinates. In homogeneous coordinates [z0, ..., zn]
the Kähler form can be written as ω = i∂∂(log |z|2).

In this final part of this section we will summarize a few facts about Kähler manifolds. The reader
interested in more informaton on this material should consult sections 4.4, 4.5 and 4.6 of [16].

A complex submanifold Y ⊂ X of a Kähler manifold (X, g, J, ω) inherits the Kähler structure from
X. Indeed, the restriction g|N is again a Riemannian metric, and the tangent spaces TpY are invariant
by the complex structure J , so the restriction J |Y is a complex structure for Y such that g|Y and J |Y are
compatible. By definition, the Hermitian 2-form ωN is given by ωY (v, w) = g|Y (J |Y v, w) = g(Jv, w)|Y =
ω|Y (v, w) for v, w ∈ Γ(TY ). Thus, dY ωY = dY ω|Y = (dXω)|Y = 0.

A direct consequence is that the restriction of the Fubini-Study metric to complex submanifolds of
CP

n endows these submanifolds with a Kähler structure. Thus, all projective manifolds are Kähler.
A useful result in complex geometry is a holomorphic version of the Poincaré lemma; it says that

every closed real (1, 1)-form α can be written locally as α = i∂∂f for a real function f . When α is the
Kähler form for a Kähler metric on the manifold, we call f a Kähler potential. However, the result is
not true globally in general, since there are topological obstructions. For a compact Kähler manifold,
the Kähler form ω gives rise to a volume form ωn, so that the cohomology class [ω] 6= 0; on the other
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hand, ∂∂f is always exact, so the result is never true globally. Nevertheless, it is true that exact real
(1, 1)-forms on compact Kähler manifolds are globally of the form ∂∂f . In particular, it follows that
the Kähler potentials parametrize Kähler metrics inside a given Kähler cohomology class, which is very
useful for studying variations of Kähler structures on a complex manifold.

The Kähler condition imposes many remarkable restrictions in the curvature. For example, since
Hol(g) ⊂ U(n), it follows by theorem 1.2.14 and symmetries of the Riemann tensor that the curvature is
completely determined by a single component Rα

βγδ
. This also imposes restrictions on the Ricci tensor -

it is a real (1, 1)-tensor, and therefore a Hermitian metric. The Hermitian form associated to it is called
the Ricci form and is denoted by ρ. The interesting fact is that one can show (by doing a computation
in local holomorphic coordinates) that ρ is actually a closed form, so it determines an element [ρ] in the
de Rham cohomology of X. We will say more about [ρ] in the next section.

2.3 Calabi-Yau Geometry

In theorem 1.2.19 we called a manifold (X, g) Calabi-Yau if Hol(g) ⊂ SU(n). In particular, Calabi-
Yau manifolds are Kähler. It is not obvious at first that Calabi-Yau manifolds should exist - this result
is the Calabi-Yau theorem, which we will address shortly.

First, let us discuss a few properties these manifolds should have. Suppose X is a Calabi-Yau n-fold
with Kähler form ω and Kähler metric g. We can introduce complex coordinates z1, ..., zn in X such
that we have, in a point p ∈ X:

gp = dz21 + ...+ dz2n (2.3.1)

and

ωp =
i

2
(dz1 ∧ dz1 + ...+ dzn ∧ dzn) (2.3.2)

Now, these forms are preserved by the holonomy group SU(n). Therefore, there are constant tensors
in M that restrict to gp and ωp at p; these are, of course, just the Kähler metric and Kähler form.
However, there is another tensor that is preserved by SU(n); define:

Θp = dz1 ∧ ... ∧ dzn (2.3.3)

From this we obtain a tensor Θ in X satisfying ∇Θ = 0. This is the holomorphic volume form (it is
clear that ∂Θ = 0). Notice that Θ and ω are related by:

ωn = kΘ ∧Θ (2.3.4)

where k is a non-zero constant. Thus, since ωn is a volume form for the real manifold X (remember that
ω is non-degenerate) we obtain that Θ is a nowhere-vanishing global section of the canonical line bundle
KX := Ω3,0(X). Therefore, Calabi-Yau manifolds have trivial canonical line bundles, and in particular,
c1(X) = 0 1. There is a sort of converse to this result: if (X, g) is a compact Kähler manifold with a
Ricci-flat metric and trivial canonical bundle, then Hol(g) ⊂ SU(n). This is a consequence of theorem
2.3.1 below, applied to (n, 0)-forms where n is the complex dimension of X.

We mentioned in section 1.2 that Calabi-Yau manifolds are always Ricci-flat. It is also true that a
Ricci-flat Kähler manifold X has holonomy inside SU(n). This is due to the fact that the Ricci form ρ is

1See appendix A.2 for the definition of the first Chern class c1(X).
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actually the curvature form of the connection ∇′ induced on KX , and it vanishes if and only if Hol0(∇′)
is trivial. However, Hol0(∇′) = det(Hol0(∇)) (since U(n) acts on volume forms through determinants).
Therefore, ρ = 0 ⇔ Hol0(∇′) = {e} ⇔ Hol0(∇) ⊂ SU(n). Since X is Ricci flat if and only if ρ = 0,
this proves the assertion.

The reason why these manifolds are called Calabi-Yau is the following: suppose (X, g, ω) is a compact
Kähler manifold. One might consider the question of under which conditions M admits a Kähler form
for which the associated metric is Ricci-flat?

Calabi conjectured that if c1(X) = 0, then in each Kähler cohomology class there is a metric of
zero Ricci curvature. More generally, suppose that one is given a compact Kähler manifold (X,ω) with
Kahler metric g and Ricci form ρ, and that ρ ∈ Ω1,1(X) is a closed form such that [ρ] = 2πc1(X).
Then the Calabi Conjecture says there is a (unique) Kähler form ω in the same homology class of ω
such that the Ricci form of the Kähler metric of ω is ρ. In particular, if c1(X) = 0, we can “deform"
our original Kähler metric to obtain a Ricci-flat Kähler manifold. In particular, the space of Ricci-flat
Kähler metrics on X has dimension equal to the Hodge number h1,1(X).2

The Calabi conjecture was proved by Yau and is nowadays called the Calabi-Yau theorem. The
idea of the proof consists in rewriting the conjecture as a statement about existence of solutions to a
non-linear PDE, and then use the continuity method to prove a solution exists. For a detailed account
of the proof, see chapter 5 of [17].

Theorem 1.2.25 shows that the fundamental group of Calabi-Yau manifolds is always finite, and the
homology group H1(X) is always trivial. We also have the following result:

Proposition 2.3.1. If α is a closed form in a compact Ricci-flat Kähler manifold (X, g, J, ω), then α is
also parallel. Hence Hp,0(X) parametrizes parallel (p, 0)-forms on X.

Proof. We only sketch the proof. Since dα = 0 we have that ∂̄α = 0 and due to α being of type (p, 0)
we also have ∂̄∗α = 0. It follows that ∆∂̄α = 0, i.e., α is ∂̄-harmonic. We have the Weitzenböck formula
(1.2.7) for forms:

∆dα = ∇∗∇α− 2S(α)

Joyce [16] shows (proposition 6.2.4) that due to Ricci-flatness and the way the curvature tensor of
Kähler metrics decomposes that in fact S(α) = 0 for (p, 0)-forms. Now, as stated on the appendix, on
Kähler manifolds we have the Kähler identity (A.3.9). Therefore, α is also ∆d-harmonic. It follows that
∇∗∇α = 0. But then:

0 =

∫

X

g(∇∗∇α, α) =

∫

X

g(∇α,∇α) = ||∇α||2L2

since X is compact. Thus, ∇α = 0.

Calabi-Yau manifolds have many other interesting properties. For example, their deformation theory
(in the sense of Kodaira-Spencer) is unobstructed: the celebrated Bogomolov-Tian-Todorov theorem
states that the local moduli space of deformations of the complex structure of a compact Kähler m-fold
X is a complex manifold of (complex) dimension hm−1,1(X) and that each point defines a complex
structure in which X is also Kähler. As a consequence the local moduli space of deformations of the
Calabi-Yau structure of a Calabi-Yau manifold is a real manifold of dimension h1,1(X) + 2hm−1,1(X).
These result depend on an equivalence between the sheaf cohomology and the Dolbeault cohomology of
M which ultimately comes from the existence of a holomorphic volume form (see section 6.8 of [16]).

2For the definition of Hodge numbers, see appendix A.3.2.
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However, a complete description of this theory would take us too far from our purposes, so in what
follows we will give a brief exposition of the theory of special Lagrangian submanifolds and will sketch
a few facts about the simplest family of non-trivial Calabi-Yau manifolds, the K3 surfaces.

2.3.1 Special Lagrangean Geometry

As we explained, a Calabi-Yau n-fold X comes equipped with a holomorphic volume form Θ. An
important feature is that both Re(Θ) and Im(Θ) are calibrations, in the sense of section 1.3.

Definition 2.3.2. A real n-dimensional submanifold L of X that is calibrated by Re(Θ) is called a
special Lagrangean submanifold (or sLag submanifold for short).

In general it is possible to have submanifolds calibrated by aRe(Θ) + bIm(Θ) for any real a, b such
that a2 + b2 = 1. Nevertheless, we will only work with submanifolds calibrated by Re(Θ).

An alternative characterization of sLag submanifolds was given by Harvey and Lawson in their
foundational paper [13]:

Proposition 2.3.3. Let (X, g, J, ω,Θ) be a Calabi-Yau n-fold and M ⊂ X a real n-dimensional sub-
manifold. Then there exists an orientation of M making it into a sLag submanifold if and only if ω|M = 0
and Im(Θ)|M = 0

In particular, special Lagrangean manifolds are Lagrangean with respect to the symplectic structure
given by ω.

It follows from this characterization that, in order for a submanifold M to be special Lagrangean, one
must have [ω|M ] = [Im(Θ)|M ] = 0 in the de Rham cohomology. Now these are topological invariants,
and are therefore invariant under a continuous deformation of the embedding map f : M → X. Thus
these cohomology classes are obstructions for submanifolds isotopic to M to be special Lagrangean too.

We would like to sketch a proof of one of the most famous results in the theory of sLag manifolds. It
is a theorem of McLean [25] that shows that the deformation theory of sLag manifolds is unobstructed:

Theorem 2.3.4. Let (X, g, J, ω,Θ) be a Calabi-Yau n-fold and M a compact special Lagrangean sub-
manifold of X. Then the moduli space MM of deformations of M by special Lagrangean manifolds is
a smooth manifold of dimension b1(M).3.

Proof. We will only give a rough idea of how the proof works, following [16]. For a complete account,
the reader should consult [25].

The idea of the proof is to identify submanifolds close to M to certain 1-forms over M , and then
study which 1-forms are associated to sLag submanifolds.

First of all, since M is an embedded submanifold, we can write TX|M = TM ⊕ NM , where NM
is the normal bundle to M in X. We have isomorphisms NM ∼= TM ∼= T ∗M . The first one is given
as follows: since M is Lagrangean, ω|M = 0 and since ωac = J b

agbc, it follows that J |M = 0 (since the
metric is nondegenerate). Therefore J maps NM injectively into TM . The second isomorphism is of
course given by the metric itself.

We take a tubular neighborhood U of M and try to understand submanifolds lying inside U . But U
can be naturally identified with a neighborhood of the zero section in NM , and therefore a neighborhood
of T ∗M . In this way we identify submanifolds close to M with small 1-forms on M .

3Here b1(M) is the first Betti number of M .
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Now, if one of these submanifolds N is special Lagrangean, then ω|N = Im(Θ)|N = 0. Suppose that
N is associated to a 1-form α. The projection π : U → M restricts to a diffeomorphism π|N : N → M ,
which we can use to pushforward the forms ω|N and ImΘ|N . McLean shows that the result is:

π∗(ω|N) = dα

π∗(Im(Θ)|N) = f(α,∇α)
(2.3.5)

for f a certain non-linear function, that nevertheless satisfies f(α,∇α) ≈ d(∗α) for forms of small norm.
Now, forms satisfying dα = d(∗α) = 0 are the harmonic 1-forms, H1(M). So, what we have shown

is that MM is locally isomorphic to H1(M). By Hodge theory this space is isomorphic to the de Rham
cohomology group H1(M). Thus, dimMM = b1(M).

2.3.2 K3 Surfaces

An important class of examples of Calabi-Yau surfaces is provided by the K3 surfaces. These are
defined to be compact manifoldsX of complex dimension 2 with trivial canonical bundle and h1,0(X) = 0.
K3 surfaces have holonomy SU(2), as we will show in a moment. Since SU(2) ∼= Sp(1), K3 surfaces are
also hyperkähler4. There are two main methods for constructing K3 surfaces: the first is through the
methods of algebraic geometry, by constructing projective algebraic varieties which are shown to have
trivial canonical bundles. For example, the Fermat quartic Q = {[z1, ..., z4] ∈ CP

3; z41 + ...+ z44 = 0} can
be shown to be a K3 surface.

The second method consists in resolving singularities of quotients of flat spaces to enhance the
holonomy. For instance, in the Kummer construction one starts with a complex torus T

4 = C
2/Z4.

Coordinates z1, z2 in C
2 induce coordinates z̄1, z̄2 in T

4. We define an involution

f : T4 → T
4

(z̄1, z̄2) 7→ (−z̄1,−z̄2)
(2.3.6)

which can be seen as an action of Z2 on T
4. This map fixes the 16 points ( ¯a+ bi, ¯c+ di) where a, b, c, d

are either 1 or 0. Thus the quotient T
4/Z2 has 16 singular points. The blowup of this space along the

singular points replaces every point by a copy of CP1, and it can be shown that the resulting space is
a K3, called the Kummer surface, which is not algebraic. For more details on both constructions, see
section 7.3 of [16].

An important fact is that all K3 surfaces are diffeomorphic - they only differ in their complex
structures. Thus a major concern in the study of K3 surfaces is to understand the moduli space of
complex structures. A corollary is that all K3 surfaces are simply connected, since the Fermat quartic
is. Also, all K3 surfaces are Kähler manifolds. Both these results are difficult to prove - they rely on the
Kodaira-Spencer theory of deformations of complex structures, which is developed in Kodaira’s book
[21].

Let us prove that K3 surfaces have indeed holonomy SU(2):

Proposition 2.3.5. Let (X, J, ω) be a K3 surface. Then each Kähler class has a unique metric of
holonomy SU(2). Conversely, a compact Riemannian 4-manifold (X, g) with holonomy SU(2) admits a
unique complex structure J satisfying ∇J = 0 and making (X, J) a K3 surface.

4Joyce [16] points out that the geometry of K3 surfaces has much more in common with hyperkähler rather than with
Calabi-Yau geometry.
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Proof. The first assertion follows of course from the Calabi-Yau theorem: since h1,0(X) = 0, it follows
from the definition of the Chern classes (c.f. appendix A.2) that c1(X) = 0 and therefore there is a
unique Ricci-flat metric with Hol0(g) ⊂ SU(2) in each Kähler class. Now, X is simply connected, so
Hol(g) = Hol0(g). The only possibilities are that Hol(g) is either SU(2) or trivial, due to the Berger
classification theorem 1.2.19. Since X is compact, we must have Hol(g) = SU(2).

Let us prove now the converse. The result is clearly true when X = C
2, since SU(2) preserves

the standard complex structure J0 and the holomorphic volume form dz1 ∧ dz2 of C2. Since C
2 can be

identified with the tangent spaces of X, by theorem 1.2.4 there is a complex structure J and a (2, 0)-form
Θ on X satisfying ∇J = 0 and ∇Θ = 0. So X is complex and has trivial canonical bundle. It also
follows by theorem 1.2.24 that π1(X) is finite, so that h1,0(X) = 0, i.e., (X, J) is a K3 surface.

2.4 G2 Geometry

The Lie algebra g2 is one of the exceptional simple Lie algebras that appear in the classification by
Dynkin diagrams. There is up to isomorphism only one simply connected Lie group with this Lie algebra,
the Lie group G2. We have that dim(G2) = 14. The group G2 is one of the Lie groups in Berger’s list,
and as follows from previous discussions (see Wang’s theorem 1.2.20), manifolds with holonomy exactly
G2 are always Ricci-flat, spin, and have finite fundamental group.

Let GL(R7) act on R
7 in the usual way. This induces an action in the space Λ3(R7) by pullback. We

fix a basis {dx123, ..., dx567}5 and define the following 3-form Ω:

Ω0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356 (2.4.1)

Proposition 2.4.1. The group G2 ⊂ GL(R7) is the stabilizer of Ω0: G2 = {T ∈ GL(R7);T ∗Ω0 = Ω0}.

Proof. See lemma 11.1 of [30].

In fact, we have that G2 ⊂ SO(7) - indeed, G2 is connected and acts transitively on S6, so it preserves
the metric and the orientation on R

7. Therefore, G2 also preserves the 4-form ∗Ω. A different proof
of this fact is given by Salamon [30] - he shows that ∗Ω0 is, up to a multiplicative constant, a natural
4-form coming from the holonomy reduction to G2.

It is well-known that so(n) ∼= Λ2(Rn) - the isomorphism is given by associating to a basic bivector
v ∧w the antisymmetric matrix v∗ ⊗ w − w∗ ⊗ v, where v∗ denotes the covector associated to v. In the
case n = 7, since g2 ⊂ so(7) this gives a splitting Λ2(R7) ∼= Λ2

14 ⊕ Λ2
7, where6 g2 ∼= Λ2

14.
This splitting can be seen more explicitly as follows: consider the map

∗Ω0
: Λi(R7) → Λ4−i(R7) (2.4.2)

defined by ∗Ω0
(α) = ∗(Ω0 ∧ α). This is an endomorphism when restricted to 2-forms, and the splitting

above corresponds exactly to the decomposition of Λ2(R7) into eigenspaces of ∗Ω0
.

Now, due to theorem 1.2.4, in a Riemannian 7-manifold (M, g) with Hol(g) ⊂ G2, the tensor Ω0

gives rise to a 3-form Ω such that ∇Ω = 0. For the same reason, ∗Ω0 gives rise to the 4-form ∗Ω, and
∇ ∗ Ω = 0. Therefore, these forms are closed, and in fact they are calibrations,as we have discussed in
the last paragraph of section 1.3. Submanifolds calibrated by Ω are called associative submanifolds and
submanifolds calibrated by ∗Ω are not suprisingly called coassociative submanifolds.

In complete analogy with the theory of sLag submanifolds of Calabi-Yau manifolds (see theorem

5In the next two sections we will write a differential form dxi1 ∧ ... ∧ dxik as dxi1...ik to simplify the notation.
6In this notation, the subscript index labels the dimension of the space.
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Proposition 2.4.2. A 4-dimensional submanifold N of a G2-manifold (M, g,Ω) admits an orientation
such that N is a coassociative submanifold if and only if Ω|N = 0

There is also a version of McLean’s theorem 2.3.4 for the deformation theory of coassociative sub-
manifolds:

Theorem 2.4.3. Let (M, g,Ω) be a G2-manifold with a coassociative submanifold N . Then the moduli
space of deformations of N by coassociative manifolds is a smooth manifold of dimension b2+(N).

Here b2+(N) is the dimension of the space of harmonic selfdual 2-forms.

Proof. The proof is similar to theorem 2.3.4. See [16] for details.

The deformation theory of associative submanifolds is more complicated since these manifolds cannot
be characterized in a manner similar to theorem 2.4.2. Roughly speaking, what one does is to study
the normal bundle of an associative submanifold N inside a G2-manifold. One can identify this bundle
with a spinor bundle over N and define a certain twisted Dirac operator D acting on sections of the
normal bundle7, such that Ker(D) measures infinitesimal deformations of N , and Coker(D) measures
obstructions to deformations of N . The dimension of the moduli space of associative deformations
of N is then equal to the index ind(D) = Ker(D) − Coker(D), which is always zero for compact
odd-dimensional manifolds.

2.5 Spin(7) Geometry

Spin(7) is, of course, the universal cover of SO(7). The covering map p : Spin(7) → SO(7) is 2 to
1, as π1(SO(7)) ∼= Z2. This group can be shown to be the stabilizer of a 4-form Γ in R

8 which can be
written as:

Γ0 = Ω0 ∧ dx
8 + ∗Ω0 (2.5.1)

where we are now seeing the 3-form Ω0 (defined in the last section) as a 3-form on R
8. For the proof

that Spin(7) is indeed the stabilizer, see lemma 12.2 of [30].
As spin(7) ∼= so(7), it follows that dim(Spin(7)) = 28. Also, Spin(7) acts transitively on S7 with

stabilizer G2, so that Spin(7) ⊂ SO(8). We can use once more the identification so(8) ∼= Λ2(R8) to split
the space of 2-forms as Λ2(R8) = Λ2

21 ⊕ Λ2
7, where once again the subscripts label the dimension of the

space. We can see this splitting more explicitly by considering the operator:

∗Γ0
: Λi(R8) → Λ4−i(R8) (2.5.2)

and noticing that the splitting above corresponds to the decomposition into eigenspaces of the operator
∗Γ0

acting on 2-forms. In fact, by writing the Hodge star operator in local coordinates and going through
a lenghty computation, one finds the characteristic polynomial of ∗Γ to be (x− 3)7(x+ 1)21.

The group Spin(7) is on Berger’s list of holonomy groups of Riemannian manifolds, so there are
8-manifolds with holonomy Spin(7). From previous discussions, we know that any such manifold is
Ricci-flat, spin and has finite fundamental group. Also, from theorem 1.2.4, we know that on any
Spin(7)-manifold the Γ0 can be extended to a 4-form Γ such that ∇Γ = 0. Hence dΓ = 0, and the
discussion in section 1.3 shows that Γ is in fact a calibration. The 4-dimensional submanifolds N ⊂ M
calibrated by Γ are called Cayley submanifolds.

7See appendix A.1 for the relevant definitions.
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The deformation theory of Cayley submanifolds behaves much in the same way as that for associative
submanifolds of G2-manifolds, since there is also no criterion similar to theorem 2.4.2 to characterize
Cayley submanifolds. In general the dimension of the moduli space of deformations will be equal to the
index of a certain elliptic operator, which can be identified with a twisted Dirac operator whenever the
Cayley submanifold is spin.

31



Chapter 3

Gauge Theory

3.1 Yang-Mills equations

Gauge theory is the study of connections on principal bundles and its associated vector bundles. We
have already seen in chapter 1 that we can study connections in the context of both principal and vector
bundles, and these give equivalent theories. Thus, in what follows we will change from one language to
the other according to convenience.

Let us also fix some notation: P →M is a principal G-bundle over M , and H ⊂ TP is a connection
on P . We denote the connection one-form by ω. Also, E →M will be a vector bundle associated to P
- so its structure group is G and it is endowed with a connection ∇. We fix a local trivialization {Uα}
of E so that locally, we write ∇ = d + Aα for Aα ∈ Ω1(Uα) ⊗ Ad(P ). The curvature of ∇ is denoted
by F ; this is an element of Ω2(M)⊗Ad(E). We also have an exterior covariant derivative that extends
the action of the connection to bundle-valued forms, which we denote by d∇ as in section 1.1.1. In this
notation, the Bianchi identity reads d∇F = 0. Finally, we denote the Hodge star operator again by ∗.

In this notation, the Yang-Mills equation is:

d∇ ∗ F = 0 (3.1.1)

When written in local form, this equation translates as a set of second-order equations for the
connection coefficients Aα.

3.2 Gauge transformations

Now, denote by A the space of all connections on the vector bundle E.
The action of G on E induces an action on the sections of a trivializing neighborhood U of E in the

following way: if s ∈ Γ(U) and σ : U → G, then σ.s(x) = σ(x)s(x). This action in turn induces an action
of the functions σ : U → G in the space of connections. In fact, we would like our covariant derivative
∇ to behave nicely with respect to the this action; this means that we should have ∇(σs) = (σ.∇)s for
all s ∈ Γ(E). This formula implies that the action induced on the connection coefficients is:

σ.A = σ−1Aσ + σ−1dσ (3.2.1)

The curvature coefficients then satisfy:

σ.F = σ−1Fσ (3.2.2)
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However, this is only a local form for the action on the space of connections. To understand how it
looks like globally, let us switch to the framework of connections on principal bundles. From a principal
G-bundle P → M we can form an associated fiber bundle C(P ) = P ×G G through the conjugate
representation of G, g 7→ Cg ∈ Diff(G). Now, local sections of C(P ) are just maps σ : U → G. The
point of introducing this bundle is the following theorem:

Theorem 3.2.1. Γ(C(P )) is isomorphic (as a group) to G := Aut(P ), the group of automorphisms of
the principal bundle P .

Note: The group structure on Γ(C(P )) is just the one given by pointwise multiplication.

Proof. If α : P → P is an automorphism of the bundle P , then π ◦ α = π and therefore there exists
σ : P → G such that:

φ(p) = pσ(p) (3.2.3)

(since the action is transitive on the fibers). The map σ isG-invariant in the sense that σ(pg) = g−1σ(p)g.
There is an isomorphism between the space of G-invariant maps P → G and sections of C(P ); this
associates to a section s(m) = [p(m), g(m)] the map f(p) = g(π(p)). Conversely, if we start with such a
σ , we can get an automorphism α of P by formula 3.2.3. It is also clear that this formula is compatible
with the group structures.

So, what we are actually seeking is an action of G on the space of connections, which globalizes 3.2.1.
Now, if we take a connection 1-form ω and φ ∈ G, then φ∗ω is also a connection 1-form. Indeed,

since φ commutes with the G-action, φ∗ω also transforms by Ad(G), and p∗(φ∗ω) = φ(p)∗(ω) = ωMC .
Therefore, G acts on A on the right by pulling back connections, and formula 3.2.1 is the local version
of this action.

The quotient space A/G is called the moduli space of connections. Actually, things are not this
simple, since one should make many restrictions to get a reasonable quotient space. For instance, in
the case of SU(2) connections on a four-manifold, one should restrict attention to L2

2 connections and
L3
2 gauge transformations. This is enough, for example, to assure that the quotient space is Hausdorff.

We will not describe this (important) part of the theory, since it relies on hard analysis of the relevant
Sobolev spaces (see Morgan’s lectures in [9]). Instead, from now on we simply assume that all connections
live in L2

2 and gauge transformations live in L3
2. The main point of this assumption is to guarantee that

the action has local slices (see theorem (3.3.1) below).

3.3 Four Dimensions

In four dimensions, the Hodge star operator maps 2-forms to 2-forms. Hence we have a special class
of solutions to the Yang-Mills equations, the anti-selfdual connections (which are also called instantons).
These satisfy:

∗F = −F (3.3.1)

i.e., the selfdual part of the curvature vanishes identically. Notice that these connections automatically
satisfy the Yang-Mills equation, due to the Bianchi identity 1.1.12. Nevertheless, this is a first-order
(although non-linear) equation for ∇, so supposedly it should be easier to solve than the Yang-Mills
equation.
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The set of all instantons I is invariant by the group of gauge transformations, so we get a well-defined
moduli space of instantons:

M = I/G

3.3.1 The Moduli Space of Instantons

An important fact is that the subgroup of G that stabilizes a given connection A consists exactly
of the sections σ : M → Ad(P ) which are horizontal with respect to A. Furthermore, this is also the
centralizer of the holonomy representation of A in the fiber.

In the case of SU(2) connections, the subgroup {−1,+1} stabilizes every connection, but some
connections might have larger stabilizers (it can be proved that it must be either a S1-subgroup or all
of SU(2), see Morgan’s lectures in [9]). Connections whose stabilizer is larger than {−1,+1} are called
reducible.

The moduli space of instantons is, by definition, the set of orbits of connections for the action of the
group of gauge transformations. To get a feeling of how it looks like, we need to study the self-duality
map:

F+ : A → Ω2
+(M ;Ad(P )) (3.3.2)

The moduli space is just F−1
+ (0). To get a local model for this space, we would need some version

of the implicit function theorem for operators on infinite-dimensional manifolds. It is known that such
a result holds for the so-called Fredholm operators, i.e., those linear operators T satisfying:

ind(T ) := dim(Ker(T ))− dim(Coker(T )) <∞ (3.3.3)

The number in this equation is called the index of the operator T .
A computation shows that dAF+ = ∇+, the self-dual part of the covariant derivative map acting

on 1-forms. Unfortunately, the operator ∇+ does not define a Fredholm map. However, by using hard
analysis one can get a better understanding of the action of G in A, and as a consequence one can prove
that this action admits local slices modelled on Ker(∇∗). Then it follows that:

Theorem 3.3.1. The map F+ : Ker∇∗ → Ω2(M ;Ad(P )) is a Fredholm operator.

Proof. Consider the complex:

C(A) : 0 → Ω0(M ;Ad(P ))
∇
→ Ω1(M ;Ad(P ))

∇+

→ Ω2
+(M ;Ad(P )) → 0 (3.3.4)

This is a complex when the connection is ASD (since ∇+∇ = F+). We can form the symbol complex:

0 → π∗(Ω0(M ;Ad(P )))
α
→ π∗(Ω1(M ;Ad(P )))

β
→ π∗(Ω2

+(M ;Ad(P ))) → 0 (3.3.5)

where the maps α and β are given fiberwisely by α(ω) = (∧ω)⊗IdAd(P ) and β(ω) = F+((∧ω)⊗IdAd(P )),
for every ω ∈ T ∗M .

The symbol complex is exact away from the zero section [9]1, so that the original complex is elliptic.
This implies (see appendix A of [5]) that the images of the operators are closed and that the associated
cohomology groups are finite-dimensional.

1Essentially, this follows from the exactness of the complex obtained by replacing Ad(P ) by the trivial bundle.
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Now, the first map is just the linearization of the G-action on A, i.e., ∇ is just the differential of
A : G → A defined by σ 7→ σ−1Aσ + σdσ−1. Therefore, its image is just the tangent space of the gauge
orbit through A inside A. The second map is the differential of the curvature map A 7→ FA. We have a
splitting:

Ω1(M ;Ad(P )) = ∇(Ω0(M ;Ad(P )))⊕Ker(∇∗) (3.3.6)

Therefore, Ker(F+|Ker(∇∗)) can be identified with the first cohomology group, and is thus finite-
dimensional.

Moreover, it is easy to see that Coker(F+) is just the second cohomology of the complex, and thus
it is also finite-dimensional. It follows that F+|Ker(∇∗) is a Fredholm map.

The Euler characteristic of the complex 3.3.4 is just the index of F+ and can be computed via the
Atiyah-Singer index theorem in terms of topological invariants of Ad(P ):

χ(C(A)) = 3(b0(M)− b1(M) + b+2 (M))− 8c2(P ) (3.3.7)

and therefore it is independent of the choice of (irreducible) connection defining C(A). Here, b0(M)
and b1(M) are the first and second Betti numbers of M , c2(P ) is the second Chern class of the bundle
and b+2 (M) is the dimension of the maximal positive subspace of H2(M) under the intersection pairing
I : H2(M)×H2(M) → R defined by:

([α], [β]) 7→

∫

M

α ∧ β

This number is equal to minus the dimension of M provided that H2(C(A)) = 0; in fact, by the
implicit function theorem we have a map:

K : H1(C(A)) → H2(C(A)) (3.3.8)

called the Kuranishi map, such thatK−1(0) defines a local model for M around an irreducible connection
A. If the codomain is zero, then the dimension of K−1(0) is the same of H1(C(A)), which is the same
as the Euler characteristic of the complex. Thus, near an irreducible connection the moduli space can
be described as a smooth manifold of dimension −χ(C(A)). Moreover, the map F+ can be seen as a
Fredholm section of the vector bundle A ×G Ω2

+(M ;Ad(P )) defined over the space of connections, and
that the moduli space is just the zero set of this section.

We won’t go further into the theory beyond this point, since it starts to get intricate. There are
issues related to existence of reducible connections, and about the behavior of the moduli space near
these points. For many of the applications, one also has to study the behavior of M under variations
of the metric, and to prove that it is orientable. Finally, it is important to understand the behavior
of limiting connections and their neighborhoods in M; there are two main results in this direction:
Uhlenbeck’s compactness theorem and Taubes’ gluing theorem. From these one can define a natural
compactification of the moduli space, which allows one, for instance, to integrate cohomology classes on
the resulting compactification - this actually is how the Donaldson polynomial invariants are defined.
The reader interested in pursuing these matters in depth should consult [5] and Morgan’s lectures in [9].
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3.3.2 Perspectives

Gauge theory in low dimensions can also be described as a Topological Quantum Field Theory
(TQFT). In general, a n-dimensional TQFT is a monoidal functor from the category of n-dimensional
cobordisms2 to a linear category (usually the category of vector spaces with the tensor product struc-
ture), satisfying some naturality axioms [1]. For 3-manifolds, we can study instantons using Floer
homology ; this works roughly as follows: for any 3-manifold M we can construct the Chern-Simons
functional defined over the space of connections modulo gauge transformations:

CS(A) =
k

8π

∫

M

Tr(A ∧ dA+
2

3
A ∧ A ∧ A) (3.3.9)

The critical points of this functional are the flat connections, so applying methods of Morse theory
we can construct a homology complex, at least in the case when M has the same homology as the
sphere3: the homology groups are free groups generated by flat connections and the boundary map is
constructed from the Chern-Simons flow. Physically, these so-called Floer homology groups correspond
are state spaces of vacuum configurations of a physical system. Floer homology behaves nicely through
topological operations: if one gives M by a handlebody decomposition M = L1#ΣL2 through a Riemann
surface Σ, then L1 and L2 define Lagrangian submanifolds in the moduli space of unitary flat bundles
over Σ.

An important technical point is that the Chern-Simons functional is not gauge invariant, but changes
by an integer multiple of 2π by a gauge transformation. However, this is not a problem in the quantum
Chern-Simons theory, where the basic object is S =

∫
DA exp(iCS(A)). Although ill-defined, this

Feynman integral can be computed due to a relation to a conformal field theory called the Wess-Zumino-
Witten model: roughly speaking, locally M looks like Σ× I where Σ is a Riemann surface and I is the
unit interval, and the statement is that the Feynman integral should give the dimension of conformal
blocks in the WZW model of Σ. This is described in [35] and is the most famous TQFT to date: it
calculates the Jones polynomial of knots in M , and more recently it was discovered to be a particular
case of a more general theory known as Khovanov homology [19] through a certain string duality.

Leung [23] sketches a definition of a Topological Quantum Field Theory for any Calabi-Yau or G2-
manifold, based on the work of Donaldson and Thomas [7].

3.3.3 Dimensional Reduction from Four Dimensions

We will now show how 4-dimensional gauge theory interacts with lower dimensional theories by
exhibiting the dimensional reductions of the anti-selfduality equations.

Suppose that M is a 4-manifold and introduce local coordinates {x0, x1, x2, x3}. Let A be the local
form for a connection on M , and suppose A is independent of x0. We can then write A = Aidx

i+φdx0 :=
A′ + Φ, where φ is called a Higgs field. The Ai’s and φ are g-valued functions independent of the x0

2Here, a cobordism between two oriented n-dimensional closed manifolds M1, M2 is an oriented n + 1-dimensional
compact manifold N such that ∂N = M1 ∪ −M2, where the minus sign means “opposite orientation”. The category of n-
dimensional cobordisms has as its objects all oriented n-dimensional closed manifolds and the morphisms are cobordisms.
It has a natural monoidal structure given by disjoint union of manifolds.

3Actually, all that is required is that H1(M,Z) = {0}; the reason for this is a little subtle, but in a nutshell this group
labels reducible representations of π1(M) which should be disregarded. See page 216 of Floer’s paper [8] for more on this.
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coordinate. In components, the ASD equations read:

F01 = −F23

F02 = F34

F03 = −F12

(3.3.10)

This translates to:

− ∂1φ+ [φ,A1] + F23 = 0

− ∂2φ+ [φ,A2]− F13 = 0

− ∂3φ+ [φ,A3] + F12 = 0

(3.3.11)

If our manifold is locally of the form M = N ×R, with x0 a coordinate in R, A′ can be though of as
connection on N . Then, B = Fijdx

i ∧ dxj is just the curvature of A′. The above 3 equations can then
be written as:

∇A′φ = ∗B (3.3.12)

where the subscript in ∇ means that this is the covariant derivative in N associated to A′. These are
the so-called Bogomol’nyi monopole equations.

By following the same procedure, we can get the analogous of instantons in fewer dimensions. Suppose
now that A only depends on x0. Defining the new connection as A′ = A0dt we have that:

F01 = ∂0A1 − ∂1A0 + [A0, A1] = ∂0A1 + [A0, A1] = ∇A′A1 (3.3.13)

Analogously:

F23 = [A2, A3] (3.3.14)

So the first ASD equation is:

∇A′A1 + [A2, A3] = 0 (3.3.15)

and the other two equations are:

∇A′A2 + [A3, A1] = 0 (3.3.16)

∇A′A3 + [A1, A2] = 0 (3.3.17)

These are called the Nahm equations. One of the nice things about them is that there is a Nahm
transform connecting solutions of these (rather simple) equations to solutions to the monopole equations.

Finally, let us see what happens in two dimensions. Following the same procedure, we suppose that
A is independent of x2 and x3, and write A′ = A0dx

0 + A1dx
1. If we suppose M = Σ × C with x0, x1

coordinates in Σ, the ASD equations read:

F01 = −[A2, A3] (3.3.18)

∇0
A′A2 = ∇1

A′A3 (3.3.19)
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∇0
A′A3 = −∇1

A′A2 (3.3.20)

where the ∇0
A′ is the component of ∇A′ in the x0-direction, etc.

These equations can be cast in a more illuminating form if we use complex coordinates dz = dx0+idx1

(all orientable 2-manifolds are complex). Then, we write φ = 1
2
(A2 + iA3)dz. This is called the Higgs

field ; we have φ ∈ Ω1(M,End(E)). Notice that:

[φ, φ∗] = φφ∗ + φ∗φ = −
i

2
[A2, A3]dz ∧ dz = −[A2, A3]dx

0 ∧ dx1 (3.3.21)

So the first equation is simply:

FA′ = [φ, φ∗] (3.3.22)

Now, consider the Dolbeault operator ∂A′ = 1
2
(∇0

A′ + i∇1
A′)dz. Then:

∂A′φ = 0 (3.3.23)

Equations 3.3.22 and 3.3.23 are called the Hitchin equations. They were introduced by Hitchin in
[15], where he showed that the moduli space of solutions has the structure of a completely integrable
system.

3.4 Gauge Theory on Special Holonomy Manifolds

3.4.1 Calabi-Yau Manifolds

Remark : In what follows, a complex manifold of complex dimension n is called a n-fold.
Gauge Theory on Calabi-Yau manifolds was first described by Donaldson and Thomas in [7] and

developed in more detail in Thomas’ PhD thesis [31]. We recall that in the context of real manifolds,
gauge theory is the study of solutions to the Yang-Mills equations (3.1.1). This requires the manifold
to be endowed with an orientation and a (semi)Riemannian metric, because one needs a volume form
to define the Hodge star operator. Thomas argues that in the context of complex manifolds, the
analogous to a real oriented Riemannian manifold is a Calabi-Yau manifold X. Indeed, the section
Θ ∈ Λ(n,0)(T ∗X) that trivializes the canonical bundle KX is a holomorphic volume form, and allows us
to define a “holomorphic” Hodge operator:

∗Θ : Λ(0,p)(T ∗X) → Λ(0,n−p)(T ∗X)

α 7→ ∗(Θ ∧ α)
(3.4.1)

where ∗ is the usual anti-linear Hodge operator:

∗ : Λ(p,q)(T ∗X) → Λ(n−p,n−q)(T ∗X)

such that for (p, q)-forms α and β, α ∧ ∗β = 〈α, β〉dV .
The philosophy is then that, by replacing real coordinates by complex coordinates, d by ∂̄ and by

wedging all relevant equations/functionals with Θ, one should get a sensible “complex gauge theory". A
natural generalization of the Yang-Mills equations is:

∂̄∗AF
(0,2) = 0 (3.4.2)
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for the (0, 2) part of the curvature of a connection A on X.
In the particular case where X is a Calabi-Yau 4-fold we have a complex version of the ASD equations

(3.3.1):

∗ΘF
(0,2)
A = −F

(0,2)
A (3.4.3)

In principle this equation only depends on the conformal class of the metric, so they are often
supplemented with an Hermitian-Einstein type of condition:

ΛF := igbāF
(1,1)
bā = λId (3.4.4)

As Thomas explains, this also has the additional benefit of making the equations elliptic, so that
one could hope to get a sensible moduli space of solutions. In fact, the main point of Thomas’ work is
to define a “holomorphic Casson invariant” counting holomorphic bundles over a Calabi-Yau 3-fold, i.e.,
solutions to the equation

F
(0,2)
A = 0 (3.4.5)

in analogy to the real case in which one counts flat SU(2)-connections. Flat connections are, of course,
stationary points of the gradient flow of the Chern-Simons functional; Thomas defines a “holomorphic
Chern-Simons functional”:

CS(A) =
1

8π2

∫

X

tr(∂̄Ãa ∧ a+
2

3
a ∧ a ∧ a) ∧Θ (3.4.6)

whose gradient flow coincides with equations (3.4.3). Counting stationary points should then give the
number of holomorphic bundles. In the real case, one computes the number of flat connections by
taking CS to be a Morse function in the space of connections and calculating the Euler characteristic
of the associated Morse complex4. For the holomorphic case, Thomas proposes that, with a suitable
compactness theorem for the moduli space, one should be able to use Picard-Lefschetz theory - a complex
analogue of Morse theory - to count the number of holomorphic bundles.

3.4.2 Exceptional Holonomy Manifolds

The existence of a generalized ASD equation is not a special feature of Calabi-Yau 4-folds. In general,
if we have a n-dimensional manifold M (n > 4) with a closed (n−4)-form Ω, then for any vector bundle
with connection over M we can consider the equation:

∗(Ω ∧ FA) = −FA (3.4.7)

Tian [32] studies a more general version of the special holonomy ASD equations: In fact, Tian proves
this for a more general version of these special holonomy ASD equations:

Ω ∧ (FA −
1

r
tr(FA)Id) = − ∗ (FA −

1

r
tr(FA)Id) (3.4.8)

where r is the rank of the bundle. He then proceeds to prove that, if one considers the decomposition
induced on the space of 2-forms by the special holonomy structure, then each piece of the curvature FA

on this decomposition satisfies a Hermitian-Yang-Mills type of condition. This is proved by giving a
formula for the Yang-Mills action in terms of the Chern classes of the bundle and the cohomology class
of the special holonomy structure.

4This is the idea behind the celebrated Floer theory.
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3.5 Dimensional Reduction from Higher Dimensions

We will work out a few dimensional reductions of instantons in higher dimensional manifolds. We
will reduce a Spin(7)-instanton to a G2-manifold and to a K3 surface, and a G2-instanton to a Calabi-
Yau manifold. We will also reduce a SU(4)-instanton to a Calabi-Yau manifold of complex dimension
3 following the work of [2]; in this case, by seeing SU(4) as a subgroup of Spin(7), this last example
fits in the same picture as the first one; furthermore, we will show how some of these reductions furnish
links with advanced topics such as a certain non-abelian version of the Seiberg-Witten equations, and
also to the 3 twists of N = 4 Super Yang-Mills theory.

As far as we know, this is the first work to present the dimensional reduction from a G2 manifold to
a Calabi-Yau manifold, and in particular to derive the perturbed Kähler instanton equations (3.5.11).
Nevertheless, it should be pointed out that the calculation is completely analogous to the dimensional
reduction from a Spin(7) manifold to a G2 manifold presented in the Diploma Thesis of B. Jurke [18],
which results in the perturbed G2-instanton equations (3.5.16).

3.5.1 G2 to Calabi-Yau

Let X be a Calabi-Yau manifold with holomorphic volume form Θ and Kähler form ω. Then
Y = X × R can be given a G2-structure by defining:

Ω = dt ∧ π∗ω + π∗ReΘ (3.5.1)

where t denotes a coordinate in R and π : Y → X is the projection.
The G2-instanton equation is:

Ω ∧ F = − ∗Y F (3.5.2)

where ∗Y is the Hodge star operator on Y . By writing down Ω in local coordinates one can write the
operator α 7→ ∗(Ω ∧ α) (for α a 2-form) in matrix form; its only eigenvalues are −1 and 2. So the
G2-instanton equation can also be written as:

π2(F ) = 0 (3.5.3)

where π2 is of course projection onto the eigenspace associated to the eigenvalue 2.
We wish to see what happens to G2-instantons in temporal gauge, i.e., with vanishing component in

the t-direction. For this, we need the following lemma relating the Hodge star of X to the one on Y :

Lemma 3.5.1. Let α ∈ Ωk(Y ) and π : Y = X × R → X be the projection. Then we can write
α = dt ∧ π∗α1 + π∗α2.

Denote by ∗ the Hodge operator on X. Therefore:

∗Y α = π∗(∗α1) + dt ∧ π∗(∗α2) (3.5.4)

Proof. If α, β ∈ Λ2(Y ), then β ∧ ∗Y α = 〈β, α〉Y dVY . A short computations shows that 〈β, α〉Y =
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〈β1, α1〉X + 〈β2, α2〉X . Also, clearly dVY = dt ∧ π∗(dVX). Therefore:

β ∧ ∗Y α = dt ∧ π∗(〈β1, α1〉X + 〈β2, α2〉X)dVX

= dt ∧ π∗(β1 ∧ ∗α1 + β2 ∧ ∗α2)

= (dt ∧ π∗β1) ∧ π
∗(∗α1) + π∗β2 ∧ (dt ∧ π∗(∗α2))

= (dt ∧ π∗β1 + π∗β2)
︸ ︷︷ ︸

=β

∧(dt ∧ π∗(∗α2) + π∗(∗α1))

(3.5.5)

Thus, ∗Y α = (dt ∧ π∗(∗α2) + π∗(∗α1)) as stated.

Now, if AY is a G2-instanton in temporal gauge, we can write AY = π∗A+φ for A a g-valued 1-form
in X. The curvature then satisfies FY = π∗F + π∗∇φ ∧ dt. From this, the G2-instanton equation 3.5.2
can be rewritten:

(dt ∧ π∗ω + π∗ReΘ) ∧ (π∗F + π∗∇φ ∧ dt) = − ∗Y (π∗F + π∗∇φ ∧ dt) (3.5.6)

The RHS is, by the lemma, the same as:

−π∗(∗F )− dt ∧ π∗(∗∇φ) (3.5.7)

On the other hand, the LHS can be rearranged so as to be written as:

π∗[∗(ω ∧ F −ReΘ ∧∇φ)] + dt ∧ π∗[∗(ReΘ ∧ F )] (3.5.8)

Therefore, we get the following two equations for the dimensional reduction:

∗(ω ∧ F ) + F = ∗(ReΘ ∧∇φ) (3.5.9)

∗(ReΘ ∧ F ) = −∇φ (3.5.10)

Also, plugging the second equation in the first, we get:

∗(ω ∧ F ) + F = − ∗ (ReΘ ∧ ∗(ReΘ ∧ F )) (3.5.11)

The RHS of this equation can be seen intuitively as some kind of Kähler version of the anti-self
duality condition. In fact, on a 6-manifold M with a 2-form ω, the equation:

∗(ω ∧ FA) = −FA (3.5.12)

which can be called a “Kähler ASD equation”, makes sense for a connection A on a principal bundle
over M . Equation 3.5.11 is a generalization of this including a perturbation term depending on the
Calabi-Yau structure through Θ. Notice also that when the Higgs field vanishes, we recover 3.5.12, and
also get:

ReΘ ∧ F = 0 (3.5.13)
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3.5.2 Spin(7) to G2

Let X be a G2-manifold with G2-structure given by φ ∈ Ω3(X). Then the manifold Y = X ×S1 can
be given a Spin(7)-structure by defining:

Γ = dθ ∧ π∗(Ω) + π∗(∗Ω) (3.5.14)

where π : Y → X is the usual projection, and θ is a coordinate on S1. This defines a Spin(7)-structure
for the product metric gY = gX × dθ2 on Y . This follows from our definition of a Spin(7)-structure in
R

8 in terms of a G2-structure in R
7.

The dimensional reduction of a Spin(7)-instanton to a G2 manifold is completely analogous to the
reduction of a G2-instanton to a Calabi-Yau manifold done in the last section. We recall that the
G2-instanton equation can be written as

π7(F ) = 0 (3.5.15)

where π7 is the projection into the 7-dimensional eigenspace of the operator ∗Ω associated to the eigen-
value 2. Upon dimensional reduction to a G2 factor, the Spin(7) instanton equation associated to the
Spin(7) structure 3.5.14 becomes:

∗(Ω ∧ F ) + F = 9 ∗ (∗Φ ∧ ∗(∗Φ ∧ F )) (3.5.16)

For the detailed calculation, see section 4.1 of [18].

3.5.3 Calabi-Yau 4-fold to Calabi-Yau 3-fold

Let us now work out the dimensional reduction from a Calabi-Yau manifold (X1, g1, ω1,Θ1) of com-
plex dimension 4 to another Calabi-Yau (X2, g2, ω2,Θ2) of complex dimension 3. This is a particular case
of a Spin(7) reduction, since SU(4) ∼= Spin(6) ao that we have a natural inclusion SU(4) ⊂ Spin(7).
We suppose X1 is of the form X1 = X2 × S, for S a Riemann surface. The good thing about complex
dimension 4 is that the holomorphic volume form has the correct rank to induce a Calabi-Yau instanton
equation:

∗(Θ1 ∧ F̃ ) = −F̃ (3.5.17)

for the curvature F̃ of a connection Ã over a vector bundle E on X1. We remind the reader that the
complex Hodge star is defined by the condition that α ∧ ∗α = |α|2dV for every complex form α.

We can choose complex coordinates z1, . . . , z4 in which Θ1 is given by

Θ1 = dz1 ∧ dz2 ∧ dz3 ∧ dz4 (3.5.18)

Then the only component of F̃ that matters for equation 3.5.17 is F (0,2), i.e., the component in
Λ2(T ∗(0, 1)X1). We will write the components of this tensor as Fāc̄ to emphasize it is associated to the
anti-holomorphic eigenspace.
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We introduce a complex coordinate w on S and suppose that Ã is independent of w. We write

Ã = A+ Φ, where A =
3∑

i=1

Aidzi. Then equation 3.5.17 becomes:

F̃1̄2̄ = −F̃3̄4̄ = −∇3̄Φ

F̃1̄3̄ = F̃2̄4̄ = ∇2̄Φ

F̃2̄3̄ = −F̃1̄4̄ = −∇1̄Φ

(3.5.19)

One should compare these equations with 3.3.10. The equations are exactly the same, except that
in the Calabi-Yau context we only care about anti-holomorphic coordinates. This reinforces the point
addressed in [7] that a Calabi-Yau 4-fold should be seen as the complex analogue of an oriented real
four-manifold in the context of gauge theory.

Now, ∇ = ∂Ã+ ∂̄Ã, and since we only care about anti-holomorphic components we can replace ∇ by
∂̄. Our equations then become:

∂̄AΦ = ∗F (0,2) (3.5.20)

where now ∗ is the Hodge star on X2 and F is the curvature of A seen as a connection over the bundle
E|X2

. Notice that this is exactly a holomorphic version of the Bogomol’nyi equations 3.3.12.
We can refine this result as follows: define φ ∈ Λ(0,2)(X2) by Φ = ∗φ. Then, due to the (anti-

holomorphic part of) Bianchi identity ∂̄F (0,2) = 0 it follows from 3.5.20 that ∂̄A ∗−1 ∂̄A ∗ φ = 0, i.e.:

∂̄A∂̄
∗
Aφ = 0 (3.5.21)

which implies, when X2 is closed and compact, that ∂̄∗Aφ = 0. So we finally get:

∂̄AΦ = 0 (3.5.22)

i.e., the Higgs field Φ is holomorphic. As a consequence of 3.5.19, we have that Fāc̄ = 0. Also, we could
have done the same trick with an anti-holomorphic volume form Θ̄ = dz̄1 ∧ dz̄2 ∧ dz̄3 ∧ dz̄4, so that we
also have Fac = 0. Thus:

Fac = Fāc̄ = 0 (3.5.23)

which means that F is a (1, 1)-form, i.e., the bundle is holomorphic and A is its metric connection.
There is an extra set of equations that should be imposed in this situation. They are related to

questions of stability which we have not addressed in this work. Singer et al. [2] write these as:

F.ω = 0 (3.5.24)

where the dot means the inner product induced by the metric on the space of (1, 1)-forms. This is a
moment map condition that is imposed to account for gauge invariance. In general, the orbit space of
the space of unitary connections under the action of Gc (the group of complex gauge transformations)
is identified with the symplectic quotient

{
F (1,1).ω = 0

}
/G, at least for stable bundles. In this case the

right notion of stability is that E should be Hermitian-Einstein. The reader is refered to [7] and section
2.3 of [2] for more on this subject.

Equations 3.5.23 and 3.5.24 are called the Donaldson-Uhlenbeck-Yau equations. They describe the
moduli space of stable vector bundles on a Kähler manifold (this is the celebrated Hitchin-Kobayashi
correspondence) and are also relevant for Calabi-Yau compactifications in heterotic string theory.
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For more on the DUY equations, the reader is encouraged to consult section 4.1.1 of [2], where the
authors discuss them from the point of view of the BRST cohomology of supersymmetric Yang-Mills
theory on a Calabi-Yau manifold.

3.5.4 Spin(7) to a K3 surface

In what follows, we will make use of the quaternionic structure on R
4, as well as results about spin

geometry. For background, see appendix A.1.
Now we would like to perform a dimensional reduction from a Spin(7)-manifold to four dimensions.

It is well-known folklore that, by taking one of the factors in the product structure to be R
4, and using

an appropriate identification between spinors and differential forms5, the dimensional reduction results
in equations very closely related to the celebrated Seiberg-Witten equations. This statement can be
found, for instance, in [6] and [2].

As far as we know, this dimensional reduction was originally performed in the Diploma Thesis of
Benjamin Jurke, reference [18]. Following his work, we will consider the case in which the 8-manifold
is the total space of the positive spinor bundle over a K3 surface X with Kähler metric g.6 The good
thing about choosing a K3 is that, due to Wang’s theorem 1.2.20, the bundle of positive spinors S+ is
trivial:

S+ = X × R
4 (3.5.25)

so that, denoting by h the Euclidean metric on R
4, it follows that the holonomy of the product metric

g × h is SU(2) ⊂ Spin(7). In fact, the Spin(7)-structure can be written explicitly; using the notation
of section 2.5:

Γ0 = dx1234 + (dx13 − dx24) ∧ReΘ− (dx14 + dx23) ∧ ImΘ

+ (dx12 + dx34 +
1

2
ω) ∧ ω

(3.5.26)

in appropriate coordinates at a point p. Here ω is the Kähler form and Θ the holomorphic volume form
on X.

Then, by introducing complex coordinates z1, z2 such that Θ = dz1∧dz2 and ω = i
2
(dz1∧dz̄1+dz2∧

dz̄2) and rewriting Γ0 in terms of the real and imaginary parts of z1 and z2, we obtain exactly formula
2.5.1. This form is of course preserved by Spin(7), so by theorem 1.2.4 it defines a covariantly constant
tensor Γ, the Spin(7)-structure.

The Spin(7) self-duality equation is:

F = ∗(Γ ∧ F ) (3.5.27)

where F is the curvature of a connection A on a principal bundle over S+. We can also write this
equation as:

π7(F ) = 0 (3.5.28)

5This can be done in spin manifolds by choosing a spin structure and a covariantly constant unitary spinor field, or
for complex manifolds in general by choosing a Spinc-structure - see Nicolaescu’s notes on Seiberg-Witten theory [27] for
more on this.

6In what follows, we will omit some lenghty calculations. The reader is encouraged to consult [18] for a complete
exposition.
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where π7 : Λ2(R8) → Λ2
7(R

8) is the projection into the eigenspace of ∗Γ corresponding to the eigenvalue
x = 3, as in section 2.5.

Now, suppose we have a connection A on a principal bundle P → X. Then we get a connection
Ã on the pullback bundle P̃ over S+ ∼= X × R

4. Assume that Ã is independent of the R
4 coordinates

{x1, ..., x4}. We can then write it as7 Ã = π∗A + Φ, where π : X × R
4 → X is the projection and the

Higgs field Φ is of the form Φ =
4∑

i=1

φi(z1, z2)dx
i.

In other words, Φ can be seen as an adjoint section of the conormal bundle N∗(X). Actually, we
need to be more precise about this statement, since Φ is a field over S, and not X. What happens is
that, since the component fields φi do not depend on the fiber coordinates, they can be represented by
pullbacks of sections ψi of ad(P )

p
→ X by the projection map π : S+ → X. Also, the fact that S+ is

trivial means that N∗(X) is also trivial, N∗(X) = X × (R4)∗. Thus, Φ ∈ Γ(π∗N∗(X) ⊗ adP̃ ) and Φ is
the pullback of a section Ψ ∈ Γ(N∗(X) ⊗ adP ) by the projection π. Now notice that N∗(X) ∼= S+, so
that Ψ ∈ Γ(S+ ⊗ adP ) is an adjoint spinor.

In quaternionic notation we can write Ψ = ψ0+ iψ1+ jψ2+kψ3. The good thing about passing from
Φ to Ψ is that, as we will see, in the dimensional reduction of the Spin(7)-instanton equation the field
Ψ will turn out to be a zero mode for the Dirac equation (i.e., a harmonic spinor).

The main thing we will need for the dimensional reduction is a decomposition of the projection π7.
For this purpose, we identify R

8 with two copies of H, R8 ∼= H1 ⊕ H2 and introduce the quaternionic
forms:

dq1 = dx1 + idx2 + jdx3 + kdx4

dq2 = dx5 + idx6 + jdx7 + kdx8
(3.5.29)

and their quaternionic conjugates:

dq̄1 = dx1 − idx2 − jdx3 − kdx4

dq̄2 = dx5 − idx6 − jdx7 − kdx8
(3.5.30)

We also recall that there is an identification of ImH with Λ2
+(R

4), the self-dual 2-forms on R
4. The

usual way to do this is by picking the standard self-dual basis ω1 = dx12 + dx34, ω1 = dx13 + dx24,
ω1 = dx14 + dx23 and defining the identification map by aω1 + bω2 + cω3 7→ ai+ bj + ck.

Now, a quick calculation shows that 1
2
(dqi ∧ dq̄i) = iωl

1 + jωl
2 + kωl

3, for l = 1, 2. The upperscripts
here are to remind us that the ω1

m’s are a selfdual basis related to H1, and the ω2
m’s are related to H2.

Define the 2-forms α1, ..., α3 and β1, ..., β4 by:

1

2
(dq2 ∧ dq̄2 − dq1 ∧ dq̄1) = iα1 + jα2 + kα3 (3.5.31)

dq̄1 ∧ dq2 = β1 + iβ2 + jβ3 + kβ4 (3.5.32)

Then a computation with the ωk
m’s (lemma 4.13 of [18]) shows that Λ2

7 = span {α1, ..., β4}, i.e., these
forms span the eigenspace of ∗Γ associated to the eigenvalue 3.

We define Λ2
3 = span {α1, α2, α3} and Λ2

4 = span {β1, β2, β3, β4}. Then Λ2
7 = Λ2

3 ⊕ Λ2
4. Notice also

that Λ2
3
∼= ImH and that Λ2

4
∼= H.

7For simplicity, from now on we will write A′ for π∗(A).
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Now, from the identity8 Λk(V ⊕W ) ∼=
⊕

p+q=k

Λp(V )⊗ Λq(W ) it follows that:

Λ2(H1 ⊕H2)
∗ ∼= Λ2(H1)

∗ ⊕ (H∗
1 ⊗H

∗
2)⊕ Λ2(H2)

∗

The desired decomposition of π7 : Λ2(H1 ⊕H2)
∗ → Λ2

7 is then π7 = π3 ⊕ π4 with:

π3 : Λ
2(H1)

∗ ⊕ Λ2(H2)
∗ → Λ2

3 (3.5.33)

and

π4 : H
∗
1 ⊗H

∗
2 → Λ2

4 (3.5.34)

These projections can of course be described in a more explicit way: if we let πHi

+ : Λ2(Hi) → Λ2
+(Hi)

be the projections into the space of self-dual 2-forms, then by using once again the identifications
Λ2

+(R
4) ∼= ImH ∼= Λ2

3, the projection π3 can be written as πH1

+ − πH2

+ .
The projection π4 can be described as follows: there is a natural projection πH : HomR(H1,H2) →

HomH(H1,H2). Now, with the identifications H
∗
1 ⊗H

∗
2
∼= HomR(H1,H2) and Λ2

4
∼= H ∼= HomH(H1,H2)

taken into account, we can write π4 = πH. We refer the reader to lemmas 4.17 and 4.19 of [18] for the
proofs that π3 and π4 are indeed given by the maps we have described.

Now, let us return to the Spin(7)-instanton equation π7(FÃ) = 0. We are assuming that Ã = A′+Φ
is independent of the fiber coordinates, so that FÃ = FA′ + ∇Φ = FA′ + dA′Φ + 1

2
[Φ,Φ], where in the

last equality we used the structure equation. The instanton equation then becomes:

π3(FA′ +
1

2
[Φ,Φ]) = 0

π4(dA′Φ) = 0
(3.5.35)

Let us try to understand the first equation. First of all, since π3 = πH1

+ − πH2

+ projects into the
subspace of self-dual forms, the result should be F+

A′ − 1
2
[Φ,Φ]+ (since, in our notation, FA′ lives in

Λ2(H1) and [Φ,Φ] lives in Λ2(H2)). We write F+
A′ = π∗F+

A and notice that:

[Φ,Φ]+ = ([φ1, φ2] + [φ3, φ4])ω
2
1

+ ([φ1, φ3] + [φ4, φ2])ω
2
2

+ ([φ1, φ4] + [φ2, φ3])ω
2
3

(3.5.36)

On the other hand, the adjoint spinor Ψ = π∗Φ satisfies:

π∗[Ψ, Ψ̄] = π∗[ψ1 + iψ2 + jψ3 + kψ4, ψ1 − iψ2 − jψ3 − kψ4]

= −2[Φ,Φ]+
(3.5.37)

where we used once again the identification between imaginary quaternions and self-dual 2-forms. The
first equation in 3.5.35 becomes, then:

π∗F+
A +

1

4
π∗[Ψ, Ψ̄] = 0 (3.5.38)

8This follows from the exactness of the functor ∧.
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Suppressing the pullback we finally get:

F+
A = −

1

4
[Ψ, Ψ̄] (3.5.39)

Let us work out now the second equation. First we notice that dA′Φ is, of course, an adP̃ -valued
2-form, to which we can associate an adP̃ -valued matrix9. With this understood, we can now see dA′Φ
as an element of HomR(TX, TH), to which we can apply πH. But first we introduce the quaternionic
covariant derivative:

∇H = ∇1 + i∇2 + j∇3 + k∇3 (3.5.40)

and its conjugate:

∇
H

= ∇1 − i∇2 − j∇3 − k∇4 (3.5.41)

Here ∇l means the component of ∇ in the l-th direction. A short calculation then gives:

πH(dA′Φ) =
1

4
∇

H

Φ

=
1

4
π∗∇

H

Ψ
(3.5.42)

where we are using again the identification HomH(H1,H2) ∼= H.
Therefore, the equation πH(dA′Φ) = 0 becomes 1

4
π∗∇

H

Ψ = 0 which can only happen if:

∇
H

Ψ = 0 (3.5.43)

Now, as we explain in appendix A.1 the Clifford algebra Cl(4) is isomorphic to M2(H), the space of
2× 2 quaternionic matrices. The isomorphism is given in terms of the generators c1, ..., c4 of Cl(4) by:

c1 7→

(
0 −1
1 0

)

c2 7→

(
0 i
i 0

)

c3 7→

(
0 j
j 0

)

c4 7→

(
0 k
k 0

)

One can easily check that these matrices indeed satisfy the Clifford algebra relations (A.1.1).

In this notation, the Dirac operator 6D =
4∑

l=1

el.∇l as applied to s = (s+, s−) ∈ Γ(S) is:

6Ds(x) = (−∇
H

σ−(x),∇Hσ+(x)) (3.5.44)

so we see that 6D+ = ∇
H

. Thus, we finally arrive at the promised formula

6D+Ψ = 0 (3.5.45)

which means that Ψ is a harmonic spinor. Thus, the final result of the dimensional reduction are the
two equations:

F+
A = −

1

4
[Ψ, Ψ̄]

6D+Ψ = 0
(3.5.46)

9That is, the matrix of the coefficients of dA′Φ, which is obtained by dualization T ∗X ⊗ T ∗
H → T ∗X ⊗ TH.
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One should compare these to the Seiberg-Witten equations [27]:

F+
A =

1

2
q(Ψ)

6DΨ = 0
(3.5.47)

where q : Γ(S+) → End0(S
+) is given by q(ψ) = ψ̄ ⊗ ψ − 1

2
|ψ|2Id, and the subspace End0(S+) is

identified with Λ2
+ through End(S+) ∼= H.
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Appendix A

Appendix

A.1 Spin Geometry

In this section we give a brief introduction to spin geometry. We will only sketch the basic facts
needed in the main text. The interested reader is encouraged to consult [22] for a complete exposition.

We start by summarizing a few facts from the theory of Lie groups. Let G be a Lie group with Lie
algebra g. Then every representation ρ : G → GL(V ) induces a so-called “infinitesimal representation”
dρ1 : g → gl(V ). The universal covering G̃ of G inherits a Lie group structure by lifting the smooth
and product structures from G, and since these groups are locally isomorphic, the Lie algebra of G̃ is
also g. An important fact is that every representation σ : g → gl(V ) lifts to a representation of G̃. This
is not true for non simply-connected groups, since in the universal covering elements in the same fiber
can have different images under the lifted representation, so that the induced map on the base would
be multi-valued. Nevertheless, any connected Lie group is a quotient of its universal cover by a discrete
central subgroup, and thus any representation of the universal covering whose kernel contains the given
subgroup descend to a representation of the group.

Let us apply this theory to the special orthogonal groups SO(n) for n > 2; this group is a compact
Lie group of dimension n(n + 1)/2. It is the connected component of the identity in O(n). It has a
standard representation in R

n is given by rotation matrices. Thus, a rotation angle and direction suffice
to specify an element in SO(n), and this data can be encoded in a vector in R

n pointing in the direction
of the rotation axis, and with norm equal to the rotation angle measured in radians. So the set of
rotations is identified with a ball of radius π in R

n, but since rotations by π in opposite directions are
the same, we have to identify antipodal points. This proves that SO(n) is topologically RP

n. Thus,
its fundamental group is Z2 (loops given by an odd number of full rotations give rise to a non-trivial
homotopy class).

We define the spin group Spin(n) to be a double covering of SO(n) (and thus, it is also the universal
covering). Representations of Spin(n) are then classified by the representation theory of so(n). Some of
these spin representations descend to representations of SO(n), and some descend to maps ρ : SO(n) →
GL(V ) which are “anti-representations”, in the sense that ρ(1) = −IdV .

There is another useful way to describe the group Spin(n), in terms of Clifford algebras. We will
briefly explain how this works.

Let V be a n-dimensional Euclidean vector space with an orthonormal basis {e1, . . . , en}, and T (V )
its tensor algebra1. We define the Clifford algebra of V to be:

1I.e., T (V ) =

∞⊗

i=0

V ⊗i, where V ⊗0 = R by definition.
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Cl(n) = T (V )/R

where the relations R are given by

ei ⊗ ej + ej ⊗ ei = −2δij (A.1.1)

for i, j ∈ {1, . . . , n}.
This definition makes Cl(n) a unital associative 2n dimensional algebra. There is also a linear map

i : V →֒ Cl(n) such that i(v)2 = 1. We define Cl×(n) to be the multiplicative subgroup of invertible
elements in Cl(n). It can be proven that Cl×(n) has a natural structure of a Lie group of dimension 2n,
with the Lie algebra being the Clifford algebra itself.

The Clifford algebra satisfies the following universal property: whenever we have a linear map
f : V → A to a real associative algebra A satisfying f(v)f(w) + f(w)f(v) = −2IdA, there is a unique
algebra homomorphism F : Cl(n) → A such that F ◦ i = f . This means that linear maps from V
satisfying the relations can be extended to the entire Clifford algebra.

An important example is the map α : V → V defined by α(v) = −v. It extends uniquely to a map
α̃ : Cl(n) → Cl(n) such that α̃2 = Id. Therefore, it induces a decomposition Cl(n) = Cl0(n)⊕ Cl1(n),
where Cl0(n) = Eigα̃(+1) is the even part of Cl(n) and Cl1(n) = Eigα̃(−1) is the odd part of Cl(n).
One can prove that in general, Cl0(n) ∼= Cl(n− 1).

An important fact about Clifford algebras is that they can always be described as a graded matrix
algebra. In fact, all Clifford algebras are isomorphic to either Mk×k(F ) or Mk×k(F )⊕Mk×k(F ) for some
k ∈ N, where the field F is either R,C or H. Thus, every Clifford algebra has a standard representation
on F k for some k. Important examples for this work are Cl(4) ∼= M2×2(H) and Cl0(4) ∼= Cl(3) ∼= H⊕H.

The group Spin(n) can be identified with the subgroup of Cl(n) defined by:

Spin(n) =
{
c1c2 . . . ck ∈ Cl×(n); ||ci|| = 1, ∀ci ∈ V

}

The representations of Spin(n) can be described in terms of restrictions of representations of Cl(n);
in fact, all representations of Spin(n) are restrictions of representations of the Clifford algebra, and for
this reason whenever Spin(n) acts on a vector space, this space is automatically endowed with a Clifford
multiplication.

The important point is that Spin(n) admits a natural representation ∆n, called the spin rere-
sentation, which is simply the restriction of the standard representation of Cl(n) to Spin(n). This
representation has the following properties:

• If n is even, ∆n is a complex representation of complex dimension 2
n
2 . It is a reducible represen-

tation, and it splits as a direct sum of two irreducible representations of complex dimension 2
n
2
−1,

∆n = ∆n
+ ⊕∆n

−.

• If n is odd, ∆n is a complex irreducible representation of complex dimension 2
n
2 .

Now we proceed to discuss spin strcutures on oriented Riemannian manifolds. Suppose (M, g) is
such a manifold, with dim(M) = n. Then the Riemannian metric and orientation automatically reduce
the frame bundle F (M) to a principal SO(n)-bundle. The question we are interested is this: under
what conditions can we “lift” this SO(n)-structure to a Spin(n)-structure such that the tanget spaces
of M can be regarded as representations of Spin(n)? This motivates the following defintion:
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Definition A.1.1. Let (M, g) be a n-dimensional oriented Riemannian manifold with frame bundle
F (M)

π
→ M , and let ρ : Spin(n) → SO(n) be the covering map. We say that M is a spin manifold if

there is a principal bundle P
p̄i
→M with structure group Spin(n) and a map of bundles f : P → F (M)

which is a 2-fold covering map satisfying:

1. π̄ = π ◦ f

2. f(pg) = f(p)ρ(g)

The first condition guarantees the two bundles are linked together by their projections, while the
second condition ensures that the map f is locally modelled on the covering ρ.

Not every oriented Riemannian manifold admits a spin structure. This can be proven by studying
the Čech cohomology of these groups. Let us explain roughly how this works. For a principal G-bundle
P → M and an open cover U of M that trivializes P , we can define a simplicial complex such that
the p-cochains are maps σUp → G. The coboundary map is defined in such a way that a 2-cocycle σ
satisfies:

σ(Uj, Uk) = σ(Uj, Ui)σ(Ui, Uk)

Notice that this is exactly the cocycle condition for transition functions on a principal bundle. Also,
two 2-cochains σ, σ̃ differ by a 1-coboundary α if and only if

σ̃(Ui, Uj) = α(Ui)σ(Ui, Uj)α(Uj)
−1

Again, if σ and σ̃ are thought as transition functions on principal bundles over M , this condition
means that the bundles defined by them are isomorphic. We define H1(M,U) to be the quotient of the
space of 2-cocycles by the space of 1-coboundaries.

Define the Čech cohomology group H1(M,G) as the direct limit of the groups H1(M,G) with re-
spect to refinements of U . By construction, Čech cohomology classes are in 1− 1 correspondence with
equivalence classes of principal G-bundles over M .

The important thing is that an exact sequence of groups

0 → H → G→ K → 0

induces a long exact sequence in the Čech cohomology:

. . .→ H1(M,H) → H1(M,G) → H1(M,K) → H2(M,H) → . . .

If we start with the short exact sequence:

0 → Z2
i
→ Spin(n)

p
→ SO(n) → 0

what we get is:

. . .→ H1(M,Z2)
i∗

→ H1(M,Spin(n))
p∗

→ H1(M,SO(n))
∂∗

→ H2(M,Z2)→ . . .

Now, if we fix a SO(n)-structure [P ] ∈ H1(M,SO(n)), we can define w2(P ) = ∂∗[P ]. This is called
the second Stiefel-Whitney class of M . From the exactness of the sequence, we see that w2(P ) = 0 if and
only if there is [S] ∈ H1(M,Spin(n)) such that p∗[S] = [P ], which means that [S] defines an equivalence
class of Spin(n)-structures over M . In fact, by working out how p∗ acts on the transition functions, one
can show directly that S is a lift of the SO(n)-structure P in the sense of definition A.1.1.
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From a Spin(n)-structure on S → M we can construct the vector bundles S associated with the
spin representations ∆n called spinor bundles. These are complex vector bundles, and sections of S are
called spinors. When n is even, we know that ∆n is reducible, so the spinor bundle splits as a direct
sum S = S+ ⊕ S− of bundles of positive and negative spinors.

Moreover, the Levi-Civita connection on TM may be lifted by the map of bundles f : S → F (M),
since f , being a covering map, is locally an isomorphism. We can then induce a connection ∇S on the
spinor bundle. A spinor ψ ∈ Γ(S) satisfying ∇Sγ is called a parallel spinor.

From this setup one can define the Dirac operator 6D : Γ(S) → Γ(S) as the composition:

6D : Γ(S)
∇S

→ Γ(T ∗M ⊗ S)
c
→ Γ(S)

where the map c is Clifford multiplication. In terms of a local orthonormal frame {e1, . . . , en} of sections
of S we can write

6Dψ =
n∑

i=1

ei.∇
S
ei
ψ

A spinor ψ satisfying 6Dψ = 0 is called a harmonic spinor.
In even dimensions, the Dirac operators splits as 6D = 6D+ ⊕ 6D−, with 6D+ : Γ(S+) → Γ(S−) and

6D− : Γ(S−) → Γ(S+).

A.2 Chern Classes

Characteristic classes are topological invariants of vector bundles. They are the main objects used
to distinguish isomorphism classes of bundles, since the usual topological invariants (homology, coho-
mology) are not sufficiently strong for this - indeed, since vector spaces are homotopic to a point, every
vector bundle is homotopically equivalent to the basis manifold. In this brief section we will define the
Chern classes, which are cohomology classes associated to a complex vector bundle.

Let (M,J) be a 2n-dimensional complex manifold and E →M a rank k complex vector bundle over
M . The Chern classes are defined in terms of a connection ∇ on E, but it can be shown that they are
in fact independent of the choice of connection (i.e., they only depend on the topology of the bundle).

Definition A.2.1. The total Chern class of E is:

c(E) = det(Id+
iF

2π
) (A.2.1)

where F is the curvature of a connection ∇ on E. We can write:

c(E) = 1 + c1(E) + c2(E) + ...+ cn(E)

with ci(E) ∈ Ω2i(M) being the i-th Chern class of E.

In the above definition, all the Chern classes are forms of even rank since F is a 2-form.
We can expand c(E) in a Taylor series in F to write the Chern classes of E as functions of tr(F ∧

. . . ∧ F ). As a particular case, the first and second Chern classes are:

c1(E) = tr

(
iF

2π

)
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c2(E) = −
1

8π2
(tr(F ) ∧ tr(F )− tr(F ∧ F ))

One has to show that these forms are indeed closed, so that they define cohomology classes. This is
due to the fact that dtr(α ∧ β) = tr(d∇(α ∧ β)), which can be verified by a direct computation. Since
in the Taylor expansion of formula A.2.1 we only get terms of the form tr(f(F )), where f(F ) is some
function of the curvature, it follows from the Bianchi identity that all of these terms define closed forms.

For more about characteristic classes and Chern classes in particular, see [26].

A.3 Hodge Theory

In this section we introduce Hodge theory on (semi)Riemannian manifolds. The highlight of this
theory is the Hodge theorem regarding the splitting of the space of differential forms induced by the
exterior differential and the metric, and also the identification between the de Rham cohomology and a
certain space of “harmonic forms”. We will also briefly develop the same theory in the context of Kähler
manifolds, where the results can be refined with the aid of the complex structure.

If we start with a compact Riemannian manifold (M, g), we get an induced inner product on Ω1(M)
defined for α, β ∈ Ω1(M) by g(α, β) = gabαaβb. This, in turn, can be extended to all forms in the
following way: for α = α1 ∧ . . . ∧ αk, β = β1 ∧ . . . ∧ βk ∈ Ωk(M), g(α, β) = det(g(αi, βj)). This is then
extended by linearity to all k-forms.

Definition A.3.1. Let (M, g) be a semi-Riemannian manifold of signature (r, n − r), and dVg the
volume form of g. The Hodge star or duality operator ∗ : Ωk(M) → Ωn−k(M) is an isomorphism of
vector bundles induced by the Riemannian metric g. It is defined to be the unique linear operator
satisfying α ∧ ∗β = g(α, β)dVg. for α and β k-forms.

One of the first things to notice is that the Hodge star acting on k-forms satisfies ∗2 = (−1)r(−1)k(n−k).
This can be proved by finding an explicit formula for the action of ∗ on an orthonormal frame {e1, ..., en}
of T ∗M . In this setting, it is easy to show directly from the definition that ∗ satisfies:

∗(ea1 ∧ . . . ∧ eak) = ga1a1 . . . gakakǫa1...aneak+1
∧ . . . ean (A.3.1)

where (a1, . . . , an) is a permutation of (1, . . . , n) and ǫa1...an is the completely anti-symmetric Levi-Civita
symbol, i.e., ǫa1...an is either 1 or −1 according to whether (a1 . . . an) is an even or odd permutation of
(1, . . . , n), and it is 0 whenever there are repeated indices.

From this, one easily computes:

∗ ∗ (ea1 ∧ . . . ∧ eak) = ∗(ga1a1 . . . gakakǫa1...aneak+1
∧ . . . ean)

= ga1a1 . . . gakakǫa1...ang
ak+1ak+1 . . . gananǫak+1...ana1...akea1 ∧ . . . ∧ eak

= (−1)r(−1)k(n−k)ea1 ∧ . . . ∧ eak

(A.3.2)

where we have used the identity ǫak+1...ana1...ak = (−1)k(n−k)ǫa1...an . This proves that ∗2 = (−1)r(−1)k(n−k)

when ∗ acts on k-forms.
We can introduce another inner product in Ω.(M) using the volume form dVg; for k-forms α and β

define:

(α, β) =

∫

M

g(α, β)dVg (A.3.3)

53



This is called the L2 inner product. We also define the operator d∗ : Ωk(M) → Ωk−1(M) to be the
formal adjoint of d : Ωk(M) → Ωk+1(M) with respect to the L2 inner product; that is, for α ∈ Ωk−1(M)
and β ∈ Ωk(M) we have:

(dα, β) = (α, d∗β) (A.3.4)

Now, since M is compact it follows that
∫

M
d(α∧∗β) = 0. But d(α∧∗β) = dα∧∗β+(−1)k−1α∧d ∗ β

so that:

(dα, β) = (−1)k
∫

M

α ∧ d ∗ β

As a consequence:

d∗ = (−1)k ∗−1 d∗

and thus:

d∗α = (−1)kn+n+s+1 ∗ d(∗α) (A.3.5)

We define the Laplaci-Beltrami operator ∆ : Ωk(M) → Ωk(M):

∆ = dd∗ + d∗d

If a k-form α is such that ∆α = 0, we call α a harmonic form. Clearly, if dα = d∗α = 0 (i.e., α is
closed and coclosed) then α is harmonic. The converse is also true: suppose ∇α = 0. Then:

0 = (α,∇kα) = (d∗α, d∗α) + (dα, dα)

so that dα = d∗α = 0.
We will sometimes write ∆k for the operator ∆ acting on k-forms, and similarly dk and d∗k for the

operators d and d∗.
Now, let Hk = Ker(∆k) be the space of harmonic k-forms.

Theorem A.3.2 (Hodge Decomposition Theorem). Let M be a smooth compact oriented Rie-
mannian manifold. Write dq for the operator d acting on q-forms and similarly for d∗. Then:

Ωk(M) = Im(dk−1)⊕ Im(d∗k+1)⊕ Hk

Proof. We can define an operator P : Ωk(M) → Ωk(M) given by projection into the space of harmonic
forms. Thus, for α a k-form, ∆(Pα) = 0. Due to he fact that ∆ admits a Green function2, there exists
a k-form β such that ∆β = α − Pα (the Green function allows this equation to be “solved for β”).
Therefore, the Hodge decomposition of α is:

α = dd∗β + d∗dβ + Pα

Since Im(dk−1)⊕Hk = Ker(dk), we get an isomorphism Hk ∼= Hk(M). This is the content of Hodge’s
theorem:

2For a proof, see [11].
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Corollary A.3.3 (Hodge’s Theorem). Every de Rham cohomology class ω ∈ Hq(M) admits a (unique)
harmonic representative; this means we can find β ∈ Ωq(M) such that [β] = ω and ∆β = 0. Thus we
have a vector space isomorphism Hq(M) ∼= Hq.

A.3.1 Hodge Star in Four Dimensions

When n = 4 the Hodge star restricted to 2-forms can be regarded as an endomorphism of Ω2(M).
Since in this case ∗2 = Id, it follows that ∗ has the eigenvalues 1 and −1. If we fix a coordinate basis
{dx1, . . . dxn} of T ∗M , it is easy to check the identities:

∗ (dx1 ∧ dx2 + dx3 ∧ dx4) = dx1 ∧ dx2 + dx3 ∧ dx4

∗ (dx1 ∧ dx3 − dx2 ∧ dx4) = dx1 ∧ dx3 − dx2 ∧ dx4

∗ (dx1 ∧ dx4 + dx2 ∧ dx3) = dx1 ∧ dx4 + dx2 ∧ dx3

(A.3.6)

and

∗ (dx1 ∧ dx2 − dx3 ∧ dx4) = −(dx1 ∧ dx2 − dx3 ∧ dx4)

∗ (dx1 ∧ dx3 + dx2 ∧ dx4) = −(dx1 ∧ dx3 + dx2 ∧ dx4)

∗ (dx1 ∧ dx4 − dx2 ∧ dx3) = −(dx1 ∧ dx4 − dx2 ∧ dx3)

(A.3.7)

So we get a decomposition Ω2(M) = Ω2
+(M) ⊕ Ω2

−(M) where Ω2
+(M) = Eig(∗; +1) is the space of

selfdual 2-forms and Ω2
−(M) = Eig(∗;−1) is the space of anti-selfdual 2-forms.

A.3.2 Hodge Theory on Kähler Manifolds

Now, let (X, g, J, ω) be a compact Hermitian manifold (defined in section 2.2). We define a complex
version of the Hodge star operator as follows: ∗ : Ω(p,q) → Ω(mn−p,n−q) is the unique anti-linear operator
such that, for complex forms α, β ∈ Ω(p,q), we have:

α ∧ ∗β̄ = g(α, β)dV

We can define a Hermitian inner product on the exterior algebra of X by:

(α, β) =

∫

X

g(α, β)dV

Of course, this inner product respects the decomposition of the exterior algebra into forms of type
(p, q), since the metric itself does (if α is of type (p, q) and β of type (p′, q′), then g(α, β) = 0 unless
p = p′ and q = q′).

We can define the adjoint operators ∂∗ and ∂̄∗ in the usual way; for α ∈ Ω(p−1,q), β ∈ Ω(p,q)

(∂α, β) = (α, ∂∗β)

and for ω ∈ Ω(p,q−1) and η ∈ Ω(p,1):

(∂̄ω, η) = (ω, ∂̄∗η)

It follows, of course, that d∗ = ∂∗ + ∂̄∗, and from the analogous formulas for real manifolds we have
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∂∗ = − ∗ ∂̄∗

and

∂̄∗ = − ∗ ∂∗

We can also define the associated Laplacians:

∆∂ = ∂∂∗ + ∂∗∂

∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄

A (p, q)-form α is said to be ∆∂̄-harmonic if ∆∂̄ = 0. The set of ∆∂̄-harmonic (p, q) -forms is denoted
by H

p,q

∂̄
. We have then a Hodge decomposition theorem for complex forms:

Theorem A.3.4 (Hodge decoposition theorem). Let (M, g, J, ω) be a compact Hermitian manifold.
Then:

Ω(p,q)(M) = Im(∂̄p,q−1)⊕ Im(∂̄∗p,q+1)⊕ Hp,q (A.3.8)

This decomposition can be described in the same way as in the real case: we have a projection
P : Ω(p,q)(M) → Hp,q and due to the existence of a Green function for ∆∂̄, for every (p, q)-form α
there is a (p, q)-form β such that ∆∂̄β = α − Pα. Then the Hodge decomposition of α is simply
α = ∂̄∂̄∗β + ∂̄∗∂̄β + Pα.

Furthermore, since Ker∂̄p,q = Im(∂̄p,q−1)⊕ Hp,q, it follows that Hp,q

∂̄
(M) ∼= Hp,q.

Up to now we haven’t required the metric to be Kähler, but only the compatibility between the metric
and the complex structure (i.e., a Hermitian structure). However, the Kähler condition is necessary for
the splitting of the complexified de Rham cohomology, as we now explain.

The crucial fact is that on a Kähler manifold one has the identity:

∆∂ = ∆∂̄ =
1

2
∆d (A.3.9)

This is one of the well-known Kähler identities. For a proof, the reader should consult either ?? or
??.

If we forget about the decomposition of the exterior algebra into (p, q)-forms, we can define:

Hk = Ker(∂̄k)

i.e., the space of harmonic k-forms with respect to ∆∂̄. Of course, this includes all (p, q)-forms such
that p + q = k. Then, the real version of Hodge’s theorem A.3.3 implies that Hk ∼= Hk(X,C), the
complexified de Rham cohomology of X (recall that we are still dealing with forms on the complexified
tangent bundle, so that ∆∂̄ is really seen as a map ΛkT ∗M ⊗ C → ΛkT ∗M ⊗ C). From this, one
can consider the space Hp,q(X,C) ⊂ Hp+q(X,C), defined to be the subspace with representatives in
Hp,q ⊂ Hp+q. We have then the following version of Hodge’s theorem:

Theorem A.3.5 (Hodge’s theorem). Let (X, g, J, ω) be a compact Kähler manifold with dimCX = n.
Then there exists a decomposition:

Hk(X,C) =
⊕

p+q=k

Hp,q(X,C)
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which does not depend on the choice of Kähler structure.
Furthermore, every element of Hp,q(X,C) is reresented by a unique harmonic (p, q)-form, so that

Hp,q(X,C) ∼= Hp,q ∼= Hp,q

∂̄
(X). We also have that:

Hp,q(X,C) ∼= Hq,p(X,C)

and

Hp,q(X,C) ∼= Hn−p,n−q(X,C)∗

The same statements hold of course for Hp,q and Hp,q

∂̄
(X), since these are all isomorphic. The

statement Hp,q

∂̄
(X) ∼= Hn−p,n−q

∂̄
(X)∗ is known in the literature as Serre duality (in analogy with Poincaré

duality for the de Rham cohomology of real manifolds).

Definition A.3.6. The Hodge number of X are defined by:

hp,q(X) = dimCH
p,q(X,C)

From the previous results we have the identities:

bk =
k∑

i=0

hi,k−i

hp,q = hq,p = hn−q,n−p = hn−p,n−q

(A.3.10)

where bk = dimRH
k(X) is the kth Betti number of X.

The Hodge numbers provide more refined topological information about X than the Betti numbers.
They are invariants of the hermitian structure and they also provide information about the existence
of Kähler metrics on complex manifolds. For example, the manifold M = S3 × S1 admits a complex
structure, but no Kähler metric. This follows from the fact that b1(M) = 1, and that for a Kähler
manifold X, b1(X) = h0,1 + h1,0 = 2h0,1 is even.
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