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Resumo

Compreender como as singularidades tangenciais evoluem em processos de regularização

foi um dos primeiros problemas relacionados à regularização dos sistemas de Filippov.

Neste trabalho, estamos interessados em Cn-regularizações de sistemas Filippov em torno

de singularidades tangenciais regulares visíveis de multiplicidade par. Mais especificamente,

usando a Teoria de Fenichel e os Métodos de Blow-up, nosso objetivo é entender como

as trajetórias do sistema regularizado transitam pela região de regularização. Aplicamos

nossos resultados para investigar as Cn-regularizações dos ciclos limites de fronteira com

contato de multiplicidade par com a variedade de deslize.

Além disso, estamos interessados na regularização de sistemas de Filippov em torno de

conexões homoclínicas com singularidades tangenciais regulares. Fornecemos condições

para garantir a existência de ciclos limites bifurcando-se de tais conexões. Condições

adicionais também são fornecidas para garantir a estabilidade e unicidade de tais ciclos

limites. Todas as provas são baseadas na construção do mapa de primeiro retorno do

sistema de Filippov regularizado em torno de conexões homoclínicas. Tal mapa é obtido

usando a nossa caracterização do comportamento local do sistema de Filippov regularizado

em torno de singularidades tangenciais regulares. Teoremas de ponto fixo e argumentos de

Poincaré-Bendixson também são usados.

Palavras-chave: Regularização. Sistemas de Filippov. Teoria de Fenichel. Método de

Blow-up. Ciclos Limites. Policiclos.



Abstract

Understanding how tangential singularities evolves under smoothing processes was one

of the first problem concerning regularization of Filippov systems. In this work, we are

interested in Cn-regularizations of Filippov systems around visible regular-tangential

singularities of even multiplicity. More specifically, using Fenichel Theory and Blow-up

Methods, we aim to understand how the trajectories of the regularized system transits

through the region of regularization. We apply our results to investigate Cn-regularizations

of boundary limit cycles with even multiplicity contact with the switching manifold.

Moreover, we are concerned about smoothing of Filippov systems around homoclinic-like

connections to regular-tangential singularities. We provide conditions to guarantee the

existence of limit cycles bifurcating from such connections. Additional conditions are also

provided to ensured the stability and uniqueness of such limit cycles. All the proofs are

based on the construction of the first return map of the regularized Filippov system around

homoclinic-like connections. Such a map is obtained by using our characterization of the

local behaviour of the regularized Filippov system around regular-tangential singularities.

Fixed point theorems and Poincaré-Bendixson arguments are also employed.

Keywords: Regularization. Filippov systems. Fenichel Theory. Blow-up Method. Limit

cycles. Σ✁Polycycles.
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1 Introduction

The analysis of differential equations with discontinuous right-hand side dates

back to the work of Andronov et. al [1] in 1937. Recently, the interest in such systems

has increased significantly, mainly motivated by its wide range of applications in several

areas of applied sciences. Piecewise smooth differential systems are used for modeling

phenomena presenting abrupt behavior changes such as impact and friction in mechanical

systems [4], refugee and switching feeding preference in biological systems [20, 28], gap

junctions in neural networks [9], and many others.

In this work, we are interested in planar piecewise smooth systems. Formally,

let M be an open subset of R2 and let N ⑨ M be a codimension 1 submanifold of M.

Denote by Ci, i ✏ 1, 2, . . . , k, the connected components of M③N and let Xi : M Ñ R
2,

for i ✏ 1, 2, . . . , k, be vector fields defined on M. A piecewise smooth vector field Z on M

is defined by

Z♣pq ✏ Xi♣pq if p P Ci, for i ✏ 1, 2, . . . , k. (1.1)

Since N is a codimension 1 submanifold of M, for each p P N there exists a

neighborhood D ⑨ M of p and a function h : D Ñ R, having 0 as a regular value, such

that Σ ✏ N ❳ D ✏ h✁1♣0q. Moreover, the neighborhood D can be taken sufficiently small

in order that D③Σ is composed by two disjoint regions Σ� ✏ tq P D : h♣qq ➙ 0✉ and

Σ✁ ✏ tq P D : h♣qq ↕ 0✉ such that X� ✏ Z⑤Σ� and X✁ ✏ Z⑤Σ✁ are smooth vector fields.

Accordingly, the piecewise smooth vector field (1.1) can be locally described as follows:

Z♣pq ✏ ♣X�, X✁qΣ ✏
★
X�♣pq, if p P Σ�,

X✁♣pq, if p P Σ✁,
for p P D.

Throughout this work we will denote the components of X✟ by X✟
i for i P t1, 2✉,

i.e. X✟ ✏ ♣X✟
1 , X

✟
2 q.

1.1 Filippov Systems

The notion of local trajectories of piecewise smooth vector fields (1.1) was

stated by Filippov [13] as solutions of the following differential inclusion

✾p P FZ♣pq ✏ X�♣pq �X✁♣pq
2

� sign♣h♣pqqX
�♣pq ✁X✁♣pq

2
, (1.2)

where

sign♣sq ✏
✩✫✪

✁1 if s ➔ 0,

r✁1, 1s if s ✏ 0,

1 if s → 0.

This approach is called Filippov’s convention. The piecewise smooth vector field (1.1) is

called Filippov system when it is ruled by the Filippov’s convention. For more informations

on differential inclusions see, for instance, [29].
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The solutions of the differential inclusion (1.2) are well described in the literature

(see, for instance, [13]) and have a simple geometrical interpretation. In order to illustrate

this convention we define the following open regions on Σ :

Σc ✏ tp P Σ : X�h♣pq ☎X✁h♣pq → 0✉,
Σs ✏ tp P Σ : X�h♣pq ➔ 0, X✁h♣pq → 0✉,
Σe ✏ tp P Σ : X�h♣pq → 0, X✁h♣pq ➔ 0✉.

Here, X✟h♣pq ✏ ①∇h♣pq, X✟♣pq② denotes the Lie derivative of h in the direction of the

vector fields X✟. Usually, they are called crossing, sliding, and escaping region, respectively.

Notice that the points on Σ where both vectors fields X� and X✁ simultaneously point

outward or inward from Σ constitute, respectively, the escaping Σe and sliding Σs regions,

and the complement of its closure in Σ constitutes the crossing region, Σc. The complement

of the union of those regions in Σ constitutes the tangency points between X� or X✁ with

Σ, Σt.

For p P Σc the trajectories either side of the discontinuity Σ, reaching p, can

be joined continuously, forming a trajectory that crosses Σc. Alternatively, for p P Σs,e ✏
Σs ❨ Σe the trajectories either side of the discontinuity Σ, reaching p, can be joined

continuously to trajectories that slide on Σs,e following the sliding vector field,

Zs♣pq ✏ X✁h♣pqX�♣pq ✁X�h♣pqX✁♣pq
X✁h♣pq ✁X�h♣pq , for p P Σs,e. (1.3)

In addition, a singularity of the sliding vector field Zs is called pseudo-equilibrium.

In the Filippov context, the notion of Σ-singular points also comprehends the

tangential points Σt constituted by the contact points between X� and X✁ with Σ, i.e.

Σt ✏ tp P Σ : X�h♣pq ☎X✁h♣pq ✏ 0✉. In this work, we are interested in contact points of

finite degeneracy. Recall that p is a contact of order k ✁ 1 (or multiplicity k) between X✟

and Σ if 0 is a root of multiplicity k of f♣tq .

.✏ h ✆ ϕX✟♣t, pq, where t ÞÑ ϕX✟♣t, pq is the

trajectory of X✟ starting at p. Equivalently,

X✟h♣pq ✏ ♣X✟q2h♣pq ✏ . . . ✏ ♣X✟qk✁1h♣pq ✏ 0, and ♣X✟qkh♣pq ✘ 0.

In addition, an even multiplicity contact, say 2k, is called visible for X� (resp. X✁) when

♣X�q2kh♣pq → 0 (resp. ♣X✁q2kh♣pq ➔ 0). Otherwise, it is called invisible.

In this work, we shall focuses our attention in visible regular-tangential singular-

ities of multiplicity 2k, which are formed by a visible even multiplicity of X� and a regular

point ofX✁, or vice versa (see Figure 1). In the above definitions, the higher order Lie deriva-

tives X ih are defined, inductively, by Xh♣pq ✏ ①∇h♣pq, X♣pq② and X ih♣pq ✏ X♣X i✁1hq♣pq
for i → 1.
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The Sotomayor-Teixeira regularization is the most widespread smoothing pro-

cess. That is mainly because its intrinsic relation with Filippov’s convention. Indeed,

in [5], it was shown that the Sotomayor-Teixeira regularization of Filippov systems gives

rise to Singular Perturbation Problems, for which the corresponding reduced dynamics

is conjugated to the sliding dynamics (1.3). This kind of relation has been further inves-

tigated in [22] for more general transition functions. For more informations on Singular

Perturbation Problems see, for instance, [12, 16].

1.3 Σ-Polycycles in Filippov Systems

A polycycle is a simple closed curve composed by a collection of singularities

and regular orbits, inducing a first return map. In these last decades, the study of polycycles

in Filippov systems have been considered in several papers. For instant, in [19] the authors

introduced the critical crossing cycle bifurcation, which is defined as a one-parameter

family Zα of Filippov systems, where Z0 has a homoclinic-like connection to a fold-regular

singularity. In [14], Freire et al. proved that the unfolding of a critical crossing cycle

bifurcation provided in [19] holds in a generic scenario.

More degenerate homoclinic-like connections to Σ-singularities has also been

considered. In [25], the authors studied a codimension-two homoclinic-like connection to a

visible-visible fold-fold singularity. In [24] its unfolding under non-autonomous periodic

perturbation has been studied. Recently, in [10], Andrade et. al. developed a rather general

method to investigate the unfolding of Σ-polycycles in Filippov systems. This method was

applied to describe bifurcation diagrams of Filippov systems around several Σ-polycycles.

The readers are referred to [6, 7, 15,30,32] for more studies on Σ✁polycycles.

The interest in studying polycycles is due to the fact that they are non-local

invariant sets that provide information on the dynamics of the system.

In what follows, we shall introduce some basic concepts for this work. First, we

define the local separatrix at a point p P Σ.

Definition 2. If p P Σ, the asymptotically stable (resp. unstable) separatrix

W s
t,✁✫♣pq, (resp. W u

t,✁✫♣pqq of Z ✏ ♣X�, X✁q at a visible regular-tangential singularity p in

Σ✟ is defined as

W
s,u
t ♣pq ✏ tq ✏ ϕX�♣t♣qq, pq : ϕX�♣I♣qq, pq ⑨ Σ� and δs,ut♣qq → 0✉,

W s,u✁
✫
♣pq ✏ tq ✏ ϕX✁♣t♣qq, pq : ϕX✁♣I♣qq, pq ⑨ Σ✁ and δs,ut♣qq → 0✉,

where, δu ✏ 1, δs ✏ ✁1, and I♣qq is the open interval with extrema 0 and t♣qq.

Now, we introduce the concepts of regular orbit and Σ✁polycycle for planar

Filippov systems.

Definition 3. Consider the Filippov system Z ✏ ♣X�, X✁q.

(i) We say that γ is a regular orbit of Z if it is a piecewise smooth curve such that

γ ❳ Σ� and γ ❳ Σ✁ are unions of regular orbits of X� and X✁, respectively, and

γ ❳ Σ ⑨ Σc.
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In addition, we study a case of uniqueness and nonexistence of limit cycles

for the regularization of boundary limit cycles. More specifically, in Proposition 10 we

provide a class of piecewise smooth vector fields having a boundary limit cycle for which its

regularization either does not admit limit cycle or admit an unique limit cycle converging

to the boundary limit cycle.

Since the boundary limit cycle is a Σ✁polycycle, we would like to generalize

Theorem C. For this, we will apply Theorems A and B to the study Cn-regularizations of

Σ✁polycycles with a unique even multiplicity contact with the switching manifold.

The next result of this work (Theorems D) is concerned with regularization

of Filippov systems having a Σ✁polycycle of type ♣aq. It establishes sufficient conditions

for the existence and nonexistence of limit cycles of the regularized system ZΦ
ε passing

through of a certain compact set with nonempty interior. When the limit cycle exists, its

stability is characterized and its convergence to the Σ✁polycycle is ensured.

Moreover, we would like to get a version of Proposition 10 for Σ✁polycycles of

type ♣aq. More specifically, in Proposition 11 we provide a class of piecewise smooth vector

fields having a Σ✁polycycle of type ♣aq for which its regularization either does not admit

limit cycle or admit an unique limit cycle converging to the Σ✁polycycle of type ♣aq.
The last result of this thesis (Theorem E) is concerned with regularization of

Filippov systems having a Σ✁polycycle of type ♣bq. It establishes sufficient conditions for

the existence of limit cycles of the regularized system ZΦ
ε converging to the Σ✁polycycle.

The proofs of Theorems C, D, and E are mainly based on the characterization

of the upper and lower transition maps around regular-tangential singularities, fixed point

theorems, and Poincaré-Bendixson Theorem. Theorems D and E were proved by the author

in [23].

1.5 Structure of the thesis

In Chapter 2, we provide a simpler local expression for Filippov systems around

visible regular-tangential singularities as well as some preliminary results. In addition, in

Section 2.2 we apply blow-up methods to study the Fenichel Manifold associated to the

singular perturbation problem arising from Cn-regularizations of visible regular-tangential

singularities.

In Chapter 3, we give our first main results Theorems A and B, which charac-

terize the transition maps near Cn-regularizations of visible regular-tangential singularities.

Then, Theorems A and B are proven in Sections 3.2.5 and 3.3.4, respectively.

In Chapter 4, we state Theorem C regarding Cn-regularizations of boundary

limit cycles. Then, Theorems C is proven in Section 4.3. Moreover, in Section 4.4 in light of

our results, we perform an analysis of Cn-regularizations of piecewise polynomial examples

admitting a boundary limit cycle.

In Chapter 5, we give Proposition 10, which is a case of uniqueness and

nonexistence of limit cycles of the regularized system bifurcating from a boundary limit



Chapter 1. Introduction 19

cycle of a Filippov system with degenerated contact with the switching manifold. For this,

in Section 5.1 we introduce a special map called the Mirror map of the regularized system.

Finally, in Chapter 6 we state Theorems D and E regarding Cn-regularizations

of Σ✁polycycles of type ♣aq and ♣bq, respectively. Then, Theorems D and E are proven in

Sections 6.1.1 and 6.2.1, respectively. Furthermore, in section 6.1.2 we provide Proposition

11, which is a version of Proposition 10 for Σ✁polycycles of type ♣aq.
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2 The Fenichel Manifold

One of our main goals in this work is to understand the Cn✁regularization of

Filippov systems around visible regular-tangential singularities of even multiplicity. The

regularized system (1.4) can be studied through a slow-fast problem, which have associated

a critical manifold. This manifold looses its normal hyperbolicity around a certain point.

For this reason, around this point we cannot apply Fenichel Theorem 1 to find the Fenichel

manifold associated with the slow-fast problem. This problem is overcome by means of

the blow-up method. This method will be used to extend the Fenichel manifold to a

certain transversal section. Firstly, we establish a canonical form of the Filippov system

Z ✏ ♣X�, X✁q that will be used throughout this work.

2.1 Canonical Form

Let X✟ be C
2k, k ➙ 1, vector fields defined on an open subset V of R2 and

let Σ be a C
2k embedded codimension one submanifold of V. Suppose that X� has a

visible 2k-multiplicity contact with Σ at ♣0, 0q and that X✁ is pointing towards Σ at ♣0, 0q.
Consider the Filippov system Z ✏ ♣X�, X✁qΣ. Denote by ϕX✟ the flows of X✟.

First, we know that there exists a local C
2k diffeomorphism ϕ1 defined on a

neighborhood U ⑨ R
2 of ♣0, 0q such that rΣ ✏ ϕ1♣Σq ✏ h✁1♣0q, with h♣x, yq ✏ y. Second,

applying the Tubular Flow Theorem (see [27]) for ♣ϕ1q✝X✁ at ♣0, 0q and considering the

transversal section rΣ, there exists a local C
2k diffeomorphism ϕ2 defined on U (taken

smaller if necessary) such that rX✁ ✏ ♣ϕ2 ✆ ϕ1q✝X✁ ✏ ♣0, 1q and ϕ2♣rΣq ✏ rΣ. Clearly, the

transformed vector field rX� ✏ ♣ϕ2 ✆ ϕ1q✝X� still has a visible 2k-multiplicity contact

with rΣ at ♣0, 0q. Thus, without loss of generality, we can assume that the Filippov system

Z ✏ ♣X�, X✁qΣ satifies

(A) X� has a visible 2k-multiplicity contact with Σ at ♣0, 0q, X�
1 ♣0, 0q → 0, and there

exists a neighborhood U ⑨ R
2 of ♣0, 0q such that X✁✞✞

U
✏ ♣0, 1q and Σ❳U ✏ t♣x, 0q :

x P ♣✁xU , xUq✉.

Now, we provide a simpler local expression for Filippov systems satisfying

hypothesis (A) in a neighborhood of the visible regular-tangential singularity. Since

X�
1 ♣0, 0q → 0, we can take the neighborhood U smaller in order that X�

1 ♣x, yq → 0 for all

♣x, yq P U. Performing a time rescaling in X�, we get ♣X�♣x, yq ✏ ♣1, f♣x, yqq, with the

function f given by f♣x, yq ✏ X�
2 ♣x, yq④X�

1 ♣x, yq. Clearly, the vector fields X� and ♣X�

have the same orbits in U with the same orientation. Notice that, for ♣x, yq P U, we have

X�h♣x, yq ✏ X�
2 ♣x, yq

✏ X�
1 ♣x, yqf♣x, yq

✏ X�
1 ♣x, yq ♣X�h♣x, yq.
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Proof. Let us consider the differential equation induced by the vector field X�✧
x✶ ✏ 1,

y✶ ✏ αx2k✁1 � g♣xq � yϑ♣x, yq. (2.3)

Denote by ♣x♣tq, y♣tqq the solution of system (2.3) satisfying x♣0q ✏ 0 and y♣0q ✏ 0. Thus,

x♣tq ✏ t and y♣tq satisfies the following differential equation

y✶ ✏ αt2k✁1 � g♣tq � yϑ♣t, yq.

Therefore, y♣iq♣0q ✏ 0 for i ✏ 0, 1, . . . , 2k ✁ 1 and y♣2kq♣0q ✏ ♣2k ✁ 1q!α. Thus, the Taylor

series of y♣tq around t ✏ 0 writes

y♣tq ✏ αt2k

2k
� O♣t2k�1q.

Hence, taking ρ → 0 and θ → 0 sufficiently small, we conclude that the trajectory of

X� starting at ♣0, 0q intersects the sections tx ✏ ✁ρ✉ and tx ✏ θ✉ at the points defined

in (2.2) ♣✁ρ, y✁ρq and ♣θ, yθq, respectively. These intersections are transversal, because

X�
1 ♣x, yq ✏ 1 for every ♣x, yq P U.

Now, we shall study the intersection y♣tq ✏ ε, so define κ♣t, εq ✏ y♣tq ✁ ε.

Consider the change of variables s ✏ t2k and define the function

ζ♣s, εq ✏ κ♣s 1

2k , εq ✏ αs

2k
✁ ε� O♣s 2k�1

2k q.

Since ζ♣0, 0q ✏ 0 and
❇ζ
❇s ♣0, 0q ✏

α

2k
→ 0, by the Implicit Function Theorem, there exists a

unique smooth function s♣εq such that ζ♣s♣εq, εq ✏ 0 and s♣0q ✏ 0. Moreover,

s✶♣0q ✏ ✁
❇ζ
❇ε ♣0, 0q
❇ζ
❇s ♣0, 0q

✏ 2k

α
.

Thus, the Taylor expansion of s♣εq around ε ✏ 0 writes

s♣εq ✏ ε
2k

α
� O♣ε2q.

Since, s♣εq → 0 for ε → 0 sufficiently small, we can defined t✟♣εq ✏ ✟♣s♣εqq 1

2k . Therefore,

t✟♣εq ✏ ✟ε 1

2k

✂
2k

α

✡ 1

2k

� O♣ε1� 1

2k q.

Hence, the trajectory of X� starting at ♣0, 0q intersects the section ty ✏ ε✉ at the points�
x✟ε , ε

✟
defined in (2.2). We conclude this proof by showing that these intersections are

transversal for ε → 0 small enough. Indeed, suppose that X�
2

�
x✟ε , ε

✟ ✏ 0. Thus,

α♣x✟ε q2k✁1 � ♣x✟ε q2k✁1rg♣x✟ε q � εϑ♣x✟ε , εq ✏ 0,
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and, consequently, ♣x✟ε q2k✁1 ✏ ✁ εϑ♣x✟ε , εq
α � rg♣x✟ε q , where rg ✏ O♣xq is a continuous function such

that g♣xq ✏ x2k✁1rg♣xq. Thus,

✞✞♣x✟ε q2k✁1
✞✞ ✏ ✞✞✞✞ ϑ♣x✟ε , εqα � rg♣x✟ε q

✞✞✞✞ ε ↕ max
εPr0,ε0s,xPB

✞✞✞✞ ϑ♣x, εqα � rg♣xq
✞✞✞✞ ε ✏ Cε,

which implies that x✟ε ✏ O♣ε 1

2k✁1 q and, therefore, 2k④α ✏ 0. This is an absurd. Here,

B ⑨ R is a neighbourhood of 0. Hence, X�
2

�
x✟ε , ε

✟ ✘ 0 for ε → 0 sufficiently small.

The next lemma is a technical result which will be useful for proving our main

Theorems.

Lemma 2. Let σ be a real number. The trajectory ♣u♣tq, v♣tqq of the planar vector field

F ♣u, vq ✏ ♣1,✁u2k✁1 ✁ vn � σq satisfying u♣0q ✏ u0 and v♣0q ✏ v0 → 0 intersects v ✏ 0 at

the point ♣u✝, 0q with u✝ → σ
1

2k✁1 .

Proof. For each positive real number µ, with µn → σ, let Bµ ⑨ R
2 be defined as the

following compact region,

Bµ ✏
✦
♣u, vq✞✞♣✁µn � σq 1

2k✁1 ↕ u ↕ ✁v � µ� ♣1 � σ � δq 1

2k✁1 , 0 ↕ v ↕ µ
✮
,

where δ → 0 is such that 1 � σ � δ → 0 (see Figure 5).

First, we shall see that the trajectories of F enter the region Bµ through ❇Bµ③Lµ,

where Lµ ✏ t♣u, vq⑤σ 1

2k✁1 ↕ u ↕ µ� ♣1 � σ � δq 1

2k✁1 , v ✏ 0✉. Denote

B
�
µ ✏

✦
♣u, vq✞✞u ✏ ✁v � µ� ♣1 � σ � δq 1

2k✁1 , 0 ↕ v ↕ µ
✮
,

B
✁
µ ✏

✦
♣u, vq✞✞u ✏ ♣✁µn � σq 1

2k✁1 , 0 ↕ v ➔ µ
✮
,

B
✝
µ ✏

✦
♣u, vq✞✞♣✁µn � σq 1

2k✁1 ➔ u ↕ ♣1 � σ � δq 1

2k✁1 , v ✏ µ
✮
,

B
#
µ ✏

✦
♣u, vq✞✞♣✁µn � σq 1

2k✁1 ↕ u ➔ σ
1

2k✁1 , v ✏ 0
✮
.

Notice that ❇Bµ③Lµ ✏ B
�
µ ❨ B✁

µ ❨ B✝
µ ❨ B

#
µ .

Let n� ✏ ♣1, 1q be a normal vector to B
�
µ . Since F

✞✞
B
�
µ
✏ ♣1,✁u2k✁1 ✁ vn � σq,

we get
①n�, F ② ✏ ①♣1, 1q, ♣1,✁u2k✁1 ✁ vn � σq②

↕ 1 ✁ u2k✁1 � σ

✏ 1 ✁ ♣✁v � µ� ♣1 � σ � δq 1

2k✁1 q2k✁1 � σ

↕ 1 � ♣µ✁ µ✁ ♣1 � σ � δq 1

2k✁1 q2k✁1 � σ

✏ ✁δ
➔ 0.

Hence, F points inward Bµ along B
�
µ . Now, let n✁ ✏ ♣1, 0q be a normal vector to B

✁
µ .

Since, F
✞✞
B
✁
µ
✏ ♣1, µn ✁ vnq we get ①F, n✁② ✏ 1 → 0 and, then, F also points inward Bµ

along B
✁
µ . Let n✝ ✏ ♣0, 1q be a normal vector to B

✝
µ. Since F

✞✞
B
✝
µ
✏ ♣1,✁u2k✁1 ✁ µn � σq,

we get ①F, n✝② ✏ ✁u2k✁1 ✁ µn � σ ➔ 0 and, then, F points inward Bµ along B
✝
µ. Finally,
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If k ✏ 1 or σ ✘ 0, then F 2h2♣p2q ➔ 0. Consequently, F has a quadratic contact with the

straight line v ✏ 0 at p2 and the trajectory passing through p2 stays, locally, below this

line (see Figure 5). If k → 1 and σ ✏ 0, then F 2h2♣p2q ✏ 0. In addition, one can see that

F jh2♣p2q ✏ 0 for j P t1, . . . , 2k✁ 1✉ and F 2kh2♣p2q ✏ ✁♣2k✁ 1q! ➔ 0. Thus, F has an even

multiplicity contact with the straight line v ✏ 0 at p2 and the trajectory passing through

p2 also stays, locally, below this line (see Figure 5). Hence, p2 ❘ γ�p and, consequently,

u✝ → σ
1

2k✁1 .

2.2 Extension of the Fenichel Manifold

Consider a Filippov system Z ✏ ♣X�, X✁qΣ and assume that X� satisfies

hypothesis (A) for some k ➙ 1. For n ➙ maxt2, 2k ✁ 1✉, let Φ P Cn✁1
ST be given as

(1.5). From the comments of the previous section, we can assume that Z, restricted to a

neighborhood U ⑨ R
2 of ♣0, 0q, is given as (2.1). Thus, the regularized system ZΦ

ε , defined

in (1.4), leads to the following differential system

ZΦ
ε :

✩✬✫✬✪
✾x ✏ 1

2
♣1 � Φε♣yqq ,

✾y ✏ 1

2

�
αx2k✁1 � g♣xq � yϑ♣x, yq✟ ♣1 � Φε♣yqq � 1

2
♣1 ✁ Φε♣yqq ,

(2.4)

for ♣x, yq P U and ε → 0 sufficiently small. Recall that Φε♣yq ✏ Φ♣y④εq.
Now, we shall study the regularized system (2.4) restricted to the band of

regularization ⑤y⑤ ↕ ε. Notice that Φε♣yq ✏ φ♣y④εq for ⑤y⑤ ↕ ε. In this case, system (2.4)

can be written as a slow-fast problem. Indeed, taking y ✏ ε♣y, we get the so-called slow

system, ✩✬✫✬✪
✾x ✏ 1

2
♣1 � φ♣♣yqq ,

ε ✾♣y ✏ 1

2

��
αx2k✁1 � g♣xq � ε♣yϑ♣x, ε♣yq✟ ♣1 � φ♣♣yqq � ♣1 ✁ φ♣♣yqq✟ , (2.5)

defined for ⑤♣y⑤ ↕ 1. Performing the time rescaling t ✏ ετ, we obtain the so-called fast

system,

Z
Φ

ε :

✩✬✫✬✪
x✶ ✏ ε

2
♣1 � φ♣♣yqq ,

♣y✶ ✏ 1

2

��
αx2k✁1 � g♣xq � ε♣yϑ♣x, ε♣yq✟ ♣1 � φ♣♣yqq � ♣1 ✁ φ♣♣yqq✟ . (2.6)

Clearly, systems (2.5) and (2.6) are equivalent for ε ✘ 0. Taking ε ✏ 0 in the fast system,

we get the layer problem

Z
Φ

0 :

✩✫✪ x✶ ✏ 0,

♣y✶ ✏ 1

2

��
αx2k✁1 � g♣xq✟ ♣1 � φ♣♣yqq � ♣1 ✁ φ♣♣yqq✟ , (2.7)

which has the following critical manifold

Sa ✏
✧
♣x, ♣yq✞✞♣y ✏ m0♣xq .

.✏ φ✁1

✂
1 � αx2k✁1 � g♣xq
1 ✁ αx2k✁1 ✁ g♣xq

✡
,✁L ↕ x ↕ 0

✯
, (2.8)
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where L is a positive parameter satisfying αx2k✁1 � g♣xq ➔ 0 for ✁L ↕ x ➔ 0. Notice that,

in this case,

✁1 ➔ 1 � αx2k✁1 � g♣xq
1 ✁ αx2k✁1 ✁ g♣xq ➔ 1, for ✁ L ↕ x ➔ 0.

Moreover,

❇π2Z
Φ

0

❇♣y ♣x, ♣yq ✏ φ✶♣♣yq
2

♣αx2k✁1 � g♣xq ✁ 1q,

where π2Z
Φ

0 denote the second component of Z
Φ

0 . Consequently, the critical manifold

Sa is normally hyperbolic attracting on Sa③t♣0, 1q✉ and looses hyperbolicity at ♣0, 1q.
Indeed, φ✶♣♣yq♣αx2k✁1 � g♣xq ✁ 1q ➔ 0 for all ♣x, ♣yq P Sa③t♣0, 1q✉ and φ✶♣1q ✏ 0. Thus, the

Fenichel Theorem [12, 16] can be applied for any compact subset of Sa③t♣0, 1q✉. In what

follows we state the Fenichel Theorem for system (2.6) as it is stated in [3].

Theorema 1 (Fenichel Theorem). Consider L and N positive real numbers, L → N.

There exist positive constants ε0, K, and C, and a smooth function m♣x, εq, defined for

♣x, εq P r✁L,✁N s ✂ r0, ε0s and satisfying m♣x, 0q ✏ m0♣xq (see (2.8)), such that the

following statements hold.

(i) Sa,ε ✏ t♣x, ♣yq⑤♣y ✏ m♣x, εq,✁L ↕ x ↕ ✁N✉ is a normally hyperbolic attracting locally

invariant manifold of system (2.6), for 0 ➔ ε ➔ ε0.

(ii) There exists a neighborhood W of Sa,ε, which does not depend on ε, such that for

any z0 P W there exists z✝ P Sa,ε satisfying

⑤ϕ
Z

Φ

ε

♣t, z0q ✁ ϕ
Z

Φ

ε

♣t, z✝q⑤ ↕ Ke✁
Ct
ε , t ➙ 0,

where ϕ
Z

Φ

ε

is the flow of system (2.5).

The invariant manifold Sa,ε is called Fenichel Manifold.

In the sequel, in order to extend Sa,ε until ♣y ✏ 1, we shall study system (2.6)

around the degenerate point ♣0, 1q. Notice that 1 � φ♣♣yq → 0 for ♣y sufficiently close to 1.

Thus, performing a time changing we can divide the right-hand side of the differential

system (2.6) by 1 � φ♣♣yq, obtaining the following equivalent system✩✫✪ x✶ ✏ ε,♣y✶ ✏ αx2k✁1 � g♣xq � ε♣yϑ♣x, ε♣yq � 1 ✁ φ♣♣yq
1 � φ♣♣yq . (2.9)

As an abuse of notation, we are still using the prime symbol ✶ to denote differentiation

with respect to the new time variable. Denote p♣♣yq ✏ ♣1 ✁ φ♣♣yqq④♣1 � φ♣♣yqq. Computing

the expansion of the function p around ♣y ✏ 1 we get

p♣♣yq ✏ 1

2
φrns♣✁♣♣y ✁ 1qqn♣1 � ♣♣y ✁ 1qΥ♣♣y ✁ 1qq

where

φrns ✏ ♣✁1qn�1

n!
φ♣nq♣1q → 0
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and Υ is a smooth function defined in a neighborhood of 0. Taking ♣y ✏ ry� 1, system (2.9)

becomes★
x✶ ✏ ε,ry✶ ✏ αx2k✁1 � g♣xq � ε♣1 � ryqϑ♣x, ε♣1 � ryqq � 1

2
φrns♣✁ryqn♣1 � ryΥ♣ryqq.

Now, we consider the extended system

E :

✩✬✬✫✬✬✪
x✶ ✏ rε,ry✶ ✏ αx2k✁1 � x2k✁1rg♣xq � rε♣1 � ryqϑ♣x, rε♣1 � ryqq � 1

2
φrns♣✁ryqn♣1 � ryΥ♣ryqq,rε✶ ✏ 0,

(2.10)

where g♣xq ✏ x2k✁1rg♣xq with rg ✏ O♣xq. Notice that, the above differential system keeps

the planes rε ✏ “constant” invariant. In addition, its restriction to rε ✏ 0 corresponds to the

layer problem (2.7). Thus, once we have understood the orbits of (2.10) in an neighborhood

of the origin ♣x, ry, rεq ✏ ♣0, 0, 0q, we can understand how the Fenichel manifold Sa,ε of (2.6)

behaves in a neighborhood of ♣x, ♣yq ✏ ♣0, 1q.
Notice that t♣x, ry, 0q⑤αx2k✁1 � x2k✁1rg♣xq � 1

2
φrns♣✁ryqn♣1� ryΥ♣ryqq ✏ 0✉ is a set

of degenerate singularities of (2.10). Thus, in order to study the differential system (2.10)

in a neighborhood of the origin, we shall apply the following blow-up

Ψ : S2 ✂ R� Ñ R
3
✝

♣x, y, ε, rq ÞÑ ♣rnx, r2k✁1y, r1�2k♣n✁1qεq.
Here,

S
2 ✏ t♣x, y, εq P R

3⑤x2 � y2 � ε2 ✏ 1✉ and R
3
✝ ✏ R

3③t♣0, 0, 0q✉.
Roughly speaking, the geometric idea of the blow-up method is to “change” the nonhy-

perbolic singularity ♣0, 0, 0q by a sphere S
2, leaving the dynamics away from the origin

unchanged. This allow us to blow-up the dynamics around the origin. Formally, the map

Ψ pulls back the vector field E
✞✞
R3
✝
, defined in (2.10), to a vector field Ψ✝E defined on

S
2 ✂ R�. Here, Ψ✝ denotes the usual pullback,

Ψ✝E♣pq ✏ ♣DΨ♣pqq✁1
E♣Ψ♣pqq, p ✏ ♣x, y, ε, rq.

In order to study the behavior of Ψ✝E in a neighbourhood of S2
0 ✏ S

2 ✂ t0✉, we have to

extend its dynamics to S
2
0 and desingularize it through a time rescaling. This provides

a new vector field E✝ which has its dynamics outside S
2
0 equivalent to E⑤R3

✝
. Then, we

consider two charts of S2 ✂ R➙0, namely, κ1 ✏ ♣U1, ψ1q and κ2 ✏ ♣U2, ψ2q, where

U1 ✏ t♣x, y, ε, rq P S
2 ✂ R➙0⑤y ➔ 0✉, U2 ✏ t♣x, y, ε, rq P S

2 ✂ R➙0⑤ε → 0✉,
and ψ1,2 : U1,2 Ñ R

3 are the following stereographic-like projections

ψ1♣x, y, ε, rq ✏ �♣✁yqα1 x, ♣✁yqβ1 r, ♣✁yqγ1 ε
✟
, ψ2♣x, y, ε, rq ✏ �

εα2 x, εβ2 y, εγ2 r
✟
,

with

α1 ✏ ✁n
2k ✁ 1

, β1 ✏ 1

2k ✁ 1
, γ1 ✏ ✁♣1 � 2k♣n✁ 1qq

2k ✁ 1
,
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2.3 Chart κ1

The differential system associated with the vector field F1 writes✩✬✬✬✬✬✬✬✬✬✬✬✬✫✬✬✬✬✬✬✬✬✬✬✬✬✪

x✶1 ✏
1

2♣2k ✁ 1qr2♣2k ✁ 1qε1 � φrnsnx1 � 2αnx2k
1 ✁ nx1φ

rnsr2k✁1
1 Υ♣✁r2k✁1

1 q
�2nx2k

1 rg♣rn1x1q ✁ nx12♣rn1 ✁ r1✁2k�n
1 qε1ϑ♣rn1x1,✁r2k♣n✁1q

1 ♣✁r1 � r2k
1 qε1qs,

r✶1 ✏
1

2♣2k ✁ 1qr✁2r1x
2k✁1
1 ♣α � rg♣rn1x1qq ✁ φrns♣r1 ✁ r2k

1 Υ♣✁r2k✁1
1 qq

�2♣r1�n
1 ✁ r2✁2k�n

1 qε1ϑ♣rn1x1,✁r2k♣n✁1q
1 ♣✁r1 � r2k

1 qε1qs,
ε✶1 ✏

1

2♣2k ✁ 1q♣1 � 2k♣n✁ 1qqε1r♣2x2k✁1
1 ♣α � rg♣rn1x1qq � φrns♣1 ✁ r2k✁1

1 Υ♣✁r2k✁1
1 qq

�2♣✁rn1 � r1✁2k�n
1 qε1ϑ♣rn1x1,✁r2k♣n✁1q

1 ♣✁r1 � r2k
1 qε1qs.

(2.11)

First, taking ε1 ✏ 0 in (2.11), we get that the critical manifold Sa, in this

coordinate system, is given by

Sa,1 ✏
✦
♣x1, r1, 0q⑤x2k✁1

1 ♣α � rg♣rn1x1qq ✏ ✁φ
rns

2
♣1 ✁ r2k✁1

1 Υ♣✁r2k✁1
1 qq, ✁L ↕ rn1x1 ↕ 0

✮
.

In what follows, we shall write the critical manifold Sa,1 locally as a graphic. For this,

define U1 ✏ t♣x1, r1q⑤ ✁ L ↕ rn1x1 ↕ 0✉ and consider the function H : U1 Ñ R defined by

H♣x1, r1q ✏ ✁x2k✁1
1 ♣α � rg♣rn1x1qq ✁ φrns

2
♣1 ✁ r2k✁1

1 Υ♣✁r2k✁1
1 qq.

Notice thatH♣x1, 0q ✏ ✁αx2k✁1
1 ✁φ

rns

2
. Thus, for x✝1 ✏

✂
✁φ

rns

2α

✡ 1

2k✁1

we get thatH♣x✝1 , 0q ✏
0. Furthermore,

❇H
❇x1

♣x✝1 , 0q ✏ ✁♣2k ✁ 1qα♣x✝1q2k✁2 ✏ ✁♣2k ✁ 1qα
✂
✁φ

rns

2α

✡ 2k✁2

2k✁1

✘ 0.

From the Implicit Function Theorem, there exist open sets W1, V1 ❸ R such that ♣x✝1 , 0q P
W1 ✂ V1 ❸ U1, and a unique smooth function x1 : V1 Ñ W1 such that x1♣0q ✏ x✝1 and

H♣x1♣r1q, r1q ✏ 0, for all r1 P V1. Moreover,

x✶1♣0q ✏
✩✫✪ 0 if k → 1,

φrnsΥ♣0q
2α

if k ✏ 1.

Thus, expanding x1♣r1q around r1 ✏ 0, we have

x1♣r1q ✏ x1♣0q � r1x
✶
1♣0q � O♣r2

1q

✏
✩✫✪ x✝1 � O♣r2

1q if k → 1,

x✝1 � r1

φrnsΥ♣0q
2α

� O♣r2
1q if k ✏ 1.

Consequently,

Sa,1 ❳ ♣W1 ✂ V1 ✂ t0✉q ✏ t♣x1, r1, 0q⑤ x1 ✏ x1♣r1q✉.
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Notice that Sa,1 intersects the plane r1 ✏ 0 (which is equivalent to the sphere

S
2
0) at the singularity ♣x✝1 , 0, 0q. Moreover,

DF1♣x✝1 , 0, 0q ✏

☎✝✝✆ ✁φ
rnsn
2

ω12
k 1 � ω13

n,k

0 0 0

0 0 0

☞✍✍✌,
where

ω12
k ✏

✩✫✪ 0 if k → 1,

♣φrnsq2nΥ♣0q
4α

if k ✏ 1,

ω13
n,k ✏

★
0 if n → 2k ✁ 1,

x✝1ϑ♣0, 0q if n ✏ 2k ✁ 1 and k ✘ 1.

Hence, in the sequel, we shall use the Center Manifold Theorem [8] to study F1 around

the degenerated singularity ♣x✝1 , 0, 0q.
One can easily see that λ1 ✏ ✁φrnsn④2, λ2 ✏ 0, and λ3 ✏ 0 are the eigenvalues

of DF ♣x✝1 , 0, 0q associated with the eigenvectors

v1 ✏ ♣1, 0, 0q, v2 ✏
✂

2ω12
k

φrnsn
, 1, 0

✡
, and v3 ✏

✂
2

φrnsn
♣1 � ω13

n,kq, 0, 1
✡
,

respectively. Thus, consider a box Ω ✏ rχ, 0s ✂ r0, ρs ✂ r0, νs around ♣x✝1 , 0, 0q, where

χ ➔ x✝1 and ρ, ν → 0 are small parameters. By the Center Manifold Theorem we know

that within Ω there exists a center manifold W c ✏ t♣x1, r1, ε1q⑤ x1 ✏ k♣r1, ε1q✉ tangent

to the eigenspace generated by v2 and v3 at the singularity ♣x✝1 , 0, 0q. Moreover, since

♣x✝1 , 0, 0q P W c❳Sa,1 ✘ ❍, we conclude that W c contains the critical manifold Sa,1. Assume

that W c ✏ ♣h✁1♣0q, with ♣h♣x1, r1, ε1q ✏ x1 ✁ k♣r1, ε1q and k♣0, 0q ✏ x✝1 . Since ∇♣h♣0q.v2 ✏ 0

and ∇♣h♣0q.v3 ✏ 0 we get

❇k
❇r1

♣0, 0q ✏ 2ω12
k

φrnsn
and

❇k
❇ε1

♣0, 0q ✏ 2

φrnsn
♣1 � ω13

n,kq,

respectively. Therefore,

k♣r1, ε1q ✏ x✝1 � r1

2ω12
k

φrnsn
� ε1

2

φrnsn
♣1 � ω13

n,kq � O2♣r1, ε1q.

Now, we shall see that the center manifold W c is foliated by hyperbolas. Indeed,

from (2.11) we have that
dr1

dε1

✏ ✁ r1

ε1♣1 � 2k♣n✁ 1qq .

Thus, solving the above differential equation, we get that ε1 ÞÑ ε1r1♣ε1q1�2k♣n✁1q is constant

on ε1. This means that, for each ε → 0, the surface

Eε ✏ t♣x1, r1, ε1q⑤ ε1r
1�2k♣n✁1q
1 ✏ ε✉,
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is invariant through the flow of (2.11). Consequently, the manifold W c is foliated by

invariant hyperbolas γε ✏ W c ❳ Eε, ε → 0, which correspond to orbits of (2.11). Thus, we

can write γε ✏ tϕF1
♣t, εq : t P Iε✉ where ϕF1

♣t, εq is a trajectory of (2.11) satisfying

ϕF1
♣0, εq ✏ ♣k♣ρ, ε ρ✁♣1�2k♣n✁1qqq, ρ, ε ρ✁♣1�2k♣n✁1qqq P W c ❳ γε,

and Iε is a neighborhood of the origin. Hence, Ψ1γε is an orbit of E (2.10) lying in the

plane rε ✏ ε. Therefore, (after the translation ♣y ✏ 1� ry) we get it as an orbit (2.6).

Denote by S1
a,ε the Fenichel manifold Sa,ε of (2.6) for rε ✏ ε written in the

coordinates ♣x1, r1, ε1q. We claim that, for ε → 0 sufficiently small, the Fenichel manifold

S1
a,ε can be continued as an orbit of F1 in W c, namely γε. First, noticed that the orbit γε

is ε✁close to Sa,1 at r1 ✏ ρ. Indeed, from the relation ε1r
1�2k♣n✁1q
1 ✏ ε satisfied by γε, we

see that ϕF1
♣0, εq approaches to Sa,1 ✏ W c ❳ tε1 ✏ 0✉ when ε goes to zero. Now, since

S1
a,ε is also ε✁close to Sa,1, we get that S1

a,ε and γε are ε✁ close to each other at r1 ✏ ρ.

Noticing that γε and S1
a,ε are related to orbits of (2.6), which are ε-close to each other, we

get from item (ii) of Fenichel Theorem (1) that d♣ϕF1
♣t, εq, S1

a,εq ↕ Ke✁
Ct
ε . Hence, taking

any positive time t0 P Iε we conclude that S1
a,ε and γε are O♣e✁ c

ε q close to each other at

r1 ✏ ρ✶ ➔ ρ, with c ✏ Ct0 → 0. Therefore, for each ε → 0, γε can be seen as a continuation

of S1
a,ε on W c (see Figure 7).

Now, at ε1 ✏ ν we have

γε ❳ tε1 ✏ ν✉ ✏
✂
k
✁
♣ε ν✁1q 1

1�2k♣n✁1q , ν
✠
, ♣ε ν✁1q 1

1�2k♣n✁1q , ν

✡
✏

✁
k♣0, νq, 0, ν

✠
�O♣ε 1

1�2k♣n✁1q q.

Hence, we conclude that S1
a,ε ❳ tε1 ✏ ν✉ is O♣ε 1

1�2k♣n✁1q q close to ♣k♣0, νq, 0, νq.
Remark 2. Notice that W c ❳ tr1 ✏ 0✉ is an orbit of (2.11) containing the point

♣x1, r1, ε1q ✏ ♣k♣0, νq, 0, νq which the backward trajectory approaches asymptotically to

♣x✝1 , 0, 0q (see Figure 7). Indeed,

W c ❳ tr1 ✏ 0✉ ✏
✧
♣x1, 0, ε1q

✞✞ x1 ✏ x✝1 � ε1

2

φrnsn
♣1� ω13

n,kq �O♣ε2
1q
✯

and, therefore, W c ❳ tr1 ✏ 0✉ ❳ tε1 ✏ 0✉ ✏ t♣x✝1 , 0, 0q✉.

In what follows, we shall continue S1
a,ε in chart κ2 by following the trajectory

of ♣x✝2 , y✝2 , 0q .

.✏ ψ12♣k♣0, νq, 0, νq (see Figure 8).

2.4 Chart κ2

The differential system associated with the vector field F2 writes✩✬✬✬✬✫✬✬✬✬✪
x✶2 ✏ 1,

y✶2 ✏ x2k✁1
2 ♣α � rg♣rn2x2qq � φrns

2
♣✁y2qn♣1� r2k✁1

2 y2Υ♣r2k✁1
2 y2qq

�♣r1✁2k�n
2 � rn2 y2qϑ♣rn2x2, r

2kn
2 ♣r1✁2k

2 � y2qq,
r✶2 ✏ 0.

(2.12)
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Moreover, writing the Ξ in the original coordinates we conclude that, for every ε P r0, ε✝q,
ε✝ ✏ b1�2k♣n✁1q, any trajectory of system (2.6) starting at the set✁

ελ
✝♣x✝2 ✁ aq , ελ✝♣x✝2 � aq

✠
✂
✁

1 � ε
2k✁1

1�2k♣n✁1q ♣y✝2 ✁ aq , 1 � ε
2k✁1

1�2k♣n✁1q ♣y✝2 � aq
✠

intersects the line t♣y ✏ 1✉.
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3 Transition maps of the regularized system

In this Chapter, we will continue with the study of the Cn-regularizations of

Filippov systems around visible regular-tangential singularities of even multiplicity. More

specifically, we shall understand how the trajectories of the regularized system transits

around these singularities. Thus, we will characterize two transition maps, namely the

Upper Transition Map Uε♣yq and the Lower Transition Map Lε♣yq. For this, we will use

the results obtained in the previous chapter with respect to the extension of the Fenichel

manifold.

3.1 Main Results

Our first two main results guarantee that under some conditions the flow of

the regularized system ZΦ
ε near a visible regular-tangential singularity defines two distinct

maps between transversal sections (see Figure 3). Before their statements, we need to

establish some notations. Given Φ P Cn✁1
ST as (1.5), with k ➙ 1, and n ➙ 2k ✁ 1, define

xε ✏ ελ
✝

η � O

✁
ε
λ✝� 1

1�2k♣n✁1q

✠
,

where λ✝ .

.✏ n

1 � 2k♣n✁ 1q and η is a constant satisfying

η →

✩✬✫✬✪
0 if n → 2k ✁ 1,

✁
✂
ϑ♣0, 0q
α

✡ 1

2k✁1

if n ✏ 2k ✁ 1 and k ✘ 1,

and
yερ,λ ✏ y✁ρ � ε� O♣ερq � βε2kλ � O♣ε♣2k�1qλq � O♣ε1�λq,

yεθ ✏ yθ � ε� O♣εθq �
2k✁1➳
i✏1

O♣θ2k�1✁ixiεq � O♣x2k
ε q,

(3.1)

where y✁ρ and yθ are given by Lemma 1 and β is a negative parameter which will be

defined latter on.

In what follows, we establish the main results of this chapter, which will be

proved in the Sections 3.2 and 3.3, respectively.

Theorem A. Consider a Filippov system Z ✏ ♣X�, X✁qΣ and assume that X� satisfies

hypothesis (A) (see Section 2.1) for some k ➙ 1. For n ➙ 2k ✁ 1, let Φ P Cn✁1
ST be

given as (1.5) and consider the regularized system ZΦ
ε (1.4). Then, there exist ρ0, θ0 → 0,

and constants β ➔ 0 and c, r, q → 0, for which the following statements hold for every

ρ P ♣ελ, ρ0s, θ P rxε, θ0s, λ P ♣0, λ✝q, with λ✝ .

.✏ n

2k♣n✁ 1q � 1
, and ε → 0 sufficiently small.

(a) The vertical segments♣V ε
ρ,λ ✏ t✁ρ✉ ✂ rε, yερ,λs and rV ε

θ ✏ tθ✉ ✂ ryεθ, yεθ � re✁
c

εq s
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Now, we shall prove statement ♣bq. From Proposition 1,

xε ✏ ελ
✝

η � O

✁
ε
λ✝� 1

1�2k♣n✁1q

✠
,

where λ✝ ✏ n

1 � 2k♣n✁ 1q and η → σn,k, where σn,k satisfies (2.13).

First, suppose that n → 2k ✁ 1. Then,
1

2k ✁ 1
→ λ✝ and η → 0. Hence, by

statement ♣aq, we conclude that xε → ψ♣εq.
Finally, suppose that n ✏ 2k ✁ 1, with k ✘ 1. In this case, λ✝ ✏ 1④n. Define

a♣εq ✏ ✁
✂
ϑ♣ψ♣εq, εq
α � rg♣ψ♣εqq

✡ 1

n

.

Notice that ψ♣εq ✏ ε
1

na♣εq. Statement ♣aq implies that ψ is continuous at ε ✏ 0 and

ψ♣0q ✏ 0. Therefore, a♣εq is also continuous at ε ✏ 0 and a♣0q ✏ ✁�ϑ♣0, 0q④α✟ 1

n . Defining

r♣εq ✏ a♣εq ✁ a♣0q we conclude that

ψ♣εq ✏ ε
1

na♣εq ✏ ε
1

na♣0q � ε
1

n r♣εq.

Since η → σn,n�1

2

✏ a♣0q and r♣0q ✏ 0, we conclude xε → ψ♣εq.

Statement ♣iq of Theorem A will follows from the next result.

Proposition 2. Consider the Filippov system Z ✏ ♣X�, X✁qΣ given by (2.1), for some

k ➙ 1, and yερ,λ and yεθ given in (3.1). For n ➙ maxt2, 2k ✁ 1✉, let Φ P Cn✁1
ST be given as

(1.5) and consider the regularized system ZΦ
ε (2.4). Then, there exist ρ0, θ0 → 0 such that

the vertical segments

♣V ε
ρ,λ ✏ t✁ρ✉ ✂ rε, yερ,λs and rV ε

θ ✏ tθ✉ ✂ ryεθ, yεθ � re✁
c

εq s,

and the horizontal segments

♣Hε
ρ,λ ✏ r✁ρ,✁ελs ✂ tε✉ and

ÐÝ
H ε ✏ rxε ✁ re✁

c
εq , xεs ✂ tε✉,

are transversal sections for ZΦ
ε for every ρ P ♣ελ, ρ0s, θ P rxε, θ0s, λ P ♣0, λ✝q, with

λ✝ ✏ n

2k♣n✁ 1q � 1
, constants c, r, q → 0, and ε → 0 sufficiently small.

Proof. First of all, we take ρ0, θ0 → 0 sufficiently small in order that the points ♣ρ0, 0q and

♣θ0, 0q are contained in U, domain of Z. Given ♣✁ρ, y1q P ♣V ε
ρ,λ and ♣θ, y2q P rV ε

θ , we have❆
ZΦ
ε ♣✁ρ, y1q , ♣1, 0q

❊
✏ π1Z

Φ
ε ♣✁ρ, y1q ✏ X�

1 ♣✁ρ, y1q ✏ 1 ✘ 0,❆
ZΦ
ε ♣θ, y2q , ♣1, 0q

❊
✏ π1Z

Φ
ε ♣θ, y2q ✏ X�

1 ♣θ, y2q ✏ 1 ✘ 0,

respectively, where π1Z
Φ
ε denote the first component of ZΦ

ε . Hence, V ε
ρ,λ and V ε

θ are

transversal sections for ZΦ
ε .
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From Lemma 4, we know that any branch of zeros ψ♣εq of the equation

π2Z
Φ
ε ♣x, εq ✏ 0 satisfies ψ♣εq ✏ O♣ε 1

2k✁1 q. In other words, the zeros of π2Z
Φ
ε ♣x, εq lie in an

O♣ε 1

2k✁1 q neighbourhood of 0. Since ρ P ♣ελ, ρ0s, θ P rxε, θ0s, λ P ♣0, λ✝q, the intervals ♣Hε
ρ,λ

and
ÐÝ
H ε are always away from any O♣ε 1

2k✁1 q neighbourhood of 0 and, then, π2Z
Φ
ε ♣x, εq does

not admit zeros inside these sections. Consequently, given ♣x1, εq P ♣Hε
ρ,λ and ♣x2, εq P ÐÝH ε

we have ❆
ZΦ
ε ♣x1, εq , ♣0, 1q

❊
✏ π2Z

Φ
ε ♣x1, εq ✘ 0,❆

ZΦ
ε ♣x2, εq , ♣0, 1q

❊
✏ π2Z

Φ
ε ♣x2, εq ✘ 0.

Hence, ♣Hε
ρ,λ and

ÐÝ
H ε are transversal sections for ZΦ

ε .

3.2.2 Construction of the map P u

First, we shall see that the backward trajectory of X� (2.1) starting at ♣✁ελ, εq
reaches the straight line tx ✏ ✁ρ✉ at ♣✁ρ, yερ,λq (see (3.1)). After that, the map will be

obtained through Poincaré-Bendixson argument.

Accordingly, define µ : I♣x,yq ✂ U ✂ r0, ρ0s Ñ R by

µ♣t, x, y, ρq ✏ ϕ1
X�♣t, x, yq � ρ,

where ϕX� ✏ ♣ϕ1
X� , ϕ

2
X�q is the flow of X�, I♣x,yq is the interval of definition of t ÞÑ

ϕX�♣t, x, yq, and U ⑨ R
2 is a neighbourhood of ♣0, 0q. Since µ♣0, 0, 0, 0q ✏ 0 and

❇
❇tµ♣0, 0, 0, 0q ✏ 1, by the Implicit Function Theorem there exists a unique smooth

function ♣x, y, ρq ÞÑ tρ♣x, yq, defined in a neighbourhood of ♣x, y, ρq ✏ ♣0, 0, 0q, such that

t0♣0, 0q ✏ 0 and µ♣tρ♣x, yq, x, y, ρq ✏ 0, i.e. ϕ1
X�♣tρ♣x, yq, x, yq ✏ ✁ρ. Therefore, for ρ → 0

and ε → 0 sufficiently small, the backward trajectory of X� starting at ♣✁ελ, εq reaches

the straight line tx ✏ ✁ρ✉ at✁
✁ ρ, ϕ2

X�♣tρ♣✁ελ, εq,✁ελ, εq
✠
.

In order to prove that ϕ2
X�♣tρ♣✁ελ, εq,✁ελ, εq ✏ yερ,λ, we shall compute the

Taylor series expansion of the function ϕ2
X�♣tρ♣x, yq, x, yq around ♣x, y, ρq ✏ ♣0, 0, 0q. Notice

that

ϕ2
X�♣tρ♣x, yq, x, yq ✏ ϕ2

X�♣tρ♣x, 0q, x, 0q � y
❇
❇y ♣ϕ

2
X�♣tρ♣x, yq, x, yqq

✞✞✞
y✏0

�O♣y2q,
✏ ϕ2

X�♣tρ♣x, 0q, x, 0q � y

✒❇ϕ2
X�

❇t ♣tρ♣x, 0q, x, 0qq❇tρ❇y ♣x, 0q

� ❇ϕ2
X�

❇y ♣tρ♣x, 0q, x, 0q
✚
�O♣y2q

✏ ϕ2
X�♣tρ♣x, 0q, x, 0q � y

✒❇ϕ2
X�

❇t ♣tρ♣0, 0q, 0, 0qq❇tρ❇y ♣0, 0q

� ❇ϕ2
X�

❇y ♣tρ♣0, 0q, 0, 0q
✚
�O♣xyq �O♣y2q.

(3.2)
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It is easy to see that

❇ϕ2
X�

❇t ♣tρ♣0, 0q, 0, 0qq ✏ f♣✁ρ, y✁ρq and
❇tρ
❇y ♣0, 0q ✏ ✁❇ϕ

1
X�

❇y ♣tρ♣0, 0q, 0, 0q.

This last equality is obtained implicitly from ϕ1
X�♣t♣0, y, ρq, 0, yq ✏ ✁ρ and using that

❇ϕ1
X�

❇t ♣tρ♣0, 0q, 0, 0q ✏ 1. Thus, substituting the above relations into (3.2), we get

ϕ2
X�♣tρ♣x, yq, x, yq ✏ ϕ2

X�♣tρ♣x, 0q, x, 0q � y

✒
✁f♣✁ρ, y✁ρq

❇ϕ1
X�

❇y ♣tρ♣0, 0q, 0, 0q

� ❇ϕ2
X�

❇y ♣tρ♣0, 0q, 0, 0q
✚
� O♣xyq � O♣y2q.

(3.3)

Expanding the coefficient of y in (3.3) around ρ ✏ 0, we have

✁f♣✁ρ, y✁ρq
❇ϕ1

X�

❇y ♣tρ♣0, 0q, 0, 0q � ❇ϕ2
X�

❇y ♣tρ♣0, 0q, 0, 0q ✏ 1� O♣ρq.

Thus, substituting the above equality into (3.3), we obtain that

ϕ2
X�♣tρ♣x, yq, x, yq ✏ ϕ2

X�♣tρ♣x, 0q, x, 0q � y♣1� O♣ρqq � O♣xyq � O♣y2q.

Furthermore, from [10, Theorem A], we know that

ϕ2
X�♣tρ♣x, 0q, x, 0q ✏ y✁ρ � βx2k � O♣x2k�1q,

where sign♣βq ✏ ✁sign♣♣X�q2kh♣0, 0qq, i.e. β ➔ 0. Thus, we conclude that

ϕ2
X�♣tρ♣x, yq, x, yq ✏ y✁ρ � βx2k � O♣x2k�1q � y♣1� O♣ρqq � O♣xyq � O♣y2q.

Taking x ✏ ✁ελ and y ✏ ε, we obtain

ϕ2
X�

✁
t♣✁ελ, ε, ρq,✁ελ, ε

✠
✏ y✁ρ � ε

✁
1� O♣ρq

✠
� βε2kλ � O♣ε♣2k�1qλq � O♣ε1�λq, (3.4)

which we have called by yερ,λ.

Finally, consider the region

R ✏
✦
♣x, yq : ✁ρ ↕ x ↕ ✁ελ, ε ↕ y ↕ ϕ2

X�

✁
t,✁ελ, ε

✠
, ❅t P r0, t♣✁ελ, ε, ρqs

✮
,

which is delimited by ♣V ε
ρ,λ,

♣Hε
ρ,λ, and the arc-orbit connecting ♣✁ρ, yερ,λq with ♣✁ελ, εq.

Since X� has no singularities inside R, we conclude that the forward trajectory of X�

starting at any point of the transversal section ♣V ε
ρ,λ must leave R through the transversal

section ♣Hε
ρ,λ. This naturally defines the map P u : ♣V ε

ρ,λ ÝÑ ♣Hε
ρ,λ.

3.2.3 Exponentially attraction and construction of the map Qu

ε

As we saw in Chapter 2, the Fenichel manifold Sa,ε of (2.5) is described as a

graph ♣y ✏ m♣x, εq, ✁L ↕ x ↕ ✁N, 0 ↕ ε ↕ ε0,
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where m♣x, εq is a smooth function, and L → N → 0 and ε0 → 0 are small parameters.

Notice that

m♣x, 0q ✏ m0♣xq ✏ φ✁1

✂
1� αx2k✁1 � g♣xq
1✁ αx2k✁1 ✁ g♣xq

✡
, (3.5)

which is the critical manifold of the system (2.6)ε✏0. Thus, we write

m♣x, εq ✏ m0♣xq � εm1♣xq �O♣ε2q,
for every ✁L ↕ x ↕ ✁N and 0 ↕ ε ↕ ε0. Since Sa,ε is an invariant manifold for (2.6), the

function m♣x, εq satisfies

ε
❇m
❇x ♣x, εq ✏

1� f♣x, εm♣x, εqq � φ♣m♣x, εqq♣f♣x, εm♣x, εqq ✁ 1q
1� φ♣m♣x, εqq .

Hence, using that

φ✶♣m0♣xqq ✏ 2α♣2k ✁ 1qx2k✁2 � 2g✶♣xq
m✶

0♣xq♣✁1� αx2k✁1 � g♣xqq2 , (3.6)

we can compute

m1♣xq ✏ ✁m✶
0♣xq♣m✶

0♣xq ✁m0♣xqϑ♣x, 0qq
α♣2k ✁ 1qx2k✁2 � g✶♣xq . (3.7)

The next result provides some estimations for m0♣xq.
Proposition 3. For ✁L ↕ x ➔ 0 there exist positive constants C1, C2 such that

C1
n
❛
⑤x⑤2k✁1 ↕ 1✁m0♣xq ↕ C2

n
❛
⑤x⑤2k✁1,

C1

n
❛⑤x⑤n✁2k�1

↕ m✶
0♣xq ↕

C2

n
❛⑤x⑤n✁2k�1

,
(3.8)

Proof. In order to obtain the above estimations, we consider the equation φ♣ŷq ✏ φ♣m0♣xqq
for ✁1 ➔ ŷ ➔ 1 and ✁L ↕ x ➔ 0. Of course, ŷ ✏ m0♣xq.

On the other hand, from (3.5),

φ♣m0♣xqq ✏ 1� 2αx2k✁1 �O♣x2kq. (3.9)

In addition, expanding φ♣ŷq around ŷ ✏ 1 we get

φ♣♣yq ✏ 1� φ♣nq♣1q
n!

♣♣y ✁ 1qn �O♣♣♣y ✁ 1qn�1q. (3.10)

Subtracting (3.10) from (3.9) we get that the equation φ♣ŷq ✏ φ♣m0♣xqq is equivalent to

the system ✩✬✬✫✬✬✪
s ✏ ♣ŷ ✁ 1qn,
u ✏ x2k✁1,

H♣s, uq .

.✏ φ♣nq♣1q
n!

s✁ 2αu�O♣sn�1

n q �O♣u 2k
2k✁1 q ✏ 0.

Since H♣0, 0q ✏ 0 and
❇H
❇s ♣0, 0q ✏

φ♣nq♣1q
n!

✘ 0, the Implicit Function Theorem implies the

existence of a unique function s♣uq, defined in a small neighborhood of u ✏ 0, such that

s♣0q ✏ 0 and H♣s♣uq, uq ✏ 0. Moreover,

s♣uq ✏ 2αn!

φ♣nq♣1qu�O♣u2q.
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Therefore, the equation φ♣ŷq ✏ φ♣m0♣xqq is solved as ŷ ✏ 1 ✁ ♣♣✁1qns♣x2k✁1qq 1

n . Recall

that φ ✏ Φ
✞✞
r✁1,1s, where Φ P Cn✁1

ST . Thus, from Definition 1, sign
�
φ♣nq♣1q✟ ✏ ♣✁1qn�1.

Consequently,

m0♣xq ✏ ŷ ✏ 1 ✁ n

❞
2αn!

⑤φ♣nq♣1q⑤
n
❛
⑤x⑤2k✁1 � O♣⑤x⑤1� 2k✁1

n q, ✁L ↕ x ↕ 0. (3.11)

Finally, the inequalities (3.8) are obtained directly from (3.11).

The next proposition is a technical result, which is used in the following result.

Proposition 4. Consider ✁L ➔ ✁N ➔ 0 and 0 ➔ λ ↕ λ✝ ✏ n

2k♣n✁ 1q � 1
. Then, there

exist K → 0 and ε0 → 0, such that, if 0 ↕ ε ↕ ε0 the invariant manifold ♣y ✏ m♣x, εq
satisfies

m0♣xq ✁ εK
n
❄
x2k♣n✁2q�2

↕ m♣x, εq ↕ m0♣xq, (3.12)

for ✁L ↕ x ↕ ✁ελ.

Proof. Consider the compact region

B ✏
✧
♣x, ♣yq : ✁L ↕ x ↕ ✁ελ,m0♣xq ✁ εK

n
❄
x2k♣n✁2q�2

↕ ♣y ↕ m0♣xq
✯
.

We shall prove that the vector field (2.6) points inwards B in the following three boundaries

of B,

B
✁ ✏

✧
♣x, ♣yq : ✁L ↕ x ↕ ✁ελ, ♣y ✏ ♣yε♣xq ✏ m0♣xq ✁ εK

n
❄
x2k♣n✁2q�2

✯
,

B
� ✏ ✥♣x, ♣yq : ✁L ↕ x ↕ ✁ελ, ♣y ✏ m0♣xq

✭
, and

B
l ✏

✧
♣✁L, ♣yq : m0♣✁Lq ✁ εK

n
❄
L2k♣n✁2q�2

↕ ♣y ↕ m0♣✁Lq
✯
.

On the border B
✁, the vector field (2.6) writes

Z
Φ

ε ♣x, ♣yε♣xqq ✏ ✁
ε ♣1 � Φ ♣♣yε♣xqqq , 1 � f♣x, ε♣yε♣xqq � Φ♣♣yε♣xqq♣f♣x, ε♣yε♣xqq ✁ 1q

✠
.

A normal vector of B
✁ is given by

n✁
ε ♣xq ✏

✂
m✶

0♣xq ✁ Kε♣2k♣n✁2q�2q
n n
❄

⑤x⑤♣2k�1q♣n✁2q�4
,✁1

✡
.

Thus, it is enough to see that

①ZΦ
ε ♣x, ♣yε♣xqq, n✁

ε ♣xq② ✏
✒
ε♣1 � Φ♣♣yε♣xqqq✂m✶

0♣xq ✁ Kε♣2k♣n✁2q�2q
n n
❄

⑤x⑤♣2k�1q♣n✁2q�4

✡✚
✁
✑
1 � f♣x, ε♣yε♣xqq � Φ♣♣yε♣xqq♣f♣x, ε♣yε♣xqq ✁ 1q

✙
➔ 0.

(3.13)
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Now, expanding in Taylor series Φ♣♣yε♣xqq and ϑ♣x, ε♣yε♣xqq around ε ✏ 0, we

have

Φ♣♣yε♣xqq ✏ Φ♣m0♣xqq ✁ Φ✶♣m0♣xqqK
n
❄
x2k♣n✁2q�2

ε�
n✁1➳
l✏2

♣✁1qlΦ♣lq♣m0♣xqqK l

n
❄
x2lk♣n✁2q�2l

εl

l!
� s♣x, εq,

ϑ♣x, ε♣yε♣xqq ✏ ϑ♣x, 0q � r♣x, εq,
where s♣x, εq and r♣x, εq are the Lagrange remainders of Φ♣♣yε♣xqq and ϑ♣x, ε♣yε♣xqq respec-

tively, i.e. for some c, d P ♣0, εq, we get

s♣x, εq ✏
✒♣✁1qnΦ♣nq ♣♣yc♣xqqKn

x2k♣n✁2q�2

✚
εn

n!
, and

r♣x, εq ✏
✒
ϑy ♣x, d♣yd♣xqq✂m0♣xq ✁ 2dK

n
❄
x2k♣n✁2q�2

✡✚
ε.

(3.14)

Notice that, the inequality (3.13) can be written as

L♣x, εq � T ♣x, εq �O♣x, εq ➔ 0,

where

L♣x, εq ✏ ε
✑
m✶

0♣xq♣1 � Φ♣m0♣xqqq � Φ✶♣m0♣xqqK♣f♣x, 0q ✁ 1q
n
❄
x2k♣n✁2q�2

✁m0♣xq♣1 � Φ♣m0♣xqqqϑ♣x, 0q
✙
,

T ♣x, εq ✏ ✁ε2m
✶
0♣xqΦ✶♣m0♣xqqK

n
❄
x2k♣n✁2q�2

� ε3K
2♣2k♣n✁ 2q � 2qΦ✶♣m0♣xqq
n n
❛
⑤x⑤♣4k�1q♣n✁2q�6

�ε2m0♣xqϑ♣x, 0qΦ✶♣m0♣xqqK
n
❄
x2k♣n✁2q�2

� ε2Kϑ♣x, ε♣yε♣xqq♣1 � Φ♣m0♣xqqq
n
❄
x2k♣n✁2q�2

✁ε
3K2ϑ♣x, ε♣yε♣xqqΦ✶♣m0♣xqq

n
❄
x4k♣n✁2q�4

✁ εm0♣xqr♣x, εq♣1 � Φ♣m0♣xqq

�ε2m0♣xqr♣x, εqΦ✶♣m0♣xqqK
n
❄
x2k♣n✁2q�2

� ε

n✁1➳
l✏2

♣✁1qlΦ♣lq♣m0♣xqqK lm✶
0♣xq

n
❄
x2lk♣n✁2q�2l

εl

l!

✁ε2

n✁1➳
l✏2

♣✁1qlΦ♣lq♣m0♣xqqK l�1♣2k♣n✁ 2q � 2q
n

n
❄
x♣2k♣l�1q�1q♣n✁2q�2l�4

εl

l!

✁
n✁1➳
l✏2

♣✁1qlΦ♣lq♣m0♣xqqK l

n
❄
x2lk♣n✁2q�2l

εl

l!
ε♣yε♣xqϑ♣x, ε♣yε♣xqq

�
✄
εm✶

0♣xq ✁ ε2 K♣2k♣n✁ 2q � 2q
n n
❛
⑤x⑤♣2k�1q♣n✁2q�4

✁ ε♣yε♣xqϑ♣x, ε♣yε♣xqq☛ s♣x, εq,
O♣x, εq ✏ ♣✁f♣x, 0q � 1q s♣x, εq ✁ ε2K♣2k♣n✁ 2q � 2q♣1 � Φ♣m0♣xqqq

n n
❛
⑤x⑤♣2k�1q♣n✁2q�4

�
n✁1➳
l✏2

♣✁1qlΦ♣lq♣m0♣xqqK l

n
❄
x2lk♣n✁2q�2l

εl

l!
♣✁f♣x, 0q � 1q.
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Now, we shall prove that the functions L, T and O can be bounded. Indeed, by (3.8) and

(3.6), we have that, L♣x, εq can be bounded, choosing K big enough depending on C2, L,

n, k, α, M, Mmin, and ϑmin, where

• M is such that ⑤g♣xq⑤ ↕M ⑤x⑤2k for all ✁L ↕ x ↕ 0.

• ⑨M is such that ⑤rg✶♣xq⑤ ↕ ⑨M ⑤x⑤ for all ✁L ↕ x ↕ 0 with g✶♣xq ✏ x2k✁2rg✶♣xq.
• Mmin is a positive constant such that α♣2k ✁ 1q � rg✶♣xq ➙Mmin, for all x P r✁L, 0s.
• ϑmin ✏ mint♣yϑ♣x, 0q : ✁L ↕ x ↕ 0,✁1 ↕ ♣y ↕ 1✉.

ε

✒
m✶

0♣xq♣1 � Φ♣m0♣xqqq � Φ✶♣m0♣xqqK♣f♣x, 0q ✁ 1q
n
❄
x2k♣n✁2q�2

✁m0♣xq♣1 � Φ♣m0♣xqqqϑ♣x, 0q
✚

✏ ε

✒
♣m✶

0♣xq ✁m0♣xqϑ♣x, 0qq♣1 � Φ♣m0♣xqqq � Φ✶♣m0♣xqqK♣f♣x, 0q ✁ 1q
n
❄
x2k♣n✁2q�2

✚
↕ ε

✓
♣C2⑤x⑤✁n✁2k�1

n ✁ ϑminq
✂

2

1 ✁ f♣x, 0q
✡
✁ ♣2α♣2k ✁ 1qx2k✁2 � 2g✶♣xqqK
C2⑤x⑤✁n✁2k�1

n ♣1 ✁ f♣x, 0qq n
❄
x2k♣n✁2q�2

✛

↕ ε

✓
2C2⑤x⑤2k✁2�n✁2k�1

n ♣C2⑤x⑤✁n✁2k�1

n ✁ ϑminq ✁ ♣2α♣2k ✁ 1qx2k✁2 � 2x2k✁2rg✶♣xqqK
C2♣1 ✁ f♣x, 0qq⑤x⑤2k✁2�n✁2k�1

n

✛

↕ ε

✓
2C2♣C2 � ⑤x⑤n✁2k✁1

n ⑤ϑmin⑤q ✁ ♣2α♣2k ✁ 1q � 2rg✶♣xqqK
C2♣1 ✁ f♣x, 0qq⑤x⑤n✁2k�1

n

✛

↕ 2C2♣C2 � L
n✁2k�1

n ⑤ϑmin⑤q ✁ 2MminK

C2♣1 ✁ f♣x, 0qq
ε

n
❛⑤x⑤n✁2k�1

↕ 2C2♣C2 � L
n✁2k�1

n ⑤ϑmin⑤q ✁ 2MminK

C2♣1 � L2k✁1♣α �MLqq
ε

n
❛⑤x⑤n✁2k�1

↕ ✁2
ε

n
❛⑤x⑤n✁2k�1

.

Now, we need to bound the function T ♣x, εq. Using (3.6) and (3.8), we obtain

✞✞✞ε2m
✶
0
♣xqΦ✶♣m0♣xqqK
n
❄
x2k♣n✁2q�2

✞✞✞ ↕ d1
ε

ε
n
❛⑤x⑤n✁2k�1

,✞✞✞✞ε3K2♣2k♣n✁2q�2qΦ✶♣m0♣xqq
n n
❄

⑤x⑤♣4k�1q♣n✁2q�6

✞✞✞✞ ↕ d2
ε

ε
n
❛⑤x⑤n✁2k�1

,✞✞✞ ε2m0♣xqϑ♣x,0qΦ✶♣m0♣xqqK
n
❄
x2k♣n✁2q�2

✞✞✞ ↕ d3
ε

ε
n
❛⑤x⑤n✁2k�1

,✞✞✞ ε2Kϑ♣x,ε♣yεq♣1�Φ♣m0♣xqqq
n
❄
x2k♣n✁2q�2

✞✞✞ ↕ d4
ε

ε
n
❛⑤x⑤n✁2k�1

, ,
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✞✞✞ ε3K2ϑ♣x,ε♣yεqΦ✶♣m0♣xqq
n
❄
x4k♣n✁2q�4

✞✞✞ ↕ d5
ε

ε
n
❛⑤x⑤n✁2k�1

,

⑤εm0♣xqr♣x, εq♣1 � Φ♣m0♣xqq⑤ ↕ d6
ε

ε
n
❛⑤x⑤n✁2k�1

,✞✞✞✞ε2m0♣xqr♣x, εqΦ✶♣m0♣xqqK
n
❄
x2k♣n✁2q�2

✞✞✞✞ ↕ d7
ε

ε
n
❛⑤x⑤n✁2k�1

,

where

d1
ε ✏ ♣2α♣2k ✁ 1q � 2⑨MLqKε1✁λ♣n✁2k�1

n q,
d2
ε ✏ K2♣2k♣n✁2q�2q♣2α♣2k✁1q�2⑨MLq

nC1
ε2✁λ♣ ♣2k�1q♣n✁2q�4

n q,
d3
ε ✏ ⑤ϑmax⑤♣2α♣2k✁1q�2⑨MLqK

C1
ε,

d4
ε ✏ 2K⑤ϑmax⑤ε1✁λ♣ ♣2k✁1q♣n✁1q

n q,
d5
ε ✏ K2⑤ϑmax⑤♣2α♣2k ✁ 1q � 2⑨MLq

C1

ε2✁λ♣ 2k♣n✁2q�2

n q,
d6
ε ✏ 2⑤ϑym

⑤♣L 2k♣n✁2q�2

n � 2dKqε1✁λ♣ ♣2k✁1q♣n✁1q
n q,

d7
ε ✏ ⑤ϑym

⑤♣L 2k♣n✁2q�2

n � 2dKq♣2α♣2k ✁ 1q � 2⑨MLqK
C1

ε2✁λ♣ 2k♣n✁2q�2

n q,
ϑym

✏ maxtϑy♣x, ♣yq : ✁L ↕ x ↕ 0,✁1 ↕ ♣y ↕ 1✉,
ϑmax ✏ maxt♣y1ϑ♣x, ♣y2q : ✁L ↕ x ↕ 0,✁1 ↕ ♣y1, ♣y2 ↕ 1✉.

To bound the last terms of T, notice that by (3.10), we get

Φ♣lq♣♣yq ✏ Φ♣nq♣1q
♣n✁ lq!♣♣y ✁ 1qn✁l � O♣♣♣y ✁ 1qn✁l�1q, 2 ↕ l ↕ n✁ 1, (3.15)

for ♣y sufficiently near to 1. In the particular case ♣y ✏ m0♣xq for x P r✁L, 0s, we have

Φ♣lq♣m0♣xqq ✏ ♣m0♣xq ✁ 1qn✁l
✂

Φ♣nq♣1q
♣n✁ lq! � ζ♣xq

✡
, (3.16)

with ζ♣xq ✏ O♣m0♣xq ✁ 1q, thus there exists a positive constant ①M such that ⑤ζ♣xq⑤ ↕①M ⑤m0♣xq ✁ 1⑤. Therefore, by the above information about ζ and the first inequation in

(3.8) for ✁L ↕ x ↕ 0, we obtain✞✞Φ♣lq♣m0♣xqq
✞✞ ↕ Cn✁l

2 ⑤x⑤ ♣2k✁1q♣n✁lq
n

✂ ⑤Φ♣nq♣1q⑤
♣n✁ lq! � ①MC2L

2k✁1

n

✡
,

i.e. for each l P r2, n ✁ 1s we have ⑤Φ♣lq♣m0♣xqq⑤ ↕ Cl for all ✁L ↕ x ↕ 0, with Cl ✏
Cn✁l

2 L
♣2k✁1q♣n✁lq

n rCl and rCl ✏ ⑤Φ♣nq♣1q⑤
♣n✁ lq! � ①MC2L

2k✁1

n . Consequently,

✞✞✞✞✞ε n✁1➳
l✏2

♣✁1qlΦ♣lq♣m0♣xqqK lm✶
0♣xq

n
❄
x2lk♣n✁2q�2l

εl

l!

✞✞✞✞✞ ↕ d8
ε

ε
n
❛⑤x⑤n✁2k�1

,✞✞✞✞✞ε2

n✁1➳
l✏2

♣✁1qlΦ♣lq♣m0♣xqqK l�1♣2k♣n✁ 2q � 2q
n

n
❄
x♣2k♣l�1q�1q♣n✁2q�2l�4

εl

l!

✞✞✞✞✞ ↕ d9
ε

ε
n
❛⑤x⑤n✁2k�1

,✞✞✞✞✞n✁1➳
l✏2

♣✁1qlΦ♣lq♣m0♣xqqK l

n
❄
x2lk♣n✁2q�2l

εl

l!
ε♣yε♣xqϑ♣x, ε♣yε♣xqq

✞✞✞✞✞ ↕ d10
ε

ε
n
❛⑤x⑤n✁2k�1

,
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where

• d8
ε ✏

n✁1➳
l✏2

ClK
lC2

l!
εl✁λ♣ 2kl♣n✁2q�2l

n q,

• d9
ε ✏

n✁1➳
l✏2

ClK
l�1♣2k♣n✁ 2q � 2q

l!n
εl�1✁λ♣ 2k♣l�1q♣n✁2q�2l�2k�1

n q,

• d10
ε ✏

n✁1➳
l✏2

Cn✁l
2 K l⑤ϑmax⑤ rCl

l!
εl✁λ♣ ♣2k♣n✁1q�1q♣l✁1q

n q.

Finally, using that, for any η1 → 0, there exists Cn → 0 such that

⑤Φ♣nq♣♣yq⑤ ↕ Cn, for 1 ✁ η1 ↕ ♣y ↕ 1,

and using that, for ε → 0 small enough

1 ✁
✁
C2L

2k✁1

n � ε1✁λ♣ 2k♣n✁2q�2

n qK
✠
↕ ♣yc♣xq ↕ 1, (3.17)

if ✁L ↕ x ↕ ✁ελ and also by (3.14), one has

✞✞✞✞✂εm✶
0♣xq ✁ ε2 K♣2k♣n✁2q�2q

n n
❄
⑤x⑤♣2k�1q♣n✁2q�4

✁ ε♣yεϑ♣x, ε♣yεq✡ s♣x, εq✞✞✞✞ ↕ d11
ε

ε
n
❛⑤x⑤n✁2k�1

,

with

d11
ε ✏

✂
C2ε

1✁λ♣n✁2k�1

n
q � K♣2k♣n✁ 2q � 2q

n
ε2✁λ♣ ♣2k�1q♣n✁2q�4

n
q � ε⑤ϑmax⑤

✡
☎CnK

n

n!
εn✁1✁λ♣ ♣2kn�1q♣n✁2q�2k�1

n q.

Since 0 ➔ λ ↕ λ✝ one has that lim
εÑ0

diε ✏ 0, for all i P t1, . . . , 11✉, hence for ε → 0 small

enough, we get

⑤T ♣x, εq⑤ ↕
11➳
i✏1

diε
ε

n
❛⑤x⑤n✁2k�1

↕ 1

2

ε
n
❛⑤x⑤n✁2k�1

.

Now, we shall prove that the function O♣x, εq ➔ 0 for all x P r✁L,✁ελs and

ε → 0 small enough. Indeed, since for each n ➙ 2, we know that ♣✁1qnφ♣nq♣1q ➔ 0,

then ♣✁1qnφ♣nq♣♣yq ➔ 0, for all ♣y sufficiently close to 1 and by (3.17) we obtain that

♣✁1qnφ♣nq♣♣yc♣xqq ➔ 0, for all x P r✁L,✁ελs and ε sufficiently enough. Hence, by (3.14) we

have that s♣x, εq ➔ 0 for all x P r✁L,✁ελs and ε → 0 small enough. Therefore,

♣✁f♣x, 0q � 1qs♣x, εq ➔ 0,

for all x P r✁L,✁ελs and ε → 0 small enough. After that, using (3.16) we can conclude

that ♣✁1qlφ♣lq♣m0♣xqq ➔ 0, for all x P r✁L, 0s and l P t2, . . . , n✁ 1✉. Consequently,

n✁1➳
l✏2

♣✁1qlΦ♣lq♣m0♣xqqK l

n
❄
x2lk♣n✁2q�2l

εl

l!
♣✁f♣x, 0q � 1q ➔ 0,
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for all x P r✁L,✁ελs and ε → 0 small enough. Last of all, as 1 � Φ♣m0♣xqq → 0, for all

x P r✁L, 0s, we get

✁ε2K♣2k♣n✁ 2q � 2q♣1 � Φ♣m0♣xqqq
n n
❛
⑤x⑤♣2k�1q♣n✁2q�4

➔ 0,

for all x P r✁L,✁ελs and ε sufficiently small. Of this way, we obtained the result.

Finally, we conclude that

①ZΦ
ε ♣x, ♣yε♣xqq, n✁ε ♣xq② ↕ L♣x, εq � ⑤T ♣x, εq⑤ �O♣x, εq

↕
✂
✁2 � 1

2

✡
ε

n
❛⑤x⑤n✁2k�1

➔ 0.

Therefore, the vector field Z
Φ

ε points inward B along B
✁.

In the border B
� the vector field Z

Φ

ε in (2.6) is of the form

Z
Φ

ε ✏
✂
ε♣1 � Φ♣m0♣xqqq

2
,
εm0♣xqϑ♣x, εm0♣xqq♣1 � Φ♣m0♣xqqq

2

✡
,

and the normal vector is n�♣xq ✏ ♣m✶
0♣xq,✁1q, thus using the second inequation in (3.8)

for ✁L ↕ x ↕ ✁ελ, we get

①ZΦ

ε , n
�♣xq② ✏ ε

2

✁
1 � Φ♣m0♣xqq

✠✁
m✶

0♣xq ✁m0♣xqϑ♣x, εm0♣xqq
✠

➙ ε

2

✁ 2

1 ✁ f♣x, 0q
✠✁
m✶

0♣xq ✁ ϑmax

✠
➙ ε

2

✁ 2

1 ✁ f♣x, 0q
✠✁ C1

L
n✁2k�1

n

✁ ϑmax

✠
→ 0,

for L enough small, therefore the flow points inward B along this border.

Finally, at the boundary B
l one has that x✶ → 0 thus the flow points inward B.

Now, from the Poincaré–Bendixson Theorem we know that any orbit entering

B stays in it until it reaches x ✏ ✁ελ. Moreover, we know that the invariant manifold Sa,ε
at x ✏ ✁L is given by

m♣✁L, εq ✏ m0♣✁Lq � εm1♣✁Lq � O♣ε2q.

Using (3.8) and since L is small enough one has that

m✶
0♣✁Lq ✁m0♣✁Lqϑ♣✁L, 0q ➙ C1

L
n✁2k�1

n

✁ ϑmax → 0,

thus from (3.7) m1♣✁Lq ➔ 0. Therefore, adjusting the constants to have

K ➙ ✁L 2k♣n✁2q�2

n m1♣✁Lq,

the manifold enters B and satisfies (3.12) for ✁L ↕ x ↕ ✁ελ.
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From Theorem 1 (Fenichel Theorem), we know that, for ε → 0 sufficiently small,

the Fenichel manifold Sa,ε exponentially attracts all the solutions with initial conditions

♣x0, 1q, with ✁L ↕ x0 ↕ ✁N, for any small positive real numbers L → N. In the next

result, we show that this exponential attraction holds for any ♣x0, 1q with ✁L ↕ x0 ↕ ✁ελ.
Consider the equation for the orbits of system (2.6)

ε
d♣y
dx

✏ 1 � f♣x, ε♣yq � φ♣♣yq♣f♣x, ε♣yq ✁ 1q
1 � φ♣♣yq . (3.18)

Proposition 5. Fix 0 ➔ λ ➔ λ✝ ✏ n

2k♣n✁ 1q � 1
. Let x0 P r✁L,✁ελs and consider the

solution ♣y♣x, εq of the differential (3.18) satisfying ♣y♣x0, εq ✏ 1. Then, there exist positive

numbers c and r such that

⑤♣y♣x, εq ✁m♣x, εq⑤ ↕ re
✁ c

ε

✂
⑤x0⑤

1

λ✝ ✁⑤x⑤
1

λ✝

✡
,

for x0 ↕ x ↕ ✁ελ✝ .

Proof. Performing the change of variables ω ✏ ♣y ✁m♣x, εq in equation (3.18), we get

ε
dω

dx
✏ ✁ξ♣x, εqφ✶♣m♣x, εqqω ✁ ξ♣x, εqF ♣x, ω, εq, (3.19)

where,

F ♣x, ω, εq ✏ φ♣m♣x, εq � ωq ✁ φ♣m♣x, εqq ✁ φ✶♣m♣x, εqqω
and

ξ♣x, εq ✏ 2✁
1 � φ♣m♣x, εqq

✠✁
1 � φ♣m♣x, εq � ω♣x, εqq

✠
�
ε
✁
m♣x, εqϑ♣x, εm♣x, εqq ✁ ♣ω♣x, εq �m♣x, εqqϑ♣x, ε♣ω♣x, εq �m♣x, εqqq

✠
φ♣m♣x, εq � ω♣x, εqq ✁ φ♣m♣x, εqq .

Here, we are denoting ω♣x, εq ✏ ♣y♣x, εq ✁ m♣x, εq, which is the solution of (3.19) with

initial condition ω♣x0, εq ✏ 1 ✁m♣x0, εq. Therefore, we also have that

ω♣x, εq ✏ e
✁ 1

ε

➩x
x0
ξ♣s,εqφ✶♣m♣s,εqqdsrω♣x, εq,

where rω♣x, εq ✏ ω♣x0, εq ✁ 1

ε

➺ x

x0

e
1

ε

➩ν
x0
ξ♣s,εqφ✶♣m♣s,εqqds

ξ♣ν, εqF ♣ν, ω♣ν, εq, εqdν.

In what follows we shall estimate ⑤ω♣x, εq⑤. First, notice that F writes

F ♣x, ω, εq ✏ A♣x, εqω, (3.20)

where

A♣x, εq ✏
➺ 1

0

φ✶♣m♣x, εq � sω♣x, εqq ✁ φ✶♣m♣x, εqqds.
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We claim that A♣x, εq is negative for ✁L ↕ x ↕ 0 and L, ε → 0 small enough. Indeed, from

(3.10), we obtain

φ✷♣♣yq ✏ φ♣nq♣1q
♣n✁ 2q!♣♣y ✁ 1qn✁2 � O♣♣♣y ✁ 1qn✁1q, ♣y ↕ 1. (3.21)

Again, recall that φ ✏ Φ
✞✞
r✁1,1s, where Φ P Cn✁1

ST . Hence, from Definition 1, sign
�
φ♣nq♣1q✟ ✏

♣✁1qn�1. Thus, from (3.21), we get the existence of η → 0 such that φ✷♣♣yq ➔ 0 for all

1 ✁ η ➔ ♣y ➔ 1. This means that φ✶ is decreasing for 1 ✁ η ➔ ♣y ↕ 1. Notice that

m♣x, εq ↕ m♣x, εq � sω♣x, εq ↕ ♣1 ✁ sqm♣x, εq � s ↕ 1, for all 0 ↕ s ↕ 1, (3.22)

Thus, it remains to show that m♣x, εq � sω♣x, εq, m♣x, εq → 1 ✁ η for ✁L ↕ x ➔ 0 and

L, ε → 0 small enough. From Proposition 4 and (3.8), we have that

m♣x, εq ➙ m0♣xq ✁ εK
n
❄
x2k♣n✁2q�2

➙ 1 ✁ C2
n
❄
L2k✁1 ✁ ε1✁λ✝♣ 2k♣n✁2q�2

n qK, (3.23)

for ε, L → 0 small enough. Therefore, L and ε can be taking smaller, if necessary, in order

that C2
n
❄
L2k✁1 � ε1✁λ✝♣ 2k♣n✁2q�2

n qKM ➔ η. This implies that

m♣x, εq � sω♣x, εq ➙ m♣x, εq → 1 ✁ η.

Consequently, A♣x, εq is negative.

Hence, by (3.20), we have that

⑤rω♣x, εq⑤ ✏ ⑤ω♣x0q⑤ � 1

ε

➺ x

x0

⑤ξ♣ν, εqA♣ν, εqrω♣ν, εq⑤dν
↕ ⑤ω♣x0q⑤ ✁ 1

ε

➺ x

x0

ξ♣ν, εqA♣ν, εq⑤rω♣ν, εq⑤dν.
Using Gronwall’s Lemma, we get that

⑤rω♣x, εq⑤ ↕ ⑤ω♣x0q⑤e✁
1

ε

➩x

x0
ξ♣ν,εqA♣ν,εqdν

and, therefore,

⑤ω♣x, εq⑤ ↕ ⑤ω♣x0q⑤e✁
1

ε

➩x

x0
ξ♣ν,εq♣A♣ν,εq�φ✶♣m♣ν,εqqqdν

↕ ⑤ω♣x0q⑤e✁
1

ε

➩x

x0
ξ♣ν,εq♣➩1

0
φ✶♣m♣ν,εq�sω♣ν,εqqdsqdν

.

To conclude this proof, notice that

ξ♣x, εq ✏ 2✁
1 � φ♣m0♣xqq

✠✁
1 � φ♣ω♣x, 0q �m0♣xqq

✠ � O♣εq.

Thus, L, ε → 0 can be taken small enough in order that ξ♣x, εq ➙ l → 0, for every

x P r✁L, 0s. Moreover, from (3.10), given 0 ➔ η ➔ 1, there exist positive constants

c1, c2 → 0 such that

c1♣1 ✁ ♣yqn✁1 ↕ φ✶♣♣yq ↕ c2♣1 ✁ ♣yqn✁1, for ⑤♣y ✁ 1⑤ ➔ η.
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3.2.4 Construction of the map Ru

In order to define the map Ru, we first prove the following result.

Proposition 6. Consider the Filippov system Z ✏ ♣X�, X✁qΣ given by (2.1), for some

k ➙ 1, and yερ,λ and yεθ given in (3.1). For n ➙ maxt2, 2k ✁ 1✉, let Φ P Cn✁1
ST be given as

(1.5) and consider the regularized system ZΦ
ε (2.4). Then, there exists θ0 → 0 such that,

for each θ P rxε, θ0s, the Fenichel manifold Sa,ε intersects tx ✏ θ✉ at ♣θ, yεθq.

Proof. By Proposition 1 we know that the Fenichel manifold Sa,ε intersects ty ✏ ε✉ at

♣xε, εq. In order to continue Sa,ε into x ✏ θ, consider the solutions ♣x♣tq, y♣tqq of the

differential system (2.3) with initial condition x♣0q ✏ xε and y♣0q ✏ ε. Thus, x♣tq ✏ t� xε

and

y♣tq ✏ ε�
➺ t

0

α♣s� xεq2k✁1 � g♣s� xεq � y♣s, εqϑ♣s� xε, y♣s, εqqds.

Therefore, the trajectory ♣x♣tq, y♣tqq intersects tx ✏ θ✉ at ♣θ, yεθq, with

yεθ
.

.✏ y♣θ ✁ xεq ✏ αθ2k

2k
✁ αx2k

ε

2k
� ε�Gε♣xε, θq,

where

Gε♣x, θq ✏
➺ θ

x

rg♣sq � y♣s✁ x, εqϑ♣s, y♣s✁ x, εqqsds.

In what follows, we shall develop Gε♣xε, θq in Taylor series around ♣x, θ, εq ✏
♣0, 0, 0q. First, notice that

Gε♣x, θq ✏ Gε♣0, θq �
2k✁1➳
i✏1

❇iGε

❇xi ♣0, θqx
i � O♣x2kq, (3.24)

and

Gε♣0, θq ✏ G0♣0, θq � ε
❇
❇εGε♣0, θq

✞✞✞
ε✏0

� O♣ε2q. (3.25)

Thus, substituting (3.25) into (3.24) and taking x ✏ xε, we have

Gε♣xε, θq ✏ G0♣0, θq�ε ❇❇εGε♣0, θq
✞✞✞
ε✏0

�
2k✁1➳
i✏1

❇iG0

❇xi ♣0, θqx
i
ε�O♣ε2q�O♣εxεq�O♣x2k

ε q. (3.26)

Now, in order to estimate G0♣0, θq and
❇
❇εGε♣0, θq

✞✞✞
ε✏0

in (3.26), we compute

Gε♣0, θq ✏ Gε♣0, 0q � θ
❇Gε

❇θ ♣0, 0q � O♣θ2q ✏ θ
❇Gε

❇θ ♣0, 0q � O♣θ2q. (3.27)

We know that

G0♣0, θq ✏
➺ θ

0

rg♣sq � y0♣sqϑ♣s, y0♣sqqsds,

where y0 satisfies the following Cauchy problem✧
y✶0 ✏ αt2k✁1 � g♣tq � y0ϑ♣t, y0q,
y0♣0q ✏ 0.
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Notice that y
♣iq
0 ♣0q ✏ 0 for i ✏ 0, 1, . . . , 2k ✁ 1 and y

♣2kq
0 ♣0q ✏ ♣2k ✁ 1q!α. Thus,

y0♣tq ✏ α

2k
t2k � O♣t2k�1q (3.28)

and ❇G0

❇θ ♣0, θq ✏ g♣θq � y0♣θqϑ♣s, y0♣θqq

✏ g♣θq � αθ2k

2k
ϑ♣s, y0♣θqq � O♣θ2k�1q

✏ O♣θ2kq.
Hence, we conclude that

G0♣0, θq ✏ O♣θ2k�1q. (3.29)

Analogously,

Gε♣0, θq ✏
➺ θ

0

rg♣sq � y♣s, εqϑ♣s, y♣s, εqqsds

and, then,
❇Gε

❇θ ♣0, 0q ✏ εϑ♣0, εq. Therefore, by (3.27), Gε♣0, θq ✏ θεϑ♣0, εq � O♣θ2q. Hence,

❇Gε

❇ε ♣0, θq
✞✞✞
ε✏0

✏ O♣θq. (3.30)

Finally, in order to estimate the remainder terms in (3.26), we compute

G0♣x, θq ✏ G0♣x, 0q � θ
❇G0

❇θ ♣x, 0q � . . .� θ2k✁1❇2k✁1G0

❇θ2k✁1
♣x, 0q � O♣θ2kq. (3.31)

Using the definition of G0♣x, θq and (3.28), we get that

❇i
❇xi

❇j
❇θjG0♣0, 0q ✏ 0, (3.32)

for all j P t0, . . . , 2k✁ 1✉ and i P t1, . . . , 2k✁ j✉. So, by (3.31) and (3.32), we obtain that

❇iG0

❇xi ♣0, θq ✏ O♣θ2k�1✁iq, (3.33)

for all i P t1, . . . , 2k ✁ 1✉.
Substituting (3.29), (3.30), and (3.33) into (3.26), we get

Gε♣xε, θq ✏ G0♣0, θq � O♣εθq � O♣ε2q �
2k✁1➳
i✏1

O♣θ2k�1✁ixiεq � O♣εxεq � O♣x2k
ε q

✏ O♣θ2k�1q � O♣εθq �
2k✁1➳
i✏1

O♣θ2k�1✁ixiεq � O♣x2k
ε q.

Consequently,

yεθ ✏
αθ2k

2k
✁ αx2k

ε

2k
� ε� O♣θ2k�1q � O♣εθq �

2k✁1➳
i✏1

O♣θ2k�1✁ixiεq � O♣x2k
ε q,

Therefore, by Lemma 1 we can conclude that y0
θ ✏ y♣θq ✏ yθ, i.e.

yεθ ✏ yθ � ε� O♣εθq �
2k✁1➳
i✏1

O♣θ2k�1✁ixiεq � O♣x2k
ε q.
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and the horizontal segmentsqHε
ρ,λ ✏ r✁ρ,✁ελs ✂ t✁ε✉ and

ÝÑ
H ε ✏ rxε, xε � re✁

c
εq s ✂ tε✉

are transversal sections for every ρ P ♣ελ, ρ0s, θ P rxε, θ0s, λ P ♣0, λ✝q, with λ✝ ✏
n

2k♣n✁ 1q � 1
, constants c, r, q → 0, and ε → 0 sufficiently small.

As before, statement ♣iq of Theorem B will follows from Proposition 7.

3.3.1 Construction of the map P l

First, we shall see that the forward trajectory of Z
Φ

ε (2.6) starting at ♣✁ελ,✁1q
reaches the straight line tŷ ✏ ŷ0✉, with ŷ0 P ♣1✁ η, 1q, for some η → 0 small enough. After

that, the map will be obtained through Poincaré-Bendixson argument.

Accordingly, consider a function rµ : I♣x,♣yq ✂ ♣U ✂ r0, ε0s Ñ R given byrµ♣τ, x,✁1, εq ✏ ϕ2

Z
Φ

ε

♣τ, x,✁1q ✁ ♣y0,

where ϕ
Z

Φ

ε

✏ ♣ϕ1

Z
Φ

ε

, ϕ2

Z
Φ

ε

q denotes the flow of Z
Φ

ε , I♣x,♣yq is the maximal interval of definition

of τ ÞÑ ϕ
Z

Φ

ε

♣τ, x, ŷq, ε0 → 0 is sufficiently small, and ♣U is the domain of the vector field Z

in the ♣x, ♣yq-coordinates.

Now, for each ♣y P r✁1, ♣y0s and ε ✏ 0, we have

ϕ
Z

Φ

0

♣0, 0, ♣yq ✏ ♣0, ♣yq and
❇ϕ2

Z
Φ

0

❇τ ♣0, 0, ♣yq ✏ 1 ✁ Φ♣♣yq
2

→ 0.

Then, there exists τ0 → 0 such that ϕ
Z

Φ

0

♣τ0, 0,✁1q ✏ ♣0, ♣y0q. In this way,

rµ♣τ0, 0,✁1, 0q ✏ 0 and
❇rµ
❇τ ♣τ0, 0,✁1, 0q ✏ 1 ✁ Φ♣♣y0q

2
✘ 0.

Thus, from Implicit Function Theorem there exists a unique smooth function τ♣x, εq, such

that, ϕ2

Z
Φ

ε

♣τ♣x, εq, x,✁1q ✏ ♣y0 and τ♣0, 0q ✏ τ0. Therefore, for ε → 0 sufficiently small, the

forward trajectory of Z
Φ

ε starting at ♣✁ελ,✁1q reaches the straight line tŷ ✏ ŷ0✉ at✁
ϕ1

Z
Φ

ε

♣τ♣✁ελ,✁1q,✁ελ,✁1q, ŷ0

✠
.

In what follows we shall compute the Taylor expansion of ϕ1

Z
Φ

ε

♣τ♣x, εq, x,✁1q
around ♣x, εq ✏ ♣0, 0q. Notice that

ϕ1

Z
Φ

ε

♣τ♣x, εq, x,✁1q ✏ ϕ1

Z
Φ

0

♣τ♣x, 0q, x,✁1q � O♣εq
✏ ϕ1

Z
Φ

0

♣τ♣0, 0q, 0,✁1q � x
❇
❇x

✁
ϕ1

Z
Φ

0

♣τ♣x, 0q, x,✁1q
✠ ✞✞✞

x✏0

�O♣x2q � O♣εq

✏ ϕ1

Z
Φ

0

♣τ0, 0,✁1q � x

✓❇ϕ1

Z
Φ

0

❇τ ♣τ♣x, 0q, x,✁1q❇τ❇x♣x, 0q

�
❇ϕ1

Z
Φ

0

❇x ♣τ♣x, 0q, x,✁1q
✛ ✞✞✞

x✏0
� O♣x2q � O♣εq.

(3.34)
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Substituting

ϕ1

Z
Φ

ε

♣τ0, 0,✁1q ✏ 0 and
❇ϕ1

Z
Φ

0

❇τ ♣τ0, 0,✁1q ✏ 0

into (3.34), we have

ϕ1

Z
Φ

ε

♣τ♣x, εq, x,✁1q ✏ x

✓❇ϕ1

Z
Φ

0

❇τ ♣τ0, 0,✁1q❇τ❇x♣0, 0q �
❇ϕ1

Z
Φ

0

❇x ♣τ0, 0,✁1q
✛

�O♣x2q � O♣εq

✏ x
❇ϕ1

Z
Φ

0

❇x ♣τ0, 0,✁1q � O♣x2q � O♣εq.

(3.35)

Now, notice that
❇ϕ

Z
Φ

0

❇x ♣τ, 0,✁1q is solution of the differential equation

u✶ ✏ DZ
Φ

0 ♣0, ϕ2

Z
Φ

0

♣τ, 0,✁1qqu,

with

DZ
Φ

0 ♣0, ϕ2

Z
Φ

0

♣τ, 0,✁1qq ✏

✔✖✕0 0

✝ ✁
Φ✶
✁
ϕ2

Z
Φ

0

♣τ, 0,✁1q
✠

2

✜✣✢ .
Consequently, ✒

u✶
1♣τq
u✶

2♣τq
✚

✏

✔✖✕0 0

✝ ✁
Φ✶
✁
ϕ2

Z
Φ

0

♣τ, 0,✁1q
✠

2

✜✣✢✒u1♣τq
u2♣τq

✚

✏
✒

0

✝✝
✚
,

which implies that u1♣τq is constant. Since

❇ϕ1

Z
Φ

0

❇x ♣τ0, 0,✁1q ✏
❇ϕ1

Z
Φ

0

❇x ♣0, 0,✁1q ✏ 1,

we conclude, by (3.35), that

ϕ1

Z
Φ

ε

♣τ♣x, εq, x,✁1q ✏ x� O♣x2q � O♣εq.

Taking x ✏ ✁ελ, we get

ϕ1

Z
Φ

ε

♣τ♣✁ελ, εq,✁ελ,✁1q ✏ ✁ελ � O♣ε2λq � O♣εq ✏.

. xελ.

Finally, consider the region K delimited by the curves y ✏ ✁ε, y ✏ ε♣y0,

y ✏ m♣x, εq, y ✏ ✁x
ε
✁♣ρ

ε
� εq and the arc-orbit connecting ♣✁ελ,✁εq and ♣xελ, ε ŷ0q. Since

Z
Φ

ε has no singularities inside K, one can easily see that the forward trajectory of Z
Φ

ε

starting at any point of the transversal section qHε
ρ,λ must leave K through the transversal

section t♣x, yq P U : y ✏ ε♣y0✉. This naturally defines a map

P l : qHε
ρ,λ ÝÑ t♣x, yq P U : y ✏ ε♣y0✉.
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3.3.2 Exponentially attraction and construction of the map Ql

ε

As we saw in Section 3.2.3, for L,N → 0 and ε0 → 0 small enough, the Fenichel

manifold Sa,ε is described as

m♣x, εq ✏ m0♣xq � εm1♣xq � O♣ε2q,

for ✁L ↕ x ↕ ✁N and 0 ↕ ǫ ↕ ε0, where m0 and m1 were defined in (3.5) and (3.7).

Now, we shall compute the intersection of m♣x, εq with the straight line tŷ ✏ ŷ0✉
with 1 ✁ η ➔ ♣y0 ➔ 1, for some η → 0 small enough. Indeed, since m0♣0q ✏ 1 and

lim
xÑ✁✽m0♣xq ✏ ✁1,

then there exists a negative number ♣x0 such that m0♣♣x0q ✏ ♣y0. Moreover, ♣x0 is close to

zero because ♣y0 is near to 1 and m0♣0q ✏ 1. After that, consider the function

♣µ♣x, εq ✏ m♣x, εq ✁ ♣y0,

and notice that ♣µ♣♣x0, 0q ✏ m0♣♣x0q ✁ ♣y0 ✏ 0 and
❇µ̂
❇x ♣♣x0, 0q ✏ ❇m

❇x ♣♣x0, 0q ✏ m✶
0♣♣x0q ✘ 0,

where we have used equation (3.11). Thus, there exists a smooth function ♣x♣εq, such that♣x♣0q ✏ ♣x0 and m♣♣x♣εq, εq ✏ ♣y0. Accordingly, from (3.7), we have

♣x✶♣0q ✏ ✁
❇m
❇ε ♣♣x0, 0q
❇m
❇x ♣♣x0, 0q

✏ ✁m1♣♣x0q
m✶

0♣♣x0q ✏
m✶

0♣♣x0q ✁m0♣♣x0qϑ♣♣x0, 0q
α♣2k ✁ 1q♣x2k✁2

0 � g✶♣♣x0q
.

The last expression is positive, because m✶
0♣xq Ñ ✽ when x Ñ 0 and m0♣xqϑ♣x, 0q is

bounded in the interval r✁L, 0s, with L sufficiently small. Therefore, the Taylor expansion

of ♣x♣εq around ε ✏ 0 writes

♣x♣εq ✏ ♣x0 � ε♣x✶♣0q � O♣ε2q

and, consequently, ♣x0 ➔ ♣x♣εq ➔ 0 for ε sufficiently small.

Proposition 8. Fix 0 ➔ λ ➔ λ✝ ✏ n

2k♣n✁ 1q � 1
. Let x0 P r♣x♣εq,✁κελs, with 0 ➔ κ ➔ 1,

and consider the solution ♣y♣x, εq of system (3.18) satisfying ♣y♣x0, εq ✏ ŷ0. Then, there exist

positive numbers C and rr such that

⑤m♣x, εq ✁ ♣y♣x, εq⑤ ↕ rre✁C
ε

✂
⑤x0⑤

1

λ✝ ✁⑤x⑤
1

λ✝

✡
,

for x0 ↕ x ↕ ✁ελ✝ .

Proof. Performing the change of variables ω ✏ m♣x, εq ✁ ♣y in equation (3.18), we have

ε
dω

dx
✏ ξ♣x, εqφ✶♣m♣x, εqqω � ξ♣x, εqF ♣x, ω, εq, (3.36)

where

F ♣x, ω, εq ✏ φ♣m♣x, εq ✁ ωq ✁ φ♣m♣x, εqq ✁ φ✶♣m♣x, εqqω
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and

ξ♣x, εq ✏ 2✁
1� φ♣m♣x, εqq

✠✁
1� φ♣m♣x, εq ✁ ω♣x, εqq

✠
�
ε
✁
m♣x, εqϑ♣x, εm♣x, εqq ✁ ♣m♣x, εq ✁ ω♣x, εqqϑ♣x, ε♣ω♣x, εq ✁m♣x, εqqq

✠
φ♣ω♣x, εq ✁m♣x, εqq ✁ φ♣m♣x, εqq .

Here, we are denoting ω♣x, εq ✏ m♣x, εq✁♣y♣x, εq which is the solution of (3.36) with initial

condition ω♣x0, εq ✏ m♣x0, εq ✁ ŷ0.

Notice that F writes

F ♣x, ω, εq ✏ A♣x, εqω, (3.37)

where

A♣x, εq ✏ ✁
➺ 1

0

φ✶♣m♣x, εq � ♣s✁ 1qω♣x, εqq � φ✶♣m♣x, εqqds.

Here, as in the proof of Proposition 5, we also claim that A♣x, εq is negative for ✁L ↕ x ↕ 0

and ε sufficiently small. Indeed, we know that φ✶ → 0 on the interval ♣✁1, 1q. In addition,

since for ε → 0 small enough we have m♣x, εq → ♣y♣x, εq and
d♣y
dx
♣xq → 0 for x ➙ x0, then

the solution ω♣x, εq satisfies

0 ↕ ω♣x, εq ↕ m♣x, εq ✁ ♣y0.

Hence, from Proposition 4 and (3.8) we get

m♣x, εq � ♣s✁ 1qω♣x, εq ↕ m♣x, εq ↕ m0♣x, εq ↕ 1✁ C1
n
❛
⑤x⑤2k✁1 ↕ 1✁ C1

n
❄
ǫλ

✝♣2k✁1q ➔ 1,

(3.38)

and

m♣x, εq � ♣s✁ 1qω♣x, εq ➙ m♣x, ǫqs✁ ♣s✁ 1q♣y0 ➙ ♣y0 → 1✁ η, (3.39)

for 0 ↕ s ↕ 1 and η, ε → 0 small enough. Therefore, we conclude that A♣x, εq is negative.

In this way, by (3.36) and (3.37), we obtain

ǫ
dω

dx
✏ ξ♣x, ǫq♣φ✶♣m♣x, ǫqqω � F ♣x, ω, ǫqq
✏ ξ♣x, ǫq♣φ✶♣m♣x, ǫqq � A♣x, ǫqqω
✏ ✁ξ♣x, ǫq

✁ ➺ 1

0

φ✶♣m♣x, εq � ♣s✁ 1qω♣x, εqqds
✠
ω,

which has its solution with initial condition ω♣x0q given by

ω♣x, εq ✏ ω♣x0qe✁
1

ε

➩x

x0
ξ♣ν,εq♣➩1

0
φ✶♣m♣ν,εq�♣s✁1qω♣ν,εqqdsqdν

.

Thus,

⑤ω♣x, εq⑤ ✏ ⑤ω♣x0q⑤e✁
1

ε

➩x

x0
ξ♣ν,εq♣➩1

0
φ✶♣m♣ν,εq�♣s✁1qω♣ν,εqqdsqdν

.

To conclude this proof, we shall estimate ⑤ω♣x, εq⑤. For this, notice that

ξ♣x, εq ✏ 2✁
1� φ♣m0♣xqq

✠✁
1� φ♣m0♣xq ✁ ω♣x, 0qq

✠ �O♣εq.
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follows from Proposition 7. Finally, statement (b) follows by taking the composition

Lε : qHε
ρ,λ ÝÑ qV ε

θ

♣x,✁εq ÞÝÑ Rl ✆Ql
ε ✆ P l♣x,✁εq.

where P l, Ql
ε, and Rl are defined in Sections 3.3.1, 3.3.2, and 3.3.3, respectively. Indeed,

the existence of ρ0 and θ0 → 0 are guaranteed by the construction of the map P l (see

Section 3.3.1) and Proposition 6, respectively. The existence of constants c, r, q → 0, for

which Lε♣x,✁εq ✏ yεθ � O♣e✁ c
εq q is guaranteed by the construction o the map Ql

ε (see

Section 3.3.2).
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Remark 4. Statement (a) and (b) of Theorem C guarantee, respectively, the nonexistence

and uniqueness of limit cycles in a specific compact set with nonempty interior. However,

since this set degenerates into Γ when ε goes to 0, it is not ensured, in general, the

nonexistence and uniqueness of limit cycles converging to Γ. Nevertheless, if we assume,

in addition, that X� has locally a unique isocline x ✏ ψ♣yq of 2k✁multiplicity contacts

with the straight lines y ✏ cte, then we get the nonexistence and uniqueness of limit cycles

converging to Γ (see Chapter 5).

4.2 The first return map π

From the comments of Section 2.1, we can assume that, for some neighborhood

U ⑨ R
2 of the origin, Z

✞✞
U

is written as (2.1), which has its regularization given by (2.4).

Consider the transversal section S ✏ t♣x, yq P U : x ✏ 0✉. From hypothesis (B),

the flow of Z defines a Poincaré map π : S ✶ ÝÑ S around the limit cycle Γ. Here, S ✶ ⑨ S

is an open set (in the topology induced by S) containing ♣0, 0q. Accordingly, π♣0q ✏ 0 and,

since Γ is hyperbolic, π✶♣0q ✏ K ✘ 0. Moreover, one can easily see that K → 0.

Denote by F the saturation of S ✶ through the flow of X� until S. For each

θ → 0 and ρ → 0 small enough, we know from (2.1) that Σθ
.

.✏ tx ✏ θ✉ ❳ F and

Σ✁ρ .

.✏ tx ✏ ✁ρ✉ ❳ F are transversal to X�. Thus, the flow of X� induces a C
2k

diffeomorphism D : Σθ ÝÑ Σ✁ρ, it is called exterior map. Accordingly, from Lemma 1 and

hypothesis (B), D♣yθq ✏ y✁ρ and rθ,ρ
.

.✏ dD

dy
♣yθq ✘ 0. Moreover, one can easily see that

rθ,ρ → 0. Thus, expanding D around y ✏ yθ, we get

D♣yq ✏ y✁ρ � rθ,ρ♣y ✁ yθq �O♣♣y ✁ yθq2q. (4.1)

In order to prove Theorem C, we shall first establish the relationship between

the derivative of the first return map K and the derivative of exterior map rθ,ρ as follows.

Lemma 5. lim
θ,ρÑ0

rθ,ρ ✏ K.

Proof. Notice that, for ρ → 0 and θ → 0 small enough, the flow of X� induces the following

C
2k maps,

λθ : S ✶ Ñ tx ✏ θ✉ ❳ F and λρ : tx ✏ ✁ρ✉ ❳ F Ñ S ❳ F,

which satisfies λρ♣y✁ρq ✏ 0 and λθ♣0q ✏ yθ. Indeed, consider the functions

µ1♣t, y, θq ✏ ϕ1
X�♣t, 0, yq ✁ θ, for ♣0, yq P S ✶,

and

µ2♣t, y, ρq ✏ ϕ1
X�♣t,✁ρ, yq, for ♣✁ρ, yq P tx ✏ ✁ρ✉ ❳ F.

Since, µ1♣0, 0, 0q ✏ 0 ✏ µ2♣0, 0, 0q,
❇µ1

❇t ♣0, 0, 0q ✏
❇ϕ1

X�

❇t ♣0, 0, 0q ✏ 1 ✘ 0, and
❇µ2

❇t ♣0, 0, 0q ✏
❇ϕ1

X�

❇t ♣0, 0, 0q ✏ 1 ✘ 0,
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we get, by the Implicit Function Theorem, the existence of unique smooth functions t1♣y, θq
and t2♣y, ρq such that t1♣0, 0q ✏ 0 ✏ t2♣0, 0q,

µ1♣t1♣y, θq, y, θq ✏ 0, and µ2♣t2♣y, ρq, y, ρq ✏ 0,

i.e. ϕ1
X�♣t1♣y, θq, 0, yq ✏ θ and ϕ1

X�♣t2♣y, ρq,✁ρ, yq ✏ 0. Thus,

λθ♣yq ✏ ϕ2
X�♣t1♣y, θq, 0, yq and λρ♣yq ✏ ϕ2

X�♣t2♣y, ρq,✁ρ, yq.
Notice that

dλθ

dy
♣0q ✏ ❇ϕ2

X�

❇t ♣t1♣0, θq, 0, 0q❇t1❇y ♣0, θq �
❇ϕ2

X�

❇y ♣t1♣0, θq, 0, 0q

and

dλρ

dy
♣y✁ρq ✏

❇ϕ2
X�

❇t ♣t2♣y✁ρ, ρq,✁ρ, y✁ρq
❇t2
❇y ♣y✁ρ, ρq �

❇ϕ2
X�

❇y ♣t2♣y✁ρ, ρq,✁ρ, y✁ρq.

Since

❇t1
❇y ♣0, 0q ✏ ✁

❇ϕ1

X�

❇y ♣0, 0, 0q
❇ϕ1

X�

❇t ♣0, 0, 0q
✏ ✁❇ϕ1

X�

❇y ♣0, 0, 0q ✏ 0,

❇t2
❇y ♣0, 0q ✏ ✁

❇ϕ1

X�

❇y ♣0, 0, 0q
❇ϕ1

X�

❇t ♣0, 0, 0q
✏ ✁❇ϕ1

X�

❇y ♣0, 0, 0q ✏ 0,

and
❇ϕ2

X�

❇y ♣0, 0, 0q ✏ 1,

we get that

lim
θÑ0

dλθ

dy
♣0q ✏ ❇ϕ2

X�

❇t ♣t1♣0, 0q, 0, 0q❇t1❇y ♣0, 0q �
❇ϕ2

X�

❇y ♣t1♣0, 0q, 0, 0q

✏ ❇ϕ2
X�

❇t ♣0, 0, 0q
✒
✁❇ϕ1

X�

❇y ♣0, 0, 0q
✚
� ❇ϕ2

X�

❇y ♣0, 0, 0q
✏ 1

(4.2)

and

lim
ρÑ0

dλρ

dy
♣y✁ρq ✏ ❇ϕ2

X�

❇t ♣t2♣0, 0q, 0, 0q❇t2❇y ♣0, 0q �
❇ϕ2

X�

❇y ♣t2♣0, 0q, 0, 0q

✏ ❇ϕ2
X�

❇t ♣0, 0, 0q
✒
✁❇ϕ1

X�

❇y ♣0, 0, 0q
✚
� ❇ϕ2

X�

❇y ♣0, 0, 0q
✏ 1.

(4.3)

Finally, since π ✏ λρ ✆D ✆ λθ, we conclude that

dπ

dy
♣0q ✏ dλρ

dy
♣D ✆ λθ♣0qqdD

dy
♣λθ♣0qqdλθ

dy
♣0q

✏ dλρ

dy
♣y✁ρqrθ,ρ

dλθ

dy
♣0q.

Therefore,
K

rθ,ρ
✏ dλρ

dy
♣y✁ρq

dλθ

dy
♣0q. (4.4)

The result follows by taking the limit of (4.4) and using (4.2) and (4.3).
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where β ➔ 0. Recall that 0 ➔ λ ➔ λ✝. Thus, we shall study the limit lim
ρ,εÑ0

πε♣yq ✁ yερ,λ

ε
in

three distinct cases.

First, suppose that λ → 1

2k
. Then,

πε♣yq ✁ yερ,λ

ε
✏ rxε,ρ ✁ 1�O♣ρq �O♣ε2kλ✁1q.

Hence, by Lemma (5),

lim
ρ,εÑ0

πε♣yq ✁ yερ,λ

ε
✏ K ✁ 1. (4.7)

Now, suppose that λ ➔ 1

2k
. Then,

πε♣yq ✁ yερ,λ

ε2kλ
✏ ♣rxε,ρ ✁ 1qε1✁2kλ �O♣ε1✁2kλρq ✁ β �O♣ελq �O

✁
ε2kλ✝✁2kλ

✠
.

Hence, by Lemma (5),

lim
ρ,εÑ0

πε♣yq ✁ yερ,λ

ε2kλ
✏ ✁β → 0. (4.8)

Finally, suppose that λ ✏ 1

2k
. Then,

πε♣yq ✁ yερ,λ

ε
✏ rxε,ρ ✁ 1✁ β �O♣ρq �O♣ελq �O

✁
ε2kλ✝✁1

✠
.

Hence, by Lemma (5),

lim
ρ,εÑ0

πε♣yq ✁ yερ,λ

ε
✏ K ✁ 1✁ β, (4.9)

Now, we prove statement ♣aq of Theorem C. Since Γ is an unstable hyperbolic

limit cycle, we know that K → 1. Consequently, all the above limits,(4.7), (4.8) and (4.9),

are strictly positive and, since ε → 0, there exists δ0 → 0 such that

0 ➔ ρ, ε ➔ δ0 ñ πε♣yq ✁ yερ,λ → 0.

Hence, πε♣rε, yερ,λsq ❳ rε, yερ,λs ✏ ❍, for all ε → 0 small enough. This means that πε has no

fixed points in rε, yερ,λs and, equivalently, the regularized system ZΦ
ε does not admit limit

cycles passing through the section ♣Hε
ρ,λ.

Now, we prove statement ♣bq of Theorem C. In this case, λ → 1

2k
. Since Γ is an

asymptotically stable hyperbolic limit cycle, we know that K ➔ 1. Thus, the limit (4.7) is

strictly negative and, since ε → 0, there exists δ0 → 0 such that

0 ➔ ρ, ε ➔ δ0 ñ πε♣yq ✁ yερ,λ ➔ 0.

Hence, πε♣yq ➔ yερ,λ. Moreover, from (4.6), we get

lim
ρ,εÑ0

πε♣yq ✁ y✁ρ
ε

✏ K → 0.
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Since ε → 0, there exists δ1 → 0 such that

0 ➔ ρ, ε ➔ δ1 ñ πε♣yq ✁ y✁ρ → 0.

Hence, πε♣yq → y✁ρ, for all ε → 0 sufficiently small. This means that πε♣rε, yερ,λsq ⑨ rε, yερ,λs.
From the Brouwer Fixed Point Theorem, we conclude that πε admits fixed points in

rε, yερ,λs and, equivalently, the regularized system ZΦ
ε admits limit cycles passing through

the section ♣Hε
ρ,λ.

In what follows, we prove the uniqueness of the fixed point in rε, yερ,λs. Indeed,

expanding D in Taylor series around y ✏ yεxε
, we have that

D♣yq ✏ D♣yεxε
q � dD

dy
♣yεxε

q♣y ✁ yεxε
q � O♣♣y ✁ yεxε

q2q.

Thus,
πε♣yq ✏ D♣yεxε

� O♣e✁c④εqqq
✏ D♣yεxε

q � dD

dy
♣yεxε

qO♣e✁c④εqq � O♣e✁2c④εqq
✏ D♣yεxε

q � O♣e✁c④εqq,
and, consequently, ⑤πε♣y1q ✁ πε♣y2q⑤ ✏ O♣e✁c④εqq, for all y1, y2 P rε, yερ,λs. Now, consider the

following function
νε : rε, yερ,λs ÝÑ r0, 1s

y ÞÝÑ y

yερ,λ ✁ ε
� ε

ε✁ yερ,λ
.

Notice that ν✁1
ε ♣uq ✏ ♣yερ,λ ✁ εqu� ε. Hence, if rπε♣uq ✏ πε ✆ ν✁1

ε ♣uq, then

⑤rπε♣u1q ✁ rπε♣u2q⑤ ✏ O♣e✁c④εqq,
for all u1, u2 P r0, 1s. Fix l P ♣0, 1q, take u1, u2 P r0, 1s, and define the function ℓ♣εq ✏
♣yερ,λ ✁ εql. There exists ε♣u1, u2q → 0 and a neighborhood U♣u1, u2q ⑨ r0, 1s2 of ♣u1, u2q
such that

⑤rπε♣xq ✁ rπε♣yq⑤ ➔ ℓ♣εq⑤x✁ y⑤,
for all ♣x, yq P U♣u1, u2q and ε P ♣0, ε♣u1, u2qq. Since tU♣u1, u2q : ♣u1, u2q P r0, 1s2✉ is

an open cover of the compact set r0, 1s2, there exists a finite sequence ♣ui1, ui2q P r0, 1s2,
i ✏ 1, . . . , s, for which tU i

.

.✏ U♣ui1, ui2q : i ✏ 1, . . . , s✉ still covers r0, 1s2. Taking ε̆ ✏
mintε♣ui1, ui2q : i ✏ 1, . . . , s✉, we obtain that

⑤rπε♣xq ✁ rπε♣yq⑤ ➔ ℓ♣εq⑤x✁ y⑤,
for all ε P ♣0, ε̆q and ♣x, yq P r0, 1s2. Finally, since πε♣zq ✏ rπε ✆ ν♣zq, we get

⑤πε♣xq ✁ πε♣yq⑤ ➔ ℓ♣εq⑤νε♣xq ✁ νε♣yq⑤
✏ l⑤x✁ y⑤,

for all ε P ♣0, ε̆q and x, y P rε, yερ,λs. Thus, we have concluded that πε is a contraction for

ε → 0 small enough. By the Banach Fixed Point Theorem, πε admits a unique asymptotically

stable fixed point for ε small enough. Therefore, the regularized system ZΦ
ε admits a unique

asymptotically stable limit cycle Γε passing through the section ♣Hε
ρ,λ, for ε sufficiently

small. Moreover, since yερ,λ ✁ y✁ρ ✏ O♣εq and xε ✁ x�ε ✏ O♣ε 1

2k q, we get from differentiable

dependency results on parameters and initial condition that Γε is ε-close to Γ.
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4.4 Piecewise Polynomial Example

This section is devoted to provide examples of piecewise polynomial transition

functions and piecewise polynomial vector fields satisfying the hypotheses of Theorem C.

Proposition 9. For n ➙ 1, consider

φn♣xq ✏ ♣✁1qn ♣2n� 1q!
22n♣n!q2

➺ x

0

♣s✁ 1qn♣s� 1qnds.

Define Φn : R Ñ R as Φn♣xq ✏ φn♣xq for x P ♣✁1, 1q, and Φn♣xq ✏ sign♣xq for ⑤x⑤ ➙ 1 .

Then, Φn P Cn
ST for every positive integer n.

Proof. Notice that φn♣✟1q ✏ ✟1 and

φ✶n♣xq ✏ ♣✁1qn ♣2n� 1q!
22n♣n!q2 ♣x✁ 1qn♣x� 1qn.

Thus, φ✶n♣xq → 0 for all x P ♣✁1, 1q, φ♣iqn ♣✟1q ✏ 0 for i ✏ 1, . . . , n, and

φ♣n�1q
n ♣✟1q ✏

n➵
i✏1

♣✠1qn♣2i� 1q ✘ 0.

Consequently, Φn P Cn
ST .

Now, consider the planar vector field Z ✏ ♣X�, X✁q, with X� ✏ ♣X�
1 , X

�
2 q

and X✁♣x, yq ✏ ♣0, 1q, where

X�
1 ♣x, yq ✏ ✁x♣✁1� x2kq � ♣✁1� yq2k✁1♣✁1� x✁ xyq,

and

X�
2 ♣x, yq ✏ x2k✁1 ✁ ♣✁1� x2k � ♣✁1� yq2kq♣✁1� yq, for k → 1.

Define Σ ✏ h✁1♣0q, with h♣x, yq ✏ y. Notice that the vector field Z has a 2k-multiplicity

contact with Σ at ♣0, 0q. Indeed, ♣X�qih♣0, 0q ✏ 0, for i ✏ 1, . . . , 2k✁1, and ♣X�q2kh♣0, 0q ✏
♣2k ✁ 1q!. Let H♣x, yq ✏ 1 ✁ x2k ✁ ♣y ✁ 1q2k and consider the level curve Γ ✏ H✁1♣0q.
Notice that

①DH♣x, yq, X�♣x, yq②
✞✞✞
H✁1♣0q

✏ 0,

thus, Γ is invariant through the flow of X�. Moreover, X� has no singularities in H✁1♣0q.
Then, by the Poincaré Bendixson Theorem, Γ is a periodic orbit of X�. Furthermore, for

♣x, yq P Γ, we get

divX�♣x, yq ✏ ❇X�
1

❇x ♣x, yq � ❇X�
2

❇y ♣x, yq ✏ ✁2k ➔ 0.

Thus, given γ any parametrization of Γ, T its period, and S a transversal section of X�

at 0 P γ, we have that the derivative of Poincaré map π : S0 ⑨ S Ñ S is given by

dπ

dt
♣0q ✏ exp

✑ ➺ T

0

divX�♣γ♣tqq
✙
✏ e✁2kT .
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5 Uniqueness and nonexistence of limit cycles

In the previous chapter, we proved statement ♣aq and ♣bq of Theorem C, which

guaranteed, respectively, the nonexistence and uniqueness of limit cycles in a specific

compact set with nonempty interior. Nevertheless, it is not ensured, in general, the

nonexistence and uniqueness of limit cycles converging to Γ, because this compact set

degenerates into Γ when εÑ 0. However, if we suppose, in addition, that X� has locally

a unique isocline x ✏ ψ♣yq of 2k✁multiplicity contacts with the straight lines y ✏ cte,

then we have the nonexistence and uniqueness of limit cycles converging to Γ, respectively.

For this, we shall first introduce a special map called the Mirror map of the regularized

system ZΦ
ε (1.4).

5.1 Mirror maps in the regularized system

Consider the nonsmooth vector field Z ✏ ♣X�, X✁q and assume that X�

satisfies the following hypotheses:

(A) X� has a visible 2k-multiplicity contact with Σ at ♣0, 0q, X�
1 ♣0, 0q → 0, and there

exists a neighborhood U ⑨ R
2 of ♣0, 0q such that X✁✞✞

U
✏ ♣0, 1q and Σ❳U ✏ t♣x, 0q :

x P ♣✁xU , xUq✉;
(H) The limit cycle Γ of X� has locally a unique isocline x ✏ ψ♣yq of 2k✁multiplicity

contacts with the straight lines y ✏ ε, ε → 0 small enough;

for some k ➙ 1. For n ➙ maxt2, 2k ✁ 1✉, let Φ P Cn✁1
ST be given as (1.5) and consider the

regularized system ZΦ
ε (1.4). In what follows, we shall see that, for each ♣x, εq P ty ✏ ε✉

near to ♣ψ♣εq, εq there exists a unique small time t♣x, εq satisfying t♣x, εq ✏ 0 if, and only

if, x ✏ ψ♣εq and ϕZΦ
ε
♣t♣x, εq, x, εq P ty ✏ ε✉. In this case, we can define the following map

ρε : V ✁
ψ♣εq ⑨ ty ✏ ε✉ ÝÑ V �

ψ♣εq ⑨ ty ✏ ε✉
♣x, εq ÞÝÑ ϕZΦ

ε
♣t♣x, εq, x, εq.

where V ✁
ψ♣εq ✏ ♣ψ♣εq✁ δ✁ε , ψ♣εqs✂tε✉ and V �

ψ♣εq ✏ rψ♣εq, ψ♣εq� δ�ε q✂tε✉, for some positive

real numbers δ✁ε , δ
�
ε . Notice that ρε♣ψ♣εq, εq ✏ ♣ψ♣εq, εq. The map ρε is called Mirror Map

associated with ZΦ
ε at ψ♣εq (see Figure 21).

First, consider the horizontal and vertical translations u ✏ x✁ ψ♣εq and v ✏
y✁ ε, respectively. Notice that ♣u, vq ✏ ♣0, 0q is a point on the isocline u ✏ ψ♣v� εq✁ψ♣εq
in the ♣u, vq✁coordinates. Define the vector fields X�

ε ♣u, vq :✏ X�♣u� ψε♣εq, v � εq andrZΦ
ε ♣u, vq :✏ ZΦ

ε ♣u�ψ♣εq, v� εq. Expanding π2 ✆ϕ rZΦ
ε
♣t, u, 0q in Taylor series around t ✏ 0,

we get

π2 ✆ ϕ rZΦ
ε
♣t, u, 0q ✏

2k➳
i✏1

♣X�
ε qih♣u, 0q
i!

ti �O♣t2k�1q. (5.1)
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5.2 The first return map πε

In what follows, we state the following proposition, which will be proved in

Section 5.3.

Proposition 10. Consider a Filippov system Z ✏ ♣X�, X✁qΣ and assume that X�

satisfies hypotheses (B) (see Section 4.1) and (H) for some k ➙ 1. For n ➙ 2k ✁ 1, let

Φ P Cn✁1
ST be given as (1.5). Then, the following statements hold.

(a) If the limit cycle Γ is unstable, then for ε → 0 sufficiently small the regularized system

ZΦ
ε (1.4) does not admit limit cycles converging to Γ.

(b) If the limit cycle Γ is asymptotically stable, then for ε → 0 sufficiently small the

regularized system ZΦ
ε (1.4) admits a unique limit cycle Γε converging to Γ. Moreover,

Γε is hyperbolic and asymptotically stable.

Remark 6. Notice that a boundary limit cycle is a Σ✁polycycle, thus we will generalize

Proposition 10 in Section 6.1.2.

To prove Proposition 10 we need to define the first return map πε of ZΦ
ε , for

ε → 0 sufficiently small.

First of all, take ρ, ε → 0 small enough in order that the intersections of the

trajectory of ZΦ
ε starting at ♣ψ♣εq, εq with the sections tx ✏ ✁ρ✉ and tx ✏ xε✉ are

contained in U, namely ♣✁ρ, yε✁ρq and ♣xε, yεxε
q, respectively. Since π1 ✆X�♣✁ρ, yε✁ρq ✘ 0

and π1 ✆ X�♣xε, yεxε
q ✘ 0, then tx ✏ ✁ρ✉ and tx ✏ xε✉ are transversal sections of

X� at the points ♣✁ρ, yε✁ρq and ♣xε, yεxε
q, respectively. Hence, by [10, Theorem A] we

know that there exist the transition maps T uε : rψ♣εq, xεs ✂ tε✉ ÝÑ tx ✏ xε✉ and

T sε : r✁ρ, ψ♣εqs ✂ tε✉ ÝÑ tx ✏ ✁ρ✉ satisfying

T uε ♣xq ✏ yεxε
� κuxε,ε

♣x✁ ψ♣εqq2k �O
�♣x✁ ψ♣εqq2k�1

✟
,

T sε ♣xq ✏ yε✁ρ � κsρ,ε♣x✁ ψ♣εqq2k �O
�♣x✁ ψ♣εqq2k�1

✟
,

(5.3)

where sign♣κuxε,ε
q ✏ ✁sign♣♣X�q2kh♣ψ♣εqqq ✏ sign♣κsρ,εq, i.e. κuxε,ε

, κsρ,ε ➔ 0. Using the

Implicit Function Theorem, it is easy to see that

♣T sε q✁1♣yq ✏ ψ♣εq ✁ 2k

❞
1

✁κsρ,ε
♣yε✁ρ ✁ yq 1

2k �O

✁
♣yε✁ρ ✁ yq1� 1

2k

✠
.

Now, we know that there exists a diffeomorphism P e
ε : tx ✏ xε✉ ÝÑ tx ✏ ✁ρ✉ given by

P e
ε ♣yq ✏ yε✁ρ �Kε

xε,ρ
♣y ✁ yεxε

q �O♣♣y ✁ yεxε
q2q.

Finally, we get the first return map πε : tx ✏ ✁ρ✉ ÝÑ tx ✏ ✁ρ✉ defined as

πε♣yq :✏ P e
ε ✆ T uε ✆ ρε ✆ ♣T sε q✁1♣yq

✏ yε✁ρ ✁
Kε
xε,ρ

κuxε,ε

κsρ,ε
♣yε✁ρ ✁ yq �O♣♣yε✁ρ ✁ yqpq �O♣εq, (5.4)

for some p → 1.
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6 Regularization of Σ-Polycycles

In Chapter 4, we stated Theorem C which studied Cn-regularizations of bound-

ary limit cycles with a even multiplicity contact with the switching manifold. Notice that

the simplest Σ✁polycycle is the boundary limit cycle. Thus, our main interest here is to

generalize Theorem C for homoclinic-like Σ✁polycycles through Σ✁singularities of planar

Filippov systems.

6.1 Regularization of Σ-Polycycles of type ♣aq

In this section, we shall state and prove the fourth main result of this work,

which in particular establishes sufficient conditions under which the regularized vector

field ZΦ
ε has a limit cycle Γε converging to a Σ✁polycycle of type ♣aq. For this, suppose

that a Filippov system Z ✏ ♣X�, X✁q has a Σ✁polycycle Γ of type ♣aq. Through a local

change of coordinates, we can assume that p ✏ ♣0, 0q and h♣x, yq ✏ y. Without loss of

generality, assume that:

(a.1) X�
1 ♣pq → 0;

(a.2) the trajectory of Z through p crosses Σ transversally m✁times at q1, ☎ ☎ ☎ , qm, i.e. if

m ✘ 0, then for each i ✏ 1, ☎ ☎ ☎ ,m, there exists ti → 0 such that ϕZ♣ti, qiq ✏ qi�1,

where qm�1 ✏ p. Moreover, Γ❳ Σ ✏ tq1, ☎ ☎ ☎ , qm, p✉.

We shall also assume that

(a.3) X✁h♣pq → 0.

The case X✁h♣pq ➔ 0 is obtained from this case multiplying the vector field Z by -1 (see

Remark 7 below).

Notice that assumption ♣a.2q above guarantees the existence of an exterior map

D associated to Z. In what follows, we characterize such a map D. Since X�
1 ♣pq → 0, implies

that there exists an open set U such that X�
1 ♣x, yq → 0, for all ♣x, yq P U. Take ρ, θ → 0

small enough in order that the points qu ✏ ♣θ, yθq P W u
t ♣pq and qs ✏ ♣✁ρ, y✁ρq P W s

t ♣pq
are contained in U . Hence, there exist δu,s and η positive numbers such that

τut ✏ t♣θ, yq : y P ♣yθ ✁ δu, yθ � δuq✉,
τ st ✏ t♣✁ρ, yq : y P ♣y✁ρ ✁ δs, y✁ρ � δsq✉, and

σp ✏ t0✉ ✂ r0, ηq
(6.1)

are transversal sections of X�. In addition, we know by the Tubular Flow Theorem that

there exist the C2k✁diffeomorphisms T u,s : σp ÝÑ τ
u,s
t and D : τut ÝÑ τ st such that

T u,s♣pq ✏ qu,s and D♣quq ✏ qs (see Figure 24). Thus, expanding D around y ✏ yθ, we get

D♣yq ✏ y✁ρ � rθ,ρ♣y ✁ yθq �O♣♣y ✁ yθq2q, (6.2)
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Consequently, taking K :✏ rθ,ρκ
u
θ

κsρ
→ 0, we get (6.3).

Now, since D is a diffeomorphism induced by a regular orbit, we can easily see

that the regularized system ZΦ
ε also admits an exterior map Dε : τut ÝÑ τ st . If we denote

S :✏ ❇Dε♣0q
❇ε

✞✞✞
ε✏0

, then

Dε♣yq ✏ D♣yq � Sε�O♣ε2, εyq, (6.8)

See Section 6.1.3 for more details about the exterior map and how to estimate S.

In what follows, we state our first main result of this chapter, which will be

proven in Section 6.1.1.

Theorem D. Consider a Filippov system Z ✏ ♣X�, X✁qΣ and assume that Z has a

Σ✁polycycle Γ of type ♣aq satisfying ♣a.1q, ♣a.2q, and ♣a.3q. For n ➙ 2k ✁ 1, let Φ P
Cn✁1
ST , K, S be given as (1.5), (6.3) and (6.8) respectively and consider the regularized

system ZΦ
ε (1.4). If K � S ✁ 1 ✘ 0, then the following statements hold:

(a) Given 0 ➔ λ ➔ λ✝ ✏ n

1� 2k♣n✁ 1q , if K � S ✁ 1 → 0, then there exists ρ → 0 such

that the regularized system ZΦ
ε does not admit limit cycles passing through the section♣Hε

ρ,λ ✏ r✁ρ,✁ελs ✂ tε✉, for ε → 0 sufficiently small.

(b) Given
1

2k
➔ λ ➔ λ✝ ✏ n

1� 2k♣n✁ 1q , if K � S ✁ 1 ➔ 0, then there exists ρ → 0

such that the regularized system ZΦ
ε admits a unique limit cycle Γε passing through

the section ♣Hε
ρ,λ ✏ r✁ρ,✁ελs ✂ tε✉, for ε → 0 sufficiently small. Moreover, Γε is

asymptotically stable and ε-close to Γ.

Remark 7. In Theorem D we are assuming ♣a.3q, i.e. X✁h♣pq → 0. If X✁h♣pq ➔ 0,

Theorem D can be applied to ✁Z. Consequently, the limit cycle obtained for Z, under the

suitable assumptions, would be unstable.

In order to prove this theorem, we shall first establish the relationship between

the derivative of the first return map K and the derivative of exterior map rθ,ρ as follows.

Lemma 6. Consider rθ,ε given as in (6.2). Then, lim
θ,ρÑ0

rθ,ρ ✏ K.

Proof. Using equations (6.3) and (6.7) we get for θ, ρ → 0 small enough that

rθ,ρ ✏
Kκsρ

κuθ
.

To prove this lemma, we just need to prove that lim
θ,ρÑ0

κsρ

κuθ
✏ 1, because in this case we have

lim
θ,ρÑ0

rθ,ρ ✏ lim
θ,ρÑ0

Kκsρ

κuθ

✏ K lim
θ,ρÑ0

κsρ

κuθ
✏ K.
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For this, we shall prove that the flow of X� induces C
2k maps,

λsρ : σ✶p ⑨ σp ÝÑ τ st and λuθ : σ✶p ⑨ σp ÝÑ τut ,

between the transversal sections defined in (6.1) and satisfying λsρ♣0q ✏ qs and λuθ ♣0q ✏ qu,

respectively. Indeed, consider the functions

µ1♣t, y, θq ✏ ϕ1
X�♣t, 0, yq ✁ θ, for ♣0, yq P σp, t P I♣0,yq,

and

µ2♣t, y, ρq ✏ ϕ1
X�♣t, 0, yq � ρ, for ♣0, yq P σp, t P I♣0,yq,

where ϕX� ✏ ♣ϕ1
X� , ϕ

2
X�q is the flow of X� and I♣0,yq is the maximal interval of existence

of t ÞÑ ϕX�♣t, 0, yq. Since,

µ1♣0, 0, 0q ✏ 0 ✏ µ2♣0, 0, 0q and

❇µ1,2

❇t ♣0, 0, 0q ✏ ❇ϕ1
X�

❇t ♣0, 0, 0q ✏ X�
1 ♣pq ✘ 0,

by the Implicit Function Theorem there exist η0 → 0 and smooth functions t1♣y, θq and

t2♣y, ρq, with ♣0, yq P σ✶p :✏ t0✉ ✂ r0, η0q ⑨ σp and θ, ρ → 0 sufficiently small, such that

t1♣0, 0q ✏ 0 ✏ t2♣0, 0q,

µ1♣t1♣y, θq, y, θq ✏ 0, andµ2♣t2♣y, ρq, y, ρq ✏ 0,

i.e. ϕ1
X�♣t1♣y, θq, 0, yq ✏ θ and ϕ1

X�♣t2♣y, ρq, 0, yq ✏ ✁ρ. Thus, we can define the functions

λuθ ♣yq ✏ ϕ2
X�♣t1♣y, θq, 0, yq andλsρ♣yq ✏ ϕ2

X�♣t2♣y, ρq, 0, yq.

Notice that

dλuθ
dy

♣0q ✏ ❇ϕ2
X�

❇t ♣t1♣0, θq, 0, 0q❇t1❇y ♣0, θq �
❇ϕ2

X�

❇y ♣t1♣0, θq, 0, 0q,

and
dλsρ

dy
♣0q ✏ ❇ϕ2

X�

❇t ♣t2♣0, ρq, 0, 0q❇t2❇y ♣0, ρq �
❇ϕ2

X�

❇y ♣t2♣0, ρq, 0, 0q.
Since,

❇t1
❇y ♣0, 0q ✏ ✁

❇ϕ1

X�

❇y ♣0, 0, 0q
❇ϕ1

X�

❇t ♣0, 0, 0q
,

❇t2
❇y ♣0, 0q ✏ ✁

❇ϕ1

X�

❇y ♣0, 0, 0q
❇ϕ1

X�

❇t ♣0, 0, 0q
and

❇ϕ1
X�

❇y ♣0, 0, 0q ✏ 0,
❇ϕ2

X�

❇y ♣0, 0, 0q ✏ 1, κs,uθ,ρ ✏
dT s,u

✞✞✞
σ✶p

dy
♣0q ✏ dλ

s,u
ρ,θ

dy
♣0q,

we get that

lim
θÑ0

κuθ ✏ lim
θÑ0

dλuθ
dy

♣0q

✏ ❇ϕ2
X�

❇t ♣t1♣0, 0q, 0, 0q❇t1❇y ♣0, 0q �
❇ϕ2

X�

❇y ♣t1♣0, 0q, 0, 0q
✏ 1,

(6.9)
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(6.11), we get

πε♣yq ✏ Dε

✁
yεxε

�O♣e✁c④εqq
✠

✏ D
✁
yxε

� ε�O

✁
ε2kλ✝

✠✠
� εS �O♣ε2q

✏ y✁ρ � rxε,ρ

✁
ε�O

✁
ε2kλ✝

✠✠
�O

✁
ε�O

✁
ε2kλ✝

✠✠2

� εS �O♣ε2q
✏ y✁ρ �

✁
rxε,ρ � S

✠
ε�O

✁
ε2kλ✝

✠
.

(6.12)

Using (6.12) and (3.1), we have

πε♣yq ✁ yερ,λ ✏ ♣rxε,ρ � S ✁ 1q ε�O♣ερq ✁ βε2kλ �O♣ε♣2k�1qλq �O♣ε1�λq �O

✁
ε2kλ✝

✠
.

Hence, we must study the limit lim
ρ,εÑ0

πε♣yq ✁ yερ,λ

ε
in three distinct cases. First, assume

that λ → 1

2k
. Then,

πε♣yq ✁ yερ,λ

ε
✏ rxε,ρ � S ✁ 1�O♣ρq ✁ βε2kλ✁1 �O♣ε♣2k�1qλ✁1q �O♣ελq �O

✁
ε2kλ✝✁1

✠
.

Thus, by Lemma 6,

lim
ρ,εÑ0

πε♣yq ✁ yερ,λ

ε
✏ K � S ✁ 1. (6.13)

Now, suppose that λ ➔ 1

2k
. Then,

πε♣yq ✁ yερ,λ

ε2kλ
✏ ♣rxε,ρ � S ✁ 1qε1✁2kλ �O♣ε1✁2kλρq ✁ β �O♣ελq �O

✁
ε2k♣λ✝✁λq

✠
.

Hence, by Lemma 6,

lim
ρ,εÑ0

πε♣yq ✁ yερ,λ

ε2kλ
✏ ✁β → 0. (6.14)

Finally, assume that λ ✏ 1

2k
. Then,

πε♣yq ✁ yερ,λ

ε
✏ rxε,ρ � S ✁ 1✁ β �O♣ρq �O♣ελq �O

✁
ε2kλ✝✁1

✠
.

Thus, by Lemma 6,

lim
ρ,εÑ0

πε♣yq ✁ yερ,λ

ε
✏ K � S ✁ 1✁ β. (6.15)

Now, we prove statement ♣aq of Theorem D. As K � S ✁ 1 → 0, then all the

above limits (6.13), (6.14) and (6.15), are strictly positive and, since ε → 0, there exists

δ0 → 0 such that

0 ➔ ρ, ε ➔ δ0 ñ πε♣yq ✁ yερ,λ → 0.

Therefore, πε♣rε, yερ,λsq ❳ rε, yερ,λs ✏ ❍, for all ε P ♣0, δ0q. This means that πε has no fixed

points in rε, yερ,λs, that is, the regularized system ZΦ
ε does not admit limit cycles passing

through the section ♣Hε
ρ,λ.
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Now, we prove statement ♣bq of Theorem D. In this case, λ → 1

2k
. As K�S✁1 ➔

0, then the limit (6.13) is strictly negative and, since ε → 0, there exists δ0 → 0 such that

0 ➔ ρ, ε ➔ δ0 ñ πε♣yq ✁ yερ,λ ➔ 0.

Consequently, πε♣yq ➔ yερ,λ. Moreover, from (6.12), we get

lim
εÑ0

πε♣yq ✁ ε ✏ y✁ρ → 0,

for all ρ → 0. Since ε → 0, there exists δ1 → 0 such that

0 ➔ ε ➔ δ1 ñ πε♣yq ✁ ε → 0.

Accordingly, πε♣yq → ε, for ε → 0 sufficiently small. This means that πε♣rε, yερ,λsq ⑨ rε, yερ,λs.
By the Brouwer Fixed Point Theorem, we can conclude that πε admits fixed points in

rε, yερ,λs, that is, the regularized system ZΦ
ε has limit cycles passing through the section♣Hε

ρ,λ.

In what follows, we will prove the uniqueness of the fixed point in rε, yερ,λs.
Indeed, expanding Dε in Taylor series around y ✏ yεxε

, we have that

Dε♣yq ✏ Dε♣yεxε
q � dDε

dy
♣yεxε

q♣y ✁ yεxε
q � O♣♣y ✁ yεxε

q2q.

Hence,
πε♣yq ✏ Dε♣yεxε

� O♣e✁c④εqqq
✏ Dε♣yεxε

q � dDε

dy
♣yεxε

qO♣e✁c④εqq � O♣e✁2c④εqq
✏ Dε♣yεxε

q � O♣e✁c④εqq,
and, therefore, ⑤πε♣y1q ✁ πε♣y2q⑤ ✏ O♣e✁c④εqq, for all y1, y2 P rε, yερ,λs. Now, let νε be the

function given by
νε : rε, yερ,λs ÝÑ r0, 1s

y ÞÝÑ y ✁ ε

yερ,λ ✁ ε
.

Notice that ν✁1
ε ♣uq ✏ ♣yερ,λ ✁ εqu� ε. Thus, if rπε♣uq ✏ πε ✆ ν✁1

ε ♣uq, then

⑤rπε♣u1q ✁ rπε♣u2q⑤ ✏ O♣e✁c④εqq,

for all u1, u2 P r0, 1s. Fix l P ♣0, 1q, take u1, u2 P r0, 1s, and define the function ℓ♣εq :✏
♣yερ,λ ✁ εql. There exists ε♣u1, u2q → 0 and a neighborhood U♣u1, u2q ⑨ r0, 1s2 of ♣u1, u2q
such that

⑤rπε♣xq ✁ rπε♣yq⑤ ➔ ℓ♣εq⑤x✁ y⑤,
for all ♣x, yq P U♣u1, u2q and ε P ♣0, ε♣u1, u2qq. Since tU♣u1, u2q : ♣u1, u2q P r0, 1s2✉ is

an open cover of the compact set r0, 1s2, there exists a finite sequence ♣ui1, ui2q P r0, 1s2,
i ✏ 1, . . . , s, for which tU i

.

.✏ U♣ui1, ui2q : i ✏ 1, . . . , s✉ still covers r0, 1s2. Taking ε̆ ✏
mintε♣ui1, ui2q : i ✏ 1, . . . , s✉, we get

⑤rπε♣xq ✁ rπε♣yq⑤ ➔ ℓ♣εq⑤x✁ y⑤,
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for all ε P ♣0, ε̆q and ♣x, yq P r0, 1s2. Finally, since πε♣zq ✏ rπε ✆ ν♣zq, we have that

⑤πε♣xq ✁ πε♣yq⑤ ✏ ⑤rπε ✆ νε♣xq ✁ rπε ✆ νε♣yq⑤
➔ ℓ♣εq⑤νε♣xq ✁ νε♣yq⑤
✏ ℓ♣εq

yερ,λ ✁ ε
⑤x✁ y⑤

✏ l⑤x✁ y⑤,

for all ε P ♣0, ε̆q and x, y P rε, yερ,λs. Therefore, πε is a contraction for ε → 0 small

enough. From the Banach Fixed Point Theorem, πε admits a unique asymptotically stable

fixed point for ε → 0 small enough. Therefore, the regularized system ZΦ
ε has a unique

asymptotically stable limit cycle Γε passing through the section ♣Hε
ρ,λ, for ε → 0 sufficiently

small. Moreover, since πε♣yq ✁ y✁ρ ✏ O♣εq for all y P rε, yερ,λs and xε ✁ x�ε ✏ O♣ε 1

2k q, we

get from differentiable dependency results on parameters and initial condition that Γε is

ε-close to Γ.

6.1.2 A case of uniqueness and nonexistence of limit cycles

The goal of this session is to obtain a version of Proposition 10 for Σ✁polycycles

of type ♣aq. More specifically, we know that statement ♣aq and ♣bq of Theorem D guarantee,

respectively, the nonexistence and uniqueness of limit cycles in a specific compact set with

nonempty interior. However, it is not ensured, in general, the nonexistence and uniqueness

of limit cycles converging to Γ, because this compact set degenerates into Γ when εÑ 0.

Nevertheless, if we suppose, in addition, that X� has locally a unique isocline x ✏ ψ♣yq
of 2k✁multiplicity contacts with the straight lines y ✏ cte and K → 1 or K ➔ 1, then we

can establish the nonexistence and uniqueness of limit cycles converging to Γ, respectively.

More precisely, consider the following proposition.

Proposition 11. Let Z ✏ ♣X�, X✁qΣ be a Filippov system and assume that Z has a

Σ✁polycycle Γ of type aq satisfying ♣a.1q, ♣a.2q, and ♣a.3q. For n ➙ 2k✁1, let Φ P Cn✁1
ST , K, S

be given as (1.5), (6.3) and (6.8) respectively and consider the regularized system ZΦ
ε (1.4).

If K�S✁1 ✘ 0 and X� has locally a unique isocline x ✏ ψ♣yq of 2k✁multiplicity contacts

with the straight lines y ✏ ε, then the following statements hold.

(a) If K � S ✁ 1 → 0 and K → 1, then for ε → 0 sufficiently small the regularized system

ZΦ
ε does not admit limit cycles converging to Γ.

(b) If K � S ✁ 1 ➔ 0 and K ➔ 1, then for ε → 0 sufficiently small the regularized system

ZΦ
ε admits a unique limit cycle Γε converging to Γ. Moreover, Γε is hyperbolic and

asymptotically stable.

Remark 8. In Proposition 11 we are assuming ♣a.3q, i.e. X✁h♣pq → 0. If X✁h♣pq ➔ 0,

Proposition 11 can be applied to ✁Z. Consequently, the unique limit cycle obtained for Z,

under the suitable assumptions, would be unstable.

Proof. We will do this demonstration in 3 steps:
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Rε has no singular points for ε → 0 small enough. For ε → 0 choose qε P Rε, from the

Poincaré–Bendixson Theorem we can conclude that α♣qεq ⑨ Rε is a limit cycle of ZΦ
ε that

is not asymptotically stable, but this contradicts step 2.

6.1.3 The exterior map of the regularized system

In this section, we shall study the exterior map of the regularized system ZΦ
ε

and its derivative.

Let Z ✏ ♣X, Y q be a Filippov system with X, Y : V ⑨ R
2 Ñ R

2 vector fields

of class C
2k defined on an open set V of q P R

2 and ZΦ
ε the regularized system associated

with Z. Assume that the switching manifold Σ of Z is a C
2k embedded codimension one

submanifold of V and let q P Σc.

Notice that there exists a local C
2k diffeomorphism ψ1 : U ⑨ R

2 Ñ R
2 defined

on an open set U of q P R
2 such that rΣ ✏ ψ1♣Σq ✏ h✁1♣0q, with h♣x, yq ✏ x. Now, applying

the Tubular Flow Theorem for ♣ψ1q✝Y at q and considering the transversal section rΣ, there

exists a local C
2k diffeomorphism ψ2 defined on U (taken smaller if necessary) such thatrY ✏ ♣ψ2 ✆ ψ1q✝Y ✏ ♣1, 0q and ψ2♣rΣq ✏ rΣ.

Since X1♣qq → 0 then X1♣x, yq → 0 for all ♣x, yq P U (taken smaller if nec-

essary). Consequently, we can perform a time rescaling in X, thus we get ♣X♣x, yq ✏
♣1, X2♣x, yq④X1♣x, yqq, for all ♣x, yq P U. Hence, without loss of generality, we can as-

sume that there exists an open set U ⑨ R
2 of q ✏ ♣0, q2q such that the Filippov system

Z ✏ ♣X, Y qΣ satisfies that X
✞✞
U
✏ ♣1, X2q, Y

✞✞
U
✏ ♣1, 0q, and Σ ❳ U ✏ t♣0, yq : y P

♣q2 ✁ δU , q2 � δUq✉.
Take ρ → 0 and θ → 0 sufficiently small in order that the sections tx ✏ ✁ρ✉ and

tx ✏ θ✉ is contained in U and without loss of generality assume that the points ♣✁ρ, 0q and

q are connected by a trajectory of X. Thus, we can consider the following maps induced

by the flow of ZΦ
ε :

Pε : tx ✏ ✁ρ✉ Ñ tx ✏ ✁ε✉,
Tε : tx ✏ ✁ε✉ Ñ tx ✏ ε✉,
Qε : tx ✏ ε✉ Ñ tx ✏ θ✉,

where Qε ✏ Id (see Figure (28)). The exterior map Dε : tx ✏ ✁ρ✉ Ñ tx ✏ θ✉ of ZΦ
ε is

defined as

Dε♣yq :✏ Qε ✆ Tε ✆ Pε♣yq.
Now, we shall compute the first derivative of Dε at ε ✏ 0 and y ✏ 0. Expanding Pε and

Tε around ε ✏ 0, we get that

Pε ✏ P � P1ε� O♣ε2q,

Tε ✏ Id� T1ε� O♣ε2q

where P : tx ✏ ✁ρ✉ Ñ Σ is induced from the flow of Z, P1 ✏ ❇Pε
❇ε

✞✞✞
ε✏0

, and T1 ✏ ❇Tε
❇ε

✞✞✞
ε✏0

.

Hence, expanding Dε around ε ✏ 0, we have that

Dε♣yq ✏ P ♣yq � r♣P1♣yq � T1♣P ♣yqqsε� O♣ε2q.
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for ♣x, yq P U and ε → 0 small enough. Notice that system (6.18), restricted to the band of

regularization ✁ε ↕ x ↕ ε, is as a slow-fast problem. Indeed, taking v ✏ x④ε, we get the

so-called slow system, ✩✫✪ ε ✾v ✏ 1,

✾y ✏ 1

2
X2♣εv, yq ♣1� φ♣vqq ,

(6.19)

defined for ✁1 ↕ v ↕ 1. Performing the time rescaling t ✏ ετ, we obtain the so-called fast

system, ✩✫✪ v✶ ✏ 1,

y✶ ✏ ε

2
X2♣εv, yq ♣1� φ♣vqq . (6.20)

Now, we know that the equation for the orbits of system (6.20) is given by

dy

dv
✏ εF ♣v, y, εq (6.21)

where

F ♣v, y, εq ✏ X2♣εv, yq ♣1� φ♣vqq
2

.

Expanding F around ♣v, y, εq ✏ ♣v, y, 0q, we get

F ♣v, y, εq ✏ X2♣0, yq ♣1� φ♣vqq
2

�O♣εq.

In addition, the solution of differential equation (6.21) with initial condition yε♣✁1, q2q ✏ q2

is given by

yε♣v, q2q ✏ q2 � ε

➺ v
✁1

F ♣s, yε♣s, q2q, εqds

✏ q2 � ε

➺ v
✁1

F ♣s, y0♣s, q2q, 0qds�O♣ε2q

✏ q2 � ε

2

➺ v
✁1

X2♣qq ♣1� φ♣sqq ds�O♣ε2q.

Notice that
Tε♣q2q ✏ yε♣1, q2q

✏ q2 � ε

➺ 1

✁1

F ♣s, y0♣s, q2q, 0qds�O♣ε2q

✏ q2 � ε

2

➺ 1

✁1

X2♣qq ♣1� φ♣sqq ds�O♣ε2q.

Accordingly,

T1♣q2q ✏ 1

2

➺ 1

✁1

X2♣qq ♣1� φ♣sqq ds

✏ X2♣qq
2

✂
2�

➺ 1

✁1

φ♣sqds
✡
.

Therefore,
S ✏ P1♣0q � T1♣q2q

✏ ✁X2♣qq � X2♣qq
2

✂
2�

➺ 1

✁1

φ♣sqds
✡

✏ X2♣qq
2

➺ 1

✁1

φ♣sqds.
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6.2 Regularization of Σ✁Polycycles of type ♣bq

In this section, we shall state and prove the fifth main result of this work,

which in particular establishes sufficient conditions under which the regularized vector

field ZΦ
ε has a limit cycle Γε converging to a Σ✁polycycle of type ♣bq. For this, suppose

that a Filippov system Z ✏ ♣X�, X✁q has a Σ✁polycycle Γ of type ♣bq. Without loss of

generality, assume that:

(b.1) X�
1 ♣pq → 0;

(b.2) the trajectory of Z through p crosses Σ transversallym✁times at q1, ☎ ☎ ☎ , qm, satisfying

that for each i ✏ 1, ☎ ☎ ☎ ,m, there exists ti → 0 such that ϕZ♣ti, qiq ✏ qi�1, where

qm�1 ✏ p. Moreover, Γ❳ Σ ✏ tq1, ☎ ☎ ☎ , qm, p✉.

We shall also assume that

(b.3) W s✁
✫
♣pq ❨W u

t ♣pq ⑨ Γ, i.e. X✁h♣pq → 0.

The case W u✁
✫
♣pq ❨W s

t ♣pq ⑨ Γ is obtained from the previous case multiplying the vector

field Z by -1 (see Remark 10 bellow).

Since X✁h♣pq → 0, by the Tubular Flow Theorem for X✁ at p ✏ ♣0, 0q,
there exist an open set U and a local C

2k diffeomorphism ψ defined on U such thatrX✁ ✏ ψ✝X✁ ✏ ♣0, 1q. Clearly, the transformed vector field rX� ✏ ψ✝X� still has a

visible 2k-multiplicity contact with Σ at p ✏ ♣0, 0q and ψ♣Σq ✏ Σ. Thus, without loss of

generality, we can assume that there exists a neighborhood U ⑨ R
2 of p ✏ ♣0, 0q such that

X✁✞✞
U
✏ ♣0, 1q.

Notice that assumption ♣b.2q above guarantees the existence of an exterior map

D associated to Z. In what follows, we characterize such a map. Since X�
1 ♣pq, X✁

2 ♣pq → 0,

then X�
1 ♣x, yq, X✁

2 ♣x, yq → 0, for all ♣x, yq P U (taken smaller if necessary). Take ε, θ → 0

small enough in order that the points qu ✏ ♣θ, yθq P W u
t ♣pq and qs ✏ ♣0,✁εq P W s✁

✫
♣pq are

contained in U . Then there exist positive numbers δu,s such that

τut ✏ t♣θ, yq : y P ♣yθ ✁ δu, yθ � δuq✉ and

τ s✁
✫
✏ t♣x,✁εq : x P ♣✁δs, δsq✉ (6.22)

are transversal sections of X� and X✁, respectively. In addition, σp ✏ r0, θs ✂ t0✉ is

a transversal section of X✁. Moreover, by the Tubular Flow Theorem there exist the

C2k✁diffeomorphism T s : σp ÝÑ τ s✁
✫

and D : τut ÝÑ τ s✁
✫

such that T s♣pq ✏ qs and

D♣quq ✏ qs (see Figure 29). Thus, expanding D around y ✏ yθ, we get

D♣yq ✏ rθ,ε♣y ✁ yθq � O♣♣y ✁ yθq2q, (6.23)

where rθ,ε ✏ dD

dy
♣yθq.

Now, by the Definition 3, we know that there exists a first return map πΓ

defined, at least, in one side of Γ. In what follows, we shall see that there exist positive
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Thus,

πΓ♣xq ✏ rθ,εκ
u
θ

κsε
x2k �O♣x2k�1q. (6.28)

Accordingly, taking K :✏ rθ,εκ
u
θ

κsε
→ 0, we get (6.24).

Remark 9. Notice that for x P r0, θs we have that πΓ♣xq ➔ x, for some small θ → 0.

This means that Γ is always asymptotically stable provided that ♣b.3q is satisfied, i.e.

X✁h♣pq → 0. If X✁h♣pq ➔ 0, Γ would be unstable.

Now, since D is a diffeomorphism induced by a regular orbit, we can easily see

that the regularized system ZΦ
ε also admits an exterior map given by

Dε♣yq ✏ D♣yq �O♣εq. (6.29)

In what follows, we state our second main result of this chapter, which will be proven in

Section 6.2.1.

Theorem E. Consider a Filippov system Z ✏ ♣X�, X✁qΣ and assume that Z has a

Σ✁polycycle Γ of type ♣bq satisfying ♣b.1q, ♣b.2q, and ♣b.3q. For n ➙ 2k✁ 1, let Φ P Cn✁1
ST be

given as (1.5) and consider the regularized system ZΦ
ε (1.4). Then the regularized system ZΦ

ε

(1.4) admits at least a limit cycle Γε, for ε → 0 sufficiently small. Moreover, Γε converges

to Γ.

Remark 10. In Theorem E we are assuming ♣b.3q, i.e. W u
t ♣pq ❨W s✁

✫
♣pq ⑨ Γ. If W u✁

✫
♣pq ❨

W s
t ♣pq ⑨ Γ, Theorem E can be applied to ✁Z. Consequently, we get a limit cycle for Z.

In order to prove this theorem, we shall first establish the relationship between

the derivative of the first return map K and the derivative of exterior map rθ,ε as follows.

Lemma 7. Consider α, rθ,ε, and κuθ given as in (2.1), (6.23), and (6.27), respectively.

Then,

i) lim
θÑ0

κuθ ✏ ✁ α

2k
.

ii) lim
θ,εÑ0

rθ,ε ✏ ✁2kK

α
.

Proof. First, we prove the statement iq. Indeed, using (6.27) and that T u♣θq ✏ 0 for all

θ → 0 small enough, we have yθ � κuθθ
2k � O♣θ2k�1q ✏ 0. By Lemma 1 we know that

yθ ✏
αθ2k

2k
�O♣θ2k�1q, thus

αθ2k

2k
�O♣θ2k�1q � κuθθ

2k �O♣θ2k�1q ✏ 0,

that is,
α

2k
� κuθ �O♣θq ✏ 0,

consequently, when θ tends to 0 we conclude the result.
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Now, we shall prove statement iiq. For this, notice that using equations (6.24)

and (6.28) we get for θ, ε → 0 small enough that

rθ,ε ✏ Kκsε
κuθ

.

To prove statement iiq, we just need to prove that lim
εÑ0

κsε ✏ 1, because in this case we have

lim
θ,εÑ0

rθ,ε ✏ lim
θ,εÑ0

Kκsε
κuθ

✏ K
lim
εÑ0

κsε

lim
θÑ0

κuθ

✏ ✁2kK

α
.

where we have used item iq. In what follows, we shall prove that the flow of X✁ induces

C
2k map,

λsε : σ✶p ⑨ σp ÝÑ τ s✁
✫
,

between the transversal sections defined in (6.22) and satisfying λsε♣0q ✏ qs. Indeed,

consider the function

µ♣t, x, εq ✏ ϕ2
X✁♣t, x, 0q � ε, for ♣x, 0q P σp, t P I♣0,yq,

where ϕX✁ is the flow of X✁ and I♣x,0q is the maximal interval of existence of t ÞÑ
ϕX✁♣t, x, 0q. Since,

µ♣0, 0, 0q ✏ 0 and

❇µ
❇t ♣0, 0, 0q ✏

❇ϕ2
X✁

❇t ♣0, 0, 0q ✏ X✁
2 ♣pq ✘ 0,

by the Implicit Function Theorem there exist θ0 → 0 and smooth function t♣x, εq with

♣x, 0q P σ✶p :✏ r0, θ0q ✂ t0✉ ⑨ σp and θ, ε → 0 sufficiently small such that

t♣0, 0q ✏ 0 and

µ♣t♣x, εq, x, εq ✏ 0,

i.e. ϕ2
X✁♣t♣x, εq, x, 0q ✏ ✁ε. Thus, we can define the function

λsε♣xq ✏ ϕ1
X✁♣t♣x, εq, x, 0q.

Notice that

dλsε
dx

♣0q ✏ ❇ϕ1
X✁

❇t ♣t♣0, εq, 0, 0q ❇t❇x♣0, εq �
❇ϕ1

X✁

❇x ♣t♣0, εq, 0, 0q.

Since,

❇t
❇x♣0, 0q ✏ ✁

❇ϕ2

X✁

❇x ♣0, 0, 0q
❇ϕ2

X✁

❇t ♣0, 0, 0q
,

and

❇ϕ1
X✁

❇x ♣0, 0, 0q ✏ 1,
❇ϕ2

X✁

❇x ♣0, 0, 0q ✏ 0, κsε ✏
dT u

✞✞✞
σ✶p

dx
♣0q ✏ dλsε

dx
♣0q,
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