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Resumo

Compreender como as singularidades tangenciais evoluem em processos de regularizacao
foi um dos primeiros problemas relacionados a regularizagao dos sistemas de Filippov.
Neste trabalho, estamos interessados em C"-regularizagoes de sistemas Filippov em torno
de singularidades tangenciais regulares visiveis de multiplicidade par. Mais especificamente,
usando a Teoria de Fenichel e os Métodos de Blow-up, nosso objetivo é entender como
as trajetérias do sistema regularizado transitam pela regiao de regularizagao. Aplicamos
nossos resultados para investigar as C"-regularizagoes dos ciclos limites de fronteira com
contato de multiplicidade par com a variedade de deslize.

Além disso, estamos interessados na regularizagao de sistemas de Filippov em torno de
conexoes homoclinicas com singularidades tangenciais regulares. Fornecemos condigoes
para garantir a existéncia de ciclos limites bifurcando-se de tais conexoes. Condigoes
adicionais também sao fornecidas para garantir a estabilidade e unicidade de tais ciclos
limites. Todas as provas sao baseadas na constru¢ao do mapa de primeiro retorno do
sistema de Filippov regularizado em torno de conexoes homoclinicas. Tal mapa ¢é obtido
usando a nossa caracterizacao do comportamento local do sistema de Filippov regularizado
em torno de singularidades tangenciais regulares. Teoremas de ponto fixo e argumentos de
Poincaré-Bendixson também sao usados.

Palavras-chave: Regularizagao. Sistemas de Filippov. Teoria de Fenichel. Método de
Blow-up. Ciclos Limites. Policiclos.



Abstract

Understanding how tangential singularities evolves under smoothing processes was one
of the first problem concerning regularization of Filippov systems. In this work, we are
interested in C"-regularizations of Filippov systems around visible regular-tangential
singularities of even multiplicity. More specifically, using Fenichel Theory and Blow-up
Methods, we aim to understand how the trajectories of the regularized system transits
through the region of regularization. We apply our results to investigate C"-regularizations
of boundary limit cycles with even multiplicity contact with the switching manifold.

Moreover, we are concerned about smoothing of Filippov systems around homoclinic-like
connections to regular-tangential singularities. We provide conditions to guarantee the
existence of limit cycles bifurcating from such connections. Additional conditions are also
provided to ensured the stability and uniqueness of such limit cycles. All the proofs are
based on the construction of the first return map of the regularized Filippov system around
homoclinic-like connections. Such a map is obtained by using our characterization of the
local behaviour of the regularized Filippov system around regular-tangential singularities.
Fixed point theorems and Poincaré-Bendixson arguments are also employed.

Keywords: Regularization. Filippov systems. Fenichel Theory. Blow-up Method. Limit
cycles. X—Polycycles.
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1 Introduction

The analysis of differential equations with discontinuous right-hand side dates
back to the work of Andronov et. al [1] in 1937. Recently, the interest in such systems
has increased significantly, mainly motivated by its wide range of applications in several
areas of applied sciences. Piecewise smooth differential systems are used for modeling
phenomena presenting abrupt behavior changes such as impact and friction in mechanical
systems [4], refugee and switching feeding preference in biological systems [20, 28], gap
junctions in neural networks [9], and many others.

In this work, we are interested in planar piecewise smooth systems. Formally,

let M be an open subset of R? and let N = M be a codimension 1 submanifold of M.

Denote by C;, i = 1,2,...,k, the connected components of M\N and let X; : M — R?,

for i =1,2,...,k, be vector fields defined on M. A piecewise smooth vector field Z on M
is defined by

Z(p) = Xi(p) itpe C;, fori=1,2,... k. (1.1)

Since N is a codimension 1 submanifold of M, for each p € N there exists a
neighborhood D < M of p and a function h : D — R, having 0 as a regular value, such
that ¥ = N n D = h~*(0). Moreover, the neighborhood D can be taken sufficiently small
in order that D\Y is composed by two disjoint regions X+ = {¢ € D : h(q) = 0} and
Y7 ={qeD: h(q) <0} such that X* = Z|g+ and X~ = Z|g- are smooth vector fields.
Accordingly, the piecewise smooth vector field (1.1) can be locally described as follows:

X*p), if pex’,

for peD.
X (p), if pe¥,

Z(p)= (X" X )z = {

Throughout this work we will denote the components of X* by X fori e {1,2},
e XT = (X{,X5).
1.1 Filippov Systems

The notion of local trajectories of piecewise smooth vector fields (1.1) was
stated by Filippov [13] as solutions of the following differential inclusion

pe Folp) = T PEAW Gy LX) (12
where
1 ifs<0,
sign(s) = < [-1,1] ifs=0,
1 it s > 0.

This approach is called Filippov’s convention. The piecewise smooth vector field (1.1) is
called Filippov system when it is ruled by the Filippov’s convention. For more informations
on differential inclusions see, for instance, [29].
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The solutions of the differential inclusion (1.2) are well described in the literature
(see, for instance, [13]) and have a simple geometrical interpretation. In order to illustrate
this convention we define the following open regions on X :

Ye={peX: X h(p) - X h(p) > 0},
={peX: XTh(p) <0, X h(p) > 0},
Y={peX: XTh(p) >0, X h(p) <0}

Here, X*h(p) = (Vh(p), X*(p)) denotes the Lie derivative of h in the direction of the
vector fields X*. Usually, they are called crossing, sliding, and escaping region, respectively.
Notice that the points on ¥ where both vectors fields X* and X~ simultaneously point
outward or inward from X constitute, respectively, the escaping ¢ and sliding X° regions,
and the complement of its closure in ¥ constitutes the crossing region, ¥°. The complement

of the union of those regions in X constitutes the tangency points between X+ or X~ with
¥, X

For p € 3¢ the trajectories either side of the discontinuity >, reaching p, can
be joined continuously, forming a trajectory that crosses 3. Alternatively, for p € ¥*¢ =
3% U X the trajectories either side of the discontinuity X, reaching p, can be joined
continuously to trajectories that slide on »*° following the sliding vector field,

X" h(p)X*(p) = X h(p)X~(p)
X-h(p) — X+h(p)

Z%(p) = , for p e X%, (1.3)

In addition, a singularity of the sliding vector field Z° is called pseudo-equilibrium.

In the Filippov context, the notion of ¥-singular points also comprehends the
tangential points ¥¢ constituted by the contact points between X and X~ with ¥, i.e.
Y ={peX: XTh(p)- X h(p) = 0}. In this work, we are interested in contact points of
finite degeneracy. Recall that p is a contact of order k — 1 (or multiplicity k) between X~
and X if 0 is a root of multiplicity k of f(t) := h o px+(t,p), where t — px=+(t,p) is the
trajectory of X7 starting at p. Equivalently,

XFh(p) = (X*)*h(p) = ... = (X7)" " h(p) = 0, and (X*)*A(p) # 0.

In addition, an even multiplicity contact, say 2k, is called visible for X (resp. X ~) when
(X)?*h(p) > 0 (resp. (X7)*h(p) < 0). Otherwise, it is called invisible.

In this work, we shall focuses our attention in visible reqular-tangential singular-
ities of multiplicity 2k, which are formed by a visible even multiplicity of X and a regular
point of X, or vice versa (see Figure 1). In the above definitions, the higher order Lie deriva-
tives X'h are defined, inductively, by Xh(p) = (Vh(p), X(p)) and X"h(p) = X (X" 'h)(p)
for ¢ > 1.
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Figure 1 — Visible regular-tangential singularity.

1.2 Sotomayor-Teixeira Regularization

Frequently, non-smooth mathematical models are discontinuous idealizations of
regular phenomena. Thus, in order to investigate a regular phenomenon with non-smooth
mathematical model, it seems natural to inquire how the solutions of smooth systems,
which converge to the non-smooth one, behave in the limit. Therefore, it is usual to
consider a non-smooth system as a singular limit of a 1-parameter family of smooth vector

fields.

Roughly speaking, a smoothing process of a piecewise smooth vector field Z
consists in obtaining a one—parameter family of continuous vector fields Z. converging to
Z when € — 0. A well known smoothing process is the Sotomayor-Teixeira regularization,
which was introduced in [31]. Let ¢ : R — R be a C'* function satisfying ¢(£1) = +1,
¢ (+1) = 0 for i = 1,2,...,n, and ¢'(s) > 0 for s € (—1,1). Then, a C"-Sotomayor-
Teixeira regularization (or just C"-regularization for short) takes

_ 1+ 2.(h(p)) 1 — @.(h(p))

Z2(p) 5 X*(p) + : X~ (p), ®(h) = (h/e),  (1.4)

where ® : R — R is defined as the following C" function

B(s) = { o(s) if Is:

sign(s) if |s | (1.5)

1
1.

A\VAW/AN

We call @ a C"-monotonic transition function. Proposition 9 provides examples of transition
functions.

In addition, we can define the set of C™ '-monotonic transition functions which
are not C" at +1 as follows.

Definition 1. Denote by Cer' the set of C"'-monotonic transition functions ® which are
not C™ at +1. That is, for a ® € Ot given as (1.5), then ¢(i)(i1) =0, fori=1,2,...,n—
1, and ¢ (£1) # 0. Moreover, one can easily see that Sign(qﬁ(")(il)) = (F1)"H.

Notice that the vector field Z%(p) coincides with X*(p) or X (p) whether
h(p) = ¢ or h(p) < —¢, respectively. In the region |h(p)| < ¢, the vector ZZ(p) is a linear
combination of X (p) and X~ (p).
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The Sotomayor-Teixeira regularization is the most widespread smoothing pro-
cess. That is mainly because its intrinsic relation with Filippov’s convention. Indeed,
in [5], it was shown that the Sotomayor-Teixeira regularization of Filippov systems gives
rise to Singular Perturbation Problems, for which the corresponding reduced dynamics
is conjugated to the sliding dynamics (1.3). This kind of relation has been further inves-
tigated in [22] for more general transition functions. For more informations on Singular
Perturbation Problems see, for instance, [12,16].

1.3 >-Polycycles in Filippov Systems

A polycycle is a simple closed curve composed by a collection of singularities
and regular orbits, inducing a first return map. In these last decades, the study of polycycles
in Filippov systems have been considered in several papers. For instant, in [19] the authors
introduced the critical crossing cycle bifurcation, which is defined as a one-parameter
family Z, of Filippov systems, where Z, has a homoclinic-like connection to a fold-regular
singularity. In [14], Freire et al. proved that the unfolding of a critical crossing cycle
bifurcation provided in [19] holds in a generic scenario.

More degenerate homoclinic-like connections to »-singularities has also been
considered. In [25], the authors studied a codimension-two homoclinic-like connection to a
visible-visible fold-fold singularity. In [24] its unfolding under non-autonomous periodic
perturbation has been studied. Recently, in [10], Andrade et. al. developed a rather general
method to investigate the unfolding of Y-polycycles in Filippov systems. This method was
applied to describe bifurcation diagrams of Filippov systems around several -polycycles.
The readers are referred to [6,7,15,30,32] for more studies on ¥—polycycles.

The interest in studying polycycles is due to the fact that they are non-local
invariant sets that provide information on the dynamics of the system.

In what follows, we shall introduce some basic concepts for this work. First, we

define the local separatrix at a point p € 3.

Definition 2. If p € X, the asymptotically stable (resp. unstable) separatrix
Wi (p), (resp. Wi (p)) of Z = (X", X7) at a visible reqular-tangential singularity p in
Y* is defined as

W (p) = {g=wx+(t(q),p): ¢x+(I(q),p) € X and d,.t(q) > 0},
W (p) = {qg=9x-(t(q),p) : ox-(I(q),p) € X~ and ds,t(q) > 0},

where, 6, = 1, 65 = —1, and I(q) is the open interval with extrema 0 and t(q).
Now, we introduce the concepts of regular orbit and X —polycycle for planar
Filippov systems.
Definition 3. Consider the Filippov system Z = (X, X ™).
(i) We say that v is a regular orbit of Z if it is a piecewise smooth curve such that

vy Xt and y "X are unions of reqular orbits of Xt and X, respectively, and
vy Y c e
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(ii) A closed curve I' is said to be a S—polycycle of Z if it is composed by a finite
number of X—singularities, py,pa, -+ ,Pn € 2, and a finite number of reqular orbits
of Z, vi,Y2, s Vn, Such that for each 1 < i < n, 7v; has ending points p; and p;q
(Pns1 = p1), and satisfies that

a) T is a S'-immersion and it is oriented by increasing time along the regular
orbits;

b) there exists a non-constant first return map wr defined, at least, in one side of

r.

Remark 1. Condition (a) in Definition 3 gives the minimality of polycycles of Z, i.e. a
polycycle I' can not be written as union of two or more polycycles. This condition also
establishes the notion of sides of I, which is used in Condition (b).

In what follows, we will establish the classes of YX—polycycles that will be
studied in this work. To define these classes, consider the Filippov system Z = (X, X7)
and suppose that Z has a Y—polycycle I' having a unique visible regular-tangential
singularity at p of multiplicity 2k, for £ > 1. Through a local change of coordinates, we
can assume that p = (0,0) and A(z,y) = y. Now, we shall locally characterize I" around p.
For this, it is enough to divide the X—polycycles in the following 2 classes:

(a) Wi(p) u W (p) =« T and X~ h(p) > 0 or X h(p) < O0;
(b) Wz (p) o Wi(p) < T or Wx(p) o Wi(p) < I

Here, Y-polycycles satisfying condition (a) or (b) will be called X-polycycles of type (a) or
type (b), respectively (see Figure 2).

Figure 2 — Examples of ¥—polycycles I' of type (a) and (b), respectively.

1.4 Main Goal

Understanding how tangential singularities evolves under smoothing processes
was one of the first problem concerning smoothing of Filippov systems. Indeed, in the earlier
work of Sotomayor and Teixeira [31], it is proved that around a regular-fold singularity
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of a Filippov system Z, the regularized system Zf possesses no singularities. Recently,
based on the findings of [5], some works got deeper results by studying the corresponding
slow-fast problems.

In [3] and [2], asymptotic methods [21] were used to study C"-regularizations
of generic regular-fold singularities and fold-fold singularities, respectively. In [18] and [17],
the blow-up method introduced in [11] was adapted to study C"-regularizations of fold-fold
singularities and an analytic regularization of a regular-fold singularity, respectively.

In this work, we are interested in C"-regularizations of Filippov systems around
visible regular-tangential singularities of even multiplicity. More specifically, we aim to
understand how the trajectories of the regularized system transits through the regions
h(p) = ¢, |h(p)| < &, and h(p) < —e. Accordingly, we characterize two transition maps,
namely the Upper Transition Map U.(y) and the Lower Transition Map L.(y) (see Figure
3). The results are applied to study C"-regularizations of X—polycycles with a unique
even multiplicity contact with the switching manifold.

-(y)
(x)
\\ // > ®—regularization

| o ///

%

Figure 3 — Upper Transition Map U.(y) and Lower Transition Map L.(y) defined for C"-
regularizations of Filippov systems around visible regular-tangential singularities
of even multiplicity.

Our first two main results, Theorems A and B, characterize the Upper Transition
Map U.(y) and the Lower Transition Map L.(z), respectively. More specifically, the flow
of the regularized system determines the maps U, (y) and L.(z) and these are defined in
the largest possible interval and the arrival of these maps are independent of the starting
point. Theorem A generalizes to degenerate regular-tangential singularities the results
obtained in [3] for regular-fold singularities. The main difference between our problem and
the problem addressed in [3] is that a regular-fold singularity admits a normal form which
simplify significantly the study, whilst here we have to deal with higher order terms.

Then, we will use Theorem A to prove Theorem C, which provides sufficient
conditions for the existence of an asymptotically stable limit cycle of the regularized system
bifurcating from a boundary limit cycle of a Filippov system with degenerated contact
with the switching manifold. Theorems A, B and C were proved by the author in [26].
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In addition, we study a case of uniqueness and nonexistence of limit cycles
for the regularization of boundary limit cycles. More specifically, in Proposition 10 we
provide a class of piecewise smooth vector fields having a boundary limit cycle for which its
regularization either does not admit limit cycle or admit an unique limit cycle converging
to the boundary limit cycle.

Since the boundary limit cycle is a ¥—polycycle, we would like to generalize
Theorem C. For this, we will apply Theorems A and B to the study C"-regularizations of
Y—polycycles with a unique even multiplicity contact with the switching manifold.

The next result of this work (Theorems D) is concerned with regularization
of Filippov systems having a ¥—polycycle of type (a). It establishes sufficient conditions
for the existence and nonexistence of limit cycles of the regularized system Zf passing
through of a certain compact set with nonempty interior. When the limit cycle exists, its
stability is characterized and its convergence to the X—polycycle is ensured.

Moreover, we would like to get a version of Proposition 10 for ¥—polycycles of
type (a). More specifically, in Proposition 11 we provide a class of piecewise smooth vector
fields having a X—polycycle of type (a) for which its regularization either does not admit
limit cycle or admit an unique limit cycle converging to the X—polycycle of type (a).

The last result of this thesis (Theorem E) is concerned with regularization of
Filippov systems having a X—polycycle of type (b). It establishes sufficient conditions for
the existence of limit cycles of the regularized system Zf converging to the X—polycycle.

The proofs of Theorems C, D, and E are mainly based on the characterization
of the upper and lower transition maps around regular-tangential singularities, fixed point
theorems, and Poincaré-Bendixson Theorem. Theorems D and E were proved by the author
in [23].

1.5 Structure of the thesis

In Chapter 2, we provide a simpler local expression for Filippov systems around
visible regular-tangential singularities as well as some preliminary results. In addition, in
Section 2.2 we apply blow-up methods to study the Fenichel Manifold associated to the
singular perturbation problem arising from C"-regularizations of visible regular-tangential
singularities.

In Chapter 3, we give our first main results Theorems A and B, which charac-
terize the transition maps near C"-regularizations of visible regular-tangential singularities.
Then, Theorems A and B are proven in Sections 3.2.5 and 3.3.4, respectively.

In Chapter 4, we state Theorem C regarding C"-regularizations of boundary
limit cycles. Then, Theorems C is proven in Section 4.3. Moreover, in Section 4.4 in light of
our results, we perform an analysis of C"-regularizations of piecewise polynomial examples
admitting a boundary limit cycle.

In Chapter 5, we give Proposition 10, which is a case of uniqueness and
nonexistence of limit cycles of the regularized system bifurcating from a boundary limit
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cycle of a Filippov system with degenerated contact with the switching manifold. For this,
in Section 5.1 we introduce a special map called the Mirror map of the regularized system.

Finally, in Chapter 6 we state Theorems D and E regarding C"-regularizations
of X—polycycles of type (a) and (b), respectively. Then, Theorems D and E are proven in
Sections 6.1.1 and 6.2.1, respectively. Furthermore, in section 6.1.2 we provide Proposition
11, which is a version of Proposition 10 for ¥—polycycles of type (a).
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2 The Fenichel Manifold

One of our main goals in this work is to understand the C" —regularization of
Filippov systems around visible regular-tangential singularities of even multiplicity. The
regularized system (1.4) can be studied through a slow-fast problem, which have associated
a critical manifold. This manifold looses its normal hyperbolicity around a certain point.
For this reason, around this point we cannot apply Fenichel Theorem 1 to find the Fenichel
manifold associated with the slow-fast problem. This problem is overcome by means of
the blow-up method. This method will be used to extend the Fenichel manifold to a
certain transversal section. Firstly, we establish a canonical form of the Filippov system
Z = (X%, X7) that will be used throughout this work.

2.1 Canonical Form

Let X* be C?*, k > 1, vector fields defined on an open subset V of R? and
let ¥ be a C?* embedded codimension one submanifold of V. Suppose that X has a
visible 2k-multiplicity contact with ¥ at (0,0) and that X~ is pointing towards ¥ at (0, 0).
Consider the Filippov system Z = (X', X )x. Denote by ¢x= the flows of X=.

First, we know that there exists a local C?* diffeomorphism ¢, defined on a
neighborhood U < R? of (0, 0) such that & = ¢ () = A~ (0), with h(z,y) = y. Second,
applying the Tubular Flow Theorem (see [27]) for (p1).X ™ at (0,0) and considering the
transversal section i, there exists a local C* diffeomorphism ¢, defined on U (taken
smaller if necessary) such that X~ = (g2 0¢1). X~ = (0,1) and ¢3(2) = 3. Clearly, the
transformed vector field X = (g5 0 1), X * still has a visible 2k-multiplicity contact
with 3 at (0,0). Thus, without loss of generality, we can assume that the Filippov system
Z = (X7, X))y satifies

(A) X7 has a visible 2k-multiplicity contact with X at (0,0), X;(0,0) > 0, and there
exists a neighborhood U < R? of (0, 0) such that X_‘U =(0,1) and XnU = {(z,0) :

x € (—zy,zy)}.

Now, we provide a simpler local expression for Filippov systems satisfying
hypothesis (A) in a neighborhood of the visible regular-tangential singularity. Since
X1(0,0) > 0, we can take the neighborhood U smaller in order that X" (z,y) > 0 for all
(z,y) € U. Performing a time rescaling in X, we get X*(z,y) = (1, f(z,y)), with the
function f given by f(z,y) = X5 (z,v)/X; (x,y). Clearly, the vector fields X™ and X*
have the same orbits in U with the same orientation. Notice that, for (z,y) € U, we have

X"Wz,y) = X5 (z,y)

= Xf_(l",y)f(l',y)
= X (z,y)X " h(z,y).
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In general, ()?+)ih(0,0) = 0 if, and only if, (X")'h(0,0) = 0, for all i = 1,...,2k.
Moreover, R

X*h(z,0) = f(z,0) and
az lf
aflﬁ'l i1

Therefore, expanding f(z,0) around = = 0, we get

(XH)R(0,0) = 2L (0,0), Vi=1,..., 2k

2k—1 1 8’f
f($70)=22,62(0 0)2' + g(z) = az™ ™" + g(x),
i=0
(X*)*r(0,0)
(2k —1)!
function f(z,y) writes

where o = > 0 and g(z) = O(2?) is a C* function. Consequently, the

fla,y) = aa® " + g(x) + yd(z,y),

where ¥ is a C?* function. Finally, dropping the hat, the Filippov system Z = (X*, X 7)s

on U becomes
X (z,y) = (1,02® " + g(z) + yI(z,y)),

X (x,y) =(0,1),
with o > 0. Moreover, d,X; (0,0) = 9(0,0).

(2.1)

The next result establishes the intersection between the trajectory of X+
(satisfying (A)) starting at (0,0) with some sections (see Figure 4).

Yp

0,0
T=—p (0.0 r=20

Figure 4 — Transversal intersections of the trajectory of X+ passing through the 2k-
multiplicity contact (0,0) with the transversal sections {x = —p}, {x = 6}, and

{y =¢}.

Lemma 1. Assume that X' satisfies hypothesis (A). For p > 0, 0 > 0, and ¢ > 0
sufficiently small, the trajectory of X+ starting at (0,0) intersects tmnsversally the sections
{x = —p}, {x =0}, and {y = &}, respectively, at (—p.7_,), (0.7,), and (T, ), where

a 2k 2k

Uo =~ T O™ and 7t = +e3% (E) + O ). (2:2)
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Proof. Let us consider the differential equation induced by the vector field X+

=1
) o 2.3
{ y' = az® '+ g(z) + yd(z,y). (23)

Denote by (z(t), y(t)) the solution of system (2.3) satisfying z(0) = 0 and y(0) = 0. Thus,
x(t) =t and y(t) satisfies the following differential equation

y = at™ 4+ g(t) + yi(t,y).

Therefore, y9(0) = 0 for i = 0,1,...,2k — 1 and y®¥(0) = (2k — 1)!a. Thus, the Taylor
series of y(t) around t = 0 writes

at® 2k+1

Hence, taking p > 0 and 6 > 0 sufficiently small, we conclude that the trajectory of
X+ starting at (0,0) intersects the sections {x = —p} and {z = 0} at the points defined
in (2.2) (—=p,7_,) and (0,7,), respectively. These intersections are transversal, because
X (z,y) =1 for every (x,y) € U.

Now, we shall study the intersection y(t) = ¢, so define k(t,e) = y(t) — e.
Consider the change of variables s = t?* and define the function

L as 2k+1
C(s,e) = k(s ,6)—%—54-@(8 ).

0
Since ¢(0,0) = 0 and ;(0, 0) = % > 0, by the Implicit Function Theorem, there exists a
s

unique smooth function s(¢) such that ((s(¢),e) = 0 and s(0) = 0. Moreover,

Thus, the Taylor expansion of s(¢) around € = 0 writes

s(e) = 5% + O(e%).

«

Since, s(g) > 0 for € > 0 sufficiently small, we can defined t*(¢) = i(s(s))ﬁ. Therefore,

1
2k 2*
t£(e) = +e* () + O ),
a
Hence, the trajectory of X ™ starting at (0,0) intersects the section {y = £} at the points
(Tai, 5) defined in (2.2). We conclude this proof by showing that these intersections are
transversal for ¢ > 0 small enough. Indeed, suppose that X, (Tf, 8) = 0. Thus,
QTP 4 () + (T e) = 0,

&g &€
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+\2k—1 (7€) ~ . . :
and, consequently, (Z2) = ———— =, where § = O(x) is a continuous function such
a+ g(zh)
that g(x) = 2**'§(z). Thus,
-
@5 = 719(% ’EZ e <  max we) e = Ck,
a+g(T2)| celocolaeh | + G(7)

which implies that 7= = O(aTlfl) and, therefore, 2k/a = 0. This is an absurd. Here,
B < R is a neighbourhood of 0. Hence, X (T;L, 5) # 0 for € > 0 sufficiently small. [

The next lemma is a technical result which will be useful for proving our main
Theorems.

Lemma 2. Let o be a real number. The trajectory (u(t),v(t)) of the planar vector field

F(u,v) = (1, —u**"! —o" + o) satisfying u(0) = ug and v(0) = vy > 0 intersects v = 0 at

the point (u*,0) with u* > oI

Proof. For each positive real number u, with " > o, let B, © R* be defined as the
following compact region,

B = {(w ol + )m <u<—ot it (o 4070 <0 <4},

where 6 > 0 is such that 14+ 0 + 9 > 0 (see Figure 5).

First, we shall see that the trajectories of F enter the region B,, through 0B, \L,,
1 1
where £, = {(u,v)|0*T <u < p+ (1404 0)%1,v = 0}. Denote

B = (u,v)\u=—v+p+(1+a+5)zmo v < M}7
B, = {wv)u=(—p"+0)77,0 < v<,u}

B = {(wv)|(=p" +0%1<u <(1+0+08)7 :M},
Bf = {(w)|(-u" + )75 <u< om0 =0},

Notice that 0B,\L, = B v B; LB L B

Let n" = (1,1) be a normal vector to B} Since F‘B; = (1, —u*' =" + o),
we get
(T Fy = ((1,1), (1, —u®*t —u" 4+ 0))

< 1—u? 4o

— 1l—(—vtp+(l+o+6)71)*14g

< l+(u—p-—(1+o+0)m1)* ! 4g

= -0

< 0.
Hence, F points inward B, along B;“. Now, let n~ = (1,0) be a normal vector to B, .
Since, F‘B; = (L, pu" —v") we get (F,n") =1 > 0 and, then, F' also points inward B,
along B, . Let n* = (0,1) be a normal vector to B;. Since F‘B: = (1, —u*t — " + o),

we get (F,n*) = —u*' — " + ¢ < 0 and, then, F points inward B, along B;,. Finally,
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let n = (0,1) be a normal vector to Bf. Since F|B# = (1, —u*"' 4+ 0), we get (F,n*) =

—u**1 4 5 > 0 and, then, F points inward B,, along Bf‘

It remains to study the behavior of the trajectory of F' passing through the
1
point p; = ((—p" + )77, ). Consider the function hy (u,v) = v — p, then

Fhi(p1) = {Vhi(p), F(p1)) =0,
F2h1(p1) = (VFhy(p), F(p)) = —(2k = 1) (—p" + G)% “o

Consequently, F' has a quadratic contact with the straight line v = p at p; and the
trajectory passing through p; stays, locally, below this line. Given that @ = 1, we conclude

that the flow enters the region B, through p; (see Figure 5).
5B
/

‘s { /\"\f\\\\\\\\\\

Ui
i i
AR,

i A
-3 %41 0 2

0.5

Figure 5 — The vector field F' and the region B,. The red curve represents the isocline
—u? " o = 0.

Now, given p = (ug, v9) € R? with vy > 0 there exists o such that p € B,,,.
From the comments above, we known that the trajectory of F' passing through p cannot
leave the region B, through 0B,\L,. Thus, assume by contradiction that the semi-orbit
v, = {(u(t),v(t))|t = 0} is contained in the compact region B,,. From the Poincaré-
Bendizson Theorem w(p) < B, either contains a singularity of F' or is a periodic orbit of
F. In the last case, int(w(p)) contains a singularity of F. Both cases contradicts the fact
that F' does not admit singularities. Therefore, fy;r must leave the region B, through £, .

In other words, there exists ¢y > 0 such that (u(ty),v(to)) = (v*,0) with u* > o
We conclude this proof by showing that u* > oI, Indeed, let py = (aTl—l, O)

and define the function hy(u,v) = v. Then

Fhy(p2) = (Vha(p2), F(p2)y =0,

F?hy(p2) = (VFha(ps), F(p2))

—(2k —1) if k=1,

= 2(k—1)
—(2k— Vo 5T if k> L
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If k=1 or o #0, then F2h, (p2) < 0. Consequently, F' has a quadratic contact with the
straight line v = 0 at ps and the trajectory passing through p, stays, locally, below this
line (see Figure 5). If k > 1 and o = 0, then F*hy(py) = 0. In addition, one can see that
Fihy(py) = 0 for je {1,...,2k—1} and F*hy(py) = —(2k —1)! < 0. Thus, F has an even
multiplicity contact with the straight line v = 0 at py and the trajectory passing through
po also stays, locally, below this line (see Figure 5). Hence, py ¢ ”y;r and, consequently,

N 1
u* > g1, O

2.2 Extension of the Fenichel Manifold

Consider a Filippov system Z = (X, X7 )y and assume that X satisfies
hypothesis (A) for some k > 1. For n > max{2,2k — 1}, let ® € C%' be given as
(1.5). From the comments of the previous section, we can assume that Z, restricted to a
neighborhood U = R? of (0,0), is given as (2.1). Thus, the regularized system Z®, defined

n (1.4), leads to the following differential system
iy

= S0+,
1

i = 5 (00 4 gla) + i) (14 B.)) + L (1 B.(0)

for (z,y) € U and € > 0 sufficiently small. Recall that ®.(y) = ®(y/e).

AR

£

(2.4)

Now, we shall study the regularized system (2.4) restricted to the band of
regularization |y| < e. Notice that ®.(y) = ¢(y/e) for |y| < e. In this case, system (2.4)
can be written as a slow-fast problem. Indeed, taking y = ¢y, we get the so-called slow

system,
= 040,
. % (2.5)
e = 5 (0™ " + g(@) + 9 (,€h)) (1+ 6(H)) + (1 = 6(7)) .

defined for |g| < 1. Performing the time rescaling ¢ = 7, we obtain the so-called fast
system,
€

(1+0()),

((02™ " + g(x) + e§d(z,€9)) (1 + 6(7)) + (1 — 6(7))) -

.I', = 5
—o
: 1 (2.6)

-~

2
Clearly, systems (2.5) and (2.6) are equivalent for ¢ # 0. Taking ¢ = 0 in the fast system,
we get the layer problem
2 =0,

7 =5 (0" 4 9(@) (1+6() + (1 - 63)))

which has the following critical manifold

So= @il = me) = o (050 <o ol ey

1 — ax?~1 — g(x)

(2.7)
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where L is a positive parameter satisfying az?** + g(x) <0 for —L < x < 0. Notice that,
in this case,
1+ ax?*! + g(x)

-1 <
1 —ax?~1 — g(x)

<1, for —L<2<0.

Moreover,
YN ()
g = 5

(az®* ! 4 g(x) — 1),

where 7r27§ denote the second component of 75 . Consequently, the critical manifold
S, is normally hyperbolic attracting on S,\{(0,1)} and looses hyperbolicity at (0,1).
Indeed, ¢'(7)(az®*™" + g(z) — 1) < 0 for all (2,7) € S,\{(0,1)} and ¢'(1) = 0. Thus, the
Fenichel Theorem [12,16] can be applied for any compact subset of S,\{(0,1)}. In what
follows we state the Fenichel Theorem for system (2.6) as it is stated in [3].

Theorema 1 (Fenichel Theorem). Consider L and N positive real numbers, L > N.
There exist positive constants €, K, and C, and a smooth function m(z,e), defined for
(x,e) € [-L,—N] x [0,20] and satisfying m(x,0) = mo(z) (see (2.8)), such that the
following statements hold.

(1) Sae = {(x,9)[y = m(x,e),—L < x < —N} is a normally hyperbolic attracting locally
invariant manifold of system (2.6), for 0 < e < &y.

(i) There exists a neighborhood W of S, ., which does not depend on €, such that for
any zp € W there exists z* € S, satisfying

Ct

oo (t, 20) — o (t, 2%)| < Ke =, t 20,
where p_o is the flow of system (2.5).

The invariant manifold S, . is called Fenichel Manifold.

In the sequel, in order to extend S, . until § = 1, we shall study system (2.6)
around the degenerate point (0, 1). Notice that 1 + ¢(y) > 0 for  sufficiently close to 1.
Thus, performing a time changing we can divide the right-hand side of the differential
system (2.6) by 1 + ¢(y), obtaining the following equivalent system

~ - ~ ~ 1=y 2.
¥ = ax®™ '+ g(z) + gz, €9) + 1=¢(0) (2.9)

L+6(5)

As an abuse of notation, we are still using the prime symbol ' to denote differentiation
with respect to the new time variable. Denote p(y) = (1 — ¢(¥))/(1 + ¢(y)). Computing
the expansion of the function p around § = 1 we get

p(®) = 8 =F - V)" + G- DYG - 1)

where
(_ 1)n+1

n!

ol = 6" (1) > 0
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and Y is a smooth function defined in a neighborhood of 0. Taking § = § + 1, system (2.9)
becomes

' =e¢,
{ 7 = a4 gla) + (U4 P01+ )+ O+ TTE),

Now, we consider the extended system

7 =g,

N _ 1 N N N N 1 w1, o o
E:< ¥ =ax® !+ 2 G(2) + 21 + 9)9(z, 21 + 7)) + §¢>[ H=)"(1+ 97 @),

g =0

Y

(2.10)
where g(z) = **71§(x) with § = O(x). Notice that, the above differential system keeps
the planes € = “constant” invariant. In addition, its restriction to & = 0 corresponds to the
layer problem (2.7). Thus, once we have understood the orbits of (2.10) in an neighborhood
of the origin (z,7,8) = (0,0,0), we can understand how the Fenichel manifold S, . of (2.6)
behaves in a neighborhood of (z,7) = (0,1).

1

Notice that {(z,7,0)|az® ™! + 2~ 15(z) + 5@5[”](—@)”(1 +yY(y)) = 0} is a set
of degenerate singularities of (2.10). Thus, in order to study the differential system (2.10)
in a neighborhood of the origin, we shall apply the following blow-up

U:S*xR, — R?
(@,9,5,7) = (T, g g,
Here,
S* = {(7,7,8) e R¥7* + 7* + &% = 1} and R? = R*\{(0,0,0)}.

Roughly speaking, the geometric idea of the blow-up method is to “change” the nonhy-
perbolic singularity (0,0,0) by a sphere S?, leaving the dynamics away from the origin
unchanged. This allow us to blow-up the dynamics around the origin. Formally, the map
¥ pulls back the vector field £ ‘Ri , defined in (2.10), to a vector field ¥*E defined on

S? x R,. Here, ¥* denotes the usual pullback,
U E(p) = (D¥(p) ™ E(¥(p), p = (2,7,5,7),

In order to study the behavior of U*E in a neighbourhood of S2 = S* x {0}, we have to
extend its dynamics to Sg and desingularize it through a time rescaling. This provides
a new vector field E* which has its dynamics outside S3 equivalent to E g Then, we
consider two charts of S* x Rxg, namely, k1 = (U, 1) and Ky = (Us, 102), where

U = {(7,7,8,7) € S* x Rogly < 0}, Uy = {(7,7,5,7) € S* x Ry > 0},
and "% : Uy , — R? are the following stereographic-like projections
Vg E ) = (9" T, (=9)" r (-p)" E), V(. E ) = (BT 27 g,e ),
with

o 5 = 1 (1 +2k(n—1))
Tok—1 M Top_p M7 % — 1 ’

a1
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and
—n —(2k — 1) 1

S Tr =D T Tx ke P IEkm o1

The maps 1! and 9? are constructed by projecting the sets U; and U, into the planes
7 = —1 and € = 1, respectively.

%)

The above charts are used to push forward the vector fields Ef = E*|;., 1 = 1,2,
to vector fields defined on R?, F; = L E¥, i = 1,2. Here, ¥ denotes the usual pushforward,

* 71

VLB (q) = DU (V)7 a) EF () (0) , a € villh).

T2
Y2
Ko
\
g
T

1

1

Figure 6 — The 2 charts of blow-up, critical manifold S,, and Fenichel manifold S, ..

Finally, consider the composition ¥; = W o ("), i = 1,2. Then,

n 2k—1 1+2k(n—1)
\111(%77“1,61) = (7“1551, - 5, "N €1,

n 2%k —1 1+2k(n—1)
‘1’2(332ay277“2) = (7“255’27 To Y2, To .

The vector field Fj, i = 1,2, can be directly obtained as F; = \IJ;“E/r(”_l)(%_l). Notice
that we are pulling back the vector field £ through V;, extending VI E to r; = 0 and,
then, desingularizing it by doing a time rescaling (i.e. dividing by r("_l)(%_l)).

Moreover,

Uy :=U; nUy = {(T,7,5,7) € S* x Rx[7 < 0 and & < 0}

and the change of coordinates 113 : ¥ (Uia) — 12 (Us2) which pushes forward Fl‘ 1 (Un) to

F ‘% W) writes

n 2k—1 1
. T 1+2k(n—1) T 1+2k(n—1) T+2k(n—1)
'@ZJlQ(.Tl, T, 51) - (51 Ty, _51 ) 7"151 ) .
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2.3 Chart k;

The differential system associated with the vector field F; writes

( Ty = 2(2]{:1_1)[2(216 — ey + ¢Mnay 4+ 20ma?* — nay plp2e=1y (=21
+2n22%G (rtay) — na 2(r? — ri 2k+”)5119(r’fm1,— 1k(n_1)(—r +r#)e))],
< rh = w[ 2r 2y (a + G(rian)) — ¢ (ry — rPF 0 (=)
+2(r " — T 2k+")6119(r’f:131,—rfk(” 1)( r s )51)],
- 2(%1 (14 2k = D) (207 a + 0n) + 990 — ()
2= 4 P e 9 (P, =T (< 0 29)e))].

(2.11)

First, taking e; = 0 in (2.11), we get that the critical manifold S,, in this
coordinate system, is given by

[n]

Sat = { @1, 0123 Mo+ §rian)) = =5 (1 =T (=r ), —L < i <0,

In what follows, we shall write the critical manifold S, locally as a graphic. For this,
define Uy = {(z1,7m1)| — L < r{x; <0} and consider the function H : U; — R defined by

[n]

() = = (+ §(rien) = 5 (L= 0 (=),

[n] [n]\ 2&—1
Notice that H(x1,0) = —az*! ¢2 Thus, for 27 = (—Q;) we get that H(z],0) =
a

0. Furthermore,

oH 2%-2 _ Qb[n -
o —(z7,0) = —(2k — 1)a(a)) —(2k — 1)« (—2(1) # 0.

From the Implicit Function Theorem, there exist open sets Wi, V) € R such that (z7,0) €
Wy x Vi € Uy, and a unique smooth function x; : Vi — Wi such that z1(0) = 2z} and
H(x1(r1),m1) = 0, for all r; € V4. Moreover,

0 if k>1,
if k=1
Thus, expanding z1(r;) around r; = 0, we have

zi1(r1) = 21(0) + rat(0) + O(?)
zf +O(r}) if k>1,

&

Consequently,
Sa1 N (W x Vi x {0}) = {(z1,71,0)] 21 =x1(r1)}.
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Notice that S, intersects the plane r; = 0 (which is equivalent to the sphere
S?) at the singularity (z¥,0,0). Moreover,

[n]
* R R
DF(x7,0,0) = 0 0 0 )
0 0 0
where
0 if k>1,
12
wy =y (o) (0)
- k=1
4@ Zf Y
s 0 if n>2k—1,
h 2*9(0,0) if n=2k—1landk # 1.

Hence, in the sequel, we shall use the Center Manifold Theorem [8] to study F; around
the degenerated singularity (x7,0,0).

One can easily see that \; = —¢["]n/2, Ay = 0, and A3 = 0 are the eigenvalues
of DF(z7,0,0) associated with the eigenvectors

12
2wy,

2
U = (17070)7 Vg = (qﬁ["]n’ 1:0> ) and vz = ((/5[”]71(1 +w711:,3k:)707 1) )

respectively. Thus, consider a box Q = [x,0] x [0, p] x [0,v] around (z7,0,0), where
x < xj and p,v > 0 are small parameters. By the Center Manifold Theorem we know
that within Q there exists a center manifold W€ = {(z1,71,€1)| 21 = k(r1,£1)} tangent
to the eigenspace generated by vy and vz at the singularity (z7,0,0). Moreover, since
(1,0,0) e Wn S, 1 # &, we conclude that W contains the critical manifold S, ;. Assume
that W = h="(0), with h(z1,r1,21) = 21 — k(r1, 1) and k(0,0) = 2*. Since VA(0).v5 = 0
and v’f\L(O).Ug =0 we get

ok 2w;}? ok 2 1
—(0,0) = d —(0,0)=——(1 3
57“1( ) ) gb[”]n an 551( ’ ) gb[”]n( +wn,k)’
respectively. Therefore,
« 2w 2
k(ri,e1) = z7 + Tlgzﬁ[”ifn + 51@(1 + w71L3k) + Oa(r1, €1).

Now, we shall see that the center manifold W€ is foliated by hyperbolas. Indeed,

from (2.11) we have that
d?”l 1

dey  e(1+2k(n—1))

142k(n—1)

Thus, solving the above differential equation, we get that &1 — e17r1(e1) is constant

on €1. This means that, for each € > 0, the surface

E. = {(z1,r1,e1)| e = ¢},
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is invariant through the flow of (2.11). Consequently, the manifold W€ is foliated by
invariant hyperbolas 7. = W¢n E., € > 0, which correspond to orbits of (2.11). Thus, we
can write v. = {¢r, (t,€) : t € I.} where ¢p, (t,€) is a trajectory of (2.11) satisfying

~(L42k(n-1))) ~(L42k(n-1)))

@Fl(oag) = (k(p,&“p yPEP EWCmem

and . is a neighborhood of the origin. Hence, ¥, is an orbit of £ (2.10) lying in the
plane £ = e. Therefore, (after the translation § = 1 + ) we get it as an orbit (2.6).

Denote by S, . the Fenichel manifold S,. of (2.6) for & = ¢ written in the
coordinates (z1,71,€1). We claim that, for € > 0 sufficiently small, the Fenichel manifold
S;’E can be continued as an orbit of F} in W€ namely .. First, noticed that the orbit ~.
is e—close to 5,1 at 1 = p. Indeed, from the relation 817“%4_%(”_1) = ¢ satisfied by ., we
see that ¢ (0,€) approaches to S,; = W n {e; = 0} when ¢ goes to zero. Now, since
Sia is also e—close to S, 1, we get that S;,a and 7. are e— close to each other at r = p.

Noticing that v. and S;E are related to orbits of (2.6), which are e-close to each other, we
Ct

get from item (ii) of Fenichel Theorem (1) that d(pp, (t,€),S,.) < Ke = . Hence, taking
any positive time ¢, € I. we conclude that S} . and 7. are O(e™¢) close to each other at

ry = p < p, with ¢ = Cty > 0. Therefore, for each € > 0, 7. can be seen as a continuation
of S, on W¢ (see Figure 7).

Now, at €; = v we have
Ve N {e1 = v} = (k;((gy1)1+2k1(n—1),;/)7 (gyl)uzﬁn—l)?u)
= (’f(O, V),O,v) + O(e D),

Hence, we conclude that S} .~ {e; = v} is (’)(51”’&"—1)) close to (k(0,v),0,v).

Remark 2. Notice that W n {ry = 0} is an orbit of (2.11) containing the point
(x1,71,61) = (k(0,v),0,v) which the backward trajectory approaches asymptotically to
(23,0,0) (see Figure 7). Indeed,

2
Wen{r =0} = {(%;0,51)‘ Ty =] + 51¢[n7]n(1 + Wigk) + 0(5%)}
and, therefore, W n {r; =0} n{e; =0} = {(27,0,0)}.

In what follows, we shall continue 5;76 in chart k9 by following the trajectory
of (z3,y5,0) := 112(k(0,v),0,v) (see Figure 8).

2.4 Chart k-

The differential system associated with the vector field F;, writes
rh= 1,
/ 2%k—1 ~iom gl n 2%k—1 2%—1
Yo = w3 (a+g(rize)) + 7(_92) (L4753 9T(ry " y2)) (2.12)
+(ry T 15 ye) (5, 13y + 1)),
!
ry = 0.
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Figure 7 — Behavior of the vector field (2.11) around (z7,0,0).

Lemma 3. The forward orbit of (2.12) starting at (x3,y5,0) intersects {yo = 0} at

(w2, 92,72) = (n,0,0)

where 1 is a constant satisfying

0 if n>2k—1,
> Op ) = 9(0.0) 2F—1 2.13
1 Ok —((’)> if n=2%—1andk # 1. (2.13)
a
Proof. Set ¢, = (2/( 1) TG 0 and ¢, = —ac?* < 0. Consider system (2.12)
restricted to ry = 0. Applylng the change of variables (z2,y2) = (cyu, ¢,v), v <0, and a
time rescaling by the positive constant c,, system (2.12)|,,—0 writes
o= 1
’ 2.14
{8 s, (2.14)
where
0 if n>2%k—1,
= (0,0
Snk L9009 ok~ landk % 1.
acl
Take (ug,vo) = (x5 /cs, Y3 /cy). Since y5 = —1/_1+§’I§(_"1—1), we have vy > 0. Thus,

by Lemma 2, the forward trajectory of (2.14) starting at (ug,vo) intersects {v = 0} at

(u*,0) with u* > 32'“ '. Consequently, the forward flow of (23,5, 0) intersects {y» = 0} at
the point (z3, Y2, 7“2) = (n,0,0), where n := c,u" is a constant satisfying n > o, . O]
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Figure 8 — The 2 charts of blow-up, critical manifold S,, and Fenichel manifold S, ..

Proposition 1. There exist a > 0 and €* > 0 such that, for each ¢ € (0,e*], the forward
trajectory of system (2.6), starting at any point in the set
2k—1 2k—1

(@3-, (@3 +a) x (1+eTHTT (5 —a), 1+ T (45 +0))

intersects the line {y = 1}. In particular, the Fenichel manifold S, . intersects {y = 1} at
(x,7,¢) = (z,1,¢€), where

vo—= 40 (5/\*+1++(n—1)) 7 (2.15)
with n satisfying (2.13) and \* := S —
Ui L T 1+2km—1)

Proof. Denote S2_ := th12(S,. ). Notice that S2_ N {y, = y3} is O(em) close to
(x3,v5,0). From Lemma 3, the forward orbit of (x3,y3,0) intersects {y, = 0} transversally
at (za,y2,72) = (n,0,0). Thus, from the Implicit Function Theorem, Sia also intersect
{y2 = y5} transversally at

(77 + O(Em)’()’gm) ;

for € > 0 sufficiently small. Furthermore, there exist a > 0 and b > 0 sufficiently small
such that any forward trajectory of (2.12), starting at the set

[1]

= (.I;—CL,J};—{-CL) X (y;_aay;+a) X [076)7

also intersects the set {y» = 0}.

Going back to the original coordinates, we conclude that the forward flow of
Sac intersect {y = 1} at (x,7,¢) = (2, 1,¢) with

xE — 8)‘* (n _|_ O (gl+2ktn—1)>> = 8>\*77 —|— O (g/\*—*_H—T%n—l)) .
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Moreover, writing the Z in the original coordinates we conclude that, for every ¢ € [0, "),

e* = b= “any trajectory of system (2.6) starting at the set

2k—1

A E & A\E * TIohim—1) & L_li *
et (xy —a), et (x5 +a)) x (1 +eT#20TD (y5 —a), 1 + ™20 (yS + a)

intersects the line {7 = 1}. O
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3 Transition maps of the regularized system

In this Chapter, we will continue with the study of the C"-regularizations of
Filippov systems around visible regular-tangential singularities of even multiplicity. More
specifically, we shall understand how the trajectories of the regularized system transits
around these singularities. Thus, we will characterize two transition maps, namely the
Upper Transition Map U.(y) and the Lower Transition Map L.(y). For this, we will use
the results obtained in the previous chapter with respect to the extension of the Fenichel
manifold.

3.1 Main Results

Our first two main results guarantee that under some conditions the flow of
the regularized system Z* near a visible regular-tangential singularity defines two distinct
maps between transversal sections (see Figure 3). Before their statements, we need to
establish some notations. Given ® € Oz as (1.5), with k > 1, and n = 2k — 1, define

E3 1
T = EA*U +0 (5/\ +1+2k(n71)) ’

where \* := TS 2ktn=1) kT(ln ) and 7 is a constant satisfying
0 if n>2k-—1,
1
> 3H0.0 2k—1
" —((’)> if n=2k—1landk #1,
o'
and

Yor=T_, T+ 0(ep) + ™ + O + O,

2k—1 (31)
i =Ts+e+0(0) + > OO~ 'al) + O(x2¥),

i=1
where 7_, and 7, are given by Lemma 1 and 3 is a negative parameter which will be
defined latter on.

In what follows, we establish the main results of this chapter, which will be
proved in the Sections 3.2 and 3.3, respectively.

Theorem A. Consider a Filippov system Z = (X, X7 )y and assume that X satisfies
hypothesis (A) (see Section 2.1) for some k > 1. Forn = 2k — 1, let ® € Cu;' be
given as (1.5) and consider the regularized system Z* (1.4). Then, there exist py, 0y > 0,
and constants B < 0 and ¢,r,q > 0, for which the ﬁ()llowmg statements hold for every
pE ( >P0] 0e [1'5790] = (0 A ); with \* := W, and € > 0 sufficiently small.

(a) The vertical segments

‘7”8’)‘ = {=pb e, ypal and Vi = {0} x L5, v5 +re 7]
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and the horizontal segments
ﬁ;)\ = [_:07 _5)\] X {g} and F& = [xa - 7“6_6%,1'5] X {5}
are transversal sections for Zf .

(b) The flow of Z% defines a map U. between the transversal sections \A/pf,\ and Vg
satisfying
U. : 175/\ — ‘798
y — yp+0(e ).

(c) the trajectories of Zf starting at the section 172/\ intersect the line y = € only in

two points before reaching the section \N/;. Moreover, these intersections take place at
ks oA Y H..

The map U, is called Upper Transition Map of the reqularized system (see Figure 9).

Figure 9 - Upper Transition Map U, of the regularized system ZZ. The large domain

Vp y Is contracted into the small Ve The dotted curve is the trajectory of X+

passing through the visible 2k-multiplicity contact with > with (0, 0).

Theorem B. Consider a Filippov system Z = (X, X7 )y and assume that X" satisfies
hypothesis (A) (see Section 2.1) for some k = 1. For n = 2k — 1, let ® € Cir' be
given as (1.5) and consider the reqularized system Z2 (1.4). Then, there exist py,0y > 0,
and constants c,r,q > 0, for which the following statements hold for every p € (5’\, pols

0 € [z, +re = 05], A€ (0,\*), with \* = n

2k(n—1)+1’ and £ > 0 sufficiently small.

(a) The vertical segments
Vg = {0} x [yg —re” =7, y5]
and the horizontal segments

FIS’/\ = [—p, —*] x {—¢} and ﬁe = [z, 2. + re_e%] x {e}

are transversal sections for ZS .
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(b) The flow of Z2 defines a map L. between the transversal sections HE)\ and VO,
namely
Le: V;,,\ - ‘705
r o yi+O(e7T).

The map L. is called Lower Transition Map of the reqularized system (see Figure 10).

Figure 10 — Lower Transition Map L. of the regularlzed system Z The large domain
5. is contracted into the small Ve The dotted curve is the trajectory of X
passing through the visible 2k-multiplicity contact with ¥ with (0, 0).

Remark 3. The proofs of Theorems A and B is based on the analysis of the corresponding
slow-fast problem associated with the regularized system Z* (1.4). This analysis relies
on the normal hyperbolicity of a related critical manifold. In previous chapter, when
n = max{2, 2k — 1}, we saw that this critical manifold looses its normal hyperbolicity. This
problem was overcome by means of blow-up methods. When k = n = 1, we do not face
such a problem and the results are directly obtained from Fenichel Theory. In this case,
Theorem A is already proved in [3] and Theorem B can be obtained analogously. Thus,
through out the thesis, we shall assume that n = max{2, 2k — 1}.

3.2 Upper Transition Map

This section is devoted to the proof of Theorem A. For this, we need to
guarantee that under some conditions the flow of the regularized system Z® near a visible
regular-tangential singularity defines a map between two vertical sections. Thus, it will be
convenient to write this map as the composition of three maps, namely P*, Q¥ and R"
(see Figure 11). The map Q" will be defined through the flow of Z2 restricted to the band
of regularization, and the maps P* and R" will be given by the flow of Z2 defined outside
the band of regularization. In what follows, we shall properly define these maps.
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Ys

Figure 11 — Dynamics of the maps P*, Q¢ and R". The dotted curve is the trajectory of
X+ passing through the visible 2k-multiplicity contact with 3 with (0, 0).

3.2.1 Tangential points and transversal sections

In Proposition 1, we have proved that the Fenichel manifold of system (2.4)
intersects {y = ¢} at (z.,¢) (see (2.15)). Now, we shall prove that if (¢/(¢), €) is a tangential
contact of Z® with the line {y = ¢}, then x. > 1(¢).

Lemma 4. Let 1(g) be a tangential contact of the vector field Z2 (2.4) with y = ¢. Then,
(a) () = O(e™=1), and
(b) z. > )(e) for e sufficiently small, where x. is given in Proposition 1.

Proof. First, we shall prove statement (a). Let 1 : [0,£9] — R be a function, defined for
g0 > 0 small, satisfying mZ2(1(c),e) = 0 for every € € [0,50]. Here, mZ2 denote the
second component of Zf . Then,

- 1( (ws,e)( a(1) + (1 - 2(1)))

= ¢( ) T () T((E) + ed(v(e), €),

where § = O(z) is a continuous function such that g(z) = *7'§(x). Then,

oot = —E0WE:E)

a+g1(e))
Notice that 19(1#() ) 19( )
4l = a+a<w’<e>>‘5< et o | Ll

where B < R is a neighbourhood of 0. This implies that A(e) = O(e), i.e. Y(e) = (’)(eﬁ).
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Now, we shall prove statement (b). From Proposition 1,
A* N
T. =€ 77 + O (5 1+2k:(n71)) ,

where \* = and 7 > o, k, where o, satisfies (2.13).

v
1+ 2k(n—1)

First, suppose that n > 2k — 1. Then, > A" and n > 0. Hence, by

1
2k—1
statement (a), we conclude that z. > ().

Finally, suppose that n = 2k — 1, with k # 1. In this case, A* = 1/n. Define
1
9 W
o= - (L)
a+g(y(e)

Notice that ¥(g) = ﬁa(g). Statement (a) implies that 1 is continuous at ¢ = 0 and

1

¥(0) = 0. Therefore, a(e) is also continuous at € = 0 and a(0) = —((0,0)/a) ™. Defining
r(e) = a(e) — a(0) we conclude that

Since 1 > 0, n1 = a(0) and 7(0) = 0, we conclude z. > 1 (e). O

Statement (i) of Theorem A will follows from the next result.

Proposition 2. Consider the Filippov system Z = (X', X )s given by (2.1), for some
k=1, and y,, and y; given in (3.1). For n > max{2,2k — 1}, let ® € Cg;" be given as
(1.5) and consider the reqularized system Z* (2.4). Then, there exist py, 0y > 0 such that
the vertical segments

Vin=1=n} x [e,45,] and Vi = {6} x [y5, 45 + re” ],
and the horizontal segments
f[;/\ = [—p, —5’\] x {e} and ﬁg = |z. — re’s%,xa] x {e},

are transversal sections for Z® for every p € (% po], 0 € [2e,00], X € (0,\*), with
n

A — m, constants c,r,q > 0, and € > 0 sufficiently small.
n JE—

Proof. First of all, we take pg, 0y > 0 sufficiently small in order that the points (pg,0) and
(6, 0) are contained in U, domain of Z. Given (—p,y1) € V7, and (0,2) € Vg, we have

(22 (=pn) (1,0)) = mZE (=p.y) = X{ (=) =1 £ 0,
(Z2(0,2),(1,0) ) = M Z2 (0,12) = X (B.9) =1 # 0,

respectively, where 7 Z% denote the first component of Z®. Hence, V> \ and Vg are
transversal sections for Z2.
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From Lemma 4, we know that any branch of zeros ¢(e) of the equation
7o Z2 (2, ) = 0 satisfies () = O(gﬁlfl). In other words, the zeros of T, Z%(z, €) lie in an
O(aTlfl) neighbourhood of 0. Since p € (e*, po], 0 € [7., 0], A € (0, \*), the intervals I:TZ’/\
and H. are always away from any O(eﬁ) neighbourhood of 0 and, then, 7, Z% (z, ) does
not admit zeros inside these sections. Consequently, given (z1,¢) € PA[; L and (z2,¢) € H.

we have
<z§> (z1,€) , (0, 1)> — 12 (21,€) # 0,
<Z§’ (22,2), (0, 1)> = 1, 2% (2,¢) # 0.
Hence, ﬁ; ) and H. are transversal sections for 7z2. O

3.2.2 Construction of the map P*

First, we shall see that the backward trajectory of Xt (2.1) starting at (—¢*, )
reaches the straight line {z = —p} at (—p,y;,) (see (3.1)). After that, the map will be
obtained through Poincaré-Bendixson argument.

Accordingly, define pi : Ir, ) x U x [0, pg] = R by

,u(t,x,y,p) = 90§(+(t7$7y) + P,

where px+ = (py+,%+) is the flow of XT, I, ,) is the interval of definition of ¢
ox+(t,z,y), and U < R? is a neighbourhood of (0,0). Since 1(0,0,0,0) = 0 and
a,u(0,0,0,0) = 1, by the Implicit Function Theorem there exists a unique smooth

function (z,y, p) — t,(x,y), defined in a neighbourhood of (z,y, p) = (0,0, 0), such that
t0(0,0) = 0 and u(t,(z,9),z,y,p) = 0, i.e. x4 (t,(2,y),z,y) = —p. Therefore, for p > 0
and ¢ > 0 sufficiently small, the backward trajectory of X* starting at (—¢*, ) reaches
the straight line {x = —p} at

(= e lty(=2*2), =),

In order to prove that ¢35 (t,(—e* ¢), —e*,e) = y5.x» we shall compute the
Taylor series expansion of the function p%+ (,(z,y), z,y) around (z,y, p) = (0,0, 0). Notice
that

0
@§(+(tp($7y),l’7y) = @g(+(tp($70),x,0) + y@(@§+(tp($ay)y$ay))
+0(y?),
= (,Og(Jr(tp(l',O),l',O) + Yy
X a§0§(+

dy 1
_6@2
= (pg(*(tl)(l‘a())uxao)—i_y a§+

n a*g-;ﬁ(tp(o, 0),0, 0)] +O(zy) + O(y?).

[ 0%+ ot,
] ot (tp(l‘,()),l',()))aiy

(tp(2,0),2,0) | + O(y*)

(,0)

at,

(tp(()? 0)7 07 O))ﬁiy(ov O)
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It is easy to see that

0%+ ot,

ot (tp(()? 0)7070)) = f(_p7y—p) and @(0,0) =

_Opx+
oy

(t,(0,0),0,0).

This last equality is obtained implicitly from % (¢(0,y, p),0,%) = —p and using that

1
5<Pa;<+ (¢,(0,0),0,0) = 1. Thus, substituting the above relations into (3.2), we get
2 — 2 N
Px+ (tp(l', y)v xz, y) = Px+ (tp(l'a 0)7 x, 0) + Y _f(_p7 yfp)Ty(tp(07 0)7 Oa O) )
3.3
02 (
+ 925 1,0,0),0,0) | + Oy + O

Expanding the coefficient of y in (3.3) around p = 0, we have

_ 590§(+ a¢§(+ .
_f(_pv y—p)Ty(tp(Oa O)a 07 O) + 5y (tp(()? 0)7 07 O) =1+ O(p)

Thus, substituting the above equality into (3.3), we obtain that
Px+ (o, y), 2,y) = ¢k (t,(2,0),2,0) + y(1 + O(p)) + Oay) + O(*).
Furthermore, from [10, Theorem A}, we know that
O+ (t,(2,0),2,0) = g, + Ba?* + Oz 1),
where sign(3) = —sign((X*)?*h(0,0)), i.e. 3 < 0. Thus, we conclude that
Px+ (ol y),2,y) =7, + B2 + O 1) + y(1 + O(p)) + O(zy) + O(y*).
Taking z = —¢” and y = ¢, we obtain
P+ (t(—e*, £,p), —, e) =7 ,+ 5(1 + O(p)) + B £ OV L O, (3.4)

which we have called by 7 ;.

Finally, consider the region

R = {(m,y) p<r < —etNe<y < s (t, —5A,5>,Vt € [O,t(—eA,s,p)]},

which is delimited by ‘7;/\, FAI;A, and the arc-orbit connecting (—p,y; ) with (=, ¢).
Since X' has no singularities inside R, we conclude that the forward trajectory of X"
starting at any point of the transversal section V| must leave R through the transversal

~

section Hy ,. This naturally defines the map P*: V' — H_ ,.

3.2.3 Exponentially attraction and construction of the map Q¥

As we saw in Chapter 2, the Fenichel manifold S, . of (2.5) is described as a
graph
g=m(z,e), —L<x<-N, 0<e<e,
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where m(x,¢) is a smooth function, and L > N > 0 and g > 0 are small parameters.
Notice that

1+ ax® 14+ g(x)) | (3.5)

—1
m,0) = mofo) = ot (0 0
which is the critical manifold of the system (2.6)._o. Thus, we write
m(z,e) = mo(x) +emy(z) + O(?),

for every —L < x < —N and 0 < € < . Since S, is an invariant manifold for (2.6), the
function m(x, ) satisfies
om 1L+ f(z,em(z, ) + d(m(x,e))(f(x,em(z,e)) — 1)

5%(%5) = 1+ ¢(m(z,e))

Hence, using that

20(2k — 1)2?*=2 + 24/ ()

! = 3.6
¢ (mo(@)) my(x)(—1 + ax?—1 + g(x))?’ (3.6)
we can compute
a2k — 1)a?=2 + ¢'(x)
The next result provides some estimations for mg(z).
Proposition 3. For —L < x < 0 there exist positive constants Cy, Cy such that
CiA/ x| < 1 —=mo(x) < Coi/ x|,
C (3.8)

1 < mp(x) < :

| o/ |xn2k+1

Proof. In order to obtain the above estimations, we consider the equation ¢() = ¢(mg(z))
for -1 < g <1land —L < x < 0. Of course, § = mq(x).

On the other hand, from (3.5),

o(mo(z)) = 1+ 202?71 + O(2?). (3.9)
In addition, expanding ¢(4) around § = 1 we get
~ (1) . R
6@ =1+ DG 1y 1o - 1), (3.10)

Subtracting (3.10) from (3.9) we get that the equation ¢(3) = ¢(mo(x)) is equivalent to
the system

§= (Q - 1)n7
u= 2?1
(n) 1 n+1 2
H(s,u) = ¢ n'( )S —2au+O(s )+ O(uTEl) = 0.
GH ()

Since H(0,0) = 0 and a—(O, 0) = — # 0, the Implicit Function Theorem implies the
s n!
existence of a unique function s(u), defined in a small neighborhood of u = 0, such that

s(0) = 0 and H(s(u),u) = 0. Moreover,

s(u)

2am!

— ¢(n)(1)u + O(u?).
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Therefore, the equation ¢(§) = ¢(mo(x)) is solved as § = 1 — ((—1)"s(z**~ 1)) Recall
that ¢ = @‘[_11], where ® € C%:'. Thus, from Definition 1, sign(¢™(1)) = (1)

Consequently,
mo(z) =g =1 ”W“ T4+ Oz ), L <z <0. (3.11)
Finally, the inequalities (3.8) are obtained directly from (3.11). O]

The next proposition is a technical result, which is used in the following result.

B n
C2k(n—1)+1°
exist K > 0 and gy > 0, such that, if 0 < € < g¢ the invariant manifold y = m(z,e)

Proposition 4. Consider —L < —N <0 and 0 < A < \* Then, there

satisfies
eK

mo(ﬂ?) — W < m(l’,g) < mO(I), (312)

for —L < & < —&,

Proof. Consider the compact region

~ K ~
B = {(m,y) L <2<~ mo(x) - ngi <y < mo(x)}.

12k(n—2)+2

We shall prove that the vector field (2.6) points inwards B in the following three boundaries
of B,

B = { ) ~L << == ) = mle) — i L
T ={(z,9): —L<ax < - F=mp(z)}, and
B { L) ml-D) - e <D < ml-D)}
On the border B, the vector field (2.6) writes
Z2@,§u@) = (e (14 @ @@) .1+ f(@,5-(2)) + D) (f(,25(2)) = 1).
A normal vector of B~ is given by

_ N Ke(2k(n—2)+2)
e (CL’) - (m6($) o n’r\b/‘x|(2k+1)(n72)+47 _1) ’

Thus, it is enough to see that

o3z ) = [0+ 000 (o) - enen )
— |1+ f(@0@) + 0(7-@) (f (. 65.(@) = 1)

< 0.

(3.13)
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Now, expanding in Taylor series ®(y.(x)) and ¥(z,ey.(x)) around € = 0, we
have

VDK | (1) 80 (o) K

- S\T, €
o/ 2k(n—2)+2 W p2lk(n—2)+2 || + sz, €),

Wz, ey.(z)) = Iz, 0) + r(x, ),

where s(z, ) and r(z, ) are the Lagrange remainders of ®(y.(x)) and J(x, ey.(x)) respec-
tively, i.e. for some ¢, d € (0,¢), we get

s(x,e) =

[(—1)%(”) (Fe()) Kn] e

22k(n—2)+2 n!’ and

r(z,e) = [19y (z,dya(z)) (mo(a:) _ %)] _ (3.14)

Notice that, the inequality (3.13) can be written as

L(z,e) + T(x,e) + O(x,e) <0,

where

Lw.2) = e[mi(a)(1 + @umo(e) + LD =1

)1+ ®(mo(2)))V(x.0) .
(2) @ (mo(@) K K2 (2k(n = 2) + 2)¥ (mo(x))
Y p2k(n=2)+2 n</|x|(4k+1)(n_2)+6
, 2Mo(@)9(, 0 (mo(e) K, Kz, (2)) (1L + D(mo(a))
- n Lﬁzk(n—é)jz Y p2k(n—2)+2
SBT3+ Do)
2mofa)r(@ ¥ (mo(@)K | K (1S (mola)) K'm(c) <

—TMmMo\T

2m

+e
A p2k(n—2)+2 = R p2lk(n—2)+21 Al
— (=)' (mg(z)) K (2k(n — 2) +2) €
Z; n A @R+ D) +1)(n—2)+20+4 i
T (D)W (mg(x) K el

_ T l,aya(x)ﬁ(x,ﬁﬂs(ﬂﬁ))
e
O.e) = (=l 0) + 1) s(z,) — K (2k(n —2) + 2)(1 + ®(my(z)))

n{/|x|(2k+1)(n—2)+4
n—-1, )
+Z ( 1)lq)l (mO(x))Klil(_f(x’ O) + 1)

&~ Yop2k(n—2)+20 ]

~

+ | emg(z) —
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Now, we shall prove that the functions L, T" and O can be bounded. Indeed, by (3.8) and
(3.6), we have that, L(z,e) can be bounded, choosing K big enough depending on Cs, L,
n, k, a, M, Mn, and 9., where

e« M is such that |g(z)| < M|z|** for all —-L <z <0.

~/

e M is such that [§/(z)| < M|z| for all —L < z < 0 with ¢(z) = 222§

o My, is a positive constant such that «(2k — 1) + §'(2) = My, for all x € [—L, 0].

o Upin = min{yd(z,0): —L <z <0,-1<y<1}.

[, P’ K(f(z,0)—1
e [t + apmatany + FEREIEDZD )1+ 0m0(a)00,0)

B a

[, @' (mo(z))K(f(z,0) — 1
= ¢ _(mo(:c)—mo(x)ﬁ(m,O))(l+<I>(mo(a:)))+ ( 0({1/%) )]

[ neoki1 P 20(2k — )22 4 24/ (2)) K |
< o] (el ) ) - e )

I L= f(,0))  Colz| 5 (1 — fla,0)) VaZh(r—2)+2 |
- [ 20, |22 (Ol 5 = Yin) — (2a(2k — 1)2252 + 22225 (2)) K |
| Co(1 = f(, 0) a2+ _
o | 262G + T i) — 202k — 1) + 25/ (@) K

i Co(1 = f(a,0)) 2|5
_ 205(Cy + L™ 5 [9min]) — 2Momin K £
b Co(1— f(x,0)) e
_ 205(Cy + L™ 5 [9mmin]) — 2Mmin K >
= Cy(1 + L2=(a + ML)) /|21

£
< —_

n /|x|n72k+1 ’

Now, we need to bound the function T'(x,¢). Using (3.6) and (3.8), we obtain

am (@@ (mo@)DK| g1 €
VeSS

3K2(2k(n 242 (mo(@)) | 2 €
n R /|a|B+D(n=2)+6 = e o/ 2T

emo(2)9(,0)0 (mo(@)K | g3 <
Yak(n2)12 = N e

I efe)(1+P(mo@)) | g4 <
g2k +2 DY
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€

SR e ) (mo@)| o p S
gdk(n-—2)+4 = Y W’
emo(@)r(z, £)(1 + B(mo(a))] < dP——— .
€ W

€2m0( ) (l’ 5)@( K < d?#
o 2k(n— 2)+2 = {/W’

where

A = (20(2k — 1) + 2M L) K" 75),

(2k+1)(n—2)+4
2 = K2kn=2)+2)(2a(2k— 1)+2ML)€2 e
3 nCh — )
B = max]@a@E-1)12MIK

- b @ke1) o)
—1)(n—
A = 2K [l M),

K29 max| 202k — 1) + QML) 2o \(2li=242)

& = a2y
1

& = 2, |(L*F 1 2dK) M),

d? . |19ym|( M 2dK)(20é(2k'—1)+2ML)K 2 )\(2k(n 2)+2)

e Cl ’

¥y, = max{U,(z,y): —L<2<0,-1<y<1},
Umax = max{pd(z,1m): —L<x<0,—-1<9,9 < 1}

To bound the last terms of 7', notice that by (3.10), we get
dM (1)
(n—10!
for 7 sufficiently near to 1. In the particular case § = mg(x) for x € [—L, 0], we have
oM(1
¥ ma(a) = (mofe) ~ 1 () + 60, (3.16)

with ((z) = O(mo(z) — 1), thus there exists a positive constant M such that IC(x)] <
M|mgy(x) — 1|. Therefore, by the above information about ¢ and the first inequation in
(3.8) for —L < x < 0, we obtain

o () = G-1)""+O0(H-1)"Y), 2<i<n—1, (3.15)

|dM)(1

(2k—1)(n—1) 1)(n ) ~ _—
|2 (mo(2))| < C3 |2 ((n_(l))!|+MCQL g ),

i.e. for each | € [2,n — 1] we have |® (my(z ))| < Cfor all =L < z < 0, with () =

n—l) ~ P (1
cy L DC’; and C) = |((l))| —|—MC L= Consequently,
n_
N V) Ko e
= {2 20k(n—2)+21 nyoToE n/|x|n—2k+1’
LN DO (@) K k(=) + ),
n A/ 2 @E(I+1)+1)(n—2)+21+4 ny -oE n/|w|n72k+1’

ele(2)0(z,efe(2))| < d

o o p2lk(n—2)+20 ||
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where
-1
8 & CZKZC'Q l_)\(m(nfz)wz)
. d = —c n
3 l' ?
=2 '

n

o nle CZKHI(Qk(n _ 2) + 2) €l+1i/\(2k(l+1)(n—2)+2l+2k+1)
° A I'n ’

n—1

. d0— 2 Cg_lKll|39max|Ol€l—)\((Qk("1)n+1)(l1)).

1=2
Finally, using that, for any n; > 0, there exists C),, > 0 such that
@) < Cp, for L = <G <1,

and using that, for € > 0 small enough

- ( O LB 4 1-(2ae) K) <Gulz) < 1, (3.17)

if - <2 < —¢* and also by (3.14), one has

K(2k(n—2)+2 ~ ~ <

‘(&m&(m) Biry o= i 59&9(%5%)) s(@,¢)] < diIW’
with

dn (n= 2k+1) K(2k(n — ) + 2)62_“%) n 5|19max|

n
C’ s - )\((an+1)(n 2)+2k+1)
Since 0 < A < \* one has that lir%di =0, for all i € {1,...,11}, hence for ¢ > 0 small
E—>

enough, we get
11

. € 1 €
T < d: < -
| (‘CL.7 €)| ; g 2

n/|x|n72k+1 n/|x|nf2k+l.

Now, we shall prove that the function O(z,¢) < 0 for all z € [-L, —*] and
£ > 0 small enough. Indeed, since for each n > 2, we know that (—1)"¢™(1) < 0,
then (—1)"¢™ () < 0, for all § sufficiently close to 1 and by (3.17) we obtain that
(=1)"¢™ (go(z)) < 0, for all x € [~L, —<*] and ¢ sufficiently enough. Hence, by (3.14) we
have that s(z,e) < 0 for all 2 € [~L, —£*] and & > 0 small enough. Therefore,

(—f(x,0) + 1)s(x,e) <0,

for all € [~L,—<"] and £ > 0 small enough. After that, using (3.16) we can conclude
that (—1)'¢Y(mg(z)) <0, for all z € [~L,0] and [ € {2,...,n — 1}. Consequently,

—1 l(I)(l ( ))Kl l
Z 4/xzzk(n 2)+21 il

—(=f(z,0)+1) <0,
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for all z € [-L,—¢"] and ¢ > 0 small enough. Last of all, as 1 + ®(mg(x)) > 0, for all

x € |—L,0], we get
_EQK(Qk(n —2) +2)(1 4+ ®(mo(x))) <0
n{/|x|(2k+1)(n72)+4 ’

for all z € [~L, —*] and ¢ sufficiently small. Of this way, we obtained the result.
Finally, we conclude that

(Z2(2,0e(2)),nz (2)) < Llw,e) +|T(x,e)| + O(a,¢)

1
< (-2+3

€
— <
2) |z
Therefore, the vector field 7? points inward B along B™.
In the border B* the vector field 7? in (2.6) is of the form

0 (e(L+®(mo(z))) emo(2)d(x,emo(z))(1 + ®(mo(x)))
Ze = ( 2 ’ 2 ) ’

£

and the normal vector is n* (x) = (mg(z), —1), thus using the second inequation in (3.8)
for —L <z < —¢*, we get

@@y = S (1+ mo@)) (mh(x) = mo(w)da. emo(a)))
5 2 ,
g 2(1—]’2(:(:,0)) (moéj@ = )
g 5(1 — f(:mO)) (L;’M - ﬁma")
> 0,

for L enough small, therefore the flow points inward B along this border.
Finally, at the boundary B' one has that 2’ > 0 thus the flow points inward B.

Now, from the Poincaré—Bendizson Theorem we know that any orbit entering
B stays in it until it reaches x = —&*. Moreover, we know that the invariant manifold Sae
at © = —L is given by

m(—L,e) = mo(—L) + emy(—L) + O(e?).

Using (3.8) and since L is small enough one has that

mIO(_L) - mO(_L)ﬁ(_Lao) = Lng;lkﬂ - ﬁmax > 07

n

thus from (3.7) my(—L) < 0. Therefore, adjusting the constants to have

2k(n—2)+2

K=-L 5 m(-L),

the manifold enters B and satisfies (3.12) for —L < x < —&™. O
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From Theorem 1 (Fenichel Theorem), we know that, for ¢ > 0 sufficiently small,
the Fenichel manifold S, . exponentially attracts all the solutions with initial conditions
(x0,1), with —L < 2o < —N, for any small positive real numbers L > N. In the next
result, we show that this exponential attraction holds for any (z, 1) with —L < xg < —&.

Consider the equation for the orbits of system (2.6)

L) _ 14 f(x.2f) + 6(@) (f(w2) ~ 1)
e 1+ 6()) |

(3.18)

Proposition 5. Fiz 0 < A < \* = 2k(n—nl)+1 Let xg € [—L,—&*] and consider the
solution y(xz,e) of the differential (3.18) satisfying y(xo,e) = 1. Then, there exist positive
numbers ¢ and r such that

|0 A —[a| ¥

a1
|§(m,€)—m(m,€)| <T€7E( )7
for xzg <z < —.

Proof. Performing the change of variables w = § — m(x, ) in equation (3.18), we get

eflc; = —&(z, )¢ (m(x,e))w — &(x,e) Fx,w, &), (3.19)
where,
F(z,w,e) = ¢(m(z,e) +w) — ¢(m(z,£)) — ¢'(m(z, ))w
and
f(l‘,E) = &

(14 60m(w,2) (1+ 6(m(z.€) + w(z,2)))
e(m(x, e)d(x,em(x,e)) — (w(x,e) + m(z, €))d(z, e(w(z, €) + m(x, 6))))
p(m(x,e) +w(x,e)) — p(m(x,e)) '

Here, we are denoting w(z,e) = y(z,e) — m(z,e), which is the solution of (3.19) with

+

initial condition w(xzg,e) = 1 — m(zo, ). Therefore, we also have that

w(z,e) = o=t B SeOFmi s oy
where .
&(x,e) = w(wg,€) — ij e* 7o o) msdse () P (v, w(v, €), e)dv.
w0
In what follows we shall estimate |w(x,¢)|. First, notice that F writes
F(r,w,e) = A(z, ¢)w, (3.20)
where

A(x,e) = L &' (m(z,e) + sw(z,e)) — ¢'(m(x,e))ds.
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We claim that A(x,¢) is negative for —L < x < 0 and L,e > 0 small enough. Indeed, from
(3.10), we obtain

D"+ O0(@-D" ), g< L. (3.21)

Again, recall that ¢ = @‘[_171], where ® € Co7'. Hence, from Definition 1, sign(¢(”)(1)) =
(=1)"*!. Thus, from (3.21), we get the existence of 7 > 0 such that ¢”(7) < 0 for all
1 —n < 7 < 1. This means that ¢’ is decreasing for 1 —n < 7 < 1. Notice that

m(z,e) < m(x,e) + sw(z,e) < (1 —s)m(x,e) +s <1, forall0 < s <1, (3.22)

Thus, it remains to show that m(x,¢) + sw(z,e), m(z,e) > 1 —n for —L < 2 < 0 and
L,e > 0 small enough. From Proposition 4 and (3.8), we have that

K . (2
m(z,€) = mo(z) — e > 1 — Gy YL — () (3.23)

& 2k (n—2)+2
for e, L > 0 small enough. Therefore, L and £ can be taking smaller, if necessary, in order
2k(n—2)+2
that Co vV L2k—1 + () e < n. This implies that

m(z,e) + sw(z,e) = m(z,e) > 1 —n.
Consequently, A(z, ) is negative.
Hence, by (3.20), we have that

Bl = ool + 2 [ 62 Aw D )iy

zo

< w(zo)| — ijx (v, e)A(v, e)|w(v, e)|dv.

Using Gronwall’s Lemma, we get that

85z, £)| < |w(ao)|e™F oo AL

and, therefore,
|w(1‘0) |67% Sio EWwe)(A(ve)+¢' (m(ve)))dv

<
< w(zo) |e_g £, €S ¢ (m(v,e)+sw(v,e))ds)dv

jw(z, €)]

To conclude this proof, notice that

2
L+ ¢(mo(@))) (1 + 6(w(r,0) +mo(x)))

E(x,e) = + O(e).
(

Thus, L,e > 0 can be taken small enough in order that £(z,e) = [ > 0, for every
x € [—L,0]. Moreover, from (3.10), given 0 < n < 1, there exist positive constants
c1, co > 0 such that

a(l=9" ' <@ <c(l-y" ' for [g-1]<n.
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Finally, using (3.22) and (3.23), we obtain that |m(v,e) + sw(v,e) — 1| < 1. Hence, for
r < —gA*, we have that

(@) < Jw(mo)e  Folsl-mva)-sutwe)dsas
< [w(ag)le”E i -me) -9y tasiv
< w(zo)le Alj (Lom(ve))"dv
< w(wo)|e” L szou_mo(y))n_ldy
< |W(ZE0)|@ ?nlsl (Cl‘y| n )n 1y
S |W($O)| (|1’0‘ )\* —‘x‘_lﬂ?),
CllC]’,:l_l 1 o . . .
e 2%n—1)+1 is a positive constant. The inequality (3.8) has also been used. [
_ A _AE R
p —& —lg xe y _ 1
|
| |
|
|
|
| qug

Figure 12 — The exponential attraction of S, ..

Fix 0 < A < A\*. From Proposition 5, applied to zp = —&” and = = —6)\*, we

know that there exist positive numbers 7 and ¢ such that

e |—gA|NF | AT 2 F
e —m(-e e < e ()

c

re <7,

A
where r = e and ¢ = 1 — ;v are positive constants. Thus,
§(=e"e) = m(=e"",e) + O(e™ ).

Hence, arguing analogously to the construction of map P* (see Section 3.2.2),
any solution of the system (2.6) with initial condition in the interval [—p, —], & sufficiently

. &
small, reaches the section z = —e*

exponentially close to the Fenichel manifold (see
Figure 12). From Proposition 1, these solutions can be continued until the section gy = 1.
Going back through the rescaling y = €y, we get defined the following map through the
flow of (2.4), .

QU:H:, — H.

(x,e) — (x€+(9(e_c/€q),e),

where f[;’/\ = [—p,—*] x {} and H, = [z. — re” =, 2.] x {¢}, for & > 0 small enough.
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3.2.4 Construction of the map R"

In order to define the map R", we first prove the following result.

Proposition 6. Consider the Filippov system Z = (X', X7 )s given by (2.1), for some
k=1, and y, and y; given in (3.1). For n > max{2,2k — 1}, let ® € Cg;' be given as
(1.5) and consider the reqularized system Z® (2.4). Then, there exists 0y > 0 such that,
for each 0 € [z, 0y], the Fenichel manifold S, intersects {x = 0} at (0,yg).

Proof. By Proposition 1 we know that the Fenichel manifold S, . intersects {y = ¢} at
(2, €). In order to continue S,. into x = 6, consider the solutions (z(t),y(t)) of the
differential system (2.3) with initial condition z(0) = z. and y(0) = e. Thus, z(t) =t + z.

and .

y(t) =e+ L als +2) 1+ g(s +x) +y(s,e)I(s + 2o, y(s, €))ds.

Therefore, the trajectory (z(t),y(t)) intersects {z = 6} at (0,yj;), with

. abf?*
Yo = y(@ - 135) - % - 2 +e+ GE(ZL’E,G),

where .

Ge(z,0) = J [g(s) + y(s — x,e)V(s,y(s — x,¢))]ds.

T

In what follows, we shall develop G¢(xz.,0) in Taylor series around (z,0,¢) =
(0,0,0). First, notice that

2k—1 arL

_ 2 7 2k
Ge(z,0) = G.(0,0) + ; o (0.0)2' + O@™), (3.24)
and p
G-(0,6) = Go(0,0) +52-G.(0. 9)\ _HOE). (3.25)

Thus, substituting (3.25) into (3.24) and taking x = z., we have

+2k21 PG (0 0yt 1+ O(E2)+O(e2.)+ O, (3.26)
» o (0, 0)2:+0(e £, z2¥). (3.

i=1

C(r2.0) = Gol0,0) 4 =G (0,0)

0
Now, in order to estimate G(0, #) and é\—GE(O7 ¢)]  in (3.26), we compute
€ e=0

G.(0,0) = G.(0,0) + 09920, 0) + O(8?) = eaﬁ%

=0 (0,0) + O(6?). (3.27)

We know that ,

Go(0,0) = J [g(s) + yo(s)0(s, yo(s))]ds,

0
where g, satisfies the following Cauchy problem

{y() = at®™ '+ g(t) + yod (¢, o),
yo(O) = 0.
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Notice that ' )(0) =0fori=0,1,...,2k —1 and y(()%)(()) = (2k — 1)!a. Thus,

yo(t) = ﬂt% + Ot (3.28)
and oG

C20.0) = g(0) + ()95 1(0))
046'%

= 4(0) + %50, 00(0) + O

= O(0%).
Hence, we conclude that

Go(0,0) = O(9*+1). (3.29)

Analogously,
0

@@m=fw@+m&wmy@@ws

0

and, then, a&\%(0,0) = ¢9(0, ). Therefore, by (3.27), G.(0,0) = 09(0, ) + O(6*). Hence,
0G.
P (0,6) = O(0). (3.30)

Finally, in order to estimate the remainder terms in (3.26), we compute

8G0 52k71G0

k- k

Go(z,0) = Go(x,0) + Hﬁ(x,()) + . 6P Py (z,0) + O(0%). (3.31)
Using the definition of Go(z,0) and (3.28), we get that

o

.32

- =Go(0,0) =0, (3.32)

forall j€{0,...,2k—1} and i e {1,...,2k — j}. So, by (3.31) and (3.32), we obtain that

aﬁo (0,0) = O(F+1-4), (3.33)

for all i € {1,...,2k — 1}.
Substituting (3.29), (3.30), and (3.33) into (3.26), we get

Go(22,0) = Go(0,0) + O(eh) + O(e 2kjo P 1=igi) 4 Ofex.) + O(aF)

1=1
2k—1

_ 0(92k+1)+0 59 2 O 92k+1 i z)+o( 2k)

Consequently,

2k—1
04(9% ax%

Vi = o — g tE O+ 0(e0) + 3, O™ 7al) + O(a"),
i=1

Therefore, by Lemma 1 we can conclude that y) = y(6) = 7,, i.e

2k—1
Vi =Tg+e+0(eh) + ), OO al) + O2).

=1
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In particular, for # = x., we obtain that

Yoo = o +e+0(cz) + (’)(:1:2’”1) + O(a:zk)

£

= 7, +e+ O(ex.) + O(m?k)

O

Finally, from Proposition 6 and arguing analogously to the construction of map
P (see Section 3.2.2), we get defined the map

R*:H. — 1793
(z.6) — (0,55 +0()),

where H. = [z. — re” =, 2] x {e} and V§ = {0} x [y5,y5 + re” =], for all 0 € [z., 6] and
€ > ( small enough.

yE
pA Ue(y)
Yo
Y
U, Tangentigl contacts U
\ \ /
u d \ /o N
P*(y) \ //\ /\ y=c¢
N N \—E)\ P 7
~N 7
Sll,&‘ X _ - E
— A
Qz o P*(y)
y=—¢
r=—p =10

Figure 13 — The map U, = R" o Q! o P" for the regularized system Zf’ . The dotted curve
is the trajectory of X ™ passing through the visible 2k-multiplicity contact
with ¥ with (0,0). One can see the exponential attraction of the Fenichel
manifold S, .

3.2.5 Proof of Theorem A

Consider a Filippov system Z = (X, X ™)y, satisfying hypothesis (A) for some
k> 1. Forn>2k—1,let ® € C%:' be given as (1.5) and consider the regularized system
Z2 (1.4). As noticed in Remark 3, we shall assume that n > max{2, 2k — 1}.

From the comments of Section 2.1, we can assume that Z | p can be written
as (2.1), which has its regularization given by (2.4). Thus, statement (a) of Theorem A
follows from Proposition 2. Finally, statement (b) follows by taking the composition

Ug . ‘//\;)E’A — ‘7/06
(=p,y) — R'0Q%oP"(—p,y),
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where P", Q7, and R" are defined in Sections 3.2.2, 3.2.3, and 3.2.4, respectively. Indeed,
the existence of py and 0y > 0 are guaranteed by the construction of the map P* (see
Section 3.2.2) and Proposition 6, respectively. The existence of constants ¢, r, g > 0, for
which U.(—p,y) = 35 + O(e”=7) is guaranteed by the construction of the map Q" (see
Section 3.2.3). Furthermore, by construction of the maps P*, Q¢ and R", we have that the
trajectories of Zf starting at the section 17; y intersect the line y = ¢ only in two points

. . il . . = <~
before reaching the section Vi . Moreover, these intersections take place at H; , u H..

3.3 Lower Transition Map

This section is devoted to prove Theorem B. Analogously to the previous
section, we need to guarantee that under some conditions the flow of the regularized
system Z2 near a visible regular-tangential singularity defines a map between two sections,
in this case, a horizontal section and a vertical section. Again, it will be convenient to
write this map as the composition of three maps, namely P', QlE and R'. The maps P!
and Q. will be defined through the flow of Z® restricted to the band of regularization,
and the map R’ will be given by the flow of Z® defined outside the band of regularization.
In what follows, we shall define the maps P, Q' and R' (see Figure 14).

12 (2)

/// { Pl(z) =y
y=—c

Figure 14 — Dynamics of the maps P', Ql6 and R'. The dotted curve is the trajectory of
X* passing through the visible 2k-multiplicity contact with 3 with (0,0).

First of all, the next result is obtained following the same argument than
Proposition 2.

Proposition 7. Consider the Filippov system Z = (X*, X ")y given by (2.1), for some
k=1, and y; given in (3.1). For n = max{2,2k — 1}, let ® € Cor' be given as (1.5) and
consider the reqularized system Zf (2.4). Then, there exist po, 0y > 0, such that the vertical
segment

Vi = {0} x [ys — re” 7, 45),
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and the horizontal segments
Ij.fli/\ = [—p, —ek] x {—e} and ﬁg = [z., z. + re_e%] x {e}

are transversal sections for every p € (%, po], 0 € [zc,00], A € (0,\*), with \* =
n

2k(n—1)+1’ constants c¢,r,q > 0, and € > 0 sufficiently small.

As before, statement (i) of Theorem B will follows from Proposition 7.

3.3.1 Construction of the map P’

First, we shall see that the forward trajectory of Zf (2.6) starting at (—e*, —1)
reaches the straight line {§ = g0}, with g € (1 —n, 1), for some 1 > 0 small enough. After
that, the map will be obtained through Poincaré-Bendixson argument.

Accordingly, consider a function /i : I(; 3 x U x [0,20] — R given by
ﬁ(’ra xz, _17 5) = @%‘P (7—7 xz, _1) - @\07
2

where P = (gplzp, gozp) denotes the flow of 75, I, 5) is the maximal interval of definition

of 7+— o (1,2,9), €0 > 0 is sufficiently small, and U is the domain of the vector field Z
in the (z,y)-coordinates.

Now, for each § € [—1,7o] and € = 0, we have

0p% 1—®(j
~ ~ Z ~ — ()
#7¢(0,0,5) = (0,y) and —=2(0,0,3) = —

Then, there exists 7o > 0 such that ¢ (70,0, —1) = (0, 7p). In this way,
0

o 1 — ()
= -1 - NI/
87’ (7—0707 70) 2

Thus, from Implicit Function Theorem there exists a unique smooth function 7(x,¢), such

> 0.

1(19,0,—1,0) = Oand # 0.

that, <p27p (1(z,€),2,—1) =y and 7(0,0) = 79. Therefore, for ¢ > 0 sufficiently small, the
forward trajectory of 7? starting at (—e*, —1) reaches the straight line {§j = o} at

(@%‘b (T(_€A> _1)7 _5)\7 _1)7 330) .

In what follows we shall compute the Taylor expansion of gp%p (1(z,¢€),2,—1)
around (x,¢) = (0,0). Notice that E

g017q>(7(33,5),$, —1) = 90171)(7 z,0),z,—1) + O(e)

0 =0
+0(z%) + O(e)
= (10*‘1’(7_070 —1)+l’ P ° (7’(1‘,0),1‘, 1)67(3770)
0 T
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Substituting
69017@
5 (10,0,—1) =0 and aTO (70,0,—1) =0
into (3.34), we have
5@1—q> o ag‘)l*@
1 1) = Zo NN Zy _
@7;‘1’(7—(1:75)’:[‘7 1) T or (7—070) 1)ax(0a 0) + or (7—0707 ]-)
+O(2?) + O(e) (3.35)
53017<1>
= o (70,0, —1) + O(2?) + O(e).
5(,OZ<I>
Now, notice that % (7,0,—1) is solution of the differential equation
1 2 2
u =DZy(0, ¢ (7,0, -1))u,
0
with
0 0
DZy (0,5 (r.0.-1) = | @ (gZa(r,0,-1))
0 . Z
2
Consequently,
@] _ | | ")
U (T _ T ) 7
o) A G o)
2
- [
which implies that u;(7) is constant. Since
Opls Opls
ZO ZO
0,—-1) = 0,0,-1) =1
o (7—07 ) ) ox ( y Uy ) )
we conclude, by (3.35), that
30171) (t(x,¢),2,—1) = 2 + O(2?) + O(¢).
Taking z = —&”, we get
<p17¢ (1(—e,e), =t —1) = —e* + O(e*") + O(e) =: 5.
Finally, consider the region K delimited by the curves y = —&, y = &¥o,
_ . xr p . . A e - )
y =m(z,¢e), y = —— — (= +¢) and the arc-orbit connecting (—¢*, —¢) and (x5, € go). Since
e €

7? has no singularities inside K, one can easily see that the forward trajectory of 73

starting at any point of the transversal section PVIS , must leave K through the transversal

section {(x,y) € U : y = €¥p}. This naturally defines a map

P T, — {(z,y) € U sy = ehio}.
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3.3.2 Exponentially attraction and construction of the map QZE

As we saw in Section 3.2.3, for L, N > 0 and ¢y > 0 small enough, the Fenichel
manifold S, . is described as

m(z,e) = mo(x) +emy(x) + O(?),

for =L < o < —N and 0 < € < g9, where mg and m; were defined in (3.5) and (3.7).

Now, we shall compute the intersection of m(z, £) with the straight line {§ = o}
with 1 — 1 < 7o < 1, for some 7 > 0 small enough. Indeed, since my(0) = 1 and
A, mole) = =1
then there exists a negative number Z, such that mg(Zo) = 7o. Moreover, %y is close to
zero because g is near to 1 and mg(0) = 1. After that, consider the function

[’Z(l‘,E) = m(x7€> - ?’/\0,

on . om . /A
D (@0,0) = 5 (30.0) = mp(@) # 0,

where we have used equation (3.11). Thus, there exists a smooth function Z(g), such that
z(0) = Zp and m(Z(g), &) = Yo. Accordingly, from (3.7), we have

and notice that [i(Zo,0) = mo(Zo) — %o = 0 and p
T

om .

2(0) = 2 @00y (3o)  mp(Ee) — mo ()00, 0)
aﬁ(fo ()) mf)(/fo) Q(Qk _ 1)%(2{@72 n g’(:%o) .
or

The last expression is positive, because my(x) — o when z — 0 and mg(z)9(z,0) is
bounded in the interval [—L, 0], with L sufficiently small. Therefore, the Taylor expansion
of Z(¢) around ¢ = 0 writes

B(e) = B + £7(0) + O(?)

and, consequently, Ty < Z(¢) < 0 for ¢ sufficiently small.

n
ok(n—1) + 1
and consider the solution y(x,e) of system (3.18) satisfying y(xo,€) = §o. Then, there exist

Proposition 8. Fiz 0 < A < \* = . Let zg € [2(e), —ke], with 0 < k < 1,

positive numbers C' and 7 such that

lzo| A —[a| A*

_ 0 (| 3F L)
|m(flf,€)—i’y\(l’,€)| <~€ E< )
forxg < x < —e*.

Proof. Performing the change of variables w = m(z,e) — ¥ in equation (3.18), we have

53; = &(z,e)¢ (m(x,e))w + &(x,e)F(x,w, &), (3.36)

where

F(wiv 8) = gb(m(l‘,&) - w) - ¢(m(x>8)) - ¢,(m(x7 8))“
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2

(1+ 6tm(@,2)) (1 + olm(z,2) - w(z,2)))

e(m(x,s)ﬁ(m,sm(m,s)) (m(x,e) — (x,a))ﬁ(x,s(w(m,s)—m(a:,e))))
o(w(z,e) —m(z,e)) — d(m(,¢)) '

Here, we are denoting w(z,e) = m(z,e) —y(x, €) which is the solution of (3.36) with initial

5(1"5) =

_l’_

condition w(zg,e) = m(xg,€) — Yo.

Notice that F' writes
F(z,w,e) = Az, e)w, (3.37)

where )
Az, e) = —J &' (m(z,e) + (s — Dw(x,€)) + ¢'(m(x,e))ds.
0
Here, as in the proof of Proposition 5, we also claim that A(z, ) is negative for —L < z < 0
and ¢ sufficiently small. Indeed, we know that ¢’ > 0 on the interval (—1,1). In addition,

since for ¢ > 0 small enough we have m(z,e) > y(x,¢) and d—y(x) > 0 for x = xg, then
T

the solution w(x, ) satisfies
0< W(JI,E) < TTL(J},&?) - @\0‘

Hence, from Proposition 4 and (3.8) we get

m(z,e) + (s — Dw(z,e) < m(z,e) < mp(z,e) <1 —Ci/|z|?k 1 <1 - CLVeN @D < 1,
(3.38)

and
m(z,e) + (s — Dw(z,e) = m(z,e)s — (s — 1)Jo = Yo > 1 — 1, (3.39)

for 0 < s <1 and n,e > 0 small enough. Therefore, we conclude that A(x,¢) is negative.
In this way, by (3.36) and (3.37), we obtain

dw

e = & (m(z, )w+ Flr,w,e)

¢
= &z, ) (¢ (m ( €)) + A(z, €))w
_ e o) J¢> (2.8) + (s — Dol £))ds o,

which has its solution with initial condition w(xy) given by

w(z,e) = w(xo)ef%Sioé(u,a)(Sé¢’(m(u,£)+(sf1)w(u,a))ds)du'

Thus,

()| = Jw(wg)fet Voo S o (miwe) (o= D).

To conclude this proof, we shall estimate |w(z,¢)|. For this, notice that

2
(1 -+ 60mo(@))) (1 + dlmo(z) — w(x,0)))

E(z,e) = + O(e).
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Hence, L,e > 0 can be taken sufficiently small in order that {(x,e) > [ > 0, for all
—L < x < 0. Moreover, given 0 < n < 1, there exist positive constants ¢, ¢o such that for
|y — 1] < n one has

al=9)" " <@ <e(l-9"
Finally, using (3.38) and (3.39), we obtain that |m(v, )+ (s —1)w(v, €) — 1| < 1. Therefore,
for © < —e™*, we get that

4 SIO &(v, e)(go(l m(v,e)—(s—1Dw(v,e))* " Lds)dv

w(z,e)| < w@@|l
< Jw(ag)]e” = Sodo(mmiwe)tds)av
le e
< fulage 2 Sl
le n
< fw(wo)le” W<1mw)wu
lcl » - et 5
< Jw(wo)le = §z (101\ o 1 = n-1q
< w(xo)|e™  (jaol 3¥ —[a| 3¥).
nqu{L_l . o . '
where ' = —————— is a positive constant. The inequality (3.8) has also been
2k(n—1)+1
used. .

Figure 15 — The exponential attraction of 9, ..

)\*

Fix 0 < A < A*. From Proposition 8, applied to zy = 25 and © = —"", where
zo < —ke” for some k € (0,1), we know that there exist positive numbers 7 and C' such
that 1 1

_C (A 7F e T*)
m(=,9) — (-9 < s LT
< re e%,
1 ~ A
where ¢ = Cr3*, r =7 and g = 1 — F are positive constants. Hence,
§(=e",e) = m(=e",e) + O(e 7).

Thus, arguing analogously to the construction of map P’ (see Section 3.3.1), any solution
of the system (2.6) with initial condition in the interval [Z(e), z5], € sufficiently small,

reaches the section 2 = —e*" exponentially close to the Fenichel manifold (see Figure 15).
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From Proposition 1, these solutions can be continued until the section ¢ = 1. Going back
through the rescaling y = €7, we get defined the following map through the flow of (2.4),

QL1 [3(e),25] x {y = o} — H.
(r,e) —> (wEJrO(e_C/Sq),s),

where ﬁg = |z, z. + re_s%] x {e}, for £ > 0 small enough.

3.3.3 Construction of the map R!

Finally, from Proposition 6 and arguing analogously to the construction of map
P! (see Section 3.3.1), we get defined the map

—

R:H — %5
(w,) — (.55 +0()),

where H. = [2., 2. + re =] x {e} and Vj = {0} x [y5 — re =7, 43], for every 0 € [z. +
re”= 6], and € > 0 small enough.

R oQlo Pl
y—p 9
\
\ l l
\ Q.o Pi(x)
\
\ Te —J
\Z(e)
N
—
Sae
T —-5)‘

Figure 16 — The map L. = R' o Q' o P for the regularized system ZF. The dotted curve is
the trajectory of X passing through the visible 2k-multiplicity contact with

Y. with (0,0). One can see the exponential attraction of the Fenichel manifold
Sae-

3.3.4 Proof of Theorem B

Consider a Filippov system Z = (X, X ™)y, satisfying hypothesis (A) for some
k> 1. For n>2k—1, let ® € C2:' be given as (1.5) and consider the regularized system
Z2® (1.4). As noticed in Remark 3, we shall assume that n > max{2, 2k — 1}.

From the comments of Section 2.1, we can assume that Z |U can be written
as (2.1), which has its regularization given by (2.4). Thus, statement (a) of Theorem B
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follows from Proposition 7. Finally, statement (b) follows by taking the composition

L. : ﬁ;/\ — ‘v/;
(x,—e) —> R'oQ'oPl(x,—e).

where P!, Qle, and R' are defined in Sections 3.3.1, 3.3.2, and 3.3.3, respectively. Indeed,
the existence of py and §, > 0 are guaranteed by the construction of the map P' (see
Section 3.3.1) and Proposition 6, respectively. The existence of constants ¢, r,q > 0, for
which L.(x,—¢) = 35 + O(e ) is guaranteed by the construction o the map Q' (see
Section 3.3.2).
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4 Regularization of boundary limit cycles

In this chapter, we shall state and prove the third main result of this work
(Theorem C), which in particular establishes sufficient conditions under which the regu-
larized vector field Zf’ has a limit cycle I'. converging to a boundary limit cycle. Since a
boundary limit cycle is a ¥—polycycle, we will generalize Theorem C in Chapter 6.

4.1 Main Result

Consider a Filippov system Z = (X*, X7) and assume that

(B) X has a hyperbolic limit cycle I', which has a 2k-multiplicity contact with 3 at
(0,0) and X~ is pointing towards X at (0,0). In other words, (0,0) is a visible
regular-tangential singularity of Z (see Figure 17).

N\
i

Figure 17 — Boundary limit cycle of Z.

Our third main result establishes conditions under which the regularized vector
field Z;I) has an asymptotically stable limit cycle I'. converging to I'. This result will be
proved in Section 4.3.

Theorem C. Consider a Filippov system Z = (X, X7 )y and assume that X" satisfies
hypothesis (B) for some k = 1. Forn = 2k — 1, let ® € Caz* be given as (1.5). Then, the
following statements hold.

n
1+2k(n—1)
p > 0 such that the reqularized system Zf (1.4) does not admit limit cycles passing
through the section H; \ = [—p, —e*] x {e}, for e > 0 sufficiently small.

if the limit cycle I' is unstable, then there exists

(a) Given 0 < XA < \* =

1
(b) Given o <A<\ = 1—|—+(n—1)’ if the limit cycle I is asymptotically stable,
then there exists p > 0 such that the reqularized system Z2 (1.4) admits a unique limit
cycle I'. passing through the section H; \ = [—p, —e*] x {e}, for e > 0 sufficiently

small. Moreover, I'. is asymptotically stable and e-close to I'.
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Remark 4. Statement (a) and (b) of Theorem C guarantee, respectively, the nonexistence
and uniqueness of limit cycles in a specific compact set with nonempty interior. However,
since this set degenerates into I' when € goes to 0, it is not ensured, in general, the
nonexistence and uniqueness of limit cycles converging to I'. Nevertheless, if we assume,
in addition, that X* has locally a unique isocline x = (y) of 2k—multiplicity contacts
with the straight lines y = cte, then we get the nonexistence and uniqueness of limit cycles
converging to T (see Chapter 5).

4.2 The first return map 7

From the comments of Section 2.1, we can assume that, for some neighborhood
U < R? of the origin, Z| p 18 written as (2.1), which has its regularization given by (2.4).

Consider the transversal section S = {(x,y) € U : x = 0}. From hypothesis (B),
the flow of Z defines a Poincaré map 7 : S’ — S around the limit cycle I'. Here, S’ = S
is an open set (in the topology induced by S) containing (0, 0). Accordingly, 7(0) = 0 and,
since T' is hyperbolic, 7'(0) = K # 0. Moreover, one can easily see that K > 0.

Denote by F' the saturation of S’ through the flow of X* until S. For each
0 > 0 and p > 0 small enough, we know from (2.1) that ¥y := {& = 0} n F and
Y , = {r = —p} n F are transversal to X*. Thus, the flow of X" induces a C*

diffeomorphism D : ¥y — ¥_,, it is called exterior map. Accordingly, from Lemma 1 and

dD
hypothesis (B), D(y,) =7, and 79, := d—(@g) # 0. Moreover, one can easily see that
Y

r9,, > 0. Thus, expanding D around y = 7,, we get
D(y) =7, + 10,5y — Fa) + Oy — Fp)*). (4.1)

In order to prove Theorem C, we shall first establish the relationship between
the derivative of the first return map K and the derivative of exterior map ry , as follows.

Lemma 5. lim 7y, = K.
0,0—0 '

Proof. Notice that, for p > 0 and 6 > 0 small enough, the flow of X" induces the following
C?* maps,
N:S =>{x=0}nF and X\, :{r=—-p}nF—->SnFE,

which satisfies A,(7_,) = 0 and A\g(0) = 7. Indeed, consider the functions

pit,y,0) = o (t,0,y) — 0, for (0,y)e s,

and
pa(t,y, p) = ox+(t,—p.y), for (—py)e{r=—p}nF

Since7 M1(07 07 O) =0= /’LQ(O? 07 0)7
Opa

(0,0,0) =1+#0, and ﬁ((),()70) —

Ju o
E(Ovoao) =

a@ﬁpr a@}(+

ot

(0,0,0) = 1 %0,
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we get, by the Implicit Function Theorem, the existence of unique smooth functions ¢, (y, 0)
and t5(y, p) such that ¢1(0,0) = 0 = ¢5(0, 0),

,ul(tl(yae)vyae) = 07 and ,UZ(tZ(yap)vy7p) = Oa
ie. ox+(t1(y,0),0,y) = 0 and . (ta(y, p), —p,y) = 0. Thus,

Mo(y) = %+ (t1(y,0),0,y) and A, (y) = o+ (ta(y, p), —p. y).
Notice that

d/\@ 690_2)(‘*’ 5t1 é’go_%H
—(0) = t1(0,0),0,0)—(0,60 t1(0,0),0,0
dy() ot (1(7)77)ay(7)+ ay(l(?)?a)
and
d)\ . 6@2 + . _ atQ . 6@2 + . _
T;(y—p): a;( (tZ(y—pap)a_p7y—p)57y(y—pap)+ a:;( (tZ(y—pap)a_pay—p)'
Since
ot X80,0,0) gyl
—(0,0) = - = ——25(0,0,0) =0,
% S0,000 Y
opt
ot X+(0,0,0 o0l
672(070)__6;1?/ ( )__ §X+(070,O)_0,
Yy X*(0,0,0) Y
and o2
Px+
0,0,0) =1
6?/ (7 ) ) Y
we get that
_d)g 0P+ oty O+
lim —(0) = —/—=—(¢;(0,0),0,0)—=(0,0 t1(0,0),0,0
;E}(l)dy() aQt (1(7)a7)?y(7)+ ay (21(7)77)
_ Opxe 0P+ 05+ (4.2)
= 1
and d\ 02 ot 0>
lim 222G ) = PEX(15(0,0),0,0) 22(0,0) + X (£5(0,0),0,0
pl_r)%dy(yfp) ag (2(’)a>)?y(’)+ ay (22(7)7a)
Jpx+ Jpx+ P+ (4.3)
= 0,0,0) | — 0,0,0 0,0,0
0,00 0.0.0] + 2 0.00)
= 1.
Finally, since m = A\, o D o Ay, we conclude that
dr d\ dD dMg
—(0) = =2(D o X(0))—=—=(Ng(0))==(0
) = D 2(0) G (0D G 0)
_ @(— )r @(O)
= Ty gy
Therefore,
K d\,, dXg
= _ Z900). 4.4
= ) GO (14)

The result follows by taking the limit of (4.4) and using (4.2) and (4.3). O
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4.3 Proof of Theorem C

By Theorem A for § = =z, there exist py > 0, and constants § < 0 and
c,r,q > 0 such that for every p € (*, po], A € (0,A*), and £ > 0 small enough, the flow of
Z? defines a map U, between the transversal sections V7, = {—p} x [¢,y,] and V. =
{xc} x [y5., ;. + re” =] satisfying

. {re 7€
Us: Vo — Vo

e 4.5
y — yi +0(e =), (4.5)

where 5 =7, +e+ O(e¥*") (see Figure 18). Now, notice that there exists £y > 0 such

€
Yo

x=—p r=0=ux

Figure 18 — Upper Transition Map U. of the regularized system ZZ.The dotted curve is
the trajectory of X passing through the visible regular-tangential singularity
of multiplicity 2k. The red curve is the Fenichel manifold.

that

Ve =H{xed x e e, + re | c{r=x.}nF,
for all € € [0,e0]. In this way, we define the function 7.(y) = D o U.(y). Thus, from (4.1)
and (4.5), we have

m(y) = D(7.. +e+0() + 0@ "))
= D(7,. +e+0O(™ )
* * 2
= 7+ rme,p(s + O(s%’\ )) + (’)(5 + (9(52'“’\ ))
= Y, Ta e+ (’)(52“*)

(4.6)

Using (3.4) and (4.6), we get

Te(y) — yf,,x = (ry.p— e+ Ofep) — e 4 0(5(2k+1)>\) + O(€1+A) i 0(5%/\*)’
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where § < 0. Recall that 0 < A < A*. Thus, we shall study the limit lim me(¥) = Yo 4
pe— €

three distinct cases.

1
First, suppose that A > % Then,

Hence, by Lemma (5),

1
Now, suppose that A\ < % Then,

T(Y) — Y5

ot = (= DT £ O ) — 54 O(Y) + O (27,

Hence, by Lemma (5),

lim =W er _ g (4.8)

pe—0 g2k

1
Finally, suppose that \ = s Then,

Hence, by Lemma (5),
-
i )~ Yo
p,e—0 15

—K-1-4, (4.9)

Now, we prove statement (a) of Theorem C. Since I" is an unstable hyperbolic
limit cycle, we know that K > 1. Consequently, all the above limits,(4.7), (4.8) and (4.9),
are strictly positive and, since € > 0, there exists oy > 0 such that

0<p,e<dy = m(y) —y,,>0.

Hence, 7.([e, ;1) n [e,95,] = &, for all € > 0 small enough. This means that 7. has no
fixed points in [e, y; ] and, equivalently, the regularized system 72 does not admit limit

cycles passing through the section H; A\

1
Now, we prove statement (b) of Theorem C. In this case, A > —. Since I is an

asymptotically stable hyperbolic limit cycle, we know that K < 1. Thus, the limit (4.7) is
strictly negative and, since £ > 0, there exists dy > 0 such that

0<p,e<dy = m(y) =y, <0.
Hence, 7.(y) < y; 5. Moreover, from (4.6), we get

im "W "V e
p,e—0 £
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Since € > 0, there exists 0; > 0 such that
0<pe<doy = m(y)—7y ,>0.

Hence, m.(y) > 7_,, for all ¢ > 0 sufficiently small. This means that 7.([¢, y; ,]) < [, ;]
From the Brouwer Fired Point Theorem, we conclude that 7. admits fixed points in
[e, Y, \] and, equivalently, the regularized system ZF admits limit cycles passing through

the section H ,.

In what follows, we prove the uniqueness of the fixed point in [e,y; ,]. Indeed,
expanding D in Taylor series around y = y;_, we have that

D(y) = D(ys.) + Cfg(yis)(y — i) + Oy —v5.)).

Thus,
m(y) = D(y;. + Od(g"/ )
= D(y;.) + Ty(y; )O(e™ ") + O(e™/*")
= D(ys.) + O(e™"),

and, consequently, |7.(y1) — 7 (112)| = O(e="), for all yy, s € [e, Y5 2] Now, consider the
following function

Yy 5 =+ Pt
yp)\_g 6_yp,>\

Notice that v, '(u) = (y; , —€)u + . Hence, if 7.(u) = 7 o v, '(u), then
[7e(ur) — Fe(uz)| = O(e™"),

for all uy,us € [0,1]. Fix I € (0, 1), take uj,us € [0,1], and define the function £(¢) =
(45,0 — €)1 There exists e(u1, uz) > 0 and a neighborhood U(u1,uz) < [0,1]% of (u1, us)
such that

|%€(x) o 7~Ts(y)| < €(€)|l‘ - y|7
for all (z,9) € Ului,us) and € € (0,e(ur, ug)). Since {U(uy,us) : (uy,us) € [0,1]%} is
an open cover of the compact set [0, 1]?, there exists a finite sequence (u},u) € [0, 1]
i =1,...,s, for which {U" :== U(u},ub) : i = 1,...,s} still covers [0,1]?. Taking &
min{e(ut,uy) :i=1,...,s}, we obtain that

.~ &

[Te(2) = Te)| < Lle) |z —yl,

for all € € (0,&) and (z,y) € [0,1]*. Finally, since 7.(2) = %. o v(2), we get

me(z) —m(y)| < Le)|ve(z) — ve(y)]
= lz -yl

for all € € (0,¢) and @,y € [, y; ,]. Thus, we have concluded that 7. is a contraction for
€ > 0 small enough. By the Banach Fized Point Theorem, 7. admits a unique asymptotically
stable fixed point for € small enough. Therefore, the regularized system Zf admits a unique
asymptotically stable limit cycle I'. passing through the section }AIZ ), for e sufficiently
small. Moreover, since y5 \ =7, = O(¢) and z. =7 = O(si), we get from differentiable
dependency results on parameters and initial condition that I, is e-close to I'.
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4.4 Piecewise Polynomial Example

This section is devoted to provide examples of piecewise polynomial transition
functions and piecewise polynomial vector fields satisfying the hypotheses of Theorem C.

Proposition 9. Forn > 1, consider

Define @, : R — R as &, (z) = ¢,(z) for x € (—1,1), and &, (x) = sign(z) for || =1 .
Then, ®,, € Cgp for every positive integer n.

Proof. Notice that ¢, (+1) = +1 and

) = (G e - )

Thus, ¢, (z) > 0 for all z € (—=1,1), ¢ (+1) =0 fori=1,...,n, and

Pt (1) = ﬁ($1)”(2z’ +1) # 0.

i=1

Consequently, ®,, € Cg. O

Now, consider the planar vector field Z = (X*, X7), with X = (X, XJ})
and X (z,y) = (0,1), where

X7 (2,y) = —o(=1+2%) + (-1 +9)* 7 (-1 + 2 — ay),

and
X5 (z,y) =2 — (=1 + 2% + (=1 + »)?) (=1 +y), for k > 1.

Define & = h~1(0), with h(z,y) = y. Notice that the vector field Z has a 2k-multiplicity
contact with ¥ at (0, 0). Indeed, (X *)"h(0,0) = 0, fori = 1,...,2k—1, and (X T)?**1(0,0) =
(2k — 1)!. Let H(z,y) = 1 — 2% — (y — 1)* and consider the level curve I' = H~*(0).
Notice that

DH X+ — 0
DH (), X @y, =0

thus, I is invariant through the flow of X*. Moreover, X has no singularities in H~*(0).
Then, by the Poincaré Bendizson Theorem, I' is a periodic orbit of X . Furthermore, for
(x,y) e I', we get

+ X+
! (x,y) + 672(12,3/) =2k < 0.

divX ™ (z,y) = d o

ox

Thus, given v any parametrization of I', T' its period, and S a transversal section of X"
at 0 € v, we have that the derivative of Poincaré map 7 : Sp < .S — S is given by

CZ(O) = e:vp[LT divX*(’y(t))] = e 2
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d-regularization
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Figure 19 — Vector field Z and its regularized system Z>. The figure on the left shows the
hyperbolic limit cycle I' passing through the visible 2k-multiplicity contact
with ¥ at (0,0) and the figure on the right shows the limit cycle T, for n = 6,

_ 5 wi _ 63,11, 350 90 7, 12,5 105, 3 , 63
k=2, and ® € Cgp with ¢(u) = —gjgu~ + jgu” — s5u’ + Sgu’ — Sgu” + su.

Consequently, we conclude that I' is an asymptotically stable hyperbolic limit cycle of X+,

Hence, by Theorem C, we conclude that the regularized system Z with
® € O%;' admits a unique asymptotically stable limit cycle I'. passing through the section
H:, = [—p,—"] x {e}, for & small enough (see Figure 19). Moreover, I'. is e-close to I'.

Remark 5. If we multiply the polynomial vector field X+ by —1, we have that X+ has an
unstable hyperbolic limit cycle. Then, by Theorem C we conclude that Z* does not admit
limit cycles passing through the section Hj \, for e sufficiently small (see Figure 20).

®-regularization
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Figure 20 — The figure on the left shows the unstable hyperbolic limit cycle I' of Z and the
figure on the right shows that Zf has no limit cycles for € small enough, n = 6,

_ 5 wi _ 63,11, 359 90,7, 12,5 105 3 , 63
k=2, and ® € Cgp with ¢(u) = —gjgu~ + j5u” — Sgu’ + Sgu’ — S5u” + su.
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5 Uniqueness and nonexistence of limit cycles

In the previous chapter, we proved statement (a) and (b) of Theorem C, which
guaranteed, respectively, the nonexistence and uniqueness of limit cycles in a specific
compact set with nonempty interior. Nevertheless, it is not ensured, in general, the
nonexistence and uniqueness of limit cycles converging to I', because this compact set
degenerates into I' when € — 0. However, if we suppose, in addition, that X ™ has locally
a unique isocline x = ¥(y) of 2k—multiplicity contacts with the straight lines y = cte,
then we have the nonexistence and uniqueness of limit cycles converging to I', respectively.
For this, we shall first introduce a special map called the Mirror map of the regularized
system Z2 (1.4).

5.1 Mirror maps in the regularized system

Consider the nonsmooth vector field Z = (X, X~) and assume that X7
satisfies the following hypotheses:

(A) X7 has a visible 2k-multiplicity contact with X at (0,0), X;(0,0) > 0, and there
exists a neighborhood U < R? of (0,0) such that X |, = (0,1) and S U = {(x,0) :

x € (—zy,zy)};

(H) The limit cycle I of X™ has locally a unique isocline z = ¥ (y) of 2k—multiplicity
contacts with the straight lines y = ¢, ¢ > 0 small enough;

for some k > 1. For n > max{2,2k — 1}, let ® € C%:' be given as (1.5) and consider the
regularized system Z® (1.4). In what follows, we shall see that, for each (z,¢) € {y = &}
near to (1(¢), ) there exists a unique small time t(z, €) satisfying t(x,¢) = 0 if, and only
if, z = ¥(e) and pze(t(z,€),7,¢) € {y = ¢}. In this case, we can define the following map
pe Vo cly=el — Vyy<cly=c¢}

(x,¢€) > gz (t(r,€),7,€).

where V) = (¥(e) —d-,¥(e)] x {e} and Vi) = [1h(e), ¥(e) +67) x {e}, for some positive
real numbers 6., . Notice that p.(1(g), ) = (¥(¢),&). The map p. is called Mirror Map

g7e

associated with Z% at v(e) (see Figure 21).

First, consider the horizontal and vertical translations u = z — ¥ (e) and v =
y — €, respectively. Notice that (u,v) = (0,0) is a point on the isocline u = (v + ) — 1)(¢)
in the (u,v)—coordinates. Define the vector fields X' (u,v) := X (u + ¢.(g),v + &) and
Z2(u,v) = Z2(u+1b(e), v + £). Expanding 7 © ¢34 (¢, 1, 0) in Taylor series around ¢ = 0,
we get

T2 0 g0 (t,u,0) = QZkl wt’ + O . (5.1)

|
=1 v
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Figure 21 — Mirror Map p. of Z® at 1(e).
From the construction of Section 2.1, it is easy to see that
. 2% —1)! 4, :
X+ i 0) = 045(— 2k—i O 2k—i+1 5.9
for each i € {1,--- , 2k}, where
1 a?k—l : Xt
. = J (0,0) > 0 and f.(u,v) = ma 0 XP(u+ v(e)v+e)

(2k — 1)! Qu?k—1 moXt(u+Y(e),v+e)
Notice that oy = o > 0, which is given in (2.1). Now, we define the map

2k
S(S,U,g) = mﬂ'g o (pZS(SU,U,, 0)
(3

Using (5.1) and (5.2) we can rewrite S as

S(s,u,e) = =1+ (1 +8)* + O(u,¢).

Since S(—2,0,0) = 0 and g—f(—?, 0,0) = —2k < 0, by Implicit Function Theorem we get
the existence of a smooth function s(u, ) such that s(0,0) = —2 and S(s(u,¢),u, ) = 0.
From the definition of S, for t(u,e) = us(u,c) we have that m o @z (t(u,€),u,0) = 0.
Finally, expanding s around (u, ) = (0,0) we get that s(u,e) = —2+(’)(iu, ¢). Consequently,
we can define the map p. in a neighborhood Vj < ¥ of (0,0) by

P-(u,0) = u+t(u,e) = —u + O(u?, cu).
Therefore, going back to the original coordinates, we conclude that

pe(z,) = =2+ 20(e) + O ((x — ¥(e))*, e(x — ¥(e))) -
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5.2 The first return map .

In what follows, we state the following proposition, which will be proved in
Section 5.3.

Proposition 10. Consider a Filippov system Z = (X", X )y and assume that X+
satisfies hypotheses (B) (see Section 4.1) and (H) for some k = 1. Forn = 2k — 1, let
® € O be given as (1.5). Then, the following statements hold.

(a) If the limit cycle T is unstable, then for e > 0 sufficiently small the reqularized system
72 (1.4) does not admit limit cycles converging to T

(b) If the limit cycle T is asymptotically stable, then for ¢ > 0 sufficiently small the
reqularized system Z* (1.4) admits a unique limit cycle T converging to T'. Moreover,
I'. is hyperbolic and asymptotically stable.

Remark 6. Notice that a boundary limit cycle is a YX—polycycle, thus we will generalize
Proposition 10 in Section 6.1.2.

To prove Proposition 10 we need to define the first return map 7. of Z*, for
e > 0 sufficiently small.

First of all, take p,e > 0 small enough in order that the intersections of the
trajectory of Z* starting at (1(¢),e) with the sections {x = —p} and {z = z.} are
contained in U, namely (—p,7° ) and (z.,7;_), respectively. Since 7 0 X (—p,7°,) # 0
and m o X7 (x.,7;.) # 0, then {x = —p} and {x = x.} are transversal sections of
X* at the points (—p,7°,) and (., 7; ), respectively. Hence, by [10, Theorem A] we
know that there exist the transition maps T2 : [¢(e),z.] x {¢} — {x = z.} and
T [, ()] {2} — {x = —p} satisfying

T (x) =75, + Ky, (7 — V() + 0 ((z — ¢(5))2k+1) ,

S — S (53)
Te (J]) =¥, + "ip,s(x - ¢(€))2k +0 ((l’ - w(g))mﬂ_l) )
where sign(x,_.) = —sign((XT)*h(y(e))) = sign(k} ), i.e. K, , k. < 0. Using the
Implicit Function Theorem, it is easy to see that
- | a1 . a1
(T2) ) = () — =@, —»F + 0 (7, - "),
0,E
Now, we know that there exists a diffecomorphism P¢ : {x = x.} — {x = —p} given by
Pi(y) =72, + KZ, (v = 72,) + O((y = 72.)°).
Finally, we get the first return map 7. : {x = —p} — {x = —p} defined as
m(y) = FC OTS;(O pe o (T2) (y)
—€ ;s, K;g,&‘ —c —c 54
= - I ) O, )+ 06, O
P,E

for some p > 1.
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Figure 22 — The first return map . of Z2.

5.3 Proof of Proposition 10

First of all, if . is a limit cycle of the regularized system Z% (1.4) converging
to I' (i.e. there exists a fixed point (—p,y?) € {x = —p} of 7. such that lil% y? =7_,), then
E—>
by (5.4) we get

dr. . KE

(y) — _ TP TesE +O (yi _y)p—l )
dy Kz,s ( 4 )

It is easy to see that limo —=£ = 1. Thus, using Lemma 5 we have that
&,p—> I{S
28
dm,
. N
i, 2 )

Hence, since I' is hyperbolic, then K > 1 (resp. K < 1) provided that I is unstable (resp.
asymptotically stable). Consequently, I'. is hyperbolic and unstable (resp. asymptotically
stable), for ¢ > 0 sufficiently small.

The proof of the first statement is by contradiction. Suppose that there exists
a limit cycle I'. of Z2 such that I'. converging to I, for ¢ > 0 small enough. Consider the
region B, delimited by the curves x = —p, the limit cycle I', and the Fenichel manifold S, .
associated with Z%, (see Figure 23). Since I'. converges to the regular orbit I' then B. has
no singular points. In addition, it is easy to see that B, is positively invariant compact set,
for € > 0 small enough. For € > 0 choose ¢. € B., from the Poincaré-Bendizson Theorem
w(q.) = B. is a limit cycle of Z® that is not unstable, absurd.

Now, we shall prove the second statement. Indeed, from Theorem C, for € > 0
small enough, we know that Z® admits a asymptotically stable limit cycle I'. converging
to I'. Moreover, from above we have that I'. is hyperbolic. Finally, we claim that I'. is the
unique limit cycle with these properties. Indeed, suppose that there exists another limit
cycle FNE converging to I', hyperbolic and asymptotically stable. Now, consider the region
R delimited by the limit cycles I'. and ﬁe. Notice that R. is negatively invariant compact
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N,

-~ s

T =—p
Figure 23 — The region B..

Sue— |

)

set. Furthermore, since I'. and FNE converges to the regular orbit I', we can conclude that
R. has no singular points for ¢ > 0 small enough. For € > 0 choose ¢. € R., from the
Poincaré-Bendizson Theorem we can conclude that a(g.) = R. is a limit cycle of ZF that

is not asymptotically stable, absurd.
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6 Regularization of X»-Polycycles

In Chapter 4, we stated Theorem C which studied C"-regularizations of bound-
ary limit cycles with a even multiplicity contact with the switching manifold. Notice that
the simplest X —polycycle is the boundary limit cycle. Thus, our main interest here is to
generalize Theorem C for homoclinic-like > —polycycles through ¥ —singularities of planar
Filippov systems.

6.1 Regularization of Y-Polycycles of type (a)

In this section, we shall state and prove the fourth main result of this work,
which in particular establishes sufficient conditions under which the regularized vector
field Z® has a limit cycle T, converging to a X —polycycle of type (a). For this, suppose
that a Filippov system Z = (X, X7) has a X—polycycle T" of type (a). Through a local
change of coordinates, we can assume that p = (0,0) and h(x,y) = y. Without loss of
generality, assume that:

(a.1) X (p) > 0;

(a.2) the trajectory of Z through p crosses X transversally m—times at ¢, -+ , gn, i.e. if
m # 0, then for each i = 1,--- ,m, there exists t; > 0 such that ¢z (t;,¢) = i1,
where ¢, 1 = p. Moreover, ' n ¥ = {q1,- -+ , ¢m, P}

We shall also assume that
(a.3) X h(p) > 0.

The case X~ h(p) < 0 is obtained from this case multiplying the vector field Z by -1 (see
Remark 7 below).

Notice that assumption (a.2) above guarantees the existence of an exterior map

D associated to Z. In what follows, we characterize such a map D. Since X, (p) > 0, implies
that there exists an open set U such that X (x,y) > 0, for all (z,y) € U. Take p,6 > 0
small enough in order that the points ¢" = (6,7,) € Wi(p) and ¢° = (—p,7_,) € W;(p)
are contained in U. Hence, there exist §“° and 7 positive numbers such that

7' =1(0,y) 1y € Wy — 0" Yp + ")},

={(=py) ye@_,—67_,+)}, and (6.1)

op = {0} x [0, n)

are transversal sections of X*. In addition, we know by the Tubular Flow Theorem that
there exist the C?"—diffeomorphisms 7"* : ¢, — 7" and D : 7/ —> 7 such that
T“*(p) = ¢"° and D(q") = ¢° (see Figure 24). Thus, expanding D around y = 7,, we get

D(y) =9_, + 10,y — ) + O((y —7p)?), (6.2)
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dD
where 7y, = d—y(yg).

Figure 24 — X—polycycle T" of type (a) satisfying (i) and (7).

Now, from Definition 3, we know that there exists a first return map nr defined,
at least, in one side of I'. In what follows, we shall see that there exist positive constants 7
and K such that the first return map #r : 0, — o, is given by

mr(y) = Ky + O(y?), where K > 0. (6.3)

Indeed, expanding T** around y = 0, we have

T(y) =Y_, + Ky + O(y*) and (6.4)

T"(y) = o + wgy + O(y?),

. S. U dTS7u o . . . . .
with £,y = g (0). In addition, using (6.2) and the Implicit Function Theorem, we get
’ Y
_ _ 1 _ _
D7) =To+ 7y =7,) + Oly =7-,)). (6.5)
5P

Moreover, one can easily see that ry ,, /@ZZZ > () for all , p sufficiently small. Hence, we can
define the first return map 7r : 0, — 0, by
mr(y) = (Do T7) " o T (y).

S

From (6.4) and (6.5), we obtain D™ oT%(y) = 7, + " y+O(y?). Thus, using the Implicit

Function Theorem, we have that s
(D70 T (y) = ~22(y —7) + Oy = 7)?): (6.6)
p
Therefore, using (6.4) and (6.6) we conclude that
mely) = "2y + O() (67

p
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Consequently, taking K := To.0%%6 0, we get (6.3).
H;S

p
Now, since D is a diffeomorphism induced by a regular orbit, we can easily see
that the regularized system Z2 also admits an exterior map D, : 7 —> 7. If we denote
g . 0D.(0)
oe e=

, then
0
D.(y) = D(y) + Se + O(e*, ey), (6.8)
See Section 6.1.3 for more details about the exterior map and how to estimate S.

In what follows, we state our first main result of this chapter, which will be
proven in Section 6.1.1.

Theorem D. Consider a Filippov system Z = (X", X )y and assume that Z has a
Y—polycycle T' of type (a) satisfying (a.1), (a.2), and (a.3). For n = 2k — 1, let & €
Cirt K, S be given as (1.5), (6.3) and (6.8) respectively and consider the reqularized
system Z2 (1.4). If K + S —1 # 0, then the following statements hold:

. . _ n
(a) Given 0 < XA < A T %=1

that the reqularized system Z* does not admit limit cycles passing through the section
H; \ = [-p, —e*] x {e}, for e > 0 sufficiently small.

,if K+ S —1>0, then there exists p > 0 such

1
(b) Given o < A<\ = 1—|—2/<:n(n—1)’ if K+ S —1<0, then there exists p > 0
such that the reqularized system Zf admits a unique limit cycle Iz passing through
the section H;, = [—p, —e* x {e}, for e > 0 sufficiently small. Moreover, T. is

asymptotically stable and e-close to T.

Remark 7. In Theorem D we are assuming (a.3), i.e. X h(p) > 0. If X h(p) < 0,
Theorem D can be applied to —Z. Consequently, the limit cycle obtained for Z, under the
suitable assumptions, would be unstable.

In order to prove this theorem, we shall first establish the relationship between
the derivative of the first return map K and the derivative of exterior map ry , as follows.

Lemma 6. Consider rg. given as in (6.2). Then, ahmo ro, = K.
p—

Proof. Using equations (6.3) and (6.7) we get for 6, p > 0 small enough that
Kk}

_ P
To,p = w
Ko

K./S
To prove this lemma, we just need to prove that ehmo —Z = 1, because in this case we have
7/)_) 1‘19

Kr?
. . . P
lim 7y, lim
6,0—0 ' 0.0—0 Kg
S

. Kp
= K lim -+
0,0—0 Ky

= K.
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For this, we shall prove that the flow of X' induces C* maps,
Ao, cop— 1 and X\ :o0,C o, — T,

between the transversal sections defined in (6.1) and satisfying A%(0) = ¢* and \g(0) = ¢,
respectively. Indeed, consider the functions

/J“l(tu Y, 0) = gp}(‘*’ (t7 07 y) - 6)7 for (07 y) € Op, te ](O,y)a

and

/Lg(t, yvp) = 90_1)(‘*' (ta an) + p, for (Oa y) €op, tE€ [(O,y)a
where px+ = (px+, Px+) is the flow of X and I(g,, is the maximal interval of existence
of t — wx+(t,0,y). Since,

11(0,0,0) = 0 = 415(0,0,0) and

a:u1,2 a@%pr
ot ot
by the Implicit Function Theorem there exist 79 > 0 and smooth functions t;(y, §) and
ta(y, p), with (0,y) € o}, := {0} x [0,70) < 0}, and 6, p > 0 sufficiently small, such that

(0,0,0) = (0,0,0) = X{ (p) # 0,

t1(0,0) = 0 = t2(0,0),

M1 (tl (ya 9)7 Y, 6) =0, and :u2(t2(y7 p)7 Y, p) =0,
ie. i (ti(y,0),0,y) = 0 and o+ (t2(y, p), 0,y) = —p. Thus, we can define the functions

2 (y) = o+ (t1(y,0),0,y) and A5 (y) = @+ (t2(y, p), 0, )

Notice that

0) = t1(0,0),0,0)—(0, 60 t1(0,0),0,0
dy() at (1(7)77)5y(7)+ ay(1(7)77)7
and
A\’ 0> ot 0>
220 = ZHE(0(0,),0,0) 520, p) + (100, ),0,0),
Since,
E P
2y 0y - 75(0,0,0) 20 0y — 75(0,0,0)
o Te00) W Pxe,0,0)
and
de,u S, u
690§(+ a§0§(+ o, dX,
— — 1 S, u — p P,
ay (07070) 07 ay (07070) 7H6’,p dy (0) dy (0)7
we get that
d\¥
lim = lim —2(0)
6—0 6—0 dy
0> ot 0>
= DX (40,0),0,0) 21 (0,0) + 22X (£,(0,0),0,0) (6.9)

oy
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and D
}»ii% Ko = /l)i—r>r(1)2 dyp (0) )
0 ot 0
= S (15(0,0), 0,0)5(0,0) + "g;” (£2(0,0),0,0) (6.10)
= 1.
The result follows from (6.9) and (6.10). O

6.1.1 Proof of Theorem D

First, from Theorem A for 8 = x., there exist py > 0, and constants § < 0 and
c,r,q > 0 such that for every p € (€%, po], A € (0, \*), and ¢ > 0 sufficiently small, the flow
of Z® defines a map U, between the transversal sections 17; r=1{—p}x[e,y;,] and ‘7;5 =
{xe} < [y5, v5. + re”#7] satisfying

. {re (e
Us: Vo — Voo

e 6.11
y > yo +0(e ), (6.11)

2kA*) (

where y; =7, +e+O(c see Figure 25).

&
Yo

A&‘
[N

x’:—p $=9=SL‘5

Figure 25 — Upper Transition Map U. of the regularized system Zf .The dotted curve is the
trajectory of X passing through the visible regular-tangential singularity of
multiplicity 2k p = (0,0). The red curve is the well-known Fenichel manifold.

Now, notice that there exists ey > 0 such that XN/;g c 7, for all € € [0,&0]. In
this way, for € € [0,¢0], we define the function 7.(y) = D. o U.(y). Hence, from (6.8) and
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(6.11), we get

m(y) = D7 +O()
- D(yxa +e+ O(gz’”*)) +eS + O(e?)
= U ,+ Ty (8 + (9(52“*>) + (9(5 + O<€2k’\*))2 +eS + O(e?)
= Y., + (sz,p + S)s + (9(52“*).

(6.12)

N

Using (6.12) and (3.1), we have

Te(y) = Yor = (aep + 5 — 1) e + O(ep) — B> + O + O ) + O(gm*).

T __ af€
Hence, we must study the limit lim M

; in three distinct cases. First, assume
pe— €

that A > i Then,
2k

Te(y) — Y5

. =7y, + S — 1+ 0(p) — BeHA 4 O(ePR+DAM1) L O(N) + O(gzm*q)

Thus, by Lemma 6,
i =W Yo g (6.13)

p,e—0 g
1
Now, suppose that A < % Then,

T=(Y) — Y5
€2k>\

— (o + S =1 4 O 2 p) = f4 O() + OO ),

Hence, by Lemma 6,

13
_ me(Y) — Yo
hm — 7 ThA =
p,e—0 g2kA

—3>0. (6.14)

1
Finally, assume that A = % Then,

Ws(y)g_ yp,)\ = Tu.p +9-1— ﬁ + O(p) + O(E)\) + O<€2k)\*fl)‘

Thus, by Lemma 6,
i W Y gl (6.15)
p,e—0 €
Now, we prove statement (a) of Theorem D. As K + .S — 1 > 0, then all the
above limits (6.13), (6.14) and (6.15), are strictly positive and, since € > 0, there exists
0o > 0 such that

0<p,e<dy = m(y) —y,,>0.

Therefore, m.([e,y5,]) N [, y;,] = &, for all € € (0,dp). This means that 7. has no fixed
points in [e, Y, \], that is, the regularized system ZZ does not admit limit cycles passing

through the section If[; A\



Chapter 6. Regularization of ¥-Polycycles 82

1
Now, we prove statement (b) of Theorem D. In this case, A > T As K+S5—-1<
0, then the limit (6.13) is strictly negative and, since € > 0, there exists dp > 0 such that

0<p,e<dy = m(y) —y,\ <0.

Consequently, 7.(y) < y; . Moreover, from (6.12), we get

limn.(y) —e=75_,>0,

e—0

for all p > 0. Since € > 0, there exists d; > 0 such that
O<e<d = m(y)—e>0.

Accordingly, 7-(y) > ¢, for € > 0 sufficiently small. This means that ([, %5 1) < [e, ¥} ,]-
By the Brouwer Fized Point Theorem, we can conclude that 7. admits fixed points in
e, Y, ,J, that is, the regularized system Zf’ has limit cycles passing through the section
HE ,.

In what follows, we will prove the uniqueness of the fixed point in [e, y; ,].
Indeed, expanding D, in Taylor series around y = y;_, we have that

D.(y) = D-(y3.) + dd%(yis)(y — o) + Oy —45.)°).

Hence,
m(y) = De(y;. + Od(g—c/aq))
= Dg(yfcs) + dyE (y;E)O(e*c/g‘J) + O(e*2c/eq)
= D.(y;.) + O(e "),

and, therefore, |m.(y1) — 7. (y2)| = Oe "), for all yy,y, € e, y;,]- Now, let v, be the
function given by
vei[eypnl — [0,1]
y—e¢
Yor — €

Notice that v, '(u) = (y; 5 — €)u + e. Thus, if T.(u) = 7 o v_ ' (u), then

—

[7e(ur) — Fe(uz)| = O(e™"),

for all uy,us € [0,1]. Fix [ € (0,1), take uy,us € [0,1], and define the function ¢(¢) :=
(45,0 — €)1 There exists e(u1, uz) > 0 and a neighborhood U (u1,uz) < [0,1]% of (u1, us)
such that
7 () = 7=(y)| < (o) —yl,

for all (z,y) € Ului,uy) and € € (0,e(ur,ug)). Since {U(uy,uz) : (uy,us) € [0,1]%} is
an open cover of the compact set [0, 1], there exists a finite sequence (u!,u}) € [0,1]?,
i =1,...,s, for which {U" := U(u},u) : i = 1,...,s} still covers [0,1]?. Taking & =
min{e(ul,uy) i =1,...,s}, we get

[Te(2) = Tew)] < Lle) |z —yl,
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for all € € (0,€) and (z,%) € [0,1]?. Finally, since 7.(z) = . o v(2), we have that

m(2) = m(y)| = [Fove(x) — T ov(y)]
< 5(2)|Va($)—%(y)|
= 5(6_) |z =yl
Ypr — €
= lz —yl,

for all ¢ € (0,€) and x,y € [e,y;,]. Therefore, 7. is a contraction for ¢ > 0 small
enough. From the Banach Fized Point Theorem, m. admits a unique asymptotically stable
fixed point for £ > 0 small enough. Therefore, the regularized system Zf has a unique

asymptotically stable limit cycle I'. passing through the section ﬁ; s

for € > 0 sufficiently
small. Moreover, since m.(y) —7_, = O(¢) for all y € [¢,45,] and z. — T} = (’)(gﬁ), we
get from differentiable dependency results on parameters and initial condition that I is

e-close to I.

6.1.2 A case of uniqueness and nonexistence of limit cycles

The goal of this session is to obtain a version of Proposition 10 for ¥—polycycles
of type (a). More specifically, we know that statement (a) and (b) of Theorem D guarantee,
respectively, the nonexistence and uniqueness of limit cycles in a specific compact set with
nonempty interior. However, it is not ensured, in general, the nonexistence and uniqueness
of limit cycles converging to I', because this compact set degenerates into I' when € — 0.
Nevertheless, if we suppose, in addition, that X has locally a unique isocline z = ¥ (y)
of 2k—multiplicity contacts with the straight lines y = cte and K > 1 or K < 1, then we
can establish the nonexistence and uniqueness of limit cycles converging to I', respectively.
More precisely, consider the following proposition.

Proposition 11. Let Z = (X*, X )x be a Filippov system and assume that Z has a
Y—polycycle T of type a) satisfying (a.1), (a.2), and (a.3). Forn = 2k—1,let® e Cop' K, S
be given as (1.5), (6.3) and (6.8) respectively and consider the reqularized system Z® (1.4).
IfK+S—1%#0and X% has locally a unique isocline x = 1 (y) of 2k—multiplicity contacts
with the straight lines y = &, then the following statements hold.

(a) If K+S—1>0 and K > 1, then for e > 0 sufficiently small the reqularized system
Zf’ does not admit limit cycles converging to I'.

(b) If K4+ S —1<0 and K <1, then for e > 0 sufficiently small the reqularized system
Zf admits a unique limit cycle I'. converging to I'. Moreover, I'. is hyperbolic and
asymptotically stable.

Remark 8. In Proposition 11 we are assuming (a.3), i.e. X h(p) > 0. If X h(p) <0,
Proposition 11 can be applied to —Z. Consequently, the unique limit cycle obtained for Z,
under the suitable assumptions, would be unstable.

Proof. We will do this demonstration in 3 steps:
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Step 1. First of all, we shall construct the first return map . of Z2, for ¢ > 0.
Since X{ (p) > 0, implies that there exist an open set U, such that X" (z,y) # 0, for all
(z,y) € U. Take p,e > 0 small enough in order that the points ¢¥ = (x.,7;.) € W/ (¥ (¢))
and ¢ = (—p,7-,) € Wi (¢(g)) are contained in U. Thus, there exist /" positive numbers,
such that
{(=y) ry € (T, — 05,7, + 00}
{(=p.y) -y e (¥, =027, + 02},
are transversal sections of X ™. Thus, by [10, Theorem A] we know that there exist the
transition maps 1" : o, = [¢(¢), 2| x{e} —> 7L and T} : 0, _ := [—p,¥(e)] x{e} — 7},

p,e

Tta

I

Tts

satisfying
T(2) =T, + Ky, (2 = (€)™ + O ((x — () ),
T (2) =72, + s (w0 = 0(€)* + O ((z — (€)™ ),

where sign(x;_.) = —sign((X)**h(¢y(e))) = sign(x K).), l.e. vy ., k5. < 0. Furthermore,
from Implicit Function Theorem, it is easy to see that

(6.16)

() () = (o) — % _; 7, -0 +0 (@, -1 k).

Now, we know that there exists a diffeomorphism P : 7"

s
', — 7, defined as

Figure 26 — The first return map . of Z2.

me(y) = PLoTlop.o(T2)7'(y)
_ ye_ _ Tws,p"f:z:g,s (y_ _ y) + O((ys_p _ y)p) + O(E) (617)

14 KS

for some p > 1, where p. is the mirror map associated with Z® at 1(¢) (see Section 5.1).
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Step 2. Now, if I'. is a limit cycle of the regularized system Z® converging
to I' (i.e. there exists a fixed point (—p,y?) € 77, of m. such that lin% y? =79_,), then by
» £—>
(6.17) we have

£ u

dﬂ-e rcp ’%x 15 1
dy K5 P
u
It is easy to see that limo IS—EE = 1. Hence, using Lemma 6, we get
&,p— Y
28

dm
. g P —
i, Ty (vf) = K

Therefore, if K > 1 (resp. K < 1), then I, is hyperbolic and unstable (resp. asymptotically
stable), for € > 0 small enough.

S(lE/

9

T =—p

Figure 27 — The region B..

Step 3. Finally, we are ready to prove this proposition. The proof of the first
statement is by contradiction. Assume that there exists a limit cycle I'; of Zf such that I'.
converging to I', for € > 0 sufficiently small. Let B, be the region delimited by the curves
x = —p, the limit cycle I'. and the Fenichel manifold S, . associated with Zf’ , (see Figure
27). Since I'. converges to the regular orbit I then B. has no singular points. Moreover,
it is easy to see that B. is positively invariant compact set, for € > 0 small enough. For
e > 0 choose ¢. € B., from the Poincaré—Bendizson Theorem w(q.) < B. is a limit cycle of
Zf which is not unstable, but this contradicts step 2.

Now, we prove the second statement. By Theorem D, for ¢ > 0 sufficiently
small, we know that Zf has a asymptotically stable limit cycle I'. converging to I'. In
addition, from step 2 we have that I'. is hyperbolic. Finally, we claim that I'. is the
unique limit cycle with these properties. In fact, assume that there exists another limit
cycle ﬁa converging to I', hyperbolic and asymptotically stable. Now, let R. be the region
delimited by the limit cycles I'. and ﬁa. Notice that R. is negatively invariant compact
set. Furthermore, since I'. and ﬁg converges to the regular orbit I', we can conclude that
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R. has no singular points for ¢ > 0 small enough. For € > 0 choose ¢. € R., from the
Poincaré-Bendizson Theorem we can conclude that a(g.) € R. is a limit cycle of Z® that
is not asymptotically stable, but this contradicts step 2. O

6.1.3 The exterior map of the regularized system

In this section, we shall study the exterior map of the regularized system Z®
and its derivative.

Let Z = (X,Y) be a Filippov system with X, Y : V < R? — R? vector fields
of class C** defined on an open set V of ¢ € R? and Z2 the regularized system associated
with Z. Assume that the switching manifold ¥ of Z is a C* embedded codimension one
submanifold of V' and let ¢ € X°.

Notice that there exists a local C** diffeomorphism ¢; : U « R?* — R? defined
on an open set U of ¢ € R? such that 5= 1 (2) = h™1(0), with h(z,y) = z. Now, applying
the Tubular Flow Theorem for (¢1),Y at ¢ and considering the transversal section i there
eX1sts a local C** diffeomorphism 9 defined on U (taken smaller if necessary) such that

= (Y2 0¢1).Y = (1,0) and ¢5(%) = 5.

Since Xi(q) > 0 then X;(z,y) > 0 for all (z,y) € U (taken smaller if nec-
essary). Consequently, we can perform a time rescaling in X, thus we get X (x,y) =
(1, Xo(z,y)/X1(x,y)), for all (z,y) € U. Hence, without loss of generality, we can as-
sume that there exists an open set U < R? of ¢ = (0 C]2) such that the Filippov system
Z = (X,Y)y satisfies that X‘U = (1, Xs), Y‘U = (1,0), and X n U = {(0,y) : y €

(2 — 6u, g2 + 0v)}-

Take p > 0 and 6 > 0 sufficiently small in order that the sections {x = —p} and
{z = 6} is contained in U and without loss of generality assume that the points (—p, 0) and

q are connected by a trajectory of X. Thus, we can consider the following maps induced
by the flow of Z2:

P.:{z=—p} — {x=—¢}
T.:{x = —c} — {x=¢},
Qc:{r=¢} — {o=10}
where Q. = Id (see Figure (28)). The exterior map D. : {x = —p} — {z = 0} of Z? is
defined as
D.(y) :== Q. 0T o P.(y).

Now, we shall compute the first derivative of D, at ¢ = 0 and y = 0. Expanding P. and
T, around € = 0, we get that

P. = P+ Pie + O(c?),
T. = Id + Tie + O(g?)

where P : {z = —p} — X is induced from the flow of Z, P, =

Hence, expanding D, around ¢ = 0, we have that

D.(y) = P(y) + [(Pi(y) + Ta(P(y))]e + O(?).

g le=0 68 5:0'
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—p by 0 —p —& € 0

P @ Q=1Id

Figure 28 — Exterior map D, = Q. o T. o P. of the regularized system Z2.

In addition, developing in Taylor series P, + 717 o P around y = 0, we get

D.(y) = P(y)+[(P(0) + To(P(0)]e + O, ey)
P(y) + [(P1(0) + T1(g2) e + O(e?, ey)
P(y) + Se + O(e%, ey)

where S := P;(0) + T1(gz). In order to determine S, we shall study the maps P; and T} at
y =0 and y = ¢g, respectively.

First, we study the map P;. Let ¢x be the flow of X, and assume that I,
the maximal interval of existence of t — @x(t,—p,y). Is easy to see that there exists a
smooth function ¢,(y) such that ¢5(0) = 0 and ¢ (¢,(y), —p,y) = 0. Thus, we can write P
as follows

P(y) = X (t,(y), —p.y), for ye {z = —p}.

From Implicit Function Theorem, there exists a smooth function 7,(y, €) such that 7,(y, 0) =
t,(y), 7(0,0) = 0, and px(7,(y,), —p,y) = —¢, for || # 0 sufficiently small. Hence, we
can write P. as follows

P.(y) = % (15(y,€), —p,y), for ye {x=—p}.

Notice that

oP. 2 0T,
Ply) = 50|, = S 00) =) F2 (0. 0)
and 5 )
%(?ﬁ 0) == oL
a_)t((tp(y)a —p, y)
Consequently,
£ (£(0), —p, 0 X
G (t,(0), —p, 0)

Second, we study the map T;. For this, consider the differential system associated
to the regularized system Z2 (1.4) given by

i=1,

(6.18)
= 5 Xa(e,) (1+ 0(2/2)),
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for (z,y) € U and € > 0 small enough. Notice that system (6.18), restricted to the band of
regularization —e < z < ¢, is as a slow-fast problem. Indeed, taking v = z/e, we get the
so-called slow system,

ev =1,
E (6.19)
y= §X2(5U73/) (1 +o(v)),
defined for —1 < v < 1. Performing the time rescaling t = 7, we obtain the so-called fast
system,
v =1,
, € (6.20)
y' =5 Xo(ev,y) (14 6(v)).
Now, we know that the equation for the orbits of system (6.20) is given by
d
d—z =¢eF(v,y,¢) (6.21)
where " )
F(’U, v, 8) _ 2(57)7 y) ( + ¢(U)) )

2
Expanding F' around (v,y,¢) = (v,y,0), we get

X2(0,9) (1 + ¢(v))

F(U7y7€) = 2

+ O(e).

In addition, the solution of differential equation (6.21) with initial condition y.(—1, ¢2) = ¢o
is given by

Ye(v,q2) = @+e Jvl F(s,y:(s,q2),¢)ds
= ¢ +¢ le F(s,90(s,q2),0)ds + O(c?)
= ¢+ % f_vl Xo(q) (1 + ¢(s)) ds + O(e?).

Notice that
T:(q) = y-(1,42)

1
= 4 + EJ F(87y0(87 QZ)a O)dS + 0(62)
-1

= @2+ % J—1 Xo(q) (1 + ¢(s)) ds + O(g?).

Accordingly,
1!
Ti(2) = 5| Xola)(1+0(s))ds
204
X 1
2(4) (2 + (b(s)ds) :
2 1
Therefore,
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6.2 Regularization of X—Polycycles of type (b)

In this section, we shall state and prove the fifth main result of this work,
which in particular establishes sufficient conditions under which the regularized vector
field Z* has a limit cycle I'. converging to a X —polycycle of type (b). For this, suppose
that a Filippov system Z = (X', X7) has a Y¥—polycycle I" of type (b). Without loss of
generality, assume that:

(b.1) Xi(p) > 0;

(b.2) the trajectory of Z through p crosses ¥ transversally m—times at ¢, - - - , g, satisfying
that for each i = 1,--- ,m, there exists ¢; > 0 such that pz(t;,¢) = ¢iy1, where
Gms1 = p. Moreover, ' 0 S = {1, -+ , gns D).

We shall also assume that
(b.3) Wi(p) v Wi(p) = I',ie. X" h(p) > 0.

The case WZ(p) u Wi(p) < I is obtained from the previous case multiplying the vector
field Z by -1 (see Remark 10 bellow).

Since X h(p) > 0, by the Tubular Flow Theorem for X~ at p = (0,0),
there exist an open set U and a local C* diffeomorphism ¢ defined on U such that
X~ = ¢, X~ = (0,1). Clearly, the transformed vector field X* = 1, X" still has a
visible 2k-multiplicity contact with ¥ at p = (0,0) and ¥ (X) = X. Thus, without loss of

generality, we can assume that there exists a neighborhood U < R? of p = (0, 0) such that
X |, =1(0,1).

Notice that assumption (b.2) above guarantees the existence of an exterior map
D associated to Z. In what follows, we characterize such a map. Since X" (p), X5 (p) > 0,
then X" (z,v), X5 (z,y) > 0, for all (z,y) € U (taken smaller if necessary). Take ¢,6 > 0
small enough in order that the points ¢“ = (6,7,) € W/(p) and ¢° = (0, —¢) € W3 (p) are
contained in U. Then there exist positive numbers 6“* such that

' ={(0,y) :ye (g — 0,7y +0")} and

75 ={(z,—¢) : x € (=06°,0°)} (6.22)

are transversal sections of X and X, respectively. In addition, o, = [0,6] x {0} is
a transversal section of X ™. Moreover, by the Tubular Flow Theorem there exist the
C* —diffeomorphism T° : 0, — 75 and D : 7, —> 7% such that T°(p) = ¢° and
D(q") = ¢° (see Figure 29). Thus, expanding D around y = 7,, we get

D(y) = ro-(y —7s) + O((y — Up)*), (6.23)

aD ,
where 7y, = d—y(yg).

Now, by the Definition 3, we know that there exists a first return map =
defined, at least, in one side of I'. In what follows, we shall see that there exist positive
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Figure 29 — X—polycycle I' satisfying (z) — (i7).

constants ¢ and K such that the first return map #r : 0, — o, is given by
mr(z) = Ko** + O(2**™), where K > 0. (6.24)

Indeed, expanding 7 around x = 0, we have

T5(z) = kix + O(2?), (6.25)
: dre o . . .
with k2 = (0). In addition, using (6.23) and the Implicit Function Theorem, we get
T
1 1 2
D™ (z) =7, + —+ O(x7). (6.26)
0,

Even more, one can easily see that rp. < 0 and 2 > 0 for all §,e > 0 sufficiently small.
The same way, by Theorem A in [10] we know that there exists a transition
map T : 0, — 7,* defined as

T"(x) = Ty + gz + O(x* 1), (6.27)

where sign(xy) = —sign((X*)**h(p)), i.e. k5 < 0.
Thus, we can define the first return map =r : o, — 0, by
mr(z) = (D_1 o T‘S)_1 oT"(x).

From (6.25) and (6.26), we have that D™" o T%(x) = 7, + e v+ O(2%). Hence, using the
Toe

Implicit Function Theorem we conclude that

(D™ o T%)7H(2) = 5 (a = 7)) + O((x — 7))
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Thus,

() = "‘%"x% + 022+, (6.28)
€
7’9’51'{3

S
[

Accordingly, taking K :=

> 0, we get (6.24).

Remark 9. Notice that for x € [0,60] we have that mr(z) < z, for some small 6 > 0.
This means that T is always asymptotically stable provided that (b.3) is satisfied, i.e.
X h(p) > 0. If X h(p) <0, I would be unstable.

Now, since D is a diffeomorphism induced by a regular orbit, we can easily see
that the regularized system Z® also admits an exterior map given by

D.(y) = D(y) + O(e). (6.29)

In what follows, we state our second main result of this chapter, which will be proven in
Section 6.2.1.

Theorem E. Consider a Filippov system Z = (X', X )s and assume that Z has a
Y—polycycle T of type (b) satisfying (b.1), (b.2), and (b.3). Forn = 2k —1, let ® € Car' be
given as (1.5) and consider the reqularized system Z> (1.4). Then the reqularized system Z*

(1.4) admits at least a limit cycle T, for e > 0 sufficiently small. Moreover, T'. converges
to I'.

Remark 10. In Theorem E we are assuming (b.3), i.e. W/ (p) v WZ(p) < I'. If WZ(p) U
Wi (p) € ', Theorem E can be applied to —Z. Consequently, we get a limit cycle for Z.

In order to prove this theorem, we shall first establish the relationship between
the derivative of the first return map K and the derivative of exterior map 74 . as follows.

Lemma 7. Consider «, ro., and ky given as in (2.1), (6.23), and (6.27), respectively.

Then,
I 2kK
) fimroc = ==

Proof. First, we prove the statement 7). Indeed, using (6.27) and that 7"(#) = 0 for all
# > 0 small enough, we have 7, + k46°* + O(6**™) = 0. By Lemma 1 we know that

2k
Up = aﬁk + 06?1, thus
a92k
o + 0(92k+1) + Hgéﬂk‘ + 0(92k+1) _ O7
that is,

!
2k
consequently, when 6 tends to 0 we conclude the result.

+ Ky + O(0) =0,
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Now, we shall prove statement ii). For this, notice that using equations (6.24)
and (6.28) we get for 6, > 0 small enough that

- Kk?

3

Toe
Ky

To prove statement i), we just need to prove that lin% ki = 1, because in this case we have
E—>

Kk?
lim rp. = lim £
0e—0 0,e—0 /Qg
lim &
e—0

lim x§
00

(%

where we have used item ). In what follows, we shall prove that the flow of X~ induces
C?* map,

Ao, C oy TS,
between the transversal sections defined in (6.22) and satisfying A3(0) = ¢°. Indeed,
consider the function

w(t,z,e) = % (t,2,0) + ¢, for (x,0)¢€ op, t € Iy,

where px- is the flow of X7 and I,y is the maximal interval of existence of ¢ +—
wx-(t,z,0). Since,
1£(0,0,0) = 0and
0% —
—(0,0,0) =
at( ,0,0) ot

by the Implicit Function Theorem there exist 6y > 0 and smooth function t(x,e) with
(z,0) € g, := [0,6) x {0} < 0}, and 0, > 0 sufficiently small such that

op

(070’0) = X2_(p) # 0,

t(0,0) = 0and

p(t(z,e),z,e) =0,
i.e. 5 (t(r,€),7,0) = —c. Thus, we can define the function
\(r) = P (1(,), 2, 0).

Notice that

A, dpk ot Al
= = t(0 0,0)—(0 t(0 0,0).
M 0) = 22 40.2).0.0) 2 0.9 + P 10,9),0,0)
Since,
ot %x=(0,0,0)
200 =g
a)t( (07070)
and
dr
ool - 0% o d\:
=1 — s _ P — €
pw (0,0,0) o (0,0,0) =0, & I (0) . (0),
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we get that
limk] = lim ax; (0)
e—0 aa—>01 dx o P ( )
Px- Px- 6.30
= t(0,0),0,0)=—(0,0 t(0,0),0,0
5 1(0,0),0,0)2(0,0) + 22 4(0,0),0.,0)
= 1.
The result follows from (6.30). O

6.2.1 Proof of Theorem E

Let U be an open set such that I' = /. Since I" is a X —polycycle of Z, then it
is easy to see that there exists an open set V < U such that V' has no singular points of
72, Taking (4,0) € V, we get that (d,¢) € V, for ¢ > 0 small enough.

Now, define the map D.(z) = mp(z) + O(e), for all z € I, where £ is a
neighborhood of 9. By Remark 9 we know that 7p(0) < ¢, then we can conclude that
D.(0) < ¢, for € > 0 sufficiently small.

By Theorem B for § = T, there exist py > 0, and constants ¢, r,¢q > 0 such
that for every p € (%, po], A € (0,A*), and ¢ > 0 sufficiently small, the flow of Z®
defines a map L. between the transversal sections Hj \ = [—p, —M] x {—¢} and Vi =

{1} x [yes — re” yo+] satisfying

. VE VS
L.: 5, — V&

c 6.31
v — Yo +0(eF), (6:31)

where Yoy =7+ + e+ O35 + O(") + O£ (see Figure 30).

Yz+
I 5
L.(z) Vy
/
\ ly=c¢

VE
Hp,)\

Figure 30 — Lower Transition Map L. of the regularized system Z. The dotted curve is the
trajectory of X passing through the visible regular-tangential singularity of
multiplicity 2k p = (0,0). The red curve is the well-known Fenichel manifold.
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Since Y7§+ c 7', for € > 0 sufficiently small, then we can consider the map
D.olL.: ]\:7;’)\ — 75. We claim that D. o L.(—¢") > —¢*. Indeed, from (6.29) and (6.31),
we get

Do(L(=2") = D.(y + O
_ D(yﬁ te+ OEE) + OE) + 0(52“*)) +0()  (6.32)
= 1o e+ O(ETE) + O(EF) + O(E2) + O(e).
Hence,

D (L(—=e")+e* = + 1+ e+ O ) + O(E) + 0 + 0(e),

that is,

_ 1+r§;’€€1—)\+0(€1+i—)\)+O(€1+)\*—)\)+O(€2k)\*—)\)
+0(e').

Using Lemma 7, we get

lim =1>0.
e—0 5>\
Since € > 0, there exists ¢y > 0 such that
0<e<ey = D.(L(=e"))+e*>0. (6.33)

Hence, D, o L.(—¢") > —¢&*, for ¢ > 0 sufficiently small. Now, let R. be the region

Figure 31 — The region R..

~

delimited by the curves y = ¢, y = —e and the arc-orbits connecting (0, ) with (D.(), )
and (—&*, —¢) with (D, o L.(—¢"), —¢), respectively (see Figure 31). It is easy to see that
R. is positively invariant compact set of V', and has no singular points for € > 0 small
enough. For € > 0 choose ¢. € R. from the Poincaré—Bendizson Theorem T := w(q.) < R-
is a limit cycle of ZE . Furthermore, I'. € V' < U for € > 0 small enough, hence I'. converges
to I'.
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