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A minha familia dedico...
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Essentially, all models are wrong, but some are useful.

George E. P. Box
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There are 10 types of people in the world;

Those who understand binary and those who don't.
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Modelagem de fenomenos intempéricos e erosionais em vertentes: Uma aproximacao de

suas componentes nao-lineares com base em métodos de mineraciao de dados

RESUMO

Tese de Doutorado

Fabio Iwashita

Esta tese de doutorado tem como objetivo aprofundar o conhecimento sobre as relacdes das propriedades fisico-
quimicas do solo com a morfometria do relevo, buscando quantificar essas relacdes para a construcdo de modelos
conceituais e preditivos. Mapas auto-organizdveis e modelos de sistemas de informacdo geografica foram utilizados
para investigar as relacdes ndo lineares associadas ao intemperismo quimico e fisico, fatores associados a fendmenos
hidrolégicos e a evolucdo dos solos. Trés estudos de caso sdo apresentados: o intemperismo quimico de solo no
estado do Parand (22 varidveis e 304 amostras), o transporte fisico de sedimentos em Pocos de Caldas (9 varidveis e
29 amostras), e hidroquimica de aqiiiferos na Formacdo Serra Geral no Estado do Parand (27 varidveis e 976
amostras). O método combinando simulagdo estocdstica e mineracdo de dados permitiu explorar as relacdes entre
relevo, granulometria e geoquimica dos solos. Regides mais elevadas e com morfometria convexa apresentaram alta
denudacdo de elementos méveis (e.g., Ca) e baixa de elementos pouco méveis (e.g., Al). O mesmo padrido foi
observado para granulometria de solos, ou seja, alta propor¢@o de areia em dreas altas e convexas da bacia e altos
teores de argila, com baixa condutividade hidrdulica, em regides convexas proximas aos canais de drenagem. O
comportamento espacial da hidroquimica das dguas do aqiiifero Serra Geral apontou 4reas de potencial conectividade
entre aqiiiferos, dreas de recarga recente e de alto tempo de residéncia. Foram construidos modelos preditivos ndo
tendenciosos das propriedades do solo em subsuperficie partindo da premissa de que o intemperismo e a morfometria
se relacionam através de um processo duplamente dependente, onde a denudacdo fisica e quimica atua no
delineamento do relevo e a morfometria do terreno € um fator que caracteriza as condigdes fisico-quimicas do solo.

Palavras-chave: intemperismo de solos, mapas auto-organizaveis, simulacio Monte Carlo, imputacdo, Parana,
Pocos de Caldas, aqiiifero Serra Geral.

XV



Xvi



\[//
s A UNIVERSIDADE ESTADUAL DE CAMPINAS

v, " INSTITUTO DE GEOCIENCIAS

aN PROGRAMA DE POS-GRADUACAO EM
GEOCIENCIAS

UNICAMP AREA DE GEOLOGIA E RECURSOS NATURAIS

Modeling of soil weathering on hillslopes: Coping with nonlinearity and coupled processes
using a data-driven approach

ABSTRACT

Tese de Doutorado

Fabio Iwashita

This Doctoral thesis aims to explore the relationship between soil physical-chemical properties and relief
morphometry, and quantifying these relationships to build conceptual and predictive models. Self-organizing maps
and Geographic Information Systems modeling are here used to investigate nonlinear correlations associated with
chemical and physical denudation; which are factors connected with hydrological phenomena and soil evolution.
Three study cases are presented: soil chemical weathering within the limits of the Parana State, southern Brazil (22
variables and 304 samples), physical transport of sediments in the alkaline intrusive complex of Pogos de Caldas,
southeastern Brazil (9 variables and 29 samples), and hydrochemistry of Serra Geral aquifers also in the Parana State
(27 variables and 976 samples). The method combining stochastic simulation and data mining allows exploring the
relationships between topography, soil texture and soil geochemistry. In the Parana State, higher regions and areas
with convex morphometry shows, respectively, higher and lower denudation rates of mobile (e.g., Ca) and less
mobile (e.g., Al) elements. The same pattern is observed for soil particle size. In this case, high proportion of sand is
found in highlands and convex areas inside the basin, and high clay content, with low hydraulic conductivity, occurs
in convex regions, near drainage channels. The spatial behavior of the Serra Geral aquifer’s hydrochemistry pointed
out to areas with potential connectivity with the Guarani aquifer system, recent recharge areas, and long-standing
waters. Predictive, unbiased models are built for soil properties on the premise that weathering and morphology are
related through a two-way dependent process, where the physical and chemical denudation delineates the elevations
of the land surface, and terrain morphometry is a factor that characterizes the physical-chemical conditions of the
soil.

Keywords: soil weathering, self-organizing maps, Monte Carlo simulation, imputation, Parana,
Pogos de Caldas, Serra Geral aquifer
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1. INTRODUCAO

A morfometria do terreno reflete os processos de intemperismos fisico e quimico,
responsdveis por sua evolucdo e delineamento. Entender o processo de intemperismo requer
conhecimento sobre os fendmenos que influenciam a formacdo da paisagem. Os primeiros
modelos numéricos e métodos empiricos permitiam a quantificacdo da perda de massa do solo
apenas a partir de um ponto de vista fisico. Tais modelos consideravam as encostas uniformes em
toda sua extensdo (i.e., retilineas), ndo refletindo a heterogeneidade das taxas de transporte e
deposicdo ao longo das encostas (Heimsath et al., 1997). Modelos recentes de balanco de massa
assumem que a taxa de transporte de sedimentos ndo é linear, considerando que as encostas
possuem morfometria convexa proxima ao topo, retilinea na porcao intermedidria e concava em
sua base (Roering et al., 1999).

Recentemente, o intemperismo quimico passou a ser incorporado no cédlculo de balanco de
massa em encostas, ja considerando sua natureza nao linear. Mudd e Furbish (2004) formularam
uma equagdo generalizada de balanco de massa em encostas incluindo transporte fisico de
sedimentos, deposi¢ao e denudacdo quimica. Estas equagdes foram desenvolvidas em um modelo
unidimensional sob condicdes de estacionariedade, onde a elevacdo das encostas nio muda no
tempo considerado (i.e., sem soerguimento). Os autores constataram que a quantidade total de
massa transportada por intemperismo quimico aumenta de forma ndo linear em relacdo a
distancia do divisor, enquanto a partir do ponto de inflexdo, onde a encosta € retilinea, o
transporte mecanico diminui (Figura 1a). Yoo et al. (2007) combinaram um modelo numérico
com medidas de geoquimica de solos coletadas ao longo de um transecto em uma encosta no
sudoeste da Austrdlia. As taxas de intemperismo quimico do solo apontaram perda de massa
proxima ao divisor e uma tendéncia de acimulo conforme a distincia em relagdo ao topo
aumentava (Figura 1b).

Estes estudos mostram que as propriedades morfométricas das encostas podem ser
incorporadas na modelagem do intemperismo fisico e quimico dos solos e aplicadas para areas
extensas através de imagens de sensores remotos, modelos digitais de elevacdo e Sistemas de
Informacdo Geografica (SIG) para calcular medidas como declividade, orientacdo de vertentes,
curvatura vertical, curvatura horizontal e fluxo hidrologico acumulado. O intemperismo fisico e

quimico é um fendmeno complexo e um fator importante no delineamento das encostas, uma vez



que a mobilidade de elementos estd intimamente ligada as condigdes fisico-quimicas dos solos
(pH, umidade, temperatura, porosidade, etc.). Por exemplo, dreas consideradas de aspecto
concavo estdo associadas a um fluxo hidrolégico convergente e, portanto, apresentam umidade

média do solo mais elevada que dreas convexas, que geralmente caracterizam topos de morros.

_ o .
convex portion Q\@(:éa\ concave portion

divif‘:le of hillslope _\{\J‘Q of hillslope
[
|
|

Figura 1. Modelo conceitual
da taxa de transporte de

sedimentos baseada no perfil

Elevation —

distance from divide —— da encosta. a) o total de

sedimentos denudados

J) Total sediment entering LI
E|  the active layer upslope of x quimicamente pode ser
=] . ~ ~
2 descrito por uma fung¢do nao
5
£ linear em relacdo a distancia
(1]
(7] | ..

| total sediment do divisor. A massa denudada

Idenuded chemically o

upslope of x quimicamente nas areas

. distance from divide —=

(a)

concavas € maior que a

transportada  mecanicamente

0.04 | 1 (Mudd and Furbish, 2004) b)

Total Loss Rate

1.1

taxa total de intemperismo
0.02 | =1.0kgm™ yr

quimico mostrando a variacao

1 2 3 T de massa em funcdo da

distancia do divisor (Yoo et

-0.02 Total Gain b

=01 kgm™yr?! al., 2007)

[ 10 20 30 40 50

Soil Chemical Weathering Rate (kg m? yr™)
(=3
(=]
o

Distance from Ridge (m)

(b)

A abordagem empirica de andlise de dados geoquimicos de solo é usualmente feita através
de métodos de estatistica multivariada, tais como regressdo linear multipla, andlise de

componentes principais, andlise de agrupamentos e andlise fatorial. Estes métodos sdo robustos e



confidveis, mas dependem da admissdo de determinadas premissas, tais como, distribui¢io
normal dos residuos, homocedasticidade, e ndo colinearidade entre as varidveis explicativas
(Netter et al, 1996). Um complicante adicional é o fato que, segundo Reimann e Filzmore (1999),
dados geoquimicos, em escala regional, ndo possuem distribui¢do normal, nem lognormal. Uma
alternativa para analisar dados multivariados sdo métodos de mineragdo de dados.

De acordo com Kohonen (2001), os mapas auto-organizaveis (SOM) ou vetores
quantizados sdo adequados para lidar com dados ruidosos, ndo estaciondrios e com distribuicdes
ndo Gaussianas, pois evidenciam relacdes ndo lineares através de transformacdes topoldgicas da
informacao original. A auséncia de premissas € uma das principais vantagens de uma abordagem
baseada em mineracdo de dados, pois grande parte dos métodos multivariados assume que as
relacdes entre varidveis independentes e dependentes sdo lineares. Outra diferenca é que modelos
estatisticos preditivos, como a regressao linear multipla, penalizam a inclusao de grande niimero
de varidveis explicativas, buscando um balango entre o nimero de varidveis e a quantidade de
informacdo explicada pelo modelo, obtendo um modelo relativamente simples cujo poder
preditivo € satisfatério (Netter el al., 1996). Para lidar com um grande nimero de varidveis
potencialmente explicativas e relacdes ndo lineares entre as mesmas, diversos trabalhos tém
empregado os mapas auto-organizaveis de Kohonen, para, por exemplo, explorar as relacdes
entre a geoquimica de rocha e imagens hiperespectrais (Penn, 2005), para classificar aspectos
geomorfométricos a partir de modelos digitais de elevacdo (Ehsani e Quiel, 2008), caracterizar a
vulnerabilidade de encostas a escorregamentos (Hentati et al., 2010), e para identificar os
principais processos que controlam a distribuicdo dos fons Fe** e Fe?* nos solos e nos sedimentos
(Lohr et al., 2010).

As escalas geograficas dos modelos de intemperismo em encostas sdo geralmente em
nivel de paisagem, onde a erosdo fisica € minima e o modelo hidroldégico mais simples. Escalas
em niveis mais generalizados aumentam a quantidade e a complexidade de fendmenos a serem
considerados (ASCE, 2000). Estas restricoes fazem da mineragdo de dados, especificamente, o
método SOM, uma alternativa para lidar com dados de distribui¢do ndo gaussiana, ruidosos e de
ordens elevadas (polindmios quadraticos ou de maior ordem) de correlagao.

O objetivo principal desta tese de doutorado € contribuir para o estabelecimento de um
modelo das relacdes entre o intemperismo fisico-quimico dos solos e a morfometria do relevo em

regides proximas a superficie. A metodologia de modelagem conceitual é estendida a regides em



profundidade, incluindo a caracterizacdo hidroquimica de um agqiiifero fraturado ndo confinado.
A hipétese do trabalho é que o intemperismo fisico-quimico e a forma do terreno sdo processos
acoplados e podem ser modelados de maneira conceitual e preditiva sob condi¢des de
estacionariedade.

Para quantificar as relacdes estatisticas ndo lineares entre dados de campo e os modelos de
morfometria do terreno, € proposta uma metodologia combinando redes neurais artificiais,
simulacdo estocdstica e técnicas de andlise espacial, onde nenhuma premissa estatistica € exigida.
O método foi aplicado em trés dreas de estudo: na regido de Pocos de Caldas (Minas Gerais) e
duas no Estado do Parand, incluindo terrenos da Formacdo Serra Geral. O banco de dados de
Pocos de Caldas compreende 29 amostras com informacdes de textura de solo e condutividade
hidréaulica, descrevendo propriedades fisicas do solo em escala local. O conjunto de dados do
Estado do Parand é composto de 22 varidveis e 304 amostras que descrevem a geoquimica de
solos em escala regional. O banco de dados do aqiiifero Serra Geral é composto de dois
subconjuntos, 19 varidveis hidroquimicas coletadas em 976 pogos, e parametros de teste de
bombeamento de 156 pocos. As duas primeiras dreas de estudo representam dois aspectos do
intemperismo, (quimico e fisico respectivamente) em diferentes cendrios investigados neste
trabalho; a terceira trata-se de uma aplicacdo da metodologia para constru¢dao de um modelo
espacial hidroquimico.

Os seguintes objetivos especificos foram contemplados nessa pesquisa: (1) avaliacdo do
método de interpolacdo aplicado ao modelo digital de elevagdo, a partir do qual foram calculadas
as varidveis morfométricas, utilizadas como varidveis explicativas, (2) andlise das relacdes entre
dados publicados de granulometria, geoquimica de solo e morfometria do terreno, coletados em
duas dreas de estudo, utilizando redes neurais artificiais e técnicas de visualizacdo de planos de
componentes; (3) identificacio de modelos conceituais do processo de intemperismo de solos
baseado no método de agrupamento k-média e topografia dos SOMs, para desenvolvimento de
modelos preditivos (empiricos e numéricos); (4) geracdo de mapas preditivos para propriedades
fisicas e hidroquimicas; e (5) caracterizagdo da incerteza dos vetores quantizados sobre a
classificacdo e previsdo das varidveis de solos utilizando técnicas estocasticas de validacdo
cruzada.

As sec¢des seguintes introduzem brevemente os métodos empregados nos trabalhos. Os

detalhes de cada estudo sdo descritos nos artigos (1) Hillslope chemical weathering across



Parand state, Brazil: A data mining-GIS hybrid approach, (2) Intelligent estimation of spatial
distributed soil physical properties, (3) Estimating physical-chemical properties in fractured
aquifers using self-organizing maps imputation approach: Study of hydraulic connectivity
between Serra Geral and Guarani aquifer in Parand state, Brazil and (4) Evaluating SRTM-90m

interpolation using SRTM-30m from U.S. territory.
2. DADOS TOPOGRAFICOS
Para todos os estudos desenvolvidos, a caracterizacdo do relevo empregou os modelos

digitais de elevacdo extraidos do SRTM — Shuttle Radar Topographic Mission, e disponibilizados
pelo Servico Geoldgico Americano — USGS (http://edcsns17.cr.usgs.gov/NewEarthExplorer/). Os

dados disponiveis possuem resolugdo espacial original de 90 metros (Farr e Kobrick, 2000). As
varidaveis morfométricas derivadas sao calculadas utilizando a metodologia do projeto
TOPODATA (Valeriano, 2008), conduzido pela Divisdo de Sensoriamento Remoto do Instituto
Nacional de Pesquisas Espaciais — INPE, que gerou dados geomorfométricos para todo o
territorio brasileiro com resolugdo de 30 metros.

Os dados SRTM foram interpolados para 30 metros de resolu¢do (Figura 2) através de
krigagem ordindria, seguindo a metodologia proposta por Valeriano et al. (2006), de onde
aspectos morfométricos do relevo como declividade, orientagdo de vertente, curvaturas vertical e

horizontal e fluxo hidrolégico acumulado (Jenson e Domingue, 1988) foram computados.
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Figura 2 — Comparacdo dos modelos digitais de elevacdo com resolucdo espacial disponivel

(90m) e com superficie interpolada (30m) (Valeriano et al, 2009).
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3. MAPAS AUTO-ORGANIZAVEIS

Os SOMs pertencem a uma categoria de redes neurais artificiais (RNA) chamada redes de
aprendizado por competicdo (ASCE, 2000). O termo ‘auto-organizavel’ refere-se a natureza do
treinamento ndo supervisionado do algoritmo, que possui a habilidade de organizar, ou
classificar, as informacdes sem especificacdes sobre o padrdo de saida. Os mapas de saida
consistem em neur6nios organizados em uma grade regular bidimensional, geralmente

representados na forma de células hexagonais ou retangulares. Cada neurdnio no mapa €

o

representado por um vetor peso multidimensional m=[m;, my, ..., my], onde d corresponde
dimensio dos vetores de entrada, ou nimero de varidveis. Cada neurdnio esta conectado ao
neurdnio adjacente por uma relacdo de vizinhanga funcional, que define a topologia ou estrutura
do mapa (Vesanto et al., 2000).

A cada amostra € associado um vetor (Figura 3a), cujas propriedades refletem a
contribuicdo da mesma em relacdo a outras variaveis. A partir da ‘nuvem’ de vetores é

encontrado iterativamente o vetor BMU (Best Matching Unit) através da minimizagdo de

distancias euclidianas para cada uma das varidveis (Kohonen, 2001; Vessanto et al, 2000):

Hx—mC" = mjn“x—mi ; onde HoH ¢ a distancia euclidiana medida, x é o vetor de entrada, m € o
I

vetor peso e ¢ € 0 neurdnio cujo vetor peso estd mais proximo do vetor de entrada x. Os mapas
resultantes (Figura 3b) sdo organizados de tal forma que dados similares sdo mapeados dentro do
mesmo nd ou em nds vizinhos, levando a um agrupamento espacial de padrdes identificados nos
dados de entrada, i.e., uma classificacio dos dados com base em sua topologia no espago n-
dimensional.

Desse modo, cada varidvel produz um mapa componente, os quais sao arranjados em um
mapa com dimensdes relativas a U-matrix (Ultsch, 2003). Os mapas componentes sao
freqiientemente utilizados para a visualizacdo das correlacdes ndo-lineares. Células com posi¢oes
e cores similares nos planos componentes descrevem contribui¢cdes similares (positivamente
correlacionadas) na construcdo da Matriz unificada. Neste trabalho, foi aplicada a técnica k-
médias para o agrupamento das células similares na topografia SOM. Este método de
agrupamento particiona n observagdes em k grupos, onde cada observagdo pertence ao grupo com
a média mais préxima no espago euclidiano multidimensional, assumindo uma distribui¢cdo hiper-

esférica dos dados.



Var X

(a) (b)

Figura 4 — Cada amostra representa um vetor no espaco n-dimensional (a). Os vetores brancos (b)
representam a BMU. Estes vetores sdo iniciados aleatoriamente por um vetor “semente”, que
iterativamente muda sua posicdo para se ajustar a nuvem de vetores. Amostras consideradas
similares sdo agrupadas no mesmo neurdnio e projetadas em uma mapa bi-dimensional (a
direita). As cores representam o grau de dissimilaridade. Cores azuis se referem a baixa
dissimilaridade. Tons avermelhados correspondem a altos valores de dissimilaridade (Fraser e

Dickson, 2005)

Os vetores sdo projetados em um tordide - uma figura topologica que dobra sobre si
mesma. O tordide é uma representagdo simples que, quando ‘desdobrada’, torna-se um retangulo

com bordas conectadas, eliminando possiveis problemas de borda. O tordide € explicitamente

descrito como: f(x,y,z)=R— \/xz +y°)’ +z>—r°, onde R e r representam as medidas do

maior € menor raio, respectivamente (Figura 4).

Figura 4 — Representacdo de um tordide



4. SIMULACAO MONTE CARLO

A simulagdo Monte Carlo (MC) pode ser definida como um método de simulagdo
estocastica que gera valores aleatdrios fornecendo solugdes numéricas aproximadas para
problemas matematicos através de experimentos de amostragem computacional (Fishman, 1996).
Uma das vantagens do método € a eficiéncia para lidar com um alto nimero de parametros como
de fungdes analiticas complexas ou problemas combinatérios, especialmente relevantes para o
presente trabalho.

A simulacdo MC ¢ baseada na producdo de valores pseudo-aleatérios uniformemente
distribuidos. A partir desta bésica distribuicio de probabilidade continua, todas as outras
distribui¢des sdo produzidas, onde os valores simulados devem ser independentes, i.e., o valor
gerado em uma realiza¢do ndo influencia sobre o valor do préximo. O método é aplicado para
calcular funcdes integrais definidas, encontrar solugdes numéricas para equagdes diferenciais,
para problemas de otimizacdo, andlise de incertezas e para resolucdo de problemas inversos. A

simulagdo S pode ser representada por:
S = _Lg(x)dx

onde D € o espaco n-dimensional definido, g(x) é a funcdo objetivo e x sdo os valores aleatdrios
uniformemente distribuidos de D. Basicamente, os valores gerados aleatoriamente sdo aplicados a
uma fun¢do de freqiiéncia acumulada de uma distribuicdo de probabilidade. Seus parametros,
como média e desvio padrdo para distribuicio normal, é representado pela fun¢do ¢ para o

momento z por:

exp{—x”/2}dx

1
¢(Z) = E fw

A eficiéncia da simulacio estocéstica depende do conhecimento sobre o problema e da
informacao a priori que restringe a simulagdo, os quais sdo representados pelos pardmetros das

funcdes de probabilidade calculados a partir do histograma experimental (Krajewski et al., 1991).
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5. DISCUSSAO

Para este estudo, trés métodos de modelagem a partir dos resultados dos mapas auto-
organizdveis foram aplicados para a (i) identificacdo e quantificacdo de correlagdes ndo lineares,

(i1) estimativa multivariada e (iii) imputacdo de dados tabulares incompletos.

5.1. Correlagcdes nao lineares

O indice de correlacio de Spearman, uma medida ndo paramétrica, é calculado apds o
rearranjo das amostras determinado pelo SOM, de maneira que correlacdes nao lineares entre
variaveis podem ser quantificadas, pois a topologia, i.e., relacdes de vizinhanga, entre as varidveis
sdo preservadas. A investigacdo de tais relagdes pode ser reforcada através da andlise de
diagramas de dispersao. Tais diagramas sdo compostos pelos neur6nios que compdem a matriz
unificada, onde os vetores associados as amostras durante o processamento dos mapas
organizaveis podem ser agrupados por similaridade em um mesmo neurdnio. Isso gera um
diagrama cujo nimero de elementos representados nao corresponde ao nimero de amostras
originais.

A Figura 6 apresenta gréficos de espalhamento das amostras de geoquimica de solos
coletadas no estado do Parand, segmentadas em trés grupos através do método k-médias e
representados em cores distintas. Os elementos apresentaram um padrao de denudacido quimica
relacionado com caracteristicas topograficas em escala local e regional. Altas elevacOes sdo mais
intemperizadas (Figura 6a), apresentam baixa concentracdo de elementos moéveis e altos teores
dos mesmos elementos em baixas altitudes, indicando um mecanismo de transporte e deposicao.
A curvatura vertical descreve a mesma variacdo intempérica em escala local (Figura 6b). Em
areas convexas, proxima ao divisor local, a concentracio dos elementos mais suscetiveis a

mobilizacdo sdo baixas, enquanto préximo ao canal de drenagem os valores sao maiores.
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elevacdo, e (b) cdlcio versus curvatura vertical, representando o formato cdncavo-convexo da

vertente.

5.2. Modelos preditivos

Os mapas auto-organizdveis permitem o célculo de estimativas utilizando um modelo de
treinamento previamente construido. A simulagdo Monte Carlo foi utilizada para geracdo de
valores aleatdrios utilizando a matriz de correlacdo como restricdo, onde os valores simulados
mantém a correlacdo existente entre as varidveis das 29 amostras originais, coletadas em campo.
A simulacdo estocdstica, combinada com mapas auto-organizdveis, atenua problemas causados
pelo baixo nimero de amostras. Os SOMs utilizam todas as varidveis independentes ou
potencialmente explicativas no processo preditivo sem penalizar a propor¢do de variabilidade
explicada pelo modelo.

A Figura 7 apresenta os mapas resultantes das estimativas geradas pelo SOM treinado a
partir dos dados gerados pela simulagdo Monte Carlo para dados de granulometria do solo e
condutividade hidraulica coletados em Pogos de Caldas. Um padrdo de intemperismo analogo ao
da geoquimica de solos no estado do Parana foi identificado para propriedades fisicas do solo
(Figura 7), onde a proporcdo de areia apresenta valores altos em regides proximas aos topos de
morros e o conteido de argila é maior em dreas cOncavas e proximas a canais de drenagem,

ambas altamente correlacionadas com a condutividade hidraulica.
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do método proposto.

5.3. Imputagao de dados

A imputacdo de dados é um método para lidar com tabelas incompletas, estimando
valores com base na correlacdo existente entre os dados disponiveis (Malek et al., 2008). A
matriz de dados completa permite a aplicacio de outros modelos estatisticos multivariados,
mesmo paramétricos, fundamentados no célculo de auto-valores e auto-vetores.

A capacidade de aprendizado dos vetores quantizados, que utiliza distdncia Euclidiana e
preserva relacdes topoldgicas, caracteriza o SOM como um método de imputacdo inerentemente
robusto (Dickson e Giblin, 2007). A imputacdo de dados da hidroquimica do aqiiifero Serra Geral
no estado do Parand incluiu um cendrio geoldgico-estrutural diverso, incluindo as distintas se¢des
hidrogeoldgicas descritas na literatura. A elaboracdo de superficies continuas dos valores
imputados de hidroquimica do aqiiifero Serra Geral permitiu identificar padrdes espaciais do
comportamento hidroquimico, e elaborar modelos espaciais de conexao hidrogeoldgica, recarga e

confinamento (Figura 8).
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Figura 8 — Modelo espacial de se¢des hidrogeoldgica do sistema aqiiifero Serra Geral no estado

do Parana.

5.4. Validagao cruzada

As incertezas dos modelos produzidos foram avaliadas através dos métodos leave-one-out
e Bootstrap, onde o modelo construido pelas amostras de treinamento € aplicado sobre os dados
de validacdo. O processo consiste em retirar uma amostra, estimar a mesma com o modelo
preditivo e comparar a diferenca entre os valores. A validag@o cruzada estocdstica foi aplicada em
cada amostra e foram rodadas 30 realiza¢Oes para cada varidvel analisada. A média dos residuos
¢ representada em um gréfico de valores observados versus preditos. Em um cendrio ideal, deve
existir uma correspondéncia 1:1; i.e., o resultado da valida¢do deve se apresentar préximo de uma

curva y = x, onde os residuos sdo utilizados para verificar a existéncia de tendéncia no modelo.
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6. CONSIDERACOES FINAIS

Foram propostas trés combinacdes metodologicas para a modelagem espacial do
intemperismo fisico e quimico dos solos, onde foram exploradas as correlagdes de natureza nio
linear entre varidveis geoquimicas, elaborados modelos preditivos de propriedades fisicas do solo
sob a limitacdo de um restrito nimero de amostras, e construido um modelo espacial da
hidroquimica do aqiiifero fraturado Serra Geral a partir de tabelas incompletas.

A morfometria do terreno e suas medidas descritivas se apresentaram como varidveis de
importante potencial preditivo, relacdo ndo observada através de estatistica linear multivariada.
As correlagdes nao lineares entre a geoquimica de solos e as medidas derivadas do relevo
permitiram a discuss@do sobre o papel da denudagdo quimica sobre processo global de
intemperizacdo. O modelo preditivo de propriedades fisicas do solo apresentou coeréncia com
conceitos de transporte mecanico de particulas, e exibiu estacionariedade de 2* ordem,
verificando-se a nao existéncia de tendéncias. O processo de imputagdo permitiu o cdlculo da
matriz de correlagdo das varidveis hidroquimicas sobre tabelas incompletas. Sua espacializacao e
comparacdo com modelos conceituais existentes permitiu a visualiza¢cdo do comportamento de
cada amostra estimada.

O uso de mapas auto-organizdveis, balizado pela simulag¢do estocdstica com subseqiiente
classificacdo de agrupamento pela técnica k-médias, permitiu a elaboracdo de modelos
conceituais e espaciais. Espera-se que a metodologia aqui proposta, que emprega métodos
estocdsticos em combinacdo com mineracao de dados, proporcione uma alternativa robusta e nao
tendenciosa para a andlise de grandes volumes de dados a ser aplicada nos mais diversos cenarios

em estudos sobre evolucao da paisagem.
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HILLSLOPE CHEMICAL WEATHERING ACROSS PARANA, BRAZIL: A DATA
MINING-GIS HYBRID APPROACH

Abstract

Self-organizing map (SOM) and geographic information system (GIS) models were used to
investigate the nonlinear relationships associated with geochemical weathering processes at local
(~100 km2) and regional (~50.000 kmz) scales. The data set consisted of 19 B-horizon soil
variables (P, C, pH, Al, total acidity, Ca, Mg, K, total cation exchange capacity, sum of
exchangeable bases, base saturation, Cu, Zn, Fe, B, S, Mn, gammaspectrometry (total count,
potassium, thorium, uranium) and magnetic susceptibility measures) and six topographic
variables (elevation, slope, aspect, hydrological accumulated flux, horizontal curvature and
vertical curvature) characterized at 304 locations from a quasi-regular grid spaced about 24 km
across the state of Parand. This data base was split into two subsets: one for analysis and
modeling (274 samples) and another for validation (30 samples) purposes. The self-organizing
map and clustering methods were used to identify and classify the relations among solid-phase
chemical element concentrations and GIS derived topographic models. The correlation between
elevation and k-means clusters related the relative position inside hydrologic macro basins, which
was interpreted as an expression of the weathering process reaching a steady-state condition at
the regional scale. Locally, the chemical element concentrations were related to the vertical
curvature representing concave-convex hillslope features, where concave hillslopes with
convergent flux tends to be a reducing environment and convex hillslopes with divergent flux,
oxidizing environments. Stochastic crossvalidation demonstrated that the SOM  produced
unbiased classifications and quantified the relative amount of uncertainty in predictions. This
work strengthens the hypothesis that, at B-horizon steady-state conditions, the terrain
morphometry were linked with the soil geochemical weathering in a two-way dependent process,
the topographic relief was a factor on environmental geochemistry while chemical weathering

was for terrain feature delineation.

Keywords: self-organizing map, hillslope chemical weathering, geomorphometry, uncertainty,

Brazil
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1. INTRODUCTION

Terrain morphometric features reflect the physical and chemical weathering processes by
which they were created (Heimsath et al., 1997). Understanding weathering therefore requires
knowledge of phenomena that influence the landscape formation. Early modeling approaches
were used to quantify weathering from a physical mass balance viewpoint (Roering et al., 1999).
Empirical models to survey multidimensional geochemical data were developed using
multivariate statistical methods that included multiple linear regression (Stewart et al., 2003),
principal component analysis (Reimann et al., 2002), and cluster analysis (Hanesch et al., 2001).
For these models to be reliable, however, the data had to be normally distributed, stationary, and
have no co-linearity among independent (explanatory) variables (Netter et al, 1996). In addition
to penalizing higher numbers of explanatory variables (Netter et al., 1996), these techniques
resulted in losing important nonlinear associations. These assumptions are particularly
problematic, because according to Reimann and Filzmore (1999), at the regional scale,
geochemical data does not have normal or lognormal distribution. For these and other reasons, an
alternative is the development and application of numerical models.

Early numerical models considered the hillslope to be uniform (rectilinear) along its
extension with no provision for transport and deposition rate heterogeneity. Investigators
improved on this model type by introducing a nonlinear sediment transport rate through
morphometry characterized by a convex hilltop, rectilinear middle section, and concave base
(Roering et al., 1999). Mudd and Furbish (2004) formulated a model that coupled physical
sediment transport to chemical deposition-denudation in the hillslope weathering process. One
simplifying assumption in their model was constant elevation over the time period being
modeled. Application of this model revealed that the total amount of mass transported by
chemical weathering increased nonlinearly with distance from the hillslope ridge, while at the
rectilinear inflexion point the mechanical transport began to decrease (Fig. 1a). Yoo et al. (2007)
applied a similar model to soil geochemical measurements collected along a sampling traverse in
southeastern Australia. Their simulated chemical weathering rates revealed a hillslope mass loss
near the divide and an accumulation near the base (Fig. 1b). Along the hillslope, three distinct
geochemical environments were recognized based on the concentration of predominate dissolved
ions: (1) Si, Al, and Fe at the hillslope top indicated an oxidizing environment with decreased

weathering rates towards the base; (2) Ca, Mg, Na, K at the rectilinear section indicated a neutral
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pH environment; and (3) P and Ca at the base indicated a reducing environment in which gains in
mass were comparable with losses in the upper sections. This finding, together with simulations
indicating higher soil moisture content in concave areas compared with convex areas,
demonstrated the direct link between element mobility and soil physical-chemical conditions,

such as moisture, pH, temperature, and porosity.
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Fig. 1. A conceptlzllal model of sediment transport rate based on tlg hillslope shape. a) The total
sediment denuded chemically is a nonlinear function of distance from the divide. The chemical
amount denudated at the concave area is larger than the mechanically transported (after Mudd
and Furbish, 2004), b) Total soil weathering rate, showing the role of soil production on soil

thickness and the role of soil transport on soil thickness and chemistry (after Yoo et al., 2007).

Some challenges in the construction and application of numerical hillslope models are
their one-dimensionality, steady-state requirements, lack of calibration data, and nonuniqueness.
Also, numerical models commonly are too rigid with respect to detecting unexpected features
like the onset of trends, non-linear relations, or patterns restricted to sub-samples of a data set.
These shortcomings created the need for an alternate modeling approach capable of using
available data. One technique that is well-suited to noisy, sparse, nonlinear, multidimensional,
and scale-dependent data is a type of unsupervised artificial neural network called the self-
organizing map (Kohonen, 2001). The self-organizing map (SOM) technique has been used in
related studies to explore relations among rock geochemistry and hyper-spectral images (Penn,

2005), classify geomorphometric aspect based on digital elevation models (Ehsani and Quiel,
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2008), characterize hillslope landslide vulnerability (Hentati et al., 2010), identify processes
controlling the distribution of iron in soil and sediment (Lohr et al., 2010), and investigate the
geochemistry in shallow groundwater (Friedel et al., in review). The aim of this study is to
understand scale-dependent relations among soil geochemical weathering and morphometric
features across the state of Parand in southeastern Brazil. The hypothesis is that a conceptual
hillslope weathering model can be devised based on the statistical relations among field data and
GIS metrics. To achieve the goal and to satisfy the hypothesis, the following objectives are
undertaken: (1) analyze nonlinear relations among published B-horizon soil geochemical,
environmental, relief morphometry, and GIS data from 304 locations using the SOM (Kohonen,
2001) and component planes visualization (Penn, 2005) techniques; (2) identify conceptual
models of soil geochemical weathering processes based on k-means clustering (Vesanto and
Alhoniemi, 2000) of the SOM topography for future development of predictive (empirical and
numerical) models; and (3) evaluate bias and uncertainty in the quantized vector predictions and

soil classifications using a stochastic cross validation technique (Rao et al, 2008).

2. STUDY AREA

Parand is a state of Brazil, located in the South of the country. According to the Instituto
Brasileiro de Geografia e Estatistica-IBGE, the state covers about 199.314 km? and is home to
about 10 million people living in 399 cities. Its gross domestic product ranks fifth in Brazil,
producing about 6,2% of the national wealth. The predominant climate is characterized as
subtropical with warm summers and cold winters. According to the Kdppen classification, the
subtropical climate has three variants: Cfa, Cfb and Af. The annual average temperature varies
from 14°C to 22°C with a slightly colder climate occurring along the southern plateau, and the
annual average precipitation ranges from 1500 mm to 2500 mm.

According to Licht (2001), the combination of climate and hillslope geomorphology is
reflected in the dense and perennial stream network. The primary hydrologic divide, called the
Serra do Mar, separates the coastal plain from other geomorphologic units in the state. This
divide is associated with four regional macrobasins with tributaries to the Parand River: Iguacu,
Ivai, Piriqui, and Tibagi. Collectively, these regional basins host 63 protected reserves (covering
about 1.187.000 hectares); 16 reserves with dense ombrophyla forest structure, 31 with mixed

ombrophyla, and 16 with semideciduous seasonal forest structure (IBGE, 2010).

25



The geological record of Parand is characterized by the crystalline shield, composed of
Precambrian magmatic and metamorphic rocks, covered by Paleozoic and Mesozoic volcanic and
sedimentary rocks comprising the Parand basin (Fig. 2). This coverage was eroded due to uplift
of the continental crust, east of the basin, exposing the basement. Tertiary and quaternary
sediments partially overlay the basin and shield rocks. The crystalline basement, formed by
igneous and metamorphic rocks with ages varying from Achaean to Proterozoic, is locally
covered by volcano-sedimentary, sedimentary and unconsolidated sediments sequences. The
crystalline shield encompasses a mega-belt formed on late Precambrian by the collision of
continental and micro-continental blocks. The basin includes a second and third plateau that
covers most of the state. It is a sedimentary basin, overlain by Cretaceous basalt, the Serra Geral
Formation (dark green in Fig. 2), intracratonic, evolved over the South American platform and its
generation began during the Silurian period and ended in the Cretaceous period (Minerais do

Parana — MINEROPAR, 1986).
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Fig. 2. Simplified geological map of Parana state (modified from Lich, 2001) and location of the

samples.
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3. METHODS

Five steps were used to identify hillslope weathering relations linking the soil geochemistry
to relief morphometric features. First, all data variables were standardized so that no one variable
would dominate in the nonlinear modeling process (Kalteth et al., 2008). The z-score

transformation is given by:

7 =22 (1)

where z is the standardized value; x is the raw score; x is the sample average, and s is the sample
standard deviation, i is an index for each variable. Standardizing variables in this way resulted in
each having an expected value of zero and standard deviation one. Second, after the
standardization data were split into two subsets: training (n = 274) and validation (n = 30). Third,
the SOM (Kohonen, 2001) was used to self organize nonlinear relations among the 28 variables.
Fourth, the k-means clustering technique (Forgy, 1965) was used to classify the SOM topography
into statistically relevant conceptual models (Ehsani and Quiel, 2008). Finally, the geochemical

concentrations were interpreted based on terrain morphometry and associated clusters.

3.1. Self organizing map

The SOM belongs to a subcategory of the artificial neural network (ANN) algorithms,
called competitive learning networks, in which the computational models serve as a proxy for
neurons in the human brain (ASCE, 2000). The term self-organizing is based on the unsupervised
nature of the algorithm having the ability to organize information without any prior knowledge of
an output pattern. In this study, the output consists of neurons organized on a two-dimensional
rectangular grid having hexagonal cells (map). Each neuron in the map is represented by a multi-
dimensional weight vector m=[m;, my, ..., m4], where d correspond to the dimension of the input
vectors. Each neuron is connected to the adjacent neuron through a functional neighborhood
relation (Vesanto et al., 2000). Individual data samples are associated to a vector with properties
that reflect its contributions relative to the other variables. From this cloud of data vectors, a best
matching unit (BMU) is iteratively determined by minimizing the Euclidean distance measure for

each variable (Kohonen, 2001; Vessanto et al, 2000):
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||x —m.| = mim”x - ml” 2)

where Ho” is the euclidian distance, x is the input vector, m is the weight vector and c is the

neuron whose vector is nearest to the input vector x. The resulting maps are organized in such
way that similar data are mapped to the same or nearby nodes, and dissimilar data are mapped to
nodes with greater separation distances. According to Kalteth et al. (2008) the map size, i.e. the
number of nodes that will be projected into the map, plays an important role on the training
process, once they determine the number of clusters where the samples will be assigned to.
Vessanto et al. (2000) proposed a heuristic method to calculate the number of nodes based on a
formula and the ratio between the two largest eigenvalues from the covariance matrix. However,
this approach would not be practicable on a database with missing values or categorical variables.
An alternative approach would be to find a suitable small topographical error, a measure
(percentage) of the number of node vectors that are adjacent in n-dimensional space, but are not
adjacent on the resulting self-organized map. In other words, would be the error from the
rearrangement and from the ‘flattening’, when projecting n-dimensional data into a two-
dimensional array.

The unified matrx (U-matrix) is comprised of the BMUs obtained from weight vectors
linked to the input vectors; thus, each variable produces a component plane arranged in a grid that
is related to the SOM matrix (Kohonen, 2001). These maps are often used to visualize
correlations among variables; for example, cells with similar colors and positions inside
component planes describe similar contributions (positively correlated) in the construction of the
U-matrix. This information is projected onto a toroid which is unwrapped into a rectangle for
viewing the SOM topography. In this study, the k-means clustering method was used to classify

common cells in the SOM topography, represented in the U-matrix (Ultsch, 2003).

3.2. Topographical dataset

Characterization of the topographic relief was possible using elevation data provided by the
Shuttle Radar Topographic Mission (Farr and Kobrick, 2000). The digital elevation model
associated with these data was provided by the United States Geological Survey on a lattice with
90-m spatial resolution. The Topodata project, conducted by the Brazilian National Institute for

Space Research-INPE (Valeriano et al., 2009), has created derived metrics data with a 30-m
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resolution, based on elevation data and a geographical information system (GIS) modeling
techniques. The geomorphometric features provided a way to extract morphometric features, such
as slope, aspect (hillslope orientation), vertical and horizontal curvature (Valeriano et al., 2006),
and accumulated hydrological flux (Jenson and Domingue, 1988).

The variable slope represents the first derivative of two locations on the elevation data,
while the second derivative produces the variable aspect, which indicates the position of the
hillslope relative to the north. Regarding the variable aspect, it varies from 0 to 360°, with value
zero pointing towards north. Since both zero and 360° represent the north, a trigonometric
(cosine) transformation was applied so that these values varied from -1 (south) to 1 (north).
Another derived measure, the vertical curvature depicts the hillslope profile (Fig. 3): convex,
rectilinear, and concave shape, whereas the horizontal curvature is the hillslope shape when
represented on the horizontal plane, describing a divergent, planar or convergent hydrological
flux. These two features are highly correlated but when analyzed in combination they produce
different hillslopes shapes, which could lead to a soil with distinct physical-chemical properties.
The last modeled variable, hydrological accumulated flux is a measure of the number of terrain
units that converge at the element being analyzed. It is used as a proxy for the distance from the

ridge (Fig. 4).

Horizontal Curvature

convergent planar divergent
@ T !
% ! | \
o . | ool
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Vertical Curvature
rectilinear

convex

Fig. 3. Morphometric variables, where vertical curvature represents profile slopes, and horizontal
curvature describes convergent or divergent fluxes (Valeriano et al., 2009).
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b) the flow direction used as surrogate for the distance from the ridge (afer Yoo et al., 2007).
3.3. Data variables

To effectively capture random spatial variability of geochemical and hydrological
processes, field sampling of B-horizon soil samples was conducted using a quasi-regular grid
across Parand (Park and Giesen, 2004). The Parand Agronomic Institute performed analysis of
the elements, where the analytical methods and equipment calibration procedures for geophysics
measurements are described in detail on Mineropar (2005), this report also includes the
descriptive statistics for each element. The following variables were analyzed: pH, Al (mg/kg),
Ca (cmol/kg ), Mg (cmol/kg), P (cmol/kg), K (cmol/kg), organic carbon (g/kg), H +Al (total
acidity, in cmolc/kg), Cu (mg/kg), Zn (mg/kg), Fe (mg/kg), Mn (mg/kg), S (mg/kg), B (mg/kg),
V% (base saturation), cations exchange capacity (sum of exchangeable bases: Ca’*+Mg**+K, in
cmol/kg), T (total exchangeable cation charge: V%+CTC, in cmol./kg), gamma-spectrometry —
channels total count (cps), Uranium (ppm), Potassium (%) and Thorium (ppm), and magnetic
susceptibility (dimensionless). The data was assembled into a data base by the Parana State
Geological Survey and provided by project personnel (Licht, 2001).

The analytical methods have a maximum error of 5% and the detection limits are
presented in Table 1, where the analyzed elements are commonly used by agricultural community
to measure soil fertility. The digest solutions (Table 1) are designed to extract the soil fraction
weakly bonded, i.e., not the total content, but the most susceptible portion to weathering
processes, and available as nutrients for plants. The analytical method is suitable for this work,
since these elements, present on this fraction of the soil, are easily released and can be associated

to hydrological fluxes on subsurface, and thus to relief and hillslope morphometric features.
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Table 1 — Soil geochemistry extraction methods

Ratio soil to

Variable Extractor .
solution

pH Calcium chloride 0.01 M 1:2.5

Al, Ca, Mg Potassium chloride 1.0 M 1:10

P, K Mebhlich I (HCI 0.05 N + H,SO, 0.025 N) 1:10

Organic C Walkley-Black (K,Cr,O; + H,SO, conc.)

H+AI (total acidity) Buffer solution SMP

Cu, Zn, Fe Hydrochloric Acid 0.1 M 1:10

Mn Ammonium Acetate 1.0 M, pH 7 1:10

S Calcium Mono Phosphate + acetic acid 2M 1:2.5
Hydrochloric Acid 0.05 N 1:2

4. RESULTS AND DISCUSSIONS
4.1. Cross validation

The model performance was evaluated using a stochastic cross-validation approach (Rao
et al, 2008). The approach consisted of five steps: leave out one sample, recreate a new SOM,
estimate values, and analyze residuals. This process was applied to each variable 30 times. For
each variable, the average prediction value for 30 realizations was computed and plotted against
observed values to assess model bias (Fig. 5). Aside from one outlier in the Ca and Al predictions
(confidence interval of 95%), the SOM model demonstrated unbiased behavior indicated by the
one-to-one correspondence and constant variance for all variables. This validation process
provided confidence that analysis of SOM-based hillslope relations, such as component maps, k-

means clusters, and scatterplots, are meaningful.
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(©) Aluminum Fig. 5. Cross validation average of 30 trials with
30 samples, using leave one out strategy for a)
calcium, b) iron and c) aluminum. One to one

correspondence reveals that the SOM is an

Predicted (z-score)

unbiased predictive model. Orange circles

indicate outliers that are inconsistent with the

Observed (z-score) nonlinear model (p-value = 0.05).

4.2. Component map analysis

A component plane can be thought of as a slice of the SOM, it actually represents one set
of vector component (variable) values in all map units; that is, each component plane portrays the
spread of values for the associated variable. In that regard they are similar to histograms, the
difference being that the same value can be present in multiple places of the map when it belongs
to different clusters, allowing an easy visualization of nonlinear correlations between variables
based on the color array of the map, not fully captured by linear multivariate approaches (Astel et

al., 2007). Vessanto et al., (2000) suggest a formula to calculate the optimum size for a SOM:

m=5n , where m is the number of units (nodes or neurons) and 7 is the number of samples.
Considering the number of training samples (n = 274), the map size would approximately have
83 nodes, and the ratio of side lengths should be based on the ratio of the two largest eigenvalues
from the covariance matrix. Thus the product of the side lengths should be close to 83. The

eigenvalues for factor one is 6.26 and factor two, 3.84. The ratio between them is 1.63. To find

X
. . . . . . . 1. |—=1.63
the appropriate side lengths, solving a simple system of equations is required: J
X kS

y=283

Solution of this linear system leads to x = 11.5 and y = 7.2 giving or a 12 x 7 map.
However, based on the number of training samples (n = 274) and considering the topographical
error, a map size of 16x10 was chosen. The topographic error is a measure (percentage) of the
number of node vectors that are adjacent in n-dimensional (variable) space, but are not adjacent
on the resulting self-organized map. In other words, this would be an error associated with the

samples rearrangement and with the ‘flattening’, when projecting an n-dimensional data into a
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two-dimensional space array, ie., a low topographical error means that the original
neighborhoods were better preserved (Dickson and Fraser, 2007).

Inspection of the component maps (Fig. 6) revealed several relations, for example, the
elements B, Ca, Mg, K, Cu, P and Zn are strongly correlated, where, given the regional geology,
Cu and Zn are linked to the presence of mafic rocks from the second and third plateau, and K, Mg
and Ca, are associated with aluminosillicates rocks, as the basalt from Serra Geral Formation
(Licht, 2001). In contrast, inverse relations exist between pH and Al, and Fe and aspect. The Al
content is directly linked to the total acidity in the soil, so a high concentration of Al implies a
low value of pH. Regarding Fe, the inverse correlation with respect to aspect may be due to the
type of iron present. Specifically, a hillslope facing north (value of one) is more exposed to the
sun and therefore subject to oxidizing conditions; oxidized Fe is less mobile than the reduced

form (Gerrard, 1992).
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Fig. 6. Component planes used to visualize nonlinear correlation. For example, the cations
highlighted by boxes in similar colors, B, Ca, Mg, K, Cu, P, Zn are correlated (similar colors),
whereas pH is inversely correlated with aluminum and iron is inversely correlated with aspect
(opposite colors). P is phosphorus mg/kg, C is organic carbon in g/kg, pH is the acidity, Al is

13+

aluminum cmol/kg, Total acidity is the content of H*+AI’" in cmol./kg, Ca, is calcium cmol/kg,
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Mg is magnesium cmol/kg, K is potassium cmol./kg, Cu is copper mg/kg, Zn is zinc mg/kg, Fe
is iron mg/kg, B is borum mg/kg, S is sulfur mg/kg, Mn is manganes mg/kg, cations exchange
capacity is the sum of exchangeable bases: Ca**+Mg**+K, in cmol./kg, Positive exchangeable
charges are the total exchangeable cation charge: V%+CTC, in cmol/kg, Total count is the
radiometric measure (cps), K % is the potassium channel in parts per million, U ppm is de
uranium channel in parts per million, Th is the thorium channel in parts per million, elevation
meters, slope degrees, flow accumulation is an integer, add up of the hydrological flux, horizontal

curvature °/m, vertical curvature °/m, and aspect is slope orientation cos(°).

4.3. K-means clustering and scatterplot analysis

The predominant Parand clusters one, two, and three (Fig. 7) relate to the respective
hillslope regions, concave (yellow), rectilinear (green) and convex (blue). These clusters
characterize relations among the relief, soil geochemistry, regional geology, and geologic
structure. For example, the crystalline shield in the Ribeira Valley (Dardenne and Schobbenhaus,
2001) and Caiud Formation (Fernandes and Coimbra, 1994) correspond to the low lying blue
cluster (Table 2), whereas the yellow cluster corresponds to the SW-NE trends (Fig. 7c) of the
Foz do Iguacu graben and Cruzeiro do Oeste horst (Milani, 1997) of intermediate elevations.
When plotting the Ribeira Valley region against the X-coordinate locations, the highest soil
sulfur content appears nearest to the coastline. One interpretation is that the sulfur content at
these locations is related to marine aerosols (Claypool et al., 1980). In this case, aerosols carried
inland from the ocean are blocked by the Serra do Mar topographic high and precipitation in this

region provides the sulfur that accumulates in soils near the coast.

Table 2 — Descriptive statistics for elevation (m)
Cluster 1 - Cluster 2-  Cluster 3 -

Yellow Blue Green
Average 504 504 817
Minimum 213 9 208
1 Quartile 388 384 758
3" Quartile 500 511 831
Maximum 1058 1097 1288

The spatial distribution of these clusters appears related to the macrobasin (>35.000 km?)
structure (Fig. 7d). For example, the head waters of the Tibagi, Ivai, Piriqui and Iguagu Rivers

fall into cluster three whereas the discharge areas occupy cluster two. The western part of cluster
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two occupies the Caiud formation area, composed by cretaceous sediments (light green on Fig.
2). A review of maps produced by Mineropar (2005) shows that the region is enriched only in
silica oxide (over 49,41% or 233.600 ppm) not the other 72 elements analyzed for the study.
Considering that well developed soils reflect more intensely the effects of the weathering defined
by environmental conditions, the fact that the clusters defined from B-horizon soils maintain
relations with relative positions inside these basins (upper, middle and lower course) was
considered evidence of a steady-state condition; that is, uplifting is not significant over the study
time scale. At a local scale (<100 kmz), the vertical curvature can be used as a surrogate to the
soil production rate (Heimsath et al., 1997), because the soil production rate must be greater than
the erosion rate for development of a soil layer overlying the rock matrix. The hypothesis of
steady-state conditions are further supported by the presence of soils with thicknesses up to 30 m

reflecting a long chemical weathering period (Mineropar, 2005; Heimsath et al., 1997).
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In 1937, Polinov published the book ‘The Cycle Weathering’, where he proposed a
decreasing sequence for chemical weathering susceptibility based on elements solubility, where
the least soluble elements at far right require larger energy for their formation. The Polinov
sequence was re-assessed by Hudson (1995), where the sodium was considered more soluble than
the calcium.

CI>SO4>Na>Ca>Mg>K>Si>Fe> Al

Based on the findings of Yoo et al. (2007), the results are evaluated with respect to the
representative elements [Ca], [Al] and [Fe], while representing relief morphometry, elevation was
used to analyze the weathering at regional scale, whereas vertical curvature was chosen to
analyze the weathering locally, given that the concave portion of the hillslope is a depositional
environment, while convex areas are more susceptible to denudation (Stallard, 1988). Fig. 8
shows the scatterplots for calcium, iron and aluminum as function of elevation and vertical
curvature, where the ‘samples’ are actually the nodes, results from SOM classification, each node
is associated to one or more samples according to a topological similarity. The graphs can be
interpreted considering the general dispersion of each element, and the pattern of each cluster
individually.

The element calcium showed high concentrations in lower elevation areas and low
concentrations in regions with higher altitudes (Fig. 8a), where the cluster one (yellow) relates to
basalt presence (Fig. 2 and 7a), thus could indicate less weathered and therefore, less depleted
feldspathic rock. Another suggestion of how weathering has been developed in the state, is the
calcium concentrations related to the vertical curvature (Fig. 8d), we verified that in convex
regions, usually near the divide on the hillslope, the amount of calcium is lower, whereas in
concave areas there are high concentrations, additionally the samples came from a very diverse
geological framework, which reinforce the chemical weathering role in these results.

Iron concentration, when analyzing cluster one (yellow), is attributed to the presence of
sesquioxides, less weathered material, because according to the iron-vertical curvature plots (Fig.
8 b and e), for this cluster, iron has higher concentrations at lower elevations and on concave
areas. Structural lows, as graben or regions near streams, are less subjected to physical
weathering than convex areas, the very relief works as a barrier preventing the runoff favoring a
relatively reducing environment (Daniels and Hammer, 1992). The iron content in cluster three is

likely connected with the oxidized iron form, since it is considered less mobile and mostly
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present in the convex regions of the hillslope. The controlling factors of iron variation in soils and
sediments were investigated by Lohr et al, (2010) using self-organizing maps to reveal nonlinear
correlations between potential explanatory variables and iron content, where landform rather than
land use played an important role in iron spatial distribution, supporting our findings.
Silica-alumina layers are resistant to weathering, being one of the last elements released
during the pedogenesis (Embrapa, 1999). The aluminum concentrations increase with elevation
and decrease toward the hillslope base, whereas hilltops are characterized by intense weathering
due to hydrologic processes. Considering just the cluster one (yellow), it presented lower values
for aluminum, occurring in low elevations and concave areas, relating to less weathered regions,

as the iron analysis showed.
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Fig. 8. Scatterplots of the major cations and oxides as a function of elevation and vertical curvature. According to the Polinov sequence

(Hudson, 1995), calcium is a highly mobile therefore having higher concentrations at lower elevations that are characteristic of

concave areas. By contrast, iron oxide is relatively more mobile, and aluminum were concentrated on higher elevations.

39



40



S. CONCLUSIONS

With this study, we have found that it is possible to use data mining techniques for the
evaluation of multi-scale hillslope chemical weathering processes. Using a type of unsupervised
artificial neural network, called the self-organizing map (SOM), multidimensional soil
geochemical and geophysical variables can be projected onto a two-dimensional surface while
preserving important nonlinear relations. Grouping nonlinear relations using the k-means
clustering technique facilitates the development of conceptual hillslope weathering models.

At a local scale, the vertical curvature describing the convex-concave hillslope feature,
relates to soil production rate and soil thickness, where SOM analysis unveiled the relations, in
terms of topological array, between soil geochemistry and terrain morphometry, indicating that
topographic attributes are associated with chemical denudation. The elevation depicts the
weathering phenomenon at regional scale, when identifying different levels of chemical
denudation along the macrobasins. The headstream showed evidence of being more weathered
than the middle sections, additionally, the Caiud formation, composed of cretaceous sediments
represents the sediment transport from the macrobasins upper sections. This analysis is supported
by the fact that this process has been carried out since the cretaceous, most part inside a craton,
favoring our steady-state condition assumption.

Chemical weathering is an important factor for development of the terrain morphology in
the state of Parand. Chemical element concentrations depend on the hillslope morphology that
constitutes a two-way process: hillslope profiles influence the weathering, and weathering
influences hillslope morphology. The soil chemical composition is a result of a large number of
factors including the bedrock-to-soil conversion rate, soil erosion (mass transport), and solute
transport. The SOM and k-means methods made it possible to understand the nonlinear
relationships associated with a large number of variables. This two-step approach can be used to
support further studies to understand hillslope chemical weathering, erosion, and landscape

evolution in other locations and environmental settings.
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INTELLIGENT ESTIMATION OF SPATIAL DISTRIBUTED SOIL PHYSICAL
PROPERTIES

Abstract

The self-organizing map (SOM) technique is used to predict soil texture and hydraulic
conductivity based on relief morphometric features. The concave-convex nature of hillslopes
(from hilltop to bottom of the valley) reflects a steady-state geomorphic condition. The
topographic features are extracted from Shuttle Radar Topographic Mission (SRTM) elevation
data; whereas soil textural (clay, silt, and sand) and hydraulic conductivity data are associated
with 30 random locations (75 cm depth). In contrast to traditional principal component analysis,
the SOM identifies relations among relief features, such as, slope, horizontal curvature and
vertical curvature. Stochastic cross-validation indicates that the SOM is unbiased and provides a
way to measure the magnitude of prediction uncertainty for all variables. The SOM cross-
component plots of the soil texture reveals higher clay proportions at concave areas with
convergent hydrological flux and lower proportions for convex areas with divergent flux. The
sand ratio has an opposite pattern with higher values near the ridge and lower values near the
valley. Silt has a trend similar to sand, although less pronounced. The relation between soil
texture and concave-convex hillslope features reveals that subsurface weathering and transport is
an important process that changed from loss-to-gain at the rectilinear hillslope point. These
results illustrate that the SOM can be used to capture and predict nonlinear hillslope relations

among relief, soil texture, and hydraulic conductivity data.

Keywords: self-organizing maps, hydraulic conductivity, soil texture, Monte-Carlo simulation,

Pocos de Caldas, Brazil.
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1. INTRODUCTION

Knowledge of soil texture and hydraulic conductivity is important for evaluating physical
and chemical processes, such as weathering, erosion, runoff, and groundwater recharge (Daniels
and Hammer, 1992). Depending on the hillslope processes, subsurface material of the same
mineral composition can develop into soils with different characteristics (Hugget, 1998).
According to Young (1980), the primary factors influencing soil formation are climate, parent
material, relief (surface shape), hydrology, organisms, time, and human activities. Because these
phenomena are coupled, nonlinear, and scale dependent (ASCE, 2000b), the application of
traditional methods for their estimation is challenging.

To estimate soil weathering processes, it is necessary to understand the relations among
soil, relief, and hydrology (Nezat et al., 2004). Traditional studies of weathering are conducted at
the hillslope (or basin) scale, where it is possible to measure sediment mass loss and transport for
use in the construction of empirical or numerical models (Mudd and Furbish, 2004). Financial
and time restrictions typically limit sampling at both temporal and spatial scales. The limited data
availability and high variability promote increasing amounts of uncertainty in model predictions
(Hornberger et al., 1998).

To overcome these limitations, remote sensing images and geographic information system
(GIS) models are often used to characterize the surface and estimate field parameters for larger
areas (Jensen, 2007). For example, relief morphometric features can be extracted from digital
elevation models using a mobile window for gradient calculation. This facilitates the extraction
of measures, such as slope, aspect, horizontal curvature and vertical curvature (Valeriano, 2008).
Mudd and Furbish (2004) and Yoo et al., (2007) incorporated relief morphometric features into
the hillslope physical and chemical weathering models in an effort to improve early models that
consider the hillslope to be a uniform rectilinear entity.

The hillslope heterogeneity affects soil weathering characteristics. For example, the
concave areas on hillslopes are frequently associated with convergent hydrological fluxes, and
therefore have higher average soil moisture than convex areas. Convex regions (characterizing
hilltops and ridges) are more susceptible to, erosion and mass removal, especially clays and silt
more subject to transport, while concave areas constitute a more depositional environment

(Heimsath et al., 1997). Therefore, it is possible to establish a relation between hillslope
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morphometry and soil texture, although the interactions between them often are non linear and
nonunique.

Some challenges in the construction and application of numerical hillslope models are
their one-dimensionality, steady-state requirements, lack of calibration data, and nonuniqueness
(Loke and Barker, 1996). Also, numerical models commonly are too rigid with respect to
detecting unexpected features like the onset of trends, non-linear relations, or patterns restricted
to sub-samples of a data set. These shortcomings create the need for an alternate modeling
approach capable of using available data. One technique that is well-suited to noisy, sparse,
nonlinear, multidimensional, and scale-dependent data is a type of unsupervised artificial neural
network called the self-organizing map (Kohonen, 2001). The self-organizing map (SOM)
technique is used in related studies to explore relations among rock geochemistry and hyper-
spectral images (Penn, 2005), classify geomorphometric aspect based on digital elevation models
(Ehsani and Quiel, 2008), characterize hillslope landslide vulnerability (Hentati et al., 2010), and
identify processes controlling the distribution of iron in soil and sediment (Lohr et al., 2010).

The aim of this study is to understand and predict scale-dependent relations among soil
physical properties and morphometric features across Pocos de Caldas municipality, southeastern
Brazil. The hypothesis is that there is a relation between hillslope morphometric features and soil
texture and hydraulic conductivity near the surface, additionally we assume that is possible to
devise these relations based on the statistical relations among field data and GIS metrics using the
self-organizing maps. To achieve the goal and satisfy this hypothesis, the following objectives are
undertaken: : (1) analyze nonlinear relations among published hydraulic conductivity, soil texture
and relief morphometry data from 29 locations using the SOM (Kohonen, 2001) and component
planes visualization (Penn, 2005) techniques; (2) generate random correlated values for soil and
relief properties using Monte Carlo stochastic simulation method (Fishman, 1996); (3) generate
predicting maps of clay, silt and sand content, and hydraulic conductivity on saturated soil; (4)
identify conceptual models of soil physical weathering processes based on k-means clustering
(Forgy, 1965) of the SOM topography for development of predictive (empirical and numerical)
models; and (5) evaluate bias and uncertainty in the quantized vector predictions using a

stochastic cross-validation technique (Rao et al, 2008).
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2. SETTING

The study is conducted at the Vargem de Caldas basin (42 km?) near Pocos de Caldas,
Minas Gerais, Brazil (Fig. 1). The Pocos de Caldas plateau is considered the largest alkaline
complex in Brazil (Holmes et at., 1992) with one of the largest uranium occurrences in the world
(Chapman et al., 1992). In addition to uranium, there also are important bauxite deposits and
sulfuric thermal springs (Fernandes and Franklin, 2001). The climate of this area is characterized
by dry winters and mild summers with precipitation of 1300 mm to 1700 mm and average
temperatures of 18°C to 22°C (Christofoletti, 1970).

The Pocos de Caldas plateau is largely comprised of Precambrian rocks that are underlain
by Archean basement of rocks from the Varginha Complex (gneisses, migmatites, granulites) and
by nephelines syenite (tinguaite, phonolite phoiaite) of Mezosoic-Cenozoic age. The alkaline
complex had its first manifestation on superior Cretaceous (87 ma) and evolved until 60 ma
(Christofoletti, 1970). The plateau has a dome shape with ridges and scarps at the outer edges
facilitated by the central chimney intrusion. Collapse of the central part of the structure resulted

in forming radial and ring fractures where magma ascended to the surface (Holmes et al., 1992).
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Fig. 1 — Vargem de Caldas basin, Minas Gerais, Brazil. (a) False-color composition of bands 321
(RGB) of the SPOT-4 HRVIR sensor. Permeability tests and soil samples were collected in 29
sites across the basin (red dots) (after Ribeiro, 2010)
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The same mineralogy exists throughout the complex, but regional differences in
weathering process resulted in soils with distinct characteristics. The soils in this study area are
Regolithic Neosols and Haplic Cambisols (Embrapa, 1999). According to Moraes (2008), the
Neosols are associated with colluvium and paleo-floodplains underlain by a syenite basement,
being characterized by high clay proportion and terrain with weak to moderate dissection (related
to drainage density and carving intensity). The Cambisols are typically present on plateaus (Fig.
2) with medium to strong dissection, defined by a higher erosive potential and a clay matrix with

gravel and concretions of laterite and alkaline rocks.
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Fig. 2 — Maps characterizing the study area. a) Shaded relief map, also represents slope
orientation, or aspect, clearer tones indicate north and darker, south; b) Terrain slope (°); and c)

Elevation (m).

Twenty nine soil samples were collected (Ribeiro, 2010) at 75 cm depth and in random
locations across Pogos de Caldas region (Fig. 1). The purpose of sampling is to provide physical
soil texture and hydraulic conductivity values for input to the SOM (Table 1). The SOM variable
names are introduced in parentheses and summarized in Table 2. The soil texture variables, such
as clay, sand, silt for each sample is determined using the method of Camargo et al. (1986) at the

Soil Laboratory of the Faculdade de Engenharia Agricola, Universidade de Campinas (FEAGRI-
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UNICAMP). Soil conductivity (Conductivity) values are determined based on hydraulic field
experiments and the equation proposed by Reynolds and Elrick (1989):
cQ

K
2. H2+ C.zr.a?+ (

fs:

2.r.H
o &
where: a = borehole radius (cm); C = shape factor, which depends on the soil type and the H/a
ratio; H = hydraulic charge height on the borehole (¢cm); Ky = hydraulic conductivity on saturated
field (cm/s); Q = water yield in the soil (cm3/s); and a = parameter related to the porous media
size.

Table 1 — Descriptive statistics of collected data
(Ribeiro, 2010)

C(gﬁl‘}:f?g?)y Sand (%) Silt(%) Clay (%)
Mean 0,6068 6.6 294 5935
Standard
deviation 1,8516 742 11,82 13,55
Minimum 0,0665 0 155 3945
Maximum 8,5385 257 5475 84,5

Table 2 — Variable notation and data descriptions used in this study.

Category Acronym Description
Soil Clay Percent clay
Sand Percent sand
Silt Percent silt
Conductivity Hydraulic conductivity, cm/hr
Morphometric cosASPECT Cosine of slope orientation
ELEVATION Elevation, meters
HOR-CURV Horizontal Curvature, °/m
SLOPE Slope inclination in degrees
VERT-CURV Vertical Curvature, °/m

Each sample location is associated with topographic morphometry data (e.g. elevation, slope,
slope orientation, vertical curvature and horizontal curvature). Characterization of the
topographic relief is possible using elevation data provided by the Shuttle Radar Topographic
Mission (SRTM) (Farr and Kobrick, 2000). The digital elevation model associated with these
data is provided by the United States Geological Survey on a lattice with 90-m spatial resolution.

The Brazilian Topodata Project (Valeriano et al., 2009) used a geographical information system
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and related modeling tools to derive a set of geomorphometric features (30-m resolution) from
the elevation data. The geomorphometric features provide suitable information to extract
morphometric features, such as slope, aspect (hillslope orientation), vertical and horizontal
curvature (Valeriano et al., 2006). These SRTM measures are employed by Grohmann et al.
(2007) to analyze the Pocos de Caldas morphotectonic and geomorphology based on drainages,
3D visualization and morphometric parameters, supporting use of these variables to investigate
soil physical attributes.

The slope variable (SLOPE) represents the first derivative of two locations on the elevation
data, whereas the second derivative produces the aspect variable which indicates the position of
the hillslope relative to north. The aspect varies from 0 to 360° with value zero pointing towards
north. Since both zero and 360° represent the north, a trigonometric (cosine) transformation
(cosASPECT) was applied so that these values varied from -1 (south) to 1 (north). Other derived
measures are the vertical curvature (VERT-CURYV) and horizontal curvature (HORZ-CURYV).
The vertical curvature depicts the hillslope profile: convex, rectilinear, and concave shape,
whereas the horizontal curvature depicts the hillslope shape. These two features are highly
correlated but when analyzed in combination they produce different hillslopes shapes, which

could lead to a soil with distinct physical-chemical properties.

3. METHODS

3. 1 The Self organizing map technique

In this paper we present a method to estimate soil hydraulic conductivity and soil texture near
the surface combining SOM and Monte Carlo stochastic simulation (Fig. 3). The following steps
are applied (Friedel and Iwashita, in press):

(1) All variables values were standardized so that no variable would dominate in the

nonlinear modeling process (Kalteth et al., 2008). The z-score transformation is given by:

X —Xi
Z; =

1

S

1
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where z is the standardized value; x is the raw score; x is the sample average, and s is the sample
standard deviation, i is an index for each variable. Standardizing variables in this way resulted in

each having an expected value of zero and standard deviation one.

Begin n = 48000

Monte-Carlo .
n =30 Simulation - Relief
— Correlated frame
Field Data values
Samples |
v n=920
R SOM
v Simulated model
Self- data
Organizing v
Maps v Conductivity,
Self- sand, silt and
v Organizing clay maps
SOM Maps
correlation
matrix

Fig. 3 — The flow chart represents the proposed method to analyze and predict soil physical

properties combining data mining and stochastic simulation techniques.

(2) The SOM (Kohonen, 2001) is used to calculate the correlation coefficient between the
variables. The Spearman index, a non parametric measure, are applied to the quantized vectors
after the topologic rearrangement determined by the SOM (Table 3).

(3) For each variable a continuous probability distribution is adjusted using Kolmogorov—
Smirnov (Netter et al., 1996) test with p-value = 0,05 (Fig. 4).

(4) Random correlated values are generated using Monte Carlo approach (Fishman, 1996).
The stochastic simulation is conducted keeping the correlations coefficients found on step 2, that
is, the correlation matrix is used as a constraint.

(5) The resulting values are used to build another SOM model. This model is applied to a
continuous surface containing all the topographical features, which are used as explanatory

variables to produce the conductivity and soil texture maps, the dependent variables.
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Table 3 — Spearman correlation matrix after the topological reorganization.

.. Horizontal Vertical . .
Conductivity Aspect Curvature Slope Curvature Elevation Sand Silt Clay
Conductivity 1
Aspect -0,33 1
Horizontal
Curvature 0,12 0,42 1
Slope 0,00 -0,81 -0,56 1
Vertical
Curvature 0,38 0,15 0,86 -0,48
Elevation 0,66 -0,45 0,38 0,17 0,68 1
Sand 0,46 0,33 0,82 -0,47 0,76 0,47 1
Silt 0,61 -0,65 0,20 0,25 0,58 0,91 0,25 1
Clay -0,69 0,43 -0,47 -0,04 -0,77 -0,94 -0,58 -0,93 1
z £ z
= B g
£ § i
Conductivity Horizontal curvature
3 g 3
E & &
Vertical Curvature Elevation
z z g
2 2 8
S £ S

Sand

Silt

Clay

Fig. 4 — Distribution probability functions fitted for each variable using Kolmogorov-Smirnov

test (p-value = 0,05). The functions were: conductivity, lognormal; aspect, beta; horizontal
curvature, t-student; slope, beta; vertical curvature, logistic; elevation, weibull; sand, lognormal;

silt, beta; clay, beta.
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(6) Finally, the k-means clustering technique (Forgy, 1965) was used to classify the SOM
topography into statistically relevant conceptual models (Ehsani and Quiel, 2008), where soil
physical properties are interpreted based on terrain morphometry and associated clusters.

The self-organizing map (SOM) belongs to a subcategory of the artificial neural network
algorithms, called competitive learning networks, in which the computational models serve as a
proxy for neurons in the human brain (ASCE, 2000a). The term self-organizing is based on the
unsupervised nature of the algorithm having the ability to organize information without any a
priori specification of an output pattern. In this study, the output consists of neurons organized on
a two-dimensional rectangular grid having hexagonal cells (map). Each neuron in the map is
represented by a multi-dimensional weight vector. Each neuron is connected to the adjacent
neuron through a functional neighborhood relation (Vesanto et al., 2000). Individual data samples
are associated to a vector with properties that reflect its contributions relative to the other
variables. From this cloud of data vectors, a best matching unit (BMU) is iteratively determined
by minimizing a distance measure for each variable (Kohonen, 2001; Vessanto et al, 2000). The
topology of the vectors is altered until convergence conditions are reached. The resulting maps
are organized in such way that similar data are mapped to the same or nearby nodes, and
dissimilar data are mapped to nodes with greater separation distances. The equations and issues
regarding data gathering, normalization, and training are well-documented in Vesanto (1999),

Vesanto and Alhoniemi (2000), and Kohonen (2001); therefore, no other details are given here.

3.1.1 Component planes

The component planes visualization technique (Vesanto, 1999) is used to analyze relations
among the landscape variables. Whereas a component plane can be thought of as a slice of the
SOM, it actually represents one set of vector component (variable) values in all map units; that is,
each component plane portrays the spread of values for the associated variable. In that regard
they are similar to histograms, the difference being that the same value can be present in multiple
places of the map when it belongs to different clusters.

The visualization of multiple component planes allows identification of correlated variables
(Vesanto, 1999). Correlations appear as similar color patterns at the same locations in differing

component planes. In the case of positive correlation, the color distributions in component planes
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are identical among variables meaning that as one variable increases (or decreases) the others do
the same. Conversely, a negative correlation among variables appears with the same pattern but
opposite color distribution, meaning that as values in one variable increase those in the other

variable decrease.

3.1.2 K-means clustering and scatterplots

K-means cluster analysis (Vesanto and Alhoniemi, 2000) is used to identify groupings in the
SOM output neurons. As a post-processing investigation method, it has shown promising results
when analyzing soil chemical weathering on hillslopes (Iwashita et al., accepted). This technique
is considered better than hierarchical clustering because it does not depend on previously found
clusters. The k—means algorithm assumes spherical clusters, and it is sensitive to the initialization
process. For that reason, the algorithm is run multiple times for each k with different random
initializations. The best partitioning for each number of clusters is selected based on the Euclidian
distance criterion, and interesting merges are defined using the Davies—Bouldin index (Davies

and Bouldin, 1977).

3.1.3 Self-organizing map estimation

The SOM estimates data values based on distances among the available vectors (Fessant and
Midenet, 2002; Wang, 2003; Junninen et al., 2004; Kalteh and Berndtsson, 2007; Kalteh and
Hjorth, 2009). The traditional estimation process is by replacement (called imputation), where the
values are taken directly from the prototype vectors of the BMUs. Often times certain data sets
will result in biased predictions (Dickson and Giblin, 2007; Malek et al., 2008) requiring a
modified scheme based on bootstrapping (Breiman, 1996), ensemble average (Rallo et al., 2004),
or nearest neighbor (Malek et al., 2008). In this study, we first train the SOM based on a
stochastic approach (Fig. 3) and second estimate missing values in the sparse data set based on

the following iterative scheme:

* An initial SOM is calculated and a first set of replacement values determined.

* SOM is recalculated and new replacements for the original missing values obtained.
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* Repeat the last step until the topographic error stabilizes.

Because the replacement process for missing values is not simply replacement by a prototype

vector of the BMU, it is referred to herein as estimation.

3.1.4 Self-organizing map performance

The SOM algorithm is objective, but there is subjectivity when choosing the set of data
variables thought to affect prediction quality. Moreover, the data variables are spatially limited,
and disparate with varying levels of uncertainty in their measurements and observations. For
these reasons, the reliability of the SOM as a hillslope model is evaluated using cross-validation.
The basis of cross-validation (Kohavi, 1995) is a leave-one-out strategy. This requires leaving
one data value out of the training set while creating a new SOM to estimate that value based on
the remaining data. Because a new SOM is created up to 30 times for each value under scrutiny,
it forms the basis for the Monte Carlo framework (Rubinstein and Kroese, 2007) from which

residuals are used to evaluate error statistics and model bias.

3.2 Monte Carlo Simulation

The Monte Carlo (MC) method can be defined as a stochastic simulation that generates
random values providing approximate solutions for mathematical problems by performing
computational sampling experiments (Fishman, 1996). One of the methods advantage is the
computational efficiency for a high number of parameters such as complex analytical functions
and combinatorial problems, especially relevant for the present work.

The MC simulation is based on the production of pseudo-random uniform distributed values,
a basic probabilistic distribution, required to simulate all others distributions where the produced
numbers must be independent, that is, the number generated in one run does not influence the
value of the next one. The method is applied to calculate definite integral functions, to find
numerical solutions for differential equations, for optimization problems, for uncertainty analysis

and to solve inverse problems (Fishman, 1996).
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The efficiency of the stochastic simulation depends on the knowledge about the problem, i.e.,
the prior information that constrains the simulation, thus the importance of good probability

distribution fitting with reliable parameters (Krajewski et al., 1991).

4. RESULTS AND DISCUSSION

4.1 Component planes

The component planes (Fig. 5) reveal interesting aspects of the training data that include
correlation, dissimilarity, and grouping. Similarity in color patterns, such as elevation and silt,
indicate a strong positive correlation. In this case, high (red) ELEVATION corresponds to high
amount of SILT; conversely, the low (blue) ELEVATION corresponds to low amount of SILT.
The distribution of red colors into three locations indicates that they are associated with three
groups of differing variables. According to Rallo et al. (2002), one of the elements necessary for
accurate SOM estimation is model diversity; this includes variables with a strong negative
correlation (same pattern but opposite colors, such as ELEVATION and CLAY; CLAY and
SILT; and cosASPECT and SLOPE. One interpretation is that at high elevations there is low clay
content, whereas at low elevations clay accumulates being manifested as high values. Similarly,
as CLAY and cosASPECT increase then SILT and SLOPE decrease. Less clearly defined with
more dispersion is the SAND variable. Based on a review of its component plane, the SAND is
associated with four groups. In contrast, CONDUCTIVITY is associated with two groups
(indicated by red color in the upper right and left corners).

Although conductivity is significantly correlated to sand, given the connection between
porosity and conductivity, SOM exposed higher correlation with silt instead. The lower content
of sand throughout the area could be the main responsible for the reduced influence of sand
grains on the hydraulic conductivity spatial pattern. Supporting this analysis, sand content is
positively correlated to vertical curvature and horizontal curvature, where higher values for these
variables point to convex and divergent flux areas respectively, what usually characterized ridges
and hilltops, more susceptible to erosion. Plateau areas, with higher elevations are also more
susceptible to erosion and sediment transport, leading to higher values of conductivity near the

surface. Slope inclination is inversely correlated to the slope orientation due to the
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geomorphological structure of the basin, where southward hills are steeper creating shorter
drainage channels, while hillslopes close to a north orientation are smoother and associated to

streams with larger length.

U-matrix

Conductivity cOsASPECT

(b)

Color code

Silt

L -
(a)

Fig. 5 — (a) Component planes used to visualize nonlinear correlation. All variables were

(0

standardized using z-score. Conductivity (m/s), sand (%), silt(%), clay (%), elevation (m), slope
(°), horizontal curvature (°/m), vertical curvature (°/m), and aspect is slope orientation cos(°®). (b)

U-Matrix. (c¢) U-Matrix classified using k-means technique.

4.2 K-means clustering and scatterplot analysis

The statistical grouping of SOM nodes is done by k-means cluster analysis with natural
merges identified using the Davies-Bouldin criteria. Three classes are identified based on the
Davies-Bouldin criteria as being a natural number of distinct combinations for variables
reflecting hillslope landscapes: convex, rectilinear and concave. A summary of median variable

values (missing values are estimated beforehand using the SOM; see section 2.1.3) comprising
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each conceptual model is presented in Table 4. The matrix designators refer to a likelihood group
in which the median values indicate their relative importance for that model; for example, low
likelihood (0-33 percent), moderate likelihood (34-67 percent), or high likelihood (68-100
percent).

Regarding elevation, the relations visualized on the component maps are verified here (Fig.
6); it is positive for silt and conductivity, negative for clay, and weakly positive for sand. It is
possible to associate the yellow group with low elevations, the blue with higher elevations, and
the green cluster with intermediate to high elevations. Through this connection is possible to
construct an integrated analysis considering the behavior of the cluster in the other graphs, like

vertical curvature, for instance.

Table 4 — Conceptual models

Category Variable Median values for clusters Conceptual hillslope models
1 2 3 1 2 3
Soil Clay 0,79 -0,64 -049  High Low Low
Sand -0,60 -0,16 0,36 Low Moderate Moderate
Silt -0,71 0,65 0,32 Low High Moderate
Conductivity -0,41 -0,22 -0,32 Low Low Low
Morphometric CosAspect 0,35 -0,12 0,44 Northward  Southward Northward
Elevation -0,80 0,67 -0,16 Low High Medium
Hor-curv -0,21 0,02 0,60 Convergent Parallel Divergent
Slope -0,67 0,78 -0,31 Plain Steep Moderate
Vert-curv -0,39 -0,09 0,59 Concave Rectilinear Convex

Hillslope morphology provides an important indication of the weathering rate on the Pocos de
Caldas region, due to the presence of bauxites deposits, which are mostly formed on crest and
interfluves, where the particle transport and drainage provoke the silica removal preventing its
dissolved form to combine with alumina forming kaolinite (Holmes et al, 1992). This analysis is
supported by the fact that yellow cluster occurs only on concave regions with low elevation (Fig.
6), and related to high content of clay, and low values for sand, silt and hydraulic conductivity.
The blue group (Fig. 6) can be linked with the hillslope mid section and with high values of
hydraulic conductivity, which can be observed when conductivity is analyzed against sand, silt
and clay. The green set can be associated with hilltop areas, given the vertical curvature plots

where positive values represent convex characteristics. Additionally, the green cluster is
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associated with larger proportions of sand, possible to visualize in all sand diagrams figures (Fig.

6).

4. 3 Conductivity and soil texture maps

The low-sand proportion predicted using the model (Fig. 7) supports the silty-clay texture
typical in the Pocos de Caldas region soils. The highest percentages found at 75 cm depth reached
20% of the matrix content and are more common to hilltops and divides. Sand spatial distribution
express a variation at hillslope scale, given that sand highest correlations are with vertical and
horizontal curvature, and that sand grains are transported for a shorter distance than silt and clay
particles, since is the largest particle considered in this analysis.

The silt content is marked by strong correspondence to elevation, also revealed in the
component maps analysis. Elevated silt amounts are associated to Haplic Cambisols, which
according to Moraes (2008), occurs on areas of high topography, horst structures and strongly
dissected regions, also associated with laterization process. The clay predicted maps are
characterized by larger clay proportions on areas near rivers and drainage channels. However,
according to the estimated values by the model, all the soil across the Vargem de Caldas basin is
considered clayey, where the predicted percentage varies between 41 to 79%.

The conductivity map depicts low conductivity on floodplains and near drainage channels,
whereas on plateau areas the values are higher. According to Jiménez-Rueda et al. (1993) low
topographic areas in this region favor reducing environments leading to illite and smectite
formation. Smectite is an expansive clay mineral, acting like a sponge holding the water content
and decreasing the hydraulic conductivity. Predominantly occurring on the south part of the
basin, the plateaus are constituted by uplifted blocks, structures intensely eroded that provide
concretional material for lower elevations, characterizing the alloctonous nature of the regolith
present on the soil profiles (Moraes, 2008). High erosion rates and severe weathering favor the
intense sediment transport and abrupt mass movements like landslides, forming colluvial fans

common in this region.
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Moraes (2008) analysis, where the soils have high content of clay throughout the basin.
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4.4 Cross-validation

The model performance is evaluated using a stochastic cross-validation method, the Poor
man’s approach (Rao et al, 2008) according to the following steps: (a) the simulated data (n =
1000) is split intro training (n = 920) and validation (n = 80) sets (where the validation set is
randomly drawn); (b) the training set is used to generate a SOM model where the 80 missing
points are estimated; (c) next, the predicted values were compared to the observed values to
confirm a one-to-one correspondence to assess model bias; (d) then from the original dataset a
different subsample of 80 elements are randomly taken and the steps b and ¢ are repeated. These
procedures are carried out 4 times producing the cross-validation plots presented in Fig. 8. The
SOM model demonstrates unbiased behavior indicated by the one-to-one correspondence and
constant variance for clay, silt and sand. The conductivity plot reveals higher uncertainty, which
we assign to the inherent field experience limitations, while the soil texture is analyzed under

controlled conditions in a laboratory, decreasing the uncertainties measurements.

Fig. 8 — Cross validation for the predicting models generated by the proposed procedure, using

Poor man’s approach. a) Sand; b) Silt; ¢) Clay; and d) hydraulic conductivity. One to one

correspondence reveals that the SOM is an unbiased predictive model.
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S. CONCLUSIONS

In this study, we find that the self-organizing map (SOM) technique and Monte Carlo
simulation method can be used to evaluate and build an unbiased predicting model for soil
physical properties on hillslopes at the local scale using published data from 30 field locations.
Some of the noteworthy conclusions are as follows:

(1) Grouping nonlinear relations using the k-means clustering technique facilitates the
development of conceptual hillslope models for further understanding of the soil weathering
processes. It is possible to identify relations among variables in the hillslope (SAND, CLAY,
SILT, CONDUCTIVITY) at the local scale. Many variables in certain categories are highly
correlated indicating an unnecessary redundancy in describing system contributions. Topographic
morphometry, hydraulic conductivity near the surface and soil texture data can be projected onto
a 2-dimensional surface while preserving important nonlinear relations, for building an unbiased
predicting model.

(2) The convex-concave hillslope feature, relates to soil production rate, soil erosion, and
therefore soil thickness, where SOM analysis unveiled the relations, in terms of topological array,
between soil physical properties and terrain morphometry, decreasing the low density sampling
limitation through Monte Carlo stochastic simulation approach describing the physical factors
that may influence the particle transport phenomenon.

(3) The proposed method is suitable to survey soil chemical and physical properties, revealing
and quantifying relationships between soil variables and terrain morphometry, not properly
observed by linear multivariate statistical approaches, additionally, does not have any
assumptions for the collected dataset, where all the analyses were conducted preserving all
variables and keeping the associated parameters. We expect the proposed modeling method to be
used as an alternative approach for further studies exploring hillslope weathering, erosion, and

hydrological processes in other locations and environmental settings.
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ESTIMATING PHYSICAL-CHEMICAL PROPERTIES IN FRACTURED AQUIFERS
USING SELF-ORGANIZING MAPS IMPUTATION APPROACH: STUDY OF
HYDRAULIC CONNECTIVITY BETWEEN SERRA GERAL AND GUARANI
AQUIFER IN PARANA STATE, BRAZIL

Abstract

Self-organizing maps (SOM) is here used to imputate missing values of hydraulic transmissivity
and hydrochemistry and to evaluate hydraulic connections between the Serra Geral (SGAS) and
Guarani (GAS) aquifer systems in State of Parana, Brazil. A spatial model for the aquifer is built
and elements of spatial variability compared with -current conceptual and hydrochemical models.
SOM is employed to calculate nonlinear correlations between 27 variables from 976 wells in the
Serra Geral aquifer. These include hydrochemical (19), geophysical (1) and morphometric (5)
variables, plus others derived from digital elevation model geoprocessing (2). Using a second
dataset with 156 samples, transmissivity is estimated from well pump tests. Results and related
parameters are used to train the SOM for imputation process. The K-means technique is used to
find relevant clusters, whereas Davies-Bouldin index indicates the optimal numbers of groups.
SGAS typical waters are carbonate-calcium and carbonate-magnesium, whereas GAS has
sodium, chloride, fluoride and sulfate as characteristic elements. The analysis of flux connections
between the two systems is based on anomalous hydrochemistry spatial behaviors. SOM
predicted points are consistent with current connectivity models, where vertical fluxes from GAS
are possibly strongly influenced by geological structures. SOM imputation and pos-processing by
the K-means approach revealed different hydrochemical facies for the SGAS and several new
areas with possible connections between the two aquifer systems, constituting a feasible

alternative to deal with missing values in a multivariate dataset.

Keywords: hydrochemistry, MATLAB, data minig, artificial neural networks
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1. INTRODUCTION

The Serra Geral aquifer is one of the largest and most important in Brazil. It is a
transboundary, unconfined and fractured aquifer formed within a sequence of lower Cretaceous
Parana flood basalts (Thiede and Vasconcelos, 2010). Its outcropping surface reaches 1.2 million
km’. The Serra Geral aquifer system (SGAS) covers four Brazilian states and three countries,
Argentina, Uruguay and Paraguay (Fig. 1a). It is responsible for the confinement of the Guarani
Aquifer System (GAS) in the middle sections of the Parana basin - 1i.e., a porous aquifer
composed primarily by sandstone from the Botucatu and Pirambéia Formations (Sracek and
Hirata, 2002).

Despite the apparent confinement of the GAS, many studies have shown a hydraulic
communication between the two systems based on hydrochemistry (Fraga, 1986). In this
scenario, favorable hydraulic conditions associated with geological discontinuities enables the
rise of stored water from the GAS to the SGAS (Fig. 2). The common approach to point out
potential hydraulic connectivity areas between the two aquifers is to analyze characteristic
elements from GAS, comparing their relative concentrations and spatial distribution with typical
SGAS waters (Mocellin, 2009; Nanni et al., 2009; Silva, 2007; Rosa Filho et al., 2006; Ferreira et
al., 2005, Bittencourt et al., 2003; Portela Filho, 2003, Sracek and Hirata, 2002).

The integrated analysis of geological structures and variation of chemical elements is the
most frequently employed methodology to evaluate possible connections between the Serra Geral
and the Guarani aquifers (Ferreira et al., 2005). Remote sensing and geophysical data have been
used to support the study of aquifers when characterizing geological structures (Nanni et al.,
2009), or as a predictive variable in the absence of monitoring wells (Souza Filho et al., 2010).
Additionally, there is a possible influence from relief (morphological) features over water
chemistry, particularly where a thick layer of soil combined with high clay content may prevent
the recharge of the SGAS unconfined section (Nanni et al., 2009). When these conditions are
associated with vertical faults, the relative concentration of Guarani trait elements increase and
the connection between the two systems becomes more evident.

The characterization of the hydrochemistry of aquifers can be done through the Piper
diagram - a ternary graph and a linear measure representing the relative variations of sulfate,

chloride, carbonate + bicarbonate (anions axis) and calcium, magnesium and sodium (cations
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axis). Data for pH, major cations and major anions are widely available worldwide since they are
commonly used to depict the groundwater hydrochemistry; nevertheless in most cases such
databases are still incomplete or inconsistent.

Most parametric statistical methods, such as analysis of variance (Winter et al., 20006),
requires a complete data matrix to calculate multivariate exploratory measures, as the covariance
matrix. Other methods, like cluster analysis (Suk and Lee, 1999), principal component analysis
(Astel, et al., 2007) and factor analysis, require computation of eigenvalues and eigenvectors
(Netter et al., 1996). An alternative to deal with missing values are imputation methods (Malek et
al., 2008), which comprise statistical and mathematical approaches to estimate missing values in
datasets based on a combination of the available data (Dickson and Giblin, 2007). The self-
organizing maps - SOMs (Kohonen, 2001), a type of unsupervised neural networks have been
used to characterize and survey groundwater chemistry (Lu and Lo, 2002; Sdnchez-Martos et al.,
2002; Hong and Rosen, 2001), and also have been employed as an imputation method (Wang,
2003) for precipitation and run-off processes (Kalteth and Hjorth, 2009), air quality datasets
(Junninen et al. 2004), data survey (Fessant and Midenet, 2002) and detection of unexploded
ordnances (Benavides et al. 2009).

The SOM is considered a technique to visualize high dimensional data sets, representing
them in two or three dimensions, projected onto maps composed by code vectors (ASCE, 2000a;
2000b). Each code vector has the same dimension as the input data array. Through an iterative
process, the SOMs are trained to fit the input data set, whereas each sample has an associated n-
dimensional vector (Kohonen, 2001). The SOM’s attribute of learning vector quantization using
Euclidean distance while preserving topological relations between the samples, makes it an
inherently robust imputation method (Dickson and Giblin, 2007).

The main objective of this work is to build a spatial model for hydrochemistry and hydraulic
transmissivity of the Serra Geral fractured aquifer in the State of Parana, Brazil, using the self-
organizing map imputation method, and comparing estimated values with conceptual models
established in the literature. To achieve this goal, the following specific objectives will be met:
(1) use SOM to determine nonlinear correlations between hydrochemical elements, relief
morphometry, and aeromagnetic data; (2) use SOM to imputate missing values in groundwater

database; (3) apply the k-means method to find the relevant clusters (Davies and Bouldin, 1977);
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(4) find possible flux connections between the Serra Geral e the Guarani aquifers, based on

hydrochemistry anomalous spatial behavior.

2. SELF ORGANIZING MAPS

In a SOM analysis each sample is treated as a vector in a data space determined by its
variables. Measures of vector similarity are then used to order and segment the input data into
meaningful natural patterns (Fraser and Dickson, 2007). In an iterative process, “seedvectors” are
modified to represent the distribution of the input data in the data space and, once trained,
become known as “best-matching units” (BMUs). The SOM output usually consists of an ordered
array of nodes (the BMUs) arranged in a regular, two-dimensional grid (the map). Each input
sample is represented by the closest BMU and the BMUs are arranged on the map in such a way,
as to preserve topology (Kohonen, 2001). Thus, data points lying close to each other in the n-
dimensional input space are mapped onto proximal BMUs. This characteristic is important
because it allows the analysis to preserve the input space topology, a feature which, together with
the ability to learn and organize information without being given the associated dependent output
values for the input pattern, makes it possible to use the SOM as a dimensionality reduction tool
(Fraser and Dickson, 2007).

The U-matrix representation of the map indicates the closeness between adjacent nodes on
the map in terms of Euclidean distance (Bierlein et al., 2008). A color scale is used so that cool
colors (blues) separate adjacent nodes that are closer or similar, while warm colors (reds) indicate
larger distances and greater differences between the nodes. To assist in this display, alternate
dummy nodes are added to the U-matrix. These are colored according to the distance between
adjacent nodes, whereas the nodes that represent actual vectors are colored according to the
average of the distances to their neighbors. A group of nodes with small distances between them
form a cluster. Zones of nodes with large distances between them separate clusters.

Component plots show the variation of a particular variable across the map using a color-
temperature scale. The highest values correspond to red regions and the lowest values to blue
zones. The component plots are used to determine the zones (units on the map) where the
variable value is high or low, and to observe any correlation or relationship among the variables

(Lopez Garcia and Machon Gonzalez, 2004). These correlations can be detected by means of the
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color gradient on each component plane. Two variables with parallel gradients show a direct
correlation, whereas inverse gradients show a negative correlation.

The similarity index plot is an additional presentation of the component plots that aids their
visual comparison. The principal components of the SOM output data are extracted and the
component plots are then plotted on the similarity index, with the x and y axes representing
principal components 1 and 2, respectively (Lopez Garcia and Machén Gonzélez, 2004). Thus,
components that plot closer together on the similarity index are more similar to each other than
they are to distant components.

An initial idea of the number of clusters in the SOM, as well as their spatial relationships,
can often be acquired by visual inspection. However, relationships can be quite complex and it
can be difficult to make a useful interpretation based solely on the U-matrix and component plots.
To assist in this process, the SOM may be divided into similar regions, by applying the non-
hierarchical K-means clustering algorithm to the BMUs. An internally derived, data driven
estimate of the optimum number of clusters can be selected using a Davies—Bouldin analysis
(Davies and Bouldin, 1977), which is implemented in the SiroSOM software. Together with the
component plots (Kohonen, 2001) and analysis of the SOM output data, clusters derived in this
manner allow a sophisticated analysis of the relationships amongst the variables and between

samples.

3. STUDY AREA

The Serra Geral aquifer system (SGAS) outcropping area is comprised in the State of Parana
state and corresponds to 109,000 km® (Fig. 1a). The SGAS is classified as anisotropic, fractured
and hosted by crystalline rocks. The water flows through fractures, cracks and gaps opened by
tectonic displacements and weathering. The storage capacity of such fissured aquifers depends on
fracture density, how large are fracture gaps and how significant are the communication between
these structures (Fraga, 1986). Therefore, yield from wells drilled into fractured aquifers depends

essentially on the number and density of fractures.
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The SGAS is hosted mainly by volcanic rocks as tholeiitic basalts, andesites, rhyolites and
rhyodacites (Harris and Milner, 1997). The thickness of the Serra Geral Formation volcanic rocks
increases from east to west, reaching 1500 meters in the central sector of the Parana Basin (Peate
et al.,, 1988). The outcropping rocks generally present aphanitic and other micro-crystalline
textures with massive or vesicular-amygdalous structure. Dikes and sills of tholeiitic and
rhyodacitic composition are widespread (Turner et al., 1999).

The main processes conditioning the water chemistry of the Serra Geral aquifer are the
weathering of the basaltic rocks and the associated equilibrium with secondary minerals. The
geochemical interaction between percolating water and aquifer rocks along the recharge and
discharge zones are crucial to define hydrochemical characteristics (Bittencourt et al. 2003).
Given the lithologic characteristics of Serra Geral Formation, the SGAS water is classified as
calcium and magnesium bicarbonates-rich (Fraga, 1986). However, the type of water can also be
affected by mixing water from different aquifers (Fig. 2). Besides, the time interval the water
stays in contact with soluble materials that constitute the aquifer is positively correlated with the

total dissolved solids content.
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Fig. 2 — Conceptual model of the connectivity between the Guarani (GAS) and the Serra Geral
(SGAS) aquifer system, representing the influence of geological structures and hydrochemistry

characteristics (Nanni et al., 2009).
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The hydrochemistry of the Guarani aquifer system (GAS) waters is highly variable,
especially in confined areas, caused by faciologic variations, or by mixture, associated with
sandstone fractures (Gastmans et al., 2010). In deep confined areas, the GAS waters are not
suitable for water supply given the high content of total dissolved solids, high concentration of
sulphates and fluorides above the recommended limits for human consumption (Nanni et al.,
2009).

The waters in the GAS outcropping region is calcium bicarbonate-rich in composition,
changing to sodium bicarbonate with increasing concentrations of chloride and sulfate towards
deeper confined areas (Fig. 2) (Rabelo and Wendland, 2009). The variation is caused by a
decrease in calcium content, exchanged with sodium, and caused by carbonate dissolution
leading to a sodium bicarbonate groundwater type. At least part of the sodium, chloride and
sulfate are likely a contribution from the Pirambdia Formation, originated from evaporite

dissolution (Gastmans et al., 2010).

4. METHODS

When considering free aquifers such as the SGAS, surface hydrology and groundwater
chemistry have to be investigated as coupled processes. Groundwater chemistry may be
correlated to surface and near surface hydrologic phenomena, where variables such as relief
features, soil texture and aeromagnetic data can be used as predicting variables. The use of these
variables connect near surface phenomena like soil chemical weathering (Iwashita et al. 2011)
and sediment transport to hydrogeological processes, making possible to predict groundwater
quality (Souza Filho et al., 2010), and aquifer recharge (James et al., 2010). The dataset
employed in this work is composed of 27 variables, 976 samples, including relief features (5),
variables derived from digital elevation model geoprocessing (2), geophysic measure (1) and
hydrochemical and well parameters (19). Six steps were used to model the spatial distribution of
hydrochemical elements and hydraulic transmissivity (Friedel and Iwashita, 2011) (Fig. 3). First,
well parameters were used to calculate hydraulic transmissivity using McLin’s (2005) method.
Second, all data variables were standardized so that not single variable would dominate in the

nonlinear modeling process (Kalteth et al., 2008). The z-score transformation is given by:
X. — ;Ci
7z, =—

S.

l
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where z is the standardized value; x is the raw score; x is the sample average, and s is the sample
standard deviation, i is an index for each variable. Standardizing variables in this way resulted in

each having an expected value of zero and standard deviation one.

Script for
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Field Data
Samples __,/ Estimated
l data
Self-
Organizing SOM Hydrochemical
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A 4
SOM Self-Organizing
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matrix Imputation

Fig. 3 — Flowchart of the proposed method to imputate missing values for hydrochemistry and
transmissivity data.

Third, the SOM (Kohonen, 2001) was used to self organize nonlinear relations among the
27 variables. The correlation matrix was extracted from the generated model and so was the
imputation for the missing values. Fourth, the k-means clustering technique was then used to
classify the SOM topography into statistically relevant groups. Fifth, The hydrochemical
elements were projected into a continuous surface to evaluate their spatial distribution. In the
final step, the spatial pattern of chemical elements was compared to previous conceptual models
established in the literature in order to indentify sectors in the study area where potential

connections between the aquifer systems may exist.

4. 1. Hydrochemical data

The hydrochemical data were provided by public institutions responsible for water
monitoring and analysis in the State of Parana, including the Waters Institute (Aguas Parana) and
the Sanitation Company (SANEPAR). The dataset is a composed by three subsets (Fig. 1b), also
employed by Portela Filho (2003), Silva (2007) and Mocellin (2009). It has 19 variables and 976

samples (Table 1), containing major cations and anions and characterization parameters of wells.
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However, given the constant advancements in chemical analytical instruments and development
of new protocols, such databases often differ in which set of elements was analyzed or in
accuracy of such analysis. This leads to a fairly inconsistent dataset. From the 976 samples, only
93 contain fluoride measurements, making the imputation, in this particular case, essential to
study the spatial behavior of the variable. The SOM is an imputation method without any
statistical assumptions that can achieve high performance even with a low number of samples for

its training.

Table 1 — Acronyms for employed variables and their respective unit.

Category Variable
Description Acronym Unit
Morphometric ~ Aspect cosASPECT  dimesionless
Elevation ELEVATION m
Horizontal curvature HOR-CURV  °/m
Slope SLOPE °
Vertical curvature VERT-CURV  °/m
GIS Flow accumulation FLOWACC integer
Distance from lineaments LINEASDIST m
Geophysical aeromagnetic AEROMAG nT
Well information Potenciometric Level POTENC m
Depth DEPTH m
drawdown DRAWDOWN m
Yield YIELD m3/h
Specific Capacity CAPAC m3/h.m
Hydrochemical Calcium Ca mg/L
Magnesium Mg mg/L
Sodium Na mg/L
Potassium K mg/L
chloride Cl mg/L
Sulfate SO4 mg/L
Carbonate CO3 mg/L
Bicarbonate HCO3 mg/L
pH pH
total dissolved solids TDS mg/L
Free CO2 CO2 mg/L
Nitrate NO3 mg/L
Carbonate bicarbonate CO3-HCO3
Fluoride F mg/L

4. 2. Hydraulic transmissivity data

The Serra Geral aquifer transmissivity was estimated using specific capacity data

calculated from pumping tests conducted in 154 wells by the Aguas do Parana Institute, based on
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a modified version of the Bradbury-Rothschild iterative solution technique (Bradbury and

Rothschild, 1985), here adapted for MATLAB:

T=— 2 || 22 o
47(s, —s,) rls b

where T = aquifer transmissivity (cm/min), Q = well discharge (m3/min), s; = 1s total drawdown

observed in a production well, s,, = drawdown due to well loss S = aquifer storage coefficient
(dimensionless), ¢ = time since pumping began (min), r, = effective wellbore radius (cm), and s,
= a partial penetration factor (dimensionless).

Since T appears on both sides of the equation, an iterative solution is required (Bradbury and
Rothschild, 1985). Initially, a guess is made for T (Tguess in the program) on the right-hand side of
the equation, and an updated solution for 7 (7.4 in the program) is obtained from the left-hand
side. This updated solution is again used on the right-hand side of the equation, and a new T is
again computed. This iterative process continues until some suitable tolerance criterion for error
is reached (McLin, 2005).

The calculated transmissivity was used as a training set for the SOMs. The computed model

estimated the missing values at places where the pumping tests information was incomplete (Fig.

3).

4. 3. Aeromagnetic data

The aeromagnetic data were provided by PETROBRAS and pre-processed and by the
Applied Geophysics Laboratory of Research (LPGA) from Parana Federal University. The raw
data comprise a series of aerial surveys conducted in the Parana Basin during the 80s. This survey
was conducted by PETROBRAS in 1981, with NS-trending lines spaced of 2 km, a flight height
of 500 m and sampling intervals of approximately 100 m. Control lines spaced of 20 km and
perpendicular to the acquisition lines were also acquired during the survey. The pre-processing
comprised the generation of regular grids (500x500 m) by the minimum curvature method
(Briggs, 1974). The residual magnetic field was then calculated, and artifacts (noise) along the
flight lines were eliminated using the micro-leveling technique (Minty, 1991). Thus, the magnetic

data represent the micro-leveled anomalous magnetic field (nT).
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4. 4. Topographical dataset

Characterization of the topographic relief was possible using elevation data provided by the

Shuttle Radar Topographic Mission (http://edcsns17.cr.usgs.gov/NewEarthExplorer/). The digital

elevation model associated with these data was provided by the United States Geological Survey
on a lattice with 90-m spatial resolution (Farr and Kobrick, 2000). The Topodata project,
conducted by the Brazilian National Institute for Space Research-INPE (Valeriano et al., 2009),
has created derived metrics data with a 30-m resolution, based on elevation data and geographical
information system (GIS) modeling techniques. The geomorphometric features provided a way to
extract morphometric features, such as slope, aspect (hillslope orientation), vertical and
horizontal curvature (Valeriano et al.,, 2006), and accumulated hydrological flux (Jenson and

Domingue, 1988).

5. Results and discussions

To identify potential areas of hydraulic connectivity between SGAS and GAS, we considered
the spatial distribution of hydrochemical variables in comparison to information is described in
literature. Under potentiometric favorable conditions, the waters from the GAS ascend through
geological structures (open fault planes) to the SGAS modifying the typical hydrochemical
signature of the aquifer (Nanni et al., 2009).

The component planes (Fig. 4) reveal interesting aspects of the training data that include
correlation, dissimilarity, and grouping. Similarity in color patterns, such as Ca and Mg, indicate
a strong positive correlation. This is an interesting asset for exploratory analysis, especially when
supported by the correlation matrix (Table 2) calculated after the topological evaluation. Calcium
and magnesium have a correlation of 0,949. Sodium, chloride and sulfate are all positively
correlated according to the component plots. Sufate correlates 0,883 and 0,478 with sodium and
chloride, respectively.

The high correlation between calcium and magnesium is justified by the fact that both are
products from dissolution of basaltic rocks forming minerals. Typical waters from SGAS, with
longer residence time, are calcic-bicarbonate or calcic-magnesium bicarbonate (Fraga, 1986).

Sodium bicarbonate-rich waters differ in the composition to solutions formed due to leaching of
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the Serra Geral Formation basaltic rocks. The sodium content can be attributed to several sources,
like the alteration of albite, input by diffusion loading of halite and mirabilite weathering from
Guarani aquifer system (Sracek and Hirata, 2002). Therefore, anomalous concentrations of
sodium bicarbonate on the SGAS waters may be related to GAS, indicating a connection between
the two systems. The bicarbonate anion is the most abundant in both the SGAS and GAS. It is
usually originated from the dissolution of carbon dioxide mutually present in the atmosphere and
soil, reacting with percolating waters or from basalt silicates hydrolysis. Thus, low bicarbonate
concentrations are usually linked to recent recharged waters or with water with a long time of

residence (from silicate weathering) (Bittencourt, 1978).
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Fig. 4 — Component planes from SOM used to visualize nonlinear correlation. All variables were

standardized using z-score, (b) U-Matrix. (c) U-Matrix classified using k-means technique.

Component planes for pH, carbonate and bicarbonate show partial inter-correlation (Fig. 4).
The carbonate-bicarbonate content is related to the pH solution. In neutral and weakly alkaline

conditions, the presence of bicarbonate is higher than the carbonate. From a pH = 8.30, the
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concentration of carbonate increases gradually until it replaces the presence of bicarbonate
(Mocellin, 2009). For the SGAS, pH alkaline values can be attributed to the influence of the
associated GAS groundwater. This is because with increasing alkalinity and pH values there is a
carbonate imbalance leading to calcium depletion, causing an increase in sodium concentration
(Silva, 2007). Table 2 shows the correlation matrix among 27 variables. Significant correlations
(p-value = 0.01) are shown in bold. There is a noteworthy negative correlation between sodium,
sulfate and fluoride concentrations and distance from the closer lineament. Areas near lineaments
are associated with higher concentrations of these elements, strengthening the hypothesis of the
structural conditions role in the rise of the waters from GAS. The same table shows a positive
correlation between fluoride, sodium, chloride and sulfate; all considered typical elements of the

GAS.

Table 2 — Correlation matrix calculated from SOM after the imputation process.

Elevation Potenc Lineadist Aeromag Capac Ca Mg Na K cl SO4 CO3 HCO3 pH TDS NO3 F

Elevation 1

Potenc 0.97 1

Lineadist 0.85 0.08 1

Aeromag 041 -043 0.12 1

Capac 0.03 -0.05 0.04 -0.04 1

Ca -0.05 -0.11 -0.10 -0.10 0.37 1

Mg -0.06 -0.12 -0.05 -0.07 0.42 0.95 1

Na -0.15 -0.18 -0.30 0.04 -0.05 0.03 -0.08 1

K 0.11 0.11 0.28 -0.18 0.15 0.45 0.45 -0.20 1

cl 0.06 0.00 -0.24 -0.12 0.12 0.51 0.40 0.47 0.11 1

SO4 -0.03 0.04 -0.23 -0.13 -0.04 0.07 -0.03 0.88 -0.07 0.48 1

co3 -0.21 -0.22 -0.43 0.05 0.05 0.16 0.08 0.29 -0.32 0.34 0.20 1

HCO3 -0.37 -0.43 -0.28 031 0.02 044 043 031 -0.08 0.19 0.10 0.13 1

pH -0.04 -0.18 0.12 -0.02 0.26 0.10 0.23 -0.10 -0.03 -0.05 -0.06 -0.20 0.22 1

TDS -0.18 -0.27 -0.33 0.26 0.13 0.44 035 0.55 -0.07 0.57 0.35 0.36 0.64 0.02 1
NO3 -0.31 -0.36 -0.01 0.14 0.26 0.14 0.20 0.06 -0.10 -0.04 0.01 -0.14 0.38 0.48 0.10 1
F -0.13 -0.13 -0.38 -0.35 -0.02 0.10 0.00 0.43 -0.12 0.25 0.39 0.50 0.09 -0.02 0.16 0.09 1

The color scales for the hydrochemical legends (Fig. 5) do not represent the maximum
and minimum estimated values, but the histogram stretch, equivalent to two standard deviations
from the mean. These descriptive statistical parameters are found in Table 3, for the original
dataset and for the data imputated from the SOM. The purpose of generating continuous surfaces
by a simple interpolation method is to analyze the spatial behavior of the imputation method
results. Therefore, the interpolated surface should not be interpreted as estimation. In addition,

the choice of a simple interpolation method like inverse distance weighting (IDW) allows a
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visualization of the influence from each sample on the continuous surface, especially of those
anomalous values that may cause the bull's eye effect. Another assistance for a critical spatial
analysis is different representations for samples with measured points and points where the values

were imputated, illustrating how representatives the training points are.

Table 3 — Descriptive statistics for imputed values from SOM and for the JOINT original
database composed by data gathered from Portela Filho (2003), Silva (2007) and Mocellin
(2009).

SOM Drawdown Yield Capac Ca Mg Na K Cl S04 CO3 HCO3 pH TDS NO3 F

Average 3227 2386 396 16.17 443 1853 0.77 340 576 19.96 7420 7.74 150.96 1.05 0.15
Zte"’”,’:j;‘i 2366 2534 1663 1635 522 2221 057 403 2867 18.76 3344 079 63.65 1.50 0.21

viatl

Min 000 539 032 147 017 059 019 047 048 214 1379 604 32.66 0.03 0.01
Median 2468 1540 169 1277 324 1161 061 208 161 11.93 6923 7.60 147.93 0.40 0.07
Max 209.94 185.11 316.84 139.50 46.25 293.83 4.37 29.21 546.40 87.91 176.27 9.89 386.46 8.01 1.54
JOINT Drawdown Yield Capac Ca Mg Na K Cl SO4 CO3 HCO3 pH TDS NO3 F

Average 2864 2137 344 1612 455 1829 074 324 6.14 2823 7624 7.64 137.02 1.14 0.19
Z:'i’:;;‘:‘ 30.06 29.00 19.66 17.44 6.02 2694 0.64 438 41.80 20.64 3896 084 69.08 1.72 0.30
Min 000 100 -015 061 002 028 001 003 020 211 400 580 9.00 0.01 0.01
Median 2000 1000 0.69 13.00 348 990 0.60 1.87 1.00 26.73 71.65 7.50 121.50 0.26 0.10
Max 421.00 250.00 444.44 140.00 46.55 320.00 5.10 36.00 580.00 88.00 221.82 10.04 399.00 8.84 2.00

The calcium map (Fig. 5a) shows low concentrations in most part of subarea II and in the
northeast and southeast sectors of subarea III (Fig. 1b). Regions with low levels of calcium may
be related to a possible connection with GAS, due to the proportional decline of this element, or
to recharge areas, especially if regions with low calcium content coincide with low levels of
bicarbonate (Fig. 5b), which according to Fraga (1986), are associated with recent recharge areas.
In contrast, high concentrations of calcium could indicate a long period of residence in exploited
waters. Likewise, high levels of bicarbonate could either indicate a connection with the GAS or a
confined section of the SGAS.

When considered together these two variables, the northeast of subarea II shows high
values for calcium and bicarbonate, suggesting water confinement. The southern part of subarea
III shows low values for calcium and high for bicarbonate, indicating an upward flow originated
from the GAS to SGAS. To the southeast of subarea III, evidences for a hydraulic connection
between the two aquifer systems are strengthened by the observation of high sodium and sulfate

content (Fig. 6 a and b), taken as characteristic of GAS waters. The effusive rocks of the Parana
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basin are sulfide-poor, as in other forms of sulfur. Higher sulfur contents are attributed to
contamination from underlying aquifers or mineralized, pyrite-rich intrusions (Bittencourt et al.,
2003)

A typical feature of confined waters is high content of total dissolved solids (TDS),
caused by a long period of residence, where in SGAS waters may be another sign of connection
between the two systems (Fraga, 1986). The total dissolved solids comprises the sum of all the
present mineral constituents in solution, having a direct relationship with the mineralogical rock
composition and the time of groundwater percolation/residence within the system, thus reflecting
the chemical weathering of rock forming minerals. The northern section of subarea II and the
great majority of subarea III but its northeastern portion (Fig. 7a) display high levels of TDS, as
previously mentioned, potentially indicating aquifer’s connectivity or confinement. The low TDS
content, plus the low levels of calcium and bicarbonate observed at the central sector of subarea
IT reinforces the hypothesis of areas with recent recharge. These same areas have lower
concentrations of fluoride, which has a positive correlation with sodium, sulfate and chloride,
characteristic elements found in the GAS.

For Fraga (1986), the presence of fluoride in the SGAS is associated with upward flow of
alkaline waters from the GAS. In contrast, Nanni et al. (2009) argued that the origin of fluorine
yet needs further investigation because they could be the result of the SGAS secondary mineral
weathering. The high concentrations of fluoride in the northern portion of subarea I is spatially
coincident with high anomalous values found in surface waters (Licht, 2001), while the fluoride
content in groundwater is attributed to deep geological structures, features that can be captured by
aeromagnetic survey. Fluoride transported by upward flows from the GAS is connected to
fracture density, thereby facilitating the flow from the aquifer. High fluoride values could be
enhanced by superficial processes such as, the presence of a thick layer of soil and a high

proportion of clay, factors that could prevent the recharge of the SGAS (Nanni, et al. 2009).
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The land use and physical features can influence the chemical characteristics of
recharging waters. Nitrate (Fig. 8a) usually has low concentrations in natural waters. High
concentrations of nitrates in wells may result from direct infiltration of surface water or from
polluted water into the free aquifer through the soil. Nitrate has a high spatial variability. In many
groundwater systems nitrate is unlikely to have a relation with geological formations. Natural
waters may contain large quantities of nitrate without causing serious health problems, but levels
exceeding 5.00 mg/L represent an indicator of possible contamination by animal wastes or
fertilizers (Rebougas and Fraga, 1988). The high nitrate content observed in the northeast and
southwest sectors of subarea I is probably caused by surface contamination, given the proximity
to two urban centers (Londrina and Maringd). Furthermore the area is intensely cultivated with
cotton, coffee and soy (Licht, 2001).

An alternative to trace surface contamination is the chloride content (Fig. 8b). Chloride is
taken as a highly mobile ion through most aquifer systems. Its source can be either antropic or
natural. In the GAS, the chloride is likely originated from evaporitic rocks and from weathering
of micas present in the Pirambéia and Botucatu Formations (Gastmans et al., 2010). In the SGAS,
the chloride reflects surface intakes, GAS upward flows and weathering of basalt secondary
minerals, like chlorite. The chloride non-reactive characteristics make hydraulic properties as
support variables to analyze its spatial content variation.

The specific capacity (Fig.9a) refers to how much the water level decreases as a function
of a given yield rate, i.e., it describes the aquifer’s capacity for water supply and storage. In a
fractured aquifer, the specific capacity is related to the density of structural discontinuities. The
area denominated as the northern Serra Geral aquifer (Fraga, 1986) exhibits low specific capacity
levels, whereas the southern Serra Geral aquifer shows higher values in areas close to central
parts of the Parana basin, likely related to preferential flows caused by potentiometric gradients.

The potentiometric level (Fig. 9b) can be use to describe the hydrogeological flow
direction preferences in isotropic aquifers, like the GAS, which is a porous aquifer hosted by the
Botucatu and Pirambdia Formations. However, even considering the anisotropic feature of the
SGAS, at a regional scale, low potentiometric level could indicate the path taken by the
groundwater. The subarea III, having a low potentiometric level, indicates a potential recharge
from the GAS when the other trait elements (Fig. 6a, 6b, 7a and 7b) concentrations are also

considered.
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The hydraulic transmissivity (Fig. 10a) is a measure that describes the average speed at
which water flows horizontally through the aquifer. Its variability depends on several factors,
including potentiometric level and negative pressure. The horizontal movement of water is
conditioned by the presence of discontinuities caused by the horizontal heterogeneity originated
from a series of overlapping outflows (Reboucas and Fraga, 1988). The transmissivity map (Fig.
10a) represents only imputated values. The training dataset is located in the northeastern portion
of subarea I, where data variability is high and correlations are negative, These are suitable
conditions for SOM training to prevent overfitting (Rallo et al., 2002). The calculated hydraulic
transmissivity supports hydrochemical analysis and is a parameter for numerical modeling of
groundwater flow and solute transport.

The cluster map (Fig. 10b) summarizes the U-matrix values, which were classified using
the k-means technique and the numbers of clusters were determined through Davies-Bouldin
criteria. The U-matrix is a bi-dimensional representation for dissimilarities of n-dimensional code
vectors (Fraser and Dickson, 2007). Subarea 1I is dominated by cluster three (Fig. 10b), which
also occurs in subareas I and III. Cluster three, particularly if analyzed considering the spatial
distribution of the elements, characterizes areas with recent recharge. It also displays a signature
of a less weathered rock, expressed by its hydraulic and hydrochemical properties. Subarea I is
greatly influenced by the density and magnitude of vertical structures, likely responsible for a
diversity of clusters in this subarea. Cluster one describes outliers in general, whereas clusters
five and six correspond to transitions between more distinct groups. Clusters four and seven
comprise areas with potential hydraulic connectivity between the aquifers, whereas clusters two
and three depict typical SGAS waters. The hydrochemical spatial model highlights areas with
potential connectivity between the SGAS and the GAS (Fig. 11).
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Serra Geral aquifer system: Potential connectivity with Guarani aquifer
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6. Conclusions

A hydrochemical conceptual model from the Serra Geral fractured aquifer was built based on
the spatial variation of chemical elements and compared with models previous established in the
literature. Using self-organizing maps imputation, missing values for hydrochemistry and
hydraulic transmissivity were estimated.

Considering the objectives of this work, important remarks are as follows:

(1) the SOMs were able to calculate the correlation matrix, determining nonlinear
correlations between hydrochemical elements and explanatory variables. SOM imputation
preserved the hydrochemical correlations described in the literature, as well as the statistical
parameters (Table 3), showing no instability when predicting extreme values.

(2) the k-means clustering technique classified the variables based on their topological
similarity, where the groups reflect (i) hydrochemical typical facies for recent recharge areas; (ii)
potential connectivity between GAS e SGAS; (iii) regions featuring transition; (iv) water with
confinement and log residence traits; and (v) typical waters from SGAS.

(3) the method proposed here to predict hydraulic transmissivity combining pumping tests,
iterative equation and imputation of data was adequate to cope with incomplete information from
wells database, proving to be an important advantage when conceiving numerical simulations.

(4) analysis of the spatial distributions of chemical elements and clusters maps has shown
regions with potential flux connections between the Serra Geral and Guarani aquifer systems.

(5) The proposed method is suitable to survey hydrochemistry and groundwater physical
properties, revealing and quantifying relationships in a large set of variables, which would not be
possible to observe using parametric, multivariate statistical approaches.

We expect the proposed modeling method to be used as an alternative approach for further
studies analyzing hydrochemistry and producing input parameters for numerical modeling of the

Serra Geral and Guarani aquifers.
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function inTQs (argdat)

Q

% Function calculates transmissivity for a data vector
[Data Name Title]=readGEOEAS (argdat) ;

[nline ncolumn]=size (Dados) ;
format short;

Tcol=1;

j=1;

for i=1:nline

Q=Data (i, 5); conv=7.48;
s=Data (i, 7); t=Data (i, 6);
L=Data (i, 4); S=Data (i, 8);
r=Data (i, 3); r=r/12;

D=L; err=0.000001;

Tguess=1.0;

a=2.948; b=-7.363; c=11.447; d=-4.675;
=(a+tb* (L./D)+c*(L./D) ."2+d*(L./D) ."3);

sp=((D-L) ./L.*(log(D./r)=-G)); %% sp= partial penetration factor,
dimensionless
test=1;

Tcalc(i,])=1440*Q* (log (2.25*Tguess*t/ (1440*r"2*S))+2*sp(j))/ (4*conv*pi*s);
diff=abs (Tcalc(i,j)-Tguess); test=diff;
while test>err

calc(i,j)=1440*Q* (log(2.25*Tguess*t/ (1440*r"2*S))+2*sp(j))/ (4*conv*pi*s)

diff=abs (Tcalc (i, j)-Tguess); Tguess=Tcalc(i,]j); test=diff;
end;
Ttot (1) = calc(i,3);
Tcol = Tcol+1l;
end

nData=[Data Ttot]
csvwrite ('transmis.dat', nData)
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EVALUATING SRTM-90M INTERPOLATION USING SRTM-30 FROM U.S.
TERRITORY

Abstract

The spatial resolution of SRTM (Shuttle Radar Topographic Mission) digital elevation models,
currently available is set at 90m (or ~3”) and ~30m (or ~1”) for the USA territory. Refining the
90m grid through geostatistic methods has been an approach adopted by several users. However,
models based on semivariograms generally exhibit distinct parameters for each sampled area.
These particularities raise questions over the application of the same model throughout larger
scales. The assessment of the interpolation effectiveness is another research topic of interest. This
paper presents a methodology to measure the strength of SRTM data interpolation from 90m to
30m, and the feasibility to apply a single variogram model to larger areas. The study region lies
near the Rocky Mountains in Montana State, USA. Initially, the SRTM was resampled from 30m
to 90m, and then kriged to 30m. This interpolated data was compared with the 30m original grid
through map algebra. The results from layers subtraction were evaluated with descriptive
statistics and linear regression, and hypothesis test for fi=1 e fo=0. The regression residuals
shows a submetric mean and the regression test accept the null hypothesis for both tests. These
outcomes support the adoption of the kriging method for interpolation of SRTM-90m and the use

of the same model adjusted for a sampled area to larger regions.

Keywords: digital elevation model, interpolation, geostatistics, kriging
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1. INTRODUCTION

Digital elevation models (DEM) are fundamental sources to extract relief information
over large areas or with difficult access. From elevation data it is possible to extract
morphometric measures, slope and terrain aspect, that can be applied in a variety of studies, such
as laminar erosion models (Aradjo, 2006), meteorological models (Goovaerts, 2000), landslides
risk assessment (Kéidb, 2002), agricultural suitability mapping (Sommer et al., 1998), geological
mapping (Demirkesen, 2008; Masoud and Koike, 2006) and forest structure mapping (Nelson et
al., 2007). This work employs globally available data generated by the SRTM — Shuttle Radar

Topographic Mission (http://edcsns17.cr.usgs.gov/NewEarthExplorer/), with a spatial resolution of 3

arcsec or ~90 meters (Farr and Kobrick, 2000), which can be improved by interpolation methods.
For the United States territory, data are available with the prime, higher resolution, of 1 arcsec or
~ 30 m. The importance of a high spatial resolution lies in applications of the products derived
from the DEM. The generation of grids with 30 m resolution by geostatistic-based interpolation
methods has been adopted in some recent work (Rossetti and Valeriano, 2007; Aradjo, 2006;
Grohmann et al., 2007; Valeriano et al., 2006; Yun et al., 2005), where the evaluation of the data
was based on descriptive statistics, terrain profiles and land morphometric characteristics,
geostatistical analysis is essential to preserve terrain features (Valeriano et al. 2006).

The semivariogram depicts the degree of spatial dependence between samples over a
specific support. For their construction, simply squared differences of pairs of values are
obtained, assuming stationarity of the increments (Landim, 1998). The variogram measures the
variability related to a distance. Such variability can be significantly different when considering
different directions (Iwashita et al., 2005). A fundamental step in geostatistical analysis refers the
determination of the variogram model, since it relies on parameters from the theoretical
variogram model. Thus, for a reliable interpolation, there should be a good fit of the model to the
experimental variogram, whereas different relief structures can lead to different models of
variograms.

When working with large areas, there is an operational problem - the need to fit a large
number of variogram models for each landscape segment. Besides, it is unclear whether the
quality of interpolated SRTM data grids (30m) has sufficient details when compared to the

original (30m from U.S. territory). It is also yet vaguely approached if a variogram model

121


http://edcsns17.cr.usgs.gov/NewEarthExplorer/

generated for a particular area is applicable for regions that are more extensive in the same
SRTM data block. In this context, this work aims to demonstrate that is possible to validate a 90
m resolution SRTM dataset based on resampling of the original SRTM data at 30 m . Using a
study area in the United States (where SRTM data is available at maximum, 30m resolution), the
goals of this work are: (a) to refine a resampled SRTM 90 m grid to 30 m-using ordinary kriging,
(b) to verify the applicability of variogram model with distinct parameters generated from
different regions within the study area, and (c) to evaluate the results of the interpolation, through

geoprocessing operations, descriptive statistics and linear regression.

2. METHODOLOGY

The study area is in the State of Montana, United States (Figure 1) - the fourth largest
State in country, but one of the least populated, with 902,194 inhabitants. Montana displays a
poor vegetation covering and a low population density (2.39/sq mi). This facilitates
morphometric characterization, since cities and forest structures may change terrain features
captured by the SRTM instruments. Considering the relief, Montana can be classified into two
major regions: the Eastern region is dominated by the Great Plains and the West region is

dominated by the Rocky Mountains.

-111.8 -111.6 -111.4
EW ()

-111.2 -111

Figure 1 — Locality map of the study area. Sampling areas in blue and test areas in red.
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The data processing firstly consisted of SRTM data resampling from 30 m to 90 m
resolution (Figures 2). In order to include topographic diversity and variability, three sampling
areas were employed for the construction of the semivariograms and three other areas were used
to implement the ordinary kriging. Each sample area has approximately 900 points and areas of
implementation from 250 to 400 thousand points. Considering these samples at 90 m spatial
resolution, first order trend analysis was applied and the function residues extracted and were

then used to build semivariograms.

46.76

4574

-11164 11162 -1116
(a)
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Figure 2 — Detail of Area 1with (a) 30 meters resolution (original grid) and; (b) 90 meters
resolution (resampled grid).

-111.68 - S E R B 1142 1138 11134 -
E-W () 2 EW()

(a) (c)
Figure 3 — Areas 1 (a), 2 (b) and 3 (c) with 30 m resolution (original grid).

Valeriano (2004) conducted analysis of the SRTM data using ordinary kriging to generate
digital elevation models (DEM) with 30 m spatial resolution for the Brazilian territory. Valeriano

(2004) also designed a procedure for standardization and minimization of subjectivity in the
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process conceived to refine of the SRTM grids. The present work proposes a methodology to
validate the interpolated data by subtraction between the original layers and that refined by

ordinary kriging (Figure 3).

Original Resampled Vari
SRTM Resample SRTM SRTM DEM ariogram
DEM 90m constructing
DEM 30m 90m
Subtraction Interpolated Kriging
Original - SRTM DEM interpolation [¢—— Variogram
Interpolated 30m models

Statistical Switch
analysis models

Figure 4 — Proposed method to evaluate surfaces generated through interpolation.

Diferences
X, Y, 2
(ASCII)

We highlight the existence of two sets of results: (i) raw, 30m SRTM resolution surfaces
compared to 30m surfaces yielded from kriged, 90m SRTM resolution data; and (ii) 30m surfaces
yielded from kriged, 90m SRTM resolution data, but using distinct interpolation models and

parameters (Figure 4).

| Original SRTM-30m Kriged SRTM-30m
Kriged SRTM-30m

Kriged SRTM-30m
With switched model

Figure 5 — Two different sets of results were evaluated: the surfaces compared to the original
SRTM-30m dataset and the surfaces produced with switched models.

The evaluation of the interpolation procedures aims to verify that the model adopted, as
well as their parameters, are suitable to represent the spatial variability of the variable (Isaaks and
Srivastava, 1989). If the model adopted is appropriate, the residuals of the difference should have
an average near zero and the relationship between the real and the calculated values should be
linear. Based on this premise, the descriptive statistics of the residuals and the correlation

between raw and interpolated data were here employed to evaluate the interpolation results. In

124



summary, a good interpolation is one that generates results with minimal differences between the
value taken as real and the value estimated by the interpolation. In this case, the ideal scenario is
that where the differences between the elements of the surfaces are zero. Thus, the exploratory
analysis provides a first idea of the quality of the procedure. Perfect matches would be an average
of zero and minimum and maximum values the closest possible to zero.

Another approach used for evaluation of the results was the linear regression (Netter et al.,
1996). Regressions were computed between the results of the interpolations and the original grid,
as well as between the interpolated model and its permutations. When the results of other
methods or models are statistically equal to an ideal model (model 1 applied to area 1, for
example), or to the grid of 30 m, the slope of the regression has an inclination of 45° and cross

through the origin, i.e., hypothesis testing for £ = 1 and f = 0 respectively.

3. RESULTS AND DISCUSSION

Models adjusted for the three selected areas are Gaussians (Figure 5) that contemplate, in
essence, smooth variations at close neighborhood and high variations at medium and distant
ranges. When executing the ordinary kriging, attention is required in choosing the search radius.
It must be quite close to the value of the range of the variogram. This is because when the sill
(which has a relationship with the statistical variance) is reached, the variogram displays only the
random component. Models 1, 2 and 3 showed, respectively, ranges at 734m, 831m and 594m

and sills at 26,000, 3200 and 12,500.

Direction: 0.0 Tolerance: 90.0 . .
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Figure 6 — Variograms for areas 1 (a), 2 (b) and 3 (c) (see Figures 1 and 2 for location)
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The application of a single parameterized variogram model based on samples for a more
regional scale has a twofold objective; to standardize and optimize the grid generation process
and to preserve the morphometric characteristics and elevation values. In order to balance the
quality of the interpolation with operational aspects, the semivariograms were adjusted
considering an isotropic model. When comparing to the original 30m surfaces, the 30m surfaces
produced by interpolation displayed smoothed features. This result is predictable, because
ordinary kriging minimizes the variance via the Lagrange multiplier. Such smoothing affected the
raw elevation data, because the interpolator works like a low-pass filter. Thus, it is important to
quantify changes over the information. Another aspect is that the interpolation by window
moving average causes loss of some points on the edge of the implementation area, depending on
the size of the mask. These points should be disregarded during the statistical analysis of the
difference between surfaces. Grids created using different models have similar aspects, making
unfeasible a visual exploratory analysis (Figure 6). Then, map algebra operations are required to

quantify these differences, like subtraction between maps.

N-S (%)

-111.64 -111.62 -111.6 -111.64 -111.62 116 - 11164 -111.62 1116
{a) (b} {c)
E-W (%)

Figure 7 — Detail of area 1 with 30 m resolution, interpolated grid with model 1, (a), model 2 (b)
and model 3 (c) (see Figure 5).

Table 1 presents statistics of the results for the subtraction between the raw surface areas
with 30 m resolution without treatment with 30m resolution surfaces generated by kriging. All

interpolated surfaces have sub-metric difference averages when compared to the original grid,
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which is towards an ideal evaluation scenario. The quartiles also provide a good perception of the
refinement quality, because they are smaller than 5 m. The results produced by kriging with
exchanged models for the same area showed minor differences (Table 2). The average
differences between interpolations are close to zero and reach a maximum of 15 cm. The

quartiles are sub-metric, reaching a maximum error of 2 m.

Table 1. Exploratory analysis of the difference between the raw SRTM dataset at 30m and
interpolated (kriged) dataset at 30m.

Areal Area2 Area3

Minimum -52.08 -33.25 -50.34
Maximum 52.20 3842 4143
Average 0.51 0.38 0.56
Median 0.38 0.28 0.67
1° quartile -4.29 -1.79 -2.23
3° quartile 4.96 2.45 3.38
Variance 48.61 13.02  25.52

Standard deviation 6.97 3.60 5.05

Table 2 — Exploratory analysis of the difference between interpolated data with switched models.
Caption: AxMy — Area x interpolated with model y.
AIM2 AIM3 A2M1 A2M3 A3MI1 A3M2

Minimum -8.47 -13.72  -22.23 -20.87 -41.04 -22.56
Maximum 8.54 11.97 20.59 20.23 38.42 39.52
Mean -0.0002 -0.002 -0.02 -0.02 -0.44 0.0003
Median 0.0007 0.0009 -0.14 -0.15 -0.05 -0.001
First quartile -0.29 -0.58 2,15 220 -1.76  -0.46
Third quartile 0.29 0.57 1.83 1.94 0.76 0.46
Variance 0.31 1.29 15.22 15.61 5093 0.98

Standard deviation 0.56 1.13 3.90 3.95 243 0.99

Despite the fact that these assessments rely on descriptive statistics, the results show that
it is possible to apply the same model over different areas, since the statistical parameters are not
calculated based on individual samples, but over the entire sample population. This strengthens
the representativeness of these results for larger regions within the same scene. Determination
coefficients and confidence intervals (CI) for £ and £ at 95% (p-value = 0,05) are provided in
Table 3. The R* can be interpreted as a measure of proportion for the modeled phenomena

explained by the regression model, whereas the inclination test of S represents the significance
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of the linear relationship between the dependent variable and explanatory variable. The three
areas showed CI values for f; that contains the value; i.e. at 95%, the inclination A, can be
considered equal to 1 for all three areas. Similarly, for each area, the CI for /4 contains the value
0, pointing that at 95% all interceptors cross the origin point. These tests indicate that interpolated

surfaces have a linear correspondence with the original values.

Table 3. Determination coefficient and confidence interval for S, e £

Areal Area2 Area3
R’ 0.99 0.99  0.99
B CnfLmt-95% 0.99 099  0.97
BiCnfLmt 495% 1.006  1.002  1.002
foCnfLmt -95% -11.40 -5.18  -6.30
fCnfLmt +95% 542 540  3.63

4. CONCLUSIONS

The contribution of this work was to propose and test a method to quantify the
interpolation errors associated to the enhancement of SRTM data spatial resolution from 90m to
30m, using a 'reference' grid. The quality of the SRTM-90m data interpolated to 30m was
assessed in relation to 30m data available for a pilot area in the State of Montana (US).

Ordinary kriging generates results that are significantly close to the original grid. This is
asserted both by the descriptive statistics yielded from residues of DEM differences, and by
testing for S and fy. Eventual drawbacks of the procedure are intrinsic to kriging. These include
changes on elevations values due to variance minimization and smoothing of high frequency
relief features. Based on descriptive statistics, it is also possible to apply a well-fitted variogram
model yielded for a small sampling area to larger adjacent regions. This is because different
variogram models proved not to be significantly different for a dataset stemmed from the same
source (i.e., SRTM) and covering contiguous regions.

Considering the method envisaged through this work, the globally available 90 m SRTM
datasets can be plausibly transformed into higher resolution, 30 m resolution datasets for large

neighboring regions and used in multiple applications outside North America.
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