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Abstract

In this dissertation, using Quantum Open Systems we analyze data from KamLAND by using
a model that considers neutrino oscillation in two families with the inclusion of the decoherence
effect.

We review important concepts of usual Quantum Mechanics, such as the superposition princi-
ple, coherence, and the measurement problem. We also review the density matrix formalism and
we use it to present the theory of Quantum Open Systems, which gives the Lindblad - Kossakowski
equation.

Vaccum neutrino oscillations are studied using the density matrix formalism, and then the
lindblad - Kossakowski equation is used to obtain new equations for the neutrino oscillations in
two families, in which we see the inclusion of the decoherence effect

Then, we use a ä2 Test to find limits for the usual oscillation parameters and also for the
decoherence parameter which we call Ò.

We find evidence in favor of the inclusion of the decoherence effect, since the analysis shows
that a zero value for the decoherence parameter Ò is excluded in 68.27% C.L.
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Resumo

Nessa dissertação, utilizando a Mecânica Quântica de Sistemas Abertos, analisamos dados de
KamLAND utilizando um modelo que considera oscilação de neutrinos em duas famı́lias incluindo-
se o efeito de descoerência quântica.

Revisamos conceitos importantes de Mecânica Quântica usual, como o prinćıpio de super-
posição, coerência quântica, e o problema da medida. Revemos também o formalismo de matriz
de densidade e o utilizamos para apresentar a Mecânica Quântica de Sistemas Abertos, da qual
obtemos a equação de Lindblad - Kossakowski.

Oscilação de neutrinos no vácuo são revisadas utilizando o formalismo de matriz de densidade,
e então a equação de Lindblad - Kossakowski é usada para obtermos novas equações para oscilação
de neutrinos em duas famı́lias, onde vemos a inclusão do efeito de descoerência quântica.

Então, usamos um teste de ä2 para obter limites para os parâmetros usuais de oscilação de
neutrinos e também para o parâmetro de descoerência, que chamamos de Ò.

Encontramos evidências em favor da inclusão do efeito de descoerência quântica , uma vez que
nossa análise mostrou que o valor Ò = 0 está exclúıdo em 68,27%C.L.
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por todo o apoio, amor e paciência durante esses mais de seis anos de Unicamp. Por sempre terem
me escutado, tanto nos momentos de crise e de dúvida, quanto nos momentos em que tudo corria
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além das inúmeras boas conversas que vêm desde antes de entrarmos na Unicamp.

Agradeço também a todos os meus amigos de Maŕılia, principalmente ao Fabŕıcio, Zé, Wisk,
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como exemplo em outras áreas, sempre muito correto e preocupado com a formação completa de
seus alunos, não somente em f́ısica.

Agradeço também a todos os demais professores que contribúıram para minha formação, e
também aos diversos funcionários da Unicamp que me auxiliaram direta ou indiretamente, e que
assim, foram parte importante desse meu peŕıodo como aluno da Unicamp.
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muitas outras atividades acadêmicas. Agradeço também ao Mateus Carneiro pela ajuda com o
Fortran, ao Felipe Penha pela ajuda com as curvas de Confidence Level, ao Pedro Pasquini pela
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Chapter 1

Introduction

It is well known that Quantum Mechanics can be used to describe successfully a variety of sys-
tems, and that its applicability has increased a lot since it was created. Nevertheless, in spite of its
success, the theory of Quantum Mechanics has its limitations, and so, developing and testing ex-
tensions to Quantum Mechanics and other Quantum theories is very important to the development
of science and to understand the universe.

An example of a limitation of usual Quantum Mechanics is that it does not consider relativistic
effects. This problem served as motivation for several studies, which led to the creation of important
theories such as the Quantum Electrodynamics (QED), a theory that has a great success in terms of
being confirmed by experiments, and because of that inspired the creation of many other theories.

In this dissertation, we are going to consider a different limitation of usual Quantum Mechanics:
the fact that it uses the assumption that the studied system is isolated. The theory of Quantum
Open Systems was one of the theories created to deal with this issue [2,16]. In this theory, the
system of interest is no longer considered isolated, but is regarded as having a coupling with the
enviroment, and such coupling has important consequences, since we are dealing with quantum
systems.

An important feature of quantum theories is the existence of the superposition principle, which
makes possible the description of a given state in terms of a linear superposition of other states.
This is precisely the case for the neutrino, since a neutrino flavor state may be desbribed as a
coherent superposition of mass states.

Neutrinos are spin 1/2 particles, with null electric charge and null color charge, which means
that they only interact by the weak interaction [17]. Because of that, they have a great capacity
of penetration, what makes the neutrinos a powerfull tool to study several aspects of nature, but
also makes their detection very difficult.

A direct consequence of the description of the neutrino as a superposition of states is the
phenomenon of neutrino oscillations [6,18].

When the neutrino oscillations were created, they arised as a possible solution for the solar
neutrino problem [5], but they require the assumption that the neutrinos have mass, which does
not agree with the minimal version of the Standard Model of particle physics [19].

Since it was created, a lot of experiments were constucted to verify the existence of neutrino
oscillations [20 - 22], and the confirmation came from neutrinos of many different sources, like solar
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neutrinos, atmospheric neutrinos, accelerator neutrinos and reactor neutrinos, and now the idea
that neutrinos have mass is widely accepted.

In general, the study of vacuum neutrino oscillations is made in the framework of usual Quan-
tum Mechanics, which considers the system of neutrinos as isolated. In this dissertation we will
do a different kind of analysis, in the framework of Quantum Open Systems, considering that the
subsystem of interest has a coupling with the enviroment.

As we will see, the coupling with the enviroment will act changing the superposition of states,
eliminating the coherence, similarly to what we have when a measurement is made in a quantum
system. We see then, that this coupling generates a decoherence effect.

The first goal of this dissertation is to verify how the theory of Quantum Open Systems modify
the probabilities of neutrino oscillations by means of the decoherence effect. We know that Quan-
tum Mechanics in its usual formulation is the theory used to build the usual model for neutrino
oscillations, and that this model accounts for experimental data. Nevertheless, our motivation
is linked to the possibility of testing non-standard effectcs in order to try to find a better fit for
experimental data and maybe also to serve as a test for Quantum Mechanics itself. The description
of these effects, even if they end up being second order effects, is important to the comprehension
of the physical features of all physical systems. This should also be the case for the neutrinos, and
so, we will study how the neutrinos behave with the inclusion of new characteristics.

Then, after having the different expressions for the probabilities, we will confront them with
experimental data from KamLAND, a reactor neutrino experiment located in Japan, and we will
obtain limits for the parameters used to describe the neutrino oscillations with decoherence.

To do so, in Chapter 2 we will review the concepts of quantum superposition, decoherence, and
the measurement problem, showing and example of how a coupling between the system of interest
and the measurement instrument could be used to work on the measurement problem. We will also
study the formalism of Density Matrix and use it to study the main features of Quantum Open
Systems and to develop an equation for the time evolution of a subsystem of interest which has a
coupling with the enviroment. This equation is known as the Lindblad - Kossakowski equation.

In Chapter 3 we will study the neutrino oscillations in the density matrix formalism, and we
will apply the results obtained in Chapter 2, getting then the modified expressions for the neutrino
oscillations with decoherence. We study two different cases, and find two different expressions
for the neutrino oscillation. These two expressions are then analyzed, to verify their physical
properties

In Chapter 4 we make a brief review of neutrino experiments in general and mainly of the
KamLAND experiment, since it was the source of the data used for the analysis in this work. We
also present the methodology of the analysis of the data, defining the model used for the ä2 Test
and explaining how the program we used test the models for neutrino oscillations using the data
from KamLAND.

In Chapter 5 we show the final results of the analysis, giving limits for the parameters that our
model use to describe the neutrino oscillations, and we also show interpretations of these results, by
means of graphs that show the differences of the oscillation pattern with and without the inclusion
of the decoherence effect.

In this work, we consider a theory that doesn’t use the assumption that the system of interest
is isolated because it seems more realistic, and we want to verify in a phenomenological way if
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this is a more realistic model, that would contribute to the understanding of important physical
systems.

We also wish to make a good overview of the subject, from its relation to basic concepts of
Quantum Mechanics, to its consequences in the confrontation with experimental data.
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Chapter 2

Quantum Open Systems

In this chapter, we will present concepts and ideas related to dissipative effects in Quantum
Mechanics. We will begin with a review of superposition effects in closed systems, and how the
superposition of states cease to exist when a measurement is made in the system. This is the
measurement problem in Quantum Mechanics, which will be better defined in section 2.2.

In the way it is postulated, the measurement process is able to suppress the quantum superpo-
sitions, and we can deal with this problem imposing that the subsystem of interest is in constant
interaction with the measurement instrument. In this way, the system and the measurement in-
strument form correlated states, and therefore, if we want to get information from the subsystem
of interest, some of its local features may be lost, and that may be the case for the quantum
superpositions, as will be shown more clearly in section 2.2.

We will then consider a global state, in which there is a coupling between the subsystem of
interest and the enviroment around it, and this enviroment will be seen as a continuously acting
measurement instrument, and the decoherence process will be responsible for dinamically removing
the quantum superpositions in the subsystem. So, the decoherence effect will be naturally included
in the description of the subsystem of interest.

There are cases in which we can create a model for the eviroment that interacts with the
subsystem of interest, but in many cases, the quantum states of the enviroment are not important
or are very difficult to be described. Nevertheless, since the real nature of the enviroment is not
known, and our interest is only on the subsystem which is under the dissipative process, we will
treat the enviroment in a phenomenological way, assuming total ignorance about it, and considering
only its effects on the subsystem of interest, which will then be evolved in time. This way, it will
be possible to study every possible effect, as will be seen in the next chapters.

In this chapter, we will see how to obtain information from the subsystem of interest given a
global state, and how to evolve this subsystem in time. In doing so, we will obtain the equation
of Lindblad - Kossakowski, that rules the dynamics of the subsystem of interest. It has the form
of a master equation, when we assume that the coupling between the subsystem of interest and
the enviroment is very weak. In the literature, the case studied and applied in this dissertation
is known as weak-coupling limit [3]. At last, to make the states become increasingly mixed, and
not the opposite, it will be imposed the maximization of the von Neumann entropy, and as a
consequence, we will get a condition for the quantum dissipator that, in adition to other concepts
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that will be studied later, will restrict the phenomenological parameters used to describe the
quantum dissipation.

2.1 Quantum Superposition

A good understanding of the meaning of quantum superposition is very important, mainly
because it is a feature that make the distintion between what we usually call quantum physics and
classical physics. Superpositions in classical physics can be considered trivial and very intuitive,
but that is not the case for superpositions in quantum physics, since they are one of its main
aspects, and they appear in the most intriguing effects we know, and so are certaily not intuitive.
Many discussions about the meaning of quantum superpositions can be found in the literature [23
- 25].

The superposition principle can always be applied when we have a basis of quantum states.
With this basis, it is possible to write new quantum states, doing a linear superposition of the
states. Considering a two-level system, for example, with the basis of eigenstates ¶♣å1⟩, å2⟩♢ we
can always write a new state as:

♣å⟩ = 𝑐1♣å1⟩ + 𝑐2♣å2⟩ (2.1.1)

Where 𝑐1 and 𝑐2 are complex numbers, ♣𝑐1♣
2+♣𝑐2♣

2= 1 for normalized states. Also, if ♣å1(𝑡)⟩ and
♣å2(𝑡)⟩ are solutions of the Schroedinger equation, then ♣å(𝑡)⟩ is also a solution, with ♣𝑐1(𝑡)♣

2+♣𝑐2(𝑡)♣
2=

1 where 𝑐1(𝑡) and 𝑐2(𝑡) are the probability amplitudes.
The superposition principle is directly related to the issue of measuring physical properties of a

system. As we know from Quantum Mechanics, the quantity measured must be an observable, and
the possible outcomes of the measurement are all of its eigenvalues. So, treating the measurement
as a probability of obtaining a given eigenvalue, we can see how the quantum superposition of
states determines the behavior of the probability. To do so, let’s consider again the two-level
system we already described, and assume that there is an observable 𝑋 with eigenvalues 𝑥𝑛 and
normalized eigenvectors ♣𝑥𝑛⟩ and that we want to know the probability of measuring the eigenvalue
𝑥𝑛 when the state prepared is (2.1), we have

(2.1.2)
𝑃 (𝑥𝑛) = ♣⟨𝑥𝑛♣å⟩♣2

= ♣𝑐1⟨𝑥𝑛♣å1⟩ + 𝑐2⟨𝑥𝑛♣å2⟩♣
2

= ♣𝑐1♣
2♣⟨𝑥𝑛♣å1⟩♣

2 + ♣𝑐2♣
2♣⟨𝑥𝑛♣å2⟩♣

2 + 2ℛ𝑐1𝑐
*
2⟨𝑥𝑛♣å1⟩⟨𝑥𝑛♣å2⟩

*

in the last line of the equation above we see the term which shows that the state ♣å⟩ is not
just a statistical mixture, and that the probability not only gives information about the quantum
interference (or coherence) between the superposed states, but also depends on it to make the
correct quantum prediction [15].
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2.2 Observables and the Measurement Process

In the previous section we discussed that examining the quantum probabilities we are dealing
with, is a way of examining the possible outcomes of a given physical phenomenon. And, as we said
before, we want to know what to expect of a system when it is subjected to a given measurement.
Now, we will discuss the effect of the measurement in the subsystem of interest, and to do so,
we’ll keep using the example of the previous section. Considering the operator 𝑋 that belongs to
a Hilbert space, we can always write it as

𝑋 =
∑︁

𝑛

𝑥𝑛♣𝑥𝑛⟩⟨𝑥𝑛♣ (2.2.1)

Where we can define the operator of projection 𝑃𝑛 = ♣𝑥𝑛⟩⟨𝑥𝑛♣ whith
∑︀
𝑃𝑛 = 1 and ¶♣𝑥𝑛⟩♢ a

normalized basis. So, a state that is initially prepared as (2.1.1), after the measurement goes
”immediately” to the state ♣𝑥𝑛⟩, which means that, when we measure 𝑥𝑛 we have

♣å⟩
𝑥n=⇒ ♣𝑥𝑛⟩ (2.2.2)

This is the so called wave function collapse.
As it was presented here, it still needs the temporal dynamic aspect, and we will see that there

are some problems regarding the time duration of the collapse, which we postulated before as
happening ”immediately” after the measurement, and some problems regarding the real meaning
of a measurement.

To complete the measurement events, we will assume that the state (2.1.1) can be described
in terms of the basis ¶♣𝑥𝑛⟩♢, and is written as

♣å⟩ =
∑︁

𝑛

𝑎𝑛♣𝑥𝑛⟩ (2.2.3)

Using the Schroedinger Equation to evolve in time the state above, we have:

♣å(𝑡)⟩ =
∑︁

𝑛

𝑎𝑛(𝑡)♣𝑥𝑛⟩ (2.2.4)

We can view the system as evolving in time from 𝑡 = 0 ⊃ ♣å(0)⟩ to 𝑡 = 𝑡0 ⊃ ♣å(𝑡0)⟩ when an
instrument represented by the operator 𝑋 measures the value 𝑥𝑛, and then, for 𝑡 > 𝑡0 the system
is in the state ♣𝑥𝑛⟩.

It is necessary to discuss carefully how all the superpositions ♣å(𝑡)⟩ are suppressed at the
instant 𝑡0 when the collapse supposely happens. This is one of the questions that form the so
called measurement problem and it is still an open question.

In the literature there are several works, with different views, which suggest modifications to
Quantum Mechanics to explain the details of the real physical mecanisms of the process in which
the wavefunction of a state of the type (2.2.4) collapses to ♣𝑥𝑛⟩ [4,26 - 28].

We will use an approach that takes into account the interaction between the system of interest
that will be measured and the measurement instrument. Such interaction is responsible for limiting
our knowledge of the quantum superposition of states. To do that, we will need to change the
definition of an observable, since the one we used before wasn’t very realistic, and, in a more
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general view, an observable must be obtained from its correspondent interaction Hamiltonian and
from the initial states of the measurement instrument. Such interaction must be diagonal in the
basis of the measurement system, which means that these operators act only on the space of the
measurement system. To clarify how to apply this idea, we can consider a state composed by the
system of interest and the possible states of the measurement system. The initial state can be
written as [15]

∑︁
𝑎𝑛(𝑡)♣𝑥𝑛⟩ ♣Φ𝑛⟩ (2.2.5)

And the Hamiltonian of the global state can be written as

𝐻𝑖𝑛𝑡 =
∑︁

𝑛

♣𝑛⟩⟨𝑛♣ · ̃︀Φ𝑛 (2.2.6)

Where the ̃︀Φ𝑛 are arbitrary but dependent on the index 𝑛, and act only on the Hilbert space of
the measurement system. Evolving an initial state to be measured, the linearity of the Schroedinger
equation gives

(︃
∑︁

𝑛

𝑎𝑛♣𝑛⟩

)︃
♣Φ0⟩

𝑡
⊗⊃ 𝑒𝑥𝑝(⊗𝑖𝐻𝑖𝑛𝑡𝑡)

∑︁

𝑛

𝑎𝑛♣𝑛⟩ ♣Φ0⟩

=

(︃
∑︁

𝑛

𝑎𝑛♣𝑛⟩

)︃
𝑒𝑥𝑝(⊗𝑖̃︀Φ𝑛𝑡)♣Φ0⟩

=
∑︁

𝑛

𝑎𝑛♣𝑛⟩♣Φ𝑛(𝑡)⟩

(2.2.7)

Which is a correlated state, representing all the possible outcomes of the measurement. Con-
sidering the system of interest locally, we write it in tems of the density matrix:

𝜌𝑠 =
∑︁

𝑛,𝑚

𝑎𝑛𝑎
*
𝑚♣𝑛⟩⟨𝑚♣♣Φ𝑚⟩⟨Φ𝑛♣ (2.2.8)

But, assuming that the states of the enviroment are orthonormal ⟨Φ𝑚♣Φ𝑛⟩ = Ó𝑚𝑛, that is, if
the measurement system states discriminate system states the density matrix becomes diagonal in
this basis [4]:

𝜌𝑠
𝑡

⊗⊃
∑︁

𝑛

♣𝑎𝑛♣2♣𝑛⟩⟨𝑛♣ (2.2.9)

The idea above is very limited, since some peculiar considerations were made to get the re-
sult above. In fact, this result is achieved only if the Hamiltonian of interaction comutes with
the Hamiltonian of the system of interest, and also with the Hamiltonian of the measurement
instrument. Nevertheless, this example ilustrates that if we consider the enviroment as being the
measurement instrument and that there is an interaction with the system of interest, the quantum
effects of the superposition won’t be observed in the subsystem of interest. We must also empha-
size that the example above is not a solution for the measurement problem, it is just an effect
of apparent collapse [4]. It is also possible to show that the decoherence effects can be nulified,
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making the subsystem present superpositions again, for example if we isolate the subsystem from
the enviroment [29].

To work with the theory of Quantum Open Systems in the following sections, we will use the
density matrix formalism, which we will now present in more detail.

2.3 Density Matrix

We are going to use the density operator, which is represented by

𝜌 ⊕
∑︁

𝑛

Ú𝑛 ♣å𝑛 ⟩ ⟨å𝑛 ♣ (2.3.1)

Where Ú𝑛 ⊙ 0 for every 𝑛, and
∑︁

𝑛

Ú𝑛 = 1 for normalized states.

From this definition, it can be shown that the density operator has some properties that are
always valid [30], which are:

1: The density operator is hermitian:

𝜌 = 𝜌† (2.3.2)

2: The trace of the density operator is equal to one:

Tr𝜌 = 1 (2.3.3)

3: The density operator is positive semi-definite:

Given a state ♣ã⟩, we have:

⟨ã♣𝜌♣ã⟩ ⊙ 0 (2.3.4)

For all ã.
Being positive semi-definite also means that, if Ð𝑖 are the eigenvalues of 𝜌, then Ð𝑖 ⊙ 0 for all

𝑖.
This operator will be represented by a hermitian matrix:

𝜌 =

∏︀
̂︁̂︁̂︁∐︁

𝜌11 𝜌12 ... 𝜌1𝑗

𝜌21 𝜌22 ... 𝜌2𝑗

... ... ... ...
𝜌𝑖1 𝜌𝑖2 ... 𝜌𝑖𝑗

⎞
̂︂̂︂̂︂̂︀ (2.3.5)

Where
𝜌𝑖𝑗 =

∑︁

𝑖,𝑗

♣å𝑖 ⟩ ⟨å𝑗 ♣ (2.3.6)

The expected value of an operator 𝐴 is given by:

⟨𝐴⟩ = Tr¶𝜌𝐴♢ (2.3.7)
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The time evolution of the density operator is defined by the Liouville Equation, which here is
in natural units:

𝑑

𝑑𝑡
𝜌(𝑡) = ⊗𝑖[𝐻, 𝜌(𝑡)] (2.3.8)

It’s important to point out that the Liouville Equation gives the time evolution of the density
operator of the global system, so the Hamiltonian must be that of the global system. In the way
we presented it so far, the Liouville Equation works also in usual Quantum Mechanics [1].

2.4 Quantum Open Systems: Subsystem of Interest and

Partial Trace

Given that we will study a global system which will be divided in a subsystem of interest and
an enviroment, we must create a notation to distinguish them. So, in the development of our
study, we will denote the subsystem of interest by S, the enviroment by R, and the Hilbert Space
of the global system will be the coupling between the Hilbert Space of the system of interest and
the Hilbert Space of the enviroment: ℋ𝒮 · ℋℛ.

The goal here is to obtain information only from the subsystem of interest.
Our enviroment will be defined as a thermal reservoir at a given temperature, and we define

our global initial state as made by noncorrelated states:

♣å ⟩ = ♣ã𝑆 · ã𝑅 ⟩ = ♣ã𝑆ã𝑅 ⟩ (2.4.1)

Writing our global state in terms of the density operator we have:

𝜌𝑆+𝑅 = 𝜌𝑆 · 𝜌𝑅 (2.4.2)

To obtain information only of our subsystem of interest we will apply an operation called Partial
Trace, in which we make a sum over all the enviroment states.

The definition of Partial Trace is:

TrR [𝜌𝑆+𝑅] = TrR [𝜌𝑆 · 𝜌𝑅] = 𝜌𝑆 (2.4.3)

And the matrix elements of 𝜌𝑆, which is obtained from the Partial Trace, are given by:

⟨𝑢𝑛♣𝜌𝑆♣𝑢′
𝑛⟩ =

∑︁

𝑝

⟨𝑢𝑛♣⟨𝑣𝑝♣)𝜌(♣𝑢′
𝑛⟩♣𝑣′

𝑝⟩) (2.4.4)

Where ¶♣𝑣𝑝⟩♢ is an orthonormal basis of ℋℛ and ¶♣𝑢𝑛⟩♢ is an orthonormal basis of ℋ𝒮 .
Considering that we suppose that the enviroment is in thermal equilibrium at a given reference

temperature, that the number of enviroment states is finite and not variable in time, and remem-
bering that the sum over all states is equal to 1 by the normalization condition, we can see that
the partial trace must give information only from our subsysem of interest:

To see more clearly the role of the Partial Trace, consider the following example. Let 𝐴𝑆 be an
operator acting in ℋ𝒮 , and 𝐴𝑆+𝑅 = 𝐴𝑆 · 1𝑅 its extension in ℋ𝒮 · ℋℛ, where 1𝑅 is the identity
operator in ℋℛ.
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Using (2.1.4) and the closure relation on the basis ¶♣𝑢𝑛⟩♣𝑣𝑝⟩♢, where ♣𝑢𝑛⟩ is a basis of ℋ𝒮 and
♣𝑣𝑝⟩ is a basis of ℋℛ, we have:

(2.4.5)

⟨𝐴𝑆+𝑅⟩ = Tr¶𝜌𝐴𝑆+𝑅♢

=
∑︁

𝑛,𝑝

∑︁

𝑛′,𝑝′

(⟨𝑢𝑛♣⟨𝑣𝑝♣)𝜌(♣𝑢′
𝑛⟩♣𝑣′

𝑝⟩) × (⟨𝑢′
𝑛♣⟨𝑣′

𝑝♣)𝐴𝑆 · 𝐼𝑅(♣𝑢𝑛⟩♣𝑣𝑝⟩)

=
∑︁

𝑛,𝑝

∑︁

𝑛′,𝑝′

(⟨𝑢𝑛♣⟨𝑣𝑝♣)𝜌(♣𝑢′
𝑛⟩♣𝑣′

𝑝⟩) × ⟨𝑢′
𝑛♣𝐴𝑆♣𝑢𝑛⟩⟨𝑣′

𝑝♣𝑣𝑝⟩

But,
⟨𝑣′

𝑝♣𝑣𝑝⟩ = Ó𝑝𝑝′ (2.4.6)

And so:

⟨𝐴𝑆+𝑅⟩ =
∑︁

𝑛,𝑛′

[︃
∑︁

𝑝

⟨𝑢𝑛♣⟨𝑣𝑝♣)𝜌(♣𝑢′
𝑛⟩♣𝑣′

𝑝⟩)

⟨
⟨𝑢′

𝑛♣𝐴𝑆♣𝑢𝑛⟩ (2.4.7)

Inside the brackets we have the matrix element of 𝜌𝑆 given by the Partial Trace, and therefore:

(2.4.8)

⟨𝐴𝑆+𝑅⟩ =
∑︁

𝑛,𝑛′

⟨𝑢𝑛♣𝜌𝑆♣𝑢′
𝑛⟩⟨𝑢′

𝑛♣𝐴𝑆♣𝑢𝑛⟩

=
∑︁

𝑛

⟨𝑢𝑛♣𝜌𝑆𝐴𝑆♣𝑢𝑛⟩

= Tr¶𝜌𝑆𝐴𝑆♢

And so we can see that the partial trace allow us to obtain information of the subsystem of
interest as if it were isolated [30].

2.5 Time Evolution in Quantum Open Systems

To use the Liouville Equation to study the time evolution of our system it is important that
we use our global system, or in other words, that we include the subsystem of interest and also
the enviroment. Hence, we must have:

𝑑

𝑑𝑡
𝜌𝑆+𝑅(𝑡) = ⊗𝑖[𝐻𝑡𝑜𝑡, 𝜌𝑆+𝑅(𝑡)] (2.5.1)

And, we represent the operator evolved in time by the following transformation:

𝜌𝑆+𝑅 ⊃ 𝜌𝑆+𝑅(𝑡) = 𝑈𝜌𝑆+𝑅(0)𝑈 † (2.5.2)

Where 𝑈 = 𝑒⊗𝑖𝐻tot𝑡 when the Hamiltonian, which is the Hamiltonian of the global system, is
time-independent.

When we consider the time evolution only of our subsystem of interest, we look for a transfor-
mation like the following:

𝜌𝑆 ⊃ 𝜌𝑆(𝑡) ⊕ Λ𝜌𝑆 = 𝑇𝑟𝑅(𝑈(𝜌𝑆 · 𝜌𝑅)𝑈 †) (2.5.3)
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Which is a transformation regarding what we call the reduced dynamics of the subsystem 𝑆.
In the equation above we used the Partial Trace to get information of the time evolution of the

subsystem of interest only.
As was said before, the Liouville Equantion does not hold for the subsystem 𝑆, but it is possible

to find an equation for the time evolution of the subsystem.
The derivation of the equation for the reduced dynamics of 𝑆 won’t be done here, but it can be

found in the reference [1] where it is assumed that the coupling between the enviroment and the
subsystem of interest is weak enough in order to be possible to apply a Markov approximation,
which neglects memory effects [4].

In the the case of vacuum neutrino oscillations, which is the case we are going to study, it is
reasonable to assume that the coupling between the subsystem and the enviroment is weak since
we know that the model of vacuum neutrino oscillations already describes well the experimental
data, and so, if there is an effect that arises from the coupling with the enviroment, this effect
must be small.

The equation that define the time evolution of the subsystem is known as Lindblad-Kossakowski
Equation:

𝑑

𝑑𝑡
𝜌(𝑡) = 𝐿𝜌 = ⊗𝑖[𝐻, 𝜌] +

1

2

𝑁2⊗1∑︁

𝑘=1

(︁
[𝑉𝑘, 𝜌𝑉

†
𝑘 ] + [𝑉𝑘𝜌, 𝑉

†
𝑘 ]
⎡

(2.5.4)

Where N is the dimension of the Hilbert space of the subsystem of interest. In this equation
we see a Hamiltonian term, which is equal to the one we have on the Liouville Equation, but we
also have a non-Hamiltonian term, which appears because we are dealing with an open system,
different from what we have in usual Quantum Mechanics, where the system is considered isolated.

The non-Hamiltonian term will be referred here from now on as dissipator.
We will impose on this equation that the entropy increases with time. Using the Von Neumann

entropy it is possible to show that this condition leads to restrictions on the operator 𝑉𝑘, in
particular we see that it must be hermitian [1].

Supposing that the enviroment have a big number of degrees of freedom, and that it is at a
reference temperature, we can suppose that its entropy will not change with time.

Therefore, imposing that the entropy of the global system increases with time, we can consider
that only the entropy of the subsystem of interest will increase with time. So we see that the
dissipator would evolve a pure state to a state of maximal mixing assintotically.

Given that in this work we will consider the neutrino oscillation in two families, the Lindblad-
Kossakowski Equation will be expanded in the basis of 𝑆𝑈(2) matrices.

For the Hamiltonian term we have a parametrization which has a form of an antisymmetric
matrix:

⊗𝑖[𝐻, 𝜌(𝑡)] = 2𝜖𝑖𝑗𝑘𝐻𝑖𝜌𝑗à𝑘 (2.5.5)

And with 𝑉𝑘 = 𝑎𝑘
ÖàÖ, we write the non-Hamiltonian term as:

𝐷[𝜌(𝑡)] =
∑︁

𝑗

[︃
2𝑎𝑗

𝑚𝑎
𝑗
𝑛 ⊗ Ó𝑚𝑛

∑︁

𝑘

(𝑎𝑗
𝑘𝑎

𝑗
𝑘)

⟨
𝜌𝑚à𝑛 = 𝐷𝑚𝑛𝜌𝑚à𝑛 (2.5.6)
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Where the dissipative matrix can have the following parameterization:

𝐷𝑚𝑛 = ⊗

∏︀
̂︁∐︁

1
2
(Ò1 ⊗ Ò2 ⊗ Ò3) Ð Ñ

Ð 1
2
(Ò2 ⊗ Ò1 ⊗ Ò3) Ó

Ñ Ó 1
2
(Ò3 ⊗ Ò2 ⊗ Ò1)

⎞
̂︂̂︀ (2.5.7)

Here, we parametrized the dissipative matrix in the form of a symmetric matrix. We do so
because if we had chosen an arbitrary parametrization, we could have separated it in two matrices,
a symmetric and an antisymmetric one, and the antisymetric term could have been added to the
Hamiltonian term (since it also has an antisymetric form). Given that the terms which come from
the usual Quantum Mechanics have an antisymmetric form, choosing a symmetric parametrization
for the dissipative matrix means we are only considering new terms, which couldn’t come from
usual Quantum Mechanics.

Since 𝜌(𝑡), is a density operator, all of the properties of a density operator must hold for 𝜌(𝑡),
and since the dissipative matrix 𝐷𝑚𝑛 is one of the terms of 𝜌(𝑡), we must impose the properties of
a density operator to 𝐷𝑚𝑛.

As we said in the first section of this chapter, the density operator has the following properties:

1. The density operator is hermitian.

2. Its trace is equal to one: Tr𝜌 = 1.

3. The density operator is positive semi-definite. Which means that, given a state ♣ã⟩, we have
that ⟨ã♣𝜌♣ã⟩ ⊙ 0 for all ã.

Therefore, the matrix 𝐷𝑚𝑛 must also be hermitian and positive semi-definite. Hence, it must
obey the following inequalties [1]:

𝑅𝑆𝑇 ⊙ 2ÐÑÓ +𝑅Ð2 + 𝑆Ñ2 + 𝑇Ó2 (2.5.8)

Where

2𝑅 ⊕ Ò1 + Ò2 ⊗ Ò3 ⊙ 0 ; 𝑅𝑆 ⊗ Ð2 ⊙ 0
2𝑆 ⊕ Ò1 + Ò3 ⊗ Ò2 ⊙ 0 ; 𝑅𝑇 ⊗ Ñ2 ⊙ 0
2𝑇 ⊕ Ò2 + Ò3 ⊗ Ò1 ⊙ 0 ; 𝑆𝑇 ⊗ Ó2 ⊙ 0

(2.5.9)

With the conditions above, the dissipative matrix Eq. (2.5.7) will be hermitian and positive
semi-definite except for the minus sign that comes from the comutation relations in the non-
Hamiltonian term.

We still need to verify the necessary conditions for Tr𝜌(𝑡) = 1. This condition is related to the
normalization of the sum of the probabilities of all the posssible states.

If we want the number of states to remain equal during the entire time evolution, we must
impose the conservation of the probability, which is done by imposing Tr[�̇�(𝑡)] = 0. Applying this
condition to both sides of the Lindblad-Kossakowski Equation, we have, for the left side:

𝑑

𝑑𝑡
Tr𝜌(𝑡) = Tr[𝜌ÛàÛ] = 0 ⇒ 𝜌0 = 0 (2.5.10)
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So, we see that we must always have 𝜌0(𝑡) = 𝜌0(0).
And for the right side:

Tr[�̇�(𝑡)] = Tr[2𝜖𝑖𝑗𝑘𝐻𝑖𝜌𝑗à𝑘 + 𝜌Ü𝐷ÛÜàÛ] (2.5.11)

Since Tr[à0] = 2, from the equation above, we have:

2𝜌Ü𝐷0Ü = 0 ⇒ 𝐷0Ü = 0 (2.5.12)

Because 𝜌Ü is arbitrary, real, and positive.
The complete form of the Lidblad-Kossakowski Equation expanded in the basis of SU(2) ma-

trices is the following

𝑑

𝑑𝑡
𝜌Û(𝑡)àÛ = 2𝜖𝑖𝑗𝑘𝐻𝑖𝜌𝑗(𝑡)àÛÓÛ𝑘 +𝐷ÛÜ𝜌ÜàÜ (2.5.13)

With 𝐷Û0 = 𝐷0Ü = 0, where 𝐷0Ü = 0 comes from the condition of conservation of probaility,
and 𝐷Û0 = 0 because we chose a symmetric parametrization for the dissipator.

This equation will be used to obtain new neutrino oscillation probabilities, considering different
forms of the dissipator which obey the conditions above.

Since it was derived considering the inclusion of the enviroment, different from what is done
in usual Quantum Mechanics, we will find oscilation probabilities which are different from the one
we know for the case of oscillation in two families. The goal is to use the new probabilities in a
study with experimental data, and verify their validity. Later in this work we will show the results
of this study considering data from the KamLAND experiment.

References [1,15,32-34] present very good studies about quantum dissipation and decoherence,
such as other analysis using data from other experiments.

13



Chapter 3

Neutrino Oscillations

Since the experimental verification of the neutrino oscillation phenomenon, several works have
been made, and we can see that the models that describe them lead to the conclusion that the
neutrinos have mass, different from what was estabilished in the minimal version of the Standard
Model.

The description of the neutrino oscillation is based on the superposition principle, which is
a fundamental feature of Quantum Mechanics, and from this description we can see that the
oscillations would go on indefinitely.

Given that the usual approach used to study neutrino oscillations is based entirely on usual
Quantum Mechanics, this is an approach that does not include a coupling with the enviroment.
Our goal here is to change that.

As was said before, we will use the equations derived in the previous chapter to study the effect
of the coupling with the enviroment, and we will see that in this model the superpositions will not
be the same as in the usual approach, and that will lead to different equations for the oscillation
probabilities.

But first we will study neutrino oscillation in the case where there is no coupling with the
enviroment. Here we will consider only vacuum neutrino oscillations, and we will use the density
matrix formalism.

This study will be made here in more detail, since it presents the method that will be used to
find all the different oscillation probabilities.

3.1 3.1 Vacuum Neutrino Oscillation: Density Matrix

Currently, there is experimental verification of the existence of three neutrino families, and so
there are three flavour eigenstates and three mass eigenstates.

In this work though, we will consider for simplicity only neutrino oscillation in two families.
The relation between mass eigenstates and flavour eigenstates is given by

(︃
ÜÐ

ÜÑ

)︃
= 𝑈

(︃
Ü1

Ü2

)︃
(3.1.1)
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Where the Ü(Ð,Ñ) are the flavour eigenstates, and the Ü(1,2) are the mass eigenstates.
The matrix 𝑈 is a rotation matrix, known in this case as mixing matrix.
In the formalism for two families we use the rotation matrix in 𝑆𝑈(2), which is

𝑈 =

(︃
cos 𝜃 sin 𝜃

⊗ sin 𝜃 cos 𝜃

)︃
(3.1.2)

Where 𝜃 is the mixing angle.
If we were to study neutrino oscillations in three families, we would only need to include a

third neutrino flavour eigenstate and a third neutrino mass eigenstate, and substitute the rotation
matrix in 𝑆𝑈(2) for the rotation matrix in 𝑆𝑈(3).

As was said before, we are going to use the density matrix formalism.
In the previous chapter we found the time evolution equation, called Lindblad-Kossakowski

Equation, which expanded in the basis of 𝑆𝑈(2) matrices is:

𝑑

𝑑𝑡
𝜌Û(𝑡)àÛ = 2𝜖𝑖𝑗𝑘𝐻𝑖𝜌𝑗(𝑡)àÛÓÛ𝑘 +𝐷ÛÜ𝜌ÜàÛ (3.1.3)

But now, we are going to consider that there is no coupling with the enviroment, an so the
non-Hamiltonian term vanishes:

𝐷ÛÜ = 0 (3.1.4)

Therefore, we have simply the Liouville Equation:

𝑑

𝑑𝑡
𝜌Û(𝑡)àÛ = 2𝜖𝑖𝑗𝑘𝐻𝑖𝜌𝑗(𝑡)àÛÓÛ𝑘 (3.1.5)

Using the approximation:

𝐸𝑖 =
√︁

p2 +𝑚2
𝑖 ♠ ♣p♣+

𝑚2
𝑖

2♣p♣
(3.1.6)

which is valid when 𝑚𝑖 ⪯ ♣p♣, we can write the Hamiltonian of the system as:

𝐻 =

∏︀
∐︁ 𝐸 +

𝑚2

1

2𝐸
0

0 𝐸 +
𝑚2

2

2𝐸

⎞
̂︀ (3.1.7)

Now, we must expand it in the basis of 𝑆𝑈(2) matrices and solve the Liouville Equation. We
then find:

𝜌0(𝑡) = 𝜌0(0);

𝜌1(𝑡) = 𝜌1(0) cos(∆𝑚2

2𝐸
𝑡);

𝜌2(𝑡) = ⊗𝜌1(0) sin(∆𝑚2

2𝐸
𝑡);

𝜌3(𝑡) = 𝜌3(0);

(3.1.8)
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We make the assumption that the source creates neutrinos of a single flavour. So, the density
matrix of the initial state is given by:

𝜌(0) = ♣ÜÐ⟩⟨ÜÐ♣ (3.1.9)

But, in the mass eigenstate basis we have:

♣ÜÐ⟩ = cos 𝜃♣Ü1⟩ + sin 𝜃♣Ü2⟩ (3.1.10)

So that:

𝜌(0) =

(︃
cos2 𝜃 1

2
sin(2𝜃)

1
2

sin(2𝜃) sin2 𝜃

)︃
(3.1.11)

This initial state will be expanded in the basis of 𝑆𝑈(2) matrices and substituted in the solution
found before (3.1.8). Therefore the solution is:

𝜌0(𝑡) = 1
2
;

𝜌1(𝑡) = 1
2

sin(2𝜃) cos(∆𝑚2

2𝐸
𝑡);

𝜌2(𝑡) = ⊗1
2

sin(2𝜃) sin(∆𝑚2

2𝐸
𝑡);

𝜌3(𝑡) = 1
2

cos(2𝜃);

(3.1.12)

Which in the matrix form is:

𝜌(𝑡) =

(︃
𝜌0(𝑡) + 𝜌3(𝑡) 𝜌1(𝑡) ⊗ 𝑖𝜌2(𝑡)
𝜌1(𝑡) + 𝑖𝜌2(𝑡) 𝜌0(𝑡) ⊗ 𝜌3(𝑡)

)︃
=

∏︀
∐︁

1
2

+ 1
2

cos(2𝜃) 1
2
𝑒𝑖( ∆m2

2E
𝑡)

1
2
𝑒⊗𝑖( ∆m2

2E
𝑡) 1

2
⊗ 1

2
cos(2𝜃)

⎞
̂︀ (3.1.13)

We will assume that the neutrinos are relativistic, and then we will change the spatial parameter
for a time parameter.

So, the final form of the evolved density matrix is:

𝜌(𝑥) =

(︃
1
2

+ 1
2

cos(2𝜃) 1
2
𝑒𝑖(∆𝑥) sin(2𝜃)

1
2
𝑒⊗𝑖(∆𝑥) sin(2𝜃) 1

2
⊗ 1

2
cos(2𝜃)

)︃
(3.1.14)

Where Δ = ∆𝑚2

2𝐸
.

In this density matrix, the elements of the main diagonal are known as population terms.
They give the probabilities of survival and transition, repectively. To see the usual form of these
probabilities we would still need to change them to the basis of flavor eigenstates.

The terms which are out of the main diagonal are known as coherence terms, and they determine
the oscillatory behaviour of the probabilities.

To obtain the equation for the probability oscillation we use that:

𝑃Üα⊃Üα
= 𝑇𝑟[𝜌(0)𝜌(𝑡)] = 2𝜌Û(0)𝜌Û(𝑡) (3.1.15)

And then we get:

𝑃Üα⊃Üα
(𝑥,𝐸) = 1 ⊗ sin2(2𝜃) sin2(

Δ

2
𝑥) (3.1.16)
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Which is the usual equation for the survival probability in vacuum neutrino oscillations in two
families.

3.2 3.2 Neutrino Oscillation and Quantum Open Systems:

Case 1

Now that we know how to use the density matrix formalism to get the probabilities for vacuum
neutrino oscillations, it is time to do a more complete work, considering now the coupling with the
enviroment.

We will do that by considering possible forms of the non-Hamiltonian term in the Lindblad-
Kossakowski Equation, and by solving it we will find different forms for the oscillation probabilities.

In the first case considered, we will impose that

[𝑉𝑘, 𝐻𝑜𝑠𝑐] = 0 (3.2.1)

Where 𝐻𝑜𝑠𝑐 is the Hamiltonian of the oscillations, so it is the Hamiltonian of the subsystem of
interest, and the operator 𝑉𝑘 acts in the interaction between the subsystem 𝑆 and the enviroment,
by bringing to 𝑆 the perturbations from the enviroment.

This assumption is equivalent as assuming that the subsystem of neutrinos has it’s energy
average value conserved.

It can be shown that the consequence of this assumption is that we have a dissipative matrix
with only one phenomenological parameter [1], which we will call Ò, and the matrix is given by:

𝐷ÛÜ = 𝑑𝑖𝑎𝑔¶0,⊗Ò,⊗Ò, 0♢ (3.2.2)

We now must use this form of the dissipator in the Lindblad-Kossakowski Equation, expand
it in the bais of 𝑆𝑈(2) matrices and solve it, similar to what was done in the previous section for
the vacuum neutrino oscillations, except that now the dissipator has the form above.

We then get for the evolved density matrix:

𝜌(𝑥) =

(︃
1
2

+ 1
2

cos(2𝜃) 1
2
𝑒⊗(Ò⊗𝑖∆)𝑥 sin(2𝜃)

1
2
𝑒⊗(Ò+𝑖∆)𝑥 sin(2𝜃) 1

2
⊗ 1

2
cos(2𝜃)

)︃
(3.2.3)

Here we can see that in the coherence terms, which are the ones out of the main diagonal, there
is a term of exponential decay which depends on Ò.

Hence, we see that there is an elimination of the quantum coherence throughout the propagation
of the neutrino.

Therefore, from this form of the dissipation matrix arises an effect of quantum decoherence.
Using equations (3.1.14) and (3.1.15) we can obtain the oscillation probability case 1:

𝑃𝐶1

Üα⊃Üα
(𝑥,𝐸) = 1 ⊗ sin2(2𝜃)[1 ⊗ 𝑒⊗Ò𝑥 cos(Δ𝑥)] (3.2.4)

Where again we see the exponential of ⊗Ò, which acts as a dumping.
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3.3 3.3 Neutrino Oscillation and Quantum Open Systems:

Case 2

Now we will consider a different form of the dissipative matrix, in which we will include another
parameter in the last entry of the main diagonal.

Remembering that it must follow the conditions estabilished by inequalties (2.5.8) and (2.5.9),
we see that this new parameter can be at most equal to the sum of elements 𝐷11 and 𝐷22.

Since maximizing this parameter will not help us from a phenomenological point of view, we
will simply assume that it is equal to the parameter of the previous case. Hence, the dissipative
matrix will have the following form:

𝐷ÛÜ = 𝑑𝑖𝑎𝑔¶0,⊗Ò,⊗Ò,⊗Ò♢ (3.3.1)

Again we will substitute it in the Lindblad-Kossakowski Equation, expand it in the basis of
𝑆𝑈(2) matrices and solve it. Then, we will find the following evolved density matrix:

𝜌(𝑥) =

(︃
1
2

+ 1
2
𝑒⊗Ò𝑥 cos(2𝜃) 1

2
𝑒⊗(Ò⊗𝑖∆)𝑥 sin(2𝜃)

1
2
𝑒⊗(Ò+𝑖∆)𝑥 sin(2𝜃) 1

2
⊗ 𝑒⊗Ò𝑥 1

2
cos(2𝜃)

)︃
(3.3.2)

In this case we also see the dumping term on the coherence terms, which eliminates the coher-
ence throughout the propagation, but now we also have a new effect.

We can see that the population terms also have a dumping exponential, which leads to an
assintotic limit of 1

2
, which means that we have flavour convertion.

Even when we eliminate the quantum superposition, by making 𝜃 = 0, we would still have an
assintotic limit of 1

2
for the population terms.

Therefore, the simple adition of a parameter on 𝐷33 leads to an effect of flavour convertion
apart from quantum superpositions, apart from oscillations.

From equations (3.3.2) and (3.1.15) we get the oscillation probability for this case 2:

𝑃𝐶2

Üα⊃Üα
(𝑥,𝐸) =

1

2
+ 𝑒⊗Ò𝑥

[︃
1

2
⊗ sin2(2𝜃) sin2(

Δ

2
𝑥)

⟨
(3.3.3)

Where we can also see the assintotic limit of 1
2

for the survival probability, even when there is
no quantum superposition [15].
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Chapter 4

KamLAND and Simulation

Since we want to confront the results we obtained on the previous chapters with experimental
data, it is important that we examine the fundamental features of neutrino experiments and of the
methods of verification of the validity of a scientific model.

Therefore, in this chapter we will first present a short review of neutrino experiments, and
mainly the KamLAND experiment, which data we will use on the next chapter of this work.

Then, we will present the ä2 Test used for the analysis, and the details of the program used
for the simulations.

4.1 Neutrino Experiments and KamLAND

The characterization of a neutrino oscillation experiment is defined by the typical energy E of
the neutrino, and by the distance L between the source and the detector. But, we know that in
general, the neutrino beams analyzed by the experiments are not monoenergetic, and also that
the detectors’ energy resolution is finite. So, instead of measuring a probability 𝑃ÐÑ of transition
between a state Ð and a state Ñ, the experiments are sensitive to the average probability [6]:

⟨𝑃ÐÑ⟩ =

√︃
𝑑𝐸 𝑑Φ

𝑑𝐸
à𝐶𝐶(𝐸)𝑃ÐÑ(𝐸)𝜖(𝐸)

√︃
𝑑𝐸 𝑑Φ

𝑑𝐸
à𝐶𝐶(𝐸)𝜖(𝐸)

(4.1.1)

Where Φ is the neutrino energy spectrum, à𝐶𝐶 is the cross section for the process in which the
neutrino is detected (which is in general, a Charged Current interaction), 𝜖(𝐸) is the detection
efficiency, and the range of the energy integral depends on the energy resolution of the experiment.

Typical values of 𝐿/𝐸 for diferent kinds of experiments and neutrino sources, and the cor-
respondent orders of magnitude of Δ𝑚2 to which they are most sensitive can be seen in Table
4.1.

Since we have that [6]

𝐿𝑜𝑠𝑐
0,𝑖𝑗 =

4Þ𝐸

Δ𝑚2
𝑖𝑗

(4.1.2)
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Experiment L(m) E(MeV) Δ𝑚2(eV2)

Solar 1010 1 10⊗10

Atmospheric 104 ⊗ 107 102 ⊗ 105 10⊗1 ⊗ 10⊗4

Reactor 102 ⊗ 103 1 10⊗2 ⊗ 10⊗3

104 ⊗ 105 10⊗4 ⊗ 10⊗5

Accelerator 102 103 ⊗ 104 > 0.1
105 ⊗ 106 104 10⊗2 ⊗ 10⊗3

Table 4.1: Characteristic values of 𝐿 and 𝐸 for various neutrino sources and experiments and the
corresponding ranges of Δ𝑚2 to which they can be most sensitive.

If we want the experiment to be sensitive to a given value of Δ𝑚2
𝑖𝑗, it must be set up with

(𝐿/𝐸) ≡ Δ𝑚2
𝑖𝑗(𝐿

𝑜𝑠𝑐
0,𝑖𝑗 ≍ 𝐿), otherwise, if (𝐿/𝐸) ⪰ Δ𝑚2

𝑖𝑗(𝐿
𝑜𝑠𝑐
0,𝑖𝑗 ⪰ 𝐿) the oscillation phase doesn’t

have enough time to have an appreciable effect, and if (𝐿/𝐸) ⪯ Δ𝑚2
𝑖𝑗(𝐿

𝑜𝑠𝑐
0,𝑖𝑗 ⪯ 𝐿) the oscillation

phase goes through many cycles before the detection,and we will see an average
⎬

sin2

⎤
∆𝑚2

ij
𝐿

4𝐸

⎣⎪
=

1
2
.

To maximize sensitivity, the following conditions should be fulfilled [6]:

• 𝐸/𝐿 ≡ Δ𝑚2
𝑖𝑗

• Good energy resolution for the experiment, Δ𝐸 ⪯ 𝐿Δ𝑚2
𝑖𝑗

• Experiment is sensitive to different values of 𝐿 with Δ𝐿 ⪯ 𝐸/Δ𝑚2
𝑖𝑗

4.1.1 KamLAND

In this work, we are going to use data from the KamLAND experiment.
KamLAND is a Long Baseline experiment, located at the Kamioka mine, Gifu, Japan, made

to detect electron antineutrinos which come from nuclear reactors being at an average distance of
≍ 180km from the detector. Figure (4.1) shows the location of KamLAND and the main nuclear
power stations in Japan.

The main target consists of 1kt of liquid scintilator, and this internal detector is shielded by an
external detector of Cherenkov light in water of 3.2kt. A more detailed review of the experiment
can be found in reference [8].

The detection of the Ǖ𝑒 is done by the inverse Ñ decay:

Ǖ𝑒 + 𝑝 ⊃ 𝑒+ + 𝑛 (4.1.3)

Since the electron antineutrinos travel through the terrestrial crust between the reactors and
the detector, matter effects are usually considered when dealing with KamLAND data, and a
constant density of 2.7𝑔/𝑐𝑚3 is considered for the terrestrial crust.

The KamLAND experiment was constructed to test the so called Large Mixing Angle (LMA)
solution for the solar neutrino problem, which consisted of a solar neutrino detection rate which
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Figure 4.1: Location of KamLAND and main power stations in Japa. The blue circle indicates
the average distance of 180km. [7]

was substantially smaller than that predicted by standard solar models. Typical values of the
parameters for the LMA solution are [5]:

Δ𝑚2 ≍ 7 × 10⊗5𝑒𝑉 2 tan2(𝜃) ≍ 0.4

Considering the average value of 𝐿, and that the energy of the electron antineutrinos is on the
order of MeV, it is sensitive to Δ𝑚2

𝑖𝑗 & 10⊗5𝑒𝑉 2 [6].
We see then, that we have an important relation between solar neutrino experiments and

KamLAND, in which KamLAND provides precision in the measurement of Δ𝑚2, and solar neu-
trinos provide precision in the measurement of tan2(𝜃) due to particularities of the two kinds of
experiments [5], allowing a more precise study of the solar parameters.

4.2 The ä2 Test

Before we present the results of the tests, it’s important to define the model used for the ä2

Test:

ä2 ⊕
𝑛∑︁

𝑗

2

[︃
𝐾𝑁 𝑡ℎ𝑒𝑜

𝑗 ⊗𝑁 𝑜𝑏𝑠
𝑗 +𝑁 𝑜𝑏𝑠

𝑗 𝑙𝑛

(︃
𝑁 𝑜𝑏𝑠

𝑗

𝐾𝑁 𝑡ℎ𝑒𝑜
𝑗

)︃⟨
(4.2.1)
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Since the experiment consists of counting events in energy bins, and hence the data are a set
of discrete events in continuums intervals, the appropriate model is given by the Poisson statistics
[13,31].

In the equation above the sum is made over the n energy bins (energy intervals), 𝑁 𝑡ℎ𝑒𝑜
𝑗 is the

number of events expected in accordance to the theory, 𝑁 𝑜𝑏𝑠
𝑗 is the number of events observed

given by the KamLAND Collaboration, both related to a bin j, and K is a free parameter of the
model, which represents the flux, and here runs from 0.75 and 1.25.

4.3 Simulation

In this work we used a program originally made by Professor Pedro Cunha de Holanda Ph.D,
which makes a ä2 test and returns the best-fit values of the parameters involved. It also allow us
to get confidence level curves for the parameter space considered.

The original program uses data from the KamLAND energy spectrum, and does the chi-square
test considering the usual neutrino oscillation probability for the case of two families. It returns
the minimum value of chi-square and it’s respective Δ𝑚2 and tan2 𝜃 values, which are the best-fit
values.

We wanted to use this program to verify the limits on Ò for the probability with decoherence
Case 1, and in order to do that we would need to modify the original program, including a third
parameter, which is Ò, and changing the expression for the usual neutrino oscillation probability
for the first we obtained in the previous chapter.

But before studying the probability with decoherence Case 1, we tested the original program
using the usual oscillation probability, to see if it gave a good reproduction for the results of
KamLAND.

The data used in this version of the program consider 24 energy bins, and are from the pre-
sentation [10] “KamLAND (Anti-Neutrino Status)” from Itaru Shimizu (Tohoku University) on
the conference “The 10th International Conference on Topics in Astroparticle and Underground
Physics” on 14𝑡ℎ September, 2007.

The simulation consists in the calculation of the number of expected events for a given energy
interval 𝑎 (the energy interval is also know as bin):

𝑁𝑎 =
𝑛∑︁

𝑖

∫︁ 𝐸a+∆𝐸

𝐸a

𝑑𝐸𝑝

∫︁
𝑑𝐸Ü

∫︁
𝑑𝐸 ′

𝑝𝑃𝑖𝐶𝑖𝐹𝑖à𝑓(𝐸𝑝, 𝐸
′
𝑝) (4.3.1)

Where the sum is over each reactor 𝑖, with percentual contribution 𝐶𝑖, 𝑃𝑖 is the oscillation
probability, which will be the usual one for the test, and the probability Case 1 for the final
analysis, 𝐹𝑖 is the flux of the reactor, à is the cross section of the antineutrino detection, 𝑓(𝐸𝑝, 𝐸

′
𝑝)

is the function of energy resolution, and we have integrations over the neutrino energy 𝐸Ü , and
over the real energy of the positron produced 𝐸 ′

𝑝 [6].
Then, we used the ä2 Test defined on the previous section to get best-fit results and confidence

level curves, which we used to obtain the limits for the three parameters in different confidence
levels.
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We repeated the proceedure described above using a different set of data, which was obtained
in the article “Constraints on 𝜃13 from a three-flavor oscillation analysis of reactor antineutrinos
at KamLAND” (The KamLAND Collaboration) [11] from March 2011.
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Chapter 5

Results

After having studied the density matrix formalism, applying it to Quantum Open Systems and
using the results obtained to get new neutrino oscillation probabilities, we are ready to make a
confrontation with experimental data.

We first present the results for a test of the original program, to verify if it was a good tool to
analyse our model.

In the following sessions we will present the results of the tests we made, and also the final
results, which are the limits for the parameters involved in neutrino oscillation with decoherence.

5.1 Results for the Usual Case

The program varies Δ𝑚2 and tan2(𝜃) in the intervals:

0.2 ⊘ tan2(𝜃) ⊘ 5.0
6.0 × 10⊗5𝑒𝑉 2 ⊘ Δ𝑚2 ⊘ 10⊗4𝑒𝑉 2 (5.1.1)

The results for the best-fit are given in Table (5.1).

ä2𝑚𝑖𝑛 = 39.45
Δ𝑚2 = 7.80+0.22

⊗0.20 × 10⊗5𝑒𝑉 2

tan2(𝜃) = 0.51+0.21
⊗0.10

Table 5.1: Best-Fit Results: Original Program

Where the deviations considered in Table (5.1) correspond to 68.27%C.L..
Since we have 24 energy bins, we see on Table (5.1) that the value of ä2 minimum is of the

same order of the number of experimental points, which indicates a good agreement between the
theoretical model and the experimental data.

It is important to point out that the program presents another ä2 minimum, which has an
identical value to the one we showed before, it also has the same correspondent value of Δ𝑚2, but
for the mixture angle we have the value of tan2 𝜃2 = 1.94, where 𝜃1 + 𝜃2 = 90°.
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Figure 5.2: Confidence Level Curves for tan2(𝜃) and Δ𝑚2 as presented by the KamLAND Collab-
oration in reference [9]

for the probability with decoherence Case 1:

𝑃𝐶1

Üα⊃Üα
(𝑥,𝐸) = 1 ⊗ sin2(2𝜃)[1 ⊗ 𝑒⊗Ò𝑥 cos(Δ𝑥)] (5.2.2)

and changed the program including a third free parameter, which is the parameter Ò. Now,
our program varies the three parameters: Δ𝑚2, tan2(𝜃) and Ò.

The three parameters were variated in the intervals:

0.2 ⊘ tan2(𝜃) ⊘ 3.8
7.25 × 10⊗5𝑒𝑉 2 ⊘ Δ𝑚2 ⊘ 8.40 × 10⊗5𝑒𝑉 2

0 ⊘ Ò ⊘ 7.85 × 10⊗3(𝑘𝑚)⊗1

(5.2.3)

In this case, the results for the best fit are given in Table (5.3).

ä2𝑚𝑖𝑛 = 38.78
Δ𝑚2 = 7.79 × 10⊗5𝑒𝑉 2

tan2(𝜃) = 0.56
Ò = 6.88 × 10⊗4𝑘𝑚⊗1 = 1.36 × 10⊗22𝐺𝑒𝑉

Table 5.3: Best-Fit Results: Case 1

We can see on Table (5.3) that for the best-fit we have a nonzero value of Ò, and it’s respective
minimum ä2 value is smaller than the one found for the usual probability without decoherence.
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68.27% C.L. (7.57 < Δ𝑚2 < 8, 00)10⊗5𝑒𝑉 2 0.42 < tan2(𝜃) < 2.38 (0 < Ò < 4.13)10⊗22𝐺𝑒𝑉
90% C.L. (7.49 < Δ𝑚2 < 8, 09)10⊗5𝑒𝑉 2 0.39 < tan2(𝜃) < 2.63 (0 < Ò < 5.38)10⊗22𝐺𝑒𝑉
95% C.L. (7.44 < Δ𝑚2 < 8, 14)10⊗5𝑒𝑉 2 0.35 < tan2(𝜃) < 2.74 (0 < Ò < 6.04)10⊗22𝐺𝑒𝑉
99% C.L. (7.37 < Δ𝑚2 < 8, 23)10⊗5𝑒𝑉 2 0.33 < tan2(𝜃) < 3.00 (0 < Ò < 7.33)10⊗22𝐺𝑒𝑉

99.73% C.L. (7.32 < Δ𝑚2 < 8, 30)10⊗5𝑒𝑉 2 0.30 < tan2(𝜃) < 3.18 (0 < Ò < 8.26)10⊗22𝐺𝑒𝑉

Table 5.4: Parameter’s Limits for Oscillation with Decoherence Case 1

This case was already analysed on the literature by Lisi et al [14], in which was made a
combination of solar and KamLAND data. From this analysis it was obtained a best-fit for Ò
equal to zero, which means that, in their joint analysis of solar and KamLAND data, including
decoherence on the neutrino oscillations doesn’t improve the fit of the data.

5.3 Most Recent Data ä2 test: Case 1

The results presented so far do not consider the most recent data.
They were the first results used in our studies, but we also have the results for new data.
In the article “Constraints on 𝜃13 from a three-flavor oscillation analysis of reactor antineutrinos

at KamLAND” (The KamLAND Collaboration) [11] from March 2011, we have a new set of data,
in which they changed the number of energy bins to 20.

For this set of data, we also made a test using the usual oscillation probability, and the com-
parison between the results for the new and the old data can be seen in the Table (5.5).

Old data (24 bins) New Data (20 bins)
ä2

𝑚𝑖𝑛 39.45 24.88
Δ𝑚2 7.80 × 10⊗5𝑒𝑉 2 8.05 × 10⊗5𝑒𝑉 2

tan2(𝜃) 0.51 0.44

Table 5.5: Best-Fit Results Comparison Between New and Old Data for Ò = 0

We can see that not only the value of ä2
𝑚𝑖𝑛 is smaller for the new data, but it is also closer to

the number of degrees of freedom, indicating a better agreement with the experimental data.
Considering now the oscillation probability with decoherence Case 1, and the three free param-

eters Δ𝑚2, tan2(𝜃) and Ò, we can also compare the results for the new and the old data.
The three parameters were variated in the intervals:

0.2 ⊘ tan2(𝜃) ⊘ 3.8
7.50 × 10⊗5𝑒𝑉 2 ⊘ Δ𝑚2 ⊘ 8.65 × 10⊗5𝑒𝑉 2

0 ⊘ Ò ⊘ 7.85 × 10⊗3(𝑘𝑚)⊗1

(5.3.1)

The comparison between the best-fit results for this case can be seen in the Table (5.6).
Where again we see that the value of ä2

𝑚𝑖𝑛 is closer to the number of degrees of freedom for the
new data, and therefore we have a better fit.
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Using the confidence level curves, we also obtained the limits for the three free parameters,
which are shown in Table (5.7).

68.27% C.L. (7.80 < Δ𝑚2 < 8.28)10⊗5𝑒𝑉 2 0.40 < tan2(𝜃) < 0.79 (0.60 < Ò < 6.59)10⊗22𝐺𝑒𝑉
1.29 < tan2(𝜃) < 2.47

90% C.L. (7.71 < Δ𝑚2 < 8.38)10⊗5𝑒𝑉 2 0.37 < tan2(𝜃) < 2.75 (0 < Ò < 8.10)10⊗22𝐺𝑒𝑉
95% C.L. (7.67 < Δ𝑚2 < 8.44)10⊗5𝑒𝑉 2 0.34 < tan2(𝜃) < 2.88 (0 < Ò < 8.85)10⊗22𝐺𝑒𝑉
99% C.L. (7.57 < Δ𝑚2 < 8.54)10⊗5𝑒𝑉 2 0.31 < tan2(𝜃) < 3.18 (0 < Ò < 1.05)10⊗21𝐺𝑒𝑉

99.73% C.L. (7.51 < Δ𝑚2 < 8.62)10⊗5𝑒𝑉 2 0.29 < tan2(𝜃) < 3.41 (0 < Ò < 1.17)10⊗21𝐺𝑒𝑉

Table 5.7: Parameter’s Limits for Oscillation with Decoherence Case 1: New Data

In order to visualize the effect of the inclusion of decoherence in our study of neutrino oscilla-
tions, we can reproduce an important graph originally presented by the KamLAND Collaboration.

The graph from Figure (5.9) was obtained in reference [11], the same one we used to get the
new data, and it is an important graph since it shows directly the oscillation pattern.

Figure 5.9: Original Graph From KamLAND Collaboration [11]

Using the results of the best-fit values for the neutrino oscillation parameters, we made two
versions of the graph that shows the survival probability versus 𝐿0/𝐸. The first one, in Figure
(5.10), considers Ò = 0, and the second one, in figure (5.11), uses the best-fit value for Ò.

In the original graph, Figure (5.9), we see that, even though most of the error bars of the
experimental data points reach the best-fit oscillation curves, a few points still allow a different
theoretical prediction.

Considering the first curve made from the results of our simulation setting Ò = 0, Figure
(5.10), we see that it is very similar to the original one, which is another indication that our
original program deserves confidence.
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Chapter 6

Conclusions and Future Perspectives

In this work, we treated the appearence of the decoherence effect on neutrino oscillations in a
phenomenological approach, studying first Quantum Open Systems in general, and then aplying
the results to the case of neutrino oscillation in two families, since it is one of the models used in
the analysis of KamLAND data.

In Chapter 2 we studied the quantum superposition principle and the measurement problem,
and we considered the possibility of dealing with the measurement problem by making the mea-
surement instrument have a coupling with the system of interest, working with an example of how
this could be achieved using Quantum Mechanics concepts.

We then proceeded, presenting the aspects of the theory of Quantum Open Systems that would
be necessary to the study of the neutrino system. And in order to do that, we first introduced the
formalism of density matrix, which is used through this whole dissertation. In the context of a
global system, we defined the Partial Trace, an operation that allow us to get information from the
subsystem of interest as if it were isolated. Using the partial trace, and with the assumption that
the coupling between the subsystem of interest and the enviroment is weak enough, we derived
an equation that defines the time evolution of density operator of the subsystem of interest, the
Lindblad - Kossakowski equation.

Chapter 3 was devoted to the study of neutrino oscillations, initially showing an example how
we would treat the usual model of vaccum neutrino oscillations in two families using the density
matrix formalism, and then applying the Lindblad - Kossakowski equation obtained in Chapter
2 to develop two different models for the neutrino oscillations considering a coupling with the
enviroment, where we saw the appearence of the decoherence effect in both models, and for the
Case 2 we saw a different flavor convertion mechanism, independent of quantum superpositions.

In Chapter 4 we did a brief analysis of neutrino experiments and presented some information
about KamLAND. We also showed the model used for the ä2 Test and details of the method
used to confront our model of neutrino oscillation with decoherence Case 1 with the data from
KamLAND.

We finally presented the results of the analysis in Chapter 5, where we saw that the program
used for the data analysis provided a good reproduction of the KamLAND results for the usual
neutrino oscillation case. The results of the best-fit for this test are presented in Table (5.1) and
the confidence level curves can be seen in Figure (5.1). The good results of our test allowed us to

36



begin the simulations for the probability Case 1.
Using data from reference [10] we obtained a good agreement with experimental data, and found

the result that we had a best-fit with Ò ̸= 0, a result that suggested that including decoherence
in the theory of neutrino oscillations improved the description of the phenomenon. The best-fit
results for this set of data are in Table (5.3). We also presented the confidence level curves for
this set of data in figures (5.3), (5.4) and (5.5), and we used these figures to find limits for Δ𝑚2,
tan2(𝜃) and Ò, which are presented in Table (5.4).

But the most interesting results were obtained when we considered the most recent set of data,
provided by reference [11], where the number of events were presented for 20 bins. Comparing the
value of ä2

𝑚𝑖𝑛 with the number of degrees of freedom, we saw that including the third parameter,
Ò, improved considerably the fit of the data. With Ò = 0 we obtained ä2

𝑚𝑖𝑛 = 24.88, and for Ò as
a free parameter (hence 20 experimental points and 3 parameters) we obtained ä2

𝑚𝑖𝑛 = 21.36, a
3.52 unit decrease. These results are sumarized in tables (5.5) and (5.6). We also found a best-fit
value with Ò ̸= 0, and the graphs of the confidence level curves showed that a solution with Ò = 0
was excluded with 68.27% C.L., as we can see from Figures (5.7) and (5.8) a different result from
what is found in the literature.

To support the results of our analysis, giving a more visual way of evaluating the results, we
reproduced an important graph originally presented by the KamLAND Collaboration, that can
be ssen in Figure (5.9), which showed the survival probability versus 𝐿0/𝐸, and is a graph that
shows clearly the oscillation pattern for the neutrinos.

We made two reproductions, the first one considering Ò = 0 is presented in Figure (5.10), and
provided another confirmation that our original program was a good tool for the KamLAND data
analysis, and the second one, in Figure (5.11) was made using the best-fit values for the case of Ò
as a free parameter. The second graph clearly showed the dumping generated by the decoherence
effect, when we compared with Figure (5.10).

By merging the original graph with our reproduction of the graph, which mas made using the
best-fit values obtained in our simulation, we saw that our model provided a fit of the data which
was indeed in agreement with the experiment uncertainties, as can be seen in Figure (5.12). So
we have another evidence that our model is a realistic one.

We also determined limits for the three parameters, Δ𝑚2, tan2(𝜃) and Ò, in 68.27%, 90%, 95%,
99%, 99.73% C.L.. The limits are presented in Table (5.7), and were determined based on the
confidence level curves made from this most recent set of data [11], and are in Figures (5.6), (5.7),
and (5.8).

Therefore, in this work we saw that, even though the usual model for neutrino oscillations
provides a good fit for the experimental data, our anlysis supports the idea that including the
decoherence effect can improve this fit, which can be seen as an evidence that treating the system
of interest in a coupling with the enviroment may be a more realistic approach to the study of
quantum systems.

To proceed with our studies, several things can be made. We can use other models of oscillation
with decoherence, for example the Case 2 presented in Chapter 3, or even other options that may
come from other possible forms of the dissipative matrix.

But, still considering our model Case 1, we could include 𝜃13 in the analysis, since we know that
KamLAND has sensitivity for this parameter. We could also include in Ò a dependence with the
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energy, as done in reference [14], and do a detailed study of the inclusion of solar neutrinos in this
analysis, since solar neutrino experiments are usually related to the KamLAND. There is also the
possibility of doing a complete analysis for three families, including data from other experiments.

As we can see, there are a lot of possible studies to be made in this area, and since it is related
to very fundamental concepts, these studies can help in the understanding of important aspects of
physics.
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