ABSORÇÃO DE HIDROGÊNIO POR METAIS

APLICAÇÃO AO FERRO-TITÂNIO

Régis Cabral

Orientador:Prof.Dr.Mario Foglio

Dissertação apresentada ao Instituto de Física 'Gleb Wataghin' como par te dos requisitos para a obtenção do grau de Mestre em Ciências.

DEDICATÓRIA

ESTE TRABALHO É DEDICADO À Petrônio Cabral,por que sempre o admirei, Esther Scliar,por que gostaria que ela estivesse aqui, a todos os meus colegas do Instituto de Física,à quem desejo todo sucesso,

a Zélia,que me compreendeu.

AGRADECIMENTOS

Aos professores C.E.T. Goçalves da Silva,M. Zwanziger, B. Laks e M. Fóglio. Sem eles este trabalho não teria sido pos sivel. Aos professores G.Cabrera, J.B.Salzberg, A.Ozó rio,G.Csanak pelos ensinamentos e apoio; Aos professores A.Kiel, J.Galvão Ramos e E. Nagai, pelas orientações; Ao CNPq pelo apoio financeiro; Ao Grupo de Energia da Unicamp e a todos os seus membros, meus agradecimentos; Aos alunos de Pós Graduação em História, Política, Sociologia , Lógica e Filosofia Pós Graduação emFísica ,Matemática e Computação Pós Graduação em Biologia Graduação em Computação, meus agradecimentos pelo apoio e discuções; A Thiago Oppermann, Maria Eduarda Machado, Saman tha Cabral, Vanessa e Alessandra Mancini, por que muito me motivaram; Aos funcionários do Instituto de Física, gráfie bibliotea os meus agradecimentos; сa A Suzeleim e ao Laerte pelo apoio na hora final.

RESUMO

Neste trabalho é desenvolvido um modelo estatístico para descrever as isotermas do sistema FeTiH.

Após uma revisão de trabalhos sobre o assunto estuda-se, em detalhe, o modelo de Lacher para a absorção do hidrogênio pelo paládio.

O modelo é um modelo de campo médio. Considera-se que o paládio possua apenas um sítio aonde possa se ligar o hidrogênio. O método pode ser aplicado a outros sistemas e apresenta-se relação que permite, dentro de erro pequeno, calcular as temperaturas críticas.

A seguir propõe-se uma dependência das ener gias de ligação ao sítio e de interação entre os hidrogênios ab sorvidos ao volume e compara-se com o modelo de Lacher.

Apresentamos após a aplicação destes resultados ao caso de dois sítios. Para tal generalizamos o modelo de Lacher, considerando a existência de dois tipos de sítios. In troduz-se uma energia de interação entre os hidrogênios em sí tios diferentes. As isotermas obtidas para este hidreto estão bastante próximas das isotermas experimentais. Para poder obter as isotermas considerou-se que o segundo sítio é praticamente <u>i</u> nerte à medida em que ocorre a absorção no primeiro sítio.

INDICE

•

٠

Dedicatória	1					
Agradecimentos	2					
Resumo	3					
Indice	4					
Introdução	5					
Capítulo I:Resumo dos trabalhos anteriores	7					
I.l-Introdução	7					
I.2-Primeiros Trabalhos	7					
I.3-Matrizes Exotérmicas e Matrizes Endotérmicas	8					
I.4-Classificação dos sistemas Metal-Hidrogênio	12					
I.5-Regra de Van't Hoff	13					
I.6-Modelos de Lacher e de Harasima	14					
I.7-Modelo de Rees	16					
I.8-Modelo de Libowitz	18					
I.9-A Regra da Estabilidade Reversa e os Estudos	·					
de Miedema	19					
I.10-Modelo Protônic a XModelo Aniônico	21					
Capitulo II:O modelo de Lacher para a Absorção de						
hidrogênio em um sítio	24					
II.l-Introdução	24					
II.2-Fase Gasosa	24					
II.3-Fase Absorvida	29					
II.4-Efeitos da Variação do Parametro de Rede	36					
II.5-Comparação com os Resultados Experimentais	41					
CapítuloIII:A absorção em dois sítios	50					
III.l-Introdução	50					
III.2-0 Modelo	50					
III.3-Aplicação ao caso da Absorção do Hidrogên	io					
pelo Ferro Titânio	60					
Conclusões	65					
Apêndice	66					
Referências	68					

INTRODUÇÃO

Os sistemas Hidrogênio-Metal já são conhecidos a bastante tempo. Em 1811, Gay-Lussac nos Recherches Physicochemique já havia preparado o hidreto de potássio. Devido a sua alta reatividade com o ar este hidreto só foi caracterizado cinquenta anos depois. O hidreto de paládio, apesar de ter sido preparado logo após a descoberta do paládio, só teve uma descrição apropri<u>a</u> da em 1869 com o trabalho de Dewar e de Wurtz. Desta época para cá o número de hidretos preparados aumentou consideravelmente.Uma série de revisões existem. Destas consideramos **a** melhor a de Müller, Metal Hydrides¹.

Até recentemente o estudo dos hidretos tinha como objetivo principal a metalurgia. Antes da década de cinque<u>n</u> ta estes estudos eram sobre o efeito do hidrogênio no ferro e no aço. Veja-se por exemplo Smialovksí². Estudos a cerca de outros metais hidretados existiram mas foram poucos, comparados com o número de trabalhos que tratam dos efeitos destrutivos do hidrogênio sobre o aço e sobre o ferro. Estes estudos, inclusive o do já bem conhecido hidreto do paládio, tiveram como principal razão entender melhor efeitos observados no ferro e no aço como por exemplo, a fratura, o deslocamento, a formação de bolhas e de rachaduras quando da absorção de hidrogênio.

De todos estes outros metais estudados, o pal<u>á</u> dio o foi mais devido a facilidade com que absorve hidrogênio. Por exemplo, a proporcionalidade entre a raíz quadrada da pres são do hidrogênio na fase gasosa e na concentração do hidrogênio absorvido pelo metal foi determinada a partir de observação feita no hidreto de paládio em 1895 por Hoitsema e Roozeboom³.

O advento da década de cinquenta trouxe uma série de problemas tecnológicos. Incentivou-se o estudo dos hidretos de metais leves, dos hidretos de zircônio e titânio e dos hidretos de urânio. Os hidretos de zircônio e de urânio são largamente usados nos reatores nucleares. O hidreto de titânio tem papel substancial na indústria aeronáutica. Os hidretos de metais leves são, pelo menos teoricamente, excelentes combustíveis para foguetes. A aplicação principal dos hidretos de metais leves é a obtenção de energia termonuclear.

No final da década de sessenta e início da de setenta, trouxeram ao mundo, de forma mais concreta, o problema da crise de energia. Entre uma série de alternativas que foram propostas está a utilização do hidrogênio como fonte de energia. O fato de que pode-se armazenar mais hidrogênio por unidade de volume em um hidreto metálico do que em um tanque a altas pressões, de mesmo volume, deu um grande incentivo a este tipo de pesquisa. O problema passa a ser encontrar um metal, o mais leve possível, que seja barato e que absorva grandes quantidades de hidrogênio. Entre os metais estudados estão o LaNi₅, que absorve seis átomos de hidrogênio por fórmula, e o TiFe, que absorve dois átomos de hidrogênio por fórmula. Na busca de hidretos leves existem estudos sobre hidretos de magnésio.

Os principais estudos sobre TiFeH_{x} são os efe tuados pelo Brookhaven Laboratory⁴. Os resultados destes estu dos já foram aplicados a nível de engenharia em um sistema para armazenamento de eletricidade por parte de Public Service Electric and Gas Co (PSE and G) de Nova Jersei, U.S.A.

Dentro desta realidade o presente trabalho mo tivou-se pela interação com o Grupo de Hidrogênio da Unicamp. Uma vez que este grupo tem grande interesse no hidreto de ferrotitânio, estudamos em detalhe o modelo de Lacher e o generaliza mos para aplicá-lo a este caso.

Este trabalho consiste de três partes. A primeira é uma revisão de trabalhos anteriores. Não pretende ser completa nem extensa. A segunda parte é sobre o modelo de Lacher. Trata-se da absorção de hidrogênio por um sítio. Além de obter uma expressão para a temperatura crítica em função de uma iso terma medida, mostramos algumas dificuldades que aparecem no mo delo de Harasima. Aqui propomos uma alternativa. Na terceira par te generalizamos o modelo de um sítio para a absorção de hidrogênio por dois sítios e aplicamos ao FeTiH_v.

I.l- Introdução:

Neste capítulo fazemos uma apresentação de uma série de trabalhos feitos sobre os sitemas hidrogênio me tal. Procurou-se manter a ordem cronológica em que surgiram es tes trabalhos. Não se pretende ser completo. Melhor revisão po de ser encontrada no já citado trabalho de Müller ou no de Gibb⁵.

Uma das características dos modelos apresentados é que nenhum deles é geral. São aplicáveis apenas a grupos de hidretos. Uma teoria geral só poderia surgir na medida em que fossem compreendidos todos os primeiros princípios en volvidos, o que não ocorre.

I.2- Primeiros Trabalhos:

Em 1895 Hoitsema e Bakhuis Roozeboom³ determinaram que a quantidade de hidrogênio absorvido pelo paládio, à temperatura constante, é proporcional a raiz quadrada da pre<u>s</u> são da fase gasosa, desde que as soluções sejam bastantes di luidas, ou seja, formalmente:

$$[8H] = K \sqrt{P_{H_2}}$$
 (1.1)

onde [%H] indica a quantidade de hidrogênio que dissolve no m<u>e</u> tal e K é a constante da reação.

Os dados experimentais levaram Hoitsema a concluir que a reação química que ocorre é:

$$H_2 \stackrel{+}{\rightarrow} 2H$$
 (I.2)

pois para pequenas concentrações a quantidade de hidrogênio é proporcional a atividade química:

 $K' = \frac{a_{H} a_{H}}{p_{H_{2}}}$ (1.3)

Podemos _{obter} a atividade como a razão entre a pressão de vapor de uma substância sobre uma solução e a pressão da substância pura:

$$a = \frac{p'}{p^0}$$
(I.4)

O que temos é portanto:

$$K' \alpha \frac{P_{\rm H} P_{\rm H}}{P_{\rm H_2}}$$
(1.5)

o que corresponde a reação química de dissociação do hidrogênio.

Alguns anos mais tarde Sieverts^{6,7} mostrou que a lei da raiz quadrada é válida para outros sistemas metal-gás.

Hoje já não resta dúvidas quanto ao fato do hidrogênio se dissociar ao ser absorvido. Isto tem sido confirmado através da utilização das mais diferentes técnicas experimentais como por exemplo, estudos de raios X e de difração de neutrons⁸. É preciso, no entanto, ter em mente que um dos grandes problemas da metalurgia do aço é a migração para as possí veis cavidades ou falhas do metal. Ao se encontrar na cavidade o hidrogênio recombina-se, provando um aumento de pressão e or<u>i</u> ginando fraturas no metal.

I.3- Matrizes Exotérmicas e Matrizes Endotérmicas.

Folwer e Guggenheim¹⁰ apresentam um estudo dos sistemas metal-hidrogênio separando-os em dois grupos de acordo com o sinal de calor de formação do hidreto, isto é, de acordo com a entalpia de solução, ΔH.

Um gráfico de ∆H para os metais em função do número de elétrons nas camadas incompletas é mostrado na figura um;⁹

A entalpia da solução esta relacionada com a quantidade de hidrogênio absorvida a uma dada temperatura e pressão. Se ΔH é negativo a solubilidade é alta e aumenta com o decréscimo da temperatura. É o caso das matrizes exotérmicas. Vanádio e titânio são exemplos. Se ΔH é positivo a solubilidade é baixa e aumenta com o aumento da temperatura. São as matri zes endotérmicas e tem com exemplo o cobre e o ferro.

As matrizes exotérmicas não apresentam modificação na rede metálica devido a absorção do hidrogênio. Os hidrogênios neste caso podem ser tratados como átomos móveis. Podemos supor que os átomos de hidrogênio se movem em um campo de energia potencial uniforme - W_H sobre um volume V_H menor do que o volume V do metal. Esta energia é medida em relação a d<u>i</u> luição infinita do hidrogênio. O gás fora do metal é consider<u>a</u> do ideal.

A função partição translacional do próton li

vre fica:

STAL PIR

$$q_{\rm H}^{\rm t}$$
 (T) = $\frac{(2\pi \ m_{\rm H} \ {\rm KT})^{3/2} V_{\rm H}}{{\rm h}^3}$ (1.6)

Sendo $N_{\rm H}$ é o número de átomos de hidrogênio na solução e ρ a de generação nuclear, $m_{\rm H}$ é a massa do átomo de hidrogênio, K a constante de Boltzmann e h a constante de Planck , a parte configuracional da função partição para os átomos de hidrogênio na fase metálica é

~9

$$\Gamma(T, a_{H}) = \Sigma_{N_{H}} \frac{\left[a_{H} q_{H}^{t}(T)\rho\right]^{N_{H}}}{N_{H}!} \exp \left\{-\frac{N_{H} W_{H}}{KT}\right\} (1.7)$$

$$\Gamma(T, a_{H}) = \exp \{a_{H} q_{H}^{t}(T) p \exp\{\frac{w_{H}}{KT}\}\}$$
 (1.8)

É preciso levar em consideração a rede cristalina. Definimos m (T) como função partição para o cristal perfei to contendo uma quantidade de átomos de hidrogênio diluidos infi tamente. Derivando a função partição completa em relação a ativi dade do hidrogênio na solução obtemos, para uma situação de equi líbrio, o número de átomos absorvidos:

$$\overline{N}_{H} = a_{H} \frac{\partial}{\partial a_{H}} \ln \{m(T) \mid \Gamma(T, a_{H})\}$$
(1.9)

ou

$$\overline{N} = a_{H} q_{H} (T) \rho \exp \left\{ \frac{W_{H}}{KT} \right\}$$
(I.10)

Comparamos as atividades da fase gasosa e da fase absorvida, respeitando a equação (1.2) e a equação equivalente para os potenciais químicos

Denominando: $I_{1} = a_{H_{2}}^{I_{2}}$ (I.11)

- X_D energia de dissociação da molécula de hidrogênio no seu estado fundamental em dois átomos de hidrogênio nos seus est<u>a</u> dos fundamentais.
- A momento de inércia da molécula de hidrogênio. $(2 \pi 2m_H KT) \frac{1}{2}$ função partição translacional para a molécula dehhh

$$P - \text{ pressão da fase gasosa.}$$

$$Da equação(II.11) e da expressão para a atividade da fase gasosa temos
$$a_{H} = \left(\frac{p}{KT}\right) \left[\frac{1/2}{h^{3}} \left(\frac{2\pi}{h^{2}} \frac{2m_{H}}{KT} \frac{KT}{h^{2}} - \frac{2}{2} \right] \left[\frac{2\pi}{2} \frac{2m_{H}}{kT} \frac{KT}{h^{2}} - \frac{2\pi}{2} \right] \left[\frac{1}{2} \frac{2\pi}{2} \frac{2m_{H}}{kT} \frac{KT}{h^{2}} - \frac{2\pi}{2} \right] \left[\frac{1}{2} \frac{2\pi}{kT} \frac{2\pi}{kT} \frac{2\pi}{kT} \frac{2\pi}{kT} \frac{2\pi}{kT} \right] \left[\frac{1}{kT} \frac{2\pi}{kT} \frac{2\pi$$$$

Combinando-se as expressões acima obtem-se o n<u>ú</u> mero de átomos de hidrogênio absorvidos em uma situação de equ<u>i</u> líbrio:

$$\vec{N} = V_{\rm H} p^{1/2} \left(\frac{m_{\rm H}^3}{16\pi A^2 h^2 KT} \right) \exp \left\{ \frac{W_{\rm H} - 1/2 X_{\rm D}}{KT} \right\}$$
(1.13)

O modelo apresentado acima não se aplica às matrizes exotérmicas uma vez que, neste caso existe um tipo de ligação do hidrogênio nos átomos do metal. Trata-se os átomos de hidrogênio como localizados. Se existe N átomos no metal, con sidera-se que a cada um deles podem estar ligados a átomos de hidrogênio. O número a pode ser pequeno. Mudanças na estrutura cristalina são desconsideradas.

A parte configuracional da função partição fi

-11

$$\Gamma(\mathbf{T}, \mathbf{a}_{H}) = \Sigma_{N_{H}} \frac{(\alpha N)!}{N_{H}! (\alpha N - N_{H})!} \left(a_{h}q_{h}(\mathbf{T}) \rho \right)^{N_{H}} \exp(\frac{N_{H} W_{H}'}{KT})$$
(1.14)

$$\Gamma (\mathbf{T}, \mathbf{a}_{\mathrm{H}}) = 1 + \mathbf{a}_{\mathrm{H}} q_{\mathrm{H}}^{(\mathrm{T})} \rho \exp \left(\frac{\mathbf{W}_{\mathrm{H}}}{\mathrm{KT}}\right)$$
 (1.15)

onde

ca:

- W_H' é a energia ganha na transformação de um átomo de hidrogênio livre no seu estado fundamental em um hidrogênio ligado, intersticial, no seu estado fundamental.
- q_u(T) é a função partição vibracional do hidrogênio na rede metálica.

O número de átomos de hidrogênio na rede, em uma situa ção de equilibrio é:

$$\overline{N}_{H} = \alpha N \frac{\underset{H}{a} q_{H}^{(T)} \rho \exp \{W_{H}^{\prime}/KT\}}{1 + a_{H}^{} q_{H}^{}(T) \rho \exp\{W_{H}^{\prime}/KT\}}$$
(1.16)

Pode-se mostrar que esta equação é equivalente a fórmula de absorção de Langmuir.

Definindo

$$B = \frac{KT (2m_{H}^{2} \pi KT)^{3/2}}{h^{3}} = \frac{8 \pi^{2} AKT}{h^{2} \rho^{2}}$$
(I.17)
e comparando com a fase gasosa obtem-se:

$$\frac{\bar{N}_{\rm H}}{\alpha N} = \frac{B {\rm p}^{1/2}}{1 + B {\rm p}^{1/2}}$$
(1.18)

Estes dois tratamentos se aplicam bem, cada um a seu tipo de matriz, para a região de solubilidade ideal. Entretanto, efeitos ccoperativos, vinculados à mudanças de vo lume da rede cristalina tornam necessários considerar energias de interação entre os hidrogênios absorvidos nos sítios.

I.4- Classificação dos sistemas metal hidr<u>o</u> gênio.^Pode ser feita a partir da tabela periódica ¹¹.

Os hidretos iônicos são:

- a) Metais alcalinos do Li ao Cs;
- b) Ca, Sr, Ba e provavelmente Mg;
- c) Hidretos MH₂ dos lantanídeos com estado II estável, o que corresponde a um configur<u>a</u> ção f⁷ ou f¹⁴ isto é, com a camada orbi tal completa. Exemplos: EuH₂, YbH₂;
- d) possivelmente outros lantanídeos que formam compostos MH₃ próximos da composição estequiométrica.

Os hidretos metálicos são:

- a) Todos os outros hidretos de lantanídeos e
 ScH₂ e YH₂;
- b) os hidretos dos actinídeos;
- c) os hidretos dos elementos de transição,
 com a possível exceção de CuH.
- Os hidretos covalentes são:
- a) compostos voláteis:
 - i) metais do grupo do carbono;
 - ii) metais dos grupos principais da tabela seguintes, AsH₃, PH₃;
- iii) provavelmente os hidretos transientes juntamente com TiH_A .
- b) compostos não voláteis, polimétricos ou com ligação deficiente em elétrons:
 - i) Boro
 - ii) Berílio, Alumínio e Gálio.

Os hidretos não incluídos estão em posição

intermediária:

- a) MgH₂, intermediário entre os iônicos e os deficientes em elétrons, tendendo mais p<u>a</u> ra os iônicos,
- b) ZnH₂ e provavelmente CuH estão entre os i<u>ô</u> nicos, polímeros covalentes e metálicos,
- c) Os sólidos, hidretos de baixa valência dos elementos dos grupos principais como por exemplo GeH₂ e AsH_x estão, provavelmente, entre os metálicos e os covalentes.

Os hidretos e ternários e os mistos seguem uma classificação do mesmo tipo da dada acima.

I.5- A regra de Van't Hoff:

Desde o momento em que foi possível fazer medidas mais precisas das isotermas de absorção ¹² foram obtidas curvas deste tipo (fig.2):

Estudos de raios X e de difração de neutrons mostram o seguinte: De A até B temos a solução de hidrogênio no metal. De C em diante temos o 'monohidreto'. De B até C temos as duas fases coexistindo. No trecho BC ocorre um patamar, indican do a existência de uma transição de fase - desde que a tempera tura seja menor do que a temperatura crítica do sistema. Esta temperatura, que é característica do sistema é aquela, acima da qual, para qualquer pressão o sistema só apresente uma face sólido.º monohidreto a que nos referimos acima não é estequiométrico.

Observa-se que a pressão do patamar obedece a seguinte relação¹³:

$$\log p = A + \frac{B}{T}$$
(I.20)

Para uma substância pura pode-se mostrar que esta equação é,aproximadamente:

$$\frac{\ln p}{R} = \frac{\Delta S^{O}}{R} + \frac{\Delta H^{O}}{RT}$$
(I.21)

Para uma mistura, que é o que nos interessa, as constantes não são mais, necessariamente, proporcionais as variações de entropia e de entalpia.

Os modelos que trataremos a seguir serão assu<u>n</u> to do capítulo seguinte. Aqui serão tratados rapidamente.

Nos parágrafos anteriores tratamos de modelos que mostram-se insatisfatórios na medida em que efeitos cooperativos tornam-se significativos. De todos os sistemas que aprese<u>n</u> tam esta característica o mais estudado é o paládio-hidrogênio . Contudo o problema ainda se encontra em aberto, tendo suscitado diferentes interpretações¹³.

O primeiro modelo satisfatório criado visando a compreesão das isotermas do sistema Pd-H foi proposto por Lacher¹⁵. Neste modelo a energia média de absorção total de N_H átomos de hidrogênio, todos no seu estado fundamental é:

$$E = -N_{\rm H} \left({}^{\rm W}_{\rm H} + \frac{N_{\rm H} {}^{\rm W}_{\rm H}_{\rm H}}{2 \alpha N} \right)$$
(1.22)

Vistor do

onde ^WHH>O é a energia de interação entre os átomos absorvidos. W_H > 0.

A função partição para os hidrogênios absorvi

dos é:

$$\Gamma (T, a_{H}) = \sum_{N_{H}} \frac{\alpha N!}{N_{H}! (\alpha N - N_{H})!} (a_{H} \rho q_{H}(T))^{N_{H}} exp(\frac{N_{H}W_{H}}{KT} + \frac{N_{H}^{2} W_{HH}}{2\alpha NKT})$$
(1.23)

Definindo a fração de sítios ocupados como:

$$\theta = \frac{N_{H}}{\alpha N}$$
(I.24)

Obtemos a atividade química:

$$a_{H} = \frac{\theta}{1 - \theta} \frac{1}{\rho q_{h}(T)} \exp\left(\frac{1}{\kappa T} \left(W_{H} + \theta W_{HH}\right)\right)$$
(1.25)

Comparando com a fase gasosa obtem-se a isoterma:

$$p = \frac{(2\pi 2m_{H} KT)^{3/2}}{h^{3}} \frac{8\pi^{2} AKT}{2h^{2}} \frac{KT}{q_{H}^{2} (T)} (\frac{\theta}{1-\theta})^{2} e^{x_{P}} \left(\frac{-1}{KT} (W_{H} - \frac{x_{D}}{2} + \theta W_{H})\right) (1.26)$$

A partir das condições[†]que determinam ^o ponto crítico obtemos

$$W_{\rm HH} = 4 \ \rm KTc \tag{1.27}$$

Lacher tomou a temperatura crítica como 568K.

$$W_{\rm HH} = 4514 \ {\rm Cal/mole}$$
 (I.28)

A energia média de ligação dos hidrogênios a um sítio é obtida através de¹³:

 $\log p/atm = 4.1018 - 1877.82 / T$

Obtem-se:

$$W_{\rm H} = \frac{X_{\rm D}}{2} = 2039 \,\,{\rm Cal/mole}$$
 (I.30)

Os resultados teóricos reproduzem razoavelmen te bem os resultados experimentais, isto é, as isotermas obser vadas. Contudo as isotermas obtidas através do modelo de Lacher apresentam como característica marcante uma simetria em torno de $\theta = 0.5$. Este resultado esta em desacordo com os dados experimen tais.

†Estas condições serão discutidas no capítulo II.

(I.29)

Harasima¹⁶ propos que a assimetria verificada nas isotermas devem-se a variação de volume sofrida pela matriz metálica devido a absorção de hidrogênio. A energia média total é escrita como:

$$E = -N_{\rm H} W_{\rm H} + \frac{N_{\rm H} W_{\rm HH}}{2 \alpha N} + \frac{(\frac{\partial W_{\rm H}}{\partial V})}{\partial V} V = V_{\rm O} \qquad (V - V_{\rm O}) + \frac{N_{\rm H} W_{\rm HH}}{2 \alpha N} \frac{(\frac{\partial W_{\rm HH}}{\partial V})}{\partial V} V = V_{\rm O} \qquad (V - V_{\rm O}) \qquad (V - V_{\rm O})$$

onde V_0 é o volume inicial do paládio e V é o volume atingido pelo metal após absorver N_H átomos de hidrogênio. A introdução da variação volumétrica mostra como consequência o aparecimento de uma assimetria na transição de fase de primeira ordem em relação a θ_c . Contudo os resultados só são melhores que os de Lacher nas temperaturas próximas à temperatura crítica.

Em seu modelo, Harasima trata as derivadas que aparecem na expressão (i.61) como parametros a serem ajustados. Este modelo aplicado ao caso de um metal que se contrai ao absorvedor hidrogênio, por exemplo LaH_{2+x} , também produzi ria a assimetria verificada em sitemas que se dilatam como o PdH. A contração observada no caso do LaH_{2+x} é da 0,001 A no parametro de rede para uma absorção de hidrogênio que corres ponde a um aumento de 0,017 em x^{17} .

I.7- O modelo de Rees

O hidreto de zircônio apresenta varias fases¹⁸. Para explicar isto Rees¹⁸ apresentou dois modelos. Discutire mos apenas o primeiro. O modelo baseia-se na idéia de que en quanto o hidrogênio é absorvido pelo metal, os sítios disponíveis não são mais equivalentes. O modelo apresenta as seguin tes características:

 a) Os átomos de hidrogênio ocupam apenas os sítios intersticiais na estrutura da rede,

b) a rede metálica é perfeita,

c) mudanças na simetria da rede não mudam o número de sítios,

d) a energia de um átomo de hidrogênio no si tio intersticial em relação a um hidrogênio livre é independen te da temperatura e das variações na rede,

c) a energia de interação entre os pares de átomos intersticiais é independente das variações na temperatura, na estrutura da rede, tamanho de célula, número de átomos de hidrogênio.

Postulam-se as seguintes composições este quiométricas:

Os sítios não são equivalentes e denomina mos de sítio a àquele em que temos um átomo de hidrogênio por m sítios intersticiais. Existem N_a sítios tipo a. A energia de absorção de N_a átomos de hidrogênio é:

$$E = -N_a \left(\frac{N_a W_a}{N}\right)$$
(1.33)

N é o número total de sítios no cristal per feito. Cada átomo de hidrogênio tipo a cria α sítios tipo b . Por sua vez toda a vez que um hidrogênio é absorvido em um s<u>í</u> tio tipo b cria β sítios tipo c. Estes por sua vez ao absorve rem hidrogênios também criam sítios e assim por diante.

$$Q_{i} = (a_{i} q_{i})^{N_{i}} \frac{[z_{i}N_{i}]!}{N_{i}!([z_{i}N_{i}]-N_{i})} \exp(\frac{N_{i}W_{i}}{kT} + \frac{N_{i}^{2}W_{i}}{kT[z_{i}N_{i}]}) \quad (1.34)$$

onde

$$\begin{bmatrix} z & N_i \end{bmatrix} = N_i = a \qquad (1.35)$$

$$\begin{bmatrix} \mathbf{Z}_{i} & \mathbf{N}_{i} \end{bmatrix} = \alpha \mathbf{N}_{i} \mathbf{i} = \mathbf{b}$$
 (1.36)

$$\begin{bmatrix} z & N \\ i & i \end{bmatrix} = \alpha \beta N, i = c$$
 (1.37)

A função partição é dada por:

 $\Gamma = (T, a_{a}, a_{b}, \dots, N_{a}, N_{b}, \dots) = \Sigma_{N_{a}} \Sigma_{N_{b}} (1.38)$

Para as concentrações:

$$\theta_a = \frac{N_a}{N}$$
(I.39)

-18

$$\theta_{\rm b} = \frac{N_{\rm b}}{\alpha N} \tag{1.40}$$

$$\theta_{\rm C} = \frac{N_{\rm C}}{\alpha\beta N} \tag{1.41}$$

Pode-se mostrar que:

$$a_{a} = \frac{1}{q_{a}(T)} \frac{\theta_{1}}{1-\theta_{a}} (1-\frac{\theta_{b}\alpha}{\theta_{a}}) \exp \left\{\frac{-1}{KT} (W_{a}+2\theta_{a}W_{aa}-\frac{\theta_{b}}{\theta_{a}})^{2} W_{bb}\right\}$$
(1.42)

$$a_{b} = \frac{1}{q_{b}(T)} \frac{\theta_{b}}{1 - \theta_{b}} \left(\frac{1 - \frac{\theta_{c}}{C}}{\theta_{b}} \frac{\theta_{c}}{KT} \right) \left\{ \frac{-1}{KT} \left(\frac{W_{b}}{W_{b}} + \frac{2W_{bb}}{\theta_{b}} \frac{\theta_{b}}{\theta_{b}} - \frac{\beta W_{cc}}{\theta_{b}} \frac{\theta_{cc}}{\theta_{b}} \right) \right\}$$
(1.43)

Fazendo a aproximação:

$$\{1 - \frac{\theta_{b}}{\theta_{a}} \exp\{(\frac{\theta_{b}}{2})^{2} \frac{W_{bb}}{\theta_{b}}\}\}^{\theta_{a}} \sim 1$$
(I.44)

e comparando com a fase gasosa Rees obteve:

$$p = \frac{T^{7/2}}{c q_{a}^{2}(T)} \left(\frac{\theta_{a}}{1-\theta_{a}}\right)^{2} \exp\{\frac{-1}{KT} \left(W_{a} + 2\theta_{a}W_{aa} - \frac{X_{D}}{2}\right)\}$$
(1.45)

$$p = \frac{\pi^{7/2}}{c^2 q_b^2} \left(\frac{\theta_b}{\theta_a - \theta_b} \right)^2 \exp\left\{ \frac{-1}{c} \left(\frac{w_b}{b} + \frac{2\theta_b}{\theta_b} \frac{w_b}{w_{bb}} - \frac{X_b}{D} \right) \right\}$$
(1.46)

Das condições para o poto crítica, como pode ser visto no capítulo seguinte calcula-se as energias de interação em função das temperaturas críticas:

$$W_{ii} = 2K T_{ci}$$
(I.47)

O modelo foi aplicado aos resultados experimentais de forma satisfatória¹⁹.

I.8- O modelo de Libowitz

Nos estudos dos hidretos de urânio, Libowitz²⁰ utilizou o mesmo tratamento de Lacher mas considerou a existência de uma rede de hidrogênio onde foram sendo introduzidos át<u>o</u> mos de metal com defeitos. Com:

K	(T)	-	função da	temperatura,								
Z			número de	coordenação de sítios de hidrogênio em torno								
			de outros sítios,									
w _v	,	-	energia ne	ecessária para formar uma lacuna,								

W_{un}, – energia de interação entre as lacunas,

Obtem-se:

$$\ln p = \ln K(T) + 2 \ln \left(\frac{\theta}{1 - \theta}\right) + \frac{1}{KT} \left(X_{D} - W_{V} + 2W_{VV}(1 - \theta)\right)$$
(1.48)

Libowitz considerou a possibilidade de que as deficiências em hidrogênio eram devidas ao excesso de metal, na forma de intersticios metálicos²¹. A comparação com os resultados experimentais mostrou que o caso das vacâncias em hidrogê nio apresenta melhor resultado.

Tacheuchi²² considerou modelo semelhante para estudar o hidreto de plutônio. Considerou-se entretanto dois t<u>i</u> pos de sítios, o octaedral e o tetraedral. Além das interações entre os hidrogênios absorvidos em cada sítio, lovou em conta a interação entre os hidrogênios absorvidos em sítios diferentes. No entanto este termo, neste modelo, contribui, a uma dada temperatura, para a pressão com um fator constante em relação a concentração de hidrogênio absorvido.

I.9- A regra da estabilidade reversa e os estudos de Miedema:

No caso dos hidretos de LaNi os estudos mais importantes são os de Miedema²³. Entre os estúdos desenvolvi dos está o da regra da estabilidade reversa. Esta regra diz que quanto menor estável é um composto binário, mais estável é o hidreto que se forma com esta liga.

No caso do $L_a N_{1} H_6$ se substituirmos N_i por P_d a estabilidade diminui, enquanto se substituirmos o níquel por C_0 , F_e , C_r aumentamos a estabilidade do hidreto. Uma represent<u>a</u> ção esquemática da regra é mostrada no gráfico da figura três*o*n de se observa que o calor da formação dos hidretos é aproxim<u>a</u> mente constante mas estes serão mais estáveis da esquerda para a direita na medida em que nesta direção diminui a estabilidade da liga binária.

Miedema²⁴ apresentou um modelo que permite uma descrição quantitativa da formação dos hidretos. Neste mo delo é possivel estimar o calor de formação destes. Numa primeira aproximação considera-se que os átomos de metal na liga mantém a sua identidade, ou seja, as células atômicas de Wigner Seitz para a liga são semelhantes às células correspon dentes aos metais puros. Na figura quatro mostramos uma repre sentação gráfica das células de Wigner Seitz no caso de dois metais A e B que apresentam o mesmo volume atômico. A deforma ção ocorrida na formação da liga leva em conta a transferência de carga.

Figura cinco:Tranferência de carga

A céluia A não tem como vizinhas outras cól<u>u</u> las A. O hidrogênio se situa entre as células A e B nas posi cões intersticiais. O contato entre as células A e B se reduz e surge uma grande área de contato entre as células A e H e en tre as células B e H. Miedema mostra que o calor de formação <u>po</u> de ser escrito como:

$$\Delta H (AB_n H_{2m}) = \Delta H(AH_m) + \Delta H(B_n H_n) - \Delta H(AB_n)$$
(1.49)

No caso do $L_a N_{i_5} H_6$ isto é:

$$\Delta H (L_aN_{\frac{1}{5}6}) = \Delta H(L_dI_3) + \Delta H(N_{\frac{1}{5}H_3}) - \Delta H(L_aN_{\frac{1}{5}})$$
(1.50)

O calor culculado é -6 kcal/mole H $_2$. Este resultado é bem próximo do AH medido que é -7.5 kcal/mole H $_2$.

1.1₉ - Modelo protônice X modelo aniônico. Prôs e contras.

Uma grande quantidade de trabalhos experimen tais surgiu nos últimos anos. Devido a considerável melhoranæs técnicas experimentais os resultados de agora são mais confiáveis do que os de vários anos atrãs. Entretanto, o que de mais importante surgiu foram os trabalhos partindo dos primeiros princípios²⁵, isto é. dos cálculos das estruturas de ban das. Um dos problemas que poderia ser resolvido com trabalhos deste tipo é a dúvida quanto so estado do hidrogênio absorvido. Existem muitos argumentos a favor do modelo aniônico e mui tos a favor do modelo protônico. No caso do modelo aniônico con sidera-se que os dois níveis la do átomo de hidrogênio estão abaixo do nível de Fermi do Metal⁹. Ao ser absorvido a hidrogê nio tem seus níveis preenchidos com elétrons da banda de cond<u>u</u> ção do metal e se apresenta na forma de H⁻. Um hidreto aniônico se assemelha a um metal alcalino. No modelo protônico os ní veis ls estão acima do nível de Ferni do motul e o hidrogênie contribui com seu elétron para a banda de condução do metal e se apresenta na forma de próton⁹.

Os argumentos a fuver do prueso - pricônico

a) Em grande número de hidretos o hidrogênio é bastante movel e apresenta uma pequena energia de ativação pa ra difundir. Atripui-se isto, a mobilidade, ao pequeno tamanho do proton. Isto permitiria o movimento livre através da rede e da barreira de potencial entre os ions metálicos.

b) A suscetibilidade magnética do paládio d<u>i</u> minui a medida que hidrogênio é absorvido: $P_0 P_{0,06}$ é diamagnético. Isto se atribui ao preenchimento da banda de condução do paládio. No final haveria o parametro dos eletrons de valência.

c) Se um potencial é aplicado a um hidreto me como o hidreto de paládio ou de titânio ou de tantalo, o hidro gênio migra para o cátodo. Este efeito é um efeito de volume e não de superfície.

Contudo Gibb⁵ argumenta que estes efeitos ta<u>m</u> bém podem ser aplicados sem levar em conta o modelo protênico:

 a) Mobilidade do hidrogênie - o fato de que o próton tem grande mobilidade não indica que é a espécie dominante no sólido. Gibb considera o prócon como um estado excita do do hidrogênio e do H⁻ e o fato de ser muito pequeno leva a ser dominante nas observações experimentais mesmo que estivesse presente em quantidade menor do que o hidrogênio ou H⁻.

b) Suscetibilidade magnética - Conforme Gibb a seguinte mostra que não é absorção de hidrogênio que faz com que o hidreto de paládio se torne diamagnético. O paládio au menta de volume ao absorver o hidrogênio. Se retirarmos o hi drogênio do paládio, a baixas temperaturas, a rede do paládio renanescente é diamagnética. O diamagnetismo é, portanto, re sultado da expansão da rede do paládio e não da absorção de h<u>i</u> drogênio.

c) Migração para o cátodo - A migração do h<u>i</u> drogênio para o cátodo não pode ser explicada somente em ter mos da carga. Já se observou a migração do hidrogênio tanto em direção do cátodo quanto em direção no ánodo. Comparando — com

uma liga metálica observa-se que no caso, por exemplo, o L_1C_2 , ambos metais migram para o cátodo.

Gibb admite a existência do próton na rede dos metais que absorvem hidrogênio mas não de sua presenças como constituinte majoritário. Ele apresenta também uma série de fatores favoráveis ao model aniônico:

a) Cálculo das distâncias metal-hidrogênio , quando se leva em consideração o número de coordenação, a partir do raio de cation e do ion H⁻ estão de acordo com as dista<u>n</u> cias medidas. Neste cálculo é importante utilizar o valor de 1.3 Å para o raio de H⁻e não o raio do ion livre.

 b) Cálculos de energia da rede considerando uma rede iônica, estão de acordo com os valores observados.

c) A semelhança da estrutura dos hidretos com a estrutura dos alogênios é um indício favorável ao modelo ani $\hat{0}$ nico.

d) Em um grande número de metais o hidrogênio e o oxigênio coexistem. Isto seria pouco provável se o hidrogênio estivesse na forma de próton. Isto é razoável se temos H⁻ e 0^{2-} .

Além destes argumentos apresentamos por Gibb, recentes trabalhos a favorecer o modelo aniônico²⁶.

II.1-Introdução

O modelo de Lacher ,citado no capitulo anterior será,neste capítulo ,estudado em detalhe.Estudaremos,então a absorção de hidrogênio por parte de um metal que possui um único tipo de sítio onde pode se localizar este hidrogênio .O sistema sempre apresentará uma fase gasosa em equilíbrio com a fase absorvida.Tratamos na primeira parte deste capítulo apenas da fase gasosa.

O sistema também apresenta uma ou duas fases absorvidas.Isto esta descrito no terceiro parágrafo.No quarto parágrafo consideramos variações no parametro e rede.Na quinta parte comparamos as isotermas obtidas atraves dos modelos apr<u>e</u> sentados com os resultados experimentais.Maior enfase é dada ao caso do sistema PdH por este ser mais conhecido.

II.2-Fase gasosa

Consideramos a fase gasosa como constituida por moléculas de hidrogênio.Os dois átomos estão ligados atravésde um potencial de Morse representado na figura cinco²⁷.

Este potencial pode ser aproximado por:

$$u_{e} = \begin{bmatrix} 0 & r < a \\ D_{o} & r = a \\ \frac{D_{e}}{r^{2}} & r > a \end{bmatrix}$$
 (II.1)

onde r é a distância entre os núcleos dos átomos que compõe a molécula.

Existem uma série de níveis de energia que podem ser ocupados pela molécula.Como onúmero destes estados quânticos é muito maior do que o número de moléculas N,o sis tema pode ser descrito por uma distribuição de Boltzmann.

Sendo q a função partição para uma molécula, a função partição fica:

$$Q = \frac{1}{N!} q^{N}$$
(II.2)

A função partição para uma molécula de hidrogênio pode ser escrita em termos das contribuições translacionais,vibracionais,rotacionais e eletrônicas como:

$$q(V,T) = q_{+}(V,T)q_{v}(V,T)q_{r}(V,T)q_{e}(T)$$
 (II.3)

onde V e T são ,respectivamente ,o volume ocupado pelo gás e a temperatura do sistema.

Resolvendo o problema da partícula confinada a uma caixa cúbica de lado L determinamos q_t(V,T).Os autoesta^a dos de energia são:

$$E_{1_{x}1_{y}1_{z}} = -\frac{h^{2}}{8mL^{2}}(1_{x}^{2}+1_{y}^{2}+1_{z}^{2})$$
(II.4)
$$I_{x}, I_{y}, I_{z} = 0, \pm 1, \pm 2, \dots$$

com

onde h é a constante de Planck e m a massa da partícula.

Pode-se mostrar que a função partição translacional é

$$q_t(V,T) = (-\frac{2^{\pi}(2m_H)kT}{h^2})^{3/2} v$$
 (II.5)

onde k é a constante de Boltzmann.

$$q_e(T) = w_{el} exp(-\frac{E_{el}}{kT})$$
 (II.6)

w_{el} é a degenerecência do nível eletrônico de

energia E_{el}.

Obtemos a contribuição vibracional tratando o problema do oscilador harmônico unidimensional.Os autovalores de energia são dados por:

$$E_{n} = (n + \frac{1}{2}) hv$$
[n=0,1,2,.... (II.7)

sendo v a frequência.

A massa reduzida da molécula oscila em um pote<u>n</u> cial aproximadamente parabólico que pode ser escrito como:

$$u_e(r) = -D_e + \frac{1}{2} - f(r - r_e)^2$$
 (II.8)

As constantes são

r_-posição do mínimo

D_ -profundidade do poço de potencial

f-é a constante de força

$$\mathbf{f} = \left(\frac{\partial^2 \mathbf{u}_{\mathbf{e}}}{\partial r^2}\right) \qquad (II.9)$$

A frequência do oscilador é

$$\nu = \frac{1}{2\pi} \sqrt{\frac{2f}{m_{\rm H}}} \tag{II.10}$$

A função partição para o caso vibracional com

$$\theta_{\mathbf{v}} = \frac{h\nu}{k} \tag{II.11}$$

$$\mathbf{q}_{\mathbf{v}} = \frac{\exp(-\theta_{\mathbf{v}/2\mathrm{T}})}{1 - \exp(-\theta_{\mathbf{v}/\mathrm{T}})}$$
(II.12)

No caso rotacional sabemos que a energia é

$$E_{j} = j(j+1) - \frac{h^{2}}{8 \pi^{2}I}$$
(II.13)
j=0,1,2,....

com degenerecência

$$w_{j} = 2j+1$$
 (II.14)

O momento de inercia para a molécula de hidrogê-

nio é

$$I = \frac{mr_e^2}{2}$$
(II.15)

Utilizando o número de simetria a ,que é um para as moléculas não simétricas e dois para as simétricas:

$$q_{r} = -\frac{1}{\alpha} \sum_{j} w_{j} \exp(-E_{j}/kT)$$
 (II.16)

usando

$$\theta_{r} = \frac{h^{2}}{8 \pi^{2} Ik}$$
(II.17)

$$\mathbf{q}_{\mathbf{r}} = \frac{1}{\alpha} \qquad \sum_{j} (2j+1) \exp(-j(j+1)\theta_{\mathbf{r}}/T) \qquad (II.18)$$

Para temperaturas muito mais altas que θ_r temos

$$q_{\mathbf{r}} \xrightarrow{\mathbf{T} >> \theta_{\mathbf{r}}} \frac{1}{\alpha} \int_{0}^{\infty} (2j+1) \exp\{-j(j+1) \frac{\theta}{\mathbf{r}}/\mathbf{T}\} dj = \frac{\mathbf{T}}{\alpha} \quad (II.19)$$

Se a temperatura for comparavel a θ_r :

$$q_{r} = \frac{T}{\alpha \theta_{r}} (1 + \frac{\theta_{r}}{3T} + \ldots)$$
 (II.20)

No nosso caso

$$a=2$$
(II.21)
$$q_{r} = \frac{T}{2\theta_{r}}$$
(II.22)

A função partição completa para a fase gasosa

fica

$$Q = \frac{1}{N!} \left\{ \left(\frac{2\pi (2m_{\rm H}) \, kT}{h^2} \right)^{3/2} \, \frac{v \, \exp(-\theta v/2T)}{1 - \exp(-\theta v/T)} \cdot \frac{T}{2\theta_{\rm r}} \, w_{\rm el} \, \exp(-E_{\rm el}/kT) \right\}^{\rm N}$$
(II.23)

Vamos considerar o comportamento da fase gasosa como sendo o comportamento de um gas ideal

e o potencial químico por

.

$$\stackrel{\text{W}}{g} = \left(\begin{array}{c} \frac{\partial F}{\partial N} \right) \\ \frac{\partial P}{\partial N} \end{array} \right) _{\text{T},\text{P}} = -kT \ln\left(\frac{Q}{N} \right)$$
(II.26)

Usando

$$D_{o} = -\frac{k\Theta}{2} - E_{el}$$
 (II.27)

chegamos a:

$$\mu_{g} = -kT \ln\{\left(\frac{2\pi(2m_{H})k}{h^{2H}}\right) - \frac{T^{7/2}}{2\Theta_{r}} + \frac{\exp(-\frac{D_{O}/2T}{2})}{1 - \exp(-\frac{\Theta_{V}/T})} + kT \ln p$$
(II.28)

Para a molécula de hidrogênio temos os valores tabelados²⁷

$$D_{o} = 4.454 \text{ eV}$$
 (II.29)

$$\theta_{\mathbf{r}} = 85.4 \mathrm{K}$$
(II.31)

Definindo

$$\sigma = \left(\frac{2\pi \left(2m_{\rm H}\right) k}{h^2}\right)^{3/2} \frac{k}{2\theta_{\rm r}}$$
(11.32)

podemos aproximar o potencial químico por $\mu_{g} = -kTln(\sigma T^{7/2}) + kT lnp \qquad (II.33)$ Calculando o valor de apartir dos valores tabelados obtem-se $\sigma = 4,2868 \ 10^{-4} \ \text{atm} / (K)^{7/2} \qquad (II.34)$ O potencial químico da fase gasosa será descrito

pelo expressão (II.33) uma vez que forem satisfeitas as seguintes
aproximações:

- a-opotencial de interação entre os átomos de hidrogênio deve ser do tipo utilizado.
 b-deve ser aplicável a distribuição de Boltzmann
 c-devem ser razoáveis as aproximações feitas na determinação das energias translacionais,vibra cionais mrotacionais e eletrônicas.
 - d- considerar T>>θ_r. e-considerar o gas de hidrogênio como sendo ideal f-considerar os estados vibracionais não excitado

II.3-Fase absorvida

Consideramos a absorção de hidrogênio na rede cri talina metal e supomos que existem M sítios aos quais podem estar ligados N átomos de hidrogênio.A energia livre do metal puro por sítio é F_m^* .a função partição para o metal puro é

$$Q_{\rm m}^{\rm =} \exp\left(-\frac{MF_{\rm m}^{\star}}{kT}\right) \qquad (II.34)$$

Cada átomo de hidrogênio pode estar ligado a um sítio.Neste modelo o hidrogênio apresenta dois estados:ligado e livre.O estado livre corresponde a fase gasosa e foi tratado no parágrafo anterior.

Como o número de sítios euqivalentes mas distinguíveis é maior do que o número de átomos de hidrogênio abso<u>r</u> vidos ,isto é no estado ligado,existe uma degenerecência configuracional que deve ser levada em conta quando construimos a função partição .0 número de maneiras em que N átomos indistinguíveis podem ser distribuidos nos M sítios é

Consideremos uma aproximação de campo médio e chamemos de ε a energia de ligação do hidrogênio ao sítio. Seja u a energia de interação entre os pares de hidrogênios nos sítios ocupados.Cada um destes hidrogênios enxerga os demais hidrogênios absorvidos através desta energia média de in teração.Sendo q_h(T) a função partição vibracional do hidrogênio em torno do seu sítio e lembrando que este hidrogênio interação com a fração dos hidrogênios absorvidos:

$$\frac{\theta}{M} = \frac{N}{M}$$
, (II.36)

segue-se que

$$q(T) = q_h(T) \exp\left(\frac{\varepsilon + \theta u}{kT}\right)$$
 (11.37)

A função partição canônica de N átomos absor-

vidos é

$$Q = \frac{M!}{N!(M-N)!} q^{N}$$
(II.38)

Usando a aproximação de Stirling para M grande ln(M!)=M lnM -M (II.40)

obtemos

$$F = -kTln\left(\frac{M}{M-N}\right) + kTN ln\left(\frac{N}{M-N}\right) + -N\left(\epsilon + \theta u\right) - NkTlnq_{h}(T) + MF_{m}^{*}$$
(II.41)

que pode ser escrita como

$$F = -MkT\{-\ln(1-\theta) - \ln(-\frac{\theta}{1-\theta}) + \frac{\theta}{kT}(\epsilon + \theta u) + \theta \ln q_h(T) - F_m^*\}$$
(II.42)

O potencial químico é dado por

$$\mu = \left(\frac{\partial F}{\partial N}\right)_{V,T}$$
(II.43)

$$\mu = kT \ln\left(\frac{\theta}{1-\theta}\right) - \varepsilon - 2\theta u - kT \ln q_h(T) \quad (II.44)$$

Relacionamos as duas fases tendo em vista o equilíbrio termodinâmico.Uma vez que o hidrogênio esta,na fase gasosa,na forma molecular e dissocia-se ao ser absorvido ,ocor• re a reação

$$H_2 \stackrel{\leftarrow}{\rightarrow} 2H$$
 (II.45)

Em vista disto ,numa situação de equilíbrio,temos para os potenciais químicos:

$$\mu = \frac{1}{2} \mu_{\rm g}$$
 (II.46)

 $kT \ln\left(\frac{\theta}{1-\theta}\right) = -\epsilon - 2\theta u - kT \ln q_h(T) = \frac{1}{2} \{-kT \ln\left(\sigma T^{7/2}\right) + kT \ln p\} (II.47)$

A pressão de equilíbrio entre as duas fases ${f \acute{e}}$

$$p = \frac{\sigma_{\rm T}^{7/2}}{(q_{\rm h})^2} \left(\frac{\theta}{1-\theta}\right)^2 \exp\left(\frac{-2\left(\varepsilon+2\theta u\right)}{kT}\right)$$
(II.47)

Dada a energia de ligação ε , a energia de interação u e o parametro $q_h(T)$ podemos determinar o comportamento da pressão em função da concentração de hidrogênio absorvido conforme esquematizado na figura seis.

Figura seis:esquema de isotermas

Se compararmos esta curva com a da figura dois podemos concluir o seguinte: A temperatura ${\rm T}_{_{\rm C}}$ é chamada de temperat§ra crítica.Acima desta temperatura ,para qualquer pressão o sistema só apresenta uma fase sólida, p é uma função monotônica crescente de θ .Juntamente com o ponto <u>a</u> = θ_c , concentração crítica determinam a pressão crítica.Para pressões acima desta para qualquer temperatura ,o sistema só apresenta uma fase sólida.O ponto (p_c , θ_c , T_c) é chamado de ponto crítico.

Para T< T_c entre <u>b</u> e <u>c</u> o modelo apresenta uma redução na pressão com a aumento da concentração,isto é de sítios ocupados.Tal situação não é física sendo necessário reconstruir a curva neste trecho.Interpretamos tal redução na pre<u>s</u> são como uma indicação de que,neste trecho ocorres uma transição de fase.

Determinamos agora a relação entre a energia média de interação e a temperatura crítica T .

No ponto crítico temos um ponto de inflexão.Em termos matemáticos devemos ter,portanto:

$$\left(\frac{\partial P}{\partial \theta}\right)_{T} = 0 \tag{II.49}$$

$$\left(\frac{\partial^2 P}{\partial \theta^2}\right)_{\rm T} = 0 \tag{II.50}$$

Escrevemos a pressão como

$$p = \sigma T^{7/2} \exp(\frac{2\mu}{kT})$$
 (II.51)

e obtemos as derivadas:

$$\left(\frac{\partial P}{\partial \theta}\right)_{T} = \frac{2P}{kT} \left(\frac{\partial \mu}{\partial \theta}\right)_{T} \qquad (II.52)$$

$$\left(\frac{\partial^{2} P}{\partial \theta^{2}}\right)_{T} = \left\{\frac{2}{kT} \left(\frac{\partial \mu}{\partial \theta}\right)_{T}\right\}^{2} P + \frac{2P}{kT} \left(\frac{\partial^{2} \mu}{\partial \theta^{2}}\right)_{T} (II.53)$$

Portanto no ponto crítico devem estar satisfeitas as condições:

$$\left(\frac{\partial \mu}{\partial \theta}\right)_{\mathrm{T}} = 0 \tag{II.54}$$

$$\left(\frac{-\partial^{2} \mu}{\partial \theta^{2}}\right)_{T} = 0 \qquad (II.55)$$

$$kT_{c} \left(\frac{1}{\theta_{c}} + \frac{1}{1 - \theta_{c}} \right) -2u=0$$
 (II.56)

$$\left(\frac{1}{1-\theta_{c}}\right)^{2} - \frac{1}{\theta_{c}^{2}} = 0$$
 (II.57)

As soluções de (II.57) e (II.56)
$$\theta_{c} = \frac{1}{2}$$
 (II.58)

$$u = 2kT_{C}$$
(II.59)

A pressão pode ser escrita como

$$p = \frac{\sigma T^{7/2}}{(q_h)^2} \left(\frac{\theta}{1-\theta}\right)^2 \exp\left(\frac{-2(\varepsilon+4kT_e\theta)}{kT_e}\right) (II.60)$$

Vejamos agora como reconstruir a isoterma quando

 $T < T_c$.

Isto é

Sabemos que no trecho em que ocorrem as duas fases a pressão é constante

$$p(d) = p(e)$$
 (II.61)

Os pontos <u>b</u> e <u>g</u> limitam a região em que o sistema,sejam quais forem as condições ,deixa de ser homogêneo.As r<u>e</u> giões entre <u>b</u> e <u>d</u> e entre <u>g</u> e <u>e</u> representam estados metaestáveis. Para reconstruir a curva utilizamos a construção de Maxwell .A construção de Maxwell é derivada para a equação de Van de Walls.É obtida portanto em um gráfico de pressão contra volume .No nosso caso isto corresponderia a substituir o volume pelo inverso da concentração .Definimos uma pressão interna.Esta pressão interna é que vai corresponder à pressão da equação de Van der Walls.A ela podemos aplicar a construção de Maxwell e não a p.A pressão interna é

$$\Pi = \left(\begin{array}{c} \frac{\partial F}{\partial M}\right)_{N,T} - F_{m}^{\star} \qquad (II.62)$$

$$II = u\theta^{2} + \ln(1-\theta) kT$$
 (II.63)

As condições para a construção de Maxwell são

a-igualdade das pressões internas: $\Pi(\frac{1}{e}) = \Pi(\frac{1}{d})$ (II.64)

b-igualdade da área entre o patãmar e o'loop ' acima dele e da área entre o patamar e o 'loop'abaixo dele .Isto no gráfico Il contra 1/0 .

$$\int_{\frac{1}{e}}^{\frac{1}{e}} \frac{1}{\theta} d\left(\frac{1}{\theta}\right) = \Pi\left(\frac{1}{e}\right) \left\{\frac{1}{d} - \frac{1}{e}\right\}$$
(II.65)

Resolvendo estas duas equações obtemos a solução d=l-e (II.66) Definindo $\alpha_e = \alpha_d$ apartir de

$$\mathbf{e} = \theta_{\mathbf{c}} + \alpha_{\mathbf{e}} \tag{II.67}$$

$$\mathbf{d} = \theta_{\mathbf{c}} + \alpha_{\mathbf{d}} \tag{II.68}$$

Como o valor da concentração crítica é $\frac{1}{2}$

chega-se a

1...

$$\alpha_{\mathbf{e}}^{\mathbf{z}} = -\alpha_{\mathbf{d}} \tag{II.69}$$

É necessário mostrar que a construção de Maxwell para Ré consistente com a equação(II.61).Isto esta no apen dice. Existe uma simetria no patamar em torno da concentração crítica.

Podemos explorar mais a igualdade das pressões nos pontos <u>e</u> e <u>d</u>. Escrevemos a equação (II.61) como

$$p(\theta_{c} - \alpha_{e}) = p(\theta_{c} + \alpha_{e})$$
(II.70)

Utilizando a equação (II.60), $\theta_c = 1 - \theta_c$ e simplificando chega-se à: $\theta - \alpha_c$ a de u

$$\left(\frac{\frac{\theta_{c}-u_{e}}{\theta_{c}+u_{e}}\right)^{2}}{\theta_{c}+u_{e}} = \exp\left(-\frac{4u_{e}u_{e}}{kT}\right)$$
(11.71)

Introduzindo a expressão para u na equação (II.71) obtemos relação que permite,dada uma isoterma,calcular a temperatura crítica.

$$T_{c} = \frac{T}{4\alpha_{e}} \ln\left(\frac{\theta_{c} + \alpha_{e}}{\theta_{c} - \alpha_{e}}\right)$$
(II.72)

Se temos a temperatura crítica determinamos a curva de coexistência.Para cada temperatura determinamos a comparamos com a equação de Vant Holf. a pressão no patamar e a Se tomarmos o valor da pressão na concentração crítica,a uma temperatura qualquer,

$$p(\theta_c) = \frac{\sigma_T^{7/2}}{(q_h)^{22}} \exp\left(\frac{-2(\varepsilon_r + 2\theta_c u)}{kT}\right)$$
(11.73)

e multiplicarmos pela equação (II.71) teremos como resultado que a pressão em que ocorre o patamar é aquela à concentração crítica:

$$\mathbf{p}(\boldsymbol{\theta}_{c}) = \mathbf{p}(\boldsymbol{\theta}_{c} + \boldsymbol{\alpha}_{e}) \tag{II.74}$$

O modelo apresenta tres pontos em que a curva matemática intercepta o patamar .Tomamos como pressão do patamar aquela determinada à concentração crítica.Tomando o logarítimo desta podemos comparar com a expressão de Van't Hoff.

$$\log(p_{eq}) = \log(\frac{\sigma T^{7/2}}{(q_h)^2}) - \frac{2}{-kT\ln(10)}(\varepsilon + 2kT_c) \quad (II.75)$$

Comparando com a equação de Van't Hoff:

$$(10)^{A} = \frac{\sigma T^{7/2}}{(q_{h})^{2}}$$
(11.76)

$$B = -\frac{2}{k} (\varepsilon + 2kT_c)$$
 (II.77)

Da dependência da temperatura que se mostra na equação (II.76) pode-se concluir que a equação de Van't Hoff deve ser apenas aproximada.

A pressão pode ser escrita como

$$p = (10)^{A} \left(\frac{\theta}{1 - \theta} \right)^{2} \exp \left(\frac{B + (2 - 4\theta) T_{C}}{T} \right)$$
(11.78)

II.4-Efeitos da variação do parametro de rede

O modelo descrito no parágrafo anterior fornece isotermas que são simétricas em relação a concentração crítica. Uma comparação com as isotermas do PdH nos leva a concluir que esta simetria não ocorre.Uma forma de produzirmos uma assimetria é 'levarmos em conta a expansão(ou contração) da rede metálica devido a absorção de hidrogênio.Este modelo foi proposto por Harasima e foi discutido brevemente no parágrafo I.6 .A seguir vamos apresen ta-lo tal como fez o autor citado.Apos faremos alguns comentários Consideremos ,então,a variação de volume

Afenergia de ligação ε e a de interação u são fun ções do volume.Sendo V_o o volume do metal antes da absorção de hidrogênio podemos escrever as energias como:

$$\epsilon = \epsilon_{o} + \left(\frac{\partial \epsilon}{\partial V}\right) \quad (V-V_{o}) \quad (II.79)$$

$$u = u_{0} + \left(\frac{\partial u}{\partial V}\right) \begin{pmatrix} V - V_{0} \end{pmatrix}$$
(II.80)

Considera-se que os termos de ordem superior não contribuem significativamente.

$$Q_{\rm m} = \exp\left(-\frac{MF_{\rm m}^{\star}}{kT}\right) \qquad (II.81)$$

sendo

$$\mathbf{F}_{m} = \mathbf{M} \mathbf{F}_{m}^{\star} \tag{II.82}$$

a energia livre do metal.

De forma análoga ao parágrafo anterior obtemos a energia livre do sistema:

$$\mathbf{F} = -\mathbf{k} \mathbf{T} \mathbf{M} \{-\ln(1-\theta) - \ln(\frac{\theta}{1-\theta}) - \frac{\theta}{\mathbf{k} \mathbf{T}} (\varepsilon + \theta \mathbf{u}) \} + \mathbf{F}_{\mathbf{m}} \quad (\text{II.83})$$

As condições de equilíbrio impõe que a energia livre seja um mínimo tanto no volume inicial V_oquanto no volume V atingido após a absorção.

$$\left(\frac{\partial F}{\partial V}\right)_{N,T,V_{O}} = \left(\frac{\partial F}{\partial V}\right)_{N,T,V=V_{O}} = 0 \qquad (II.84)$$

$$\left(\frac{\partial \mathbf{F}}{\partial V}\right)_{\mathrm{T},\mathrm{N},\mathrm{V}=\mathrm{V}} = 0 \tag{II.85}$$

Supomos $q_h(T)$ constante em relação ao volume

Então

$$\frac{\partial \mathbf{F}}{\partial \mathbf{V}} = \mathbf{M} \ \theta \left(\frac{\partial \varepsilon}{\partial \mathbf{V}} \right) + \theta \left(\frac{\partial \mathbf{u}}{\partial \mathbf{V}} \right) + \left(\frac{\partial \mathbf{F}}{\partial \mathbf{V}} \right)$$
(II.86)

Expandimos
$$\frac{\partial F_m}{\partial M}$$
 em série de Taylor em torno ∂V

$$\frac{\partial \mathbf{F}_{\mathbf{m}}}{\partial \mathbf{V}_{\mathbf{N}_{\mathbf{n}}}} = \left(\frac{\partial \mathbf{F}_{\mathbf{m}}}{\partial \mathbf{V}} \right)_{\mathbf{N}_{\mathbf{n}}^{\mathsf{T}_{\mathbf{n}}^{\mathsf{T}_{\mathbf{N}}^{\mathsf{T}_{\mathbf{N}}}}} \left(\frac{\partial^{2} \mathbf{F}_{\mathbf{m}}}{\partial \mathbf{V}^{2}} \right)_{\mathbf{v}_{\mathbf{n}}^{\mathsf{T}_{\mathbf{n}}^{\mathsf{T}_{\mathbf{N}}}}} \left(\mathbf{V} - \mathbf{V}_{\mathbf{O}} \right) + \cdots$$
 (II.87)

com

$$p = - \left(\frac{\partial F_{m}}{\partial V}\right)_{T,N}$$
(II.88)

chegamos à

$$\left(\frac{\partial \mathbf{F}_{\mathbf{m}}}{\partial \mathbf{V}}\right)_{\mathbf{N}^{T}} = -\left(\frac{\partial \mathbf{p}}{\partial \mathbf{V}}\right)_{\mathbf{T}} \left(\mathbf{V} - \mathbf{V}_{\mathbf{O}}\right)$$
(II.89)

A compressibilidade é

$$= -\frac{1}{V_{o}} \left(\frac{\partial V}{\partial p}\right)_{V=V_{o}}$$
(II.90)

Introduzindo $\Delta V = V - V_0 e$ as equações (II.84), (II.85) e(II.90) em (II.87)

$$\left(\frac{\partial F_{m}}{\partial V}\right) = \frac{\Delta V}{\kappa V_{o}}$$
 (II.91)

Portanto

$$\frac{\Delta V}{\kappa V_{0}} = -M \quad \theta \left\{ \left(\frac{\partial \varepsilon}{\partial V} \right)_{u_{1}} + \theta \left(-\frac{\partial u}{\partial V} \right)_{u_{1}} \right\}$$
(II.92)

Introduzindo (II.92) em (II.79)e em (II.80)e estas , por sua vez
em (II.83) e reagrupamdo os termos temos:

$$F = -MkT \left\{ -\ln(1-\theta) - \ln(\frac{\theta}{1-\theta}) + \frac{\theta}{kT} \left(\epsilon_{0} + \theta u' + \theta^{2} u'' \right) \right\} + F_{\tilde{m}} N kT \ln q_{h}(T) \quad (II.93)$$

de onde derivamos o potencial químico.

к

$$\mu = kTln(\frac{\theta}{1-\theta}) - \varepsilon - 2u'\theta + 3u''\theta^2 - kTlnq_h(T) \quad (II.94)$$

Na determinação do ponto crítico utilizamos as mesmas derivações que foram utilizadas para o modelo de Lacher.Agora élas nos levam as equações.

$$kT_{c}\left(\frac{1}{\theta_{c}(1-\theta_{c})}\right) = 2u' + 6u'' \theta_{c} = 0 \qquad (II.95)$$

$$kT_{c} \left(\frac{\frac{2\theta_{c}}{2} - 1}{\theta_{c}^{2} (1 - \theta_{c})^{2}} \right) + 6u'' = 0$$
 (II.96)

Estas equações apresentam as soluções em termos de θ _c

$$u'' = \frac{kT_c}{6} \frac{2\theta_c - 1}{2} \qquad (II.97)$$

$$u' = \frac{KT_{c}}{2} \frac{3 \theta_{c}^{-2}}{\theta_{c}^{(1-\theta_{c})}}$$
(II.98)

Tomando 0, como sendo a concentração aonde o pa-

tamar corta a curva determinamos as constantes da equação de Van't

Hoff

$$(10)^{h} = \frac{\sigma_{T}^{7/2}}{(q_{h})^{2}} \left(\frac{\theta \star}{1 - \theta_{\star}}\right)^{2}$$
(11.99)

$$B = -\frac{2}{k\ln(10)} (\varepsilon_0 + 2\theta_* u' - 3\theta_*^2 u'')$$
 (II.100)

A primeira crítica a fazer ao modelo de Harasima é apartir da definição da energia de ligação.O termo em ordem zero é obtido se considerarmos uma situação em que ocorre pouca absorção.Neste caso o volume é praticamente o volume inicial.A energia de ligação passa a ser o termo em ordem zero.Isto é ,quando não ocorre a dilatação volumétrica a energia de ligação é o termo em ordem zero.Entretanto,a energia de ligação do modelo de Lacher é obtida se não considerarmos a dilatação da rede Se utilizarmos cas energias de ligação iguais teremos como decorrência que a concentração crítica para Harasima também serã 0,5 .Como se mostra.Escrevemos a energia de ligação de Lacher como

$$\varepsilon_{L} = -\ln (p10^{A}) \frac{kT}{2} - 2 kT_{C}$$
 (II.101)

O termo em ordem zero de Harasima é

$$\epsilon_{0} = -\ln (p 10^{A}) \frac{kT}{2} - 2\theta_{*}u' + 3\theta_{*}^{2}u''$$
 (II.102)

onde a simplificação no logaritimo se deve a(II.100).

Se fizermos que p_c e T_c coincidam nos dois modelos e que $\varepsilon_0 = \varepsilon_L$ podemos igualar (II.101) e (II.102) e obter

$$20_{*}u' + 30_{*}^{2}u'' + 2 kT_{c} = 0$$
 (II.103)

Introduzindo as expressões (II.97) e (II.98) e resolvendo esta equação para a concentração crítica θ_{\star} de Harasima obtemos como solução $\theta_{\star}=0.5$. Com este valor voltamos as expressões (II.97) e (II.98). Como resultado temos

u¹'=0	(11.104)
u'=0	(11.105)

Como conclusão disto temos que não podemos considerar as energias de ligação de Harasima e de Lacher iguais pois r<u>e</u> constituiremos o modelo de Lacher.

As alternativas para a oproblema seriam:
1) Considerar a energia de ligação diferente da de Lacher.
2) Considerar variações na função partição vibracional. Isto foi feito por Tanaka²⁹ que considerou q_h(T) como o de um oscilador harmônico tridimensional com frequência variável. No trabalho de Tanaka a frequência depende da concentração de hidrogênio.
3) Considerar termos em ordem superior em θ.

A consideração de termos em ordem superior em θ

nos leva à:

i

$$p = \frac{\sigma T^{7/2}}{(q_h)^2} \left(\frac{\theta}{1 - \theta}\right)^2 \exp\left(\frac{-2\left(\frac{c_0 + 2\theta u^2 - 3\theta^2 u^{1/2} + 4\alpha^3 u^{1/2}\right)}{kT}\right)}{(11, 106)}$$

As equações para o ponto crítico e a igualdade entre as energias deligação,isto é o termo em ordem zero e a cnergia de ligação de Lacher nos leva às equações

$$\mathbf{u}^{*} = \frac{\mathbf{k}^{\mathrm{T}} \mathbf{c}}{4 \mathbf{c}^{(1-\theta_{\mathrm{c}})^{2}}} \left(-7 + 18\theta_{\mathrm{c}} - 12\theta_{\mathrm{c}}^{2} \right)$$
(II.107)

$$u'' = \frac{2kT_{c}}{3\theta_{c}^{2} (1-\theta_{c})^{2}} (-2+7\theta_{c}^{*}-6\theta_{c}^{2})$$
 (II.108)

$$u^{***} = \frac{kT_{c}}{8\theta_{c}^{3}(1-\theta_{c})^{2}} (1-2\theta_{c})^{2}$$
(II.109)

quando tentamos aplicar a construção de Maxwell para construir os patamares.Jã não fica claro quais são as variáveis que correspondem a pressão da equação de Van der Walls.O uso da pressão inter

na,válido para o caso de Lacher,quando não tinhamos variação no volume ,agora torna-se obscuro,uma vez que a variação no volume agora tambem desempenha o seu papel.

Por seu lado as condições para o ponto crítico, simples antes,agora devem conter mais termos .Estes termos derão ser dependentes do volume.As condições para o ponto crítico nos levarão a outras equações que não as obtidas.

Uma crítica final é quanto a forma de obtenção do potencial químico.Por definição o potencial químico é derivado da energia livre a volume constante. Como consequência disto,quer no modelo de Lacher,quer no modelo que considera a influência da dilatação do parametro de rede,a expressão para o potencial químico é a mesma.Resta a diferença fundamental que é a que ,no segundo caso as energias dependem do volume através de alguma função a ser determinada.

II.5-Comparações com os resultados experimentais

Os resultados obtidos podem ser comparados com o sistema PdH .O fato de que a concentração de hidrogênio absorvido esta relacionado com a raiz quadrada da pressão nos mostra que,pelo menos em grande parte a molécula de hidrogênio se dissocia ao ser absorvida.A fratura e posterior pulverização do metal mostra também que o hidrogênio tende a migrar para falhas ou cavidades no paládio e aí se recombinar³⁰.A altas concentrações de hidrogênio existe sempre a possibilidade de se formar aglomerados de moléculas de hidrogênio, mesmo na fase a ³¹.

Ā temperatura ambiente a saturação de paládio ocorre à 0,606 (θ =1,N=M) átomos de hidrogênio por átomo de paládio.O modelo protônico é bastante sustentado por este fato e pelo fato de que a suscetibilidade magnética cai a zero quando temos esta concentração de hidrogênio no paládio.Enquanto se acreditava que o número de elétrons necessários para preencher a banda d do paládio era 0,6 concluiu-se que o proton iria para a rede e o eletron iria para a banda \underline{d}^{32} .Entretanto ,medidas de De Hass-Van Alphen mostraram que a banda 4d do paládio só possui 0,36 vazios por átomo de paládio.É de se esperar que a presença do hidrogênio induza modificações nas bandas do paládio. Estudos de fotoemissão²⁵ para a fase β do PdH mostram estados de energia ,induzidos pelo hidrogênio ,centrados em torno de 5.4 eV abaixo da energia de Fermi além das bandas d do paládio que se estendem da energia de Fermi até 4.4eV abaixo desta.Estas me didas o cálculos APW tendem a favorecer o modelo aniônico.Uma possível interpretação deste resultados pode ser feita apartir do trabalho de Michel³³..Neste trabalho o hidrogênio foi remov<u>i</u> do quimicamente após a absorção e as medidas de suscetibilidade foram as mesmas que para o PdH .A explicação apresenta da por Gibb é de que o que provoca a variação na suscetibilidade é a variação de volume e não a absorção de hidrogênio.Uma variação de volume provocada por outros meios deverá produzir o mesmo efeito.

Pode-se concluir que o problema do número máximo de hidrogênios absorvidos é antes de tudo um problema eletrônico.Trabalhos partindo dos primeiros princípios são necess<u>á</u> rios .

Determina-se através de difração de neutrons que o hidrogênio ocupa os intersticios octadrais da rede F.C.C. do paládio o que resulta em uma estrutura tipo NaCl (FCC) deficiente em hidrogênio.

A partir de difração de neutrons e de raios X sabe-se que para uma temperatura menor do que a temperatura crí tica a pressão aumenta a medida que o paládio absorve hidrogê nio, à temperatura constante. A partir de certo valor de θ , a pressão torna-se constante e além da fase a surge então outra fase, a fase β também chamada de a'. Estas duas fases coexistem até um determinado valor de θ a partir do qual apenas a fase β pertence. A pressão torna a crescer. Como ambas fases são F.C.C. e como o conteúdo absorvido por cada fase é diferente, é de se esperar que os parametros de rede sejam diferentes. Com efeito: enquanto existe a fase α apenas, o parametro de rede va ria de 3.891 Å à 3.894 Å. Quando as duas fases coexistem, temos o parametro de rede em 3.894 Å (α) e 4.027 Å (β). Na fase ρ o pa rametro de rede varia de 4.027 Å à 4.07 Å 35 .

O patamar onde ocorre a transição de fase não é simétrico em relação ao ponto crítico.

Utilizando o efeito isotópico pode-se mostrar que no caso do paládio é importante levar em conta a não harmonicidade do oscilador harmônico na construção da função parti ção vibracional do hidrogênio na rede³⁴. Pelo próprio fato de que a rede tipo NaCl é incompleta é de se esperar que não tenh<u>a</u> mos um oscilador isotrópico.

Na tabela um, apresentamos valores da temperatura e pressão do ponto crítico, bem como a relação entre os átomos de paládio e hidrogênio, ρ', correspondentes a concentr<u>a</u> ção crítica.

> pc/atm Tc/K ρ, H/Pd ref 18,89 566 0,29 35 19,7 564 0,25 36 Tabela um

Esta tabela foi retirada de trabalhos que l<u>e</u> vam a concentração crítica menor que 0,5.

Para o nosso modelo, sem levar em conta a variação de volume, o valor da energia de interação³⁵ é:

$$u = 1132 K$$
 (II.110)

Utilizando outro ponto que não o ponto crí-

tico:

$$p(\theta=1/2, T = 473 K) = 4.3$$
 (II.111)

Obtemos:

$$\frac{\sigma T^{7/2}}{g H^2} = 3.51 \times 10^4 \text{ atm}$$
(II.112)

$$\epsilon_{0} = 998.25$$
 (II.113)

A isoterma fica:

$$p/atm = 3.51 \times 10^{4} \left(\frac{\theta}{1-\theta}\right)^{2} \exp\{\frac{-1}{T} (1096.51 - 4528\theta)$$
(II. 114)

A equação de Van't Hoff é obtida tomando o logarítimo da pressão de equilíbrio:

log peq = $4.5434 - \frac{1850.32}{T}$ (II.115) Comparando com a equação experimental¹³:

$$\log peq = 4.6018 - \frac{1877.82}{T}$$
(II.116)

O resultado teórico é surpreendentemente pr<u>ó</u> ximo do resultado experimental.

Na figura oito apresentamos as isotermas te<u>ó</u> ricas obtidas nesta aproximação, para o sistema PdH.

A partir da equação:

$$\{\frac{\theta_{c} - \alpha_{e}}{\theta_{c} + \alpha_{e}}\} = \exp \{-\frac{4 \alpha_{e}^{T} c}{T}\} \qquad (II.117)$$

construimos a curva de coexistência. Isto é mostrado na figura nove.

Consideramos agora a variação do parametro de rede. Utilizando:

$$T_{2} = 566 \text{ K}$$
 (II.118)

$$\theta_{c} = 0.45$$
 (11.119)

Obtemos as energias:

$$\epsilon_0 = 1029.92$$
 (II.120)

$$u' = 1382.516$$
 (II.121)

$$u'' = 200.1972$$
 (II.122)

$$u''' = -25.66$$
 (II.123)

A constante dependente da entropia é:

$$\frac{\sigma T^{7/2}}{q_{\rm H}^2} = 59717.33$$
(II.124)

A pressão teórica de Van't Hoff é:

 $\log peq = 4.6018 - \frac{1877.82}{1}$ T (II.125)As isotermas estão na figura dez para comparação com

a figura oito.

Na tabela dois apresentamos valores de <u>d</u> e <u>e</u> de acordo com o modelo de Lacher, de Harasima e o nosso, e os dados experimentais

TABELA II

valor de <u>d</u>								
i so terma	Lacher	Harasima	nosso	observado				
473	0,170	0,145	0,145	0,205				
523	0,265	0,225	0,235	0,250				
553	0,360	0,325	0,325	0,417				
valor de <u>e</u>								
473	0,830	0,790	0,795	0,853				
5 23	0,735	0,690	0,695	0,709				
553	0,640	0,590	0,580	0,550				

Û. 8

5.0

 $\boldsymbol{\Theta}$

Percebe-se que o modelo de Lacher é um bom modelo apresentando resultados melhores que o de Harasima e do que o nosso a baixas concentrações. Nestas concentrações os resultados de Harasima praticamente coincidem com os nossos. A altas concentrações, apresentamos melhores resultados que os de Harasima e, levemente melhores que os de Lacher. Antes de tudo não podemos esperar mais informações do modelo além daquelas obtidas com o modelo de Lacher, além de concluir que, uma variação volumétrico produz a ascimetria.

A partir da expressão que permite determinar a temperatura crítica com as medidas de uma isoterma fizemos uma tabela para várias temperaturas críticas. A princ<u>í</u> pio deve-se esperar erros grandes em relação aos resultados observados pois nem todos os sistemas absorven hidrogênio em um só sítio e, o erro da determinação dos pontos <u>d</u> e <u>e</u> tam bém não é pequeno. Sempre que possível foi feita uma módia de vários valores tendo em vista redezir o erro. Quando dispon<u>í</u> vel foi colocada a temperatura crítica experimental.

Temp.crítica	observada	ref.
417.87		
449.56		
397,43		
554,59		
355.06		
400.36		
Go) 458.46		
ño)580.95		
538.00		
265.20		
453,25		
449.26		
343.64		
524,99		
336.63		
528.99		
6) 440.28	473	11
0,7)355.24	413	11
563.25	566	35
	Yemp.crítica 417.87 449.56 397.43 554.59 355.06 400.36 500 458.46 500 580.95 538.00 265.20 453.25 449.26 343.64 524.99 336.63 528.99 6) 440.28 0,7) 355.24 563.25	Yemp.critica observada 417.87 449.56 397.43 554.59 355.06 400.36 50)458.46 50)580.95 538.00 265.20 453.25 449.26 343.64 524.99 336.63 528.99 6)440.28 473 0,7)355.24 413 563.25 566

CAPÍTULO III: Absorção por dois sítios

III.l-Introdução

O modelo de um sítio não permite a descrição de sistemas MH omde ocorre mais de uma transição de fase. A transição de fase é entedida aqui como aquela região em que se observa mais de uma fase[†],mantendo a pressão constante.Por exemplo ,uma região onde coexistem o mo nohidreto e o dihidreto.Na primeira parte apresentamos um modelo em que consideramos que a forma de interação entre os hidrogênios absorvidos em dois sítios diferentes é atra vés de uma energia média de interação .Na segunda aplicamos o modelo ao caso do ferro titânio.

III.2-0 modelo

Temos N_l hidrogênios ligados ao sítio tipo um,do qual existem M_l sítios disponíveis.M_l é constante e determinado pela matriz metálica.A fração máxima de sítios tipo um possíveis de serem ocupados é:

$$R_{1} = \frac{M_{1}}{M}$$
 (III.1)

onde M é o número total de sítios disponíveis.No caso de ocorrerem apena dois tipos de sítios :

$$M=M_1 + M_2$$
 (III.2)

M₂ ,número de sítios tipo dois disponíveis ,tam bém é constante e determinado pela matriz.A fração máxima de sítios tipo dois possíveis de serem ocupados é

$$R_2 = -\frac{M_2}{M}$$
(III.3)

O fato de termos M_1 sítios disponíveis não significa que todos serão ocupados.O mesmo ocorre para os M_2 $\overrightarrow{\dagger}$ Este fato se confirma pela observação de um patamar na curva p contra θ . sítios tipo dois,nem todos precisam ser ocupados.Com isto queremos dizer que a fração total de sítios ocupados não precisa atingir o valor um.A interação entre os hidrogêni os pode reduzir a quantidade de hidrogênio obsorvido no sítio um.Ao inves de atingir o valor M_1 podemos ter $r_1 \le 1$ tios tipo um ocupados.Da mesma forma podemos ter $r_2 \le 1$ sítios tipo dois ocupados,quantidade menor do que M_2 .As frações de sítios ocupados são definidas como:

$$\theta_{1} = \frac{N_{1}}{M}$$
(III.4)
$$\theta_{2} = \frac{N_{2}}{M}$$
(III.5)

A fração total de sítios ocupados é:

$$\hat{\theta} = \theta_1 + \theta_2$$
 (III.6)

O hidrogênio pode apresentar os seguintes estados:ligado ao síto um ,com energia de ligação ε₁ ;lig<u>a</u> do ao sítio dois ,com energia de ligação $\frac{\varepsilon}{2}$ e livre,que corresponde a fase gasosa.Considera-se que a energia média de interação entre os hidrogênios absorvidos nos sítios tia energia média de interação po um é u_l .Seja ¹2 entre os hidrogênios absorvidos nos sítios tipo dois . A energia média de interação entre os hidrogênios absorvidos nos sítios tipo um e os absorvidos nos sítios tipo dois é v . A energia média de interação entre os hidrogênios absorvidos nos sítios tipo dois e os absorvidos nos sítios tipo um também é v .

Analogamente ao caso de um sítio ,a função par tição fica:

$$Q = \frac{N_{1}!}{N_{1}!(M_{1}-N_{1})!} (q_{1})^{N_{1}} \cdot \frac{N_{2}!}{N_{2}!(M_{2}-N_{2})!} (q_{2})^{N_{2}} \cdot Q_{m}^{(III.7)}$$

As funções partição para um hidrogênio absorvido são:

$$q_{1} = q_{h1}(T) \cdot \exp\left(\frac{\varepsilon_{1} + \theta_{1}u_{1} + \theta_{2}v}{kT}\right)$$
(III.8)

$$q_2 = q_{h2(T)} \cdot \exp \left(\frac{\epsilon_2^+ - \theta_2^u 2^+ - \theta_1^v}{kT} \right)$$
 (III.9)

onde $q_{hl}(T)$ é a função partição vibracional para o hidrogênio absorvido no sítio tipo um. $q_{h2}(T)$ é o equivalente para o sítio tipo dois .

A energia livre fica sendo:

$$F = -kT \cdot lnQ \qquad (III \cdot l0)$$

isto é

$$F = -kT M_{1} \ln \left(\frac{M_{1}}{M_{1} - N_{1}}\right) + kT N_{1} \ln \left(\frac{N_{1}}{M_{1} - N_{1}}\right) + \frac{M_{1} - N_{1}}{M_{1} - N_{1}}$$
$$-N_{1} \left(\frac{\varepsilon_{1} + \theta_{1}u_{1} + \theta_{2}v_{1} - kTM_{2}\ln \left(\frac{M_{2}}{M_{2} - N_{2}}\right) + N_{2}kT \ln \left(\frac{N_{2}}{M_{2} - N_{2}}\right) - \frac{M_{1} - M_{1}}{M_{2} - M_{2}}$$

 $-N_{2}(\epsilon_{2}^{+}\theta_{2}^{u}u_{2}^{+2}\theta_{1}^{v}) - N_{1}^{kT} \ln q_{h1}^{(T)} - N_{2}^{kT} \ln q_{h2}^{(T)} - kT \ln Q_{m}^{(III.11)}$

Os potenciais químicos são dados por

$${}^{\mu}{}_{1} = kT \ln \left(\frac{\theta_{1}}{R_{1} - \theta_{1}}\right) - \left(\epsilon_{1} + 2 \theta_{1}u_{1} + 2\theta_{2}v\right) + \frac{R_{1} - \theta_{1}}{R_{1} - \theta_{1}}$$
(III.12)

$${}^{\mu}_{2} = kT \ln\left(\frac{\theta_{2}}{R_{2} - \theta_{2}}\right) - \left(\frac{\varepsilon_{2} + 2 \theta_{2} u_{2} + 2\theta_{1} v}{R_{2} - \theta_{2} u_{2} + 2\theta_{1} v}\right) + \frac{1}{R_{2} - R_{2}} - kT \ln q_{h2}(T)$$
(III.13)

~52

Aqui foi feita a aproximação de que as vibrações do hidrogênio em seu sítio não dependem de $N_1 = N_2$, isto é:

$$\frac{\partial q_{h1}(T)}{\partial N_{1}} = 0$$
(III.15)
$$\frac{\partial q_{h2}}{\partial N_{2}} = 0$$
(III.16)

Em equilíbrio devemos ter:

$$\mu_1 = \mu_2$$
 (III.17)

Obtemos uma relação entre $\theta_1 = \theta_2$ em função das energias:

$$\frac{1}{q_{h1}} \left(\frac{\theta_{1}}{R_{1} - \theta_{1}} \right) \exp \left(\frac{-\epsilon_{1} - 2\theta_{1}u_{1} - 2\theta_{2}v}{KT} \right) =$$

$$= \frac{1}{q_{h2}} \left(\frac{\theta_{2}}{R_{2} - \theta_{2}} \right) \exp \left(\frac{-\epsilon_{2} - 2\theta_{2}u_{2} - 2\theta_{1}v}{KT} \right)$$
(III.18)

A fase gasosa já foi descrita no capítulo anterior quando tratamos de um sítio.O potencial químico da fase gasosa é:

$$\mu_{g} = -kT \ln(\sigma T^{2/2}) + kT \ln(p)$$
 (III.19)

A reação química que ocorre com a molécula de hidrogênio durante a absorção é:

 $H_2 \stackrel{f}{\rightarrow} 2H$ (III.20)

Os potenciais químicos obedecem as equações:

$${}^{\mu}_{1} = \frac{1}{2} {}^{\mu}_{g}$$
 (III.21)

$$\mu_2 = \frac{1}{2} \mu_{g}$$
 (III.22)

Portanto:

$$p_{1} = \frac{\sigma_{T}^{2/2}}{(q_{h1})^{2}} \left(\frac{\theta_{1}}{R_{1} - \theta_{1}}\right)^{2} \exp\left(\frac{-2\left(\frac{\varepsilon_{1} + 2\theta_{1}u_{1} + 2\theta_{2}v\right)}{kT}\right)^{2}(111.23)}{kT}$$

$$p_{2} = \frac{\sigma}{(q_{h2})^{2}} \left(\frac{\theta_{2}}{R_{2} - \theta_{2}}\right)^{2} \exp\left(\frac{-2\left(\frac{\varepsilon_{2} + 2\theta_{2}u_{2} + 2\theta_{1}v\right)}{kT}\right)^{2}(111.24)$$

como a pressão externa é única devenos ter

$$\mathbf{p}_1 = \mathbf{p}_2 = \mathbf{p} \tag{III.25}$$

É imediato que esta propriedade

é satisfeita devido a igualdade entre os potenciais químicos μ_1 e μ_2 e a (11.19).

Podemos descrever as isotermas tanto com uma expressão quanto com a outra,desde que seja obedecida a igualdade para os potenciais químicos.

Determinamos as condições para os pontos críticos .Estas devem vir de:

 $\frac{dP}{d\theta} = 0 \qquad (III.26)$ $\frac{d^2P}{d\theta^2} = 0 \qquad (III.27)$

Da equação (III.6) temos

$$d\theta = d\theta_1 + d\theta_2$$
 (III.28)

logo:

$$\frac{dP}{d\theta} = \frac{\gamma_{\partial P}}{\partial \theta_{1}} \frac{d\theta_{1}}{d\theta} + \frac{\partial P}{\partial \theta_{2}} \frac{d\theta_{2}}{d\theta}$$
(III.29)

$$l^{\theta}$$
, e d^{θ} , reescrevendo(III.18)

como:

$$f(\theta_{1}, \theta_{2}) = 0 \tag{111.30}$$

dθ

onde

$$f(-\theta_1,-\theta_2) = \exp(\frac{\mu_1}{kT}) - \exp(\frac{\mu_2}{kT})$$
(III.31)

De (III.30)

$$\frac{\partial f}{\partial \theta_1} \partial_2 d^{\theta_1} + \frac{\partial f}{\partial \theta_2} \partial_1 d^{\theta_2} = 0$$
 (III.31)

Combinando (III.28) e (III.32)

Determinamos

$$\frac{d\theta_{1}}{d\theta} = \left(\begin{array}{c} \frac{\partial f}{\partial \theta_{2}} \right) \\ \frac{\partial \theta_{1}}{\partial \theta_{2}} = \left(\begin{array}{c} \frac{\partial f}{\partial \theta_{1}} \right) \\ \frac{\partial \theta_{1}}{\partial \theta_{2}} \\ \frac{\partial \theta_{1}}{\partial \theta_{2}} \\ \frac{\partial \theta_{1}}{\partial \theta_{1}} \\ \frac{\partial \theta_{1}}{\partial \theta_{1}} \\ \frac{\partial \theta_{1}}{\partial \theta_{2}} \\ \frac{\partial \theta_{1}}{\partial \theta$$

$$\frac{d_{\theta_2}}{d^{\theta}} = \left(\frac{\partial f}{\partial \theta_1}\right)^{\theta} \frac{1}{2^2 (\partial f)} - \left(\frac{\partial f}{\partial \theta_2}\right)^{\theta} \frac{1}{1 + \frac{\partial f}{\partial \theta_1} + \frac{\partial f}{\partial \theta_2}}$$
(III.33)

(III.26) é escrita como:

$$\frac{\mathrm{dP}}{\mathrm{d}^{\theta}} = \frac{1}{\begin{pmatrix}\frac{\partial f}{\partial \theta} \\ 0 \end{pmatrix}_{\theta} - \begin{pmatrix}\frac{\partial f}{\partial \theta} \\ 0 \end{pmatrix}_{\theta}} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}_{\theta} \begin{pmatrix} 0 \\ 0 \end{pmatrix}_{$$

Esta equação deverá se anular em dois pontos ,os pontos críticos.Tambem deverá se anular a equivalente a (III.27).

Fazemos agora a seguinte aproximação.Consideramos que o primeiro sítio é muito mais favorável a absorção de hidrogênio do que o segundo sítio.Em decorrência disto teremos uma pequena absorção de hidrogênio no sítio dois enquanto o hidrogênio se liga ao sítio um.Apartir de uma dada concentração de hidr<u>o</u> gênio no sítio um ,este satura e o sítio dois começa a ser ocupado.A aproximação feita aqui é que,enquanto o sítio um esta sendo o ocupado o sítio dois apresenta uma concentração constante e pequena θ_{2*} .Por seu lado,após saturar ,o sítio um apresenta uma concentração constante r₁.Como consequência destas aproximações **uma** dada isoterma se divide em duas .A aproximação feita não é válida na região en que θ_1 é muito grande pois θ_2 é variável com p.Assim é necessário que as duas regiões estejam bem afastadas.As duas isotermas podem ser tratadas como casos de um sítio.Na primeira região utilizamos p_1 até θ_1 atingir o valor de r_1 e, na segunda região utilizamos $p_2 \ com\theta_1 = r_1$.Isto pode,naturalmente ser encarado como um artifício de cálculo.

1

Os dois pontos críticos são obtidos apartir de:

$$\frac{\partial \mu_1}{\partial \theta} = 0 \qquad (III.36)$$

$$\frac{\partial^2 \mu_1}{\partial \theta 2} = 0 \tag{III.37}$$

$$\frac{\partial \mu}{\partial \theta} \frac{2}{2} = 0 \qquad (III.38)$$

$$\frac{\partial^2 \mu_2}{\partial \theta_2^2} = 0$$
(III.39)

nas temperaturas e concentrações críticas.Estas equações são decorrência de(III.26),(III.27) e de (III.35)

Os resultados das derivações são as equações:

$$\left(\frac{1}{\theta} + \frac{1}{R_{1} - \theta_{1c}}\right) kT_{1c} - 2u_{1} = 0$$
 (III.40)

$$(R_1 - \theta_{1c})^{-2} - \theta_{1c}^{-2} = 0$$
 (III.41)

$$\left(\begin{array}{c} \frac{1}{\theta} & \frac{1}{R_2 - \theta} \right) kT_{2c} - 2u_2 = 0$$
 (III.42)

$$(R_2 - \theta_{2c})^{-2} - \theta_{2c}^{-2} = 0$$
 (III.43)

Cujas soluções são :

$$\theta_{1c} = \frac{R_1}{2}$$
(III.44)

$$\theta_{2c} = \frac{R_2}{2}$$
 (III.45)

$$u_1 = \frac{2}{R_1} kT_{1c}$$
 (III.46)

$$u_2 = \frac{2}{R_2} kT_{2c}$$
 (III.47)

A primeira itemperatura crítica T_{1c} é aquela acima da qual a pressão é uma função monotônica crescente de $\frac{\theta}{1}$ para $\frac{\theta}{2}$ constante.Igualmente a temperatura crítica T_{2c} é aquela que para θ_1 constante a pressão é uma função monotônica crescente de $\frac{\theta}{2}$.

$$P_{1} = \frac{\sigma_{T}^{7/2}}{(q_{h1})^{2}} \left(\frac{\theta_{1}}{R_{1}^{-\theta_{1}}}\right)^{2} \exp\left(\frac{-2\left(\frac{\varepsilon_{1}+2\theta_{1}u_{1}+2\theta_{2}\star v\right)}{k_{T}}\right) \quad (III.48)$$

$$p_{2} = \frac{\sigma T^{7/2}}{(q_{h2})^{2}} \left(\frac{\theta_{2}}{R_{2}^{-\theta}}\right)^{2} \exp\left(\frac{-2\left(\frac{\varepsilon_{2}+2\theta}{2}\frac{u_{2}+2r_{1}v}{kT}\right)}{kT}\right)$$
(III.49)

Definindo as energias de ligação efetiva:

$$\varepsilon_{1*} = \varepsilon_{1} + 2\theta_{2*}$$
 (III.50)

$$\varepsilon_{2^{\star}} = \varepsilon_{2} + 2 r_{1} v \qquad (III.51)$$

segue-se que

$$p_{1} = \frac{\sigma T^{7/2}}{(q_{h1})^{2}} \left(\frac{\theta_{1}}{R_{1} - \theta_{1}}\right)^{2} \exp\left(-\frac{2}{kT}\left(\varepsilon_{1} + \theta_{1} - \frac{4kT_{1c}}{R_{1}}\right)\right) (III.52)$$

$$p_{2} = \frac{\sigma T^{7/2}}{(q_{h2})^{2}} \left(\frac{\theta_{2}}{R_{2} - \theta_{2}}\right)^{2} \exp\left(-\frac{2}{kT}\left(\varepsilon_{2} + \theta_{2} - \frac{4kT_{2c}}{R_{2}}\right)\right) (III.53)$$

Estas isotermas são simétricas em relação a θ_{1c} e a θ_{2c} respectivamente:Conclusão esta tirada da analogia ao modelo de Lacher, sempre que as duas isotermas forem bem separadas.

Pode-se mostrar que as pressões dos patamares, por analogia ao modelo de Lacher,são dados por:

$$p_{1} = \frac{\sigma_{T}^{7/2}}{\binom{q_{h1}}{2}} \exp\left(\frac{-2\left(\frac{\varepsilon_{1} + 2 kT_{1c}}{kT}\right)}{kT}\right)$$
(III.54)

$$P_{2} = \frac{\frac{\sigma_{T}}{(q_{h2})^{2}} \exp(-\frac{-2(-\epsilon_{2} + 2kT_{2c})}{kT})}{(III.55)}$$
(III.55)

Os pontos médios do patamar de cada isoterma correspondem aos seguintes valores de é .

$$\theta = \frac{R_1}{2} + \theta_{2*}$$
 (III.56)

$$0 = r_1 + \frac{R_2}{2}$$
 (III.57)

As equações de Van't Hoff são duas,uma vez que ocorrem duas transições de fase.

$$\ln(p_{eq}) = A_1 + \frac{B_1}{T}$$
 (111.58)

$$\ln(p_{eq}) = \Lambda_2 + \frac{B_2}{T}$$
(III.59)

No nosso caso temos:

$$\log(p_1) = \log(\frac{\sigma_T^{7/2}}{(q_{h1})^2}) - \frac{2}{kT\ln(10)} (\epsilon_{1*} + 2kT_{1c})$$
(III.60)

$$\log(p_2) = \log(\frac{\sigma T^{7/2}}{(q_{h2})^2}) - \frac{2}{kT\ln(10)}(\epsilon_{2} \star^{+} 2kT_{2c})$$
(III.61)

As constantes A₁,B₁,A₂ e B₂ são obtidas da comparação entre as equações (III.58) e (III.59) com (III.60) e(III.61).

A fim de obter uma relação que permita relacionar as temperaturas críticas com $R_1 = \theta_{2*}$ fazemos o seguinte.No primeiro patamar temos os pontos $\theta_1 = e_1$ $e_1 = \theta_1$ tais que a pressão nos dois pontos é igual,isto é :

$$10^{A_{1}}\left(\frac{d_{1}}{R_{1}-d_{1}}\right)^{2} \exp\left(\frac{-2}{-kT}\left(\epsilon_{1} + \frac{4 kT_{1}c}{R_{1}}d_{1}\right)\right) =$$

$$= (10)^{A_{1}}\left(\frac{e_{1}}{R_{1}-e_{1}}\right)^{2} \exp\left(\frac{-2}{kT}\left(\epsilon_{2} + \frac{4kT_{2}c}{R_{2}}e_{1}\right)\right) (111.62)$$

Dos resultados do modelo de Lacher concluimos que o primeiro patamar é simétrico em relação a $\theta_1 = \frac{1}{2}R_1$ e chegamos a :

$$^{T}lc = \frac{R_{1}T}{4^{\alpha}} ln \left\{ \begin{array}{c} \frac{R_{1}}{2} + \alpha \\ \frac{R_{1}}{2} - \alpha \\ \frac{R_{1}}{2} - \alpha \\ 1 \end{array} \right\}$$

-59

Definindo os valores de concentração observa-

dos como

$$d_1^* = d_1^+ + \frac{\theta_2^*}{2^*}$$
, (III.64)

$$e_{1}^{*} = e_{1}^{+} e_{2^{*}}^{\theta}$$
, (III.65)

$$\alpha_1 = \frac{e_1 - d_1}{2}$$
 (III.66)

Conclui-se que a primeira temperatura crítica é

$$T_{1c} = \frac{R_{1} T}{4 \alpha_{1}} \ln \left(\frac{e_{1}^{*} - \theta_{2}^{*}}{d_{1}^{*} - \theta_{2}^{*}}\right) \qquad (III.67)$$

De forma análoga:

$$T_{2c} = \frac{R_2 T}{4 q_2} \ln(\frac{c_2^* - r_1}{d_2^* - r_1}) \qquad . (III.68)$$

Podemos inverter estas duas equações ,sempre que precis, para calcularmos $r_1 = \frac{\theta}{2^*}$.

Na determinação de r₁ e de θ_{2*} temos como resultado,para diferentes isotermas, valores diferentes.Estes valores são próximos mas não iguais.Supomos então $r_1 e \theta_{2*}$ variáveis e,com os valores obtidos determinamos v por mínimos quadrados.

Nas concentrações

$$\theta_1 = r_1 \tag{III.69}$$

e

$$\theta_2 = \theta_{2^*} \qquad (\text{III.70})$$

Isto é

$$\frac{\theta}{1} = r_1 + \theta_{2*}$$
 (III.71)

as equações (III.52) e(III.53) são iguais.

$$\Delta \varepsilon_{\star} = \varepsilon_{1\star} - \varepsilon_{2\star} \qquad (111,72)$$

temos ,da igualdade das pressões

$$\Delta \varepsilon_{\star} = -\frac{kT}{2} \ln\{(10)^{A_1 - A_2} + \frac{0 2^{\star} (R_1 - r_1)}{r_1 (R_2 - \theta_2 \star)}\} + \frac{kT}{r_1 (R_2 - \theta_2 \star)} + \frac{kT}{r_1 (R_2$$

$$+ \frac{4\theta \hat{2}^{*} k^{T} 2c}{R_{2}} - \frac{4r_{1}k^{T} 1c}{R_{1}}$$
(III.73)

mas

$$\Delta \varepsilon_{\star} = \varepsilon_1 - \varepsilon_2 - 2 v(\theta_{2\star} - r_1)$$
 (III.74)

$$\star^{=} \Delta \varepsilon -2v(\theta_{2\star} - r_{1}) \qquad (III.75)$$

Como possuimos $\Lambda \varepsilon + e^2(\theta_{2*} - r_1)$ podemos fazer um ajuste de mínimos quadrados ,determinando v.Com este va lor e os de θ_{2*} e r_1 determinamos $\varepsilon_1 = \varepsilon_2$.Obtidas as ener gias,resolvemos exatamente o problema,determinando a pressão em função da concentração total.Determinamos a relação que existe en tre a concentração no sítio um e a concentração no sítio dois.

III.3-Aplicação ao caso da absorção de hidrogênio pelo ferrotitânio.

Este composto apresenta três fases , α , β , γ ³⁹. Para uma liga de ferro titânio com 53,6%Fe e 46,7%Ti(por peso)t<u>e</u> mos o que se segue.A fase α corresponde a solução do hidrogênio no metal.Existe do início da absorção de Midrogênio até a conce<u>n</u> tração de 0,52 H/M.A fase β coexiste com a fase α de 0,05 até 0,52H/M. De 0,52 até 0,65 só existe a fase β .Esta corresponde ao monohidreto ,FeTiH ,tem simetria tetragonal e densidade de 5,88g/cm³.A concentração onde surge o dihidreto ,FeTiH_{1,93}.fase γ ,não esta bem determinada.Esta fase tem estrutura cúbica e densidade de 5,47g/cm³.A fase β desaparece por volta de H/M= 0,85.

As isotermas dependem sensivelmente da porcentagem de ferro na liga que absorve o hidrogênio.Para uma temperatura de 315K com 60,5%Fe e 39,5%Ti(por peso) observa-se um patamar à H/M =0,1 H/FeTi com pressão de sete atmosferas.Existem indícios de um outro patamar a H/M=0,3H/FeTi com pressão de quinze atmosferas.Com 50,5%Fe e 49,2%Ti a isoterma não apresenta patamar.Com 36,7%Fe e 63,2Ti% temos indícios de dois patamares ,uma a H/M= 0,7H/FeTi com pressão de duas atmosferas e outro a H/M=1,0H/FeTi e pressão de cinco atmosferas.Quanto maior a quantidade de ferro ,a uma mesma pressão ,menor a co<u>n</u> centração de hidrogênio absorvido.

As equações de Van't Hoff experimentais são

$$\log(p_{eq}) = 12,7612 - \frac{3383}{T}$$
, (III.76)
 $\log(p_{eq}) = 15,9165 - \frac{4057}{T}$. (III.77)

O segundo patamar não apresenta apenas uma equação de Van't Hoff mas sim tres.Isto indica que a regra de Van't Hoff não se aplica exatamente a este caso ,mas apenas aproximadamente. Destas tres escolhemos a última³⁸.

Obtemos então:

$$(10)^{A_{1}} = 348432,5686$$
 , (III.78)

$$(10)^{A_2} = 8174253,863$$
, (III.79)

$$\epsilon_{1*} = 1691.5 - 2T_{1C}$$
 (III.80)

$$\varepsilon_{2^{\pm}} = 2028.5 - 2T_{2C}$$
 (III.81)

Onde as energias são dadas em unidade de tempe-

ratura.

Na tabela 3º mostramos frações de sítios ocupados e as temperaturas críticas obtidas com o modelo e as isotermas de Reilly³⁸.

Ŧ	R ₁	ł	R ₂		T _{2c}
Į.	0,582	Ŧ	0,418	445,72K	331,15K

mabela tres:valores de R₁, R₂, T_{1c}, T_{2c}

Como se observa dos valores da tabela quatro a energia de ligação efetiva varia com a temperatura,o que indica que os dois ramos das isotermas vão se juntar em pontos corres pondentes a concentrações distintas.

1		Т	I	273,15	I	303,15	T	313,15	I
Ī	[€] 1*		ε _{2*1}	-566,17	Ī	-277,53	Ŧ	-117,59	ł
Ĩ	θ 2*	_	r_1^-	-0,505	Ŧ Ŧ	-0,511	Ī	~0,519	ł

Tabela quatio:valores de energia de ligação efetiva em função da temperatura.Todos os valores em unidades de temperatura.

Pelo método dos mínimos quadrados calculamos v= 305,34 (III.82) Considerando os valores de $\theta_{2*} \in r_1$ obtidos a temperatura de 373.15K calculamos as energias de interação

$$E_{1} = 786,90K$$
 (III.83)

$$\epsilon_2 = 1044,92K$$
 (III.84)

Resolvendo o sistema de equações (III.23) e (III.24) construimos as isotermas para o sistema TiFeH .Estas estão apresentadas na figura

Conforme se pode observar as isotermas construidas apartir do modelo teórico reproduzem de forma satisfa tória os dados experimentais³⁸.Observa-se que o segundo patamar não aparece peffeitamente definido na experiência.Isto é consequência das variações das constantes $A_2 \in B_2$ com a concen tração de hidrogênio,o que não foi levado em conta.

Na figura inze temos o gráfico que dá a relação entre as duas concentrações para dúas temperaturas.Este gráfico mostra que o modelo é consistente pois a primeira concentração aumenta enquanto a segunda é praticamente constante. Ocorre a inversão de comportamento após a saturação do primeiro sítio.A medida que aumenta a concentração do sítio um a do sítio dois vai aumentando duavemente.Antes de começar a subir consideravelmente ,isto é, antes de o sítio um saturar,a conce<u>n</u> tração do sítio dois sofre umdecréscimo.Podemos interpretar i<u>s</u> to como se uma parte dos hidrogênios migrasse do sítio dois para o sítio um.Antes de saturar,portanto, o sítio um, com a absorção de hidrogênio ,torna-se ainda mais favorável do que o sítio dois.

CONCLUSÕES

Neste trabalho foi estudado o comportamento das isotermas de sistemas metal-hidrogênio. Abordou-se siste mas como o PdH em que ocorre apenas uma transição de fase. Dois tipos de modelo foram considerados:

 Sem levar em conta a variação da rede me tálica devido a absorção de hidrogênio.

 Supondo que as energias de ligação e de interação sejam alteradas pela variação do parametro de rede de metal.

Os resultados obtidos pelos dois modelos quando aplicados ao sistema PdH reproduzem, com boa precisão, os valores experimentais.

Verifica-se ainda que a assimetria observada no patamar pode ser entendida como ocorrência de varia ções do parametro da rede. A comparação das isotermas calculadas pelos dois modelos indica, juntamente com a análise d<u>e</u> talhada do modelo de Harasima¹⁶, que a forma com que se leva em conta a variação volumétrica deve ser outra, seja levando em conta a dependência dos estados vibraionais com a concentração de hidrogênio, seja considerando uma energia de interação dependente do volume.

No capítulo seguinte desenvolveu-se um mode lotermodinâmico para o tratamento de sistemas em que ocorrem mais de uma transição de fase. Este modelo foi aplicado ao sistema FeTiH. A comparação das isotermas teóricas com as iso termas medidas por Reilly³⁸ mostra que o segundo sítio é pra ticamente inerte durante a ocupação do primeiro sítio. A não caracterização de um patamar na segunda transição de fase é uma indicação que a lei de Van't Hoff é apenas aproximada.

APÊNDICE

Para mostrar que a construção de Maxwell para I nos leva a equação (II.61) ,ísto ê (A.1)

 $p(\theta_e) = p(\theta_d)$

fazemos o que segue.

Seja

$$\xi = \frac{1}{P}$$
 (A.2)

Então

 $\xi_e = \frac{1}{\theta_e}$ (A.3) $\xi_d = \frac{1}{\theta_d}$ (A.4)

As condições para a construção de Maxwell ,equações (II.64) e(II.65) ficam

$$\Pi(\xi_{e}) = \Pi(\xi_{d})$$
(A.5)
$$\int_{\xi_{d}}^{\xi_{e}} e^{\Pi(\xi_{d})} d\xi = \Pi(\xi_{d}) (\xi_{d} - \xi_{e})$$
(A.6)

Estas equações nos levam, após alguns cálculos, ao sistema

$$-2u(\frac{1}{\xi_{d}} - \frac{1}{\xi_{e}}) + kT \ln(\frac{\xi_{d}}{\xi_{e}}) = 0 \quad (A.7)$$

$$(1 - \frac{1}{2})(\frac{1}{\xi_e} + \frac{1}{\xi_d}) \ln(\frac{\xi_d^{-1}}{\xi_e^{-1}}) = \ln(\frac{\xi_d}{\xi_e})$$
 (A.8)

Substituindo ξ por $\frac{1}{\theta}$ temos

$$(1+\frac{\theta_e^{+\theta_d}}{2})\ln(\frac{1-\theta_d}{\theta_d},\frac{\theta_e}{1-\theta_e}) = \ln(\frac{\theta_e}{\theta_d})$$
 (A.9)

kT
$$\ln\left(\frac{1-\theta_d}{\theta_d} - \frac{\theta_e}{1-\theta_e}\right) = -2u(\theta_d - \theta_e)$$
 (A.10)

A equação (A.9) é satisfeita automaticamente se $\theta_{e} = 1 - \theta_{d}$ (A.11) Introduzindo está condição na equação(A.10) obtemos

$$-\frac{u}{kT} = \frac{1}{1-20e} \ln(-\frac{\theta e}{1-\theta e})$$
 (A.12)

Com esta equação podemos obter e para cada 1.00mo

$$p(\theta_{e}) = -\frac{A_{T}^{\frac{2}{2}}}{q_{h}^{2}} \left(\frac{\theta_{e}}{1-\theta_{e}}\right)^{2} \exp\left(\frac{-2}{kT}(\varepsilon+2\theta_{e}u)\right) \quad (A.13)$$

obtemoș introduzindo (A.12)

$$p(\theta_e) = \frac{A T^2}{q_h^2} \exp\left(-\frac{-2}{kT}(\epsilon + u)\right)$$
 (A.14)

temos

$$p(\theta_e) = p(\theta = \frac{1}{2})$$
(A.15)

Da mesma maneira, substituindo (A.11, em (A.12) obtemos

$$\frac{-u}{kT} = \frac{1}{1 - 2\vartheta_d} - \ln \left(\frac{-\vartheta_d}{1 - \vartheta_d} \right)$$
 (A.16)

Introduzindo (A.16) no análogo a (A.13) com θ_d ob-

$$p(\theta_{d}) = p(\theta = \frac{1}{2})$$
(A.17)
Isto e⁻

$$p(\theta_{d}) = p(\theta_{e})$$
(A.18)

REFERÊNCIAS

- Müller, W.M., Blackledge, J.P., Libowitz, G.G., MetalHidrides, Academic Press N.Y., 1968.
- 2) Smialowski, M.Hidrogen in Steel, Pergamon Press, Londres, 1962
- 3) Hoitsema, C. Roozeboom, B., Z. Phys. Chem. A,1 (1895)
- 4) Reilly, J.J., Proceedings 26th Annual Power Soucers Conference Nova Jersei, Maio 1974.
- 5) Gidd Jr., T.R.P., Progress in Inorganic Chemistry, Inter -Science 1962 <u>3</u> 315
 - 6) Sieverts, A. Hagenacker, J., Z. Phys. Chem., 68, 115 (1909)
 - 7) Sieverts, A., Z. Metallkunde 21, 37 (1929)
 - 8) Rundle, R.E., Shull, G.G., Wollar, E.D., Acta Crys.(1952) 5,22
 - 9) Wortmann, Internal Report, Physik Department, Techische Universitat Munique Alemanha, 1977.
- J0) Fowler, R.H., Guggenheim, E.A., Statistical Thermodynamics, Cambridge University Press, Londres, 1939.
 - 11) Mackay, K.M., Hydrogen Compunds of the Mettalic Elements,E. F. N. Spoo LTD, Londres, 1966.
- 12) Lined, J.O., Bolelius, G., Ann. D. Physik(IV) 84, (1927)747
- \l3) Gillepsie, D.J., Galstaum, L.S., J. Amer. Chem. Soc. <u>38</u>, 2565 - 2573 (1936)
- 14) Evans MJB. Everrett, D.H., Journal of the Less. Common Metal 49 (1976) 123 - 145.
- 15) Lacher, J.R., Proc. Roy. Soc. (Londres) Ser.A <u>161</u> 525 -545(1937)
 - 16) Harasima, A., Tanaka, T., Sakaoka, J. Phys., Soc., Jap., <u>3</u>, 208 (1948)
 - 17) Goon, E.J., J. Chem. Phys. 1959, 63 2018
 - 18) Yakel, H.L. Acta Cryst., 1958, 11, 46
 - 19) Rees, ALG, Trans. Faraday Soc., 50, 340 (1954)
 - 20) Libowitz, G.G., J. Chem. Phys., 27, 514 (1957)
 - 21) Libowitz, G.G., J. Appl. Phys., 33, 399 (1962)
 - 22) Takeuchi, S., Suzuki, K., Thermodynamics of Nuclear Material Symposium Proceedings, Vienna 1962.
 - 23) Van Mal, H.H., Buschow, K.H., J. Miedema A.R., Journal of the Less Common Metals <u>35</u> (1974) 65.
 - 24) Miedema, A.R., J.Less Common Metals 32 (1973) 117.
 - 25) Eastman, D.E., Cashion, J.C., Switendick, A.C., Phys. Rev. Lett., <u>30</u> (1971) 35
 - 26) Gupta, M, Freeman, A.J., Phys, Rev. B 17 (1978) 3029.
 - 27) Hill, An Introduction to Statistical Thermodynamics, Addison-Wesley, (1962)Londres.

- 28) Huang, Statistical Mechanics, John Wiley Nova Torque, 1963.
- 29) Tanaka, Sakaoka, Harasima, J., Phys. Soc. Jap., 3 (1947)213
- 30) Fast, J.D., Interaction of Metal and Gases Vol.1, Academic Press, 1965.
- 31) Drexel, W., Murani, A., Tocchetti, D., J. Phys. Chem Solids 1976, 37(12), 1135.
- 32) Mott, Jones, Properties of Metals and Alloys, Oxford 1936
- 33) Michel A., Galissot, M. Comp. Rend. 208, 434 (1939).
- 34) Worsham, J.E., Wilkinson, M.K., Shul C.G., J. Phys. Chem. Solids 1957, 3, 303.
- 35) Maeland, A.I., Gibb T.R.P., J. Phys. Chem. 1961, 65 1270.
- 36) Ribaupierre Yde, Manchester, F.D., J. Phys. Chem Solid State Phys Vol.7. 1974, 2126.
- 37) Frieske H., Wicke E., 1973. Ber Bunsenger Phys. Chem. 77, 48
- 38) Reilly, J.J., Wiswall Jr., R.H. Inorg. Chem., 13 218 (1974)
- 39) Müller, F.M., Freeman, A.J. Dimmock, J.O., Fardyna, A.M., Phys. Rev.B,<u>1</u>, 4617 (1970).