UNICAMP

UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física "Gleb Wataghin"

Este exemplar corresponde à redação final da Tese deten-dida pelo aluno e aprovada pela Comissão Julgadora.

1ª de margo de 1985 here 1/4

"FOTOCONDUTIVIDADE NO NITRETO DE SILICIO AMORFO HIDROGENADO NÃO ESTEQUIOMÉTRICO"

Autor: LEANDRO RUSSOVSKI TESSLER

Orientador: PROF. DR. FERNANDO ALVAREZ

Tese apresentada no Instituto de Física "Gleb Wataghin" como parte dos requisitos para a obtenção do título de Mestre em Física.

Fevereiro 1985

Dedico este trabalho

ao Abrahão,

- à Lilia e
- ao Vô Gildo.

"Nossa energia solar irá nos iluminar o caminho"

Solar, Milton Nascimento

e Fernando Brant

Ao FERNANDO ALVAREZ, pelo paciente, dedicado e muitas vezes cansativo trabalho de orientação, pela preparação das amos tras, e acima de tudo pela amizade e companheirismo durante estes dois anos;

Ao PAULINHO VENTURA SANTOS, pela ajuda na montagem dos equipamentos eletrônicos;

Ao CESAR AUGUSTO CURVELLO DE MENDONÇA, pela ajuda nas medidas e análise dos dados experimentais;

AO JORGE IVAN CISNEROS, pela ajuda e discussões nas medidas de transmitância óptica;

Ao IVAN EMILIO CHAMBOULEYRON, por proporcionar condições para a realização deste trabalho e pelas importantes críticas;

Ao CARLOS A. PIACENTI, pelo apoio técnico;

À REGINA COELI M. COVIZZI, pela datilografia;

A BETH OLIVEIRA, pela revisão do texto datilografado.

A todos os demais que de uma forma ou de outra ajudaram este trabalho a ficar como é.

O autor agradece ainda ao apoio financeiro do CNPq, FINEP, FAPESP e CESP. O nitreto de silício amorfo hidrogenado não estequiomé trico (a-SiN_x:H) tem sido estudado nos últimos anos,tendo em vista suas possíveis aplicações em dispositivos fotovoltáicos,em diversos laboratórios em todo o mundo.

No presente trabalho apresentamos os resultados de medidas da fotocondutividade em função da temperatura e da intensidade luminosa em material preparado por descarga luminescente(glow discharge) a partir de uma mistura de nitrogênio e silano. As medidas foram feitas com excitação monocromática de um laser de He:Ne com hv=1.96eV utilizando-se o método de deteção em fase. Temperaturas entre 120 e 340K e fluxos de fótons entre $6x10^{11}$ e $6x10^{13}$ cm⁻² s⁻¹ foram usados.

Estudamos também amostras dopadas com boro e com fósforo.

Os resultados experimentais nos permitiram identificar um pico na densidade de estados no gap entre o nível de Fermi e a banda de condução ligado à presença de nitrogênio na rede, com s<u>e</u> ção de captura para elétrons menor do que a dos estados no gap em material não nitrogenado. Também constatamos a presença de armad<u>i</u> lhas profundas para lacunas entre o nível de Fermi e a banda de valência.

ABSTRACT

The off-stoichiometric amorphous hydrogenated silicon nitride $(a-SiN_x:H)$ has been studied in the last few years due to its possible applications in photovoltaic devices in many laboratories in the world.

In the present work we present the results of measurements of photoconductivity versus temperature and light intensity in material prepared by glow discharge from a mixture of N₂ and SiH₄. The measurements were done with monochromatic excitation from a He:Ne laser with hv=1.96eV using the detection in phase method. Temperatures between 120 and 340K and photon fluxes between 6×10^{11} and 6×10^{13} cm⁻² s⁻¹ were used.

We also studied boron doped and phosphorus doped samples.

The experimental results allowed us to identify a peak in the density of states in the gap between the Fermi-level and the conduction band due to the presence of nitrogen in the network with a capture cross section for electrons smaller than the one of the state in the gap in non-nitrogenated material. We also detected the presence of deep hole traps between the Fermilevel and the valence band.

SUMĀRIO

	pg
l.Introdução	1
2.Fotocondutividade: Teoria	2
2.1.Condutividade	
2.2.Fotocondutividade	
2.2.1.Geração de Portadores	
2.2.2.Tempo de Vida	
2.2.3.Fenomenologia	
2.2.4.Recombinação	
3.Semicondutores Amorfos	16
3.1.Semicondutores Amorfos de Coordenação	
Tetraédrica	
4. Preparação e Caracterização das Amostras	20
4.1.Preparação	
4.2.Caracterização	
4.2.1.Gap Óptico	
4.2.2.Resistência no Escuro: Condutividade	
e Energia de Ativação	
5.Fotocondutividade: Experimental	28
5.1.Sistema de Medidas	
5.2.Resultados Experimentais	
6.Discussão	40
7.Conclusões	48
8.Apêndices	49
8.1.Conversor Corrente-Tensão	
8.2.Criostato	
8.3.Programas para calculadora Texas TI58/TI58C/TI59	
9.Referências	55

1. INTRODUÇÃO

O silício amorfo e algumas de suas ligas têm sido estudado com grande atenção há mais ou menos quinze anos. Neste período um gran de número de aplicações foi concebido (Spear e Le Comber 1984) com destaque para as células solares. Recentemente foram publicados resultados de células com eficiência de conversão de 10.5% (Yama zaki et al 1984). Essas células de alta eficiência usam uma estrutura vidro/óxido condutor/camada dopada p/ camada intrínseca/camada dopada n/metal na qual a luz entra através de uma camada dopada devendo ser absorvida na camada intrínseca. Dessa forma é vantajoso que esta camada dopada tenha um gap óptico grande de forma que mais luz atinja a camada intrínseca. O material-janela mais usado atualmente é o carbeto de silício amorfo hidrogenado $a-Si_{x}C_{1-x}$:H, no entanto, materiais alternativos têm sido estudados, entre eles o nitreto de silício amorfo hidrogenado não estequiométrico a-SiN_x:H.

O $a-SiN_x$:H tem o gap óptico variável entre 1.7 e 4.7eV (para x=1.33, ou $a-Si_3N_4$), é passível de dopagem tanto do tipo n quanto do tipo p, apresenta boa fotocondutividade e é relativame<u>n</u> te fácil de preparar em um reator de descarga luminescente (glow discharge).

Até hoje existem duas maneiras de se preparar o a-SiN_x:H por descarga luminescente: a partir de uma mistura de silano (SiH₄) e amônia (NH₃) ou de uma mistura de silano e nitrogênio (N₂). No primeiro caso a concentração de nitrogênio é determinada sempre pela razão (NH₃)/(SiH₄) utilizada. No segundo caso, essa concentração pode ser controlada pela potência transferida ao reator durante o processo de deposição, usando-se uma relação (N₂)/SiH₄) constante. Esse controle é explicado em termos das diferentes energias de dissociação do SiH $_4$ e do N $_2$ (Brenzikofer e Chambouleyron 1981).

A dopagem do $a-SiN_x$:H é obtida pela adição de gases dopantes durante o processo de deposição. O diborano (B_2H_6) e a fosfina (PH₃) têm-se mostrado boas opções como gases dopantes do tipo p e do tipo n, respectivamente.

O a-SiN_x:H pode ser utilizado também em outras aplicações, como células solares "multigap", dispositivos microeletrôn<u>i</u> cos e por ser um bom fotocondutor, xerografia, sensores de imagem e fotodetetores.

O objetivo do presente trabalho é investigar os efei tos qualitativos da incorporação de nitrogênio e de dopantes so bre a densidade de estados no gap e a cinética de recombinação de portadores. Por isso, medimos a fotocondutividade em função da temperatura e da intensidade luminosa em um conjunto de amostras preparadas da segunda maneira descrita anteriormente, sob potên cia entre 0.62 e 5 W/cm² e com diferentes concentrações de gases dopantes.

2. FOTOCONDUTIVIDADE: TEORIA

2.1 Condutividade

Em um semicondutor a condutividade elétrica σ pode ser escrita como (Shalimova 1975):

$$\sigma_{\rm p} = e (n_0 \mu_{\rm n} + p_0 \mu_{\rm p}) \tag{2-1}$$

D se refere a escuro (dark, em inglês);

 $n_0 =$ densidade de elétrons em equilíbrio na banda de condução; $\mu_n =$ mobilidade dos elétrons na banda de condução; $p_0 =$ densidade de lacunas em equilíbrio na banda de valência; $\mu_p =$ mobilidade das lacunas na banda de valência.

Vamos considerar um material no qual $n_0 \mu_n^{>>} p_0 \mu_p$ (tipo n). Então:

$$\sigma_{\rm D} \simeq \sigma_{\rm Dn}^{-} = e_{\rm D} n^{\mu} \qquad (2-2)$$

Como os elétrons são férmions,

$$n_{0} = N_{c} \frac{1}{1 + \exp(E_{c} - E_{F_{0}})/kT}$$
(2-3)

onde,

 N_c = densidade de estados no fundo da banda de condução; E_c = energia do fundo da banda de condução; E_{F0} = nível de Fermi k = constante de Boltzmann T = temperatura Se $E_c - E_{F0}$ >> kT, então (2-3) pode ser aproximada pela equação de Boltzmann:

$$n_0 = N_c \exp(E_c - E_{F0}) / kT$$
 (2-4)

donde,

$$\sigma_{\rm Dn} = e \mu_{\rm n} N_{\rm c} \exp - (E_{\rm c} - E_{\rm F0}) / kT$$
 (2-5)

2.2 Fotocondutividade

2.2.1 Geração de Portadores

Ao incidirmos radiação luminosa sobre um semicondutor es sa radiação pode ser absorvida pela geração de portadores livres no material. Isso dá origem a uma variação na condutividade:

$$\sigma = e \left(\left(n_0^{+\Delta n} \right) \mu_n + \left(p_0^{+\Delta p} \right) \mu_p \right)$$
 (2-6)

$$\sigma_{p} = \sigma - \sigma_{p} = e(\Delta n \mu_{n} + \Delta p \mu_{p})$$
(2-7)

onde, ∆n e ∆p são as variações na densidade de elétrons e de lacunas respectivamente.

A geração de portadores livres pode ocorrer de banda a banda ou entre um estado no gap e uma banda (Fig. 2.2.1.1). Para o caso de um nível discreto na banda proibida temos:

Fig. 2.2.1.1-Transições ópticas po<u>s</u> síveis de um elé tron.

A transição 1 dá origem a um par de elétron-lacuna l<u>i</u> vre, enquanto a transição 2 dá origem a apenas um elétron livre e a 3 origina uma lacuna livre. Para que a transição do tipo l ocorra é necessário que a energia hv dos fótons incidentes seja maior ou igual à energia do gap (hv > $E_{g} = E_{c} - E_{y}$).

Os elétrons e lacunas fotogerados podem ter energia con

sideravelmente maior que a energia de equilíbrio dos portadores gerados termicamente. Esse excesso de energia é transferido à rede através de espalhamento por fônons ou defeitos no processo chamado de termalização. Esse processo ocorre em tempos da ordem de 10^{-10} a 10^{12} s em quase todos os semicondutores conhecidos.

Os valores An e Ap são proporcionais à quantidade de energia absorvida por unidade de volume por unidade de tempo,que obedece a:

$$-\frac{dF(x)}{dx} = \alpha F$$
(2-8)

onde,

F = intensidade de luz monocromática incidente sobre uma camada
 de espessura dx a uma profundidade x da amostra
 α = coeficiente de absorção

Portanto, as taxas de geração f_n (elétrons) e f_p (lacunas) portadores livres são proporcionais a αF .

$$\mathbf{f'} = \mathbf{f'}_{\mathbf{n}} = \mathbf{f'}_{\mathbf{p}} = \beta' \alpha \mathbf{F}$$
(2-9)

onde,

β = eficiência quântica (n de pares gerados/nº de fótons absorvidos.

Para transições dos tipos 2 e 3 temos:

$$f'' = \beta'' \alpha F \qquad e \qquad (2-10)$$

$$f'' = \beta''' \alpha F \qquad (2-11)$$

As eficiências quânticas para as diferentes transições não têm m<u>o</u> tivo para serem iguais, já que envolvem processos físicos distintos.

2.2.2 Tempo de Vida

Os portadores livres tratados na seção anterior têm um tempo de vida limitado. Assim em estado estacionário:

$$\Delta n = f_n \tau_n$$
(2-12)
$$\Delta p = f_p \tau_p$$
(2-13)

onde
$$f_n$$
, f_p referem-se à soma das taxas de geração envolvidas
 τ_n = tempo de vida livre dos elétrons
 τ_p = tempo de vida livre das lacunas

O tempo de vida livre τ de um portador é definido como o tempo gasto pelo portador excitado na banda (Bube 1960), portan to τ pode ser:

a) terminado por recombinação ou se o portador é extraí
 do do semicondutor por um campo elétrico;

 b) interrompido se o portador é armadilhado, sendo continuado quando o portador é libertado;

c) mantido se o portador é extraído por um eletrodo ao mesmo tempo em que um portador idêntico é injetado pelo eletrodo oposto.

Voltando a pensar na eq. (2-7) e considerando as equações (2-12) e (2-13) temos, para geração banda a banda:

$$\sigma_{p} = ef'(\mu_{n}\tau_{n} + \mu_{p}\tau_{p}) \qquad (2-14)$$

Se um dos termos da equação acima for muito maior que o outro a equação pode ser simplificada de forma análoga ao que foi feito em relação à condutividade no escuro. A partir de ago-ra vou considerar $\mu_n \tau_n^{>>} \mu_p \tau_p$, como geralmente ocorre em materiais do tipo n. Então:

$$\sigma'_{p} = ef'^{\mu} n^{\tau} n \qquad (2-15)$$

Também, como f=f'+ f_n'' podemos considerar também a fot<u>o</u> condutividade ligada aos processos 2 (Fig. 2.2.1.1).

$$\sigma_{\rm p} = {\rm ef} \quad \mu_{\rm n} \quad \tau_{\rm n} \tag{2-16}$$

A geração de elétrons livres extras pode ser pensada como uma variação na posição do nível de Fermi efetivo para os po<u>r</u> tadores, no nosso caso elétrons. Assim, definimos o quase- nível de Fermi para elétrons (que depende de fe T) E_{Fn} através da equação:

$$n_0 + \Delta n = N_c \exp - (E_c - E_{Fn})/kT$$
 (2-17)

No caso em que $\Delta n >> n_0$:

$$\Delta n = N_{c} \exp - (E_{c} - E_{Fn}) / kT$$
 (2-18)

2.2.3 Fenomenologia

Como no laboratório, o que se mede são fotocorrentes, vou introduzir um tratamento dos dados em termos desta grandeza. É f<u>á</u> cil relacionar a fotocondutividade com a fotocorrente I_D:

$$I_{p} = \frac{V}{R} = \frac{V \sigma_{p} A}{\ell}$$
(2-19)

onde,

V = voltagem sobre a amostra
A = área de uma seção transversal da amostra
ℓ = comprimento da amostra

Fig. 2.2.3.1-Fotocondutividade de um semicondutor.

Antes de mais nada vamos fazer uma consideração sobre o fluxo de fótons que atinge a amostra. Temos que considerar a r<u>e</u> flexão da luz na superfície da amostra, de forma que,

$$F = F_0 (1 - R)$$
 (2-20)

onde,

 $F_0 = fluxo de fótons incidente$ $R = refletância da amostra (R(\lambda))$ $\lambda = comprimento de onda dos fótons incidentes$

Considerando uma unidade de volume temos:

$$I_{p} = \frac{\Delta n e}{T_{r}}$$
(2-21)

onde,

 $T_r = tempo de trânsito de um elétron livre entre o catodo e o an<u>o</u> do.$

Vamos considerar o catodo fazendo contato ôhmico com o semicondutor. Por contato ôhmico entenda-se um contato no qual as bandas se dobram de forma que a densidade de elétrons nele seja maior que no semicondutor, ou seja, ele se comporta como um reservatório de elétrons.

O tempo de trânsito
$$T_r$$
 é dado por:
 $T_r = \frac{\ell}{V_d} = \frac{\ell}{\epsilon \mu_n} = \frac{\ell^2}{V \mu_n}$
(2-22)

onde,

V_d = velocidade de deriva dos elétrons ε = campo elétrico

portanto,

$$I_{p} = e \frac{f \mu_{n} \tau_{n}}{\ell^{2}} v \qquad (2-23)$$

Isso significa que I_p deve ser diretamente proporcional a f e a V. Na prática isso pode não se verificar. I_p pode ter dependências variadas com f e isso está ligado à cinética de recombinação que será tratada na seção 2.2.4.

Também a dependência com V pode não ser linear. A voltagens relativamente altas começa a aparecer o efeito de limitação de corrente por carga espacial,ou mesmo ruptura da rigidez dielétrica do material (Rose 1978).

2.2.4 Recombinação

Para discutirmos recombinação é importante fazermos uma distinção entre os possíveis estados no gap.

Segundo (Rose 1978) chamaremos um estado no gap de cen tro de recombinação quando a probabilidade de um portador aprisio nado por este centro se recombinar com um portador oposto for maior que a probabilidade dele ser re-excitado térmica ou óptica-mente. No caso contrário o estado é chamado de armadilha. A distinção entre centros de recombinação e armadilhas depende da estatística de recombinação e normalmente varia com a temperatura e com a intensidade de luz incidente. Em primeira aproximação podemos considerar os quase níveis de Fermi $E_{\rm Fn}$ para elétrons e $E_{\rm Fp}$ para lacunas como sendo, os níveis de demarcação que separam as armadilhas dos centros de recombinação para elétrons e lacunas re<u>s</u> pectivamente.

Rigorosamente, para o caso de elétrons:

$$E_{c} - D_{n} = E_{c} - E_{Fn} + kT \ln (\frac{n_{r}}{p_{r}})$$
 (2-24)

onde,

 $D_n = nivel de demarcação, para elétrons$ $n_r, p_r = densidade de centros de recombinação ocupados por elétrons$ e lacunas respectivamente.

Então o erro que estamos cometendo com esta aproximação é da ordem de kT ln (n_r/p_r) . Assim, se $n_r \approx p_r$ esse erro é desprezível e devido à sua dependência logarítmica com (n_r/p_r) é geralmente da ordem de 0.05eV à temperatura ambiente.

Vamos agora discutir modelos para a recombinação que serão importantes para o trabalho e que foram sugeridos em (Rose 1978).

Experimentalmente constatou-se que de um modo geral

$$I_{p} = k f^{\gamma}$$
 (2-25)

onde γ pode assumir valores diferentes de um ao contrário do que foi sugerido na equação 2-23. Isso se deve a efeitos da cinética de recombinação que serão discutidos a seguir. Analisemos um modelo que dá conta de $1/2 \leq \gamma \leq 1$.

A primeira hipótese a ser considerada é uma combinação entre processos mono e bimoleculares. Processos monomoleculares de recombinação envolvem apenas um tipo de portador livre e correspondem a γ = 1. Processos bimoleculares envolvem portadores livres dos dois tipos e correspondem a γ = 1/2.

Essa hipótese em geral não se sustenta. Em muitos materiais γ mantém um mesmo valor em um grande intervalo de inten sidades. Segundo (Rose 1978), se este intervalo cobre mais do que um fator dois um dos processos deve dominar o comportamento.

, Consideremos um fotocondutor que tenha um distribuição de armadilhas no escuro do tipo

$$N_{t}(E) = A \exp - \frac{(E_{c}-E)}{kT_{1}}$$
 (2-26)

onde,

 $T_1 = parâmetro formal ajustado para fazer a densidade de estados variar mais ou menos rapidamente com a energia.$

$$A = N_t (E_c) = N_c$$

Suponhamos que sob iluminação o número de centros de recombinação é maior que o número de armadilhas com energia entre o nível de Fermi e a banda de condução, ou seja, há um deslocamento dos quase níveis de Fermi tal que:

$$N_{r} > \int_{E_{F0}}^{E_{c}} N_{t} (E) dE$$
 (2-27)

Se existem p_r centros de recombinação para elétrons (desocupados) por unidade de volume:

$$P_{r} = \frac{1}{s_{n} v_{n} \tau_{n}} \quad ou \tau_{n} = \frac{1}{s_{n} v_{n} p_{r}}$$

(2-28a,b)

onde,

 $s_n = seção de captura dos centros para elétrons$ $<math>v_n = velocidade térmica dos elétrons livres$ $<math>\tau_n = tempo de vida dos elétrons livres.$

Façamos as seções de captura para elétrons s_n desses estados muito menor que as seções de captura para lacunas S_p ($S_n << S_p$), de forma que $\mu_n \tau_n >> \mu_p \tau_p$ ou $\Delta n >> \Delta p$.

Agora, na medida que a intensidade luminosa aumenta, mais armadilhas de N_t convertem-se em centros de recombinação quando o quase-nívei de Fermi E_{Fn} desloca-se acima de E_{FO}.

Assim p_r aumenta e consequentemente τ_n diminui.

Podemos estimar p_r pelo número de estados N_t entre o nível de Fermi E_{F0} e o quase-nível de Fermi de elétrons E_{Fn} :

$$P_{r} = \int_{E_{F0}}^{E_{Fn}} N_{t}(E) dE \qquad (2-29)$$

$$p_{r} = \int_{E_{F0}}^{E_{Fn}} A \exp - \left(\frac{E_{c} - E}{kT_{1}}\right) dE$$
 (2-30)

$$P_{r} \cong kT_{1}(N_{t}(E_{Fn}) - N_{t}(E_{F0})) \cong kT_{1}N_{t}(E_{Fn})$$
 (2-31)

Então podemos escrever,

$$\Delta n = f \tau_n = f \frac{1}{p_r v_n s_n}$$
(2-32)

$$\Delta n = f \frac{1}{kT_{1}A \exp(-(\frac{E_{C}-E_{Fn}}{kT_{1}})) v_{n} s_{n}}$$
(2-33)

Por outro lado, podemos multiplicar e dividir por T_1 o exponte de (2-18).

$$\Delta n = N_{C} \exp - \left(\frac{(E_{C} - E_{F_{n}}) T_{l}}{kT_{l}T} \right)$$
 (2-34)

Multiplicamos (2-33) por (2-34) :

$$\Delta n^{1+T/T} l_{=} \frac{f N_{c}^{T/T} l}{kT_{1} A v_{n} s_{n}}$$
(2-35)

ou

$$\Delta n = \begin{bmatrix} f N_{c}^{T/T_{1}} & T_{1}/(T + T_{1}) \\ \hline kT_{1}A v_{n} s_{n} \end{bmatrix}$$
(2-36)

portanto, a equação equivalente a 2-23 é:

$$I_{p} = \frac{e^{\mu_{n} \tau_{n}}}{\ell^{2}} V \begin{bmatrix} T/T_{1} \\ f N_{c} \\ KT_{1} A V_{n} S_{n} \end{bmatrix}$$
(2-37)

se $T_1 \ge T$, o expoente $\gamma = T_1/(T + T_1)$ fica entre 0.5 e l. Como a maior parte dos estados p_r está próxima a E_{Fn} no tratamento dado, basta que a distribuição de estados próxima a E_{Fn} seja próxima de uma exponencial. Dessa forma, quase qualquer distribuição de estados leva a expoentes entre 0.5 e l para a curva corrente intensidade luminosa.

A descrição de materiais com γ > 1, é mais sutil. Antes de mais nada deve ser provado que a adição de centros de recombinação de um tipo diferente daqueles já presentes pode aumentar

o tempo de vida dos portadores majoritários, desde que sua seção de captura para esses portadores seja menor do que a dos centros já presentes.

Consideremos um fotocondutor do tipo n com uma classe I de centros de recombinação cuja seção de captura para elétrons e lacunas e S' e S' respectivamente, com densidade N'. n p

Agora adicionamos a este fotocondutor uma densidade N''_t de estados com seção de captura para elétrons muito menor $S''_n < S'_n$ e $S''_p \approx S'_p$, ou estados de classe II.

Sob iluminação uma redistribuição de elétrons e lacunas ocorre entre os centros de recombinação devido a esta diferença e<u>n</u> tre as seções de captura.

A vazão de elétrons para cada classe de centros deve ser igual à vazão de lacunas para estes centros:

$$\Delta n p_{r}' v s_{n}' = \Delta p n_{r}' v s_{n}'$$
(2-38)

$$\Delta n \mathbf{p}_{\mathbf{r}}^{\prime \prime} \mathbf{v} \mathbf{s}_{\mathbf{n}}^{\prime \prime} = \Delta \mathbf{p} \mathbf{n}_{\mathbf{r}}^{\prime \prime} \mathbf{v} \mathbf{s}_{\mathbf{n}}^{\prime \prime}$$
(2-39)

· ou

$$\frac{\Delta \mathbf{p}}{\Delta \mathbf{n}} = \frac{\mathbf{p}_{\mathbf{r}}^{\mathsf{T}} \mathbf{s}_{\mathbf{n}}^{\mathsf{T}}}{\mathbf{n}_{\mathbf{r}}^{\mathsf{T}} \mathbf{s}_{\mathbf{p}}^{\mathsf{T}}} = \frac{\mathbf{p}_{\mathbf{r}}^{\mathsf{T}} \mathbf{s}_{\mathbf{n}}^{\mathsf{T}}}{\mathbf{n}_{\mathbf{r}}^{\mathsf{T}} \mathbf{s}_{\mathbf{p}}^{\mathsf{T}}}$$
(2-40)

Se

s' = s'

$$p_{r}' = \frac{p_{r}'' n_{r}'}{n_{r}''} \frac{s_{n}''}{s_{p}''}$$
(2-41)

Sabemos que haverá uma forte tendência de passar elétrons dos estados classe II para os classe I via banda de condução.

Isso pode ocorrer até que,

$$n'_{r} \rightarrow N'_{r} \qquad (2-42)$$

$$p'_{r} \rightarrow N'_{r} \qquad (2-43)$$

$$n_r' \rightarrow N_r'$$
 (2-44)

Assim (2-41) fica

$$\mathbf{p}_{\mathbf{r}}' \stackrel{\sim}{=} \mathbf{N}_{\mathbf{r}}' \frac{\mathbf{N}_{\mathbf{r}}'}{\mathbf{N}_{\mathbf{r}}'} \frac{\mathbf{s}_{\mathbf{n}}}{\mathbf{s}_{\mathbf{p}}'}$$
(2-45)

Podemos considerar $N_r' \approx N_r''$ então

$$\mathbf{p}_{\mathbf{r}}^{\prime} << \mathbf{N}_{\mathbf{r}}^{\prime} \tag{2-46}$$

Lembrando (2-28b) e considerando que a recombinação se dã principalmente através de estados da classe I, τ_n foi bastante aumentado em comparação com seu valor no exemplo anterior. Este aumento em τ_n é chamado de sensibilização.

A partir deste conceito fica imediata a explicação da supralinearidade. Na medida em que estados classe II se tornam ce<u>n</u> tros de recombinação pelo deslocamento do quase-nível de Fermi, τ_n vai aumentando e este aumento pode ocorrer de forma supralinear.

A sensibilização ocorre através de uma redistribuição de elétrons e lacunas entre as duas classes de centro de recombin<u>a</u> ção. O caminho de recombinação através dos estados N'_r é desfavorecido pela passagem de elétrons dos estados n'_r 'para os p'_r . As lacunas que dessa forma passam dos estados N'_r para os N'_r 'assumem uma seção de captura de elétrons muito menor.

Quando a posição do quase-nível de Fermi para elétrons for tal que todos os centros de classe II já tenham sido convert<u>i</u> dos, a sensibilização deixa de acontecer e o fotocondutor passa a se comportar com $0.5 < \gamma < 1$.

3. SEMICONDUTORES AMORFOS

Não é simples definir o estado amorfo. Na verdade é m<u>a</u> is fácil fazer isso dizendo o que ele não é. Semicondutores amorfos são não cristalinos. Eles não apresentam ordem de longo alca<u>n</u> ce, o que não equivale a dizer que são absolutamente desordenados. Essa ordem de curto alcance presente é diretamente responsável p<u>e</u> las propriedades semicondutoras desses materiais como condutivid<u>a</u> des elétricas ativadas e bordas de absorção óptica (Brodsky 1979).

Os semicondutores amorfos podem ser classificados bas<u>i</u> camente em dois tipos, os vidros de calcogêneos e os semicondutores amorfos de coordenação tetraédrica (SACT). Os vidros de calco gêneos tem em sua composição pelo menos uma elemento do Grupo VI da tabela periódica e podem ser preparados a partir de resfriamen to rápido da fase líquida.

Um exemplo desses materiais é o As₂ Se₃.

O outro tipo, os SACT compreende os elementos da colu na IV da tabela periódica e suas ligas. Esses semicondutores amor fos não podem ser preparados resfriando-se uma fase líquida devido a efeitos de coordenação dos elementos (Fritzsche 1981).

Eles só podem ser preparados na forma de filmes finos por evaporação, C.V.D., "sputtering" e descarga luminescente (glow discharge)e_outros métodos de deposição.

3.1 Semicondutores Amorfos de Coordenação Tetraédrica

As propriedades dos SACT dependem da forma como são pr<u>e</u> parados e da presença ou não de hidrogênio, fluor e outros elementos no material. Vou procurar primeiramente comentar algumas c<u>a</u> racterísticas gerais. Como já foi dito, os SACT possuem ordem de curto alcan ce. Isso foi mostrado a partir de dados de difração de raios-X e elétrons (Moss e Graczyk, 1970). O pico correspondente ao primeiro Vizinho na curva de distribuição radial de probabilidade é praticamente igual na a-Si e no c-Si. No amorfo os picos são mais largos devido à dispersão nas distâncias interatômicas.(Fig.3.1.1).

Figura 3.1.1 - Função distribui ção radial de probabilidade para silício amorfo e recozido (de Mosse Graczyk 1970).

A partir de um estudo teórico usando a aproximação de ligação forte (tight binding), (Wearie e Thorpe 1971) mostraram que as propriedades eletrônicas do silício são dominadas pela ordem de curto alcance, sendo a ordem de longo alcance responsável apenas pela estrutura mais fina da densidade de estados. Isso equi vale a dizer que a idéia de bandas de energia de estados exten didos está presente nos SACT. A desordem configuracional leva à formação de estados localizados que não ocupam todas as energias das bandas, mas formam caudas sobre e sob as bandas de valência e condução, respectivamente. Além disso, foi mostrado anteriormente (Anderson 1958) que existe um limite em energia bem definido entre os estados extendidos e os localizados. Os estados localizados o são na medida em que as funções de onda correspondentes a elétrons nestes estados são localizadas em algum ponto do espaço, decaindo exponencialmente com a distância a partir deste ponto (Mott 1984).

A partir de um modelo para os vidros de calcogêneos (Cohen, Fritzsche e Ovshinsky 1969), foi proposto um modelo paraos SACT, em especial o a-Si que é bastante importante para o presente trabalho.

Baseado em resultados experimentais disponíveis na épo ca como insensibilidade à dopagem (nível de Fermi "preso" à metade do gap), o modelo de Cohen, Fritzsche e Ovshinsky (CFO) propõe que os estados no gap devem-se exclusivamente às caudas das ban das. (Davis e Mott 1970) calcularam que estes estados das caudas deveriam penetrar apenas alguns décimos de elétron-Volts no gap. Então propuseram que a maior parte dos estados no gap, inclusive no nível de Fermi, deviam-se à existência de ligações pendentes (dangling bonds) do silício simples ou duplamente ocupadas, cujas energias correspondem a valores no interior do gap (Fig. 3.1.2).

Este modelo é chamado de modelo de Mott-CFO. As bandas de estados das ligações pendentes se superpõem prendendo o nível de Fermi à metade do gap.

Os estados devidos às ligações pendentes no a-Si são tão

Fig. 3.1.2-Diagrama es quemático da densidade de estados no a-Si segundo o modelo de Mott CFO.

abundantes que o material não apresenta características de um semicondutor. A absorção óptica e a condutividade elétrica são masca radas por estes estados, que também se comportam como centros de recombinação rápidos e não-radiativos o que faz a fotocondutivida de e fotoluminescência muito pequenas. Além disso eles ancoram o nível de Fermi à metade do gap, fazendo o material insensível a dopagem.

Assim, para fazermos um material interessante do ponto de vista óptico e eletrônico é necessário de alguma maneira par<u>e</u> ar as ligações pendentes.

Isso é feito usualmente com hidrogênio ou flúor. Esses elementos ligam-se com as ligações pendentes, diminuindo suas de<u>n</u> sidades para valores pequenos o suficiente para que as propried<u>a</u> des interessantes do a-Si possam ser estudadas. O material resultante no caso do hidrogênio é uma liga entre silício e este elemento (a-Si:H) contendo usualmente entre 5 e 30% atômico de hidr<u>o</u> gênio.

O processo de deposição por descarga luminescente prepara amostras já hidrogenadas e tem sido largamente utilizado (Fritzsche 1980). Outras possibilidades como "sputtering" com gases contendo hidrogênio e CVD estão sendo investigados atualmen te.

4. PREPARAÇÃO E CARACTERIZAÇÃO DAS AMOSTRAS

4.1 Preparação

As amostras de $a-SiN_x$:H foram preparadas na forma de filmes finos em um reator de descarga luminescente RF (glow discharge) com acoplamento capacitivo. O reator foi construido nas oficinas da Unicamp e está esquematizado na figura 4.1.1. Seus detalhes de construção e funcionamento estão descritos em outro trabalho (Alvarez 1982). As amostras foram preparadas pelo Prof. Fernando Alvarez.

Figura 4.1.1-Diagrama de blocos do reator (Alvarez 1982).

As dezessete amostras estudadas foram preparadas a par tir de uma mistura gasosa de silano e nitrogênio com a proporção $(SiH_4)/(N_2) \sim 0.33$. Os substratos foram sempre vidro Corning 7059 com l polegada quadrada de área mantidos a aproximadamente 2809C durante a deposição. O fluxo de gases variou entre 360 e 580 sscm e a pressão de trabalho entre 0.6 e 0.9 torr. Todas as amostras são anódicas, e o substrato foi polarizado a -100V durante a dep<u>o</u> sição.

A dopagem foi obtida na fase gasosa pela adição de pequenas quantidades de gases dopantes (fosfina ou diborano) diluidos em argônio durante a deposição.

Na Tabela 4-I estão listados alguns parâmetros de depo sição e caracterização das amostras. É importante notar que a potência de deposição foi medida em um sensor colocado o mais próx<u>i</u> mo possível do reator, mas não foi feita uma calibração deste se<u>n</u> sor para cada deposição, de forma que podem haver erros devidos a variações na amplitude da onda estacionária.

Para as medidas de condutividade e de fotocondutividade foram evaporados sobre as amostras contatos coplanares de alumínio com 10mm de comprimento, separados por 0.5 ou 1mm e com aproximadamente 250nm de espessura (Fig.4.1.2).

Figura 4.1.2 Geometria das amostras.

Amostra	Potência (w/cm ²)	a Corrente (mA)	$v_{ m pp}^{ m b}$ (Volt)	Pressão (torr)	(Dopante)/ (Silano) (%)	Fluxo Total
						(sccm)
36	1.50	100	2800	0.7	-	360
37	3.75	160	3800	0.6	-	360
38	5.00	220	4550	0.7	-	360
39	0.62	50	2200	0.8		360
40	3.12	110	3000	0.7	- -	360
41	0.94	100	3000	0.7	-	360
42	1.50	100	2700	0.9	1.2(B)	576
43	1.50	100	2900	0.7	0.4(B)	430
44	1.50	100	3000	0.6	0.8(B)	506
45	1.50	100	3000	0.6	0.1(B)	378
46	1.50	100	3000	0.6	0.02(B)	364
50	1.50	100	3100	0.7	0.008(B)	362
51	1.50	110	3100	0.6	1.2 (P)	580
52	1.50	100	3100	0.6	0.03(P)	366
53	1.50	100	3250	0.7	0.034(P)	367
54	1.50	100	3250	0.7	0.1 (P)	377
55	1.50	100	3250	0.7	0.4 (P)	428

a - No catodo do gerador de RF

b - Na placa do reator

•

Esses contatos mostraram-se sempre ôhmicos dentro dos campos elétricos usados (3000V/cm). Na amostra 46, fracamente dopada com boro encontrei efeito fotovoltãico para tensão de polar<u>i</u> zação zero, indicando não-ohmicidade. Isso provavelmente está ligado ao fato do nível de Fermi desloca-se em direção ao meio do gap nesta amostra (Alvarez e Chambouleyron 1984).

Na tensão de trabalho este problema desapareceu.

4.2 Caraterização

4.2.1 Gap Optico

O gap óptico das amostras foi calculado a partir de medidas de transmitância óptica. Supondo que a distribuição em energia dos estados correspondentes às bandas em material cristalino (determinada pela ordem de cur to alcance) é parabólica, que a probabilidade de transição eletrônica entre os estados da banda de valência e os da banda de condução não depende da energia desses estados e apenas a energia é conservada nessas transições, foi traçado o gráfico de $(\alpha h\nu)^{1/2}$ x hv e o gap foi definido como o ponto em que a extrapolação da parte linear da curva intercepta a ordenada (Tauc 1970).

As medidas foram feitas em um espectrofotômetro Zeiss DMR-21 e em um Perkin-Elmers Lambda 3. Uma curva típica obtida está na figura 4.2.1.1.a. Estas figuras são compostas por uma curva de absorção convoluída com uma de interferência. A curva sem interferência é obtida a partir da média geométrica entre os máximos e os mínimos (Swanepoel 1983).

$$T_{\alpha} = \sqrt{T_n T_m}$$
 (4-1)

onde, T_{α} corresponde à transmitância verdadeira, T_n a transmitância em um máximo e T_m a transmitância em um mínimo adjacente.

Então, considerando,

$$I = (1 - R) I_0 e^{-\alpha d}$$
 (4-2)

onde, I = intensidade da luz transmitida

 $R(\lambda) = refletividade$

 I_0 = intensidade da luz incidente

 $\alpha(\lambda) = \text{coeficiente de absorção}$

d = espessura da amostra

Obtemos:

$$\alpha = -\frac{1}{d} \ell n \frac{I}{(1-R) I_0}$$
(4-3)

R é o obtido na região em que a amostra é transparente e $R=1-T_{transp}$ Este valor é usado para todo o espectro estudado já que não podemos obter R em função de λ no equipamento usado e ele não varia muito nesta faixa do espectro.

Então fica imediato o gráfico de $(\alpha h\nu)^{1/2}$ contra h ν já que o espectrofotômetro tem como saída uma curva de T=I/I₀ con tra ν . (Figura 4.2.1.1 b).

Note que por conveniência α está expresso em unidades de (espessura da amostra)⁻¹ e isso não influi no valor obtido para o gap.

Na verdade as espessuras das amostras poderiam ter si do calculadas a partir das figuras de interferência (Cisneros, Al varez, Carpi e Chambouleyron). Esse parâmetro é muito importante, como veremos mais adiante, para a análise dos dados de condutividade e de fotocondutividade. No entanto, a utilização deste método é bastante trabalhosa envolvendo cálculos computacionais complicados e não fornecendo, provavelmente, resultados mais precisos do que as estimativas a partir das taxas de crescimento que usei quando não havia a possibilidade de outras medidas.

Figura 4.2.1.1. a) Transmitância I/I_0 em função de λ para a amostra 37. A cur va tradejada corresponde a T_{α} . b) $(\alpha h \nu)^{1/2}$ em função de h ν para a mesma amostra. $(\alpha h \nu)^{1/2}$ está em unidades de $eV^{1/2}$. (espessura da amostra)^{1/2}. O ponto em que a extrapolação da parte linear da curva intercepta a ordenada é definido como o gap óptico da amostra.

4.2.2 <u>Resistência no Escuro</u>: <u>Condutividade e Energia de Ativa</u> - ção.

Foram feitas medidas da resistência no escuro contra a temperatura. As amostras apresentam comportamento ativado, o que permite que sejam calculadas as energias de ativação no escuro. $E_{\underline{S}}$ sas medidas foram feitas em um aquecedor com temperatura regulá - vel, em atmosfera de nitrogênio. Efeitos de umidade superficial foram minimizados aquecendo-se as amostras antes das medidas.

A condutividade σ é definida pela equação da resistência elétrica R:

$$R = \frac{1}{\sigma} \frac{\ell}{A}$$
(4-4)

A energia de ativação ΔE é obtida usando-se uma forma modificada de (2-5).

$$\sigma = \sigma_0 \exp -\Delta E/kT \tag{4-5}$$

Essa equação foi ajustada pelo método dos mínimos quadrados.

A partir de medidas de eficiência de coleção em estruturas Schottky feitas de $a-SiN_x$:H foi demonstrado que se trata de um material do tipo n (Alvarez e Chambouleyron 1984) e portanto $\Delta E \cong E_c - E_{F0}$ (T=0).

A condutividade no escuro à temperatura ambiente foi obtida extrapolando-se as curvas de condutividade contra a temp<u>e</u> ratura em torno de 450K devido ao fato das amostras serem muito resistivas.

A espessura das amostras usada neste cálculo foi obtida por um profilômetro tipo Talystep nas amostras em que é possível um ataque químico sem que o vidro do substrato seja atacado. Nos demais casos a espessura foi estimada a partir da taxa de crescimento da amostra 36. O erro associado a este tipo de estimativa não é maior que 10%.

Um resumo dos dados ligados a gap óptico e medidas no escuro está na tabela 4-II.

TABELA 4-11

Amostra	Potência (w/cm²)	(Dopante)/ (Silano)(%)	Gap Óptico (eV)	∆E (eV)	σ (300K) (Ωcm) -1
39	0.62	-	1.77	0.85	_
41	0.94	-	1.80	-	_
36	1.50	-	2,08	0.9	5.0x10 ⁻¹²
40	3.12	<u></u>	2.30	-	_
37	3.75	-	2.07	-	_
38	5.00	-	2.17	-	-
50	1.50	0.008 B	-	0.91	9.0×10^{-13}
46	1.50	0.02 B	1.99	0.91	2.0×10^{-13}
45	1.50	0.1 B	1.97	1.00	1.0x10 ⁻¹³
43	1.50	0.4 B	1.96	0.63	2.0x10 ⁻⁹
44	1.50	0.8 B	1.90	0.58	3.2x10 ⁻⁹
42	1.50	1.2 B	1.89	0.53	2.0×10^{-7}
52	1.50	0.03 P	-	0.88	-
53	1.50	0.034 P	2.06	0.86	2.2x10 ⁻¹²
54	1.50	0.1 P	2.15	0.875	-
55	1.50	0.4 P	1.99	0.76	-
51	1.50	1.2 P	2.22	-	-

Alguns dados tirados de Alvarez e Chambouleyron 1984.

5. FOTOCONDUTIVIDADE: EXPERIMENTAL

5.1 Sistema de Medidas

As medidas de fotocondutividade contra a temperatura e contra a intensidade foram feitas usando-se o método de deteção em fase. Esse método consiste em medir-se a fotocondutividade modulan: do-se mecanicamente o feixe de luz incidente sobre a amostra polarizada de maneira que a luz chegue na amostra na forma de púlsos quadrados em função do tempo. A fotocorrente gerada é transformada em pulsos de tensão por um conversor I-V e levada ã entrada de sinal de um amplificador "lock-in" cujo sinal de referência e<u>s</u> tá dado pelo modulador. E feita a correção de fase entre os dois sinais e a saída do "lock-in" é proporcional à fotocorrente. O si<u>s</u> tema experimental está esquematizado na Figura 5.1.1.

Figura 5.1.1 Sistema experimental para medidas de fotocondutividade contra a temperatura e a intensidade.

Este método de medição apresenta algumas vantagens e al gumas desvantagens sobre o método contínuo no qual a luz não é mo dulada e a corrente é medida em um eletrômetro. As principais van tagens são as seguintes: a medida é bastante limpa de ruído, pois apenas o sinal com a mesma frequência e em fase com a referência é detetado, de forma que a condutividade no escuro, que continua presente, e ruídos são suprimidos. Isso permite que se faça a medida em um laboratório não totalmente escuro como o nosso. Além disso, a medida é feita com os terminais da amostra virtualmente em curto circuito no conversor I-V, o que não ocorreria com um eletrômetro.

A principal desvantagem deste método é que a medida não é contínua de forma que como o tempo de resposta do material não é nulo há uma certa atenuação no sinal medido no "lock-in". Essa atenuação é minimizada usandose uma freqüência de modulação tão pequena quanto possível.

O tempo de resposta τ_{0n} dos fotocondutores do tipo n com armadilhas é maior que o tempo de vida dos portadores por um fator $(n_t/n)\tau_n$ onde n_t é a densidade de elétrons armadilhados. Esse fator é o tempo necessário para que a população eletrônica das armadilhas entre em equilíbrio térmico com a da banda de condução após o início ou o fim da iluminação. Então

$$\tau_{0n} = (1 + \frac{n}{n}t) \tau_n$$
 (5-1)

 τ_{on} è também a fotocorrente dependem da temperatura e da intensidade luminosa. Procura-se sempre trabalhar em regimes nos quais τ_{0n} não varie muito, mas uma certa atenuação do nível está sempre presente (Tessler e de Mendonça 1984).

Usamos um "lock-in" Princeton Applied Research Mod 124A, entrada por amplificador diferencial PAR 117 e modulador PAR de 13,6Hz ou modulador regulável EGG/PAR 192 de 5Hz a 10kHz. A polarização da amostra foi feita com uma fonte de alimentação para fot<u>o</u> multiplicadora PR S-502 e monîtorada com um multimetro Keithley 177 DMM.

Um conversor I-V foi construido e está baseado em um amplificador operacional Analog Devices 545 com sensibilidade >2pA e resistores de 1% de precisão (veja apêndice 8.1). Como fonte de luz usamos um laser He:Ne com energia de fóton de 1.96eV _ modelo Spectra Physics 134 com 1.5mW ou um Spectra Physics 15 5 com 0.95mW.

Para a obtenção de várias intensidades luminosas usamos um conjunto de 6 filtros neutros Oriel, com densidades ópticas entre 0.05 e 1.88. As densidades ópticas foram medidas com um fotodiodo de silício EGG e o "lock-in".

As medidas foram feitas com as amostras em um criostato que permite atingirmos temperaturas entre 120 e 340 K, construí do pelo Grupo de Conversão Fotovoltáica, no qual foi dimplementado controle de temperatura usando um controlador Robertshaw Pyrotec 90 modificado (veja apêndice 8.2).

Nesse criostato é possível a obtenção de pressões melhores que 10⁻²torr medidas em um medidor Pirani 78/1 Edwards,com uma bomba rotativa Leybold ou com uma IBAV.

A temperatura na amostra foi medida por um termopar t<u>i</u> po K (Cromel x Alumel) colocado no porta-amostras do criostato,tão próximo quanto possível da amostra. A tensão do termopar foi med<u>i</u> da sem referência a $O^{\circ}C$ em um multímetro Keithley 191 DMM.

O fluxo de fótons dos lasers foi medido com o fotodiodo EGG.

A rotina de medidas repetida para todas as amostras foi a seguinte:º laser é ligado e deixado estabilizar por, pelo menos, meia hora enquanto a amostra sob vácuo era resfriada no criostato. As medidas eram feitas estabilizando-se a temperatura desejada e só então ligava-se a polarização e abria-se a janela do criostato para evitar-se efeitos de "stress" pelo campo elétrico e o efeito Staebler-Wronski (Staebler e Wronski 1980).

Quando as fotocorrentes para os sete fluxos já tinham sido medidas fechava-se a janela e desconectava-se a polarização e então a temperatura era aumentada até o próximo valor desejado. Esse procedimento foi repetido para todas as amostras em mais ou menos 20 valores de temperatura cada uma.

Durante as medidas as amostras foram mantidas sob um campo elétrico de 3000 V/cm. O amplificador "lock-in" foi utilizado no modo normal, constante de tempo de 100 ou 300 ms e sempre que possível não foi usado o filtro de entrada. Quando sua utilização foi necessária isto foi feito na opção passa-banda centrada em 13,6Hz e com Q=50.

Como o "lock-in" mede sempre o valor RMS da primeira componente de Fourier do sinal de entrada, ou seja, de uma senóide com a mesma frequência do sinal, é necessária uma correção pois o sinal de fotocorrente é próximo de uma onda quadrada cuja expan são em série de Fourier é:

$$f(t) = \frac{4A}{\pi} (\text{sen } \omega t + \frac{1}{5} \text{ sen } 5\omega t + \dots)$$
 (5-2)

onde,

ω = frequência do sinal, portanto, como a amplitude de uma senóide é $\sqrt{2}$ x valor RMS as correntes lidas no "lock-in" foram multiplicadas por $\frac{\sqrt{2} \pi}{4}$.

A partir dos valores das fotocorrentes as fotocondutividades foram calculadas utilizando-se (2-19) e as energias de ativação foram obtidas ajustando-se as curvas contra temperatura com a equação (2-18) pelo método dos mínimos quadrados (veja apê<u>n</u> dice ⁸.3).

Os y da dependência da fotocondutividade contra a temperatura foram obtidos através do ajuste da equação (2-24) pelo método dos mínimos quadrados.

Os fluxos de fótons foram corrigidos assumindo-se uma refletividade de 0.45 na amostra e 0.04 no vidro do criostato.

O coeficiente de absorção α para hv=1.96eV vale entre $5x10^3$ e 10^4 cm⁻¹, ou seja, dentro de uma mesma ordem de grandeza em todas as amostras, e sempre se verifica:

onde d = espessura da amostra

Dessa forma, podemos considerar a luz uniformemente absorvida no filme, e como não conhecemos a eficiência quântica β das amostras, vamos assumir que $\beta \alpha$ é aproximadamente constante em todas as amostras e não é necessária a correção dos resultados devido a este parâmetro.

5.2 Resultados Experimentais

Foram realizadas medidas sobre 16 amostras sendo que em duas delas não foi possível a obtenção de dados confiáveis.

A figura 5.2.1 mostra as curvas de fotocondutividade em função da temperatura na amostra 39, que foi depositada com a menor potência, de forma que seu conteúdo de nitrogênio é o menor que temos. São mostradas as curvas para os sete fluxos de fótons estudados. A figura 5.2.2 mostra as curvas de fotocondutivida de em função do fluxo de fótons para esta mesma amostra a várias

Fig. 5.2.1-Fotocondutividade em função da temper<u>a</u> tura na amostra 39 com diferentes fluxos de fótons.

Fig. 5.2.3- Fotocondutividade em função da temperatura na amostra 36.

Fig. 5.2.4 - Fotocondutividade em função da temperatura na amostra 54 dop<u>a</u> da com P.

Fig. 5.2.5 - Fotocondutividade em função da temperatura na amostra 43, dopada com boro.

temperaturas.

Na figura 5.2.3 está a fotocondutividade em função da temperatura na amostra 36. Atenção para a região na qual a foto condutividade não é ativada, na forma de um pico nas curvas.

Curvas típicas para amostras dopadas com fósforo e com boro estão nas figuras 5.2.4 e 5.2.5 respectivamente.

Os valores de todos os parâmetros medidos estão na Tabela 5-I.

Não se pode garantir que a concentração de gases dopantes no plasma seja a mesma da amostra. Inumeros fatores influenciam sua incorporação. Espera-se que amostras preparadas sob condições semelhantes tenham a proporção de dopantes incorporados relacionada principalmente à razão entre o fluxo de gás dopante e o fluxo total de gases.

As medidas de gap óptico feitas segundo o método descrito na seção 4.2.1. estão sujeitas a um erro na extrapolação da reta que é da ordem de 0.02 eV.

As energias de ativação de fotocondutividade foram obtidas em ajustes de curvas com coeficiente de correlação de pelo menós 0.99. Os valores de γ apresentam uma certa dispersão exper<u>i</u> mental, pois muitas vezes envolveram medidas de correntes pequenas, com uma relação sinal-ruído muito baixa. Os valores medidos nas amostras com o gap óptico maior que a energia dos fótons incidentes apresentam um erro estimado em 0.05.

Tendo em vista o erro estimado nas medidas de espessur**a**adas amostras,os valores de $\sigma_{\rm p}$ (300K) apresentam uma incerteza da ordem de 20%.

CARACTERISTICAS ELETRICAS E OTICAS DAS AMOSTRAS ESTUDADAS

· ·······

.

Amostra	Potência	[Dopante]	Gap Ótico	Energia de	FOTOCONDUTIVIDADE				
		[Silano]		Ativação Energia de Ativação(eV) γ		Energia de Ativação(eV)		(σ(300 k)
	W/cm ²	Vol %	(eV)	(eV)	T alta	T baixa	f alto	f baixo	$(\Omega cm)^{-1}$
39	0.62	_	1.78	0.85	0.14	0.05	0.80	1.06	2 3*10-5
41	0.94		1.80	-	0.13	0.10	0.80	1.33	3.7×10^{-7}
36	1:50		2.02	0.90	0.11	0.15	1.01	1.01	2.3x10 ⁻⁹
50	1:50	.008 B	-	0.91	0.18	0.18	1.10	1.10	4.7x10 ⁻¹¹
46	1.50	0.02 B	1.99	0.91	0.21	0.13	1.06	1.06	4.0x10 ⁻¹⁰
45	1.50	0.1 B	1.97	1.00	-	-		-	2.3×10^{-13}
43	1.50	0.4 B	1.96	0.63	0.32	0.10	0.81	0.97	2.0x10 ⁻¹¹
44	1.50	0.8 B	1.90	0.58	0.32	0.08	0.91	0.91	3.3x10 ⁻¹⁰
42	1.50	1.2 B	1.89	0.53	0.18	0.18	0.92	0.92	2.1×10^{-9}
52	1.50	0.03 P	-	0.88	0.19	0.19	1.09	1.09	1.8×10^{-10}
53	1.50	.034 P	2.06	0.86	0.13	0.13	1.15	1.15	1.4×10^{-11}
54	1.50	0.1 P	2.15	0.87	0.17	0.17	1.02	0.90	3.7×10^{-10}
55	1.50	0.4 P	2.00	0.76	0.21	0,21	1.08	1.08	5.0×10^{-11}
51	1.50	1.2 P	2.22	–	-	-	-	-	1.3x10 ⁻¹²

T alta: Acima de ~240 K

f alto: Acima de $\sim_{10}^{13} \text{ cm}^{-2} \text{ s}^{-1}$

.

6. DISCUSSÃO

Comecemos a análise dos dados com os resultados da amos tra 39, a que tem o menor conteúdo de nitrogênio. Suas energias de ativação e seus γ são comparáveis aos encontrados em a-Si:H por Spear et al. 1974. Dessa forma, podemos considerar essa amostra muito próxima do a-Si:H e assim para analisar as curvas de fotocon dutividade podemos aplicar o modelo de Spear et al. Na região de T < 240K a energia de ativação é comparável com a energia típica de fonon do silício cristalino,que é próxima à do a-Si:H e é proposto "hopping" de elétrons entre estados localizados como sendo o mecanismo de transporte predominante. A temperaturas mais altas a probabilidade de um elétron ser termicamente libertado de um desses estados P_{ter} é maior que a probabilidade de "hopping" P_{hop} e o tran<u>s</u> porte é feito predominantemente por elétrons na banda de condução. Por outro lado, o valor de γ > l é um indício da presença de dois tipos de centro de recombinação como foi discutido em 2.2.4.

Na medida em que a potência de preparação aumenta a energia de ativação na região de altas temperaturas diminui (Tab<u>e</u> la 5-I). Ao mesmo tempo, a energia de ativação na região de baixas temperaturas aumenta. Este comportamento da energia de ativação p<u>o</u> de estar ligado a uma diminuição na densidade de estados próxima a E_{FO} junto com um aumento próximo a E_c. Isso explicaria a diminuição

da energia de ativação a temperaturas altas e o aumento de P_{ter} no caso das temperaturas baixas diminuindo a importância do "hopping" no transporte.

Outras possibilidades são contaminação por ar e variações nas codições de preparação das amostras, como foi sugerido por outros pesquisadores (Vanier et al. 1981, Wronski e Daniel, 1984). Além das variações na energia de ativação de fotoconduti vidade, o aumento da potência de fabricação das amostras produz um pico na curva $\sigma_{p} \ge 1/T$ (figura 5.2,3). Este pico foi associado a um aumento na densidade de estados no gap entre $E_{FO} = E_{C}$, provavelmente ligado à presença de nitrogênio na rede (Chambouley ron et al 1984).

Agora nos dediquemos aos efeitos de dopagem. A dependê<u>n</u> cia da fotocondutividade σ_p , energia de ativação E_a , gap óptico E_g e a relação E_{FO}/E_g com a dopagem estão mostradas na figura 6.1.

A adição de fósforo na rede dopa o material como tipo n, aumentando a condutividade e diminuindo a energia de ativação no escuro. No entanto, a energia de ativação de fotocondutividade aumenta para a mesma iluminação e a fotocondutividade diminui , ao contrário do que ocorre no a-Si:H a baixos níveis de dopagem (até 0.1% vol de PH₃)(Anderson e Spear 1977, Beyer e Hoheisel 1983).

Este comportamento da fotocondutividade e da energia de ativação no a-SiN_x:H pode estar ligado à introdução de defeitos d<u>e</u> vido à presença de fósforo na rede. No entanto, como o gap óptico aumenta com esta dopagem (Tabela 5-I), pode estar havendo um aumento na incorporação de nitrogênio. Isto será discutido com mais detalhes na página 45.

A dopagem com boro, por outro lado, inicialmente aumen ta a energia de ativação de fotocondutividade e depois a diminui novamente, da mesma forma que a energia de ativação no escuro. I<u>s</u> so está ligado à posição do nível de Fermi e à transição de material tipo n a tipo p. Do ponto de vista da fotocondutividade, isso corresponde ao nível de dopagem no qual o quase-nível de Fermi para lacunas E_{Fp} fica mais próximo da banda de valência do que o quase-nível de Fermi para elétrons E_{Fn} em relação à banda de condução.

Fig.6.1- Efeitos de dopagem no a-SiN_x:H. a) Círculos abertos: fotocondutividade a 300K sob 6×10^{13} foton cm²s⁻¹. Círculos cheios: Gap óptico. b) Círculos abertos: Energia de ativação de fotocondutividade. Círculos fechados: Razão Energia de ativação no escuro/gap óptico.

Na medida em que a dopagem do tipo p aumenta a energia de ativação de fotocondutividade a baixas temperaturas diminui.I<u>s</u> to pode estar ligado a "hopping" de lacunas. Uma grande densidade de armadilhas para lacunas abaixo da metade do gap é aparentemente a responsável por este comportamento.

Nas amostras dopadas com boro γ apresenta valores maiores que um quando a nível de dopagem é baixo (< 0.02 %) ; e valores entre 0.5 e um para dopagem mais forte (tipo p). Isto sugere que quando o transporte é feito principalmente por lacunas ape nas um tipo de centro de recombinação participa do processo (vide seção 2.2.4.).

Agora vamos procurar sistematizar os resultados discutidos até aqui em termos de um modelo fenomenológico para a dens<u>i</u> dade de estados no gap do a-SiN_v:H.

A introdução de nitrogênio dentro dos níveis estudados (a amostra 36 tem aproximadamente 30 % atômico de nitrogênio segun do medidas de espectroscopia Auger) aumenta o gap óptico do a-Si:H, sem dopar o material. Medidas de fotoemissão indicam que o aumento do gap se da pela variação da posição do topo da banda de valência (Kärcher et al. 1984).

A diminuição da fotocondutividade para a luz do laser de He:Ne e o aumento da mesma para luz ELH com a concentração de nitrogênio (Alvarez e Chambouleyron 1984) pode ser entendida em termos da energia dos fótons do laser usado neste trabalho. Esse valor (1.96eV) é comparável com E_g e em algumas amostras menor. Isso faz com que a absorção por excitação de banda a banda de estados extendidos seja um processo pouco importante ou inexistente, havendo sempre, no entanto, excitação de estados localizados para extendidos ou para outros localizados.

Em termos de densidade de estados no gap, o nitrogênio

introduz um pico entre $E_{F0} \in E_c$. Este pico se torna mais marcante nas amostras dopadas com fósforo (Fig.6.2). Nestas amostras, apesar de seus valores estarem espalhados por erros experimentais, γ é sempre maior que um, sugerindo que esses estados se comportam como estados da classe II no modelo de Rose. Duas possibilidades para a origem desses estados foram levantadas a partir de medidas de fotocondutividade em função da intensidade luminosa sob luz ELH (Alvarez e Chambouleyron 1984): Nitrogênio com coordenação quatro ou ligações pendentes (dangling bonds) de silício na rede.

Segundo estudos teóricos (Robertson 1983) o nitrogênio com coordenação quatro atua como dopante no a-Si:H,o que não é observado em nossas amostras. No entanto este resultado supõe que a rede está perfeitamente relaxada na vizinhança dos átomos de n<u>i</u> trogênio,o que provavelmente não está ocorrendo.Na ausencia de tal relaxação, os estados do nitrogênio devem ser profundos.

Por outro lado, foi encontrado um pico de natureza sem<u>e</u> lhante ao nosso em a-Si:H preparado por sputtering e pós-hidrogom nado (Hamdi 1984). Este material não contém nitrogênio (a não ser como impureza) e tem uma grande densidade de ligações pendentes. Naquele trabalho nenhuma explicação para este pico foi tentada, e medidas de fotocondutividade em função da intensidade luminosa não foram feitas.

Além disso, podemos calcular a posição do pico E_{lf} com:

$$\sigma_{\rm D} = e \mu_{\rm D} N_{\rm C} \exp\left(-\Delta E / k T\right) \tag{6-1}$$

onde $\Delta E = E_{c} - E_{TI}$

Usando dados da amostra 36 no pico da figura 5.2.3.(f= $6 \times 10^{13} \text{ s}^{-1} \text{ cm}^{-2}, \sigma_p = 10^{-10} (\Omega \text{ cm})^{-1}$ e T=165K) e assumindo $\mu_n = 1 \text{ cm}^2/\text{V.s}$ e N_c=10¹⁷ cm ⁻³ obtemos E_c-E_{II}=0.36 eV.

Este valor é comparável ao do pico E_x encontrado por medidas de efeito de campo em a-Si:H (Spear e LeComber 1976).

Portanto a interpretação do pico ${\rm E}_{\rm I\,I}$ como sendo devido

a um aumento na densidade de ligações pendentes de silício com a introdução de nitrogênio é bastante viável,mas uma coexistência de ligações pendentes e nitrogênio com coordenação quatro também é possível.

Na medida em que a dopagem com fósforo aumenta, mais estados desta classe são introduzidos funcionando como centros de recombinação.Então esses centros "ancoram" o quase-nível de Fermi (Figura 7.1) (Tessler,Alvarez e de Mendonça 1984).

 Fig. - Representação esquemática da densidade de es tados no gap e da posição do quase-nível de Fermi para elétrons em: a) amostra não-dopada; b) amostra dopada com fósforo sob idênti cas condições de iluminação e temperaturas, no regime de 1/2 ≤ y ≤ 1.

Da mesma forma a fotocondutividade diminui. Não temos dados suficientes para garantir que esse efeito é devido apenas ao fósforo, já que ele está presente em quantidades mínimas e sua presença afeta o gap óptico também. A possibilidade da concentra ção de nitrogênio estar variando com a presença de fósforo no plas ma durante o processo de deposição deve ser estudada. De qualquer forma, os estados introduzidos pela presença de fósforc provavelmente têm mesma natureza dos introduzidos pelo nitrogênio e isto é fato de terem ambos a mesma estrutura de valên devido ao cia. A dopagem com boro nos leva a estudar a região do gap

entre E_{FO} e E_J. Então os estados discutidos anteriormente deixam

de ter um papel importante no processo de transporte e suas cara<u>c</u> terísticas deixam de ser evidentes. A partir da transição tipo n- tipo-p do ponto de vista de fotocondutividade o transporte por lacunas é predominante.

A presença de armadilhas profundas para lacunas se evi dencia pela importância do transporte por hopping a baixas temperaturas, que aumenta com a dopagem. Isso se reflete na diminuição da energia de ativação. Da dependência de σ_p com a intensidade l<u>u</u> minosa se conclui que está ativa apenas uma classe de centros de recombinação com uma distribuição contínua no gap, ou seja, as a<u>r</u> madilhas convertidas em centros de recombinação pela posição do quase-nível de Fermi para lacunas (vide seção 2.2.4.).

Um diagrama esquemático da densidade de estados no gap está na fig. 6.3.

Figura 6.3- Diagrama esquemático da densidade de estados no nitreto de silício amorfo hidrogenado não estequiométrico a-SiN_x:H. O pico aumenta com x nas amostras estudadas.

7.CONCLUSÕES

Medimos a dependência da fotocondutividade com a temperatura e com a intensidade luminosa para amostras de a-SiN $_{\mathbf{X}}$:H pr<u>e</u> paradas a diferentes densidades de potência RF em um reator de descarga luminescente, e com diferentes níveis de dopagem (com b<u>o</u> ro e com fósforo). Os resultados obtidos nos permitiram chegar ãs seguintes conclusões:

a)Em amostras não-dopadas produzidas a baixa potência (baixo conteúdo de nitrogênio) o comportamento de σ_p x l/T e de σ_p x f é similar ao do a-Si:H.

b)O aumento do conteúdo de nitrogênio (através de maior densidade de potência no reator) introduz um pico na curva op x 1/T que é interpretado como devido a um aumento na densidade de estados no gap, centrado a 0.36 eV abaixo da banda de condução. Estes estados são interpretados como sendo os responsáveis pelo comportamento supralinear da fotocondutividade em função da inte<u>n</u> sidade luminosa.

c)A dopagem com fósforo (nos níveis de dopagem estudados) acentua este pico e também introduz estados mais profudos ancora<u>n</u> do o quase-nível de Fermi e aumentando a energia de ativação de fotocondutividade. Isso confirma um resultado anterior (Alvarez e Chambouleyron 1984) de que o fósforo tende a se colocar na rede substituindo o nitrogênio.

d)O estudo de amostras dopadas com boro indicou que em

amostras do tipo p a cinética de recombinação de lacunas está ligada a uma distribuição contínua de um único tipo de centros, entre $E_{_{PO}}$ e $E_{_{V}}$. Isto se reflete em valores de γ entre 0.5 e l.

As conclusões a que chegamos poderiam ser testadas por outras técnicas de medidas.Seriam muito úteis resultados de fotoluminescência,ressonância de spin eletrônico (ESR), evolução de hidrogênio, espectroscopia de massa de ions secundários (SIMS), espectroscopia Auger (AES), entre outros.

Fotoluminescência, ESR, e evolução de hidrogênio poderi am ajudar a clarificar a natureza dos estados do pico.

AES poderia ser usada para determinação do conteúdo de nitrogênio das amostras, e se está ou não ocorrendo uma maior incorporação de nitrogênio nas amostras dopadas com fósforo. SIMS poderia trazer informações sobre isso e mais concentração de dopantes e impurezas.

8.APÉNDICES

8.1. Conversor Corrente-Tensão

Para as medidas de fotocondutividade foi construído um conversor corrente-tensão com as seguintes características:

Ganho: $10^{-4} a 10^{-8} A/V$ Menor corrente mensurável: ~ $10^{-12}A$

Possibilidade de polarizar a amostra com voltagens de -5a 5V Baixo nível de ruído

Māxima excursão de sinal na saída ± 8V.

O conversor mostrou excelentes características de op<u>e</u> ração e é usado também para caracterização IxV de células solares. Seu esquema está na figura 8.1.1.

8.2 Criostato

As medidas foram feitas num criostato construído pelo Grupo de Conversão Fotovoltáica do Instituto de Física da UNICAMP. Seu escuema está na figura 8.2.1.

O controle de temperatura entre 120 e 340K foi feito por um controlador comercial para altas temperaturas Robershaw Pyrotec Indic 50 que teve sua escala de temperatura em 9C alterada para K e para funcionar a baixas temperaturas. O sensor foi um termopar tipo K (Chromel e Alumel) e o atuador utilizado tinha potência de 3 a 7 W.

O nitrogênio líquido era continuamente aspirado a um vácuo regulável na saída do criostato feito por uma bomba hospitalar.

A pressão de trabalho no criostato foi entre 10^{-2} e 10^{-3} torr conseguidos por uma bomba IBAV modelo BRD2.

8.3 Programas para Calculadora TEXAS TI58/TI58C/TI59.

Durante este trabalho dois tipos de curvas experimentais tiveram que ser ajustadas.

Equações do tipo:

Fig. 8.2.1 Criostato (Esquemático)

$$a = a \exp(-\Delta E/kT)$$
 (8-1)

sendo,

σ_o e ΔE parâmetros de ajuste,

e também,

$$\sigma = kF^{\gamma}$$
 (8-2)

sendo k e y parâmetros de ajuste.

Por razões de simplicidade e concisão foi escolhido p<u>a</u> ra o ajuste o método dos mínimos quadrados.

Então com (8-1):

$$ln \sigma = ln \sigma_0 - \frac{\Delta E}{kT}$$
(8-3)
 $k = 8,617 \times 10^{-5} eV/K$

$$\ell_{n} \sigma = \ell_{n} \sigma_{0} - \frac{\Delta E (eV)}{8,617 \times 10^{-2}} \frac{1000}{T}$$
 (8-4)

Utilizando as rotinas de regressão linear de uma calcu ladora TEXAS TI58/58C/59 (Farish et al 1977) escrevi o seguinte programa:

```
2nd Lbl A : 8.617EE 2 +/- = x \gtrsim t R/S
2nd Lbl B \ell nx 2nd \Sigma + R/S RST
2nd Lbl 2nd A' 2nd Pgm 1 SBR CLR R/S RST
Sua operação é a seguinte:
```

Inicialização: 2nd A' Entra-se com os pares de dados da seguinte forma:

10³/t A В σ Ao terminar a entrada de dados: Para obter Digita-se Coeficiente de correlação 2nd Op 13 2nd OP 12 INV lnx ٥ x < t ΔE Da mesma forma com (8-2) $ln \sigma = ln k + \gamma ln F$ (8-5)O programa correspondente fica: 2nd Lbl A $lnx x \gtrless t R/S$ 2nd Lbl B lnx 2nd Σ + R/S RST 2nd Lbl 2nd A' 2nd Pgm 1 SBR CLR R/S RST Sua operação, Inicialização: 2nd A' Pares de dados: F А В σ Ao terminar a entrada de dados: Para obter Digita-se Coeficiente de correlação 2nd Op 13 2nd Op 12 INV lnx k x < t γ

ALVAREZ F,, Rev. Bras. Fis, 12 (1982) 832,

ALVAREZ F., e Chambouleyron I.E., Solar Energy Materials 10 (1984) 151.

ANDERSON D.A., e Spear W.E., Phil. Mag. 36 (1977) 695. ANDERSON P.W., Phys. Rev. 109 (1958).

BEYER W. e Hoheisel B., Solid State Comm. 47 (1983)573

BRENZIKOFER R. e Chambouleyron I.E., 79 SLAFES, Gramado, RS, Brasil, 1981.

BRODSKY M.H., in <u>Amorphous Semiconductors</u>, Editor: M.H. Brodsky, Topics in Applied Physics <u>36</u>, Springer, Berlin, 1981, p.l.

BUBE R.H., Photoconductivity of Solids, Wiley, New York, 1960.

CHAMBOULEYRON I.E., Alvarez F. e Tessler L.R., Proceedings of the 17th IEEE Photovoltaic Specialists Conference, Kissimee, USA, 1984,p.235.

CISNEROS J.I., Alvarez F., Carpi E.C. e Chambouleyron I.E., comunicação privada.

COHEN M.H., Fritzshe H. e Ovskinsky S.R., Physics Rev. Lett. 22 (1969) 1065.

DAVIS E.A. e Mott N.F., Phil. Mag. 22 (1970) 903.

FARISH F. 'OGrady C.D. e Oliva R.A., <u>Personal Programming</u>, --Texas Instruments, Dallas, 1977.

FRITZSCHE H., Solar Energy Materials 3 (1980) 447.

FRITZSCHE H. in <u>Fundamental Physics of Amorphous</u> <u>Semicond</u>. Editora: F. Yonezawa, Springer Series in Solid-State Sciences <u>25</u>, Springer, Berlin, 1981, p.1.

HAMDI H., Tese, Université Scientifique et Médicale et Institut National Polytechnique de Grenoble,1984. KARCHER R., Ley L. e Johnson L., Phys. Rev. B <u>30</u> (1984)1896 MOSS S.C. e Graczyk, Proceedings of the 10th Int.Conf. on the Physics of Semiconductors, Cambridge, Mass., Editores: S. P. Keller, J.C. Hemel e F. Stern. USAEC, Washington, 1970, p. 658.

MOTT N.F., in <u>The Physics of Hydrogenated Amorphous Silicon</u> <u>II</u>, Editores: J. D. Johannopoulos e G. Lukowsky, Topics in Applied Physics 55, Springer, Berlin, 1984, p. 169.

ROBERTSON J., Phys. Rev. B 28 (1983) 4647

ROSE A., <u>Concepts in Photoconductivity and Allied Problems</u>, Krieger,, New York, 1978.

SHALIMOVA KV, <u>Física de los Semicondutores</u>, MIR, Moscou, 1975

SPEAR W.E. Loveland J.R. e Al -Sharbaty A., J. Non-Cryst. Solids, <u>15</u> (1974) 410.

SPEAR W.E. e Le Comber P.G., in <u>Photoconductivity</u> and <u>Related Phenomena</u>, Editores: J.Mort e O.M. Pai, Elsevier, Amsterdam, 1976, p. 185.

SPEAR W.E. e Le Comber P. G., in <u>The Physics of Hydrogenated</u> <u>Amorphous Silicon I</u>, Editores: J.D. Johannopoulos e G. Lukowsky, Topics in Applied Physics 54, Springer, Berlin, 1984.

STAEBLER D.L. e Wronski C.R., J. Appl. Phys. <u>51</u> (1980)3262. SWANEPOEL R., J. Phys. E. <u>16</u> (1983) 1214.

TAUC J., in <u>The Optical Properties of Solids</u>, Editor: F. Abéles, North Holland, Amsterdam, 1970, p.227.

TESSLER L.R., Alvarez F., e de Mendonça C.A.C., Anais do IV SBµE, USP, São Paulo, 1984, p.59.

TESSLER L. R. e de Mendonça C. A. C., Resumos da 36a. Reunião Anual da SBPC, SBPC, São Paulo, 1984, p. 327.

VANIER P.E., Delahoy A.E. e Griffith R.W., J. Appl. Phys. 52 (1981) 5235.

WRONSKI C. R. e Daniel R.E., Phys. Rev. B <u>23</u> (1981) 794. YAMAZAKI S. Mare A., Urata K. Shibata K., Shinohara H., Nagayama S. Abe M., Hamatani T. e Suzuki K., IEEE Electron Device Lett. <u>5</u> (1984) 315.