


ii



U N IV E R S ID A D E E S T A D U A L D E C A M P IN A S

IN S T IT U T O D E F f s IC A " G L E B W A T A G H IN "

Electronic and optical properties of diluted magnetic
semiconductors quantum wells and quantum dots

P r o p r i e d a d e s e l e t r 6 n i c a s e 6 p t i c a s d e p o r ; o s q u a n t i c o s e p o n t o s

q u a n t i c o s d e s e m i c o n d u t o r e s m a g n e t i c o s d i l u i d o s

T h e s i s p r e s e n t e d t o t h e I n s t i t u t e o f

P h y s i c s " G l e b W a ta g h in " o f t h e U n iv e r -

s i t y o f C a m p in a s i n p a r t i a l f u l f i l lm e n t

o f t h e r e q u i r e m e n t s f o r t h e d e g r e e o f

D o c to r i n S c i e n c e .

T e s e a p r e s e n t a d a a o l n s t i t u t o d e F f s i c a

" G l e b W a ta g h i n " d a U n i v e r s i d a d e E s t a d -

u a l d e C a m p in a s p a r a o b t e n ( : a o d o t i t u l o

d e D o u to r e m C ie n c i a s .

E S T E E X E M P L A R C O R R E S P O N D E A V E R S A O F IN A L

D A T E S E D E D O U T O R A D O D E F E N D ID A P E L O A L U N O

U D S O N C A B R A L M E N D E S , E O R IE N T A D O P E L O

P R O F . D R . J O S E A N T O N IO B R U M .

Campinas
2014







vi



Abstract

In this thesis, we theoretically investigate the electronic and optical properties of diluted

magnetic semiconductors quantum wells and quantum dots. This is strongly motivated by

many experimental results on the optical properties of these materials. Using spin-density

functional theory we described the electronic states as a function of the external magnetic field

for quantum wells which have barriers doped with magnetic impurities. Our model takes into

account the many-body effects of the two-dimensional hole gas and the interaction between

carriers and the magnetic ions. We compare our findings with the available experimental

data, which shows strong oscillations in the circularly polarized light as a function of the

magnetic field. Our results show excellent qualitative and quantitative agreement with the

experimental data. We show that the hole gas exchange effects are responsible for the strong

oscillations observed in the photoluminescence. We perform a systematic investigation of the

heterostructure parameters in order to enhance the carriers-Mn exchange interaction. With

our model we understand the different regime of the electron’s spin relaxation in quantum

wells with barriers doped with Mn impurities.

We also investigate the electronic and optical properties of charged quantum dots doped

with a single magnetic impurity in its center. Using an exact diagonalization method we

show that the electrons that are not directly coupled with Mn do so via an indirect coupling

mediated by electron-electron interaction. This indirect electron-Mn coupling can be either

ferromagnetic or antiferromagnetic depending on both quantum dot confinement and the num-

ber of electronic confined shells. We also demonstrate that the indirect electron-Mn coupling

is an important effect even when Mn is off-center. This coupling exists independently of the

type of the direct interaction between carriers and Mn impurity. We also extend the theory of

photoluminescence for charged quantum dots containing a single magnetic impurity. We show

that the indirect interaction between carriers and magnetic ion generates a fine structure in

both initial and final states of the emission, which allows us to determinate the number of

confined shells in the quantum dots and the electronic spins. Whit this exact diagonalization
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method, we explain the origin of the fine structure of a biexciton confined in quantum dot

containing a single Mn impurity.
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Resumo

Nesta tese, investigamos teoricamente as propriedades eletrônicas e ópticas de poços quân-

ticos e pontos quânticos de semicondutores magnéticos diluídos. Este estudo é fortemente

motivado por muitos resultados experimentais sobre as propriedades ópticas desse materiais.

Usando a teoria do funcional da densidade dependente de spin descrevemos os estados eletrôni-

cos como função do campo magnético externo para poços quânticos que possuem barreiras

dopadas com impurezas magnéticas. Nosso modelo leva em conta os efeitos de muitos-corpos

do gás de buracos e as interações entre portadores e os íons magnéticos. Comparamos nos-

sos resultados com os dados experimentais disponíveis, que apresentam forte oscilações da luz

polarizada circularmente como função do campo magnético. Nossos resultados apresentam ex-

celente concordância qualitativa e quantitativa com os resultados experimentais. Mostramos

que os efeitos de troca do gás de buraco são responsáveis pela forte oscilação observada na

fotoluminescência. Também realizamos uma investigação sistemática dos parâmetros da het-

eroestrutura afim de aumentar a interação de troca entre portadores e íons de Mn. Com

o nosso modelo entedemos os diferentes regimes de relaxação de spin do elétron em poços

quânticos com barreiras dopadas com impurezas magnéticas.

Nós também investigamos as propriedades eletrônicas e ópticas de pontos quânticos car-

regados dopados com uma única impureza magnética em seu centro. Usando métodos de

diagonalização exata mostramos que os elétrons que não estão diretamente acoplados com o

íon de Mn acoplam-se via uma interação indireta que é mediada pela interação elétron-elétron.

Este acoplamento indireto entre elétrons e Mn pode ser tanto ferromagnético quanto antifer-

romagnético dependendo de ambos confinamento e número de camadas eletrônicas confinadas

no ponto quântico. Demonstramos que este acoplamento indireto é um efeito importante

mesmo quanto o íon de Mn não esta no centro do ponto quântico. O acoplamento indireto ex-

iste independentemente do tipo de interação direta entre portadores e a impureza magnética.

Também extendemos a teoria de fotoluminescência para essa heteroestrutura. Observamos

que a interação indireta entre portadores e íon magnético gera uma estrutura fina em ambos
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os estados iniciais e finais da emissão, o que nos permite determinar o número de camadas

confinadas no ponto quântico e o spin eletrônico. Com esse método de diagonalização exata,

explicamos a origem da estrutura fina do biexciton confinado em um ponto quântico dopado

com uma única impureza magnética.
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Chapter 1

Introduction

Semiconductor materials have been investigated for almost two centuries now [1]. Since

the discovery of the transistor effect in 1947 and the improvement of the growth conditions,

in the 1980’s, they became the basis of today’s electronic and opto-electronic commercial

devices. The fundamental characteristic of semiconductors is that carriers concentration can

be manipulated by external fields. Due to the high quality of the semiconductors samples,

they are often used as proof of concept materials [2]. Therefore, semiconductors are of great

interest to the scientific community. They are widely used for investigation of basic physics,

such as Kondo and Majorana fermion physics [3–6].

In the last decades spin-related phenomena have attracted much attention, in metals with

the discovery of the giant magneto-resistance [7, 8], and more recently, in diluted magnetic

semiconductors [9–12], and in materials with strong spin-orbit interaction [13–16]. All this is

part of the research field identified as spintronics [17,18]. The context of this thesis is part of

the semiconductor spintronics field.

In this thesis we investigate both semiconductor quantum wells (QWs) and quantum dots

(QDs). QWs are obtained by growing two different materials. The growing sequence is ABA

where, in general, B is the lower energy band gap material. Depending on the band alignment,

there are three types of semiconductor QWs: type-I where both electron and holes are confined
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1. Introduction 2

in the same material, for example, GaAs quantum wells grown in AlGaAs. Type-II QW occurs

when one of the carriers is confined in one material, and the other carrier in the other layer. As

an example we have the InAs/GaSb heterostructures [19]. Finally, the type-III occurs when

the Γ6 band∗ of one material have smaller energy than the Γ8 bands of the other material.

The most known type-III semiconductor QW is the HgTe grown on CdTe [15]. In this thesis

we investigate type-I systems.

Doped QW show a two-dimensional electron gas (2DEG) located at the QW layer. The

physics of 2DEG is fascinating. It started with the invention of modulation doping, followed

by the discovery of both integer quantum Hall effect and fractional quantum Hall effect in the

80’s [20–22]. More recently, it was demonstrated and observed in type-III semiconductors the

so called quantum spin Hall effect [15, 16], which is an emergence of the topological insulator

phase [23–25]. In type-I semiconductors, the persistent spin helix phase was demonstrated [26].

The integer and fractional Hall phases emerge due to the presence of an external magnetic

field, while the last two effects are due to spin-orbit interaction.

It is also possible to dope QWs with magnetic impurities. We can then investigate the

interplay between the rich 2DG physics and magnetism [27–29]. Recently, it was proposed

that InAs/GaSb QWs doped with Mn can show the quantum anomalous Hall effect [30]. In

this phase, a Hall conductance is observed without an external magnetic field. Also, strong

oscillations of the circularly polarized photoluminescence was observed in InGaAs quantum

wells with barriers doped with magnetic impurity [31]. These oscillations are stronger than

the ones observed in a non-magnetic p-doped quantum well [32].

Quantum dots are heterostructures in which the carrier is confined in all three dimensions.

It shows a shell structure [33] and when the electronic shells are filled with carriers they obey

the Hund’s rule [34,35]. If the electron-electron interaction dominates over the kinetic energy,

∗In GaAs Γ6 is the conduction band, and Γ8 is the valence band.
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1. Introduction 3

a Wigner molecule phase may be formed [36]. Because of the many similarities that QDs

have with atoms, they are often called artificial atoms. Quantum dots have a wide spectrum

of applications, for example, lasers, amplifiers, detectors, single-photon sources, in quantum

computation and quantum information processing [37–42].

Quantum dots can be created electrostatically or via structural induced confinement. In

the first case, a gate voltage is applied to the 2DG in order to confine the carriers in three

dimensions [43]. The problem here is that only one type of carrier is confined. The second

method consists in growing different materials, for example, InAs grown on GaAs where its

layers are strained. The formation of the islands minimizes both elastic, surface and interface

energies of the strained layers [44]. The carrier confinement in these QDs depends on the

band alignment between the QD material and the barriers. These QDs are identified as self-

assembled QDs. Other type of QDs are obtained via chemical process [45, 46]. In this thesis

we investigate the properties of self-assembled QDs.

Quantum dots with an odd number of electrons may behave like a magnetic impurity.

If the QD is strongly coupled to fermionic reservoirs, we can observe the emergence of the

Kondo physics [47, 48]. The Kondo effect in semiconductor nanostructures was first observed

in transport experiments in electrostatically defined quantum dots [47] and more recently it was

observed in both absorption and photoluminescence experiments on self-assembled quantum

dots [4, 49]. Quantum dots in the Coulomb blockade regime, weakly coupled to electronic

reservoirs, can work as a spin filter in the presence of an external magnetic field, and as a spin

memory if the reservoirs are spin-polarized [50].

The introduction of magnetic impurities in semiconductors quantum dots opens the pos-

sibility to investigating the physics of quasi-3D localized electrons interacting with localized

spins [51]. Today, it is possible to manipulate the localized spin states by using light [42] or

by adding electrons into the QD [52,53]. For Mn-doped QD coupled to an electronic reservoir,

3



1. Introduction 4

it was shown theoretically that, depending on the rate J/TK , with J being the electron-Mn

interaction and TK the Kondo temperature, it is possible to observe the underscreened Kondo

state [54]. The emergence of an indirect electron-Mn interaction mediated by electron-electron

interaction was also demonstrated [53,55].

Doping quasi-2D and -0D systems with magnetic impurities gives rise to new phenomena or

the enhancement of certain effects that were already observed in nonmagnetic semiconductors.

Because of the rich physics that these systems present, they motivated our choice for this thesis.

In this PhD thesis, we investigate both quantum wells and quantum dots doped with magnetic

impurities.

We aim here to study the electronic and optical properties of quantum wells and quantum

dots doped with magnetic impurities. In both cases, we expect to clarify the effects of the

interaction between carriers and magnetic ions and its signature on the photoluminescence

spectra.

Concerning QW systems, one of our motivations was to understand the origin of the strong

magneto-oscillations of the circularly polarized photoluminescence (CPPL) as a function of the

magnetic field observed by Gazoto et al. [31]. They investigated InGaAs QWs with barriers

δ-doped on one side with carbon and the other side with Mn. Both C and Mn are acceptors

and therefore, they provide holes to the heterostructure, with the Mn ion acting also as a

magnetic impurity. Figure 1.1(a) illustrates the investigated heterostructure.

Figure 1.1(b) shows the observed magneto-oscillations of the CPPL for two samples, one

that contains both Mn and C, and the other doped only with C. In the magnetically doped

sample, strong oscillations of the luminescence as the magnetic field is increased were observed.

For the nonmagnetic QW, the photoluminescence is practically linear with the magnetic field.

Another difference between these two samples is the hole density. While in the Mn-doped

heterostructure the hole density is of the order of 1011 cm−2, in the non-magnetic sample it is

4







1. Introduction 7

microscopic model to investigate the optical properties of Mn-doped QDs as a function of

number of electrons in the QD. This provides the emission theory for magnetically doped

charged QDs. As a consequence, we observed that electron-electron interaction mediates

indirect exchange interaction between electron and Mn and predict how to detect electron

spin on half filled electronic shells [53,55].

The quantum well project was developed in collaboration with the optical properties group

(GPO - grupo de propriedades ópticas) at UNICAMP. They provided useful comments on

the experimental findings and clarified many of ours doubts. The quantum dot project was

conducted in Pawel Hawrylak’s group at the National Research Council of Canada.

The content of this PhD thesis is build upon the following articles:

1. U. C. Mendes and J. A. Brum, in preparation.

2. U. C. Mendes, M. Korkusinski and P. Hawrylak, submitted to Phys. Rev. B.

3. U. C. Mendes, M. Korkusinski, A. H. Trojnar and P. Hawrylak, Phys. Rev. B 88,

115306 (2013).

4. A. H. Trojnar, M. Korkusinski, U. C. Mendes, M. Goryca, M. Koperski, T. Smolenski,

P. Kossacki, P. Wojnar and P. Hawrylak, Phys. Rev. B 87, 205311 (2013).

5. M. A. G. Balanta, M. J. S. P. Brasil, F. Iikawa, U. C. Mendes, J. A. Brum, M. Z. Maialle,

Yu A. Danilov, O. V. Vikhrova and B. N. Zvonkov, J. Phys. D: Appl. Phys. 46, 215103

(2013).

This thesis is organized as follows. In chapter 2 we present a theory and methods em-

ployed to investigate the electronic and optical properties of diluted magnetic semiconductors

quantum wells and quantum dots. The results are presented in Chapters 3, 4, 5 and 6. The

quantum well project results are presented in Chapter 3. The quantum dot project results are

7



1. Introduction 8

presented in both Chapters 4 and 5. In Chapter 6, we present a concise description of two

other projects that we have participated. They are related with the results discussed in the

previous chapters. Final remarks and perspectives are presented in Chapter 7.

8



Chapter 2

Methodology

In order to describe the electronic properties of carriers interacting with magnetic impuri-

ties we have to solve a many-body Hamiltonian, which is given by

H =
N
∑

i=1

[

p2
i

2m∗ + V (ri)

]

+
1

2

N
∑

i 6=j=1

e2

ǫ|ri − rj|
+

N
∑

i=1

∑

j

J(ri −Rj)Mj · si, (2.1)

where the first term is kinetic energy and m∗ is the electron effective mass. The second term

is the external potential, which includes the confinement potential and the external fields,

if present. The third term is the electron-electron (e-e) Coulomb interaction, with e being

the electron charge, and ǫ the dielectric constant of the material. The last term is the spin

interaction between carriers and the magnetic impurities. J(ri−Rj) is the exchange constant,

Rj, Mj and si are the position of the Mn spin, the Mn spin, and the electron spin, respectively.

For the quantum well system considered in this work there is a very large amount of Mn spins,

while for the quantum dot problem there is only a single Mn impurity. To be able to write

the above Hamiltonian we have performed the following approximations:

• Born-Oppenheimer approximation: It allows us to separate the electron’s Hamiltonian

from the nucleus’ Hamiltonian, i.e, the motion of the nucleus does not affect the elec-

tron and therefore, the electron interacts with the nucleus via electron-nucleus Coulomb

interaction, where the position of the nucleus is fixed at its average position. A more

detailed view of this approximation can be found on the appendix C of ref. [65].

9



2. Methodology 10

• Effective mass approximation: It is a continuum approximation for the crystal potential.

It allows us to describe the band structure near a high symmetric point in the reciprocal

space. In our case, we considered the Γ point of zincblend symmetry. For relative large

gaps, as in our case, for both GaAs and CdTe, the conduction band can be described by

a parabolic dispersion with an effective mass. The valence band structure is described

by the Luttinger-Kohn (LK) Hamiltonian. Simple approximations for the valence band

can start with only the diagonal terms of LK Hamiltonian, that is, a parabolic dispersion

with respective effective mass for the holes.

In order to obtain the electronic states of the above Hamiltonian we have to solve a N -body

problem which is not an easy task. We used two different methods to solve Eq. (2.1) depending

on the system investigated. The electronic structure of the quantum wells were obtained

via density functional theory (DFT) [66, 67]. For quantum dots we use the configuration

interaction (CI) method [68].

The DFT allows us to map the many-body problem into an effective single particle one,

which gives the exact ground state density and total energy of the interacting system [67,69,70].

The DFT fundamental basis is presented in section 2.1. We extend the formalism to include

spin-dependent phenomena, i.e, we outline the spin-density functional theory (SDFT) [69,71,

72]. This extension of the DFT is more suitable for our problem, since we have an external

magnetic field and magnetic impurities that breaks the spin degeneracy.

The CI method is a many-body treatment of the problem, where the many particle wave

function is expanded in a basis of configurations which allows us to diagonalize the Hamil-

tonian exactly. Without loss of generality we present the CI method in section 2.2 for a

two-dimensional harmonic oscillator (2DHO). The 2DHO describes very well many important

features of both electronic and optical properties of quantum dots [68]. It allows us to calculate

the e-e matrix elements in an analytic way, as showed in Appendix B.

10



2.1 Density Functional Theory 11

2.1 Density Functional Theory

The solution of Eq. (2.1) is very difficult for systems with a large number of interacting

particles. One approach to solve this problem is to use a mean-field theory, where the electron

moves in the effective field of all the other electrons. This kind of approach has been used for

almost a century by now. Many methods were developed based on the mean-field theory, such

as Hartree, Hartree-Fock (HF), and the Kohn-Sham (KS) equations of the DFT [65,66,69,73].

The Hartree method treats only the direct e-e interaction, leaving aside the fact that the

electrons are indistinguishable particles. An improvement comes with the HF method where

it considers an antisymmetric wave function, a consequence of the indistinguishability of the

electrons, and it naturally leads to a new contribution of the e-e interaction, which is the

exchange e-e interaction. The HF method still lacks the correlation energy, which in the HF

method is defined as Ec = E − EHF [73], where E and EHF are the total energies of the

many-body problem and the HF energy, respectively. One way of including correlation is by

expanding the the many-body wave function in Slater determinants. This is the basis of the

CI method presented in section 2.2. This method goes beyond the mean-field approximation,

and hence, it is very difficult to apply for system with large number of electrons.

A new improvement in the problem arises from the understanding that not only the wave

function, but also the electronic density of the many-body system contains all the relevant

information about it. This is the heart of the so-called Density Functional Theory [66,69,70],

which is today one of the most used electronic structure methods. It is applied to a large

variety of systems such as molecules, solids and quantum spin chains [65, 73, 74]. Due to its

importance to quantum chemistry, and also for its very large number of applications, Water

Kohn, one of the DFT creators, received the chemistry Nobel Prize in 1998 [75].

The DFT is formulated on the basis of the Hohenberg-Kohn (HK) theorem [66, 69, 75],

which states that:

11



2.1 Density Functional Theory 12

• The ground state electronic density,

n(r) =

∫

dr2dr3 . . . drNΨ
∗(r, r2, . . . , rN)Ψ(r, r2, . . . , rN), (2.2)

fully characterizes the many-body system, i.e, it uniquely defines the external potential

ve(r)
∗, which in turn specifies the Hamiltonian, and consequently, the many-body ground

state wave function Ψ(r, r2, . . . , rN). Therefore, there exist one-to-one correspondence

between all of those quantities, which ensures that the density has all information,

n(r) ⇐⇒ ve(r) ⇐⇒ H ⇐⇒ Ψ(r, r2, . . . , rN). (2.3)

This means that one can invert Eq. (2.2) and write the wave function as a functional of the

density [66,70]. From the HK theorem we have that all the observable are a functional of the

density,

O[n] = 〈Ψ[n]|Ô|Ψ[n]〉. (2.4)

An important aspect of the DFT, is that the ground state density is the one that minimizes

the total energy [66,69,70,75], which is written as

E[n] = 〈Ψ[n]|H|Ψ[n]〉 = F [n] +

∫

ve(r)n(r)dr, (2.5)

where F [n] is an universal functional of the density, i.e, it does not depend on ve [66]. The

second term is the functional of density of the external potential Ve[n]. F [n] is the sum of the

kinetic (T ) and electron-electron Coulomb energy (U), that is

F [n] = T [n] + U [n]. (2.6)

The kinetic energy can be separated into two contributions, one that arises from the kinetic

energy of the noninteracting electrons, Ts, and the other is the correlation contribution of the

kinetic energy Tc. The Coulomb energy is separated into three terms: the Hartree energy UH ,

∗The external potential can be the interaction between electrons with atoms or an external field.

12



2.1.1 The Kohn-Sham self-consistent equations 13

the exchange energy UX , and the correlation contribution of the e-e interaction Uc. The first

two terms are present in the HF theory. Therefore, we can rewrite the total energy as

E[n] = Ts[n] + Ve[n] + UH + EXC [n], (2.7)

where EXC [n] = Tc +UX +Uc = UX +Ec is the exchange-correlation (XC) energy. Therefore,

by minimizing the above equation with respect to the density, one obtain the ground state

density, and from that we can calculate all ground-state properties of the many-body system.

One of the problems of Eq. (2.7) is that its functional form is not known [70], and hence, we

need to find a scheme to determine it.

2.1.1 The Kohn-Sham self-consistent equations

One way to minimize the total energy [Eq. (2.7)] was proposed by Kohn and Sham [67].

They realized that one can obtain the ground-state density by solving an effective single-

particle Schrödinger equation in the presence of an effective potential that contains the many-

body effects. Let us now show how this mapping is done. We start by writing the total energy

of the non-interacting electrons in the presence of the potential, that is:

Es[n] = Ts[n] + VKS[n]. (2.8)

We now minimize it with respect to the noninteracting density ns, and obtain

δEs[n]

δns(r)
=
δTs[n]

δns(r)
+ vKS(r) = 0, (2.9)

where vKS(r) = δVKS[n]/δns(r) is the KS potential. Now we minimize the many-particle total

energy [Eq. (2.7)] with respect to n(r). That produces

δE[n]

δn(r)
=
δTs[n]

δn(r)
+ ve + vH + vXC = 0, (2.10)

where ve(r) = δVe[n]/δn(r), vH(r) = δUH/δn(r), vXC(r) = δEXC [n]/δn(r), are the external,

Hartree and XC potentials, respectively. Comparing Eqs. (2.9) and (2.10) we conclude that if

vKS(r) = ve(r) + vH(r) + vXC(r), (2.11)

13



2.1.1 The Kohn-Sham self-consistent equations 14

the noninteracting density must be equal to the interacting many-body density, i.e,

ns(r) ≡ n(r). (2.12)

This implies that the minimization of the density can be obtained by solving the single-particle

Schrödinger equation of the auxiliary system in the presence of an effective potential, vKS(r),

defined in Eq. (2.11). The auxiliary Schrödinger equation is

[

− p2

2m∗ + vKS(r)

]

φi(r) = εiφi(r) (2.13)

where φi(r) and εi are the KS orbitals and eigenvalues, respectively. The density is given by

n(r) ≡ ns(r) =

occup
∑

i

|φi(r)|2 (2.14)

in which the sum is realized over all the occupied states. The electronic density above is

calculated considering zero temperature. The Eqs. (2.11), (2.13) and (2.14) are known as

the KS equations [67]. By solving the KS equations, one replaces the problem of minimizing

the total energy [Eq. (2.7)] by a set of three single particle self-consistent equations. The KS

equations are self-consistent because the effective potential vKS depends on the density, as we

can see from the Hartree potential

vH(r) =

∫

dr′
n(r′)

|r− r′| , (2.15)

and from the XC potential

vXC(r) =
δEXC [n]

δn(r)
. (2.16)

Hence, to solve the Schrödinger equation, we start the self-consistent cycle with a guess density,

which defines the potential, and then obtain the eigenstates that define a new density. This

new density produces a new effective potential, and the cycle is repeated until the density

converges, i.e, the new density has to be equal to the input density. Once the convergence

14



2.1.2 Spin-density functional theory 15

of the density is reached, we have obtained the true electronic ground state density that

minimizes the total energy, which is written as

E =

occup
∑

i

εi −
1

2

∫

drdr′
n(r)n(r′)

|r− r′| −
∫

drvXC(r)n(r) + EXC [n] (2.17)

Let us now make some comments on the KS scheme.

i) So far we have not done any approximation, i.e, the KS procedure is exact. The only

problem is that the exchange and the correlation energies are not known. Therefore, we

need to find an approximate expression for them. We present in the next sections the

parametrization that is used in this thesis.

ii) Only the density obtained from the KS equations and its functionals have a physical

meaning.

iii) The KS eigenvalues and eigenstates have, until today, no clear physical meaning [70,75].

Nevertheless, the KS eigenvalues provide a semiquantitative description of the electronic

structure of the investigated system, and because of that, the KS scheme is very useful [70].

iv) If the the XC potential is not considered we recover the Hartree self-consistent scheme.

v) The KS scheme is a mean-field theory, which provides a very good description of the

many-body system.

In this section we have provided the basis of the DFT and the self-consistent KS procedure

considering a non-relativistic and spin- and time independent system. It can be extended to

consider these cases [69,70]. We now extend the DFT for spin-dependent system, and present

the XC parametrization used in this thesis.

2.1.2 Spin-density functional theory

Here we present an extension of the DFT to spin-dependent systems, which is called spin-

density functional theory (SDFT) [69, 71, 72]. The SDFT can be easily extended from the

15



2.1.2 Spin-density functional theory 16

spin-independent DFT presented above. In order to introduce the basic aspect of the SDFT,

let us consider an external magnetic field B(r) applied to the many-body system. Its total

energy can be written as

E[n↑, n↓] = F [n↑, n↓] +
∑

σ

∫

dr [vσe (r)nσ(r) +B(r) · nσ(r)] (2.18)

where nσ is the electron’s spin density, whit σ =↑, ↓ or σ = ±1. In the SDFT the wave

function is determined by both spin densities n↑(r) and n↓(r) [69]. Therefore, the total energy

must be minimized by this two new variables, which gives us

δE[n↑, n↓]

δnσ(r)
=
δTs[n↑, n↓]

δnσ(r)
+ vσe (r) + vH(r) + vσXC(r) = 0, σ =↑, ↓ . (2.19)

The potentials in the above equation are spin-dependent, with the exception of the Hartree

potential. Eq. (2.19) has the same functional form as the spin-independent total energy [Eq.

2.10], therefore, the minimization process is done via spin-dependent KS equations,

[

p2

2m∗ + vσKS(r)

]

φi,σ(r) = εi,σφi,σ(r) (2.20)

where the effective single-particle spin-dependent potential is

vσKS(r) = vσe (r) + vH + vσXC(r) + gµBs ·B(r), (2.21)

in which the last term is the Zeeman interaction between electron spin, s, and the magnetic

field. The density is

n(r) = n↑(r) + n↓(r), (2.22)

where the spin density is nσ =
∑

i |φi,σ(r)|2. The Eqs. (2.20), (2.21) and (2.22) are the

self-consistent spin-dependent Kohn-Sham equations.

In order to solve Eq. (2.20) we need all the potentials. In principle the only unknown is the

XC potentials, since the functional form of the XC energy is only known by parametrizations.
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2.1.2 Spin-density functional theory 17

Exchange-correlation parametrization

The only approximation in the DFT is the parametrization of the XC energy. There are

many different types of parametrizations available in the literature, such as the local-density

approximation (LDA), gradient-dependent functional (GGE and GGA), hybrid functionals,

and many others [70]. In this thesis we used a local-spin-density approximation (LSDA)

functional. The LDA consist of approximating the XC energy of each element of volume of

the electron liquid with density n(r) by the value of the XC energy of a homogeneous electron

gas with the same density. Therefore, the XC energy is written as

EXC [n↑, n↓] ≈ ELDA
XC [n↑, n↓] =

∫

drn(r)εhom
XC ([n↑, n↓]; r), (2.23)

where εhom
XC ([n↑, n↓]; r) is the XC energy per particle of the homogeneous electron gas. The

parametrizations are for εhom
XC ([n↑, n↓]; r) instead of ELDA

XC [n↑, n↓], and we utilized the LSDA

parametrization provide by Vosko, Wilk and Nusair (VWN) [76]. It is convenient to write

εXC(n, ζ) = εX(n, ζ) + εC(n, ζ), (2.24)

that is, to separate the exchange from the correlation energy, with ζ = (n↑ − n↓)/n being the

spin-polarization degree. We also dropped the index (hom) in the energies. Let us now look

to the parametrization for the exchange energy. εX(n, ζ) has an analytic form, since its value

for the unpolarized and polarized electron gas are known. The exchange energy is given by

an interpolation of this two known energies [71,72,76] and is given by.

εX(n, ζ) = εX(n, 0) + f(ζ) [εX(n, 1)− εX(n, 0)] (2.25)

where

εX(n, 0) = − 3

4π
(3π2)1/3n1/3, (2.26)

is the exchange energy of the non-polarized homogeneous electron gas, and

εX(n, 1) = 21/3εX(n, 0), (2.27)
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2.1.2 Spin-density functional theory 18

is the exchange energy of the spin-polarized homogeneous electron liquid. f(ζ) is given by

f(ζ) =
(1 + ζ)4/3 + (1− ζ)4/3 − 2

2(21/3 − 1)
. (2.28)

The correlation energy is also given by the interpolation between the non-polarized [εC(n, ζ =

0)] and spin-polarized [εC(n, ζ = 1)] cases, and has the following form

εC(n, ζ) = εC(n, 0) + αc(n)
f(ζ)

f ′′(0)
(1− ζ4) + [εC(n, 1)− εC(n, 0)] f(ζ)ζ

4 (2.29)

where αc(n) is the spin stiffness. Its value is fitted by VWN. The functional form of the

correlation energy above was also investigated by Perdew and Wang (PW) [77]. They pro-

posed different values for the εC(n, ζ = 0), εC(n, ζ = 1), and αc(n), but in the end, both

parametrizations [VWN and PW] give almost the same behavior for the correlation energy for

all of spin-polarization degree ζ.

The XC potential vσXC(r) is given by

vσXC([n↑, n↓]; r) =
δEXC([n↑, n↓]; r)

δnσ(r)
=
∂[n(r)εXC([n↑, n↓]; r)]

∂nσ(r)

= εXC([n↑, n↓]; r) + n(r)
∂[εXC([n↑, n↓]; r)]

∂nσ(r)
(2.30)

where the XC energies are defined in the Eqs. (2.25) and (2.29).

The total energy in the SDFT is

E[n↑, n↓] =
∑

i,σ

εi,σ −
1

2

∫

drdr′
n(r)n(r′)

|r− r′| −
∑

σ

∫

drvσXC(r)nσ(r) + EXC [n↑, n↓]. (2.31)

It is important to mention here that in our investigated system, a quantum well, we

assume that the electronic density is homogeneous in the x-y plane, and inhomogeneous along

the growth direction. Therefore, from now the electronic density depends only on the z-

coordinate, i.e, n(r) ≡ n(z).
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2.2 Configuration interaction method 19

2.2 Configuration interaction method

Here we present a detailed description of the CI method. We use it to describe the electronic

and optical properties of CdTe quantum dots doped with an single magnetic impurity [53,55,

58, 62, 78]. To describe the QD electronic states, we model it as a two-dimensional harmonic

oscillator. With that, the confining potential of Eq. (2.1) is V (ri) = (1/2)m∗ω2
0r

2
i , where

ri = xî + yĵ, and ω0 is the characteristic frequency of the 2DHO confining potential. For

simplicity we consider that there is no magnetic impurity, which will be introduced later. In

order to demonstrate the CI method, it is more convenient to write the Hamiltonian [Eq.

(2.1)] in second quantization, that is

H = T +Hee =
∑

i,σ

Ei,σc
†
i,σci,σ +

1

2

∑

i,j,k,l
σ,σ′

〈iσ, jσ′|Vee|kσ′, lσ〉c†i,σc†j,σ′ck,σ′cl,σ, (2.32)

in which i = {n,m} are the 2DHO quantum states, σ = ±1 or ↑, ↓ is the electron’s spin z-

component, Ei,σ is the single particle energy of the 2DHO. The derivation of Ei,σ and its single

particle states (|i〉 = |n,m〉) are given in the Appendix A. c†i,σ and ci,σ are the annihilation

and creation operators. The last term is the e-e interaction term. Its matrix elements have

an analytic closed form for 2DHO which is derived in Appendix B. The matrix elements take

into account both direct and exchange e-e interaction.

To solve the Hamiltonian [Eq. 2.32] we expand the many-body eigenstate |Ψ〉 in a linear

combination of the Slater determinants [73]. This is written as

|Ψ〉 =
Nc
∑

i=1

ai|νi〉, (2.33)

where Nc is the total number of configurations, ai are the expansion coefficient, and |νi〉 is the

i-th configuration, which is written as

|νi〉 = |i1↑, i2↑, . . . , iN↑
〉|i1↓, i2↓, . . . , iN↓

〉 = c†i1↑c
†
i2↑
. . . c†iN↑

c†i1↓c
†
i2↓
. . . c†iN↓

|0〉 (2.34)
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2.2 Configuration interaction method 20

where N↑ and N↓ are the number of spin up and spin down electrons, respectively. |0〉 is the

vacuum state.

The CI method consist in writing the Slater determinants with both occupied and un-

occupied single particle states [73]. That means that not only the ground state (GS) single

particle but also the excited states are included in the expansion of the many-body eigenstates.

Therefore, we built our basis by distributing the N -electrons in all possible ways in the 2DHO

single particle states. The only restriction is the Pauli exclusion principle. The correlations

effects are included by the Hamiltonian matrix elements among two distinct configurations,

i.e, 〈νj|H|νi〉 6= 0. We obtain better results for larger Nc, but this increases the difficulty

to diagonalize the Hamiltonian, due to the large size of the matrix. The total number of

configurations is given by

Nc =
N
∑

N↓=0

Nsp!

N↑(Nsp −N↑)!

Nsp!

N↓(Nsp −N↓)!
=

N
∑

N↓=0

(

Nsp

N↑

)(

Nsp

N↓

)

, (2.35)

with Nsp being the number of single particle states. From Eq. (2.35) the number of config-

urations increases with the number of single particle states. For example, for three electrons

distributed in three HO shells, i.e, six single particle states, we have Nc = 220. Now we

distribute three electrons in four shells, Nsp = 10 and this gives Nc = 1140. In five shells

there are fifteen single particle states, and the total number of configurations is Nc = 4060.

Therefore, the number of configurations increases rapidly with increasing the number of single

particle states. This makes the CI a very demanding computationally method. To circumvent

this problem we can use the symmetries of the problem to reduce the size of the Hilbert space.

The first symmetry that we use is the circular symmetry of the QD. The confining potential

is circular and the angular momentum is a good quantum number. The total angular mo-

mentum of the i-th configuration is given by Li =
∑N

j=1 Le, where Le = n−m is the angular

momentum of an electron in the single particle state |n,m〉. In the Hamiltonian, Eq. (2.32),

both kinetic energy and e-e interaction conserves the total angular momentum. Therefore, we
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can diagonalize the Hamiltonian in the subspace of fixed total angular momentum.

As an example, we chose three electrons. Its GS have total angular momentum equal to

L = 1 or L = −1, i.e, two electrons in the s-shell and one electron in the p-shell. Using the fact

that the Hamiltonian conserves total angular momentum we can obtain the three electrons

GS properties by diagonalizing it in the L = 1 or L = −1 subspace. This reduce drastically

the size of the matrix that has to be diagonalized numerically. For three, four and five shells

the total number of configurations in the subspace L = 1 is 38, 142 and 420, respectively. One

may note that using this symmetry the subspace that has to be diagonalized is reduced in

more than 80% for three shells, and almost 90% for five shells.

To reduce even more the size of the Hamiltonian we can apply other conservation rules.

The Hamiltonian described at Eq. (2.32) conserves also the spin z-component sz, and the

total spin S2. The operator sz and S are written as

ŝz =
∑

i,σ

σc†i,σci,σ (2.36)

and

Ŝ2 =
N

2
+ ŝ2z −

∑

ij

c†j,↑c
†
i,↓cj,↓ci,↑. (2.37)

For three electrons sz = ±1/2 or sz = ±3/2, and S = 1/2 or S = 3/2. Therefore, we reduce

the L = 1 subspace employing these conservation rules. Since the numerical implementation

of the S conservation is difficult and very demanding, we use only the conservation of sz to

reduce the size of our L = 1 subspace. As we know, the three electron GS is spin degenerate,

i.e, the configurations with both sz = 1/2 and sz = −1/2 are the same. In order to obtain the

three electrons GS we chose the L = 1 and sz = 1/2 subspace. In this subspace the number

of configurations are 15, 56, and 161 for three, four and five shells, respectively. Again, a very

large reduction of the matrix size. Other advantage of reducing the size of the Hamiltonian

matrix using the symmetries is that it allows us to use LAPACK [79]. This numerical linear
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algebra package contains subroutines to solve the eigenvalue and eigenstate problem. With

that we have access to all the excited states. For some systems containing many-electrons and

many-shells, the matrix size sometimes is too large, which in turn makes the use of LAPACK

impossible. To diagonalize this large matrix, we use the fact that it is sparse, i.e, many of the

matrix elements are zero. That allows us to use, e. g., the Lanczos method. Fortunately, we

deal with N = 1 up to 6, in maximum five shells. For these cases LAPACK is sufficient to

solve the eigenvalue problem.

We now discuss how to build the Hamiltonian matrix. For that purpose we chose a quantum

dot containing three electrons and two shells. Also, we look to the subspace of L = 1 and

sz = 1/2. In this case there are only two configurations. They have the eigenstates

|ν1〉 = c†00↑c
†
10↑c

†
00↓|0〉 (2.38)

|ν2〉 = c†10↑c
†
01↑c

†
10↓|0〉.

To write these eigenstates we follow two rules: first, we create the spin down electrons. After

we have included all of them, we create the spin up electrons. Second, for each spin specie we

order the creation operators following the ascending energy, i.e, the first operator at the left

has spin up and it is in the lowest single particle energy of this configuration, while the last

spin up creation operator is for the higher single particle energy. The same is true for the spin

down specie.

We consider now the calculation of the Hamiltonian matrix elements [〈νj|H|νj〉]. From Eq.

(2.32) we know that the kinetic energy term produces only diagonal terms in the Hamiltonian,

and hence, the configurations |ν1〉 and |ν2〉 are not mixed. However, the second term, the e-e

interaction, can create off-diagonal terms in the Hamiltonian matrix. First, we calculate the
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kinetic energy of the Hamiltonian:

T1 = 〈ν1|T |ν1〉 =
∑

nmσ

En,m,σ〈ν1|c†nmσcnmσ|ν1〉 =
∑

nmσ

En,m,σ〈0|c00↓c10↑c00↑c†nmσcnmσc
†
00↑c

†
10↑c

†
00↓|0〉

(2.39)

= E0,0,↑ + E1,0,↑ + E0,0,↓ = 4ω0.

where En,m,σ = ω0(n +m + 1) is the single particle energy as demonstrated in Appendix A.

The kinetic energy of |ν2〉 eigenstate is

T2 = 〈ν2|T |ν2〉 = E1,0,↑ + E0,1,↑ + E1,0,↓ = 6ω0. (2.40)

Next we calculate the e-e matrix elements. First we work out the Hee term to obtain an

easier way to calculate it. For that, we rewrite it in a more compact way, by redefining the

composite index as i = {n,m, σ}. The Coulomb term is now written as

Hee =
1

2

∑

i,j,k,l

〈i, j|Vee|k, l〉c†ic†jckcl, (2.41)

where the sum over the composite index is for all the possible single particle states. Therefore,

we need to take into account all the possibilities, for example, with k > l and k < l. There is

no k = l, otherwise the annihilation operator will act twice in the same orbital. Therefore, we

can write Hee as the sum of two terms, one for k > l and the other for k < l, which gives

Hee =
1

2

(

∑

i,j,k<l

〈i, j|Vee|k, l〉c†ic†jckcl +
∑

i,j,k>l

〈i, j|Vee|k, l〉c†ic†jckcl
)

. (2.42)

In the second term of Eq. 2.42 we can use the fact that ckcl = −clck. We exchange the indexes

k and l by doing k → l and l → k. Thus, we rewrite the second term of the above equation as

Hee =
1

2

(

∑

i,j,k<l

〈i, j|Vee|k, l〉c†ic†jckcl −
∑

i,j,l>k

〈i, j|Vee|l, k〉c†ic†jckcl
)

(2.43)

=
1

2

∑

i,j,k<l

(〈i, j|Vee|k, l〉 − 〈i, j|Vee|l, k〉) c†ic†jckcl.
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We perform a similar manipulation for the indexes i and j. This generates four matrix

elements, that can be grouped into two, which generates a factor of two that cancels with the

factor 1/2. The final form of the e-e Hamiltonian is

Hee =
∑

i>j,k<l

(〈i, j|Vee|k, l〉 − 〈i, j|Vee|l, k〉) c†ic†jckcl, (2.44)

where in the first term the spin of the particle in the state i must be equal to the particle in l,

and the same is true for the particles in j and k. This is the well known direct e-e interaction.

In the second term we have the same situation, but here the spin of the particle in i and j

also must be equal to the particle in k and l, respectively. Therefore, the spin of all electrons

in those orbitals must be the same. This term is the exchange e-e interaction. The equation

above helps to reduce the number of terms in the sum we have to carry out to obtain the

Coulomb matrix elements.

We are able now to evaluate the e-e interaction in the configurations |ν1〉 and |ν2〉. We

have to calculate three elements: 〈ν1|Hee|ν1〉, 〈ν2|Hee|ν2〉, and 〈ν1|Hee|ν2〉. Here we used the

fact that our matrix is Hermitian, and 〈ν2|Hee|ν1〉 = 〈ν1|Hee|ν2〉. Let us begin by calculating

the matrix elements between the same states,

〈ν1|Hee|ν1〉 =
∑

i>j,k<l

(〈i, j|Vee|k, l〉 − 〈i, j|Vee|l, k〉) 〈0|c00↓c10↑c00↑c†ic†jckclc†00↑c
†
10↑c

†
00↓|0〉. (2.45)

The expected value of the creation and annihilation operators can be viewed as a scalar product

between the two states, that are defined as:

|aji〉 = cjcic
†
00↑c

†
10↑c

†
00↓|0〉 and |bkl〉 = ckclc

†
00↑c

†
10↑c

†
00↓|0〉. (2.46)

The e-e matrix is,

〈ν1|Hee|ν1〉 =
∑

i>j,k<l

(〈i, j|Vee|k, l〉 − 〈i, j|Vee|l, k〉) 〈aji|bkl〉.

(2.47)
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As i > j and k < l, we can easily compute the matrix elements. We now evaluate the ket

states, starting with the |bkl〉 state. As we know that k < l, there are only three possibilities of

non-zero matrix elements: i) k = {0, 0, ↑} and l = {1, 0, ↑}, ii) k = {0, 0, ↑} and l = {0, 0, ↓},

and iii) k = {1, 0, ↑} and l = {0, 0, ↓}. They generate three new ket states,

i) |b00↑,10↑〉 = c00↑c10↑c
†
00↑c

†
10↑c

†
00↓|0〉 = −c†00↓|0〉

ii) |b00↑,00↓〉 = c00↑c00↓c
†
00↑c

†
10↑c

†
00↓|0〉 = c†10↑|0〉 (2.48)

iii) |b10↑,00↓〉 = c10↑c00↓c
†
00↑c

†
10↑c

†
00↓|0〉 = −c†00↑|0〉,

where we have used the fermionic commutation rules to evaluate the ket states. Next, we

obtain |aji〉, since the creation operators are the same as in the |bkl〉, the result will be same

as presented in Eq. (2.48). By replacing Eq. (2.48) in Eq. (2.47) we obtain the value of the

e-e Coulomb matrix of 〈ν1|Hee|ν1〉, that is

〈ν1|Hee|ν1〉 = 〈10 ↑, 00 ↑ |Vee|00 ↑, 10 ↑〉 − 〈10 ↑, 00 ↑ |Vee|10 ↑, 00 ↑〉

+ 〈00 ↓, 00 ↑ |Vee|00 ↑, 00 ↓〉+ 〈00 ↓, 10 ↑ |Vee|10 ↑, 00 ↓〉

= 2.25
√
πω0. (2.49)

In Eq. (2.49) there are four terms, the first and the second are due to the direct and exchange

e-e interaction of the state configuration listed in i), the exchange is nonzero since all particles

have same spin. The third and the fourth terms are due the direct e-e interaction of the

configurations in ii) and iii).

In a similar way, we calculate the matrix element 〈ν2|Hee|ν2〉. The ket states of the e-e

matrix element is |dkl〉 = ckclc
†
10↑c

†
01↑c

†
10↓|0〉. The allowed values of k and l are: iv) k = {1, 0, ↑}

and l = {0, 1, ↑}, v) k = {1, 0, ↑} and l = {1, 0, ↓}, and vi) k = {0, 1, ↑} and l = {1, 0, ↓},
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which generates the following configurations

iv) |d10↑,01↑〉 = c10↑c10↑c
†
10↑c

†
01↑c

†
10↓|0〉 = −c†10↓|0〉

v) |d10↑,10↓〉 = c10↑c10↓c
†
10↑c

†
01↑c

†
10↓|0〉 = c†01↑|0〉 (2.50)

vi) |d01↑,10↓〉 = c01↑c10↓c
†
10↑c

†
01↑c

†
10↓|0〉 = −c†10↑|0〉

The matrix element is

〈ν2|Hee|ν2〉 = 〈01 ↑, 10 ↑ |Vee|10 ↑, 01 ↑〉 − 〈01 ↑, 10 ↑ |Vee|01 ↑, 10 ↑〉 (2.51)

+ 〈10 ↓, 10 ↑ |Vee|10 ↑, 10 ↓〉+ 〈10 ↓, 01 ↑ |Vee|01 ↑, 10 ↓〉

= 1.875
√
πω0. (2.52)

Lastly, we calculate the e-e matrix element between the configurations, |ν1〉 and |ν2〉. To

obtain 〈ν1|Hee|ν2〉, we just need to calculate the overlap 〈bi,j|dk,l〉. By looking at Eqs. (2.48)

and (2.50) we observe that there is only one non-zero element, which is for j = {0, 0, ↑},

i = {0, 0, ↓}, k = {0, 1, ↑} and l = {1, 0, ↓}. Therefore, we have

〈ν1|Hee|ν2〉 = −〈00 ↓, 00 ↑ |Vee|01 ↑, 10 ↓〉 = −0.25
√
πω0 (2.53)

We are now able to diagonalize the Hamiltonian [Eq. (2.32)] in the subspace of the con-

figurations |ν1〉 and |ν2〉. Using Eqs. (2.39), (2.40), (2.49), (2.51), and (2.53), we built the

Hamiltonian matrix

H =

[

〈ν1|H|ν1〉 〈ν1|H|ν2〉
〈ν2|H|ν1〉 〈ν2|H|ν2〉

]

=

[

4ω0 + 2.25
√
πω0 −0.25

√
πω0

−0.25
√
πω0 6ω0 + 1.875

√
πω0

]

. (2.54)

The eigenvalues of the Hamiltonian are

E1,2 = 5ω0 + 2.0625
√
πω0 ±

1

2

√

(2ω0 − 0.375
√
πω0)2 + 0.25πω0,
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lowers the GS energy. We should remember that the three electrons GS is fourfold degenerate

due angular momentum and spin (L = ±1 and sz = ±1/2). To calculate the three electrons

GS energy, we chose the CdTe QD parameters. The effective mass is m∗ = 0.1m0, dielectric

constant ǫ = 10.6, the effective Rydberg is Ry∗ = m∗e4/2ǫ2~2 = 12.11 meV.

We have presented the CI method. We applied it for many-electrons confined in a two-

dimensional parabolic QD. The method can be extended for different potential forms, and

systems. To get a better result, one can first proceed with a Hartree-Fock calculation, to obtain

the single particle states in the presence of interactions, and then perform exact diagonalization

[52,73,80]. All this makes the CI a very powerful method to investigate the many-body effects.

2.3 Magnetic interaction

So far we have neglected interactions between carriers and magnetic impurities. In this

thesis, we instigated two different low-dimensional semiconductor materials doped with man-

ganese atoms. The first one is a III-V quantum well with one of the barriers δ-doped with

Mn. The second investigated semiconductor is a II-VI quantum dot doped with a single Mn

impurity. In these materials Mn is a substitutional impurity, i.e, replaces the cation, and

provides a localized spin M = 5/2 [12, 81]. Furthermore, in III-V materials, Mn is also an

acceptor, which introduces holes into the system.

The Hamiltonian that describes the interaction between carriers and Mn spins is,

Hmag = −
∑

i,j

J(ri −Rj)si ·Mj, (2.55)

where J(ri − Rj) is the exchange coupling between the spins of carriers and Mn. si is the

spin of the i-th carrier. Mj is the spin of the j-th Mn ion localized at Rj. In the investigated

QWs, the amount of Mn can be as large as 0.4 monolayers (MLs), and the QD is doped with

a single magnetic impurity. Therefore, the above Hamiltonian is treated differently in each

case.
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2.3.1 Magnetic impurities in III-V semiconductors

In III-V semiconductors the substitutional Mn acts as both localized spin and acceptor

impurity, and therefore, by doping these materials with Mn one introduces holes into the sys-

tem [12]. The exchange interaction between holes and Mn mediates ferromagnetic interaction

between Mn spins [11]. In the most studied ferromagnetic semiconductor, GaMnAs, the Curie

temperature can reach more than 190 K in samples with ≈ 10% of Mn ions [82, 83]. As fer-

romagnetism in these materials is mediated by delocalized holes, one can control its magnetic

properties with electric fields [84] or even light [85, 86].

Mn in III-V semiconductors tends to replace Ga, but it also can enter in an interstitial

position (MnI), as illustrated in Fig. 2.2. At that position Mn is a double donor, i.e, provides

two electrons to the material, that compensate holes created by substitutional Mn (MnS).

Due to charge effects, MnI tends to be close to the MnS and couple antiferromagnetically [12].

The presence of interstitial Mn tends to suppress the ferromagnetism of the GaMnAs. The

amount of MnI increases with the Mn concentration [87]. One way to reduce the amount of

MnI is by annealing the sample. In this case the interstitial impurities move to the surface of

the sample [12,88,89].

Doping GaAs, at first, with Mn, is only possible for concentrations xMn ≪ 1%. In such

case, the holes are binding to Mn, and the sample is a paramagnetic insulator. The binding

energy of Mn in GaAs is 112.4 meV, in which 86.15 meV is due the Coulomb interaction and

central cell correction, and the remaining 26.25 meV comes from the hybridization between Mn

d-orbitals with the host valence band [12,90]. It was only possible to beat the solubility limit

of doping GaAs with Mn by the use of very optimized growth and post-growth conditions,

such as low-temperature growth mode and annealing [12]. That allows to dope GaMnAs with

Mn concentrations of more than 10% [83]. For concentrations of the order of 1%, GaMnAs

is still in the insulating phase. However, there exists an overlap between holes and Mn that
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[29, 97, 98]. There is a claim in the literature that when GaMnAs is perfectly optimized

(excellent growth and annealed conditions), the samples are MnI free [88,89]. In the impurity

band picture, MnI has a crucial role in its formation, and therefore, in samples where interstitial

Mn is not present this picture must fail [12,96]. Therefore, Zener kinetic exchange is the only

theory that explains many of the observed features in the metallic GaMnAs with low hole and

Mn compensation [94,95]. In this thesis we used the Zener kinetic exchange model to describe

the magnetic properties of the investigated system.

Since the role of the interstitial Mn is to compensate the number of holes and the MnS

spins, we define effective parameters to take into account only the uncompensated spins and

holes that are used in our model. They are defined as

xeff = xMnS
− xMnI

pMn = xMnS
− 2xMnI

, (2.56)

where xeff and pMn are the uncompensated Mn spin concentration and hole density, respec-

tively. xMnS
and xMnI

are the concentration of substitutional and interstitial Mn, respectively.

These effective parameters are used to describe the electronic and magnetic properties of GaM-

nAs [12].

To solve Eq. (2.55) it is necessary to make certain approximations. The many-particle

problem is solved in the context of the SDFT. We need then to consider only one electron

in Hmag. Since the carrier wave function is delocalized, the carrier interacts with a large

number of Mn spins, suggesting to use the mean-field approximation. Basically, we replace

the spin operator Mj by its average 〈M〉 and neglect all the spin correlations [99]. We also

make use of the virtual crystal approximation, which consists of replacing the sum over all Mn

positions by the sum over all the cation sites weighted by Mn concentration. The exchange

constant J(ri −Rj) is then replaced by a constant value J , independent of the position. The

virtual crystal approximation restores the periodicity of the material, and therefore, we can
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use GaAs Bloch wave functions to describe the electronic properties of GaMnAs†. Within

these approximations, Eq. (2.55) takes the following form

Hmag = −JN0xeff〈M〉e · s, (2.57)

where N0 is the number of unit cells per unit of volume, and e is the magnetization vector

direction. As we are interested in the effects along of the growth directions, i.e, z-direction,

we now restrict the above Hamiltonian to the z-direction.

Hmag = −JN0xeff〈Mz〉sz, (2.58)

in which sz is the z-component of the carrier spin. So far, we have not specified which carriers

interact with Mn spin, i.e, valence band or conduction band electrons. In GaMnAs, there

are three main electronic bands‡, in order of ascending energy, we have, the heavy- (hh) and

the light-hole (lh), and the conduction band (e). In a Luttinger-Kohn k · p description of the

GaMnAs [92,100], the expected value of the above Hamiltonian with respect to the heavy-hole

(|3/2,±3/2〉), the light-hole (|3/2,±1/2〉), and the conduction band (|1/2,±1/2〉) Bloch wave-

functions, which are defined by the total spin and its projection in the z-direction (|J, Jz〉),

defines the interaction between Mn and the carriers [12, 81, 92, 95, 101]. This gives us the

potential that a carrier spin “feels” due the presence of Mn spins. They are written as

V e
sd = −1

2
N0αxeffσz〈Mz〉

V
hh(lh)
pd = −1

3
N0βxeffτ

hh(lh)
z 〈Mz〉 (2.59)

in which V c
b-d = 〈J b

z , Jb|Hmag|Jb, J b
z〉, where b defines the band and c the carrier. The conduction

band s-d exchange constant is

α = 〈1/2,±1/2|J |1/2,±1/2〉, (2.60)

†Doping GaAs with Mn does not alter its crystal lattice, i.e, the GaMnAs remains a zincblend semiconductor.
‡To describe properly the electronic structure of GaMnAs the split-off band should be considered, but as it is split

from the heavy-hole band by more than 0.3 eV, we neglect this band.
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and the valence band p-d exchange constant is

β = 〈3/2,±3/2|J |1/2,±3/2〉 = 〈3/2,±1/2|J |1/2,±1/2〉. (2.61)

Their values are fitted from experiments [12], and the accepted values for GaMnAs are N0β =

1.2 eV, and N0α = 0.2 eV. The electron spin is σz = ±1, and τ
hh(lh)
z = ±3/2(±1/2) is the

heavy-hole (light-hole) spin. V hh(lh)
pd was written in the hole picture, and that basically inverts

the valence band and the spin (τhh(lh)z → −τhh(lh)z ). The average of the Mn spin 〈Mz〉 is related

with the magnetization of the Mn spin system [11,92] and is defined as

〈Mz〉 =MBM(y), (2.62)

with M = 5/2 being the Mn spin, and BM(y) it is the Brillouin function [102], with argument

y =
gMnµBMB

kBT
+
JpdM

2kBT

∫

ξ(z)f(z − Ls)dz (2.63)

in which gMn is the Mn g-factor, µB the Bohr magneton, B is the external magnetic field,

kB the Boltzmamn constant, and T the temperature. Jpd = 54 meV nm3 is the exchange

constant. ξ(z) = p↑ − p↓ is the magnetization of the hole gas. f(z − Ls) is the distribution

function that describes the Mn distribution in the sample, and Ls is center of Mn doping.

The first term of the Eq. (2.63) describes the alignment of the Mn spin with the external

magnetic field, and the second is the interaction between holes spin and Mn spins, which

originates from the Zener kinetic exchange theory [12] and is responsible for mediating the

ferromagnetic interaction in the GaMnAs. In Appendix C, we derive the magnetization of the

GaMnAs.

The expression we developed here is justified in the presence of an external magnetic field

and for valence bands described in the uncoupled approximations, that is, parabolic dispersion.

In this situation, the Mn ions align along the direction of the external magnetic field already at

very low values of the field [101]. In the absence of external magnetic field the magnetization

has to be described by the full Luttinger-Kohn Hamiltonian with the split-off band included.
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2.3.2 Single magnetic impurity in a quantum dot

In this section, we discuss the effects of the interaction between the carriers and the mag-

netic impurity in two-dimensional quantum dots. We considered only a single magnetic impu-

rity inside the quantum dot. This system has been investigated theoretically [55,58–60,78] and

experimentally [56, 57, 61, 103]. We consider the same system as before, and we just include

the interaction between electrons and the magnetic impurity on Eq. (2.32). The magnetic

impurity is a Mn atom, with spin M = 5/2. We assume Mn as an isoelectronic impurity, i.e,

there is no charge effect associated with it. This is the case for Mn doping in II-VI mate-

rials, e.g, CdTe. If the QD is composed by a III-V semiconductor, e.g, InAs, the Mn atom

is not isoelectronic, but rather an acceptor impurity. The interaction between electron’s and

Mn’s spins is described via a Heisenberg-like interaction. The Hamiltonian that describes the

electron-Mn (e-Mn) interaction is

HeMn = −J2D
c

N
∑

i=1

M · siδ(ri −R) (2.64)

The e-Mn Hamiltonian is written in the contact interaction model, where J2D
c = 2Jbulk/d is

the exchange constant. Jbulk is the bulk exchange contact interaction parameter, while d is

the height of the QD. N is the number of electrons, M and si are the Mn and electron spins,

respectively. ri and R are the position of the i-th electron and the Mn impurity. It is more

convenient to write the e-Mn Hamiltonian in the second quantization formalism, which is given

by

HeMn = −
∑

i,j

Ji,j(R)

2

[

(c†i↑cj↑ − c†i↓cj↓)Mz + c†i↓cj↑M
+ + c†i↑cj↓M

−
]

(2.65)

with Ji,j(R) = J2D
c φi(R)φ

∗
j(R) being the e-Mn exchange matrix, and φj(R) is the value of the

single particle wave function of the i-th orbital at the Mn position (R). Therefore, the strength

of this interaction can be modified by changing the Mn position [78]. Mz is the z-component

of the Mn spin, and M+(−) is the Mn raising (lowering) spin operator.
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This interaction does not conserve orbital angular momentum, except when the Mn is in

the quantum dot center. Besides, we need to consider all six possible configurations of the

Mn spin: Mz = −5/2, . . . , 5/2. The e-Mn interaction also does not conserve sz and S. It

conserves, however, the total spin J = M + S and its z-projection Jz = sz +Mz. Including

e-Mn interaction, the number of configurations is now given by Nc = (2M + 1)N e
c , where N e

c

is the number of electron configurations. The ket state configuration described in Eq. (2.34),

is now generalized to include the Mn spin configurations and is written as

|νi〉 = |i1↑, i2↑, . . . , iN↑
〉|i1↓, i2↓, . . . , iN↓

〉|Mz〉 (2.66)

Figure 2.3 shows the scattering exchange matrix elements [Ji,j(R)] as a function of the Mn

position. From the top left to the bottom right of the Fig. 2.3 we have Js,s, Jp,p, Jd,d, and Js,d,

where s, p, d are the electronic shells of the QD. In the s-shell there is only one orbital, which

has L = 0, the p-shell has two orbitals, and their angular momentum are ±1. The d-shell has

three orbitals, one with L = 0 and the others with L = ±2. We choose L = 0 orbital of the

d-shell to calculate Jd,d and Js,d.

We observe that the matrix elements between two orbitals with L = 0 have a finite value

at R = 0, while between any orbital and one with L 6= 0, its value at R = 0 is zero as can be

seen in Fig. 2.3(b). We note that at R = 0, Jss = Jdd = −Jsd, i.e, the same absolute value,

but the scattering of an electron from the s- to the d-shell, or vice versa, changes the sign of

the interaction. When we move Mn away from the center, the value of the L = 0 e-Mn matrix

elements (in absolute value) decreases, while the matrix Jpp increases.

In general the e-Mn interaction breaks the cylindrical symmetry, and consequently, the

angular momentum is not conserved. However, if Mn is at the QD center, only electrons in

the L = 0 orbitals are coupled with Mn, and thus, the conservation of the angular momentum

is restored. We investigate here only QDs with Mn at its center. The other consequence of

the Mn in this position is that electrons in orbitals with finite angular momentum do not
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that, by changing t by −iτ , we obtain the ground and excited states of the quantum well.

2.4.1 Wave-function time evolution

To present the split-operator method we chose a one-dimensional Schrödinger equation, but

it can be easily extended to the three-dimensional case [104]. The time-dependent Schrödinger

equation is

i~
∂ψ(z, t)

∂t
= Hψ(z, t) (2.67)

in which Ψ(z, t) is the wave function, H is the Hamiltonian, defined as

H = − ~
2

2m∗
d2

dz2
+ vKS(z) = T + vKS(z), (2.68)

with T being the kinetic energy and vKS(z) the KS potential. Eq. (2.68) has the following

formal solution

ψ(z, t) = exp

(

− i

~

∫ t

0

Hdt
)

ψ(z, 0).

For a time t+∆t we have

ψ(z, t+∆t) = exp

(

− i

~

∫ t+∆t

t

Hdt
)

ψ(z, t). (2.69)

Since the Hamiltonian is time independent, the wave function evolution can be written as

ψ(z, t+∆t) = exp

(

− i

~
H∆t

)

ψ(z, t). (2.70)

Replacing Eq. (2.68) in (2.70), we obtain

ψ(z, t+∆t) = exp

[

− i∆t
~

(

vKS(z)

2
+ T +

vKS(z)

2

)]

ψ(z, t). (2.71)

Defining new operators

A = − i∆t
~

vKS(z)

2

B = − i∆t
~
T,
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using the relation, eA+B+A = eAeBeA, we can rewrite Eq. (2.71) as

ψ(z, t+∆t) = exp

[

− ivKS(z)∆t

2~

]

exp

[

− i∆t
~
T

]

exp

[

− ivKS(z)∆t

2~

]

ψ(z, t), (2.72)

which is valid only if [A, [A,B]] = [B, [A,B]] = 0. This is not true for the kinetic energy and

potential operators, since they do not commute. Within this approximation, we introduce an

error of the order of (∆t)3, as can be seen by

[A, [A,B]] =
1

4

(

i∆t

~

)3

[vKS(z), [vKS(z), T ]] ∼= 0;

[B, [A,B]] =
1

4

(

i∆t

~

)3

[T, [vKS(z), T ]] ∼= 0. (2.73)

Therefore, we chose ∆t small enough, so that we can use Eq. (2.72) to obtain the wave

function time evolution. It is important to notice that the operators are unitary, and hence,

the wave function norm is preserved at each time steps, which ensures the conservation of the

probability [104].

The time evolution of Eq. (2.72) is obtained numerically. We show now the necessary steps

to obtain the time evolved wave function. We first discretize the space in a grid of points, which

can be either uniform or non-uniform. Next we calculate the initial wave-function Ψ(z, t), and

the potential vKS(z). We obtain

ξ(z, t+∆t) = exp

[

− ivKS(z)∆t

2~

]

ψ(z, t). (2.74)

In the following, we act with the operator that contains the kinetic energy, which gives

η(z, t+∆t) = exp

[

− i∆t
~
T

]

ξ(z, t+∆t). (2.75)

Since the kinetic energy operator is a second derivative, we need to approximate it to be able
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to calculate η(z, t+∆t). The exponential is approximated by

exp

[

− i∆t
~
T

]

= exp(α∆t)

≈ 1 + α∆t+
(α∆t)2

2!
+

(α∆t)3

3!
+ . . .

= 1 +
α∆t

2
+
α∆t

2
+

(α∆t)2

4
+

(α∆t)2

4
+O(∆t3)

=

[

1 +
α∆t

2
+

(α∆t)2

4
+O(∆t3)

] [

1 +
α∆t

2

]

≈
[

1− i∆t

2~
T

]−1

·
[

1 +
i∆t

2~
T

]

+O(∆t3). (2.76)

Again, the error in this approximation is of order of (∆t)3. The operator defined in Eq. (2.76)

is unitary. Replacing Eq. (2.76) in (2.75), we obtain

[

1 + i
~∆t

4m

d2

dz2

]

· η(z, t+∆t) =

[

1− i
~∆t

4m

d2

dz2

]

· ξ(z, t+∆t). (2.77)

To solve the above equation, i.e, to obtain η(z, t+∆t), we use the finite difference method [107]

to calculate the position derivatives in each point of the mesh. This transform Eq. (2.77) in

a tridiagonal matrix whose solution can be found by inverting the matrix [Eq. (2.77)]. This

give us η(z, t + ∆t) at each point of the grid. Therefore, the time evolved wave function is

given by

ψ(z, t+∆t) = exp

(

−ivKS(z)∆t

2~

)

η(z, t+∆t). (2.78)

This solution is obtained for real time propagation. To extend it for imaginary time

we replace ∆t by −i∆τ . In the next section we discuss the imaginary time wave function

evolution.

2.4.2 Imaginary time wave function propagation

The eigenfunctions of a Hamiltonian system are obtained via the procedure described in

the last section but changing ∆t by −i∆τ . This implies that we propagate the wave function

in the imaginary time domain. In this case, the wave function evolve for the ground state
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of the system (see Appendix D for proof). The excited states are obtained imposing the

orthogonality condition between the wave functions at each step by the use of the Gram-

Schmidt orthogonalization method.

|ψi(τ)〉 =
|ϕi(τ)〉 −

∑

j<i〈ψj(τ)|ϕi(τ)〉|ψj(τ)〉
√

〈ϕi(τ)|ϕi(τ)〉 −
∑

j<i |〈ψj(τ)|ϕi(τ)〉|2
.

The indexes i and j represent the eigenstates of the heterostructure. In the real time prop-

agation the wave functions are always normalized, but in the imaginary time evolution, the

wave functions must be normalized at each time step −i∆τ . This process has to be repeated,

in ascending order of energy to all eigenvalues, until the energies converge.

The convergence process depends on ∆t. It must be small so the approximations made

in the previous section remain valid. However, if it is too small the convergence process is

too slow. One can determine the best ∆t by propagating the wave functions in real time,

and observing if the energies are conserved during the process. We chose ∆t = 0.1 fs, which

produced good results and is not too slow for practical purposes.

To propagate the wave function, we need an initial guess wave function. In this work, we

used Hermite polynomials. This method has the following characteristics.

• Very stable.

• A weakly dependence on the initially guessed wave function.

• It can be applied to a wide range of potentials.

• It allows the investigation of real time evolution of the wave function.

Since we realize a self-consistent calculation, by solving simultaneously both Schrödinger’s

and Poisson’s equations, we define the convergence criteria as

|Et+∆t
i − Et

i | ≤ 10−8 meV, i = 1, . . . , n (2.79)
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where n is the number of occupied subbands.
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Chapter 3

Electronic and optical properties of quantum

wells with Mn-δ-doped barriers

In this Chapter, we present our results for the electronic and optical properties of quantum

wells with barriers doped with magnetic impurities. We first introduce (III,Mn)V ferromag-

netic semiconductors, and the current interest in the properties of semiconductors heterostruc-

ture in which carriers and magnetic impurities are spatially separated. Second, we develop the

model used to investigate the QW electronic states. After that, we present our results. As our

goal is to understand the role of magnetic interactions on the two-dimensional hole gas, we

investigate its properties for many structural parameters, such as the distance between QW

interface and Mn-doping, Mn concentration, and Fermi level position. Finally, we present a

summary and the conclusions of our findings. The content of this Chapter is an integral part

of the final version of a paper by U. C. Mendes and J. A. Brum (2014) in process of submission.

3.1 Introduction

The research field of magnetic semiconductors has attracted much attention for more than

two decades [11, 94, 108]. The most investigated material is the (Ga,Mn)As system, where

a ferromagnetic phase with Curie temperatures (Tc) reaching 190 K has been observed for

samples with Mn concentration of ∼ 10% [82,83]. Other (III,Mn)V materials have also shown
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ferromagnetic phase such as (In,Mn)As, (Ga,Mn)Sb, (In,Mn)Sb [95]. In these materials, Mn

acts both as an acceptor and a magnetic impurity. The ferromagnetism in these materials is

mediated by the interaction between hole’s and Mn’s spins [11, 12]. As the magnetic inter-

actions are mediated by the charged carriers, the control of the magnetic properties can be

achieved by electrical and optical means. For example, in (Ga,Mn)As that many magnetic

properties can be controlled, such as the manipulation of the magnetization vector by an ex-

ternal electric field [84], optical spin transfer torque [85], optical spin-orbit torque [86], and

many others effects it was demonstrated [94].

The hole gas that is responsible in the (III,Mn)V semiconductors for the ferromagnetic

interaction in these materials is provided by the Mn ions although there is not a one-by-one

correspondence between the amount of doping and the hole concentration [12]. To act as an

acceptor, the Mn atom has to replace the cation, i.e, become a substitutional Mn impurity.

However, it also can occupy an interstitial position, where it is a double-donor [12]. Thus,

the holes are self-compensated by the electrons provided by the interstitial Mn. Also, the

interstitial Mn tends to be nearby the substitutional Mn due to Coulomb attraction with

their spins coupling antiferromagnetically. Therefore, the presence of interstitial Mn reduces

both hole density and the Mn effective spin concentration, decreasing the possible values of

Tc [12, 95].

Ferromagnetism in (Ga,Mn)As occurs in the metallic phase, i.e, for xMn ≥ 0.015. It

also occurs in the insulator regime with xMn ∼ 0.01, but Tc rapidly goes to zero for lower

concentrations [95]. The origin of ferromagnetism in these materials is still controversial

[96]. Two different mechanism have been proposed to explain the ferromagnetic interaction

in (Ga,Mn)As. The first one is that the delocalized holes in the valence band mediate the

ferromagnetism, which is described by the Zener kinetic exchange theory [11,12,92]. The other

theory proposed is that the Fermi level is located in an impurity band, induced by the Mn
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states, detached from the valence band [29,97]. Some authors claim that when (Ga,Mn)As is

perfectly optimized, that is, excellent growth and annealed conditions, the samples are MnI

free [88, 89]. In the impurity band picture, the MnI has a crucial role in its formation and

therefore, in samples where MnI is absent this picture fails [96]. The Zener kinetic exchange

mechanism is the only one that explains many of the observed features in metallic (Ga,Mn)As

with low hole compensation [94,95].

Much of the research on GaMnAs is on bulk materials or in heterostructures where both

Mn and holes are in the same spatial region. These systems allow a high ferromagnetic Curie

temperature due to the strong interaction between the hole gas and the Mn ions. The negative

side is the low quality of the material with the hole gas strongly perturbed by the Mn ions,

reducing its mobility and the optical quality of the samples. To overcome this difficulty, the

(Ga,Mn)As layers were grown in the presence of a quantum well, as for example in a GaAs-

(In,Ga)As-(Ga,Mn)As sequence. In this situation, the hole gas is located in the quantum well,

separated from the Mn ions. This separation, however, has to be controlled in order to maintain

a certain level of overlap between the holes and the Mn ions to assure the magnetic properties.

Recently, heterostructure where holes are in a quantum well (QW) and Mn is in the barrier

have been investigated by means of transport [28, 109] and optical experiments [31, 110–112].

Their results suggest that the interaction between holes and Mn can not be neglected.

Gazoto et al. ref. [31] investigated (In,Ga)As QWs with GaAs barriers δ-doped with both

carbon and Mn in alternate sides of the QW. The samples were δ-doped with Mn in order

to increase the Mn doping concentration beyond the solubility limit. The presence of the

δ-doped C layer on the other side of the QW aimed to increase the hole gas concentration

and, with that, to increase the magnetic effects. They observed that the circularly polarized

photoluminescence peak as a function of the magnetic field has strong oscillations. It was

observed that the magneto-oscillations are more pronounced in the samples with higher Mn
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concentration. These oscillations were related with the filling factor of the Landau levels.

Magneto-oscillations of the circularly polarized emission peak were also observed in both two-

dimensional electron (2DEG) and hole gas (2DHG) [32, 113], The origin of these oscillations

are the many-body effects of both the two-dimensional gas [114, 115] and in the optical re-

combination process [116,117]. The oscillations of the transition energies observed in ref. [31]

are much stronger than those observed in other high quality 2DHG [32,118]. It was suggested

that this difference should be associated with the presence of Mn spins in the heterostructure.

Zaitsev et al. ref. [110] performed similar experiment as Gazoto et al. ref. [31], namely,

circularly polarized photoluminescence in the presence of an external field, but they focused on

the low-magnetic-field regime. Their samples are quite similar to those of Gazoto et al. [31].

They observed a non-linear behavior in the transition energy as a function of an external

magnetic field for field values larger than 1 T. They interpreted their results as the spin-

dependent charge transfer between the hole gas confined in the QW and the one confined

in a ferromagnetic QW formed from the Mn doping. The same set of samples investigated

in ref. [31] was used to study the electron-Mn interaction [112]. For that, the time-resolved

photoluminescence and the magneto-Hanle effect were measured. It was observed that both

electron lifetime and spin-relaxation time depend strongly on the Mn concentration for samples

with high Mn doping. For low Mn doping, both electron lifetime and spin-relaxation time

showed almost constant value. These results were interpreted by the increasing of the electron’s

wave function overlap with the Mn-doping layer [112]. In a similar experiment, Korenev et

al. [111] observed hysteresis behavior of the circular-polarization degree, and electron spin-

relaxation time between 2 ns and 45 ps, depending on the distance between the QW and the

ferromagnetic layer. They concluded that the spin-dependent transfer of electrons between

the GaMnAs ferromagnetic layer and the QW is responsible for the effects observed.

Aronzon et al. ref. [119] performed transport measurements in similar samples to those
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investigated in the optical experiments above. They measured Curie temperature of Tc ∼ 30

K for the ferromagnetic phase. This high temperature was interpreted by the formation of a

ferromagnetic phase in the Mn-δ-doped layer. In another transport experiment, Wurstbauer

et. al [28] showed that for InAs QWs the position of Mn doping strongly affects the results.

When the Mn-doped layer is grown after the QW, they observed well-defined Hall plateaus,

but when it is grown before the QW the Hall plateaus are not as pronounced as before, showing

also a peak in the resistance at zero magnetic field. They attributed this difference to the Mn

diffusion in the growing direction and, therefore, into the QW when the Mn was grown before

the QW layer [28, 120].

For all these experiments, a clear dependence with the structural parameters, in particular

the Mn concentration, doping position was observed . There was, however, no quantitative

analysis of these structures. Here, we present the results of a calculation of the electronic

structure of (In,Ga)As QWs with GaAs barriers δ-doped with Mn and C. The electronic states

of the heterostructure are calculated using the spin-density function theory [66, 67, 72, 121]

within the envelope function approximation [100].

This Chapter is organized as follows. In Section 3.2 we present the model used to obtain

the electronic states of the structure and the estimate of the emission energies. In Section 3.3,

we discuss in detail the theoretical results focusing on the samples used by Gazoto et al. [31].

In Section 3.4, we investigate the sample parameters to optimize the magnetic effects. Finally,

in Sec. 7 we present our concluding remarks.

3.2 Model

Here we describe the theoretical model used to investigate the electronic structure and

optical properties of (In,Ga)As QWs. The heterostructure investigated is illustrated in Fig. 3.1.

It is composed of a 500 nm GaAs buffer layer, a carbon (C) δ-doping layer, followed by 10
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nm GaAs spacer, a 10 nm In0.17Ga0.83As layer, a GaAs spacer Ls, a Mn δ-doping layer with

a concentration xMn given in percentage of monolayers (MLs), and finally a 60 nm GaAs

top layer. The distance Ls between the QW and the Mn doping layer will be considered as

a flexible parameter in our model. All the others parameters will be fixed. In the samples

studied in ref. [31] we have Ls = 3 nm. As a consequence of the Mn and C δ-doping and

the thermodynamic equilibrium, the QW presents a 2DHG. We consider the system under an

external magnetic field applied along the growth direction, here the z-direction.

We used the envelope function and effective mass approximations to describe the electronic

states of the QW. In order to obtain the valence band (VB) states it is necessary to use the

six-band Luttinger-Kohn Hamiltonian [122], that describes the heavy-hole (hh), light-hole (lh)

and split-off (so) bands and the coupling among them as well as the spin-orbit effects [12]. The

presence of the hole gas in a non-parabolic dispersion heterostructure gives origin to non-linear

Landau Levels (LLs) [123–125]. Exchange and correlation (XC) contribution of the hole gas

has been considered in the framework of the spin-density-functional theory (SDFT) [71, 72].

Our system in particular favors a simplified approach. We are particularly interested in the

electronic and optical properties associated with the levels confined in the QW. In our system,

the In0.17Ga0.83As is a compressed layer, since the dominant lattice parameter will be that

of the GaAs layers (see discussion below). The net consequence is that the hh and lh bands

are split by a value of the order of 50 meV. The lh is actually a type-II or marginally type-I

heterostructure, depending on the parameters chosen to describe the structure. The hh and

lh coupling among the In0.17Ga0.83As QW states is weak for the energies of interest. This is

not the case for the states associated with the δ-C region. However, as we will see, the main

contribution of these states is in the charge transfer between the δ-C region and the QW.

Although the hh and lh coupling may change the quantitative results regarding the charge

transfer, it should not give a significant contribution to the properties related to the QW states.
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The coupling among the states at the δ-C layer and the states located at the QW is weak due

to the 10 nm spacer between the δ-C doping and the QW interface. We therefore use a simple

parabolic approximation to describe the VB in our system. To verify this approximation, we

calculated the VB structure for our system at zero magnetic field including the presence of the

hole gas (see below for the details) for the highest Mn doped sample. We considered both the

parabolic approximation and a calculation including the hh and lh coupling (4× 4 Luttinger

Hamiltonian). The results confirmed that the QW hole states do not show significant coupling

and are well described by the parabolic approximation. The main quantitative difference is

on the Fermi level, which is lower once the coupling is included. This is a consequence of the

non-parabolic dispersion of the hole states in the δ-C region as it should be expected. A better

result may be obtained with an effective in-plane mass that takes into account the coupling

in a parabolic approximation [126].

The many-body effects of the 2DHG are considered within the SDFT [71,72]. This allows

us to calculate the ground states of our system including XC effects in the presence of an

external magnetic field. To obtain the electronic structure we employ the Kohn-Sham (KS)

minimization scheme [67], which maps the many-body problem in a set of non-interacting

equations, which are solved self-consistently. We obtain the ground-state hole density and

the KS eigenvalues. These are not, in principle, associated with the true energy spectrum.

However, in practice, they do offer a reasonable first approximation to the actual energy

levels [65,70].

We considered an external magnetic field B applied along of the growth direction (z-

direction). We approximate the sample as being homogeneous in the x-y plane. The z-

direction and the in-plane (x, y) directions are therefore not coupled. The Hamiltonian can

be written as

Hhh(lh) = Hhh(lh)
z +Hhh(lh)

xy , (3.1)
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where the first term is the z-part of the Hamiltonian and the second term is the in-plane

Hamiltonian. The solution can be written as

Ψh(r) = ψh(z)φh(x, y). (3.2)

Using the Landau gauge, we have

φnky(x, y) =
1√
S
eikyyϕn(x− xc)

with n = 0, 1, ...

where ϕ(x − xc) are the harmonic oscillator eigenstates centered at xc(ky). The in-plane

Hamiltonian is written as

Hhh(lh)
xy = − ~

2

2m
hh(lh)
p

d2

dx2
+

1

2
mhh(lh)

p [ωhh(lh)
c ]2(x− xc)

2, (3.3)

in which ~ is the reduced Planck constant, mhh(lh)
p is the in-plane hh (lh) effective mass,

ω
hh(lh)
c = eB/m

hh(lh)
p is the respective cyclotron frequency, and xc = −~ky/eB is the orbit

center. e is the electron charge, and ky is the wave-vector in the y-direction. The solution of

the in-plane Hamiltonian gives rise to the LLs [127],

Ehh(lh)
n = ~ωhh(lh)

c (n+ 1/2). (3.4)

The Hamiltonian in the z-direction is

Hhh(lh)
z = − ~

2

2mhh(lh)

d2

dz2
+ v

hh(lh)
het (z) + vH(z) + vXC(z) + g∗µBτ

hh(lh)
z B + V

hh(lh)
pd (z). (3.5)

The first term is the kinetic energy, the second term is the heterostructure potential, the third

and fourth terms are the Hartree and XC potentials. The fifth term is the Zeeman contribution,

and lastly, the hole-Mn (h-Mn) coupling. We now describe each of the Hamiltonian terms in

details.

Heterostructure potential - vhh(lh)het (z) is the structural potential which is built up from the

band gap difference and band alignment between Ga0.83In0.17As and GaAs layers plus the
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strain effects. The energy gaps, at low-temperature, are 1.264 eV [128] and 1.519 eV [129]

for Ga0.83In0.17As and GaAs, respectively. The band alignment between them makes that

the InGaAs layer be a QW in both conduction band (CB) and VB, i.e, type-I alignment as

illustrated in Fig. 3.1(b). As the QW is strained, its band offset contains both the band gap

alignment and strain contributions. We can define a band offset without strain [128]. In this

case, the VB offset (∆V ) is given by 15% of the energy gap difference. The remaining energy

gap difference, 85%, goes to the CB offset (∆C) [128].

Our system is dominated by the GaAs layers and we assume that the whole structure

presents the GaAs lattice parameter. The Ga0.83In0.17As layer has a larger lattice parameter

than GaAs. This generates a compressive biaxial strain, which alters the QW band offset [130,

131]. If we neglect the so band, Γ7, the effect of the compressive biaxial strain is manifested

in an hydrostatic term, which increases the gap, and a shear deformation, which splits the

hh and lh bands [131]. The deformation potential for the hydrostatic term can be split

in a contribution to the conduction band, aCB and one to the valence band, aV B. In this

description, the bottom of the CB is lowered by an amount equal to

δEc = δECB
h = aCB(ǫxx + ǫyy + ǫzz), (3.6)

and the top of the hh VB is raised by

δEhh = −δEV B
h + δEs, (3.7)

where

δEV B
h = aV B(ǫxx + ǫyy + ǫzz)

δEs = bv(ǫxx + ǫyy − 2ǫzz)

The top of the lh VB is lowered by the amount

δElh = −δEV B
h − δEs. (3.8)
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For compressive biaxial strain, the strain components are given by ǫxx = ǫyy = (aGaAs −

aGaInAs)/aInGaAs < 0, and ǫzz = −2C21ǫxx/C11, where aGaAs and aGaInAs are the GaAs and

Ga0.83In0.17As lattice parameters, respectively. aV B(CB) and bv are the deformation potentials.

C11 and C21 are elastic stiffness constants [129–131].

In a k · p description of the hh and lh bands, the compressive biaxial strain is described

only by diagonal terms in the Hamiltonian, which in our model is included in vhh(lh)het (z). This

decouples the VB Hamiltonian into two scalar Hamiltonian.

The combined action of the hydrostatic term and the shear deformation increases the

CB and hh VB band offset, while the lh VB decreases with respect to ∆V . Therefore, the

Ga0.83In0.17As energy gap (energy difference between the CB and hh VB band), can be written

as

Eg = 1.264 + δEV B
hy + δECB

hy ∓ δEsh. (3.9)

The insertion of the Mn in the GaAs is a complex situation [12]. As a first approximation,

we assume that the Mn forms an alloy. The Ga1−xMn
MnxMn

As layer has a larger lattice param-

eter when compared to the GaAs and follows a similar analysis as for the In0.17Ga0.83As layer

regarding the strain effects. One additional difficulty is that the Mn is known to strongly

diffuse towards the surface in the GaAs as it was shown from secondary ion mass spec-

troscopy (SIMS) [120, 132, 133]. Based on the SIMS results, instead of considering a Mn

δ-doping layer, we assumed that the total Mn is distributed over many GaAs layers, forming a

Ga1−xMn
MnxMn

As alloy. To take this effect into account, we assume that the system is homo-

geneous in the x-y directions and only variations of the Mn concentration in the z-direction

are considered. We construct a distribution function that takes into account the Mn diffusion

in GaAs [120, 132, 133]. The SIMS results show that the Mn diffuses gaussian-like in both

sides of the heterostructure. However, it diffuses more strongly in the direction of the surface

than in direction of the QW. We consider therefore a double-gaussian distribution function,

52



3.2 Model 53

as defined below

f(z − Ls) = f0exp{−[(z − Ls)/∆(z)]2}, (3.10)

where Ls is the gaussian center, that is, the nominally δ-Mn doping position. ∆(z) is the

average width of the gaussian that describes the Mn diffusion

∆(z) =

{

d if z < Ls,

D if z ≥ Ls,
(3.11)

and f0 is the normalization constant, that is:

f0 =

[∫ zf

z0

exp{−[(z − Ls)/∆(z)]2}dz
]−1

, (3.12)

where z0 is the beginning of the GaAs buffer layer and zf is the end of top-GaAs layer. To

avoid many free parameters in our model, we established a relation between D and d, with

D/d = 2 and d = 1 nm. These values are compatible with the SIMS results [120,132,133]. The

Ga1−xMn
MnxMn

As layers also shows a different gap than GaAs, and an intrinsic band offset

should be present. The main contribution for the Ga1−xMn
MnxMn

As band offset, however, has

origin in the sp-d interaction, which is discussed below. We will neglect the intrinsic band

offset in the following.

Finally, we consider the δ-C layer. For the C concentrations considered here, the C is an

acceptor and we assume that the δ-doping layer is actually homogeneously distributed in a 5

Å region. Its effect will be mainly due to the C ions charge effects just as in the usual δ-C

layers in GaAs [134]. We do not have any structural potential contribution in this case.

We finally can assemble all the contributions and write the heterostructure potential as:

vhhhet(z) = (∆V − δEV B
hy + δEsh)Θ(z2 − L2

Qw/4)− (δEV B
hyMn

− δEshMn
)aGaMnAsf(z − Ls)

vlhhet(z) = (∆V − δEV B
hy − δEsh)Θ(z2 − L2

Qw/4)− (δEV B
hyMn

+ δEshMn
)aGaMnAsf(z − Ls)

with Θ(x) being the Heaviside function, and LQw the QW width, that is, the In0.17Ga0.83As

layer.
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Hartree potential - The third term of Hz is the Hartree potential, which is obtained by

solving Poisson’s equation

d2vH(z)

dz2
= −4πe2

ǫ

[

p(z)−NcΘ(z − zfc )Θ(z0c − z)− pMnf(z − Ls)
]

(3.13)

where ǫ is the GaAs dielectric constant. p(z) is the total hole density, which at zero temperature

(T = 0 K) is given by

p(z) =



























∑

b,i
τz

mb
p

2π~2
|ψb

i,τz(z)|2(EF − Eb
i,τz)Θ(EF − Eb

i,τz) if B = 0T,

∑

b,i
n,τz

mb
p

2π~2
|ψb

i,τz(z)|2
∫ EF

−∞ gb,ni,τz
(ε)dε if B 6= 0T.

(3.14)

The first (second) line describes the hole density in absence (presence) of an external magnetic

field. ψb
i,τz(z) are the KS eigenstates. EF is the Fermi level and Eb

i,τz the KS eigenvalues,

Hzψ
b
i,τz(z) = Eb

i,τzψ
b
i,τz(z) (3.15)

The indices of summation b, i, τz, n are the hole-type, b = hh, lh. i is the level index for each

hole, and τz is the z-component of the hole spin. n labels the LL as already mentioned. In the

absence of a gate voltage, we assume that the Fermi level, EF , is pinned at the surface states,

that is, in the middle of the gap at the surface, EF = EGaAs
g /2−Vg [95,134]. Here, we include

the presence of an applied gate voltage, Vg, which allows us to change the Fermi level position.

In the presence of an external magnetic field the density of states of the LLs [100,135], is given

by

gb,ni,τz
(ε) =

eB

2π~

1√
2πΓ

exp

[

−
(ε− Eb,n

i,τz
)2

2Γ2

]

(3.16)

where Γ = Γ0

√
B is the LL broadening, and Γ0 is related the 2DHG mobility. In our calcu-

lations, we considered Γ0 as a parameter. Eb,n
i,τz

= Eb
i,τz + Eb

n is the total energy of the b-hole

with spin τz in the n-th LL of the i-th subband.

Exchange-correlation potential - The forth term of the Eq. (3.5) is the XC potential.

Here we use the Vosko, Wilk, Nusair (VWN) parametrization [76] for the local-spin-density
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approximation. vXC(z) depends on both the hole density p(z) = p↑(z) + p↓(z) and the hole

gas magnetization ξ(z) = p↑(z) − p↓(z). Again, we consider that the density in the plane is

homogeneous and hence, the hole density depends only on the z-coordinate.

Zeeman potential - The fifth term in Hz is the Zeeman interaction between hole spins and

the external magnetic field. g∗ is the hole g-factor defined as g∗ = g0κ, where g0 = 2 is the

free-electron g-factor. µB is the Bohr magneton. The hh and lh spins are τhhz = ±3/2 and

τ lhz = ±1/2, respectively. The actual hole effective g-factor depends on the magnetic field

as a consequence of the coupling among the hole states [126]. The same arguments for our

parabolic in-plane dispersion apply and a parabolic approximation [126] can be used to include

the effects of the subband coupling in the InGaAs

p-d potential - The last term of the Hamiltonian is the p-d interaction between holes and Mn

spins. This term has its origin in the interaction between VB states with the d-orbitals of the

Mn impurity [136, 137]. The presence of the hole gas is described via Zener kinetic-exchange

model [11, 12,92]. The final expression is written as

V
hh(lh)
pd (z) = −1

3
N0βxeffMτhh(lh)z BM(y)aMnf(z − Ls), (3.17)

where N0β is the p-d exchange constant of the spin interaction between Mn’s and holes, which

is, mainly, due the hybridization between the VB (p-bands) and Mn d-orbitals [136,137]. xeff

is the effective concentration of Mn spins (see below). M = 5/2 is the Mn spin. BM(y) is the

Brillouin function [102]. Its argument is given by

y =
gMnµBMB

kBT
+
JpdM

2kBT

∫

ξ(z)f(z − Ls)dz, (3.18)

the first term is due the interaction of Mn spin with the external magnetic field, where gMn

is the Mn g-factor, kB is the Boltzmann constant, and T is the temperature. The second

term is the antiferromagnetic interaction between hole spins with Mn spins. This interaction

is responsible for the ferromagnetic interaction of Mn’s spins [11, 12, 92]. Jpd = β/N0 is the
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p-d exchange constant. N0 is the cation concentration.

This antiferromagnetic interaction depends on the 2DHG magnetization and the overlap

between hole and Mn ions. If Mn ions and holes are in the same spatial region, the distribution

function aMnf(z−Ls) is uniform and replaced by a unity constant. We then obtain the same

results known from (Ga,Mn)As bulk [12]. As they are not in the same spatial region the

second term in y depends strongly on the structural parameters, namely, the Mn position in

the GaAs and the holes states. It is in general small since the holes are mainly located in the

QW, which leads to very low Curie temperatures.

(Ga,Mn)As actually shows a magnetization in the xy-plane rather than in the z-direction

(growth direction) [92, 101]. It is known, however, that already a small magnetic field along

the z-direction aligns the magnetization vector [101]. We are interested in the magnetic

effects when an external magnetic field is applied along the growth direction of the structure.

Therefore, we assume the magnetization vector aligned along the z-direction in all the cases

considered here. This is consistent with our parabolic valence band approximation. In fact,

the circularly resolved photoluminescence measurements by Gazato et.al. [31] did not show

any signature of ferromagnetic alignment at zero magnetic field.

Equations (3.5), (3.13), and (3.14) are the KS equations. They are solved self-consistently.

The Schrödinger equation is solved via the split-operator method [104]. In the next section,

we present results for the electronic structure of the 2DHG as a function of the external

magnetic field for several parameters of the heterostructure. Our goal is to clarify how the

Mn concentration, the Mn doping position (Ls), and the application of a gate voltage (Vg)

alters the electronic states of the QW. With that we are able to determine the parameters

that maximize the magnetic effects in these heterostructures, maintaining the central idea of

a high-quality hole gas with the Mn ions and holes separated in different spatial regions.

Optical transitions - Our main interest is to understand the electronic structure and the
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effect of the diluted magnetic layers in these structures. In particular, we want to study the

efficiency in obtaining a high quality hole gas at the same time as preserving the magnetic

effects. Recent work by Gazoto et al. [31] on polarized magneto-luminescence have shown

oscillations in the energy of optical transitions as a function of the magnetic field. These

oscillations are associated with the filling factor of the LLs. We extended our calculations

to consider the optical transition for polarized photoluminescence in order to understand

the origin of these effects. The calculation of the energy emission transition in the presence

of a hole gas and an external magnetic field is a complex one. T. Uenoyama and L. J.

Sham [114] and Katayama and Ando [115] consider a perturbative approach with the many-

body effects being described by the electron and hole self-energies. They showed that the

Coulomb self-energy in a 2DEG system gives origin to filling-factor dependent oscillations in

the emission energy. More recently, Hawrylak and Potemski [116] calculated the interband

recombination using exact diagonalization techniques. They observed oscillations related to

the competition between the electron-electron and electron-valence hole interactions and the

splitting of the recombination line for odd filling factors. Asano and Ando [138] also used

numerical diagonalization method to obtain the photoluminescence spectra including spin

effects. They observed a double peak structure for left-circularly polarized emission and a

single peak for the right-circularly polarized emission. These effects are observed in high-

quality QWs in the integer quantum Hall state [117]. Such detailed calculations is beyond the

scope of the present work. We focus here on the effects of the Mn doping and the electronic

structure on the emission energy. The many-body effects are described by the XC interaction

[76] and the charge transfer obtained from the self-consistent calculations. The emission

energy is extracted simply assuming the Kohn-Sham eigenstates as representing the actual

energy spectra. This simple approach should help to understand the dependence of the charge

effects with the magnetic field in the photoluminescence transition energies and should be seen

57



3.2 Model 58

as complementary to the previous works [116,138].

In order to obtain the energy transitions, it is necessary to calculate in the same framework

the CB states. The in-plane Hamiltonian gives us the LLs for the CB, which is Ee
m = ~ωe

c(m+

1/2). Here m is the electron LL index. The electron Hamiltonian in the z-direction is

He
z = − ~

2

2me

d2

dz2
+ vehet(z)− vH(z) + geµBσzB + V e

sd(z) + vC(z)

where me is the effective electron mass in the CB. The second term is the CB heterostructure

potential, which can be written as

vehet(z) = (∆C − δECB
hy )Θ(z − LQw/2)Θ(LQw/2− z)− δECB

hyMn
aGaMnAsf(z − Ls). (3.19)

The band offset is composed by 85% of the band gap discontinuity ∆C , and the compressive

biaxial strain for both InGaAs and GaMnAs layers. In the CB there is only the hydrostatic

contribution (δECB
hy ) for the strain. The third term is the Hartree potential defined at Eq.

(3.13). The fourth term is the Zeeman interaction, in which ge is the electron g-factor and

σz = ±1/2 is the electron spin. In the fifth term we have s-d interaction between electron’s

and Mn’s spins, which is written as

V e
sd(z) = N0αxeffMσzBM(y)aMnf(z − Ls), (3.20)

where N0α is the s-d exchange constant between electron and Mn spin. This term has origin

in the Coulomb exchange interaction between electrons in the s-band and in the Mn d-orbital

[136, 137]. In the last term, we have the effects of the correlation potential in the conduction

band due to the presence of the hole gas. Since electrons and holes are treated as different

particles, there is no exchange contribution for the CB. This potential was parametrized for the

case of a non-polarized 2DHG [139,140] and gives an important contribution for the band-gap

renormalization observed in the optical spectrum of modulated-doped QWs [139]. There is no

parametrization for the spin-dependent correlation potential for the CB in this case. Within
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our description the electron-hole correlation potential should not present a dependence on the

polarization of the hole gas, but only on the total hole gas density. Therefore, the main effect

of this contribution will depend on the total charge transfer between the C and Mn acceptors

and the QW states. We will neglect this term in our calculations. As it will be discussed in

the next section, our results indicate that this simplification does not have a strong influence

on the energy oscillations. The CB states are finally described by

HeΨe
j,σz ,m(r) = [He

z +He
xy]Ψ

e
j,σz ,m = Ee

j,σz ,mΨ
e
j,σz ,m(r), (3.21)

where the envelope function writes as

Ψe
j,σz ,m(r) = ψe

j,σz
(z)φe

m(x, y) (3.22)

with the z-direction Schrödinger equation being

He
zψ

e
j,σz

(z) = Ee
j,σψ

e
j,σz

(z), (3.23)

and the in-plane part as

He
xyφ

e
m(x, y) = Ee

mφ
e
m(x, y). (3.24)

The transition energy is obtained as the energy difference between the electron’s and hole’s

eigenstates. Our focus is on the circularly polarized emission. The right circularly polarized

(σ+) light is given by the recombination of a spin-down electron with a spin-up hh, while the

left circularly polarized (σ−) light is the recombination of a spin-up electron with a spin-down

hh. The recombination energies are given by

E
σ+

Tot = Ee
j,↓ + Ee

m + Ehh
i,↑ + Ehh

n , for σ+

E
σ−

Tot = Ee
j,↑ + Ee

m + Ehh
i,↓ + Ehh

n , for σ−.

The emission is allowed only if the LLs of electron and hole states are the same Landau Levels

(n = m). To enhance the magnetic field effects on the transition energies, we subtract the
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transition energy at zero magnetic field from E
σ+(σ−)
T (B), redefining the transition energy as

E
σ+(σ−)
T (B) = E

σ+(σ−)
Tot (B)− E

σ+(σ−)
Tot (0). (3.25)

To magnify the non-linear effects in the transition energy we further subtract from E
σ+(σ−)
T (B)

all terms that are linear in B, i.e, we subtract both Zeeman (Eσ+(σ−)
z ) and Landau (EL)

energies. Therefore, we define the non-linear energy shift as

∆E
σ+(σ−)
T (B) = E

σ+(σ−)
T (B)− Eσ+(σ−)

z (B)− EL(B) (3.26)

Parameters - The holes in the heterostructure are provided by both the C and the Mn

doping. The C concentration Nc is fixed for all systems we investigate here. We consider

Nc = 13.35×1018 cm−3 which is the value obtained by fitting the measured hole concentration

in the QW for a sample without Mn and comparing with our calculations [31]. The nominal

concentration of Mn, xMn, is known from the growth process. However, it does not provide the

real hole density, since Mn can be either a substitutional impurity or an interstitial one [12].

In the first case Mn replaces Ga, and provides one hole to the system, while at the interstitial

position it is a double donor, and gives two electrons. Therefore, there is a self-compensation

of holes by the electrons, and the total density of holes provided by the Mn is given by

pMn = xS − 2xI , where xS and xI are the concentration of substitutional and interstitial Mn,

respectively [12]. Furthermore, because of the attractive Coulomb interaction, the interstitial

Mn ions tend to be near to the substitutional ones presenting an antiferromagnetic coupling,

which reduces the net Mn spins [12]. The effective Mn spin concentration is given by xeff =

xS − xI [12, 95]. In our model, we only describe the uncompensated substitutional Mn, pMn

with the effective spin concentration xeff . We do not have direct access to xS and xI . These

values are strongly dependent on sample growing conditions. Gazoto et al. [31] estimate

the hole concentration in the quantum well, pQW , from Shubnikov-de-Hass and Stoke shift

measurements. We extract pMn from our calculations by fitting the theoretical value pQW
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with the experimental data. This allows us to determine pMn for each sample which are used

as fixed parameters for the remaining calculations. The other parameters are described in

Table 3.1.

Table 3.1: Parameters used in the self-consistent calculation. The In0.17Ga0.83As strain parameters
used are linear interpolation between GaAs and InAs parameters. The parameters were extracted
from the refs. [12, 126, 128–130, 141, 142].

Parameters GaAs InAs
γ1 [129] 6.98 20.0
γ2 [129] 2.06 8.5

C11 (1010 Pa) [129] 12.21 8.329
C21 (1010 Pa) [129] 5.66 4.526

aL (Å) [129] 5.65325 6.0583
avb (eV) [129] -7.17 -5.08
acb (eV) [129] -1.16 -1.0
bv (eV) [129] -2.0 -1.8
mhh

p [126] 0.11
ge [126] -2.9
g∗ [126] -2.3

Eg(xIn) (eV) [128] 1.519 - 1.583xIn + 475x2In
∆V B (eV) [130] 0.15Eg(xIn)

N0α (eV) 0.2
N0β (eV) [12, 141] 1.2
Jpd (meV nm3) [12] 54

We use a parabolic approximation for the valence band structure and a single set of pa-

rameters in the whole structure. Our focus is on the InGaAs layer. As already mentioned, a

parabolic approximation is well justified for the in-plane mass as well as for the hole effective g-

factor, g∗ [126]. Furthermore, a parabolic contribution to these effective parameters is possible

to include the hh-lh coupling effects in this case. Wimbauer et al. [126] performed a systematic

study for this situation. They obtained g∗ ≃ 2.3 and mhh
p ≃ 0.121 for a 100 Å InGaAs QW

with In concentration of 18%. For the GaMnAs the parameters are not known and hence we

used the same as GaAs. Table 3.1 shows the effective parameters used for the whole structure.

This set of parameters gives values similar to those of ref. [126] for the InGaAs. At the same
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time, they are compatible with a diagonal approximation for the GaAs Luttinger Hamiltonian.

Observe that these parameters warrant the same mhh effective mass for InGaAs as obtained

from a linear interpolation of the GaAs and InAs Luttinger parameters. The In0.17Ga0.83As

strain parameters are a linear interpolation between GaAs and InAs parameters.

In the next section we present the results of our self-consistent calculations for the va-

lence band structure and discuss the influence of several heterostructure parameters. We also

compare the optical transition energies calculated in our simple model with the experimental

results [31].

3.3 Results

We present here our results for the electronic structure and emission energies for different

heterostructures. Our main interest is to understand the role of the structure to obtain

simultaneously a good quality hole gas in the QW and magnetic effects in the hole gas . We

therefore focus on the influence of the structural parameters and the effects of interactions on

the electronic structure. The emission energies in our simple approximation are considered as

an example of the manifestation of these effects. Initially we analyze the samples from Gazoto

et al. [31]. The uncompensated Mn concentration is obtained from the measured QW hole gas

as discussed in the previous section. Table 3.2 summarizes these values.

Table 3.2: Mn effective parameters used in the self-consistent calculation. They were obtained by
fitting the experimental hole density given in ref. [31] with the first occupied QW subband.

xMn xeff pMn (1011 cm−2) p1stQW (1011 cm−2)

0.4 0.134 9.92 5.2
0.2 0.067 7.95 4.2

0.13 0.044 7.6 3.9

Figure 3.1(b) illustrates schematically the self-consistent profile potential for the hh VB

and CB for xMn = 0.4 ML and Ls = 3 nm. The wave-functions in the VB represents the
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first occupied hh-subband. We note that there is a 2DHG in the carbon doped layer. In the

Mn layer there is no occupied state. Therefore, the only hole gas interacting with the Mn

ions has its origin in the QW states. We also show the QW ground-state for the CB. We

observe the strong anisotropy between the VB and CB. This is partially due to the different

doping on both sides of the QW but also due to the proximity of the QW structure with the

surface (63 nm). We assume that the Fermi level is pinned at the surface states which creates

a high electric field between the surface and the QW as can be observed in Fig. 3.1(b). These

features are common for most of the samples discussed here.

We now discuss the magnetic effects in the electronic structure. As a second step, we

compare and discuss our results with the experimental results from Gazoto et al. [31]. Finally,

we examine the structural parameters of the samples in order to enhance the magnetic effects

in the hole gas.

3.3.1 Role of interactions

We consider the sample with xMn = 0.4 ML as our case study. This sample presents the

largest magneto-oscillations observed in ref. [31] and also it shows the highest QW hole gas

density. The other samples measured experimentally [31], with xMn = 0.2 and 0.13 MLs are

considered in the following. The LLs broadening (Γ0) is fixed for all investigated heterostruc-

tures independently of xMn. Γ0 is related with the 2DHG mobility, which is approximately

∼ 2 × 103 cm2/Vs at 77 K in the QW for the samples investigated in ref. [31]. This implies

in Γ0 ≈ 1.8 meV B−1/2. The experimental photoluminescence is performed at 2 K. At lower

temperatures the mobility increases and this leads to smaller values for the LL broadening.

In our calculations we consider a value of Γ0 = 0.25 meV B−1/2.

We first perform a systematic study of the electronic structure as a function of the interac-

tions. First, we present the results considering all interactions in the Hamiltonian. Second, we

exclude the XC potential, i.e, vXC = 0. This allows us to verify the role of Mn interactions in
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the LL fan diagram and, consequently, in the transition energies. Finally, we investigate the

effects of XC in the hole states assuming vXC 6= 0 and Vpd = 0. We are then able to determine

which contribution is more significant to the electronic structure and its consequences in the

optical magneto-oscillations. It follows with a comparison with the experimental results [31].

All interactions

Here we consider the full Hamiltonian, Eq. (3.5), with all terms. At zero magnetic field,

there are two hh and one lh occupied subbands. Fig. 3.2(a) shows the self-consistent potential

profile for the hh and lh bands, and the wave functions of the hh occupied subbands at zero

magnetic field. The first hh state is confined in the QW, while the second hh state is located

mainly in the C layer. As the QW is compressed biaxially the lhs are confined in the C

doped layer. The ground state lh is occupied but for clarity we did not show here its wave

function. We observe that the overlap among the hh’ s wave functions is small, which makes

the 2DHG in the QW and the C layer almost independent from each other. Another feature

of this heterostructure is that there is no hole gas in the Mn-doped layer as suggested in the

refs. [110, 119]. The interaction between the hole gas and the Mn ions occurs only due to

the penetration of the hh wave function in the barrier and the Mn diffusion. The absence

of a hole gas in the Mn doped layer is a consequence of both its short distance from the

surface (63 nm) and the Fermi level pinned at the surface states [95, 134]. This generates a

strong electric field between the surface and the QW, inducing the transfer of the holes from

the Mn to the QW. The presence of other acceptor doping, namely the C-doped layer, also

contributes to the lack of holes in the Mn layer. It is well known that by doping with another

acceptor before growing the GaMnAs layer the amount of interstitial Mn increases, decreasing

the concentration of uncompensated Mn [143].

Figure 3.2(b) shows the holes LLs fan diagram. In order of increasing energy we have at

zero magnetic field hh1n,τz subband where the upper index refers to the state order, located at
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fan diagram for the sake of clarity. Figure 3.2(c) shows the QW and the C hole concentration.

This is possible to characterize here since the wave-functions are well separated spatially. It

gives us a measure of the charge transfer between the QW and the C layer as a function of the

LL filling factor. Figure 3.2(d) shows the LLs occupation as a function of the magnetic field.

Most of the LLs show a similar behavior. They increase the hole concentration linearly with

the magnetic field, as it should be expected from the LL degeneracy. As one LL crosses the

Fermi level, it starts to be depopulated. If there was no broadening, this should be an abrupt

decrease. In our case, the broadening makes the depopulation of the LL to last a finite range

of magnetic field but with a nearly linear decrease. This behavior is consistent for all LLs

associated to QW subbands. The C layer LLs show a different behavior. As they start to be

depopulated, they do not follow a linear behavior. Actually, this behavior is associated with

the LLs oscillation that roughly follows the Fermi level oscillation, as if they were partially

pinned in the Fermi level.

Let us look now in more detail in the QW LLs oscillations and their correlation with the

LL filling factor (ν). We focus on the effects on the lowest energy QW LLs, that is, hh10,↑ and

hh10,↓ since they are responsible for most of the properties in transport and optical emission.

We start our analysis at ∼5 T since for lower magnetic fields the number of occupied LLs

makes it difficult to obtain a clear picture. At this magnetic field, the states at the QW that

are (fully) occupied are hh1i,τz , i = 0, 1 and τz =↑, ↓. We have in this situation an unpolarized

hole gas in the QW. Other LLs from states at the C layer are also occupied but they do not

affect the results we discuss here. At ∼5 T, as shown in 3.2(d) hh11,↓ starts to be depopulated,

polarizing the QW hole gas. It depopulates entirely at ∼7 T when the hole gas in the QW

becomes spin-polarized. In this interval, hh10,↑ and hh10,↓ have a significant difference in their

magnetic field dependence, with hh10,↓ energy increasing strongly with the magnetic field while

hh10,↑ shows a weak dependence with it. At ∼7 T hh11,↑ starts to be depopulated and the QW
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hole gas starts to decrease its polarization until ∼ 11T when hh11,↑ is fully emptied and the

QW hole gas is unpolarized. In this interval of magnetic field, both hh10,↑ and hh10,↓ states show

similar weak magnetic field dependence. At ∼11 T hh10,↓ starts to be depopulated and the hole

gas is again polarized. The magnetic field dependence of hh10,↑ and hh10,↓ states again differ

significantly, repeating the previous pattern. This behavior manifests itself by an oscillation

in the LL dependence with the magnetic field. These oscillations take place each time a QW

LL is emptied and a new one starts to be depopulated. It should be observed that during

this range of magnetic fields hh and lh LLs associated to the C layer are also changing their

occupation in relation to their maximum occupation but that does not affect the hh10,↑ and

hh10,↓ magnetic field dependence. Actually, this picture is confirmed by the charge transfer

between the C layer and the QW. Figure 3.2(c) shows the hole concentration in the hh1 (pQW )

and the C layer (pC) (more exactly, the hole concentration in the hh2 and lh1 states), and their

sum (pT ). It shows that the charge transfer oscillates following the QW LL filling factor. This

charge transfer has its origin in the thermodynamic equilibrium. The charges in the structure

rearrange themselves in order to reach the same chemical potential in the whole structure. As

the LLs are emptied, the local chemical potential changes abruptly inducing a charge transfer

between the two hole gases. The charge transfer between the C layer and the QW, however,

is not significant. Clearly, the most important effect is the spin-polarization of the hole gas in

the QW, a consequence of the charge transfer between LLs within the QW. The oscillations

observed in pT are due the charge transfer between the QW and C holes with the surface

states. The total density is constant.

We now turn our attention to the consequences of these results in the optical emission.

For that, we first calculate the CB LLs. In Figure 3.3(a) we plot the LLs associated with the

CB QW ground state, e1m,σ. We observe oscillations in the LLs associated to the crossing of

the QW hole LLs. These oscillations, however, do not change the LLs dependence with the
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magnetic field and they show the same behavior for both spins. The observed oscillations have

their origin in the charge transfer between the C layer and the QW. We remind that we did

not include here any effect due to the correlation potential. However, we should not expect a

qualitative influence from this term. It certainly should lower the energy levels and enhance

the oscillations since correlation potential should be dependent on the total hole density. Its

effect is associated to the oscillations in the hh1 hole concentration. As we observed, this is a

minor effect [see Fig. 3.2(c)]. We therefore do not expect a qualitative effect in the oscillations

coming from this contribution. It does, nevertheless, contribute to a lowering in the levels

energy. The energy transitions calculated within this approximation should give a reliable

behavior with the magnetic field but overestimate the total energy.

Figure 3.3(b) shows the fundamental energy transition shift, Eσ+(σ−)
T (B) and the non-linear

energy shift [∆Eσ+(σ−)
T ] as a function of the magnetic field. We observe a non-linear behavior in

the emission energy shift as a function of the magnetic field. This effect is enhanced in the non-

linear transition energy where the magnetic field linear dependent terms are extracted from the

transition energies. This non-linear behavior is dominated by the QW holes LLs oscillations.

We observe that the non-linear behavior for the σ− transition increases as the QW hole gas

starts to be polarized reaching a maximum value when the hole gas is spin-polarized. As

this polarization starts to decrease, the non-linear behavior for σ− decreases. The opposite

behavior is observed for the σ+ transition. It shows a negative non-linear behavior which

roughly follows the same dependence. As a consequence, if we look at the transition energy

shift, Eσ+

T shows a maximum oscillation at odd filling factor while Eσ−

T shows a maximum

oscillation at even filling factor. Finally, the non-linear behavior reaches a maximum value

near 1 meV. This value is weaker then the values observed experimentally but in the same

order of magnitude.

From the results discussed here we verified that the oscillations in the electronic structure
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smaller. All parameters are the same as discussed before.

Figure 3.4(a) shows the holes LL fan diagram of the xMn = 0.4 ML heterostructure in

absence of the XC potential. Here, we again observe an oscillatory behavior in the hh1n,τz LL

with the magnetic field which are associated to the QW LL filling factor (ν). These oscillations,

however, have a completely different qualitative and quantitative behavior. First of all, we

do not observe a qualitative dependence with the spin in the oscillations. Both fundamental

states, hh10,↑ and hh10,↓, oscillate following the same pattern with the magnetic field. Second,

the value of these oscillations is significantly diminished. This can be better visualized in Fig.

3.4(b) where we plot the energy transition and the non-linear energy shift as a function of the

magnetic field. The non-linear behavior is the same for both circularly polarized transitions,

as expected from the hh LLs behavior. Furthermore, this is a tiny effect, ≈ 0.1 meV. There is,

however, a small splitting between the two non-linear energies. This energy difference initially

increases with the magnetic field and becomes practically the same for B > 2 T. We can

separate, therefore, in two effects, one that is responsible for the spin-splitting and the other

that is responsible for the near constant and spin-independent oscillations at B > 2 T. These

effects have their origin exclusively in the hh levels since the CB levels are essentially the same

as before [see Fig. 3.3(a)].

The origin of the oscillations can be associated with two contributions, the p-d exchange

interaction and the charge transfer between the two hole gas reservoirs. The first contribution

is spin-dependent while the second one is spin-independent. The spin-splitting between ∆Eσ+

and ∆Eσ−
is induced by the p-d interaction, which has a major effect up to B ∼ 2 T, when the

spin-splitting becomes nearly a constant. This occurs because the Brillouin function BM that

describes the p-d exchange interaction saturates after a certain critical value of the magnetic

field, Bc [102]. This means that the magnetic field already aligned all Mn spin. Its effect

for B > Bc is then a rigid splitting of the energies. This implies that for B > 2 T the
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3.3.2 xMn = 0.13 and xMn = 0.2 monolayers

We now compare the results of our calculations with the experimental results from Gazoto

et al. ref. [31]. For that, we present the results for two others samples. All the parameters are

the same except the nominal Mn doping layer which is now xMn = 0.13 MLs and xMn = 0.2

MLs. The experimental results [144] for the QW hole gas density decreases with the value of

xMn as it should be expected for lower Mn concentrations. From Shubnikov-de-Haas and Stoke

shift measurements they extracted 2D hole densities of p2D = 4×1011 cm−2 and 4.2×1011 cm−2

for xMn = 0.13 and xMn = 0.2 MLs, respectively. They showed lower 2D hole densities than

the sample with xMn = 0.4 MLs but not in proportion to the Mn concentration. Furthermore,

their 2D hole densities differ by just a slight margin in these two samples. The 2D hole

concentration depends on the uncompensated Mn density which is dependent of the growth

conditions. This set of samples were grown in the same conditions, nevertheless we observe

that the amount of interstitial Mn may vary from sample to sample. Following our previous

analysis, we obtain pMn and xeff by fitting the 2D hole density with the QW hole density

obtained in the calculations. The effective parameters are shown in Table 3.2.

Figures 3.6(a) and (b) show the hh LL fan diagram for the heterostructure with xMn = 0.13

and xMn = 0.2 MLs, respectively. We observe that the LLs cross EF at smaller values of B in

comparison with those from sample with xMn = 0.4 ML [see Fig. 3.2(b)]. This occurs because

these QWs have lower hole density. All the other features are the same as those observed for

sample xMn = 0.4 MLs. Essentially, the QW hh LLs oscillations are associated with the QW

LLs filling factor with hh10↑ showing a qualitative difference from hh10↓ when the QW hole gas

becomes spin-polarized.

Figure 3.6(c) and (d) exhibit the transition energies and the non-linear energy shifts as a

function of the magnetic field for both samples with xMn = 0.13 and xMn = 0.2 MLs, respec-

tively. We observe that the oscillations are slightly smoother than presented in Fig. 3.3(b)
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energy dependence with the magnetic field. This was performed in a way that minimized

the subtracted energies but remaining positive. In this analysis, the concave energy transition

behavior with the magnetic field (see Fig. 1 in ref. [31]) translates into a peak in the non-linear

behavior while the convex behavior shows an absence of peak. We extracted the linear terms

with the magnetic field from the energy transitions. In our case, the concave (convex) behavior

in the energy transition manifests itself as a positive (negative) peak in the non-linear shift.

Once we make this correspondence between the two analysis we observe that our results are in

perfect agreement with their results for sample xMn = 0.40 MLs. They observe a peak in the

non-linear shift for the transition with higher energy transition for odd filling factor (ν = 3)

at B ∼ 7 T and a peak in the non-linear shift for the lower energy transition for even filling

factor (ν = 2) at B ∼ 11 T. This is the same oscillatory behavior we observe in our results

as it can be observed by the peak in the non-linear shift for the higher energy transition at

ν = 3 at B ∼ 7 T and the peak for the lower energy transition at ν = 2 at B ∼ 11 T [see Fig.

3.3(b)]. Furthermore, we obtain the peaks at the same magnetic field as in the experiment

which shows that the self-consistent description of the structure describes well their samples.

For the samples with lower values of xMn we have a similar behavior except that the filling

factors occur for B ∼ 5.5 T (ν = 3) and B ∼ 8.5 T (ν = 2) while in the experiment they

observe ν = 3 at B ∼ 6 T and ν = 2 at B ∼ 9 T for sample with xMn = 0.20 MLs and

slightly lower values of the magnetic field for sample xMn = 0.13 MLs. These are again in

excellent agreement with our results see Fig. 3.6(b). However, the experimental results are

less conclusive about the nature of the oscillations in these cases. They do not show the case

of filling factor ν = 1 since they did not reach this regime for the magnetic fields employed.

This is when we have the highest possible QW hole gas spin-polarization, and therefore the

highest non-linear behavior in the energy shifts.

We did not consider the case xMn = 0 since in this case the experimental results showed
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no hole gas in the QW. Our calculations would produce no oscillatory behavior in this case.

This is what is also observed experimentally.

3.4 Increasing p-d interaction

The samples we analyzed in the last section showed that the hole-Mn interaction did

not play an important role in the electronic structure and in the magneto-oscillations in the

transition energies. This is a consequence of the weak overlap between holes and Mn for

the sample parameters considered. The main goal of these structures is to obtain effects

originated from this interaction maintaining a high-quality hole gas in the QW. In this section

we discuss different venues to obtain a significant effect of the Mn ions on the hole gas. One

way to enhance the magnetic effects is to increase the uncompensated Mn ions. This, however,

depends on the samples growth conditions and some intrinsic conditions probably will hamper

these attempts. We do not consider this case here. Another possibility is to grow the Mn

layer closer to the QW. This may diminish the sample quality but it is a well controlled

growing parameter. A third possibility is through the application of a gate voltage in order to

redistribute the hole gas in the structure. This has the advantage to offer an external control

parameter. We analyzed here the last two cases.

3.4.1 Mn position

In order to investigate the effects of Mn position on the 2DHG electronic structure, we

start by changing the nominal position of the δ-Mn doping, LS. All the others parameters are

the same considered previously for sample xMn = 0.4 ML. We consider here a Mn layer closer

to the QW, namely, with LS = 1 nm. We assume the same Mn diffusion we considered before.

To understand the details of these effects we consider three situations. First, we neglect the

sp-d interaction, i.e, we do not consider V hh(lh)
pd and V e

sd terms of the Eqs. (3.5) and (3.19),

respectively. Second, we include this interaction, but we neglect the contribution due to Zener
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effect, that is, the contribution of the direct coupling between the hole gas and the Mn ions.

This is done by neglecting the second term of the Brillouin’s function argument [Eq. (3.18)].

Finally, we consider the full Hamiltonian as described by equations Eqs. (3.5) and (3.19).

Without sp-d interaction (Vsp-d = 0)

For Ls = 1 nm, the Mn ions are closer to QW, and the overlap between the VB states

and the Mn ions starts to play an important role in the electronic structure. In order to

map this interaction, we begin by showing the effects in the absence of Mn spin interactions.

In other words, we consider the case where the sp-d coupling is neglected. In this case the

Mn ions act as a non-magnetic acceptor impurity. Figure 3.7(a) and (b) shows the LLs for

holes and electrons, respectively. They both oscillate as a function of the magnetic field.

These oscillations are very similar to those presented in the heterostructure with Ls = 3 nm

including the full Hamiltonian [see Figs. 3.2(b) and 3.3(a)]. More precisely, the oscillations of

the hole LLs depend on the filling factor. For odd filling factors the two hole spin species of

LLs oscillate in the same direction, while for even filling factors the oscillations are in opposite

directions. Therefore, the behavior of the LLs with the magnetic field depends on the QW

hole-gas polarization and the effect is dominated by the hole gas exchange energy.

Figure 3.7(c) shows the transition energy and the non-linear energy shift as a function of

the magnetic field. As it should be expected from the hh LLs, the results are very similar

to those obtained with LS = 3nm and the full Hamiltonian [see Figs. 3.2(b) and 3.3]. These

results confirm that when the Mn ions are sufficiently apart from the QW the sp-d interaction

does not play any role on the electronic structure of both electrons and holes QW states.

Without Zener interaction

We now consider the same heterostructure but in the presence of the sp-d interaction. We

do not consider, however, the contribution of the hole gas in this interaction (as described

77







3.4.1 Mn position 80

when the spin-up LL becomes the ground-state. This is better visualized in the inset of the

Fig. 3.8(b). This crossing is originated by the interplay between the Zeeman energy and the s-

d interaction. Increasing the magnetic field, the Zeeman energy dominates and the oscillatory

behavior induced by the Hartree interaction induced charge transfer is present. We observe

here that the CB LLs oscillations are stronger than the ones showed in the absence of s-d

interaction [see Fig. 3.7(b)].

Figure 3.8(c) shows the energy transition and the non-linear energy shift. The magneto-

oscillations are now more pronounced. We do not observe here any signature of the electron’s

LLs crossing, since the dominant effect is the valence band p-d interaction. One way to probe

this crossing is by measuring the degree of polarization of the circularly emitted light, since

the intensity is dominated by the electron’s population. The crossing of the CB LLs leads to

an inversion of the electrons spin population, which in turn changes the sign of the degree

of polarization. However, we should keep in mind that the energy scale of the effect is very

small. In the non-linear energy shift we observe an antisymmetric behavior for the σ− and

σ+ cases. For low fields the σ− non-linear energy shift slightly increases with B, while σ+

has a negative shift following the shape of the Brillouin function, that is, the sp-d interaction.

For higher magnetic fields the oscillations are similar to those observed previously but with

a finite splitting between the two polarizations, a consequence of the sizable sp-d interaction.

Therefore, with increasing the overlap between the QW states and the Mn ions, we are able

to modify the behavior at low magnetic fields and increase the spin-splitting of the transition

energies at higher magnetic fields.

ALL interactions

We now include the direct coupling of the hole gas with the Mn ions via the Zener kinetic

exchange term. In other words, we consider the full Hamiltonian of eqs. (3.5) and (3.19).

Figure 3.9 shows the LLs fan diagram for (a) hh and (b) CB and (c) the transition energy
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hole gas. Besides the structural parameters already discussed, another reason for this situation

is the proximity of the structure with the surface which induces a high electric field due to

the pinning of the Fermi level at the surface states. We could change this situation either

by increasing the GaAs cap layer or applying a gate voltage. A great advantage of using a

gate voltage is that we can control electrically the magnetic properties of the heterostructure.

It was demonstrated that by applying an electric field one can control the direction of the

magnetization vector of the GaMnAs [84]. We consider now the same structure we have been

analyzing, but assuming a gate voltage. Essentially, we will simple change the Fermi level

at the surface by the expression EF → Eg/2 − Vg and will consider the value Vg = 0.71 eV

which leads to an almost flat band condition near the surface. This will induce a charge

redistribution in the whole structure as we will see in the following. We consider two values

for the Mn layer spacing, LS = 3 nm and 1 nm. All the other parameters are the same as

those used before for sample xMn = 0.40 MLs. With that, we are assuming that the growth

conditions are similar to those considered before.

Vg = 0.71 eV and Ls = 3 nm

We first consider the case LS = 3 nm, which is the same Mn spacing as the samples in the

experiment of Gazoto et al. ref. [31]. The gate voltage changes the charge distribution. As a

consequence, the hole gas density in the first occupied QW subband is now 9.2 × 1011 cm−2.

Figure 3.10 shows the hole potential profile and the wave-functions of the occupied hh levels at

(a) B = 0 T and (c) at B = 10 T, (b) the hh Landau fan diagram and (d) the hh LLs charge

concentration as a function of the magnetic field. We first observe that now we have three

occupied hh subbands. The ground-state, hh1, is mainly located at the QW. There are then

two other states, almost degenerate, which are extended in the whole structure. The second

state, hh2, is mainly located at the Mn layer and the QW, while the third state, hh3, is located

at the C layer and the QW. This situation changes completely the physics of the system. We
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layer, it shows a strong influence of the p-d interaction. As a consequence, the spin-down LLs

rapidly become depopulated while the spin-up LLs, first decrease in energy and second, for

B > 3 T, increase their energy. The behavior at lower magnetic field is dominated by the p-d

interaction, while at larger magnetic fields this interaction is saturated and it recovers the usual

LL behavior. The LLs associated with state hh3 follows approximately the same behavior as

in previous cases. The LLs associated to the hh ground-state, hh1, which is mainly confined

in the QW, shows a different oscillatory behavior with the magnetic field when compared to

the absence of the gate voltage [see Fig. 3.2(b)]. Since this subband is responsible for the

optical emission, we will analyze its behavior in more detail. We remind that for transport

properties, the occupation of the other levels should also directly influence the outcome of the

experiments.

The hh11,↑ and hh11,↓ LLs show a non-linear behavior at weak magnetic field. For magnetic

fields below ∼ 3 T, the hole concentration in the QW is not significantly spin-polarized. At

the same time, in this regime, the Mn spins start to be aligned by the magnetic field and the

Zener kinetic exchange mechanism. Since the hh1 wave-functions have a sizable overlap with

the Mn ions, this effect is significant. As a consequence, the p-d interaction is more important

and is responsible for these LLs behavior. As the magnetic field increases, this effect saturates

while the QW hole gas becomes more polarized and the XC potential starts to be dominant.

We recover then most of the features described in Fig. 3.2(b). A careful examination of the

LLs, however, shows an oscillatory behavior super-imposed on the oscillations originated from

the XC interaction. This occurs in particular for magnetic fields ∼ 7 T and ∼ 9 T and ∼ 11

T. These oscillations have their origin in the crossing of the Fermi level by the LLs hh22,↑, hh
3
0,↓

and hh21,↑, respectively [see Fig. 3.10(b) and (d)]. The partial presence of these levels in the

QW induces an increase in the QW hole gas spin-polarization, adding to the exchange induced

splitting.
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behavior for σ+ or σ− circularly polarized transition according to an odd or even filling factor,

just as in Fig. 3.3(b), the super-imposed oscillations break the antisymmetric pattern observed

previously. Since the second set of oscillations has its origin in the sp-d interaction, it does

not have the antisymmetric behavior but rather a symmetric oscillation. As a consequence,

the combination of the two sets produce a completely different pattern for the the right- and

left-circularly polarized non-linear energy shift. We can see this in detail when we observe

the break of the antisymmetric pattern at B ∼ 8 T which lasts up to B ∼ 13 T. In this

interval of magnetic field hh21↑ is depopulated. This level strongly overlaps with the Mn ions

and therefore enhances the participation of the p-d interaction in the non-linear shift. Also,

the full depopulation of the hh2n,↑ LLs generates a spike in the non-linear energy shifts, as can

be seen at B ∼ 7 T and B ∼ 13 T. This occurs due the redistribution of the spin-down holes

from hh2n,↑ into the other subbands LLs.

Vg = 0.71 eV and Ls = 1 nm

Here we consider the case LS = 1 nm and Vg = 0.71 eV. This situation is the most favorable

for the overlap between the hole gas and the Mn ions we are considering in this work. The Mn

ions are close to the QW interface. Actually, due to the Mn diffusion we consider here, part of

the Mn ions are in the QW. At the same time, the almost flat band condition at the surface

leads to a redistribution of charge along the whole structure. Figure 5.1 shows the hh potential

profile and the wave-functions of the occupied hh levels at (a) B=0 T and (c) for B=10 T, (b)

the hh LLs fan diagram and (d) the LLs charge concentration as a function of the magnetic

field. We first observe that again we have three occupied hh states except that now there is

no state concentrated on the Mn layer. This happens because the proximity of the Mn layer

to the QW prevents the formation of enough confinement in this region. On the other side, all

the three states have a considerable overlap with the Mn ions. As the magnetic field increases,

this picture changes completely. The Mn rich region is more attractive and the QW levels
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spin up and spin down with the odd and even filling factors which originated in the hole gas

exchange energy as a consequence of the its spin-polarization. Here, both states oscillate in

a similar way. One of the reasons for this behavior is in the way that the LLs associated to

the QW are depopulated. This can be observed in Fig. 5.1(d). In particular, for example,

for B ∼ 13 T, both LLs associated to spin up and down becomes depopulated almost at

the same time. This prevents the spin-polarization of the QW hole gas. At the same time,

the participation of the states hh2↑ in the polarization of the QW hole gas prevents a clear

oscillation in this polarization. On the other way, the states hh10,τz have a strong influence of

the Mn ions which dominates the magnetic field dependence. The oscillations are therefore

mainly dominated by the charge transfer among the QW levels but not in the polarization of

the hole gas.

Figure 4.1(a) shows the CB LLs fan diagram and (b) the transition energies and the non-

linear energy shift for this case. The CB LLs show the usual oscillation associated to the charge

transfer between different hole gas reservoirs. The non-linear shift observes a rapid split at

low magnetic fields due to the increasing of the sp-d interaction with the magnetic field and

for B > 3 T this splitting saturates and the oscillatory behavior dominates its features. These

oscillations, as it was already manifest for the hh LLs, show symmetric oscillations for the two

circularly polarized transitions and are associated to the LLs filling factor.

3.5 Concluding Remarks

We presented here the results of calculations of the electronic structure and optical emis-

sion energy for (In,Ga)As QWs with barriers doped with Mn and C acceptors. Our results

show an excellent agreement with the circularly polarized photoluminescence experiments from

Gazoto et al. [31]. We were able to explain the origin of the non-linear energy shift in their

results both qualitatively as well as quantitatively. The origin of these non-linear behavior
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these effects. We showed here that in order to have a dominant magnetic effect in the hole

gas properties it is necessary to prevent the built up of a high electric field induced by the

presence of the QW structure near the surface. This can be achieved by controlling the Fermi

level with a gate voltage. Also, we showed that to enhance the p-d interaction influence in the

hole gas it is necessary to grow the Mn layer closer to the QW interface. This has a drawback

since Mn is known to diffuse and the growth conditions of the (Ga,Mn)As layer is not the

optimal conditions to grow III-V materials. As a consequence, samples with lower value of Ls

may present a low-mobility hole gas.

We also showed that, depending on the samples parameters, the fundamental spin-up and

spin-down CB LLs exhibit crossing. This crossing is due to the opposite sign of s-d and

Zeeman contributions. As the transition energy is dominated by the hole spin-splitting, this

effect can not be visualized in the transition energy. Therefore, we suggest that this crossing

can be observed in the degree of polarization of the circularly emitted light since the intensity

is dominated by the electron population, and with the LLs crossing its population will invert

causing a changing of sign in the degree of polarization.

Several approximations were used to obtain a simple and clear picture for this system.

We used a parabolic approximation for both the effective hole g-factor and masses. These

values are compatible with experimental data for a similar InGaAs QW [126] and the strain

effects justify the parabolic approximation for this case. For the GaAs (and GaMnAs) regions,

however, this is a less justified approximation. A complete 6 × 6 band description certainly

would modify the self-consistent calculation and the charge transfer with the magnetic field.

We obtained an excellent agreement with the experiment for the LLs filling factor, once the

QW hole gas concentration was fitted with the experimental data at zero magnetic field. This

suggest that our approximation was sufficient to describe the charge transfer in the structure

for the magnetic fields considered here. One possible interpretation of this result is that the
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VB complexity at the C doped layer states does not significantly modify the total density of

states but mainly rearrange the occupation among the occupied states in that region.

We did not include in our calculations the effects described by Asano and Ando [138]

and Hawrylak and Potemski [116], that is, the effects of the electron-electron and electron-

hole interaction in the final states of the optical emission. The many-body effects here were

limited to the VB spin-density functional theory. The excellent agreement we obtained with

the experiments suggest that although the samples show a relative high mobility for this kind

of structure, it is not enough to give the refined structures in the emission spectra predicted

by those authors.

Finally, we did not include in our spin-density functional description the effects of the

hole gas on the minority charge, that is, the CB states. First, due to the fact that they are

of different species there is no exchange interaction between them. Second, the correlation

interaction should be spin-independent, and therefore, it does not affect the origin of the

oscillations associated to the different spin states, but rather causes a rigid energy shift in

the transition energy, known as band-gap renormalization [139, 140]. For the experimental

situation, we showed that this simplification is good enough for the description of the observed

effects. For the other situations explored here, namely when the gate voltage is applied and

we considered a Mn layer nearer to the QW this should be revised for a more quantitative

analysis. We do not expect that the qualitative conclusions observed in this case will be

modified.
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Chapter 4

Electronic properties of charged quantum

dots doped with a single magnetic impurity

We present here the electronic structure of charged quantum dots doped with a single

magnetic impurity. This problem was already investigated by other authors [78, 145], for an

off-center Mn impurity. Here we consider the Mn at the QD center. One of the consequences

is that electrons that are in QD orbitals with nonzero angular momentum do not interact

directly with Mn. We show that electron-electron interaction mediates an indirect interaction

between those electrons and Mn. The indirect interaction depends on the number of confined

shells, quantum dot confining energy, and electron-Mn coupling. This Chapter is the integral

article by U. C. Mendes, M. Korkusinski and P. Hawrylak, submitted to Phys. Rev. B (2014).

4.1 Introduction

There is currently interest in understanding the coupling of a localized spin, either magnetic

impurity or nuclear spin, with spins of interacting electrons [41,51]. This includes the Kondo

effect in metals [146–150] and quantum dots [3, 4, 47, 49], the impurity spin in diamond [151,

152], charged quantum dots with magnetic ions [55, 57, 59, 78,153], and nuclear spins coupled

to fractional quantum Hall states [154–156]. Here we focus on a highly tunable system of

quantum dots with a single magnetic ion and a controlled number of electrons. Such system
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is realised in CdTe quantum dots with a magnetic impurity at the center of the dot loaded

with a controlled, small at present, number of electrons [57]. The interplay between electron-

electron interactions and the electron-Mn exchange interaction has been studied using exact

diagonalization techniques [78,153] and mean-field approaches [59,157]. Other studies focused

on electron-electron interactions in excitonic complexes coupled with localized spins [55, 57,

58,60,62,157].

Here we focus on the indirect coupling of the electrons and magnetic/nuclear ion spins

in self-assembled quantum dots (QDs) mediated by the electron-electron interaction. With

a localized spin placed at the center of the dot only the spin of the electrons occupying the

zero angular momentum states of the s, d, . . . shells couples directly to the localized spin via

contact exchange interaction. The situation is identical to the Kondo problem in metals where

only zero angular momentum states of the Fermi sea are considered as interacting with the

localized spin. The question arises as to the role of the electron-electron interaction. Here we

show that, in quantum dots, when electron-electron interactions are included, the electrons

occupying finite angular momentum orbitals (e.g., p shell) do interact with the localized spin.

The effective interaction for p-shell electrons is obtained using exact diagonalization of the

microscopic Hamiltonian as a function of the number of electronic shells, shell spacing and

anisotropy of the exchange interaction. The anisotropy of exchange interpolates between

interaction types characteristic for conduction band electrons (Heisenberg-like) and valence

band holes (Ising-like). We show that the effective exchange interaction can be engineered to

be either ferro- or antiferromagnetic by varying quantum dot parameters.

The Chapter is organized as follows: in section II we describe the model of a self-assembled

quantum dot with a single Mn impurity at its center and a controlled number of electrons.

Section III presents results of exact diagonalization calculations of the model Hamiltonian for

quantum dots confining from two to six electrons and the emergence of the indirect electron-

93



4.2 Model 94

Mn coupling for QDs with partially filled p-shell. Section IV summarizes our results.

4.2 Model

We consider a model system of N electrons (N = 2, . . . , 6) confined in a two-dimensional

(2D) parabolic quantum dot with a single magnetic impurity at the center. For definite-

ness we consider an isoelectronic impurity, a Manganese ion with total spin M = 5/2 in a

CdTe quantum dot [51]. In the effective mass and envelope function approximations, the

single-particle states |i, σ〉 are those of a 2D harmonic oscillator (HO) with the characteristic

frequency ω0. They are labeled by two orbital quantum numbers, i = {n,m}, and the electron

spin σ = ±1/2. The single-particle states are characterized by energy En,m = ω0(n +m + 1)

and angular momentum Le = n−m. We express all energies in the units of effective Rydberg,

Ry∗ = m∗e4/2ǫ2~2, and all distances in units of the effective Bohr radius, a∗B = ǫ~2/m∗e4,

where m∗, e, ǫ, and ~ are respectively the electron effective mass and charge, the dielec-

tric constant, and the reduced Planck constant. For CdTe we take m∗ = 0.1m0 and ǫ = 10.6,

where m0 is the free-electron mass, and Ry∗ = 12.11 meV and a∗B = 5.61 nm. Unless otherwise

stated, we take the HO frequency ω0 = 1.98Ry∗, consistent with our previous work [58].

The Hamiltonian of N electrons confined in our QD and interacting with a single Mn spin

is written as [78]:

H =
∑

i,σ

Ei,σc
†
i,σci,σ +

γ

2

∑

i,j,k,l
σ,σ′

〈i, j|Vee|k, l〉c†i,σc†j,σ′ck,σ′cl,σ

−
∑

i,j

Ji,j(R)

2

[(

c†i,↑cj,↑ − c†i,↓cj,↓

)

Mz + ε
(

c†i,↓cj,↑M
+ + c†i,↑cj,↓M

−
)]

, (4.1)

where c†i,σ (ci,σ) creates (annihilates) an electron on the orbital i = {m,n} with spin σ. In

the above Hamiltonian, the first term is the single-particle energy and the second term is

the electron-electron (e-e) interaction. The e-e term is scaled by a dimensionless parameter

γ: γ = 0 describes the noninteracting electronic system and γ = 1 describes the interacting
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system. The matrix elements 〈i, j|Vee|k, l〉 of the Coulomb interaction are evaluated in the

basis of 2D HO orbitals in the closed form [158]. The last term of the Hamiltonian describes

the electron-Mn interaction (e-Mn). It is scaled by the exchange coupling matrix elements

Ji,j(R) = J2D
C φ∗

i (R)φj(R), where J2D
C = 2Jbulk/d, Jbulk = 15 meV nm3 is the s-d exchange

constant for the CdTe bulk material, d = 2 nm is the QD height, and φi(R) is the amplitude

of the HO wave function at the Mn position R. The e-Mn interaction consists of two terms.

The first one is the Ising interaction between the electron and the Mn spin. The second

term accounts for the e-Mn spin-flip interactions. The anisotropy of the exchange interaction

is tuned by the factor ε. By setting ε = 0 we obtain the anisotropic Ising e-Mn exchange

Hamiltonian and setting ε = 1 we obtain the isotropic, Heisenberg exchange Hamiltonian.

In the former case, the spin projections sz and Mz are separately good quantum numbers.

The total spin projection of the electrons depends on the number and polarization of the

particles. For the manganese spin, we have M = 5/2 and the six possible spin projections

Mz = −5/2, . . . , 5/2. The isotropic Heisenberg Hamiltonian, in contrast, conserves the total

angular momentum J = M+S and its projection Jz = sz +Mz. Hence, for the case ε = 1 one

can establish the total spin quantum number J of the given manifold of states by considering

its degeneracy g(J) = 2J + 1.

Since the elements Ji,j depend on the position R of the Mn spin, the e-Mn coupling can

be engineered by choosing a specific R [78]. In this work we place the Mn spin at the center

of the QD and the only nonzero matrix elements Ji,j that appear are related with i and j

orbitals with zero angular momentum states. The spin of an electron placed on any other HO

orbital is not coupled directly to the Mn spin.

The eigenenergies and eigenstates of the Hamiltonian (4.1) are obtained in the configuration-

interaction approach. In this approach, we construct the Hamiltonian matrix in the basis of

configurations of N electrons and one Mn spin: |νi〉 = |i1↑, i2↑, . . . , iN↑〉|i1↓, i2↓, . . . , iN↓〉|Mz〉,
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where |i1σ, i2σ, . . . , iNσ〉 = c†i1σc
†
i2σ
, . . . , c†iNσ

|0〉, |0〉 is the vacuum state, N = N↑ + N↓ is the

number of electrons, in which N↑ and N↓ are the number of electron with spin up and spin

down, respectively. The total number of configurations depends on the number of electrons

and on the number of HO shells available in the QD. With Mn impurity at the center, the total

orbital angular momentum of electrons L =
∑N

i=1 L
i
e is conserved by the Hamiltonian (4.1).

Moreover, depending on the anisotropy of e-Mn interactions, the Hamiltonian also conserves

the total projections Sz and Mz of the electron and Mn spin separately (the Ising model) or

the projection Jz = sz +Mz of the total spin (the Heisenberg model). Based on these conser-

vation rules, we divide the basis of configurations into subspaces labeled by the numbers L,

Sz, and Mz (for the Ising model) or L and Jz (for the Heisenberg model), and diagonalize the

Hamiltonian in each subspace separately.

The computational procedure adopted in this work is as follows. For a chosen number of

electrons N = 2, . . . , 6 and a chosen number of HO shells, we look for the ground and several

excited states for the system with and without e-e interactions in the Ising and isotropic

Heisenberg models. By analyzing the degeneracies of the states we find the total spin of

the system. Further, from the ordering of different states with respect to their total spin we

draw conclusions as to the ferromagnetic or antiferromagnetic character of the effective e-Mn

interactions. By comparing the results for the system with and without the e-e interactions

(γ = 1 or γ = 0, respectively) we establish that the e-e interactions mediated an effective

e-Mn Hamiltonian for electrons not directly coupled to the central spin.

4.3 Spin singlet closed shells coupled with the magnetic ion

We start with a discussion of a filled s-shell with N = 2 electrons in the zero angular

momentum channel. Each electron is directly coupled to the Mn impurity, but the singlet

state couples only via e-e interactions [58]. Here we discuss the role of the anisotropy of the
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exchange interaction on this indirect coupling. A similar discussion applies to other closed

shells, e.g., N=6.

The lowest-energy s-shell spin singlet configuration with S = 0 and orbital angular mo-

mentum L = 0, |sGS
z = 0,Mz〉 = c†s,↑c

†
s,↓|0,Mz〉, is shown schematically in the top left panel of

Fig. 4.1(a). The expectation value of the e-Mn Hamiltonian with respect to the configuration

|sGS
z = 0,Mz〉 is zero.

Increasing the number of confined shells to three adds one additional orbital (1, 1) with

zero angular momentum in the d-shell directly coupled to the Mn spin. Now the two-electron

triplet states with total angular momentum L = 0 couple to the Mn spin. The triplet with

Sz = 0, |sEz = 0,Mz〉 = (1/
√
2)
(

c†d,↑c
†
s,↓ − c†s,↑c

†
d,↓

)

|0〉|Mz〉. One of its components is shown

schematically in the top right panel of Fig. 4.1(a), while the bottom left panel of that figure

shows the spin-polarized triplet |sz = 1,Mz − 1〉 = c†s,↑c
†
d,↑|0,Mz − 1〉, and the bottom right

panel shows the triplet |sz = −1,Mz+〉 = c†s,↓c
†
d,↓|0,Mz + 1〉. Applying the e-Mn Hamiltonian

to the |sGS
z = 0,Mz〉 state we obtain

HeMn|sGS
z = 0,Mz〉 = −Jsd√

2
Mz|sEz ,Mz〉

− Jsd
2
ε (β−|sz = 1,Mz − 1〉 − β+|sz = −1,Mz + 1〉) , (4.2)

where Jsd is the exchange matrix element in which one electron is scattered from the s orbital

to the d orbital and β± =
√

(M ∓Mz)(M ±Mz + 1). We find that upon the inclusion of

the d shell, the low-energy s-shell singlet two-electron configuration becomes coupled by e-Mn

interactions to electron triplet configurations, with and without flip of the Mn spin.

We now diagonalize the two-electron-Mn Hamiltonian and compute the ground state energy

EMn of the QD with a manganese ion, and the energy Ee of the system without Mn. Fig. 4.1(b)

shows the effect of the Mn ion on the ground state energy, ∆ = (EMn − Ee)/Jss, measured

from the ground state energy without Mn ion, as a function of number of shells for the

interacting system (γ = 1) and the isotropic exchange interaction (ε = 1). We find that,
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Figure 4.1: (a) Schematic pictures of two-electron-Mn configurations, GS and electronic triplet
states, coupled by the e-Mn interactions. (b) Ground-state energy of the two-electrons-Mn system
as a function of the number of quantum-dot shells. (c) and (d) Ground-state energies of the two-
electron-Mn system for the quantum dot confining three shells plotted as a function of the strength
of electron-electron interactions in the Heisenberg e-Mn model (c) and as a function of the isotropy
of the e-Mn Hamiltonian for the fully interacting electron system (d). Numbers at the energy level
bars represent the degeneracy of states.
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irrespective of the number of confined shells, the GS is sixfold degenerate, with the total spin

JGS = 5/2. However, the energy of the GS markedly depends on the number of shells. For two

confined shells we have ∆ = 0, because in this case we can generate only one configuration,

|sGS
z = 0,Mz〉, which is decoupled from the Mn spin. The inclusion of the d-shell adds an

additional Le = 0 orbital into the single-particle basis, resulting in the scattering of electrons

by the localized spin and lowering of energy. A further lowering of the energy occurs when

the fifth shell, containing another Le = 0 single-particle state, becomes confined.

Now we fix the number of shells to three, set the Heisenberg form of e-Mn interactions

and study the effect of e-e interactions. Fig. 4.1(c) shows the energy ∆ without (γ = 0) and

with full Coulomb interactions (γ = 1). We find that the ground state in both cases is sixfold

degenerate but the e-e Coulomb interactions enhance the effects of the e-Mn coupling, lowering

∆. This is due to a larger contribution of triplet configurations to the GS.

We now compare the results for the isotropic coupling versus the anisotropic coupling. For

the anisotropic coupling, ε = 0, we observe that the GS is split into three energy levels labeled

by |Mz|, each of them twice degenerate, as shown in Fig. 4.1(d). For the Ising-like coupling,

the total angular momentum J is not conserved, and the characteristic sixfold degeneracy of

the ground state is broken. Comparing the isotropic and anisotropic coupling we observe that

∆ is negative for both couplings and also that the Heisenberg-like interaction results in a lower

energy than the Ising-like interaction [58].

4.4 Electrons in finite angular momentum channels

In this section, we discuss electrons populating finite angular momentum channels which

are not directly coupled with Mn ion. For N = 3, we show the existence of an effective

coupling mediated by e-e interactions. Similar results are obtained for N = 5.
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4.4.1 One electron on the p shell

The lowest-energy configuration in the ground state of three electrons is formed by two

electrons in the s-shell and one electron in the p-shell. With Mn in the QD center the total

angular momentum L of the three electrons is conserved and we show the results for L = 1.

Figure 4.2(a) illustrates the degenerate three-electron configurations, |sz = 1/2,Mz〉 and

|sz = −1/2,Mz + 1〉, with an electron with spin up and Mn in state Mz and electron with

spin down on the p-orbital and Mn in state Mz + 1. As the electron-Mn exchange interaction

in the p-shell vanishes, Jpp = 0, these configurations do not interact with each other. As a

consequence, the GS is twelvefold degenerate, two electron spin configurations times six Mn

spin orientations. In order to understand the effect of interactions we include configurations

coupled with |sz = 1/2,Mz〉 and |sz = −1/2,Mz + 1〉 by both e-e and e-Mn interactions

and diagonalize the Hamiltonian in the L = 1 subspace. The number of three-electron-Mn

configurations depends on the number of electronic shells, with 24, 228, 852, 2520 for two,

three, four and five shells, respectively.

Figure 4.2(b) shows the exact diagonalization results of the Hamiltonian for three confined

shells in the QD and an isotropic e-Mn interaction (ǫ = 1), for both non-interacting (γ = 0)

and interacting (γ = 1) electron system. For the non-interacting case we observe that the

GS is twelvefold degenerate, with the energy lowered by e-Mn interaction (negative ∆). This

behavior is identical to the one observed for the two electrons ( see previous section), i.e,

the two electrons in s-shell are coupled with Mn, while the electron in the p-shell is only

a spectator. However, in the strongly interacting regime, γ = 1, we observe a splitting of

the degenerate GS into two degenerate shells. The splitting and the degeneracy of levels is

consistent with an effective Hamiltonian Heff = −Jeff~s · ~M coupling the p-shell electron spin

s with the Mn spin M [78]. The effective coupling Jeff is mediated by Coulomb interactions.

In Fig. 4.2(c) we illustrate the processes which couple |sz = 1/2,Mz〉 and |sz = −1/2,Mz +1〉
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Figure 4.2: (a) Ground-state three-electron configurations with the p-shell electron spin up (top)
and spin down (bottom). (b) Energy difference ∆ between three-electron GS in the Mn-doped and
undoped QD for both non-interacting (γ = 0) and interacting (γ = 1) electrons. The numbers
indicate the degeneracy of each level. (c) Diagram of coupling between electrons in the p-shell and
Mn. The filled arrow represents a direct coupling via e-Mn coupling or e-e Coulomb interaction,
and the dashed arrow illustrates the indirect coupling. (d) The energy difference ∆ as a function of
number of shells for a QD containing three shells and γ = 1.
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states. The e-Mn interaction acting on the |sz = 1/2,Mz〉 state scatters the spin up (blue)

electron from the s shell to the spin down (red) electron on the d shell with simultaneous

transition of the Mn spin from Mz to Mz +1. In the next step, the e-e interaction scatters the

d-shell and p-shell electron pair into the s-shell and p-shell electron pair, with the spin down

electron on the p shell and the spin up electron on the s shell. The net result is a spin flip of

the p-shell electron and of the Mn spin. We see that the ground state is sevenfold degenerate

implying that the electron spin is aligned with the Mn spin and Jeff is hence ferromagnetic.

Let us now investigate the dependence of the GS energy on the number of confined shells

in the QD. Fig. 4.2(d) shows the evolution of the GS energy as function of the number of shells

for γ = 1 and ε = 1. We observe that for two shells there is no splitting , i.e. Jeff = 0, while

for three and four shells the GS is split into two shells. For two shells the GS is twelvefold

degenerate, ∆ = 0, and there is no interaction between Mn and electrons. For three shells the

GS is split into two shells as discussed above. For four shells the GS is also split into two,

but there is an inversion of the degeneracy of the energy levels. This is a consequence of an

antiferromangetic interaction Jeff < 0 between electron and Mn spins. We have also observed

that for QDs confining five or six shells the results are similar to what was obtained for QD

with four shells, i.e, the antiferromagetic coupling is stabilized for a QD containing more than

three confined shells. This can be understood by looking at the way the GS is coupled to Mn.

In Fig. 4.2(c) we show that there is an indirect coupling between configurations |sz = 1/2,Mz〉

and |sz = −1/2,Mz + 1〉 which is mediated via e-e Coulomb and e-Mn interactions between

the GS and excited configurations. As the number of shells increases, more excited state

configurations interact with the GS stabilizing the antiferromagnetic indirect coupling between

the electrons and Mn.

If the indirect magnetic ordering shown above depends on the number of shells, it also

should depend on the QD shell spacing ω0. Fig. 4.3(a) shows the dependence of GS energy
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on ω0 for three electrons confined in Mn-doped QD containing three shells, γ = 1 and ε = 1.

We note that the exchange coupling changes from ferromagnetic to antiferromagnetic for

ω0 ≈ 3.3Ry∗. We observe the same behavior for QDs with four shells, but in this case the

crossing occurs at ω0 ≈ 0.45Ry∗.

Next we discuss the effect of anisotropy on the e-Mn exchange interaction. Fig. 4.3(b) shows

the GS energy for three electrons in a QD containing three shells in the strongly interacting

regime as a function of the e-Mn coupling. For ǫ = 0 the electrons and Mn interact via an

anisotropic Ising-like Hamiltonian, and for ǫ = 1 the e-Mn interaction is isotropic, Heisenberg-

like. For ǫ = 0, sz is a good quantum number, and therefore the electron spin degeneracy

is preserved. In Fig. 4.3(b) we observe that for ǫ = 0 the energy spectrum is split into six

doubly-degenerate levels. This splitting is due to the e-e Coulomb interaction driving the

indirect e-Mn interaction between the p-shell electron and Mn, as was observed in the ǫ = 1

case. The double degeneracy for the anisotropic coupling arises due to the fact that the state

|sz = 1/2,Mz〉 has the same energy as the configuration of |sz = −1/2,−Mz〉.

4.4.2 Two spin-polarized electrons on the p shell

Next we describe the electronic properties of a half-filled p-shell. The lowest-energy con-

figuration of the four electron GS state is formed by two electrons in the s shell and two spin

triplet electrons in the p shell. Fig. 4.4(a) illustrates the four-electron configurations, triplet

|S = 1, sz = 1,Mz〉 and one of the singlet components |S = 0, sz = 0,Mz + 1〉 configura-

tion. These two configurations have the same total spin projection Jz. In the presence of e-e

Coulomb interaction the S = 1 triplet state is the GS and the singlet is an excited state. For

Mn in the QD center the p electrons do not couple with Mn, the electron spin degeneracy is

preserved, and the degeneracy of the triplet state in a Mn-doped QD is 18, while the singlet

state is sixfold degenerate.

We shall now investigate how the GS of four electrons confined in a Mn-doped QD is
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Figure 4.3: (a) Evolution of the energies of three-electron levels with J = 3 and J = 2 as a function
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affected by the presence of the e-e Coulomb interaction, number of shells, shell spacing, and

e-Mn coupling. We take advantage of the conservation of the total angular momentum and

diagonalize our microscopic Hamiltonian in the L = 0 subspace. The number of configurations

in this subspace is 30, 498, and 3498 for two, three and four shells, respectively.

The e-e mediated coupling of electronic and Mn spin is interpreted in terms of effective

exchange Hamiltonian. Adding the electron and Mn spins results in total spin J = 7/2, 5/2, 3/2

and splitting of 18-fold degenerate ground state into 8-fold, 6-fold and 4-fold degenerate shells.

Figure 4.4(b) shows the evolution of the low-energy part of the spectrum of four electrons in

the magnetic dot as a function of the number of shells for full e-e interactions (γ = 1) and

the isotropic e-Mn coupling (ε = 1). The energies of these states are shown relative to the

energy of the ground-state triplet of the undoped QD. The triplet and singlet states split for

any number of shells due to e-e exchange interaction. In a QD with only s and p shells, the

effective exchange coupling for p-shell electrons is zero and the triplet and singlet states are

18 and 6 times degenerate, respectively. Increasing the number of shells leads to a finite and

ferromagnetic exchange interaction with the triplet states coupled to Mn spin and the 18-fold

degenerate shell split into 8-, 6- and 4-fold degenerate levels. The character of this exchange

interaction depends on the number of shells. For three shells we have a ferromagnetic coupling

but for four shells the coupling becomes antiferromagnetic.

Figure 4.4(c) illustrates the configurations involved in the indirect coupling of the electrons

on the p-shell and the Mn spin. Here, the filled arrows represent the direct coupling between

configurations, and the dashed arrow represents the indirect interaction between two configu-

rations. Let us explain how this indirect coupling arises, starting from the configuration with

two spin-up electrons in the p-shell, which is labeled as |S = 1, sz = 1,Mz〉, Fig. 4.4(c) top left.

This configuration is coupled with an excited state in which there are two spin-down electrons

in both Le = 0 orbitals, one in the s-shell and the other in the d-shell. This coupling occurs via
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Figure 4.4: (a) Low-energy configurations of four electrons in a magnetic QD. (b) Low-energy
spectrum of the system as a function of the number of shells for interacting (γ = 1) electrons,
measured from the respective GS energy Ee of a nonmagnetic system. Here the QD shell spacing
ω0 = 1.98Ry∗. (c) Indirect coupling diagram of two four-electron configurations. The filled arrows
represent direct interaction between configurations and the dashed arrow represents the indirect e-
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e-Mn interaction, which scatters the spin-up electron in the s-shell of |S = 1, sz = 1,Mz〉 to

the d-shell, flipping the electron spin down, and the Mn spin up, i.e, Mz+1. This excited state

with sz = 0 and Mz + 1 is coupled with one of the |S = 0, sz = 0,Mz + 1〉 GS configuration

via the e-e Coulomb interaction, in which the spin down electron in the d-shell is scattered to

the Le = 1 p orbital, and the spin up electrons in this orbital is scattered to the s-shell.

Figure 4.5(a) shows the GS energy for both noninteracting (γ = 0) and fully interacting

(γ = 1) electrons. We considered a Mn-doped QD with three confined shells and the isotropic

e-Mn interaction (ε = 1). For the noninteracting case there is no triplet-singlet splitting, and

as e-e Coulomb interaction mediates the indirect interaction between Mn and p-shell electrons

the triplet is not split either. Therefore, the four-electron GS is 24-fold degenerate. Even

though the four noninteracting electron triplet states are not split by the indirect coupling, we

see a negative ∆, which means that electrons lower their energy by exchange interaction with

Mn. Turning the e-e Coulomb interaction on the singlet-triplet split and a further splitting of

the triplet energy shell is observed. The triplet splitting is caused by the indirect interaction

between Mn and electrons in the p-shell, which is mediated by the e-e Coulomb interaction.

In Fig. 4.5(a) we show the effect of the e-e interaction on the low-energy spectrum of the

four-electron and Mn complex. We note the appearance of triplet and singlet energy shells,

separated by the e-e exchange interaction. The splitting of the triplet shell is governed by the

e-e and e-Mn exchange interactions.

Figure 4.5(b) presents the energy difference ∆, i.e., the effective exchange coupling, as a

function of ω0 for four interacting electrons (γ = 1) confined in the Mn-doped QD with three

confined shells. Here we have also a ferromagnetic to antiferromagnetic crossing as a function

of the QD shell spacing. For QDs with four shells the ferromagnetic to antiferromagnetic

crossing occurs at ω0 ≈ 0.04Ry∗.

Now we show the effect of the symmetry of the e-Mn coupling on the four electron GS. In

107



4.4.2 Two spin-polarized electrons on the p shell 108

0 1
-0 .0 4

-0 .0 2

0 .0 0

0 .0 2
4 4 .1 0

4 4 .1 2

6 x

4 x

6 x

8 x

 

(E
M

n
 -

 E
e

) 
/ 
J
s
s



2 4 x

N = 4 , 3  S h e lls ,   = 1

0 1

-0 .0 4

-0 .0 2

0 .0 0

4 4 .1 0

4 4 .1 2

(E
M

n
  
- 

E
e

) 
/ 
J
s
s
 

2 x

2 x

2 x 2 x

2 x

2 x

2 x

2 x
2 x

2 x
2 x

6 x

4 x

6 x

8 x

 



2 x

N = 4 , 3  S h e lls ,   = 1

(a)

(b)

(c)
1 .0 1 .5 2 .0 2 .5 3 .0

-0 .1 0

-0 .0 5

0 .0 0

0 .0 5

0 .1 0

6 x

8 x 4 x

4 x

8 x

 

 

(E
M

n
 -

 E
e
) 

/ 
J

s
s



 (R y *)

N = 4 , 3  S h e lls ,   =  1 ,   =  1  

6 x

Figure 4.5: (a) Energy difference ∆ for non-interacting (γ = 0) and interacting (γ = 1) electrons in
the four-electron magnetic dot. (b) GS energy difference as function of the QD shell spacing ω0 for
three shells confined in the QD. (c) GS energy difference for the anisotropic (ε = 0) and isotropic
(ε = 1) e-Mn coupling.
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Fig. 4.5(c) we compare the effects of the anisotropic (ε = 0) and isotropic (ε = 1) coupling for

a Mn-doped QD with three confined shells and in the presence of full e-e Coulomb interaction

(γ = 1). For the anisotropic coupling, the triplet state is split into nine doubly degenerate

levels. In this case, both sz and Mz are good quantum numbers, and therefore, sz = 1 and

sz = −1 breaks the Mn spin degeneracy into six. As the energy of state with sz = 1 and Mz

is equal to the energy of the state sz = −1 and −Mz, these six states are double degenerate.

The sz = 0 configurations split into three, where the degeneracy is given by Mz, i.e, the

sz = 0 configurations are degenerate and labeled by |Mz|, as for the two electrons interacting

with the Mn via an anisotropic e-Mn interaction. The singlet state is also split into three

doubly-degenerate levels.

4.5 Conclusion

In conclusion, we presented a microscopic model of interacting electrons coupled with

a magnetic ion spin localized at the center of a self-assembled quantum dot. We showed

that the electrons occupying finite angular momentum orbitals interact with the localized spin

through effective exchange interaction mediated by electron-electron interactions. The effective

interaction for p-shell electrons is obtained using exact diagonalization of the microscopic

Hamiltonian as a function of the number of electronic shells, shell spacing, and anisotropy of

exchange interaction. It is shown that the effective interaction can be engineered to be either

ferro- or antiferromagnetic, depending on quantum dot parameters.
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Chapter 5

Optical properties of charged quantum dots

doped with a single magnetic impurity

Here we present the optical properties of charged II-VI self-assembled quantum dots doped

with a single magnetic impurity. Our primary goal is to extend the theory of charged quantum

dots doped with Mn. Second, we discuss how the indirect electron-Mn interaction, which was

demonstrated in the chapter 4, alters the photoluminescence spectra of quantum dots doped

with Mn. This indirect interaction allows us to access the number of confined electronic

shells, the number of electrons and their spin. We present results for X2−+Mn and X3−+Mn

complex∗. We also show that the indirect electron-Mn coupling is robust to modifications in

the Mn position. This Chapter is based on the article “Optical properties of charged quantum

dots doped with a single magnetic impurity” by U. C. Mendes, M. Korkusinski, A. H. Trojnar,

and P. Hawrylak, Phys. Rev. B 88, 115306 (2013).

5.1 Introduction

There is currently interest in developing means of controlling spin at the nanoscale [41,

45, 46, 51, 93, 159, 160]. This includes spin of electrons and holes in gated [161, 162] and self-

assembled quantum dots [33,163] as well as magnetic impurities in semiconductors [51,93]. It

∗Xn− represent the excitonic charged complex with n indicating that there are n + 1 electrons and 1 hole confined
in the QD.
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is now possible to place, optically detect, and manipulate a single magnetic impurity in a single

self-assembled quantum dot (QD) [56, 61, 62, 103, 164–167]. The electrical control of the spin

of manganese (Mn) ions in CdTe quantum dots with a small electron population controlled

by the gate has been implemented [57]. The properties of CdTe quantum dots with magnetic

impurities have been extensively investigated theoretically [59,60,62,78,153,157,159,168–171],

including the theory of Coulomb blockade and capacitance spectroscopy [78,168,172], cyclotron

resonance [153], and photoluminescence (PL) [59, 60, 62, 173, 174]. The optical properties of

carriers confined in III-V quantum wells [31] and quantum dots [61] containing Mn ions have

also been investigated.

The electronic properties of quantum dots containing Ne electrons and a single localized

spin have been investigated theoretically [59, 78]. It was shown that the electron spin can be

controlled by controlling the number Ne (see Refs. [78, 173]). For closed electronic shells the

total spin is zero and electrons are decoupled from the Mn spin, while for half-filled shells

the electron spin is maximized and the coupling to the Mn spin is strongest [78, 173]. The

spin-singlet Ne-electron droplet coupled to the Mn spin gives insight into the Kondo effect in

the interacting electron system, and this coupling might potentially allow for direct detection

of the electron spin. Simultaneously, the optical properties of charged QDs without magnetic

ions have been studied both numerically and experimentally [63, 64,175,176].

Here we present a microscopic theory of the optical properties of charged self-assembled

quantum dots doped with a single magnetic Mn ion as a function of number of electrons Ne.

The single-particle electron and heavy-hole electronic shells are described by states of a two-

dimensional harmonic oscillator. The electron-electron, electron-hole Coulomb interactions,

as well as the short-range electron spin-Mn spin and hole spin-Mn spin contact exchange

interactions are included. The electronic states of the photoexcited Ne + 1 electron- 1 hole- 1

Mn complex (XNe−+Mn) and of the final Ne electron-Mn complex (Ne+Mn) are expanded in
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a finite number of configurations. The full interacting initial and final state Hamiltonians are

diagonalized numerically. The emission spectra as a function of photon energy are obtained

from Fermi’s golden rule as a function of Ne. We show that the emission spectra depend on

the number Ne, the position of Mn ion, the spin of the initial and final electronic states, and

the size of the QD measured by the number of confined electronic shells. We demonstrate

that the emission spectra allow to establish the number of electrons Ne populating electronic

shells and, most importantly, to read the electronic spin through multiplets of energy levels

manifested in the number of emission lines. If the Mn ion is placed in the center of the QD,

the p-shell electrons do not interact with it directly. However, we show that in this case there

exists an effective electron-Mn interaction mediated by electron-electron interactions. This

mechanism allows to detect the spin polarization of a half-filled p shell.

The Chapter is organized as follows. Section II describes the microscopic model, electronic

structure, total spin, and the emission spectrum of the system of many electrons and a hole in a

QD doped with a single Mn atom. Section III summarizes the results of the calculations of the

emission spectra from nonmagnetic QDs as a function of the number of initial-state electrons,

and discusses in detail the emission from a magnetic QD containing p-shell electrons, i.e., X2−

and X3− complexes. In this section, we also compare the emission spectra of X-, X−-, X2−-

and X3−-Mn complexes and discuss the differences and similarities between them. At last

we discuss the effects of Mn position on the X2−-Mn PL spectrum. Summary of the work is

presented in Sec. IV.

5.2 Model

We model the confining potential of the QD in the effective-mass approximation as a quasi-

two-dimensional isotropic harmonic oscillator (HO) [34, 177]. Since the strain in the QDs

results in the significant splitting between the light- (τ = ±1/2) and heavy-hole (τ = ±3/2)
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subbands [178], we retain only heavy-holes in this calculations. We define the single-particle

basis for electrons (hole) in terms of the eigenstates of the isotropic parabolic quantum dot

with the characteristic frequency ωe(h). The basis states are denoted by |iσ〉 for the electron

and |jτ〉 for the hole, where the complex index denotes a set of the HO quantum numbers

i = {n,m}, while σ (τ) is a spin z-projection of the particle. Each single-particle state has an

angular momentum of Le = m−n for the electron and Lh = n−m for the hole. The energies

of these single-particle states are given by Ee(h)
i = ωe(h)(n+m+ 1).

We measure energy in units of the effective Rydberg, Ry∗ = m∗e4/2ǫ2~2, and length in

the units of the effective Bohr radius, a∗0 = ǫ~2/m∗e4, where e is the electron charge, ~ is

the reduced Planck constant, m∗ is the effective mass of the electron, while ǫ is the dielectric

constant of the material.

The Hamiltonian of the confined, interacting Ne+1 electrons and a valence hole interacting

with the spin of the magnetic impurity can be written in the second quantization language

as [63, 173]

H =
∑

i,σ

Ee
i,σc

†
i,σci,σ +

1

2

∑

i,j,k,l
σ,σ′

〈i, j|Vee|k, l〉c†i,σc†j,σ′ck,σ′cl,σ +
∑

i,τ

Eh
i,τh

†
i,τhi,τ (5.1)

−
∑

i,j,k,l
σ,τ

〈i, j|Veh|k, l〉c†i,σh†j,τhk,τcl,σ −
∑

i,j

Je
i,j(R)

2

[(

c†i,↑cj,↑ − c†i,↓cj,↓

)

Mz + c†i,↓cj,↑M
+

+c†i,↑cj,↓M
−
]

+
∑

i,j

3Jh
i,j(R)

2

(

h†i,⇑hj,⇑ − h†i,⇓hj,⇓

)

Mz,

where c†i,σ (h†i,τ ) creates an electron (hole) on the orbital i with spin σ (τ). The first two

terms of the Hamiltonian are the electron kinetic energy and the electron-electron Coulomb

interaction (e-e). The next two terms describe the hole kinetic energy and the Coulomb

interaction between the hole and all electrons. The fifth term, describing the short-range

electron-Mn (e-Mn) interaction [78], consist of two types of terms. The first one is the Ising

interaction, which conserves the spin of both the electron and the Mn. The second and third
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terms of the e-Mn Hamiltonian allow for the simultaneous flip of the electron and Mn spins

in such a way as to conserve Mz + σ. The last term is the anisotropic heavy-hole-Mn spin

interaction [59, 179], which describes a scattering of the hole from i to j single-particle states

by a Mn ion at the position R. The e-Mn and hole-Mn (h-Mn) interaction is proportional to

the s(p)-d exchange matrix elements, Je(h)
i,j (R) = J

e(h)
C φ∗

i (R)φj(R), where φi(R) is the value of

the HO wave-function at the position R, while Je(h)
C = 2Js(p)−d/d. Js(p)−d is the bulk exchange

contact interaction parameter, while d is the height of the QD. As Je(h)
i,j (R) depends on the

position R of the Mn ion in the QD, by changing R one can control the strength of the e-Mn

interaction [78].

The many-particle wave function is expanded in the basis of the configurations of Ne + 1

electrons and a hole |νi〉 = |i1↑, i2↑, . . . , iN↑〉|j1↓, j2↓, . . . , jN↓〉|k〉|Mz〉, where |j1σ, j2σ, . . . , jNσ〉 =

c†j1,σc
†
j2,σ

, . . . , c†jNσ
|0〉 is a state of Nσ electrons, each with spin σ, while |k〉 = h†k,τ |0〉 is the hole

state. |Mz〉 denotes all possible spin states of the Mn ion, Mz = −5/2, . . . , 5/2, while |0〉

denotes the vacuum. The total number of electrons Ne + 1 = N↑ + N↓, where N↑ and N↓

are the number of electrons with spin up and spin down, respectively. After recombination

and emission of a photon, we are left with Ne electrons and the Mn ion. The final states of

Ne electrons |νf〉 are built in a similar way. The many-particle basis states are characterized

by the total angular momentum L =
∑Ne+1

i=1 Li
e + Lh as well as an electron and hole spins

sz =
∑Ne+1

i=1 σi and τ or L =
∑Ne

i=1 L
i
e and sz =

∑Ne

i=1 σi for the initial and final states,

respectively.

Having obtained the initial and final states, one can calculate the circularly polarized

emission spectra from the Fermi’s golden rule:

E(ω) =
∑

f

Pi|〈νf |P|νi〉|2δ(Ei − Ef − ω), (5.2)

where ω is the photon energy, while Ei and Ef are the energies of the initial and final states,

respectively. The coefficient Pi is the probability of thermal occupation of the initial state
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|νi〉, Pi = exp (−Ei/kT ) /PSUM , with PSUM =
∑

i exp (−Ei/kT ). The interband polarization

operator P =
∑

kl〈k|l〉ckhl removes one electron-hole pair from the initial state. The optical

selection rules [63] are defined by the overlap 〈k|l〉 between the electron and hole orbitals.

5.3 Electronic structure and emission spectra of charged mag-

netic dots

In this section, we present the results of numerical calculation of the emission spectra of

multiply charged QDs doped with a single Mn ion. Recent experiments and theory [58, 62]

indicate that in the CdTe quantum dots there are at least three confined single-particle shells,

s, p, and d, and the presence of the d shell can give rise to new effects, such as the quantum

interference (QI) [62]. When Mn is at the center of the QD (R = 0), only those electrons

that occupy the zero angular momentum orbitals are coupled with it. In the presence of three

shells in the QD, there are two zero angular momentum orbitals, one in the s and one in the

d shell.

The calculations are carried out with the following parameters: Ry∗ = 12.11 meV, a∗0 = 5.61

nm, for CdTe with the dielectric constant ǫ = 10.6. The electron and hole effective masses are

m∗ = 0.1m0 and mh = 4m∗, respectively, with m0 being the free-electron mass. The electron

characteristic frequency ωe = 1.98 Ry∗ and ωh = ωe/4. The constant scaling the exchange

contact interaction in the bulk CdTe for electrons is Js-d = 15 meV·nm3, and for holes is

Jp-d = 60 meV· nm3, while the height of the QD d = 2 nm.

As already mentioned, first we present the emission spectra for a nonmagnetic QD for

Ne = 0 to 6. In the case of Ne = 6, both s and p shells of the QD are filled. After that we

investigate in detail the PL of X2− and X3− complex for the QD doped with a single Mn atom

at its center. Lastly, we compare the emission spectra from X, X−, X2− and X3− complexes

confined in a magnetic QD, and discuss their features.
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Figure 5.1(a) schematically shows a ground state of the X2− complex, composed of three

electrons in the conduction band (CB) and a hole in the valence band (VB). Two electrons and

the hole occupy the s shell, while the third electron is in the p shell. After the electron-hole

recombination from the X2− complex, the final state is formed by two electrons in the CB and

a photon with energy ω, as shown in Fig. 5.1(b). The remaining two electrons can be either

in a triplet or in a singlet spin configuration, which have the same kinetic energy but are split

by the e-e exchange Coulomb interaction [63].

Figure 5.1(c) shows the evolution of the recombination spectrum in σ+ polarization as a

function of the number of electrons in the initial (photoexcited) state. The area of the circles is

proportional to the intensity of individual transitions. The emission is symmetric with respect

to the hole spin, so the σ− polarization spectrum is exactly the same.

For doubly (X2−) and higher-charged exciton states the emission peak splits into two or

more. The splitting in the emission spectra originates from the splitting of the final state

as discussed above and in ref. [63]. From the emission spectra of nonmagnetic QDs, one

can not draw any conclusion about the spin of Ne electrons left after the electron-hole pair

recombination.

Figure 5.1(d) illustrates the total electron spin of the initial ground state as a function of

number of electron in this state. The QD is filled obeying the QD Hund’s rule [63]. Until each

shell is half-filled, subsequent electrons are added with the same spin, increasing the total spin

of this shell. After the half-filling is reached, electrons are added with opposite spin, which

results in the spin zero of a completely filled shell. As the p shell is being filled, the maximum

spin is reached when there are four electrons in the QD, while in the presence of six electrons,

both s and p shells are filled, and the spin of electrons is equal to zero.

5.3.2 X-Mn and X−-Mn complexes

The emission spectra of both the exciton (X) and negatively charged exciton X− inter-
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acting with the spin of the Mn ion have been described previously [56,57,62]. Here we briefly

summarize these results.

The ground state (GS) of the exciton-Mn system can be approximated by the configuration

in which the electron and the hole occupy their respective s shell. The final states left after

the electron-hole pair recombination are the degenerate states |Mz〉 of Mn. Thus, the emission

spectrum from X-Mn complex consists of six emission lines (one for each Mz). The splitting

between these lines corresponds directly to the splittings between X-Mn states, approximated

by 1/2
(

3Jh
ss + Je

ss

)

in the symmetric QDs [56]. Since the h-Mn exchange constant Jh
ss is four

times greater than the e-Mn exchange constant Je
ss, the splittings are dominated by the h-Mn

interaction [56,62].

The GS of a negatively charged exciton X− interacting with Mn consists of two electrons

and one hole, all occupying the single-particle s shell. The two electrons are in the singlet

state, which prevents them from interacting with Mn. X− interacts with Mn only through the

h-Mn Ising Hamiltonian, which splits the otherwise degenerate X−-Mn into six levels similarly

to the X-Mn case. However, in contrast to the X-Mn complex, there are two final states of

the one e-Mn system with one electron on the s shell interacting with the Mn ion. These two

e-Mn states have J = S +M = 2 or J = 3 and are split by the e-Mn interaction. Since the

emission from the initial state with Mz = 5/2 to the final state with J = 2 is forbidden, the

emission spectrum of the X−-Mn has eleven lines arranged into six groups [57]. The emission

spectra of the X-Mn and X−-Mn complexes will be shown in greater detail later on.

5.3.3 X−2-Mn complex

Here we present the emission spectra from X2−-Mn complex confined in our magnetic QD

with a single Mn ion in its center. We begin with a detailed description of the electronic

structure of both initial and final states and then discuss the calculated emission spectrum.
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Initial state

The ground state of the X−2 complex confined in a nonmagnetic QD can be approximated

by the lowest-energy configuration shown schematically in Fig. 5.1(a). The X−2 GS is fourfold

degenerate: twice with respect to the spin of the electron in the p shell, and twice with respect

to its angular momentum (L = ±1). Since the total angular momentum L is a good quantum

number, the analysis will be carried out in the L = 1 subspace. The double degeneracy of the

GS of X2− complex due to the spin persists even in the presence of e-e and e-h interactions.

The two main configurations of the X2− complex are: |X2−, sz = 1/2〉 = c+s↑c
+
p↑c

+
s↓h

+
s⇑|0〉 and

|X2−, sz = −1/2〉 = c+s↑c
+
s↓c

+
p↓h

+
s⇑|0〉. These two states do not interact with each other since

they have different spin projections sz. In a QD with three confined single-particle shells, one

can construct 198 different configurations of X2− complex with L = 1 which interact either

with |X2−, sz = 1/2〉 or with |X2−, sz = −1/2〉 via e-e and e-h Coulomb interactions. In a

magnetic QD with Mn in its center, the angular momentum is conserved, and the total number

of the X2−-Mn configurations increases (2M + 1) = 6 times, reaching 1188 configurations in

the L = 1 subspace.

Figure 5.2(a) shows the evolution of the X2−-Mn low-lying energy spectrum with inclusion

of interactions. The first column shows calculations with only kinetic energy T , second after we

include e-e and e-h Coulomb interactions, third with h-Mn interaction added, and finally fourth

includes e-Mn interaction. In the absence of any interactions the GS is twelvefold degenerate,

twice due to electron spin and six times due to Mn spin orientations. This degeneracy does

not change after inclusion of the e-e and e-h Coulomb interactions, however the energy of

the complex decreases. After addition of the h-Mn Ising-type interaction, Eq. (5.1), the

ground state of the X2−-Mn complex splits into six doubly degenerate levels. Since none of

the |X2−, sz = 1/2〉 and |X2−, sz = −1/2〉 configurations interact directly with the Mn via

e-Mn interaction, 〈X2−, sz = 1/2|He−Mn|X2−, sz = 1/2〉 = 〈X2−, sz = −1/2|He−Mn|X2−, sz =
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−1/2〉 = 0, one expects no change in the energy spectra of the X2−-Mn complex after inclusion

of the e-Mn interaction as in Eq. (5.1). However, addition of the e-Mn interaction leads to

further splitting of the X2−-Mn energy levels as shown in Fig. 5.2(a). Since the e-Mn coupling

is smaller than the h-Mn coupling, the resulting splitting is magnified out of scale in order to

visualize the effect. The origin of this splitting is in the indirect coupling between the p-shell

electrons and Mn, mediated by e-e Coulomb interaction.

Figure 5.2(b) shows the coupling scheme among seemingly noninteracting configurations

of X2− complex and Mn ion. In order to simplify the discussion we focus only on the splitting

caused by the e-Mn interaction. The filled arrows indicate a direct coupling between the

X2−-Mn configurations, while the dashed arrow represents an indirect coupling.

Let us start with the |X2−, sz = 1/2〉 ⊗ |Mz〉 configuration, see Fig. 5.2(b) top left. This

configuration is coupled via e-e Coulomb interaction with an excited configuration (with the

same sz and Mz) with a spin-down electron in the p shell, and two unpaired electrons in the s

and d shells. The e-Mn interaction can flip the spin of the spin-up electron in the s shell with

simultaneous flip of the Mn spin to Mz + 1, as illustrated in the bottom of Fig. 5.2(b). This

excited state with sz = −1/2 and Mz +1 is coupled with the |X2−, sz = −1/2〉 ⊗ |Mz +1〉 via

the e-e Coulomb interaction as well as the e-Mn interaction (Jsd(0) 6= 0).

One can replace the coupling scheme between |X2−, sz = 1/2〉 ⊗ |Mz〉 and |X2−, sz =

−1/2〉 ⊗ |Mz +1〉 configurations presented in Fig. 5.2(b) by filled arrows with a single dashed

arrow, representing the indirect coupling. Effectively, one can look at this coupling as that of

the p-shell electrons to a Mn ion, mediated by e-e and e-Mn interactions.

Final state

The final state left after the electron-hole recombination from the X2−-Mn complex is

composed of one electron in the s shell and one in the p shell, as illustrated in Fig. 5.1(b).

This state has the same total angular momentum as the initial state, namely, L = 1. The
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Figure 5.3(a) shows the evolution of the energy of X2− final states with the inclusion of

different types of interactions. The e-e Coulomb interaction splits the triplet and the singlet

states. The triplet is 18 times degenerate while the singlet is sixfold degenerate. Addition

of the e-Mn interaction leads to the splitting of the triplet state into three levels with eight-,

six- and fourfold degeneracy. The triplet state of the pair of electrons on the s and p shell

experiences the same kind of splitting as a particle with S = 1 interacting with Mn via

ferromagnetic interactions. At the same time, the singlet remains six times degenerate.

To understand the fine structure of the triplet state, let us analyze how the electrons

interact with Mn. Figure 5.3(b) shows the coupling scheme between two pairs of s-p electrons:

|sz = 1〉 ⊗ |Mz〉 and |sz = −1〉 ⊗ |Mz + 2〉 in the presence of the Mn ion. Again, the filled

arrows indicate a direct coupling between the configurations, while the dashed arrow indicates

an indirect coupling. Let us start from the configuration |sz = 1〉⊗ |Mz〉, Fig. 5.3(b), top left.

The e-Mn spin-flip interaction couples it with the configuration with sz = 0 and Mz+1, where

the electron with the spin sz = −1/2 is on the s shell. This configuration is coupled by the e-e

Coulomb interaction with a configuration with sz = 0 and Mz +1, but the spin down electron

occupying the p shell. Again, the e-Mn interaction couples the former configuration with the

|sz = −1〉 ⊗ |Mz + 2〉, through the e-Mn spin-flip process. Effectively, the coupling scheme

shown by the filled arrows can be replaced by the dashed arrow, representing the indirect

coupling between configurations |sz = 1〉⊗ |Mz〉 and |sz = −1〉⊗ |Mz +2〉. From this coupling

scheme, one can conclude that indeed a pair of s-p electrons interacts with Mn ion in the same

way as a spin S = 1 particle, with three possible spin projections Sz = −1, 0, 1, changing

the spin of Mn from |Mz〉 to |Mz + 2〉, with simultaneous change of its spin from Sz = 1 to

Sz = −1. The difference is that in a spin Hamiltonian both spins (S = 1 and Mz = 5/2)

interact directly, while in our model, the coupling with the p-shell electron is indirect.
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Emission spectrum

Having obtained the X2− initial and final eigenvalues and eigenstates, we calculate the

emission spectrum of X2−-Mn complex. The spectrum in the σ+ polarization is calculated

at temperature in which a thermal population of the twelve lowest X2−-Mn states is equal

[Pi = 1 in Eq. 5.2]. The σ+ polarized light is emitted due to the recombination of the spin-up

hole and a spin-down electron from the initial X2−-Mn state. Both total angular momentum

of the electronic state as well as Mz are conserved in the recombination process.

Figure 5.4(a) schematically shows the energy levels of both initial and final states. The

dashed, solid, and dashed-dotted arrows indicate the optically active transition from all twelve

initial states to the triplet final states, split into three levels with degeneracy eight, six, and

four. The dashed-double-dotted arrows present six optically active transitions from the initial

states with electron spin sz = −1/2 to the sixfold degenerate singlet state.

The emission spectrum from the X2−-Mn complex is shown in Fig. 5.4(b), with the colors

and styles of lines corresponding to the styles of arrows in Fig. 5.4(a). The emission spectrum

consists of two groups of transitions [as in a QD without Mn in Fig. 5.1(c)]: the lower lying

transitions (six dashed-double-dotted lines) correspond to the transition to the final state with

the two electrons in a singlet state (S = 0), while the higher-lying group corresponds to the

transitions to their triplet state (S = 1).

Let us start the discussion by analyzing the lower-energy part of the spectrum presented

by dashed-double-dotted peaks. Since the final state−in this case an electron singlet−is de-

generate, the splitting between the emission lines corresponds to the splitting between the

initial states due to the hole-Mn interaction. One could expect that each of the lines is in

fact a doublet, with the small splitting between them due to the e-e and e-Mn interactions,

however only one of them is bright: only states with sz = −1/2 can have an electron singlet

as a final state. The existence of the six lines in the emission confirms the previous hypothesis
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of the s-p electron pair behavior as a S = 0 particle.

In the higher-energy part of the emission spectra [see Fig. 5.4(b)], the transitions to the

final states of electrons in a triplet states are presented. This part of emission spectra consists

of six groups of peaks split by the h-Mn interaction in the initial state. Five of the main peaks

are then further split into three due to the e-e and e-Mn-induced splitting in the final state and

correspond to different final states. The highest-energy main peak is split into two, since the

transition from the highest energy state of the X2−-Mn complex to the fourfold-degenerate

final state is dark. Therefore, by looking at the energy difference between two consecutive

peaks, within the same main peak, i.e., the solid and dashed-dot peaks, one can obtain the

effective splitting of the final state, which depends on e-e and e-Mn interactions. Each of these

peaks can be further split, reflecting the e-Mn induced splitting in the initial state giving total

of 31 optically active transitions, however this splitting is not visible on the scale of Fig. 5.4(b).

5.3.4 X3−-Mn complex

The simplest system allowing to study the behavior of electrons in a half-filled shell is the

X3− complex. In the GS of this complex, the two electrons in the p shell are in a triplet state

S = 1, which makes them a good candidate to interact with the Mn spin. Indeed, as we have

shown previously, there exists an effective interaction between the p-shell and the Mn spin

mediated by the e-e Coulomb interactions. Here we describe the electronic properties of the

initial and final states of the X3− complex and its emission spectrum.

Initial state

The GS of the X3− is composed of four electrons and one hole. As previously, we focus

only on one subspace, with the hole spin projection τ = 3/2. The lowest-energy configurations

of the X3− complex have total angular momentum equal to zero, and are fourfold degenerate

in the absence of e-e Coulomb interactions. The degeneracy is due to the four possible spin
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The total number of the X3−-Mn configurations with the angular momentum L = 0 and

τ = 3/2 in a QD confining three single-particle shells is 2664. The excited configurations of

the X3−-Mn complex play an important role in mediating the interactions between the p-shell

electrons and Mn. Therefore, the X3− complex allows us to study the behavior of S = 1 and

S = 0 spins interacting indirectly with Mn.

Figure 5.5(a) shows the evolution of the GS energy as we add the interactions. With

inclusion of the Coulomb interactions between the carriers, the 24-fold degenerate X3−-Mn

GS splits into two states: a lower-lying triplet-Mn (18-fold degenerate) and a singlet-Mn

(sixfold degenerate). The h-Mn interaction breaks the Mn symmetry and splits both of these

manifolds into six levels. Each of the six triplet-Mn levels is still threefold degenerate. This

degeneracy is lifted by e-Mn interaction. This takes place only in the presence of the e-e

Coulomb interaction in the QDs containing at least three shells and it is another proof that

both of the p electrons are coupled indirectly with the Mn ion. The splitting of singlet-Mn

state remains unchanged, but its energy is lowered in relation to the system without e-Mn

interaction. As the e-Mn splitting is smaller than the h-Mn splitting, it is out of scale in

Fig. 5.5(a).

Figure 5.5(b) shows the coupling scheme between X3−-Mn configurations with different sz.

The configuration of X3−-Mn with two spin-up electrons in the p shell and the Mn spin Mz

is coupled by e-e Coulomb interactions with an excited configuration (with the same Mz) in

which the spin-down electron is scattered to the p shell and the spin-up electron is scattered

to the d shell [as shown in the bottom-left panel of Fig. 5.5(b)]. The e-Mn interaction can flip

the spin of the electron occupying the s shell, with a simultaneous increase of the Mn spin by

one (to the state with Mz+1). Now, this configuration is coupled via e-e Coulomb interactions

with a low-energy X3−-Mn configuration in which there is a spin-up and spin-down electron

in the p shell and the Mn spin is in the state Mz + 1. Therefore, all initial states forming
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the GS manifold are indirectly coupled via e-e and e-Mn interactions, as shown by the dashed

arrow. This coupling breaks the triplet degeneracy, and can be again treated as one induced

by an indirect coupling between two p-shell electrons and the Mn ion.

Final state

The final state, left over after recombination of the spin down electron with the spin up

hole from the X3− complex, is an excited state of the three electrons system (with L = 0). It is

formed by one electron in the s shell and two in the p shell. However, since the configurations

with two electrons in the s shell and one in the d shell have the same kinetic energy as the

configurations mentioned before, they are strongly coupled by the e-e Coulomb interaction.

Figure 5.6(a) shows the coupling scheme between four three-electron-Mn (3e-Mn) configu-

rations with the same kinetic energy but with different sz. The coupling mechanism between

the configurations is the same as that explained in previous sections.

Figure 5.6(b) illustrates how the energies of the 3e-Mn system evolve as interaction terms

are added. In the absence of any interactions, all of the considered configurations have the

same energy. This energy level is 60-fold degenerate, ten due to electron configurations times

six Mn spin orientation. Addition of the e-e Coulomb interaction splits the energy of the 3e-

Mn complex into four levels, with degeneracy 24, 12, 12, 12, respectively. The lowest-energy

electron state has total spin S = 3/2, while all higher energy levels correspond to S = 1/2.

It is important to notice that the two intermediate S = 1/2 states are not final states of the

X3− complex recombination in a QD with or without Mn. It is so because they are built by

the configurations with two electrons in the s shell and the third electron in the d shell mixed

with the configurations with one electron on the s shell and a pair of electrons occupying the

p shell in a singlet state. At the same time the lowest and higher energy states are formed

mostly by configurations with only one electron in the s shell and two in the p shell, allowing

them to be final states in the recombination of the X3−(-Mn) complex.
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electron-Mn spin) decreases as a function of energy. The ordering of states is different in the

case of highest S = 1/2 state which is antiferromagnetically coupled with Mn.

Emission spectrum

Here we investigate the emission from the equally populated initial states of the X3−-Mn

complex with S = 1 [18 lowest energy levels in Fig. 5.5(a)]. The emission spectra from the

X3−-Mn complex consist of two main groups of peaks corresponding to optical transitions

from the initial states to the S = 3/2 and the highest of S = 1/2 final states, in the way

resembling the emission from X3− in nonmagnetic QD [ see Fig. 5.1(b)]. These two types of

transitions will be analyzed separately.

Figure 5.7(a) shows the X3−-Mn initial and final energy levels, with the dashed arrows

denoting the transitions to the highest two final states with S = 1/2. The emission spectrum

from X3−-Mn complex to these final states consists of six groups of peaks and it is shown in

Fig. 5.7(b). The splitting into main six groups is caused by the h-Mn interaction in the initial

state, while the splitting into two peaks in each group is due to the e-Mn interaction in the

final state. The effects of the splitting of the initial state induced by the e-Mn interaction

are not visible in this figure, but they cause further splittings of emission lines. Figure 5.8(a)

shows the X3−-Mn initial and final energy levels, with the solid arrows representing optical

transitions from all initial states to four final states with S = 3/2 (differentiated by the color).

In the high-energy part of the X3−-Mn emission spectrum, Fig. 5.8(b), there are also

six main groups of peaks originating from the splitting of the initial states due to the h-Mn

interaction. Each of these groups is further split by the e-Mn interaction in both the final

and initial states. To observe these splittings, the details of the emission from the first three

energy levels of the initial state to the four final states with S = 3/2 are shown in the inset.

It consists of nine emission lines (three transitions are dark), arranged into four groups, each

corresponding to a different final state. The splitting between these four groups corresponds
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the final state is larger than that in the initial state, because the final-state configuration

has an electron in an open s shell directly interacting with Mn, while in the initial state, the

interaction between p-shell electrons and Mn is mediated by e-e Coulomb interactions.

5.3.5 Comparison between emission spectra of different complexes

Now we analyze the evolution of the emission spectrum for the right circularly-polarized

light as the number of excess electron Ne confined in the QD is increased. In Fig. 5.9(a), we

show the comparison between the emission spectra of X-Mn, X−-Mn, and the high-energy

parts of the emission spectra of X2−-Mn, and X3−-Mn complexes. The emission spectra of

these complexes are shown as a function of the number Ne of extra electrons in a QD in

Fig. 5.9(b), where the low-energy peak is clearly marked in red. Its energy is almost the

same for X−, X2−, and X3−-Mn, and it is much lower than the low-energy peak for X-Mn.

This corresponds to the similar plateau as is visible in the emission of a nonmagnetic charged

QD [63,64] [ see Fig. 5.1(c)].

Figure 5.9(c) shows the evolution of the low-energy emission lines with the number of

excess electrons Ne. For the X-Mn complex, there is only one emission line, since there is only

one final state of the electron-hole recombination, being the state of Mn with Mz = −5/2.

The emission from the lowest state of X−-Mn complex consists of two lines with the splitting

between them corresponding to the final-state splitting (electron-Mn complex creating state

with total angular momentum J = 2 or J = 3). In the case of the X2−-Mn complex with

S = 1, there are three final states of the two-electron system, all of them triplets. Again, the

splitting between the emission lines can be translated into the splitting between final states.

The lowest-energy emission spectrum of the X3−-Mn complex with S = 3/2 consists of four

groups of levels, with the splitting between them reflecting the splitting of the four final states

of three electrons with S = 3/2 as described in the previous section. Each of these groups

exhibits a fine structure related to the fine structure of the initial state.
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Figure 5.9: (a) Emission spectrum of X-Mn, X−-Mn complexes and high-energy part of the spec-
trum ofX2−-Mn andX3−-Mn complexes. (b) Emission spectra from (a) as a function of the number
of electrons in the initial state. (c) Close-up of the lowest-energy emission lines as a function of the
number of electrons in the initial state with clearly visible multiplicity of lines.

5.3.6 Effects of Mn in an off-center position

When Mn is positioned away from the dot center, the cylindrical symmetry of the dot
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Figure 5.10: Emission spectrum of X2−-Mn complex when Mn is in the center R = (0, 0) (a) or at
position R = (0.3l0, 0) (b). (c) Comparison between the splitting of 2e-Mn complex in the presence
Jpp 6= 0 (left) and absence Jpp = 0 (right) of direct p-electron-Mn interaction.

is broken and the total angular momentum L is no longer a good quantum number. As a

result, the states with finite angular momenta, e.g., L = ±1, are coupled by Mn-induced

scattering of the carriers, which opens additional gaps in the spectrum. Moreover, carriers
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occupying QD orbitals with non-zero angular momentum, e.g., p orbitals, interact directly with

Mn. Figures 5.10(a) and (b) allows to compare the emission spectra from X2−-Mn complex

confined in the QD with Mn ion in the center R = (0, 0) (a) and at position R = (0.3l0, 0)

away from the center (b). Indeed, in Fig. 5.10(b), one can observe additional peaks that arise

from the removal of degeneracy of energy levels, which for a rotationally symmetric dot were

orbitally degenerate, in this case states with L = ±1. Shifting Mn to a more off-center position

leads to significant changes in the emission spectrum, as discussed in refs. [60] and [180].

In previous sections, we have demonstrated that the measure of the strength of the indirect

p-electron-Mn interactions is given by the splitting of the six groups of the emission lines in

the X2−-Mn spectrum, and this in turn is determined by the splitting of the final state of

the emission. This allows to assess the relative importance of the indirect component of that

interaction, which is the only coupling mechanism for the impurity in the center of the QD,

compared to the direct p-electron-Mn interaction, which is present when the impurity is shifted

off-center. In Fig. 5.10(c), the evolution of the energies of the 2e-Mn complex as the Mn is

displaced is presented. Figure 5.10(c) (left), shows the evolution of the 2e-Mn spectrum as a

function of Mn position capturing all direct and indirect terms, while in Figure 5.10(c) (right)

the direct interactions is turned off, artificially setting Jpp = 0. In Fig. 5.10(c) (left) the three

sets of lines split as the impurity is shifted as due to symmetry breaking. However, apart

from that, the splitting of 2e-Mn complex (the large gaps) is of the same order in both cases

until the position of Mn exceeds R ≈ (0.6l0, 0). We conclude that the indirect interaction is

dominating the direct one over very broad range of the Mn position in the QD, and as such

should not be ignored.

5.4 Summary

In summary, we presented a microscopic theory of the optical properties of self-assembled
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quantum dots doped with a single magnetic (Mn) impurity containing a controlled number of

electronsNe. The total spin of the electron complex is controlled by the population of electronic

shells: it is zero for closed shells and maximal for half-filled shells. We show that even though

electrons may occupy electronic states that are not coupled directly with Mn, there exists

an indirect coupling mediated by electron-electron interactions. This coupling allows for the

detection of electron spin and verification of Hund’s rules in self-assembled quantum dots from

emission spectra. We have shown that the indirect interaction between p electrons and Mn

ion is an important effect even when Mn is shifted away from the center of the quantum dot,

and dominates over the direct interaction over a broad range of Mn positions. The details and

a complete analysis of this e-Mn coupling mediated by e-e Coulomb interaction is a subject of

a further study [53].
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Chapter 6

Results form collaborative work

Here we present the results of two other work that we have participated. First, we discuss

the work “Fine structure of a biexciton in a single quantum dot with a magnetic impurity”,

published in Phys. Rev. B 87, 205311 (2013). Lastly, we comment the article “Compensation

effect on the CW spin-polarization degree of Mn-based structures” published in J. Phys. D:

Appl. Phys. 46, 215103 (2013). In these papers we have collaborated with experimental

groups. Our theoretical calculations agree qualitatively with the experimental results. Here

we do not give any detail about the experimental setup, we only discuss the main results of

the articles and our contribution.

6.1 Biexciton-Mn complex photoluminescence

In this section we present the calculated and measured photoluminescence spectra of a

biexiciton confined in a CdTe quantum dot doped with a single Mn impurity. To investigate

the biexciton-Mn (XX-Mn) complex, we employed the same methodology described in chapters

4 and 5, i.e, we used the configuration interaction method to obtain both initial and final

correlated states of the emission. The Fermi’s golden rule [Eq. (5.2)] was used to obtain the

emission spectra as a function of the photon energy. Here we just point out the main findings

of our calculations. For details see ref. [58]. We assume that the Mn is at the QD center.
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Biexciton is a four particle state composed by two electrons and two holes. Its ground

state (GS) is a singlet state where both electrons and holes occupy the QD s-shell orbital. It

can be written as

|XXGS,Mz〉 = |EGS〉 ⊕ |HGS〉 ⊕ |Mz〉 = c†s,↑c
†
s,↓h

†
s,↑h

†
s,↓|0,Mz〉 (6.1)

where |EGS〉 and 〉HGS〉 are the electron and hole state, respectively. c†i,σ and h†i,τ are the

electron and hole creation operators, i refers to the electronic shell, and σ and τ are the

electron and hole spin state, respectively. Mz is the z-projection of Mn spin state. We are

interested in the effects of XX coupling with Mn. We calculate the XX GS expected value

with relation to the magnetic interactions terms of the Hamiltonian. As the hole-Mn (h-Mn)

interaction is four times larger than the e-Mn, we take the expectation value of the XX GS

with respect to the h-Mn interaction (last term of the Hamiltonian described at Eq. (5.1)),

which is given by

〈XXGS,Mz|HhMn|XXGS,Mz〉 = 〈HGS,Mz|HhMn|HGS,Mz〉 = 0. (6.2)

The same is true for the e-Mn interaction acting on the XX-Mn GS. Therefore, considering

only the s-shell, the XX-Mn GS is not affected by the presence of the Mn spin interaction. This

is not surprising, since the XX GS is a singlet state. The XX-Mn GS is six-fold degenerate,

one XX configuration times six Mn spin orientations. This is the initial state of the emission.

We now examine the final state. The XX final state is a exciton (X), which consists in one

electron-hole pair. As we consider a polarized photoluminescence, the spin-down electron

recombines with the spin-up hole (σ+-light), and the spin-up electron with the spin-down hole

(σ−-light). The final state is composed by one electron-hole pair in the s-shell. The X σ−

ground state is

|XGS,Mz〉 = c†s,↑h
†
s,↓|0,Mz〉 (6.3)

140





6.1 Biexciton-Mn complex photoluminescence 142

XX-Mn emissions. Now we include more electronic shells, to create a correlated ground state.

We consider three electronic shells, i.e, s-, p-, and d-shells. The reason to include the d-shell

is that it contains one zero angular momentum orbital that is directly coupled with Mn, when

it is in the QD center. This new zero angular momentum orbital allows the scattering of a

carrier in the s-shell to the d-shell. We can create a triplet excited state by promoting one

carrier from the s-shell to the d-shell. Here we focus only on the effects of h-Mn. The excited

triplet hole state can be written as

|HES,Mz〉 =
−1√
2
(h†s,↓h

†
d,↑ − h†d,↓h

†
s,↑)|0,Mz〉. (6.5)

The excited triplet state also does not couple with Mn, which can easily be seen by

〈HES,Mz|HhMn|HES,Mz〉 = 0. (6.6)

However, the matrix element, between the GS and the ES gives

〈HES,Mz|HhMn|HGS,Mz〉 =
3Jh

sd√
2
Mz (6.7)

where Jh
sd is the matrix element of one electron scattered from the d-shell to the s-shell due to

the h-Mn interaction. The energy of the XX-Mn correlated GS can be obtained by considering

only two states, one with the holes and electrons in both s-shell, and one excited state with

the electrons and one hole in the s-shell and other hole in the d-shell. We obtain the GS

energy is proportional to |Mz|2. For details see Ref. [58]. Therefore, the XX-Mn initial state

is split into three states, with the Mz = ±5/2 configuration being the lowest energy states,

and Mz = ±1/2 configuration the highest. The emission of the XX-Mn to X-Mn produces a

different pattern now, as it is illustrated at Fig. 6.1(b) right. The emission lines are illustrated

in Fig. 6.1(b) left.

We now compare our findings with the experimental results. Fig. 6.2(a) and (b) illustrate

the calculated and measured emission spectrum, respectively. The computed emission was
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6.2 Electron spin dynamics in quantum wells with barriers doped

with magnetic impurities

In this section we comment on results of electron’s spin dynamics that are confined in

quantum wells with barriers δ-doped with a Mn layer [112]. The investigated heterostruc-

tures are the same as described in chapter 3. In this work we have collaborated with the

optical properties group at UNICAMP to understand the effects of Mn on the electron’s spins

dynamics. They performed both time-resolved photoluminescence (RTPL) and circularly po-

larized Hanle measurements, which allowed to obtain two independent measurements of the

total spin-relaxation time, Ts, which is given by T−1
s = τ−1

s + τ−1, where τs and τ are the

spin-relaxation time and the electron lifetime. The spin dynamics of electrons was obtained

for five samples containing different concentration of Mn, that is, QMn = 0, 0.13, 0.2, 0.27 and

0.4 monolayers∗.

Figure 6.4(a) and (b) shows both Hanle and PL-RT measurements, respectively [112]. In

both cases, we observe two different behaviors of both polarization and PL intensity, depend-

ing on the Mn concentration. In the Hanle curve [Fig. 6.4(a)], samples with higher Mn

concentration (QMn = 0.27 and 0.4) have a much broader curve than the lower Mn-content

ones. In the PL-RT curves [Fig. 6.4(b)] we note the same kind of behavior, while the low Mn

content samples have a slow intensity decay, the high concentration Mn samples have a faster

decay. Therefore, heterostructures with QMn ≤ 0.2 have a similar electron dynamics, even for

the sample with no Mn, which differs from what is observed in samples with QMn > 0.2.

We interpreted the results by observing that, with the increase of the Mn-content, more Mn

diffuses into the QW, increasing the overlap between electron and the Mn ions. Consequently,

the scattering of the electron due the electron-Mn interaction becomes more effective. To verify

this interpretation, we calculated the electron-Mn overlap for the different Mn concentration,

∗Here we use QMn to designate Mn concentration (QMn). This is done to be in agreement with the figures showed
here, which were extracted from ref. [112].
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Chapter 7

Final Remarks and Perspectives

This thesis investigates the electronic and optical properties of diluted magnetic semicon-

ductors quantum wells and quantum dots. In order to study these systems we used spin-density

functional theory and the configuration interaction method. In the QW heterostructure, the

magnetic impurities were grown in the barrier. The transition energy as a function of the

magnetic field were estimated, using the Kohn-Sham single particle eigenvalues to describe

the electronic spectra. For quantum dots, we considered a two-dimensional harmonic oscil-

lator confinement, with the magnetic impurity in the QD center. The emission spectra were

calculated via Fermi’s Golden Rule.

The QWs have barriers doped with carbon on one side and Mn on the other side. This

system presents strong oscillations in the circularly polarized photoluminescence spectra as

a function of the external magnetic field. Within our model, we the showed that Mn-doped

layer is depleted of holes. They are mainly transferred to the QW. We show that the strong

oscillations observed in the circularly emission are mainly due to the exchange energy of the

hole gas. As in the experiment, we observed that the oscillations are related with the Landau

levels filling factors, and that the oscillations are maximum for odd filling factors, and it is a

minimum for even filling factors.

Our model was able to capture the Mn concentration dependence of the PL spectrum. We
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showed that by reducing the Mn content, and consequently the hole density, the oscillations

are less pronounced, as a direct consequence of the reduction of the exchange energy of the

hole gas. We also investigated the role of the sample parameters on the PL spectrum, in

particular the Mn-doping position, and the application of a gate voltage to enhance the effects

of the Mn ions. For very larger gate voltages, we observe the formation of a hole gas in the

Mn-doped layer. The interaction between the two hole gas reservoir produces spike structures

on the luminescence of the InGaAs QW. In our model, we verify that the carbon doping does

not play any significant role in the PL spectrum, mainly due the distance between carbon and

InGaAs QW.

We can also describe different regimes of the electron’s spin dynamics in quantum wells

with barriers doped with Mn. For low Mn-content the electron spin relaxation and lifetime are

almost constants, but samples doped with more than 0.2 Mn monolayers show a very fast spin

relaxation and electron lifetime. We interpreted that with the increase of scattering generated

by the increasing of the overlap between electron and rich inhomogeneous Mn regions.

For quantum dots doped with a single magnetic impurity in its center, we investigated its

electronic structure for systems containing from two to six electrons. We studied their elec-

tronic properties as a function of the number of shells, quantum dot confinement, electron-Mn

coupling, and electron-electron interaction. We showed the emergence of an indirect coupling

between electron and Mn, which are not directly coupled. This indirect coupling depends on

the number of confined shells and the electron-electron interaction. The coupling does not ex-

ist if there are only two confined shells in the QDs. For three or more confined electronic shells,

the indirect coupling can be either ferromagnetic or antiferromagnetic, depending on the QDs

confining energy. We also demonstrated that the indirect coupling exists independently of the

type of the direct electron-Mn interaction, the indirect interaction exists for either Ising- or

Heisenberg-like direct e-Mn interaction.
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We also extended the theory of optical properties for charged quantum dots doped with

a single Mn impurity. We presented a detailed theory of the photoluminescence for both

X2−-Mn and X3−-Mn complex. We demonstrated that the indirect e-Mn coupling gives rise

to a fine structure in both initial and final states of the emission, which can in principle be

observed experimentally. From the PL spectra, we deduce the number of confined shells in

the QDs, and infer the electronic spin. These are quantities that are not accessible on the

PL of nonmagnetic QDs. We also verify that the PL of Mn-doped QDs presents the emission

plateaux which is observed in nonmagnetic QDs. Finally, we showed that even if Mn impurity

is off-center, the indirect e-Mn interaction is important and dominant for a wide range of Mn

positions. With our model, we also explained the origin of the biexciton-Mn fine structure.

As a perspective of future projects, we aim first to understand the role of the electron-hole

correlation in the spin-polarized holes gas. This allows us to obtain a better understanding

of the role of the electron on the circularly polarized photoluminescence. Second, we plan to

study the Mn magnetization vectors dynamics via pump and probe experiments. This will be

done in collaboration with the GPO of the IFGW.

For quantum dots, we aim to extend this theory for two, three and N -Mn impurities inside

the QDs. We want to verify if the indirect e-Mn coupling is robust to the presence of many

magnetic impurities. If this is the case, we aim to investigate the electron spin dynamics in

this system. More precisely, we want to understanding how this indirect interaction affects the

electron coherence time, which is an important quantity for quantum information processing.
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Appendix A

Two-dimensional Harmonic Oscillator

We derive here the single particle states used in our exact diagonalization method. The

quantum dot is described by a two-dimensional harmonic oscillator. Using the effective mass

approximation, the Hamiltonian is

H = − ~

2m∗

(

∂2

∂x2
+

∂2

∂y2

)

+
1

2
m∗ω2

0(x
2 + y2) (A.1)

where m∗ is the electron effective mass, and ω0 is the characteristic frequency of the confining

potential. In order to simplify the Hamiltonian, we introduce new complex variables, that are:

z = x− iy, z∗ = x+ iy; (A.2)

∂

∂z
=

∂

∂x
+ i

∂

∂y
,

∂

∂z∗
=

∂

∂x
− i

∂

∂y
.

Now we write the Hamiltonian variables in terms of the new set of complex variables, which

implies that

x =
1

2
(z + z∗), x =

1

2i
(z∗ − z); (A.3)

∂

∂x
=

1

2

(

∂

∂z
+

∂

∂z∗

)

,
∂

∂y
=

1

2i

(

∂

∂z
− ∂

∂z∗

)

.

Substituting Eq. (A.3) in Eq. (A.1), we have the Hamiltonian in terms of the new variables

H = − ~

2m∗
∂2

∂z∂z∗
+

1

2
m∗ω2

0zz
∗. (A.4)
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It is convenient to write the new operators in dimensionless units, defining l0 =
√

~

2m∗ω0
.

Making the following transformation z = l0z and ∂/∂z = (1/l0)∂/∂z. The Hamiltonian is now

rewritten as

H = − ~

2m∗l20

∂2

∂z∂z∗
+

1

2
m∗l20ω

2
0zz

∗ (A.5)

= −~ω0
∂2

∂z∂z∗
+

~ω0

4
zz∗ = ~ω0

(

1

4
zz∗ − ∂2

∂z∂z∗

)

.

We now define raising and lowering operators as

a =
1

2

(

z√
2
+
√
2
∂

∂z∗

)

, a† =
1

2

(

z∗√
2
−

√
2
∂

∂z

)

, (A.6)

b =
1

2

(

z∗√
2
+
√
2
∂

∂z

)

, b† =
1

2

(

z√
2
−
√
2
∂

∂z∗

)

.

In the next step, we rewrite the complex variables as a function of raising and lowering

operators as

z =
√
2(a+ b†), z∗ =

√
2(a† + b), (A.7)

∂

∂z
=

1√
2
(b− a†),

∂

∂z∗
=

1√
2
(a− b†).

It can easily be shown that the raising and lowering operators obey the following commutation

relations: [a, a†] = 1, [b, b†] = 1, and [a, b] = [a, b†] = [a†, b] = [a†, b] = 0. Inserting the relations

described in Eq. (A.7) on Eq. (A.5) the Hamiltonian is written as

H = ω0(a
†a+ b†b+ 1), (A.8)

we redefine ω0 = ~ω0/Ry
∗, where Ry∗ is the effective Rybderg. The Hamiltonian described

in Eq. (A.8) is the two-dimensional harmonic oscillator Hamiltonian, whose eigenvalues are

given by

En,m = ω0(n+m+ 1), (A.9)

where n = 0,±1, . . . and m = 0,±1, . . . are the Harmonic oscillator quantum numbers. The

eigenstates are labelled by these quantum numbers. The lowering and raising operators have
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the following properties

a|n,m〉 =
√
n|n− 1,m〉, a†|n,m〉 =

√
n+ 1|n+ 1,m〉, (A.10)

b|n,m〉 =
√
m|n,m+ 1〉, b†|n,m〉 =

√
m+ 1|n,m+ 1〉.

The eigenstates are defined as

|n,m〉 = 1√
n!m!

(a†)n(b†)m|00〉, (A.11)

in which |00〉 is the vacuum state. The Hamiltonian conserves momentum angular. The

z-component of the angular momentum operator is

l̂z = xpy − ypx =
~

2

(

z∗
∂

∂z∗
− z

∂

∂z

)

= ~(a†a− b†b). (A.12)

The eigenvalue of the angular momentum operator is

l̂z|n,m〉 = ~(n−m)|n,m〉 = ~Le|n,m〉, (A.13)

where we define Le = n−m. The harmonic oscillator eigenvalues are plotted as a function of

Le in Fig. A.1. We note the existence of a shell structure as in an atom. This is one of the

reason that quantum dots are known as an artificial atom.
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Appendix B

Electron-electron Coulomb matrix elements

In this section we calculate the electron-electron (e-e) Coulomb matrix elements for the

QD. For a two-dimensional parabolic quantum dot, the e-e matrix elements have an analytical

expression. We measure the energy in effective Rydberg Ry∗ = m∗e4/2ǫ2~2 and length in Bohr

radius a∗0 = ǫ~2/m∗e2. The e-e Hamiltonian is

Hee =
1

2

∑

i,j,k,l

〈i, j|Vee|k, l〉c†ic†jckcl, (B.1)

where the composite indexes are i = {n′
1,m

′
1}, j = {n′

2,m
′
2}, k = {n2,m2}, and l = {n1,m1}.

nk and mk are the 2D harmonic oscillator quantum numbers, as defined in the Appendix A.

The e-e interaction is

Vee(|r1 − r2|) =
2

|r1 − r2|
. (B.2)

In order to calculate the e-e Coulomb matrix element, we start writing it in the basis of plane

waves as

〈i, j|Vee|k, l〉 = 〈i, j|
∑

q

Vqe
iq·(r1−r2)|k, l〉 =

∑

q

Vq〈i|eiq·r1 |l〉〈j|eiq·r2 |k〉, (B.3)
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where Vq is the Fourier transformation of Eq. (B.2), which is given by

Vq = 2

∫

dr
e−iq·r

r
= 2

∫ ∞

0

rdr

∫ 2π

0

dφr
eiqr cos(φr−φq)

r
(B.4)

= 2

∫ ∞

0

dr

∫ 2π

0

dφr

∞
∑

m=−∞
(−i)me−im(φr−φq)Jm(rq)

= 4π

∫ ∞

0

dr

∞
∑

m=−∞
(−i)meimφqδm,0Jm(rq)

= 4π

∫ ∞

0

drJ0(rq) =
4π

q
.

Therefore, inserting Eq. (B.4) in Eq. (B.2) we have

〈i, j|Vee|k, l〉 =
∑

q

4π

q
〈i|eiq·r1 |l〉〈j|eiq·r2 |k〉. (B.5)

The next step is to calculate the e-e matrix elements. In order to do that, we first write the

electrons coordinate (r = xi+ yj) as a function of the lowering and raising operators∗

x =
lc√
2
(a+ a† + b+ b†) (B.6)

and

y =
ilc√
2
(a− a† − b+ b†), (B.7)

which implies in

exp(iq · r1) = exp

{

i

[

qxlc√
2
(a1 + a†1 + b1 + b†1) + i

qylc√
2
(a1 − a†1 − b1 + b†1)

]}

(B.8)

= exp
(

iQ∗a†1 + iQa1 + iQb†1 + iQ∗b1

)

,

where we defined Q = lc√
2
(qx + iqy). The above equation can be simplified using the Trotter-

Suzuki formula

eÂ+B̂ = eÂeB̂e−[Â,B̂]/2, (B.9)

which is true only if [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0. Since the operators a1(a
†
1) and b1(b

†
1)

commute, the above relation is satisfied in pairs, i.e, the operators a and b are decouple.
∗They are defined in Appendix A
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Now the commutator between the lowering and rising operators are [iQ∗a†1, iQa1] = |Q|2 and

[iQb†1, iQ
∗b1] = |Q|2. Eq. (B.8), is given by

eiq·r1 = e−|Q|2eiQ
∗a†

1eiQa1eiQb†
1eiQ

∗b1 , (B.10)

and the eigenstates are written in terms of the raising operators as

|l〉 = 1√
n1!m1!

(a†1)
n1(b†1)

m1 |00〉. (B.11)

Finally, using Eqs. (B.10) and (B.11) we obtain the matrix element

〈i|eiq·r1 |l〉 = 〈i|e−|Q|2eiQ
∗a†

1eiQa1eiQb†
1eiQ

∗b1 |l〉 ≡M1

=
1

√

n′
1!m

′
1!n1!m1!

〈00|bm
′
1

1 a
n′
1

1 e
−|Q|2eiQ

∗a†
1eiQa1eiQb†

1eiQ
∗b1(a†1)

n1(b†1)
m1 |00〉 (B.12)

=
1

√

n′
1!m

′
1!n1!m1!

〈00|bm
′
1

1 a
n′
1

1 e
−|Q|2eiQ

∗a†
1eiQb†

11̂eiQa1eiQ
∗b1(a†1)

n1(b†1)
m1 |00〉.

Note that we have rearranged the order of the operators and introduced the completeness

relation (1̂) given by

1̂ =
∞
∑

p1=0

∞
∑

p2=0

|p1p2〉〈p2p1| =
1

p1!p2!

∞
∑

p1=0

∞
∑

p2=0

(a†1)
p1(b†1)

p2 |00〉〈00|bp21 ap11 . (B.13)

We now expand the exponential operators as

eiQb1 =
∞
∑

s=0

(iQ)s

s!
bs1. (B.14)

Substituting Eqs. (B.13) and (B.14) in Eq. (B.12) we obtain

M1 =
1

√

n′
1!m

′
1!n1!m1!

∑

s1,s2
s3,s4

∑

p1,p2

e−|Q|2

p1!p2!
〈00|bm

′
1

1 a
n′
1

1

(iQ∗)s1

s1!
(a†1)

s1
(iQ)s2

s2!
(b†1)

s2(a†1)
p1(b†1)

p2 |00〉

(B.15)

× 〈00|bp21 ap11
(iQ)s3

s3!
as31

(iQ∗)s4

s4!
bs41 (a†1)

n1(b†1)
m1 |00〉.

The above matrix element is only different from zero if s1 = n′
1−p1, s2 = m′

1−p2, s3 = n1−p1,

and s4 = m1−p1. Also the maximum value of p1 and p2 must be min(n1, n
′
1) and min(m1,m

′
1),
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respectively. Therefore, we have

M1 =
1

√

n′
1!m

′
1!n1!m1!

min(n1,n′
1
)

∑

p1=0

min(m1,m′
1
)

∑

p2=0

e−|Q|2

p1!p2!

(iQ∗)n
′
1
−p1

(n′
1 − p1)!

(iQ)m
′
1
−p2

(m′
1 − p2)!

(iQ)n1−p1

(n1 − p1)!

(iQ∗)m1−p2

(m1 − p2)!

× 〈00|bm
′
1

1 a
n′
1

1 (a†1)
n′
1
−p1(b†1)

m′
1
−p2(a†1)

p1(b†1)
p2 |00〉〈00|bp21 ap11 an1−p1

1 bm1−p2
1 (a†1)

n1(b†1)
m1 |00〉

=
1

√

n′
1!m

′
1!n1!m1!

min(n1,n′
1
)

∑

p1=0

min(m1,m′
1
)

∑

p2=0

e−|Q|2

p1!p2!

n′
1!

(n′
1 − p1)!

m′
1!

(m′
1 − p2)!

n1!

(n1 − p1)!

m1!

(m1 − p2)!

(iQ∗)n
′
1
−p1(iQ)m

′
1
−p2(iQ)n1−p1(iQ∗)m1−p2

=
e−|Q|2

√

n′
1!m

′
1!n1!m1!

min(n1,n′
1
)

∑

p1=0

min(m1,m′
1
)

∑

p2=0

p1!p2!

(

n′
1

p1

)(

m′
1

p2

)(

n1

p1

)(

m1

p2

)

(iQ∗)n
′
1
−p1(iQ)m

′
1
−p2(iQ)n1−p1(iQ∗)m1−p2 . (B.16)

The matrix element M2 = 〈j|e−iq·r2 |k〉 is obtained in a similar way. It is given by

M2 =
e−|Q|2

√

n′
2!m

′
2!n2!m2!

min(n2,n′
2
)

∑

p3=0

min(m2,m′
2
)

∑

p4=0

p3!p4!

(

n′
2

p3

)(

m′
2

p4

)(

n2

p3

)(

m2

p4

)

(B.17)

(−iQ∗)n
′
2
−p3(−iQ)m′

2
−p4(−iQ)n2−p3(−iQ∗)m2−p4 .

Replacing Eqs. (B.4), (B.16) and (B.17) on Eq. (B.3), the e-e Coulomb matrix elements

is given by

〈i, j|Vee|k, l〉 =
1

4π2

∫ ∞

0

qdq

∫ 2π

0

dφq
4π

q
M1M2 (B.18)

=
1

π
√

n1!m1!n′
1!m

′
1!n2!m2!n′

2!m
′
2!

min(n1,n′
1
)

∑

p1=0

p1!

(

n1

p1

)(

n′
1

p1

)min(m1,m′
1
)

∑

p2=0

p2!

(

m1

p2

)(

m′
1

p2

)

min(n2,n′
2
)

∑

p3=0

p3!

(

n2

p3

)(

n′
2

p3

)min(m2,m′
2
)

∑

p4=0

p4!

(

m2

p4

)(

m′
2

p4

)

Ip1p2p3p4

where

Ip1p2p3p4 =

∫ ∞

0

dq

∫ 2π

0

dφqe
−2|Q|2(iQ∗)n

′
1
−p1(iQ)m

′
1
−p2(iQ)n1−p1(iQ∗)m1−p2(−iQ∗)n

′
2
−p3 (B.19)

× (−iQ)m′
2
−p4(−iQ)n2−p3(−iQ∗)m2−p4

We shall now solve the integral. For that, we first change variables. It is more convenient

to work in the polar representation of Q. We know that Q = lc√
2
(qx + iqy) = |Q|eiφq , where
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|Q| = lc√
2
q. Therefore, we have that dq =

√
2

lc
d|Q|. Inserting the definitions in the integral

above we can rewrite Eq. (B.19) as

Ip1p2p3p4 =

√
2

lc
(−1)n

′
2
+m′

2
+n2+m2

[

in
′
1
+m′

1
+n1+m1+n′

2
+m′

2
+n2+m2−2p1−2p2−2p3−2p4

]

(B.20)

×
∫ 2π

0

dφqe
iφq(−n′

1
+m′

1
+n1−m1−n′

2
+m′

2
+n2−m2)

×
∫ ∞

0

d|Q|e−2|Q|2 |Q|n′
1
+m′

1
+n1+m1+n′

2
+m′

2
+n2+m2−2p1−2p2−2p3−2p4

We first solve the angular integral,

∫ 2π

0

dφqe
iφq(−n′

1
+m′

1
+n1−m1−n′

2
+m′

2
+n2−m2) = 2πδLL,LR

(B.21)

where LL = (m′
1+m

′
2)− (n′

1+n
′
2) and LR = (m1+m2)− (n1+n2) are the angular momentum

of the two electrons on the left and right side of the matrix element, respectively. The result of

the above integral gives the angular momentum conservation of the e-e Coulomb interaction.

Now we solve the integral in |Q|. Using the conservation of the angular momentum. We

simplify the integral such as

Ip1p2p3p4 =
2π

√
2

lc
(−1)n

′
2
+m′

2
+n2+m2i2(n

′
1
+n′

2
+m1+m2−p1−p2−p3−p4)δLL,LR

(B.22)

×
∫ ∞

0

d|Q|e−2|Q|2 |Q|2(n′
1
+n′

2
+m1+m2−p1−p2−p3−p4).

To solve the above integral we first define p = n′
1+n

′
2+m1+m2−p1−p2−p3−p4. Second we

do the following changing of variable: x = 2|Q|2. Lastly, we multiply and divide the integral

by 22p, obtaining

Ip1p2p3p4 =
π

lc
(−1)n

′
2
+m′

2
+n2+m2

i2p

2p
δLL,LR

∫ ∞

0

dxe−xxp+1/2−1 (B.23)

=
π

lc

(−1

2

)p

(−1)n
′
2
+m′

2
+n2+m2Γ

(

p+
1

2

)

δLL,LR
.

The final form of the e-e Coulomb matrix element is obtained by replacing Eq. (B.23) in Eq.
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(B.24), which is given by

〈i, j|Vee|k, l〉 =
δLL,LR

(−1)n
′
2
+m′

2
+n2+m2

lc
√

n1!m1!n′
1!m

′
1!n2!m2!n′

2!m
′
2!

min(n1,n′
1
)

∑

p1=0

p1!

(

n1

p1

)(

n′
1

p1

)min(m1,m′
1
)

∑

p2=0

p2!

(

m1

p2

)(

m′
1

p2

)

(B.24)
min(n2,n′

2
)

∑

p3=0

p3!

(

n2

p3

)(

n′
2

p3

)min(m2,m′
2
)

∑

p4=0

p4!

(

m2

p4

)(

m′
2

p4

)(−1

2

)p

Γ

(

p+
1

2

)

.

The above expression gives the e-e matrix elements for a 2D parabolic quantum dot. As

an example, we calculate the e-e matrix elements of two electrons in the s-shell, which implies

in, i = j = k = l = {0, 0}, and gives to us

〈i, j|Vee|k, l〉 =
1

lc
Γ

(

1

2

)

=
√
ω0π. (B.25)

This is the largest possible value of the e-e matrix element. All the values of the e-e matrix

elements are scaled with
√
ω0π. Therefore, we need to calculate them only once and its correct

value for a defined quantum confinement is given by multiplying this factor.
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Appendix C

Magnetization of (III,Mn)V semiconductors

The introduction of substitutional Mn ions in GaAs provides both localized spin and holes

[12]. Mn doping III-V or II-VI semiconductors has the 3d-shell half-filled, with spin M = 5/2.

Therefore, Mn spins can couple with each other, and give origin to a magnetic phase. In

metallic GaMnAs, it is known that the ferromagnestim is mediated by the delocalized holes in

the valence band, and the Hamiltonian that describes the interaction between hole spin and

Mn spin is given by the Zener kinetic exchange model. It is expressed as

Hpd = −Jpd
∑

i,j

si ·Mjf(ri −Rj), (C.1)

where Jpd is the exchange interaction, s and M are the hole and manganese spins, respectively.

f(ri − Rj) is the Mn distribution function and describes the overlap between holes and the

Mn ions. That Hamiltonian is treated with both virtual crystal approximation (VCA) and

mean field theory (MFT). The Hamiltonian of valence holes, in the presence of an external

magnetic field, B, and Mn ions, is given by

H = HL − µBg
∗
∑

i

si ·B− gµB

∑

j

Mj ·B− Jpd
∑

i,j

si ·Mjf(ri −Rj), (C.2)

where HL is the Hamiltonian that describes the valence band holes, e.g. the Luttinger-Kohn

Hamiltonian [100]. µB is the Bohr magneton, g and g∗ are the g-factor for Mn ions and holes,

respectively. In order to solve this Hamiltonian we use thermal-spin-density functional theory
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(TSDFT) [66, 72, 121, 181, 182], which includes thermal and spin effects. In the TSDFT the

electronic density minimizes the grand potential, given by

Ω = −KBT ln

[

∑

α

exp(−〈α|H|α〉/KBT )

]

(C.3)

where |α〉 = |a, szi ,mj〉, a is the hole state, defined by HL. szi is the hole spin state and mj

defines the Mn spin state. With that, we have

〈α|H|α〉 = −
∑

j

(

gµBB + Jpd
∑

i

szif(ri −Rj)

)

mj −
∑

i

g∗µBBszi + 〈a|HL|a〉. (C.4)

the sum over the index i in the second term can be performed as follows

∑

i

szif(ri −Rj) =
1

2





N↑
∑

i=1

1−
N↓
∑

i=1

1



 f(ri −Rj) (C.5)

=
1

2

∫

ξ(r)f(ri −Rj)dr, (C.6)

where ξ(r) = (n↑(r) − n↓(r)) is the hole gas magnetization. As we consider the system is

homogeneous in the x-y plane, only variations in the z direction of the electronic density are

considered. Hence, we have ξ(r) ≡ ξ(z), and f(ri −Rj) = (1/A)f(z − zMn), where A is the

x-y plane area. Defining,

∑

i

szif(ri −Rj) =
1

2

∫

ξ(z)f(z − zMn)dz, (C.7)

the above equation describes the overlap between holes and Mn ions. With this in hand, Eq.

(C.4) can be written as

〈α|H|α〉 = −
∑

j

bmj −
∑

i

g∗µBBszi + 〈a|HL|a〉, (C.8)

where y =
[

gµBB + Jpd
∫

m(z)f(zi − zMn)dz/2
]

/kBT . The sum over many-hole states (|α〉 ≡

|a, szi〉) is performed in the SDFT developed in the section 2.1. Using Eq. (C.8), the grand
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potential, defined in Eq. (C.3), is

Ω[p(z), ξ(z)] = −KBT ln

[

∑

α

exp(−〈α|HL|α〉/KBT )

]

− g∗µB

2

∫

B(z)ξ(z)dz + Ωmj

= Ωf [p(z), ξ(z)]−
g∗µB

2

∫

B(z)ξ(z)dz + Ωmj
(C.9)

where Ωmj
is the grand potential of a collection of Mn spins. This is defined as

Ωmj
= −kBT ln





M
∑

mj=−M

exp

(

∑

j

ymj

)



 = −kBT ln





M
∑

mj=−M

Πj exp(ymj)





= −kBT
∑

j

ln





M
∑

mj=−M

exp(ymj)



 . (C.10)

The sum over mj is carried from −M to M and produces

M
∑

mj=−M

exp(−ymj) =
M
∑

mj=−M

xmj = xM(1 + x+ x2 + . . .+ x2M)

= xM
x2M+1 − 1

x1/2 − 1
=
xM+1/2 − x−(M+1/2)

x1/2 − x−1/2

=
e(M+1/2)y − e−(M+1/2)y

ey/2 − e−y/2

=
sinh

[(

1 + 1
2M

)

y
]

sinh
[

y
2M

] . (C.11)

Redefining y = M
[

gµBB + Jpd
∫

m(z)f(z − zMn)dz/2
]

/kBT and substituting Eq. (C.11) in

Eq. (C.10), we obtain

Ωmj
[p(z), ξ(z)] = −kBT

∑

j

ln

[

sinh
[(

1 + 1
2M

)

y
]

sinh
(

y
2M

)

]

= −kBTV N0xeff ln

[

sinh
[(

1 + 1
2M

)

y
]

sinh
(

y
2M

)

]

(C.12)

where
∑

j ≡ V N0xeff is the effective concentration of Mn that contributes to the magnetiza-
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tion. V is the unit cell volume. The magnetization is defined as

MT = − 1

V

∂Ωmj
[p(z), ξ(z)]

∂B

=
kBTN0xeff sinh

(

y
2M

)

sinh
[

(1 + 1
2M

)y
]

∂y

∂B

{(

1 +
1

2M

)

cosh

[(

1 +
1

2M

)

y

]

sinh
( y

2M

)

− sinh

[(

1 +
1

2M

)

y

]

1

2m
cosh

( y

2M

)

}

/

sinh2
( y

2M

)

=MgµBN0xeff

{

(

1 +
1

2M

)

cosh
[(

1 + 1
2M

)

y
]

sinh
[(

1 + 1
2M

)

y
] − 1

2M

cosh
(

y
2M

)

sinh
(

y
2M

)

}

=MgµBN0xeffBS(y) = gµBN0〈Mz〉 = gµBN0〈Mz〉, (C.13)

where BM(y) is the Brillouin’s function. 〈Mz〉 = MBS(y) is the average of the z-component

of the Mn spin per Mn site. The above equation is the magnetization of the Mn spin, in the

presence of an effective magnetic field Heff , which is defined by

Heff = B +
Jpd
2gµB

∫

ξ(z)f(z − zMn)dz. (C.14)

Equation (C.14) shows that even in absence of an external magnetic field ξ(z) is non-zero. The

Mn spin is then in a ferromagnetic phase due the spin polarization of the hole gas.
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Appendix D

Imaginary time wave-function evolution

We demonstrate here that the wave function, defined by a time-independent Hamiltonian,

evolves to the ground state when it is propagated in the imaginary time domain.

Consider that the eigenstates of the Hamiltonian are |φn〉, with eigenvalues εn, such as,

ε0 < ε1 < ε2 < · · · < εn. Thus, the wave function |ψ(t)〉 can be expanded in the basis of the

Hamiltonian

|ψ(t)〉 =
∑

n

an exp

(

−iεnt
~

)

|φn〉 . (D.1)

Replacing t by −iτ , we have

|ψ(τ)〉 =
∑

n

an exp
(

−εnτ
~

)

|φn〉 . (D.2)

The above equation is not normalized. This can be seen from the normalization condition:

〈ψ(t)|ψ(t)〉 =
∫

|ψ(r, τ)|2dr =
∑

n

|an|2 exp
(

−2εnτ

~

)

. (D.3)

We observe that the norm depends on τ and therefore the wave function has to be normalized

at each time step of the propagation. The normalized eigenstate are

|ψ(τ)〉norm =

∑

n an exp
[

− εnτ
~

]

|φn〉
√

∑

n |an|2 exp
[

−2εnτ
~

]

. (D.4)

Since our basis is kept in ascending order of energy, the first term of Eq. (D.4) is the

ground state eigenstate. We put it into evidence and rewrite Eq. (D.4) as
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|ψ(τ)〉norm =
|φ0〉+

∑

i>0
ai
a0
exp

[

(ε0−εi)τ
~

]

|φi〉
√

1 +
∑

i>0 | aia0 |2 exp
[

(ε0−εi)τ
~

]

. (D.5)

Taking τ → ∞, we obtain

lim
τ→∞

|ψGS(τ)〉norm = |φ0〉. (D.6)

The above results show that propagating the wave function for a long time in the imaginary

time domain, the wave function converges to the ground state. Once we have the ground state,

we can access all the excited states of the spectra through the Gram-Schmidt orthogonalization

method.

As an example, we demonstrate how the first excited state is obtained. Consider that the

ground state (|ψGS(τ)〉) is known and the excited state can be written as a linear combination

of |φn〉, i.e,

|φ1(τ)〉 =
∑

n

bne
−εnτ/~|φn〉. (D.7)

The Gram-Schmidt orthogonalization method gives the first excited state

|ψ1(τ)〉 =
|ϕ1(τ)〉 − 〈ψGS(τ)|ϕ1(τ) 〉|ψGS(τ)〉
√

〈ϕ1(τ)|ϕ1(τ)〉+ |〈ψGS(τ)|ϕ1(τ)〉|2
. (D.8)

This equation is already normalized. From Eqs. (D.7) and (D.6), we have

〈ϕ1(τ)|ϕ1(τ)〉 =
∑

n

|bn|2e−2εnτ/~ (D.9)

〈ψGS(τ)|ϕ1(τ)〉 = 〈ϕ0(τ)|ϕ1(τ)〉 = b0e
−ε0τ/~. (D.10)

Replacing the relations above [Eq. (D.9)] in Eq. (D.8), we have

|ψ1(τ)〉 =
|φ1〉+

∑

i>1
bi
b1
exp

[

(ε1−εi)τ
~

]

|φi〉
√

1 +
∑

i>1

∣

∣

∣

bi
b1

∣

∣

∣

2

exp
[

(ε1−εi)τ
~

]

. (D.11)

In the limit of τ → ∞, we obtain the first excited state,

lim
τ→∞

|ψ1(τ)〉 = |φ1〉. (D.12)
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This process is repeated in order of increasing energy to all eigenfunctions. This gives the

complete spectra of the Hamiltonian.
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