Universidade Estadual de Campinas

Forças de Osciladores Ponderadas e Tempos de Vida para os Espectros do Si VI e Si VII

Por

Lúcia Helena Coutinho / Instituto de Física "Gleb Wataghin"

Orientador: Prof. Dr. Antonio Gomes Trigueiros

Tese submetida ao Instituto de Física da Universidade Estadual de Campinas como parte dos requerimentos para obtenção do título de Mestre em Física

> Campinas, São Paulo, Brasil 12/02/1999

ESTE EXENSIGNE CORRESPONSE À REDIÇÃO FINAL DA TESE DE MESTADO DEFENSION PELA ALUNA LUCIA HELEMA COUTINHO E APROVADA PELA COMISSÃO JULGODRA. 28/02/98

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DO IFGW - UNICAMP

IM	Coutinho, Lúcia Helena
C837f	Forças de osciladores ponderadas e tempos de vida
	para os espectros do Si VI e Si VII Campinas, SP :
	[s.n.], 1999.
	Orientador: Antonio Trigueiros.
	Dissertação (mestrado) - Universidade Estadual de
	Campinas, Instituto de Física "Gleb Wataghin".
	1. Espectroscopia atômica. 2. Silício - Espectros.
	3. Ions - Análise espectral. 4. Ions. I. Trigueiros, Antonio.
	II. Universidade Estadual de Campinas. Instituto de Física
	"Cleb Wataghin" III Título

.

Inștifuto de Física "Gleb Wataghin" universidade estadual de campinas

Secretaria de Pós-Graduação

CAIXA POSTAL 6165 CEP 13083-970 – Campinas-SP - Brasil Tel: (019) 788-5305 Fax: (019) 289-2424

MEMBROS DA COMISSÃO JULGADORA DA TESE DE MESTRADO DE LÚCIA HELENA COUTINHO APRESENTADA E APROVADA AO INSTITUTO DE FÍSICA "GLEB WATAGHIN", DA UNIVERSIDADE ESTADUAL DE CAMPINAS, EM 12/02/99.

COMISSÃO JULGADORA:

Prof. Dr. Antonio Gomes Trigueiros (Orientador do Candidato) - IFGW

Prof. Dr. César José Bohjuani Pagan - FEE

Prof. Dr. Roberto Antonio Clemente – IFGW

Conteúdo

1	Introdução	6
2	Átomos com N elétrons	7
	2.1 O Hamiltoniano	7
	2.2 Aproximação do campo central	8
	2.3 Equações de Hartree-Fock	9
	2.4 Acoplamento de momento angular	11
	2.4.1 Acoplamento LS	11
	2.4.2 Acoplamento jj	12
	2.4.3 Acoplamento jk	13
3	Interação entre átomos e radiação	14
	3.1 Quantização do campo de radiação	15
	3.2 Hamiltoniana de interação e elementos de matriz	17
	3.3 Probabilidades de transição	21
	3.4 Forças de Osciladores	24
	3.5 Coeficientes de Einstein e tempos de vida atômicos	24
4	Cálculos computacionais na espectroscopia atômica	26
	4.1 Cálculo dos níveis de energia	26
	4.2 Cálculo dos comprimentos de onda	26
	4.3 Cálculo das funções de onda	27
	4.3.1 RCN	27
	4.3.2 RCN2	28
	4.4 Cálculo das probabilidades de transição e fatores angulares	28
	4.5 Determinação dos parâmetros	28
5	Análise dos íons Si VI e Si VII	31
	5.1 Si VI	31
	5.2 Si VII	37
6	Conclusão e perspectivas futuras	42
7	Apêndice: trabalhos publicado e aceito	45

Lista de Figuras

1	Representação esquemática das diversas transições entre as con-	
	figurações do Si VI	32
2	Representação esquemática das diversas transições entre as con-	
	figurações do Si VII	37

Lista de Tabelas

~

1	Valores dos parâmetros de Hartree-Fock para as configurações ímpares do Si VI	34
2	Valores dos parâmetros de Hartree-Fock para as configurações	
	pares do Si VI	35
3	Continuação da tabela 2	36
4	Valores dos parâmetros de Hartree-Fock para as configurações	
	pares do Si VII	38
5	Continuação da tabela 4	39
6	Valores dos parâmetros de Hartree-Fock para as configurações	
	ímpares do Si VII	40
7	Continuação da tabela 6	41

Agradecimentos

Ao Prof. Dr. Antonio Trigueiros, que me orientou durante este projeto com amizade e confiança.

Aos professores Dr. Roberto Antonio Clemente e Dr. Carlos Alberto Ferrari, pelas valiosas sugestões.

Aos companheiros de laboratório, Fernando Tamariz Luna, Renata Orloski, José Tomaselli, Annette Siems e Andrés Callegari, que sempre estiveram dispostos a ajudar nos momentos de dúvidas.

Aos amigos da pós-graduação, em especial Walfred e Romarly.

Aos funcionários da secretaria de pós-graduação, em especial à Maria Ignez pela atenção em assuntos importantes.

Ao pessoal da biblioteca, Angela, Célia, Mirian e Mário, pela ajuda nas pesquisas bibliográficas.

Ao CNPq pela ajuda financeira no projeto.

Aos amigos Silvia, Alberto e Cândida, pelo apoio e amizade.

Aos meus pais, irmãos e ao Ramon, pela compreensão, incentivo e amor.

A todos, muito obrigada!

Resumo

O presente trabalho se dedica ao estudo dos íons de silício cinco vezes ionizado, Si VI, e seis vezes ionizado, Si VII. É feita uma compilação de todos os dados experimentais conhecidos dos valores de níveis energéticos e comprimentos de onda de transições, para cada um dos íons. Em seguida são calculados os tempos de vida e as forças de osciladores ponderadas (gf). Estes cálculos são realizados em uma aproximação relativística multiconfiguracional Hartree-Fock (HFR). Os parâmetros eletrostáticos foram otimizados por um procedimento de mínimos quadrados, para um melhor ajuste com dados experimentais de níveis energéticos. Este método produz valores de gf que estão em melhor acordo com as intensidades observadas e valores tempos de vida mais próximos dos experimentais.

São apresentadas todas as linhas espectrais de dipolo elétrico conhecidas para cada um dos íons, o que se resumem a 241 transições para o Si VI e 141 transições para o Si VII. Foram calculados os gf para todas estas transições. São apresentados também os tempos de vida para 114 níveis energéticos do Si VI e 92 níveis energéticos do Si VII. Estes parâmetros são importantes no estudo de espectros solares e obtidos em laboratórios, sendo o silício um elemento importante em astrofísica.

Abstract

This thesis is devoted to the study of five times ionized silicon, Si VI, and six times ionized silicon, Si VII. A compilation of all known experimental energy levels and wavelength of transitions is done for each ion. The wighted oscillator strengths (gf) and lifetimes are calculated. The calculations were carried out in a multiconfiguration Hartree-Fock relativistic (HFR) approach. The electrostatic parameters were optimized by a least-squares procedure, in order to improve the adjustment to experimental energy levels. This method produces gf-values that are in better agreement with intensity observations and lifetimes that are closer to the experimental ones.

In this work are presented all the experimentally known electric dipole spectral lines for each ion, wich are 241 transitions for the Si Vi and 141 transitions for the Si VII. The gf-values were calculated for all these transitions. The lifetimes for 114 energy levels of the Si VI and 92 energy levels of the Si VII are also presented. Both parameters are important in the study of laboratory and solar spectra, as silicon is an astrophysically important element.

1 Introdução

As características fundamentais de uma linha espectral são: freqüência, força e forma. Elas refletem a estrutura do átomo (ou íon) produzindo o espectro e as interações com sua vizinhança. Estas características estão ligadas a três tipos de constantes atômicas que definem a estrutura: as energias de separação dos estados estacionários, que definem a freqüência das transições (ou comprimentos de onda das linhas espectrais), as forças de osciladores que influenciam a intensidade das linhas espectrais e estão relacionadas a probabilidades de transição, e os tempos de vida radioativos dos níveis energéticos que determinam a largura das linhas.

À primeira vista pode parecer que as forças de osciladores estejam relacionadas apenas com intensidades e larguras naturais, mas na realidade são constantes importantes na maioria das interações experimentais. Com o advento do laser, a importância crescente dos efeitos da óptica não-linear tem tornado necessário um conhecimento mais preciso das forças de osciladores, já que as probabilidades para interações não-lineares podem ser expressas em termos de forças de osciladores de transições atômicas ou moleculares.

O conhecimento das forças de osciladores também é importante na astrofísica, onde estes dados são utilizados para analisar espectros de absorção estelares. Esta importância se dá ao fato da existência de silício em vários graus de ionização nos espectros solares, estelares e interestelares.

As forças de osciladores podem ser medidas experimentalmente, entretanto a maneira mais usual de se obter estes valores é através de cálculos computacionais.

O objetivo principal deste trabalho é utilizar métodos computacionais para obtenção de forças de osciladores ponderadas e tempos de vida para os espectros do silício cinco vezes ionizado, Si VI, e do silício seis vezes ionizado, Si VII. Os capítulos 2 e 3 serão dedicados ao estudo da teoria quântica para átomos com muitos elétrons (átomos complexos) e da interação entre elétrons e radiação, que levarão à definição de forças de osciladores e tempos de vida. No capítulo 4 será dada uma breve explicação sobre os programas de cálculo utilizados em nosso laboratório para obtenção das constantes em questão. No capítulo 5 será dado um enfoque mais direto aos íons Si VI e Si VII, analisando os procedimentos seguidos no estudo de cada íon separadamente, e mostrando os valores calculados para os parâmetros envolvidos na obtenção das forças de osciladores e tempos de vida.

2 Átomos com N elétrons

2.1 O Hamiltoniano

O tratamento teórico para átomos contendo N elétrons (N maior que um, mas não necessariamente igual ao número atômico Z do núcleo) requer o conhecimento do operador Hamiltoniano apropriado. Utilizamos o Hamiltoniano para átomos de um elétron e fazemos uma somatória para os N elétrons, e adicionamos um termo referente a interações Coulombianas eletrostáticas entre os elétrons, somando sobre todos os pares de elétrons [3]. Fazendo isso o Hamiltoniano para átomos complexos é:

$$H = H_0 + H_1 + H_2$$

= $-\sum_{i}^{N} \left(\frac{p_i^2}{2m} - \frac{Ze^2}{r_i} \right) + \sum_{i < j}^{N} \frac{e^2}{r_{ij}} + \sum_{i=1}^{N} \xi_i (r_i) (\mathbf{l}_i \cdot \mathbf{s}_i)$ (1)

onde r_i é a distância entre o núcleo e o i-ésimo elétron com carga e, massa m, e momento p_i ; r_{ij} é a distância entre o i-ésimo e o j-ésimo elétrons. Neste Hamiltoniano o primeiro termo contém energia cinética e energia potencial, o segundo termo representa repulsão Coulombiana entre os elétrons e o terceiro é a interação spin-órbita. Outros efeitos como correções relativísticas, termos devidos a interações hiperfinas, entre outros, são tratados como perturbações.

Os efeitos relativos de H_1 e H_2 dependem do número atômico. Para átomos com Z pequeno, H_1 é dominante com relação a H_2 , que pode assim ser tratado como perturbação; o contrário ocorre para átomos com Z grande. É então útil reconhecermos dois casos limites, um para Z pequeno com Hamiltoniano

$$H_I = H_0 + H_1 \tag{2}$$

e outro para Z grande com Hamiltoniano

$$H_{II} = H_0 + H_2 \tag{3}$$

O caso mais frequente em física atômica é o representado por H_I , utilizado para átomos ou fons com valores pequenos ou intermediários de Z. Vamos examinar as simetrias dos Hamiltonianos H_I e H_{II} . Em primeiro lugar, como estamos tratando com partículas indistinguíveis, todo hamiltoniano para um sistema de N partículas deve ser invariante sobre uma troca nas coordenadas (espacial e spin) de quaisquer duas partículas. Isto significa que a função de onda total deve ser antisimétrica com respeito à troca de duas partículas.

Outra simetria geral que se aplica tanto a H_I quanto a H_{II} é a inversão, desde que o Hamiltoniano geral (eq.1) é claramente invariante sobre inversão (reflexão na origem). A consequência desta simetria é que as autofunções de H terão uma paridade definida, ou que a paridade é um bom número quântico para estados atômicos.

2.2 Aproximação do campo central

A partir deste ponto vamos considerar apenas o Hamiltoniano H_I devido à finalidade do presente trabalho. A dificuldade na resolução da equação de Schrödinger com este Hamiltoniano está no fato de que a repulsão Coulombiana entre os átomos é um efeito muito grande para ser tratado como uma perturbação. Para facilitar o trabalho construímos uma função de energia potencial $U(r_i)$ que seja esfericamente simétrica. Assumindo que esta função possa ser construída, o Hamiltoniano pode ser escrito como:

$$H = H_0' + H_1'$$

onde

$$H_0' = \sum_{i=1}^N \left(\frac{p_i^2}{2m} + U(r_i) \right),$$
(4)

$$\sum_{i} U(r_i) = -\sum_{i=1}^{N} \frac{Ze^2}{r_i} + \left\langle \sum_{i < j}^{N} \frac{e^2}{r_{ij}} \right\rangle$$
(5)

$$H'_{1} = -\sum_{i=1}^{N} \frac{Ze^{2}}{r_{i}} + \sum_{i
$$= \sum_{i(6)$$$$

onde $\left\langle \sum_{i < j}^{N} \frac{e^{2}}{r_{ij}} \right\rangle$ é a média sobre uma esfera de repulsão eletrônica, sendo então independente das coordenadas angulares. Então H'_{1} se torna o Hamiltoniano que contém a parte não esférica da repulsão eletrônica, enquanto H'_{0} contém a energia cinética, energia potencial no campo do núcleo, e média da energia de repulsão eletrônica:

$$H_0' = \sum_i^N \left(\frac{p_i^2}{2m} - \frac{Ze^2}{r_i} \right) + \left\langle \sum_{i < j}^N \frac{e^2}{r_{ij}} \right\rangle \tag{7}$$

Esta é a aproximação de campo central. O H'_1 é considerado como uma perturbação que produz uma separação na energia de uma configuração. Já que esta mudança está contida em $\sum \frac{e^2}{r_{ij}}$, é suficiente calcularmos os elementos de matriz deste operador. A energia da configuração é então separada em termos com os quais os valores específicos de L e S são associados. A degenerescência destes termos é quebrada quando levamos em consideração a interação spin-órbita, há uma nova separação entre níveis de acordo com os valores permitidos de J. A separação dos níveis é conhecida como estrutura fina e o conjunto completo de níveis pertencentes a uma dada configuração eletrônica é um *multiplete*.

A energia da interação spin-órbita cresce rapidamente com o número atômico enquanto a energia de repulsão entre os elétrons varia mais suavemente como função de Z. Assim quando avançamos na tabela periódica, H_2 assume maior importância e eventualmente se torna a perturbação dominante com relação a H_1 . Mesmo em elementos mais leves, a interação eletrostática é enfraquecida se o átomo está em um estado altamente excitado, desde que os elétrons envolvidos na excitação estão geralmente situados distantes da região que contém o núcleo e os outros elétrons.

2.3 Equações de Hartree-Fock

Vamos considerar a solução da equação de Schrödinger com o Hamiltoniano

$$H = \sum_{i}^{N} H_{0}(i) + \sum_{i < j}^{N} \frac{e^{2}}{r_{ij}}$$
(8)

$$H_0(i) = \left(\frac{p_i^2}{2m}\right) - \left(\frac{Ze^2}{r_i}\right) \tag{9}$$

de um ponto de vista que irá nos levar ao cálculo das funções de onda radiais nos orbitais de campo central. Assim, teremos que calcular os potenciais $U(r_i)$.

Nossa principal preocupação será com o estado fundamental do átomo, que é o estado onde ele passa a maior parte do tempo. Aproximaremos este estado pelo determinate de Slater a seguir [3]:

$$\Psi(\lambda_1, \lambda_2, ..., \lambda_N) = \frac{1}{\sqrt{N!}} \det \left\{ \psi_1(\lambda_1) \psi_2(\lambda_2) ... \psi_N(\lambda_N) \right\}$$
(10)

As funções de onda $\psi_{i(\lambda_i)}$ são construídas a partir da função de onda de partícula única tendo a forma:

$$\psi_i(\lambda_i) = \frac{1}{r_i} P_{n_i l_i} Y_{n_i l_i}(\theta, \phi) \chi(m_{s_i})$$
(11)

estas funções estão sujeitas à condição de ortonormalidade

$$\langle \psi_{i}\left(\lambda_{j}\right) | \psi_{k}\left(\lambda_{j}\right) \rangle = \delta_{ik} \tag{12}$$

e a condição principal é que satisfaçam o princípio variacional

 $\delta \langle \Psi | H | \Psi \rangle = 0 \tag{13}$

Esta é a aproximação de Hartree-Fock onde assumimos que uma função de onda de N elétrons Ψ , representada por um único determinate de Slater e satisfazendo as condições 12 e 13, é uma solução aproximada à equação de Schrödinger de N elétrons.

A energia total do sistema de N elétrons E é

$$E = \langle \Psi | H | \Psi \rangle \tag{14}$$

que pode ser escrita em função das integrais de Slater:

$$E = \sum_{i} I_{i} + \sum_{i < j} [J(i, j) - K(i, j)]$$
(15)

com I_i , $J(i,j) \in K(i,j)$ dados por:

$$I_i = \langle \psi_i | H_0 | \psi_i \rangle \tag{16}$$

$$J(i,j) = \left\langle \psi_i(1) \psi_j(2) \right| \left(\frac{e^2}{r_{12}}\right) \left| \psi_i(1) \psi_j(2) \right\rangle$$
(17)

$$K(i,j) = \left\langle \psi_i(1) \psi_j(2) \right| \left(\frac{e^2}{r_{12}} \right) \left| \psi_j(1) \psi_i(2) \right\rangle$$
(18)

Podemos também calcular a energia média de uma configuração E_{av} , que é uma grandeza importante na física atômica

$$E_{av} = \sum I(nl) + \sum_{pares} \left\langle \frac{e^2}{r_{ij}} \right\rangle$$
(19)

onde I(nl) é a energia cinética mais a energia de interação eletrostática com o núcleo para um elétron em uma sub-camada nl. O segundo termo na expressão para a energia média é a soma das energias de interação entre pares de elétrons pertencentes à mesma camada nl ou a camadas diferentes.

Em uma configuração $1s^22s^22p$, por exemplo, temos:

$$\sum I(nl) = 2I(1s) + 2I(2s) + I(2p)$$
(20)

$$\sum_{pares} \to E_c (1s, 1s) + E_c (2s, 2s) + 4E_c (1s, 2s) + 2E_c (1s, 2p) + 2E_c (2s, 2p)$$
(21)

onde E_c na expressão acima é a energia de repulsão coulombiana, e é dada por:

$$E_c = \langle LSM_L M_S | \frac{e^2}{r_{12}} | LSM_L M_S \rangle \tag{22}$$

O ket $|LSM_LM_S\rangle$ pode ser escrito em função de determinantes de Slater, e o termo $\frac{e^2}{r_{12}}$ pode ser expresso em função de harmônicos esféricos. Reescrevendo E_c temos:

$$E_{c} = \langle l_{1}l_{2}LS | \frac{e^{2}}{r_{12}} | l_{1}l_{2}LS \rangle$$

$$= \sum_{k} \left(f_{k}F^{k} \pm g_{k}G^{k} \right)$$
(23)

O termo F^k é a interação direta, e o termo G^k é a interação de troca. Eles são dados por:

$$F^{k} = e^{2} \int \frac{r^{k}}{r^{k+1}} P_{n_{1}l_{1}}^{2}(r_{1}) P_{n_{2}l_{2}}^{2}(r_{2}) dr_{1} dr_{2}$$
(24)

$$G^{k} = e^{2} \int \frac{r^{k}}{r^{k+1}} P_{n_{1}l_{1}}^{2}(r_{1}) P_{n_{2}l_{2}}^{2}(r_{2}) P_{n_{2}l_{2}}^{2}(r_{1}) P_{n_{1}l_{1}}^{2}(r_{2}) dr_{1} dr_{2} \qquad (25)$$

2.4 Acoplamento de momento angular

Existem vários esquemas de acoplamento de momento angular, e seu estudo é de fundamental importância para a física atômica. Serão expostos aqui somente os tipos de acoplamento necessários para o estudo dos íons a que este trabalho se dedica.

2.4.1 Acoplamento LS

Em átomos com N elétrons cujo hamiltoniano é dado pela eq.1, o termo H_2 é pequeno quando comparado aos outros e pode ser desprezado, deixando $H = H_0 + H_1$, o que o torna independente do spin. Além disso [H, S] = 0.

Como a interação Coulombiana só interfere no momento angular orbital e H_1 é uma perturbação, podemos fazer a composição dos momentos angulares

L e S separadamente e obter autofunções de L^2 e $L_z,$ o mesmo ocorrendo para S^2 e $S_z.$ Teremos então:

$$L = \sum_{i} l_i \tag{26}$$

$$S = \sum_{i} s_{i} \tag{27}$$

Com os momentos angulares orbital e de spin calculados acima fazemos a composição do momento angular total J = L + S. As autofunções de L^2 e S^2 são também autofunções de J^2 . Assim, L, S, M_L e M_S são bons números quânticos.

A notação espectroscópica para este acoplamento foi introduzida por Russel e Saunders [32] e é utilizada universalmente

$$^{2S+1}L_J$$
 (28)

onde valores numéricos são substituídos em 2S + 1 (S número quântico de spin total) e J, e o símbolo L deve ser substituído pelo número quântico angular total.

Quando as condições de acoplamento em um átomo correspondem à LS puro, os estados quânticos podem ser descritos em termos dos números quânticos do acoplamento LS. Valores de L e S especificam um termo, valores de L, S e J especificam um nível, e valores de L, S, J e M especificam um estado. O valor de 2S + 1 é chamado multiplicidade do termo.

2.4.2 Acoplamento jj

Quando o número atômico Z aumenta, as interações spin-órbita se tornam mais importantes; quando elas se tornam mais importantes que as interações coulombianas as condições de acoplamento se aproximam de jj puro.

No esquema de acoplamento jj, funções da base são formadas primeiro acoplando o spin de cada elétron a seu momento angular orbital, e então acoplando os vários j_i para se obter o momento angular total J:

$$l_i + s_i = j_i,$$

 $j_1 + j_2 = J_2,$
 $J_2 + j_3 = J_3,$
.

$$J_{N-1}+j_N = J_N = J$$

A notação do acoplamento ji para níveis de energia é:

$$(j_1, j_2)_J$$
 (29)

2.4.3 Acoplamento jk

Este é um dos tipos de acoplamento de pares (pair coupling) [4]. É mais comum que o acoplamento jj, apesar de menos conhecido. São condições de acoplamento onde os níveis energéticos tendem a aparecer em pares, estas condições ocorrem para configurações excitadas nas quais a energia depende fracamente do spin do elétron excitado. Este acoplamento ocorre principalmente quando o elétron excitado possui momento angular grande (um elétron g ou f). O esquema de acoplamento é:

$$l_1 + s_1 = j_1$$
$$j_1 + l_2 = K$$
$$K + s_2 = J$$

e a notação usual é

$$j_1 \left[K \right]_j \tag{30}$$

Este tipo de acoplamento aparece em algumas configurações do Si VI, e será mostrado em seguida.

3 Interação entre átomos e radiação

Ao estudar a interação entre átomos e radiação é necessário que usemos funções Hamiltonianas para descrever as partículas e os campos. Inicialmente estudamos um campo de radiação pura onde os campos elétrico E e magnético B são perpendiculares entre si e em relação à direção de propagação. O segundo passo é considerar a interação deste campo com o sistema físico em que estamos interessados.

Descrevemos um campo eletromagnético por seu potencial vetor A. Para simplificar os cálculos iremos supor que a radiação está confinada a uma cavidade cúbica de lado L, com as paredes perfeitamente condutoras. Isto não restringe a validade dos resultados obtidos, uma vez que podemos considerar L suficientemente grande quando comparado às dimensões do sistema físico com o qual a radiação irá interagir, tornando os resultados independentes do tamanho e da forma da cavidade.

Impomos condições de contorno periódicas em cada face do cubo. Na direção z, por exemplo, teremos $e^{ik_z z} = e^{ik_z(z+L)}$, onde $k_z = (2\pi/L)N_z$. Como resultado o vetor de onda será:

$$k = (2\pi/L)(N_x x + N_y y + N_z z)$$
(31)

$$k = |\mathbf{k}| = \frac{w_k}{c} \tag{32}$$

Podemos escrever o potencial vetor como uma superposição linear de ondas planas:

$$A(\mathbf{r},t) = \sum_{k\lambda} e_{k\lambda} \left\{ A_{k\lambda} \exp\left[i\left(\mathbf{k}\cdot\mathbf{r} - w_kt\right)\right] + A^*_{k\lambda} \exp\left[-i\left(\mathbf{k}\cdot\mathbf{r} - w_kt\right)\right] \right\}$$
(33)

onde $e_{k\lambda}$ é o vetor unitário de polarização, que depende da direção de propagação e possui duas componentes independentes $e_{k1} \in e_{k2}$.

Os campos elétrico e magnético podem ser obtidos a partir da expressão do potencial vetor (eq.33):

$$E(\mathbf{r},t) = \frac{i}{c} \sum_{k\lambda} w_k e_{k\lambda} \left\{ A_{k\lambda} e^{i(\mathbf{k}\cdot\mathbf{r}) - w_k t} - A^*_{k\lambda} e^{-i(\mathbf{k}\cdot\mathbf{r} - w_k t)} \right\}$$
(34)

$$B(\mathbf{r},t) = \frac{i}{c} \sum_{k\lambda} w_k \left(\mathbf{k} \times \mathbf{e}_{k\lambda} \right) \left\{ A_{k\lambda} e^{i(\mathbf{k}\cdot\mathbf{r}) - w_k t} - A_{k\lambda}^* e^{-i(\mathbf{k}\cdot\mathbf{r} - w_k t)} \right\}$$
(35)

A energia do campo eletromagnético W, de acordo com [1] será dada por:

$$W = \left(\frac{1}{8\pi}\right) \int \left(\mathbf{E} \cdot \mathbf{E} + \mathbf{B} \cdot \mathbf{B}\right) dV$$
(36)

realizando a integral

$$W = \frac{V}{2\pi c^2} \sum_{k\lambda} w_k^2 A_{k\lambda} A_{k\lambda}^*$$
(37)

A Hamiltoniana do campo eletromagnético na cavidade é obtida a partir da energia do campo W (eq.37), em termos das variáveis canônicas:

$$Q_{k\lambda} = \sqrt{\frac{V}{\pi}} \frac{1}{2c} \left(A_{k\lambda} + A_{k\lambda}^* \right) \tag{38}$$

$$P_{k\lambda} = -i\sqrt{\frac{V}{\pi}} \frac{w_{k\lambda}}{2c} \left(A_{k\lambda} - A_{k\lambda}^*\right) \tag{39}$$

As coordenadas $Q_{k\lambda} \in P_{k\lambda}$ introduzidas satisfazem as equações de Hamilton, e quando expressamos W em termos destas quantidades podemos interpretá-la como a hamiltoniana do campo eletromagnético:

$$W = \frac{1}{2} \sum_{k\lambda} \left(P_{k\lambda}^2 + w_k^2 Q_{k\lambda}^2 \right) \tag{40}$$

Ao escrevermos W em termos das variáveis canônicas ela toma a mesma forma da hamiltoniana do oscilador harmônico linear [2], e por isto a expansão obtida acima-é conhecida por expansão em osciladores.

3.1 Quantização do campo de radiação

Para que possamos fazer a quantização do campo de radiação substituímos as variáveis clássicas por seus correspondentes operadores quânticos. Tais operadores irão satisfazer as condições:

$$[P_{k\lambda}, Q_{k\lambda}] = i\hbar\delta_{kk}\delta_{\lambda\lambda}$$
(41)

$$[Q_{k\lambda}, Q_{k'\lambda'}] = [P_{k\lambda}, P_{k'\lambda'}] = 0$$
(42)

Seguindo um procedimento análogo ao utilizado quando trabalhamos com osciladores harmônicos, inserimos um novo conjunto de coordenadas que se relacionam com as anteriores por:

$$a_{k\lambda} = \frac{1}{\sqrt{2\hbar \mathbf{w}_k}} \left(w_k Q_{k\lambda} + i P_{k\lambda} \right) \tag{43}$$

$$a_{k\lambda}^* = \frac{1}{\sqrt{2\hbar w_k}} \left(w_k Q_{k\lambda} - i P_{k\lambda} \right) \tag{44}$$

Estes operadores satisfazem relações de comutação semelhantes às satisfeitas por $Q_{k\lambda} \in P_{k\lambda}$. Com estes operadores, conhecidos por operadores de aniquilação e criação respectivamente, é possível escrever um hamiltoniano para a energia do campo de radiação:

$$H = \sum_{k\lambda} H_{k\lambda} = \sum_{k\lambda} \hbar w_k \left(a_{k\lambda}^* a_{k\lambda} + \frac{1}{2} \right) = \sum_{k\lambda} \hbar w_k \left(N_{k\lambda} + \frac{1}{2} \right)$$
(45)

onde $N_{k\lambda}$ é o operador número para o modo k e a polarização λ , dado por

$$N_{k\lambda} = a_{k\lambda}^* a_{k\lambda} \tag{46}$$

e cujos autovalores são $n_{k\lambda} = 0, 1, 2, ...,$ tais que

$$N_{k\lambda} \mid n_{k\lambda} \rangle = n_{k\lambda} \mid n_{k\lambda} \rangle \tag{47}$$

Podemos ver da equação para o hamiltoniano (eq.45) que os valores possíveis para a energia do sistema serão

$$E = \sum_{k\lambda} E_{k\lambda} = \sum_{k\lambda} \hbar w_k \left(n_{k\lambda} + \frac{1}{2} \right)$$
(48)

Seguindo a analogia com o oscilador harmônico podemos escrever:

$$a_{k\lambda} | n_{k\lambda} \rangle = \sqrt{n_{k\lambda}} | n_{k\lambda} - 1 \rangle \tag{49}$$

$$a_{k\lambda}^* \mid n_{k\lambda} \rangle = \sqrt{n_{k\lambda} + 1} \mid n_{k\lambda} + 1 \rangle \tag{50}$$

$$a_{k\lambda} \left| 0 \right\rangle = 0 \tag{51}$$

Quando $n_{k\lambda} = 0$ não há fótons no modo $k\lambda$, entretanto a energia no modo, de acordo com eq.48, é $\frac{1}{2}\hbar w_k$. Este valor é conhecido como energia do ponto zero. Para um campo de radiação com um número infinito de modos, a energia de ponto zero seria então infinita. Esta é uma das peculiaridades da descrição quântica do campo de radiação. Uma explicação disto está baseada na nãocomutatividade do operador $N_{k\lambda}$ com os operadores de criação e aniquilação, e como conseqüência $\sum N_{k\lambda}$ não comuta com os campos E e B, que como vimos (eq.34 e eq.35) também irão depender dos operadores de criação e aniquilação. Desde que as observáveis associadas com operadores que não comutam estão sujeitas ao princípio da incerteza, um aumento na precisão do número de fótons significa um aumento na incerteza dos campos. Quando nenhum fóton está presente, as flutuações nas forças de campo são responsáveis pela energia de ponto zero infinita.

Ao fazermos a transição entre a mecânica clássica e a mecânica quântica o potencial vetor A deve ser escrito como um operador quântico. Se escrevemos suas componentes em termos dos operadores de criação e aniquilação dados por eq.43 e eq.44 teremos:

$$A_{k\lambda} \to \sqrt{\left(2\pi\hbar c^2\right)/V w_k a_{k\lambda}}$$
 (52)

$$A_{k\lambda}^* \to \sqrt{(2\pi\hbar c^2) / V w_k a_{k\lambda}^*}$$
(53)

O campo eletromagnético fica então caracterizado pelos três operadores:

$$A(\mathbf{r}) = \sum_{k\lambda} \sqrt{(2\pi\hbar c^2)/V w_k} e_{k\lambda} \left[a_{k\lambda} e^{i(\mathbf{k}\cdot\mathbf{r})} + a_{k\lambda}^* e^{-i(\mathbf{k}\cdot\mathbf{r})} \right]$$
(54)

$$E(\mathbf{r}) = i \sum_{k\lambda} \sqrt{(2\pi \hbar w_k)/V} e_{k\lambda} \left[a_{k\lambda} e^{i(\mathbf{k}\cdot\mathbf{r})} - a_{k\lambda}^* e^{-i(\mathbf{k}\cdot\mathbf{r})} \right]$$
(55)

$$B(\mathbf{r}) = i \sum_{k\lambda} \sqrt{(2\pi \hbar w_k) / V} \left(\mathbf{k} \times \mathbf{e}_{k\lambda} \right) \left[a_{k\lambda} e^{i(\mathbf{k} \cdot \mathbf{r})} - a_{k\lambda}^* e^{-i(\mathbf{k} \cdot \mathbf{r})} \right]$$
(56)

3.2 Hamiltoniana de interação e elementos de matriz

A hamiltoniana total para um campo de radiação interagindo com um sistema atômico pode ser dada por:

$$H = H_{rad} + H_{atm} + H_{int} \tag{57}$$

onde chamamos de H_{rad} a hamiltoniana do campo de radiação, H_{atm} o hamiltoniano do sistema atômico a ser considerado, e H_{int} a hamiltoniana de interação entre os dois sistemas, que podem ser escritos como:

$$H_{rad} = \sum_{k\lambda} \hbar w_k \left(a_{k\lambda}^* a_{k\lambda} + \frac{1}{2} \right)$$
(58)

$$H_{atm} = \sum_{i} \left(\frac{p_i^2}{2m}\right) + V \tag{59}$$

onde V contenha todos os termos necessários para definir o estado atômico, por exemplo, interação Coulombiana com o núcleo, repulsão Coulombiana entre elétrons, interação spin-órbita, campos externos, etc.

$$H_{int} = \frac{e}{mc} p \cdot A + \frac{e^2}{2mc^2} A^2 + \frac{e\hbar}{2mc} \sigma \cdot \nabla \times A \tag{60}$$

A interação H_{int} [3] possui os termos comuns da interação entre um átomo e um campo representado pelo potencial A, onde os dois primeiros termos contém energia cinética e termos de interação como representado por A, e o terceiro termo é a interação entre o momento magnético de spin σ e o campo magnético $B = \nabla \times A$.

Podemos considerar o hamiltoniano de interação como uma perturbação, e então o hamiltoniano total será:

$$H = H_0 + H_{int} \tag{61}$$

No hamiltoniano da interação (eq.54) o primeiro termo é dominante em interações eletromagnéticas. Com o potencial vetor na representação de Schrodinger (eq.49) temos:

$$H_{1} = \sum_{k\lambda} \left(\frac{e}{m}\right) \sqrt{\frac{2\pi\hbar}{Vw_{k}}} \left(\mathbf{e}_{k\lambda} \cdot \mathbf{p}\right) \left[a_{k\lambda}e^{i(\mathbf{k}\cdot\mathbf{r})} + a_{k\lambda}^{*}e^{-i(\mathbf{k}\cdot\mathbf{r})}\right]$$
(62)

$$H_1 = H_1^{(-)} + H_1^{(+)}$$

onde $H_1^{(-)}$ e $H_1^{(+)}$ são dados por:

$$H_{1}^{(-)} = \sum_{k\lambda} \left(\frac{e}{m}\right) \sqrt{\frac{2\pi\hbar}{Vw_{k}}} \left(\mathbf{e}_{k\lambda} \cdot \mathbf{p}\right) a_{k\lambda} e^{i(\mathbf{k}\cdot\mathbf{r})}$$
(63)

$$H_{1}^{(+)} = \sum_{k\lambda} \left(\frac{e}{m}\right) \sqrt{\frac{2\pi\hbar}{Vw_{k}}} \left(\mathbf{e}_{k\lambda} \cdot \mathbf{p}\right) a_{k\lambda}^{*} e^{-i(\mathbf{k} \cdot \mathbf{r})}$$
(64)

A função de onda de ordem zero (na ausência de radiação) será o produto de uma função de onda atômica e uma função de onda descrevendo um campo de radiação:

$$\Psi_{a} | n_{1}, n_{2}, ..., n_{i}, ... \rangle \equiv | \Psi_{a}; n_{1}, n_{2}, ..., n_{i}, ... \rangle$$
(65)

os elementos de matriz de $H_1^{(-)}$ e $H_1^{(+)}$ serão calculados de:

$$\langle \Psi_b; n_1, n_2, ..., n_i, ... | H_1^{(-)} | \Psi_a; n_1, n_2, ..., n_i, ... \rangle$$
 (66)

$$\langle \Psi_b; n_1, n_2, ..., n_i, ... | H_1^{(+)} | \Psi_a; n_1, n_2, ..., n_i, ... \rangle$$
 (67)

um resultado não-nulo para os elementos de matriz ocorrerão apenas quando houver pelo menos um modo tal $n_i' = n_i - 1$ para a eq.66 ou $n_i' = n_i + 1$ para a eq.67. Se o estado atômico inicial for $|a\rangle \equiv |\Psi_a\rangle$ e o estado atômico final for $|b\rangle \equiv |\Psi_b\rangle$:

$$\langle b; n_{k\lambda} - 1 | H_1^{(-)} | a; n_{k\lambda} \rangle = \frac{e}{m} \sqrt{\frac{2\pi\hbar}{w_k V}} \langle b; n_{k\lambda} - 1 | (\mathbf{e}_{k\lambda} \cdot \mathbf{p}) a_{k\lambda} e^{i\mathbf{k}\cdot\mathbf{r}} | a; n_{k\lambda} \rangle$$

$$= \frac{e}{m} \sqrt{\frac{2\pi\hbar n_{k\lambda}}{w_k V}} \langle b | (\mathbf{e}_{k\lambda} \cdot \mathbf{p}) e^{i\mathbf{k}\cdot\mathbf{r}} | a \rangle$$
(68)

$$\langle b; n_{k\lambda} + 1 | H_1^{(+)} | a; n_{k\lambda} \rangle = \frac{e}{m} \sqrt{\frac{2\pi \hbar (n_{k\lambda} + 1)}{w_k V}} \langle b | (\mathbf{e}_{k\lambda} \cdot \mathbf{p}) e^{-i\mathbf{k} \cdot \mathbf{r}} | a \rangle$$
(69)

Precisamos agora resolver os elementos de matriz $\langle b | (\mathbf{e}_{k\lambda} \cdot \mathbf{p}) e^{\pm i \mathbf{k} \cdot \mathbf{r}} | a \rangle$. Se $k \cdot r$ for muito menor que 1, tal que $e^{\pm i \mathbf{k} \cdot \mathbf{r}} \approx 1$, a resolução fica simplificada. Esta aproximação onde apenas o primeiro termo na expansão em série da exponencial é considerado, é conhecida como aproximação do dipolo elétrico (E1). Se usamos a expressão para o hamiltoniano atômico (eq.59) e as relações de comutação entre coordenadas de posição e momento podemos escrever os elementos de matriz nas equações 68 e 69 de uma maneira mais simples:

$$e_{k\lambda} \cdot \langle b | e^{\pm i\mathbf{k} \cdot \mathbf{r}} p | a \rangle = e_{k\lambda} \langle b | p | a \rangle = imw_k e_{k\lambda} \cdot \langle b | r | a \rangle$$
(70)

$$\langle b; n_{k\lambda} - 1 | H_1^{(-)} | a; n_{k\lambda} \rangle_{E1} = ie \sqrt{\frac{2\pi \hbar w_k n_{k\lambda}}{V}} e_{k\lambda} \cdot \langle b | r | a \rangle$$
(71)

$$\langle b; n_{k\lambda} + 1 | H_1^{(+)} | a; n_{k\lambda} \rangle_{E1} = ie \sqrt{\frac{2\pi \hbar w_k (n_{k\lambda} + 1)}{V}} e_{k\lambda} \cdot \langle b | r | a \rangle$$
(72)

a freqüência presente nestas equações é $w_k = (E_b - E_a)$ onde E_a e E_b são os autovalores dos estados a e b respectivamente.

Se usamos mais um termo da expansão em séries da exponencial, $e^{i\mathbf{k}\cdot\mathbf{r}} \approx 1 + k \cdot r$, então os elementos de matriz de H_1 (eq.62) serão associados com transições de dipolo magnético (M1) e transições de quadrupolo elétrico (E2). transições deste tipo são conhecidas por transições proibidas, e mostraremos apenas os resultados finais:

-Dipolo elétrico (E1)

$$\langle b; n_{k\lambda} - 1 | H_1^{(-)} | a; n_{k\lambda} \rangle_{E1} = ie\sqrt{\frac{2\pi\hbar w_k n_{k\lambda}}{V}} \mathbf{e}_{k\lambda} \cdot \langle b | \mathbf{R} | a \rangle$$
$$\langle b; n_{k\lambda} + 1 | H_1^{(+)} | a; n_{k\lambda} \rangle_{E1} = ie\sqrt{\frac{2\pi\hbar w_k (n_{k\lambda} + 1)}{V}} \mathbf{e}_{k\lambda} \cdot \langle b | \mathbf{R} | a \rangle$$
(73)

-Dipolo magnético (M1)

$$\langle b; n_{k\lambda} - 1 | H_1^{(-)} | a; n_{k\lambda} \rangle_{M1} = -i\sqrt{\frac{2\pi\hbar w_k n_{k\lambda}}{V}} \left(\mathbf{k} \times \mathbf{e}_{k\lambda} \right) \cdot \langle b | \sum_j \mu_j | a \rangle$$

$$\langle b; n_{k\lambda} + 1 | H_1^{(+)} | a; n_{k\lambda} \rangle_{M1} = -i\sqrt{\frac{2\pi\hbar w_k (n_{k\lambda} + 1)}{V}} \left(\mathbf{k} \times \mathbf{e}_{k\lambda} \right) \cdot \langle b | \sum_j \mu_j | a \rangle$$

(74)

-Quadrupolo elétrico (E2)

$$\langle b; n_{k\lambda} - 1 | H_1^{(-)} | a; n_{k\lambda} \rangle_{E2} = \frac{-e}{2c} \sqrt{\frac{2\pi \hbar w_k^3 n_{k\lambda}}{V}} \mathbf{e}_{k\lambda} \cdot \langle b | \sum_j Q_j | a \rangle \cdot \mathbf{k}$$
$$\langle b; n_{k\lambda} + 1 | H_1^{(+)} | a; n_{k\lambda} \rangle_{E2} = \frac{e}{2c} \sqrt{\frac{2\pi \hbar w_k^3 (n_{k\lambda} + 1)}{V}} \mathbf{e}_{k\lambda} \cdot \langle b | \sum_j Q_j | a \rangle \cdot \mathbf{k}$$
(75)

Nas equações para o dipolo magnético (eq.74) μ_j é o operador de momento magnético associado com o momento angular orbital $L = (\mathbf{r} \times \mathbf{p})$, e nas equações para o quadrupolo elétrico (eq.75) $Q = rr - \frac{1}{3}r^2\delta_{ij}$.

3.3 Probabilidades de transição

Em processos de emissão e absorção em átomos podemos deslocar a totalidade dos estados atômicos por apenas os dois estados discretos participantes na transição. Esta simplificação é possível se a energia de separação entre os dois estados do átomo corresponder a um fóton de energia $\hbar w$, enquanto todos os outros níveis estejam espaçados de tal maneira que nenhuma energia de separação seja próxima de $\hbar w$.

Consideremos um átomo no estado $|a\rangle$ interagindo com um campo de radiação descrito por $|n_{k\lambda}\rangle$. O estado inicial do sistema será $|A\rangle = |a; n_{k\lambda}\rangle$. Se ocorrer uma absorção o átomo realizará uma transição para o estado $|b\rangle$ e haverá um fóton a menos no campo de radiação. O estado final será $|B\rangle = |b; n_{k\lambda} - 1\rangle$. Resumindo teremos:

$$|A\rangle = |a; n_{k\lambda}\rangle \tag{76}$$

$$E_A = E_a + \left(n_{k\lambda} + \frac{1}{2}\right) \hbar \mathbf{w}_k \tag{77}$$

$$|B\rangle = |b; n_{k\lambda} - 1\rangle \tag{78}$$

$$E_B = E_b + \left(n_{k\lambda} - \frac{1}{2}\right) \hbar \mathbf{w}_k \tag{79}$$

$$E_B - E_A = E_b - E_a - \hbar w_k = \hbar \left(w_{ba} - w_k \right) \tag{80}$$

onde E_b e E_a são as energias dos estados atômicos final e inicial respectivamente.

Para descrever a absorção de um fóton usaremos a teoria de perturbações dependente do tempo. A probabilidade por unidade de tempo para uma transição de um estado arbitrário $|m\rangle$ para um estado $|l\rangle$ em primeira ordem é dada por [3]:

$$W_{lm} = \left(\frac{2\pi}{\hbar}\right) \left|\left\langle l\right| V \left|m\right\rangle\right|^2 \delta\left(E_l - E_m\right) \tag{81}$$

onde V é o potencial da perturbação na representação de Schrodinger. Para absorção (ou emissão) em um átomo a situação que prevalece é aquela onde $k \cdot r \ll 1$, onde $\frac{2\pi}{k}$ é o comprimento de onda e r uma dimensão atômica. Neste caso o potencial vetor é essencialmente constante sobre a região do átomo e os

elementos de matriz de dipolo elétrico são aplicáveis. Da primeira equação para o dipolo elétrico (eq.73), temos para absorção [3]:

$$W_{abs} = \left(\frac{4\pi^2 e^2 w_k n_{k\lambda}}{V}\right) \left|\mathbf{e}_{k\lambda} \cdot \langle b | \mathbf{R} | a \rangle\right|^2 \delta\left(E_b - E_a\right) \tag{82}$$

a função δ assegura a conservação de energia para o sistema como um todo (átomo mais campo de radiação), $\delta (E_b - E_a) = \left(\frac{1}{\hbar}\right) \delta (w_{ba} - w_k)$.

Até agora temos considerado uma única freqüência w_k , mas é necessário que consideramos a partir daqui uma distribuição de modos em um pequeno range de freqüências. Para um campo de radiação em uma cavidade cúbica o número de modos por unidade de energia é:

$$\frac{1}{\hbar}\frac{dN}{dw_k} = \frac{V}{\left(2\pi\right)^3 \hbar c^3} w_k^2 d\Omega \tag{83}$$

Devemos trocar a distribuição de densidade na eq.82 pela descrita acima (eq.83):

$$dW_{abs} = \frac{\alpha w_k^3 n_{k\lambda}}{2\pi c^2} \left| \mathbf{e}_{k\lambda} \cdot \langle b \right| \mathbf{R} \left| a \rangle \right|^2 d\Omega \tag{84}$$

onde $\alpha = \frac{e^2}{hc}$ é a constante de estrutura fina e quantidades como $w_k \in n_{k\lambda}$ são médias no intervalo considerado.

Para emissão os cálculos seguem a mesma linha, mas os elementos de matriz utilizados são os da segunda equação para dipolo elétrico na eq.73. O resultado final será:

$$dW_{ems} = \frac{\alpha w_k^3 \left(n_{k\lambda} + 1 \right)}{2\pi c^2} \left| \mathbf{e}_{k\lambda} \cdot \left\langle b \right| \mathbf{R} \left| a \right\rangle \right|^2 d\Omega \tag{85}$$

As equações 84 e 85 são as probabilidades por unidade de tempo para absorção e emissão respectivamente, de um fóton com vetor de onda k, polarização λ , e freqüência angular w_k , contido em um elemento de ângulo sólido $d\Omega$. Se fazemos a soma sobre as duas polarizações independentes e integramos no elemento de volume temos:

$$W_{abs} = \frac{4\alpha w^3 n}{3c^2} \left| \langle b | \mathbf{R} | a \rangle \right|^2 \tag{86}$$

$$W_{ems} = \frac{4\alpha w^3 \left(n+1\right)}{3c^2} \left| \langle b | \mathbf{R} | a \rangle \right|^2 \tag{87}$$

Comparando as equações acima (eq.86 e eq.87) podemos separar a equação para emissão em dois termos:

$$W_{ems} = W_i + W_s$$

$$W_{i} = \frac{4\alpha w^{3}n}{3c^{2}} \left| \left\langle b \right| \mathbf{R} \left| a \right\rangle \right|^{2} \tag{88}$$

$$W_s = \frac{4\alpha w^3}{3c^2} \left| \left\langle b \right| \mathbf{R} \left| a \right\rangle \right|^2 \tag{89}$$

A quantidade W_i é idêntica à W_{abs} , e é conhecida como probabilidade de emissão estimulada por unidade de tempo, já que depende de n, o número de fótons com freqüência w. Já a quantidade W_s não depende de n, e é conhecida como probabilidade de emissão espontânea por unidade de tempo. Assim, se n = 0 não haverá absorção nem emissão induzida, mas desde que W_s não é nulo, emissão espontânea pode ocorrer.

Se W(ba) representa a probabilidade de transição por unidade de tempo de um estado $|\alpha_a, J_a, M_a\rangle g_a$ vezes degenerado, para um estado $|\alpha_b, J_b, M_b\rangle g_b$ vezes degenerado, com $\alpha_a e \alpha_b$ representando os números quânticos necessários para uma especificação completa dos respectivos estados, então:

$$W_{abs}(ba) = \frac{1}{g_a} \sum_{M_a M_b} \frac{4\alpha w^3 n}{3c^2} \left| \langle \alpha_b, J_b, M_b | \mathbf{R} | \alpha_a, J_a, M_a \rangle \right|^2$$
(90)

$$W_{errs}(ba) = \frac{1}{g_a} \sum_{M_a M_b} \frac{4\alpha w^3 (n+1)}{3c^2} \left| \langle \alpha_b, J_b, M_b | \mathbf{R} | \alpha_a, J_a, M_a \rangle \right|^2$$
(91)

Note que $W(ab) = \begin{pmatrix} g_a \\ g_b \end{pmatrix} W(ba).$

É mais conveniente trabalhar com quantidades que não dependam das degenerescências, e com esta finalidade introduzimos a linha de força S, que é simétrica nos estados inicial e final, e é definida por:

$$S(ab) = S(ba) = e^{2} \sum_{M_{a}M_{b}} |\langle \alpha_{b}, J_{b}, M_{b}| \mathbf{R} |\alpha_{a}, J_{a}, M_{a} \rangle|^{2}$$
(92)

Podemos escrever as probabilidades de emissão e absorção em termos das linhas de força:

$$W_{abs}(ba) = W_i(ba) = \frac{4w^3n}{3\hbar c^3 g_a} S(ab)$$
(93)

$$W_{abs}(ab) = W_i(ab) = \frac{4w^3n}{3\hbar c^3 g_b} S(ab)$$
(94)

$$W_s(ba) = \frac{4w^3}{3\hbar c^3 g_a} S(ab) \tag{95}$$

$$W_s(ab) = \frac{4w^3}{3\hbar c^3 g_b} S(ab)$$
(96)

3.4 Forças de Osciladores

Chegamos ao ponto de definir as forças de osciladores. Para dois estados $|a\rangle = |b\rangle \operatorname{com} E_b \rangle E_a$ a força de oscilador f(ba) para absorção $|a\rangle \rightarrow |b\rangle \epsilon$ definida por:

$$f(ba) = \left(\frac{2mw_{ba}}{3\hbar e^2 g_a}\right) S(ba)$$
(97)

Os valores de f podem ser positivos ou negativos, por convenção adotamos as forças de osciladores de absorção positivas e as forças de osciladores de emissão negativas.

Uma quantidade simétrica aos níveis mais alto e mais baixo é a força de oscilador ponderada, definida por:

$$gf = (2J_a + 1) f(ba)$$
 (98)

$$gf = \frac{2mw_{ba}}{3\hbar} \left| \langle \alpha_b J_b \right| \left| \mathbf{R} \right| \left| \alpha_a J_a \rangle \right|^2 \tag{99}$$

A força de osciladores é uma quantidade adimensional, tem origem na teoria clássica onde um átomo emitindo ou absorvendo radiação é considerado um conjunto de osciladores interagindo com os campos clássicos. A força de osciladores quântica para uma transição atômica corresponde ao número de osciladores clássicos que poderiam emitir ou absorver a mesma quantidade de radiação.

3.5 Coeficientes de Einstein e tempos de vida atômicos

O coeficiente de Einstein A na aproximação de dipolo elétrico é definido por:

$$A = W_s = \left(\frac{4\alpha w^3}{3c^2}\right) \left|\left\langle b\right| \mathbf{R} \left|a\right\rangle\right|^2 \tag{100}$$

onde W_s é a probabilidade de emissão espontânea por unidade de tempo. Podemos definir o tempo de vida espontâneo τ de um estado $|a\rangle$ por:

$$\tau = \frac{1}{A} \tag{101}$$

Se em um instante inicial t = 0 existem N_0 átomos em um estado excitado $|b\rangle$, após um tempo t poderão ter ocorrido emissões espontâneas e o número de átomos neste estado será:

$$N(t) = N_0 e^{-\frac{t}{\tau}}$$
(102)

O coeficiente de Einstein *B* está relacionado com a probabilidade de absorção (ou emissão estimulada) por unidade de tempo pela relação:

$$W_{abs} = W_i = BU_\omega \tag{103}$$

onde $U_{\omega}d\omega$ é a energia por unidade de volume para fótons no intervalo $\omega + d\omega$. Esta quantidade consiste do produto do número de modos no intervalo $d\omega d\Omega$, número de polarizações independentes, número médio de fótons em $d\omega$, e energia média do fóton; este produto é então integrado sobre $d\Omega$ e dividido pelo volume V:

$$U_{\omega}d\omega = \frac{V\omega^2 d\omega}{2\pi c^3} 2n\hbar\omega \frac{1}{V} \int d\Omega$$
(104)

$$U_{\omega} = \frac{n\hbar\omega^3}{\pi^2 c^3} \tag{105}$$

O coeficiente de Einstein B pode então ser escrito como:

$$B = \left(\frac{4\pi^2 \alpha c}{3\hbar}\right) \left|\langle b | \mathbf{R} | a \rangle\right|^2$$
$$= \left(\frac{\pi^2 c^3}{\hbar \omega^3}\right) A \tag{106}$$

Os coeficientes de Einstein também podem ser escritos em função das linhas de força S, o que se faz necessário se o problema apresentar degenerescências:

$$A(ba) = \left(\frac{4\omega^3}{3\hbar c^3 g_a}\right) S(ab)$$
(107)

$$B(ba) = \left(\frac{4\pi^2}{3\hbar g_a}\right) S(ab)$$
(108)

4 Cálculos computacionais na espectroscopia atômica

Para o cálculo quantitativo das funções de onda, energia média das configurações, parâmetros de Slater, forças de osciladores ponderadas, tempos de vida, entre outros, utilizamos um pacote de programas em Fortran 77 que foram desenvolvidos pelo professor Robert D. Cowan de Los Alamos Scientific Laboratory, em Los Alamos, New Mexico [29]. Estes programas são: Elcalc, Strans, Cowan, RCG10 e RCE19 e estão instalados na rede de computação da Unicamp.

Com estes programas podemos obter informações sobre a energia média das configurações, os parâmetros energéticos de Slater, o parâmetro de acoplamento spin-órbita, as integrais de interação entre as configurações, os acoplamentos LS, jj, e outros que se façam necessários, os níveis de energia, os comprimentos de onda e as probabilidades de transição. Dentre os programas utilizados o de maior importância é o que permite o ajuste dos níveis energéticos através do método dos mínimos quadrados, que utiliza dados experimentais em sua entrada.

4.1 Cálculo dos níveis de energia

Os níveis de energia das configurações são inicialmente calculados pelo programa Elcalc. Usando as transições obtidas experimentalmente e seus respectivos comprimentos de onda, os níveis energéticos são calculados a partir de um processo iterativo, que procura as transições correspondentes a todas as combinações possíveis de um nível que se queira determinar com todos os demais. Como os valores utilizados em nossos cálculos são obtidos de diferentes trabalhos experimentais, este programa agrega pesos diferentes para cada transição de acordo com o erro do experimento utilizado em sua obtenção.

O programa apresenta em sua saída o valor de cada nível, assim como o desvio padrão e o número de transições que colaboraram para a determinação do mesmo. Este processo se repete para todos os níveis inseridos (pares e ímpares).

4.2 Cálculo dos comprimentos de onda

Uma vez calculados os níveis energéticos das configurações envolvidas, podemos compará-los entre si para obtermos novos valores de comprimentos de onda das transições possíveis. Estes novos valores estarão de acordo com os novos níveis de energia que haviam sido calculados, onde se levava em consideração os pesos agregados dependendo do erro do experimento utilizado para sua obtenção.

O programa que faz estes cálculos é denominado Strans, e os comprimentos de onda das transições apresentados na tabela final para cada íon em estudo foram obtidos a partir dele.

4.3 Cálculo das funções de onda

As funções de onda radiais são calculadas pelo programa Cowan [29]. São utilizados dois programas internos, RCN e RCN2. O programa RCN [4] calcula as funções de onda radiais $P_i(r)$ que correspondem à energia do centro de gravidade (E_{av}) , calcula também as integrais de Coulomb F^k e G^k (equações 24 e 25) e as integrais de spin-órbita ξ_i , usando as fórmulas do potencial central:

$$F_{ij}^{k} = R^{k}(ij,ij) = \int_{0}^{\infty} \int_{0}^{\infty} \frac{2r_{<}^{k}}{r_{>}^{k+1}} \left| P_{i}(r_{1}) \right|^{2} \left| P_{j}(r_{2}) \right|^{2} dr_{1} dr_{2}$$
(109)

$$G_{ij}^{k} = R^{k} (ij, ji) = \int_{0}^{\infty} \int_{0}^{\infty} \frac{2r_{\leq}^{k}}{r_{>}^{k+1}} P_{i}^{*} (r_{1}) P_{j}^{*} (r_{2}) P_{j} (r_{1}) P_{i} (r_{2}) dr_{1} dr_{2} \quad (110)$$

$$\xi_{i} = \int_{0}^{\infty} \xi(r) \left| P_{i}(r) \right|^{2} dr = \frac{\alpha^{2}}{2} \int_{0}^{\infty} \frac{1}{r} \left(\frac{dV}{dr} \right) \left| P_{i}(r) \right|^{2} dr$$
(111)

O programa RCN2 calcula as integrais de interação de configuração de Coulomb \mathbb{R}^k entre cada par de configurações que interagem, calcula também as integrais radiais de dipolo e quadrupolo elétrico (E₁ e E₂) para cada par de configurações.

4.3.1 RCN

O arquivo de entrada deste programa contém as configurações do átomo ou íon a ser analisado, seu número atômico Z, seu grau de ionização, o rótulo de cada configuração, a especificação dos orbitais e suas respectivas ocupações eletrônicas [4]. O primeiro passo é calcular o número de elétrons no átomo ou íon em estudo. Em seguida dá-se início ao processo de obtenção das configurações, isto é feito tomando-se como base a configuração fundamental do gás nobre cujo número atômico Z seja o mais próximo do número de elétrons N do átomo ou íon, com a condição $Z \square N$. Modifica-se esta configuração ou adiciona-se a ela o número de elétrons necessários para que seja obtida a configuração desejada. Estima-se o autovalor para cada orbital.

O potencial inicial será estimado a partir das funções $-\frac{2Z}{r}$ para r pequenos, e $-\frac{2(Z-N+1)}{r}$ para r grande. Com isto tem-se um potencial inicial $V^i(r)$ que pode ser usado para calcular funções de prova $P_i^r(r)$ para os orbitais $n_i l_i$ no primeiro ciclo da interação (m=1). Para os ciclos seguintes o cálculo pode ser efetuado com o método desejado, que pode ser Hartree (H), Hartree-Fock-Slater(HFS), Hartree-plus-statistical-exchange (HX), ou Hartree-Slater (HS), e as funções $P_j(r)$ obtidas no ciclo anterior são utilizadas. Para que a convergência ocorra mais rapidamente, cada função de prova $P_i(r)$ usada para calcular $V^i(r)$ a partir do terceiro ciclo será uma combinação linear da função de prova de entrada e da integral da equação diferencial do ciclo imediatamente anterior. Usando as funções de onda radiais finais várias integrais radiais de um-elétron (como energia cinética, energia potencial eletro-nuclear, entre outras) são computadas. O arquivo de saída é utilizado como entrada do programa seguinte, ele consiste, para cada configuração, da energia do centro de gravidade E_{av} e das integrais radiais de Coulomb ($F^k \in G^k$) e integrais de spin-órbita (zeta) necessárias para o cálculo dos níveis energéticos para a configuração em questão.

4.3.2 RCN2

RCN2 é um programa que usa as funções de onda obtidas em RCN para calcular as integrais de Coulomb R^k entre cada par de configurações que interagem, e as integrais radiais de dipolo (E1) ou quadrupolo (E2) elétricos entre cada par de configurações.

Para que os cálculos do espectro e dos níveis de energia sejam realizados satisfatoriamente é necessário que as configurações eletrônicas estejam arranjadas no arquivo de entrada em uma maneira específica. A primeira configuração deve ser a de menor energia, seguida pelas outras de mesma paridade, e depois as da paridade oposta. Dentro de uma mesma paridade a ordem de apresentação de cada configuração deve seguir uma série de Rydberg simples (como exemplo $2s^22p^43d$, $2s^22p^44d$, $2s^22p^45d$ do Si VI).

Os valores obtidos neste programa são utilizados como entrada do seguinte, RCG.

4.4 Cálculo das probabilidades de transição e fatores angulares

As probabilidade de transição entre configurações e os fatores angulares de vários elementos de matriz na teoria da estrutura e espectro atômicos são calculados pelo programa RCG utilizando álgebra de Racah [4]. Ele resolve matrizes de energia apresentando seus autovalores e autovetores. Também realiza o cálculo das forças de osciladores ponderadas (gf) para todas as transições de dipolo elétrico possíveis. Os tempos de vida de cada configuração também são apresentados. Os fatores angulares calculados são:

- coeficientes de E_{av} , energia do centro de gravidade de cada configuração;
- coeficientes f_k , $g_k \in d$ das integrais F^k , $G^k \in \xi(r)$;
- coeficientes $r_{dk} \in r_{ek} de \mathbf{R}_k$;
- elementos de matriz de dipolo magnético;
- coeficientes angulares de dipolo e de quadrupolo elétricos.

Este programa gera dois arquivos de saída, sendo que um deles pode ser utilizado como entrada em outro programa, o RCE.

4.5 Determinação dos parâmetros

O programa RCE19 pode ser utilizado para melhorar os resultados obtidos anteriormente. A finalidade básica desde programa é ajustar os valores de vários parâmetros teóricos para produzir níveis energéticos em melhor acordo com os níveis experimentais conhecidos [4]. qualquer dos parâmetros pode ser mantido fixo em valores específicos, ou grupos de parâmetros podem ser forçados a variar de tal maneira que as razões dos valores no grupo permaneçam fixos em relação aos outros.

O ajuste é feito por um procedimento iterativo até que os valores dos parâmetros não mudem mais de um ciclo para o outro, ou por um número máximo de ciclos especificado. A iteração pode ser feita em quaisquer dos esquemas de acoplamento disponíveis no RCG. O ajuste é feito nas integrais radiais E_{av} , F^k , G^k , $R^k \in \xi$ entre outros. As integrais são consideradas parâmetros ajustáveis cujos valores serão determinados para que se obtenha o melhor ajuste entre os autovalores calculados pelo programa RCG e os valores de energia experimentais (que já haviam sido ajustados uns aos outros no programa Elcalc). A precisão do ajuste será dada pelo desvio padrão:

$$s = \left[\frac{\sum_{k} \left(E_{k} - T_{k}\right)^{2}}{N_{k} - N_{p}}\right]^{\frac{1}{2}}$$
(112)

onde E_k são as energias calculadas, T_k são os valores experimentais de energia, N_k é o número de níveis que estão sendo ajustados e N_p é o número de parâmetros envolvidos no ajuste. O ajuste é considerado satisfatório se o desvio padrão for menor que 1% do intervalo de energias coberto pelo ajuste.

O programa utiliza para o ajuste o método dos mínimos quadrados que será brevemente descrito aqui. Os parâmetros que serão estudados serão denotados pelos símbolos x_l $(1 \Box l \Box N_p)$, e serão descritos pela matriz coluna

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ x_p \end{pmatrix}$$
(113)

A matriz dos coeficientes será

$$C^l = c^l_{ij} \tag{114}$$

a hamiltoniana poderá ser escrita como

$$H = \sum_{l} C^{l} x_{l} \tag{115}$$

$$H_{ij} = \sum_{l} c_{ij}^{l} x_{l} \qquad (116)$$

a equação de autovalores será

29

$$HY^k = E^k Y^k \tag{117}$$

$$E^{k} = (Y^{k})_{tr} HY^{k}$$

= $\sum_{i} \sum_{j} y_{i}^{k} H_{ij} y_{j}^{k}$
= $\sum \left(\sum \sum y_{i}^{k} c_{ij}^{l} y_{j}^{k} \right) x_{l}$ (118)

Definimos uma matriz V $(N_k \times N_p)$ cujos elementos são

$$v_{kl} = \sum \sum y_i^k c_{ij}^l y_j^k \simeq \frac{\partial E^k}{\partial x_l}$$
(119)

Podemos escrever 118 como uma equação matricial

$$E = VX \tag{120}$$

onde E é uma matriz coluna com os valores das energias. Se escrevemos os valores experimentais das energias também em uma forma matricial, então teremos que minimizar o resíduo

$$R = \sum_{k} (E^{k} - T^{k})^{2}$$

= $|E - T|^{2}$
= $(VX - T)_{tr} (VX - T)$
= $X^{*}V^{*}VX - X^{*}V^{*}T - T^{*}VX - T^{*}T$ (121)

O valor mínimo de R ocorrerá no ponto em que sua derivada seja nula

$$\frac{\partial R}{\partial x_l} = 2V^*VX - 2V^*T = 0 \tag{122}$$

ou

$$(V^*V) X = (V^*T)$$
(123)

A expressão acima representa um conjunto de N_p equações lineares nãohomogêneas nos x_l e pode ser resolvida por métodos usuais. Em seguida o programa fará a diferença entre estes parâmetros obtidos em 123 e seus respectivos valores iniciais. Se essa diferença for menor que um valor pré-estabelecido o programa para, senão reinicia outro ciclo.

Os parâmetros assim ajustados são substituídos no arquivo de entrada do programa RCG, que então refaz os cálculos chegando a valores mais condizentes com medidas experimentais. Assim são calculados os tempos de vida e as forças de osciladores ponderadas para o Si VI e Si VII.

5 Análise dos íons Si VI e Si VII

Para o cálculo das forças de osciladores ponderadas e tempos de vida dos espectros do Si VI e Si VII foram coletados dados de níveis energéticos e comprimentos de onda de transições em vários trabalhos publicados sobre os respectivos íons. A partir destes dados experimentais os programas acima descritos foram utilizados.

O primeiro passo foi inserir os valores de energia das configurações e comprimentos de onda das transições no programa Elcalc, que recalculou os valores de energia gerando resultados que estavam em melhor acordo com os erros dos vários trabalhos utilizados como fonte. Em seguida o programa Strans utilizou estes resultados e calculou quais seriam os comprimentos de onda de todas as transições possíveis entre as configurações dadas do íon em estudo.

O passo seguinte foi calcular as funções de onda, e para isto se utilizou o programa Cowan, que contém em seu interior os sub-programas RCN e RCN2. Uma vez que este programa tenha gerado os valores das funções de onda, integrais de Coulomb, integrais radiais de dipolo e quadrupolo elétricos, utilizamos o programa RCG que irá calcular as probabilidades de transição e os fatores angulares. Neste ponto já temos valores de gf e tempos de vida, mas eles ainda não passaram pelo processo dos mínimos quadrados que irá adequá-los aos valores experimentais.

O último passo é rodar o RCE19 e fazer o ajuste entre os parâmetros para se obter o menor desvio quadrático possível. Esta é a parte mais importante do trabalho, onde os parâmetros irão variar ou não dependendo de como escrevemos a carta de entrada. Neste ponto temos a liberdade de interagir no processo de cálculo e a qualidade dos resultados finais dependem diretamente de escolhas feitas pelo pesquisador, o programa sozinho não é capaz de minimizar os erros.

Com os novos valores ajustados dos parâmetros o programa RCG é novamente rodado, e desta vez os valores de gf e tempos de vida são mais condizentes com os experimentos. São os valores obtidos nesta etapa que aparecem nas tabelas apresentadas nos trabalhos I e II do apêndice.

Como o procedimento acima descrito foi realizado uma vez para cada íon, em seguida apresentamos a análise de cada um deles separadamente.

5.1 Si VI

O silício cinco vezes ionizado, Si VI, pertence à seqüência isoeletrônica do F I. A configuração de seu estado fundamental é $1s^22s^22p^5$ com termo ²P. O potencial de ionização para este íon é 1653900 cm⁻¹(205.06 eV). Seu espectro foi analisado pela primeira vez por Söderqvist (1934) e Ferner (1941) na região de 65-250 Å. Em 1971 Moore resumiu os níveis energéticos de Söderqvist (1934) e Ferner (1941). Griffin, Pegg e Sellin (1976) utilizando técnica de "beam-foil" estudou o espectro de íons de silício altamente ionizados na região do ultravioleta e algumas linhas do Si VI foram classificadas. Kelly (1987) resumiu todos os comprimentos de onda publicados até o momento para o Si VI. Artru e Brillet (1977) estendeu a análise deste espectro na região VUV. Além disto eles melhoraram a precisão

Figura 1: Representação esquemática das diversas transições entre as configurações do Si $\rm VI$

da maioria dos níveis conhecidos. Trigueiros et al. (1991,1992) usando plasma produzido por laser analisou o espectro do Si VI na região VUV.

Foram utilizadas 241 transições sendo que 10 configurações deram origem a estas transições, são elas: $2s^22p^5$, $2s^22p^43p$, $2s2p^53s$, $2s^22p^44f$ (ímpares), e $2s2p^6$, $2s^22p^43s$, $2s^22p^43d$, $2s^22p^44s$, $2s^22p^44d$, $2s^22p^45d$ (pares). A figura 1 apresenta o diagrama representativo das diversas transições entre estas configurações.

Os valores dos parâmetros utilizados no cálculo para as configurações ímpares estão apresentados na tabela 1, e os parâmetros para as configurações pares nas tabelas 2 e 3. Os valores calculados de forças de osciladores ponderadas para as 241 transições e os tempos de vida para os 114 níveis energéticos estudados do Si VI podem ser encontrados no Trabalho II do apêndice.

Configuração	Parâmetro	HF	Ajustado	HF/Ajustado
Comparação		1000 cm^{-1}	1000 cm^{-1}	·
	Fav	0.000	3 080	
24	<u>ы</u> (а	3 381*	3 381*	-
	52p	0,001	0,001	
2p ⁴ 3p	\mathbf{E}^{av}	1101,609	1106,098	0,996
	$F^2(2p2p)$	193,307	165,297	1,169
	ζ_{2p}	3,671	3,661	1,003
	ζ_{3p}	0,530*		
	$F^2(2p3p)$	34,517	35,553	0,971
	$G^0(2p3p)$	14,493	11,464	1,264
2s2p ⁵ 3s	\mathbf{E}^{av}	1405.883	1396.567	1.007
		3,600	3,243	1,110
	$G^{1}(1s2p)$	230,720*	,	,
	$G^0(1s3s)$	12,104*		
	$G^1(2p3s)$	14,811*		
$2p^44f$	\mathbf{E}^{av}	1426.504	1432.059	0,996
-r	$\mathbf{F}^2(2\mathbf{p}2\mathbf{p})$	194.094	187,724	1.050
	$-\langle -r-r \rangle$	3,698	3,774	0,979
	Car	0,003*	- ,	- ,
	$F^2(2p4f)$	5,182	5,587	0,928
	$G^2(2p4f)$	0,511*	*	
	$G^4(2p4f)$	0,330*		
	Integrais de int	terações de c	onfigurações	
2s ² 2p ⁵ -2p ⁴ 3p	R ⁰ (2p2p-2p3p)	7,005	5,944	1,179
	$R^2(2p2p-3p2p)$	31,508	26,735	1,179
2s ² 2p ⁵ -2p ⁵ 3s	$R^0(2s2s-2s3s)$	11, 9 89	10,173	1,179
	$R^1(2s2p-2p3s)$	34,951	29,656	1,179
_	$\mathbb{R}^{0}(2s2p-3s2p)$	5,976	5,071	1,179
2s ² 2p ⁵ -2p ⁴ 4f	$R^2(2p2p-2p4f)$	5,81 9*		
2p ⁴ 3p-2p ⁵ 3s	$R^1(2s3p-2p3s)$	63,866	54,192	1,179
	$R^0(2s3p-3s2p)$	12,651	10,734	1,179
2p ⁴ 3p-2p ⁴ 4f	$R^2(2p3p-2p4f)$	-8,143*		
	$R^2(2p3p-4f2p)$	-0,673*		

 Tabela 1: Valores dos parâmetros de Hartree-Fock para as configurações ímpares

 do Si VI

* estes parâmetros foram mantidos fixos

Configuração	Parâmetro	HF	Ajustado	HF/Ajustado
		1000 cm^{-1}	$1000 {\rm ~cm^{-1}}$	-
2s2p ⁶	Eav	424,525	411,707	1,031
2p⁴3s	\mathbf{E}^{av}	1013,969	1018,701	0,995
	$F^2(2p2p)$	193,091	165,714	1,166
	ζ_{2p}	3,666	3,796	0,966
	$G^{1}(2p3s)$	14,349	14,420	0,995
$2p^44s$	\mathbf{E}^{av}	1345,210	1348,754	0,997
•	$F^2(2p2p)$	193,787	168,542	1,150
	520	3,688	3,778	0,977
	$G^1(2p4s)$	4,478*		
. 4.0.1	700	1010 000	1014 700	0.000
2p*3d	E^{2}	1210,000	1214,768	0,996
	F ² (2p2p)	193,309	164,333	1,176
	ς _{2p}	3,682	4,130	0,890
	53d	0,018*	01 107	1 000
	$F^{-}(2p3d)$	34,192	31,187	1,096
	G ¹ (2p3d)	14,363	13,101	1,096
$2p^44d$	$\mathbf{E}^{\boldsymbol{av}}$	1416,644	1420,223	0,997
	$F^2(2p2p)$	193,798	165,044	1,174
	ζ_{2p}	3,691	4,147	0,890
	ζ_{4d}	0,013*		
•	$F^2(2p4d)$	12,758	10,616	1,202
	$G^1(2p4d)$	10,616	8,833	1,202
	G ³ (2p4d)	6,158	5,124	1,202
2p ⁴ 5d	Eav	1510.990	1514.021	0.998
-r	$F^{2}(2p2p)$	193.961	166.627	1.164
	ζ_{2n}	3,695	4,151	0,890
	ζ _{5d}	0,007*		
	$F^2(2p5d)$	6,147*		_
	$G^1(2p5d)$	5,323*		-
	$G^2(2p5d)$	3,112*		

Tabela 2: Valores dos parâmetros de Hartree-Fock para as configurações pares do Si VI

Configuração	Parâmetro	HF	Ajustados	HF/Ajustados
		1000 cm^{-1}	1000 cm^{-1}	
	Integrais de int	terações das o	configurações	
2s2p ⁶ -2p ⁴ 3s	$\mathbb{R}^1(2p2p-2s3s)$	31,986*		
2s2p ⁶ -2p ⁴ 4s	$\mathbb{R}^{1}(2p2p-2s4s)$	19,608*		
2s2p ⁶ -2p ⁴ 3d	$R^1(2p2p-2s3d)$	-56,626*		
$2s2p^6-2p^44d$	$R^1(2p2p-2s4d)$	-46,890*		
$2s2p^{6}-2p^{4}5d$	$\mathbb{R}^1(2p2p-2s5d)$	-33,455*		
2p ⁴ 3s-2p ⁴ 4s	$R^0(2p3s-2p4s)$	0,000*		
2p ⁴ 3s-2p ⁴ 4s	$R^1(2p3s-4s2p)$	7,954*		
2p ⁴ 3s-2p ⁴ 3d	$R^2(2p3s-2p3d)$	15,836*		
$2p^43s-2p^43d$	$R^1(2p3s-3d2p)$	-4,120*		
$2p^43s-2p^44d$	$R^2(2p3s-2p4d)$	4,429*		
$2p^43s-2p^44d$	R ¹ (2p3s-4d2p)	-3,590*		
$2p^43s-2p^45d$	$R^2(2p3s-2p5d)$	1,726*		
$2p^43s-2p^45d$	$R^1(2p3s-5d2p)$	-2,818*		
$2p^44s-2p^43d$	$R^2(2p4s-2p3d)$	5,549*		
$2p^44s-2p^43d$	$R^1(2p4s-3d2p)$	-1,807*		
$2p^44s-2p^44d$	$R^2(2p4s-2p4d)$	4,790*		
$2p^44s-2p^44d$	$R^1(2p4s-4d2p)$	-1,635*		
$2p^{4}4s-2p^{4}5d$	$R^2(2p4s-2p5d)$	2,577*		
$2p^44s-2p^45d$	$R^1(2p4s-5d2p)$	-1,301*		
2p ⁴ 3d-2p ⁴ 4d	R ⁰ (2p3d-2p4d)	0,000*		
$2p^43d-2p^44d$	$R^2(2p3d-2p4d)$	17,515*		
$2p^43d-2p^44d$	R ¹ (2p3d-4d2p)	16,282*		
$2p^43d-2p^44d$	R ³ (2p3d-4d2p)	9,342*		
$2p^43d-2p^45d$	R ⁰ (2p3d-2p5d)	0,000*		
$2p^43d-2p^45d$	$R^2(2p3d-2p5d)$	11,449*		
$2p^43d-2p^45d$	R ¹ (2p3d-5d2p)	11,474*		
$2p^43d-2p^45d$	$R^3(2p3d-5d2p)$	6,598*		
$2p^44d-2p^45d$	$R^0(2p4d-2p5d)$	0,000*		
$2p^44d-2p^45d$	$R^2(2p4d-2p5d)$	8,297*		
$2p^44d-2p^45d$	$R^1(2p4d-5d2p)$	7,511*		
$2p^44d-2p^45d$	$R^3(2p4d-5d2p)$	4,373*		

Tabela 3: Continuação da tabela 2

* estes parâmetros foram mantidos fixos

Figura 2: Representação esquemática das diversas transições entre as configurações do Si VII

5.2 Si VII

A configuração do estado fundamental do silício seis vezes ionizado, Si VII, é $1s^22s^22p^4$ com termos ¹S, ³P e ¹D. O Si VII pertence à seqüência isoeletrônica do O I, seu potencial de ionização é 1988400 cm⁻¹(246,63 eV). O espectro do Si VII foi estudado pela primeira vez por Söderqvist (1934) que classificou linhas na região 272-278 Å. Ferner (1941,1948) estendeu as observações e incluiu linhas no range 54-88Å. Mais tarde Edlén (1963) apresentou algumas linhas do Si VII, estas transições haviam sido classificadas por Söderqvist (1934). Em 1971, Moore et al. resumiu os níveis de energia de Ferner (1942,1948). Basov et al. (1967) publicou a linha 246,12Å. em 1974, Fawcett, Gallanti, e Peacock apresentaram a linha 291,22Å. Algumas linhas na região 170,13-217,60Å foram classificadas por Träbert et al. (1976) e Griffin, Pegg, e sellin (1976). Kastner, Bhatia, e Cohen (1977) publicaram duas linhas em 86,88Å e 87,14Å. Em 1981, Edlén apresentou uma transição em 197,768Å. Martin e Zalubas (1983) deram todos os níveis energéticos conhecidos para o espectro do Si VII, e Kelly (1987)

Configurações	Parâmetros	HF	Ajustados	HF/Ajustados
		1000 cm^{-1}	1000 cm^{-1}	
$2s^22p^4$	Eav	0,000	25,563	
	$F^2(2p2p)$	194,119	180,688	1,074
	ζ_{2p}	3,698	3,828	0,966
$2\mathbf{p}^{6}$	\mathbf{E}^{av}	842,317	839,978	1,003
2р ³ 3р	Eau	1293,346	1316,605	0,982
	$F^2(2p2p)$	202,446	167,932	1,205
	ζ_{2p}	3,607	3,489	1,034
	ζ_{3p}^{-r}	0,624	0,788	0,792
	$F^2(2p3p)$	40,578	49,199	0,825
	$G^0(2p3p)$	17,092	15,116	1,131
	$G^2(2p3p)$	17,389	14,907	1,166
$2s2p^43s$	\mathbf{E}^{av}	1552,495	1576,063	0,985
_	$F^2(2p2p)$	230,503	161,316	1,429
	ζ_{2p}	3,926*		
	$G^1(2s3p)$	236,440*		
	$G^0(2s3s)$	13,675*		
	$G^2(2p3s)$	16,825*		
2s2p ⁴ 4s	Eav	1953,942*		
	$F^2(2p2p)$	201,232*		
	ζ20	3,951*		
	$G^1(2s2p)$	206,619*		
	$G^0(2s3s)$	4,174*		
	$G^1(2p3s)$	5,375*		

Tabela 4: Valores dos parâmetros de Hartree-Fock para as configurações pares do Si VII

resumiu todos os comprimentos de onda publicados para o fon. Recentemente Kink e Engströn (1997) analisaram o espectro do Si VII com técnica de "beamfoil" na região 450-1270Å.

As configurações do Si VII estudadas neste trabalho foram $2s^22p^4$, $2p^6$, $2s^22p^33p$, $2s2p^43s$, $2s2p^44s$ (pares), e $2s2p^5$, $2s^22p^33s$, $2s^22p^33d$, $2s^22p^34s$, $2s^22p^34d$, $2s^22p^35d$ (impares), que contribuíram para 141 transições. A figura 2 apresenta o diagrama representativo das diversas transições entre estas configurações.

Nas tabelas 4 e 5 estão os valores dos parâmetros Hartree-Fock para as configurações pares, e nas tabelas 6 e 7 estão os parâmetros para as configurações ímpares. Os valores de forças de osciladores ponderadas para as 141 transições e os tempos de vida para os 92 níveis energéticos do Si VII podem ser encontrados no Trabalho I do apêndice.

Configurações	Parâmetros	HF 1000 cm ⁻¹	Ajustados	HF/Ajustados
		1000 cm	1000 cm -	
	Integrais de int	terações das c	onfigurações	
$2p^4$ - $2p^6$	$R^1(2s2s,2p2p)$	153,618*		
2p ⁴ -2p ³ 3p	R ⁰ (2p2p,2p3p)	8,849*		
2р ⁴ -2р ³ 3р	$R^2(2p2p,2p3p)$	45,312*		
$2p^4$ - $2p^43s$	$R^0(2s2s,2s3s)$	12,711*		
2p ⁴ -2p ⁴ 3s	$R^1(2s2p,2p3s)$	38,916*		
2p ⁴ -2p ⁴ 3s	R ⁰ (2s2p,3s2p)	6,638*		
$2p^4$ - $2p^44s$	$R^0(2s2s,2s4s)$	6,493*		
2p ⁴ -2p ⁴ 4s	$R^1(2s2p,2p4s)$	20,209*		
$2p^4$ - $2p^44s$	$R^{0}(2s2p, 4s2p)$	3,458*		
2p ⁶ -2p ⁴ 3s	$R^1(2p2p,2s3s)$	37,479*		
2p ⁶ -2p ⁴ 4s	$R^1(2p2p,2s4s)$	19,383*		
2p ³ 3p-2p ⁴ 3s	$R^1(2s3p,2p3s)$	50,274*		
2p ³ 3p-2p ⁴ 3s	R ⁰ (2s3p,3s2p)	10,646*		
2p ³ 3p-2p ⁴ 4s	$\mathbb{R}^{1}(2s3p,2p4s)$	15,020*		
2p ³ 3p-2p ⁴ 4s	$R^0(2s3p,4s2p)$	8,146*		
$2p^43s-2p^44s$	$R^{0}(2s3s,2s4s)$	0,000*		
2p ⁴ 3s-2p ⁴ 4s	R ⁰ (2s3s,4s2s)	7,508*		
$2p^43s-2p^44s$	$R^0(2p3s,2p4s)$	0,000*		
2p ⁴ 3s-2p ⁴ 4s	$R^1(2p3s,4s2p)$	9,423*		

Tabela 5: Continuação da tabela 4

* estes parâmetros foram mantidos fixos

Configuração	Parâmetro	HF	Ajustado	HF/Ajustado
		1000 cm^{-1}	1000 cm^{-1}	
2s2p ⁵	Eav	387,3955	403,503	0,960
	ζ_{2p}	3,632	3,725	0,975
	$G^1(2s2p)$	231,045	211,612	1,092
9_32	Dav	1000 195	1005 510	0.070
2p os	$E^{2}(2-2-1)$	1202,100	171 699	0,979
	r -(2p2p)	202,214	171,005	0,960
	S_{2p}	4,003	16 690	0.070
	G*(2p3s)	16,324	10,082	0,979
2p ³ 4s	\mathbf{E}^{av}	1607,516	1630,344	0,986
	$F^2(2p2p)$	202,999	172,299	1,178
	ζ_{2p}	4,028*		
	$G^1(2p4s)$	5,231*		
22334	Fav	1400 653	1494 161	0.083
2p 94	$\mathbf{F}^2(2n2n)$	202 300	171 654	1 178
	((2 p 2 p)	4 016	3 908	1,110
	52p	0.051*	0,000	1,020
	53d $F^2(2n3d)$	44.865	40.362	1.112
	$G^1(2p3d)$	36.013	32,398	1,112
	$G^3(2p3d)$	20,609	18,541	1,112
2p ³ 4d	\mathbf{E}^{av}	1681,189	1703,707	0,987
	$\mathbf{F}^{\mathbf{z}}(2\mathbf{p}2\mathbf{p})$	202,971	170,956	1,187
	ζ_{2p}	4,031	3,923	1,027
		0,023	0,116	0,198
	$F^2(2p4d)$	16,333	16,467	0,992
	$G^{1}(2p4d)$	14,285	14,402	0,992
	G ^o (2p4d)	8,369	8,437	0,992
$2p^{3}5d$	\mathbf{E}^{av}	1809,179	1829,629	0,989
-	$F^2(2p2p)$	203,176	171,129	1,187
	ζ_{2p}	4,036	3,928	1,027
	ζ _{5d}	0,012	0,116	0,103
	$F^2(2p5d)$	7,789	5,790	1,345
	$G^1(2p5d)$	7,007	5,007	1,399
	$G^3(2p5d)$	4,145	3,145	1,318

Tabela 6: Valores dos parâmetros de Hartree-Fock para as configurações ímpares do Si VII

Configuração	Parâmetro	HF	Ajustado	HF/Ajustado		
		$1000 \ {\rm cm^{-1}}$	1000 cm^{-1}	, .		
Integrais de interação das configurações						
$2s2p^5-2p^33s$	$\mathbb{R}^{1}(2p2p,2s3s)$	35,897*				
$2s2p^5-2p^34s$	$R^1(2p2p,2s4s)$	18,639*				
2s2p ⁵ -2p ³ 3d	$\mathbb{R}^{1}(2p2p,2s3d)$	-86,892	-68,506	1,268		
$2\mathrm{s}2\mathrm{p}^{5}$ - $2\mathrm{p}^{3}4\mathrm{d}$	$R^1(2p2p,2s4d)$	-56,056	-44,194	1,268		
$2s2p^5-2p^35d$	$\mathbb{R}^{1}(2p2p,2s5d)$	-39,530	-31,165	1,268		
2p ³ 3s-2p ³ 4s	$\mathbb{R}^{0}(2p3s,2p4s)$	0,000*				
2p ³ 3s-2p ³ 4s	$R^1(2p3s,4s2p)$	9,159*				
2p ³ 3s-2p ³ 3d	$R^2(2p3s,2p3d)$	16,299*				
2p ³ 3s-2p ³ 3d	$R^1(2p3s,3d2p)$	-6,770*				
2p ³ 3s-2p ³ 4d	$R^2(2p3s,2p4d)$	2,141*				
2p ³ 3s-2p ³ 4d	$R^1(2p3s,4d2p)$	-5,628*				
2p ³ 3s-2p ³ 5d	$R^2(2p3s,2p5d)$	-0,352*				
2p ³ 3s-2p ³ 5d	$R^1(2p3s,5d2p)$	-4,338*				
2p ³ 4s-2p ³ 3d	$R^2(2p4s,2p3d)$	6,050*				
2p ³ 4s-2p ³ 3d	$R^1(2p4s,3d2p)$	-3,053*				
2p ³ 4s-2p ³ 4d	$R^2(2p4s, 2p4d)$	4,874*				
2p ³ 4s-2p ³ 4d	$R^1(2p4s,4d2p)$	-2,628*				
2p ³ 4s-2p ³ 5d	$R^2(2p4s, 2p5d)$	2,097*				
$2p^34s-2p^35d$	$R^1(2p4s, 5d2p)$	-2,054*				
2p ³ 3d-2p ³ 4d	$R^0(2p3d,2p4d)$	0,000*				
$2p^3$ 3d- $2p^3$ 4d	$R^2(2p3d,2p4d)$	22,272*				
2p ³ 3d-2p ³ 4d	$R^1(2p3d,4d2p)$	22,518*				
2p ³ 3d-2p ³ 4d	$R^3(2p3d,4d2p)$	13,011*				
$2p^3$ 3d- $2p^3$ 5d	R ⁰ (2p3d,2p5d)	0,000*				
2p ³ 3d-2p ³ 5d	$R^2(2p3d, 2p5d)$	14,381*				
$2p^33d-2p^35d$	$R^1(2p3d,5d2p)$	15,667*				
2p ³ 3d-2p ³ 5d	$R^3(2p3d,5d2p)$	9,075*				
$2p^34d-2p^35d$	R ⁰ (2p4d,2p5d)	0,000*				
2p ³ 4d-2p ³ 5d	$R^2(2p4d, 2p5d)$	10,480	12,480	0,840		
2p ³ 4d-2p ³ 5d	$R^1(2p4d, 5d2p)$	9,994	10,994	0,909		
$2p^34d-2p^35d$	$R^3(2p4d,5d2p)$	5,881	6,881	0,855		

Tabela 7: Continuação da tabela 6

* estes parâmetros foram mantidos fixos

6 Conclusão e perspectivas futuras

O trabalho se propunha a calcular as forças de osciladores ponderadas e tempos de vida para os espectros atômicos dos íons Si VI e Si VII. Para isto foi feita uma compilação dos níveis energéticos e comprimentos de onda de transições de todos os trabalhos publicados até o momento para cada íon. O ajuste inicial feito entre os níveis energéticos mostrou um grande acordo entre os procedimentos experimentais que haviam sido usados em sua obtenção, o mesmo ocorrendo para os comprimentos de onda. Em algumas transições é possível verificar que o comprimento de onda permaneceu inalterado, isto ocorreu porque estas transições eram determinadas por um nível que só foi observado na própria transição, impossibilitando seu ajuste e resultando no mesmo valor para o comprimento de onda.

Os valores obtidos para forças de osciladores ponderadas e tempos de vida foram calculados semi-empiricamente, e a utilização do método de mínimos quadrados para adequá-los a valores experimentais faz com que sejam bastante confiáveis.

O que se planeja para o futuro é o estudo dos íons Si XI, Si XII, Si XII e Si XIV, completando os dados de forças de osciladores ponderadas e tempos de vida para os íons de silício, uma vez que os outros íons já foram feitos ou estão sendo feitos por outros membros do laboratório. Planeja-se também estudar os espectros do O V e de algum metal alcalino, desta vez realizando medidas experimentais no espectrógrafo do Laboratório de Física Atômica e Molecular. Estes estudos estão incluídos em um projeto de tese de doutoramento, que terá início em março de 1999.

A presente tese de mestrado deu origem a dois trabalhos:

- Weighted Oscillator Strengths and Lifetimes for the Si VII Spectrum, publicado em The Astrophysical Journal Supplement Series, 115, 315 (1998)

- Weighted Oscillator Strengths and Lifetimes for the Si VI Spectrum, a ser publicado em The Astrophysical Journal Supplement Series, na edição de abril de 1999.

Referências

- J.D. Jackson, Classical Eletrodynamics, John Wiley & Sons, New York, 1962
- [2] C. Cohen-Tanoudji, B. Diu e F. Laloe, Quantum Mechanics, John Wiley & Sons, New York, 1977
- [3] M. Weissbluth, Atoms and Molecules, Academic Press, New York, 1978
- [4] R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981
- [5] J.J. Sakurai, Modern Quantum Mechanics, Addison-Wesley Publishing Company, Inc., 1985
- [6] A. Messiah, Quantum mechanics, North-Holland, Amsterdan, 1968
- [7] Artru, M.-C. & Brillet, W.-U. L. 1977, Phys. Scr., 44, 191
- [8] Callegari, F. & Trigueiros, A. G. 1998, ApJS, 119,181
- [9] J.C. Slater, Quantum Theory of Atomic Structure, McGraw-Hill, New York, 1960
- [10] Ferner, E. 1941, Ark. Mat. Astr. Fys., 28A, 21
- [11] Griffin, P. M., Pegg, D. J., & Sellin, I. A. 1976, in Beam-Foil Spectroscopy, 1, 321. Edited by Ivan Sellin & David Pegg (New York: Plenum Press)
- [12] Kelly, R. L. 1987, J. Phys. Chem. Ref. Data, 16, 283
- [13] Moore, C. E. 1971, Atomic Energy Levels (Nat. Stand. Ref. Data Ser., 35), 1, (Washington: NBS)
- [14] Radziemski, L. J. & Kaufman, V. 1969, J. Opt. Soc. Am., 59, 424
- [15] Sobelman, I. 1979, Atomic Spectra and Radiative Transitions, (Berlin: Springer)
- [16] Söderqvist, J. 1934, Nova Acta Reg. Soc. Sci. Uppsala (IV), 9, 7
- [17] Trigueiros, A. G., Jupén, C., & Redfors, A. 1991, Phys. Scr., 44, 191
- [18] Trigueiros, A. G., Jupén, C., & Redfors, A. 1992, J. Phys. B: At. Mol. Opt. Phys., 25, 2765
- [19] Trigueiros, A. G. & Jupén, C. 1996, J. Quant. Spectrosc. Radiat. Transfer., 42, 713
- [20] Träbert, E., Heckmann, P. H., Buttlar, H. v. & Brand, K. 1976, Z. Physik A, 279, 127

- [21] Basov, N. G., et al. 1967, Zh. eksp. teor. Fiz., 5, 177
- [22] Edlén, B. 1963, Rep. Prog. Phys., 26, 181
- [23] Edlén, B. 1981, Phys. Scr., 22, 593
- [24] Fawcett, B. C., Galanti, M., and Peacock, N.J. 1974, J. Phys. B: Atom. Molec. Phys., 7, 1149
- [25] Ferner, E. 1948, Ark. Mat. Astr. Fys. (Stockholm) 36A, nº1, p.48
- [26] Kastner, S. O., Bhatia, A. K., and Cohen, L. 1977, Phys. Scr., 15, 259
- [27] Kink, I. and Engström, L. 1997, Phys. Scr., 56, 31
- [28] Martin, W. C. and Zalubas, R. 1983, J. Phys. Chem. Ref. Data, 12, 323
- [29] R.D. Cowan, Atomic-Spectra Programs, Los Alamos National Laboratory, Los Alamos, NM,1995
- [30] C.J.B. Pagan, Estudo Espectroscópico de Gases Nobres Mediamente Ionizados, Tese de Doutorado-UNICAMP, 1991
- [31] F.R.T. Luna, Espectroscopia Atômica de Emissão de Gases e Metais, Tese de Doutorado-UNICAMP,1998
- [32] H.N. Russel and F.A. Saunders, Astrophys. J., 61, 38 (1925)
- [33] R.D. Cowan and K.L. Andrew, J. Opt. Soc. Am., 55, 502 (1965)
- [34] C.J.B. Pagan, J.G. Reyna Almandos, M. Gallardo, S.G. Peterson, G.H. Cavalcanti and A.G. Trigueiros, J. Opt. Soc. Am. B., 12, 203 (1995)
- [35] G.H. Cavalcanti, R.Y. Honda, F.R.T. Luna and A.G. Trigueiros, Rev. Bras. de Fís. Apl. e Inst., 8, 1 (1993)
- [36] A.G. Trigueiros, M. Machida, C.J.B. Pagan, and J.G. Reyna Almandos, Nucl. Inst. and Meth. in Phys. Research, A280, 589 (1989)
- [37] A.G. Trigueiros, C.J.B. Pagan, S.G. Peterson, and J.G. Reyna Almandos, Phys. Rev, 40, 3911 (1989)
- [38] G. Herzberg, atomic Spectra and Atomic Structure, Prentice-Hall, Inc., 1937

7 Apêndice: trabalhos publicado e aceito

•

Trabalho publicado: "Weighted Oscillator Strengths and Lifetimes for the Si VII Spectrum"

- The Astrophysical Journal Supplement Series Vol.115: 315-19, 1998 April

WEIGHTED OSCILLATOR STRENGTHS AND LIFETIMES FOR THE SI VII SPECTRUM

L. H. COUTINHO AND A. G. TRIGUEIROS

Instituto de Fisica "Gleb Wataghin," Universidade Estadual de Campinas, UNICAMP, 13083-970, Campinas, São Paulo, Brazil; lucia@ifi.unicamp.br, agtri@ifi.unicamp.br

Received 1997 June 27; accepted 1997 November 13

ABSTRACT

The weighted oscillator strengths (gf) and the lifetimes presented in this work were carried out in a multiconfiguration Hartree-Fock relativistic approach. In this calculation, the electrostatic parameters were optimized by a least-squares procedure in order to improve the adjustment to experimental energy levels. This method produces gf-values that are in better agreement with intensity observations and lifetime values that are closer to the experimental ones. In this work we revised all the experimentally known electric dipole Si VII spectrum lines.

Subject heading: atomic data

1. INTRODUCTION

The ground-state configuration of 6 times ionized silicon, Si VII, is $1s^22s^22p^4$ with the terms ¹S, ³P, and ¹D. Si VII belongs to the O I isoelectronic sequence. The ionization potential for Si vII is 1988400 cm⁻¹ (246.53 eV). The Si vII spectrum was studied for the first time by Söderqvist (1934) who classified lines in the region 272-278 Å. Ferner (1941, 1948) extended the observations and included Si vII lines in the range 54-88 Å. Later Edlén (1963) presented some lines of Si vII in a review work. These transitions had been classified earlier by Södergvist (1934). In 1971, Moore summarized the energy levels of Ferner (1941, 1948). Basov et al. (1967) published a line at 246.12 Å. In 1974, Fawcett, Galanti, & Peacock presented a line at 291.22 Å from laserproduced plasmas. A few lines in the region 170.13-217.60 A were classified by Träbert et al. (1976) and Griffin, Pegg, & Sellin (1976). Kastner, Bhatia, & Cohen (1977) published two lines at 86.88 Å and 87.14 Å. In 1981, Edlén presented a transition at 197.768 Å. Martin & Zalubas (1983) gave all known energy levels for the Si VII spectrum. Kelly (1987) summarized all the wavelengths published for Si VII. More recently Kink & Engström (1997) analyzed the spectrum of Si vii by the beam-foil technique in the region 450-1270 Å.

The purpose of this work is to present a review of all known electric dipole transitions of Si VI, their oscillator strengths calculated from fitted values of the energy parameters, and the lifetimes, calculated by the same method, for all known experimental energy levels. The work we present here was stimulated by the desire to determine weighted oscillator strengths and lifetimes for the Si VII spectrum. Both parameters are important in the study of laboratory and solar spectra. Silicon is an astrophysically important element.

2. CALCULATION

The oscillator strength $f(\gamma\gamma')$ is a physical quantity related to line intensity I and transition probability $W(\gamma\gamma')$, as given by Sobelman (1979):

$$W(\gamma\gamma') = \frac{2\omega^2 e^2}{mc^3} |f(\gamma\gamma')| \tag{1}$$

with

$$I \propto g W(\gamma \gamma') \propto g |f(\gamma \gamma')| = gf.$$

Here m = electron mass, e = electron charge, y = initial quantum state, $\omega = [E(\gamma) - E(\gamma')]/\hbar$, $E(\gamma) =$ initial state energy, and g = (2J + 1) is the number of degenerate quantum states with angular momentum J (in the formula for the initial state).

Quantities with primes refer to the final state.

In the equation above, the weighted oscillator strength, *gf*, is given by Cowan (1981):

$$gf = \frac{8\pi^2 m c a_0^2 \sigma}{3h} S , \qquad (2)$$

where $\sigma = |E(\gamma) - E(\gamma')|/hc$, h = Planck's constant, c = velocity of light, and $a_0 = \text{Bohr radius}$, and the electric dipole line strength is defined by

$$S = |\langle \lambda J || P^{1} || \gamma' J' \rangle|^{2} . \tag{3}$$

This quantity is a measure of the total strength of the spectrum line, including all possible transitions between M and M. The tensorial operator P^1 (first order) in the reduced matrix element is the classical dipole moment for the atom in units of $-ea_0$.

To obtain gf, we need to calculate S first, or its square root:

$$S_{\gamma\gamma'}^{1/2} = \langle \gamma J \parallel P^1 \parallel \gamma' J' \rangle$$
 (4)

In a multiconfiguration calculation we have to expand the wavefunction $|\gamma J\rangle$ in terms of single configuration wavefunctions, $|\beta J\rangle$, for both upper and lower levels, just as done by

$$|\gamma J\rangle = \sum_{\beta} y_{\beta J}^{\gamma} |\beta J\rangle .$$
 (5)

Therefore, we can have the multiconfigurational expression for $S_{\gamma\gamma}^{1/2}$:

$$S_{\gamma\gamma'}^{1/2} = \sum_{\beta} \sum_{\beta'} y_{\beta J}^{\gamma} \langle \beta J \parallel P^1 \parallel \beta' J' \rangle y_{\beta' J'}^{\gamma'} .$$
(6)

The probability per unit time of an atom in a specific state γJ to make a spontaneous transition to any state with lower energy is

$$P(\gamma J) = \sum A(\gamma J, \gamma' J'), \qquad (7)$$

where $A(\gamma J, \gamma' J')$ is the Einstein spontaneous emission transition probability rate for a transition from the γJ to the $\gamma' J'$ state.

	TABLE 1			
WEIGHTED OSCILLATOR ST	TRENGTHS AND SPECTRAL L	INES FOR	THE Sive	Spectrum

		WAVELET	NGTHS (Å) ⁶	LEVELS	(cm ⁻¹) ^d				
gf-VALUE*	INTENSITY ⁶	Observed	Calculated	Lower	Upper	CONFIGURATIONS	Terms*	J_J⁼	References
0.195	50	54.462	54.462	0	1836143	$2p^4 - 2p^3(^2D)5d$	3p_3p0	2_2	
0.184	50	54.522	54.522	0	183 4122	$2p^4 - 2p^3(^2D)5d$	3P_3D0	2-3	1
0.512	50	56.528	56.528	0	1769035	$2p^4 - 2p^3(4S)5d$	³ P- ³ D ⁰	2-3	i
0.275	50	26.645	56.645	4028	1769409	$2p^4 - 2p^3(4S)5d$	${}^{3}P - {}^{3}D^{0}$	1-2	ī
0.209	50	57.325	57.325	0	1744436	$2p^4 - 2p^3(^2P)4d$	${}^{3}P - {}^{3}D^{0}$	2–3	1
0.042	50	57 589	57.445	0	1740798	$2p^{4}-2p^{3}(^{2}P)4d$	³ P- ³ P ⁰	2–2	1
0.228	50	58 388	59 299	4028	1740798	$2p^4 - 2p^3(^2P) 4d$	3P-3P0	1-2	1
0.421	100	58 445	58 445	0	1711010	$2p^{2}-2p^{2}(^{2}D)4d$	3P-350	2-1	1
0.097	10	58,526	58,526	4028	1712676	$2p^{2}-2p^{2}(^{2}D)4d$	$p_{p_{1}}$	2-2	1
0.387	100	58.580	58.580	0	1707067	2p - 2p (D) + a $2n^4 - 2n^3 (2D) A A$	3p 3p0	1-1	1
0.203	50	58.719	58.719	4028	1707055	$2p^4 - 2p^3(^2D)4d$	3p_3D0	1_2	1
0.683	50	58.782	58.782	46329	1747530	2p4-2s22p3(2P)4d	${}^{1}D - {}^{1}F^{0}$	2-3	1
0.032	50	59.884	59.884	0	1669895	$2p^4 - 2p^3(^2P)4s$	3p_3p0	2-2	i
0.903	100	59.966	659.96	46329	1713941	2p ⁴ -2s ² 2p ³ (² D)4d	${}^{1}D-{}^{1}F^{0}$	2-3	ī
0.143	100	60.221	60.191	46329	1707712	$2p^4 - 2s^2 2p^3 (^2D) 4d$	¹ D ¹ P ⁰	2-1	1
0.391	100	60.837	60.837	0	1643737	$2p^{4}-2p^{3}(^{4}S)4d$	${}^{3}P - {}^{3}D^{0}$	2-3	1
0.072	50	61 306	61 306	4028	1643668	2p*-2s*2p*(*S)4d	${}^{3}P - {}^{3}D^{0}$	1-2	1
0.006	50	62.154	62 175	99349	1031102	$2p^{-}-2p^{-}(^{-}D)4s$	³ P_ ³ D ³	2-3	1
0.074	50	62.940	62.940	46379	1635144	$2p^{-2s^{-}}2p^{-}(^{-}D)4a$	10 100	0-1	1
0.059	50	65.595	65.595	363159	1887665	2p -25-2p (-D)45 2s2n ⁵ -2s2n ⁴ /4 PM s	- <i>D</i> D° 3 D0 3 D	2-2	1
0.050	10	68.026	68.028	0	1469980	$2n^4 - 2n^3 (^2P) 3d$	3p_100	2-2	2
0.270	250	68.148	68.148	Ó	1467394	$2p^4 - 2p^3(^2P)3d$	3p_3D0	2-3	1
0.000	50	68.190	68.538	0	1459038	$2p^{4}-2p^{3}(^{2}P)3d$	3P_3F0	2-2	i
0.166	50	68.212	68.215	4028	1469980	$2p^4 - 2p^3(^2P)3d$	³ P- ¹ D ⁰	1-2	1
0.742	50	68.340	68.340	4028	1467300	$2p^4 - 2p^3(^2P)3d$	${}^{3}P - {}^{3}D^{0}$	1-2	ī
0.104	100	D8.408	68.406	0	1461860	$2p^4 - 2p^3(^2P)3d$	${}^{3}P - {}^{3}D^{0}$	2-2	1
0.050	10 50	08.430 69.503	08.439	0	1460718	$2p^{4}-2p^{3}(^{2}P)3d$	³ P_ ³ P ⁰	2-1	1
0.000	50	68 642	68.595	4028	1461860	$2p^{2}-2p^{2}(^{2}P)3d$	3p_3p0	1-2	1
0.113	50	68.669	68 669	4028	1400718	2p*-25*2p*(*P)3d	3p_3p0	1-1	1
0.113	100	68.715	68.721	5569	1460285	$2p^{-2}p^{-(-r)}3a^{-2}2p^{-(-r)}3a^{-$	30 300	1-0	1
0.681	150	69.385	69.385	0	1441228	$2p^4 - 2n^3(^2D)$	3p_350	2_1	1
0.411	100	69.580	69.580	4028	1441228	$2p^4 - 2s^2 2p^3 (^2D) 3d$	3P_350	1_1	1
0.526	100	69.602	69.598	0	1436828	$2p^4 - 2p^3(^2D)3d$	3P_3P0	2-1	i
1.653	200	69.663	69.664	0	1435462	$2s^22p^4-2p^3(^2D)3d$	³ Р_ ³ Р ⁰	2-2	ī
0.349	200	69.790	69.790	4028	1436898	$2s^22p^4-2p^3(^2D)3d$	³ Р_ ³ Р ⁰	1-0	1
0.396	100	07.801 60.972	69.860	4028	1435462	$2s^{2}2p^{4}-2p^{3}(^{2}D)3d$	³ P_ ³ P ⁰	1-2	1
1 809	250	70.027	09.809 70.027	2205	1436828	2s ² 2p [*] -2p ³ (² D)3d	3p_3p0	0-1	1
2.786	250	70.027	70.027	46320	1428021	$2s^{2}D^{-2}D^{-2}(*D)3d$	³ P- ³ D ⁰	2-3	1
0.009	20	70.123	70.598	40 <i>323</i>	1416463	25-2p 2p (* P)34 2p4-2p3(2D)34	*D-*F* 3p 3p0	2-3	1
0.929	200	70.222	70.222	4028	1428083	$2p^{-2}p^{-2}p^{-2}p^{-3}p^{-3}a^{-2}p^{-3}a^{-2}p^{-3}a^{-2}p^{-3}a^{-2}p^{-3}a^{-2}p^{-3}a^{-2}p^{-3}a^{-2}p^{-3}a^{-2}p^{$	ר- ר- 3 מני מני	2-3	1
1.167	200	70.250	70.242	46329	14269980	$2s^22n^4 - 2n^3(^2P)3d$	10-100	2_2	1
0.333	50	70.323	70.323	5569	1427579	$2s^22p^4-2p^3(^2D)3d$	³ P_ ³ D ⁰	0-1	1
0.011	100	70.594	70.851	46329	1457749	$2p^4 - 2s^2 2p^3 (^2P) 3d$	${}^{1}D-{}^{3}F^{0}$	2-3	ī
0.005	50	70.730	70.702	46329	1460718	$2p^4 - 2s^2 2p^3 (^2P) 3d$	$^{1}D - ^{3}P^{0}$	2–1	1
2.430	200	/1.384	71.384	46329	1447203	$2p^4 - 2s^2 2p^3 (^2D) 3d$	${}^{1}D - {}^{1}F^{0}$	2–3	1
1.059	200	71.900	/1.91/	46329	1436828	$2p^{4}-2s^{2}2p^{3}(^{2}D)3d$	$^{1}D - ^{1}P^{0}$	2-1	1
0.513	300	72 324	71.333	40329	1430087	$2p^{2}-2s^{2}2p^{2}(^{2}D)3d$	$^{1}D^{-1}D^{0}$	2-2	2
1.435	500	73.123	73.123	40525	1367559	2p*-25*2p*(*D)3a 2p*-2p*3(*S)3d	10-100	2-1	1
0.252	250	73.350	73.350	4028	1367355	$2p^4 - 2s^2 2n^3 (4S) 3d$	יירי 1p_100	23 11	1
0.328	200	73.433	73.433	5569	1367355	$2p^4 - 2s^2 2p^3 (^4S) 3d$	1P_1D0	0_1	1
0.084	200	75.193	75.200	99349	1429139	$2p^4 - 2s^2 2p^3(^2D) 3d$	1 <u>5_1</u> P0	0-1	2
0.151	250	79.236	79.239	0	1261999	$2p^4 - 2p^3(^2P)3s$	³ P_ ³ P ⁰	2-2	1
0.020	50	79.262	79.261	0	1261999	$2p^4 - 2p^3(^2P)3s$	³ P- ³ P ⁰	2-i	1
0.001	100	79.491 70 573	19.495	4028	1261999	2p*-2s*2p*(*P)3s	³ P_ ³ P ⁰	1-2	1
0.060	100	79 615	17.313 70.613	4028 ६६८०	1261999	2p ⁻ -2s ⁻ 2p ⁻ (*P)3s	3P_3P0	1-1	1
0.253	50	81.449	81 449	363150	1401999	2p - 25 2p (* 1) 3s	3p 3p0	0-1	1
0.201	250	81.558	81,540	46329	1272715	232p -232p (*D)35 2p4_2522n3(2D)2.	- <i>rD</i> * 10, 100	ذ —2 1	2
0.363	600	81.620	81.616	0	1225253	$2p^4 - 2n^3 (^2D)^3e$	30_300	2-1)_1	1
0.173	500	81.895	81.893	4028	1225129	$2p^4 - 2s^2 2p^3 (^2D) 3s$	3p_3D0	1-2	1
0.076	150	81.998	81.998	5569	1225115	$2p^4 - 2s^2 2p^3 (^2D) 3s$	3P-3D0	0-1	1
0.688	600	84.082	84.052	46329	1236071	2p ⁴ -2s ² 2p ³ (² D)3s	$^{1}D - ^{1}D^{0}$	2-2	ī

TABLE 1--Continued

.

		WAVELEN	igths (Å) ^e	LEVELS	(cm ⁻¹)4				
g-VALUE*	INTENSITY ^b	Observed	Calculated	Lower	Upper	CONFIGURATIONS ⁶	Terms*	JJ*	References
0.197	100	85.219	85.225	99349	1272715	2p ⁴ -2s ² 2p ³ (² P)3s	¹ S- ¹ P ⁰	01	1
0.301	500	85.289	85.290	0	1172471	$2p^4 - 2p^3(^2S)3s$	${}^{3}P - {}^{3}S^{0}$	2-1	1
0.172	500	85.584	85.584	4028	1172471	$2p^{2}-2s^{2}2p^{3}(^{2}S)3s$	³ P_ ³ S ⁰	1-1	1
0.057	100	82.698	85.697	2202	11/24/1	$2p^{2}-2s^{2}2p^{2}(-5)3s$	3P_350	0-1	1
0.000		00.000 97 100	00.913 97 71 9	4028	1150574	2p ⁻ -2p ⁻ (-3)35 2p ⁴ -2p ³ (45)3e	30 260	2-2	3
0.268	150	88.008	88.008	363150	1499419	2p - 2p = 3,35 $2r 2n^{5} - 2r 2n^{4} (4P) 3r$	3p0_3p	2_2	2
0.000	50	163.400	163.488	849054	1460718	$2p^6 - 2p^3 (^2P)3d$	1S-3P0	0-1	4
0.000		170.130	170.133	849054	1436828	$2p^{6}-2p^{3}(^{2}P)3d$	1S_3P0	0-1	5
0.004	50	172.390	172.389	849054	1429139	$2p^6 - 2p^3(^2P)3d$	¹ S– ¹ P ⁰	0–1	5, 4
0.003		197.768	197.766	0	505649	$2p^{4}-2s2p^{5}$	${}^{3}P_{-}{}^{1}P^{0}$	2-1	6
0.001	50	217.600	217.559	1428021	1887665	2p ³ (² D)3d-2s2p ⁴ (⁴ P)4s	³ D ⁰ - ³ P	3-2	4
0.108	330	217.000	217.713	46329	505649	2p ² -2s2p ²	10-1P	2-1	0
0.217	200	240.124	240.124	77349	366775	2p - 2s2p $2n^4 - 2s2n^5$	-3F- 3p_3p0	0-1 7_1	6.8
0.173	200	274,180	274.180	4028	368752	$2p^4 - 2s^2p^5$	3p_3p0	1-0	6.8
0.642	250	275.361	275.362	0	363159	$2p^4 - 2s^2p^5$	3p_3p0	2-2	6, 8
0.129	200	275.675	275.675	4028	366775	$2p^{4}-2s2p^{5}$	³ P_ ³ P ⁰	1-1	6, 8
0.171	200	276.850	276.851	5569	366775	$2p^4 - 2s2p^5$	³ P_ ³ P ⁰	01	6, 8
0.212	200	278.449	278.450	4028	363159	$2p^4 - 2s2p^5$	³ P_ ³ P ⁰	1-2	6, 8
0.587		291.200	291.201	505649	849054	$2s2p^3-2p^6$	$1P_{-1S}$	1-0	9
0.002	10	313.804	315.627	46329	363159	$2p^{2}-2s^{2}p^{3}$	1 <u>D_</u> 3p0	2-2	10
0.040	10	591.740	590.757	1172471	1341/31	$2p^{3}(^{3})3s - 2p^{3}(^{2}D)3p$	3c0 3p	1-0	10
0.245	30	595.315	595.332	1172471	1340444	$2p^{3}(4S)3s-2p^{3}(2D)3p$	3 <u>5</u> °_3p	1-1	10
0.648	90	714.850	714.827	1236071	1375965	$2p^{3}(^{2}D)3s-2p^{3}(^{2}D)3p$	¹ D ⁰ - ¹ D	2-2	10
0.106	5	833.210	833.236	1236071	1356085	$2p^{3}(^{2}D)3s-2p^{3}(^{2}D)3p$	${}^{1}D^{0}-{}^{1}P$	2-1	10
0.208	5	857.370	857.371	1225115	1341751	$2p^{3}(^{2}D)3s-2p^{3}(^{2}D)3p$	³ D ⁰ - ³ P	10	10
0.314	5	858.790	858.790	1225129	1341572	$2p^{3}(^{2}D)3s-2p^{3}(^{2}D)3p$	${}^{3}D^{0}-{}^{3}P$	2-1	10
0.166	5	867.190	867.190	1225129	1306262	$2p^{3}(^{2}D)3s-2p^{3}(^{2}D)3p$	³ D ⁰ - ³ P	2-2	10
0.640	30	000.110 977 906	505.115 977 904	1225253	1300202	$2p^{2}(-D)3s-2p^{2}(-D)3p$ 2-3(2D)2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	⁵ D ⁶ - ⁶ P	3-2	10
0.424	55 60	907.200	902 281	1230071	1349592	2p ⁻ (-D)3s-2p ⁻ (-D)3p 2n ³ (4S)3s-2n ³ (4S)3d	5p_500	1_2	10
1.037	30	904.640	904.640	1348498	1459039	$2p^{3}(^{2}P)3n-2n^{3}(^{2}P)3d$	3D_3F0	1-2	10
1.126	130	904.936	904.942	1238111	1348616	2v3(45)3v-2v3(45)3d	⁵ P- ⁵ D ⁰	2-3	10
0.703	130	904.940	904.901	1238111	1348621	2p ³ (⁴ S)3p-2p ³ (⁴ S)3d	5P-5D0	2-2	10
1.404	80	907.077	907.088	1307038	1417281	$2p^{3}(^{2}D)3p-2p^{3}(^{2}D)3d$	$^{3}D-^{3}F^{0}$	3-4	10
0.982	55	907.425	907.432	1306269	1416470	$2p^{3}(^{2}D)3p-2p^{3}(^{2}D)3d$	$^{3}D^{-3}F^{0}$	2-3	10
0.560	215	909.419	909.419	1238655	1348615	$2p^{3}(*S)3p-2p^{3}(*S)3d$	³ P_ ³ D ⁰	3-3	10
0.596	30	912.329	912.329	1312098	1422308	$2p^{2}(^{-}D)3p-2p^{2}(^{-}D)3d$ $2p^{3}(^{2}D)3p-2p^{3}(^{2}D)3d$	3n 320	2-3	10
2.087	180	915 095	915 094	1313069	1422348	$2p^{3}(^{2}D)3p-2p^{3}(^{2}D)3d$	3F_3C0	3_4	10
2.151	180	915.100	915.099	1349448	1458726	$2p^{3}(^{2}P)3p-2p^{3}(^{2}P)3d$	${}^{3}D-{}^{3}F^{0}$	3-4	10
1.255	65	915.697	915.696	1348544	1457750	2p ³ (² P)3p-2p ³ (² P)3d	$^{3}D-^{3}F$	2-3	10
2.637	155	918.850	918.850	1313536	1422368	$2p^{3}(^{2}D)3p-2p^{3}(^{2}D)3d$	${}^{3}F-{}^{3}G^{0}$	4-5	10
2.113	100	931.767	931.768	1316982	1424305	$2p^{3}(^{2}D)3p-2p^{3}(^{2}D)3d$	${}^{1}F - {}^{1}G^{0}$	34	10
0.694	40	963.922	963.908	1313536	1417281	$2p^{3}(^{2}D)3p-2p^{3}(^{2}D)3d$	³ F- ³ F ⁰	4-4	10
0.591	33 50	907.120	907.112	1313009	14104/0	$2p^{*}(^{-}D)3p-2p^{*}(^{-}D)3d$ 2-3(2p)2-2-3(2p)2-	100 1D	5-5	10
0.263	50	968 480	906.916	12/2/10	1373907	$2p^{3}(^{2}P)3p-2p^{3}(^{2}P)3d$	3F_3F0	1-2	10
0.171	10	1001.470	1001.471	1261579	1361432	$2p^{3}(^{2}P)3s-2p^{3}(^{2}P)3p$	3p0_3p	0-1	10
0.165	10	1002.270	1002.273	1261659	1361432	2p ³ (² P)3s-2p ³ (² P)3p	3P0_3P	1-1	10
0.196	10	1003.020	1003.020	1261659	1361358	2p ³ (² P)3s-2p ³ (² P)3p	3P0_3P	1-0	10
0.225	10	1005.720	1005.719	1262001	1361432	2p ³ (² P)3s-2p ³ (² P)3p	³ P ⁰ - ³ P	2–1	10
0.190	10	1006.440	1006.437	1261659	1361019	2p ³ (² P)3s-2p ³ (² P)3p	³ P ⁰ - ³ P	1-2	10
1 630	30	1009.908	1009.912	1262001	1361019	$2p^{3}(^{2}P)3s-2p^{3}(^{2}P)3p$	3p0_3p	2-2	10
1 192	90	1132.774	1132.730	1150576	1313330	2p*(*D)3s-2p*(*D)3p	50°-°F	3-4	10
0.069	90	1137.240	1137.229	1225136	1313060	2p ³ (² D)3~2p ³ (² D)3 ₂	3 <u>70</u> 3F	2-3	10
0.831	25	1141.710	1141.698	1225109	1312698	$2p^{3}(^{2}D)3s-2p^{3}(^{2}D)3r$	3D0_3F	1-2	10
0.845	75	1142.441	1142.389	1150576	1238112	2p ³ (⁴ S)3s-2p ³ (⁴ S)3p	5 ⁰ -5P	2-2	10
1.131	45	1143.549	1143.550	1262001	1349448	2p ³ (² P)3s-2p ³ (² P)3p	³ P ⁰ - ³ D	2-3	10
0.506	45	1146.528	1146.592	1150576	1237791	2p ³ (⁴ S)3s-2p ³ (⁴ S)3p	⁵ S ⁰ - ⁵ P	2–1	10
0.274	10	1150.500	1150.500	1261579	1348498	$2p^{3}(^{2}P)3s-2p^{3}(^{2}P)3p$	${}^{3}P^{0}-{}^{3}D$	0-1	10
0.544	15	1150.950	1150.952	1261659	1348544	$2p^{2}(^{+}P)3s-2p^{2}(^{+}P)3p$	*P°-*D	1-2	10
0.749	60	1167.110	1107.100	1172400	123814/	2p*(*3)35-2p*(*3)3p 2p3(45)3e 2=3(45)2=	300 3p	10	10
0.453	25	1169.305	1169.302	1172466	1257986	2p ³ (⁴ S)3s-2p ³ (⁴ S)3p	3 <u>50</u> _3p	1-2	10

.

TABLE 1—Continued

		WAVELEI	NGTHS (Å) ^e	LEVELS (cm ⁻¹) ^d					
gf-Value*	INTENSITY ^b	Observed	Calculated	Lower	Upper	CONFIGURATIONS ⁴	Terms ^e	J−J*	REFERENCES
0.371	35	1199.523	1199.465	1272716	1356087	$2p^{3}(^{2}P)3s-2p^{3}(^{2}P)3p$	1P0_1P	1-1	10
0.194	15	1214.730	1214.731	1262001	1344324	$2p^{3}(^{2}P)3s-2p^{3}(^{2}P)3p$	3P0_3S	2-1	10
1.006	45	1222.744	1222.767	1225256	1307038	$2p^{3}(^{2}D)3s-2p^{3}(^{2}D)3p$	³ D ⁰ - ³ D	3-3	10
0.288	15	1228.400	1228.418	1225109	1306515	$2p^{3}(^{2}D)3s-2p^{3}(^{2}D)3p$	${}^{3}D^{0}-{}^{3}D$	1-1	10
0.567	30	1232.540	1232.552	1225136	1306269	$2p^{3}(^{2}D)3s-2p^{3}(^{2}D)3p$	${}^{3}D^{0}-{}^{3}D$	2–2	10
1.145	30	1235.962	1235.958	1236073	1316982	2p ³ (² D)3s–2p ³ (² D)3p	${}^{1}D^{0}-{}^{1}F$	2-3	10

* Weighted oscillator strengths for atomic transition obtained by the method described in § 2.

^b Observed line intensities.

^c Wavelength corresponding to the energy level difference between the experimental adjusted energy level values.

⁴ Numerical values of the energy levels are those obtained by an optimized procedure using the program ELCALC.

^c Level designations for the transition, including configuration parentage, term, and total angular momentum. For practical purposes, we show them in three separate columns.

REFERENCES.-(1) Ferner 1941; (2) Ferner 1948; (3) Kastner et al. 1977; (4) Griffin et al. 1976; (5) Träbert et al. 1976; (6) Edlén 1963; (7) Basov et al. 1967; (8) Söderqvist 1934; (9) Fawcett et al. 1974; (10) Kink & Engström 1997.

LIFETIMES FOR THE SI VII SPECTRUM												
Configuration	Terms	Lifetimes (ns)*	Configuration	Terms	Lifetimes (ns)*							
2p ⁶	¹ S ₀	0.022		³ P ₀	0.514							
2p ³ (⁴ S)3p	⁵ P ₁	1.166		$^{3}P_{1}$	0.580							
	⁵ P ₂	1.155	-	$^{1}D_{2}$	0.364							
	⁵P₃	1.131	2s2p ⁴ (*P)3s	³ P ₂	0.011							
	³ P ₁	1.277	$2s2p^{4}(^{2}D)3s$	°D,	0.018							
•••	³ P ₂	1.279	2s2p ⁴ (*P)4s	3P2	0.036							
	³ P ₀	1.276	2s2p ⁵	³ P ₂	0.067							
$2p^{3}(^{2}D)3p$	³ D ₁	1.008		°P ₁	0.066							
	³ D ₂	1.061	1	3P0	0.065							
	$^{3}D_{3}$	1.022		$^{1}P_{1}$	0.018							
	³ F ₂	1.063	2p ³ (*S)3s	្ទ័នរ	0.006							
	³ F ₃	1.050	$2p^{3}(^{2}D)3s$	°D1	0.019							
	³ F ₄	1.052		³ D ₂	0.019							
	$^{1}F_{3}$	1.366		۶D3	0.019							
	³ P ₂	0.162		$^{1}D_{2}$	0.008							
	³ P ₁	0.204	$2p^{3}(^{2}P)3s$	³ P ₀	0.020							
	³ P ₀	0.172		³ P ₁	0.020							
• • •	$^{1}D_{2}$	0.441		³ P ₂	0.019							
2p ³ (² P)3p	' S,	0.231		$^{1}P_{1}$	0.008							
	³ D ₁	0.753	2p ³ (*S)3d	°D,	0.511							
	³ D ₂	0.692		°D₄	0.519							
	³D3	0.772		°D2	0.490							
	¹ P ₁	0.838		$^{3}D_{1}$	0.004							
	³ P ₂	0.658		°D3	0.004							
$2p^{3}(^{2}D)3d$	³ F ₂	0.299		³ P ₂	0.015							
	°F 3	0.276		3D2	0.003							
	°F ₄	0.538		3D3	0.004							
	°G,	0.391	1	1D2	0.003							
	G4	0.532		·F 3	0.002							
	-G ₅	0.537	2p ³ (*D)4s	³ D ₃	0.036							
	•G₄	0.546	1404	1D2	0.025							
	$^{3}D_{1}$	0.004	2p ³ (*S)4d		0.006							
	*D3	0.003		$^{-}D_{3}$	0.006							
	³ D ₂	0.003	2p ³ (*P)4s	· · · P 2	0.028							
	P_1	0.003	2p ⁻ (*D)4d	J_2	0.009							
	°P 2	0.002		P_1	0.009							
	*D ₂	0.004		2P2	0.005							
	$^{3}P_{1}$	0.002		³ S ₁	0.004							
	³ P ₀	0.002	- 10	143	0.004							
	<u>,2</u> ,	0.002	2p ⁻ (*P)4d	· · · · · · · · · · · · · · · · · · ·	0.016							
	<u>'F</u> 3	0.002		² D ₃	0.010							
2p³(²P)3d	?F.3	0.085		1F3	0.005							
	·F.	0.498	2p ³ (*S)54	$\cdot \cdot \cdot D_2$	0.006							
	·F,	0.160	a 3/2 m/c 1	-D3	0.006							
	⁴ P ₀	0.006	2p°(*D)5d	. ⁻ D ₃	0.015							
	°P1	0.007		- P ₂	0.009							

TABLE 2

• Lifetimes for the energy level obtained by the method described in § 2.

The sum is over all $\gamma'J'$ states with $E(\gamma'J') < E(\gamma J)$.

The Einstein probability rate is related to gf with the following relation given by Cowan (1981):

$$gA = \frac{8\pi^2 e^2 \sigma^2}{mc} gf.$$
 (8)

Natural lifetime $\tau(yJ)$ is the inverse of the probability P(yJ); then,

$$\tau(\gamma J) = \left[\sum A(\gamma J, \gamma' J')\right]^{-1}.$$
 (9)

Natural lifetime is applicable to an isolated atom. Interaction with matter or radiation will reduce the lifetime of a state.

The *gf* and natural lifetime values given in Tables 1 and 2, respectively, were calculated according to these equations.

In order to obtain best values for oscillator strengths, we calculated the reduced matrix elements P^1 by using optimized values for $y_{\beta j}^{\gamma}$ and $y_{\beta' j'}^{\gamma'}$, which were obtained using as input to the matrix calculation Cowan's code, RCG Mod 11, and energy parameters that were adjusted from a leastsquares calculation, (RCE Mod 20). In this adjustment, the code tries to fit experimental energy values by varying the electrostatic parameters. This procedure also improved the σ values used in equation (2). The energy parameters of this calculation are given by Coutinho (1997).

3. DISCUSSION

The theoretical predictions for the energy levels of the configurations were obtained by diagonalizing the energy matrices with appropriate Hartree-Fock relativistic (HFR) values for the energy parameters. For this purpose the computer code developed by Cowan (1981) was used. The inter-

Basov, N. G., et al. 1967, Zh. Eksp. Teor. Fiz., 5, 177

- Coutinho, L. H. 1997, M.Sc. thesis, Instituto de Fisica "Gleb Wataghin," Universidade Estatual de Campinas, UNICAMP, SP, Brazil, in preparation
- Cowan, R. D. 1981, The Theory of Atomic Structure and Spectra (Berkeley: Univ. California Press)
- Edlén, B. 1963, Rep. Prog. Phys., 26, 181
- -. 1981, Phys. Scr., 22, 593
- Fawcett, B. C., Galanti, M., & Peacock, N. J. 1974, J. Phys. B: Atom. Molec. Phys., 7, 1149
- Ferner, E. 1941, Ark. Mat. Astr. Fys., 28A(4), 3
- -. 1948, Ark. Mat. Astr. Fys., 36A(1), 48

pretation of the configuration level structures was made by a least-squares fit of the observed levels. More details of the calculations and the tables with the theoretical Hartree-Fock parameters and their fitting values can be found in Coutinho (1997). The energy level values were determined from the observed wavelengths by an interactive optimization procedure using the program ELCALC (Radziemsky & Kaufman 1969), in which the individual wavelengths are weighted according to their uncertainties. The energy levels adjusted by this method were used to optimize the electrostatic parameters by a least-squares procedure, and finally these optimized parameters were used again to calculate the gf- and lifetime values. This method produces gf-values that are in better agreement with line intensity observations and lifetime values that are closer to the experimental ones.

We have thus presented all known electric dipole transitions in Si VII, their oscillator strengths, and lifetime values for experimentally known energy levels. The present work is part of an ongoing program for obtaining weighted oscillator strengths, gf, and lifetimes for elements of astrophysical importance. In this particular work on Si vii, the results are part of Coutinhos's M.Sc. thesis that is in preparation.

The authors wish to thank C. J. B. Pagan for valuable discussions and advice. This work was financially supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. Computations were carried out at the Prof. John David Rogers Computational Center, UNICAMP.

REFERENCES

- Griffin, P. M., Pegg, D. J., & Sellin, I. A. 1976, Beam-Foil Spectrosc., 1, 321
- Kastner, S. O., Bhatia, A. K., & Cohen, L. 1977, Phys. Scr., 15, 259 Keily, R. L. 1987, J. Phys. Chem. Ref. Data, 16, 283
- Kink, I., & Engström, L. 1997, Phys. Scr., 56, 31
- Martin, W. C., & Zalubas, R. 1983, J. Phys. Chem. Ref. Data, 12, 323 Moore, C. E. 1971, Atomic Energy Levels (Nat. Stand. Ref. Data Ser., 35), 1 (Washington: NBS)
- Radziemsky, L. J., & Kaufman, V. 1969, J. Opt. Soc. Am. 59. 424
- Sobelman, X. 1989, Atomic Transitions and Radiative Transitions (Berlin: Springer)
- Södergvist, J. 1934, Nova Acta Regiae Soc. Sci. Ups., Ser. VII, 9, 1
- Träbert, E., Brand, K., Buttlar, H. V., & Heckmann, P. H. 1976, Z. Phys. A, 279, 127

Trabalho aceito: "Weighted Oscillator Strengths and Lifetimes for the Si VI Spectrum" - The Astrophysical Journal Supplement Series Vol.121, 1999 April

THE ASTROPHYSICAL JOURNAL

HELMUT A. ABT, Editor-in-Chief Kitt Peak National Observatory Box 26732, Tucson, Arizona 85726-6732 Telephone: 520-318-8214 Express: 950 N. Cherry Av., Tucson, AZ 85719 Facsimile: 520-318-8183 INTERNET: apj@noao.edu

November 19, 1998

Dr. L. Coutinho Instituto de Fisica "Gleb Wataghin" Universidade Estadual de Campinas UNICAMP 13083-970 Campinas São Paulo Brazil

Dear Dr. Coutinho:

Weighted Oscillator Strengths and Lifetimes for the Si VI Spectrum L. H. Coutinho and A. G. Trigueiros

We are pleased to report that the article above has been accepted for publication in the Supplement Series of the Astrophysical Journal. It is tentatively scheduled for the April 1999 Vol. 121 #2 issue. Proofs will be sent to you by January 16, and these must also be returned to our production office within forty-eight hours. You will not receive a copyedited manuscript. Instead, an editor may contact you if there are any queries to be resolved before the paper is typeset. (Note: electronic art must be submitted in PostScript or Encapsulated PostScript format. If you have any questions about the preparation of electronic art, please contact EM: apjepub@journals.uchicago.edu.)

If you will not be at your present address during the production period of the paper please provide Mr. Timothy Harper, (773-753-3984; EM: cchmiel@journals.uchicago.edu; Fax 773-753-0827) with a forwarding address or arrange for a review of the manuscript and proofs during your absence. He is the Production Controller for this issue and all correspondence regarding production details should be with him. Your cooperation will expedite publication of the paper in the scheduled issue of the journal.

Please sign the enclosed Publication Agreement pertaining to copyright assignment and return it as addressed.

Sincerely,

Helmut A.

Editor-in-Chief

HAA:cmh
Enclosure: Publication Agreement (sent by regular mail)
cc: Ms. Carolyn Chmiel, Production Manager
Dr. B. M. Haisch, Scientific Editor
39029 Est. 7 pr.pp.

WEIGHTED OSCILLATOR STRENGTHS AND LIFE'FIMES FOR THE Si VI SPECTRUM

^aL. H. Coutinho and ^{a,b}A. G. Trigueiros

^aInstituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP 13083-970 Campinas, São Paulo, Brazil; ^bInstituto de Física, Universidade do Estado do Rio de Janeiro, UERJ, 20550-013 Maracanã, Rio de Janeiro, RJ, Brazil; lucia@ifi.unicamp.br, agtri@ifi.unicamp.br, and tri@uerj.br

Received: _____; Accepted: _____

Abstract

The weighted oscillator strengths (gf) and the lifetimes for Si VI presented in this work were carried out in a multiconfiguration Hartree-Fock relativistic (HFR) approach. In this calculation, the electrostatic parameters were optimized by a leastsquares procedure, in order to improve the adjustment to experimental energy levels. This method produces gf-values that are in better agreement with intensity observations and lifetime values that are closer to the experimental ones. In this work we presented all the experimentally known electric dipole Si VI spectral lines.

Subject heading: atomic data

Accepted for publication in: The Astrophysical Journal Supplement Series

1. INTRODUCTION

The ground state configuration of five times ionized silicon, Si VI, is $1s^2 2s^2 2p^5$ with the term ²P. Si VI belongs to the F I isoelectronic sequence. The ionization potential for Si VI is 1653900 cm⁻¹(205.06 eV). The spectrum was analyzed for the first time by Söderqvist (1934) and Ferner (1941) in the grating incidence region 65-250 Å. In 1971, Moore summarized the energy levels of Söderqvist (1934) and Ferner (1941). Griffin, Pegg, & Sellin (1976) and Träbert et al. (1976), using the beam-foil technique studied the spectra of highly ionized stripped silicon ions in the extreme ultraviolet and some Si VI lines were classified. Artru & Brillet (1977) extended the analysis of this spectrum into the VUV region. Furthermore, they improved the accuracy of the majority of the known levels. Kelly (1987) summarized all the wavelengths published for Si VI. Trigueiros et al. (1991,1992) using laser produced plasmas analyzed the spectrum of Si VI in the VUV region.

The purpose of this work is to present a review of all known electric dipole transitions of Si VI, their oscillator strengths calculated from fitted values of the energy parameters and the lifetimes, calculated by the same method, for all known experimental energy levels. The work we present here was stimulated by the desire to determine weighted oscillator strengths and lifetimes for the Si VI spectrum. Both parameters are important in the study of laboratory and solar spectra, as silicon is an astrophysically important element. No extensive source of gf and lifetime values currently exists for this element.

2. CALCULATION

The oscillator strength $f(\gamma\gamma')$ is a physical quantity related to line intensity I and transition probability $W(\gamma\gamma')$, as given by Sobelman (1979):

$$W(\gamma\gamma') = \frac{2\omega^2 e^2}{mc^3} |f(\gamma\gamma')| \tag{1}$$

with,

$$I \propto gW(\gamma\gamma') \propto g |f(\gamma\gamma')| = gf.$$

Here m = electron mass, e = electron charge, $\gamma = \text{initial quantum state}$, $\omega = (E(\gamma) - E(\gamma'))/\hbar$, $E(\gamma) = \text{initial state energy}$, $\mathbf{g} = (2J + 1)$ is the number of degenerate quantum states with angular momentum J (in the formula for the initial state). Quantities with primes refer to the final state.

In the equation above, the weighted oscillator strength, gf, is given by Cowan (1981):

$$gf = \frac{8\pi^2 mca_0^2 \sigma}{3h} S,\tag{2}$$

where $\sigma = |E(\gamma) - E(\gamma')| /hc$, h = Planck's constant, c=light velocity, and $a_0 =$ Bohr radius, and the electric dipole line strength is defined by:

$$\mathbf{S} = \left| < \lambda J \left\| \mathbf{P}^{1} \right\| \gamma' J' > \right|^{2}.$$
(3)

This quantity is a measure of the total strength of the spectral line, including all possible transitions between m, m' different J_z eigenstates. The tensor operator P^1 (first order) in the reduced matrix element is the classical dipole moment for the atom in units of $-ea_0$.

To obtain gf, we need to calculate S first, or its square root:

$$\mathbf{S}_{\gamma\gamma'}^{1/2} = <\gamma J \left\| \mathbf{P}^1 \right\| \gamma' J' > .$$
⁽⁴⁾

In a multiconfiguration calculation we have to expand the wavefunction $|\gamma J\rangle$ in terms of single configuration wavefunctions, $|\beta J\rangle$, for both upper and lower levels:

$$|\gamma J\rangle = \sum_{\beta} y_{\beta J}^{\gamma} |\beta J\rangle.$$
(5)

Therefore, we can have the multiconfigurational expression for $S_{\gamma\gamma'}^{1/2}$:

$$\mathbf{S}_{\gamma\gamma'}^{1/2} = \sum_{\beta} \sum_{\beta'} y_{\beta J}^{\gamma} < \beta J \left\| \mathbf{P}^{1} \right\| \beta' J' > y_{\beta' J'}^{\gamma'} \tag{6}$$

The probability per unit time of an atom in a specific state γJ to make a spontaneous transition to any state with lower energy is

$$P(\gamma J) = \sum A(\gamma J, \gamma' J'), \tag{7}$$

where: $A(\gamma J, \gamma' J')$ is the Einstein spontaneous emission transition probability rate for a transition from the γJ to the $\gamma' J'$ state. The sum is over all $\gamma' J'$ states with $E(\gamma' J') < E(\gamma J)$.

The Einstein probability rate is related to gf through the following relation given by Cowan (1981):

$$gA = \frac{8\pi^2 e^2 \sigma^2}{mc} gf \tag{8}$$

Since the natural lifetime $\tau(\gamma J)$ is the inverse of the probability $P(\gamma J)$, then:

$$\tau(\gamma J) = \left(\sum A(\gamma J, \gamma' J')\right)^{-1} \tag{9}$$

Natural lifetime is applicable to an isolated atom. Interaction with matter or radiation will reduce the lifetime of a state.

The values for gf and lifetime given in Tables 1 and 2 respectively were calculated according to these equations.

In order to obtain better values for oscillator strengths, we calculated the reduced matrix elements \mathbf{P}^1 by using optimized values of energy parameters which were adjusted from a least-squares calculation. In this adjustment, the code tries to fit experimental energy values by varying the electrostatic parameters. This procedure improves σ values used in eq. (2) and $y^{\gamma}_{\beta J}$ and $y^{\gamma}_{\beta J}$ values used in eq. (6). The energy parameters of this calculation are given by Coutinbo (1998).

3. DISCUSSION

The theoretical predictions for the energy levels of the configurations were obtained by diagonalizing the energy matrices with appropriate Hartree-Fock relativistic (HFR) values for the energy parameters. For this purpose the computer code developed by Cowan (1981) was used. The interpretation of the configuration level structures were made by a least-squares fit of the observed levels. More details of the calculations and the tables with the theoretical Hartree-Fock parameters and their fitting values can be found in Coutinho (1998). The energy level values were determined from the observed wavelengths by an interactive optimization procedure using the program ELCALC, Radziemski and Kaufman (1969), in which the individual wavelengths are weighted according to their uncertainties. The energy levels adjusted by this method were used to optimize the electrostatic parameters by a least-squares procedure, and finally these optimized parameters were used again to calculate the gf- and lifetimes values. This method produces gf-values that are in better agreement with line intensity observations and lifetimes values that are closer to the experimental ones.

We have presented oscillator strengths and lifetimes for all known electric dipole transitions in Si VI. The present work is part of an ongoing program, whose goal is to obtain weighted oscillator strength, *gf*, and lifetimes for elements of astrophysical importance. The work for Si III, Si V, and Si VII were concluded, Callegari & Trigueiros (1998), Trigueiros & Jupén (1996), and Coutinho & Trigueiros (1998). In this particular work on Si VI, the results are part of Coutinhos's M.Sc. thesis that is in preparation.

This work was financially supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil, and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. Computations were carried out at the Prof. John David Rogers Computational Center, UNICAMP.

REFERENCES

Artru, M.-C. & Brillet, W.-Ü. L. 1977, Phys. Scr., 44, 191

Callegari, F. & Trigueiros, A. G. 1998, ApJS, 119,181

Coutinho, L. H. & Trigueiros, A. G. 1998, ApJS, 115, 315

Coutinho, L. H. 1988, M. Sc. thesis, Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, SP, Brazil, in preparation

Cowan, R. D. 1981, The Theory of Atomic Structure and Spectra (Berkeley: Univ. California Press)

Ferner, E. 1941, Ark. Mat. Astr. Fys., 28A, 21

Griffin, P. M., Pegg, D. J., & Sellin, I. A. 1976, in Beam-Foil Spectroscopy, 1, 321. Edited by Ivan Sellin & David Pegg (New York: Plenum Press)

Kelly, R. L. 1987, J. Phys. Chem. Ref. Data, 16, 283

Moore, C. E. 1971, Atomic Energy Levels (Nat. Stand. Ref. Data Ser., 35), 1, (Washington: NBS)

Radziemski, L. J. & Kaufman, V. 1969, J. Opt. Soc. Am., 59, 424

Sobelman, I. 1979, Atomic Spectra and Radiative Transitions, (Berlin: Springer)

Söderqvist, J. 1934, Nova Acta Reg. Soc. Sci. Uppsala (IV), 9, 7

Trigueiros, A. G., Jupén, C., & Redfors, A. 1991, Phys. Scr., 44, 191

Trigueiros, A. G., Jupén, C., & Redfors, A. 1992, J. Phys. B: At. Mol. Opt. Phys., 25, 2765

Trigueiros, A. G. & Jupén, C. 1996, J. Quant. Spectrosc. Radiat. Transfer., 42, 713

Träbert, E., Heckmann, P. H., Buttlar, H. v. & Brand, K. 1976, Z. Physik A, 279, 127

TABLE 1. WEIGHTED OSCILLATOR STRENGTHS AND SPECTRAL LINES FOR THE SI VI SPECTRUM

•

gf-VALUE ^m	INT.	WAVELEN	GTHS (Å)℃	LEVE	LS(d	an ^{−1}) ^d	CONFI	GUR	ATIONS	TERMS ^e	J-J€	REF.
		Observed	Calculated	Lower	-	Upper						
1.03×10 ⁻¹	20	65.004	65.003	0	-	1538386	1s ² 2s ² 2p ⁵	-	$2s^2 2p^4 (^1D) 5d$	2P0_2S	3/2-1/2	1
1.66×10 ⁻²	10	65.211	65.219	5090	-	1538386	2* ² 2p ⁵	-	2.22p4(1D)5d	$2^{2}P^{0}-2^{2}S$	1/2-1/2	1
5.60×10^{-1}	20	66.772	66.771	. 0	-	1497653	2s ² 2p ⁵	-	2s ² 2p ⁴ (³ P)5d	2P0_2D	3/2-5/2	1
4.24×10^{-2}	10	66.796	66.796	0	-	1497095	28 ² 2p ⁵	•	2s ² 2p ⁴ (¹ S)4d	2p0,2D	3/2-5/2	1
3.37×10 ⁻¹	50	69.204	69.204	0		1445003	28 ² 29 ⁵	-	2s ² 2p ⁴ (¹ D)4d	2p0_2D	3/2-5/2	1
1.59×10^{-1}	250	69.236	69.236	0	-	1444335	28 ² 2p ⁵	-	2s ² 2p ⁴ (¹ D)4d	2p0.25	3/2-1/2	1
2.20×10^{-1}	50	69.421	69.421	5090	•	1445575	$2u^2 2p^5$	-	2s ² 2p ⁴ (¹ D)4d	² P ⁰ - ² D	1/2-3/2	1
8.23×10 ⁻²	100	69.448	69.447	5090	-	1445027	20 ² 2p ⁵	-	2s ² 2p ⁴ (¹ D)4d	2P0.2P	1/2-3/2	1
3.02×10^{-1}	250	71.181	71.181	Û	-	1404870	22 ² 2p ⁵	-	2s ² 2p ⁴ (³ P)4d	2p0.2D	3/2-5/2	1
2.17×10^{-2}	100	71.273	71.272	0	-	1403085	2s ² 2p ⁵	•	25 ² 2p ⁴ (³ P)4d	² P ⁰ - ² D	3/2-3/2	1
3.34×10^{-2}	10	71.304	71.303	0	-	1402472	2s ² 2p ⁵	-	$2s^2 2p^4 ({}^3P) 4d$	2p0_2p	3/2-1/2	1
1.61×10^{-2}	50	71.340	71.339	0	-	1401755	$2s^2 2p^5$	-	2s ² 2p ⁴ (³ P)4d	2p0.4p	3/2-5/2	1
1.00×10 ⁻⁴	150	71.366	71.366	5090	•	1406317	28 ² 2p ⁵	-	2s ² 2p ⁴ (³ P)4d	2p0.2p	1/2-3/2	1
2.35×10^{-2}	200	71.384	71.384	0		1400877	25 ² 2p ⁵	-	2s ² 2p ⁴ (³ P)4d	2P0_4P	3/2-3/2	1
1.89×10 ⁻¹	50	71.474	71.474	0		1399117	$2s^2 2p^5$	-	2z ² 2p ⁴ (³ P)4d	2 _P 0_4 _F	3/2-5/2	1
3.33×10^{-1}	50	71.534	71.531	5090		1403085	2s ² 2p ⁵	-	2s ² 2p ⁴ (³ P)4d	2p0.2D	1/2-3/2	1
5.47×10 ⁻²	50	71.561	71.562	5090	-	1402472	22 ² 2p ⁵	•	2s ² 2p ⁴ (³ P)4d	2P0.2P	1/2-1/2	1
2.00×10^{-4}	10	71.644	71.644	5090		1400877	25 ² 2p ⁵	-	2s ² 2p ⁴ (³ P)4d	2p0_4p	1/2-3/2	1
1.03×10 ⁻¹	10	71.718	71.718	5090	-	1399439	2. ² 2p ⁵	-	2s ² 2p ⁴ (³ P)4d	2p0.4F	1/2-3/2	1
3.94 ×10 ⁻²	50	72.896	72.892	O	-	1371884	2s ² 2p ⁵	-	2s ² 2p ⁴ (¹ D)4	2P0_2D	3/2-5/2	1
4.21×10 ⁻²	200	75.193	75.191	0	-	1329941	22 ² 2p ⁵	-	2s ² 2p ⁴ (³ P)4s	2P0 2P	3/2-3/2	1
7.20 × 10 ⁻³	50	75.486	75.480	5090		1329941	2s ² 2p ⁵	-	28 ² 2p ⁴ (³ P)48	2p0_2p	1/2-3/2	1
1.14×10 ⁻²	50	75.587	75.398	0	-	1326302	$2s^2 2p^5$	-	2s ² 2p ⁴ (³ P)4s	2p0.4p	3/2-3/2	1
3.75×10^{-1}	500	77.429	77.429	0	-	1291505	25 ² 2p ⁵	-	2s ² 2p ⁴ (¹ S)3d	2p0_2D	3/2-5/2	1
2.72×10^{-1}	300	77.718	77.718	5090	-	1291798	28 ² 2p ⁵	-	2s ² 2p ⁴ (¹ S)3d	2P0.2D	1/2-3/2	1
1.97×10^{-1}	250	80.395	80.394	0	-	1243878	28 ² 2p ⁵	-	2s ² 2p ⁴ (¹ D)3d	² P ⁰ . ² D	3/2-3/2	1
1.59×10 ⁰	500	80.449	80.450	0	•	1243012	28 ² 2p ⁵	-	2s ² 2p ⁴ (¹ D)3d	2p0.2D	3/2-5/2	1
2.11×10 ⁻¹	250	80.491	80.489	Û	-	1242408	28 ² 2p ⁵	-	$2s^22p^4(^1D)3d$	2p0_2p	3/2-1/2	1
7.83×10^{-2}	500	80.501	80.503	0	-	1242190	25 ² 2p ⁵	-	2s ² 2p ⁴ (¹ D)3d	2p0_2F	3/2-5/2	1
1.33×10^{9}	600	80.577	80.578	0	-	1241035	2s ² 2p ⁵	-	2s ² 2p ⁴ (¹ D)3d	2p0 2p	3/2-3/2	1
6.00×10 ⁻¹	500	80.698	80.698	0	-	1239194	2s ² 2p ⁵	-	2s ² 2p ⁴ (¹ D)3d	2P0-2S	3/2-1/2	1
1.01×10 ⁰	500	80.725	80.724	5090	-	1243878	2* ² 2p ⁵	-	22 ² 2p ⁴ (¹ D)3d	2P0_2D	1/2-3/2	1
6.27 × 10 ⁻¹	400	80.821	80.820	5090	-	1242408	2# ² 2p ⁵	-	2s ² 2p ⁴ (¹ D)3d	2P0 2P	1/2-1/2	1
2.91×10^{-1}	400	80.908	80.910	5090	-	1241035	2s ² 2p ⁵	-	2s ² 2p ⁴ (¹ D)3d	2P0-2P	1/2-3/2	1
2.13×10^{-1}	350	81.030	81.030	5090	-	1239194	222p ⁵		$2s^2 2p^4 ({}^1D) 3d$	² P ⁰ - ² S	1/2-1/2	1
3.09×10 ⁻¹	200	83.006	83.012	0	-	1204647	22 ² 2p ⁵	-	$2s^2 2p^4 (^3P) 3d$	2P0_2P	3/2-3/2	1
1.27×10 ⁰	750	83.128	83.134	0	-	1202880	2s ² 2p ⁵	-	2s ² 2p ⁴ (³ P)3d	² P ⁰ - ² D	3/2-5/2	1
7.03×10 ⁻²	250	83.258	83.264	0	-	1201002	28 ² 2p ⁵	-	2s ² 2p ⁴ (¹ P)3d	2p0.2D	3/2-3/2	1
5.95×10 ⁻²	50	83.283	83.284	0	-	1200714	2* ² 2p ⁵	-	2s ² 2p ⁴ (³ P)3d	² P ⁰ _ ² P	3/2-1/2	1
4.00×10 ⁻⁴	400	83.358	83.364	5090	-	1204647	222p5	-	2s ² 2p ⁴ (³ P)3d	² P ⁰ - ² P	1/2-3/2	1
1.46 ×10 ⁻²	400	83.526	83.491	0	-	1197733	2s ² 2p ⁵	-	2• ² 2p ⁴ (³ P)3d	² P ^{0_4} P	3/2-5/2	1
8.26×10^{-1}	400	83.611	63.618	5090	-	1201002	2s ² 2p ⁵	-	2s ² 2p ⁴ (³ P)3d	² P ^{0_2} D	1/2-3/2	1
8.40×10 ⁻²	150	83.639	83.638	5090	-	1200714	2s ² 2p ⁵	-	2s ² 2p ⁴ (³ P)3d	² P ⁰ - ² P	1/2-1/2	1
3.00×10 ⁻³	50	83.684	83.689	0	-	1194905	2* ² 2p ⁵	-	2s ² 2p ⁴ (³ P)3d	2P0.2P	3/2-1/2	1
1.03×10^{-1}	50	83.729	83.729	0	-	1194332	2s ² 2p ⁵	-	2s ² 2p ⁴ (³ P)3d	2P0.4F	3/2-3/2	1
2.69×10 ⁻²	300	83.802	83.806	0	-	1193227	2s ² 2p ⁵	-	20 ² 2p ⁴ (³ P)3d	2p0_4F	3/2-5/2	1
3.00×10 ⁻⁴	10	83.965	83.970	5090	-	1195990	28 ² 2p ⁵	-	2s ² 2p ⁴ (³ P)3d	2P0_4P	1/2-3/2	1
1.96×10 ⁻²	600	84.082	84.087	5090	-	1194332	2* ² 2p ⁵	-	2s ² 2p ⁴ (³ P)3d	² P ⁰ . ⁴ F	1/2-3/2	1
6.70 x 10 ⁻²	200	91.370	91.371	0	-	1094444	2* ² 2p ⁵	-	2s ² 2p ⁴ (¹ S)3s	² P ⁰ - ² S	3/2-1/2	2
4.26×10 ⁻²	200	91.798	91.798	5090		1094444	2s ² 2p ⁵	-	2= ² 2p ⁴ (¹ S)3=	2P0_2S	1/2-1/2	2

TABLE 1 - Continued

#LVALUE ⁴	INT ^b	WAVELEN	GTHS(Å) ^e	LEVEI	Síci	n - 1) d	CONFIG		TIONS	TERMS	<u>ار الا</u>	RFF
g		Observed	Calculated	Lower		Unner	oom id			10440	3-5	NDI :
2.03 × 10 -2	500	96 022	96.018	<u> </u>		1041477	2.295		2.22p4(1D)3.	2p0 2D	3/2-3/2	
1.94×10 ⁻¹	500	96.488	96.489	5090	_	1041477	+P 22255		$2^{2}2^{2}n^{4}(^{1}D)3^{2}$	2p0,2D	1/2-3/2	-
1.02×10^{-1}	500	300.00	390.99	ò	_	1009122	2,2 ₂ ,5	_	2. 2. 4(SP)3.	2p0.2p	3/2-1/2	-
4.88×10 ⁻¹	750	99.459	99 459	0	_	1005436	2p 2- ² 25 ⁵		2= 2p (1)35	2p0 2p	3/2-3/2	2
1 86 × 10 -1	500	99.599	99 598	5090	_	1009199	20 20 9.29.5		2. 2p (1)33	2p0,2p	1/2.1/2	* •
7 90 × 10 ⁻²	500	09.066	99.965	5000	_	1005436	2.20.5	_	2-22-4(3P)3-	2p0 2p	1/2 3/9	2
6.00×10 ⁻⁴	10	100 159	100 159	5090	-	003634	2, 2p 2, 20 5		28 29 (1)38	2 ₀ 04 ₀	1/9.3/9	<u>م</u>
7.50×10^{-3}	500	100.640	100.005	0030	-	003634	2° •P 2°2255		25 2p (1)35	2p0.4p	2/2-3/2	- 9
8.00×10-4	40	100.040	100.041	0	_	990523	2° 20 5	-	2. 2p (1)3.	2p0.4p	3/2-3/2	2
9.00×10-4	10	100.970	100.971	5090		995477	2°2905		2. 20 4 (3P)3.	2p0 4p	1/2-1/2	2
9 50 × 10 ⁻²	50	102 846	102 846	406497	_	1378894	2. 7. B		20 2 (1 /00 20 2 5 (3 P) 30	2 ₅ ,2 _P 0	1/2-1/2	1
1 84 × 10-1	100	102.040	102.040	406497	-	1375836	2020 6	-	202p 5/3p)30	2 ₅ 2 _P 0	1/2-3/2	•
0.00~10-5	50	147 800	147 817	406497	-	1083000	2.2.0	-	2.20 (1)0.	3c 4n0	1/2-3/2	•
6 00 v 10 - 5	50	213 400	919 495	1060961		1538386	3.20.4(3p)3.	-	20 20 (1)0p	4p0.2c	7/9.1/9	3
1.46~10-2	50	213.400	220.400	1002176	·	1529396	2 2 2 (1) 3 p	-	28 20 (D)54	2p0 2c	3/2-1/2	3
1.40×10	200	224.100	224.109	1092170	•	1030309	28 2p (F)3p	-	28 2p (D)30	r - 3 $2_{\rm D}0 2_{\rm C}$	3/2-1/2	
4.04×10	200	240.004	240.000	U 5000	-	406497	28 2p	-	282p	2p0 2p	3/2-1/2	2,3
2.00 × 10 -4	100	249.124	249.124	1103004	-	400431	21 2p	-	282p	Γ-3 2p02c	3/31/2	2,3
3.00×10-3	50	201.200	201.223	1000000	-	100000	28 2p (3)3p	•	$2s^2p(D)$	2 - 0 2 - 0	3/2-1/2	•
5.50×10 ⁻²	30	201.300	201.014	1009000	-	1443023	28 2p ('F)3p	-	28 2p (17)4d	2p0 2n	3/2-3/2	د ۲
1.00×10=5		203.920	203.920	1071134	•	1491093	28-29-(-D)39	-	28-2p (-P)30	4p0 2p	3/2-3/2	•
9.00×10 ⁻¹	•	200 401	200 401	1069910	-	1202069	28 2p (F)3p	•	28 2p (P)+d	4 p0 4 p	1/2-3/2 E /0 E /0	•
2.39×10	2	300.401	300.401	1066610	-	1332300	28 2p (P)3p	-	26 2p (r)40	4 p 0 4 p	5/2-3/2	0 E
5.49×10	3 0	306.703	308.703	1006019	-	1992199	20-20-4(1p)3p	-	$2s^2p^{-}(-P)4d$	2p0 2c	0/2-1/2 5/07/0	а т
B 01 V10-1	0 9	314 099	314.540	1124918	-	1441758	$2a^{2}2p^{4}(1D)3p$	-	2*2p(D)*d $2-22p^4(1D)*d$	2F0.2C	7/2-1/2	
8.91×10-1	2 6	314.322	215 004	1164610	-	1206206	25 2p (D)3p	-	25 2p (D)4d	40.040	7/20/2	5
6.28 × 10		315.720	215 720	1010740	-	1307/32	28 2p (r)3p	-	26 2p (r)44	400.4p	5/2-7/2	5
4.50 × 10	2 3	318 095	318 035	1000100		1401949	2. 2p (1) 3p	-	2.20 4/3 B) 4d	2D02F	5/9.7/9	ب د
1.13×10	2	310.023	310 241	1080802	-	1401243	26 2p (F)3p	-	26 2p (r)ed	2 _D 02 _F	3/2-1/2	5
2.78×10-1	•	291 000	201 0.075	1134500	-	1402130	20 2p (1)3p	-	25 2p (1)4d	2 _D 0_2 _F	/2-7/2	5
9.00~10~5	7 50	321.300	331 100	1069961	-	1990100	2.29.4(3p)3p	-	$2a^2 2p^4 (1D) 4a$	4p0_2D	3/2-5/2	34
0.00×10 ⁻⁵	50	960 900	960.914	1124219	-	1461755	2-20-4(1D)9-	•	2-20-4(3p)44	2 - 0 2 - 0 4 p	7/95/9	9.9 9
3.00 × 10		296 420	300.313	1060961	Ē	1299627	2* 2p (D)3p	-	2 1p (1)40	4p0_4p	3/9-1/2	5
1.21×10^{-1}	1	380.133	200.400	1147005		1404970	$2^{-2} 2^{-4} (1)^{3}$		$2^{2} 2^{2} 2^{4} (3^{3})$	2 _P 0_2 _D	9/2-5/2	5
F 10×10-1	•	303.134	202 260	1040900	-	1909746	26 2p (D)3p	-	26 2p (r)eu	4 p 0 4 p	5/2-0/2	5
3.12 × 10	*	334-211	332.203	1000013	-	1222740	21 2p (r)3p	-	25 2p (F)45	г-г 4ъ04ъ	3/2-3/2 3/3 K (9	5 E
2.35 X 10 E 20 V 10 - 1	3	400.695	409 694	1199640	•	1323740	28 2p (F)3p	-	21 2p (P) 4s $a_2a_4(1p) 4s$	2 - 0 2 - 0	3/2-3/4 E/0 9/0	5
3.30×10 2.72×10-1	•	402.033	402.034	1124018	-	1971019	28 2p (D)3p	-	25 2p (D) 48 2 - 22 - 4(1D) 42	2e0 2n	3/2-3/2 7/9 5/9	5 E
1.13 × 10	•	403.110	402.110	1124210	-	1204627	28 2p (D)3p	-	28 2p (D)48	4 n 0 4 p	9/91/9	ی ۲
1.94 × 10 - 1	4	407 161	403.813	1092210	•	13262021	2 = 2p (F) 3p 2 = 20 = 4(3p) 3p	-	28 2p (F)48	4n0 4p	5/9.3/2	5
4.48 × 10	3	407.101	407.174	1070040	•	1920302	28 2p (F) 3p $2a^2 2p 4(3p) 3p$	-	28 2p (r) 48 2 - 2 - 4 (3p) 4 - 2 - 2 - 4 (3p) 4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	4 n 0 4 p	3/2-3/2	5 E
1.58×10-1	,	400.450	400.400	1000010	-	1996309	20 20 (F)3p	•	20 20 (F)40	4 n 0 4 p	2/0.2/0	5
1 29010-1	۲ ۲	493.033	403.030 411 189	1002215	-	1320302	28 2p (F)3p	•	48 4р (Г)48 9.29.4/36\4-	2 n 0 2 n	a/2-a/2 9/9 1/0	J E
1.02 ×10 -1	•	ALL 132	411.104	1054501	•	1330041	25 29 (F)3P		3.20.4/30\1.	200.2p	5/2-1/2	0 E
101010-1	•	433.400	413 484	1000001	-	1202744	0,20,4/3010-	•	9,29,4/3p\1.	4 n 0 4 n	5/35/4 5/35/4	0 E
1.01210	•	416.001	41E 009	1000100	-	1200011	4= 4/ (F)3P	•	48 4µ (E)48	2 n 0 2 n	3/3 2/0	J
1.42×10 *	1	410.001	400 470	1194005	-	1971010	28 2p (T)3p	•	28 2p ("F)48	2n0 2n	3/2-3/2	0 ,
J.U4 X IV -	2	451 456	460.47%	1134500	-	1341001	4≡ 4p (=D)ŏp 9=29=4(1m)=	-	20 20 ("D)48	2 ₁ 02 ₁	a/2-3/2 5/05/0	9 E
1.10 210	J 1	420 021	421.400 430 097	1134300	-	1298304	4= 6μ (Β/3ρ 2.20.4/3ρ\5-	•	25 29 (17)48 9=89=4/3=14=	4e04p	3/9.9/0	j K
4.35 × 10-1	۰ ۵	431.409	431.406	1181655	-	1413456	2= ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ Pn)4f	⁴ [£]-(1 ⁴	5/2-7/2	6

TABLE 1- Continued

<u> </u>				······								
gf-VALUE [®]	INT."	WAVELEN	GTHS (Å) ^e	LEVE	LS(cı	n ^{- 1}) ^a	CONFIGU	RAT	lonse	TERMS	J-Je	REF.
		Observed	Calculated	Lower		Upper						
7.61×10^{-1}	2	433.607	433.640	1181173	-	1411779	25 ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ P ₁)4f	⁴ D-[4] ⁰	7/2-9/2	6
1.28×10^{-1}	1	434.782	434.806	1093758	·	1323746	2# ² 2p ⁴ (³ P)3p	-	2p ⁴ (³ P)4s	45 ⁰ .4P	3/2-5/2	5
5.65×10^{-1}	1	436.281	436.281	1182317	•	1411527	2s ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ P ₁)4f	⁴ D-[2] ⁰	3/2-5/2	6
6.27×10^{-1}	2	437.512	437.513	1182900	•	1411464	2s ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ P ₁)4f	⁴ D-[2] ⁰	1/2-3/2	6
4.61×10 ⁰	7	442.951	440.659	1181173	-	1408106	2s ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ P ₂)4f	⁴ D-[4] ⁰	7/2-9/2	6
8.76×10^{-1}	2	443.531	443.532	1181655	-	1407118	2s ² 2p ⁴ (³ P)3d	-	$2p^4(^{3}P_2)4f$	⁴ D-[3] ⁰	5/2-5/2	6
1.37×10^{-1}	5	443.814	443.814	1181655	-	1406975	2s ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ P ₂)4f	⁴ D-[4] ⁰	5/2-7/2	6
2.82×10^{-3}	3	443.952	443.954	1182317	-	1407565	22 ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ P ₂)4f	⁴ D-[2] ⁰	3/2-3/2	6
1.44×10 ⁰	4	444.836	444.837	1182317	-	1407118	2# ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ P ₂)4f	⁴ D [3] ⁰	3/2-5/2	6
8.38×10^{-1}	2	445.108	445.105	1182900	-	1407565	2s ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ P ₂)4f	⁴ D-[2] ⁰	1/2-3/2	6
2.50×10^{-1}	4	446.461	446.470	1147905	-	1371884	2s ² 2p ⁴ (¹ D)3p	-	2p ⁴ (¹ D)46	2p0_2D	3/2-5/2	5
1.00×10 ⁰	3	448.695	448.673	1232671	-	1455550	2s ² 2p ⁴ (¹ D)3d	-	2p ⁴ (¹ D ₂)4f	² G-[4] ⁰	9/2-9/2	6
2.30×10^{-2}	3	448.695	448.701	1 23 267 1	-	1455537	2# ² 2p ⁴ (¹ D)3d	-	$2p^{4}(^{1}D_{2})4f$	² G-[4] ⁰	9/2-7/2	6
1.34×10^{-1}	1	451.213	451.210	1150287		1371913	2s ² 2p ⁴ (¹ D)3p	-	2p ⁴ (¹ D)4s	2p0_2D	1/2-3/2	5
1.37×10^{-1}	9	452.171	452.171	1232671	-	1453827	2s ² 2p ⁴ (¹ D)3d	_	$2p^4(^1D_2)4f$	2G-[5]0	9/2-9/2	6
7.33×10 ⁰	9	452.171	452.171	1232671	_	1453827	$26^{2}2p^{4}(^{1}D)3d$	_	$2n^4({}^1D_2)4f$	² G-[5] ⁰	9/2-11/2	6
2.43×10 ⁰	5	454.058	454.065	1191546	-	1411779	2s ² 2p ⁴ (³ P)3d	-	$2p^4(^{3}P_{1})4[$	4 _{F-[4]} 0	7/2-9/2	6
1.74×100	-	456.295	456.292	1194332		1413490	$2s^2 2p^4 (^3P) 3d$	_	$2p^{4}(^{3}P_{0})4f$	4F.[3]0	3/2-5/2	6
2 69 × 100	4	457 413	457 413	1193227		1411848	2= ² 2p ⁴ (³ P)3d		$2n^{4}(^{3}P_{3})4f$	4 _{F-[4]} 0	5/2-7/2	6
7 49 2 100	• 7	457 815	457 815	1189850	_	1408279	2+ ² 2p ⁴ (³ P)3d	_	2p4(3Pp)4f	4 _{R-151} 0	9/2-11/2	6
6 49 10-1	, 3	458 449	458 447	1194339	_	1412460	2. ² 2. ⁴ (³ P)3.	_	25 ⁴ (³ P ₁)4f	4 _{F-[3]} 0	3/2-5/2	6
9.97 × 10 - 1	2	460 675	460 675	1189850	_	1408106	2.29.4(Sp)3d		2p ⁴ (³ Pa)4f	4 _{F-[4]} 0	9/2-9/2	6
	10	461 914	461 285	1104003	_	1411779	20 20 (1)34	_	2p (1 2)41	2 _{17.14} 0	7/9.0/2	6
3.00 × 10	10	461 314	401.200	1194995		1408316	28 20 (1)30	-	2p (1)41 2p4(3pa)4f	4 _{E-[5]} 0	7/2-3/2	6
3.32 × 10		401.314	401.320	1191940	-	1411464	28 2p (F)3u	-	2p (P2)41	4 ກ (ຄ) 0	1/9 2/9	u e
3.41 × 10	0	401.101	401.700	1194900	•	1411404	20-20-(-F)30	ľ	2p - (* 2 1)41	2-04-	1/2-3/2	0
7.00 × 10 =	20	462.290	462.292	1182804	-	1228111	2s=2p*(-5)3p	-	2p - (-P)4d	- P F 2 10	3/2-5/2	2
8.01×10 -	5	462.312	462.315	1197153	•	1413456	2s ⁻ 2p ⁻ (⁻ P)3d	•	2p ⁻ (⁻ P ₀)4f	-F-[3]*	5/2-7/2	6
1.41×10*	3	463.962	463.957	1195990	-	1411527	2s ⁻ 2p ⁻ (^o P)3d	-	2p*(*P ₁)4f	*P-[2]*	3/2-5/2	6
1.80×10°	2	464.656	464.640	1197153	-	1412373	2s ⁻ 2p ⁻ (^o P)3d	-	2p*(*P ₁)4f	F-[3]	5/2-7/2	6
2.35×10	6	465.881	465.896	1197733	-	1412373	24*2p*(*P)3d	•	2p*(³ P ₁)4f	*P-[3]*	5/2-7/2	6
4.98×10 ⁻¹	1	467.735	467.740	1197733	-	1411527	2= ² 2p ⁴ (³ P)3d	•	2p*(°P ₁)4f	•F-[2]•	5/2-5/2	6
5.34×10 ⁻¹	1	467.897	467.886	1194905	-	1408632	2s ² 2p ⁴ (³ P)3d	-	2p4(3P2)4f	⁴₽-[1] ^U	1/2-3/2	6
8.62×10^{-1}	2	468.149	468.149	1194905	-	1408512	2s ² 2p ⁴ (³ P)3d	-	2p4(3P2)4f	*P-[1]*	1/2-1/2	6
7.52×10^{-1}	3	468.530	468.530	1239194	-	1452628	2* ² 2p [•] (¹ D)3d	-	2p*('D2)4f	² S-[1] ⁰	1/2-1/2	6
1.19×10 ⁰	3	468.530	468.530	1239194	-	1452628	$2s^22p^4(^1D)3d$	-	2p ⁴ (¹ D ₂)4f	² S-[1] ⁰	1/2-3/2	6
4.11×10 ⁰	8	468.780	468.722	1242190	-	1455537	2s ² 2p ⁴ (¹ D)3d	-	2p ⁴ (¹ D ₂)4f	² F-{4} ⁰	5/2-7/2	6
2.93×10 ⁰	8	468.780	468.774	1194993	-	1408316	2s ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ P ₂)4f	² F-[5] ⁰	7/2-9/2	6
1.25×10 ⁰	3	469.611	469.614	1242190	-	1455132	2s ² 2p ⁴ (¹ D)3d	-	2p ⁴ (¹ D ₂)4f	² F-[3] ⁰	5/2-5/2	6
3.40×10 ⁻²	3	469.611	469.614	1242190	-	1455132	2s ² 2p ⁴ (¹ D)3d	-	2p ⁴ (¹ D ₂)4f	² F-[3] ⁰	5/2-7/2	6
1.21 × 10 -1	7	469.728	469.778	1242670	-	1455537	25 ² 2p ⁴ (¹ D)3d	•	2p ⁴ (¹ D ₂)4f	² F-[4] ⁰	7/2-7/2	6
5.50×10 ⁰	7	469.728	469.748	1242670	-	1455537	2s ² 2p ⁴ (¹ D)3d	-	2p ⁴ (¹ D ₂)4f	² F-[4] ⁰	7/2-9/2	6
2.00×10 ⁰	3	469.832	469.833	1241035	•	1453877	$2s^2 2p^4 ({}^1D) 3d$	-	2p ⁴ (³ P ₂)4f	² P-[2] ⁰	3/2-5/2	6
5.64×10^{-1}	1	470.263	470.274	1195990	-	1408632	2* ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ P ₂)4f	⁴ P-[1] ⁰	3/2-3/2	6
5.08×10 ⁻²	2	470.677	470.674	1242670	-	1455132	22 ² 2p ⁴ (¹ D)3d	-	2p ⁴ (¹ D ₂)4f	² F-[3] ⁰	7/2-5/2	6
1.54×10 ⁰	2	470.677	470.674	1242670		1455132	$2s^22p^4({}^1D)3d$	-	2p ⁴ (¹ D ₂)4f	² F-[3] ⁰	7/2-7/2	6
3.00×10 ⁻⁴	1	471.021	471.007	1194993	-	1407304	2s ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ P ₂)4f	² F-[3] ⁰	7/2-7/2	6
5.44×10^{-2}	3	471.433	471.433	1243012		1455132	$2*^{2}2p^{4}(^{1}D)3d$	•	2p ⁴ (¹ D ₂)4f	² D-[3] ⁰	5/2-5/2	6
3.46×19 ⁰	3	471.433	471.433	1243012	-	1455132	2# ² 2p ⁴ (¹ D)3d	-	2p ⁴ (¹ D ₂)4f	² D-[3] ⁰	5/2-7/2	6
5.17×10 ⁻¹	1	471.873	471.738	1194993	-	1406975	23 ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ P ₂)4f	² F-[4] ⁰	7/2-7/2	6
6.44×10 ⁻²	1	472.228	472.226	1195990	-	1407753	2s ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ P ₂)4f	4P-[2]0	3/2-5/2	6

TABLE 1-Continued

gf-VALUE ^a	INT. ^b	WAVELEN	GTHS (Å) ^e	LEVEI	S{c=	n - 1)d	CONFIG	UR.	TIONS	TERMS	j.] e	REF.
0- · · · - · · -		Observed	Calculated	Lower		Upper						
1.16×10 ⁰	3	472.860	472.859	1242408		1453888	2s ² 2p ⁴ (¹ D)3d	-	2p ⁴ (¹ D ₂)4f	² P-[2] ⁰	1/2-3/2	6
2.40×10^{0}	3	473.366	473.365	1243878		1455132	$2s^2 2p^4 (^1D) 3d$		$2p^4(^1D_2)4f$	² D-[3] ⁰	\$/2-5/2	6
1.40×10^{0}	4	474.238	474.238	1243012		1453877	2s ² 2p ⁴ (¹ D)3d	-	$2p^{4}(^{1}D_{2})4f$	2 _{D-[2]} 0	5/2-5/2	6
1.04×10^{0}	2	475.000	475.002	1201002		1411527	2s ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ P ₁)4f	² D-[2] ⁰	3/2-5/2	6
7.95×10^{-2}	3	475.850	475.848	1197153		1407304	2s ² 2p ⁴ (³ P)3d	-	$2p^{4}(^{3}P_{2})4f$	2 _{F-[3]} 0	5/2-7/2	6
8.91×10 ⁻¹	2	476.169	476.170	1243878		1453888	2s ² 2p ⁴ (¹ D)3d		$2p^{4}(^{1}D_{2})4f$	² D-[2] ⁰	3/2-3/2	6
8.47×10^{-2}	1	477.151	477.166	1197733	-	1407304	2s ² 2p ⁴ (³ P)3d	-	$2p^4(^{3}P_2)4f$	⁴ P-[3] ⁰	5/2-7/2	6
1.92×10 ⁰	2	478.541	478.542	1202880	-	1411848	2s ² 2p ⁴ (³ P)3d	-	$2p^4(^{3}P_1)4f$	² D-[4] ⁰	5/2-7/2	6
6.07×10^{-2}	3	478.826	478.829	1204647	-	1412460	2s ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ P ₀)4f	² P-(3) ⁰	3/2-5/2	6
2.17×10^{0}	2	481.202	481.204	1204647		1412460	2s ² 2p ⁴ (³ P)3d	-	$2p^{4}(^{3}P_{1})4f$	² P-[3] ⁰	3/2-5/2	6
5.83×10^{-2}	1	483.374	483.372	1204647	-	1411527	2s ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ P ₁)4f	² P-[2] ⁰	3/2-5/2	6
7.04×10^{-1}	3	483.671	483.674	1201002	-	1407753	2s ² 2p ⁴ (³ P)3d	-	2p ⁴ (³ P ₂)4f	² D-[2] ⁰	3/2-5/2	6
2.46×10^{-1}	1	485.165	485.162	1201002		1407118	25 ² 2p ⁴ (³ P)3d	-	2p4(3P2)4f	² D-[3] ⁰	3/2-5/2	6
1.06×10^{-1}	4	489.179	489.179	1202880		1407304	2s ² 2p ⁴ (³ P)3d	-	2p4(3P2)41	² D-[3] ⁰	5/2-7/2	6
1.00×10^{-4}		504.950	504.950	1093758		1291798	2s ² 2p ⁴ (³ P)3p	-	2.2p4(1S)3d	450.2D	3/2-3/2	4
6.83×10^{-2}	90	690.350	690.363	1005436	-	1150287	2s ² 2p ⁴ (³ P)3s	-	2s ² 2p ⁴ (¹ D)3p	2p.2p0	3/2-1/2	2
4.32×10^{-1}	90	701.890	701.903	1005436	-	1147905	2s ² 2p ⁴ (³ P)3s	-	2s ² 2p ⁴ (¹ D)3p	2p_2p0	3/2-3/2	2
1.68×10^{-1}	60	708.394	708.394	1009122	-	1150287	2s ² 2p ⁴ (³ P)3s	-	2s ² 2p ⁴ (¹ D)3p	2p_2p0	1/2-1/2	2
9.61×10^{-2}	40	720.547	720.550	1009122		1147905	2.22p4(3P)3.	-	2s ² 2p ⁴ (¹ D)3p	2 _{P-} 2 _P 0	1/2-3/2	2
3.89×10^{-1}	20	775.710	775.708	1068819	-	1197733	2s ² 2p ⁴ (³ P)3p	-	2• ² 2p ⁴ (³ P)3d	4p0_4p	5/2-5/2	2
9.00×10^{-5}	20	779.190	779.216	1068819		1197153	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	4p0_2F	5/2-5/2	2
2.81×10^{-1}	10	782.030	782.027	1069861	-	1197733	2= ² 2p ⁴ (³ P)3p	-	2= ² 2p ⁴ (³ P)3d	4p0_4p	3/2-5/2	2
1.40×10^{-3}	5	785.570	785.592	1069861		1197153	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	4p0_2F	3/2-5/2	2
2.19×10 ⁻¹	10	786.343	786.342	1068819	-	1195990	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	4P ^{0_4} P	5/2-3/2	2
4.42×10 ⁻²	5	792.860	792.836	1069861		1195990	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	4 _P 0_4 _P	3/2-3/2	2
2.54×10^{-1}	30	799.723	799.718	1069861	-	1194905	2# ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	4 _P 0_4 _P	3/2-1/2	2
3.18×10 ⁻¹	30	800.926	800.928	1071134	-	1195990	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	4 _P 0_4 _P	1/2-3/2	2
8.15×10 ⁻²	5	807.940	807.952	1071134	-	1194905	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	4 _P 0_4 _P	1/2-1/2	2
8.43×10^{-1}	20	844.219	844.226	1124218	-	1242670	2s ² 2p ⁴ (¹ D)3p	-	2s ² 2p ⁴ (¹ D)3d	2 _F 0_2-	7/2-7/2	2
9.00×10^{-4}	5	874.990	874.993	1080706	-	1194993	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	4D0-2F	5/2-7/2	2
1.31×10 ⁻¹	10	884.640	884.647	1069861	-	1182900	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	4p0.4D	3/2-1/2	2
6.68×10^{-1}	60	886.243	886.236	1068819	-	1181655	2s ² 2p ⁴ (³ P)3p	-	2# ² 2p ⁴ (³ P)3d	4p0_4D	5/2-5/2	2
2.86×10^{-1}	10	888.050	888.056	1078940	-	1191546	2# ² 2p ⁴ (³ P)3p	-	2# ² 2p ⁴ (³ P)3d	4 _D 0_4 _F	7/2-7/2	2
4.12×10^{-1}	20	888.720	888.726	1080706	-	1193227	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	4 _D 0_4 _F	5/2-5/2	2
6.20×10^{-1}	50	889.227	889.230	1069861	-	1182317	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	4p0.4D	3/2-3/2	2
1.79×10^{0}	100	890.041	890.043	1068819	•	1181173	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	4p0_4D	5/2-7/2	2
2.80×10^{-1}		891.970	891.954	1082218	-	1194332	25 ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	4D0_4F	3/2-3/2	2
7.97×10^{-1}	70	894.490	894.493	1069861	-	1181655	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	4°0-4D	3/2-5/2	2
3.82×10^{-1}	40	894.737	894.734	1071134	-	1182900	28 ² 2p ⁴ (³ P)3p	-	20 ² 2p ⁴ (³ P)3d	4p0.4D	1/2-1/2	2
7.91×10 ⁻¹	40	898.281	898.286	1083009	-	1194332	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	⁴ D ⁰ - ⁴ F	1/2-3/2	2
2.82×10^{-1}	40	899.427	899.422	1071134	-	1182317	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	4p ^{6_4} D	1/2-3/2	2
1.55×10^{0}	60	900.834	900.832	1082218	-	1193227	22 ² 2p ⁴ (³ P)3p	-	2# ² 2p ⁴ (³ P)3d	⁴ D ⁰ , ⁴ F	3/2-5/2	2
3.34×10 ⁰	200	901.637	961.637	1078940	-	1189850	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	⁴ D ⁰ - ⁴ F	7/2-9/2	2
2.37×10^{0}	100	902.209	902.202	1080706	-	1191546	2# ² 2p ⁴ (³ P)3p	-	2a ² 2p ⁴ (³ P)3d	4D0-4F	5/2-7/2	2
4.19×10 ⁻¹	5	906.180	906.195	1086801	-	1197153	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	² D ⁰ 2F	5/2-5/2	2
3.73×10^{-1}	30	919.034	919.031	1041477	-	1150287	2s ² 2p ⁴ (¹ D)3s	-	2# ² 2p ⁴ (¹ D)3p	² D. ² P ⁰	3/2-1/2	2
3.35×10 ⁰	90	922.063	922.063	1124218	-	1232671	2. ² 2p ⁴ (¹ D)3p	•	2s ² 2p ⁴ (¹ D)3d	² F ⁰ - ² G	7/2-9/2	2
2.62×10^{0}	100	924.290	924.286	1086801	-	1194993	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	² D ⁰ ² F	5/2-7/2	2
1.72×10^{0}	50	924.496	924.470	1134500	-	1242670	22 ² 2p ⁴ (¹ D)3p	-	2. ² 2p ⁴ (¹ D)3d	2D0-2F	5/2-7/2	2
1.04×10 ⁰	5	925.030	925.026	1134085		1242190	2s ² 2p ⁴ (¹ D)3p		2.2p4(1D)3d	² D ⁰ . ² F	3/2-5/2	2

TABLE 1- Continued

gI-VALUE [®]	ent. ⁶	WAVELEN	GTHS (Å) ^c	LEVELS(cm ⁻¹) ^d		CONFIGURATIONS			TERMS	J-J e	REF.	
-		Observed	Calculated	Lower		Upper						
1.46×10 ⁰		929.389	929.369	1089553	-	1193227	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	² D ⁰ ² F	3/2-5/2	2
6.64×10 ⁻¹		939.100	939.071	1041417	-	1147905	2s ² 2p ⁴ (¹ D)3s	•	2s ² 2p ⁴ (¹ D)3p	2D-2P0	5/2-3/2	2
5.30×10 ⁻³	5	954.700	954.701	1086801	-	1191546	2s ² 2p ⁴ (³ P)3p	-	$2s^22p^4(^3P)3d$	² D ^{0_4} F	5/2-7/2	2
1.05×10 ⁰	42	961.766	961.770	1093758	-	1197733	28 ² 2p ⁴ (³ P)3p	-	$2a^22p^4(^3P)3d$	450.4P	3/2-5/2	2
3.84×10^{-1}	60	968.655	968.657	990523	-	1093758	2s ² 2p ⁴ (³ P)3s	-	$2s^22p^4(^3P)3p$	4p.450	5/2-3/2	2
1.09×10 ⁻¹	5	973.570	973.570	1078940	-	1181655	25 ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	⁴ D ^{0_4} D	7/2-5/2	2
6.02×10^{-1}	70	978.167	978.161	1093759	•	1195990	$2 {}_{9}{}^{2} 2 {}_{p}{}^{4} ({}^{3}P) 3 {}_{p}$	-	$2s^22p^4(^3P)3d$	45 ⁰ .4P	3/2-3/2	2
5.76×10^{-1}	70	978.167	978.166	1078941	-	1181173	2s ² 2p ⁴ (³ P)3p	-	2s ² 2p ⁴ (³ P)3d	4D0.4D	7/2-7/2	2
2.75×10^{-1}	36	988.664	988.667	1093758	-	1194905	2s ² 2p ⁴ (³ P)3p	٠	2s ² 2p ⁴ (³ P)3d	450_4P	3/2-1/2	2
1.83×10^{-1}	50	990.590	990.598	1080706	-	1181655	2s ² 2p ⁴ (³ P)3p	-	$2s^22p^4({}^3P)3d$	4D0.4D	5/2-5/2	2
3.30×10^{-1}	60	997.884	998.755	993634	-	1093758	2s ² 2p ⁴ (³ P)3s	-	$2s^22p^4(^3P)3p$	4P-4S0	3/2-3/2	2
4.77×10^{-2}	5	1001.090	1001.091	1083009	•	1182900	2s ² 2p ⁴ (³ P)3p	-	$2s^2 2p^4 ({}^3P) 3d$	⁴ D ⁰ - ⁴ D	1/2-1/2	2
5.58×10^{-2}	5	1006.960	1006.963	1083009	-	1182317	2a ² 2p ⁴ (³ P)3p	-	$2s^2 2p^4 ({}^3P) 3d$	⁴ D ⁰ - ⁴ D	1/2-3/2	2
1.89×10^{-1}	40	1017.470	1017.489	995477	-	1093758	2s ² 2p ⁴ (³ P)3s	-	2a ² 2p ⁴ (³ P)3p	4p.450	1/2-3/2	2
1.17×13 ⁰	50	1074.360	1074.309	1041417	-	1134500	2s ² 2p ⁴ (¹ D)3s	•	2s ² 2p ⁴ (¹ D)3p	${}^{2}D_{-}{}^{2}D_{-}$	5/2-5/2	2
1.18×10 ⁻¹	5	1074.980	1074.996	1041477	•	1134500	2s ² 2p ⁴ (¹ D)36	-	26 ² 2p ⁴ (¹ D)3p	${}^{2}D-{}^{2}D^{0}$	3/2-5/2	2
8.03×10 ⁻¹	30	1079.809	1079.809	1041477	-	1134085	2s ² 2p ⁴ (¹ D)3s	•	$2s^22p^4(^1D)3p$	$2^{2}D^{-2}D^{0}$	3/2-3/2	2
2.38×10^{-1}	40	1108.850	1108.846	990523	-	1080706	22 ² 2p ⁴ (³ P)35	-	2s ² 2p ⁴ (³ P)3p	4P-4D0	5/2-5/2	2
4.11 × 10 ⁻¹	30	1128.990	1128.860	993634	-	1082218	2s ² 2p ⁴ (³ P)3s	-	2s ² 2p ⁴ (³ P)3p	4p.4D0	3/2-3/2	2
1.71×10 ⁰	100	1130.983	1130.989	990523	-	1078940	2s ² 2p ⁴ (³ P)3s	•	2s ² 2p ⁴ (³ P)3p	⁴ P- ⁴ D ⁰	5/2-7/2	2
3.79×10^{-1}	50	1142.430	1142.443	995477	-	1083009	2# ² 2p ⁴ (³ P)3#	-	$2s^22p^4(^3P)3p$	4p.4D0	1/2-1/2	2
9.98×10 ⁻¹	90	1148.630	1148.464	993634	•	1080706	2s ² 2p ⁴ (³ P)3s	•	2s ² 2p ⁴ (³ P)3p	4 _{P-} 4 _D 0	3/2-5/2	2
2.24×10^{-1}	70	1152.862	1152.867	1005436	-	1092176	2s ² 2p ⁴ (³ P)3s	•	23 ² 2p ⁴ (³ P)3p	² P- ² P ⁰	3/2-3/2	2
4.13×10 ⁻¹	70	1152.862	1152.852	995477	-	1082218	25 ² 2p ⁴ (³ P)3s	-	2s ² 2p ⁴ (³ P)3p	4p.4D0	1/2-3/2	2
3.66 x 10 ⁻¹	50	1188.829	1188.811	1005436	-	1089553	28 ² 2p ⁴ (³ P)38	-	2s ² 2p ⁴ (³ P)3p	² P- ² D ⁰	3/2-3/2	2
3.42×10 ⁻¹	80	1204.050	1204.045	1009122	-	1092176	2s ² 2p ⁴ (³ P)3s	-	2s ² 2p ⁴ (³ P)3p	2P-2P0	1/2-3/2	2
1.64×10 ⁰	200	1207.680	1207.707	1041417	•	1124218	2s ² 2p ⁴ (¹ D)3s	•	2s ² 2p ⁴ (¹ D)3p	² D- ² F ⁰	5/2-7/2	2
1.09×10 ⁻¹	10	1217.416	1217.553	1041417	-	1123549	26 ² 2p ⁴ (¹ D)3s	٠	2s ² 2p ⁴ (¹ D)3p	² D- ² F ⁰	5/2-5/2	2
1.11×10 ⁰	100	1218.500	1218.435	1041477	-	1123549	$2s^2 2p^4 ({}^1D) 3s$	-	$2s^2 2p^4 (^1D) 3p$	² D- ² F ⁰	3/2-5/2	2
1-16×10 ⁰	300	1229.010	1229.014	1005436	•	1086801	2 ² 2 ² 2 ⁴ (³ P)3 ³	-	2s ² 2p ⁴ (³ P)3p	² P- ² D ⁰	3/2-5/2	2
3.92×10^{-1}	50	1243.310	1243.306	1009122	-	1089553	25 ² 2p ⁴ (³ P)35	-	2a ² 2p ⁴ (³ P)3p	² P- ² D ⁰	1/2-3/2	2
8.72×10^{-1}	500	1277.200	1277.201	990523	-	1068819	2s ² 2p ⁴ (³ P)3s	-	2s ² 2p ⁴ (³ P)3p	4 _{P-} 4 _P 0	5/2-5/2	2
3.10×10^{-1}	100	1290.490	1290.303	993634	•	1071134	2= ² 2p ⁴ (³ P)3s	-	29 ² 2p ⁴ (³ P)3p	4p.4p0	3/2-1/2	2
1.07×10 ⁻¹	50	1312.640	1311.874	993634	-	1069861	2s ² 2p ⁴ (³ P)3s	-	28 ² 2p ⁴ (³ P)3p	⁴ P- ⁴ P ⁰	3/2-3/2	2
1.91×10 ⁻¹	90	1330.270	1330.049	993634	-	1068819	2s ² 2p ⁴ (³ P)3s	-	2s ² 2p ⁴ (³ P)3p	⁴ P- ⁴ P ⁰	3/2-5/2	2
1.89×10 ⁻¹	80	1344.400	1344.388	995477	•	1069861	2s ² 2p ⁴ (³ P)3s	-	23 ² 2p ⁴ (³ P)3p	4 _{P-} 4 _P 0	1/2-3/2	2

^aWeighted oscillator strengths for atomic transition obtained by the method described in § 2.

^bObserved line intensities.

^CWavelength corresponding to the energy levels difference between the experimental adjusted energy level values.

dNumerical values of the energy levels are those obtained by an optimized procedure using the program ELCALC.

^eLevel designations for the transition, including configuration parentage, term, and total angular momentum. For pratical

purposes, we show them in three separate columns.

References.- (1) Ferner 1941; (2) Artru and Brillet 1977; (3) Griffin et al. 1976; (4) Träbert et al. 1976; (5) Trigueiros et al.

1992; (6) Trigueiros et al. 1991.

.

•`

Configuration	Terms	Energy(cm ⁻¹)	Lifetimes (ns) ^a	Configuration	Terms	Energy(cm ⁻¹)	Lifetimes (ns) ^a
2s ² 2p ⁵	² P _{3/2}	0		2s ² 2p ⁴ (³ P ₀)4f	[3]7/2	1413456	0.0490
	² P _{1/2}	5090	-		[3] _{5/2}	1413490	0.0492
2s²2p⁴(³₽)3p	⁴ P _{5/2}	1068819	1.4030	$2s^22p^4({}^{1}D_2)4f$	$[1]_{1/2}$	1452628	0.0436
	⁴ P _{3/2}	1069861	1.4080		[1] _{3/2}	1452628	0.0436
	⁴ P _{1/2}	1071134	1.4260		[5] _{9/2}	1453827	0.0533
	⁴ D _{7/2}	1078940	0.8989		[5]11/2	1453827	0.0534
	⁴ D _{5/2}	1080706	0.9293		$[2]_{5/2}$	1453877	0.0448
	⁴ D _{3/2}	1082218	0.9215		$[2]_{3/2}$	1453888	0.0450
	${}^{4}D_{1/2}$	1083009	0.9173		[3] _{5/2}	1455132	0.0472
	$^{2}D_{5/2}$	1086801	1.1280		[3]7/2	1455132	0.0471
	${}^{2}D_{3/2}$	1089553	1.1220		[4]7/2	1455537	0.0500
	${}^{2}P_{3/2}$	1092176	1.0390		[4]9/2	1455550	0.0500
	4S _{3/2}	1093758	0.6452	2s2p ⁶	² S _{1/2}	406497	0.0304
$2s^22p^4(^1D)3p$	² F _{5/2}	1123549	1.0950	$2s^2 2p^4 (^3P) 3s$	⁴ P _{5/2}	990523	12.2100
	² F _{7/2}	1124218	1.0690		4P3/2	993634	0.7507
	${}^{2}D_{3/2}$	1134085	0.7971		⁴ P _{1/2}	995477	3.2690
	$^{2}D_{\delta/2}$	1134500	0.7966		² P _{3/2}	1005436	0.0105
	${}^{2}P_{3/2}$	1147905	0.2301		${}^{2}P_{1/2}$	1009122	0.0103
	${}^{2}P_{1/2}$	1150287	0.2272	$2s^22p^4(^1D)3s$	${}^{2}D_{5/2}$	1041417	0.0259
2s ² 2p ⁴ (¹ S)3p	² P _{3/2}	1182804	0.7199		$^{2}D_{3/2}$	1041477	0.0261
2s2p⁵(³P) 3s	${}^{2}P_{3/2}$	1375836	0.0214	$2s^22p^4(^1S)3s$	² S _{1/2}	1094444	0.0230
	${}^{2}P_{1/2}$	1378824	0.0207	$2s^22p^4(^3P)3d$	⁴ D _{7/2}	1181173	0.4124
$2s^22p^4(^3P_2)4f$	[4] _{7/2}	1406975	0.0511		⁴ D _{5/2}	1181655	0.4081
	$[3]_{5/2}$	1407118	0.0485		${}^{4}D_{3/2}$	1182317	0.3847
	[3]7/2	1407304	0.0483		⁴ D _{1/2}	1182900	0.3516
	$[2]_{3/2}$	1407565	0.0474		⁴ F _{7/2}	1189850	0.3442
	$[2]_{5/2}$	1407753	0.0493		⁴ F _{9/2}	1191546	0.3447
	[4] _{9/2}	1408106	0.0486		⁴ F _{5/2}	1193227	0.1392
	[5] _{11/2}	1408279	0.0520		4F _{3/2}	1194332	0.0313
	[5] _{9/2}	1408316	0.0523		⁴ P _{1/2}	1194905	0.2546
	$[1]_{1/2}$	1408512	0.0467		² F _{7/2}	1194993	0.0363
	$[1]_{3/2}$	1408632	0.0474		⁴ P _{3/2}	1195990	0.2480
$2s^22p^4(^3P_1)4f$	[2] _{3/2}	1411464	0.0472		${}^{2}\mathrm{F}_{5/2}$	1197153	0.0143
	$[2]_{5/2}$	1411527	0.0477		⁴ P _{5/2}	1197733	0.2094
	[4] _{9/2}	1411779	0.0507		² P _{1/2}	1200714	0.0143
	[4]7/2	1411848	0.0514		${}^{2}D_{3/2}$	1201002	0.0046
	[3]7/2	1412373	0.0490		${}^{2}D_{5/2}$	1202880	0.0049
	[3] _{5/2}	1412460	0.0498		² P _{3/2}	1204647	0.0131

TABLE 2. LIFETIMES FOR THE Si VI SPECTRUM

TABLE 2- Continued

Configuration	Terms	Energy(cm ⁻¹)	Lifetimes (ns) ^a	Configuration	Terms	Energy(cm ⁻¹)	Lifetimes (ns)ª
$2s^22p^4(^{1}D)3d$	${}^{2}G_{9/2}$	1232671	0.3386	$2s^22p^4(3P)4d$	⁴ F _{7/2}	1397433	0.1884
	$^{2}S_{1/2}$	1239194	0.0024		⁴ F _{5/2}	1399117	0.0216
	${}^{2}P_{3/2}$	1241035	0.0024		${}^{4}F_{3/2}$	1399439	0.0252
	${}^{2}\mathrm{F}_{5/2}$	1242190	0.0621		⁴ P _{3/2}	1400877	0.0779
	${}^{2}P_{1/2}$	1242408	0.0024		${}^{4}P_{5/2}$	1401755	0.1184
	${}^{2}\mathrm{F}_{7/2}$	1242670	0.3731		${}^{2}P_{1/2}$	1402472	0.0163
	${}^{2}D_{5/2}$	1243012	0.0037		${}^{2}\mathrm{F}_{5/2}$	1402796	0.0142
	${}^{2}D_{3/2}$	1243878	0.0032		${}^{2}P_{3/2}$	1406317	0.0118
$2s^22p^4({}^1S)3d$	² D _{5/2}	1291505	0.0139		² D _{5/2}	1404870	0.0142
	$^{2}D_{3/2}$	1291798	0.0129		² D _{3/2}	1403085	0.0083
$2s^22p^4(^3P)4s$	${}^{4}P_{5/2}$	1323746	0.0834	$2s^22p^4(^1D)4d$	${}^{2}G_{7/2}$	1441668	0.1595
	${}^{4}P_{3/2}$	1326302	0.0659		${}^{2}G_{9/2}$	1441758	0.1603
	⁴ P _{1/2}	1328637	0.0804		${}^{2}S_{1/2}$	1444335	0.0075
1	${}^{2}P_{3/2}$	1329941	0.0414		² D _{5/2}	1445003	0.0123
	² P _{1/2}	1332772	0.0367		${}^{2}P_{3/2}$	1445027	0.0068
$2s^2 2p^4(^1D)4s$	${}^{2}D_{5/2}$	1371884	0.0520		² F _{7/2}	1445156	0.2212
	² D _{3/2}	1371913	0.0535		² D _{3/2}	1445575	0.0103
$2s^22p^4(^{3}P)4d$	⁴ D _{7/2}	1392755	0.1500	2s ² 2p ⁴ (¹ S)4d	² D _{5/2}	1497095	0.0668
	${}^{4}D_{5/2}$	1392988	0.1576	$2s^22p^4(^3P)5d$	$^{2}D_{5/2}$	1497653	0.0068
	4F _{9/2}	1396306	0.1762	$2s^22p^4(^1D)5d$	² S _{1/2}	1538386	0.0102

^a Lifetimes for the energy level obtained by the method describes in § 2.

....