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ABSTRACT

We present a Statistical Mechanics for nonlinear systems and a Thermodynamics of ir-
reversible processes capable to deal with the so-called complex systems. Two powerful
approaches have been used, namely

¢ Predictive Statistical Mechanics — based on Information Theory — in what con-
sists of the Nonequilibrium Ensemble Formalism (NEsoM), and Zubarev's ap-

proach is used,

¢ Informational Statistical Thermodynamics (1ST).

These theorics have been applied to the study of systems of bosons, like phonons
and excitons in condensed matter.

Resorting to NESOM and IST we have studied with a certain depth the behavior of
condensed matter when nonlinear effects are present. We have considered optical and
acoustical phonons and electronic excitons in organic polymers, biological systems,
and semiconductors, evidencing complex behavior consisting of three remarkable phe-
nomena:

e Frohlich-Bose-Einstein condensation (Frohlich Effect):

e Propagation of near undamped Schrédinger-Davydov solitons;

» A so-named Frohlich-Cherenkov Effect

1x.



RESUMO

O objetivo desta tese é apresentar uma Mecanica Estatistica de Sistemas Nio-lineares
e uma Termodinamica de processos irreversivels apropriadas para tratar os assim
chamados sistemas complexos.

Mais precisamente, foi o de utilizar dois poderosos enfoques para o tratamento de
sistemas dinamicos nao-linearcs, a saber:

» a Mecanica Estatistica Preditiva — baseada na Teoria da Informacio — na parte

correspondente ao Formalismo dos Ensembles de Nio-Equilibrio (NEsOM), onde

usamos o enfoque de Zubarev;

» a Termodindmica Estatistica Informacional (15T).

Estas teorias foram aplicadas ao estudo de sistemas de particulas tipo boson, como
sdo os fonons ¢ éxcitons em matéria condensada via o uso do formalismo MaxEnt-
NESOM, ¢ a Termodinidmica Irreversivel (IST) ¢ Teoria da Funcio Resposta dele deri-
vadas, temos podido fazer um estudo com certa profundidade do comportamento
de matéria condensada quando efeitos ndo-lincares estio presentes, No caso dos bo-
sons considerados — fonons Opticos e aciisticos e éxcitons em polimeros organicos,
sistemas biologicos e semicondutores, - - pudemos, a partir de uma base mecanica mi-

croscopica, evidenciar comportamento complexo num nivel macroscopico e analisar

Xi.
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particularmente tal comportamento nesses sistemas dinamicos ndo-lincares, cviden-

ciando trés notaveis fenomenos, que sao:

+ Condensacdo Frohlich-Bose-Einstein (Efeito Frohlich),
e Propagacio de solitons de Schrodinger-Davydov de vida média muito longa;

o O efeito Frohlich-Cherenkov.
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‘Capitulo 1

INTRODUCAO

Nesta segunda metade do século XX temos assistido ao enorme desenvolvimento da
Fisica Ndo-linear |Nicolis 1995; Haken 1978)]. E dificil definir ndo-linearidade em uma
forma precisa, a néo ser, é claro, a posteriori pelo carater das equacdoes de evolugao ou
cinéticas que modelam um problema. Assim, em primeiro lugar, em tais sistemas o
principio da superposicio de solucdes - - fundamental na fisica lincar — nao se aplica.
Afirma-se que a nido-lincaridade é uma forma de descri¢ao que trata de fendOmenos que
admitem mudancas qualitativas (as vezes de carater “catastrofico”) quando sao impos-
tas modificacdes sobre os vinculos aplicados sobre o sistema, Caos, hoje de enorme
interesse e desenvolvimento, € dito ser um sintoma da néio-linearidade. Qutro, aquele
que hos interessa aqui, ¢ o caso de sistemas macroscopicos abertos e levados fora
do cquilibrio por fontes externas, quando pode resultar possivel a emergéncia de pa-
droes ordenados em escala macroscopica. Processos como estes tém sido trazidos
a tona pelo trabalho do prémio Nobel Ilya Prigogine e da assim chamada Escola de
Bruxclas. Estes autores tém desenvolvido uma ciéncia da Termodinamica de sistemas
longe do equilibrio acompanhada de uma teoria cinética fenomenologica, em especial

para o estudo de rea¢des quimicas autocataliticas [Prigogine 1947, 1955; Glansdorff &



Prigogine 1971; Nicolis & Prigogine 1977; Nicolis 1986, 1989|. Desta forma, tem sido
evidenciada a naturcza criativa dos processos dissipativos em sistemas abertos, em
oposicio a velha idéia de decaimento por dissipacdo em sistemas isolados. Prigogine
e colaboradores, com base nesses resultados, tém proposto a idéia de que tal tipo de
aulo-organizacdo macroscopica em sistemas nao-lineares abertos (a assim chamada
formacao de estruturas dissipativas [luzzi & Vasconcellos 1991]) pode auxiliar a en-
curtar o fosso hoje existente entre a Fisica e a Biologia [Prigogine 1969; Prigogine et al.
1972a,b]. Ao mesmo tempo o assunto encaixa-se dentro da emergente teoria da com-
plexidade [Anderson 1972, 1991; Gell-Mann 1995] da qual Prigogine tem sido um dos
pioneiros.

Devemos ressaltar que a caracteristica fundamental deste tipo de comportamento
complexo €, como dito, que os processos sejam governados por leis ndo-lineares. 1sto
é conseqiiéncia de que no regime linear (ou de Onsager) ndo ha possibilidade de or-
dem, i. e. de comportamento complexo, devido ao teorema de Prigogine de producao
minima de entropia. De acordo com esse teorema, o sistema ¢é levado para um estado
caracterizado pela regressao de flutuacdes e pela validade das relagoes de simetria
de Onsager [Prigogine 1947, 1955; Glansdorft & Prigogine 1971; Nicolis & Prigogine
1977). A nao-linearidade é ubiqua. Fenémenos nido-lincares sdo importantes em tec-
nologia, particularmente na engenharia elétrica moderna, o caso tipico scndo o laser.
Também no caso de matéria condensada os efeitos nao-lineares nio sdo novos, ¢ pode-
mos mencionar a teoria de fluxo plastico de deslocacgdes, ou o caso de que as vibragoes
harménicas da rede ndo podem explicar a expansio térmica dos solidos, requerendo

a introducio de anarmonicidades, i. e., forcas nido-lineares. Contudo, como tem sido



manifestado [Landauer 1987], ha um interesse renovado por parte dos fisicos ¢m olhar
seu carater basico, i. e., a procura dos principios fundamentais que estao por tras dos
fendmenos ndo-lineares: “O que estava perdido ha uma década néo era a sensibilida-
de em relacdo aos fendomenos nao-lineares, porém somente a apreciacdo da notavel
diversidade de comportamento disponivel em sistemas ndo-lineares. O que é novo ¢é
0 desejo de celebrar a nao-linearidade.”

O objetivo principal deste trabalho de tese consiste em apresentar o que se poderia
denominar, seguindo G. Nicolis — de uma Mecénica Estatistica da Nao-linearidade e
de uma Termodinamica de Sistemas Complexos {Nicolis 1995; Nicolis & Daems 1998}:
para sermos mais precisos, mostramos como um podceroso enfoque em Mecanica Fs-
tatistica de sistemas fora do equilibrio, acompanhado de uma teoria cinética quantica
ndo-linear, uma teoria da Funcao Resposta para sistemas longe do equilibrio, ¢ uma
Termodindmica de sistemas dissipativos, mostra-se muito apropriado para tratar sis-
temas com comportamento dito complexo.

Nesse aspecto, tal objetivo ajusta-s¢ aos interesses do Grupo de pesquisa/ensino
“Mecanica Estatistica de Sistemas Dissipativos” no DFSCM do IFGW/Unicamp, consis-
tindo no desenvolvimento de estudos na area da Termodinamica e Mecanica Estatistica
de sistemas abertos longe do equilibrio. Esta € uma questdo atual em ativo processo
de desenvolvimento, ¢, deve dizer-se¢, ainda nao resolvida satisfatoriamente. Assim ha
varias Escolas de pensamento enfocadas na questdo, e, evidentemente, controvérsias
surgem — resultado de que os diferentes enfoques tém suas virtudes e seus defei-

tos. Ha um caminho a ser percorrido para chegar-se ao aprimoramento de uma teo-



ria satisfatoria, para ter-se uma Termodindmica de processos irreversiveis confiavel e

aceitavel.

Nesta direciio é interessante mencionar o comentario de Otto Redlich [1976}:

TERMODINAMICA, como Helena de Tréia — parafraseando Goethe — “be-

wundert viel und viel gescholten”.!

Mais recentemente, podemos citar G. Nicolis [1995], que escreveu:

Gracas a sua notdvel flexibilidade e sua habilidade de auto-renovacdo, a
Termodindmica esta hoje tdo pronta como sempre para cumprir seu papel
unico na Ciéncia.

Notemos que a Termodinamica tem, como dito, varias Escolas de pensamento as-

sociadas. O renomado Laszlo Tisza [1991] listou como principais enfoques para uma

construgdo desta disciplina;

1. O enfoque baseado nas duas leis da Termodinamica e das regras de operacao
dos ciclos de Carnot, denominado enfoque da engenharia ou termodinamica CK

(de Clausius e Kelvin).

2. 0 enfoque matematico, que é baseado em geometria diferencial em vez dos ciclos

de Carnot, denominado Termodinamica CB (de Caratheodory e Born).

3. O ponto de vista axiomatico, substituindo os ciclos de Carnot e a geometria dife-
rencial por um conjunto de axiomas basicos, que tentam abranger os anteriores

e estendé-los, denominada Termodinamica axiomatica ou TC (de Tisza e Callen).

"Muito admirada ¢ muito censurada. W. Goethe, Fausto, segunda parte, terceiro ato: Diante do
palacio de Menelau em Esparta.



4, O ponto de vista estatistico-mecanico, baseado obviamente no substrato provido
pela mecanica microscopica (no nivel molecular, ou atdmico, ou de particulas,
ou de quasi-particulas) mais a tcoria da probabilidade, que pode ser denominada

como Termodinamica de Gibbs ou Termodinamica Estatistica.

Citamos aqui, porém sem cntrar na descri¢io, duas tentativas recentes para uma
descricdo globalizada da fisica de sistemas de grande escala, ligando os niveis micro-,
meso- € macroscopicos: a teoria GENERICS [Grmela & Ohttinger 1997] ¢ a teoria HoLO-
TROPICA [Bernardes 1996].

Podemos mencionar exemplos ja existentes nestes niveis de descricao:

1. Da Termodinamica CK:

+ Termodinamica de Onsager, ou Classica Lincar;

» Termodinamica Generalizada de Prigogine, ou Classica Nao-Linear.
2. Da Termodinamica CB:

¢ Termodiniamica Racional, bascada na mecanica dos meios continuos.
3. Da Termodinamica TC

« Termodinamica Irreversivel Estendida, que introduz os fluxos como varia-

veis de base e hipoteses ad hoc.

4. Da Termodiniamica Estatistica:

« Termodinamica Estatistica Informacional, baseada, evidentemente, no subs-

trato proporcionado pela Mecanica Estatistica.



() proprio Tisza manifestou que o enfoque estatistico-mecanico — o ultimo dos
acima listados —- “é& 0 mais rico, assim como o ponto de partida para um grande arranjo
de generalizacoes”.

Como mencionado no inicio, é nosso intuito contribuir para o desenvolvimento
deste enfoque, no que se denomina de Termodinadmica Estatistica Informacional (1ST,
acrossemmia de Informational Statistical Thermodynamics). Considera-se que essa IST
teve inicio com o trabalho de Hobson [1966a,b] na década de 60. Varios Grupos desen-
volveram e desenvolvem esta teoria, entre os quais se¢ conta o Grupo no IFGW/Unicamp
referido acima, as vezes mencionado como Escola de Campinas. Em particular, o en-
fogue do Grupo baseia-sc no uso de determinada forma de tratamento, fundamentado
nas ideias originais de Gibbs e Boltzmann, dentro do esquema do formalismo dos en-
sembles, porém para sistemas arbitrariamente longe do equilibrio. Usamos o enfoque
do chamado Método do Operador Estatistico de Nio-Equilibrio (NESOM, na acrosse-
mia em Inglés), iniciado por varios autores e sistematizado e estendido pela Escola
Russa de Mecanica Estatistica (Bogoliubov, Krylov, Zubarev, Peletminskii, etc.). Uma
descricao completa pode ser consultada nos artigos de revisdo ¢ livros listados nas
referéncias como [Grupo GMESD, 1990-1998].

O esquema da tese consiste numa aplicacdo do formalismo — dentro do inten-
to de testar resultados bésicos ja desenvolvidos sobre 0 NESOM e a IST — ao estudo
de fenomenos fisicos reais, experimentaveis no laboratério. Particularmente, como
ja dissemos anteriormente, trataremos aqui uma situacio de interesse atual e muito

atraente, como ¢ o caso de sistemas nao-lineares mostrando o assim denominado com-



portamento complexo, usualmente sendo referidos em forma resumida como sistemas
complexos.

Reforcando o que dissemos sobre a tentativa de validacao da teoria, via o caminho
usual de aplicacdo da teoria e comparacao com o experimento, vale a pena mencionar o
renomado Ryogo Kubo [1978], que afirmou que o progresso da Mecanica Estatistica dos
fenomenos nao-lineares fora do equilibrio somente pode ser esperado através de uma

estreita colaboracdo entre teoria e experimento. Mencionemos também Heisenberg

(19301

Se o fisico ndo exigisse uma teoria para explicar os resultados de um expe-
rimento, tudo seria simples e ndo haveria a necessidade de uma discussdo
epistemologica. Dificuldades surgem apenas na tentativa de classificar e
sintetizar os resultados, em estabelecer a relacdo entre causa e efeito entre

eles.

Especificamente nosso intuito aqui é o estudo de um particular conjunto de fenéme-
nos em certos sistemas complexos, com implicacdes em fisica da mateéria condensada,
assim como em biologia e em tecnologia industrial para dispositivos opto-eletronicos
e aparelhos de deteccio de imagem em medicina.

Isto € feito nos proximos capitulos, que estdao organizados como se segue:

No Cap. 2, deduzimos equacdes nao-lincares de evolucio para um sistema de bo-
sons fora do equilibrio.

No Cap. 3, tratamos sobre os soélitons do tipo Schrédinger-Davydov.

No Cap. 4, consideramos com detalhes o efeito Frohlich.



No Cap. 5, tratamos sobre ondas solitarias em matéria condensada.

No Cap. 6, tecemos algumas consideracoes sobre sistemas biologicos.

No Cap. 7 ¢ apresentada uma discussio dos resultados, com comentarios e con-
clustes. O formalismo do NESOM esta descrito de forma resumida no Apéndice A,
seguido de uma Teoria da Fun¢io Resposta para sistemas longe do equilibrio e um
formalismo de fun¢oes de Green Termodindmicas de nao-equilibrio.

Chamamos a aten¢io para a forma particular de apresentacdo desta tese, consis-
tindo em que nos capitulos de 2 até 6, apos uma Introducio ao assunto, scgue a repro-
ducao de artigos publicados ou submetidos para publicacao resultantes da pesquisa
realizada durante a preparacao desta tese,

Nestes diversos artigos, ha repeticio de algumas partes, especialmente as des-
cricées do formalismo e equacoes de evolucio, o que € necessario para fazer auto-
suficiente cada artigo submetido. Também a énfase difere neles, dependendo da au-
diéncia a que estao destinados.

Finalmente enfatizamos que neste trabalho os assuntos de Fisica Nao-Linear e re-
ferentes a Sistemas Dindmicos com comportamento complexo — cuja Termodinamica

e Cinética temos desenvolvido — tém-se concentrado em:

+ Propagacdo de Ondas Solitarias de Schridinger-Davydov em condicoes normais.

¢ A chamada Condensacdo tipo Fréohlich-Bose-Einstein em sistemas de bosons, que

preferimos chamar de Efeito Frohlich.

« A Termodindmica Estatistica Informacional do Efeito Frohlich.
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» Algumas aplicacoes a sistemas biolégicos modelados e tecnologias médicas de ima-

gem.



- Capitulo 2

SISTEMA DE BOSONS
FORA DO EQUILIBRIO

2.1 Introducao

Neste capitulo, estudarcmos um sistema de bosons em interacdo anarmonica com um
meio circundante — um banho térmico, o qual se considera permanentemcente em
equilibrio a uma temperatura Ty, e com uma fonte externa agindo sobre o sistema,
levando-o para fora do equilibrio, ou seja, produzindo populac¢ées de estados em con-
dicoes de ndo-equilibrio. Na figura 2.1 ¢ mostrado o equivalente mecdnico do sistema
usado.

Aplicaremos a teoria cinética descrita no Apéndice A para deduzir

¢ equacdes ndo-lineares de evolucdo para o nimero de ocupacao dos modos de

vibracdo dessc sistema;
¢ equacotes para as amplitudes de movimento do tipo oscilatério desse sistema.

O subsistema que denominamos 5, é composto de uma cadeia periodica de N os-
ciladores de massa m e frequiéncia w;, com j = 1,..., Ny, e introduzimos x; ¢ p; para
o deslocamento ao redor da posicdo de equilibrio e seu momento linear conjugado.

O subsistema denominado §; ¢ composto de uma cadeia peridédica de N, oscilado-

11.
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res de massa M e freqiéncias i, com k = 1,...,N> e X ¢ P, sdo, respectivamcnle, o
deslocamento ao redor da posicdo de equilibrio e seu momento conjugado.

Assumimos um contato térmico muito bom entre S; e 0 reservatorio térmico, tal
que a temperatura de S, é sempre a do reservatorio, Ty. Uma fonte externa bom-
beia energia em §,. Muitos sistemas reais podem ser descritos dessa maneira, por
exemplo, nos casos quase-unidimensionais como vibracées de rede em fios quanticos
semicondutores quase unidimensionais, polimeros moleculares orgdnicos, polimeros
biologicos. Nesta tese, esse modelo sera aplicado ao caso de proteinas cuja estrutura
é a hélice-o e para polimeros,

O hamiltoniano do sistema pode ser escrito como:

H=Hy+ H', (2.1)
onde
ps 1 P2
] L Smwie? k 22 :
H(_) = g [m + Emw,x,] + % [Z—M + EM(lka“ (2.2)
e
H' = D> ApeXiXeXe + D, BjjwkXp R + 2, @y . (2.3)
Jkk Ji'k if

A forma da Eq. (2.1) é apropriada para o uso no formalismo MaxEnt-NESOM que
utilizamos aqui, descrito no Apéndice A. O termo Hy é composto pelos hamiltonianos

dos osciladores livres. Por outro lado, H’ ¢ composto pelas interacées anarmonicas
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(a contribui¢io de primeira ordem mais baixa), que sdo o0s dois primeiros termos do
lado direito da Eq. (2.3), com A ¢ B sendo as intensidades do acoplamento, enquanto
o ultimo ¢ responsavel pela interacio entre a fonte externa e o sistema, com ¢ sendo
o operador associado a intensidade da fonte com a intensidade de acoplamento ja
incluida ¢ apenas estamos considerando a criacdo de uma unica oscilaciio simples
atraves de tal acoplamento.

A seguir, por conveniéncia, introduzimos, em primeiro lugar, as coordenadas nor-

mais

Xj=D Xae'dhi, Py=D Pae'thi, (2.4)
q q

_}2,\ - Z_X’;q'eiqt-gk ' ﬁ’\ - Z ﬁq"eiq’-gk y (2.5)
q’ q

onde q e ¢’ sao nameros de onda no espaco reciproco, R; e § sdo a posi¢ao do centro
de massa dos osciladores em §; e §, respectivamente, e as somas sao feitas varrendo a
zona de Brillouin de cada sistema respectivamente. Em segundo lugar, introduzimos

as amplitudes parciais a4 ¢ b, e suas conjugadas af, ¢ b;;, \

ty = (Eﬁ?a)m(aq +at,) (2.6)
P = - (@;ﬂ*ﬂﬂ)”“ ag—at,) (2.7)
Ry = (Z—H%;)”z(bq. +bt,) (2.8)
P = 1 (Z520) " by b, (2.9)
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onde wg, e Oy sdo as freqiiéncias dos osciladores nos modos correspondentes, e a
seguir, usamos segunda quantizacio, com aq(af;) e by (b:.f,f) sendo os operadores de
aniquilacio (criacdo) no modo g em S; ¢ g’ de $>. O hamiltoniano da Eq. (2.1) na nova

representacao ¢ composto das contribuicoes

Hy = Hos + Hog , (2.10)

com
Hys = %ﬁwq(ﬂ-;aq + %) : (2.11a)
Hog = gmqf(b;bq, + ;i—) : (2.11b)

o

H = Hy + B + Hsr , (2.12)

com
Hi=H, +H;+H3+Hy, (2.13)
Hy; = Ha) + Hyp + Hay + Hyy (2.14)
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com os diversos termos do lado direito das Eq. {(2.13) e (2.14) sendo dados por

A=Y {Vih,aqba,bl 4 +hel, (2.15a)
q19:

ﬁ]z = z {vﬂ(t}i)?ga‘“bjhb_Q1+qz + h.C.} 1 (2.15b)
qa.4q?2

Hiz= > {Véﬁﬁamqub. a a h.c.f , (2.15¢)
q.q:

A — > Vi), aqbi bl . +hel, (2.15d)
949

o = Y Vi), aga0,b) ., +hel, (2.15¢)
q14;

Hy = 3 {V§),aq,04,b_g,-q, +hc}, (2.15t)
q142

I‘?zg — Z {Véf;za}laqzbql_qz + hC} . (er)g)
qa.q;

Ho= > (V@) agal,bl _, +hel, (2.15h)
q.1q:

Hsr = > {@qab +hel, (2.151)
q

onde o ultimo tcrmé) ¢ responsavel pela interacdo com a fonte externa, com @4 e q,')f;
ligados as amplitudes Fouricr da intensidade da fonte, a serem especificadas mais
adiante.

Nas contribuicdes das Egs. (2.15) é levada em conta a conservacio de momento
linear, e os coeficientes VI e V2 530 0s elementos de matrizes do potencial de inte-

racao [derivados das amplitudes A e B da Eq. (2.3)].



2.2 Definicao das variaveis de base
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O primeiro passo para aplicar a Termodinamica Estatistica Informacional (IST) é es-

colher o conjunto basico de varidaveis para a descricdo do estado macroscdpico de

nao-equilibrio do sistema. Depois disso, podemos deduzir as equacgdes de evolucao

para essas variaveis bdasicas, usando a teoria cinética quantica nao-linear baseada no

MOENE e tomando a aproximacao de segunda ordem em teoria de relaxacao, isto é, o

limite markoviano da teoria cinética (ver Apéndice A).

Para o presente caso, as variaveis escolhidas sao: (1) 0 naumero de ocupacao dos

modos de¢ oscilacao do sistema 5§,
va(t) = Triaha,e-(D)} = Tr{Va0.(1)}
(2) as amplitudes de oscilacdo
(ag 1ty = Trjaze:(n)}
(3) suas conjugadas,
(@ | t) = Triahe:(D)} = (a,l)*,
e (4) a energia das vibracdes acusticas do banho térmico,

Ey = Tr{z AQy (blby + !

q yby + )0,

(2.16)

(2.17)

(2.18)

(2.19)
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a qual é constante ¢ independente do tempo, uma vez que o banho é mantido em
equilibrio térmico a uma temperatura constante Ty (assim, a parte correspondente as
variaveis do banho em p.(t) — uma distribuicdo candnica em equilibrio — nice depende
do tempo).

Nas equacoes (2.16-2.18) g (t) € o OENE na formulacao de Zubarev [Zubarcv 1974;

Zubarev et al. 1996, 1997; Luzzi et al. 1998], que se escreve como

0:(t) = exp|{-S(t,0) + fm At et ”d—"i—;sw, t'—t)}, (2.20)
onde
S(t,0) = —lnp(t,0), (2.21)
COoIn
3(t,0) = exp]-o(t) - %lﬁ;(twq + fa(tyag + f1(ak| - BoHos) (2.22)
e

L _ t)ﬁ} . (2.23)

S(t' t' —t) = exp{----%(t’ — t)I:I}- S(t',0) exp{ﬁ

Observemos que no operador auxiliar ¢(t,0), as vezes denominado de “equilibrio
congelado” ou “quasec-cquilibrio instantaneo”, ¢(t) assegura sua normalizacio (sendo

uma espécie de logaritmo de uma funcdo de particiio de ndo-equilibrio), ¢p(t) = In Z(t),



19.

Fa(t), fa(D), fa(t), s@o os parametros de Lagrange associados as variaveis dinimicas
de base de §1, e By = 1/kpTy é a parte de distribuicdo candnica correspondente ao
banho em equilibrio a temperatura Tj.

Observemos, finalmente, que g, pode ser sempre escrito na forma
0:(t) = ¢(t,0) + '(t) , (2.24)

onde ¢ define instantaneamente o estado macroscopico do sistema e ¢’(t) da conta de
sua evolucio irreversivel [Zubarev 1974; Zubarev et al. 1996, 1997; Luzzi et al. 1998].
Temos, portanto, que o conjunto basico de variaveis termodinamicas esta consti-

tuido por

{Qi()} = |v, (aglt) (aklt) | Eg] . (2.25)

Observemos que a separacao do hamiltoniano da Eq. (2.1) corresponde com a da

Eq. (A.2), e as variaveis de base satisfazem a condicao de simetria da Eq. (A.3), 1. c.,

(Hy, V41 =0, (2.26a)
[Hy,a,] = hw,ay, , (2.26h)
[Ho,al] = —hwyal (2.26¢)

[Hy, Hg] = 0. (2.26d)
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2.3 Teoria cinética

Nesta secdo obteremos as equacdes de evolucio para cada uma das variaveis da
Eq. (2.25), ou seja, determinaremos a evolucio do estado macroscopico de nao-
equilibrio do sistema. A equacdo de evolucdo para cada uma das variaveis ¢ obtida
calculando-se a média sobre o ensemble de ndo-equilibrio da equacio de Heisenberg
para o conjunto de variaveis dindmicas de base, i. e. Vg, a,, a.:g, Hp, com o operador

estatistico de nao-equilibrio, . (t), isto ¢é

%‘C’q(t) = Tr{%[ﬁq.ﬁleg(t)} : (2.27a)

: S I

solaglty = Tr{—la, Ale. )] , (2.27b)

o, . 1, -

splajlty = Tri=la Ale:(n}, (2.27¢)
%EB _0, (2.27d)

onde a nltima equacdo é o resultado de que o banho térmico esta constantemente em
equilibrio com o reservatorio.

Como indicado no Apéndice A, os membros da direita nas Eqgs. (2.27) podem ser
escritos em termos de operadores de colisido calculados em termos de médias com o
operador auxiliar o(t,0). Aqui usaremos o método, restringindo a série de operadores
de colisao e mantendo somente o termo em segunda ordem ha interacao, ou seja,

somente colisbes binarias.
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2.3.1 Equacao para a evoluc¢ao das populacoes dos modos de vibracao

A equacdo para a cvolucdo de v4(t) é obtida a partir da Eq. (A.19), com ﬁ; = Vg4, OU

seja:

d .
—7vat) = (@) + ) a0 + (a1 (2.28)

onde, recordamos, estamos usando a aproximacio em segunda ordem na interacao.

Destas trés contribuicdes no lado direito desta equacgao, o primeiro termo € nulo, i.e.
(0) R, _ L
L (a, t) = ﬁ(lHo,Vq]H)n =0, (2.29)
pois v, comuta com Hy, e onde, como indicado no Apéndice A [cf. Eq. (A.18)],
(- [tyo=Tr{---0(t,0)}. (2.30)
A contribuicdo do segundo termo é nula, ou seja,
g, t) =0, (2.31)
como conseqiléncia de que:
(LH', Vg)It)o = ([Hsr, Vgl + [[Tpa, Val)o = 0. (2.32)

onde Hpy = Hy + Ho.
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De fato,
[Hsp, Vgl = @lag — @aal (2.33)
e (p)y = {pT)y — 0, admitindo uma fonte nao-coerente, e, além disso,

[Fpa, Vgl — Vol laghabog-q + Agbg bl o v aghlh b g + agbl bl .

~vilalby aby +alba.gbl +albl,_ bl +albl, by

(2) T b +
+2qu. {aqa.q,b_q_q. + dgdy bq+q’ + ,aqb qrq +a ,aqb }

2vitialagby .o +alagbt,, o +atal ba.g +abalbl, 1 (234)

onde os termos que sao lineares em b e b7 dio uma contribuicdo nula para o valor mé-
dio, isto &, (b)y = (b1)y = 0, ja que em o, (t) a distribuicdo associada a S, é a candnica
em equilibrio a temperatura Ty, ¢ 0s termos restantes também dao contribuicao nula
quando seus valores médios sdo calculados, ou seja, (qurb;:)o =0,jaqueg =+4qg’,c
(bb)y = (b'bT), = 0 na média com a distribuicdo canénica.

Assim, os valores médios no ensemble caracterizado pelo operador auxiliar 2(t, 0)
na Eq. (2.32) se anulam. Conseqlientemente, na Eqg. (2.28), o unico termo com uma
contribuicao diferente de zero é o ultimo termo, jf,i)(q, ), cuja expressao € obtida

utilizando-se a Eqg. (A.20)

0 i 'y
Jv; (a,1) = lim (i) ﬁj dt’ e ([H'(t)o, [H', Vg)lit)o = JGa(t) + Jig + Jug . (2.35)



23.

Notemos que na Eq. (2.35) a dependéncia de H’ no tempo é dada, na representacio de

interacdo, com o operador Hy, ou seja:
- | I 1
H'(t)g = emMoff’e-wtH (2.36)
As diversas contribuicées da Eq. (2.35) sdo:

0
Joa(t) —hm{(zh) L dt’ el Tr{[Hq,(t 0, [Hyp, Va110(t, 0)}]

1 0 _ , )
- ZJ dt’ et T o (1)@l 6(t, 0} + cc., (2.37)
i

que é o termo correspondente & interaciao Hyy, e

{2} 13 - -7 0 v Etf m I s ~ _
quu)—m[(m) | areme{im )U,IHI,vq]]e(t,u)}]

C4m 1+ (aglt)? ) _ | |
" n? v“:’ Z qu q—q’w(ﬂﬂ’ +Qqgq —wy) + 2efM 5(Qq ~Qq-q +Wwgq)],
q

(2.38)

que ¢ 0 termo correspondente a H; da Eq. (2.13), ¢ onde vg é a populacdo de fonons

do banho, que apés o calculo produz, como esperado, a distribuicdo de Planck, i.e.

vy =Tri{blbso(t,0)} = [exp(BohQg) - 1]71. (2.39)

Sl



Além disso, temos a contribuicdo correspondente a F» da Eq. (2.14)

0
2 (t)—llm[(m)“[ d.t'e”"l"r{[Hg(t')o,[ﬁg,ﬁq]]é(t,O)}]

E—.

Z [Vaar I [ Va-a (Var = Vg) = Va(l + Vq’)] 0{Qq-g + Wq ~ Wy)

| [ a Vo —Vq) + v (1l + vq)] 6(Qq-gq — Wq + Wg)

Z Vg [ Varg (1 +vg) = (Vg — ng:)‘-’q] 0(Qqrq — Wq = Wq) |
8 . B
n Z |V(2) Haglty P (1 + vg +vE ) — Hag )2 (vg = vE_)}

X 5(£2q_q’ + (L)q’ — wq)

2;|v*” {(aq D1 vy = vi-g) = Haq 10171+ vq +vg_g)}

> (‘f(ﬂlq g — Wy + (Uq)

81T . N
Ve l211(aglo) 2 (vy = vE ) = Hag )P (vg — vE, )}

X 6(Qgig — Wq — Wyq). (2.40)

Com todos os termos que contribuem para o lado direito da Eq. (2.35) calculados,

podemos escrevé-la numa forma compacta como

%Vq(t) =14+ Z Jq(_n(t) + Cq(t) ) (2.41)
J=1
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onde I, representa a intensidade da fonte na freqiiéncia w4 e com transferéncia de

momento g resultante da introducao da representacdo espectral para a fonte na forma

, o g o ,
R @aOPy) = Sa | G Talew)e®, (2.42)

— o

e, como descrevemnos a seguir, 0s Jg (1) sdo operadores de colisao provenientes das
interacdes anarmonicas, e C,a(t) ¢ 0 termo que atua como uma fonte de acoplamento
entre as populacoes dos modos vibracionais ¢ as amplitudes de oscilagcao. Os diagra-
mas de colisdo correspondentes estdo indicados nas figuras 2.2 ¢ 2.3 nas paginas 26
e 27 respectivamente.

Os dois primeiros termos dos operadores de colisdo correspondem a ¢ventos de
colisdo cnvolvendo um fénon do sistema e dois fonons do banho, e ddo origem a um

termo de dissipac¢do que toma a forma

Jaon (8) + Jau, (£ [va(t) = v ], (2.43)

|
. q
Tq

(0)

onde v4 € a populacdo em equilibrio a uma temperatura Ty, € T4 tem o papel de um

tempo de relaxacdo dado por:

4Tr 1
-1 (1) 2
Tq (()) z Iqu:

Evi o 18(Qq 4+ Qqoy — wy)

1+ 2efhlly 0(Qy —Qq_g + (Uq)] . (2.44)

e as funcoes delta exprimem a conservacio de energia nos eventos de espalhamento.
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Figura 2.2: Diagramas de colisdo provenientes das interacdes de H;.
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L N ] - - -I_
== b g -4

- o el e = - bQI“QE

Figura 2.3: Diagramas de colisio provenientes das interacoes de Ho.
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Os outros termos, Jg , (t) with i = 3,4, 5, sdo

8m - _
Jan (1) = 53 3 Wagr1* | VE_g (Ve = vg) — va(1 + V)| 6(Qqeq + g —wy),  (2.452)
qf
B‘IT 2)
Jaw (1) = 53 2 WVai 1P [Vl g Vg = va) +vg (14 vg) | 5(2-g — wq + 0g), (2.45D)
ql
Jqi, (L) = Z g1 +tvg) (vg - vgm.)vq] I(Qgig — Wq — Wgq) . (2.45¢)
q’

Finalmente, temos o tltimo termo na Eq. (2.41), T4(1), dado por

t) 2 s ;
@@%—“ﬂ ZW‘ (Hag 1L+ vg +VE ) = Hag D12 (vy — vE_)]
q

> 6(Qq_q’ + (L)q’ — (L)q)

Z Vg

{aq Ity P (vg ~vE ) — Hag )2 (L + vy + vE )}
(Qgg — Wy + Wy)
81T 7y . S

£ o0 SV ag 1) 2 (v — VB 0) = Kag )12 (vy ~ vE, )]

X 0(Qyig — Wg ~ Wyg) . (2.45d)

o qual envolve populacoes e o modulo quadrado das amplitudes.
Os operadores de colisdo J,,, e Jq,, Sd0 responsaveis pelo assim chamado efei-
to Frohlich (ou condensacdo tipo Bose-Einstein em néo-equilibrio) a ser descrito no

Cap. 4. Este efeito é o resultado da transferéncia de energia para os modos polares de



freqiiéncia mais baixa, os quais aumentam grandemente sua popula¢do. De fato, eles

contém contribuicdes proporcionais a

ZlvﬁIzvq(t)vqr(r)[c‘i(()q g — Wg +Wa) —8(Qgy + Wy — wy)], (2.46)
pr

e podemos notar que para os modos g’ tal que w,. > w, a conservacio de energia
requerida pela primeira funcao delta é satisfeita, enquanto isso nao é possivel para a
segunda: assim, essa contribuicdo ndo-linear tende a aumentar a populacdo no modo g
as custas dos outros modos de frequiéncia mais alta. Reciprocamente, para w, < w,,
o modo g transfere energia para os modos de freqliéncia mais baixa.

O operador J,., ¢ tamb¢ém um termo de relaxagio que contém contribui¢ées nao-
lineares nas populacdes dos modos, mas, como veremos, € nulo ou tem contribuicdo

negligenciavel.

2.3.2 Equacao para a evolucio das amplitudes de vibracao

A equacdo para a evolucido de {a,lt) é obtida a partir da Eq. (A.19), com P; = a, e é

dada por

%(aq t) = Jg, (q,0) +Ja,(@,t) + Jg,(a,t) . (2.47)

A contribuicao do primeiro termo do lado direito ¢é:

.
Jag (@, 1) = = (1Ho, aqlItho = —ihwg(aglt) . (2.48)



30.

A contribuicao do segundo termo ¢é nula, i. e.

I(q,6) =0, (2.49)
como consequencia de que:
(LH',aq]lt)o = ([Hsr,aq] + [[pa,aql1t)o = 0, (2.50)

ou seja, os valores médios no ensemble caracterizado por ¢(t, Q) se anulam, pela mes-
ma razao que no caso da Eq. (2.32), como ja discutido. Assim, a Eq. (2.47) pode ser

escrita, utilizando-se a Eq. (A.20), como
K - 0 r
J52q,t) = —thwglaglt) + lim (i#) '3J dt’ e ([IT'(t),[H',a4lllt)y.  (2.51)
£ —eo

[gualmente, apos os calculos dos comutadores duplos terem sido feitos, os valores
médios calculados e o limite quando € — +0 ter sido realizado, podemos escrever as

equacoes de evolucdo para as amplitudes:

0
E(ﬂ-qlt) = —1 g {aqlt) —Ta(t) (aqlt) + [H(t) {aya i)* —iW,{aq|t)* +

+ 2 I{qlqz (GQ||t><a‘;];-,d|t> ((aq—l?|+q;;|t) + (atq+ql—qz|t)) ] (2-523)
qiq,
0 ' . .
Em"'t) = 0o complexo conjugado do lado direito da Eq. (2.52a), (2.52h)

onde W, = W, + Wy, com W, sendo um termo de renormalizacio de freqiiéncia cuja



31.

expressao é dada aproximadamente por

(1+2 ,
Wy = hova( - V"“’)w") (2.53)

Wy — W3

onde g indica valor principal, ¢ os termos Rg,4, ¢ [,(t) sdo dados por

HO(Q yyigqy T Wgq - Wy,) — Qg g, - Wq, +Wg,)}, (2.54)
1 - 47T (2) 2 1
Lp(0) = 57510 + 57 SV [1 4 vy (t) + vy | 5 o + g wg) +
=
Z'V P12 Ve (0) = v | 5(Qy & — wg + wq) +

4 )0 o
57 2 WVaal? [va (0 = v | 6(Qg s — wa — wy), (2.55)
ql

com T, dado pela Eq. (2.44). Temos, pois, que as Egs. (2.41) e (2.52) formam um sistema
de equacgOes diferenciais ndo-lineares acopladas. Concentraremos nossa atencio agora
na evolu¢ao da amplitude, Eq. (2.52a), uma equacao nao-linear muito peculiar, que
sera responsavel pelo surgimento de um comportamento complexo de um carater

particular.
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2.4 Equacao tipo Schrodinger nao-linear e dissipativa

Na secdo precedente obtivemos as Eqgs. (2.52) para os valores médios das amplitudes.

Introduzamos agora uma representacao no espaco direto, definindo os operadores

aj — > agel ik (2.56)
q

onde R; é a posicdo do j-ésimo centro oscilante; assumindo que esses centros estdo

espacados periodicamente, encontrarmos que

0 . . :
~(a;lt) = 1> {[w)i+ Wy —iTy](adlt) + [W — il (alt)*}
ot l
+ D [Rjm(ailt)(amlt)a;1)* +cc], (2.57)
Im
onde
wji =), wy et Tk, Wi = > Wl ®Rizki), (2.58)
i q
I = qu el @ (R;=R) , Ripm = Z Rg q. pldi(Rj-Ri) ol gz (Ri=Rm) (2.58b)
q qiq:

Introduzindo a amplitude média localmente definida fazendo uma aproximacao
por um continuo, i.e., as posi¢des discretas R; sdo substituidas pela variavel espacial

continua r, € escrevemaos

Wir,t) = > {aglt)e?r (2.59)
q



Consideremos o caso de uma relacido de dispersdo parabolica

wg = wy — &lq1*, (2.60)

com (o € « constantes (nO que segue, por exemplo, o caso de éxcitons em semicon-
dutores ou uma relacdo de dispersao aproximada para modos polares e no caso dc
modos acusticos, quando ¢ linear na aproximacao de Debye, surgira de apropriadas
expansoces). Apos negligenciar os termos de acoplamento lineares com a equacao con-
jugada, o que ¢ equivalente a introduzir um hamiltoniano truncado na assim chamada

“Rotating Wave Approximation” [Haken 1970], obtemos

iﬁ%qj(r,t) = (hwy + haV)yplr,t) - iﬁJ’dr’ [r—rwlr,t) +

+ Jdr’dr”R(r—r',r—r”)(p(r”,t)tp(r’,t)w*(r,t), (2.61)

onde

R(r—v',r —r") = > Rgq, 4 rrriacr=ro (2.62)
419
L(r—r) =T, esr ). (2.63)
q

A Eq. (2.61) ¢ uma equacao de Schrodinger ndo-linear com amortecimento [Valya-

sek et al. 1971] Introduzindo uma aproximacaio local, i. e, negligenciando correlagoes
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espaciais, o que € feito usando as expressoes

Rir—-r',r—r"y=Koér rolr-r’, (2.64)

I'ir-r)=yodlr—-v, (2.65)
com K e y sendo constantes, obtemos que a Eq. (2.61) adquire a forma
iﬁ.m%q;(r,t) = (hw() + ﬁ.(xvz) wir, t) —ihyy(r,t) + Klg(r, ) 2ypir,t) . (2.66)

As Eqs. (2.57) e (2.66) sao da forma das equacgdes derivadas por Davydov [1982]
de uma maneira alternativa, mas aqui mostrando claramente efeitos de amortecimen-
to. Essas equagdes tém como solucdes os assim chamados solitons de Schrodinger-

Davydov. Eles serdo o assunto do proximo capitulo.



Capitulo 3

SOLITONS DO TIPO
SCHRODINGER-DAVYDOV

3.1 Introducao

O conceito de soliton tem ganho recentemente ampla difusido em Fisica, Engenharia e
Biologia. Sua origem, ainda ndo como a excitacio hoje chamada soliton, remonta ao
século passado (1834), a partir de uma observacio do engenheiro civil escocés John
Scott-Russell [1844]: no chamado Union Canal ligando Edinburgh com Glasgow, quan-
do estudando as relagées entre as formas dos cascos dos barcos com as velocidades
e as forcas necessarias para moveé-los, observou um fenémeno atipico que se formou
quando um barco que se movimentava no canal parou subitamente, E interessante

reproduzir parte de sua apresentacao a Royal Society of Edinburgh:

| was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped — not so the mass
of water in the channel which it had put in motion; it accumulated round the
prow of the vessel in a state of violent agitation, then suddenly leaving it behind,
rolled forward with great velocity, assuming the form of a large solitary elevation,
a rounded, smooth and well defined heap of water, which continued its course

along the channel apparently without change of form or diminution of speed.

35.
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| followed in on horseback, and overtook it still rolling on a rate of some eight or
nine miles an hour, preserving ints original figure some thirty feet long and a foot
to a foot and a half in height. Its height gradually diminished, and after a chase
of one or two miles | lost it in the windings of the channel. Such, in the month

of August 1834, was my first chance interview with that singular and beatiful

phenomenon ...

Na Fig. 3.1 pode ser vista uma demonstracao da formacdo de onda solitaria no

aqueduto Scott Russell no Union Canal. Essa figura foi obtida na Internet na pagina

http://www.ma.hw.ac.uk/solitons/press.html.

Figura 3.1: Séliton no aqueduto Scott Russell no Union Canal, perto da Universidade
Heriot-Watt, em 12 de julho de 1995.

B N

T
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Scott Russel denominou essa onda de “Onda de Translacdao” e, embora estivesse
convencido de tinha observado um fenémeno importante, a questdao permaneceu ho
plano de uma simples curiosidade até aproximadamente o fim da década de 60, quan-
do fisicos e engenheiros reconheceram que as ondas solitarias eram um fendmeno
intrigante e relevante muito disseminado na Naturcza. Os engenheiros conseguiram
criar ondas solitarias de luz em fibras opticas [Haus 1993; Shen 1997; Snyder & Mitchell
1997]; aparecem também como importantissimo veiculo de transporte de cargas em
polimeros dopados [Beardsley 1997; Heger et al. 1988; Anderson & Roth 1994|; astro-
nomos tém conjecturado que a grande mancha vermelha de Japiter é uma formacao
que pode estar relacionada a uma onda solitaria; em Fisica, aparentemente comecaram
a ser considerados a partir de modelos computacionais de molas ¢ péndulos mostran-
do padrdes do tipo ondas solitarias. Como esses padrdes eram tdo bem definidos
espacialmente e s¢ mantinham compactos no tempo, de forma a parecercm um objeto
unico, a onda solitaria foi também referida como soéliton. Isso pela similitude com
fonons, elétrons ¢ outras particulas elementares que atuam com a aparente dualidade
de onda-particula.

Nas ultimas duas décadas tém sido feitos esforcos para eventualmente reconhecer
a presenca de sélitons ¢m biologia, e.g. em tecidos vivos. Todavia, sistemas bioldgi-
cos sdo extremamente complicados ¢ a observacao experimental in vive é muito dificil.
Recentemente, os biofisicos e biomatematicos tém comecado a atacar a questao, Ha in-
dicacdes de que solitons microscopicos podem atravessar as células ou eventualmente
a cadeia do DNA. Em neurologia ha tentativas para relaciona-los com a propagacao de

impulsos nervosos no cérebro, assim como o saliton macroscopico tsunami atravessa
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0 0oceano. Aqui, tambem esta presente o importantissimo problema em bioenergética
de como a energia ¢ convertida e transmitida nos organismos vivos. Estas questdes
tém um tratamento parcial neste trabalho como é descrito no Cap. 6.

Os solitons sdo notaveis em diversos aspectos. Um ¢ que pacotes de onda com am-
plitudes maiores viajam mais rapido do que aqueles com amplitudes menores. Outro
¢ que se observamos o movimento de solitons antes e depois da colisdo de pulsos,
vemos que nem as formas nem as velocidades dos pulsos mudam, ou seja, eles sao
totalmente insensiveis ao processo de espalhamento.

Além disso, em certos casos, diferentemente das ondas normais que decaem mais
ou menos rapidamente e tem uma vida média muito maior, como o tsunami no oceano,
esses solitons, é claro, ndo violam a segunda lei da termodindmica, ou seja, a energia
que carregam sc dispersa, porém muito mais lentamente. Também é notavel a coesio
nos solitons. Essa peculiaridade de aparccer como um objeto bem definido, tal como
¢ mostrado na Fig. 3.1 é o resultado, como veremos, de que o séliton ¢ construido
a partir de numerosos componentes (i. e. é um pacote de ondas peculiar), entre as
quais a energia e transferida via efeitos nao-lineares de tal forma que a energia total
no pacote permanece enclausurada num envelope rigido.

Assim, enquanto ondas normais sio compostas de wavelets que diferem em
frequéncia e velocidade de grupo (propagacio) que se dispersam, no séliton sdo man-
tidas num pacote de forma fixa: entido os mecanismos dispersivos e de relaxacio no
caso de solitons é particularmente atipico, com a questio ilustrada no restante deste

capitulo e no Cap. 5.
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Insistimos em que se trata de um fendmeno que somente pode existir no dominio
daFisica Ndo-linear. Esta ndo-linearidade, que faz com que o principio da superposicio
janao seja valido, produz o mecanismo que leva a coesao do séliton e, emn circunstan-
cias especiais, a caracteristica de uma relaxacdo ou dissipa¢do muito fraca no tempo,
Por causa da ndo-linearidade cada wavelet componente afeta constantemente todas
as outras, e assim nao podem ser consideradas separadamente, como € o caso de uma
equacdo linear que pode ser atacada em termos de modos normais de vibracio. Con-
seqiientemente as equacgdes nio-lineares nao podem ser reduzidas as contribuicdes
das partes e resolvida em membros (as componentes de Fourier).

Assim, podemos dizer que a onda solitaria pode ser entendida qualitativamen-
te como representando um cquilibrio entre os efeitos de nao-lincaridade e dispersdo
espacial ¢ temporal. Isto sera visto em continuacio quando derivamos equagoes de
evolucao nao-lineares — para sermos mais precisos equacdes do tipo chamado de
Schrodinger-Davydov. Uma vez que ndo podemos fazer a analise de Fourier da equacio
nao-linear, temos de recorrer ao método do espalhamento inverso, que permite re-
solver analiticamente a equacio de cvolucdo do soliton. Esse método, que esta es-
treitamente ligado a transformada de Fourier, pode ser aplicado para a resolugdo de
equacOes diferenciais ndo-lincares. Mais detalhes podem ser vistos no Apéndice B.

No que segue neste capitulo tratamos da propagacdo de solitons em polimeros ¢
em semicondutores, no primeiro caso como um pacote de vibracdes dpticas da rede e
no outro por éxcitons criados por iluminacao laser,

As secdes a seguir sao.
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3.2 Tratamento Termodindmico Estatistico de Ondas Solitarias Vibracionais na Ace-

tanilida.

3.3 Processos Irreversiveis no Contexto do Formalismo de Ensemble Estatistico de

Nao-equilibrio.

No Cap. 5 retomamos a questio para tratar da propagacao de solitons em matéria

condensada sob altos niveis de excitacdo.
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3.2 Tratamento termodinamico estatistico de
ondas solitarias vibracionais na acetanilida

Analisamos o comportamento do ¢stado termodinamico macroscopico de polimeros,
concentrando-nos na acetanilida, Sdo deduzidas equacdes nio-lineares de evolucio
para as populacdes e para a média estatistica das amplitudes de campo dos modos
de estiramento CO. A existéncia de eXcitacdes do tipo onda solitaria é evidenciado.
0 espectro infravermelho é calculado ¢ comparado com os dados experimentaias de
Careri et al. {1983], resultando em uma boa concordancia. Consideramos também a
situacdo de uma amostra excitada ndo-termicamente, predizendo a ocorréncia de um

grande aumento na vida média da excita¢do de onda solitaria.

Physical Review Letter, 80 (9) 2008-11.
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We analyze the behavior of the macroscopic thermodynamic state of poly-
mers, centering on acetanilide. The nonlinear equations of evolution for the
populations and the statistically-averaged field amplitudes of co-stretching
modes are derived. The existence of excitations of the solitary wave type
is evidenced. The infrared spectrum is calculated and compared with the
experimental data of Careri et al. {Phys. Rev, Lett, 51, 104 (1983)], result-
ing in a good agreement. We also consider the situation of a nonthermally
highly excited sample, predicting the occurrence of a large increase in the

lifetime of the solitary wave excitation.
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The question of long range propagation of energy (signals) in polymers of technolog-
ical interest [1], and in biological systems [2], has been a topic of large interest and
a certain puzzlement. More than twenty years ago A. S. Davydov proposed a novel
mechanism for the localization and transport of vibrational energy in such type of
polymers, namely the propagation of solitary-like waves resulting from nonlinear in-
teractions in the media (two relevant and comprehcensive reviews are due to Davydov
[3] and A. Scott [4]). Observation of Davydov's soliton in functioning biological materi-
als is difficult. There has been alternative attempts performing experimental studies in
polymers, and one has been acetanilide. The infrared spectra of crystalline acetanilide
have shown an “anomalous” band that has been ascribed to the excitation of a Davy-
dov's soliton, as reported by Careri et al. [5]. Fann et al., on the basis of results in ultra-
fast time-resolved optical measurements, suggested that such band is not a result of
a vibronic solitary wave but resulting from a slightly nondegenerate hydrogen-atom
configuration (double-well potential) in the crystal [6]. However, recently Johnson et
al. [7], on the basis of neutron diffraction studies, arrived to the conclusion that there
is no evidence for the suggestion in [6] to explain the supplementary Amide-I mode,
and the solitary vibronic excitation hypothesis is in better agreement with most of the
available experimental results on the structure and dynamics of acetanilide.

In the present communication we reconsider the question on the basis of a
statistical-thermodynamical description of the nonlinear vibrational dynamics in a
model appropriate to describe vibrational modes in acetanilide. In that way we are able
to characterize and describe—within this thermo-mechanical scheme—a Davydov-like

soliton, and to derive the infrared spectra which evidences it. We discuss the depen-
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dence of the characteristics of the solitary wave (like amplitude, frequency, lifetime)
on the initial conditions and on the macroscopic thermodynamic state of the system,
We analyze the case of pump-probe experiments, and discuss a predicted phenom-
enon consisting in the propagation of nearly undamped solitary waves in a highly
excited sample,

We consider a quasi-periodic polymer (e.g. acetanilide) characterized in terms of
a Hamiltonian describing a system composed of polar vibrational modes (e.g. the Co-
stretching) which are taken as coupled with a surrounding media (thermal bath) via
anharmonic interactions (for details sce [8]). The thermal bath is taken as a continuum
and described in a Debye model, and is considered to constantly remain in equilibrium
at atemperature Ty. Moreover, it is included an energy-pumping external source, which
acts on the systems driving it out of equilibrium, that is, producing (eventually large)
populations of vibrational modes in nonthermal nonequilibrium conditions. In this
way we take into account, from the onset, the case of pump-probe experiments, For the
thermo-mechanical description of the nonequilibrium system we resort to a statistical
thermodynamics based on a particular nonequilibrium ensemble formalism, namely,
the Nonequilibrium Statistical Operator Method (NESOM) [9], and Zubarev's approach
to NESOM is used below [10].

In this approach the first step is the choice of the set of basic variables for the
description of the nonequilibrium macroscopic state of the system, and the derivation
of its irreversible evolution in time. In the present case they are the population of
the polar modes, v, (t) (where g is the mode wavevector running over the Brillouin

zone), and the vibrational amplitudes (a4/t) and their conjugate (af,lt) (a and at
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are, as usual, annihilation and creation operators in phonon states). Furthermore,
on the basis of the condition that the thermal bath is constantly kept in equilibrium
we take as basic variable its constant energy, say Egx (the bath is then characterized
by a canonical distribution with temperature T,). As already noticed, the detailed
Hamiltonian is given in [8]. The equations of ¢volution for the time-dependent basic
variables, given above, are dcrived in the NESOM-based nonlinear quantum transport
theory [10-12]. We resort to the so-called second order approximation in relaxation
theory [12], that is, the Markovian limit of the kinetic theory. Omitting the details of

the quite lengthy calculation, the final expressions are

d

dtvq(t) = Ip(wg) — 1.1 () [ve (1) — v |

Z 1V,

[ Va-q (Vg —vq)—vq(1+vqr)] 0(Qqog + Wy — wy)
Z IV(z) [vg__q,(vqr —Vg) + Vg (L + vq)] §(Qqgyg — g + wg) +

TT 2Y 0 "
I——ﬁTZIVé;H“ Irvg‘qr(] +Vq’) - (Vq’ _V3+qf)Vq]b(£2q+q' _(-U'q' _(_Uq) y (].)
q’ -

G, .
E(aqu) = —idg{agit) —Tg{agqlt) + Ty (a)It) +
+ Z I{qlq,\(aqllt><a££|t) ((a'q—[ﬂ H.’-fg't) + <atq+q1 q£,t>) . (2)
q1 4.

InEq. (1), I; (w) measures the rate of production of excitations in mode g generated
by the external source; Vtgf,,], are the matrix elements of the anharmonic interaction

between polar modes and the bath; w, the polar modes frequency dispersion relation,



48.

and Q, that of the modes in the bath with the populations vg in thermal equilibrium
at temperature To; T4 is the lifetime for decay towards the equilibrium value v’ . In

Eq. (2}, Rg 4. 18 the coupling strength in the nonlinear contribution [8], and Iy is the

reciprocal lifetime of the excitation, of particular relevance in what follows, given by

47T 2y

2
h p
4m (2),2
ql
g am Z'V{ 2 Ve = VE .| 8(Qq 0 — g - wg) . (3)

We call the attention to the relevant fact consisting into the time dependence of this
lifetime on the populations of the modes, with these contributions, aside from 7,!,
originating in the nonlinear anharmonic interactions. Finally, we notice that, assuming
weak amplitudes {a,4|t), we have neglected their influence in the equation for the
populations, Eq. (1), where they show up in quadratic contributions. Next, we introduce

the average field operator for the amplitudes, namely (in the one-dimensional model

we are using)

ix,t) = > {ag | ther, (4)

gq

and, moreover, we choose a parabolic dispersion relation in the form w4 = wo—xg? (a
good approximation in most cascs); evidently, wyg is the frequency at the zone centre

and « an indication of the ratio of curvature at that point. Using Egs. (2) and (4) we
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find that the average amplitude field operator satisfics the equation

i“_awg' D (wo - iys)yp(x,t) - cxa%;gtp(x,t) + Gl D wix,t) =0.  (5)

We notice that to arrive to this Eq. (5) we have neglected its coupling with the
conjugated field operator, ¢* [Cf. Eq. {(2)], what can be shown to correspond in this
case to the equivalent of introducing the so-called rotating wave approximation [13].
Furthermore, we have taken a local approximation, that is, we have neglected space
correlations, what is justified a posteriori because of the stringent space localization
of the excitation. Equation (5) is of the form of a nonlinear Schrodinger-like equation
with damping [14]. Evidently y, is the reciprocal lifetime and ¢ measures the intensity
of the nonlinear coupling (these two quantities y and ¢ are the constant values of I’
and R of Eq. (2), respectively, in direct space when the local approximation is used).

We first consider the situation of the experiment in [5], that is I = 0 in Eq. (1) and,
then, the population vy, is in thermal equilibrium (v, = vf,o)) at temperature T,. We
solve Eq. (5) resorting to the inverse scattering method [15] for an initial condition in

the form of an impulse-like excitation with an hyperbolic-secant shape, to obtain that

Wix,t) = Aexp {i [%x —(w; — iy )t — gJ} sech [ﬂl (|2cz¥|)'“ (x - vt)] . (B)

In this Eq. (6), y. is the reciprocal lifetime of the excitation (which for y;, = 0 is

Davydov's soliton [3,4]), we used G = |G|c!?, and

ve  |G|.A¢
+ ,

io > (7)

(g = Wy —



where A and v are an amplitude and velocity of propagation fixed by the initial con-
dition of excitation. Therefore it is proved the possibility of propagation of Davydov's
solitons in polymers, but, we stress, of a damped character. Let us look on its ex-
perimental observation, and consider the infrared spectrum. Measurement of the Ir-
absorbance of ACN samples in the Amide-I region has been done by Careri et al. |5]. We
recall that these authors report a band, red-shifted from the main Amide-I maximum
by about 15 cm !, and which they ascribe to a Davydov-like solitary wave. Careri et al.
mention the fact that Davydov [2] suggests that soliton excitation directly by light shall
be small. However, they observe an absorption comparable with the one due to the
normal Amide-I. Our results, as shown below, confirm such observation. We consider
the second order process involving electron-laser radiation interaction and electron-
vibrational mode interaction (Frohlich potential interaction should be the relevant one
as compared with deformation potential interaction). On the basis of this process, fol-
lowing consistently the NESOM formalism, according to the response function theory

and scattering theory based on it |9, 16}, we find for the expected absorbance spectrum

At t
a(w) = D P(q,w) JO dr L dt'e @ =DTr {al (t")a,(t)e(0)}, (8)
q

where ¢ is an amplitude whose detailed form is not necessary for our purposes here,
suffice it to say that it contains the squared modulus of the matrix elements of the
electron-radiation and of the electron-phonon interaction (Fréhlich potential), and the
energy denominator associated to the virtual intermediate state. Moreover g(0) is the

statistical distribution at the initial time of preparation of the sample, and, since itis an
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experiment in time-integrated optical spectroscopy, At is the experimental resolution

time. From a direct calculation it follows that

Tr{a, (1)a (1) g(0)} = viP e =D 1 (gl | '} ay | t), (9)

what implies that the absorption spectrum has two bands, the “normal” one due to the
vibration around frequency wg, and an “anomalous” band around frequency wy, that

is, the associated to the soliton. In fact, using Egs. (4), (6), and (9) in Eq. (8) we find

that
At 4
() =~ j dtJ At [eca(E, 1) + o (8, 8], (10)
) 0
where
(xﬂ(t,t’) " Cn[e—-Zytei(mmmq)(t’—t} +e—2yt'ewi(m wq)(t'—t}]’ (11a)
st(t,f:’) - C}[C Eystei(w-«m;)(t'—t) + e—Ey,@t'emi(mmms)(r’ r)] ’ (11b)

where y; = y + A(|G|/2x) 2, and Cn and C; are amplitudes corresponding to the “nor-
mal” and “anomalous” bands with band widths y and y, respectively. Scott et al. [17]
have detected overtones in the IR spectra, which can also be described by the present
theory; here we have only considered the main band. Moreover, Careri et al. [18] have
evidenced a fine structure present in the “anomalous” band, which may result from
some kind of asymmetry arising of the nonplanarity of the amide group. Our model

has ignored this fine detail. Moreover, we comment that the theory also accounts for
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the main (fine structure aside) Raman line in inelastic scattering of light experiments
[19, 20]

We compare the NEsoM-based theoretical result of Eq. (10) with the experimental
data taken from [5]. It ought to be noticed that we do not have theoretical access to the
initial conditions that fix /A and v, but they can be derived from experimental data.
Take the case T = 80 K, and then, on the basis that wy —w, =16 cm~'and y, -y =
3.6 cm” !, we obtain that A(|G|/2x)? = 2.3 x 10%cm~! and v = 2.9 x 10* em-s~!. In
figure 1 are indicated the experimental curves (dotted) and the theoretical ones (full
line), for 20 K, 50 K, and 80 K, which show a very good agreement (The amplitudes of
the bands are also fixed using the experimental results, thatis, in that way it is avoided
the calculation of ¢ of Eq. (8), of no relevance here, since the fundamental point to
characterize is the shape and positioning of the bands). Hence, the theory described
above demonstrates a very rapid decay of Davydov’s soliton in situations very near
to thermal equilibrium (the lifetime y;' is in the tens of picosecond scale). Consider
now far-from-equilibrium conditions, namely, in the presence of a sufficiently intense
source of strength I in Eq. (1), in, now, a pump-probe experiment. As a result of the
pumping process, I, (wg) + 0 in Eq. (1), the populations v,(t) increase in time. Under
the action of a constant-in-time pumping intensity, after a transient time (typically in
the order of pico- to subpico-second range) has elapsed there follows a steady state,
As indicated by Eqg. (3) the lifetime of the solitary wave strongly depends on these
populations.

We calculate the steady state populations by solving Eqgs. (1), as done in [8], but

using for the parameters involved numerical values of an order of magnitude as those
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characteristic of ACN. Similarly as in [8] (¢f. Figs. 3 and 7 in [8]), after a threshold
in the pumping intensity is achieved, the modes lowest in frequency largely increase
their populations (and, then, also the energy stored) at the expenscs of the others.
These results are used in Eq. (3) to calculate the two characteristic reciprocal lifetimes
[y and [} shown in Fig. 2 as a function of intensity, the one with index 1 corresponding
to a mode low in frequency (one that largely increases its population), and the other
corresponding to a mode higher in frequency. This reciprocal lifetimes are given in
units of a characteristic time T (sec [8]), which for ACN is roughly 0.4 picoseconds.
It is evident that the modes lowest in frequency largely increase their lifetime with
increasing intensity of the pumping source, while the others rapidly decay. Therefore,
in the expression for the average field amplitude, Eq. (4), there survives for a long
time the contribution from the modes low in frequency, which give rise to a near
dissipationless Davydov-soliton-like excitation.

There remains the fundamental question of how to experimentally evidence this
phenomenon. We can resort to measurements of 1R-absorbance of the kind we have
already considered, but now to be of the pump-probe type. With increasing intensity
of the pumping source, and the consequent increase in the population of the polar
modes, the bandwidth of the IR-absorbance spectrum corresponding to the solitary-
wave excitation should — according to theory — be consistently reduced. This being
verified the prediction would be corroborated, what may be a rclevant result in bioen-
~ergetics because of the similarity of CcoO-stretching in ACN and in biopolymers [2-4].
A final point to consider is how to produce the nonthermal excitation of these polar

modes: One possibility could be via the indirect process of free-carrier absorption



of electromagnetic radiation. However, it may be noticed that this type of pumping
process may be poorly efficient for providing appropriate levels of excitation, what is
shown in the particular case of the photoinjected plasma in polar semiconductors [21].
Alternatively one may think of direct excitation of the polar modes via electromagnetic
radiaton in the infrared region. However, for efficient results, we would need an in-
tense source with a spectrum of frequencies covering the full extent of the width of
the optical phonons dispersion relation. Apparently, nowadays the only possible way
would be the use of synchroton radiaton in the IR, as, for example, in the apparatus at
the Synchroton Light National Laboratory at Campinas, Sao Paulo, Brazil [22], where
at the moment is available IrR-radiation in the, say, 20 to 40 meV band, with intensities
of the order of 10! photons per second and milliradian.

In conclusion, we have analyzed some statistical thermodynamic aspects of poly-
mers, with particular attention centered on acetanilide, showing that in such systems,
which sustain polar vibrations of the co-stretching type, can also be present excita-
tions of the type of vibronic solitary waves (Davydov-like solitons). The 1r-absorbance
spectrum has been calculated and compared with the experimental results, following
a good agreement. Also, the results confirm the very short lifetime of this excitation.
However, as briefly discussed in the last part of this communication, under continu-
ous external excitation, producing large nonthermal values of the populations of the
vibrational modes, the soliton’s lifetime largely increases. This implies that a coherent
¢xcitation composed by the low-lying-in-frequency excited modes, constitutes a Davy-
dov’s solitary-like wave which travels undeformed and nearly undamped in a sufficiently

highly excited steady-state background.
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FIGURE CAPTIONS

Figure 1: Infrared absorption spectra in acetanilide for three different values of tem-
perature. Dotted curve is from the experimental data of reference [5], and the

full curve the calculation in NEsoOM-bascd response tunction theory.

Figure 2: Reciprocal lifetime of the representative high frequency modes (index
nought) and of the low frequency modes (index one) with increasing intensity of
the source. Both T are in units of T ~ 0.4 picoseconds, and the intensity S in

adimensional units, but such that 15 corresponds to a pumping power of 1 uW

per mode.,
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Figure 1: Infrared absorption spectra in acetanilide for three different values of tem-
perature. Dotted curve is from the experimental data of reference 5, and the full curve
the calculation in NESOM-based response function theory.
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Figure 2: Reciprocal lifetime of the representative high frequency modes (index
nought) and of the low frequency modes (index one) with increasing intensity of the
source. Both T are in units of ¥ ~ 0.4 picoseconds, and the intensity S in adimensional
units, but such that 15 corresponds to a pumping power of 1 W per mode.
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3.3 Processos irreversiveis no contexto do formalismo de
ensemble estatistico de nao-equilibrio

Consideramos a questdo do estudo de processos irreversiveis baseados num forma-
lismo de ensemble de nao-equilibrio, que prové fundamentos para a assim chamada
Termodinamica Estatistica Informacional. Scu funcionamento é ilustrado em uma apli-
cacdo ao estudo de processos de relaxacio em um sistema de muitos bosons em inte-
racio com um banho térmico. E mostrado que a equacio cinética de evolucio da média
da amplitude de campo bosonico ¢ do tipo de uma equacao de Schrodinger nio-linear
com amortecimento. A solucio mostra a presenca de comportamento complexo no
sistema, consistindo em que o conjunto de excitacGes possiveis contem uma associa-
da com uma onda solitaria, o assim chamado soliton de Davydov com amortecimento.
Sistemas de matéria condensada e sistemas biofisicos sao candidatos a apresentar esse
tipo de comportamento. Uma comparagao particular com experimento é apresentada

para o caso de polimeros organicos.

Physica Scripta, 59 (4): 257-65 (1999).



Irreversible Processes in the Context of a
Nonequilibrium Statistical Ensemble Formalism

Marcus V. Mesquita,* Aurea R. Vasconcellos, Roberto Luzzi

Instituto de Fisica ‘Gleb Wataghin’,
Universidade Estadual de Campinas, Unicamp
13083-970 Campinas, Sdo Paulo, Brazil



64.

We consider the question of the study of irreversible processes on the basis of a non-
equilibrium ensemble formalism, which provides foundations to the so-called Infor-
mational Statistical Thermodynamics. Its functioning is illusirated in an application to
the study of relaxation processes in a many-boson system in interaction with a thermal
bath. It is shown that the kinetic equation for the evolution of the average boson-field
amplitude is of the type of a nonlinear Schrédinger equation with damping. The solu-
tion shows the presence of complex behavior in the system, consisting in that the set
of possible excitations contains one associated to a solitary-wave, the so-called Davy-
dov's soliton with damping. Solid state and biophysical systems are candidates to
present this type of behavior. A particular comparison with experiment is presented

for the case of organic molecular polymers.
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1. Introduction

As well known, and universally accepted, dissipation and irreversibility are intrinsic
characteristics of dynamical systems in Nature, These characteristics are quite difficult
concepts to apprehend and the object of extended and lively discussions., Moreover,
we recall that this question belongs to the realm of the science of Thermodynamics,
in particular to the second law.,

Thermodynamics has a well-deserved reputation of efficiency and elegance from
its ability to make predictions, concerning macroscopic properties, on a surprisingly
large variety of natural systems, with independence of the microscopic structure and
the details of the processes developing in the medium. Thermodynamics of equilib-
rium systems is a quite well established and tremendously successful area, but the
same cannot be said in the case of nonequilibrium systems, namely the area covered
by the so-called Irreversible Thermodynamics. The latter, let us recall, is a field the-
ory at a macroscopic and phenomecnological level, dealing with states and processes
in systems lying beyond equilibrium (either by a large amount or close to equilib-
rium, corresponding to the nonlinear and linear, respectively, divisions of it). Hence,
Nonequilibrium Thermodynamics deals basically with transport phenomena involving
space and time variations of macroscopic observables and their fluxes in continuum
media, as well as with —in particular— the important case of steady states. In all cir-
cumstances of nonequilibrium conditions, let them be time evolving or stationary, are
present dissipative processes developing in the media. Steady states in the nonlinear

kinetic-thermodynamic level are of enormous relevance because of the possible emer-
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gence of complex behavior in the form of Prigogine's dissipative structures and chaos,
leading to what can be dubbed as Thermodynamics of complex systems [1-6].

In nonequilibrium situations, in contrast with equilibrium thermodynamics which
constitutes an undisputed universal discipline, the thermodynamics of irreversible
processes has as yet not achieved a phenomenological formulation and a methodology
which can be considered satisfactory. There exist several approaches to nonequilib-
rium thermodynamics: a well established one is the Classical (sometimes referred to
as Lincar or Onsagerian) Thermodynamics, based on the local equilibrium hypothesis,
which is restricted to the limiting situations involving smooth in space and time vari-
alions (very long wavelengths and very low frequencies), and weak fluxes |7]. Outside
this regime, as noted, there is not at present what may be considered as a completely
satisfactory approach. On the other hand, the connection of macroscopic thermody-

namics with microscopic mechanics is, as known, provided by Statistical Mechanics.

Statistical Mechanics of equilibrium systems is an extremely successful theory and

provides the look-after microscopic foundations to thermostatics (i. e. thermodynam-
ics of equilibrium systems). In nonequilibrium conditions but in the strictly linear :
regime near equilibriuim also provides the basis for Classical Irreversible Thermody-
namics and responsec function theory [8]. Evidently it is tempting to consider that
nonlinear nonequilibrium thermodynamics may have foundations on a Statistical Me-
chanics for arbitrarily far-from-equilibrium systems. This implies in answering the
question: Is there an ensemble algorithm which is appropriate for nonequilibrium

problems? An affirmative answer exists and consists in the so-called Nonequilibrium

Statistical Operator Method (NEsoM for short from now on). It appears to be, by far,
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the most appealing, practical, concise, and first principles based theory. NESOM is a
far-reaching genecralization of statistical methods founded on the seminal great ideas
set forward by Boltzmann and Gibbs [9]. The different approaches to NESOM are based
on either heuristic approaches [10-14], or projection-operator technigques [15-18). It
can be shown [19-21] that all approaches can be put under a unifying theory based
on the principle of maximization of informational entropy [22, 23], (MaxEnt for short)
that is, a unique variational principle. This leads to a theory which may be considered
to be contained within the scope of Jayne's Predictive Statistical Mechanics [24]. This
unifying approach to NESOM shall be referred to as MaxEnt-NESOM in what follows (For
its application in equilibrium and near equilibrium conditions see references [25, 26,
and for arbitrary nonequilibrium conditions se¢ reference [27]).

Therefore, the above mentioned tempting consideration to put irreversible ther-
modynamics under the aegis of nonequilibrium statistical mechanics, appears to be
possible on the basis of MaxEnt-NESOM. This is the so-called Informational Statistical
Thermodynamics (157 for short: sometimes also called Information-theoretic Thermo-
dynamics). IST may be considered to have been pionecred by Hobson [28,29] after
the publication of Jaynes seminal papers on the foundation of statistical mechanics
on information theory [30,31]). A brief review and partial historical notes are given in
[32-35]. Sienjutycz and Salamon [36] also briefly review several variational approaches,
and so do Nettleton and Sobolev [37].

In this paper we attempt to illustrate the use of IST resorting to the treatiment
of a particular dissipative problem, however of —in principle— quite large scope for

being connected with a number of real situations in the physics of condensed matter.
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Moreover, nonlinear interactions are present, what brings the problem within domain
of nonlinear nonequilibrium theyrmodynamics, and, as known, complex behavior may
arise in such systems. It is shown how nonlinecar relaxation processes are present in
the kinetic equations of evolution, one attaining the form of a nonlinear Schroédinger-
like equation with damping, giving rise to coherent states of excitations of the solitary
wave type. Solitons were first observed over a century and a half ago, namely in 1838 by
the Scottish civil engineer John Scott Russell and the finding published in the Reports
of the Mectings of the British Association for the Advancement of Science in 1844,
This excitation, as known, presents a puzzling property of cohesiveness, namely, a
propagation with a near unaltered shape, which is also recovered in the collision of
two solitons after travelling through each other. They may have large relevance in
bioenergetics [38], and in other areas, as, for example, the technically and economically
relevant ones of transmission in optical fibers [39] and in conducting polymers (sece

for example reference [40]).

2. Nonlinear Schrédinger-like Equation with Damping

Let us consider a system of bosons (for example lattice vibrations, excitons, etc. in
a solid state sample) in interaction with a thermal bath. We write for the system

Hamiltonian

H =H, + Hy, (1)
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where

1
Ho= 3 Ey(ajag+3), )
<

is the Hamiltonian of the free bosons with energy dispersion relation E,, and where,

as usual, a, (a$) are annihilation (creation) operators in state |g ), and

B . 3 i i "
H; = Z [q)qmzamam : waqzatna‘?l] ’ ®)
qi.q:

is the energy operator corresponding to the interaction with the thermal bath, where
@ are operators acting on the thermal bath space of states (the interaction coupling
strength is incorporated in @).

According to IST, based on the MaxEnt-NESOM, the first and fundamental step for
introducing the statistical method is to define the basic set of variables to be used for
the description of the system. In the present case it is natural to take the populations of
the modes, and the amplitudes of motion of the field of bosons, namely, the dynamical

quantitics

(Vg =ala

qlq: 4

a5 ahl. (4)

Consequently, according to the MaxEnt-NESOM [13, 20,21, 27] the associated auxil-

iary coarse-grained statistical operator is given by the instantaneous-in-time Gibbsian-
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like distribution

exp {_ % [F"(t)a':r? Ag + fall)ag + [ (t)af,]}

8(2,0) = , (5)

Trexp {— > [Fq(t)a:g Ag + fa(Dag + f4 () a};]}
3 _

where Fy, f,, and f7 are the corresponding Lagrange multipliers that the variational
method introduces. It is quite important to stress that the statistical operator of Eq. (5)
is not the one which characterizes the macroscopic state of the system but an auxiliary
coarse-grained one giving the instantancous average values of the observables of the
system, but does not account for dissipation. The fine grained statistical operator is
a functional of the one of Eq. (5), taking, in Zubarev's approach to NESOM [13,27], the

form

r .
o:(t) = 0(L,0) + gu(t) = exp{lné(t,O) - J di’ et ”L—g—,lng(t',t’ - t)} ,  (6)

where in o(t', t' —t) the first time in the argument is related to the thermodynamic evo-
lution of the system (the time evolution of the Lagrange parameters), while the second
is related to the evolution of the mechanical quantities in Heisenberg representation
(for details see, for example, Ref. [20], and in Ref. [21] the method is reviewed in a
classical-mechanical approach); parameter ¢ is an infinitesimal that goes to zero after
the trace operation in the calculation of averages has been performed, and its pres-
ence is responsible for the introduction of irreversible behavior in the macroscopic
evolution of the system. As indicated by Eq. (6), the nonequilibrium statistical oper-

ator p.(f) is composed of two parts: onc is the coarse-grained part g(t,0) which, as
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already noticed, does not account for dissipation, while g (t) is responsible for de-
scribing the irreversible evolution of the system and introducing the description of
the dissipative phenomena that keep developing in the media.

We introduce the 15T-thermodynamic variables
{va(); <aq 1)) tal | )} (7)

which are the averages of the dynamical variables of Eq. (4) over the nonequilibrium

ensemble. We recall that the associated Lagrange multipliers are [Cf. Eq. (5)]
{E (1) fa(); fr (O} (8)

The system initially in thermal equilibrium with the thermal bath at, say, the mu-
tual equilibrium temperature 7T, is assumed to receive a localized in space excitation
of a very short-in-time duration. The system is then driven out of equilibrium and we
look for the evolution of such state towards a final asymptotic return to ¢quilibrium
with the thermal bath. That is, we need to derive the equations of evolution for the
thermodynamic variables of Eq. (7). This is done resorting to the generalized nonlinear
quantum transport theory that can be built within the scope of MaxEnt-NESOM. It is
worth noticing that this theory is a far-reaching generalization of Boltzmann and Mori
approaches [20,21,27,41]. Assuming the coupling of system and bath to be wealk,
we can resort to the so-called second order approximation in relaxation theory [41],

sometimes referred to as the quasi-linear approximation in relaxation theory, a name
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we avoid because of the misleading term linear, which refers to the approximation in
the order of the relaxation processes in terms of the informational-entropy produc-
tion |21,41], but the equations are highly nonlinear in the basic variables; this is the
Markovian approximation in the MaxEnt-NEsoM-based kinetic theory.

2.1. The equation of evolution for the amplitudes

For simplicity we admit a weak perturbation (that is small amplitudes {(a, | t)) and then
we can omit the equation for the populations v,4(t): we take in lowest approximation
their values in equilibrium, since the deviations from equilibrium are shown to be
proportional to the square and cubic powers in the amplitudes. The equations of

evolution for the amplitudes in the Markovian approximation are
d
Tr@q 1D =) g0+ ]V (g0 + ] (q.1). 9)
where on the right of this Eq. (9) the first term is
JOg, 1) = Eqlag | t), (10)
the second term is

JW(g,t) = (ih) "' ([Hj,a,] I t) = 0, (11)
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and we have written
(..l ty=Tr{. o0}, (12)

meaning average value over the coarse-grained ensemble characterized by g(t, 0) of

Eq. (5). The contribution of Eq. (11) is null on the basis that

IHI:‘Iq] = —Z((quu + q)J;.lq)aql ' (13)
q1

and we take as null the average values of the operators @ associated to the bath
system (in other words, the bath is assumed to constantly remain in equilibrium at
temperature I, meaning that it is taken as an ideal reservoir). Hence, Eq. (9) can be
rewritten, once Eg. (10) is taken into account and the collision operator J'(qg,t) is

explicitly written, as

d . (Y ,
;ﬁ_‘(ﬂq |ty = (ih) ' Eglag | t) + (1) 7% | dt’e ' ([I;(t)o, [Hi,agl] | 1), (14)

— o

where we recall that according to the method [41] the time dependence of the dynam-
ical operators is given in the interaction representation (i.e. dynamical evolution in
terms of Hy alone). In this Eq. (14) the last term on the right, or collision operator, in-
volving two operations of commutation, is of second order in the interaction strengths
present in H; and, as already noticed, Markovian (memoryless) in character [41]. Once
the indicated operations are performed it follows that this contribution is the equiv-

alent of the Golden Rule of Quantum Mechanics averaged over the nonequilibrium
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enscmble. Moreover

noo_ 'yt {0y, — g, ' f ot g, —tog, it -
Hi(to = . {(quqg(t )Ag,2q,8 N TERT 4 Qg,q,(L)ag,a € TN } ,  (15)
q.q:

where we used that

} 1 i 16
o 'i_ﬁtH”élq eman . e—l(uqfaq (l()a)

1 1 , i i
e mtHogl emtto = glwatgl (16b)

and we wrote hw, = E,.
After some algebra and calculus together with simple algebraic manipulations

briefly described in Appendix A, we obtain the equation of evolution for the boson

amplitudes

lﬁﬁ(aq [8) = Eqlaq | 8) +1 2 Tyl a.fqa | 8 +1 X TEd arasdh @g,dq, | 1),

q1.42 q1.92.93

(17)

where coefficients Tak,.q. and T4, .4..q, are defined in Egs. (A.5)

2.2. Calculation of averages

To evaluate the average values involved on the right of Eq. (17), which are given in
terms of the auxiliary coarse-grained operator of Eq. (5), we note that the latter can

be diagonalized resorting to a Glauber-like transformation appropriate to deal with
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coherent states, namely,
Aq =bg +Ag; a£:b$+A;, (18)

where A, is a c-number. In the new representation the coarse-grained statistical

operator takes the form

o(t,0) = exp{ —p-> [Fq(t)bg b, + (Fa()AZ + fo(t))by +
: q

+ (Fg(D)Aq + fF ()b + Fa(D)A, A% + fa(t)Ag + fq*(t)z\;] } (19)

where

b= lIlTI‘CXp{— Z [Fq(t)b}; by + (Fy(D)A, + fq(t))bg +
q

+ (Fa(D)Aq + fEUENBY + Fa(t) AgA + fa(t)Ag +f;(t)/\;]} (20)

ensures its normalization. The diagonalization of the exponential follows for the

choice

Aa = 1) [Fa(t), A = —falt)Fqlt), (21)

to finally obtain

o(t,0) = exp{—ZFq(t)b};bq}/ Trexp{-~ zﬂ,(t)b;bq} : (22)

o q
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Using Eq. (22) it follows that

(ag |ty =Tr{aso(t,0)} = Tr{(by + Aq) 6(t,0)} = Triba6(t,00} + A, Tr{p(t,0)] = A,

(23a)
and, evidently,
(ab ity = A}, (23b)
Moreover,
(@b ag, | 1) = Trial ag,6(t,00} = Tr (b}, +A%) (g, + Ag)0(t,0)] =
= Tr{b} b, 0(t, 00} + Ag, Tr b} 0(t, 00} +
+ A Tribg,0(t,00} + A7 Ag, Tr{@(t,0)}
. -1
= (' — 1) Sgpay + (al, | t)(ag, | £) (24)
implying for q, = g» = g that
. -1 .
(afag | 1) = va(t) = (" -1)  + [ag | D)2, (25)

but recalling that we are neglecting corrections out of equilibrium in the populations,

then

Fy = (hwg — ) [kgT, (26)



77.

and the first term in the right of Eq. (25)is the equilibrium Bose-Einstein distribution.

An alternative form of Eq. (24), of practical convenience in calculations is

(ahag, ) =(al | t){aq, | t) + (vq (t) = ag | 1)]*)Bg,a, - (27)

Proceeding in a similar way we find that

(A, ag,aq, 1 1) =(vg (t) — (g, | D)*)((ag, | 1)8q, 4 + (Agy | 1)54,.4,) (28)

+ (a-:;l | t)(a-q;g | ”(aqg | t) (29)

2.3. Nonlinear Damped Schrodinger-like equation

Using the results of the previous subsection Eq. (17) becomes

,od .

mﬁ(aq | t) =Eqlag | t) +1) Tqq, (t)(aq, | ) + (30)
' q
+i > T palal |t ag, | tiag, | 1), (3D)
aq.,q7%
where
F‘WI (t) - z [Ttg.]f:'hqz + (Té-zq)'e.m.ﬂz + Tf(l.:)_fi;z.m.m)uv‘?h‘ [ t> o |<a“?2 | ”'2)1 : (32)
q.

Transforming to the direct space, introducing the boson field operator averaged
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over the nonequilibrium enscmble given by
W(r,t) = > Xq(ri(ag | t), (33)
q

where x,; are the eigenfunctions of the free system of bosons corresponding to

cigenvalues Eg, satisfying the unperturbed wave equation

2m

{ gy V(r)} Xq(r) = EgXxq(r), (34)

where V(r) is the potential energy, and the first contribution on the left is evidently
the kinetic energy. Using Egs. (31) to (34) we obtain the equation of evolution for the

average field amplitude, namely

) .
ihM = {—-ff‘——VE + V(r,t)} Yy (r,t) +iJ’l"(r,r|,t)tp(r1,t)dr1 (35)

ot 2m
+ [¢>(r,r1,r2,r3)W*(r1.t)(.U(l"‘z.f)(ll(r‘g,t)drldrgdr;i, (36)
where
[(r,r,t) = > Taqxq(P)XE (r), (37
a1
(:b(rprllrajrj) =1 Z T‘;i;l-qE-Q.ixq(r)XQl(rl)XEE(FE)XQ{("{) . (:;8)
41,9293

Equation (36) has the form of a Schrédinger equation with damping and nonlinear

contributions containing space correlations (time correlations, that is memory, are naot
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present because the approximation used — second order approximation in relaxation
theory — which renders the equations of evolution Markovian in character [41].

To proceed further, and to make contact with real situations, let us introduce an-
other approximation consisting into neglecting space correlations, what is achicved

writing

F(r,rl,t)=ﬁy6(r—r1), (3)9d)

O(r,ry,r,r) = RGO(r — 1 )o(r — 1) 5(r — r3), (39b)

As a consequence, the nonlinear Schrodinger-like equation with dissipation for
the system of bosons in interaction with the reservoir takes the local-in-space and

instantaneous-in-time form
o [ hi --, 5
ALY {_—m-w + V(r) +ihy + RG lp(r, r)r} Wirt). (40)

2.4. An example and numerical results

We use the results just derived 10 analyze the case of a system of excitons in semi-
conductors in interaction with the thermal bath provided by the lattice vibrations

(phonons). The Hamiltonian of the system is of the form [42]:

H = ZEka',tak + ZﬁQq b:; bq + Z (Mklkza;rcla‘kzbkl ke T H,C,) , (41)
k q ki.k

where hQ, is the phonon dispersion relation; E, = Ey — hik?/(2m,) is the exciton
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energy in state |k}, Ey is the value of energy at the bottom of the parabolic band,
and m, is the excitonic mass; a(a'), b(b") are annihilation (creation) operators for
excitons and phonons respectively (boson-like particles in both cases); M is the matrix
clement of the interaction potential between excitons and phonons, and therefore,

comparing with Eq. (3) we have in this case that the operator ¢ is given by

Prk, = My k,Pr -k - (42)

Therefore, in the conditions that led to Eq. (36), we have for the average field

amplitude of the exciton system that

ma‘i’é:'_f___). — 1 {wo — iy} wir,t) + ,f;‘n Vip(r,t) + hG |p(r, O w(r,t) = 0, (43)
where
hwgy = Ep — AE, (44)

with AE being the renormalijzation of the exciton energy due to the interaction with
the phonon field, and which follows from the terms involving the principal part in the
integrations in Eqs. (A.5) in Appendix A. Moreover, we have taken plane-waves for the
exciton states xy (r), with the given parabolic dispersion relation Ex.

Consider a sample of GaAs at room temperature which, then, contains a density
of excitons of the order of 7 x 10® cm™3. Let us admit, just for illustrative purposes,
that a weak excitation is introduced in a small region at the sample surface, for ex-

ample illumination using an ultrafast pulse of laser light, having a radial spatial dis-
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tribution with a Gaussian profile, which, for practical computational rcasons, is (to a
good degree) approximated by a hyperbolic secant profile with a given amplitude A
and velocity of propagation v. This localized near point-like excitation, because of
isotropy, propagates radially. Then, introducing polar coordinates for the resolution
of Eq. (43), separating the radial and angular parts and ignoring the latter because
of isotropy, we look for the equation for the radial part. Recalling that the Laplacian
in polar coordinates is of the form 02/07v? + r~'9/8r, we make the Ansatz that the
second contribution can be neglected in comparison with the first. Hence, we need to
tackle the ane-dimensional equation

dy(r,t) : . h® 8°
” hi{wg -iytw(r,t) + 2, or2

iR wir,t) + hG lw(r, )| wr.t) =0 (45)

For the indicated initial and boundary conditions, resorting to the inverse scattering

method [43-45] we find that

xV

o - : | (N 1/2
W(T,l)ZﬂEXp{i[mh r—(wg—i}’)t—g”sechlﬂ(mxh!m) (’r‘—-vt):|

(46)

where we wrote G = |G|el? (imaginary number in polar planar coordinates); A and v,

as noticed, are fixed by the imposed initial conditions; and
ws = wy + (21) " [ myv? - [AGI A] . (47)

The energy propagating with the excitation is proportional to the squared modulus
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of the field amplitude, that is, proportional to
lw(r,0I° = A%e ! sech’ [ A (mx |Gl /W) (r —v1)] (48)
(the proportionality constant is Aw,). Introducing the scaling parameter
A=1Glly, (49)
and the adimensional coordinates
x=r/a, f—t/T, (50)

where T — 2m,a’/h, with a being the extension of the side of the cubic unit cell, we

can write

[w(x,E)]° = A% P sech? | A (Ay/2)' ) (x - vE)] (51)
where

y = (2mya’/h)y, 0= (2mealh)v - (52)

Using a = 5.6 x 10~% cm and m, = 5.7 x 107¢% g, we draw for different values of A,

A, y, and v the space and time evolution of the cnergy of the excitation, that is,

E(x, ) = hww(x, t)°. (53)
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In figure 1, it is shown the quantity, Z(x,t)/(hw.A?), labelled energy, and where
(just for illustrative purposes) A = 250; A =0.1;y ! =5 x 1071° s,

The initial perturbation (hyperbolic secant mimicking a Gaussian profile) has a
length of near 3a, and propagates with velocity v = 10°> e¢m s~'. The curves corre-
spond to the space profile at subsequent times differing from each other by intervals
At = 5000. Tt can be noticed that the profile is maintained but accompanied by a de-
cay with lifetime of the order of y~! = 5 picoseconds; the values of A4, A, y, and U are
indicated in the upper right corner. In figure 2, and in the same conditions as in figure
1, the picture describes jointly the space and time evolution of the energy packed in
the solitary excitation.

These figures demonstrate that the behavior of the excitation governed by the non-
linear Schrodinger equation with damping, associated to the propagation of signals in
this exciton system, is of the type of the so-called solitary wave, which evolves con-
serving the profile but in the presence of a dissipation that leads to its decay with a
characteristic lifetime. This type of excitation is called a Davydov’s soliton[46G]. In the
interpretation of A. Scott [47] the excitonic energy which is originally localized, acts —
through the coupling with the phonons— in such a way to distort neighboring regions.
This distortion reacts —again through the coupling with the phonons— to clamp the
excitation energy preventing it to disperse (this is referred to as selftrapping), in such
a way to maintain the profile of this energy (signal) while it propagates.

Another relevant case when solitary waves may be present is the one of biopoly-
mers, for example linear chains in o«-helix proteins, where this so-called Davydov’s

solitons may have large rclevance in biocnergetics [46-48]: in this case the role of
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these excitons is played by polar vibrations associated to the stretching of hydrogen
bonds. Experimental analysis of these results is particularly difficult in both cases,
namely, excitons in semiconductors (a very weak signal on the background of a num-
ber of other excitations), and in biological systems under physiological conditions.
Iowever, solitons of the type here considered seem to be present in organic com-
pounds like polyacetylene and polythiophene [40]. Solitons in this case seem to playa
quite important role in the transport propertics of these compounds, which are of rel-
evance on the technological and economical sides. Other compound, acetanilide, may
have a relevant role to play: it has a structure with similaritics to the biopolymers and,
differently to the latter, is amcnable to a possible battery of experiments. A particular
one of relevance is infrared absorption, with results which point to the existence of
the solitary-wave excitation |49].

In the experiment an anomalous line, red shifted in relation to an expected nor-
mal vibrational frequency and with a linewidth strongly dependent on temperature,
is ascribed to an excitation of the soliton type: in Fig. 3 we reproduce the experi-
mentally observed spectra (curve with dots). Resorting consistently to the response
function theory and 18T, both based on MaxEnt-NESOM [20], one may calculate the ex-
pected infrared absorption line, once the response function theory is complemented
with the theoretical results reported previously in this section, to characterize the
red-shifted anomalous band due to the soliton excitation; the results are shown in
Fig. 3 (full curve). These results are fully described and discussed in Ref. [50]. Inspcec-
tion of the experimental and theoretical curves shows that there exist a good quali-

tative and semiquantitative agreement. Therefore, the all important, to the scientific




method, corroboration by observation and experiment of the theoretical synthesis is
—at least partially— present in this case, reinforcing then the confidence in the use of
MaxEnt-NEsOM and 15T in dealing with irreversible processes.

As noticed the question of solitons in condensed matter seems to play a relevant
role for technological and biological systems [38-40,48-51]. The field is then wide-
ranging and a number of new phenomena may be expected as the rescarch on the
subject further proceeds. On this we may also mention the case of solitons in two-
dimensional discrete structures, recognized as a key for understanding the excitation
dynamics in many physical contexts such as theory of light pulse propagation in non-
linear waveguides, charge and energy transport in condensed matther physics and
biosystems [52], In those cases the interplay of nonlinearity and discretness leads to
interesting dynamical features as described, for example, by Gaididei et al. [53] and

Christiansen et al. [54].

3. Concluding Remarks

Dissipative systems have becn the object of a good deal of interest in recent decades.
More precisely, this applies to the physics of systems in far-from-equilibrium con-
ditions. Among other reasons for this “Renaissance” of the topic —after the relevant
role it played in the “Classical” period in the nineteenth century— two particularly may
be mentioned: the emergence of selforganization and chaos that dissipative systems
may display when sufficiently away from equilibrium and in the domain of nonlinear

physics, and the functioning of electronic semiconductor devices under high levels of
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excitation. The latter case has associated an enormous amount of experimental (and
also, of course, theoretical) rescarch made using quite advanced instrumentation. In
that way it is obtained information of large interest on both aspects: one is the un-
derstanding of the physics of nonequilibrated many-body systems and the other, on
the technological side, is understanding —as alluded earlier in this paragraph-- their
functioning in the fields of electronics and optoelectronics, On the other hand, the
first case, namely synergetic selforganization and chaos, belongs to the emerging field
of the theory of systems with complex behavior |55-59/, and has a very large relevance
in, among many other disciplines, hydrodynamics, meteorology and the life sciences
[60].

As already noticed in the Introduction the theme belongs to the realm of Irre-
versible Thermodynamics and nonlinear Nonequilibrium Statistical Mechanics, which
are sciences not completely established, more preciscly, they are the object of several
approaches and controversy among different Schools of thought. It is worth citing
Ryogo Kubo [61], who stated that: “statistical mechanics of nonlinear nonequilibrium
phenomena is just in its infancy and further progress can only be hoped by close coop-
eration with experiment”. Progress has been achieved in the period intervening since
this 1977 statement, but in many instances of theoretical work Kubo's admonition has
beenignored, and many arguments have been shuffled without recourse to comparison
with the real experimental world. We have already mentioned the fact that, because
of intense technological and economical pressure, condensed matter systems, mainly
semiconductors, are the object of vast experimentation of exceptionally good qual-

ity. Consequently it appears as a quite promising area for providing a testing ground
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for ideas and formalisms in this field of dissipative phenomena in nonequilibrated
systems.

Dealing with irreversible processes has heen done via different phenomenological
approaches, some already cited in the Introduction, and via different Kinetic-theory
approaches. The point stressed in this paper is that the statistical thermodynam-
ics founded on a particular formalism contained within the scope of Predictive Sta-
tistical Mechanics —namely, the maximization of informational-entropy-based non-
equilibrium statistical operator method— provides a theoretical approach of a quite
large scope, which is concise, first principles based (including Jaynes-Jeffreys scien-
tific inference method [23,24,62]) and practical, Nonlinear quantum transport and
hydrodynamic equations follow from the formalism, with kinetic coefficients given at
the molecular (microscopic) level, and the formalism also provides a response func-
tion theory which allows to carry on the all important step of connecting theory and
experiment.

The theory has been applied with a degree of success to a number of situations
in semiconductor physics (one example is the case of ultrafast laser spectroscopy,
briefly reviewed in reference [63, 64]), and in the present paper we have considered for
illustration the excited state of a boson field coupled to a thermal bath via a nonlin-
ear anharmonic interaction. Application of the theory shows that the averaged (over
the nonequilibrium ensemble) boson field satisfies a nonlinear Schrédinger-like equa-
tion with damping evidencing that dissipative processes are developing in the system.

Moreover, an additional result follows, showing that the system displays complex be-
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havior, consisting in that the set of possible excitations include one of the soliton type.
As noted in the text, this is the so-called Davydov’s soliton.

We have considered scveral actual physical systems to which the results thus ob-
tained may be applied, namely, excitons in interaction with lattice vibrations in semi-
conductors, polar vibrations (CO-stretching) in interaction with acoustic and other
vibrations in biosystems (e.g. «-helix proteins), in metallic organic polymers, and, in
particular, acetanilide which may approximately mimic biological polymers. Compar-
ison of theory and experiment was presented, particularly one confronting calculated
and observed spectra in infrared absorption experiments. To conclude, we restate a
sentence presented in section 3: The all important, to the scientific method, corrobo-
ration of theoretical synthesis by obscrvation and experiment is —at least partially-
present in this case, reinforcing the confidence in the use of MaxEnt-NESOM and IST in

dealing with irreversible processes.
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Appendix A. Some steps in the derivation of Eq. (17).

89.

Calculation of the last term on the right of Eq. (14) leads to the following explicit form

for the equation of evolution of the amplitude (a, | t),

d
ar {aqlt) = . (ih) ! Eglag [ t) +

0

. f— [ r t' o r )
+ ()70 S | dt'e® K @hy, ®a g, ()Y agalaq, D] 4

i1 g2, __Jm

9]

i~

— ()7 Y| dAUet [(Paig, ()@l ab ag,aq | D] +

q0.9:2.83 "y
0

~

+ (ih)_z Z dt’eEt’ {(q);qzs&u’qu(t'))(ﬂq:ﬂ}lﬁﬂm | t)} +

41.92.93 ‘m

— (ih)~* I dt' et {((ﬁqlqg(t’)q?gq;s)(a:r;-gamaﬂx | t)jl

q1, lL 43 "o

where we have introduced the notation

r (g, —wg, )t
Paiq: (t) = Qg g€ Cn= e,

Yy — mt Hwg —wy, )t
q)qu(t) = Paq4:¢ b

After some simple algebraic manipulations and using the definitions

(@L, () Pgaq,) = 5= I I qoqq, (W) exp {ilw - wq, + wg,)t'} dw,

y 1 ,
(('pqql (t)q);lqz) = 1T J Kqq, mm(w)exD{ (w + wgq, — Wyt }d(,U

(A.1)

(A.2a)

(A.2b)

(A.3a)

(A.3b)
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we obtain the Eq. (17) presented in the main text, namely

ih (aq [1) = Eglag | t) +i ST a1 vl > TR L adal agag, | t),

q..9: q1.49:.493
(A.4)
where
0
Ttg,lﬂzl,lh =h . ]- dt’eﬁ {(q)qquﬁnqz(t,)) + (q)t!izq"ﬁmql(t'))}
=1i/(2mh) [ dw [K;mqu(w) * I*zq.qm(w)J [+ wg — wy, + iE]_]
(A.5a)

0
2 E—1 roost’ o ; 1 Iy ;
Tﬂ(bél-ﬂr.‘?:s =h _[ dt’e* {{ |Q9qq3,q9:;m|(t >+ < [(pﬁil'.%fﬂq)‘?l‘??(t )] }}

=i/(2mh) [ dw [Ig,q.0a,(0) + Kg qoara(@)] [ + g, — wy, —ig] '+

— {2

i/(2mh) j dw [I;W_q]qy(cu) + K:%qm((u)] [W - wgq, + g, +i£] . (A5h)

and we recall that £ is to be taken in the limit of going to zero, and then, taking into

account the so-called retarded and advanced Heisenberg-Dirac genceralized functions

lim (x = ie) =pvix)
£E—

Fimrd(x), (A.6)

the contributions in Egs. (A.5) contain a contribution in principal value and another

with a Dirac-delta energy conserving function.
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FIGURE CAPTIONS

Figure 1: Propagation of encrgy with the solitary excitation [cf. Eq. (53)] for the values
of the parameters shown in the upper right insct. The positions are given at time
intervals of 5000 (in units of T of Eq. (47); for GaAs a = 5.6 A, and 50007 =

1.69 ps).

Figure 2: In the same conditions as in figure 1, it is presented a “bird’s view” of the

space and time evolution of the packed cnergy.

Figure 3: Infrared spectra in acetanilide showing the band ascribed to the solitary
excitation centered at 1650 cm™!. Experimental data taken from reference [49],

and the parameters used in the calculation shown in the upper left inset, After

Ref. [50].
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Figure 1: Propagation of energy with the solitary excitation [cf. Eq. (53)] for the values
of the parameters shown in the upper right inset. The positions are given at time
intervals of 5000 (in units of T of Eq. (50): for GaAs a = 5.6 A, and T = 1.69 ps).
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Capitulo 4

CONDENSACAO TIPO
FROHLICH-BOSE-EINSTEIN

4.1 Introducao

Mais de trinta anos passaram-se desde que o renomado Herbert Frohlich apresentou
pela primeira vez scu conceito de coeréncia de longo alcance em sistemas biologi-
cos [Frohlich 1969], uma questao presentemente em processo de renascimento e que
fornece um campo de pesquisa atrativo e relevante em Fisica e Biologia. De acordo com
Fréhlich, sistemas biofisicos que possuem modos vibracionais elétricos longitudinais
podem apresentar, sob condi¢oes apropriadas, um fenémeno coletivo semelhante a
uma condensacio Bose-Einstein — ndo em equilibrio, mas como um comportamento
complexo consistindo na emergéncia de mma estrutura dissipativa no sentido de Prigo-
gine [1969]. Osresultados de Frohlich sdo bascados naidéia de que sistemas bioldgicos
ativos sdo sistemas abertos e muito longe do equilibrio e tém consideraveis quantida-
des de energia disponivel, através de processos metabolicos, que provocam mudancas
ndo-lineares em moléculas em subsistemas biologicos maiores. Frohlich [1973], em
Life as a Collective Phenomena, expressou que se pensamos sem preconceitos sobre
fenomenos coletivos como acontecendo em sistemas de muitos componentes onde os

constituintes individuais tém seu comportamento modificado e suas partes passam a
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constituir um grande grupo coletivo onde o todo é maior e diferente do que a simples
soma das parte, entio organismos vivos seriam o exemplo ideal. Tal hipétese de ex-
plicacdo biologica em termaos de cocréncia de longo alcance foi sugerida por Frohlich
no primeiro encontro do Llnstitute de la Vie ¢ 1967 [Frohlich 1969].

No modelo de Frohlich, modos polares vibracionais sdao excitados por um supri-
mento constante de energia bombeada por uma fonte externa, enquanto esses modos
interagem com o mcio circundante, o qual age como um banho térmico. A acdo reci-
proca desses dois efeitos — 0 bombeamento de energia subtraindo entropia do sis-
tema e efeitos dissipativos internos adicionandoe entropia ao sistema — podem levar
ao aparecimento de um comportamento complexo particular no sistema que pode ser
denominado Efeito Frohlich: este efeito consiste em que o sistema atinge um estado
estacionario em que a cnergia que alimenta os modos polares é canalizada para os mo-
dos de freqiliéncia mais baixa, cujas populacoes aumentam enormemente as custas dos
outros modos de freqiiéncia mais alta em uma maneira que lembra uma condensacao
Bose-Einstein [Frohlich 1975, 1980|. Isso, naturalmente, desde que o fornecimento de
energia seja suficientemente grande em comparag¢do com a perda de energia.

E interessante notar que, dentro do esquema da Termodinamica Estatistica que
temos usado, a descricio do estado macroscopico do sistema pode ser feita scja em
termos das variaveis de base ou equivalentemente em termos dos parametros de La-
grange que o método variacional introduz. No caso que consideramos neste capitulo

isto se refere as populacdes de modos polares e seu parametro de Lagrange associa-

LAgradecemos ao Prof. Sergio Mascarenhas (Instituto de Estudos Avancados, USP, Sdo Carlos),
convidado dessa reuniao em Versailles, Franga, por ter chamado nossa atengio para esta importante
contribuicao de Herbert Frohlich.
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do. Este ultimo pode ser adequadamente redefinido — como veremos mais adiante —
em termos de uma variavel termodinamica intensiva tendo o papel de um potencial
quimico para fonons fora do equilibrio (pseudo-potencial quimico). Alternativarente,
pode ser expresso em termos de outra variavel termodinamica intensiva tendo o papel
de uma temperatura fora do equilibrio (pseudo-temperatura, ou temperatura efetiva,
ou em inglés “quasitemperature”),

Na Fisica do Estado Solido, mais precisamente de semicondutores, o conceito de
temperatura de fonons e de portadares fora do equilibrio foi introduzido por Cerqueira
Leite ¢ colaboradores [Shah & Leite 1969; Shah et al. 1970] (lembramos que no caso
de elétrons em campo elétrico o conceito de uma temperatura de nao-equilibrio foi
introduzido por Frohlich [1947], para spins por Casimir & du Pré [1938], para o plasma
por Landau [1936], para moléculas por Wang Chang et al. [1964], para supercondutores
por Shklovskii [1975]; vide também [Feschbach 1987; Luzzi et al. 1997}).

A possibilidade de tal tipo de condensacio tem levado a consideracdo [Mascarenhas
1987] de que na eventual nova fase condensada possa surgir um particular estado dito
de eletreto, enventualmente de carater metaestavel.

Um eletreto consiste de um material dielétrico que apresenta uma carga elétrica
quase permanente, Com quase permancnte indica-se que as constantes de tempo
caracteristicas para o decaimento de carga sdo maiores do que o intervalo de tempo
durante o qual séo realizados experimentos com o eletreto.

Tem sido manifestado [Mascarenhas 1987| que armazenamento de carga e pola-
rizagdo via o estado de eletreto tem sido achado em muitos materias biologicos. A

importancia do efeito cletreto nestes materiais tem a ver com aplicacdes biomédicas,
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assim como também um possivel papel em fenémenos biofisicos fundamentais. 0O
efeito tem sido observado em biopolimeros de relevancia como proteinas, polisacari-
deos, e alguns polinucleotideos. Um dos aspectos mais importantes da pesquisa de
eletretos em biofisica é que a agua ligada a biopolimeros, na assim chamada forma
estruturada (ou agua ligada, ou bioagua), pode também scr induzida num estado de
eletreto. Além disso, o estado de eletreto pode apresentar-se em diversos modelos .
biofisicos como uma base para a compreensio de comportamento de membranas, si-
nais neurais, memoria biologica em processos de regeneracado e crescimento de tecidos,
e outros fenomenos. Um dos mais interessantes modelos onde pode estar presente um
tipo de ferro-elétrico, porém num estado metaestavel similar ao eletreto € o resultante
do modelo de Frohlich para o comportamento das ondas longitudinais de vibragoes
polares nos sistemas biologicos, que poderiamos chamar de bioeletreto. O fato sera
evidenciado na analise a seguir nas proximas secoes.

As oscilacées coletivas sincronicas em larga escala de Frohlich implicam em
emissodes intercelulares de microondas que constituiriam uma interacdo entre as
células que ndo é nem de natureza quimica nem térmica. Essas oscilacOes poderiam,
portanto, ser reveladas por deteccido de emissdo de radiacao em GHz ou THz. Tais
sinais eletromagnéticos sao de magnitude extremamente baixa e tecnologia de de-
teccdao para medi-los nao estava disponivel na época de Frohlich. Somente agora € que
0s sinais preditos podem ser detectados mediante a adaptacio da tecnologia que foi
desenvolvida para a pesquisa espacial e astrofisica. Assim, uma area completamente
nova em Biologia esta disponivel para investigacio.

Experimentos mais antigos procurando pelo efeito Frohlich nao foram conclusivos,
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mas agora uma “segunda geracio” de experimentos esta-se tornando disponivel. Eles
necessitam aprimoramento ulterior, mas alguns resultados preliminares ja sdo enco-
rajadores [Grant & Hyland 1998]: evidéncia de uma influéncia ndo-térmica de radiacao
coerente de microondas no genoma do estado conformacional na bactéria E. coli, o que
pode indicar que o0 DNA cromossémico poderia ser o alvo de irradiacao de microon-
das milimétricas dentro desse sistema. Irradiacio de baixa intensidade de microondas
em leucocitos resulta em um aumento significante na emissdo biofotonica na regidao
optica, Cuja origem se pensa envolver o DNA. Vale a pena ohservar também a possi-
vel influéncia do conceito de biocoeréncia no sisterma dipolar muito ¢special que é a
agua. Pode-se considerar a possibilidade que a propria agua bioloégica possa suportar
excitacOes dipolares coerentes extendendo-se além de regides mesoscopicas; assim,
em vez de ser um solvente passivo preenchendo o espaco, a agua seria elevada a uma
posicdo importante ¢ singular, cuja significancia plena ainda teria de ser elucidada.

Implicacdes ndo-biolégicas do efeito Froéhlich também poderiam ser de amplo al-
cance. Podemos mencionar alguma coneccdo com homeopatia e fisica de aerossois
atmosféricos [Grant & Hyland 1998]. Com relacdo a estes ultimos, excitacdes coe-
rentes do tipo Frohlich alimentadas via luz solar podem ter um papel na producao
de anomalias no espectro de absorcao da luz [Miller & Gebbie 1996]. Nesse ponto,
podemos mencionar uma preocupacdo de saude publica, a saber: a influéncia e os
eventuais efcitos prejudiciais de telefones celulares devido a acio de microondas no
material biologico cerebral, uma vez que cles sdo usados em contato direto com a
cabeca do usudrio.

Chamamos a atencdo também para um aspecto adicional do efeito Frohlich em
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conexao com a propagacao de longo alcance de sinais em materiais biologicos ¢ néo-
biologicos. Tais sinais sdo pacotes de ondas consistindo em solitons de Scrhddinger-
Davydov [Davydov 1982, que sdo uma conseqiiéncia das mesmas nio-linearidades que
$do responsaveis pelo efeito Frohlich. Dessa forma, fazemos contato com o capitulo
anterior — onde o fato foi rapidamente mencionado —, e cuja descricao em profundi-
dade ¢é feita no capitulo seguinte.

Como veremos, pode ser mostrado que a onda solitaria que, tanto em sistemas
biologicos como nao-biolégicos ¢ fortmente amortecida como resultado dos efeitos
dissipativos usuais, podem propagar-se com um decaimento fraco a medida que per-
correm grandes distancias quando se locomovem no meio provido por um condensa-
do estacionario de Frohlich. Ja existem casos onde a teoria é aparentemente validada
pelo experimento, a saber: na area medica de diagnostico via ultra-sonografia, i. e.
visualizacdo de 6rgdos internos do corpo via ultra-sons, ¢sta relacionada com o efeito
Frohlich em sistemas vibracionais acusticos em vez de sistemas polares. Nesse caso,
o efeito Frohlich pode aparecer também nesse caso, onde a fonte de alimentacio seria
entdo um antena emitindo sinais ultra-sénicos. Um sdéliton de Davydov, ao contrario
de ondas sonoras dispersivas normais, percorre distancias longas quase que sem al-
teracio, o que pode ser de interesse particular para a melhoria da técnica de deteccao
em ultrasonografia [Lu & Greenleaf 1992].

Um interessante comportamento complexo adicional ocorre quando o soliton
propaga-se com uma velocidade maior do que a velocidade de grupo dos modos nor-
mais de vibracdo ocorre um fenémeno semelhante ao efeito Cherenkov em teoria de

radiacdo, a saber: um grande emissao de fonons em dois cones simétricos centrados
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no séliton; isso permite interpretar as assim chamadas ondas X em ultra-sonogratia
como esse efeito Frohlich-Cherenkov como faremos no capitulo seguinte. No que con-
cerne a materiais biologicos, notemos primeiro o caso do polimero acenatanilida —
que € uma boa imitacio de certos biopolimeros — onde o soliton de Davydov é eviden-
ciado no espectro de absorcio infravermelho, como mostrado no estudo no capitulo
anterior. Nesse caso o experimentador pode procurar uma verificacdo indireta da for-
macao do condensado de Frohlich tentando encontrar a vida média (obtida via largura
de linha espectral Raman) ao submeter as oscilacdes vibracionais polares (os modos
de estiramento cO ou modos Amida I) a acio de fonte de alimentacdo externa (e.g. ra-
diacdo infravermelha) que abranja as freqiiéncias da relacio de dispersao dos modos
vibracionais.

Outro exemplo onde a condensacao de Frohlich e o soliton de Davydov parecem
estar presentes é o caso do assim chamado “excitoner”, quec ¢ uma emissao coercnte
estimulada de éxcitons criada por excitacoes randdomicas, em uma situagao similar ao
caso de fotons em um laser, com seu cstudo também a ser desenvolvido no proxi-
mo capitulo. Nesse caso, éxcitons criados em um semicondutor por um pulso inten-
so de radiacdo laser percorrem a amostra como um pacote e sdo detectados em sua
parte posterior. Um sinal fraco em condi¢des normais de excitacdo térmica é grande-
mente ampliado quando o sistema ¢ alimentado por uma fonte externa continua de
radiacdo infravermelha. A teoria sugere a formac¢do de um condensado Fréhlich de
éxcitons excitados ndo-termicamente onde um soliton de Schréodinger-Davydov fraca-
mente amortecido é criado, cuja forma esta em boa concordancia com a observacao

experimental [Vasconcellos et al. 1998]. Observamos aqui um comportamento com-
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plexo particularmente notavel — efeito Frohlich; soliton de Davydov; eventualmente
efeito Frohlich-Cherenkov —, e o “excitoner”, citando D. Snoke [1996], é um fendomeno
que pode prover um novo tipo de fonte de luz, mas somente o0 tempo e a imaginagao
podem dizer que novas aplica¢ées podem surgir desse novo efeito.

Em conclusdo, estamos sendo confrontados com um ressurgimento estimulante do
efeito Frohlich, apds certo periodo de hibernacao parcial. Esse ressurgimento é forte
no sentido de gue tanto pode abrir uma area de pesquisa nova e relevante em Biologia

e no ambito de diagnéstico médico quanto em matéria inanimada como polimeros,

polimeros condutores, guias de onda opticas, envolvendo a emissdo de sinais coerentes

e firmes, como no caso do “excitoner” citado acima.

Apresentamos a seguir as subsecdes dedicadas ao efeito Frohlich, que consistem

em:

4.2 Amplificacdo de vibragtes polares cocrentes em biopolimeros: condensado de

Frohlich.

4.3 Condensacio de Frohlich tipo Bose-Einstein em Biosistemas

4.4 Consideracoes sobre a condensacdo de Frohlich tipo Bose-Einstein.

4.5 O Regime Transiente no Fenémeno da Condensacao de Frohlich em Biosistemnas.

4.6 Termodinamica Estatistica de Sistemas Complexos.
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4.2 Amplificacdo de vibracoes polares coerentes
em biopolimeros: condensado de Frohlich

Consideramos a evolu¢io em nao-equilibrio e com dissipacao e o estado estacionario
da populacdo de modos polares vibracionais em uma cadeia de biomoléculas. Esses
modos polares sdo excitados através de um acoplamento com uma fonte cnergética
metabolica e interagem anarmonicamente com um meio continuo elastico. Grupos de
modos polares acoplam-se dessa maneira através de termos nao-lineares nas equacoes
cinéticas. Evidencia-se que essa nio-linearidade ¢ a fonte de um fendémeno inesperado
caracterizando comportamento complexo nesta espécic de sistema; apos ser alcanca-
do um limite de intensidade da fonte de alimenta¢do, modos polares com as freqiién-
cias mais baixas tém sua populacio enormemente aumentada de uma maneira que
lembra a condensacdo de Bose-Einstein (cfeito Frohlich). O transiente para que o es-
tado estacionario ocorra ¢ muito pequeno (da ordem de picosegundo) e o condensado
aparece mesmo para valores pequenos da intensidade de acoplamento anarmonico
responsavel por sua ocorréncia. Além disso, ele requer niveis acessiveis de energia

metabolica para ser produzido e mantido.

Physical Review E, 48 (5), 4049-59 (1993).
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We consider the nonequilibrium and dissipative evolution, and the steady
state of the population of vibrational polar modes in a chain of biomole-
cules. These polar modes are excited through a coupling with a metabolic
pumping source and are in anharmonic interaction with an elastic contin-
uum. Groups of polar modes are coupled in this way through nonlinear
terms in the Kinetic equations. This nonlinearity is shown to be the source
of an unexpected phenomenon characterizing complex behavior in this kind
of system: after a threshold of intensity of the pumping source is achieved,
polar modes with the lowest frequencies increase enormously their popula-
tion in a way reminiscent of a Bose-Einstein condensation (Froehlich effect).
The transient time for the steady-state condensate to follow is very short
{picosecond time scale) and the condensation appears even for weak values
of the anharmonic coupling strength responsible for its occurrence. Fur-
ther, it seemingly requires accessible levels of metabolic pumping power in

order to be produced and sustained.

PACS number(s): 87.10.+e, 05.70.Ln
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1. INTRODUCTION

Nonlinearity is known to be the source of new and unexpected phenomena that charac-
terize complex behavior in physical systems. This is particularly the case in dissipative
systems far from equilibrium [1]. The concept that many-body systeins sufficiently
far away from equilibrium and governed by nonlincar kinetic laws may display self-
organized ordered structures at the macroscopic level, as observed in many cases, has
been brought under unifying approaches such as dissipative structures [2,3], synerget-
ics [4], and macroconcepts [5]. We may say that, in particular, biological systems are
complex systems by antonomasia, which are open, driven far from equilibrium, and
display a variety of nonlinear physicochemical processes. Thus, as is the case, they
present an enormous number of rich and noticeable phenomena on the morphological,
biochemical, biophysical, ctc., levels. We emphasize that this is possible in the nonlin-
ear thermodynamic regime far from equilibrium, since in the linear (Onsager’s) regime
near equilibrium, ordering is inhibited according to Prigogine’s theorem of minimum
entropy production (e.g., Ref, [3]) that confirms the stability of the thermally chaotic
branch of solutions, i.e., the so-called thermodynamic branch that emerges continu-
ously from the equilibriurn state with increasing values of the intensity of the external
perturbation.

A quite interesting and illustrative example of nonlinearity at work, producing what
can be very relevant biological effects, is a model of a biophysical system proposed
by Frohlich [6,7], that may describe membranes or large chains of macromolecules
possessing longitudinal electric modes, In the Fréhlich model several modes of polar
vibrations are excited by a continuous supply of metabolic energy, with these polar
modes interacting with a bath of acousticlike vibrations through nonlinear dynamics,
which is the source for what we call the Fréhlich effect, namely, that under appropriate
nonlinear conditions the modes with the lowest frequencies increase enormously their
population in a way reminiscent of a Bose-Einstein condensation. It has been stated
that these polar modes, thus largely excited, may exhibit long-range phase correlations
of the electret type [8-10}, that may produce observable effects in biosystems [7].

Some microscopic approaches using modeled Hamiltonians have been proposed
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to describe Frohlich system [11,12]. In these treatments the nonlinear kinetic terms
arise out of nonlinear anharmonic interactions resulting in the creation (decay) of a
longitudinal polar excitation from (into) a single excitation of the bath system and a

polar excitation.

More recently, Davydov has proposed a model for a one-dimensional o«-helical pro-
tein molecular chain with oscillating peptide bonds, embedded in an clastic continuum.
A theory of the transfer of metabolic energy and of electrons along the chain describe
excitations accompanied by a local deformation of the chain that move uniformly and
undamped in what is called a solitary exciton [13-15]. These idcas concerning the
transfer of energy in biological systems have been extended mainly by Scott [16]. It
should be stressed that the nonlinearity of the equations of evolution, arising out of
the interaction with the elastic continuum, are responsible for the Frohlich effect and
the propagation of solitary excitons, In fact, Tuszynski et al. [9] have shown the equiv-
alence of the Hamiltonians used to describe Frohlich and Davydov models when both

are placed in a representation in terms of normal coordinates.

Along this line, we consider the case of a chain of biomolecules, taken as a quasi-
unidimensional system, and study the macroscopic nonequilibrium evolution of the
polar vibrational modes they possess, whose kinetic equations — derived in an appro-
priate mechanostatistical scheme — are numecrically solved. They are assumed to be
excited by the pumping of biochemical energy (usually thought of to be the energy re-
leased by hydrolysis of adenosine triphosphate) on the polar oscillations (associated
to double-bonded carbon-oxygen), which sustain an anharmonic interaction with an
elastic continuum, the latter being modeled in terms of a Debye acousticoscillation
system. The system is far from equilibrium and. therefore its description requires
nonequilibrium dissipative thermodynamics, For that purpose we resort to the power-
ful, and also elegant and concise, nonequilibrium statistical operator method (NESOM),
reviewed and brought under a unifying variational principle based on the predictive
statistical mechanics of Jaynes in Ref. [17]. NEsoOM allows for the construction of a
nonlinear generalized transport theory — a far reaching generalization of the methods

of Chapman-Enskog and also Mori— that describes the evolution of the system at the
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macroscopic level in arbitrary nonequilibrium situations, as shown in Ref. [18]. Among
the different NESOM, we resort to the method of Zubarev [19] and the so-called [18]
second order approximation in the theory of relaxation (SOART). It is also known in
the literature as the quasilinear theory of relaxation [20], a name we avoid because of
the misleading term “linear” that refers to a certain order of dissipation as described
by the nonequilibrium statistical operator, although the equations of evolution remain

highly nonlinear,

We are thus allowed to write the equations of evolution for the populations of the
polar modes, with a bath of acoustic vibrations that is assumed to remain in a state of
constant temperature through the action of an efficient homeostatic mechanism. The
polar vibration’s frequency dispersion relation is modeled by a parabolic law around
the zone center in reciprocal space. We use typical valucs for the different parameters
that enter into the equations of evolution, which results in the fact that the polar modes
are coupled in groups having a small number of modes, which greatly facilitates the

computational solution of the coupled system of equations.

We solve the time-dependent equations of evolution to describe the transient period
before the attainment of a stationary state. In that way, it is possible to define a
transient time which is expressed in units of the relaxation time of the polar modes to
the thermal bath. Furthermore, the solutions for the values of the populations in the

steady statc are obtained in terms of the intensity of the energy pumping source.

In the next section we specify the system and write the relevant Hamiltonian and
the equations of evolution for the population of the modes derived in NSOM-SOART.
We deal with an exactly soluble model for a chain of biomolecules where, we antici-
pate, Frohlich effect follows: with increasing values of the pumping intensity, after a
threshold is achieved, there follows a large amplification of a set of modes with the
lowest frequencies. It is shown that the phenomenon can be realized even under con-
ditions of weak contribution of the nonlinear terms in the equations of evolution that
are relevant for the effect to appear, and under accessible levels of excitation. Also, it
follows after a very short transient time after switching on the exciting external source,

and, furthermore, as shown elsewhere [10], at the critical point for the onset of the
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Frohlich effect the lifetime of the oscillatory excitations largely increases, becoming
near dissipationless waves, much in the way of Davydov’s solitary waves, Hence, both

effects seem to have the same and simultaneous origin.

2. POLAR MODES IN BIOPOLYMERS

Let us consider a quasilinear polymeric chain of biomolecules consisting of an arrange-
ment of periodically repeated groups of molecules. Let a be the extension of the crys-
tallographic unit cell. An example could be the «-helix protein depicted in Fig. 1, con-
sidered by Davydov [15], more precisely three chains (channels) with peptide bonds, in
a hear one-dimensional array (the radius of the helix is 2.8 A). The pitch of the spiral is
4.5 A, and the crystallographic unit cell contains 18 peptide groups (a = 80 A). The en-
ergy is pumped in the system by metabolic processes, typically the energy released in
the hydrolysis of adenosine 5-triphosphate ATP) molecules, and it is assumed that the
chain can sustain longitudinal polar vibrations. This vibrational energy is associated
to the co stretching (or amide 1) oscillators. The latter have a frequency dispersion
relation w,, where g is a wave vector running over the reciprocal-space (Brillouin)
zone of length 2mr/a. The chain is assumed to be embedded in an elastic continuum
represented by a Debye model, i.e., with a frequency dispersion relation s|q|, where s
is the sound velocity in such a medium and having a Debye cutoff frequency wp. On
the right-hand side of Fig. 1 we proceed to analyze a rough description of the mechan-
ical model of the chain. Such a mechanical system is completely characterized at the

dynamical level by the Hamiltonian
H=H01+H02+H||+H]2+H21+H22+H_f, (1)
where

1
Hy = Z hmq(af,uq + E) (23)
o

is the Hamiltonian of the free polar vibrations; a (aj;), as usual, are the annihilation
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b (creation) operators in mode g;

: 1 :
Hor = > sq' (bl by + 5) (2b)
q!

i is the Hamiltonian of the bath of free acousticlike vibrations; and b (b!) are the cor-

¢ responding annihilation {(creation) operators. The next four terms arise out of anhar-

' monic interactions involving three-quasiparticle collisions, given by the expressions

Hyp = > Vilagbyb), . + He., (2¢)

a4’
2= D Vag(Daghlbl__ +He., (2d)

a4’
Z aagagbl, . +He, (2e)

and

Hy = > Vidalaybg o + He, (2f)

qq’

where V1) and V2! are the corresponding matrix elements of the interaction potential.

Finally,

Hy = > @qal + He. (2g)
q

represents the energy of interaction between the pumping source and the polar modes:
@ (1) are annihilation (creation) operators of excitations in the source, also containing
the coupling strength. Furthermore, we introduce — as required by NESOM — the

partial Hamiltonians

Ho =Hon + Ho
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and
H = H]] + Hy» + Hyy + Hoo + I[f .

To deal with this system in NEsoM the first step is to define the basic set of vari-
ables deemed appropriate for the description of its macroscopic state. We choose the

populations of the polar vibrations
ve = Trlala,e(t)} = Tr{vge(t}, (3)
and the energy of the free subsystem of acoustic vibrations (bath)

Ep(t) — "I*r{z_sq'(b;,bq + %)} , (4)
=

where ¢(t) is the nonequilibrium statistical operator (NESO) in Zubarev’s approach [19].
We recall that the acoustic modes act as a thermal bath for the polar mode remaining
in an equilibrium state at constant temperature T, while in contact with a thermal
reservoir providing a efficient homeostatic mechanism. Hence, the NESOM auxiliary

operator [17,19] is, in this case,
3(£,0) = expi—p(1) = > Fy(t)Vq — fHoz | , (5)
q

where B = 1/kgT and F4(t) are nonequilibrium thermodynamic parameters conju-
gated to the dynamical variable ocupation number of polar vibrations, ¢(t) is Massieu-
Planck functional that ensures its normalization and f is time independent because
of the assumption that T is kept constant. Therefore, we are simply left witt equa-
tions of evolution for the population of the polar modes, then characterizing the

nonequilibrium dissipa tive thermodynamic state of the systen

As noted in the Introduction, these equations are derived by resorting to the nonlin-
ear quantum generalized transport theory that NESOM provides [18]. But the collision

operator they define, which contains highly nonlinear, nonlocal, and memory cifects,
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is extremely difficult to handle in practical calculations; however, through an appro-
priate mathematical manipulation it can be rewritten in terms of an infinite series of
partial collision operators which are instantaneous in time [given as averages over
the auxiliary NESO - that of Eq. (5) in our case — at the timc of measurement| and
organized in increasing powers n of the interaction strengths [18]. The form of the
collision operator thus obtained permits us to introduce approximations by means of
a truncation of the series of partial collision operators in a given order of in teraction.
The lowest order that introduces relaxation effects is a truncation in second order in
the interaction strengths, the SOART referred to in the Introduction: it renders the
equations Markovian in character [17,18,20]. We resort here to this approximation; it
produces the honlinear contributions relevant to the question in hand, with the higher-
order terms given small modifications. The NSOM-SOART equation of evolution for the

mode populations are

d

Ve =J w0+ I (6)
where
]
J&) = Tr{izlalag Hole(t,00}, (7a)
1 o
J = Tr{-i-—ﬁ[a.:;aq,H Jo(t,m}, (7b)

0
I = G | aret Te{lH (), H' ajaqlle(t, 0)]

515 (t)

-i- Fy =
Sva(D) Tr{[aqaq,H JQ(t,O)} \ (7c)

0
+ (if) ! f dt' et

where & stands for functional derivative, ¢ is given by Eq. (5), and Zubarev's approach

was used.

In the NSOM-SOART calculation for the equations of evolution for the polar mode
populations, it results that because of the symmetry properties of the system and the
selected choice of the basic variables — and thus the form of the auxiliary NEsO of
Eg. (5) — several contributions are null, namely, J(* and J''). There remains only the
first contribution to J®, which produces a result that correspond to the golden rule
of quantum mechanics averaged with the auxiliary nonequilibrium statistical operator
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of Eq. (5); performing the required calculations we finally obtain

Lva(t) = Tyl ZIV”’I VB (L4 Vh, g Ve (D= (L+VEIVE L [L4va (D 16 (s1a+a | -51a’|-wg)
‘,cl,al“{(l+vgr)(1+vq_qf)vq() Vf,’ qq[1+vq t)11o(slg—q'l - 51q'| — wg)
—i:ZlV;f,’-lz{(1+ VE, Ve (B (E) = VD, TL + v (D111 + v () 115(519 + '] — g — W)
<

- i:zlv‘ VR VE T4 vg (D ]vg(8) = vE ovg (D[ + vg(1)]18(s]g — g'| + wgr — wyq)
<

) %TZ qql {"' aTL + vy (t)]va(t) — (1 FVq g Ve (D1 +vg(DH118G1g - q'| — wg + wg) (8)
=

We recall that g when referred to the polar modes runs over the Brillouin zone
(—m/a < q = 1m/a), and that the Hamiltonian of Eq. (1) already contains information on
the conservation of the linear momentum, in the equation above the 4 functions take
care of the conservation of energy in the collision events. Furthermore, we expressed
the time-dependent correlations involving the operators associated to the external

source in terms of a spectral density, namely,

it—zr((pq(t)(p,f,) = J d?wlq( )eiwt (q)

—_—

where I, (w) represents the intensity of the source over the spectrum of frequencies.

Finally, vf; is the population of the acoustic vibrational modes, namely,

v = [exp(Bsq) — 117" . (10)

Taking into account Eq. (10) and using the energy-conserving 6 functions, Eqs. (8)

can be rewritten as

(1)12,,by,b ﬁnmb, val(l) . o
dt” () = 37 ZlV VaVg g [ Vg T l[selarat-slal- wg)

) Vqlt) ,
—FZ| (1)| fif;q[ a0 _1:|6(5|q_q]+5|‘7|_“3q)
% . Vg

2 2 )
‘?EZIV‘ NAVE o T+ va O]+ v (D] = v (Dvg(DefM % L 5(siq + ') - wy — wy)
q
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21T ) s ] 1 e ’
TR Z Wc(;:;)"hvg—q' {Vq’(t) [T+ vg(t)] - [1+ Vqr(t)]vq(t)cﬁh”ﬂﬂ }c’)(slq —q i+ wg —wy)
ql
?"Tr 2y 2 1] i ; . - r )
_FZ IV‘;q),l"vg_q, {vqr(t) [1+vg(t)])e AMCaa — 1+ Vq’(t)]Vq([)} 5(slg+q’|-wg—wg)
qf

(11)

where

Qgq = Wgq + Wy (12a)

Agy = Wg — Wy (12b)

and vg is the population in equilibrium (at temperature T) of the polar vibrational

mode.

Equation (11) is the type of equation proposed by Fréhlich. On the right-hand side
of Eq. (11), besides the pump term, which is the first one, the next two terms are asso-
ciated to relaxation (decay) of the polar excitations to the thermal bath (related to Hy,
and Hi,); the fourth, arising out of H») is also a relaxation term of the vibrational mode;
the last two terms are contributions arising from H>», that we call Fréhlich terms, be-
cause those are response for the transfer of excitations to the low frequency polar
modes. In fact, given mode g, if w4 < wy, the bilinear terms containing v, (t)vg (t)
lead to an increase in population for it, at the expense of the other g° modes. It has
been argued [21] that contributions coming from the fourth term wash away the ef-
fect of contributions arising out of H»., but Frohlich has countered [22] that it has
a small contribution as a result of the different form of energy conservation in both
processes as, in fact, characterized by the 6 functions in Eq. (8); we anticipate that for
the parameters we use in our numerical calculations contributions arising from Hy,

are identically null.

To proceed further, we model the dispersion relation of the polar modes by a

parabolic law, namely

Wy = Wy - &q°, (13)
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where w and « arc constant parameters. It should be noticed that this form for the
dispersion law implies a maximum value wg at the zone center and a minimum value
at the zone boundaries. Also, the second and third terms on the right-hand side of

Eq. (11) are written as
L v -V (14)
Tq 9
which introduces the relaxation time

3 R el , , , ,
T = qT o Vo \VEVE, 4 P19 15(s1g + ') - 51q') — wq) + 5(s1q - q'| + s1q'| — wg) .
q o

(15)

Because of the choice given by Eq, (13) we are now in condition to evaluate the
energy-conserving § functions, i.e., to determine the values of g’ that they fix. This

requires one to look for the roots of the equations,

fii=wy--ea’+slg'l-slq+4q’l, (16a)
frz = wo—aq” —slqg'l —slg-4q'l, (16b)
fr=2wo—alg®+q%) -slq+q’|, (160)
fi=a@”-q°) -slqa-q'l, (16d)
fi=a(@®-a°) +slq-q'|. (16e)

In one dimension the vectors g and q' take the values g and q’, positive or negative.

Taking this into account we have the following:

(1) The roots of f,, arc

, —(wy — xq® + sq)/2s, if ¢ >0andg+q <0, |
q)) = (17a)
(o — xq® — sq)/2s, if ¢ <O0andg+q >0;

what implies that wg, - xg® + sq < 0.
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(2) The roots of f)» are
(wo — xgq° + sq)/2s, if ¢ >0andg—q <0,
(17b)

—(wg — g’ —5s5q)/2s, if g <0Oandg—q’ > 0;

what implies that wg — xg” + 5q > 0.

(3) The roots of f» are

Ay _ S (i)z_ ) (L) 2 wg . , ]

qo.. 2ai\/ o q° + ~ q + ~ ifg+qg >0 (17¢)

q'r{z) — __S_.. e \/(._"‘;;._M)‘3 — q2 — (i) + 2(1)(_) .lf + ’ < 0 (l?d)
2x 200 2 X x) 4 x 4+4 '

(4) The roots of f; are g» = g and

cq - s/, ifgq-qg >0and g > —s/2«,
(17e)

=5
rs~
Il

-q+s/a, ifgq—ag" <0and g < s/2«;

(5) The roots of f, are g = q and

_q._.s/(x’ 1fq—q'{Oandq{—3/20f-
(171)

q3 =
—-q+ s/, ifg—q >0and g > s/2«.

It should be noted that the ¢ functions in Egs. (11) produce é functions in the

variable of the integration g’ through the known relation

T5a - ) (18)

arF;:
6(fj(q’))=2\dq{

where n runs over all the roots of f,.
To further simplify matters, but without losing the fundamental characteristics
of the model, we take the matrix clements Vé;’, and Véf;), as constants, V, and V5,

respectively. We go over the quasicontinuum (large system) in the reciprocal space,



124.

i.e., in one dimension,

L

where L is the length of the chain, the limits of integration are for the values g of the
polar vibrations Qg = m/a and —Qy = —7/a, i.e., the end values of the Brillouin zone,
and those for the values of g’ of the mode of vibrations in the continuum are in the
interval Qp and —Qp, i.e., the Debye wave number fixed by the Debye cutoff frequency;
we assume that Qp = Qo. Introducing the time scale T = h%s/L|V,|? and the reduced
time T = t/T, the coefficient A = |V>]%/1V||?, and taking into account the expressions

for the energy conserving 6 functions as given by Eqs. (17) and (18), we find that

d y{(q)
iVa = Sa- vl [vq - vyl + Ri(a@) + R2(q) , (20)
where
Sq = Iq'f ' (21a)
Op o 1 _ ?
y(q) = s [ 0 dq’ vf;,vé’w,eﬁ"”'q ! {Z_T[] —-0(g 1+ ) 10(g)o(q" + (wo — xq” + 5q)/25)
J =00 2

. %@(q +q)[1 ~0(q)|6(g — (wo — xq? — sq)/zs)}

Qp 1 .
SJ da' vivl_. {E“ - 0(q -4)10(q)d(q’ — (wo — ag® + 5q)/25)

+
-Qp
l ’ : ’ ! ) , )
+ Z(H)(q — )1 -0g)]6(q + (wo — ogq” - sq)/,Zs)I» , (21b)
Gp
Ry(q) = ?\5J dq’v§+q,[(1 v ) (1 + vy) — vqrvqeﬁﬁ“w’]
-Qn

L (8a+a)lsa —as) + 6 - ay?))
\/52 —4x?g? — 160sq + 8wy

(21¢)
\/52 —4m%q? + 160sg + Bty

L -0 +a)1{s@ - a) + 5a’ - q.’_,‘f’)})




(2o |
Rx(q) = As dg' Vi, 1ve (1 +vg) — (1 + vy ) vgefitar |
= o

X {m@)(q —q)0(q+5/2000(q" + g+ s/x)

M
|12c¢q — 5§
(20

+ As dq’vé’_q,[vqf('l + vq)c"ﬁm”‘f' — (1 + vy vyl
Qo

[1-0(gq-g)])[1-0(q@-5/2x)]5(q" +q - s/cx)}-

-l ' ’ ” T
><{|2@<q +5_|[] —0Q@-g")][1 - 0(g+s/20)10(q" + g+ s5/x)

1

+-..._....._.—
|2:xqg — 5|

O(q—q )0 (g —5/200)6(q" + q — slcx))r ,
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(21d)

where @(x) is Heaviside’s step function accounting for the step limitations imposed

on g’ by Egs. (17). It should be noted that in R, the contributions from the roots g" = g

in f3 and f; arc null. Furthermore, we recall that —Qg =< g = Qp, and it should be noted

that Eq. (20) is invariant under the inversion operation in which g and g’ change in —¢g

and —-q'.

For the sake of simplicity, we already take into account that for the values to be

used later on for numerical calculations the first term in y is null as well as the term

R,. Hence, leaving aside these contributions, performing the integrations in Eqgs. (21)

we find that (g, next, is the vector in one dimension)

a4
ar

y(q)

q

4 @)(q + ;_a)Aq)(q)[Vq_'_%(l + vq) _ eﬁﬁs(24+%)(1 + Vq+%)vq]
+[1-0(q- -(S;)]/\W(q)[vq_;(l +vg) - eSO 4y, v,
+[1-0(q+ %)]Aqb(q)[vqﬁ(l F V) e FRSRa _ (1 4y, )]

+ (g - ;;Q)Auj(q)[vq_%(l Fvg)efsa-9 (1 4 Va-2)val,

(

2)
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where now
y{q) = é[eﬁﬁlwo “oq®sqli2 - [eBhlwo-aqesgl/2 _ -1 (23a)
®(q) = m(e’”’"’lq + io;l - 1), (23h)
wiq) = m(e"“-"lq - gl - 1. (23¢)

We can see that in the all important term R»(q) (the one containing the nonlinear
contributions) not all the polar modes are coupled, but those that differ between them
in a spacing given by =s/«, and are contained in the Brillouin zone. Hence, the mocdes
contained in each segment of the extension s/« are, each mode independently, coupled
to a finite number 21 of modes outside it, such that n equals the integer part of
[ree/sa). For example, if the set contains the mode at the zone center, g = 0, then
the coupled modes are {+0,+s/0; +25/x;...; +js/«} and the set that contains the
end zone vector Qo = M/ is {Qu;Qu — s/c;Qp — 25/ ;...; Q0 - (1 — 1)s/x}. The
bilinear terms connect the mode q to the modes g — s/ and g + s/, in a process of
transmission of energy from each mode q for the next lower in energy. Furthermore,
we recall that because of symmetry considerations modes with negative wave vectors
are equivalent to those with a positive value, Having set the equations of evolution for
the populations of the coupled modes let us first consider the stationary states that
should follow after a certain transient, to be determined later on in this section, have
clapsed. The steady state is the solution of Eqs. (22) when setting dv/dt = O. Itis
worth noting that in NESOM, because of the form of the auxiliary operator of Eq. (5),

one finds that

vq = 1/[cfe - 17, (24)

i.e., the populations can be expressed in terms of the unknown nonequilibrium

thermodynamic parameter F,. In particular, we may choose the alternative form

Fq '—"ﬁ[hwq_“qj ' (25)
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and then Eq. (24) resembles a Bose-Einstein distribution but with a quasichemical po-
tential for each mode ,, thus being of the form proposed by Frohlich [7]. Clearly,
replacing Eq. (25) in Eq. (24), and the latter for v, in the steady-state equation of evo-
lution, one gets an equation for the quasichemical potential in terms of the popula-
tions of different modes. This quasichemical potehtial increases with growing external
pumping energy and then may signal a kind of Bose-Einstein condensation if at some
critical intensity p, coincides with Aiw,. This implies the possibility of emergence
of the Frohlich effect as described in the Introduction. The formal character of the
quasichemical potential per mode, p,, should be stressed, while F, is the nonequilib-
rium intensive thermodynamic parameter that NESOM introduces, that is, Eq. (25) is an
arbitrary choice deemed appropriate for the physical discussion of the problem. A qua-
sichemical potential for the characterization of the population of nonequilibrium pho-
tons in the case of a nonequilibrium state of radiation and carriers in semiconductors

was also used by Landsberg [23].

Returning to Eqs. (22) in the steady state, we proceed to obtain their numerical so-
lution using an adaptation of a known computational algorithm [24]. For that purpose
we necd to introduce numerical values for the parameters involved; we take for them

values that are typical of the biopolymers involved [7,15,16], namely,

wy = 1013 Hz ; a=100A;

s =10"cm/s «=0.19 cm?/s;

thatis we simply take values within the order of magnitude to be expected in such types
of systems, e.g., the «-helix protein of Fig. 1. We stress that the characteristic behavior
to be derived, as shown in Figs. 2-7, is independent of the numerical parameters, that
is, the qualitative aspects remain but, of course, with changing numeric results. With
these values it results that the end Brillouin-zone wave numberis Qo = 3.14x10%cm  ;
the width of the frequency spectrum of the polar modes I = 1.87 x 10'? Hz; the ratio
s/oe = 5.27 x 10° cm™! and then the number 7 of coupled modes is 12. The bath

temperature is taken as 300 K. There is an open parameter, viz. A, that measures —
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as its definition indicates the ratio of the coupling strengths involved in the nonlincar
and linear (in the polar mode populations) anharmonic interactions; we will obtain

solutions for sever values of this parameter.

We consider the set that contains the mode at the zone center (g = 0), which is
assumed to be the only one pumped by the external source, and we solve the equations
of evolution for the populations v, for the values A = 1 and 0.01; the results are shown
in Figs. 2(a) and (2b).

Next, we consider the more realistic case of all modes being pumped, and such that

S4 = S, and A = 1 with the corresponding curves shown in Fig. 3.

Inspection of these curves clearly shows a complex behavior of the system: ata
given threshold of the intensity S of the pumping source (we recall that § is a scaled
quantity for the amplitude of the intensity in the spectral representation of Eq. (9);
ct. Eq. (21a)] the mode with the lowest frequency begins to grow enormously, in a
very steep fashion with increasing intensity §. The quasichemical potential associ-
ated with this mode tends asymptotically from below to the value of the frequency
of the mode, but does not coincide with it; see Fig. 4. At and beyond the threshold
intensity {indicated in an estimative way by the arrows) this very close approach of
the quasichemical potential to the frequency of this lowestfrequency mode leads to a
near Bose-Einstein condensation, in the sense that the distribution in the modes cor-
responds to a very large accumulation in the lowest-energy state. The comparison in
Fig. 3 of the populations in the presence of the nounlinear coupling with those in the
absence of coupling, allows us to better visualize the Fréhlich effect: the mode with
the lowest energy has increased its population by almost an order of magnitude above
the value expected for A = 0, at the expenses of the other modes whose populations
rest below the dashed line; some of them tend to a constant saturated value. After the

critical intensity threshold has been achieved v, grows quite steeply.

The first threshold intensity (at which there follows the steep increase in popula-
tion of the lowest-frequency mode) is not strongly dependent on A, which, we recall,
measures the strength of the anharmonic interaction responsible for the nonlinear

terms in the equations of evolution. This is shown in Fig. 5. Hence, the effect follows
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an intense form ¢ven at weak nonlinear contributions in the relevant (nonlinear) term
that needs to be present for the phenomenon to arise.

Also, as previously mentioned, it has been argued that the anharmonic contribution
contained in the fourth term in the Hamiltonian of Eq. (1) opposes and may eventually
cancel the Frohlich effect [21]. Fraéhlich has replied that this is not so because the
term should involve less important contributions to the Kinetic equations [22]. Our
calculations show this clearly; furthermore, for the particular numerical values of the
parameters we use, the contribution from that term vanishes, because in the scattering
events it produces it cannot be simultaneously satisfied by the conservation of energy
and momentum.

Qur results then show that protein polymers of the type considered by Davydov [13-
15] display complex behavior manifested in the emergence of the Frohlich effect.

As already noted, the Frohlich effect seems to be accompanied by the formation of
an electret state [8,9] and the propagation of undamped waves [10,13-15]. Therefore,
it is of relevance to determine the transient time. For that purpose, we solve the
equations of evolution (22), using as an initial condition the values for the populations
in equilibrium, resorting to an adaptation of a known computer program [25]. Figure 6
shows the evolution of the population of the six modes for case A = 1 and § = 5000
(slightly above the critical value for the condensation to follow). We are then in a
condition to evaluate the transient time before the steady state is reached. Comparing
Egs. (12) and (19b) we find that

;' = LIViPy@) /h2svy® = y(@) /vyt . (26)

Assuming thesc relaxation times to the bath being of the order of tens of picosec-
onds [7,16], we estimate the scale factor T to be roughly 20 ps, and so the transient
times are of this order or smaller (see Fig. 4).

Finally, after solving the set of 12 coupled equations for several different sets of 12
coupled modes, we are able to show in Fig. 7 the dependence of the mode populations
along the interval of frequencies in the polar branch of vibrations. The region of

low frequencies privileged by the onset of the Frohlich effect is evident. We have
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alrcady noted that the results described in the series of figures retain their qualitative
characteristics when the numerical values of the parameters of the system are changed.
Consider, for example, the case when the cell parameter is reduced by a factor of 4
(i.e, @ = 25 A) to maintain the width of the frequency dispersion spectrum of the
vibrations, parameter & needs to be reduced by a factor of 16. But now the number
of coupled modes is 48. Numerical results are similar, but the main change is that
the length of the region in frequency space (cf. Fig. 7) that includes the modes in the
condensate is stretched by a factor of 4.

Furthermore, using the given value of T, we find that for the critical intensity (for
the onset of Fréhlich effect) $* = I*F being roughly 5000 (cf. Figs. 3 and 4), the value
of the critical intensity I* is roughly 5 x 10!3 Hz, which implics for wqy = 10" Hz
a pumping power of 5 x 10~% W per mode. Since the number of modes is LQy/m
(where L is the length of the chain), for the numbers used this is 10°L, and then the
total pumped power is 5 x 107¢ W, Assuming that this power is provided through the
hydrolysis of adenosine 5'-triphosphate (ATP), which produces 7.3 kcal/mol, in the
event of absorption of a fraction f of this metabolic energy, to maintain the power
intensity required would imply a rate of —(L/f)(1.6 x 10 ¢) mol/s, or (Lf) mg/s of
ATP. To obtain the stationary Frohlich condensate, as seen, a time interval of the order
of 10 ps is required, and then an expense of —(L./f)(10-'%) g of ATP, which seems to
be very accessible values for the phenomenon to occur. Moreover, we have considered
here that the source creates single excitations in the vibrational modes (cf. Eq. (2g)] but
multiple excitations are also energetically possible, which, furthermore, are enhanced
by the same effect of condensation when the modes lowest in frequency are externally

pumped. In the next section we summarize and comment on the relevance of the

phenomenon evidenced in this section.

3. CONCLUDING REMARKS

We have studied a model of a biological polymer, namely a chain of biomolecules such

as the a-helix considered by Davydov [15], which is expected to possess polar modes of
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vibration. The latter are assumed to receive cnergy from an external pumping source,
say, a metabolic feeding of these modes. At the same time, the polar modes inter-
act with an elastic continuum via a nonlinear anharmonic-type potential. Equation (1)
presents the Hamiltonian of this system. We studied the dissipative nonequilibrium
state of the polar modes which is characterized by the populations of these modes of
vibration. We derived for them the corresponding equations of evo lution resorting to
the nonequilibrium statistical operator method [17], but in the approximation SOART
for the nonlinear transport equations that can be built within the framework of NE-
sOM [18]. Even though the equations couple, in principle, all the modes characterized
by the wave vector g running over the whole Brillouin zone, conservation of energy
and momentum in the scattering events allows for the separation of the whole set of
coupled equations in reduced independent sets of equations composed of a certain
number of modes. The equations of evolution for the populations of the polar modes
of vi bration are solved under the assumption of a constant pumping of energy by the
external source, and that the thermal bath of acousticlike vibrations is constantly kept
in equilibrium with a reservoir at a constant temperature T (i.e., it is regulated by an

efficient homeostatic mechanism),

We have been able to demonstrate that such a system displays a complex behavior,
namely, that at a certain distance from equilibrium, i.e., for a threshold value of the
pump intensity, there occurs a steep increase in the population of the modes with
the lowest frequencies, in a way reminiscent of a Bose-Einstein condensation that we
term Fréhlich effect. There is a kind of self-organization in the system, governed by
the nonlinear effects in the equations of evolution and, thus, this phenomenon may

be considered as the emergence of a dissipative structure in Prigogine’s sense [26].

Clearly, a very large population in certain modes implies large amplitudes of vibra-
tions, which may lead to a coherent effect among the vibrating units and to formation
of some kind of space ordering; it has been suggested that this is an electretlike state,

however, of a metastable character [8,9].

Furthermore, as is also shown eisewhere [10], arestudy of the propagation of the ¢x-

citations in this media, not at the quantum-mechanical level but at the nonequilibrium



statistical mechanical level that may describe, within NESOM, the far-from-equilibrium
thermodynamic state of the open system, seems to indicate that beyond the point
of emergence of Frohlich's effect, polar waves propagate with a very weak damping.
This appears to be of large interest for an eventual explanation of the effective energy
transfer at the biomolecular level. At normal lifetimes, estimated in the picosecond
range, vibrations cannot propagate further than a few micrometers, but beyond the
critical point, as noted, the vibration lifetime is markedly increased and can propagate
energy at long distances. Therefore, it is of relevance to determine the time interval
(transient time) between the onset of excitation of the modes and the establishment
of the steady state after the threshold for the Friéhlich effect: as shown in the last
section it is estimated to be of the order of the relaxation time to the bath; if the latter
is, as expected, in the tens of picosecond time scale, then the time of the transient is
of the order of a few tens of picoseconds. Also, the threshold for Fréhlich effect, as
our estimative presented in last section shows, may be attained with the use of the
expending of low levels of power, i.¢., a exceedingly small fraction of a mol of ATP

molecules participating in energy-providing hydrolysis reactions.

The Frohlich effect is then demonstrated to be present in biopolymers, like a large
chain of protein molecules, that can sustain polar vibrations-like those originating in
peptide groups. Its occurrence implies that the leading term for the phenomenon
to arise-namely the nonlinear terms in Eq. (22) — whose origin was the anharmonic
contribution contained in the term H,» of Eq. (21) overcomes the opposing effects of
relaxation to the thermal bath, arising out of H;, and H)» of Egs. (2¢) and (2d), and the
contribution from the anharmonic interaction in H>; of Eq. (2¢), which, we recall, hasa
null contribution in the particular case we used for numerical calculations. We stress
that the Frohlich effect is of purely quantum-mechanical origin, i.e., the Planckian form
of the mean populations of the vibrations of the bath and the zero-point energy of their
states: Taking the classical limit in Eq. (6) results in the cancellation of the nonlinear
Frohlich term. Finally, as shown, the phenomenon is dependent on the value of the
coupling intensity, i.e., parameter A, but it may follow even for very small values of it

and then it is possible under very broad circumstances.
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; It has been suggested as experimental evidence of the phenomenon [7] the inves-
3

tigation of the buildup of the reaction rate of enzyme molecules as a function of the
i enzyme density. In principle, it can be evidenced by direct observation of the ex-

F

| cited vibrations, for example, with the use of scattering efflects, since the intensity of

' the Raman line is proportional to the population of the mode. [t should be noticed
that Raman scattering allows us to probe only long-wavelength modes, because of the
small value of photon wave number in the visible, IR, and UV regions of the spectrum.
The nonthermal amplification of polar modes has been determined in several experi-
ments in materials displaying biological activity [27]. Additional possible experimental
evidences have been discussed in Refs. [6], [7], [12], {16}, and [28].

In conclusion, we can summarize the result by saying that, the Frohlich effect,
which can be related to important biophysical aspects in biopolymers (i) may be of
easy realization (it suffices to have even a very weak nonlinear anharmonic coupling
strength of the type described, and a weak threshold of pumping power), (ii) is pro-
duced very rapidly after the initial release of the pumping (metabolic) cnergy, and
(ili} also, as preliminary calculations seem to indicate [10], once in its domain, signals
can be propagated in the medium with almost no decay, and, then, at very long dis-
tances (the lifetime of the excitation is very large). Furthermore, it can be shown [10]
that the vibrations propagate in a coherent way, and then all the characteristics for
the propagation of biochemical energy in this kind of biosystem formally resemble the

situation one finds for the case of electromagnetic waves in laser devices.
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FIGURE CAPTIONS

Figure 1: An atomic model of the «-helix structure in a protein (Refs. [15] and [16]),
and on the right a rough description of the mechanical model considered in the

text.

Figure 2. The population of the differcnt coupled modes, in a set that contains g = 0,
as a function of the scaled intensity S tfor (a) A = 1 and (b) A = 0.01. Mode g = 0
is the only one pumped, Index 6 stands forg = 0; 5 forg—s/wx,...,1 forg—5s/

(mode 1 is the one with the lowest frequency).

Figure 3: As in the case of Fig. 1 but now with all modes equally pumped and A = 1.
The dashed curve is the result A = 0 (uncoupled modes), when the population of

the different twelve modes is roughly the same.

Figure 4: The dependcnce on the scaled intensity of the quasichemical potential of the

lowest-frequency mode (arrows indicate the approximate onset of condensation).

Figure 5: Behavior of population of the Jowest-frequency mode vy, for different values

of the coupling strength.
Figure 6: Evolution in time of the populations of the modes for A = 1 and § = 5000.

Figure 7: The population of the modes in the band containing their frequencics of

vibration, namely, wy — x(1TT/a)? = w < Wwy.
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Figure 1: An atomic model of the «-helix structure in a protein (Refs. [15] and [16)),

and on the right a rough description of the mechanical model considered in the text.
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Figure 2: The population of the different coupled modes, in a set that contains g = 0,
as a function of the scaled intensity S for (a) A = 1 and (b) A = 0.01. Mode g = 0 is the
only one pumped. Index 6 stands forg = 0; 5 forq — s/«,...,1 for g — 5s/x (mode 1
is the one with the lowest frequency).
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Figure 3: As in the case of Fig. 1 but now with all modes equally pumped and A = 1.
The dashed curve is the result A = 0 (uncoupled modes), when the population of the

different twelve modes is roughly the same.
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Figure 4: The dependence on the scaled intensity of the quasichemical potential of the
lowest-frequency mode (arrows indicate the approximate onset of condensation).
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4.3 Condensacdo de Frohlich tipo Bose-Einstein ampliada
por retro-alimentacao positiva em biosistemas

Apresentamos um estudo mecanico-cstatistico do assim chamado efeito Frohlich, a

saber: a amplificacdo ndo-térmica de vibracOes polares que levam a comportamento

complexo em biosistemas, como biopolimeros e agrandes agregrados de macromolé-
culas. O condensado de Frohlich é considerado de relevancia para determinada classe
de processos biologicos, em particular em conexdo com o problema de propagacao
alonga distancia de sinais em temperatura fisiolégica. Recorrendo a uma teoria ter-
momecdnica apropriada para lidar com processos irreversiveis em sistemas longe do
equilibrio, resultados anteriores sao estendidos. Realizamos uma analise do caso em
que a producao de uma dupla excitacdo de vibracoes polares, gerada pela acdo de
uma fonte externa de alimentacdo de cnergia metabolica é possivel. E mostrado que,
quando esse ¢ 0 caso, o processo envolve um mecanismo de retroalimentacao positiva
que facilita grandemente e aumenta o fenéomeno do condensado de Frohlich e, con-
seqitentemente, os possiveis processos biologicos que o acompanha. Os resultados

sdo discutidos e uma eventual conexdo com ohserva¢des experimentais é indicada.

International Journal of Quantum Chemistry, 66 (2), 177-87 (1998).
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We present a mechano-statistical study of the so-called Frohlich effect,
namely nonthermal amplification of polar vibrations leading to complex
behavior in biosystems, like biopolymers and large aggregates of macro-
molecules. Frohlich condensation is considered to be of relevance for a
certain class of biological processes, in particular in connection with the
problem of long range propagation of signals at physiological tempera-
ture, Resorting to a thermo-mechanical theory appropriate to deal with
irreversible processes in systems far from equilibrium, earlier results are
extended, We perform an analysis of the case when production of a double
excitation of polar vibrations, generated by the action of an external pump-
ing source of metabolic energy, is possible. It is shown that, when this is the
case, the process involves a positive feedback mechanism that greatly facil-
itates and enhances the phenomenon of Frohlich’s condensation, and con-
sequently the possible accompanying biological processes. The results are
discussed and eventual connection with experimental observations pointed

out.

Group Home Page: http://w;\-r;\-/ﬁ.iﬁ.unicamp.br/~aurea
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1. INTRODUCTION

~ Itis certainly a truism to say that the complicate heterogeneous spatial structure and
functioning(temporal evolution) of living organisms, starting with the individual cell,
set down quite difficult problems at the biophysical and biochemical levels. In recent
decades a good amount of effort has in particular been devoted to some physico-
chemical aspect of biosystems like, how to increase our knowledge of the chemical
composition of the life forms; to determine the structure of large macromolecules;
to determine the reactions that lead to processes of sintetization of multiple compo-
nents; to understand the mechanisms and codes required to determine the structure
of proteins; and so on. For considering living systems at the biophysical level we must
be well aware of the fact that we are dealing with macroscopic open systems in non-
equilibrium conditions. In other words, one observes macroscopic organization —
at the spatial and temporal levels — of the microscopic components of the systems,
namely, molecules, atoms, radicals, ions, electrons. The macroscopic behavior is of
course corrclated to the details of the microscopic structure. However, it must be
emphasized that this does not mean that knowing the microscopic details shall reveal
the interesting macroscopic properties,

Quite recently, this question concerning the theoretical description of the macro-
scopic behavior of dissipative open many-body systems in arbitrarily far-from-equilib-
rium conditions has been encompassed in a seemingly powerful, concise, and elegant
formalism, established on sound basic principles. This is the Nonequilibrium Statisti-

cal Operator Method (NEsoMm) [1-3] which may be considered as pertaining to Jaynes'
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Predictive Statistical Mechanics [4,5]. The NEsSOM allows for the construction of a
nonlinear quantum transport theory of a large scope [1,3,6,7] and a thermodynam-
ics of irreversible processes, termed Informational Statistical Thermodynamics (IST;
sometimes referred to as Information-theoretic Thermodynamics, which is briefly re-
viewed with accompanying historical notes in [8]), which provides the foundations
for the treatment of dissipative open macrosystems away (either near or far) from
equilibrium. This is, as already noticed, the situation in biosystems, a result which
is a general feature of biological systems where energy is always available, through
metabolic processes, that is, the open biosystem “feeds” on this energy and is driven
away from equilibrium. A quite fundamental point is that the evolution of the system
has associated a nonlinear kinetics, and from this point of view the physics we are
thus involved here with consists in the description of nontrivial nonlinear effects that
change in time and space and arc maintained through a constant energy supply.

As pointed out by Frohlich (9, 10], biological systems are relatively stable from a
microscopic point of view, e. g. the thermal vibrations of single atoms are practically
the same as in a corresponding nonbiological system. In some conditions, however,
when they are very far from thermal equilibrium, a restricted set of phase space points
dominate the overall behavior of the rest. This implies in collective properties of or-
ganization that are carried out by a great number of molecules requiring, as noted, a
description in terms of macro-concepts which are outside the domain of the purely
mechanicist-reductionist scheme. These collective propertics evolve as a conscguence
of the supply of energy (metabolism), and virtually represent extreme nonlinear dis- {

placements. This nonlinearity of the equations of evolution of the macroscopic prop-
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| erties of the system is of fundamental relevance. Nonlinearity is nowadays known to
be the source of new and quite unexpected phenomena that give rise to the so called
- complex behavior in dynamical systems |11, 12].

Biological systems are cvidently complex systems by antonomasia, displaying a
large variety of nonlinear physico-chemical processes. Hence, as it is the case, they
 present an enormously large number of rich and noticeable phenomena at the morpho-
logical, biochemical, biophysical, etc., levels. We consider in this paper a conjectured

complex behavior in a biophysical system consisting of a long quasi one-dimensional
array of proteins, or biopolymers, in terms of a quite simplified model that contains
the main physical characteristics of a real system that are relevant to the present study.
The system has already been described in a previous paper |13], heretofore referred
- as (I), whose study is here broadened with the inclusion of an analysis of the case

when — as it seems (0 be possible in real systems — the pumping of metabolic energy

is accompanied by a feedback (auto-catalytic) mechanism that reinforces the predicted
complex behavior eventually leading to bioenergetic phenomena that may have large
relevance in the functioning of living systems.

We consider the dissipative evolution and the steady state of the population of
vibrational polar modes in a chain of biomolecules. In our model these polar modes
are excited through the coupling with a pumping source of metabolic energy and are in
anharmonic interaction with an elastic continuum. Groups of polar modes are coupled
inthis way through nonlinear terms in the kinetic equations that describe the evolution
of the macroscopic state of the system. This nonlinearity is thought to he the source

of a new and unexpected phenomenon characterizing complex behavior in this kind
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of systems: After a threshold in the intensity of the pumping source is achieved,
polar modes with the lowest frequencies increase enormously their populations at the
expense of the other modes. The possibility of this phenomenon was advanced by H.
Frohlich [9,10], and, therefore, is termed Frohlich effect, which resembles a kind of
nonequilibrium Bose-Einstein condensation,

For the model chosen in (I), our calculations show that the transient times for the
steady state of Frohlich's condensate to appear is very short, namely in the ten-fold pi-
cosecond time scale. Moreover, the condensation in the low lying in frequency modes
should follow even for weak values of the anharmonic coupling strength responsi-
ble for its occurrence. Furthermore, the condensation seemingly requires reasonable
levels of metabolic pumping power to be produced and sustained. The phcnomenon
of condensation may lead to a coherent effect among the vibrating units and to the
formation of some kind of spatial ordering, which is suggested to be an clectrert-like
state of a metastable character [14, 15]. Current trends indicate that Frohlich effect
may have important biological consequences as a result of the long range action of
the electric forces, like the enhancement of the reaction rate of enzyme molecules,
roleaux formation in erithocytes, and others as considered in [15-18]. Also, the con- i
nection between Frohlich’s and Davydov's effects has been recently shown. Davydov's
theory contains a proposition for a novel mechanism for the localization and transport
of vibrational energy consisting in the formation of solitary-like waves in biopolymers
as those considered in (I) [19-22]. There is an indication that excitations of the Davy-
dov’s soliton type propagating through the system, while they are strongly damped

in near equilibrium conditions, become almost dissipationless once the threshold of
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Frohlich condensate is attained |23]. This suggests a relevant phenomenon of prop-
agation of excitations at long distances in such biosystems, a question of interest in
bioenergetics.

Hence, the possible relevance of Frohlich's effect at the biological level clearly calls
for a deeper analysis of the phenomenon. Our calculations in (I) were based on a
pumping mechanism involving the production of a single excitation. Nevertheless,
the metabolic pumping source being, for example, the one resulting from hydrolysis
of ATP providing near 420 meV per molecule, allows for production of double or higher
order excitations, depending on the system, as already suggested by Alwyn Scott [22].
Hence we reconsider the case of paper (I) introducing as before the production of
single excitations, and adding to it double excitations: as shown below this leads to a
positive feedback cffect that greatly enhances and favors the emergence of Fréhlich’s
effect. In last section we further discuss this phenomenon and related experimental

observations,

2. THEORY: THE FEEDBACK EFFECT

We reconsider the system of (I), which we analyze in terms of the nonlinear quantum
transport theory that the NESOM provides, as done in (I). However, since the anhar-
monic interaction responsible for the dissipative processes is weak, we can greatly
simplify matters by resorting to the lowest order approximation in the NESOM-based
kinetic theory. It is the Markovian limit, in which one only retains the memoryless

two-particle collisions, that is, the collision operator contains the strength of the in-
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teraction between system and thermal bath only up to second order (we recall that in
the present case it consists into the anharmonic interaction) [7]. Moreover, because of
the particular characteristcs of the system Hamiltonian, together with the fact that the
thermal bath is taken as an ideal reservoir characterized by a canonical distribution
with temperature Tj, the collision operator in the kinetic equation for the popula-
tions is simply reducced to the Golden Rule of Quantum Mechanics averaged over the
nonequilibrium statistical ensemble.

The cited possibility of double excitation is inhcorporated in our theory by simply

introducing instead of the interaction Hamiltonian of Eq. (2g) in (I) the new expression

2
Hj‘ = ZW‘;”q)an’ + z W;,;, cqurqfcl;r, a:f,, v H.c. (1)
q g.4'

containing the contributions corresponding to single(as in I) and double excitations,
respectively, and where W,' and Wf; are their coupling strengths, ¢ is the annihi-
lation operator of excitations in the source, and a.;; is the creation operator of a polar
excitation in modc q. The other contributions to the Hamiltonian are the same as in(])
(Cf. Egs. (1) and (2) in (I)), which, we recall, contain three quasiparticle collisions involv-
ing the polar vibrations and the acoustic-like excitations of the thermal bath. Hence
the equations of evolution for the populations of the polar modes, that is, Eqgs. (6) to
(11) in (I), remain the same except for an additional source term associated to the new
contribution in Eq. (1).

Taking the coupling amplitudes W) and W) as weakly wavevector dependent,
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the term associated to the pumping process takes the form

a o Y02
S valt) e WD (wg) + D WD I (wy + wg) [T+ va(t) + vg (D], (2)
ql

where the first term on the right corresponds to the one of (I), and the second is the one
arising from double excitations, w, is the polar mode frequency dispersion relation,
and v, is the population in polar mode g. Moreover, the presence of the quantity
I;(w) is the result of introducing a spectral representation for the description of the

pumping source, namely,

[ de . .
(Pi®)pg) = | SElg(w)er. (3)

— 2

27T
ﬁlﬂ

Thercfore, taking into account Eq. (2), the equation of evolution for the population

of the vibrational polar modes is now

d -2
qu(t) = W 2L (wy,) + E W@ T(wg + g ) [1 + vylt) + vg (D] +
.~
TN [vg (t) - vyl +
21 2 b
- Ez Iqu’| [1 + quql]Vq’(t)Vq(t)(S(Qq’q’ - (.Uq' (l)q) +
Y

2T :
+ — Z qufldv,f;w,[l + Ve (DT + v (£)]0(Qg4q° - Wy — wyg) +
21T 2 b
) Z Vaa I7LL + v g Il + vg (1) [vg (£)8(Qq-g + g — wyg) +
2T 5 b .
" D Waa IPVE_ vy (1 + v (D)]8(Qqq + g — @y) +
pr

277 : _
-3z D Vag PV g [1+ vy () vg (1)8(Q2g.q' — g + @) +
pr

2 .
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that is, Eq. (8) in (I), which now presents the new pumping term as given by Eq. (2)
above. In this Eq. (4}, we recall, vf; are the population of the acoustic-like vibrations in
the thermal bath, having the frequency dispersion relation Q, and being kept at the
equilibrium temperature Tj,. Quantities V,, are the matrix elements associated to the
anharmonic interaction, T, is a relaxation time [Cf. Eq. (15) in (I)], ¢crystalline momen-
tum conservation is included and the delta functions account for energy conscrvation
in the scattering cvents.

We notice in Eq. (2) that the term associated with the production of double exci-
tations is proportional to the populations v, which are growing under the action of
the pump, and, therefore, a positive feedback mechanism is present. Let us see its
consequences.

We now proceed with numerical calculations using the same parameters than in (I),
which, we stress, are simply chosen as an order of magnitude approximation in com-
parison with those to be expected in real systems (e. g. the &-helix protein in [19, 22)).
We recall that in the model of (I), and for the proposed characteristic parameters, the
equations of evolution which, in principle, couple all the modes in the Brillouin zone
(of the order of 10%2), separate out — because of the concurrent energy and momen-
tum conservation in the collision processes —, in independent (and equivalent) sets
of twelve coupled modes. Moreover, these twelve modes are equivalent in pairs (those
symmetrically distributed on both sides of the one-dimensional Brillouin zone), and
then we need only to account for the six populations we labell v| to v4. In Fig. 1 we
reproduce the results reported in (I) showing the dependence of the polar mode pop-

ulations on the pump intensity (for a set of coupled modes as described in (I)). The
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pump intensity is a scaled one, namely S = [WW <[+ where I; is the intensity of the
source which has been assumed to have a white spectrum. In other words, all spectral
intensities in Eq. (3) are approximated by a constant Iy. Furthermore, T is a reference
time defined in (I}, where the parameter A is also defined: it measures the relative inten-
sity of the nonlinear to the linear interactions of the polar vibrations with the thermal
bath. In Figs. 2 and 3 are shown the results that follow when the pumping term with
double excitation production is introduced. There is an open parameter to be chosen,
namely the ratio of the squared coupling constants |W ‘2 |2/iw (1|2 which we write as
(a/Lyw, where L is the length of the chain, a is the length of the crystallographic unit
cell, and w is an open weight parameter (L cancels in the calculation as it should). The
set of curves in Fig. 2 corresponds to the choice w = 1 and those in Fig. 3 to w = 0.01.
Comparison with Fig. 1 clearly demonstrates how the additional pumping process fa-
vors Frohlich’s effect: First the threshold of intensity for the phenomenon to follow is
largely decreased. And, second, the phenomenon is particularly more pronounced. In
the case in which w = 1, the intensity threshold for Fréhlich's effect to appear(which
we define as the point corresponding to the intensity for which v, is roughly an order
of magnitude larger than the other modes) is nearly five hundred times smaller than
in the case when only production of a single excitation is considered (when w = 0 as
it is the case of Fig. 1). For w = 0.01 the intensity threshold is five times smaller. A
most noticeable effect is the very steep increase in the population of the mode with
the lowest frequency in Figs. 2 and 3 as compared with Fig. 1.

We also consider the transient regime. The numerical solution of the equations of

evolution is shown in Fig, 4. Comparison with the results of (I) shows that the steady-
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state Frohlich’s condensate appears after a much shorter transient time has elapsed,
namely one of the order of magnitude of picosecond to subpicosecond instead of the
ten or more picoseconds obtained in the calculations in (I). However, it ought to be no-
ticed a kind of instability at high levels of pumping intensity, consisting in the fact that
strictly under the given modelled conditions the system attains stationary condition at
not too high pumping intensity but no stationary condition follows at sufficicntly high
values of S. This effect is a consequence of the presence of the feedback mechanism,
which occurs for w = 0.01 at a value of intensity roughly given by § ~ 2480. Finally,
in Fig. 5 the steady-state population of the modes in the frequency spectrum for a
value of pumping intensity § = 2400 (with w = 0.01) are shown. This phenomenon
therefore exhibits a kind of separation in a “two fluid system”, like in the theories
for superfluid He and superconductivity, which display Bose-Einstein-like phase tran
sitions in equilibrium. These two fluids consist of the one composed by the modes in
the condensate at low frequencies (as indicated in Fig. 5) and the remaining modes (at
intermediate to high frequencies) which are those which transfer energy to the former

(through the nonlinear anharmonic coupling).

3. RESULTS AND DISCUSSION

The results so far derived show that pumping of energy that can produce double ex-
citations in biosystems which can sustain polar vibrations (governed by nonlinear ki-
netic laws), involves a positive feedback mechanism that largely facilitates and en-

hances Froéhlich’s effect, a phenomenon that may play an important role in biological
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processes. We emphasize that the steady state condensate follows very rapidly after
the switching on of the pumping source (namely, in the pico- to subpico-second time
scale) and for low levels of pumping power. Hence, it is greatly enhanced the complex
behavior of the modeclled biosystem, which, when at a certain distance from equilib-
rium, that is, for a threshold value of the intensity of the pumping source, displays a
steeply increase in the population of the vibrational modes lowest in frequency. This
is reminiscent of a Bose-Einstein condensation, but it must be clearly kept in mind
that while the latter is a phase transition in equilibrium and defined by a critical tem-
perature, Frohlich’s effect is a nonequilibrium phenomenon. The transition point is
defined in terms of the intensity of the pumping source, and this phenomenon may
be considered as the emergence of a dissipative structure in Prigogine's sense [24].
As already noticed, this effect, apparently possible in biosystems, may be of rele-
vance for biological mechanisms. Some of them, as already stressed, may be associated
to the formation of a metastable clectret state [10, 14, 15], and another, of eventually
particular relevance, is related to the propagation at long distances of signals without
decay in these biosystems. These are Davydov's solitary waves [19] already referred to
in the Introduction. This phenomenon is extensively covered in two relevant and com-
prehensive review articles due to Davydov [21] and Scott [22]. In the case of an x-helix
region of protein this mechanism is described as follows [22]: Vibrational cnergy of
the co-stretching (or Amide-I) oscillators that is localized on the quasi-periodic helix
(see Fig. 1 in (I)) acts — through a phonon coupling effect — to distort the structure
of the helix. The helical distortion reacts — again through phonon coupling — to trap

the Amide-I oscillation energy and prevent it to dispersion, in a so called self-trapping.
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Davydov's theory has received plenty of attention. It has been pointed out that [22],
although its novelty and large relevance in bioenergetics, it has associated some ques-
tions that have been of particular concern. One is that if the soliton is stable at normal
physiological temperature (310K). We have derived the equivalent of Davydov's equa-
tion in general nonequilibritm thermodynamic conditions, for the same model as the
one presented here, then showing that Frohlich effect and Davydov soliton are a result
of the same nonlincarities in the equations of evolution [23]: Our calculations show
that, in principle, the damping effect of Davydov’s solitary wave in equilibrium at nor-
mal physiological conditions is present, and should give rise to a very rapid decay (the
signal can travel only a few micrometers). But these calculations allowed us to demon-
strate that this damping is dependent on the macroscopic noncquilibrim dissipative
thermodynamic state of the system, and therefore influenced by the same nonlinear-
ities responsible for both Frohlich’s effect and Davydov's soliton. As a consequence,
after Frohlich's condensation sets in, the lifetime of the vibrational modes lowest in
frequency (namely, those in the Frohlich’'s condensate in Fig. 5) increases cnormously,
while those for the other vibrational modes decrease. This implies that a coherent
excitation composed by the surviving low-lying-in-frequency excited states follows in the
form of a Davydov's solitary excitation which travels nearly undamped, and then prop-
agates at long distances, while Fréhlich condensation is maintained by the pumping of
metabolic energy. Hence, these two phenomena described on the basis of a unified
statistical thermo-mechanics appear to be linked together in a quite interesting and

relevant way.

As stated in (I) and in the Introduction, some experimental evidence of Frohlich
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': effect is available, however of an indirect nature and not at all conclusive. A clear cut
lvand direct experimental signature of the phenomenon would follow from the determi-
pation of the population of the vibrational modes via scattering experiments. However
since the vibrational modes in the condensate are those that lie at the Brillouin zone
boundary, their wavelengths are of the order of the extension of the crystallographic

cell. Hence it requires the use of neutron scattering, an experimental tool of difficult

T W TR R e T

use and, more importantly, inappropriate for the case of probing functioning biologi-

cal material. Light scattering experiments are possible, but they probe the modes with

long wavelengths near the Brillouin zone center. However, this Raman scattering can

- provide indirect proof of the phenomenon since, according to the theory (see figures),

beyond the critical point the population of some set of modes outside the conden-

- sate attain a kind of saturation, that is, their population remains nearly constant with
increasing intensity of the pumping source.

The above referred to amplification of the vibrational modes through metabolic
processes was evidenced in Raman scattering experiments using escherichia coli [25).
The Raman bands correspond to Raman shifts of the order of 120 cmm~! (3.6 x 10'¢
$~1). As known, the population v of this mode is related to the ratio of the intensities

of the anti-Stokes ({45) to Stokes (Is) lines by

IAS 2%
= = . I:’
R Is v+ 1 (>)

In equilibrium v is the Planck distribution function, which, at the room temperature

in the experiment is near one, and then it results that R =~ 0.5. But the observed value
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was R ~ 1, whatimplies v > 1, and so much larger than the value in equilibrium. This
demonstrates that, in the active (metabolizing) phase the vibrational mode is largely
nonthermally excited. A similar experiment was performed with live and metabolizing
cells of the algae chlorella pyrenoidosa, which showed also a large incrcase of the
intensity of the Raman lines involved in this case [26].

Moreover, it has been conjectured that Frohlich’s effect may have a relevant pres-
ence in cellular division: it has been obscrved an increase in the rate of cellular division

of certain cultures of yeast after irradiation by short wavelengths, with the source of

electromagnetic radiation being the external pumping source in this case [27]. It is also .
suggested that enzymes are activated by the phenomenon of Fréhlich condensation: |
in that statc there follows a reduction in the activation energy, and may explain its '
high catalytic power [28]. Another situation when Frohlich cffect may be in action is
the case of aggregation of red blood cells [29, 30]. This would provide an indirect evi-
dence: if Frohlich effect is accompanied by the formation of a metastable electret state
[14,15], it arises an electric interaction of long range which may lcad to the formation
of linear aggregates, known as “rouleaux”. They dissociate in principle together with
the disappearance of the effect, when the cellular membrane is disorganized and the
supply of metabolic energy is withdrawn. But, it must be stressed that the formation
of “rouleaux” of human erythrocytes on the basis of Frohlich’s condensation is not
conclusive |31].

Experiments on functioning biological materials is of difficult realization. An alter-

native to test Frohlich's effect and Davydov’s soliton may be the use of polyacetilene

and other organic polymers. Using infrared absorption techniques it was obtained
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experimental evidence of Davydov's soliton in acetanilide [32]. But in those cases the

- question is how to excite the systems to levels allowing for Fréhlich's condensation to

follow. In these organic materials the polar modes can be indirectly excited by means
r

of laser illumination producing phonon amplification in single-photon absorption by
free carriers. But this process of excitation of the polar modes is poorly cffective, as a
result that energy and momentum conservation in the interaction events makes that
the process only weakly excites a reduced number of modes in an off-center region of
the Brillouin zone. As a consequence the critical point where Fréhlich's condensation
arises would occur at a level of power excitation so high as to produce extensive mate-
rial damage in the sample [33]. One may alternatively think of using current excitation
at intermediate to high electric ficlds in doped samples, but we do not have a defini-
tive report so far., We expect that the results and comments presented in (1), here, and
in {23], would encourage cxperimental work, however difficult, in these interesting,
engaging, and seemingly relevant topics of Frohlich’s effect and Davydov’s soliton.
Before closing this section we would like to comment that, as already stressed,
Frohlich's effect and Davydov’s solitary waves have one and the same origin, mean-
ing that they arise from the macroscopic kinetic equations, which are the statistical
average over the nonequilibrium ensemble of Heisenberg equations of motion gov-
erned by the corresponding quantum energy operator. Earlier attempts looking for
a general theory of Frohlich effect and Davydov’s solitons, were based on truncated
Hamiltonians, (the so-called Rotating Wave Approximation) and, as a result, certain
collision processes were missing what gave rise to some unnecessary controversy and

unphysical results [34-36].
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In conclusion, we have approached the question of eventual complex behavior of
a system modelling the polar modes of long quasi-linear and quasi-periodic arrays of
macromolecules, as described in Fig. 1 in (I). The theoretical treatment of the prob-
lem, as here prescnted, was based on an irreversible thermodynamics of large scope,
namely IST, involving the description of the system at the microscopic level provided
by Quantum Mechanics, with the accompanying macroscopic level provided by a sta-
tistical approach in terms of the NESOM. As final words we ought to emphasize that
the reported results are based on a simplified model, which, however, introduces the
elements considered to be fundamental. Of course in biological systems myriads of
other processes may be accompanying the considered one, Nevertheless, resorting to
a well established methodology, starting with this concept of a general nature refine-
ments and modifications may be added for a more detailed discussion of properties
of the system under observation.

As final words we may say, following Frohlich, that it is particularly auspicious to
see that biological systems — dealt with at the biophysical level — may display a com-
plex behavior describable in terms of appropriate physical concepts. The question of
the phenomenon of the enhanced Frohlich effect via the positive feedback mechanism
has been briefly reported in [37], and the present paper was originally intendend for

the SANIBEL-97 Conference Proceedings.
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FIGURE CAPTIONS

Figure 1: The population of a set of coupled modes in terms of the pumping source
|
intensity involving only production of single excitations. All modes are equally

pumped. The mode labelled 1 is the one with the lowest frequency in the set,

The composition of the set of modes is described in reference [13].

Figure 2: The population of a set of coupled modes (the same of Figure 1) in terms
of the pumping source intensity, when production of double excitations is taken

into account. Parameters A and w arec shown in the upper left inset.
Figure 3: Same as caption to Figure 2.

Figure 4: Time evolution of the mode populations using the parameters shown in the

upper left inset.

Figure 5: Distribution in frequency of the population of the modes, using the para-
meters shown in the upper right inset, with indication of the positioning of the

Frohlich condensate at low frequencies.
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Figure 1: The population of a set of coupled modes in terms of the pumping source in-
tensity involving only production of single excitations. All modes are equally pumped.
The mode labelled 1 is the one with the lowest frequency in the set. The composition
of the set of modes is described in reference [13].
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Figure 2: The population of a set of coupled modes (the same of Figure 1) in terms
of the pumping source intensity, when production of double excitations is taken into
account. Parameters A and w are shown in the upper left inset.
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44 Consideracoes sobre a condensacao de Frohlich
tipo Bose-Einstein

0 assim chamado efeito Fréhlich — que consiste em um conjecturado comportamento
coerente de excitaches tipo boson em polimeros biologicos e organicos — é deduzido
e analisado completamente em termos de uma teoria termo-mecanica. Esta é a assim
chamada Termodinamica Estatistica Informacional, baseada em uma generalizacdo da
teoria estatistica de Gibbs para sistemas longe do equilibrio. Além disso, ¢ mostrado
que quando processos duplos (ou multiplos) de excitacio do sistema de bosons sdo
possiveis, ocorre um fenomeno de retroalimentacdo positiva que favorece e aumenta

grandemente o efeito.

Physics Letters A, 238, 206-11 (1998).
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The so-called Frohlich effect — consisting in a conjectured coherent behav-
ior of boson-like excitations in biological and molecular polymers — is fully
derived and analized in terms of a thermo-mechanical theory. This is the so-
dubbed Informational Statistical Thermodynamics, based on a generaliza-
tion of Gibbs statistical theory to systems far from equilibrium. Moreover,
it is shown that when double (or multiple) processes of excitation of the
boson system are possible there follows a positive-feedback phenomenon

that greatly favors and enhances the effect.
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In a communication in this Journal [1] it was recalled that more than 25 years have
elapsed since the renowned late Herbert Frohlich first presented his concept of long-
range coherence in biological systems [2-5]. Eichwald [1] discussed a microscopic
approach to the question which he presents in the form of a scheme considered sim-
ple and transparent and within a nonlinear dynamical modelling appropriate in bio-
physics. We reconsider the question from a macroscopic point of view, that is, within
the field of the Thermodynamics of irreversible processes and the accompanying Sta-
tistical Mechanics of nonequilibrium systems. We focus on a treatment leading to
Fréhlich condensation on the basis of a thermo-mechanical theory which shows par-
ticular success in dealing with irreversible processes in systems tar from equilibrium,
In particular we are extending a previous paper [6] with the inclusion of a possible ad-
ditional excitation process which may lead to a particular effect of positive feedback,
which greatly enhances the feasibility of the phenomenon.

Quite recently, this question concerning the theoretical description of the macro-
scopic behavior of dissipative open many-body systems in arbitrarily far-from-
equilibrium conditions has been encompassed in a seemingly powerful, concise, and
elegant formalism, established on sound basic principles. This is the Nonequilibrium
Statistical Operator Method (NESOM) |7-10), which is based on Jaynes' Predictive
Statistical Mechanics [11, 12]. The NESOM allows for the construction of a nonlinear
quantum transport theory of a large scope |7, 13, 14} and a thermodynamics of irre-
versible processes, termed Informational Statistical Thermodynamics (IST; sometimes
referred to as Information-theoretic Thermodynamics, pioneered by Hobson [15] after

the publication of Jaynes’ seminal papers on the foundations of statistical mechanics
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on information theory; sce for example [16,17]) which provides the foundations
for the treatment of dissipative open macrosystems away (either near or far) from
equilibrium.

We consider an open biopolymer away from equilibrium described by the so-called
Frohlich-Davydov model [18, 19]. This model consists of a quasi-linear chain of macro-
molecules in a periodically repeated array, of which an example could be found in the
«-helix protein. Energy is pumped in the system by a metabolic external process, and
the chain can sustain longitudinal polar vibration, namely, those associated to the co-
stretching — or Amide | — oscillations; a mechanical model is described in Fig. 1 in
[6], where the details of the Hamiltonian operator which completely characterizes the
system at the microscopic level is given. This Hamiltonian {cf. Eq. 1 in |6]] is the com-
plete one that can be written describing the longitudinal polar vibrations, which are in
contact with the surrounding media. The latter is described as an elastic continuum
media interacting with the polar vibrations via anharmonic interactions: they lead to a
nonlinear effect, in the kinetic equations, with the contribution consisting in a scatter-
ing of a polar vibration by an elastic vibration, which is the source of Fréhlich effect.
To deal with the question the first, and fundamental, step required in 1ST is the choice
of the basic set of macrovariables which provides for the characterization of the non-
equilibrium thermodynamic state of the system. As described in [6], a proper choice
consists of the time-dependent populations (number of excited quantum phonons)
of the polar vibrational modes (the CO-stretching modes), and the energy of the sur-
rounding media which is assumed to remain at a constant temperature, ensured by

an efficient homeostatic mechanism. The corresponding mechanical Hermitian opera-
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tors are designated by v, (the number occupation operator) and Hp (the Hamiltonian
of the surrounding thermal bath). According to the method [7-10, 20] the statistical
operator depends on these quantities and on a set of accompanying Lagrange multipli-
ers (intensive thermodynamic variables in 1sT), which we call F,(t) and Bg = (kgTg) !
(where Tr is the bath temperature) respectively. An important role is played by an aux-
iliary coarse-grained statistical operator, g(t,0) (which is not the complete statistical
operator, @¢(t), this being a superoperator expressed in terms of the former [7-10, 20]
and carrying the information on the irreversible processes that develop in the system,
which are absent in @), given by the instantaneous Gibbs-like distribution (sometimes

referred to as a “frozen quasi-equilibrium distribution”)

0(t,0) = exp{—¢(t) — BrHg - D> F4(t)Vg}, (1)
q

where (1), playing in NESOM the role of the logarithm of a nonequilibrium partition
function, ensures the normalization of §(t,0) at any time.

Next step is the derivation of the equations of movement for the basic variables,
thus obtaining the description of the evolution of the macrostate of the system. As
noticed £y is constant in time, and then we only need the kinetic equations for the
polar mode populations, v, (), given by v, (t) = Tr {V,0.(t)}. These are (for each g

mode)

d | S
qu(t) = TF{EI—VQ!HJQE(t)}l (2)



184.

that is, the average over the nonequilibrium ensemble (here o, (t) is the statistical oper-
ator in Zubarev’'s approach [7]) of the corresponding quantum mechanical Heisenberg
equation of evolution for the number occupation operator and where H is the system
Hamiltonian as given in [6]. We stress that this is the complete Hamiltonian of the sys-
tem; earlier attempts looking for a microscopic-based theory of Frohlich effect relied
on truncated Hamiltonians, and, as a result, certain collisional processes were missing,
what gave rise to some unnecessary controversy around unphysical results [21-23].
Equation (2) is of unmanageable proportions, but it can be rewritten, in the context
of a quantum nonlinear kinetic theory [14, 24], in terms of a conserving term plus an
infinite series of collision integrals involving scattering by two, three, etc. particles,
which are nonlocal in space, memory dependent (that is correlations in space and time
are present) and are highly nonlinear in the basic variables. We resort to the use of
the lowest approximation in the theory consisting in retaining only the second order
contribution in the interaction strength (the anharmonic processes involving the polar
modes and the continuum representing the thermal bath), which is the Markovian
limit in the theory [14, 24]. Within this approximation we obtain a generalized form of
Frohlich original equations, as shown in [6]. We extend here those results taking into
account the fact that, while in [6] the calculations were based on a pumping mechanism
involving the production of a single excitation in the system of polar modes — this
source being for example the one resulting from hydrolysis of ATP providing near
420 meV per molecule — production of double or higher order excitations may be

possible, as already suggested in [19]. This fact is incorporated in our theory when
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replacing the interaction Hamiltonian of Eq. (2g) in [|6] by the new expression
= Z W‘:”q)qa:; + Z W( 2) (pqwfa a » + h. c.. (3)
q q4

containing the contributions corresponding to single and double excitations, respec-
tively, and where W4 and W, are their coupling strengths, @ is the annihilation
operator of excitations in the source, and a}, is the creation operator of a polar excita-
tion in mode q. The other contributions to the Hamiltonian are the same as in [6] (Cf.

Egs. (1) and (2) in [6]).
The equation of evolution for the populations of the g-mode polar mode is now

given by

d

ZiValt) = AWV P (g) + D W P Tqugr (g + wg)[1 + vg(t) + v ()]

_ ZIV(U vE (1 +vh ve(t) - (1+v$’.)v3,q,[1+vq(£)]}6(£2q+q'—qu—wq)

- Z!v“’ FFvEY L+ vE ve(t) = vhvh oL+ Va1 8(Qq-q — Qg — wy)

2Tr
he &
q

S Ve P L+ v v (v () = VE LT+ vg (D111 + v (D]} 8(Qqeq — g~ w4)

—**Zf {1+v DL+ vg (D ]ve(t) = vE_va (DL + va (1)1} 8(Qq_g + @g — Wy)

- ;;_EZ Ve 12 VE L1+ vg (D 1vg(t) = (L4 VE 2)ve (D11 + vg()]} 6(Qg-g ~ wgr + W)
q.’

(4)

We recall that w, and )4 are the frequency dispersion relations of the polar modes
and of those in the continuum (the thermal bath); v} are the populations of the exci-
tations in the bath; V' and V2 the matrix elements of the anharmonic interactions
between polar vibrations and those in the surrounding continuum; and the presence

of I, () in the contribution corresponding to the coupling with the external pumping
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source, is the result of introducing a spectral representation

]

@ 0Pq) = | Elhp (e, )

— D

r

21T
h?

where I (w) is the intensity of the source at frequency w.

We notice that in Eq. (4) the term associated with the production of dou-
ble excitations is proportional to the populations v,; which are growing un
der the action of the pump, and, therefore, a positive feedback mechanism is
present.  This is a revelant new feature in the picture; let us sec its conse-
quences. First, for simplicity, we take the coupling amplitudes W and w®
as weakly wavevector dependent, and then the term associated to the pumping

process takes the form

3 ) o
“5'5"'@(” ) p= |W(”|LI((U¢;)+Z|W(‘)12](wq+wq')“+Vq+vq’J: (6)
um qr

where the first term on the right corresponds to the one of Eq. (11)in [6], and the second
is the one arising from double excitations, and responsible for the positive-feedback
process.

We now proceed with numerical calculations using the same parameters than in [6], |
which, we stress, are simply chosen as an order of magnitude approximation in com-
parison with those to be expected in real systems (e. g. the «-helix protein in [18, 25]).
We introduce a scaled pump intensity, namely S = |[W 1 |2[4T where I, is the intensity

of the source which is assumed to have a white spectrum. In other words, all spectral
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 intensities in Eq. (6) are approximated by a constant Iy. Furthermore, T is a scaling
time defined in [6], where the parameter A is also defined. This A measures the relative
dntensity of the nonlinear to the linear interactions between the polar vibrations and
Hhe thermal bath. Equations (4), where g and g’ run over the whole Brillouin zone, cou-
ple all the polar modes in the zone (of the order of 102%); however, as shown in [6], the
concurrent conservation of energy and momentum in the collision processes restricts
'. such coupling to independent (but equivalent) sets of twelve modes (also equivalent
in pairs on each side of the linear Brillouin zone in the considered one dimensional
| chain). Therefore, it suffices to consider only one of these sets and, in what follows,
‘We label the population of the corresponding modes from v; to v4. Under continuous
pumping, after a very rapid (picosecond scale) transicnt a steady state is achieved, The
 dependence on the source intensity § of the stationary population of the polar modes
in the typical set is shown in Fig. 1. We notice that there are two open parameters in
the theory, namely, the A already mentioned, and the ratio of the squared coupling
 constants |[W 2 |2/|W 1|2 which we write as (a/L)w, where where L is the length of
 the chain, a is the length of the crystallographic unit cell, and w is an open weight

. parameter (L cancels in the calculation as it should). The set of curves in Fig. 1 cor-

*responds to the choice A = 1 and w = 1, arbitrarily done in order to proceed with

L

!
. the numerical calculation, but we call the attention to the fact that the phenomenon is

- always present for any value of these parameters; what changes is only the numerical
final values in the calculation.
Let us compare this result with the one shown in Fig. 3 in [6], that is, the one

coresponding only to production of single excitations (w = 0 in such case). Such com-
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parison clearly demonstrates how the additional pumping process favors Fréhlich's
effect: First the threshold of intensity for the phenomenon to follow is largely de-
creased, and, second, the phenomenon is particularly more pronounced. In this case
in which w = 1, the intensity threshold for Fréhlich's effect to appear(which we define
as the point corresponding to an intensity such that the population v, is roughly an
order of magnitude larger than that of the other modes) is nearly five hundred times
smaller than in the case when only production of a single excitation is considered (that
is, for w = 0 as it is the case of Fig. 3 in [6]). Our calculations show that for w = 0.01
the intensity threshold is five times smaller. A most noticeable effect is the very steep
increase in the population of the mode with the lowest frequency in Fig. 1 as compared
with Fig. 3 in |6].

We also consider the transient regime. The numerical solution of the equations of
evolution is shown in Fig. 2. Comparison with the results in [6] shows that the steady-
state Frohlich’s condensate appears after a much shorter transient time has clapsed,
namely one of the order of magnitude of picosecond to subpicosecond instead of the
ten or more picoseconds obtained in the calculations in [6]. Finally, in Fig. 3 the steady-
state population of the modes for each frequency and for a value of pumping intensity

' = 2400 (with w = 0.01) are shown. Tt may be noticed that the phenomenon exhibits
a kind of separation in a “two-fluid system”, like in the theories for superfluid He and
supcerconductivity, which display Bose-Einstein-like phase transitions in equilibrium.
These two fluids consist of the one composed by the modes in the condensate at

low frequencies (as indicated in Fig. 3) and the remaining modes (at intermediate to
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high frequencies) which are those which transfer energy to the former (through the
nonlinear anharmonic coupling).

The results we have derived show that pumping of energy producing double excita-
tions in polymers which can sustain polar vibrations, say, the cO-stretching in o-helix
protein or acetanilide, and whose evolution is governed by nonlincar kinetic laws, may
involve a positive feedback mechanism which largely facilitates and ecnhances a pos-
sible Frohlich's effect, a phenomenon that may play an important role in biological

processes. We emphasize that the steady-state condensate follows very rapidly after
‘the switching on of the pumping source (namely, in the pico- to subpico-second time
;rscale) and for low levels of pumping power. Hence, the complex behavior of the sys-
Ertem is greatly enhanced, once a certain distance from equilibrium is attained, that is,
iifor a threshold value of the intensity of the pumping source, the system displays a
steeply increase in the population of the vibrational modes lowest in frequency. This
{sreminiscent of a Bose-Finstein condensation, but it must be clearly kept in mind that

-while the latter is a phase transition in equilibrium and at a critical temperature, Froh-

lich's effect is a nonequilibrium phenomenon, following at a transition point defined

; in terms of the intensity of the pumping source.

E Clearly an important question to consider is the experimental corroboration of the
;ftheoretical results. Some evidence of Frohlich’s condensation is available, however
;of an indirect nature and not at all conclusive. A clear cut and direct experimental
Esignature of the phenomenon would follow from the determination of the population

-of the vibrational modes via scattering experiments. But, the vibrational modes in

‘the condensate are those that lie at the Brillouin zone boundary (where reside the



190.

modes lowest in frequency), which have wavelengths of the order of the extension of
the crystallographic unit cell. Hence it is required the use of neutron scattering, an
experimental tool of difficult use and, more importantly, inappropriate for probing
functioning biological material. Light scattering experiments are possible, but they
probe the modes with long wavelengths near the Brillouin zone center. However, this
Raman scattering can provide indirect proof of the phenomenon if it allows to verify
that, according to the theory (see figures 1 and 3), beyond the critical point the pop-
ulation of some the modes outside the condensate (in particular the long-wavelength
ones) attain a kind of saturation, that is, their population remains nearly constant with
increasing intensity of the pumping source.

In conclusion, we have approached the question of ¢ventual complex behavior of
a system modelling the polar modes of long quasi-linear and quasi-periodic arrays of
macromolecules, as described in Fig. 1 in [6]. The theoretical treatment of the problem
was based on an irreversible thermodynamics of large scope, namely 18T, involving the
description of the system at the microscopic level provided by Quantum Mechanics,
with the accompanying macroscopic level provided by a statistical approach in terms
of the NESOM. We emphasize that the reported results are based on a simplified model,
which, however, introduces the elements considered to be fundamental. Of course in
biological systems myriads of other processes may be accompanying the considered
one. Nevertheless, resorting to a well established methodology, starting with this
concept of a general nature, refinements and modifications may be added for a more
detailed discussion of properties of the system under observation.

We acknowledge financial support provided by the State of Sao Paulo Research



191.

:‘Agency (FAPESP)., Two of the authors (ARV, RL) are National Research Council (CNpq) re-

search fellows. The other author (MVM) is a Ministry of Education (CAPES) pre-doctoral

fellow.




REFERENCES

[1} C.F. Eichwald, Phys. Lett., 207 (1995) 194.

2] H. Frohlich, Quantum Mechanical Concepts in Biology, in M, Marois, editor, From

Theorertical Physics to Biology, pages 13-22, North Holland, Amsterdam, 1969.
[3] H. Frohlich, Int. J. Quantum Chem., 2 (1968) 641.
[4] H. Frohlich, Nature, 228 (1970) 1093.

[5] H. Frohlich, The Biological Effects of Microwaves and Related Questions, in Ad-
vances in Electronics and Electron Physics, volume 17, pages 85-152, Academic

Press, New York, 1980,
[6] M. V. Mesquita, A. R. Vasconcellos, and R. Luzzi, Phys. Rev. E, 48 (1993) 4049.

[7] D. N. Zubarev, Noneguilibrium Statistical Thermodynamics, Consultants Bureau,
New York, 1974, [Neravnovesnaia Statisticheskaia Termodinamika (ldz. Nauka,

Moscow, 1971)}.

[8] D. N. Zubarev, V. N. Morozov, and G. Ropke, Statistical Mechanics of Nonequi-
librium Processes, volume 1: Basic Concepts, Kinetic Theory, Akademie Verlag,

Berlin, 1996.



193.

[9] R. Luzzi and A. R. Vasconcellos, Fortschr. Phys./Prog. Phys., 38 (1990) 887.

[10} J. G. Ramos, A. R. Vasconcellos, and R. Luzzi, Fortschr. Phys./Prog. Phys., 43

(1995) 265.

[11] E. T. Jaynes, Macroscopic Prediction, in H. Haken, editor, Complex Systems:

Operational Approaches, Springer, Berlin, 1985.

[12] E. T. Jaynes, Predictive Statistical Mechanics, in G. T. Moore and M. O. Scully,
editors, Frontiers of Nonequilibrium Statistical Physics, pages 33-55, Plenum, New

York, 1986.

[13] A. 1. Akhiczer and S. V. Peletminskii, Methods of Statistical Physics, Pergamon,
Oxford, 1981.

L
%

' [14] L. Lauck, A. R. Vasconcellos, and R. Luzzi, Physica A, 168 (1990) 789.
[15] A. Hobson, J. Chem. Phys., 45 (1966) 1352.

i [16] L. S. Garcia-Colin, A. R. Vasconcellos, and R. Luzzi, J. Non-Equilib. Thermodyn.,

19 (1994) 24.

[17] M. A. Tenan, A. R. Vasconcellos, and R. Luzzi, Fortschr. Phys./Prog. Phys., 47

(1996) 1.

[18] A. S. Davydov, Biology and Quantum Mechanics, Pergamon, Oxford, 1982.

[19] A. C. Scott, Phys. Rev, A, 26 (1982) 578.



194.

[20] D. N. Zubarev, Modern Methods of the Statistical Theory of Nonequilibrium
Processes, in R. B. Gamkreludze, editor, Reviews of Science and Technology: Mod-
ern Problems of Mathematics, volume 16, Izd. Nauka, Moscow, 1980, [English

Transl.: Soviet Math. 16, 1509 (1981)].
[21] R. E. Mills, Phys. Rev. A, 43 (1991) 3176.
[22] J. A. Tuszynski and R. Paul, Phys. Rev. A, 43 (1991) 3179.
[23] H. Bolterauer and L. A. Ludwig, Phys. Rev. E, 47 (1993) 2122.

[24] A.]. Madureira, A. R. Vasconcellos, R, Luzzi, and L. Lauck, IFGW-Unicamp Internal

Report, (1996), future publication.

[25] A. C. Scott, Phys. Rep, 217 (1992} 1.



195.

FIGURE CAPTIONS

Figure 1: The population of the set of coupled modes described in [6] in terms of the
pumping souce intensity, when production of double excitations is taken into

account. Parameters A and w are shown in the upper left inset.

Figure 2: Time evolution of the mode populations using the parameters shown in the

upper left inset,

Figure 3: Distribution in frequency of the population of the modes, using the para-
meters shown in the upper right inset, with indication of the positioning of the

Frohlich condensate at low frequencies.
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Figure 1: The population of the set of coupled modes described in [6] in terms of the
pumping souce intensity, when production of double excitations is taken into account.
Parameters A and w are shown in the upper left inset.
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Figure 2: Time evolution of the mode populations using the parameters shown in the
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4.5 O regime transiente no fenomeno da condensacao
de Frohlich em biosistemas

Consideramos a emergéncia do assim chamado efeito Frohlich em um biosistema, um
fendmeno que consiste na condensacao de excitacdes dos modos vibracionais polares
que estdo na parte inferior do espectro de freqiiéncias desses modos. Esse comporta-
mento complexo do sistema, (ue parece ter relevancia em biocnergética, pode surgir
em biomaterial ndo-isolado, que ¢ governado por equagdes cinéticas ndo-lineares, e
quando sob a acdo de uma fonte de alimentagdo de encrgia metabolica. Analisamos
aqui em detalhe a dinamica (i) do estagio transiente antes do estabelecimento de uma
estado estacionario e (ii) da relaxacdo para o estado de equilibrio termodinamico ori-

ginal apos a fonte de alimentacao scr desligada.

International Journal of Quantum Chemistry, 62 (4), 363-72 (1997).
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We consider the emergence of the so-called Frohlich's effect in a biosystem,
a phenomenon consisting of the condensation of excitations in the polar
vibrational modes lying at the bottom of these modes’ frequency spectrum.
This complex bchavior of the system, which seems to have relevance in
bioenergetics, may arise in open biomaterials, which is governed by nonlin-
car kinetic equations, and when under the action of a pumping source of
metabolic encrgy. We analyze here in detail the dynamics of (i) the transient
stage before the establishment of a steady state and (ii) the relaxation to
the original thermodynamic equilibrium state after the pumping source is

turned off.

Key words: bioenergetics; organized collective behavior; nonlinear kinetic equa-
tions; nonequilibrium thermodynamics; informational statistical thermodynarmnics.
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1. Introduction

In 1969, Herbert Frohlich [1] advanced the idea that in systems not near equilibrium
they may follow organized collective behavior at a macroscopic level. At that time, he
speculated on the possible occurrence of such a type of behavior in biosystems where
longitudinal electric oscillations are present. The question was further developed by

him {2,3] and other authors [4-6].

Frohlich’s effect consists of that, under appropriate conditions, a phenomenon
quite similar to a Bose condensation may occur in substances that possess polar vibra-
tional modes. This phenomenon shall also be referred to as Frohlich's condensation.
If energy is constantly pumped into these modes and thence transferred to other de-
grecs of freedom of the substance (a thermal bath), a stationary state may be attained
in which the energy content of the vibrational modes is larger than in thermal equilib-
rium. This excess energy is found to be channeled into the modes lowest in frequency-
similarly to the case of a Bose condensation-provided that the rate of pumped energy
exceeds a critical value, Under these circumstances, a random supply of energy is thus
not completely thermalized but partly used in maintaining a coherent state of these

vibrational mocdes.

Several approaches to Frohlich's effect were developed during recent decades [1-6].
One is based on the treatment of the question in terms of the emerging Informational
Statistical Thermodynamics [5,6]. All cases involved detailed study of the stationary
state of Frohlich's condensation. In the present article, we report a complement to
such work including an analysis in depth, based on Informational Statistical Thermo-
dynamics, of the transient regime that develops prior to the attainment of the steady
state and the return of the system to its initial conditions following the suppression of
the pumping source of metabolic energy. This is described in the next section, while
in the third section, we summarize and discuss the results, adding some concluding

remarks.
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2. The Model and the Transient in Frohlich’s Condensate

Let us consider a model biosystem consisting of a linear chain that can sustain lon-
gitudinal polar vibrations (e.g., the co-stretching of amide I groups in a-helix protein
chains) in interaction with a thermal bath of acousticlike excitations. The polar modes
are assumed to interact with an external pumping source as well. For the sake of con-
ciseness, we restrict the description of the model only to some physical aspects at a
qualitative and semiquantitative level. Explicit expressions for the system Hamiltonian
and application of Informational Statistical Thermodynamics, both to be used in what

follows, are given in |5] and [6].

The interactions between the polar inodes and the elastic continuum are described
by an anharmonic potential which contains linear and nonlinear terms, the latter lead-
ing to processes involving three-quasiparticle collisions, namely, two polar phonons in
the chain and one acoustic phonon in the bath. These processes (at a microscopic level)
play a fundamental role in the model, for they are responsible for the introduction of
non-linearities (at a macroscopic level) in the dynamical equations governing the ther-
modynamic cvolution of the system. The pumping action of the external source is
determined by coupling terms between the source and the chain, which lead to the

generation of single and double excitations [6].

We also assume in the model that the acousticlike modes act as an ideal thermal
bath kept in a state of equilibrium at a constant temperature, say Ty. Accordingly, the

population of a vibrational mode of the bath is given by the Planck distribution

ng = [exp(BhQy) 17", (1)

where Q, is the mode frequency, B = 1/(ky1y), and kg is the Boltzmann constant.
The equations of evolution for the populations of the polar vibrations are obtained in
the framework of the nonequilibrium statistical method described in [5], where these

equations are given (cf. Eq. (8) in [5]).

The equation for the rate of change of the population of a phonon mode of wave
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vector q has the typical form

dvg

‘E=Iq—fhy- (2)

In Eq. (1), I; stands for the pumping term (coupling to the external sources of
metabolic energy), which is composed of two terms, corresponding to generation of
single and double excitations-the latter one (not present in [5| but considered in [6]
implies a very effective mechanism of positive feedback that largely enhances the ef-
ficiency of the pumping action of the source. The last term 7, on the rhs of Eq. (1) is
a collision integral, which is composed of the five terms described in [5]; it consists
(in the approximation to the kinetic thcory that we used) in contributions which are
the equivalent of the Golden Rule of Quantum Mechanics averaged over the noncqui-
librium ensemble that the method introduces. Of the five contributions, which are a
result of the anharmonic interactions between the chain and the elastic continuum,
two are linear in the populations of the polar modes, which account for the usual re-
laxation of the excess energy of those modes toward the thermal bath. The other three
~ terms are nonlinear in the population of the polar phonons, and although they also
involve relaxation to the surrounding bath, they contain, among others, the nonlinear
contributions that are responsible for the complex behavior of the system, i.e., the
" emergence of Frohlich's effect. This was shown in [5] and [6].

The rate Eq. (1) consists of a complicated set of integrodifferential equations for the
-~ populations of the modes, since the collision integral involves a sum over all modes
contained in the Brillouin zone. We circumvent this difficulty by resorting to a sim-
plified model. Taking into account the established fact that high-frequency modes
transfer energy to the low-frequency ones, we introduce a crude model in which we
. consider a representative set of energy-transferring modes, with a unique frequency
wo and contained in a region Ry of the Brillouin zone, and a representative set (with
frequency wi) in another region R of the Brillouin zone. We arc then left with only
two coupled equations for the two sets of representative modes in the model, namely:
d 1

EVO(r) = Iy - T—U[Vo — vl — ginef" By (t) + ginvi(t) — givo(H)wvi(t)  (3a)
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and
;?Vl(t) . %I.Vl — it — gonePt v (t) + gonvi(t) + govo(t)vi (1), (3b)
where
A = wg — W n = [exp(BhA) — 1] !,
Tl = 21; lq Z| m“{nq’?q, 4118 (Qg.1q — Qg — w))

FNally q,:(s(Qq.-—q*Qq*(Ui)} (i =0,1)

Ii = IWD 12 K g ( “Kagirq(i + W)l 1+ vi(t) + va(t)], (t=0,1)
2’ (2125
g(.) = h |Vqlq| (‘)(Qq, o A) '
g-Rop
277 (2
g1 =37 2 WVaul*6(Qgq - 4).
- qeER,

vy and vi" are the distributions in equilibrium, and g, and g, label each type of repre-

sentative modes, The symbols V') and V)

¢ are the matrix elements of the anharmonic
potential for the interactions between the chain and the elastic continuum, W, and
W(,i“) represent the coupling strengths for the interactions of the source with the chain,

and K (w) stands for the intensity of the source over the spectrum of frequencies.

It is worth mentioning that quantities g and g;, are a measure of the intensity of the
coupling between the two sets of modes. These quantities (i) depend on the strength of
the interaction contained in the matrix element Vq involve (ii) the region in cnergy-
momentum space available for the three-quasiparticle scattering events determined
by the energy conscrving delta function (momentum conservation is automatically

accounted for in the expression for the Hamiltonian of the system [5, 6]).

More specifically, we consider the model of a one-dimensional chain embedded in



an elastic continuum, with the following dispersion relations:
Wy = wp - xq°, (4)
for the polar modes in the chain, and

Q, = 5q, (5)

for the acousticlike vibrations of the surrounding elastic medium.

For the sake of definiteness, we consider in our calculations the following set of
values for the system parameters: w = 3.1 x 10" rad/s, ¢« = 2.4x10 2cme<s 1, go = 0,
g1 = $/o¢ = 6.6 x10°cm~', a = 27 A, and . = 1500 A. The parameters a and L are
the crystallographic unit cell extension and the chain length, respectively. The values
that we have taken for a and L as well as that for wy, are typical of a biomolecule
such as the myosin molecule [7]. As a typical value for s, we have taken that of the
speed of sound in liquids [8]. Finally, the value that we chose for « is such that if we
take go = O as the representative mode in region Ro(|gol < s/«) [5] then the delta
functions in the quantitie g, and g, of Eqgs. (2a) and (2b) couple that mode to just one
mode g, = s/« in region R,(|q;| < s/«). In fact, mode —¢q,, is also coupled to mode
4o, However, the equivalence between the symmetric modes +¢g, allows us to consider
only two kinetic equations Coupling modes g and g, which will be and denoted from

now on as mode 0 and mode 1 respectively.

To further simplify matters, but without losing the fundamental features of the
model, we take the matrix elements V' and W' (i = 1,2) as constands and write
Varal? = VA1, IVg5a12 = AIVi, IWER 12 = (wy 12, and 1Wg,42) |2 = dw|Wi12/L, with
Jj=1,2. We introduce a further simplification: Kg.4, = Kg(wy), withi =0, 1, i.e, we
assume that the intensity /K does not change appreciably over the range of frequencies

of the polar modes’ spectrum.

Using the assumptions above and introducing the time scale ¥ = #i%s/(L|V;]°) and

the dimensionless quantities t* = t/%, 7} = 7;/7 and §; = |[W 2K, i = 0,1, the



kinetic equations, Eqgs. (2a) and (2b), can be rewritten as

d : o
dt*vo =[l+w[l+(1+ 'F/Z)]V() + vy )8 — (T(:;)I[VD — qu]
— 2Anefiy, + 2Anv - 2Avyvy  (6)
and
d ) . eq
Frridie 1+l +rve/2+ (1 +r)v]S — (T)Hvi v

t {\T]CBﬁAV{] — Anvl + /\V(_)V] , (7)

where ¥ = as/ (Tx).

Next, we proceed to analyze the steady-state solutions of Egs. (3a) and (3b). To
provide better evidence of the emergence of Fréhlich’s effect, we further simplity our
analysis by considering from now on that only the set of polar modes higher in fre-
quency (identified by the index nought) are pumped by the external source, i.e., we set
Sy = 0in Egs. (3a) and (3b).

The steady-state solutions of the nonlinear dynamical system, represented by the
coupled set of Eqs. (3a) and (3b), follow by setting the rates dv;/dt* equal to zero. The
resulting system of algebraic equations admits two distinct solutions that we denote
by v = (v§ ,v) ) and ¥ = (v{.,v{\). Figure 1 shows these solutions as functions
of Sy for the choice A = @ = 10-2 (a variety of choices of parameter values, each

parameter ranging independently from 1072 to 1, leads to similar results).

An investigation of the local stability of the steady-state solutions was performed
on the basis of the usual lincar stability analysis. This analysis shows that Y as well
as the branch of »? corresponding to (unphysical) negative values of v, are always
unstable. On the other hand, the branch of /9 corresponding to positive values of both
v§, and v}. is always stable, being either a stablc node or a stable focus (after using
the nomenclature of [9]. Thus, only the physically meaningful steady-state solution is

mathematically stable.



209.

Prior to a discussion of the emergence of the Frohlich effect, we consider first the
asymptotic behavior of the solution of Egs. (3a) and (3b) for large values of S, i.c,,
for values of S, greater than =~ 184, and, we recall, A = @ = 1077 [this range of S,
corresponds to the unstable branch of the steady-state solution ¢! in Fig. 11. In those
cases, there is no possibility for the system to attain a steady state: At long times, the
population v, tends to saturate while the population v, keeps growing exponentially,
In fact, making dv,/dt* = 0 and considering that v = v,, we get from Egs. (3a)
and (3b)

HFTS()
foee] —+ 8
Vo = N oA (8)
and
d wrSy | ) C
— - - .)
= (53 AL )

aresult that can be verified once numerical solutions of Egs. (3a) and (3b) for any value

So greater than = 184 are obtained.

Let us consider next the question of the onset of Frohlich's effect. Figure 2 shows
the stable steady state populations as functions of the pumping parameter Sy, for
A= = 10 2. Inspection of that figure tells us that the steady-state population v{ of
the lower-frequency modes overcomes the corresponding population of the pumped
modes, v, for Sy above =~ 41. This value of the pumping parameter can be taken as a
threshold value for the onsect of Frélich’s effect in the present case when A = w = 1072,
Beyond such a threshold, there follows a large increase of v{, and, e.g., for § = 183,
the modes in the condensate attain a steady-state population near three orders of

magnitude larger than that of the pumped modes,

We are now in a position to examine the transient behavior of the system as it is
driven by the external source of energy from the initial state of equilibrium to the final
steady state. As an illustration, we consider the following set of parameter values:
So = 180 and, as before, A = w = 1072, Figure 3(a) and (b) shows the evolution of the

populations during the first stages of the pumping process. That figure shows that the



210.

population of the modes labeled 0 (Pumped modes) increases very rapidly and then
relaxes, also rapidly (peak “width” At* = 2), to levels comparable to its final steady-
state value (VSI =~ 100). On the other hand, the population of the modes labeled 1 starts
to increase significantly only during the fist relaxation process undergone by type-0
modes. However, contrasting with the behavior of the pumped modes, type-1 modes
evolve very slowly toward a final population (v{ = 1.7 x 10%). This is confirmed by the
numerical calculation: For example, the Population of type-0 modes at t* = 15 differs
by = 4% from its steady-state value, whereas the corresponding difference for type-1
modes is = 84%.

For a more detailed analysis of the transicnt process, let us rewrite Egs. (3a) and (3b)

in the following form:

d 1
e Vo = r{:’)lbb + r(t;db + rouath + r(r)xer transf (10)
and
d _ lbb fdb bath + - net transf (] 1)
Vo = + i + ¥y r .

where the term

|bs - 30

in Eq. (4a) represents the rate of population growth of type-0 modes due to the

production of single excitations by the external source; the next term,

% = wSol1+ (1+7/2)v0 + 701,

is the contribution to the rate of population growth due to double excitations (con-

taining the feedback effect); the third term,
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is the rate at which the population of the type-0 modes relaxes to the thermal bath;

and, finally, the fourth term,

.r(!)'le'r ransf - —2}\[)’}0.“"&\/0 —nvy + V0V1] '

is related to energy transfer from type-0 modes to type-I modes in processes mediated
by the anharmonic interactions between the chain and the elastic continuum. In this
sense, r net tran,f is a measure of the net rate of population exchange between the
two sets of polar modes. Correspondingly, we can identify on the rhs of Eq. (4b) the

following terms:

.r]abs = Sl
b = @$ (1 +7rve/2 +(1+7)v],
bath _ eq
o= ——Ivi -l
T
and
r;‘lct transf = A[neﬁhav() — r"vl + V()V] ] .

The evolution in time of the rates defined above is displayed in Figure 4. Taking
into account the linearity between the rates T}mh and the respective populations v;, we
can also follow in Figure 4 the time evolution of the populations. As can be noticed by
inspection of the figure, the energy exchange between the two sets of modes begins
to be effective only when type-0 modes (pumped modes) become significantly popu-
lated. The exchange proceeds at high rates even after the decrease of vo has occurred,
due to the high levels of population then reached by type-1 modes (the modes in the

condensate).

Finally, we analyze the relaxation process that takes place in the system when the
power source is turned off after the condensation has taken place. Figures 3(c) and (d)

and 5 show the time evolution of the populations v; and of the rates 2™ and ynet transf
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We can distinguish two time scales for the relaxation process for type-0 modes. The
first, very short (At* = 0.02) corresponds essentially to a fast energy transfer from the
pumped type-0 modes to type-1 modes. During this process, the population of type-0
modes is reduced to = 50% of its initial nonequilibrium value [Fig. 3(c)]. The second
time scale, much longer (At* = 20), is characterized by energy transfer to (and also
from) type-1 modes and to the bath, at very small rates [compared to those in the first

stage, see Fig. 5(a) and inset].

On the other hand, there are no appreciable changes in behavior for the type-1l
mode population during the relaxation toward equilibrium. Although type-1 modes
arc favored by an cnergy flow from type-0 modes during the very first moments of the
process and, later on, disfavored by a reverse flow [Fig. 5(a) and (b)], the relaxation
can be considered as taking place in an exponential-like fashion starting at the initial

time [Fig. 3(d)].

The transient regimes can be appreciated globally (pumping and relaxation stages)
in Figure 6. The figure shows the phase trajectory described by the system as it evolves
from the equilibrium state to the nonequilibrium Frohlich's state and its return again
to the equilibrium state after suppressing the pumping action of the external source
of energy. The main features of the evolution of the populations, as determined by the
nonlinear coupling between the two sets of modes, can be distinguished clearly in the
“hysteresis loop” that can be observed in Figure 6. In particular, we can identify the
initial growth of the type-0 mode population and the subsequent energy transfer to
type-I modes, during the pumping process. It can also be noticed that the population
of the type-1 modes remains at levels close to that of the condensate during the very
first moments of the relaxation process following the turning off of the external energy

source, at the expense of the flow of energy it is receiving from the type-0 modes.

In closing this section, we present numerical estimates for the transient times as
well as for the energy consumption during the pumping process. On the assumption
that the relaxation time to the bath, T,, is of the order of tens of picoscconds [10],
we can estimate the time scale T to be about 20 ps. Using this value, in the case of

A =w = 0.5, we find a time tp =~ 0.17 ps for the system to reach a population ratio
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v1/ vy, when all modes are pumped at equal rates Sy = §; = 950. On the other hand, for
the process (if irreversible relaxation that follows after turning off the power source,
we can estimate that it takes the system a much longer time, tz = 0.68 ns, to get its
population reduced 1o a level of about 10% above the equilibrium value.

Now let us make an estimate of the cnergy to be expended by the source dur-
ing the pumping process. Using the given time scale T = 20 ps, we tind that a power
RwoSe/T = 9.7x10'? eV/s per mode should be delivered by the external source (we are
considering, as above, S = §| = 950). For a system such as the myosin molecule, with
two x-helices, cach containing three chains [7], there would be 6(L/a) = 330 modes
per molecule to be pumped by the external source. This implies an energy consump-
tion of about 6(L/a) x (AweS/T)tp = 5.4 x 10° eV/molecule, as the system is driven
from the initial state of thermodynamic equilibrium to a state in which the population
ratio attains a value v, /vy = 10, after an elapsed pumping time tp = 0.17 ps. Assuin-
ing thart this energy is provided by means of the hydrolysis of adenosine triphosphate
(ATP), which under metabolic conditions in a cell can deliver 0.54 ¢V/molecule [11].
we conclude that = 103 molecules (if ATP per pumped molecule would be expended
in the process. It Should be stressed that, due to the simplifications introduced in
the pre sent illustrative model, this result is an overestimation of the order of magni-
tude [12]. More realistic approaches predict values which seem to be very accessible
for the phenomenon to occur [5].

As a final comment, it is worth mentioning a possible connection between the Froh-
lich’s condensation phenomenon and the propagation of coherent excitations in a bio-
molecule, the so-called Davydov’s solitons [13]. Both phenomena result from the same
nonlincarities in the evolution equations as those we consider in this article. As shown
in[14], the presence of a condensate in the system allows for the propagation of nearly
undamped Davvdov's solitons composed of the low-lying-in-frequency polar modes
excitations in the molecule. This result may be of relevance in the understanding of

energy propagation in biosystems,
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3. Conclusions

The simple but representative model of two coupled sets of modes that we have in-
troduced has allowed us to analyze some relevant features of Frohlich's condensation
phenomenon. As shown, the anharmonic interactions between the polar modes in the
chain with the acousticlike excitations in the elastic continuum provide the necessary
conditions for the system to attain a nonequilibrium steady state as it absorbs energy
from an external source. Above a threshold value of the pumping intensity, the system
can exhibit the phenomenon of condensation of excitations in the polar modes lowest
in frequency. It was considered the role played by the action of a source producing
double excitations, which enhances considerably the population growth rates of the
pumped polar modes, and being capable of suppressing the steadiness of the conden-
sate state. However, it should be stressed that the phenomenon of condensation into

the lowest-in-frequency modes persists even in these circumstances.

We also analyzed the role played by the interactions of the chain with its sur-
roundings in determining the nonequilibrium thermodynamic evolution of the system
during the pumping stage when going from equilibrium to the steady state, as well as
the return of the system to equilibrium, after turning off the external energy source.
We verified that in both stages the anharmonic interactions between the chain and the
¢lastic medium induce a rapid exchange of cnergy between the two types (if modes
once the populations attain large values. It follows that during the pumping process
initially only the population of the pumped modes increases rapidly. Noticeable energy
transfer to the modes of low frequency occurs only after the pumped-mode population
attains a certain threshold value. For the transient stage following the turning off of the
energy source, we found the existence of two time scales characterizing the evolution
of the population of the modes high in frequency: The first, a very short one, charac-
terizes the rapid energy transfer to the condensed low-infrequency modes (since both
modes are highly populated high-energy exchange rates are expected in this case); the
second, a much longer one, corresponds to energy transfer (at low rates) to the bath

as well as to and from the low-infrequency modes. The population of the modes in the
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condensate, on the other hand, relaxes exponentially, without any remarkable change

in behavior.
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FIGURE CAPTIONS

Figure 1: Steady-state solutions of Eqgs. (3a) and (3b) as functions of the pumping pa-
rameter Sy for A = @ = 107 and $; = 0. Attention should be paid to the marked

differences in scales on the vertical axes.

Figure 2: Steady-state populations as functions of the pumping parameter Sy, for A =

w =10 2and S| = 0.

Figure 3: (a, b): Evolution of the populations vy and v, during the first stages of
the pumping process, for A = @ = 10 2, §, = 180, and §; = 0. (¢, d): Evolution
during the relaxation process toward the thermodynamic equilibrium state, after

turning off the external source.

Figure 4: Early stages of the pumping process: e¢volution of the various compo-
nents of the population growth rates for (a) type-0 modes and (b) type-1 modes.

Parameters: A =@ = 10 2, Sy = 180, and §; = 0.

Figure 5: Evolution of the components of the population relaxation rates for (a) type-0

modes and (b) type-1 modes. Parameters: A = w = 107¢,

Figure 6: Phase trajectory described by the system as it evolves from the equilibrium
state to Frohlich’s state and its return to the initial state of equilibrium after
turning off the external energy source. Parameters: A = @ = 1072, §; = 180 and

51 = 0 (pumping stage),
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4.6 Termodinamica estatistica de sistemas complexos

Aplicamos um tratamento termodinamico estatistico ao estudo de um sistema fisico
particular (dois conjutos de osciladores acoplados ndo-lineares) levado para longe do
equilibrio. Tal sistema apresenta um tipo de comportamento complexo consistindo
no assim chamado efeito Frohlich, que leva, em condicoes de estado estacionario, a
um condensacao de fase de nao-equilibrio que se assemelha a uma condensacio de
Bose-Einstein de sistemas em equilibrio. Uma espécie de “modelo de dois fluidos”
surge: a “fase normal de ndo-equilibrio” e o condensado de Fréhlich ou “superfase de

nao-equilibrio”. Trabalhamos com detalhes a termodinamica desse sistema complexo

dissipativo.
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We apply a statistical-thermodynamic approach to the study of a particu-
lar physical system (two sets of nonlinearly coupled oscillators), driven far
away from equilibrium. Such system displays a kind of complex behavior
consisting in the so-called Fréhlich effect leading in steady-state conditions
to a nonequilibrium phase condensation resembling the Bose-Einstein con-
densation of systems in equilibrium. A kind of “two-fluid model” arises:
the “normal nonequilibrium phase” and Fréhlich condensate or “nonequi-
librium superphase”, which is shown to be an attractor of the system. We
work out some aspects of the irreversible thermodynamics of this dissi-
pative complex system. Particular nonlincar properties are discussed and

Lyapunov exponents determined,

Group Home Page: http://www.ifi.unicamp.br/—aurea
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Nowadays Complex Systems constitutes a fashionable area of research, and we

recall that complex systems is a short expression for the correct one of Dynamical
‘Systems with Complex Behavior [1-3]. Particularly, complex physico-chemical and
 biological dyhamical systems are of special relevance, the first ones mainly for tech-
nological interest and the second ones for their relevance related to the origin, evolu-
tion and functioning of life and also for technical-comercial interest in, for example,
bicengineering and medical-imaging techniques.

We first notice that complexity must not be confused with a system being of a com-
é plicated struture: the dynamical system may be quite simply modelled but showing
complex behavior, that is, displaying, in principle, unexpectedly rich and diversified

 characteristics at a macroscopic level of description. A particular example could be

' Lorentz meteorological model — a protype of chaotic (complex) behavior [4]. Other
I
- aspect of complexity is the one associated to selforganization or synergetic ordering

(spatial, temporal, or different kinds of homogeneous stationary states) in matter [5-8].

We address here this latter type of complexity.

1. Introduction

Complexity, it must be noticed, can emerge only in the case of systems governed by
nonlinear kinetic laws of evolution. In the linear domain it is ruled out by Prigogine’s
theorem of minimum entropy production [9, 10], basically because in such conditions
applies the principle of superposition of solutions (of the equations of evolution) and

no synergetically-coherent order can follow.
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The scientific disciplines appropriate to deal with complex behavior in matter
are the Thermodynamics of Irreversible Processes, nonlinear kinetic theories and,
mainly, Statistical Mechanics of systems far from equilibrium which provides an um-
brella for covering the two others. In this case the first one is sometimes dubbed
Thermodynamics of Complex Systems [11].

It is presented in continuation what we consider an illustrative didactical example
of a system with complex behavior, for which it is possible to derive a complete theory

which covers in full all its nonequilibrium thermodynamical and kinetic characteristics.

2. A Model of Coupled Linear Oscillators

For the purpose stated in the Introduction of describing as completely as possible
the thermodynamics and kinetics of the macroscopic state of a complex system,
we choose: (1) The model of coupled linecar oscillators described below, and (2) the
description of the nonequilibrium thermodynamics of its time-envolving dissipative

macroscopic state in terms of the so-called informational Statistical Thermodynamics.

2.1. Thermodynamics of Irreversible Processes

First we notice that the thermodynamics of irreversible processes has had a develop-
ment beginning — if we leave aside the attempts done in the nineteenth century — with
Classical (sometimes referred to as Linear or Onsagerian) Irreversible Thermodynam-
ics (sce for example the classical textbook of Ref. [12] and also [9)). It was extended to

the nonlinear regime mainly by Jlya Prigogine and so-called Brussels’ School (see for
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example Ref. [10]). To account for processes involving not too long wavelength and not
too small frequencies, when classical irreversible thermodinamics begins to fail, were
developed several approaches of which we highlight Rational Thermodynamics [13]
and Extended Irreversible Thermodynamics [14].

Moreover, as Thermodynamics of equilibrium, or Thermostatics, is connected to
the microscopic level of Mechanics by Gibbs ensemble formalism for Statistical Me-
chanics, one may expect something similar for nonlinear irreversible thermodynamics
of systems arbitrarily away from equilibrium. A promising start with a successtul de-
velopment is provided by Informational Statistical Thermodynamics (1ST for short).
IST was initiated by Hobson [15] sometime after the publication of Jaynes' seminal
papers [16] on the foundations of Statistical Mechanics on Information Theory (of
Shannon-Brillouin style [17,18]). It is worth noticing that the above mentioned ther-
modynamic formulations belong, one way or another, to the main four levels listed by
Laszlo Tisza in Ref. |19].

The present day statistical foundations of 1ST arc provided by a nonequilibrium
ensemble formalism referred to as the Nonequilibrium Statistical Operator Method
(NESOM for short) [20-24]. NESOM is based on a variational principle, namely the max-
imization of the informational statistical entropy (MaxEnt for short) [25-28], and can
be considered as belonging to the domain of Jaynes’ Predictive Statistical Mechan-
ics [29-31]. For explicit calculations we resort to Zubarev's approach to this MaxEnt-
NESOM |25-28, 32, 33], by far the most concise, practical and soundly based method.
Moreover, MaxEnt-NESOM-based IST is going to be described as long as we proceed

with the presentation of the physical system we are introducing.
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2.2. The Model and The Evolution of its Macrostate

The moedel system we are considering — schematically described in Fig. 1 — consists
of two subsystems of linear oscillators interacting through an anharmonic potencial.
The subsystem we label as S, is composed of a periodic array of N, oscillators of
equal mass m and frequencies w; with j = 1,2,...,N), and we introduce x; and
p; for the displacement from the position of equilibrium and the conjugated linear
momentum respectively. The subsystem labelled S, is composed of a periodic array
of N» oscillators of equal mass M and frequencies Q withk = 1,2,...,N;, and X, and
Py stand for the displacement and its conjugated momentum respectively.

It is assumed a very good thermal contact between §> and a thermal reservoir,
such that the temperature of S, is always the one of the reservoir, Typ. An external
source pumps encrgy on S, Several realistic systems can be described in this way, for
example, lattice vibrations in near one-dimensional semiconductor quantum wires,
organic molecular polymers, biological polymers, etc.; our model here covers the case
of polymeric a-proteins [35] and acetanilide [36].

The Hamiltonian of the proposcd model is taken as:

where

|
!
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and

H = > Apc®iXiXi v D By X+ 2 @k . 3)
Jkk’ Ji'k Af

The form of Eq. (1) is the appropriate for use in MaxEnt-NESOM in this casc, where Hy
is evidently composed of the Hamiltonians of the free oscillators. On the other hand A’
is composed of the anharmonic interactions (the first lower order contribution), which
are the first two terms on the right of Eq. (3), while the last accounts for the interaction
between the external source (to be better specified later on) and the system, with @
standing for an operator associated to the source with the coupling strength included
init, and we are considering a linear coupling.

Next, for convenience we introduce, first, normal coordinates

Xj =D %qet, pi =2 Pae' (4)
| i

K= 2 Xgre T8, P =Y Pyet®, (5)
q’ q’

where g and g' are wavenumbers in reciprocal (one-dimensional) space, R; and &
the positioning in the lattice of the center of mass of the oscillators in 5§, and S>
respectively, and the sumation runs in the intervals (~1/ay, w/ay) and (—1/a», m/a;)
with a; and a, being the lattice parameters in §; and S,. Second, we introduce the

amplitudes a, and b, and their conjugates a;r, and bji, ,

1/2 1/2
h

P
17\ 2muwy,

(ag+al,), Pg = I (a, —at,), (6)
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1/2 1/2
ﬁqu’
2

: h | s
Xq‘ = 2qu' (bq’ + b qf) ' Pq’ = —1

(by -bl), @

where w, and Q4 are the frequencies of vibration in the corresponding modes, and
next second quantization is used, with aq(afg) and b, (b:;,) then being the annihilation
(creation) operators in mode ¢ in $; and g’ in S».

The Hamiltonian of Eq. (1) is composed in the new representation of the contribu-

tions
Ho = Hog + Hop (8)
. 1
H()S = Z fl.(l)q (H.:;ﬂq + E) , (9)
q
. 1
q’
I:rr:ﬁ{ 'i“Hé‘i‘ﬁ:Q'i‘H(p, (ll)
where
Ay =Y (Vidawbybl., +Vidal, beby + HC.) (12)
44’
Hé = Z (V(;;;;Zﬂ.i:lﬂq'bq—q’ + H-C-) ' (13)
qq’
Hy =3 (Vidagarbl ., + H.C.) . (14)
qq’

We notice that in H’ of Eq. (11) we have kept only the terms consisting of scattering-

like processes (Eqs. (12), (13) and (14), and we have neglected terms involving only
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creation (e.g. a'btbt, etc.) and only destruction of particles (e.g. abb, etc.) which

have no contribution for the phenomena we are going to study. Finally the last term

in Eq. (11) account for the interaction with the external pumping source, namely

Hy =3 (@gal +H.C.) (15)
q

momentum conservation has been considered, and @, (§)) is the second quatization
operator for annihilation (creation) of an excitation of wavevector g in the source, and
the coupling strength with the system is incorporated into it.

Next we need to characterized in MaxEnt-NEsSOM the macroscopic state of the

system, and for that purpose we take as the basic set of dynamical variables
119 = abag) ; Hosl (16)

that is, the occupation humbers in the modes of §;, which are driven out of equilibrium
by the action of the external source, and the Hamiltonian of the system S, since it
remains in thermal equilibrium at temperature Ty; g, as noticed, takes all possible
values in the Brillouin zone.

Therefore, the auxiliary statistical operator in MaxEnt-NESOM (sometimes referred
to as “coarse-grained” distribution or “freezed instantaneous quasiequilibrium” dis-

fribution) is according to MaxEnt-NESOM [25-28] given in the present case by

a(t,0) :exp{—cp(t)—ZFq(t)vq—ﬁoHog}. (17)
‘ q
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We recall the important point that this is not the statistical operator of the system,
the latter being a superoperator defined in terms of the ¢ of the Eq. (17) which is given

by (see Refs, [25-28,32,33)),

t
Os = exp{ln o(t,0) — J dt’ef“"”%lng(t’,t’ t)} : (18)
where
o(t’, t' —t) = ex ——1—(t'—t)ﬁ 5(t,0) ¢ex l(t'-—l‘)fff (19)
AL A S AT @iV X in ]

In Eq. (17) we have introduced the Lagrange multipliers that the variational MaxEnt-

NESOM produces, namely

.
{{fq(t)} . Bo = kBTO} . (20)

and we recall that ¢(t) ensures the condition of normalization of ¢(t, 0), playing the
role of a kind of logarithm of a nonequilibrium partition function, say, ¢ (t) = InZ(t).

Finally we designate by

{{ch(t)} ; EB} (21)

the macrovariables in the nonequilibrium thermodynamic state space (or Gibbs' ther-
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' modynamic space), that is

va(t) = Tr{vye:(t)} = Tr {V,;0(t,0)} , (22)

Ep = Tr{Hose ()} = Tr {Hopo(t,0)] (23)

- where p.(t) is the nonequilibrium statistical operator in Zubarev's approach, and we
PP

recall that g (t) and pg(t, 0) give the same average values for the basic dynamical vari-

ables and only for these (see Refs. |25-28, 32,33]). We are now in conditions to derive

the equations of motion for the basic macrovariables of Eq. (21). Consider first the

populations v, (t) ; we find that

d

(0) (1) (2) .
dtvq(t) = T (Y + 0, () + ], (), (24)

once we use the Markovian approximation in the MaxEnt-NEsOM-based kinetic the-

ory [37], where

JO(t) =Tr{iflﬁ*[u’>q,ﬁ(~,]@(r,0)} =0, (25)
I = Tr{ o 19, Ae w0} =0, (26)
JPy = J@& @y + JE @) + 732 ) + J5E () (27)

and the partial contributions on the right of Eq. (27), arising out of the four contribu-

tions to the interaction Hamiltonian of Eq. (11), are

' ( , . "
1(2) limﬁl)l(ih)"z dat’ EEt '['I'{[qu(tl)(),[”q).{’q”é‘(tpo)}]

— 0
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= lim o ZJ dt’ { et Tr d g (1) o 6(1,0) ] +c.c.}, (28)
]m}(f) Ellnll [ i J dt' et [H (t")o, [H{, ¥q110(L, 0)}]

= (3:;2 Z{'Véfq" [va (14 vy Jvi = (Levg) (L4 vE) viig J 5 (Wa + Q' ~ Qg
q’

- 2|Vci-l—)q'.rf’|2 [(l + V‘i) Vg Va-q' — Va (1 Vg ) (1 +Va_g )J 0 (wq — Qg - Qq“i')} :
(29)
J32(t) = lim [(ih) 3Jf dt’ et Tr{[ﬁé(t’)(,,[ﬁé,ﬁq]]é(t,())}]

£~}

= i SV v (1o va) vl (100} (1) ] (00 - o =

+ [vqf (1 4 vq) (1 + vgf_q) — vy (1 + vqf) v‘;‘,__q] S (mq - wg + Qq:_q)} . (30)

J5 ()

0 ) ’
li_rnm[(iﬁ)_zf dt’ et 'rr{(ﬁgu')u,U’i-_;,ﬁqng(t.mﬂ

Z\ 7)I‘g [( q) (1 + v,{f) v(f#q: - VgVy (1 + vfrq )] o (wq + oy — f).qJ,q:) :

(31)

In these equations the notation O(t), means that the operator O is given in the

interaction representation, that is, its evolution is with Hamiltonian H,, namely
& -y tHo A L +f g
O(t)y = e ®R0Qemtte (32)

In Egs. (29), (30) and (31) v}j is the distribution of the vibrational modes in the ther-

mal bath represented by S, which is being kept in equilibrium with an ideal thermal




reservoir at temperature T, and then it is given by the Planck distribution function

vE = [exp {BohQ,} 117", (33)
with Bg = 1/kg Ty, and the relation
1+ vE=viexp{BohQyl (34)

will be used below.

It can be noticed that the scattering operators in Eq. (27) take in the present case
(use of the Markovian approximation and the property that _L,‘;”(t) is null) the form
of the Golden Rule of Quantum Mechanics however averaged over the nonequilibrium
ensemble.

Using Eq. (34) and taking the cnergy conserving delta-function present in the
collision operators into account, we can rewrite Eq. (27) in the form

c;it v (1) = I;(wy) — :r]; (vy - VEO))

o o, . .
Z |vq(fq) [Vq Vi (eﬂoﬁ(mq Wyr) _ l) — Vg phol(wy—w, }Vq]

X & (wq —wgy —Qy o)

. pBoh{w g —wy) _ SBoklwy—wy)y, |
' | q [quvq (1 e ) + v, — e a Pty

X 8 (wy - Wy + Qyr_g)

2 B Bohlwg+ew,r) : o
qq Va+q' ["’cz"”q (e e TR — 1) — Vg~ Vg 1]



240.

X O ((Uq + Wy — Qq-»—q') ’ (35)

where it has been introduced the relaxation time T, given by

1 27T | (1,7
L 2B, B L BohQy _
T - ﬁ') (O) |qur | qu V“ i qu d (S (wq + (2“’ Qq.'q’)
q ."'VQ qr
(1) 2,8 B >
+2|Vq_q‘ql| qu Vq_qr(') ((1)q - Qq’ - Qq_q’)% ¥ (36)
and vf;o) is the distribution in equilibrium at temperature Ty, namely

v = [exp [Bohawy} — 1] . 61

Moreover, the first term on the right of Eq. (35) is the rate of production of g-mode
excitations in the systems arising out of the contribution of Eq. (28) after introduction
of the spectral representation for the pumping source, as given by

dw

Lleot
= I;(w)e™" (38)

l . - = -~
ﬁTr {Q?f,(t)qﬂqu(t,())} = Oqq' [

On the other hand, the equation of evolution for the other basic macrovariable, i,

¢. the energy Eg of the thermal bath (or subsystem S-) is

d -
E&M=ﬁwHﬁmnﬂn (39)

which is null because of the fact that the thermal bath is constantly kept in equilibrium
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with the ideal thermal reservoir. In the equation above
JE@ = = Y hw, U5 0 + IR0 + 13 (0] (40)
q

because it is minus the energy exchanged with §;, and

Eg(t) — Egequin.
Trn

T ) = - 1)

is the term which accounts for thermal diffusion to the reservoir with a thermal dit-
fusion time Trp ; the assumption made implies that this thermal diffusion effects is
sufficiently rapid for keeping $, constantly in equilibrium with the reservoir.

To proceed further in order to obtain numerical solutions we introduce: (1) the

dispersion relation

wg = wp — xlql”, (42)

a reasonable approach to the realistic ones; (2) a Debye model is taken for 52, 1.c.
Qq = s1q'(, with a cut-off frequency (p; (3) the matrix V,,) and V,;if are taken outside
the summation (integration) sign in the spirit of the mean value theorem of calculus

and indicated by V¢ and V@ and we introduce the parameter A = [V V1) |2: (4)

we define a scaling time T given by

) Liv2
Tl =

hZs 43)
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where L is the length of the onedimensional sample; and (5) is defined the adimensional
intensity I,(w,) = TI,(w,). Using the five items above and after performing the
integrations in Eq. (35), we obtain that the equations of evolution for the populations

of the vibrational modes of S, are

d - _
d‘V|Q|(t) = ]|¢{| - y(’QI) (qul(t) V[(q|))
As | Vie-a® Vigi () i (i
+2£X|q| —-s|1-e ﬁoﬁS(Zlql—— M 1 — eBors(2lai %) + Vigl (E)V) g 5(1)
AS[1—0(|QI_6{B+£)J [ Vigi _s(f) v, (f)
(44 t q|
- 2x|q| + s 1 - eﬁoﬁs( a5 T _ o -Bohs(2lal+%) + Vigi (E)Vigy, £ (D)
(44)
where = t/T, and
Bohw, _
2l ) @9

y(aq) =
(

El"(]ﬁlaqﬂ sg—uyg| 1) (eig_lﬁlqu"'sq_(uﬂl " _l.)

In this Eq. (44) the last contribution on the right side of Eq. (35) is not present,
because it is null as a result that energy conservation in the scattering event, repre-
sented by the delta function, is not satisfied. Moreover, 6 is Heaveside step function,
which takes care of the fact that for modes with wavenumber |g| + s/ o larger than the
Brillouin wavenumber gqp are not present.

A relevant fact can be noticed in Eq. (44), namely, that the equation of evolution
for the population of a given mode [gq] is coupled only to the equations for two other

modes, namely those with wavenumbers |g| — s/« and |gq| + s/o. This is a result of
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energy and crystalline momentum conservation, and implies then that the modes are
coupled in independent blocks involving a finite number 71 of modes:

+lql, gl = (s/x), ..., tlq| + n(s/x), with

n=\{2qga/s], (46)

where, we recall, gg = m/a,, and | x] stands for the greatest integer not larger than x,
this because of the limiting wavenumber upper value set by gg.
Furthermore, we notice that a direct calculation tells us that the population v, (t)

and its associated Lagrange multiplier F,(t) are related by the expression

Va(t) = Tr {V,0(t,0)} = [exp {F () — 1} . (47)

It is worth noticing that this Lagrange multiplier can be alternatively written in

either of two forms, namely

Fya(t) = Bolhwy — pg(D)] , (48)

introducing a so-called quasi-chemical potential per mode, u,(t), as done by Lands-

berg [38] and Frohlich [39], or

hwy,

il S 9
RAGE (49)

Fq(t) = ﬁq(t)ﬁwq =
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introducing a quasi-temperature per mode as it is done in the physics of semiconduc-

tors [40], and in radiation theory by Landau and Lifshitz [41].

2.3. A Specific Case

We proceed next to obtain numerical results which illustrate the previous theory, which
will show how complex behavior in this system may arise. For that purpose we use a
set of parameters typical of biopolymers [35], namely

wy =108 1 s=10"cms!; (50)

L]

a, =100 A; x=019cm’s™'; (51)

and then g = 3.14 x 10° cm~!. With these parameters the number 7 [cf. Eq. (46)] of
coupled modes in each independent set is 7 —= 12. The numerical results are shown
in Figs. 2 to 5.

Using the scaled time t = t/T with T defined by Eq. (43), and A = |V V|2 both
already defined, we look first tfor the steady state which sets in, after a certain transient
has elapsed, under the application of a constant pumping intensity I, = 71, which we
take as being the same for all mode g. The result is shown in Fig. 2; for simplicity we
have chosen the set which includes the center zone mode g = 0 and then each curve
corresponds to the symetrical modes +|qg,{, which we have labelled from « — 1 (the
lowest frequency mode in the set, g, = 5s/a) to k = 6 (the highest frequency mode
qs = 0). We have taken T, = 300 K and, for illustration, we have fixed A as cqual to 1.

This Fig. 2 evidences the complex behavior of the system when sufficiently far from
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equilibrium: after a certain distance from equilibrium is achieved, roughly for I ~ 10%,
the expected similar increase in population of all the modes is drastically altered, with
the mode lowest in frequency (population v;) largely increasing its population at the
expenses of the other modes higher in frequency. A calculation for all the modes is
shown in Fig. 3, for I = 2.6 x 10°, where is shown the comparison with the result which
follows for A = 0, i.c. in the absence of the anharmonic interactions in FI5 and Hj of
Egs. (13) and (14).

This complex behavior is what we call Fréhlich effect [39], sometimes referred
to as Bose-Einstein-like Condensation in nonequilibrium conditions. We can see by
inspection of Fig. 3 that we can talk of a kind of a “two fluid model”, as in the theories
of superfluidity and superconductivity; we have indicated the “normal fluid” region of
modes and the “super fluid” region we called the Fréhlich condensate. In this case the
complex behavior is a result of the nonlinear contributions to the kinetic equations
of evolution, i. e. those contained in the collision operators Jgfi)(t) and ,]éﬁ’(t), and

proportional to A in Eq. (35), which contain the term

—va(t)vy (1) [1 —exp {-Bohl(w, — wa)}] (52)

which is positive for w, < w,, and then mode g is “fed” by mode g’, while for w, >
wy the contribution is negative, and mode g “feeds” mode q’. In Figs. 4 and 5 it is
shown the evolution of the quasi-temperature of Eq. (49) and of the quasi-chemical

potential of Eq. (48) for the modes described in Fig, 2.
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3. Statistical Thermodynamics
of Frohlich-Bose-Einstein-like Condensation

We consider now the thermodynamics of the Frohlich effect. The informational

entropy in IST is given by [23, 24,4 2]

S(t) = _Tr{gz(t)ﬁgz(t)]n Qg(t)} : (53)

where gp.(t) is a time-dependent projection operator (it is characterized by the non-
equilibrium state of the system at any time t), defined in Ref. |26], which has the

property that
p(t)Ing:(t) =1Inpg(t,0), (54)

and we recall that g (t) is the systems’ nonequilibrium statistical operator in Zubarev's

approach, and ¢ is given in Eq. (17). Hence,
S(t)=—-Tr{e.(t)Ing(t,0)} = p(t) + %:FCi(t)vq(t) + BoEg , (55)
where, we recall,
¢b(t) zlnTrexp{—qu(t)ﬁq—ﬁoﬁog} = ln Z(t) (56)
.4

is the logarithm of a nonequilibrium partition function which we have called Z(t).

It can be shown that this informational entropy has a particularly differentiated
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 dependence on A only after the onset of Frohlich effect, i.e. for, roughly, I ~ 10%
resulting in that the informational entropy decreases for increasing values of A (which,
.. we recall, measures the strength of the nonlinear contribution responsible for the
complex behavior of the system): this can be interpreted as some kind of increase in
order, or of increase of information as a result of the formation of Fréhlich condensate.

To characterize this point, we introduce the order paramecter

k) 55
S5¢ — 8§

A(A) = —,
) =g

(57)

!

E where S3* and S3° are the entropies in the steady-state for A = 0 and A = 0, which is

- shown in Fig. 6, where it is evidenced the above mentioned characteristics.

Next we go over the function informational-entropy production given by

dvq dvq t) vq(t) +1
- Z‘ v (t)

mnziﬂn=2&u : (58)
dt 2

where we have used Eq. (47), and the fact that Ep does not change in time. In Fig. 7

it is displayed the evolution of the informational entropy-production (the full line),

[ =2.6x10° ie. beyond the onset of Frohlich effect), which becomes null when the

steady-state is attained as it should.

IsT-entropy production has two contributions:
a(t) = a{t) + T.(t), (59}

consisting of the so-called internal one, @;(t), which results from the internal inter-
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actions in the system, and the external one, @.(t), due to interactions with the sur-

roundings, in this case with the source and the thermal reservoir. They are given

by

Gi(t) = 3 [Fa(t) — Boheog] [J2(0) + I (1) + T (1] (60)
q

(1) = ZFq(t)Jm(t) + BoJip (1) = D Fa (O JE @) - By (1), (61)
iq

whose evolutions are indicated in Fig. 7, and where it is clear that ¢;(t) is definite
positive and at the steady-state o.(t) = —da;(t). The positiveness of &;(t) can be
considered as a manifestation of a kind of H-theorem in MaxEnt-NESOM-based 18T,
We can in this figure see the relevant point that in the presence (A = 1) and in the
absence (A = 0) of the nonlinear contributions responsible for Frohlich effect, the total
production of informational entropy is the same (and this is valid for any A). This is
a consequence (Cf. Fig. 9 below) that the nonlinear terms do not produce dissipative
effects but redistribute the energy, without loss, between the polar modes.

We consider in continuation two additional important results in 18T [23], which are
generalization of those of Generalized Irreversible Thermodynamics [5, 10]. One is the
criterion for evolution: the change in time of 1ST-entropy production can be separated

out into two parts, namely

d

- d; . d
—20(0) = 225 () + Lo () (62)
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where

de _ . ,
2,0 = Zth“(t)dtv"(t) (63)

H‘i o (t) = ZF,; vq(t) (64)

that is, the change in time of the informational-entropy production due to the change
in time of the Lagrange multipliers, and the other due to the change in time of the basic
variables (the populations), and we recall that dEg/dt = (. After a simple calculation

of Eq. (63) using Eq. (47) we find that

de ., o 1 d
oit) = %‘vq(t)(vq(t)-kl) (dt ‘f(”) =0 (6>)

verifying for this system the generalization [23] of Glansdorff-Prigogine’s thermody-
namic (originally called universal) criterion of evolution. That is, along the trajectory
of the macrostate of the system in the thermodynamic (or Gibbs) space of states, the
quantity of the Eq. (63) is always non-negative, a quantity which in classical Onsagerian
thermodynamics is the product of the change in time of the thermodynamic forces
times the fluxes of matter and energy |5, 10, 23].

Finally, we look for the criterion for (in)stability, which requires the analysis of the

quantity called the excess of entropy production. First we introduce the quantity

e
5250t < | [ §28(t)

1 85
B 2 5vq(t)6vqr(t)] Ava()Avy (L), (66)
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where Av,(t) represents at a later time ¢ the value of an imposed arbitrary deviation
from the steady-state of the system (6°S is the second functional differential of the

IST entropy). A direct calculation tell us that

5251(1') _ (5qq’ (67)
Sva()dvy (£)  va(t) (v +1)°
and consequently
ls2s5(0) = —1Z |Avg(t)]* <0 (68)
2 2 7 Lva (vi +1) ‘7 -

what is a manifestation of the convexity of the maximized informational entropy.
Differentiation in time of Eq. (68) introduces the quantity called excess of ¢ntropy

production function, namely

_1ld, d A _
52a (F) 5750 S(t) %V +1)dt (L) - ZAFq(t)Avq( ), (69)

a quantity shown in Fig. 8., We can see that this quantity is non-negative, and therefore

%525‘(” 520 (t) <0 (70)
is always non-negative and then, according to Lyapunov theorem in linear stability
analysis (see for example [5]) the macroscopic state of this system displaying Frohlich
cffect, is always stable. This is a manifestation of the gencralization in 1ST [23] of

Glansdorff-Progogine’s (in)stability criterion |5, 10].
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The stability of the macroscopic state ot the system can be characterized in an alter-

B native way, consisting in that -- for the particular present case — it can be proved a gen-
‘ eralization of Prigogine’s theorem of minimum entropy production, which ensures the
.l stability of any thermodynamic system in the immediate neighborhood of the state of
equilibrium, i. e. within a strictly lincar (or Onsagerian) regime of classical irreversible
thermodynamics where Onsager's reciprocity relations are satisfied [5,10]. The the-
orem proves that in Onsager’s regime and in the generalization to 1ST [23], ¢° = 0
and d6®/dt < O arc always satisfied and ensure the stability of the macrostate. In
the model we are presenting it can be verified that in any condition, that is even far
away from equilibrium, and then in the nonlinear regime outside Onsager’s domain,
the condition above is satisfied everywhere, as shown in Fig. 7, and then &; plays the

role of a thermodynamic potential whose minimum defines an attractor for the steady

states of the system.

4, Further Aspects of Frohlich-Bose-Einstein-like Condensation

First we notice that of the three contributions implying relaxation processes, J57', Jﬁ),

and Jf(f-,) |[Eqgs. (28), (29) and (30)] the first one gives rise to the one expressed in terms of
the relaxation time 1, [y (igl) in Eq. (44)], while in the other two correspond in Eq. (44)
to the terms with cocfficient A. They arise out of the interactions with matrix elements
A and B respectively in the Hamiltonian of Eq. (3). It can be shown -- see Fig. 9 —
that jﬁ) is exclusively responsible for dissipation, while the other two contributions
(with A) produce only redistribution of energy among the modes: the lines with open

circles, the sum of all three contributions for A = 0, and with triangles, for A = 1,
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coincide. Morcover, for g = 2.6 x 10° cm™! or w = 8.7 x 10'2 Hz (cf. Fig. 4), the
contributions of J,;» plus J43 are, for A = 1, positive, that is, they act as a source term,
the one in fact responsible for the “feeding” of the modes in the Frohlich condensate,
resulting in the large increase of their populations.

Furthermore, we are dealing with a nonlinear dissipative system and to it applies
other relevant results in Nonlinear Science [43]). As Nicolis and Daems noticed [44]
the equations of evolution [Egs. (35) or (44)] arc nonlinear owing to the cooperativity
inherent in the interactions. Moreover, the dissipative character of the set of equa-
tions is reflected in that when embedding the equations of evolution into the space of
nonequilibrium thermodynamic state spawned by the set of variables of Eq. (21) one
has, on average, a contraction of a volume element each point of which follows the

evolution laws. This very important property is shown to be equivalent in the case of

Frohlich condensation to

L (f e 0ty 0 @y 2) s
t—mLOdt {Za_vqjq () + 5 L () + Jrp ()] ¢ <0, (71)

q

where the latter contribution is null because of Eqg. (39), and the expression between
curly brackets is the so-called divergence of the evolution operator of Egs. (24) and
(39) [43].

We have that

—*“[J“) t) + JP )] = —%Tt;l(t) Z IV“’ [1 + Vg (t) + v";_q,] 5(Qq-g + Wg ~w

ZI ml"—’[ (t) —vg_ ]6((2,;, g — Wy + Wy)
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47T 7Y o
o 0 Vi 12 v (t) = VE, 1| 6(Qqug — g — wq) = Dy(t) .
7 <

(72)

These quantities D,(t) arc predominantly negative for any t (they are shown in
Fig. 10 for a particular value of the intensity) and then Eq. (71) is verified.

Let us consider the [.yapunov exponents, A;, of the dynamical system when it has
 achieved the steady state, that is the eigenvalues of the linearized evolution operator,
| which are given by Eq. (72) once v, is taken in the steady state. They are given in Fig. 11

for a range of values of the intensity of the pumping source. Inspection of this Fig. 11

tells us that the Lyapunov exponents are negative, what then ensures the stability of
' the solution for any value of the intensity, a point we have previously demonstrated
f through an alternative treatment. Other interesting point is that the modulus of the
one corresponding to the mode labelled 1 (the one in Frohlich condensate) is very
small. This has the consequence that, since the population v, in the steady state can
be shown to be proportional to the inverse of the modulus of Ay, then it is the very
large one corresponding to the mode in Frohlich condensate. Moreover, Fig, 12 shows
the sum of the Lyapunov exponents, namely the divergence of the supervector corre-
sponding to the different contributions of the evolution operator [Cf. Eq. (69)], which
is negative and increasing in modulus with the pumping intensity. This points to the
fact that the trajectories are winding towards an attractor consisting in the Frohlich-
Bose-Einstein-like condensation. Hence, this indicates an increasing contraction of the
elementary volumes in the space of thermodynamic states with increasing intensity

of the pumping source. This is related to the interesting fact that the condensation
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becomes more and more effective, in the sense that the ratio — for each intensity — be- ‘
tween the number of excitations in the condensate and the total number is increasing !
with I, what is shown in Fig. 13. Again there is a similarity with Bose-Einstein con-
densation of bosons in equilibrium where the number of particles in the condensate
increases with decreasing tempcerature.

We notice that in this case, with all Lyapunov exponents being negative, Kolmogorov
entropy [43] is null, and then, as noted before, this implies that the trajectories are
stable, the system does not produce information by itself (no selforganization follows)
as would be for positiveness of some Lyapunov coefficient, but the system shows
loss of information as evidenced by the increase in time of the informational ¢ntropy.
However, as described by the order parameter of Fig. 9, with increasing nonlinearity
(increasing values of A) the informational entropy, for a giving pumping intensity,

diminishes implying in smaller loss of information as ordering increases in the form

of a more “dense” Frohlich condensate, as noticed above.

5. Summary and Conclusions

Summarizing, to illustrate the thermodynamic aspects of systems with complex be-
havior, we have resorted to a particular model of linear oscillators coupled through
anharmonic interactions. It can be a good representation of vibrational modes in
quasi-linear semiconductors (the so-called quantum wires), molecular polymers, and
biopolymers. The system is driven out of equilibrium by an external pumping source

of energy, for example, illumination by a constantly applied electromagnetic field, v.g.
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a continuous-wave laser, or in biosystems by a metabolic mechanism, the so-called
dark excitations. One of the two subsystems of oscillators is taken as a thermal bath
at constant temperature, being kept in this condition by a good thermal contact (an
efficient “homeostatic” process) with an ideal thermal reservoir. The other system
can attain high levels of excitation with increasing intensity of the pumping source to
which it is coupled (see Fig. 1).

The study has been performed resorting to Informational Statistical Thermody-
namics and a nonlinear quantum kinetic theory, both based on the Nonequilibrium
Statistical Opcerator Method founded on the principle of maximization of the informa-
tional entropy — and considered to belong to the realm of Jaynes’ Predictive Statistical
Mechanics.

The equations of evolution for the populations v,(t) of the vibrational modes, and
then the energy per mode hAw,v,(t), are derived, and it has been clearly cvidenced a
kind of complex behavior in such system, consisting in the so-called Frohlich-effect or
Fréhlich-Bose-Einstein condensation in a nonequilibrium thermodynamic phase. Af-
ter a certain threshold in the value of the intensity of the pumping source has been
attained, in a cascading-down-type process, the energy pumped on the system is trans-
ferred from the modes higher in frequency to those lower in frequency. The modes
of lowest encrgy are then largely populated at the expenscs of the other modes with
higher frequencies.

The thermodynamic of Frohlich effect has been analized in depth. On the one
hand it has been characterized the Lagrange parameters that the variational method

introduces, those we called F,(f). These Lagrange parameters are the intensive non-
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equilibrium thermodynamic variables, which completely characterize the macrostate
of the system as the basic variables, in this case v,(t), do. As shown they can be in- H
terpreted in terms of either a quasi-temperature T,(t) per mode, or a quasi-chemical r
potential u,(t) per mode.

In section 3 we have worked out in certain detail the nonequilibrium thermody- !

namic characteristics of the Frohlich condensate, hence an example of the thermody-
namics of complexity. The so-called informational entropy in 1sT is derived and its tem-
poral evolution described, from the initial time of preparation of the sample up to the .
steady-state displaying Frohlich's condensation. When the external pumping source
is switched off there follows a return to the value in equilibrium with the reservoir
recovering the usual Clausius-Gibbs thermodynamic entropy. As shown, the informa-
tional entropy in the condensed state is smaller than the entropy when the nonlinear
interaction responsible for the onset of Frohlich effect is disregarded. As the order
parameter shown in Fig. 6 demonstrates, the system increases in order with increas-
ing coupling strength A, and the informational entropy decreases since information is
gained as organization of the system is developing.

Another important quantity in irreversible thermodynamics has been analized,
namely the informational-entropy production function. In terms of it we have veri-
fied that the, generalized to 18T, Glansdorff-Prigogine’s evolution principle is satisfied,
as it should, and from the generalization of Glansdorff-Prigogine’s (in)stability prin-
ciple we have shown that the thermodynamic state of the system we have derived, is
stable under any condition. However, it needs be stressed, such stability has been only

derived against other possible homogeneous steady-states, but an instability against
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the onset of a spatially ordered state cannot be ruled out a priori [45]. This latter point
will be considered in a future article,

We end this conclusions citing Nicolis and Daems [44] who stated that this new
fielel of statistical mechanics of dynamical systems is nowadays a unique laboratory
in which ideas, conjectures, and methods can be used.
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FIGURE CAPTIONS

Figure 1: A schematical description of the two interacting subsystems, S, and $..

Figure 2: Populations of a set of modes in the steady state under a constant pumping

intensity 1.

Figure 3: Populations of the modes in the steady state for I = 2.6 x 10°, compared

with the case of absence of nonlinear interactions.
Figure 4: The quasitemperatures associated to the set of modes in Fig. 2.
Figure 5: The quasi-chemical potential associated to the set of modes in Fig. 2.

Figure 6: The order parameter of Eq. (55) as a function of the strength of the nonlinear

coupling.
Figure 7: Evolution of the informational-entropy production,
Figure 8: The excess entropy production around the steady state.

Figure 9: The different contributions to the relaxation processes for A — 1 and in the

abscnce of a nonlinear coupling (A = 0).
Figure 10: Quantities 12,(¢t) of Eq. 72 for the set of modes of Fig. 2.
Figure 11: Lyapunov coefficicnt in the steady state for the set of modes of Fig. 2.

Figure 12: Sum of Lyapunov coefficients or divergence of the evolution operator in

the steady state for the set of modes of Fig. 2.

Figure 13: Fraction of excitations in the steady state.
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Capitulo 5

ONDAS SOLITARIAS FM MATERIA
CONDENSADA SOB CONDICOES
DE FORTE EXCITACAO

5.1 Introducao

Neste capitulo estabelecemos a conexdo com os dois capitulos anteriores.

Ja tinhamos notado que o cfeito Frohlich e a propagacdo de sélitons do tipo
Schrodinger-Davydov sdo uma consequéncia das mesmas contribuicées nao-lincares:
os termos de interacdo anarmodnica na descricdo mecianica do sistema.

Assim vém imediatamente a idéia de explorar o comportamento do soliton no con-
densado de Fréhlich. Como este altimo surge em forma efetiva apos certo limiar de
excitacdo por uma fonte externa constante no tempo, € entdo em condicoes de afas-
tamento do equilibrio, vamos tratar o séliton — diferentemente do que foi feito no
Cap. 3 — quando em condi¢des de forte excitagdo produzida pela alimentacao da fon-
te externa.

Mostramos que em tais circustancias acontece um fenémeno notavel, que consiste
num aumento enorme da vida média do soliton. Nessas condicdes, o soliton propaga-
se entio a longas distancias, por causa do fraco decaimento e, como vimos, conser-

vando sua forma de pacote e sem dispersdo.
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No que segue analisamos em detalhe o caso, i. e. deduzimos a demonstracio do
fendmeno e acrescentamos a aplicacdo dos resultados ao estudo de uma observacio
experimental particular e notavel. Esta ultima consiste na existéncia do assim cha-
mado “excitoner”, que ¢ a amplificacdo espontanea de pacotes de ¢xcitons incoeren-
tes. A situacio assemelha-se — ainda que apenas formalmente — ao caso do laser.
Mostramos que o sinal detectado ¢ um soliton (de éxcitons) de Schrodinger-Davydov
acompanhado de uma nuvem de éxcitons incoerentes.

Em continuacao seguem as secoes:

5.2 Solitons em Matéria Fortemente Excitada: Efeitos Dissipativos Termodinamicos

e SupersoOnicos.

5.3 Amplificacio Estimulada e Propagacio de Feixe de Ixcitons.
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5.2 Solitons em matéria fortemente excitada:
efeitos dissipativos termodinamicos e supersonicos

Ondas solitarias - - que surgem da coeréncia induzida de modos vibracionais opticos
e acuisticos em sistemas abertos dissipativos (polimeros e matéria condensada) — sdo
descritas em termos de uma termodinamica estatistica baseada em um formalismo
de ensemble de ndo-cquilibrio. A onda progressiva ndo-deformada esta acoplada as
vibraches normais, e trés fenémenos relevantes surgem em condicoes suficientemen-
te distante das condicbes de equilibrio: (1) um grande aumento das populacées dos
modos normais de freqiiéncia mais baixa, (2) acompanhado por um grande aumento
do tempo de vida da onda solitaria, e (3) emergéncia de um efeito tipo Cherenkov,
consistindo em uma grande emissao de fonons em direcoes privilegiadas, quando a
velocidade de propagacio do soéliton ¢ maior do que a velocidade de grupo das vi-
bracdes normais. Compara¢do com experimentos € apresentada, o que aponta para a

validade da teoria.

Physical Review E, 58 (6), 7913 (1998).
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Solitary waves — arising out of nonlincarity-induced coherence of optical and acousti-
cal vibrational modes in dissipative open systems (polymers and bulk matter) — are
described in terms of a statistical thermodynamics based on a nonequilibrium ensem-
ble formalism. The undistorted progressive wave is coupled to the normal vibrations,
and three relevant phenomena follow in sufficiently away-from-equilibrium conditions:
(1) A large increase in the populations of the normal modes lowest in frequency, (2) ac-
companied by a large increase of the solitary wave lifetime, and (3) emergence of a
Cherenkov-like effect, consisting in a large emission of phonons in privileged direc-
tions, when the velocity of propagation of the soliton is larger than the group velocity
of the normal vibrations. Comparison with experiments is presented, which points

out to the corroboration of the theory.

PACS # 63.70+h; 05.70Ln; 11.10.L.m; 87.22.-q
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1. Introduction

Solitary waves are a particular kind of excitation in condensed matter, which nowa-
days are evidenced as ubiquitous and of large relevance in scicnce and technology.
Its role as a new concept in applied science was already emphasized by A. C. Scott
et al. in 1973 [1], who discussed the case of several wave systems where the phe-
nomenon may arise. Recently, solitons have been shown to play a very important role
in three significant arcas: conducting polymers [2, 3], fiber optics in communication
engineering [4, 5], and as conveyors of energy in biological and organic polymers [6-8].

We consider here solitary waves arising out of vibronic modes, both optical and
acoustical, when in the presence of external pumping sources driving the open sys-
tem arbitrarily away from equilibrium. We evidence the possibility of emergence of a
particular complex behavior brought about by the nonlinearities present in the kinetic
equations which govern the evolution of the nonequilibrium (dissipative) macroscopic
state of the system. For that purpose we resort to the so-called Informational Statis-
tical Thermodynamics (I1sT for short [9], and see for example references [10-14]). IST
is based on a particular nonequilibrium ensemble formalism, namely, the Nonequi-
librium Statistical Operator Method (NESOM; see for example references [15-17]), and
D. N. Zubarev's approach is by far the most concise, soundly based, and a quite prac-
tical one |16, 17|. Besides providing microscopic foundations to 1T, Zubarev's NESOM
yields a nonlincar quantum kinetic theory of a large scope [16-22], the one we used to

derive the results we report in what follows.,

2. Frolich Condensation and Schrédinger-Davydov Soliton

Letus consider a system which can sustain longitudinal vibrations, optical and acousti-
cal (e.g. polar semiconductors, polymers and biopolymers, etc.), with, say, a frequency
dispersion relation wg; q is a wave-vector in reciprocal space running over the Brillouin
zone, The vibronic system is taken to be in contact with a thermal bath, modeled as a
continuum of acoustic-like vibrations, with frequency dispersion relation Q) = szlpl,

and a cut-oft Debye frequency Qp. System and bath interact via an anharmonic poten-
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tial, and the whole Hamiltonian is taken as

H;HO-FH; :H(),C,'-I-H()B-I-II[, (1)
where
L1
Hos = > hwglata, + E) (2a)
q
1
Hog = }jm (bib, + 5 (2b)
H =ZZq(pq + 2 VapAabpb op + 2 Viinaa bpb_gi
q qp q1p
1
+ z Véu)sambnb q-p T Z chllgrarnb;bz;: p T Z qut)i»"lm”ﬂ:zb:gl+m
qap Hq1P ) g
Z mq_“maqr q g T Z Vq(m)uaf Agybq) 4 + Z Vé‘f"fuaqla* b;. _q, T HC
g gz o) {2 oy

(2¢)

It consists of the energy of the free system and bath, Hyy and Hgg respectively, and
in H; are present the interaction of the system with an external source (a mechanism
for excitation which pumps energy on the system), which is the first term on the right,
and the anharmonic interaction composcd of several contributions, namely, those as-
sociated with threc-particle (phonons) collisions involving one of the system and two
of the bath (we call V‘il.,), the corresponding matrix element), and two of the system
and one of the bath (we call Vf,f?). the associated matrix element). Moreover, a, (af;),
b, (b,';), are, as usual, annihilation (creation) operators of, respectively, normal-mode
vibrations in the system and bath, and @, (@J) of excitations in the source with Ly
being the coupling strength. (see also reference [23]). We recall that the wavevector
runs over the system Brillouin zone in the case of the vibronic modes, and between

zero and Debye cut-off wavevector in the bath.

Next, following NEsSOM-based 1T, we need to define the thermodynamic space for
the description of the noneguilibrium macroscopic state of the system. In other words,

the set of basic variables relevant for the problem in hands: They are in the present



case, first, the number of excitations in each mode, i.e. the operator v, = af,a.q. Sec-
ond, once the formation of a coherent state of vibronic modes (the solitary wave) is ex-
pected, we must introduce the amplitudes a,, and a.g, averaged over the honequilibrium
ensemble. Finally, we take the thermal bath as constantly remaining in equilibrium at
a temperature Ty, and then we introduce its Hamiltonian Hog as a basic dynamical

variable. Therefore the basic set of chosen microdynamical variables consists of
{Vg,aq a} ,Hop} . (3a)

The nonequilibrium statistical operator in NESOM — we recall that we use Zubarev’s
approach and call it p.(t) —, is & superoperator depending on the above said basic
dynamical microvariables, and an associated set of Lagrange multipliers (which con-
stitute the corresponding set of intensive variables in 18T, which also completely de-
scribes the nonequilibrium macroscopic-thermodynamic state of the system) [10, 13-

17], which we designate as

[F, (1), fo(t), F(0), Bo} (3b)

and in the first part of Appendix A we describe p,.

The set of basic macrovariables is indicated by

va(®), (aglt), (a}it), Es} (4)
that is,
Va(t) = Tri{vze (L)}, (5)
(aqlt) = Triaze:(1)}, (6)
Ey = Tr {Hoge, (L)} . (7)

Moreover, Eg (the energy of the thermal bath) is time independent and so is Sy =

(kgTo) ™', because of the assumption that the bath is constantly kept in equilibrium
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at temperature Ty, Hence, the whole statistical operator is p.(t) = ¢.(t) x pg, where
now g, (t) is Zubarev's statistical operator of the vibronic system, and ¢y the canonical
statistical distribution of the free thermal bath at temperature Ty {which then plays

the role of an ideal reservoir).

The equations of evolution for the three basic variables describing the evolution
of the vibronic system are derived in the NESOM-based kinetic theory [15-22]. Taking
into account that the anharmonic interaction is weak, we restrict the calculation to the
Markovian limit, that is, we consider only collision integrals only up to sccond order
in the interaction strength [16,19-21]. We briefly describe in the second part of the
Appendix A the fundamentals of these kinetic equations, particularly the origin of the

collision operators that are present on the right of Eq. (8).

After some lengthy calculation we find that

d
T Va(t) — Iy + Zqu(t) +Cy(t), (8)
J=1

where I; represents the rate of production of g-mode phonons generated by the ex-

ternal pumping source,

Jao (1) + Jao (£) = =15 Lva(t) = vV, (9)

{0

with v,”" being the g-mode-population in equilibrium, i.e. Planck distribution at tem-

perature Ty, and T, is a relaxation time given by

T, hz _0) Z Vap 12V vy pl8(Qp + Qqop — wg) + 26849 §(Qy — Qap + wy)],

(10)

where v} is the population (Planck distribution) of the phonons in the bath at temper-

aturc Ty, and the other terms are

Jao (t ZIV”) 2 [VE (Vo = V) = va(1 1 V) | 8(Qqq + g — wg), (1)
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8717 22 [ .
qu)(t) = F Z |V‘;:7),|2 lvg qr(Vq' - Vq) + Vq’(.l. + Vq)] (S(QIQ_Q' - (Uq‘ + (_Uq) Y (_1_2)

81'r
Jas () = Z 12 [vfj,,,q,(l + V) — (Vg — v§+q,)vq] S(Queg — Wg ~wgq), (13)

and, finally, the term T, is the one which couples the populations with the amplitudes,

namely
gt = Haalt)” 8"Z| 2((agIth 21 + var +vE_) — Hag It vy - vE_ )]
Tq
X 0(Qy ¢ + Wg — wy)
- %’_}Z VI (aq 112 (v - VE_) — Hag D)2 (1 + vy +VvE )}
p
XO(Qy_g — Wy + Wy)
s 2 ag ) 2 (v —vE ) - Kag Ity 2 (vq — vE, )]
X0(Qqiqg Wy — Wgq) . (14)

In Egs. (11) to (14) is evident the presence of Dirac's delta function accounting
for energy conscrvation in the anharmonic-interaction-generated collisional processes,
momentum conservation is taken care of in the energy operators of Egs. (2). In the case
of acoustical vibrational excitations the matrix elements of the anharmonic interaction
are proportional to the square roots of the three wavenumbers involved, typically
KV q1lq'llg—q'|] 7, with indexes 1 or 2 in K corresponding to the matrix elements
Vi and V@ respectively; K can be determined via measurements of bandwidths in

scattering experiments and K'? is left an open parameter,

The equations of evolution for the amplitudes are
a _ . e N 1—; 1 # -W -l- B
ﬁ(aqlt) = —1 g (dqlt) I (a,lt) +14 (aglt)y™ —iW, (az1t)* +

+ > Raglag t)al, 1ty ((ag-g+a1t) + (@' goa,-g,10)) | (15)
q1d,

—(a* |t) == the complex conjugate of the right hand side of Eq. (15), (16)
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where w, is the frequency renormalized by the anharmonic interaction, with W, being
a term of renormalization of frequency, and the lengthy expression for Ry, 4, is given
elsewhere [24] (their detajled expressions are not necessary for our purposes here).
Finally, I, (t), which has a relevant role in what follows, is the reciprocal of a relaxation

time, given by

4” 2 )
T (1) =1,'(t) + e > IV‘;‘;?).I‘ [l + Vg + vg_q,] Qg + Wy — wy)
ql’
47T " ]
e Z IVC(,f?),I“ [vq: vg_q,] 0y ¢ — Wy + Wy)
2 5
47T - 2Y 0
b oo D VIR (v VB | 8(Qqra — g~ ) . (17)
he q a+q’
ql

Equations (15) and (16) are coupled together, and contain linear and trilincar terms.
They give rise to two types solutions: one is a superposition of normal vibrations and
the other is of the Davydov’'s soliton type |6, 25, 26], as we proceed to show, First, we
neglect the coupling of the amplitude (ag4(t) and its conjugate, what can be shown that
straightly follows when the original Hamiltonian is truncated in the so-called Rotating
Wave Approximation [27], which can be used in this case. Next, we introduce the

averaged (over the nonequilibrium ensemble) field operator

wix,t) = Da,|t)e!™. (18)
q

for one-dimensional propagation along x-direction (the only one in the case of quasi-
one-dimensional polymers or semiconductor quantum wires). At this point we need
to define the dispersion relation wg: we may consider two cases, namely, optical and
acoustical vibrations. The first case has already been considered [28] in the particular
case of acetanilide (in which the Co-stretching polar modes are of the same type as
those in biopolymers, e.g., the «-helix protein), It is shown that a Davydov's soliton-
type excitation, in the form of an undeformed wavepacket consisting in a coherent
state of Cco-stretching (or Amide-I) vibration is present. But it is damped when propa-

gating in the dissipative medium, a damping dependent on the thermodynamic state



289,

of the system, as evidenced in the NESOM-IST calculation. Moreover, a calculation in
NESOM-based response function theory has allowed us to derive the infrared absorp-
tion spectra [28], characterizing the soliton and obtaining an excellent agrecment with
the experimental data of Careri et al. [29]. For illustration we present in Fig. 1 the
IR-spectra in three different conditions, namely at temperatures of 20 K; 50 K; and
80 K.

Let us consider next the case of acoustic vibrations, with a frequency dispersion
relation wy = s|q| (s being the velocity of sound in the system). Using this dispersion
relation, and proceeding on the Ansatz that a well localized and spatially undeformed
solitary-wave-type solution is expected, using Eqs. (15) and (18), we find (see Appendix
B} that the field amplitude satisfies the local (space correlations neglected, as noticed)
equation
2 32

. 0 h
1h.ﬁt,u(x, ) + —2Ms Py

Wix,t) +ihyapix,t) = G @ (x, D 12wix,t),  (19)

which is formaly identical to the one for the optical vibrations [28), where A2/2Mq =
hsw, with w being the width of the wavepacket (sce below) and Mg a pscudo-mass.
This is a nonlinear Schrodinger-type equation with damping [1,30], and where y; and
G are the values in the local approximation of the transforms of by of Eq. (17) and
R414, in Eq. (15) to direct space (see reference [28]). Equation (19) for the average field
amplitude admits two types of solutions. One is a simple plane wave composed by the
superposition of the normal-mode vibrations (corresponding to first-sound-like waves
associated to the motion of density). Other is a Schrddinger-Davydov soliton-type exci-
tation: Let us consider as an initial and boundary condition, an impinged signal with a
hyperbolic secant shape, which satisfactorily approaches a Gaussian profile. It has an
amplitude, say, A, which defines its energy content, and a momentum characterized
by a velocity of propagation v, Resorting to the inverse scattering method 31| we

obtain that the solution of Eq. (19) is

|G [ M
h

Wix, t) = ﬂlexp{i [Mx — (g —iy)t — g—]} sech[ﬂl[

11/2
7 " -vt)], (20)
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where y, is the reciprocal lifetime of the excitation, we used G = |G|et?, and
Y

GlA®  Mgv?
2 4h

wW; =

which is an amplitude- and velocity-dependent frequency.

We recall that the amplitude A and the velocity v are determined by the initial
and boundary conditions of excitation determined by the perturbing source (the “ex-
citing antenna array”). Davydov’s soliton of Eg. (20) can be interpreted as that the
vibrational acoustic modes are localized by means of the nonlinear coupling with the
external bath; the distortion then recacts — also through anharmonic coupling — to
trap the oscillations and keeping the packet undistorted, in a process also referred-to
as selftrapping [1, 7]. Moreover, as noticed, in conditions of ¢xcitation in near equilib-
rium with the bath, the solitary wave is damped, relaxing with a lifetime y;'. However,
the situation is substantially modified in sufficiently far-from-equilibrium conditions,
i.e. for high valucs of the pumping intensity I, in Eq. (8). In this equation it can be
noticed that J,, and J,., contain nonlinear contributions in the populations of the
modes. These nonlinecar contributions have the remarkable characteristic that when
Wy < Wy, there follows a net transmission of the energy, received from the external
source, from the modes higher in frequency to those lower in frequency, in a cascade-
down process: This a consequence of the presence of the nonlinear terms (containing
the product v,;v,) in the collision integrals of Eqs. (11-13), which are present in the
cquation of evolution for the population in mode g, viz. Eq. (8). For w, < wy, the
collision integrals of Egs. (11) and (13) do not contribute, as a consequence that en-
ergy conscrvation in the collisional events (accounted for the delta functions) cannot
be satisfied. Hence, there survives the collision integral of Eq. (12) giving rise to the
alrcady mentioned increase of population in mode g, at the expenses of all the other
modes g having higher frequencies than wy. For w, > wy, there survives only the
collisional integral of Eq. (15) implying in a transmission of energy trom the mode to
thosce with lower frequencies, that is, these nonlinear terms redistribute energy among

the modes.
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As a consequence the populations of the modes lowest in frequency (i.e. those
around the zone center) are largely increased. Such phenomenon was predicted by H.
Frohlich near thirty years ago [32]. This so-called Frohlich effect, in sufficiently far-
from-equilibrium conditions, has a dramatic effect on the propagation of the Davydov
soliton described above. With increasing population v, in the modes lowest in fre-
quency, the lifetime of these modes of vibration, as given by the reciprocal of the T,
of Eq. (17), is largely increascd. Theretore, in the field amplitude /(x,t), as given
by Eq. (18), after typically a fraction of picosecond has elapsed after switch-on of the
excitation, the amplitudes {(a4lt) for modes at intermediate to high frequencies in the
dispersion relation band die down, but those for the modes lowest in frequency (in the
neighborhood of the zone center) survive for long times (their lifetime being larger and
larger for increasing values of the pump intensity). We illustrate the point in figures 2
and 3: Consider a sample with the soliton traveling in a given direction along the exten-
sion L of the sample. Then the permitted vibrational modes are those in the interval of
wavenumbers /L = g = qp, where g is the Brillouin zone-end wavenumber. We take
L = 10cm, and values for the parameters involved in an order of magnitude for typical
polymers and thermal bath, namely gz = 3.14 x 107 cm™! (hence the lattice parameter
has been taken as @ = 10 A), s ~ 1.8 X 10° cm/s, sg =~ 1.4 x 10° em/s, T, = 10 ps for
all g, and from the latter we can estimate in the matrix elements K'Y, while we keep
as an open paramecter the ratio A = |[K®|2/|K" |2, For these characteristic values it
follows that, because of energy and momentum conservation in the scattering events,
the set of cquations of evolution, Egs. (8), which in principle couple all modes among
themselves, can be grouped into independcent sets each one having nine modes. For
example, taking the mode with the lowest wavenumber 1r/L, the set to which it be-
longs contains the modes "~ '1r/L, where k = (s + sg)}/(s — sg) = 8 in this case, and
n=2,3,...,9. Letus call vq,..., vy the corresponding populations, and their frequen-
cies are wy — 5.6 X 104 Hz, w» = 4.5 x 10° Hz, w3 = 3.6 x 10° Hz, w4 = 2.9 x 107 Hz,
ws = 2.3 x 10% Hz, wg = 1.8 x 109 Hz, w7 = 1.5 x 101° Hz, wy = 1.2 x 10! Hz, wqg =
9.5x 10" Hz. Moreover, for illustration, the open parameter A is taken equal to 1, and

we consider that only the modes 2 and 3 (in the ultrasonic region) are pumped with the
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same constant intensity § = IT, where I, = I = I, and I, and [,, with n = 4,...,9 are
null, and T is a characteristic time used for scaling purposcs (as in [22]) here equal to
0.17 s. It is evident the large enhancement of the population in the mode lowest in fre-
quency (vy), for §p = 10", at the expenses of the two pumped modes v» and v3, while
the modes v; to vo have minor modifications acquiring populations which are very
near that in equilibrium with the thermal bath at temperature Ty; that is to say that
they are practically unaltered. The emergence of Frohlich effect is clearly evidenced
for this case of acoustical vibrations: In fact, pumping of the modes in a restricted
ultrasonic band (in the present case in the interval 4.5 x 10° Hz < w < 2.8 x 107 Hz),
leads at sufficiently high intensity of excitation to the transmission of the pumped en-
ergy in these modes to those with lower frequencies (w < w»), while those with larger
frequencies (w > 2.8 x 107 Hz) remain in near equilibrium. It may be noticed that for
the given value of 7, § = 10!? corresponds to a flux power, provided by the external
source in the given interval of ultrasound frequencies being excited, of the order of
milliwatts.

The dependence of the lifetime with the level of excitation is illustrated in Fig. 3: It
is evidenced the mentioned fact of a large increase of the lifetime for the mode lowest
in frequency, that is, the reciprocal of the lifetime, [, largely decreases.

Frohlich effect can be evidenced in an alternative way. A straightforward calcu-
lation in NEsOM, leads to the result that, in terms of the intensive nonequilibrium

thermodynamic variables of Eq. (3b), the population and the amplitude are given by

va(t) = [efe® — 1] + Kaglt)1?, (22
(aqi” = _fq(t)*/Fq(t) . (23)

Moreover, the intensive thermodynamic variable F; can alternatively be written in

either of two forms: One is
Fu(t) = Bo(hwg — pylt)) (24)

introducing a pseudo-chemical potential per mode p,, usually referred-to as a quasi-
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chemical potential, as done by Frohlich [32] and P. T. Landsberg [ 33] (we recall that o =
(kgTy)~'). The steady state values of the quasi-chemical potential of mode populations
v;, with j = 1,2 and 3 in Fig. 2 vs. the intensity of the external source are shown in
Fig. 4., being evident that y; approaches w; for § of the order of 10'?, what results in
a near singularity in v; (This phenomenon is sometimes referred-to as a kind of non-
equilibrium “Bose-Einstein-like condensation” because of the characteristic of “piling
up”of excitations in the lowest levels of vibronic energy. Also a “two-fluid-like” model
may be considered in a descriptive way, as, in a sense, shown in Fig. 5).

Otherwise, it can be written

Fa(t) = h.wq/kBT;(t) . (25)

introducing a nonequilibrium pseudo-temperature (or quasitemperature) per mode, as
used in the physics of the photoinjected plasma in semiconductors (e.g. [34-36]); its

dependence on the intensity of the external source is displayed in Fig. 6.

3. Frohlich-Cherenkov Effect or X-Waves

Moreover, another nove]l phenomenon may be expected in the out-of-equilibrium non-
linear system we are considering. In both cases of “optical” or “acoustical” Schrodinger-
Davydov solitons we have described, the amplitude and the velocity of propagation
are determined by the initial condition of excitation. Hence, the velocity v can be
either smaller or larger than the group velocity of the normal waves., For the poly-
mer acctanilide in the conditions of the experiment of Careri et al. [29], v is larger
than the group velocity of the phonons of the CoO-stretching vibrations |[28). In the
case of acoustic vibrations in bulk we may have v > s, leading to the emergence of
a kind of Cherenkov-like effect (a so-called superluminal effect in the case of charges
moving in a dielectric with a velocity larger than the velocity of light in the medium
[37,38]) as we proceed to show. This could be the case in the experiments of Lu and
Greenleaf [39]; in Fig. 7 we reproduce a related figure [40] showing on the one side the

excitation of a normal sound wave, and the other an apparent, in our interpretation,
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“superluminal” solitary wave, or better to say a supersonic solitary wave. accompanied
with a Cherenkov-like large emission of phonons, as next described. Such excitation
has been dubbed an X-wave, and interpreted in terms of an undeformed progressive

wave [40,41], created by the particular excitation provided by the pumping transducer.

Consider propagation of a soliton with velocity v(> s) in, say, x-direction in bulk,
what introduces a privileged direction in the system. It can be noticed that according
to Eq. (8) |cf. also Eq. (22)] the populations of the vibronic modes increase as a result
of the direct excitation provided by the source with intensity I, in Eq. (8), with, as
previously shown, such pumped energy being concentrated in the modes lowest in
frequency (see Figs. 2 and 3), and as a consequence of such so-called Fréhlich effect,
the lifetime of the soliton is largely increased. Moreover, we notice that for the modes
in the Frohlich condensate it can be estimated that [{(a, | t)]? =~ w?A?/L?, where, we
recall, A is the amplitude and we have written w for the width of the solitary wave
packet. On the other hand, for the preferentially populated modes with small g, using
Eqgs. (22) and (24) it tollows that

ksTo 1

= hsq(l - 7" In(1 + )] =
Nq Q[ hSq ( Vq— |<ﬂq)|2)]
B kpTo . | 4 e
= hsq|1 hisq Fa| = hvqcos Oy, (26)
where we have introduced the angle €, whose cosinus is
s kBTQ 1
cos(g=—[1 — In(1 + ,
s Ty s
i 7 | — (27)

after Eq. (25) is used, and n, defines a “pseudo-refraction index” introduced simply
for giving an expression rescembling the case of Cherenkov effect in radiation theory

(when then v, is the Planck distribution of photons) [37,38]. Hence, since

vg = |exp[Bohsqll - (v/s)cos 0411 - 117" + [{ag)l?, (28)
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{where |{a4)|* =~ w?A/L?) then, it follows that a large emission of phonons follows
when cos €, approaches the value s/v, that is, for T much larger than T [cf. Fig. 6],
and which are emitted in the direction q forming an angle 8, with the direction of
propagation of the supersonic soliton (v > s5). Forward and backwards symmerrical
propagations arc present becausc modes +q are equivalent (i, depends on the mod-
ulus of g). This is here a particular characteristic of what in radiation theory are the
normal and anomalous Cherenkov effect in a spatially dispersive medium [38)]. As al-
ready noticed, the phenomenon, which we call Fréhlich-Cherenkov effect, may provide
a microscopic interpretation of the X-waves in experiments of ultrasonography [39],
shown in the lower part of Fig. 7 [40]. From this figure we roughly estimate that 6 =~ 13°,
and then v /s =~ 1.02, that is, the velocity of propagation of the ultrasonic soliton is 2%
larger than the velocity of sound in the medium, once we admit an excitation strong

enough to imply that T} = T,

These X-waves have been described in terms of a mathematical approach pertain-
ing to the theory of undeformed progressive waves [40,41]. This appears to be a
particularly interesting applied mathematical treatment for a practical handling of the
phenomenon, for example in engineering for medical imaging [39,41], as other applied
mathematical method does for engineering in communications [42,43]. The interest-
ing case of medical imaging is treated in detail elsewhere [44], where we use the results

presented in this communication.

Summarizing, we have described, resorting to a statistical thermodynamics based
ont a nonequilibrium ensemble formalism, the solitary waves which arise out of nonlin-
earity-induced coherence of optical and acoustical vibrations in open systems driven
away from equilibrium. The resulting Schrodinger-Davydov soliton is coupled to the
normal vibrations, and complex behavior is evidenced in the form of three relevant
phenomena, namely: (1) alarge increase in the populations of the normal modes lowest
in frequency (the so-called Frohlich condensation); (2) an accompanying large exten-
sion of the solitary wave lifetime (producing a near undamped soliton); (3) large emis-
sion of phonons in privileged directions when the velocity of propagation of the soliton
is larger than the group velocity of the normal vibrations (or Frohlich-Cherenkov ef-

fect).
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Finally, we call the attention to the fact that, in any material system, mass and
thermal motions are coupled together through thermo-striction effects (in the case
of charged particles is the thermo-electric effect). Thermal motion consists into the
so-called second sound propagation, for which apply all the considerations we have
presented here. Also, it may be added the case of the zero-sound-like excitation in
the double photoinjected plasma in semiconductors (the so-called acoustic plasmons,
with the corresponding first-sound-like excitation being the optical plasmons) [45,46),
Similarly, one may consider as candidates for these kind of phenomena a large variety
of normal-mode vibrations in matter, like, e.g., polaritons, plasmaritons, phonoritons,
and all kind of excitonic waves propagating in nonlinear media. A particular case of
eventual large relevance may be the case of the so-called “excitoner”, that is, the stim-
ulated amplification of excitons low in energy (dubbed a kind of Bose condensation),
and their propagation in the form of a weakly undamped packet [47,48]. It is analyzed
on the basis of the statistical thermodynamics as described in [49].
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Appendix A. The Statistical Operator and the Equations of Evolution

The nonequilibrium statistical operator in Zubarcv's approach (e.g. [15-17]) is

-t
o:(t) = exp{lng(t,0) - J dt’ ef“"”a% Ing(t’,t" — )] (A.1)

where g is the auxiliary (sometimes called “coarse-grained” or “instantanecus” quasi-

equilibrium) statistical operator, in the present case given by

o(t,0) = EXP{ d(t) - [Fq(t)f’q + fa(Dag + f; (tha) - EUH()HJ]’ (A.2)

q

where ¢(t) cnsures its normalization, and
- ] 4 ]- ! - ’ -]- / .
ot t' —t) - exp{—ﬁ(t — t)Hslo(t’, 0) exp] '"ﬁ(t — t)Hs} (A.3)

with Hs being the Hamiltonian of Eq. (1) excluding the interaction with the external
source (i.e. the free system Hamiltonian in an interaction representation).

We recall that £ is a positive infinitesimal which goes to zero after the trace op-
eration in the calculation of averages has been performed. Tts presence in the expo-
nential introduces a so-called fading memory in the formalism, from which follows
irreversible behavior from an initial condition of preparation of the nonequilibrated
system |15-17].

The equations of evolution for the basic macrovariables, Egs. (8), (15) and (16)
consists in the averaging over the nonequilibrium ensemble of Heisenberg equations

of motion, that is,

d 1 .

'é_tvq(t) =Tr {l_;.{[vq:H]QE(t)} ' (A4El)
0 . |
ﬁ(ﬂ-qﬁ) =Tr {m[aq,H]QE(t)} , (A.4b)
9ty 1oy
ac(“‘?'” = Tr {m[ﬂq,H]Qs(f)} . (A.4c)

and dEy/dt = 0 because of the assumption that the system of acoustical vibrations
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remains constantly in cquilibrium with an ideal thermal reservoir at fixed tempera-
ture Ty.

The right sides of Eqs. (A.4) have a formidable structure of almost unmanageable
proportions. But an appropriate way to handling them is provided by the NESOM-based
kinetic theory [16-22]. Details are given in these references, where is shown that in

general we can write, for example for Eqs. (A.4a) and (A.4b),

%vq(t) = > OM{va(t)lt}, (A.5)
o n={

d - (n) 6

S(aqlt) = 2, QM a,lnlt}, (A.6)
n—0

where the Q’s for n = 2 are interpreted as collision operators corresponding to scat-
tering by 2, 3, etc. particles, n is the order of the interaction strength in H" present in
Q" and memory cffects are included.

On the other hand, each one of these collision operators can be rewritten in the
form of a series of partial collision operators instantaneous in time, and expressed in
the form of correlations functions over the auxiliary ensemble characterized by the

coarse-grained operator ¢(t), that is

o

QMW iv,ltt = > (™ {v,lt}, (A.7)

m=n

and similarly for the case of Eq. (A.6) (Details in [19]). Introducing Eq. (A.7) in Eq. (A.5)
their right hand sides consists into a double series of partial collision operators. This
still involves extremely complicated calculations, which, however, are greatly simpli-
fied when the Markovian limit is taken {19, 50]. We recall that the Markovian approach
consists into retaining only memoryless-binary-like collisions, an approximation valid
in the weak coupling limit [50-52], which stands in the present case of anharmonic
interactions. The correspondig Markov equations retain only the three lowest order
contributions Q' QM and (»,J? in Q%, which are the right-hand sides of Egs. (8)
and (15). We notice that in the present case, 2)J* simply reduces to the Golden Rule

of Quantum Mechanics averaged over the nonequilibrium ensemble.
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Appendix B. Schriodinger-Davydov Equation, Eq. (19).

In direct space, after the terms that couple the amplitude (ag4) with its conjugate are
neglected, what, as noticed in the main text is accomplished using the rotating wave

approximation, Eq. (15 takes the form:

!

matw( x,t) = —iZhqu dzc M=) gy (x’, t) - thl" gL—e WXV (x' 1)

s quthdx dx e X gia:=x gy (3 ) (", )W * (x, 1), (B.1)

qra:

where, we recall, w, = sq. Considering that it is expected the formation of a highly
localized packet (the soliton), centered in point x and with a Gaussian-like profile with
a width, say, w (fixed by the initial condition of excitation) extending along a certain

large number of lattice parameter a (i.e. w = a), in Eq. (A.1) we make the expansion

WX t) ~ plx, ) — E%w(x. 0, (8.2)

where £ = x — x’ is roughly restricted to be smaller or at most of the order of w. The

first term on the right of Eq. (A.1) is

AX" oo v )
_iZS|Q|J—I Ty (x! 1) =
- .

Ls 9 [{}d L dx’
29T 0x Jo L

[eiq‘x‘x’) — e‘i‘”x““"}] wix' t)

X+w/2

is ¢

‘;aj dq

it

d& sin(g&) [t.U(x t) - Eiw(x t)]

x—w/2

)

s a )L+~;w
= nax[_[ » l—cos—E)—]tp x,t)

o rXtzw T
'FEIJ (]—COSEE) {i-'f-lilﬂ(x.t)

x—é—w “ & ox
]S X*FLU a
- [J lw(l—«:o‘«;—E dE] EW(X,I?)

X=3
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I 1 (1 — cos EE)dE] axzt,u(x,t). (B.3)

x—?w

is
T

But, of the four terms after the last equal sign in this Eq. (A.3), the second and third

are null, becausce of the Ansatz that a soliton would follow, since the derivative at the
center of the packet is null. Consider now the last term, which after the integrations
are performed becomes

2a . mMw T, ¢

Bk [1- sin - — cos —x]|=—ix,t). (B.4)
14 mw a2 a b

But, we notice that the width of the packet is w = a, and the cosine in Eq. (A.4)
has a pceriod 2a, and then it oscillates very many times in w, and with amplitude
(2a/mw) <« 1, and can be neglected. Similarly, the first term becomes proportional

o

ist2 ip((:,)/z)z [w [1 _ cos (%) Cos (%)] — 2x sin (%) sin (%)} , (B.S)

where, on the one hand, the oscillatory terms cancel on average, and, on the other
hand, the term decays as x~2. Consequently, using these results in Eq. (B.1), after
introducing the notation (hsw/m) = h*/(2M,), and the local approximation in the

sccond and third term on the right of Eq. (B.1), we find Eq. 19.
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FIGURE CAPTIONS

Figure 1: The infrared absorption spectrum of acetanilide in the frequency range of
the CO-stretching mode, showing the normal band and a red-shifted one adju-
dicated to the soliton. After reference [28]: full line is the calculation in NESOM

and the dots are experimental points taken from reference [29].

Figure 2: Populations of the three relevant modes in the set—as described in the main
text- -, with increasing values of the intensity of the external source pumping

modes labeled 2 and 3 in the ultrasonic region.

Figure 3: The reciprocal of the lifetime of the modes whose population is shown in

Fig. 2.

Figure 4: The quasi-chemical potential of the modes labeled 1 to 3 in Fig. 2, with
mode 1 corresponding to the one with the lowest frequency in the given set: It is
evident the cmergence of a “Bose-Einstein-like condensation” for § approaching

a critical value of the order of 1012,

Figure 5: The population in the steady state for a pumping intensity § = 10??, of the
modes along the spectrum of frequencies of the acoustic modes. Dots indicate
the modes in the first set (the remaining part of the spectrum up to the highest

Brillouin frequency wpg = 9.5 x 10!t Hz has been omitted).
Figure 6: The quasi-temperature, defined in Eq. (25), for the modes in Fig. 2.

Figure 7: Excited normal sound wave {(upper figure), and the undistorted progressive

X-wave (lower figure) [40].
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Figure 1: The infrared absorption spectrum of acelanilide in the frequency
range of the CO-stretching mode, showing the normal band and a red-
shifted one adjudicated to the soliton. After reference [28]: full line is
the calculation in NEsOM and the dots are experimental points from refer-
ence [29].
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5.3 Amplificacdo estimulada e propagacado de feixe
de éxcitons

E apresentada uma teoria termodindmica estatistica do fenémeno de amplificacdo es-
timulada das populagdes de éxciton que estdo no fundo de sua banda de cnergia mais
baixa. Ele constitui um caso particular do efeito Fréhlich. Além disso, a ndo-linearidade
nas equacoes também ¢ responsavel pelos cefeitos dinamicos de propagacdo de soli-
tons de Schrodinger-Davydov e de um conjecturavel efeito Cherenkov. Mostra-se que
0 “pacotle” de éxcitons detectado experimentalmente, fluindo balisticamente, consiste

em tal onda solitaria, revestida com um nuvem de éxcitons incoerentes.

Submetido para publicacdo em Physical Review Letters.
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It is presented a statistical-thermodynamic theory of the phenomenon of
stimulated amplification of the population of excitons which lie at the bot-
tom of their lowest energy band. The experimentally detected “packet” of
excitons flowing ballistically is shown to consist of a Schrédinger-Davydov
solitary wave, dressed with a cloud of incoherent excitons. Moreover, a sec-
ondary excitation by a c.w. laser beam promotes a Frohlich-Bose-Einstein-
like condensation, which is responsible for the relevant phenomenon that
the lifetime of the soliton is largely increased with increasing pumping

power.

Group Home -‘P"age: http://www-iﬁ.u't_'uicam p.br/-aurea
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Recently it has been evidenced the phenomenon of stimulated amplification of low-
energy exciton populations (SALEEP for short in what follows; the term ‘excitoner’ or
‘beamer’ has also been coined for this phenomenon on the basis of the resulting ampli-
fication of a cloud of coherent excitons using random excitons, much as a laser beam
can be amplified with incoherent photons) |1, 2]. The experiment consists in that a laser
beam pulse incident on the sample tront produces a gas of excitons, a c.w. laser pumps
energy on this photoinjected excitons, and a packet of them is detected on the other
side of the platelet. We procced with a theoretical analysis of the phenomenon on the
basis of a nonequilibrium ensemble formalism for statistical thermodynamics (dubbed
MaxEnt-NESOM), and we resort to Zubarev's approach [3-5]. It is shown that the signal
is consistent with the propagation of a weakly damped Schrodinger-Davydov soliton
dressed with a cloud of incoherent excitons. Moreover, the nonlinearities thart arc re-
sponsible for the formation of the soliton are also responsible for the manifestation of
what we call Fréohlich effect [6], sometimes referred to as a Bose-Einstein condensation
in nonequilibrium phases a misleading name which we avoid introducing the former
thus recognizing the contribution of the renowned late Herbert Frohlich [7]. For the
case of excitons Fréhlich model seems to have been firstly adapted by Duffield [8], and
later on by Tikhodeev [9] and Imamoglu et al. [10].

An explanation of the phenomena on the basis of solitary wave propagation has
been considercd by Mysyrowicz et al. [2]. But they are disregarding dissipative effects
which rapidly would damp out the excitation. This is not what is observed in the
experitment, which also shows an increase of amplitude and narrowing band width
with increasing intensity of the ¢.w. pumping source.

Our point, as we demonstrate below, is that a Schrodinger-Davydov soliton prop-
agating in Frohlich condensate has its lifetime greatly increased as a result of the
nonlinear kinetics which is the same responsible for Frohlich effect and soliton for-
mation, a phenomenon of large relevance for eventual technological application of the
‘excitoner’.

The Hamiltonian which describes this system is composed of the energy operator

for the exciton gas, the lowest exciton state (n = 1) is considered and the exciton
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energy dispersion relation is Eyx = —R} + h*k?/2M, with R being the excitonic Ryd-
berg (=150 meV in Cu,0), k runs over the Brillouin zone, M is the mass of the exciton
(= 2.7my in Cu,0) and zero of energy is at the bottom of the conduction band. The
exciton gas produced by the exciting ultrashort beam intcracts with the lattice (exciton-
phonon interaction), and differently to the case of free carriers, the interaction with
optical phonons can be disconsidered in comparison with the one associated with the
acoustical phonons [11}, the one we introduce: formally this contribution is the same
as given in [12] once excitons enter in place of the polar vibrations. It is also included
the interaction with the electromagnetic field of the c.w, laser and the one associated
to spontaneous recombination effects (luminescense) [11]. Other interactions leading
to relaxation effects are incorporated in the kinetic equations on a phenomenological
basis. Once the Hamiltonian has been defined we need to introduce the statistical
thermodynamic level of description, what we do — as noticed — resorting to MaxEnt-
NESOM. The first fundamental step is the choice of the relevant macrovariables (or
mesovariables in this case) for the description of the nonequilibrium thermodynamic
state of the system. In analogy with the case in [12] we introduce the time-dependent
exciton populations which we call vk (1), and the energy of the acoustic phonons Eg(t)
(B for bath) with these phonons assumed to constantly remain in equilibrium with
an external reservoir at temperature T, (2 K in the experiment of Ref. [2]), and then
g is time independent. The accompanying intensive nonequilibrium thermodynamic
variables (Lagrange multiplicrs in the variational approach to MaxEnt-NESOM [4, 5]) are
designated by Fr(t) and By = (kgTy) ! respectively, the latter being the reciprocal
of the reservoir temperature since the thermal bath is described by a canonical dis-
tribution in equilibrium. Variables v, and F; are connected, once the corresponding

calculations in MaxEnt-NESOM are performed, by the expression
vi(t) = [exp{Fi(t)} — 117" . (1)

Alternatively, the intensive thermodynamic variable Fi(f) can be rewritten in either of

two forms, one is Fi(t) = Ly /kg Ty} (t), introducing the so-called quasi-temperature
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T for each state |k), as it is done for phonons in semiconductors physics |13}, and the
other is Fi(t) = [E1x — ux(t)]/kg Ty, introducing a quasi-chemical potential p(t) for
each state | k), as proposed, for example, by H. Frohlich [6] and P. T. Landsberg [14].
The equations of evolution for the mesoscopic variables v (t) are calculated in the
MaxEnt-NESOM-based kinetic theory [3-5,15], and since the interactions are weak the
Markovian approximation is used [16]. They ar¢ quite similar to those in [12]. Without
going into details we notice the quite relevant result that, once the steady state (ss)
has been achieved {(under the action of a constant pumping source), the populations

are given by
v = Ny /Tx (2)

where

1 41T oy )
I = ETEI + he z IV,((i?IL[l + vf_k, + Vi 18(Qk_r + Wi — Wk)
w

471 .
oy 2V PV = viel8(Qu 1 — e + i)

41T 2 or .
=57 2 Wi PV = viel8 Qi i — wie = wee) (3)
kr

In Eq. (3) Tk is the relaxation time due to exciton-phonon collisions (see [12]), and
V) the matrix clement of the interaction of one phonon with two excitons (we no-
ticed that Ty is associated to the interaction of one exciton with two phonons). The
cumbersome expression for Nk is omitted, since it is not relevant for the analysis in
continuation.

It follows that the population of the states lowest in energy are largely enhanced,
that is, for them [} largely decreases, and for this characteristic the phenomenon
sometimes has been called a Bose-Einstein-like condensation. Next we illustrate nu-
merically these results using parameters characteristic of Cu,0, and the conditions of
the experiment in Ref. [2].

Front sample is iluminated with a laser pulse with A = 532 nm, 10 ns duration,

and intensity = 6.3 MW cm™?; it is imposed illumination by a cw. laser with A —
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605.4 nm, and 4 W cm~¢ of intensity (at this wavelength the absorption coefficient
is roughly 30 ¢cm~!). We also use for the mass of the exciton M = 2.7my, a static
dielectric constant €g = 10 and the optical one ¢, = 4. Moreover, we consider a nearly
wavevector independent relaxation time resulting from exciton-phonon interaction,
i.e. Ti = T, which is used as a scaling parameter defining a scaled time f = t/T.

Figure 1 shows two characteristic populations in the steady state depending on
the intensity § = It of the source, which we take as equal for cach exciton state, We
recall that I times the excitonic Rydberg is a fraction -- determined by the absorption
coefficient — of the intensity 4 W ¢m ° of the pumping c.w. laser. The mode labelled
with index nought corresponds to a low-lying-in-energy exciton, and indeX one for an
exciton higher in energy. In the inset is described the evolution of the quasi-chemical
potential associated to vo, which we have written as py = po — R3.

We can notice that the quasi-chemical potential never coincides with the energy
of the exciton state, i.e. pj is always negative and different from zero, but tends
asymptotically to this value as the pumping intensity tends to infinity; hence a, say,
Bose-Einstein-like condensation does not occur. We stress that what emerges is a
large amplification of the populations over a certain region of the exciton states low in
energy, contituting the so-called Frohlich condensate. [t is worth noticing that we can
see the presence of a kind of “two-fluid system”: excitons in the Frohlich condensate (a
“superphase”) and incoherents excitons in a “normal phase”, similarly to the situation
shown by Fig. 7 in [12].

Let us next go over the formation of the Schrodinger-Davydov soliton, Again, in
MaxEnt-NESOM and the Markovian approach, the creation, ag, and annihilation, a,t, op-
erators in exciton states | k), averaged over the nonequilibrium ensemble, and denoted

by {ag|t) and (a;ﬂlt) = (a|t)*, satisfy the equations

d - , "
E(ﬂk“) — —ig (ag|t) — Tx {aglt) — iWg {aglt)™ +

+ e arlt)” + Y[Rk, (n 1) (aro 1) (@ sho-ilt)* +cc] @)
ki k;

and the equation for (a;r(|t) is the complex conjugated of this. In Eq. (4) Ix(t) is the
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quantity which in the steady state is given by Eq. (3), which, clearly, is the reciprocal of
arelaxation rime; Wy is a frequency renormalization factor which is disconsidered; and
Ry is the strength of the trilinear term (we do not give its cumbersome expression
which is not explicitly used in what follows).

Once the populations have achieved a steady state, the reciprocal lifetimes for the
two states of Fig. 1 are shown in Fig. 2 for increasing values of the intensity of the
pumping source. This clearly tells us that the states lowest in energy tend to have a
long-lived amplitude {(a4/t). To proceed further in the equation for this amplitude we
neglect the linear terms in its conjugate; this can also be obtained from the start if
one introduces the so-called rotating wave approximation (RwAa), as it is done in laser
theory [17]. For linear propagation, as in Ref, [2], we introduce the amplitude field in

an onedimensional continuum model, namely
Wix,t) = D {axlt)e™™ (5)
k

where x is the direction of propagation of the excitons’ beam.

Using Eq. (4) in RwWA, we obtain that (x, ') satisties the equation:

‘;'- 2 L ’
lp(x t) = M. 3% ,(,U(x t) -- Ml —x)p(x' t) +
dx, dx” ! rr
— | —5-Rix - x",x —x"Hpx', Hgx", ) (x,t), (6)
o L Jo L

where I' and R are the expressions in direct space of the corresponding quantities in
Eq. (4). Proceeding on the Ansatz that a narrow solitary wave is to follow, we introduce
alocal-in-space approximation, by writing I'(x —x’) = y;0{x —x"), R(x - x', x —x"") =

G,o(x — x)6(x —x")

¥
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Using the inverse scattering method we obtain the solution of this equation, which



322,

is:

Yix,t) = Aexplilex — (w, —iy)t] — 0/2}sech[W{kx — vt)], (8)

where A is the amplitude; w, = A%|G|/2 — kv /4 is the frequency; v is the velocity
of propagation; y; is the damping coefficient; k = Mv,/h is the wavenumber; W =
[A2M|Gi/h]|'?, and G = |G |e'? is the nonlinear coupling strength, in complete analogy
with the acoustic-phonon-compaosed solution reported in [18]; A and v are determined
by the energy and momentum transferred by the impinging exciting photons.

But in Eq. (5), as shown, the amplitudes corresponding to the states higher in fre-
quency decay very rapidly - typically in the subpicosecond scale —, while the ampli-
tudes associated to the states lowest in encrgy have long lifetimes. Thus, after a very
rapid transient, the quantity ¢ (x, t) is formed by the latter type of coherent excitons,
and y; is very small. Inspection of Fig. (2) indicates that it goes to zero as the amplitude
of the excitation goes to infinity.

Using Eq. (8) for the case in Ref. [2], and that Wuv, is of the order of the width
of the signal which is roughly 20.8 us=!, and taking /A =~ 0.87, the strength in the
nonlinear terms responsible for Frohlich and Davydov phenomena can be estimated
to be |G| = 2000 s~'. We stress that the just described behavior of the system follows
for a weak nonlinear kinetic term coupling excitons and thermal bath; this coupling
strength and the amplitude of the signal are the only open parameters fixed by best
fitting.

These results then indicate that the packet of excitons flowing ballistically from
the condensate (in Ref. [2] with a velocity of roughly 4.5 x 10> cm/s) is an exciton-
composed Schrédinger-Davydov soliton. This is something similar to what is the case
in conducting polymers [19] when it is composed of carriers and in optical fibers [20]
when is composed of photons. This is reinforced by the fact that the larger amplitude
of the signal when the c.w. laser is present, as compared with the one in its absence
as reported in Ref, [2], is consistent with the result that the lifetime of the soliton
is increased with increasing levels of excitation [21,22]. Moreovet, it can be shown

that the profile of the signal in Ref. [2] is well fitted by the squared hyperbolic secant
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of Eq. (8) characteristic of Schrodinger-Davydov soliton [23], as shown in Fig. 3. To
draw the full line — the theoretical calculation — we have taken into account that the
registered signal is composed of the solitary wave formed by the coherent excitons
plus the contribution of an accompanying cloud of incoherent excitons. The former,
as noticed, consists of the squared modulus of the Schrédinger-Davydov soliton-field
amplitude of Eq. (8); the other is composed by the travelling normal excitons produced
in the active region defined by the extinction length of the laser field, of the order of
0.033 cm, and are decaying with a halftime of the order of 0.5 us. These are the
parameters used in the calculation, while the amplitude and width of the solitary wave
have been fitted.

Furthermore, we notice, that in [18] it has been shown and verified that in the case
when the soliton is composed by vibrational modes propagating with a speed v, larger
than the average one, U, velocity of the normal vibrational background there follows a
kind of Cherenkov effect (two Cherenkov cones, a normal and an anomalous however
symmetric in this case) composed, evidently, in that case, of phonons instead of the
photons in radiation theory. This effect is apparently evidenced in the case of propa-
gation of solitons involving vibrational modes in experiments with ultrasound waves,
the so-called ‘X-waves' [24]. Although the excitons are not truly bosons it is conjec-
tured, using the same arguments than in [18], that when the exciton-composed soliton
is travelling with a speed larger than that of the incoherent excitons, the latter may
be driven preferentially in two Frohlich-Cherenkov-like symmetrically oposed cones.
This is a result that, using Egs. (2) and {(4) it can be obtained that Fi, = (Eyx— i) /kgT =
(Evk/kgTH[1 — (D /v) cos 01 ], and cos @1 = (vs/ D)1 — In(1 + v, D1

In conclusion, the phenomenon of stimulated amplification of low-energy exciton
populations arises as a result of the propagation of coherent excitons in the form of
a long-lived Schrodinger-Davydov soliton. The relevant point, and an important one
for eventual technological use, is that the lifetime is largely increased by illuminating
the system with an energy pumping-source: this improves the amplitude of the signal,
and reduces the width at half-height, as the experimental results show.

As final words, citing ). Snoke [1], the phenomenon may provide a new kind of light
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source (the ‘excitoner’), but only time and imagination can tell what new applications

may arise from this novel effect.
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FIGURE CAPTIONS

Figure 1: The populations in the steady state of a characteristic mode in Frohlich
condensate, v, and a “normal” mode, v, for intensities § = [T. In the inset
is shown the quasi-chemical potential pg = po — RY of the mode in Fréhlich

condensate, in units of R}.

Figure 2: The reciprocal of the lifetimes of the modes of Fig. 1, where Ti ) = T/T10),

the scaling time T given in the main text.

Figure 3: Comparison of the shape of the voltaic signal in {2] with the shape of the
energy density of Schrodinger-Davydov's soliton {proportional 1o the squared
modulus of the amplitude field of Eq. (8)] plus the contribution of the incoherent

excitons.
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Figure 1: The populations in the steady state of a characteristic mode in Frohlich
condensate, vg, and a “normal” mode, v, for intensities S = IT. In the inset is shown

the quasi-chemical potential uy = po — R} of the mode in Frohlich condensate, in units
of RY.
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| Experimental Data
—— Theory

VOLTAIC AND SOLITON SIGNAL (normalized)

TIME (ps)

Figure 3: Comparison of the shape of the voltaic signal in [2] with the shape of the
energy density of Schrodinger-Davydov's soliton [proportional to the squared modulus
of the amplitude field of Eq. (8)] plus the contribution of the incoherent excitons.



Capitulo 6

ALGUMAS CONSIDERACOES SOBRE
SISTEMAS BIOLOGICOS

6.1 Introducao

Iniciamos este capitulo citando S. Mascarenhas,! que manifestou que para nds o mais
importante fenémeno da Natureza ¢ a vida. Ela ¢ muito complexa e para conseguir
compreendé-la é necessdrio recorrer a varios ramos da ciéncia. O uso de conceitos
biologicos e fisicos levou ao conceito de Biofisica. Mas outras disciplinas que nao
a Fisica sdo nccessarias neste dificil empreendimento. Assim, a Biofisica hoje deve
melhor ser interpretada como uma ampla ciéncia interdisciplinar que envolve, além da
Biologia, a Fisica, a Quimica, a Matematica, a Tecoria de Informacao, Computagao, etc.
Assim, ela é uma porcio muito rica da ciéncia moderna e que apresenta tremendas
oportunidades para a pesquisa basica e aplicada. O amplo campo da Biofisica faz,
contato com muitas outras arcas como a Genética, a Engenharia Genética, aplica¢oes
em Medicina, Biologia molecular, Bioenergética, etc,

Também seguindo Mascarenhas, que sendo os sistemas vivos constituidos por um
numero enorme de atomos, moléculas, organelas e células, comportamento dito com-

plexo esta amplamente presente neles. Contudo, complexidade leva, paradoxalmente,

1Biopl%y.s'ics, na MacM:‘Han Encyclopeedia of Physics.
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a simplicidade, se reconhecermos que, nao obstante o vasto namero de componentes,
0s processos da vida evoluem harmoniosamente no tempo ¢ no espaco. Isto certamen-
te é o resultado de efeitos cooperativos. Assim, uma questdao fundamental é: Podemos
obter a partir das leis da Fisica Estatistica, da Termodinamica e da Quimica os con-
ceitos basicos que levam aos particulares fendmenos de organizacao nos seres vivos?
Este capitulo constitui-se numa tentativa de mostrar uma possivel trilha no sentido de
responder a essa pergunta. Tal tentativa de nossa parte consiste simplesmente, ja que
ndo somos biofisicos, em mostrar o uso da Mecanica Estatistica e da Termodinamica
Estatistica propostas na metodologia em que se bascia esta tese, ao estudo de sistemas

biologicos modelados. Isto é descrito nas se¢cdes seguintes, que sio:

6.2 Complexidade em sistemas biologicos

6.3 Consideracoes sobre ondas X e sélitons de Davydov em ultrasonografia.

6.4 Comportamento complexo em biosistemas: uma abordagem teérico-informacio-

nal.
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6.2 Complexidade em sistemas biolégicos

Descrevemos alguns aspectos do comportamento complexo que pode estar presen-
te em biopolimeros. O estudo é baseado em uma termodinamica néo-linear de de
sistemas em ndo-equilibrio e dissipativos. Semelhante complexidade consiste numa
condensacdo tipo Frohlich-Bose-Einstein e na propagacio de excitacoes tipo onda so-
litiria de Schrodinger-Davydov, que sao de relevincia ¢ bioenergética. A questio do
tempo de vida do séliton em condicdes fisiologicas é discutida, e compara¢ido com
resultados de experimentos € mostrada, Além disso, é discutido brevemente um com-
portamento complexo aparentemente presente em imagens para diagnostico meédico
via ultrasom, fendmeno que denominamos de efeito Frohlich-Cherenkov, o qual € bre-

vemente discutido.

Aceito para publicacao em Contemporary Physics.
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We describe some aspects of complex behavior that can be present in
biopolymers. The study is based on a nonlinear thermodynamics of non-
equilibrium, and then dissipative, systems. Such complexity consists of a
Frohlich-Bose-Einstein-like condensation and propagation of Schrodinger-
Davydov solitary-wave-like excitations, which are of relevance in Bicener-
getics. The question of the soliton lifetime under physiological conditions
is discussed, and comparison with experiments performed in the case of an
organic molecular polymer is shown. Further complex behavior apparently
present in ultrasonic medical imaging, dubbed Frohlich-Cherenkov effect,

is briefly discussed.

"Group Home Page: http://www.iﬁ”.hu_nicamp.br/waurea



337.

1. INTRODUCTION

Biological systems are complex systems by antonomasia, that is, notable representa-
tives of the class of systems which show complex behavior. They present an enor-
mous number of rich and noticeable phenomena on the morphological, biochemical,
biophysical, biomechanical, etc., levels., We recall that living organisms are open sys-
tems driven (gencrally far) away from equilibrium and, then, one relevant area of
Biophysics for their study is that of the nonlinear irreversible thermodynamics of
open systems and its microscopic foundations (at the classical or quantal, nonlin-
ear, memory-dependent, nonlocal, etc., levels) provided by nonequilibrium nonlinear
statistical mechanics. These disciplines, irreversible thermodynamics of open systems
and statistical mechanics of arbitrarily far-from-equilibrium systems, even though ini-
tfiated in last century with the great contributions of Maxwell, Boltzmann, and Gibbs,
have been marred by conceptual and practical difficulties, but have recently shown
vigorous development, We discuss in this Note the use of an informational-statistical
approach to irreversible thermodynarnics for dealing with biophysical systems with
complex behavior.

It is certainly a truism to say that the complicated heterogeneous spatial structure
and functioning (temporal evolution) of living organisms, starting with the individual
cell, pose quite difficult problems at the biophysical and biochemical levels of Biol-
ogy. In recent decades a good deal of effort has been devoted in particular to specific
physico-chemical aspects of biosystems, such as, how to increase our knowledge of
the chemical composition of life forms; to determine the structure of macromolecules,
proteins, ctc. (as noted in Ref. [1], understanding of structure is the first vital step,
without which any further analyses run aground); to determine the reactions that lead
to processes of synthesis of multiple components; to understand the mechanisms and
codes required to determine the structure of proteins; and so on. Morcover, as already
noticed, to consider living systems at the biophysical level we must be well aware of
the fact that we are dealing with macroscopic open systems in nonequilibrium con-
ditions. In other words, we ohserve macroscopic organization — at the spatial and

temporal levels — of the microscopic components of the system, namely, molecules,
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atoms, radicals, ions, electrons. The macroscopic behaviour is of course correlated to
the details of the microscopic structure,

An immediate question to ask is: Which could be the theoretical approaches in
Physics to carry on a programme to deal with the microscopic (molecular) level and, at
the same time, be capable of describing the all important macroscopic level of biosys-
tems and their synergetic aspects? During the last decades this question concerning
the theoretical description of the macroscopic behaviour of dissipative open many-
body systems in arbitrarily far-from-equilibrium conditions has been encompassed
in a seemingly powerful, concise, and elegant formalism, established on sound basic
principles. This is the so-called Noncquilibrium Statistical Operator Method (NESOM
for shorrt; [2-6]), which we consider [7] to be encompassed within the scope of Edwin T.
Jaynes’ Predictive Statistical Physics, based on Information theory, and the accompa-
nying principle of maximization of informational-statistical entropy (MaxEnt for short;
[B-13]).

The MaxEnl-NESOM formalism is based on a particular kind of scientific inference
and the Bayesian approach to probability theory. According to the Nobel awarded
Philip Anderson [14] the latter appears to be the most appropriate to use in science
since it provides the degree of confidence consistent with retaining the idea that a
proposition is correct when based on the fact to accept that other conditioning propo-
sitions are true: “These statistics are the correct way to do inductive reasoning from
necessarily imperfect experimental data,”

The MaxEnt-NEsOM allows for the construction of a nonlinear quantum trans-
port theory — covering a large class of situations [3-7,15] — and a response func-
tion theory for far-from-equilibrium systems [(6]. 1t also provides a thermodynamics
of irreversible processes, dubbed as Informational Statistical Thermodynamics (15T,
sometimes referred-to as Information-theoretic Thermodynamics). IST was appar-
ently pioneered by Hobson [16] after the publication of Jaynes' seminal articles on
the information-theoretic foundations of Statistical Mechanics [17, 18] { the MaxEnt-
NEsOM-based 1sT is described in references [19] and [20]). This irreversible statisti-

cal thermodynamics provides the foundations for the treatment of dissipative open
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macrosystems away (either near or far) from equilibrium. This is, as already noticed,
the situation in biosystems, a result of the evident general feature that to function
they require to have energy available which is provided by metabolic processes: That
is, the open biosystem “fecds” on this energy and is driven away from equilibrium.

A quite fundamental point is that the evolution of the system has associated a non-
linear kinetics. This nonlinearity of the equations that describe the evolution in time of
the macroscopic properties of the system is of enormous relevance for being the source
for complex behaviour in matter. Complexity manifests itself in different situations
involving this nonlinear domain of dynamical systems theory, and two relevant as-
pects are the nowadays fashionable deterministic chaos {21, 22] and self-organization
in dissipative systems [23-26]. This latter type of complex behaviour in macroscopic
systems is one that could apparently have enormous importance in biosystems, in that
it is related to the origin of life, its functioning, and evolution [25,27-29]. Two gues-
tions naturally arise concerning self-organization in matter; What is the microscopic
origin of dissipative structures?, and How can we deal theorctically with and be able
to perform a rigorous analysis of them? As noted in an earlier paragraph a promising
approach may be the irreversible statistical thermodynamics IST founded on the frame-
work of the MaxEnt-NESOM. We attempt to illustrate the point by reviewing an applica-
tion to a modelled biosystem |30, 31], which reveals two relevant compliex phenomena,
namely Fréhlich synchronous modes leading to a kind of Bose-Einstein condensation
in a nonequilibrium steady state, and the dynamical effect consisting of Schrédinger-
Davydov solitary waves propagating signals at long distances in a coherent way, and

also a peculiar phenomenon we are calling Fréhlich-Cherenkov effect.

2. FROHLICH-DAVYDOV’S SYSTEM AND BIOENERGETICS

As pointed out by Frohlich [32], biological systems are relatively stable from a micro-
scopic point of view, for example, the thermal vibrations of single atoms are practically
the same as in a corresponding nonbiological system. In some conditions, however,

when they are very far from thermal equilibrium, a restricted set of phase space points
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dominate the overall behaviour of the rest. This implies in the emergence of collec-
tive propertics of organization that are carried out by a great number of vibrational
modes. These collective properties evolve as a consequence of the supply of energy
(metabolism) and have associated extreme nonlinear displacements, a complex behav-
iour that may be of large relevance in bioenergetics, as we shall see as we proceed, We
consider this in the framework of 18T applied to the so-called Fréhlich-Davydov model
which consists in a quasi-linear chain of macromolecules in a periodically repeated
array, of which an example could bhe found in the a-helix protein, what is illustrated
in Fig. 1. Energy is pumped in the system by a metabolic external process, and the
chain can sustain longitudinal polar vibrations (those associated to the co-stretching,
or Amide-, oscillations), with the corresponding mechanical model described in Fig. 1.
Details of the Hamiltonian operator (or energy operator) that completely characterizes
the system at the microscopic mechanical level are given in Refs, [30]. Moreover, the
polar modes are in anharmonic interaction with an elastic continuum (describing the
surrounding media). In the MaxEnt-NESOM-based IST, the basic macrovariables used
for the description of the nonequilibrium thermodynamics state of the system are the
time-dependent populations (number of excited quantum phonons) and amplitudes of
the polar vibrational modes, and the energy of the surrounding media. The equations
of evolution for these variables are derived in the MaxEnt-NESOM generalized nonlin-
ear quantum transport theory [15], and solved for given initial conditions [30, 31]. The
solutions provide evidence of complex behaviour — already expected — in the sys-
tem, consisting of two particular phenomena, namely, the Frohlich effect [32-34], and
propagation of solitary-like waves, or Schrodinger-Davydov solitons [35-37].
Consider the first: More than thirty years have elapsed since the renowned late
Herbert Frohlich first presented his concept of long-range coherence in biological sys-
tems [32], a question presently in a process of strong revival providing an attractive
and relevant field of research in Physics and Biology. According to Frohlich biophysical
systems possessing longitudinal electric vibrational modes may display, under appro-
priate conditions, a collective phenomenon akin to a Bose-Einstein condensation —

not in equilibrium but as a complex behavior consisting in the emergence of a dissi-
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pative structure in Prigogine’s scnse [25]. Frohlich’s results are based on the idea that
active biological systems are open and very far from equilibrium and have consider-
able amounts of energy available, through metabolic processes, that cause non-linear
changes in molecules and larger biological subsystems. Fréhlich in ‘Life as a Collective
Phenomenon’ [38], expressed that if one thinks without preconceptions of collective
phenomena in which the discrete constitutive individuals are modified in their behav-
ior, and indeed in their constituting a large collective group where the whole is more
than and different from a simple addition of its parts, living organisms would seem
to be the ideal example. Such a hypothesis of biological explanation in terms of long-
range coherence was originally suggested by Fréhlich at the first meeting of L'Institute
de la Vie in 1967 [32].

In Frohlich model vibrational-polar modes are excited by a continuous supply of
energy pumped by an external source, while these modes interact with the surround-
ing medium acting as a thermal bath. The interplay of these two effects — pumping
of energy subtracting entropy from the system and dissipative internal effects adding
entropy to the system -, may lead to the emergence of complex behavior in the sys-
tem consisting in what can be called Frohlich effect: Provided the encrgy supply is
sufficiently large compared with the energy loss, the system attains a stationary state
in which the energy that feeds the polar modes is channelled into the modes with
the lowest frequencies. The latter largely increase their populations at the expenses
of the other higher-in-frequency modes, in a way reminiscent of a Bose-Einstein con-
densation [30]. This highly excited subset of modes may exhibit long-range phase
correlations of an electret type as discussed in Ref. [39]. Details of the theory, the
description of the system, the accompanying kinetic theory, possible experimental sit-
uations, and discussion of the phenomenon is available in the extensive literature on
the subject (partiaily listed in, for example, Refs. [30]). The nonlinearities responsi-
ble for Frohlich effect are also of relevance to the other phenomenon consisting of
propagation of Davydov soliton, which we consider next.

The solution of the equations of evolution for the statistically averaged field ampli-

tude of vibration ys{x,t) (see Eq. (5) below) of the polar (Co-stretching) modes in the



quasij-linear biopolymer, takes the form of a nonlinear Schrédinger-like equation with
damping, namely [31]

iaw(x,t) 0-

= —{w()—iy}w(x,t)—cxale,u(x,t)+(;|qj(x,t)|2w(x,t)=0, (1)

where wy, o, y, and G are paramelters characteristic of the material (frequency and
curvature of the dispersion relation at the zone-centre, reciprocal lifetime, and the
nonlinear coupling strength of the modes, respectively). For a given impulse-like initial

excitation of amplitude A and velocity v, a solution of Eq. (1) is

e i 01, GIY'"?
Yix,t) ----‘Aexp{l[zax—(ms—ly)t-- 2]}&6(211 [ﬂl(za) (x—ut)] (2)

where we wrote ¢ = |G|el® (complex number in polar planar coordinates); /A and v, as
noticed, are fixed by the imposed initial conditions; and
v |G|lA*

W, = Wy — +
y "7 4 2

is the frequency of oscillation of the soliton.

Except for the exponential decay, Eq. (2) describes Davydov soliton, that is, an exci-
tation (the soliton) which propagates undamped (for y = 0) and undeformed. This is
the novel mechanism for the localization and transport of vibrational energy in protein
proposed by A. S. Davydov [35-37]. In the case of the «-helix region of protein this
mechanism is described as follows: Vibrational energy of the co-stretching oscillators
that is localized on the quasi-periadic helix, acts — through the phonon coupling effect
— to distort the structure of the helix. The helical distortion reacts — again through
phonon coupling — to trap the Amide-I oscillation energy preventing its dispersion,
in a so-called selftrapping [40]

As noted, Eq. (1) is the equation of evolution for a Davydov soliton, which propa-
gates (for the given initial conditions) in the form given by Eq. (2). But a quite important

fact should be noticed, namely that Davydov soliton corresponds to y = 0, that is, its
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original quantum mechanical derivation did not include relaxation effects, which are
of course accounted for in the nonequilibrium thermodynamic approach which leads
to Eq. (1). Therefore, the result is a solitary-like wave (a nondeformed wave packet)
but subject to dissipation. Typically, the lifetime is of the order of 10 picoseconds,
and then, for a typical velocity of propagation in the range of 10% em/s, the excita-
tion would propagate energy only along a few micrometers. Therefore it would be
a quite inefficient mechanism for the propagation of energy (signals), which in living
systems travels distances in the centimeter range. Some effort has been devoted to
this question trying to circumvent such drawback. A quite attractive result, which has
been derived consistently within the above described approach, shows that the life-
rime of the solitary exciton increases enormously, and so does the distance which is
travelled by the signal, when the propagation occurs in a nonequilibrium background
where Frohlich condensation is present {31]. That is, a coherent excitation in the form
of a Davydov solitary excitation can travel nearly undamped, and undeformed, while
a nonequilibrium-dissipative state consisting of Fréhlich-Bose-Einstein-like condensation
is maintained by the action of an external energy pumping process.

But, evidently, these theoretical results are in need of corroboration through ap-
plication of the well established scientific method, namely, observation and measure-
ment. Experiments of the physical and chemical type are quite difficult to realize
in biological systems under normal physiological conditions. Raman scattering ex-
periments have demonstrated the enhancement of polar vibrations in biological ac-
tive systems [41], a fundamental condition for leading eventually to the emergence
of Frihlich effect. Also, it has been tentatively attempted to evidence Frohlich effect
in experiments mecasuring reaction rates of enzyme molecules, rouleaux formation
in erythrocytes (sce second of Refs. [34]), etc., with no conclusive results, However,
a circumventing alternative can be used in a first approach to the question, consist-
ing of the use of inanimate organic polymers that roughly reproduce the structure of
some biopolymers. Solitons of the type here considered seem to be present in organic
compounds such as polyacetylene and polythiophene. These solitons appear to have

an important influence on the conducting properties of these substances, propertics
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which have technological and industrial/economic relevance [42,43]|. Another partic-
ular compound, acetanilide, may have an important role to play: it has a structure
resembling biopolymers with the presence of the relevant Co-stretching modes. Sev-
eral careful experiments testing optical properties, such as infrared absorption and
Raman scattering, have been performed in acetanilide. The infrared spectrum shows
an anomalous line, later ascribed precisely to the presence of a Davydov soliton [44).

Following consistently the MaxEnt-NESOM formalism, according to the response

function theory based on it [6], we find for the optical absorption coefficient

At t’
a(w) => A(q,w) | dt [ dt’e W U Trial(t - t)agze(t)}, (4)

a 0 Jo

where A is an amplitude whose detailed form is not necessary for our purposes here,
p(t) is the statistical distribution at time t, in this experiment in time-integrated op-
tical spectroscopy At is the experimental resolution time, and aq(a.,!,) arc as usual

annihilation (creation) operators in mode g. From a direct calculation, and using
Wix,t) = D> aglt)e™, (5)
q
with ((x, t) given in Eq. (2} it follows that
Tr{al(t - t)age(t)} = vpe 0 1 (al|t)(a,lt’y, (6)

what implics that the absorption spectrum has two bands, the “normal” one due to the
vibrations with frequency wy,, (the population of this mode being vf{’) and an “anom-
alous” band around frequency w,, that is, the associated to the soliton. In fact, using

Egs. (4) to (6) and (2) it follows that

At t’
o) = L) dt Io dt’ [ (t,t7) + o (t, 1) ], (7)
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Ocn(t,t’) ~ CnI'e—zytei(m—mq)(t’—t) + e--2yt'e it w(t’ t)' (8)
O(S(t,f') ~ CS[e—Zy_gtei(m—m_‘-)(t’—-t) e 2y,-1.’c i{w ‘-w,-)(t’—t), (9)
where vy, = y + jﬁl(lGI/LZcx)i‘, y is the decay time of the vibrational modes, and C,
and C; are amplitudes corresponding to the “normal” and “anomalous” bands with
band widths y and y, respectively. We have compared the NEsOM-based theoretical
result of Eq. (7) with the experimental data taken from Ref. [44]. Since there is not a
theoretical access to the initial conditions that fix /A and v, they have been derived
from the experimental data, using Eq. (3), and, for instance, for the case of T = 80 K,
and then, on the basis that wy — w,; = 16 cm ! and y, — ¥y = 3.6 cm™!, we obtain that
A(IG)/2)2 = 2.3 x 105cm™~} and v = 2.9 x 10* cm s~'. In Fig. 2 are indicated the ex-
perimental curves (dotted) and the theoretical ones (full line), for 20 K, 50 K, and 80 K,
which are in a very good agreement., The amplitudes of the bands have been normal-
ized that is, in that way it is avoided the calculation of A of Eq. (9), of no relevance
here, since the fundamental point to characterize is the shape and positioning of the
hands. Details are given in Refs, [45-47].

Figure 3 depicts the calculated shape of the squared modulus of the soliton propa-
gating along a given direction x, which is proportional to its energy density, provided
at several delay times after initial excitation. In Fig. 4 is shown a picture of the soliton
amplitude over the plane of the spatial and temporal coordinates. The decay of the
solitary exciton is evident in this near equilibrium conditions.

Successful experiments — for example those reported in [44] — are quite promis-
ing results which open up the possibility of carrying on additional experiments in
acetanilide, now in the presence of intense excitation by a continuous pumping of en-
ergy in order to attempt to corroborate the phenomena previously discussed. Probing
it in infrared or Raman scattering experiments, we should look for the theoretically

predicted large enhancements of the lifetime of the soliton, that is, a noticeable nar-
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rowing ot the Raman bandwidth, as the system eventually approaches the threshold
for Frohlich condensation.

In acetanilide the relevant vibrations, which are related to the Amide-I vibrations
in biopolymers, are of the optical dipolar type. But the phenomena just described
can also be present in the case of acoustical vibrations, which may have relevance to
the medical technique of ultrasound imaging. This is described in Refs. [46] and [47]:
longitudinal acoustic phonons (sound-like waves) excited by the action of a pumping
source acting in the region of ultrasound frequencies, as in the previous case of optical
phonons, also display a very large enhancement of the populations of the modes lowest
in frequency, and solitary-like waves can be produced.

In both cases of “optical” or “acoustical” Schrédinger-Davydov solitons we have
described, the amplitude and the velocity of propagation are determined by the initial
condition of excitation. Hence, the velocity v can be either smaller or larger than the
group velocity of the normal waves. For the polymer acetanilide in the conditions of
the experiment of Careri et al. [44], v is larger than the group velocity of the phonons
of the co-stretching vibrations, In the case of acoustic vibrations in bulk we may have
v larger than the velocity of sound s in the medium, leading to the emergence of a kind
of Cherenkov-like effect (a so-called superluminal effect in the case of charges moving
in a dielectric with a velocity larger than the velocity of light in the medium [48)])
as we proceed to show. This could be the case in supersonic medical imaging as
reported by Lu and Greenleaf [49]; in Fig. 4 we reproduce a pair of results, one the
excitation of a normal sound wave, and the other an apparent, in our interpretation,
“superluminal” solitary wave, or better to say a supersonic solitary wave accompanied
with a Cherenkov-like large emission of phonons, as next described. Such excitation
has been dubbed an X-wave, and interpreted in terms of an undeformed progressive
wave [50], created by the particular excitation provided by the pumping transducer.

Consider propagation of a soliton with velocity v(> 5) in, say, x-direction in bulk,
what introduces a privileged direction in the system. The population of the vibronic
modes increase as a result of direct excitation, and as noticed, such pumped energy is

concentrated in the modes lowest in frequency, that is, there follows the emergence
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of Frohlich effect. It can be shown that the population of the acoustic phonon states

takes the form [46,47]

1
, (10)

P [exp[ﬁohsq[l —(v/s)cosO]] - l]
after the small corrections due to the amplitude of the oscillation are neglected, where

Bo = 1/kgTy, Ty being the temperature of the system, a Debye dispersion relation

w, = sq is used, and we have introduced the angle 0, such that

c059q=_—‘?~[l—kBToln(1+L)]=_ S (11)
v hsq Vg VNhg

and n, defines a “pseudo-refraction index” introduced simply for giving an expres-
sion resembling the case of Cherenkov effect in radiation theory (when then v, is
the Planck distribution of photons [48]). Hence it follows that a large emission of
phonons follows when cos 8, approaches the value s/v, that is, for large values of v,
in the Frohlich condensate, and which are emitted in the direction g forming an angle
0, with the direction of propagation of the “supersonic soliton” (v > s). Forward and
backward symmetrical propagations are present because modes +g are equivalent (O,
depends on the modulus of g). This is here a particular characteristic of what in radi-
ation theory are the normal and anomalous Cherenkov effect in a spatially dispersive
medium [48]. As already noticed, the phenomenon, which we call Fréhlich-Cherenkov
effect, may provide a microscopic interpretation of the X-waves in ultrasonic medical
imaging [49, 50], shown in the lower part of Fig. 5. From this figure we roughly cstimate
that 8 ~ 13°, and then v/s =~ 1.02 (i.c. the velocity of propagation of the ultrasonic
soliton is 2% larger than the velocity of sound in the medium, once we admit strong
excitation implying in that v, greatly increases for modes g in Frohlich condensate,
and then cos 8,5 — (s/v)[1 — (kgTy/hisqvy) | = s/v. This seems to be the case noticed
in ultrasonic medical imaging [49], where the propagating excitation was dubbed an
X-wave. Rodrigues and Lu have described this kind of motion in terms of a mathe-
matical treatment in the context of the so-called undistorted propagating wave [50]:

the statistical thermodynamic approach here described provides a microscopic foun-
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dation for the phenomenon. Figure 4 shows a normal sound wave (upper part) and
the X-wave (lower part), the latter being the soliton accompanied of the Cherenkov-like

effect referred to above.

3. DISCUSSIONS AND CONCLUSIONS

We have considered the question of complex behavior in biosystems and its possible
description — involving the microscopic level of many-particle physics —, in terms of a
particularly promising approach, namely, Informational-Statistical Thermodynamics.

Complexity is regarded presently to be one of the frontier fields in Physics [51].
The 1972 article in Science |52] by Philip W. Anderson, titled ‘More is Different’ is con-
sidered to constitute one of the main “Manifestos” on the subject (see also Refs. [23-
29,38,53-55]). Complex behaviour in matter is nowadays a topic attracting increasing
interest. Complex systems are not necessarily complicated (even though they can be),
but characterized by the fact of displaying highly coherent behaviour involving a col-
lective organization in a vast number of constituent elements. It is said that it is one of
the universal miracles of Nature that huge assemblages of particles, subject only to the
blind forces of nature, are nevertheless capable of organizing themselves into patterns
of cooperative activity [51]. Complex behaviour in matter can only arise in the nonlin-
car domain of the theory of dynamical systems (one of its founders being Ludwig von
Bertalanfty in the thirties [53]), since in the linear domain the principle of superposi-
tion of states cannot give rise to any unexpected behaviour of a synergetic character.
For thermodynamic systems, as the biological ones, coherent behaviour is only possi-
ble in the nonlincar regime far from equilibrium, once in the lincar (also referred to as
Onsagerian) regime around equilibrium synergetic organization is inhibited according
to Prigogine's theorem of minimum entropy production [24, 26].

On the other hand, the mechanical-statistical approach above mentioned is based
on Predictive Statistical Mechanics, which is not a physical theory, but a method of
reasoning that accomplishes the description of the macroscopic state of the system

by finding, not the particular things that the cquations of motion say in any partic-



349.

ular case, but the general things that they say, in ‘almost-all’ cases consistent with
our information, for those are the reproducible things. Evidently, there remain quite
difficult points to be cleared up, mainly how to determine in which extension this in-
formation reside in us, or up to what degree it is a “property” of Nature, or, better
to say, of dynamical systems in general. Again according to Jaynes, the question as
to how the theoretically valid and pragmatically useful ways to apply Probability the-
ory in science was faced by Sir Harold Jeffrey [56,57], in the sense that he stated the
general philosophy of what scientific inference is, and proceeded to develop a math-
ematical theory and its implementations. At the beginning of his book on Probability
theory [57], Jeffreys maintains that the fundamental problem of scientific progress and
a fundamental one of cveryday life, is that of learning from experience. Knowledge
obtained in this way is partly merely description of what we have alrcady observed,
but part consists of making inferences from past experience to predict future experi-
ences. [t is worth noticing that MaxEnt-NESOM appears to have points in common with
an alternate engaging approach, namely the one of Prigogine and the Brussels' school,
referred-to as subdynamics (see for example reference [58]). A comparison, with an
attemplt 1o relate both approaches, has been presented by J. P. Dougherty, and we refer
the reader to his work in references [59-61].

The formalism has been applied to the study of a particular physicochemical sub-
system present in biological material. We have reviewed in this paper the case of polar
modes of vibration (of the Cco-stretching type) in anharmonic interaction with a bath
of acoustic-like vibrations (also present in some polymers like, for example, vinyls and
acetanilide). Complex behavior may follow consisting of two particular phenomena we
have described here. One is Frohlich effect where synchronous large-scale collective
oscillations imply in intercellular microwave emissions which would constitute a non-
chemical and non-thermal interaction between cells, These oscillations could therefore
be revealed by detection of emissions of GHz or THz radiation. Such electromagnetic
signals are of extremely low magnitude and the receiver technology to measure them

was not available during Frohlich’s time, It is only now that the predicted signals can
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be detected by adapting successful technology that has been developed for space and
astrophysical research [62].

Earlier experiments looking after Frohlich effect were not conclusive, but now - as
notice above - a ‘second generation’ of experiments are becoming available. They re-
quire further improvement, but already some preliminary results are encouraging {62):
Some evidence of a non-thermal influence of coherent microwave radiation on the
genome conformational state in E. coli has been reported, which may indicate that
chromosomal DNA could be the target of mm microwave irradiation within this sys-
tem. Also low intensity microwave irradiation of leukocytes results in a significant
increase in biophoton emission in the optical range, the origin of which is thought to
involve DNA. Also it is worth noticing the possible influenice of the concept of bijo-
coherence on the very particular dipolar system which is water. It can be considered
the possibility that biological water might itself support coherent dipolar excitations
extending over mesoscopic regions; thus water instead of being a passive space-filling
solvent would be risen to an important singular position whose full significance has
yet to be clucidated. Hence, a whole new area of biology is now ready for investigation,

Nonbiological implications of Frohlich effect could also be far-reaching. It can be
mentioned some connection with homeopathy and atmospheric aerosol physics |62],
Regarding the latter, sunlight-pumped Fréhlich-like coherent excitations may play a
role in producing anomalies in the spectrum of light absorption [63]. At this point we
may mention a question related to a public safety concern, namely, the influence and
eventual delcterious effects of mobile phones in close proximity to the head of the
user as a result of the action of microwaves on the biological material, which could
eventually be better analyzed in connection with studies related to the Fréhlich cffect
here described.

The other complex phenomena we have considered consists in the propagation of
Schrodinger-Davydov solitary waves. As it was shown the solitary wave in biological
as wel] as nonbiological systems, although strongly damped in a sample not excited
by external pumping sources as a result of the usual dissipative effects, may propa-

gate with weak decay and travelling long distances when moving in the background
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provided by a steady-state Frohlich's condensate [46]. There already exist cases where
theory is seemingly validated by experiment, and we have noticed in the previous Sec-
tion the case in ultrasound medical imaging, where another kind of complex behavior
may follow, hamely the so-called Fréhlich-Cherenkov emission.

Other example where Frohlich’s condensation and Davydov's soliton appear to be
present is the case of the so-called ‘Excitoner’, meaning stimulated coherent emission
of excitons created by random excitations, in a situation similar to the case of photons
in a laser |64, 65]. In this case excitons, created in a semiconductor by an intense pulse
of laser radiation, travel through the sample as a packet and are detected on the back
of the sample. A weak signal in normal conditions of thermal excitation is largely
enhianced when the system is pumped by a continuous external source of infrared
radiation. The theory suggests the formation of a nonthermally excited Frohlich con-
densate of excitons where a weakly damped Schrédinger-Davydov soliton is created,
whose shape is in very good agreement with the experimental observation [66]: We re-
produce in Fig. 6 a comparison of the experimental result and the one provided by the
theory. We notice here a particularly noticeable complex behavior — Frohlich effect;
Davydov soliton; eventually Fréhlich-Cherenkov etfect —, and the ‘Excitoner’, citing D.
Snoke [64], is a phenomenon which may provide a new kind of light source, but only
time and imagination can tel] what new applications may arise from this novel effect.

In conclusion, the results we have described, resulting from a promising and par-
ticularly successful marriage of nonlinear nonequilibrium Statistical Thermodynamics
and Biology, lead us to paraphrase Herbert Frohlich saying that it is particularly aus-
picious to see that biological systems may display complex behaviour describable in
terms of appropriate physical concepts.
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FIGURE CAPTIONS

Figure 1: An atomic model of the o-helix structure in a protein, and a rough descrip-

tion of the mechanical model we used {(After first of Refs. [30]).

Figure 2: Infrared absorption spectra of acetanilide: curves with points are experi-
mental data from reference [44], and full curves the result of theoretical calcu-
lations. Thermal bath temperature are 20 K, 50 K and 80 K, as indicated on the

upper left (after Ref. [45]).

Figure 3: The solitary exciton spatial shape at several delay times after initial excita-
tion. Bath temperature is 80 K and in the conditions of the experiment of [44],

withy = 9.2 x 101 5 !,

Figure 4: Shape of the solitary excitation: its space and time dependence in the

conditions indicated in the caption to Fig. 2.

Figure 5: Normal sound propagation (upper figure), and the excitation interpreted as
a supersonic soliton (lower figure); from reference [50] (We thank W. A. Rodrigues

and J. E. Maiorino for providing us with a postscript [ile of this picture).

Figure 6: Comparison of the shape of the voltaic signal in [65] with the shape of the
energy density of Schrodinger-Davydov's soliton [proportional to the squared
modulus of the amplitude field of Eq. (2)] plus the contribution of the incoherent

excitons [66].
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Figure 1: An atomic model of the «-helix structure in a protein, and a rough description
of the mechanical model we used (After first of Refs. [30]).

MESQUITA et al. — Contemp. Phys. FIGURE 1
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Figure 2: An Infrared absorption spectra of acetanilide: curves with points are experi-
mental data from reference [44], and full curves the result of theoretical calculations,

Thermal bath temperature are 20 K, 50 K and 80 K, as indicated on the upper left (after
Ref. [45]).
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tion. Bath temperature is 80 K and in the conditions of the experiment of [44], when
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Figure 5: Normal sound propagation (upper figure), and the excitation interpreted as
a supersonic soliton (lower figure); from reference [50] (We thank W. A. Rodrigues and
1. E. Maiorino for providing us with a postscript file of this picture).
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l Experimental Data
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Figure 6: Comparison of the shape of the voltaic signal in [65] with the shape of the
energy density of Schridinger-Davydov’s soliton [proportional to the squared modulus
of the amplitude field of Eq. (2)] plus the contribution of the incoherent excitons [66].

MESQUITA et al. — FIGURE6
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6.3 Consideracoes sobre ondas X e solitons de Davydov
em ultrasonografia

Pesquisa recente em ultrasonografia evidenciou a propagacio de um tipo peculiar de
excitacdo em fluidos. Tal excitacio, denominada onda X, tem caracteristicas que se
assemelham as de uma onda solitaria. Considerando sua possivel relevincia para o
melhoramento de imagens para diagnostico médico via ultrasom, reconsideramos o
problema em um meio que consiste em um material biologico do tipo proteinas que
apresentam a estrutura da hélice «. Pode ser mostrado que neste caso é esperada
uma excitacao do tipo onda solitaria de Davydov, contudo fortemente amortecida em
condi¢des normais. O caso da acetanilida, wm polimero organico que se assemelha a
biopolimeros, é considerado, e o espectro infravermelho analisado. O séliton de Davy-
dov ¢ evidenciado como um estado coerente de vibragdes polares. O caso de vibracoes
acusticas tambem é considerado aqui, onde, também, uma onda solitaria amortecida
de Davydov pode ser excitada. Contudo, ¢ mostrado que quando propagando-se em
condi¢oes suficientemente longe do equilibrio, o tempo de vida da onda solitaria é
bastante ampliado. Além disso, um séliton movendo-se com uma velocidade maior do
que a velocidade de grupo das ondas vibracionais normais produzem uma emissio de

fonons que dao origem ao padrao tipo onda X que é observado experimentalmente,

Submetido para publicacdo em Journal of Biological Physics.
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Recent research in ultrasonography has evidenced the propagation of a peculiar kind
of excitation in fluids. [Lu and Greenleaf, IEEE Trans. on Ultrasonics Ferroeletrics and
Frequency Control, 39, 441-446 (1992)]. Such excitation, dubbed a X-wave, has char-
acteristics resembling that of a solitary-wave type. Considering its possible relevance
for improving ultrasound medical imaging, we reconsider the problem in a medium
consisting of a biological material of the like of o-helix proteins. It can be shown
that in this case is expected an excitation of the Davydov's solitary wave type, how-
ever strongly damped in normal conditions. The case of acetanilide, an organic poly-
mer which resembles biopolyimers, is considered, and the infrared spectrum analyzed.
Davydov's soliton is evidenced as a coherent state of polar vibrations. The case of
acoustic (sound) vibrations is also considered, where, also, a damped Davydov-like
solitary wave may be excited. However, it is shown that when traveling in conditions
sufficiently away from equilibrium,the lifctime of the solitary wave is largely enhanced.
Moreover, a soliton moving in bulk with a velocity larger than that of the group velocity
of the normal vibrational waves would produce a Cherenkov-like ¢mission of phonons

giving rise to the observed X-wave-like pattern.

Group Home Page: http://WWw.iﬁw.“LFuicamp.br/-»aurea
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1. Introduction

Recently, experiments in ultrasonography have evidenced a particular kind of wave
propagation, dubbed as X-waves [1,2]. They have the characteristic of propagating
without dispersion, and may result of relevance for ultrasound medical imaging. Later
on, they were ascribed to some kind of the so-called undistorted propagating waves
[3]. They are waves traveling in a material media, and the reported characteristics
point to the possibility of they belonging to the category of solitary waves. Soliton is
the name coined to describe a pulse-like nonlinear wave (the solitary wave referred to
above) which emerges from a collision with a similar pulse having unchanged shape or
speed. Its relevance in applied sciences has been described in a 1973 review paper by
A, C. Scott et al. [4] Because of the above mentioned technological/medical relevance
we reanalyze the question in the case of propagation in biological materials.

The original category of solitary waves consists in the one observed by the Scottish
engineer Scott-Russell in August 1834 in an English water channel, and reported in a
1844 meeting of the British Society for the Advancement of Science [5,6]. During the
second half of this century many other types of solitary waves have been associated to a
number of physical situations in condensed matter physics. Several, seemingly, have a
fundamental role in important technological areas of large relevance for contemporary
society. Among them we may highlight the case of doped organic polymers with very
large conductivity for, e. g., use in very light, almost two-dimensional (sheets) batteries
[7-9], and the case of propagation of light in optical fibers [10]. Another example is
that of the so-called Davydov’s solitons [11, 12}, which may have a quite relevant role
in bioenergetics.

Davydov’s theory has received plenty of attention, and a long list of results pub-
lished up to the first half of 1992 are discussed in a comprehensive review due to A. C.
Scott [13]. As pointed out in that review, one question concerning Davydov's soliton is
that of its stability at normal physiological conditions, that is, the ability of the excita-
tion to transport energy (and so information) at long distances in the living organism,

in spite of the relaxation mechanisms that are expected to damp it out at very short
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(micrometers) distances, On the assumption that the X-waves in ultrasonography may
belong to the category of solitary waves in the material media, we consider this ques-
tion on the basis of a model in nonequilibrium thermodynamic conditions, since any
biological system is an open systeri out of thermal equilibrium, For that purpose we
resort to an informational statistical thermodynamics (see for example [14-16]), based
on the Nonequilibrium Statistical Operator Method (NEsoM) [17-20]. The NESOM, which
provides microscopic foundations to phenomenological irreversible thermodynamics
[21], also allows for the construction of a nonlinear generalized quantum transport
theory — a far-reaching generalization of the Chapman-Enskog’s and Mori's methods
— which describes the evolution of the system at the macroscopic level in arbitrary
nonequilibrium situations {17,18,22,23], a formalism to be used in what follows. We
notice that the method has been applied with particular success to the study of opti-
cal and transport properties in solids [24] and also to modelled biopolymers [25, 26],
of the kind we consider here, and to techno-industrial processes [27]. Consequently,
we do not go over the details of the formalism, just adapting those carlier results for
the present discussion, giving in each case the reference where they are reported. We
scparate the presentation into two parts: After a general derivation of the equations
of evolution, a first analysis is concentrated on the case of polar vibrations (with fre-
quencies in the infrared region of the spectrum), for which are available experimental
results, particularly the case of acetanilide, which we analyze, comparing theory and
experiment. This is done in subsection 2.1, while in subsection 2.2 we deal with the
case of longitudinal acoustic vibrations.

As stated, we first consider a systern where modes of polar vibrations are excited
by a continuous supply of energy. These polar modes are coupled through a nonlin-
ear kinetics with a bath consisting of a continuous medium modelled by a system of
acoustic-like vibrations. The equations of evolution for the population of the vibra-
tional modes are derived resorting to the nonlinear quantum kinetic theory that the
NESOM provides, This corresponds to the description of polar vibrations of the co-
stretching type (Amide-I) in, for example, o-helix proteins [11-13). Experiments, of

the class of Raman or neutron scattering or radiation absorption, in active biological



systemns are particularly difficult. For that reason, the comparison of the theory of next
section with experiment is done in the case of the organic polymer acetanilide, which
constitutes a good mimic of biopolymers [28]. The infrared spectrum in the frequency
region corresponding to the cO-stretching oscillation is derived, and compare very well
with the experimental measurements, confirming the presence of Davydov's soliton.
Finally, we comment on the possibly very large increase of the lifetime of Davydov's
soliton when propagating in an open medium sufficiently far from equilibrium.

In subsection 2.2, we consider a system of longitudinal acoustic vibrations in in-
teraction with the abave said thermal bath. We find a behavior of the acoustic modes
quite similar to the one evidenced for the optical modes, namely, existence of the
solitary-wave excitation, damped near equilibrium conditions but whose lifetime is
greatly enhanced when propagating in a highly excited background.

Finally, it is demonstrated the possible emergence of a particular phenomenon,
which we call Frdhlich-Cherenkov effect, consisting in that when the soliton is propa-
gating with a velocity larger than the group velocity of the normal modes of vibration
in the medium, a large number of phonons are emitted at a certain angle with the

direction of propagation of the soliton.

2. The Solitary Wave

Let us consider a model biosystem which can sustain longitudinal vibrations and in
interactions with a thermal bath of acoustic-like vibrations, which is described by the
so-called Frohlich-Davydov Hamiltonian given in {11] and [25]: This Hamiltonian is
given in the so-called Random Wave Approximation, while the full Hamiltonian — to

be used in what follows — is given by
H:HQ +II; =H()_'; -+ H()B+H[, (1)
where

1
Hos = > hwglaha, + E) , (2a)
q
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(20)

Figure 1 in [25] describes a particular biological system and the mechanical analog
we are using, The Hamiltonian consists of the energy of the free subsystems, namely,
that of the free vibrations, with w, being their frequency dispersion relation (g is a
wave-vector running over the reciprocal-space Brillouin zone), and that of the thermal
bath composed by oscillations with frequency dispersion relation Q,, with a Debye
cut-oft frequency Qp. The interaction Hamiltonian H; contains the interaction of the
system of polar vibrations with an c¢xternal source [which pumps energy on the sys-
tem and is the first term on the right side of Eq. (2¢)], and, finally, the anharmonic
interactions between both subsystems. The latter are composed of several contribu-
tion, namely, those associated with three quasi-particle (phonons) collisions involving
one of the system and two of the thermal bath (we call V;f;), the corresponding matrix
clement), and two of the system and one of the bath (we call V;f,), the corresponding
matrix element). Finally, a4 (a)), bg (b)), are, as usual, annihilation (creation) operators
of, respectively, normal-mode vibrations in the system and bath in mode g, and the
one corresponding to the quantumn e¢xcitations in the pumping source, with 7 being
the coupling strength.

Next step consists in the choice, within the tenets of NESOM, of the basic set of
dynamical variables relevant for the present problem. Since we are dealing with exci-
tation of vibrations in modes g (with energy hw,), we neced to introduce the number
of excitations in each mode, ¥, = aja,. Moreover, once the formation of a coher-

ent state is expected (Davydov’s soliton), we must introduce the field amplitudes a,

and al. Finally, since the thermal bath is taken as remaining constantly in a station-



ary state at a temperature 7y, via an efficient homeostatic mechanism, we introduce
its Hamiltonian, Hg. The average of these quantities over the NESOM nonequilibrium

ensemble constitute the basic set of macrovariables, which we designate as

bv, (1), (ablt), (aylt), Egl, (3)

that is, they define Gibbs’s space of nonequilibrium thermodynamic states, This
is the thermodynamic state space in Informational Statistical Thermodynamics (IST
for short). IsT is the thermodynamic theory for irreversible processes based on
the nonequilibrium ensemble formalism NESOM [14-16]). The basic thermodynamic

macrovariables of Eq. (3) are then given by

Vy(t) = Tr {Va0(t)} ; (4a)
(aglt) = Triagze(t)}; (4b)
(ahlt) = (aglt)* =Tr{af,9(t)} ; (4c)

Ep = Tr { Hpoy} (4d)

where p(t) is the nonequilibrium statistical operator of the system, and gy the canon-
ical distribution of the thermal bath at temperature T,. The statistical operator g(t)

is taken in Zubarev’s approach [17, 18], in this case given by

o(t) = e S:(D) (5)
where
. . t c o d -
Sc(t) = S(t,0) — J dt’ ¢!t -“E;S(t',r' — ), (6a)
with
S(t,0) = p(t) + Z[Fq(r)c»q + fyt)ag + f;(t)ai,] (6b)

g
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being the so-called informational-statistical-entropy operator [29],
Sppf oo ! J- r 4 -I- r
S(t',t'—-1t) = EXp{—-];ﬁ(t —t)H S(I,O)exp{ﬁ(t — t)H} . (6¢)

and ¢ is a positive infinitesimal that goes to zero after the calculation of averages
has been performed [17-22]. Moreover, ¢(t) — playing the role of a nonequilibrium
partition function — ensures the normalization of the statistical operator.

In Eq. (6b) are present the Lagrange multipliers that the method introduces, namely

those we have called

{F (1), fo(t), (D), Bo}, Y

where B, = (kgTy) !, since the thermal bath remains in a stationary state at fixed
temperature Ty, and the total statistical operator is the direct product of g(t) and gg;
kg is Boltzmann universal constant.

In continuation we proceed to derive, in the corresponding NESOM nonlinear quan-
tum kinetic theory [17-23] the equations of motion for the basic variables of Eq. (3).
Since B is assumed to be constant in time, and so is Iy, we are simply left to calcu-
late the equations of evolution for the population of the vibrational modes, v, (t), and
of the amplitude {(a,[t) and its complex conjugate. As noticed, these equations are
derived resorting to the nonlinear quantum generalized transport theory that the NE-
sOM provides. We introduce an approximated treatment, however appropriate for the
present case since the anharmonic interactions are weak, consisting of the so-called
second order approximation in relaxation theory, SOART for short [22]. Tt is usually
referred to as the quasi-linear theory of relaxation [30], which is a Markovian approxi-
mation involving only the second order in the interaction strengths [22], in the present
case involving contributions proportional to IVL;:,). |2 and IV;;;),F.

The calculation shows that, because of the symmetry properties of the system and
the selected choice of basic variables, several contributions in NESOM-SOART vanish in
this case: The surviving one corresponds to the Golden Rule of quantum mechanics

averaged over the noncquilibrium ensemble [25]. In compact form, the one for the
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population is

5
a TValt) =Ig + > Ja, (1) + Calt), (8)

j=1
where the first term on the right hand side is the one associated to the pumping source,
where [, is then the rate of population increase that it generates, and the remaining
five collisions operators Jg ,, (t) are those arising out of the anharmonic interactions.
The first two correspond to collisional events involving a single vibration and two of

the bath, and gives rise to a pure dissipative term which takes the form

1
Jﬂ(n(t) I‘_JQ(ZI(t) = T [Vq(t) _Vl(;m]: (9)
Tq
where v(m is the population in cquilibrium at temperature Ty, and T plays the role of

a relaxation time given by

4 1 ;
= N0 ZIV‘” 5Vq 6000 + 04 ¢ - wi) 1 26800 (O ~ Qg + wa) |

(10)
where vg is the population of the phonons in the bath, namely, the Planck distribution

ve = lexp(BohQy) — 117", (11)

and the delta functions account for conscrvation of energy in the scattering events.

The other terms, Jq, (t) with i = 3,4,5, are

Jagi (1) = V“ :vg_qr(vqf —Vg) —vg(l + vqf)] 0(Qy ¢ + Wy —wy), (12a)
g, (8) = Z IV“) vg_q:(vqr — Vg) t vg (1 + vq)] 0(Qqeg — Wy +wy), (12b)
Jais, (£) = A2 IVE (1 vg) = (v = VE Vg | 8(Qqra — g — wg), (120)

and, finally, the term g, (t) is the one which couples the populations with the ampli-
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tudes, namely

41T
Calt) = 35 SVl |<aq|r)|2{(1 +vE + VB )8(Qqg + Qy — wqr)
q’

+2(VE vy )8(Qqq — Qg - mqf)}
‘:T ZIV“)F{Hanr)I (Lt v+ VEg) = g 11 (v~ VE ) [5(0q o+ @y -0y
Lw“’ {I(a.q[t)lz(vqr—vg_ ) - HagIt) 21 +vg+vE_ )}5(9.5, - Wy + W)
.- ZIV(”I’z{I(ant)i (Ve = Vi) - U 112 (g = Vg }5(04 4 — 0~ w0).
a

(12d)

The collision operator Jg,, is also a relaxation term {containing contributions non-
linear in the mode populations); and the first two terms are those responsible for the
so-called Frohlich effect, as a result that they account for, through the nonlinear terms,
of the transfer of energy to the polar modes lowest in frequency. In fact, they contain

nonlinear contributions proportional to
zlvu)lth(t )vg (L )[c‘i(Qq g — Wg +wy) —0(Qq_g + Wy —wy)|, (13}

and we may notice that for modes g’ such that w, > w, the energy conservation
as required by the first delta function is satisfied, while this is not possible for the
second: hence this nonlinear contribution tends to increase the population in mode g
at the expenses of the other modes higher in frequency. Reciprocally, for w, < w,,
the mode g transfers energy to the modes lower in frequency. Moreover, in Eq. (12d)
the term C,(t) acts as a source coupling the populations of the vibrational modes

with the amplitudes of the expected coherent excitation (Davydov's soliton as shown

a posteriori).
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On the other hand, the equations of evolution for the field amplitudes are

0 . .
+ > Rag(ag 1t)al,1t) ((Ag-gra,1t) + (@l g, g q,1t)) (14a)
q.q,
%(aélt) = the c.c. of the r.h.s. of Eq. (14a), (14b)

where @, = w, + W,, with W, being a term of renormalization of trequency which
will not be of interest in the following analysis, and the lengthy expression for R, .,
is given clsewhere [26]; its detailed expression is unnecessary for the analysis here.

Finally, T, (t), which has a quite relevant role in what follows, is given by

[(t) = éT,;;](t)

(2) . .
Pk ll + vy + V5 q:] 0(Qgg + Wg - y) +
g’

Z VI [va — vE 4] 8(Qq-q — wq + wy) +

4 )
hF’TZ|V )|2[ g q+q]5(Qq g — Wg — Waq) . (15)

The coupled equations (14) contain linear and tri-linear terms. Ignoring the latter,
the resulting linearized equation has as solutions the normal damped wave motion,
proceeding with a renormalized frequency and lifetime Ty I, The complete equations,
i.e. including the nonlinear terms, are of the Davydov’s soliton type, but with damping,
or more precisely, are nonlinear damped Schrédinger-like equations [4, 31]). We intro-
duce a representation in direct space, defining the averaged (over the nonequilibrium

ensemble) ficld operator

Wix,t) = Y (a,lt)e™. (16)
q

for linear propagation along the, say, x direction on bulk or along the one-dimensional

polymer,
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2.1. Polar (Optical) Vibrational Modes

At this point we introduce a first type of analysis, specifying the vibrational modes
as being of the class of longitudinal polar-modes (optical modes with frequencies in
the infrared), as in Davydov's and Fréhlich's works [11,12,32,33]. Their frequency
dispersion relation is approximated (to a good degree of accuracy) by the parabolic-
law w, = wo — og”, where wq and o are constants, standing for the frequency at the
zZone centre (the maximum one) and the curvature at this centre, respectively. Next,
using Eqs. (14), after neglecting the coupling terms with the conjugated amplitude
(what can be shown to be the case when we introduce from the outset a truncated
Hamiltonian in the so-called Rotating Wave Approximation [34]), it follows that the
average field amplitude satisfies the equation

2

dzc [ —xHyp(x', t) +

L
sz)w(x't) --1hJ’0

. J‘L dx’ J‘L dx’’
o L Jo L

iﬁ%tp(x,t) = (hwg + h 9

Rix —x",x—x"Y(x', OHpx", tHp*(x,t), (17)

where [' and R are the back-transforms to direct space of [; in Eq. (15) and Ry,
in Eq. (14a), and L is the length of the sample. Moreover, we have taken a time-
independent population v, that is, according to Eq. (8) it is cither the equilibrium
distribution at temperature Ty when no external pumping source is present (i. e.
I,(wg) = 0}, or when in the presence of a constant pumping source leading, after
a short transient has elapsed, to a steady state and, morcover, the term T, is weakly
dependent on time (a condition to be characterized a posteriori).

Equation (17) is a nonlincar Schrodinger-type equation with damping [31]. Intro-
ducing a local approximation, that is, neglecting space correlations, after using the

expressions

Rix —x",x—-x") =hCGd(x - x")0(x — x"), (18a)

[(x —x") = y,0(x — x"), (18h)
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we obtain that Eq. (17) becomes

O (x,t) . ¢
lmq“}at— —(wo -iy)Plx,t) - txmw(ﬁf:. t) - Glylx,t)* wix,t) =0, (19)
Equations (14) and (19) are of the form of the equations derived by Davydov in
an alternative way, but, with the present thermodynamic treatment clearly showing
the damping effects. In equilibrium conditions at temperature 300 K, the damping
constants have values corresponding to lifetimes in the order of a few picoseconds.
For the case of a Gaussian signal impinged at the beginning of the polymer chain, which
can be approximated to a good degree of accuracy by a hyperbolic secant shape, and
next using the Inverse Scattering Method [35] we obtain the solution
161

N . 0
Wwix,t)y = Acxp {1 -,--‘&x — (e ~1ys) t — 2]} sech |:ﬂl (2“

1/2 -
) (x—ut)‘ , (20)

where y; is, evidently, the reciprocal lifetime of the excitation (taking y, = 0 and
wq = 0, Eq. (20) is the expression for Davydov’s soliton in its original version [11, 12]),
and we used G = |G|e¢l?, Moreover,

v:  |G|.AZ2
o :

Wy — Wy —
* 4 2

(21)

is the reciprocal period of the solitary wave and A and v are an amplitude and a
velocity of propagation fixed by the initial condition of excitation imposed by the
external source.

Hence, it is proved the possible presence of Davydov's solitons in polymers, like
the a-helix protein in biological matter, but, we stress, of a damped character. The
mechanism for the formation of the soliton is in this case interpreted as follows [13]:
Vibrational energy of the Co-stretching (Amide-I) oscillators that is localized on the
quasi-periodic helix acts — through a phonon coupling eftect — to distort the structure
of the helix. The helical distortion reacts — again through phonon coupling — to trap
the Amide-I oscillation and prevents its dispersion in a self-trapping.

Let us consider the experimental observation of this excitation. As already noticed,
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experimental observation is difficult in active biological materials. A way around this
difficulty consists into the experimental study of polymers whose vibronic character-
istics resemble those of biopolymers, and a quite favorable one is acetanilide. Exper-
iments of infrared absorption in acetanilide showed an "anomalous” band in the 1R
spectrum, which was ascribed to a Davydov's soliton [36], and later on reproduced in
other experiments, and also observed in Raman scattering cxperiments (37-41].

We analyze the experiment of Careri et, al [36], resorting to a response function
theory consistently derived in the framework of NEsoM [19,42,43]. Without going
into details (see [51]), the absorbance in the region of the co-stretching mode has the

expression
() = ap(w) + s (w), (22)

which describes two bands: one centered around w,, the frequency of the normal
mode, (g being equal to the IR-photon wave-vector) and with intensity proportional to
the population in equilibrium v, at temperature Ty, since no external pump is present,
I, = 0in Eq. (8); and the other is centered around wy, the frequency of the soliton.
The band widths are y,, = 75! and y. = 1,! + A(|Gl/2x)"/?, where 15! is the one of
Eq. (10), for g near the zone center. Let us consider the experiments of reference [36),
and take, for example, the case of Ty = 80 K; on the basis of the red shift of the band
duc to the soliton in relation to the normal co-stretching band, that is, wo — w, =
16 cm~!, and that y; — y, = 3.6 cm™!, we find that A(1G|/2a)1/? = 2.3 x 10% cm~} and
0 = 3 x 10% cm s7L. The calculated spectra is shown as a full line in Fig. 1, while the
dots are experimental points, evidencing a satistactory agreement.

In Fig. 2 it is shown the propagation of the energy accompanying the soliton (pro-
portional to I(,U(x,t)lz) along a few picoseconds after the application of the initial
Gaussian-like excitation. It is clearly evidenced the conservation of the shape charac-
teristic of the soliton, but accompaniced, as already described, with a decay in ampli-
tude in the picosecond range. Hence, a pulse signal impinged on the system would be
carried a few micrometers, since the velocity of propagation is = 3 x 10% ¢m s™!,

However, the situation may be substantially modified if the excitation propagates in
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a nonequilibrium background, namely the one provided by the presence of a constant
pumping source [[, = 0 in Eq. (8)] leading the system to a steady state, with popula-
tions, say, v,, constant in time but much larger than the population in equilibrium. At
a sufficient distance from equilibrium, as proposed by Frohlich near thirty years ago
[32,33], and later on verified by several authors (in the framework of 1ST in [25]), is
expected to arise a particular complex behavior in the system, namely a phenomenon
akin to a Bose-Einstein condensation, consisting in that [because of the presence of
the terms of Eq. (9)], and as already noticed, the energy stored in the polar vibrational
modes is preferentially channeled to the modes lowest in frequency. The latter greatly
increase in population, while the modes at intermediate and high frequencies remain
nearly constant on further increase of the intensity of the pump. As expressed above,
this is similar to a Bosc-Einstein condensation, but, it must be stressed, not in equilib-
rium but in nonequilibrium conditions, and then the phenomenon — Fréhlich effect —
may be considered a kind of emergence of a dissipative structure in Prigogine’s sense
[44-46]. This is illustrated in Fig. 3, where the steady state populations in terms of the
intensity of the pumping source are shown. We have used numerical parameters char-
acteristic of a polymer of the «-helix protein type [25]. The figure evidences the large
increase (after an intensity threshold has been attained) of a mode lowest in frequency
(the one labelled 1), at the expenses of other modes higher in frequency. In Fig. 4 it is
evidenced the Fréhlich-Bose-Einstein-like condensate at the lowest frequencies in the
vibrational spectrum.

The relevant point to be stressed is that Frohlich effect and Davydov soliton are
phenomena arising out of the same nonlinear kinetic effects that are present in Eq. (9)
for the populations v,(t), and in Eq. (15) for the reciprocal lifetimes I,. As a conse-
quence of the fact that, because of Frohlich effect, the population of the modes lowest
in frequency largely increase, concomitantly their lifetime aiso largely increases (i.e.
the reciprocal lifetime I in Eq. (15) largely decreases), while for the modes at interme-
diate to high frequencies their lifetime largely decreases (the reciprocal of g largely
increases). This is illustrated in Fig. 5 [26]. Hence, in the expression for the average

field amplitude of Eq. (16), after a fraction of picosecond following the application of



the exciting pulse has elapsed, there survive tor a long time the contributions from the
modes lowest in frequency, a survival time that kecps increasing as the intensity [ in-
creases [26]. This implies that it may be expected that an excitation composed by a co-
herent interplay of the low-lying-in frequency cxcited polar {optical) modes in biopoly-
mers, may propagate in the form of a Davydov solitary wave traveling undeformed and

nearly undamped while Frohlich condensate state is maintained.

2.2. Acoustical Vibrational Modes

So far we have considered propagation of vibronic waves in biological media, via
Eq. (16), but restricted to the case of polar modes. We briefly consider next the case of
longitudinal acoustic modes. For that purpose we return to Eqs. (14), where now we
take into account that the dispersion relation wy is, for acoustic-like vibrations, sg,
where s is the velocity of sound in the media, this meaning that we are using a Debye
model. Using this dispersion relation, and the Ansatz that the excitation is expected
to be a closed-packet solitary wave, we arrive at the equivalent of Eq. (19), in this case
acquiring the expression

»

o° ‘ : 2 —
2M55§—£q}(x,t) +iyspx, ) — Gelw(x, D) w(x,t) =0 (23)

. 0
1EW(x,t) +

as shown in Appendix A.

Evidently, this Eq. (23) is formally identical with Eq. (19) if in the latter we take
wq = 0 and, of course with the coefficients being those corresponding to this case of LA
(longitudinal acoustic) vibrations. However, a remarkable difference may be noticed,
namely, while in Eq. (19) the coefficient in front of the second derivative in space is
determined, through «, by the bandwidth of the Lo (longitudinal optical) vibrations
dispersion rclation, in this case, as shown in Appendix A, it depends through the
pseudo-mass M, on the characteristics of the experiment, that is, depends on the
width of the solitary wave packet which is determined by the initial condition. The

solution for a given hyperbolic secant-profile signal impinged on the system, say, the
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same as in the previous subsection, is given by

. 1/2
yr(x,t) = ﬂexp{i[ﬂ#’ix ~{wy —iy)t — g]} sech{jl[lGHMs] (x — vt)} ,

ﬁ .
(24)

where

. (25)

'[US ==

G, A2 Mv?

2 4h
As in the case of Lo vibrations, the “acoustic” solitary wave is damped, and one may
wonder if, as in the case of the “optical” solitary wave, this lifetime may be largely
extended by the action of nonlinear kinetic terms enhanced by the pumping of energy
on the system. We reconsider Egs. (11), now specialized for the LA vibrations, and look
for the stationary states when a constant exciting source is continuously applied.

To perform numerical calculations we choose a set of parameters in a typ-
ical order of magnitude approximation, We take for the Brillouin zone-end
wavenumber gz = 3.14 x 10" cm !, w,; = sq with s = 1.8 x 10° cm 871, Q, = spq with
sp = 1.4 x 10° ¢cm s~'. Moreover, the matrix elements V" and V? are proportional
to the square roots of the wavenumbers [48], say Vélf) = KUW[|ql1q:)19, — g2113,
and KV is determined from a typical value of 10 ps for the lifetime of Eq. (10) (for any
system it can be determined from the linewidth in Raman scattering experiments).
An open parameter A = |[K /KW |? is introduced, and we take A = 1 to draw Fig. 6.
Finally, L, the length of the sample in the direction of propagation is taken as 10 cm.
Therefore, the permitted wavenumbers for propagation of vibrations are contained
in the interval /L = g < qg. For these characteristic values it follows that, because
of energy and momentum conservation in the scattering events, the sct of equations
of ¢volution, Egs. (8), which in principle couple all modes among themselves, can be
scparated into independent sets each one having nine modes. For example, taking the
mode with the lowest wavenumber 717/L, the set to which it belongs contains the modes
k" Lr/L, where k = (s + sg)/(5 — sg) = 8 in this case, and n = 2,3,...,9. Let us call

vi,..., Vs the corresponding populations, having frequencies w, = 5.6 x 10% Hz,
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w> = 4.5 x 10° Hz. w3 = 3.6 x 10% Hz, wa = 2.9 x 107 Hz, ws = 2.3 x 108 Hz,
wg = 1.8 x 10° Hz, w7 = 1.5 x 10!° Hz, wg = 1.2 x 10!l Hz, wqe = 9.5 x 10! Hz.
Moreover, for illustration, the open parameter A is taken cqual to 1, and we consider
that only the modes 2 and 3 (in the ultrasonic region) are pumped with the same
constant intensity § = I7, where I, = Iy = I, and I, and I,, with n = 4,...,9 are
null, and T is a characteristic time used for scaling purposes (as in |25]) here equal to
0.17 5. The results are shown in Fig, 6, where it is evident the large enhancement of
the population in the mode lowest in frequency (v)), for Sy =~ 10!?, at the expenses of
the two pumped modes v»> and v4, while the modes v, to vy (higher in frequency) are
practically unaltered. The emergence of Frohlich effect is clearly evidenced for this
case of acoustical vibrations: In fact, pumping of the modes in a restricted ultrasonic
band (in the present case in the interval 4.5 x 10° Hz < w = 2.8 x 107 Hz), leads at
sufficicntly high intensity of excitation to the transmission of the pumped energy
in these modes to those with lower frequencies (w < wy), while those with larger
frequencies (w > 2.8 x 107 Hz) remain in near equilibrium, as shown in Fig. 7. It may
be noticed that for the given value of T, for § — 10%*, the flux power provided by the
external source, in the given interval of ultrasound frequencies being excited, is of the
order of milliwatts. Modes in the interval 5.6 x 10% < w, < 4.5 x 10°, those lowest in
frequency, have large populations in comparison with those higher in frequency. As
already noticed, because of these characteristics of Frohlich's effect, it is sometimes
referred-ro as a Bose-Finstein-like condensation. However, it must be stressed that not
in equilibrium, but in nonequilibrium conditions, then being a kind of nonequilibrium
phase transition or better to say, a kind of emergence of a dissipative structure in
Prigogine’s sense [44-46]. Moreover, we may say, in a descriptive way, thatitis present
a kind of a “two fluid system”, the normal one and the Fréhlich condensate.

Another relevant result is that, also as in the case of the optical vibrations, the
modes in the condensate largely increase their lifetimes; this is shown in Fig. 8. There-
fore, the soliton, composed by the coherent interplay of low-frequency acoustical

modes, travels ncarly undamped in the Fréhlich condensate.
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We proceed now to consider another possible novel phenomenon in this kind of

systems.

2.3. The accompanying Cherenkov-like emission

Considering either an “optical” or an “acoustical” soliton of the Davydov type respec-
tively described in the previous subsections, we recall that the amplitude and the ve-
locity of propagation are determined by the initial condition of excitation (that is, the
energy and the momentum transferred in the process of interaction with the external
source). For example, in the case of the acetanilide we have considered in subsec-
tion 2.1, and in the conditions of the experiment of Careri et al. [36], the velocity of
propagation is larger than the group velocity of the phonons in the optical branch
corresponding to the co-stretching vibrations, which is small because the dispersion
relation is flat.

When the soliton velocity of propagation, say v, is larger than the group velocity of
the normal vibrations, (the velocity of sound s when the acoustic modes are involved),
it may follow a Cherenkov-like effect. We recall that originally it was observed in clec-
tromagnetic radiation (e.g. [47]) by Cherenkov in 1934. It is a result that in a material
media with an index of refraction n, the velocity of propagation of light is ¢/n, smaller
than the velocity ¢ in vacuum (since n > 1), and if an electron with velocity u > ¢/n
(but with the relativistic limitation of 1 < ¢) travels in this medium then, along a cone
defined by the angle cos @ = ¢/n u is emitted the so-called Cherenkov radiation: thatis,
along such direction photons are strongly emitted. ‘This is the so-called superluminal
radiation [48,49].

Something similar is present in the case of phonons in the photoinjected plasma
in semiconductors in the presence of an clectric field: when the drift velocity of the
carriers exceeds the group velocity of the g-mode optical phonon, then along a cone

whose axis is along the electric field, and with an aperture with angle 8, defined by

cos 0 — wy/vq, (26)
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there follows a large emission of g-mode optical phonons [50].

This is also the case when the soliton, either optical or acoustical, travels in bulk
with a velocity v larger than the group velocity of the normal vibronic waves. This
is described elsewhere [51], and next we briefly outline the results. Inspection of
Eq. (8) tells us that the presence of the direct coupling to the external source via [,
and indirectly through € depending on the squared amplitude of the soliton, tends
to increase the population of phonons. But, as already noticed, because of Fréhlich
effect, such pumped cnergy tends to concentrate in the modes lowest in frequency,
those at the Brillouin zone boundary in the case of optical vibrations and around the
zone center in the case of acoustic vibrations.

Take the case of acoustic phonons, when there should be a large increase in the
population of the modes with very small wavenumber. A straightforward calculation
of Eq. (4a) leads to the result that

V() = [efa(t) - 117 + ‘f?qt)

2

(27)

Fvidently, in the absence of the perturbation, that is, I, = 0 and {a4) = 0 and then

in equilibrium. In the presence of the perturbation we need to obtain both F,(t) and

Ja(£). On the one hand, a direct calculation tell us that
2 2 dx 2 AL 2N A Vsl .
[fa(t)/Eq(t)e = aglt)|” = . T|W(X,t)|“ = (A“w/L)e ", (28)

where we have used Egs. (16) and (20), and, we recall, under a sufficiently intense
excitation y; is small and then [(a,[t)]* becomes near time independent; we have
called w the width of the solitary wave packet,

On the other hand, F, in steady state conditions after application of the constant
external excitation, depends on the intensity of the pumping source. This Lagrange

multiplier may be rewritten in either of two alternative forms, which resemble well
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known results in equilibrium theory. One is
Fa(t) = |hsq - pal/keTo, (29)

where p, plays the role of a quasi-chemical potential (this kind of choice was done
by Frohlich [33] and Landsberg [52]). In Fig. 9 is shown the dependence of the quasi-
chemical potential, corresponding to the modes in Fig, 6, with the pumping intensity.

Another is
Fy = hsq/kpTy (30)

introducing a quasitemperature T*, as it is done in semiconductor physics [24].
In Fig. 10 is shown the dependence of the dependence of the quasitemperature,
corresponding to the modes in Fig. 6, with the pumping intensity.

Let us take the choice of Eq. (30), then the quasitemperature T* is given by

1

kgT) = fasqIn[1 + o E
q -

1 (31)
and we recall that
|(¢1q)|2 ~ APwe /L2, (32)

(for y. — 0, with v, determined in each case solving Eq. (8)). Using Eqs. (29) to (32) we
have that [51]

Hg = hvqcosng (33)

where

_ ST, ksTo B 21]_3.__"_@
coan—v[l hsqln[1+(vq [{ag)1<) "1 _v[l T;]' (34)

These results imply in this case in a phenomenon of a peculiar character which we call
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Frohlich-Cherenkov-effect. In fact, we note, first, that there follows a large enhance-
ment of phonons in mode g tor y,; approaching hsq, and sccond, the linear motion of
the soliton defines a particular direction, the one given by its velocity of propagation
v. Therefore, there is a preferential direction of production of vibrational waves given

by

hsq = hvqcosng = g (35)

or

Ccoshg = §/v. (36)

Equation (35) defines the direction of propagation g of the longitudinal vibration
and its modulus. Since n, depends only on the modulus of g, there follows two
Cherenkov-like privileged directions of emission of g-mode phonons, one forward and
one backwards, like the normal and anomalous Cherenkov cones in radiation theory
as illustrated in Fig. 9 adapted from [49]. In the present case both directions are sym-
metrical on both sides of the centre defined at each rime by the position occupied by
the soliton. This may account for the observed so-called X-waves [1,3,53]. In Fig. 12
is illustrated the cases of propagation of the normal sound wave (upper figure) and
of the, presumably, solitary wave-packet selectively excited by the transducer (lower
figure) with velocity larger than the sound velocity in the medium. The figure has ap-
peared in [3]. Given the angle n, (called the axicon angle in {1]), then v is larger than
s in the percentage [(v/ cosn,) — s]/v. Same arguments are valid for the case of the
optical soliton, when V,w, (the group velocity of the normal mode) enters in place
of 5. In the case of Fig. 12, a rough estimate gives n ~ 13* and v,/s ~ 1.02, that is,
the velocity of propagation of the soliton, v, is roughly 2% larger than the velocity of

sound in the medium.
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3. CONCLUDING REMARKS

We have considered the propagation of vibronic excitations in nonlinear condensed
matter media, like biological material. Because of the nonlinearities in the Kinetic
equations that describe the evolution of the macroscopic collective modes (nonlin-
earitics having their origin in the microscopic anharmonic interactions between the
system and the surroundings) it is expected that complex behavior shall arise.

Resorting to an appropriate thermo-mechanical statistical approach, we have
shown that such complex behavior consists of four particular phenomena. One is
that the normal vibrational modes are accompanied by another type of excitation,
consisting in the propagation of solitary waves of the Schrédinger-Davydov type. They
are undeformed waves composed by a coherent state of normal modes. Although the
wavepacket is spatially undeformed, it presents, as it should, decay in time with a
given lifetime resulting from the dissipative effects that develop in the excited sample.
The amplitude, velocity, and frequency of the solitary wave are determined by the
initial and boundary conditions. Another phenomenon, arising out of the same non-
linearities that allows for the creation of the soliton, consists in that, under conditions
of excitation which lead the system sufficiently away from equilibrium, there follows
a large increase of the population of the modes lowest in frequency. This effect has a
reminiscence of a Bose-Einstein condensation but here in nonequilibrium conditions,
and we have termed it Fréhlich effect.

A third phenomenon consists in that, and again because of the nonlinearities which
are responsible for both, Frohlich cffect and formation of a Schréodinger-Davydov
soliton, the latter acquires a very long lifetime, that is, the soliton becomes nearly
undamped, when travelling in the Frohlich-Bose-Einstein-like condensate.

Finally, the fourth phenomenon refers to a situation when, because of appropri-
ate initial and boundary conditions, the soliton travels with a speed larger than that
of the normal vibronic modes. In this case, as shown, there follows what can be
termed as Frohlich-Cherenkov effect: along two symmetrical privileged directions cen-

tered on the position of the soliton, is produced a large number of long wavelengths
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phonons. This could be the origin of the so-called X-waves observed in experiments
of ultrasonography, as noticed in previous sections.

We conclude with the remark that solitary waves appear to be ubiquitous, and
having large relevance in a number of important situations. Some at the technological
level, like propagation in optical fibers (e.g., in a projected trans-Atlantic cable), in
conducting polymers (for electric-car batteries; microcircuits; etc.), and the case of
biological systems (long range propagation of nervous signals; the here mentioned

case of medical imaging; etc.).
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Appendix A. The Acoustic Solitary Wave

In direct space, after the terms that couple the amplitude (a,4) with its conjugate are
neglected, what, as noticed in the main text is accomplished using the rotating wave

approximation, Eq. (14) takes the form:

0
s _— dglx xf
1hat(p( x,t) = —1i E hwy, e Y (x',t)

el 12D gy (x’ 1) - thl"qJ T

v S quq,[dx el (X =X") @itz (x=X") yy (" ) (x”  E)W* (1), (A1)

q14qz

where, we recall, w, = sq. Considering that it is expected the formation of a highly
localized packet (the soliton), centered in point x and with a Gaussian-like profile with

a width, say, w (fixed by the initial condition of excitation) extending along a certain
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large number of lattice parameter a (f.e. w > a), in Eq. (A.1) we make the expansion

f — _ i r
wix',t) = @(x,t) Eaxtlf(x.t). (A.2)

where £ = x — x’ is roughly restricted to be smaller or at most of the order of w. The

first term on the right of Eq. (A.1) is

—i) slal J de !4y (x' 1) =
“

Is d (« Ldx' . . o
- .= d [ Jdgix-x"y _ L-igix—xT) ,’ t
27T 0x L} 0 Jo L [L € :Iqj(x )

i

is 8 % X rw/2 ' 0
_?EJO dg J d¥ sin(q%) [w(x, t) — §aw(x,t)]
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But, of the four terms after the last equal sign in this Eq. (A.3), the sccond and third
are null, because of the Ansatz that a soliton would follow, since the derivative at the
center of the packet is null. Consider now the last term, which after the integrations
are performed becomes
2

isw [] 2a .
1

- —— 8in 53 COS Ex}i;w(x, t) . (A4)
Tw a2 a Jox-

But, we notice that the width of the packet is w > a, and the cosine in Eq. (A.4)
has a period 2a, and then it oscillates very many times in w, and with amplitude

(2a/mmw) <« 1, and can be neglected. Similarly, the first term becomes proportional
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to

%xz —[p((z)/2)2 {w [1 - COS (%) Cos (%H — 2x sin (Ef-) sin (%)} , (AD)

where, on the one hand, the oscillatory terms cancel on average, and, on the other

hand, the term decays as x~2. Consequently, using these results in Eq. (A.1), after
introducing the notation (hsw/m) = h?/(2M;), and the local approximation in the

second and third term on the right of Eq. (A.1), we find Eq. 23.
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FIGURE CAPTIONS

Figure 1: Optical vibrations: The IR absorption spectrum in acetanilide at 80 K. Points
arc from the experimental data reported in [36], and the full line the calculation
after Eq. (23).

Figure 2: Optical vibrations: Profile of the soliton energy (proportional to | (x,t)]*)
along a few picoscconds after application of the initial Gaussian-like perturbation

(in the experimental conditions of Fig. 1 for T = 80 K).

Figure 3: Optical vibrations: The steady-state populations vs. the intensity of the
pumping source, for a selected set of modes: After an intensity § = 107 is
reached, there follows a large increase in the population vs of the mode lowest

in frequency in the said set (After Ref. [25]).

Figure 4: Optical vibrations: The steady-state populations for § — 10%, showing a
“two fluid” separation consisting in the “condensate” at low frequencies and the

“normal” contributions at higher frequencies (After reference [25])

Figure 5: Optical vibrations: The lifctime of the same modes as in Fig. 3, in terms of

the intensity of the pumping source.

Figure 6: Acoustic vibrations: The steady state populations of the three relevant
modes in the sct — as described in the main text —, with increasing values of the
intensity of the external source pumping modes labeled 2 and 3 in the ultrasonic

region. (After Ref. [S51]).

Figure 7: Acoustic vibrations: The population in the steady state for a pumping in-
tensity § = 1023, of the modes along the spectrum of frequencies of the acoustic
modes. Dots indicate the modes in the first set (the remaining part of the spec-
trum up to the highest Brillouin frequency wg = 9.5 x 101! Hz has been omitted).

(After Ref. [51]).

Figure 8: Acoustic vibrations: The lifetime of the same modes as in Fig. 7, in terms of

the intensity of the pumping source (After Ref. [51]).
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Figure 9: The quasi-chemical potential of the modes labeled 1 to 3 in Fig 6, with mode
1 corresponding to the one with the lowest frequency in the given set: itis evident
the emergence of a “Bose-Einstein-like condensation” for § approaching a critical

value of the order of 109,
Figure 10: The quasi-temperature, defined in Eq. (30) for the modes in Fig. 6.

Figure 11: The direction of propagation of the waves of Cherenkov radiation, when
spatial dispersion is taken into account, for the ordinary wave (subscript 1) and

the anomalous wave (subscript 2) (Adapted trom Ref. [49]).

Figure 12: Normal sound propagation (upper figure), and the excitation interpreted as
a supersonic soliton (lower figure); from reference (3] (We thank W. A. Rodrigues

and J. E. Maiorino for providing us with a postscript file of this picture).
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Figure 1: Optical vibrations: The IR absorption spectrum in acetanilide at 80 K. Points
are from the experimental data reported in [36], and the full lin¢ the calculation after
Eq. (23).
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Figure 6. Acoustic vibrations: The steady state populations of the three relevant modes
in the set — as described in the main text —, with increasing values of the intensity

of the external source pumping modes labeled 2 and 3 in the ultrasonic region. (After
Ref. [51)).
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Figure 7: Acoustic vibrations: The population in the steady state for a pumping inten-
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Figure 11: The direction of propagation of the waves of Cherenkov radiation, when
spatial dispersion is taken into account, for the ordinary wave (subscript 1) and the
anomalous wave (subscript 2) (Adapted from Ref. [49]).
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a supersonic soliton (lower figure); from reference [3] (We thank W. A. Rodrigues and
J. E. Maiorino for providing us with a postscript file of this picture).
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6.4 Comportamento complexo em biosistemas:
uma abordagem teorico-informacional

A questdo particular do transporte de energia vibracional em biosistemas é conside-
rada dentro do escopo do modelo de Frohlich-Davydov. E mostrado que as ondas
solitarias de Davydov, fortcmente amortecidas em condi¢des de quase equilibrio, po-
dem apresentar uma propagacao de longo alcance quando viajam sobre o condensado
de Frohlich. Este altimo consiste na emergéncia de uma estrutura dissipativa auto-
organizada (no sentido de Prigogine), assemelhando-se a um condensac¢do de nao-
equilibrio tipo Bose-Einstein na parte inferior dos modos de freqgiiéncia de vibracao,

uma vez que um nivel critico de alimentagao de energia metabodlica € alcangado.

Submetido para publicacio em Chaos, Solitons and Fractals.
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The particular question of transport of vibrational energy in biosystems is
considered within the scope of Frohlich-Davydov's model. It is shown that
Davydov's solitary waves, strongly damped in near equilibrium conditions,
can display long-range propagation when travelling in Frohlich’s conden-
sate. The latter consists in the emergence of a self-organized dissipative
structure (in Prigogine’s sense), resembling a nonequilibrium Bose-Einstein-
like condensation in the low-lying in frequency modes of vibration, once a

critical level of pumping of metabolic energy is achieved.
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1. INTRODUCTION

Nonlinearity is known to be the source of new and unexpected phenomena that char-
acterize complex behavior in physico-chemical systems. This is particularly the case
in dissipative systems far from equilibrium [1]. Quite recently, the question concern-
ing the theoretical description of the macroscopic behavior of dissipative open many-
body systems in arbitrarily far-from-cquilibrium conditions has been encompassed
in a seemingly powerful, concise, and elegant formalisin, established on sound ba-
sic principles, This is the Nonequilibrium Statistical Operator Method (NESOM) {8-13]
which appears to be encompassed in Jaynes’ Predictive Statistical Mechanics [14, 15].
The NEsOM allows for the construction of a nonlinear quantum transport theory of
a large scope [8,11,16] and a thermodynamics of irreversible processes, termed In-
formational Statistical Thermodynamics (I1ST; sometimes referred to as Information-
theoretic Thermodynamics, which is briefly reviewed with accompanying historical
notes in Ref. [17]), which provides the foundations for the treatment of dissipative

opcn macrosystems away {(either near or far) from equilibrium.

Particularly, biological matter consists of nonequilibrium thermodynamic open sys-
tems where energy is always available, through metabolic processes, that is, the open
biosystem “feeds” on this energy and is driven away from equilibrivum. A quite fun-
damental point is that the evolution of the system has associated a nonlinear kinetics
(which can be described in NESOM-1ST). This nonlinearity in the equations of evolu-

tion of the macroscopic properties of the system is of fundamental relevance for the
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emergence of synergetic phenomena. Complex behavior in matter is a subject that is

attracting more and more interest in science [20, 211.

Quite interesting and illustrative examples of nonlinearity at work, producing what
can be relevant biological effects, arc Frohlich’'s condensate [19,23, 24] and Davydov's
solitons [25-30]. Frohlich's effect consists in that, under appropriate conditions a
phenomenon quite similar to a Bose-Einstein condensation may occur in substances
with vibrational polar modes. If energy is fed into these modes and thence transferred
to other degrees of freedom of the substance (a thermal bath), then a stationary state
will be reached in which the energy content of the vibrational modes is larger than
in thermal equilibrium. This excess energy is found to be channelled into the modes
lowest in frequency — similarly to the case of a Bose condensation — provided the
energy supply exceeds a critical value. Undcr these circumstances a random supply of
energy is thus not completely thermalized but partly used in maintaining a coherent
behavior in the substance. On the other hand, A. S. Davydov showed that due to
nonlinear interactions, of the same type as those responsible for Frohlich’s effect, it is
expected to arise a novel mechanism for the localization and transport of vibrational
energy in protein, namely the propagation of a solitary-like wave, The equivalence of
the Hamiltonians used to describe Frohlich and Davydov models, when both are placed
in a representation in terms of normal coordinates, was shown by Tuszynski et al. |31].
Hence, while Fréhlich's approach is connected with the study of the steady stare in the
model pumped by external sources of metabolic energy, Davydov's approach refers to
the dynamic aspect of propagation of the information-carrying oscillations. Davydov's

theory has received plenty of attention, and a long list of results published up to the
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first half of 1992 are discussed in the excellent review by A. C. Scott [32]. We address
here this question, through a study of the Fréhlich-Davydov model in nonequilibrium
thermodynamic conditions.

We consider a system where modes of polar vibrations are excited by a continu-
ous supply of metabolic energy. These polar modes are in interaction with a bath
of acoustic-like vibrations through a nonlinear dynamics. The kinetic equations of
evolution for the population of the vibrational modes are derived in NESOM. After a
short transient time there follows a steady state, where, after a certain threshold of
the pumping intensity is achieved, there follows Frohlich’s condensation, as described
in section 2. In section 3, we consider the propagation of oscillations in the polar sys-
tem. The equation of evolution for the NEsOM-averaged amplitude is of the Davydov’s
soliton type, but with damping. The lifetime of the excitation in normal conditions is
very short, but it is shown that it increases enormously for the modes in Frohlich's

condensate. In last section we summarize and discuss the results.

2. THE MODEL AND FROHLICH’S CONDENSATE

Letus consider a model biosystem which can sustain longitudinal polar vibrations in in-
teraction with a thermal bath of acoustic-like vibrations. We write for the Hamiltonian

of the system

H =1Ilopy + Hpy + Hin v Hip + His+ Hiy + Hoy + Hyp + Hy + Hog + Hp, o (1)

Hm = Z h(&)q (aj?a.q + %) ) (23.)
q
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is the Hamiltonian of the free polar vibrations, with w, being their frequency dis-
persion relation (g runs over the reciprocal space Brillouin zone); a(at) are creation

(annihilation) operators in mode g;
Hor = > hQy, (bqb;; + %) (2b)
q

is the Hamiltonian of the bath of free acoustic-like vibrations; b{bT) are creation (an-
nihilation) operators in mode g with frequency Q4. The other terms in Eq. (1) are the

anharmonic interactions given by

Hy = > Vidagbybl, , +He Hip = > Vidaght b gy +He;  (2cd)
qq’ aq’

Hiy ZV“,aqb b_g-q ++He.; Hus = Z pagbl bl . +Hec. (2e,f)
qaq’

H, = ZV(Z,aqaq bl_, +Hec.; Z v Aqdgb_q_q v He;  (2gh)

Iy =>Vi2alaybs g +He.; Hyy = > ViZagal bl . +He.; (21,))
qq’ qq’

V1) and V) are the matrix elements of the interaction potential. Finally,
Hf = > @qal +Hec., (2Kk)
q

stands for the energy of interaction between the pumping source and the polar
modes; @(@T) are annihilation (creation) operators of excitations in the source, also
containing the coupling strength. Further, we introduce — as required by the NESOM

— the partial Hamiltonians
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Hy = Hy + Hop, (3a)

H =H|i+H» t Hi3+Hjq4+ Hs ¢ Hy» + H»y + Hpyg +Hf, (3b)

Once the system Hamiltonian is given, the next step in NESOM is the choice of the basic
set of variables deemed appropriate for the description of the macroscopic state of

the system: We introduce the populations of the polar vibrations

Vq(t) =T['{C12;a»qé(t,0)} , (4)

of relevance to evidence a posteriori Frohlich effect, and, assuming the thermal bath
to be constantly kept at a fixed physiological temperature by means of an efficient
homeostatic mechanism, we introduce the energy of the acoustic-like vibrations,

namely

Ep(t) = Tr{z hQ, (bj,bq + 1) Q(t,())} , (5)
5 2

In Eqgs. (4) and (5), o(&,0) is the auxiliary (coarse grained) nonequilibrium operator

in NESOM, in the present case given by

o(t,0) = exp{—(,b(t) — BHy; — ZFq(t)a.;aq} . (6)
q

where ¢ ensures its normalization, B = (kgTp)~! (with Ty being the constant tem-
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perature of the bath; kg is Boltzmann constant), and F,(t) is the intensive variable
thermodynamically conjugated to the population number operator in the variational
approach to the NESOM [12]. The complete (fine grained) nonequilibrium statistical
operator is a supcroperator depending on the coarse-grained distribution of Eq. (6),

which in Zubarev's approach to the NESOM (8, 9], to be used in what follows, is given

by

t
0. (t) = exp{«~§(t,0) + [ dt’ et -t %S(t’, t" — t)} : (7}

-~

S(t,0) = —Ing(L,0) (8a)

is the so-called informational-entropy operator, and

S(t',t' —t) = exp {—%(t’ : t)H}f(t,O)exp{ L

ﬁ(t —t)H} . (8h)

In Eq. (7) € is a positive infinitesimal which ensures irreversible evolution from the
initial state of preparation of the system, and gocs to zero after the trace operation in
the calculation of averages has been performed. Moreover, we notice that in Egs. (8)
the two time variables in the argument of $ correspond, the first one, to the evolution
of the thermodynamic variables (here ¢ and F,, since f§ is constant), and the second

indicates the evolution of the dynamical operators in Heisenberg representation.

Since B is assumed to be constant in time, we are simply left to calculate the equa-
tions of evolution for the population of the polar modes of Eq. (4). As noted in the

Introduction these equations are derived resorting to the nonlinear quantum general-
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ized transport theory that the NESOM provides. We introduce an approximate treat-
ment, however appropriate for the present case since the anharmonic terms in Eq. (3b)
are expected to be weak interactions, consisting of the so-called second order approx-
imation in relaxation theory [16], usually referred to as the quasi-linear theory of re-
laxation [8, 34], which is a Markovian approximation and exact up to second order in
the interaction strengths in H'.

The calculation shows that, because of the symmetry properties of the system and
the selected choice of basic variables, several contributions to the collision operators
in the NESOM-SOART transport equations vanish in this case, surviving the one that cor-
responds to the Golden Rule of quantum mechanics averaged over the nonequilibrium

ensemble characterized by the NESO of Eq. (7). The final expression is

d 5,
—rVa(l) =Iq + ;qu(_,,(t) : (9)

J=
Jay (1) + Jap, () = =T, vy (t) = v, (10a)

with v,;g,”) being the g-mode-population in equilibrium, i.e. Planck distribution at
temperature Ty, and 7, is a relaxation time given by
. 4

Ta = 32 v((J) Z Voo Vi va 7 [S(Qu' + Qqog — Wy) + 2eAM 50y — Qg g + ‘”‘?)] - 10D
g o

::|

where vg is the population of the vibrational modes of the bath at temperature To,

given by the Planck distribution

= [exp(BhQ,) — 1 |, (11)
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and the other remaining terms are

Ja (t) = Z V212 [VE (v = Vg) = Vol +vg) | 8(Qqg + g —wy), (123)

T () = Z VAR VE o (Vg - va) + v (1 +vg) | 6(Qq_g — g + wq),  (12D)

Jaes, (1) = Z lV 2) |2 _v;‘_m,(l Fvg) — (Vg — Vg o )vq] 5(Quig — Wy —Wy),
(12¢)

Furthermore, we have expressed the time-dependent correlations involving the

operators associated to the external source in terms of a spectral densitly, namely

21T

*_}j{E‘ <|:(Pq(t),(1)$J> = J’_c; d?mlq((u)eimt ’ (13)

where I(w) represents the intensity of the source over the spectrum of frequencies.

Equation (9) is of the type of equation proposed by Frohlich. The rate of change of
vq(t) is composed of a pumping term (incrcasing the population); a relaxation term
to the thermal bath, decreasing the population at a rate 71 J5) is also a relaxation
term (containing contributions nonlinear in the mode populations); while J3, and J4)
are those to be responsible for Frohlich effect: they account for, through the nonlinear
terms, the transfer of energy to the low-frequency polar modes.In fact, they contain

nonlinear contributions proportional to

D VI 12va(t) vy () [(S(Qq g — Wy + W) —8(Qy o+ Wg wq)] , (14)
q .
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and we may notice that for modes ¢’ such that w, > w, the energy conservation as
required by the first delta function is satisfied, while this is not possible for the second:
hence this nonlinear contribution tends to increase the population in mode g at the
expenses of the other modes higher in frequency. It has been argued that contributions
coming from Jq., wash away the effect [35]. Frohlich |36] has countered that it has
a small contribution as a result of the different form of energy conscrvation in both
processes, what is clearly evidenced by our expressions in Eqgs. (12); in particular for
the usual case when the frequencies of the polar modes are higher than those of the
acoustic modes, J4., vanishes. The equation of evolution for the mode population,
here derived in NESOM-SOART and normal coordinates, resemble the one obtained by

Wu and Austin [37] and Mills [38].

Equation (9) is a complicated set of coupled integro-differential equation for the
populations of the modes, the coupling involving all modes contained in the Brillouin
zone, We contour this difficulty resorting to a simplified model. Taking into account
the established fact that high tfrequency modes transfer energy to the low frequency
ones, we introduce a crude model, in which we consider as identical the energy trans-
ferring modes, having frequency wg and contained in a region R of the Brillouin 7.one,
and a second representative set of modes receiving that energy, having frequency w,

and contained in a region R, of the Brillouin zone (hence wq > wh).

Further we assume, as it is generally the case, that the polar mode frequencies are
always higher than the acoustic mode frequencies, what then excludes the contribu-
tions of Jg,,, Jq.,, and J4,, because energy conservation cannot be satisfied. We are

then left with only two coupled equations for the representative modes in the model,
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which are
d
mvo( ) =Io— 15 [valt) — V() g — ginlef By (t) —vi(t) ] - givo(t)vi(t), (15a)
d .
i) =T =T () - vi? |+ gonlePBvo(t) — vi(t)1 + govo(t)va (1), (15b)
A=wy—-w, n = |efre 1] (16a,b)
(2 8 )
o = Z |V¢?U¢)? |25 qn q = A), Z |V¢§l¢);, |26 q — A), (1()(3,(1)
he a'eRy h? q&Rl

vém and vl{m are the distributions in equilibrium, g, and g, label each type of repre-

sentative modes. Quantities go and g, are a measure of the intensity of the coupling
between the two sets of modes, involving the strength of the interaction, contained
in the matrix element, and the region in encrgy-momentum space available for the
scattering events, determined by the energy conserving delta function [momentum
conservatjon is automatically accounted for in the expression for the Hamiltonian of

Egs. (1) and (2)].

Consider now the stationary state, i.e. vp = 0 and vy, = 0 (where the upper dot

stands for time derivative), in which case, from Eqs. (15), we find that

_ Ag + Cov . A+ ¥
Vo = 20— L V= (17ab)
By + gh By — govo
where the bar over the populations stands for stationary state values, and
Ao = Io + T5'vy" A =1 +17v; (18)

Bo =15 + ginexp(BhA); B =17 + gon; (19)
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Co =om Ci = gonexp(BhA) . (20)

We look next for a numerical solution of the coupled pair of algebraic equations
(17). First we multiply coefficients A, B, and C, as well as gy and gy by a scaling
factor T with dimensions of time, to be determined later on [see arguments following
Egs. (42)]. For illustrative purposes we take goT = 0.9, g1 7 = 0.1, To"f =15, T1‘11" =
18, wy =10¥ s 1, wy; =8.7x10% 5! and take IyT = S, and I, = 0. The numerical

results are displayed in Fig. 1.

Inspection of Fig. 1 clearly shows the onset of Fréhlich effect at an intensity thresh-
old 5. = 500, roughly given by the value of § where v| steeply increases, and the pump-
ing modes, represented by vo, acquire a nearly constant value. Hence, it is undoubtedly

evidenced the condensation of excitations in the modes low in frequencies.

Furthermore, it is worth mentioning that using the NEsSO of Eq. (6) in Eq. (4), we
find that
va(t) = {explFa()] -1}, (21)
what defines the NESOM Lagrange multiplier F,(t) . Making the choice

Fq(t) = B[ﬁu—’q - “q(t)] ’ (4‘32)

Equation (21) takes a form reminiscent of a Bose-Einstein distribution with temperature
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T but a different chemical potential for each mode. Using this expression, we find that

— 1
Big(t) = phw, — In [1 + vq(r)] , (23)

In our model with two sets of modes, with increasing population v; of the low
frequency modes after the critical threshold, g, approaches Aicw, (sce Fig. 2) and there
follows a kind of Bose-Einstein phase transformation, here not in equilibrium, but in
nonequilibrium conditions. We noticed that u, approaches asymptotically w; for §

going to infinity, but never coincide with it.

As a final question in this section, let us consider the energetic implications of
the results. Considering an intensity S = 1000 (beyond the critical point), using
To=~ T; =~ 10 picoseconds, and w, being of the order of 1013 s !, this requires a
pumping power of 6.4 x 10~ Watts per mode. Assuming that this power is provided
through hydrolysis of ATp, which produces 7.3 kcal/mol, in the event of an almost total
absorption of this energy in the process, to sustain a stationary Frohlich condensate
would require hydrolysis of 2 x 10 13 moles of ATP per mode per second. Consider
a near onc-dimensional system (e, g. the o-helix protein):the Brillouin-zone length is
roughly 107 cm™!, and if we consider a sample, say, 10 cm long, the number of modes
is ~ 3 x 107. If the propagation of the signal (as discussed in next section) takes, say,
10~ s tor riding the length of 10 cm (implying in a group velocity of 10°% cm/s), for
the process to be completed in Frohlich condensate it would require ~ 1071 moles

of ATP, a seemingly easily accessible value,

Another itmportant consideration is the one related to the transient time that
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must elapse between the switch on of the pumping source and the emcergence of the
stationary-state Fréohlich condensate. Solution, in the given model, of the equations
of evolution allows us to estimate this time as being in the picosecond range, that is,
Frohlich effect follows very rapidly after the pumping of metabolic energy into the

vibrational modes has begun.

Having dealt with the stationary state of the model, let us consider in next section

the dynamic aspects associated to the propagation of signals.

3. PROPAGATION OF EXCITATIONS

To consider the dynamical description of the system we introduce in NESOM, besides
the basic variables of Egs. (4) and (5), the operators for the amplitudes of vibration, a,

and a.f,. Hence the auxiliary statistical operator of Eq. (6) is extended to take the form
6(t,0) = exp{—d)(t) — BHo = > [Fa(hahay — (fa(D)ag + f;(t)a,j,)]} RN CEY
q .

where f and f* are the NESOM-Lagrange multipliers associated to the added dynamical

quantities |39].

Introducing the canonical transformation (reminiscent of Glauber [40] transforma-

tion to coherent states in laser theory)

dg = aq — {(aqlt) , (25)

where d is a new annihilation operator and {ag4|t) = Tr{a, ¢(t,0)}, we find that
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o(t,0) = exp{—(,f)(t) - qu(r)&;&.q} , (26a)
q
b (t) = p(t) — fa (D))" (26b)
q(t) '
fr) 5 ,
{aglt) = 'F‘:,(t) , Va(t) = Val(t) + [{aglt)l”, (26¢,d)
Vq(t) = {expl(F, ()1 -1} (26e)

has the form of the expression of Eq. (21), i.c. the mode population in the absence of

variables (aqlt).
Resorting to NESOM-SOART, together with the use of Eqgs. (26), after some algebra

we arrive to the equations of evolution for the variables a, namely

5 (aalt) = —ig (aqlt) — T, (aqlt) —1W, (aglt)” +

+1 (‘lq”)* + Z [quz (am ) (aqz“) <‘1q11q2 qlt)* + C-C-] , (273)
q14q;

aar( Lty = E(aqlt)* the c.c. of the r.h.s of Eq. (27a), (27b)

g = Wy + Wy, (28)

1 3
n,(t)z-,é-T;‘(tH qu |~[1+vq +VE 4 8(Qq g + wg — wy)

41T » :
- 35 Vel [V = Ve 4 | 8(Q0 — g 1 wg)
p
470 - () ) ,
k he 2. lvﬂ‘»(i:i)’lz [_V'?' - q+q ] 0(Qgig - Wy —Wy) . (29)
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with T, given by Eq. (10b), and we omit to write down the long expression for W,
which is a term of renormalization of frequency which will not be of interest in the

following analysis. Furthermore,

2T 2y 2 . . v —

t (g + Wap + Qagyiq, +18) T+ (g — Wq, + Qgyige + iE)_]} . {(30)

where ¢ is taken in the limit +0, producing a principal value part and an energy

conserving delta function.

The coupled equations (27) contain linear and tri-linear terms. Ignoring the latter,
the resulting linearized equation has as solutions damped wave motion, with frequency
@, and lifetime [,!. The complete equations are of the Davydov's soliton type, but
with damping. In fact, if we introduce a representation in direct space, defining the

operators

a; = > a,e Tt (31)
q

where R; is the position of the j-th oscillating center, and assuming that these centers

are periodically spaced, we find that

%(a-_,-m = _i;{[ﬁuﬂ + Wi —iTy] {aylt) + |Wy —iTj] (€Iz|f)’k}>

+ > [Rimfadt) amlt)a;10)* +ce], (32)

Im
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wji = D waetd R RO Wit = > Wyeld®Ri-R) (33ab)
q q

Ty = > [Leta Rk Rjitm = > Rgq, e 9 Ri RO glaz Rj=Rn) (33¢,d)
q q1492

Consider now a one-dimensional chain [29,32] and let us introduce the average

field operators in the continuum
Wix,t) = > {aglt)eld (34)
iq
Moreover, the frequency dispersion relation is approximated by

Wy = Wy — &g*, (35)

where wq and « are constants. Then, after neglecting the coupling terms with the
conjugated equation (what is equivalent to introducing a truncated Hamiltonian in the

so-called rotating wave approximation [41]), we obtain that

ih%w(x,t) = (hwy + h(x%)w(x,t) — iﬁjd.x’ Tix—x"H)y(x',t)+

+ Jdx’dx”R(x.x’,x”)t,U(x”,t)w(x”.f)llf*(x,t), (36)

R(x,x,x”) _ Z qup eiqn(x—x')ﬂq;(x—x”) ’ (37)
i1z
[(x —x') = D T clax-x) (38)
4q

Equation (36) is a nonlinear Schrodinger-typc cquations with damping [39]. Intro-



435,

ducing a local approximation (that is, neglecting space correlations) what is acom-

plished using the expressions

Rix,x',x"}=Kdé(x —-x")o(x -x""), (39)

(x x")=yé(x — x'), (40)

we obtain that Eq. (36) becomes

2

92

o
5

Wix,t) = (hwn + h o

axz) wix, t) —ihyw(x,t) + K|lglx, t)*@(x,t) . (41)

Equations (32) and (41) are of the form of the equations derived by Davydov in an
alternative way, but here clearly showing damping etfects.
In the simplified model consisting of two representative set of modes, the damping

constants of Eq. (29) are
_ 1 . _ _ _ 1 __ _ . .
Ty = E(T()1 +exp(BhA)gin + giv1), I} = E(Tl '+ don — Jove) (42a,b)

where [ = I'T and g = gT, with T being a scaling time. In equilibrium conditions
at temperature 300 K, for the numerical values used in section 2, 1'"(%(” =9.22 and
1'"1“)) = 20.71. T can be obtained from linewidths of scattering bands (see for exam-
ple Ref, [42]), and then it can be estimated the value of T. Since the lifetimes are of
the order of a few tens of picoseconds, a pulse signal impinged on the system would

be carried a few micrometers, since the group velocity is expected to be in the order

of 10° to 10% cm/s.
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However, the situation is substantially modified if the excitation propagates in a
nonequilibrium background, namely the one provided by the stationary Frohlich's con-
densate discussed in section 2. This is a result of the fact that the damping constants
depend on the actual state of the system, being affected by the nonlinear anharmonic
interactions that are responsible, on the one hand, for Frohlich effect, and {last termin
Eqs. (27)] for Davydov's mechanism of exciton propagation. In the case of the model
of section 2 we can obtain the two characteristic damping constants in terms of the

pumping intensity, as shown in Fig. 3.

As a result, while the lifetime of the high frequency modes largely decreases (I in-
creases in the figure), atter the critical point for the onset of Frihlich effect the lifetime
of the low frequency modes in the Frohlich-Bose condensate increases enormously (1)
decreases to near zero in the figure). Consequently we may expect that in Egs. (27)
there occur a very rapid (pico- to subpicosccond scale) damping of the amplitudes
(agit) for values of g contained in the region Ry of the Brillonin zone described in
section 2 (high frequency modes), while those of the region R; (low frequency modes)

are practically undamped. If we introduce the expression
(aglt) = Az(t) exp |—idgt — T,t] , (43)

after replacing it in Eqgs. (27) we obtain that

exp [—1@gt — [t ] %Aq(t) = (—iWq + Q) A (t) exp [~ i @qt — l4t] +

T 2 [R;IQ'.:A‘-?I(!.)A‘-{E(‘-)AEI}q2 q(t)] X

q.Lq:



X exp [— (g, + Wy, — g, 1q. gIt]exp[- il +Tg ~Tg1q.-q)t] . (44)

Hence, those amplitudes with small lifetime decay rapidly, and survive those corre-
sponding to modes in Frohlich’s condensate, where I is practically null. Consequently,
in the expression for the average field operator in the continuum of Eq. (34), after a
very short transicnt (expected to be in the subpicosecond range) only the contribu-
tions from the modes in the condensate survive, i.e. the summation in Eq. {34) can be
restricted to modes g € R; in reciprocal space. Then in Eq. (41) the damping term
disappears (y = 0), and we recover an equation for an undamped Davydov’s soliton.
Summarizing, according to the results thus far derived there should follow propaga-
tion of a coherent-Davydov’s soliton-like excitation, composed by the low-lying excited
vibrational states, which can travel very long distances, once metabolic energy has been
provided to produce a Frohlich-Bose-Einstein-like condensation in the open systemn in

nonequilibrium thermodynamic conditions.

4. SUMMARY AND CONCLUDING REMARKS

We have considered a model of biological systems (e.g. the a-helix protein chain) of
the type proposed by Frohlich and Davydov. Polar vibrational modes that are pumped
by a source of energy, are in nonlinear anharmonic interaction with a thermal bath
that remains at constant temperature and which is modelled as a system of acoustic-
type vibrations. The vibrational polar modes are then an open system in (arbitrary)

nonequilibrium conditions.
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Two main results arise out of the particular application we presented: on the one
hand (Section 2), we have been able to demonstrate that such system displays com-
plex behavior, namely, that at a certain distance from equilibrium, i.e. for a threshold
value of the pumping intensity, there occurs a steeply increase in the population of
the modes with low frequencies, in a way reminiscent of a Bose-Einstein condensation.
This was predicted by H. Frohlich, and then we have called it Frohlich’s effect. There
is a kind of self-organization in the system, governed by nonlinear effects in the equa-
tions of c¢volution, and thus, this phenomenon may be considered as the emergence of
a dissipative structure in Prigogine's sense [1,21]. On the other hand in section 3 we
have addressed the question of long-range propagation of excitations in the system
we considered in section 2. As noted, A. S. Davydov proposed that this is possibly ac-
complished through propagation of solitary waves, resulting from the nonlinearity in
the equations of evolution. However, it was pointed out that in realistic physiological
conditions it should occur strong damping of the wave. We derived the equivalent of
Davydov's equations {Egs. (27)] in general thermodynamic conditions, where the damp-
ing effect is clearly evidenced. But our calculation allowed to show that this damping is
dependcent on the macroscopic state of the system, and influenced by the same nonlin-
earities responsible for both, Fréhlich etfect and Davydov's soliton. As a consequence,
after Frohlich condensation sets in, the lifetimes of the low frequency vibrations (i.e.
those modcs in the Frohlich-Bose condensate) increase enormously. This implies that
a cohcerent excitation composed by the low-lying in frequency excited states form a

Davydov’s soliton-like wave which travels undamped in Fréhlich condensate.

In summary, long-range propagation of excitations (informational energy) in biosys-
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tems can follow in the Frohlich condensate, which are, otherwise, strongly dampened.
That is, metabolic encrgy needs be provided to largely increase the population of the
low-lying-in-frequency modes, for, on this so prepared background, to be possible
dissipation-free signals to proceed. The results were derived on the basis of a sim-
plified model, but we believe that the general outlook is correct. A detailed calcu-
lation, allowing for exact results in the case of the o-helix structure in protein is in
development [49] and preliminary results agree with those presented here. Figure
4, taken from that refercnce shows, for the case of the a-helix structured chain, the
composition in frequencies of the modes in Frohlich's condensate, what gives better
justification to the modecl of two sets of representative modes that we used. As a fi-
nal word we remark on a curious point consisting on the fact that it can be noticed
certain similitude of the phenomenon described here with laser action. Furthermore,
we noticed that another novel phenomenon, also driven by the nonlinearities in the
equations of evolution, consists in the possible emergence of a Cherenkov-like effect
[50] in this media: It consists in that when the soliton is propagating with a velocity v
larger than the average group velocity of the phonons in the bulk medium, correspond-
ing to the modes in Fréhlich condensate, it is predicted a large emission of phonons
in priviledged directions. In the case of acoustic vibrations, with sound velocity s,
the emission occurs in a direction with angle @ such that cos 0 = s/v |?]. This may
be the particular excitation noticed in experiments in ultrasonography [52] where it
was dubbed as an X-wave. Additional considerations on Frohlich effect and Davidov’s

Soliton are presented in the works listed in Ref. [?].
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FIGURE CAPTIONS

Figure 1: Mode populations of the representative high frequency modes (index
naught) and low frequency modes (index one) for increasing intensity of the

power source.

Figure 2: The quasi-chemical potential (in units of ficw;) of the representative low

frequency modes vs. the intensity ot the power source.

Figure 3: Reciprocal lifetime of the representative high frequency modes (index
naught) and low frequency modes (index one) vs. the intensity of the power

source,

Figure 4: Mode populations (in frequency space) in Frohlich’s condensate for the case

of a near one-dimensional model for the «-helix protein. After Ref, [48].
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Capitulo 7

CONCLUSOES

O objetivo desta tese, como ja foi indicado na Introducio, foi o de apresentar uma
Mecanica Estatistica de Sistemas Nao-lineares e uma Termodinamica Irreversivel apro-
priadas para tratar os assim chamados sistemas complexos. Mais precisamente, foi
o de utilizar dois poderosos enfoques para o tratamento de sistemas dindmicos néo-
lineares, a saber:

e a Mecanica Estatistica Preditiva — baseada na Teoria da Informa¢do — na parte

correspondente ao Formalismo dos Ensembles de Nao-Equilibrio (NEsOM), onde

usamos 0 enfoque de Zubarev;
e a Termodindmica Estatistica Informacional (15T).

Estas teorias foram aplicadas ao estudo de sistemas de particulas tipo boson, como
sd0 os fonons e éxcitons em matéria condensada.

Deixamos o esclarecimento de gue na tese nio foi desenvolvida nenhuma extensao
ou aperfeicoamento destas teorias; com base no seu desenvolvimento ja existente
foram diretamente aplicadas ao estudo de sistemas com uma dinamica nao-linear e
aparecimento de¢ comportamento complexo.

Sumarizamos brevemente a contribuicdo resultante, visto que cada capitulo apre-

gsenta a discussio dos resultados.

431.
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Basicamente tratamos, via o uso do formalismo MaxEnt-NEsOM, da Termodinamica
Irreversivel (1ST) e da Teoria da Fung¢do Resposta dele derivadas, de sistemas dina-
micos afastados (perto ou longe) do equilibrio termodindmico, realizando um estu-
do com certa profundidade do comportamento macroscopico de matéria condensada
quando efeitos nao-lincares estdo presentes. No caso dos bosons considerados —
fonons 6pticos ¢ acusticos e éxcitons em polimeros orginicos, sistemas biologicos e
semicondutores — pudemos, a partir de uma base mecdnica microscopica, cviden-
ciar comportamento complexo num nivel macroscopico ¢ analisar particularmente tal
comportamento nesses sistemas dinamicos nao-lincares, evidenciando trés notaveis
fenomenos, que sao:

e Condensacio Frohlich-Bose-Einstein (Efeito Frohlich);

» Propagacéo de sdlitons de Schrédinger-Davydov de vida média muito longa;

e O efeito Frohlich-Cherenkov.

No caso de polimeros, como a acetanilida, consideramos as vibragdes polares (“co-
streching” ou Amida I) em interacdo ¢ em equilibrio com o meio circundante. Mos-
tramos de forma conclusiva — na literatura existente era conjectura — (ue a handa
dita “anémala” no espectro de absorcdo infravermelha corresponde a excita¢do co-
nhecida como soliton de Schriodinger-Davydov. Este € resultado do comportamento
nio-linear das equacdoes de evolucao das amplitudes de vibracao, proveniente da inte-
racdo anarmonica dos modos polares com o meio circundante,

Outra analise que levou aos mesmos resultados consistiu em analisar os ¢éxcitons
criados num semicondutor pela acdo de um pulso de radiacdo gerado por um laser.

Em ambos os casos a vida média da excitacao é muita curta.
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No caso das vibracoes polares tipo Amida I — existentes ¢ relevantes em siste-
mas biologicos como a hélice o e proteinas —, sob acio de excitacio continua, que
leva o sistema para longe do equilibrio, temos estudado com certo detalhe a emergén-
cia de uma condensacdo tipo Bose-Einstein numa estrutura no estado dissipativo de
nao-equilibrio, mas ndo uma transicdo de fase no sentido usual. Temos denominado
o fenomeno como efeito Frohlich em razao de ter sido primeiramente sugerido por
Herbert Frohlich.

Como notado no texto principal, tal efeito pode ser de grande revelancia no funcio-
namento de sistemas biologicos. Nao se pode descartar o fato de que o efeito possa
eslar presente em outros casos em matéria condensada: um é o caso de éxcitons em
simicondutores tratados no Cap. 5, ¢ outro candidato seria as oscilagées de plasma
em materiais dopados, incluindo aqui os biolégicos onde as proteinas sdo dopadas do
tipo p. Neste ultimo caso dos plasmons o comportamento complexo a surgir poderia
ser do tipo de formacdo de uma onda estacionario de carga. Esta pode ser conside-
rada como um tipo particular de eletreto, com uma situaciio similar — i. e. formacao
de eletreto — podendo estar presente no caso das vibracdes polares como um estado
meta-estavel.

Sendo mostrado que o efeito Fréhlich ¢ a formacao de séliton sdo conseqgliéncia
das mesmas nao-lincaridades presentes no sistema (na literatura existente tém sido
estudados separadamente a partir de modelagens diferentes), temos procedido ao
estudo da propagacdo de ondas solitarias no substrato consistente no condensado
de Frohlich-Bose-Einstein. Comeo visto pode ser mostrado a existéncia de um novo

fendmeno consistente em que a excitacio correspondente aum soliton de Schrodinger-
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Davydov se propaga no condensado com uma vida média ordens de grandeza maiores
que na auséncia de fonte externa de alimentacéao.

() fenémeno tem sido cvidenciado no caso do assim chamado “excitoner”. Co-
mo temos demonstrado, esta amplificaciio espontanea de éxcitons coerentes a partir
de éxcitons incoerentes — numa forma similar ao que acontece com os fotons no
laser — consiste em um so6liton de Schrodinger-Davydov formado num condensado
de Frohlich-Bose-Einstein, O sinal detectado experimentalmente é explicado pela pre-
senca do soliton “vestido” por um nuvem de ¢xcitons incoerentes.

Finalmente, no Cap. 6, procuramos tratar sistemas biologicos modelados. Por um
lado reforcamos que a condensacao Frohlich-Bose-Einstein e as ondas solitarias ndo-
amortecidas propagando-se nesse substrato podem ter relevincia muito importante
em Biofisica, particularmente em Bioenergética. Por outro lado consideramos, em co-
nexao com certos resultados na area médica de imagem por ultrasonografia, o caso de
vibracoes acusticas. Mostramos que, em completa analogia com o caso das vibragoes
polares Opticas, apresentam-se os fenémenos da condensacao Frdhlich-Bose-Einstein
(mais facil de surgir como resultado das frequéncias acusticas serem muito meno-
res que as opticas) e da propagacio a grandes distancias do soliton de Schrodinger-
Davydov.

Além disso, mostramos também outro fendémeno novo ¢ peculiar, também presente
nos casos de vibragoes opticas, que lembra o efeito Cherenkov no caso de propagagao
de cargas em meios maleriais, e que denominamos de efeito Friohlich-Cherenkov. Con-
siste em larga emissido de fonons em determinadas direc¢des, quando a velocidade do

soliton ¢ maior que a velocidade do som no meio. A emissao acontece ao longo de co-



nes com vértice no soliton e um angulo de abertura dado por cos 8 = s/v. Isto explica
0s chamadas ondas X em processos de ultrasonografia.

Como palavras finais diremos que estes estudos, por um lado, convalidam as tcorias
propostas (MaxEnt-NESOM e IST) proporciohando formalisinos promissores mecanico-
estatisticos para tratar sistemas ndo-lincares e mostrar a eventual emergéncia de com-
portamento complexo dando idéia de sua origem ao nivel molecular atémico ou de
particulas, Por outro lado eles abrem uma excelente perspectiva para que se possa
tratar um amplo conjunto de fenémenos associados a comportamento complexo em

sistemas fisicos, quimicos e biologicos abertos ¢ levados para longe do equilibrio.
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Apéndice A

Metodologia

A.1 O Método do Operador Estatistico de Nao-Equilibrio

0O Método do Operador Estatistico de Nao-Equilibrio (MOENE), em qualquer uma de suas
formulagoes, bascia-se no principio estabelecido por Bogoliubov [Bogoliubov 1962;
Uhlenbeck 1963] de que a descricdo do estado macroscépico de um sistema fora do
equilibrio termodinamico pode ser feita com um ntmero contraido de variaveis, se
houver uma hierarquia de tempos de relaxacao tal que o sistema continuamente per-
ca memoria da evolugdo prévia, o assim chamado principio de enfraquecimento de
correlacoes. Desse modo, pode-se definir um conjunto basico de variaveis dinimicas
{F‘L,-(r)}. j—1,...,n, com, em geral, um numero n de elementos muito menor que o
numero de graus de liberdade do sistema considerado, para efetuar tal descricio em
dado estagio de evolucio do sistema.

O conjunto de macrovariaveis {Q ;(r, t)} associadas aos {ﬁ,«(r)} é constituido pelas
médias estatisticas das variaveis dinamicas, (ﬁ{,- (r)|t), as quais devem corresponder as
medidas obtidas experimentalmente. Essas macrovariaveis, em termos do Operador

Estatistico de Nao-Equilibrio (OENE), g(t), sio dadas por:

Q(r,t) =Tr{Pi(ne )} = By, (A1)
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onde p(t) é o operador estatistico de nao-equilibrio (OENE), que depende destas e
apenas das variaveis dinamicas {Pj(r) }. A contracdo do namero de variaveis esta

ligada com a separacao do hamiltoniano total em duas contribuicdes
IfI = ﬁ() t H, ) (A.Z)

onde Hy ¢ a parte do hamiltoniano que contém os efeitos dinamicos associados com
a parte da energia cinética e com intera¢des que produzem efeitos de relaxacdo com
tempos de decaimento menores que o tempo caracteristico do experimento, que é ti-
picamente da ordem do tempo de resoluc¢do do instrumento; enquanto H' contém as
interacdes responsaveis por mecanismos mais lentos de relaxacao; exemplos ilustra-
tivas 30 proporcionados no estudo de sistemas de spin [Buishvili & Zviadadze 1972]
e de semicondutores fortemente fotoexcitados [Vasconcellos et al. 1990].

A determinacao deste conjunto {}?,(r)'} é um dos problemas capitais da Mecdnica
Estatistica do Nao-Equilibrio, ndao havendo um método definitivo para chegar a uma
decisdo Unica. Para cada problema em particular pode-se chegar a mais de uma opcdo.
Contudo, a escolha dessas variaveis deve obedecer necessariamente uma condicdo de

fechamento, denominada condicdoe de simetria de Zubarev-Peletminskii,

1

—-12;(r), Hol = >, ajbi(r) (A.3)
k

onde 0s o, sao operadores diferenciais [Peletminskii & Yatsenko 1968| em uma re-

presentacao quantica apropriada.



467.

As macrovariaveis {Q;(r,1)} definem o estado macroscopico ou mesoscopico, de-
pendendo do caso, ou seja, o estado termodindmico de ndo-equilibrio do sistema.
Observemos que, embora as quantidades {15_,'(1') 1 variem no tempo com a evoluc¢io do
estado dinamico do sistema, o experimento ndao acompanha a evolu¢io microscopica,
porém a evolugio macroscopica do sistema através das macrovariaveis {Q (r,t)}. Os
resultados de semelhante experimento devem ser descritos por equacdes de transpor-

te generalizadas da forma:

%Q_,-(r,t) = R;j{Q(r,t),...,Qu(r,t);t}, (A.4)

onde os R ; sdo funcionais das macrovariaveis Q ;(r,t), sendo em geral de carater néo-
linear, ndo-local e acompanhados de efeito de memeoria. Assim, as Eqgs. (A.4) sdo as
equacdes fundamentais a descricao da evolucao macroscopica do sistema.

O OENE p(t) satisfaz a equacao de Liouville, que apresenta dois tipos de solucao,
as solucdes retardadas (evolucdao rumo ao futuro) e as solucdes avangadas (volta do
futuro para o passado), e assim temos reversibilidade temporal. O comportamento
irreversivel na descricio do estado macroscopico do sistema pode ser conseguido me-
diante a introduc¢io ad hoc de uma hipdtese ndo-mecanica, que consiste na imposicao
de uma quebra da simetria de reversao temporal da equacao de Liouville, o que ¢ fei-
to negligenciando o conjunto das solug¢des avancadas. Na pratica, isto é conseguido
introduzindo o conceito de quasi-médias de Bogoliubov [Bogoliubov 1967, 1970].

Na formulacdo do OENE de Zubarev, que sera utilizado nesta tese, isto é feito adi-

cionando uma fonte infinitesimal a equacdo de Liouville ¢, ap6s o calculo das quasi-



468,

médias, fazendo o limite tender a zero. A construcio desse operador é feita utilizando-
se um principio variacional, o Formalismo da Maximizac¢do de Entropia Estatistica (Ma-
xEnt), proposto por Jaynes [1957a,b, 1978, 1983, 1986]. De acordo com este autor, a
teoria de informacao proporciona um critério construtivo para obter distribuicdes de
probabilidade com base em um conhecimento parcial do estado do sistema, levando
para um tipo de estatistica por inferéncia. A base é a contribuicao de Shannon a teoria
de informacdo |Shannon & Weaver 1964; Beck 1976]. De acordo com Jaynes, o estado
de conhecimento do observador é dado por inferéncia probabilistica, que consiste em
determinar a distribuicdo de probabilidade p; dos eventos x;, maximizando a quan-
tidade 8; = k2 ;p;Inp,, a assim chamada entropia informacional, onde k é uma
constante positiva, e §; esta sujeita as condicées do conhecimento existente sobre o
sistema [Jaynes 1957a,b, 1978, 1983, 1986]. Detalhes da construc¢io desse operador
podem ser encontrados em Zubarev et al. [1996, 1997]; Luzzi & Vasconcellos [1990];
Ramos et al. [1995]; Luzzi et al. [1998].

O OENE na formulacido de Zubarev, g, & dado por

[4
o:(t) = exp -{lné(t,()) J dt’ef“'—”%ln@(t’,t’ — t)} : (A.5)

onde g(t,0) é um opcerador auxiliar de relevancia importante na teoria dado pela dis-

tribuicao tipo Gibbs instantanca:

g(t,0) = exp{-p(t) - X Fi(t)B;(r)} (A.6a)
¥



¢
— r 14 -]- ’ e ’ ]- I
o(t’', t'—t) = exp{—imhm(t — t)H} ot ,O)exp{ﬁ(t — t)H} ) (A.6h)

onde ¢p(t) assegura a normalizacdo de 9, e as varidveis termodindmicas intensivas de
nao-equilibrio F;(t) sdo os multiplicadores de Lagrange que 0 método introduz.

Usando a Eq. (A.5) é possivel mostrar que o OENE é composto de dois termos:
e.(t) = @(t,0) 4 g.(t). (A.7)

O termo o(t,0) € um operador auxiliar de grao grosso que da valores médios ins-
tantaneos das observaveis do sistema, ¢ que nio leva em conta a dissipacao do sistema,
e 0 termo g, (t) esta associado com a informagao dinamica microscopica indispensavel
para descrever-se a evolucdo irreversivel e os processos dissipativos que ocorrem no

sistema. Além disso, tem-se que

Qj(r,t) = Tr{Pe.(D} = Tr{P;a(t,0)} . (A.8)

A.2 Teoria cinética

Consideremos um sistema quantico cujo hamiltoniano separamos em dois termos:
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Nesse sistema, Hp € a parte do hamiltoniano que contém os efeitos dinamicos as-

sociados na evolucao dos {Pj(r) } com a parte da energia cinética ¢ com interacées que

produzem efeitos de relaxacao rapidos, enquanto H' contém as interaches responsa-

veis por mecanismos mais lentos de relaxacio {cf. Eq. (A.2)]

Diferenciando-se a Eq. (A.1) com relacao ao tempo, obtemos:

¢ d.. - . 2 L[ :
5, Qir ) = - TeiPiries (1)} = Tr {(i) ™' [P;(r), Hlec(D) ] .

Levando em conta a Eq. (A.7), obtemos:

2Q,0r,6) = T {0 [Py, H1a(e, 001} + Tr {(1h) 118, (r), Hlgl(D1] |

Com a separacdo de H dada pela Eq. (A.9), podemos escrever
Tr (i)' [P;(r), H1a(t, 001} = 17 (r,t) + [}V (r, 1)
onde

J =T { (i) [By(r), Hole(t, 00} = (ih) Y(1B;(r, Ho)llt)o

J =Tr{GR) 1B, e, 00} = GR)TH(LPyr At .
Levando em conta as Eq. (A.3), (A.7) e (A.8), podemos mostrar que:

Tr | (i)' [P;(r), Hole, () } = 0,

(A.10})

(A.11)

(A.12)

(A.13a)

(A.13b)

(A.14)
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de maneira que podemos escrever o segundo termo do lado direito daEq. (A.11) como:
Tr { (i)' [P(r), Hll (1)} = Tr {(i1) ' [2;(r), H 1l (D} = J;r,1) . (A.15)

O operador de colisdo J(r,t) é extremamente complicado, contendo efeitos alta-
mente nio-lineares, ndo-locais e de memoria (a historia prévia, mecanica e termodina-
mica até o tempeo t). Com as propriedades das Eqs. (A.3) e (A.9) podemos escrever este
operador de colisdo como uma séric infinita de operadores de colisdo organizados em

poténcias sucessivas da interacgio:

oo

Titrot)y = > 1ty (A.16)

k-2

onde o indice k representa a ordem de interacdes. Dessa forma, podem ser introduzi-
das aproximacoes através do truncamento da scrie de operadores de colisdo parciais,
numa dada ordem de interacdo. A teoria de transporte baseada no MOENE constitui
uma generalizacdo abrangente das idéias e do formalismo de Mori [Mori 1965] {vide,
por exemplo, Madureira et al. [1998a])), sendo altamente nio-linear e, em principio,
aplicavel a qualquer situacdo arbitrariamente longe do equilibrio. Até segunda ordem
na intensidade de interacao resultante no limite Markoviano, tem-se a a expressao

aproximada [Luzzi & Vasconcellos 1990; Madureira et al. 1998b]:

t
950ty =~ I3 t) = (ih) ™ J dt’ e H[H'(t" ~ t)o,[H', Pj(r)]} | t)g

8]V r,t)

s0cr.n (H =0, Pn] 1 1o, (AL7)

t
w7 | aret o S
J =0 k
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onde H(t' — t)y € o operador na representacio de Heisenberg na evolucio com Hp, §

indica derivada funcional [Courant & Hilbert 1953], e lembramos que definimos
(| tho=Tr{...0(,0}. (A.18)

Na aproximacio proposta, a Eq. (A.10) pode ser escrita com o auxilio das Egs. (A.12)

e (A.16) como:

%Q‘;(r. t) = %(ﬁ_,-m [ty =Jr, 0 + T )+ 1Pt (A.19)

obtendo-se assim no MOENE a especifica¢io dos funcionais R ; da Eq. (A.4).

Essa expressio constitui o conjunto de equacgoes generalizadas de transporte, cons-
truido, relembramos, usando-se o Operador Estatistico de Nio-Equilibrio na aproxi-
macio Markoviana de segunda ordem na intensidade de interacdo, que é o termo de
ordem mais baixa a produzir c¢feitos dissipativos.

Para o OENE de Zubarev, o termo J}z) (r,t) tem a seguinte expressao;

siVy .
! P t)e.

0
Dy 1) — (1B e TR (e (1 B
IR0 = G| are (e o LB )+ i S s

(A.20)
A.3 Teoria da Funcido Resposta

Outro item de grande importancia, e ligado a teoria cinética descrita na secao A2, é

o da construcdo de uma teoria da Fun¢do Resposta. Isto é descrito na reproducio a
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seguir de um artigo que esta sendo submetido para publicacdo no Journal of Statistical
Physics. A secdo 2 desse artigo — por consisténcia em sua apresentacao — tem uma
discussio do formalismo nos moldes do que ja foi apresentado nas secdes anteriores

deste apéndice.



Apéndice B

Integracao da Equacao de Schrodinger
Nao-linear pelo Método do Espalhamento
Inverso

B.1 O método

Nosso problema consiste em achar as solucdes do problema de valor inicial para a

equacao:

Ay, t)  oyr(x,t) 5 B
i 5t + Sxc +gly(x, D)) wix,t) =0 (B.1)
com a seguinte condicao inicial:
Wix,0) = Yolx), (B.2)

com o(x) correspondendo a uma funcdo arbitraria decrescendo rapidamente no in-
finito (x — o). Zakharov & Shabat [1972] criaram um método para resolver esse pro-
blema, o assim chamado Método do Espalhamento Inverso (MEI). Eles mostraram que

a solucdo da esse problema pode ser colocado em correspondéncia com o problema

475.
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do espalhamento para os autovetores

i
v = , (B.3)
v
satisfazendo o sistema de cquacdes:
dv, .
dx_l +igv, = q4(x)v; (B.4a)
”ji'; i = —q* (%) (B.4b)
com autovalores ¢ = & +in, e
a(x) = iJgwo(x). (8.5)

0O mctodo proposto por esses autores consiste em achar solugées do sistema (B.4) tais

que, em uma fungdo fixada g(x) eum autovalor C, possuam o seguinte comportamento

assintotico:
(1)

0
v, x) — - > < (B.6)

1 ) 0 )
a(f)eiex 4 b(C)e't* | se x — oo

\()) 1

onde a(L) € o coeficiente de transmissio ¢ b(T) é o coeficiente de reflexao de uma

onda plana incidente no potencial g(x) da regido x = oo,
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A relacdo entre b(T) ¢ a(C) determina o coeficiente de reflexao:

_ b(@)

R=2o

(B.7)

As funcoes em (B.6) admitem continuacdo analitica no semiplano superior n > 0 de
uma variavel complexa €. Zakharov & Shabat |[1972] provam que, uma vez conhecidas

a(l) e b{T) em um tempo t = 0, pode-s¢ obter seus valores em t > 0 por meio das

relacoes:
a(t,t) = a(l), (B.8a)
b(T,t) = b(T) exp(4iC°t). (B.8h)
Nos valores T}, j = 1,..., N, no semiplano superior em que os cocficientes a(g) se

anulam, a forma assintotica da funcao v(Z;, x) é dada por

()

e—l(E,,-Hnj)x ,Se X — —o0

v(C;,x) — 1

/ (B.9)
o)

b(E)ell&it)x g x — 0,

\)
A funcdo v(Tj, x) decresce assintoticamente em x — =*c¢o; ela descreve, portanto, 0s

estados ligados correspondentes aos autovalores complexos ; nas Eqs. (B.4).

Os assim chamados dados do espalhamento, por meio dos quais se pode determi-
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nar a funcio g(x, t) em um momento arbitrario t, sido dados por

-1
ey — b | 228 _ b, 1)
Cj, C_](t)_b(let)l: T L—-c,-' R(C,t) = () (B.10)
A funcao g(x,t) no MEI é dada por
gix,t) = -2K(x, x), (B.11)

onde a funcdo K(x, v) é asolucdo da equacio integral de Gelfand-Levitan-Marchenko:

oo

K(x,v)=F*(x +y,t) - [d.s [d.zF*(s + v, O)F(s + z,1)K(x, 2), (B.12)

X

onde a funcao F(x,t) é dada em termos dos dados do espalhamento (Eq. B.10):

oo

N

Foot) = 5= [ REDEAT + 3 ¢ (e, B.13)

i1

Uma vez determinada a funcio g(x, t) por meio da Eq. (B.11), pode-se usar a Eq. (B.5)

para obter ((x, t)

-ig(x,t)
lt = L} B-14
ix,t) 7 (B.14)

que ¢ a solucao da Eq. (B.1) com a condicao inicial especificada pela Eq. (B.2).



B.2 Aplicacio do método

Como aplicacdo do MEI, resolveremos a equacio

iaqf(x.t) i oy (x, t)
ot dx?

com uma condi¢do inicial na forma de uma secante hiperbélica:

A
Y (x,0) = Yolx) = Ee“k‘"sechmx).

29100, O wix, ) =0
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(B.16)

Para calcular os dados do espalhamento, temos de encontrar as solucoes assintoticas

do sistema (B.4).

Usando a Eq. (B.4b), podemos escrever que:

Vi +iCvy
q(x)

Substituindo a Eq. (B.17) na Eq. (B.4a), obtemos a equacdo:

q()

) i1 (x))
TP

(24 |ala) | - (%)

Para a condi¢ao inicial da Eq. (B.16) o potencial g{x) é dado por

q(x) = iAc?™ sech(Ax),

= 0.

(B.17)

(B.18)

(B.19)
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de mancira que a Eq. (B.18) se reduz a:

v’ — (2ik — Atanh(Ax))v] + [C? + A%sech®(Ax) + (2k +iAtanh(Ax))C v, = 0.

(B.20)
O comportamnento assintotico da equacao acima quando x — *oo é:
v — ik ¥ A)v] + [T* + (2k £ iA)C v, = 0. (B.21)
A solucdo geral da Eq. (B.21) é:
V| = e 1©F 4 gellbrkwid)ly (B.22)

com ¢; ¢ ¢ constantes arbitrarias a serem determinadas tal que v; satisfaca a con-

dicao

v, — e 1&x, (B.23)

quando x — —oo, Com isso, obtemos que:

elik+iL+dlx  “go x . —co,com = —k + 21A
vy = ' (B.24)
e 8% ge x — oo.

e, usando a Eq. (B.17),

v =0, parax — too, (B.25)



Uma vez que em x — oo, vz = b(E)e'*, é imediato que

de maneira que o valor de R na Eq. (B.10) é
R(&,t) = 0,
e o valor da funcdo auxiliar F(x, t) da Eq. (B.13) é:
N
F(x,t) = > c;(t)e'®)~
i1

Em nosso caso, N = 1, [cf. Eq. (B.24)], de modo que:

F(x,t) = ¢y (t)elex,
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(B.206)

(B.27)

(B.28)

(B.29)

comZ = —k+ %iA. Substituindo a Eq. (B.29) na Eq. B.12, ¢ assumindo K (x, v} naforma

K(x,y) = f(x)e &

obtemos;

(B.30)

[(x)e7 18"y = cx(tye T _ | ds | dz|ey (1)) e T M e-iTls+2) £ x)e16"2 (B.31)
1 .
X X
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Resolvendo para f(x), encontra-se que;

O valor de ¢;(t) ¢ dado por [cf. Eq. (B.8b)]
c1(t) = Aelk® ANt kAL, (B.33)
Utilizando as Egs. (B.32), (B.33), (B.11) e (B.14), obtém-se
i, ) = gttt R ®.34
que pode ser colocada na forma:
Yrix,t) = % Qi 2kx (k2 -AN) goch?[ A (5 — 4kt) ], (B.35)

que é a solucio procurada para a Eq. (B.15) com a condicdo inicial dada pela Eq. (B.16).



Apéndice C

Valores Médios de Operadores

Para calcularmos os valores médios de operadores com o operador auxiliar 5(t,0),

podemos diagonaliza-lo com o auxilio de uma transformacao canénica:

onde A4 € um numero complexo. Com isso ¢(t,0) toma a forma:

3(£,0) = exp{—d — > [Fq(t)bfbg + (Fa(t)AL + fo(t))by
q
+ (Fa(DAg + [ ()b} + Fa(OAgA} + fa(DAg + fZ (DAL}, (C2)

onde

¢ = InTrexp|— > [Fo(t)blba+(Fa(t)AL + fo(£)) by
q

+(Fa(D)Aq + F7 (DB} + Fa(DAZAL + fo(DAq + £ DAZ]} . (C3)

483.



484.

Se tomarimos

fa(t) _ Fa(L)
A, = — q , A = ¢ q . CA4
T TR0 = TE () (€4
a expressdo para ¢(t,0) reduz-se a:
exp{—ZFq(t)bf,bq}
o(t,0) = ! (C.5)

Trexp{— %Fq(t)b:‘,'bq} |

¢ nessa forma podemos calcular as médias que aparecem ao longo dos calculos das

equacoes de evolucio.

C.1 Calculo de (a,lt) e {al | t)

(ag | t) = Tr{aga(r,0)) = Tr{(bg + Ag) 0(t,0)}
=Tr{b,o(t,0)} + AgTr{6(t,0)} = A, (C.6)
(al |ty =Triabe(t,0} = Tr{(p} + A2) a(t,00}

=Tr {b}a(t,0)} + XS Tr{o(t,0)} = A}, (C.7)

q

onde usamos o fato de que Tr{o(t,0)} = 1.
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C.2 Calculo de {ak,aq, | t)
(a},dq, | ) = Tr{ah aq,6(t,00} = Tr[ (B, + Aj) (b, +Aq,) 6(t, 0)}

= Tr{b} by, 0(t,00} + Ay, Tr{b} 6(t,0)}

+ Ak Tribg,0(t,0)} + Aj Ag, Tr{Q(£,0)}

1
= ﬁéql'qz + (ﬂ;l | t)(&lqz | ). (C.S)
Quando g, = g», temos
t | 1 2 -
(@l aq | 1) =(ng Ity = — +{ag 18], (C.9)
e [ p—
de maneira que podemos escrever a Eq. (C.8) como
(@l aq, | 1) = (ah | )(ag, | 1) + ((ng, | ) — [(ag, | )]*) 8q,q, - (C.10)

C.3 Calculo de {(a},ag,aq, | t)

<a¢];1a‘¢?2am | ) =Tr {afnamaq:sé(t-o)} = Tr{(b;l + A;.) (bg, + Ay) (bqy + Agqy) Q(I,O)%
=Tr ‘l(b:glbmb@s + Alhbiglb‘iz F AQEb‘;IbQCl + /\:ggf\q;4b£1) Q(t,())}

+ Trd(Af Basbys + Ay Agybay + A Aqsbay + A AqAg) 68,00
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= Aqy Tr{bd gy (8,00} + Ag, Tr {bl by, 6(8, 0} + A%, Agydg; Tr{2(£,0}
= (aly | t){ag, | D{ag, | L)+

2
i

+ ((”ql | L) - |(am | t>| ) ((aqz I ”‘Sm,ﬂis + (ath | [")5111.&!2) ’ (C-ll)

onde fizemos uso da Eq. (C.10).

Calculo de (a} abag,aq, | t)

(a} alag.aqg, | t) =Tr {a.;;laf, aqgaq;{é(tro)}
= Tr{ (b, +A3) (B + Ag) (bay + Age) (bay + Ag)) 82,0
= Tr { (b}, bibashay + Aqibl biba; + Aa,bl blba, + Mg Ay, b}, bY) 0(1,0)]
+ Te { (A3 bayba, + AfAqybl, ba, + AjAq,bh by, + A2Aq,Aq, b)) 8(1,0)}

+Tr { (Aq biba,bas + A% Aa BB, + Af Mg, blbay + Ak AgAqybl) 6(8,0)]

Hl

+ TrJ(A5A% baybas + N As Aaybay + AgAs Aasbay + AjAS AgyAgs) 0(8,0)]

= Tr {b},bibg,bq,@(t,0)} + A¥Aq, Tr b} by,6(t,0)]

+ AFAg, Tr {b] b 0(t,0)} + A2 Ay Tr {blb,,0(1,0)]

+ AL AL Tr{biba, (8,00} 1 AZAL A Ay Tr {2(2,0)} . (C.12

a1
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Usando o teorema de Wick |Louissel 19731, podemos escrever que

Tr{b} blba,bg,o(t,00} = Tr{b} by, 6(t,00] Tr {biby,e(t, 0]

+ Trib} ba, 0,0} Tr {blbg,6(t,00],  (C.13)

de modo que

(al alagaq, | t) =Tr {b,g,bql,é(t,O)} Tr {b;bmé(t, 0)}
+Tr bl by, 0(t,0)} Tr {biba,0(1,00F + A%Aq, Tr{b] by,0(t,0)}
+ AEAG, Tr {b} ba,3(t, 00} + A% Ag, Tr {biby,6(t,0)]
+ A% A, Trblba,0(£,0)] + AZA% Ay Ags Tr {0(2,0)}
={ak | t)ag, | t)(aq, | t)ak | t)
+ (g 18— [ag, 1 O2) (a1 1) ((aq, | 018410, + (Agy | 1)8g,.q)

+ ((ﬂq | 1) — |[{aq | 1) |£) <a:51 | £) ({Ag, | £)0q.4; + (aq, | 1)04q4,)

F((ng 10 = [(aq 1 ©)1%) ((na, 16) = [{aa, 1 8]°) (841.0:504: + Saras8aa) - (C14)



_______Apéndice D

Deltas de Conservacao

D.1 Introduciao

Para calcularmos as varias integrais que aparcecem nas equagodes de transporte para

Vg, Qg € al, utilizamos a relacio

(S(X — .X',j)

S(f(x)) = ZW’

i

(D.1)

onde os x; sdo as raizes de f, e f'(x;) é aderivadade f(x) em x = x;. Uma vez fixadas
as relacdes de dispersdo, podemos calcular as raizes das funcées que aparecem nas

deltas para expandi-las. As deltas de conservacio que aparecem nas equacoes sao:

S(A1(q1)) =8(Qg, + Qqg, — Wy), (D.2a)
S(foldr)) = 8(Qq — Qquiq + Wy) , (D.2b)
S f3(q1)) = 8(Qq_q, + Wy, — Wy), (D.2¢)
0(falar)) = 6(Qqogq, — Wy, + Wg), (D.2d)
0 frl@)) = 6(Qyurq, — Wy, - Wy) . (D.2e)

489,
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Analisaremos cada uma das funcdes f; para o caso dos modos opticos ¢ para o

caso dos modos acusticos.

D.2 Modos opticos

Neste caso, a relacio de dispersdo para o sistema é w, = wp—xg-°, e para o reservatorio
q q-,ep

¢ Oy — spq. Levando em conta essas relagdes, podemos escrever as Egs. (1).2) como:

O(f1(qu)) = d(splqnl + splq - q1| — wo + xg°) , (D.3a)
S(f2(qn)) = d(sglagy| — splg + a1 | + wo — xg°) (D.3b)
S(filq) = 8(splg - anl — el —q°)) (D.3¢)
S( falq)) = 8(selq — | + x(qi — q°)), (D.3d)
S(f5(q1)) = 8(sglg + a1l — 2wo + a(gf + g°)) . (D.3e)

Analisaremos a seguir cada uma das funcgoées f;, calculando suas raizes e as con-

diches em que elas existem.
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D.2.1 Anilise de f;.

1) Para g < 0, a expressio para fi é

—25pq1Sp + Spq — Wo + XG°, 5€ 1 < g,
Fr=19_spq — wo + xq’ , se g <0, (D.4)
25Rq1Sp — Sgqd — Wo + xg? se q; > 0.

Neste caso, a funcido f] possui duas raizes:

Spd — Wp + aqz

N = ¢ ) se () <q,
q1 = - =B , (D.5)
Spq + Wy — &g .
Yo = , 5¢ ={),
i 2 D5 ¢

Para que a condicio g, < gq seja satisfeita, g deve satisfazer arelacdo €'’ < g < 0.
Igualmente, para que a condicdo q, > 0 seja satisfeita, devemos ter que £ < g < 0,

COII:

>
(_)_“.S"__ S) ) .
& = 2 X \/(20»: ") (12-6)

Podemos entdo escrever, usando a Eq. (D.1), que:

1 ..
o( frlq)) = m[b(m -1} +olgq - T2)|I®(q - C(_)) - @(Q)] , (D.7)

onde ® é a func¢io degrau de Heaviside.
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il) Para g = 0, a expressao para f é:

—25pq158 + Sgq — Wo + xqG°, se ¢ <0,
S _W Spq — Wo + Xg° se 0=q1<1q, (D.8)
2sgq1Se — Spq o + xq° se g, > (.

Neste caso, a func¢do f; possui duas raizes:

¥, s¢ oy <0,
q = 1 (D.9)

Y2, se g > g .

-

Para que a condicio q < 0 seja satisfeita, g deve satisfazer arelacio 0 < g < -7,
[gualmente, para que g; > q seja satisfeita, devemos ter que 0 < g < -,

Podemos entao escrever, usando a Eq. (1).1), que:

SUf@)) = o [5lar — 1) + (ar ~ )] [0(a) 0 + T 7] (D.10)

Ly

Assim, para um g geral, podemos escrever:

S filgr)) = 721?”[‘5(‘11 -n)+68(q —r)][O@-C-eg+C" ). (D.11)



D.2.2 Analise de f>.

1) Para g < (), a expressao para f» ¢:

spq + Wy — xq°, s¢e qp 20,
S = 2spq0 + spq + wo — ag?, se 0<q)<—q,
—Spq + Wy - Xq-, 5¢ 41 =2 4.

Neste caso, a funcio f» possui uma raiz:

Spq + Wy — g’
25K

qi=-nN =

493.

(D.12)

(D.13)

se e apenas se for satisfeita a relacio 0 < g, <« —g. Para tanto, g deve satisfazer a

condicao - < g < €, com

(+;:i+\/( )
S 2 2 o

Podemos entdo escrever, usando a Eq. (D.1), que:

0(fa) = gﬁ;lé?(m +r)])[0q + ) -6 - ],

(D.14)

(D.15)
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ii) Para g = 0, a expressao para f; é:

Sgd + wWq — Kg°, se q, = —q,
Sz =1 — 281 — Spq + Wo — qu2 , se —q <q1 50, (D.16)
—$pq + Wy — xq°, se q, >0.

Neste caso, a funcio f» possui uma raiz:
QL =—%2, (D.l?)

se e apenas se for satisfeita a condicdo —g < g, = 0. Para tanto, g deve satisfazer a
relacio —C) = g < T,

Podemos entido escrever, usando a Eq. (D.1), que:
o 1 .. .
S(falq)) = m[é(ql +r)][@(g+ ) -0 -¢')]. (D.18)

Assim, para um g geral, podemos escrever:

1
S(fata)) = 5 {8 + ll0(@ + L) - 0lg - ¢ ] +

[8(ar +r))[0@+ T ) —@@@-T)]{. (D.19)



D.2.3 Analise de f;.

A expressido para f3 é:

fi=-

Neste caso, a funcao f5 possui trés raizes:

+5—'lg >
q, -4 x 5€¢ g, =4¢,
ql=-|
Sp
—q - — 5 < q.
x q) < g

+sg(dq - q) — x(q; — q?), se g1 24,

—splq — q) - «(q? —q%), se g1 <q.
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(D.20)

(D.21)

Levando em conta que a derivada de f3 nao existe em g; = g, podemos entio es-

crever, usando a Eq. (ID.1), que:

_ 1
204 — sy

ol fi) =— [d(q, +q—i—f)][1_@(q_§_;)]+

1

SB Ay ryr
——[5 =L + 25 .
g s @ rat 8@ . 0.22)

D.2.4 Analise de f;.

A expressdo para f; é:

Jfa =1

SB(Ql_q)—i_a(Qf_qz)l s€ q1 =4(,

—sp(q) — q) + (g% — q%) , se 4 <q.

(D.23)
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Neste caso, a funcio f; possui trés raizes:

Sp .
q,—q—av s¢C qy=4q,
qi = 1 (D.24)
+ I8 ‘ <
— s¢ ]
| q x qr = g

Levando e¢m conta que a derivada de f; ndo existe em q; = g, podemos entao es-

crever, usando a Eq. (1J.1), que:

AU S Se _ S8
S(fy) = T HB[S(m +q+ m)][l Oq+5 )1+
1 Sy e .
- ~2Bylo(g - =&y . (D.2S
o s l0\a1 4 10— 5-) . (D.25)
D.2.5 Analise de f5.
A expressdo para f5 é:
splq) +q) — 2wy + &(qs +q°), se g1 > —q,
f5 =1 (D.26)
{_SH(QI +q) —2wo + a(g] + q°) , se g, < —q.

Neste caso, a funcdo f; possui quatro raizes:

(D.27)

{q1
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onde:

(+) _ _ 5B ( e )2 _ (:'i_) _ g2 4+ 2o D.28
K| o i\/ > q a+ =, (D.28a)
(1 _ 38 t )L (5_3) _ g2 4 2Wo D.2¢
K 5 T\/(E(x + g cx qc + M (D.28b)

Para que K{” > —q, devemos ler:

W g e &0 Y, Lo q =1, (D.29)
X o

com (") dados por:

’ .
[0 _ Sk +\/ S5, 2Wo (1D.30)

Para que x|’

——=q = . (D.31)

(+)

Para que k," ' < —q, devemos ter:

—=) =q< - {ﬁ vV {U_o *‘:QEE(H. (D.32)
(4.4 o

Para que Ké_] < —q, devemos ter:

Y el q < Lo (D.33)
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Podemos entao escrever, usando a Eqg. (ID.1), que:

5(fs) == —8(@r - ki"™)[O(g + (D) —0(qg — 7)) = 1+ 0(lq] — (wo/ )] -
20Kk + Sp

S(q1 — ki )1 = 8al - (wo/e))] +

2ok ™)+ sp
2 ol Stay — k5 [O(g +) —0(g — ") = 1 +0(1q] - (wo/X)'1?)] -
c Kz _SB
= (=) 12 A
2okt ngs(m — Kk ) [1-0(lal - (wo/e) )] (D.34)
()

D.3 Modos acusticos

Neste ¢aso, a relacdo de dispersao para o sistema € w,; = s4q, € para o reservatorio €

Q2; = sgq. Levando em conta essas relagdes, podemos escrever as Eqs. (1D.2) como:

S(filqr)) = 8(splq:! +selg — aqu| - salql);, (D.35a)
S{ f2(q1)) = d(sglar| — splq + qi1 + salql) , (D.35b)
0( f3(q1)) = o(splq — qil + salarl —salql) , (D.350)
8( fa(qr)) = 8(splg — anl — salqul + salql) (D.35d)

O f5(q1)) = 8(spla + g1l — salqi| — salql) . (D.35e)



D.3.1 Analise de f).

i) Para g < 0, a expressao para f) é:

28pq1 + (54 — Spla se g, =0,
fl:T 285pq) + (54 + Sp)q , se q, <4,
(sx — sp)q, se g<q; <0,

Neste caso, a fun¢io f; possui duas raizes:

cltg, se g, =0,
q1 = 4

L c'q, se 1 <4,

com ¢'* dado por:

1 SA)
(£) _ = -Aa
s 2(11_53 )

Podemos entio escrever, usando a Eq. (1).1), que:

: 1 .. .
S frila)) = m[é(ql —c"g) + (g1 — ¢ 7q)|O(s4 — sp) .
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(D.36)

(D.37)

(D.38)

(D.39)
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ii) Para g = 0, a expressao para f) ¢:

.fl:{

Neste caso, a fungao

28pq1 — (Sa + Sg)q , se q1 >4,
—28pqy - (54 — Sp)q , se q <0, (D.40)

—(s4 — $3)q, se 0=gq1=qg.

f1 possui duas raizes:

c'*g, se q; > q,

cq, s¢ q1 <0,

Podemos entdo escrever, usando a Eq. (D.1), que:

o filan)) =

expressao idéntica a Eq.

1.
25 180 6Va)+ 8(ar - ¢ @)[B(sa —sw) (D.42)

(1D.39), o que indica que ela é valida para qualquer valor de 4.

D.3.2 Analise de f..

i) Para g < 0, a expressdo para fo é;

S2 =4

(4 + s8)d , se q1 = —q,
—2sgdy + (54 — Sp)q , s¢e 0=q) <—q, (D.43)

(sa - sg)q, se g <0.
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Neste caso, a funcao f» possui uma raiz:
ai=-¢""q scO0=sq <-q. (D.44)
Podemos entdo escrever, usando a Eq. (D.1), que:
5L = 5[5 + D100 - 51) (1.45)

ii) Para q = 0, a expressao para f- é:

X
2spqy — (54 — Sp)q, se —q=4q, <0,
Fi=1-(sa-sp)q, se q1 20, (D.46)
—(54 + 5p)q , se g, < —4g.

Neste caso, a funcio f, possui uma raiz:
4= -¢7'q, se —gq=q <0. (D.47)
Podemos entdo escrever, usando a Eq. (D.1), que:

3( folqy)) = ﬁ[ﬁ(ql +¢'7g)]0(sa - sp) (D.48)

expressao idéntica a Eq. (D.45), o que indica que ela é valida para qualquer valor de 4.
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D.3.3 Analise de f;.

i) Para g < 0, a expressao para f é:

(sa+ Sp)q1 + (54— 58)q , se q =0,
Sy =1 =(sa+sp)(ar —a) se q1 <4, (D.49)
—(s4—sp)lq1 — q), se gq=q <0.
Neste caso, a func¢io f; possui duas raizes:

—-xq, s¢ g =0.
q1 = 7 {D.50)

q, se q1 <0,

L
onde
x = ASB (D.51)
A + S

Levando ¢m conta que a derivada de f3 ndo cxiste em g; = ¢, podemos entdo es-

crever, usando a Eq. (D.1), que:

S( fu(qr)) = [6(q1 + %xq)|O(s4 — sp) . (D.52)

R
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ii) Para g = 0, a expressdo para f; ¢

(54 —sp)qh — q) se 0=qg, <q,
F3=1 Ga+se)ld—a), se g 24, (D.53)
— (sS4 + Sy - (s4 — Sglq, se q; <0.

Neste caso, a funcio f+ possui duas raizes:

q, se 0=q =4,

q1 (D.54)

-xq, se ¢ <0,

Levando em conta que a derivada de f3 nido existe em ¢; = q, podemos entao es-

crever, usando a Eq. (D.1), que:

6(f1(gq1)) = [6(qL +xq)]O(s4 - s8), (D.55)

5A + 5

expressdo idéntica a Eq. (D.51), o que indica que ela é valida para qualquer valor de q.
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D.3.4 Analise de f;.

i) Para g < 0, a expressio para f; é:

~{(sa—58)q1 — (sA + s8)q, se g1 =0,
fa=1 Ga-spa-a), se g, <4, (D.56)
($sa +sp)q, —4q), se g <y <0,

Neste caso, a funcao f; possui duas raizes:

g1 =

comao =x L.

-uq, se q1 =0,
(D.57)

q., se q <0,

Levando em conta que a derivada de f; ndo existe em q; = ¢, podemos entao es-

crever, usando a Eq. (D.1), que:

O fulay) = —[6(q1 + 0q)|O(s4 — sB). (D.58)
SA — ¥p
it) Para g = 0, a expressao para fy é:
—(sa 4 spXq — q) , se 0=qg; =q,
fa=9-(Ga - sp)q) — ), se gy > q, (D.59)

(sa —Sp)qy + (54 v $p)q, se gy < 0.
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Neste caso, a funcao f; possui duas raizes:

—-oq, se () < 0 '
q1 = A (D.60)

q, se ¢, = 0.

Levando em conta que a derivada de f; ndo existe em g, = q, podemos entao es-

crever, usando a Eq. (D.1), que:

O( falqy)) =

[6(q) + 04)]|O(s4 — sB) , (D.61)
SA— Sg

expressdo idéntica a Eq. (D.538), o que indica que ela expressdo acima é valida para

qualquer valor de 4.

D.3.5 Analise de fs.

i) Para g < 0, a expressdo para f5 é:

— (54 — sg)ehh + (54 + 88)q , se () = —q,
S5 =1 (54 + sglqy + (4 —$plq , se 0=qy < -q, (D.62)
(sa —sp)(q, +q), se qy < 0.

Neste caso, a funcao f5 possui duas raizes:

oq, se q1 = —q,
q] = ~ (D-63)

xq, se 0 =gy < —¢q.

L
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Podemos entdo escrever, usando a Eq. (1).1), que:

o(fslan)) = { [6(g1 —xq)] + ! SB[(S(qL — Uq)]}@)(s[; —54) . (D.64)

Sa+ 5g SA—

ii) Para g = 0, a expressdo para f5 é:

—(sa —sp)la +q) se g1 =0,
fs =1 Ga+spar—(sa-sp)a, se —g=q; <0, (D.65)
(54— Sp)q1 - (s +58)q , SC q) < —q .

Neste caso, a funcao f; possui duas raizes:

xq, se g4=q <0,

I (D.66)

adq, 5€e ) < —4 -

Podemos entao escrever, usando a Eq. (D.1), que:

S(f5(qr)) = { [6(q) —xq)] + 1 Qﬂlé(m - Uq)]}(é)(:rs —54) . (1).67)

SA + 5p SA—

expressdo idéntica a Eq. (D.64), o que indica que ela é valida para qualquer valor de g.



Apeéndice E

Pacote para o calculo de comutadores,
valores meédios de operadores e integrais

E.1 Introducao

O sistema de computacio simbolico Mathematica (Wolfram 1996] oferece uma lingua-
gem de programacio avancada que possibilita implementar elegantemente calculos
algébricos, apresentando ainda a vantagem de encontrar-se facilmente disponivel pa-
ra ambientes UNTX, Windows e DOS, entre outros. Por essa razio, escolhemos essa
linguagem para construir um pacote {package) para o calculo de varias quantidades
ao longo desta tese, cujo codigo reproduzimos abaixo, com comentarios pertinentes

sempre que possivel.

E.2 O codigo

Declara¢des iniciais do pacote:

- e e
BeginPackage["Comutadores'Operadores "]

(*; Inicio do pacote *)

(*: Arquivo: Operadores.M *)

(*: Nome: Comutadores'‘Operadores‘ *)

(*: Contexto: Comutadores‘QOperadores‘ *)
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Inicialmente, definimos propriedades gerais de comutadores, usando como operador

de multiplicacdo nao-comutativa a funcao Dot:

Unprotect[Power,Dot, Times,NumberQ]
SetAttributes[delta,Orderless]
Dot [X_7?NumberQ,y_J:=x vy
Dot [x_7?NumberQ y_?NumberQ, zl=x vy z
Dot[z_, x_?NumberQ y_7NumberQl=x y z
Dot [x_,y_?NumberQ]:= y x
Dot[x_, n_?NumberQ y_J:=n
Dot [x_ n_?NumberQ, y_]:=n
Dot[x_,-y_]l:= -x . vy
Dot[-x_, v_J]:i= -X . ¥y
Dot[x_,y_+Z_]:=x.y+x.Z
Dot[(x_+y_).z_]:=x.2+y.Z
Dot [X_+y_,Z_,w_]:=X.Z.W+y.Z.w
Dot[x1_ . x2_ + yl1_ . y2_,z J:=x1.x2.z+yl.y2.z
Dot[n_?NumberQ x1_ . x2_ + yl_ y2_,z_]:=n x1.x2.z+yl.y2.2z
Dot[ x1_ . x2_ + n_7?NumberQ yl1_ . y2_,z_1:= x1.x2.z+n yl.y2.z
Dot[ n_?NumberQ * (x1_ . x2_ + yl1_ . y2_),z.]:= x1.x2.z+n yl.y2.z
Dot [Exp[x_],Exp[y_]1]:=Expix+y];
Dot [x_,y_ Exp[z_]]:=Dot[x,y] Exp[z];
Dot[x_ Exply_]1,z_]:=Dot[x,z] Exp[y];
Dotfx_,y. / Exp(z_]]:=Dot[x,y]/Exp[z];
Dot[x_ / Exp[y_1,z_]:=Dot[x,z]/Exp[y];
Dot[x_ Exp[x1.],y_ Exp[z_]]:=Dot[x,y] Exp[x1l+z];:
Dot[x_ / Explx1_],v_ / Exp[z.]]:=Dot[x,y]/Exp[x1+z];
Dot[x_ / Exp[x1_],y_ Expl[z_]]:=Dot[x,y] Exp[-x1+2];
Dot [x_ Exp[x1_1,y_ / Explz_]]:=Dot[x,y] Exp[x1l-z];

I

X,y
X.y

A seguir, implementamos a algebra dos comutadores:

com[x_,y_J]:=x.y-y.x

com[ (x_em|x_emc) y_, (w_em|w_emc) z_]:=x w comfy,z]

comf (x_em[t_] Ix_emc[t_]) v., (w_em[t]l{w_emc[t_]) z_]:=x w com[y,z]
com[ (x_em[t_] |x_emc[t_]) y_, {(w_em|w_emc) z.]:=x[t] w com[y,z]
com[(x_em|x_emc) v_, (w_em[t]|w_emc[t.]) z_]:= w[t] x com[y,z]
com[x__?NumberQ . y_,z_]:=x comly,z]

com[x_, y_ + z_]:=com[x,y]+com[x,z]

com[a_,f_[a_]]:=0

com[x_7NumberQ,y_]:=0

com[fa_ . b_,c_]l:= a . com[b,c]l+ com[a,c] . b
comfa_ ,b_ . ¢_]:=com[a,b] . ¢ + b . com[a,c]
com[n_?NumberQ a_ . b_,c_]:=n a . com[b,c]+ n comfa,c] . b
com[a_ ,n_?NumberQ b_ . c_]:=n com[a,b] . ¢ + nb . com[a,c]

Propriedades dos operadores bosons e fermions:
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— -
Dot{z_?NumberQ*(x_ba|x_fa), y_baly_fa]:=z Dot[x,y]
Dot[z_7?NumberQ*(x_bc|x_fc), y_bcly_fc]:=z Dot[x,y]
Dot[z_7NumberQ, x_ba|x_fa, y_baily_fa]l:=z Dot[x,y]
Dot[z_7?NumberQ, x_bc|x_fc, y_bcly_fcl:=z Dot[x,y]
Dot[x_balx_fa, z_?NumberQ, y_baly_fa]:=z Dot[x,y]
Dot[x_bec|x_fc, z_?NumberQ, y_bciy_fc]:=z Dot[x,y]
Dotfx_ba|x_fa, y_baly_fa, z_7?NumberQ]:=2z Dot[x,y]
Dotfx_be|x_fc, y_bc|y_fc, z_?NumberQ]:=z Dot[x,y]

I

Algebra de bosons com propriedades varias:

com[bala_[ql_]],bc[a_[g2_111:=delta[ql,q2]
com[bc[a_[q1_]],bala_[g2_]]1]:=-delta[ql,q2]
com[a_ba,b_ba]:=0
com[a_bc,b_bc]:=0
com[a_ba,b_bc]:=0
comf(x_ba|x_hc),(y_fa|y_fc)]:=0
| J

Fun¢des para ordenamento candnico de produtos de operadores tipo boson:

[ |
OrdBos[x_+y_] :=0rdBos[x]+0rdBos[y]
OrdBos[n_?Number(Q x_]:=n OrdBos[x]
OrdBos[Boson_] :=FixedPoint[ (Expand[#] /. (bala_[x_1] . bec[a_[y_]]->deltalx,y]
+ bc[a[x]] . balaly]l]))& ,Boson]

A seguir, definimos func¢oces delta de Kronecker, ¢ algumas propriedades necessarias

de objetos a serem usadas:

deltalg_,q_]:=1
deltalgql_+4g2_,g1_]:=deltalq2,0]
deltalgl_+g2_,0]:=deltalqgl, -q2]
deltal-x_,-y_]:=delta[x,y]
deltalx_+y_,z_+y_]:=deltal[x,z]
DiracDeltal-xx_]:=DiracDelta[xx]
DiracDelta[~(xx_+yy_)]:=DiracDelta[xx+yy]
Diracbeltal[-(xx_+yy_-zz_)]:=DiracDelta[xx+yy-zz]
PVI1/(-xx_+yy_-2z_)]:=-PV[1/(xx-yy+zz)]
NumberQ[delta[gl_,q2_]] :=True
deltali_,j_1 " n_?IntegerQ:=deltali,j]
NumberQ[x_ y._]:=NumberQ[x]&&NumberQ[y]
NumberQ[x_ . y_]:=NumberQ[x]&&NumberQ[y]
NumberQlem[x_]] " :=True;
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NumberQ[emc[x_]] " :=True;
NumberQ[em[x_]1[t]]" :=True;
NumberQ[emc[x_J[t]]" :=True;

A seguir, definimos algumas fungdes e suas propriedades, que serao utilizadas no

calculo dos comutadores:

somalind_,x_+y_]:=soma[ind,x]+soma[ind,vy]
soma[ind_, (x_+y_) z_]:=somalind,x z]+somal[ind,y z]

soma[ind,x_ y_]:= somalind,x soma[ind,y]]

somalind_,x_ . (y_ + z_)]:=soma[ind,x . y J+soma[ind, x . z]
soma[ind_, (x_ + y_) . z_):=soma[ind,x . z l+soma[ind, y . Z]
somalind_,x_ . y_]:= soma[ind,x . soma[ind,y]l]

soma[ind_, expr_]:=Module[{Delta, 11, indices, n, regra, exptem},
n=Count [expr,x_delta,Infinity];
exptem=Expand[expr]:
Which[n==0, exptem,
n==1, (Delta=exptem[[Sequence @@ Flatten[Position[expr,x_deltal]]l]l;
il=Table[Delta[[i]].{1,2}];
regra=Flatten[Solve[i1[[1]]==11[[2]],ind]];
exptem /. regra),
n==2, indices=Flatten[Position[exptem,x_delta,Infinity]};
Deltas=Table[exptem[[indices[[i]]]],{i.Length[indices]}];
eqs=Tahlef[Deltas[[i,1]]==Deltas[[i,2]],{1,Length[Deltas]}];
regras=Flatten[Solve[eqs,{g2,ind}]];
exptem /. regras]]
coms[x_,y_]:=Module[{result},
result=Expand[com[x,y]]:
result=soma[q2,soma[ql,result]];
Ordena[IndMudo[result]]]
Ordenal(x_) + (y_)] := Ordena[x] + Ordenaly]

Ordenalexpr_] := Module[{CoefNum, QOperadores, Banho, Sistema},
CoefNum := Apply[Times, Cases[expr, (y_)7?NumberQ]];
Operadores := DeleteCases[expr, (y_)7NumberQ];

Banho := DeleteCases[Operadores, balal[x_]]|bc[alx_]]|balf[x_]]
the[FIx_11, Infinity];
Sistema := DeleteCases[Operadores, balb[x_]11|bc[b[x_]], Infinity]:
CoefNum*(Sistema . Banho)]
Ordbf[x_+y_]:=0rdbf[x]+0rdbf[y]
Ordbffexpr_] := Module[{CoefNum, Operadores, Boscns, Fermions},
CoefNum := Apply[Times, Cases[expr, (y_)}7?NumberQ]];
Operadores := DeleteCases[expr, (y_)?NumberqQ]:
Bosons := DeleteCases[QOperadores, fa[c_[x_]]|fcle_[x_]1]1, Infinityl;
Fermions := DeleteCases[Operadores, bala_[x_]]|bc[a_[x_]]1, Infinity];
Expand[CoefNum* (OrdFer[Fermions] . OrdBos[Bosons])] ]
Com[x_,y_] :=0Ordbf[Expand[com[x,y]]]
ComSim[x_,y_]:=Ordena[Plus@@ ((Table[soma[g2,soma[ql,
Expand[com[x[[i]],y]111],{1.Length[x]}1) /. {g2->q1})]
Comutador[x_,y_]:= Module[{aux},



aux=Table[soma[ql,soma[q2,soma[q3,Expand[com[x[[1]1],y[[j111]111],
{i,Length[x]},{j,Length[y]}]:

aux=Plus @@ Flatten[aux];

Ordenalaux]]
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Implementamos agora as regras para o calculo dos valores médios do banho:

NumberQ[vrx_1]":=True

vm[x_+y_] :=vm[x]+vm[y]

vm[ba[b[x_]1]Ibc[b[x_]1]1]:=0

vm[balb[x_]1] . bafb[y_1]11:=0

vm[be[b[x_11 . bc{b[y_1]1]:=0

vm[balafx_]1] . balafy_111:=0

vim[bclalx_]1] . bcfal[y_]]1:=0

vin{bc(b[x_11 . ba[b[y_]]1]:=vr[x] delta[x,y]

vim[bal[b[x_1] . bc[b{y_11]1:=(14+vr[x]) delita[x,vy]

vim[(x_bc|x_ba) . (y_bcly_ba) . (z_bc|z_ba)]
c=vm{x.y]*vm[z]+vm[x.z2]*vm[y]l+vm[y.z]*vm[x]

vm[(x_bc|x_ba) . (y_bcjy_ba) . (z_bc|z_ba) . (w_bc|w_ba)]
s=vm[x.y]*vm[z. wl+vm[x.z]*vm[y.w]+vm[x.w]*vm[y.z]

vm{ba[a[x_]]]:=0

vim[belalx_11]:=0

vimlbclalx_]] . balaly_]]]:=v[x] delta[x,y]

vm[bala[x_.1] . bcl[aly_]]]:= Expand[(1+v[x]) delta[x,y]]

vm{E" (y_)*(x_)] := Exp[y]*vm[x]

vm[emc[v_]*em[x_]*(y_)] := em[x]*emc[v]*vm[y]

vm[em[x_] y_]:=em[x] vm[y]

vm[emc[x_] y_J:=emc[x] vm[y]

Implementamos agora as regras para o calculo dos valores médios do sistema:

NumberQ[AA[q_]] " :=True;

NumberQ[AAcfq..]] " :=True;

bclaalg_1]:=bcl[alql]l-AAc[q]

balaalq_]]:=balalq]]-AA[q]
balaa[qgl.]].bc[aa[q2_]]:=bc[aa[qg2]].balaa[ql]]+deltalqgl,q2]
ba[a[ql_1].bc[a[g92_]]:=bc[d[q2]].ba[a[ql]]+deltalql,q2]
Trir] =1

Trir x— . y_ . z_ . w_]:=

Trir x.y1*Trr z.w]+Tr[r x.z]*Trlr y.w}+Trlr x.wl*Trlr y.z]
Trir xo . y— . z_1:=Tr[r x.y]*Tr[r z]4Trlr x.2]*Tr(r yl+Trir y.z1*Tr[r x]

Trir*balaalq_]1] = -AA[q]
Trirt((x_) + (y_))] = Trix*r] + Trly*r]
Trlr*balalq_]1]1 = O
Trix_ y_?NumberQ]:=y Tr[x]
Tri(x2) + (y2)] = Trix] + Trly]
Trlr bclaalgl_]].balaalg2_311 :=
Expand[v[gll*deltalql, g2] + AAc[ql]l AA[g2] (1l-deltalql, q2])]
Tribc{alg_11 r]:=0



512.

Tribc[afql_11-bala[q2_]] rl:=(v[ql]l-AAc[ql] AA[q2]) delta[ql,q2]
Trlbc[algl_1].bc[a[g2_]] r]l:=0
Trlr baldlgl_]].ba[a[g2_1]]:=0
vms [xx_] :=Module[{auxl, aux2,aux3},
auxl=Expand[xx/.{al[q_]-»aalql}];
aux2=Expand[Tr[Expand[r aux1]]]:
aux3=aux2/.Tr[x_]->0;
Expand[aux3/.{AA[q_]->-A[q],AAc[q_]->-At[q]}]]
spur[0]=0
spur[bcfa[q]]]=At[q]
spur[bala[q]l]l]=Alq]
spurx_+y_]:=spur[x]+spurly]
spurfexpr_.] := Module[{CoefNum, Operadores, Banho, Sistema, nb, ns},
CoefNum := Apply[Times, Cases[expr, (y_)7NumberQl]:
Operadores := DeleteCases[expr, (y_)?NumberQ];
nb = Count[Operadores, bal[b[x_]]|bc[b[x_1]1, Infinity];
If[nb==0,

Banho = 1,

Banho = vm[DeleteCases[Operadores, ba[a[x_]]|bc[alx_]1], Infinity]}]];
ns = Count[Operadores, balal[x_]]|bcla[x_]], Infinity];
If[ns==0,

Sistema=1,
Sistema := vms[DeleteCases[Operadores, ba[bIx_]] |
belblx_]], Infinity]l]l];
Expand[CoefNum*Sistema*Banho]]
IndMudo [x_+y_]:=IndMudo[x]+IndMudo[y]
IndMudo[n_7IntegerQ x_]:=n IndMudo[x]
IndMudo[x_1:=Module[{nl,n2,n3},
nl=Length[Position[x,ql,Infinity]];
n2=Length[Position[x,q2,Infinity]];
n3=Length[Position[x,q3,Infinity]];
If[nl==1,
If[n2>=1,x, If[n3>=1,x/.{g3->q2},x]],
If{n2>=1,If[n3>=1,x/.{q2->ql,q3->q92},x/.{q2->q1}],x/.{g3->q1}]1]1]

Agora, definimos fun¢des para realizar o calculo de integrais com partes reais e valores

principais e tamb¢ém funcdes que simplifiquem ao maximo os resultados obtidos do

calculo das integrais:

Integral[termo_]:=Module[{Integre, coef},
coef=DeleteCases[termo, x_Power,1];
IntegrelExp[i t x_1]:= Pi DiracDelta[x]-i PV[1/x];
Integre[Exp[-i t x_]1]:= Pi DiracDelta(x] + 1 PV[1/x];
Expand[coef Integre[Cases[termo,x_Power,11[[1]1]1]]1];
Integrall[termo_]:=Module[{Integre, coef},
coef=DeleteCases[termo, x_Power,1];
Integre{Exp[i t x_]]:= Pi DiracDelta[x];
Integre[Exp[-1 t x_]]:= Pi DiracDelta[x];



Expand[coef Integre[Cases[termo,x_Power,1][{1]]]1]];
Integral2[termo_] :=Module[{Integre, coef},
coef=DeleteCases[termo, x_Power,1];
Integre[Exp[i t x_13}:= -1 PV[1/x];
Integre[Exp[-i t x_]]1:= 1 PV[1/x];
Expand[coef Integre[Cases[termo,x_Power,1][[1]]1]11];
Simplifique[expr_]:=Module{{1,7,ind,t, k,fin},
ind=Union[Cases[expr,DiracDelta[x_],Infinity]];
t=Table[Position[expr,ind[[i]],Infinity],{i,Length[ind]}];
k=Table[t[[J]I[[i,1]1]1,{j,Length[t]},{i,Length[t[[i]1]1]1}]1;
fin=Table[expr[[k[[i]1]]],{i.Length[k]}];
Plus @@ Table[Simplify[ fin[[i]] 1,{i,Length[fin]}] ]
SimpPV{iexpr_] :=Module[{i,],ind,t, k,fin},
ind=Union[Cases[expr,PV[x_],Infinity]];
t=Table[Position[expr,ind{[i]],Infinity],{i,Length[ind]}];
k=Table[t[[j11{[4,1]1],{j,Length[t]},{i,Length[t[[j]1]]}];
fin=Table[expr[[k([1]]]]1,{i,Length{k]}];
Plus @@ Table[Simplify[ fin[[i]] 1,{i,Length[fin]}] ]
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Definimos agora os dezesseis termos da hamiltoniano que utilizamos:

H[1] = em[V[1][ql,q2]] kala([ql]] . ba[b[q21] . bc[b[ql + q21]
H[2] = em[V[2][ql,q2]] balalql]] . ba[b[q2]] . ba[b[-ql-g2]]
HE3] = em[V[3]1[ql,q92]] bc[algl+q2]] . ba[b[gll]l . ba[b[q2]]
H[4] = em[V[4]1[ql,q2]] ba[a[gl]] . bc[b[q2]] . ba[b[q2-ql1]]
H[5] = emc[V[1][ql,q2]] ba[b[ql + g2]] . be{b[q2]] . bc[a[ql]]
H[6] = emc[V[2][qgl,q21] bc[b[-ql-q2]1]1 . bc[b[q2]] . bcla[ql]]
H[7] = emc[V[3][ql,q2]] bc[b[q2]] . bc[b[ql]] . balalql+q2]]
H[8] = emc[V[4][ql,q2]] bc[a[ql]] . bc[b[g2-q1]] . balb[g2]]
H[9] = em[W[1][ql,q2]] balalq1l]] . bala[g2]] . bc[blal + g2]]
H[10] = em[W[2][ql,q2]] bclalql]] . bala[g2]1] . ba[b[ql-q2]]
H{11] = em[W[3]1[q1,q2]] bafa[ql]l] . ba[a[q2]] . ba[bf-ql-qg2]]
H[12] = em[W[4]1[ql,q92]] ba[algl]l] . bc[a[q2]] . bc[b[gl-q2]]
H[13] = emc[W[11[ql,q2]] balblql+q2]] . bclafg2]]. bc[a[ql]]
H[14] = emc[W[2]1[ql,92]] bc[b[gl-q2]1] . bc[a[g2]] . bafa[ql]]
H[15] = emc[W[3]1[ql,92]] bc[b[-gq1-q2]] . bc[alq2]] . bc[a[ql]]
H[16] = emc[W{4]1[ql,q2]] ba[a[g2]] . bc[a[ql]l] . ba[b[ql-q2]]

A dependéncia temporal dos varios coeficentes que aparecem nos comutadores:

tempo = {em[x_J-»em[x][t], emc[y_]-»emc[yl[t]}

tempos = { em[V[1][q,q]][t]->em[V[1][q,q]] Exp[-i(w[q]+Omegalq])t],

emc[V[1][q,q]]1(t]->emc[V[1][q,q]] Exp[i{wl[ql+Omegalq])t],

em[V[1] [ql_,q2_]][t]-»em[V[1][ql,q2]] *
Exp[-i(w[q1l+Omega[q2]-Omega[ql+q2])t],

em[V[2][gl_,q2_]]1[t]->em[V[2][ql,q2]] *
Exp[-i(w[gl]l+Omega[q2]+Omega[-ql-q2])t],

em[V[3][gl_,q2_]1[t}->em[V[3][ql,q2]] *
Exp[i(w[ql+q2]-Omega[ql]-Omegalq2])t],
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em[V[4][ql_,q2_11[t]->em[V[4][ql,q2]] *
Exp[-1(w[ql]-Omega[g2]+Omega[q2-ql])t],
emc[V[1][ql_,92_11[t]-»>emc[V[1][ql,q2]] *
Exp[i(w[ql]+Omega[q2] -Omega[gl+g2])t],
emc[V([2][q1l_,q92_]1]1[t]-»emc[V[2][ql,q2]] *
Exp[i(w[ql]+Omega(q2]+Omegal[-ql-g2])t],
emc[V[3][ql_,q2.]]1[t]->emc[V[3][ql,q2]] *
Exp[-1(w[ql+q2]-Omega[gl]-Omegaq2])t],
emc[V[41[ql_,q92_]][t]->emc[V[4][ql,q2]] *
Exp[1(w[gl]-Omega[qg2]+Omegalg2-ql])t],
em[W[11[g1l_,q2_]11{t]->em[W[1][ql,q2]] Exp[-1(w[ql]+w[q2]-Omegalql+q2])t],
em[W[2]1[gl_,q2_]]1[t]->emIW[2]1[q1,q2]] Exp[-1(-wlql]+w[q2]+Omegalql-q2]]t],
em[W[31[g1_,q2_]]1[t]->em{W[3][q1,q92]] Exp[-1(wlql]+w[q2]+Omegal-ql-q2])t],
em[W[4][q1_,q2_]][t]->em[W[4][a1,q2}] Exp[-i(w[ql]l-w[qg2]-Omega[ql-q2])t],
emc[W[1][ql_,q2_]][t]->emc[W[1][ql,q2]] Exp[i(wl[qll+w[q2]-Omega[ql+q2])t],
emc[W[2][q1_,q2_]][t]->emc[W[2][q1,q2]] Exp[i(-wlql]+w[q2]+Omegalql-q2])t],
emc[W[3][gl_,q2_1][t]->emc[W[3][ql,q2]] Exp[i(wl[qll+wl[g2]+Omegaf-ql-q2]1)t],
emc[W[4][ql_,q2_]1[t]->emc[W[4]1[ql,q2]] Exp[i(w[ql]l-wi{g2]-Omega[ql-g2]1)t]}

Agora, definimos mais algumas funcées e realizamos alguns calculos considerando
os elementos de matrizes constantes e levando em conta algumas propriedades das

deltas de Dirac:

he[x_+y_] :=hc[x]+hc[y]
hc[x. Dot[y_, z_]}:=Chc[x]Reverse[Dotly.z]]1)/.
{be[x1_]-»ba[x1],balyl_J-»bclyl]}

he[em[x_]]:=emc[x]

heleme[x_]] :=em[x]

helx_ y_]:=hc[x] hcly]

cc=DeleteCases[#, (x_em|x_emc), Infinity]&;

HSR = Plus @@ Array[H,16]

HSRT = Plus @@ Array[HT,16]

equalx_,y_]}:=IndMudo[somalqgl, soma[q2,spur[Comutador[x,y]]11]]

mal={bc[a[gl_]1]->bc[a[ql]llExp[i w[ql] t],
bafalg2_1]->bala[q2]1Exp[-1 w[q2] t],
bclblg3_1]->bc[b[q3]]Exp[i Omega[g3] t],
ba[blq4_]]->ba[b[q4]]Exp[-1 Omega[q4] t],
emc[X_[1_]lal_,q2_]1[t_]->emc[X[i][ql,q2]1],
em[Z_[j_1[a3_,q4_]1[t_.]->em[Z[j][a3,q41] }

zeitfx_]:=Module[{aux},

aux=x/.mal;
Simplify[aux]];
freq={w[q_1->w0-0 q"2, Omegalq_]->s Abs[ql};
coef = { emc[W[4](ql_, q2_11->Wic, em[W[f4][ql_, q2_]]1->W4,
emc[W[31[gl_, g2_]]1->W3c, em[W[3][ql_, g2_13->W3,
emc[W[2]1[g1l_, g2_]1->W2c, em[W[2][ql_, g2_]1]1-=W2,
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em[W[1][gl_, g2_]1]->W1, emc[W[11[ql., q2_1]-=Wic,
emc[V[1][gl_, 92_1]-»Vlc, em[V[1][agl_, q2_1]->V1,
emc[V[2]1[ql_, q2_]1]1->V2c, em[V[2][gql_, g2_]1]1-»V2,
emc{V[3]1[ql_, 92_]]->V3c, em{V[31{ql_, q2_]11->V3,
emc[V[4]{ql., q2_11-»Vi4c, em{V[4]{ql_, q2_]]->V4 }
hfl=em[V[1][ql,q1]] ba[b[ql]].bc[a[qll]:
hfl=hfl+hc[hfl];
hfz=em[V[2][ql,92]1]1 bcl[alql]}].bc[a[g2]].ba[b[ql+q2]];
hf2=hf2+hc[hf2];
hp = (h*w[ql])/2 + h*bc[a[gl]] . balafql]]*w[ql]
ha= (h*Omega[qll)/2 + h*Omega[ql]*bc[blql]] . balblqll]
NumberQ[w[x_]]" :=True
NumberQ[Omega[x_]]" :=True
NumberQ[h]  :=True;
x1=bal[a[ql]]+bc[a[-g1]]
x2=bafal[q2]]+bc[a[-q2]]
X1=bafb[g1]]+bc[b[-ql]]
X2=balb[g2]]J+bc[b[-q2]1]
X3=ba[b{g3]1+bc[b[-q3]]
cfl={Vlic-»V1,V2c->V1,V3c->V1,V2->V1,V3->V1l,V4-»V1,Vac->V],
Wlc->W1,W2c->W1,W3c->W1,W3-—>W1l, W2->W1,W4->W1l,Wdc-»W1}:
delta[q,0]=0
deltal[0,q]=0
PV[1/0Omega[0]]=0;
dpl={DiracDel ta[Omega[0]]->0,
DiracDelta[Omega[q-ql]+Omega[ql]+w{-gq]1]1->0,
DiracDelta[Omega[-q-ql]l+Omega[ql]l+wlql]-> O,
DiracDeltal[Omegalq-ql]l+w[-q]l+w[ql]]}->0,
DiracDelta[Omegal-q-ql]+w[ql+wlq1]]->0,
DiracDelta[Omegal-ql-q2]+w[gl]l+w[g2]]->0}
dp2={DiracDelta[Omega[0]]->0,
DiracDelta[Omega[g-ql]+Omega[ql)+w[-q]]->0,
DiracDelta[Omega[-g-ql]+Omega[ql]+w[q]]->0,
DiracDelta[Omega[g-gql]l+w[-q]+w[gl]]->0,
DiracDeltafOmega[-g-ql]+w[ql+w[ql]]->0,
DiracDelta[Omegal[-ql-q2)+wlgl]+w[g2]]->0};
dp3={DiracDeltalOmega[q-qll+Omega[gl]+w[-ql]->0,
DiracDeltal-Omega[0]+Omegal[-ql+w[ql]->0,
DiracDeltalOmega[0]+Omegal[-ql+w[q]]->0,
DiracDelta[Omegal-gq-ql]+Omegalgl]+w[q]]->0,
DiracDelta[Omegal[(-g-ql)/2]+Omegal (g-q1)/2]+wl[ql]]->0,
DiracDelta[Omegal(g-ql)/2]+Omega[-q/2-q1/2]+w[gl]]->0}

Cuidamos agora da formatacdo dos resultados obtidos, para que tenham uma apre-

sentacdo usual. Primeiro, a hamiltoniano, e entdo, outras funcoes:

| ! . -
Format[ (x1_ba|x1_bc). (x2_ba|x2_bc) (y_em|y_emc)]:=SequenceForm[y,x1.x2]
Format[(xl_ba|x1_bc).(x2_ba{x2_bc).(x3_ba|x3_bc)(y_em[t_]|y_emc[t_])]:=
SequenceForm[y[t],x1.x2.x3]
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Format[(x1_ba|x1_bc).(x2_ba|x2_bc)*(yl_em|yl_emc)(y2_em[t_]|y2_emc[t_])]:=

SequenceForm[y2[t],vy1l,x1.x2]
Format[(x1_balx1_bc).(x2_ba|x2_bc)*n_7?IntegerQ*
(yl_em|yl_emc) (y2_em[t_]|y2_emc[t_])]:=
SequencefForm[n y2[t],yl,x1.x2]
Format[(x1_ba|x1_bc).(x2_ba|x2_bc) (y_em|y_emc) (z_delta)];=
SequenceForm[y,x1.x2,z]
Format[(x1_ba|x1_bc).(x2_balx2_bc) (y_em|y_emc) n_?IntegerQ]:=
SequencefForm[n y,x1.x2]
Format[(x1_ba|x1_bc).(x2_baix2_bc) (y_em|y_emc) n_?IntegerQ z_delta]:=
SequenceForm[n y x1.x2,z]
Format[((x1_ba|x1_bc).(x2_ba|x2_bc).(x3_ba|x3_bhc)) (y_em|y_emc)];:=
SequencefForm(y, (x1.x2.x3)]
Format[((x1_ba|x1_bc).(x2_ba|x2_bc).(x3_ba|x3_bc))
(y_em|y_emc)z_?IntegerQ] :=SequenceForm[z y,x1.x2.x3]
Format[((x1_ba|x1_bc).(x2_ba|x2_bc).(x3_ba|x3_bc)) *
(Cyl_em|yl_emc)(y2_em|y2_emc))]:=SequenceForm[yl y2,x1.x2.x3]
Format[ ((x1_ba|x1_bc).(x2_ba|x2_bc).(x3_ba|x3_bc)) *
((yl_em[t_ ]|yl emc[t_])(y2_em|y2_emc))]:=SequenceForm[y1l[t],y2,x1.x2.x3]
Format[((x1_ba|x1l_bc).(x2_ba|x2_bc).(x3_ba|x3_bc)) =
(Cyl_em[t_]|yl_emc[t_])(y2_em|y2_emc)) z_7IntegerQ]:=
SequenceFormfz y1[t],y2,x1.x2.x3]
Format[((x1_ba|x1_bc).(x2_ba|x2_bc).(x3_ba|x3_bc).(x4_ba[x4_bc)) *
(yl_em|yl_emc)(y2_em|y2_emc)]:=SequenceForm[yl y2,x1.x2.x3.x4]
Format[ ((x1_ba|x1l_bc).(x2_ba}x2_bc).(x3_ba|x3_bc).(x4_bhalxd_bc))*
((yl_em|yl_emc)(y2_em|y2_emc)) z_7?IntegerQ]:=
SequenceForm[z y1 y2,x1.x2.x3.x4]
Format[((x1_ba|x1_bc).(x2_baix2_bc).(x3_ba|x3_bc).(x4_ba|x4_bc)) *
(yl_em[t_] |yl _emc[t_])(yZ2_em|y2_emc)]:=
SequenceForm[yl[t],y2,x1.x2.x3.x4]
Format [ ({x1_ba|x1_bc).(x2_ba|x2_bc).(x3_ba|x3_bc).(x4_ha|xd_bc))*
(Cyl_em[t_]1lyl_emc{t_])(y2_em|y2_emc)) z_?IntegerQ]:=
SequenceForm[z y1[t],y2,x1.x2.x3.x4]

Format[Power{E,x_]]:=SequenceForm["e", Superscript[x]]
Format[AA[q_]]:=SequenceForm["<a",Subscript[q],">"];
Format[AAc[q_]] :=SequenceForm["<a",Superscript["+"],Subscript[q],">"];
Format[balalq_]]]:=SequenceForm[4, Subscript[q]]
Format[bc[a[g_]]]:=SequenceForm[d, Superscript["+"],Subscriptq]l]
Format[vr[x_]]:=SequenceForm["v",Superscript["R"],Subscript[x]]
Format[v[x_]]:=SequenceForm["v",Subscript[x]]
Format[ba[a_[q_]]1]1:=5equenceForm[a,Subscript[q]];
Format[bc[a_[q_]]]:= SequenceForm[Sequence[a,Superscript["+"],
Subscript[q]ll]l;
Format[falc_[q.]]]:=5equenceForm[c,Subscriptql]:
Format[fcfc_[q_]]1]:= SequenceForm[Sequence[c,Superscript["+"],

Subscript[q]l]l]l;
Format[delta[ql_,q2_1]:=SequenceForm[Sequence["\[Delta]",
Subscriptfql,"”,".q92]1]1];

Format[(x_em|{x_emc) (y_em[t_]|y_emc[t_])]:=SequenceForm[y[t],x]
Format[delta[x_]]:=SequenceForm["\[Delta]",Subscript[x]]
Format[x_ . (y_ z_delta)]:=SequenceForm[x.y,z]
Format[A[x_]]:=Sequenceform["<a",Subscript[x],">"]

Format[At[x_]]:=SequenceForm["<a",Superscript["+"],Subscript[x],">"]
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Format[(x_+y_) DiracDeltal[z_+w_]]:=5equenceForm["(",x+y,")",DiracDeltalz+w]]

Format[Exp[x.] y_]:=SequenceForm[y, Exp[x]]

Format[em[V_[ui_1[141_,1i2_]]]):=Module[{inf, sup,result},
sup={superscript["("],Superscript[uil,Superscript["}"]1};
inf={Subscript{1il],Subscript[","],5ubscript[1i2]};
result=Join[sup,inf];

SequenceForm[V, Sequence @@ result]]
Format[emc[V_[ui_J[111_,11i2_]]]:=Module[{inf,sup,resultl},

sup={Superscript[" ("1, Superscript[ui], Superscript[")"],

Superscript["*"1}:
inf={Subscript[1i1],Subscript[","],5ubscript[1i2]};
resutt=Join[sup,inf];

SequenceForm[V,Sequence @@ result]]
Format[w[g_]]:=SequenceForm[w,Subscriptiql]
Format[Omega[qg_]]:=SequenceForm["Omega", Subscript[q]]
Format[DiracDelta[x_]] :=5equenceForm["\[Delta](",x," "]
Format[n_7?IntegerQ * x_ DiracDeltafy_]]:=5equenceform[n x,DiracDeltaly]]
Format[x_ DiracDeltafy_]]:=SequenceForm[x,DiracDelta[y]]

Format[x_ . y_]:=SequenceForm{x,y]

Format[n_?IntegerQ * Dot[x1_,x2_] (yl_emc|yl em)*(y2_em|y2_emc)]:=

SequenceForm[n yl y2,x1.x2]
Format[n_?IntegerQ * Dotixl_,x2_,x3_] (yl_emc|yl em)*(y2_em|y2_emc)]:=
SequenceForm[n yl1 y2,x1l.x2.x3]

Unprotect[Pi, Abs, Complex]

Format[Pi]l:= Pi

Format[Abs[x_]]:=SequenceForm["{",x,"{"]

Complex[0,1]=1

Protect[Pi, Abs, Complex]

Protect[Power,Dot, Times,NumberqQ];

sss[xx_]:=Collect[xx,{v[q],A[q],At[q],At[-q],A[ql].A[g2],At{ql] ,At[q2]}];

vvv[xx_]:=Cases[xx,PV[yy_].Infinity][[1]];

ddd[xx_] :=Cases[xx,DiracDeltalyy_],Infinity] [[1]];

fun={0Omegal[-q-ql]+Omegalqll-w[-ql, Omegal[ql]l-Omegal-q+qll+w[-q].
-Omega[ql]+Omegafgq+qll+w[-q], Omega[q-ql]+Omega[ql]-wfq],
-Omega[ql]+Omega[-q+ql]+w[q], Omega[ql]-Omega[g+gql]l+w[q],
Omega[-q-ql]l+w[g]-w[-ql], Omega[q+ql]-w[ql+w[-ql],
-Omega[q-ql]+wlgl+w[-gl], Omegal-q+ql]+w[ql+w[-ql],
Omega[q+qll+w[-al-w[ql], Omegal[-g+ql}+w[q]-w[al],
Omegal-g-ql]-w[-ql+w[ql], -Omegal[-q+qll+w[-ql+w[ql],
Omegalgq-ql]-wiql+w[gl]l, -Omega[g+qll+w[q]+w[ql],
Omegalql-q2]-wlqll+wl[qg2], -Omegalql+q2]+wlqll+wl[q2]1};

Em seguida, o codigo de finalizacdo do pacote:

End[]
EndPackage[]
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E.3 Notebook para os calculos

Com o pacote pronto, podemos agora realizar os diversos calculos necessarios me-
diante um notebook do Mathematica. Como tivemos problemas d¢ meméria com o
Mathematica devido a complexidade ¢ o tamanho dos calculos com a hamiltoniano
que usamos, subdividimos o calculo em varias etapas. Assim, criamos notebooks para
05 calculos pertinentes a cada uma das variaveis de base., Uma vez que cada notebook
¢ idéntico, com excecio da segunda linha, em que a variavel nq assume para cada note-
book o correspondente valor da variavel de base, damos apenas o codigo do notebook

para a variavel de base a,:

=
«\m\Operadores.m
ng=hala[q]]
hsa=coms[HSR,nq]l/.qgl->q3

h1=HSR[[1]]1+HSR[[9]]

ht=hl/.tempo

rl=Comutador[ht,hsa]
r2=IndMudo[somalqgl,somafqg2,spurfrlil]l];
ri=r2/.tempos

eqtem=-Integral /@ r3;
preall=eqtem/.PV[1/x_]-»0
pimal=eqtem/.DiracDelta[x_]-»0
prl=preall/.coef

pil=pimal/.coef

h2=HSR[[2]]1+HSR[[10]1]

ht=h2/.tempo

r1=Comutador[ht,hsa]
r2=IndMudo[somalql, soma[q2,spurfrl]]]];
r3i=rz/.tempos

eqtem=-Integral /@ r3;
preal2=eqtem/.PV[1/x_}->0
pima2=eqtem/.DiracDelta[x_]-»0
pr2=preal2/.coef

pi2=pima2/.coef

h3=HSR{[3]1+HSR[[11]]

ht=h3/. tempo

rl=Comutador[ht,hsa]
r2=IndMudo{soma[ql, soma[g2,spur{rl]]]];
r3=r2/.tempos



agtem=-Integral /@ r3;
preal3=eqtem/.PV[1/x_]->0
pima3=eqtem-preal3
pr3=preal3/.coef
pi3=pima3/.coef

h4=HSR[[4])]+HSR[[12]]

ht=h4/.tempo

rl=Comutador[ht,hsal
r2=IndMudo[soma[ql, somafq2,spurlr1]]]]:
ri=r2/.tempos

eqtem=-Integral /@ r3;
preal4=eqtem/.PV[1/x_]->0
pimad=eqtem/.DiracDelta[x_]->0
prd=preald4/.coef

pid4=pimad/.coef

h5=HSR[[5]]+HSR[[13]]

ht=h5/. tempo

rl=Comutador[ht,hsa]
r2=IndMudo[soma[ql,somalq2,spur[rl]]]];
r3=r2/.tempos

eqtem=-Integral /@ r3;
preal5=eqtem/.PV[1/x_]->0
pimaS=eqtem/.DiracDelta[x_]-=0
pr5=preal5/.coef

p15=pima5/.coef

he=HSR[[6] ]+HSR[[14]]

ht=h6/.tempo

rl=Comutador[ht,hsa]
r2=IndMudo[soma[ql,soma[g2,spur[r1]]]1];
ri=r2/.tempos

eqtem=-Integral /@ r3;
prealé=eqtem/.PV[1/x_]->0
pimaé=eqgtem/.DiracDelta[x_]->0
pré=prealé/, coef

pib=pima6/,coef

h7=HSR[[7]]+HSR[[15]]

ht=h7/.tempo

r1=Comutador[ht,hsa]
r2=IndMudo[somafql, soemalqg2,spur[rl]]]];
ri=rz/.tempos

eqtem=-Integral /@ r3;
preal7=eqtem/.PV[1/x_]->0
pima7=eqtem/.DiracDeltalx_]->0
pr7=preal7/.coef

pi7=pima?7/.coef

h8=HSR[[8]]+HSR[[16]]

ht=h8/.tempo
r2=IndMudo[somal[ql,somal[q2,spur[rl]]]];
ri=r2/.tempos

eqtem=-Integral /@ r3;

519.
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preal8=eqtem/.PV[1/x_]->0
pima8=eqtem/.DiracDeltalx_]->0
pr8=preal8/.coef
pi8=pimad/.coef

pre=Simplifique{(prl+pr2+pri+prd+pr5+pré+pr7+pr8)/.dpl]
pit=SimpPV[pil+pi2+pi3+pid+pi5+pi6+pi7+pi8]
pra=Collect[prt/.cfl, {A[ql.At[-a],Al[q1],A[q2],At[q1],At[g2]}]
vpa=CoTllect[prt/.cfl1, {A[q],At[-al,A[ql],A[q2]),At[ql],At[q2]}]




Colofon

Esta tese foi composta em TgX, utilizando-se o conjunto de macros KIEX2g. Os diver-
sos pacotes auxiliares utilizados foram: doublesp, tlenc, inputenc, mathematica,
graphics, babel, natbib, feynmp, fancyhdr, pstricks, afterpage, calc, path.

Os capitulos foram digitados no editor de textos Tse Pro 32, da SEMWARE, em um
computador Pentium utilizando o sistema operacional Windows NT e compilados com
o TgX de 32 bits da Y&Y. A versdo final em postscript foi criada usando-se o programa
dvipsone, também da Y&Y. Os graficos foram feitos nos programas Origin 5 ¢ Maple V,
gerados em postscript encapsulado (EPS), e incluidos diretamente no corpo do texto.
Detalhes adicionais necessarios nos graficos foram feitos com o programa Core| Draw.

A fonte do corpo principal do texto esta em Lucida Bright; a das equacdes,
em Lucida New Math; e a listagem dos programas no apéndice E, em Lucida

Typewriter. O texto de Schiller esta em Goudy Text Lombardi.



