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Abstract

We would like to explore the consequences of having no prior knowledge about the correct

model for dark energy that would allow us to interpret observations. The magnitude of

redshift-space distortions and weak gravitational lensing is determined by the metric on

which galaxies and light propagate. With precise enough observations it is then possible to

use this data to reconstruct the metric on our past lightcone, therefore anisotropic stress

and gravitational potentials can be measured in a model-independent way. We explore the

dark degeneracy, or the fact that dark matter and dark energy are indistinguishable, for

they affect the visible sector only through the gravitational potential they produce. This

degeneracy remains unless a dark energy model is provided: the bias between dark matter

and galaxies cannot be determined; and only when the Equivalence Principle is valid, one can

identify the velocities of dark matter with that of the galaxies. In spite of these limitations, it

is possible to construct tests for classes of dark energy models that are based on measurements

at different scales and redshifts and do not depend on parametrizations or initial conditions.

We demonstrate how one can rule out the most general class of scalar-tensor models without

having to assume quasi-staticity. Finally, we discuss how the dark degeneracy manifests itself

in a model-dependent analysis.
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Resumo

Gostaríamos de explorar as consequências da ausência de conhecimento prévio sobre o modelo

correto para energia escura que permita interpretar as observações cosmológicas. A magni-

tude das distorções no espaço de redshift e da lente gravitacional fraca é determinada pela

métrica na qual galáxias e luz se propagam. Mostramos que, com observações precisas o

suficiente, é possível utilizar estes dados para reconstruir a métrica no nosso cone de luz

passado e portanto, o stress-anisotrópico e os potenciais gravitacionais podem ser medidos

independentemente de modelo. Exploramos a degenerecência escura, ou o fato de que matéria

e energia escura são indistinguíveis pois afetam o setor visível apenas através dos potenciais

gravitacionais que produzem. Esta degenerecência permanece a menos que se suponha um

modelo para energia escura: o bias entre galáxias e perturbações de matéria escura não pode

ser determinado; e apenas quando o princípio da equivalência é assegurado, pode-se iden-

tificar a velocidade da matéria escura com a das galáxias. Mesmo com estas limitações, é

possível construir testes para classes de modelos de energia escura que se baseam em medidas

em diferentes escalas e redshifts e não dependem de parametrizações ou condições iniciais.

Demonstramos como se pode descartar a classe mais geral de modelos escalares-tensoriais

sem precisar supor a validade do regime quasi-estático. Finalmente, discutimos como a de-

generência escura se manifesta em uma análise dependente de modelo.
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Chapter 1

Introduction

1.1 The Dark Sector

According to the Friedmann-Lemaître cosmological model, the Universe is homogeneous,

isotropic and has its dynamics determined by the relation between its energy density and the

time-scaling of physical coordinates, a(t). A Universe composed by 95% of some invisible

dark material and 5% of baryons is in overwhelming good agreement with observations.

Moreover, the invisible sector seems to be divided into two very different components, i.e. a

pressureless non-baryonic matter, the cold dark matter (CDM), and a misterious dark energy

with negative pressure and no time evolution, the cosmological constant Λ. This scenario is

known as the ΛCDM model, the concordance model.

Recently analyzed data collected by Planck [1] have shown that our observations are very

well fitted by the ΛCDM model. It is important to emphasize that this agreement happens in

a model-dependent way. Basically, the testing strategy consists on evolving the six-parameter

ΛCDM model in a Boltzmann code, like CAMB [2] or CLASS [3] while fitting the data. But

if the dark components are not observable in the first place, which observational evidences

have been supporting such model?

Already in the 1920’s Slipher and Hubble have found that the observed wavelength of

absorption lines of distant galaxies is larger than the wavelength in the rest frame. In the

end of the same decade, Hubble have communicated that the stretching of these absorption

lines was an indication that the Universe is expanding. He arrived at this conclusion by

plotting the velocity v of the receding galaxies versus distance r in what latter was called

the Hubble law: v ≃ H0r [4]. In the Friedmann Universe, this was and indication that some

dark component with negative pressure were acting to drive such expansion. A cosmological

constant to be this dark component was not easy to accept, due to its big fine tuning and

coincidence problems and still until the 1980’s, cosmologists were trying to describe the

1



CHAPTER 1. INTRODUCTION 2

Universe’s dynamics with matter alone. Without a dark energy component, we would be

living in an Einstein-de Sitter Universe, described by the Friedmann equation1:

(

ȧ(t)

a(t)

)2

= H2
0

[

Ωm0a(t)−3
]

.

By that time, estimates of Ωm were made, for instance, by inferring the mass that would

drive the peculiar motion of galaxies in a certain region of the Universe. This can roughly

provide a mean value of mass per number of galaxies in this region. By extrapolating this

average to the total number of observed galaxies, the approximate value for the total mass in

the Universe can be obtained. The observed value of the peculiar velocities was sensibly low,

being an indication for one out of two possibilities (when general relativity is assumed): that

the mass density is low, so its agglomeration generates a small gravitational effect, or the

mass density is high and mass is more homogeneously distributed than galaxies. The second

option was soon disregarded, because this would imply that most of the mass would be in the

voids between galaxies, leading to formation of irregular galaxies inside the voids, what is not

observed. The conclusion, therefore, was that the mass density in the Universe would have

to be lower than unity, and consequently, the Einstein-de Sitter model, exclusively composed

by matter, was ruled out [5]. Up to today, many other observations have been accumulated

as strong indication of dark components, let us briefly review some of them:

Nucleosynthesis

The value of the baryon density today can be measured by comparing the nucleon mass

density to the value of the critical density, where the critical density depends on the present

value of the Hubble parameter (the local value of the expansion rate). The current limit to

this parameter is

ΩBh
2 = η10/273.9 = 0.0229 ± 0.0012

where η10 = 6.27 ± 0.34 is the baryon to photon ratio and h = H0km. s
−1Mpc−1[6]. Clearly,

the very small value of ΩB calls for the presence of non-baryonic constituents.

1Let us neglect radiation, since it has such a small contribution at the eras of interest to us: the matter
dominated and the dark energy dominated epochs. We will also neglect curvature, since observations indicate
that it should be very close to zero.
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Rotation curves of galaxies:

The velocities of galaxies flattens out with larger radii, in disagreement with the expected

Keplerian fall-off with V ∝ 1/r given the observed luminous matter. A possible interpretation

for this result is that the baryonic part of the galaxy lives in a halo of dark matter with a

density profile that falls of as 1/r2 [7, 8].

Clustering of galaxies

As we have mentioned, estimates of the mass that source the gravitational potential driving

the motion of galaxies can provide a mean value of mass per number of galaxies in this region.

This can be extrapolated to the total number of observed galaxies, giving an approximate

value for the total matter energy density in the Universe Ωm, that is found to be around 0.3

[9] . The effect of the deeper potential wells caused by the presence of dark matter on halos

can also be probed through X-ray temperature of gas and by weak gravitational lensing of

the gravitational potentials [8].

Weak gravitational lensing

The bending of light by a massive object is a prediction of general relativity that gracefully

passed the Solar-System tests. The gravitational effect of large-scale structure in our Universe

can be tested for by making statistics of the deformation of galaxies’ shapes, the so called

weak lensing effect. The lensing of galaxies and clusters of galaxies have been a strong

indication of non-luminous matter in our Universe. At the end of the 1990’s, the analysis

of [10] using the frequency of double images of quasars have indicated the presence of dark

matter, where the 95% c.l. limits of the total matter energy density were Ωm > 0.38. More

recent analyses often combine different observables, like the galaxy-galaxy lensing + galaxy

clustering, carried out by [11] in 2012 with the seventh data release from the Sloan Digital

Sky Survey (SDSS) gives Ωm = 0.257+0.038
−0.034 for a ΛCDM fiducial model.

Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is a picture of the Universe when it was only ∼
350.000 years old. Due to the high temperatures at this epoch, photons, baryons and electrons

were tightly coupled through Coulomb and Compton interactions. As expansion causes the

Universe to cool down to approximately 1 eV , the photons are released to freely move through

space. The Cosmic Microwave Background is important to confirm the averaged homogeneity

of the Universe, because it is described by a black body spectrum to 1 part in 105. Nonetheless,



CHAPTER 1. INTRODUCTION 4

the most important features of the CMB are its anisotropies, they reveal characteristics of

the perturbed Universe and connect many physical parameters through one single observable

[4].

In fact, the most striking agreement of the ΛCDM model with observations comes from

the Planck mission, launched in 2009, from which maps and data analyses were released in

early 2013. The Planck mission has measured with high precision the Cosmic Microwave

Background temperature and its anisotropies and combined this with the lensing-potential

power spectra. By fitting observations with the six-parameter ΛCDM model, the data anal-

ysis favors a scenario where the energy densities of baryons and cold dark matter are esti-

mated (at 68% confidence level) to beΩch
2 = 0.1199 ± 0.0027 and Ωbh

2 = 0.022050 ± 0.0028

(H0 = 100h kms−1Mpc−1), respectively, and a seemingly low value (in comparison to other

probes) of the Hubble constant, H0 = 67.3 ± 1.2, with a total matter density parameter,

Ωm = 0.315 ± 0.017 [1].

Structure Formation

Gravitational instability has created density perturbations that have collapsed forming the

galaxies and clusters that we see today. In order to have the observed structures, pertur-

bations must have gone non-linear before the present epoch. The electromagnetic pressure

of baryons delays the structure formation, therefore the observational scenario favors a Uni-

verse dominated by a pressureless dark matter. This is evident through, e.g. the matter

the power spectrum (whose normalization depends on the measured value of H0), i.e. the

turnover of the power spectrum depends on the total matter energy density, therefore also on

the energy density of dark energy. The matter power spectrum also presents wiggles around

k ≃ 0.1hMpc−1, from the baryon acoustic oscillations, that depend on the fraction Ωb/Ωm

[12].

Supernovae

A Supernova type Ia (SNIa) explodes when a white dwarf in a binary system exceeds the

Chandrasekhar limit, giving rise to a very luminous event. The absolute magnitude of the

luminosity can be correlated with the width of the light curve. Thus, by observing the

apparent magnitude and the light curve simultaneously, one can infer the absolute magnitude,

that is, in plinciple, a known value at the peak of brightness. Assuming that this is so for every

SNIa, making them standard candles, one can further infer the luminosity distance through

the relation between the apparent and the absolute magnitudes. With this assumption, type

Ia Supernovae have provided evidence that the Universe is expanding with an acceleration,
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making the case for a dark energy component [4, 13].

Let us call the attention for the fact that all measurements of Ωm have to be normalized.

This can be easily seen in the Friedmann equation, where we can define the critical density

as ρcr ≡ H−2
0 , being therefore determined by local measurements of the expansion. We also

want to remark that, in spite of SNIa constituting evidence for the acceleration, there is still

space for something different than a cosmological constant, because one can always reproduce

the expansion history by exploring the degeneracy between the dark energy equation of state

and the matter energy density, as will be argued in part II.

1.2 Current picture of the dark side

Dark Issues

As it is well known, one of the ingredients of the standard model, the cosmological constant,

suffers from two problems, the fine tuning and the coincidence problem. A natural candidate

for a cosmological constant is the vacuum energy of particles and, in fact, there is no way

to distinguish both components. In order to explain the accelerated expansion, the vacuum

energy density should be of order E(obs)
vac ≃ (10−3eV )4. On the theoretical side, the value for

this energy density comes from the contribution from the zero-point quantum-mechanical

vacuum fluctuations of each particle in the standard model, being of the order of E(theo)
vac ≃

(1027eV )42, 120 orders of magnitude larger than the observed value. It is interesting to

remark that energy density has units of [energy]4, by expressing this value in terms of a

mass scale ρvac = M4
vac, the discrepancy is of 30 order of magnitude in energy scale. It is

possible to attenuate the fine tuning problem in supersymmetric (SUSY) scenarios where

supersymmetry is spontaneously broken at a low scale, and the vacuum energy is then set by

the scale at which SUSY is broken. If supersymmetry is preserved until the weak scale, then

Mvac ≈ MSUSY ≈ 103GeV = 1012eV , only 15 orders of magnitude above the observed, but

a large discrepancy remains [13, 14]. The second problem with the cosmological constant is

that its energy density and that of matter are of the same order of magnitude today, although

they scale differently in time. From the anthropic point of view, one could argue that such

coincidence is not a problem, i.e. that the energy density of dark energy is the highest value

that still allows for structure formation, therefore life itself [4].

Let us not forget that dark matter also presents a coincidence problem, i.e. the energy

density of dark matter and baryons are too, of the same order of magnitude, although, in

2With a cutoff at the Planck scale, introduced because the contribution from the high frequency modes
is divergent.
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principle, they are produced in very different fashions. Baryons are produced by an out

of equilibrium, non-thermal process and dark matter candidates are, in general, supposed

to be thermally produced, i.e. the right abundance of dark matter can be obtained via

thermal production in weak interactions. Other difficulties to conciliate the cold dark matter

scenario with observations are the missing satellites and the cuspy core problems [8]. As we

will discuss in more details in chapter 8, this has motivated the appearance of warmer dark

matter candidates in the picture.

Direct detection

The dark components make up most of the energy density of the Universe, and yet they have

been inferred only by their gravitational interaction on very large scales: the Hubble horizon

(both dark matter and dark energy) and the galaxy size (dark matter only). Any prospect

of direct detection of the dark components would remove them from the darkness.

If dark matter is directly detected, it could be brought to the same status as baryons,

where the abundance and, therefore the energy density,s could be predicted. At the moment,

the most promising dark matter candidate is a Weakly Interacting Massive Particle, or wimp.

Extensions of the particles standard model, like supersymmetric theories, are able to predict

plausible candidates for wimps. The combined constraints from the underground laboratories

CDMS (Cryogenic dark matter Search) and EDELWEISS for a wimp with mass of 90GeV

exclude a cross section of 3.3×10−44cm2 at 90% C.L. For larger masses, above 700GeV , there

is some improvement in the limits by a factor of 1.6 [15]. Non-wimp dark matter candidates

are, e.g. gravitinos, axions, superwimpS and sterile neutrino, for more on this, we point to

[16] and the review [17].

The landscape of dark energy detection through non-gravitational interactions is still not

very large. If not protected by some symmetry, a dark energy particle should be coupled to

all other forms of matter by quantum corrections [18], potentially leading to violations of the

Equivalence Principle, fifth forces and variations of coupling constants, like the fine structure

constant α. Such fifth-forces and time variation of α could be used to detect a dynamical

dark energy field [14, 19]. In the CMB, for example, a different value of α can shift the

position of the first acoustic peak, that is inversely proportional to the sound horizon at last

scattering. If α increases, so increases the value of the redshift of last scattering, generating

a bigger early Integrated Sachs-Wolfe effect. As a consequence, the first acoustic peak will

also present a higher amplitude [4]. In the Planck analysis, the limits on the time-variation

of α from the redshift of z ∼ 103 to today, is constrained to be less the 0.4% [1], and spatial

variations of α seem to be excluded [20].

Additionally, if dark energy is a dynamical scalar field, its mass is constrained to be of
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order of the Hubble scale mφ ∼ H0 ∼ 10−33eV 3. With such small mass, this scalar field

would mediate a long range force with standard model particles. However, local gravity

experiments designed to test the Equivalence Principle constrain this fifth-force to be small

[21]. Notwithstanding, a recent dark energy candidate, the Chameleon scalar field [22], has

the property that its mass can change according to the medium. In particular, it presents

a larger mass in larger density environments. This type of scalar field is therefore able to

evade local fifth-force constrains. Results from the GammeV Chameleon Afterglow Search

constrain the (dimensionless) coupling of Chameleons to photons to be smaller than 5 orders

of magnitude. The coupling to matter is also excluded between 4 to 12 orders of magnitude

[23].

1.3 Observational prospects and Motivations

After decades of observations and data analysis, the continuous confirmation of the ΛCDM

model, in particular for favoring the existence of exotic components, is overwhelming, if

not disturbing. Independently of the underlying reality that observations are able or not

to reveal, such unexpected picture is an indication that our research is mostly guided by

data, not prejudice. This emphasizes the importance of how do we interpret observations;

the importance of having good quality data, with range and precision; and, finally, the

importance of developing strategies to constrain theories from observations.

The cosmological constant problem is probably the main issue that has driven researchers

to look for other models to describe the dynamics of the Universe. Alternative proposals for

dark energy or modifications of gravity, however, are more than just attempts to fix specific

disagreements, for they potentially explore a larger theoretical space, therefore demanding

a richer data space in order to distinguish between theories. When something other than

a simple cosmological constant is considered, new features are potentially introduced. Such

novel aspects might be not properly accounted by a standard analysis.

At the moment, satellite surveys and telescopes, like the Sloan Digital Sky Survey (SDSS)

[24], dark energy Survey (DES) [25], Panoramic Survey Telescope & Rapid Response System

(Pan-Starrs) [26] are collecting data on our Universe to be released within a few years. They

3This is a consequence of the equation of motion for the scalar field of mass m in an expanding Universe.

φ̈ + 3Hφ̇ + m2φ + ... = 0

If the field’s mass is much smaller than the Hubble parameter, the friction term dominates the dynamics
and would not produce a significant change in the fine structure constant. On the other hand, for a mass
much larger than H, the field would start to oscillate early in the history of the Universe, slowly rolling to
the potential minimum.
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present an improvement on sensitivity, sky-coverage, cosmological scale, redshift and preci-

sion. Within less than a decade, the European Space Agency (ESA) will launch the Euclid

satellite [27], which is the successor of WMAP (NASA) and Planck Survey (ESA/NASA)

satellites in the sense that it is being built to address the dark sector of the Universe. Euclid

will measure the shapes of over a billion of galaxies and accurate spectra of tens of millions of

galaxies out to redshift z = 2 and it has been designed to have precision to break degeneracies

and distinguish between important dark energy models [28].

With such promising prospects, we have the opportunity to improve the scientific return

of such missions. In this work we explore an alternative approach to test for models: First, we

identify which quantities are observable without assuming a dark energy model. Afterwords,

we apply null-tests to data by using measurements of the identified observables scale by scale,

redshift by redshift, not requiring parametrizations or initial conditions. This differs from the

common approach, that is basically to evolve parametrized quantities in a Boltzmann code

while fitting the data. We also discuss the dark degeneracy problem, or the fact that, so far,

as both dark matter and dark energy have been detected only through their gravitational

effect, one can only constrain the combined dark fluid, not each component separately.

This thesis expands and details some of the results and arguments presented in references

[29, 30, 31] and it is organized as follows:

In chapter 2, we illustrate the change introduced by dark energy by presenting the Einstein

equations of a general dark energy fluid characterized by its energy density, pressure, heat

flow and anisotropic stress. In chapter 3, we present a minimal set of assumptions that are

required to interpret cosmological observations and; in chapter 4, based on these assumptions,

we determine which observable quantities can be extracted from observations at background

(section 4.1) and linear perturbation level (section 4.2). Untill this point, no novel result

has been presented, but we would like to emphasizer the different persective that we take,

by identifying potentially observable quantities without attempting to connect observations

with the dark matter perturbations, which are unknown. So in section 4.4, we recover the

standard approach to observations and the observables we have identified with dark matter

perturbations. Our original contribution starts in chapter 5, where we develop consistency

relations between observable quantities. We show how the consistency relations can be used

as null-tests of different models in chapter 6. Particularly, we demonstrate how anisotropic

stress offers an extra handle to fully constrain all scalar-tensor models which exhibit such

feature. We also argue that if anisotropic stress is not observed, a consistency check can be

used as a model-dependent null-test of a specific theory, as we work out for k-essence (section

6.1). In chapter II we make and interlude and discuss the dark degeneracy, expressed as the

unobservability of the dark matter properties and as a degeneracy between parameters in a
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model-dependent analysis. In chapter 7, we present our conversion model of cold dark matter

into dark radiation that exhibits this parameter degeneracy. Finally, in chapter 8 we discuss

our results.

Notation and symbols

We use overdots and primes respectively as derivatives with respect to time and the logarithm

of the scale parameter (N ≡ ln a); and units such that c = 8πG = 1. For the sake of simplicity,

we will work in Fourier space. In part I, we will consider the wavenumber k to be the physical

wavenumber k ≡ kphys/aH, expressed in units of the cosmological horizon, therefore it is a

time-dependent quantity, whereas in part II, k is just the “normal” wavenumber.



Part I

Dark energy
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Chapter 2

Dark energy Perturbations

Dark energy refers generally to what causes the Universe’s expansion to accelerate, not

restricted to be a cosmological constant. As one considers a general dark energy in the

cosmic scenario, many assumptions behind the concordance model can be relaxed. In the

ΛCDM model, the only component capable of clustering is dark matter1, and dark energy

is a smooth, static quantity. In a general scenario, the background evolution can differ,

(as we will discuss in part II ), however one can always reproduce the expansion history

by tuning the equation of state. Actually, many dark energy models are built to agree on

the background level. Therefore, the most important change happens on the perturbative

level, because dark energy can potentially cluster, changing completely the analysis of the

perturbed theory. Besides, since the background is not enough to distinguish between models,

we need to evaluate their signature on structure formation.

In order to illustrate that, we will review the perturbed equations of motion in a Universe

filled with dark matter only and then present the same equations for a general fluid. Through-

out this thesis, we will consider a Universe that is, in average, homogeneous and isotropic and

has small (linear) perturbations, described by the Friedmann-Lemaître-Robertson-Walker

metric (FLRW, from now on):

ds2 = −(1 + 2Ψ)dt2 + a2(t)(1 + 2Φ)dx
2 . (2.0.1)

We chose to work in the gauge-invariant newtonian gauge. The scalar metric potentials

Φ and Ψ are therefore, potentially observables. The choice of gauge implies we are treating

only scalar perturbations. Since only the scalar modes couple to matter and we are interested

in extracting the observables from structure formation, the gauge choice is justified.

1Here we don’t distinguish between dark matter and baryons. Galaxies for us are shiny objects that trace
perturbations, whose shapes and number density can be used to test for relativistic effects.

11
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2.1 Dark matter perturbations

As it is well known, dark matter can be described by a pressureless perfect fluid, with Energy-

Momentum Tensor (EMT) given by:

T (m)
µν = ρ uµuν , (2.1.1)

where ρ is the matter energy density. The perturbed form of the EMT is then given by

δT (m)
µν = ρ (uµδuν + δuµuν) + δρ uµuν . (2.1.2)

From now on, δ stands for the perturbation of the quantities in question, and the four-

velocity is defined, up to first order, as

uµ ≡
[

1

a
(1 − Ψ),

vi

a

]

, (2.1.3)

uµ = gµνu
ν =

[

−a(1 + Ψ), avi
]

. (2.1.4)

The perturbed Einstein equations in a scenario where only dark matter has perturbations

are given by:

• Poisson Equation (Hamiltonian constraint):

δG00=δT00

2
k2Φ

a2
+ 6HΦ̇ − 6H2Ψ = δρm , (2.1.5)

• Momentum Constraint:

δG0i = δT0i

2
k2

a2

(

Φ̇ −HΨ
)

= −ρmθ, (2.1.6)

where we used the definition of the divergence of the velocity

θ ≡ ikiδu
i = ∇iv

i. (2.1.7)

• Anisotropy Constraint (Traceless part of Einstein equations):

δGi
j − 1/3δi

jδG
k
k = δT i

j − 1/3δi
jδT

k
k

Φ + Ψ = 0 . (2.1.8)

The Covariant conservation of the EMT leads to



CHAPTER 2. DARK ENERGY PERTURBATIONS 13

• Energy conservation:

∇µGµ0 = ∇µTµ0

δ̇ρ+ 3Hδρ+ ρ
(

θ + 3Φ̇
)

= 0 , (2.1.9)

and

• Momentum conservation:

∇µGµi = ∇µTµi

θ̇ + 2Hθ − k2

a2
Ψ = 0. (2.1.10)

In order to find the evolution for dark matter perturbations δm = δρ

ρ
, one can simply

divide equation Eq(2.1.9) by ρ, solve it for Θ and substitute in Eq(2.1.10), resulting

δ̈m + 2H ˙δm = −k2

a2
Ψ + 3

(

Φ̈ + 2HΦ̇
)

. (2.1.11)

As we will see, to find the evolution equation for dark energy perturbations turns out to

not be so simple.

2.2 Dark energy perturbations

We now present the linearly perturbed Einstein equations for a general single fluid minimally

coupled to gravity in addition to the dark matter fluid. By considering minimal coupling, we

assure covariant conservation of the fluid’s energy momentum tensor. The energy momen-

tum tensor of the fluid is described by its energy density E , pressure P , energy flow q and

anisotropic stress 2π:

T (x)
µν = (E + P)uµuν + gµνP + qµuν + qνuµ + τµν , (2.2.1)

The Einstein equations for this fluid are:

• Poisson Equation (Hamiltonian Constraint):

δG00=δT00

2
k2Φ

a2
+ 6HΦ̇ − 6H2Ψ = δE + δρm , (2.2.2)

• Momentum Constrain:

δG0i = δT0i

2We follow the notation used in [32]
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2
k2

a2

(

Φ̇ −HΨ
)

= −(ρm + E + P)θ +
k2δq

a2
− q̇θ, (2.2.3)

• Anisotropy Constrain (Traceless part of Einstein equations):

δGi
j − 1/3δi

jδG
k
k = δT i

j − 1/3δi
jδT

k
k

Φ + Ψ = δπ . (2.2.4)

The Covariant conservation of the EMT leads to

• Energy conservation:

∇µGµ0 = ∇µTµ0

˙δE + 3H (δE + δP) + (E + P)
(

θ + 3Φ̇
)

− k2δq

a2
+ q̇θ = 0 , (2.2.5)

and

• Momentum conservation:

∇µGµi = ∇µTµi

(E + P)

(

θ̇ + 2Hθ − k2

a2
Ψ

)

− k2

a2
δP + ΘṖ− (2.2.6)

3H

(

k2

a2
δq − q̇θ

)

− 1

a2

(

k2δq − a2q̇θ
)· − 2

3

k4

a4
δπ = 0. (2.2.7)

In order to evaluate the impact of dark energy perturbations on strucure formation, we

should obtain the evolution equation for dark energy perturbations δx = δE

E
. Notice however,

that this is not straightforward as in the dark matter case, because we have, besides δE and

Θ, pressure perturbations δP , heat flux, q and anisotropic stress δπ, that are not known a

priori.

In order to obtain the evolution of dark energy perturbations, we should furnish closure

relations between δE , δP and δπ. For an adiabatic perfect fluid, where q and π vanish, the

closure relation is given by the sound speed:

δP ≡ c2
sδE . (2.2.8)

From observations, we can not say which kind of fluid describes dark energy, so we can

not furnish such closure relations. What one could try is to develop a parametrization that

implies a closure relation and test for values of these parameters 3.

3This is what is done for ΛCDM, where all the parameters for the DE perturbations are set to zero.
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What we would like to point out here, by using the more intuitive fluid formalism, is just

the complexity that it is introduced by dark energy, and how it changes completely our point

of view on perturbations. We summarize the equations of motion in table 2.1.

It is interesting to notice that, in the literature of many dark energy models, the dynamics

of these perturbations are often neglected. As acknowledged by Kunz and Sapone in [33],

the main effect of dark energy can be the change of the background, expressed through

the evolution of H(z), however, the gravitational potential Ψ will also present a different

evolution once dark energy perturbations are included. Normally, dark energy perturbations

are assumed to be unimportant, and this can be a good assumption for a scalar field dark

energy, because the high sound speed in this case prevents clustering on basically all scales.

Nonetheless, if the sound speed is small, what is not excluded by observations (even negative

values), the growth of dark energy perturbations can be significant.

The equations that govern the growth of both dark components are two coupled dif-

ferential equations. The evolution equation for each component is connected through the

gravitational potential. Therefore, in order to fully characterize the growth of dark mat-

ter perturbations, one should actually take the evolution of DE perturbations into account.

What is usually done is to completely neglect the effect of dark energy perturbations in the

potentials that source the growth of dark matter perturbations.
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Table 2.1: Comparing the linear perturbation equations for dark matter and dark matter + dark energy

fluid.

Einstein Equation Poisson

CDM 2k2Φ
a2 + 6HΦ̇ − 6H2Ψ=δρm

+ dark energy 2k2Φ
a2 + 6HΦ̇ − 6H2Ψ = δE + δρm

Hamiltonian

CDM 2k2

a2

(

Φ̇ −HΨ
)

= −ρmθ

+ dark energy 2k2

a2

(

Φ̇ −HΨ
)

=−(ρm + E + P)θ + k2δq

a2 − q̇θ

Anisotropy

CDM Φ + Ψ =0

+ dark energy Φ + Ψ =δπ

Energy Conservation

CDM δ̇ρ+ 3Hδρ+ ρ
(

θ + 3Φ̇
)

= 0

+ dark energy ˙δE + 3H (δE + δP) + (E + P)
(

θ + 3Φ̇
)

− k2δq

a2 + q̇θ = 0

Momentum Conservation

CDM θ̇ + 2Hθ − k2

a2 Ψ = 0

+dark energy
(E + P)

(

θ̇ + 2Hθ − k2

a2 Ψ
)

− k2

a2 δP + ΘṖ−
3H

(

k2

a2 δq − q̇θ
)

− 1
a2 (k2δq − a2q̇θ)

· − 2
3

k4

a4 δπ = 0



Chapter 3

Assumptions

In order to interpret at all the observations, it is necessary to make some assumptions about

the Universe’s energy content and geometry. As it should be expected, the level of assump-

tions determines the observability of some of its properties, or configurations. We would like

to refrain from any assumptions that would directly involve a dark energy model. Although,

at some level, even the very simple assumption that the Equivalence Principle holds some-

what constrains the possible classes of dark energy models, as we discuss further in more

detail.

In order to develop our analysis we base on only, fairly mild, five assumptions:

1. The geometry of the Universe is well described by scalar linear perturbations in a

Friedmann-Lemaître-Robertson-Walker metric with scale factor a(t), Eq(2.0.1).

2. We will not consider possible observations of rotational perturbation modes nor of grav-

itational waves, as these are irrelevant for structure formation in late-time cosmology.

We mostly neglect spatial curvature, but since it is observable, its existence would not

change our main results. The parameter Ωk0 would enter some of the equations, but

given how small it is seems to be, it would not affect them in any significant way.

3. The matter content is pressureless. We do not differentiate between dark matter and

baryons. We neglect the radiation component because all the observations are assumed

to be performed well after decoupling.

4. We assume that the Equivalence Principle holds and therefore that both dark matter

and galaxies follow geodesics of the same metric. This allows us to assume that there

is no velocity bias between both components.

5. The galaxy distribution is related to the matter distribution through a potentially time-

17
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and scale-dependent linear bias, δgal = b(k, a)δm. We make no assumption about any

particular form of the bias function.

6. The late-time Universe is effectively described by the action

S =

ˆ

d4x
√−g

(

1
2
R + Lx + Lm

)

, (3.0.1)

(setting 8πGN = 1) which includes the Einstein-Hilbert term for the metric gµν and

the Lagrangian Lm describing pressureless matter fluids, both baryons and dark matter.

Any other terms are ascribed to the DE Lagrangian Lx, which is some consistent theory1

potentially depending on extra degrees of freedom or gµν (i.e. modifications of gravity).

In non-minimally coupled models, the Lagrangian Lm depends on a different metric,

related to gµν through some transformation. Here we assume, however, that we have

already reformulated the action so that matter moves on the geodesics of gµν .

We completely ignore the practical problems and limitations of the observations and assume

that good-enough statistics with sufficiently small systematic errors can be achieved in the

range of redshifts and scales discussed here for, e.g. supernova luminosities, the distribution

of galaxies, baryon acoustic oscillation measurements and weak lensing shear. By exploring

this idealized case we try to discover the fundamental limits to which observations in a dark

energy cosmology are subject.

1A consistent theory is here understood to be a theory free of ghost and other catastrophic instabilities
that can in general occur in generalized gravity and dark energy models.



Chapter 4

What can be observed

4.1 Background Observables

From assumptions 1-3, by varying the action Eq.(3.0.1) with respect to the metric, we obtain,

at zeroth order, a Friedmann equation that can be written as

H2 −H2
0 Ωk0a

−2 =
1

3
(ρx + ρm) , (4.1.1)

where H≡ ȧ
a

is the Hubble parameter and H0, its present value; Ωk0 the present curvature

density parameter and ρm is the matter energy density. From assumption 2, ρm evolves as

a−3, and ρx is the energy density of the terms coming from Lx.

Observations of the cosmic expansion assume the existence of standard candles, rods

or clocks, which are supposedly known phenomena, in order to make estimations of the

luminosity distance DL(z) of objects. By using assumption 1, i.e. that gravity is a metric

theory, whose background is FLRW, one can relate the luminosity distance with the energy

content of the Universe:

DL(z) = (1 + z)χ(z), (4.1.2)

where χ(z) is the comoving distance defined as

χ(z) ≡ 1

H0

ˆ z

0

dz′

E(z)
, (4.1.3)

for a flat Universe, where we also define the dimensionless Hubble function

E(z) ≡ H(z)/H0. (4.1.4)

19
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The Hubble parameter H(z) can be measured up to a multiplicative constant related

to the unknown absolute value of some property of the source, like the total luminosity, or

proper length. Let us describe how this information ca be extracted in two important probes,

the Supernovae Ia and the acoustic oscillations in the baryon-photon fluid.

Type Ia Supernovae

Luminosity distances from Supernovae are inferred through the observed luminosity L0 of

an object with intrinsic luminosity L, where this intrinsic value is supposed to be a known

quantity. From the definition of the flux

F ≡ L

4πDL(z)2
=

L0

4πχ(z)2
, (4.1.5)

one can relate the intrinsic and the observed luminosities. And by expanding the comoving

distance (4.1.3) up to small redshift values, one gets χ(z) ≃ z
H0

. So we can write the

luminosity distance as

DL(z) ≃ z/H0.

.

Thus, the flux of type Ia Supernovae is known up to the constant LH2
0 and only ratios of

fluxes at different redshifts are independent of the absolute normalization [4].

Baryon acoustic oscillations

Another important probe of smooth quantities comes from the baryon acoustic oscillations

(BAO). Baryons, electrons and photons were coupled through Coulomb and Compton in-

teraction as a single fluid until recombination. Radiation pressure resists the gravitational

compression into the potential wells, causing the baryon-photon fluid to oscillate. During

the recombination, the Compton scattering rate between electrons and photons lows down

releasing the baryons from the photons drag, this happens at redshift of ∼ 1020, and it is

called drag epoch. We want to call the attention for the fact that the decoupling between

baryons and photons is different from the decoupling between photons and electrons that

happens latter on releasing the CMB photons at redshift ∼ 1100. The fact that we can

predict the ratio of baryons to photons density makes the oscillations on the baryon-photon

fluid prior to decoupling an additional standard ruler. That’s because the peaks and troughs

patterns in the fluid leave a mark on the matter power spectrum. The positions of these

peaks and troughs depend on the sound horizon, and the sound horizon is determined by the

ratio of baryon to photon [4, 34, 35].





CHAPTER 4. WHAT CAN BE OBSERVED 22

DA(z) up to an overall constant and the dimensionless Hubble function E(z) ≡ H(z)/H0.

Moreover, because the luminosity distances depend on the present curvature parameter Ωk0,

we can combine DL(z) and E(z) to estimate this quantity.

We can therefore determine the evolution of the combined matter and dark energy content,

1 − Ωk, at all times. If we assume that there are only two components of the cosmic fluid

then we have only one free parameter, Ωm0. In fact we can write

Ωx = 1 − Ωk − Ωm = 1 − 1

E2

(

Ωk0a
−2 + Ωm0a

−3
)

. (4.1.10)

From the above, we conclude that from background observables we can reconstruct both Ωm

and Ωx, but only up to Ωm0 [36], since one can compensate for any change of Ωm0 with a

modification of the DE model. Of course, if we parametrize the evolution of Ωx with a simple

equation of state, we can break the degeneracy with Ωm0, as is usually done in analysis of

SNIa data, but that is exactly what we are trying to avoid in our approach.

The same result is valid if instead of pure pressureless matter one includes further compo-

nents (e.g. massive neutrinos) that evolve with an effective equation of state wm(z), provided

wm(z) can be inferred from other observations (e.g. knowledge of the neutrino masses).

4.2 Linear Perturbations Observables

At the linear level, the observables are correlations in angular separation and redshift of

positions, velocities and shapes of sources, i.e. galaxies, clusters of galaxies, Lyman-α lines

and the Cosmic Microwave Background. The knowledge about the the luminosity distance of

these correlations can be converted to the wavenumber kphys and redshift. When discussing

linear perturbations, we denote with perturbation variables (e.g. Φ, Ψ, δgal, etc.) the square

root of their power spectrum, as is common in the literature. These are therefore positive-

definite quantities and their ratio is well defined.

4.2.1 Matter clustering and Redshift-space distortions

We can observe galaxies, not matter perturbations. Assuming that galaxies fall into the

gravitational potential of dark matter, tracing the DM perturbations, we can relate both

components through a scale and time-dependent bias b(k, a), such that

δgal = b(k, a)δm. (4.2.1)

Moreover, galaxies are observed not in real space, but in redshift space. The quantity
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we observe is the perturbed galaxy number density, and it is affected by perturbations on

the redshift positions of the galaxies and the space volume. These effects can be generally

characterized by the peculiar velocity of the galaxies and metric potentials1. In fact, the

nomenclature, redshift-space distortion (RSD) traditionally refers to the peculiar motions

only, and other corrections have been taken into account only recently. In simulations for

a ΛCDM fiducial model [37], it was shown that redshift space distortions due to peculiar

velocities are the dominant correction to the number density. In our work, we shall restrict

to this effect as a first approximation (and refer to it as RSD), in a second phase, we wish to

evaluate other corrections more closely.

By taking into account the corrections to the galaxies redshift in a systematic way, one

can extract the correction to the galaxy number density. Traditionally one uses the velocity

of the galaxy field to extract information about the underlying dark matter distribution

through a bias, and relates the redshift-space distortion (RSD) to the dark matter growth

rate 2 [38]:

δz
gal(k, z, µ) = b

(

1 +
f

b
µ2

)

δm(k) . (4.2.2)

where the growth rate of dark matter perturbations is described as

f(k, a) ≡ δ′
m(k, a)/δm(k, a). (4.2.3)

This connection with matter perturbations through an unknown bias is, however, not

necessary for our purposes, as we discuss below. Fundamentally, the Kaiser formula, Eq(4.2.4)

for the redshift-space galaxy number density δz
gal is a statement about a correction to the

real-space galaxy number density δgal resulting from the peculiar velocities of the galaxies

[39],

δz
gal(k, z, µ) = δgal(k, z) − µ2 θgal(k, z)

H
, (4.2.4)

where θgal≡ ∇ivi, is the velocity divergence and µ, the direction cosine. This means RSD

potentially constitutes a measurement of θgal(k, z), at different redshifts and scales. Now,

rather than relating this velocity to dark matter evolution, we can make a choice that allows

us to avoid any assumption about the velocity bias: galaxies move on geodesics of the metric,

whatever the actual source of this metric

(

a2θgal

)′

= a2Hk2Ψ , (4.2.5)

1These were fully addressed in [37] where the authors simulated the transverse power spectrum for a
ΛCDM model and calculated the corrections to δgal(k, a) for different redshifts and scales.

2See e.g. [38, 39]. This is how we proceeded in Ref. [29].
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with k ≡ kcom/aH. We can now integrate Eq(4.2.5), neglecting the integration constant, to

discover that from the angular dependence of the two-dimensional galaxy power spectrum

we can extract the following two observables, that we acknowledge as

A = δgal , R = −θgal

H
= −

(

a2H
)−1
ˆ

a2Hk2Ψd ln a .

This approach allows us to see that linear RSD are really a measurement of the gravita-

tional potential Ψ which accelerates the galaxies

− k2Ψ = R′ +R

(

2 +
E ′

E

)

. (4.2.6)

In addition to this, if we simply evoke the Equivalence Principle, i.e. galaxies and dark

matter follow the same geodesics, the observation of θgal implies the observation of θm. In

other words, there is no velocity bias and θgal = θm. Notice that, without this assumption

about the velocity bias, we would not be able to reach this conclusion. On the other side,

in the case of matter perturbations, because we have not made any assumptions about the

bias, it was not possible to infer knowledge about δm from δgal.

Considering the measurement of θm, from the continuity equation

δ′
m +H−1θm = −3Φ′ , (4.2.7)

we see that, if time-derivatives of the potential are not varying rapidly in the scales of interest,

i.e. in some quasi-static regime, the continuity equation approximates to δ′
m + H−1θm ≃ 0,

meaning we end up with a measurement of δ′
m.

Statistical origins of the velocity bias a part [40], there could in principle be a non-

vanishing bias between these two velocities. Indeed, this happens in any model in which

there is a fifth force acting on dark matter, which does not couple to baryons or light,

i.e. models with a violation of the Equivalence Principle such as coupled quintessence [41].

This fifth force is a new source of acceleration for dark-matter particles, causing their peculiar

velocities to deviate from that of the galaxies. The effect of this is to introduce a (scale and

time-dependent!) velocity bias.

In principle, one could also directly measure the galaxies velocities. The estimation of

it requiring a subtraction of the peculiar redshift from the cosmological redshift by using

distance indicators such as Cepheids and therefore a number of additional assumptions on

the source physics. No current or foreseeable method to estimate the peculiar velocity field

has been shown to be reliable beyond a few hundred megaparsecs (see e.g. [42]), so we will

not pursue this possibility any further.
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4.2.2 Weak gravitational lensing

Weak gravitational lensing is a probe of the distortion in the path of photons emitted from

galaxies due to the lensing potential along the line of sight. The observed shape of the

galaxies is deformed by a very small amount, but it is possible to quantify this effect through

statistics of a large number of galaxies.

Usually, the lensing caused by the potential is used as a tracer of the matter content

that sources the potential. To our purposes, we would simply like to extract the information

about the potential itself. More explicitly, weak lensing is sensitive to the projection of the

lensing potential along the line of sight [43], defined as the convergence

C =
1

2

ˆ DAs

0

k2(Ψ − Φ)g(DA, DAs)dDA, (4.2.8)

where DA and DAs are the angular diameter distances of the lens and the source, respectively,

and g(DA) is a window function that basically gives the efficiency with which the gravitational

potential lens a given normalized galaxy distribution W (χ). And it described by

g(χ) = χ(DA)

ˆ DA0

DA

r(D′
A −DA)

r(D′
A)

W (D′
A)dD′

A, (4.2.9)

where χ(z) is the comoving angular distance and DA0 is the horizon angular diameter dis-

tance.

Through integral 4.2.8 one sees that, in principle, it is possible to extract the lensing

potential as a function of redshift (conversely, a) and scale k, provided we have data with

the required precision at a range of scales and redshifts.

[Ψ − Φ] (k, a). (4.2.10)

We can, therefore, define the following observable quantity

L ≡ (Ψ − Φ)E2a3k2, (4.2.11)

where the term E2a3k2 does not change our conclusions, and facilitates the connection with

the usual notation discussed in section 4.4.

Summarizing the above, by combining redshift-space distortions and weak lensing, we are

able to reconstruct the Jordan-frame metric for galaxies and light. However, those probes

provide no information about the Jordan frame of the underlying dark matter. In principle,

one could use different tracers with different baryon fractions (cluster and galaxy power

spectra) to map out the Jordan frames for these two classes of objects and obtain some
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information on the differences in the gravitational potentials they experience (in the spirit of

e.g. [44]). Interestingly, galaxies are not just baryons, but are dynamically coupled to their

dark-matter halos. This means that the Jordan-frame metric for the galaxies is not necessarily

the same as the one for baryons, since the galaxies will at least partly feel the fifth force acting

on dark-matter. In this case, measurements of WL and RSD would still reconstruct the same

metric potentials for our tracers, but these are not the complete potentials that the dark

matter feels. Allowing for such deviations, we completely loose the connection between the

dark matter growth rate and RSD of the galaxy power spectrum.

Let us summarize this section with the following scheme:

Figure 4.2.1:
Linear perturbation observable quantities: In red, we identify the probes and in blue, the
theoretical assumption that must hold in order to identify the observables.

4.3 Dark energy configuration

Having identified which quantities are observables without assuming a model for dark energy,

we would like to turn to how these quantities relate to a general dark energy configuration.

It has been argued [45, 46] that there are two quantities that are, in principle, capable of

fully relating observations to a particular dark energy model. They are the slip parameter

(or anisotropic stress) and the effective gravitational coupling, defined respectively as

η(k, z) ≡ −Φ/Ψ , Y (k, z) ≡ − 2k2Ψ

3Ωmδm

, (4.3.1)

The idea is that there are four fields that fully describe the scalar perturbations: {δm, v,Φ,Ψ}.

We can provide two equations for the matter component, i.e. the covariant conservation of

the energy momentum tensor

Ev ≡
(

a2θ
)′

= a2Hk2Ψ , (4.3.2)
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Eδ ≡ δ′
m +H−1θm = −3Φ′ . (4.3.3)

Therefore, by introducing the two parameters Y and η from a specific DE model, one

can, in principle, describe the evolution of matter perturbations and hope to connect them

to the observed structure formation.

However, when considering a dark energy model, one sees that it is not simple to obtain

a separate form for Y and η . In fact, in many DE models, they are described by a set of

differential equations and it is impossible to obtain an algebraic, separate form for them. The

usual approach in this case consists on parametrizing these quantities. In the ΛCDM model,

for instance, they are both parametrized to be Y = 1 and η = 1.

Another example of parametrization, appears when the quasi-static limit of some theory

is taken. Many authors argue that the gravitational potentials and the scalar-field oscillations

can be safely neglected in scalar-tensor theories, as they do not oscillate very fast.

Considering this limit, for instance in the Horndeski theory (the most general scalar-tensor

theory), all time derivatives of the potentials and the perturbed scalar are dropped, therefore

all time derivatives of Y and η are also dropped (except for a factor proportional to the growth

rate f(k, a), that comes from Y ′ ). These ratios are then drastically simplified, making it

possible to write them in a simple time- and scale-dependent form, where both quantities

depend only on a small number of parameters that connects them to the Lagrangian

Y = h1

(

1 + k2h5

1 + k2h3

)

, η = h2

(

1 + k2h4

1 + k2h5

)

, (4.3.4)

where hi are time-dependent background quantities which forms are not relevant for the

moment.

As will become clear along this thesis, our approach in [29, 31] differs sensibly from the

standard one, where parametrized functions are introduced in a modified code that will evolve

them while simultaneously fitting the data in a model- (parametrization-) dependent way.

Our proposal consists in firstly elucidating which quantities are observables a priori and, then

using this information to directly constrain data, by simply measuring these observables at

different redshifts and scales, not requiring any parametrization, or even the quasi-static

assumptions.

An important conclusion of our analysis is that the anisotropic stress η is directly observ-

able, for it constitutes a ratio of the metric potentials, that we have shown to be observables.

On the other hand, the gravitational coupling Y is not an observable quantity, for it depends

on the value of δm, which is not observable. Another important quantity used to describe per-

turbations is the linear matter growth f(k, a) ≡ δ′
m

δm
, that similarly to Y does not constitute
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and observable.

Let us introduce some ratios that will prove useful in chapter 6, when we will use the

observable quantities to constrain dark energy models:

Γ ≡Ψ′

Ψ
=
L′

L
− η′

1 + η
− 1 , (4.3.5)

Φ′

Φ
= Γ +

η′

η
=
L′

L
+

η′

η (1 + η)
− 1 ,

where L is the observable defined in Eq(4.2.11).

In the next section we will describe how the dar)k energy configuration relates to the dark

matter properties, identifying which quantities related to dark matter are observable. This

will put our ignorance about the dark sector in evidence and will show how our knowledge

is limited to combinations of quantities, that alone, are not observables. In spite of this

ignorance, in section 5, we will work out some consistency relations between observable and

unobservable quantities that will constitute a consistency check to be applied to observations.

4.4 Connection to dark matter

In the previous section, we have somewhat deviated from the standard approach, that is to try

to reconstruct dark matter perturbations from weak lensing and redshift-space distortions.

Our attempt was to make a more agnostic path, avoiding to deal with bias and the dark

matter perturbation itself, for they are not measurable. In this section we will follow the

standard path relating the probes with the dark matter. As dark matter perturbations are

not observable, we will present observable combinations of quantities that relate to the DM

properties.

4.4.1 Matter clustering

We can observe galaxies. One of our assumptions is that galaxies trace dark matter perturba-

tions through an unknown linear bias, generally described by a scale- and time-dependence:

δgal(k, a) = b(k, a)δm(k, a). We now define the growth function G(k, a) for matter perturba-

tions through

δm(k, a) ≡ G(k, a)δm(k, a0) (4.4.1)
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where we have emphasized the scale and time-dependence of the quantities, but from now

on, we will often omit the parenthesis, when convenient, and use, e.g. δm(k, a0) ≡ δm,0.

So our first observable can be expressed as 3

A ≡ δgal = Gbδm,0. (4.4.2)

4.4.2 Redshift-space Distortion

As we discussed in section 4.2, from the statistical analysis of the anisotropy of galaxy

clustering we can infer the redshift-space distortions caused by the peculiar velocities of

galaxies

δz
gal(k, a, µ) = δgal(k, a) − µ2 θgal(k, a)

H
, (4.4.3)

which, in sub-Hubble scales, in the case where the field slowly oscillates, allows us to approx-

imate θgal = θm ≃ −δ′
m = −fδm , and the RSD effect can be expressed in the traditional

Kaiser formula [38]

δz
gal(k, a, µ) = b

(

1 +
f

b
µ2

)

δm(k, a) . (4.4.4)

With this approximation, we can express the observable R in terms of the initial matter

density perturbation, defining our second observable quantity in terms of the the following

combination:

R = −θgal

H
≃ δ′

m = Gfδm,0 , (4.4.5)

where G was previously defined in Eq (4.4.1), and f is the matter linear growth rate, define

in Eq(4.2.3).

3Notice that in [29] we have used the notation δm,0 = σ8δt,0, taking into account the total density
perturbation, including that of dark energy. In this paper, we wanted to stress one of the discussions of this
thesis, i.e. that there is an unknown distribution of dark energy perturbations which affects gravitational
measurements. In this section we solely want to discuss how observables relate to the dark matter properties,
therefore we focus on δm,0.
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4.4.3 Weak Lensing

In the linear regime, the lensing effect is proportional to the lensing potential, which itself is

driven by the density perturbations (see e.g. [12]). In general, this relation can be written as

k2(Ψ − Φ) = −3

2
Y (1 + η)Ωmδm (4.4.6)

=
1

E2a3
Ωm0GY (1 + η)δm,0 (4.4.7)

where, from the Friedmann equation, we have used that

Ωm

Ωm0

=
1

E2a3
, (4.4.8)

and therefore, we can define our third observable, corresponding to the lensing potential as

the combination

L = Ωm0GY (1 + η)δm,0. (4.4.9)

So, the observable combinations of quantities that relates to dark matter perturbations

are.

A = Gbδm,0 , R = Gfδm,0 , (4.4.10)

L = Ωm0Y (1 + η)Gδm,0 . (4.4.11)

Now, let us remark that the amplitude of the density perturbation today δm,0 depends

on the whole history of the common evolution of the unknown dark energy and dark matter,

and the initial conditions in both these components. For instance, the Cosmic Microwave

Background anisotropy allows one to measure, at least in principle, the initial total lensing

potential [Ψ − Φ] in through the Sachs-Wolfe effect. However, it is impossible to derive the

present power spectrum from this information. The present power spectrum depends, in fact,

on a scale- and time-dependent transfer function, that acts to process the total perturbation

spectrum, changing its k−dependence and that, without further assumptions, i.e. absent a

model for DE, remains unknown. Thus, the conclusion from the list (4.4.10) of observable

combinations is that it is impossible to measure δm,0 without a knowledge of the bias b.

As a consequence, only the ratios of A,R,L, and their N -derivatives, are directly mea-

surable from linear cosmological observations, being δm,0-independent quantities

P1 ≡ R

A
=
f

b
, (4.4.12)
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P2 ≡ L

R
=

Ωm0Y (1 + η)

f
, (4.4.13)

P3 ≡ R′

R
= f +

f ′

f
. (4.4.14)

All other possible δm,0-independent ratios, such as A′/A, L′/L or R′/L or higher-order

N -derivatives, can be obtained as combinations of P1−3 and their derivatives.

We will refer to the observables Pi as the primary model-independent observables. The

observable P1 contains the bias that, as we already discussed, cannot be measured in a

model-independent manner and therefore we will not use it any further in our discussion.

The observable P2 has already been introduced in [43] as EG as a test of modified gravity,

but the fact that Ωm0 is not an observable was not discussed there.

We should emphasize that these results, for example from the form of P3,, imply that the

growth rate of dark matter f , cannot be measured without picking a particular model or at

least a parametrization for dark energy, since the equation f ′/f + f = P3(k, a) cannot be

solved without the unknown k-dependent initial condition for f .

The quantity R ≡ Gfδm,0 = Gfσ8δt,0 contains the combination Gfσ8(z), often denoted

as fσ8(z) in the literature [47], which is considered to be a directly observable quantity.

However, this is of course true only if one assumes a model for DE, or at least a parametrized

form of δt,0; otherwise, the model-independent observable combination is P3 = R′/R. It is

important to realize that even a perfect knowledge of P3 does not imply knowledge of f since

the equation f ′/f + f = P3(k, z) cannot be solved without the unknown k-dependent initial

condition for f . Finally, notice that we did not need to assume Gaussian fluctuations nor

isotropy of the power spectrum.

In table (5.1), we summarize all the variables presented in this section.
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Consistency Relations

It is useful to notice how observables can be related and this could provide us with some

consistency tests. Here we present how we have arrived at such consistency relations.

5.1 First Consistency Relation: the observability of η

We firstly consider the equation for the evolution of matter perturbations in the subhorizon

regime. This is obtained by taking the subhorizon limit of the second conservation equation

for matter, Eq(4.3.3)

θm ≃ −Hδ′
m , (5.1.1)

and replacing it in the first conservation equation Eq(4.3.2), resulting

δ′′
m +

(

2 +
H ′

H

)

δ′
m = −k2Ψ. (5.1.2)

Now, in order to see the connection with the primary observables Pi, we rewrite this

equation in terms of the growth function:

f ′ + f 2 +

(

2 +
H ′

H

)

f = −k2Ψ. (5.1.3)

Dividing the above by f , we immediately recognize the observable P3 ≡ f + f ′

f
, on the

left-hand-side, and P2 ≡ Ωm0Y (1+η)
f

= −2
3
Ωm0

k2Ψ(1+η)
Ωmδm

δm

δ′
m

, on the right-hand-side, thus giving

the follow relation

32
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3P2(1 + z)3

2E2
(

P3 + 2 + E′

E

) − 1 = η , (5.1.4)

where we have again, used that Ωm

Ωm0

= (1+z)3

E2 , and E = H(z)/H0.

We have called this result a consistency check [29], because the observed form of the

anisotropic stress, potentially scale-dependent in a general dark energy model, can be tested

for. Equation (5.1.4) is however, more than just a consistency test, it states the observability

of η, as we have already demonstrated through a different path in sections4.2 and 4.3, by

considering the observability of the metric potentials.

5.2 Consistency Relation for Y

In a completely independent way, we work out relations between observables and the effective

gravitational coupling. By taking the time derivative of P2 we find

P ′
2

P2

= −f ′

f
+
Y ′

Y
+

η′

1 + η
. (5.2.1)

Now we use that
f ′

f
= P3 − f = P3 − Ωm0Y (1 + η)

P2

, (5.2.2)

and rearrange some terms, so Eq(5.2.1) results

P ′
2

P2

+ P3 − η′

1 + η
=

Ωm0Y (1 + η)

P2

+
Y ′

Y
. (5.2.3)

Already here, one can see that the left-hand-side consists exclusively of observable quan-

tities, while the right-hand-side has the quantity Y , that we are not able to determine, unless

we provide some initial condition. It is interesting to note that the combination η′

1+η
can be

written as

η′

1 + η
=
P ′

2

P2

−
(

(E′

E
)2 + P ′

3 +
(

2(2 + P3)
E′

E
+ E′′

E

))

(

2 + P3 + E′

E

) , (5.2.4)

and from Eq(5.1.4), we define the observable quantity

̟ ≡ η + 1

P2

=
2E2

(

P3 + 2 + E′

E

)

3(1 + z)3
. (5.2.5)
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Thus, combining Eq.(5.2.3), Eq.(5.2.4) and Eq.(5.2.5), one can write a consistency relation

that depends only on the observation of P3 :

Y ′

Y
+

3(1 + z)3Ωm0Y

2E2
(

2 + P3 + E′

E

) =

(

2E2
(

2 + P3 + E′

E

)

)′

+ 2P3E
2
(

2 + P3 + E′

E

)

2E2
(

2 + P3 + E′

E

) .

Now, remember that P3 is defined to be R′

R
, so the consistency check depends only on the

observability of R, that corresponds to what one can probe through redshift-space distortions:

the Newtonian potential Ψ( see Eq(4.2.6)). This actually could have saved us a lot of work.

In the end, this same consistency check can be simply expressed as

Y ′

Y
+ Ωm0̟Y = 1 + Γ . (5.2.6)

where we have used the observables defined in Eq.(4.3.5): Γ ≡ Ψ′

Ψ
and in Eq.(5.2.5) :̟ ≡ η+1

P2

that one can easily obtain by using the definition of Y and the relation between f and P2.

The consistency relation for Y expresses our incapacity to determine its value through

observations. It constitutes a first-order differential equation for the combination Ωm0Y ,

that without the choice of some initial condition, we are not able to solve. As we will discuss

further, this is a result of the dark degeneracy in the perturbative level, and the initial

condition to furnish with, is exactly the initial value of the dark matter perturbations.
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Class Variable Key Relation Obs.? Eq. Comment

Measurements A ≡ δgal = bδm X (4.4.2) Bias not measurable

absent DE model

R ≡ −θgal/H X (4.4.5) RSD measure galaxy

velocity

L ≡ 2k2E2

3(1+z)3 (Φ − Ψ) X (4.4.9) WL shear probes lensing

potential

E ≡ H/H0 X (4.1.4) H0, Ωm0 not observable

without DE model

Primary P1 = β ≡ R/A = f/b X (4.4.12)

observables P2 = EG ≡ L/R = (1 + η)/̟ X (4.4.13)

P3 ≡ R′/R = f + f ′/f X (4.4.14) Only this function of f is

observable

Physical Ψ R′ + R (2 + E′/E) X (4.2.6) Extract from RSD

variables Φ 3(1+z)3

2k2E2 L + Ψ X Extract from WL

tomography

δm δm = δgal/b Unknown without

knowing bias

θm/H0 θm = θgal X Observable only given

Equivalence Principle

DE η ≡ −Φ/Ψ X (4.3.1) η 6= 1 ⇒ coupling

DE/gravity

Configuration Γ ≡ Ψ′/Ψ X (4.3.5) Observable prediction of

DE models

Variables Y ≡ −2k2Ψ/3Ωmδm (4.3.1) δm unknown; must satisfy

relation (5.2.6)

f ≡ δ′
m/δm (4.3.1) δm unknown

̟ ≡ f/Ωm0Y X (5.2.5) Relates DM velocity to

potential

Table 5.1: Summary of variables used in Part I of the thesis. Those variables marked with a checkmark

as observable can be measured as a function of redshift and scale without an assumption of a particular DE

model. Measurement of δm requires the knowledge of bias, which cannot be measured or modeled without the

knowledge of the DE model. The variables such as Y and f typically used to describe the DE configuration

are therefore not observable, but predictions can be reformulated to maximally exploit those variables which

are observable (see section 6.3).



Chapter 6

The Horndeski Lagrangian

The most general second-order scalar-tensor theory is described by the Horndeski Lagrangian

(HL) [48, 49]1. The HL is defined as the sum of four terms L2 to L5 that are fully specified

by a non-canonical kinetic term K(φ,X) and three in principle arbitrary coupling functions

G3,4,5(φ,X), where X = −gµνφ
,µφ,ν/2 is the canonical kinetic term,

L2 =K(φ,X) ,

L3 = −G3(φ,X)�φ ,

L4 =G4(φ,X)R +G4,X

[

(�φ)2 − (∇µ∇νφ)2
]

,

L5 =G5(φ,X)Gµν∇µ∇νφ− G5,X

6

[

(�φ)3 −

− 3 (�φ) (∇µ∇νφ)2 + 2 (∇µ∇νφ)3
]

.

In general the equation of motion for the scalar will couple to the matter energy density.

The structure of the energy-momentum tensor for the general theory is rather complex, in

particular, the Lagrangian features a non-minimal coupling to gravity. This means that

the EMTs for any such models will feature, in general, anisotropic stress related to the

perturbations of the scalar. The metric potentials Φ and Ψ are as usual determined by the

Poisson and anisotropy equations which are constraints and therefore do not have independent

dynamics.

The Horndeski Lagrangian encompasses many of the dark energy models proposed in the

last decade, e.g. k-essence, Kinetic Gravitational Braiding, Chameleons, Brans-Dicke and

f(R). Before addressing the complete theory, we would like to introduce an intermediate

analysis, exploring the subclasses of models described by the k-essence Lagrangian, not only

for the popularity and importance of this model, but also in order to make a point about the

1The equations of motion are second-order for both the scalar and the metric on an arbitrary background

36
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level of constraint we can get for each theory and how this depends on the theory exhibiting

non-minimal coupling.

6.1 K-essence

Here, we will turn to the simplest class of scalar field models, those described by the La-

grangian Lφ = K(φ,X) [50, 51, 52]. The energy momentum tensor possessed by this kind

of dark energy has perfect-fluid form and at linear level all the properties are described by

the equation of state w and the sound speed cs [53]. This example will provide for sufficient

complexity in order to demonstrate the logic of our method and the fundamental limita-

tions of constraining the dark energy model space as a result of the non-observability of Y ,

while having the advantage of being familiar to a wide audience. Note that all uncoupled

quintessence models are contained within this class as are perfect-fluid models, provided only

scalar perturbations be considered.

We shall not give the full Einstein equations here (their explicit form is in appendix 8.1),

but it will suffice to say that the combined k-essence and dark matter energy-momentum

tensor depends on the perturbation variables schematically as

δT 0
0 ⊃ δφ, ˙δφ , δm (6.1.1)

δT 0
i ⊃ δφ , θm

δT i
i ⊃ δφ, ˙δφ ,

δT i
j − 1/3δi

jδT
k
k = 0 ,

with δφ the perturbation of the k-essence scalar. This model does not allow for any anisotropic

stress and therefore it could be immediately excluded if, even at just one redshift and scale,

η 6= 1. We will assume that no such detection was made and therefore we will take Φ = −Ψ.

We can then use the combination of the Hamiltonian and momentum constraints [i.e. the

(00) and (0i) Einstein equations], to eliminate the scalar-field perturbations δφ and ˙δφ in

the (ii) Einstein equation, obtaining the exact equation for the evolution of the gravitational

potential in k-essence models in the presence of dark matter

Ψ′′ +

(

4 +
E ′

E
+ 3c2

a

)

Ψ′ +

(

3 + 2
E ′

E
+ 3c2

a

)

Ψ+ (6.1.2)

+ c2
sk

2Ψ = −3

2
Ωm

(

c2
sδm + 3(c2

a − c2
s )k

−2H−1θm

)

.
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where the adiabatic sound speed,

c2
a ≡ ṗX

ρ̇X

= − 6E′/E + 2 (E′/E)2 + 2E′′/E

9Ωm0E−2(1 + z)3 + 6E′/E
,

is fully determined by the observable expansion history up to Ωm0. θm can be neglected

sufficiently deep subhorizon, although this term it is actually observable as θm/H = −R and

can also be included in the calculation. Equation (6.1.2) is quite standard, see the closely

related result in e.g. [54, Eq. 7.51]

Apart from the parameters of this model—the constant Ωm0 and the sound speed cs,

which can be a function of time—all the quantities on the left-hand-side of Eq. (6.1.2) are

observable. What is not observable is δm, as we have explained in section 4.2. Since, at any

one redshift slice, the dark-matter configuration can in principle be arbitrary, Eq. (6.1.2) does

not by itself provide a constraint on the theory space. However, we can think of Eq. (6.1.2)

as a measurement of Y given the assumption that the dark energy model belongs to the

k-essence class:

Ŷ =
c2

sk
2

[Γ′ + (Γ + 3 + E′/E + 3c2
a) (1 + Γ) + E′/E + c2

sk
2
, (6.1.3)

where we have used Eq. (4.3.5) to replace derivatives of Ψ with the observable Γ. So given

observations of Γ and E, Ŷ [c2
s ,Ωm0] is a functional on that data depending on the parameters

Ωm0 and c2
s which outputs a function of scale and time.

However, we should stress that we can always find some Ŷ given any data and given

any choice of parameters. We have therefore thus far only obtained a model for Y in the

spirit of that provided by (4.3.4). It is a little complicated, in that it depends not only on

parameters equivalent to the hi’s, but also on observable data. If the observable Γ shows

no scale dependence, in principle we have a very simple model for Y , not dissimilar to the

quasi-static one. If on the other hand, the observations do show scale dependence, Ŷ could

be a very complicated function of scale.

We must now test whether this model for Y is consistent with the observations using the

consistency relation (5.2.6). This means that k-essence can only be a good description of the

dark energy if there is no anisotropic stress observed and also

Ŷ ′

Ŷ
+

2Ωm0Ŷ

P2

= 1 + Γ ,

at every redshift and every scale. This consistency relation must be valid given just one

global parameter Ωm0 and at each redshift the sound speed c2
s and its derivative. Given
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measurements at four scales at any one redshift, it is in principle enough to exclude such a

model for Y and therefore k-essence as the mechanism for dark energy, assuming the existence

of a perfect data set, as we already declared.2 Note that our approach is independent of the

initial conditions.

If given the assumption of k-essence, the consistency relation is satisfied at all redshifts,

then the above measurements can be used to determine the value of the sound speed at each

redshift observed. This allows a non-parametric determination of this physical property that

in general is an arbitrary function of time.

It is worth mentioning the limit c2
s = 0 [56, 57], which is not quasi-static on any scale.

In such a case, the dust and dark energy perturbations become indistinguishable and the

entropy perturbation source in Eq. (6.1.2) disappears, yielding

Ψ′′ +

(

4 +
E ′

E
+ 3c̃2

a

)

Ψ′ +

(

3 + 2
E ′

E
+ 3c̃2

a

)

Ψ = 0 . (6.1.4)

where we have redefined the adiabatic sound speed to be that corresponding to the total

EMT, c̃2
a ≡ ṗX/(ρ̇X + ρ̇m), i.e. it is now a function purely of the background geometry. In this

limit, there is no dependence on the unobservable δm and all scale dependence disappears.

A measurement of Y is not possible in a fundamental sense, since there is no difference in

the properties of the DE and the DM perturbations. The dark degeneracy is complete. The

physics of the linear perturbations is effectively that of a single generalized dust collapsing

on a background with some equation of state [57]. However, for such a model to be a valid

description of the observations, the data must satisfy the constraint

Γ′ +

(

Γ + 3 + 2
E ′

E
+ 3c̃2

a

)

(Γ + 1) +
E ′

E
= 0

at every redshift and every scale with no free parameters. This constraint reduces to exactly

that of ΛCDM when the equation of state for the dark energy becomes −1.

Models with kinetic gravity braiding (KGB) [58, 59] are the most general class of scalar-

tensor theories with a single scalar which do not have a direct coupling to gravity and therefore

do not have anisotropic stress despite being imperfect fluids [60]. The KGB equivalent of

Eq. (6.1.2) would feature more scales, however the prescription for constraining this class of

2In fact, this would exclude any single perfect fluid as dark energy, since k-essence is equivalent to
perfect-fluid hydrodynamics. Multiple perfect fluids or fluids with internal degrees of freedom have in general
more complicated pressure perturbations, which would naively appear as more complicated scale dependence
(e.g. [55]).



CHAPTER 6. THE HORNDESKI LAGRANGIAN 40

models would not differ from the k-essence example presented here.

6.2 Quasi-static Dark Energy

As we have discussed in Ref. [29], perturbations in scalar-tensor dark energy models fre-

quently can be approximated to evolve in the quasi-static approximation, where the dark

energy follows the dark matter perturbations and the time derivatives are negligible (see also

Ref. [46]). For the Horndeski Lagrangian [48, 49], which is the most general scalar-tensor

theory involving no more than second derivatives, this limit was presented in Ref. [61] ( we

derive it in detail taking a slightly different path in appendix 8.2). This derivation assumes

that the only scales relevant to the problem are the Jeans length (determined by the sound

speed) and the Compton wavelength, determined by the effective mass of the scalar pertur-

bations. Dispersion relations are in principle more complicated in these models, but apart

from the mass, the sound speed does provide the smallest scale by the virtue of being defined

in the k → ∞ limit. Under the quasi-static assumption, or that the speed of sound is close

to that of light and the scales larger than the Jeans length lie outside of the scales probed

by the observations, the effective Newton’s constant and the slip parameter (4.3.1) in these

general scalar-tensor models take the form

Y = h1

(

1 + k2h5

1 + k2h3

)

, η = h2

(

1 + k2h4

1 + k2h5

)

, (6.2.1)

where the functions hi are purely functions of redshift determined by the Lagrangian describ-

ing the dark energy model ( the explicit form of h1−5 is presented in appendix 8.1.1).

The quasi-static limit is really the requirement that the dark energy perturbations follow

the dark matter ones in a very constrained way. Dark matter evolves on the geodesics of the

combined gravitational potential while the dark energy perturbation must follow the very

precise prescription defined by Eqs (6.2.1), without any dynamics of its own.

One can use Eq. (5.1.4) to test the consistency of the observed Universe with the slip

parameter η given by the form (6.2.1). As we have described in Ref. [29], given measurements

of the observable (5.1.4) at more than three different scales per redshift, we can test whether

the data are consistent with a description for η of the form (6.2.1). If not, then the anisotropic

stress cannot be described as a manifestation of a scalar-tensor theory in the quasi-static limit.

Since dark matter is supposed to move in a known way on geodesics of the metric and

we can map this metric out, the consistency of the form of Y given in the quasi-static limit

can be tested, despite the non-observability described in section 4.2. Inserting the form

(6.2.1) into the consistency relation (5.2.6) allows one to ask, redshift by redshift, whether
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the quasi-static form for Y is consistent with the observational data, i.e. whether the simple

scale dependence for Y driven by the coefficients hi is sufficient to explain the observations.

As a result of taking the time derivative in (5.2.6), the number of free parameters increases to

seven (including Ωm0), thus a larger number of measurements at each redshift is required to

overconstrain the system, but it is in principle not any more difficult than for the anisotropic

stress.

The main takeaway from this discussion is that if the quasi-static limit can be assumed,

the dark energy configuration can be tested by looking for a particular scale dependence of

observables redshift bin by redshift bin, rather than as a single integrated fit to the observa-

tions with a particular parametrization chosen for the functions hi.

6.2.1 Scale-dependent test for quasi-static dark energy

With the same spirit of the consistency check developed in section 6.1 we have worked out

a consistency relation that depends only on observable quantities. In fact, if we define the

following function of the observables R, L and E

g(z, k) ≡ (REa2)′

LEa2

that has the same type of scale-dependence as Eq.(6.2.1), it will satisfy the following consis-

tency test

2g(1)g(3) − 3(g(2))2 = 0 , (6.2.2)

where g(n) is the n-th derivative of g with respect to k2. If this condition fails at any one

redshift, dark energy is not described by the HL in the linear quasi-static limit. Needless to

say, a cosmological constant satisfies the consistency relation.

6.3 The Full Horndeski

The structure of the energy-momentum tensor for the general class of Horndeski theories

is much more complex than for a model such as k-essence. In particular, the Lagrangian

features a non-minimal coupling to gravity. This means that the energy-momentum tensors

for any such models will feature, in general, anisotropic stress related to the perturbations of

the scalar. One can clearly verify this in the anisotropic constraint (that corresponds to the

traceless part of the EMT) for this theory

δT i
j − 1/3δi

jδT
k
k ≡ B6Φ +B7δφ+B8Ψ = 0,
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Horndeski models in the presence of dark matter have EMTs which have the following

dependence on the perturbed fields when linear perturbations are considered 3:

δT 0
0 ⊃ ˙δφ, δφ , δm , (6.3.1)

δT 0
i ⊃ ˙δφ, δφ , θm ,

δT i
j − 1/3δi

jδT
k
k ⊃ σδφ ,

δT i
i ⊃ δ̈φ, ˙δφ, δφ ,

in addition to dependence of all the components on the gravitational potentials Φ and Ψ

and their time derivatives. Here σ is fully determined as a function of the Horndeski free

functions4. As compared to k-essence, we have the already mentioned anisotropic stress,

which is always proportional to δφ. The perturbation ˙δφ is present in the (0i) components

of the energy-momentum tensor, while the pressure perturbation depends on δ̈φ. In addition

to the above, we have the equation of motion for the scalar field, which is an equation for δ̈φ

in terms of all the other variables.

We can clearly see that the only way to suppress the anisotropic stress is to either make

the coupling σ very weak, i.e. effectively make the Horndeski terms non-minimally coupled

to gravity irrelevant for the dynamics of dark energy, or to suppress the scalar perturbations,

which is only possible if the scalar is very massive and not evolving, i.e. it just contributes

vacuum energy [62].

Using the equation of motion for the scalar, we can eliminate δ̈φ from the pressure equa-

tions. Then, using the Hamiltonian, momentum and anisotropy constraints [corresponding

to the (00), (0i) and (ij) Einstein equations, respectively], we can eliminate three further

variables: the scalar perturbations δφ, ˙δφ and the dark-matter density δm. This is one extra

variable as compared to models without anisotropic stress, where the anisotropy constraint

equates the two potentials but is not dependent on the configuration of the dark energy

degree of freedom. The remaining form for the (ii) Einstein equation is very simple,

σ
[

Φ′′ + α1Φ
′ + α2Ψ

′ +
(

α3 + α4k
2
)

Φ
]

+ (6.3.2)

+
(

α5 + α6k
2
)

(Φ + Ψ) = σα7Ωmk
−2θm .

where the parameters αi are functions of time alone and are fully determined by the Horndeski

Lagrangian. Their exact form will not be useful here.

3See appendix 8.1 for the full equations of motion and explicit form of the coefficients in terms of the
general Lagrangian functions.

4It is equivalent to the parameter B7 in Ref. [61]. It is only non-zero when there is a direct coupling of
the scalar to gravity in the action.
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We have kept the dependence on σ explicit to show that in the limit of vanishing

anisotropic stress, σ → 0, Eq. (6.3.2) is not an alternative dynamical equation for the evo-

lution of the potentials Φ. To obtain the evolution equation, one would have to eliminate Ψ

for Φ and would obtain a very complicated equation with many scales embedded in its coeffi-

cients. One may worry that Eq. (6.3.2) provides a different version of this evolution equation

than that obtained for theories with no anisotropic stress. This is not the case: switching

off the anisotropic stress reduces Eq. (6.3.2) to an equation which enforces Φ = −Ψ, thus

providing no additional information.

Eq. (6.3.2) is exact at all scales where linear perturbation theory is valid. In Eq. (6.3.2),

all the variables are model-independent observables. Using the extra information from the

anisotropic stress constraint, we have eliminated δm, which is not observable, and thus we

can obtain a consistency relation between pure observables required by all Horndeski models

with anisotropic stress,

ηΓ′ + η′′ + Γ (ηΓ + 2η′ + α̃1η + α̃2) + (6.3.3)

+ α̃1η
′ + α̃3η + α̃5 + k2 (α̃4η + α̃6) = α̃7̟ .

where we have redefined the αi to absorb factors of σ, E or Ωm, or to combine coefficients

into single variables.

The relation (6.3.3) [and (6.4.2)] is valid at all linear scales, without the need to involve

the quasi-static limit or choose initial conditions. If cosmological data signalizes a detection

of non-vanishing anisotropic stress at even just one scale and redshift, we can require that the

data satisfy (6.3.3). At any given redshift, the αi coefficients are just numbers, independent

of scale. The observables, Γ, η and ̟ are in principle complicated functions of scale and

Eq. (6.3.3) is a non-linear scale-dependent function on these data. Performing observations

for at least seven values of k one can form an overconstrained system and rule out the

Horndeski model, or confirm it while measuring its parameters α1−7, redshift by redshift

without prior parametrization.

6.4 f (R) theory

A nice simple example of the relation (6.3.2) can be obtained in the case of the f(R) class of

dark energy models, which are a subclass of the Horndeski Lagrangian and therefore feature

much less freedom [63]. Following the algorithm described above, one obtains as the exact



CHAPTER 6. THE HORNDESKI LAGRANGIAN 44

linear result

Φ′′ − Ψ′ +

(

4 +
E ′

E

)

Φ′ +
1

3

(

m2
C + 2k2

)

Φ+ (6.4.1)

+
1

3

(

m2
C − 6

(

2 +
E ′

E

)

+ k2

)

Ψ = 0 ,

where m2
C ≡ f,R/2H

2f,RR is the Compton mass of the scalar degree of freedom in the units

of Hubble. We must have m2
C ≫ 1 in order to satisfy Solar-System constraints [64]. At

small enough scales, k ≫ mC, we can recover the standard quasi-static result in f(R) that

2Φ + Ψ = 0. Again, we can express the above as a null test on observables that needs to be

satisfied at all scales where linear theory is valid

ηΓ′ + η′′ + Γ

(

ηΓ + 2η′ + 5 +
E ′

E

)

+

(

4 +
E ′

E

)

η′+

+
m2

C

3
(η − 1) + 6

(

2 +
E ′

E

)

+
k2

3
(2η − 1) = 0 . (6.4.2)

This relation has only one free parameter, m2
C, which can be freely adjusted at each redshift

to fit the data. If this is not enough to satisfy the above test, then f(R) is not a general

enough theory to account for the observations.
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Gravity can only probe the total energy momentum tensor. Dark matter and dark energy

are only detected through their gravitational effect. Because they are “dark” we can only

see their effect in the dynamics of galaxies that move on potentials sourced by them, and we

cannot know how each component contributes separately to the potentials. Thus, a split of

the energy momentum tensor into two components with different properties, e.g. equations of

state and sound speed, is completely arbitrary. This is acknowledged as the dark degeneracy.

On the background level, the degeneracy means we don’t know the separate values of the

energy densities Ωm and Ωx. One can see how this manifests in the equation of state of the

combined dark fluid w(z), given by

w(z) =
H(z)2 − 2

3
H(z)H ′(z)(1 + z)

H2
0 Ωm(1 + z)3 −H(z)2

. (6.4.3)

As we have elucidated in section 4.1, background observables can in principle probe the

background evolution through the Hubble parameter H(z). Notice in Eq.(6.4.3), how one can

always find a value of Ωm that reproduces the expansion history for any choice of w(z). As

remarked by Kunz in [36], numerous analysis try to constrain w(z) with background probes

while assuming a certain parametrization. However, this ends up imposing strong priors on

the type of dark energy.

One could ask whether this feature is restricted to the background level, and if linear

perturbations could provide more information and break the degeneracy. However, the dark

degeneracy remains at the perturbative level, e.g. it limits our knowledge about the effective

gravitational coupling Y . This is clear from its definition, Y ≡ −2k2Ψ/3Ωmδm, as well as

from the consistency relation for it:

Y ′

Y
+ Ωm0̟Y = 1 + Γ , (6.4.4)

In order to solve the differential equation for Y , we need to provide an initial condition.

By using its definition, we find the equivalent equation

δ′
m(a)

δm(a)
+

Ψ′(a)

Ψ(a)
+
k2A(a)Ψ(a)

δm(a)
+B(a) = 0, (6.4.5)

where A(a) and B(a) are observables, whose particular forms are not relevant. As all terms

in this equation are observable quantities, except for δm(a), it is evident that the initial

condition to provide is the unknown initial value of the density perturbation δm i.

A similar analysis was done by Kunz and Sapone in [33]. The authors have argued that

the dark matter growth factor G ≡ δm/δm0 is not uniquely determined by the expansion
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history. Additionally, it responds to a choice of the dark energy sound speed 5. If the sound

speed is small, the clustering of dark energy increases and so the sourcing of the gravitational

potentials where dark matter falls. Therefore, the smaller the dark energy sound speed, the

more dark matter clusters.

On the next chapter we will explore this degeneracy by making two splits in the energy

momentum tensor. We distinguish dark matter and dark energy by assuming a fiducial

ΛCDM model. Furthermore, we split dark matter into a cold and a hot component by

introducing a conversion process [30].

5They have assumed the observability of G for this analysis, although that’s not the case unless the bias
is known.



Chapter 7

A dark matter model

Introduction

In Part I of this thesis we developed a testing strategy trying to be as agnostic as possible

on the level of assumptions, specially by refraining from assuming a dark energy model. We

will now follow a completely opposite route, more closely to the standard approach on data

analysis, and consider a model that is a small departure of the ΛCDM. In this sense, the two

parts of the thesis are completely independent and make two very distinct type of analysis.

This enriches our perspective on the two approaches, allowing us to compare them, and to

put the dark degeneracy in evidence in two different ways.

We haven’t yet directly detected a dark matter particle, if there is any. Furthermore,

specially regarding the small scales, many controversies remain unsettled, e.g. the core-

cusp [65, 66] and the missing satellites problem [67, 68]. Generally, simulations of structures

produce dark matter halos with a very steep profile, not matching observations, and the num-

ber of substructures around galaxies predicted by simulations is superior than the observed

one. Efforts have been made in an attempt to improve both simulations and observations,

but a general disagreement remains between approaches and results from different groups.

Naturally, many alternative scenarios have been proposed to deal with the small scales

issues, where dark matter, or at least a fraction of dark matter, is not cold. The free

streaming length of the DM particle limits the size of structures, setting the mass of a warmer

candidate around the keV scale in a scenario in which this candidate is dominant. A dark

matter particle with this mass scale could be a sterile neutrino [69]. Some recent proposals

of warm and warm+cold dark matter cosmologies have shown that a standard warm dark

matter (WDM) cosmology does not solve the core-cusp problem [70]. Furthermore, a warm

dark matter scenario naturally leads to a smaller number of satellites [71]. However, other

scenarios are not excluded, e.g. the decay of cold thermal relics [72, 73]. On the other hand,

48
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the effect of baryons potentially plays a significant role in the galaxy dynamics [74] and

still presents a challenge for simulations. Accounting for the baryonic effects can lower the

number of subhalos as pointed out in ref. ([75, 76]), however it is not yet certain whether a

CDM+baryonic processes can reconcile simulations and observations of Milky Way satellites.

More recently, there are claims [77] that gas outflows from stellar activity can significantly

attenuate the steepness of the core. A proposal [78] of long range interactions between cold

dark matter particles also would be able to dynamically settle the issue. Still in the spirit

of mixed scenarios, it is interesting to see how cosmology can constrain limits on hot dark

matter particles, like neutrinos or axions [79].

7.1 Conversion model

We will not assess the particle nature of dark matter. As we have argued, a cosmological

scenario allows for a split in the energy momentum tensor of dark matter. From structure

formation, we know that such split should not produce a large amount of a relativistic

component, specially in the matter dominated epoch. We consider a general conversion

process of dark matter into dark radiation and analyze how this is constrained by cosmology.

Naturally, the particles are not collisionless, but we don’t make any restrictions about the

interactions that could lead to conversion. Our work is inspired on processes in the baryonic

sector that convert non-relativistic into relativistic matter. Known astrophysical phenomena

can cause such conversions, like accretion disks around black holes and supernovae events,

the latter being the most interesting for us due to the large amount of energy released as

relativistic neutrinos.

When the gravitational pressure of a star exceeds the degeneracy pressure of electrons,

the star explodes (or collapses) releasing radiation and neutrinos. The energy budget of the

relativistic species is mostly carried by the neutrinos. Typically, this energy corresponds to

99% of the binding energy of the remnant neutron star. We consider the net effect of this

phenomena as a starting point to suppose that a similar process can occur in the dark sector,

and perform a phenomenological study about the limits in a late time and environmental

conversion of cold dark matter into dark radiation. There are many different models with

such a transition, e.g. in ref. ([80, 81]), where dark matter decays at earlier times and in

ref. ([82, 83]) where a coupling neutrino-quintessence accelerates neutrinos to relativistic

velocities in scales of order of Mpc in the recent Universe.
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7.1.1 Supernova production rate

Most models of supernova neutrino flux are built from direct observation of core collapse

supernovae. However this method only provides a good parametrization for small redshifts,

and since we are interested in the effects of such production rate in all cosmological history,

we will use a model where the time-dependent supernova rate RSN(z) is proportional to the

star formation rate RSF (z) [84, 85, 86, 87, 88]

RSN(z) =

´ 50M⊙

8M⊙
φ(m)dm

´ 125M⊙

0.1⊙
mφ(m)dm

RSF (z) , (7.1.1)

and the star formation rate is parametrized as

RSF (z) = h 0.3
e3.4z

e3.8z + 45
[M⊙.yr−1Mpc−3] . (7.1.2)

We normalize the rate by considering the number of stars that would most likely undergo a

supernova event with a correspondent emission of neutrinos, from 8M⊙ to 50M⊙. This can

be obtained through the integration of the initial mass function

φ(m) ∝






m−2.35 ; 1M⊙ < m

m−2.33−1.82 log m ; 0.1M⊙ < m < 1M⊙

. (7.1.3)

where we used the combined Salpeter [89] and Gould [90] initial mass functions in the ap-

propriate mass intervals [91].

As it is well known, relativistic neutrinos are the main energetic output from a supernova

explosion, where ∼ 99% of the progenitor gravitational binding energy is transferred to

neutrinos. As a consequence, a diffuse supernova neutrino flux is present in our Universe.

The energy density carried by these neutrinos can be calculated from the evolution equations:

ρ̇b = −3Hρb − ĒνRSN , (7.1.4)

ρ̇ν = −4Hρν + ĒνRSN , (7.1.5)

where H = ȧ/a is the Hubble parameter and Ēν ∼ 3 × 1053 erg is the total energy carried by

the neutrino flux in a supernova explosion. The solutions to these equations are given by:

ρb =
1

a3

[

ρ0 −
ˆ a

a3ĒνRSNdt

]

, (7.1.6)

ρν =
1

a4

ˆ a

a4ĒνRSNdt . (7.1.7)
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In figure 7.1.1 we can see the profile of energy density carried by relativistic neutrinos pro-

duced by SN explosion as a function of redshift. In the same plot we show the energy density

carried by relativistic species created in dark-matter decay, where the parameters were chosen

to produce the same amount of energy density of relativistic species. It is possible to see from

figure 7.1.1 that two very different mechanisms can produce similar patterns of relativistic

species production.

Figure 7.1.1: The supernova produced neutrino density fraction, Ω = ρh/ρcr, as a function
of z.

We propose a scenario where cold dark matter is converted into dark radiation (with a

not initially populated distribution) by a generic mechanism that is not necessarily the decay

of the original cold dark matter particle content, but resembles the production mechanism of

supernova neutrino. We chose the following ansatz for the cold dark matter density evolution

ρca
3 =







ρ0 ; a < ai

ρ0e
−κ(a−ai) ; a > ai

, (7.1.8)

where ai defines a starting time for the conversion and κ, the rate at which this conver-

sion occurs. The evolution equations can then be easily integrated, and we obtain for the

relativistic dark matter density

ρha
4 =







0 ; a < ai

ρc0

(

ai + 1
κ

)

×
[

1 − e−κ(a−ai)
]

; a > ai

. (7.1.9)
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With this parametrization, the conversion profile on SN neutrinos can be fairly reproduced

by the the choice ai = 0.3 and κ = 4.6 × 10−6. This indicates that our parametrization

presents a good versatility and a close connection to known astrophysical processes, where a

conversion from non-relativistic to relativistic matter occurs.

When constraining our parameters, it is more convenient to work with variables that gives

us directly the amount of dark matter in a relativistic form today. This can be calculated

explicitly by:

F =
ρh

ρc + ρh

∣

∣

∣

∣

∣

a=1

. (7.1.10)

The correspondence between the parameter κ and F , for a given value of ai, is unique, and

can be obtained numerically from the relations above. We present this correspondence in

figure 7.1.1.

Figure 7.1.2: Values of parameter κ from F and ai.

7.2 Boltzmann equations

Perturbations over the homogeneous background of the cosmic ingredients can be evolved

as a series of coupled Boltzmann equations of perfect fluids, where each component is fully

described as a hierarchized set of equations, truncated according to its thermal condition and

coupled according to the physics considered. For a complete description of all the components,

see the ref. ([92]). In this thesis, it is going to be detailed only the set of equations of cold
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dark matter and dark radiation with the environmental conversion as a coupling.

We suppose that cold dark matter particles have a massmc that undergo an environmental

conversion at a rate dgc/da to dark radiation with an empty distribution populated at a rate

dgh/da. The Boltzmann equation for the cold dark matter is

dfc

dt
= C [fc] . (7.2.1)

In this scenario with dynamical dark matter, the total distribution function depends on the

momentum and the scale factor, we also consider that the dependencies are detachable

C[fc(p, a)] = −ȧfc(p)
dgc(a)

da
, (7.2.2)

where the function gc(a) represents an effective and already normalized conversion process.

We consider that the phase space of the daughter particle is completely available. Integrating

the distribution function, the final equations of density are

ρ̇c + 3
ȧ

a
ρc = −aȧdgc(a)

da
ρc, (7.2.3)

and density perturbations are

δ̇c + ikvc + 3Φ̇ = −aȧdgc(a)

da
δc. (7.2.4)

For non-relativistic particles is enough to extend the hierarchical description to the velocity

term

v̇c +
ȧ

a
vc + ikΨ = −aȧdgc(a)

da
vc, (7.2.5)

any higher order effects, such as pressure or stress are negligible and even undesirable, since

they are not observed in the clustering of dark matter. In a similar way, we detail the

equations of density and density perturbations of the dark radiation, which is identical to

the massless neutrino equations except for a non-null collision term

dfh

dτ
= C [fh] . (7.2.6)

The distribution of relativistic particles in thermodynamical equilibrium is completely de-

scribed by the temperature. We assume that this is the case and include the perturbations

directly in the distribution function

fh(xi, pj, τ) = fh0(p, τ) × [1 + Ψ(xi, p, nj, τ)]. (7.2.7)
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The collision term populates the dark radiation from the cold dark matter distribution

C[fh(p, a)] = −ȧfc(p)
dgh(a)

da
= ȧfc(p)

dgc(a)

da
. (7.2.8)

The density of the relativistic particles will be given by

ρ̇h + 4
ȧ

a
ρh = aȧ

dgc(a)

da
ρc. (7.2.9)

By integrating again the perturbed distribution function, but this time taking the expansion

in Legendre polynomials, a hierarchical system of equations describing the perturbations in

the dark radiation temperature is obtained, where the monopole term is

δ̇h = −
(

4

3
θh − ȧ

dgc(a)

da
δc − 4φ̇

)

, (7.2.10)

and the dipole

θ̇h =
[

k2
(

1

4
δh − σh

)

+ k2ψ
]

, (7.2.11)

which can be used to obtain the whole set of equations by the recurrence formula

˙Nl =
k

2l + 1
[lNl−1 − (l + 1)Nl+1] , l ≥ 2, (7.2.12)

until some order of truncation lmax, where

Nlmax+1 ≈ (2lmax + 1)

kτ
Nlmax

− Nlmax−1. (7.2.13)

For the desired density conversion given by equation 9, the ad-hoc conversion rate must be

dgc(a)

da
=
κ

a
, (7.2.14)

which replaced in eqs. (7.2.3) and (7.2.9), gives

ρc =
ρc0

a3
× e−κ(a−ai), (7.2.15)

ρh =
ρc0

(ai + κ−1)

a4
×
[

1 − e−κ(a−ai)
]

, (7.2.16)

as planned beforehand in eqs. (7.1.8) and (7.1.9). Given that the conversion is supposed to

be an environmental effect related to the galaxy halo, we include a scale dependence of the
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form
dgc(a, k)

da
→ h(k, kg) × dgc(a)

da
, (7.2.17)

dgh(a, k)

da
→ [1 − h(k, kg)] × dgh(a)

da
, (7.2.18)

where the term included is a smooth step function and kg is defined as the scale where the

conversion reaches half of its maximum effect for each redshift.

7.3 Statistical Analysis

Table 7.1: Parameters of the model and their flat prior. The first six parameters in the
first block belong to the so called “vanilla” cosmological model. The middle block contains
extended standard parameters that are expected to have degeneracy with the conversion
model parameters. The last block contains the parameters added by our model of dark
matter conversion.

Type Parameter Description Min Max

Vanilla Ωbh
2 Baryon density 0.005 0.1

Ωch
2 Cold dark matter density 0.04 0.18

θ Ratio between the sound horizon and the an-
gular diameter distance at decoupling

0.5 10

τ Reionization optical depth 0.01 0.8
ns Spectral index of primordial power spectrum

at k = 0.05hMpc−1
0.5 1.5

log[1010As] Amplitude of primordial power spectrum at
k = 0.05hMpc−1

2.7 4.0

Extended fν Fraction of neutrino density related to the
dark matter

0 0.1

w Parameter of dark energy constant equation
of state

-1.5 0.5

Extra ai Scale factor when the conversion starts 0.1 1.00
κ Rate of conversion 0 2

The statistical analysis was made by Markov Chain Monte Carlo (MCMC) using the data

from the anisotropies of the Cosmic Microwave Background measured by the WMAP, the

matter power spectrum measured by the SDSS and the type Ia supernovae luminosity com-

piled by the Union-2. Best fits were obtained by conventional χ2 analysis using Bayes poste-

rior probability description. All priors used were flat distributions over the range tested. We

run the CosmoMC [93] package of MCMC to test the theoretical predictions generated by

a modified version of CAMB [94], which included the particles described by the Boltzmann

equations developed in section 7.2. Besides the standard parameters for cosmology, our model
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add the parameters listed in the last block of table 7.1. The priors adopted are the standard

for the vanilla parameters, while the prior for the parameter κ goes from vanishing conversion

(κ = 0) to non-physical values (κ = 2) when all the cold dark matter is quickly converted,

for the parameter ai the prior goes from conversion starting today (ai = 1) to non-physical

values (ai = 0.1) when the dark radiation strongly degrades the structure formation. This

choice for the extra parameters obeys the rule to stipulate a prior that encompasses a van-

ishing effect and non-physical results in such a way that the posterior probability has a well

defined tail. In our case, this criteria for prior stipulation are especially designed to include

galaxy’s surveys, which are our target and consequently the most affected observable. The

scale conversion kg was fixed to the scale of typical galactic halo size, kg ≡ 0.2 Mpc−1. The

convergence requirement followed the Gelman and Rubin R statistic, which states that the

variance of chains means divided by the mean of chains variances must approach one. In this

work, we reached a convergence of at least R − 1 < 0.05, which could be regarded as a low

convergence, but taken into account that the CosmoMC package is adjusted for statistical

efficiency when fitting the standard cosmological model, we consider that for a first time

fitting, the condition R − 1 < 0.05 for an alternative model is acceptable.

Because there is an obvious degeneracy between neutrino density and any other kind

of dark radiation, we included the fraction of dark matter in massive neutrinos fν among

the standard parameters of ΛCDM, distributing the density of neutrinos equally among

three states and fixing the number of families to Neff = 3.04. It is also expected to exist a

correlation between the effects of dark matter conversion and the parameter w of the dark

energy equation of state [95]. For this reason this parameter was included in our analysis.

7.4 Results

By fitting the data with theoretical predictions, we calculate chains of the likelihood for

all parameter values inside the ranges delimited. The complete dataset fitted was WMAP

+ SDSS + SNIa and the likelihood functions adopted for each observable were the ones

suggested in their respective papers. We present in table 7.2 for each parameter p, the total

mean value (〈p〉) of its distribution and its confidence level corresponding to the 95% central

credible interval to represent the data. In table 7.2, we also present the best fit value (p̂)

of each parameter and its confidence level corresponding to the 2σ probable region. In this

case, all parameters values are kept in the total best fit point. When the limits are not

shown means that the limit is compatible with the correspondent limit in its prior range. See

ref. ([96]) for different statistical approaches and their relevance in cosmology. In order to

compare and qualify the modified model, we also present the mean and best fit points, the



CHAPTER 7. A DARK MATTER MODEL 57

credible regions and confidence levels of the standard cosmological model. We use ΛHCDM

as the acronym for the model with dark matter conversion, while keeping ΛCDM for the

standard model, both extended with massive neutrinos (mν) and an arbitrary value for the

dark energy equation of state parameter (w).

When comparing the best fits, the minimal χ2 for the model with dark matter conversion

depreciates the fit for the following amount

∆χ2 =
(

χ2
ΛHCDM − χ2

ΛCDM

)

/∆d.o.f. = 1.01/2. (7.4.1)

For two extra degrees of freedom, this number means that the best fit for ΛHCDM is worse

than the ΛCDM best fit, but it is withing 1σ of confidence around the standard model best

fit. The best fit point in the likelihood for the two extra parameters that characterize our

model are

κ = 0.6 , ai = 0.6 , (7.4.2)

where the large standard deviation prevents better precision. These values for the global best

fit correspond to a rate of converted dark radiation over cold dark matter of around 50% in

our Universe today.

In figure 7.4.1 we show the matter power spectrum from SDSS, the predictions for ΛCDM

and the predictions for our model with dark matter conversion. In figure 7.4.2 we show the

correlation between the parameters ai and κ. The confidence region for the two parameters

combined was obtained while fixing the value of standard parameters to their total mean. In

this case the set {ai, κ} excludes vanishing conversion {ai, κ} → {1, 0} at 2σ. However, one

should not take this as a preference for conversion. The other parameters are marginalized

over in their total mean, which are significantly different from the standard model mean,

therefore, the conversion is needed to restore the desirable evolution of the Hubble parameter.

This take us back to the discussion on the dark degeneracy. As we have already pointed out,

the model parameters are degenerate and the equation of state w(z) can be adjusted in order

to reproduce the expansion history H(z) for any value of Ωm.

In fact, the likelihood posterior distributions of the parameters, ai and κ, are each sep-

arately compatible with vanishing conversion, even at 1σ. The implication for this lack of

reducibility is that the conversion cannot be taken as a simple subleading effect. Once it is

included, the conversion must be non-vanishing to reach a best fit closer to the one obtained

with the standard model.
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Figure 7.4.1: Matter power spectra for different models containing the best fit for
WMAP+SDSS+SNIa. ΛCDM (magenta continuous line) and the model with dark matter
conversion (black dashed). SDSS data are shown in blue points, but only diagonal elements
of the covariance matrix.

Despite the loss of direct compatibility among the standard parameters when comparing

the two models, it is interesting to notice how some of them can be relaxed or tightened, such

as the dark energy equation of state parameter, the cold dark matter density or the neutrino

masses. Although the parallel between best fits is the main criteria to qualify an alternative

model, we show the relaxation of some parameters since it could be useful to explain some

isolated effects related to specific parameters detached from the general model.

The conversion of cold dark matter into dark radiation decreases the dark energy equation

of state parameter to lower values, to compensate for the creation of matter whose density

dilutes with a higher order of the scale factor. This effect is compatible with what is expected

when the neutrino masses are increased, which increases the amount of hot dark matter.

The last and most interesting side effect of our conversion model would be the smaller

value for the cold dark matter density at late times, specially in the central cores where

it is expected to happen the conversion. The decrease in density is desirable given the

incompatibility between the cusp galactic centers predicted by n-body simulations and the

core profile observed in all surveys [97].

For instance, in the figure 7.4.3 we show the likelihood posterior distribution for all the

standard model parameters, primitive and derived ones, with dark matter conversion, and
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Figure 7.4.2: Correlation of the parameters ai and κ at 68% CL and 95% CL. All others
parameters are marginalized over their total mean values. The confidence regions correspond
to the fits obtained with the following data sets: WMAP+SNIa (cyan), WMAP+SDSS (red)
and WMAP+SDSS+SNIa (magenta).

the distribution for ΛCDM. It can be seen that the largest deviation on primitive parameters

happens for the total amount of dark matter density Ωc. Given that the conversion decreases

the amount of cold dark matter at late times, it is not unexpected that the fitting procedure

found a best fit with small density today for cold dark matter while keeping its early time

density compatible with the found in ΛCDM scenario. Such concentrated effect in cold

dark matter density is not accidental, since the conversion model was built to diminish the

dark matter density at small scales without affecting the nice agreement with large scale

structures. The deviations from the other primitive parameters with respect to the scenario

with no conversion are generally small and with hardly observable effects.
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Figure 7.4.3: Posterior normalized distributions for all the standard model parameters for
ΛCDM (dashed line) and for the model with dark matter conversion (solid line). All others
parameters are marginalized over their total mean values.
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Table 7.2: Mean total values 〈p〉 with their 95% central credible intervals and the best fits
p̂ with their confidence levels at 2σ, for the model with conversion (ΛHCDM) and for the
standard model (ΛCDM). The fits were obtained with WMAP+SDSS+SN data.
Type Parameter 〈p〉(95% CCI) p̂ (2σ CL)

ΛHCDM ΛCDM ΛHCDM ΛCDM

Vanilla Ωbh
2 0.02220.0234

0.0211 0.02260.0238
0.0214 0.02230.0245

0.0202
0.02260.0246

0.0209

Ωch
2 0.100.14

0.06 0.1450.160
0.132 0.070.16

0.03
0.1420.165

0.122

θ 1.0351.040
1.030 1.0331.039

1.028 1.0351.053
1.024

1.0341.042
1.024

τ 0.090.12
0.06 0.080.11

0.07 0.090.15
0.04

0.090.13
0.05

ns 0.9731.002
0.943 0.991.02

0.96 0.981.02
0.92

1.001.04
0.94

log[1010As] 3.113.18
3.03 3.133.19

3.07 3.103.24
2.98

3.143.23
3.04

Extended fν 0.030.06 0.020.06 0.020.10 0.020.07

−w 0.880.74
1.06 0.830.71

0.98 0.880.63
1.31

0.820.62
1.13

Derived ΩΛ 0.680.72
0.62 0.660.71

0.61 0.700.76
0.54

0.680.73
0.58

Age/Gyr 13.313.6
13.0 12.612.8

12.3 13.213.8
12.8

12.513.0
12.2

σ8 0.710.80
0.63 0.760.85

0.68 0.720.89
0.58

0.780.92
0.62

zre 1114
8 1114

9 1116
6

1115
7

H0 6973
65 7175

67 7177
61

7277
65

∑

mν(eV) 0.40.8 0.30.8 0.091.4 0.21.1

Extra ai 0.60.3 N/A 0.6 N/A

κ 0.40.8 N/A 0.61.0 N/A

Extra derived Ωhh
2 0.060.10 N/A 0.070.13 N/A

F 0.40.6 N/A 0.50.7 N/A



Chapter 8

Discussion

Dark matter is dark. This statement is obvious and yet the discussion of cosmological obser-

vations is usually framed as a discussion of the measurements of the dark-matter distribution.

This is of course completely natural in the case where there are no dark energy perturba-

tions, i.e. within the framework of ΛCDM cosmology. However, the moment that we relax

this assumption, as we must do when investigating dark energy models different from a cos-

mological constant, this connection between measurements and the dark-matter distribution

is no longer simple, and can to all intents and purposes disappear.

We have emphasized that the probes we hope to use to constrain general dark energy

models depend on tracers which propagate on geodesics: light for weak lensing and galaxies

for RSD. This allows us to map out the metric on our past lightcone (the potentials Φ and

Ψ) through which these tracers fall freely. These are the real physical observables of the

combination of the cosmological probes. The relation of these potentials to the dark-matter

distribution is then a model-dependent statement, which just happens to be an identity for

ΛCDM.

Given this limitation, we should stress that the cosmological probes still can provide an

enormous amount of information. Since we can reconstruct the potentials, the slip parameter

η of the matter/light Jordan-frame metric is a model-independent observable, given overlap-

ping WL and RSD measurements. We do not need to parametrize it and we can answer the

question of whether anisotropic stress is at all necessary, directly from observations, without

any further modeling. This test has the power to immediately eliminate very large classes

of models, whatever its result. If η 6= 1 at even one redshift and scale, then models without

non-minimal coupling to gravity in the baryons’ Jordan frame can be thrown away. If η = 1

everywhere, then such couplings of dark energy to gravity could in principle still be there,

but they are so small that they cannot at all influence the dynamics of the Universe and

therefore can be neglected. We have summarized the most important dynamical variables

62
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and their observability status in table 5.1.

We have also shown that the evolution rate of the potentials can be mapped out. On

the other hand, the fact that we cannot observe the dark matter density amplitude means

that the effective Newton’s constant Y is not an observable in a model-independent setting.

Given these model-independent observables, we should refocus the predictions of perturbation

theory in dark energy models to their impact on these gravitational potentials rather than

on the dark matter, contrary to the dominant approach in the discussion today.

Nonetheless, we have demonstrated in chapter 6 how to construct tests of very general

classes of models of dark energy, even away from the frequently employed quasi-static limit.

The distinct advantage of this approach is that rather than parametrizing the free functions of

a class of models first, then evolving the predictions of these models using modified codes and

simultaneously fitting to data, our method is capable of testing/constraining classes of models

without any prior parametrization and without any assumptions on the initial conditions.

These tests involve performing measurements of the observables at multiple scales, redshift

by redshift, with the number of data points required determined purely by the number of

free functions of time in the particular class of models. In order to carry out this test it

is not necessary to modify codes for each class of models, but just to apply appropriate

transformations to the observed data. In other words, our approach calls for exploring the

space domain rather than the time domain of dark energy.

We have assumed that there is no velocity bias between dark matter and the galaxies.

Thus a measurement of galaxy peculiar velocities θgal via RSD is automatically a measurement

of the dark-matter peculiar velocity θm. Statistical origins of the velocity bias notwithstand-

ing [40], there could in principle be a non-vanishing bias between these two velocities. Indeed,

this happens in any model in which there is a fifth force acting on dark matter, which does

not couple to baryons or light, i.e. models with a violation of the Equivalence Principle such

as coupled quintessence [41]. This fifth force is a new source of acceleration for dark-matter

particles, causing their peculiar velocities to deviate from that of the galaxies. The effect of

this is to introduce a (scale and time-dependent!) velocity bias. Our measurements of WL

and RSD still map out the same metric potentials for our tracers, but these are not the com-

plete potentials that the dark matter feels. Allowing for such deviations, we completely lose

the connection between the dark matter growth rate and RSD of the galaxy power spectrum.

Summarizing the above, we can say that RSD and WL map out the Jordan-frame metric

for galaxies and light, but provide no direct information on the Jordan frame of the underlying

dark matter. In principle, one could use different tracers with different baryon fractions

(cluster and galaxy power spectra) to map out the Jordan frames for these two classes of

objects and obtain some information on the differences in the gravitational potentials they
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experience (in the spirit of e.g. [44]). Interestingly, galaxies are not just baryons, but are

dynamically coupled to their dark-matter halos. This means that the Jordan-frame metric

for the galaxies is not necessarily the same as the one for baryons, since the galaxies will at

least partly feel the fifth force acting on dark-matter.

Another interesting implication of our approach is that potential non-linearities of dark

energy, which can appear on very different scales to those in dark matter as a result of the

generic existence of screening mechanisms, are not deadly to the measurements of the linear

potentials Φ and Ψ. For tracers to move on geodesics determined by these potentials, their

gradients must remain small, i.e. the total EMT perturbations must be linear. So even if the

DE contribution is non-linear, it is enough for the dark-matter density to be dominant and

its perturbation linear for the tracers to continue to move on geodesics described by Φ and

Ψ. However, since there will no doubt be non-linear contributions to the potentials, both

from the DM and the DE perturbations, this should imply that measurements of higher-

order correlation functions should be sensitive to the extra non-linearity as compared to the

expected ΛCDM result.

There exist many, increasingly better, measurements of the bias b and the normalization

σ8 e.g. [98, 99, 100, 11, 101]. However, they all depend in a fundamental way on assumptions

necessarily true only in ΛCDM and therefore we cannot use them. Although non-linearities

can be used to constrain the bias through the galaxy bispectrum [101], this is a model-

dependent statement since screening mechanisms present in most dark energy models alter

the expectations. On the other hand, a measurement of bias is usually obtained as a result of

measuring σ8, which is done using either cluster counts and/or weak lensing around clusters.

As we have already pointed out, weak lensing measures the lensing potential rather than

the DM distribution, i.e. includes a dependence on dark energy perturbations. To extract

information from cluster counts, their mass is obtained from their gas temperature—which

gives information on the Newtonian potential Ψ and not on the DM mass—and spherical

collapse or N-body simulations are used, both of which depend deeply on the model for dark

energy, see e.g. Refs [102, 59, 103]. All of these issues can in principle be appropriately

modeled, but this must be done on a model-by-model basis. For these reasons, we cannot

interpret the ΛCDM measurement of σ8 as a parameter valid for other models of dark energy.

The tests that we have constructed in chapter 6 depend on eliminating variables through

the use of the constraints present in the Einstein equations. Given a class of models for DE,

one can replace dynamical variables with combinations of observables. Given the assumption

that the DE is a single degree of freedom, that the Equivalence Principle be satisfied and

a detection of non-vanishing anisotropic stress, we have enough information to eliminate all

non-observable quantities from the evolution equations and thus are able to form a null test
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for the most general class of scalar-tensor models directly on the observable data.

When there is no anisotropic stress then no such complete constraint can be formed:

the dependence on the unobservable δm remains. In that case, the best that can be done

is to obtain a measurement of the effective Newton’s constant Y on the assumption that a

particular class of models of dark energy describes the Universe and then use a consistency

relation for Y to determine whether the assumption was consistent with the data. This

is a somewhat more complicated exercise, which we have demonstrated for perfect-fluid k-

essence models, but would also apply to imperfect-fluid models featuring kinetic gravity

braiding [49, 59, 60].

Tests of the type we have shown can in principle be constructed for any other class of DE

models. Indeed, we would like to argue that one should think of the parametrized or effective

approaches, such as those of Refs [104, 105, 106, 107], as providing the dynamics of the dark

energy which can be rewritten in terms of evolution equations for the potentials. Provided

they are written in terms of parameters that on cosmological solutions are only functions of

time, a test such as those presented in chapter 6 would allow for putting constraints on these

parameters, or indeed would exclude setups which posses insufficient operators to describe

the data fully.

An alternative way of thinking about these tests is that, using the measurement of Φ

and Ψ, we are essentially reconstructing the components of an effective combined EMT for

DM and DE [108]. Now, given a class of models, we can extract relations between the

configuration of the degrees of freedom and the fluid variables, and therefore between the

fluid variables themselves, i.e. anisotropic stress, pressure, energy density. In general this

is difficult, but in some classes of models it can be done, e.g. [109, 32]. However, it should

be intuitively clear that if the dark energy has more degrees of freedom, only the adiabatic

modes will influence the potentials. Internal (isocurvature) modes, since they do not affect

the gravitational field of the DE, would only be constrainable through their impact on the

time evolution of the dark energy.

As we have discussed in the dark energy case, the impossibility to measure a gravitational

coupling directly might force us to make a model-dependent analysis of this quantity, specially

if anisotropic stress is not detected, indicating that we can not use an extra constrain from

the general scalar-tensor model. However, this model-dependent analysis differs completely

from the standard one that we have carried out in chapter 7 for a dark matter conversion

model, because it consists on applying null-tests on data measured in multiple scales and

reshifts.

By following the standard approach (Boltzmann code data fit), we have split the dark

sector and have tested with large scale structure data the hypothesis of an environmental
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conversion of cold dark matter into dark radiation that took place at late times in small

scales. The results obtained within this (standard) model-dependent analysis point that the

pure cold dark matter is a better option, although only marginally. Such analysis, as we have

emphasized, exhibit degeneracies between parameters that come from the the fact that we

are not dealing with observable quantities, and by making a split of the energy momentum

tensor, one imposes strong priors on the type of dark energy. Moreover, this type of fit does

not cover the full theoretical space, because the fiducial ΛCDM model does not exhibit, for

instance, dark energy perturbations.

We would like to stress that the method we propose depends on taking derivatives of the

data. Since for the purposes of this thesis we are working in the idealized case of sufficiently

good data, we have not addressed here the feasibility of this procedure in a realistic situation.

We leave this for future work.

We have also used a number of simplifying assumptions for the relation of measurements

to the potentials. For example, the Kaiser formula (4.2.4), assumes not only linearity, but

also a flat sky and ignores near-horizon effects. As shown by e.g. [37], the correction involve

contributions from, for example, weak lensing, which would pollute the determination of the

peculiar velocities of galaxies from RSDs. Indeed there are also near horizon corrections to

the weak lensing, e.g. [110]. Since our aim is to exploit large-scale data fully, taking into

account such corrections is a natural extension of this work.
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8.1 Equations of Motion

δT 0
0 ≡ A1Φ̇ + A2

˙δφ− ρmv̇ + A3
k2

a2
Φ + A4Ψ + A5

k2

a2
χ+

(

A6
k2

a2
− µ

)

δφ− ρmδ = 0 , (8.1.1)

δT i
i ≡ B1Φ̈ +B2δ̈φ+B3Φ̇ +B4

˙δφ+B5Ψ̇ +B6
k2

a2
Φ +

(

B7
k2

a2
+ 3ν

)

δφ (8.1.2)

+

(

B8
k2

a2
+B9

)

Ψ +B10
k2

a2
χ̇+B11

k2

a2
χ+ 3ρmv̇ = 0 ,

δT 0
i ≡ C1Φ̇ + C2

˙δφ+ C3Ψ + C4δφ+ ρmv = 0 , (8.1.3)

∇µTµν ≡ D1Φ̈ +D2δ̈φ+D3Φ̇ +D4
˙δφ+D5Ψ̇ +D6

k2

a2
χ̇ (8.1.4)

+

(

D7
k2

a2
+D8

)

Φ +

(

D9
k2

a2
−M2

)

δφ+

(

D10
k2

a2
+D11

)

Ψ +D12
k2

a2
χ = 0 ,

δT i
j − 1/3δi

jδT
k
k ≡ B6Φ +B7δφ+B8Ψ +B10χ̇+B11χ = 0 (8.1.5)

8.1.1 Coefficients

A1 = 6Θ, A2 = −2(Σ + 3HΘ)/φ̇, A3 = 2GT ,

A4 = 2Σ + ρm, A5 = −2Θ, A6 = 2(Θ −HGT )/φ̇, µ = E,φ , (8.1.6)

B1 = 6GT , B2 = 6(Θ −HGT )/φ̇, B3 = 6(ĠT + 3HGT ),

B4 = 3
[(

4Hφ̈− 4Ḣφ̇− 6H2φ̇
)

GT − 2Hφ̇ ĠT −
(

4φ̈− 6Hφ̇
)

Θ + 2φ̇Θ̇ − ρmφ̇
]

/φ̇2,

B5 = −6Θ, B6 = 2FT , B7 = 2
[

ĠT +H (GT − FT )
]

/φ̇, B8 = 2GT ,

B9 = −6(Θ̇ + 3HΘ), B10 = −2GT , B11 = −2(ĠT +HGT ), ν = P,φ , (8.1.7)
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C1 = 2GT , C2 = 2(Θ −HGT )/φ̇, C3 = −2Θ,

C4 =
[

2(Hφ̈− Ḣφ̇)GT − 2φ̈Θ − ρmφ̇
]

/φ̇2, (8.1.8)

D1 = 6(Θ −HGT )/φ̇, D2 = 2(3H2GT − 6HΘ − Σ)/φ̇2,

D3 = −3
[

2H(ĠT + 3HGT ) − 2(Θ̇ + 3HΘ) − ρm

]

/φ̇,

D4 = 2[3H{(3H2 + 2Ḣ)φ̇− 2Hφ̈}GT + 3H2φ̇ĠT + 6{2Hφ̈− (3H2 + Ḣ)φ̇}Θ − 6Hφ̇Θ̇

+(2φ̈− 3Hφ̇)Σ − φ̇Σ̇]/φ̇3,

D5 = 2(Σ + 3HΘ)/φ̇, D6 = −2(Θ −HGT )/φ̇, D7 = 2
[

ĠT +H (GT − FT )
]

/φ̇,(8.1.9)

D8 = 3
[

6(Ḣφ̇−Hφ̈)Θ − 2φ̈Σ + 3Hρmφ̇− µφ̇2
]

/φ̇2,

D9 =
[

2H2FT − 4H(ĠT +HGT ) + 2(Θ̇ +HΘ) + ρm

]

/φ̇2, D10 = 2(Θ −HGT )/φ̇,

D11 = [6{(3H2 + Ḣ)φ̇−Hφ̈}Θ + 6Hφ̇Θ̇ + 2(3Hφ̇− φ̈)Σ + 2φ̇Σ̇ − µφ̇2]/φ̇2,

D12 =
[

2H(ĠT +HGT ) − 2(Θ̇ +HΘ) − ρm

]

/φ̇ ,

M2 = [µ̇+ 3H(µ+ ν)] /φ̇

= −K,φφ + (φ̈+ 3Hφ̇)K,φX + 2XK,φφX + 2Xφ̈K,φXX

+ [6H(G3,φXXX +G3,φX)φ̇− 2G3,φφXX − 2G3,φφ]φ̈+ 6H (G3,φφXX −G3,φφ) φ̇

+ 6G3,φXXḢ + 2(9H2G3,φX −G3,φφφ)X

+ [6H2(4G4,φXXXX
2 + 8G4,φXXX +G4,φX) − 6H(2G4,φφXXX + 3G4,φφX)φ̇]φ̈

+ [12H(G4,φX + 2G4,φXXX)Ḣ + 6H(6H2G4,φXXX − 2G4,φφφXX + 3H2G4,φX)]φ̇

+ 12H2
(

2G4,φφXXX
2 − 3G4,φφXX −G4,φφ

)

− 6 (2G4,φφXX +G4,φφ) Ḣ

+ [2H3(2G5,φXXXX
2 + 7G5,φXXX + 3G5,φX)φ̇− 6H2(5G5,φφXX +G5,φφ + 2G5,φφXXX

2)]φ̈

+ [2H3(2G5,φφXXX
2 − 9G5,φφ − 7G5,φφXX) − 12H(G5,φφXX +G5,φφ)Ḣ]φ̇

+ 6H2X (3G5,φX + 2G5,φXXX) Ḣ + 6H2X
(

3H2G5,φX −G5,φφφ + 2H2G5,φXXX − 2G5,φφφXX
)

.

where the functions GT ,FT , Θand Σ are combinations of the Lagrangian functions that contain

all its information, as presented in [111], with a different notation, wi (i = [1, 4]). They are

related as
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GT ≡ w1 ≡2G4 + 2XG5,φ −X (4G4,X + 2HG5,Xφ
′)

2Θ ≡ w2 ≡4G4H + 2G4,φφ
′ + 2X (−8HG4,X + 6HG5,φ −G3,Xφ

′+

+2G4,Xφφ
′ − 5H2G5,Xφ

′
)

+ 4HX2
(

−4G4,XX + 2G5,Xφ −HG5,XXφ
′

)

3Σ ≡ w3 ≡ − 18G4H
2 − 18HG4,φφ

′ + 3X(−2G3,φ + 18H2G4,X−

18H2G5,φ +KX) +
3

2
H3G5,XXX (φ′)

7
+X2

(

36
(

2H2G4,XX −H2G5,φX

)

+

+
3

2
H
(

12G3,XX − 24G4,φXX + 52H2G5,XX

)

φ′ + 36XH2 (2G4,XXX −G5,φXX)
)

+

+X
(

3

2

(

48H2G4,X − 36H2G5,φ

)

+
3

2

(

24HG3,X − 60HG4φ,X + 60H3G5,X

)

φ′+

+
3

2

(

−2G3,φX + 72H2G4,XX − 42H2G5,φX + 2KXX

)

(φ′)
2
)

FT ≡ w4 ≡2G4 − 2X (G5,φ +G5,Xφ
′′)

We can also write the functions hi from the quasi-static limit in terms of the wi

h1 ≡ w4

w2
1

=
c2

T

w1

h2 ≡ w1

w4

= c−2
T , (8.1.10)

h3 ≡ 2w2
1w2H − w2

2w4 + 4w1w2w
′
1 − 2w2

1(w′
2 + ρm + 3H2)

2w2
1M

2ϕ̇2

h4 ≡ 2w2
1H

2−w2w4H+2w1w
′
1H + w2w1

′− w1(w
′
2 +ρm+3H2)

2w2
1M

2ϕ̇2

h5 ≡ 2w2
1H

2 −w2w4H+4w1w
′
1H + 2w′2

1 − w4(w
′
2 +ρm+3H2)

M2w4ϕ̇2

where the mass term is given in terms of derivatives of the total pressure and total energy

with respect to the scalar.

M2 =
3H (Pφ + εφ) + ε̇φ

φ̇
.

Notice that the sound speed in [111] is given by

c2
s ≡ 3(2w2

1w2H − w2
2w4 + 4w1w2w

′
1 − 2w2

1(w′
2 + ρm + 3H2))

w1(4w1w3 + 9w2
2)

. (8.1.11)

and that we have an extra 3H2 compared to the reference due to the different definition of

the Lagrangian.
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8.2 The quasi-static limit of Horndeski

The modification of gravity in the Horndeski theory is accounted by a single extra scalar

degree of freedom in addition to the Einstein Hilbert term, this means that we can obtain an

evolution equation for the propagating scalar mode. By minimizing the linearly perturbed

action for the scalar modes, an equation of motion for the perturbed scalar field and a series

of constraints is obtained. Eliminating these constraints, we arrive at:

(

k4 + α1k
2
)

Φ′′ +
(

α2k
4 + α3k

2 + α4

)

Φ′ +
(

α5k
6 + α6k

4α7k
2
)

Φ = (8.2.1)
(

α8k
2 + α9

)

δ′ +
(

α10k
4 + α11k

2
)

δ (8.2.2)

or, better expressed like:

Φ′′ +
α2k
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k4 + α1k2
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α5k
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2 + α7
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Φ = (8.2.3)

α8k
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α10k
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δ (8.2.4)

The sound speed is defined in the limit k → ∞, therefore c2
s ≡ α5.
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α10k2
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δ (8.2.6)

In the subhorizon approximation, Eq.(8.2.5) reduces to

Φ′′ + α2
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α3 − ξ3

α2k2
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Φ′ + c2
sk

2

(

1 +
α6
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sk

2
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α7

c2
sk

4
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α10

(
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α11

α10k2

)

δ (8.2.8)

where ξ3 is a term that comes explicitly from the equation of motion Eδ ≡ δ′
m +H−1θm =

−3Φ′ . , used for the θ, which is dropped in the subhubble approximation.

In [61], it is argued that the mass of the scalar mode is related to the linear coefficient of

δφ, defined as M2, in the equation of motion for the scalar perturbations. M2corresponding

to the mass of a canonical scalar field, described by the Lagrangian L = X − V (φ), with
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Gi = 0, i = 1, 2, 3. It is also argued that in viable models based on f(R) gravity and

Brans-Dicke theory with a field potential, the term −K, is the dominant contribution to M2,

where this mass can become larger in early cosmological times and might induce oscillations

in δφ. It is expected that, if the oscillations are initially suppressed relative to the matter-

induced mode, the quasi-static approximation can reproduce numerically integrated solutions

with high accuracy. Based on these arguments, the authors derive the solutions keeping the

M2in the quasi-static e.o.m. for the perturbed field. We write explicitly these terms in the

coefficients through the definition αi ≡ α̂i +M2βi
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Neglecting the time derivatives of the potential, we have
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And keeping only the highest powers in k that are coefficients of M2or δ leads to
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From the momentum, Hamiltonian and anisotropy constraints, we obtain

(
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γ2k
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)
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where no coefficient contains M2 terms. In the subhuble scales, this approximates as

(

k2 + γ1

)

Ψ +
(

γ2k
2 + γ3

)

Φ + γ4Φ
′ = γ7δ + γ6δ

′ (8.2.16)

Neglecting time-derivatives of Φ and keeping the highest order terms in k takes to
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k2 (Ψ + γ2Φ) = γ7δ (8.2.17)

substituting the potential Φ from Eq.(8.2.13)
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The effective gravitational coupling

Y = − 2

3Ωm
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s − γ2α10) k
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sk
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From Eq.(8.2.13) and Eq.(8.2.20), we obtain the the anisotropic stres

η ≡ −Φ

Ψ
=

α10k
2 + β11M

2

(γ7c2
s − γ2α10) k2 + (γ7β6 − γ2β11)M2

(8.2.22)

So we have recovered the result in [61] where the two quantities η and Y are described

by a scale dependence of the form

Y = h1

(

1 + k2h5

1 + k2h3

)

, (8.2.23)

η = h2

(

1 + k2h4

1 + k2h5

)

, (8.2.24)
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