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Abstract
Due to the conceptual and technical advances being made in computational physics and computational

materials science we have been able to tackle problems that were inaccessible a few years ago. In this

dissertation we study the evolution of some of these techniques, presenting the theory and simulation

methods to study first order phase transitions with emphasis on state-of-the-art free-energy calculation

(Reversible Scaling) and rare event (Forward Flux Sampling) methods using the atomistic simulation tech-

nique of Molecular Dynamics. The evolution and efficiency improvement of these techniques is presented

together with applications to simple systems that allow exact solution as well as the more the complex

case of Martensitic phase transitions.

We also present the application of numerical methods to study Pauling’s model of ice. We have

developed and implemented a new algorithm for efficient generation of disordered ice structures. This ice

generator algorithm allows us to create ice Ih cells of sizes not reported before. Using this algorithm we

address finite size effects not studied before.

Resumo

Devido aos avanços conceptuais e técnicos feitos em f́ısica computacional e ciência dos materiais

computacional nós estamos aptos a resolver problemas que eram inacesśıveis a alguns anos atrás. Nessa

dissertação estudamos a evolução de alguma destas técnicas, apresentando a teoria e técnicas de simulação

computacional para estudar transições de fase de primeira ordem com ênfase nas técnicas mais avançadas

de cálculo de energia livre (Reversible Scaling) e métodos de simulação de eventos raros (Forward Flux

Sampling) usando a técnica de simulação atomı́stica da Dinâmica Molecular. A evolução e melhora da

eficiência destas técnicas é apresentada junto com aplicações a sistemas simples que permitem solução

exata e também ao caso mais complexo da transição de fase Martenśıtica.

Também apresentamos a aplicação de métodos numéricos no estudo do modelo de Pauling para o

gelo. Nós desenvolvemos e implementamos um novo algoritmo para a criação eficiente de estruturas de

gelo desordenadas. Este algoritmo de geração de cristais de gelo nos permitiu criar células de gelo Ih

de tamanhos que não eram posśıveis antes. Usando este algoritmo abordamos o problema de efeitos de

tamanho finito não estudados anteriormente.
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Meu muito obrigado aos professores Alex Antonelli e João Francisco Justo Filho por participarem da

banca da minha Defesa de Mestrado e as sugestões e correções feitas a essa dissertação. Agradeço ao

Oswaldo e a Emı́lia da Secretaria do DFMC pela eterna boa vontade em ajudar e a competência sem

igual com que realizam seu trabalho.

Quanto ao apoio financeiro, agradeço ao CNPq pela bolsa de iniciação cient́ıfica durante a graduação.
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Chapter 1

Computational Physics and Materials

Science

In physics and science in general there exists a well defined line that creates an idea at the very root

of the scientific method: the theory/experiment dichotomy. Each of these parts is fundamental to the

existence of science as something meaninful. Richard P. Feynman summarized in a very simple sentence

the dynamics between theory and experiment:

“First you guess. Don’t laugh, this is the most important step. Then you compute the conse-

quences. Compare the consequences to experience. If it disagrees with experience, the guess

is wrong. In that simple statement is the key to science. It doesn’t matter how beautiful your

guess is or how smart you are or what your name is. If it disagrees with experiment, it’s

wrong. That’s all there is to it.”

In this chapter I will introduce ideas about computational physics and computational materials science

and illustrate the role of this new tool in the old and well stabilished notions of theory and experiment.

Much of what will be said was inspired by the texts Simulations: the Dark Side by Frenkel (2013),

Synergistic Science by Yip (2003) and the many answers I have got from collegues and friends to the

question: Why do we do simulations?

1.1 Why Simulations?

A simulation must answer a question. There is absolutely no meaning in running a simulation that

does not help to answer any question. It is like the most famous passage in the comic science fiction book

series Hitchhikers Guide to the Galaxy by Adams (1979-1992) where the supercomputer Deep Thought

1



2 CHAPTER 1. COMPUTATIONAL PHYSICS AND MATERIALS SCIENCE

completes a huge calculation to answer the question of the book Life, the Universe and Everything and

the final answer is 42. The problem is that nobody actually remembers what the question was.

Unlike experiments we cannot use simulations as a tool to discover fundamental laws of nature.

Strictly speaking it is not even completely correct to use the word ‘simulation’. Most of the time what

we are actually doing is ‘modeling’: every simulation starts with the choice of a model (e.g. interatomic

potential for a Molecular Dynamics simulation) that describes the real system we want to study. If this

model is good enough it will include all physical features necessary to reproduce and study a certain

phenomenon present in our system. Although we can always refine our model as much as we wish, we

will never actually simulate that specific real system present in a true experiment by computer: either

because we do not have computing power to include all the details or because our knowledge of all details

of nature is incomplete, or both.

Unlike theories we cannot use simulations as a tool to summarize our understanding of nature.

Nevertheless simulations are still useful as a powerful tool to provide important insights. For example,

we can use modeling of a system to test if it captures the essential physics of a phenomenon or if there

is something missing. We can therefore use simulations as a ‘discovery tool’ and obtain predictions of

approximate theories that could not be obtained analytically. In fact, it can be a very powerful discovery

tool since in a simulation you typically have control over all parameters to be simulated and therefore can

avoid the interference of any external agent. Furthermore one also has access to all microscopic details of

the system, something unimaginable experimentally.

Experiment and theory have a two-way relationship: experiments provide a test for theories and

theories make predictions for experiments. Theories also help us to better understand the physics of an

experiment and experiments help us to better define the limitations of a theory. Computer simulations

are dependent of both, theory and experiment. Theories provide the model for simulations and also

analytical results that help us to test and verify the correctness of our simulation. Frequently this is

vital to a computer code due to the complexity of numerical procedures involved and even because of the

limitations of computers. Therefore exact results from theories are one of the few methods to make sure

that we are not fooling ourselves. Experiments provide the final test to verify if our model captures the

physics of a phenomenon, in addition they may point at certain phenomena and systems unaccessible to

the current experimental techniques. Here computer simulations can become useful as a guide to what is

happening and how to approach such a system.

With this discussion we have seen that there is space for simulations and that theory or experiment

can hardly fill this space. Thus we can conclude that there is also a need for simulations.
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1.2 Moore’s law and Computational Methods

For the sake of keeping computational simulations useful there is a need for the continuous development

of better method and computers. Over the last 60 years the continuous speed-up of processors following

the Moore’s law (Moore et al., 1965), jointly with the creation and development of parallel computing1

have increased the speed at which computers perform elementary calculations by a factor of almost 1015.

Such an astonishing evolution allowed us to perform simulations that were totally inaccessible a decade

before. This makes us wonder if it is necessary to “waste” our efforts on further developing more efficient

computational methods or if it would be better to focus on other problems and just wait for a faster

computer to become available so that we can simulate a bigger system.

New algorithms and techniques allowed us to simulate systems and phenomena not possible before

such as rare events, quantum systems, free-energy calculations and many others. Many of the algorithm

improvements are concerned with a better performance. Later in this dissertation we will present an

example of this kind of improvement, namely the development of free-energy calculation techniques by

computer simulations that involves a significant gain of performance. Also important were the algorithms

that enabled new types of calculations. For example, we had the development of the Density Functional

Theory (DFT) by Kohn et al. (1965) that allowed the study of many different systems in which the

electronic structure is important, particularly in chemistry and solid state physics. This last type of

improvement cannot be achieved by the development of better computers. It results directly in a new

kind of information that can be extracted from a simulation. This was not possible before because we did

not know how, even though we already had sufficient computer power.

We now present a few examples of how the combination of good algorithms with adequate computing

power turned computer simulations into a useful tool and resulted in scientific discoveries and new insights

in different areas of physics and materials science.

1.3 The Fermi-Pasta-Ulam Work and Solitons

In 1955 Enrico Fermi, John Pasta and Stanislaw Ulam used the then new computer technology (the

famous MANIAC I computer) to solve an important problem at that time and observed for the first time

a phenomenon that would later be named solitons. Nowadays solitons are found to be present in different

areas of physics like optics, fluids and Bose-Einstein condensates. They initially intended to study a

problem of nonlinearity. The simulation followed the motion of 64 unidimensional masses connected by

1The largest supercomputer ever created is the Sequoia, located in the Lawrence Livermore National Laboratory, LLNL.

This supercomputer has more than 1.5 million cores and capacity to operate at 16.3 petaflops (flop = floating point operations

per second). An usual personal computer operates at 10 gigaflops, that is a difference by a factor of 105.
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springs on a horizontal line. The initial configuration of the system was such that the displacement of

each mass followed a half sine wave pattern. If the springs were strictly linear the sine wave pattern would

be maintained. The intention of the simulation was to add a small degree of nonlinearity to the springs

and check if, in time, the nonlinearity would break the sine pattern and distribute the energy equally

between all masses. What actually happened was that, although the sine wave pattern evolved in a more

complex form, it would periodically return to the initial configuration. This problem is now known as the

Fermi-Pasta-Ulam (FPU) problem (Fermi, Pasta, and Ulam, 1955).

A few years later the FPU work was revisited by Zabusky and Kruskal (1965). They transformed the

discrete problem of harmonic oscillators into one for a continuous system. Using the same initial condition

of a half sine wave they observed the same result as FPU: the system would evolve into a complex pattern

but, given enough time, it would return to the initial state and repeat the cycle, although in a different

way. In these cycles they could observe something new: the growth of individual waves that moved

independently and with velocities dependent on they height. When these new waves collided they would

pass through each other almost unscattered and eventually these waves would align to reproduce the

initial state before separating again and repeating. They decided to give a name to that remarkably

result, the solitary waves solitons. This discovery was received with a certain skepticism but, in time,

physicists started to encounter solitons solutions in their wave equations. This work is a classical example

of how computer simulations can “provide insight into deep and fundamental properties of a mathematical

model and lead to the discovery of completely new phenomena”, (Zabusky, 2005).

1.4 Quantum Effects in Materials Deformations

Quantum effects such as tunneling and energy discretization are known to become noticeable in solid

state physics at low temperatures when the thermal fluctuations are so low that the quantum fluctuations

become relevant. Proville et al. (2012) have analyzed, for the first time, the role of quantum effects in the

deformation of metals and obtained new insights using computer simulations.

When metals deform they do so by the movement of linear defects know as dislocations through the

crystal. The resistance of a metal to deform is therefore linked to the resistance of the dislocations to

move. The stress necessary for the dislocation to start moving and deform the metal is known as Peierls

stress. As we increase the temperature the crystal loses its hardness, meaning that thermal fluctuations

have influence on the motion of dislocations. It is believed that the motion of the dislocation occurs by the

creation of a kink-pair (Ackland, 2012): two steps in the dislocation line that, once created, can propagate

easily along the defect, moving it forward. This process is also believed to be the rate-limiting step in the

dislocation motion. Despite this insight there has been a long-standing discrepancy between theory and
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experiments regarding the behavior of dislocations at low temperatures in iron and other BCC metals.

Proville et al. (2012) have performed calculations on dislocations movement in iron that suggest

that it is necessary to invoke quantum effects to describe the system. They found that the effect of

quantum statistics and zero-point motion are important up to about half the Debye temperature of iron

(≈ 470K). The inclusion of these effects reduces the Peierls stress for dislocations motion in iron at the

low temperature limit by a factor of approximately two. The computational efforts of this simulation

“cannot be underestimated, and would have been impossible a few years ago”, (Ackland, 2012).

1.5 Scope of the Dissertation

This dissertation starts with a discussion on the use of the atomistic simulation technique of Molecular

Dynamics to study first-order phase transitions. After this brief introduction to computational simulations

and the driving force motivating their use, we start chapter 2 by presenting the Molecular Dynamics

methods. The discussion is centered about how we can link the many different algorithms of this technique

with physical ideas that motivate it. A more detailed description of the implementation of these algorithms

and other technical details are left to many different text books about this area (Tuckerman, 2010; Frenkel

and Smit, 2001).

In chapter 3 we approach specific methods to study first-order phase transitions. We introduce the

Reversible Scaling (de Koning et al., 1999b) method for free-energy calculations and the Forward Flux

Sampling (Allen et al., 2005) method to study rare events. Subsequently we apply these methods to the

problem of the Martensitic phase transition is pure iron (Porter and Easterling, 1992). Before doing so

we study the application of these methods to systems for which exact results are available so that we can

test our implementation and gain insights about how these methods work.

Unless explicitly stated otherwise, the results presented in this dissertation were obtained with our

own implementation of these techniques in the parallel and large scale Molecular Dynamics simulator

LAMMPS. Many different new commands and functionalities were programmed to obtain these results.

All of the code was written in such a way that they can be used within the LAMMPS scripting language.

In chapter 4 we present a new algorithm to created disordered ice structure in accordance with the

Bernal and Fowler (1933) ice rules. We start by introducing the Ih phase of ice and the Pauling’s model

of ice (Pauling, 1935). Then the ice network generator algorithm is presented and we show how we can

use it to study Pauling’s model. This is the first algorithm reported capable to created large ice cells.

Because of this emphasis is given in the study of finite size effects on the ice structures.
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Chapter 2

Molecular Dynamics

Molecular Dynamics (MD) is a technique for atomistic simulation of classical many-body systems.

The system model considers atoms interacting through an interatomic potential V (r) and numerically

integrates the Newtonian equations of motion to obtain the atomic trajectories and resolve the dynamics

of the system. The first MD simulations were perfomed by Alder and Wainwright (1957, 1959) at the

Lawrence Livermore National Laboratory on the study of phase transitions in a sytem of rigid spheres.

Simulations of realistic systems took place a few years later when Rahman (1964) studied a system

of 864 Argon atoms using a continuous potential and later Stillinger and Rahman (1974) investigated

liquid water. The development and implementation of an efficient computational code to perform MD

simulations is not a trivial task, in particular for parallel codes (Plimpton et al., 1995). Nevertheless,

due to the wide spectrum of problems that can be tackled using MD, different research groups developed

efficient and parallel MD codes. Examples of open source computational codes are LAMMPS and MD++,

largely used for the study of materials and mechanical properties of solids.

To get an idea of the colossal amount of work involved in the creation of such codes we only need to

report a few numbers: the source code of LAMMPS has more than 620,000 lines, resulting in more than

145MB of code files developed along 18 years. The paper (Plimpton et al., 1995) that describes much of

the technical problems of the implementation of this code has more than 3600 citations and the website

of the distribution lists more than 4900 articles published using the code. It is possible to get a glimpse

of the wide applicability of a code like this from the following sentences, quoted from the distribution

homepage:

LAMMPS has potentials for soft materials (biomolecules, polymers) and solid-state materials

(metals, semiconductors) and coarse-grained or mesoscopic systems. It can be used to model

atoms or, more generically, as a parallel particle simulator at the atomic, meso, or continuum

scale.

7
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In this chapter I present the physics behind an MD code. Although classical mechanics and statistical

physics are undoubtedly the pillars of the MD theory, many of the algorithms and simulation techniques are

rooted in different areas, namely: stochastic processes, classical electromagnetism, quantum mechanics,

elasticity theory and thermodynamics of non-equilibrium systems. Fundamentally, all these methods were

created to solve the same problem, the dynamics of many-body systems.

2.1 The Many Body Problem

The understanding and quantification of the dynamics of a many-body system is a fundamental and

recurring problem in condensed matter physics. The fact that emergent phenomena arise when systems

of many particles are considered has been recognized since a long time ago (Anderson, 1972). Given

the Hamiltonian operator H of a system then, at a time t0, the complete description of the state of the

system is given by a wave function |Ψ(t0)〉. The solution for the dynamics of this state, assuming that no

measurement is made, comes from the Schrödinger’s equation

− i~
∂

∂t
|Ψ(t)〉 = H |Ψ(t)〉 . (2.1)

Due to the linear character of eq.(2.1) the possible solutions are frequently written as a linear combination

of the stationary states of the system, which are the eigenstates of the Hamiltonian operator

H |ψn〉 = En |ψn〉 .

Therefore, the identification of these eigenstates is an important part of the process of solving the dynamics

of the system.

In an atomistic system with N electrons and M nuclei the Hamiltonian is written as

H =

N
∑

i=1

p2
i

2me
+

M
∑

i=1

P2
i

2Mi
+

N
∑

i=1

N
∑

j>i

e2

|ri − rj |
+

M
∑

i=1

M
∑

j>i

ZiZje
2

|Ri −Rj |
−

N
∑

i=1

M
∑

j=1

Zje
2

|ri −Rj |
(2.2)

where capital letters refer to nucleus variables and lowercase variables to electrons. Also, N and M are

∼ 1023. Already at this point we can notice the great mathematical difficulty that arises when we try

to tackle this Hamiltonian. We can increase it even more by adding the spin degrees of freedom and the

terms of spin-orbit and spin-spin coupling . Thus the solution of the dynamics of a many-body system

via Schrödinger’s equation is impracticable, computationally or analytically. It is clear that any method

that solves a system described by eq.(2.2) must include approximations with elements of the classical

mechanics.

The first step towards the solution of the full many-body Hamiltonian of eq.(2.2) is the Born-

Oppenheimer approximation (Born and Oppenheimer, 1927). In this approximation the kinetic energy of



2.1. THE MANY BODY PROBLEM 9

the nuclei

Tn =
M
∑

i=1

P2
i

2Mi

is removed from the Hamiltonian of eq.(2.2). We justify this approximation by the fact that the mass of

the nuclei is approximately 104 greater than the mass of a electron, hence if the momentum of both have

the same order of magnitude then the kinetic energy of an electron is ∼ 104 times greater than the kinetic

energy of one of the nuclei. The resulting Hamiltonian is

He =
N
∑

i=1

p2
i

2me
+

N
∑

i=1

N
∑

j>i

e2

|ri − rj |
+

M
∑

i=1

M
∑

j>i

ZiZje
2

|Ri −Rj |
−

N
∑

i=1

M
∑

j=1

Zje
2

|ri −Rj |
.

Notice that this is an electronic Hamiltonian, i.e. the position of the nuclei is only a parameter.

This means that, although the electrons are still interacting with the nuclei by means of the Coulombian

potential, the nuclei have fixed positions and do not move. This approximated Hamiltonian is still too

complex to be handled analytically (i.e., compute the complete set of eigenstates and the eigenenergy

spectrum). Nevertheless the electronic Hamiltonian is of fundamental importance in the approximate

solution of the system’s dynamics.

The electronic energy of the system is a functional of its state

E[ψ] = 〈ψ|He |ψ〉 .

Thus, given the nuclei positions R = {Ri}, the energy of the ground state of this specific configuration is

E0 = min
ψ

〈ψ|He |ψ〉 , (2.3)

where the right-hand side of eq.(2.3) is minimized by the wave function of the ground electronic state |ψ0〉.
It is possible to obtain the exact solution of eq.(2.3) using Density Functional Theory (DFT) (Hohenberg

and Kohn, 1964; Kohn et al., 1965), that receives this name because the energy minimization is carried

out using the electronic density n(r) as the fundamental variable instead of the electronic wave function.

In real problems, many different approximations are necessary in order to perform the minimization

computationally.

Once the electronic density n(r) has been obtained, we solve the dynamics of the system by means of a

connection with classical mechanics. To introduce this connection we use the Hellman-Feynman theorem

(Feynman, 1939). Suppose that the Hamiltonian of the system depends on a parameter λ. Hence the

wave function of a steady state of this system and its corresponding eigenenergies also depend on this

parameter

H(λ) |ψ(λ)〉 = Eλ |ψ(λ)〉 ⇒ Eλ = 〈ψ(λ)|H(λ) |ψ(λ)〉 .
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We assume that the state is normalized, i.e., 〈ψ(λ)| ψ(λ)〉 = 1. Differentiating with respect to λ we obtain

∂Eλ
∂λ

=

〈

ψ(λ)

∣

∣

∣

∣

∂H(λ)

∂λ

∣

∣

∣

∣

ψ(λ)

〉

+

〈

∂ψ(λ)

∂λ

∣

∣

∣

∣

H(λ)

∣

∣

∣

∣

ψ(λ)

〉

+

〈

ψ(λ)

∣

∣

∣

∣

H(λ)

∣

∣

∣

∣

∂ψ(λ)

∂λ

〉

=

〈

ψ(λ)

∣

∣

∣

∣

∂H(λ)

∂λ

∣

∣

∣

∣

ψ(λ)

〉

+ Eλ

[〈

∂ψ(λ)

∂λ

∣

∣

∣

∣

ψ(λ)

〉

+

〈

ψ(λ)

∣

∣

∣

∣

∂ψ(λ)

∂λ

〉]

=

〈

ψ(λ)

∣

∣

∣

∣

∂H(λ)

∂λ

∣

∣

∣

∣

ψ(λ)

〉

+ Eλ
∂

∂λ
〈ψ(λ)| ψ(λ)〉

=

〈

ψ(λ)

∣

∣

∣

∣

∂H(λ)

∂λ

∣

∣

∣

∣

ψ(λ)

〉

.

Therefore the Hellman-Feynman theorem gives us

∂Eλ
∂λ

=

〈

ψ(λ)

∣

∣

∣

∣

∂H(λ)

∂λ

∣

∣

∣

∣

ψ(λ)

〉

. (2.4)

We are going to apply the Hellman-Feynman theorem using the nuclei position R as the λ parameter.

The force on each nucleus is related to the gradient of the total energy, because the nuclei position R are

the only parameters in the electronic Hamiltonian, He. Applying eq.(2.4) with λ = R, and considering

coordinate x of the k-th nucleus we have

FX,k = − ∂E

∂Xk
= −

〈

ψ

∣

∣

∣

∣

∂He

∂Xk

∣

∣

∣

∣

ψ

〉

differentiating He we obtain

∂He

∂Xk
=

∂

∂Xk





M
∑

i=1

M
∑

j>i

ZiZje
2

|Ri −Rj |
−

N
∑

i=1

M
∑

j=1

Zje
2

|ri −Rj |





= −Zke2
M
∑

i 6=k

Zi
Xi −Xk

|Ri −Rk|3
+ Zke

2
N
∑

i=1

xi −Xk

|ri −Rk|3
.

Thus
〈

ψ

∣

∣

∣

∣

∂He

∂Xk

∣

∣

∣

∣

ψ

〉

= −Zke2
M
∑

i 6=k

Zi
Xi −Xk

|Ri −Rk|3
+

〈

ψ

∣

∣

∣

∣

∣

Zke
2
N
∑

i=1

xi −Xk

|ri −Rk|3

∣

∣

∣

∣

∣

ψ

〉

= −Zke2
M
∑

i 6=k

Zi
Xi −Xk

|Ri −Rk|3
+

∫

d3r |ψ(r)|2NZke2
x−Xk

|r−Rk|3

= −Zk





M
∑

i 6=k

Zie
2 Xi −Xk

|Ri −Rk|3
− Zk

∫

d3rn(r)
x−Xk

|r−Rk|3



 ,

and the force on nucleus k is given by

Fk = −∇E = Zk





M
∑

i 6=k

Zie
2 Ri −Rk

|Ri −Rk|3
−
∫

d3rn(r)
r−Rk

|r−Rk|3



 . (2.5)

Given the nuclear configuration R we can obtain the associated electronic density n(r) using eq.(2.3)

and compute the total force F = {Fi} on each nucleus using eq.(2.5). Therefore we have found an
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algorithm to compute a fundamental element of the classical dynamics, namely the total force. We can

now write a classical equation of motion for atom k

d2rk(t)

dt2
=

1

mk
Fk.

By integrating this equation numerically, we solve the dynamics of the system (within the performed

approximations). In the next section we are going to discuss the physical aspects of this integration, first

we want the general overview of the algorithm that we have just found. In a general manner we can write

the algorithm as a series of instructions:

1. Given R(t) = {Ri(t)} compute the electronic density n(r) using eq.(2.3).

2. Use n(r) and eq.(2.5) to obtain F(t) = {Fk(t)}

3. Compute R(t+ δt) = {Ri(t+ δt)} from the numerical integration of Newton’s equations of motion

using F(t) = {Fk(t)}.

4. Go back to 1 using R(t) ≡ R(t+ δt).

There is an implicit assumption in this algorithm that we can consider as the second part of the

Born-Oppenheimer approximation, namely the adiabatic approximation. Notice that at each iteration of

this algorithm the nuclear configuration R is altered and at each new configuration the electronic ground

state corresponding to the Hamiltonian He is computed. Thus, during the nuclear motion we consider

that the electrons are always in their ground state. Between each step δt the electrons have enough time

to follow the motion of the nuclei and find the new ground state for this new configuration.

Intuitively the adiabatic approximation included in the Born-Oppenheimer approximation is plausible,

as we have shown before, due to the mass difference between an electron and a nucleus. The kinetic energy

of the electrons is much higher than that of the nuclei and therefore it is reasonable that the degrees of

freedom related to the electrons have a much faster time evolution than those related to the nuclei. This

approximation is a direct consequence of the adiabatic theorem:

If a perturbation acts slowly on the Hamiltonian of a certain system, then the system stays

always in its instantaneous eigenstate.

In the Born-Oppenheimer approximation the system is given by the electronic Hamiltonian He and the

perturbation is the slow motion of the nuclei, changing the parameters R and He.

Although the described formulation fulfills the objective of obtaining an approximate dynamics of a

many-body system, in practice this formulation is computationally expensive due the need of performing

the minimization of eq.(2.3) at each step to find the ground electronic state. The size of the system is
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therefore limited to only a few hundred of atoms and still requires a high performance computer. The

time scale is also limited to a few picoseconds.

The solution to avoid the computation of the electronic density at each step is to substitute the force

of eq.(2.5) by the force derived from an effective interatomic potential V (R). This potential implicitly

mimics the effect of the electronic density and other degrees of freedom, as the electronic spin, and

generates the force that acts on the nuclei in a computationally cheaper manner. This is done using

analytical expressions specifically developed to capture the physics present in the atomic interactions of

the materials to be simulated with this interatomic potential. Once the analytical equations for V (R) are

developed, the different parameters of this model are adjusted to reproduce specific characteristics of the

substance under investigation. Frequently this fit is achieved with the help of experimental data. Because

of this V (R) is also known as an empirical potential.

Often it is not possible to capture all characteristics with an empirical potential. In this case it

becomes necessary to obtain a compromise between a good description of certain properties at the cost of

a poor description of others. For example, an empirical potential can describe very well the behavior of the

liquid phase of a certain metal but it can have a poor description of the formation energy of certain crystal

defects. In general no empirical potential will reproduce correctly the behavior of materials at conditions

where quantum effects are important, e.g. specific heat at low temperatures. Therefore it is necessary

to choose carefully a potential that correctly describes the physical quantities that are important for the

physical phenomenon to be studied.

In order to differentiate between both algorithms we shall call “Molecular Dynamics” the algorithm

that uses the empirical potentials V (R) to compute the forces on the nuclei and “ab initio Molecular

Dynamics” the algorithm that computes the electronic density “on-the-fly”. The ab initio MD is a first-

principles method, which means that it is not necessary to provide any external information (e.g. the

potential V (R) or the type of bond between the atoms of the material) to perform the simulation. As

opposed to the first-principles methods there are the force-field methods in which the dynamics of the

atoms is generated from an empirical potential. In the next chapters of this dissertation we are going to

develop further aspects of MD, although much of what is going to be described is also applicable to ab

initio MD.

2.2 Integration of the Equations of Motion

An important part of MD is related to the numerical integration of the classical equations of motion.

The development of an algorithm that performs this integration carries a unique perspective of the deep

connection between classical mechanics and MD. At first sight it may seem that the procedure of the
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numerical integration is noting but a mathematical artifact, but let us further develop this idea and

construct a simple method to integrate the Newtonian equations of motion.

We can write the equations to be solved as a set of coupled first order differential equation

dv

dt
=

F

m
dx

dt
= v.

Applying the method of finite differences to first order in the time step ∆t (Euler’s method) to these

equations yields

v(t+∆t) = v(t) +
F(t)

m
∆t (2.6)

x(t+∆t) = x(t) + v(t)∆t.

It seems that we could finish this discussion now because we have just obtained a numerical recipe for

integration. We only need to use a ∆t that is sufficiently small so that the linear approximation to the

differential equations is valid and by successively applications of the above equations we could evolve the

trajectory of the system.

Let us apply eq.(2.6) to the unidimensional harmonic oscillator. To simplify the discussion we are

going to use m = k = 1, initial conditions x(t = 0) = 0 and v(t = 0) = 1 and ∆t = 0.01. With these

parameters the phase space volume accessible to the system should be a circle with radius equal to 1

centered at the origin. Fig.2.1 (right) shows the trajectory of the system after 20000 steps. This result

clearly shows that there is something wrong with the integrator. We can use the quantity

∆E =
E(t)− E(0)

E(0)

as a measure for energy conservation. The result for the same simulation the result is shown in fig.2.1

(left) where we can see that the Euler integrator does not conserve energy. Although it is a valid numerical

method for solving differential equations in general it fails when applied to Newton’s equations of motion

Giordano (1996). The problem is that these differential equations are specific: they possess certain

symmetries and conservation laws that make them special. For example, from Hamilton’s formulation

of classical mechanics we know that the equations of motion can all be derived from a Hamiltonian H.

This is a very specific property of this set of equations since not all differential equations can be derived

from a Hamiltonian. Thus, if we want solutions that possess physical meaning we need to incorporate

these specific properties of the classical equations of motion into the numerical solution. Tuckerman et al.

(1992) were the first to show how to systematically derive integration methods that contain all necessary

physical properties. The analysis that follows is based on their work.
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and { , } are Poisson’s brackets. We can formally integrate eq.(2.7) to

f [r(t),p(t)] = eiLtf [r(0),p(0)] , (2.8)

which led us to define U = eiLt as the classical propagator. Notice that the Liouville’s operator is

compatible with the time-reversibility because it is unitary

U−1(t) = U †(t) = U(−t).

Now we want to solve eq.(2.8) analytically. In order to do so we decompose Liouville’s operator as

iL = iLr + iLp where iLr ≡ ṙ(0). ∂∂r and iLr = ṗ(0). ∂∂p and apply each part separately, leading to

eiLrtf [r(0),p(0)] =

∞
∑

n=0

1

n!

[

ṙ(0).
∂

∂r
t

]n

f [r(0),p(0)]

=
∞
∑

n=0

1

n!
[ṙ(0)t]n .

∂n

∂rn
f [r(0),p(0)]

= f [r(0) + ṙ(0)t,p(0)] ,

and

eiLptf [r(0),p(0)] = f [r(0),p(0) + ṗ(0)t] .

Now, from the individual action of iLr and iLp we could try to compute the effect of iL but because iLr

and iLp do not commute exp(iLr + iLp) 6= exp(iLr) exp(iLp). Therefore we cannot apply the equations

for iLr and iLp separately. To solve this problem we use the Trotter’s expansion Tuckerman (2010):

eA+B = lim
P→∞

[

eA/2P eB/P eA/2P
]P

where A and B are non-commuting operators. For finite but large P we have

eA+B =
[

eA/2P eB/P eA/2P
]P
eO(1/P 2),

choosing A = iLpt, B = iLrt and ∆t = t/P we obtain

e(iLr+iLp)t =
[

eiLp∆t/2eiLr∆teiLp∆t/2
]P
eO(1/P 2).

Therefore we can define

G(∆t) = eiLp∆t/2eiLr∆teiLp∆t/2 (2.9)

as the discrete classical propagator. Because each term of the discrete propagator is unitary and the time

dependency is symmetrical in this equation it is easy to show that the whole propagation is time-reversible

too. More than that, we can notice that the Jacobian of each term is equal to 1 thus the Jacobian of the
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the time to analyze such data and understand what they mean physically. In the following section we

discuss the connection between MD and statistical mechanics.

2.3 Molecular Dynamics and Statistical Mechanics

Our ultimate goal in running an MD simulation is to obtain useful information about our system

capable of helping us to understand and gain insights about it. Because of the atomistic character

of MD simulations we deal with a large number of degrees of freedom (positions and velocities of all

atoms). Although it seems good to have such a detailed information about the system, frequently we

need to convert it into something amenable to brain. There are two different ways of processing the

“crude” data from the trajectory generated by our simulation. One of them is to generate smart graphical

visualizations of the system. This is a powerful method that allows us, with the help of the correct analysis,

to rapidly understand what is happening with our system. For instance the visualization package OVITO

(Stukowski, 2010) allows us to perform neighbor analysis of the atoms and distinguish between atoms in

different phases. This, for instance, allows us to observe the phenomena of crystallization from a melt.

The second type of processing of the trajectory data is to extract from the huge number of degrees

of freedom a small number of specific degrees of freedom that give us important information about

our system but are manageable to our limited processing capacity. This task is performed through

the use of the connection between statistical mechanics and thermodynamics. The state of a classical

system is completely described by the set of position and velocity of all atoms Γ = {rN ,vN}. A given

thermodynamical observable A is computed by taking the thermodynamical limit of averages obtained

using statistical mechanics

A
N

≡ lim
N,V→∞

〈A(Γ)〉
N

= lim
N,V→∞

1

N

∫

ρ(Γ)A(Γ)dΓ

where v = V/N is kept constant. A(Γ) is the observable variable computed using the microscopic state of

the system and ρ(Γ) is the probability density of the statistical ensemble compatible with the thermody-

namic boundary conditions. The thermodynamical limit is necessary to close the link between statistical

mechanics and thermodynamics.

There is a small but important subtlety in the calculation of A from an MD trajectory. The quantity

that we need to compute is

〈A(Γ)〉 =
∫

ρ(Γ)A(Γ)dΓ. (2.10)

Unfortunately, this is not the quantity that we have direct access to in a simulation. During the simulation

we collect a set of instantaneous configurations of our system Γ(t) = {rN (t),vN (t)} with 0 < t < T . If we
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collect M of these configurations in intervals longer than the correlation time of the system1 ti+1− ti ≥ τ

then we can form the estimate

A(Γ) ≡ lim
t→∞

1

t

∫ t

0
A [Γ(t)] dt ≈ 1

M

M
∑

i=1

A [Γ(ti)] (2.11)

which is fundamentally different from eq.(2.10). The important link between these two quantities comes

from the so called Ergodic Hypothesis, which assumes that the simulation time T is long enough so that

the system has the necessary time to visit all the phase space states accessible to it. In this condition and

further assuming that the dynamics of the system is such that it does not get trapped and locked in a

small region of the phase space we can assume that both averages converge to the same value. Therefore,

invoking the ergodic hypothesis, an MD simulation computes the ensemble average of eq.(2.10) by the

temporal average of eq.(2.11):

〈A(Γ)〉 ≡ A(Γ) (2.12)

thus obtaining an estimate of the thermodynamic observable.

Before finishing the discussion about the statistical-mechanical treatment of the MD trajectories it is

worth mentioning a remarkable interaction between modern concepts of classical mechanics and technical

aspects of MD simulations by which we can fully appreciate the importance of statistical mechanics in

order to obtain significant information from MD simulation.

Consider fig.2.3, in which the system initially at a state Γ(0) = {rN (0),vN (0)} is shown as a red dot.

Through the natural Hamiltonian evolution of this initial condition the system follows the green trajectory

and after a time t it reaches the final state Γ(t) = {rN (t),vN (t)}. Now suppose that we evolve the system

again from Γ(0) but at a time 0 < t′ < t we introduce a small perturbation. For instance it could be a

small increment δv in the velocity of one of the particles of the system. Before t′ both trajectories (blue

and green) coincide but after the small perturbation they diverge such that the final state of the blue

trajectory Γ(t) = {r′N (t),v′N (t)} is completely different from the final state of the green trajectory. This

divergence of trajectories is known to be exponential such that in a small amount of time the state of both

trajectories is completely different. This feature of the evolution of classical system is know as”Lyapunov

instability of trajectories” (Goldstein, 1980).

Now, why is the Lyapunov instability important in MD? At each time step ∆t we are storing the

state of the system Γ(t) = {rN (t),vN (t)} and using it in the next step of the Velocity Verlet integrator.

1 The correlation time is a measure time necessary for the system to forget about its initial configuration. It can be

estimated necessary time for a correlation function

CA(t) =
〈A(t)A(0)〉

〈A(0)2〉

to first decay to zero (it can oscillates afterwards).
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{

r0N (t),v0N (t)
}

{

rN (t),vN (t)
}

{

rN (0),vN (0)
}

vi ! vi + δv

Figure 2.3: Hamiltonian evolution of a initial state (red dot). The green trajectory is the natural evolution

through the Hamiltonian dynamics of the system, the blue trajectory contains a small perturbation during

the evolution. The exponentially diverging character of the trajectories is know as Lyapunov instability.

Because of the limited amount of memory of our computer we cannot save the exact value of, for example,

the position of an atom. What we do in practice is to truncate the real value at some point and store

the truncated value. In 64-bit machines we usually have about 15 digits of precision plus the exponent.

Therefore at each timestep of our MD simulation we are performing some kind of (small) perturbation to

our system such way that we can expect that in a short period of time the trajectory of our system will no

longer resemble the true trajectory, generated by the true Hamiltonian evolution of the initial conditions.

One may think that this feature might completely destroy the usability of MD simulations, but it is

at this point that the statistical mechanics works at its best. Although the collected states of eq.(2.11)

do not reflect the states of an actual trajectory they, are statistically uncorrelated collection of states

compatible with the simulated ensemble and therefore they are just as good as any other collection of

uncorrelated states to compute the average of eq.(2.11). Thus MD is still a safe method to compute

averages for thermodynamic observables.

We now turn to the important task of imposing different thermodynamic conditions (temperature,

pressure, volume, etc...) on an MD simulation.

2.4 MD in Different Ensembles: Anderson barostat

In the previous section we have shown how to correctly integrate the equations of motion in order

to perform an MD simulation. Using the Velocity Verlet integrator one will obtain a trajectory that

is compatible with the Hamiltonian dynamics of the system, which means that we are sampling from

an ensemble of constant energy E, constant volume V and constant number of particles N , i.e. the
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microcanonical ensemble. Assuming that the dynamics is ergodic the equilibrium distribution of the

system should be the distribution of the microcanonical ensemble

ρNV E (Γ) =
δ [H(Γ)− E]

∫

dΓδ [H(Γ)− E]
,

and according to the ergodic hypothesis the long-time average of a observable A is equal to the ensemble

average

〈A(Γ)〉NV E ≡ A(Γ).

Although there is nothing wrong with this approach it is still clear that there are many applications

of MD where one might find it convenient to sample from other ensembles or to have control over ther-

modynamic parameters other than E, V and N . This section and the next few will be devoted to the

discussion of methods often used to implement different ensembles sampling.

We start by considering that our system is coupled to an environment that exerts pressure P on the

system and therefore can perform work W = −P∆V if the volume V of the system changes. Under these

conditions we know that the internal energy E of the system is not conserved, but rather the enthalpy

H = E + PV.

This condition is described by the NPH ensemble (isobaric-isenthalpic). If we consider the system and the

barostat together we recover the microcanonical ensemble for a closed system whose total energy E+PV

is conserved. This means that the equilibrium distribution should satisfy the microcanonical ensemble

ρNPH (Γ, V ) =
δ [E + PV −H(Γ)]

∫

dΓδ [E + PV −H(Γ)]
.

To implement the NPH ensemble in an MD simulation one can use the method known as Andersen’s

Extended Lagrangian (Andersen, 1980). We follow the approach by Cai (2007). First we describe the

volume of the system through three vectors c1, c2 and c3 such that

V = (c1 × c2).c3 = det(h)

where h is the matrix composed of the three column vectors h = (c1|c2|c3). Now we define scaled

coordinates si for the atoms of the system in such a way that

ri = h.si ⇒ si = h−1.ri.

We assume that the simulation cell is a cube, so that h = V 1/3
I3 is diagonal and ri = V 1/3si. Andersen

(1980) proposed to include the volume of the system V in the equations of motion allowing it to fluctuate

during the dynamics. For this purpose he introduced the Lagrangian for an extended system

LA =
1

2

N
∑

i=1

mi

∣

∣

∣
V 1/3ṡi

∣

∣

∣

2
− U (V s) +

1

2
MV̇ 2 − PV (2.13)
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where s = {si} and M is fictitious mass associated with the simulation box.

To solve the Lagrange’s equations of motion

d

dt

(

∂LA
∂ṡi

)

=
∂LA
∂si

d

dt

(

∂LA
∂V̇

)

=
∂LA
∂V

we need to compute

∂LA
∂V

=
1

3V 1/3

N
∑

i=1

mi |si|2 −
∂U

∂V
− P

∂LA
∂si

= −∂U
∂si

∂LA
∂V̇

=MV̇

∂LA
∂ṡi

= miV
2/3ṡi.

Accordingly the modified equations of motion are

s̈i = −2

3

V̇

V
si −

1

miV 2/3

∂U

∂si

and

V̈ =
1

M
(PVirial − P ) (2.14)

where

Pvirial =
1

M

(

1

3V

N
∑

i=1

mi

∣

∣

∣V 1/3si

∣

∣

∣

2
− ∂U

∂V

)

is the virial pressure of the system (Allen and Tildesley, 1989). Analyzing eq.(2.14), it shows that Ander-

sen’s barostat controls the volume of the system by means of a comparison between the virial pressure and

the external pressure P . In this way the virial pressure fluctuates around the external imposed pressure

P .

Using the Andersen’s Lagrangian eq.(2.13) we can obtain the Hamiltonian HA of the system, which

is given by

HA =
1

2

N
∑

i=1

mi

∣

∣

∣
V 1/3ṡi

∣

∣

∣

2
+ U (V s) +

1

2
MV̇ 2 + PV. (2.15)

Therefore, along a dynamical trajectory, it is this Hamiltonian that is conserved instead of the enthalpy

H = E + PV . Although Andersen’s equations of motion do not exactly sample the NPH ensemble,

Andersen (1980) has shown that the sampling becomes exactly NPH in the limit of large number of

particles N such that, for a large enough system, we can compute averages like

A(Γ) ≡ 〈A(Γ)〉NPH =

∫∞

0 dV
∫

dΓA(Γ)δ [E + PV −H(Γ)]
∫∞

0 dV
∫

dΓδ [E + PV −H(Γ)]

and therefore have control over the pressure of the system.
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2.5 Canonical Ensemble: Nosé-Hoover Chain thermostat

Now we consider the problem of controlling the temperature of the system. In statistical mechanics

when we want to keep our system at a temperature T we couple our system to a heat reservoir at constant

temperature T . Although the composed system formed by the system of interest plus the reservoir is still a

closed system we assume that the reservoir is large enough that when it transfers or receives heat from the

system its temperature does not change. In MD simulations the approach is similar, using the method of

the extended Lagrangian introduced by Andersen (1980). We will now show how to obtain the equations

of motion for a system at constant temperature T , volume V and number of particles N . If we also wish

to control the pressure of the system all we need to do is to include the modifications presented in the

last section together with the ones that we present in this section.

If we want to control the temperature T of our MD simulation the first question we need answer is

how to compute the temperature in first place. The answer comes from a result from classical statistical

mechanics know as equipartition theorem which states the following: a classical system described by a

Hamiltonian H in equilibrium at temperature T has average value of 1
2kBT for each harmonic term in H.

The reason why this theorem is useful is because the kinetic energy of a classical system

K =
1

2

N
∑

i=1

miv
2
i

is a sum of 3N harmonic degrees of freedom, therefore

〈K〉 = 3N

2
kBT ⇒ T =

1

3NkB

N
∑

i=1

mi

〈

v2
i

〉

.

We can also use this last relation to obtain a instantaneous kinetic temperature T (t) of the system

T (t) =
1

3NkB

N
∑

i=1

mivi(t)
2. (2.16)

Using the Extended Lagrangian method of Andersen (1980), Nosé (1984) introduced a Lagrangian

that results in a set of equations of motion that sample the canonical (NVT) ensemble. To introduce the

thermal reservoir that exchanges heat with the system we introduce a new degree of freedom given by the

variable s that exchanges heat with the system by scaling its velocities. The extended Lagrangian is

LN =
1

2

N
∑

i=1

mis
2ṙ2i − U(rN ) +

Q

2
ṡ2 − gkBTobj ln s (2.17)

where Q is a mass associated with the thermostat, g = f + 1 where f = 3N is the number of degrees

of freedom of the system and Tobj is the temperature of the heat reservoir that we want impose on our

system.
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From eq.(2.17) we can obtain the momenta conjugate to ri and s

pi ≡
∂LN
∂ṙi

= mis
2ṙi

and

ps ≡
∂LN
∂ṡ

= Qṡ.

Then we can construct the Hamiltonian of the system HN :

HN =

N
∑

i=1

pi.ṙi + psṡ− LN ⇒ HN =
1

2

N
∑

i=1

ṗ2
i

mis2
+ U(rN ) +

p2s
2Q

+ gkBTobj ln s

and introducing p′
i = pi/s we obtain

HN =

N
∑

i=1

ṗ′
2
i

2mi
+ U(rN ) +

p2s
2Q

+ gkBTobj ln s

or

HN = H(p′N , rN ) +
p2s
2Q

+ gkBTobj ln s (2.18)

where H(p′N , rN ) =
∑N

i=1
ṗ′

2
i

2mi
+ U(rN ). If we perform a simulation using the extended Hamiltonian of

eq.(2.18) we will sample the microcanonical ensemble given by the partition function

QN (E) =
1

h3NN !

∫

drNdpNdpsds δ(HN − E)

=
1

h3NN !

∫

drNdp′Ndpsds s
3Nδ(HN − E)

=
1

h3NN !

∫

drNdp′Ndpsds s
3Nδ

[

H(p′N , rN ) +
p2s
2Q

+ gkBTobj ln s− E

]

.

Using the following property of the delta function

δ [f(x)] =
δ(x− x0)

|f ′(x0)|
,

where x0 is the single root of f(x), we can choose x ≡ s and

f(s) ≡ H(p′N , rN ) +
p2s
2Q

+ gkBTobj ln s− E.

Hence

s0 = e
−β

g

[

H(p′N ,rN )+
p2s
2Q

−E

]

with β = kBTobj and

f ′(x0) =
g

β
e

β
g

[

H(p′N ,rN )+
p2s
2Q

−E

]

.
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Then the partition functions becomes

QN (E) =
1

h3NN !

∫

drNdp′Ndpsds s
3Nδ

[

H(p′N , rN ) +
p2s
2Q

+ gkBTobj ln s− E

]

=
1

h3NN !

∫

drNdp′Ndpsds s
3Nδ

{

s− e
−β

g

[

H(p′N ,rN )+
p2s
2Q

−E

]

}

β

g
e
−β

g

[

H(p′N ,rN )+
p2s
2Q

−E

]

=
1

h3NN !

∫

drNdp′Ndps
β

g
e
−

(3N+1)β
g

[

H(p′N ,rN )+
p2s
2Q

−E

]

=
1

h3NN !

∫

drNdp′N β

g
e
−

(3N+1)β
g [H(p′N ,rN )−E]

∫

dpse
−

(3N+1)β
g

(

p2s
2Q

)

= C
1

h3NN !

∫

drNdp′N e−β[H(p′N ,rN )]

= CQNV T ,

where in the last passage we have used the relation g = f + 1 = 3N + 1 and we have also included in C

everything that does not depend of p′ or r.

Therefore, if we perform an MD simulation using the Hamiltonian of eq.(2.18) and measure the average

value of observables of the form A(p′N , rN ) we obtain:

A(p′N , rN ) ≡
〈

A(p′N , rN )
〉

Nose
.

However because A(p′N , rN ) does not depend on s or ps the average resumes to

〈

A(p′N , rN )
〉

Nose
=
〈

A(p′N , rN )
〉

NV T
.

Thus we have obtained a method to compute average values of observables A(p′N , rN ) in the canonical

ensemble.

Finishing the presentation of the Nosé-Hoover thermostat we introduce a simplification introduced by

Hoover (1985). We perform the change of variables ξ = sp′s/Q in eq.(2.18) and compute the equations of

motion for pi, ri, ξ and s:

ṙi =
pi
mi

ṗi = −∂U
∂ri

− ξpi

ξ̇ =

(

N
∑

i=1

p2
i

mi
− 3NkBTobj

)

/Q

ṡ

s
= ξ

where in the third equation we can substitute the value of the instantaneous temperature eq.(2.16) and

obtain

ξ̇ =
3NkB
Q

[T (t)− Tobj ] .
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This equation shows that the Nosé-Hoover thermostat has a feedback mechanism similar to that for the

volume in the Andersen thermostat, eq.(2.14). Measuring the difference between T (t) and Tobj the variable

ξ change in a way such as to modify the intensity of the viscous drag applied to the particles. In this

manner the value of T (t) fluctuates around Tobj .

Often the Nosé-Hoover is substituted by a similar thermostat known as Nosé-Hover Chain (Martyna

et al., 1992), where instead of one thermostat variable ξ there is a chain of M coupled thermostats ξk.

The equations of motion then become

ṙi =
pi
mi

ṗi = −∂U
∂ri

− pξ1
Q1

pi

ξ̇k =
pξk
Qk

ṗξ1 =

(

N
∑

i=1

p2
i

mi
− 3NkBTobj

)

− pξ2
Q2

pξ1

ṗξk =

(

pξk−1

Qk−1
− kBT

)

−
pξk+1

Qk+1
pξk

ṗξM =

(

pξM−1

QM−1
− kBT

)

.

Then the conserved Hamiltonian is

HN = H(p′N , rN ) +

N
∑

k=1

p2ξk
2Qk

+ gkBTobjξ1 +

M
∑

k=2

kBTξk.

The reason why this chain is necessary is to reduce the ergodicity problem (Tuckerman, 2010) present

when the Nosé-Hoover thermostat is applied to stiff systems like harmonic oscillators. In the next section

we will further explore this kind of problem.

2.6 Nosé-Hoover Chain Thermostat and Harmonic Oscillators

Let us now consider the application of the Nosé-Hoover thermostat to a system composed ofN identical

non-interacting tridimensional harmonic oscillators with spring constant k = mω2. Such system is also

known as an Einstein crystal because of the interpretation that each harmonic oscillator is an atom of the

crystal vibrating harmonically around its equilibrium position.
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We can obtain the partition function of the Einstein crystal analytically:

ZN =
1

(2π~)3N

∫

e−βH(rN , pN )dΓ =
1

(2π~)3N

(∫ ∫

e−p
2/2mkBT e−mω

2r2/2kBTd3rd3p

)N

=
1

(2π~)3N

(

√

2mπkBT

√

2πkBT

mω2

)3N

=
1

(2π~)3N

(

2πkBT

ω

)3N

=

(

kBT

~ω

)3N

. (2.19)

Using this equation we can compute the average of the potential energy and recover the equipartition

theorem result:

〈U〉 = 1

ZN

[

1

(2π~)3N

∫

U(rN )e−βH(rN , pN )dΓ

]

= −
(

kBT

~ω

)−3N (kBT

~ω

)3N/2 [ 1

(2π~)3N/2
∂

∂β

∫

e−βUd3Nr

]

= −
(

kBT

~ω

)−3N/2
[

∂

∂β

(

kBT

~ω

)3N/2
]

= −
(

kBT

~ω

)−3N/2
[

∂

∂β

(

1

β~ω

)3N/2
]

=

(

kBT

~ω

)−3N/2
[

3NkBT

2

(

1

β~ω

)3N/2
]

=
3

2
NkBT. (2.20)

By a similar calculation we can also obtain the average value of the kinetic energy 〈K〉 = 3
2NkBT . This

result is a specific case of the equipartition theorem and it only assumes that the system is in thermal

equilibrium at a temperature T . Accordingly, a system of harmonic oscillators provides a good test to

check the consistency of the thermostat.

Aside from verifying the equipartition theorem, we can also check if the thermostat correctly samples

the canonical ensemble by computing the probability distributions of (rN − rN0 ) (displacement from the

equilibrium position) and pN (momenta) and compare them to the analytical result. To obtain the

analytical results we consider a single harmonic oscillator, because the Einstein crystal is composed of N

non-interacting oscillators.

Because the probability distribution of the canonical ensemble is proportional to the Boltzmann factor

e−βE all we need to do is to correctly normalize the result, therefore
∫ +∞

−∞

ρ(x)dx =

∫ +∞

−∞

Ae
− kx2

2kBT dx = A

√

2πkBT

k
= 1 ⇒ A =

√

k

2πkBT
,

and
∫ +∞

−∞

ρ(v)dv =

∫ +∞

−∞

Be
− mv2

2kBT dx = B

√

2πkBT

m
= 1 ⇒ B =

√

m

2πkBT
.

The final results are

ρ(x) =
1

√

2πkBT/k
e
− kx2

2kBT and ρ(v) =
1

√

2πkBT/m
e
− mv2

2kBT . (2.21)
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Because Dij is symmetric we can diagonalize it writing D = UΩUTwhere Ω is the diagonal matrix

with the eigenvalues of D and U is an unitary matrix (UUT = I3N×3N ) the columns of which are

eigenvectors of D. The eigenvectors and eigenvalues of this matrix are such that D.ǫi = ω2
i ǫi, where ωi

are the eigenfrequencies and ǫi are the polarization vectors of the corresponding normal mode. Since D is

a 3N × 3N matrix we have i = 1, 2, . . . , 3N . Notice that if we apply a displacement proportional to one

of the polarization vectors we have

F = −k.ǫi = −mD.ǫi = −mω2
i ǫi ⇒ F = −mω2

i ǫi.

Therefore the polarization vectors (eigenvectors of the dynamic matrix) are the directions in which the

restoration forces point exactly in the opposite direction of the given displacement and has magnitude

mω2
i .

The dynamic matrix D is real, symmetric (this result follows directly from the symmetry of Newton’s

third law) and has dimensions 3N ×3N . Hence all its eigenvalues (square of the frequencies of the normal

modes) are real and its associated eigenvectors (polarization vectors) form a complete basis of this 3N -

dimensional vector space. Thus if we normalize the eigenvectors properly such that ǫ
T
i .ǫj = δij , we can

write any position vector r of the N atoms as a linear combination of the polarization vectors of the

dynamical matrix:

r =

3N
∑

i=1

aiǫi ⇒ ǫ
T
j .r =

3N
∑

i=1

aiδij ⇒ ai = ǫ
T
i .r.

In this manner the force acting on the atoms in the configuration r is given by

F = −mD.r = −mD.

N
∑

i=1

aiǫi =

N
∑

i=1

(−maiω
2
i )ǫi (2.23)

and the harmonic potential energy of the system is

V (r) = V0 +
3N
∑

i,j=1

kij(qi − q0i )(qj − q0j ) = V0 +
1

2
mrTDr

= V0 +
1

2
m

(

3N
∑

i=1

aiǫi

)T

D





3N
∑

j=1

ajǫj



 = V0 +
1

2
m

3N
∑

i,j=1

aiajǫ
T
i Dǫj

= V0 +
1

2
m

3N
∑

i,j=1

aiajω
2
j ǫ
T
i .ǫj

= V0 +
3N
∑

i=1

1

2
mω2

i a
2
i . (2.24)

In the same way we can write the velocity of the atoms as

v =
dr

dt
= ṙ =

3N
∑

i=1

ȧiǫi
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and therefore the kinetic energy of the crystal is given by

K(v) =
m

2
vT .v =

3N
∑

i,j=1

m

2
ȧiȧjǫ

T
i .ǫj ⇒ K(v) =

3N
∑

i=1

m

2
ȧ2i . (2.25)

With the equations (2.23), (2.24) and (2.25) we can verify that the basis constructed from the polar-

ization vectors of the dynamical matrix gives us harmonic equations for the kinetic and potential energy.

Hence the equipartition theorem holds for each normal mode of the crystal in the harmonic approxima-

tion. Using a chain of length 4 for the Nosé-Hoover chain thermostat we have performed MD simulations

to verify whether it gives us the equipartition of energy between the normal modes of the crystal. The

results for the total kinetic and potential energy are shown in fig.2.7. The average values are

Equipartition = 38.740 meV/atom

〈U〉4
N

= (38.738± 0.034) meV/atom
〈K〉4
N

= (38.739± 0.034) meV/atom

so at first sight there is nothing wrong with the Nosé-Hoover chain thermostat given that the average

value of the potential and kinetic energy seem to respect the equipartition theorem.
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Figure 2.7: Exact probability density of the potential (left) and kinetic energy (right) of an atom of

a crystal under the harmonic approximation, the dotted line is the exact result for the average values

predicted by the equipartition theorem.

Let us now analyze the density distribution of position and velocity and compare with eq.(2.21).

Fig.2.8 shows the distribution for this system generated by the Nosé-Hoover thermostat. For the case of

the velocity we can compare with the exact result and it is clear that the simulation does not agree with

the equipartition theorem, for the position all we can say is that it at least presents an Gaussian shape.

To identify the root of the problem we recall that the equipartition theorem is stronger than the

version we are using. It asserts that the equipartition of the energy works for each harmonic degree of



32 CHAPTER 2. MOLECULAR DYNAMICS

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20

x [Å]
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Figure 2.8: Probability density of the position (left) and velocity (right) of an atom of a crystal under

the harmonic approximation, the solid line is the exact result.

freedom of the Hamiltonian, so that the average value of each normal mode (kinetic and potential energy)

should have the average value described by the equipartition theorem, eq.(2.20). In fig.2.9 we shown the

average value of the kinetic(left) and potential (right) energy for each normal mode of a crystal with 1024

atoms. The yellow solid line shows the expected value according to the equipartition theorem. These two

figures demostrate that the Nosé-Hoover chain thermostat does not divide the energy equally between

each normal mode. A few of the normal modes are extremely “hot”, with an average value of potential

and kinetic energy larger than the expected by more than a order of magnitude, while many other modes

are almost “frozen”, with a mean value of the energy much smaller than expected.

We conclude that the Nosé-Hoover chain thermostat cannot be used to thermostat system with a

high degree of harmonicity. This is a problem in many situations, for example when dealing with the

harmonic approximation or the Einstein crystal, which are two systems frequently used in the free-energy

calculation of solids. Hence we shall look for a thermostat than can correctly equilibrate such stiff systems

at a constant temperature.

2.8 Canonical Ensemble: Langevin Thermostat

The Langevin thermostat has a simple interpretation based on Brownian motion. Consider a pollen

particle embedded in a fluid (water). The pollen is a large particle O(µm) if compared with the water

molecules O(nm). The collision of a single water molecule does not change the velocity (magnitude and

direction) of the pollen particle considerably, but due to the fact that the pollen particle is surrounded

by many water molecules it is suffering many collisions in a small time interval. From these incessant
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Figure 2.9: Average kinetic (left) and potential (right) energy of each one of the normal modes of a

crystal of 1024 particles. The Nosé-Hoover thermostat does not result in an equally partition of the

energy between the normal modes.

collisions the pollen particle changes its velocity and slowly acquires the same temperature of the water,

i.e.
〈

mpv
2/2
〉

= kBT/2. The water solution act as a thermal bath to the pollen particle, hitting it all

the time in a different directions and with a different intensity such that it sometimes absorbs some of

its kinetic energy (acting as a friction force) and sometimes it transfer some kinetic energy to the pollen

particle (acting as an impulsive force).

The idea of the Langevin thermostat is to mimic the water solution and keep the system at a constant

temperature using random collisions and a viscous force. In order to keep the notation simple we are

going to consider the one dimensional case. We introduce two new forces to the equations of motion of

the particles of the system

ffric = −mγv(t)

is the friction force where m is the mass of a atom of the system, v(t) is its velocity and γ is the friction

coefficient. In order to balance the friction force we introduce the random impulsive force

frand = R(t)

that has the following properties

〈R(t)〉 = 0

and
〈

R(t′ + t)R(t)
〉

= 2mkBTγδ(t) (2.26)

where T is the temperature that we wish to impose to our system. This random force is also called a
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white noise due to the Dirac’s delta correlation and the zero average. This means that the force acting

at a time t has no correlation to the force acting at any other time t′. In other words, it has no memory.

The best way to understand why we choose this specific correlation function is to verify that it results

in the correct temperature for our system. To simplify the calculations we consider a case where there is

no external potential, U(r) = 0. The equations of motion are then

ẋ(t) = v(t)

mv̇(t) = −mγv(t) +R(t). (2.27)

Eq.(2.27) can be multiplied by the integrating factor eγt and integrated, resulting in

v(t) = v(0)e−γt + e−γt
∫ t

0
eγt

′ R(t′)

m
dt′.

Now if we square this result and take the ensemble average we obtain

〈

|v(t)|2
〉

=
〈

|v(0)|2
〉

e−2γt +

(

kBT

m

)

(

1− e−2γt
)

.

Hence in the limit of t ! ∞ we obtain

lim
t→∞

〈

1

2
m |v(t)|2

〉

=
kBT

2
.

Accordingly this choice the correlation function is justified by the fact that it results in the correct

temperature predicted by the equipartition theorem. Notice in eq.(2.26) that the random force magnitude

is related to the dissipative force parameter γ, which is a manifestation of the fluctuation dissipation

theorem (Cai, 2007).

2.9 Langevin Thermostat Applied to Harmonic Systems

We have already confirmed that the Nosé-Hoover thermostat does not correctly sample the canonical

ensemble for stiff (harmonic) systems. Lets now apply the same tests to verify if the Langevin thermostat

suffers from the same problem.

First we are going to analyze an Einstein crystal, a system composed of N non-interacting harmonic

oscillators. For the same system studied using the Nosé-Hoover thermostat we compute the averages

values using a Langevin thermostat coupled to the system now. In fig.2.10 we see that the kinetic and

potential energy distributions are Gaussians centered around the value predicted by the equipartition

theorem. The average results are

Equipartition = 3.3053 ~ω/atom
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Chapter 3

Phase Transitions and Free-Energy

Calculation

In this chapter we present applications of the Molecular Dynamics method to the study of first-

order phase transformations. We start by introducing the role of the free energy in the question of the

thermodynamic phase stability of a system. Then we present different methods to perform the calculation

of free energy using MD. The final objective is to apply these methods to the case of the Martensitic phase

transition in iron. Besides the study of the thermodynamics of first-order phase transformations we also

want to approach the difficult problem of the kinetics of this phase transformation. We present here a

few attempts to study the kinetics using the rare event method know as Forward-Flux Sampling.

3.1 Phase Stability

We start this chapter with a discussion of the phase stability of materials. The problem of phase

stability can be stated as follows:

Given the microscopic description of a material (constituents particles, atoms, molecules and

chemical composition) and the thermodynamic conditions under which the material is sub-

mitted, what are the characteristics of the spatial arrangement this material will assume? Or,

what is the stable phase of this material under these conditions?

This question is at the very core of materials science since the phase of a material define many of its

properties and provides profound insights into the behavior of the material. For example, a very specific

property of the solid phase is its shear resistance, absent in other phases. A liquid possesses surface tension,

a property that controls the wetting characteristics and many other interesting phenomena. Crystalline

39
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translational symmetry gives crystals specific behaviors under X-Ray diffraction that allows studying the

atomic arrangements in a crystal and distinguish it from an amorphous solid.

What we need now is a measure for the thermodynamic stability of different phases, i.e. given two

possible phases of a material and the thermodynamic conditions, how do we measure which one is the

“best” phase? What is the property that, when measured, gives us the answer?

We start by analyzing a very simple case, depicted in fig.3.1. In A we have a system surrounded by

fixed adiabatic walls, meaning that the system is kept isolated and its internal energy E, volume V and

number of particles N are kept constant.

T P

Q V

T

Q

A) B) C)

Figure 3.1: A system kept at different thermodynamic conditions. A) is isolated and therefore is kept at

constant N , V and E. B) is in contact with a heat reservoir and therefore has constant N , V and T . C)

is in contact with a heat reservoir and a “volume” reservoir and thus has constant N , P and T .

We choose a random initial configuration for the material of this system and then we allow it to evolve.

From thermodynamics (Callen, 2006) we know that, given enough time, the (Hamiltonian) evolution of

the system will naturally lead it to the thermodynamic state of maximum entropy S(N,V,E). Therefore,

the most stable phase of this material under the thermodynamic conditions of (N,V,E) constant is the

one with maximum entropy:

(N,V,E) ⇒ max{S(N,V,E)}.

If we choose as initial condition a different phase with a lower entropy then, given enough time, the system

is going to evolve to the phase with maximum entropy. Similarly, if we impose the conditions of (N,V, S)

constant, then the most stable phase is the one which minimizes the internal energy.

(N,V, S) ⇒ min{E(N,V, S)}.

In this way we have defined functions of thermodynamic variables that are capable of measuring the

relative stability of different phases. Although the entropy S(N,V,E) and the internal energy E(N,V, S)
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are perfectly fine for this process, frequently we are faced with situations where this specific choice of

thermodynamic variables is not the most suitable. Often we have situations like fig.3.1 (B) where the

system is attached to a heat reservoir that keeps the temperature T of the system constant by exchanging

heat Q with it. In this situation the entropy S of the system is not constant due to the heat transfer

between the system and reservoir. Therefore, the internal energy is not suitable anymore to measure the

relative stability of the phases.

In order to solve this problem we need to perform a Legendre transformation (Callen, 2006) of the

function E(N,V, S) to change the dependency from S to T . The result is the so-called Helmholtz free

energy

F (N,V, T ) = E − S

(

∂E

∂S

)

N,V

= E − TS ⇒ min{F (N,V, T )}

that can be used to measure the relative stability between two different phases subject to a specific

temperature T . Now to bring the discussion one step closer to the most frequently encountered conditions

of an experiment we also introduce a barostat (“volume” reservoir) that controls the pressure P of the

system, as shown in fig.3.1 (C). Performing once again a Legendre transformation we can change the

volume variable V of the Helmholtz free energy and obtain the Gibbs free energy

G(N,P, T ) = F − V

(

∂F

∂V

)

N,T

= F + PV = E − TS + PV ⇒ min{G(N,P, T )}

Now, given the conditions of constant pressure P , temperature T and number of particles N we know

that the most stable phase of a given material is the one that minimizes the Gibbs free energy G(N,P, T ).

Often we are not able to directly minimize G(N,P, T ) due to the huge number of degrees of freedom of

atomistic systems, but we still can define different phases and compute the free energy of all of them, the

one with the smaller free energy is the most stable.

3.2 MD and Free Energy Calculation: λ-integration method

Now we turn to the problem of computing free energies using MD simulations. In the previous chapter

we saw that an MD simulation gives us access to average values of functions of the coordinates and

velocities of all particles (rN ,vN ) (e.g. potential energy, kinetic energy, pressure, correlation functions,

radial distribution function, etc...). With the help of the Ergodic assumption these averages can be written

as

〈A(Γ)〉 ≡ A(Γ) = lim
t→∞

1

t

∫ t

0
A
[

Γ(t′)
]

dt′. (3.1)

It is clear that from MD simulations one only has access to microscopic variables (coordinates and ve-

locities). Therefore if we want to compute free energies by MD simulations we need to express them as
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a function of these variables. This is a case where we need to link thermodynamics with a microscopic

theory of matter. This connection is made with the help of statistical mechanics, which asserts that, in

the thermodynamical limit, we have

F (N,V, T ) = −kBT lnZ(N,V, T ) (3.2)

with

Z(N,V, T ) =
1

h3N

∫

dΓe−βH(Γ). (3.3)

The partition function for the conditions of fixed N, V and T. Assuming an atomistic system of N particles

with Hamiltonian

H =

N
∑

i=1

p2i
2m

+ U(rN ),

the kinetic part of the partition function can be solved analytically:

∫

d3Np exp

(

−β
N
∑

i=1

p2i /2m

)

= (2πmkBT )
3N/2 =

(

h

Λ

)3N

with Λ =
√

h2/2πmkBT the thermal de Broglie wavelength. Hence eq.(3.3) becomes

Z(N,V, T ) =
1

Λ3N

∫

d3Nr e−βU(rN ) =
1

Λ3N
Q(N,V, T ),

where

Q(N,V, T ) =

∫

d3Nr e−βU(rN ) (3.4)

is known as the configurational part of the partition function and does not depend on the velocities of

the particles. From eq.(3.2) we obtain for the Helmholtz free energy

F (N,V, T ) = 3NkBT ln Λ− kBT lnQ(N,V, T ).

Thus in order to compute the free energy we only need to determine is the configurational part of the

partition function, eq.(3.4).

Comparing the equation for the configurational part of the partition function, eq.(3.4), to the average

values that we can obtain from an MD simulation, eq.(3.1), we see that Q(N,V, T ) cannot be written as

an average value obtainable from MD. Such quantities, which depend on the total phase-space volume

accessible to the system, are known as thermal properties. For this reason, we need special techniques to

compute free energies from MD simulations.

For this purpose we now introduce a technique known as Thermodynamical Integration (TI) or λ-

integration (Frenkel and Smit, 2001). We start by describing the fundamental idea behind TI. Consider

a thermodynamic system with N particles, volume V and temperature T at a state A. If we perform
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work WAB on this system (it can be positive or negative) in such a way that its final state is B then, by

the second law of thermodynamics, we know that

WAB ≥ ∆F (3.5)

where ∆F is the Helmholtz free-energy difference between states A and B. The equality in this relation

holds only if the work is done in a reversible manner. One way of doing this is to carry out a quasi-static

process in which the work is performed slow enough so that that the system follows a path of equilibrium

states linking A and B. Now if we can perform work in a controllable manner on our system then we can

measure the free-energy difference between the states before and after the work is performed by computing

the work done. This is the fundamental idea behind the TI method.

To perform work in a controllable manner we introduce a Hamiltonian that depends on a dimensionless

parameter λ: H ≡ H(λ). For this system the free energy now has an explicit dependence on λ

H ≡ H(λ) ⇒ F (N,V, T ;λ) = −kBT ln

[

1

h3N

∫

dΓe−βH(Γ;λ)

]

.

If we compute the derivative of F (N,V, T ;λ) with respect to λ we obtain

(

∂F

∂λ

)

N,V,T

=

∫

dΓ
(

∂H
∂λ

)

e−βH(Γ;λ)

∫

dΓe−βH(Γ;λ)
=

〈

∂H

∂λ

〉

λ

where we have used the notation 〈. . .〉λ to denote that the average is to be taken in the canonical ensemble

at temperature T with Hamiltonian H(λ). For brevity we are going to omit the dependency of the free

energy on the variables N , V and T in the notation. Now if we integrate both sides of last equation in λ,

from λA to λB where these values of λ characterize the states A and B respectively, we obtain

F (λB)− F (λA) =

∫ λB

λA

〈

∂H

∂λ

〉

λ

dλ , (3.6)

which is the fundamental equation of TI. It expresses the free-energy difference between states A and B

in terms of an integral of a quantity that is written as the average value of an observable. This type of

average can be easily computed from an MD simulation.

Before finishing this section we would like to present an interpretation of last equation that provides

us further insight into TI. If we compare eq.(3.6) with the relation of the second law of thermodynamics,

eq.(3.5), we see clearly that the TI equation has exactly the same form as the equality in the second law:

it relates a free-energy difference to reversible work. This observation leads us to interpret the right-hand

side of eq.(3.6) as the quasi-static work necessary to bring the system from state A to B

W qs
AB =

∫ λB

λA

〈

∂H

∂λ

〉

λ

dλ =

∫ λB

λA

fλdλ (3.7)
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it at t = tsim we choose λ(t = 0) = λA and λ(t = tsim) = λB. With the introduction of this temporal

dependency we compute the dynamical work done during the simulation as

W dyn
AB =

∫ tsim

0
λ̇(t)

∂H

∂λ

∣

∣

∣

∣

λ(t)

dt (3.8)

where ∂H
∂λ is the instantaneous value evaluated at t and not an average. Notice that we have introduced the

notation W dyn
AB , which is the dynamical work performed between A and B and differs fundamentally from

W qs
AB. Now that the process is not performed in equilibrium at each step, the equality of the second law,

eq.(3.5), no longer holds. Due to the intrinsic non-equilibrium nature of this process we have dissipative

entropy production characteristic of irreversible processes. This means that our estimate for ∆F will

have a systematic error besides the statistical error associated with the limited sampling. The systematic

error is not associated with the statistical nature of our measurements. Instead it is associated with the

dissipation of the irreversible process. We can write it as

W dyn
AB = W qs

AB +QAB (3.9)

where QAB is the dissipation in the process that goes from state A to state B. Furthermore, according

to the second law QAB ≥ 0.

To eliminate the systematic bias QAB we would have to set tsim ! ∞, in which case eq.(3.8) becomes

exactly equivalent to eq.(3.7) and we recover the quasi-static nature of the reversible process. Because

this limit is always unattainable in practice due to the limited amount of computational time we present

here a different solution (de Koning and Antonelli, 1997) to eliminate or at least reduce the effect of the

dissipation drastically. Consider the work done during the inverse process of bringing the system from

state B back to state A. In this case, the dynamical work is given by

W dyn
BA = W qs

BA +QBA = −W qs
AB +QBA. (3.10)

If we perform the forward, eq.(3.9), and the backward, eq.(3.10), processes slow enough that linear-

response theory is valid we have that QAB = QBA, which allows eliminating the systematic error by

combining the forward and backward results:

W qs
AB =

W dyn
AB −W dyn

BA

2
. (3.11)

In fig.3.2 we illustrate this procedure. We start with our system equilibrated at the state A (λA).

Then, by defining a function λ(t) we compute the forward work W dyn
AB to bring the system to state B.

After that, we equilibrate the system at the state B (λB) and using the same function in the reverse order

to compute the backward work W dyn
AB . The equilibrium free-energy difference is then computed using

eq.(3.11)
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To complete eq.(3.6) we need to compute the derivative of H(λ),

∂H

∂λ
= Hint −Hharm = Uint(r

N )− Uharm(r
N ) ≡ Uint − Uharm.

Then from eq.(3.6) we have

Fint(N,V, T ) = Fharm(N,V, T ) +

∫ 1

0
〈Uint − Uharm〉λ dλ. (3.13)

Fharm(N,V, T ) is the free energy of a set of N independent tridimensional harmonic oscillators and we

can compute it analytically. The partition function is

Zharm(N,V, T ) =
1

(2π~)3N

∫

dΓ exp (−βHharm)

=
1

(2π~)3N

[∫ +∞

−∞

exp
(

−βp2/2m
)

dp

∫ +∞

−∞

exp
(

−βkx2/2
)

dx

]3N

=
1

(2π~)3N

[

√

2πmkBT

√

2πkBT

mω2

]3N

=

(

kBT

~ω

)3N

,

giving a Helmholtz free energy

Fharm(N,V, T ) = 3NkBT ln

(

~ω

kBT

)

. (3.14)

The desired free energy then

Fint(N,V, T ) = 3NkBT ln

(

~ω

kBT

)

+

∫ 1

0
〈Uint − Uharm〉λ dλ . (3.15)

In eq.(3.15) we recognize the work computed using an MD simulation asW qs
AB =

∫ 1
0 〈Uint − Uharm〉λ dλ.

To improve the precision of the result obtained it is important to compute this value as accurately as we

can. If we want to reduce the statistical error of the 〈. . .〉λ present in this integral we can choose the spring

constant (or the angular frequency) of the springs in such a way that both systems, the crystal of interest

and the set of harmonic oscillators, have values of Uint and Uharm that are always close. This means that

we are choosing the system of reference (harmonic oscillators) as close as possible to the system of interest

(crystal). One way to do that proposed by Frenkel and Ladd (1987) is to impose that the root-mean

square displacements of the atoms in both systems are equal. Using the theorem of the equipartition of

energy we have

mω2

2

〈

∆r2
〉

=
3

2
kBT ⇒ ω =

√

3kBT

m 〈∆r2〉 . (3.16)

There is one small technical detail with eq.(3.15), although it is correct when we perform an MD

simulation in which we naturally constrain the center of mass of the system of harmonic oscillators. In
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order to not find a divergence in the integral to be computed we should also constrain the center of

mass of the crystal. We have to account for this constrain in the final result because in practice we are

measuring 〈. . .〉CMλ instead of 〈. . .〉λ. Polson et al. (2000) have shown how to perform this correction,

which is fundamentally a finite-size correction (in the thermodynamical limit the correction vanishes).

Here we only state the final result:

Fint(N,V, T ) = 3NkBT ln

(

~ω

kBT

)

+

∫ 1

0
〈Uint − Uharm〉CMλ dλ+ kBT ln

[

N

V

(

2πkBT

Nmω2

)3/2
]

.

All results using the Frenkel-Ladd method presented here include this correction.

3.5 Frenkel-Ladd: Harmonic Oscillators

We apply the Frenkel-Ladd method to an Einstein crystal (de Koning and Antonelli, 1996): a crystal

in which all atoms vibrate with the same frequency around their equilibrium positions. The vibrations

are those of independent harmonic oscillators. In practice we are performing a TI between two sets of

harmonic oscillators with different angular frequencies ωA and ωB. Because of the possibility of comparing

our results to the exact values this allow us to show how the TI and the AS work in practice.

Our Einstein crystal is prepared in a 12 × 12 × 12 simple cubic crystalline structure, this results

in 1728 atoms or 5184 independent unidimensional harmonic oscillators. The initial state A is defined

as the one with kA = mω2
A = 10 eV/Å and B is kB = mω2

B = 50 eV/Å where the mass is chosen

as m = 55.847 g/mol. We have used the iron atomic mass in order to bring the frequencies closer to

the real ones in iron. Technically this is only important to keep an idea of the order of magnitude of

the involved numbers. The λ(t) variation with t is chosen to be linear. Because of the thermostatting

problem encountered in Chapter 2 we use Langevin thermostat. The timestep used was ∆t = 0.5fs.

First of all we are going to check the convergence of the AS method. According to eq.(3.9) we should

expect the dynamical work to have a systematic error associated with the dissipative entropy production.

Thus we have performed several AS simulations between the two sets of harmonic oscillators using the

arbitrary value of Nsim = tsim/∆t = 5000 steps and a temperature of T = 100K, each one with a different

initial condition. From these simulations we have computed the estimative for W qs
AB, the dynamical work

W dyn
AB . The exact value of the quasi-static work, given by eq.(3.14) is

W qs
AB = ∆F = 3kBT ln

(

ωB
ωA

)

≈ 20.79meV/atom. (3.17)

In fig.3.4 (left) we confirm that indeed our estimate contains a systematic error QAB = 0.46± 0.01meV ,

showing that the dynamical work converges to a wrong value of W qs
AB even when the statistical error is

suppressed to a negligible value.
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3.6 Reversible-Scaling Method

In fig.3.6 (right) we have computed the temperature dependence of the free energy by running one

simulation for each desired temperature. This can be a problem when, for example, we want to define

the point where two free-energy curves cross to determine a phase transition temperature. In this section

we describe a technique based on the AS method that allows us to compute the entire temperature

dependence of the free energy in a certain temperature interval from a single MD simulation, improving

the efficiency of the method enormously.

The Reversible-Scaling (RS) (de Koning et al., 1999b) is an intrinsically non-equilibrium method for

efficient free-energy calculation. It makes use of the AS procedure to perform a specific quasi-static

process where the potential energy of the system is scaled by the parameter λ. By using this procedure

we are able to estimate the free energy of the system as a function of the temperature by performing

only one constant temperature MD simulation. The significant efficiency improvement of this method

when compared to the case where we compute only one free-energy value per MD simulation comes from

the fact that in the RS all states along the process represent a physically significant state of the system

(namely the system at a different temperature), while in the other cases only the initial and final states

have a physical meaning. The intermediate states only have the purpose of linking these two states.

The derivation of the equations for the RS is done in many papers (de Koning et al., 1999b, 2000, 1999a)

based only on the microscopic assumptions of statistical mechanics. We present here an alternative but

completely analogous derivation of theses equations based partially on thermodynamical considerations.

We start by recalling that the Gibbs free energy is given by

G = E − TS + PV ⇒ dG = −SdT + V dP,

computing d(G/T ) we obtain

d

(

G

T

)

=
dG

T
− G

T 2
dT

=
−SdT + V dP

T
− E − TS + PV

T 2
dT

=
V

T
dP − E + PV

T 2
dT

=
V

T
dP − H

T 2
dT ⇒

[

∂(G/T )

∂T

]

N,P

= −H

T 2
,

where we have used that H = E + PV is the enthalpy. This final equation is known as the Gibbs-

Helmholtz equation. Here we are going to derive the RS equation for zero pressure, the generalization for

other pressures was made by de Koning et al. (2001). If P = 0 we have H = E and then we integrate
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Gibbs-Helmholtz equations in T to obtain

G(T, P = 0, N)

T
=

G(T0, P = 0, N)

T0
−
∫ T

T0

E(T ′, P = 0, N)

T ′2
dT ′. (3.18)

From now on we are going to omit the P = 0 and N dependency on the notation of the Gibbs free energy

and the internal energy. The thermodynamic internal energy E is the average of the total microscopic

energy, that is, the sum of the kinetic and the potential energy:

E(T ′) =

〈

N
∑

i=1

p2i
2m

〉

T ′

+
〈

U(rN )
〉

T ′
=

3

2
NkBT

′ +
〈

U(rN )
〉

T ′

where we have used the equipartition theorem to compute the average value of the kinetic energy. The

subscript 〈. . .〉T ′ indicates that the average is to be taken in the ensemble with temperature T ′. Using

this equation in eq.(3.18) we have

G(T ) =

(

T

T0

)

G(T0) +
3

2
NkBT ln

(

T

T0

)

− T

∫ T

T0

〈

U(rN )
〉

T ′

T ′2
dT ′. (3.19)

Now to handle the integral in this relation we introduce the variable substitution characteristic of the RS

method: T ′ = T0/λ
′ and we denote T = T0/λ. Thus the integral becomes

−T

∫ T

T0

〈

U(rN )
〉

T ′

T ′2
dT ′ = −T0

λ

∫ λ

1

λ′2

T 2
0

〈

U(rN )
〉

T ′

(

T0

−λ′2

)

dλ′

=
1

λ

∫ λ

1

〈

U(rN )
〉

T ′
dλ′

and eq.(3.19) results in

G(T ) =
G(T0)

λ
+

3

2
NkBT0

lnλ

λ
+

1

λ

∫ λ

1

〈

U(rN )
〉

T ′
dλ′. (3.20)

To obtain the ensemble average of the right-hand side of eq.(3.20) it is necessary to perform MD

simulations at temperatures ranging from T0 to T = T0/λ. In order to eliminate this requirement we

analyze this average and rewrite it as

〈

U(rN )
〉

T ′
=

∫

d3Nr U(rN ) exp
(

−U(rN )/kBT
′
)

=

∫

d3Nr U(rN ) exp
(

−λ′U(rN )/kBT0

)

=
〈

U(rN )
〉λ′

T0

now the ensemble average is done at one constant temperature T0 but using the scaled potential λ′U(rN ).

Finally we obtain the equation characteristic of the RS method

G(T ) =
G(T0)

λ
+

3

2
NkBT0

lnλ

λ
+

1

λ

∫ λ

1

〈

U(rN )
〉λ′

T0
dλ′. (3.21)

Let us understand why it is important to rewrite the average as we have done by means of eq.(3.21).

This equation gives us the free energy at any desired temperature T as a sum of three terms. The
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first is the free energy at a reference temperature G(T0), which can be obtained using a single Frenkel-

Ladd calculation. The second term is an exact formula and the third is the integral of an average value

computed at a constant temperature T0, exactly like the integrals that can be computed using the AS

method, eq.(3.6), but with H(λ) = K + λU(rN ) where K is the kinetic part of the Hamiltonian:

W qs(λ) =

∫ λ

1

〈

U(rN )
〉λ′

T0
dλ′. (3.22)

Thus we can write the final equation of the RS method using the work computed by the AS method:

G(T ) =
G(T0)

λ
+

3

2
NkBT0

lnλ

λ
+

W qs(λ)

λ
. (3.23)

We can apply the AS method, eq.(3.8), to compute this integral in one MD simulation and therefore

obtain all values of G(T ) with the temperature within the range from T0 (equivalent to λ = 1) to

T = T0/λ. The idea to obtain the intermediate values of G(T ) is that, once we have performed the MD

simulation with λ changing from 1 to the final value λ, we can obtain a specific value of T ′ = T0/λ
′ by

only recomputing the integral of eq.(3.23) with limits from 1 to λ′.

3.7 Reversible Scaling: Harmonic Oscillators

As a first application of the RS method we compute the free energy an Einstein crystal. Again we

take advantage of the exact results available to illustrate how the method works. For the Einstein crystal

we have the Hamiltonian of eq.(3.12) and we define the RS Hamiltonian to be the harmonic Hamiltonian

of the Einstein crystal with a scaling parameter multiplying the potential energy,

H(λ) =
N
∑

i=1

p2i
2m

+ λ
N
∑

i=1

mω2

2
(ri − r0i )

2.

For this choice of Hamiltonian we can compute the quasi-static work of eq.(3.22) exactly

〈

U(rN )
〉λ′

T0
=
〈

U(rN )
〉

T ′
=

〈

N
∑

i=1

mω2

2
(ri − r0i )

2

〉

T ′

=
3

2
kBT

′ =
3

2
kB

T0

λ′
,

giving

W qs(λ) =

∫ λ

1

〈

U(rN )
〉λ′

T0
=

3

2
kBT0 lnλ.

To perform the MD simulations we use the same 12×12×12 simple cubic lattice of 1728 tridimensional

harmonic oscillators used in the AS method of mass m = 55.847g/mol and frequency k = mω2 = 10 eV/Å.

The reference temperature was chosen to be T0 = 32K and the final value of the parameter is λ = 0.01.

This represents a range of temperatures from approximately 0.1 to 10.0, two order of magnitude of

variation. Again the Langevin thermostat was used because of the ergodicity problem found with the

Nosé-Hoover thermostat.
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Each phase of the material has a specific function for internal energy and entropy, consider for example:

Ssolid, Sliquid and Sgas. At low temperatures the term −TS is negligible compared to the internal energy

due to the low value of T and therefore low temperatures favor phases of low internal energy E. This

simple analysis shows us why at low temperatures the solid is almost always the most stable phase:

in solids atoms and molecules are typically more strongly bound than in the liquid or gas phase and

therefore have lower internal energy. Now, at sufficiently high temperatures the −TS term becomes

important and comparable to the internal energy E. Therefore, phases with higher entropy are more

stable at high temperatures. This is why the gas and liquid phases are more stable than the solid phase

at high temperatures. We can extend this argument to the Gibbs free energy

G = E − TS + PV (3.24)

and show that phases with small volume (solid) are more stable at high pressures and phases with high

volume (liquid and gas) are more stable at low pressures.

Aside from the temperature, other thermodynamic variables contribute to the phase transition. One

variable whose influence is interesting to analyze is the pressure. Consider that we have found a point of

coexistence of phases (like in fig.3.9) at a given temperature and pressure. Now we want to change the

pressure by a small amount dP and determine how the temperature needs to be adjusted to keep both

phases in coexistence. In order to do that we need to use Gibbs free energy because there is a change in

pressure involved. From eq.(3.24) we know that

G = H − TS ⇒ dG = −SdT + V dP

therefore at the coexistence point if we change the pressure by dP and the temperature by dT the free

energy of the liquid and gaseous phases change by

dGl = −SldT + VldP

dGg = −SgdT + VgdP.

But we want to impose the condition that after this change of pressure and temperature the free energy

of both phases are still equal (condition for coexistence), thus

∆G = dGl − dGg = −∆SdT +∆V dP = 0 ⇒ dP

dT
=

∆S

∆V
. (3.25)

We can further simplify this equation by considering that under the same conditions

G = H − TtS ⇒ ∆G = ∆H − Tt∆S = 0 ⇒ ∆S =
∆H

T
=

L

Tt
(3.26)
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where we have recognized the latent heat of a phase transition as ∆H = L. This shows us the origin of

the latent heat: it is necessary to compensate the entropy difference between phases in a phase transition.

Thus eq.(3.25) becomes
dP

dT
=

L

Tt∆V
, (3.27)

this is the so called Clausius-Clapeyron (Callen, 2006) equation. It gives the slope of the coexistence curve

of a certain material in a P vs T phase diagram as a function of properties of the material: latent heat,

transition temperature and specific volume. This equation is the relation that we were looking for: it

gives us the connection between changes in pressure and temperature along the coexistence curve. Notice

that this equation is only valid for first-order phase transitions. In its derivation we have assumed that

the entropy of the phases are different and this is a direct consequence of the fact that the first order

derivatives of the free energy present a discontinuities for first-order phase transitions. Note that the

entropy is given by

S = −
(

∂G

∂T

)

P,N

.

Given a point of coexistence we can integrate the Clausius-Clapeyron equation, eq.(3.27) to reconstruct

the entire coexistence curve of these phases of the material. This procedure can be done computationally

using a generalization of the RS method for non-zero pressures (de Koning et al., 2001). What we obtain

is the phase diagram of the material, such as shown in fig.3.10 (left) for a simple substance that presents

three phases that can coexist at the triple point. In fig.3.10 (right) we have a realistic phase diagram

of water that shows the existence of many solid phases. Phase diagrams of real substances can be quite

complex, with each of the solid phases presenting different characteristics. For the case of water, for

instance, a few of the crystalline phases present a ordered dipole structure (XI, XIII, XIV) while others

do not.

Up to this point we have discussed thermodynamic features of a first-order phase transition. Next

we analyze the kinetics of such a transition. Consider that the system is in the gaseous phase of fig.3.9

(temperature T > Tf ). If we slowly decrease the temperature we will notice that the system does not

change its phase when the temperature reaches T = Tf , it takes a further reduction of the temperature

for the phase transition takes place. We can understand why this happens with a simple model known as

classical nucleation theory (CNT). Although the liquid phase has a lower volumetric free energy ∆G =

Gg(T ) − Gl(T ) < 0 there is a energetic cost associated with the creation of the liquid phase inside the

gaseous phase. More specifically, there is a surface tension γ between the interfaces of both phases. To

create a nucleus of radius r of the liquid phase inside the gaseous phase there is an associated energetic

cost of

∆Gγ = 4πr2γ (3.28)
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T

Solid

Gas

Liquid

Figure 3.10: Illustration of phase diagrams. Left: phase diagram of a simple substance. Right: realistic

phase diagram of water.

that the system needs to overcome by associated decrease of the bulk free energy

∆Gbulk =
4πr3

3
∆G. (3.29)

Considering a small degree of undercooling of the system (T < Tf ), we have

∆G = ∆H − T∆S = L− T
L

Tf
= −L∆T

Tf

where ∆T = Tf − T and we have used eq.(3.26). We also assume that the latent heat is independent of

the temperature for small undercooling. This is the part of the free energy that contributes to the phase

transition to happen and therefore is the driving force of the phase transition. Using the bulk free-energy

difference, eq.(3.28), and the nucleation energetic cost, eq.(3.29), we can construct the total free energy

of nucleation of a spherical nucleus of radius r

∆Gn(r) = ∆Gγ +∆Gbulk = 4πr2γ − 4πr3

3

(

L∆T

Tf

)

. (3.30)

In fig.3.11 we show the curve of ∆Gn(r) where we can see that there is a free-energy barrier to overcome

if we want to grow a nucleus. The phase transition will only be complete when a nucleus of the liquid

phase grows until the complete system has becomes liquid. We can compute the critical radius r∗, the

maximum of Gn(r), as

dGn(r)

dr
= 0 ⇒ r∗ =

2γTf
L∆T

, (3.31)
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of magnetic domains in ferromagnetic materials. This is an effect that is intrinsically correlated to the

minimization of the magnetic energy through the elimination of the external magnetic field of the magnet.

In the case of solidification, there are effects due to the elasticity and tension present in crystals that do

not appear in this theory. Furthermore, effects associated with anisotropy of the nuclei are also not taken

into account in CNT.

3.9 Thermodynamics of Martensitic Phase Transitions using RS

Martensitic phase transformations belong to a class of first-order phase transitions in which the crys-

tallographic structure of a solid changes. The fundamental characteristic of this phase transition is that

it is diffusionless. The change in the crystallographic structure occurs due to small rearrangements of

atoms, typically involving displacements smaller than the first-neighbor distance. These phase transitions

take place in many economically significant material applications (Porter and Easterling, 1992) such as

steel hardening and shape-memory alloys (a class of alloys that when deformed remembers its original

shape and can return to it if heated).

Here we focus our attention on a specific Martensitic phase transition that occurs in pure iron. We

present the behavior of iron at zero pressure in fig.3.12. At temperatures below 1184K (Bendick and

Pepperhoff, 1982) the stable phase of a system of pure iron is the α (BCC) phase. At temperatures above

1184K but below 1665K the most stable phase is γ (FCC) and above 1665K iron is stable in the δ (BCC

again) phase until it melts at 1809K (Brook and Brandes, 1983). In this figure we also present an idealized

mechanism for this phase transition known as Bain’s Path in which the transition happens without any

shear.

Bain’s Path

BCC FCC
1184K

1665K

α ! γ

δ ← γ

Figure 3.12: Martensitic phase transition in iron.

This phase transition is very important in the process of steel hardening. Steel is an alloy of iron

and carbon (but other elements can also be used). A small weight percentage (≤ 2%) of carbon is

added to modify the hardness of the material by preventing linear defects known as dislocations to slide
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past one another. The process of steel hardening has been known for thousand years. At the α phase

for temperatures below 1184K iron presents low solubility of carbon. When heated to the γ phase its

solubility increases significantly and carbon can be added to this phase. Then, if the temperature of

the material decreases rapidly (a process known as quenching) so that the carbon does not have enough

time to diffuse out of the iron, the iron goes back to the low temperature α phase but turning into a

supersaturated solution with carbon that presents higher hardness than pure iron.

Aside from its importance in materials science and in industry, this is a very interesting phase transition

from the physical point of view. Typically metals have closed-packed structures (FCC or HCP) as the

most stable forms. In iron it is the ferromagnetic energy contribution of α phase that stabilize the BCC

structure at low temperatures (Hasegawa and Pettifor, 1983) (the magnetism also has a crucial role in

many other characteristics of iron, including other phases that not BCC). The spin degrees of freedom have

an important contribution to the entropies of both α and γ phases. The Curie temperature of Fe is 1043K

and above this temperature the α phase loses its ferromagnetic properties and the excess of magnetic

entropy of the γ phase drives the α ! γ phase transition. The transition back to the BCC structure (δ

phase) at higher temperatures (γ ! δ) is common to many materials. Often the low temperature FCC

structure transforms to the high temperature BCC phase (Lee et al., 2012). In this γ ! δ phase transition

the contribution of the magnetic spins is still important Hasegawa and Pettifor (1983)

We are going to apply the RS method to study the thermodynamic equilibrium and polymorphism of

pure iron. We intend to reproduce the experimental phase stability with respect to the temperature at

zero pressure. Thus we need to obtain the Gibbs free energy curve as a function of the temperature for

the range of temperatures across which the phase transition happens. We are interested in the relative

stability of BCC and FCC structures because these are the structures that appear in the phase diagram

at zero pressure. In addition, we perform the same calculations for the HCP structure because of the

many similarities between this structure and FCC.

The first issue address is the reproducibility of the experimental behavior of iron using classical em-

pirical interatomic potentials. Lee et al. (2012) developed two different MEAM (Baskes, 1992) potentials

including the second nearest-neighbor formalism (Lee and Baskes, 2000) to reproduce the behavior of

pure iron, one of the conclusions relates to this problem of reproducibility: “(...) the correct reproductions

of the phase stability among three crystal structures of iron with respect to both temperature and pressure

are incompatible with each other due to the lack of magnetic effects in this class of empirical interatomic

potential models (...)”. This kind of incompatibility between two desired properties where improving the

description of one property results in a deterioration for another appears frequently when one is fitting

interatomic potentials. In many cases these difficulties are related to the electronic degrees of freedom
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and quantum mechanical effects not present in this type of simulation.

In general, the modeling of magnetic materials remains a true challenge and the highly non-trivial

task of including the subtle effects of magnetism in force field simulations has not been solved. The

best attempts to reproduce the experimental behavior of iron using empirical potentials is therefore left

to complex fitting schemes where the magnetic effects in the stability of phases is mimicked using the

lattice energy and the phonon contributions to the free energy. Despite these issues with the experimental

reproducibility of the thermodynamic equilibrium a few interatomic potentials have obtained some success

in reproducing these phase transitions.

The application of RS in this phase transition is a good example of how free-energy calculation

methods can be successfully applied to the realistic case of an interatomic potential. The efficiency of

classical simulations like MD and Monte Carlo are an advantage over first-principle simulations that allow

us to simulate systems of sizes interesting for materials science applications. We describe now the general

algorithm used to compute the free energy of the different phases of iron, making use of the Frenkel-Ladd

TI, RS and other general numerical techniques.

We are going to present results for three different potentials that present the α ! γ phase transition,

namely the Embedded-Atom Model (EAM) potential of Meyer and Entel (1998), the Analytical Bond

Order (ABOP) potential of Müller et al. (2007) and the Modified Embedded-Atom Model (MEAM) for

temperature dependence of Lee et al. (2012). From now on we refer to these iron potentials by the name

of the class of potentials (EAM, ABOP and MEAM). A few other potentials have also been tested but

they do not present this phase transition. For all three potentials we have computed the timestep size

by direct verification of the conservation of energy for an isolated system. Fig.3.13 (left) illustrates the

result of energy conservation for the MEAM potential. We have then chosen 3fs for MEAM and 1fs for

the EAM and the ABOP potentials.

Once again the Nosé-Hoover thermostat has shown problems with the canonical sampling at low

temperatures. Notice that this time we are applying the thermostat to a full interatomic potential, with

no harmonic approximations. In fig.3.14 we show the result of the canonical sampling for the MEAM

crystal at temperature of 1K. The two graphs on the top show the kinetic and potential energy distribution

respectively. Although the distributions have a Gaussian shape they are not the same for different chain

lengths and do not agree with the equipartition theorem for the kinetic energy. In the two graphs on the

bottom we have shown the density distribution for the velocity and position, comparing the result for

the velocity with the exact solution. In all cases we found a behavior that depends on the chain length.

For the velocity we can see that none of the results agree with the exact solution. Although the results

show that the Nosé-Hoover thermostat does not correctly sample the canonical ensemble for crystal at
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influence the error due to its N−1/2 dependence.

3.10 Kinetics of Martensitic Phase Transitions

We present now our attempt to study the kinetics of the Martensitic phase transition in pure iron

using MD. From an experimental point of view the kinetics of this transformation is difficult to analyze

due to the fast growth of the new crystal structure inside the system. For this reason not much is known

about the mechanisms of this phase transition. In fig.3.12 we show an idealized mechanism known as

Bain’s Path (Porter and Easterling, 1992) by which one can change from the BCC structure to FCC by

expanding the cubic unit cell in the ẑ direction by a factor of
√
2. Notice that there is no shear involved

in this mechanism. There are many challenging questions related to the kinetics of this phase transition

regarding the role of defects in the transition, the importance of specific crystallographic orientations in

the growth of the new phase inside the crystal and many others. From a computational point of view there

are even more aspects of the phase transition to be tackled. Here we present our attempt to implement a

rare event method using MD to study the kinetics of transformation. The Forward Flux Sampling method

(FFS) (Allen et al., 2005) is a technique variant of a broad class of rare event simulation methods know

as Transition Path Sampling (TPS) (Dellago et al., 1998). Typically when studying rare event processes

one wishes to know two things: how often the event (the phase transition in our case) happens or the

rate constant kAB of the process from a state A to a state B and the free-energy barrier associated with

the process. Rare event method like FFS and TPS allow us to compute these quantities from atomistic

simulations. We introduce now the rare event problem where the need for FFS-like methods appears.

MD simulations have two severe limitations in its applicability: spatial and temporal constraints

due to limited computing power. The origin of the spatial limitation is the natural microscopic nature

of matter. The typical atomic distance between two atoms is ≈ O(1Å) = O(10−10m). Thus if we

want to simulate a system at a scale of µm we need approximately 1012 atoms (a trillion atoms). This

limitation has been reasonably overcome over the years due to the rapid development and expansion of

high-performance parallel computing clusters. Using the availability of many processors and techniques

like spatial decomposition (Plimpton et al., 1995) we have been able to perform MD simulations with

trillion atoms (Timothy and Kadau, 2008).

The temporal limitation of MD simulations is more subtle. It arises from the necessity of correctly

integrating the vibrational motion of atoms. Typically the frequency of oscillation of atoms in solids is

O(1013Hz), which imposes a limitation on the timestep of approximately ∆t ≈ 1fs. Therefore, for a

simulation of 1ns of real time, we need to compute 106 steps and this is currently the approximate limit

of the time length of a simulation. Due to the causality of classical mechanics we cannot use an approach
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Now, we have outlined the general features of the FFS method, there are many points that need to be

clarified. The first is that the dynamics between each interface has to contain an element of stochasticity.

Otherwise the evolution of the system is deterministic and we will always obtain the same trajectory (for

example, the NVE ensemble or the Nosé-Hoover chain thermostat are deterministic dynamics). Frequently,

the FFS method is implemented using Monte Carlo due to its stochastic nature. The first implementation

of FFS using MD was in the study of bubble nucleation in a Lennard-Jones fluid by Wang et al. (2008).

One of the possible approaches to this problem of stochasticity in MD simulations is to use the Langevin

thermostat or to introduce random small perturbations (e.g. modification of the velocity of one particle)

in the system. Another interesting point about FFS is its flexibility in terms of the choice of the random

configurations, the quantity of configurations and how to evolve the system from a specific interface to

another. Allen et al. (2009) present three possible variants: Direct FFS, Branched growth and Rosenbluth-

like FFS. These variants allow us to adjust the method to the system to be simulated so as to and improve

its efficiency (Allen et al., 2006).

To compute the rate constant kAB we first define it in terms of FFS variables according to

kAB ≡ φA,B.

Here φA,B is the steady-state flux of trajectories leaving state A and reaching state B. We can write it as

φA,B = φA,0 P (αB|α0)

where φA,0 is the steady-state flux of trajectories leaving A and crossing α0 interface multiplied by the

conditional probability that a trajectory that crosses α0 coming from A will reach B before going back to

A. We can easily compute the flux φA,0 since the crossing of α0 from a trajectory initiated in A occurs

frequently. On the other hand, the probability P (αB|α0) is still very small to be computed using direct

MD simulations. To remedy this problem we write

P (αA|α0) =
n−1
∏

i=0

P (αi+1|αi)

where the product is over all interfaces and P (αi+1|αi) is the conditional probability of a trajectory

initiated at the αi interface reaching the αi+1 interface. Now even if P (αA|α0) is small, we have broken

it into many factors of probabilities P (αi+1|αi) that, if the order parameter was chosen wisely, will not

be numbers so small. Thus the final equation for the rate constant is

kAB = φA,0

n−1
∏

i=0

P (αi+1|αi). (3.33)

It remains to be shown how to compute these values from the FFS simulation. If the first interface α0

is chosen correctly, the flux φA,0 can be computed by brute force MD, since the probability of crossing A
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is not too small. In fig.3.20 this corresponds to the gray trajectory. Notice how the stored configurations

are those coming from inside A directed at the next interface. This is important since the configurations

in the opposite direction will always return to A. The flux φA,0 is then computed as the number of stored

configurations divided by the simulation time. The probabilities P (αi+1|αi) are estimated as the number

of trajectories initiated in αi that reached αi+1 divided by the total number of trajectories shot.

Using the same trajectories obtained to compute kAB we can compute the free-energy barrier by using

the Umbrella Sampling (Frenkel and Smit, 2001) method that works quite naturally with FFS (Valeriani

et al., 2007; Allen et al., 2009; Borrero and Escobedo, 2009). All that is necessary is to define the windows

used in the Umbrella Sampling as the interfaces interval of FFS. If the order parameter used is chosen

to be the same for both methods the match between the methods is statistically better than if the order

parameters are different. Asides from the transition rate kAB and the free-energy barrier the FFS method

also allows us to obtain samples of transition trajectories that can be used to better understand the

mechanism of the transition.

Now we describe our attempts to apply the FFS method to study the kinetics of the martensitic phase

transition. The initial and final states A and B are chosen according to fig.3.12 as the BCC and FCC

structures, respectively. The Langevin thermostat was used to guarantee the stochasticity of the dynamics

between the interfaces. We have chosen to use the MEAM potential of Lee et al. (2012) because it was the

only potential to show the correct phase stability order, with FCC being more stable than HCP. The main

problem we faced was the choice of the order parameter. Because FFS relies strongly on the definition

of the order parameter α, a good choice will increase the efficiency of the method while a poor one can

lead to wasted efforts and even wrong results (Allen et al., 2009). In the case of the Martensitic phase

transition we need an order parameter that differentiates between different crystal structures even under

conditions of thermal agitation. We have used the Steinhardt order parameter introduced by Steinhardt

et al. (1983). To each atom i we assign a complex vector Qlm defined as

Qlm(i) =
1

Nb(i)

Nb(i)
∑

j=1

Ylm(rij)

where Nb(i) is the number of nearest neighbors of particle i, the sum is over all nearest neighbors, Ylm(rij)

are the spherical harmonics and rij is the distance vector from particle i to particle j. Because of the

crystal symmetries we need an order parameter that is rotationally invariant. Therefore we define the

rotationally invariant combination

ql(i) =

√

√

√

√

4π

2l + 1

l
∑

m=−l

|Qlm(i)|2 (3.34)
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Thus we are able to count the number of atom in each structure and then to use the number of atoms

in the new phase as the order parameter for the FFS. To differentiate this order parameter from the GS

order parameter we shall refer to it as Local Steinhardt (LS) order parameter. When we perform the FFS

simulation the result was similar to the one found using the GS order parameter, with the FFS leading

our system to an amorphous phase. Therefore it seems that even the LS order parameter gives too much

freedom to the system.

Finally we discuss some final ideas and possible solutions to this difficult problem. Lechner and Dellago

(2008) have shown how the Steinhardt order parameter can fail to determine the crystal structure because

of overlaps in its distribution for different structures. They also suggest an averaged local bond order

parameter that does solve some problems of the Steinhardt order parameter and narrow the distribution

of fig.3.21 (right). This is certainly more appropriate than the Steinhardt order parameter, given that

narrower distributions and less overlaps facilitate the determination of the structure around one atom.

Another possible solution that has shown to be promising is to assume Classical Nucleation Theory to be

valid and to use the size of the largest cluster of the new phase (FCC in our case) as order parameter.

Ryu and Cai (2010) have implemented this approach in an bidimensional Ising model system and many

others (Borrero and Escobedo, 2009; Russo and Tanaka, 2012; ten Wolde et al., 1996) have used it to

study liquid-solid phase transitions.
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Chapter 4

Pauling’s Model of Ice

We turn now to a different application of molecular simulation. In this chapter we present a new

algorithm to generate disordered ice structures in accordance with the Bernal-Fowler ice rules. In section

4.1 we introduce the characteristics of ice Ih and show how we can study Pauling’s model of ice from

disordered ice structures created according to the Bernal-Fowles ice rules. Sections 4.2 and 4.3 contain the

details about the ice network generator algorithm and its implementation. The remainder of the chapter

is devoted to the analysis of the algorithm and comparison with results presented in the literature.

4.1 Ice Ih and Pauling’s Model

Water is one of the most studied substances and this did not happen by chance. Approximately 70%

of Earth’s surface is covered by ice and it is known that the water cycle is of fundamental importance

to the maintenance of life on Earth. Besides its importance from the biological standpoint, water is also

important for other physical sciences, namely physics and chemistry.

The water molecule is one of the most simple molecules found in nature, but it still presents many

interesting and curious phenomena. A single molecule is composed of an oxygen and two hydrogen atoms,

fig.4.1 (left), summing up 10 electrons. Its geometry is such that for isolated molecules the oxygen-

hydrogen bond has equilibrium length of r0 ≈ 0.957Å and angle α ≈ 104.52◦ (Petrenko and Whitworth,

1999). The oxygen atom is bonded to each hydrogen atom by a covalent bond. Most of the negative charge

of the molecule is concentrated around the oxygen because its elevated electronegativity. Therefore, the

molecule has a natural electric dipole of p ≈ 6.186× 10−30 Cm ≈ 1.855 D.

Another important characteristic of the condensed phases of water is the presence of hydrogen bond.

This bond is between the oxygen of a molecule and a hydrogen from another molecule, fig.4.1 (right).

Each water molecule can have up to four hydrogen bonds linking it to other molecules. This bond affects

79



80 CHAPTER 4. PAULING’S MODEL OF ICE

α
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H H

O -

+

~p

Hydrogen Bond

Figure 4.1: Left: water molecule. For the isolated molecule the oxygen-hydrogen covalent bond has length

of r0 ≈ 0.957Å and angle α ≈ 104.52◦. There is also an electric dipole of p ≈ 1.855D associated to the

concentration of negative charge around the oxygen (Petrenko and Whitworth, 1999). Right: hydrogen

bond in a water dimer.

many properties of water such as the high boiling temperature and melting point and surface tension as

well as properties of the crystalline structures of ice.

Besides its liquid and gaseous phases water is present in 13 different crystalline phases, a few of them

shown in the phase diagram of fig.3.10. In this chapter we will be concerned with the hexagonal proton-

disordered phase of ice, known as ice Ih. This is the most common phase found on Earth due to its

localization at low pressures in the phase diagram. The ice Ih crystal structure is obtained by putting

each water molecule on a site of a wurtzite lattice (two interpenetrating HCP lattices) as shown in fig.4.2,

such that each molecule has coordination four (four first neighbors). The unit cell of the wurtzite lattice

has 8 atoms inside of it.

In addition to the position of each molecule we still have to establish its orientation. Because of the

tetrahedral coordination of ice Ih, each water molecule can have six different orientations such that it has

exactly four hydrogen bonds with its first neighbors. When choosing from these six possible orientations

there are two rules that need to be obeyed. These are the Bernal and Fowler (1933) ice rules:

1. Each oxygen is covalently bonded to two hydrogen atoms.

2. The oxygen atom of each molecule forms two hydrogen bonds so that there is precisely one hydrogen

atom between each pair of oxygens.

An ice Ih crystal that obeys these two rules is a perfect crystal. Any deviation from the rules is considered

a defect, e.g. a disoriented molecule such that it has two hydrogen between a pair of oxygen atoms.

There is one more important characteristic of ice Ih that needs to be considered. There is no ferro-

electricity in this phase of ice. This means that the dipole moment present in each water molecule does

not have a preferential orientation, i.e. the total electric dipole moment of an ice Ih crystal is zero. In
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is going to be represented by a directed edge. We define that each vertex of this graph needs to have

two directed edges “entering” the vertex and two directed edges “leaving” the vertex. Notice that this

is equivalent to the ice rules where each molecule forms two hydrogen bonds and receives two hydrogen

bonds from a neighbor molecule. For simplicity we apply periodic boundary conditions to the ice crystal

and, consequently, to its graph representation.

Now, the problem of creating an ice Ih crystal in accordance with the ice rules is equivalent to the

problem of creating a directed graph that follows the rules just stated. Thus all we need to do is, starting

from a completely undirected graph, determine one by one the directions of each edge. Because of the

absence of long-range order in ice we want to determine the edge’s direction in a random manner. It is

easy to see that if we do not develop a good strategy we will soon find ourselves in a situation were the

final graph cannot satisfy the stated rules. We describe now our algorithm to solve this problem.
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Figure 4.3: Ice network generation algorithm. The random walker stops only when the reaches a vertex

that has been visited before. In this case the walker starts at vertex 1 and stops at the step 32 when he

visits vertex 22 for the second time.

We start by randomly choosing a vertex. Starting from this vertex we perform a random walk though

the graph keeping track of the path traveled by our walker, fig.4.3. The walker only stops when it reaches

a vertex that has been visited before. In fig.4.3 we labelled the vertices visited by the walker by numbers.

The walk starts at the vertex 1 and stops when vertex 22 is visited by the second time at step number

32. Once the walker stops it means that it has found a cycle. In fig.4.4 we shown this cycle in blue, it is

composed of the vertices 22 through 32. Then the edges of this cycle are directed in the direction traveled

by the walker. Once an edge is directed the walker cannot pass through that edge again, although we can

(and will) pass through each vertex twice.

An important quantity in the algorithm is Lpath, which is defined as the length of the walker’s path
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Figure 4.4: Ice network generation algorithm. Once a cycle is found we direct its edges according to the

direction that the walker traveled through it. A directed edge cannot be traveled by a walker again.

(not including the cycle) that we will be stored for the next iteration. For example, in fig.4.4 if Lpath = 10

we would erase the path from vertex 10 to vertex 22. Then we would put the walker at vertex 10 and

continue the random walk from there. If the remaining path is shorter than Lpath then the walk continues

from the vertex immediately before the cycle, e.g. vertex 22 on fig.4.4. There are two important limits for

this quantity. When Lpath = 0 we do not store any data, we erase the entire path and start the random

walk at a random vertex (that has not been crossed twice). The other limit is Lpath = ∞, in which case

we always store the entire path and continue the walk from the vertex immediately before the cycle.

By iterating over this procedure we to obtain a set of cycles that completely fill the graph according to

the stated rules. We name this procedure “cyclic decomposition” of the undirected graph. The ice lattice

can be created from this filled graph by choosing the position of the hydrogen according to the directed

edges between the vertices.

From the structure of the directed graph we see that the total dipole moment of the cycles are zero. It

will be different from zero only if the chain crosses the boundary of the crystal. Chains with zero dipole

moment are the cycles and the chains with non-zero dipole are refered as loops. In the case where the

final structure contains loops it is possible that the total dipole moment of the cell is different from zero.

If this happens, we need to eliminate the total dipole moment of the cell. To do that we notice that,

if we invert the direction of all edges of a cycle, the entire cell continues to obey the ice rules. If the

cycle has dipole moment zero then nothing changes, if it has a nonzero dipole moment then by inverting

the direction of all edges of the cycle we invert its dipole moment direction. We name the procedure of

inverting a cycle’s edges direction “flipping” of the cycle. The procedure to try to zero the dipole moment

of a cell is to flip the cycles with nonzero dipole moment in such a way that the combination of its dipole
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moments are zero. If we have N cycles with nonzero dipole then there are 2N possible combinations.

4.3 Ice Network Generator: Technical Details

The ice network generator algorithm was implemented in a ∼ 3000 lines C++ code making full use

of the object oriented capabilities of this language. The calculations implemented in the code include

the cyclic decomposition of the graph, zeroing of the total dipole moment by combining the flipping of

cycles, calculation of correlation functions (geometrical and topological) and output of the final structure in

formats compatible with the MD code LAMMPS and the electronic structure code VASP. The calculations

performed in the following sections make use of MPI parallelism to allow the verification of a wide interval

of parameters.

Other minor features implemented in the code include a full double linked list to deal efficiently with

the memory allocation, template classes to allow different data structure on nodes of the lists, ordering

algorithms using linked lists, decimal to binary conversion, neighbor and cell list features to accelerate

the crystal structure creation and different crystal lattices (ice Ih, VI and 2D square).

To make the code versatile all the features are compiled into a libnG.a library and easily included

in any C++ program. Expansion and modification of the code is facilitated by the object oriented

modulation.

Our goal is to use the ice network generator algorithm to generate ice Ih lattices and study the

Pauling’s model. We compare our results to those obtained by Rahman and Stillinger (1972), Hayward

and Reimers (1997) and Aragones et al. (2010). We are specially concerned with finite size effects since

this is the first algorithm reported capable of creating large ice structures in a reasonable amount of time.

Using our algorithm we were able to construct cells as large as ∼ 106 atoms while the literature reports

cells of a few thousand atoms (∼ 103) at most.

4.4 Lpath effects

Regarding the implementation of the algorithm we want to determine the effects of the remainder path

Lpath in the results, i.e.: after our random walker finds a cycle should we keep or discard the non-cyclic

part of the path? From the point of view of efficiency it is clear that it is very profitable to keep at

least one vertex of the remainder path. It avoids the reconstruction of the non-directed edges table after

each cycle is found, this results in an overall better performance. Fig.4.5 (left) shows the performance for

different values of Lpath.

It is quite clear that the size of the remainder path affects the result of the algorithm. We can check
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algorithm has two implications: greater number of cycles with nonzero dipole moment and greater average

value of the cycle length. If we assume that the greater value for the cycles length comes from the cycles

with nonzero dipole (that are more numerous in the Lpath = ∞ structure) then it is reasonable that the

suppression of these nonzero dipole moment cycles will result in an underestimated value of 〈l〉, just as

obtained in Rahman and Stillinger (1972).

4.5 Dipole-Dipole Correlations

In order to further analyze our algorithm and compare it with the results of the literature we define

a number of useful quantities to be computed. The dipole-dipole pair correlation function is defined as

φn =

∑N
i=1

∑i
j=1 pi · pj δ(Rij − rn)

∑N
i=1

∑i
j=1 δ(Rij − rn)

=
1

N

N
∑

i=1

pi · 〈p〉i,n

where Rij is the distance between the nearest images of the oxygen atoms of molecules i and j, rn is the

radius of the coordination shell n, pi is the direction (unit vector) of the dipole of the molecule i and

〈p〉i,n is the mean value of the dipole moment of atoms in the nth coordination shell of the molecule i.

The Kirkwood correlation factor (Hayward and Reimers, 1997) is then defined as:

g =
∞
∑

n=0

Cn φn

where Cn is the shell coordination number (number of molecules inside that shell).

For the subsequent analysis of φn and g we to refer to Hayward and Reimers (1997) instead of

Rahman and Stillinger (1972) because the former includes and amplifies the results obtained in the

latter. Hayward and Reimers (1997) discuss the implementation of a recursive algorithm to generate ice

structures. Subsequent to the creation of the lattice they make use of simulated annealing combined with

certain constraints to create a lattice with zero dipole moment. They have strict criteria to assure that the

generated lattice is as random as possible and are in agreement with the results of Rahman and Stillinger

(1972). The largest cell that they were able to create has 768 molecules . We are going to compare the

results of this 6× 4× 4 (768 atoms) cell and the 8× 4× 8 (2, 048 atoms) cell from Rahman and Stillinger

(1972) with our results for the same cells and we also include a larger one of 21× 12× 13 (26, 209 atoms)

to verify size effects in the simulation.

It is possible to compute φ1 analytically for a random ensemble of water dimers in any orientation, the

result is φ1 = 1/3. This is therefore a good indicative of how random our lattice is. It is cited in Hayward

and Reimers (1997) that the value of 0.310 obtained in Rahman and Stillinger (1972) differs from 1/3 due

to constraints associated with the ring formation. In addition we believe that the elimination of cycles

that cross the boundary may also contribute to a value smaller than 1/3 as well.
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4.6 Exact Results for the Square Ice

Now that we have analyzed the effects of the remaining path on the results of the algorithm we are

going to compare our algorithm with exact results available for a two dimensional square structure. In

this section we are considering a n × n square lattice with N = n2 atoms. The net polarization, P, of a

lattice is defined as

P =
N
∑

i=1

µi,

where µi is the electric dipole of the molecule i. For isotropic systems Yanagawa and Nagle (1979) and

Nagle (1979) defined the Kirkwood correlation factor g as

g ≡ lim
Ω→∞

lim
V→∞

1

µ2

∑

j in Ω

〈

µ0.µj
〉

, (4.1)

where µ is the magnitude of the dipole moment. The summation is over a sphere Ω which becomes large,

but only after the volume V of the system becomes infinitely large. This definition of the Kirkwood

parameter is equivalent to the one given in a previous section but it has the advantage of being easy to

generalize in the case of an anisotropic system. Notice that the self-correlation function g(0) is just the

j = 0 term in eq.(4.1). In the same paper the authors define the polarization factor G for an isotropic

system as

G ≡ lim
V→∞

1

µ2

∑

j in V

〈

µ0.µj
〉

, (4.2)

where the summation extends over all correlations in the system.

We are going to use the correlation functions just presented to compare the results of our algorithm,

fig.4.11, against exact results and previous simulations. Sutherland et al. (1967) have compute the exact

value of the polarization factor for the square ice:

G =
9

π
= 2.8647 . . . .

Domb and Green (1972) obtained

g(0) = 0.930

and Yanagawa and Nagle (1979) suggest that

g = 1.5± 0.3.

In order to compare the results of our algorithm with the exact results of the square ice we need to

consider the anisotropic characteristic of this lattice. Yanagawa and Nagle (1979) explain that eqs.(4.1)





92 CHAPTER 4. PAULING’S MODEL OF ICE

both directions result in the same value for the correlation functions (within the errors) we consider that

the simulation has converged.

Yanagawa and Nagle (1979) used a Monte Carlo algorithm to compute correlation functions for the

square ice. They have proved that their method is ergodic. In their algorithm they use a previous obtained

square ice lattice to create new states of the system by creating and flipping cycles and loops. They discard

the tail of the generated paths and we are going to do the same to try to “match” the results, i.e. we are

using Lpath = 0.

In their paper Yanagawa and Nagle (1979) introduce the definition of a cycle as a closed chain of

dipoles that has total dipole moment equal to zero, loops are closed chains of dipoles that have total

dipole moment different from zero. Therefore, when loops are inverted they change the net dipole P of

the system. For a square lattice the components of the dipole moment of loops are multiples of n(µ/
√
2).

Also, there are no states with dipole moment equal to zero for n odd.

We start by checking the frequency of the six possible molecular configuration, fig.4.12. Our first

observation is that the MC simulations are always closer to the exact result than the NG algorithm,

although any of the lattice sizes resulted on the exact values.

Lattice  

size

Table 1: Frequency of Molecular ConfigurationsTable 1: Frequency of Molecular ConfigurationsTable 1: Frequency of Molecular ConfigurationsTable 1: Frequency of Molecular Configurations

 Config. 1  Config. 2  Config. 3  Config. 4  Config. 5  Config. 6

Exact

8x8 (NG)

 8x8 (MC)

12x12 (NG)

12x12 (MC)

16x16 (NG)

16x16 (MC)

15.50 15.50 15.50 15.50 19.00 19.00

15.42(6) 15.39(6) 15.62(7) 15.44(6) 19.07(4) 19.07(4)

15.80(7) 15.73(7) 15.69(7) 15.66(7) 18.56(3) 18.56(3)

15.01(4) 14.96(4) 15.00(4) 14.99(4) 20.01(2) 20.01(2)

15.57(4) 15.66(4) 15.54(4) 15.65(4) 18.79(2) 18.79(2)

14.80(3) 14.75(3) 14.82(3) 14.78(3) 20.42(2) 20.42(2)

15.54(3) 15.54(3) 15.53(3) 15.56(3) 18.91(2) 18.91(2)

Figure 4.12: Frequency of molecular configuration compared with the exact results are of (Domb and

Green, 1972).

Now we analyze statistic about the chains. In fig.4.13 we confirm that in both algorithms (Monte

Carlo and NG) the percentage of loops drops as we increase the lattice size. This is a reasonably result

since as we increase the lattice size the minimum size of a loop increases and therefore it becomes more

difficult to obtain a chain of such size.

The increase of the minimum size of a loop with the increase of the lattice size can be seen by the

drastic increase of the average length of loops in fig.4.13 while, in the same figure, the average length

of the cycles does not increase as much. In fig.4.14 we analyze again the percentage of loops (left) and
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the NG algorithm does not agree with the exact values. In this same figure we can see the origin of this

difference, the number of states with zero polarization (n0) and non-zero polarization (np) is approximately

constant (0.33) for the Monte Carlo algorithm while it varies for the NG algorithm.

Table 3: Polarization Factor

Lattice      

size

Table 3: Polarization FactorTable 3: Polarization FactorTable 3: Polarization Factor

n0/np G g(0)

8x8 (NG)

8x8 (MC)

8x8 (YN)

12x12 (NG)

12x12 (MC)

12x12 (YN)

16x16 (NG)

16x16 (MC)

16x16 (YN)

0.37 2.60(4) 0.928(1)

0.33 2.86(4) 0.943(1)

0.33 2.88(4) 0.942(3)

0.47 2.01(3) 0.900(1)

0.33 2.84(4) 0.936(1)

0.35 2.78(6) 0.937(1)

0.56 1.56(3) 0.887(1)

0.34 2.84(4) 0.933(1)

0.33 2.86(11) 0.933(1)

Figure 4.17: Polarization factor for systems of different size. We compare our results with those of

Yanagawa and Nagle (1979) and the exact values of G = 9/π = 2.8647 . . . and g(0) = 0.930.

Fig.4.18 shows the dependency of the correlation functions with the lattice size. We can see that both

functions G and g(0) converge to values different from the exact result for the NG algorithm. The MC

algorithm present the correct value of these functions but we can notice that the small probability of

having loops for large lattices decreases the convergence of the statistics for the polarization factor. This

result is expected once the convergence of the statistics of G depends on the sampling of lattices with

different total dipole moment. Because it is difficult to obtain a loop for large lattices it becomes difficult

to sample lattices with different dipole moments.

4.8 Ice Ih Structure and Polarization Factor

The results of last section shown that the NG algorithm does not generate ice structures that correctly

sample the Pauling’s model of ice. Despite this unfortunate result the NG algorithm still a powerful

method to create new ice structures. Using this algorithm we can obtain statistically uncorrelated ice

structures and by applying a few Monte Carlo steps to these structures we can recover structures that

are uncorrelated and sample the Pauling’s model of ice. Because the results of last section for the NG

algorithm does not seem to improve with the use of Lpath different from zero we can boost our algorithm

performance by speeding the structure creation with the Lpath = ∞ option and then use the (cheap)

Monte Carlo flips to obtain the correct sampling. Therefore the NG algorithm still useful to efficiently





Chapter 5

Conclusions and Outlook

5.1 Molecular Dynamics

We have presented the atomistic simulation technique of Molecular Dynamics and shown how we

can use it to perform simulations controlling different thermodynamic variables of the system, such as

temperature and pressure. Emphasis was put on the physical aspect of the methods and how to assure

that the simulation has physical meaning. Particularly, the energy equipartition theorem was a very

important criterion to verify the correct canonical sampling of the thermostats. We have discarded the

use of the Nosé-Hoover chain thermostat due to its incorrect sampling for stiff systems like harmonic

oscillators and the harmonic approximation of a crystal. The Langevin thermostat was used instead.

More advanced applications of Molecular Dynamics were used to study the first-order phase transition

known as Martensitic phase transformation. A rigorous development of new features in the LAMMPS

code was made to allow free-energy calculations. The methods of Frenkel-Ladd and the Reversible Scaling

were implemented and successfully tested against the exact results for harmonic oscillators. Our final goal

was to develop a systematic sequence of procedures that allowed the use of both methods to compute the

temperature dependence of free energy accurately and efficiently. The Reversible Scaling allowed us to

compute thus curve using only one simulation.

In the study of the thermodynamics of the Martensitic transformation we computed the free energy

curves for the BCC, FCC and HCP phases of three different potentials (EAM, MEAM and ABOP) that

presented the phase transformation. We conclude that the only potential that correctly reproduces the

stability of phases was the MEAM potential. The other two describe the HCP phase to be more stable

than FCC.

For the kinetics of the Martensitic transformation we implemented the rare-event method of Forward

Flux Sampling. We were not able to reproduce this phase transformation using the method. Our main

97
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conclusion is that the order parameter has an important role in this method. We studied the Steinhardt

order parameter and its different variations as the order parameter but it seems that this particular order

parameter gives the atoms too much freedom and the transition results in an amorphous solid.

5.2 Ice Network Generator

We have successfully implemented a new algorithm for the creation of disordered ice structures. Our

focus was on the Ih phase of ice, the most abundant on Earth. To better understand the algorithm it

was useful to map it to the problem of creating a directed graph were the ice rules are equivalent to the

condition of two edges entering and two edges leaving each vertex. In the development of the algorithm

and in the calculations our main concern was to not include any long range order on the structure. We

have also developed a method to assure that the total dipole moment of the cell was zero by combining

cycles with nonzero dipole moments in the correct manner.

Focus was given on the study of the finite size effects since all the results presented in the literature

consider only small cells. Using our algorithm we were able to construct cells as large as ∼ 106 atoms

while the literature reports cells of a few thousand atoms (∼ 103) at most. We have found a strong size

dependent effect for all quantities computed in the regime of cell size present in the literature (Rahman

and Stillinger, 1972; Hayward and Reimers, 1997).

The parameter Lpath, which is the length of the remaining path stored after a cycle is found, has

a strong influence on the structure generated and on the finite size effects. We have indications that

structures with Lpath = ∞ are the ones with less correlation. Its φ1 value is closer to a random structure

than for any other value of Lpath.

In order too assert which value of this parameter better represents the Pauling’s model of ice we

compared the results of our algorithm with the exact values for the two dimensional square ice lattice.

Our final result is that although the algorithm does not correctly sample the Pauling’s model of ice we

can efficiently use it with to create ice structures. With the aid of a few Monte Carlo moves according to

algorithms already know in the literature we can rapidly recover the correct sampling of Pauling’s model

of ice using our algorithm.



Appendix A

Switching Functions

In this appendix we briefly discuss the different options for the Thermodynamic Integration switching

function that are included in commands implemented in LAMMPS.

A.1 Reversible Scaling

In the Reversible Scaling method we compute the dynamical work as

W dyn =

∫ ts

0

dλ

dt
U(rN ) dt,

where λ(t) is the switching function with λ(t = 0) = λi and λ(t = ts) = λf . The switching time is ts. We

implemented three different switching functions:

λ1(τ) = λi + τ(λf − λi),

λ2(τ) =
λi

1 + τ
(

λi
λf

− 1
) and (A.1)

λ3(τ) =
λi

1 + log2(1 + τ)
(

λi
λf

− 1
)

where τ = t/ts. All three of them respect the boundary conditions, i.e. λi(τ = 0) = λi and λi(τ = 1) = λf

for i = 1, 2, or 3. The switching functions variation with time are given by

dλ1

dt
=

λf − λi
ts

,

dλ2

dt
=

λ2(τ)
2

ts

(

1

λi
− 1

λf

)

and (A.2)

dλ3

dt
=

λ3(τ)
2

ts

(

1

λi
− 1

λf

)

1

(1 + τ) ln 2
.

Using these switching functions the temperature variation during a RS simulations is given by

T (t) =
T0

λ(t)
⇒ dT

dt
= − T0

λ2(t)

dλ

dt
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