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Abstract

Due to the conceptual and technical advances being made in computational physics and computational
materials science we have been able to tackle problems that were inaccessible a few years ago. In this
dissertation we study the evolution of some of these techniques, presenting the theory and simulation
methods to study first order phase transitions with emphasis on state-of-the-art free-energy calculation
(Reversible Scaling) and rare event (Forward Fluz Sampling) methods using the atomistic simulation tech-
nique of Molecular Dynamics. The evolution and efficiency improvement of these techniques is presented
together with applications to simple systems that allow exact solution as well as the more the complex
case of Martensitic phase transitions.

We also present the application of numerical methods to study Pauling’s model of ice. We have
developed and implemented a new algorithm for efficient generation of disordered ice structures. This ice
generator algorithm allows us to create ice Ih cells of sizes not reported before. Using this algorithm we

address finite size effects not studied before.

Resumo

Devido aos avancos conceptuais e técnicos feitos em fisica computacional e ciéncia dos materiais
computacional nés estamos aptos a resolver problemas que eram inacessiveis a alguns anos atrds. Nessa
dissertacao estudamos a evolucao de alguma destas técnicas, apresentando a teoria e técnicas de simulacao
computacional para estudar transi¢coes de fase de primeira ordem com énfase nas técnicas mais avancadas
de célculo de energia livre (Reversible Scaling) e métodos de simulacao de eventos raros (Forward Flux
Sampling) usando a técnica de simulacdo atomistica da Dindmica Molecular. A evoluc¢ao e melhora da
eficiéncia destas técnicas é apresentada junto com aplicagoes a sistemas simples que permitem solugao
exata e também ao caso mais complexo da transicao de fase Martensitica.

Também apresentamos a aplicacao de métodos numéricos no estudo do modelo de Pauling para o
gelo. Nos desenvolvemos e implementamos um novo algoritmo para a criacao eficiente de estruturas de
gelo desordenadas. Este algoritmo de geracao de cristais de gelo nos permitiu criar células de gelo Th
de tamanhos que nao eram possiveis antes. Usando este algoritmo abordamos o problema de efeitos de

tamanho finito nao estudados anteriormente.
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Chapter 1

Computational Physics and Materials

Science

In physics and science in general there exists a well defined line that creates an idea at the very root
of the scientific method: the theory/experiment dichotomy. Each of these parts is fundamental to the
existence of science as something meaninful. Richard P. Feynman summarized in a very simple sentence

the dynamics between theory and experiment:

“First you guess. Don’t laugh, this is the most important step. Then you compute the conse-
quences. Compare the consequences to experience. If it disagrees with experience, the guess
is wrong. In that simple statement is the key to science. It doesn’t matter how beautiful your
guess is or how smart you are or what your name is. If it disagrees with experiment, it’s

wrong. That’s all there is to it.”

In this chapter I will introduce ideas about computational physics and computational materials science
and illustrate the role of this new tool in the old and well stabilished notions of theory and experiment.
Much of what will be said was inspired by the texts Simulations: the Dark Side by Frenkel (2013),
Synergistic Science by Yip (2003) and the many answers I have got from collegues and friends to the

question: Why do we do simulations?

1.1 Why Simulations?

A simulation must answer a question. There is absolutely no meaning in running a simulation that
does not help to answer any question. It is like the most famous passage in the comic science fiction book

series Hitchhikers Guide to the Galaxy by Adams (1979-1992) where the supercomputer Deep Thought

1



2 CHAPTER 1. COMPUTATIONAL PHYSICS AND MATERIALS SCIENCE

completes a huge calculation to answer the question of the book Life, the Universe and FEverything and

the final answer is 42. The problem is that nobody actually remembers what the question was.

Unlike experiments we cannot use simulations as a tool to discover fundamental laws of nature.
Strictly speaking it is not even completely correct to use the word ‘simulation’. Most of the time what
we are actually doing is ‘modeling’: every simulation starts with the choice of a model (e.g. interatomic
potential for a Molecular Dynamics simulation) that describes the real system we want to study. If this
model is good enough it will include all physical features necessary to reproduce and study a certain
phenomenon present in our system. Although we can always refine our model as much as we wish, we
will never actually simulate that specific real system present in a true experiment by computer: either
because we do not have computing power to include all the details or because our knowledge of all details

of nature is incomplete, or both.

Unlike theories we cannot use simulations as a tool to summarize our understanding of nature.
Nevertheless simulations are still useful as a powerful tool to provide important insights. For example,
we can use modeling of a system to test if it captures the essential physics of a phenomenon or if there
is something missing. We can therefore use simulations as a ‘discovery tool’ and obtain predictions of
approximate theories that could not be obtained analytically. In fact, it can be a very powerful discovery
tool since in a simulation you typically have control over all parameters to be simulated and therefore can
avoid the interference of any external agent. Furthermore one also has access to all microscopic details of

the system, something unimaginable experimentally.

Experiment and theory have a two-way relationship: experiments provide a test for theories and
theories make predictions for experiments. Theories also help us to better understand the physics of an
experiment and experiments help us to better define the limitations of a theory. Computer simulations
are dependent of both, theory and experiment. Theories provide the model for simulations and also
analytical results that help us to test and verify the correctness of our simulation. Frequently this is
vital to a computer code due to the complexity of numerical procedures involved and even because of the
limitations of computers. Therefore exact results from theories are one of the few methods to make sure
that we are not fooling ourselves. Experiments provide the final test to verify if our model captures the
physics of a phenomenon, in addition they may point at certain phenomena and systems unaccessible to
the current experimental techniques. Here computer simulations can become useful as a guide to what is

happening and how to approach such a system.

With this discussion we have seen that there is space for simulations and that theory or experiment

can hardly fill this space. Thus we can conclude that there is also a need for simulations.



1.2. MOORE’S LAW AND COMPUTATIONAL METHODS 3

1.2 Moore’s law and Computational Methods

For the sake of keeping computational simulations useful there is a need for the continuous development
of better method and computers. Over the last 60 years the continuous speed-up of processors following
the Moore’s law (Moore et al., 1965), jointly with the creation and development of parallel computing®
have increased the speed at which computers perform elementary calculations by a factor of almost 10'°.
Such an astonishing evolution allowed us to perform simulations that were totally inaccessible a decade
before. This makes us wonder if it is necessary to “waste” our efforts on further developing more efficient
computational methods or if it would be better to focus on other problems and just wait for a faster
computer to become available so that we can simulate a bigger system.

New algorithms and techniques allowed us to simulate systems and phenomena not possible before
such as rare events, quantum systems, free-energy calculations and many others. Many of the algorithm
improvements are concerned with a better performance. Later in this dissertation we will present an
example of this kind of improvement, namely the development of free-energy calculation techniques by
computer simulations that involves a significant gain of performance. Also important were the algorithms
that enabled new types of calculations. For example, we had the development of the Density Functional
Theory (DFT) by Kohn et al. (1965) that allowed the study of many different systems in which the
electronic structure is important, particularly in chemistry and solid state physics. This last type of
improvement cannot be achieved by the development of better computers. It results directly in a new
kind of information that can be extracted from a simulation. This was not possible before because we did
not know how, even though we already had sufficient computer power.

We now present a few examples of how the combination of good algorithms with adequate computing
power turned computer simulations into a useful tool and resulted in scientific discoveries and new insights

in different areas of physics and materials science.

1.3 The Fermi-Pasta-Ulam Work and Solitons

In 1955 Enrico Fermi, John Pasta and Stanislaw Ulam used the then new computer technology (the
famous MANTAC I computer) to solve an important problem at that time and observed for the first time
a phenomenon that would later be named solitons. Nowadays solitons are found to be present in different
areas of physics like optics, fluids and Bose-Einstein condensates. They initially intended to study a

problem of nonlinearity. The simulation followed the motion of 64 unidimensional masses connected by

!The largest supercomputer ever created is the Sequoia, located in the Lawrence Livermore National Laboratory, LLNL.
This supercomputer has more than 1.5 million cores and capacity to operate at 16.3 petaflops (flop = floating point operations

per second). An usual personal computer operates at 10 gigaflops, that is a difference by a factor of 10°.
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springs on a horizontal line. The initial configuration of the system was such that the displacement of
each mass followed a half sine wave pattern. If the springs were strictly linear the sine wave pattern would
be maintained. The intention of the simulation was to add a small degree of nonlinearity to the springs
and check if, in time, the nonlinearity would break the sine pattern and distribute the energy equally
between all masses. What actually happened was that, although the sine wave pattern evolved in a more
complex form, it would periodically return to the initial configuration. This problem is now known as the
Fermi-Pasta-Ulam (FPU) problem (Fermi, Pasta, and Ulam, 1955).

A few years later the FPU work was revisited by Zabusky and Kruskal (1965). They transformed the
discrete problem of harmonic oscillators into one for a continuous system. Using the same initial condition
of a half sine wave they observed the same result as FPU: the system would evolve into a complex pattern
but, given enough time, it would return to the initial state and repeat the cycle, although in a different
way. In these cycles they could observe something new: the growth of individual waves that moved
independently and with velocities dependent on they height. When these new waves collided they would
pass through each other almost unscattered and eventually these waves would align to reproduce the
initial state before separating again and repeating. They decided to give a name to that remarkably
result, the solitary waves solitons. This discovery was received with a certain skepticism but, in time,
physicists started to encounter solitons solutions in their wave equations. This work is a classical example
of how computer simulations can “provide insight into deep and fundamental properties of a mathematical

model and lead to the discovery of completely new phenomena”, (Zabusky, 2005).

1.4 Quantum Effects in Materials Deformations

Quantum effects such as tunneling and energy discretization are known to become noticeable in solid
state physics at low temperatures when the thermal fluctuations are so low that the quantum fluctuations
become relevant. Proville et al. (2012) have analyzed, for the first time, the role of quantum effects in the
deformation of metals and obtained new insights using computer simulations.

When metals deform they do so by the movement of linear defects know as dislocations through the
crystal. The resistance of a metal to deform is therefore linked to the resistance of the dislocations to
move. The stress necessary for the dislocation to start moving and deform the metal is known as Peierls
stress. As we increase the temperature the crystal loses its hardness, meaning that thermal fluctuations
have influence on the motion of dislocations. It is believed that the motion of the dislocation occurs by the
creation of a kink-pair (Ackland, 2012): two steps in the dislocation line that, once created, can propagate
easily along the defect, moving it forward. This process is also believed to be the rate-limiting step in the

dislocation motion. Despite this insight there has been a long-standing discrepancy between theory and
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experiments regarding the behavior of dislocations at low temperatures in iron and other BCC metals.
Proville et al. (2012) have performed calculations on dislocations movement in iron that suggest
that it is necessary to invoke quantum effects to describe the system. They found that the effect of
quantum statistics and zero-point motion are important up to about half the Debye temperature of iron
(= 470K). The inclusion of these effects reduces the Peierls stress for dislocations motion in iron at the
low temperature limit by a factor of approximately two. The computational efforts of this simulation

“cannot be underestimated, and would have been impossible a few years ago”, (Ackland, 2012).

1.5 Scope of the Dissertation

This dissertation starts with a discussion on the use of the atomistic simulation technique of Molecular
Dynamics to study first-order phase transitions. After this brief introduction to computational simulations
and the driving force motivating their use, we start chapter 2 by presenting the Molecular Dynamics
methods. The discussion is centered about how we can link the many different algorithms of this technique
with physical ideas that motivate it. A more detailed description of the implementation of these algorithms
and other technical details are left to many different text books about this area (Tuckerman, 2010; Frenkel
and Smit, 2001).

In chapter 3 we approach specific methods to study first-order phase transitions. We introduce the
Reversible Scaling (de Koning et al., 1999b) method for free-energy calculations and the Forward Fluz
Sampling (Allen et al., 2005) method to study rare events. Subsequently we apply these methods to the
problem of the Martensitic phase transition is pure iron (Porter and Easterling, 1992). Before doing so
we study the application of these methods to systems for which exact results are available so that we can
test our implementation and gain insights about how these methods work.

Unless explicitly stated otherwise, the results presented in this dissertation were obtained with our
own implementation of these techniques in the parallel and large scale Molecular Dynamics simulator
LAMMPS. Many different new commands and functionalities were programmed to obtain these results.
All of the code was written in such a way that they can be used within the LAMMPS scripting language.

In chapter 4 we present a new algorithm to created disordered ice structure in accordance with the
Bernal and Fowler (1933) ice rules. We start by introducing the Ih phase of ice and the Pauling’s model
of ice (Pauling, 1935). Then the ice network generator algorithm is presented and we show how we can
use it to study Pauling’s model. This is the first algorithm reported capable to created large ice cells.

Because of this emphasis is given in the study of finite size effects on the ice structures.
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Chapter 2

Molecular Dynamics

Molecular Dynamics (MD) is a technique for atomistic simulation of classical many-body systems.
The system model considers atoms interacting through an interatomic potential V(r) and numerically
integrates the Newtonian equations of motion to obtain the atomic trajectories and resolve the dynamics
of the system. The first MD simulations were perfomed by Alder and Wainwright (1957, 1959) at the
Lawrence Livermore National Laboratory on the study of phase transitions in a sytem of rigid spheres.
Simulations of realistic systems took place a few years later when Rahman (1964) studied a system
of 864 Argon atoms using a continuous potential and later Stillinger and Rahman (1974) investigated
liquid water. The development and implementation of an efficient computational code to perform MD
simulations is not a trivial task, in particular for parallel codes (Plimpton et al., 1995). Nevertheless,
due to the wide spectrum of problems that can be tackled using MD, different research groups developed
efficient and parallel MD codes. Examples of open source computational codes are LAMMPS and MD—++,
largely used for the study of materials and mechanical properties of solids.

To get an idea of the colossal amount of work involved in the creation of such codes we only need to
report a few numbers: the source code of LAMMPS has more than 620,000 lines, resulting in more than
145MB of code files developed along 18 years. The paper (Plimpton et al., 1995) that describes much of
the technical problems of the implementation of this code has more than 3600 citations and the website
of the distribution lists more than 4900 articles published using the code. It is possible to get a glimpse
of the wide applicability of a code like this from the following sentences, quoted from the distribution

homepage:

LAMMPS has potentials for soft materials (biomolecules, polymers) and solid-state materials
(metals, semiconductors) and coarse-grained or mesoscopic systems. It can be used to model
atoms or, more generically, as a parallel particle simulator at the atomic, meso, or continuum

scale.
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In this chapter I present the physics behind an MD code. Although classical mechanics and statistical
physics are undoubtedly the pillars of the MD theory, many of the algorithms and simulation techniques are
rooted in different areas, namely: stochastic processes, classical electromagnetism, quantum mechanics,
elasticity theory and thermodynamics of non-equilibrium systems. Fundamentally, all these methods were

created to solve the same problem, the dynamics of many-body systems.

2.1 The Many Body Problem

The understanding and quantification of the dynamics of a many-body system is a fundamental and
recurring problem in condensed matter physics. The fact that emergent phenomena arise when systems
of many particles are considered has been recognized since a long time ago (Anderson, 1972). Given
the Hamiltonian operator H of a system then, at a time tg, the complete description of the state of the
system is given by a wave function |¥(%p)). The solution for the dynamics of this state, assuming that no

measurement is made, comes from the Schrédinger’s equation
i () = H (). (2.1)

Due to the linear character of eq.(2.1) the possible solutions are frequently written as a linear combination

of the stationary states of the system, which are the eigenstates of the Hamiltonian operator

Therefore, the identification of these eigenstates is an important part of the process of solving the dynamics
of the system.

In an atomistic system with N electrons and M nuclei the Hamiltonian is written as

N o2
H:;;ﬁ +Z2M
i

where capital letters refer to nucleus variables and lowercase variables to electrons. Also, N and M are

M M

Z,Z;e? 59
ZZ\Rz’—Rﬂ sz (2:2)

i=1 j>i =1 j=1

=1 j>1

~ 10?3, Already at this point we can notice the great mathematical difficulty that arises when we try
to tackle this Hamiltonian. We can increase it even more by adding the spin degrees of freedom and the
terms of spin-orbit and spin-spin coupling . Thus the solution of the dynamics of a many-body system
via Schrodinger’s equation is impracticable, computationally or analytically. It is clear that any method
that solves a system described by eq.(2.2) must include approximations with elements of the classical
mechanics.

The first step towards the solution of the full many-body Hamiltonian of eq.(2.2) is the Born-

Oppenheimer approximation (Born and Oppenheimer, 1927). In this approximation the kinetic energy of
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the nuclei

M P2
Tn = Z 2]\2[1.
=1

is removed from the Hamiltonian of eq.(2.2). We justify this approximation by the fact that the mass of
the nuclei is approximately 10% greater than the mass of a electron, hence if the momentum of both have
the same order of magnitude then the kinetic energy of an electron is ~ 10* times greater than the kinetic
energy of one of the nuclei. The resulting Hamiltonian is

N
%=Z

M M

Z:7:e?
EED D) DI o) Ll

i=1 j>i i=1 j=1

=1 j>1

Notice that this is an electronic Hamiltonian, ¢.e. the position of the nuclei is only a parameter.
This means that, although the electrons are still interacting with the nuclei by means of the Coulombian
potential, the nuclei have fixed positions and do not move. This approximated Hamiltonian is still too
complex to be handled analytically (i.e., compute the complete set of eigenstates and the eigenenergy
spectrum). Nevertheless the electronic Hamiltonian is of fundamental importance in the approximate
solution of the system’s dynamics.

The electronic energy of the system is a functional of its state

B[] = ([ He [¢) .

Thus, given the nuclei positions R = {R;}, the energy of the ground state of this specific configuration is
Ey = mm( | He |2, (2.3)

where the right-hand side of eq.(2.3) is minimized by the wave function of the ground electronic state |t).
It is possible to obtain the exact solution of eq.(2.3) using Density Functional Theory (DFT) (Hohenberg
and Kohn, 1964; Kohn et al., 1965), that receives this name because the energy minimization is carried
out using the electronic density n(r) as the fundamental variable instead of the electronic wave function.
In real problems, many different approximations are necessary in order to perform the minimization
computationally.

Once the electronic density n(r) has been obtained, we solve the dynamics of the system by means of a
connection with classical mechanics. To introduce this connection we use the Hellman-Feynman theorem
(Feynman, 1939). Suppose that the Hamiltonian of the system depends on a parameter A. Hence the
wave function of a steady state of this system and its corresponding eigenenergies also depend on this

parameter

HN [(N) = Exlp(A) = Ex=@N)[HA)[v)-
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We assume that the state is normalized, i.e., (¢)(\)| (X)) = 1. Differentiating with respect to A we obtain

2 {828 s 252
= <¢()\) m;g” ¢(A)> + E) [<m‘ w(A>> + <¢( ) &gg )>]
= (w0 2w ) + Ba g w0l v
- <¢(>\) MY w<A>>.

Therefore the Hellman-Feynman theorem gives us

5 _ <w<x>] s 'w<x>>- (24)

We are going to apply the Hellman-Feynman theorem using the nuclei position R as the A parameter.
The force on each nucleus is related to the gradient of the total energy, because the nuclei position R are

the only parameters in the electronic Hamiltonian, H.. Applying eq.(2.4) with A = R, and considering

= /(/}>
k

OH, M 7,z N M g2
D (ZZR R,| ZZHJRJ-)

coordinate x of the k-th nucleus we have

0 0
= {2

=1 j>1

X; — X,
*Zk€2 Z; + Zre e?
Z#Zk _ R |3 Z |rz Rk‘

Thus
OH,.

(

X; — X
= —7Z.e® E Ji————— 7+

X — X - X
_—Zke2ZZ u +/d3rz/1(r)|2NZk62H
TR - Ry r—R

X;—X - X
= —Z ZZ@2 i Zk/d‘grn(r)gvk3 ,
i#k ‘R Rk‘ ’I‘—Rk|

and the force on nucleus k is given by

F,=-VE=2 (2.5)

M
R, — R; r— Ry
ZZi€2ﬁ — /dgrn(r)g
itk |R2 Rk| ’I‘ - Rk’

Given the nuclear configuration R we can obtain the associated electronic density n(r) using eq.(2.3)

and compute the total force F = {F;} on each nucleus using eq.(2.5). Therefore we have found an
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algorithm to compute a fundamental element of the classical dynamics, namely the total force. We can

now write a classical equation of motion for atom k

d2rk(t) 1
= —Fy.
dt2 mp k

By integrating this equation numerically, we solve the dynamics of the system (within the performed
approximations). In the next section we are going to discuss the physical aspects of this integration, first
we want the general overview of the algorithm that we have just found. In a general manner we can write

the algorithm as a series of instructions:
1. Given R(t) = {R;(t)} compute the electronic density n(r) using eq.(2.3).
2. Use n(r) and eq.(2.5) to obtain F(t) = {Fy(t)}

3. Compute R(t + dt) = {R;(t + 0t)} from the numerical integration of Newton’s equations of motion
using F(t) = {F(¢)}.

4. Go back to 1 using R(t) = R(t + dt).

There is an implicit assumption in this algorithm that we can consider as the second part of the
Born-Oppenheimer approximation, namely the adiabatic approximation. Notice that at each iteration of
this algorithm the nuclear configuration R is altered and at each new configuration the electronic ground
state corresponding to the Hamiltonian H, is computed. Thus, during the nuclear motion we consider
that the electrons are always in their ground state. Between each step §t the electrons have enough time
to follow the motion of the nuclei and find the new ground state for this new configuration.

Intuitively the adiabatic approximation included in the Born-Oppenheimer approximation is plausible,
as we have shown before, due to the mass difference between an electron and a nucleus. The kinetic energy
of the electrons is much higher than that of the nuclei and therefore it is reasonable that the degrees of
freedom related to the electrons have a much faster time evolution than those related to the nuclei. This

approximation is a direct consequence of the adiabatic theorem:

If a perturbation acts slowly on the Hamiltonian of a certain system, then the system stays

always in its instantaneous eigenstate.

In the Born-Oppenheimer approximation the system is given by the electronic Hamiltonian H. and the
perturbation is the slow motion of the nuclei, changing the parameters R and H..

Although the described formulation fulfills the objective of obtaining an approximate dynamics of a
many-body system, in practice this formulation is computationally expensive due the need of performing

the minimization of eq.(2.3) at each step to find the ground electronic state. The size of the system is
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therefore limited to only a few hundred of atoms and still requires a high performance computer. The
time scale is also limited to a few picoseconds.

The solution to avoid the computation of the electronic density at each step is to substitute the force
of eq.(2.5) by the force derived from an effective interatomic potential V(R). This potential implicitly
mimics the effect of the electronic density and other degrees of freedom, as the electronic spin, and
generates the force that acts on the nuclei in a computationally cheaper manner. This is done using
analytical expressions specifically developed to capture the physics present in the atomic interactions of
the materials to be simulated with this interatomic potential. Once the analytical equations for V(R) are
developed, the different parameters of this model are adjusted to reproduce specific characteristics of the
substance under investigation. Frequently this fit is achieved with the help of experimental data. Because
of this V(R) is also known as an empirical potential.

Often it is not possible to capture all characteristics with an empirical potential. In this case it
becomes necessary to obtain a compromise between a good description of certain properties at the cost of
a poor description of others. For example, an empirical potential can describe very well the behavior of the
liquid phase of a certain metal but it can have a poor description of the formation energy of certain crystal
defects. In general no empirical potential will reproduce correctly the behavior of materials at conditions
where quantum effects are important, e.g. specific heat at low temperatures. Therefore it is necessary
to choose carefully a potential that correctly describes the physical quantities that are important for the
physical phenomenon to be studied.

In order to differentiate between both algorithms we shall call “Molecular Dynamics” the algorithm
that uses the empirical potentials V(R) to compute the forces on the nuclei and “ab initio Molecular
Dynamics” the algorithm that computes the electronic density “on-the-fly”. The ab initio MD is a first-
principles method, which means that it is not necessary to provide any external information (e.g. the
potential V(R) or the type of bond between the atoms of the material) to perform the simulation. As
opposed to the first-principles methods there are the force-field methods in which the dynamics of the
atoms is generated from an empirical potential. In the next chapters of this dissertation we are going to
develop further aspects of MD, although much of what is going to be described is also applicable to ab
initio MD.

2.2 Integration of the Equations of Motion

An important part of MD is related to the numerical integration of the classical equations of motion.
The development of an algorithm that performs this integration carries a unique perspective of the deep

connection between classical mechanics and MD. At first sight it may seem that the procedure of the
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numerical integration is noting but a mathematical artifact, but let us further develop this idea and
construct a simple method to integrate the Newtonian equations of motion.

We can write the equations to be solved as a set of coupled first order differential equation

v _F
dt  m
dx
— =v.
dt

Applying the method of finite differences to first order in the time step At (Euler’s method) to these

equations yields

v(t+ At) = v(t) + st)m (2.6)

x(t + At) = x(t) + v(t)At.

It seems that we could finish this discussion now because we have just obtained a numerical recipe for
integration. We only need to use a At that is sufficiently small so that the linear approximation to the
differential equations is valid and by successively applications of the above equations we could evolve the
trajectory of the system.

Let us apply eq.(2.6) to the unidimensional harmonic oscillator. To simplify the discussion we are
going to use m = k = 1, initial conditions x(t = 0) = 0 and v(¢t = 0) = 1 and At = 0.01. With these
parameters the phase space volume accessible to the system should be a circle with radius equal to 1
centered at the origin. Fig.2.1 (right) shows the trajectory of the system after 20000 steps. This result
clearly shows that there is something wrong with the integrator. We can use the quantity

E(t) - E(0)

A =""50)

as a measure for energy conservation. The result for the same simulation the result is shown in fig.2.1
(left) where we can see that the Euler integrator does not conserve energy. Although it is a valid numerical
method for solving differential equations in general it fails when applied to Newton’s equations of motion
Giordano (1996). The problem is that these differential equations are specific: they possess certain
symmetries and conservation laws that make them special. For example, from Hamilton’s formulation
of classical mechanics we know that the equations of motion can all be derived from a Hamiltonian .
This is a very specific property of this set of equations since not all differential equations can be derived
from a Hamiltonian. Thus, if we want solutions that possess physical meaning we need to incorporate
these specific properties of the classical equations of motion into the numerical solution. Tuckerman et al.
(1992) were the first to show how to systematically derive integration methods that contain all necessary

physical properties. The analysis that follows is based on their work.



14 CHAPTER 2. MOLECULAR DYNAMICS

Euler Method: energy convervation Euler Method: phase space
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Figure 2.1: Energy conservation (left) and phase space (right) of a harmonic oscillator solved with Euler’s

integration method.

Before showing how to derive such algorithms let us highlight two properties that we want these
algorithms to incorporate. The first property comes from the substitution of ¢ — —¢ in Newton’s second
law: , , ,

Fio = mccllT); = ﬁ = % = Fiot

which reflects the fact that the equations of motion are time-reversible (we are assuming no time-dependent
forces). The second property comes from the fact that an area dI' of the phase space is constant under
canonical transformations: because the time evolution from ¢ to ¢t + At has Jacobian equal to 1 (Landau,
1972), the Newtonian dynamics is a canonical transformation (generated by the Hamiltonian # itself)
and therefore it is area-preserving. Thus we want an algorithm that is time-reversible and also conserves
the phase space area under time evolution. To achieve this objective we are going to use as starting
point Liouville’s formulation of classical mechanics. Although all formulations of classical mechanics are
equivalent it will become clear that Liouville’s formulation is particularly useful for our purposes. It is
worth to remember that all formulations of classical mechanics result in Newton’s equations of motion
and all others properties of classical mechanics, including its simplectic structure (time-reversible and
area-preserving).

Consider now a function f(r,p) of the position r"¥ = r and momenta p" = p of all N particles of the

system. The time derivative of this function is

—df(;t’p) = flr,p) = b5+ D5 = iLf(rp) (2.7)

where we have defined the Liouville’s operator

0
L=i— 4p—r =2t 979
! r61‘+pap Op or Or Op o
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and { , } are Poisson’s brackets. We can formally integrate eq.(2.7) to

Fle(t), ()] = ™ f [r(0), p(0)], (2.8)

which led us to define U = e as the classical propagator. Notice that the Liouville’s operator is

compatible with the time-reversibility because it is unitary
ULty =UT(t) = U(-t).

Now we want to solve eq.(2.8) analytically. In order to do so we decompose Liouville’s operator as

il =iL, + 1L, where ¢L, = I"(O).% and iL, = p(O).% and apply each part separately, leading to

0. p(0)] = 3 035 150).p00)
n=0

= > O f 5(0),B(0)]
n=0
= Jx(0) + #(0)t, p(0)]

and
e f[£(0), p(0)] = f [r(0), p(0) + p(0)1] .

Now, from the individual action of iL, and iL, we could try to compute the effect of iL but because iL,
and iL;, do not commute exp(iL, + iL,) # exp(iL,)exp(iLy). Therefore we cannot apply the equations

for iL, and iL, separately. To solve this problem we use the Trotter’s expansion Tuckerman (2010):

A¥B _ Jim [eA/ZPeB/PeA/2P]P
P—oo

e
where A and B are non-commuting operators. For finite but large P we have

€ )

A+B _ [GA/QPQB/PGAQP}Pe(’)(l/PQ)
choosing A = iL,t, B =iL,t and At =t/P we obtain

o(Lr+iLy)t _ {einAt/QeiLrAteinAt/ﬂP€O(1/P2)‘
Therefore we can define

G(At) = i Lo A/2 il At LiLp At/2 (2.9)

as the discrete classical propagator. Because each term of the discrete propagator is unitary and the time
dependency is symmetrical in this equation it is easy to show that the whole propagation is time-reversible

too. More than that, we can notice that the Jacobian of each term is equal to 1 thus the Jacobian of the
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entire propagator (the product of the three Jacobian) is unity too. As we have seen before this means
that the propagator is area-conserving.
Let us understand how the application of eq.(2.9) works in practice. Given the initial configuration

r(t) and p(t) the algorithm is like reading eq.(2.9) from right to the left:
Lop(t+ 5 = p() + 515
2. r(t+ At) =r(t) +p (4) At
3. Compute F(t + At) using r(t + At).

F(t+A
4. p(t+ At) = p(t + 4b) + ELEAD At

m

5. Go back to (1) with t =t + At.

The algorithm above is known as Velocity Verlet. Although Tuckerman et al. (1992) were the first ones
to derive this algorithm using the tools of classical mechanics, Verlet (1967) was the first to present the
algorithm in this form.

We have formally derived an area-preserving and time-reversible algorithm. We now apply it to the
same harmonic oscillator of fig.2.1, using the same initial conditions and parameters. The results are
shown in fig.2.2 where we can see that the phase-space (right) is a circle and the energy is conserved
(left). Notice the time-scale difference between the figs.2.1 and 2.2, the velocity Verlet simulation is 50

times longer than the Euler method and it still has a better energy conservation than Euler’s algorithm.

Velocity Verlet Integrator: energy convervation Velocity Verlet Integrator: phase space

0.16

w

0.0 200000 400000 GOOOOO 800000 1000000 —33 3 ) 0 1 2 3

time [steps] x

Figure 2.2: Energy conservation (left) and phase space (right) of a harmonic oscillator solved with the

Velocity Verlet integration method.

Now that we know how to numerically integrate the classical equations of motion we can in fact

perform an MD simulation and obtain useful data about the system from our simulations. Now comes
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the time to analyze such data and understand what they mean physically. In the following section we

discuss the connection between MD and statistical mechanics.

2.3 Molecular Dynamics and Statistical Mechanics

Our ultimate goal in running an MD simulation is to obtain useful information about our system
capable of helping us to understand and gain insights about it. Because of the atomistic character
of MD simulations we deal with a large number of degrees of freedom (positions and velocities of all
atoms). Although it seems good to have such a detailed information about the system, frequently we
need to convert it into something amenable to brain. There are two different ways of processing the
“crude” data from the trajectory generated by our simulation. One of them is to generate smart graphical
visualizations of the system. This is a powerful method that allows us, with the help of the correct analysis,
to rapidly understand what is happening with our system. For instance the visualization package OVITO
(Stukowski, 2010) allows us to perform neighbor analysis of the atoms and distinguish between atoms in
different phases. This, for instance, allows us to observe the phenomena of crystallization from a melt.

The second type of processing of the trajectory data is to extract from the huge number of degrees
of freedom a small number of specific degrees of freedom that give us important information about
our system but are manageable to our limited processing capacity. This task is performed through
the use of the connection between statistical mechanics and thermodynamics. The state of a classical
system is completely described by the set of position and velocity of all atoms I' = {r"V,vN}. A given
thermodynamical observable A is computed by taking the thermodynamical limit of averages obtained

using statistical mechanics

= lim
N,V—o0

A
N

where v = V/N is kept constant. A(I") is the observable variable computed using the microscopic state of
the system and p(I") is the probability density of the statistical ensemble compatible with the thermody-
namic boundary conditions. The thermodynamical limit is necessary to close the link between statistical
mechanics and thermodynamics.

There is a small but important subtlety in the calculation of A from an MD trajectory. The quantity

that we need to compute is
(A()) = /p(I‘)A(F)dP. (2.10)

Unfortunately, this is not the quantity that we have direct access to in a simulation. During the simulation

we collect a set of instantaneous configurations of our system I'(t) = {r™ (¢),v" (t)} with 0 < t < T. If we
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collect M of these configurations in intervals longer than the correlation time of the system!® ¢;.1 —t; > 7
then we can form the estimate
t

M
AT = tim ~ [ A[L@) dt ~ %ZA[F(Q)] (2.11)
=1

which is fundamentally different from eq.(2.10). The important link between these two quantities comes
from the so called Ergodic Hypothesis, which assumes that the simulation time 7" is long enough so that
the system has the necessary time to visit all the phase space states accessible to it. In this condition and
further assuming that the dynamics of the system is such that it does not get trapped and locked in a
small region of the phase space we can assume that both averages converge to the same value. Therefore,
invoking the ergodic hypothesis, an MD simulation computes the ensemble average of eq.(2.10) by the

temporal average of eq.(2.11):

(A(T)) = A(T) (2.12)

thus obtaining an estimate of the thermodynamic observable.

Before finishing the discussion about the statistical-mechanical treatment of the MD trajectories it is
worth mentioning a remarkable interaction between modern concepts of classical mechanics and technical
aspects of MD simulations by which we can fully appreciate the importance of statistical mechanics in
order to obtain significant information from MD simulation.

Consider fig.2.3, in which the system initially at a state I'(0) = {r™ (0), vV (0)} is shown as a red dot.
Through the natural Hamiltonian evolution of this initial condition the system follows the green trajectory
and after a time ¢ it reaches the final state I'(t) = {r™V(¢),v" (t)}. Now suppose that we evolve the system
again from I'(0) but at a time 0 < ¢’ < t we introduce a small perturbation. For instance it could be a
small increment dv in the velocity of one of the particles of the system. Before ¢’ both trajectories (blue
and green) coincide but after the small perturbation they diverge such that the final state of the blue
trajectory I'(t) = {r'N(¢),v'V(t)} is completely different from the final state of the green trajectory. This
divergence of trajectories is known to be exponential such that in a small amount of time the state of both
trajectories is completely different. This feature of the evolution of classical system is know as”Lyapunov
instability of trajectories” (Goldstein, 1980).

Now, why is the Lyapunov instability important in MD? At each time step At we are storing the

state of the system I'(t) = {r™(¢), vV ()} and using it in the next step of the Velocity Verlet integrator.

! The correlation time is a measure time necessary for the system to forget about its initial configuration. It can be

estimated necessary time for a correlation function

to first decay to zero (it can oscillates afterwards).
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{rN(f,), VN(t)}

(0. (1))

{r™(0),v"(0)}

Figure 2.3: Hamiltonian evolution of a initial state (red dot). The green trajectory is the natural evolution
through the Hamiltonian dynamics of the system, the blue trajectory contains a small perturbation during

the evolution. The exponentially diverging character of the trajectories is know as Lyapunov instability.

Because of the limited amount of memory of our computer we cannot save the exact value of, for example,
the position of an atom. What we do in practice is to truncate the real value at some point and store
the truncated value. In 64-bit machines we usually have about 15 digits of precision plus the exponent.
Therefore at each timestep of our MD simulation we are performing some kind of (small) perturbation to
our system such way that we can expect that in a short period of time the trajectory of our system will no
longer resemble the true trajectory, generated by the true Hamiltonian evolution of the initial conditions.

One may think that this feature might completely destroy the usability of MD simulations, but it is
at this point that the statistical mechanics works at its best. Although the collected states of eq.(2.11)
do not reflect the states of an actual trajectory they, are statistically uncorrelated collection of states
compatible with the simulated ensemble and therefore they are just as good as any other collection of
uncorrelated states to compute the average of eq.(2.11). Thus MD is still a safe method to compute
averages for thermodynamic observables.

We now turn to the important task of imposing different thermodynamic conditions (temperature,

pressure, volume, etc...) on an MD simulation.

2.4 MD in Different Ensembles: Anderson barostat

In the previous section we have shown how to correctly integrate the equations of motion in order
to perform an MD simulation. Using the Velocity Verlet integrator one will obtain a trajectory that
is compatible with the Hamiltonian dynamics of the system, which means that we are sampling from

an ensemble of constant energy FE, constant volume V and constant number of particles N, i.e. the
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microcanonical ensemble. Assuming that the dynamics is ergodic the equilibrium distribution of the
system should be the distribution of the microcanonical ensemble

_ O[H(I) - E]
~ [dUS[H(T) — E)

pnvEe (D)

and according to the ergodic hypothesis the long-time average of a observable A is equal to the ensemble

average

(AT) v = AD).

Although there is nothing wrong with this approach it is still clear that there are many applications
of MD where one might find it convenient to sample from other ensembles or to have control over ther-
modynamic parameters other than E, V and N. This section and the next few will be devoted to the
discussion of methods often used to implement different ensembles sampling.

We start by considering that our system is coupled to an environment that exerts pressure P on the
system and therefore can perform work W = —PAV if the volume V of the system changes. Under these

conditions we know that the internal energy F of the system is not conserved, but rather the enthalpy
H=FE+PV.

This condition is described by the NPH ensemble (isobaric-isenthalpic). If we consider the system and the
barostat together we recover the microcanonical ensemble for a closed system whose total energy £ + PV

is conserved. This means that the equilibrium distribution should satisfy the microcanonical ensemble

_ J[E+ PV —H(D)]
pnpu (I, V) = [dUS [E + PV —H(D)]’

To implement the NPH ensemble in an MD simulation one can use the method known as Andersen’s
Extended Lagrangian (Andersen, 1980). We follow the approach by Cai (2007). First we describe the

volume of the system through three vectors ci, co and c3 such that
V = (c1 X c2).cg = det(h)

where h is the matrix composed of the three column vectors h = (cq|cz|c3). Now we define scaled

coordinates s; for the atoms of the system in such a way that
r; = h.s; = S; = hfl.ri.

We assume that the simulation cell is a cube, so that h = y1/3 I3 is diagonal and r; = V1/3s;. Andersen
(1980) proposed to include the volume of the system V' in the equations of motion allowing it to fluctuate

during the dynamics. For this purpose he introduced the Lagrangian for an extended system

1 2
£A22z;mi Vl/gsl‘
1=

1 .
~U(Vs) + 5Mv2 — PV (2.13)
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where s = {s;} and M is fictitious mass associated with the simulation box.

To solve the Lagrange’s equations of motion

d <8£A> 0LA

d (0LA\ 0L
a\ov ) oV

we need to compute

N
dL A 1 , U
A= S s - 55 - P
3V/ i=1

ov oV
0Ls _ OU

881' N 8Si

% =MV

ov

M,A — m; V23,

aSi

Accordingly the modified equations of motion are

2V 1 oU

SRS T B s,
and
. 1
V=— Piria - P 2.14
L (P P) (214)
where
b 1 (1 & sy [P U
virial = M W;mz Si| — W

is the virial pressure of the system (Allen and Tildesley, 1989). Analyzing eq.(2.14), it shows that Ander-
sen’s barostat controls the volume of the system by means of a comparison between the virial pressure and
the external pressure P. In this way the virial pressure fluctuates around the external imposed pressure
P.

Using the Andersen’s Lagrangian eq.(2.13) we can obtain the Hamiltonian # 4 of the system, which
is given by

2 1 .
+ U (Vs) + 5MV2 + PV. (2.15)

ey _1 S 13,
A= B ; m; ‘ S;
Therefore, along a dynamical trajectory, it is this Hamiltonian that is conserved instead of the enthalpy
H = E + PV. Although Andersen’s equations of motion do not exactly sample the NPH ensemble,

Andersen (1980) has shown that the sampling becomes exactly NPH in the limit of large number of

particles N such that, for a large enough system, we can compute averages like

o _JSav [dPA(D)S[E + PV — H(D)]
A) = (AD)) ypy = = [0 dV [dDS [E + PV — H(D)]

and therefore have control over the pressure of the system.
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2.5 Canonical Ensemble: Nosé-Hoover Chain thermostat

Now we consider the problem of controlling the temperature of the system. In statistical mechanics
when we want to keep our system at a temperature 1" we couple our system to a heat reservoir at constant
temperature T'. Although the composed system formed by the system of interest plus the reservoir is still a
closed system we assume that the reservoir is large enough that when it transfers or receives heat from the
system its temperature does not change. In MD simulations the approach is similar, using the method of
the extended Lagrangian introduced by Andersen (1980). We will now show how to obtain the equations
of motion for a system at constant temperature 7', volume V and number of particles N. If we also wish
to control the pressure of the system all we need to do is to include the modifications presented in the
last section together with the ones that we present in this section.

If we want to control the temperature T of our MD simulation the first question we need answer is
how to compute the temperature in first place. The answer comes from a result from classical statistical
mechanics know as equipartition theorem which states the following: a classical system described by a
Hamiltonian H in equilibrium at temperature 1" has average value of %kBT for each harmonic term in H.

The reason why this theorem is useful is because the kinetic energy of a classical system

1 N
1=

is a sum of 3N harmonic degrees of freedom, therefore

N
3N 1 e
() =Skl = T=go ;m (vi).

We can also use this last relation to obtain a instantaneous kinetic temperature 7'(¢) of the system

R )
T(t) =3 Nia Zmivi(t) : (2.16)

Using the Extended Lagrangian method of Andersen (1980), Nosé (1984) introduced a Lagrangian
that results in a set of equations of motion that sample the canonical (NVT) ensemble. To introduce the
thermal reservoir that exchanges heat with the system we introduce a new degree of freedom given by the
variable s that exchanges heat with the system by scaling its velocities. The extended Lagrangian is

N
1
Ly = B ;7774821'12 — U(I'N) + %32 - ngTobj In s (2.17)

where @) is a mass associated with the thermostat, g = f + 1 where f = 3N is the number of degrees
of freedom of the system and Tg;; is the temperature of the heat reservoir that we want impose on our

system.
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From eq.(2.17) we can obtain the momenta conjugate to r; and s

= 0Ly _ M S2T
pZ i 61"1 - 7 (2
and
0Ly i
Pe= s 9

N N .
. . 1 p2 N
HNZZ;pz‘-I‘ri-psS—ﬁN = Hy = 51‘:1 mz‘;Q +U(x™) + 2Q +ngTobJ Ins
and introducing p’; = p;/s we obtain
2 2
| 3
Hy = Z o +U(xN) + @ + gkTop;In s
i=1
or
N p?
HN = H(p/ N) + @ + ngTob] Ins (218)

.,2
where H(p/™,rV) = YN, 2szl + U(rN). If we perform a simulation using the extended Hamiltonian of

eq.(2.18) we will sample the microcanonical ensemble given by the partition function

/ drNdpNdpsds §(Hy — E)

1
QN (E) = 35w

1
= NN / drNdp'™ dp,ds sSNo(Hy — F)

1
= W/drNdp’Ndpsds SN | HE™N, )+ B +ngTob] Ins—

2Q
Using the following property of the delta function

d(z — o)

S[f(z)] = m,

where x( is the single root of f(x), we can choose x = s and

2

f(s) = H(P/N N) + @ + gkTopjIns — E.

Hence
2
B N Ny_ P
- —§|:'H(p, ;T )+ﬁ—E:|
Sgp = €

with g = kBTobj and
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Then the partition functions becomes

1
Qn(E) = W/drNdp’Ndpsdss3N5 [’H(p/N,rN) + =5 P + gkpTop; Ins — ]

2Q)
S— Nap™ s 7§{H(p/N’rN)+%’E} B *g[ﬂ(p’N, N)+ZEp
_thN!/dr dp’ dpsds s s—e Ee

2
_ ! NN, B R HE N )+ g - B
—thN!/dr dp’dps e { }

, _6Nt)s (p

— hg,]\lrj\”/dI'Ndp’Nﬁ (3N+1)B[H(p N’rN)E]/dpse g (2@)
= CQnvr,

where in the last passage we have used the relation g = f +1 = 3N + 1 and we have also included in C
everything that does not depend of p’ or r.

Therefore, if we perform an MD simulation using the Hamiltonian of eq.(2.18) and measure the average

/N N)

value of observables of the form A(p we obtain:

= (a0 ),

does not depend on s or p,; the average resumes to

<A(pIN’rN)>Nose - <A(p/N’ rN)>NVT'

Thus we have obtained a method to compute average values of observables A(p’ N, r

However because A(p’™, )

N in the canonical

ensemble.
Finishing the presentation of the Nosé-Hoover thermostat we introduce a simplification introduced by
Hoover (1985). We perform the change of variables £ = sp’./Q in eq.(2.18) and compute the equations of

motion for p;, r;, £ and s:

2
. p
= (Z e 3NkBTobj> /Q

=1
$
Z=¢
S
where in the third equation we can substitute the value of the instantaneous temperature eq.(2.16) and

obtain
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This equation shows that the Nosé-Hoover thermostat has a feedback mechanism similar to that for the
volume in the Andersen thermostat, eq.(2.14). Measuring the difference between 7'(t) and Tr; the variable
£ change in a way such as to modify the intensity of the viscous drag applied to the particles. In this

manner the value of T'(t) fluctuates around Ty, .

Often the Nosé-Hoover is substituted by a similar thermostat known as Nosé-Hover Chain (Martyna
et al., 1992), where instead of one thermostat variable £ there is a chain of M coupled thermostats &.

The equations of motion then become

. | 87
rB—=—

my
. (9U pgl
Pi = _al‘i - lez
: Pe;,
k=~

Qk

N 2
. P; D
Pe, = <§ :Tr;- _ 3NkBTobj> _ —5; Pe,

=1

pék _ (pfk—l . kBT) P&ta

— 5 P
Qr—1 Qrt1 e

Depr_q
—kgT ).
(QM—I b >

pr

Then the conserved Hamiltonian is

N 2 M
b
Hy =HE™, V) + 5 3 + gkpToié1 + Y kpTék.
k=1 k k=2

The reason why this chain is necessary is to reduce the ergodicity problem (Tuckerman, 2010) present
when the Nosé-Hoover thermostat is applied to stiff systems like harmonic oscillators. In the next section

we will further explore this kind of problem.

2.6 Nosé-Hoover Chain Thermostat and Harmonic Oscillators

Let us now consider the application of the Nosé-Hoover thermostat to a system composed of NV identical
non-interacting tridimensional harmonic oscillators with spring constant & = mw?. Such system is also
known as an Einstein crystal because of the interpretation that each harmonic oscillator is an atom of the

crystal vibrating harmonically around its equilibrium position.
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We can obtain the partition function of the Einstein crystal analytically:

_ 1 _ 1 o kT — e 2k T 8. 8. )
ZN—W/ d“w(//”/ ey

e BH(EN, pY)
JamkaT 27rkBT 1 orkpT\ >N
27rh (2mh)3N mmrs = 2rh)N

w

() 19

Using this equation we can compute the average of the potential energy and recover the equipartition

theorem result:

[ 27h) SN (r )6_5H(rN7pN)dF]
ZN T

O
NN
(P

_ gNkBT. (2.20)

By a similar calculation we can also obtain the average value of the kinetic energy (K) = %N kgT. This
result is a specific case of the equipartition theorem and it only assumes that the system is in thermal
equilibrium at a temperature T'. Accordingly, a system of harmonic oscillators provides a good test to
check the consistency of the thermostat.

Aside from verifying the equipartition theorem, we can also check if the thermostat correctly samples
the canonical ensemble by computing the probability distributions of (r" — rg M) (displacement from the
equilibrium position) and p”¥ (momenta) and compare them to the analytical result. To obtain the
analytical results we consider a single harmonic oscillator, because the Einstein crystal is composed of N
non-interacting oscillators.

Because the probability distribution of the canonical ensemble is proportional to the Boltzmann factor

e PE all we need to do is to correctly normalize the result, therefore

+oo +oo 2rkpT _ k
/ p(z)dr = Ae QkBTda: = T B = A=
—00 —00 27TkBT
and
—+00 —+o00 mov? 9 k T
/ p(v)dv = / Be %5Tdy = By/ "B~ =1 B = m
—00 —00 m 27FkBT

2
e T and p(v) = ————e ?57T. (2.21)
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We computed the relevant averages using different lengths for the thermostat chain and statistical the
errors were computed using the method of block averaging (Krauth, 2006). The system was composed
of 1728 tridimensional harmonic oscillators at 7' = 700K . The timestep was chosen At = 0.5ps and the
averages were calculated in a simulation of 10% timesteps.

The probability distribution of eqs.(2.21) are shown in fig.2.4. None of the chains lengths correctly
sample the exact results. The generated probability distributions assumes a double spiked shape instead

of the required Gaussian.

Einstein Crystal (Nose-Hoover): Position Einstein Crystal (Nose-Hoover): Velocity
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Figure 2.4: Histogram of momentum (left) and position (right) of particles in a system of harmonic
oscillators at constant temperature controlled by a Nosé-Hoover chain thermostat. Different chain lengths

were used but none of them agree with the exact result.

The behavior of the probability distribution of position and velocity are also apparent in the probability
distributions for the potential and kinetic energy as shown in fig.2.5. None of them correctly reproduces
the Gaussian behavior expected, although, for a length of 3 or greater the correct average value of the
distribution is obtained.

The results presented here are all well documented in the literature (Tuckerman, 2010; Martyna et al.,
1992). One solution to this problem, caused by the stiff nature of the dynamics, it so couple one Nosé-
Hoover chain to each degree of freedom of the system, known as Massive Nosé-Hoover Thermostat (MNH).
Although the MNH solves the problem for stiff systems like harmonic oscillators, it includes the negative
consequence of adding many more degrees of freedom to the system. An alternative solution for this
problem is to use the Langevin thermostat, to be presented later in this chapter.

During the development of this dissertation we encountered the necessity of thermostatting a system
with many similarities to the Einstein crystal, the so called harmonic approximation of a crystal. In next

section we present this approximation and show how the Nosé-Hoover thermostat performs in this case.
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Figure 2.5: Histogram of kinetic (left) and potential (right) energy of a system of harmonic oscillators
at constant temperature controlled by a Nosé-Hoover chain thermostat. Different chain lengths were used

but none of them resulted in a Gaussian-like distribution with the correct average.

2.7 Nosé-Hoover Chain Thermostat and the Harmonic Approximation

In this section we discuss the thermostating of an interacting crystal within the harmonic approxima-
tion. First, we introduce in detail how to perform the harmonic approximation of a crystal and then we

discuss the implications of applying the Nosé-Hoover thermostat to control its temperature.

Consider a crystal composed of N atoms in their equilibrium positions (the total force on each atom is
zero) where the interaction between the atoms is described by some interatomic potential. If this crystal
is mechanically stable then for small displacements (compared to the first neighbor distance) there will
be restoration forces proportional to the displacement. To verify this property we have computed the
force on an atom of the system when we apply small displacements to it while keeping all the others in
their equilibrium positions. The result for the Meyer and Entel (1998) EAM potential is show in fig.2.6
(left) where we can verify the spring-like behavior (Hooke’s law) for small displacements. If we make the
approximation that the force acting on this atom is linear in the displacement no matter how large it is
then the complete dynamics of the crystal could be described by the spring constants of each atom (in
each direction) with respect to displacements of all others. Of course this is only an approximation and
it breaks down for large displacements. Indeed, note that if we increase the displacement we can see that
for large displacements the behavior diverges from the spring-like, fig.2.6 (right).

We mentioned that if we consider the behavior for small displacements for all atoms we can describe

the dynamics of the crystal using only the spring constants of each atom in each direction. For this

purpose we start by organizing the forces and spring constants in a matrix form. If F; are the forces on
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Hooke’s law for small displacements Hooke’s law breakdown
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Figure 2.6: Force in one atom for many different displacements from its equilibrium position (all other
atoms are keep in their equilibrium position). Left: the spring-like behavior (Hooke’s law). Right: the

divergence from this linear behavior for large displacements.

the atoms and ¢; are their displacements then we can organize these variables using the spring constant

matrix k;;:
Fy kii ki2 ... FEisn q
Fy kor koo ... kosn q2
Fy q3
_— ' -~ F= kur, (2.22)
Fy : : q4
Fsn knt ksn2 ... ksnan| |@3n

where D;; = kjj/m is the dynamical matrix of the system. This matrix completely describes the system
within the harmonic approximation. For example, the potential energy V(r™) of the crystal in this

approximation is given by

3N
N
VEN) =Vo+ > k(e — a))(g — &) + Ollai — ¢))?),
ij=1
where q? are the equilibrium position of the atoms and Vj is the equilibrium lattice energy. A different
way of obtaining the D matrix is to truncate the Taylor expansion of the potential energy at terms of
order 2 in the displacements of the atoms from its equilibrium positions. Then we notice that D is a

Hessian matrix, i.e. it can be written as the second order partial derivatives of the potential energy

1 [ 0*V )
Dz = ]ﬁi‘ m = — :
/ ]/ my; (aQian {r9}
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Because D;; is symmetric we can diagonalize it writing D = UQUTwhere € is the diagonal matrix
with the eigenvalues of D and U is an unitary matrix (UU? = I3yx3n) the columns of which are
eigenvectors of D. The eigenvectors and eigenvalues of this matrix are such that D.e; = wfei, where w;
are the eigenfrequencies and ¢; are the polarization vectors of the corresponding normal mode. Since D is
a 3N x 3N matrix we have ¢ = 1,2,...,3N. Notice that if we apply a displacement proportional to one

of the polarization vectors we have

F = -k =-—mD.g = —mwgei = F = —mwgei.

Therefore the polarization vectors (eigenvectors of the dynamic matrix) are the directions in which the
restoration forces point exactly in the opposite direction of the given displacement and has magnitude
mw?.

The dynamic matrix D is real, symmetric (this result follows directly from the symmetry of Newton’s
third law) and has dimensions 3N x 3N. Hence all its eigenvalues (square of the frequencies of the normal
modes) are real and its associated eigenvectors (polarization vectors) form a complete basis of this 3/N-
dimensional vector space. Thus if we normalize the eigenvectors properly such that eiT.ej = 0;;, we can
write any position vector r of the N atoms as a linear combination of the polarization vectors of the

dynamical matrix:
3N 3N
r= E a;€; = ejT.r: E a;b;; = :eZT.r.
i=1 i=1

In this manner the force acting on the atoms in the configuration r is given by

N N
F=-mD.r = —mD. Z a€; = Z(—maiw?)ei (2.23)
i=1 =1

and the harmonic potential energy of the system is

3N
1
V(r)=Vo+ Z kij(qz' - q?)(qj - q?) =W+ imrTDr

ij=1
] 3N T 3N L
=W+ 3m <Z a¢€i> D Z aj€; | = Vo + 5™m Z a;ajel De;
i=1 =1 ij=1
13N
=W+ §m Z aiajwjzef.ej
ij=1
3N
=W+ Z §mwi2a?. (2.24)
=1

In the same way we can write the velocity of the atoms as
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and therefore the kinetic energy of the crystal is given by

3N 3N
K(v) = %VT.V = Z %didje,:fp.ej = K(v) = %d?. (2.25)
i,j=1 i=1

With the equations (2.23), (2.24) and (2.25) we can verify that the basis constructed from the polar-
ization vectors of the dynamical matrix gives us harmonic equations for the kinetic and potential energy.
Hence the equipartition theorem holds for each normal mode of the crystal in the harmonic approxima-
tion. Using a chain of length 4 for the Nosé-Hoover chain thermostat we have performed MD simulations
to verify whether it gives us the equipartition of energy between the normal modes of the crystal. The

results for the total kinetic and potential energy are shown in fig.2.7. The average values are

Equipartition = 38.740 meV/atom

U
<N>4 = (38.738 £ 0.034) meV/atom

K
<N>4 = (38.739 + 0.034) meV/atom

so at first sight there is nothing wrong with the Nosé-Hoover chain thermostat given that the average
value of the potential and kinetic energy seem to respect the equipartition theorem.

Harmonic approximation histogram (Nose-Hoover): Potential energy Harmonic approximation histogram (Nose-Hoover): Kinetic energy
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Figure 2.7: Exact probability density of the potential (left) and kinetic energy (right) of an atom of
a crystal under the harmonic approximation, the dotted line is the exact result for the average values

predicted by the equipartition theorem.

Let us now analyze the density distribution of position and velocity and compare with eq.(2.21).
Fig.2.8 shows the distribution for this system generated by the Nosé-Hoover thermostat. For the case of
the velocity we can compare with the exact result and it is clear that the simulation does not agree with
the equipartition theorem, for the position all we can say is that it at least presents an Gaussian shape.

To identify the root of the problem we recall that the equipartition theorem is stronger than the

version we are using. It asserts that the equipartition of the energy works for each harmonic degree of
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Figure 2.8: Probability density of the position (left) and velocity (right) of an atom of a crystal under

the harmonic approximation, the solid line is the exact result.

freedom of the Hamiltonian, so that the average value of each normal mode (kinetic and potential energy)
should have the average value described by the equipartition theorem, eq.(2.20). In fig.2.9 we shown the
average value of the kinetic(left) and potential (right) energy for each normal mode of a crystal with 1024
atoms. The yellow solid line shows the expected value according to the equipartition theorem. These two
figures demostrate that the Nosé-Hoover chain thermostat does not divide the energy equally between
each normal mode. A few of the normal modes are extremely “hot”, with an average value of potential
and kinetic energy larger than the expected by more than a order of magnitude, while many other modes
are almost “frozen”, with a mean value of the energy much smaller than expected.

We conclude that the Nosé-Hoover chain thermostat cannot be used to thermostat system with a
high degree of harmonicity. This is a problem in many situations, for example when dealing with the
harmonic approximation or the Einstein crystal, which are two systems frequently used in the free-energy
calculation of solids. Hence we shall look for a thermostat than can correctly equilibrate such stiff systems

at a constant temperature.

2.8 Canonical Ensemble: Langevin Thermostat

The Langevin thermostat has a simple interpretation based on Brownian motion. Consider a pollen
particle embedded in a fluid (water). The pollen is a large particle O(um) if compared with the water
molecules O(nm). The collision of a single water molecule does not change the velocity (magnitude and
direction) of the pollen particle considerably, but due to the fact that the pollen particle is surrounded

by many water molecules it is suffering many collisions in a small time interval. From these incessant
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Figure 2.9: Average kinetic (left) and potential (right) energy of each one of the normal modes of a

crystal of 1024 particles. The Nosé-Hoover thermostat does not result in an equally partition of the

energy between the normal modes.

collisions the pollen particle changes its velocity and slowly acquires the same temperature of the water,
i.e. <mpv2 / 2> = kpT/2. The water solution act as a thermal bath to the pollen particle, hitting it all
the time in a different directions and with a different intensity such that it sometimes absorbs some of
its kinetic energy (acting as a friction force) and sometimes it transfer some kinetic energy to the pollen
particle (acting as an impulsive force).

The idea of the Langevin thermostat is to mimic the water solution and keep the system at a constant
temperature using random collisions and a viscous force. In order to keep the notation simple we are
going to consider the one dimensional case. We introduce two new forces to the equations of motion of

the particles of the system
ffric = —m'yv(t)

is the friction force where m is the mass of a atom of the system, v(¢) is its velocity and -~ is the friction

coefficient. In order to balance the friction force we introduce the random impulsive force

frand = R(t)

that has the following properties
(R(t)) =0

and

(R(t' +t)R(t)) = 2mkpT~o(t) (2.26)

where T is the temperature that we wish to impose to our system. This random force is also called a
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white noise due to the Dirac’s delta correlation and the zero average. This means that the force acting
at a time ¢ has no correlation to the force acting at any other time ¢’. In other words, it has no memory.

The best way to understand why we choose this specific correlation function is to verify that it results
in the correct temperature for our system. To simplify the calculations we consider a case where there is

no external potential, U(r) = 0. The equations of motion are then

mo(t) = —mryv(t) + R(t). (2.27)

Eq.(2.27) can be multiplied by the integrating factor €’ and integrated, resulting in

t /
v(t) = v(0)e 7" + e”t/ e”t/@dt’.
0 m

Now if we square this result and take the ensemble average we obtain

(BOF) = (bOF) e+ (25) (- e2).

m

Hence in the limit of ¢ — co we obtain

1 T
lim <2m |v(t)|2> = k%

t—o0

Accordingly this choice the correlation function is justified by the fact that it results in the correct
temperature predicted by the equipartition theorem. Notice in eq.(2.26) that the random force magnitude
is related to the dissipative force parameter , which is a manifestation of the fluctuation dissipation

theorem (Cai, 2007).

2.9 Langevin Thermostat Applied to Harmonic Systems

We have already confirmed that the Nosé-Hoover thermostat does not correctly sample the canonical
ensemble for stiff (harmonic) systems. Lets now apply the same tests to verify if the Langevin thermostat
suffers from the same problem.

First we are going to analyze an Einstein crystal, a system composed of N non-interacting harmonic
oscillators. For the same system studied using the Nosé-Hoover thermostat we compute the averages
values using a Langevin thermostat coupled to the system now. In fig.2.10 we see that the kinetic and
potential energy distributions are Gaussians centered around the value predicted by the equipartition

theorem. The average results are

Equipartition = 3.3053 hw/atom
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Figure 2.10: Kinetic (left) and potential (right) energy distribution for an Einstein crystal, the Langevin

thermostat does predict average values compatible with the equipartition theorem.

K
% = (3.3055 & 0.0007) hw /atom % = (3.3051 + 0.0007) hw/atom

and we can verify that the Langevin thermostat does obey the equipartition theorem.

In fig.2.11 we verify that the probability density of the position and velocity of a particle agrees with
eq.(2.21). The black solid lines describe the analytical distributions and they agree with the distribution
computed in the MD simulation. Thus, the Langevin thermostat correctly samples the canonical ensemble

for a system of independent harmonic oscillators.
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0.5 T T T 0.5 T T T
' — Analytical Result ' — Analytical Result
: - - Average Value : - - Average Value
0.4 0.4F
= ey |
= T oal !
o) 0.3F S 0.3 !
= z |
2 = |
= 0.2} = 0.2} I
) <~ 1
o o 1
— —
ol [al) X
0.1 0.1 X
1
|
1
1 1 1 I 1
0.0% 4 A S 0 1 2 3 4

Position [v/kpT /mw?] Velocity [v/kpT/m)

Figure 2.11: Position (left) and velocity (right) density distribution for an atom of a system composed
of harmonic oscillators (Einstein crystal). The black solid line is the analytical result and the dots are
the results from the MD simulation, we can verify that the Langevin thermostat correctly sample the

canonical ensemble.
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Now we turn to the problem of correctly sampling a system given by the harmonic approximation of
a crystal. In fig. 2.12 we check the values of the kinetic and potential energy of the system. These are
Gaussian distributions with mean values in agreement with the equipartition theorem (within the error

bar). The numerical results are

Equipartition = 38.740 meV/atom

K
% = (38.730 + 0.014) meV/atom % = (38.735 £ 0.012) meV/atom |

In fig.2.13 we show the position and momentum distributions of an atom of this system. The simulation

Harmonic approximation histogram (Langevin): Kinetic energy Harmonic approximation histogram (Langevin): Potential energy
0.40 0.40

Equipartition: 13.670eV A _0.30F Equipartition: 39.670eV

Probability Density
5

36 38 10 12 11 36 38 10 2 1
K [eV] U [eV]

Figure 2.12: Potential (right) and kinetics (left) energy distribution for the harmonic approximation of

a crystal, the Langevin thermostat predicts average values compatible with the equipartition theorem.

results are in agreement with the analytical result (solid black line) for the case of the velocity. Although
we do not have the exact result for the position we can see that the distribution is Gaussian.

Finally we turn to the problem of the energy distribution between the normal modes of the crystal.
In fig.2.14 we have plotted the average value of the kinetic and potential energy for each normal mode
of a crystal with 1024 atoms. Although the error bars had to be estimated because of the difficulty of
performing the block average analysis for each point, we can compare this figure with fig.2.9 and verify
that the Langevin performs at least one order of magnitude better than the Nosé-Hoover thermostat for
all the normal modes. This shows that the Langevin thermostat does correctly distributes the energy
between all normal modes.

We conclude that the Langevin thermostat performs better than the Nosé-Hoover chain thermostat
for stiff (harmonic) systems. Indeed, it has passed every test we performed to check the correct canonical

sampling and we will use it for all further simulations reported in this dissertation.
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Figure 2.13: Position (left) and velocity (right) density distribution for an atom of a system that is

the harmonic approximation of a crystal. The black solid line is the analytical result in the case of the

velocity and a Gaussian fit for the position (there is not analytical result in this case). The dots are

the results from the MD simulation, we can verify that the Langevin thermostat correctly sample the

canonical ensemble.
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Figure 2.14: Average potential (left) and kinetic (right) energy of each normal mode of the harmonic

approximation of a crystal. The Langevin thermostat results in the correct energy equipartition for each

normal mode.
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Chapter 3

Phase Transitions and Free-Energy

Calculation

In this chapter we present applications of the Molecular Dynamics method to the study of first-
order phase transformations. We start by introducing the role of the free energy in the question of the
thermodynamic phase stability of a system. Then we present different methods to perform the calculation
of free energy using MD. The final objective is to apply these methods to the case of the Martensitic phase
transition in iron. Besides the study of the thermodynamics of first-order phase transformations we also
want to approach the difficult problem of the kinetics of this phase transformation. We present here a

few attempts to study the kinetics using the rare event method know as Forward-Flux Sampling.

3.1 Phase Stability

We start this chapter with a discussion of the phase stability of materials. The problem of phase

stability can be stated as follows:

Given the microscopic description of a material (constituents particles, atoms, molecules and
chemical composition) and the thermodynamic conditions under which the material is sub-
mitted, what are the characteristics of the spatial arrangement this material will assume? Or,

what is the stable phase of this material under these conditions?

This question is at the very core of materials science since the phase of a material define many of its
properties and provides profound insights into the behavior of the material. For example, a very specific
property of the solid phase is its shear resistance, absent in other phases. A liquid possesses surface tension,

a property that controls the wetting characteristics and many other interesting phenomena. Crystalline

39
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translational symmetry gives crystals specific behaviors under X-Ray diffraction that allows studying the
atomic arrangements in a crystal and distinguish it from an amorphous solid.

What we need now is a measure for the thermodynamic stability of different phases, i.e. given two
possible phases of a material and the thermodynamic conditions, how do we measure which one is the
“best” phase? What is the property that, when measured, gives us the answer?

We start by analyzing a very simple case, depicted in fig.3.1. In A we have a system surrounded by
fixed adiabatic walls, meaning that the system is kept isolated and its internal energy FE, volume V and

number of particles N are kept constant.

A) B) C)

®)

Figure 3.1: A system kept at different thermodynamic conditions. A) is isolated and therefore is kept at
constant NV, V and E. B) is in contact with a heat reservoir and therefore has constant N, V and 7. C)

is in contact with a heat reservoir and a “volume” reservoir and thus has constant N, P and T

We choose a random initial configuration for the material of this system and then we allow it to evolve.
From thermodynamics (Callen, 2006) we know that, given enough time, the (Hamiltonian) evolution of
the system will naturally lead it to the thermodynamic state of maximum entropy S(N,V, E'). Therefore,
the most stable phase of this material under the thermodynamic conditions of (N, V, E) constant is the

one with maximum entropy:
(N,V,E) = max{S(N,V, E)}.

If we choose as initial condition a different phase with a lower entropy then, given enough time, the system
is going to evolve to the phase with maximum entropy. Similarly, if we impose the conditions of (N, V,S)

constant, then the most stable phase is the one which minimizes the internal energy.
(N,V,S) = min{E(N,V,S)}.

In this way we have defined functions of thermodynamic variables that are capable of measuring the

relative stability of different phases. Although the entropy S(V,V, E) and the internal energy E(N,V,S)
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are perfectly fine for this process, frequently we are faced with situations where this specific choice of
thermodynamic variables is not the most suitable. Often we have situations like fig.3.1 (B) where the
system is attached to a heat reservoir that keeps the temperature 7" of the system constant by exchanging
heat () with it. In this situation the entropy S of the system is not constant due to the heat transfer
between the system and reservoir. Therefore, the internal energy is not suitable anymore to measure the
relative stability of the phases.

In order to solve this problem we need to perform a Legendre transformation (Callen, 2006) of the
function E(N,V,S) to change the dependency from S to T. The result is the so-called Helmholtz free
energy

ok

F(N,V,T)=E -S| — —E-TS =  min{F(N,V,T)}

that can be used to measure the relative stability between two different phases subject to a specific
temperature T'. Now to bring the discussion one step closer to the most frequently encountered conditions
of an experiment we also introduce a barostat (“volume” reservoir) that controls the pressure P of the
system, as shown in fig.3.1 (C). Performing once again a Legendre transformation we can change the

volume variable V' of the Helmholtz free energy and obtain the Gibbs free energy

G(N,P,T):F—V(gl;) —F+PV=E-TS+PV =  min{G(N,PT)}
N, T

Now, given the conditions of constant pressure P, temperature 7" and number of particles N we know
that the most stable phase of a given material is the one that minimizes the Gibbs free energy G(N, P, T).
Often we are not able to directly minimize G(N, P,T) due to the huge number of degrees of freedom of
atomistic systems, but we still can define different phases and compute the free energy of all of them, the

one with the smaller free energy is the most stable.

3.2 MD and Free Energy Calculation: A-integration method

Now we turn to the problem of computing free energies using MD simulations. In the previous chapter
we saw that an MD simulation gives us access to average values of functions of the coordinates and
velocities of all particles (rN v ) (e.g. potential energy, kinetic energy, pressure, correlation functions,
radial distribution function, etc...). With the help of the Ergodic assumption these averages can be written
as

N 1 rt
(A1) = A(T) = lim — [ A[T()]dt’. (3.1)

t—oo t Jo
It is clear that from MD simulations one only has access to microscopic variables (coordinates and ve-

locities). Therefore if we want to compute free energies by MD simulations we need to express them as
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a function of these variables. This is a case where we need to link thermodynamics with a microscopic
theory of matter. This connection is made with the help of statistical mechanics, which asserts that, in

the thermodynamical limit, we have
F(N,V,T)=—kgTInZ(N,V,T) (3.2)

with
Z(N,V,T) = N /dF —BH(T (3.3)

The partition function for the conditions of fixed N, V and T. Assuming an atomistic system of N particles

with Hamiltonian

the kinetic part of the partition function can be solved analytically:

/d3Np eXp< BZP /2m> (2rmkpT)*N/? = <h>3N
' A

with A = \/h2?/27rmkpT the thermal de Broglie wavelength. Hence eq.(3.3) becomes

1 _BU(xN 1
Z(N,V,T) = AgN/d3Nre BU( ):A:,)—NQ(N,V,T),
where
Q(N,V,T) = / ANy e~ PUEY) (3.4)

is known as the configurational part of the partition function and does not depend on the velocities of

the particles. From eq.(3.2) we obtain for the Helmholtz free energy
F(N,V,T) = 3NkgT InA — kT In Q(N, V,T).

Thus in order to compute the free energy we only need to determine is the configurational part of the
partition function, eq.(3.4).

Comparing the equation for the configurational part of the partition function, eq.(3.4), to the average
values that we can obtain from an MD simulation, eq.(3.1), we see that Q(N,V,T’) cannot be written as
an average value obtainable from MD. Such quantities, which depend on the total phase-space volume
accessible to the system, are known as thermal properties. For this reason, we need special techniques to
compute free energies from MD simulations.

For this purpose we now introduce a technique known as Thermodynamical Integration (TI) or A-
integration (Frenkel and Smit, 2001). We start by describing the fundamental idea behind TI. Consider

a thermodynamic system with N particles, volume V and temperature T at a state A. If we perform
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work Wp on this system (it can be positive or negative) in such a way that its final state is B then, by

the second law of thermodynamics, we know that
Wag > AF (3.5)

where AF' is the Helmholtz free-energy difference between states A and B. The equality in this relation
holds only if the work is done in a reversible manner. One way of doing this is to carry out a quasi-static
process in which the work is performed slow enough so that that the system follows a path of equilibrium
states linking A and B. Now if we can perform work in a controllable manner on our system then we can
measure the free-energy difference between the states before and after the work is performed by computing
the work done. This is the fundamental idea behind the TT method.

To perform work in a controllable manner we introduce a Hamiltonian that depends on a dimensionless

parameter \: H = H(\). For this system the free energy now has an explicit dependence on A
1 _ .
H=H()\) =  F(N,V,T;\) = —kgT In {hw / dle 5H(F’A>] .
If we compute the derivative of F(N,V,T;\) with respect to A we obtain
OF\  _ JdU(G) e PMTY /ol
ON) Ny [ dTe=BHTA) N/

where we have used the notation (...), to denote that the average is to be taken in the canonical ensemble

at temperature 7" with Hamiltonian H(\). For brevity we are going to omit the dependency of the free
energy on the variables N, V and T in the notation. Now if we integrate both sides of last equation in A,

from A4 to Ap where these values of A characterize the states A and B respectively, we obtain

Fog) — FOu) = /A:B <(§§>Ad)\

which is the fundamental equation of TI. It expresses the free-energy difference between states A and B

(3.6)

in terms of an integral of a quantity that is written as the average value of an observable. This type of
average can be easily computed from an MD simulation.

Before finishing this section we would like to present an interpretation of last equation that provides
us further insight into TI. If we compare eq.(3.6) with the relation of the second law of thermodynamics,
eq.(3.5), we see clearly that the TT equation has exactly the same form as the equality in the second law:
it relates a free-energy difference to reversible work. This observation leads us to interpret the right-hand
side of eq.(3.6) as the quasi-static work necessary to bring the system from state A to B

s s/ OH Az
A A

A Aa
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where we have associated a generalized force f) due to the change in A

_/oH
a= <a>g

Another way to see why eq.(3.7) represents the quasi-static work done by f) between states A and
B is to analyze how we use MD to compute WZSB. What we need to do is to compute numerically the
integral in eq.(3.7). In order to do that it is necessary to obtain the value of the average (...), for a
certain number of intermediate )\; values between A4 and Ag, as shown in fig.3.2. This number should be
large enough so that the integral convergence is satisfactory. At each value of \; we have to run one MD

qs
Wiks

¢¢¢¢
.

Figure 3.2: Illustration of the Thermodynamic Integration method. States A and B are characterized by
the values A4 and Ap of the A parameter. Intermediate values )\; have to be numerous enough so that

the integral convergence is satisfactory.

simulation, equilibrate the system and only then compute the average (...),. This means that each value
of the generalized force f) is computed in a state of thermodynamic equilibrium and therefore the work
of eq.(3.7) is computed using a succession of equilibrium states. This characterizes a quasi-static process

and therefore eq.(3.7) represents the quasi-static work done, which, by definition, is reversible.

3.3 Adiabatic Switching

In this section we present a more efficient approach to the implementation of the TI method. Although
the method works just fine as we have stated, it can be computationally expensive in practice because of
the need to perform one MD simulation for each value of \; intermediate between A4 and Ag. By means
of the Adiabatic Switching (AS) method, proposed by Watanabe and Reinhardt (1990), we eliminate the
necessity of one equilibrium MD simulation for each A; and obtain an estimate of W4, from only a few
non-equilibrium MD simulations, increasing the efficiency of the TI significantly.

Instead of doing one equilibrium MD simulation for each intermediate value of \; we carry out a single

MD simulation in which A = A(t) varies with time. If we start the simulation at a time ¢ = 0 and finish
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it at t = tgim we choose A(t = 0) = A4 and \(t = tgm) = Ap. With the introduction of this temporal

dependency we compute the dynamical work done during the simulation as
t .
sim 8H
W = / At) =~
AB 0 O\
OH

where 7 is the instantaneous value evaluated at ¢ and not an average. Notice that we have introduced the

dt (3.8)
At)

notation Wz%n, which is the dynamical work performed between A and B and differs fundamentally from

WKSB. Now that the process is not performed in equilibrium at each step, the equality of the second law,
eq.(3.5), no longer holds. Due to the intrinsic non-equilibrium nature of this process we have dissipative
entropy production characteristic of irreversible processes. This means that our estimate for AF will
have a systematic error besides the statistical error associated with the limited sampling. The systematic
error is not associated with the statistical nature of our measurements. Instead it is associated with the

dissipation of the irreversible process. We can write it as
d
Wig = Wik + Qan (3.9)

where Qap is the dissipation in the process that goes from state A to state B. Furthermore, according
to the second law Qa5 > 0.

To eliminate the systematic bias Q@ 4ap we would have to set ¢, — 00, in which case eq.(3.8) becomes
exactly equivalent to eq.(3.7) and we recover the quasi-static nature of the reversible process. Because
this limit is always unattainable in practice due to the limited amount of computational time we present
here a different solution (de Koning and Antonelli, 1997) to eliminate or at least reduce the effect of the
dissipation drastically. Consider the work done during the inverse process of bringing the system from

state B back to state A. In this case, the dynamical work is given by
d
Wi = Wiy +Qpa=-Wip + Qpa. (3.10)

If we perform the forward, eq.(3.9), and the backward, eq.(3.10), processes slow enough that linear-
response theory is valid we have that Qap = @pa, which allows eliminating the systematic error by
combining the forward and backward results:

d d
Wi i

Wi = SAE

(3.11)

In fig.3.2 we illustrate this procedure. We start with our system equilibrated at the state A (Aj4).
Then, by defining a function A(t) we compute the forward work ijB” to bring the system to state B.
After that, we equilibrate the system at the state B (Ap) and using the same function in the reverse order
to compute the backward work ijBn. The equilibrium free-energy difference is then computed using

eq.(3.11)
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Figure 3.3: Illustration of the Adiabatic Switching method. States A and B are characterized by the

values A4 and Ap respectively of the \(t) parameter.

Now that we have described the method for computing free energies we are going to present a few

applications to specific cases.

3.4 Frenkel-Ladd Method

The Frenkel-Ladd method (Frenkel and Ladd, 1987) is a specific application of the TT method, eq.(3.6)

suited to compute free-energy of crystals. Assume we want to compute the free-energy of a crystal in
which the atoms interact through a Hamiltonian
N 2
Hint = =Lt Ui (2Y).

2m
i=1

Now we define another Hamiltonian describing a set of N tridimensional harmonic oscillators of angular

frequency w and spring constant k = mw?
N 2 N 2 N w?
Hyarm = Zl % + Uharm(rN) = Zl 2_Z + Zl 2 (ri - I‘? 2 (3'12)
1= 1= 1=

where r? is the equilibrium position of the ith atom of the crystal given by H;,;. In other words, Hpgm
defines a set of independent harmonic oscillators that have equilibrium positions equal to those of the
crystal that we are considering.

The Frenkel-Ladd method consists, basically, of defining the H (\) Hamiltonian used in the TI method

as a linear interpolation between the two presented Hamiltonians:
H()‘) = (1 - )‘)Hharm + AH;p.
Then if Ay =0 and A = 1 we have

H()\A) = HhaTm and H()\B) = Hint-
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To complete eq.(3.6) we need to compute the derivative of H(\),

OH
ax — int — Hharm - int(rN) - Uharm(rN) = Uint - Uharm-
oA
Then from eq.(3.6) we have
1
Fint(N7 V7 T) = Fhm"m(Na V7 T) + / <Uznt - Uharm>)\ dA. (313>
0

Fharm(N,V,T) is the free energy of a set of N independent tridimensional harmonic oscillators and we

can compute it analytically. The partition function is

1
ZarmNavaT = 76 _#\3N ar - Harm
o (NV.T) = e [ U exp (=Bhar)
1 400 +00 3N
2 2
= i [/_Oo exp (—Bp°/2m) dp/_oo exp (—Bkx”/2) dx
1 2rkpT w
TTRB
= —— | V2 Ty ——
(2mh)3N [ ks mw?
O\ hw ’
giving a Helmholtz free energy
hw
Frarm(N,V,T) =3NkpT In ( > . (3.14)
kgT
The desired free energy then
hw !
Fint(N,V,T) =3NkpgT In <> +/ (Uint — Unarm) 5 dX | (3.15)
kBT 0

In eq.(3.15) we recognize the work computed using an MD simulation as Wi = fol (Uint — Unarm,) 5 dA.
To improve the precision of the result obtained it is important to compute this value as accurately as we
can. If we want to reduce the statistical error of the (...), present in this integral we can choose the spring
constant (or the angular frequency) of the springs in such a way that both systems, the crystal of interest
and the set of harmonic oscillators, have values of U;,; and Upgrpy, that are always close. This means that
we are choosing the system of reference (harmonic oscillators) as close as possible to the system of interest
(crystal). One way to do that proposed by Frenkel and Ladd (1987) is to impose that the root-mean
square displacements of the atoms in both systems are equal. Using the theorem of the equipartition of

energy we have

mw? 3 3kpT
Ar2N = ZknT =, —=" 1
5 (Ar?) 2k3 = w m (A7) (3.16)

There is one small technical detail with eq.(3.15), although it is correct when we perform an MD

simulation in which we naturally constrain the center of mass of the system of harmonic oscillators. In



48 CHAPTER 3. PHASE TRANSITIONS AND FREE-ENERGY CALCULATION

order to not find a divergence in the integral to be computed we should also constrain the center of
mass of the crystal. We have to account for this constrain in the final result because in practice we are
measuring (.. >§M instead of (...),. Polson et al. (2000) have shown how to perform this correction,
which is fundamentally a finite-size correction (in the thermodynamical limit the correction vanishes).

Here we only state the final result:

N <27rkBT>3/2

Nmw?

hw 1
Fint(N,V,T) = 3NkgT In <) +/ (Uint = Unarm) ™ dX\ + kT In 5
0

kT

All results using the Frenkel-Ladd method presented here include this correction.

3.5 Frenkel-Ladd: Harmonic Oscillators

We apply the Frenkel-Ladd method to an Einstein crystal (de Koning and Antonelli, 1996): a crystal
in which all atoms vibrate with the same frequency around their equilibrium positions. The vibrations
are those of independent harmonic oscillators. In practice we are performing a TI between two sets of
harmonic oscillators with different angular frequencies w4 and wg. Because of the possibility of comparing
our results to the exact values this allow us to show how the TT and the AS work in practice.

Our Einstein crystal is prepared in a 12 x 12 x 12 simple cubic crystalline structure, this results
in 1728 atoms or 5184 independent unidimensional harmonic oscillators. The initial state A is defined
as the one with k4 = mw?} = 10 eV/zZl and B is kg = mw% = 50 eV/fol where the mass is chosen
as m = 55.847 g/mol. We have used the iron atomic mass in order to bring the frequencies closer to
the real ones in iron. Technically this is only important to keep an idea of the order of magnitude of
the involved numbers. The A(t) variation with ¢ is chosen to be linear. Because of the thermostatting
problem encountered in Chapter 2 we use Langevin thermostat. The timestep used was At = 0.5fs.

First of all we are going to check the convergence of the AS method. According to eq.(3.9) we should
expect the dynamical work to have a systematic error associated with the dissipative entropy production.
Thus we have performed several AS simulations between the two sets of harmonic oscillators using the
arbitrary value of Ny, = tgim /At = 5000 steps and a temperature of 7' = 100K, each one with a different
initial condition. From these simulations we have computed the estimative for Wf‘%, the dynamical work
WgyB". The exact value of the quasi-static work, given by eq.(3.14) is

wB

W, = AF = 3kpT |

> ~ 20.79 meV /atom. (3.17)

In fig.3.4 (left) we confirm that indeed our estimate contains a systematic error Q@45 = 0.46 + 0.01 meV,
showing that the dynamical work converges to a wrong value of W47 even when the statistical error is

suppressed to a negligible value.
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Figure 3.4: Left: Convergence of average dynamical work in a AS between two sets of harmonic oscilla-
tors. The systematic error persists even after the statistical error is negligible. The dissipative entropy
production results in a Q4 = 0.46 + 0.01 eV /atom difference between the exact quasi-static value and
the computed dynamical value. Right: WZ%L histogram show the effect of the statistical error (width of

the distribution) and the systematic error (displacement of the average value).

It is important to notice that the statistical uncertainty is still present in the computation. If we
compute the histogram of Winn we see that the effect of the finite switching time in the AS method is to
displace the average value to higher values (due to the systematic error) but there is also a finite width
in the distribution of values, fig.3.4 (right), characteristic of statistical errors. In the end, the statistical
error may be reduced to any level by increasing the number of samples.

To eliminate the systematic error from Wg%n we perform the backward simulation and apply the
hysteresis procedure of eq.(3.11), to obtain a better estimate for AF. In fig.3.5 (left) we compare the
estimate for AF with the analytical value with increasing switching time. We notice the rapid convergence
of the result with the increase of the switching time. Using the exact result provided by eq.(3.14) we can

compute the remaining systematic error after the hysteresis procedure as

WB

Bupematic = Wl = 3k 1n (22

In fig.3.5 (right) we show how this error vanishes as we increase the switching time.

Both results presented in fig.3.5 are consistent with our interpretation of the AS method as a non-
equilibrium process. As we increase the switching time ¢4, the AS method gets closer and closer to the
reversible process of the TI method and therefore our estimate for AF should get closer to the quasi-
static process and, consequently, Egystematic should vanish. These results confirm that the method of AS,

eq.(3.8), and the method of TI, (3.7), indeed agree in the limit of tg;, — oc.
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Figure 3.5: Left: Convergence of the estimate for the free energy as we increase the switching time tg;y,,.
Right: Dissipation of the AS process vanishes as we increase the switching time. Error bars are not

visible in this scale.

Once we know about the convergence of the AS process we can compute the dependence of the free
energy on the temperature. The exact value for the dependence of the reversible work on the temperature
has been computed using eq.(3.17). The simulation results are presented in fig.3.6 (left). We have used the
hysteresis procedure to eliminate the dissipation and, based on fig.3.5, we chose to perform 10 simulations
(forward and backward) of Ny, = 2x10° steps. The results are shown in fig.3.6 (right). It is interesting to
notice that fig.3.6 (right) contains regions of positive and zero derivative at low temperatures, referent to
negative and zero entropy. At this limits of low temperature quantum mechanics is necessary to correctly

describe the behavior of a crystal.
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Figure 3.6: Left: Free energy difference (or quasi-static work) and Right: absolute free energy of the

two set of harmonic oscillators. In both cases the error bars are too small to be visible in the graph.
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3.6 Reversible-Scaling Method

In fig.3.6 (right) we have computed the temperature dependence of the free energy by running one
simulation for each desired temperature. This can be a problem when, for example, we want to define
the point where two free-energy curves cross to determine a phase transition temperature. In this section
we describe a technique based on the AS method that allows us to compute the entire temperature
dependence of the free energy in a certain temperature interval from a single MD simulation, improving
the efficiency of the method enormously.

The Reversible-Scaling (RS) (de Koning et al., 1999b) is an intrinsically non-equilibrium method for
efficient free-energy calculation. It makes use of the AS procedure to perform a specific quasi-static
process where the potential energy of the system is scaled by the parameter A. By using this procedure
we are able to estimate the free energy of the system as a function of the temperature by performing
only one constant temperature MD simulation. The significant efficiency improvement of this method
when compared to the case where we compute only one free-energy value per MD simulation comes from
the fact that in the RS all states along the process represent a physically significant state of the system
(namely the system at a different temperature), while in the other cases only the initial and final states
have a physical meaning. The intermediate states only have the purpose of linking these two states.

The derivation of the equations for the RS is done in many papers (de Koning et al., 1999b, 2000, 1999a)
based only on the microscopic assumptions of statistical mechanics. We present here an alternative but
completely analogous derivation of theses equations based partially on thermodynamical considerations.

We start by recalling that the Gibbs free energy is given by
G=FE-TS+ PV = dG = =S8dT + VdP,

computing d(G/T) we obtain

d<G>:dG—GdT

T) T T2
~SdT +VdP E—-TS+PV
- - dT
T T2
V. E+PV
= P — =t
V. ooH a(G/T) H
= V4P AL/ U [
T T - [ o |yp T2

where we have used that H = E + PV is the enthalpy. This final equation is known as the Gibbs-
Helmholtz equation. Here we are going to derive the RS equation for zero pressure, the generalization for

other pressures was made by de Koning et al. (2001). If P = 0 we have H = E and then we integrate
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Gibbs-Helmholtz equations in T' to obtain

G(T,P=0,N) G(To,P=0,N) [T E(T',P=0,N)

= dT’. 3.18
T To T 7" (3.18)

From now on we are going to omit the P = 0 and N dependency on the notation of the Gibbs free energy
and the internal energy. The thermodynamic internal energy FE is the average of the total microscopic
energy, that is, the sum of the kinetic and the potential energy:

N
B(T) - < P

i=1

> +{UEY)),, = gNk:BT’ +{UEY)),,
o

where we have used the equipartition theorem to compute the average value of the kinetic energy. The
subscript (...), indicates that the average is to be taken in the ensemble with temperature 7”. Using
this equation in eq.(3.18) we have

G(T) = <;;) G(Ty) + 3NkBT In <;FO> - T/TUT <U(;],VQ»T’CZT’. (3.19)

Now to handle the integral in this relation we introduce the variable substitution characteristic of the RS
method: T = Ty/N and we denote T' = Ty/\. Thus the integral becomes

’ <U(rN)>T, / )‘/2 N T /
_T/To AT = A 7 (U ™)) ( )\,2>d>\

:A/1 (U @), dN’

and eq.(3.19) results in

G(Tg) In A 1

*N]fBTO — +

A
ar) =2 2 3 /1 (U(EN)),, dN. (3.20)

To obtain the ensemble average of the right-hand side of eq.(3.20) it is necessary to perform MD
simulations at temperatures ranging from Ty to T = Tp/A. In order to eliminate this requirement we

analyze this average and rewrite it as

) g = @V UE) exp (<UGN) keT) = [ dVrUEY) exp (-NUGY) keTo) = (U6M)],

now the ensemble average is done at one constant temperature T but using the scaled potential XU (r'V).

Finally we obtain the equation characteristic of the RS method

G(To) In A

G(T) = 0%+ Nk:BTng)\/ (UEN))y, dX. (3.21)

Let us understand why it is important to rewrite the average as we have done by means of eq.(3.21).

This equation gives us the free energy at any desired temperature 7' as a sum of three terms. The
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first is the free energy at a reference temperature G(Tp), which can be obtained using a single Frenkel-
Ladd calculation. The second term is an exact formula and the third is the integral of an average value
computed at a constant temperature Ty, exactly like the integrals that can be computed using the AS

method, eq.(3.6), but with H(\) = K + AU (r") where K is the kinetic part of the Hamiltonian:

A /
Was(A) = / (UEN) ax., (3.22)
1
Thus we can write the final equation of the RS method using the work computed by the AS method:
T InA  WP(A
G(T) = G(AO) + ;NkBTonT + A( ). (3.23)

We can apply the AS method, eq.(3.8), to compute this integral in one MD simulation and therefore
obtain all values of G(T') with the temperature within the range from Ty (equivalent to A = 1) to
T = Tyo/A. The idea to obtain the intermediate values of G(T') is that, once we have performed the MD
simulation with A changing from 1 to the final value A, we can obtain a specific value of 7" = Ty/\ by

only recomputing the integral of eq.(3.23) with limits from 1 to X

3.7 Reversible Scaling: Harmonic Oscillators

As a first application of the RS method we compute the free energy an Einstein crystal. Again we
take advantage of the exact results available to illustrate how the method works. For the Einstein crystal
we have the Hamiltonian of eq.(3.12) and we define the RS Hamiltonian to be the harmonic Hamiltonian

of the Einstein crystal with a scaling parameter multiplying the potential energy,

N p2 N mw2
HQ\) =) 5+ Ay 5 (ri— r?)2.
=1

i=1

For this choice of Hamiltonian we can compute the quasi-static work of eq.(3.22) exactly

N
(UEM)y, = (UEN),, = <Z s r°>2> = St = gl
7o T 2 2 277\
T/

i=1
giving
W(\) = /1)‘ <U(rN)>;; = ngTO In A.

To perform the MD simulations we use the same 12 x 12 x 12 simple cubic lattice of 1728 tridimensional
harmonic oscillators used in the AS method of mass m = 55.847g/mol and frequency k = mw? = 10eV/ A.
The reference temperature was chosen to be Ty = 32K and the final value of the parameter is A = 0.01.
This represents a range of temperatures from approximately 0.1 to 10.0, two order of magnitude of
variation. Again the Langevin thermostat was used because of the ergodicity problem found with the

Nosé-Hoover thermostat.
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We start by checking the convergence of the method. First we compute the work done using AS in
both directions, forward and backward. Fig.3.7 (left) shows the results, also illustrating how the hysteresis
procedure works, eq.(3.11). By combining the results in both directions we obtain a better estimate for
the quasi-static work. This figure also shows the convergence of the method towards the analytical result

as we increase the switching time. This result is in agreement with fig.(3.7) (right) which shows that the

dissipation of RS vanishes as we increase the switching time.
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Figure 3.7: Left: convergence of the method when the switching time is increased. This graph also
illustrates the hysteresis procedure: combining the result of the simulation in both directions results in a

better agreement with the exact result. Right: dissipation of the RS method vanishes as we increase the

switching time.

By combining both curves (forward and backward) of fig.3.7 (left) we build our estimate for the quasi-
static work W9°(\), as shown in fig.3.8 (left). This figure also shows the convergence of the method for
longer switching times. For 10° steps = 0.5ns we have an excellent agreement with the exact result.
Notice that this figure includes only the numerical value computed by the simulation, therefore it is free
from any functional dependence that could hide any imprecision of the result (as for example the second
term of eq.(3.23)). Using eq.(3.23) we can construct the absolute free energy as function of temperature
for the entire interval of temperatures of the simulation, fig.3.8 (right).

It is important to analyze the huge efficiency gain of the RS method over methods like the Frenkel-Ladd
AS. Using the RS method one is able to compute the entire free-energy dependence on temperature for a
certain interval by doing two MD simulations, one to compute the free energy at a reference temperature
G(Tp) (using methods like Frenkel-Ladd) and the other is to compute the W9 (\) estimate and obtain the
absolute free energy. Thus, with two AS simulations we are able to construct the free-energy curve as a

function of the temperature. In the case of the other TI methods one needs to execute one AS simulation
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Figure 3.8: Left: estimative for the quasi-static work W% (\) compared to analytical result. Right: total

free energy as function of the temperature computed using RS.

for each value of temperature, reducing drastically the efficiency. Even then it is not possible to compute
the free-energy curve with the same precision as we do with RS. This imposes some limitations on the
use of the other TI methods to, for example, study phase transitions as we will see in the next section.
Aside from the reduction in the required number of MD simulations there is also a computational
performance gain because the RS method, unlike the other TI methods, does not require the simultaneous
simulation of a reference system (i.e. harmonic oscillators in the Frenkel-Ladd method). This it also does
not require the fine tuning between the system of reference and the system of interest (choosing the spring
constant properly in the case of the Frenkel-Ladd method). In the RS method all that is required is a

simulation of the system of interest with the scaled potential.

3.8 First Order Phase Transitions and Classical Nucleation Theory

In this section we are going to further develop the ideas about phase stability of section 3.1 to study
the thermodynamics of first-order phase transitions. We present the role of the free energy in this type
of phase transition and show a few of the characteristics specific to it. In addition, we present simplified
model to describe the kinetics of first-order phase transitions, namely the classical nucleation theory. Our
goal is to present the background necessary to study Martensitic phase transitions. In section 3.9 we
analyze the thermodynamics of this phase transition using the RS method and in section 3.10 we study
the kinetics of the phase transition using rare event methods.

In section 3.1 have seen that, given the thermodynamic conditions, we can measure the phase stability

of a certain phase of a material by computing its free energy and comparing it with other possible phases.
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By changing the thermodynamic conditions we also change the free energy. We have seen this in sections
3.5 and 3.7 where, by changing the temperature of the Einstein crystal, we change its free energy. Consider
now a material that has two possible phases of free energy F;(1T') and Fy(T"). For instance, it might be
water in the liquid and gaseous phase, respectively. At a low temperature T < T} the most stable phase
(the one with lowest free energy) is the liquid phase Fj(7T_) < F,(1-), now if we start to increase the
temperature, the free energy will start to change and it is possible that the rate of change is different for
each phase in such a way that at a certain temperature 7; we have Fj(T;) = F,(T;) and both phases are
equally stable at this point. This is the coexistence point. At even higher temperatures Ty > T} the most
stable phase will be the gaseous one Fj(T}.) > F,(7%). This inversion of phase stability characterizes a
phase transition and it is illustrated in fig.3.9. In this figure we can also see a behavior of the free-energy
curve that is very specific to the first-order phase transition: the derivative of the free energy of this
material has a discontinuity at the point of the phase transition. This is why we call this phase transition
a first-order phase transition. Second-order (or continuous) phase transitions are phase transitions that
present a discontinuity for the second derivative of the free energy. The consequences of this discontinuity
will appear soon when we analyze the thermodynamical quantities that can be written as a first-order

derivative of the free energy (e.g. the entropy).

Free Energy at a Phase Transition

Free Energy

Temperature

Figure 3.9: Free energy as function of temperature for two different phases of the same material (liquid
and gaseous phases of water for example). The phase transition occurs when the two curves cross at the

coexistence point.

We can better understand the origin of the behavior of the free energy by just analyzing its definition

F(N,V,T)=E —TS.
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Each phase of the material has a specific function for internal energy and entropy, consider for example:
Ssolids Stiquid and Sgqs. At low temperatures the term —7'S is negligible compared to the internal energy
due to the low value of T and therefore low temperatures favor phases of low internal energy E. This
simple analysis shows us why at low temperatures the solid is almost always the most stable phase:
in solids atoms and molecules are typically more strongly bound than in the liquid or gas phase and
therefore have lower internal energy. Now, at sufficiently high temperatures the —T'S term becomes
important and comparable to the internal energy E. Therefore, phases with higher entropy are more
stable at high temperatures. This is why the gas and liquid phases are more stable than the solid phase

at high temperatures. We can extend this argument to the Gibbs free energy
G=FE-TS+ PV (3.24)

and show that phases with small volume (solid) are more stable at high pressures and phases with high
volume (liquid and gas) are more stable at low pressures.

Aside from the temperature, other thermodynamic variables contribute to the phase transition. One
variable whose influence is interesting to analyze is the pressure. Consider that we have found a point of
coexistence of phases (like in fig.3.9) at a given temperature and pressure. Now we want to change the
pressure by a small amount dP and determine how the temperature needs to be adjusted to keep both
phases in coexistence. In order to do that we need to use Gibbs free energy because there is a change in

pressure involved. From eq.(3.24) we know that
G=H-TS = dG = -SdT' + VdP

therefore at the coexistence point if we change the pressure by dP and the temperature by dT the free

energy of the liquid and gaseous phases change by

dG) = =S dT + VidP

dGy = —5,dT + V,dP.

But we want to impose the condition that after this change of pressure and temperature the free energy

of both phases are still equal (condition for coexistence), thus

dP AS

We can further simplify this equation by considering that under the same conditions
AH L
t
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where we have recognized the latent heat of a phase transition as AH = L. This shows us the origin of
the latent heat: it is necessary to compensate the entropy difference between phases in a phase transition.

Thus eq.(3.25) becomes

% _ TtiV’ (3.27)
this is the so called Clausius-Clapeyron (Callen, 2006) equation. It gives the slope of the coexistence curve
of a certain material in a P vs T phase diagram as a function of properties of the material: latent heat,
transition temperature and specific volume. This equation is the relation that we were looking for: it
gives us the connection between changes in pressure and temperature along the coexistence curve. Notice
that this equation is only valid for first-order phase transitions. In its derivation we have assumed that

the entropy of the phases are different and this is a direct consequence of the fact that the first order

derivatives of the free energy present a discontinuities for first-order phase transitions. Note that the

oG
5=- (aT>P,N'

Given a point of coexistence we can integrate the Clausius-Clapeyron equation, eq.(3.27) to reconstruct

entropy is given by

the entire coexistence curve of these phases of the material. This procedure can be done computationally
using a generalization of the RS method for non-zero pressures (de Koning et al., 2001). What we obtain
is the phase diagram of the material, such as shown in fig.3.10 (left) for a simple substance that presents
three phases that can coexist at the triple point. In fig.3.10 (right) we have a realistic phase diagram
of water that shows the existence of many solid phases. Phase diagrams of real substances can be quite
complex, with each of the solid phases presenting different characteristics. For the case of water, for
instance, a few of the crystalline phases present a ordered dipole structure (XI, XIII, XIV) while others
do not.

Up to this point we have discussed thermodynamic features of a first-order phase transition. Next
we analyze the kinetics of such a transition. Consider that the system is in the gaseous phase of fig.3.9
(temperature T" > Ty). If we slowly decrease the temperature we will notice that the system does not
change its phase when the temperature reaches T" = T, it takes a further reduction of the temperature
for the phase transition takes place. We can understand why this happens with a simple model known as
classical nucleation theory (CNT). Although the liquid phase has a lower volumetric free energy AG =
G¢(T) — Gi(T) < 0 there is a energetic cost associated with the creation of the liquid phase inside the
gaseous phase. More specifically, there is a surface tension v between the interfaces of both phases. To
create a nucleus of radius r of the liquid phase inside the gaseous phase there is an associated energetic
cost of

AG., = 4y (3.28)
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Figure 3.10: Illustration of phase diagrams. Left: phase diagram of a simple substance. Right: realistic

phase diagram of water.

that the system needs to overcome by associated decrease of the bulk free energy

473

AGyur = 3

AG. (3.29)

Considering a small degree of undercooling of the system (7' < Ty), we have

AG=AH-TAS — I, - 71 _ _LAT
Ty Ty

where AT = Ty — T and we have used eq.(3.26). We also assume that the latent heat is independent of
the temperature for small undercooling. This is the part of the free energy that contributes to the phase
transition to happen and therefore is the driving force of the phase transition. Using the bulk free-energy
difference, eq.(3.28), and the nucleation energetic cost, eq.(3.29), we can construct the total free energy

of nucleation of a spherical nucleus of radius r

4rrd ( LAT
AGn(r) = AGy + AGyyi = 4nr?y — il (> . (3.30)
3 Ty
In fig.3.11 we show the curve of AG,,(r) where we can see that there is a free-energy barrier to overcome
if we want to grow a nucleus. The phase transition will only be complete when a nucleus of the liquid

phase grows until the complete system has becomes liquid. We can compute the critical radius r*, the

maximum of G (r), as

Golr) _y .20

dr " T IAT (3:31)
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this is the point after which the nuclei will grow indefinitely and the phase transition will happen. The

nucleation energy at this point is the height of the barrier that needs to be overcome

. 167 (AT \?
AG,(r") = == <ﬁ> . (3.32)

Nucleation Barrier

AG,

AG,(r)
<

AGpur

Figure 3.11: Free energy barrier associated with the nucleation phenomena.

By the CNT the kinetics of the transition happens as follows. When 7" < T’y small droplets of liquid
start to appear in the gaseous phase with probability P(r) o« exp [-AG,(r)/kgT]. Most of them do
not attain a radius equal or greater than the critical radius and shrink back until it vanishes. With a
probability P(r*) o exp [~AG,(r*)/kpT] one of these droplets will be created and reach the critical radius
and the phase transition will start to occur. It is interesting to note that the critical radius, eq.(3.31),
and the height of the barrier, eq.(3.32), become smaller as we increase the degree of undercooling AT,
i.e. the transition will happen more easily as we undercool the system more and more.

The simple theory of the classical nucleation is capable of predicting many interesting characteristics
of the kinetics of first-order phase transitions, in particular it presents the existence of the nucleation
phenomena that are the hallmark of the first-order phase transitions. The existence of metastable states
(e.g. undercooling or overheated states) hamper the determination of the transition temperature 7'
because, as we have seen, the actual transition can happen at temperatures below 7. It is at this point
that the determination of the free energy using methods like TI is important because it provides us an
accurate method to compute 7'y that does not require the actual observation of the transition and therefore
is not subject to such hysteresis effects.

Among the many characteristics that the CNT is not capable of predicting we can cite the presence
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of magnetic domains in ferromagnetic materials. This is an effect that is intrinsically correlated to the
minimization of the magnetic energy through the elimination of the external magnetic field of the magnet.
In the case of solidification, there are effects due to the elasticity and tension present in crystals that do
not appear in this theory. Furthermore, effects associated with anisotropy of the nuclei are also not taken

into account in CNT.

3.9 Thermodynamics of Martensitic Phase Transitions using RS

Martensitic phase transformations belong to a class of first-order phase transitions in which the crys-
tallographic structure of a solid changes. The fundamental characteristic of this phase transition is that
it is diffusionless. The change in the crystallographic structure occurs due to small rearrangements of
atoms, typically involving displacements smaller than the first-neighbor distance. These phase transitions
take place in many economically significant material applications (Porter and Easterling, 1992) such as
steel hardening and shape-memory alloys (a class of alloys that when deformed remembers its original
shape and can return to it if heated).

Here we focus our attention on a specific Martensitic phase transition that occurs in pure iron. We
present the behavior of iron at zero pressure in fig.3.12. At temperatures below 1184K (Bendick and
Pepperhoff, 1982) the stable phase of a system of pure iron is the a (BCC) phase. At temperatures above
1184K but below 1665K the most stable phase is v (FCC) and above 1665K iron is stable in the 6 (BCC
again) phase until it melts at 1809K (Brook and Brandes, 1983). In this figure we also present an idealized
mechanism for this phase transition known as Bain’s Path in which the transition happens without any

shear.

| 184K
BCC o
7 2 o —y N
° Bain’s Path
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Figure 3.12: Martensitic phase transition in iron.

This phase transition is very important in the process of steel hardening. Steel is an alloy of iron
and carbon (but other elements can also be used). A small weight percentage (< 2%) of carbon is

added to modify the hardness of the material by preventing linear defects known as dislocations to slide
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past one another. The process of steel hardening has been known for thousand years. At the « phase
for temperatures below 1184K iron presents low solubility of carbon. When heated to the + phase its
solubility increases significantly and carbon can be added to this phase. Then, if the temperature of
the material decreases rapidly (a process known as quenching) so that the carbon does not have enough
time to diffuse out of the iron, the iron goes back to the low temperature a phase but turning into a

supersaturated solution with carbon that presents higher hardness than pure iron.

Aside from its importance in materials science and in industry, this is a very interesting phase transition
from the physical point of view. Typically metals have closed-packed structures (FCC or HCP) as the
most stable forms. In iron it is the ferromagnetic energy contribution of o phase that stabilize the BCC
structure at low temperatures (Hasegawa and Pettifor, 1983) (the magnetism also has a crucial role in
many other characteristics of iron, including other phases that not BCC). The spin degrees of freedom have
an important contribution to the entropies of both a and v phases. The Curie temperature of Fe is 1043K
and above this temperature the « phase loses its ferromagnetic properties and the excess of magnetic
entropy of the v phase drives the & — 7 phase transition. The transition back to the BCC structure (4
phase) at higher temperatures (7 — 0) is common to many materials. Often the low temperature FCC
structure transforms to the high temperature BCC phase (Lee et al., 2012). In this v — d phase transition

the contribution of the magnetic spins is still important Hasegawa and Pettifor (1983)

We are going to apply the RS method to study the thermodynamic equilibrium and polymorphism of
pure iron. We intend to reproduce the experimental phase stability with respect to the temperature at
zero pressure. Thus we need to obtain the Gibbs free energy curve as a function of the temperature for
the range of temperatures across which the phase transition happens. We are interested in the relative
stability of BCC and FCC structures because these are the structures that appear in the phase diagram
at zero pressure. In addition, we perform the same calculations for the HCP structure because of the

many similarities between this structure and FCC.

The first issue address is the reproducibility of the experimental behavior of iron using classical em-
pirical interatomic potentials. Lee et al. (2012) developed two different MEAM (Baskes, 1992) potentials
including the second nearest-neighbor formalism (Lee and Baskes, 2000) to reproduce the behavior of
pure iron, one of the conclusions relates to this problem of reproducibility: “(...) the correct reproductions
of the phase stability among three crystal structures of iron with respect to both temperature and pressure
are incompatible with each other due to the lack of magnetic effects in this class of empirical interatomic
potential models (...)”. This kind of incompatibility between two desired properties where improving the
description of one property results in a deterioration for another appears frequently when one is fitting

interatomic potentials. In many cases these difficulties are related to the electronic degrees of freedom
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and quantum mechanical effects not present in this type of simulation.

In general, the modeling of magnetic materials remains a true challenge and the highly non-trivial
task of including the subtle effects of magnetism in force field simulations has not been solved. The
best attempts to reproduce the experimental behavior of iron using empirical potentials is therefore left
to complex fitting schemes where the magnetic effects in the stability of phases is mimicked using the
lattice energy and the phonon contributions to the free energy. Despite these issues with the experimental
reproducibility of the thermodynamic equilibrium a few interatomic potentials have obtained some success

in reproducing these phase transitions.

The application of RS in this phase transition is a good example of how free-energy calculation
methods can be successfully applied to the realistic case of an interatomic potential. The efficiency of
classical simulations like MD and Monte Carlo are an advantage over first-principle simulations that allow
us to simulate systems of sizes interesting for materials science applications. We describe now the general
algorithm used to compute the free energy of the different phases of iron, making use of the Frenkel-Ladd

TI, RS and other general numerical techniques.

We are going to present results for three different potentials that present the v — « phase transition,
namely the Embedded-Atom Model (EAM) potential of Meyer and Entel (1998), the Analytical Bond
Order (ABOP) potential of Miiller et al. (2007) and the Modified Embedded-Atom Model (MEAM) for
temperature dependence of Lee et al. (2012). From now on we refer to these iron potentials by the name
of the class of potentials (EAM, ABOP and MEAM). A few other potentials have also been tested but
they do not present this phase transition. For all three potentials we have computed the timestep size
by direct verification of the conservation of energy for an isolated system. Fig.3.13 (left) illustrates the
result of energy conservation for the MEAM potential. We have then chosen 3fs for MEAM and 1fs for
the EAM and the ABOP potentials.

Once again the Nosé-Hoover thermostat has shown problems with the canonical sampling at low
temperatures. Notice that this time we are applying the thermostat to a full interatomic potential, with
no harmonic approximations. In fig.3.14 we show the result of the canonical sampling for the MEAM
crystal at temperature of 1 K. The two graphs on the top show the kinetic and potential energy distribution
respectively. Although the distributions have a Gaussian shape they are not the same for different chain
lengths and do not agree with the equipartition theorem for the kinetic energy. In the two graphs on the
bottom we have shown the density distribution for the velocity and position, comparing the result for
the velocity with the exact solution. In all cases we found a behavior that depends on the chain length.
For the velocity we can see that none of the results agree with the exact solution. Although the results

show that the Nosé-Hoover thermostat does not correctly sample the canonical ensemble for crystal at
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Figure 3.13: Ilustration of Left: energy conservation and Right: thermal expansion for the MEAM

potential, a similar approach was taken for all used potentials.

low temperatures it is clear that these results are better than the ones for the harmonic oscillators, figs.2.4
and 2.5. We relate this improvement with the anharmonicity present in the full interatomic potential.
It is known (Ashcroft and Mermin, 1976) that the anharmonicity is responsible for the energy exchange
between the normal modes of a crystal and therefore leading to a better sampling for the Nosé-Hoover
thermostat.

Fig.3.15 shows the results for the canonical sampling of the MEAM potential using the Langevin
thermostat at the same 1K temperature. On the top we show the result for the average kinetic and
potential energy respectively. The kinetic energy agrees with the equipartition theorem and, as expected,
the potential energy does not agree due to the anharmonicity of the potential. We can see that even at
low temperatures there is a divergence of the harmonic behavior for the potential energy (recall that the
kinetic energy always respects the equipartition theorem). At the bottom we have the density distribution
of the velocity and position, the velocity distribution agrees with the exact result.

We now want to compute the free-energy temperature dependence using RS but in order to do so
we need to compute the absolute free energy at a reference temperature G(7p) using the Frenkel-Ladd
method. In what follows we explain the procedures to obtain the complete temperature dependence of
G(T) using the methods presented earlier in this chapter.

Initially we select the reference temperature 7T and compute the equilibrium lattice constant of the
iron crystal potential at this temperature, a(Tp). In fig.3.13 (right) we show the thermal expansion of
the MEAM potential at zero pressure. With this curve we can obtain the equilibrium lattice constant at
zero pressure for different temperatures. Using the reference temperature we compute the mean-square

displacement of the atoms of the iron crystal at zero pressure and with eq.(3.16) we obtain the frequency
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Figure 3.14: Verification of the canonical sampling for the Nosé-Hoover thermostat, Top: the kinetic and
potential energy have a Gaussian shape that depends on the thermostat length and does not agree with
the equipartition theorem. Bottom: distribution of velocity and position for one atom of the crystal, the
velocity distribution does not agree with the exact solution, the position distribution is compared with

the distribution of the harmonic approximation of the crystal.

of the harmonic oscillators to be used in the Einstein crystal of the Frenkel-Ladd method. In figs.3.15
(bottom right) we compare the position distribution of one atom compared with the distribution of a
harmonic oscillator with frequency given by eq.(3.16), as we can see this approximation performance is
very good at low temperatures (where usually the reference temperature is chose). On the other hand, it is
expected that this approximation performs poorly as the temperature approaches to the phase-transition
temperature.

At this point we have the equilibrium lattice constant a(7p) and the frequency of the harmonic approx-
imation of the crystal. We now can use the Frenkel-Ladd method with this lattice constant (compatible

with the zero pressure requirement) to obtain G(7p). We have repeated this procedure for the BCC,
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Figure 3.15: Verification of the canonical sampling for the Langevin thermostat, Top: the kinetic and
potential energy distributions are Gaussian and the kinetic distribution agrees with the equipartition
theorem. Bottom: distribution of velocity and position for one atom of the crystal. The velocity
distribution agrees with the exact solution, the position distribution is compared with the distribution of

the harmonic approximation of the crystal.

FCC and HCP structures of all three potentials. The switching time was Ins and the system size was
18 x 18 x 18 (11,664 atoms) for the BCC structure and 14 x 14 x 14 (10,976 atoms) for FCC and HCP
structures respectively. We performed the simulations a number of times to reduce the statistical error.
We found that 3 uncorrelated simulations were sufficient due to the reasonably large size of the system
(errors decrease approximately as N -1/ ). All numerical integrations were performed using the Trape-
zoidal Rule (Press et al., 2007) and all derivatives were computed by first fitting a simple spline to the
data and then deriving the resultant curve.

With the obtained values of G(7j) we performed the RS simulations using the same system size. Once

again 3 simulations of 1ns were performed to assure that the statistical errors were sufficiently small. In
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order to keep the pressure equal to zero during the simulation we used the Nosé-Hoover barostat (Martyna
et al., 1994) with a chain of size 3.

To check the result of the RS simulation we have performed the Frenkel-Ladd method at a certain
number of different temperatures and compared the values to the RS results. In addition, we also used
three different reference temperatures, 100K, 400K and 700K to verify whether the results depend on the
reference temperature. The results for the EAM, ABOP and MEAM potentials are shown, respectively,
in figs.3.16, 3.17 and 3.18.

Fig.3.16 shows the results for the EAM potential. From these graphs we see that this potential
predicts that the HCP structure is always more stable than the FCC, for the entire temperature range
analyzed. The o« — ~ transition occurs at a temperature of (480 4+ 1)K, almost 2.5 times smaller than the

experimental result of 1184K.
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Figure 3.16: Gibbs free energy at zero pressure for different crystallographic structures using the EAM

potential.

In fig.3.17 we display the results for the ABOP potential. This potential also predicts the HCP
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structure to be more stable than the FCC for the considered range of temperatures. On the other hand,
the transition temperature of the o — 7 transformation is (10254 1)K, the best of the three potentials. We
have extended the range of temperatures for the BCC-FCC free-energy difference to show an interesting
feature of this potential. After approximately 1500K this potential shows a decrease (negative slope) in
the free-energy difference, indicating a tendency to stabilize the BCC phase again before melting (y — ¢
transition). Although we have seen this tendency, the crystal melts at approximately 2400K, before the
BCC becomes the more stable phase again. In the FCC-HCP free-energy difference curve we see that the
free-energy difference between these phases is very small and, as can be seen by the fluctuations in the
graph, difficult to measure. This was a feature included by Miiller et al. (2007) to obtain a good phase

transition temperature for the a — ~ transformation.
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Figure 3.17: Gibbs free energy at zero pressure for different crystallographic structures using the ABOP

potential.

The last analyzed potential is the MEAM shown in fig.3.18. This potential correctly predicts the
phase stability: the FCC phase is always more stable than the HCP for zero pressure and the computed
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temperature range. Another good feature is that in this temperature range the BCC phase is always
more stable than the HCP. This is important when we study the kinetics of the phase transition since it
avoids the nucleation of the HCP during the transition. The phase transition temperature of the oo —
transformation is (950 + 1)K, better than the EAM potential but it is still almost 20% smaller than
the experimental value. Because of the correct phase stability order and the reasonably good transition
temperature we believe that this is the best potential of all three to study the Martensitic phase transition
in pure iron. In terms of efficiency, this potential performs better than the ABOP but is worse than the
EAM potential. This is not a real issue however, due to the powerful parallelization of both, the LAMMPS
MD code and the free-energy calculation methods.
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Figure 3.18: Gibbs free energy at zero pressure for different crystallographic structures using the MEAM

potential.

For the MEAM potential we show in fig.3.19 the enthalpy AH = AE + PAV and the entropy —T'AS
contribution for the free-energy difference AG = AH — T'AS between the BCC and FCC structures. In

this graph we can see how these two terms compete to make this phase transition happens.
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Figure 3.19: Enthalpy and entropy contributions to the Gibbs free energy of MEAM potential.

We now turn to analyze the agreement between the Frenkel-Ladd method and the RS. From figs.3.16,
3.17, 3.18 we notice that at high temperatures (at the end of the temperature range actually) the RS
result starts to diverge from the result of the Frenkel-Ladd method. We attribute this behavior to the
type of scaling of temperature that is made in the RS T' = T/ where the A(t) parameter has a linear
variation in time. As we have seen, in the RS method each state of the switching has the physical meaning
of representing the system of interest at a temperature 7. Because of the 1/\ dependence, the rate of
temperature variation is faster at the end of the switching interval and therefore we have less states per
temperatures at the end of the temperature range (high temperatures). A possible correction for this
problem is to implement the A(¢) parameter variation in such a way that the temperature variation is
constant during the entire switching process. Another result that agrees with this interpretation is that
the divergence between the methods becomes smaller if we choose higher reference temperatures while
keeping the final temperature the same. This reduces the temperature interval and therefore includes
more states for high temperatures at the end of the switching.

Here we have chosen to compute the entire free-energy curve to illustrate how the method works.
Technically this is not necessary. The most efficient way to use RS to compute a transition temperature
is described by Ryu and Cai (2008) where the melting temperature for many different metals and semi-
conductors is computed, the free-energy curves are calculated only close to the transition temperature,
reducing the temperature range of the simulation and therefore increasing the precision of the final result.
It is interesting to notice in this paper that, due to the reduced size of the system used by Ryu and Cai
(2008) they do not obtain a better precision in the transition temperature than we do. Because all the

A-integration methods only depend on averages over all the system, the size of the system can significantly
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influence the error due to its N~*/< dependence.

3.10 Kinetics of Martensitic Phase Transitions

We present now our attempt to study the kinetics of the Martensitic phase transition in pure iron
using MD. From an experimental point of view the kinetics of this transformation is difficult to analyze
due to the fast growth of the new crystal structure inside the system. For this reason not much is known
about the mechanisms of this phase transition. In fig.3.12 we show an idealized mechanism known as
Bain’s Path (Porter and Easterling, 1992) by which one can change from the BCC structure to FCC by
expanding the cubic unit cell in the Z direction by a factor of v/2. Notice that there is no shear involved
in this mechanism. There are many challenging questions related to the kinetics of this phase transition
regarding the role of defects in the transition, the importance of specific crystallographic orientations in
the growth of the new phase inside the crystal and many others. From a computational point of view there
are even more aspects of the phase transition to be tackled. Here we present our attempt to implement a
rare event method using MD to study the kinetics of transformation. The Forward Fluz Sampling method
(FFS) (Allen et al., 2005) is a technique variant of a broad class of rare event simulation methods know
as Transition Path Sampling (TPS) (Dellago et al., 1998). Typically when studying rare event processes
one wishes to know two things: how often the event (the phase transition in our case) happens or the
rate constant k4p of the process from a state A to a state B and the free-energy barrier associated with
the process. Rare event method like FFS and TPS allow us to compute these quantities from atomistic
simulations. We introduce now the rare event problem where the need for FFS-like methods appears.

MD simulations have two severe limitations in its applicability: spatial and temporal constraints
due to limited computing power. The origin of the spatial limitation is the natural microscopic nature
of matter. The typical atomic distance between two atoms is ~ O(14) = O(107%n). Thus if we
want to simulate a system at a scale of um we need approximately 10'2 atoms (a trillion atoms). This
limitation has been reasonably overcome over the years due to the rapid development and expansion of
high-performance parallel computing clusters. Using the availability of many processors and techniques
like spatial decomposition (Plimpton et al., 1995) we have been able to perform MD simulations with
trillion atoms (Timothy and Kadau, 2008).

The temporal limitation of MD simulations is more subtle. It arises from the necessity of correctly
integrating the vibrational motion of atoms. Typically the frequency of oscillation of atoms in solids is
O(10'3Hz), which imposes a limitation on the timestep of approximately At ~ 1fs. Therefore, for a
simulation of 1ns of real time, we need to compute 10° steps and this is currently the approximate limit

of the time length of a simulation. Due to the causality of classical mechanics we cannot use an approach



72 CHAPTER 3. PHASE TRANSITIONS AND FREE-ENERGY CALCULATION

like the one used in the spatial limitation, something like “time decomposition” will not work.

It is the severe temporal limitation of MD simulations that creates the need for rare-event methods.
For example, in a first order phase transition the metastable states can exist for a long period of time
compared to the nanoseconds of duration of an MD simulation. The event of a phase transition is driven
by fluctuations inside the system and if the undercooling of a phase is small, the necessary fluctuation
to make the transition happen can be quite rare. One example already cited here where this happens is
diamond. Rare-event methods serve to try to remedy this situation and facilitate the observation of these

rare fluctuations.

In FFS the definition of an order parameter o capable of differentiating between two states A and
B is of fundamental importance, where A and B are stable states. Each of these states is associated
with a typical value of the order parameter, a4 and ap. Between these values we define a series of n + 1
intermediate interfaces with order parameter ag = aig, g, s, ..., a1, @ = ap. This order parameter is
going to be monitored during a simulation. Fig.3.20 shows a scheme of the algorithm of this method. We
start the simulation in state A defined as @ < a4 and monitor a during a certain period of time. During
this time we store M configurations of the system in which a = a4. After that, we randomly select one of
them and continue the simulation until the system reaches o or returns to o < acs. If the system reaches
a1 we store that configuration, if it went back to a < ay we discard the final configuration. Then we
start again from the previous a4 configuration and repeat the process, until we store M configurations.
After this we randomly select one of the configurations with o = a1 and start the process again, until we
obtain M configurations for each interface and reach @ = ap. The final result is that the system is driven
in a ratchet-like manner from state A to the final state B without any imposition on the microscopic

dynamics.

A a<ap B: > ag

Figure 3.20: Scheme of the FFS method algorithm. The trajectories with same color have the same initial

state, different colors represent trajectories of different interfaces.
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Now, we have outlined the general features of the FF'S method, there are many points that need to be
clarified. The first is that the dynamics between each interface has to contain an element of stochasticity.
Otherwise the evolution of the system is deterministic and we will always obtain the same trajectory (for
example, the NVE ensemble or the Nosé-Hoover chain thermostat are deterministic dynamics). Frequently,
the FFS method is implemented using Monte Carlo due to its stochastic nature. The first implementation
of FFS using MD was in the study of bubble nucleation in a Lennard-Jones fluid by Wang et al. (2008).
One of the possible approaches to this problem of stochasticity in MD simulations is to use the Langevin
thermostat or to introduce random small perturbations (e.g. modification of the velocity of one particle)
in the system. Another interesting point about FFS is its flexibility in terms of the choice of the random
configurations, the quantity of configurations and how to evolve the system from a specific interface to
another. Allen et al. (2009) present three possible variants: Direct FF'S, Branched growth and Rosenbluth-
like FF'S. These variants allow us to adjust the method to the system to be simulated so as to and improve
its efficiency (Allen et al., 2006).

To compute the rate constant k4p we first define it in terms of FFS variables according to

kap = ¢aB.

Here ¢ 4, is the steady-state flux of trajectories leaving state A and reaching state B. We can write it as

a8 = ¢a0P(ap|lag)

where ¢4 is the steady-state flux of trajectories leaving A and crossing g interface multiplied by the
conditional probability that a trajectory that crosses g coming from A will reach B before going back to
A. We can easily compute the flux ¢4 since the crossing of ag from a trajectory initiated in A occurs
frequently. On the other hand, the probability P(apg|ap) is still very small to be computed using direct

MD simulations. To remedy this problem we write

n—1
P(aalag) = [ ] Plairles)
=0

where the product is over all interfaces and P(«;11|c;) is the conditional probability of a trajectory
initiated at the «; interface reaching the a1 interface. Now even if P(aalag) is small, we have broken
it into many factors of probabilities P(a;+1|c;) that, if the order parameter was chosen wisely, will not

be numbers so small. Thus the final equation for the rate constant is

n—1

kag = ¢a0 | [ Pleisi]on). (3.33)
i=0

It remains to be shown how to compute these values from the FFS simulation. If the first interface «q

is chosen correctly, the flux ¢4 ¢ can be computed by brute force MD, since the probability of crossing A
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is not too small. In fig.3.20 this corresponds to the gray trajectory. Notice how the stored configurations
are those coming from inside A directed at the next interface. This is important since the configurations
in the opposite direction will always return to A. The flux ¢4 is then computed as the number of stored
configurations divided by the simulation time. The probabilities P(c;+1|c;) are estimated as the number
of trajectories initiated in «; that reached a;y1 divided by the total number of trajectories shot.

Using the same trajectories obtained to compute k4p we can compute the free-energy barrier by using
the Umbrella Sampling (Frenkel and Smit, 2001) method that works quite naturally with FFS (Valeriani
et al., 2007; Allen et al., 2009; Borrero and Escobedo, 2009). All that is necessary is to define the windows
used in the Umbrella Sampling as the interfaces interval of FFS. If the order parameter used is chosen
to be the same for both methods the match between the methods is statistically better than if the order
parameters are different. Asides from the transition rate k4p and the free-energy barrier the FFS method
also allows us to obtain samples of transition trajectories that can be used to better understand the

mechanism of the transition.

Now we describe our attempts to apply the FFS method to study the kinetics of the martensitic phase
transition. The initial and final states A and B are chosen according to fig.3.12 as the BCC and FCC
structures, respectively. The Langevin thermostat was used to guarantee the stochasticity of the dynamics
between the interfaces. We have chosen to use the MEAM potential of Lee et al. (2012) because it was the
only potential to show the correct phase stability order, with FCC being more stable than HCP. The main
problem we faced was the choice of the order parameter. Because FFS relies strongly on the definition
of the order parameter «, a good choice will increase the efficiency of the method while a poor one can
lead to wasted efforts and even wrong results (Allen et al., 2009). In the case of the Martensitic phase
transition we need an order parameter that differentiates between different crystal structu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>